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L'optimisation sans dérivées (OSD) a connu un regain d'intérêt ces dernières années, principalement motivée par le besoin croissant de résoudre les problèmes d'optimisation définis par des fonctions dont les valeurs sont calculées par simulation (par exemple, la conception technique, la restauration d'images médicales ou de nappes phréatiques). Ces dernières années, un certain nombre de méthodes d'optimisation sans dérivée ont été développées et en particulier des méthodes fondées sur un modèle de région de confiance se sont avérées obtenir de bons résultats. Dans cette thèse, nous présentons un nouvel algorithme de région de confiance, basé sur l'interpolation, qui se montre efficace et globalement convergent (en ce sens que sa convergence vers un point stationnaire est garantie depuis tout point de départ arbitraire). Le nouvel algorithme repose sur la technique d'auto-correction de la géométrie proposé par Scheinberg and Toint (2010). Dans leur théorie, ils ont fait avancer la compréhension du rôle de la géométrie dans les méthodes d'OSD à base de modèles. Dans notre travail, nous avons pu améliorer considérablement l'efficacité de leur méthode, tout en maintenant ses bonnes propriétés de convergence. De plus, nous examinons l'influence de différents types de modèles d'interpolation sur les performances du nouvel algorithme. Nous avons en outre étendu cette méthode pour prendre en compte les contraintes de borne par l'application d'une stratégie d'activation. Considérer une méthode avec ensemble actif pour l'optimisation basée sur des modèles d'interpolation donne la possibilité d'économiser une quantité importante d'évaluations de fonctions. Il permet de maintenir les ensembles d'interpolation plus petits tout en poursuivant l'optimisation dans des sous-espaces de dimension inférieure. L'algorithme résultant montre un comportement numérique très compétitif. Nous présentons des résultats sur un ensemble de problèmes-tests issu de la collection CUTEr et comparons notre méthode à des algorithmes de référence appartenant à différentes classes de méthodes d'OSD. Pour réaliser des expériences numériques qui intègrent le bruit, nous créons un ensemble de cas-tests bruités en ajoutant des perturbations à l'ensemble des problèmes sans bruit. Le choix des problèmes bruités a été guidé par le désir d'imiter les problèmes d'optimisation basés sur la simulation. Enfin, nous présentons des résultats sur une application réelle d'un problème de conception de forme d'une aile fourni par Airbus.
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Introduction

Derivative-free optimization has enjoyed renewed interest over the past years, mostly motivated by the ever growing need to solve optimization problems defined by functions whose evaluation is computationally expensive (e.g. engineering design optimization, medical image restoration or groundwater parameter identification). These expensive optimization problems arise in science and engineering because evaluation of the function f often requires a complex deterministic simulation which is based on solving the equations that describe the underlying physical phenomena (for example ordinary or partial differential equations). The computational noise associated with these complex simulations means that obtaining derivatives is difficult and most of the time unreliable, stimulating a growing interest in derivative-free optimization.

In the last few years, a number of derivative-free optimization methods have been developed and especially model-based trust-region methods have been shown to perform quite satisfactory. These methods can be mainly classified into methods which target good practical performance and which, up to now, are only partially covered by a convergence theory and the other type of methods for which global convergence was shown but at the expense of efficiency (globally convergent in the sense that convergence is guaranteed to a stationary point from arbitrary starting points).

Many of these model-based trust-region methods construct local polynomial interpolation or regression models of the objective function and compute steps by minimizing these models inside a region using the standard trust-region methodology (see [START_REF] Conn | Trust-Region Methods[END_REF] for detailed information).

The models are built so as to interpolate previously computed function values at past iterates or at specially constructed points. For the model to be well-defined, the interpolation points must be poised [START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF][START_REF] Powell | Direct search algorithms for optimization calculations[END_REF], meaning that the geometry of this set of points has to "cover the space" sufficiently well to stay safely away from degeneracy of the interpolation conditions. To maintain a good poisedness of the set, geometry improving steps are included in many modelbased DFO algorithms, but their necessity has recently been questioned by Fasano, Nocedal and Morales [START_REF] Fasano | On the geometry phase in model-based algorithms for derivative-free optimization[END_REF] in that a simple method not using them at all has shown surprisingly good performance. However, it has been shown by Scheinberg and Toint [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF] that convergence from arbitrary starting points may then be lost, but that a new algorithm can be designed to substantially reduce the need of such geometry improving steps by exploiting a self-correcting mechanism of the interpolation set geometry in the trust-region method.

In their theory, they advance the understanding of the role of geometry in model-based DFO methods, whereas in our work, we try to improve the efficiency of their method while maintaining its good convergence properties. In this thesis, we present a new interpolation-based trust-region algorithm for unconstrained optimization, called UDFO+, which relies on the self-correcting property from [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF] to have a certain control on the poisedness of the interpolation set, but ignores geometry considerations in the trust-region management by applying a more standard trust-region management as is done in [START_REF] Fasano | On the geometry phase in model-based algorithms for derivative-free optimization[END_REF]. Such a trade-off in terms of geometry control seems promising and let us expect some performance improvement.

In Chapter 2, we give a short overview of existing derivative-free optimization methods and their classification. We present the general framework of trust-region methods and the particularities when applying such a method in a derivative-free context. We recall elements of multivariate polynomial interpolation theory and in particular different types of local polynomial interpolation and regression models. We state a basic model-based trust-region approach and the recent approach of Scheinberg and Toint [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF] applying a self-correcting property of the interpolation set geometry before we present our new algorithm UDFO+ for which we prove global convergence to first order stationary points.

Having in mind to use this algorithm to solve real-life applications, it is crucial to consider the case where bounds are imposed on the variables, what may also correspond to restricting the domain to a region where the models are well-defined, or to provide information on the localisation of the minimizer. Hence, we extended this method to handle bound constraints which is the main contribution in this thesis and is presented in Chapter 3. The extension of such a derivative-free trust-region method to bound-constrained problems seems obvious but is in fact not as straightforward in practice as one could think. The difficulty is that the set of interpolation points may get aligned at one or more active bounds and deteriorate the quality of the interpolation set. This led to the idea of applying an active-set strategy to pursue minimization in the subspace of free variables to circumvent this difficulty. Moreover, considering an active-set method in model-based derivative-free optimization creates the opportunity of saving a considerable amount of function evaluations because such a method allows to maintain smaller interpolation sets while proceeding optimization in lower dimensional subspaces. We outline the basic framework of our algorithm, called BCDFO+, and discuss its algorithmic concepts together with some practical implementation issues and consider global convergence issues.

One of the main ingredients of a trust-region method is the local solver used to find the minimizer of the trust-region subproblem at each iteration. We present the new algorithm BC-MS, to solve the bound-constrained trust-region subproblem in 2 -norm. This is in general a challenging task as the intersection of a box and a ball is not a simple set to deal with.

Although it is common now to apply infinity-norm trust-regions (for which an intersection with the bounds is again a box), we want to revisit the possibility of solving the subproblems in 2 -norm using factorization.

To assess the performance of the software implementation of our algorithm BCDFO+, we use a test set of smooth problems from the CUTEr testing collection [START_REF] Gould | CUTEr: A constrained and unconstrained testing environment, revisited[END_REF]. We report numerical experiments where we first assess different types of polynomial models and compare our new local solver BC-MS to a truncated conjugate gradient method to find the most suitable options for our trust-region algorithm. Secondly, we compare BCDFO+ to NEWUOA [START_REF] Powell | Developments of NEWUOA for minimization without derivatives[END_REF] and BOBYQA [START_REF] Powell | The BOBYQA algorithm for bound constrained optimization without derivatives[END_REF], two state-of-the-art packages applying also a trust-region method using interpolation-based models. Thirdly, we compare our algorithm to three different software packages from the class of direct search methods.

Still having in mind to use this algorithm to solve real-life applications (as for instance an aerodynamic shape optimization problem provided by Airbus), it is important to study the impact of noise on optimization algorithms in general and to adapt our algorithm to handle noisy optimization problems. This work is presented in Chapter 4.

Aerospace industry is increasingly relying on advanced numerical flow simulation tools in the early aircraft design phase. Today's flow solvers based on the solution of the Euler and Navier-Stokes equations are able to predict aerodynamic behaviour of aircraft components under different flow conditions quite well. But numerical approximations to differential equations are often quite noisy. Adaptive methods, partial convergence, and stabilization strategies are all useful techniques in this respect, but these approaches create noise and difficulties for many optimization algorithms.

We also contribute to different aspects of studies concerning noise in general and the noisy aerodynamic application in particular. We give a short description of the optimization tool OP-TaliA which is used at Airbus to perform aerodynamic shape optimization. As the used flow simulation tool provides the objective function and the adjoint gradient where the accuracy for both is unknown, we demonstrate how the level of a low-amplitude noise in a function or a gradient can be estimated using a tool which was originally developed to calculate higher order derivatives and to estimate round-off. We assess different types of interpolation and regression models inside our algorithm BCDFO+ to solve noisy optimization problems from the CUTEr library and an aerodynamic shape-design problem provided by Airbus. We present a theoretical study on the allowed noise on a gradient which is used in a gradient-based line search method.

Further, the derivative-free method SNOBFIT, developed by Huyer and Neumaier [START_REF] Huyer | SNOBFIT -stable noisy optimization by branch and fit[END_REF][START_REF] Huyer | SNOBFIT -stable noisy optimization by branch and fit[END_REF], is presented in the context of global optimization and we show the performance gain by enhancing this method with inexact gradient information.

Finally, we draw some conclusions and give perspectives in Chapter 5.

Chapter 2

Model-based derivative-free optimization Several methods have been proposed to minimize differentiable functions where derivatives are not provided. These methods can be divided into three different classes. First, there are those that compute the derivatives of the function, either by approximation, for example by finite differences (see for instance Gill et al. [START_REF] Ph | Practical Optimization[END_REF][START_REF] Ph | Computing forward-difference intervals for numerical optimization[END_REF], Dennis and Schnabel [START_REF] Jr | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF] and Nocedal and Wright [START_REF] Nocedal | Numerical Optimization[END_REF]), or by automatic differentiation procedures (see for instance Griewank and Corliss [START_REF] Griewank | Automatic Differentiation of Algorithms: Theory, Implementation, and Application[END_REF],

Gilbert [START_REF] Ch | Automatic differentiation and iterative processes[END_REF] and Griewank [START_REF] Griewank | Computational differentiation and optimization[END_REF][START_REF] Griewank | Evaluating derivatives: principles and techniques of algorithmic differentiation[END_REF]) or by computing a gradient based on solving the differential equations if the problem depends on the solution of a system of differential equations (see continuous adjoint computations in [START_REF] Borggaard | A pde sensitivity equation method for optimal aerodynamic design[END_REF][START_REF] Gockenbach | Efficient and automatic implementation of the adjoint state method[END_REF][START_REF] Vugrin | On the effect of numerical noise in simulation-based optimization[END_REF]).

The second class of methods are direct-search methods whose distinctive feature is that their algorithmic actions and decisions are only based on simple comparison rules of objective functions, without explicitely approximating derivatives or building models. Important examples of this class of methods include the Nelder-Mead algorithm (see Nelder and Mead [START_REF] Nelder | A Simplex Method for Function Minimization[END_REF], Kelley [START_REF] Kelley | Detection and remediation of stagnation in the nelder-mead algorithm using a sufficient decrease condition[END_REF] and Singer and Singer [START_REF] Singer | Efficient implementation of the Nelder-Mead search algorithm[END_REF]) and, more recently, pattern search and generalized pattern search methods (see Torczon [START_REF] Torczon | On the convergence of pattern search algorithms[END_REF], Lewis and Torczon [START_REF] Lewis | Pattern search algorithms for bound constrained minimization[END_REF][START_REF] Lewis | Pattern search methods for linearly constrained minimization[END_REF][START_REF] Lewis | A globally convergent augmented lagrangian pattern search algorithm for optimization with general constraints and simple bounds[END_REF], Hough, Kolda and Torczon [START_REF] Hough | Asynchronous parallel pattern search for nonlinear optimization[END_REF], Abramson [START_REF] Abramson | Pattern search algorithms for mixed variable general constrained optimization problems[END_REF][START_REF] Abramson | Second-order behavior of pattern search[END_REF], Gray and Kolda [START_REF] Gray | Algorithm 856: Appspack 4.0: asynchronous parallel pattern search for derivative-free optimization[END_REF]). A further generalization of pattern search methods is the recent development of mesh adaptive direct search methods (see Audet and Dennis [START_REF] Ch | Mesh adaptive direct search algorithms for constrained optimization[END_REF][START_REF] Ch | A progressive barrier for derivative-free nonlinear programming[END_REF], Abramson and Audet [START_REF] Abramson | Convergence of mesh adaptive direct search to secondorder stationary points[END_REF], Audet and Orban [START_REF] Ch | Finding optimal algorithmic parameters using derivative-free optimization[END_REF], Audet, Béchard and Le Digabel [START_REF] Ch | Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search[END_REF],

Abramson, Audet, Dennis and Le Digabel [START_REF] Abramson | OrthoMADS: A deterministic MADS instance with orthogonal directions[END_REF]). Furthermore, belonging to the class of directsearch methods, a number of hybrid methods has been developed and implemented to enhance the efficiency of this type of methods. Known examples include the softwares SID-PSM [START_REF] Custódio | Incorporating minimum Frobenius norm models in direct search[END_REF] (developed by Custódio and Vicente) and NOMADm [START_REF] Abramson | NOMADm version 4.6 user's guide[END_REF] (developed by Abramson), where in the former package minimum Frobenius-norm models are formed to speed up the direct-search run and in the latter one different types of surrogates can be used in a mesh adaptive direct search filter method.

The third class of methods, and the one we are going to explore further in this thesis, is the class of model-based methods. They have been pioneered by Winfield [START_REF] Winfield | Function and functional optimization by interpolation in data tables[END_REF][START_REF] Winfield | Function minimization by interpolation in a data table[END_REF] and Powell [START_REF] Powell | A direct search optimization method that models the objective and constraint funcions by linear interpolation[END_REF][START_REF] Powell | A direct search optimization method that models the objective by quadratic interpolation[END_REF][START_REF] Powell | On trust region methods for unconstrained minimization without derivatives[END_REF][START_REF] Powell | On the use of quadratic models in unconstrained minimization without derivatives[END_REF][START_REF] Powell | Least frobenius norm updating of quadratic models that satisfy interpolation conditions[END_REF]. Several such methods for solving unconstrained and constrained optimization problems without derivatives are available today. In particular interpolation-based trust-region methods have been shown to be numerically efficient compared to methods from the class of direct-search methods [START_REF] Moré | Benchmarking derivative-free optimization algorithms[END_REF]. Trust-region methods building a model by polynomial interpolation have been developed by a number of authors (see Conn and Toint [START_REF] Conn | An algorithm using quadratic interpolation for unconstrained derivative free optimization[END_REF], Conn, Scheinberg and Toint [START_REF] Conn | On the convergence of derivative-free methods for unconstrained optimization[END_REF][START_REF] Conn | Recent progress in unconstrained nonlinear optimization without derivatives[END_REF], Colson [START_REF] Colson | Trust-region algorithms for derivative-free optimization and nonlinear bilevel programming[END_REF], Driessen [START_REF] Driessen | Simulation-based Optimization for Product and Process Design[END_REF], Conn, Scheinberg and Vicente [START_REF] Conn | Error estimates and poisedness in multivariate polynomial interpolation[END_REF][START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF][START_REF] Conn | Global convergence of general derivativefree trust-region algorithms to first-and second-order critical points[END_REF], Wild [START_REF] Wild | MNH: a derivative-free optimization algorithm using minimal norm hessians[END_REF], Fasano, Morales and Nocedal [START_REF] Fasano | On the geometry phase in model-based algorithms for derivative-free optimization[END_REF] and Scheinberg and Toint [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF]).

Some authors developed methods to take advantage of a special problem structure in order to treat larger problems. Colson and Toint [START_REF] Colson | Exploiting band structure in unconstrained optimization without derivatives[END_REF] exploit band structure in unconstrained derivativefree optimization problems. Further, one could make use of the sparse structure of the problem to be solved. In particular, in discretized problems, this structure is sometimes well defined, in that the sparsity pattern of the Hessian is known (see Colson and Toint 2002 [29]). Another strategy can be used when the function to be minimized is partially separable (see Colson and Toint [START_REF] Colson | Optimizing partially separable functions without derivatives[END_REF], using the technique which has been introduced by Griewank and Toint [START_REF] Griewank | On the unconstrained optimization of partially separable functions[END_REF]).

Interpolation-based methods are also widely used in practice (see, for instance, Conn, Scheinberg and Toint with their software DFO [START_REF] Conn | A derivative free optimization algorithm in practice[END_REF], Marazzi and Nocedal with their software WEDGE [START_REF] Marazzi | Wedge trust region methods for derivative free optimization[END_REF] and Powell with his software implementations UOBYQA [START_REF] Powell | UOBYQA: unconstrained optimization by quadratic approximation[END_REF], NEWUOA [START_REF] Powell | The NEWUOA software for unconstrained optimization without derivatives[END_REF][START_REF] Powell | New developements of NEWUOA for minimization without derivatives[END_REF][START_REF] Powell | Developments of NEWUOA for minimization without derivatives[END_REF] and BOBYQA [START_REF] Powell | The BOBYQA algorithm for bound constrained optimization without derivatives[END_REF], Berghen and Bersini with their package CONDOR [START_REF] Vanden Berghen | CONDOR, a new parallel, constrained extension of Powell's UOBYQA algorithm: experimental results and comparison with the DFO algorithm[END_REF]).

Another direction to pursue in model-based derivative-free trust-region optimization was to incorporate other models than polynomials, for instance, such like radial-basis functions (RBF) (see Wild [START_REF] Wild | Derivative-Free Optimization Algorithms for Computationally Expensive Functions[END_REF], Wild and Shoemaker [START_REF] Wild | Global convergence of radial basis function trustregion algorithms[END_REF], Wild, Regis and Shoemaker with their software ORBIT [START_REF] Wild | ORBIT: optimization by radial basis function interpolation in trust-regions[END_REF], Oeuvray [START_REF] Oeuvray | Trust-region methods based on radial basis functions with application to biomedical imaging[END_REF], Oeuvray and Bierlaire [START_REF] Oeuvray | A new derivative-free algorithm for the medical image registration problem[END_REF][START_REF] Oeuvray | A doped derivative-free algorithm[END_REF] with their software implementation BOOSTERS [START_REF] Oeuvray | BOOSTERS: a derivative-free algorithm based on radial basis functions[END_REF]).

Finally, we want to point out that direct-search and model-based methods are discussed extensively, in theory and practice, in the recent book by Conn, Scheinberg and Vicente [START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF], a comprehensive introduction to derivative-free optimization.

Basic material

Many interpolation-based trust-region methods construct local polynomial interpolation-based models of the objective function and compute steps by minimizing these models inside a region using the standard trust-region methodology (see [START_REF] Conn | Trust-Region Methods[END_REF] for detailed information). The models are built so as to interpolate previously computed function values at a subset of past iterates or at specially constructed points. For the model to be well-defined, the interpolation points must be poised [START_REF] Conn | Geometry of interpolation sets in derivative free optimization[END_REF][START_REF] Powell | Direct search algorithms for optimization calculations[END_REF], meaning that the geometry of this set of points has to "span the space" sufficiently well to stay safely away from degeneracy. To provide the reader with some necessary information about used notations, we have to recall some basic material about the general trust-region framework, multivariate interpolation, Lagrange polynomials and the definition of poisedness and well-poisedness.

The trust-region framework

In this chapter, we consider the unconstrained optimization problem

min x∈IR n f (x), (2.1) 
where f is a nonlinear function from IR n into IR, which is bounded below. We are going to extend this formulation to bound constraints in Chapter 3.

We first briefly recall the general trust-region framework where derivatives of f are available before turning to the derivative-free case. At each iteration of an iterative trust-region method, a model of the form

m k (x k + s) = f (x k ) + g T k s + 1 2 s T H k s (2.2)
(where g k and H k are the function's gradient and Hessian, respectively) is minimized inside a trust region

B ∞ (x k , ∆ k ) = {x ∈ IR n | x -x k ∞ ≤ ∆ k }, (2.3)
where • ∞ denotes the infinity norm. Note that other choices of norms are possible but that the infinity norm is especially well suited when considering bound constraints (as we do later in this thesis) because the intersection of the box representing the trust region and the bound-constraints is again a box and there exist efficient algorithms to minimize a quadratic function in a box.

This (possibly approximate) minimization yields a trial point x k + s k , which is accepted as the new iterate if the ratio

ρ k def = f (x k ) -f (x k + s k ) m k (x k ) -m k (x k + s k ) (2.4)
is larger than a constant η 1 > 0. In this case, the model is updated and the trust-region radius is possibly increased. If ρ k ≤ η 1 , the trial point is rejected and radius ∆ k is decreased. Methods of this type have long been considered for the solution of numerical optimization problems, and we refer the reader to [START_REF] Conn | Trust-Region Methods[END_REF] for an extensive coverage of this topic.

In our derivative-free context, the model (2. puted? The answer to this question is well-known and will be provided in Section 2.1.3 after recalling some basic concepts about multivariate interpolation. The subscript k is dropped in the following description for clarity; without loss of information since we make a focus on a given iteration of the trust-region algorithm.

Polynomial interpolation

Consider P d n , the space of polynomials of degree ≤ d in IR n . A polynomial basis φ(x) = {φ 1 (x), φ 2 (x), . . . , φ q (x)} of P d n is a set of q polynomials of degree ≤ d that span P d n where we know that q = n + 1 for d = 1 and q = 1 2 (n + 1)(n + 2) for d = 2 and q = n + dd in the general case. Well-known examples of such bases are the basis of monomials, also called the natural basis, and bases of Lagrange or Newton fundamental polynomials. For any basis φ(x), any polynomial m(x) ∈ P d n can be written uniquely as

m(x) = q j=1 α j φ j (x), (2.6) 
where α j are real coefficients.

Given an interpolation set Y = {y 1 , y 2 , . . . , y p } ⊂ IR n and a polynomial m(x) of degree d in IR n that interpolates f (x) at the points of Y, the coefficients α 1 , . . . , α q can be determined by solving the linear system

M (φ, Y)α φ = f (Y), (2.7) 
where

M (φ, Y) =        φ 1 (y 1 ) φ 2 (y 1 ) • • • φ q (y 1 ) φ 1 (y 2 ) φ 2 (y 2 ) • • • φ q (y 2 ) . . . . . . . . . φ 1 (y p ) φ 2 (y p ) • • • φ q (y p )        , f (Y) =        f (y 1 ) f (y 2 ) . . . f (y p )        . (2.8)
We define the set of points Y = {y 1 , y 2 , . . . , y p } to be poised for polynomial interpolation in IR n if the coefficient matrix M (φ, Y) of the system is nonsingular. How to choose this set of points is of course one of the main issues we have to address below, as not every set Y is suitable to ensure poisedness.

Lagrange polynomials and Λ-poisedness

If the interpolation set Y is poised, the basis of Lagrange polynomials { i (x)} p i=1 exists and is uniquely defined.

Definition 2.1. Given a set of interpolation points

Y = {y 1 , y 2 , . . . , y p }, a basis of p polyno- mials j (x), j = 1, . . . , p in P d n is called a basis of Lagrange polynomials if j (y i ) = δ ij =    1 if i = j, 0 if i = j.
(2.9)

The unique polynomial m(x) which interpolates f (x) on Y using this basis of Lagrange polynomials can be expressed as

m(x) = p i=1 f (y i ) i (x). (2.10)
Moreover, for every poised set Y = {y 1 , y 2 , . . . , y p }, we have that

p i=1 i (x) = 1 for all x ∈ IR n . (2.11)
The accuracy of m(x) as an approximation of the objective function f in some region B ⊂ IR n can be quantified using the following notion [START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF]. A poised set Y = {y 1 , y 2 , . . . , y p } is said to be Λ-poised in B for some Λ > 0 if and only if for the basis of Lagrange polynomials associated with Y

Λ ≥ max 1≤i≤p max x∈B | i (x)|.
(2.12)

The right hand side of (2.12) is related to the Lebesgue constant Λ n of the set which is defined as

Λ n = max x∈B n i=1 | i (x)|, (2.13) 
see for instance [START_REF] Erdős | Problems and results on the theory of interpolation[END_REF][START_REF] Smith | Lebesgue constants in polynomial interpolation[END_REF]. Given the following relations

max 1≤i≤n | i (x)| ≤ n i=1 | i (x)| ≤ n max 1≤i≤n | i (x)|, (2.14) 
we conclude that

Λ ≤ Λ n ≤ nΛ. (2.15)
It is a measure of the accuracy of the polynomial interpolation at the set of points and also used in (2.17) below. This suggests to look for a set of interpolation points with a small Lebesgue constant. Hence, conversely, the smaller Λ, the better the geometry of the set Y.

Importantly for our purposes, Lagrange polynomial values and Λ-poisedness can be used to bound the model function and model gradient error. In particular, it is shown in Ciarlet and

Raviart [START_REF] Ciarlet | General Lagrange and Hermite interpolation in R n with applications to finite element methods[END_REF] that for any x in the convex hull of

Y D r f (x) -D r m(x) ≤ κ der (d + 1)! p j=1 y j -x d+1 D r j (x) , ( 2.16) 
where D r denotes the r-th derivative of a function and κ der is an upper bound on

D d+1 f (x)
what means that this error bound requires f (x) to have a bounded (d + 1)st derivative. When r = 0, the bound on function values writes

|f (x) -m(x)| ≤ κ der (d + 1)! pΛ ∆ d+1 , ( 2.17) 
where

Λ = max 1≤i≤p max x∈B(Y) | i (x)|, (2.18)
and ∆ is the diameter of Y.

We will also make use of the following two bounds.

Lemma 2.2. Given the sphere

B 2 (x, √ n∆) def = {v ∈ IR n | v -x 2 ≤ √ n∆}, a poised interpolation set Y ⊂ B 2 (x, √ n∆)
and its associated basis of Lagrange polynomials

{ i (x)} p i=1
, there exists constants κ ef > 0 and κ eg > 0 such that, for any interpolation polynomial m(x) of degree one or higher of the form (2.10) and any point y

∈ B 2 (x, √ n∆), one has |f (y) -m(y)| ≤ κ ef p i=1 y i -y 2 2 | i (y)| (2.19)
and

∇ x f (y) -∇ x m(y) 2 ≤ κ eg Λ∆, (2.20 
)

where Λ = max 1≤i≤p max y∈B2(x, √ n∆) | i (y)|.
See [START_REF] Ciarlet | General Lagrange and Hermite interpolation in R n with applications to finite element methods[END_REF] for (2.19) and Theorems 3.14 and 3.16 in Conn et al. [START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF] for (2.20).

Following the theory and also to have a reliable measure in practice, it is important to compute the global maximum in (2.12) relatively accurately, which can be done for linear and quadratic models using the Hebden-Moré-Sorensen algorithm (see [START_REF] Conn | Trust-Region Methods[END_REF], Section 7. An equivalent definition of Lagrange polynomials is the following. Given a poised set Y = {y 1 , . . . , y p } ⊂ IR n and an x ∈ IR n , we can express the vector φ(x) uniquely in terms of the vectors φ(y i ), i = 1, . . . , p, as

p i=1 i (x)φ(y i ) = φ(x) (2.21)
or, in matrix form,

M (φ, Y) T (x) = φ(x), where (x) = [ 1 (x), . . . , p (x)] T . (2.22) Consider now the set Y i (x) = Y \ {y i } ∪ {x}, i = 1, . . . , p.
From the Cramer's rule on (2.22), we see that

i (x) = det(M (φ, Y i (x))) det(M (φ, Y)) . ( 2 

.23)

It follows that i does not depend on the choice of φ as long as the polynomial space P d n is fixed. To interpret the formulation in (2.23), consider a set φ(Y) = {φ(y i )} p i=1 in IR p . Let vol(φ(Y)) be the volume of the simplex of vertices in φ(Y), given by

vol(φ(Y)) = | det(M (φ, Y))| p! (2.24)
(Such a simplex is the p-dimensional convex hull of φ(Y).) Then

| i (x)| = vol(φ(Y i (x))) vol(φ(Y)) (2.25)
In other words, the absolute value of the i-th Lagrange polynomial at a given point x is the change in the volume of (the p-dimensional convex hull of) φ(Y) when y i is replaced by x in Y.

This definition can be used to construct an algorithm which does compute a Λ-poised set from a poised set of cardinality p. This algorithm is stated as Algorithm 2. 

Y(= Y 0 ). Set k = 1.
Step 1:

Compute Λ k-1 = max 1≤i≤p max x∈B | i (x)|.
Step 2:

If Λ k-1 > Λ, then let i k ∈ {1, . . . , p} be an index for which max x∈B | i k (x)| > Λ,
and let

y i k * ∈ B be a point that maximizes | i k (x)| in B. Update Y(= Y k ) by performing the point exchange Y ← Y ∪ {y i k * } \ {y i k }.
Otherwise, return with a Λ-poised set Y.

Step 3: Update all Lagrange polynomial coefficients. Go to Step 1.

Condition number as a measure of well-poisedness

An alternative measure of poisedness may be derived, albeit indirectly, from the matrix M (φ, Y).

First note that the condition number of this matrix is in general not a satisfactory measure of poisedness of Y since it can be made arbitrarily large by changing the basis φ, and does not reflect the intrinsic geometry properties of Y. However, [START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF] shows that a relation between the The resulting scaled interpolation set Ŷ is then contained in a ball of radius one in Euclidean norm centered at the origin.

The polynomial basis φ is fixed to be the natural basis φ which can be described as follows (see also [START_REF] Conn | Global convergence of general derivativefree trust-region algorithms to first-and second-order critical points[END_REF]). Let a vector α i = (α i 1 , . . . , α i n ) ∈ IN n be called a multiindex, and for any x ∈ IR n , let x α i be defined by

x α i = n j=1 x α i j j . (2.26)
Define also

|α i | = n j=1 α i j and (α i )! = n j=1 (α i j )!. (2.27)
Then the elements of the natural basis are

φi (x) = 1 (α i )! x α i , i = 0, . . . , p, |α i | ≤ d. (2.28)
The following result is then derived in [41, page 51].

Theorem 2.4. If M is nonsingular and M -1 2 ≤ Λ, then the set Ŷ is √ pΛ-poised in the unit ball B(0, 1) centered at 0. Conversely, if the set Ŷ is Λ-poised in the unit ball B(0, 1) centered at 0, then cond( M ) def = M 2 M -1 2 ≤ θp 2 Λ, (2.29) 
where θ > 0 is dependent on n and d, but independent of Ŷ and Λ.

This means that this condition number of M = M ( φ, Ŷ) can also be used to monitor poisedness of the interpolation set without computing Lagrange polynomials and Λ. Conversely, we can conclude that if the set Ŷ is reasonably well-poised, then M ( φ, Ŷ) is well-conditioned and the model m(x) can be safely computed in (2.7) with the shifted and scaled coordinates.

One may then wonder which measure of poisedness is more appropriate. In our experience, both have their advantages. The condition number of M is cheaper to compute and suitable for checking the quality of the geometry before building the model at each iteration (see Section 3.3.4) while the measure in terms of the Lagrange polynomials is more convenient for improving poisedness of the interpolation set in a region B in a geometry improving step (applying Algorithm 2.1). Furthermore, Lagrange polynomials are used to estimate the highest improvement in poisedness (if any) that one can achieve when replacing a point from the interpolation set with a new trial point (see Section 3.1.5).

Polynomial interpolation and regression models

Interpolation sets of variable size

If we consider using interpolation models in the framework of a trust-region method for optimization, we observe that interpolation models of varying degree are possible and indeed desirable in the course of the complete minimization. In early stages, using p = n + 1 function values (sufficient to build a linear model) is economical and often sufficient to make progress.

In a later stage of the calculation, considering p = 1 2 (n + 1)(n + 2) function values (enough to build a complete quadratic model) it is expected to achieve faster progress to a close solution.

Thinking of models of variable degree, it is natural to consider models evolving from linear to quadratic as minimization progresses as mentioned above. So, the number of interpolation conditions p that are imposed on a model m(x) varies in the interval [n + 1, 1 2 (n + 1)(n + 2)] and in the case where p < 1 2 (n + 1)(n + 2) and q = 1 2 (n + 1)(n + 2), the matrix M (φ, Y) defining the interpolation conditions has more columns than rows and the interpolation polynomials defined by

m(y i ) = q k=1 α k φ k (y i ) = f (y i ), i = 1, . . . , p, (2.30) 
are no longer unique. This situation creates the need of using underdetermined quadratic interpolation models. The different approaches considered in this thesis are described in the following.

Sub-basis model

The easiest way one could think of to restrict (2.30) such that it has a unique solution, is to restrict P d n by taking the subset of the first p polynomial bases of φ. This technique keeps the interpolation system always square. We will use the notion of sub-basis of the basis φ to mean a subset of p elements of the basis φ. This sub-basis approach does not consider the last q -p elements in the basis of φ so that the system to solve now writes

       φ 1 (y 1 ) φ 2 (y 1 ) • • • φ p (y 1 ) φ 1 (y 2 ) φ 2 (y 2 ) • • • φ p (y 2 ) . . . . . . . . . . . . φ 1 (y p ) φ 2 (y p ) • • • φ p (y p )               α 1 α 2 . . . α p        =        f (y 1 ) f (y 2 ) . . . f (y p )        . (2.31)
The last q -p components of α are set to zero what gives a special structure to the approximated Hessian H k . In the course of minimization, sub-basis models become progressively "more quadratic" by considering these banded matrices H k with increasing bandwidth. More specifically, when adding points to the system, the quadratic basis components are considered in the following order: the squared terms in x 2 1 , . . . , x 2 n , the quadratic terms of the first sub-diagonal in x 1 x 2 , . . . , x n-1 x n , the quadratic terms of the second sub-diagonal in x 1 x 3 , . . . , x n-2 x n , etc. depending on the size of p. Note that this "expanding band" strategy is particularly efficient if the true Hessian of the objective function is itself banded.

