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Résumé: Les modules de persistance mul-
tiparamétriques n’admettent, contrairement a
leurs analogues uniparamétriques largement
utilisés en analyse de données, pas de codes-
barres, et plus généralement, aucune description
compléte et facilement manipulable numérique-
ment. Cette thése propose de contourner cet
obstacle par deux approches. La premiére con-
siste & identifier des sous-classes de tels modules
qui sont effectivement décrites par des multi-
ensembles d’intervalles a plusieurs paramétres.
Gardant & l’esprit la nécessité de tester algorith-
miquement l'appartenance & ces sous-classes,
nous étudions l'existence de celles admettant
une caractérisation locale, c’est-a-dire celles
dont D'appartenance peut étre testée en ob-
servant uniquement les restrictions des mod-
ules a des sous-ensembles finis de l'espace des
paramétres. Nous montrons que si la sous-
classe des modules décomposables en inter-
valles n’admet pas une telle caractérisation lo-
cale, la classe des modules décomposables en
rectangles en admet une, et qu’elle est, dans

un sens précis, une classe maximale ayant
cette propriété. La deuxiéme approche con-
siste & construire des invariants riches et facile-
ment calculables des modules de persistance
& plusieurs paramétres sous forme de fonc-
tions constructibles. Cette approche contourne
complétement la construction des modules via
des calculs de caractéristique d’Euler plutot
que d’homologie. Nous introduisons des trans-
formées intégrales de fonctions constructibles
combinant mesure de Lebesgue et intégration
par rapport & la caractéristique d’Euler. On
méne une étude systématique de ces trans-
formées, prouvant des résultats de régularité,
d’injectivité, de stabilité et statistiques. On
prouve des formules d’indices permettant de cal-
culer l'espérance de ces transformées dans le
contexte de la persistance des sous-niveaux de
champs gaussiens aléatoires. On montre en-
fin efficacité de ces outils en analyse de don-
nées, en fournissant de nombreux exemples de
I'information topologique et géométrique qu’ils
capturent.
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Abstract: Multi-parameter persistence mod-
ules do not admit barcodes—unlike their widely
used one-parameter analogues in topological
data analysis—, and more generally no com-
plete and computationally manageable descrip-
tion. This thesis proposes to circumvent this
obstacle through two approaches. The first con-
sists of identifying subclasses of such modules
that are indeed described by multi-sets of multi-
parameter intervals. Keeping in mind the need
to algorithmically test membership in these sub-
classes, we study the existence of those with a
local characterization, i.e., those whose member-
ship can be tested by observing only the restric-
tions of the persistence modules to finite subsets
of the parameter space. We show that while
the subclass of interval-decomposable modules
does not admit such a local characterization, the

class of rectangle-decomposable modules does,
and it is, in some precise sense, a maximal class
with this property. The second approach is to
build informative and efficiently computable in-
variants of multi-parameter persistence modules
in the form of constructible functions. This by-
passes the modules construction altogether by
using Euler characteristic computations instead
of homological ones. We introduce and conduct
a systematic study of integral transforms of con-
structible functions involving Lebesgue measure
and integration with respect to the Fuler char-
acteristic. We study their regularity, their injec-
tivity, their stability and their statistical prop-
erties. Finally, these tools are discussed as pow-
erful descriptors in data analysis, providing ex-
amples of the topological and geometric infor-
mation captured.
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Introduction (version frangaise)

Cette thése ambitionne de contribuer au domaine de 1’analyse topologique de données,
et plus précisément & sa branche appelée la persistance multiparamétrique. L’objectif de
I’analyse topologique de données est d’extraire des informations géométriques et topolo-
giques de données complexes afin de réaliser une grande variété de téaches, telles que la
régression, la classification ou la visualisation. Dans cette introduction, nous commengons
par préciser ce que nous entendons par données et par information géométrique et topo-
logique. Puis, nous décrivons les outils de la persistance multiparamétrique permettant
de répondre a 'objectif de ’analyse topologique de données et détaillons enfin comment
nos contributions participent & cette ambition.

Cadre. En analyse topologique de données, les données sont généralement comprises
comme un espace métrique (X, d). Par exemple, 'espace X peut étre un sous-ensemble
fini d’un espace euclidien muni de la métrique induite, alors appelé nuage de points, ou
un graphe muni de la distance de plus court chemin (cf. . Dans le cas d’un graphe, on
entend généralement par information topologique le nombre de composantes connexes
ou le nombre de cycles du graphe. Pour aller plus loin, on peut construire un complexe
simplicial & partir du graphe, tel que le compleze de clique par exemple, qui encode les
propriétés de connectivité d’ordre supérieur sous une forme topologique. En revanche, il
n’y a stricto sensu aucune information topologique pertinente & extraire d’un nuage de
points hormi son nombre de points (d’une utilité toute relative). La premiére information
géométrique pertinente est le nombre de groupes significatifs en lesquels les points sont
répartis. Le domaine de ’analyse de données consacré a l'extraction de ces groupes est
appelé le partitionnement de données (en anglais : clustering). Aprés avoir partitionné les
données considérées, nous pouvons nous demander comment les points de chaque groupe
sont répartis géométriquement. Supposons par exemple que le nuage de points en question
se trouve & proximité d’une sous-variété de R™ inaccessible & I'expérimentateur-rice. Il
est alors pertinent d’extraire les propriétés géométriques et topologiques de cette sous-
variété ; nous citerons plus loin dans I'introduction des exemples d’applications concrétes
ayant recours & cette information.

Persistance a4 un parameétre. L’outil principal de I'analyse topologique de données
permettant de dégager les propriétés géométriques et topologiques d’un jeu de données
est I’homologie persistante. La premiére étape de cette méthode consiste & construire une
famille F d’espaces topologiques paramétrée par un ensemble totalement ordonné (P, <)
et croissante pour linclusion. Une telle famille est appelée filtration uniparamétrique
et illustrée en figure 2l Le principe de I’homologie persistante est de suivre I’évolution
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12 INTRODUCTION

FIGURE 1 : Deux exemples d’espaces métriques (X, d). La figure |laj est extraite
de Su et al. (2004) : elle représente le graphe d’expression des génes de tissus de
souris en suivant la méthode de ’analyse du réseau de corrélation des génes, que

développent Freeman et al. (2022). La figure [Lb|est tirée de De Deuge et al. (2013)

et représente un nuage de points produit par le scan LIDAR d’un arbre.

(a) d(X,-) < 0.4 (b) d(X,) < 1.5 (c) d(X,) < 2.1

FIGURE 2 : Filtration de Cech d’un nuage de points dans le plan euclidien. Les
ensembles de sous-niveaux de la fonction d(X, ) sont représentés en bleu clair.

des caractéristiques homologiques des espaces de F lorsque le paramétre d’indexation
varie. Typiquement, on peut considérer la famille des ensembles de sous-niveaux d’une
fonction f : Y — P pour un certain espace topologique Y. Lorsque X est un nuage de
points de R%, un exemple célébre, appelé filtration de éech, est donné par la fonction &
valeurs réelles f = d(X,-) qui associe & tout point de Y = R? sa distance au nuage X.
Le calcul de 'homologie a coefficients dans un corps k des espaces de la filtration F
produit un objet algébrique Hy(F) appelé module de persistance (uniparamétrique), qui
est un foncteur de l'ensemble partiellement ordonné (P, <) vers la catégorie Vecy des es-
paces vectoriels sur k. En d’autres termes, un module de persistance M : (P, <) — Veck
est la donnée d’une famille d’espaces vectoriels M (p) pour chaque p € P et d’une famille
d’applications linéaires M (p) — M (q) pour chaque paire d’éléments comparables p < ¢
de P. De plus, ces applications linéaires doivent satisfaire certaines conditions de com-
patibilité. Sous certaines hypothéses, les résultats de Gabriel en théorie des re-
présentations de carquois assurent que l'on peut faire un choix cohérent de base pour
chaque espace vectoriel de Hy(F), au sens ou chaque vecteur de base apparait dans ces
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FIGURE 3 : Codes-barres associé a la filtration de Cech du nuage de points X
présenté en figure 2] Les barres rouges correspondent aux barres du code-barres
de Hy(F) et les bleues aux barres du code-barres de H;(F). La longue barre bleue
enregistre le fait que les points de X sont proches d’un cercle.

espaces & partir d’un certain paramétre a € P appelé sa naissance, et disparait aprés un
certain paramétre b > a appelé sa mort. L’intervalle [a, b) est appelé la barre du vecteur
de base correspondant. Le module de persistance Hy(F) est alors entiérement décrit par
le multiensemble des barres [a, b) pour chaque caractéristique homologique apparaissant
dans la filtration (cf. figure |3). Plus généralement, les classes d’isomorphisme des mo-
dules de persistance dont les espaces vectoriels sont de dimension finie sont en bijection
avec les multiensembles d’intervalles de P, appelés codes-barres de persistance (Botnan
et Crawley-Boevey, 2020|; Crawley-Boevey, 2015). Ces idées sont nées dans les années
1990 avec les travaux de Barannikov ((1994) et ont été activement développées en analyse
topologique de données depuis le travail fondateur de Edelsbrunner, Letscher et Zomoro-
dian (2000). Les livres de Edelsbrunner et Harer (2022) et Oudot (2015) fournissent une
plus ample introduction & I’homologie persistante.

Une propriété remarquable des codes-barres est leur robustesse vis-a-vis de petites
perturbations (inévitables) sur les données. Plus précisément, on peut munir 'espace
des codes-barres des distances bottleneck (Cohen-Steiner, Edelsbrunner et Harer, 2007)
et de Wasserstein p (Cohen-Steiner, Edelsbrunner, Harer et Mileyko, 2010) ayant des
propriétés de stabilité par rapport a certaines distances sur les données (Chazal, De Silva
et al., [2016]; Cohen-Steiner, Edelsbrunner et Harer, [2007); Cohen-Steiner, Edelsbrunner,
Harer et Mileyko, 2010). Par exemple, la distance bottleneck est stable par rapport a la
métrique Lo, entre les fonctions f : Y — R dont les sous-niveaux sont considérés. Ce
résultat donne des précisions sur le type de bruit dans les données par rapport auquel les
codes-barres sont stables et constitue probablement I'un des résultats les plus importants
de la théorie de la persistance. En particulier, cette propriété fait du code-barres un outil
adapté pour construire des estimateurs consistants en statistiques (Bobrowski, Mukherjee
et Taylor, 2017|; Chazal, Glisse et al., 2015)).

Les codes-barres ont de fait été utilisés avec succés en statistiques et ont trouvé
une large variété d’applications scientifiques, allant des sciences de la santé (Aukerman
et al., 2021|; Fernandez et Mateos, 2022[; Rieck et al., [2020), & la biologie (Ichinomiya,
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Obayashi et Hiraoka, 2020/; Rabadén et Blumberg, |2019) en passant par les sciences des
matériaux (Hiraoka, Nakamura et al., 2016/; Lee et al., 2017). De plus, ces outils ont
trouvé de nombreuses applications en géométrie symplectique (Polterovich, Rosen et al.,
2020; Polterovich et Shelukhin, 2016).

Persistance multiparamétrique. Dans de nombreuses situations expérimentales,
il est utile de construire des filtrations indéxées par plus d’un paramétre, c’est-a-dire,
par un ensemble partiellement ordonné (poset) comme P = Z™ ou P = R™ muni de
Iordre produitﬂ Une fagon d’obtenir une telle filtration est de considérer les ensembles
de sous-niveaux de fonctions a valeurs vectorielles f : Y — R™. En procédant ainsi, il est
possible de diminuer I'impact des points aberrants d’un nuage de points X de R? en fil-
trant I’espace par rapport & f = (f1, f2) : R? = R? ot1 f; est la distance & X et fo est une
densité de probabilité sur R? estimée a partir de X (cf. Vipond et al. [2021| par exemple).
De plus, les filtrations multiparamétriques permettent de traiter des données intrinse-
quement multiparamétrique, comme des images de tissus de seins atteints de cancer et
munies de la densité de cellules immunitaires et cancéreuses sur chaque pixel (Carriére et
Blumberg, |2020)). Appliquer I'homologie & une telle filtration produit désormais un objet
appelé module de persistance multiparamétrigue M : (P,<) — Veck. La théorie de la
persistance multiparamétrique a débuté par des calculs de groupes d’homotopie de taille
dans Frosini et Mulazzani (1999) et a été étudié pour la premiére fois par Carlsson et Zo-
morodian (2009) pour les groupes d’homologie. En suivant la méme ligne de pensée que
dans le cas uniparamétrique, il est naturel de se demander si les classes d’isomorphisme de
tels objets peuvent étre décrites par des multiensembles de régions géométriques simples
de 'espace des paramétres, semblables aux barres des codes-barres de persistance.

Born to be wild. La théorie des représentations de carquois ne laisse malheureu-
sement aucun espoir de répondre positivement & cette question. Si tot que le poset P
des paramétres est [1,2] x [1,6] muni de l'ordre produit, la situation est aussi complexe
qu’elle puisse étre. On dit que le poset est de type de représentation sauvage. En particu-
lier, une classification compléte des classes d’isomorphismes des modules de persistance
indexés sur ce poset particulier impliquerait aussitot une telle classification pour les mo-
dules de persistance indexés sur n’importe quel poset fini. La construction d’invariants
complets — caractérisant entiérement la type d’isomorphisme du module — qui soient &
la fois calculables et manipulables en pratique est considérée comme complétement hors
de portée. Nous renvoyons le lecteur a l'article de Botnan et Lesnick (2022} Section 8)
pour une description plus compléte de la théorie des représentations apparaissant en
persistance multiparamétrique.

Défi. L’une des principales difficultés de la persistance multiparamétrique est donc
d’extraire des informations stables et riches des modules de persistance malgré le carac-
tére sauvage du poset des paramétres. Les travaux menés dans cette thése de doctorat
développe deux approches complémentaires afin de surmonter cette difficulté. La pre-
miére consiste & identifier des sous-classes de modules de persistance multiparamétriques

L’ordre produit est défini par (z1,...,2m) < (Y1,...,Ym) € R™ si 2; < y; pour tout i €
{1,...,m}.
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pour lesquels un analogue du code-barres uniparamétrique existe. La seconde consiste
& construire des invariants des modules de persistance qui soient stables et informatifs,
bien qu’incomplets.

I. Décompositions des modules de persistance

Dans cette section, nous présentons la théorie des décompositions de modules de persis-
tance multiparamétriques. Notre objectif n’est pas d’étre exhaustifs mais de décrire le
cadre dans lequel nos contributions s’inscrivent. Nous renvoyons a l'article de Botnan et
Lesnick (ibid.)) pour un tableau récent et plus détaillé.

Théorémes de décomposition. Le travail de Botnan et Crawley-Boevey (2020)
montre que les modules de persistance multiparamétriques qui sont point-a-point de
dimension finie — c’est-a-dire, dont les espaces vectoriels sont de dimension finie — se
décomposent toujours en sommes directes de modules indécomposables. De plus, I’anneau
d’endomorphismes de chacun de ces modules indécomposables est local et le théoréme
d’Azumaya (1950) assure donc que cette décomposition est essentiellement unique.

Dans le cas uniparamétrique, ces indécomposables sont nécessairement des modules
intervalles, définis comme les représentations indicatrices d’intervalles de P (cf. Crawley-
Boevey 2015). Ces modules sont donc entiérement caractérisés par leur support, c’est-
a~dire ensemble des parameétres p € P tels que U'espace vectoriel M (p) est non trivial.
Une classe d’isomorphisme de modules de persistance uniparamétriques est donc entié-
rement caractérisée par le multiensemble des intervalles apparaissant comme supports
des modules indécomposables dans la décomposition en somme directe de n’importe quel
représentant de la classe. C’est ce multiensemble qui est appelé code-barres, comme nous
I’avons expliqué plus haut.

La situation est bien plus complexe dans le cas biparamétrique, car les modules
indécomposables ne sont pas entiérement caractérisés par leur support, comme le montre
I'exemple suivant de deux modules indécomposables de méme support (cf. (1.4)) :

RN

Cependant, on peut toujours définir des modules intervalles comme des représentations

K2 (10)

=
e

indicatrices d’intervalles de P, ott 'on entend ici par « intervalle » tout sous-ensemble
convexe connexe de P au sens de la théorie de l'ordre (cf. figure [4)). La collection des
supports des modules intervalles apparaissant dans une décomposition en somme directe
d’un module de persistance peut ensuite étre utilisée comme descripteur de ce module.
Ce descripteur étant de nature purement géométrique, il est facile & interpréter et a
implémenter sur un ordinateur.

En pratique, on souhaite pouvoir déterminer facilement si un module de persistance
donné admet des modules intervalles dans sa décomposition en somme directe et si, dans
une telle configuration, ce sont les seuls indécomposables apparaissant dans la décom-
position — auquel cas, le module est appelé décomposable en intervalles. Une approche
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= e

P =R?

FIGURE 4 : Un intervalle I du poset P = R2.

naive de ce probléme consiste a utiliser un algorithme général de décomposition de mo-
dule de persistance et de vérifier les indécomposables un & un. Dans la premiére partie
de cette thése, nous proposons une approche alternative.

Caractérisations locales. La méthode que nous proposons consiste & vérifier loca-
lement la décomposabilité du module, au sens ot I'on aurait a examiner uniquement les
restrictions du module & des sous-ensembles tests du poset P. Si la collection de sous-
ensembles tests est assez petite, et si les ensembles tests eux-mémes sont assez simples, les
restrictions du module devraient avoir une structure particuliérement simple a analyser,
ce qui constituerait un gain algorithmique significatif.

Ces caractérisations locales apparaissent en persistance des niveaur (Bendich et al.,
2013); Carlsson, De Silva et D. Morozov, 2009)), ou I’on construit des invariants de fonc-
tions scalaires f définies sur des espaces topologiques en étudiant la topologie des images
réciproques d’intervalles ouverts par f. A une reparamétrisation prés, les groupes d’ho-
mologie des ces pré-images s’assemblent en un module de persistance biparamétrique
indexé sur P = R2. Ce module se trouve étre décomposable en intervalles, pour des
intervalles appelés blocs : des quarts de plan supérieurs droits ou inférieurs gauches, ou
des bandes infinies horizontales ou verticales. La décomposabilité en blocs des modules
considérés dans ce contexte est une conséquence évidente de la suite de Mayer-Vietoris,
dés lors que la caractérisation locale suivante est prouvée : un module de persistance
biparamétrique est décomposable en blocs si, et seulement si, toutes ses restrictions a
des carrés {x1,z2} X {y1,y2} C R? le sont également. Ce fait a d’abord été démontré
par Cochoy et Oudot (2020), puis par Botnan et Crawley-Boevey (2020) et a permis
d’obtenir une théorie plus propre et plus générale que celle établie précédemment pour
la persistance des niveaux, qui nécessitait une condition supplémentaire de type Morse
sur la fonction & valeurs réelles f considérée (Bendich et al., 2013)).

Contributions. Dans la premiére partie de cette thése, nous développons la théorie
des caractérisations locales des modules de persistance biparamétriques en élargissant la
classe d’intervalles considérés de la classe des blocs & la classe des rectangles paralléles
aux axes de R?. Un module intervalle supporté sur un rectangle paralléle aux axes est
appelé module rectangle, et un module décomposable en intervalles dont les sommandes
sont exclusivement des modules rectangles est appelé décomposable en rectangles. Nous
prouvons qu’un module de persistance biparamétrique est décomposable en rectangles si,
et seulement si, toutes ses restrictions aux carrés le sont également. Nous prouvons de plus
que les modules décomposables en rectangles sont, dans un sens précis, une sous-classe
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maximale de modules décomposables en intervalles qui peut étre caractérisée localement,
du moins lorsque l'on considére les carrés comme ensembles tests. Ces résultats sont le
fruit d’une collaboration avec Magnus Bakke Botnan et Steve Oudot. Ils ont d’abord
été obtenus sur des produits binaires d’ensembles totalement ordonnés finis (2022), puis
étendus aux produits de tels ensembles satisfaisant certaines hypothéses peu restrictives,
incluant P = R? par exemple (2023).

Nous présentons ensuite deux applications de ces résultats a ’analyse topologique
de données. Tout d’abord, nous exposons un algorithme testant la décomposabilité en
rectangles des modules obtenus par le calcul de I’homologie des filtrations simpliciales
finies biparamétriques. Lorsque le module est décomposable en rectangle, nous fournis-
sons également un algorithme de calcul de sa décomposition ayant une complexité plus
faible que les algorithmes généraux de décomposition des modules biparamétriques. Notre
algorithme de test est fondé sur notre théoréme de caractérisation locale : il suffit de vé-
rifier la décomposabilité en rectangle des restrictions du module aux carrés du poset, et
cette derniére propriété peut étre formulée comme des égalités entre certaines images et
certains noyaux des morphismes M (p) — M(q) du module pour p < ¢ dans P.

Enfin, nous appliquons notre résultat de décomposabilité en rectangle aux modules de
persistance indexés sur le poset appelé pyramide de Mayer- Vietoris. Ces modules ont été
introduits en persistance des niveaux par Bendich et al. (2013) afin d’étudier les groupes
d’homologie relative des pré-images d’intervalles ouverts par une application continue &
valeurs réelles. Notre résultat permet de généraliser le théoréme de la base pyramidale
de Bendich et al. (ibid.) aux modules de persistance qui ne sont pas nécessairement
déterminés par leur restriction a un sous-ensemble fini de la pyramide, et en fait plus
largement aux modules indexés sur un poset appelé bande de Mayer-Vietoris contenant
la pyramide et introduit par Bauer, Botnan et Fluhr (2021)).

II. Invariants of persistence modules

Dans cette section, nous décrivons de fagon succincte et non exhaustive la théorie des
invariants des modules de persistances multiparamétrique afin de placer nos contributions
dans leur contexte.

Par invariant, on entend une application de 'ensemble des classes d’isomorphisme
de modules de persistance vers un espace (pseudo-)métrique. La vaste littérature de la
théorie des représentation de carquois fournit de nombreux invariants, et ’analyse topo-
logique de données en a apporté de supplémentaires, empreints des contextes applicatifs
dans lesquels ces invariants sont utilisés.

Qu’est-ce qu’un bon invariant 7 En vue de son application en analyse de données,
un bon invariant des modules de persistance devrait étre E|

(i) Informatif, autant que possible, sinon complet. En particulier, la distance entre
les invariants devrait étre d’autant plus importante que les propriétés topologiques
des données différent.

20n note qu'une liste similaire apparait dans Adams et al. (2017) dans le cas spécifique des
invariants & valeur vectorielles des modules de persistance & un paramétre.
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(i)
(i)

(iv)

INTRODUCTION

Calculable, aussi efficacement que possible.

Stable, c’est-a-dire continu, ou méme lipschitzien par rapport & une certaine mé-
trique sur les données. En gardant a l’esprit les codes-barres de persistance, la
métrique sur les données pourrait étre une métrique L, entre les fonctions dont
les ensembles de sous-niveaux sont considérés, ou la métrique de Hausdorff sur
les nuages de points. Comme dans le cas des codes-barres de persistance, cette
propriété garantirait que l'invariant est robuste par rapport a un certain type de
bruit dans les données, et pourrait étre utilisée pour construire des estimateurs
consistants en statistique.

Interprétable. Cette propriété est différente de|(i)| et peut étre difficile a obtenir en
fonction de l'invariant considéré.

En outre, de nombreuses techniques d’apprentissage automatique comme les machines a

vecteurs de support requiérent une structure hilbertienne sur leurs entrées. Il serait donc

appréciable que la (pseudo-)métrique définie sur I'espace des invariants soit Lipschitz-

équivalente & une métrique induite par le produit scalaire d’un espace de Hilbert.

Le code-barres est-il un bon invariant 7 Nous pouvons étudier les propriétés

des codes-barres de persistance uniparamétrique du point de vue de la liste dressée ci-

dessus :

(i)

(i)

(iii)

(iv)

Comme nous 'avons déja mentionné, cet invariant est complet et satifsait donc
entiérement la propriété (1))

L’un des avantages des groupes d’homologie, sur les groupes d’homotopie par
exemple, est leur faible cotit de calcul : si le poset d’indexation P est un ensemble
totalement ordonné fini et si les espaces de la filtration F sont des complexes sim-
pliciaux, le calcul d’'un code-barres de persistance revient essentiellement a une
simple réduction de matrice. Par conséquent, cette tache prend un temps polyno-
mial en le nombre de simplexes apparaissant dans la filtration, de degré identique
a celui pour la multiplication de matrices (Milosavljevi¢, D. Morozov et Skraba,
2011).

Comme nous 'avons déja mentionné, ’espace des codes-barres est muni des dis-
tances bottleneck et de Wasserstein p satisfaisant des propriétés de stabilité (Chazal,
De Silva et al., [2016]; Cohen-Steiner, Edelsbrunner et Harer, [2007]; Cohen-Steiner,
Edelsbrunner, Harer et Mileyko, |2010)).

Les codes-barres de persistance sont interprétables. Les longues barres représentent
les caractéristiques homologiques persistantes dans les données et fournissent donc
des indications sur leur dimension intrinséque et leur structure topologique. Par
exemple, les codes-barres de persistance ont récemment permis de détecter une
structure toroidale de la zone d’activation des cellules de grille des cerveaux de
rongeurs (Gardner et al., 2022).

Malheureusement, ’espace des codes-barres de persistance muni de la distance bottle-

neck ne peut pas étre plongé isométriquement dans un espace de Hilbert (Bubenik et A.



INTRODUCTION 19

Wagner, [2020/; Carriére et Bauer, 2019). En outre, le point devrait étre nuancé par
deux remarques. Premiérement, les informations homologiques recueillies sur les données
peuvent rester difficiles & interpréter : quelle information est contenue dans les généra-
teurs de I’homologie de degré p pour p > 37 Et que nous apprend la torsion dans ces
groupes d’homologie 7 Deuxiémement, si les barres courtes ont originellement été considé-
rées comme du bruit, de récents travaux montrent qu’elles contiennent collectivement une
grande quantité d’information sur la structure géométrique des données. Par exemple, les
barres courtes contiennent de 'information sur la courbure des données (Bubenik, Hull et
al.,|2020), ou sur la distribution des points d’un nuage de points (cf. par exemple Obaya-
shi, Hiraoka et Kimura 2018 et le chapitre |§| de la présente thése). Cependant, il reste
difficile d’extraire ces informations des code-barres sous une forme lisible et univoque.

Persistance multiparamétrique. L’invariant de rang d’'un module de persistance M
indexé sur P a été introduit dans Carlsson et Zomorodian (2009) et enregistre le rang des
applications linéaires M (p) — M(q) pour tout p < ¢ dans P. Cet invariant est complet
dans le cas uniparamétrique (cf. ibid., Theorem 12 pour le cas discret et Chazal, De Silva
et al. 2016| Propositions 2.3 et 2.18 pour un énoncé général). Cependant, ce n’est pas le
cas pour les modules multiparamétriques, comme le montre le contre-exemple . L’in-
variant de rang est stable par rapport a la distance d’entrelacement sur les modules de
persistance. Ceci est prouvé dans une note de Landi (2014)) pour un invariant équivalent,
le code-barres fibré. Ce dernier invariant est défini comme la collection des codes-barres
uniparamétrique des restrictions d’'un module aux droites affines de pentes positives. La
principale limite de cet invariant est son cotit de calcul. La complexité temporelle d’un
calcul de code-barres fibré est égale au nombre de lignes considérées multiplié par le cotit
de calcul d’'un code-barres de persistance uniparamétrique, un prix élevé en pratique.
D’autre part, cet invariant bénéficie de propriétés d’interprétabilité similaires a celles du
code-barres uniparamétrique. Le code-barres fibré a par ailleurs récemment été généralisé
en la notion de code-barres projeté dans Berkouk et Petit (2022)). Cet invariant est stable
et plus flexible, mais reste coiiteux a calculer.

Nous n’évoquons pas ici d’autres invariants des modules de persistance, tels que les
images et les paysages de persistance (Adams et al.,2017); Bubenik et al., 2015|; Carriére
et Blumberg, 2020; Vipond, 2020). Ces invariants ont été introduits afin de vectoriser les
codes-barres de persistance et présentent tous deux des propriétés intéressantes au vu de
la liste ci-dessus. Une fois encore, 'une de leurs principales limites est leur cott de calcul.
Cela apparaitra clairement dans le chapitre [9] lorsque nous comparerons ces invariants
aux invariants basés sur la caractéristique d’Euler.

Invariants basés sur la caractéristique d’Euler. En calculant la caractéris-
tique d’Euler de chaque espace d’une famille de complexes simpliciaux & un paramétre,
on obtient un descripteur fonctionnel de la filtration appelé courbe d’Fuler xr : P — Z.
Bien entendu, ce descripteur se généralise aux filtrations multiparamétrique, et est appelé
alors surface d’Euler (Beltramo, Skraba et al., 2022) dans le cas biparamétrique et profils
d’Euler (Dlotko et Gurnari, 2022)) dans le cas général. Une formule classique garantit que
la caractéristique d’Euler d’un complexe simplicial s’exprime comme une somme alternée
du nombre de simplexes en chaque dimension. De facon similaire, lorsque la filtration F
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est la filtration des sous-niveaux d’une fonction de Morse f : Y — R, la caractéristique
d’Euler peut étre exprimée comme une somme alternée des valeurs critiques de f. Dans
les deux cas, le calcul de la caractéristique d’Euler permet d’éviter le calcul de 'homolo-
gie et la construction méme des modules de persistance associés. En ce qui concerne les
propriétés de ces invariants, on peut dresser le tableau suivant :

(i) Les descripteurs basés sur la caractéristique d’Euler ne sont pas aussi grossiers qu'il
n’y parait, comme le prouve leur pouvoir prédictif (Amézquita et al., [2022; Jiang,
Kurtek et Needham, [2020/; Smith et Zavala, [2021)).

(ii) En raison de leur simplicité, ces descripteurs peuvent étre calculés en temps linéaire
en le nombre total de simplexes d’une filtration simpliciale F au lieu d’un temps
équivalent a la multiplication de matrices pour les codes-barres de persistance. En
outre, la localité de la caractéristique d’Euler peut étre exploitée pour concevoir
des algorithmes trés efficaces de calcul des courbes d’Euler, comme dans les travaux
de Heiss et H. Wagner (2017) et Wang, H. Wagner et C. Chen (2022).

(iii) Les profils d’Euler sont des applications a valeur entiére sur I’espace euclidien et
peuvent donc étre munis de distances L, standards. Afin de transférer les résultats
de stabilité existants pour les codes-barres (fibrés) aux profils d’Euler, on peut se
demander s’il existe des inégalités prouvant un controle des distances L, sur les
profils d’Euler par certaines distances entre les modules de persistance gradués
dont proviennent ces profils. De telles inégalités sont effectivement connues pour
la distance L sur les courbes d’Euler et la métrique de Wasserstein 1 sur les
codes-barres (voir Curry, Mukherjee et Turner 2022); Dlotko et Gurnari 2022).
Cependant, il a récemment été montré qu’il n’existe pas de distance non triviale
sur les courbes d’Euler qui soit controlée par la distance bottleneck sur les codes-
barres de persistance (Berkouk, 2022, Proposition 4.25).

(iv) Plusieurs auteurs ont travaillé & une interprétation des courbes et des surfaces d’Eu-
ler (Beltramo, Skraba et al., 2022|; Smith et Zavala, [2021)), et plus généralement a
la construction d’outils interprétables et fondés sur la caractéristique d’Euler (Tang
et al.,2022). Cependant, I'interprétabilité de ces descripteurs mérite encore investi-
gation. Bien qu’étroitement lié & ’homologie persistante, le signal est trés différent
a interpréter. En particulier, la dichotomie classique signal/bruit utilisée pour les
codes-barres de persistance n’a plus de sens : une succession de classes d’homologie
a courte durée de vie et une seule classe a longue durée de vie peuvent toutes deux
générer la méme courbe d’Euler.

Calcul intégral d’Euler. Les invariants des modules de persistance basés sur la ca-
ractéristique d’Euler se formulent naturellement dans le langage du calcul intégral d’Fuler.
Cette théorie de 'intégration par rapport a la caractéristique d’Euler a originellement été
développé par Viro (1988) et Schapira (1989, [1991)) indépendamment. Les fonctions me-
surables pour cette mesure sont les fonctions dites constructibles, c’est-a-dire les fonctions
constantes par morceaux sur des partitions de 1’espace en sous-ensembles géométriques
simples, généralement supposés définissables dans une structure o-minimale fixée.
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Schapira (1989, |1991)) développe le calcul intégral d’Euler a I'aide du formalisme des
six foncteurs de la théorie des faisceaux et du lien entre les fonctions constructibles et
les faisceaux constructibles appelé correspondance faisceauz-fonctions (Kashiwara, 1985|;
Kashiwara et Schapira, [1990). Ces outils s’inscrivent donc naturellement dans ’approche
faisceautique de la persistance multiparamétrique initiée par Curry (2014)) et Kashiwara
et Schapira (2018)).

Le calcul d’Euler a conduit & d’importantes avancées en analyse topologique de don-
nées (cf. Curry, Ghrist et Robinson [2012), notamment par 'introduction de transformées
intégrales topologiques (Baryshnikov, Ghrist et Lipsky, [2011; Curry, Mukherjee et Tur-
ner, 2022; Ghrist, Levanger et Mai, 2018; Turner, Mukherjee et Boyer, 2014a). La plus
importante d’entre elles est la transformée de Radon introduite par Schapira (1995),
définie comme suit. La transformée de Radon de la fonction indicatrice 1z d’un sous-
ensemble définissable Z C R™ associe a tout hyperplan affine H C R™ la caractéristique
d’Euler de 'intersection ZN H. Elle est ensuite étendue par linéarité a toutes les fonctions
constructibles. Le résultat d’inversion de Schapira (ibid.) garantit que cette transformée
est inversible, & une constante prés lorsque m est pair. Curry, Mukherjee et Turner (2022])
et Ghrist, Levanger et Mai (2018) ont montré que ce résultat fournit une réponse positive
& un important probléme inverse : deux sous-ensembles définissables de R ayant la méme
homologie persistante en tout degré et pour les filtrations de sous-niveaux de toutes les
formes linéaires sont-ils égaux ? Ces techniques ont été appliquées en analyse de formes,
par exemple dans la prédiction de résultat clinique des cancers du cerveau (Crawford
et al., |2020), dans l'analyse des graines d’orge (Amézquita et al., 2022)) ou dans 1'étude
des variations morphologiques & travers les espéces de primates (Tang et al., 2022).

L’aspect le plus problématique du calcul d’Euler pour les applications est son in-
stabilité vis-a-vis des approximations numériques : des erreurs peuvent étre (et seront
certainement) commises lors du calcul de I'intégrale d’Euler d’une fonction constructible,
quelle que soit la finesse de I’échantillonnage de son domaine (Curry, Ghrist et Robinson,
2012, Section 16). Dans leurs expériences de prédiction, Crawford et al. (2020)) effectuent
un lissage des transformées intégrales topologiques pour produire des descripteurs de
formes plus performants, mais aucun résultat théorique ne permet d’étayer ces résultats
expérimentaux pour 'instant. Ces lissages sont étroitement liés aux transformées de Bes-
sel et de Fourier introduites par Ghrist et Robinson (2011), ainsi qu’a la caractéristique
d’Euler des codes-barres introduite par Bobrowski et Borman (2012).

Contributions. Dans la deuxiéme partie de cette thése, nous nous intéressons aux
invariants basés sur la caractéristique d’Euler en analyse topologique de données.

Nous introduisons une définition de transformées hybrides pour les fonctions construc-
tibles qui généralise les lissages des transformées topologiques mentionnés ci-dessus. 11
s’agit de transformées intégrales combinant I'intégration de Lebesgue et le calcul intégral
d’Euler. L’intégration de Lebesgue donne accés a des noyaux bien étudiés et a des résul-
tats de régularité, tandis que le calcul d’Euler véhicule de I'information topologique et
permet la compatibilité des transformées avec les opérations sur les fonctions construc-
tibles. Nous menons une étude systématique de ces transformées et en introduisons deux
nouvelles : les transformées d’Euler-Fourier et d’Euler-Laplace. Nous montrons que la
premiére a un inverse gauche et que la seconde fournit une généralisation satisfaisante



22 INTRODUCTION

de magnitude persistante (Gove et Hepworth, 2021)) aux faisceaux constructibles, et donc
en particulier aux modules de persistance multiparamétriques. Enfin, nous prouvons des
formules d’indices pour une large classe de transformées hybrides dans le contexte de la
persistance multiparamétrique des ensembles de (sous-)niveaux, généralisant les formules
existantes démontrées par Bobrowski et Borman (2012), Ghrist et Robinson (2011)) et
Gove et Hepworth (2021). En particulier, cela nous permet de calculer 1’espérance de ces
transformées dans le cas de filtrations de sous-niveaux de champs gaussiens aléatoires.

