
HAL Id: tel-04234302
https://theses.hal.science/tel-04234302v1
Submitted on 8 Nov 2011 (v1), last revised 10 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An active–set trust-region method for
bound-constrained nonlinear optimization without

derivatives applied to noisy aerodynamic design
problems

Anke Troltzsch

To cite this version:
Anke Troltzsch. An active–set trust-region method for bound-constrained nonlinear optimization with-
out derivatives applied to noisy aerodynamic design problems. Optimization and Control [math.OC].
Institut National Polytechnique de Toulouse - INPT, 2011. English. �NNT : �. �tel-04234302v1�

https://theses.hal.science/tel-04234302v1
https://hal.archives-ouvertes.fr



%NVUEDEL�OBTENTIONDU





$ÏLIVRÏPAR�

$ISCIPLINEOUSPÏCIALITÏ�






0RÏSENTÏEETSOUTENUEPAR�





4ITRE�













%COLEDOCTORALE�

5NITÏDERECHERCHE�

$IRECTEUR�S	DE4HÒSE�

2APPORTEURS�

LE�

!UTRE�S	MEMBRE�S	DUJURY

Institut National Polytechnique de Toulouse (INP Toulouse)

Mathématiques Informatique Télécommunications (MITT)

An active-set trust-region method for bound-constrained nonlinear
optimization without derivatives

applied to noisy aerodynamic design problems

mardi 7 juin 2011

Anke TRÖLTZSCH

Mathématiques Informatique Télécommunications

Luis Nunes Vicente
Jean-Charles Gilbert

Serge Gratton
Philippe L. Toint

CERFACS

Bijan Mohammadi
Matthieu Meaux





THÈSE

présentée en vue de l’obtention du titre de

DOCTEUR DE L’UNIVERSITÉ DE TOULOUSE

Spécialité : Mathématiques, Informatique et Télécommunications

par

Anke TRÖLTZSCH

CERFACS

Une méthode de région de confiance avec ensemble actif pour
l’optimisation non linéaire sans dérivées avec contraintes de bornes

appliquée à des problèmes aérodynamiques bruités

soutenue le 7 juin 2011 devant le jury composé de :

Serge Gratton Directeur de thèse IRIT et CERFACS

Philippe L. Toint Co-directeur de thèse Université de Namur

Luis Nunes Vicente Rapporteur Université de Coimbra

Jean-Charles Gilbert Rapporteur INRIA Paris - Rocquencourt

Bĳan Mohammadi Examinateur CERFACS

Matthieu Meaux Examinateur Airbus France

Réf. CERFACS : TH-PA-11-69





Résumé
L’optimisation sans dérivées (OSD) a connu un regain d’intérêt ces dernières années, prin-

cipalement motivée par le besoin croissant de résoudre les problèmes d’optimisation définis

par des fonctions dont les valeurs sont calculées par simulation (par exemple, la conception

technique, la restauration d’images médicales ou de nappes phréatiques).

Ces dernières années, un certain nombre de méthodes d’optimisation sans dérivée ont été

développées et en particulier des méthodes fondées sur un modèle de région de confiance se sont

avérées obtenir de bons résultats.

Dans cette thèse, nous présentons un nouvel algorithme de région de confiance, basé sur

l’interpolation, qui se montre efficace et globalement convergent (en ce sens que sa convergence

vers un point stationnaire est garantie depuis tout point de départ arbitraire). Le nouvel algo-

rithme repose sur la technique d’auto-correction de la géométrie proposé par Scheinberg and

Toint (2010). Dans leur théorie, ils ont fait avancer la compréhension du rôle de la géomé-

trie dans les méthodes d’OSD à base de modèles. Dans notre travail, nous avons pu améliorer

considérablement l’efficacité de leur méthode, tout en maintenant ses bonnes propriétés de

convergence. De plus, nous examinons l’influence de différents types de modèles d’interpolation

sur les performances du nouvel algorithme.

Nous avons en outre étendu cette méthode pour prendre en compte les contraintes de borne

par l’application d’une stratégie d’activation. Considérer une méthode avec ensemble actif pour

l’optimisation basée sur des modèles d’interpolation donne la possibilité d’économiser une quan-

tité importante d’évaluations de fonctions. Il permet de maintenir les ensembles d’interpolation

plus petits tout en poursuivant l’optimisation dans des sous-espaces de dimension inférieure.

L’algorithme résultant montre un comportement numérique très compétitif. Nous présentons

des résultats sur un ensemble de problèmes-tests issu de la collection CUTEr et comparons

notre méthode à des algorithmes de référence appartenant à différentes classes de méthodes

d’OSD.

Pour réaliser des expériences numériques qui intègrent le bruit, nous créons un ensemble de

cas-tests bruités en ajoutant des perturbations à l’ensemble des problèmes sans bruit. Le choix

des problèmes bruités a été guidé par le désir d’imiter les problèmes d’optimisation basés sur

la simulation. Enfin, nous présentons des résultats sur une application réelle d’un problème de

conception de forme d’une aile fourni par Airbus.

Mots-clés:
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Abstract
Derivative-free optimization (DFO) has enjoyed renewed interest over the past years, mostly

motivated by the ever growing need to solve optimization problems defined by functions whose

values are computed by simulation (e.g. engineering design, medical image restoration or

groundwater supply).

In the last few years, a number of derivative-free optimization methods have been developed

and especially model-based trust-region methods have been shown to perform well.

In this thesis, we present a new interpolation-based trust-region algorithm which shows

to be efficient and globally convergent (in the sense that its convergence is guaranteed to a

stationary point from arbitrary starting points). The new algorithm relies on the technique of

self-correcting geometry proposed by Scheinberg and Toint [128] in 2009. In their theory, they

advanced the understanding of the role of geometry in model-based DFO methods, in our work,

we improve the efficiency of their method while maintaining its good theoretical convergence

properties. We further examine the influence of different types of interpolation models on the

performance of the new algorithm.

Furthermore, we extended this method to handle bound constraints by applying an active-

set strategy. Considering an active-set method in bound-constrained model-based optimization

creates the opportunity of saving a substantial amount of function evaluations. It allows to

maintain smaller interpolation sets while proceeding optimization in lower dimensional sub-

spaces. The resulting algorithm is shown to be numerically highly competitive. We present

results on a test set of smooth problems from the CUTEr collection and compare to well-known

state-of-the-art packages from different classes of DFO methods.

To report numerical experiments incorporating noise, we create a test set of noisy problems

by adding perturbations to the set of smooth problems. The choice of noisy problems was

guided by a desire to mimic simulation-based optimization problems. Finally, we will present

results on a real-life application of a wing-shape design problem provided by Airbus.

Keywords:

derivative-free optimization, trust-region method, bound constraints, noisy problems





This dissertation would not have been possible without the sup-

port of many individuals. First of all, I want to thank my advi-

sors, Serge Gratton and Philippe L. Toint, for four years of teach-

ing, mentoring, and challenging me. I appreciated very much to

work with them. I thank the referees, Luis Nunes Vicente and

Jean-Charles Gilbert, and the other members of the jury, Bĳan

Mohammadi and Matthieu Meaux, for accepting to evaluate my

work.

The people at CERFACS, and in particular the members of the

Algo team, have all been very pleasant to work and learn with,

and I thank all of them for a wonderful graduate experience. Es-

pecially, I want to mention Selime who is the new sunshine of the

Algo team. She has always been very helpful and I wish that one

day I can help her as much as she did.

I also want to thank the people from the CFD team of CERFACS,

in particular Jean-Francois Boussuge and Julien Laurenceau,

and people from Airbus France, in particular Pascal Larrieu and

Matthieu Meaux for their support and for helpful discussions

concerning the use of optimization software in aircraft design.

I would like to thank my parents, Marlies and Jörg Tröltzsch, for

supporting me during all my projects and for giving me the freedom

to find my own way. Moreover, I want to thank my father for

proofreading this thesis.

Last but not least, I want to thank Christian wholeheartedly for

his patience, support and constant encouragement.





Contents

1 Introduction 1

2 Model-based derivative-free optimization 5

2.1 Basic material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 The trust-region framework . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Polynomial interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Lagrange polynomials and Λ-poisedness . . . . . . . . . . . . . . . . . . . 8

2.1.4 Condition number as a measure of well-poisedness . . . . . . . . . . . . . 11

2.2 Polynomial interpolation and regression models . . . . . . . . . . . . . . . . . . . 12

2.2.1 Interpolation sets of variable size . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Sub-basis model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Minimum ℓ2-norm model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Minimum Frobenius-norm model . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 Least-change Frobenius-norm model . . . . . . . . . . . . . . . . . . . . . 15

2.2.6 Minimum ℓ1-norm model . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.7 Least-squares regression model . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 A basic interpolation-based trust-region approach . . . . . . . . . . . . . . . . . . 17

2.4 Self-correcting geometry - a recent approach . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Convergence theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 A modified algorithm with self-correcting geometry . . . . . . . . . . . . . . . . . 24

2.5.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Global convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 A bound-constrained DFO algorithm 31

3.1 A recursive active-set trust-region algorithm . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Outline of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Ensuring suitability of a tentative interpolation set . . . . . . . . . . . . . 32

3.1.3 Recursive call in the subspace Sk . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4 Local solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.5 Defining the next iterate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.6 Avoid re-entering a subspace . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Theoretical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Global convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Practical implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Preparing the initial call . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Handling fixed variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



3.3.3 Representation of the Lagrange polynomials . . . . . . . . . . . . . . . . . 43

3.3.4 Controlling the condition of the system matrix . . . . . . . . . . . . . . . 43

3.3.5 Implementation of the models . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.6 The projected gradient as a stopping criterion . . . . . . . . . . . . . . . . 48

3.3.7 An alternative stopping criterion . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Solving the bound-constrained trust-region subproblem in ℓ2-norm . . . . . . . . 51

3.4.1 The Moré-Sorensen algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 The extension of the Moré-Sorensen algorithm to handle bound-constraints 54

3.5 Numerical experiments in the CUTEr testing environment . . . . . . . . . . . . . 57

3.5.1 Default parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 Test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.3 A common stopping criterion . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.4 Performance profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.5 Comparison of different model types . . . . . . . . . . . . . . . . . . . . . 61

3.5.6 Comparison of local solver options . . . . . . . . . . . . . . . . . . . . . . 62

3.5.7 Unconstrained comparisons with NEWUOA . . . . . . . . . . . . . . . . . 63

3.5.8 Bound-constrained comparisons with BOBYQA . . . . . . . . . . . . . . . 68

3.5.9 Unconstrained comparisons with direct-search solvers . . . . . . . . . . . 73

3.5.10 Bound-constrained comparisons with direct-search solvers . . . . . . . . . 77

4 Industrial application incorporating noise 83

4.1 Presentation of the optimization suite OPTaliA . . . . . . . . . . . . . . . . . . . 84

4.1.1 Optimization framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.2 Evaluator for CFD functions . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2.1 Shape parameterization and mesh deformation . . . . . . . . . . 85

4.1.2.2 Flow simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.2.3 Aerodynamic function computation . . . . . . . . . . . . . . . . 87

4.1.3 Interface Matlab – OPTaliA . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Estimating noise by Hamming’s difference table . . . . . . . . . . . . . . . . . . . 88

4.2.1 The idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.2 Case study of an aerodynamic function and gradient . . . . . . . . . . . . 89

4.3 Numerical experiments on noisy CUTEr test problems . . . . . . . . . . . . . . . 92

4.3.1 Noisy test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Stopping criterion for the comparison . . . . . . . . . . . . . . . . . . . . 93

4.3.3 Data profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.4 Comparison of different model types on unconstrained problems . . . . . 94

4.3.5 Comparison of different model types on bound-constrained problems . . . 97

4.4 Numerical experiments on an aerodynamical application . . . . . . . . . . . . . . 99

4.4.1 Stopping criterion using noise estimation . . . . . . . . . . . . . . . . . . 99

4.4.2 Reference optimizer (DOT-BFGS) . . . . . . . . . . . . . . . . . . . . . . 101

xii



4.4.3 Test case: Airfoil drag minimization . . . . . . . . . . . . . . . . . . . . . 101

4.4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Modelling the allowed gradient noise in a gradient-based line search method . . . 103

4.5.1 Getting a descent direction in the presence of a noisy gradient . . . . . . 104

4.5.1.1 Deterministic properties . . . . . . . . . . . . . . . . . . . . . . . 104

4.5.1.2 Statistical approach . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.1.3 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.2 Global convergence in the presence of a noisy gradient . . . . . . . . . . . 109

4.5.2.1 Deterministic properties . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.2.2 Statistical approach . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5.2.3 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.2.4 Numerical example of an aerodynamical test case . . . . . . . . 114

4.5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Enhancing a DFO method by inexact gradient information in the context of

global optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.1 The algorithm SNOBFIT . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.2 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6.3 Experiments on academic and aerodynamic test problems . . . . . . . . . 120

4.6.4 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Conclusions and future work 123

A Test problems 127

B Test results 131

C French summary of the thesis 147

Bibliography 151

xiii



List of Figures

3.1 Minimization of a quadratic model inside the ℓ2-norm constraint and the bounds 54

3.2 Comparison of different models in BCDFO+ on unconstrained CUTEr problems 61

3.3 Comparison of local solvers in BCDFO+ on unconstrained CUTEr problems . . 62

3.4 Comparison of local solvers in BCDFO+ on bound-constrained CUTEr problems 63

3.5 Comparison of BC-DFO and NEWUOA on unconstrained CUTEr problems

(2 digits of accuracy required in final function value) . . . . . . . . . . . . . . . . 64

3.6 Comparison of BC-DFO and NEWUOA on unconstrained CUTEr problems

(4 digits of accuracy required in final function value) . . . . . . . . . . . . . . . . 64

3.7 Comparison of BC-DFO and NEWUOA on unconstrained CUTEr problems

(6 digits of accuracy required in final function value) . . . . . . . . . . . . . . . . 65

3.8 Comparison of BC-DFO and NEWUOA on unconstrained CUTEr problems

(8 digits of accuracy required in final function value) . . . . . . . . . . . . . . . . 65

3.9 Comparison of BCDFO+, BC-DFO and NEWUOA on unconstrained CUTEr

problems (2 digits of accuracy required in final function value) . . . . . . . . . . 66

3.10 Comparison of BCDFO+, BC-DFO and NEWUOA on unconstrained CUTEr

problems (4 digits of accuracy required in final function value) . . . . . . . . . . 67

3.11 Comparison of BCDFO+, BC-DFO and NEWUOA on unconstrained CUTEr

problems (6 digits of accuracy required in final function value) . . . . . . . . . . 67

3.12 Comparison of BCDFO+, BC-DFO and NEWUOA on unconstrained CUTEr

problems (8 digits of accuracy required in final function value) . . . . . . . . . . 68

3.13 Comparison of BC-DFO and BOBYQA on bound-constrained CUTEr problems

(2 digits of accuracy required in final function value) . . . . . . . . . . . . . . . . 69

3.14 Comparison of BC-DFO and BOBYQA on bound-constrained CUTEr problems

(4 digits of accuracy required in final function value) . . . . . . . . . . . . . . . . 69

3.15 Comparison of BC-DFO and BOBYQA on bound-constrained CUTEr problems

(6 digits of accuracy required in final function value) . . . . . . . . . . . . . . . . 70

3.16 Comparison of BC-DFO and BOBYQA on bound-constrained CUTEr problems

(8 digits of accuracy required in final function value) . . . . . . . . . . . . . . . . 70

3.17 Comparison of BCDFO+, BC-DFO and BOBYQA on bound-constrained CUTEr

problems (2 digits of accuracy required in final function value) . . . . . . . . . . 71

3.18 Comparison of BCDFO+, BC-DFO and BOBYQA on bound-constrained CUTEr

problems (4 digits of accuracy required in final function value) . . . . . . . . . . 71

3.19 Comparison of BCDFO+, BC-DFO and BOBYQA on bound-constrained CUTEr

problems (6 digits of accuracy required in final function value) . . . . . . . . . . 72

3.20 Comparison of BCDFO+, BC-DFO and BOBYQA on bound-constrained CUTEr

problems (8 digits of accuracy required in final function value) . . . . . . . . . . 72

3.21 Comparison BC-DFO, NEWUOA and SID-PSM on unconstrained CUTEr prob-

lems (2 digits of accuracy required in final function value) . . . . . . . . . . . . . 73

xiv



3.22 Comparison BC-DFO, NEWUOA and SID-PSM on unconstrained CUTEr prob-

lems (4 digits of accuracy required in final function value) . . . . . . . . . . . . . 74

3.23 Comparison BC-DFO, NEWUOA and SID-PSM on unconstrained CUTEr prob-

lems (6 digits of accuracy required in final function value) . . . . . . . . . . . . . 74

3.24 Comparison BC-DFO, NEWUOA and SID-PSM on unconstrained CUTEr prob-

lems (8 digits of accuracy required in final function value) . . . . . . . . . . . . . 75

3.25 Comparison BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on unconstrained

CUTEr problems (2 digits of accuracy required in final function value) . . . . . . 75

3.26 Comparison BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on unconstrained

CUTEr problems (4 digits of accuracy required in final function value) . . . . . . 76

3.27 Comparison BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on unconstrained

CUTEr problems (6 digits of accuracy required in final function value) . . . . . . 76

3.28 Comparison BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on unconstrained

CUTEr problems (8 digits of accuracy required in final function value) . . . . . . 77

3.29 Comparison BC-DFO, NEWUOA and SID-PSM on bound-constrained CUTEr

problems (2 digits of accuracy required in final function value) . . . . . . . . . . 78

3.30 Comparison BC-DFO, NEWUOA and SID-PSM on bound-constrained CUTEr

problems (4 digits of accuracy required in final function value) . . . . . . . . . . 78

3.31 Comparison BC-DFO, NEWUOA and SID-PSM on bound-constrained CUTEr

problems (6 digits of accuracy required in final function value) . . . . . . . . . . 79

3.32 Comparison BC-DFO, NEWUOA and SID-PSM on bound-constrained CUTEr

problems (8 digits of accuracy required in final function value) . . . . . . . . . . 79

3.33 Comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on bound-

constrained CUTEr problems (2 digits of accuracy required in final function

value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.34 Comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on bound-

constrained CUTEr problems (4 digits of accuracy required in final function

value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.35 Comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on bound-

constrained CUTEr problems (6 digits of accuracy required in final function

value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.36 Comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on bound-

constrained CUTEr problems (8 digits of accuracy required in final function

value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Optimization and evaluation framework in OPTaliA . . . . . . . . . . . . . . . . 84

4.2 Illustration of the parameters β and p . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Two-dimensional Hicks-Henne sinusoidal bump . . . . . . . . . . . . . . . . . . . 86

4.4 Navier Stokes pressure drag objective function . . . . . . . . . . . . . . . . . . . . 90

4.5 Navier Stokes pressure drag adjoint state gradient . . . . . . . . . . . . . . . . . 91

xv



4.6 Comparison different models on unconstrained noisy CUTEr problems (τ = 10−1

and maxeval = 200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Comparison different models on unconstrained noisy CUTEr problems (τ = 10−5

and maxeval = 200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8 Comparison different models on unconstrained noisy CUTEr problems (τ = 10−1

and maxeval = 15000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Comparison different models on unconstrained noisy CUTEr problems (τ = 10−5

and maxeval = 15000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.10 Comparison different models on bound-constrained noisy CUTEr problems

(τ = 10−1 and maxeval = 200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.11 Comparison different models on bound-constrained noisy CUTEr problems

(τ = 10−5 and maxeval = 200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.12 Comparison different models on bound-constrained noisy CUTEr problems

(τ = 10−1 and maxeval = 15000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.13 Comparison different models on bound-constrained noisy CUTEr problems

(τ = 10−5 and maxeval = 15000) . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.14 Convergence histories on 3-dim. aerodynamic test case . . . . . . . . . . . . . . . 102

4.15 Convergence histories on 9-dim. aerodynamic test case . . . . . . . . . . . . . . . 103

4.16 Regularization for Powell 2D problem with noiseg = 10−3 . . . . . . . . . . . . . 106

4.17 Allowed noise level for Property 4.2 and P_Ass1=99% . . . . . . . . . . . . . . . 108

4.18 Allowed noise level for Property 4.2 and P_Ass1=99% for bigger gradient norm . 108

4.19 Allowed noise level for Property 4.2 and P_Ass1=99.99% . . . . . . . . . . . . . 109

4.20 Allowed noise level for Property 4.4 and P_Ass2&3=99% . . . . . . . . . . . . . 113

4.21 Example of CDP adjoint state gradient . . . . . . . . . . . . . . . . . . . . . . . 114

4.22 Comparison on minimal surface problem . . . . . . . . . . . . . . . . . . . . . . . 121

4.23 Comparison on a Euler CDP problem . . . . . . . . . . . . . . . . . . . . . . . . 122

xvi



List of Tables

3.1 Gradient accuracy of ill-conditioned problem PALMER3C . . . . . . . . . . . . . 50

3.2 Gradient accuracy of well-conditioned problem ALLINITU . . . . . . . . . . . . . 50

3.3 Dimensions of considered unconstrained problems . . . . . . . . . . . . . . . . . . 58

3.4 Hessian structure of considered unconstrained problems . . . . . . . . . . . . . . 59

3.5 Dimensions of considered bound-constrained problems . . . . . . . . . . . . . . . 59

4.1 Difference table by Hamming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Noise levels in CDP obtained by different strategies and sampling distances h . . 91

4.3 Difference table for the gradient of CDP with h = 10−6 . . . . . . . . . . . . . . 91

A.1 Considered unconstrained CUTEr test problems . . . . . . . . . . . . . . . . . . 128

A.2 Considered bound-constrained CUTEr test problems . . . . . . . . . . . . . . . . 129

B.1 Results from comparison of different types of models in BCDFO+ on uncon-

strained CUTEr problems (see Figure 3.2) . . . . . . . . . . . . . . . . . . . . . . 132

B.2 Results from comparison of local solvers BC-MS and TCG in BCDFO+ on

unconstrained CUTEr problems (see Figure 3.3) . . . . . . . . . . . . . . . . . . 133

B.3 Results from comparison of local solvers BC-MS and TCG in BCDFO+ on

bound-constrained CUTEr problems (see Figure 3.4) . . . . . . . . . . . . . . . . 134

B.4 Results from comparison of BCDFO+, BC-DFO and NEWUOA on uncon-

strained CUTEr problems (see Figures 3.5-3.8 and Figures 3.9-3.12) . . . . . . . 135

B.5 Results from comparison of BCDFO+, BC-DFO and BOBYQA on bound-

constrained CUTEr problems (see Figures 3.13-3.16 and Figures 3.17-3.20) . . . 136

B.6 Results from comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm and

BFO on unconstrained CUTEr problems (see Figures 3.21-3.24 and Figures 3.25-

3.28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.7 Results from comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm and

BFO on bound-constrained CUTEr problems (see Figures 3.29-3.32 and Fig-

ures 3.33-3.36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.8 Results from comparison of different model types in BCDFO+ on unconstrained

noisy CUTEr problems when maxeval = 200 (see Figure 4.6) . . . . . . . . . . . 139

B.9 Results from comparison of different model types in BCDFO+ on unconstrained

noisy CUTEr problems when maxeval = 200 (see Figure 4.7) . . . . . . . . . . . 140

B.10 Results from comparison of different model types in BCDFO+ on unconstrained

noisy CUTEr problems when maxeval = 15000 (see Figure 4.8) . . . . . . . . . . 141

B.11 Results from comparison of different model types in BCDFO+ on unconstrained

noisy CUTEr problems when maxeval = 15000 (see Figure 4.9) . . . . . . . . . . 142

B.12 Results from comparison of different model types in BCDFO+ on bound-

constrained noisy CUTEr problems when maxeval = 200 (see Figure 4.10) . . . . 143

xvii



B.13 Results from comparison of different model types in BCDFO+ on bound-

constrained noisy CUTEr problems when maxeval = 200 (see Figure 4.11) . . . . 144

B.14 Results from comparison of different model types in BCDFO+ on bound-

constrained noisy CUTEr problems when maxeval = 15000 (see Figure 4.12) . . 145

B.15 Results from comparison of different model types in BCDFO+ on bound-

constrained noisy CUTEr problems when maxeval = 15000 (see Figure 4.13) . . 146

xviii



List of Algorithms

2.1 Improving well-poisedness via Lagrange polynomials . . . . . . . . . . . . . . . . 11

2.2 Basic DFO trust-region algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 UDFO trust-region algorithm with self-correcting geometry from [128] . . . . . . 21

2.4 UDFO+ modified algorithm with self-correcting geometry . . . . . . . . . . . . . 25

3.1 BCDFO+ (S0,X0, x0,Z0,∆0, ǫ0, ǫ) . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Modified greedy algorithm for selecting a well-poised interpolation set (Inputs:

x0,Z0, Outputs: Wp, p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Define the next iterate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 The l2-norm trust-region Moré-Sorensen algorithm . . . . . . . . . . . . . . . . . 53

3.5 BC-MS: Bound-constrained l2-norm trust-region algorithm . . . . . . . . . . . . 55

4.1 SNOBFIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xix





Chapter 1

Introduction

Derivative-free optimization has enjoyed renewed interest over the past years, mostly moti-

vated by the ever growing need to solve optimization problems defined by functions whose

evaluation is computationally expensive (e.g. engineering design optimization, medical image

restoration or groundwater parameter identification). These expensive optimization problems

arise in science and engineering because evaluation of the function f often requires a complex

deterministic simulation which is based on solving the equations that describe the underlying

physical phenomena (for example ordinary or partial differential equations). The computational

noise associated with these complex simulations means that obtaining derivatives is difficult and

most of the time unreliable, stimulating a growing interest in derivative-free optimization.

In the last few years, a number of derivative-free optimization methods have been developed

and especially model-based trust-region methods have been shown to perform quite satisfactory.

These methods can be mainly classified into methods which target good practical performance

and which, up to now, are only partially covered by a convergence theory and the other type

of methods for which global convergence was shown but at the expense of efficiency (globally

convergent in the sense that convergence is guaranteed to a stationary point from arbitrary

starting points).

Many of these model-based trust-region methods construct local polynomial interpolation

or regression models of the objective function and compute steps by minimizing these models

inside a region using the standard trust-region methodology (see [34] for detailed information).

The models are built so as to interpolate previously computed function values at past iterates

or at specially constructed points. For the model to be well-defined, the interpolation points

must be poised [39, 116], meaning that the geometry of this set of points has to “cover the

space” sufficiently well to stay safely away from degeneracy of the interpolation conditions. To

maintain a good poisedness of the set, geometry improving steps are included in many model-

based DFO algorithms, but their necessity has recently been questioned by Fasano, Nocedal

and Morales [58] in that a simple method not using them at all has shown surprisingly good

performance. However, it has been shown by Scheinberg and Toint [128] that convergence

from arbitrary starting points may then be lost, but that a new algorithm can be designed to

substantially reduce the need of such geometry improving steps by exploiting a self-correcting

mechanism of the interpolation set geometry in the trust-region method.

In their theory, they advance the understanding of the role of geometry in model-based

DFO methods, whereas in our work, we try to improve the efficiency of their method while

maintaining its good convergence properties. In this thesis, we present a new interpolation-

1
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based trust-region algorithm for unconstrained optimization, called UDFO+, which relies on the

self-correcting property from [128] to have a certain control on the poisedness of the interpolation

set, but ignores geometry considerations in the trust-region management by applying a more

standard trust-region management as is done in [58]. Such a trade-off in terms of geometry

control seems promising and let us expect some performance improvement.

In Chapter 2, we give a short overview of existing derivative-free optimization methods and

their classification. We present the general framework of trust-region methods and the par-

ticularities when applying such a method in a derivative-free context. We recall elements of

multivariate polynomial interpolation theory and in particular different types of local polyno-

mial interpolation and regression models. We state a basic model-based trust-region approach

and the recent approach of Scheinberg and Toint [128] applying a self-correcting property of the

interpolation set geometry before we present our new algorithm UDFO+ for which we prove

global convergence to first order stationary points.

Having in mind to use this algorithm to solve real-life applications, it is crucial to consider

the case where bounds are imposed on the variables, what may also correspond to restricting

the domain to a region where the models are well-defined, or to provide information on the

localisation of the minimizer. Hence, we extended this method to handle bound constraints

which is the main contribution in this thesis and is presented in Chapter 3. The extension of

such a derivative-free trust-region method to bound-constrained problems seems obvious but is

in fact not as straightforward in practice as one could think. The difficulty is that the set of

interpolation points may get aligned at one or more active bounds and deteriorate the quality

of the interpolation set. This led to the idea of applying an active-set strategy to pursue min-

imization in the subspace of free variables to circumvent this difficulty. Moreover, considering

an active-set method in model-based derivative-free optimization creates the opportunity of

saving a considerable amount of function evaluations because such a method allows to maintain

smaller interpolation sets while proceeding optimization in lower dimensional subspaces. We

outline the basic framework of our algorithm, called BCDFO+, and discuss its algorithmic

concepts together with some practical implementation issues and consider global convergence

issues.

One of the main ingredients of a trust-region method is the local solver used to find the

minimizer of the trust-region subproblem at each iteration. We present the new algorithm

BC-MS, to solve the bound-constrained trust-region subproblem in ℓ2-norm. This is in general

a challenging task as the intersection of a box and a ball is not a simple set to deal with.

Although it is common now to apply infinity-norm trust-regions (for which an intersection with

the bounds is again a box), we want to revisit the possibility of solving the subproblems in

ℓ2-norm using factorization.

To assess the performance of the software implementation of our algorithm BCDFO+, we

use a test set of smooth problems from the CUTEr testing collection [69]. We report numer-

ical experiments where we first assess different types of polynomial models and compare our
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new local solver BC-MS to a truncated conjugate gradient method to find the most suitable

options for our trust-region algorithm. Secondly, we compare BCDFO+ to NEWUOA [123]

and BOBYQA [124], two state-of-the-art packages applying also a trust-region method using

interpolation-based models. Thirdly, we compare our algorithm to three different software pack-

ages from the class of direct search methods.

Still having in mind to use this algorithm to solve real-life applications (as for instance an

aerodynamic shape optimization problem provided by Airbus), it is important to study the

impact of noise on optimization algorithms in general and to adapt our algorithm to handle

noisy optimization problems. This work is presented in Chapter 4.

Aerospace industry is increasingly relying on advanced numerical flow simulation tools in

the early aircraft design phase. Today’s flow solvers based on the solution of the Euler and

Navier-Stokes equations are able to predict aerodynamic behaviour of aircraft components under

different flow conditions quite well. But numerical approximations to differential equations are

often quite noisy. Adaptive methods, partial convergence, and stabilization strategies are all

useful techniques in this respect, but these approaches create noise and difficulties for many

optimization algorithms.

We also contribute to different aspects of studies concerning noise in general and the noisy

aerodynamic application in particular. We give a short description of the optimization tool OP-

TaliA which is used at Airbus to perform aerodynamic shape optimization. As the used flow

simulation tool provides the objective function and the adjoint gradient where the accuracy for

both is unknown, we demonstrate how the level of a low-amplitude noise in a function or a

gradient can be estimated using a tool which was originally developed to calculate higher order

derivatives and to estimate round-off. We assess different types of interpolation and regression

models inside our algorithm BCDFO+ to solve noisy optimization problems from the CUTEr

library and an aerodynamic shape-design problem provided by Airbus. We present a theoretical

study on the allowed noise on a gradient which is used in a gradient-based line search method.

Further, the derivative-free method SNOBFIT, developed by Huyer and Neumaier [86, 87], is

presented in the context of global optimization and we show the performance gain by enhancing

this method with inexact gradient information.

Finally, we draw some conclusions and give perspectives in Chapter 5.
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Chapter 2

Model-based derivative-free

optimization

Several methods have been proposed to minimize differentiable functions where derivatives are

not provided. These methods can be divided into three different classes. First, there are those

that compute the derivatives of the function, either by approximation, for example by finite dif-

ferences (see for instance Gill et al. [65, 64], Dennis and Schnabel [49] and Nocedal and Wright

[106]), or by automatic differentiation procedures (see for instance Griewank and Corliss [78],

Gilbert [63] and Griewank [76, 77]) or by computing a gradient based on solving the differen-

tial equations if the problem depends on the solution of a system of differential equations (see

continuous adjoint computations in [18, 66, 135]).

The second class of methods are direct-search methods whose distinctive feature is that their

algorithmic actions and decisions are only based on simple comparison rules of objective func-

tions, without explicitely approximating derivatives or building models. Important examples

of this class of methods include the Nelder-Mead algorithm (see Nelder and Mead [104], Kelley

[89] and Singer and Singer [129]) and, more recently, pattern search and generalized pattern

search methods (see Torczon [133], Lewis and Torczon [93, 94, 95], Hough, Kolda and Torczon

[85], Abramson [2, 3], Gray and Kolda [75]). A further generalization of pattern search meth-

ods is the recent development of mesh adaptive direct search methods (see Audet and Dennis

[10, 11], Abramson and Audet [5], Audet and Orban [12], Audet, Béchard and Le Digabel [9],

Abramson, Audet, Dennis and Le Digabel [6]). Furthermore, belonging to the class of direct-

search methods, a number of hybrid methods has been developed and implemented to enhance

the efficiency of this type of methods. Known examples include the softwares SID-PSM [45]

(developed by Custódio and Vicente) and NOMADm [4] (developed by Abramson), where in

the former package minimum Frobenius-norm models are formed to speed up the direct-search

run and in the latter one different types of surrogates can be used in a mesh adaptive direct

search filter method.

The third class of methods, and the one we are going to explore further in this thesis, is the

class of model-based methods. They have been pioneered by Winfield [141, 142] and Powell

[114, 115, 117, 119, 120]. Several such methods for solving unconstrained and constrained

optimization problems without derivatives are available today. In particular interpolation-based

trust-region methods have been shown to be numerically efficient compared to methods from

5
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the class of direct-search methods [102]. Trust-region methods building a model by polynomial

interpolation have been developed by a number of authors (see Conn and Toint [43], Conn,

Scheinberg and Toint [35, 36], Colson [27], Driessen [55], Conn, Scheinberg and Vicente [38, 39,

42], Wild [138], Fasano, Morales and Nocedal [58] and Scheinberg and Toint [128]).

Some authors developed methods to take advantage of a special problem structure in order to

treat larger problems. Colson and Toint [28] exploit band structure in unconstrained derivative-

free optimization problems. Further, one could make use of the sparse structure of the problem

to be solved. In particular, in discretized problems, this structure is sometimes well defined, in

that the sparsity pattern of the Hessian is known (see Colson and Toint 2002 [29]). Another

strategy can be used when the function to be minimized is partially separable (see Colson and

Toint [30], using the technique which has been introduced by Griewank and Toint [79]).

Interpolation-based methods are also widely used in practice (see, for instance, Conn, Schein-

berg and Toint with their software DFO [37], Marazzi and Nocedal with their software WEDGE

[97] and Powell with his software implementations UOBYQA [118], NEWUOA [121, 122, 123]

and BOBYQA [124], Berghen and Bersini with their package CONDOR [15]).

Another direction to pursue in model-based derivative-free trust-region optimization was to

incorporate other models than polynomials, for instance, such like radial-basis functions (RBF)

(see Wild [137], Wild and Shoemaker [140], Wild, Regis and Shoemaker with their software

ORBIT [139], Oeuvray [107], Oeuvray and Bierlaire [108, 109] with their software implementa-

tion BOOSTERS [110]).

Finally, we want to point out that direct-search and model-based methods are discussed

extensively, in theory and practice, in the recent book by Conn, Scheinberg and Vicente [41], a

comprehensive introduction to derivative-free optimization.

2.1 Basic material

Many interpolation-based trust-region methods construct local polynomial interpolation-based

models of the objective function and compute steps by minimizing these models inside a region

using the standard trust-region methodology (see [34] for detailed information). The models

are built so as to interpolate previously computed function values at a subset of past iterates or

at specially constructed points. For the model to be well-defined, the interpolation points must

be poised [39, 116], meaning that the geometry of this set of points has to “span the space”

sufficiently well to stay safely away from degeneracy. To provide the reader with some necessary

information about used notations, we have to recall some basic material about the general

trust-region framework, multivariate interpolation, Lagrange polynomials and the definition of

poisedness and well-poisedness.



A. Tröltzsch – Derivative-free model-based bound-constrained optimization 7

2.1.1 The trust-region framework

In this chapter, we consider the unconstrained optimization problem

minx∈IRn f(x), (2.1)

where f is a nonlinear function from IRn into IR, which is bounded below. We are going to

extend this formulation to bound constraints in Chapter 3.

We first briefly recall the general trust-region framework where derivatives of f are available

before turning to the derivative-free case. At each iteration of an iterative trust-region method,

a model of the form

mk(xk + s) = f(xk) + gTk s+
1
2
sTHks (2.2)

(where gk and Hk are the function’s gradient and Hessian, respectively) is minimized inside a

trust region

B∞(xk,∆k) = {x ∈ IRn | ‖x− xk‖∞ ≤ ∆k}, (2.3)

where ‖ · ‖∞ denotes the infinity norm. Note that other choices of norms are possible but

that the infinity norm is especially well suited when considering bound constraints (as we do

later in this thesis) because the intersection of the box representing the trust region and the

bound-constraints is again a box and there exist efficient algorithms to minimize a quadratic

function in a box.

This (possibly approximate) minimization yields a trial point xk + sk, which is accepted as

the new iterate if the ratio

ρk
def
=

f(xk)− f(xk + sk)
mk(xk)−mk(xk + sk)

(2.4)

is larger than a constant η1 > 0. In this case, the model is updated and the trust-region radius

is possibly increased. If ρk ≤ η1, the trial point is rejected and radius ∆k is decreased. Methods

of this type have long been considered for the solution of numerical optimization problems, and

we refer the reader to [34] for an extensive coverage of this topic.

In our derivative-free context, the model (2.2) will be determined by interpolating known

objective function values at a given set Yk of interpolation points, meaning that the interpolation

conditions

mk(y) = f(y) for all y ∈ Yk (2.5)

must hold. The set Yk is known as the interpolation set. The question is now under which

condition on Yk can an (accurate enough) interpolation model be (numerically safely) com-

puted? The answer to this question is well-known and will be provided in Section 2.1.3 after

recalling some basic concepts about multivariate interpolation. The subscript k is dropped in

the following description for clarity; without loss of information since we make a focus on a

given iteration of the trust-region algorithm.
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2.1.2 Polynomial interpolation

Consider Pdn, the space of polynomials of degree ≤ d in IRn. A polynomial basis φ(x) =

{φ1(x), φ2(x), . . . , φq(x)} of Pdn is a set of q polynomials of degree ≤ d that span Pdn where we

know that q = n+ 1 for d = 1 and q = 1
2 (n+ 1)(n+ 2) for d = 2 and q =

(

n
+

)

dd in the general

case. Well-known examples of such bases are the basis of monomials, also called the natural

basis, and bases of Lagrange or Newton fundamental polynomials. For any basis φ(x), any

polynomial m(x) ∈ Pdn can be written uniquely as

m(x) =
q
∑

j=1

αjφj(x), (2.6)

where αj are real coefficients.

Given an interpolation set Y = {y1, y2, . . . , yp} ⊂ IRn and a polynomial m(x) of degree d in

IRn that interpolates f(x) at the points of Y, the coefficients α1, . . . , αq can be determined by

solving the linear system

M(φ,Y)αφ = f(Y), (2.7)

where

M(φ,Y) =















φ1(y1) φ2(y1) · · · φq(y1)

φ1(y2) φ2(y2) · · · φq(y2)
...

...
...

φ1(yp) φ2(yp) · · · φq(yp)















, f(Y) =















f(y1)

f(y2)
...

f(yp)















. (2.8)

We define the set of points Y = {y1, y2, . . . , yp} to be poised for polynomial interpolation in IRn

if the coefficient matrix M(φ,Y) of the system is nonsingular. How to choose this set of points

is of course one of the main issues we have to address below, as not every set Y is suitable to

ensure poisedness.