The drawback of this approach is that it may happen that the columns in M (φ, Y) are linearly dependent for the chosen sub-basis. This is usually a sign of a non-poised interpolation set and it must be repaired in this situation whereas it may have been poised when choosing another sub-basis of φ what is explained in the following example. Considering a twodimensional example using the natural basis φ = {1,

x 1 , x 2 , 1 2 x 2 1 , 1 2 x 2 2 , x 1 x 2 }
and a sample set Y = {y 1 , y 2 , y 3 , y 4 } with y 1 = (0, 0), y 2 = (0, 1),

y 3 = (1, 0), y 4 = (1, 1). The matrix M (φ, Y) is
given by

M (φ, Y) =       1 0 0 0 0 0 1 0 1 0 0.5 0 1 1 0 0.5 0 0 1 1 1 0.5 0.5 1      
.

Choosing now the first four columns of M (φ, Y), the system is determined but not well defined since the matrix is singular. We see now that the set Y is not poised with respect to the sub-

basis φ = {1, x 1 , x 2 , 1 2 x 2 1 }, but if we selected the sub-basis φ = {1, x 1 , x 2 , x 1 x 2 }
, the set Y is well-poised and the corresponding matrix consisting of the first, the second, the third, and the sixth columns of M (φ, Y) is well-conditioned and a unique solution to this determined system exists.

Minimum 2 -norm model

Another approach for getting a unique solution from the underdetermined system (2.30) is to compute its minimum 2 -norm solution. The problem to solve writes here

min α 1 2 α 2 2 s.t. M (φ, Y)α = f (Y) (2.32)
where we assume linear independence of the rows of M (φ, Y). Its solution is expressed as

α = M (φ, Y) T [M (φ, Y)M (φ, Y) T ] -1 f (Y). (2.33)
The resulting interpolating polynomial depends on the choice of φ but it has been observed in [START_REF] Conn | Global convergence of general derivativefree trust-region algorithms to first-and second-order critical points[END_REF] that it is a reasonable choice to consider the minimum 2 -norm underdetermined interpolant for the natural basis φ.

As we assumed that the rows of M (φ, Y) are linearly independent, we can equivalently use the formulation

M † = M T [M M T ] -1 , ( 2.34) 
where M † denotes the Moore-Penrose pseudoinverse [START_REF] Moore | On the reciprocal of the general algebraic matrix[END_REF][START_REF] Penrose | A generalized inverse for matrices[END_REF] of M which is also called the generalized inverse of M . A numerically stable and accurate way of solving the system (2.33)

is by using the singular value decomposition of M .

Minimum Frobenius-norm model

It was shown in [START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF]Theorem 5.4] that function and gradient error bounds for underdetermined quadratic interpolation models depend on the norm of the Hessian of the model. A good idea seems therefore to build models for which the norm of the Hessian is moderate. This means, taking up the freedom in (2.30) could be achieved by minimizing the Frobenius-norm of the Hessian of the model, which is then called minimum Frobenius-norm model. To do so, the natural basis φ is split in its linear and quadratic parts: φL = {1, x 1 , . . . , x n } and φQ = { 1 2 x 2 1 , 1 2 x 2 2 , . . . , x 1 x 2 , . . . , x n-1 x n }. The interpolation model writes now

m(x) = α T L φL (x) + α T Q φQ (x) (2.35)
where α L and α Q are the corresponding parts of the coefficient vector α and are the solution

to the problem min α L ,α Q 1 2 α Q 2 2 s.t. M ( φL , Y)α L + M ( φQ , Y)α Q = f (Y). (2.36)
Due to the choice of the natural basis φ and the separation α

= [α L α Q ],
this is approximately the same as minimizing the Frobenius norm of the Hessian of the model subject to the interpolation conditions min c,g,H

1 4 H 2 F s.t. c + g T (y i ) + 1 2 (y i ) T H(y i ) = f (y i ), i = 1, ..., p.
(2.37)

To solve (2.36), and in turn (2.37), it is necessary to partition the matrix M (φ, Y) into linear and quadratic terms

M ( φ, Y) = M ( φL , Y) M ( φQ , Y) (2.38)
and consider the matrix

F ( φ, Y) = M ( φQ , Y)M ( φQ , Y) T M ( φL , Y) M ( φL , Y) T 0 . (2.39)
Moreover, if F ( φ, Y) is nonsingular, the minimum Frobenius-norm model exists and is uniquely defined.

Least-change Frobenius-norm model

A variant of the minimum Frobenius-norm model is the least-change Frobenius-norm model

where not the Frobenius-norm of the model Hessian is minimized to choose the solution to the system (2.30) but the Frobenius-norm of the change in the model Hessian from one iteration to the other. The problem to solve writes in this case min c,g,H

1 4 H -H old 2 F s.t. c + g T (y i ) + 1 2 (y i ) T H(y i ) = f (y i ), i = 1, ..., p (2.40)
which is similar to the formulation

min α L ,α Q 1 2 α Q -α old Q 2 2 s.t. M ( φL , Y)α L + M ( φQ , Y)α Q = f (Y), (2.41) 
where again α = [α L α Q ], φL contains the linear terms and φQ the quadratic terms of the natural basis.

This type of interpolation model has been introduced by Powell [START_REF] Powell | On the use of quadratic models in unconstrained minimization without derivatives[END_REF][START_REF] Powell | Least frobenius norm updating of quadratic models that satisfy interpolation conditions[END_REF] and has been shown to work efficiently in several of his software implementations [START_REF] Powell | The NEWUOA software for unconstrained optimization without derivatives[END_REF][START_REF] Powell | The BOBYQA algorithm for bound constrained optimization without derivatives[END_REF]. Moreover, it has been shown [START_REF] Powell | Least frobenius norm updating of quadratic models that satisfy interpolation conditions[END_REF] that if the objective f is a quadratic function then

H -∇ 2 f ≤ H old -∇ 2 f , (2.42)
where ∇ 2 f is the true Hessian of the objective function f .

Minimum 1 -norm model

An approach to find the sparsest solution to the underdetermined problem (2.30) in the context of derivative-free optimization was recently presented by Bandeira, Scheinberg and Vicente [START_REF] Bandeira | Computation of Sparse Low Degree Interpolating Polynomials and their Application to Derivative-Free Optimization[END_REF][START_REF] Bandeira | Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization[END_REF], whereas the initial idea is coming from the signal processing community for solving under-or overdetermined systems of linear equations. The type of model they suggest to construct is the sparse recovery model which is also called the minimum 1 -norm model. In many problems, second order partial derivatives in the objective function f can be zero what leads to a certain sparsity pattern in the true Hessian ∇ 2 f (x). Hence, the Hessian of the model

∇ 2 m(x)
should also be sparse. An interpolation model with a sparse Hessian could be computed by solving the minimization problem

min α L ,α Q α Q 0 (2.43) s.t. M ( φL , Y)α L + M ( φQ , Y)α Q = f (Y),
where x 0 is oftentimes, perhaps misleadingly, called zero norm. It is defined as the number of non-zero elements of x and thus the problem (2.43) is NP-hard. Several authors (e.g. in [START_REF] Donoho | Compressed sensing[END_REF][START_REF] Donoho | Fast solution of 1 -norm minimization problems when the solution may be sparse[END_REF][START_REF] Fuchs | Recovery of exact sparse representations in the presence of bounded noise[END_REF]) have proposed to use the 1 -norm instead, to approximate the sparsity of a vector as this often provides the sparsest solution to the system (2.30). This can be explained because the one-norm is the convex envelope of the function x 0 [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]. The problem to solve is now 

min α L ,α Q α Q 1 (2.44) s.t. M ( φL , Y)α L + M ( φQ , Y)α Q = f (Y), where α = [α L α Q ] is

Least-squares regression model

In the case we want to consider more than p = 1 2 (n + 1)(n + 2) points to build a quadratic model, the system of interpolation conditions (2.30) is over-determined and has in general no solution. In this case, it is possible to compute the "best fit" (least-squares) solution to the system. The problem to solve writes in this case

min α M (φ, Y)α -f (Y) 2 .
(2.45)

The above system has a unique solution if the matrix

M (φ, Y) =        φ 1 (y 1 ) φ 2 (y 1 ) • • • φ q (y 1 ) φ 1 (y 2 ) φ 2 (y 2 ) • • • φ q (y 2 ) . . . . . . . . . . . . φ 1 (y p ) φ 2 (y p ) • • • φ q (y p )        (2.46)
has full column rank. The solution to (2.45) is then expressed as

α = [M (φ, Y) T M (φ, Y)] -1 M (φ, Y) T f (Y).
(2.47)

The relation

M † = [M T M ] -1 M T (2.48)
is not directly used to compute

α = M † f (Y), (2.49) 
the unique solution to the over-determined system (2.30). Solving the system (2.47) by using the singular value decomposition of M or an approach based on the QR factorization is often preferred [START_REF] Golub | Matrix Computations[END_REF]. See also [START_REF] Björck | Algorithms for linear least squares problems[END_REF][START_REF] Björck | Numerical Methods for Least Squares Problems[END_REF] on the topic of solving least-squares problems.

In the literature (e.g. [START_REF] Conn | Geometry of sample sets in derivative-free optimization: polynomial regression and underdetermined interpolation[END_REF][START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF]), the regression model is especially recommended when there is noise in the evaluation of the true function f (x). Moreover, it has been shown [START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF] that if the noise is random and independently and identically distributed with mean zero, then the least-squares regression of the noisy function and the one of the true function converge to each other as the number of points considered tends to infinity.

A basic interpolation-based trust-region approach

As itemized at the beginning of this chapter, different interpolation-based trust-region approaches can be found in the literature. They can be distinguished by their interpolation set update, how the geometry of the interpolation set is maintained, the support of a convergence theory, and their particular management of the trust region.

In this section, we outline one of the first derivative-free interpolation-based trust-region algorithms which proved global convergence to first-order critical points. It was developed by

Conn, Scheinberg and Toint [START_REF] Conn | On the convergence of derivative-free methods for unconstrained optimization[END_REF][START_REF] Conn | A derivative free optimization algorithm in practice[END_REF] in the late Nineties and is depicted as Algorithm 2.2 on page 18. The algorithm was kept admittedly simplistic by its authors to study its convergence properties but additional features are suggested to enhance its efficiency. For instance, the possibility of including the point x k+1 in Y is mentioned, even if the iteration was unsuccessful; each evaluation of the objective function should indeed be exploited if possible, provided it does not deteriorate the quality of the model. An additional geometry improving step could be performed if the ratio between the predicted reduction in the model versus achieved reduction in the objective function (ρ k from (2.4)) is very small which is an indicator that the model is not a good approximation of the objective function.

Algorithm 2.2 Basic DFO trust-region algorithm

Step 0: Initialization. Step 2:

Choose constants

g > 0, 0 < γ 1 < γ 2 < 1 < γ 3 , 0 < η 0 ≤ η 1 < 1, µ ≥ 1
Step Computation.

Compute a point x k + s k such that

m k (x k + s k ) = min x∈B(x k ,∆ k ) m k (x).
Compute f (x k + s k ) and the ratio ρ k from (2.4).

Step 3: Interpolation set update.

Successful iteration:

If ρ k ≥ η 1 , insert x k + s k in Y k , dropping one of the existing inter- polation points if p = 1 2 (n + 1)(n + 2). Unsuccessful iteration: If ρ k < η 1 and Y k is inadequate in B(x k , ∆ k ), improve the geom- etry in B(x k , ∆ k ) by changing the set Y k .
Step 4: Trust-region radius update.

Set ∆ k+1 =        [∆ k , γ 3 ∆ k ] if ρ k ≥ η 1 , [γ 1 ∆ k , γ 2 ∆ k ] if ρ k < η 1 and Y k is adequate in B(x k , ∆ k ), ∆ k otherwise.
Step 5: Update the current iterate.

Determine xk such that f (x k ) = min y∈Y k \{x k } f (y). Then, define the revised measure

ρk def = f (x k ) -f (x k ) m k (x k ) -m k (x k + s k ) .
If ρk ≥ η 0 set x k+1 = xk , otherwise, set x k+1 = x k . Increment k by one and go to Step 1.

They also mention that the loop in Step 1 could be seen as a geometry improvement inner iteration to ensure that the model's gradient is not too far from the true first-order information of the objective function. Such a geometry improving inner iteration can be carried out in a finite and bounded number of steps if ∇f (x k ) = 0. This procedure can also be used as a criticality step to ensure a good quality of the model in a small neighborhood of a potential critical point (e.g. in [START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF]Chapter 10] and [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF]). Algorithm 2.2 does not comprise a stopping test but it is proposed in [START_REF] Conn | On the convergence of derivative-free methods for unconstrained optimization[END_REF] to stop the calculation if either the trust-region radius falls below a certain threshold, or the model's gradient becomes sufficiently small and the geometry of the interpolation set is adequate. The outlined algorithm incorporates two different regions

B k (x k , µ g k ) and B k (x k , ∆ k )
, where the latter one is the trust-region to ensure convergence of the algorithm and the other one is intended to monitor the first-order part of the model. This reminds of the use of two distinctive regions in the work by Powell [START_REF] Powell | On trust region methods for unconstrained minimization without derivatives[END_REF]. Other recent methods use only one region for more simplicity in algorithm and convergence analysis (eg. in [START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF][START_REF] Gratton | An active set trust-region method for derivative-free nonlinear bound-constrained optimization[END_REF]).

Furthermore, it should be mentioned that the considered models in Algorithm 2.2 are at most quadratic as in most of the current implementations of interpolation-based trust-region methods. This is in fact not a general requirement and, for instance, Conn and Toint [START_REF] Conn | An algorithm using quadratic interpolation for unconstrained derivative free optimization[END_REF] suggest the use of models of degree exceeding two and the theory can be readily extended to account for this. Remarkably, the authors of [START_REF] Conn | On the convergence of derivative-free methods for unconstrained optimization[END_REF] suggest to build initial models out of only two points in Y k where most other practical algorithms require that the model is build using at least n + 1 interpolation conditions.

Many methods are augmenting the interpolation set as minimization progresses, whereas, for instance, Powell uses in his approach a fixed number of interpolation points throughout the calculation and recommends to build models from 2n + 1 interpolation points. Moreover, he is mentioning one problem where maintaining an interpolation set of only n + 6 points turned out to perform well in his optimization framework [START_REF] Powell | The NEWUOA software for unconstrained optimization without derivatives[END_REF].

A practical variation of the algorithm in [START_REF] Conn | On the convergence of derivative-free methods for unconstrained optimization[END_REF] has been presented by Weber-Mendonca [START_REF] Mendonca | Multilevel Optimization: Convergence Theory, Algorithms and Application to Derivative-Free Optimization[END_REF] and both build models based on the Newton fundamental polynomial basis whereas most other known methods use models based on Lagrange polynomial bases or the basis of monomials.

Another similar approach was developed recently by Conn, Scheinberg and Vicente [START_REF] Conn | Global convergence of general derivativefree trust-region algorithms to first-and second-order critical points[END_REF] who provided the first analysis of global convergence of derivative-free trust-region methods to second-order critical points. The trust-region management of the latter algorithm differs in the manner the trust-region radius ∆ is increased in a successful iteration. In fact, they have shown that the trust-region radius needs only to be increased when it is much smaller than the second-order stationarity measure of the model. This approach also allows to accept an iterate based on simple decrease of the objective function where only the strict inequality of decrease f (x k+1 ) < f (x k ) must be true to declare an iteration as successful. This is not the case for most other interpolation-based trust-region methods which rather rely on the standard trust-region step acceptance where sufficient decrease in the objective function is required to accept the candidate as the new iterate.

Self-correcting geometry -a recent approach 2.4.1 The algorithm

The basic interpolation-based trust-region algorithm stated in the previous section, and also most algorithms in the current DFO-literature, differ from more standard trust-region schemes in that the decision to shrink the trust region depends on the quality of the interpolation model. That means, if the interpolation set is not sufficiently poised, then it may indeed turn out that the failure of the current iteration is due to the bad approximation of the function by the resulting model rather than to a too large trust region. The basic approach is therefore to improve the poisedness of the interpolation set first, before considering to shrink the trust region.

This improvement is usually carried out at special geometry improving steps as it is done in

Step 1 and Step 3 of Algorithm 2.2 above. But such a procedure is expensive because additional function values at well-chosen points have to be computed. That leads naturally to the question whether this additional cost is really necessary for the algorithm to be globally convergent or not. Interestingly, Fasano et al. [START_REF] Fasano | On the geometry phase in model-based algorithms for derivative-free optimization[END_REF] have developed an algorithm which completely ignores any kind of geometry consideration. They suggested that it may be sufficient to replace the furthest point of the interpolation set with the new trial point at each iteration to maintain a reasonable geometry of the interpolation set. And indeed, they observed that such an algorithm may perform quite well in practice although the authors have no supporting theory or explanation for their success.

However, shortly after, it has been shown by Scheinberg and Toint [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF] that it is impossible to ignore geometry consideration altogether if one wishes to maintain global convergence and they presented two counter-examples showing that such a method may converge to a noncritical point. But it was also shown that an algorithm can be designed to indeed substantially reduce the need of geometry improving steps by exploiting a self-correcting property of the interpolation set geometry. This algorithm is presented as Algorithm 2.3 on page 21. The design and convergence proof of this algorithm depends on a self-correction mechanism resulting from the combination of the trust-region framework with the polynomial interpolation setting.

Convergence theory

The algorithms developed in this thesis make use of the self-correcting property presented above and thus rely mainly on the convergence results obtained by Scheinberg and Toint [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF].

We will therefore quote their convergence theory here for convenience and show that their proposed algorithm (stated above as Algorithm 2.3) produces a sequence of iterates {x k } such that the corresponding sequence of gradients of the true objective function {∇ x f (x k )} admits a subsequence converging to zero.

Algorithm 2.3 UDFO trust-region algorithm with self-correcting geometry from [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF] Step 0: Initialization.

An initial trust-region radius ∆0, initial accuracy threshold 0 are given. An initial poised interpolation set Y0 that contains the starting point x0 is known. An interpolation model m0 around x0 and associated Lagrange polynomials {l0,j} p j=1 are computed. Constants η ∈ (0, 1), 0 < γ1 ≤ γ2 < 1, µ ∈ (0, 1), θ > 0, β ≥ 1, ≥ 0 and Λ > 1 are also given. Choose v0 = x0 where vi is a variable introduced to keep track if the model at x k is known to be well poised. Set k = 0 and i = 0.

Step 1: Criticality test.

Step 1a: Define mi = m k .

Step 1b: Step 2: Compute a trial point.

If ∇x mi(xk) < i, set i+1 = µ ∇x mi(xk) , compute a Λ-poised model mi+1 in B(x k , i+1
Compute x + k = x k + s k such that m k (x k + s k ) = min x∈B(x k ,∆ k ) m k (x).
Step 3: Evaluate the objective function at the trial point.

Compute f (x + k ) and ρ k from (2.4).

Step 4: Define the next iterate.

Step 4a: Successful iteration.

If ρ k ≥ η, define x k+1 = x + k , choose ∆ k+1 ≥ ∆ k and define Y k+1 = Y k \ {y k,r } ∪ {x + k } where r is the index j of any point y k,j in Y k , for instance, such that r = arg maxj y k,j -x + k 2 ∞ |l k,j (x + k )|.
Step 4b: Replace a far interpolation point. If ρ k < η, either x k = vi or ∆ k ≤ i, and the set

F k def = {y k,j ∈ Y k such that y k,j -x k > β∆ k and l k,j (x + k ) = 0} is non-empty, then set x k+1 = x k , ∆ k+1 = ∆ k and define Y k+1 = Y k \ {y k,r } ∪ {x + k } where r is the index j of any point y k,j in F k , for instance, such that r = arg maxj y k,j -x + k 2 ∞ |l k,j (x + k )|. Step 4c: Replace a close interpolation point. If ρ k < η, either x k = vi or ∆ k ≤ i, the set F k = ∅ and the set C k def = {y k,j ∈ Y k \ {x k } such that y k,j -x k ≤ β∆ k and l k,j (x + k ) > Λ} is non-empty, then set x k+1 = x k , ∆ k+1 = ∆ k and define Y k+1 = Y k \ {y k,r } ∪ {x + k } where r is the index j of any point y k,j in C k , for instance, such that r = arg maxj y k,j -x + k 2 ∞ |l k,j (x + k )|.
Step 4d: Reduce the trust region radius. If ρ k < η and either [x k = vi and ∆ k > i] or

F k ∪ C k = ∅, then set x k+1 = x k , ∆ k+1 ∈ [γ1∆ k , γ2∆ k ] and define Y k+1 = Y k .
Step 5: Update the model and Lagrange polynomials. 

If Y k+1 = Y k , compute
F k = ∅ (2.51)
and

∆ k ≤ min 1 κ H , (1 -η)κ c 2κ ef (β + 1) 2 (pΛ + 1) g k def = κ Λ g , (2.52) then C k = ∅. (2.53)
This property says that, provided the trust-region radius is small enough compared to the model's gradient and all the significant interpolation points are contained in the trust region, then every unsuccessful iteration must result in an improvement of the interpolation set geometry. The geometry is therefore self-correcting at unsuccessful iterations of this type. Moreover, the value of the geometry improvement is only dependent on Λ, while the maximum size of ∆ k compared with g k depends on the problem (via κ ef and κ H ), on the algorithms' parameters (via η, Λ and κ c from the Cauchy condition (3.10)) and on the size p of the interpolation set.

It is now verified, as is usual in trust-region methods, that the step bound ∆ k cannot become arbitrarily small far away from a critical point.

Lemma 2.7. Suppose that A1, A3 and A4 hold and assume that, for some k 0 ≥ 0 and all

k ≥ k 0 , g k ≥ κ g (2.54)
for some κ g > 0. Then there exists a constant κ ∆ > 0 such that, for all k ≥ k 0 , The case when there occur infinitely many successful iterations is considered next.

∆ k ≥ κ ∆ . ( 2 
Lemma 2.9. Suppose that A1-A4 hold and that the number of successful iteration is infinite.

Then

lim inf k→∞ g k = 0 (2.57)
holds.

This shows that, eventually, the gradient of the model has to become smaller than 0 . When this happens, the algorithm essentially restarts with a well-poised model in a sufficiently smaller ball. Then the same algorithm is applied, but with the value 0 replaced by the smaller 1 .

Applying the same argument as above we can show that eventually g k will become smaller than 1 and the process repeats. To prove that this process leads to global convergence, the following additional two technical results are needed.

Lemma 2.10. Suppose that A1 and A3 hold. Then

|f (x + k ) -m k (x + k )| ≤ ∇ x f (x k ) -g k ∆ k + κ H ∆ 2 k . (2.58)
Lemma 2.11. Suppose that A1 and A3 hold, that g k = 0, that

∇ x f (x k ) -g k ≤ 1 2 κ c (1 -η) g k (2.59)
and that

∆ k ≤ κ c 2κ H (1 -η) g k . (2.60)
Then iteration k is successful.

The parameter κ c is again coming from the Cauchy condition (3.10). The final result is stated in the following Theorem.

Theorem 2.12. Suppose that A1-A4 hold. Then

lim inf k→∞ ∇ x f (x k ) = 0. (2.61)
The respective proofs can be found in [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF].

A modified algorithm with self-correcting geometry

Here, we want to present our first contribution in this thesis. We present a modified version of Algorithm 2.3 (developed by Scheinberg and Toint [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF] and stated as algorithm UDFO in Section 2.4 above) and prove global convergence of our modified algorithm.

As our new algorithm (and therefore also the convergence analysis) has strong similarities to Algorithm 2.3, we explain first which modifications have been made to Algorithm 2.3 and then show that the new Algorithm 2.4 still produces a sequence of iterates {x k } converging to a first-order critical point.

The algorithm

An outline of the new algorithm, which we called UDFO+, is given in Algorithm 2.4 on page 25.

Modifications

Following the idea of Fasano, Morales and Nocedal [START_REF] Fasano | On the geometry phase in model-based algorithms for derivative-free optimization[END_REF], who successfully applied a standard trust-region management in a derivative-free algorithm and showed an efficient behaviour of such a practical algorithm, we were wondering if this strategy can be integrated into a framework where it is possible to prove global convergence. Globally convergent algorithms for unconstrained derivative-free optimization have up to now only shown to be moderately efficient compared to [START_REF] Fasano | On the geometry phase in model-based algorithms for derivative-free optimization[END_REF] due to geometry improving steps and geometry considerations in the trust-region management (e.g. do extra calculations or wait some iterations until the geometry of the set of points is good enough to allow for shrinking the trust region).

We recall the basic statement, that an iteration might be unsuccessful due to the fact that the quality of the model is not good enough but also due to the fact that the trust region is too large. The latter possibility was not emphasized in algorithm UDFO [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF] and other derivativefree algorithms which usually first ensure that the geometry is good enough to perhaps conclude that the trust-region radius must have been too large to progress (and only then shrink the trust region).

We propose an algorithm which uses the self-correcting property from [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF] to have a certain control on the geometry of the interpolation set, but ignores geometry considerations in the trust-region management by applying a more standard trust-region management as was done in [START_REF] Fasano | On the geometry phase in model-based algorithms for derivative-free optimization[END_REF]. In our version, the algorithm is given the possibility to progress further in a smaller trust-region instead of first producing a good geometry to allow for shrinking the trust region.

In particular, we suggest to decrease the trust-region radius ∆ k in each unsuccessful iteration (if ρ < η 1 ) as long as the trust-region radius is larger than a fixed threshold ∆ switch . If ∆ k ≤ ∆ switch is reached, we switch to the technique applied in Algorithm 2.3 [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF], such that ∆ k is only reduced in an unsuccessful iteration where no point from the interpolation set can be replaced (see Step 4e of Algorithm 2.4).

Algorithm 2.4 UDFO+ modified algorithm with self-correcting geometry

Step 0: Initialization.

An initial trust-region radius ∆0, initial accuracy threshold 0 are given. An initial poised interpolation set Y0 and the starting point x0 are known. A model m0 around x0 and Lagrange polynomials {l0,j} p j=1 are computed. Constants η1, ∆ switch ∈ (0, 1), 0 < γ1 ≤ γ2 < 1, µ ∈ (0, 1), θ > 0, β ≥ 1, ≥ 0, pmax ≥ n + 1 and Λ > 1 are also given. Choose v0 = x0. Set k = 0 and i = 0.

Step 1: Criticality test.

Step 1a: Define mi = m k .

Step 1b: If ∇x mi(xk) < i, set i+1 = µ ∇x mi(xk) , compute a Λ-poised model mi+1 in B(x k , i+1) and increment i by one. If ∇x mi(xk) < , then return x k , otherwise go to Step 1b.

Step 1c: Set m k = mi, ∆ k = θ ∇xm k (x k ) and define vi = x k if a new model has been computed.

Step 2: Compute a trial point.

Compute x + k = x k + s k such that m k (x k + s k ) = min x∈B(x k ,∆ k ) m k (x).
Step 3: Evaluate the objective function at the trial point.

Compute f (x + k ) and ρ k from (2.4).

Step 4: Define the next iterate.

Step 4a: Augment interpolation set (p k < pmax).

If p k < pmax, then: Define Y k+1 = Y k ∪ {x + k }. If ρ k ≥ η1, then define x k+1 = x + k and choose ∆ k+1 ≥ ∆ k . If ρ k < η1, define x k+1 = x k and if ∆ k > ∆ switch , set ∆ k+1 ∈ [γ1∆ k , γ2∆ k ], otherwise ∆ k+1 = ∆ k .
Step 4b: Successful iteration. If ρ k ≥ η1 and p k = pmax, define

x k+1 = x + k , choose ∆ k+1 ≥ ∆ k and define Y k+1 = Y k \ {y k,r } ∪ {x + k } where r is the index j of any point in Y k , for instance, such that r = arg maxj y k,j -x + k 2 ∞ |l k,j (x + k )|. Step 4c: Replace a far interpolation point. If ρ k < η1, p k = pmax, either x k = vi or ∆ k ≤ i,
and the set

F k def = {y k,j ∈ Y k such that y k,j -x k > β∆ k and l k,j (x + k ) = 0} is non-empty, then set x k+1 = x k , ∆ k+1 ∈ [γ1∆ k , γ2∆ k ] (or set ∆ k+1 = ∆ k if ∆ k ≤ ∆ switch ). Define Y k+1 = Y k \ {y k,r } ∪ {x + k } where r is the index j of any point in F k , for instance, such that r = arg maxj y k,j -x + k 2 ∞ |l k,j (x + k )|. Step 4d: Replace a close interpolation point. If ρ k < η1, p k = pmax, either x k = vi or ∆ k ≤ i, the set F k = ∅ and the set C k def = {y k,j ∈ Y k \ {x k } such that y k,j -x k ≤ β∆ k and l k,j (x + k ) > Λ} is non-empty, then set x k+1 = x k , ∆ k+1 ∈ [γ1∆ k , γ2∆ k ] (or set ∆ k+1 = ∆ k if ∆ k ≤ ∆ switch ). Define Y k+1 = Y k \ {y k,r } ∪ {x + k } where r is the index j of any point in C k , for instance, such that r = arg maxj y k,j -x + k 2 ∞ |l k,j (x + k )|.
Step 4e: Reduce the trust region radius. If ρ k < η1, p k = pmax and either [x k = vi and

∆ k > i] or F k ∪ C k = ∅, then set x k+1 = x k , ∆ k+1 ∈ [γ1∆ k , γ2∆ k ] and define Y k+1 = Y k .
Step 5: Update the model and Lagrange polynomials. The efficiency of such a combined algorithm is shown in Section 3.5 below, where we present numerical experiments involving the algorithms UDFO, UDFO+, their bound-constrained extensions BC-DFO, BCDFO+ and some reference software packages.

If Y k+1 = Y k , compute
Furthermore, in our algorithm, we additionally consider the case where the interpolation (or regression) set is augmented with the new trial points and thus, the size of the set Y is possibly increasing (see Step 4a of Algorithm 2.4). For our theory, we need therefore another assumption, in addition to the four assumptions stated in Section 2.4.2, which ensures in the regression case that there exists a maximum number of points p max considered in the set Y during the minimization. Please note, that now in successful iterations (in the case that ρ ≥ η 1 ) either

Step 4a or Step 4b is executed, and in unsuccessful iterations (when ρ < η 1 ) either Step 4a, 4c, 4d or 4e is executed. We have to consider this fact in our analysis below.

Global convergence

We now show that our Algorithm 2.4 produces a subsequence of gradients of the true objective function {g k } converging to zero.

We start by stating our assumptions.

A1: the objective function f is continuously differentiable in the feasible set F, and its gradient

∇ x f is Lipschitz continuous in F with constant L;
A2: there exists a constant κ low such that f (x) ≥ κ low for every x ∈ F;

A3: there exists a constant κ H ≥ L such that 1 + H k ≤ κ H for every k ≥ 0; A4: |Y k | ≥ n + 1 for every k ≥ 0;
Note that A3 implies that the Hessian of the model H k remains bounded which cannot be guaranteed by Algorithm 3.1 during successful iterations. However, in practice, a safeguard (as described below in Section 3.3) is applied in situations where the poisedness of the interpolation set deteriorates, by checking the condition number of the matrix M ( φ, Ŷ). This strategy guarantees a bounded model Hessian matrix in practice.

In addition, we assume that the algorithmic parameter is set to = 0 for the purposes of the convergence theory.

Lemma 2.13. Suppose that A1, A3 and A4 hold. Then, for any constant

Λ > 1, if iteration k is unsuccessful, p = p k = p max , F k = ∅ (2.62)
and

∆ k ≤ min 1 κ H , (1 -η 1 )κ c 2κ ef (β + 1) 2 (p k Λ + 1) g k def = κ Λ g k , (2.63) then C k = ∅. (2.64)
As we assume that the maximum number of points in the set p k = p max is reached, the proof of the lemma is the same as in [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF]Lemma 5.2].

This means that the self-correcting property introduced by [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF] also holds in our modified unconstrained algorithm and that therefore, provided the maximum number of points p max in the interpolation/regression set is reached, the trust-region radius is small compared to the model's gradient and if all points of Y are contained in the trust region, then every unsuccessful iteration must result in an improvement of the interpolation/regression set geometry.

The next step is to verify that the step bound ∆ k cannot become arbitrarily small far away from a critical point.

Lemma 2.14. Suppose that A1, A3 and A4 hold and assume that, for some k 0 ≥ 0 and all

k ≥ k 0 , g k ≥ κ g (2.65)
for some κ g > 0. Then there exists a constant κ ∆ > 0 such that, for all k ≥ k 0 ,

∆ k ≥ κ ∆ . (2.66) Proof. Assume that, for some k ≥ 0, ∆ k < min(κ Λ κ g , µκ g , ∆ switch ). (2.67) 
If iteration k is successful (i.e. ρ ≥ η 1 ), then we have that ∆ k+1 ≥ ∆ k . On the other hand, if ρ < η 1 , then we show that only three cases may occur. The first case is when p k < p max and

Step 4a of Algorithm 2.4 is executed. Observe now that (2.67) ensures that ∆ k < ∆ switch and therefore, ∆ k+1 = ∆ k . The second case is when p k = p max and F k = ∅. If now i > 0, then (2.65) and (2.67) ensure that

∆ k < µ g ki = i , (2.68) 
where k i is the index of the last iteration before k where a new Λ-poised model has been recomputed in the criticality test (Step 1) of Algorithm 2.4.