Dans un travail en collaboration avec Olympio Hacquard (2023), nous montrons que
les profils d’Euler et leurs transformées hybrides sont des descripteurs topologiques riches
et efficacement calculables des données. Pour commencer, nous prouvons des résultats de
stabilité pour ces descripteurs ainsi que des garanties asymptotiques dans des contextes
aléatoires. Ensuite, nous démontrons que les profils d’Euler atteignent des performances
trés compétitives a un faible cotit de calcul lorsqu’ils sont associés & un classificateur puis-
sant tel qu’'une forét aléatoire. Cependant, en raison de leur simplicité, ces descripteurs
ne parviennent pas & séparer linéairement les différentes classes ou a étre compétitifs
dans des taches non supervisées. Inspirés par ’analyse du signal, nous remédions & ces
problémes en étudiant les transformées hybrides des profils d’Euler. Nous montrons que
ces transformées hybrides présentent des performances remarquables dans les taches de
classification linéaire et dans les contextes non supervisés. D’un point de vue qualitatif,
nous fournissons également de nombreuses heuristiques sur les informations topologiques
et géométriques captées par les profils d’Euler et leurs transformées hybrides.

Plan détaillé et résumé des contributions

Nous présentons ici nos contributions de maniére plus détaillée et exposons la structure
de la thése. Nous renvoyons aux chapitres correspondants pour les définitions précises de
nos termes.

Partie [ : Décompositions des modules de persistance

Dans la premiére partie de cette thése, nous étudions les caractérisations locales de dé-
composabilité des modules de persistance biparamétriques. Tous les résultats de cette
partie sont basés sur des travaux en collaboration avec Magnus Bakke Botnan et Steve
Oudot (2022}, [2023). Dans ce résumé, nous supposons toujours que les modules de per-
sistance sont point-a-point de dimension finie.

Chapitre [1| : Caractérisations locales

Ce chapitre sert d’introduction & la premiére partie de la thése. Nous commencons par
définir les modules de persistance multiparamétrique, les décompositions en intervalles
et d’autres notions nécessaires (section [1.1)). Nous donnons ensuite un énoncé précis de
notre question principale : 'existence de caractérisations locales de la décomposabilité
d’intervalles (section . Aprés avoir passé en revue les réponses existantes a cette
question (section , nous exposons nos contributions (section .
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Chapitre [2| : Décomposition en rectangles

Ce chapitre est consacré a la preuve du résultat principal de la partie[]] :

Théoréme (Théoréme . Soit X et'Y deux ensembles totalement ordonnés dont tous
les intervalles admettent des sous-ensembles initiaur dénombrables. Un module de per-
sistance M sur X XY est décomposable en rectangles si, et seulement si, la restriction
de M a tout carré {z1 < )} x {xe < zh} C X XY est décomposable en rectangles.

Nous commencons par fournir une courte preuve de ce résultat lorsque X et Y sont
finis en suivant Botnan, Lebovici et Oudot (2022)) (section [2.1)). La preuve du cas gé-
néral utilise le cas fini et s’étend quant a elle sur plus de vingt pages. Elle suit notre
travail avec Magnus Bakke Botnan et Steve Oudot (2023) et est développée dans les
sections [2.2] & 2.5] La preuve repose dans les deux cas sur une formulation algébrique
clé de la décomposabilité en rectangles des restrictions aux carrés appelée ezxactitude
faible (Définition [2.1)).

Les restrictions aux carrés de modules décomposables en rectangles sont trivialement
décomposables en rectangle. Il s’agit donc de prouver la réciproque. Pour cela, la preuve
dans le cas fini utilise une approche simple basée sur des calculs de rang des morphismes
du module. Dans le cas général, nous suivons la méme approche que Cochoy et Oudot
(2020) pour la décomopsabilité en blocs, en utilisant ce que 1'on appelle les filtrations
fonctorielles (section , avec des ajustements majeurs & des étapes clés en raison de
notre condition locale plus faible. En résumé, nous commencons par définir, pour chaque
rectangle R € X xY, un sous-module Mg de M appelé filtrat rectangle de M associé & R
(section . Ce sous-module est construit de telle sorte que Mg contienne précisément
les éléments de M; qui vivent précisément durant le sous-ensemble R des paramétres. En
particulier, Mg est isomorphe & une somme directe finie de copies du module rectangle k.
Nous prouvons ensuite que ces filtrats sont en somme directe (section et que cette
somme engendre tout M (section [2.5).

Chapitre [3| : Sur ’existence d’autres caractérisations locales

Dans ce chapitre, nous apportons des réponses négatives a notre question principale. Les
résultats du chapitre précédent garantissent que la décomposabilité en rectangles d’un
module de persistance donné peut étre vérifiée localement en considérant les restrictions
a tous les carrés. La question suivante est donc naturelle : dans quelle mesure la décom-
posabilité en intervalles peut-elle étre déterminée localement en autorisant des intervalles
de forme plus générale que les rectangles ?

Nous fournissons deux résultats négatifs, établis en collaboration avec Magnus Bakke
Botnan et Steve Oudot dans le cas fini (2022), puis en toute généralité (2023). Tout
d’abord, nous montrons que la décomposabilité en intervalles ne peut pas étre caractérisée
localement, méme par des tests sur toutes les sous-grilles strictes :

Theorem (Théoréme . Soit X et'Y deux ensembles totalement ordonnés tels que
| X|>3et|Y|>3et2<m<min(|X|,|Y]) un entier. Il existe un module de persistance
M sur X XY qui n’est pas décomposable en intervalles mais dont les restrictions Mg a
toutes les sous-grilles finies Q C X XY de cdtés de longueur au plus m le sont.
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A la lumiére des résultats précédents, il est naturel de se demander s’il existe une
classe d’intervalles plus généraux que les rectangles, pour lesquels une caractérisation

locale sur les carrés est possible. Il s’avére que ce n’est pas le cas, comme le montre le
théoréme 3.5

Chapitre [4] : Applications a I’analyse topologique de données

Dans la section nous fournissons des algorithmes permettant de tester si un module
de persistance dérivant d’une filtration simpliciale & deux paramétres est décomposable
en rectangles, et calculant sa décomposition lorsqu’elle existe.

Dans un premier temps, nous prouvons que 'invariant de rang est complet sur la classe
des modules biparamétriques décomposables en rectangles (théoréme |4.4). A cette fin,
nous généralisons la formule d’inclusion-exclusion exprimant le code-barres de persistance
en termes d’invariant de rang (Cohen-Steiner, Edelsbrunner et Harer, 2007) au cadre
biparamétrique. Notons que notre résultat découle indirectement d’une formule similaire
pour une généralisation de 'invariant de rang (Kim et Mémoli, 2021)), mais que nous
fournissons un énoncé explicite ainsi qu’une preuve simple et directe.

Nous montrons ensuite que I'invariant de rang d’un module produit par une filtration
simpliciale biparamétrique ayant n simplexes au total peut étre calculé en temps O(n?)
(théoréme . Ce résultat n’est pas nouveau en soi, cependant, combiné avec notre
formule d’inclusion-exclusion, il donne un algorithme en temps O(n*) pour calculer la
décomposition d’un module de persistance biparamétrique décomposable en rectangles
(corollaire . Au moment de sa publication, notre résultat représentait une amélio-
ration par rapport & la simple application d’'un algorithme de pointe de décomposition

des modules de persistance biparamétriques généraux, qui prendrait O(n?*+1!)

temps
o 2 < w < 2.373 est 'exposant pour la multiplication matricielle (Dey et Xin, 2022).
Dans un trés récent article, Clause et al. (2023]) ont amélioré notre résultat en décrivant
un algorithme de calcul de I'invariant de rang des modules de persistance biparamétriques
induits par une filtration simpliciale ayant une complexité temporelle O(n?).

Enfin, nous tirons parti de notre résultat de décomposition en rectangles pour obte-
nir un algorithme vérifiant la décomposabilité en rectangles des modules de persistance
induits en homologie & partir de filtrations simpliciales biparamétriques avec au plus n
simplexes en temps O(n?*%) (théoréme . Une fois de plus, il s’agit d’'une améliora-
tion par rapport & une méthode vérifiant individuellement les indécomposables extraits
a laide d’un algorithme de décomposition des modules de persistance biparamétriques
généraux.

Dans la section 4.2} nous appliquons notre résultat de décomposition en rectangles aux
modules apparaissant en persistance des niveaux (Bendich et al., 2013). Tout d’abord,
nous exposons les constructions de la pyramide et de la bande de Mayer-Vietoris im-
pliquées dans la persistance des ensembles de niveaux telles qu’elles sont développées
par Bauer, Botnan et Fluhr (2021). Ensuite, nous prouvons notre résultat principal,
un théoréme de décomposition pour les modules de persistance indexés sur la bande
(théoréme . En corollaire, nous prouvons une généralisation du théoréme de la base
pyramidale de Bendich et al. (2013)).
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Partie [[T] : Invariants basés sur la caractéristique d’Euler

Dans la deuxiéme partie de cette thése, nous introduisons de nouveaux invariants pour
les modules de persistance multiparamétriques en utilisant des transformées intégrales
de fonctions constructibles.

Chapitre [5| : Calcul intégral d’Euler

Ce chapitre sert d’introduction a la partie [[I, Nous définissons nos notations et rappelons
quelques définitions et résultats de base sur le calcul d’Euler en suivant ’approche de
Schapira (1991)) (section . Nous présentons ensuite plusieurs sous-groupes spécifiques
du groupe des fonctions constructibles utilisés tout au long de la partie [lI| (section .
Parmi eux, le sous-groupe CF, ((R"™) des fonctions v-constructibles a support compact
— dont les strates sont ~y-localement fermées et relativement compactes —, qui inclut
les fonctions constructibles associées aux modules de persistance multiparamétriques a
support compact. Puis, nous définissons la transformée de Radon introduite par Scha-
pira (1995) et exposons le résultat d’inversion de Schapira (section . De plus, nous
prouvons que la transformée de Radon d’une fonction ~-constructible a support compact
est nulle pour les hyperplans affines dont la conormale se trouve dans le complémentaire
du polaire de . Cette caractérisation du support de la transformée sera essentielle pour
prouver la formule de reconstruction de la transformée d’Euler-Fourier dans le chapitre 6]
Nous terminons ce chapitre en expliquant comment associer une fonction constructible &
un module de persistance multiparamétrique gradué (section .

Chapitre [6] : Transformées hybrides de fonctions constructibles

Dans ce chapitre, nous introduisons la définition des transformées hybrides et menons
une étude théorique systématique de ces objets. Aprés avoir défini ces transformées,
nous en donnons deux nouveaux exemples importants : la transformée d’Euler-Laplace
et la transformée d’Euler-Fourier (section [6.1). Nous montrons comment la transformée
d’Euler-Laplace permet de définir une généralisation de la magnitude persistante (Gove
et Hepworth, 2021)) pour les faisceaux constructibles. En outre, nous fournissons plu-
sieurs exemples illustrés pour comparer ces transformées & leurs analogues classiques.
Nous terminons la section en présentant une méthode pour calculer numériquement nos
transformées sur les fonctions constructibles linéaires par morceaux, c’est-a-dire celles
dont les strates sont polyédrales, et nous fournissons une bibliothéque Python et C++
librement disponible sur GitHub. Nous prouvons ensuite que les transformées hybrides
sont continues lorsqu’elles sont restreintes & l’ensemble des fonctions constructibles li-
néaires par morceaux, et méme CP*! a I'intérieur de cones partitionnant leur domaine
lorsque leur noyau est CP (section . Puis, nous montrons que les transformées hy-
brides sont compatibles avec les opérations sur les fonctions constructibles telles que le
poussé en avant et 'opérateur de dualité (section . En particulier, nous montrons que
les transformées d’Euler-Laplace et d’Euler-Fourier envoient les produits de convolution
(constructible) sur des produits classiques sous certaines hypothéses. Enfin, nous éta-
blissons une formule de reconstruction pour la transformée d’Euler-Fourier des fonctions
~-constructibles a support compact (section . La preuve de ce dernier fait est la sui-
vante. En utilisant 'inverse de la transformée de Fourier classique, on peut récupérer, a
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partir de la connaissance de la transformée d’FEuler-Fourier, les valeurs de la transformée
de Radon sur I’ensemble des hyperplans affines dont la conormale est dans le cone ~.
Notre résultat sur le support de la transformée de Radon des fonctions y-constructibles
du chapitre [5| assure alors que la transformée de Radon est en fait entiérement recons-
truite, puisqu’elle est nulle pour tout autre hyperplan. Il ne reste donc plus qu’a inverser
la transformée de Radon en utilisant la formule de Schapira (1995).

Chapitre [7] : Formules d’indices

Dans ce chapitre, nous commencons par définir les fonctions constructibles des niveauz
et des sous-niveauxr associées & une application sous-analytique continue f : M — V
et & un come v C V, ou V est un espace vectoriel réel de dimension finie et M est une
variété analytique réelle (section . Il s’agit simplement des fonctions constructibles
associées aux faisceaux de cohomologie persistante introduits par Kashiwara et Scha-
pira (2018). Nous montrons que les transformées hybrides de fonctions constructibles
des (sous-)niveaux associées a des applications & valeurs vectorielles peuvent étre expri-
mées comme des transformées hybrides de fonctions constructibles des (sous-)niveaux
associées a des applications a valeurs réelles (corollaire . La preuve repose sur une
expression de la fonction constructible des sous-niveaux comme une convolution de la
fonction constructible des niveaux avec la fonction indicatrice de 'antipodal du céne ~.
Cette réduction conduit a la définition de transformées des sous-niveaux, qui est la forme
simplifiée que prennent les transformées hybrides dans le cadre de la persistance des
sous-niveaux.

Nous rappelons ensuite la définition d’intégrale d’Euler continue due & Bobrowski et
Borman (2012) qui étend le calcul intégral d’Euler a la classe plus large des fonctions
tames (section . Cette classe contient les fonctions continues sous-analytiques sur
les variétés analytiques réelles compactes. Nous prouvons ensuite nos principaux résul-
tats appelés formules d’indice qui expriment les transformées des sous-niveaux comme
des transformées intégrales d’Euler continues. Cela nous permet de prouver une formule
d’espérance pour la transformée d’Euler-Bessel des fonctions constructibles des niveaux
de champs aléatoires gaussiens en utilisant la formule de Bobrowski et Borman (ibid.)
calculant I'espérance des intégrales d’Euler continues de ces champs (section .

Chapitre [§] : Profils d’Euler

Dans les deux derniers chapitres de la thése, nous étudions les fonctions constructibles
induites par le calcul de la caractéristique d’Euler des espaces de filtrations simpliciales,
ainsi que leurs transformées hybrides. Dans le présent chapitre, nous fournissons plu-
sieurs garanties théoriques pour ces descripteurs. Le travail présenté ici a été réalisé en
collaboration avec Olympio Hacquard (2023). Nous commengons par introduire quelques
définitions nécessaires (section. Ensuite, nous prouvons des propriétés de stabilité qui
attestent la robustesse de nos outils par rapport au bruit dans les données (section .
Nous généralisons légérement les résultats existants sur les profils d’Euler et en déduisons
de nouveaux résultats pour les transformations hybrides dans un cadre unifié en utilisant
la distance de Wasserstein 1 signée introduite par Oudot et Scoccola (2021]).

Enfin, nous établissons la convergence ponctuelle des transformées hybrides asso-
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ciées aux filtrations simpliciales de nuages de points aléatoires, ainsi que leur normalité
asymptotique pour une fonction de filtration spécifique (section . Nous démontrons
également une loi des grands nombres dans le cas multiparamétrique. Ces résultats sta-
tistiques sont des conséquences faciles de résultats existants sur les diagrammes de persis-
tance. Cependant, le résultat dans le cadre multiparamétrique repose de maniére cruciale
sur notre résultat exprimant les transformées hybrides multiparamétriques comme des
transformées uniparamétrique dans le contexte de la persistance des sous-niveaux (Co-

rollary [7.10)).

Chapitre [9) : Etude expérimentale

Dans ce chapitre, nous montrons que les profils d’Euler et leurs transformées hybrides
sont des descripteurs topologiques informatifs et efficacement calculables des filtrations
simpliciales. Une fois encore, les résultats de ce chapitre sont le fruit d’un travail conjoint
avec Olympio Hacquard (2023). Tout d’abord, nous expliquons nos algorithmes et four-
nissons une bibliothéque Python disponible sur GitHub. De plus, nous fournissons des
heuristiques sur la fagon de choisir le noyau des transformées hybrides en pratique (sec-
tion . Deuxiémement, nous menons une étude empirique sur le type d’informations
topologiques et géométriques que les profils d’Euler et leurs transformées peuvent extraire
des données (section. Troisiémement, nous réalisons des expériences qualitatives ainsi
que quantitatives : une tache de régression supervisée et des taches de classification su-
pervisées et non supervisées sur des jeux de données de graphes et de nuages de points.
Nous démontrons que les profils d’Euler atteignent une précision de pointe dans les taches
de classification et de régression supervisées en conservant un cotlit de calcul trés faible
lorsqu’ils sont couplés & un classificateur de type forét aléatoire ou gradient boosting. En
outre, nous démontrons que les transformées hybrides permettent de compresser efficace-
ment les informations topologiques et géométriques des signaux présents dans les profils
d’Euler. Par conséquent, elles sont plus performantes que ces derniers descripteurs dans
les taches de classification non supervisées et dans les taches supervisées en présence d’un
classificateur linéaire. Nous exposons également un exemple de I'information extraite par
ces descripteurs sur un jeu de données réelles.
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Introduction (English version)

This thesis aims at contributing to the field of topological data analysis, and more precisely
to its branch called multi-parameter persistence. The main goal of topological data
analysis is to extract geometric and topological information from data to perform a wide
variety of tasks, such as regression, classification or visualization. In this introduction,
we explain what we mean by data and by geometric and topological information. Then
we explain what answers topological data analysis offers to this problem, and how our
contributions fit within this broad objective.

Framework. In topological data analysis, data is usually understood as some metric
space (X, d). For instance, the space X can be a finite subset of some Euclidean space
endowed with the induced metric, called a point cloud, or a graph endowed with the
shortest-path distance (Figure [5). In the case of a graph, topological information is
usually interpreted as the number of connected components or the number of cycles in
the graph. Going further, one can build a simplicial complex from a graph, such as the
cligue complex for instance, encoding higher-order connectivity properties in a topological
manner. In the case of a point cloud, the coarsest topological information is the number
of different meaningful clusters formed by these points. The field of data analysis devoted
to the extraction of such an information is called clustering. Once this is known, one
can go one step further: what do these clusters look like? Suppose for instance that
the point cloud lies near some unknown manifold in R™. Extracting topological and
geometric information on the point cloud then usually means unravelling the topology
and the geometry of the underlying manifold.

One-parameter persistence. The main tool of topological data analysis to un-
cover the underlying geometric and topological properties of a given dataset is persistent
homology. The idea is to construct a family F of topological spaces parametrized by a
totally ordered set (P, <), which is increasing with respect to inclusion. Such a fam-
ily F is called a one-parameter filtration; see Figure [6] for an illustration. The idea of
persistent homology is to keep track of homological features across inclusions as the in-
dexing parameter varies. Typically, one can consider the family of sublevel sets of a
function f : Y — P for some topological space Y. When X C R¢ is a point cloud, a
famous example called Cech filtration is given by the real-valued function f = d(X,-)
that associates to any point of Y = R? its distance to X.

Applying homology with coefficients in a field k to the filtration F yields an al-
gebraic object Hy(F) called a (one-parameter) persistence module, that is, a functor
from (P, <) to the category Veck of k-vector spaces. In plain words, a persistence mod-

29
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Figure 5: Examples of metric spaces (X, d). Figurerepresents the graph of gene
expression across mouse tissues from Su et al. according to the gene corre-
lation network analysis approach developed in Freeman et al. (2022)). Figure
represents a point cloud from De Deuge et al. created by a LIDAR scan of

a tree.

(a) d(X,-) < 0.4 (b) d(X,") < 1.5 (c) d(X,) < 2.1

Figure 6: Cech filtration of a point cloud X C R2?. The sublevel sets of the
function d(X,-) are drawn in light blue.

ule M : (P, <) — Veck is a collection of vector spaces M(p) for each p € P, along with
linear maps M (p) — M (q) for each pair of comparable elements p < ¢ in P. Moreover,
these linear maps must satisfy certain compatibility conditions. Under some tameness
assumption, results of Gabriel from quiver representation theory ensure that one
can make a coherent choice of basis for each vector space of Hy(F), in the sense that
each basis element appears in these vector spaces at some a € P called its birth, and
disappears at some b > a called its death. The interval [a,b) is called the bar of the cor-
responding basis element. The module Hy(F) is then entirely described by the multiset
of bars [a, b) for each homological feature appearing in the filtration (see Figure @ More
generally, the isomorphism classes of persistence modules with finite-dimensional vector
spaces are in one-to-one correspondence with multisets of intervals in P, called persis-
tence barcodes (Botnan and Crawley-Boevey, ; Crawley-Boevey, . These ideas
find their roots in the early nineties with the work of Barannikov and have been
intensively developed since the seminal work of Edelsbrunner, Letscher, and Zomorodian

(2000). See Edelsbrunner and Harer (2022) and Oudot (2015)) for an introduction.
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Figure 7: Barcode of the Cech filtration built on the point cloud X presented
in Figure[6] Red bars correspond to the barcode of Hy(F) and blue bars to the
barcode of Hy(F). The large blue bar records the information that X lies close to
a circle.

One remarkable property of these persistence barcodes is that they are robust with
respect to (unavoidable) noise in the data. Specifically, the space of persistence barcodes
can be equipped with the so-called bottleneck distance (Cohen-Steiner, Edelsbrunner, and
Harer, |2007) and p- Wasserstein distances (Cohen-Steiner, Edelsbrunner, Harer, and Mi-
leyko, 2010)) and both metrics satisfy stability properties with respect to some metric on
the data (Chazal, De Silva, et al., 2016; Cohen-Steiner, Edelsbrunner, and Harer, 2007;
Cohen-Steiner, Edelsbrunner, Harer, and Mileyko, [2010). The bottleneck distance satis-
fies one with respect to the Lo, metric between functions f : Y — R whose sublevel-sets
are considered. This result specifies the type of noise with respect to which persistence
barcodes are stable (a sup norm), and is probably one of the most important results of
persistence theory. In particular, it makes it a relevant choice for deriving consistent
estimators for statistical analysis; see for instance (Bobrowski, Mukherjee, and Taylor,
2017; Chazal, Glisse, et al., [2015)).

As a matter of fact, persistence barcodes have been successfully used in statistics and
have found a wide range of scientific applications, such as in health sciences (Aukerman
et al., [2021; Fernandez and Mateos, 2022; Rieck et al., 2020), in biology (Ichinomiya,
Obayashi, and Hiraoka, [2020; Rabadan and Blumberg, 2019) or in material sciences (Hi-
raoka, Nakamura, et al., 2016; Lee et al., 2017). Furthermore, these tools have also
found many applications in other parts of mathematics, such as symplectic geometry;
see Polterovich, Rosen, et al. (2020) and Polterovich and Shelukhin (2016)).

Multi-parameter persistence. In many practical scenarios, it is relevant to build
multi-parameter filtrations of topological spaces instead of one-parameter ones. For in-
stance, the filtration F can be indexed by P = Z™ or P = R™ endowed with the
coordinatewise order. One way to obtain such a filtration is to consider sublevel sets
of vector-valued functions f : Y — R™. As a consequence, multi-parameter persistence
allows one to cope with outliers in a point cloud X C R¢ by filtering the space with
respect to f = (f1, f2) : R — R? where f; is the distance to X and f» is some esti-
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mated local density; see Vipond et al. (2021) for instance. Another example comes from
digital images of breast-cancer tissue samples equipped with pixel intensities of both
immune and cancer cells (Carriére and Blumberg, 2020)). Applying homology to such
a multi-parameter filtration now yields an object called a multi-parameter persistence
module M : (P, <) — Veck. The theory of multi-parameter persistence originated in the
form of size homotopy groups in Frosini and Mulazzani (1999) and has first been studied
in the homological context by Carlsson and Zomorodian (2009). Following the same line
of thought as in the one-parameter case, it is natural to wonder whether isomorphism
classes of such objects can be parametrized by multisets of simple geometric regions of
the parameter space akin to bars of persistence barcodes.

Born to be wild. Quiver representation theory leaves no hope of answering this
question positively. Already when the poset P of parameters is [1,2] x [1,6] endowed
with the coordinatewise order, the situation is as complex as it could be. Namely, this
poset is of wild representation type. Hence, a full classification of isomorphism classes
of persistence modules indexed over this poset would imply such a classification for
persistence modules indexed over any other finite poset. It is thus considered a hopeless
task to build a complete—characterizing the isomorphism type of the persistent module—
descriptor of multi-parameter persistence modules that would be both computable and
easy to work with in practice. We refer to Botnan and Lesnick (2022, Section 8) for more
details on the representation theory of multi-parameter persistence.

Challenge. One of the main difficulties of multi-parameter persistence is to extract
rich and stable information from persistence modules despite the wildness of the parametriz-
ing poset. One approach to do so is to identify subclasses of multi-parameter persistence
modules for which an analogue of the barcode does exist. Another approach is to build
stable and informative, albeit incomplete, invariants of persistence modules. The work
conducted in this Ph.D. thesis contributes to both of these approaches.

I. Direct-sum decompositions of persistence modules

In this section, we give an overview of the decomposition theory of multi-parameter
persistence modules. Our goal is not to be exhaustive but to put our contributions into
context. We refer to Botnan and Lesnick (ibid.) for a recent picture.

Decomposition theorems. Work by Botnan and Crawley-Boevey (2020]) shows
that pointwise finite-dimensional multi-parameter persistence modules—i.e., valued in
the category of finite-dimensional k-vector spaces—always decompose as direct sums
of indecomposable modules. Moreover, these indecomposables have local endomorphism
ring thus Azumaya’s theorem (1950)) ensures that this decomposition is essentially unique.

In the one-parameter setting, these indecomposables can only be interval modules,
which by definition are indicator representations of intervals of P; see Crawley-Boevey
(2015). As a consequence, they are fully characterized by their support, that is, the set
of parameters p € P such that the vector space M(p) is non-trivial. An isomorphism
class of one-parameter persistence modules is thus entirely described by the multiset of
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intervals appearing as supports of indecomposables in the direct-sum decomposition of
any representative of the class.

The situation is more complex in the two-parameter setting, as general indecompos-
ables are not fully characterized by their support, as shown by the following example of
two indecomposable modules with same support; see (|1.4]):

k (i) k? k
o[ <s>[ 1[ ;
k

Yet, one can still define interval modules as indicator representations of intervals of P,

(10)

where by “interval” we mean any connected convex subset of P in the sense of order
theory (Figure . The collection of supports of the interval summands appearing in a
direct-sum decomposition of a persistence module can then be used as a descriptor of
this module. This descriptor is purely geometric by nature, therefore easy to interpret
and efficient to encode on a computer.

I S—

P =R?

Figure 8: An interval I of the poset P = R

In practice, one would like to be able to determine whether a given persistence module
admits interval summands in its direct-sum decomposition, and if so, whether it admits
only such summands—in which case it is called interval-decomposable. The straight-
forward approach for this consists in decomposing the module and then checking its
summands one by one. In the first part of this Ph.D. thesis, we advocate a different
approach.

Local characterizations. The method consists in checking local conditions, involv-
ing only restrictions of persistence modules to certain collections of test subsets of P.
Provided the considered subsets are small enough, the restrictions will have a simple
structure, potentially leading to algorithmic improvements and simplified mathematical
analyses.

These local conditions appear for instance in level-set persistence (Bendich et al.,
2013; Carlsson, De Silva, and D. Morozov, 2009), where one constructs invariants for
real-valued functions f on a topological space by looking at the pre-images through f
of bounded open intervals. Once properly indexed, the homology groups of these pre-
images arrange themselves into a two-parameter persistence module indexed over P = R?
that turns out to be interval-decomposable, with summands supported on a special class
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of intervals of R? called blocks—specifically: upper-right or lower-left quadrants, and
horizontal or vertical infinite bands. Decomposability into block summands in this setting
is a straightforward consequence of the Mayer-Vietoris theorem, once the following local
characterization has been established: a two-parameter persistence module decomposes
exclusively into block summands if, and only if, all its restrictions to squares {1, ]} x
{x9, 25} C R? do. This fact was proven in Cochoy and Oudot (2020)) then in Botnan
and Crawley-Boevey (2020), and at the time, it provided a cleaner, and more general
theory for level-set persistence than the one established previously, which required an
extra “Morse-type” condition on the real-valued function f under consideration (Bendich
et al., |2013]).

Contributions. In the first part of this Ph.D. thesis, we further generalize the two-
parameter theory by enlarging the class of intervals of interest to include all the axis-
aligned rectangles in R2. The interval module supported on rectangles are called rectangle
modules, and an interval-decomposable module whose summands are exclusively rectan-
gle modules is called rectangle-decomposable. We prove that a two-parameter persistence
module is rectangle-decomposable if, and only if, all its restrictions to squares are. We
also prove that rectangle-decomposable modules are, in some precise sense, the largest
subclass of interval-decomposable modules that can be characterized locally, at least as
far as restrictions to squares are concerned. These results are joint work with Mag-
nus Bakke Botnan and Steve Oudot. They were first obtained on binary products of
totally ordered sets assumed to be finite in Botnan, Lebovici, and Oudot (2022) and
then extended to those satisfying some mild assumptions (including P = R?) in Botnan,
Lebovici, and Oudot (2023)).

Then, we present two applications of these results to topological data analysis. First,
we provide an algorithm to check whether a module induced in homology by a finite
two-parameter filtration is rectangle-decomposable, and to compute the direct-sum de-
composition if it exists, with a better complexity than state-of-the-art decomposition
methods for general two-parameter persistence modules. Our algorithms are backed up
by our local characterization: it suffices to check rectangle-decomposability on restric-
tions of a persistence module M to squares, and this condition can be rephrased in terms
of algebraic conditions on images and kernels of linear maps M (p) — M (q) for p < ¢
in P. The algorithm computing the direct-sum decomposition is based on an inclusion-
exclusion formula for a generalization of the rank invariant for interval-decomposable
modules (Kim and Mémoli, 2021, Proposition 7.13). We provide an explicit statement
of this formula in our context together with a simple and direct proof.

Second, we show how rectangle-decomposable modules arise from real-valued func-
tions on a topological space. More precisely, we prove a “continuous”’ version of the
so-called pyramid basis theorem of Bendich et al. (2013) from level-sets persistence. Here
continuous refers to the fact that the persistence modules need not be completely de-
termined by the restriction to a finite set of indices. In fact our results generalize to
persistence modules indexed over the strip recently introduced in Bauer, Botnan, and
Fluhr (2021)).
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II. Invariants of persistence modules

In this section, we give a concise and non-exhaustive overview of the existing invariants
of multi-parameter persistence modules as a means of contextualizing our contributions.

By invariant, we mean a map from the set of isomorphism classes of persistence
modules to a (pseudo-)metric space. Many invariants can be found in the vast litera-
ture of quiver representation theory, and plenty more have now been introduced by the
topological data analysis community.

What is a good invariant? With the applied context in mind, it is natural to ask
what the characteristics of a good invariant of persistence modules are. It should beﬁ

(i) Informative, as much as possible, if not complete. For instance, distance between
invariants should be great when topological properties of the data differ.

(ii) Computable, as efficiently as possible.

(iii) Stable, that is, Lipschitz with respect to some metric on the data. Keeping per-
sistence barcodes in mind, the metric on the data could be an L, metric between
the functions whose sublevel sets are considered, or the Hausdorff metric on point
clouds. As it was the case for persistence barcodes, this property ensures that the
invariant is robust with respect to certain type of noise in the data, and can be
used to derive consistent estimators in statistics.

(iv) Interpretable. This property is different from and can be difficult to obtain
depending on the invariant considered.

Moreover, many machine learning techniques, such as support vector machines, require
an inner product structure. It would thus be an appreciable property that the (pseudo-
Jmetric defined on the space of invariant be bi-Lipschitz equivalent to a metric induced
by an inner product in some Hilbert space.

Is the persistence barcode a good invariant? We can study the properties of
the one-parameter persistence barcodes from the perspective of the above list:

(i) As already mentioned, it is complete, hence |(1)|is fully satisfied.

(ii) Ome of the advantages of homology groups over, e.g., homotopy groups, is their
low computational cost. If the parametrizing poset is a finite totally ordered set
and if the spaces of the filtration are simplicial complexes, computing a persistence
barcode boils down to a matrix reduction procedure. As a consequence, it takes
polynomial time in the number of simplices appearing in the filtration, with poly-
nomial degree the exponent for matrix multiplication (Milosavljevi¢, D. Morozov,
and Skraba, 2011)).

3Note that a similar list appears in Adams et al. (2017) in the specific case of finite-dimensional
vectorizations (i.e., vector valued invariants) of one-parameter persistence modules.
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(iii) As already mentioned, the bottleneck and p-Wasserstein distances on persistence
barcodes satisfy stability properties (Chazal, De Silva, et al., 2016; Cohen-Steiner,
Edelsbrunner, and Harer, 2007, Cohen-Steiner, Edelsbrunner, Harer, and Mileyko,
2010).

(iv) Persistence barcodes are interpretable. Long bars in the barcode represent persis-
tent homological features in the data. This provides indications on the intrinsic
dimension of the data and offer insights into its topological structure. For instance,
toroidal structure in grid cells activity has been detected using persistence barcodes
in Gardner et al. (2022).

Unfortunately, the space of persistence barcodes equipped with the bottleneck distance
cannot be isometrically embedded into a Hilbert space (Bubenik and A. Wagner, 2020;
Carriére and Bauer, 2019). Moreover, point should be mitigated by two remarks.
First, homological information collected on the data may remain unclear to interpret:
what do H), generators tell us on the data for p > 37 What does torsion in these
homology groups tell us? Second, if small bars have historically been considered as
noise, recent work shows that they collectively contain rich information on the geometric
structure of the data. For instance, small bars detect curvature (Bubenik, Hull, et al.,
2020), or distribution of points; see for instance Obayashi, Hiraoka, and Kimura (2018)
and Chapter [9] of the present thesis. However, it remains unclear how to read these
properties from a given persistence barcode.

Multi-parameter setting. The rank invariant of a persistence module M indexed
over P has been introduced in Carlsson and Zomorodian (2009) and records the rank
of linear maps M(p) — M(q) for all p < ¢ in P. This invariant is complete in the
one-parameter case; see Carlsson and Zomorodian (ibid., Theorem 12) for the discrete
case and Chazal, De Silva, et al. (2016, Propositions 2.3 and 2.18) for a general state-
ment. However, it is not in the multi-parameter setting; see for a counter-example
proving this latter fact. This invariant is stable with respect to the interleaving distance
on persistence modules. This is proven in a note by Landi (2014)) for an equivalent in-
variant, the so-called fibered barcode. This latter invariant is defined as the collection of
one-parameter barcodes of the restrictions of a given module to affine lines with posi-
tive slopes. The main limitation of this invariant is its computational cost. The time
complexity of computing the fibered barcode is the product of the number of lines times
the computational cost of a one-parameter persistence barcode. This is a heavy price to
pay in practice. On the other hand, this invariant benefits from similar interpretability
properties to the persistence barcode. The fibered barcode has recently been generalized
to the notion of projected barcodes in Berkouk and Petit (2022). This stable invariant is
more flexible, but still heavy to compute.

We do not discuss other invariants of persistence modules, such as persistence images
and landscapes (Adams et al., 2017; Bubenik et al., 2015; Carriére and Blumberg, 2020;
Vipond, [2020). These invariants have been introduced to map persistence barcodes into
Hilbert spaces and both enjoy interesting properties in view of the above list. Again, one
of their main limitation is their computational cost. This will become clear in Chapter 9]
when comparing these invariants to Euler characteristic based invariants.
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Euler characteristic based invariants. Considering the pointwise Euler char-
acteristic of a one-parameter family of simplicial complexes gives rise to a functional
multi-scale descriptor called the Euler characteristic curve xr : P — Z. Of course, it
generalizes readily to the multi-parameter setting, becoming the so-called Fuler char-
acteristic surfaces (Beltramo, Skraba, et al., 2022)) in the case of two parameters and
profiles (Dlotko and Gurnari, 2022) in the case of three and more parameters. A classi-
cal formula ensures that computing the Euler characteristic of a simplicial complex only
requires to count simplices instead of computing homology groups. Similarly, when the
filtration F is the sublevel-sets filtration associated to a Morse function f:Y — R, the
Euler characteristic can be expressed as a signed sum over the critical values of f. In
both cases, computing the Euler characteristic bypasses the computation of homology
and the construction of persistence modules altogether. Regarding the properties of such
invariants, the following picture can be drawn:

(i) Euler characteristic based descriptors are not as coarse as they may appear, as
proven by their good predictive power (Amézquita et al., 2022 Jiang, Kurtek, and
Needham, 2020; Smith and Zavala, 2021]).

(ii) Due to their simplicity, Euler characteristic profiles can be computed in linear
time in the total number of simplices in a simplicial filtration F instead of matrix
multiplication time for persistence barcodes. Moreover, the locality of the Euler
characteristic can be exploited to design highly efficient algorithms computing
Euler curves, as in Heiss and H. Wagner (2017) and Wang, H. Wagner, and C.
Chen (2022).

(i) Euler characteristic profiles are integer-valued maps on the Euclidean space. As
such, they can be endowed with classical L, metrics. In order to transfer existing
stability results for the (fibered) barcodes to Euler characteristic profiles, one may
wonder what Lipschitz inequalities hold between metrics on graded persistence
modules and metrics on the associated Euler profiles. Such inequalities are known
for the L distance on Euler characteristic curves and the 1-Wasserstein metric
on barcodes; see Curry, Mukherjee, and Turner (2022) and Dtotko and Gurnari
(2022). However, it has recently been shown that there does not exist a non-trivial
distance on Euler characteristic curves that is bounded above by the Bottleneck
distance on persistence barcodes (Berkouk, 2022, Proposition 4.25).