2.1.3 Lagrange polynomials and Λ-poisedness

If the interpolation set Y is poised, the basis of Lagrange polynomials {ℓi(x)}pi=1 exists and is

uniquely defined.

Definition 2.1. Given a set of interpolation points Y = {y1, y2, . . . , yp}, a basis of p polyno-

mials ℓj(x), j = 1, . . . , p in Pdn is called a basis of Lagrange polynomials if

ℓj(yi) = δij =







1 if i = j,

0 if i 6= j.
(2.9)

The unique polynomial m(x) which interpolates f(x) on Y using this basis of Lagrange

polynomials can be expressed as

m(x) =
p
∑

i=1

f(yi) ℓi(x). (2.10)
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Moreover, for every poised set Y = {y1, y2, . . . , yp}, we have that

p
∑

i=1

ℓi(x) = 1 for all x ∈ IRn. (2.11)

The accuracy of m(x) as an approximation of the objective function f in some region B ⊂ IRn

can be quantified using the following notion [41]. A poised set Y = {y1, y2, . . . , yp} is said to

be Λ-poised in B for some Λ > 0 if and only if for the basis of Lagrange polynomials associated

with Y
Λ ≥ max

1≤i≤p
max
x∈B
|ℓi(x)|. (2.12)

The right hand side of (2.12) is related to the Lebesgue constant Λn of the set which is defined

as

Λn = max
x∈B

n
∑

i=1

|ℓi(x)|, (2.13)

see for instance [57, 130]. Given the following relations

max
1≤i≤n

|ℓi(x)| ≤
n
∑

i=1

|ℓi(x)| ≤ n max
1≤i≤n

|ℓi(x)|, (2.14)

we conclude that

Λ ≤ Λn ≤ nΛ. (2.15)

It is a measure of the accuracy of the polynomial interpolation at the set of points and also used

in (2.17) below. This suggests to look for a set of interpolation points with a small Lebesgue

constant. Hence, conversely, the smaller Λ, the better the geometry of the set Y.

Importantly for our purposes, Lagrange polynomial values and Λ-poisedness can be used to

bound the model function and model gradient error. In particular, it is shown in Ciarlet and

Raviart [26] that for any x in the convex hull of Y

‖Drf(x)−Drm(x)‖ ≤ κder

(d+ 1)!

p
∑

j=1

‖yj − x‖d+1‖Drℓj(x)‖, (2.16)

where Dr denotes the r-th derivative of a function and κder is an upper bound on Dd+1f(x)

what means that this error bound requires f(x) to have a bounded (d+ 1)st derivative. When

r = 0, the bound on function values writes

|f(x)−m(x)| ≤ κder

(d+ 1)!
pΛℓ∆d+1, (2.17)

where

Λℓ = max
1≤i≤p

max
x∈B(Y)

|ℓi(x)|, (2.18)

and ∆ is the diameter of Y.

We will also make use of the following two bounds.
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Lemma 2.2. Given the sphere

B2(x,
√
n∆)

def
= {v ∈ IRn | ‖v − x‖2 ≤

√
n∆},

a poised interpolation set Y ⊂ B2(x,
√
n∆) and its associated basis of Lagrange polynomials

{ℓi(x)}pi=1, there exists constants κef > 0 and κeg > 0 such that, for any interpolation poly-

nomial m(x) of degree one or higher of the form (2.10) and any point y ∈ B2(x,
√
n∆), one

has

|f(y)−m(y)| ≤ κef
p
∑

i=1

‖yi − y‖2
2|ℓi(y)| (2.19)

and

‖∇xf(y)−∇xm(y)‖2 ≤ κegΛ∆, (2.20)

where Λ = max1≤i≤pmaxy∈B2(x,
√
n∆) |ℓi(y)|.

See [26] for (2.19) and Theorems 3.14 and 3.16 in Conn et al. [41] for (2.20).

Following the theory and also to have a reliable measure in practice, it is important to

compute the global maximum in (2.12) relatively accurately, which can be done for linear and

quadratic models using the Hebden-Moré-Sorensen algorithm (see [34], Section 7.3) in the Eu-

clidean norm and motivates our choice of B2(x,
√
n∆). Note that our definition of this last

neighbourhood guarantees that B∞(x,∆) ⊂ B2(x,
√
n∆), and the error bounds (2.19)-(2.20)

therefore hold in B∞(x,∆).

An equivalent definition of Lagrange polynomials is the following. Given a poised set Y =

{y1, . . . , yp} ⊂ IRn and an x ∈ IRn, we can express the vector φ(x) uniquely in terms of the

vectors φ(yi), i = 1, . . . , p, as
p
∑

i=1

ℓi(x)φ(yi) = φ(x) (2.21)

or, in matrix form,

M(φ,Y)T ℓ(x) = φ(x), where ℓ(x) = [ℓ1(x), . . . , ℓp(x)]T . (2.22)

Consider now the set Yi(x) = Y \ {yi} ∪ {x}, i = 1, . . . , p. From the Cramer’s rule on (2.22),

we see that

ℓi(x) =
det(M(φ,Yi(x)))

det(M(φ,Y))
. (2.23)

It follows that ℓi does not depend on the choice of φ as long as the polynomial space Pdn is fixed.

To interpret the formulation in (2.23), consider a set φ(Y) = {φ(yi)}pi=1 in IRp. Let vol(φ(Y))

be the volume of the simplex of vertices in φ(Y), given by

vol(φ(Y)) =
|det(M(φ,Y))|

p!
(2.24)

(Such a simplex is the p-dimensional convex hull of φ(Y).) Then

|ℓi(x)| = vol(φ(Yi(x)))
vol(φ(Y))

(2.25)
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In other words, the absolute value of the i-th Lagrange polynomial at a given point x is the

change in the volume of (the p-dimensional convex hull of) φ(Y) when yi is replaced by x in Y.

This definition can be used to construct an algorithm which does compute a Λ-poised set from

a poised set of cardinality p. This algorithm is stated as Algorithm 2.1 on page 11.

Furthermore, we have the following result from [41, Theorem 6.3]

Lemma 2.3. For any given Λ > 1, a closed ball B, and a fixed polynomial basis φ, Algorithm 2.1

terminates with a Λ-poised set Y after a finite number of iterations where the number of steps

depends on Λ and φ.

Algorithm 2.1 Improving well-poisedness via Lagrange polynomials

Initialization: Choose some constant Λ > 1. A poised set Y with |Y| = p is given. Compute

the Lagrange polynomials ℓi(x), i = 1, . . . , p, associated with Y(= Y0). Set k = 1.

Step 1: Compute Λk−1 = max1≤i≤pmaxx∈B |ℓi(x)|.
Step 2: If Λk−1 > Λ, then let ik ∈ {1, . . . , p} be an index for which

max
x∈B
|ℓik(x)| > Λ,

and let yik∗ ∈ B be a point that maximizes |ℓik(x)| in B. Update Y(= Yk) by performing the

point exchange

Y ← Y ∪ {yik∗ } \ {yik}.

Otherwise, return with a Λ-poised set Y.

Step 3: Update all Lagrange polynomial coefficients. Go to Step 1.

2.1.4 Condition number as a measure of well-poisedness

An alternative measure of poisedness may be derived, albeit indirectly, from the matrixM(φ,Y).

First note that the condition number of this matrix is in general not a satisfactory measure of

poisedness of Y since it can be made arbitrarily large by changing the basis φ, and does not

reflect the intrinsic geometry properties of Y. However, [41] shows that a relation between the

condition number of M̂ = M(φ̄, Ŷ) and the measure of Λ-poisedness can be established when

considering the basis of monomials φ̄ and Ŷ, a shifted and scaled version of Y. This new matrix

is computed as follows. Given a sample set Y = {y1, y2, . . . , yp}, a shift of coordinates is first

performed to center the interpolation set Y at the origin, giving {0, y2−y1, . . . , yp−y1}, where

y1 denotes the current best iterate which is usually the center of the interpolation. The region

B is then fixed to be B2(0,∆(Y)) and the radius

∆ = ∆(Y) = max
2≤i≤p

‖yi − y1‖2

is used to scale the set, yielding

Ŷ = {0, ŷ2, . . . , ŷp} = {0, (y2 − y1)/∆, . . . , (yp − y1)/∆} =
1
∆

(Y − y1).
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The resulting scaled interpolation set Ŷ is then contained in a ball of radius one in Euclidean

norm centered at the origin.

The polynomial basis φ is fixed to be the natural basis φ̄ which can be described as follows

(see also [42]). Let a vector αi = (αi1, . . . , α
i
n) ∈ INn be called a multiindex, and for any x ∈ IRn,

let xα
i

be defined by

xα
i

=
n
∏

j=1

x
αij
j . (2.26)

Define also

|αi| =
n
∑

j=1

αij and (αi)! =
n
∏

j=1

(αij)!. (2.27)

Then the elements of the natural basis are

φ̄i(x) =
1

(αi)!
xα
i

, i = 0, . . . , p, |αi| ≤ d. (2.28)

The following result is then derived in [41, page 51].

Theorem 2.4. If M̂ is nonsingular and ‖M̂−1‖2 ≤ Λ, then the set Ŷ is
√
pΛ-poised in the unit

ball B(0, 1) centered at 0. Conversely, if the set Ŷ is Λ-poised in the unit ball B(0, 1) centered

at 0, then

cond(M̂)
def
= ‖M̂‖2‖M̂−1‖2 ≤ θp2Λ, (2.29)

where θ > 0 is dependent on n and d, but independent of Ŷ and Λ.

This means that this condition number of M̂ = M(φ̄, Ŷ) can also be used to monitor poised-

ness of the interpolation set without computing Lagrange polynomials and Λ. Conversely, we

can conclude that if the set Ŷ is reasonably well-poised, then M(φ̄, Ŷ) is well-conditioned and

the model m(x) can be safely computed in (2.7) with the shifted and scaled coordinates.

One may then wonder which measure of poisedness is more appropriate. In our experi-

ence, both have their advantages. The condition number of M̂ is cheaper to compute and

suitable for checking the quality of the geometry before building the model at each iteration

(see Section 3.3.4) while the measure in terms of the Lagrange polynomials is more convenient

for improving poisedness of the interpolation set in a region B in a geometry improving step

(applying Algorithm 2.1). Furthermore, Lagrange polynomials are used to estimate the high-

est improvement in poisedness (if any) that one can achieve when replacing a point from the

interpolation set with a new trial point (see Section 3.1.5).

2.2 Polynomial interpolation and regression models

2.2.1 Interpolation sets of variable size

If we consider using interpolation models in the framework of a trust-region method for op-

timization, we observe that interpolation models of varying degree are possible and indeed
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desirable in the course of the complete minimization. In early stages, using p = n+ 1 function

values (sufficient to build a linear model) is economical and often sufficient to make progress.

In a later stage of the calculation, considering p = 1
2 (n+ 1)(n+ 2) function values (enough to

build a complete quadratic model) it is expected to achieve faster progress to a close solution.

Thinking of models of variable degree, it is natural to consider models evolving from linear

to quadratic as minimization progresses as mentioned above. So, the number of interpolation

conditions p that are imposed on a model m(x) varies in the interval [n+1, 1
2 (n+1)(n+2)] and

in the case where p < 1
2 (n+ 1)(n+ 2) and q = 1

2 (n+ 1)(n+ 2), the matrix M(φ,Y) defining the

interpolation conditions has more columns than rows and the interpolation polynomials defined

by

m(yi) =
q
∑

k=1

αkφk(yi) = f(yi), i = 1, . . . , p, (2.30)

are no longer unique. This situation creates the need of using underdetermined quadratic

interpolation models. The different approaches considered in this thesis are described in the

following.

2.2.2 Sub-basis model

The easiest way one could think of to restrict (2.30) such that it has a unique solution, is to

restrict Pdn by taking the subset of the first p polynomial bases of φ. This technique keeps the

interpolation system always square. We will use the notion of sub-basis of the basis φ to mean

a subset of p elements of the basis φ. This sub-basis approach does not consider the last q − p
elements in the basis of φ so that the system to solve now writes















φ1(y1) φ2(y1) · · · φp(y1)

φ1(y2) φ2(y2) · · · φp(y2)
...

...
. . .

...

φ1(yp) φ2(yp) · · · φp(yp)





























α1

α2

...

αp















=















f(y1)

f(y2)
...

f(yp)















. (2.31)

The last q− p components of α are set to zero what gives a special structure to the approxi-

mated Hessian Hk. In the course of minimization, sub-basis models become progressively “more

quadratic” by considering these banded matrices Hk with increasing bandwidth. More specifi-

cally, when adding points to the system, the quadratic basis components are considered in the

following order: the squared terms in x2
1, . . . , x

2
n, the quadratic terms of the first sub-diagonal

in x1x2, . . . , xn−1xn, the quadratic terms of the second sub-diagonal in x1x3, . . . , xn−2xn, etc.

depending on the size of p. Note that this “expanding band” strategy is particularly efficient if

the true Hessian of the objective function is itself banded.

The drawback of this approach is that it may happen that the columns in M(φ,Y) are

linearly dependent for the chosen sub-basis. This is usually a sign of a non-poised interpo-

lation set and it must be repaired in this situation whereas it may have been poised when

choosing another sub-basis of φ what is explained in the following example. Considering a two-

dimensional example using the natural basis φ̄ = {1, x1, x2,
1
2x

2
1,

1
2x

2
2, x1x2} and a sample set
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Y = {y1, y2, y3, y4} with y1 = (0, 0), y2 = (0, 1), y3 = (1, 0), y4 = (1, 1). The matrix M(φ,Y) is

given by

M(φ,Y) =













1 0 0 0 0 0

1 0 1 0 0.5 0

1 1 0 0.5 0 0

1 1 1 0.5 0.5 1













.

Choosing now the first four columns of M(φ,Y), the system is determined but not well defined

since the matrix is singular. We see now that the set Y is not poised with respect to the sub-

basis φ = {1, x1, x2,
1
2x

2
1}, but if we selected the sub-basis φ = {1, x1, x2, x1x2}, the set Y is

well-poised and the corresponding matrix consisting of the first, the second, the third, and the

sixth columns of M(φ,Y) is well-conditioned and a unique solution to this determined system

exists.

2.2.3 Minimum ℓ2-norm model

Another approach for getting a unique solution from the underdetermined system (2.30) is to

compute its minimum ℓ2-norm solution. The problem to solve writes here

minα 1
2‖α‖2

2

s.t. M(φ,Y)α = f(Y)
(2.32)

where we assume linear independence of the rows of M(φ,Y). Its solution is expressed as

α = M(φ,Y)T [M(φ,Y)M(φ,Y)T ]−1f(Y). (2.33)

The resulting interpolating polynomial depends on the choice of φ but it has been observed in

[42] that it is a reasonable choice to consider the minimum ℓ2-norm underdetermined interpolant

for the natural basis φ̄.

As we assumed that the rows of M(φ,Y) are linearly independent, we can equivalently use

the formulation

M† = MT [MMT ]−1, (2.34)

where M† denotes the Moore-Penrose pseudoinverse [100, 111] of M which is also called the

generalized inverse of M . A numerically stable and accurate way of solving the system (2.33)

is by using the singular value decomposition of M .

2.2.4 Minimum Frobenius-norm model

It was shown in [41, Theorem 5.4] that function and gradient error bounds for underdetermined

quadratic interpolation models depend on the norm of the Hessian of the model. A good

idea seems therefore to build models for which the norm of the Hessian is moderate. This

means, taking up the freedom in (2.30) could be achieved by minimizing the Frobenius-norm

of the Hessian of the model, which is then called minimum Frobenius-norm model. To do
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so, the natural basis φ̄ is split in its linear and quadratic parts: φ̄L = {1, x1, . . . , xn} and

φ̄Q = { 1
2x

2
1,

1
2x

2
2, . . . , x1x2, . . . , xn−1xn}. The interpolation model writes now

m(x) = αTLφ̄L(x) + αTQφ̄Q(x) (2.35)

where αL and αQ are the corresponding parts of the coefficient vector α and are the solution

to the problem
minαL,αQ

1
2‖αQ‖2

2

s.t. M(φ̄L,Y)αL +M(φ̄Q,Y)αQ = f(Y).
(2.36)

Due to the choice of the natural basis φ̄ and the separation α = [αL αQ], this is approxi-

mately the same as minimizing the Frobenius norm of the Hessian of the model subject to the

interpolation conditions

minc,g,H 1
4‖H‖2

F

s.t. c+ gT (yi) + 1
2 (yi)TH(yi) = f(yi), i = 1, ..., p.

(2.37)

To solve (2.36), and in turn (2.37), it is necessary to partition the matrix M(φ,Y) into linear

and quadratic terms

M(φ̄,Y) =
[

M(φ̄L,Y) M(φ̄Q,Y)
]

(2.38)

and consider the matrix

F (φ̄,Y) =

[

M(φ̄Q,Y)M(φ̄Q,Y)T M(φ̄L,Y)

M(φ̄L,Y)T 0

]

. (2.39)

Moreover, if F (φ̄,Y) is nonsingular, the minimum Frobenius-norm model exists and is uniquely

defined.

2.2.5 Least-change Frobenius-norm model

A variant of the minimum Frobenius-norm model is the least-change Frobenius-norm model

where not the Frobenius-norm of the model Hessian is minimized to choose the solution to the

system (2.30) but the Frobenius-norm of the change in the model Hessian from one iteration

to the other. The problem to solve writes in this case

minc,g,H 1
4‖H −Hold‖2

F

s.t. c+ gT (yi) + 1
2 (yi)TH(yi) = f(yi), i = 1, ..., p

(2.40)

which is similar to the formulation

minαL,αQ
1
2‖αQ − αoldQ ‖2

2

s.t. M(φ̄L,Y)αL +M(φ̄Q,Y)αQ = f(Y),
(2.41)

where again α = [αL αQ], φ̄L contains the linear terms and φ̄Q the quadratic terms of the

natural basis.
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This type of interpolation model has been introduced by Powell [119, 120] and has been

shown to work efficiently in several of his software implementations [121, 124]. Moreover, it has

been shown [120] that if the objective f is a quadratic function then

‖H −∇2f‖ ≤ ‖Hold −∇2f‖, (2.42)

where ∇2f is the true Hessian of the objective function f .

2.2.6 Minimum ℓ1-norm model

An approach to find the sparsest solution to the underdetermined problem (2.30) in the context

of derivative-free optimization was recently presented by Bandeira, Scheinberg and Vicente

[13, 14], whereas the initial idea is coming from the signal processing community for solving

under- or overdetermined systems of linear equations. The type of model they suggest to

construct is the sparse recovery model which is also called the minimum ℓ1-norm model. In

many problems, second order partial derivatives in the objective function f can be zero what

leads to a certain sparsity pattern in the true Hessian ∇2f(x). Hence, the Hessian of the model

∇2m(x) should also be sparse. An interpolation model with a sparse Hessian could be computed

by solving the minimization problem

minαL,αQ ‖αQ‖0 (2.43)

s.t. M(φ̄L,Y)αL +M(φ̄Q,Y)αQ = f(Y),

where ‖x‖0 is oftentimes, perhaps misleadingly, called zero norm. It is defined as the number

of non-zero elements of x and thus the problem (2.43) is NP-hard. Several authors (e.g. in

[53, 54, 61]) have proposed to use the ℓ1-norm instead, to approximate the sparsity of a vector

as this often provides the sparsest solution to the system (2.30). This can be explained because

the one-norm is the convex envelope of the function ‖x‖0 [84]. The problem to solve is now

minαL,αQ ‖αQ‖1 (2.44)

s.t. M(φ̄L,Y)αL +M(φ̄Q,Y)αQ = f(Y),

where α = [αL αQ] is easier to determine as above in (2.43) as in (2.44) is only a linear program

to solve.

2.2.7 Least-squares regression model

In the case we want to consider more than p = 1
2 (n + 1)(n + 2) points to build a quadratic

model, the system of interpolation conditions (2.30) is over-determined and has in general no

solution. In this case, it is possible to compute the “best fit” (least-squares) solution to the

system. The problem to solve writes in this case

min
α
‖M(φ,Y)α− f(Y)‖2. (2.45)
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The above system has a unique solution if the matrix

M(φ,Y) =















φ1(y1) φ2(y1) · · · φq(y1)

φ1(y2) φ2(y2) · · · φq(y2)
...

...
. . .

...

φ1(yp) φ2(yp) · · · φq(yp)















(2.46)

has full column rank. The solution to (2.45) is then expressed as

α = [M(φ,Y)TM(φ,Y)]−1M(φ,Y)T f(Y). (2.47)

The relation

M† = [MTM ]−1MT (2.48)

is not directly used to compute

α = M†f(Y), (2.49)

the unique solution to the over-determined system (2.30). Solving the system (2.47) by using

the singular value decomposition of M or an approach based on the QR factorization is often

preferred [68]. See also [16, 17] on the topic of solving least-squares problems.

In the literature (e.g. [40, 41]), the regression model is especially recommended when there

is noise in the evaluation of the true function f(x). Moreover, it has been shown [41] that if

the noise is random and independently and identically distributed with mean zero, then the

least-squares regression of the noisy function and the one of the true function converge to each

other as the number of points considered tends to infinity.

2.3 A basic interpolation-based trust-region approach

As itemized at the beginning of this chapter, different interpolation-based trust-region ap-

proaches can be found in the literature. They can be distinguished by their interpolation set

update, how the geometry of the interpolation set is maintained, the support of a convergence

theory, and their particular management of the trust region.

In this section, we outline one of the first derivative-free interpolation-based trust-region

algorithms which proved global convergence to first-order critical points. It was developed by

Conn, Scheinberg and Toint [35, 37] in the late Nineties and is depicted as Algorithm 2.2 on

page 18. The algorithm was kept admittedly simplistic by its authors to study its convergence

properties but additional features are suggested to enhance its efficiency. For instance, the

possibility of including the point xk+1 in Y is mentioned, even if the iteration was unsuccessful;

each evaluation of the objective function should indeed be exploited if possible, provided it

does not deteriorate the quality of the model. An additional geometry improving step could be

performed if the ratio between the predicted reduction in the model versus achieved reduction

in the objective function (ρk from (2.4)) is very small which is an indicator that the model is

not a good approximation of the objective function.
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Algorithm 2.2 Basic DFO trust-region algorithm

Step 0: Initialization.

Choose constants ǫg > 0, 0 < γ1 < γ2 < 1 < γ3, 0 < η0 ≤ η1 < 1, µ ≥ 1 and an initial

trust-region radius ∆0 > 0. Let xstart and f(xstart) be given. Select an initial interpolation

set Y0 containing xstart and at least another point. Then determine x0 ∈ Y0 such that

f(x0) = miny∈Y0
f(y). Set k = 0.

Step 1: Model computation.

Build a model mk(xk) that interpolates the function f on the interpolation set Yk such that

the interpolation conditions (2.5) are satisfied. Compute the model gradient gk = ∇mk(xk).

If ‖gk‖ ≤ ǫg and Yk is not well-poised in the region B(xk, µ‖gk‖), then improve the geometry

until Yk is well-poised in B(xk, δk) for some δk ∈ (0, µ‖gk‖) and go to Step 1. If ‖gk‖ > ǫg,

go to Step 2, otherwise, stop.

Step 2: Step Computation.

Compute a point xk + sk such that

mk(xk + sk) = min
x∈B(xk,∆k)

mk(x).

Compute f(xk + sk) and the ratio ρk from (2.4).

Step 3: Interpolation set update.

Successful iteration: If ρk ≥ η1, insert xk + sk in Yk, dropping one of the existing inter-

polation points if p = 1
2 (n+ 1)(n+ 2).

Unsuccessful iteration: If ρk < η1 and Yk is inadequate in B(xk,∆k), improve the geom-

etry in B(xk,∆k) by changing the set Yk.

Step 4: Trust-region radius update.

Set

∆k+1 =















[∆k, γ3∆k] if ρk ≥ η1,

[γ1∆k, γ2∆k] if ρk < η1 and Yk is adequate in B(xk,∆k),

∆k otherwise.

Step 5: Update the current iterate.

Determine x̂k such that f(x̂k) = miny∈Yk\{xk} f(y). Then, define the revised measure

ρ̂k
def
=

f(xk)− f(x̂k)
mk(xk)−mk(xk + sk)

.

If ρ̂k ≥ η0 set xk+1 = x̂k, otherwise, set xk+1 = xk. Increment k by one and go to Step 1.
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They also mention that the loop in Step 1 could be seen as a geometry improvement inner

iteration to ensure that the model’s gradient is not too far from the true first-order information

of the objective function. Such a geometry improving inner iteration can be carried out in

a finite and bounded number of steps if ∇f(xk) 6= 0. This procedure can also be used as a

criticality step to ensure a good quality of the model in a small neighborhood of a potential

critical point (e.g. in [41, Chapter 10] and [128]). Algorithm 2.2 does not comprise a stopping

test but it is proposed in [35] to stop the calculation if either the trust-region radius falls below

a certain threshold, or the model’s gradient becomes sufficiently small and the geometry of

the interpolation set is adequate. The outlined algorithm incorporates two different regions

Bk(xk, µ‖gk‖) and Bk(xk,∆k), where the latter one is the trust-region to ensure convergence of

the algorithm and the other one is intended to monitor the first-order part of the model. This

reminds of the use of two distinctive regions in the work by Powell [117]. Other recent methods

use only one region for more simplicity in algorithm and convergence analysis (eg. in [41, 74]).

Furthermore, it should be mentioned that the considered models in Algorithm 2.2 are at

most quadratic as in most of the current implementations of interpolation-based trust-region

methods. This is in fact not a general requirement and, for instance, Conn and Toint [43]

suggest the use of models of degree exceeding two and the theory can be readily extended to

account for this. Remarkably, the authors of [35] suggest to build initial models out of only

two points in Yk where most other practical algorithms require that the model is build using

at least n+ 1 interpolation conditions.

Many methods are augmenting the interpolation set as minimization progresses, whereas,

for instance, Powell uses in his approach a fixed number of interpolation points throughout the

calculation and recommends to build models from 2n+ 1 interpolation points. Moreover, he is

mentioning one problem where maintaining an interpolation set of only n+ 6 points turned out

to perform well in his optimization framework [121].

A practical variation of the algorithm in [35] has been presented by Weber-Mendonca [99]

and both build models based on the Newton fundamental polynomial basis whereas most other

known methods use models based on Lagrange polynomial bases or the basis of monomials.

Another similar approach was developed recently by Conn, Scheinberg and Vicente [42]

who provided the first analysis of global convergence of derivative-free trust-region methods

to second-order critical points. The trust-region management of the latter algorithm differs in

the manner the trust-region radius ∆ is increased in a successful iteration. In fact, they have

shown that the trust-region radius needs only to be increased when it is much smaller than

the second-order stationarity measure of the model. This approach also allows to accept an

iterate based on simple decrease of the objective function where only the strict inequality of

decrease f(xk+1) < f(xk) must be true to declare an iteration as successful. This is not the

case for most other interpolation-based trust-region methods which rather rely on the standard

trust-region step acceptance where sufficient decrease in the objective function is required to

accept the candidate as the new iterate.
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2.4 Self-correcting geometry - a recent approach

2.4.1 The algorithm

The basic interpolation-based trust-region algorithm stated in the previous section, and also

most algorithms in the current DFO-literature, differ from more standard trust-region schemes

in that the decision to shrink the trust region depends on the quality of the interpolation

model. That means, if the interpolation set is not sufficiently poised, then it may indeed turn

out that the failure of the current iteration is due to the bad approximation of the function by

the resulting model rather than to a too large trust region. The basic approach is therefore

to improve the poisedness of the interpolation set first, before considering to shrink the trust

region.

This improvement is usually carried out at special geometry improving steps as it is done in

Step 1 and Step 3 of Algorithm 2.2 above. But such a procedure is expensive because additional

function values at well-chosen points have to be computed. That leads naturally to the question

whether this additional cost is really necessary for the algorithm to be globally convergent or

not. Interestingly, Fasano et al. [58] have developed an algorithm which completely ignores any

kind of geometry consideration. They suggested that it may be sufficient to replace the furthest

point of the interpolation set with the new trial point at each iteration to maintain a reasonable

geometry of the interpolation set. And indeed, they observed that such an algorithm may

perform quite well in practice although the authors have no supporting theory or explanation

for their success.

However, shortly after, it has been shown by Scheinberg and Toint [128] that it is impossible

to ignore geometry consideration altogether if one wishes to maintain global convergence and

they presented two counter-examples showing that such a method may converge to a non-

critical point. But it was also shown that an algorithm can be designed to indeed substantially

reduce the need of geometry improving steps by exploiting a self-correcting property of the

interpolation set geometry. This algorithm is presented as Algorithm 2.3 on page 21. The design

and convergence proof of this algorithm depends on a self-correction mechanism resulting from

the combination of the trust-region framework with the polynomial interpolation setting.

2.4.2 Convergence theory

The algorithms developed in this thesis make use of the self-correcting property presented

above and thus rely mainly on the convergence results obtained by Scheinberg and Toint [128].

We will therefore quote their convergence theory here for convenience and show that their

proposed algorithm (stated above as Algorithm 2.3) produces a sequence of iterates {xk} such

that the corresponding sequence of gradients of the true objective function {∇xf(xk)} admits

a subsequence converging to zero.
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Algorithm 2.3 UDFO trust-region algorithm with self-correcting geometry from [128]
Step 0: Initialization.

An initial trust-region radius ∆0, initial accuracy threshold ǫ0 are given. An initial poised interpola-

tion set Y0 that contains the starting point x0 is known. An interpolation model m0 around x0 and

associated Lagrange polynomials {l0,j}
p
j=1 are computed. Constants η ∈ (0, 1), 0 < γ1 ≤ γ2 < 1, µ ∈

(0, 1), θ > 0, β ≥ 1, ǫ ≥ 0 and Λ > 1 are also given. Choose v0 6= x0 where vi is a variable introduced

to keep track if the model at xk is known to be well poised. Set k = 0 and i = 0.

Step 1: Criticality test.

Step 1a: Define m̂i = mk.

Step 1b: If ‖∇xm̂i(xk)‖ < ǫi, set ǫi+1 = µ‖∇xm̂i(xk)‖, compute a Λ-poised model m̂i+1 in

B(xk, ǫi+1) and increment i by one. If ‖∇xm̂i(xk)‖ < ǫ, then return xk, otherwise start Step 1b

again.

Step 1c: Set mk = m̂i,∆k = θ‖∇xmk(xk)‖ and define vi = xk (what indicates that the model at

xk is well poised and Steps 4b and 4c need not to be visited in an unsuccessful iteration) if a new

model has been computed.

Step 2: Compute a trial point.

Compute x+
k = xk + sk such that mk(xk + sk) = minx∈B(xk,∆k) mk(x).

Step 3: Evaluate the objective function at the trial point.

Compute f(x+
k ) and ρk from (2.4).

Step 4: Define the next iterate.

Step 4a: Successful iteration. If ρk ≥ η, define xk+1 = x+
k , choose ∆k+1 ≥ ∆k and define

Yk+1 = Yk \ {yk,r} ∪ {x
+
k } where r is the index j of any point yk,j in Yk, for instance, such that

r = arg maxj ‖yk,j − x
+
k ‖

2
∞|lk,j(x

+
k )|.

Step 4b: Replace a far interpolation point. If ρk < η, either xk 6= vi or ∆k ≤ ǫi, and the set

Fk
def
= {yk,j ∈ Yk such that ‖yk,j − xk‖ > β∆k and lk,j(x

+
k ) 6= 0}

is non-empty, then set xk+1 = xk, ∆k+1 = ∆k and define Yk+1 = Yk \ {yk,r} ∪ {x
+
k } where r is the

index j of any point yk,j in Fk, for instance, such that r = arg maxj ‖yk,j − x
+
k ‖

2
∞|lk,j(x

+
k )|.

Step 4c: Replace a close interpolation point. If ρk < η, either xk 6= vi or ∆k ≤ ǫi, the set

Fk = ∅ and the set

Ck
def
= {yk,j ∈ Yk \ {xk} such that ‖yk,j − xk‖ ≤ β∆k and lk,j(x

+
k ) > Λ}

is non-empty, then set xk+1 = xk,∆k+1 = ∆k and define Yk+1 = Yk \ {yk,r} ∪ {x
+
k } where r is the

index j of any point yk,j in Ck, for instance, such that r = arg maxj ‖yk,j − x
+
k ‖

2
∞|lk,j(x

+
k )|.

Step 4d: Reduce the trust region radius. If ρk < η and either [xk = vi and ∆k > ǫi] or

Fk ∪ Ck = ∅, then set xk+1 = xk,∆k+1 ∈ [γ1∆k, γ2∆k] and define Yk+1 = Yk.

Step 5: Update the model and Lagrange polynomials.

If Yk+1 6= Yk, compute the interpolation model mk+1 around xk+1 using Yk+1 and the associated

Lagrange polynomials {lk+1,j}
p
j=0. Increment k by one and go to Step 1.
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First, the assumptions are stated.

A1: the objective function f is continuously differentiable in an open set V containing all

iterates generated by the algorithm, and its gradient ∇xf is Lipschitz continuous in V with

constant L;

A2: there exists a constant κlow such that f(x) ≥ κlow for every x ∈ V;

A3: there exists a constant κH ≥ L such that 1 + ‖Hk‖ ≤ κH for every k ≥ 0;

A4: |Yk| ≥ n+ 1 for every k ≥ 0.

Note that A1 only assumes the existence of first derivatives, not that they can be computed.

Lemma 2.5. Assume that, for some real numbers {αi}ti=0 with

σabs
def
=

t
∑

i=0

|αi| > 2
t
∑

i=0

αi
def
= 2σ > 0.

If one defines

i∗ = arg max
i=0,...,t

|αi| and j∗ = arg max
j=0,...,t
j 6=i∗

|αj |,

then

|αj∗ | ≥
σabs − 2σ

2t
. (2.50)

Now, the crucial self-correction property of Algorithm 2.3 is stated where the definition of

Fk and Ck are given in Steps 4b and 4c of Algorithm 2.3.

Lemma 2.6. Suppose that A1, A3 and A4 hold. Then, for any constant Λ > 1, if iteration k

is unsuccessful and

Fk = ∅ (2.51)

and

∆k ≤ min
[

1
κH

,
(1− η)κc

2κef (β + 1)2(pΛ + 1)

]

‖gk‖ def
= κΛ‖g‖, (2.52)

then

Ck 6= ∅. (2.53)

This property says that, provided the trust-region radius is small enough compared to the

model’s gradient and all the significant interpolation points are contained in the trust region,

then every unsuccessful iteration must result in an improvement of the interpolation set geome-

try. The geometry is therefore self-correcting at unsuccessful iterations of this type. Moreover,

the value of the geometry improvement is only dependent on Λ, while the maximum size of ∆k
compared with ‖gk‖ depends on the problem (via κef and κH), on the algorithms’ parameters

(via η, Λ and κc from the Cauchy condition (3.10)) and on the size p of the interpolation set.

It is now verified, as is usual in trust-region methods, that the step bound ∆k cannot become

arbitrarily small far away from a critical point.
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Lemma 2.7. Suppose that A1, A3 and A4 hold and assume that, for some k0 ≥ 0 and all

k ≥ k0,

‖gk‖ ≥ κg (2.54)

for some κg > 0. Then there exists a constant κ∆ > 0 such that, for all k ≥ k0,

∆k ≥ κ∆. (2.55)

This result allows to continue the convergence analysis in the spirit of the standard trust-

region theory (see Conn et al. [34, Chapter 6]). First, the case is considered where the number

of successful iterations is finite.

Lemma 2.8. Suppose that A1, A2 and A4 hold and that there is a finite number of successful

iterations. Then

lim inf
k→∞

‖gk‖ = 0. (2.56)

The case when there occur infinitely many successful iterations is considered next.

Lemma 2.9. Suppose that A1–A4 hold and that the number of successful iteration is infinite.

Then

lim inf
k→∞

‖gk‖ = 0 (2.57)

holds.

This shows that, eventually, the gradient of the model has to become smaller than ǫ0. When

this happens, the algorithm essentially restarts with a well-poised model in a sufficiently smaller

ball. Then the same algorithm is applied, but with the value ǫ0 replaced by the smaller ǫ1.

Applying the same argument as above we can show that eventually ‖gk‖ will become smaller

than ǫ1 and the process repeats. To prove that this process leads to global convergence, the

following additional two technical results are needed.

Lemma 2.10. Suppose that A1 and A3 hold. Then

|f(x+
k )−mk(x+

k )| ≤ ‖∇xf(xk)− gk‖∆k + κH∆2
k. (2.58)

Lemma 2.11. Suppose that A1 and A3 hold, that gk 6= 0, that

‖∇xf(xk)− gk‖ ≤
1
2
κc(1− η)‖gk‖ (2.59)

and that

∆k ≤
κc

2κH
(1− η)‖gk‖. (2.60)

Then iteration k is successful.

The parameter κc is again coming from the Cauchy condition (3.10). The final result is

stated in the following Theorem.

Theorem 2.12. Suppose that A1-A4 hold. Then

lim inf
k→∞

‖∇xf(xk)‖ = 0. (2.61)

The respective proofs can be found in [128].
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2.5 A modified algorithm with self-correcting geometry

Here, we want to present our first contribution in this thesis. We present a modified version

of Algorithm 2.3 (developed by Scheinberg and Toint [128] and stated as algorithm UDFO in

Section 2.4 above) and prove global convergence of our modified algorithm.

As our new algorithm (and therefore also the convergence analysis) has strong similarities

to Algorithm 2.3, we explain first which modifications have been made to Algorithm 2.3 and

then show that the new Algorithm 2.4 still produces a sequence of iterates {xk} converging to

a first-order critical point.

2.5.1 The algorithm

An outline of the new algorithm, which we called UDFO+, is given in Algorithm 2.4 on page 25.

2.5.2 Modifications

Following the idea of Fasano, Morales and Nocedal [58], who successfully applied a standard

trust-region management in a derivative-free algorithm and showed an efficient behaviour of

such a practical algorithm, we were wondering if this strategy can be integrated into a frame-

work where it is possible to prove global convergence. Globally convergent algorithms for

unconstrained derivative-free optimization have up to now only shown to be moderately effi-

cient compared to [58] due to geometry improving steps and geometry considerations in the

trust-region management (e.g. do extra calculations or wait some iterations until the geometry

of the set of points is good enough to allow for shrinking the trust region).

We recall the basic statement, that an iteration might be unsuccessful due to the fact that

the quality of the model is not good enough but also due to the fact that the trust region is too

large. The latter possibility was not emphasized in algorithm UDFO [128] and other derivative-

free algorithms which usually first ensure that the geometry is good enough to perhaps conclude

that the trust-region radius must have been too large to progress (and only then shrink the

trust region).

We propose an algorithm which uses the self-correcting property from [128] to have a certain

control on the geometry of the interpolation set, but ignores geometry considerations in the

trust-region management by applying a more standard trust-region management as was done

in [58]. In our version, the algorithm is given the possibility to progress further in a smaller

trust-region instead of first producing a good geometry to allow for shrinking the trust region.

In particular, we suggest to decrease the trust-region radius ∆k in each unsuccessful iteration

(if ρ < η1) as long as the trust-region radius is larger than a fixed threshold ∆switch. If

∆k ≤ ∆switch is reached, we switch to the technique applied in Algorithm 2.3 [128], such that

∆k is only reduced in an unsuccessful iteration where no point from the interpolation set can

be replaced (see Step 4e of Algorithm 2.4).
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Algorithm 2.4 UDFO+ modified algorithm with self-correcting geometry

Step 0: Initialization.