Step 4c is therefore executed and with ∆ k < ∆ switch , we have that ∆ k+1 = ∆ k . The third case is when p k = p max and F k = ∅ in which case (2.67) and Lemma 2.13 guarantee that C k = ∅. Since (2.68) also holds in this case,

Step 4d is executed and ∆ k+1 = ∆ k because ∆ k < ∆ switch . As a consequence, the trust-region radius may only be decreased if

∆ k ≥ min(κ Λ κ g , µκ g , ∆ switch ),
and the mechanism of the algorithm then implies the desired result with

κ ∆ = min[∆ 0 , γ 1 min(κ Λ κ g , µκ g , ∆ switch )].
We continue our analysis in the spirit of a standard trust-region theory (see [START_REF] Conn | Trust-Region Methods[END_REF]Chapter 6]).

We first consider the case where the number of successful iterations is finite.

Lemma 2.15. Suppose that A1, A2 and A4 hold and that there is a finite number of successful iterations. Then

lim inf k→∞ g k = 0. (2.69)
Proof. We observe first that, since every iteration is eventually unsuccessful (i.e. ρ < η 1 ),

x k = x * for some x * and all k sufficiently large. Assume further, for the purpose of deriving a contradiction, that (2.65) holds for some κ g > 0 and all k. Then, by Lemma 2.14, we have that ∆ k > κ ∆ > 0 on all iterations. Since the number of successful iterations is finite, eventually all iterations are unsuccessful (of type 4a, 4c, 4d or 4e, regarding the steps of Algorithm 2.4).

As a consequence, the sequence {∆ k } is non-increasing and bounded below, and therefore (2.70)

convergent. Let ∆ ∞ def = lim k→∞ ∆ k ≥ κ ∆ .
As the lemma wasn't modified, the proof remains as in [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF]Lemma 5.5].

The result of the last two lemmas is that the model gradient g k has eventually to become smaller than 0 , whereafter the algorithm restarts with a well-poised set in a sufficiently smaller ball. The same algorithm is applied but with the value 0 replaced by the smaller value 1 .

Applying the same argument as above, g k will become smaller than 1 and the process repeats. Now, we present the final result.

Theorem 2.17. Suppose that A1-A4 hold. Then

lim inf k→∞ ∇ x f (x k ) ∞ = 0. (2.71)
Proof. Assume, that p k = p max for all k sufficiently large. Assume further, by contradiction that there exists a κ g > 0 such that

∇ x f (x k ) ∞ ≥ κ g (2.72)
for all k sufficiently large. Lemmas 2.15 and 2.16 show that, for any i ∈ (0, 1), Algorithm 2.4 will generate an iterate k i such that g ki ≤ i (at the beginning of Step 1). The mechanism of

Step 1 then implies that the sequence {k i } is infinite and that { i } converges to zero. Regarding now the case where i is sufficiently large to ensure that i ≤

1 2 min κ c (1 -η 1 ) κ eg Λ , γ 1 θ, γ 1 κ c (1 -η 1 ) 2κ H κ g . (2.73)
Then Lemma 2.2 ensures that after Step 1 of Algorithm 2.4 is executed at iteration k i ,

∇ x f (x ki ) -g ki ≤ κ eg Λ i ≤ 1 2 κ c (1 -η 1 ) ∇ x f (x ki ) ≤ 1 2 ∇ x f (x ki ) , ( 2.74) 
where we used (2.72) and (2.73). Thus, after Step 1 is executed at iteration k i for i sufficiently large, using (2.72) and (2.74), one has that

g ki ∞ ≥ ∇ x f (x ki ) ∞ -∇ x f (x ki ) -g ki 2 ≥ 1 2 κ g . (2.75)
As a consequence, no loop occurs within Step 1 for large i and we have that

∆ ki = θ g ki ≥ 1 2 θκ g ≥ i γ 1 > i , ( 2.76) 
using (2.73). Moreover, after applying a criticality step, we have that v i = x ki at all iterations between k i and the next successful iteration. This means, together with (2.76), that no unsuccessful iteration of type 4c or 4d may occur before the next successful iteration or before the trust-region radius becomes smaller than i . Iterations of type 4a can not occur as p k = p max , so either a successful iteration (type 4b) occurs or the trust-region radius is decreased in Step 4e without altering the model. Iteration of type 4e may happen for j ≥ 0 as long as 

∆ ki+j > κ c (1 -η 1 )κ g 4κ H , ( 2 
∆ ki+js > γ 1 κ c (1 -η 1 )κ g 4κ H def = ∆ min ≥ i , (2.78) 
where (2.73) was used to get the last inequality. Since the model has not been recomputed between iterations k i and k i + j s , we have from (2.75) that

g ki+js = g ki ≥ 1 2 κ g . (2.79)
Using the Cauchy condition (3.10) and inserting (2.78) and (2.79) for the successful iteration k i + j s yields, using the definition of ρ (2.4) and ρ ki+js ≥ η 1 , that

f (x ki+js ) -f (x ki+js+1 ) ≥ 1 2 η 1 κ c κ g min 1 2 κ g κ H , ∆ min > 0. (2.80)
Therefore, we see that the objective function must be unbounded below because the bound in (2.80) is satisfied for all i large enough to ensure (2.73). This is impossible in view of Assumption A2 and thus our assumption that (2.72) holds for all k sufficiently large is also impossible, and (2.71) follows which concludes the proof.

Outlook

The extension of such a self-correcting derivative-free trust-region method to bound-constrained problems seems obvious but is in fact not as straightforward in practice as one could think. The difficulty is that the set of interpolation points may get aligned at one or more active bounds and deteriorate the geometry of the interpolation set. This led to the idea, which is developed in this thesis, to apply an active-set strategy to pursue minimization in the subspace of free variables to circumvent this difficulty. A detailed description of the algorithm can also be found in [START_REF] Gratton | An active set trust-region method for derivative-free nonlinear bound-constrained optimization[END_REF]. Numerical experiments performed with a practical implementation of algorithm UDFO (which was initiated by Philippe L. Toint who was also involved as well as Serge Gratton in different phases of its extension to handle bound-constrained problems) are reported in this thesis (and in [START_REF] Gratton | An active set trust-region method for derivative-free nonlinear bound-constrained optimization[END_REF]). This software implementation is called BC-DFO which is the acronym for Bound-Constrained Derivative-Free Optimization. Moreover, the main contribution in this thesis is the new algorithm BCDFO+ which is presented in Chapter 3 of this thesis. It is an extension of Algorithm 2.4 (UDFO+) to handle bound-constraints using the mentioned active-set approach.

A bound-constrained DFO algorithm

We consider the bound-constrained optimization problem

min x∈IR n f (x), (3.1) 
subject to

l i ≤ x i ≤ u i , i = 1, . . . , n
where f is a nonlinear function from IR n into IR, which is bounded below, and where l and u are vectors of (possibly infinite) lower and upper bounds on x. We denote the feasible domain of this problem by F.

Our approach uses an iterative trust-region method. As mentioned in Chapter 2, at each iteration of such a method, a model of the form

m k (x k + s) = f (x k ) + g T k s + 1 2 s T H k s (3.2)
(where g k and H k are the function's gradient and Hessian, respectively) is minimized inside a trust region B ∞ (x k , ∆ k ). As derivatives are not given, g k and H k are approximated by determining its coefficients (here represented by the vector α) from the interpolation conditions

m(y i ) = p j=1 α j φ j (y j ) = f (y i ), i = 1, . . . , p. ( 3.3) 
The points y 1 , . . . , y p considered in the interpolation conditions (3.3) form the interpolation set Y k . The set Y k contains in our case at least n + 1 points and is chosen as a subset of X k , the set of all points where the value of the objective function f is known. How to choose this interpolation set is of course one of the main issues we have to address below, as not every set

Y k is suitable because of poisedness issues.
We propose to handle the bound constraints by an "active-set" approach where a bound l i or u i is called active at x if l i = x i or x i = u i , respectively. The bound constraints l i and u i are inactive if l i < x i < u i at x. A standard active-set method anticipates to update the set of active constraints while adding and/or removing constraints at each iteration whereas our approach allows only for adding constraints to the set of active constraints. Furthermore, our method considers all bound constraints which are active and in addition also those which are (presumably) nearly-active at the current iterate x k . It then performs minimization in the subspace of the remaining inactive (also called free) variables.

This chapter is organized as follows. We outline the basic framework of our algorithm and discuss algorithmic concepts in Section 3.1. We present theoretical issues in Section 3.2, while Section 3.3 is concerned with practical implementation issues. In Section 3.4, the new algorithm BC-MS is presented to solve the trust-region subproblem in 2 -norm where bound constraints are considered. Section 3.5 reports numerical experiments with our new algorithm BCDFO+ where we first assess different types of models and two different local solvers to find the most suitable for our algorithm. Secondly, we will compare BCDFO+ with the best model option to NEWUOA [START_REF] Powell | Developments of NEWUOA for minimization without derivatives[END_REF] and BOBYQA [START_REF] Powell | The BOBYQA algorithm for bound constrained optimization without derivatives[END_REF], two state-of-the-art packages applying also an interpolation-based trust-region method, and to its predecessor BC-DFO. Thirdly, we compare our new algorithm to different existing implementations from the class of direct-search methods.

A recursive active-set trust-region algorithm

Outline of the algorithm

An outline of our new bound-constrained algorithm is given in Algorithm 3.1 on page 33. This outline is purposely schematic and many of its details needs to be discussed. This discussion constitutes the body of this section.

Ensuring suitability of a tentative interpolation set

To safely build an initial interpolation model m 0 in Step 1 of Algorithm 3.1, we have to ensure that the used interpolation set Y 0 is suitable in the sense that it is (sufficiently well) poised.

At this stage, we are only given the tentative interpolation set Z 0 and we target to obtain the set Y 0 using Z 0 as much as possible. We now describe the procedure used in our algorithm to modify Z 0 , if necessary, to form the set Y 0 . This procedure distinguishes two cases, depending on whether or not Z 0 contains more than a single point.

If |Z 0 | = 1, our objective is then to build a poised interpolation set Y 0 containing {x 0 } = Z 0 and contained in the initial trust region B ∞ (x 0 , ∆ 0 )
. This is achieved by choosing the interpolation points at the vertices of an n-dimensional simplex, as given by the formula

y i+1 = x 0 ± ∆ 0 e i , i = 1, 2, ..., n
where e i is the i-th coordinate vector in IR n and the sign is negative for the initial computation of an interpolation set but, in an attempt to diversify the set of interpolation points, alternates whenever applied again during the minimization process.

If |Z 0 | > 1, an obvious choice would be to search first for the set Y 0 ⊆ Z 0 of size p ≤ n+1 for which the condition number of the shifted and scaled system matrix M ( φ, Ŷ0 ) is the smallest out of all matrices associated with subsets of Z 0 consisting of at most min (n + 1, |Z 0 |) points.

However, this procedure is quite costly due to its combinatorial nature, and we have decided to use a cheaper technique adapted from [START_REF] Burdakov | An MST-type algorithm for the optimal basis problem[END_REF] which we explain now.

Algorithm 3.1 BCDFO+ (S 0 , X 0 , x 0 , Z 0 , ∆ 0 , 0 , )

Step 0: Initialization. A trust-region radius ∆0, an accuracy threshold and 0 ≥ are given.

An initial subspace S0, X0, the set of all points, and a tentative interpolation set Z0 which contains x0 are also given. Parameters η1, µ, γ 4 ∈ (0, 1), 0 < γ1 < γ2 < 1, θ > 0, Λ > 1 and pmax ≥ n + 1, the maximum number of points considered, are defined. Choose v0 = x0. Set k = 0 and i = 0.

Step 1: Ensure the suitability of Z0 and build the initial model. Update Z0 to obtain an interpolation set Y0 suitable for building an interpolation model with |Y0| ≥ dim(S0)+1. Then build the corresponding interpolation model m0.

Step 2: Possibly restrict minimization to a subspace S k .

Step 

If the current iterate x k is projected onto S k , compute f (PS k (x k )) and if then f (PS k (x k )) > f (x k ), go to Step 4, otherwise set x k = PS k (x k ).
Step 2.3: Build a tentative interpolation set in the subspace. Build a new tentative interpolation set Z k in S k including the projected points, if any.

Step 2.4: Solve in S k by a recursive call. Call Step 4.1:

BCDFO+(S k , X k , x k , Z k , ∆ k , i, ),
If PF (x k -∇x mi(xk)) -x k ∞ < i, set i+1 = max( , µ PF (x k -∇x mi(xk)) -x k ∞), compute a Λ-poised model mi+1 in B(x k , i+1) and increment i by one. If PF (x k -∇x mi(xk)) -x k ∞ ≤ , return x k , otherwise start Step 4.1 again. Step 4.2: Set m k = mi, ∆ k = θ PF (x k -∇xm k (x k )) -x k ∞ and define vi = x k if a new model has been computed.
Step 5: Compute a trial point and evaluate the objective function.

Compute x + k = x k + s k such that m k (x k + s k ) = min x∈B(x k ,∆ k ) m k (x). Evaluate f at x +
k and compute the ratio ρ k from (2.4).

Step 6: Define the next iterate and update the trust-region radius. Decide how to possibly incorporate the current trial point x + k into the set Y k+1 , define x k+1 and ∆ k+1 by applying Algorithm 3.3.

Step 7: Update the model.

If Y k+1 = Y k , compute the interpolation model m k+1 around x k+1 using Y k+1 . Update X k+1 = X k ∪ {x k+1 }. Increment k by one and go to Step 2.
Suppose that there exists a subset of points W p = {x 1 , x 2 , ..., x p } in Z 0 spanning a (p -1)dimensional linear manifold L. Our selection problem in Z 0 can be seen as an optimal basis problem in W p where we have to find p -1 vectors (of the form x i -x j ) out of Z 0 which are "as linearly independent as possible". This problem can be formalized by regarding the points in W p as nodes of a graph and the vectors x i -x j as edges e ij in this graph. It can then be shown [START_REF] Burdakov | A greedy algorithm for the optimal basis problem[END_REF] that any set of p -1 linearly independent vectors of the form x i -x j that generate L corresponds to a tree spanning all nodes of W p , and conversely. In addition, [START_REF] Burdakov | An MST-type algorithm for the optimal basis problem[END_REF] shows that the optimal basis problem can be reduced to finding the spanning tree t which minimizes the functional

φ(t) = eij ∈t x i -x j 2 . (3.4)
Burdakov proposes a greedy algorithm for the solution of this minimization problem [START_REF] Burdakov | A greedy algorithm for the optimal basis problem[END_REF], in which the measure of linear independence given by Γ({x 1 , . . . ,

x p }) = det(A T A) is exploited, where A = x 1 -x 2 x 1 -x 2 2 , • • • , x p-1 -x p x p-1 -x p 2 ∈ R n×p-1 .
It can be shown that Γ is a scaling invariant measure of linear independence of the columns of A and thus also measures the linear dependence of {x 1 , . . . , x p }. It is always included in the interval [0, 1] and takes the value 0 and 1 for linearly dependent and orthogonal columns, respectively, and the larger the value Γ({x 1 , . . . , x p }), the more linearly independent are the Algorithm 3.2 Modified greedy algorithm for selecting a well-poised interpolation set (Inputs:

x 0 , Z 0 , Outputs: W p , p)

Step 1:

Compute distances x i -x j 2 for i, j = 1, . . . , |Z 0 |. Step 2: Define p = 1, W 1 = {x 0 } and T 0 = ∅. Set Γ(W 1 ) = 1 and k = 0. while (p < n + 1) and (k < |Z 0 |) do Step 3: Find x i ∈ W p and x j ∈ Z 0 \ (W p ∪ T k ), such that x i -x j 2 is minimal. Step 4: Compute the measure of degeneracy Γ(W p ∪ {x j }) = Γ(W p ) x j ⊥ 2 2 x i -x j 2 2
where x j ⊥ = x j -P p x j , and P p is the orthogonal projector on the linear manifold spanned by

{x i } p 1 . Step 5: If Γ(W p ∪ {x j }) ≥ κ th , then set W p+1 = W p ∪ {x j }, T k+1 = T k , and increment p by one, else set T k+1 = T k ∪ {x j }.
Step 6: Increment k by one.

end while

vectors {x 1 , . . . , x p } [START_REF] Burdakov | An MST-type algorithm for the optimal basis problem[END_REF]. For a given threshold κ th ∈ (0, 1), we thus consider as sufficiently well-poised those sets of points, for which Γ({x 1 , . . . , x p }) ≥ κ th . It has also been proved in [START_REF] Burdakov | A greedy algorithm for the optimal basis problem[END_REF] that Γ({x 1 , . . . , x p }) can be updated to Γ({x 1 , . . . , x p , x p+1 }) by a simple algebraic formula (used in Step 4 of Algorithm 3.2), thereby avoiding the repetitive computation of determinants.

As we do not know a subset of Z 0 containing linearly independent points and not even the final number p of linearly independent points in W p , a modified version of Burdakov's greedy algorithm is proposed. In our version, the desired set is built incrementally in a sequence W 1 , . . . , W p , where W p+1 is chosen over all sets of the form

W p ∪ {y} for y ∈ Z 0 \ (W p ∪ T k ),
where T k contains the points which were tried but could not be included in W p while keeping Γ sufficiently large. The algorithm is formalized as Algorithm 3.2 on page 34.

Note that p, the number of points selected by Algorithm 3.2 from Z 0 may be smaller than n + 1. In this case, we propose to complete W p by n + 1 -|W p | points selected randomly in the trust region to form the final interpolation set Y 0 . To ensure a good geometry of Y 0 , these random points {y p+1 , . . . , y n+1 } are then successively improved using the observation that replacing an interpolation point by the maximum of its associated Lagrange polynomial in the trust region ameliorates poisedness of the interpolation set (see [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF], for instance). More precisely, for each j = p + 1, . . . , n + 1, the absolute value of the Lagrange polynomial j (x) associated with y j is maximized inside B(x k , ∆ k ) and y j is then replaced by the computed maximizer ỹj (see also Algorithm 2.1). This finally yields the "optimized" interpolation set

Y 0 = W p ∪ {ỹ p+1 } ∪ . . . ∪ {ỹ n+1 }.

Recursive call in the subspace S k

As we have mentioned above, our algorithm is of the active-set type and proceeds by exploring the subspace S k defined by fixing active or nearly active variables at their bounds (see Step 2 of Algorithm 3.1). This choice is intended to prevent the interpolation set from degenerating as would happen when points belonging to such a subspace are included in Y. This section is devoted to the description of the mechanism for selecting (nearly) active bounds and then restarting the minimization in the associated subspace.

Before going into further details, we need to introduce some notation. We will drop the iteration counter k here for clarity. We will use the projection operator on the feasible set F which is defined componentwise by

[P F (x)] i =          l i if x i ≤ l i , u i if x i ≥ u i ,
x i otherwise, (3.5) where i = 1, . . . , n. This operator projects the point x on the convex set [l, u].

The lower and upper (nearly) active bounds at the point x are defined by those whose index is in one of the sets

L = { i | x i -∇m i < l i and x i -l i ≤ b }, U = { i | x i -∇m i > u i and u i -x i ≤ b }, where b = min{ , |[P F (x -∇m) -x] i |}
, being the minimum of the required accuracy for termination and the absolute value of the appropriate projected model gradient component.

Considering the combined measure b on the bounds l and u indeed enables us to define not only currently active bounds but also "nearly-active" bounds which are presumed to become active in the next local minimization problem. If the set L ∪ U is non-empty, the minimization is then restricted to the affine subspace

S = {x ∈ F | x i = l i for i ∈ L and x i = u i for i ∈ U}, ( 3.6) 
and the number of free variables consequently reduces to n f ree = n -|L ∪ U|.

Considering 

A k = {y ∈ X k | 0 ≤ |y i -l i | ≤ b , ∀i ∈ L k and 0 ≤ |u i -y i | ≤ b , ∀i ∈ U k }, (3.7) 
where for at least one i, the strict inequality 0

< |y i -l i |, i ∈ L k or 0 < |u i -y i |, i ∈ U k must
hold. The set A k contains those points which are close to the active bounds but not on these.

All points y ∈ A k are then projected on S k , yielding y s = P S k (y), and these "dummy" points Once the algorithm has converged to an approximate solution of the problem restricted to S k , it must be verified whether it is also an approximate solution for the full-dimensional problem (after adding the fixed components). Therefore, as mentioned in Step 2.5 of Algorithm 3.1, a safely non-degenerate full-space interpolation set of degree n + 1 in an -neighbourhood around the suspected solution x * is constructed following the technique described in Section 3.1.2.

{y s }
After computing the associated model, its gradient is checked for convergence (see Step 4 of Algorithm 3.1). If convergence can not be declared, minimization is continued in IR n .

Local solver

To minimize the interpolation model m k inside the intersection of the trust region and the bounds in Step 5 of Algorithm 3.1, a simple projected truncated conjugate-gradient algorithm is used, as in the LANCELOT package [START_REF] Conn | LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A)[END_REF]. As is standard for such techniques, the set of active bounds is never reduced and a piece-wise linesearch is performed on the path defined by the projection of the current search direction onto the feasible set F if a new bound is hit in the course of the conjugate-gradient calculation. The computation is stopped as soon as the iterates leave the trust region or all bounds are active. Further, in our experiments, the computation is also terminated if the size of the projected gradient falls below a threshold of 10 -9 or the number of conjugate-gradient iterations exceeds the limit of 1500.

Remark: In our method, as in standard trust-region methods, it is imposed that m k (x + k ) must be "sufficiently small" compared to m k (x k ). To satisfy this model decrease condition, m k is usually minimized (as in our case), but the theory just requires the condition that

m k (x k ) -m k (x + k ) ≥ κ c P F (x k -∇ x m(x k )) -x k min P F (x k -∇ x m(x k )) -x k β k , ∆ k , 1 , (3.8) 
where β k is an upper bound on the condition number of the model Hessian defined as

β k def = 1 + H k (3.9)
and a constant κ c ∈ (0, 1) (see [START_REF] Conn | Global convergence of a class of trust region algorithms for optimization with simple bounds[END_REF] and [START_REF] Mouffe | Multilevel optimization in infinity norm and associated stopping criteria[END_REF]) This condition is well-known in trust-region analysis under the name of "Cauchy condition", and indicates that the model reduction must be at least a fraction of that achievable along the steepest descent direction while remaining in the trust region. In the unconstrained case, (3.8) reduces to

m k (x k ) -m k (x + k ) ≥ κ c g k (x k ) min g k (x k ) 1 + H k , ∆ k . (3.10)

Defining the next iterate

At each iteration of a classical trust-region method, a new trial point x + k is computed by minimizing the interpolation model m k inside the trust-region ∆ k . The point x + k is accepted to be the new iterate x k+1 if the ratio ρ between achieved and predicted reduction (2.4) exceeds a constant η 1 . In this case, the iteration is declared successful. Otherwise, the iteration is unsuccessful.

Following [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF], we always try to improve the geometry by replacing an appropriate point from the set in unsuccessful iterations and if we cannot find such a point, the trust-region radius is decreased. But contrary to [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF], we also decrease the trust-region radius ∆ in unsuccessful iterations in which a point was replaced (as long as the trust-region radius is larger than a fixed threshold ∆ switch ) as in the unconstrained algorithm UDFO+ described in Section 2.5. This is a slightly more aggressive strategy as applied in [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF] because we do not wait until the geometry is good enough to conclude that the trust-region radius must have been too large to progress.

Finally, this resembles the trust-region management of a standard trust-region method and the algorithm is given the possibility to progress in a smaller trust-region where the model might be more suitable. We now describe the details of the complete replacement/updating procedure.

An algorithmic outline of this routine is given in Algorithm 3.3 which is a detailed version of

Step 6 of Algorithm 3.1.

The first step is to check whether the current model is already quadratic (see Step 6a). If p k < p max , the size of the interpolation set is augmented by the new trial point. If the iteration is successful, we update the iterate by x k+1 = x + k and the trust-region radius by

∆ k+1 = min(max(γ 3 s k ∞ , ∆ k ), ∆ max ). (3.11) 
In an unsuccessful iteration, we define

x k+1 = x k and if ∆ k > ∆ switch , we set ∆ k+1 ∈ [γ 1 ∆ k , γ 2 ∆ k ], otherwise ∆ k+1 = ∆ k is kept.
When the model is quadratic, we try to replace the dummy points in the current interpolation set to avoid keeping approximate information in the model for too long (see Step 6b). If there are any dummy points in the current interpolation set (what means that Dum k ∩ Y k = ∅) for which k,j (x + k ) (the value of the associated Lagrange polynomial evaluated at the trial point) is nonzero, the dummy point for which k,j (x + k ) is largest in absolute value is replaced by x + k . In an unsuccessful iteration, the trust-region radius is decreased if ∆ k > ∆ switch . If the current iteration is successful, we have to update the trust region as in (3.11) and the current best iterate and thus the center of the interpolation set is also updated.

If the trial point could not yet be included in the interpolation set, we apply a strategy close to the one described in Algorithm 2.3 in Section 2.4 for the unconstrained case (see also [128, Algorithm 2]). If the iteration is successful, we define, as above, x k+1 = x + k and update the radius by (3.11) in Step 6c. In the interpolation set, one point y k,r is then replaced by the trial

point Y k+1 = Y k \ {y k,r } ∪ {x + k } for r = arg max j y k,j -x + k 2 | k,j (x + k )|. (3.12)
In the unsuccessful case, i.e. when ρ < η 1 , we still attempt to include the trial point in the interpolation set to improve its geometry. To do so, a point from Y k \ {x k } has to be replaced by x + k and we first attempt to replace a far interpolation point (see Step 6d). If the set

F k def = {y k,j ∈ Y k \ {x k } | y k,j -x k ∞ > β∆ k and k,j (x + k ) = 0} (3.13)
is non-empty, where β ≥ 1, then we set

x k+1 = x k , ∆ k+1 ∈ [γ 1 ∆ k , γ 2 ∆ k ] if ∆ k > ∆ switch , otherwise ∆ k+1 = ∆ k . We define the new interpolation set by Y k+1 = Y k \ {y k,r } ∪ {x + k } where Algorithm 3.3 Define the next iterate
Step 6a: Augment interpolation set (p k < p max ).

If p k < p max , then: Define Y k+1 = Y k ∪ {x + k }. If ρ k ≥ η 1 , then define x k+1 = x + k and choose ∆ k+1 ≥ ∆ k as in (3.11). If ρ k < η 1 , define x k+1 = x k and if ∆ k > ∆ switch , set ∆ k+1 ∈ [γ 1 ∆ k , γ 2 ∆ k ], otherwise ∆ k+1 = ∆ k .
Step 6b: Replace a dummy interpolation point. If p k = p max and the set

D k def = {y k,j ∈ Dum k ∩ Y k } is non-empty, then: Define Y k+1 = Y k \ {y k,r } ∪ {x + k } where k,r (x + k ) = 0 and r is an index of any point in D k , such that r = arg max j y k,j -x + k 2 | k,j (x + k )|. If ρ k ≥ η 1 , then define x k+1 = x + k and choose ∆ k+1 ≥ ∆ k as in (3.11). If ρ k < η 1 , then define x k+1 = x k and if ∆ k > ∆ switch , update ∆ k+1 ∈ [γ 1 ∆ k , γ 2 ∆ k ], otherwise we set ∆ k+1 = ∆ k .
Step 6c: Successful iteration. If p k = p max , ρ k ≥ η 1 and the set D k = ∅, then: Define

x k+1 = x + k , choose ∆ k+1 ≥ ∆ k as in (3.11). Define Y k+1 = Y k \ {y k,r } ∪ {x + k } where r is the index j of any point y k,j in Y k , for instance, such that r = arg max j y k,j -x + k 2 | k,j (x + k )|.
Step 6d: Replace a far interpolation point.

If p k = p max , ρ k < η 1 , [x k = v i or ∆ k ≤ i ],
the set D k = ∅ and the set

F k def = {y k,j ∈ Y k such that y k,j -x k > β∆ k and k,j (x + k ) = 0} is non-empty, then: Set x k+1 = x k , ∆ k+1 ∈ [γ 1 ∆ k , γ 2 ∆ k ] (or set ∆ k+1 = ∆ k if ∆ k ≤ ∆ switch ). Define Y k+1 = Y k \ {y k,r } ∪ {x +
k } where r is the index j of any point y k,j in F k , for instance, such that r = arg max j y k,j -

x + k 2 | k,j (x + k )|.
Step 6e: Replace a close interpolation point.

If p k = p max , ρ k < η 1 , [x k = v i or ∆ k ≤ i ], the set D k ∪ F k = ∅ and the set C k def = {y k,j ∈ Y k \ {x k } such that y k,j -x k ≤ β∆ k and k,j (x + k ) > Λ} is non-empty, then: Set x k+1 = x k , ∆ k+1 ∈ [γ 1 ∆ k , γ 2 ∆ k ] (or set ∆ k+1 = ∆ k if ∆ k ≤ ∆ switch ). Define Y k+1 = Y k \ {y k,r } ∪ {x + k } where r is the index j of any point y k,j in C k , for instance, such that r = arg max j y k,j -x + k 2 | k,j (x + k )|.
Step 6f: Reduce the trust region radius.

If p k = p max , ρ k < η 1 and either [x k = v i and ∆ k > i ] or D k ∪ F k ∪ C k = ∅, then: Set x k+1 = x k , ∆ k+1 ∈ [γ 1 ∆ k , γ 2 ∆ k ] and define Y k+1 = Y k .
r is the index j of any point y k,j in F k , for instance such that

r = arg max j y k,j -x + k 2 | k,j (x + k )| (3.14) or r = arg max j y k,j -x + k 2 . (3.15)
If the set F k is empty and the set

C k def = {y k,j ∈ Y k \ {x k } | y k,j -x k ∞ ≤ β∆ k and k,j (x + k ) > Λ C } (3.16)
is non-empty, where Λ C > 1 is defined by the user, we then set

x k+1 = x k , ∆ k+1 ∈ [γ 1 ∆ k , γ 2 ∆ k ] if ∆ k > ∆ switch , otherwise ∆ k+1 = ∆ k (see Step 6e).
The new interpolation set is defined by

Y k+1 = Y k \ {y k,r } ∪ {x + k } where r is the index j of any point y k,j in C k , for instance such that r = arg max j y k,j -x + k 2 | k,j (x + k )| (3.17) or r = arg max j | k,j (x + k )|. ( 3.18) 
(The current default in our algorithm, based on our numerical experience, is to choose (3.15) and (3.18). This seems also natural as the target is to first remove far points to improve the locality of the model and then to improve the poisedness of the set when all points are rather close to the current iterate.)

If the trial point could not be included into the interpolation set under the above conditions, it implies that the interpolation set must be reasonably poised, as otherwise we could have improved it. As a consequence, we set

x k+1 = x k , Y k+1 = Y k and ∆ k+1 ∈ [γ 1 ∆ k , γ 2 ∆ k ] in
Step 6f.

Avoid re-entering a subspace

We have stated in Step 2.1 of Algorithm 3.1 that we never re-enter a subspace S k which has already been explored at the current iterate x k as this is of no interest anymore. Instead, we proceed in this situation with a criticality step in a reduced trust region (Step 3 of Algorithm 3.1).

We now justify that feature.

Imagine the following situation: convergence is declared in subspace S k and a new model of degree one is built at x * in IR n . Assume also that x * is a solution of the full-space problem. It may then happen that the model gradient ∇m k (x * ) of the linear model m k is too large to declare convergence in IR n , because m k is not a sufficiently accurate model even if the interpolation set is well poised.

Indeed, we know (Theorem 2.11, p. 29, in [START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF]) that, for linear models,

∇ x f (y) -∇ x m(y) 2 ≤ κ eg ∆, (3.19) 
and since a projection onto a convex set is Lipschitz continuous in 2-norm we have that

P F (y -∇ x f (y)) -y -[P F (y -∇ x m(y)) -y] 2 ≤ ∇ x f (y) -∇ x m(y) 2 ≤ κ eg ∆, (3.20)
where κ eg is given by

κ eg = ν(1 + n 1 2 L-1 2 /2), (3.21) 
where

L = L ∆ = 1 ∆ [y 2 -y 1 , ..., y n -y 1 ]
and ∇f is Lipschitz continuous with constant ν > 0. As a consequence, a big difference between ∇m k and ∇f can only occur either because κ eg or the trust-region radius are too large. As the size of the Lipschitz constant is beyond our control, building a new well-poised set in a reduced trust-region radius must solve the problem because (3.19) implies that the model gradient will converge to the true one. This procedure can be seen as a criticality step and either convergence will be declared (in Step 4 of Algorithm 3.1) or the algorithm may proceed with a more accurate model.

Theoretical issues

In this section, we want to talk about the convergence of our bound-constrained algorithm BCDFO+ presented as Algorithm 3.1 in the previous section.

Global convergence

After having presented a bound-constrained algorithm, which successfully combines techniques from different fields of optimization, it turned out that proving global convergence of our recursive active-set trust-region algorithm is rather difficult.

In fact, active-set methods are widely used in the context of gradient-based optimization [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF][START_REF] Conn | Global convergence of a class of trust region algorithms for optimization with simple bounds[END_REF][START_REF] Conn | Trust-Region Methods[END_REF][START_REF] Hager | A new active set algorithm for box constrained optimization[END_REF][START_REF] Nocedal | Numerical Optimization[END_REF] to efficiently handle bound constraints. Due to the availability of firstorder information, these methods check the validity of the active set at every iteration. In our derivative-free context we decided, to avoid degeneration of the sample set, to pursue minimization in the subspace, where active bounds are allowed to be added but not to be released, until convergence is declared.