(iv) Several authors have worked towards an interpretation of Euler characteristic
curves and surfaces (Beltramo, Skraba, et al., |[2022; Smith and Zavala, 2021)) and
more generally towards the construction of interpretable tools from Euler char-
acteristic techniques (Tang et al., |2022). However, the interpretability of these
descriptors is still to be investigated. Though tightly connected to persistent ho-
mology, the signal is very different to interpret. Indeed, the classical dichotomy
signal /noise used for persistence barcodes does not hold: a succession of short-lived
homological classes or a single long-lived homological class can both generate the
same Fuler curve.
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Euler calculus. Euler characteristic based invariants of multi-parameter persistence
modules are naturally formulated in the language of Fuler calculus. This integral calculus
with respect to the Euler characteristic has originally been developed by Viro (1988) and
by Schapira (1989, 1991). The measurable functions of this calculus are the so-called
constructible functions, that is, piecewise constant functions on a partition of the space
into nice geometric subsets—usually definable in some fixed o-minimal structure.

In Schapira (1989, 1991), Euler calculus is introduced in relation to sheaf operations,
the link between constructible functions and constructible sheaves being specified by
the function-sheaf correspondence (Kashiwara, (1985, Kashiwara and Schapira, 1990).
These tools are thus part of the sheaf-theoretic approach to multi-parameter persistence
initiated by Curry (2014)) and Kashiwara and Schapira (2018)).

Euler calculus has led to important advances in topological data analysis; we refer to
Curry, Ghrist, and Robinson (2012) for a survey. Main fruits come from the introduc-
tion of topological integral transforms (Baryshnikov, Ghrist, and Lipsky, [2011} Curry,
Mukherjee, and Turner, [2022; Ghrist, Levanger, and Mai, 2018; Turner, Mukherjee, and
Boyer, 2014a)). The main one is the Radon transform introduced by Schapira (1995).
The Radon transform of the indicator function 1z of a definable subset Z C R™ records
the Euler characteristic of the intersection Z N H for each affine hyperplane H C R™.
It is then extended by linearity to all constructible functions. Schapira’s inversion re-
sult (ibid.) ensures that this transform is invertible, up to a constant when m is even. It
is shown in Curry, Mukherjee, and Turner (2022)) and Ghrist, Levanger, and Mai (2018)
that this implies a positive answer to an important inverse question: are two definable
subsets of R™ with same persistent homology in all degrees and for all height filtrations
equal? These techniques found applications in shape analysis, for instance in the pre-
diction of clinical outcomes in brain cancer (Crawford et al., [2020), in the analysis of
barley seeds (Amézquita et al., 2022)) or in the recovery of morphological variations across
genera of primates (Tang et al., 2022]).

The most problematic aspect of Euler calculus for applications is its instability under
numerical approximations: errors can (and probably will) be made when calculating the
integral of a constructible function, no matter how finely its domain is sampled (Curry,
Ghrist, and Robinson, 2012, Section 16). In Crawford et al. (2020]), topological integral
transforms are smoothed to produce better behaved shape descriptors in practice. These
smoothings are closely related to the Bessel and Fourier transforms introduced by Ghrist
and Robinson (2011), as well as the Fuler characteristic of barcodes introduced by Bo-
browski and Borman (2012). For now, no theoretical result supports these experimental
results.

Contributions. In the second part of this Ph.D. thesis, we are concerned with Euler
characteristic based invariants in topological data analysis.

We introduce a general definition of hybrid transforms for constructible functions
generalizing the aforementioned smoothings of topological transforms. These are integral
transforms combining Lebesgue integration and Euler calculus. Lebesgue integration
gives access to well-studied kernels and to regularity results, while Euler calculus conveys
topological information and allows for compatibility with operations on constructible
functions. We conduct a systematic study of such transforms and introduce two new
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ones: the Euler-Fourier and Euler-Laplace transforms. We show that the first has a left
inverse and that the second provides a satisfactory generalization of persistent magnitude
(Gove and Hepworth, 2021) to constructible sheaves, in particular to multi-parameter
persistence modules. Finally, we prove index-theoretic formulae for a wide class of hybrid
transforms in the context of (sub)level-sets multi-parameter persistence, generalizing
existing ones (Bobrowski and Borman, 2012; Ghrist and Robinson, 2011; Govc and
Hepworth, 2021)). In particular, this yields expectation formulae for random Gaussian
filtrations.

In a joint work with Olympio Hacquard (2023]), we show that Euler characteristic
profiles and their hybrid transforms are informative and efficiently computable topological
descriptors of data. To begin with, we prove stability results for these descriptors as
well as asymptotic guarantees in random settings. Then, we demonstrate that Euler
characteristic profiles reach state-of-the-art performance at a minimal computational
cost when coupled with a powerful classifier such as a random forest. However, due to
their simplicity, these descriptors do not manage to linearly separate the different classes
or be competitive on unsupervised tasks. Inspired by signal analysis, we cope with these
limitations by studying hybrid transforms of Euler characteristic profiles. We show that,
as expected, hybrid transforms show remarkable performances in linear classification
tasks and unsupervised contexts. On the qualitative side, we provide numerous heuristics
on the topological and geometric information captured by Euler profiles and their hybrid
transforms.

Detailed outline and summary of contributions

Here, we present our contributions in more details and expose the structure of the thesis.
We refer to the following chapters for the precise definitions of our terms.

Part [I Direct-sum decompositions of persistence modules|

In the first part of this thesis, we study local conditions for decomposability of two-
parameter persistence modules. All the results of this part are based on joint work
with Magnus Bakke Botnan and Steve Oudot (2022, |2023)). In this summary, we always
assume that persistence modules are pointwise finite-dimensional.

Chapter [1} [Local characterizations for decomposability]

This chapter serves as an introduction to the first part of the thesis. We start by defin-
ing multi-parameter persistence modules, interval-decompositions and other necessary
notions (Section . Then we give a precise statement of our main question: existence
of local characterizations of interval-decomposability (Section . After reviewing ex-
isting answers to this question (Section , we state our contributions (Section [1.4]).

Chapter [2; [Rectangle-decomposability is locall

This chapter is devoted to the proof of the main result of Part [[}
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Theorem (Theorem. Let X andY be two totally ordered sets such that any interval
of X orY admits a countable initial subset. Then, any persistence module M over X XY
is rectangle-decomposable if and only if the restriction of M to any square {x1 < x}} X
{zo < 24} C X XY is rectangle-decomposable.

We start by providing a short proof of this result when X and Y are finite follow-
ing Botnan, Lebovici, and Oudot (2022) (Section [2.I). In contrast, the proof of the
general case uses the finite case and spans more than twenty pages. It follows Botnan,
Lebovici, and Oudot (2023)) and is developed in Sections through The proof in
both cases relies on a key algebraic formulation of rectangle-decomposability of restric-
tions to 2 x 2 grids (Definition [2.1)).

Since it is straightforward that rectangle-decomposable modules restrict to rectangle-
decomposable modules, we are left with proving the converse statement. For that, the
proof in the finite case uses a simple rank-based approach. In the general case, we
follow the same approach as in Cochoy and Oudot (2020), using the so-called functorial
filtrations (Section , with some major adjustments at key steps due to our weaker
local condition. Summarized, we start by defining, for each rectangle R € X x Y, a
submodule Mpr of M called the rectangle filtrate of M associated to R (Section .
This submodule is constructed such that Mp; contains precisely the elements of M;
whose “lifespan” is exactly R. In particular, Mg is isomorphic to a finite direct sum
of copies of the rectangle module kr. We then prove that the sum of these filtrates is
an internal direct sum in M (Section [2.4). The proof concludes by showing that the
resulting internal direct sum generates M (Section .

Chapter [3; [Non-existence of other local characterizations]

In this chapter, we provide negative answers to our main question. The results from the
previous chapter ensure that rectangle-decomposability of a given persistence module
can be checked locally by considering restrictions to commutative squares. A natural
next question to consider is then: to what extent can interval-decomposability be locally
determined when allowing for intervals of more general shape than rectangles?

We provide two negative results, which have first been proven in the finite case
in Botnan, Lebovici, and Oudot (2022)) and then generalized in Botnan, Lebovici, and
Oudot (2023). First, we show that interval-decomposability itself cannot be characterized
locally, even when testing on arbitrary strict subgrids:

Theorem (Theorem [.1). Suppose X and Y are totally ordered sets with |X| > 3
and Y] > 3, and let 2 < m < min(|X|,|Y|) be an integer. Then, there exists a per-
sistence module M over X x Y that is not interval-decomposable, but for which M|q is
interval-decomposable for all grids @ of side-lengths at most m.

In light of the above results, it is natural to wonder if there is a class of intervals more
general than rectangles for which a local characterization over 2 x 2 grids is possible. It
turns out not to be the case, as shown by Theorem [3.5]
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Chapter [4: [Applications to topological data analysis|

In Section [I] we provide algorithms to check whether a persistence module deriving
from a simplicial two-parameter filtration is rectangle-decomposable, and to compute its
direct-sum decomposition when it exists.

As a first step, we prove that the rank invariant is complete on the class of two-
parameter rectangle-decomposable modules (Theorem {4.4). To this end, we generalize
the inclusion-exclusion formula expressing the persistence barcode in terms of the rank
invariant (Cohen-Steiner, Edelsbrunner, and Harer, 2007) to the two-parameter setting.
Note that our result also follows indirectly from a similar formula for a generalization of
the rank invariant (Kim and Mémoli, 2021), but that we provide an explicit statement
together with a simple and direct proof.

Then we show that the rank invariant of a module produced by a simplicial two-
parameter filtration with a total of n simplices can be computed in O(n*) time (Theo-
rem . This result in itself is not new, however, combined with our inclusion-exclusion
formula, it yields a O(n?*) time algorithm for computing the barcode of a two-parameter
persistence module that is known to be rectangle-decomposable (Corollary . At
the time, our result was an improvement over merely applying some state-of-the-art al-
gorithm for computing decompositions of general two-parameter persistence modules,
which would take O(n?**1) time where 2 < w < 2.373 is the exponent for matrix mul-
tiplication (Dey and Xin, [2022). Recently, Clause et al. (2023) improved our result,
proving that the rank invariant of two-parameter persistence modules induced by sim-
plicial filtration can be computed in O(n3) time.

2+w)_time al-

Finally, we leverage our rectangle-decomposition result to derive an O(n
gorithm for checking the rectangle-decomposability of persistence modules induced in ho-
mology from simplicial two-parameter filtrations with at most n simplices (Theorem [4.7)).
Once again, this is an improvement over applying some state-of-the-art algorithm for com-
puting decompositions of general two-parameter persistence modules and then checking

the summands one by one.

In Section we apply our rectangle-decomposition result to level-sets persistence.
First, we expose the constructions involved in level-sets persistence as developed in Bauer,
Botnan, and Fluhr (2021). Then we prove our main result, which is a decomposition
theorem for persistence modules indexed over the strip (Theorem. As we previously
mentioned, a “continuous” version of the pyramid basis theorem introduced by Bendich
et al. (2013)) is obtained as a corollary.

Part [I: [Euler characteristic based invariants

In the second part of this thesis, we introduce new invariants of multi-parameter persis-
tence modules using integral transforms of constructible functions.

Chapter [5: [Euler calculus|

This chapter serves as an introduction to Part [[I. We set our notations and recall some
basic definitions and results on Euler calculus following the approach of Schapira (1991])



42 INTRODUCTION

(Section . We present several specific subgroups of the group of constructible func-
tions used all along Part [[I| (Section . Among them, the subgroup CF, .(R™) of
compactly supported ~y-constructible functions—whose strata are 7y-locally closed and
relatively compact—, which includes constructible functions associated to compactly
supported multi-parameter persistence modules. Then, we define the Radon transform
introduced by Schapira (1995)) and expose Schapira’s inversion result (Section. More-
over, we prove that the Radon transform of a compactly supported ~-constructible func-
tion is zero for affine hyperplanes whose defining conormal lies in the complement of the
polar of . This characterization of the support of the transform will be key to prove the
reconstruction formula for the Euler-Fourier transform in Chapter 6} We end the chap-
ter by explaining how to associate a constructible function to a graded multi-parameter
persistence module (Section .

Chapter [6: [Hybrid transforms of constructible functions|

In this chapter, we introduce the general definition of hybrid transforms and conduct a
systematic study of their theoretical properties. First, we give the general definition of
these transforms as well as two important examples: the Fuler-Laplace transform and
the Euler-Fourier transform (Section . We show how the Euler-Laplace transform
allows us to define a generalization of the persistent magnitude (Gove and Hepworth,
2021) for constructible sheaves. In addition, we provide several illustrated examples to
compare these two transforms to their classical analogues. We end the section by pre-
senting a method to numerically compute our transforms on PL-constructible functions,
i.e., those whose defining strata are polyhedral, and we provide a Python and C++ library
freely available on GitHub. Second, we prove that hybrid transforms are continuous
when restricted to the set of PL-constructible functions, and even CP*! on the interior
of cones partitioning their domain when their kernel is C? (Section [6.2]). Third, we show
that hybrid transforms are compatible with operations on constructible functions such
as pushforwards and duality (Section . In particular, we show that the Euler-Laplace
and Euler-Fourier transforms turn (constructible) convolutions into products under mild
assumptions. Finally, we establish a reconstruction formula for the Euler-Fourier trans-
form of compactly supported 7-constructible functions (Section . The proof of this
latter fact goes as follows. Using the inverse of the classical Fourier transform, one can
recover, from the knowledge of the Euler-Fourier transform, the values of the Radon
transform on the set of affine hyperplanes whose defining conormal is in the cone . Our
result on the support of the Radon transform of y-constructible functions from Chapter
then ensures that the Radon transform is in fact fully recovered, as it is zero for any other
hyperplane. All that remains to do is to invert the Radon transform using Schapira’s
formula (1995).

Chapter [7; [ndex-theoretic formulae|

In this chapter, we begin by defining the so-called sublevel-sets and level-sets constructible
functions associated to a continuous subanalytic map f : M — V and a cone v C V,
where V is a finite-dimensional real vector space and M is a real analytic manifold
(Section . These are simply the constructible functions associated to persistent co-
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homology sheaves introduced by Kashiwara and Schapira (2018). We show that hybrid
transforms of (sub)level-sets constructible functions associated to vector-valued maps can
be expressed as hybrid transforms of (sub)level-sets constructible functions associated to
real-valued maps (Corollary . The proof relies on an expression of the sublevel-
sets constructible function as a convolution of the level-sets constructible function with
the indicator function of the antipodal of 7. This reduction leads to the definition of
sublevel-sets transforms, which is a simplified form that hybrid transforms take in the
case of multi-parameter sublevel-sets persistence.

Next, we recall the definition of continuous Fuler integral from Bobrowski and Bor-
man (2012) that extends Euler calculus to the wider class of tame functions (Section|7.2).
This class contains continuous subanalytic functions on compact real analytic manifolds.
Then we prove our main results called index-theoretic formulae that express (sub)level-
sets transforms as continuous Euler integral transforms. It allows us to prove an ex-
pectation formula for the Euler-Bessel transform of level-sets constructible functions of
Gaussian random fields using Bobrowski and Borman’s formula (ibid.) for the expectation
of continuous Euler integrals (Section [7.3).

Chapter [8: [Euler characteristic profiles and their transforms

In the last two chapters of the thesis, we study constructible functions associated to
persistent homology of simplicial filtrations as well as their hybrid transforms. In this
chapter, we provide several theoretical guarantees for these descriptors. The work pre-
sented in this chapter is a collaboration with Olympio Hacquard (2023). We begin by
introducing some necessary definitions (Section . Then, we prove stability properties
that clarify the robustness of our tools with respect to perturbations (Section . We
slightly generalize existing results on Euler profiles and derive new results for hybrid
transforms in a unified framework using the signed 1-Wasserstein distance introduced
in Oudot and Scoccola (2021)).

Finally, we establish the pointwise convergence of hybrid transforms associated to
simplicial filtrations of random point clouds, as well as their asymptotic normality for
a specific filtration function (Section . We also establish a law of large numbers
in a multi-parameter set-up. These statistical results are easy consequences of existing
results on persistence diagrams. However, it is worth noticing that the result in the
multi-parameter setting relies crucially on our result of the previous chapter expressing
multi-parameter hybrid transforms as one-parameter ones in the context of sublevel-sets

persistence (Corollary [7.10]).

Chapter [9; [Experimental study]

In this chapter, we show that Euler characteristic profiles and their hybrid transforms are
informative and efficiently computable topological descriptors of filtered simplicial com-
plexes. Again, the results of this chapter are joint work with Olympio Hacquard (2023).
First, we explain our algorithms and provide heuristics on how to choose the kernel of
hybrid transforms (Section . We provide a Python library available on GitHub to
compute our descriptors. Second, we conduct an empirical study of the type of topolog-
ical and geometric information that Euler profiles and their transforms can extract from
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the data (Section . Third, we perform qualitative and quantitative experiments: a
supervised regression task and supervised and unsupervised classification tasks on graph
and point cloud data. We demonstrate that Euler profiles achieve state-of-the-art ac-
curacy in supervised classification and regression tasks when coupled with a random
forest or a gradient boosting classifier at a very low computational cost. Moreover, we
demonstrate that hybrid transforms provide a way to efficiently compress topological and
geometric information. As a consequence, they outperform Euler profiles in unsupervised
classification tasks and in supervised tasks when using a linear classifier. An example of
their ability to capture fine-grained information on a real-world data set is provided.
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Chapter 1

Local characterizations for
decomposability

Based on joint work with Magnus Bakke Botnan and Steve Oudot.

In the first part of this thesis, we investigate the existence of sufficient local conditions
under which a persistence module M indexed over a poset (P, <) decomposes as di-
rect sums of indecomposables from a given class. By local conditions, we mean that
decomposability of M must be entirely determined by the decomposability of its restric-
tions to a collection of test subsets of P. In our work, the indexing poset is the product
P = X xY, of two totally ordered sets X and Y and test subsets are the products X’ x Y’
of two finite subsets X’ C X and Y/ C Y. Our indecomposables of interest belong to the
so-called interval modules, which by definition are indicator representations of intervals
in the poset.

We will prove in Chapter [2] and Chapter [3| that, while the whole class of interval
modules does not admit such a local characterization, the subclass of rectangle modules
does admit one, for test subsets being products of two-element subsets. Moreover, we
prove that it is, in some precise sense, the largest subclass that does so.

Outline. This short chapter serves as an introduction to Part [l First, we set up our
framework and our notations in Section Then, we provide a formal statement of our
main question (Section and expose existing results (Section. Finally, we present
our contributions (Section [1.4]).

1.1 Preliminaries

Our exposition uses the language of topological data analysis to talk about representa-
tions. Here we spend a few paragraphs defining our terms.

Persistence modules. A persistence module indexed over a poset is a func-
tor M : (P, <) — Vec where[Ved denotes the category of vector spaces over a fixed field [kl
Morphisms between persistence modules are natural transformations between functors.
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As Vec is an abelian category, so is the category := Fun((P, %), Vec) of
persistence modules over (P, <). More precisely, kernels, cokernels and images, as well
as products, direct sums and quotients of persistence modules are defined pointwise at
each index p € P, and the category of persistence modules admits a zero object, denoted
by 0, which is the persistence module whose spaces and internal morphisms are all equal
to zero. Moreover, one can dualize each internal space and each internal morphism of
a persistence module M over P to get a dual persistence module [DM] over [P°P] the
opposite category of P.

For every p € P, the vector space M (p) is called internal space of M at p and denoted
for short by M,. For every p < g, the linear map of M(p < q) : M, — M, is called
internal morphism of M between p and q and denoted for short by We say that M
is pointwise finite-dimensional (pfd) if for every p € P, M, is finite-dimensional. The
support of M is the subset of indices p € P for which M, # 0. The rank
invariant of M is the map r : (p,q) € P x P — Z such that is equal to rank(py)
if p < ¢ and zero otherwise. We say that a family {M,}.cq of persistence modules
over P is locally finite if the set {a € A|p € supp(M,)} is finite for each p € P. A locally
finite direct sum is the direct sum of a locally finite family of persistence modules.

A morphism f : M — N between two persistence modules over P is a monomorphism
(resp. epimorphism) if for every p € P, f, : M, — N, is injective (resp. surjective). A
morphism between two persistence modules is an isomorphism if is it both a monomor-
phism and an epimorphism. A submodule of M is a persistence module N together with
a monomorphism N — M of persistence modules, often denoted by

We say that a monomorphism f : M — N between two persistence modules M and N
splits if there is a morphism g : N — M such that g o f = Id;. If every monomorphism
with domain M splits, we say that M is an injective persistence module. It is not true
that any submodule of a persistence module is a summand. However, if f: M — N is a
monomorphism between two persistence modules M and N which splits, it is well known
that there is a direct-sum decomposition N = M @& Coker(f). Therefore, an injective
submodule of a persistence module is a summand thereof.

Decomposability. A persistence module over (P, %) is said to be decomposable if it
decomposes as direct sum of at least two nontrivial persistence modules. Otherwise, it is
said to be indecomposable. The endomorphism ring := Hom(M, M) is local if 0
or Idys — € is invertible for all § € End(M). It is easy to see that if M has a non-trivial
decomposition then End(M) is not local. The pfd persistence modules over (P, <) form
a Krull-Schmidt subcategory of Per(P, ):

Theorem 1.1 (Botnan and Crawley-Boevey, [2020). Every pfd persistence module M
over (P, X) decomposes as a direct sum of indecomposable modules with local endomor-
phism rings. By Azumaya’s theorem (1950) this decomposition is unique up to isomor-
phism.

Product posets. In the this thesis, we focus on persistence modules over product
posets. Given two totally ordered sets (X, <x) and (Y, <y), their product (X x Y, <) is
the Cartesian product X x Y equipped with the coordinatewise order < defined by

Vs,t € X xY, s <t<+= s, <xt; and sy <y t,, (1.1)
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where the coordinates of a point u € X x Y are denoted by (uz,uy,). Henceforth we use
the notation X x Y instead of (X x Y, <) as the only order considered on the Cartesian
product X xY will be the coordinatewise order. A finite product poset X x Y is called a
finite grid. If we want to specify the cardinalities n = | X| and m = |Y|, the poset X x Y
is called a n x m grid. The integers n and m are called the side-lengths of the grid.

Convention 1.2. From now on and until the end of Part [ we fix two totally ordered
sets (X, <x) and (Y, <y) and consider their product (X x Y, <).

A persistence module M over X XY is called a two-parameter persistence module, or a
persistence bimoduleindexpersistence bimodule for short. Any two comparable points s <
tin X x Y yield a square = {s, (s2,ty), (tz,sy),t} and an associated commutative
diagram

t
p(Szvty)

M(Sx:ty) Mt

pgsw,ty)[ ]pftarvsy)

MS M(twvsy)

plteoy)

Intervals, rectangles, blocks. Let P be a poset. We say that S C P is convex if,
for every p < ¢ € S, we have s € S for all s € P such that p < s < ¢. A convex set S is an
interval if it is also connected, i.e., for every p,q € S there is a finite sequence (Pi)z‘e[[o,n}]
of points of S such that p=py L --- L p, = q, where L is the binary relation defined
by p L ¢ if and only if p and ¢ are comparable (p < q or ¢ < p). We write
(resp. for the set of convex (resp. interval) subsets of P.

To any convex set S C P we associate a persistence module [kg], called the indicator
module of S, defined as follows:

k ifpels,
ks(p) = (1.2)
0 else,
and
Id if pand q € 5,
ks(p < q) = { ko Dpandd (1.3)
0 else,

and by convention we set kg = 0. When S is an interval, kg is called an interval module,
and it is indecomposable because its endomorphism ring End(kg) is isomorphic to k (by
connectivity of S) and thus local. Otherwise, kg decomposes as the direct sum of the
indicator modules of its connected components. If M is isomorphic to a direct sum of
interval modules, then we say that M is interval-decomposable.

We call any product I x J of two intervals I C X and J C Y a rectangle, and we
write for the set of rectangles of X x Y. Note that rectangles are intervals
by definition, and their associated interval modules are called rectangle modules.

A block is any rectangle B = I x J that satisfies either of the following (non-exclusive)
conditions:
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o Iis coﬁna]E] in X and J is cofinal in Y—B is then called a birth quadrant;
o I is coinitial in X and J is coinitial in Y—2B is then called a death quadrant;
o I is both coinitial and cofinal in X—B is then called a horizontal band;

o J is both coinitial and cofinal in Y—B is then called a wvertical band.

We write [Blc(X x Y')|for the set of blocks of X x Y. Blocks are rectangles by definition,
and their associated rectangle modules are called block modules.

Example 1.3. Let @ be a square of X X Y represented by the following diagram.
[ J
[ ]
Ble(Q) is the collection of the following subposets of Q:

|

—

e — o

—

|
|
|
|

O —— O
|
Of}O
e — o
|
.f}.
|
Of}.
O —— O
|

|
|
|
|

oO——o0
® —> O

|

[ ] O
[ ] [
where e represents a point that belongs to the corresponding block and o represents
a point that does not. The collection Rec(Q) consists of the above subposets and the

oO—— O
|

Oﬁ.
®e —> O
oﬁo

|
|

following two “corners”

|

oO——2O0

|

e — O

o}
’ T
e}

=
|

Definition 1.4. A persistence bimodule M is said to be rectangle-decomposable (block-
decomposable) if it decomposes into a direct sum of interval modules supported on rect-
angles (blocks).

Example 1.5. One of the simplest example of block-decomposable modules are the ones
having only birth quadrants of the form @, = {t € X xY;t > u} foru € X xY in
their block-decomposition, called free persistence modules. Of course, the notion of free
persistence module generalizes to any cartesian product Xi x ... x X, of a finite number
of totally ordered sets.

!Given a poset (P, <), a subset Q C P is coinitial if every p € P admits a ¢ € Q such
that ¢ < p, and cofinal if every p € P admits a ¢ € Q) such that q = p.
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X xY

Figure 1.1: An example of S € S (the solid blue polygon) and @ € Q (the four
dots arranged in a square) such that S N @ is convex but not connected in Q.

1.2 Local characterizations

Our aim is to work out a local conditions that characterize the decomposability of pfd
persistence bimodules over a given class of interval modules. We specify this class of
interval modules via the set S C Int(X xY')\ {@} of their supports, and we write (S) for
the set of all pfd persistence bimodules that are obtained (up to isomorphism) as direct
sums of such interval modules:

(S)|:= {M €Per(X xY) | M ~ @kgfs where ng < oo forallt e X x Y}.
Ses St

Note that the class (S) is still well-defined for S € Conv(X x Y). In that case, how-
ever, kg need not be indecomposable. For M € (S), the multiset of S € S with non-zero
multiplicities mg in the interval-decomposition of M 1is called the barcode of M and

denoted by |B(M)

Locality is understood as taking restrictions to a collection Q of strict subsets of X x
Y, called the test subsets. Given Q € Q, let ={SNQ|S € S} be the set of intervals
in S restricted to ). Note that ;g C Conv(Q), since convexity is preserved under taking
restrictions. However, it may not be the case that §;g C Int(Q), since connectivity is not
always preserved under taking restrictions; see Figure for an example. Nevertheless,

we still have?}

(Int(X x Y)|q) = (Int(Q)).
Throughout this thesis, we focus on the setting where the test subsets Q are product
subsets, that is, of the form X' x Y’ C X xY for X C X and Y/ C Y. While
intervals of X XY may not restrict to intervals on product subsets (see again Figure ,

rectangles and blocks do restrict to rectangles and blocks respectively. This means that
forany Q = X’ x Y’ C X x Y we have:

Rec(X x Y)|g = Rec(Q),
Ble(X x Y)|g = Ble(Q).

Let S be a collection of intervals in X x Y, and let Q be a collection of test subsets.
Since restriction preserves interval-decomposability, we see that if M € (S), then M €

2This is easily proven. Given an interval S C X x Y, the restriction S|q is convex in @
therefore kg decomposes as the direct sum of the indicator modules of its connected components
in Q. Conversely, given an interval S’ of @, theset S = {s € X XY | p < s < ¢ for some p,q € 5’}
is an interval of X x Y that restricts to S’ on Q.
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(Si@) for every @ € Q. Symbolically,
M e (S) = VQ € Q, Mg € (S)-
In this chapter we are concerned with the reverse implication:

Main question. Characterize the collections S and Q such that
M € <S> —=VQ € 9, M|Q S <S|Q>

In such a situation, we say that membership of (S) is locally characterized on Q. We
simply call local a decomposability property that is locally characterized on 2 x 2 grids.

Observe that the main question is trivial if X x Y is a member of Q. Focusing on
product subsets does not provide a complete picture, and there are several natural next
steps; see Section for a discussion on this.

1.3 State of the art

We now review positive and negative results in the setting of our main question.

Testing interval-decomposability on totally ordered subsets. It has been
shown in Botnan and Crawley-Boevey (2020) and Crawley-Boevey (2015) that any pfd
persistence module indexed over a totally ordered set is interval-decomposable. There-
fore, if M is a pfd persistence module indexed over X x Y, the restriction Mg is interval-
decomposable for any totally ordered subset Q C X x Y. Hence, any indecomposable
module over X x Y that is not of pointwise dimension 0 or 1 is a counter-example to
the existence of a local characterization of interval-decomposability over totally ordered
subsets. For instance, consider the following persistence module:

(1)

K2 L0y

<a>[ [ (14)
0—2 -k ——k

k

0

It is an easy exercise to check that its endomorphism ring is local. Hence, this module is
indecomposable.

Testing interval-decomposability on squares. Recall that the restriction of a
pfd persistence module over X xY to any square is interval-decomposable (see e.g. Figure
13 in Escolar and Hiraoka, 2016). Therefore, any indecomposable module over X x Y
that is not of pointwise dimension 0 or 1 is a counter-example to the existence of a local
characterization of interval-decomposability over squares. Again, one can consider the
persistence module (1.4)).
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Testing block-decomposability on squares. A local characterization of block-
decomposable pfd bimodules was given in Cochoy and Oudot (2020) for X xY = R?, and
later extended to products of two totally ordered sets in Botnan and Crawley-Boevey
(2020).

Theorem 1.6 (Botnan and Crawley-Boevey, 2020; Cochoy and Oudot, [2020). Let X
and Y be totally ordered sets, and M a pfd persistence module over X x Y. Then, the
module M is block-decomposable if and only if the restriction of M to any square is
block-decomposable.

Cochoy and Oudot (2020) gave a proof of this fact for modules indexed over R?
using the functorial filtration technique used by Crawley-Boevey (2015) to prove the one-
parameter interval-decomposition theorem. Both these results were generalized in Botnan
and Crawley-Boevey (2020)) to arbitrary totally ordered sets in the one-parameter case
and to binary product of them in the two-parameter case. In loc. cit., the approach is
different and based on the general decomposition theorem (Theorem [1.1)).

1.4 Contributions

Let us now state our contributions to the existence of local characterizations for decom-
posability of two-parameter persistence modules.

Rectangle-decomposability is local. The main result of Part[[]is a generalization
of Theorem [I.6] to rectangle-decomposable modules. We prove it for modules indexed
over a product of two totally ordered sets satisfying a weak condition; we conjecture that
the result holds for arbitrary totally ordered sets but proving that seems to require a
novel set of ideas. The proof of this theorem is already quite involved and will be the
subject of Chapter

Theorem 1.7. Suppose that any interval of X orY admits a countable coinitial subset.
Then, any pfd persistence module M over X XY is rectangle-decomposable if and only
if the restriction of M to any square is rectangle-decomposable.

The assumption on the posets is fairly mild. For instance, it is satisfied by arbitrary
subsets X,Y of R endowed with the canonical order. Furthermore, an equivalent formu-
lation of the assumption is that X and Y both admit a countable subset which is dense
in their order topology, as it is done in Crawley-Boevey (2015). It can also easily be
seen to be equivalent to the hypothesis that any rectangle in X x Y admits a countable
coinitial subset, which is instrumental when considering inverse limits of exact sequences;
see Lemma

The interest in rectangle modules is currently ramping up among the topological data
analysis community, with the realization of their simplicity of use and potential for gen-
eralization. Indeed, while they constitute only a small fraction of the indecomposables
over R?, they can serve as a basis for encoding certain invariants of more general classes
of persistence modules. For instance, it was proven in Botnan, Oppermann, and Oudot
(2021) that the rank invariant of any finitely presentable persistence module M over



o4 CHAPTER 1. LOCAL CHARACTERIZATIONS

R? decomposes essentially uniquely as the difference between the rank invariants of two
rectangle-decomposable persistence modules. Rectangle modules—or a slight generaliza-
tion thereof—also appear in projective resolutions in certain exact structures (Blanchette,
Briistle, and Hanson, 2022; Botnan, Oppermann, and Oudot, 2021). These facts give
rise to a notion of signed barcode for general classes of persistence modules over RY.
While our work is not directly related to these recent developments, it contributes to
the background knowledge on rectangle modules, and it allows us to answer practical
questions such as determining whether a persistence module itself—not just its rank
invariant—decomposes into rectangle summands.

Interval-decomposability is not characterized locally. We show that inter-
val-decomposability cannot be characterized locally, even when testing on arbitrary strict
subgrids.

Theorem (Theorem [3.1). Suppose X and Y are totally ordered sets with |X| > 3
and |Y] > 3, and let 2 < m < min(|X|,|Y]) be an integer. Then, there exists a pfd
persistence module M over X XY that is not interval-decomposable, but for which M|g
1s interval-decomposable for all grids QQ of side-lengths at most m.

Rectangle-decomposability is maximal among local properties. In light
of the above results, it is natural to wonder if there is a class of intervals more general
than rectangles for which a local characterization over squares is possible. That turns
out not to be the case.

Theorem (Theorem [3.5). Let X and Y be totally ordered sets and let S C Int(X x V).
Assume further that there exist {x1 < o < 23} C X and {y1 < y2} CY such that Sigo 2
Rec(Qo) for Qo = {x1,23} x {y1,y2}. Then, there exists a pfd persistence module M
over X XY such that M is not in (S) but the restriction of M to Q is in (S|q) for all
squares Q.



Chapter 2

Rectangle-decomposability is local

Based on joint work with Magnus Bakke Botnan and Steve Oudot.

This chapter is devoted to the proof of the local characterization of rectangle-decomposability
(Theorem . Our analysis uses the following algebraic characterization of rectangle-
decomposability. Recall that X x Y is a product of two totally ordered sets endowed
with the coordinatewise order and that for all persistence modules M over X x Y and
every s <t € X XY, one has the commutative diagram:

i
p@ziy)

M(vaty) Mt
pgsz,ty)[ |/’fzz,sy> . (2.1)

MS (tx,sy) M(twvsy)
ps
Definition 2.1 (Weak exactness). A persistence module M over X XY is weakly exact if,
for every s <t € X xY, the following conditions hold in the commutative diagram (2.1)):

Im p!, = Im p’étz,sy) N Im pf

Sayty)?

Ker p!. = Ker pgtz"”y) + Ker pgsz’ty).

This condition is a weakened version of the so-called ezactness condition (called
strong exactness in this thesis) that was proven to be equivalent to block-decompos-
ability in Cochoy and Oudot (2020)). It is not hard to check that a pfd persistence
module over a square is weakly exact. Furthermore, any pfd persistence module indexed
over a square is interval-decomposable (see Escolar and Hiraoka 2016, Figure 13) and a
direct inspection shows that if the module is weakly exact then these interval summands
must be rectangle modules. These observations imply that the following theorem is
equivalent to Theorem

Theorem 2.2. Suppose that any interval of X orY admits a countable coinitial subset.
Then, a pfd persistence module M over X x Y is weakly exact if and only if M is
rectangle-decomposable.

25
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Outline. Since it is easy to verify that rectangle modules are weakly exact and that
being weakly exact is invariant under taking locally finite direct sums, one can see that
any pfd persistence module that is rectangle-decomposable is also weakly exact. We are
left with proving the converse statement. For that, we start by proving the result when X
and Y are finite (Section . The proof of the general case relies on the finite case and
is developed in Sections through We follow the same approach as in Cochoy and
Oudot (2020) and detail the adjustments we make in the next paragraph. We begin by
introducing functorial filtrations, a key construction in the proof (Section . Next,
we define a submodule Mg of M for each rectangle R € X x Y. This submodule is
referred to as the rectangle filtrate of M associated to R (Section . The construction
of Mp ensures that Mp; contains all the elements in M; whose “lifespan” is exactly R.
Specifically, the persistence module Mg is isomorphic to a finite direct sum of copies of
kr. Next, we prove that the sum of these filtrates forms an internal direct sum in M
(Section . Finally, we conclude the proof by proving that the resulting internal direct
sum generates M (Section .

Comparison with the work on block-decomposable modules. The func-
torial filtration technique for weakly exact persistence bimodules already appeared in
Cochoy and Oudot (ibid., Sections 3 and 4). However, their definition of Mp as a
submodule of M (ibid., Proposition 5.3) does not work for weakly exact persistence
bimodules. That is, the resulting family of vector spaces does not assemble into a sub-
module. We overcome this difficulty by defining the rectangle filtrate within a carefully
constructed weakly exact submodule of M (Definition . Proving that the resulting
sum of rectangle filtrates is an internal direct sum (Proposition can be adapted
directly from the proof of the analogous result in the block-decomposable case (jibid.,
Proposition 6.6). By contrast, proving that the rectangle filtrations generate M is more
involved, as the work from (ibid., Section 7) does not carry over to our setting. Our
approach includes a series of technical lemmas that prove that it suffices to consider the
restriction to a certain finite grid (Definition . Once this is established, the result
is a consequence of the structure theorem for finite grids (Theorem .