An initial trust-region radius ∆0, initial accuracy threshold ǫ0 are given. An initial poised interpola-

tion set Y0 and the starting point x0 are known. A model m0 around x0 and Lagrange polynomials

{l0,j}
p
j=1 are computed. Constants η1,∆switch ∈ (0, 1), 0 < γ1 ≤ γ2 < 1, µ ∈ (0, 1), θ > 0, β ≥ 1,ǫ ≥ 0,

pmax ≥ n+ 1 and Λ > 1 are also given. Choose v0 6= x0. Set k = 0 and i = 0.

Step 1: Criticality test.

Step 1a: Define m̂i = mk.

Step 1b: If ‖∇xm̂i(xk)‖ < ǫi, set ǫi+1 = µ‖∇xm̂i(xk)‖, compute a Λ-poised model m̂i+1 in

B(xk, ǫi+1) and increment i by one. If ‖∇xm̂i(xk)‖ < ǫ, then return xk, otherwise go to Step 1b.

Step 1c: Set mk = m̂i,∆k = θ‖∇xmk(xk)‖ and define vi = xk if a new model has been computed.

Step 2: Compute a trial point.

Compute x+
k = xk + sk such that mk(xk + sk) = minx∈B(xk,∆k) mk(x).

Step 3: Evaluate the objective function at the trial point.

Compute f(x+
k ) and ρk from (2.4).

Step 4: Define the next iterate.

Step 4a: Augment interpolation set (pk < pmax). If pk < pmax, then: Define Yk+1 =

Yk ∪ {x
+
k }. If ρk ≥ η1, then define xk+1 = x+

k and choose ∆k+1 ≥ ∆k. If ρk < η1, define xk+1 = xk

and if ∆k > ∆switch, set ∆k+1 ∈ [γ1∆k, γ2∆k], otherwise ∆k+1 = ∆k.

Step 4b: Successful iteration. If ρk ≥ η1 and pk = pmax, define xk+1 = x+
k , choose ∆k+1 ≥ ∆k

and define Yk+1 = Yk \ {yk,r} ∪ {x
+
k } where r is the index j of any point in Yk, for instance, such

that r = arg maxj ‖yk,j − x
+
k ‖

2
∞|lk,j(x

+
k )|.

Step 4c: Replace a far interpolation point. If ρk < η1, pk = pmax, either xk 6= vi or ∆k ≤ ǫi,

and the set

Fk
def
= {yk,j ∈ Yk such that ‖yk,j − xk‖ > β∆k and lk,j(x

+
k ) 6= 0}

is non-empty, then set xk+1 = xk, ∆k+1 ∈ [γ1∆k, γ2∆k] (or set ∆k+1 = ∆k if ∆k ≤ ∆switch).

Define Yk+1 = Yk \ {yk,r} ∪ {x
+
k } where r is the index j of any point in Fk, for instance, such that

r = arg maxj ‖yk,j − x
+
k ‖

2
∞|lk,j(x

+
k )|.

Step 4d: Replace a close interpolation point. If ρk < η1, pk = pmax, either xk 6= vi or ∆k ≤ ǫi,

the set Fk = ∅ and the set

Ck
def
= {yk,j ∈ Yk \ {xk} such that ‖yk,j − xk‖ ≤ β∆k and lk,j(x

+
k ) > Λ}

is non-empty, then set xk+1 = xk, ∆k+1 ∈ [γ1∆k, γ2∆k] (or set ∆k+1 = ∆k if ∆k ≤ ∆switch).

Define Yk+1 = Yk \ {yk,r} ∪ {x
+
k } where r is the index j of any point in Ck, for instance, such that

r = arg maxj ‖yk,j − x
+
k ‖

2
∞|lk,j(x

+
k )|.

Step 4e: Reduce the trust region radius. If ρk < η1, pk = pmax and either [xk = vi and

∆k > ǫi] or Fk ∪ Ck = ∅, then set xk+1 = xk,∆k+1 ∈ [γ1∆k, γ2∆k] and define Yk+1 = Yk.

Step 5: Update the model and Lagrange polynomials.

If Yk+1 6= Yk, compute the interpolation model mk+1 around xk+1 using Yk+1 and the associated

Lagrange polynomials {lk+1,j}
p
j=1. Increment k by one and go to Step 1.
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The efficiency of such a combined algorithm is shown in Section 3.5 below, where we present

numerical experiments involving the algorithms UDFO, UDFO+, their bound-constrained ex-

tensions BC-DFO, BCDFO+ and some reference software packages.

Furthermore, in our algorithm, we additionally consider the case where the interpolation (or

regression) set is augmented with the new trial points and thus, the size of the set Y is possibly

increasing (see Step 4a of Algorithm 2.4). For our theory, we need therefore another assumption,

in addition to the four assumptions stated in Section 2.4.2, which ensures in the regression

case that there exists a maximum number of points pmax considered in the set Y during the

minimization. Please note, that now in successful iterations (in the case that ρ ≥ η1) either

Step 4a or Step 4b is executed, and in unsuccessful iterations (when ρ < η1) either Step 4a, 4c,

4d or 4e is executed. We have to consider this fact in our analysis below.

2.5.3 Global convergence

We now show that our Algorithm 2.4 produces a subsequence of gradients of the true objective

function {gk} converging to zero.

We start by stating our assumptions.

A1: the objective function f is continuously differentiable in the feasible set F , and its gradient

∇xf is Lipschitz continuous in F with constant L;

A2: there exists a constant κlow such that f(x) ≥ κlow for every x ∈ F ;

A3: there exists a constant κH ≥ L such that 1 + ‖Hk‖ ≤ κH for every k ≥ 0;

A4: |Yk| ≥ n+ 1 for every k ≥ 0;

Note that A3 implies that the Hessian of the model Hk remains bounded which cannot be

guaranteed by Algorithm 3.1 during successful iterations. However, in practice, a safeguard (as

described below in Section 3.3) is applied in situations where the poisedness of the interpola-

tion set deteriorates, by checking the condition number of the matrix M(φ̄, Ŷ). This strategy

guarantees a bounded model Hessian matrix in practice.

In addition, we assume that the algorithmic parameter ǫ is set to ǫ = 0 for the purposes of

the convergence theory.

Lemma 2.13. Suppose that A1, A3 and A4 hold. Then, for any constant Λ > 1, if iteration

k is unsuccessful, p = pk = pmax,

Fk = ∅ (2.62)

and

∆k ≤ min
[

1
κH

,
(1− η1)κc

2κef (β + 1)2(pkΛ + 1)

]

‖gk‖ def
= κΛ‖gk‖, (2.63)

then

Ck 6= ∅. (2.64)

As we assume that the maximum number of points in the set pk = pmax is reached, the

proof of the lemma is the same as in [128, Lemma 5.2].
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This means that the self-correcting property introduced by [128] also holds in our modified

unconstrained algorithm and that therefore, provided the maximum number of points pmax in

the interpolation/regression set is reached, the trust-region radius is small compared to the

model’s gradient and if all points of Y are contained in the trust region, then every unsuccessful

iteration must result in an improvement of the interpolation/regression set geometry.

The next step is to verify that the step bound ∆k cannot become arbitrarily small far away

from a critical point.

Lemma 2.14. Suppose that A1, A3 and A4 hold and assume that, for some k0 ≥ 0 and all

k ≥ k0,

‖gk‖ ≥ κg (2.65)

for some κg > 0. Then there exists a constant κ∆ > 0 such that, for all k ≥ k0,

∆k ≥ κ∆. (2.66)

Proof. Assume that, for some k ≥ 0,

∆k < min(κΛκg, µκg,∆switch). (2.67)

If iteration k is successful (i.e. ρ ≥ η1), then we have that ∆k+1 ≥ ∆k. On the other hand, if

ρ < η1, then we show that only three cases may occur. The first case is when pk < pmax and

Step 4a of Algorithm 2.4 is executed. Observe now that (2.67) ensures that ∆k < ∆switch and

therefore, ∆k+1 = ∆k. The second case is when pk = pmax and Fk 6= ∅. If now i > 0, then

(2.65) and (2.67) ensure that

∆k < µ‖gki‖ = ǫi, (2.68)

where ki is the index of the last iteration before k where a new Λ-poised model has been

recomputed in the criticality test (Step 1) of Algorithm 2.4. Step 4c is therefore executed and

with ∆k < ∆switch, we have that ∆k+1 = ∆k. The third case is when pk = pmax and Fk = ∅ in

which case (2.67) and Lemma 2.13 guarantee that Ck 6= ∅. Since (2.68) also holds in this case,

Step 4d is executed and ∆k+1 = ∆k because ∆k < ∆switch. As a consequence, the trust-region

radius may only be decreased if

∆k ≥ min(κΛκg, µκg,∆switch),

and the mechanism of the algorithm then implies the desired result with

κ∆ = min[∆0, γ1 min(κΛκg, µκg,∆switch)].

We continue our analysis in the spirit of a standard trust-region theory (see [34, Chapter 6]).

We first consider the case where the number of successful iterations is finite.
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Lemma 2.15. Suppose that A1, A2 and A4 hold and that there is a finite number of successful

iterations. Then

lim inf
k→∞

‖gk‖ = 0. (2.69)

Proof. We observe first that, since every iteration is eventually unsuccessful (i.e. ρ < η1),

xk = x∗ for some x∗ and all k sufficiently large. Assume further, for the purpose of deriving a

contradiction, that (2.65) holds for some κg > 0 and all k. Then, by Lemma 2.14, we have that

∆k > κ∆ > 0 on all iterations. Since the number of successful iterations is finite, eventually

all iterations are unsuccessful (of type 4a, 4c, 4d or 4e, regarding the steps of Algorithm 2.4).

As a consequence, the sequence {∆k} is non-increasing and bounded below, and therefore

convergent. Let ∆∞
def
= limk→∞∆k ≥ κ∆. Unsuccessful iterations of type 4a, 4c and 4d, in the

case where points are replaced and ∆k is decreased at the same time, cannot happen infinitely

often because ∆switch > κ∆. Iterations of type 4e cannot happen infinitely often because ∆k
is bounded below by ∆∞ and γ2 < 1. Thus, ∆k = ∆∞ < ∆switch for all k sufficienty large,

and all iterations are eventually of type 4d since pk = pmax must eventually be reached and at

most pmax iterations of type 4c can possibly be necessary to ensure that all interpolation points

belong to B(x∗, β∆∞). Note that during an iteration of type 4d the new trial point replaces

some interpolation point from the set Ck. From the definition of Ck it follows that, for all k large

enough, the trial point x+
k replaces a previous interpolation point yk,j such that |ℓk,j(x+

k )| ≥ Λ.

But this is impossible in view of Lemma 2.3 what leads to the desired contradiction.

Now, the case with infinitely many successful iterations is considered.

Lemma 2.16. Suppose that A1–A4 hold and that the number of successful iterations is infinite.

Then

lim inf
k→∞

‖gk‖ = 0. (2.70)

As the lemma wasn’t modified, the proof remains as in [128, Lemma 5.5].

The result of the last two lemmas is that the model gradient gk has eventually to become

smaller than ǫ0, whereafter the algorithm restarts with a well-poised set in a sufficiently smaller

ball. The same algorithm is applied but with the value ǫ0 replaced by the smaller value ǫ1.

Applying the same argument as above, ‖gk‖ will become smaller than ǫ1 and the process repeats.

Now, we present the final result.

Theorem 2.17. Suppose that A1-A4 hold. Then

lim inf
k→∞

‖∇xf(xk)‖∞ = 0. (2.71)

Proof. Assume, that pk = pmax for all k sufficiently large. Assume further, by contradiction

that there exists a κg > 0 such that

‖∇xf(xk)‖∞ ≥ κg (2.72)

for all k sufficiently large. Lemmas 2.15 and 2.16 show that, for any ǫi ∈ (0, 1), Algorithm 2.4

will generate an iterate ki such that ‖gki‖ ≤ ǫi (at the beginning of Step 1). The mechanism of
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Step 1 then implies that the sequence {ki} is infinite and that {ǫi} converges to zero. Regarding

now the case where i is sufficiently large to ensure that

ǫi ≤
1
2

min
[

κc(1− η1)
κegΛ

, γ1θ,
γ1κc(1− η1)

2κH

]

κg. (2.73)

Then Lemma 2.2 ensures that after Step 1 of Algorithm 2.4 is executed at iteration ki,

‖∇xf(xki)− gki‖ ≤ κegΛǫi ≤
1
2
κc(1− η1)‖∇xf(xki)‖ ≤

1
2
‖∇xf(xki)‖, (2.74)

where we used (2.72) and (2.73). Thus, after Step 1 is executed at iteration ki for i sufficiently

large, using (2.72) and (2.74), one has that

‖gki‖∞ ≥ ‖∇xf(xki)‖∞ − ‖∇xf(xki)− gki‖2 ≥
1
2
κg. (2.75)

As a consequence, no loop occurs within Step 1 for large i and we have that

∆ki = θ‖gki‖ ≥
1
2
θκg ≥

ǫi
γ1

> ǫi, (2.76)

using (2.73). Moreover, after applying a criticality step, we have that vi = xki at all iterations

between ki and the next successful iteration. This means, together with (2.76), that no unsuc-

cessful iteration of type 4c or 4d may occur before the next successful iteration or before the

trust-region radius becomes smaller than ǫi. Iterations of type 4a can not occur as pk = pmax,

so either a successful iteration (type 4b) occurs or the trust-region radius is decreased in Step 4e

without altering the model. Iteration of type 4e may happen for j ≥ 0 as long as

∆ki+j >
κc(1− η1)κg

4κH
, (2.77)

but Lemma 2.11 (which is a technical result based on the Cauchy condition and still holds with

the new algorithm) and (2.75) imply that a successful iteration of type 4b must occur as soon

as (2.77) is violated. It follows that a successful iteration ki + js must occur with

∆ki+js >
γ1κc(1− η1)κg

4κH
def
= ∆min ≥ ǫi, (2.78)

where (2.73) was used to get the last inequality. Since the model has not been recomputed

between iterations ki and ki + js, we have from (2.75) that

‖gki+js‖ = ‖gki‖ ≥
1
2
κg. (2.79)

Using the Cauchy condition (3.10) and inserting (2.78) and (2.79) for the successful iteration

ki + js yields, using the definition of ρ (2.4) and ρki+js ≥ η1, that

f(xki+js)− f(xki+js+1) ≥ 1
2
η1κcκgmin

[ 1
2κg

κH
,∆min

]

> 0. (2.80)

Therefore, we see that the objective function must be unbounded below because the bound

in (2.80) is satisfied for all i large enough to ensure (2.73). This is impossible in view of

Assumption A2 and thus our assumption that (2.72) holds for all k sufficiently large is also

impossible, and (2.71) follows which concludes the proof.
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2.5.4 Outlook

The extension of such a self-correcting derivative-free trust-region method to bound-constrained

problems seems obvious but is in fact not as straightforward in practice as one could think. The

difficulty is that the set of interpolation points may get aligned at one or more active bounds

and deteriorate the geometry of the interpolation set. This led to the idea, which is developed

in this thesis, to apply an active-set strategy to pursue minimization in the subspace of free

variables to circumvent this difficulty. A detailed description of the algorithm can also be found

in [74]. Numerical experiments performed with a practical implementation of algorithm UDFO

(which was initiated by Philippe L. Toint who was also involved as well as Serge Gratton in

different phases of its extension to handle bound-constrained problems) are reported in this

thesis (and in [74]). This software implementation is called BC-DFO which is the acronym

for Bound-Constrained Derivative-Free Optimization. Moreover, the main contribution in this

thesis is the new algorithm BCDFO+ which is presented in Chapter 3 of this thesis. It is

an extension of Algorithm 2.4 (UDFO+) to handle bound-constraints using the mentioned

active-set approach.



Chapter 3

A bound-constrained DFO

algorithm

We consider the bound-constrained optimization problem

minx∈IRn f(x), (3.1)

subject to li ≤ xi ≤ ui, i = 1, . . . , n

where f is a nonlinear function from IRn into IR, which is bounded below, and where l and u

are vectors of (possibly infinite) lower and upper bounds on x. We denote the feasible domain

of this problem by F .

Our approach uses an iterative trust-region method. As mentioned in Chapter 2, at each

iteration of such a method, a model of the form

mk(xk + s) = f(xk) + gTk s+
1
2
sTHks (3.2)

(where gk and Hk are the function’s gradient and Hessian, respectively) is minimized inside

a trust region B∞(xk,∆k). As derivatives are not given, gk and Hk are approximated by

determining its coefficients (here represented by the vector α) from the interpolation conditions

(

m(yi) =
)

p
∑

j=1

αjφj(yj) = f(yi), i = 1, . . . , p. (3.3)

The points y1, . . . , yp considered in the interpolation conditions (3.3) form the interpolation

set Yk. The set Yk contains in our case at least n + 1 points and is chosen as a subset of Xk,
the set of all points where the value of the objective function f is known. How to choose this

interpolation set is of course one of the main issues we have to address below, as not every set

Yk is suitable because of poisedness issues.

We propose to handle the bound constraints by an “active-set” approach where a bound

li or ui is called active at x if li = xi or xi = ui, respectively. The bound constraints li and

ui are inactive if li < xi < ui at x. A standard active-set method anticipates to update the

set of active constraints while adding and/or removing constraints at each iteration whereas

our approach allows only for adding constraints to the set of active constraints. Furthermore,

our method considers all bound constraints which are active and in addition also those which

are (presumably) nearly-active at the current iterate xk. It then performs minimization in the

subspace of the remaining inactive (also called free) variables.

31
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This chapter is organized as follows. We outline the basic framework of our algorithm

and discuss algorithmic concepts in Section 3.1. We present theoretical issues in Section 3.2,

while Section 3.3 is concerned with practical implementation issues. In Section 3.4, the new

algorithm BC-MS is presented to solve the trust-region subproblem in ℓ2-norm where bound

constraints are considered. Section 3.5 reports numerical experiments with our new algorithm

BCDFO+ where we first assess different types of models and two different local solvers to

find the most suitable for our algorithm. Secondly, we will compare BCDFO+ with the best

model option to NEWUOA [123] and BOBYQA [124], two state-of-the-art packages applying

also an interpolation-based trust-region method, and to its predecessor BC-DFO. Thirdly, we

compare our new algorithm to different existing implementations from the class of direct-search

methods.

3.1 A recursive active-set trust-region algorithm

3.1.1 Outline of the algorithm

An outline of our new bound-constrained algorithm is given in Algorithm 3.1 on page 33. This

outline is purposely schematic and many of its details needs to be discussed. This discussion

constitutes the body of this section.

3.1.2 Ensuring suitability of a tentative interpolation set

To safely build an initial interpolation model m0 in Step 1 of Algorithm 3.1, we have to ensure

that the used interpolation set Y0 is suitable in the sense that it is (sufficiently well) poised.

At this stage, we are only given the tentative interpolation set Z0 and we target to obtain the

set Y0 using Z0 as much as possible. We now describe the procedure used in our algorithm to

modify Z0, if necessary, to form the set Y0. This procedure distinguishes two cases, depending

on whether or not Z0 contains more than a single point.

If |Z0| = 1, our objective is then to build a poised interpolation set Y0 containing {x0} =

Z0 and contained in the initial trust region B∞(x0,∆0). This is achieved by choosing the

interpolation points at the vertices of an n-dimensional simplex, as given by the formula

yi+1 = x0 ±∆0ei, i = 1, 2, ..., n

where ei is the i-th coordinate vector in IRn and the sign is negative for the initial computation

of an interpolation set but, in an attempt to diversify the set of interpolation points, alternates

whenever applied again during the minimization process.

If |Z0| > 1, an obvious choice would be to search first for the set Y0 ⊆ Z0 of size p ≤ n+1 for

which the condition number of the shifted and scaled system matrix M(φ̄, Ŷ0) is the smallest

out of all matrices associated with subsets of Z0 consisting of at most min (n+ 1, |Z0|) points.

However, this procedure is quite costly due to its combinatorial nature, and we have decided

to use a cheaper technique adapted from [20] which we explain now.



A. Tröltzsch – Derivative-free model-based bound-constrained optimization 33

Algorithm 3.1 BCDFO+ (S0,X0, x0,Z0,∆0, ǫ0, ǫ)

Step 0: Initialization. A trust-region radius ∆0, an accuracy threshold ǫ and ǫ0 ≥ ǫ are given.

An initial subspace S0, X0, the set of all points, and a tentative interpolation set Z0 which contains

x0 are also given. Parameters η1, µ, γ4 ∈ (0, 1), 0 < γ1 < γ2 < 1, θ > 0,Λ > 1 and pmax ≥ n+ 1, the

maximum number of points considered, are defined. Choose v0 6= x0. Set k = 0 and i = 0.

Step 1: Ensure the suitability of Z0 and build the initial model. Update Z0 to obtain an

interpolation set Y0 suitable for building an interpolation model with |Y0| ≥ dim(S0)+1. Then build

the corresponding interpolation model m0.

Step 2: Possibly restrict minimization to a subspace Sk.

Step 2.1: Check for (nearly) active bounds. Determine (nearly) active bounds and the corre-

sponding subspace Sk spanned by the remaining free variables. If there is no (nearly) active bound

or if Sk has already been explored, go to Step 3. If all bounds are active, go to Step 2.5.

Step 2.2: Project information on the subspace of free variables. Project points in Xk which

lie close to the (nearly) active bounds on Sk and associate with them suitable function value estimates.

If the current iterate xk is projected onto Sk, compute f(PSk (xk)) and if then f(PSk (xk)) > f(xk),

go to Step 4, otherwise set xk = PSk (xk).

Step 2.3: Build a tentative interpolation set in the subspace. Build a new tentative inter-

polation set Zk in Sk including the projected points, if any.

Step 2.4: Solve in Sk by a recursive call. Call

BCDFO+(Sk,Xk, xk,Zk,∆k, ǫi, ǫ),

yielding a solution x∗S of the subspace problem.

Step 2.5: Return to the full space. If dim(Sk)< n, return x∗S . Otherwise, redefine xk = x∗S ,

construct a new interpolation set Yk around xk and build the corresponding model mk. Go to Step 4.

Step 3: Avoid re-entering a subspace. If Sk has already been explored at xk, then set xk+1 = xk,

reduce the trust-region radius ∆k+1 = γ4∆k and build a new poised set Yk+1 in ∆k+1. Compute

mk+1 and increment k by one.

Step 4: Criticality test. Define m̂i = mk.

Step 4.1: If ‖PF (xk −∇xm̂i(xk))− xk‖∞ < ǫi, set ǫi+1 = max(ǫ, µ‖PF (xk −∇xm̂i(xk))− xk‖∞),

compute a Λ-poised model m̂i+1 in B(xk, ǫi+1) and increment i by one.

If ‖PF (xk −∇xm̂i(xk))− xk‖∞ ≤ ǫ, return xk, otherwise start Step 4.1 again.

Step 4.2: Set mk = m̂i,∆k = θ‖PF (xk − ∇xmk(xk)) − xk‖∞ and define vi = xk if a new model

has been computed.

Step 5: Compute a trial point and evaluate the objective function. Compute x+
k = xk+ sk

such that mk(xk + sk) = minx∈B(xk,∆k) mk(x). Evaluate f at x+
k and compute the ratio ρk from

(2.4).

Step 6: Define the next iterate and update the trust-region radius. Decide how to pos-

sibly incorporate the current trial point x+
k into the set Yk+1, define xk+1 and ∆k+1 by applying

Algorithm 3.3.

Step 7: Update the model. If Yk+1 6= Yk, compute the interpolation model mk+1 around xk+1

using Yk+1. Update Xk+1 = Xk ∪ {xk+1}. Increment k by one and go to Step 2.
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Suppose that there exists a subset of points Wp = {x1, x2, ..., xp} in Z0 spanning a (p − 1)-

dimensional linear manifold L. Our selection problem in Z0 can be seen as an optimal basis

problem in Wp where we have to find p − 1 vectors (of the form xi − xj) out of Z0 which are

“as linearly independent as possible”. This problem can be formalized by regarding the points

in Wp as nodes of a graph and the vectors xi − xj as edges eij in this graph. It can then be

shown [21] that any set of p− 1 linearly independent vectors of the form xi − xj that generate

L corresponds to a tree spanning all nodes of Wp, and conversely. In addition, [20] shows that

the optimal basis problem can be reduced to finding the spanning tree t which minimizes the

functional

φ(t) =
∑

eij∈t
‖xi − xj‖2. (3.4)

Burdakov proposes a greedy algorithm for the solution of this minimization problem [21], in

which the measure of linear independence given by Γ({x1, . . . , xp}) = det(ATA) is exploited,

where

A =
[

x1 − x2

‖x1 − x2‖2
, · · · , xp−1 − xp

‖xp−1 − xp‖2

]

∈ Rn×p−1.

It can be shown that Γ is a scaling invariant measure of linear independence of the columns

of A and thus also measures the linear dependence of {x1, . . . , xp}. It is always included in

the interval [0, 1] and takes the value 0 and 1 for linearly dependent and orthogonal columns,

respectively, and the larger the value Γ({x1, . . . , xp}), the more linearly independent are the

Algorithm 3.2 Modified greedy algorithm for selecting a well-poised interpolation set (Inputs:

x0,Z0, Outputs: Wp, p)

Step 1: Compute distances ‖xi − xj‖2 for i, j = 1, . . . , |Z0|.
Step 2: Define p = 1, W1 = {x0} and T0 = ∅. Set Γ(W1) = 1 and k = 0.

while (p < n+ 1) and (k < |Z0|) do

Step 3: Find xi ∈ Wp and xj ∈ Z0 \ (Wp ∪ Tk), such that ‖xi − xj‖2 is minimal.

Step 4: Compute the measure of degeneracy

Γ(Wp ∪ {xj}) = Γ(Wp)
‖xj⊥‖2

2

‖xi − xj‖2
2

where xj⊥ = xj − Ppxj , and Pp is the orthogonal projector on the linear manifold spanned

by {xi}p1.

Step 5: If Γ(Wp ∪ {xj}) ≥ κth, then set Wp+1 =Wp ∪ {xj}, Tk+1 = Tk, and increment p

by one, else set Tk+1 = Tk ∪ {xj}.
Step 6: Increment k by one.

end while

vectors {x1, . . . , xp} [20]. For a given threshold κth ∈ (0, 1), we thus consider as sufficiently

well-poised those sets of points, for which Γ({x1, . . . , xp}) ≥ κth. It has also been proved in
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[21] that Γ({x1, . . . , xp}) can be updated to Γ({x1, . . . , xp, xp+1}) by a simple algebraic formula

(used in Step 4 of Algorithm 3.2), thereby avoiding the repetitive computation of determinants.

As we do not know a subset of Z0 containing linearly independent points and not even the

final number p of linearly independent points in Wp, a modified version of Burdakov’s greedy

algorithm is proposed. In our version, the desired set is built incrementally in a sequence W1,

. . . , Wp, where Wp+1 is chosen over all sets of the form Wp ∪ {y} for y ∈ Z0 \ (Wp ∪ Tk),
where Tk contains the points which were tried but could not be included in Wp while keeping

Γ sufficiently large. The algorithm is formalized as Algorithm 3.2 on page 34.

Note that p, the number of points selected by Algorithm 3.2 from Z0 may be smaller than

n + 1. In this case, we propose to complete Wp by n + 1 − |Wp| points selected randomly

in the trust region to form the final interpolation set Y0. To ensure a good geometry of Y0,

these random points {yp+1, . . . , yn+1} are then successively improved using the observation

that replacing an interpolation point by the maximum of its associated Lagrange polynomial in

the trust region ameliorates poisedness of the interpolation set (see [128], for instance). More

precisely, for each j = p + 1, . . . , n + 1, the absolute value of the Lagrange polynomial ℓj(x)

associated with yj is maximized inside B(xk,∆k) and yj is then replaced by the computed

maximizer ỹj (see also Algorithm 2.1). This finally yields the “optimized” interpolation set

Y0 =Wp ∪ {ỹp+1} ∪ . . . ∪ {ỹn+1}.

3.1.3 Recursive call in the subspace Sk

As we have mentioned above, our algorithm is of the active-set type and proceeds by exploring

the subspace Sk defined by fixing active or nearly active variables at their bounds (see Step 2

of Algorithm 3.1). This choice is intended to prevent the interpolation set from degenerating

as would happen when points belonging to such a subspace are included in Y. This section

is devoted to the description of the mechanism for selecting (nearly) active bounds and then

restarting the minimization in the associated subspace.

Before going into further details, we need to introduce some notation. We will drop the

iteration counter k here for clarity. We will use the projection operator on the feasible set F
which is defined componentwise by

[PF (x)]i =



















li if xi ≤ li,
ui if xi ≥ ui,
xi otherwise,

(3.5)

where i = 1, . . . , n. This operator projects the point x on the convex set [l, u].

The lower and upper (nearly) active bounds at the point x are defined by those whose index

is in one of the sets

L = { i | xi −∇mi < li and xi − li ≤ ǫb},
U = { i | xi −∇mi > ui and ui − xi ≤ ǫb},
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where ǫb = min{ǫ, |[PF (x − ∇m) − x]i|}, being the minimum of the required accuracy for

termination ǫ and the absolute value of the appropriate projected model gradient component.

Considering the combined measure ǫb on the bounds l and u indeed enables us to define not

only currently active bounds but also “nearly-active” bounds which are presumed to become

active in the next local minimization problem. If the set L∪U is non-empty, the minimization

is then restricted to the affine subspace

S = {x ∈ F | xi = li for i ∈ L and xi = ui for i ∈ U}, (3.6)

and the number of free variables consequently reduces to nfree = n− |L ∪ U|.
Considering now iteration k, to pursue minimization in the subspace Sk, a new linear model

has to be built to initiate the computation of the first step, and the interpolation set for this

model must consist of points lying exactly in this subspace. In an attempt to use all the

available information when entering the subspace, all points of Xk lying inside a ±ǫb-region

of the active bounds are projected on Sk (see Step 2.2 of Algorithm 3.1). To save function

evaluations, function values corresponding to these projected points are not recomputed but

replaced by model values, giving rise to points with approximate function values that we call

“dummy” points. Specifically, we define

Ak = {y ∈ Xk | 0 ≤ |yi − li| ≤ ǫb,∀i ∈ Lk and 0 ≤ |ui − yi| ≤ ǫb,∀i ∈ Uk}, (3.7)

where for at least one i, the strict inequality 0 < |yi − li|, i ∈ Lk or 0 < |ui − yi|, i ∈ Uk must

hold. The set Ak contains those points which are close to the active bounds but not on these.

All points y ∈ Ak are then projected on Sk, yielding ys = PSk(y), and these “dummy” points

{ys} are included in Xk with associated function values given by the model values {mk(ys)}. An

exception is made when the current best point xk belongs to Ak and is thus projected onto Sk:
the objective function is then evaluated at the projected point PSk(xk), rather than mk. If the

new function value is such that the projected point is not the new best point, we refrain from

exploring the newly defined subspace as the model gradient information at xk turns out to be

not correct. Minimization is pursued in the subspace Sk−1, which we just left, instead. In the

case where f(PSk(xk)) < f(xk), the current best point consequently changes to the projected

point in Sk. All dummy points are also appended to the set Dumk, the set of all dummy points.

In Step 2.3 of Algorithm 3.1, a new tentative interpolation set Zk = Xk ∩Sk is built and the

algorithm then proceeds by recursively calling itself in the subspace Sk, as indicated in Step 2.4

of the same algorithm.

While minimizing in Sk, dummy points are successively replaced by real points with high

priority (see Section 3.1.5 below). Moreover, we ensure that there is no dummy point in the

interpolation set at a potential subspace solution: if the interpolation set still contains dummy

points at this stage, the true function values are computed to ensure that convergence in Sk is

solely based on real function values.

Once the algorithm has converged to an approximate solution of the problem restricted to Sk,
it must be verified whether it is also an approximate solution for the full-dimensional problem
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(after adding the fixed components). Therefore, as mentioned in Step 2.5 of Algorithm 3.1, a

safely non-degenerate full-space interpolation set of degree n+ 1 in an ǫ-neighbourhood around

the suspected solution x∗ is constructed following the technique described in Section 3.1.2.

After computing the associated model, its gradient is checked for convergence (see Step 4 of

Algorithm 3.1). If convergence can not be declared, minimization is continued in IRn.

3.1.4 Local solver

To minimize the interpolation model mk inside the intersection of the trust region and the

bounds in Step 5 of Algorithm 3.1, a simple projected truncated conjugate-gradient algorithm

is used, as in the LANCELOT package [33]. As is standard for such techniques, the set of active

bounds is never reduced and a piece-wise linesearch is performed on the path defined by the

projection of the current search direction onto the feasible set F if a new bound is hit in the

course of the conjugate-gradient calculation. The computation is stopped as soon as the iterates

leave the trust region or all bounds are active. Further, in our experiments, the computation

is also terminated if the size of the projected gradient falls below a threshold of 10−9 or the

number of conjugate-gradient iterations exceeds the limit of 1500.

Remark: In our method, as in standard trust-region methods, it is imposed that mk(x+
k )

must be “sufficiently small” compared to mk(xk). To satisfy this model decrease condition, mk
is usually minimized (as in our case), but the theory just requires the condition that

mk(xk)−mk(x+
k ) ≥ κc‖PF (xk −∇xm(xk))− xk‖min

[‖PF (xk −∇xm(xk))− xk‖
βk

,∆k, 1
]

,

(3.8)

where βk is an upper bound on the condition number of the model Hessian defined as

βk
def
= 1 + ‖Hk‖ (3.9)

and a constant κc ∈ (0, 1) (see [31] and [103]) This condition is well-known in trust-region

analysis under the name of “Cauchy condition”, and indicates that the model reduction must

be at least a fraction of that achievable along the steepest descent direction while remaining in

the trust region. In the unconstrained case, (3.8) reduces to

mk(xk)−mk(x+
k ) ≥ κc‖gk(xk)‖min

[ ‖gk(xk)‖
1 + ‖Hk‖

,∆k

]

. (3.10)

3.1.5 Defining the next iterate

At each iteration of a classical trust-region method, a new trial point x+
k is computed by

minimizing the interpolation model mk inside the trust-region ∆k. The point x+
k is accepted to

be the new iterate xk+1 if the ratio ρ between achieved and predicted reduction (2.4) exceeds

a constant η1. In this case, the iteration is declared successful. Otherwise, the iteration is

unsuccessful.
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Following [128], we always try to improve the geometry by replacing an appropriate point

from the set in unsuccessful iterations and if we cannot find such a point, the trust-region radius

is decreased. But contrary to [128], we also decrease the trust-region radius ∆ in unsuccessful

iterations in which a point was replaced (as long as the trust-region radius is larger than a fixed

threshold ∆switch) as in the unconstrained algorithm UDFO+ described in Section 2.5. This is

a slightly more aggressive strategy as applied in [128] because we do not wait until the geometry

is good enough to conclude that the trust-region radius must have been too large to progress.

Finally, this resembles the trust-region management of a standard trust-region method and the

algorithm is given the possibility to progress in a smaller trust-region where the model might be

more suitable. We now describe the details of the complete replacement/updating procedure.

An algorithmic outline of this routine is given in Algorithm 3.3 which is a detailed version of

Step 6 of Algorithm 3.1.

The first step is to check whether the current model is already quadratic (see Step 6a). If

pk < pmax, the size of the interpolation set is augmented by the new trial point. If the iteration

is successful, we update the iterate by xk+1 = x+
k and the trust-region radius by

∆k+1 = min(max(γ3‖sk‖∞,∆k),∆max). (3.11)

In an unsuccessful iteration, we define xk+1 = xk and if ∆k > ∆switch, we set ∆k+1 ∈
[γ1∆k, γ2∆k], otherwise ∆k+1 = ∆k is kept.

When the model is quadratic, we try to replace the dummy points in the current interpolation

set to avoid keeping approximate information in the model for too long (see Step 6b). If there

are any dummy points in the current interpolation set (what means that Dumk ∩ Yk 6= ∅) for

which ℓk,j(x+
k ) (the value of the associated Lagrange polynomial evaluated at the trial point)

is nonzero, the dummy point for which ℓk,j(x+
k ) is largest in absolute value is replaced by x+

k .

In an unsuccessful iteration, the trust-region radius is decreased if ∆k > ∆switch. If the current

iteration is successful, we have to update the trust region as in (3.11) and the current best

iterate and thus the center of the interpolation set is also updated.

If the trial point could not yet be included in the interpolation set, we apply a strategy close

to the one described in Algorithm 2.3 in Section 2.4 for the unconstrained case (see also [128,

Algorithm 2]). If the iteration is successful, we define, as above, xk+1 = x+
k and update the

radius by (3.11) in Step 6c. In the interpolation set, one point yk,r is then replaced by the trial

point Yk+1 = Yk \ {yk,r} ∪ {x+
k } for

r = arg max
j
‖yk,j − x+

k ‖2|ℓk,j(x+
k )|. (3.12)

In the unsuccessful case, i.e. when ρ < η1, we still attempt to include the trial point in the

interpolation set to improve its geometry. To do so, a point from Yk \ {xk} has to be replaced

by x+
k and we first attempt to replace a far interpolation point (see Step 6d). If the set

Fk def
= {yk,j ∈ Yk \ {xk} | ‖yk,j − xk‖∞ > β∆k and ℓk,j(x+

k ) 6= 0} (3.13)

is non-empty, where β ≥ 1, then we set xk+1 = xk, ∆k+1 ∈ [γ1∆k, γ2∆k] if ∆k > ∆switch,

otherwise ∆k+1 = ∆k. We define the new interpolation set by Yk+1 = Yk \{yk,r}∪{x+
k } where
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Algorithm 3.3 Define the next iterate

Step 6a: Augment interpolation set (pk < pmax). If pk < pmax, then: Define Yk+1 =

Yk∪{x+
k }. If ρk ≥ η1, then define xk+1 = x+

k and choose ∆k+1 ≥ ∆k as in (3.11). If ρk < η1,

define xk+1 = xk and if ∆k > ∆switch, set ∆k+1 ∈ [γ1∆k, γ2∆k], otherwise ∆k+1 = ∆k.

Step 6b: Replace a dummy interpolation point. If pk = pmax and the set

Dk def
= {yk,j ∈ Dumk ∩ Yk}

is non-empty, then: Define Yk+1 = Yk \ {yk,r} ∪ {x+
k } where ℓk,r(x+

k ) 6= 0 and r is an index

of any point in Dk, such that r = arg maxj ‖yk,j − x+
k ‖2|ℓk,j(x+

k )|. If ρk ≥ η1, then define

xk+1 = x+
k and choose ∆k+1 ≥ ∆k as in (3.11). If ρk < η1, then define xk+1 = xk and if

∆k > ∆switch, update ∆k+1 ∈ [γ1∆k, γ2∆k], otherwise we set ∆k+1 = ∆k.

Step 6c: Successful iteration. If pk = pmax, ρk ≥ η1 and the set Dk = ∅, then: Define

xk+1 = x+
k , choose ∆k+1 ≥ ∆k as in (3.11). Define Yk+1 = Yk \ {yk,r} ∪ {x+

k } where r is the

index j of any point yk,j in Yk, for instance, such that r = arg maxj ‖yk,j − x+
k ‖2|ℓk,j(x+

k )|.

Step 6d: Replace a far interpolation point. If pk = pmax, ρk < η1, [xk 6= vi or ∆k ≤ ǫi],
the set Dk = ∅ and the set

Fk def
= {yk,j ∈ Yk such that ‖yk,j − xk‖ > β∆k and ℓk,j(x+

k ) 6= 0}
is non-empty, then: Set xk+1 = xk, ∆k+1 ∈ [γ1∆k, γ2∆k] (or set ∆k+1 = ∆k if ∆k ≤ ∆switch).

Define Yk+1 = Yk \ {yk,r}∪ {x+
k } where r is the index j of any point yk,j in Fk, for instance,

such that r = arg maxj ‖yk,j − x+
k ‖2|ℓk,j(x+

k )|.