We had the idea, that such a recursive subspace-step can be regarded as a magical step, as described in [START_REF] Conn | Two-step algorithms for nonlinear optimization with structured applications[END_REF] and [START_REF] Conn | Trust-Region Methods[END_REF]Chapter 10.4.1]. A magical step s M A k is an additional step which is performed, once the model-decreasing step s k has been determined. Such a composite step is better than s k in the sense that f (

x k + s k + s M A k ) ≤ f (x k + s k ).
In our context, a subspace step could be seen as such a magical step and would contribute to the minimization process of the full-space problem with a "very successful" step. One problem is that our algorithm does not obey the rules for the trust-region management of a method including magical steps as this would be, for instance, to apply a strict trust-region management in the full-space. This would mean to expand or contract the trust-region radius in the full-space after a subspace step according to its value before the subspace step what is not the case in our algorithm. Furthermore, and more importantly, the convergence theory of an algorithm with magical steps is still based on the decrease achieved at the step s k . This is different in our approach because convergence may be declared inside a subspace in the bound-constrained case. This implies that we may have converged after a magical step and can not ensure to produce infinitely many steps in the full-space what would be essential to prove global convergence of our method.

Hence, magical steps do not apply naturally in our context; we could think that it might be more appropriate to apply the theory of a multi-level-type algorithm as this keeps track of what happens in the subspace. But in multi-level trust-region methods (as e.g. in [START_REF] Gratton | Numerical experience with a recursive trust-region method for multilevel nonlinear bound-constrained optimization[END_REF][START_REF] Gratton | A recursive trust-region method for bound-constrained nonlinear optimization[END_REF][START_REF] Mouffe | Multilevel optimization in infinity norm and associated stopping criteria[END_REF]), the minimization in the subspace (coarser level) has to be proceeded inside the trust-region of the full-space (fine level), or a bounded violation of it. Thus, this theory does not apply either to our algorithm. Another point is that the decision on whether to proceed minimization in a subspace or not is taken by ensuring that the reduction in the subspace at the first successful iteration there gives a Cauchy decrease which is a fraction of that which would be obtained in the full-space. Such a descent condition is not ensured by our algorithm because the decision is not taken based on the sufficient decrease in the subspace compared to the full-space but to prevent degeneration of the interpolation set.

Nevertheless, we still believe that it is possible to prove global convergence of our algorithm without compromising its efficiency but this seems to be a bit more complex and is left as an open task to deal with in the near future.

Practical implementation issues

The description of our algorithm BCDFO+ in the previous section leaves a number of practical questions open. In this section, we briefly report some further details about the particular implementation of the algorithm whose numerical performance is reported below in Section 3.5.

Preparing the initial call

At the first call to BCDFO+, it is assumed that

∆ 0 ≤ 1 2 min i=1,...,n (u i -l i ) and l i + ∆ 0 ≤ x 0i ≤ u i -∆ 0 , (3.22)
where x i denotes the i-th component of the vector x.

Further, the initial call is performed with S 0 = IR n , which means that the initial subspace is the n-dimensional full space. Both, the set of all points for which the function values have been computed and the initial tentative interpolation set contain only the starting point x 0 (i.e.

X 0 = Z 0 = {x 0 }).
We finally note that in our implementation, only a matrix containing the set X k and a vector of the associated function values f X k are stored. The points contained in the subsets Z k and Y k , and their function values respectively, are held as integer pointers to X k and f X k .

Handling fixed variables

In practice, it is often very convenient for users of an optimization package, to be able to fix the value of certain variables. Hence, we have that

l i = x 0i = u i .
In order to handle such a case, we check for variables where u i -l i = 0. The corresponding indices i together with their fixed values x 0i are then stored in a vector for use when evaluating the objective function throughout the calculation, but the associated variables are otherwise excluded from the minimization process.

Representation of the Lagrange polynomials

As Y varies, the code computes a QR factorization

M (φ, Y) T = Q Y R Y
of the matrix of the system (2.8) (or of its shifted version M if appropriate), where the basis φ is that of the monomials. If the vector j contains the coefficients of the Lagrange polynomial j (x) associated with Y, their definition implies that they have to satisfy M (φ, Y) j = e j and hence may be retrieved from the

formula j = Q Y R -T Y e j .

Controlling the condition of the system matrix

We have shown that Algorithm 2.3 and Algorithm 3.1 are globally convergent algorithms which apply a self-correcting property. We repeat here that the self-correcting property in Lemma 2.13

states that the geometry of the interpolation set Y improves in unsuccessful iterations when the trust region is small (relative to the model's gradient) and the interpolation points are contained in the trust region. For replacing a point in a unsuccessful iteration in the case, there are points lying outside of the trust region, the theory in Section 3.2 says that if

| j (x + )| = 0,
hence the absolute value of the corresponding Lagrange polynomial evaluated at the new point is not zero and thus the system matrix M ( φ, Y) can not become singular. Whereas no care of the poisedness of the interpolation set is taken when a successful point is included in the set.

In practice, even shifting and scaling of the interpolation set to work with M ( φ, Ŷ) doesn't prevent the condition number of M ( φ, Ŷ) from growing. In the context of finite precision arithmetic, we may for instance encounter numerical difficulties in the following three situations:

• The gap between two geometry improving steps is too big. Geometry improving steps are invoked when the gradient falls below a certain threshold i . This threshold is adapted after each such step by multiplying i with a constant µ ∈ [0, 1) to be the new threshold for the next geometry improving step. The size of µ and thus the frequency of the improving steps is user-defined and if it is chosen too small, the geometry may deteriorate before such a step is performed. For instance, imagine, a lot of progress was made towards the solution and many points of the set are far from the current iterate whereas, at the same time, the algorithm starts to sample points in the close neighbourhood of the current iterate. As a consequence, the algorithm is busy with replacing far points without taking care of the poisedness of the set of points. This slow deterioration of the sample set could be prevented by asking for a big enough absolute value of the Lagrange polynomial associated with the far point y j to replace and evaluated at the new trial point x + and test the condition | j (x + )| ≥ κ to be true before including the new point. But from our experience we know that it is nearly impossible to find a good default value for κ .

Because such a threshold must not be too small to get into troubles in any test case of any test set and it should also not be too big to reject unnecessarily many points in other test cases as this has a bad influence on the performance of the method which relies on the constant replacement of points by the new trial points.

• The real problem Hessian is ill-conditioned. A good example is the unconstrained quadratic problem NASTY from the CUTEr collection. For instance, the solvers NEWUOA and BOBYQA (with the default parameters) are not able to solve this problem. The problem is two-dimensional and the Hessian of the problem writes

H 0 = 10 20 0 0 1 .
where the condition number of H 0 is 10 20 . This provokes the difficulty that the model's gradient is quite big (due to the nature of the problem) and that convergence is slow.

Moreover, the structure of the problem causes the trial points to lie more or less all in one direction what is also not desirable for the interpolation set geometry. As mentioned above, a too big gradient prevents the algorithm from applying a geometry improving step and thus the condition number of the system matrix is in parts strictly increasing and the set of points may deteriorate at some point.

• The degree of the model is between linear and quadratic. According to the proposed algorithm, if the set of points for quadratic interpolation contains less than 1 2 (n + 1)(n + 2) points, every new trial point is added to the set. As there's not a point to replace in this case, checking Lagrange polynomial values is not an option in this case.

Nevertheless, the poisedness of Y k may deteriorate when appending new points.

As a solution to all of these practical issues and thus to be sure to have a reliable algorithm, the condition number of the shifted and scaled system matrix M ( φ, Ŷ) (or F ( φ, Ŷ) for the minimum Frobenius-norm model) is computed at each iteration before building the polynomial model.

The threshold κ illcond for declaring M ( φ, Ŷ) or F ( φ, Ŷ) as badly conditioned is user-defined in the software. In the case cond( M ) > κ illcond , the singular value decomposition of this matrix is determined and all singular values smaller than a threshold δ are replaced by this threshold.

Then the corresponding system which computes the model is solved. If we want to guarantee that the error bound on the gradient for (at least) linear interpolation is not violated, we have to determine the maximum size of such a δ. In the following, we want to establish an error bound on the model gradient ∇m(ỹ) of the perturbed model. The general assumption is the following.

Assumption 3.1. We assume that Y = {y 1 , y 2 , . . . , y p } ⊂ IR n is a poised set of sample points (in the linear interpolation sense) contained in the ball B(y

1 , ∆(Y)) of radius ∆ = ∆(Y).
Further, we assume that the function f is continuously differentiable in an open domain Ω containing B(y 1 , ∆) and ∇f is Lipschitz continuous in Ω with constant ν > 0.

Another assumption needed for our result is stated below.

Assumption 3.2. We assume that each entry of the interpolation set Y = {y 1 , y 2 , . . . , y p } is perturbed so that we have a set of points Ỹ = {ỹ 1 , ỹ2 , . . . , ỹp } with ỹj i = y j i + δ j i for i = 1, ..., n, j = 1, ..., p where

δ j i ≤ δ = ν 4 ∆ 2 ∇m(ỹ) for i = 1, ..., n, j = 1, ..., p. (3.23)
Furthermore, we assume that

δ j -δ 1 ≤ δ, ( 3.24) 
where

δ j = (δ j i ) n i=1 .
As in [START_REF] Conn | Global convergence of general derivativefree trust-region algorithms to first-and second-order critical points[END_REF]Theorem 2.11], we want to establish our result using the scaled matrix where

L = 1 ∆ L = 1 ∆ y 2 -y 1 . . . y p -y 1 T =     y 2 1 -y 1 1 ∆ . . . y 2 n -y 1 n ∆ . . . . . . . . . y p 1 -y 1 1 ∆ . . .
κ egp = ν(1 + √ p -1 L-1 ) and L = L/∆.
Proof. We assumed that the set Y is poised, thus we have that M and L are nonsingular. We consider the perturbed system matrix

M ( φ, Ỹ) =     1 y 1 1 + δ 1 1 . . . y 1 n + δ 1 n . . . . . . . . . 1 y p 1 + δ p 1 . . . y p n + δ p n     . (3.26)
Now, we look at the gradient of f at the point y 1 . Substracting the first interpolating condition from the remaining p -1, we obtain

(y j + δ j ) -(y 1 + δ 1 ) T ∇m(ỹ) = f (y j ) -f (y 1 ), j = 2, . . . , p
and thus we get (y j -y 1 ) T ∇m(ỹ) = f (y j ) -f (y 1 ) -(δ j -δ 1 ) T ∇m(ỹ), j = 2, . . . , p.

Then, using the integral form of the mean value theorem

f (y j ) -f (y 1 ) = 1 0 (y j -y 1 ) T ∇f (y 1 + t(y j -y 1 )) dt,
we obtain (y j -y 1 ) T (∇f (y 1 )-∇m(ỹ)) ≤ 1 0 (y j -y 1 ) T [∇f (y 1 )-∇f (y 1 +t(y j -y 1 ))] dt-(δ j -δ 1 ) T ∇m(ỹ), for j = 2, . . . , p. From the Lipschitz continuity of ∇f , we get that

(y j -y 1 ) T (∇f (y 1 ) -∇m(ỹ)) ≤ ν 2 y j -y 1 2 2 + δ j -δ 1 2 ∇m(ỹ) 2 , j = 2, . . . , p.
Then, from these last p -1 inequalities and (3.24), it can be derived

L(∇f (y 1 ) -∇m(ỹ)) 2 ≤ p -1 ν 2 ∆ 2 + 2 p -1 δ ∇m(ỹ) 2 ,
from which it can be concluded that

∇f (y 1 ) -∇m(ỹ) 2 ≤ p -1 L-1 ( ν 2 ∆ + 2δ ∇m(ỹ) 2 ∆ ).
Applying (3.23) gives

∇f (y 1 ) -∇m(ỹ) 2 ≤ p -1 L-1 ν∆.
Now, the error bound for any point y in the ball B(y 1 , ∆) and its corresponding perturbed point ỹ can be derived from the Lipschitz continuity of the gradient of f :

∇f (y) -∇m(ỹ) 2 ≤ ∇f (y) -∇f (y 1 ) 2 + ∇f (y 1 ) -∇m(ỹ) 2 ≤ ν(1 + p -1 L-1 )∆.
This result allows for replacing small singular values of M by a value δ to safeguard the computation of the model. More precisely, in case the condition number of M passes the threshold κ illcond , δ is computed from (3.23). As the computation of δ involves the gradient of the perturbed model which is unknown when δ is computed, its value is determined by using the model gradient of the last iteration. This approximation has shown to be sufficient in our experiments.

Please note that the above described value of δ is valid for linear interpolation but it is at the moment also applied when working with quadratic models and also in the regression case.

The described strategy works well in our general algorithmic context but may not guarantee error bounds for interpolation when in addition quadratic polynomial bases are considered to build a model or when regression models are considered. For this reason, we plan to extend our theory above to the mentioned cases in a future project.

Implementation of the models

In this section, we describe our particular implementation in Matlab [START_REF]The MathWorks Inc[END_REF] of the different model types considered in this work, as there are the sub-basis model, the minimum 2 -norm model, the minimum Frobenius-norm model and the least-squares regression model.

In any case, if

p k = |Y k | = n + 1
, a linear model and not an underdetermined quadratic model is built. This stems from the different theoretical model gradient errors of this two kinds of models. In fact, we know from [START_REF] Conn | Introduction to Derivative-Free Optimization[END_REF][START_REF] Custódio | Incorporating minimum Frobenius norm models in direct search[END_REF] that the error bound for the gradient approximation in the linear case is written as

∇f (y) -∇m(y) ≤ ν(1 + √ n L-1 /2)∆, ( 3.27) 
and the error bound for the gradient of an underdetermined quadratic model involves the model Hessian norm and is written as From this we can see that the model gradient of a linear polynomial might be more accurate than the one of an underdetermined quadratic polynomial using n + 1 interpolation conditions. This is a very crucial point in our work because our algorithm relies on the accuracy of the model gradient as a stopping criterion. Especially in a bound-constrained calculation when coming back from exploring a subspace and checking convergence in the full-space with a sample set containing only n + 1 points, we have to take care of the quality of the model gradient to be able to declare convergence.

∇f (y) -∇m(y) ≤ 5 2 √ p L † (ν + H )∆, ( 3 
Furthermore, our implementation of BCDFO+ is using the function pinv() when computing the least-squares solution in the under-and overdetermined case, meaning that the M ( φ, Y) due to its construction which is stated here again for convenience (see also Section 2.2.4)

F ( φ, Y) = M ( φQ , Y)M ( φQ , Y) T M ( φL , Y) M ( φL , Y) T 0 . (3.29)
Concerning the least-squares regression approach, the minimum 2 -norm model is build as long as the interpolation system matrix is underdetermined. If more than 1 2 (n + 1)(n + 2) points are avilable, the mentioned Matlab-function pinv() is used. A maximum of (n+1)(n+2) interpolation conditions is used to build a regression model as it seems not to be desirable [START_REF] Conn | Geometry of sample sets in derivative-free optimization: polynomial regression and underdetermined interpolation[END_REF] to use all available points. This also seems logic as too many far points would then be considered which are not necessarily relevant to build up a local model around the current iterate.

The projected gradient as a stopping criterion

As indicated above, the model gradient ∇ x m k (x) is used to check convergence to a first-order critical point, in the sense that we verify the inequality

P F (x k -∇m k (x k )) -x k ∞ ≤ , ( 3.30) 
which [START_REF] Gratton | Stopping rules and backward error analysis for bound-constrained optimization[END_REF] have shown to correspond to a suitable measure of backward error for boundconstrained problems. Moreover, we have that

P F (x k -∇f (x k )) -x k ∞ ≤ P F (x k -∇m k (x k )) -x k ∞ + ∇m k (x k ) -∇f (x k ) ∞ ≤ P F (x k -∇m k (x k )) -x k ∞ + ∇m k (x k ) -∇f (x k ) 2 , ( 3.31) 
and, using (2.20), we deduce that the left-hand side of this inequality can be made small if (3.30) holds and Λ and ∆ k are sufficiently small. In practice, we require the interpolation points y i , i = 1, ..., p used to build m k (x) to be contained in the ball B 2 (x k , ) and Y k is poised enough to ensure κ eg Λ∆ k ≤ for some user-defined constant κ eg > 0.

Here, we give a proof of the inequality (3.31) to justify the use of the projected model gradient as a stopping criterion in our algorithm.

Lemma 3.2. Suppose that A1 and A3 hold. Then

P F (x k -∇ x f (x k )) -x k ∞ ≤ π k ∞ + ∇ x f (x k ) -g k 2 .
(3.32)

Proof. The feasible region F can be written as

F = F 1 × . . . × F n (3.33)
where

F i = [l i , u i ] is the interval of the i-th variable.
We also use the fact that a projection on a box means to project in each dimension. We have by definition that ∀v

P F (v) = [P Fi (v i )] i=1,...,n . (3.34)
Since a projection on a convex set is Lipschitz-continuous in each single direction, we have that

|P Fi (v i + w i ) -P Fi (v i )| ≤ |v i + w i -v i |.
Using (3.34) and setting z = P F (v + w) -P F (v), we get

|z i | ≤ |w i |.
As this expression is true for all i, so also for

max |z i | ≤ max |w i | what in turn gives z ∞ ≤ w ∞ .
After replacing z again and including +x -x in the left-hand side term we have

P F (v + w) -x -[P F (v) -x] ∞ ≤ w ∞ .
Now, we substitute v = x k -g k and w = ∇ x f (x k ) -g k and we get

P F (x k -∇ x f (x k )) -x k -[P F (x k -g k ) -x k ] ∞ ≤ ∇ x f (x k ) -g k ∞ .
Applying the triangle inequality gives

P F (x k -∇ x f (x k )) -x k ∞ -π k ∞ ≤ ∇ x f (x k ) -g k ∞ ,
which yields

P F (x k -∇ x f (x k )) -x k ∞ ≤ π k ∞ + ∇ x f (x k ) -g k ∞
and therefore also gives

P F (x k -∇ x f (x k )) -x k ∞ ≤ π k ∞ + ∇ x f (x k ) -g k 2 ,
what concludes the proof.

An alternative stopping criterion

To declare convergence to a critical point, we decided to ask for a sufficiently small model gradient where the model was built from a well-poised set of points in the ball B(x k , ∆ k ). To reach this goal, it is sometimes necessary to decrease ∆ k to a level where the (at most quadratic but sometimes only linear) model approximates a possibly highly nonlinear function sufficiently well (see also the criticality step in Step 4 of Algorithm 3.1). But in practice, this strategy is not always successful in the context of derivative-free optimization, in the sense that in some cases, a radius ∆ k tending to zero does not yield a model gradient of required size . This difficulty can be explained by the approximative nature of the model gradient which could also be seen as a gradient computed by a kind of finite differences with h = ∆ k . To show the

size of ∆ ∇f (x * ) ∞ ∇m(x * ) ∞ ∇f (x * ) -∇m(x * ) 2
1.000000e-03 5.074018e-08 5.074108e-08 1.371287e-10

1.000000e-04 5.074018e-08 5.074800e-08 3.609084e-10 behaviour of an interpolation model gradient for decreasing radii ∆, we did some experiments on different test problems. Here, a complete quadratic model using p = 1 2 (n + 1)(n + 2) points was computed by sampling points at the vertices of a simplex with sides along the coordinate axes plus their mid-points around the approximate solution x * . We examined an ill-conditioned problem (PALMER3C, for which cond(∇ 2 f (x * )) = 2.689 • 10 11 ) and also a well-conditioned problem (ALLINITU, for which cond(∇ 2 f (x * )) = 2.524) from the CUTEr testing environment.

The results are depicted in Table 3 We therefore decided to terminate a run when the radius ∆ k becomes smaller than a threshold ∆ min where ∆ min ≈ √ machine is a reasonable choice as is used when working with finite differences (see for instance [START_REF] Jr | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF][START_REF] Stewart | Afternotes Goes to Graduate School[END_REF]). We do not declare convergence in this case but print out a message that we suspect convergence but that the trust region is too small to continue the minimization process. In our numerical experiments, we observed that in all cases where the run was terminated due to a too small trust region, a critical point was found by the algorithm.

Solving the bound-constrained trust-region subproblem in 2 -norm

In this section, we want to introduce another contribution in this thesis which is to propose an algorithm to solve the bound-constrained trust-region subproblem in 2 -norm based on the Moré-Sorensen algorithm.

Given the vector g ∈ IR n , the symmetric matrix H ∈ IR n×n and the scalar ∆, we solve the following problem

min s∈IR n m(x + s) = q(s) = g T s + 1 2 s T Hs (3.35) subject to s 2 ≤ ∆,
and subject to the bounds l ≤ x + s ≤ u.

In most trust-region algorithms which consider bound constraints, the infinity-norm trust region is used because it fits the geometry of the domain of the problem (see e.g. [START_REF] Conn | A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds[END_REF][START_REF] Friedlander | A new trust region algorithm for bound constrained minimization[END_REF]). The reason is that the intersection of the feasible box and a box-shaped trust region is again a box and thus easier to handle than the intersection of a box and a ball which is not such a simple set.

Nevertheless, Euclidean norm trust-regions have also been considered in bound-constrained trust-region methods (see e.g. [START_REF] Andretta | Practical active-set euclidian trust-region method with spectral projected gradients for bound-constrained minimization[END_REF][START_REF] Dennis | Trust-region interior-point algorithms for minimization problems with simple bounds[END_REF]). Whereas in [START_REF] Dennis | Trust-region interior-point algorithms for minimization problems with simple bounds[END_REF] a conjugate-gradient method is used to solve the QP problem, in [START_REF] Andretta | Practical active-set euclidian trust-region method with spectral projected gradients for bound-constrained minimization[END_REF], the trust-region subproblem is solved by applying a Moré-Sorensen-type algorithm which was particularly developed to find the global solution to a QP problem in an 2 -norm constraint (see Section 3.4.1 below). As one can imagine, a global solution can not be ensured anymore when considering bound constraints as the problem gets NP-hard due to the consideration of the bounds. But contrary to [START_REF] Andretta | Practical active-set euclidian trust-region method with spectral projected gradients for bound-constrained minimization[END_REF], where simple truncation is used to stay feasible, in this thesis, we want to go a step further and try to find a "more global" solution to problem (3.35). For this purpose, we developed an iterative framework which relies on the successive application of the Moré-Sorensen algorithm. In our extension, the bounds are handled by applying an active-set strategy where at each iteration at least one bound is added to the set of active bounds until convergence inside the inactive bounds is declared or the current iterate is a vertex. In the next section, we recall the technique used in the Moré-Sorensen method before we describe our extension of the method to handle bound constraints.

The Moré-Sorensen algorithm

Pioneered and further developed by Hebden [START_REF] Hebden | An algorithm for minimization using exact second derivatives[END_REF], Gay [START_REF] Gay | Computing optimal locally constrained steps[END_REF], Sorensen [START_REF] Sorensen | Newton's method with a model trust region modification[END_REF], Moré and Sorensen [START_REF] Moré | Computing a trust region step[END_REF] and reassessed by Dollar, Gould and Robinson [START_REF] Gould | On solving trust-region and other regularised subproblems in optimization[END_REF], such a method obtains the solution of the trust-region subproblem in 2 -norm by factorization of a sequence of parametrized linear systems. When solving the locally constrained problem

min s∈IR n q(s) = g T s + 1 2 s T Hs (3.36) subject to s 2 ≤ ∆,
such a method seeks to find the model minimizer s M which is the point that makes the model as small as possible in B, or a close approximation to it. The solution to (3.36) lies either interior to the trust region, that is s M 2 < ∆, or on the boundary, s M 2 = ∆. This suggests to solve the trust-region subproblem to find the unconstrained minimizer of the model. In the case, the model is unbounded below or the model minimizer lies outside the trust-region, the model minimizer must occur on the boundary. It can then be found as the global minimizer of q(s) subject to the equality constraint s 2 = ∆. We know (e.g. [START_REF] Goldfeld | Maximization by quadratic hill-climbing[END_REF], [34, Corollary 7.2.2]) that any global minimizer of q(s) subject to s 2 ≤ ∆ satisfies the equation

(H + λ M I)s M = -g, ( 3.37) 
where H + λ M I is positive semidefinite, λ M ≥ 0, and λ M ( s M 2 -∆) = 0. If H + λI is positive definite then s is the only solution to (3.36). Moreover, if H is positive definite and H -1 g < ∆ then (3.36) has a solution with s < ∆, in the interior. We now assume that (3.36) has a solution on the boundary. In most cases, the nonlinear equation s λ = ∆ where

s λ = -(H + λI) -1 g (3.38)
has a solution λ ≥ 0 in (-λ 1 , ∞) and s λ is the solution of problem (3.36). However, in the "hard case", s λ = ∆ has no solutions in (-λ 1 , ∞) what may happen if g is orthogonal to the space of eigenvectors corresponding to λ 1 , the most negative eigenvalue of H and especially in the case where g = 0. The difficulty in the hard case is that s λ < ∆ whenever H + λI is positive definite with λ > 0. In this case, a solution to (3.36) can be obtained by solving

(H -λ 1 I)s = -g (3.39)
for s with s ≤ ∆ and by determining an eigenvector z corresponding to the eigenvalue λ 1 .

Then

(H -λ 1 I)(s + τ z) = -g (3.40)
and thus

s = -(H -λ 1 I) † g + τ z, ( 3.41) 
where the superscript † denotes the Moore-Penrose generalized inverse and τ is chosen so that s = ∆ in (3.41).

Turning back to the case where H is not singular, the question is how to find the root of ψ(λ) = s λ 2 -∆ = 0. In fact, Reinsch [START_REF] Reinsch | Smoothing by spline functions[END_REF][START_REF] Reinsch | Smoothing by spline functions. ii[END_REF] and Hebden [START_REF] Hebden | An algorithm for minimization using exact second derivatives[END_REF] observed that great advantage could be taken of the fact that the function s λ 2 is a rational function in λ with second order poles on a subset of the negatives of the eigenvalues of H. This means that the function 1/ψ(λ) has zeros but no (finite) poles and the zeros occur at the negatives of the eigenvalues of H. The better behaviour of 1/ψ(λ) may be exploited by applying Newton's method to the zero finding problem

φ(λ) def = 1 s λ 2 - 1 ∆ = 0, (3.42) 
where (3.42) is also called the secular equation. Newton's method should be very efficient when applied to (3.42) as the curve of φ(λ) is nearly linear in the region of interest, that is λ > λ 1 .

Algorithm 3.4

The l 2 -norm trust-region Moré-Sorensen algorithm

Initialization: Let λ L , λ U , λ S and ∆ > 0 be given.

Step 1: Safeguard λ by setting λ := min(max(λ, λ L ), λ U ).

If λ ≤ λ S , then λ := max(τ λ λ U , √ λ L λ U ).
Step 2: Factor B + λI = R T R. If factorization not successful, go to Step 6.

Step 3: Solve R T Rs = -g. If (λ ≤ and s 2 < ∆) or s 2 ≈ ∆, RETURN.

Step 4: Solve R T w = s.

Step 5:

Let λ := λ + s w 2 s -∆ ∆ .
Step 6: Update the uncertainty interval:

If λ ∈ (-λ 1 , ∞) and φ(λ) < 0 then set Λ U := min(λ U , λ), otherwise set Λ L := max(λ L , λ). Set λ S : max(λ S , λ -Rẑ 2 ). Reset λ L := max(λ L , λ S ). Go to Step 1.
Algorithm 3.4 on page 53 shows how to apply Newton's method to (3.42) to update λ where we mainly use the gathered ideas from [START_REF] Moré | Computing a trust region step[END_REF]. But as Newton's method alone does not offer the guarantee of convergence, the method must be safeguarded by finding appropriate lower and upper bounds on λ and ensuring that they coincide in the worst case. The safeguarding depends on the fact that ψ(λ) is convex and strictly decreasing on (-λ 1 , ∞). This implies that φ(λ) is concave and that Newton's method, started from λ ∈ (-λ 1 , ∞) with φ(λ) > 0, produces a monotonically increasing sequence converging to the solution of φ(λ) = 0. In order to safeguard the Newton iteration, an interval of uncertainty [λ L , λ U ] is constructed in which the solution λ M is known to occur and in which the current estimate λ is forced to lie. Furthermore, λ S , a lower bound on -λ 1 is needed. How to compute initial bounds λ L , λ U and λ S , and many other details, can be found, for instance, in [START_REF] Conn | Trust-Region Methods[END_REF], [START_REF] Gay | Computing optimal locally constrained steps[END_REF] and [START_REF] Moré | Computing a trust region step[END_REF].

The extension of the Moré-Sorensen algorithm to handle boundconstraints

The outline of the new bound-constrained algorithm is given as Algorithm 3.5 on page 55.

In simple terms, this iterative algorithm computes a step s M S inside the Euclidean-norm trust region and checks if this step is violating any bounds (Step 2). If so, a step s λ with s λ < s M S and inside the bounds, but activating one or more of the violated bounds, is found (Step 3).

The corresponding step component(s) are fixed and the search space is reduced to the remaining free variables (Step 4) as in a typical active-set method. Then, a new step s M S is computed in the reduced space until convergence is declared in Step 2 or there are no free variables left.

The simple example in Figure 3.1 illustrates the fact that with our active-set strategy, a better point may be found than with just truncating the computed step s M S at the bound (as is done in [START_REF] Andretta | Practical active-set euclidian trust-region method with spectral projected gradients for bound-constrained minimization[END_REF]). We see on the left-handside of Step 1: Initialization.

The required accuracy for a boundary solution b ≥ 0, the trust-region radius ∆0, g0 = ∇m(x) and H = ∇ 2 m(x) are given. Define the initial set of active bounds Iact as:

Iact = {i|(u(i) -x(i) = 0 and g0(i) < 0) or (x(i) -l(i) = 0 and g0(i) > 0)}, i = 1, ..., n.
Define the set of free indices {i f ree } = i / ∈ Iact. Set n f ree = |{i f ree }|, the number of remaining free variables. Reduce dimension g red = g0(i f ree ), H red = H(i f ree , i f ree ). Initialize k = 0 and s0 = 0.

while n f ree > 0 do

Step 2: Compute a Moré-Sorensen step sMS in ∆ k .

Step Step 5.

Step 3: Compute a step s λ (with s λ < sMS) in ∆ k and the bounds.

Step 3.0: Let λ ≥ 0 be given from computing the MS-step in Step 2.1. Set λ L = λ and compute an appropriate upper bound λ U on λ. Determine the sets of violated upper and lower bounds

VU = {i| u(i) < x(i) + s k (i) + sMS(i)} and VL = {i| x(i) + s k (i) + sMS(i) < l(i)}.
Step 3.1: If H red + λI not positive definite, then update λ = 1 2 (λ L + λ U ) and go to Step 3.9.

Step 3.2: Factorize H red + λI = R T R.

Step 3.3: Compute the new step s λ by solving the system R T Rs λ = -g red .

Step 3.4: Define the set of new active bounds:

I + act = {i| (u(i) -b ≤ x(i) + s k + s λ (i) ≤ u(i), i ∈ VU ) or (l(i) ≤ x(i) + s k + s λ (i) ≤ l(i) + b , i ∈ VL)}.
If I + act = ∅, then go to Step 4. Step 3.5: Newton's iteration on the secular equation: compute w by solving R T w = s λ .

Step 3.6: Choose an appropriate ī from the set {VU ∪ VL}.

If ī ∈ VU , set ∆ b ( ī) = |u( ī) -x( ī) - s k ( ī)|, else set ∆ b ( ī) = |l( ī) + x( ī) + s k ( ī)|.
Step 3.7:

Update λ := λ + s λ ( ī) w 2 s λ ( ī)-∆ b ( ī) ∆ b ( ī)
.

Step 3.8:

If l ≤ x + s k + s λ ≤ u, then λ U = λ, else λ L = λ.
Step 3.9: Check value of λ and safeguard if necessary. Go to Step 3.1.

Step 4: Update values.

Set {i f ree } = {i f ree } \ {I + act }, n f ree = |{i f ree }|, g k+1 = g k + Hs λ . Update g red = g k (i f ree ), H red = H(i f ree , i f ree ). Set s k+1 = s k + s λ and ∆ k+1 = ∆0 -s k+1 . Increment k by one.

end while

Step 5: Establish new iterate.

Compute x

+ = x + s k . RETURN.
The question is now which strategy should be applied to find the step s λ with s λ < s M S which provides a point x + s k + s λ at the boundary. Projecting the step s M S onto the feasible set or truncating it at the boundary could be suitable options. But we decided for a somewhat more sophisticated approach which finds a presumably better feasible step than projection and truncation. To do so, we compute in Step 3 of Algorithm 3.5 the step s λ = (H + λI) -1 g by applying successive trial values of λ until the set I + act is non-empty (see Step 3.4). Then s λ is inside the feasible region and activates at least one of the before violated bounds from the set

{V U ∪ V L }.
We will now describe some steps of Algorithm 3.5 a bit more in detail. In Step 3.0, the appropriate upper bound λ U on λ is computed by the formula

λ U = g ∆ vb + H 1 (3.43)
which has been proposed in [START_REF] Gay | Computing optimal locally constrained steps[END_REF] and [START_REF] Moré | Computing a trust region step[END_REF] to compute the upper bound on λ for computing the standard Moré-Sorensen step. The difference to the standard case is that we do not consider the trust-region radius ∆ but the distance ∆ vb from the point x + s k to the closest violated bound. We chose to use the closest one to obtain a safe upper bound.

To efficiently update λ at each iteration, we have to choose an appropriate bound from the set of violated bounds {V U ∪V L } in Step 3.6. There, we have to distinct two cases where the first one applies when the point x + s k + s λ is outside of the feasible box and λ has to be increased to obtain a shorter step s λ . The second case applies when the point x + s k + s λ lies inside the bounds but not inside the b -environment of the bound. In this case, λ has to be decreased to get a longer step s λ . This reminds the Newton's iteration on the secular equation described above but instead of applying the trust-region radius ∆ as a constraint, we use ∆ b , the distance between a bound (with index ī from the index set {V U ∪ V L }) and the corresponding component of the point x + s k . When x + s k + s λ lies outside of the bound, we choose the index ī which corresponds to the largest violation of a bound of one of the step components of x + s k + s λ .