2.1 Finite posets

In this section, we assume that X x Y is finite and give a short proof of Theorem in
this case. Namely, we prove:

Theorem 2.3. Suppose that X and Y are finite. Then, a pfd persistence module M
over X XY is weakly exact if and only if M s rectangle-decomposable.

We will repeatedly use the following result in our analysis:

Lemma 2.4. For any indices k € [1,n] and | € [1,m], the indicator module K i1,
is an injective persistence module over [1,n] x [1,m].

Proof. This lemma is a consequence of Botnan and Crawley-Boevey (2020, Lemma 2.1)
since the subset [1,k] x [1,1] is clearly a directed ideal of the poset [1,n] x [1,m],
following the definition of Botnan and Crawley-Boevey (ibid., Section 2.1). O
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Recall from classical commutative algebra (see also Section [1.1]) that an injective
submodule of a persistence module is a summand of it.

Proof of Theorem [2.3] Since X and Y are finite, one can assume that X = [1,n]
and Y = [1,m]. Our proof proceeds by induction on the poset of grid dimensions (n, m),
also viewed as a subposet of R? equipped with the coordinatewise order:

e Qur base cases are when n = 1 or m = 1. The result is then a direct consequence of
Gabriel’s theorem (1972), which asserts that M decomposes as a direct sum of interval
modules, each interval being a rectangle of width 1.

e Fix n > 1 and m > 1, and assume that the result is true for all n’ x m’ grids
with (n/,m’) < (n,m). Fix a persistence module M over [1,n] x [1,m] that is pfd and
weakly exact. We prove that M decomposes as a direct sum of rectangle bimodules.

Observe that M has finite total dimension Zteﬂl,n]]x[[l,m]] dim My, so we know from
a simple induction that M decomposes as a direct sum of indecomposables—recall the
more general statement of Theorem [[.I] As any summand of a weakly exact module is
again weakly exact, we may restrict our attention to pfd indecomposable modules.

For the sake of contradiction, assume that M is pfd, weakly exact, indecomposable,
and not isomorphic to a rectangle module. Then:

(n,m)

(1,1) 1S Zero.

Claim 2.5. The map p

(n,m)
1,

Proof. Suppose the contrary. Then we have Kerp( 1) C Mayy. Let a € M)\

(n,m)

Ker P(L1) - The submodule N of M spanned by the collection of images:

(i,9)
(p(lyl)(a)>(i,j)eﬂl,nﬂxﬂl»mﬂ

is isomorphic to ki »]x[1,m], an injective persistence module by Lemma @ Hence, the
persistence module N is a summand of M, contradicting that M is not isomorphic to a
rectangle module. O

Claim 2.6. The space M, ;) maps injectively to the nodes of the grid [1,n—1] x[1,m—1].

Proof. Let us restrict M to the grid [1,n—1] x [1, m]. The restriction—denoted by N—
may no longer be indecomposable, however it is still pfd and weakly exact, therefore
our induction hypothesis asserts that N decomposes as a finite (internal) direct sum
where each summand is isomorphic to some rectangle module. Consider any one of these
summands, say N’ = kg, such that (1,1) € R’. Then, we claim that (n — 1,1) € R’ as
well. Indeed, otherwise, one can extend N’ to a persistence module over [1,n] x [1, m] by
putting zero spaces on the last column n. This yields an injective rectangle submodule
of M (Lemma , and therefore a rectangle summand of M—a contradiction.

The above argument shows that the persistence module M, 1) maps injectively to the
nodes (i,1) for i € [1,n — 1]. Similarly, by restricting M to the grid [1,n] x [1,m — 1],
we deduce that M, ;) maps injectively to the nodes (1, j) for j € [1,m — 1]. Then, by
weak exactness, we have for all (7,7) € [1,n — 1] x [1,m — 1]:

(4,3)

Ker Py = Ker pg”ll)) + Ker p&jl)) =0,
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so My 1) maps injectively to all the nodes of the grid [1,n — 1] x [1,m — 1]. O
Claim 2.7. The spaces My 1) and M, ) are zero.

Proof. By weak exactness and Claim we have

m)

n7m)
1, 1)

= Ker p

—_—

n,1) (1,
1y T Ker 2

)

M1y = Ker pg

Assuming for a contradiction that M(; ) # 0, we have that at least one of the two terms
on the right-hand side of the above equation must be non-zero—say for instance Ker pg?ll))
0. Let o # 0 be an element in that kernel. By Claim its images at the nodes
of [1,n—1] x [1, m — 1] are non-zero. Meanwhile, its images at the nodes of {n} x [1,m]
are zero, by composition. There are two cases:

. Either pg’;’;)(a) = 0, in which case the images of « at the nodes of [1,n] x {m}
are also zero, which implies that the persistence submodule of M spanned by the
images of « is isomorphic to Ky ,,—1]x[1,m—1]-

« Or pg’g) () # 0, in which case, for all i € [1,n — 1], we have

1, (Claim [2.6) 1, i1 i
a ¢ Ker ,0517717;) m 2.8 Ker pglg) + Ker p&l)) = Ker pgzl’lm)),
which implies that the images of « at the nodes of [1,n — 1] x {m} are non-zero
as well. Hence, the persistence submodule of M spanned by the images of « is
isomorphic to K[y ,_1]x[1,m]-

In both cases, the persistence submodule of M spanned by the images of « is an injective
rectangle module (Lemma , hence a rectangle summand of M—a contradiction.

By applying vector-space duality pointwise to M, we obtain an indecomposable mod-
ule DM of the grid [1,n]°? x [1,m]°?—which is isomorphic to [1,n] x [1,m] as a
poset. This persistence module is still pfd, and still weakly exact as well since the equa-
tions of weak exactness are stable under vector-space duality (kernels become images,
sums become intersections, and vice-versa). Hence, by the first part of the proof, one
has DM 1y = 0, i.e the space at node (n,m) of M is zero, hence the result. O

Claim 2.8. The space My ;) is zero.

Proof. Assume for a contradiction that M ,,) # 0. Call N the restriction of M to the
grid [1,n — 1] x [1, m]. By our induction hypothesis, the persistence module N decom-
poses as a finite (internal) direct sum where each summand is isomorphic to some rectan-
gle module. Since My ,,) # 0, at least one of these rectangles contains the node (1,m).
Among such rectangles, take one—say R’ = [1,i] X [j, m]—that has lowest lower-left
corner, and call N’ the corresponding summand of N. Denote by N’ the rest of the
internal decomposition of N, i.e. N = N’ & N”.

First, we claim that 7 = n — 1. Indeed, otherwise we can extend N’ to a rectangle
persistence submodule N of M by putting zero spaces on the last column n, and N”
to another persistence submodule N by putting the internal spaces of M on the last
column, so that M = N' & N"—a contradiction.
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Second, we claim that j € [2,m — 1]. Indeed, one has j > 2 since by Claim we
know that M ;) = 0. Meanwhile, if j were equal to m, then N’ would go to zero on the
last column of [1,n] x [1,m] since M, ;) = 0 by Claim and so we could extend N
to a rectangle persistence submodule N of M by putting zero spaces on the last column,
and N” to another persistence submodule N’ by putting the internal spaces of M on
the last column, so that M = N' @ N"—a contradiction.

Consider now the space N(; ;) = My ;), and take a generator a of the subspace N(/Lj) =

k. By Claim we know that the map pgrf’j)l) is zero, so by weak exactness we
have o = ay,+a, for some oy, € Ker pg?]j)) and o, € Ker pﬁ?;) We claim that oy, ¢ N(”1 i)
Indeed, otherwise we would have
(1, 1, 1, (1, (1,m)
PGy (@) = oo (o) + A (0w) = oy () € oy 5 (NG ) € Nty

thus contradicting our assumption that N = N’ & N” with the support of N’ contain-
ing (1,m). Likewise, for any node t € R’ we have pgl plon) & N/, for otherwise we would
get a contradiction from

ol (@) = ol (en) = o™ (ol gy (an)) € pf ™ (V) € N -

Thus, the persistence submodule N* of N generated by «y, is isomorphicﬂ to N’ and
its sum with N” is an internal direct sum in N. We can therefore exchange N’ for N"
in the internal decomposition of N. Since N" is mapped to zero on the last column
of [1,n] x [1,m], we can extend it to a rectangle persistence submodule N of M
by putting zero spaces on the last column, meanwhile we can extend N” to another
. ! . .
persistence submodule N by putting the internal spaces of M on the last column, so
that M = N" @ N"'—a contradiction. O

Claim 2.9. The spaces M ;) are zero for all j € [1,m].

Proof. The result is already provenﬂ for j = m by Claim Let then j € [1,m —
1]. Call N the restriction of M to the grid [1,n] x [1,m — 1]. By our induction
hypothesis, the persistence module N decomposes as a finite (internal) direct sum where
each summand is isomorphic to some rectangle module. Assuming for a contradiction
that some summand N’ has a support R’ that intersects the first column, we know
from Claim that N’ maps to zero at node (1,m). By composition, the persistence
module N’ maps to zero as well at the nodes on the last row m. Therefore, as in the
proof of Claim [2.8] we can extend N’ to a rectangle summand of M by putting zero
spaces on row m, thus reaching a contradiction. O

We may now conclude the proof of Theorem It follows from Claim that M
itself is not supported outside the rectangle R = [2,n] x [1,m]. The induction hypothesis
applied to the restriction of M to R implies then that M decomposes as a direct sum of
rectangle modules, which raises a contradiction. This concludes the induction step and

the proof of Theorem [2.3] O

Note that we do not need to check that aj goes to zero when leaving R’, since by assump-
tion R’ reaches row m and, as we saw earlier, one has i = n — 1 so R’ reaches column n — 1 as
well.

2Tt is also proven for j = 1 by Claim although we do not use this fact in the proof.
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2.2 Functorial filtration and the counting functor

We now begin the proof of Theorem [2:2] In this section, we recall the definition of the
functorial filtration that we use to construct our rectangle filtrates in Section [2.3] The
functorial filtration is inspired by Ringel (1975)), introduced in the one-parameter set-
ting by Crawley-Boevey (2015) and generalized for the two-parameter setting in Cochoy
and Oudot (2020). We write out the definitions and results already written in Cochoy
and Oudot (ibid.) for completeness, and one may also read (ibid., Example 3.3) for an
enlightening explicit computation of the functorial filtration.

Assumption 2.10. In Sections through [2.5] we assume that any interval of X or Y
admits a countable coinitial subset.

Throughout the section, consider a persistence module N over X x Y, and denote
by p! the internal morphism N(s <t): Ny — N; forany s <te€ X x Y.

Cuts. To set up the functorial filtration technique, we need a characterization of rect-
angles in X x Y using the notion of cuts. A cut ¢ of a totally ordered set X is a
partition of X into two (possibly empty) sets (¢~,¢") such that x < 2/ for all z € ¢~
and 2’ € ¢™. We call the lower part and the upper part of ¢. For instance, the
subsets ¢~ = (—o0,1] and ¢ = (1,400) define a cut of R. The following lemma is a
direct consequence of the fact that X is totally ordered.

Lemma 2.11. In a totally ordered set, the set of all cuts ¢ can be totally ordered in two
canonical ways: inclusion on the lower part ¢—, or inclusion on the upper part ¢c. The
two orders are opposite from each other.

One can easily see that any interval I in a totally ordered set (7, <) can be written
as I =i1c™ N for two cuts ic and ¢l of T'; see Crawley-Boevey (2015, Section 3). Then,
it follows from its definition that any rectangle R of X x Y can be written as [R_=|
l(c™ Ne™) x (¢ Ne )l with two cuts of X called the left cut |d and the right cut
and with two cuts of Y called the top cut [d and the bottom cut[d Moreover, writing a
block B = (ict Nc™) x (¢t Né™), one can directly check from the definition of a block
that:

« ¢t =¢" =g, if Bis a birth quadrant, or

o Ic” =c¢ =g, if Bis a death quadrant, or
« Ic” =c" =@, if B is a horizontal band, or

o« ¢ =¢" =@, if B is a vertical band.

Pointwise filtration. Consider a rectangle R = (ic™ Nei™) x (¢t Neée™) of X X Y
and let t € R. We start by defining the following subspaces of Ny, called horizontal
contributions (associated to the left and the right cuts of R) and vertical contributions
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(associated to the top and the bottom cuts of R) of R in N:
., (N)|= xer‘)ﬁ Im pléz,ty) [m,,(N)|= xezc_ Im pfmy)
<ty
Kerit(N) =N Kerpgz’ty) Ker,,(N)[= > Kerpgx’ty)
zE€clt z€el™
N i (2.2)
L= N Ingfy,, O S Ingf, |
yec yeC
y<ty
Ker!,(N)[= (N Ker p(tz’y) Ker_,(N)|= > Ker py”’y)
’ yeet ’ yee™
thy

with the convention that Im_,(N) = 0 when ¢~ = @ and Ker},(N) = N; when ¢™ = @.
See Figure 2.1] for an illustration.

c” |ie™ c” liet
Shmpl N, nlmp, N
> Impl NIm pl
@ @
c c
+ T A
Cc C
S Ker p! nKer py!
Ny > Ker py/ Ny nKer py' .
c et c |et

Figure 2.1: From top to bottom and from left to right: the spaces ITm,,, Imj,t,
Ker_; and Kerzt.

Remark 2.12. In Cochoy and Oudot , the definitions and the results are stated
for the poset X x Y = R2 but all results hold verbatim (with identical proofs) for a
general product X x Y under Assumption [2.10] From now on, we will therefore cite and
use the results of Cochoy and Oudot in our setting.
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The following lemma states that when N is pfd, horizontal and vertical contributions
can be realized as kernels and images of its internal morphisms.

Lemma 2.13 (Realization; Cochoy and Oudot, 2020, Lemma 3.1). Assume that N is
pfd. For anyt € R, one has:

Im/,(N) = Im pﬁx ) Jor some x € ict N (—o0,t;] and any lower z € 1c™,
Im_,(N) = Im pléz t) for some x € 1¢” U{—o0} and any greater x € ic”,
Kercﬁt(N) = Ker pfc’ty) for some x € cit U{+o0} and any lower z € e,

Ker,,(N) = Ker pgm’ty) for some x € ¢ N [ty, +00) and any greater x € ci™,

with the conventions that p(wt ) : 0 — My when x = —oo and pg W) M; — 0 when z =

+00. Similar statements hold for vertical cuts.

Convention 2.14. Throughout the rest of the chapter, we keep the conventions on
internal morphisms introduced in Lemma [2.13| without further reference to it.

Remark 2.15. The conventions defined in Lemma [2.13] are equivalent to considering
the extension N of N to the poset X x YV with X = X U{+oo} and ¥ = Y U {+o0}
(and the obvious ordering) such that N(ioo ) = N( +00) = 0. This extension is called
extension of N at infinity in Cochoy and Oudot (ibid.). In this chapter, we only use the
following fact: if N is pfd and weakly exact, then so is its extension at infinity. This last
fact can be checked by a direct computation.

Remark 2.16. Let ¢ € R and consider a finite number Ny,..., N, of pfd persistence
modules over X x Y. Then, there exists z € ic™ N (—o0, t;] such that for all 1 < i < k,
one has

Im{, (N;) = Im N; ((, ) < t).

Similar remarks hold for other contributions.

We combine horizontal and vertical contributions in the following way:

Imgt(N) = Im;t(N)mImgt(N),

Tmp, (N)| = (Tmig (V) + g, (N)) 1 Ty (V)
= Im\;t(N) N Im;ft(N) + Imgt(N) N Im\zt(N)a

(2.3)

Kerj, (N)| = (Kerf, (N) + Kerg, (V) ) 0 (Kerg (N) + Kerf (V)
= Kerj,(N) nKerf,(N) + Ker ,(N) + Ker_,(N),
Kerg (V)| = Ker, (V) + Kerz (N),

where equalities between formulas come from the inclusions Im_,(N) € Im},(N), Ker_,(N) C
Ker(‘;t(N ) and the following elementary lemma.

Lemma 2.17. Let E be a k-vector space. Let A, B and C' three vector subspaces of E
such that AC C. Then (A+B)NC=AnNnC+BnC.
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It is immediate from the definitions that Imp ,(N) C Im} ,(N) and Kerp ,(N) C
Ker}, ,(N). This leads us to the following important family of vector spaces.

Definition 2.18. The functorial filtration of N associated to R is the following pair of
families of vector spaces indexed by ¢ € R:

Vi (N)|= ImEt(N) N KerEt(N),
’ o (2.4)
Imj,

Since Imp (N) C Im}t(N) and Kerp ((N) C Ker;%t(N), we also have Vg (N) C
VI{ ((N). If N is interval-decomposable, then it is a small exercise to check that the
dimension of the quotient vector space Vg’ +(N)/Vg,(N) equals the multiplicity of the
summand kg in the decomposition.

The following lemma shows that vectors spaces in and are preserved by

the internal morphisms of pfd and weakly exact persistence bimodules.

Lemma 2.19 (Transportation; jibid., Corollary 3.5, Lemma 4.1). Assume that N is pfd
and weakly exact. For any s <t in R, we have:

(00 = k)
(p';)_l (Kerﬁt(l\f)) = Kerﬁs(]\f),
ot (Vit (V) = Vi (V).

Remark 2.20. Lemma [2.19] ensures that if N is pfd and weakly exact, the fami-
lies (Vétt(N )) n form systems of vector spaces.
’ te

Counting functor. A key object in the filtration technique is the counting functor
associated to a rectangle R.

Definition 2.21 (ibid., Section 4). The counting functor Cr associated to a rectangle R
is defined for a pfd and weakly exact persistence module N over X X Y as the inverse
limit:

Cr(N)[=lm Vg, (N)/ Vg, (N),
teR

where the transition maps are given by the naturally defined quotient maps pt, : Vér SIN)/ Vi J(N) —
Vit (N) Vi (V).

The counting functor owes its name to the following crucial fact.
Lemma 2.22 (ibid., Lemma 4.2). Assume that N is pfd and rectangle-decomposable.

For any rectangle R of X x 'Y, the multiplicity of the summand kg in the rectangle-
decomposition of N is given by dim Cr(N).
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2.3 Definition of the rectangle filtrates

The goal of this section is to define rectangle filtrates (Definition [2.28). In this section
and in Sections [2.4] and we consider a pfd and weakly exact persistence module M
over X x Y, and denote by p% the internal morphism M (s < t) : My — M; for any s <
t € X xY. Until the end of this section, we consider a rectangle R = (ic™Ner™) x (¢tNe)
of X xY.

2.3.1 Elements dead above the rectangle

The rectangle filtrate associated to R will be constructed within the submodule of M
defined below (Definition 2.23). Consider R~ = {t € X x Y|3s € R,t < s}. Note
that R~ = ¢~ x ¢, so that the contributions Kerjyt(M ) and Kerg (M) are well-defined
forany t € R™.

Definition 2.23. We call submodule of M of elements dead above R, and denote by
the submodule of M whose spaces at each t € X x Y are given by:

Ker},(M)NKerf (M) ifte R,

0 else.

Krt (M) = {

The fact that Kr(M) yields a well-defined persistence submodule of M is an easy
consequence of the definition of horizontal and vertical contributions (2.2]). When there
is no ambiguity, the submodule Kp (M) is referred to as K for readability.

Proposition 2.24. The persistence module Kr is weakly exact.

Proof. In this proof we write p, = leKR forany u <ve X xY. Let s<te X xY
and denote a = (sz,ty) and b = (t;,s,). Let us first prove the equality:

Ker ! = Ker p% + Ker pb. (2.5)

Suppose that ¢ ¢ R~. Then Kerp, = Kps. Moreover, one has a ¢ R~ or b ¢ R,
so Ker p? = Kp s or Ker 5% = Kp . Hence (2.5) in that case. Now suppose that t € R™.
Then s € R™, a € R~ and b € R™. Therefore, one has Ker p¢ C Kergs(M) and Ker p? C

+
Kerchs

(M). Using the weak exactness of M and Lemma [2.17| twice, we get:

Ker gt = (Ker pg) NKRgs
Ker p3 + Ker p2> N Ker};

cl,s

(M) N Kerf (M)

(Ker p2 NKerl (M) + Ker p? N Ker, (M)) N Kergs(M)

clys clys

Kerpi N Kpgs + Kerpg N KR
Ker 5% + Ker V.

Let us now prove the equality Im g% = Im gt N Im g}, i.e.

Pt (Krys) = pl (Kra) N ph (KRp) - (2.6)
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The inclusion p! (Kgrs) C pl (Kra) N pl (Krp) is clear. Let us show the converse.
Applying Lemma [2.13] at the point s and at the point a, one can choose low enough y €
¢t U {+oo} such that:

Similarly, there exists z € ¢ U {+o00} such that:

Kerj‘,b(M) = Ker pl(f’sy), and Ker], (M) = Ker pgz’sy).

cl,s

The result will follow from repeated use of the weak exactness property of M (and
Remark [2.15). The following diagram will help picturing the various spaces involved in
this proof. Denote ¢ = (s3,9), d = (x, sy), e = (tz,y) and f = (x,t,).

M., —— M,

T

M, M;

T T 1

s >Mb >Md

S]

Let z € Kgy be such that there are z, € Kr, and 2z, € Kgy, such that z = p!,(z,) =
ph(2). Since M is weakly exact, there exists z; € M, such that z = pf(zy).

We claim that z; € KerpS. Indeed, using that z, € Ker{ (M) = Kerpg, we
get pS(zs) = pi(2) = pG(za) = pc © pa(za) = 0.

Thus, by weak exactness of M and Remark there exist 2’ € Ker pg and 2" €
Ker p¢ such that z; = 2’ + 2. This yields that z = p!(z5) = pL(2").

We claim now that z” € Ker p£ . Indeed, using that z, € Kerj‘yb(M ) = Ker p, we

get pg(zﬂ) = P{(Z) = Pg(zb) = lec © pff(zb) = 0.

Thus, by weak exactness of M and Remark there exist 2’ € Ker p? and 2" €
Ker p¢ such that 2 = 2’ 4+ 2. This yields that z = p’(2") = pL(z").

We now claim that 2’ € Kpg,, which completes the proof. Indeed, on the one
hand 2" € Ker p¢ = Ker/ ,(M). On the other, one has 2" = 2"~ %' € Ker p¢ = Ker] (M).

Hence the result.

O]

2.3.2 Rectangle filtrate

Let N be a pfd and weakly exact persistence module over X x Y. Recall the definition
of the functorial filtration (Definition and the systems of vector spaces they form
(Remark 2.20). As in Cochoy and Oudot (2020) and Crawley-Boevey (2015]), we consider
the following inverse limits:

Vi (V)| = lim Vi, (N). (2.7)
teR
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Denoting 7 : Vi (N) — V4 ,(IN) the natural map given by the limit, one has the following
identification:

Va() = (! (Vi (N)) € Vi (V). (2.8)

teR

This implies that for any ¢t € R, the morphism 7; induces a morphism:
Tt VE(N) VR (N) — VR (N)/ Vg, (N).

Lemma 2.25 (Cochoy and Oudot, 2020, Lemma 5.2). Recall that N is pfd and weakly
exact. Fort € R, the map 7 : Vi (N)/Vg (N) — V}'{t(N)/VR_’t(N) is an isomorphism.

The rectangle filtrate of M associated to R will be defined as the submodule of M
given by the following proposition (Definition [2.28)).

Proposition 2.26. Let Mg be a vector space complement of Vi (Kg) in Vi (Kg).
Fort e X xY, consider the vector subspace of Kr; given by:

7Tt(-/\/l]:i) th € R7
Rt =
0 else,
where my VI'L:(KR) — Vgt(KR) is the natural maps given by the limit for t € R. Then,
the family (Mp4)iexxy forms a submodule of Kr (hence of M ).

Proof. Let s <tin X x Y. Suppose that s ¢ R. Then, one has p!(Mps) =0 C Mpg;.
Now, suppose that s and ¢ both lie in R. By definition of 7, one has p% o s = m;. Thus,
one has pi(Mp,s) = pi(7s(Mp)) = m(Mp) = MR

Finally, suppose that s € R and ¢ ¢ R. We show that p.(Mpgs) = 0. One
has ms(Mp) C Ker] ,NKer , for every s € R. Moreover, for every t > s with s € R

clys c,s?

and t € R, we have t, € ci* or t, € ¢, so that pf(Ker/ ,NKerd ) = 0. Hence:

cl,s
P (MR,s) = po(ms(Mr)) S p(Kerd ,NKerl,) = 0.
O

Remark 2.27. Since we have chosen Mg such that VE(KR) = Mg ® Vg (KRg), for
every t € R we have Vi (Kgr) = Mg, ® Vi ,(Kg) by Lemma

Definition 2.28 (Rectangle filtrate). Let Mg be a vector space complement of Vj, (KR)
in Vi (Kg). The submodule of M defined in Proposition is called a rectangle filtrate
of M associated to R and denoted by

Our work on rectangle filtrates will rely on Remark and thus will not depend
on the choice of vector space complement Mg of Vi (Kg) in Vi (Kg). The following
convention will therefore be used.

Convention 2.29. For each rectangle R’ of X x Y, choose a vector space comple-
ment Mg of Vp,,(Kg) in V},(Kg). From now on, the rectangle filtrate Mp will refer to
the one associated to this choice of Mp.
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Note that the axiom of choice is used in the above convention. This is inevitable
in order to consider infinite families of rectangle filtrates in Sections [2.4] and 2.5 The
following lemma shows that Mg is rectangle-decomposable.

Lemma 2.30. The persistence module Mpg s isomorphic to a direct sum of
dim Cr(KR) copies of the rectangle module k.

Proof. The proof is a carbon copy of the one of (ibid., Lemma 5.5) and is included here
for completeness. Since Kp is pfd and weakly exact (Proposition 7 we know from
Lemma that the morphism 7; is an isomorphism for any t € R.

Let T be a (finite) basis of M. For any v € T', the elements of 7;(y) for ¢t € R are non-
zero and they satisfy pf(ms(7y)) = m(7y) for all s < ¢ in R, so they span a submodule N (v)
of Mg that is isomorphic to kg. Now, for all ¢ € R the family {p¢(7)}yer is a basis
of Mg, so Mg ~ @, cp N (7). Finally, the size of the basis I' is dim Mg = dim Cr(KRr).

O

2.3.3 Description of rectangle filtrates in the finitely rect-
angle-decomposable case

We prove the following lemma showing that rectangle filtrates capture rectangle sum-
mands in the particular case of finite rectangle-decompositions. It will be crucial in the
proof of Proposition 2:39] in Section 2.5

Lemma 2.31. If M ~ @, ; kgi" where I is a finite set, the R;’s are pairwise distinct
rectangles of X XY and the m;’s are positive integers, then one has Mp, =~ k?j for
any 1 € 1.

In fact, this lemma also holds when the rectangle-decomposition is only locally finite
but we do not use such a general statement in this thesis. The proof of Lemma [2.31] is
postponed to the end of this section. It uses the following lemma that gives an expression
of Kr (M) when M is decomposable as a finite direct sum of rectangle modules. Recall
the definition of R~ from Section 2.3.11

Lemma 2.32. Suppose that M ~ &
rectangles of X x Y. Then, one has:

Kp (M)~ @ Kp,.
i€l
R,CR™

ic1 KR, where I is a finite set and the R;’s are

Lemma [2:32] is a direct consequence of Lemmas [2.33] to [2.35] below. The first lemma
is elementary. It is used in the proof of Lemma [2.34]

Lemma 2.33. Let E be a k-vector space and E1, Ey be two subspaces of E such that E =
E1® Es. Let Ay, By two subspaces of Eq1, and As, By two subspaces of E5. Then,

(Al D Ag) N (Bl D Bg) = (Al N Bl) D (AQ N Bg)

Lemma 2.34. Let Ny and No be two pfd and weakly exact persistence modules over X x
Y. One has KR(N1 D NQ) = KR(Nl) D KR(NQ).
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Proof. The module N7 can naturally be seen as a submodule of N1 @ Ny by identification
with Ny & 0. Similarly, any submodule of Ny can naturally be seen as a submodule
of N1 @ Nj. Therefore, the persistence module Kr(Ni) and Kr(N2) can as well be
naturally seen as submodules of N1 & No. We implicitly make these identifications in the
rest of the proof. To prove the result, it is thus sufficient to prove the equality Kr(N1 ®
Ny) = Kr(N1) ® Kr(N2) of persistence submodules of N; @ Na. In other words, it is
sufficient to prove that for any ¢t € X x Y, one has:

KR (N1 ® Ng) = Kp(N1) ® Kpt(N2).

Lett € XxY. Fort ¢ R, both sides of the equality vanish, so let us assume that t € R™.
Denote by p the internal morphisms of Ni and by 7 the internal morphisms of Ns.
The internal morphisms of Ny @& N» are then given by p @ n. By Remark [2.16] there
exists x € ¢t U {400} such that:
+ — (xvty)
Kerd’t(Nl) = Kerp, "/,
Ker$7t(N2) = Ker n,ggﬁ’ty),
Kerg‘:t(Nl @ NQ) — Ker (pi.l’yty) @ n}gﬂ&ty)) — (Ker pgﬂcﬂfy)) @ (Ker nél’yty)) X

Hence, one has Kerj"’t(Nl @ Ng) = Ker;ﬁt(Nl) D Ker;’]’t(Ng). Similarly, one can prove
that Kergt(Nl ® Ng) = Kergt(Nl) ® Kergt(Ng). This implies:

Kri(N1® Na) = Kerf (N1 @ Na) N Kerf, (N1 @ Ny)
—  (Ker},,(N1) & Ker,,(N2)) (Kergt(zvl) @ Kergt(NQ))
(Lem.

= (Kerj"t(Nl) N Ker{t(Nl)) ® (Ker;ﬁt(Ng) N Ker{t(N2)>
= Kpgyi(N1) ® Kg(Na).

Lemma 2.35. Let R and R’ be two rectangles of X x Y. Then,

o _
.
0 else.
Proof. Write R = (c™Nerm) x (¢c"Ne™) and R’ = (dTNdi~) x (d"Nd ). The persistence
module K (kg/) is a submodule of ks, so we only have to check that for any ¢t € X x Y,
one has Kp¢ (kp) =k if t € R and R' C R™, and Kg (kr/) = 0 otherwise. Let ¢t €
X xY. One has Kp; (kp/) C kpy =0 for any t ¢ R, so let us suppose that ¢t € R'.

Suppose that R C R™. For any z € ¢, one has z € diT, so (z,t,) € R’ and kg (t <
(x,ty)) = 0. Thus, one has Kergt(kR/) = kp/ 4. Similarly, one has Kergt(kR/) = kg4,
and hence Kr; (kp/) =kp; =k.

Now, suppose that R ¢ R~. There exists z € di” \ ¢~ ory € d \ ¢ . Say there
exists © € di” \ ¢, the other case being similar. Suppose first that ¢ ¢ R~. Then, one
has Kpr;(kg) = 0 by definition of K. Now, suppose that t € R™. Since z & ¢,
one has x > t,. Moreover, since t € R’, one has t, € id", thus € 1d™. Therefore,
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one has z € dt Nd~ and (x,ty) € R. Hence kp/(t < (z,t,)) is an isomorphism
and Kerju(kR/) C Kerkp/(t < (z,t,)) = 0. Therefore, one has Kp; (k) = 0.
O

Remark 2.36. Consider the setting of Lemma [2.32] Since R C R~, Lemma implies
that the multiplicities of the summand kg in the rectangle-decompositions of Kpr(M)
and of M are the same.

Proof of Lemma |2.51 Let i € I. Lemma yields:

M, ~ Km O (€ O0)

Moreover, Lemma ensures that Kr, (M) is rectangle-decomposable. Then, Lemmam
ensures that dim Cg, (Kg, (M)) is equal to the multiplicity of the summand kg, in the
rectangle-decomposition of Kg, (M). In fact, Remark implies that this multiplicity
is the same as the multiplicity of kg, in the rectangle-decomposition of M, which is m;.

Hence the result.
O

2.4 The sum of rectangle filtrates is a direct sum

Recall that M is a pfd and weakly exact persistence bimodule and that its internal
morphisms are denoted by p. : My — M, for any s <t € X x Y. Recall also our choice
of rectangle filtrates (Convention . In this section, we prove that the sum of Mp
for R ranging over all rectangles in X x Y, is an internal direct sum in M.

Proposition 2.37. The sum of (Mg) is a direct sum.

R:rectangle

The proof of the above result is a straightforward adaptation of the proof of Cochoy
and Oudot (2020, Proposition 6.6). As in Cochoy and Oudot (ibid.), we first prove the
result when all the rectangles share the same upper right corner, then that we can always
reduce to this specific case. The following lemma will be instrumental in the proof.

Lemma 2.38. Let N be a pfd and weakly exact persistence module over X XY . Let Ry =
(ef Neiy) x (¢f NE) and Ry = (icf Neiy) x (e NE,) be two rectangles of X x Y
such that (en,¢1) = (cw,¢2) and Ry is a strict subset of Ra. For any t € R, one
has Im"é%t (N) CImp , (N).

Proof. Elementary geometric considerations show that \c; ) \Cil_ and g; ) gf, and that
one of the two inclusions must be strict, i.e. \c; 2 \ci" or g; D) gf. From the first two

=

inclusions and the definition of horizontal and vertical contributions (2.2]), it follows that:

Im\ﬁg,t (N) g Im\il it (N) and :[Hl+

92 »t

(N) CIm/ ,(N). (2.9)

917

From the second two inclusions and the definition of horizontal and vertical contributions,
it follows that:

Im‘;,t (N) C Im,,, , (N) or Im;;t (N) C Imc_ht (N). (2.10)
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From ([2.9) and ([2.10)), we finally deduce:
Imjg%t (N) =TIm,, (N)N Im;; L (N)
C Imfght (V) NIm, ; (N)+Im , (N)N Im;“l,t (N)
= Im]}ht (N).

’
glat

O]

Proof of Proposition[2.37 Let (R;)icping be a finite family of pairwise distinct rectan-
gles, and write R; = (¢7 N¢;™) x (¢;7 N¢~). We show that the sum of the submod-
ules (MR, )ie[1,n] is an internal direct sum in M, i.e that for any ¢t € X x Y, the sum of
the subspaces (MR, t)ie[1,,] s an internal direct sum in M;.

Case where all rectangles have the same upper right corner. Suppose that
the set {(c11,¢1),- -, (cnl, @n)} of upper right corners is a singleton. The proof of Cochoy
and Oudot (2020, Proposition 6.6) can be adapted in a straightforward way, replacing
the words “birth quadrants” by “rectangles with the same upper right corner”. We write
the proof here for the sake of completeness.

First, note the equality Kg,(M) = Kg;(M) of submodules of M for all 1 <i,j <n.
Therefore, we denote this submodule of M simply by K.

It suffices to prove that there is at least one of the R;’s (say Rp) such that the (binary)
sum of Mg, and }_,,; Mg, is a direct sum. Then the result follows from an induction
on the size n of the family. Hence, we prove that for any t € X x Y, we have:

MRl,tm ZMRM =0.
i#1

Let t € X x Y. Since Mg, + = 0 for every i such that ¢t ¢ R;, we can assume without
loss of generality that t € R; for every i € [1,n].

Up to reordering, we can assume that R; has the rightmost left cut and, in case of
ties, that it also has the topmost bottom cut among the rectangles with the same left cut.
Formally, R; is the rectangle whose bottom left corner is maximal in the lexicographical
order on the set of bottom left corners {(ic1,c1),- -, (icn, cn)} induced by the total order
on cuts given by inclusion on their lower parts (Lemma. It follows that R; contains
none of the other rectangles. Those can be partitioned into two subfamilies: the ones
(say Rg,--- , Ry) contain Rj strictly, while the others (Rgy1,- - , Ry) neither contain R;
nor are contained in R;. See Figure for an illustration.

For any rectangle R’ of X x Y, we denote ImE',t (K) by Imj{z,i until the end of the
proof. For every i € [2, k], Lemma [2.38 implies Im;ght C Imp, ;. Therefore, we obtain:

k
> Imf , CImy . (2.11)
=2

For every i € [k + 1,n], we have ic;” 2 ¢ and ¢ € ¢f. Let R = (iey1 Ri — this

rectangle neither contains Ry nor is contained in it. Let now R be the smallest rectangle
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R, |R M,
Ry
'R R
R, Ry
Rs

Figure 2.2: Rectangles partitioned into two subfamilies.
containing both R; and R. We have:

n
Imjgl’t N ( Z Im}gi’t) C Imjght ﬂlm}f{,t = Im;,t C Im}}ht, (2.12)
i=k+1

where the last inclusion follows from Lemma, and the fact that R strictly contains R;.
Combining (2.11)) and (2.12)), we obtain:

k n k n
M0 (z it 3 M) C m, o1 (Zlmﬁi,ﬁ 3 m)
1=2

1=2 i=k+1 i=k+1
k n
_ + + +
- Z ImRnt + Ile»t a Z ImRiyt
=2 i=k+1
C Ile’t .

Meanwhile, Remark implies that Mg, ;N Vg, , (K) = 0. Thus,
Imp (Mg, =Imp (Vg  (K)N Mg, C Vg, (K) N Mg, ;= 0.