Step 6e: Replace a close interpolation point. If pk = pmax, ρk < η1, [xk 6= vi or

∆k ≤ ǫi], the set Dk ∪ Fk = ∅ and the set

Ck def
= {yk,j ∈ Yk \ {xk} such that ‖yk,j − xk‖ ≤ β∆k and ℓk,j(x+

k ) > Λ}
is non-empty, then: Set xk+1 = xk,∆k+1 ∈ [γ1∆k, γ2∆k] (or set ∆k+1 = ∆k if ∆k ≤ ∆switch).

Define Yk+1 = Yk \ {yk,r} ∪ {x+
k } where r is the index j of any point yk,j in Ck, for instance,

such that r = arg maxj ‖yk,j − x+
k ‖2|ℓk,j(x+

k )|.

Step 6f: Reduce the trust region radius. If pk = pmax, ρk < η1 and either [xk = vi

and ∆k > ǫi] or Dk ∪ Fk ∪ Ck = ∅, then: Set xk+1 = xk,∆k+1 ∈ [γ1∆k, γ2∆k] and define

Yk+1 = Yk.

r is the index j of any point yk,j in Fk, for instance such that

r = arg max
j
‖yk,j − x+

k ‖2|ℓk,j(x+
k )| (3.14)

or

r = arg max
j
‖yk,j − x+

k ‖2. (3.15)
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If the set Fk is empty and the set

Ck def
= {yk,j ∈ Yk \ {xk} | ‖yk,j − xk‖∞ ≤ β∆k and ℓk,j(x+

k ) > ΛC} (3.16)

is non-empty, where ΛC > 1 is defined by the user, we then set xk+1 = xk, ∆k+1 ∈ [γ1∆k, γ2∆k]

if ∆k > ∆switch, otherwise ∆k+1 = ∆k (see Step 6e). The new interpolation set is defined by

Yk+1 = Yk \ {yk,r} ∪ {x+
k } where r is the index j of any point yk,j in Ck, for instance such that

r = arg max
j
‖yk,j − x+

k ‖2|ℓk,j(x+
k )| (3.17)

or

r = arg max
j
|ℓk,j(x+

k )|. (3.18)

(The current default in our algorithm, based on our numerical experience, is to choose (3.15)

and (3.18). This seems also natural as the target is to first remove far points to improve the

locality of the model and then to improve the poisedness of the set when all points are rather

close to the current iterate.)

If the trial point could not be included into the interpolation set under the above conditions,

it implies that the interpolation set must be reasonably poised, as otherwise we could have

improved it. As a consequence, we set xk+1 = xk,Yk+1 = Yk and ∆k+1 ∈ [γ1∆k, γ2∆k] in

Step 6f.

3.1.6 Avoid re-entering a subspace

We have stated in Step 2.1 of Algorithm 3.1 that we never re-enter a subspace Sk which has

already been explored at the current iterate xk as this is of no interest anymore. Instead, we pro-

ceed in this situation with a criticality step in a reduced trust region (Step 3 of Algorithm 3.1).

We now justify that feature.

Imagine the following situation: convergence is declared in subspace Sk and a new model of

degree one is built at x∗ in IRn. Assume also that x∗ is a solution of the full-space problem. It

may then happen that the model gradient∇mk(x∗) of the linear model mk is too large to declare

convergence in IRn, because mk is not a sufficiently accurate model even if the interpolation set

is well poised.

Indeed, we know (Theorem 2.11, p. 29, in [41]) that, for linear models,

‖∇xf(y)−∇xm(y)‖2 ≤ κeg∆, (3.19)

and since a projection onto a convex set is Lipschitz continuous in 2-norm we have that

‖PF (y −∇xf(y))− y − [PF (y −∇xm(y))− y]‖2 ≤ ‖∇xf(y)−∇xm(y)‖2 ≤ κeg∆, (3.20)

where κeg is given by

κeg = ν(1 + n
1

2 ‖L̂−1‖2/2), (3.21)

where L̂ = L
∆ = 1

∆ [y2 − y1, ..., yn − y1] and ∇f is Lipschitz continuous with constant ν > 0. As

a consequence, a big difference between ∇mk and ∇f can only occur either because κeg or the
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trust-region radius are too large. As the size of the Lipschitz constant is beyond our control,

building a new well-poised set in a reduced trust-region radius must solve the problem because

(3.19) implies that the model gradient will converge to the true one. This procedure can be

seen as a criticality step and either convergence will be declared (in Step 4 of Algorithm 3.1)

or the algorithm may proceed with a more accurate model.

3.2 Theoretical issues

In this section, we want to talk about the convergence of our bound-constrained algorithm

BCDFO+ presented as Algorithm 3.1 in the previous section.

3.2.1 Global convergence

After having presented a bound-constrained algorithm, which successfully combines techniques

from different fields of optimization, it turned out that proving global convergence of our re-

cursive active-set trust-region algorithm is rather difficult.

In fact, active-set methods are widely used in the context of gradient-based optimization

[22, 31, 34, 80, 106] to efficiently handle bound constraints. Due to the availability of first-

order information, these methods check the validity of the active set at every iteration. In

our derivative-free context we decided, to avoid degeneration of the sample set, to pursue

minimization in the subspace, where active bounds are allowed to be added but not to be

released, until convergence is declared.

We had the idea, that such a recursive subspace-step can be regarded as a magical step, as

described in [44] and [34, Chapter 10.4.1]. A magical step sMAk is an additional step which is

performed, once the model-decreasing step sk has been determined. Such a composite step is

better than sk in the sense that f(xk + sk + sMAk ) ≤ f(xk + sk). In our context, a subspace

step could be seen as such a magical step and would contribute to the minimization process of

the full-space problem with a “very successful” step. One problem is that our algorithm does

not obey the rules for the trust-region management of a method including magical steps as

this would be, for instance, to apply a strict trust-region management in the full-space. This

would mean to expand or contract the trust-region radius in the full-space after a subspace

step according to its value before the subspace step what is not the case in our algorithm.

Furthermore, and more importantly, the convergence theory of an algorithm with magical steps

is still based on the decrease achieved at the step sk. This is different in our approach because

convergence may be declared inside a subspace in the bound-constrained case. This implies

that we may have converged after a magical step and can not ensure to produce infinitely many

steps in the full-space what would be essential to prove global convergence of our method.

Hence, magical steps do not apply naturally in our context; we could think that it might

be more appropriate to apply the theory of a multi-level-type algorithm as this keeps track of

what happens in the subspace. But in multi-level trust-region methods (as e.g. in [71, 73, 103]),
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the minimization in the subspace (coarser level) has to be proceeded inside the trust-region of

the full-space (fine level), or a bounded violation of it. Thus, this theory does not apply either

to our algorithm. Another point is that the decision on whether to proceed minimization in a

subspace or not is taken by ensuring that the reduction in the subspace at the first successful

iteration there gives a Cauchy decrease which is a fraction of that which would be obtained in

the full-space. Such a descent condition is not ensured by our algorithm because the decision

is not taken based on the sufficient decrease in the subspace compared to the full-space but to

prevent degeneration of the interpolation set.

Nevertheless, we still believe that it is possible to prove global convergence of our algorithm

without compromising its efficiency but this seems to be a bit more complex and is left as an

open task to deal with in the near future.

3.3 Practical implementation issues

The description of our algorithm BCDFO+ in the previous section leaves a number of practical

questions open. In this section, we briefly report some further details about the particular

implementation of the algorithm whose numerical performance is reported below in Section 3.5.

3.3.1 Preparing the initial call

At the first call to BCDFO+, it is assumed that

∆0 ≤
1
2

min
i=1,...,n

(ui − li) and li + ∆0 ≤ x0i ≤ ui −∆0, (3.22)

where xi denotes the i-th component of the vector x.

Further, the initial call is performed with S0 = IRn, which means that the initial subspace

is the n-dimensional full space. Both, the set of all points for which the function values have

been computed and the initial tentative interpolation set contain only the starting point x0 (i.e.

X0 = Z0 = {x0}).
We finally note that in our implementation, only a matrix containing the set Xk and a vector

of the associated function values fXk are stored. The points contained in the subsets Zk and

Yk, and their function values respectively, are held as integer pointers to Xk and fXk .

3.3.2 Handling fixed variables

In practice, it is often very convenient for users of an optimization package, to be able to fix

the value of certain variables. Hence, we have that

li = x0i = ui.

In order to handle such a case, we check for variables where ui − li = 0. The corresponding

indices i together with their fixed values x0i are then stored in a vector for use when evaluating
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the objective function throughout the calculation, but the associated variables are otherwise

excluded from the minimization process.

3.3.3 Representation of the Lagrange polynomials

As Y varies, the code computes a QR factorization

M(φ,Y)T = QYRY

of the matrix of the system (2.8) (or of its shifted version M̂ if appropriate), where the basis φ

is that of the monomials. If the vector ℓj contains the coefficients of the Lagrange polynomial

ℓj(x) associated with Y, their definition implies that they have to satisfy M(φ,Y)ℓj = ej and

hence may be retrieved from the formula ℓj = QYR
−T
Y ej .

3.3.4 Controlling the condition of the system matrix

We have shown that Algorithm 2.3 and Algorithm 3.1 are globally convergent algorithms which

apply a self-correcting property. We repeat here that the self-correcting property in Lemma 2.13

states that the geometry of the interpolation set Y improves in unsuccessful iterations when

the trust region is small (relative to the model’s gradient) and the interpolation points are

contained in the trust region. For replacing a point in a unsuccessful iteration in the case, there

are points lying outside of the trust region, the theory in Section 3.2 says that if |ℓj(x+)| 6= 0,

hence the absolute value of the corresponding Lagrange polynomial evaluated at the new point

is not zero and thus the system matrix M(φ̄,Y) can not become singular. Whereas no care of

the poisedness of the interpolation set is taken when a successful point is included in the set.

In practice, even shifting and scaling of the interpolation set to work with M(φ̄, Ŷ) doesn’t

prevent the condition number of M(φ̄, Ŷ) from growing. In the context of finite precision

arithmetic, we may for instance encounter numerical difficulties in the following three situations:

• The gap between two geometry improving steps is too big. Geometry improving

steps are invoked when the gradient falls below a certain threshold ǫi. This threshold is

adapted after each such step by multiplying ǫi with a constant µ ∈ [0, 1) to be the new

threshold for the next geometry improving step. The size of µ and thus the frequency of the

improving steps is user-defined and if it is chosen too small, the geometry may deteriorate

before such a step is performed. For instance, imagine, a lot of progress was made towards

the solution and many points of the set are far from the current iterate whereas, at the

same time, the algorithm starts to sample points in the close neighbourhood of the current

iterate. As a consequence, the algorithm is busy with replacing far points without taking

care of the poisedness of the set of points. This slow deterioration of the sample set

could be prevented by asking for a big enough absolute value of the Lagrange polynomial

associated with the far point yj to replace and evaluated at the new trial point x+ and

test the condition |ℓj(x+)| ≥ κℓ to be true before including the new point. But from



A. Tröltzsch – Derivative-free model-based bound-constrained optimization 44

our experience we know that it is nearly impossible to find a good default value for κℓ.

Because such a threshold must not be too small to get into troubles in any test case of

any test set and it should also not be too big to reject unnecessarily many points in other

test cases as this has a bad influence on the performance of the method which relies on

the constant replacement of points by the new trial points.

• The real problem Hessian is ill-conditioned. A good example is the unconstrained

quadratic problem NASTY from the CUTEr collection. For instance, the solvers NEWUOA

and BOBYQA (with the default parameters) are not able to solve this problem. The prob-

lem is two-dimensional and the Hessian of the problem writes

H0 =

[

1020 0

0 1

]

.

where the condition number of H0 is 1020. This provokes the difficulty that the model’s

gradient is quite big (due to the nature of the problem) and that convergence is slow.

Moreover, the structure of the problem causes the trial points to lie more or less all in

one direction what is also not desirable for the interpolation set geometry. As mentioned

above, a too big gradient prevents the algorithm from applying a geometry improving

step and thus the condition number of the system matrix is in parts strictly increasing

and the set of points may deteriorate at some point.

• The degree of the model is between linear and quadratic. According to the

proposed algorithm, if the set of points for quadratic interpolation contains less than
1
2 (n + 1)(n + 2) points, every new trial point is added to the set. As there’s not a point

to replace in this case, checking Lagrange polynomial values is not an option in this case.

Nevertheless, the poisedness of Yk may deteriorate when appending new points.

As a solution to all of these practical issues and thus to be sure to have a reliable algorithm, the

condition number of the shifted and scaled system matrix M(φ̄, Ŷ) (or F (φ̄, Ŷ) for the minimum

Frobenius-norm model) is computed at each iteration before building the polynomial model.

The threshold κillcond for declaring M(φ̄, Ŷ) or F (φ̄, Ŷ) as badly conditioned is user-defined in

the software. In the case cond(M̂) > κillcond, the singular value decomposition of this matrix

is determined and all singular values smaller than a threshold δ are replaced by this threshold.

Then the corresponding system which computes the model is solved. If we want to guarantee

that the error bound on the gradient for (at least) linear interpolation is not violated, we have

to determine the maximum size of such a δ. In the following, we want to establish an error

bound on the model gradient ∇m(ỹ) of the perturbed model. The general assumption is the

following.

Assumption 3.1. We assume that Y = {y1, y2, . . . , yp} ⊂ IRn is a poised set of sample points

(in the linear interpolation sense) contained in the ball B(y1,∆(Y)) of radius ∆ = ∆(Y).

Further, we assume that the function f is continuously differentiable in an open domain Ω

containing B(y1,∆) and ∇f is Lipschitz continuous in Ω with constant ν > 0.
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Another assumption needed for our result is stated below.

Assumption 3.2. We assume that each entry of the interpolation set Y = {y1, y2, . . . , yp}
is perturbed so that we have a set of points Ỹ = {ỹ1, ỹ2, . . . , ỹp} with ỹji = yji + δji for i =

1, ..., n, j = 1, ..., p where

δji ≤ δ =
ν

4
∆2

‖∇m(ỹ)‖ for i = 1, ..., n, j = 1, ..., p. (3.23)

Furthermore, we assume that

‖δj − δ1‖ ≤ δ, (3.24)

where δj = (δji )
n
i=1.

As in [42, Theorem 2.11], we want to establish our result using the scaled matrix

L̂ =
1
∆
L =

1
∆

[

y2 − y1 . . . yp − y1
]T

=









y2

1
−y1

1

∆ . . .
y2

n−y1

n

∆
...

...
...

yp
1
−y1

1

∆ . . .
ypn−y1

n

∆









,

where the matrix
[

1 y1T

0 L

]

is a block expression of the matrix M = M(φ̄,Y) after performing one step of Gaussian elim-

ination to M . This leads to the fact that the matrix L is nonsingular if and only if M is

nonsingular, since det(L) = det(M).

We can establish the following result in terms of the perturbed set Ỹ:

Theorem 3.1. Let Assumption 3.1 and Assumption 3.2 hold. The gradient of the linear inter-

polation model satisfies, for all points y in B(y1,∆) and their corresponding perturbed versions

ỹ, an error bound of the form

‖∇f(y)−∇m(ỹ)‖ ≤ κegp∆, (3.25)

where κegp = ν(1 +
√
p− 1‖L̂−1‖) and L̂ = L/∆.

Proof. We assumed that the set Y is poised, thus we have that M and L are nonsingular. We

consider the perturbed system matrix

M(φ̄, Ỹ) =









1 y1
1 + δ1

1 . . . y1
n + δ1

n

...
...

...

1 yp1 + δp1 . . . ypn + δpn









. (3.26)

Now, we look at the gradient of f at the point y1. Substracting the first interpolating condition

from the remaining p− 1, we obtain

[

(yj + δj)− (y1 + δ1)
]T

∇m(ỹ) = f(yj)− f(y1), j = 2, . . . , p
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and thus we get

(yj − y1)T∇m(ỹ) = f(yj)− f(y1)− (δj − δ1)T∇m(ỹ), j = 2, . . . , p.

Then, using the integral form of the mean value theorem

f(yj)− f(y1) =

1
∫

0

(yj − y1)T∇f(y1 + t(yj − y1)) dt,

we obtain

(yj−y1)T (∇f(y1)−∇m(ỹ)) ≤
1
∫

0

(yj−y1)T [∇f(y1)−∇f(y1 +t(yj−y1))] dt−(δj−δ1)T∇m(ỹ),

for j = 2, . . . , p. From the Lipschitz continuity of ∇f , we get that

‖(yj − y1)T (∇f(y1)−∇m(ỹ))‖ ≤ ν

2
‖yj − y1‖2

2 + ‖δj − δ1‖2‖∇m(ỹ)‖2, j = 2, . . . , p.

Then, from these last p− 1 inequalities and (3.24), it can be derived

‖L(∇f(y1)−∇m(ỹ))‖2 ≤
√

p− 1
ν

2
∆2 + 2

√

p− 1 δ ‖∇m(ỹ)‖2,

from which it can be concluded that

‖∇f(y1)−∇m(ỹ)‖2 ≤
√

p− 1 ‖L̂−1‖(ν
2

∆ +
2δ ‖∇m(ỹ)‖2

∆
).

Applying (3.23) gives

‖∇f(y1)−∇m(ỹ)‖2 ≤
√

p− 1 ‖L̂−1‖ν∆.

Now, the error bound for any point y in the ball B(y1,∆) and its corresponding perturbed point

ỹ can be derived from the Lipschitz continuity of the gradient of f :

‖∇f(y)−∇m(ỹ)‖2 ≤ ‖∇f(y)−∇f(y1)‖2 + ‖∇f(y1)−∇m(ỹ)‖2 ≤ ν(1 +
√

p− 1 ‖L̂−1‖)∆.

This result allows for replacing small singular values of M̂ by a value δ to safeguard the

computation of the model. More precisely, in case the condition number of M̂ passes the

threshold κillcond, δ is computed from (3.23). As the computation of δ involves the gradient of

the perturbed model which is unknown when δ is computed, its value is determined by using

the model gradient of the last iteration. This approximation has shown to be sufficient in our

experiments.

Please note that the above described value of δ is valid for linear interpolation but it is at

the moment also applied when working with quadratic models and also in the regression case.

The described strategy works well in our general algorithmic context but may not guarantee

error bounds for interpolation when in addition quadratic polynomial bases are considered to

build a model or when regression models are considered. For this reason, we plan to extend our

theory above to the mentioned cases in a future project.
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3.3.5 Implementation of the models

In this section, we describe our particular implementation in Matlab [1] of the different model

types considered in this work, as there are the sub-basis model, the minimum ℓ2-norm model,

the minimum Frobenius-norm model and the least-squares regression model.

In any case, if pk = |Yk| = n + 1, a linear model and not an underdetermined quadratic

model is built. This stems from the different theoretical model gradient errors of this two kinds

of models. In fact, we know from [41, 45] that the error bound for the gradient approximation

in the linear case is written as

‖∇f(y)−∇m(y)‖ ≤ ν(1 +
√
n‖L̂−1‖/2)∆, (3.27)

and the error bound for the gradient of an underdetermined quadratic model involves the model

Hessian norm and is written as

‖∇f(y)−∇m(y)‖ ≤ 5
2
√
p‖L̂†‖(ν + ‖H‖)∆, (3.28)

where L̂† denotes again the Moore-Penrose generalized inverse of the matrix L̂. The scaled

matrix L̂ (see Section 3.3.4 for the definition) corresponds to a scaled sample set contained in

a ball of radius 1 centered at y1/∆, i.e.,

Ŷ = {y1/∆, y2/∆, . . . , yp/∆} ⊂ B(y1/∆, 1).

From this we can see that the model gradient of a linear polynomial might be more accurate

than the one of an underdetermined quadratic polynomial using n+ 1 interpolation conditions.

This is a very crucial point in our work because our algorithm relies on the accuracy of the model

gradient as a stopping criterion. Especially in a bound-constrained calculation when coming

back from exploring a subspace and checking convergence in the full-space with a sample set

containing only n + 1 points, we have to take care of the quality of the model gradient to be

able to declare convergence.

Furthermore, our implementation of BCDFO+ is using the function pinv() when com-

puting the least-squares solution in the under- and overdetermined case, meaning that the

minimum ℓ2-norm and regression models are built by computing the Moore-Penrose pseudo-

inverse instead of using the simpler (and faster) backslash-operator. The reason is that the

solution to the least-squares system using the backslash-operator in Matlab (version 7.1.0.183

with service pack 3) gives the solution with the least number of non-zero entries and not the

least-norm solution.

A particularity of our implementation of the minimum Frobenius-norm model is, to solve

the problem M(φ̄,Y)α = f(Y) when quadratic degree is reached rather than continuing to

solve F (φ̄,Y) [λ, µ]T = [f(Y), 0]T . In the latter case, each iteration involves a matrix-matrix-

product to establish F (φ̄,Y) which is not expensive compared to a function evaluation in some

industrial test cases as those considered in Chapter 4 of this thesis. The main reason, to work

with M(φ̄,Y) rather than with F (φ̄,Y) in the complete quadratic case is that the condition
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number of the matrix F (φ̄,Y) may be of the order of the square of the condition number of

M(φ̄,Y) due to its construction which is stated here again for convenience (see also Section 2.2.4)

F (φ̄,Y) =

[

M(φ̄Q,Y)M(φ̄Q,Y)T M(φ̄L,Y)

M(φ̄L,Y)T 0

]

. (3.29)

Concerning the least-squares regression approach, the minimum ℓ2-norm model is build

as long as the interpolation system matrix is underdetermined. If more than 1
2 (n + 1)(n + 2)

points are avilable, the mentioned Matlab-function pinv() is used. A maximum of (n+1)(n+2)

interpolation conditions is used to build a regression model as it seems not to be desirable [40] to

use all available points. This also seems logic as too many far points would then be considered

which are not necessarily relevant to build up a local model around the current iterate.

3.3.6 The projected gradient as a stopping criterion

As indicated above, the model gradient ∇xmk(x) is used to check convergence to a first-order

critical point, in the sense that we verify the inequality

‖PF (xk −∇mk(xk))− xk‖∞ ≤ ǫ, (3.30)

which [72] have shown to correspond to a suitable measure of backward error for bound-

constrained problems. Moreover, we have that

‖PF (xk −∇f(xk))− xk‖∞
≤ ‖PF (xk −∇mk(xk))− xk‖∞ + ‖∇mk(xk)−∇f(xk)‖∞
≤ ‖PF (xk −∇mk(xk))− xk‖∞ + ‖∇mk(xk)−∇f(xk)‖2,

(3.31)

and, using (2.20), we deduce that the left-hand side of this inequality can be made small if

(3.30) holds and Λ and ∆k are sufficiently small. In practice, we require the interpolation

points yi, i = 1, ..., p used to build mk(x) to be contained in the ball B2(xk, ǫ) and Yk is poised

enough to ensure κegΛ∆k ≤ ǫ for some user-defined constant κeg > 0.

Here, we give a proof of the inequality (3.31) to justify the use of the projected model

gradient as a stopping criterion in our algorithm.

Lemma 3.2. Suppose that A1 and A3 hold. Then

‖PF (xk −∇xf(xk))− xk‖∞ ≤ ‖πk‖∞ + ‖∇xf(xk)− gk‖2. (3.32)

Proof. The feasible region F can be written as

F = F1 × . . .×Fn (3.33)

where Fi = [li, ui] is the interval of the i-th variable.

We also use the fact that a projection on a box means to project in each dimension. We

have by definition that ∀v
PF (v) = [PFi(vi)]i=1,...,n. (3.34)
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Since a projection on a convex set is Lipschitz-continuous in each single direction, we have that

|PFi(vi + wi)− PFi(vi)| ≤ |vi + wi − vi|.

Using (3.34) and setting z = PF (v + w)− PF (v), we get

|zi| ≤ |wi|.

As this expression is true for all i, so also for

max |zi| ≤ max |wi|

what in turn gives

‖z‖∞ ≤ ‖w‖∞.

After replacing z again and including +x− x in the left-hand side term we have

‖PF (v + w)− x− [PF (v)− x]‖∞ ≤ ‖w‖∞.

Now, we substitute v = xk − gk and w = ∇xf(xk)− gk and we get

‖PF (xk −∇xf(xk))− xk − [PF (xk − gk)− xk]‖∞ ≤ ‖∇xf(xk)− gk‖∞.

Applying the triangle inequality gives

‖PF (xk −∇xf(xk))− xk‖∞ − ‖πk‖∞ ≤ ‖∇xf(xk)− gk‖∞,

which yields

‖PF (xk −∇xf(xk))− xk‖∞ ≤ ‖πk‖∞ + ‖∇xf(xk)− gk‖∞

and therefore also gives

‖PF (xk −∇xf(xk))− xk‖∞ ≤ ‖πk‖∞ + ‖∇xf(xk)− gk‖2,

what concludes the proof.

3.3.7 An alternative stopping criterion

To declare convergence to a critical point, we decided to ask for a sufficiently small model

gradient where the model was built from a well-poised set of points in the ball B(xk,∆k). To

reach this goal, it is sometimes necessary to decrease ∆k to a level where the (at most quadratic

but sometimes only linear) model approximates a possibly highly nonlinear function sufficiently

well (see also the criticality step in Step 4 of Algorithm 3.1). But in practice, this strategy is

not always successful in the context of derivative-free optimization, in the sense that in some

cases, a radius ∆k tending to zero does not yield a model gradient of required size ǫ. This

difficulty can be explained by the approximative nature of the model gradient which could

also be seen as a gradient computed by a kind of finite differences with h = ∆k. To show the
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size of ∆ ‖∇f(x∗)‖∞ ‖∇m(x∗)‖∞ ‖∇f(x∗)−∇m(x∗)‖2

1.000000e-03 5.074018e-08 5.074108e-08 1.371287e-10

1.000000e-04 5.074018e-08 5.074800e-08 3.609084e-10

1.000000e-05 5.074018e-08 5.081872e-08 3.245846e-10

1.000000e-06 5.074018e-08 5.235049e-08 2.117399e-09

1.000000e-07 5.074018e-08 5.651729e-08 1.609209e-08

1.000000e-08 5.074018e-08 2.161465e-07 2.334213e-07

1.000000e-09 5.074018e-08 1.052973e-06 1.493022e-06

1.000000e-10 5.074018e-08 1.806191e-04 2.455110e-04

1.000000e-11 5.074018e-08 1.385372e-03 1.803735e-03

1.000000e-12 5.074018e-08 4.677834e-03 8.378769e-03

Table 3.1: Gradient accuracy of ill-conditioned problem PALMER3C

behaviour of an interpolation model gradient for decreasing radii ∆, we did some experiments on

different test problems. Here, a complete quadratic model using p = 1
2 (n+ 1)(n+ 2) points was

computed by sampling points at the vertices of a simplex with sides along the coordinate axes

plus their mid-points around the approximate solution x∗. We examined an ill-conditioned

problem (PALMER3C, for which cond(∇2f(x∗)) = 2.689 · 1011) and also a well-conditioned

problem (ALLINITU, for which cond(∇2f(x∗)) = 2.524) from the CUTEr testing environment.

The results are depicted in Table 3.1 and Table 3.2 and we can see that the gradient accuracy

size of ∆ ‖∇f(x∗)‖∞ ‖∇m(x∗)‖∞ ‖∇f(x∗)−∇m(x∗)‖2

1.000000e-03 1.688089e-07 2.650513e-06 2.723041e-06

1.000000e-04 1.688089e-07 1.688116e-07 2.722211e-08

1.000000e-05 1.688089e-07 1.687983e-07 2.878566e-10

1.000000e-06 1.688089e-07 1.683098e-07 1.457556e-09

1.000000e-07 1.688089e-07 1.731948e-07 1.261984e-08

1.000000e-08 1.688089e-07 7.993606e-07 1.187783e-06

1.000000e-09 1.688089e-07 4.884981e-06 6.979543e-06

1.000000e-10 1.688089e-07 1.776357e-05 2.792555e-05

1.000000e-11 1.688089e-07 2.220446e-04 2.663875e-04

1.000000e-12 1.688089e-07 1.776199e-03 2.664249e-03

Table 3.2: Gradient accuracy of well-conditioned problem ALLINITU

strongly depends on the size of the radius ∆ where for very small ∆ the size of the model

gradient is increasing and getting more inaccurate with respect to the true gradient ∇f(x∗).

We therefore decided to terminate a run when the radius ∆k becomes smaller than a thresh-

old ∆min where ∆min ≈
√
ǫmachine is a reasonable choice as is used when working with finite
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differences (see for instance [49, 132]). We do not declare convergence in this case but print out

a message that we suspect convergence but that the trust region is too small to continue the

minimization process. In our numerical experiments, we observed that in all cases where the

run was terminated due to a too small trust region, a critical point was found by the algorithm.

3.4 Solving the bound-constrained trust-region subprob-

lem in ℓ2-norm

In this section, we want to introduce another contribution in this thesis which is to propose

an algorithm to solve the bound-constrained trust-region subproblem in ℓ2-norm based on the

Moré-Sorensen algorithm.

Given the vector g ∈ IRn, the symmetric matrix H ∈ IRn×n and the scalar ∆, we solve the

following problem

mins∈IRn m(x+ s) = q(s) = gT s+ 1
2s
THs (3.35)

subject to ‖s‖2 ≤ ∆,

and subject to the bounds l ≤ x+ s ≤ u.

In most trust-region algorithms which consider bound constraints, the infinity-norm trust region

is used because it fits the geometry of the domain of the problem (see e.g. [32, 60]). The reason

is that the intersection of the feasible box and a box-shaped trust region is again a box and

thus easier to handle than the intersection of a box and a ball which is not such a simple set.

Nevertheless, Euclidean norm trust-regions have also been considered in bound-constrained

trust-region methods (see e.g. [8, 48]). Whereas in [48] a conjugate-gradient method is used

to solve the QP problem, in [8], the trust-region subproblem is solved by applying a Moré-

Sorensen-type algorithm which was particularly developed to find the global solution to a QP

problem in an ℓ2-norm constraint (see Section 3.4.1 below). As one can imagine, a global

solution can not be ensured anymore when considering bound constraints as the problem gets

NP-hard due to the consideration of the bounds. But contrary to [8], where simple truncation

is used to stay feasible, in this thesis, we want to go a step further and try to find a “more

global” solution to problem (3.35). For this purpose, we developed an iterative framework

which relies on the successive application of the Moré-Sorensen algorithm. In our extension,

the bounds are handled by applying an active-set strategy where at each iteration at least one

bound is added to the set of active bounds until convergence inside the inactive bounds is

declared or the current iterate is a vertex. In the next section, we recall the technique used in

the Moré-Sorensen method before we describe our extension of the method to handle bound

constraints.
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3.4.1 The Moré-Sorensen algorithm

Pioneered and further developed by Hebden [82], Gay [62], Sorensen [131], Moré and Sorensen

[101] and reassessed by Dollar, Gould and Robinson [70], such a method obtains the solution

of the trust-region subproblem in ℓ2-norm by factorization of a sequence of parametrized linear

systems. When solving the locally constrained problem

mins∈IRn q(s) = gT s+ 1
2s
THs (3.36)

subject to ‖s‖2 ≤ ∆,

such a method seeks to find the model minimizer sM which is the point that makes the model

as small as possible in B, or a close approximation to it. The solution to (3.36) lies either

interior to the trust region, that is ‖sM‖2 < ∆, or on the boundary, ‖sM‖2 = ∆. This suggests

to solve the trust-region subproblem to find the unconstrained minimizer of the model. In the

case, the model is unbounded below or the model minimizer lies outside the trust-region, the

model minimizer must occur on the boundary. It can then be found as the global minimizer

of q(s) subject to the equality constraint ‖s‖2 = ∆. We know (e.g. [67], [34, Corollary 7.2.2])

that any global minimizer of q(s) subject to ‖s‖2 ≤ ∆ satisfies the equation

(H + λMI)sM = −g, (3.37)

where H + λMI is positive semidefinite, λM ≥ 0, and λM (‖sM‖2 − ∆) = 0. If H + λI is

positive definite then s is the only solution to (3.36). Moreover, if H is positive definite and

‖H−1g‖ < ∆ then (3.36) has a solution with ‖s‖ < ∆, in the interior. We now assume that

(3.36) has a solution on the boundary. In most cases, the nonlinear equation ‖sλ‖ = ∆ where

sλ = −(H + λI)−1g (3.38)

has a solution λ ≥ 0 in (−λ1,∞) and sλ is the solution of problem (3.36). However, in the

“hard case”, ‖sλ‖ = ∆ has no solutions in (−λ1,∞) what may happen if g is orthogonal to the

space of eigenvectors corresponding to λ1, the most negative eigenvalue of H and especially in

the case where g = 0. The difficulty in the hard case is that ‖sλ‖ < ∆ whenever H + λI is

positive definite with λ > 0. In this case, a solution to (3.36) can be obtained by solving

(H − λ1I)s = −g (3.39)

for s with ‖s‖ ≤ ∆ and by determining an eigenvector z corresponding to the eigenvalue λ1.

Then

(H − λ1I)(s+ τz) = −g (3.40)

and thus

s = −(H − λ1I)†g + τz, (3.41)

where the superscript † denotes the Moore-Penrose generalized inverse and τ is chosen so that

‖s‖ = ∆ in (3.41).
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Turning back to the case where H is not singular, the question is how to find the root

of ψ(λ) = ‖sλ‖2 − ∆ = 0. In fact, Reinsch [125, 126] and Hebden [82] observed that great

advantage could be taken of the fact that the function ‖sλ‖2 is a rational function in λ with

second order poles on a subset of the negatives of the eigenvalues of H. This means that the

function 1/ψ(λ) has zeros but no (finite) poles and the zeros occur at the negatives of the

eigenvalues of H. The better behaviour of 1/ψ(λ) may be exploited by applying Newton’s

method to the zero finding problem

φ(λ)
def
=

1
‖sλ‖2

− 1
∆

= 0, (3.42)

where (3.42) is also called the secular equation. Newton’s method should be very efficient when

applied to (3.42) as the curve of φ(λ) is nearly linear in the region of interest, that is λ > λ1.

Algorithm 3.4 The l2-norm trust-region Moré-Sorensen algorithm

Initialization: Let λL, λU , λS and ∆ > 0 be given.

Step 1: Safeguard λ by setting λ := min(max(λ, λL), λU ).

If λ ≤ λS , then λ := max(τλλU ,
√
λLλU ).

Step 2: Factor B + λI = RTR. If factorization not successful, go to Step 6.

Step 3: Solve RTRs = −g. If (λ ≤ ǫ and ‖s‖2 < ∆) or ‖s‖2 ≈ ∆, RETURN.

Step 4: Solve RTw = s.

Step 5: Let λ := λ+
(

‖s‖
‖w‖

)2(‖s‖−∆
∆

)

.

Step 6: Update the uncertainty interval: If λ ∈ (−λ1,∞) and φ(λ) < 0 then set ΛU :=

min(λU , λ), otherwise set ΛL := max(λL, λ). Set λS : max(λS , λ − ‖Rẑ‖2). Reset λL :=

max(λL, λS). Go to Step 1.

Algorithm 3.4 on page 53 shows how to apply Newton’s method to (3.42) to update λ where

we mainly use the gathered ideas from [101]. But as Newton’s method alone does not offer the

guarantee of convergence, the method must be safeguarded by finding appropriate lower and

upper bounds on λ and ensuring that they coincide in the worst case. The safeguarding depends

on the fact that ψ(λ) is convex and strictly decreasing on (−λ1,∞). This implies that φ(λ)

is concave and that Newton’s method, started from λ ∈ (−λ1,∞) with φ(λ) > 0, produces a

monotonically increasing sequence converging to the solution of φ(λ) = 0. In order to safeguard

the Newton iteration, an interval of uncertainty [λL, λU ] is constructed in which the solution

λM is known to occur and in which the current estimate λ is forced to lie. Furthermore, λS , a

lower bound on −λ1 is needed. How to compute initial bounds λL, λU and λS , and many other

details, can be found, for instance, in [34], [62] and [101].
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3.4.2 The extension of the Moré-Sorensen algorithm to handle bound-

constraints

The outline of the new bound-constrained algorithm is given as Algorithm 3.5 on page 55.

In simple terms, this iterative algorithm computes a step sMS inside the Euclidean-norm trust

region and checks if this step is violating any bounds (Step 2). If so, a step sλ with ‖sλ‖ < ‖sMS‖
and inside the bounds, but activating one or more of the violated bounds, is found (Step 3).

The corresponding step component(s) are fixed and the search space is reduced to the remaining

free variables (Step 4) as in a typical active-set method. Then, a new step sMS is computed in

the reduced space until convergence is declared in Step 2 or there are no free variables left.

The simple example in Figure 3.1 illustrates the fact that with our active-set strategy, a

better point may be found than with just truncating the computed step sMS at the bound

(as is done in [8]). We see on the left-handside of Figure 3.1, the Moré-Sorensen algorithm

finds the minimum at the trust region with the step sMS = [−2.5615,−1.5615] where the

step provides a model decrease of q(s) = −5.3866. But this step lies clearly outside of the

feasible region and is not a solution to (3.35). By truncating the step at the bound, the step

(a) MS-step and truncated step (b) Combination of two MS-steps

Figure 3.1: Minimization of a quadratic model inside the ℓ2-norm constraint and the bounds

strunc = [−0.82,−0.5] would be returned by the solver and the corresponding model decrease

would give q(s) = −0.3469 whereas on the right-handside of Figure 3.1, we see that the active-

set technique which combines multiple step-computations returns the combined step scomb =

s2 = s1 + sMS = [−2.9580,−0.5] (where sMS is computed in the one-dimensional subspace in

the second iteration of Algorithm 3.5) as a solution which provides a model decrease of q(s) =

−4.6036. And assumed, the model is a good approximation of the function, this technique

provides a better trial point which gives rise for a larger decrease in the objective function f .
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Algorithm 3.5 BC-MS: Bound-constrained l2-norm trust-region algorithm

Step 1: Initialization.

The required accuracy for a boundary solution ǫb ≥ 0, the trust-region radius ∆0, g0 = ∇m(x) and

H = ∇2m(x) are given. Define the initial set of active bounds Iact as:

Iact = {i|(u(i)− x(i) = 0 and g0(i) < 0) or (x(i)− l(i) = 0 and g0(i) > 0)}, i = 1, ..., n.

Define the set of free indices {ifree} = i /∈ Iact. Set nfree = |{ifree}|, the number of remaining free

variables. Reduce dimension gred = g0(ifree), Hred = H(ifree, ifree). Initialize k = 0 and s0 = 0.

while nfree > 0 do

Step 2: Compute a Moré-Sorensen step sMS in ∆k.

Step 2.1: Apply Algorithm 3.4 to solve the constrained problem

min{ψ(sMS) : ‖sMS‖2 ≤ ∆k},

where ψ(sMS) = gTredsMS + 1
2
sTMSHredsMS represents a local model of the objective function.

Step 2.2: If l ≤ x + sk + sMS ≤ u, then set sk+1 = sk + sMS, increment k by one and go to

Step 5.

Step 3: Compute a step sλ (with sλ < sMS) in ∆k and the bounds.

Step 3.0: Let λ ≥ 0 be given from computing the MS-step in Step 2.1. Set λL = λ and compute

an appropriate upper bound λU on λ. Determine the sets of violated upper and lower bounds

VU = {i| u(i) < x(i) + sk(i) + sMS(i)} and VL = {i| x(i) + sk(i) + sMS(i) < l(i)}.

Step 3.1: If Hred + λI not positive definite, then update λ = 1
2
(λL + λU ) and go to Step 3.9.

Step 3.2: Factorize Hred + λI = RTR.

Step 3.3: Compute the new step sλ by solving the system RTRsλ = −gred.

Step 3.4: Define the set of new active bounds:

I+
act = {i| (u(i)− ǫb ≤ x(i) + sk + sλ(i) ≤ u(i), i ∈ VU ) or (l(i) ≤ x(i) + sk + sλ(i) ≤

l(i) + ǫb, i ∈ VL)}.

If I+
act 6= ∅, then go to Step 4.

Step 3.5: Newton’s iteration on the secular equation: compute w by solving RTw = sλ.