Taking the step component with the largest violation guarantees that one of the next steps s λ will be inside the bounds. In the second case, where the step is inside the feasible box and must be increased, the step component ī closest to its bound from the set

{V U ∪ V L } is found.
Then, λ is updated in Step 3.7 using the formula

λ := λ + s λ ( ī) w 2 s λ ( ī) -∆ b ( ī) ∆ b ( ī) ,
where we apply a modified version of the updating formula from Step 5 of the Moré-Sorensen algorithm (Algorithm 3.4). Here, s λ ( ī) is the step component which was chosen (in Step 3.6) to be the one which is supposed to activate its bound and thus has to equal the distance ∆ b ( ī)

to its formerly violated bound l( ī) or u( ī).

Note that if Algorithm 3.5 is applied to unconstrained optimization problems, it reduces to a standard Moré-Sorensen algorithm. Algorithm BC-MS is implemented as an option to be used as local solver in our trust-region algorithm BCDFO+. Numerical experiments comparing BC-MS to the standard option of a truncated conjugate gradient algorithm will be presented in the next Section.

Numerical experiments in the CUTEr testing environment

The described algorithm BCDFO+ has been implemented in Matlab and all numerical experiments reported below were run on a single processor workstation. As the time to compute the objective function values in derivative-free optimization typically dominates other costs of the algorithm, our results will be presented in terms of number of function evaluations.

In what follows, BCDFO+ is compared to its predecessor BC-DFO [START_REF] Gratton | An active set trust-region method for derivative-free nonlinear bound-constrained optimization[END_REF] developed by S. Gratton, Ph.L. Toint and A. Tröltzsch, to the packages NEWUOA [START_REF] Powell | Developments of NEWUOA for minimization without derivatives[END_REF] and BOBYQA [START_REF] Powell | The BOBYQA algorithm for bound constrained optimization without derivatives[END_REF] developed by M.J.D. Powell, SID-PSM [START_REF] Custódio | Using sampling and simplex derivatives in pattern search methods[END_REF][START_REF] Custódio | Incorporating minimum Frobenius norm models in direct search[END_REF] developed by A.L. Custódio and L.N. Vicente, NOMADm [START_REF] Abramson | NOMADm version 4.6 user's guide[END_REF] by M.A. Abramson, BFO [START_REF] Porcelli | a Brute Force Optimizer for mixed integer nonlinear bound-constrained optimization and its self tuning[END_REF] developed by Ph.L. Toint and M. Porcelli. Powell's codes are trust-region algorithms using a quadratic model where the remaining degrees of freedom in the interpolation, when using less than 1 2 (n + 1)(n + 2) points, are determined by minimizing the change to the Hessian of the model between two consecutive iterations.

We use BOBYQA for the comparison on bound-constrained problems and NEWUOA for the comparison on unconstrained problems because it outperforms BOBYQA from our experience in solving unconstrained problems. SID-PSM is a pattern-search method with the poll step guided by simplex derivatives. The search step relies on the optimization of quadratic Minimum Frobenius-norm interpolation models. The package was mainly developed and tuned for unconstrained optimization but is also able to handle bounds and general constraints. SID-PSM has shown to be [START_REF] Rios | Derivative-free optimization: A review of algorithms and comparison of software implementations[END_REF] one of the most competitive algorithms in the class of pattern search methods. NOMADm is a Matlab implementation of the commercial software NOMAD.

The considered method is a mesh adaptive direct-search method which is a generalization of the class of pattern search methods. BFO (which stands for Brute-Force Optimizer) is another implementation of a mesh adaptive direct-search method based on elementary refining grid search. It is able to handle bound-constraints and problems containing continuous and/or discrete variables.

Default parameters

In BCDFO+ as well as in BC-DFO, we fixed the trust-region parameters to η 1 = 0.0001, γ 1 = 0.01, γ 2 = 0.5 and γ 4 = 0.1. The initial trust-region radius ∆ 0 is set to 1, as suggested in Section 17.2 of [START_REF] Conn | Trust-Region Methods[END_REF]. We apply a maximum trust-region radius of ∆ max = 10000 and a minimum trust-region radius of ∆ min = 10 -10 . The parameter for switching to the non-decreasing trustregion strategy when replacing points is set to ∆ switch = 10 -7 . To build a sufficiently wellpoised set in the modified greedy algorithm, we set the threshold κ th = 0.005. After appending a point to an incomplete interpolation set, we check the condition of the shifted and scaled system matrix M to be smaller than κ illcond = 10 15 . To divide the interpolation set into far and close points when incorporating the new trial point, we set β = 1. When replacing a close interpolation point, we use the parameter Λ C = 1.2 to ensure an improvement of the interpolation set geometry. For declaring convergence, the desired accuracy on the projected model gradient norm and the tolerated error on the gradient is set to = 10 -5 while parameter κ eg is set to 0.1. We set 0 = and µ = 0 to skip the loop in the criticality step. The only difference in parametrisation of the two algorithms is that BCDFO+ uses γ 3 = 2 and in BC-DFO the trust-region parameter is fixed to γ 3 = 1.5. The same parameters of BC-DFO were used to obtain the results published in [START_REF] Gratton | An active set trust-region method for derivative-free nonlinear bound-constrained optimization[END_REF].

We always use the default parameters for the codes NEWUOA, BOBYQA, SID-PSM, NO-MADm and BFO. We run BOBYQA with a number of m = 2n + 1 interpolation points using the Frobenius norm approach and NEWUOA with a full quadratic model, as these two options give the best results for these solvers, out of the choice m ∈ {n + 1, 2n + 1, 1 2 (n + 1)(n + 2)}.

Test problems

The CUTEr testing environment [START_REF] Gould | CUTEr: A constrained and unconstrained testing environment, revisited[END_REF] is used in our experiments. To compare BCDFO+ to the other software packages on unconstrained problems, we chose to use the test problems from the CUTEr test collection which were selected in [START_REF] Fasano | On the geometry phase in model-based algorithms for derivative-free optimization[END_REF]. Two problems give some information about the structure of the true problem Hessians in the considered test set (see Table 3.4). As interpolation-based method attempt to approximate this information, it might be helpful to conclude why some methods or options perform better than others on specific problems.

Considering bound-constrained problems, we took all bound-constrained problems provided by the CUTEr collection with a size of at most 30 variables. Problems with more variables can be successfully solved with the considered algorithm. However, as in [START_REF] Fasano | On the geometry phase in model-based algorithms for derivative-free optimization[END_REF][START_REF] Custódio | Incorporating minimum Frobenius norm models in direct search[END_REF], we restricted this We could not consider problems containing fixed variables because not all solvers do provide the required facilities. Furthermore, in order to avoid too many problems of the same kind, we chose randomly four of the 26 bound-constrained PALMER problems provided in CUTEr.

After running all solvers considered in this comparison on these 53 remaining problems, thirteen of them4 had to be excluded from our comparison because the considered algorithms didn't converge to the same solution.

This is to explain with the existence of multiple minima, but is also due to the fact that many solvers usually only check first-order optimality. Also BC-DFO and BCDFO+ sometimes check convergence in the full-space without taking second order information into account (after having converged inside a subspace). This creates the possibility to declare convergence at a saddle point which is a minimum in the explored subspace. Such a situation can be circumvented (at some cost) by requiring that a full quadratic model is built before declaring termination (which is an option in our implementation).

The final test set of bound-constrained problems contains 40 problems. The distribution of the dimension n among these problems is shown in Table 3 

A common stopping criterion

As BOBYQA, NEWUOA, SID-PSM, NOMADm and BFO use different stopping criteria from the one of BC-DFO and BCDFO+, an independent criterion needs to be applied for the comparison. For this reason, we use the optimal objective function value computed by the TRON package [START_REF] Lin | Newton's method for large bound-constrained optimization problems[END_REF] (using first and second derivatives) as a reference for our bound-constrained experiments. In the experiments with unconstrained problems we take the optimal objective function value computed by the KNITRO package [START_REF] Byrd | KNITRO: An integrated package for nonlinear optimization[END_REF] used in the paper of Fasano, Morales and Nocedal [START_REF] Fasano | On the geometry phase in model-based algorithms for derivative-free optimization[END_REF]. We take the number of function evaluations needed until a prescribed number of correct significant figures in the objective value was attained.

To provide a fair comparison, we followed the testing framework proposed by Dolan, Moré, and Munson in [START_REF] Dolan | Optimality measures for performance profiles[END_REF]. In this framework, the solvers are run first with their own default stopping criterion. If, for a given problem, convergence of one of the solvers to the common stopping criterion can't be declared with this configuration, the stopping criterion for this solver is strenghtened and the run repeated using the more stringent criterion. For a few test problems, some solvers were run several times while decreasing its own stopping criterion after each run, trying to attain the commonly required accuracy in the objective function value. This procedure was successful for a subset of the problems, for others the limit of function evaluations (15000) was reached. No time limitation was set.

Performance profiles

We now report our results using performance profiles (see [START_REF] Dolan | Benchmarking optimization software with performance profiles[END_REF]). Given a test set P containing n p problems and n s solvers, these profiles provide a way to graphically present the comparison of quantities t p,s (such as required computing time or number of function evaluations to solve problem p by solver s) obtained for each problem and each solver. For this, the performance ratio for a problem p and a solver s is defined as Looking at these results, one could suppose that the test set might have been in favour of using the sub-basis model as it has an advantage when approximating a banded Hessian matrix.

r p,s := t p,s min{t p,s : 1 ≤ s ≤ n s } . ( 3 
But in fact, this is not the case. We have stated the Hessian structure of the problems in the test set in Section 3.5.2 above and see that there is a balance between sparse problems and dense problems with dimension higher than 3 (we separated the dense problems of size two and three, as the approximation technique shouldn't play an important role in these cases).

The reason for the regression model to not perform as well as the interpolation models may come from our choice of p max = (n+1)(n+2), the maximum number of interpolation conditions considered to solve the overdetermined system. At the moment, no special care is taken in our implementation to ensure a certain "locality" of the model and we believe that there is space for improvement. In other implementations, the use of 80% close points and 20% of points further away from the current iterate has been proposed [START_REF] Custódio | Incorporating minimum Frobenius norm models in direct search[END_REF]. Another idea could be to adapt the number of considered points dependend on their distance to the current iterate in relation to the size of the current trust-region radius.

From these experiments, we conclude that it would be best to perform the comparisons to other software packages by using the sub-basis model option in our algorithm. The test results can be found in Table B.1 in the Appendix.

Comparison of local solver options

In this section, we want to compare the two local solvers implemented in our algorithm BCDFO+, In terms of robustness, 95% of the problems are managed to be solved apllying the MS local solver and 98% if applying the CG option. The robustness is the same for boundconstrained problems, but in terms of number of function evaluations, the distance between the two solver options is slightly smaller. Applying BC-MS, 55% of the test set is solved faster against 62% when applying the conjugate gradient option. The results of this testing can be found in Table B.2 for the unconstrained and in Table B.3 for the bound-constrained test cases.

which

Unconstrained comparisons with NEWUOA

First, we want to report results obtained with BC-DFO, a bound-constrained implementation of Algorithm 2.3, the predecessor of BCDFO+. We want to recall here that the difference of the two softwares is the different handling of the trust-region where BC-DFO is using a typical DFO trust-region management, shrinking the trust-region only when the quality of the model is assured, and BCDFO+ uses a more standard one which is shrinking the trust-region at every unsuccessful iteration until a threshold ∆ min is reached. Details about the particular implementation and also the here stated numerical results of BC-DFO can be found in [START_REF] Gratton | An active set trust-region method for derivative-free nonlinear bound-constrained optimization[END_REF].

Let's now turn to the numerical results obtained by comparing the solver BC-DFO to NEWUOA on our set of 53 unconstrained test problems from the CUTEr library. Figures 3.5-3.8 show that BC-DFO appears to be more robust but less efficient than NEWUOA, irrespective of the accuracy required. For instance, NEWUOA solves 52% of the problems faster and BC-DFO solves 46% of the test cases faster, when 6 digits of accuracy are requested. The gap is slightly bigger when 2, 4 or 8 significant digits in f are required. BC-DFO is able to solve all test problems up to 4 significant accurate digits required in f where it is not able to solve the problem PALMER1C to a more accurate level. NEWUOA has some difficulties to solve some of the PALMER problems in the given limit of function evaluations and it is not able to solve the highly ill-conditioned problem NASTY.

Considering in addition also our new algorithm BCDFO+, we can see in Figures 3.9-3.12 that BCDFO+ does perform considerably better than BC-FO and NEWUOA, irrespective of the accuracy required. For instance, when 6 correct digits in f are requested, BCDFO+ solves 76% of the test cases faster than the other two, NEWUOA solves 24% of the problems fastest and BC-DFO solves 20% of the test cases fastest. To explain why the percentages do not sum up to 100%, we should note that equal results for two or more solvers count for each of them. Regarding robustness, BCDFO+ has the same difficulty as BC-DFO to solve the problem PALMER1C in the limit of 15000 function evaluations to a highly accurate level.

Table B.4 in the appendix contains the detailed results for each of the three solvers for the various accuracy levels. 

Bound-constrained comparisons with BOBYQA

Again, we first want to report the results obtained with BC-DFO, the bound-constrained extension to Algorithm 2.3 and described in [START_REF] Gratton | An active set trust-region method for derivative-free nonlinear bound-constrained optimization[END_REF], when compared to BOBYQA, the boundconstrained extension to NEWUOA, developed by Powell.

The profiles reported in Figures In Figures 3.17 For high required accuracy, in Figure 3.20, BCDFO+ solves 72.5% of the test problems faster than the other two. BC-DFO solves 25% of the test cases faster and BOBYQA is the fastest in 15% of the cases. For low required accuracy (in Figure 3.17), BOBYQA could gain some percentages and solves 22.5% of the test problems faster than the other two solvers.

BC-DFO is still at 25% and BCDFO+ solves the majority of 67.5% of the test cases fastest.

Table B.5 in the appendix contains the detailed results on the bound-constrained test set for the three solvers and the four accuracy levels.

Unconstrained comparisons with direct-search solvers

In this section, we want to compare our solvers to a selection of direct-search solvers. First, we put BC-DFO, NEWUOA and SID-PSM in one picture to see how those three solvers compare for unconstrained problems. As are relatively stable, the robustness of SID-PSM is slightly decreasing when higher accuracy is required. However, one could say that the three codes are equally robust as all three algorithms solve more than 90% of the test problems up to 6 required digits in f .

To extend our comparison, we are also considering the two pure direct-search solvers NO-MADm and BFO in our comparison on the set of unconstrained test problems. Furthermore, we add also our new solver BCDFO+ to the picture. The results are depicted in Figures The detailed results for the three direct-search solvers on the unconstrained CUTEr test set can be found in Table B.6 in the appendix.

Bound-constrained comparisons with direct-search solvers

In this section, we want to compare our solvers to the mentioned direct-search solvers but on a set of bound-constrained problems from the CUTEr library. We start by comparing BC-DFO NOMADm is never the fastest here. Regarding robustness, SID-PSM and BFO are equally robust with 88% and 90% of solved test problems for 8 required digits in f and 92.5% and 95% for 2 required correct digits in f , respectively. NOMADm manages to improve robustness the less accuracy is required. Explicitly, from 30% of the problems for high to 72.5% for low required accuracy.

Table B.7 in the appendix contains the detailed results for each of the three direct-search methods and each of the bound-constrained problems for the various accuracy levels.

Chapter 4

Industrial application incorporating noise

Aerospace industry is increasingly relying on advanced numerical flow simulation tools in the early aircraft design phase. Today's flow solvers based on the solution of the Euler and Navier-Stokes equations are able to predict aerodynamic behaviour of aircraft components under different flow conditions quite well. Nevertheless, the simulation of complex phenomena invariably requires the approximation of a function f ∞ by a function f that can be evaluated with a finite number of elementary operations, so that truncation errors trunc = f ∞ -f come into play when attempting to minimize f ∞ . Furthermore, we are faced with the computational noise generated by evaluating f in finite precision.

The development of suitable algorithms for dealing with noisy optimization problems has always been a challenging task [START_REF] Alexandrov | A trust region framework for managing the use of approximation models in optimization[END_REF][START_REF] Bortz | The simplex gradient and noisy optimization problems[END_REF][START_REF] Carter | On the global convergence of trust region algorithms using inexact gradient information[END_REF][START_REF] Dennis | Derivative-free pattern search methods for multidisciplinary design problems[END_REF]. Some works (for instance [START_REF] Vugrin | On the effect of numerical noise in simulation-based optimization[END_REF][START_REF] Vugrin | On the effects of noise on parameter identification optimization problems[END_REF]) have in particular studied the impact of computational noise on simulation-based optimization problems where the parameters depend on the solution of a differential equation. Furthermore, several comparisons have been made of derivative-free algorithms on noisy optimization problems that arise in applications (e.g. in [START_REF] Driessen | Simulation-based Optimization for Product and Process Design[END_REF][START_REF] Fowler | Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems[END_REF][START_REF] Oeuvray | A new derivative-free algorithm for the medical image registration problem[END_REF]).

In this thesis, we want to contribute to different aspects of studies concerning noise in general and a noisy aerodynamic application in particular. In Section 4.2, we demonstrate how the amplitude of the noise in a real-life application can be estimated using a tool which was originally developed to calculate higher order derivatives and to estimate round-off. In Section 4.3, our algorithm BCDFO+, presented in the previous section, is adapted to solve noisy optimization problems from the CUTEr library and an aerodynamic shape-design problem in Section 4.4. In Section 4.5, we present a theoretical study on the allowed noise on a gradient which is used in a gradient-based line search method. In Section 4.6, the derivative-free method SNOBFIT, developed by Huyer and Neumaier [START_REF] Huyer | SNOBFIT -stable noisy optimization by branch and fit[END_REF][START_REF] Huyer | SNOBFIT -stable noisy optimization by branch and fit[END_REF], is presented in the context of global optimization and we show the performance gain by enhancing this method with inexact gradient information. But first, we want to give a short description of the optimization tool OPTaliA which is used at Airbus to perform aerodynamic shape optimization. It will be used throughout this chapter to test our new algorithm, variations of it and other algorithms on a real-life application.

Presentation of the optimization suite OPTaliA

To perform aerodynamic shape optimization, Airbus uses the internally developed optimization suite OPTaliA. We can find a detailed description of this optimization suite in [START_REF] Laurenceau | Surfaces de réponse par krigeage pour l'optimisation de formes aérodynamiques[END_REF][START_REF] Laurenceau | Comparison of gradient and response surface based optimization frameworks using adjoint method[END_REF][START_REF] Laurenceau | Comparison of gradient-based and gradient-enhanced response-surface-based optimizers[END_REF] which we quote here in parts. This high-fidelity optimization suite can improve aerodynamic performance of an aircraft by changes in the external shape. No reduced model is employed between the aerodynamic solver and the optimizer. The performed shape deformations are usually of small size to limit the impact on the other disciplines.

Optimization framework

A general optimization framework, represented in needed the gradient value corresponding to the parametrized shape are computed. Once the shape has been evaluated, the optimizer proposes a new shape by using the new information on functions (and possibly gradients) and the next iteration is performed. In addition to the internal stopping criteria of the optimizer, the termination can be forced at the OPTaliA level if the number of function evaluations exceeds a given threshold maxeval. OPTaliA is able to perform function evaluations in parallel by running multiple jobs on high performance computers. One of the challenges in aerodynamic shape optimization is to manage running efficiently the evaluator and the optimizer automatically in batch mode. More particularly, the evaluator itself is a complex process requiring large computational resources.

Evaluator for CFD functions

Shape parameterization and mesh deformation

The shape parameterization consists of applying Hicks-Henne sinusoidal bumps [START_REF] Hicks | Wing design by numerical optimization[END_REF] on a surface skin of an initially block-structured mesh. Each bump is defined by three shape variables 

Flow simulation

Flow analyses were performed with the elsA [START_REF] Cambier | Status of the elsA CFD software for flow simulation and multidisciplinary applications[END_REF] software developed by ONERA -the French Aerospace Lab -and CERFACS. The flow is simulated by solving the Reynolds Averaged Navier-Stokes (RANS) equations associated with the one-equation Spalart-Allmaras turbulence model on block structured meshes using a cell-centered finite volume approach. The second order Roe's upwind scheme with the Van Albada limiter is used as spatial scheme coupled with an implicit time resolution. Diffusive terms are discretized with a second order centered scheme.

Multigrid and local time stepping techniques are used to increase the convergence rate. An overview of various results obtained with elsA is given by Cambier and Veuillot [START_REF] Cambier | Status of the elsA CFD software for flow simulation and multidisciplinary applications[END_REF].

One of the main requirement from designers is to obtain the same results when using the CFD solver inside or outside the automatic optimization tool. As hysterisis phenomena are common when dealing with transonic flows, the same initial flow condition (uniform flow) was used for all the simulations performed during the optimization. Therefore, the computational cost of CFD simulations cannot be reduced by using a restart strategy using the flow solution corresponding to the previous shape. Hence, the computational cost of the optimization grows linearly with the number of function evaluations.

The sensitivity of the objective function with respect to the design variables is computed using the discrete adjoint method [START_REF] Jameson | Aerodynamic design via control theory[END_REF]. For an explicit presentation of the adjoint system solved within elsA and an evaluation of the accuracy of the sensitivities, the reader is referred to Peter et al. [START_REF] Peter | Contribution to discrete implicit gradient and discrete adjoint method for aerodynamic shape optimization[END_REF] and Meaux et al. [98]. This method enables to compute the sensitivity of a single function with respect to n design variables at the cost of one linear system resolution (same size as the linearized RANS system). The gradient vector is computed using approximatively the same computational time (f actor ≈ 1.5) as one mean-flow simulation. For typical aerodynamical problems considering tens or hundreds of design variables and a few functions (lift, drag), this is a considerable improvement over the classical method of forward finite differences requiring as many flow solutions as design variables.

Aerodynamic function computation

The objective function chosen is the far-field pressure drag,

f = CDP = CDV P + CDW + CDI (4.1)
where CDV P , CDW and CDI denote the viscous pressure drag, the wave drag and the induced drag, respectively. The friction drag, CDF , is excluded from the objective function as it does not change significantly with the amplitude of deformation considered. The wetted surface is almost unaffected by the shape deformation. The post-processing code used is ffd41 [START_REF] Destarac | Drag/thrust analysis of jet-propelled transonic transport aircraft; Definition of physical drag components[END_REF] and is also developed by ONERA. It implements a far-field drag break-down method. The two main advantages of this approach are its ability to decompose pressure drag into physical components (wave drag, induced drag, viscous pressure drag) and its accuracy through a filtering of nonphysical drag (spurious drag).

Interface Matlab -OPTaliA

To be able to test our algorithm in a black-box-type manner on real CFD test problems provided by Airbus, we had to interface our optimization software packages as they are currently 

Estimating noise by Hamming's difference table

Coming back to the target of optimizing a noisy function f , a very important fact is to have an idea on the amplitude of the noise of the function to minimize. Dennis and Schnabel in [START_REF] Jr | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF] use a parameter f digits which specifies the number of reliable digits returned by the objective function. It is used in the form 10 -f digits to specify the relative noise in f . They suggest, if the objective function f is suspected to be noisy but the approximate value of f digits is unknown, that it should be estimated by the routine of Hamming [START_REF] Hamming | Numerical methods for scientists and engineers[END_REF], which is also given in the book by Gill, Murray and Wright [START_REF] Ph | Practical Optimization[END_REF]. We are going to explain this technique now.

The idea

The difference table was originally developed to calculate higher order derivatives by finite differences. Finite difference formula for derivatives of arbitrary order are defined from highorder differences of f . In [START_REF] Hamming | Numerical methods for scientists and engineers[END_REF], the simplest formula for a derivative of order k is considered.

Here, the forward-difference operator ∆ is defined by the relation

∆f (x) = f (x + h) -f (x), (4.2) 
where the division by h, as for traditional finite difference formula, is suppressed. Higher-order forward-difference operators ∆ k can be defined applying the recurrence formula

∆ k f (x) = ∆(∆ k-1 f (x)) = ∆ k-1 f (x + h) -∆ k-1 f (x). (4.3)
If we defined f j = f (x + jh), the numbers ∆ k f j can be arranged in a difference table as is depicted in Table 4.1.

f j ∆f j ∆ 2 f j ∆ 3 f j .. f 0 ∆f 0 f 1 ∆ 2 f 0 ∆f 1 ∆ 3 f 0 f 2 ∆ 2 f 1 .. ∆f 2 ∆ 3 f 1 f 3 ∆ 2 f 2 : ∆f 3 : f 4 : : Table 4.

1: Difference table by Hamming

Each of the differences is computed by substraction of two entries in the previous column. [START_REF] Ph | Practical Optimization[END_REF]. Given a difference table, constructed from the function values f (x + jh), j = 0, 1, ..., k, we obtain

It can be shown that ∆

k f = h k f (k) (x) + O(h k+1 )
f (k) (x) ≈ 1 h k ∆ k f 0 . (4.4)
To get an accuracy estimation of a function, we have to evaluate it at a set of values {x i }

(about twenty values to be able to construct the 10-th finite differences), where the point x i is defined by x i = x + ih, and |h| is small. We assume that each computed value fi is of the form

fi = f (x i ) + δ i ≡ f (x i ) + θ i A , ( 4.5) 
where |θ i | ≤ 1 and A is called the absolute precision or absolute noise level. We can obtain a difference table as described above, by considering the set of values fi as the first column of a table, and defining each successive column as the difference of the values in the previous column. By the linearity of the difference operator ∆, after k differences we will have

∆ k fi = ∆ k f i + ∆ k δ i , (4.6)
where we know from above that

∆ k f = h k f (k) + O(h k+1
). Under mild conditions on f , the value |h k f (k) | will become very small for moderate values of k if h is small enough. Therefore, the higher differences of the computed values should reflect almost entirely the differences of the errors δ i .

Under the assumptions on the distribution of {θ i } as random variables that the errors are uncorrelated and have the same variance, the later differences ∆ k fi tend to be similar in magnitude and to alternate in sign. In practice, this desired pattern of behaviour typically begins when k is 4 or 5, and the largest value of k that would usually be required is 10 [START_REF] Ph | Practical Optimization[END_REF].

The formula that has been suggested in [START_REF] Hamming | Numerical methods for scientists and engineers[END_REF] for the estimate of A from the k-th column is

(k) A ∼ max i |∆ k fi | β k (4.7)
where the division by

β k = (2k)! (k!) 2 .
is performed to remove the round-off error coming from calculating the k-th differences.

Case study of an aerodynamic function and gradient

We shall consider applying the technique described in this section to a specific numerical example and, of course, we are most interested in the noise level of the objective function of our aerodynamic application provided by Airbus. In this thesis, all our experiments on this application are carried out on OPTaliA version 3.5. The noise may have already been significantly reduced in a more recent version of the code.

We consider a one-dimensional objective function, called CDP, describing the evolution of the pressure drag when changing only the position of one bump close to the value x = 0.8. The technique applying a difference table as described above is used. We compare the estimated noise level to the average regression error value obtained by computing different linear leastsquares approximations. For this, we fit a polynomial p of degree 2, 3 or 4 to the given data set and evaluate the polynomial at each sample point. The average error between p and the sampled data is then obtained by applying the formula

A = f (x) -p(x) √ 98 .
The comparison is depicted in This noise estimating technique should be directly applicable to estimate the noise level of the gradient of a function of one single variable. We consider the adjoint state gradient of an and evaluated the gradient at 100 points beginning from x = 0.8 with a sampling distance of h = 10 -6 . Table 4.3 gives the columns of differences when the noise-estimation method described above is applied to this example. The data set used in the difference table are the

g i ∆g i ∆ 2 g i ∆ 3 g i ∆ 4 g i . . . ∆ 10 g i 4.
10838 -1.146e-3 2.659e-3 -3.514e-3 3.834e-3 . . . first 20 sample points. We observe that the fourth differences (and in addition, five through nine, which are not shown), display already some kind of alternation in sign. The desired pattern of behaviour is finally reached for the differences at k = 10. Using formula (4.7), the estimates . The approximate error using the linear least-squares method (using a cubic polynomial) was 8.78 • 10 -4 , and hence the estimate of A is reasonably good.

Testing the data of all 100 sampled gradient values from Figure 4.5, the estimate of A gives 1.74 • 10 -3 and when approximating by linear least-squares, we get an error estimation of 8.98 • 10 -4 which is very close to the results using only 20 samples. We can therefore conclude that it is not necessary that the number of sample points is exceedingly big to get a reliable error estimation.

Numerical experiments on noisy CUTEr test problems

In this section, we present numerical experiments of our new algorithm on noisy test problems.

As we want to show in the next section the ability of our algorithm to solve the presented reallife application, we decided to adapt the test setting to this situation already in this section as much as possibe. This means, the construction of the noisy test set has been done as to resemble simulation-based problem functions. Furthermore, as in industry the computational budget is most of the time the most restricting parameter, we present our results using data profiles as introduced by Moré and Wild [START_REF] Moré | Benchmarking derivative-free optimization algorithms[END_REF] for exactly this reason.

Noisy test problems

For our testing on noisy functions, we use the same test problems from the CUTEr testing environment as described in Section 3.5.2 for the numerical experiments on smooth problems.

We want to mimic simulations that are defined by an iterative process and these simulations are not stochastic but tend to produce results that are generally considered noisy (as we have observed in the previous sections). The noise in this type of simulation is better modeled by a function with both high-frequency and low-frequency oscillations. We thus define a noisy problem by

f n (x) = f (x) + f φ(x) (4.8)
with f being the absolute noise level and the noise function φ : IR n → [-1, 1] is defined in terms of the cubic Chebyshev polynomial P 3 by

φ(x) = P 3 (φ 0 (x)), P 3 (α) = α(4α 2 -3), (4.9) 
where φ 0 (x) = 0.9 sin(100 x 1 ) cos(100 x ∞ ) + 0.1 cos( x 2 ) (4.10) as suggested in [START_REF] Moré | Benchmarking derivative-free optimization algorithms[END_REF]. Contrary to [START_REF] Moré | Benchmarking derivative-free optimization algorithms[END_REF], where a relative noise level is applied to the smooth functions, we consider an absolute noise level as we believe from our experience that the noise level is not decreasing with the function value in our considered application.

The function φ 0 (x) defined by (4.10) is continuous and piecewise continuously differentiable.

The composition of φ 0 (x) with P 3 eliminates the periodicity properties of φ 0 (x) and adds stationary points to φ(x) at any point where φ 0 (x) coincides with the stationary points (± 1 2 ) of P 3 .

Stopping criterion for the comparison

In [START_REF] Moré | Benchmarking derivative-free optimization algorithms[END_REF], a stopping criterion is suggested which is based on the achieved reduction in the function value relative to the best possible reduction achieved by one of the solvers. They propose to use the convergence test

f (x) ≤ f L + τ (f (x 0 ) -f L ), (4.11) 
where τ is a tolerance, x 0 is the starting point for the problem, and f L is computed for each problem p ∈ P as the smallest value of f obtained by any solver within a given number of function evaluations. Writing (4.11) as

f (x 0 ) -f (x) ≥ (1 -τ )(f (x 0 ) -f L ), (4.12) 
one can see that (4.11) requires that the reduction f (x 0 ) -f (x) achieved by x be at least 1 -τ the best possible reduction f (x 0 ) -f L .

The stopping criterion was also used before in [START_REF] Elster | A grid algorithm for bound constrained optimization of noisy functions[END_REF] and [START_REF] Marazzi | Wedge trust region methods for derivative free optimization[END_REF] but with f L set to an accurate estimate of f at a global minimizer or at a local minimizer obtained by a derivative-based solver, respectively. Setting f L to an accurate estimate of f at a minimzer is not an appropriate approach in the situation where function evaluations are expensive because no solver may be able to satisfy the convergence test within the given computational budget. Applying (4.11) assures that at least one solver will satisfy the convergence test for any τ ≥ 0. The tolerance τ represents the percentage of decrease from the starting value f (x 0 ), where τ = 10 -1 represents a modest decrease but smaller values of τ require larger decreases in the function value.

Data profiles

When benchmarking optimization solvers for problems with expensive function evaluations, Moré and Wild [START_REF] Moré | Benchmarking derivative-free optimization algorithms[END_REF] suggest to use so-called data profiles instead of performance profiles.

Performance profiles provide an accurate view of the relative performance of solvers within a given number of function evaluations but we agree with the statement in [START_REF] Moré | Benchmarking derivative-free optimization algorithms[END_REF] that performance profiles do not provide sufficient information for a user with an expensive optimization problem.

These users have usually a very limited computational budget and are therefore interested in the percentage of problems that can be solved with α function evaluations. Thus, data profiles were developed to show the performance of solvers as a function of a computational budget.

This information can be obtained by letting t p,s be the number of function evaluations required to satisfy the stopping criterion (4.11) for a given tolerance τ , since then

d S (α) = 1 |P| size{p ∈ P : t p,s ≤ α} (4.13)
is the percentage of problems that can be solved with α function evaluations. If the convergence test is not satisfied after maxeval evaluations, t p,s = ∞ is set.

Contrary to [START_REF] Moré | Benchmarking derivative-free optimization algorithms[END_REF], we do not divide the number t p,s by n + 1 to take into account that the function evaluations needed to satisfy a given convergence test is likely to grow as the number of variables increase. We use the measure d S independent of the number of variables in the problem p ∈ P as we believe that practicioners have a limited computational budget which does not depend on the dimension of the problem.