Since Mg, + N (3 ;o Mg, ) is contained in both Mg, ; and Imp 4, one has:

n
Mp, 4N <Z MRi,t> & Mpa D Iml_?l,t =0.
=2

General case. Lette X xY. Foreachi € [1,n], let z; € Mg, ;. Denote z =3 " | z
and suppose that z = 0. Let us show that z; = 0 for all ¢ € [1,n]. Again, since z; = 0
for every i such that ¢t ¢ R;, we can assume without loss of generality that ¢ € R; for
every i € [1,n].

Order the collection (cj,¢1) = -+ =< (e, G,) of upper right corners by the lex-
icographical order =< induced by the total order on cuts given by inclusion on their
lower parts (Lemma [2.11). Let (di,dy) < --- < (dg,dg) be the distinct elements
in the ordered sequence. In particular, the point (dg|dg) is the upper right corner
of rectangles with the rightmost right cut and, in case of ties, the topmost top cut.
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Let J = {i € [1,n], (ci,&;) = (dk1,di)} and let us show that for all j € J, one has z; = 0.
A direct recursion will then yield z; = 0, for all i € [1,n].

By maximality of (dg,dy) in the lexicographical order on upper right corners, there
exists u € dp” X dp \ (Upp(di™ x di ). Therefore, for j ¢ J, we have u ¢ Rj,
s0 MR, ., =0, and thus pf'(z;) = 0. Hence,

0= pi(z) = D pila) = Y k(). (2.13)

jeJ

Moreover, for all j € J, we have ¢ € R; and u € Rj, thus py restricted to Mpg, is
injective by Lemma [2.30] Therefore, it only remains to show that, for all j € J, one
has py(z;) = 0.

Since the rectangles of the family (R;);e all have same upper right corner, the first
case ensures that the sum of (Mg;);jes is a direct sum. Yet, the element py(z;) belong
to Mg, . for any j € J, so implies pi'(z;) = 0 for all j € J, which concludes the
proof.

O]

2.5 Rectangle filtrates cover the module

Recall that M is a pfd and weakly exact persistence bimodule and that its internal
morphisms are denoted by p, : My — M, for any s <t € X x Y. Again, recall our choice
of rectangle filtrates (Convention [2.29). The goal of this section is to prove the following.

Proposition 2.39. The (direct) sum of submodules (MR)R:rectangle generates M, i.e.,

M = EB Mpg.

R: rectangle

To prove the above proposition, we first consider the restriction of M to a specifically
constructed finite grid; see Definition This restriction captures all information on
kernels and images of internal morphisms of M accessible from a fixed index t € X x Y
see Lemma [2.40] Then, Lemma [2.44] explains how the rectangle filtrates of the restric-
tion relates to the rectangle filtration of M. These two lemmas, in conjunction with our
rectangle-decomposition result on finite posets (Theorem and the characterization
of rectangle filtrates on finite rectangle-decompositions (Lemma , will prove Propo-
sition [2.39] Theorem then follows as a corollary of Proposition and Lemma [2.30
The proofs of Lemmas and have been postponed to Sections 2.5.1] and 2.5.2]
respectively.

Lemma 2.40. Lett € X xY. There exist natural numbers Ly, Ky, L,, K, and a finite
grid

G = (Ti, Yj) (i yel—Ln Kn]x [~ Lo K] E X XY
such that:

(i) t=(xo,v0),
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(11) foralli € [0, K], we have Ker pgm“ty) C Ker pﬁxi“’ty) and same for vertical kernels
where x; = 400 fori = K, +1 and y; = +o00 for j = K, + 1 by convention (recall

also Convention ,

(11i) for alli € [—Lp,0], we have Im pfxiihty) C Im p'éxi,ty) and same for vertical images

where x; = —o0 fori = —Lj — 1 and y; = —oo for j = —L, — 1 by convention,

() for all x € [ty, +00], there exists i € [0, K}, + 1] such that Ker pgz’ty) = Ker pgmi’ty)
and same for vertical kernels.

(v) for all x € [—o0,ty], there exists i € [—Lp, — 1,0] such that Im pfm p,) = Im p’éxi t)
and same for vertical images.

Definition 2.41. Let t € X x Y. Any finite grid G C X x Y given by Lemma [2.40] is
called t-skeleton of M.

Remark 2.42. Note that the statements |(ii)| and ensure that the indices i given
in and realizing kernels and images of the base module inside the grid—are

unique.
Example 2.43. Figure[2.3]illustrates a t-skeleton when M is the direct sum of rectangle

modules associated to rectangles Ri, Ry and Rg.

Lemma 2.44. Lett € X x Y, let G be a t-skeleton of M and denote M := M. To
any rectangle R = (¢* Né™) x (€' NE ) of G such that t € R, one can associate a
rectangle R = (ict Nerm) x (¢t Ne™) of X x Y such that:

(i) t€R,
(ii) one has:
Kerit(MG) = Kerit(M),
Im\jcg,t(MG) = Imit(M),
and similarly for vertical cuts,
(iii) the map R R is injective.

In particular,
dim Mg, = dim M§ .

We can now prove Proposition [2.39

Proof of Proposition[2.39. Let t € X x Y and let us show that

M= P Mgy (2.14)

R: rectangle

Take a t-skeleton G of M given by Lemma and denote M© := M,g. Notice
that, since ¢t € G by [(i)| of Lemma we have

M, = ME. (2.15)
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(tﬁcay3)

x x x x x x
(tzva)

X X X X X X
(tzvyl)

x X — e Jaoaan: w2

(w-3,t))  (¥-2,t}) (z-1,ty) t = (20, %0) (z1,1y) (z2,1y)
X X X . X X
R
x x x (tz,yfl) x x X Ry
x x x (tzay—Z) x x x
Ry

Figure 2.3: Example of a choice of a grid construction as in Lemma m Dashed
lines denote open boundaries and dashed rectangles denote infinite sides. The
initial point ¢ is denoted by a dot, while crosses denote points on the constructed
grid.

Moreover, since M© is still pfd and weakly exact, it decomposes as a direct sum of
rectangle modules by Theorem

~ @ (kG ) , (2.16)

where the rectangles ﬁ are pairwise distinct rectangles of the grid G, and where the

R > 0 are the multiplicities of the rectangle modules kg

Since G is finite and M is pfd, the set J appearmg in the decomposition (|2 is finite.
Therefore, Lemma implies that for each j € J,

integers m in the decompos1t10n

. G o .
dim (Mﬁj,t) =Mmg,- (2.17)
Besides, since t € G, we can consider the subset J := {j € J|t € Ej}, so that:

dim ( Mt ZmR (2.18)
jeJ

Meanwhile, writing {R;};cs the set of rectangles of X x Y containing ¢, Lemma
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yields an injection ¢ : J < I, such that

dim Mg, ;) + = dim Mz (2.19)

it

We can compute the finite dimensions:

dim (M) dim (M)

2.18
S
R;
jeJ
2.17] .
S i (112 )
Rj,t
jeJ
12.19) .
Z dim (MRL<J‘)¢>
jeJ
= dim @ Mg, 0 |
jeJ

and conclude by the inclusion @jeJ Mg .. + C M, that @jeJ MR, = M. Finally, we

(3)

have
Mt = @MRLU),t - @ MR,t c Mt?
jeJ R: rectangle
which concludes the proof of (2.14]). Hence the result. O

2.5.1 Proof of Lemma 2.40|

Lemma [2.40] is a direct consequence of finite dimensionality, as was Lemma We
write its proof here for completeness. Since M is pfd, the function = € [t,, +oo] —
dim Ker pgx’ty) takes a finite number of values 0 = ng < n; < -+ < ng, < ng,+1 =
dim M;. This function is also increasing, so fixing z¢g = ¢, and vk, 1 = +00, we can
find real numbers z9 < 71 < --- < 2k, < Tk, +1 such that dim Ker pgmi’ty) = n,; for

all 0 <1 < Kj, + 1. We can define similar real numbers for vertical kernels: ¢, = yo <
y1 < - <Yk, < YK,+1 = +oo such that dim Ker pl(fx’yj) = f; where (72;) [0, K, +1] are
the distinct dimensions of vertical kernels.

Similarly, since M is pfd, one has x € [—00,t,] + dimIm p’é% t) takes a finite number
of values 0 = m_p, 1 < m_g, < --- < m_1 < mp = dimM;. This function is also
increasing, so fixing x_r, 1 = —oo we can find real numbers v_;, | < x_p, < --- <
wity) = i for all i € [-Lj, — 1,0]. We can define
similar real numbers for vertical images: —co = y_r,—1 < y_r, < --- < y-1 < ty such

r_1 < zg = t such that dimIm p’é

that dimIm p'étmyj) = my; where (M;);ec[-L,1,0] are the distinct dimensions of vertical
images.

Define finally the finite grid G = {(zi,;), (i,j) € [—Lp, Kp] x [—Lv, K]}, It
remains to show that this grid satisfies the required properties.

First, comes from zg = ¢, and yo = 1.

Second, and are clear from the construction of the grid: spaces associated to
indices are ordered by inclusion and they are distinct if indices are distinct because then
their dimensions are distinct.



76 CHAPTER 2. RECTANGLE-DECOMPOSABILITY IS LOCAL

Third, and are also clear from the construction of the grid: every possible
horizontal or vertical kernel and image has been represented by an index in the grid.

2.5.2 Proof of Lemma 2.44]

Let t € X x Y, let G = (24,Y5) (i j)e[-Ln.Kn]x[~Lo,K,] D€ a t-skeleton of M and de-
note M¢ := M,g. The proof of Lemma is postponed to the end of this section. It
uses the following three lemmas.

Lemma 2.45. To any cut & of (%;)ic[-1,,Kk,] Such that t, € ¢, one can associate a
cut ¢ of X such that:

(i) ty€ci,
(ii) Kerg, (M%) = Ker (M),
(iii) the map ¢ — ci is injective.
A similar result holds for vertical cuts and vertical kernels.

Proof. Any cut éiof (%;)ic[-1,,K,] Such that t,, € &~ can be denoted by ¢~ = (7;)ic[—L, k]
with kp, € [0, K]. This implies

Kerg, (M) = Ker py"", (2.20)
Ker;,(M®) = Ker p\"™ ") (2.21)

with possibly x, 1 = +00. Now, define the cut ciof X by

c” = (=00, zp,| U {35 € Xy Thy+1), Kerpgx’ty) = Kerpizkh’ty)},

=X \er,

(2.22)

and notice that ¢, € ¢, hence @
Let us shovv By Lemma|2.13|applied to M, we can find € ¢~ such that Ker;’t(M) =

Ker piw’ty). Since xy, € e, we can even choose z in ¢~ N [z, , +00), which implies by
t
definition of ¢ that Ker pgw’ty) = Ker pixkh 2 Hence,

Ker,, (M) = Ker pi*") = Ker py"*"") = Kerz,, (MO).

alt

Similarly, by Lemma [2.13| we can find 2 € ¢ U{+00} such that Ker, (M) = Ker pgx’ty).
Since x € e U {400} and t, < zy, € e, we have:

Ker pixkh’ty) C Ker pgm’ty). (2.23)

Moreover, since zy,+1 € ¢ U {+00}, we can lower z if necessary to choose z € e N
(—00, Tk, +1], and then

Ker pgz’ty) C Ker pixk”l’ty). (2.24)



2.5. RECTANGLE FILTRATES COVER THE MODULE 7

By definition of a t-skeleton (Lemma [2.40] [(iv)), there exists i € [0, K} + 1] such
that Ker pgx’ty) = Ker p,gxi’ty). Therefore, Lemma 2.40|@l|combined with (2.23)) and ([2.24))

implies:

Ker p®") = Ker p{™+™) (2.25)

and it finally follows by (2.21)) and ([2.25|) that

Ker;t(M) = Ker pg‘r’ty) = Ker pgxkhﬂ’ty) = Kerg"’t

(ME).
Let us now show Let ¢1# &1 be two cuts of G with t, € ¢rand t, € &1 Write

& = (Ti)ie[=Ln kn]>
& = (i)ie[-Ln.k,]-

Write also ciand 1 the respective cuts associated to ¢land &1 by the previous construction.
Since ¢ # &\, the indices delimiting the cuts must differ: say for instance kj, < kj,, the
other case being similar. Then, it is clear from the definition (2.22) that 23, € ™ \ a7,

and therefore ¢ # .
O

A similar result holds for images, as shown by the following lemma:

Lemma 2.46. To any cut ¢ of ($i)ie[[—Lh,Kh]] such that t, € 1&" one can associate a
cut ic of X such that:

(1) tyeict,
(i) Im‘at(MG) = Im‘m(M),
(1ii) the map ¢ — ic is injective.
A similar result holds for vertical cuts and vertical images.

Proof. Let ¢ be a cut of (z;);c[r, k,] such that t, € ¢t Write i&" = (27)ic[—1, K]
with —lj, € [—Lp,0]. This implies

Im} (M%) =Im pfm_lwty),
G
Im\&,t(M ) =Im pz’v—zh—hty)

with possibly x_;, 1 = —00. We can now define the cut ic of X by

et = {x € (-1, 2—1,], Impfx,ty) = Impléx_lhyty)} U [z_y,,+00),

i =X \ict,

and notice that ¢, € ic™. The rest of the proof is symmetric to the one for ker-

nels (Lemma [2.45]).
O

Finally, we describe the horizontal and vertical contributions associated to the rect-
angle R in Kp(M). Recall that we refer to Kr(M) simply as Kp.
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Lemma 2.47. Fort € R, we have:
(i) Im\jcc,t(KR) = Im\jc[,t(M) N KRy,
(ii) KerZ,(Kr) = Ker,(M)N Kgy,
and similar statements for vertical contributions.

Proof. In this proof we write py = pZ|KR,u for any u <v e X xY. Let us first show

We prove the result on Im/_,(KRg), the other one is similar. By Remark one can
find € 1c” U {—o0} such that:

Im;, (M) = Im Pf

z,ty)’

Im\;,t (Kg) =1Im ﬁfaz,ty) = Pléz,ty) (KR,(z,ty)) :

Denote a = (x,t,). Then, one has:
Iy, (Kr) = sz (KRa) € Im PZ = Im, (M).

Since also pl, (Kp,a) € Kpy, one has Im_,(Kg) C ITm_, (M) N Kg.

Now, let z € Im__; (M)NKp; = Imp,NKpg;. Thereis z, € M, such that z = pf,(z,).
Applying Lemma at the point ¢ and at the point a, one can choose low enough z’ €
e U {+oo} and y € ¢" U {+o0} such that:

Kpr:+ = Ker pgt””y) N Ker pgml’ty),
Kpqo = Ker p((f’y) N Ker p((f/’ty).

Denote ¢ = (tg,y), d = (2/,t,), and b = (z,y). The following diagram will help picturing
the various spaces involved in this proof.

MbHMC

[

M, My > My

Since z € Kry C Kerpf, one has p5(z,) = pf(z) = 0, ie. 2z, € Kerp;. Thus, by
weak exactness of M and Remark there exist 2/ € Kerp? and 2 € Ker p!, such
that 2, = 2/ + 2. Moreover, since z € Kg; C Kerp{, one has pi(z,) = pi(z) = 0,
i.e. 2, € Ker p. Then also 2’ = z, — 2" € Ker p?. Hence 2’ € K, and

2= pa(2a) = po(2) € Py (KRoa) -
Let us now show By Remark there are x4 € ¢t U {400} such that:
Kerit (M) = Ker pgxi’ty),
Kerilt (KRr) = Ker ﬁgxi’ty).
Hence, we get:

Kers, (Kg) = Ker pt"* ") 0 K, = Ker, (M) N Kgy.
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Proof of Lemma|2.44 For each cut composing R (namely 1€, ¢, ¢ and ¢), we can apply
Lemma and Lemma to find a cut (respectively ic, ¢, ¢ and ¢) satisfying the
corresponding wanted equality on kernels or images. Considering the rectangle R =

(ctNem) x (¢t Ne™) of X x Y yields [(i)] and For the equality of dimensions
of the rectangle filtrates, note that:

Kz, (M®) = Kpy(M).

Rt
Moreover, the computations of the filtrations of Kz(M &) and Kr(M) from Lemma
combined with imply:

VE (K (M%) = Vi, (Kr(M)).

Hence dim Mpr = dim Mg.






Chapter 3

Non-existence of other local
characterizations

Based on joint work with Magnus Bakke Botnan and Steve Oudot.

The results from the previous chapter ensure that rectangle-decomposability is a lo-
cal property, meaning that it can be assessed by examining restrictions to commu-
tative squares. Given this, a natural question arises: to what extent can interval-
decomposability be locally determined when allowing for intervals of shapes that are
more general than rectangles?

Outline. In this chapter, we provide two negative answers. In Section [3.1] we show
that interval-decomposability itself cannot be characterized locally, even when testing on
arbitrary strict subgrids. In Section we show that decomposability into a class of
interval modules strictly containing rectangle modules cannot be locally determined by
means of restrictions to squares. In both cases, our analysis uses a specific indecompos-
able module on a finite grid which is embedded and extended to the whole poset using
Kan extensions.

3.1 Interval-decomposability cannot be character-
ized locally on subgrids

In this section, we prove the following result:

Theorem 3.1. Suppose X andY are totally ordered sets with |X| >3 and |Y| > 3, and
let 2 < m < min(|X|,|Y|) be an integer. Then, there exists a pfd persistence module M
over X xY that is not interval-decomposable, but for which M |q is interval-decomposable
for all grids Q of side-lengths at most m.

Our analysis proceeds in three steps: first we introduce an indecomposable persis-
tence module which is “minimal” in the sense that any one of its restrictions to a strict
subposet is decomposable. Then we extend this indecomposable into another “minimal”
indecomposable indexed over the finite grid [1, 7+ 1]?. This time, “minimal” means that
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any one of its restrictions to a strict subgrid is decomposable. Finally, we extend the
analysis to the case of general product posets.

A minimal indecomposable. Let n > 2 be an integer, and consider the poset D,
given by the following Hasse diagram:

1 n-+ 2

2/

n+1

Denote by ¢; the inclusion of the i-th axis k — k", and by §,, the injection into the
diagonal t € k — (¢,...,t) € k". Let M™ denote the persistence module over D, —
which can be easily be seen as a subposet of R?—given by the following diagram:

Lemma 3.2. The persistence module M™ satisfies:
(i) M™ is indecomposable with local endomorphism ring;
(ii) for any i € [1,n+ 1], the restriction M \ gy decomposes as follows:
My = D Kgnsay,
Jeln+1]\{i}

where K(; 10y is the indicator module of the set {j,n + 2}.

Proof. 1t is straightforward to check that M"™ has endomorphism ring isomorphic to k,
which is local. Therefore, M™ is indecomposable. Now, if ¢ = n + 1 then the decom-
position of M3, \ (;y is obvious, while if i € [1,n] then a simple change of basis in the
space M,/ , yields an isomorphism between My, | h and My, \ ¢, 4y via the identifica-
tion Dy, \ {i} =~ D, \ {n + 1}, which brings us back to the case where i =n + 1. O

A minimal indecomposable on a product poset. Given n > 2, define the
following persistence module over [1,n + 1]?, where dotted lines stand for zero maps
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or chains of zero maps, unspecified solid lines stand for identity maps, and dashed lines
stand for chains of identity maps:

k SN | R —— > k" — > k"

S I I

e

N" := K e (3.1)

1

0 >0 >k — k"

. X . 54

0 >0 >0 > k

In more abstract terms, defining the monomorphism of posets:
D, < [l,n+1]?

e: o flnt2-i) (i#£n+2), (3.2)
(n+1l,n+1) (i=n+2)

we have:
N" ~ Ran, M". (3.3)

This can be easily seen from the description of right Kan extensions of persistence mod-
ules as “floor” modules (Botnan and Lesnick, 2018| Section 2.5). More precisely, we have
for all t € [1,n + 1]%

Ny = lm M, (3.4)

where p>; denotes the upset {u € D,, | p(u) > t}. Internal morphisms for s < tin [1,n+
1]? are given by the universality of limits.

To prove that the persistence module N™ defined above is indecomposable, we first
give a proof that left (or right) Kan extensions along fully faithful monomorphism of
posets preserves endomorphism rings of persistence modules.

Lemma 3.3 (Folklore). Let ¢ : P — Q be a fully faithful monomorphism of posets and
M be a pfd persistence module over P. Then, the endomorphism ring of Lan, M (resp.
of Rany, M ) is isomorphic to that of M.

Proof. We prove the result for left Kan extensions, the case of right Kan extensions being
similar. Since ¢ is fully faithful, we have by Mac Lane (1972, Corollary X.3.3) that:

" (Lan, M) ~ M, (3.5)

where ¢* denotes the functor “pre-composition by ¢” going from the category of pfd
persistence modules over () to the category of pfd persistence modules over P. Moreover,
the universality property of Kan extensions gives a natural isomorphism:

Hom(Lan, M, —) ~ Hom(M, ¢*(-)). (3.6)
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Combining these two equations, we get:

End(M) Hom(M, M)

Hom(M, ¢*(Lany, M))

=L

Hom(Lan, M, Lan, M)
= End(Lang, M).

Now, we can prove that N™ is a “minimal” indecomposable.
Proposition 3.4. For n > 2, the persistence module N" satisfies:

(i) N™ is not interval-decomposable;

i) for any strict subgri X ,n + 1]°, the restriction oy B8 interval-
i y strict subgrid X' x Y’ C [1 1]?, the restriction Ny, is interval
decomposable.

Proof. The monomorphism ¢ being fully faithful, Lemma [3.3] implies that the endomor-
phism ring of N is isomorphic to that of M™, which is local by Lemma [3.2] Hence, N"
is indecomposable, and since it is not of pointwise dimension 0 or 1, it is not an interval
module. This proves For since any strict subgrid X’ x Y’ of [1,n + 1]? misses
at least one row or one column of [1,n + 1]?, we will merely show that the restriction
of N™ to [1,n+1]?\ C, where C denotes an arbitrary column of [1,n + 1]?, is interval-
decomposable. Indeed, the result for [1,n + 1]\ R where R is a row of [1,n + 1]? is
obtained analogously, and then the result for the restriction of N” to any strict sub-
grid X’ x Y’ follows by restriction.

A column C of [1,n+ 1]? contains exactly one point of the form (i,n + 2 — i) for an
i € [1,n + 1]. We denote by C; the column containing the point (i, + 2 — ). Hence,
the corestriction of pp,\(;y to [1,n + 1]? \ C; is well-defined. Denote this corestriction
by @i : Dp \ {i} = [1,n+ 1]?\ C;. We can easily see that:

N o, = Rang, (M\%n\{i}) : (3.7)

Moreover, for any j € [1,n + 1] \ {i}, the module Rany, ky; 42} is clearly an interval
module, and in particular the finite direct sum €9 e[t nt1]\{} Rang, k(;,, 12} is pointwise-
finite dimensional. For instance, Rany, ,, k{1 542 is isomorphic to:

A R

0 > 0 N T >k
k
0 >0 >0
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Therefore, using Lemma [3.2] and the fact that pfd right Kan extensions commute with
direct sums of pfd modules (Botnan and Lesnick, [2018, Remark 2.16), we get an interval-

decomposition:
Jelln+1]\{d}
hence the result by (3.7). O

Proof of Theorem Suppose that X x Y is a product of two totally ordered
sets such that |X| > 3 and |Y| > 3, and let m be an integer such that 2 < m <
min(|X|,|Y]). In this setting, there are poset inclusions [1,m + 1] < X and [1,m +
1] <+ Y, and we can consider their product ¢ : [1,m + 1]? < X x Y. We extend the
indecomposable module N™ from to a persistence module over X x Y by taking
its left Kan extension M along 1. The resulting persistence module is simply a “ceiling”
module (ibid., Section 2.5). Specifically, for all t € X x Y we have:

NIy i< # 2,
M, =l N[j_, ~ W<t) = (3.8)

0 otherwise,

where 1<; denotes the downset {u € [1,m + 1]? | ¥(u) < t}. Similarly, the internal
morphisms of m are either trivial, or they correspond to internal morphisms N™.

From Proposition (1) it follows that M is not interval-decomposable. Indeed, if it
were interval-decomposable, then its restriction to [1,m+ 1]? would be as well. However,
this restriction is precisely N™, contradicting that N™ is not interval-decomposable. It
is not hard to check that Mg is interval-decomposable for any finite grid () C X X Y of
side-lengths at most m.

3.2 Rectangle-decomposability is maximal among
local properties

Recall the notations introduced in Section for classes of interval-decomposable mod-
ules. In this section, we prove that rectangle-decomposability is “maximal” among local
decomposability properties in the following sense:

Theorem 3.5. Let X and Y be totally ordered sets and let S C Int(X x Y). Assume
further that there exist {v1 < 2 < x3} C X and {y1 < y2} C Y such that S|, 2 Rec(Qo)
for Qo = {x1, 23} x {y1,y2}. Then, there exists a pfd persistence module M over X xY
such that M is not in (S) but the restriction of M to Q is in (Sq) for all squares Q.

To do so, we will identify an interval in S that is not a rectangle. Then, we construct
a persistence module M over X x Y from this interval. Finally, we prove that M is not
interval-decomposable despite satisfying Mg € <S‘Q> for every square Q C X X Y'; see
Proposition [3.6 Of course, reversing the role of X and Y, one obtains a result for X and
Y two totally ordered sets with |X| > 2, |Y| > 2 and (| X]|, |Y]) # (2,2).
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Intervals of a square. For s <tin X XY, let a := s, b := (sg,ty), ¢ := (tg,sy)
and d := t. In other words, Q! is precisely the square {a,b,c,d} of X x Y. The set of
intervals of Q' is then:

Int(QL) = {{a}, {0}, {c}, {d}, {a. b} {a,c}, {b,d}, {e.d}, {a,b,c}, {bie,d}, {a,be,d}}.

Of these intervals, two are not rectangles: the bottom hook and top hook:

: {a,b,c}, : {b,c,d}.

Hence, for a square @ of X xY', the condition S 2 Rec(Q) says precisely that h1(Q) €
S|Q or hQ(Q) (S S|Q

An interval in S that is not a rectangle. Consider the setting of Theorem [3.5]
and denote:

G = {(mivyj)}(i,j)€{1,2,3}><{1,2} CX xY,

so that Qo = Qgif’yf) is the outermost square of G. By assumption, we have S, 2

Rec(Qo). Therefore, either hy1(Qo) € S|, or ha(Qo) € S|g,- One can assume without loss
of generality that h2(Qo) € S|q,, the other case being dual. By definition of S|, there
is some interval S € S such that ha(Qo) = S N Qo. In particular, we have (z1,y1) ¢ S
while (z1,y2), (x3,y1) and (x3,y2) are in S, thus S is not a rectangle.

Building the counter-example. Consider the following partition of conv(G), which
is the convex hull of G in X x Y (i.e., the set of points z € X x Y such that (z1,y1) <

z < ($3>y2)):
Py = ({z1} % [y1,52]) N S,

Py = ({Zvl}x ylayZ)\Ph

Py = ((z1,23) X (y1,92]) N S, (3.9)
P = (($1,$3) [y1,92]) \ Ps,
Py = {x3} x [y1,y2].

See Figure (left) for a graphical representation of this partition, and Table for a

summary of the comparability of the various sets in the partition.
Consider the subposet P = G \ {(z3,y1)} of X x Y whose Hasse diagram is:

(w1,12) —— (22,2) —— (23,%2)

T T , (3.10)

(1, 91) —— (22,51)

and define a persistence module M over P by the following diagram:
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P

Idy

Figure 3.1: A graphical representation of the partition of the convex
hull conv(G) (left), superimposed with its associated module M (right). The
regions Py, Py, Py, P;, P, of conv(G) are represented respectively by the black
dashed line segment, the blue segment, the red region (including the bottom red
segment), the orange region and the green segment. The nodes of the grid G are
represented as gray crosses.

o el pl Pl p| pl P
7 <] <l o0 O] O
P < O 0
2 O ol o
Py O O
Py <

Table 3.1: Summary of the comparability of the sets partitioning conv(G) defined
in . For 0 <14,j <4, an empty cell indicates that thereisno s € P, and t € F;
such that s < t. On the contrary, a symbol < indicates that there is such s and ¢,
and a symbol [ refines this last case by indicating that such s and ¢ can in addition
(though it is not necessary) satisfy s, < ¢, and s, < t,, or in other words that
there exists a non-degenerate square of X x Y with bottom-left corner in P; and
top-right corner in P;. The correctness of this table is clear.

For any t € conv(G), call 7(t) the unique i € [0, 4] such that t € P;. A direct inspection—
eased by Table yields that 7 : conv(G) — P is a poset morphism. Therefore, one
can define the persistence module M over conv(G) as the pullback of M along 7, that
is, for any s < t in conv(G):

My := Mae) (3.11)
M(s <t):=M(n(s) <7(t)).

We consider in fact the extension of M to X x Y, still denoted by M, with internal
spaces set to be zero outside conv(G) and its internal morphisms to be the obvious ones.
See Figure (right) for a graphical representation of M. Theorem follows from the

next proposition:
Proposition 3.6. The persistence module M satisfies:

(i) M is not interval-decomposable;
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(i) Mg € (S)q) for any square Q C X x Y.

Proof. We first show that M is not interval-decomposable. Let 6 € End(M). For s <t
in conv(G) such that 7(s) = 7 (t), i.e located in the same set P;, we have that M (s <
t) = Idyy, by definition, so the naturality of 6 yields a commutative square:

M, 4 M,

o e

M, 4 M,

and 65 = 6, in that case. Moreover, the module M vanishes outside conv(G), so does 6.
Thus, any 6 € End(M) is entirely determined by its values on the subposet P of X x Y
defined by . Since M|p is isomorphic to M , which has an endomorphism ring
isomorphic to k by a direct verification, the persistence bimodule M itself has endomor-
phism ring isomorphic to k, which is local, hence M is indecomposable. Since it is not
of pointwise dimension 0 or 1 either, it is not interval-decomposable.

We now prove that the restriction Mg to any square @ of X x Y belongs to (S|g)-
By assumption, we have Sjg 2 Rec(Q), so for M|g to belong to (S)g) it is sufficient
(though not necessary) that Mg be rectangle-decomposable. Note also that @ can be
written as Q = Q, for two points s and ¢ in X x Y. Since degenerate squares yield
one-parameter persistence modules, which are known to be interval-decomposable, we
are left with the case where s, < t, and s, < 1.

Assume first that s ¢ conv(G) or t ¢ conv(G). We claim that Mg is rectangle-
decomposable in this case. Indeed, as any other pfd representation of the square, M, Qt
is interval-decomposable, and it is then sufficient to prove that the interval summands
of M cannot be hooks. Assuming without loss of generality that ¢ ¢ conv(G) (the
other case being similar), we have that at least one point among (s, t,) and (¢, s,) does
not belong to conv(G), for otherwise we would have 1 < t, < 23 and y1 < t, < yo
hence t € conv(G). Thus, M, (gt has at least two zero internal spaces, which implies that
its interval summands cannot be hooks. This proves our claim, and so Mgt € <S\Q§>-

Assume now that both s and ¢ are in conv(G). Several cases are to be considered,
corresponding to the cells containing the symbol OJ in Table [3.1}

Case s € F.

o If (s2,ty) € Py, then My = M,y = 0 and no hooks can appear in the interval-
decomposition of M QL which is therefore rectangle-decomposable.

o If (sz,ty) € P1, then M)q: is of one of the three forms:

BN IR ¢

|




3.2.

which happen when ¢t € P3 for the first two with (¢;,s,) € P» for the first
and (tg,sy) € P3 for the second, and when t € P4 for the last one. The first
one is rectangle-decomposable. For the last two, we have s € S (since s € P)
while the points (sz,t,), (tz,sy) and t are in S, hence ho(QL) € Sjqt- Since the
modules in are clearly interval-decomposable with interval summands being

RECTANGLE-DECOMPOSABILITY IS MAXIMAL

rectangles or top hooks, we do have that M q: belongs to <S‘Qg>.

Case s € P;. The restriction Mgt is then of one of the following forms:

k

K—
1)

which happen respectively when t € P for the first and ¢t € P4 for the second. They are

(1)

(

k? k
[Idk2 Idk
k2 k

both clearly rectangle-decomposable.

Case s € P,.

o If t € Py, then Mth is of the form:

which is clearly rectangle-decomposable.

1d
k Lk
Idy k

o If t € P53, then M|Qt is of one of the following forms:

(tx, Sy) eEP

Kk —2 5 K2 k —— Kk
(82:ty) € P2 | 14, [((1)) Tdi Id, 2
T o
k2 Idk2 k2 Id, 2 k2
(52:ty) € Py (é)[ [(6) (5) ez
k ——k k —— k?
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which are all rectangle-decomposable except when (s, t,) and (t;,sy,) are both
in P3 where a top hook summand appears. In that case, s € S. In fact, s € P»
with s, # yi1 since (t;,s,) € P3. Meanwhile, the points (sz,ty), (tz,sy) and t are
in S. Hence, ho(Q') € Sq¢ and we do have Mgt € (Siqt)-

o If t € Py, then M|Qt is of one of the following forms:

k——k k2 ———"7 , k
Idy [Idk ( (1) ) [ [Idk
k Idxk k k Idy k

which happen respectively when (sg,t,) € P> and (sz,t,) € P3 and are both
rectangle-decomposable.

Case s € P3. Then M, Iqt s of one of the following forms:

Idy2 (10)

k? k? k? k
Ide [ [Ide Idk2 [ |Idk
2 2 2
K —— - k k ST R

which happen respectively when ¢t € P53 and ¢t € P, and are both rectangle-decomposable.
Thus, we have shown that M is indecomposable, while Mg € <S‘Q> for every square @)
of X x Y. This concludes the proof. O



Chapter 4

Applications to topological data
analysis

Based on joint work with Magnus Bakke Botnan and Steve Oudot.

In this chapter, we explore two applications of our rectangle-decomposition result to topo-
logical data analysis. First, we provide an algorithm to check whether a module induced
in homology by a two-parameter filtration is rectangle-decomposable, and to decompose
it in the affirmative (Section. Second, we show how rectangle-decomposable modules
arise from real-valued functions on a topological space (Section .

4.1 Checking rectangle-decomposability and com-
puting decompositions

Persistence modules are typically obtained by applying homology to a filtered topological
space. In this section, we study the persistence modules produced by the application of
homology to finite two-parameter simplicial filtrations, and we provide algorithms for
determining whether the persistence module is rectangle-decomposable, and if so, for
decomposing it. Our ability to locally characterize rectangle-decomposability will be
critical to the algorithm determining decomposability. Furthermore, our decomposition
algorithm employs an inclusion-exclusion formula to calculate the multiplicities of rectan-
gle summands from the rank invariant, which also allows us to establish the completeness
of the rank invariant within the class of rectangle-decomposable two-parameter persis-
tence modules. This fact is not true for general two-parameter persistence modules, as
shown by the following example:

« (6) 2 o N (1) 2 o
0| (5)[ 1[ 0| (5)[ 1[ (4.1)
0—% >k —1 >k 0—2 >k —1 Lk

91
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The persistence module to the left can easily be seen to be composed of two interval
summands in the 3 x 2 grid. By contrast, the persistence module to the right is inde-
composable. However, the two modules have the same rank invariant.

Outline. We start by introducing simplicial filtrations in Section[d.1.1] Then, we prove
the completeness result of the rank invariant and state our inclusion-exclusion formula
in Section Next, we describe an algorithm to compute the rank invariant from a
finite two-parameter simplicial filtration in Section [£.1.3] Together with our inclusion-
exclusion formula, it provides a fast algorithm to compute rectangle-decompositions of
rectangle-decomposable modules. Finally, we describe an algorithm to check rectangle-
decomposability of persistence modules induced in homology from finite two-parameter
simplicial filtrations in Section [4.1.4

4.1.1 Simplicial filtrations

In this section, we set our notations on simplicial complexes and filtrations. We also give
examples of filtrations used in applied contexts.

A (finite) abstract simplicial complex IC, or simply a simplicial complez, is a finite
collection of non-empty finite sets that is closed under taking subsets. An element o € K
is called a simplex, and subsets of o are called faces of 0. The inclusion between simplices
induces a partial order on K that we denote simply by

Until the end of this section, we let I be a finite simplicial complex and X; x
... X X;n € R™ be considered as a poset for the coordinatewise order. A simplicial m-
parameter filtration of K indexed over X1 X ... x Xp, is a family F = (Ft);c v, . xx,, of
subcomplexes F; C K that is increasing with respect to inclusions, i.e., such that 7, C Fy
forany t <t € Xy x ... x X,,,. While the term filtration usually refers more generally
to an increasing family of topological spaces, we assume for convenience in the rest
of the chapter that filtrations are simplicial filtrations, that is, composed of simplicial
subcomplexes. From now on, we do not refer explicitly to X when it is clear from the
context.

Many filtrations can be introduced by considering sublevel sets of functions:

Example 4.1. Let f : K — R™ be a non-decreasing map, i.e., such that f(o) < f(7) for
any 0 < 7 € K. The map f induces an m-parameter filtration of IC called sublevel-sets

filtration, denoted by and formed by the subcomplexes (Fy); ={o €

K; f(o) <t} for any t € R™. We sometimes refer to the function f as the filtration
function of F;.