Step 3.6: Choose an appropriate ī from the set {VU ∪ VL}. If ī ∈ VU , set ∆b(̄i) = |u(̄i)− x(̄i)−

sk (̄i)|, else set ∆b(̄i) = |l(̄i) + x(̄i) + sk (̄i)|.

Step 3.7: Update λ := λ+
(

sλ (̄i)
‖w‖

)2 (
sλ (̄i)−∆b (̄i)

∆b (̄i)

)

.

Step 3.8: If l ≤ x+ sk + sλ ≤ u, then λU = λ, else λL = λ.

Step 3.9: Check value of λ and safeguard if necessary. Go to Step 3.1.

Step 4: Update values.

Set {ifree} = {ifree} \ {I
+
act}, nfree = |{ifree}|, gk+1 = gk+Hsλ. Update gred = gk(ifree), Hred =

H(ifree, ifree). Set sk+1 = sk + sλ and ∆k+1 = ∆0 − ‖sk+1‖. Increment k by one.

end while

Step 5: Establish new iterate.

Compute x+ = x+ sk. RETURN.
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The question is now which strategy should be applied to find the step sλ with ‖sλ‖ < ‖sMS‖
which provides a point x+ sk + sλ at the boundary. Projecting the step sMS onto the feasible

set or truncating it at the boundary could be suitable options. But we decided for a somewhat

more sophisticated approach which finds a presumably better feasible step than projection and

truncation. To do so, we compute in Step 3 of Algorithm 3.5 the step sλ = (H + λI)−1g by

applying successive trial values of λ until the set I+
act is non-empty (see Step 3.4). Then sλ is

inside the feasible region and activates at least one of the before violated bounds from the set

{VU ∪ VL}.
We will now describe some steps of Algorithm 3.5 a bit more in detail. In Step 3.0, the

appropriate upper bound λU on λ is computed by the formula

λU =
‖g‖
∆vb

+ ‖H‖1 (3.43)

which has been proposed in [62] and [101] to compute the upper bound on λ for computing the

standard Moré-Sorensen step. The difference to the standard case is that we do not consider

the trust-region radius ∆ but the distance ∆vb from the point x + sk to the closest violated

bound. We chose to use the closest one to obtain a safe upper bound.

To efficiently update λ at each iteration, we have to choose an appropriate bound from the

set of violated bounds {VU∪VL} in Step 3.6. There, we have to distinct two cases where the first

one applies when the point x+ sk + sλ is outside of the feasible box and λ has to be increased

to obtain a shorter step sλ. The second case applies when the point x+ sk + sλ lies inside the

bounds but not inside the ǫb-environment of the bound. In this case, λ has to be decreased to

get a longer step sλ. This reminds the Newton’s iteration on the secular equation described

above but instead of applying the trust-region radius ∆ as a constraint, we use ∆b, the distance

between a bound (with index ī from the index set {VU ∪VL}) and the corresponding component

of the point x + sk. When x + sk + sλ lies outside of the bound, we choose the index ī which

corresponds to the largest violation of a bound of one of the step components of x + sk + sλ.

Taking the step component with the largest violation guarantees that one of the next steps sλ
will be inside the bounds. In the second case, where the step is inside the feasible box and must

be increased, the step component ī closest to its bound from the set {VU ∪ VL} is found.

Then, λ is updated in Step 3.7 using the formula

λ := λ+
(

sλ(̄i)
‖w‖

)2(
sλ(̄i)−∆b(̄i)

∆b(̄i)

)

,

where we apply a modified version of the updating formula from Step 5 of the Moré-Sorensen

algorithm (Algorithm 3.4). Here, sλ(̄i) is the step component which was chosen (in Step 3.6)

to be the one which is supposed to activate its bound and thus has to equal the distance ∆b(̄i)

to its formerly violated bound l(̄i) or u(̄i).

Note that if Algorithm 3.5 is applied to unconstrained optimization problems, it reduces to a

standard Moré-Sorensen algorithm. Algorithm BC-MS is implemented as an option to be used
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as local solver in our trust-region algorithm BCDFO+. Numerical experiments comparing

BC-MS to the standard option of a truncated conjugate gradient algorithm will be presented

in the next Section.

3.5 Numerical experiments in the CUTEr testing envi-

ronment

The described algorithm BCDFO+ has been implemented in Matlab and all numerical exper-

iments reported below were run on a single processor workstation. As the time to compute the

objective function values in derivative-free optimization typically dominates other costs of the

algorithm, our results will be presented in terms of number of function evaluations.

In what follows, BCDFO+ is compared to its predecessor BC-DFO [74] developed by

S. Gratton, Ph.L. Toint and A. Tröltzsch, to the packages NEWUOA [123] and BOBYQA [124]

developed by M.J.D. Powell, SID-PSM [46, 45] developed by A.L. Custódio and L.N. Vicente,

NOMADm [4] by M.A. Abramson, BFO [113] developed by Ph.L. Toint and M. Porcelli. Pow-

ell’s codes are trust-region algorithms using a quadratic model where the remaining degrees

of freedom in the interpolation, when using less than 1
2 (n + 1)(n + 2) points, are determined

by minimizing the change to the Hessian of the model between two consecutive iterations.

We use BOBYQA for the comparison on bound-constrained problems and NEWUOA for the

comparison on unconstrained problems because it outperforms BOBYQA from our experience

in solving unconstrained problems. SID-PSM is a pattern-search method with the poll step

guided by simplex derivatives. The search step relies on the optimization of quadratic Mini-

mum Frobenius-norm interpolation models. The package was mainly developed and tuned for

unconstrained optimization but is also able to handle bounds and general constraints. SID-

PSM has shown to be [127] one of the most competitive algorithms in the class of pattern

search methods. NOMADm is a Matlab implementation of the commercial software NOMAD.

The considered method is a mesh adaptive direct-search method which is a generalization of

the class of pattern search methods. BFO (which stands for Brute-Force Optimizer) is an-

other implementation of a mesh adaptive direct-search method based on elementary refining

grid search. It is able to handle bound-constraints and problems containing continuous and/or

discrete variables.

3.5.1 Default parameters

In BCDFO+ as well as in BC-DFO, we fixed the trust-region parameters to η1 = 0.0001, γ1 =

0.01, γ2 = 0.5 and γ4 = 0.1. The initial trust-region radius ∆0 is set to 1, as suggested in

Section 17.2 of [34]. We apply a maximum trust-region radius of ∆max = 10000 and a minimum

trust-region radius of ∆min = 10−10. The parameter for switching to the non-decreasing trust-

region strategy when replacing points is set to ∆switch = 10−7. To build a sufficiently well-

poised set in the modified greedy algorithm, we set the threshold κth = 0.005. After appending
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a point to an incomplete interpolation set, we check the condition of the shifted and scaled

system matrix M̂ to be smaller than κillcond = 1015. To divide the interpolation set into far

and close points when incorporating the new trial point, we set β = 1. When replacing a

close interpolation point, we use the parameter ΛC = 1.2 to ensure an improvement of the

interpolation set geometry. For declaring convergence, the desired accuracy on the projected

model gradient norm and the tolerated error on the gradient is set to ǫ = 10−5 while parameter

κeg is set to 0.1. We set ǫ0 = ǫ and µ = 0 to skip the loop in the criticality step. The only

difference in parametrisation of the two algorithms is that BCDFO+ uses γ3 = 2 and in BC-

DFO the trust-region parameter is fixed to γ3 = 1.5. The same parameters of BC-DFO were

used to obtain the results published in [74].

We always use the default parameters for the codes NEWUOA, BOBYQA, SID-PSM, NO-

MADm and BFO. We run BOBYQA with a number of m = 2n+ 1 interpolation points using

the Frobenius norm approach and NEWUOA with a full quadratic model, as these two options

give the best results for these solvers, out of the choice m ∈ {n+ 1, 2n+ 1, 1
2 (n+ 1)(n+ 2)}.

3.5.2 Test problems

The CUTEr testing environment [69] is used in our experiments. To compare BCDFO+ to

the other software packages on unconstrained problems, we chose to use the test problems from

the CUTEr test collection which were selected in [58]. Two problems1 were excluded from the

test set because they contain fixed variables and NEWUOA does not provide facilities to handle

such cases and one listed problem2 contains bounds. After running all problems in this test

set, three problems3 were removed because the solvers converged to different solutions, making

a comparison meaningless. A total of 54 unconstrained problems were thus considered. The

distribution of the dimension n among the 54 problems is shown in Table 3.3. We also want to

n 2 3 4 5 6 8 10 11 15

nbr of problems 17 7 5 1 2 3 13 1 5

Table 3.3: Dimensions of considered unconstrained problems

give some information about the structure of the true problem Hessians in the considered test

set (see Table 3.4). As interpolation-based method attempt to approximate this information,

it might be helpful to conclude why some methods or options perform better than others on

specific problems.

Considering bound-constrained problems, we took all bound-constrained problems provided

by the CUTEr collection with a size of at most 30 variables. Problems with more variables can

be successfully solved with the considered algorithm. However, as in [58, 45], we restricted this

1BIGGS3, BOX2
2CHEBYQAD
3ENGVAL2, HATFLDD, HATFLDE
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Hessian structure problem dimension nbr. of problems

sparse 2, 10, 15 6

diagonal 2, 3, 10 4

arrow-head 15 1

tridiagonal 3, 5, 10 6

5-diagonal 10 1

dense 2, 3 21

dense 4, 6, 8, 10, 11 16

Table 3.4: Hessian structure of considered unconstrained problems

problem size to make the performance comparison on a large number of test cases possible with

our computing facilities.

We could not consider problems containing fixed variables because not all solvers do provide

the required facilities. Furthermore, in order to avoid too many problems of the same kind,

we chose randomly four of the 26 bound-constrained PALMER problems provided in CUTEr.

After running all solvers considered in this comparison on these 53 remaining problems, thirteen

of them4 had to be excluded from our comparison because the considered algorithms didn’t

converge to the same solution.

This is to explain with the existence of multiple minima, but is also due to the fact that many

solvers usually only check first-order optimality. Also BC-DFO and BCDFO+ sometimes check

convergence in the full-space without taking second order information into account (after having

converged inside a subspace). This creates the possibility to declare convergence at a saddle

point which is a minimum in the explored subspace. Such a situation can be circumvented (at

some cost) by requiring that a full quadratic model is built before declaring termination (which

is an option in our implementation).

The final test set of bound-constrained problems contains 40 problems. The distribution of

the dimension n among these problems is shown in Table 3.5.

n 1 2 3 4 5 6 8 9 10 12 18 19 25 30

nbr of problems 1 10 2 7 1 2 1 1 8 1 1 1 3 1

Table 3.5: Dimensions of considered bound-constrained problems

The detailed list of all considered bound- and unconstrained problems and their character-

istics is provided in Table A.2 and Table A.1 in the Appendix of this thesis.

4EG1, EXPLIN, EXPLIN2, EXPQUAD, HART6, HS2, KOEBHELB, MAXLIKA, PALMER3E,

PROBPENL, S368, SINEALI, WEEDS
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3.5.3 A common stopping criterion

As BOBYQA, NEWUOA, SID-PSM, NOMADm and BFO use different stopping criteria from

the one of BC-DFO and BCDFO+, an independent criterion needs to be applied for the

comparison. For this reason, we use the optimal objective function value computed by the

TRON package [96] (using first and second derivatives) as a reference for our bound-constrained

experiments. In the experiments with unconstrained problems we take the optimal objective

function value computed by the KNITRO package [23] used in the paper of Fasano, Morales

and Nocedal [58]. We take the number of function evaluations needed until a prescribed number

of correct significant figures in the objective value was attained.

To provide a fair comparison, we followed the testing framework proposed by Dolan, Moré,

and Munson in [52]. In this framework, the solvers are run first with their own default stopping

criterion. If, for a given problem, convergence of one of the solvers to the common stopping

criterion can’t be declared with this configuration, the stopping criterion for this solver is

strenghtened and the run repeated using the more stringent criterion. For a few test problems,

some solvers were run several times while decreasing its own stopping criterion after each run,

trying to attain the commonly required accuracy in the objective function value. This procedure

was successful for a subset of the problems, for others the limit of function evaluations (15000)

was reached. No time limitation was set.

3.5.4 Performance profiles

We now report our results using performance profiles (see [51]). Given a test set P containing

np problems and ns solvers, these profiles provide a way to graphically present the comparison

of quantities tp,s (such as required computing time or number of function evaluations to solve

problem p by solver s) obtained for each problem and each solver. For this, the performance

ratio for a problem p and a solver s is defined as

rp,s :=
tp,s

min{tp,s : 1 ≤ s ≤ ns}
. (3.44)

If solver s for problem p leads to a failure rp,s := 2 ·max{tp,s : 1 ≤ s ≤ ns} is defined. Then,

ρs(τ) :=
1
np

size{p ∈ P : rp,s ≤ τ} (3.45)

is the fraction of the test problems which were solved by solver s within a factor τ ≥ 1 of

the performance obtained by the best solver. The function ρs is the (cumulative) distribution

function for the performance ratio. The performance plots present ρs for each solver s as a

function of τ . In this work, a logarithmic scale is used for the τ -axis. That means,

ρs(τ) :=
1
np

size{p ∈ P : log2(rp,s) ≤ τ} (3.46)

is plotted. In our work, the presented performance profiles compare the number of function

evaluations needed by each solver to achieve the desired accuracy in the objective function

value. We use four different levels of accuracy: 2, 4, 6 and 8 significant figures in f(x∗).
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3.5.5 Comparison of different model types

In this section, we compare different model options implemented in algorithm BCDFO+,

namely, sub-basis model (see Section 2.2.2), minimum ℓ2-norm model (see Section 2.2.3), min-

imum Frobenius-norm model (see Section 2.2.4) and regression model (see Section 2.2.7). The

experiments are performed using default parameter values and the standard truncated CG al-

gorithm to solve the trust-region subproblems. Applying the algorithm BC-MS as local solver

gave similar results. Regarding Figure 3.2, we can see a clear advantage in efficiency for the

Figure 3.2: Comparison of different models in BCDFO+ on unconstrained CUTEr problems

sub-basis model. Applying this option to the algorithm solves 46% of the test problems faster

than the other model-options. The two minimum norm models perform equally well what

means that it makes not a big difference whether using a minimum ℓ2 norm or a minimum

Frobenius-norm approach when the interpolation set is incomplete. In particular, the version

with the minimum Frobenius-norm model solves 35% and the version with the minimum ℓ2-

norm model solves 33% of the test problems faster than the other versions. The use of more than
1
2 (n+ 1)(n+ 2) points and building a least-squares regression model seems not an appropriate

idea in this context. This version solves only 22% of the problems fastest. Regarding robust-

ness, all model options perform equally whereas none of them was able to solve the problem

PALMER1C to the required accuracy in the given budget of function evaluations.

Looking at these results, one could suppose that the test set might have been in favour of

using the sub-basis model as it has an advantage when approximating a banded Hessian matrix.

But in fact, this is not the case. We have stated the Hessian structure of the problems in the
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test set in Section 3.5.2 above and see that there is a balance between sparse problems and

dense problems with dimension higher than 3 (we separated the dense problems of size two and

three, as the approximation technique shouldn’t play an important role in these cases).

The reason for the regression model to not perform as well as the interpolation models may

come from our choice of pmax = (n+1)(n+2), the maximum number of interpolation conditions

considered to solve the overdetermined system. At the moment, no special care is taken in our

implementation to ensure a certain “locality” of the model and we believe that there is space

for improvement. In other implementations, the use of 80% close points and 20% of points

further away from the current iterate has been proposed [45]. Another idea could be to adapt

the number of considered points dependend on their distance to the current iterate in relation

to the size of the current trust-region radius.

From these experiments, we conclude that it would be best to perform the comparisons to

other software packages by using the sub-basis model option in our algorithm. The test results

can be found in Table B.1 in the Appendix.

3.5.6 Comparison of local solver options

In this section, we want to compare the two local solvers implemented in our algorithm BCDFO+,

which are the new algorithm BC-MS, presented as Algorithm 3.5 in Section 3.4 and the stan-

dard truncated conjugate gradient algorithm described in Section 3.1.4. BC-MS operates in

an ℓ2-norm trust region whereas if TCG is applied, the outer trust-region algorithm is working

with an infinity-norm trust region. Default parameters and the sub-basis model are used in

Figure 3.3: Comparison of local solvers in BCDFO+ on unconstrained CUTEr problems
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Figure 3.4: Comparison of local solvers in BCDFO+ on bound-constrained CUTEr problems

this comparison. Regarding the results in Figure 3.3 and Figure 3.4, we can see that the CG

option performs better than applying BC-MS. In the unconstrained case, the MS option solves

exactly 50% of the test problems faster than CG but the CG option solves 59% of the problems

faster. In terms of robustness, 95% of the problems are managed to be solved apllying the

MS local solver and 98% if applying the CG option. The robustness is the same for bound-

constrained problems, but in terms of number of function evaluations, the distance between

the two solver options is slightly smaller. Applying BC-MS, 55% of the test set is solved faster

against 62% when applying the conjugate gradient option. The results of this testing can be

found in Table B.2 for the unconstrained and in Table B.3 for the bound-constrained test cases.

3.5.7 Unconstrained comparisons with NEWUOA

First, we want to report results obtained with BC-DFO, a bound-constrained implementation

of Algorithm 2.3, the predecessor of BCDFO+. We want to recall here that the difference of

the two softwares is the different handling of the trust-region where BC-DFO is using a typical

DFO trust-region management, shrinking the trust-region only when the quality of the model

is assured, and BCDFO+ uses a more standard one which is shrinking the trust-region at

every unsuccessful iteration until a threshold ∆min is reached. Details about the particular

implementation and also the here stated numerical results of BC-DFO can be found in [74].

Let’s now turn to the numerical results obtained by comparing the solver BC-DFO to

NEWUOA on our set of 53 unconstrained test problems from the CUTEr library. Figures 3.5-

3.8 show that BC-DFO appears to be more robust but less efficient than NEWUOA,
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Figure 3.5: Comparison of BC-DFO and NEWUOA on unconstrained CUTEr problems

(2 digits of accuracy required in final function value)

Figure 3.6: Comparison of BC-DFO and NEWUOA on unconstrained CUTEr problems

(4 digits of accuracy required in final function value)
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Figure 3.7: Comparison of BC-DFO and NEWUOA on unconstrained CUTEr problems

(6 digits of accuracy required in final function value)

Figure 3.8: Comparison of BC-DFO and NEWUOA on unconstrained CUTEr problems

(8 digits of accuracy required in final function value)
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irrespective of the accuracy required. For instance, NEWUOA solves 52% of the problems faster

and BC-DFO solves 46% of the test cases faster, when 6 digits of accuracy are requested. The

gap is slightly bigger when 2, 4 or 8 significant digits in f are required. BC-DFO is able to

solve all test problems up to 4 significant accurate digits required in f where it is not able to

solve the problem PALMER1C to a more accurate level. NEWUOA has some difficulties to

solve some of the PALMER problems in the given limit of function evaluations and it is not

able to solve the highly ill-conditioned problem NASTY.

Considering in addition also our new algorithm BCDFO+, we can see in Figures 3.9-3.12

that BCDFO+ does perform considerably better than BC-FO and NEWUOA, irrespective

of the accuracy required. For instance, when 6 correct digits in f are requested, BCDFO+

solves 76% of the test cases faster than the other two, NEWUOA solves 24% of the problems

fastest and BC-DFO solves 20% of the test cases fastest. To explain why the percentages do

not sum up to 100%, we should note that equal results for two or more solvers count for each

of them. Regarding robustness, BCDFO+ has the same difficulty as BC-DFO to solve the

problem PALMER1C in the limit of 15000 function evaluations to a highly accurate level.

Table B.4 in the appendix contains the detailed results for each of the three solvers for the

various accuracy levels.

Figure 3.9: Comparison of BCDFO+, BC-DFO and NEWUOA on unconstrained CUTEr prob-

lems (2 digits of accuracy required in final function value)
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Figure 3.10: Comparison of BCDFO+, BC-DFO and NEWUOA on unconstrained CUTEr

problems (4 digits of accuracy required in final function value)

Figure 3.11: Comparison of BCDFO+, BC-DFO and NEWUOA on unconstrained CUTEr

problems (6 digits of accuracy required in final function value)
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Figure 3.12: Comparison of BCDFO+, BC-DFO and NEWUOA on unconstrained CUTEr

problems (8 digits of accuracy required in final function value)

3.5.8 Bound-constrained comparisons with BOBYQA

Again, we first want to report the results obtained with BC-DFO, the bound-constrained ex-

tension to Algorithm 2.3 and described in [74], when compared to BOBYQA, the bound-

constrained extension to NEWUOA, developed by Powell.

The profiles reported in Figures 3.13-3.16 show that BC-DFO compares well with BOBYQA

in the bound-constrained experiments. BOBYQA manages to solve 38 of the 40 test problems

where it couldn’t solve the problems 3PK and PALMER1A in 15000 function evaluations to a

more accurate level. BC-DFO fails to solve the test problem SPECAN in all four cases and the

problem HS25 to a highly accurate level.

The overall conclusion is that both solvers are equally robust, but that BC-DFO’s dominance

in efficiency increases with the desired level of accuracy. For the case where 2 correct significant

figures are required (in Figure 3.13), BC-DFO solves 58% of the test cases faster than BOBYQA

and BOBYQA solves 45% of the problems faster. For 8 correct significant figures, BC-DFO

solves 67.5% of the test cases faster, and BOBYQA solves 35% of the problems faster. The

performance of both codes does not vary significantly between requiring 4 or 6 correct significant

figures.

In Figures 3.17-3.20, BCDFO+ is considered in the comparison in addition to its prede-

cessor BC-DFO and NEWUOA and it again outperforms the two other solvers. In terms of

robustness, the three solvers perform equally good. BCDFO+ is unable to solve the prob-
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Figure 3.13: Comparison of BC-DFO and BOBYQA on bound-constrained CUTEr problems

(2 digits of accuracy required in final function value)

Figure 3.14: Comparison of BC-DFO and BOBYQA on bound-constrained CUTEr problems

(4 digits of accuracy required in final function value)
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Figure 3.15: Comparison of BC-DFO and BOBYQA on bound-constrained CUTEr problems

(6 digits of accuracy required in final function value)

Figure 3.16: Comparison of BC-DFO and BOBYQA on bound-constrained CUTEr problems

(8 digits of accuracy required in final function value)
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Figure 3.17: Comparison of BCDFO+, BC-DFO and BOBYQA on bound-constrained CUTEr

problems (2 digits of accuracy required in final function value)

Figure 3.18: Comparison of BCDFO+, BC-DFO and BOBYQA on bound-constrained CUTEr

problems (4 digits of accuracy required in final function value)
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Figure 3.19: Comparison of BCDFO+, BC-DFO and BOBYQA on bound-constrained CUTEr

problems (6 digits of accuracy required in final function value)

Figure 3.20: Comparison of BCDFO+, BC-DFO and BOBYQA on bound-constrained CUTEr

problems (8 digits of accuracy required in final function value)
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lem 3PK in the limit of 15000 function evaluations but it solves the problem SPECAN instead.

For high required accuracy, in Figure 3.20, BCDFO+ solves 72.5% of the test problems

faster than the other two. BC-DFO solves 25% of the test cases faster and BOBYQA is the

fastest in 15% of the cases. For low required accuracy (in Figure 3.17), BOBYQA could gain

some percentages and solves 22.5% of the test problems faster than the other two solvers.

BC-DFO is still at 25% and BCDFO+ solves the majority of 67.5% of the test cases fastest.

Table B.5 in the appendix contains the detailed results on the bound-constrained test set

for the three solvers and the four accuracy levels.

3.5.9 Unconstrained comparisons with direct-search solvers

In this section, we want to compare our solvers to a selection of direct-search solvers. First, we

put BC-DFO, NEWUOA and SID-PSM in one picture to see how those three solvers compare

for unconstrained problems. As Figure 3.21-3.24 show, NEWUOA performs better than BC-

DFO and SID-PSM for low accuracy whereas BC-DFO and NEWUOA are performing equally

well for higher required accuracy where SID-PSM loses a bit over the other two solvers. For

instance, BC-DFO solves 37% of the problems fastest, NEWUOA solves 33.5% of the test cases

fastest and SID-PSM solves 28% of the problems faster than the two others, when 6 digits

of accuracy are requested. Further, BC-DFO appears to be more robust, irrespective of the

accuracy required. Whereas, as we have seen above, the robustness of BC-DFO and BOBYQA

Figure 3.21: Comparison BC-DFO, NEWUOA and SID-PSM on unconstrained CUTEr prob-

lems (2 digits of accuracy required in final function value)
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Figure 3.22: Comparison BC-DFO, NEWUOA and SID-PSM on unconstrained CUTEr prob-

lems (4 digits of accuracy required in final function value)

Figure 3.23: Comparison BC-DFO, NEWUOA and SID-PSM on unconstrained CUTEr prob-

lems (6 digits of accuracy required in final function value)
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Figure 3.24: Comparison BC-DFO, NEWUOA and SID-PSM on unconstrained CUTEr prob-

lems (8 digits of accuracy required in final function value)

Figure 3.25: Comparison BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on unconstrained

CUTEr problems (2 digits of accuracy required in final function value)
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Figure 3.26: Comparison BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on unconstrained

CUTEr problems (4 digits of accuracy required in final function value)

Figure 3.27: Comparison BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on unconstrained

CUTEr problems (6 digits of accuracy required in final function value)
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Figure 3.28: Comparison BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on unconstrained

CUTEr problems (8 digits of accuracy required in final function value)

are relatively stable, the robustness of SID-PSM is slightly decreasing when higher accuracy is

required. However, one could say that the three codes are equally robust as all three algorithms

solve more than 90% of the test problems up to 6 required digits in f .

To extend our comparison, we are also considering the two pure direct-search solvers NO-

MADm and BFO in our comparison on the set of unconstrained test problems. Furthermore,

we add also our new solver BCDFO+ to the picture. The results are depicted in Figures 3.25-

3.28. We see that in terms of efficiency, pure direct-search solvers have no big influence on the

comparison whereas BCDFO+ is outperforming the other solvers regardless of the accuracy

required (as seen in Figures 3.21-3.24). But we need to mention that NOMADm manages to

solve 5% of the test cases fastest for low required accuracy and 2% when higher accuracy is

required. In terms of robustness, NOMADm can evolve from 35% solved test problems for

8 required correct digits in f to 82% solved problems for 2 required correct digits. BFO is

amazingly stable and solves in any case more than 80% of the test problems and even 92% if

low accuracy is required.

The detailed results for the three direct-search solvers on the unconstrained CUTEr test set

can be found in Table B.6 in the appendix.

3.5.10 Bound-constrained comparisons with direct-search solvers

In this section, we want to compare our solvers to the mentioned direct-search solvers but on a

set of bound-constrained problems from the CUTEr library. We start by comparing BC-DFO
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Figure 3.29: Comparison BC-DFO, NEWUOA and SID-PSM on bound-constrained CUTEr

problems (2 digits of accuracy required in final function value)

Figure 3.30: Comparison BC-DFO, NEWUOA and SID-PSM on bound-constrained CUTEr

problems (4 digits of accuracy required in final function value)
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Figure 3.31: Comparison BC-DFO, NEWUOA and SID-PSM on bound-constrained CUTEr

problems (6 digits of accuracy required in final function value)

Figure 3.32: Comparison BC-DFO, NEWUOA and SID-PSM on bound-constrained CUTEr

problems (8 digits of accuracy required in final function value)
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to BOBYQA, the bound-constrained extension to NEWUOA, and to SID-PSM, the direct-

search method enhanced by the use of polynomial models. The profiles reported in Figures 3.29-

3.32 show that BC-DFO compares well with the two other codes in the bound-constrained ex-

periments. SID-PSM solves 37 problems for low accuracy and 35 problems when high accuracy

was required. In fact, our intuition is that all three solvers were able to solve the whole set of

test problems because when the solvers were stopped due to a maximum number of function

evaluaions, they were still progressing.

The overall conclusion is that BC-DFO is a little more robust and SID-PSM is a little

less robust than BOBYQA, and that BC-DFO’s dominance increases with the desired level of

accuracy. For the case where 2 correct significant figures are required, BC-DFO solves 47.5%

of the test cases faster than the other two, BOBYQA solves 35% of the problems fastest and

SID-PSM has 22.5% of wins. For 8 correct significant figures, BC-DFO solves 52.5% of the test

cases faster, BOBYQA is fastest for 30% of the problems and SID-PSM solves 22.5% of the

problems faster than the other two solvers. The performance of the three codes is the same

between requiring 4 or 6 correct significant figures.

To do a complete comparison, we are also comparing BCDFO+, BC-DFO, SID-PSM to

the two pure direct-search solvers NOMADm and BFO on our set of bound-constrained test

problems. The results, depicted in Figures 3.33-3.36, follow our expectations. In particular, for

low required accuracy, BCDFO+ solves 67.5% of the test cases faster than the other solvers,

BC-DFO solves 25% fastest, SID-PSM solves 17.5% of the problems fastest, NOMADm solves

Figure 3.33: Comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on bound-

constrained CUTEr problems (2 digits of accuracy required in final function value)
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Figure 3.34: Comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on bound-

constrained CUTEr problems (4 digits of accuracy required in final function value)

Figure 3.35: Comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on bound-

constrained CUTEr problems (6 digits of accuracy required in final function value)
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Figure 3.36: Comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm, BFO on bound-

constrained CUTEr problems (8 digits of accuracy required in final function value)

7.5% of the test cases faster than the other four solvers. This does not change much when

high accuracy is required. BCDFO+ and BC-DFO win a bit more with 72.5% and 27.5%

respectively, and SID-PSM looses a bit and is the fastest solver in 12.5% of the test problems.

NOMADm is never the fastest here. Regarding robustness, SID-PSM and BFO are equally

robust with 88% and 90% of solved test problems for 8 required digits in f and 92.5% and

95% for 2 required correct digits in f , respectively. NOMADm manages to improve robustness

the less accuracy is required. Explicitly, from 30% of the problems for high to 72.5% for low

required accuracy.

Table B.7 in the appendix contains the detailed results for each of the three direct-search

methods and each of the bound-constrained problems for the various accuracy levels.



Chapter 4

Industrial application

incorporating noise

Aerospace industry is increasingly relying on advanced numerical flow simulation tools in the

early aircraft design phase. Today’s flow solvers based on the solution of the Euler and Navier-

Stokes equations are able to predict aerodynamic behaviour of aircraft components under dif-

ferent flow conditions quite well. Nevertheless, the simulation of complex phenomena invariably

requires the approximation of a function f∞ by a function f that can be evaluated with a finite

number of elementary operations, so that truncation errors ǫtrunc = f∞ − f come into play

when attempting to minimize f∞. Furthermore, we are faced with the computational noise

generated by evaluating f in finite precision.

The development of suitable algorithms for dealing with noisy optimization problems has

always been a challenging task [7, 19, 25, 47]. Some works (for instance [135, 136]) have in

particular studied the impact of computational noise on simulation-based optimization problems

where the parameters depend on the solution of a differential equation. Furthermore, several

comparisons have been made of derivative-free algorithms on noisy optimization problems that

arise in applications (e.g. in [55, 59, 108]).

In this thesis, we want to contribute to different aspects of studies concerning noise in

general and a noisy aerodynamic application in particular. In Section 4.2, we demonstrate

how the amplitude of the noise in a real-life application can be estimated using a tool which

was originally developed to calculate higher order derivatives and to estimate round-off. In

Section 4.3, our algorithm BCDFO+, presented in the previous section, is adapted to solve

noisy optimization problems from the CUTEr library and an aerodynamic shape-design problem

in Section 4.4. In Section 4.5, we present a theoretical study on the allowed noise on a gradient

which is used in a gradient-based line search method. In Section 4.6, the derivative-free method

SNOBFIT, developed by Huyer and Neumaier [86, 87], is presented in the context of global

optimization and we show the performance gain by enhancing this method with inexact gradient

information. But first, we want to give a short description of the optimization tool OPTaliA

which is used at Airbus to perform aerodynamic shape optimization. It will be used throughout

this chapter to test our new algorithm, variations of it and other algorithms on a real-life

application.

83
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4.1 Presentation of the optimization suite OPTaliA

To perform aerodynamic shape optimization, Airbus uses the internally developed optimization

suite OPTaliA. We can find a detailed description of this optimization suite in [90, 91, 92]

which we quote here in parts. This high-fidelity optimization suite can improve aerodynamic

performance of an aircraft by changes in the external shape. No reduced model is employed

between the aerodynamic solver and the optimizer. The performed shape deformations are

usually of small size to limit the impact on the other disciplines.

4.1.1 Optimization framework

A general optimization framework, represented in Figure 4.1, has been set up in OPTaliA. In

order to be able to use various types of optimizers (gradient-based, model-based DFO, genetic,

response surface) inside OPTaliA, it is organized as a black-box optimization framework. In

Figure 4.1: Optimization and evaluation framework in OPTaliA

particular, the optimization process can be interpreted as a subsequent alternation of two main

tasks: function evaluation and optimization. Within the evaluator, the function value and if
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needed the gradient value corresponding to the parametrized shape are computed. Once the

shape has been evaluated, the optimizer proposes a new shape by using the new information

on functions (and possibly gradients) and the next iteration is performed. In addition to

the internal stopping criteria of the optimizer, the termination can be forced at the OPTaliA

level if the number of function evaluations exceeds a given threshold maxeval. OPTaliA is

able to perform function evaluations in parallel by running multiple jobs on high performance

computers. One of the challenges in aerodynamic shape optimization is to manage running

efficiently the evaluator and the optimizer automatically in batch mode. More particularly, the

evaluator itself is a complex process requiring large computational resources.

4.1.2 Evaluator for CFD functions

4.1.2.1 Shape parameterization and mesh deformation

The shape parameterization consists of applying Hicks-Henne sinusoidal bumps [83] on a surface

skin of an initially block-structured mesh. Each bump is defined by three shape variables

(A, p, β) as in the following formulation

HH(x) = A ∗ sinβ(πx
ln 0.5
ln p ),

with x ∈ [0; 1], A ∈ IR, β ∈ [2, 10], p ∈]0; 1[,

where A denotes the amplitude, p the position and β the width expansion of a Hicks-Henne

bump. In Figure 4.2 from [90], we can see the evolution of the shape of such a bump depending

on the parameters β and p when varied inside their parameter bounds, respectively. This type

(a) Variation of parameter β (b) Variation of parameter p

Figure 4.2: Illustration of the parameters β and p

of deformation was initially developed by Hicks and Henne [83] for numerical optimization
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of airfoils. When applied on a bidimensional surface corresponding to a three dimensional

shape, a linear propagation of the bump is done in the second direction using fixed propagation

distances. In Figure 4.3, we have the illustration of the deformation vectors of a wing profile

Figure 4.3: Two-dimensional Hicks-Henne sinusoidal bump

by application of a two-dimensional Hicks-Henne sinusoidal bump where the amplitude of the

bump is purposedly exaggerated for illustrative reasons.

4.1.2.2 Flow simulation

Flow analyses were performed with the elsA [24] software developed by ONERA - the French

Aerospace Lab - and CERFACS. The flow is simulated by solving the Reynolds Averaged Navier-

Stokes (RANS) equations associated with the one-equation Spalart-Allmaras turbulence model

on block structured meshes using a cell-centered finite volume approach. The second order

Roe’s upwind scheme with the Van Albada limiter is used as spatial scheme coupled with an

implicit time resolution. Diffusive terms are discretized with a second order centered scheme.

Multigrid and local time stepping techniques are used to increase the convergence rate. An

overview of various results obtained with elsA is given by Cambier and Veuillot [24].

One of the main requirement from designers is to obtain the same results when using the

CFD solver inside or outside the automatic optimization tool. As hysterisis phenomena are

common when dealing with transonic flows, the same initial flow condition (uniform flow) was

used for all the simulations performed during the optimization. Therefore, the computational

cost of CFD simulations cannot be reduced by using a restart strategy using the flow solution

corresponding to the previous shape. Hence, the computational cost of the optimization grows

linearly with the number of function evaluations.

The sensitivity of the objective function with respect to the design variables is computed

using the discrete adjoint method [88]. For an explicit presentation of the adjoint system solved

within elsA and an evaluation of the accuracy of the sensitivities, the reader is referred to Peter

et al. [112] and Meaux et al. [98]. This method enables to compute the sensitivity of a single

function with respect to n design variables at the cost of one linear system resolution (same

size as the linearized RANS system). The gradient vector is computed using approximatively

the same computational time (factor ≈ 1.5) as one mean-flow simulation. For typical aero-

dynamical problems considering tens or hundreds of design variables and a few functions (lift,
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drag), this is a considerable improvement over the classical method of forward finite differences

requiring as many flow solutions as design variables.

4.1.2.3 Aerodynamic function computation

The objective function chosen is the far-field pressure drag,

f = CDP = CDV P + CDW + CDI (4.1)

where CDV P , CDW and CDI denote the viscous pressure drag, the wave drag and the induced

drag, respectively. The friction drag, CDF , is excluded from the objective function as it does

not change significantly with the amplitude of deformation considered. The wetted surface is

almost unaffected by the shape deformation. The post-processing code used is ffd41 [50] and is

also developed by ONERA. It implements a far-field drag break-down method. The two main

advantages of this approach are its ability to decompose pressure drag into physical components

(wave drag, induced drag, viscous pressure drag) and its accuracy through a filtering of non-

physical drag (spurious drag).

4.1.3 Interface Matlab – OPTaliA

To be able to test our algorithm in a black-box-type manner on real CFD test problems pro-

vided by Airbus, we had to interface our optimization software packages as they are currently

developed in Matlab. The optimization suite OPTaliA at Airbus provides the possibility to

simply call for a function or gradient evaluation of a specific problem. To use this possibility we

had to adapt the Matlab routine [f,g]=get_fg(x) which is called by an optimizer to obtain

function and gradient values. An evaluation in OPTaliA either comprises a function evaluation

or a function and gradient evaluation. So, depending on the number of output-arguments of

get_fg(x), one or two is possible, the required calculations are done in OPTaliA. Each call to

OPTaliA in the Matlab routine get_fg(x) is done in five steps

1. Write the x-vector to a file

2. Open connection to frontal node via ssh and calling a shell-script:

(a) Source the bash-shell

(b) Change directory to specific problem

(c) Call OPTaliA to evaluate either f or f and g at point x

3. Exit connection to frontal node

4. Wait

5. Read either f -value or f - and g-values from a file

As the optimization algorithm in Matlab is running on a calculation node of the server and

OPTaliA is to call from the frontal node of the server, in Step 2 of the calling routine, a

shell-script is executed which then calls OPTaliA.
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4.2 Estimating noise by Hamming’s difference table

Coming back to the target of optimizing a noisy function f , a very important fact is to have

an idea on the amplitude of the noise of the function to minimize. Dennis and Schnabel in [49]

use a parameter fdigits which specifies the number of reliable digits returned by the objective

function. It is used in the form 10−fdigits to specify the relative noise in f . They suggest, if the

objective function f is suspected to be noisy but the approximate value of fdigits is unknown,

that it should be estimated by the routine of Hamming [81], which is also given in the book by

Gill, Murray and Wright [65]. We are going to explain this technique now.

4.2.1 The idea

The difference table was originally developed to calculate higher order derivatives by finite

differences. Finite difference formula for derivatives of arbitrary order are defined from high-

order differences of f . In [81], the simplest formula for a derivative of order k is considered.

Here, the forward-difference operator ∆ is defined by the relation

∆f(x) = f(x+ h)− f(x), (4.2)

where the division by h, as for traditional finite difference formula, is suppressed. Higher-order

forward-difference operators ∆k can be defined applying the recurrence formula

∆kf(x) = ∆(∆k−1f(x)) = ∆k−1f(x+ h)−∆k−1f(x). (4.3)

If we defined fj = f(x + jh), the numbers ∆kfj can be arranged in a difference table as is

depicted in Table 4.1.

fj ∆fj ∆2fj ∆3fj ..

f0

∆f0

f1 ∆2f0

∆f1 ∆3f0

f2 ∆2f1 ..