Comparison of different model types on unconstrained problems

In this testing, we compare the four model options of our algorithm BCDFO+ as we did in the previous section on smooth problems, hoping to see which one is the most appropriate to use in the case of noise in the objective function. We present the data profiles for τ = 10 using the two Minimum norm models seems to be interesting. Using the regression model seems to be not advantageous as only 95% of the test problems can be solved after 200 function evaluations in 90% of the best possible reduction. In the case of a higher required accuracy, the robustness of the solver is much less but the sub-basis model option shows again the best performance on the set of problems. We have a different picture when allowing for a very large computational budget of 15000 function evaluations (see Figures 4.8 and 4.9). For low required accuracy, the 90% reduction in the function value, compared to the best possible reduction, could be achieved after a maximum of 540 function evaluations by each model option, except for the regression model, which could finally not solve the problem KOWOSB in 15000 function evaluations. But regarding high required accuracy in Figure 4.9, show a clear advantage of the regression model. It solves 87% of the problems in the given limit and it shows the best performance if a computational budget of more than 500 function evaluations is available.

The detailed results are contained in Table B.8 and Table B.9 for the testing with a computational budget of 200 function evaluations and for low and high required accuracy, respectively. model manages again to outperform the other model options in terms of robustness when a large computational budget is given. And as before in Figure 4.9, we see that the most highaccuracy solutions for a smaller budget are obtained by the minimum 2 -norm model before the regression model takes over at a computational budget of 330 function evaluations.

The detailed results are contained in Table B.12 and Table B.13 for the testing with a computational budget of 200 function evaluations and for low and high required accuracy, respectively. Table B.14 and Table B.15 contain the test results for the computational budget of 15000 function evaluations.

Numerical experiments on an aerodynamical application 4.4.1 Stopping criterion using noise estimation

When working with real-life applications incorporating expensive and noisy function evaluations, it is of high interest to apply a suitable stopping criterion so that no function evaluations are wasted by searching a solution "in the noise". In fact, if the termination parameter is prop-erly set ( ≈ √ noisef , square root of the noise level in the function), our algorithm BCDFO+ may declare convergence by using its default stopping criterion (a small model gradient in a Λ-poised set). But noisef , the exact noise level in the function to minimize, may be unknown beforehand which means that a good choice of is difficult to make.

To provide the user with an algorithm which is also self-contained when used for noisy optimization problems, we had to adapt the stopping criterion to the noisy case. This is realized by providing two additional parameters to the user: the first one is a binary parameter, where noisy="yes" or noisy="no" are the possible values while with the second one, the user can provide the function noise level if it is known, otherwise noisef = 0 and the algorithm will estimate the noise level during the minimization process in the case the problem was specified by the user as noisy.

In the case when the user defines the problem as noisy and provides the noise level of the function to minimize, the algorithm will use this value in setting the termination thresholds = √ noisef for the standard stopping criterion and ∆ min = √ noisef for the alternative stopping criterion (see Section 3.3.7). Furthermore, we apply an additional criterion for termination in the noisy case. Here, we compute at each iteration the difference in the function values in the current interpolation set. Thus, we also terminate

if noisef ≥ κ nz (max{f (Y k )} -min{f (Y k )})
with 0 < κ nz ≤ 1 holds, which indicates that the solver is already "in the noise".

However, we are also prepared for the case the user is not able to provide an estimation of the function noise level. In this case, the thresholds for termination and ∆ min are assumed not to be valid and are approximated by estimating the noise level noisef at some point during the minimization process. The situations which may happen are the following.

The threshold or ∆ min is too big. Here, one of the user-defined termination thresholds or ∆ min are met and the algorithm would terminate prematurely. But, as we do not trust these thresholds to be appropriate in the noisy case when no noise level is given, we have to verify termination by estimating the noise level. Once noisef is computed we may terminate the run successfully or continue minimization applying the strategy described above when the function noise level is known.

The thresholds and ∆ min are too small. In this situation, the algorithm has converged (to a certain accuracy allowed by the noise level) but is not able to terminate. Hence, the solver is proceeding minimization in the noise. What are the possible indicators that the algorithm is in the noise?

1. A second improving step is initiated at the same point.

2. An already explored subspace is tried to enter again (in the bound-constrained case).

In both situations, the strategy for smooth functions is to recompute a poised interpolation set in a reduced trust-region radius. This strategy is not appropriate in the noisy case.

Instead, the proper noise level is estimated and we test for successful termination for one of the three stopping criteria mentioned above.

Reference optimizer (DOT-BFGS)

The method currently used to solve aerodynamical design problems at Airbus is a classical quasi-Newton method with BFGS-update. The reference optimizer is from the DOT (Design Optimization Tools) [START_REF] Vanderplaats | DOT Users Manual[END_REF] library which is implemented in the optimization suite OPTaliA. This solver uses an adjoint state gradient developed at Airbus. As other gradient-based optimizers, it converges along a descent path until no improvement is achieved during one optimizer iteration or if the norm of the gradient, or projected gradient in the bound-constrained case, is zero.

First, the algorithm determines a descent direction, d k , using the evolution of the gradient vector during the last two iterations. Once the search direction is computed, a linear search aiming at determining the stepsize giving the best improvement is performed. The linear search is driven by a one-dimensional polynomial interpolation and requires successive function evaluations. This type of optimizer is intrinsically sequential as it iteratively follows a single descent path.

In terms of quantity of information, the quasi-Newton gradient algorithm proposes the next set of variables by using only the information about the current internal iteration. The internal iteration contains information about the descent direction (computed using evolution of two gradient values) plus some function evaluations (usually no more than ten). This optimization algorithm proposes a new shape based on N = 2n + 10 evaluations of the objective function.

Even if the approximated Hessian matrix, H k , is more and more accurate as the number of internal iterations increases, the algorithm does not retain all the information known about the function but focuses on the information in the vicinity of the current shape.

Test case: Airfoil drag minimization

In our experiments, we attempt to optimize the 2-dimensional RAE2822 airfoil using the Navier-Stokes formulation. We consider the flight situation at Mach number M = 0.78 and an angle of attack AoA = 0.6. The chord length is one meter and the Reynolds number value is Re = 6.5 • 10 6 . The C-mesh is formed of 73 × 458 nodes with its boundary layer refinement. The restitution time for one flow simulation is about 1200 seconds to perform 700 steady iterations.

The objective function to minimize is the above mentioned far-field pressure drag Cd p .

One test case considers one bump (n = 3) which is applied to deform the upper surface in the direction of the vertical axis. Only positive deformations are authorized and the maximum amplitude of this bump is 10 millimeters. The position of the bump can vary inside the bounds p = [0.1, 0.9] because the length of a wing is normalized to be 1 meter. In the other test case, Let's now turn to the test case where nine design variables are considered. In Figure 4.15, we can see a different behaviour of the methods on this test case. The reference solver DOT suggests a fast solution at f = 92.09 after only 62 function evaluations but this is obviously far from being the global minimum. Moreover, we do not even know whether the proposed solution is a local minimum as DOT terminates when the function value could not be reduced over two iterations which may also be caused by the inexact gradient or temporary stagnation and not due to criticality at the current iterate. However, most of model-based derivative-free optimization algorithms including ours are only aiming to find a local minimium of the problem but they seem to be able to detect more global optimal points, regardless of the model option 

Numerical results

Modelling the allowed gradient noise in a gradientbased line search method

Surprisingly to us, we observed that gradient-based line search methods, like quasi-Newton methods, are working quite well for many problems even in the presence of relatively high amplitude noise in the gradient.

In this section, we want to shed light on why this is the case and we attempt to model the gradient noise which is allowed by such a method. In Section 4.5.1, we will present some properties and assumptions on the amplitude of the noise which ensure a descent direction of the algorithm. In Section 4.5.2, we want to establish a bound on the noise in the gradient which still gives rise to a globally convergent algorithm.

For this study, we assume exact function values and noisy gradient values.

Getting a descent direction in the presence of a noisy gradient

Deterministic properties

Remember, that if condition

g T k d k < 0 (4.14)
holds, the search direction d k is a descent direction.

Steepest descent method

Following (4.14), we have for the steepest descent direction d k = -g k , where gk is the inexact gradient, that if condition

-g T k gk < 0 (4.15) 
holds, the negative gradient direction is a descent direction even in the presence of noise.

Furthermore, we can write gk = g k + ∆g k , where ∆g k denotes the level of noise in the gradient.

From this we get the following property.

Property 4.1. Assuming that the norm of the noise in the gradient is smaller than the gradient norm

∆g k 2 < g k 2 , ( 4.16) 
we have that

-g T k (g k + ∆g k ) < 0, (4.17) 
and the negative noisy gradient will provide a descent direction.

In the interest of readability we will drop the iteration count k in the following proofs.

Proof. We know that

g 2 ∆g 2 ≥ |g T ∆g| ≥ -g T ∆g (4.18)
and that

g 2 2 = g T g. ( 4.19) 
By combining (4.18) and (4.19) with (4.16) multiplied by g 2 , we obtain -g T ∆g < g T g and then -g T (g + ∆g) < 0 which implies that -g T g < 0.

Quasi-Newton method

Applying (4.14) to a quasi-Newton direction d k = -H -1 k gk involving a noisy gradient gives the condition

-g T k H -1 k gk < 0. (4.20) 
In this case, it is possible to derive the following property.

Property 4.2. Assuming that the matrices H k are positive definite with bounded condition numbers κ and the noise satisfies

∆g k 2 < 1 √ κ g k 2 , ( 4.21) 
then we have

-g T k H -1 k gk < 0, hence, the direction -H -1 k gk is a descent direction.
Proof. We have for symmetric positive definite matrices that

√ κ = κ(H 1/2 ) = H 1/2 2 H -1/2 2 = σmax(H -1/2 ) σmin(H -1/2 ) ≥ 1.
Combining this with (4.21), we obtain

∆g 2 ≤ σ min (H -1/2 ) σ max (H -1/2 ) g 2 .
We know as well that

σ max (H -1/2 ) = H -1/2 2 and σ min (H -1/2 ) g 2 ≤ H -1/2 g 2 .
Therefore, we get

H -1/2 2 ∆g 2 ≤ H -1/2 g 2 .
Using now that

H -1/2 ∆g 2 ≤ H -1/2 2 ∆g 2 ,
we obtain

H -1/2 ∆g 2 ≤ H -1/2 g 2 which gives in turn ∆ĝ 2 ≤ ĝ 2
when using the substitutions ĝ = H -1/2 g and ∆ĝ = H -1/2 ∆g. When applying Property 4.1, we have that condition ĝT (ĝ + ∆ĝ) > 0 holds. From this we get by re-substitution that

g T H -1 (g + ∆g) > 0
what completes the proof.

After having proved these properties and having observed that an upper bound on the noise is obviously depending on the condition number of the involved Hessian matrix of the optimization problem, we had a closer look at these properties and performed a small test. In fact, we checked the sign of the supposed descent direction (4.20) for different amplitude of ∆g and we observed that condition (4.20), of course, always held for ∆g smaller than the bound from (4.21) but surprisingly it also held very often for ∆g bigger than the bound from (4.21).

From this, we got the impression that (4.21) might be too stringent to be an upper bound on the noise what means that Property 4.1 and Property 4.2 are certainly true but they can only be considered as sufficient conditions and should not be regarded as tight upper bounds to ensure a descent direction.

To illustrate this issue on a small test example (Powell 2D problem with

x * = (1.1•10 -5 , 9 .1) 
and a gradient noise level of noiseg = 10 -3 ), we assume for the moment that Property 4.2 is a tight upper bound, which means that no noise would be allowed for an ill-conditioned problem and each quasi-Newton method would break down in a noisy situation.

Believing this, it seems natural to regularize the problem whenever the condition number is too big to allow for a higher amplitude noise in the problem. Applying this strategy to an existing line search BFGS method gave interesting results, as it can be seen in Figure 4.16. We implemented an automatic regularization technique which checks at every iteration whether As it can be seen in Figure 4.16, the results are not as one could expect after having proved Property 4.2. In fact, the regularization had even a negative effect on the convergence path because steps become close to steepest descent steps and get very short due to the conditioning of the matrix.

From this, we get that Property 4.2 is likely to be over stringent. To observe instead how much noise can be afforded in average while condition (4.20) holds, we decided to apply another model for the noise.

Statistical approach

We assume a Gaussian nature of the noise with ∆g ∼ N (0, σ 2 I) which is a normal distribution with a mean of zero and a standard deviation of σ. With this statistical approach we want to find out, up to which σ there exists a high probability to get a descent direction. For convenience, we restate here the condition for a quasi-Newton direction with an inexact gradient to be a descent direction

-g T k H -1 k gk < 0. (4.22)
Now the question is, for which standard deviation σ does (4.22) hold for a given probability?

In other words, how big can the noise become in average such that (4.22) is still very likely to hold with a high percentage?

As we know the distribution of ∆g, we rewrite (4.22) as Assumption 1:

g T H -1 ∆g ≥ -g T H -1 g, ( 4.23) 
where the left hand side is normal distributed with g T H -1 ∆g ∼ N (0, σ 2 H -1 g 2 2 ). Now we look for the σ up to which Assumption 1 holds with a given probability. From (4.23) we get

P[Assumption 1 holds] = 2 √ π +∞ -g T H -1 g √ 2σ H -1 g 2 e -t 2 dt = P_Ass1. ( 4.24) 
This can be expressed in terms of the complementary Gauss error function erfc as

1 2 erfc 1 √ 2σ - g T H -1 g H -1 g 2 = P_Ass1, (4.25) 
and furthermore, in terms of the inverse complementary Gauss error function erfcinv we get

erfcinv(2 P_Ass1) = 1 √ 2σ - g T H -1 g H -1 g 2 . (4.26)
To see how much noise we can afford and still get a descent direction with a given probability, we extract σ from (4.26) and get

σ = 1 √ 2 erfcinv(2 P_Ass1) - g T H -1 g H -1 g 2 . (4.27)
From this, one could expect that the allowed noise level σ depends on the conditioning of the matrix H, the amplitude of the gradient and of course on the demanded probability. To analyze this, we present a numerical illustration in the following section. In Figure 4.18, we see the difference of a gradient with a norm bigger than one ( g ∞ = 10) where in Figure 4.17, the gradient is normalized. It is easy to see that a larger gradient norm allows for a larger noise. Hence, the tolerated noise depends on the amplitude of the gradient norm and this expectation from Section 4.5.1.1 turned out to be right.

In Figure 4.19, Assumption 1 is tightened to hold with a probability of 99.99%. As expected, the curves show that the noise has to be smaller than that one from Figure 4.17 with 99%

although we also notice that the impact of the gradient norm in Figure 4.18 is more important.

Finally, it can be seen in all figures that the dependency on the conditioning of the problem is very marginal in the statistical approach. 

Global convergence in the presence of a noisy gradient

In this section, we want to extend our results from the previous section. We want to establish an upper bound on the gradient noise level to satisfy the condition for a globally convergent line search algorithm in the presence of an inexact gradient and an exact function. We again want to exercise and compare deterministic and statistical approaches.

Deterministic properties

The condition for a globally convergent line search algorithm is known from Zoutendijk [START_REF] Zoutendijk | Nonlinear Programming, Computational Methods[END_REF] and writes cos ϕ k ≥ δ > 0, for allk, (4.28) where δ is a positive constant and cos ϕ k is the cosine of the angle between d k and the steepest descent direction -g k , defined by

cos ϕ k = -g T k d k g k d k . (4.29)

Steepest descent method

For a steepest descent method using an inexact gradient, condition (4.28) reads

g T k gk g k 2 gk 2 ≥ δ, ( 4.30) 
where gk denotes the noisy gradient gk = g k + ∆g k .

Property 4.3. Assuming that the norm of the gradient noise satisfies

∆g k 2 ≤ 1 -δ 1 + δ g k 2 , ( 4.31) 
the condition (4.30) will hold. Hence, the negative noisy gradient will provide a globally convergent algorithm.

Proof. We know that

g 2 ∆g 2 ≥ |g T ∆g| ≥ -g T ∆g.
By combining these with (4.31) multiplied by g 2 , we obtain

-g T ∆g + δ g 2 ∆g 2 ≤ g 2 2 -δ g 2 2
and then

δ g 2 2 + δ g 2 ∆g 2 ≤ g 2 2 + g T ∆g.
Using now that g + ∆g 2 ≤ g 2 + ∆g 2 and that g 2 2 = g T g, we get

δ g 2 g + ∆g 2 ≤ g T g + g T ∆g,
which gives that cos ϕ ≥ δ > 0.

Quasi-Newton method

For a quasi-Newton method using a noisy gradient, condition (4.28) writes

g T k H -1 k gk g k 2 H -1 k gk 2 ≥ δ, ( 4.32) 
where gk denotes again the noisy gradient gk = g k + ∆g k . In this case, it is possible to derive the following property. 

∆g k 2 ≤ 1 -δ √ κ 1 + δ √ κ g k 2 √ κ , ( 4.33) 
the condition (4.32) holds and thus, the algorithm using the search direction -H -1 k gk is globally convergent.

Proof. We know from Property 4.3 that

if ∆ĝ 2 ≤ 1 -δ 1 + δ ĝ 2 , then ĝT (ĝ + ∆ĝ) ĝ 2 (ĝ + ∆ĝ) 2 ≥ δ.
If we substitute now H -1 2 g = ĝ and H -1 2 ∆g = ∆ĝ, we get that

if H -1 2 ∆g 2 ≤ 1 -δ 1 + δ H -1 2 g 2 , then g T H -1 (g + ∆g) H -1 2 g 2 H -1 2 (g + ∆g) 2 ≥ δ.
The right hand side of this statement can be reformulated using the singular values of H

1 2 and H -1 2 , thus we use that σ min (H -1 2 ) g ≤ H -1 2 g 2 , that σ min (H 1 
2 ) H -1 (g + ∆g) 2 and that σ min (H -1

2 )σ min (H

1 2 ) = 1/κ(H 1 2 
). Furthermore, after dividing the complete if-statement by H -1 2 2 and using that

H -1 2 ∆g 2 ≤ H -1 2 2 ∆g 2 , we obtain that if ∆g 2 ≤ 1 -δ 1 + δ H -1 2 g 2 H -1 2 2 , then 1 1/κ(H 1 2 ) g T H -1 (g + ∆g) g 2 H -1 (g + ∆g) 2 ≥ δ,
which gives, using the definition of cos ϕ from (4.29), that

if ∆g 2 ≤ 1 -δ 1 + δ H -1 2 g 2 H -1 2 2 , then cos ϕ ≥ δ κ(H 1 2 )
. We get by substituting δ = δ/κ(H

1 2 ) that if ∆g 2 ≤ 1 -δ κ(H 1 2 ) 1 + δ κ(H 1 2 ) H -1 2 g 2 H -1 2 2
, then cos ϕ ≥ δ .

Expanding the right hand-term of the if-statement by H 1 2 2 and using then that H

1 2 2 H -1 2 g 2 ≥ H 1 2 H -1 2 g 2 = g 2 and that H 1 2 2 H -1 2 2 = κ(H 1 2 ), we obtain that if ∆g 2 ≤ 1 -δ κ(H 1 2 ) 1 + δ κ(H 1 2 ) g 2 κ(H 1 2 )
, then cos ϕ ≥ δ . This property shows again a strong dependence between the tolerated noise and the condition number of the problem. But we did again a small testing which has shown that the dependence on the condition number is only marginal. Hence, we are suspecious that things similar to the previous section may happen and that the condition for a globally convergent algorithm may "in average" allow for higher amplitude noise even if the problem is not well-conditioned. We want again apply here the statistical model.

Writing now κ(H

Statistical approach

We assume a Gaussian nature of the noise with ∆g ∼ N (0, σ 2 I) as in the previous section.

This time we want to find out, up to which σ does (4.32) hold for a given probability? In other words, how big can the noise become in average such that the condition for global convergence of a line search method still holds with a high percentage?

As we know the distribution of ∆g, we rewrite (4.32) as

g T H -1 ∆g ≥ δ g 2 H -1 (g + ∆g) 2 -g T H -1 g. (4.34)
Furthermore, if we assume that H -1 (g + ∆g) 2 is not far from H -1 g 2 (we will look at this later in Assumption 3), we can write (4.34) as Assumption 2:

g T H -1 ∆g ≥ δ H -1 g 2 g 2 -g T H -1 g (4.35)
and the right hand side of the inequality is independent from the level of noise. From the left hand side we know that it is normal distributed with g T H -1 ∆g ∼ N (0, σ 2 H -1 g 2 2 ). Now we look for σ up to which Assumption 2 holds with a given probability. From (4.23) we get

P[Assumption 2 holds] = 2 √ π +∞ δ g 2 √ 2σ -g T H -1 g √ 2σ H -1 g 2 e -t 2 dt = P_Ass2. (4.36)
This can be expressed in terms of the complementary Gauss error function erfc as

1 2 erfc 1 √ 2σ δ g 2 - g T H -1 g H -1 g 2 = P_Ass2, (4.37) 
and furthermore, in terms of the inverse complementary Gauss error function erfcinv, we get

erfcinv(2 P_Ass2) = 1 √ 2σ δ g 2 - g T H -1 g H -1 g 2 . ( 4.38) 
To see now how much noise we can afford and still be globally convergent with a given probability, we have to extract σ from (4.38) what results in

σ = 1 √ 2 δ g 2 - g T H -1 g H -1 g 2 1 erfcinv(2 P_Ass2) . ( 4 

.39)

From this one can see that the Gaussian noise level σ depends on the conditioning of the problem, the amplitude of the gradient and of course on the demanded probability.

Now we have to examine the supplementary assumption which we imposed on (4.34) to get Assumption 2 in (4.35).

Assumption 3:

2

H -1 g 2 2 ≥ H -1 (g + ∆g) 2 2 ≥ 1 2 H -1 g 2 2 (4.40)
In fact, we have to divide the two-sided condition (4.40) into two parts what gives

P[ H -1 (g + ∆g) 2 2 ≤ c 2 ] -P[ H -1 (g + ∆g) 2 2 ≤ c 1 ] = P_Ass3 (4.41)
where

c 2 = 2 H -1 g 2 2 and c 1 = 1 2 H -1 g 2 2 .
The next question is, up to which σ does Assumption 3 hold for a given probability?

Unfortunately, the distribution of H -1 (g + ∆g) 2 2 cannot be easily computed. Therefore, it is worthwhile to get the right σ by simulation. This is done by imposing a first σ 0 , e.g., the one we get from Assumption 2, on the noise ∆g, generating 10 5 examples of the random variable H -1 (g + ∆g) 2 2 , and computing a CDF (cumulative distribution function) from which we get the probability that Assumption 3 holds. If this is lower than the desired probability, σ 0 is decreased and a new simulation is started.

Numerical illustration

The results of our analyses can be seen in the figures below. The allowed noise level is depicted in dependency of the condition of the problem. In other words, it is shown which noise can be afforded when the problem becomes more ill-conditioned up to a condition number of κ(H) = 10 10 . In Figure 4.20, we see as a dashed line the inversely proportional relation between the Furthermore, we can observe from this figure that Assumption 2 allows for similar noise levels as Assumption 1 and that Assumption 3 is stronger than both of them. But still, the statistical approach allows for a higher amplitude of noise than the deterministic one and the dependency on the condition of the problem is not very big in average.

Numerical example of an aerodynamical test case

We finally illustrate our theory on some real data from a Navier-Stokes test case provided by Airbus. To do so, we sampled 100 function and gradient values of a one-dimensional function of the CDP position variable in the range of (0.7, 0.9). The adjoint state gradient is displayed as a dotted line on the left hand side of Figure 4.21 and the gradient approximated by finite differences is displayed as a plain line. By visualizing a line at zero, the finite differences gradient 

Conclusions

We addressed the question, how much noise in the gradient can a steepest descent method and a quasi-Newton method tolerate. We established two properties on the noise which ensure a descent direction using an inexact gradient in such methods. These properties show a strong dependence between the condition of the problem and the allowed noise. But, a quick check of the established condition with some random noise of different amplitude has shown that this property covers the worst case and seems to be over stringent in the average case. So, we decided to assume a Gaussian nature of the noise with mean zero and variance σ 2 to see what noise can be afforded in average. We established an assumption which ensures a descent direction in a quasi-Newton method if it holds with a high probability.

Furthermore, we proved another deterministic property which guarantees global convergence of a quasi-Newton algorithm in the presence of a noisy gradient. Here also, we could establish two statistical assumptions which together ensure with a high probability global convergence of the algorithm using an inexact gradient. We simulated the distribution of the random number of Assumption 3 to get an allowed standard deviation σ of the noise up to which the two assumptions hold with a given probability (e.g. 99%).

In fact, we established two sufficient conditions on the global convergence of a quasi-Newton algorithm in presence of a noisy gradient. If the noise satisfies the condition stated in Property 4.4, the algorithm is certainly globally convergent. If the noise satisfies Assumption 2 and Assumption 3, which is very likely to happen up to a certain level of noise, the algorithm is globally convergent.

From our experiments we got confirmed that there is a relation between the amplitude of the gradient norm and the tolerated noise in the gradient. Whereas the dependency between the conditioning of the problem and the tolerated noise in the gradient, which was predicted by the deterministic property, turned out to be not very big in average. Thus, we can conclude that a quasi-Newton method provided with a noisy gradient is globally convergent up to a certain level of noise which is only marginally dependent on the condition of the approximated Hessian.

We could observe that applying Assumption 3 on an Airbus test problem gives us exactly the answer to our question, why different optimizers converged to different minima or even get into trouble while looking for a good solution.

For this study, we assumed exact function values and noisy gradient values. Extension to the more general situation where both function and gradient information are inexact will be considered in a future work.

Enhancing a DFO method by inexact gradient information in the context of global optimization

An important point in industrial optimization is to obtain a global optimum for approximate function and gradients in the minimal computational time. It is well known that this objective is not very easy to attain for problems of arbitrary size using generic algorithms, even when solving non-noisy problems. Indeed, algorithms which aim at finding a global optimum oftentimes take advantage of building meta-models and using DOE-techniques (Design Of Experiment) which are very costly in terms of function evaluation and therefore in computing time.

Our goal is therefore, viewed more realistically, to envisage this type of algorithm for degrees of freedom of modest dimension (less than 20 variables). The software SNOBFIT (Stable Noisy Optimization by Branch and FIT), as stated by its authors in [START_REF] Huyer | SNOBFIT -stable noisy optimization by branch and fit[END_REF], seems to answer the above specifications in an acceptable manner.

The algorithm SNOBFIT

SNOBFIT, developed by A. Neumaier and W. Huyer, is a software package for robust and fast solution of noisy optimization problems with continuous variables varying within bounds, possibly subject to additional soft constraints.

Objective function values must be provided by a file-based interface. Care is taken that the optimization proceeds reasonably even when the interface produces noisy or even occasionally undefined results (hidden constraints). The interface makes it possible to use SNOBFIT with new data entered by hand, or by any automatic or semiautomatic experimental system. This makes SNOBFIT very suitable for applications to the selection of continuous parameter settings for simulations or experiments, performed with the goal of optimizing some userspecified criterion. Furthermore, the possibility of evaluating the objective at several points simultaneously by parallel function evaluations should be pointed out.

The method combines a branching strategy to enhance the chance of finding a global minimum with a sequential quadratic programming method based on fitted quadratic models to have good local properties. Various safeguards address many possible pitfalls that may arise in practical applications, for which most other optimization routines are ill-prepared [START_REF] Huyer | SNOBFIT -stable noisy optimization by branch and fit[END_REF].

The package solves the optimization problem

min f (x) s.t. x ∈ [u, v] (4.42)
where an interval notation for boxes is used

[u, v] := {x ∈ R n |u i ≤ x i ≤ v i , i = 1, ..., n}, (4.43) 
with u, v ∈ R n and u i < v i for i = 1, ..., n, i.e., [u, v] is bounded with nonempty interior. A box

[u , v ] with [u , v ] ⊆ [u, v] is called a subbox of [u, v].
Based on the already available function values, the algorithm builds internally, around each point, local models of the function to minimize, and returns at each step a number of points whose evaluation is likely to improve these models or is expected to give better function values.

In case the total number of function evaluations is kept low, no guarantees can be given that a global minimum is located.

In All points for which the function has been evaluated are stored in the set X which is used to build the local models at each iteration. These local surrogate models are created around each point using n + m points from X, where n is the dimension of the problem and m is a userdefined number. In the presence of noise, fitting reliable linear models near some point requires the use of a few more data points than parameters. To be able to build such a model, n + m appropriate points have to be selected in a safeguarded manner from X. This is done by using the nearest neighbours of each point.

In Split subboxes which contain more than one point.

4:

Compute a vector with n + m nearest neighbours for each point.

5:

Determine trial point w by minimizing a quadratic model around the current best point

x best .

6:

Determine trial points y j by minimizing local models around x j , ∀x j ∈ X.

7:

Determine trial points by dividing large subboxes (unexplored regions).

8:

Determine trial points by space filling if necessary.

9:

Evaluate new function values at suggested trial points. 

Modifications

Use of provided gradient information Our aim is to develop an improved version of the method described above and we will call this algorithm gbSNO (gradient-based Stable Noisy Optimization). To accelerate convergence speed of the original version, we will exploit the fact that gradient information is available in the OPTaliA suite at Airbus. As we know that the gradient provided comes from an expensive CFD-calculation and may be therefore noisy and certainly comprise an error, the implementation must be done very carefully. The gradient information will be incorporated in the algorithm to provide more accurate information when building up the two kinds of local models. This will be done in a way we attempt to eliminate the possible gradient error by use of the function values of the nearest neighbours around each point.

To determine roughly the quality of the gradient at x, a gradient ratio ρ is computed using the function value from the closest nearest neighbour of x. To get an idea of the gradient accuracy, we try to compare it with a finite difference type gradient. This results in the formula

ρ = f (x) -f (x -s) -∇f (x) T s s , ( 4.44) 
where s is the distance to the closest nearest neighbour of x. So, ρ will be large if the gradient is supposedly incorrect.

Let x k , k = 1, ..., n + m, be the nearest neighbours of x, f := f (x), f k = f (x k ), and Q k the error term which accounts for uncertainties in the function values. Furthermore, we want to introduce one additional equation carrying the information of the noisy gradient g noisy := g noisy (x). Then we consider the equations

f k -f = g T (x k -x) + k Q k , k = 1, ..., n + m, (4.45) g noisy -g = ρ, ( 4.46) 
where k are the model errors to be minimized and g is the gradient to be estimated. The new least squares problem to minimize is now written

min g n+m k=1 f k -f Q k - g T (x k -x) Q k 2 + g noisy -g ρ 2 , ( 4.47) 
where the last term represents the penalization we added onto the system to improve the quality of the estimated gradient g. High uncertainties in function and gradient values are reflected in large values of Q k and ρ, respectively. In this case, a larger error is permitted in the fit.

The gradient g is approximated for each point and is then used in building the local model around the corresponding point. The approximate gradient at x best is also used to build the quadratic model around the current best point.

Use of a BFGS-formula

As we are now quite sure to have estimated a more reliable gradient for each x, we do not want to use a Hessian which is estimated by a quadratic fit as it is done in the original version of SNOBFIT. Instead, we decided to use a Hessian approximation in the quadratic model which is updated every iteration by the means of a BFGS-formula where the estimated gradient from (4.47) is used.

Experiments on academic and aerodynamic test problems

From the numerical experiments we have done, we want to detail two problems, one academic and the other one a real life problem provided by Airbus.

Academic test problem

The minimal surface area problem is an unconstrained optimization problem. Finding a minimal surface of a boundary with specified constraints is a problem in the calculus of variations and is sometimes known as Plateau's problem. Minimal surfaces may also be characterized as surfaces of minimal surface area for given boundary conditions.

As SNOBFIT and also gbSNO are developed to solve problems involving not too many parameters, the size of the problem is taken as n = 9 in this case. To consider a noisy test function, we imposed noise levels noisef = 10 -2 and noiseg = 10 -1 on the function and gradient respectively to run the codes. At each iteration, three points were generated by the algorithms, where two of them concentrate on the local search at current promising regions and the other one is given to explore the search domain to find possible better local minima to perform the global aspect of the method. The algorithms were stopped when there was no improvement of the best function value over 25 iterations. Furthermore, considered that both algorithms allow for parallel evaluations of functions (and gradients if necessary), both algorithms are not forced to wait for sequential computations as other well-known gradient-based algorithms. So, given the hardware facilities, computing three function values at the same time is a great gain in terms of computing time.

Airbus test problem

Being able to access a real-life aerodynamic application provided by Airbus, we were testing our algorithm minimizing a CDP function which we were using in the other sections before with the difference that this time an Euler model on a fine mesh, instead of a Navier-Stokes model, is applied in the CFD simulation. The problem comprises three bounded variables (amplitude, position and expansion of a bump). We were running our algorithm gbSNO two times on the given problem. As it starts always with building up a random space filling design over the whole domain, we get two different starting points after this initialization. Nevertheless, as we see on 

Conclusions and perspectives

In this section, we described the new global search algorithm gbSNO which is based on the algorithm SNOBFIT by Huyer and Neumaier which is announced to be especially adapted to cope with expensive noisy functions. We modified this derivative-free-optimization software package to allow for the use of gradient information, even noisy gradient information, with the hope of accelerating convergence speed of the method. We attempted to filter the inexactness of the gradients by using the function values in the close neighbourhood of the points.