A lot of information on the geometry of a point cloud is captured by its Cech complex:

Example 4.2. Let X C R? be finite. The Cech complez at scale v > 0 is the simplicial
complex defined as follows. For (zg,...,z;) € XFT1 the simplex {zq,..., 7z} is
in CT(X) if the intersection of closed balls ﬂfzog(xl, r) is non-empty. The filtered Cech
complex, or Cech filtration, is defined at each r € R as the Cech complex at scale r
for r > 0, and as the empty set for r < 0.
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A common technique in multi-parameter persistence is to couple the Cech complex
with some function on the data. Typically, one copes with outliers by coupling a Cech
filtration with a density estimator built from the data at hand; see Vipond et al. (2021)
for instance. This falls under the framework of function-Rips (Carlsson and Zomorodian,
2009; Lesnick and Wright, 2016)) or function-Cech filtrations:

Example 4.3. Let X C R? be finite and f = (f1,..., fim) : X = R™ be a bounded
function. The function—éech filtration of X associated to f is the (m + 1)-parameter
filtration of 2% defined for r € R and t = (t1,...,t,) € R™ by:

G(Xa f)(r,t) = {U € CT(X)v ogC fi_l(—OO,ti], Vi<i< m} .

Let F be an m-parameter filtration and o € K. The support of o is the set [supp(o)|:=
{t e Xi x...x X,,; 0 € F}. A filtration is called one-critical if the support of any
simplex o is of the form:

supp(0) = Qo) = {t € X1 X ... x X5 t > t(0)},

for some t(o) € X3 x ... x X,;,. For instance, function-Cech filtrations are one-critical.
On the contrary, the degree-Rips bifiltration is not (Lesnick and Wright, |2016). Note
that sublevel-sets filtrations are one-critical. Conversely, any one-critical filtration is a
sublevel-sets filtration for the function f : o0 € K — t(o).

Applying the p-th simplicial homology functor to an m-parameter filtration F yields
a pfd persistence module indexed over X7 X ... x X, called p-th persistent homology of

F and denoted by

4.1.2 Completeness of the rank invariant

The rank invariant is proven to be a complete invariant of one-parameter persistence
modules in Carlsson and Zomorodian (2009)). This can be easily verified for pfd persis-
tence modules indexed over a finite set [1,n]. In this setting, the following inclusion-
exclusion formula, also known as the persistence measure (Chazal, De Silva, et al., 2016;
Cohen-Steiner, Edelsbrunner, and Harer, |2007)), gives the multiplicity m(s,t) of any in-
terval [s,t] in the barcode of a persistence module M in terms of its rank invariant
r:[1,n]? — No:

m(s,t) =r(s,t) —r(s—1,t) —r(s,t+1)+r(s—1,t+1). (4.2)

In this section, we adapt this inclusion-exclusion formula to the two-parameter set-
ting. Namely, we prove the following:

Theorem 4.4. Suppose that X and Y are subsets of Z. The isomorphism type of any
pfd rectangle-decomposable persistence module M over X x 'Y is fully determined by the
rank invariant of M.

Proof. Without loss of generality, one can assume that X x Y C Z? is a product of (po-
tentially infinite) integer intervals {ns,..., Ny} X {ny,..., Ny} for some integers —oco <
ng < Ny < 400 and —oo < n, < N, < +oo.
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We start by computing the multiplicity m(s,t) of the summand K, . ]x[s,.¢,] i the
decomposition of M for all indices s <t € X x Y. Fix arbitrary indices s <t € X x Y.
Recall that the rank of (A @ B)(s < t) is equal to the sum of the ranks of A(s < t)
and B(s < t). Meanwhile, for any summand kg of M, the rank of kr(s < t) is 1 if
s,t € R and 0 otherwise. Therefore, r(s,t) counts (with multiplicity) the number of
summands of M whose rectangle support contains both s and ¢.

Then, denoting by m(s,t") the number of (rectangle) summands whose support con-
tains ¢t and has s as lower-left corner, we have the following inclusion-exclusion formula:

m(s,tT) =r(s,t) —r((sz — 1,8y),t) = r((82,8y — 1), ) +7((sx — 1,8, — 1),1). (4.3)

This formula can be interpreted as follows: a rectangle containing ¢ has s as lower-left
corner if and only if it contains s but neither (s, — 1, s,) nor (s, s, —1); and it contains
both (s, —1,s,) and (s;, sy — 1) if and only if it contains (s; — 1,5, — 1).

Using the same approach at ¢, we can now compute the number m(s,t) of summands
of M whose support has s as lower-left corner and ¢ as upper-right corner (i.e., is the

rectangle [sz,t;] x [sy,ty]). The corresponding inclusion-exclusion formula is:
m(s’ t) = m(s, t+) - m(sa (tét + 1a ty)+)
(4.4)
—m(s, (ta,ty + 1)) +ms, (t + Lty + 1)7).

Combining (4.3) and (4.4)) together gives the desired inclusion-exclusion formula for the
multiplicity m(s,t) of the summand K(s, to] % [sy,t,] 11t the decomposition of M from the
rank invariant, namely:

m(s,t) =r(s,t) —r((se — 1,8y),t)

((sx, sy — 1), ) + 7‘(( — 1,8, — 1),t)
—7(s, (te + 1,ty)) +7((s2 — 1,5y), (tz + 1 ty))

+1r((sz, 8y — 1), (ta + 1,ty)) — r((s0 — —1),(tz + 1,¢))

(4.5)

=7 (s, (tas ty + 1)) +7((s0 = 1,8y), (tas ty + 1))

+7((s2,8y — 1), (tas ty + 1)) = r((52 — 1,8y — 1), (tar ty + 1))
(s, (tp + 1, ty—l—l)) ((sx—l,sy),(tx—i—l,ty—i—l))

((sm, sy — 1), (ta + 1,8, + 1)) + r((sm — 1,8y — 1), (ty + 1,8, + 1))

From now on, we can assume that M does not contain any summand with finite
support in its decomposition. Again, let s <t € X x Y. In that case, the multiplicity
of the summand Ky, 4o]x[s,.t,] 15 SImply equal to m(s, (sz,t,)") — m(s, (sz,t, +1)7),
that is, the number of summand of M whose support R has s as lower-left corner,
contains (sg,t,) but does not contain (sz,t, + 1). Indeed, such a rectangle R must
project onto [s,,t,] via the canonical projection X xY — Y and thus onto [s,, +-00] via
the projection X x Y — X since M does not contain any summand with finite support.
Similarly, the multiplicity of the summand K, ¢, ]x[s,,+o00] 11t the decomposition of M is
equal to m(s, (tz, sy)*) —m(s, (tz + 1, s,) 7).
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From now on, we can assume that M does not contain any summand of the form ki, ¢.1x[s,,+oc]
or K5, +oo]x[sy.t,] 11t its decomposition. Then, for any s € X x Y, the multiplicity of the
summand K[, 4 oc]x[s, +o0] il the decomposition of M is equal to m(s, (s + 1,5, +1)T).

Proceeding similarly, one can count the multiplicities of the summands of the form Ky 1, ]x[s,.t,]
Ko ta] x[~o0ity] A0 K[ oo t,]x[~o00,t,] 11 the decomposition of M.

The number of remaining summands is the multiplicity of the summand k2. ]

4.1.3 Computing the rank invariant and rectangle-decom-
positions

Let F be a two-parameter filtration of a simplicial complex K indexed over a finite grid.
Assume that K has n simplices in total. Without loss of generality, one can assume
that F is indexed over the grid G = [1,n] x [1,n], for any larger indexing grid must
contain inclusions that are equalities, and any smaller grid can be enlarged by repeating
some spaces of the filtration. Assume further that each inclusion F; ;) € F(i4q ;) or
Fij) C© Fij+1) 1s either an equality or the insertion of a single simplex. We also fix a
homology degree p. In this section, we prove the following:

Theorem 4.5. Given the above input, the rank invariant of the p-th persistent homology
of F can be computed in O(n*) time.

A proof of this result can be found in D. Morozov (2008, Section 4.4.2). We reproduce
it below for completeness, with a slight adaptation that allows us to avoid assuming that
F is one-critical. Before giving the proof, let us mention that this theorem, combined
with the inclusion-exclusion formula , gives a O(n*)-time algorithm to compute the
rectangle-decomposition of Hy(F) assuming that this module is rectangle-decomposable:
once the rank invariant of Hy,(F) has been computed, iterate over all pairs (s,t) with
s <t € G and, for each one of them, apply the formula in constant time to get the
multiplicity of the rectangle module kg, ;. 1x[s,.t,] 1t the decomposition of H), (F). Thus,

Corollary 4.6. Computing the decomposition of a rectangle-decomposable module in-

duced in homology by a two-parameter filtration with n simplices in total can be done in
O(n*) time.

This complexity compares favorably to that of the currently best known algorithm
for computing direct-sum decompositions of general two-parameter persistence modulesEl,
which is O(n?**1) where 2 < w < 2.373 is the exponent for matrix multiplication (Dey
and Xin, 2022)).

Proof of Theorem 4.5 First, we provide a simplified algorithm that runs in O(n?*%) time.
Consider all the paths of the form (1,1) = --- — (4,1) = --- — (4,j) = --- = (n,j) —

- — (n,n) in the n x n grid, where (i,7) € [1,n]? is arbitrary, as illustrated in Fig-
ure (left). We call such a path a stair, denoted by S(; ;,
index (7, j) its nosing. Note that all the stairs whose nosing is of the form (i,1) or (n, j)

and we call the corresponding

ILet us also point out that our approach does not suffer from the limitation of the algorithm
of Dey and Xin (2022), which is that no two generators or relations in a minimal presentation
of M can have the same grade.
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(1,1) (1,1) (1,1)

Figure 4.1: Left: the stair S; ;). Center: transitioning from S ;) to S(it1,5) via a
sequence of O(n) intermediate paths with 2 steps each. Right: transitioning from
S t0 St

are in fact identical to the path (1,1) — --- — (n,1) — --- — (n,n), while all the
other stairs with different nosings are different. The key observation is that, for any pair
of comparable indices (i,j) < (i/,5’), the stair with nosing (i, j') passes through both
indices. Computing the rank invariant can then be done by iterating over all the stairs,
for instance in lexicographical order of the coordinates of their respective nosings, and
for each such stair S ;), by computing the persistence barcode of the one-parameter
restriction F| Sii g and then using this barcode to report the ranks between all the grid
indices encountered along the path. This takes O(n®) per stair, using the one-parameter
persistence algorithm based on fast matrix multiplication (Milosavljevi¢, D. Morozov,
and Skraba, 2011), and as there are O(n?) stairs in total, the overall running time of the
algorithm is O(n?™*).

In order to reduce the overall complexity to O(n*), we exploit the additional obser-
vation that, to transition between two consecutive stairs in lexicographical order of the
coordinates of their nosings, say S(; ;) and S(;11 ;), one can go through a sequence of O(n)
intermediate paths of the form (1,1) — --- — (i,1) = -+ = (i,k) = (i + 1L,k) —» -+ —
(i+1,j) = -+ —=(n,j) = -+ = (n,n), where k ranges from 2 to j — 1, as illustrated in
Figure (center). Any two consecutive paths in this sequence differ only at a single cell
of the grid [1,n]?, therefore the restrictions of F' to these two paths either do not differ,
or differ by one simplex being inserted one step earlier or later, or by two consecutive
simplex insertions being exchanged. In any situation, the persistence barcode can be
updated in O(n) time using the vineyards algorithm (Cohen-Steiner, Edelsbrunner, and
D. Morozov, |2006). The update of the barcode from S(; j) to S;41 ) then takes O(n?)

time. Likewise, we can compute the barcode of F| Sa, by transitioning from S(; j) via

J+1)
an intermediate sequence of O(n) paths differing at a single cell in the grid each time,
as illustrated in Figure (right). Thus, the barcode of Flg, .., is also obtained in
O(n?) time, and so the overall running time of the algorithm is reduced to O(n*). This

concludes the proof of Theorem O

4.1.4 Algorithm for checking rectangle-decomposability

As in Section[4.1.3] consider a two-parameter filtration F indexed over a finite grid with n
simplices in total. Again, let us assume without loss of generality that F is indexed over
the grid G = [1,n] x [1,n]. We further assume that each arrow F; jy € F;y1 ;) or
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Fiij) © Flj+1) 1s either an identity map or a single simplex insertion, and we fix a
homology degree p. In this section, we address the following question: given this input,
how fast can we check whether the persistence bimodule M induced in p-th homology
decomposes into rectangle summands?

An obvious solution is to first decompose M from the data of F, then to check
the summands one by one. As explained in Section the currently best known
algorithm for decomposition runs in time O(n?¥*1), where 2 < w < 2.373 is the exponent
for matrix multiplication (Dey and Xin, 2022)). The advantage of the weak exactness
condition (Definition is that it can be checked locally, which reduces the total running
time to O(n?*%):

Theorem 4.7. Checking the rectangle-decomposability of the bimodule induced in homol-
ogy by a two-parameter filtration of a simplicial complex with n simplices can be done in
O(n**%) time.

Proof. First, we sketch the algorithm:
(i) Compute the rank invariant r : [1,n]? x [1,n]? — Ny of M.

(ii) Compute invariants for kernels and images, denoted by  : [1,n]? x [1,n]?> —
No and ¢ : [1,n]? x [1,n]?> — Ny respectively, which return the dimensions of
Kor pgsI,ty) + Ker pgtz,Sy) and of Im P’E p,) N1Im p’étz 5,) Tespectively at indices s <,

Sz,

and zero elsewhere.

(iii) For each pair of indices s < ¢, check whether r(s,t) = u(s,t) and r(s,s) —
r(s,t) = k(s,t). If any such equality fails, then answer that M is not rectangle-
decomposable. Otherwise, answer that M is rectangle-decomposable.

We now provide further implementation details and analyze the algorithm on the fly:

Step (i) has already been detailed in Section and runs in O(n?) time.

Step (iii) obviously runs in O(n*) time, and its correctness comes from the commu-
tativity of the square in Definition Indeed, commutativity implies that Im p% C
Im p'ész’ty) NIm pftz,sy) and Ker pgs’“"ty) + Ker pgtm’sy) C Ker p%, so checking weak exactness
for this square amounts to checking equality between the dimensions of the various spaces
involved, hence the equations.

Step (ii) proceeds as follows. We first compute, for each ¢t = (j,1) € G, the barcode of
the zigzag moduleﬂ induced in homology by the following zigzag of simplicial complexes

where arrows are inclusions:

Fop— =iy F =TG-y =—Fun- (4.6)
We then do the same with the following zigzag, for each s = (i, k) € G:

Flpy <" <~—Flip+1)~—Fs —=Flig1h) — " —= Flnp) - (4.7)

Then, we use the following simple claim:

2A  zigzag module is a persistence module indexed over a poset of the form
° ° e . where double-headed arrows mean that the actual arrows can be
oriented either forward or backward. Such modules always decompose into direct sums of interval
modules (Botnan, 2017; Carlsson and De Silva, 2010)).
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Claim 4.8. Consider the following commutative square (left) and pfd persistence bimod-
ule indexed over it (right):

J

o —>e, C——D
{ T B Y
o, —> o A2 B

Then:

dim(ImyNImd) = #{intervals with support {b,c,d} in the barcode

of the zigzag C—6>D<LB},

dim(Ker o + Ker ) = dim(A4) — #{intervals with support {a,b,c} in the
barcode of the zigzag C S A—2>B } .

First, let us show that Claim [4.8] allows us to conclude. This claim ensures that
in our situation, for each indices (i,k) = s < t = (j,1), the dimension of Im p@. p N
Im p’éj }y 1s given by the number of intervals in the barcode of (4.6 that span the sub-

zigzag F(; ) — Ft < F(j) - Dually, the dimension of Ker pgi’l) + Ker pgj’k) is given
by r(s,s) minus the number of intervals in the barcode of that span the sub-
zigzag ./."(1'71) - fs — ‘F(jJC) .

Regarding the running time: since the zigzags — involve O(n) simplex in-
sertions and deletions each, their barcode computation takes O(n*) using the algorithm
based on fast matrix multiplication (Milosavljevié, D. Morozov, and Skraba, |[2011). Then,
each barcode having O(n) intervals, the computation of the dimensions and their storage
in tables of integers representing the invariants x and ¢ takes O(n). This is true for each
choice of indices s < ¢, hence a total running time in O(n?** 4 n3) = O(n?**).

All that remains is to prove Claim We only prove the first equality, as the second
one follows by duality. Take an interval-decomposition of the zigzag C 2. p<' B )
and pick a basis (1, -+, &) of D that is compatible with this decomposition. This means
that each basis element &; lies in the span of a unique interval summand of the zigzag
at D. Then, by restriction we have:

& elmy <= & € Span (summands with support {b,d})

+ Span (summands with support {b, c,d});

& €elmd < & € Span (summands with support {c,d})
+ Span (summands with support {b,c,d}).
The spans of distinct summands being in direct sum in D, we deduce that
& elmyNImd < & € Span (summands with support {b, ¢, d}).

Hence the result. O
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Figure 4.2: A function f on a topological space (left) and the associated interval-
decompositions in level-sets persistent homology in dimensions 0 and 1 (right).

4.2 Homology pyramids and the strip

In this section we shall extend the block-decomposition theorem (Theorem to per-
sistence modules that are strongly exact on certain “strip” subsets of the plane (Theo-
rem . As we shall see, such persistence modules arise naturally in the context of
topological data analysis.

4.2.1 Introduction

The interest in block-decomposable modules originated in the study of level-sets persis-
tent homology. Specifically, for a topological space A and a continuous function f: A — R
one defines the persistence module M (f) indexed over AT := {(z,y) e RP xR : z < y}
as:

PP )ay) = Hy ({a € A; 2 < fa) <y}).

It follows immediately from a simple Mayer-Vietoris calculation that M (f) is strongly
exact (Cochoy and Oudot, 2020) in the following sense:

Definition 4.9. A persistence module M over a subset Q C R? is strongly exact if for
any s < t in @, such that (s;,t,) and (¢, sy) are also in @, the following sequence is

exact:

(tz,sy) o (sx,ty) o —pt
Ps Dps (sz,ty) (tz,sy)
My ———— M5, 1,) ® M, 5,) —— M.

Furthermore, assuming that M(f) is pfd, it is interval-decomposable where each
interval I is of the form I = BN A™, and where B is a block in R x R; see Botnan and

Crawley-Boevey (2020)) and Cochoy and Oudot (2020)). See Figure for an example of

a real-valued function and the associated intervals.
The domain of M (f) can be extended by considering relative homology. To see this,
consider the poset consisting of all pairs of open sets (u,v) of the form,

((x,y),@) ((%,OO),(y,OO)) ((_Oo7y)7(_oovx)) (R7 (—oo,x)U(y, OO)),

where —oo < x < y < oo are chosen such that u # @. The persistence module M(f)
is extended by defining M (f) ) = Hp(f " (u), f~1(v)). Moreover, after re-scaling and
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reversing the horizontal arrow (see also Remark |4.16)), the module M (f) can be seen as
a persistence module over the pyramid poset P defined as:

: {(.’E,y) € (_1’1)2’ 2] + Jy| < 1} \ {(l‘,y) € (—1,1)2, T+y= —1}.

See Figure [4.3] for an illustration. We shall refer to the resulting persistence mod-
ule € Per (P) as the (continuous) homology pyramid (in dimension p).

H, (X, f7(=00,c1) U f(e3,+00)) Hy (fHer, +00), [ (e3,+00))

—0o0

H, (f~!(—00,¢3), f (=00, 1)) o H, (7 (e1,¢3),9)

Figure 4.3: In dark grey, the homology pyramid of Bendich et al. (2013, pp. 6, 7)
(up to rotation). Up to rescaling and reversing the horizontal axis, the underlying
poset corresponds to the pyramid poset P.

Define the strip to be the subposet St C R? given by

S={(z,y) |y<z+landy >z —1},

or equivalently, all points situated on and between the two linesy =z +1andy =z —1.
Concatenating translations of pyramids we obtain our main object of study. Specifically,
for a non-negative integer k, let : {peR?|p+(k,k) € P}, and for 0 < m < oo,

o |- {UOSkSmP(k) if m < oo,

Figure illustrates the process of constructing Ste.
As was first noted by Carlsson, De Silva, and D. Morozov (2009), the boundary maps

in the relative Mayer-Vietoris sequence can be used to connect homology pyramids of
consecutive dimensions if one flips every other pyramid. In particular, m + 1 consecutive
homology pyramids assemble into a persistence module over St,,. Figure illustrates
this procedure and shows the interval-decomposition of M (f) € Per (Sty) associated to
the function f from Figure 4.2

Remark 4.10. We remark that care must be taken in verifying that the resulting persis-
tence module M(f) over Sty is well-defined. The reader should consult Bauer, Botnan,
and Fluhr (2021) for a careful construction of M(f), and a direct proof of an associated
structure theorem.
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Figure 4.4: The homology pyramids and the corresponding M(f) € Per (St.,) of
the function in Figure .2}

In this section, we prove the following:

Theorem 4.11. Let 0 < m < oo and M € Per(Sty,) be pfd, strongly exact and trivial
when restricted to indices on the boundary components y = x+1 andy =x—1. Then M
is interval-decomposable where each interval I is of the form I = RN Sty,,, where R is a
mazximal rectangle supported on the interior of St.

Here mazimality is meant in the following sense: if R € S C R? where S is a rectangle
supported in the interior of St, then R = S.

Remark 4.12. Note that the homology pyramid is trivial on the boundaries y =z + 1
and y = x — 1, as the corresponding vector spaces are given by the relative homology of
preimages of pairs of the form ((z, 00), (z,00)) and ((—oo, x), (—00,x)), respectively. In
particular, Theorem [£.11|for m = 0 gives a structure theorem for pfd homology pyramids.

Remark 4.13. A proof of Theorem for m = 0, under the assumption that the per-
sistence modules are determined by a finite subset of P, first appeared in work by Ben-
dich et al. (2013), following ideas from Carlsson, De Silva, and D. Morozov (2009)). An
alternative proof in that setting was given in Botnan, Lebovici, and Oudot (2022) us-
ing Theorem [2.3] A proof of Theorem for m = oo, under the assumption that M
is sequentially continuous, can be found in recent work by Bauer, Botnan, and Fluhr
(2021).

Outline. The proof of Theorem [4.11] goes as follows. First, we prove that if a per-
sistence module indexed over the strip is strongly exact and vanishes on the boundary
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of the strip, it is rectangle-decomposable with only maximal rectangles appearing in its
rectangle-decomposition (Lemma . Then, we prove that any persistence module
over St,, decomposes as a direct sum of three persistence modules: one that is strongly
exact and extends to a module vanishing on the boundary of the strip, and two block-
decomposable modules (Lemmas and . The result then follows from restricting
to St,, and using the observation that a module is isomorphic to the restriction of its
extension.

4.2.2 Proof of Theorem (4.11]
We now prove Theorem This lemma, is fundamental.

Lemma 4.14. Let M be a strongly exact and pfd persistence module over St such that
M s trivial when restricted to the boundary components y =x+1 andy =x — 1. Then
M is interval-decomposable and each interval is a mazximal rectangle on the interior of

St.

Proof. Since M is trivial on the boundary components, we may extend M to a persistence
module over R? by defining M,, = 0 for all p not contained in St. By virtue of Theorem
it suffices to show that the extension to R? is weakly exact. This is not hard to see:
consider s and ¢ as in Definition 2.1} Then, by assumption, M can only fail to be weakly
exact if (sg,t,) or (tz,sy) is not contained in St. However, in that case,

0=1Imp! = Imp’(ftxﬁsy) N Impfsl"ty),

M, = Ker pi = Ker pgtz,sy) + Ker pgsz,ty).

Hence, M is weakly exact. Furthermore, since the extension of M is trivial outside of St,
any rectangle R in the decomposition of M must be necessarily be supported on a subset
of St.

We now show that R is maximal. Write R = (a,b) x (c,d) where (a,b) denotes an
interval in R with left and right endpoints given by a and b, respectively, e.g., [a,b)
or (a,b). Assume that the point (b,c¢) € R? is not on the boundary of St. Then, we
can choose s and ¢ such that the square Q) = {s;,t,} x {sy,t,} is contained in the
interior of St and RN Q% = {(sz,ty)}. In particular, the sequence in Definition
associated to Q) has a summand of the form 0 — k — 0, contradicting that the sequence
is exact. Symmetrically, the point (a,d) € R? must be contained in the other boundary
component. ]

We now describe a procedure to extend M € Per (St,,) to a persistence module over St
by means of left and right Kan extensions. In order to ensure that the extension is trivial
on the boundary components we shall consider the poset [St. | given by the union of St,,
with the two boundary components of St. The extension works as follows:

(i) Extend M € Per (St,,) to M € Per (St2,) by defining the module to be trivial on
the boundary components.

(ii) Extend to Rany,(M) € Per (St3) by a right Kan Extension along the inclusion
@:Sth — Stl.
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(iii) Extend to := Lany(Ran,(M)) € Per(St) by means of a left Kan extension
along v : Stgo — St.

The fact that (M)|Stm = M follows from Riehl (2017, Corollary 6.3.9) as both of the

Kan extensions are computed pointwise along a full functor.

Remark 4.15. Recall from Section that vector-space duality defines a contravariant
functor D : Per(P) — Per(P°P) that satisfies DDM ~ M for any pfd persistence module
M. This functor sends strongly exact modules to strongly exact modules.

In the proofs, we shall make use of the following notation,

N:={(z,y) € (0,1)%, z+y < 1},
N:={(z,y) € (—m—1,-m)* ,z+y>—1-2m},

and we shall denote the union of each of these subsets with the boundary components of

St by E and @, respectively.

Remark 4.16. In the following we shall make use of results from Botnan and Crawley-
Boevey (2020) and Cochoy and Oudot (2020). The results were originally formulated for
persistence modules over R?, over T := {(z,y) € R, 2 +y > 0} and over T := {(z,y) €
R?, z +y > 0}. These results do however apply verbatim in the settings of N and N, as
can be seen from the following two poset isomorphisms and Remark
(z,y) € Vi (tan (g(x +1+ m)) , tan (g(y +1+ m))) eT
(z,y) ENP (tan (g(—x + 1)) ,tan (g(—y + 1))) eT

The following is a slight reformulation of two results from Botnan and Crawley-
Boevey (2020, Section 5.2).

Theorem 4.17. Let M be a strongly exact and pfd persistence module over N or .
Then M is interval-decomposable, and each interval B is of the form B= RN\ or I =
R NN, respectively, where R is a mazimal rectangle in the interior of St.

We shall refer to such intervals as blocks in analogy with the case of product posets
(Section . If B = RnNNM, and there exists a p € N\ such that p < ¢ for all ¢ € B,
then B is a birth quadrant. Dually, if B = RN X and there exists ¢ € B such that p < ¢
for all p € B, then B is a death quadrant. For instance, the triangular shaped blocks in
the homology pyramids in dimension 0 and 1 shown in Figure [1.4] are death and birth
quadrants, respectively. The following is an immediate corollary of Theorem [4.17]

Corollary 4.18. Let M € Per (St,,) be as in the statement of Theorem |4.11. Then the
restriction of M to N, denoted by M|~N, decomposes as

M“ =~ @ kB, (48)

My ~ € ks, (4.9)

where By is a multiset of blocks in \.
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Remark 4.19. Let ¢ : St < St and ¢ : St%, < St denote the inclusions introduced
above. The inclusion of posets ¥ < St? is initial in the sense of Mac Lane (1972,
Section IX.3), and Theorem 1 of the same section of loc. cit. ensures that we have the
following natural isomorphism for all p € St — (St°, — <),

(Rang, M), ~ (Ranw‘b M\‘b)p.
Similarly, for all p € St — (St%, —AP’), one has:
Mp, ~ (Lany(Rany, M), ~ (Lanwkb (Ran,, M)|kb>p.

Lemma 4.20. Let M € Per (St,,) be as in the statement of Theorem and let By
and By be as in Corollary[{.18

(i) M s strongly exact.

(ii) If By contains no death quadrant, and Ba contains no birth quadrant, then M is
pfd.

Proof. First we prove (i). Following the first step in the extension procedure outlined
above, we obtain M € Per (Stfn) by adding 0 vector spaces. To simplify notation, we
shall let D and U denote the sets D = Sty — (Sty, — W), U = (St — (St —N)) and

N = M| Then
N ~ @ kp.
BeB;
where each block B € B is of the form B = RN X where R is a maximal rectangle in
the interior of St. It is not hard to see that extending kg “to the left” using a right Kan
extension will recover kg on D. That is, we have the following natural isomorphism

Rantﬂl‘b (kB)p = (kR)p7

for all p € D. In particular, since kg is strongly exact on St (and therefore on D), it
follows that Ran@|‘b (kp) is strongly exact on D. Hence,

(Ran, M)|p ~ (Ran@“b N) |p ~ @ Ranw‘b kg | Ip
BeB;

is strongly exact on D. Here the first isomorphism follows from Remark [£.19] and the
second isomorphism follows from the fact that right Kan extensions commute with direct
products, and that direct products and direct sums coincide when working in the pfd
setting; see, e.g., Botnan and Lesnick (2018, Remark 2.16) for more details.

Let N’ denote the restriction of Ran, M to A’. From Corollary we now have

that
N/Z @ kB/,

where By is a multiset of blocks of N. It follows from the second part of Remark
that M|y = (Lanwkb N")|y. Showing that the latter is strongly exact is dual to the first
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part of this proof. In conclusion, we have that M is strongly exact when restricted to D,
St,, and U. To see that this implies strong exactness on the whole of St, let s and ¢ be
as in Definition [1.9] and assume that s € D — DN St,, and ¢ € St,, — D N St,. Then we
can find p € DN St,, = N, such that s < p <t, and such that each of the smaller squares
in the following diagram is strongly exact,

Ms, t,) — Mg, t,) — M,

I | I

M, 3, M, - (4.10)

Sl‘apy) (tl'apy)

I I |

MS M(pz ,sy) M(tz)

sy)

A simple diagram chase shows that the outer square is strongly exact. Hence, M is
strongly exact on Sto, = D U St,. A similar argument shows that M is strongly exact
on St,, UU = St.

Now we prove (ii). Since M Ist,, = M]st,,, it suffices to prove that M is pfd over
D —DnNSt, and U — U N St,;,. We prove the former, the second is dual. Assume that
Ranw‘b N is not pfd at p € D — D N Sty,. Then, there must exist an infinite family of

blocks {B) = Ry N} C By such that p € R for all A. However, by assumption, R} is
not bounded from above in W. In other words, Ry and thus B) must contain at least one
of the two line segments

(Ipes—m) x {p,) NN and  ({pe} % [py, —m)) NN

Hence, either there exists an infinite number of blocks By € By such that

([pz, —m) x {py}) NN C By,

or there exists an infinite number of blocks By € B such that

({pw} X [py,O)) N g B/\-

We conclude that dim N, = oo for all ¢ € ([pz, —m) x {py}) N Vor dim N, = oo for all
q € ({pz} % [py, —m)) N . This contradicts the assumption that N is pfd. O

Lemma 4.21. Let M € Per (St,,) be as in the statement of Theorem and let By
and By be as in Corollary[{.18 Then,

M~No @ ksa B ks,

Bebb Bedb

where bb C By is the collection of all birth quadrants, and db C By is the collection
of all death quadrants, and N contains no summand of the form kp where B is a birth
quadrant in N\ or a death quadrant in .

Proof. Recall that B is a death quadrant in Wif and only if its support is bounded from
above by some x € . Dually, a birth quadrant B in N is a birth quadrant if and only
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if it is bounded from below by some z € A\. In either case, there is enough space around
their supports to extend them to summands of M. More precisely, if B € db, then the
inclusions and projection maps

such that j; o041 = idyk,, extend to
kg 5 M % kg

such that j o4 = idk, (here the interval B is considered as a subset of St,,). Hence, the
module kg is a summand of M. Doing this for every death quadrant yields,

M ~ N’ D @ kp.
Bedb
Iterating the above argument in the dual setting of birth quadrants in N\ gives,
M~No @ kso @ ks
Bebb Bedb

O

Proof of Theorem[{.11. By Lemmalf.2I]we may assume that B; and Bs contain no death
and birth quadrants, respectively. Hence M is strongly exact and pfd by Lemma m
The result now follows from Lemma [£.141 O
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Chapter 5

Euler calculus

A constructible function on a real analytic manifold X is a function ¢ : X — Z such that
the sets p~1(m) are subanalytic and the family {¢~!(m)}mez is locally finite. Using
classical results from subanalytic geometry, one can show that the set of con-
structible functions on X is a commutative unital algebra for the pointwise operations of
addition and multiplication. An integral calculus of these functions with respect to the
Euler characteristic and several operations (e.g. pushforward, pullback, tensor product)
coming from sheaf theory have been defined by Viro (1988) and Schapira (1989, 1991)).
The link between constructible functions and constructible sheaves is made precise by
the function-sheaf correspondence (Kashiwara and Schapira, 1990, Theorem 9.7.1). For
a study of these operations without the use of sheaf theory, we refer to McCrory and
Parusinski (1997)).

Euler calculus has found many applications on the theoretical side. We mention a few
examples below and refer to the survey of Gusein-Zade (2010) for more. McCrory and
Parusinski (1997) have introduced the half-link operator using the formalism of Euler
calculus to study the local topological properties of algebraic sets. This operator is key
to generalize Akbulut-King’s numbers (2012) as well as invariants defined by Coste and
Kurdyka (1992). These invariants provide sufficient conditions for a stratified space to
be homeomorphic to a real algebraic set. In integral geometry, the convolution defined
in Euler calculus appears as a satisfactory generalization of Minkowski addition, which is
key to the definition of mixed volumes of convex bodies (Groemer, 1977; Martinez-Maure,
2015)).

Although having theoretical roots, Euler calculus has found many applications in
topological data analysis. Already in Schapira (1989), Euler calculus was developed
as an alternative definition of convolution for polygonal tracings with multiplicities, a
useful notion in robotics (Guibas, Ramshaw, and Stolfi, [1983)). In applied topology, one
can formulate problems of target detection by sensor networks using the Euler calculus
formalism. This paradigm allows one to express the number of targets detected by the
network as the integral of a constructible function (Baryshnikov and Ghrist, [2009)), and
even suggests the possibility of target reconstruction thanks to Schapira’s inversion result
(1995) for specific networks, such as beam sensor networks (Curry, Ghrist, and Robinson,
2012, Section 20.2). Moreover, as already mentioned in the introduction, Schapira’s
inversion implies that two constructible subsets of R™ with same persistent homology
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in all degrees and for all height filtrations are equal (Curry, Mukherjee, and Turner,
2022 Ghrist, Levanger, and Mai, |2018)). Finally, and this is the way we introduced
these concepts in the introduction, constructible functions associated to multi-parameter
persistence modules stand as simple, informative and well-behaved, albeit incomplete,
invariants of these objects.

Outline. In this chapter, we begin by introducing Euler calculus and operations on
constructible functions following the approach of Schapira (1991)) (Section [5.1). We
also introduce some specific subgroups of the group of constructible functions that are
of independent interest and used all along Part [II| (Section . Then, we present a
topological integral transform introduced by Schapira (1995)) called the Radon transform
(Section . We present Schapira’s inversion result and prove that the Radon transform
of a compactly supported ~y-constructible functions vanishes on affine hyperplanes whose
defining conormal is in the polar of the cone . This characterization of the support
will be key for the proof of the reconstruction formula for the Euler-Fourier transform in
Chapter [6] Finally, we explain how to associate a constructible function to any multi-
parameter persistence module (Section .

Conventions. Throughout Part [[I, we set the following notations and terminology:

(i) We consider two R-vector spaces |V| and of finite positive dimensions, a real
analytic manifold [X] and a compact real analytic manifold [M]

(ii) We denote by [R>|the set of positive real numbers and = R-oU{0}. Similarly,
we use the notations and We also denote by the multiplicative
group R\ {0}.

(iii)) The dual of a vector space V is denoted by and R™ will always be identified
with its dual under the canonical isomorphism. For & € V* and = € V, we often

denote &(x) by

(iv) We say that a subset v of V is a cone if R -y C . We call antipodal of a cone =,
denoted by the cone —y. A closed cone v is proper if y N ~y* = {0}. We call
polar of a cone v, denoted by [ the cone of V* defined by:

7°={£ e V" &(y) S Rxo}.

(v) Let be an interval of R and denote by|L" (I)|(resp .|L; .(I)) the space of integrable
(resp. locally integrable) complex-valued functions on 1.

(vi) Let [k| be a field. Throughout this chapter and the next one, we assume that
k is of characteristic zero. This assumption is necessary for the sheaf-function
correspondence to hold, see Kashiwara and Schapira (1990, Theorem 9.7.1).

5.1 Operations on constructible functions

In this section, we define the integration of constructible functions with respect to the
Euler characteristic and several related operations coming from sheaf theory. We refer
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to Kashiwara and Schapira (ibid., Section 8.2) for a concise exposition of the useful
definitions and results on subanalytic sets.

Denote by the set of constructible functions with compact support on X.
As mentioned in Chap. IX of loc. cit., Hardt’s triangulation theorem (1976) allows to
write any ¢ € CF¢(X) as a finite sum ¢ = " | m;1g,, where the m;’s are integers and
the K;’s are compact contractible subanalytic subsets. We can then define the integral
of @ with respect to the Euler characteristic, by:

n
/ pdx|=>_ m,
X i=1

which does not depend on the decomposition of ¢; see Schapira (1991). In comparison

with the notation of loc. cit., we add the symbol dx to make this integration easier to
distinguish from Lebesgue integration in formulae combining the two.