∆f2 ∆3f1

f3 ∆2f2 :

∆f3 :

f4 :

:

Table 4.1: Difference table by Hamming

Each of the differences is computed by substraction of two entries in the previous column.

It can be shown that ∆kf = hkf (k)(x) + O(hk+1) [65]. Given a difference table, constructed
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from the function values f(x+ jh), j = 0, 1, ..., k, we obtain

f (k)(x) ≈ 1
hk

∆kf0. (4.4)

To get an accuracy estimation of a function, we have to evaluate it at a set of values {xi}
(about twenty values to be able to construct the 10-th finite differences), where the point xi is

defined by xi = x+ ih, and |h| is small. We assume that each computed value f̃i is of the form

f̃i = f(xi) + δi ≡ f(xi) + θiǫA, (4.5)

where |θi| ≤ 1 and ǫA is called the absolute precision or absolute noise level. We can obtain

a difference table as described above, by considering the set of values f̃i as the first column

of a table, and defining each successive column as the difference of the values in the previous

column. By the linearity of the difference operator ∆, after k differences we will have

∆kf̃i = ∆kfi + ∆kδi, (4.6)

where we know from above that ∆kf = hkf (k) + O(hk+1). Under mild conditions on f , the

value |hkf (k)| will become very small for moderate values of k if h is small enough. Therefore,

the higher differences of the computed values should reflect almost entirely the differences of

the errors δi.

Under the assumptions on the distribution of {θi} as random variables that the errors

are uncorrelated and have the same variance, the later differences ∆kf̃i tend to be similar in

magnitude and to alternate in sign. In practice, this desired pattern of behaviour typically

begins when k is 4 or 5, and the largest value of k that would usually be required is 10 [65].

The formula that has been suggested in [81] for the estimate of ǫA from the k-th column is

ǫ
(k)
A ∼

maxi |∆kf̃i|
βk

(4.7)

where the division by

βk =

√

(2k)!
(k!)2

.

is performed to remove the round-off error coming from calculating the k-th differences.

4.2.2 Case study of an aerodynamic function and gradient

We shall consider applying the technique described in this section to a specific numerical ex-

ample and, of course, we are most interested in the noise level of the objective function of our

aerodynamic application provided by Airbus. In this thesis, all our experiments on this appli-

cation are carried out on OPTaliA version 3.5. The noise may have already been significantly

reduced in a more recent version of the code.

We consider a one-dimensional objective function, called CDP, describing the evolution of

the pressure drag when changing only the position of one bump close to the value x = 0.8. The



A. Tröltzsch – Derivative-free model-based bound-constrained optimization 90

(a) Stepsize h = 10−4 (b) Stepsize h = 10−5

(c) Stepsize h = 10−6

Figure 4.4: Navier Stokes pressure drag objective function

function was sampled three times at 100 values beginning from x = 0.8 at sampling distances

h = 10−4, h = 10−5 and h = 10−6, respectively. Whereas in Figure 4.4(a), no noise is visible

to the naked eye, Figure 4.4(b) and 4.4(c) let get visible the real nature of the function. To

estimate the noise of the example function and compare the results of the three samplings, the

technique applying a difference table as described above is used. We compare the estimated

noise level to the average regression error value obtained by computing different linear least-

squares approximations. For this, we fit a polynomial p of degree 2, 3 or 4 to the given data

set and evaluate the polynomial at each sample point. The average error between p and the

sampled data is then obtained by applying the formula

ǫA =
‖f(x)− p(x)‖√

98
.

The comparison is depicted in Table 4.2 and it shows a good consistency of the computed noise
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method ǫA for h = 10−4 ǫA for h = 10−5 ǫA for h = 10−6

Diff. table 1.28e-4 1.77e-4 7.85e-5

LLS 2nd order 3.33e-4 8.51e-5 8.25e-5

LLS 3rd order 1.12e-4 8.46e-5 8.15e-5

LLS 4th order 1.07e-4 8.44e-5 8.08e-5

Table 4.2: Noise levels in CDP obtained by different strategies and sampling distances h

levels ǫA by the different strategies used. The noise level of the aerodynamic function CDP

turns out to be of the order of 10−4 for all techniques and sampling distances applied.

This noise estimating technique should be directly applicable to estimate the noise level of

the gradient of a function of one single variable. We consider the adjoint state gradient of an

Figure 4.5: Navier Stokes pressure drag adjoint state gradient

Airbus Navier-Stokes test case consisting only of the position variable (depicted on Figure 4.5)

and evaluated the gradient at 100 points beginning from x = 0.8 with a sampling distance

of h = 10−6. Table 4.3 gives the columns of differences when the noise-estimation method

described above is applied to this example. The data set used in the difference table are the

gi ∆gi ∆2gi ∆3gi ∆4gi . . . ∆10gi

4.10838 -1.146e-3 2.659e-3 -3.514e-3 3.834e-3 . . . 5.455e-2

4.10723 1.514e-3 -8.539e-4 3.201e-4 6.66e-4 . . . -6.771e-2

4.10875 6.597e-4 -5.338e-4 9.861e-4 -1.510e-3 . . . 2.377e-2

4.10941 1.259e-4 4.523e-4 -5.242e-4 -9.259e-4 . . . -2.865e-2

4.10953 5.782e-4 -7.19e-5 -1.450e-3 3.871e-3 . . . 1.925e-1

4.11011 5.063e-4 -1.522e-3 2.421e-3 -9.011e-4 . . . -4.226e-1

4.11062 -1.016e-3 8.985e-4 1.519e-3 -4.611e-3 . . . 5.143e-1

Table 4.3: Difference table for the gradient of CDP with h = 10−6
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first 20 sample points. We observe that the fourth differences (and in addition, five through nine,

which are not shown), display already some kind of alternation in sign. The desired pattern of

behaviour is finally reached for the differences at k = 10. Using formula (4.7), the estimates

of ǫA corresponding to k = 4, . . . , 10 are 1.49 · 10−3, 1.48 · 10−3, 1.37 · 10−3, 1.31 · 10−3, 1.27 ·
10−3, 1.19 · 10−3, and 1.20 · 10−3. The approximate error using the linear least-squares method

(using a cubic polynomial) was 8.78 · 10−4, and hence the estimate of ǫA is reasonably good.

Testing the data of all 100 sampled gradient values from Figure 4.5, the estimate of ǫA
gives 1.74 · 10−3 and when approximating by linear least-squares, we get an error estimation of

8.98 · 10−4 which is very close to the results using only 20 samples. We can therefore conclude

that it is not necessary that the number of sample points is exceedingly big to get a reliable

error estimation.

4.3 Numerical experiments on noisy CUTEr test prob-

lems

In this section, we present numerical experiments of our new algorithm on noisy test problems.

As we want to show in the next section the ability of our algorithm to solve the presented real-

life application, we decided to adapt the test setting to this situation already in this section

as much as possibe. This means, the construction of the noisy test set has been done as to

resemble simulation-based problem functions. Furthermore, as in industry the computational

budget is most of the time the most restricting parameter, we present our results using data

profiles as introduced by Moré and Wild [102] for exactly this reason.

4.3.1 Noisy test problems

For our testing on noisy functions, we use the same test problems from the CUTEr testing

environment as described in Section 3.5.2 for the numerical experiments on smooth problems.

We want to mimic simulations that are defined by an iterative process and these simulations

are not stochastic but tend to produce results that are generally considered noisy (as we have

observed in the previous sections). The noise in this type of simulation is better modeled by

a function with both high-frequency and low-frequency oscillations. We thus define a noisy

problem by

fn(x) = f(x) + ǫfφ(x) (4.8)

with ǫf being the absolute noise level and the noise function φ : IRn 7→ [−1, 1] is defined in

terms of the cubic Chebyshev polynomial P3 by

φ(x) = P3(φ0(x)), P3(α) = α(4α2 − 3), (4.9)

where

φ0(x) = 0.9 sin(100‖x‖1) cos(100‖x‖∞) + 0.1 cos(‖x‖2) (4.10)
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as suggested in [102]. Contrary to [102], where a relative noise level is applied to the smooth

functions, we consider an absolute noise level as we believe from our experience that the noise

level is not decreasing with the function value in our considered application.

The function φ0(x) defined by (4.10) is continuous and piecewise continuously differentiable.

The composition of φ0(x) with P3 eliminates the periodicity properties of φ0(x) and adds

stationary points to φ(x) at any point where φ0(x) coincides with the stationary points (± 1
2 )

of P3.

4.3.2 Stopping criterion for the comparison

In [102], a stopping criterion is suggested which is based on the achieved reduction in the

function value relative to the best possible reduction achieved by one of the solvers. They

propose to use the convergence test

f(x) ≤ fL + τ(f(x0)− fL), (4.11)

where τ is a tolerance, x0 is the starting point for the problem, and fL is computed for each

problem p ∈ P as the smallest value of f obtained by any solver within a given number of

function evaluations. Writing (4.11) as

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL), (4.12)

one can see that (4.11) requires that the reduction f(x0)− f(x) achieved by x be at least 1− τ
the best possible reduction f(x0)− fL.

The stopping criterion was also used before in [56] and [97] but with fL set to an accurate

estimate of f at a global minimizer or at a local minimizer obtained by a derivative-based

solver, respectively. Setting fL to an accurate estimate of f at a minimzer is not an appropriate

approach in the situation where function evaluations are expensive because no solver may be

able to satisfy the convergence test within the given computational budget. Applying (4.11)

assures that at least one solver will satisfy the convergence test for any τ ≥ 0. The tolerance τ

represents the percentage of decrease from the starting value f(x0), where τ = 10−1 represents

a modest decrease but smaller values of τ require larger decreases in the function value.

4.3.3 Data profiles

When benchmarking optimization solvers for problems with expensive function evaluations,

Moré and Wild [102] suggest to use so-called data profiles instead of performance profiles.

Performance profiles provide an accurate view of the relative performance of solvers within a

given number of function evaluations but we agree with the statement in [102] that performance

profiles do not provide sufficient information for a user with an expensive optimization problem.

These users have usually a very limited computational budget and are therefore interested in

the percentage of problems that can be solved with α function evaluations. Thus, data profiles

were developed to show the performance of solvers as a function of a computational budget.
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This information can be obtained by letting tp,s be the number of function evaluations required

to satisfy the stopping criterion (4.11) for a given tolerance τ , since then

dS(α) =
1
|P| size{p ∈ P : tp,s ≤ α} (4.13)

is the percentage of problems that can be solved with α function evaluations. If the convergence

test is not satisfied after maxeval evaluations, tp,s =∞ is set.

Contrary to [102], we do not divide the number tp,s by n+ 1 to take into account that the

function evaluations needed to satisfy a given convergence test is likely to grow as the number

of variables increase. We use the measure dS independent of the number of variables in the

problem p ∈ P as we believe that practicioners have a limited computational budget which does

not depend on the dimension of the problem.

4.3.4 Comparison of different model types on unconstrained problems

In this testing, we compare the four model options of our algorithm BCDFO+ as we did in the

previous section on smooth problems, hoping to see which one is the most appropriate to use

in the case of noise in the objective function. We present the data profiles for τ = 10−k with

k = {1, 5} and for maximum evaluation numbers of 200 and 15000 because we are interested in

the short- and long-term behaviour of the different model-options as the required accuracy level

changes. Figures 4.6 and 4.7 show the comparison of the different model types for a maximum

number of 200 function evaluations. We can observed a slight advantage of the sub-basis model

Figure 4.6: Comparison different models on unconstrained noisy CUTEr problems (τ = 10−1

and maxeval = 200)
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Figure 4.7: Comparison different models on unconstrained noisy CUTEr problems (τ = 10−5

and maxeval = 200)

for low and high required accuracy where it even manages to solve all test problems in 100 func-

tion evaluations for low required accuracy (within 90% of the best possible reduction achieved by

any solver after 200 function evaluations). Regarding only the area of a very low computational

budget of less than 30 function evaluations in the case of low required accuracy (Figure 4.6),

using the two Minimum norm models seems to be interesting. Using the regression model

seems to be not advantageous as only 95% of the test problems can be solved after 200 function

evaluations in 90% of the best possible reduction. In the case of a higher required accuracy,

the robustness of the solver is much less but the sub-basis model option shows again the best

performance on the set of problems. We have a different picture when allowing for a very large

computational budget of 15000 function evaluations (see Figures 4.8 and 4.9). For low required

accuracy, the 90% reduction in the function value, compared to the best possible reduction,

could be achieved after a maximum of 540 function evaluations by each model option, except

for the regression model, which could finally not solve the problem KOWOSB in 15000 function

evaluations. But regarding high required accuracy in Figure 4.9, show a clear advantage of

the regression model. It solves 87% of the problems in the given limit and it shows the best

performance if a computational budget of more than 500 function evaluations is available.

The detailed results are contained in Table B.8 and Table B.9 for the testing with a computa-

tional budget of 200 function evaluations and for low and high required accuracy, respectively.

Table B.10 and Table B.11 contain the test results for the computational budget of 15000

function evaluations.



A. Tröltzsch – Derivative-free model-based bound-constrained optimization 96

Figure 4.8: Comparison different models on unconstrained noisy CUTEr problems (τ = 10−1

and maxeval = 15000)

Figure 4.9: Comparison different models on unconstrained noisy CUTEr problems (τ = 10−5

and maxeval = 15000)
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4.3.5 Comparison of different model types on bound-constrained prob-

lems

Also for the bound-constrained problems, we present the data profiles for τ = 10−k with

k = {1, 5} and for maximum evaluation numbers of 200 and 15000 because we are interested in

the short- and long-term behaviour of the different model-options as the required accuracy level

changes. We can not draw any conclusions when only 200 function evaluations are allowed and

low accuracy is required (Figure 4.10). None of the model options can outperform the other

options whereas we have the impression that the two minimum-norm models have a slight

advantage over the other two when regarding the computational budget between 15 and 75

evaluations. This is different when requiring high accuracy (Figure 4.11). Here, the minimum

ℓ2-norm model performs significantly better than the others when allowing for a computational

budget of more than 70 function evaluations. The minimum Frobenius-norm approach performs

worst and solves only 58% of the test problems in 99.99% of the best possible function value

reduction (what corresponds to τ = 10−5) achieved by one of the other model options after 200

function evaluations.

In Figures 4.12 and 4.13, we can see the comparison when allowing for a large computational

budget of 15000 function evaluations. The pictures are close to the ones of the comparison on

unconstrained test problems but here the regression model perform a bit better than the other

models beginning from a budget of 250 evaluations. It reaches a reduction of 90% of the best

possible reduction (achieved by any model option in 15000 function evaluations) for all test

Figure 4.10: Comparison different models on bound-constrained noisy CUTEr problems

(τ = 10−1 and maxeval = 200)
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Figure 4.11: Comparison different models on bound-constrained noisy CUTEr problems

(τ = 10−5 and maxeval = 200)

Figure 4.12: Comparison different models on bound-constrained noisy CUTEr problems

(τ = 10−1 and maxeval = 15000)
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Figure 4.13: Comparison different models on bound-constrained noisy CUTEr problems

(τ = 10−5 and maxeval = 15000)

problems in 800 function evaluations. After 1600 function evaluations all solver options reach

90% reduction of the best possible reduction. When requiring a reduction of 99.99% of the

best reduction achieved (in Figure 4.13), the robustness is clearly worse. But the regression

model manages again to outperform the other model options in terms of robustness when a

large computational budget is given. And as before in Figure 4.9, we see that the most high-

accuracy solutions for a smaller budget are obtained by the minimum ℓ2-norm model before

the regression model takes over at a computational budget of 330 function evaluations.

The detailed results are contained in Table B.12 and Table B.13 for the testing with a

computational budget of 200 function evaluations and for low and high required accuracy,

respectively. Table B.14 and Table B.15 contain the test results for the computational budget

of 15000 function evaluations.

4.4 Numerical experiments on an aerodynamical applica-

tion

4.4.1 Stopping criterion using noise estimation

When working with real-life applications incorporating expensive and noisy function evalua-

tions, it is of high interest to apply a suitable stopping criterion so that no function evaluations

are wasted by searching a solution “in the noise”. In fact, if the termination parameter ǫ is prop-
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erly set (ǫ ≈ √noisef , square root of the noise level in the function), our algorithm BCDFO+

may declare convergence by using its default stopping criterion (a small model gradient in a

Λ-poised set). But noisef , the exact noise level in the function to minimize, may be unknown

beforehand which means that a good choice of ǫ is difficult to make.

To provide the user with an algorithm which is also self-contained when used for noisy

optimization problems, we had to adapt the stopping criterion to the noisy case. This is realized

by providing two additional parameters to the user: the first one is a binary parameter, where

noisy=“yes” or noisy=“no” are the possible values while with the second one, the user can

provide the function noise level if it is known, otherwise noisef = 0 and the algorithm will

estimate the noise level during the minimization process in the case the problem was specified

by the user as noisy.

In the case when the user defines the problem as noisy and provides the noise level of the

function to minimize, the algorithm will use this value in setting the termination thresholds ǫ =
√
noisef for the standard stopping criterion and ∆min =

√
noisef for the alternative stopping

criterion (see Section 3.3.7). Furthermore, we apply an additional criterion for termination in

the noisy case. Here, we compute at each iteration the difference in the function values in the

current interpolation set. Thus, we also terminate if noisef ≥ κnz(max{f(Yk)}−min{f(Yk)})
with 0 < κnz ≤ 1 holds, which indicates that the solver is already “in the noise”.

However, we are also prepared for the case the user is not able to provide an estimation of

the function noise level. In this case, the thresholds for termination ǫ and ∆min are assumed

not to be valid and are approximated by estimating the noise level noisef at some point during

the minimization process. The situations which may happen are the following.

The threshold ǫ or ∆min is too big. Here, one of the user-defined termination thresholds ǫ

or ∆min are met and the algorithm would terminate prematurely. But, as we do not trust

these thresholds to be appropriate in the noisy case when no noise level is given, we have

to verify termination by estimating the noise level. Once noisef is computed we may

terminate the run successfully or continue minimization applying the strategy described

above when the function noise level is known.

The thresholds ǫ and ∆min are too small. In this situation, the algorithm has converged

(to a certain accuracy allowed by the noise level) but is not able to terminate. Hence, the

solver is proceeding minimization in the noise. What are the possible indicators that the

algorithm is in the noise?

1. A second improving step is initiated at the same point.

2. An already explored subspace is tried to enter again (in the bound-constrained case).

In both situations, the strategy for smooth functions is to recompute a poised interpolation

set in a reduced trust-region radius. This strategy is not appropriate in the noisy case.

Instead, the proper noise level is estimated and we test for successful termination for one

of the three stopping criteria mentioned above.
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4.4.2 Reference optimizer (DOT-BFGS)

The method currently used to solve aerodynamical design problems at Airbus is a classical

quasi-Newton method with BFGS-update. The reference optimizer is from the DOT (Design

Optimization Tools) [134] library which is implemented in the optimization suite OPTaliA. This

solver uses an adjoint state gradient developed at Airbus. As other gradient-based optimizers, it

converges along a descent path until no improvement is achieved during one optimizer iteration

or if the norm of the gradient, or projected gradient in the bound-constrained case, is zero.

First, the algorithm determines a descent direction, dk, using the evolution of the gradient

vector during the last two iterations. Once the search direction is computed, a linear search

aiming at determining the stepsize giving the best improvement is performed. The linear

search is driven by a one-dimensional polynomial interpolation and requires successive function

evaluations. This type of optimizer is intrinsically sequential as it iteratively follows a single

descent path.

In terms of quantity of information, the quasi-Newton gradient algorithm proposes the next

set of variables by using only the information about the current internal iteration. The internal

iteration contains information about the descent direction (computed using evolution of two

gradient values) plus some function evaluations (usually no more than ten). This optimization

algorithm proposes a new shape based on N = 2n + 10 evaluations of the objective function.

Even if the approximated Hessian matrix, Hk, is more and more accurate as the number of

internal iterations increases, the algorithm does not retain all the information known about the

function but focuses on the information in the vicinity of the current shape.

4.4.3 Test case: Airfoil drag minimization

In our experiments, we attempt to optimize the 2-dimensional RAE2822 airfoil using the Navier-

Stokes formulation. We consider the flight situation at Mach number M = 0.78 and an angle

of attack AoA = 0.6. The chord length is one meter and the Reynolds number value is Re =

6.5 · 106. The C-mesh is formed of 73 × 458 nodes with its boundary layer refinement. The

restitution time for one flow simulation is about 1200 seconds to perform 700 steady iterations.

The objective function to minimize is the above mentioned far-field pressure drag Cdp.

One test case considers one bump (n = 3) which is applied to deform the upper surface in

the direction of the vertical axis. Only positive deformations are authorized and the maximum

amplitude of this bump is 10 millimeters. The position of the bump can vary inside the bounds

p = [0.1, 0.9] because the length of a wing is normalized to be 1 meter. In the other test case,

three bumps (n = 9) are applied on the upper surface where the position-variable has different

bounds for each of the bump (p1 = [0.1, 0.5], p2 = [0.25, 0.75], p3 = [0.5, 0.9]). The bounds on

the expansion-variables are in both cases and for all bumps β = [2.0, 7.0].
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4.4.4 Numerical results

First, we want to present the comparison of our algorithm with different model options to the

reference optimizer DOT on the 3-dimensional test case. The convergence histories are depicted

in Figure 4.14. We see that the regression model has the best reduction in the objective function

Figure 4.14: Convergence histories on 3-dim. aerodynamic test case

value in the beginning of the minimization process but that it slows down at a certain point

and does even converge to another local minimum with a worse function value than all other

considered solvers. The Minimum ℓ2 norm shows the best performance on this test case as it

reaches the best reduction in the function value before the other solvers (or model options).

Furthermore, Figure 4.14 shows that although the number of function evaluations, needed by

DOT and the minimum ℓ2-norm model to converge, is the same (neval = 77), the reduction in

the objective function starts much earlier using BCDFO+.

Let’s now turn to the test case where nine design variables are considered. In Figure 4.15,

we can see a different behaviour of the methods on this test case. The reference solver DOT

suggests a fast solution at f = 92.09 after only 62 function evaluations but this is obviously

far from being the global minimum. Moreover, we do not even know whether the proposed

solution is a local minimum as DOT terminates when the function value could not be reduced

over two iterations which may also be caused by the inexact gradient or temporary stagnation

and not due to criticality at the current iterate. However, most of model-based derivative-free

optimization algorithms including ours are only aiming to find a local minimium of the problem

but they seem to be able to detect more global optimal points, regardless of the model option
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Figure 4.15: Convergence histories on 9-dim. aerodynamic test case

used. This advantage is likely to be due to the fact that such methods always use information

from a broader neighbourhood around the current iterate. Nevertheless, such a behaviour is

not guaranteed for other cases. Furthermore, we can see that none of the BCDFO+ model-

options has converged in the limit of 200 function evaluations whereas again the minimum

ℓ2-norm model performs best amongst them as it terminates with f = 69.96. For the others we

have that the sub-basis model could reduce the function value to f = 78.39, the regression model

reaches f = 77.47 and using the minimium Frobenius-norm model, the algorithm terminates

at f = 81.43 after reaching the limit of 200 function evaluations.

This leads to the conclusion that a minimum ℓ2-norm model embedded in our presented

algorithm may be most suitable to solve noisy problems in general and in particular the aero-

dynamical application considered here in a limited computational budget.

4.5 Modelling the allowed gradient noise in a gradient-

based line search method

Surprisingly to us, we observed that gradient-based line search methods, like quasi-Newton

methods, are working quite well for many problems even in the presence of relatively high

amplitude noise in the gradient.

In this section, we want to shed light on why this is the case and we attempt to model

the gradient noise which is allowed by such a method. In Section 4.5.1, we will present some
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properties and assumptions on the amplitude of the noise which ensure a descent direction of

the algorithm. In Section 4.5.2, we want to establish a bound on the noise in the gradient which

still gives rise to a globally convergent algorithm.

For this study, we assume exact function values and noisy gradient values.

4.5.1 Getting a descent direction in the presence of a noisy gradient

4.5.1.1 Deterministic properties

Remember, that if condition

gTk dk < 0 (4.14)

holds, the search direction dk is a descent direction.

Steepest descent method

Following (4.14), we have for the steepest descent direction dk = −g̃k, where g̃k is the inexact

gradient, that if condition

− gTk g̃k < 0 (4.15)

holds, the negative gradient direction is a descent direction even in the presence of noise.

Furthermore, we can write g̃k = gk+ ∆gk, where ∆gk denotes the level of noise in the gradient.

From this we get the following property.

Property 4.1. Assuming that the norm of the noise in the gradient is smaller than the gradient

norm

‖∆gk‖2 < ‖gk‖2, (4.16)

we have that

− gTk (gk + ∆gk) < 0, (4.17)

and the negative noisy gradient will provide a descent direction.

In the interest of readability we will drop the iteration count k in the following proofs.

Proof. We know that

‖g‖2‖∆g‖2 ≥ |gT∆g| ≥ −gT∆g (4.18)

and that

‖g‖2
2 = gT g. (4.19)

By combining (4.18) and (4.19) with (4.16) multiplied by ‖g‖2, we obtain

−gT∆g < gT g

and then

−gT (g + ∆g) < 0

which implies that −gT g̃ < 0.
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Quasi-Newton method

Applying (4.14) to a quasi-Newton direction dk = −H−1
k g̃k involving a noisy gradient gives the

condition

− gTkH−1
k g̃k < 0. (4.20)

In this case, it is possible to derive the following property.

Property 4.2. Assuming that the matrices Hk are positive definite with bounded condition

numbers κ and the noise satisfies

‖∆gk‖2 <
1√
κ
‖gk‖2, (4.21)

then we have

−gTkH−1
k g̃k < 0,

hence, the direction −H−1
k g̃k is a descent direction.

Proof. We have for symmetric positive definite matrices that

√
κ = κ(H1/2) = ‖H1/2‖2‖H−1/2‖2 = σmax(H−1/2)

σmin(H−1/2)
≥ 1.

Combining this with (4.21), we obtain

‖∆g‖2 ≤ σmin(H−1/2)
σmax(H−1/2)

‖g‖2.

We know as well that

σmax(H−1/2) = ‖H−1/2‖2 and σmin(H−1/2)‖g‖2 ≤ ‖H−1/2g‖2.

Therefore, we get

‖H−1/2‖2‖∆g‖2 ≤ ‖H−1/2g‖2.

Using now that

‖H−1/2∆g‖2 ≤ ‖H−1/2‖2‖∆g‖2,

we obtain

‖H−1/2∆g‖2 ≤ ‖H−1/2g‖2

which gives in turn

‖∆ĝ‖2 ≤ ‖ĝ‖2

when using the substitutions ĝ = H−1/2g and ∆ĝ = H−1/2∆g. When applying Property 4.1,

we have that condition

ĝT (ĝ + ∆ĝ) > 0
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holds. From this we get by re-substitution that

gTH−1(g + ∆g) > 0

what completes the proof.

After having proved these properties and having observed that an upper bound on the

noise is obviously depending on the condition number of the involved Hessian matrix of the

optimization problem, we had a closer look at these properties and performed a small test. In

fact, we checked the sign of the supposed descent direction (4.20) for different amplitude of ∆g

and we observed that condition (4.20), of course, always held for ∆g smaller than the bound

from (4.21) but surprisingly it also held very often for ∆g bigger than the bound from (4.21).

From this, we got the impression that (4.21) might be too stringent to be an upper bound

on the noise what means that Property 4.1 and Property 4.2 are certainly true but they can

only be considered as sufficient conditions and should not be regarded as tight upper bounds

to ensure a descent direction.

To illustrate this issue on a small test example (Powell 2D problem with x∗ = (1.1 ·10−5, 9.1)

and a gradient noise level of noiseg = 10−3), we assume for the moment that Property 4.2 is a

tight upper bound, which means that no noise would be allowed for an ill-conditioned problem

and each quasi-Newton method would break down in a noisy situation.

Believing this, it seems natural to regularize the problem whenever the condition number

is too big to allow for a higher amplitude noise in the problem. Applying this strategy to an

existing line search BFGS method gave interesting results, as it can be seen in Figure 4.16. We

implemented an automatic regularization technique which checks at every iteration whether

Figure 4.16: Regularization for Powell 2D problem with noiseg = 10−3

Property 4.2 holds or not. If it is not satisfied for the given noise level, the condition number

is decreased by applying Hk = Hk + λI for an increasing λ until Property 4.2 holds. Such a

regularization step is displayed in red on the right-hand side figure. The left-hand side figure

shows the minimization of the problem without taking care of the gradient noise.
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As it can be seen in Figure 4.16, the results are not as one could expect after having proved

Property 4.2. In fact, the regularization had even a negative effect on the convergence path

because steps become close to steepest descent steps and get very short due to the conditioning

of the matrix.

From this, we get that Property 4.2 is likely to be over stringent. To observe instead how

much noise can be afforded in average while condition (4.20) holds, we decided to apply another

model for the noise.

4.5.1.2 Statistical approach

We assume a Gaussian nature of the noise with ∆g ∼ N (0, σ2I) which is a normal distribution

with a mean of zero and a standard deviation of σ. With this statistical approach we want to find

out, up to which σ there exists a high probability to get a descent direction. For convenience,

we restate here the condition for a quasi-Newton direction with an inexact gradient to be a

descent direction

− gTkH−1
k g̃k < 0. (4.22)

Now the question is, for which standard deviation σ does (4.22) hold for a given probability?

In other words, how big can the noise become in average such that (4.22) is still very likely to

hold with a high percentage?

As we know the distribution of ∆g, we rewrite (4.22) as

Assumption 1:

gTH−1∆g ≥ −gTH−1g, (4.23)

where the left hand side is normal distributed with gTH−1∆g ∼ N (0, σ2‖H−1g‖2
2). Now we

look for the σ up to which Assumption 1 holds with a given probability. From (4.23) we get

P[Assumption 1 holds] =
2√
π

∫ +∞

− gTH−1g√
2σ‖H−1g‖2

e−t
2

dt = P_Ass1. (4.24)

This can be expressed in terms of the complementary Gauss error function erfc as

1
2

erfc
[

1√
2σ

(

− g
TH−1g

‖H−1g‖2

)]

= P_Ass1, (4.25)

and furthermore, in terms of the inverse complementary Gauss error function erfcinv we get

erfcinv(2 P_Ass1) =
1√
2σ

(

− g
TH−1g

‖H−1g‖2

)

. (4.26)

To see how much noise we can afford and still get a descent direction with a given probability,

we extract σ from (4.26) and get

σ =
1√

2 erfcinv(2 P_Ass1)

(

− g
TH−1g

‖H−1g‖2

)

. (4.27)

From this, one could expect that the allowed noise level σ depends on the conditioning of the

matrix H, the amplitude of the gradient and of course on the demanded probability. To analyze

this, we present a numerical illustration in the following section.
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4.5.1.3 Numerical illustration

Here, we want to exercise the results of our analysis applied on a small academic test problem

(dimension n = 10). In the figures, the allowed noise level is depicted in dependency of the

conditioning of the problem. In other words, it is shown which noise can be afforded when the

problem becomes more ill-conditioned up to a condition number of κ(H) = 1010.

Figure 4.17: Allowed noise level for Property 4.2 and P_Ass1=99%

Figure 4.18: Allowed noise level for Property 4.2 and P_Ass1=99% for bigger gradient norm
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In each of the Figures 4.17, 4.18 and 4.19, we see the inversely proportional connection between

the condition number of H and the allowed noise ∆g such that Property 4.2 holds (dashed

line). The plain line shows the behaviour of the standard deviation σ of the supposed Gaussian

gradient noise ∆g such that Assumption 1 holds with 99%.

In Figure 4.18, we see the difference of a gradient with a norm bigger than one (‖g‖∞ = 10)

where in Figure 4.17, the gradient is normalized. It is easy to see that a larger gradient norm

allows for a larger noise. Hence, the tolerated noise depends on the amplitude of the gradient

norm and this expectation from Section 4.5.1.1 turned out to be right.

In Figure 4.19, Assumption 1 is tightened to hold with a probability of 99.99%. As expected,

the curves show that the noise has to be smaller than that one from Figure 4.17 with 99%

although we also notice that the impact of the gradient norm in Figure 4.18 is more important.

Finally, it can be seen in all figures that the dependency on the conditioning of the problem is

very marginal in the statistical approach.

Figure 4.19: Allowed noise level for Property 4.2 and P_Ass1=99.99%

4.5.2 Global convergence in the presence of a noisy gradient

In this section, we want to extend our results from the previous section. We want to establish

an upper bound on the gradient noise level to satisfy the condition for a globally convergent

line search algorithm in the presence of an inexact gradient and an exact function. We again

want to exercise and compare deterministic and statistical approaches.
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4.5.2.1 Deterministic properties

The condition for a globally convergent line search algorithm is known from Zoutendĳk [143]

and writes

cosϕk ≥ δ > 0, for allk, (4.28)

where δ is a positive constant and cosϕk is the cosine of the angle between dk and the steepest

descent direction −gk, defined by

cosϕk =
−gTk dk
‖gk‖‖dk‖

. (4.29)

Steepest descent method

For a steepest descent method using an inexact gradient, condition (4.28) reads

gTk g̃k
‖gk‖2‖g̃k‖2

≥ δ, (4.30)

where g̃k denotes the noisy gradient g̃k = gk + ∆gk.

Property 4.3. Assuming that the norm of the gradient noise satisfies

‖∆gk‖2 ≤
1− δ
1 + δ

‖gk‖2, (4.31)

the condition (4.30) will hold. Hence, the negative noisy gradient will provide a globally con-

vergent algorithm.

Proof. We know that

‖g‖2‖∆g‖2 ≥ |gT∆g| ≥ −gT∆g.

By combining these with (4.31) multiplied by ‖g‖2, we obtain

−gT∆g + δ‖g‖2‖∆g‖2 ≤ ‖g‖2
2 − δ‖g‖2

2

and then

δ‖g‖2
2 + δ‖g‖2‖∆g‖2 ≤ ‖g‖2

2 + gT∆g.

Using now that ‖g + ∆g‖2 ≤ ‖g‖2 + ‖∆g‖2 and that ‖g‖2
2 = gT g, we get

δ‖g‖2‖g + ∆g‖2 ≤ gT g + gT∆g,

which gives that cosϕ ≥ δ > 0.

Quasi-Newton method

For a quasi-Newton method using a noisy gradient, condition (4.28) writes

gTkH
−1
k g̃k

‖gk‖2‖H−1
k g̃k‖2

≥ δ, (4.32)

where g̃k denotes again the noisy gradient g̃k = gk + ∆gk. In this case, it is possible to derive

the following property.
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Property 4.4. Assuming that the matrices Hk are positive definite with a uniformly bounded

condition number κ, that δ ≤ 1√
κ

, and that the noise satisfies

‖∆gk‖2 ≤
1− δ√κ
1 + δ

√
κ

‖gk‖2√
κ
, (4.33)

the condition (4.32) holds and thus, the algorithm using the search direction −H−1
k g̃k is globally

convergent.

Proof. We know from Property 4.3 that

if ‖∆ĝ‖2 ≤
1− δ
1 + δ

‖ĝ‖2, then
ĝT (ĝ + ∆ĝ)

‖ĝ‖2‖(ĝ + ∆ĝ)‖2
≥ δ.

If we substitute now H−
1

2 g = ĝ and H−
1

2 ∆g = ∆ĝ, we get that

if ‖H− 1

2 ∆g‖2 ≤
1− δ
1 + δ

‖H− 1

2 g‖2, then
gTH−1(g + ∆g)

‖H− 1

2 g‖2‖H− 1

2 (g + ∆g)‖2

≥ δ.

The right hand side of this statement can be reformulated using the singular values of H
1

2 and

H−
1

2 , thus we use that σmin(H−
1

2 )‖g‖ ≤ ‖H− 1

2 g‖2, that σmin(H
1

2 )‖H−1(g + ∆g)‖2 and that

σmin(H−
1

2 )σmin(H
1

2 ) = 1/κ(H
1

2 ). Furthermore, after dividing the complete if-statement by

‖H− 1

2 ‖2 and using that ‖H− 1

2 ∆g‖2 ≤ ‖H−
1

2 ‖2‖∆g‖2, we obtain that

if ‖∆g‖2 ≤
1− δ
1 + δ

‖H− 1

2 g‖2

‖H− 1

2 ‖2

, then
1

1/κ(H
1

2 )

gTH−1(g + ∆g)
‖g‖2‖H−1(g + ∆g)‖2

≥ δ,

which gives, using the definition of cosϕ from (4.29), that

if ‖∆g‖2 ≤
1− δ
1 + δ

‖H− 1

2 g‖2

‖H− 1

2 ‖2

, then cosϕ ≥ δ

κ(H
1

2 )
.

We get by substituting δ′ = δ/κ(H
1

2 ) that

if ‖∆g‖2 ≤
1− δ′κ(H

1

2 )

1 + δ′κ(H
1

2 )

‖H− 1

2 g‖2

‖H− 1

2 ‖2

, then cosϕ ≥ δ′.

Expanding the right hand-term of the if-statement by ‖H 1

2 ‖2 and using then that ‖H 1

2 ‖2‖H−
1

2 g‖2 ≥
‖H 1

2H−
1

2 g‖2 = ‖g‖2 and that ‖H 1

2 ‖2‖H−
1

2 ‖2 = κ(H
1

2 ), we obtain that

if ‖∆g‖2 ≤
1− δ′κ(H

1

2 )

1 + δ′κ(H
1

2 )

‖g‖2

κ(H
1

2 )
, then cosϕ ≥ δ′.

Writing now κ(H
1

2 ) as
√
κ completes the proof.

This property shows again a strong dependence between the tolerated noise and the condition

number of the problem. But we did again a small testing which has shown that the dependence

on the condition number is only marginal. Hence, we are suspecious that things similar to the

previous section may happen and that the condition for a globally convergent algorithm may

“in average” allow for higher amplitude noise even if the problem is not well-conditioned. We

want again apply here the statistical model.
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4.5.2.2 Statistical approach

We assume a Gaussian nature of the noise with ∆g ∼ N (0, σ2I) as in the previous section.

This time we want to find out, up to which σ does (4.32) hold for a given probability? In other

words, how big can the noise become in average such that the condition for global convergence

of a line search method still holds with a high percentage?

As we know the distribution of ∆g, we rewrite (4.32) as

gTH−1∆g ≥ δ‖g‖2‖H−1(g + ∆g)‖2 − gTH−1g. (4.34)

Furthermore, if we assume that ‖H−1(g + ∆g)‖2 is not far from ‖H−1g‖2 (we will look at this

later in Assumption 3), we can write (4.34) as

Assumption 2:

gTH−1∆g ≥ δ‖H−1g‖2‖g‖2 − gTH−1g (4.35)

and the right hand side of the inequality is independent from the level of noise. From the left

hand side we know that it is normal distributed with gTH−1∆g ∼ N (0, σ2‖H−1g‖2
2). Now we

look for σ up to which Assumption 2 holds with a given probability. From (4.23) we get

P[Assumption 2 holds] =
2√
π

∫ +∞

δ‖g‖2√
2σ
− gTH−1g√

2σ‖H−1g‖2

e−t
2

dt = P_Ass2. (4.36)

This can be expressed in terms of the complementary Gauss error function erfc as

1
2

erfc
[

1√
2σ

(

δ‖g‖2 −
gTH−1g

‖H−1g‖2

)]

= P_Ass2, (4.37)

and furthermore, in terms of the inverse complementary Gauss error function erfcinv, we get

erfcinv(2 P_Ass2) =
1√
2σ

(

δ‖g‖2 −
gTH−1g

‖H−1g‖2

)

. (4.38)

To see now how much noise we can afford and still be globally convergent with a given proba-

bility, we have to extract σ from (4.38) what results in

σ =
1√
2

(

δ‖g‖2 −
gTH−1g

‖H−1g‖2

)

1
erfcinv(2 P_Ass2)

. (4.39)

From this one can see that the Gaussian noise level σ depends on the conditioning of the prob-

lem, the amplitude of the gradient and of course on the demanded probability.