We showed on an academic example with added noise on function and gradient values, that although the cost of the initial space filling design is higher than for SNOBFIT, the convergence is much faster by using additional gradient information even in this perturbed case. Chapter 5

Conclusions and future work

In this thesis, we have tried to show that derivative-free optimization (DFO) is currently a very vivid field of research as practitioners more and more want to use sophisticated techniques for solving their optimization problems. But at the same time, derivative-information may be difficult (or only at a high extra cost) to obtain in real-world applications. This suggests the use of derivative-free optimization methods where the class of interpolation-based trust-region methods has shown to be numerically efficient in several recent comparisons [START_REF] Moré | Benchmarking derivative-free optimization algorithms[END_REF][START_REF] Rios | Derivative-free optimization: A review of algorithms and comparison of software implementations[END_REF].

In Chapter 2, we gave a short introduction into trust-region methods which use quadratic polynomials, interpolating or approximating the function on a set of points at which the function has been evaluated. In trust-region methods, the model is trusted to approximate the function within a local neighborhood of the best point found so far. We explained that special care must be taken to control the geometry of the interpolation set which may otherwise deteriorate in certain situations. We presented several methods of this class ranging from basic ones, which involve so-called geometry improving steps, to a recent approach which uses a self-correcting property of the geometry of the interpolation set [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF]. Such an algorithm resorts to the geometry improving steps as less as possible (only when the model gradient is small), while still maintaining a mechanism for taking geometry into account.

Moreover, we have presented the new algorithm UDFO+ which is a modified version of the described self-correcting algorithm but where geometry considerations are released in some stages of the algorithm. We proved global convergence to first-order stationary points of this new version. Later, in the numerical section of Chapter 3, we showed that UDFO+ is performing out other solvers from different classes of DFO methods.

As the main contribution of this thesis, we extended this algorithm to handle boundconstrained problems. Chapter 3 introduced the new algorithm BCDFO+ for solving boundconstrained local optimization problems. The extension to bound-constrained problems is not as straightforward as one could think because points may get aligned at active bounds and hence, the geometry of the interpolation set may deteriorate. An idea to circumvent this problem is to add points to the set which would preserve the geometry, thereby involving several additional function evaluations. But as the idea of using the self-correcting property is to dispense with extra calculations for regularly improving or preserving the geometry, we proposed to handle the bound constraints by an "active-set" approach. Such a strategy creates the opportunity for a model-based DFO method of saving a reasonable amount of function evaluations because it proceeds minimization in lower-dimensional sub-spaces. A standard active-set method anticipates to update the set of active constraints while adding and/or removing constraints at each iteration. Our approach allows only for adding constraints to the set of active constraints because it then pursues minimization in the subspace of the remaining free variables by calling itself recursively.

Our algorithm comes with several additional interesting features. It is for instance possible to start minimization using only n + 1 evaluated points and to augment the interpolation set when minimization progresses. In early stages, using p = n + 1 function values (sufficient to build a linear model) is economical and often sufficient to make progress. In a later stage of the calculation, considering p = 1 2 (n + 1)(n + 2) function values (enough to build a complete quadratic model) it is expected to achieve faster progress to a close solution. Different types of models have been proposed to perform under-and overdetermined interpolation. It turned out that the option of a sub-basis model has performed best on a test set of smooth unconstrained and bound-constrained test problems from the CUTEr library.

Another feature has been introduced, targeting to save function evaluations when encountering an active bound and starting to work in the sub-space. In fact, it has turned out to be advantageous to build the first model inside the subspace not only from true function values but also by using the approximate information given by the model of the higher-dimensional space. Furthermore, the algorithm tries to re-use function values from formerly evaluated points whenever a new model in a sub-space or the fullspace has to be computed.

We also presented the new algorithm BC-MS to solve the bound-constrained trust-region subproblem in 2 -norm where we extended the technique of an Moré-Sorensen algorithm. The comparison to a standard truncated conjugate gradient method has shown that using BC-MS as the local solver inside our DFO trust-region algorithm BCDFO+ is not as efficient as to use the TCG option applied to an infinity-norm trust region.

Numerical experiments have been performed to compare the presented algorithms to the state-of-the-art packages NEWUOA and BOBYQA, which also apply a model-based trustregion method, and three members from the class of direct-search methods. Our new development BCDFO+ happened to compare very well to the other codes on the test sets of smooth unconstrained and bound-constrained problems from the CUTEr library.

In Chapter 4, we have studied the impact of noise on optimization algorithms in general and adapted our algorithm to handle noisy optimization problems. First, we demonstrated how the level of a low-amplitude noise in a function or a gradient can be estimated using a tool which was originally developed to calculate higher order derivatives and to estimate round-off. This tool is incorporated in our algorithm to estimate the noise level if the user intents to optimize a noisy objective function but is not able to provide the level of noise.

We also presented numerical results on sets of noisy unconstrained and bound-constrained test problems from the CUTEr library and an aerodynamic engineering application. These results support the effectiveness of our algorithm on blackbox functions for which no special mathematical structure is known or available. We assess different types of interpolation and regression models inside our algorithm BCDFO+. The minimum 2 -norm model seems to be the most appropriate option when only a small computational budget is available whereas the regression model is to recommend when the computational budget is large as it turned out to be the most robust to solve problems to a high required accuracy. Furthermore, we presented a theoretical study on the allowed noise on a gradient which is used in a gradient-based line search method. We could establish deterministic properties on the gradient noise for ensuring globally convergent steepest-descent and quasi-Newton methods in the presence of a noisy gradient. The established properties have shown a strong dependence on the condition of the problem which seemed to be over stringent in the average case. And indeed, after assuming a Gaussian nature of the noise, we established another sufficient condition on the global convergence of a quasi-Newton method, which allows with a high probability for a bigger amplitude noise on the gradient.

The good performance of the algorithm opens many doors for future research. The good robustness of our implementation is of course an invitation to look for a global convergence theory.

Furthermore, we want to show to which extent small perturbations can be applied to control the condition of the system matrix of a quadratic interpolation model without corrupting the error bounds on the gradient. This is planned as an extension to the linear interpolation case which we presented in Section 3.3.4. In addition, we also want to examine the linear and quadratic regression case.

As we are interested in a broad assessment of interpolation and regression models, we want to consider the options of the least-change Frobenius-norm model and the minimum 1 -norm model in our algorithm and compare them to the presented model types.

Another obvious area of research, which is motivated by our shape optimization application, is to extend the algorithm to handle general nonlinear constraints. Standard techniques based on SQP or augmented Lagrangian could be considered in this respect. progrès substantiels, tandis que considérer p = 1 2 (n + 1)(n + 2) valeurs de fonction dans une étape ultérieure du calcul, peut permettre de s'approcher de la performance de la méthode de Newton. Différents types de modèles ont été proposés pour réaliser une interpolation sous-ou surdéterminée. Il s'est avéré qu'une d'interpolation basée sur un sous-espace des formes quadratiques a obtenu les meilleurs résultats sur un ensemble de problèmes-tests sans contraintes et un ensemble de problèmes-tests avec contraintes de borne issu de la collection CUTEr.

Une autre fonctionnalité a été introduite, ciblée pour économiser des évaluations de fonction lorsque les itérés rencontrent une borne active. En fait, il s'est avéré être avantageux de construire le premier modèle à l'intérieur du sous-espace non seulement à partir des vraies valeurs de la fonction mais aussi en utilisant les informations approximatives donnée par le modèle de l'espace de dimension supérieure. Par ailleurs, l'algorithme essaie de réutiliser les valeurs des fonctions à partir de points précédemment évalués chaque fois qu'un nouveau modèle dans un sous-espace ou dans l'espace-plein doit être calculé. 
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 2 will be determined by interpolating known objective function values at a given set Y k of interpolation points, meaning that the interpolation conditions m k (y) = f (y) for all y ∈ Y k (2.5) must hold. The set Y k is known as the interpolation set. The question is now under which condition on Y k can an (accurate enough) interpolation model be (numerically safely) com-
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 1 condition number of M = M ( φ, Ŷ) and the measure of Λ-poisedness can be established when considering the basis of monomials φ and Ŷ, a shifted and scaled version of Y. This new matrix is computed as follows. Given a sample set Y = {y 1 , y 2 , . . . , y p }, a shift of coordinates is first performed to center the interpolation set Y at the origin, giving {0, y 2 -y 1 , . . . , y p -y 1 }, where y 1 denotes the current best iterate which is usually the center of the interpolation. The region B is then fixed to be B 2 (0, ∆(Y)) and the radius ∆ = ∆(Y) = max 2≤i≤p is used to scale the set, yielding Ŷ = {0, ŷ2 , . . . , ŷp } = {0, (y 2 -y 1 )/∆, . . . , (y p -y 1 )/∆} = 1 ∆ (Y -y 1 ).

  ) and increment i by one. If ∇x mi(xk) < , then return x k , otherwise start Step 1b again. Step 1c: Set m k = mi, ∆ k = θ ∇xm k (x k ) and define vi = x k (what indicates that the model at x k is well poised and Steps 4b and 4c need not to be visited in an unsuccessful iteration) if a new model has been computed.

  the interpolation model m k+1 around x k+1 using Y k+1 and the associated Lagrange polynomials {l k+1,j } p j=1 . Increment k by one and go to Step 1.

Lemma 2 . 16 .

 216 Unsuccessful iterations of type 4a, 4c and 4d, in the case where points are replaced and ∆ k is decreased at the same time, cannot happen infinitely often because ∆ switch > κ ∆ . Iterations of type 4e cannot happen infinitely often because ∆ k is bounded below by ∆ ∞ and γ 2 < 1. Thus, ∆ k = ∆ ∞ < ∆ switch for all k sufficienty large, and all iterations are eventually of type 4d since p k = p max must eventually be reached and at most p max iterations of type 4c can possibly be necessary to ensure that all interpolation points belong to B(x * , β∆ ∞ ). Note that during an iteration of type 4d the new trial point replaces some interpolation point from the set C k . From the definition of C k it follows that, for all k large enough, the trial point x + k replaces a previous interpolation point y k,j such that | k,j (x + k )| ≥ Λ. But this is impossible in view of Lemma 2.3 what leads to the desired contradiction. Now, the case with infinitely many successful iterations is considered. Suppose that A1-A4 hold and that the number of successful iterations is infinite. Then lim inf k→∞ g k = 0.

yielding a solution x * S of the subspace problem. Step 2 . 5 :Step 3 :Step 4 :

 2534 Return to the full space. If dim(S k )< n, return x * S . Otherwise, redefine x k = x * S , construct a new interpolation set Y k around x k and build the corresponding model m k . Go to Step 4. Avoid re-entering a subspace. If S k has already been explored at x k , then set x k+1 = x k , reduce the trust-region radius ∆ k+1 = γ 4 ∆ k and build a new poised set Y k+1 in ∆ k+1 . Compute m k+1 and increment k by one. Criticality test. Define mi = m k .

Theorem 3 . 1 .

 31 expression of the matrix M = M ( φ, Y) after performing one step of Gaussian elimination to M . This leads to the fact that the matrix L is nonsingular if and only if M is nonsingular, since det(L) = det(M ).We can establish the following result in terms of the perturbed set Ỹ: Let Assumption 3.1 and Assumption 3.2 hold. The gradient of the linear interpolation model satisfies, for all points y in B(y 1 , ∆) and their corresponding perturbed versions ỹ, an error bound of the form ∇f (y) -∇m(ỹ) ≤ κ egp ∆,(3.25) 

  .28) where L † denotes again the Moore-Penrose generalized inverse of the matrix L. The scaled matrix L (see Section 3.3.4 for the definition) corresponds to a scaled sample set contained in a ball of radius 1 centered at y 1 /∆, i.e., Ŷ = {y 1 /∆, y 2 /∆, . . . , y p /∆} ⊂ B(y 1 /∆, 1).

minimum 2 -

 2 norm and regression models are built by computing the Moore-Penrose pseudoinverse instead of using the simpler (and faster) backslash-operator. The reason is that the solution to the least-squares system using the backslash-operator in Matlab (version 7.1.0.183 with service pack 3) gives the solution with the least number of non-zero entries and not the least-norm solution.A particularity of our implementation of the minimum Frobenius-norm model is, to solve the problem M ( φ, Y)α = f (Y) when quadratic degree is reached rather than continuing to solve F ( φ, Y) [λ, µ] T = [f (Y), 0] T . In the latter case, each iteration involves a matrix-matrixproduct to establish F ( φ, Y) which is not expensive compared to a function evaluation in some industrial test cases as those considered in Chapter 4 of this thesis. The main reason, to work with M ( φ, Y) rather than with F ( φ, Y) in the complete quadratic case is that the condition number of the matrix F ( φ, Y) may be of the order of the square of the condition number of

Figure 3 . 1 :

 31 Figure 3.1: Minimization of a quadratic model inside the 2 -norm constraint and the bounds
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 55321 Figure 3.2: Comparison of different models in BCDFO+ on unconstrained CUTEr problems
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 3334 Figure 3.3: Comparison of local solvers in BCDFO+ on unconstrained CUTEr problems
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 35363738 Figure 3.5: Comparison of BC-DFO and NEWUOA on unconstrained CUTEr problems (2 digits of accuracy required in final function value)
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 39310311312 Figure 3.9: Comparison of BCDFO+, BC-DFO and NEWUOA on unconstrained CUTEr problems (2 digits of accuracy required in final function value)
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 320313314315316317318319320 Figure 3.13: Comparison of BC-DFO and BOBYQA on bound-constrained CUTEr problems (2 digits of accuracy required in final function value)
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 3322324326328 Figure 3.21: Comparison BC-DFO, NEWUOA and SID-PSM on unconstrained CUTEr problems (2 digits of accuracy required in final function value)
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 329331334335336 Figure 3.29: Comparison BC-DFO, NEWUOA and SID-PSM on bound-constrained CUTEr problems (2 digits of accuracy required in final function value)
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 41 has been set up in OPTaliA. In order to be able to use various types of optimizers (gradient-based, model-based DFO, genetic, response surface) inside OPTaliA, it is organized as a black-box optimization framework. In

Figure 4 . 1 :

 41 Figure 4.1: Optimization and evaluation framework in OPTaliA

(Figure 4 . 2 :

 42 Figure 4.2: Illustration of the parameters β and p

3 .

 3 developed in Matlab. The optimization suite OPTaliA at Airbus provides the possibility to simply call for a function or gradient evaluation of a specific problem. To use this possibility we had to adapt the Matlab routine [f,g]=get_fg(x) which is called by an optimizer to obtain function and gradient values. An evaluation in OPTaliA either comprises a function evaluation or a function and gradient evaluation. So, depending on the number of output-arguments of get_fg(x), one or two is possible, the required calculations are done in OPTaliA. Each call to OPTaliA in the Matlab routine get_fg(x) is done in five steps 1. Write the x-vector to a file 2. Open connection to frontal node via ssh and calling a shell-script: (a) Source the bash-shell (b) Change directory to specific problem (c) Call OPTaliA to evaluate either f or f and g at point x Exit connection to frontal node 4. Wait 5. Read either f -value or f -and g-values from a file As the optimization algorithm in Matlab is running on a calculation node of the server and OPTaliA is to call from the frontal node of the server, in Step 2 of the calling routine, a shell-script is executed which then calls OPTaliA.

  (a) Stepsize h = 10 -4 (b) Stepsize h = 10 -5 (c) Stepsize h = 10 -6

Figure 4 . 4 :

 44 Figure 4.4: Navier Stokes pressure drag objective function

Figure 4 . 5 :

 45 Figure 4.5: Navier Stokes pressure drag adjoint state gradient

of A corresponding to k = 4 ,

 4 . . . , 10 are 1.49 • 10 -3 , 1.48 • 10 -3 , 1.37 • 10 -3 , 1.31 • 10 -3 , 1.27 • 10 -3 , 1.19 • 10 -3 , and 1.20 • 10 -3
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 4647 Figure 4.6: Comparison different models on unconstrained noisy CUTEr problems (τ = 10 -1 and maxeval = 200)
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 4849435 Figure 4.8: Comparison different models on unconstrained noisy CUTEr problems (τ = -1 and maxeval = 15000)
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 411412413 Figure 4.10: Comparison different models on bound-constrained noisy CUTEr problems (τ = 10 -1 and maxeval = 200)

  three bumps (n = 9) are applied on the upper surface where the position-variable has different bounds for each of the bump (p 1 = [0.1, 0.5], p 2 = [0.25, 0.75], p 3 = [0.5, 0.9]). The bounds on the expansion-variables are in both cases and for all bumps β = [2.0, 7.0].

First, we wantFigure 4 . 14 :

 414 Figure 4.14: Convergence histories on 3-dim. aerodynamic test case

Figure 4 . 15 :

 415 Figure 4.15: Convergence histories on 9-dim. aerodynamic test case

Figure 4 . 16 :

 416 Figure 4.16: Regularization for Powell 2D problem with noiseg = 10 -3

4. 5 . 1 . 3

 513 Numerical illustrationHere, we want to exercise the results of our analysis applied on a small academic test problem (dimension n = 10). In the figures, the allowed noise level is depicted in dependency of the conditioning of the problem. In other words, it is shown which noise can be afforded when the problem becomes more ill-conditioned up to a condition number of κ(H) = 10 10 .
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 417418 Figure 4.17: Allowed noise level for Property 4.2 and P_Ass1=99%

, 4 .

 4 18 and 4.19, we see the inversely proportional connection between the condition number of H and the allowed noise ∆g such that Property 4.2 holds (dashed line). The plain line shows the behaviour of the standard deviation σ of the supposed Gaussian gradient noise ∆g such that Assumption 1 holds with 99%.
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 419 Figure 4.19: Allowed noise level for Property 4.2 and P_Ass1=99.99%

Property 4 . 4 . 1 √κ

 441 Assuming that the matrices H k are positive definite with a uniformly bounded condition number κ, that δ ≤ , and that the noise satisfies

Figure 4 . 20 :

 420 Figure 4.20: Allowed noise level for Property 4.4 and P_Ass2&3=99%

Figure 4 . 21 :

 421 Figure 4.21: Example of CDP adjoint state gradient

  each call to SNOBFIT, a possibly empty set of points and corresponding function values are put into the program, together with some other parameters. Then the algorithm generates the requested number of new evaluation points. These points and their function values should preferably be used as input for the following call to SNOBFIT. The suggested evaluation points belong to five classes indicating how such a point has been generated, in particular, whether it has been generated by a local or a global aspect of the algorithm. The points of class 1 to 3 represent the more local aspect of the algorithm and are generated with the aid of local linear or quadratic surrogate models created by linear least squares fits at positions where good function values are expected. The points of classes 4 and 5 represent the more global aspect of the algorithm, and are generated in large unexplored regions. These points are reported together with a model function value computed from the appropriate local model.SNOBFIT generates at each iteration a user-defined number of new trial points of different character which recommend themselves for evaluation. The points are chosen from five different classes in proportions that are set by the user. This gives the user some control over the desired balance between local and global search. The fact that these selected points, given the opportunity of using parallel computing facilities, can be evaluated at the same time, should again be emphasized here.

Figure 4 . 22 :

 422 Figure 4.22: Comparison on minimal surface problem

Figure 4 .

 4 [START_REF] Byrd | KNITRO: An integrated package for nonlinear optimization[END_REF] (the runs of gbSNO are displayed as dotted lines) the algorithm is able to find the global minimum after a certain time in both runs. From the gradient-based local solvers only Lancelot was able to find the global minimum, probably by chance.

Figure 4 . 23 :

 423 Figure 4.23: Comparison on a Euler CDP problem

Furthermore, we did

  some experiments on an expensive Airbus problem what provides noisy function values as well as noisy gradient values. The new algorithm gbSNO could achieve an acceptable convergence rate and it shows a strong ability to reach the global minimum.
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 13 En outre, nous avons présenté le nouvel algorithme UDFO+, qui est une version modifiée de l'algorithme avec auto-correction décrit, mais où les considérations de géométrie sont ignorées dans certaines phases de l'algorithme. Nous avons prouvé la convergence globale jusqu'aux points fixes de premier ordre de cette nouvelle version. Plus tard, dans la section numérique du chapitre 3, nous avons montré que UDFO+ dépasse des autres solveurs de différentes classes de méthodes d'OSD.Comme contribution principale de cette thèse, nous avons étendu l'algorithme UDFO+ pour traiter les problèmes avec des bornes dans le chapitre 3, donnant ainsi naissance à l'algorithme BCDFO+. L'extension à des problèmes avec des bornes n'est pas aussi simple qu'on pourrait le penser, parce qu'au cours d'une optimisaiton, les points peuvent s'aligner le long des contraintes actives et par conséquent, n'appartenir qu'à une face de l'ensemble des contraintes, perdant ainsi la propriété de couverture de l'espace de minimisation : on dit alors que la géométrie de l'ensemble d'interpolation se détériore. Une idée pour contourner ce problème consiste à ajouter des points à l'ensemble qui permettrait de préserver la géométrie, impliquant ainsi plusieurs évaluations de fonctions supplémentaires. Mais comme l'idée d'utiliser la propriété d'auto-correction est de renoncer à des calculs supplémentaires pour améliorer ou préserver régulièrement la géométrie, nous avons proposé de gérer les contraintes de borne par une approche basées sur une activation des contraintes. Une telle stratégie crée la possibilité pour une méthode d'OSD basée sur des modèles d'interpolation d'économiser une bonne quantité d'évaluations de fonctions parce qu'il procède par minimisation dans des sous-espaces. Une telle approche prévoit de mettre à jour l'ensemble des contraintes actives tout en ajoutant et / ou éliminant des contraintes à chaque itération. Notre algorithme comporte plusieurs caractéristiques intéressantes. Il est, par exemple, possible de lancer la minimisation en utilisant seulement n + 1 points évalués et d'augmenter graduellement l'ensemble d'interpolation lorsque la minimisation progresse. Dans les premières étapes, utiliser p = n + 1 valeurs de fonction est économique et souvent suffisant pour faire des

  Nous avons également présenté le nouvel algorithme BC-MS pour résoudre les sous-problèmes dans la région de confiance de la norme 2 avec contraintes de borne où nous avons étendu la technique d'un algorithme de type Moré-Sorensen. La comparaison avec une méthode de gradient conjugué tronquée standard a montré que l'utilisation de la BC-MS comme solveur local intérieur de notre algorithme de région de confiance d'OSD BCDFO+ n'est pas aussi efficace que d'utiliser le gradient conjugué tronqué dans une région de confiance en norme infinie. Des expériences numériques ont été réalisées afin de comparer les algorithmes présentés aux logiciels de l'état de l'art NEWUOA et BOBYQA, qui appliquent eux aussi une méthode de région de confiance basée sur des modèles d'interpolation. Nous avons aussi rajouté à la comparaison trois méthodes de recherche directe. Notre code BCDFO+ se compare très bien aux autres codes sur un ensemble de problèmes-tests sans contraintes et sur un ensemble de problèmes-tests avec contraintes de borne de la collection CUTEr. Dans le Chapitre 4, nous avons étudié l'impact du bruit sur les algorithmes d'optimisation, en général, et nous ont adapté notre algorithme pour traiter des problèmes d'optimisation bruitées. Tout d'abord, nous montrons comment le niveau d'un bruit de faible amplitude dans une fonction ou un gradient peut être estimé à l'aide d'un outil qui a été initialement développé pour le calcul des dérivés d'ordre supérieure et pour estimer les erreurs d'arrondi. Cet outil est intégré dans notre algorithme pour estimer le niveau de bruit si l'utilisateur a l'intention d'optimiser une fonction objectif bruitée mais dont il n'est pas en mesure de fournir le niveau de bruit. Nous avons aussi présenté des résultats numériques sur des ensembles de cas-tests bruités sans contraintes et sur un ensemble de cas-tests avec contraintes de borne. Pour réaliser des expériences numériques qui intègrent le bruit, nous créons un ensemble de cas-tests bruités en ajoutant des perturbations à l'ensemble des problèmes sans bruit issu de la collection CUTEr. Le choix des problèmes bruités a été guidé par le désir d'imiter les problèmes d'optimisation basés sur la simulation. Les résultats numériques confirment l'efficacité de notre algorithme sur des fonctions de type boîte noire pour lesquelles aucune structure mathématique spéciale n'est connue ou disponible. Nous évaluons les différents types de modèles d'interpolation et de régression, comme le modèle qui minimise la norme 2 , le modèle qui minimise la norme Frobenius, le modèle utilisant une sous-base et le modèle de régression à l'intérieur de notre algorithme BCDFO+. Le modèle qui minimise la norme 2 semble d'être l'option la plus appropriée lorsque seulement un petit budget en terme d'effort de calcul n'est disponible. Par contre, le modèle de régression est à recommander fortement lorsque le budget en effort de calcul est grand car il s'est avéré être le plus robuste pour résoudre les problèmes avec une grande précision. Par ailleurs, nous avons présenté une étude théorique sur le bruit autorisé sur un gradient qui est utilisé dans une méthode de recherche linéaire basée sur gradient. Nous avons pu établir des propriétés déterministes sur le bruit de gradient pour assurer la convergence globale des méthodes de plus grande descente et de quasi-Newton en présence d'un gradient bruité. De plus, après avoir supposé la nature gaussienne du bruit, nous avons établi une autre condition suffisante sur la convergence globale d'une méthode de quasi-Newton qui autorise un bruit de grande amplitude sur le gradient. La bonne performance de l'algorithme ouvre de nombreuses portes pour des recherches futures. La robustesse de notre mise en oeuvre est bien sûr une invitation à chercher une théorie de la convergence globale de la méthode. Comme nous sommes intéressés à une large évaluation des modèles d'interpolation et de régression, nous voulons à l'avenir considérer l'utilisation d'un modèle qui pénalise l'écart au Hessien précédent en norme de Frobenius, ainsi que celui qui minimise la norme 1 du Hessien et de comparer ces approches aux types de modèles déjà disponibles dans notre code. Un autre domaine évident de recherches futures, qui est motivé par notre application d'optimisation de forme, est d'étendre l'algorithme pour lui permettre de gérer des contraintes générale linéaires et non linéaires. Les techniques standard basée sur des approches SQP ou de Lagrangien augmenté pourraient être considérées à cet égard.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Step 1: Model computation.

  Build a model m k (x k ) that interpolates the function f on the interpolation set Y k such that the interpolation conditions (2.5) are satisfied. Compute the model gradientg k = ∇m k (x k ).If g k ≤ g and Y k is not well-poised in the region B(x k , µ g k ), then improve the geometry until Y k is well-poised in B(x k , δ k ) for some δ k ∈ (0, µ g k ) and go to Step 1. If g k > g , go to Step 2, otherwise, stop.

	and an initial
	trust-region radius ∆ 0 > 0. Let x start and f (x start ) be given. Select an initial interpolation
	set Y 0 containing x start and at least another point. Then determine x 0 ∈ Y 0 such that
	f (x 0 ) = min y∈Y0 f (y). Set k = 0.

  the interpolation model m k+1 around x k+1 using Y k+1 and the associated Lagrange polynomials {l k+1,j } p j=0 . Increment k by one and go to Step 1.

	First, the assumptions are stated.			
	A1: the objective function f is continuously differentiable in an open set V containing all
	iterates generated by the algorithm, and its gradient ∇ x f is Lipschitz continuous in V with
	constant L;				
	A2: there exists a constant κ low such that f (x) ≥ κ low for every x ∈ V;
	A3: there exists a constant κ H ≥ L such that 1 + H k ≤ κ H for every k ≥ 0;
	A4: |Y k | ≥ n + 1 for every k ≥ 0.			
	Note that A1 only assumes the existence of first derivatives, not that they can be computed.
	Lemma 2.5. Assume that, for some real numbers {α i } t i=0 with
		t		t	
	σ abs	def =	|α i | > 2	α i	def = 2σ > 0.
		i=0	i=0	
	If one defines				
	i * = arg max i=0,...,t	j =i * |α i | and j * = arg max j=0,...,t	|α j |,
	then				
		|α j * | ≥	σ abs -2σ 2t	.	(2.50)
	Now, the crucial self-correction property of Algorithm 2.3 is stated where the definition of
	F k and C k are given in Steps 4b and 4c of Algorithm 2.3.
	Lemma 2.6. Suppose that A1, A3 and A4 hold. Then, for any constant Λ > 1, if iteration k
	is unsuccessful and				

Table 3 .

 3 

	1.000000e-05 5.074018e-08 5.081872e-08	3.245846e-10
	1.000000e-06 5.074018e-08 5.235049e-08	2.117399e-09
	1.000000e-07 5.074018e-08 5.651729e-08	1.609209e-08
	1.000000e-08 5.074018e-08 2.161465e-07	2.334213e-07
	1.000000e-09 5.074018e-08 1.052973e-06	1.493022e-06
	1.000000e-10 5.074018e-08 1.806191e-04	2.455110e-04
	1.000000e-11 5.074018e-08 1.385372e-03	1.803735e-03
	1.000000e-12 5.074018e-08 4.677834e-03	8.378769e-03

1: Gradient accuracy of ill-conditioned problem PALMER3C

Table 3 .

 3 .1 and Table3.2 and we can see that the gradient accuracy 2: Gradient accuracy of well-conditioned problem ALLINITU strongly depends on the size of the radius ∆ where for very small ∆ the size of the model

	size of ∆ ∇f (x 1.000000e-03 1.688089e-07 2.650513e-06	2.723041e-06
	1.000000e-04 1.688089e-07 1.688116e-07	2.722211e-08
	1.000000e-05 1.688089e-07 1.687983e-07	2.878566e-10
	1.000000e-06 1.688089e-07 1.683098e-07	1.457556e-09
	1.000000e-07 1.688089e-07 1.731948e-07	1.261984e-08
	1.000000e-08 1.688089e-07 7.993606e-07	1.187783e-06
	1.000000e-09 1.688089e-07 4.884981e-06	6.979543e-06
	1.000000e-10 1.688089e-07 1.776357e-05	2.792555e-05
	1.000000e-11 1.688089e-07 2.220446e-04	2.663875e-04
	1.000000e-12 1.688089e-07 1.776199e-03	2.664249e-03

* ) ∞ ∇m(x * ) ∞ ∇f (x * ) -∇m(x * ) 2

gradient is increasing and getting more inaccurate with respect to the true gradient ∇f (x * ).

Table 3 . 3

 33 

	n	2 3 4 5 6 8 10 11 15
	nbr of problems 17 7 5 1 2 3 13 1	5

1 

were excluded from the test set because they contain fixed variables and NEWUOA does not provide facilities to handle such cases and one listed problem 2 contains bounds. After running all problems in this test set, three problems 3 were removed because the solvers converged to different solutions, making a comparison meaningless. A total of 54 unconstrained problems were thus considered. The distribution of the dimension n among the 54 problems is shown in Table

3

.3. We also want to : Dimensions of considered unconstrained problems

Table 3 .

 3 .5. 5: Dimensions of considered bound-constrained problems The detailed list of all considered bound-and unconstrained problems and their characteristics is provided inTable A.2 and Table A.1 in the Appendix of this thesis.

	n	1 2 3 4 5 6 8 9 10 12 18 19 25 30
	nbr of problems 1 10 2 7 1 2 1 1 8	1	1	1	3	1

  3.25-3.28. We see that in terms of efficiency, pure direct-search solvers have no big influence on the comparison whereas BCDFO+ is outperforming the other solvers regardless of the accuracy required (as seen in Figures 3.21-3.24). But we need to mention that NOMADm manages to solve 5% of the test cases fastest for low required accuracy and 2% when higher accuracy is required. In terms of robustness, NOMADm can evolve from 35% solved test problems for 8 required correct digits in f to 82% solved problems for 2 required correct digits. BFO is amazingly stable and solves in any case more than 80% of the test problems and even 92% if low accuracy is required.

Table 4

 4 

	.2 and it shows a good consistency of the computed noise

Table 4 .

 4 2: Noise levels in CDP obtained by different strategies and sampling distances h levels A by the different strategies used. The noise level of the aerodynamic function CDP turns out to be of the order of 10 -4 for all techniques and sampling distances applied.

Table 4 .

 4 

	5.455e-2

3: Difference table for the gradient of CDP with h = 10 -6

Table B

 B 

.10 and Table

B

.11 contain the test results for the computational budget of 15000 function evaluations.

:

  step 4 of Algorithm 4.1, the safeguarded nearest neighbours of each point x = (x 1 , ..., x n ) T ∈ X are determined as follows. Starting with an initially empty list of nearest neighbours, we pick, for each direction i = 1, ..., n, a point in X closest to but different from x among the points not yet in the list. This procedure ensures that, for each coordinate i, there is at least one point in the list of nearest neighbours whose i-th coordinate differs from that of x. This gives n points in the list and it is filled up by adding the points from X closest to x but not yet in the list, until it contains n + m points. The list of nearest neighbours is updated for every point at every iteration if necessary.In step 5 of the algorithm, a local quadratic fit is computed around the best point x best , i.e., the point with the lowest objective function value. Here, the vector g ∈ IR n and the symmetric matrix H ∈ R n×n , gradient and Hessian respectively, are estimated using K := min(n(n+3), N -1) points which are closest to but distinct from x best , where N denotes the total number of points at which the function values are already evaluated. If N < 1 2 (n+1)(n+2), the minimum 2 -norm solution of the interpolation conditions is computed. Given these estimations of the first and second derivatives at x best , the potential new evaluation point w is obtained by approximately minimizing the local quadratic model around x best . The minimization is performed with the bound constrained quadratic programming package MINQ[START_REF] Neumaier | MINQ -general definite and bound constrained indefinite quadratic programming[END_REF], designed to find a stationary point, usually a local minimizer. If w is a point already in X, a new point is randomly generated inside a box determined by the farthest of the nearest neighbours of x best . Divide [u, v] into subboxes, each containing one point if function values of some points already available. Choose m, the number of additional points/neighbours considered to build the models.