Example 5.1. For any two real numbers a < b, one has:
(i) Jelaydx=1,
(i) Jg Ljap) dx = Jg Loy dx =0,
(iii)  [p1@p dx =—1.

Example 5.2. If Z is a locally closed relatively compact subanalytic subset of X, then:

/ 1zdx = xc(2),
X
where |y, (Z)|is the Fuler-Poincaré index with compact support of Z, defined by

Xe(2) =) _(~1)/ dimg (H(Z:Qz)) .
JEZ
where Q7 denotes the constant sheaf on Z with coefficients in the field Q and H. de-
notes cohomology with compact supports, i.e. Hg(Z; Qz) = RIT'(Z;Qy) following the
notations of Kashiwara and Schapira (1990). Note that if Z is compact, then x.(Z) is
the Euler characteristic.

A morphism f : X — Y of real analytic manifolds induces two operations on con-
structible functions. For ¢ € CF(Y), we define the pullback € CF(X) as o f.
For ¢ € CF(X) such that f is proper on supp(¢), we define the € CF(Y), for
any y € Y, by:

feply) = /X 1p-1y) - pdx.

Remark 5.3. One has that [, pdx = ax.p where ax : X — {pt}, and where the
function ax.p € CF({pt}) is identified with its value at the point. Since the pushforward
is functorial (Schapira, 1991, Theorem 2.3), Euler calculus enjoys a Fubini theorem, that
is, integration is invariant by pushforward: for any morphism of real analytic manifolds f :
X — Y which is proper on supp(y), one has

/f*wdxz/ pdx.
Y X
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We finish this section with three well-known results useful all along Part [T that are
not explicitly written elsewhere in the literature.

Lemma 5.4. Let ¢ € CF(X) and f : X — Y be a morphism of real analytic manifolds
which is proper on supp(p). Then, supp(fxp) C f(supp(p)) with equality if f is injective.

Proof. For y € Y, we have:

f*(p(y) = A@ 1f*1(y) dX = /}(90 1f*1(y)ﬂsupp(ga) dX (51)

Therefore, if y € f(supp(y)), then f~1(y) Nsupp(p) = @, hence fip(y) = 0. Thus, the
function f.p vanishes on the complement of the Closedﬂ set f(supp(y)), hence the result.

If f is injective then (5.1)) becomes:

froly) = {wl(y)) if y € Im(f), 52)

0 else.

Let y ¢ supp(f«p). There exists a neighborhood U of y such that for any z € U,
we have f.p(z) = 0. If y € Im(f), the open neighborhood f~1(U) of f~1(y) in X
satisfies that for any x € f~1(U), p(z) = ¢(f~1(2)) = fup(z) = 0, where z = f(z) €
U NIm(f). Therefore, f~1(y) & supp(y), i.e. y € f(supp(p)). Moreover, if y & Im(f),
then obviously y & f(supp(y)). Hence, f(supp(¢)) C supp(f«p). O

Remark 5.5. The proof of the previous lemma—especially (5.2)—implies that if f is
injective, then for any subanalytic subset Z C X, we have f.lz = 17).

Lemma 5.6. Let ¢ € CF(X) and ¢ € CF(Y). Let f : X - Wandg:Y — Z
be two morphisms of real analytic manifolds which are respectively proper on supp(p)
and supp(v). Then, denoting f x g: X XY — W x Z the natural map, we have:

(f X 9)(p B Y) = (fip) W (g+7),

where by definition (e X ¢)(x,y) = ¢(x) - Y(y) for any z € X and y € Y. The function
X is called the box product of ¢ and 1.

Proof. For (w,z) € W x Z, we compute:

(f x 9« (e RY)(w, 2) = / (=1 - ) W (1105 - ¥) dx

X XY

= </X 1f1(w>'<Pd><) ' (/Y Lg-1(2) 'WX)’

where the first equality follows from a direct computation and the second equality follows
from the definition of Euler integration. O

1Since fisup() 18 proper and Y is Hausdorff and locally compact, it is a closed map.
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Corollary 5.7. Let p,9 € CF(V), and f : V — V' be linear and proper on supp(yp) +
supp(v)). Then, f is proper on supp(y) and on supp(v), and:

fe(px ) = (fup) x (fur),

where by definition = s.(eX®Y) for s : VxV — V the addition is called the
convolution of ¢ and 1.

Proof. We have fos=so(f x f) by linearity of f, so that by Lemma , fe (pxth) =
sx (frp B fih) = (fep) * (fet)). O

5.2 Notable subgroups of the group of constructible
functions

In this section, we introduce several subgroups of the group of constructible functions
that are of prime interest in this thesis.

5.2.1 Constructibility up to infinity

To ensure well-definedness of hybrid transforms, we often restrict ourselves to a subclass
of constructible functions on V defined in Schapira (2020), called constructible up to
infinity in the projective compactification of V, or simply constructible up to infinity in
the present thesis. They correspond to constructible functions that are still constructible
when extended by 0 to the projective compactification of V.

Setting W = V@ R, we denote by P(V) the projective compactification of V, i.e., the
set of linear subspaces of W of dimension 1, formally defined as the quotient:

B V)|~ (W {0})/R".

Any point x € P(V) can thus be written in homogeneous coordinates as a class © = [v : )]
with (v, A) € W\ {0} and there is an open embedding j : v € V< [v: 1] € P(V). We
denote by P*(V) the projective compactification of the dual of V:

F V)]~ (W' {0}) /R,

where W = V* & R. Any element y € P*(V) can be written in homogeneous coordinates
as a class y = [¢ : t] with (&, 1) € W'\ {0}. We call hyperplane at infinity, denoted by [hsd]
the element [0 : 1] € P*(V) where 0 is understood here as an element of V*. There is
a bijection between P*(V) \ {hs} and the set of affine hyperplanes of V which sends a
class [€ : ] # [0 : 1] to the affine hyperplane £71(t) C V.

Definition 5.8 (ibid., Definition 4.1). Let ¢ € CF(V). We say that ¢ is constructible
up to infinity if:

(i) for all m € Z, j(p~1(m)) is subanalytic in P(V),
(i) the family {p=1(m)} ez is finite.
We denote by [CF (V)| the group of functions that are constructible up to infinity.
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In other words (Schapira, 2020, Lemma 4.2), functions that are constructible up to
infinity are restrictions to V of constructible functions on P (V).

Constructible functions and Euler calculus can be defined in the general setting of
o-minimal geometry (Curry, Ghrist, and Robinson, 2012; Dries, (1998)). Globally sub-
analytic subsets—subsets of the Euclidean space that are subanalytic in the projective
compactification of the space—form an o-minimal structure and constructible functions
defined in this structure are precisely the functions that are constructible up to infinity.
In this thesis, we keep the notations and subanalytic framework introduced in Schapira
(1989, 11991, [2020) to make use of results proven there. See for instance Proposition
below.

Example 5.9. Any compactly supported constructible function on V is constructible
up to infinity. Indeed, the open embedding j : V < P(V) is proper on any compact
subanalytic subset K of V so that j(K) is subanalytic in P(V) Kashiwara and Schapira
(1990, Proposition 8.2.2).

5.2.2 Convexes, cones and polyhedra

In this section, we define a subclass of constructible functions of prime interest in appli-
cations: PL-constructible functions. We refer to Rockafellar (2015) for a complete study
of convex sets and functions and to Schneider (2014, Chapter 1) for a short and clear
exposition.

We call convex polyhedron an intersection of a finite number of open or closed affine
half-spaces of V, and convex polytope a bounded convex polyhedron. A polyhedral cone
is a convex polyhedron that is also a cone. If C' is a non-empty convex subset of V, we
denote by he : V¥ — R U {+oco} its support function, defined by (5) = sup,cc(&, ).
The following lemma is clear, yet useful all along the next two chapters, especially in

Sections [6.2] [6.3] and [7-1}

Lemma 5.10. Let C C V be a closed convex subset. Then, for any & € V* proper
on C, we have &0 = 1 (—¢),he(e)] Where we abusively denoted [z, +o00] := [x,+00)
and [—o0,x] := (—o0, x|, for x € R, and [—o0, +00] := R.

A function ¢ : V — Z is said to be PL-constructible if there exists a finite covering V =

|l,ca Pa by convex polyhedra such that ¢ is constant on P, for any a € A. Any such
function can be written as a finite sum of indicator functions of closed convex polyhedra.

We denote by the group of PL-constructible functions, the subgroup

of compactly supported ones. Note that CFpr, (V) C CFpr(V) C CFo(V).

5.2.3 ~-constructible functions

We define here a specific class of constructible functions of particular interest in this
thesis due to their occurence in the context of sublevel-sets persistence (Chapter @, the
so-called ~y-constructible functions. We prove several useful properties of these functions.
For instance, their Euler integral is zero (Lemma .

Let v be a cone of V such that:

v s a subanalytic closed proper convex cone with non-empty interior. (C1)
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We say that a subset U C V is «y-open if it is open and U = U 4 . The collection
of y-open subsets of V yields a topology on V called the v-topology, see Kashiwara and
Schapira (1990, Section 3.5). The closed subset of V for this topology, called ~y-closed
subsets, are the closed subsets S of V such that S = S + v®. A subset of V is called
~v-locally closed if it is the intersection of a y-closed subset and a y-open subset.

Definition 5.11. We say that ¢ € CF (V) is v-constructible if

(i) ¢~ 1(m) is subanalytic y-locally closed in V for all m € Z, and
(i) the family {c,zfl(?n)}meZ is locally finite.

We denote by the group of 7-constructible functions on V and the

group of compactly supported y-constructible functions on V.
One has the following characterization of y-constructible functions:

Lemma 5.12. Any compactly supported ~y-constructible function @ on 'V can be decom-
posed as a sum p = ZaeA malz, where the set A is finite and the subsets Z, C V are
relatively compact subanalytic and ~y-locally closed.

Proof. Since the class of subanalytic y-locally closed subsets is stable under intersection,
one can intersect the Z,’s with the subset:

Zy = (v+Int(y)) N (—v +~v7),

where v is any element of the non-empty set Int(~?) chosen so that supp(¢) C Z,. To
choose such a v € Int(y®), consider any vy € Int(y*), and remark that since supp(yp) is
compact and Z,, has non-empty interior Berkouk and Petit (2021, Lemma 5.7), there
exists a A > 0 such that supp(¢) C A-Z,,. Moreover, it is easy to show that X\-Z,, = Zy,,
so that v = Avg € Int(y*) works. The subset Z, is then clearly subanalytic and «-locally
closed. Moreover, loc. cit. yields that Z, is bounded, hence relatively compact. The fact
that A can be chosen finite follows then from the locally finiteness of the sum. O

Schapira proved a characterization of «-constructible functions of which we state a
specific case below (Proposition |5.13)). We say that a closed set A C V is y-proper if the
addition s : V x V — V is proper on A x y%.

Proposition 5.13 (Schapira (2020, Proposition 4.18)). Let ¢ € CFo(V) such that
supp(yp) is y-proper. The function ¢ is y-constructible if and only if ¢ = @ % 1,a.

As an easy consequence of this characterization, the following lemma states that the
group of «y-constructible functions is closed under specific pushforwards. This fact will

be useful in Sections [6.3.2] and 6.4

Lemma 5.14. Let p € CF, (V). For any £ € 4*°\ {0}, one has & € CF, y(R)
with A = Rgo.

Proof. Lemma shows that supp(&.p) C &(supp(y)), hence &.p is compactly sup-
ported. Since &,14a = 1ya, Proposition and Corollary [5.7] yield:

Eep =& r Lye) = (&xp) * Lya.
Hence, ¢ € CF\(R) by Proposition O
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Remark 5.15. It follows directly from the previous lemma that for any & € ~° \ {0},
one has & € CF, ¢y (R) with A = R>. We will see in Proposition below that for
any other & € V*\ (y° U~%°), one has & = 0.

We end this section with the proof that the Euler integral of a y-constructible function
is zero.

Lemma 5.16. If o € CF, (V), then [, odx =0.

Proof. Choose an element ¢ in the non-empty set v%° \ {0}. By Remark , we have:

/wdx=/§*<pdx-
A\ R

Moreover, Lemma, shows that £.p € CF, o[y (R) with A = R<p. Lemma ensures
then that one can write & = >0 | m;lj,, ) Where m; are integers and a; < b; are real
numbers. The result follows from the fact that fV 1ig; 5 dx = 0. O

5.3 Radon transform

The success of Euler calculus in topological data analysis is due to the introduction of
topological integral transforms. In this section we present one instance of the general
notion of Radon transform introduced by Schapira (1995). Then, we describe the support
of the Radon transform of compactly supported ~-constructible functions.

For the sake of readability, we use the notations [/ = P(V) and [P*| = P*(V) for the
projective compactifications of V and V* respectively. Let us denote by S the incidence
relation for projective duality:

5:{([U:A],[5:ﬂ)epxp*;<§,u>+At:o},

and denote by p: S — P and ¢q : S — P* the restrictions of the canonical projections.
We have the following diagram:

P x P*
Ul

S
/ \
P P*
The Radon transform of ¢ € CF(PP) is the constructible function R(yp) € CF(P*)

defined in Schapira (ibid.) as:
R() = q:p*ep.
Since S is a compact subset of P x P*| the map ¢ is proper and R is well-defined. Any ¢ €

CF(V) naturally yields a constructible function j.p on P, as explained in Example
In that case, Section 5 in loc. cit. ensures that for any y = [ : t] € P* \ {hoo}, one has:

R(up)(y) = /V o Lo dy = Ep(t), (5.3)
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and that supp(R(j«¢)) € K*, where

K*:=q(p~" (swpp(p) ) = {[¢ : 1] € P*; £ (1) Nsupp(p) # &}

is a compact subset of P* \ {ho}.
A remarkable property of the Radon transform is that it satisfies an inversion formula.
Define for any ¢ € CF(PP*), the following constructible function:

R'@) = peg*o.

Again, the map p is proper, so R’ is well-defined. It is almost a left inverse for R:

Theorem 5.17 (ibid., Corollary 5.1). Let ¢ € CF(P). Then,

R oR(p) = ® if dim(V) is odd,
—p+ [pedx if dim(V) is even.

Remark 5.18. The above theorem implies that if the function ¢ is compactly supported
and 7-constructible on V, the map R’ becomes a left inverse for R up to a sign, by

Lemma [5.16]

The next proposition refines the inclusion supp(R(j«p)) € K* when ¢ is compactly
supported and ~y-constructible.

Proposition 5.19. Let ¢ € CF, (V). Then, supp(R(j«p)) C K3, where
K = {[{t] GK*;fE’yOU’yao}
is a compact subset of P*\ {hoo}.
The proposition above follows from the following two lemmas.

Lemma 5.20. Let & € V*\ (v° U~*°) and write h = Ker(§). Then, yNh is a cone of h
satisfying (C1]).

Proof. Let 4/ := v N h. The fact that 4/ is a closed convex cone of h follows from the
fact that v and h are, and that these properties are stable under intersection. It is also
clear that +/ is proper since v is. For subanalyticity, the cone 7/ is subanalytic in h by
Kashiwara and Schapira (1990, Proposition 8.2.2) applied to the inclusion h < V.

Let us then prove that the interior of 4/ in h, denoted by Intp(y), is non-empty.
Since £ & (v° U~*°), we have that :

{{<0tny # g,
{{>0ny# 2.

Since v is closed and convex with non-empty interior, classical convex analysis ensures

that Int(vy) = ~, which allows to prove that in fact:

{£ <0}nint(y) # 2,
{& >0} Nint(y) # 2.
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Since Int(7y) is convex it is in particular connected, and since £ : V — R is continuous,
the last two equations yield that ANInt(y) # &. To conclude, we prove that hNInt(y) C
Inty, (7). Indeed, if z € h N Int(y), then = + B(0,e) C 7 for 0 < ¢ < 1. Since = € h, we
have that

z+ (hNB(0,e)) =hN (z+ B(0,e)) ChNny =7,

hence z € Inty(7) since z + (h N B(0,¢)) is an open neighborhood of z in h. O

Lemma 5.21. Let Z C 'V be avy-locally closed subset and & € V*. Write h = Ker(§), Z' =
Z N h and v =~ Nh. Then, the subset Z' is v'-locally closed in h.

Proof. Write the v-locally closed subset Z as Z = U NS with U open and S closed such
that U ++v C U and S +~* C S, so that Z' = (Uﬂh) N (Sﬁh). The subsets U N A
and S Nh are respectively open and closed in h, the subset SN A is stable by v/* and the
subset U N h is stable by +'. O

We may now prove the proposition on the support of the Radon transform.

Proof of Proposition[5.19. The set K7 is closed in P* hence compact. Now, it is sufficient
to prove the result for ¢ = 17 with Z C V relatively compact, subanalytic and «y-locally
closed since any element of CF, (V) is a finite Z-linear combination of such functions
(Lemma [5.12). We thus prove that R(j,1z) vanishes on the complement of the closed
set K. Since we already know that R(j.1z) vanishes on the complement of K*, we
consider [£ : t] € K* \ K and we note that in that case £ € V*\ (v°U~?°).

Write Z' = Z N &71(t), h = Ker(€) and o = vy N h. By (5.3), we have the following
expression for the Radon transform of j,1z:

R(12) (€ 1]) = / 12 dx.

\%

If Z' is empty, we clearly have R(j.12)([¢ : t]) = 0. Otherwise, taking x € Z’, we get:

/]_ZldX:/T(_x)*]_Z/dXZ/1T;1(Z,)dX:/1Tx—1(Z/)dX7
v v v h

where 7, : v € V — v+4+u € V for any u € V. The function 17_;1(2,) is compactly
supported and ~/-constructible on h:

(i) 4 is a cone of h satisfying (C1)) by Lemma

(i) 7, 1(Z') is a subanalytic 4'-locally closed subset of h by Lemma applied to
the subset 7, 1(2), since 7, 1(2") = 7, 1(Z) N h,

(iii) 7, 1(Z’) is relatively compact in h since it is the intersection of the closed subset h
and the relatively compact subset 7, 1(Z) in V.

Hence, its Euler integral is zero by Lemma [5.16

/hl‘rzl(Z’) dy =0.
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5.4 Constructible functions as invariants of persis-
tence modules

In this section, we explain how constructible functions on R™ appear as invariants of
n-parameter persistence modules.

Graded-commutative algebraic approach. Let M be a pointwise finite-dim-
ensional persistence module over R™. The Hilbert function of M (Oudot and Scoccola,
2021) is defined as [pn] : t € R™ — dim(M;). Assume further that M is finitely pre-
sentable, that is, it is the cokernel of a morphism between free persistence modules with
finite barcodes (Example [L.5). In that case, it follows from the existence of finite free
resolutions (Botnan and Lesnick, [2022} Section 7.2) and the additivity of dimension with
respect to exact sequences that this function is PL-constructible. We refer to it as the
constructible function associated to M. In fact, they belong to the class of so-called
finitely presentable functions over R™, that is, functions that can be written as a finite Z-
linear combination of indicating functions 1g, with v € R™ and Q, = {t € R"; ¢t > u}.
We denote by the group of finitely presentable functions over R™. Note that we
have CFg,(R™) C CFpr,(R") C CFo(R™). Moreover, we also have CFg,(R™) C CF,(R")
for the cone v = (R<o)".

The constructible function associated to a persistence module can be generalized to
graded persistence modules M over R™, that is, to functors M : (R", <) — GrVec where
is the category of Ng-graded vector spaces. A graded persistence module is thus a
persistence module M together with a direct-sum decomposition M = @peNo MP where
MP are persistence modules. We say that M is finitely presentable if the persistence
modules MP are finitely presentable and only but finitely many of them are non-zero.
Then, the constructible function associated to M is defined as ¢y = ZPGNO(—I)”QOMP.

Sheaf theoretic approach. The theory of multi-parameter persistence has been
formulated in the language of sheaf theory in the seminal work of Curry (2014) and
extended to the derived setting in Kashiwara and Schapira (2018)). Following the for-
mulation and the notations of loc. cit., a multi-parameter persistence module on R"”
corresponds to an object F' of the bounded derived category of y-sheaves for
the cone v = (R<)". This approach is almost equivalent to the commutative-algebraic
one, missing only the so-called ephemeral persistence modules. We refer to Berkouk and
Petit (2021) for a detailed comparison of the two approaches.

In this setting, a constructible persistence module corresponds to an object of the
bounded derived category of constructible y-sheaves and the constructible
function associated to F' if defined as its local Euler-Poincaré index (Kashiwara and
Schapira, (1990, Section 9.7), defined for any = € V by:

oo (F)) = Y _(=1)/ dim HI ().

JEZ

By a classical result of Kashiwara (1985), this invariant represents the class of F' in the
Grothendieck group of the category D]%Cﬁao (kgn).






Chapter 6

Hybrid transforms of constructible
functions

Euler calculus allows for the introduction of sophisticated tools for shape analysis in the
form of topological integral transforms. Among them, the Radon transform of Schapira
(Section and one of its specialization introduced by Turner, Mukherjee, and Boyer
(2014b)), the Euler characteristic transform. This last descriptor of shapes records the
Euler characteristics of the intersections of a definable subset Z C R™ (in some fixed o-
minimal structure) with all affine half-spaces. A key result is that this integral transform
is injective, that is, a subset Z is entirely characterized by its Euler characteristic trans-
form (Curry, Mukherjee, and Turner, 2022; Ghrist, Levanger, and Mai, 2018|). Moreover,
it is shown in Curry, Mukherjee, and Turner (2022)) that, under mild assumptions on the
definable subset Z, only a finite number of affine half-spaces are required to reconstruct
Z from the data of its transform. However, the collection of specific half-spaces required
depends on Z.

As previously stated in the introduction, this shape descriptor has been utilized in
various applications such as predicting clinical outcomes in brain cancer (Crawford et
al.,|2020), analyzing barley seeds (Amézquita et al.,[2022), and recovering morphological
variations among primate genera (Tang et al., 2022). However, the instability of Euler
calculus under numerical approximations remains a problematic aspect for practical ap-
plications. Even when the domain of a constructible function is finely sampled, errors
are likely to occur during the integration process (Curry, Ghrist, and Robinson, 2012,
Section 16). In order to produce better-behaved shape descriptors, the Euler charac-
teristic transform is smoothed in Crawford et al. (2020). However, these experimental
results lack theoretical support at present. Several smoothings of a similar nature have
been introduced by Ghrist and Robinson (2011) under the name Bessel and Fourier
transforms, and by Bobrowski and Borman (2012) under the name FEuler characteristic
of barcodes. We introduce a general definition encompassing all these specific smoothings
in the present chapter.

Outline. In this chapter, we introduce integral transforms that combine Lebesgue inte-
gration and Euler calculus for constructible functions. The goal is to leverage the benefits
of both techniques: Lebesgue integration offers well-studied kernels such as Fourier and

121
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Laplace transforms, which yield stable and smooth integral transforms, while Euler cal-
culus provides topological information and is compatible with operations on constructible
functions. Our transforms generalize those introduced by previous authors (Bobrowski
and Borman, 2012; Ghrist and Robinson, 2011) and we conduct a systematic study
of hybrid transforms, introducing two new ones: the Euler-Laplace transform and the
Euler-Fourier transform (Section . In terms of invariants of persistence modules,
the Euler-Laplace transform provides a satisfactory—in view of the properties of hybrid
transforms—generalization of Gove and Hepworth’s persistent magnitude (2021}, Defini-
tion 5.1) to constructible sheaves, so in particular to multi-parameter persistence mod-
ules. We also present numerous examples to illustrate their properties of these two new
transforms, and their differences with their classical counterparts. Then, we prove their
regularity (Section and their compatibility with operations on constructible functions
(Section . These properties are to be compared with regularity results on classical
Fourier and Laplace transforms and their relation with classical integral operations such
as convolution. Finally, we prove that the Euler-Fourier transform is injective—and pro-
vide a reconstruction formula—on the subgroup of compactly supported ~-constructible

functions (Section [6.4)).

Conventions. We follow the conventions and notations introduced in Chapter

6.1 Definition and examples

6.1.1 Definition

We now introduce the notion of hybrid transform, which is central to Part [[Il Let us
denote by B(V*;R) the set of bounded functions from V* to R.

Definition 6.1. For x € L. _(R), the hybrid transform with kernel k is the map :

loc

CF.(V) = B(V*;R) defined by:

for any ¢ € CF.(V) and any £ € V*.

The fact that the transform Ty, is valued in B(V*; R) follows easily from the fact that
for any ¢ € CF.(V), the Radon transform R(y) : [€ : t] € P*(V) — &.p(t) is bounded,
as any constructible function on the compact set P*(V).

Remarks 6.2 (Generalizations). In the rest of Part , we will consider the following
generalizations of T, whenever necessary.

(i) The transform Ty [p] is well-defined for ¢ with non-compact support on the set
of ¢ € V* such that (i) ¢ is proper on supp(y) and (ii) » - & € LY(R).

(ii) More generally, the definition of Ty [¢] (¢) still makes sense for any ¢ € CF(X)
with X a real analytic manifold, and any morphism ¢ : X — R of real analytic
manifolds such that (i) ¢ is proper on supp(y) and (i) & - (o € L1(R).
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Figure 6.1: (a) a piecewise-linear closed curve C' in R? (b) the Euler-Fourier
transform of the constructible function 15 as well as (c) its absolute value and (d)
its argument. Plots are done following Remark

E]

(e) [EF [1c]] (d) Arg(EF [1c])

Notation 6.3. When A C R, we use the simpler notation [T 4 [¢]|€) := T1, [¢] (£).

In the course of the chapter, we will illustrate on many examples the interest that
there can be in considering hybrid transforms. All the examples will illustrate the effect of
the combination of a topological operation (the pushforward) and of a classical integral.
We start with the following example.

Example 6.4 (Subanalytic curve). Let ¢ : [0,1] — V be continuous subanalytic. One
can consider the constructible function 17 where Z = Im(c) is compact and subanalytic
in V. Since Z has volume zero, integral transforms using only the Lebesgue measure are
zero when dim(V) > 2. However, hybrid transforms are generally not, as highlighted
by Figure [6.1] and Examples [6.19] [6.21] [6.28 and [6.30] This is due to the fact that the
pushforwards of 17 by linear forms convey topological information that is missed by the
Lebesgue measure.

As explained in introduction, Definition [6.1] generalizes existing transforms, starting
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with the following two.

Example 6.5. Considering ¢ € CF.(V) and n € V*, the Fourier transform defined in
Ghrist and Robinson (2011) is the hybrid transform:

+oo
£FCR (] ) = / /V 1,y dxdt = e, ] (n):

We call it GR-Euler-Fourier transform in this thesis, keeping the terminology Fuler-
Fourier for the transform introduced in Definition [6.26] Using Lemma [6.13] one can see
that any constructible function ¢ satisfying Assumptions [6.9] below for a cone C' satisfies
also that 1g., - nup € LY(R) for any n € Int(C?°), so that we can extend the definition
of the transform to such constructible functions o and linear forms 7.

Example 6.6. Given an analytic norm on V, the FEuler-Bessel transform is defined in
Ghrist and Robinson (ibid.) for any ¢ € CF¢(V) and any v € V, by:

+oo
EB (] ”)—/0 /V]-@B(v,t)SOdtha

where 0B(v,t) denotes the sphere of radius ¢ centered at v in V. Considering the mor-
phism of real analytic manifolds ¢, = |lv — -||> and the locally integrable kernel & :
t = L0400 (t) - 2%/5, the Euler-Bessel transform of ¢ € CF.(V) is the hybrid trans-

form EB[p] (v) = Tk [¢] (Cv)-

We end this section with the following lemma, expressing restrictions of multi-parameter
hybrid transforms to lines as one-parameter hybrid transforms.

Lemma 6.7. Let k € L _(R) and ¢ € CF.(V). Then, for any ¢ € V* and real num-

loc
ber s > 0, one has:

Ty [o] (s§) = Tw [§xp] (5) = S/RR(su)g*go(u) du.

Proof. The first equality follows from the functoriality of the pushforward: (s&).p =
s«€xp, and the second one from the fact that s.&p(t) = &p(t/s) and a change of
variables. O

6.1.2 FEuler-Laplace transform

In this section, we introduce a hybrid transform with several appealing properties. As
explained in the introduction, this transform yields a generalization of persistent mag-
nitude. Moreover, we show in Section that it turns constructible convolution intro
products.

Definition 6.8. The Euler-Laplace transform of ¢ € CF.(V) is defined for £ € V* by:

£L ] [€) = /R et o(t) dt.
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As explained in Remarks we may extend the definition of the Euler-Laplace
transform for any constructible function ¢ € CF(V) on the set of £ € V* that are
proper on supp(y) and for which the right-hand integral is well-defined. We show in
Proposition that the following assumptions on ¢ are sufficient for the set of such £’s
to contain an open cone of V*.

Assumptions 6.9.
(i)  is constructible up to infinity,

(ii) supp(p) € K + C, where K is compact and C' is a cone satisfying:

C' is a non-empty subanalytic closed proper convex cone. (C2)

Note that, compared to ((C1)), the cone C' may have empty interior.

Remark 6.10. If there exist a compactly supported constructible function ¢, on V and
a cone C satisfying such that ¢ = @, x 1¢, then ¢ satisfies Assumptions for
the cone C'. The property on the support is easy to prove. Moreover, (. is constructible
up to infinity (Example and so is 1¢ by Schapira (2020, Lemma 2.17) since C
is a subanalytic cone. The result follows then from the stability of this property by
convolution, see Section 3.4 in loc. cit..

Example 6.11. As we will see in Chapter [7] the previous remark and Proposition
ensure that constructible functions associated to sublevel-sets persistent homology satisfy
these assumptions (Section [7.1)).

Proposition 6.12. If ¢ € CF(V) satisfies Assumptions for a cone C, then the
transform EL [p] is well-defined on Int(C°).

The proposition follows from the next lemma.

Lemma 6.13. Let ¢ € CF (V). If ¢ satisfies Assumptions[6.9(ii)| then any & € Int(C°)U
Int(C?°) is proper on supp(yp). Moreover, for any £ € Int(C°) (resp. £ € Int(C®?)), one
has supp(&.p) C [a, +00) (resp. supp(éxp) C (—o0,al]) for some a € R.

Proof. Let a < b be two real numbers and £ € Int(C°). The case £ € Int(C*°) follows
by multiplication by —1. We prove that the space ¢ 1[a, b] N supp(¢) is compact. Since
this space is closed and by assumption:

¢ a, bl Nsupp(p) C € Ya, b N (K +C),

it is enough to show that this last space is compact. Suppose that there exist a se-
quence y, = ky + 1, € £ a,b] N (K + C) with k, € K and z,, € C such that ||y,|| —
+o00. Since K is compact, we also have ||z,| — +00. If we denote by S the unit sphere
of V, the subset C' NS is compact by closedness of C'. We can thus assume without
loss of generality that x,/||z,|| = v € C N S. Dividing the inequality a < (£, yn) < b
by ||zx| and taking the limit, we get that (£,v) = 0. Yet, £ € Int(C°) so that (£, v) > 0,
a contradiction. O
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Proof of Proposition[6.19. For any £ € Int(C°), it follows from Lemma that £ is
proper on supp(y) and that supp(x¢) C [a, +00) for some a € R. The function &,
is constructible up to infinity by Schapira (2020, Lemma 4.10), thus takes only a finite
number of distinct values. Together with the property on the support of ., this yields
that t € R+ e - £,p(t) is integrable over R, hence the result. O

Remark 6.14. In view of the proof of Proposition the same conclusion holds for
any hybrid transform with kernel x € L1 (R™).

Before moving on to the examples, we state a relation between the Euler-Laplace
transform and the usual Laplace transform, useful all along Part[[I]. It is a straightforward
consequence of Lemma [6.7}

Lemma 6.15. If ¢ € CF(V) satisfies Assumptions for a cone C, then for any & €
Int(C°) and any s > 0, one has

Lp] (s€) = EL[&xg] () = s L[S](s),
wherelf e SLf(t)dt is the classical (bilateral) Laplace transform.

We now turn to the examples. Once again, the reader’s attention is drawn to the
effect of the successive application of topological pushforward and of classical integral.

Example 6.16 (Interval). Let —oo < a < b < 400 and consider the constructible
function 1,5 where [a,b] is one of the intervals [a,b], (a,0], [a,b), or [a,b]. We have,
for any £ € R,

EL [1fa,bj] (5) = Sgn(g) (e—£~a . e_g,b) ’
and for 6 € IR>07
EL [1[a7+00)] (€) = o—Ea

Example 6.17 (Rectangle). Let a < b and ¢ < d be real numbers. We have, for £ €
(R?)" such that &(a, ) < &(a,d) < £(b, ) < (b, d), the formulae:

5*1[ab xle.d) = Lig(a,0).6(ad) — Lgwonewad)  Sliabx(ed = Ligae)eb.e) (6.1)

&L (ap)x[ed] = L(g(a,d).£bd))> Ellap)x[ed] = Lig(ac)e(b,d)]:

Indeed, note that &ligpx[cd] = Llig(a,0)£(b,d) 18 given by Lemma and the other
equalities are obtained by additivity. For instance, 1, px(c,d] = L{a,b]x[c;d] — Ljasa]x[e,d]-
Equation (6.1]) yields:

[1[a b _ e*ﬁ(a,d) _ efﬁ(b,c) + efé(b’d)’

l[a b) X [c,d
ad) _ €0,

ea] (€
NG _ emtlbe)
)] (€

ec|
EL [L(apix[cd
ec|

]-[a b]X c d:| = e—f(d,()) _ e_ﬁ(b,d)

Similar formulae can be obtained when ¢ induces a different order on the vertices of
the rectangle [a,b] x [c,d]. Unlike the classical Laplace transform, the Euler-Laplace
transform distinguishes between the presence or absence of the edges of the rectangle.
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Remark 6.18. The last Euler-Laplace transform computed in Example yields a
counter-example to the formula EL [p K] = EL [¢] B EL [¢], which is wrong in general.
We will give a correct formula in Corollary [6.44]

Example 6.19 (Sphere). Assume that V is equipped with an analytic norm || - ||. Con-
sider r > 0 and ¢ = 1g, with S, = {x € V; ||z|| = r}. For any £ € V*, we have:

dim(V
615, = (L (0™ ) 1oy + Li-rery + Lisgeny-

and hence:
EL115,] () =2+ (1+ (=1)) - sinn (r €]
Note the amount of information extracted by this transform even though the constructible

function under consideration is supported on a subset with zero volume.

The Euler-Laplace and Laplace transforms are equal up to a normalization on some -
constructible functions (Example [6.46). However, they are not on all CF, (V), as shown
by the following example.

Example 6.20 (v-triangle). Let b € R. Consider the triangle

T = Conv ({(0,0), (1,0), (0.5))\ {(2.) € B2; y = b— ba},

represented in Figure . The subset T' C R? is subanalytic and y-locally closed for the
cone 7 = (R<g)?. Then, the Euler-Laplace and classical Laplace transforms compare as
follows. For € = (£,,&,) € (Rx0)?,

1—- 6761 if bgy > gaxa

1 —e %y otherwise,

EL[Lr](§) = {

and

def 30 & (1) g, (et 1)
HT] = /R ¢ rlnde= &€ — bE))E, |

These two transforms differ, as £ [17] (€) does not depend on b > 1 for any ¢ € (Rxg)?
such that &, > &;. Similar formulae hold for other choices of ¢ € R?.

(0, b)

(0, 0) (1, 0)

Figure 6.2: The triangle T defined in Example is represented as the light
blue solid triangle and the dark blue solid angle defined by the points (0, b), (0, 0)
and (1,0). The dashed line indicates that points on this edge do not belong to T
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Example 6.21 (Closed square minus a curve). Consider the constructible function

80:15_107

where S = [~1/2,1/2]2 and C is the closed curve of R? represented by the dotted line in
Figure[6.3c] Since C has zero volume, the classical Laplace transforms of 1g and 15— 1¢
are equal. However, their Euler-Laplace transforms differ, as shown in Figure [6.3]

0.4F

54.5982
20.0855

0.2F

7.3891
0.0f
27183

1.0000

0.3679

-0.4 -0.2 0.0 0.2 0.4

0.4

20.08554
7.38906

271828

02 o S C

1.00000
L]

0.0 .
[ 0.36788
L]

0.13534

. 0.04979
®eccccce

0.01832

-0.4 -0.2 0.0 0.2 0.4

(c) 1s —1¢ (d) EL[1g — 1¢]

Figure 6.3: Euler-Laplace transforms of the constructible functions 15 and 15— 1¢
in Example [6.21] The square S is represented by the light blue solid square and
the closed curve C' is represented by the dark blue dotted curve.

Generalization of persistent magnitude to constructible sheaves. The
notion of persistent magnitude has recently been introduced in Gove and Hepworth
for one-parameter persistence modules. As proven in loc. cit. following the work of
Otter , this object is related to another invariant of finite metric spaces called
magnitude and introduced in Leinster (2013). Gove and Hepworth also present
a generalization of it to multi-parameter persistence modules using the classical Laplace
transform. Here, we use the Euler-Laplace transform to give an alternative generalization
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of persistent magnitude that benefits from the compatibility (Section and index
formulae (Theorem that come from hybridization. We define persistent magnitude
not only for multi-parameter persistence modules but also for (derived) constructible
sheaves, following the approach of Kashiwara and Schapira (2018) for multi-parameter
persistence, recalled in Section [5.4] Following the notations of Kashiwara and Schapira
(ibid.), we denote by the bounded derived category of constructible sheaves
of k-vector spaces on V and by DE,Rc(kV) its full subcategory generated by compactly
supported objects.