Now we have to examine the supplementary assumption which we imposed on (4.34) to get

Assumption 2 in (4.35).

Assumption 3:

2‖H−1g‖2
2 ≥ ‖H−1(g + ∆g)‖2

2 ≥
1
2
‖H−1g‖2

2 (4.40)
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In fact, we have to divide the two-sided condition (4.40) into two parts what gives

P[‖H−1(g + ∆g)‖2
2 ≤ c2]− P[‖H−1(g + ∆g)‖2

2 ≤ c1] = P_Ass3 (4.41)

where c2 = 2‖H−1g‖2
2 and c1 = 1

2‖H−1g‖2
2. The next question is, up to which σ does Assump-

tion 3 hold for a given probability?

Unfortunately, the distribution of ‖H−1(g+∆g)‖2
2 cannot be easily computed. Therefore, it

is worthwhile to get the right σ by simulation. This is done by imposing a first σ0, e.g., the one

we get from Assumption 2, on the noise ∆g, generating 105 examples of the random variable

‖H−1(g + ∆g)‖2
2, and computing a CDF (cumulative distribution function) from which we get

the probability that Assumption 3 holds. If this is lower than the desired probability, σ0 is

decreased and a new simulation is started.

4.5.2.3 Numerical illustration

The results of our analyses can be seen in the figures below. The allowed noise level is depicted

in dependency of the condition of the problem. In other words, it is shown which noise can be

afforded when the problem becomes more ill-conditioned up to a condition number of κ(H) =

1010. In Figure 4.20, we see as a dashed line the inversely proportional relation between the

Figure 4.20: Allowed noise level for Property 4.4 and P_Ass2&3=99%

condition number of H and the allowed noise ∆g such that Property 4.4 holds. The other

curves show the behaviour of the standard deviation σ of the supposed Gaussian noise ∆g. The

plain curve shows σ up to which Assumption 2 holds with 99% and as dash-dot line, we have

the σ up to which also Assumption 3 holds with 99%.

Furthermore, we can observe from this figure that Assumption 2 allows for similar noise

levels as Assumption 1 and that Assumption 3 is stronger than both of them. But still, the
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statistical approach allows for a higher amplitude of noise than the deterministic one and the

dependency on the condition of the problem is not very big in average.

4.5.2.4 Numerical example of an aerodynamical test case

We finally illustrate our theory on some real data from a Navier-Stokes test case provided by

Airbus. To do so, we sampled 100 function and gradient values of a one-dimensional function

of the CDP position variable in the range of (0.7, 0.9). The adjoint state gradient is displayed

as a dotted line on the left hand side of Figure 4.21 and the gradient approximated by finite

differences is displayed as a plain line. By visualizing a line at zero, the finite differences gradient

Figure 4.21: Example of CDP adjoint state gradient

which represents the function has a minimum close to 0.82 and the adjoint gradient points out a

minimum close to 0.78. This picture shows a big error/noise in the gradient. Our theory should

answer the question where to expect any difficulties while running a quasi-Newton method using

such an inexact gradient.

On the right hand side of Figure 4.21, the reached noise level of the adjoint state gradient

is depicted as a dotted line. To compute the noise, we took the difference between the adjoint

gradient and the finite differences gradient from the left figure above. The second dimension

for the problem is a constant which is added to be able to construct a problem matrix with

a certain condition number. We applied κ = 103 in this example. The dashed line shows the

allowed gradient noise for the constructed problem in terms of the deterministic Property 4.4

and the plain line displays the tolerated sigma such that the statistical Assumption 3 holds

with 99 percent for this problem. So, if the values of the measured gradient noise are below one

of these curves, we do not expect any difficulties for a gradient-based algorithm to converge.

This gives a hypothetically safe region up to a value of 0.77 and beginning again from 0.84.

The intervall [0.77, 0.84] indicates the region where we expect the iterates to get into trouble.

These results answer our questions which arose in a past work where we compared different

gradient-based optimization softwares on this Airbus CDP problem. The solutions returned by
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the solvers for this one-dimensional problem ranged from x∗ = 0.7862 to x∗ = 0.8180 and the

obtained function values differed from f∗ = 111.515 to f∗ = 111.705 what was somehow not

expected at that time but can now be explained by our theory.

4.5.3 Conclusions

We addressed the question, how much noise in the gradient can a steepest descent method and

a quasi-Newton method tolerate. We established two properties on the noise which ensure a

descent direction using an inexact gradient in such methods. These properties show a strong

dependence between the condition of the problem and the allowed noise. But, a quick check of

the established condition with some random noise of different amplitude has shown that this

property covers the worst case and seems to be over stringent in the average case.

So, we decided to assume a Gaussian nature of the noise with mean zero and variance σ2

to see what noise can be afforded in average. We established an assumption which ensures a

descent direction in a quasi-Newton method if it holds with a high probability.

Furthermore, we proved another deterministic property which guarantees global convergence

of a quasi-Newton algorithm in the presence of a noisy gradient. Here also, we could establish

two statistical assumptions which together ensure with a high probability global convergence of

the algorithm using an inexact gradient. We simulated the distribution of the random number

of Assumption 3 to get an allowed standard deviation σ of the noise up to which the two

assumptions hold with a given probability (e.g. 99%).

In fact, we established two sufficient conditions on the global convergence of a quasi-Newton

algorithm in presence of a noisy gradient. If the noise satisfies the condition stated in Prop-

erty 4.4, the algorithm is certainly globally convergent. If the noise satisfies Assumption 2 and

Assumption 3, which is very likely to happen up to a certain level of noise, the algorithm is

globally convergent.

From our experiments we got confirmed that there is a relation between the amplitude of the

gradient norm and the tolerated noise in the gradient. Whereas the dependency between the

conditioning of the problem and the tolerated noise in the gradient, which was predicted by the

deterministic property, turned out to be not very big in average. Thus, we can conclude that

a quasi-Newton method provided with a noisy gradient is globally convergent up to a certain

level of noise which is only marginally dependent on the condition of the approximated Hessian.

We could observe that applying Assumption 3 on an Airbus test problem gives us exactly

the answer to our question, why different optimizers converged to different minima or even get

into trouble while looking for a good solution.

For this study, we assumed exact function values and noisy gradient values. Extension to

the more general situation where both function and gradient information are inexact will be

considered in a future work.
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4.6 Enhancing a DFO method by inexact gradient infor-

mation in the context of global optimization

An important point in industrial optimization is to obtain a global optimum for approximate

function and gradients in the minimal computational time. It is well known that this objective is

not very easy to attain for problems of arbitrary size using generic algorithms, even when solving

non-noisy problems. Indeed, algorithms which aim at finding a global optimum oftentimes take

advantage of building meta-models and using DOE-techniques (Design Of Experiment) which

are very costly in terms of function evaluation and therefore in computing time.

Our goal is therefore, viewed more realistically, to envisage this type of algorithm for degrees

of freedom of modest dimension (less than 20 variables). The software SNOBFIT (Stable Noisy

Optimization by Branch and FIT), as stated by its authors in [86], seems to answer the above

specifications in an acceptable manner.

4.6.1 The algorithm SNOBFIT

SNOBFIT, developed by A. Neumaier and W. Huyer, is a software package for robust and

fast solution of noisy optimization problems with continuous variables varying within bounds,

possibly subject to additional soft constraints.

Objective function values must be provided by a file-based interface. Care is taken that the

optimization proceeds reasonably even when the interface produces noisy or even occasionally

undefined results (hidden constraints). The interface makes it possible to use SNOBFIT with

new data entered by hand, or by any automatic or semiautomatic experimental system.

This makes SNOBFIT very suitable for applications to the selection of continuous parame-

ter settings for simulations or experiments, performed with the goal of optimizing some user-

specified criterion. Furthermore, the possibility of evaluating the objective at several points

simultaneously by parallel function evaluations should be pointed out.

The method combines a branching strategy to enhance the chance of finding a global min-

imum with a sequential quadratic programming method based on fitted quadratic models to

have good local properties. Various safeguards address many possible pitfalls that may arise in

practical applications, for which most other optimization routines are ill-prepared [87].

The package solves the optimization problem

min f(x) s.t. x ∈ [u, v] (4.42)

where an interval notation for boxes is used

[u, v] := {x ∈ Rn|ui ≤ xi ≤ vi, i = 1, ..., n}, (4.43)

with u, v ∈ Rn and ui < vi for i = 1, ..., n, i.e., [u, v] is bounded with nonempty interior. A box

[u′, v′] with [u′, v′] ⊆ [u, v] is called a subbox of [u, v].
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Based on the already available function values, the algorithm builds internally, around each

point, local models of the function to minimize, and returns at each step a number of points

whose evaluation is likely to improve these models or is expected to give better function values.

In case the total number of function evaluations is kept low, no guarantees can be given that a

global minimum is located.

In each call to SNOBFIT, a possibly empty set of points and corresponding function values

are put into the program, together with some other parameters. Then the algorithm generates

the requested number of new evaluation points. These points and their function values should

preferably be used as input for the following call to SNOBFIT. The suggested evaluation points

belong to five classes indicating how such a point has been generated, in particular, whether

it has been generated by a local or a global aspect of the algorithm. The points of class 1

to 3 represent the more local aspect of the algorithm and are generated with the aid of local

linear or quadratic surrogate models created by linear least squares fits at positions where good

function values are expected. The points of classes 4 and 5 represent the more global aspect

of the algorithm, and are generated in large unexplored regions. These points are reported

together with a model function value computed from the appropriate local model.

SNOBFIT generates at each iteration a user-defined number of new trial points of different

character which recommend themselves for evaluation. The points are chosen from five differ-

ent classes in proportions that are set by the user. This gives the user some control over the

desired balance between local and global search. The fact that these selected points, given the

opportunity of using parallel computing facilities, can be evaluated at the same time, should

again be emphasized here.

All points for which the function has been evaluated are stored in the set X which is used

to build the local models at each iteration. These local surrogate models are created around

each point using n + m points from X, where n is the dimension of the problem and m is a

userdefined number. In the presence of noise, fitting reliable linear models near some point

requires the use of a few more data points than parameters. To be able to build such a model,

n+m appropriate points have to be selected in a safeguarded manner from X. This is done by

using the nearest neighbours of each point.

In step 4 of Algorithm 4.1, the safeguarded nearest neighbours of each point x = (x1, ..., xn)T ∈
X are determined as follows. Starting with an initially empty list of nearest neighbours, we

pick, for each direction i = 1, ..., n, a point in X closest to but different from x among the

points not yet in the list. This procedure ensures that, for each coordinate i, there is at least

one point in the list of nearest neighbours whose i-th coordinate differs from that of x. This

gives n points in the list and it is filled up by adding the points from X closest to x but not yet

in the list, until it contains n + m points. The list of nearest neighbours is updated for every

point at every iteration if necessary.

In step 5 of the algorithm, a local quadratic fit is computed around the best point xbest,
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i.e., the point with the lowest objective function value. Here, the vector g ∈ IRn and the

symmetric matrix H ∈ Rn×n, gradient and Hessian respectively, are estimated using K :=

min(n(n+3), N−1) points which are closest to but distinct from xbest, whereN denotes the total

number of points at which the function values are already evaluated. If N < 1
2 (n+1)(n+2), the

minimum ℓ2-norm solution of the interpolation conditions is computed. Given these estimations

of the first and second derivatives at xbest, the potential new evaluation point w is obtained

by approximately minimizing the local quadratic model around xbest. The minimization is

performed with the bound constrained quadratic programming package MINQ [105], designed

to find a stationary point, usually a local minimizer. If w is a point already in X, a new point is

randomly generated inside a box determined by the farthest of the nearest neighbours of xbest.

Algorithm 4.1 SNOBFIT
1: Divide [u, v] into subboxes, each containing one point if function values of some points

already available. Choose m, the number of additional points/neighbours considered to

build the models.

2: repeat

3: Split subboxes which contain more than one point.

4: Compute a vector with n+m nearest neighbours for each point.

5: Determine trial point w by minimizing a quadratic model around the current best point

xbest.

6: Determine trial points yj by minimizing local models around xj ,∀xj ∈ X.

7: Determine trial points by dividing large subboxes (unexplored regions).

8: Determine trial points by space filling if necessary.

9: Evaluate new function values at suggested trial points.

10: until Best f value not improved in a certain number of iterations

In step 6, points of class 2 and 3 are determined by minimizing a local model around each

point xj . Points of class 2 and 3 are alternative good points. They represent another aspect of

the local search part of the algorithm. Here, for each point the information on the function at

the point itself and its n + m nearest neighbours is used. But to get a more accurate model,

a quadratic error term, which accounts for second (and higher) order deviation from linearity

and for measurement errors, is considered when building the model. It is chosen such that

for points with large expected uncertainties in the function value and for neighbours far away

from xj , a larger error in the model is permitted. A complete quadratic model would be too

expensive to construct around each point. The gradient value at xj is estimated by a linear

least squares fit, using the function values of the n + m nearest neighbours. The points yj
obtained by solving the N quadratic programs are potential new evaluation points of class 2

if the point xj is called local, i.e., if its function value is significantly smaller than that of its

nearest neighbours. Otherwise, the points yj are taken to be in class 3. If yj is a point already

in X, a new point is randomly generated inside a box determined by the nearest of the nearest
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neighbours of xj .

The points of class 4 generated in step 7 of the algorithm are points in so far unexplored

regions, i.e., they are generated in large subboxes of the current partition. They represent the

most global aspect of the algorithm. To maintain an idea of the size of each box as long as the

algorithm proceeds, its smallness is assigned to each subbox. It is 0 for the exploration box

(u, v) and large for small boxes. For a more systematic global search, large boxes (= having a

low smallness) should be prefered when selecting new points for evaluation.

Points of class 5 are only produced if the algorithm does not manage to reach the desired

number of points by generating point of classes 1 to 4, which happens in particular in an initial

call with an empty set of input points and function values. The points of class 5 are chosen

from a set of random points such that they extend X to a space filling design. The algorithm

of SNOBFIT is stated schematically as Algorithm 4.1, a more detailed version can be found in

[86].

4.6.2 Modifications

Use of provided gradient information Our aim is to develop an improved version of the

method described above and we will call this algorithm gbSNO (gradient-based Stable Noisy

Optimization). To accelerate convergence speed of the original version, we will exploit the fact

that gradient information is available in the OPTaliA suite at Airbus. As we know that the

gradient provided comes from an expensive CFD-calculation and may be therefore noisy and

certainly comprise an error, the implementation must be done very carefully. The gradient

information will be incorporated in the algorithm to provide more accurate information when

building up the two kinds of local models. This will be done in a way we attempt to eliminate

the possible gradient error by use of the function values of the nearest neighbours around each

point.

To determine roughly the quality of the gradient at x, a gradient ratio ρ is computed using

the function value from the closest nearest neighbour of x. To get an idea of the gradient

accuracy, we try to compare it with a finite difference type gradient. This results in the formula

ρ =
f(x)− f(x− s)−∇f(x)T s

‖s‖ , (4.44)

where s is the distance to the closest nearest neighbour of x. So, ρ will be large if the gradient

is supposedly incorrect.

Let xk, k = 1, ..., n + m, be the nearest neighbours of x, f := f(x), fk = f(xk), and Qk

the error term which accounts for uncertainties in the function values. Furthermore, we want

to introduce one additional equation carrying the information of the noisy gradient gnoisy :=
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gnoisy(x). Then we consider the equations

fk − f = gT (xk − x) + ǫkQk, k = 1, ..., n+m, (4.45)

gnoisy − g = ǫρ, (4.46)

where ǫk are the model errors to be minimized and g is the gradient to be estimated. The new

least squares problem to minimize is now written

min
g

(

n+m
∑

k=1

(

fk − f
Qk

− gT (xk − x)
Qk

)2

+
(

gnoisy − g
ρ

)2
)

, (4.47)

where the last term represents the penalization we added onto the system to improve the quality

of the estimated gradient g. High uncertainties in function and gradient values are reflected in

large values of Qk and ρ, respectively. In this case, a larger error is permitted in the fit.

The gradient g is approximated for each point and is then used in building the local model

around the corresponding point. The approximate gradient at xbest is also used to build the

quadratic model around the current best point.

Use of a BFGS-formula As we are now quite sure to have estimated a more reliable gradient

for each x, we do not want to use a Hessian which is estimated by a quadratic fit as it is done

in the original version of SNOBFIT. Instead, we decided to use a Hessian approximation in the

quadratic model which is updated every iteration by the means of a BFGS-formula where the

estimated gradient from (4.47) is used.

4.6.3 Experiments on academic and aerodynamic test problems

From the numerical experiments we have done, we want to detail two problems, one academic

and the other one a real life problem provided by Airbus.

Academic test problem The minimal surface area problem is an unconstrained optimiza-

tion problem. Finding a minimal surface of a boundary with specified constraints is a problem

in the calculus of variations and is sometimes known as Plateau’s problem. Minimal surfaces

may also be characterized as surfaces of minimal surface area for given boundary conditions.

As SNOBFIT and also gbSNO are developed to solve problems involving not too many param-

eters, the size of the problem is taken as n = 9 in this case. To consider a noisy test function,

we imposed noise levels noisef = 10−2 and noiseg = 10−1 on the function and gradient re-

spectively to run the codes. At each iteration, three points were generated by the algorithms,

where two of them concentrate on the local search at current promising regions and the other

one is given to explore the search domain to find possible better local minima to perform the

global aspect of the method. The algorithms were stopped when there was no improvement of

the best function value over 25 iterations.
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Figure 4.22: Comparison on minimal surface problem

In Figure 4.22, we can observe a quite obvious improvement in terms of function and gradient

evaluations of the new gbSNO code over the derivative free SNOBFIT code. The gap at the

beginning of the graphs is due to the computation of the initial space filling design which

costs 15 function evaluations for SNOBFIT but the double amount for gbSNO as it evaluates

additionally the gradient at each point. In the first iteration, n+6 points were generated which

is the recommanded value from SNOBFIT.

Furthermore, considered that both algorithms allow for parallel evaluations of functions (and

gradients if necessary), both algorithms are not forced to wait for sequential computations as

other well-known gradient-based algorithms. So, given the hardware facilities, computing three

function values at the same time is a great gain in terms of computing time.

Airbus test problem Being able to access a real-life aerodynamic application provided by

Airbus, we were testing our algorithm minimizing a CDP function which we were using in

the other sections before with the difference that this time an Euler model on a fine mesh,

instead of a Navier-Stokes model, is applied in the CFD simulation. The problem comprises

three bounded variables (amplitude, position and expansion of a bump). We were running

our algorithm gbSNO two times on the given problem. As it starts always with building up a

random space filling design over the whole domain, we get two different starting points after

this initialization. Nevertheless, as we see on Figure 4.23 (the runs of gbSNO are displayed

as dotted lines) the algorithm is able to find the global minimum after a certain time in both

runs. From the gradient-based local solvers only Lancelot was able to find the global minimum,

probably by chance.
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Figure 4.23: Comparison on a Euler CDP problem

4.6.4 Conclusions and perspectives

In this section, we described the new global search algorithm gbSNO which is based on the

algorithm SNOBFIT by Huyer and Neumaier which is announced to be especially adapted to

cope with expensive noisy functions. We modified this derivative-free-optimization software

package to allow for the use of gradient information, even noisy gradient information, with the

hope of accelerating convergence speed of the method. We attempted to filter the inexactness

of the gradients by using the function values in the close neighbourhood of the points.

We showed on an academic example with added noise on function and gradient values, that

although the cost of the initial space filling design is higher than for SNOBFIT, the convergence

is much faster by using additional gradient information even in this perturbed case.

Furthermore, we did some experiments on an expensive Airbus problem what provides noisy

function values as well as noisy gradient values. The new algorithm gbSNO could achieve an

acceptable convergence rate and it shows a strong ability to reach the global minimum.



Chapter 5

Conclusions and future work

In this thesis, we have tried to show that derivative-free optimization (DFO) is currently a

very vivid field of research as practitioners more and more want to use sophisticated techniques

for solving their optimization problems. But at the same time, derivative-information may be

difficult (or only at a high extra cost) to obtain in real-world applications. This suggests the

use of derivative-free optimization methods where the class of interpolation-based trust-region

methods has shown to be numerically efficient in several recent comparisons [102, 127].

In Chapter 2, we gave a short introduction into trust-region methods which use quadratic

polynomials, interpolating or approximating the function on a set of points at which the function

has been evaluated. In trust-region methods, the model is trusted to approximate the function

within a local neighborhood of the best point found so far. We explained that special care must

be taken to control the geometry of the interpolation set which may otherwise deteriorate in

certain situations. We presented several methods of this class ranging from basic ones, which

involve so-called geometry improving steps, to a recent approach which uses a self-correcting

property of the geometry of the interpolation set [128]. Such an algorithm resorts to the

geometry improving steps as less as possible (only when the model gradient is small), while still

maintaining a mechanism for taking geometry into account.

Moreover, we have presented the new algorithm UDFO+ which is a modified version of

the described self-correcting algorithm but where geometry considerations are released in some

stages of the algorithm. We proved global convergence to first-order stationary points of this

new version. Later, in the numerical section of Chapter 3, we showed that UDFO+ is perform-

ing out other solvers from different classes of DFO methods.

As the main contribution of this thesis, we extended this algorithm to handle bound-

constrained problems. Chapter 3 introduced the new algorithm BCDFO+ for solving bound-

constrained local optimization problems. The extension to bound-constrained problems is not as

straightforward as one could think because points may get aligned at active bounds and hence,

the geometry of the interpolation set may deteriorate. An idea to circumvent this problem is to

add points to the set which would preserve the geometry, thereby involving several additional

function evaluations. But as the idea of using the self-correcting property is to dispense with

extra calculations for regularly improving or preserving the geometry, we proposed to handle

the bound constraints by an “active-set” approach. Such a strategy creates the opportunity

for a model-based DFO method of saving a reasonable amount of function evaluations because

123
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it proceeds minimization in lower-dimensional sub-spaces. A standard active-set method an-

ticipates to update the set of active constraints while adding and/or removing constraints at

each iteration. Our approach allows only for adding constraints to the set of active constraints

because it then pursues minimization in the subspace of the remaining free variables by calling

itself recursively.

Our algorithm comes with several additional interesting features. It is for instance possible

to start minimization using only n + 1 evaluated points and to augment the interpolation set

when minimization progresses. In early stages, using p = n + 1 function values (sufficient to

build a linear model) is economical and often sufficient to make progress. In a later stage of

the calculation, considering p = 1
2 (n + 1)(n + 2) function values (enough to build a complete

quadratic model) it is expected to achieve faster progress to a close solution. Different types of

models have been proposed to perform under- and overdetermined interpolation. It turned out

that the option of a sub-basis model has performed best on a test set of smooth unconstrained

and bound-constrained test problems from the CUTEr library.

Another feature has been introduced, targeting to save function evaluations when encoun-

tering an active bound and starting to work in the sub-space. In fact, it has turned out to be

advantageous to build the first model inside the subspace not only from true function values

but also by using the approximate information given by the model of the higher-dimensional

space. Furthermore, the algorithm tries to re-use function values from formerly evaluated points

whenever a new model in a sub-space or the fullspace has to be computed.

We also presented the new algorithm BC-MS to solve the bound-constrained trust-region

subproblem in ℓ2-norm where we extended the technique of an Moré-Sorensen algorithm. The

comparison to a standard truncated conjugate gradient method has shown that using BC-MS

as the local solver inside our DFO trust-region algorithm BCDFO+ is not as efficient as to use

the TCG option applied to an infinity-norm trust region.

Numerical experiments have been performed to compare the presented algorithms to the

state-of-the-art packages NEWUOA and BOBYQA, which also apply a model-based trust-

region method, and three members from the class of direct-search methods. Our new develop-

ment BCDFO+ happened to compare very well to the other codes on the test sets of smooth

unconstrained and bound-constrained problems from the CUTEr library.

In Chapter 4, we have studied the impact of noise on optimization algorithms in general and

adapted our algorithm to handle noisy optimization problems. First, we demonstrated how the

level of a low-amplitude noise in a function or a gradient can be estimated using a tool which

was originally developed to calculate higher order derivatives and to estimate round-off. This

tool is incorporated in our algorithm to estimate the noise level if the user intents to optimize

a noisy objective function but is not able to provide the level of noise.

We also presented numerical results on sets of noisy unconstrained and bound-constrained

test problems from the CUTEr library and an aerodynamic engineering application. These

results support the effectiveness of our algorithm on blackbox functions for which no special
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mathematical structure is known or available. We assess different types of interpolation and

regression models inside our algorithm BCDFO+. The minimum ℓ2-norm model seems to be

the most appropriate option when only a small computational budget is available whereas the

regression model is to recommend when the computational budget is large as it turned out to

be the most robust to solve problems to a high required accuracy.

Furthermore, we presented a theoretical study on the allowed noise on a gradient which is

used in a gradient-based line search method. We could establish deterministic properties on the

gradient noise for ensuring globally convergent steepest-descent and quasi-Newton methods in

the presence of a noisy gradient. The established properties have shown a strong dependence on

the condition of the problem which seemed to be over stringent in the average case. And indeed,

after assuming a Gaussian nature of the noise, we established another sufficient condition on

the global convergence of a quasi-Newton method, which allows with a high probability for a

bigger amplitude noise on the gradient.

The good performance of the algorithm opens many doors for future research. The good

robustness of our implementation is of course an invitation to look for a global convergence

theory.

Furthermore, we want to show to which extent small perturbations can be applied to control

the condition of the system matrix of a quadratic interpolation model without corrupting the

error bounds on the gradient. This is planned as an extension to the linear interpolation case

which we presented in Section 3.3.4. In addition, we also want to examine the linear and

quadratic regression case.

As we are interested in a broad assessment of interpolation and regression models, we want

to consider the options of the least-change Frobenius-norm model and the minimum ℓ1-norm

model in our algorithm and compare them to the presented model types.

Another obvious area of research, which is motivated by our shape optimization application,

is to extend the algorithm to handle general nonlinear constraints. Standard techniques based

on SQP or augmented Lagrangian could be considered in this respect.
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Appendix A

Test problems

Table A.1 and Table A.2 depict the unconstrained and bound-constrained test problems taken

from the CUTEr testing environment for running our numerical experiments. They show the

name and dimension of the problem and, for the bound-constrained problems, give specific

details on the number of free variables, the number of variables which are bounded from below,

those which are bounded from above and the number of variables which are bounded from

below and above.
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name n f∗

ALLINITU 4 5.74438491032034E+00

ARGLINB 10 4.63414634146338E+00

ARGLINC 10 6.13513513513513E+00

ARWHEAD 16 5.32907051820075E-15

BARD 3 8.21487730657899E-3

BDQRTIC 10 1.82811617535935E+01

BEALE 2 1.03537993810258E-30

BIGGS6 6 5.49981608181981E-16

BOX3 3 1.85236429640516E-20

BRKMCC 2 1.69042679196450E-1

BROWNAL 10 1.49563496755546E-16

BROWNDEN 4 8.58222016263563E+04

CHNROSNB 10 1.21589148855346E-19

CRAGGLVY 10 1.88656589666311E+00

CUBE 2 5.37959996529976E-25

DENSCHND 3 2.15818302178292E-4

DENSCHNE 3 1.29096866601748e-18

DENSCHNF 2 6.51324621983021E-22

DIXMAANC 15 1.00000000000000E+00

DIXMAANG 15 1.00000000000000E+00

DIXMAANI 15 1.00000000000000E+00

DIXMAANK 15 1.00000000000000E+00

DIXON3DQ 10 2.95822839457879E-31

DQDRTIC 10 5.91645678915759E-29

ENGVAL1 2 0.00000000000000E+00

EXPFIT 2 2.40510593999058E-1

FREUROTH 10 1.01406407257452E+03

GENHUMPS 5 9.31205762089110E-33

GULF 3 5.70816776659866E-29

HAIRY 2 2.00000000000000E+01

HELIX 3 1.81767515239766E-28

HILBERTA 2 1.51145573593758E-20

HIMMELBF 4 3.18571748791125E+02

HIMMELBG 2 1.17043537660229E-27

JENSMP 2 1.24362182355615e+02

KOWOSB 4 3.07505603849238E-4

MANCINO 10 1.24143266331958E-19

MARATOSB 2 -1.00000006249999E+00

MEXHAT 2 -4.01000000000000E-2

MOREBV 10 1.85746736253704E-24

NASTY 2 1.53409170790554e-72

OSBORNEB 11 4.01377362935478E-2

PALMER1C 8 9.75979912629838E-2

PALMER3C 8 1.95376385131058E-2

PALMER5C 6 2.12808666605511E+00

PALMER8C 8 1.59768063470262E-1

POWER 10 6.03971630559837E-31

ROSENBR 2 3.74397564313947E-21

SINEVAL 2 7.09027697800298E-20

SINGULAR 4 6.66638187151797e-12

SISSER 2 1.06051492721772E-12

VARDIM 10 1.59507305257139E-26

YFITU 3 6.66972048929030E-13

ZANGWIL2 2 -1.82000000000000E+01

Table A.1: Considered unconstrained CUTEr test problems
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name n free vars lbound ubound l+ubound f∗

3PK 30 30 1.72011856739612E+00

BIGGSB1 25 1 24 1.50000000000000E-02

BQP1VAR 1 1 0.00000000000000E+00

CAMEL6 2 2 -1.03162845348988E+00

CHARDIS0 18 18 3.95170009709151E-27

CHEBYQAD 4 4 2.56057805386809E-22

CHENHARK 10 10 -2.00000000000000E+00

CVXBQP1 10 10 2.47500000000000E+00

HARKERP2 10 10 -5.00000000000000E-01

HATFLDA 4 4 1.61711062151584E-25

HATFLDB 4 3 1 5.57280900008425E-03

HATFLDC 25 1 24 3.43494690036517E-27

HIMMELP1 2 2 -6.205393553382574E+01

HS1 2 1 1 7.13660798093435E-24

HS110 10 10 -4.57784755318868E+01

HS25 3 3 1.81845940377455E-16

HS3 2 1 1 1.97215226305253E-36

HS38 4 4 2.02675622883580E-28

HS3MOD 2 1 1 0.00000000000000E+00

HS4 2 2 2.66666666400000E+00

HS45 5 5 1.00000000040000E+00

HS5 2 2 -1.91322295498104E+00

LINVERSE 19 9 10 6.00000000022758E+00

LOGROS 2 2 0.00000000000000E+00

MCCORMCK 10 10 -9.59800619474625E+00

MDHOLE 2 1 1 7.52316384526264E-35

NCVXBQP1 10 10 -2.20500000000000E+04

NCVXBQP2 10 10 -1.43818650000000E+04

NCVXBQP3 10 10 -1.19578050000000E+04

NONSCOMP 25 25 4.42431972353647E-14

OSLBQP 8 5 6.25000000000000E+00

PALMER1A 6 4 2 8.98830583652624E-02

PALMER2B 4 2 2 6.23266904205002E-01

PALMER4 4 1 3 2.28538322742966E+03

PALMER4A 6 4 2 4.06061409159725E-02

PSPDOC 4 3 1 2.41421356237309E+00

QUDLIN 12 12 -7.20000000000000E+03

SIMBQP 2 1 1 0.00000000000000E+00

SPECAN 9 9 1.64565541040970E-13

YFIT 3 2 1 6.66972055747565E-13

Table A.2: Considered bound-constrained CUTEr test problems
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Appendix B

Test results

The results of the unconstrained and bound-constrained testing can be seen in the tables below.

All tables show the name of the test problems from the CUTEr collection, and the number of

function evaluations needed by each tested solver to attain a specified number of significant

figures in the objective function value f∗, computed using the package KNITRO or TRON in

the un- or bound-constrained case, respectively.
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nf Sub-basis nf Min ℓ2-norm nf Regression nf Min Frob.-norm

name 6 fig 6 fig 6 fig 6 fig

ALLINITU 39 53 81 48

ARGLINB 67 60 60 78

ARGLINC 63 52 52 53

ARWHEAD 16 16 16 16

BARD 32 38 65 44

BDQRTIC 253 242 337 219

BEALE 30 29 45 29

BIGGS6 319 639 630 661

BOX3 34 44 58 34

BRKMCC 11 10 8 10

BROWNAL 408 494 584 406

BROWNDEN 75 61 131 71

CHNROSNB 943 955 1263 947

CRAGGLVY 543 504 674 547

CUBE 94 91 155 81

DENSCHND 68 162 266 126

DENSCHNE 51 97 130 88

DENSCHNF 21 24 33 25

DIXMAANC 296 312 586 311

DIXMAANG 247 408 698 406

DIXMAANI 326 291 691 335

DIXMAANK 1082 456 850 546

DIXON3DQ 100 37 37 130

DQDRTIC 22 67 67 67

ENGVAL1 4 4 4 4

EXPFIT 32 32 45 39

FREUROTH 210 230 343 255

GENHUMPS 1646 2055 1757 3217

GULF 309 342 267 309

HAIRY 31 37 47 52

HELIX 72 70 105 51

HILBERTA 7 8 8 7

HIMMELBF 402 135 136 208

HIMMELBG 23 8 8 8

JENSMP 70 57 108 63

KOWOSB 81 86 160 114

MANCINO 59 79 144 88

MARATOSB 3180 3003 5235 3048

MEXHAT 79 88 254 65

MOREBV 83 82 153 135

NASTY 3 3 3 3

OSBORNEB 1028 1323 1140 994

PALMER1C failed failed failed failed

PALMER3C 60 88 63 59

PALMER5C 42 41 32 29

PALMER8C 82 63 57 63

POWELLSG 99 103 224 96

POWER 308 414 709 388

ROSENBR 85 73 137 62

SINEVAL 197 198 325 200

SISSER 10 14 17 28

VARDIM 687 802 625 565

YFITU 810 841 526 799

ZANGWIL2 4 4 4 4

Table B.1: Results from comparison of different types of models in BCDFO+ on unconstrained