	Algorithm 4.1 SNOBFIT
	1

2: repeat

3:

  Points of class 2 and 3 are alternative good points. They represent another aspect of the local search part of the algorithm. Here, for each point the information on the function at the point itself and its n + m nearest neighbours is used. But to get a more accurate model, a quadratic error term, which accounts for second (and higher) order deviation from linearity and for measurement errors, is considered when building the model. It is chosen such that for points with large expected uncertainties in the function value and for neighbours far away from x j , a larger error in the model is permitted. A complete quadratic model would be too expensive to construct around each point. The gradient value at x j is estimated by a linear least squares fit, using the function values of the n + m nearest neighbours. The points y j obtained by solving the N quadratic programs are potential new evaluation points of class 2The points of class 4 generated in step 7 of the algorithm are points in so far unexplored regions, i.e., they are generated in large subboxes of the current partition. They represent the most global aspect of the algorithm. To maintain an idea of the size of each box as long as the algorithm proceeds, its smallness is assigned to each subbox. It is 0 for the exploration box (u, v) and large for small boxes. For a more systematic global search, large boxes (= having a low smallness) should be prefered when selecting new points for evaluation.Points of class 5 are only produced if the algorithm does not manage to reach the desired number of points by generating point of classes 1 to 4, which happens in particular in an initial call with an empty set of input points and function values. The points of class 5 are chosen from a set of random points such that they extend X to a space filling design. The algorithm of SNOBFIT is stated schematically as Algorithm 4.1, a more detailed version can be found in[START_REF] Huyer | SNOBFIT -stable noisy optimization by branch and fit[END_REF].

10: until Best f value not improved in a certain number of iterations In step 6, points of class 2 and 3 are determined by minimizing a local model around each point x j .

if the point x j is called local, i.e., if its function value is significantly smaller than that of its nearest neighbours. Otherwise, the points y j are taken to be in class 3. If y j is a point already in X, a new point is randomly generated inside a box determined by the nearest of the nearest neighbours of x j .

Table A .

 A 

	name		n	free vars nf Sub-basis	lbound nf Min 2-norm ubound	l+ubound nf Regression	f * nf Min Frob.-norm
	3PK name	30	6 fig	30	6 fig		6 fig	1.72011856739612E+00 6 fig
	BIGGSB1 ALLINITU	25	1 39		53		24 81	1.50000000000000E-02 48
	BQP1VAR ARGLINB		1	67		60		1 60	0.00000000000000E+00 78
	CAMEL6 ARGLINC		2	63		52		2 52	-1.03162845348988E+00 53
	CHARDIS0 ARWHEAD	18	16		16		18 16	3.95170009709151E-27 16
	CHEBYQAD BARD		4	32		38		4 65	2.56057805386809E-22 44
	CHENHARK BDQRTIC	10	253	10	242		337	-2.00000000000000E+00 219
	CVXBQP1 BEALE	10	30		29		10 45	2.47500000000000E+00 29
	HARKERP2 BIGGS6	10	319	10	639		630	-5.00000000000000E-01 661
	HATFLDA BOX3		4	34	4	44		58	1.61711062151584E-25 34
	HATFLDB BRKMCC		4	11	3	10		1 8	5.57280900008425E-03 10
	HATFLDC BROWNAL	25	1 408		494		24 584	3.43494690036517E-27 406
	HIMMELP1 BROWNDEN	2	75		61		2 131	-6.205393553382574E+01 71
	HS1 CHNROSNB		2	1 943	1	955		1263	7.13660798093435E-24 947
	HS110 CRAGGLVY	10	543		504		10 674	-4.57784755318868E+01 547
	HS25 CUBE		3	94		91		3 155	1.81845940377455E-16 81
	HS3 DENSCHND		2	1 68	1	162		266	1.97215226305253E-36 126
	HS38 DENSCHNE		4	51		97		4 130	2.02675622883580E-28 88
	HS3MOD DENSCHNF		2	1 21	1	24		33	0.00000000000000E+00 25
	HS4 DIXMAANC		2	296	2	312		586	2.66666666400000E+00 311
	HS45 DIXMAANG		5	247		408		5 698	1.00000000040000E+00 406
	HS5 DIXMAANI		2	326		291		2 691	-1.91322295498104E+00 335
	LINVERSE DIXMAANK	19	9 1082	10	456		850	6.00000000022758E+00 546
	LOGROS DIXON3DQ		2	100	2	37		37	0.00000000000000E+00 130
	MCCORMCK DQDRTIC	10	22		67		10 67	-9.59800619474625E+00 67
	MDHOLE ENGVAL1		2	1 4	1	4		4	7.52316384526264E-35 4
	NCVXBQP1 EXPFIT	10	32		32		10 45	-2.20500000000000E+04 39
	NCVXBQP2 FREUROTH	10	210		230		10 343	-1.43818650000000E+04 255
	NCVXBQP3 GENHUMPS	10	1646		2055		10 1757	-1.19578050000000E+04 3217
	NONSCOMP GULF	25	309		342		25 267	4.42431972353647E-14 309
	OSLBQP HAIRY		8	31	5	37		47	6.25000000000000E+00 52
	PALMER1A HELIX		6	4 72	2	70		105	8.98830583652624E-02 51
	PALMER2B HILBERTA		4	2 7	2	8		8	6.23266904205002E-01 7
	PALMER4 HIMMELBF		4	1 402	3	135		136	2.28538322742966E+03 208
	PALMER4A HIMMELBG		6	4 23	2	8		8	4.06061409159725E-02 8
	PSPDOC JENSMP		4	3 70		57	1	108	2.41421356237309E+00 63
	QUDLIN KOWOSB	12	81		86		12 160	-7.20000000000000E+03 114
	SIMBQP MANCINO		2	1 59		79		1 144	0.00000000000000E+00 88
	SPECAN MARATOSB		9	3180		3003		9 5235	1.64565541040970E-13 3048
	YFIT MEXHAT		3	2 79	1	88		254	6.66972055747565E-13 65
	MOREBV			83		82		153	135
	Table A.2: Considered bound-constrained CUTEr test problems NASTY 3 3 3 3
	OSBORNEB			1028		1323		1140	994
	PALMER1C			failed		failed		failed	failed
	PALMER3C			60		88		63	59
	PALMER5C			42		41		32	29
	PALMER8C			82		63		57	63
	POWELLSG			99		103		224	96
	POWER			308		414		709	388
	ROSENBR			85		73		137	62
	SINEVAL			197		198		325	200
	SISSER			10		14		17	28
	VARDIM			687		802		625	565
	YFITU			810		841		526	799
	ZANGWIL2			4		4		4	4

1: Considered unconstrained CUTEr test problems

Table B .

 B 

		nf BC-MS	nf TCG
	name	6 fig	6 fig
	ALLINITU	40	39
	ARGLINB	67	67
	ARGLINC	63	63
	ARWHEAD	16	16
	BARD	38	32
	BDQRTIC	262	253
	BEALE	28	30
	BIGGS6	396	319
	BOX3	29	34
	BRKMCC	12	11
	BROWNAL	296	408
	BROWNDEN	64	75
	CHNROSNB	1001	943
	CRAGGLVY	failed	543
	CUBE	88	94
	DENSCHND	143	68
	DENSCHNE	143	51
	DENSCHNF	22	21
	DIXMAANC	370	296
	DIXMAANG	435	247
	DIXMAANI	332	326
	DIXMAANK	525	1082
	DIXON3DQ	34	100
	DQDRTIC	23	22
	ENGVAL1	21	4
	EXPFIT	46	32
	FREUROTH	246	210
	GENHUMPS	575	1646
	GULF	failed	309
	HAIRY	35	31
	HELIX	70	72
	HILBERTA	7	7
	HIMMELBF	165	402
	HIMMELBG	25	23
	JENSMP	62	70
	KOWOSB	81	81
	MANCINO	93	59
	MARATOSB	2960	3180
	MEXHAT	56	79
	MOREBV	77	83
	NASTY	3	3
	OSBORNEB	947	1028
	PALMER1C	failed	failed
	PALMER3C	59	60
	PALMER5C	29	42
	PALMER8C	66	82
	POWELLSG	98	99
	POWER	477	308
	ROSENBR	88	85
	SINEVAL	202	197
	SISSER	18	10
	VARDIM	394	687
	YFITU	647	810
	ZANGWIL2	7	4

1: Results from comparison of different types of models in BCDFO+ on unconstrained CUTEr problems (see Figure 3.2)

Table B .

 B 

		nf BC-MS	nf TCG
	name	6 fig	6 fig
	3PK	failed	failed
	BIGGSB1	650	38
	BQP1VAR	2	2
	CAMEL6	20	17
	CHARDIS0	190	190
	CHEBYQAD	207	143
	CHENHARK	93	100
	CVXBQP1	33	21
	HARKERP2	38	91
	HATFLDA	5	5
	HATFLDB	34	38
	HATFLDC	405	400
	HIMMELP1	34	21
	HS1	88	75
	HS110	97	156
	HS25	367	249
	HS3	8	8
	HS38	237	371
	HS3MOD	8	8
	HS4	5	5
	HS45	12	13
	HS5	16	11
	LINVERSE	440	478
	LOGROS	3	3
	MCCORMCK	96	179
	MDHOLE	154	159
	NCVXBQP1	24	15
	NCVXBQP2	61	32
	NCVXBQP3	40	31
	NONSCOMP	1458	626
	OSLBQP	29	31
	PALMER1A	3939	4838
	PALMER2B	380	670
	PALMER4	failed	257
	PALMER4A	2025	1892
	PSPDOC	35	34
	QUDLIN	25	20
	SIMBQP	9	9
	SPECAN	256	351
	YFIT	736	2156

2: Results from comparison of local solvers BC-MS and TCG in BCDFO+ on unconstrained CUTEr problems (see Figure 3.3)

Table B .

 B 3: Results from comparison of local solvers BC-MS and TCG in BCDFO+ on boundconstrained CUTEr problems (see Figure 3.4)

	name ALLINITU ARGLINB ARGLINC ARWHEAD BARD BDQRTIC BEALE BIGGS6 BOX3 BRKMCC BROWNAL BROWNDEN CHNROSNB CRAGGLVY CUBE DENSCHND DENSCHNE DENSCHNF DIXMAANC DIXMAANG DIXMAANI DIXMAANK DIXON3DQ DQDRTIC ENGVAL1 EXPFIT FREUROTH GENHUMPS GULF HAIRY HELIX HILBERTA HIMMELBF HIMMELBG JENSMP KOWOSB name 3PK BIGGSB1 BQP1VAR CAMEL6 CHARDIS0 CHEBYQAD CHENHARK CVXBQP1 HARKERP2 HATFLDA HATFLDB HATFLDC HIMMELP1 HS1 HS110 HS25 HS3 HS38 HS3MOD HS4 HS45 HS5 LINVERSE LOGROS MCCORMCK MDHOLE NCVXBQP1 NCVXBQP2 NCVXBQP3 NONSCOMP OSLBQP PALMER1A PALMER2B PALMER4 PALMER4A PSPDOC	2 fig 20 52 57 16 19 140 22 176 24 10 164 56 867 422 67 51 39 13 232 186 265 587 99 22 4 26 131 1161 186 25 62 7 105 15 60 5 2 fig failed 34 2 14 189 115 100 21 89 5 26 97 17 68 83 43 3 354 8 5 13 5 410 3 117 156 15 32 31 581 30 4385 639 108 1283 28	nf BCDFO+ 4 fig 6 fig 38 39 58 67 62 63 16 16 28 32 193 253 26 30 263 319 24 34 10 11 268 408 71 75 937 943 519 543 86 94 66 68 50 51 20 21 278 296 210 247 312 326 900 1082 100 100 22 22 4 4 30 32 204 210 1600 1646 295 309 27 31 70 72 7 7 367 402 21 23 67 70 35 81 4 fig 6 fig failed failed 38 38 2 2 15 17 190 190 138 143 100 100 21 21 91 91 5 5 34 38 381 400 21 21 73 75 113 156 236 249 7 8 367 371 8 8 5 5 13 13 10 11 450 478 3 3 137 179 159 159 15 15 32 32 31 31 615 626 31 31 4726 4838 669 670 251 257 1764 1892 38 nf BCDFO+ nf BC-DFO nf NEWUOA 8 fig 2 fig 4 fig 6 fig 8 fig 2 fig 4 fig 6 fig 43 53 66 103 106 50 60 67 67 88 88 88 88 70 70 70 63 84 84 84 84 70 70 70 16 16 16 16 16 513 579 641 37 62 73 80 83 26 46 51 254 347 435 578 593 181 236 276 31 63 69 69 73 24 33 42 559 442 653 715 820 148 265 400 41 46 56 58 63 18 33 47 16 7 13 13 16 7 7 15 426 320 377 398 432 88 166 212 77 93 99 107 111 59 66 80 963 1180 1264 1335 1341 717 776 790 580 919 1199 1302 1324 458 538 616 97 77 103 110 112 105 130 138 83 58 78 86 100 45 45 64 58 67 76 87 91 87 92 99 22 15 18 22 22 23 25 25 309 334 375 400 444 415 447 465 265 566 654 669 691 479 508 528 338 810 813 831 971 398 460 483 1101 570 779 799 825 736 773 848 100 31 31 31 31 72 72 79 22 44 44 44 44 71 71 81 4 4 4 4 4 17 23 29 38 65 68 70 72 25 32 34 254 345 553 560 571 174 197 229 1688 705 1422 1602 1684 613 739 760 314 197 307 338 344 187 336 378 32 46 54 55 57 68 68 74 74 57 66 68 70 66 75 84 7 7 7 7 7 9 9 9 412 257 400 461 485 168 599 737 23 22 32 35 35 14 19 23 72 36 44 48 49 10 25 28 90 5 59 125 144 16 nf BC-DFO nf BOBYQA 8 fig 73 70 70 680 60 296 46 624 59 15 256 85 803 662 151 68 110 34 472 543 509 881 83 81 29 38 243 793 404 74 90 9 1076 23 31 8 fig 2 fig 4 fig 6 fig 8 fig fig 4 fig 6 fig failed 8834 8834 8927 8959 failed failed failed failed 8 fig 38 35 35 35 35 144 341 489 548 2 2 2 2 2 7 7 7 7 22 16 26 29 35 29 37 41 190 420 420 420 420 119 139 161 151 208 235 259 265 50 60 64 100 133 134 134 134 121 151 172 21 21 21 21 21 39 39 39 91 62 63 63 63 67 67 67 5 5 5 5 5 104 141 182 40 64 76 81 91 52 67 72 425 699 753 768 790 131 247 360 441 24 15 25 26 28 19 22 26 77 133 138 147 148 135 158 167 172 167 196 316 398 409 144 260 436 521 252 59 254 298 failed 107 734 978 995 8 3 8 9 9 6 9 10 10 375 322 342 347 347 408 440 474 503 8 13 13 13 13 24 24 24 5 5 5 5 5 7 7 7 7 13 15 15 15 15 16 16 16 17 8 8 20 20 15 18 21 494 792 905 936 958 137 236 651 2828 3 3 3 3 3 443 609 652 661 183 59 152 166 178 54 75 87 159 165 165 165 165 220 220 225 225 15 16 18 18 18 31 31 31 32 64 64 64 64 31 31 31 31 50 50 50 50 49 49 49 650 859 907 921 937 779 1072 1406 1684 31 31 32 32 32 22 22 22 4846 10842 11143 11190 11195 failed failed failed failed 675 1192 1198 1201 1206 1037 1118 1144 1166 261 145 160 162 170 82 87 93 1934 2753 3445 3511 3536 2366 5767 7606 8105 31 34 38 35 44 44 50 55 57 65
	QUDLIN	17	20	20	20	22	22	22	22		34	34	34
	SIMBQP	9	9	9	9	12	12	12	12		12	12	12
	SPECAN	336	342	351	358	failed	failed	failed	failed	697	765	820	881
	YFIT	1355	2139	2156	2159	897	965	981	985	1356	2011	2237	2257

Table B .

 B 5: Results from comparison of BCDFO+, BC-DFO and BOBYQA on boundconstrained CUTEr problems (see Figures 3.13-3.16 and Figures 3.17-3.20)

		78	98	108	130	1357	failed	failed	failed		326	423	506
	HILBERTA	2	2	2	2	42	90	126	162	87	95	126	149
	HIMMELBF	failed	failed	failed	failed	534	11470	failed	failed		failed	failed	failed
	HIMMELBG	14	14	14	14	32	40	40	40	31	44	59	79
	JENSMP	83	94	104	124	121	249	failed	failed		297	327	337
	KOWOSB	1	180	231	259	1	742	failed	failed	1	720	1504	1713
	MANCINO	424	424	448	472	1748	failed	failed	failed	1516	1852	2191	3338
	MARATOSB	failed	failed	failed	failed	failed	failed	failed	failed	13979	failed	failed	failed
	MEXHAT	122	3786	3827	3836	failed	failed	failed	failed		230	263	274
	MOREBV	97	194	244	271	88	failed	failed	failed		1084	2154	5199
	NASTY	7	7	7	7	7	13	13	13	failed	failed	failed	failed
	OSBORNEB	937	1508	1577	1635	5991	13922	failed	failed	5165	failed	failed	failed
	PALMER1C	149	150	failed	failed	failed	failed	failed	failed	failed	failed	failed	failed
	PALMER3C	104	108	108	108	failed	failed	failed	failed	failed	failed	failed	failed
	PALMER5C	31	31	31	31	542	742	978	failed		628	900	1109
	PALMER8C	failed	failed	failed	failed	failed	failed	failed	failed	failed	failed	failed	failed
	POWELLSG	73	113	171	235	276	479	1193	1945		350	785	1885
	POWER	3	3	3	3	902	902	950	950		563	740	1145
	ROSENBR	70	89	97	120	1517	failed	failed	failed		270	302	325
	SINEVAL	414	437	440	450	failed	failed	failed	failed		939	960	985
	SISSER	5	13	38	46	20	35	35	35	11	21	36	38
	VARDIM	934	1093	1271	1305	failed	failed	failed	failed	2082	2802	3635	4406
	YFITU	5574	14598	failed	failed	failed	failed	failed	failed	2762	4495	5296	5463
	ZANGWIL2	8	8	8	8	18	43	43	43	11	36	53	68

Table B .

 B 6: Results from comparison of BCDFO+, BC-DFO, SID-PSM, NOMADm and BFO on unconstrained CUTEr problems (see Figures 3.21-3.24 and Figures 3.25-3.28)Table B.8: Results from comparison of different model types in BCDFO+ on unconstrained noisy CUTEr problems when maxeval = 200 (see Figure 4.6) Table B.9: Results from comparison of different model types in BCDFO+ on unconstrained noisy CUTEr problems when maxeval = 200 (see Figure 4.7) Table B.10: Results from comparison of different model types in BCDFO+ on unconstrained noisy CUTEr problems when maxeval = 15000 (see Figure 4.8)

			τ = 10 -1 , maxeval = 200 τ = 10 -5 , maxeval = 200 τ = 10 -1 , maxeval = 15000 τ = 10 -1 , maxeval = 200	
	name name name name	nf Sub-basis nf Sub-basis nf Sub-basis nf Sub-basis	nf Min 2-norm nf Min 2-norm nf Min 2-norm nf Min 2-norm	nf Regression nf Regression nf Regression nf Regression	nf Min Frob.-norm nf Min Frob.-norm nf Min Frob.-norm nf Min Frob.-norm
	ALLINITU ALLINITU ALLINITU 3PK	9 36 9 failed	20 46 20 182	34 73 34 182	16 38 16 failed
	ARGLINB ARGLINB ARGLINB BIGGSB1	2 31 2 5	2 24 2 4	2 24 2 4	2 28 2 9
	ARGLINC ARGLINC ARGLINC BQP1VAR	2 36 2 1	2 15 2 1	2 15 2 1	2 19 2 1
	ARWHEAD ARWHEAD ARWHEAD CAMEL6	72 199 78 12	187 failed 187 11	failed failed 352 19	failed failed 212 11
	BARD BARD BARD CHARDIS0	5 failed 5 32	4 41 4 10	4 failed 4 10	14 33 14 21
	BDQRTIC BDQRTIC BDQRTIC CHEBYQAD	29 170 29 72	14 159 14 58	14 failed 14 86	13 171 13 55
	BEALE BEALE BEALE CHENHARK	6 31 6 14	7 28 7 30	12 39 12 26	7 32 7 21
	BIGGS6 BIGGS6 BIGGS6 CVXBQP1	66 197 76 3	54 failed 66 3	90 failed 97 3	66 failed 83 3
	BOX3 BOX3 BOX3 HARKERP2	5 48 5 7	4 failed 4 6	4 38 4 6	5 failed 5 5
	BRKMCC BRKMCC BRKMCC HATFLDA	4 14 4 18	6 7 6 failed	6 6 6 43	4 9 4 20
	BROWNAL BROWNAL BROWNAL HATFLDB	3 160 3 17	25 161 25 7	25 failed 25 7	83 failed 83 7
	BROWNDEN BROWNDEN BROWNDEN HATFLDC	22 61 22 150	18 49 18 128	37 107 37 128	17 60 17 failed
	CHNROSNB CHNROSNB CHNROSNB HIMMELP1	2 200 2 8	2 failed 2 8	2 failed 2 8	2 failed 2 8
	CRAGGLVY CRAGGLVY CRAGGLVY HS1	32 failed 32 4	6 failed 6 3	6 failed 6 3	8 193 8 4
	CUBE CUBE CUBE HS110	4 81 4 79	6 82 6 72	7 122 7 146	4 66 4 82
	DENSCHND DENSCHND DENSCHND HS25	12 35 12 11	3 67 3 7	3 127 3 7	3 49 3 7
	DENSCHNE DENSCHNE DENSCHNE HS3	3 42 3 failed	11 failed 11 2	37 failed 37 2	4 failed 4 failed
	DENSCHNF DENSCHNF DENSCHNF HS38	7 17 7 6	9 20 9 3	7 23 7 3	13 21 13 3
	DIXMAANC DIXMAANC DIXMAANC HS3MOD	2 failed 2 4	2 200 2 4	2 failed 2 4	2 failed 2 5
	DIXMAANG DIXMAANG DIXMAANG HS4	2 failed 2 3	2 failed 2 3	2 failed 2 3	2 199 2 3
	DIXMAANI DIXMAANI DIXMAANI HS45	2 failed 2 6	2 198 2 6	2 failed 2 6	2 failed 2 6
	DIXMAANK DIXMAANK DIXMAANK HS5	2 200 2 3	2 failed 2 3	2 failed 2 3	2 failed 2 3
	DIXON3DQ DIXON3DQ DIXON3DQ LINVERSE	27 failed 27 44	13 failed 13 16	13 67 13 16	14 196 14 41
	DQDRTIC DQDRTIC DQDRTIC LOGROS	3 12 3 22	3 34 3 28	3 34 3 33	3 44 3 21
	ENGVAL1 ENGVAL1 ENGVAL1 MCCORMCK	2 2 2 11	2 2 2 7	2 2 2 7	2 2 2 7
	EXPFIT EXPFIT EXPFIT MDHOLE	15 31 15 83	14 30 14 95	25 49 25 174	15 30 15 118
	FREUROTH FREUROTH FREUROTH NCVXBQP1	5 194 5 5	12 failed 12 5	12 failed 12 5	15 failed 15 5
	GENHUMPS GENHUMPS GENHUMPS NCVXBQP2	16 51 16 7	10 152 10 7	10 failed 10 7	10 failed 10 7
	GULF GULF GULF NCVXBQP3	59 failed 59 7	74 failed 74 7	147 193 147 7	125 failed 125 7
	HAIRY HAIRY HAIRY NONSCOMP	9 29 9 4	11 33 11 4	12 36 12 4	27 45 27 4
	HELIX HELIX HELIX OSLBQP	11 62 11 3	13 54 13 3	24 67 24 3	13 38 13 3
	HILBERTA HILBERTA HILBERTA PALMER1A	3 5 3 87	3 6 3 103	3 6 3 failed	3 5 3 85
	HIMMELBF HIMMELBF HIMMELBF PALMER2B	12 88 12 160	24 failed 24 200	18 120 18 failed	27 98 27 190
	HIMMELBG HIMMELBG HIMMELBG PALMER4	12 19 12 110	6 19 6 failed	6 15 6 64	6 17 6 68
	JENSMP JENSMP JENSMP PALMER4A	51 72 51 52	45 58 45 50	80 120 80 77	44 69 44 41
	KOWOSB KOWOSB KOWOSB PSPDOC	18 49 18 16	18 failed 18 19	failed failed failed 19	17 failed 17 11
	MANCINO MANCINO MANCINO QUDLIN	11 25 11 5	13 44 13 5	13 44 13 5	25 47 25 5
	MARATOSB MARATOSB MARATOSB SIMBQP	8 13 8 7	7 18 7 7	8 15 8 7	5 17 5 7
	MEXHAT MEXHAT MEXHAT SPECAN	15 17 15 9	18 47 18 13	24 67 24 13	17 24 17 10
	MOREBV MOREBV MOREBV YFIT	29 failed 29 29	20 failed 20 14	20 failed 20 56	23 199 26 14
	NASTY NASTY NASTY	103 105 103	failed failed 204	failed failed 540	49 53 49
	OSBORNEB OSBORNEB OSBORNEB	95 199 135	96 failed 146	172 failed 233	98 failed 132
	PALMER1C PALMER1C PALMER1C	17 47 17	9 65 9	9 49 9	10 86 10
	PALMER3C PALMER3C PALMER3C	19 63 19	9 69 9	9 55 9	11 53 11
	PALMER5C PALMER5C PALMER5C	16 36 16	15 35 15	15 26 15	10 23 10
	PALMER8C PALMER8C PALMER8C	20 82 20	9 69 9	9 50 9	8 60 8
	POWELLSG POWELLSG POWELLSG	19 51 19	19 64 19	50 131 50	12 59 12
	POWER POWER POWER	2 115 2	2 141 2	2 failed 2	2 131 2
	ROSENBR ROSENBR ROSENBR	12 65 12	6 70 6	23 122 23	5 58 5
	SINEVAL SINEVAL SINEVAL	100 173 100	137 failed 137	195 failed 195	110 failed 110
	SISSER SISSER SISSER	14 failed 14	10 failed 10	13 18 13	10 failed 10
	VARDIM VARDIM VARDIM	2 107 2	2 11 2	2 11 2	2 11 2
	YFITU YFITU YFITU	29 failed 29	14 failed 14	56 184 56	14 failed 14
	ZANGWIL2 ZANGWIL2 ZANGWIL2	2 5 2	2 5 2	2 5 2	2 5 2

Table B .

 B 12: Results from comparison of different model types in BCDFO+ on boundconstrained noisy CUTEr problems when maxeval = 200 (see Figure 4.10)

			τ = 10 -5 , maxeval = 200	
	name	nf Sub-basis	nf Min 2-norm	nf Regression	nf Min Frob.-norm
	3PK	failed	failed	199	failed
	BIGGSB1	9	12	14	14
	BQP1VAR	1	1	1	1
	CAMEL6	16	20	31	18
	CHARDIS0	138	111	111	178
	CHEBYQAD	101	101	146	171
	CHENHARK	96	199	148	failed
	CVXBQP1	3	3	3	3
	HARKERP2	35	22	22	31
	HATFLDA	33	failed	failed	failed
	HATFLDB	failed	48	101	failed
	HATFLDC	197	failed	failed	failed
	HIMMELP1	19	19	28	19
	HS1	67	67	85	49
	HS110	163	143	failed	failed
	HS25	failed	91	failed	failed
	HS3	failed	2	2	failed
	HS38	failed	68	failed	failed
	HS3MOD	6	10	6	6
	HS4	3	3	3	3
	HS45	6	6	6	6
	HS5	failed	failed	24	failed
	LINVERSE	162	148	148	failed
	LOGROS	27	33	failed	28
	MCCORMCK	186	167	failed	159
	MDHOLE	147	148	failed	189
	NCVXBQP1	5	5	5	5
	NCVXBQP2	7	7	7	7
	NCVXBQP3	7	15	15	13
	NONSCOMP	failed	118	failed	failed
	OSLBQP	12	9	9	9
	PALMER1A	200	failed	failed	failed
	PALMER2B	198	failed	failed	failed
	PALMER4	failed	failed	194	failed
	PALMER4A	failed	failed	failed	200
	PSPDOC	failed	failed	39	29
	QUDLIN	8	5	5	5
	SIMBQP	8	8	8	8
	SPECAN	188	failed	failed	failed
	YFIT	failed	failed	184	failed

Table B .

 B 13: Results from comparison of different model types in BCDFO+ on boundconstrained noisy CUTEr problems when maxeval = 200 (see Figure 4.11)

			τ = 10 -1 , maxeval = 15000	
	name	nf Sub-basis	nf Min 2-norm	nf Regression	nf Min Frob.-norm
	3PK	564	186	186	252
	BIGGSB1	5	4	4	9
	BQP1VAR	1	1	1	1
	CAMEL6	12	11	19	11
	CHARDIS0	32	10	10	21
	CHEBYQAD	72	58	86	55
	CHENHARK	14	30	26	21
	CVXBQP1	3	3	3	3
	HARKERP2	7	6	6	5
	HATFLDA	18	failed	43	20
	HATFLDB	17	7	7	7
	HATFLDC	302	485	805	430
	HIMMELP1	8	8	8	8
	HS1	4	3	3	4
	HS110	79	72	146	82
	HS25	11	7	7	7
	HS3	failed	2	2	failed
	HS38	6	3	3	3
	HS3MOD	4	4	4	5
	HS4	3	3	3	3
	HS45	6	6	6	6
	HS5	3	3	3	3
	LINVERSE	77	18	18	149
	LOGROS	22	28	33	21
	MCCORMCK	11	7	7	7
	MDHOLE	83	95	174	118
	NCVXBQP1	5	5	5	5
	NCVXBQP2	7	7	7	7
	NCVXBQP3	7	7	7	7
	NONSCOMP	4	4	4	4
	OSLBQP	3	3	3	3
	PALMER1A	1525	1323	743	1373
	PALMER2B	165	312	281	287
	PALMER4	110	242	64	68
	PALMER4A	52	50	77	41
	PSPDOC	16	19	19	11
	QUDLIN	5	5	5	5
	SIMBQP	7	7	7	7
	SPECAN	9	13	13	10
	YFIT	29	14	56	14

Table B .

 B 14: Results from comparison of different model types in BCDFO+ on boundconstrained noisy CUTEr problems when maxeval = 15000 (see Figure 4.12)

			τ = 10 -5 , maxeval = 15000	
	name	nf Sub-basis	nf Min 2-norm	nf Regression	nf Min Frob.-norm
	3PK	failed	failed	10804	failed
	BIGGSB1	9	12	14	14
	BQP1VAR	1	1	1	1
	CAMEL6	16	20	31	18
	CHARDIS0	138	111	111	178
	CHEBYQAD	101	101	146	171
	CHENHARK	96	201	148	failed
	CVXBQP1	3	3	3	3
	HARKERP2	35	22	22	31
	HATFLDA	33	failed	failed	failed
	HATFLDB	failed	48	101	failed
	HATFLDC	1273	failed	failed	failed
	HIMMELP1	19	19	28	19
	HS1	67	67	85	49
	HS110	163	143	343	209
	HS25	failed	91	failed	failed
	HS3	failed	2	2	failed
	HS38	388	68	372	383
	HS3MOD	6	10	6	6
	HS4	3	3	3	3
	HS45	6	6	6	6
	HS5	failed	failed	24	failed
	LINVERSE	401	failed	706	6067
	LOGROS	27	33	failed	28
	MCCORMCK	186	167	275	159
	MDHOLE	147	148	272	189
	NCVXBQP1	5	5	5	5
	NCVXBQP2	7	7	7	7
	NCVXBQP3	7	15	15	13
	NONSCOMP	287	118	202	349
	OSLBQP	12	9	9	9
	PALMER1A	2581	failed	1010	failed
	PALMER2B	277	464	479	542
	PALMER4	failed	failed	202	324
	PALMER4A	2326	1614	747	1154
	PSPDOC	failed	failed	39	29
	QUDLIN	8	5	5	5
	SIMBQP	8	8	8	8
	SPECAN	194	224	331	293
	YFIT	failed	failed	306	failed

Table B .

 B 15: Results from comparison of different model types in BCDFO+ on boundconstrained noisy CUTEr problems when maxeval = 15000 (see Figure4

EG1, EXPLIN, EXPLIN2, EXPQUAD, HART6, HS2, KOEBHELB, MAXLIKA, PALMER3E, PROBPENL, S368, SINEALI, WEEDS

-norm model performs best amongst them as it terminates with f = 69.96. For the others we have that the sub-basis model could reduce the function value to f = 78.39, the regression model reaches f = 77.47 and using the minimium Frobenius-norm model, the algorithm terminates at f = 81.43 after reaching the limit of 200 function evaluations. This leads to the conclusion that a minimum 2 -norm model embedded in our presented algorithm may be most suitable to solve noisy problems in general and in particular the aerodynamical application considered here in a limited computational budget.

Appendix A Test problems

Table A.1 and Table A.2 depict the unconstrained and bound-constrained test problems taken from the CUTEr testing environment for running our numerical experiments. They show the name and dimension of the problem and, for the bound-constrained problems, give specific details on the number of free variables, the number of variables which are bounded from below, those which are bounded from above and the number of variables which are bounded from below and above.

Test results

The results of the unconstrained and bound-constrained testing can be seen in the tables below.

All tables show the name of the test problems from the CUTEr collection, and the number of function evaluations needed by each tested solver to attain a specified number of significant figures in the objective function value f * , computed using the package KNITRO or TRON in the un-or bound-constrained case, respectively. une approche récente, qui utilise une propriété d'auto-correction de la géométrie de l'ensemble d'interpolation [START_REF] Scheinberg | Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization[END_REF]. Un tel algorithme qui recourt à des pas améliorant la géométrie le moins possible (uniquement lorsque le gradient modèle est faible), tout en conservant un mécanisme de prise en compte la géométrie a été présenté.