CUTEr problems (see Figure 3.2)
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nf BC-MS nf TCG

name 6 fig 6 fig

ALLINITU 40 39

ARGLINB 67 67

ARGLINC 63 63

ARWHEAD 16 16

BARD 38 32

BDQRTIC 262 253

BEALE 28 30

BIGGS6 396 319

BOX3 29 34

BRKMCC 12 11

BROWNAL 296 408

BROWNDEN 64 75

CHNROSNB 1001 943

CRAGGLVY failed 543

CUBE 88 94

DENSCHND 143 68

DENSCHNE 143 51

DENSCHNF 22 21

DIXMAANC 370 296

DIXMAANG 435 247

DIXMAANI 332 326

DIXMAANK 525 1082

DIXON3DQ 34 100

DQDRTIC 23 22

ENGVAL1 21 4

EXPFIT 46 32

FREUROTH 246 210

GENHUMPS 575 1646

GULF failed 309

HAIRY 35 31

HELIX 70 72

HILBERTA 7 7

HIMMELBF 165 402

HIMMELBG 25 23

JENSMP 62 70

KOWOSB 81 81

MANCINO 93 59

MARATOSB 2960 3180

MEXHAT 56 79

MOREBV 77 83

NASTY 3 3

OSBORNEB 947 1028

PALMER1C failed failed

PALMER3C 59 60

PALMER5C 29 42

PALMER8C 66 82

POWELLSG 98 99

POWER 477 308

ROSENBR 88 85

SINEVAL 202 197

SISSER 18 10

VARDIM 394 687

YFITU 647 810

ZANGWIL2 7 4

Table B.2: Results from comparison of local solvers BC-MS and TCG in BCDFO+ on uncon-

strained CUTEr problems (see Figure 3.3)
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nf BC-MS nf TCG

name 6 fig 6 fig

3PK failed failed

BIGGSB1 650 38

BQP1VAR 2 2

CAMEL6 20 17

CHARDIS0 190 190

CHEBYQAD 207 143

CHENHARK 93 100

CVXBQP1 33 21

HARKERP2 38 91

HATFLDA 5 5

HATFLDB 34 38

HATFLDC 405 400

HIMMELP1 34 21

HS1 88 75

HS110 97 156

HS25 367 249

HS3 8 8

HS38 237 371

HS3MOD 8 8

HS4 5 5

HS45 12 13

HS5 16 11

LINVERSE 440 478

LOGROS 3 3

MCCORMCK 96 179

MDHOLE 154 159

NCVXBQP1 24 15

NCVXBQP2 61 32

NCVXBQP3 40 31

NONSCOMP 1458 626

OSLBQP 29 31

PALMER1A 3939 4838

PALMER2B 380 670

PALMER4 failed 257

PALMER4A 2025 1892

PSPDOC 35 34

QUDLIN 25 20

SIMBQP 9 9

SPECAN 256 351

YFIT 736 2156

Table B.3: Results from comparison of local solvers BC-MS and TCG in BCDFO+ on bound-

constrained CUTEr problems (see Figure 3.4)
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nf BCDFO+ nf BC-DFO nf NEWUOA

name 2 fig 4 fig 6 fig 8 fig 2 fig 4 fig 6 fig 8 fig 2 fig 4 fig 6 fig 8 fig

ALLINITU 20 38 39 43 53 66 103 106 50 60 67 73

ARGLINB 52 58 67 67 88 88 88 88 70 70 70 70

ARGLINC 57 62 63 63 84 84 84 84 70 70 70 70

ARWHEAD 16 16 16 16 16 16 16 16 513 579 641 680

BARD 19 28 32 37 62 73 80 83 26 46 51 60

BDQRTIC 140 193 253 254 347 435 578 593 181 236 276 296

BEALE 22 26 30 31 63 69 69 73 24 33 42 46

BIGGS6 176 263 319 559 442 653 715 820 148 265 400 624

BOX3 24 24 34 41 46 56 58 63 18 33 47 59

BRKMCC 10 10 11 16 7 13 13 16 7 7 15 15

BROWNAL 164 268 408 426 320 377 398 432 88 166 212 256

BROWNDEN 56 71 75 77 93 99 107 111 59 66 80 85

CHNROSNB 867 937 943 963 1180 1264 1335 1341 717 776 790 803

CRAGGLVY 422 519 543 580 919 1199 1302 1324 458 538 616 662

CUBE 67 86 94 97 77 103 110 112 105 130 138 151

DENSCHND 51 66 68 83 58 78 86 100 45 45 64 68

DENSCHNE 39 50 51 58 67 76 87 91 87 92 99 110

DENSCHNF 13 20 21 22 15 18 22 22 23 25 25 34

DIXMAANC 232 278 296 309 334 375 400 444 415 447 465 472

DIXMAANG 186 210 247 265 566 654 669 691 479 508 528 543

DIXMAANI 265 312 326 338 810 813 831 971 398 460 483 509

DIXMAANK 587 900 1082 1101 570 779 799 825 736 773 848 881

DIXON3DQ 99 100 100 100 31 31 31 31 72 72 79 83

DQDRTIC 22 22 22 22 44 44 44 44 71 71 81 81

ENGVAL1 4 4 4 4 4 4 4 4 17 23 29 29

EXPFIT 26 30 32 38 65 68 70 72 25 32 34 38

FREUROTH 131 204 210 254 345 553 560 571 174 197 229 243

GENHUMPS 1161 1600 1646 1688 705 1422 1602 1684 613 739 760 793

GULF 186 295 309 314 197 307 338 344 187 336 378 404

HAIRY 25 27 31 32 46 54 55 57 68 68 74 74

HELIX 62 70 72 74 57 66 68 70 66 75 84 90

HILBERTA 7 7 7 7 7 7 7 7 9 9 9 9

HIMMELBF 105 367 402 412 257 400 461 485 168 599 737 1076

HIMMELBG 15 21 23 23 22 32 35 35 14 19 23 23

JENSMP 60 67 70 72 36 44 48 49 10 25 28 31

KOWOSB 5 35 81 90 5 59 125 144 16 38 106 116

MANCINO 43 55 59 71 89 103 110 116 136 136 143 150

MARATOSB 2804 3116 3180 3198 2915 3240 3339 3361 5693 6471 6748 6813

MEXHAT 42 58 79 81 263 508 520 527 64 65 79 83

MOREBV 30 78 83 92 88 108 119 135 68 73 84 112

NASTY 3 3 3 3 3 3 3 3 failed failed failed failed

OSBORNEB 636 946 1028 1047 1917 2564 2743 2764 858 1126 1190 1211

PALMER1C 61 65 failed failed 68 68 failed failed failed failed failed failed

PALMER3C 56 58 60 62 66 66 66 67 failed failed failed failed

PALMER5C 42 42 42 42 46 46 46 46 37 37 44 44

PALMER8C 70 79 82 83 70 71 71 78 failed failed failed failed

POWELLSG 46 61 99 142 67 99 136 173 60 82 105 137

POWER 159 215 308 409 358 704 839 1117 218 289 375 460

ROSENBR 75 82 85 87 46 72 75 78 82 94 98 107

SINEVAL 190 195 197 199 171 177 178 182 203 217 218 234

SISSER 3 7 10 13 3 8 16 26 16 27 32 35

VARDIM 610 665 687 706 2022 2278 2409 2412 464 579 648 648

YFITU 712 795 810 816 897 965 981 985 failed failed failed failed

ZANGWIL2 4 4 4 4 4 4 4 4 7 7 7 7

Table B.4: Results from comparison of BCDFO+, BC-DFO and NEWUOA on unconstrained

CUTEr problems (see Figures 3.5-3.8 and Figures 3.9-3.12)
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nf BCDFO+ nf BC-DFO nf BOBYQA

name 2 fig 4 fig 6 fig 8 fig 2 fig 4 fig 6 fig 8 fig 2 fig 4 fig 6 fig 8 fig

3PK failed failed failed failed 8834 8834 8927 8959 failed failed failed failed

BIGGSB1 34 38 38 38 35 35 35 35 144 341 489 548

BQP1VAR 2 2 2 2 2 2 2 2 7 7 7 7

CAMEL6 14 15 17 22 16 26 29 35 17 29 37 41

CHARDIS0 189 190 190 190 420 420 420 420 92 119 139 161

CHEBYQAD 115 138 143 151 208 235 259 265 15 50 60 64

CHENHARK 100 100 100 100 133 134 134 134 90 121 151 172

CVXBQP1 21 21 21 21 21 21 21 21 26 39 39 39

HARKERP2 89 91 91 91 62 63 63 63 64 67 67 67

HATFLDA 5 5 5 5 5 5 5 5 46 104 141 182

HATFLDB 26 34 38 40 64 76 81 91 40 52 67 72

HATFLDC 97 381 400 425 699 753 768 790 131 247 360 441

HIMMELP1 17 21 21 24 15 25 26 28 13 19 22 26

HS1 68 73 75 77 133 138 147 148 135 158 167 172

HS110 83 113 156 167 196 316 398 409 144 260 436 521

HS25 43 236 249 252 59 254 298 failed 107 734 978 995

HS3 3 7 8 8 3 8 9 9 6 9 10 10

HS38 354 367 371 375 322 342 347 347 408 440 474 503

HS3MOD 8 8 8 8 13 13 13 13 21 24 24 24

HS4 5 5 5 5 5 5 5 5 7 7 7 7

HS45 13 13 13 13 15 15 15 15 16 16 16 16

HS5 5 10 11 17 8 8 20 20 13 15 18 21

LINVERSE 410 450 478 494 792 905 936 958 137 236 651 2828

LOGROS 3 3 3 3 3 3 3 3 443 609 652 661

MCCORMCK 117 137 179 183 59 152 166 178 29 54 75 87

MDHOLE 156 159 159 159 165 165 165 165 220 220 225 225

NCVXBQP1 15 15 15 15 16 18 18 18 31 31 31 31

NCVXBQP2 32 32 32 32 64 64 64 64 31 31 31 31

NCVXBQP3 31 31 31 31 50 50 50 50 49 49 49 49

NONSCOMP 581 615 626 650 859 907 921 937 779 1072 1406 1684

OSLBQP 30 31 31 31 31 32 32 32 22 22 22 22

PALMER1A 4385 4726 4838 4846 10842 11143 11190 11195 failed failed failed failed

PALMER2B 639 669 670 675 1192 1198 1201 1206 1037 1118 1144 1166

PALMER4 108 251 257 261 145 160 162 170 62 82 87 93

PALMER4A 1283 1764 1892 1934 2753 3445 3511 3536 2366 5767 7606 8105

PSPDOC 28 31 34 38 35 44 44 50 41 55 57 65

QUDLIN 17 20 20 20 22 22 22 22 34 34 34 34

SIMBQP 9 9 9 9 12 12 12 12 12 12 12 12

SPECAN 336 342 351 358 failed failed failed failed 697 765 820 881

YFIT 1355 2139 2156 2159 897 965 981 985 1356 2011 2237 2257

Table B.5: Results from comparison of BCDFO+, BC-DFO and BOBYQA on bound-

constrained CUTEr problems (see Figures 3.13-3.16 and Figures 3.17-3.20)
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nf SID-PSM nf NOMADm nf BFO

name 2 fig 4 fig 6 fig 8 fig 2 fig 4 fig 6 fig 8 fig 2 fig 4 fig 6 fig 8 fig

ALLINITU 63 124 156 169 20 119 191 265 125 200 275 365

ARGLINB 145 308 391 450 433 560 failed failed 134 134 238 334

ARGLINC 211 342 342 471 496 496 failed failed 229 255 327 481

ARWHEAD 33 33 33 33 355 355 355 355 1283 2069 3177 4195

BARD 55 84 104 114 85 7836 failed failed 107 320 387 433

BDQRTIC 180 358 476 608 963 1350 1778 failed 545 1130 2179 3418

BEALE 26 26 26 26 3925 4215 failed failed 116 144 178 191

BIGGS6 192 633 3729 failed 4002 failed failed failed 776 1583 3228 failed

BOX3 85 110 114 128 11 45 45 45 103 418 595 767

BRKMCC 8 23 42 59 106 209 313 failed 16 80 97 150

BROWNAL 748 1057 1255 1436 2785 14018 failed failed 1502 2757 3801 7130

BROWNDEN 122 175 191 257 863 1217 1518 failed 159 383 483 574

CHNROSNB 24 24 24 24 9486 failed failed failed 5557 9993 failed failed

CRAGGLVY 341 546 610 671 failed failed failed failed 570 1393 2486 3861

CUBE 39 121 138 143 2637 failed failed failed 496 606 660 686

DENSCHND 3 3 3 3 7933 8050 9986 failed 51 78 85 140

DENSCHNE 32 32 32 32 78 78 78 78 581 645 691 746

DENSCHNF 58 77 96 107 70 91 failed failed 56 83 102 124

DIXMAANC 3 3 3 3 2790 2790 2790 2790 1216 2061 3192 3870

DIXMAANG 3 3 3 3 2704 2777 2777 2777 991 2079 3324 4999

DIXMAANI 3 3 3 3 2161 2161 2219 2219 1039 4268 7897 13390

DIXMAANK 3 3 3 3 2733 2733 2806 2806 851 2072 6067 10685

DIXON3DQ 124 124 124 124 6182 11854 failed failed 1374 2200 3286 4619

DQDRTIC 3 3 3 3 941 941 941 941 4487 6334 7440 8184

ENGVAL1 15 52 68 78 28 28 28 28 34 59 89 117

EXPFIT 55 73 91 110 135 202 238 failed 113 129 161 172

FREUROTH 876 1012 1054 1296 827 failed failed failed 2789 failed failed failed

GENHUMPS 2 179 212 271 561 594 594 594 3204 6764 7361 7441

GULF 646 1435 1870 2017 1031 failed failed failed 336 357 2065 2213

HAIRY 66 68 77 87 55 55 55 55 68 119 126 173

HELIX 78 98 108 130 1357 failed failed failed 185 326 423 506

HILBERTA 2 2 2 2 42 90 126 162 87 95 126 149

HIMMELBF failed failed failed failed 534 11470 failed failed 303 failed failed failed

HIMMELBG 14 14 14 14 32 40 40 40 31 44 59 79

JENSMP 83 94 104 124 121 249 failed failed 265 297 327 337

KOWOSB 1 180 231 259 1 742 failed failed 1 720 1504 1713

MANCINO 424 424 448 472 1748 failed failed failed 1516 1852 2191 3338

MARATOSB failed failed failed failed failed failed failed failed 13979 failed failed failed

MEXHAT 122 3786 3827 3836 failed failed failed failed 161 230 263 274

MOREBV 97 194 244 271 88 failed failed failed 162 1084 2154 5199

NASTY 7 7 7 7 7 13 13 13 failed failed failed failed

OSBORNEB 937 1508 1577 1635 5991 13922 failed failed 5165 failed failed failed

PALMER1C 149 150 failed failed failed failed failed failed failed failed failed failed

PALMER3C 104 108 108 108 failed failed failed failed failed failed failed failed

PALMER5C 31 31 31 31 542 742 978 failed 435 628 900 1109

PALMER8C failed failed failed failed failed failed failed failed failed failed failed failed

POWELLSG 73 113 171 235 276 479 1193 1945 236 350 785 1885

POWER 3 3 3 3 902 902 950 950 433 563 740 1145

ROSENBR 70 89 97 120 1517 failed failed failed 219 270 302 325

SINEVAL 414 437 440 450 failed failed failed failed 899 939 960 985

SISSER 5 13 38 46 20 35 35 35 11 21 36 38

VARDIM 934 1093 1271 1305 failed failed failed failed 2082 2802 3635 4406

YFITU 5574 14598 failed failed failed failed failed failed 2762 4495 5296 5463

ZANGWIL2 8 8 8 8 18 43 43 43 11 36 53 68

Table B.6: Results from comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm and BFO

on unconstrained CUTEr problems (see Figures 3.21-3.24 and Figures 3.25-3.28)
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nf SID-PSM nf NOMADm nf BFO

name 2 fig 4 fig 6 fig 8 fig 2 fig 4 fig 6 fig 8 fig 2 fig 4 fig 6 fig 8 fig

3PK failed failed failed failed failed failed failed failed failed failed failed failed

BIGGSB1 33 62 231 532 failed failed failed failed 10379 failed failed failed

BQP1VAR 3 3 3 3 5 5 5 5 3 3 3 3

CAMEL6 36 53 71 89 28 58 83 93 41 61 74 97

CHARDIS0 337 337 337 337 4130 5343 failed failed 3756 4606 5793 7349

CHEBYQAD 60 99 146 161 34 86 294 failed 132 219 333 417

CHENHARK 304 632 1235 2006 2484 failed failed failed 288 909 1200 1648

CVXBQP1 42 42 42 42 1727 failed failed failed 77 77 77 77

HARKERP2 104 133 190 233 4138 failed failed failed 124 171 229 265

HATFLDA 43 70 94 106 failed failed failed failed 233 429 528 619

HATFLDB 37 119 181 262 failed failed failed failed 341 492 582 656

HATFLDC 350 591 914 1290 4348 10252 failed failed 1288 3806 7744 11737

HIMMELP1 25 40 58 67 14 43 68 failed 31 49 77 100

HS1 175 197 214 216 5 5 5 5 611 695 704 724

HS110 88 174 291 407 163 719 719 1181 128 600 839 1289

HS25 167 1596 2715 3214 272 failed failed failed 340 986 1190 1340

HS3 6 6 6 6 77 failed failed failed 5 13 26 26

HS38 165 195 209 223 failed failed failed failed 1422 1624 1934 2215

HS3MOD 33 33 33 33 391 failed failed failed 28 32 36 40

HS4 5 5 5 5 26 26 26 26 8 8 8 8

HS45 10 10 10 10 60 66 66 66 21 21 21 21

HS5 17 41 50 69 22 56 76 103 29 53 58 90

LINVERSE 175 398 583 743 1234 2700 4341 failed 715 2139 3355 5840

LOGROS 8 8 8 8 failed failed failed failed 1075 1353 1412 1444

MCCORMCK 67 236 344 491 1052 1259 2018 2493 367 655 862 1112

MDHOLE 675 687 713 727 12396 12409 12409 12409 192 208 223 232

NCVXBQP1 22 22 22 22 583 605 605 605 81 81 81 81

NCVXBQP2 58 65 65 65 478 748 failed failed 80 80 80 80

NCVXBQP3 104 178 240 241 506 821 failed failed 80 80 80 80

NONSCOMP 886 1265 1483 1895 14225 failed failed failed 3578 5180 7138 9203

OSLBQP 63 99 140 168 96 363 594 failed 68 96 155 213

PALMER1A failed failed failed failed failed failed failed failed failed failed failed failed

PALMER2B 588 614 677 697 failed failed failed failed 1524 2230 2778 3310

PALMER4 failed failed failed failed failed failed failed failed 963 1977 2205 2770

PALMER4A 7511 failed failed failed failed failed failed failed 10779 failed failed failed

PSPDOC 70 150 281 377 146 299 465 630 81 144 196 275

QUDLIN 11 11 11 11 536 574 574 574 93 93 93 93

SIMBQP 31 72 82 82 67 failed failed failed 40 40 52 63

SPECAN 604 617 833 834 749 1022 failed failed 2287 4429 6136 6602

YFIT 7619 12449 failed failed failed failed failed failed 2762 4495 5296 5463

Table B.7: Results from comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm and BFO

on bound-constrained CUTEr problems (see Figures 3.29-3.32 and Figures 3.33-3.36)
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τ = 10−1,maxeval = 200

name nf Sub-basis nf Min ℓ2-norm nf Regression nf Min Frob.-norm

ALLINITU 9 20 34 16

ARGLINB 2 2 2 2

ARGLINC 2 2 2 2

ARWHEAD 72 187 failed failed

BARD 5 4 4 14

BDQRTIC 29 14 14 13

BEALE 6 7 12 7

BIGGS6 66 54 90 66

BOX3 5 4 4 5

BRKMCC 4 6 6 4

BROWNAL 3 25 25 83

BROWNDEN 22 18 37 17

CHNROSNB 2 2 2 2

CRAGGLVY 32 6 6 8

CUBE 4 6 7 4

DENSCHND 12 3 3 3

DENSCHNE 3 11 37 4

DENSCHNF 7 9 7 13

DIXMAANC 2 2 2 2

DIXMAANG 2 2 2 2

DIXMAANI 2 2 2 2

DIXMAANK 2 2 2 2

DIXON3DQ 27 13 13 14

DQDRTIC 3 3 3 3

ENGVAL1 2 2 2 2

EXPFIT 15 14 25 15

FREUROTH 5 12 12 15

GENHUMPS 16 10 10 10

GULF 59 74 147 125

HAIRY 9 11 12 27

HELIX 11 13 24 13

HILBERTA 3 3 3 3

HIMMELBF 12 24 18 27

HIMMELBG 12 6 6 6

JENSMP 51 45 80 44

KOWOSB 18 18 failed 17

MANCINO 11 13 13 25

MARATOSB 8 7 8 5

MEXHAT 15 18 24 17

MOREBV 29 20 20 23

NASTY 103 failed failed 49

OSBORNEB 95 96 172 98

PALMER1C 17 9 9 10

PALMER3C 19 9 9 11

PALMER5C 16 15 15 10

PALMER8C 20 9 9 8

POWELLSG 19 19 50 12

POWER 2 2 2 2

ROSENBR 12 6 23 5

SINEVAL 100 137 195 110

SISSER 14 10 13 10

VARDIM 2 2 2 2

YFITU 29 14 56 14

ZANGWIL2 2 2 2 2

Table B.8: Results from comparison of different model types in BCDFO+ on unconstrained

noisy CUTEr problems when maxeval = 200 (see Figure 4.6)
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τ = 10−5,maxeval = 200

name nf Sub-basis nf Min ℓ2-norm nf Regression nf Min Frob.-norm

ALLINITU 36 46 73 38

ARGLINB 31 24 24 28

ARGLINC 36 15 15 19

ARWHEAD 199 failed failed failed

BARD failed 41 failed 33

BDQRTIC 170 159 failed 171

BEALE 31 28 39 32

BIGGS6 197 failed failed failed

BOX3 48 failed 38 failed

BRKMCC 14 7 6 9

BROWNAL 160 161 failed failed

BROWNDEN 61 49 107 60

CHNROSNB 200 failed failed failed

CRAGGLVY failed failed failed 193

CUBE 81 82 122 66

DENSCHND 35 67 127 49

DENSCHNE 42 failed failed failed

DENSCHNF 17 20 23 21

DIXMAANC failed 200 failed failed

DIXMAANG failed failed failed 199

DIXMAANI failed 198 failed failed

DIXMAANK 200 failed failed failed

DIXON3DQ failed failed 67 196

DQDRTIC 12 34 34 44

ENGVAL1 2 2 2 2

EXPFIT 31 30 49 30

FREUROTH 194 failed failed failed

GENHUMPS 51 152 failed failed

GULF failed failed 193 failed

HAIRY 29 33 36 45

HELIX 62 54 67 38

HILBERTA 5 6 6 5

HIMMELBF 88 failed 120 98

HIMMELBG 19 19 15 17

JENSMP 72 58 120 69

KOWOSB 49 failed failed failed

MANCINO 25 44 44 47

MARATOSB 13 18 15 17

MEXHAT 17 47 67 24

MOREBV failed failed failed 199

NASTY 105 failed failed 53

OSBORNEB 199 failed failed failed

PALMER1C 47 65 49 86

PALMER3C 63 69 55 53

PALMER5C 36 35 26 23

PALMER8C 82 69 50 60

POWELLSG 51 64 131 59

POWER 115 141 failed 131

ROSENBR 65 70 122 58

SINEVAL 173 failed failed failed

SISSER failed failed 18 failed

VARDIM 107 11 11 11

YFITU failed failed 184 failed

ZANGWIL2 5 5 5 5

Table B.9: Results from comparison of different model types in BCDFO+ on unconstrained

noisy CUTEr problems when maxeval = 200 (see Figure 4.7)
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τ = 10−1,maxeval = 15000

name nf Sub-basis nf Min ℓ2-norm nf Regression nf Min Frob.-norm

ALLINITU 9 20 34 16

ARGLINB 2 2 2 2

ARGLINC 2 2 2 2

ARWHEAD 78 187 352 212

BARD 5 4 4 14

BDQRTIC 29 14 14 13

BEALE 6 7 12 7

BIGGS6 76 66 97 83

BOX3 5 4 4 5

BRKMCC 4 6 6 4

BROWNAL 3 25 25 83

BROWNDEN 22 18 37 17

CHNROSNB 2 2 2 2

CRAGGLVY 32 6 6 8

CUBE 4 6 7 4

DENSCHND 12 3 3 3

DENSCHNE 3 11 37 4

DENSCHNF 7 9 7 13

DIXMAANC 2 2 2 2

DIXMAANG 2 2 2 2

DIXMAANI 2 2 2 2

DIXMAANK 2 2 2 2

DIXON3DQ 27 13 13 14

DQDRTIC 3 3 3 3

ENGVAL1 2 2 2 2

EXPFIT 15 14 25 15

FREUROTH 5 12 12 15

GENHUMPS 16 10 10 10

GULF 59 74 147 125

HAIRY 9 11 12 27

HELIX 11 13 24 13

HILBERTA 3 3 3 3

HIMMELBF 12 24 18 27

HIMMELBG 12 6 6 6

JENSMP 51 45 80 44

KOWOSB 18 18 failed 17

MANCINO 11 13 13 25

MARATOSB 8 7 8 5

MEXHAT 15 18 24 17

MOREBV 29 20 20 26

NASTY 103 204 540 49

OSBORNEB 135 146 233 132

PALMER1C 17 9 9 10

PALMER3C 19 9 9 11

PALMER5C 16 15 15 10

PALMER8C 20 9 9 8

POWELLSG 19 19 50 12

POWER 2 2 2 2

ROSENBR 12 6 23 5

SINEVAL 100 137 195 110

SISSER 14 10 13 10

VARDIM 2 2 2 2

YFITU 29 14 56 14

ZANGWIL2 2 2 2 2

Table B.10: Results from comparison of different model types in BCDFO+ on unconstrained

noisy CUTEr problems when maxeval = 15000 (see Figure 4.8)
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τ = 10−5,maxeval = 15000

name nf Sub-basis nf Min ℓ2-norm nf Regression nf Min Frob.-norm

ALLINITU 36 46 73 38

ARGLINB 31 24 24 28

ARGLINC 36 15 15 19

ARWHEAD failed 544 failed failed

BARD failed 41 failed 33

BDQRTIC 171 159 276 172

BEALE 31 28 39 32

BIGGS6 failed failed 1149 failed

BOX3 48 failed 38 failed

BRKMCC 14 7 6 9

BROWNAL 160 161 277 failed

BROWNDEN 61 49 107 60

CHNROSNB 2050 1320 952 1847

CRAGGLVY 474 379 503 245

CUBE 81 82 122 66

DENSCHND 35 67 127 49

DENSCHNE 42 failed failed failed

DENSCHNF 17 20 23 21

DIXMAANC 248 262 462 258

DIXMAANG 426 622 572 327

DIXMAANI failed failed 343 failed

DIXMAANK 2379 417 587 failed

DIXON3DQ failed failed 67 201

DQDRTIC 12 34 34 44

ENGVAL1 2 2 2 2

EXPFIT 31 30 49 30

FREUROTH 1380 235 323 1838

GENHUMPS 64 159 414 2747

GULF failed failed 193 failed

HAIRY 29 33 36 45

HELIX 62 54 67 38

HILBERTA 5 6 6 5

HIMMELBF 88 failed 120 98

HIMMELBG 19 19 15 17

JENSMP 72 58 120 69

KOWOSB 49 failed failed failed

MANCINO 25 44 44 47

MARATOSB 2104 1729 3193 1794

MEXHAT 17 47 67 24

MOREBV failed failed failed 277

NASTY 105 215 failed 53

OSBORNEB failed 6909 failed failed

PALMER1C 47 65 49 86

PALMER3C 63 69 55 53

PALMER5C 36 35 26 23

PALMER8C 82 69 50 60

POWELLSG 51 64 131 59

POWER 115 141 214 131

ROSENBR 65 70 122 58

SINEVAL 173 214 317 failed

SISSER failed failed 18 failed

VARDIM 107 11 11 11

YFITU failed failed 306 failed

ZANGWIL2 5 5 5 5

Table B.11: Results from comparison of different model types in BCDFO+ on unconstrained

noisy CUTEr problems when maxeval = 15000 (see Figure 4.9)
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τ = 10−1,maxeval = 200

name nf Sub-basis nf Min ℓ2-norm nf Regression nf Min Frob.-norm

3PK failed 182 182 failed

BIGGSB1 5 4 4 9

BQP1VAR 1 1 1 1

CAMEL6 12 11 19 11

CHARDIS0 32 10 10 21

CHEBYQAD 72 58 86 55

CHENHARK 14 30 26 21

CVXBQP1 3 3 3 3

HARKERP2 7 6 6 5

HATFLDA 18 failed 43 20

HATFLDB 17 7 7 7

HATFLDC 150 128 128 failed

HIMMELP1 8 8 8 8

HS1 4 3 3 4

HS110 79 72 146 82

HS25 11 7 7 7

HS3 failed 2 2 failed

HS38 6 3 3 3

HS3MOD 4 4 4 5

HS4 3 3 3 3

HS45 6 6 6 6

HS5 3 3 3 3

LINVERSE 44 16 16 41

LOGROS 22 28 33 21

MCCORMCK 11 7 7 7

MDHOLE 83 95 174 118

NCVXBQP1 5 5 5 5

NCVXBQP2 7 7 7 7

NCVXBQP3 7 7 7 7

NONSCOMP 4 4 4 4

OSLBQP 3 3 3 3

PALMER1A 87 103 failed 85

PALMER2B 160 200 failed 190

PALMER4 110 failed 64 68

PALMER4A 52 50 77 41

PSPDOC 16 19 19 11

QUDLIN 5 5 5 5

SIMBQP 7 7 7 7

SPECAN 9 13 13 10

YFIT 29 14 56 14

Table B.12: Results from comparison of different model types in BCDFO+ on bound-

constrained noisy CUTEr problems when maxeval = 200 (see Figure 4.10)
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τ = 10−5,maxeval = 200

name nf Sub-basis nf Min ℓ2-norm nf Regression nf Min Frob.-norm

3PK failed failed 199 failed

BIGGSB1 9 12 14 14

BQP1VAR 1 1 1 1

CAMEL6 16 20 31 18

CHARDIS0 138 111 111 178

CHEBYQAD 101 101 146 171

CHENHARK 96 199 148 failed

CVXBQP1 3 3 3 3

HARKERP2 35 22 22 31

HATFLDA 33 failed failed failed

HATFLDB failed 48 101 failed

HATFLDC 197 failed failed failed

HIMMELP1 19 19 28 19

HS1 67 67 85 49

HS110 163 143 failed failed

HS25 failed 91 failed failed

HS3 failed 2 2 failed

HS38 failed 68 failed failed

HS3MOD 6 10 6 6

HS4 3 3 3 3

HS45 6 6 6 6

HS5 failed failed 24 failed

LINVERSE 162 148 148 failed

LOGROS 27 33 failed 28

MCCORMCK 186 167 failed 159

MDHOLE 147 148 failed 189

NCVXBQP1 5 5 5 5

NCVXBQP2 7 7 7 7

NCVXBQP3 7 15 15 13

NONSCOMP failed 118 failed failed

OSLBQP 12 9 9 9

PALMER1A 200 failed failed failed

PALMER2B 198 failed failed failed

PALMER4 failed failed 194 failed

PALMER4A failed failed failed 200

PSPDOC failed failed 39 29

QUDLIN 8 5 5 5

SIMBQP 8 8 8 8

SPECAN 188 failed failed failed

YFIT failed failed 184 failed

Table B.13: Results from comparison of different model types in BCDFO+ on bound-

constrained noisy CUTEr problems when maxeval = 200 (see Figure 4.11)
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τ = 10−1,maxeval = 15000

name nf Sub-basis nf Min ℓ2-norm nf Regression nf Min Frob.-norm

3PK 564 186 186 252

BIGGSB1 5 4 4 9

BQP1VAR 1 1 1 1

CAMEL6 12 11 19 11

CHARDIS0 32 10 10 21

CHEBYQAD 72 58 86 55

CHENHARK 14 30 26 21

CVXBQP1 3 3 3 3

HARKERP2 7 6 6 5

HATFLDA 18 failed 43 20

HATFLDB 17 7 7 7

HATFLDC 302 485 805 430

HIMMELP1 8 8 8 8

HS1 4 3 3 4

HS110 79 72 146 82

HS25 11 7 7 7

HS3 failed 2 2 failed

HS38 6 3 3 3

HS3MOD 4 4 4 5

HS4 3 3 3 3

HS45 6 6 6 6

HS5 3 3 3 3

LINVERSE 77 18 18 149

LOGROS 22 28 33 21

MCCORMCK 11 7 7 7

MDHOLE 83 95 174 118

NCVXBQP1 5 5 5 5

NCVXBQP2 7 7 7 7

NCVXBQP3 7 7 7 7

NONSCOMP 4 4 4 4

OSLBQP 3 3 3 3

PALMER1A 1525 1323 743 1373

PALMER2B 165 312 281 287

PALMER4 110 242 64 68

PALMER4A 52 50 77 41

PSPDOC 16 19 19 11

QUDLIN 5 5 5 5

SIMBQP 7 7 7 7

SPECAN 9 13 13 10

YFIT 29 14 56 14

Table B.14: Results from comparison of different model types in BCDFO+ on bound-

constrained noisy CUTEr problems when maxeval = 15000 (see Figure 4.12)
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τ = 10−5,maxeval = 15000

name nf Sub-basis nf Min ℓ2-norm nf Regression nf Min Frob.-norm

3PK failed failed 10804 failed

BIGGSB1 9 12 14 14

BQP1VAR 1 1 1 1

CAMEL6 16 20 31 18

CHARDIS0 138 111 111 178

CHEBYQAD 101 101 146 171

CHENHARK 96 201 148 failed

CVXBQP1 3 3 3 3

HARKERP2 35 22 22 31

HATFLDA 33 failed failed failed

HATFLDB failed 48 101 failed

HATFLDC 1273 failed failed failed

HIMMELP1 19 19 28 19

HS1 67 67 85 49

HS110 163 143 343 209

HS25 failed 91 failed failed

HS3 failed 2 2 failed

HS38 388 68 372 383

HS3MOD 6 10 6 6

HS4 3 3 3 3

HS45 6 6 6 6

HS5 failed failed 24 failed

LINVERSE 401 failed 706 6067

LOGROS 27 33 failed 28

MCCORMCK 186 167 275 159

MDHOLE 147 148 272 189

NCVXBQP1 5 5 5 5

NCVXBQP2 7 7 7 7

NCVXBQP3 7 15 15 13

NONSCOMP 287 118 202 349

OSLBQP 12 9 9 9

PALMER1A 2581 failed 1010 failed

PALMER2B 277 464 479 542

PALMER4 failed failed 202 324

PALMER4A 2326 1614 747 1154

PSPDOC failed failed 39 29

QUDLIN 8 5 5 5

SIMBQP 8 8 8 8

SPECAN 194 224 331 293

YFIT failed failed 306 failed

Table B.15: Results from comparison of different model types in BCDFO+ on bound-

constrained noisy CUTEr problems when maxeval = 15000 (see Figure 4.13)



Appendix C

French summary of the thesis

Récapitulation française de la thèse

L’optimisation sans dérivées (OSD) a connu un regain d’intérêt ces dernières années, prin-

cipalement motivée par le besoin croissant de résoudre des problèmes d’optimisation définis

par des fonctions dont les valeurs sont calculées par simulation (par exemple, la conception

technique, la restauration d’images médicales ou de nappes phréatiques).

Ces problèmes d’optimisation, coûteux en temps de calcul, surviennent en sciences et en

ingénierie parce que l’évaluation des fonctions à optimiser nécessite souvent une simulation

complexe déterministe qui est basée sur la résolution des équations qui décrivent les phénomènes

physiques sous-jacents (par exemple pour les équations différentielles ordinaires ou partielles).

Le bruit de calcul associés à ces simulations complexes implique que l’obtention de dérivées

et parfois peu fiable, stimulant un intérêt croissant pour les techniques d’optimisation sans

dérivées.

Ces dernières années, un certain nombre de méthodes d’optimisation sans dérivées ont été

développées et en particulier des méthodes de région de confiance, basées sur l’interpolation, qui

permettent souvent d’obtenir de bons résultats [102, 127]. Ces méthodes peuvent être classées

en deux groupes : les méthodes qui visent de bonnes performances pratiques et qui, jusqu’à

présent, n’avaient pas le soutien d’une théorie de convergence et les méthodes pour lesquelles la

convergence globale a été démontrée (en ce sens que leur convergence vers un point stationnaire

est garantie depuis tout point de départ arbitraire), mais au détriment de l’efficacité.

Dans le Chapitre 2, nous avons donné une brève introduction sur les méthodes de région de

confiance, qui utilisent des polynômes quadratiques d’interpolation ou d’approximation de la

fonction sur un ensemble de points où la fonction a été évaluée. Dans les méthodes de région

de confiance, le modèle est supposé approximer la fonction dans un voisinage local du meilleur

point trouvé par le passé. Nous avons présenté les précautions particulières doivant être prises

pour contrôler la géométrie de l’ensemble d’interpolation, de manière à contrôler l’erreur entre

la fonction à minimiser et son modèle. Nous avons présenté plusieurs méthodes de cette classe

allant de celles de base, qui impliquent ce qu’on appelle des pas améliorant la géométrie, à

une approche récente, qui utilise une propriété d’auto-correction de la géométrie de l’ensemble

d’interpolation [128]. Un tel algorithme qui recourt à des pas améliorant la géométrie le moins

possible (uniquement lorsque le gradient modèle est faible), tout en conservant un mécanisme

de prise en compte la géométrie a été présenté.

147
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En outre, nous avons présenté le nouvel algorithme UDFO+, qui est une version modifiée

de l’algorithme avec auto-correction décrit, mais où les considérations de géométrie sont igno-

rées dans certaines phases de l’algorithme. Nous avons prouvé la convergence globale jusqu’aux

points fixes de premier ordre de cette nouvelle version. Plus tard, dans la section numérique du

chapitre 3, nous avons montré que UDFO+ dépasse des autres solveurs de différentes classes

de méthodes d’OSD.

Comme contribution principale de cette thèse, nous avons étendu l’algorithme UDFO+ pour

traiter les problèmes avec des bornes dans le chapitre 3, donnant ainsi naissance à l’algorithme

BCDFO+. L’extension à des problèmes avec des bornes n’est pas aussi simple qu’on pour-

rait le penser, parce qu’au cours d’une optimisaiton, les points peuvent s’aligner le long des

contraintes actives et par conséquent, n’appartenir qu’à une face de l’ensemble des contraintes,

perdant ainsi la propriété de couverture de l’espace de minimisation : on dit alors que la géomé-

trie de l’ensemble d’interpolation se détériore. Une idée pour contourner ce problème consiste

à ajouter des points à l’ensemble qui permettrait de préserver la géométrie, impliquant ainsi

plusieurs évaluations de fonctions supplémentaires. Mais comme l’idée d’utiliser la propriété

d’auto-correction est de renoncer à des calculs supplémentaires pour améliorer ou préserver

régulièrement la géométrie, nous avons proposé de gérer les contraintes de borne par une ap-

proche basées sur une activation des contraintes. Une telle stratégie crée la possibilité pour

une méthode d’OSD basée sur des modèles d’interpolation d’économiser une bonne quantité

d’évaluations de fonctions parce qu’il procède par minimisation dans des sous-espaces. Une

telle approche prévoit de mettre à jour l’ensemble des contraintes actives tout en ajoutant et /

ou éliminant des contraintes à chaque itération.

Notre algorithme comporte plusieurs caractéristiques intéressantes. Il est, par exemple, pos-

sible de lancer la minimisation en utilisant seulement n + 1 points évalués et d’augmenter

graduellement l’ensemble d’interpolation lorsque la minimisation progresse. Dans les premières

étapes, utiliser p = n+ 1 valeurs de fonction est économique et souvent suffisant pour faire des

progrès substantiels, tandis que considérer p = 1
2 (n + 1)(n + 2) valeurs de fonction dans une

étape ultérieure du calcul, peut permettre de s’approcher de la performance de la méthode de

Newton. Différents types de modèles ont été proposés pour réaliser une interpolation sous- ou

surdéterminée. Il s’est avéré qu’une d’interpolation basée sur un sous-espace des formes qua-

dratiques a obtenu les meilleurs résultats sur un ensemble de problèmes-tests sans contraintes

et un ensemble de problèmes-tests avec contraintes de borne issu de la collection CUTEr.

Une autre fonctionnalité a été introduite, ciblée pour économiser des évaluations de fonc-

tion lorsque les itérés rencontrent une borne active. En fait, il s’est avéré être avantageux de

construire le premier modèle à l’intérieur du sous-espace non seulement à partir des vraies va-

leurs de la fonction mais aussi en utilisant les informations approximatives donnée par le modèle

de l’espace de dimension supérieure. Par ailleurs, l’algorithme essaie de réutiliser les valeurs des

fonctions à partir de points précédemment évalués chaque fois qu’un nouveau modèle dans un

sous-espace ou dans l’espace-plein doit être calculé.
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Nous avons également présenté le nouvel algorithme BC-MS pour résoudre les sous-problèmes

dans la région de confiance de la norme ℓ2 avec contraintes de borne où nous avons étendu la

technique d’un algorithme de type Moré-Sorensen. La comparaison avec une méthode de gra-

dient conjugué tronquée standard a montré que l’utilisation de la BC-MS comme solveur local

intérieur de notre algorithme de région de confiance d’OSD BCDFO+ n’est pas aussi efficace

que d’utiliser le gradient conjugué tronqué dans une région de confiance en norme infinie.

Des expériences numériques ont été réalisées afin de comparer les algorithmes présentés

aux logiciels de l’état de l’art NEWUOA et BOBYQA, qui appliquent eux aussi une méthode

de région de confiance basée sur des modèles d’interpolation. Nous avons aussi rajouté à la

comparaison trois méthodes de recherche directe. Notre code BCDFO+ se compare très bien

aux autres codes sur un ensemble de problèmes-tests sans contraintes et sur un ensemble de

problèmes-tests avec contraintes de borne de la collection CUTEr.

Dans le Chapitre 4, nous avons étudié l’impact du bruit sur les algorithmes d’optimisation,

en général, et nous ont adapté notre algorithme pour traiter des problèmes d’optimisation

bruitées. Tout d’abord, nous montrons comment le niveau d’un bruit de faible amplitude dans

une fonction ou un gradient peut être estimé à l’aide d’un outil qui a été initialement développé

pour le calcul des dérivés d’ordre supérieure et pour estimer les erreurs d’arrondi. Cet outil

est intégré dans notre algorithme pour estimer le niveau de bruit si l’utilisateur a l’intention

d’optimiser une fonction objectif bruitée mais dont il n’est pas en mesure de fournir le niveau

de bruit.

Nous avons aussi présenté des résultats numériques sur des ensembles de cas-tests bruités

sans contraintes et sur un ensemble de cas-tests avec contraintes de borne. Pour réaliser des

expériences numériques qui intègrent le bruit, nous créons un ensemble de cas-tests bruités en

ajoutant des perturbations à l’ensemble des problèmes sans bruit issu de la collection CUTEr.

Le choix des problèmes bruités a été guidé par le désir d’imiter les problèmes d’optimisation

basés sur la simulation. Les résultats numériques confirment l’efficacité de notre algorithme sur

des fonctions de type boîte noire pour lesquelles aucune structure mathématique spéciale n’est

connue ou disponible. Nous évaluons les différents types de modèles d’interpolation et de régres-

sion, comme le modèle qui minimise la norme ℓ2, le modèle qui minimise la norme Frobenius,

le modèle utilisant une sous-base et le modèle de régression à l’intérieur de notre algorithme

BCDFO+. Le modèle qui minimise la norme ℓ2 semble d’être l’option la plus appropriée lorsque

seulement un petit budget en terme d’effort de calcul n’est disponible. Par contre, le modèle

de régression est à recommander fortement lorsque le budget en effort de calcul est grand car

il s’est avéré être le plus robuste pour résoudre les problèmes avec une grande précision.

Par ailleurs, nous avons présenté une étude théorique sur le bruit autorisé sur un gradient

qui est utilisé dans une méthode de recherche linéaire basée sur gradient. Nous avons pu établir

des propriétés déterministes sur le bruit de gradient pour assurer la convergence globale des

méthodes de plus grande descente et de quasi-Newton en présence d’un gradient bruité. De

plus, après avoir supposé la nature gaussienne du bruit, nous avons établi une autre condition
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suffisante sur la convergence globale d’une méthode de quasi-Newton qui autorise un bruit de

grande amplitude sur le gradient.

La bonne performance de l’algorithme ouvre de nombreuses portes pour des recherches

futures. La robustesse de notre mise en œuvre est bien sûr une invitation à chercher une théorie

de la convergence globale de la méthode. Comme nous sommes intéressés à une large évaluation

des modèles d’interpolation et de régression, nous voulons à l’avenir considérer l’utilisation

d’un modèle qui pénalise l’écart au Hessien précédent en norme de Frobenius, ainsi que celui

qui minimise la norme ℓ1 du Hessien et de comparer ces approches aux types de modèles déjà

disponibles dans notre code.

Un autre domaine évident de recherches futures, qui est motivé par notre application d’op-

timisation de forme, est d’étendre l’algorithme pour lui permettre de gérer des contraintes

générale linéaires et non linéaires. Les techniques standard basée sur des approches SQP ou de

Lagrangien augmenté pourraient être considérées à cet égard.
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