Definition 6.22. The magnitude of a sheaf F' € DE,Rc(kV) is the Euler-Laplace trans-
form EL [x10c(F)] where X10c(F) € CF(V) denotes the local Euler-Poincaré index of F'

(Section [5.4)).

Remark 6.23. More generally, the magnitude of F' € Dﬂgc(kv) is well-defined when
(i) F' is constructible up to infinity in the sense of Schapira (2020, Definition 2.8) and
(ii) supp(F) C K + C with K compact and C' a cone satisfying . Indeed, in that
case, Xloc(F') is constructible up to infinity as proven by point (i) in the proof of Schapira
(ibid., Theorem 4.4), and satisfies Assumptions

Example 6.24. For instance, if F' ~ F_. x ko with F. compactly supported and con-
structible, then yjoc(F') satisfies Assumptions for the cone C' by Remark

Example 6.25. In the case V = R and v = R<g, we recover the definition introduced
in Govc and Hepworth (2021) of the persistent magnitude for one-parameter persistence
modules. Indeed, considering F ~ @ , Ki4;,5;) With —oo < a; < b; < +o00, Example
yields for t € R<q:

n

EL [X1o0e(F)] (1) = Z e it — e

with the convention that e™*° = 0.

6.1.3 Euler-Fourier transform

Definition 6.26. The Euler-Fourier transform of ¢ € CF¢(V) is defined for £ € V* by:

EF [](€) Z/HRe_itﬁ*gD(t) dt.

The following lemma relates the Euler-Fourier transform to the usual Fourier trans-
form. Again, it straightforwardly follows from Lemma [6.7}

Lemma 6.27. Let ¢ € CF.(V). Then, for any £ € V* and any s # 0, one has

EF @] (s€) = EF [l (s) = |s| Fléxel(s),
where Ef(s) = [pe "t f(t)dt is the classical Fourier transform.

Example 6.28 (Sphere). Consider the setting of Example Then, for any £ € V¥,

EF [15,](€) =2+ (1+ (~1)%=") - sin (rJ¢])
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C

20+

20}

(a) Fl17] (b) EF [17]

Figure 6.4: Fourier and Euler-Fourier transforms of the constructible function 11
defined in Example [6.20, Again, plots are done following Remark

Example 6.29 (y-triangle). Consider the setting of Example Then, the Euler-
Fourier and classical Fourier transforms compare as follows. For any { = (&,&,) €
(Rx0)%,

i(eiigz - 1) if bfy > &a,

i(e™®y — 1) else,

EF[17](§) = {

and . |
el [ -itea) _ G (oo™ 4bg (7% —1)
H“T] ©F [t I AT

Again, these two transforms differ, as EF [17] (§) does not depend on b > 1 for any &
such that &, > &,. See Figure [6.4] for an illustration.

Example 6.30 (Closed square minus a curve). Consider the setting of Example
Again, the (classical) Fourier transforms of 1g and of 1¢ — 1¢ are equal. However, their
Euler-Fourier transforms differ, as shown in Figure [6.5]

6.1.4 Computations

In this section, we explain how to compute hybrid transforms of PL-constructible func-
tions without computing any integral with respect to the Euler characteristic.

Consider a kernel k € Ll (R) and ¢ € CFpr(V). The transform Ty [¢] can be
efficiently computed as follows. One can write ¢ = > ,.;m; - 1p, where the set I is
finite, the coefficients m; are integers and the subsets P; are compact polytopes. By Z-
linearity of hybrid transforms and the formula for the pushforward of a closed convex
subset (Lemma , we have for any £ € V*,

hp, (€)

Te o] (€) = 3 mi- / (2) dt. (6.2)

iel —hp, (=€)

Hence, if one can express on the one hand hp(§) as an explicit function of £ € V* and
of the vertices of the compact polytope P, and on the other hand the integral f(f k(t)dt
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Figure 6.5: Euler-Fourier transforms of the constructible functions 1¢ and 15— 1¢
in Example Again, plots are done following Remark

as an explicit function of the real numbers a < b, then one can compute the right-hand
side of (6.2). Each example in this chapter is computed following the above method-
ology, computing explicit closed formulae by hand for (6.2) and plotting them using

Mathematica (2021)).

Remark 6.31. Complex valued functions g : R?> — C are plotted using the function
ComplexPlot of the Wolfram language. For z € R?, the argument of g(z) is plotted
using a fixed color function from —7 to 7 and the absolute value of g(x) is represented
as a level of brightness of this color.

Software. A software that automatically computes hybrid transforms of constructible
functions defined on embedded cubical complexes is available on GitHub: https://git
hub. com/HugoPasse/Transforms-of-cubical-complexes| It is running in Python and
C++. This is joint work with Steve Oudot and Hugo Passe.

6.2 Regularity

In this section, we consider a kernel x € Llloc(]R) and study the regularity of hybrid
transforms in the particular case of PL-constructible functions. While being less general,
this class of functions is of prime interest in applications.

Proposition 6.32 (Continuity). Let ¢ € CFpr,(V).
(i) If supp(y) is compact, then Ty [p] is continuous on V*.

(ii) If supp(p) C K + C with K convex compact and C # {0} a non-empty closed
convex cone, then

(a) Tk[g] is continuous on Int(C°) when k € L*(R>o),
(b) Tk ] is continuous on Int(C?°) when k € L' (R<o).


https://github.com/HugoPasse/Transforms-of-cubical-complexes
https://github.com/HugoPasse/Transforms-of-cubical-complexes
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Figure 6.6: (a) segmented CT scan of lungs taken from Morozov et al. (2020)
seen as a constructible function over a cubical complex and (b) the modulus of its
Euler-Fourier transform as computed by our Python library.

Proof. 1t is sufficient to prove the result for ¢ = 1p where P is a closed convex polyhedron
included in supp(y) since any ¢ € CFpr,(V) is a finite Z-linear combination of such func-
tions. By Lemma for any £ € V* proper on P, we have that §1p = 1{_p,(—¢), hp(e)]
and thus
hp(€)
Te© = [ s (63
—hp (=€)
so that it is sufficient to study the continuity of hp.

As any convex function, hp is continuous on Int(dom(hp)), where dom(hp) = {n €
V*; hp(n) < +o0o} by Schneider Theorem 1.5.4). If P is compact, then dom(hp) =
V*, hence Now, suppose that P is not compact and assume & € L'(R>q), the other
case being symmetric. Using classical polyhedra theory, see Ziegler Theorem 1.2),
one can write P as a sum K’ + C’ where K’ is a convex polytope and C’ a closed convex
polyhedral cone. Since we assumed P C supp(y), we also have ¢/ C C. Then, for
any ¢ € Int(C°), one has £ € Int(C’®), so that hp(£) = +oo, and hp(—£) = hg/(=€).

Since K’ is compact, hg is continuous on V*| and so is hpoa on Int(C°) with a(§) = —¢
the antipodal map. The result follows then from (6.3)). O

Proposition 6.33. Let ¢ € CFpr,(V) and p € Ng. Assume that k is CP. There exists a
finite family {T1,..., Ty} of open convex polyhedral cones of V* such that V¥ = |JI*; T
and:

(i) If supp(y) is compact, then the restriction Ty [¢] |, is CP* foralli € {1,...,m}.

(ii) If supp(p) € K + C with K convex compact and C # {0} a non-empty closed
convex cone, then

(a) the restriction T[] |r,Amt(co) 5 CP*L for all i € {1,...,m} when k €
LY(Rxo),
(b) the restriction Ty [¢] |r,Ame(cao) i CP*L for all i € {1,...,m} when k €

LY(R<y).
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Proof. The result follows from [(i)|similarly as in the proof of Proposition More-
over, result follows from and the fact that if P is a polytope, the support
function hp is smooth outside the closed set F of linear forms which are orthogonal to at
least one face of dimension 1 of P. Indeed, on each connected component of V*\ E, there
exists a vertex v of P such that hp(§) = (£,v). It is easy to check that each connected
component I'; of V*\ E is an open convex polyhedral cone. Moreover, the set E being
a finite union of subspaces of V* of codimension at least 1, it is closed and has empty
interior. Hence, V¥ = V*\ E = JL T. O

Example 6.34. For the Euler-Laplace and Euler-Fourier transforms, the previous result

is well illustrated by Figures and [6.3] to

6.3 Compatibility with operations

In this section, we consider k € Ll (R) and investigate the compatibility of hybrid
transforms with operations on constructible functions. The results use the general form

of hybrid transforms defined in Remarks

6.3.1 Direct image, duality and projection

Proposition 6.35 (Direct image). Let ¢ € CF(V), and let f: V-V and ( : VV - R
be morphisms of real analytic manifolds. Assume that ( o f is proper on supp(y) and
that & - (e fep € LY(R). Then,

Ty [fee] (€) = Ti [] (£7€).

In particular, if f and ¢ are linear maps, denoting tf : V'™ — V* the dual map, we get:

Te [f2] () = Te [] (*(0))-
Proof. By functoriality of the pushforward, we have (. f. = (Co f), = (f*Q)« . O

Example 6.36. Let g € V and consider the map 7, : V. = V given by z — = + xo.
For ¢ € CF(V), we have 7, () = p(z—m0) for any z € V. Moreover, Proposition[6.35]
yields for any & € V*,

EL (129 ] (€) = e~ &™) - EL[] (€),
EF [Tag 2] (€) = €760 £F (] (€).

Let ¢ € CF(V). Choose an analytic norm on V and consider the open ball B(z,¢)
with center x € V and radius € > 0. For € > 0 small enough, the integer

DV(P(x)_/VlB(x,E)QOan

depends only on ¢; see Schapira (1991, Lemma and Definition 2.4). Moreover, Theo-
rem 2.5 of loc. cit. ensures that the function Dyp : V — Z is constructible and called
the dual of .
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Proposition 6.37 (Duality). Let ¢ € CF(V) and ¢ : V. — R be a morphism of real
analytic manifolds. Assume that ¢ is proper on supp(p) and that s - (. € LY(R).
Then, k- ((Dyyp) € LY(R), and:

Ty [Dve] (€) = =Tk [¢] (€)-

Proof. By Schapira (1991, Theorem 2.5), we have that (, (Dyy) = Dr(Csp), so it suffices
to show that:

/ #()Da(Cop) (£) dt = — / K1) Coip(t) dt, (6.4)
R R

provided that the integrals make sense. Yet, a direct computation yields Drlj,p =
—Dgr1, ) for any two real numbers a < b and (. is equal to a finite Z-linear combination
of such functions outside a discrete set of points as any constructible function on R. Thus,

Dr(Cep) = —Cup,

outside a set of Lebesgue measure zero. Since by assumption & - (. € L'(R), this
provides both the integrability of the integrands of (6.4) and the equality between the
integrals involved. ]

Proposition 6.38 (Projection formula). Let ¢ € CF(V), § € CF(R) and let ( : V — R
be a morphism of real analytic manifolds. Assume that ¢ is proper on supp(p), that k -
Cop € LY(R) and that k- 0 - (ep € LY(R). Then,

Twlp- 701 (¢) = T[] ()-

Proof. The result follows from the formula for constructible functions (i (¢ - (*0) =
0 - C«p, which follows from the corresponding property for constructible sheaves (Kashi-
wara and Schapira, 1990}, Proposition 2.6.6) and the function-sheaf correspondence (ibid.}
Theorem 9.7.1). O

6.3.2 Convolution and box product

Recall the definition of the box product (Lemma and of the convolution (Corol-
lary of constructible functions.

Proposition 6.39 (Convolution for EL). Let ¢ and b be two constructible functions
on 'V satisfying Assumptions[6.9 for a cone C # {0}. Then, we have on Int(C®),

EL[pxv] =EL[px1c] -ELW] +EL[p] - EL[YxLo] —EL[p] - EL[Y].
Proof. By Corollary one has & (¢ *x ) = (&p) * (§+¢). Thus, using Lemma

we have:
EL o x| (&) = EL[(&xp) * ()] (1).

The result follows then from the following claim, proven afterwards.
Claim 6.40. If 6,6 € CF(R) both satisfy Assumptions for the cone R>q, then

EL[Ox0']) (1) =EL[0*1g,,| (1)-EL[O] (1)
+ELIO) (1) - EL [0+ 1ry, ] (1)
—EL[0) (1) - EC[0] (1).
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Indeed, the functions &, and &, both satisfy Assumptions for the cone Rxq by
Lemma [6.13] Thus, Claim [6.40] yields:
EL[(&xp) * (&) (1) = EL [(xp) * 1ry,o | (1) - EL &) (1)
+EL1E] (1) - EL [(6th) * 1rs, ] (1)
— EL[Gp] (1) - EL[&] (D).

Since C' # {0} the compatibility formula between pushforward and convolution (Corol-
lary and the expression of the pushforward of the indicator function of a convex
subset (Lemma [5.10) ensure that:

(ep) ¥ 1r., =& (px 10)
(&) x 1R20 =& (Px1c).

Hence the result, by Lemma [6.15]
Let us now prove Claim Lemma [5.4] yields that 6 x 6’ satisfies Assumptions

for the cone R>q, so that EL[(0 x ¢')] is well-defined on R5g 5 1. Consider now decom-
positions of 6 and 6’

0= Z milig, b,

el

0' = nili; ay;

jeJ
where I and J are finite, m; and n; are integers, a;, ¢; are real numbers, and b;,d; €
R U {+00}. We abusively denoted [z, +o0] := [z, +00) for € R for simplicity. One has:

0x0" = Z MmN g, by) * Lie; dy) = Z Minj a4 bi+d;)-
(i.§)eIxJ (i.J)EIxJ

Therefore, we have:

EC[0%0] (1) = / et (040) (1) dt

R
bi-l-dj
= Z mmj/ €_t dt
(i,j)elxJ aite;
(¢,5)eIxJ
=AC - BD

= A(C — D)+ (A— B)C — (A— B)(C — D),

[e.o]

using the convention that e™* = 0, and where we denoted:

A= Zmie_‘“, B = E mie b,

i€l i€l

C:= ane_cj, D = ane_dj.

jed jedJ
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Moreover, for z € R and y € RU {400}, we have:
Loy * IRso = Lo 400) (6.5)
so that:

0 % 1R20 = Z mil[ai,—i-oo)v

el
9, * 1R20 = Z njl[Cj,+OO)‘
Jel
Thus, Example yields:
A=EL[0x15.,] (1), C=e[0+1p.,] (1),
A—-B=ELIA] (1), C-D=¢Lly](1),
which proves Claim and finishes the proof of Proposition O

Remark 6.41. If ¢ and 1 are constructible functions satisfying Assumptions for two
different cones C’ # {0} and C” # {0} respectively, then they satisfy Assumptions
for the cone C' = Conv (C" U C”). Moreover, one has C' # {0}.

Corollary 6.42. Let ¢ and v be two constructible functions on V satisfying Assump-
tions [6.9 for cones C" # {0} and C" # {0} respectively. Assume in addition that ¢ =
©x 1o and ) = x Lon. Then, we have on Int(C’°) N Int(C"°),

ELpx ] = ELg] - EL[Y].

Proof. Following Remark consider C' = Conv (C" U C"). Then Int(C°) = Int(C"°)N
Int(C”°) and the result follows from Proposition and the fact that 1r x 1pv = 1r,
for any two closed convex proper cones I' and IV such that IV C T. ]

Remark 6.43. If ¢ satisfies Assumptions for a cone C’, then it is constructible up
to infinity and its support is v-proper for the cone v = C’®. Hence, the assumption that
¢ = p* 1¢ is equivalent to that of ¢ being y-constructible by Proposition [5.13]

Any n € (V x V)" can naturally be written n = so (£ x ) for (£,¢&) € V¥ x V*
and s: R x R — R the addition, so that we have the following corollary:

Corollary 6.44 (Box product for EL). Let ¢ € CF(V) and ¢ € CF(V’) both satisfy
Assumptz’onsfor cones C CV and C" C V' respectively. Assume further that C' # {0}
and C" # {0}. For any (£,£') € Int(C°) x Int(C"?), we have:

EL[p R Y] (n) = EL[px 1c] (€) - EL[Y] (') + EL[p] (§) - EL T x 1] (€])
—EL[L] (§) - ELWI(E),

withn =so (£ x¢&).
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Proof. Since n = so (£ x ¢'), Lemma[5.6) implies that n. (o B 9) = (&) * (£44)). Hence,

ELIp WY (n) = EL [0 (p W)] (1) = EL [(u) * (€0)] (1),
and the result follows from Lemma and the compatibility with convolution (Propo-
sition [6.39)). O
Corollary 6.45. In the setting of Corollary we have for any (§,¢') € Int(C°) x
Int(C’?),
EL[pRY] (n) = EL[¢] (€) - ELY] (€),

withn =so (£ x&).

Example 6.46 (Interpretation of the Laplace transform on 7-voxels). We call y-vozel
a subset of R? of the form [a1,b1) X --- X [ag,bq) where a; < b; are real numbers.

Consider ¢ = >, m;1y, € CF(R?) where the set I is finite, the coefficients m; are
integers and the subsets V; are y-voxels. Then, for any & = (&1,...,&4) € (Rxq),

d
EL[e] (€) = LIe1(€) - T & (6.6)
k=1

Indeed, the equality is true for d = 1 and extends naturally to «-voxels thanks to the
compatibility formula for the box product (Corollary . This relation gives a new in-
terpretation of the Laplace transform on such constructible functions. One could wonder
whether the relation can be generalized for all y-constructible functions. However,
Example [6.20] shows that such a generalization is not obvious.

Let v be a cone of V satisfying .
Proposition 6.47 (Convolution for £EF). Let ¢, € CF, (V). For { € V¥,
i EF [l (&) - EF Y] (&) if £ €1,
—i- EF[p] (&) - EF[Y] () if &€’

Remark 6.48. For any £ € V*\ (7°U~%°), the compatibility formula still holds. Indeed,
since ¢ % 1) is y-constructible by Proposition both sides of the equality are zero by

Proposition and (5.3)).
Proof. Suppose that & € v%°, the other case being similar. We have:
EF [ox ] (&) = EF [6 (e )] (1),

and & (@ * 1Y) = (£&.p) * (£4¢) by Corollary Since Lemma ensures that 0 = &,
and ¢’ = {.1p are both in CF,, o3 (V) with A = Ry, it is sufficient to prove:

Ef[so*w](i):{

EF0x0](1)=i-EF[O)(1)-EF[O'] (1),

for any 6,0" € CF, ¢ (V). By bilinearity of the convolution, it is even sufficient to prove
the result for 6 = 1, ;) and 0 = 1j.q) where a < b and ¢ < d are real numbers. Suppose
now that a +d < b+ ¢, the case a + d > b + ¢ being proven in a similar fashion. Then,

Liap) * icd) = Yavc,ard) = Lprepia)-
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Therefore, we get:
EF [Ligp) * Ljeay| (1) =i (e*i(‘”d) _ e—i(a+c)> _; (e—i(b+d) _ efi(bJrc))

— (e—z‘b _ 6—1'@) (e—id - e—ic)

=i EF [1ap)) (1) EF [1fea)] (1).
O

As for the Euler-Laplace transform, one gets the following corollary for the box
product. Let us consider a cone 7/ of V' satisfying (CT)).

Corollary 6.49 (Box product for £F). Let ¢ € CF, (V) and ¢ € CF, (V). For
any (£,€) € V* x V'™ we have:

afwxwum:{ i EF (G- EF () if (6,€) € 7% x 7™,
i EF IR (©) - EF W) if (6€) €7° x 7,
withn =so (£ x¢&).

Remark 6.50. Note that not all possibilities of (§,¢’) are treated in the previous corol-
lary, as such an equality is not true in general.

Example 6.51 (Interpretation of the Fourier transform on v-voxels). In the setting of
Example we have for any & = (£1,...,&4) € (R>0),

d
EF el (&) =i " Flel(©) - [ ] & (6.7)
k=1

Again, this relation gives a new interpretation of the Fourier transform on such con-
structible functions. Example shows that a generalization of such a relation for
all y-constructible functions is not obvious.

Remark 6.52 (On stability). For each integer k > 1, consider:

+1
52,

)

.

Pr = ;1[;’%1)”
2y

where the sum is over all pairs (i,7) € [1;k — 1]]2 such that ¢ + 7 < k — 1. Then, the
sequence (py)g>1 converges to the y-triangle 17 of Example in LP(R?) for p €
[1,+00]. Thus, over the domain (Rsg)?, the sequence (EF [pr] )psy = (Fl@r])psy con-
verges to F[17] in L. However, this last function differs from £F [17], as shown in
Example [6.29] Hence, if a stability statement holds for the Euler-Fourier transform, it
should be for other norms on constructible functions and on the Euler-Fourier transforms.
The stability of hybrid transforms goes beyond the scope of this thesis and will be the
object of future work.
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6.4 Reconstruction formula for Euler-Fourier

Consider a cone 7 of V satisfying (C1)). In this section, we establish a reconstruction
formula for the Euler-Fourier transform of y-constructible functions (Theorem [6.55)).

If h: V* — R is such that for any £ € V*\ {0}, the map:

Lg\{0}(s)
: 5 %-h(sﬁ),

satisfies that the following limit exists:

A

Fl [ﬁg} (t) := AE)TOO . e'st -ﬁg(s) ds,

then we can define the following map for all £ € V* and t € R,

S F [ @) ey qo,
Fh)(E,1) := %]—"‘1 [ﬁg} (t7) if€eq\ {0, (6.8)

0 else,

where = lim,_;+ g(s) for any function g defined in a neighborhood of ¢.

Proposition 6.53. Let ¢ € CF, (V). Then, F' (EF [p]) is well-defined, and for all § €
V* and t € R,

F(EF[e]) (&) = &p(t).

For £ € 4v°Uy*°\{0}, the proof boils down to inverting the classical Fourier transform.
Proposition [5.19| ensures that the pushforward &, is zero for other £’s, hence so are both
sides of the equality. First, recall the following easy lemma from classical Fourier theory:

Lemma 6.54. If f : R — R is a integrable, piecewise smooth and right-continuous (resp.
left-continuous) function, then for all t € R,

N + ( | - )
) = - FFNE) (e o FEDE)).
Proof. For f : R — R integrable and piecewise smooth, the following inversion formula

(Vretblad, [2003, Theorem 7.5) holds for the Fourier transform:

1

S-FUF()() = % (ft) + £(th), (6.9)

for all ¢ € R. In particular, for every point ¢t at which f is continuous, the right-hand
side is equal to f(t), hence the result. O

We can now prove the above proposition.
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Proof of Proposition[6.53. Lemma [6.27] yields:

(EF [e])e = 1r\joy - F (&), (6.10)

and the map on the right-hand side is almost everywhere equal to F({.¢), the Fourier
transform of an integrable and piecewise smooth function over R. Hence, Vretblad (2003,
Theorem 7.5) ensures that the limit

A —

: ist
i [ e (EF T )els) ds

exists, so that F' (EF [¢]) is well-defined.

Let now € € V* and t € R. If both are zero, the result is clear. Otherwise, denote y =
(€ :t] € PX(V). If y ¢ K7, the characterization of the support of the Radon transform
on compactly supported ~-constructible functions (Proposition yields the result
by and the definition of F'. If y € K7, then the constructible function & is
right-continuous when & € ~*° \ {0} (resp. left-continuous when £ € +° \ {0}) since
Lemma ensures that it is compactly supported and A-constructible on R with A =
R<p (resp. A = R>¢). Therefore, Lemma ensures that

1

TG e ey {0)

ep(t) = ) (6.11)

o FEe)tT) i eq\ {0}

Hence the result, since

e~

FUF(e) = F (Iayoy - Flew) O 7 ((EFTRD)e)
O

For any ¢ € CF,.(V), combining Proposition with (5.3) implies that the
map F' (EF [¢]) induces a map on P*(V) and:

F(EF [¢]) = R(jxp)- (6.12)

Putting all together, we get the following reconstruction result for the Euler-Fourier
transform:

Theorem 6.55. Let p € CF, (V). Then,
R'o F/(EF [¢]) = (),

Remark 6.56. We abuse notations to alleviate the formula by identifying j.¢ and ¢ in
the right-hand side.

Proof. The results follows from (6.12)) and the inversion formula for the Radon transform
of compactly supported 7-constructible functions (Theorem and Remark [5.18)). O



Chapter 7

Index-theoretic formulae

Baryshnikov and Ghrist (2010) extended Euler calculus of constructible functions to the
space of so-called definable functions, that is, whose graph is definable in some o-minimal
structure. Moreover, they proved that Euler integrals of Morse functions can be expressed
as signed sums of their critical values. Then, Bobrowski and Borman (2012) defined a
similar extension to the so-called tame functions, which can be expressed in terms of
signed sums of critical values. Both definition coincide on tame functions which are
also definable. The class of tame functions contains for instance continuous subanalytic
functions on compact real analytic manifolds.

Since their first introduction, a connection has been established between hybrid trans-
forms and continuous Euler integrals. These formulae are first proven in Ghrist and
Robinson (2011) and called indez-theoretic formulae to emphasize their link with signed
sums of critical values. In their paper, Bobrowski and Borman (2012)) proved that the
Euler characteristic of barcodes is naturally expressed as a continuous Euler integral
of the filtration function in the context of sublevel-sets persistence. Finally, Govc and
Hepworth (2021) proved that persistent magnitude can be expressed as a signed sum of
exponential of critical values in the context of sublevel-sets persistence of tame functions.

Building on the work of Adler and Taylor (2009)), Bobrowski and Borman (2012)
computed the expected Euler integral of Gaussian random fields in terms of integral
geometric quantities depending on the random fields. Then, they combined this result to
index-theoretic formulae to compute expected values of Euler characteristics of barcodes
associated to sublevel-sets persistence of random filtration functions. At the time, this
provided one of the first general tools to derive probabilistic statements about sublevel-
sets persistence.

Outline. In this chapter, we define the so-called sublevel-sets and level-sets constructible
functions associated to a continuous subanalytic map (Section . They are the con-
structible functions associated to persistent cohomology sheaves introduced by Kashiwara
and Schapira (2018]). We prove an expression of sublevel-sets constructible functions as a
convolution of level-sets constructible functions with the indicator function of the antipo-
dal of 4. As a consequence, hybrid transforms of (sub)level-sets constructible functions
associated to vector-valued maps can be expressed as hybrid transforms of (sub)level-
sets constructible functions associated to real-valued maps. It leads to the definition

141
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of sublevel-sets transforms, the simple form that hybrid transforms take in the case of
multi-persistence.

Then, we recall the definition of continuous Euler integral from Bobrowski and Bor-
man (2012) and prove index-theoretic formulae for a wide class of hybrid transforms,
generalizing existing ones for the magnitude, the Euler characteristic of barcodes and the
Bessel and Fourier transforms (Section [7.2)).

Finally, we follow the approach of Bobrowski and Borman (ibid.) and use our index-
theoretic formulae together with the results of loc. cit. to compute the expected value
of the Euler-Bessel transform of level-sets constructible functions associated to Gaussian
random fields (Section [7.3)).

Convention. We follow the conventions and notations introduced in Chapter |5 Re-
call that [M]is a compact real analytic manifold. Throughout the chapter, we consider a
locally closed subanalytic subset [Z] of M, a continuous subanalytic map and

a cone py| of V satisfying (C2)), that is:

v 18 a non-empty subanalytic closed proper conver cone. (C2)

Note that v may have empty interior.

7.1 Sublevel-sets persistence

In this section, we recall the sheaf-theoretic formulation of the sublevel-sets persistent ho-
mology due to Kashiwara and Schapira (2018|, Section 1.2), focusing only on constructible
functions instead of constructible sheaves.

Define the y-epigraph of f by:

:{(x,v)EMxV; flz)—ven}.

Denote also by the usual graph of f. The set F} is closed and subanalytic in M x V
by Kashiwara and Schapira (1990, Proposition 8.2.2) since, denoting o : (z,v,w) €
M xVxV i (z,0+w) € MxV, we have I'; = o(I'; x ¥*). Denote by p: M xV =V
and q: M x V — M the canonical projections, so that we get the following diagram:

2
L'y
N

M xV
/ X
M \Y%

Define the sublevel-sets constructible function associated to f on Z as:

90’}|Z = P« (11“}’ 'q*lZ) = p*lF}ﬂ(ZXV)v (7.1)

and the level-sets constructible function associated to f on Z as:

Pfiz| = Px (1Ff 'q*lz) = Pelr n(zxv) (7.2)




7.1. SUBLEVEL-SETS PERSISTENCE 143

The previous constructible functions are well-defined since p is proper on I' } (Kashiwara
and Schapira, 2018, Theorem 1.11) and since the properness still holds on the closure
of F} N(Z xV) and also for v = {0}. Note also that Lemma ensures that the level-sets

constructible function is compactly supported.
Remark 7.1. For v € V, one has Lp}‘z(v) =xc (fTHv+v)Nn2).

Notation 7.2. When V = R and v = R<g (resp. 7 = Rx), we denote [, = g,

|(resp. (p;r‘z = g, Z)| the sublevel-sets constructible function associated to a continuous
subanalytic map g : M — R on Z.

Example 7.3. The function go} is sometimes called Euler characteristic curve for V=R,
Euler characteristic surface for V= R? and Euler characteristic profile for V= R™ with
n > 3; see for instance Beltramo, Andreeva, et al. (2021) and Dtotko and Gurnari (2022).

Example 7.4. Considering a subset Z C R? relatively compact subanalytic and lo-
cally closed, the Fuler characteristic transform defined in Turner, Mukherjee, and Boyer
(2014b) is, for £ € V* and t € R,

ECT(Z)|&1) = x({z € Z; (€.2) <1}) = o7 (¥).

If f:R? — R is continuous subanalytic and ¢ € R?, denote by (&, f) : R? — R? the
map defined by = — ((§,x), f(x)). The Lifted Euler Characteristic Transform along f
recently defined in Kirveslahti and Mukherjee (2021) is then, for any (h,t) € R?,

LECT(|. hat) = o gy (A ),

where v = R<g x {0} C R%. The Super Lifted Euler Characteristic Transform along f
defined in loc. cit. is, for any (h,t) € R?,

SELECT(f)(€, h,t) = ¢{; ;) (h,1),

where 7/ = R<g x R>o C R?.

The following proposition specifies the relationship between the level-sets and the
sublevel-sets constructible functions. It is key to the study of hybrid transforms in the
context of sublevel-sets persistence, and more specifically to the proof of Proposition
which is itself key to index-theoretic formulae (Theorem [7.17). It can be derived from
an analogous result on sheaves by Berkouk and Petit (2022, Proposition 4.17) via the
function-sheaf correspondence. Here, we give a proof that does not make use of the
correspondence.

Proposition 7.5. In the preceding situation, go}lz = fi, * Lya.
Proof. Since I'; N(Z x V) =0 (Ff N(Z xV) x 'ya), Remark [5.5] yields that:

1F}m(ZxV) = 0ulp n(ZxV)xya = Ox <1Ffﬂ(Z><V) X 17«1) . (7.3)
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Moreover, by Lemma |5.6

(p x Idy). (1Ffm(Z><V) X 17“) = (p*lFfm(ZxV)) X 1,a. (7.4)

Thus, denoting by s : V x V — V the addition, we have po o = so (p x Idy), and:

(7.3)
‘P’}‘Z = DPs+0x <1Ffm(Z><V) X 17“)
(i)

= Sx (p*lFfm(ZxV) X 1~/a>
= SOle * ]_,ya.

O

Remark 7.6. The above proposition ensures that gp} satisfies Assumptions for the
1z
cone ¥* by Remark [6.10]

We show that the pushforward by a linear form sends multi-parameter (sub)level-sets
constructible functions to one-parameter ones. The first is a well-known lemma proven
for completeness and used in the next result.

Lemma 7.7. For any morphism of real analytic manifolds  : V — R, we have that C*%ﬁz =
Peofiz-

Proof. Consider the following commutative diagram

(ZxR)NT; ——V

l(IdM x¢) J’C ) (7.5)
p/
(ZxR)ﬁFCOf — R

where p’ : M x R — R is the canonical projection. We have:

C*‘Pﬂz = C*p*lFfﬂ(ZxV)
= p(Idps x O+1r nzxv)

= Pilrgofm(ZxR)
= PCofiz>

where the third equality follows from Remark and the equality:

(Idar x Q) (TN (Z x V) =Ty N (Z X R).

Proposition 7.8.
(1) For all & € Int(~*°), 5*80}‘2 = (pf_of‘z'

(ii) For all & € Int(~°), 5*@}‘2 = 902:)}0‘2-
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Proof. For any £ € Int(~2°), we have

Cor. 5.1
f*‘P} = 5*90)”‘2 * &ilya

Lem. [5.10] 1
= &« Pfiz * tR>o

Lem. [T1
= Peofiz * IRxo
Prop. [7.5] _
= Peofi
and similarly replacing R>o by R<q if £ € Int(y°). O

Example 7.9. As in Example , consider a subset Z C R? relatively compact suban-
alytic and locally closed. Then, the Euler characteristic transform is the pushforward,
for £ € V¥ and t € R,

ECT(Z)(§,1) = &} (1),
where f = Idpa and where 7 is any cone satisfying (C2)) such that Int(y*°) 5 &.

Hybrid transforms. The formula expressing the pushforward of sublevel-sets con-
structible functions (Proposition has the following consequence for hybrid trans-
forms:

loc

on Int(y*°), and for any & € Int(y*°),

Ty [@}Iz} (&) =Tx [wgof‘z} (1) =/

R

Corollary 7.10. Let k € L _(R) N LY(R>q). The transform T, [@}‘Z} is well-defined

K() gy, (1) d.

A similar result holds with gogof for k € LL (R) N LY (R<g) and & € Int(v°).

loc

Proof. The well-definedness follows from Proposition and Proposition [6.12] while the
formula follows from Proposition [7.8] O

Remark 7.11. Corollary|7.10[implies that for any & € Int(y*°), the evaluation T {cpﬂ (€)

is nothing but the evaluation of the integral (with respect to the Lebesgue measure) trans-
form with kernel x of ¢, ;. In particular, the cone v such that Int(7*°) > £ does not play

any role. Hence, the study of hybrid transforms of sublevel-sets constructible functions
for vector-valued filtrations can be reduced to the ones for real-valued filtrations.

This study motivates the following definition, which gets rid of superfluous infor-
mation when dealing with hybrid transforms of sublevel-sets constructible functions.
Although a priori invisible, the hybrid nature underpins the definition.

Definition 7.12 (Sublevel-sets transform). Let x € L _(R)NL'(R>(). We call sublevel-
sets transform of f over Z, and denote by Sub, [f|Z] , the transform defined for £ € V* by:

Sub [117][9) = T [y, | ) = [ O x (U0 r <31 2) at.
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Example 7.13 (Generalization of Morse magnitude). We can define the sublevel-sets

magnitude of (Z, f) as the sublevel-sets transform of f over Z with kernel & : t — et

In other words, for £ € V*,

€ (Z. £)]|:= Subs [fi2] (€) = /R e x({€of <t}N2Z)dt. (7.6)

When Z = M and f: M — R is a Morse function, the previous definition specializes in
the notion of Morse magnitude of Gove and Hepworth (2021} Section 6). More generally,
when £ o f is a Morse function, we have:

‘5 : (M7 f)’ = ‘(M7£O f)’Morsm
with the notations of loc. cit..

Example 7.14 (Generalization of Euler characteristic of barcodes). Bobrowski and Bor-
man (2012) introduced the Euler characteristic of barcodes for sublevel-sets persistent
homology associated to a continuous subanalytic map g : M — R restricted to the
range (—oo,a) for a € R as follows:

a

= [ e tdt=subi__, lol ). (77)
—00

Definition [7.12] allows to generalize this notion to multi-parameter sublevel-sets persis-

tent cohomology as follows. For a continuous subanalytic map f : M — V eventually

restricted to a subanalytic locally closed subset Z of M, we define for £ € V*,

X (&) =Suby__  [fiz] (). (7.8)

7.2 Hybrid transforms as continuous Euler inte-
grals

In this section, we recall the definition of Bobrowski and Borman (ibid.) of continuous
Euler integration, restricting ourselves to continuous subanalytic functions on compact
real analytic manifolds. Although slightly less general, this allows us to use the framework
developed in the previous chapters. Then, we prove the formulae expressing (sub)level-
sets transforms as continuous Euler integral transforms.

Definition 7.15. Recall that Z is a locally closed subanalytic subset of M and let g :
M — R be continuous and subanalytic. The continuous Euler upper integral of g on Z
is defined by:

+o0
/gdelz/O e g >} N 2) — xe (g < —u} N 2) du,

and the continuous Fuler lower integral of g on Z by:

+o0o
/ngxJ:/O xe({g>u}n2)—x.({g < —u}nZ) du.
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Remark 7.16. If Z’ is a locally closed relatively compact subanalytic subset of M and Z
a closed subset of Z’ that is subanalytic in M, then the classical distinguished triangle
(Kashiwara and Schapira, (1990, Eq. 2.6.33) yields:

Xe (Z') = xe (Z'\ Z) + xc (2) .

Therefore, in such a situation, we have:

/Z/g[d)d:/Z/\Zg[dX1+/Zg[dX1’

and a similar equation for the lower integral.

Recall that Z is a locally closed subanalytic subset of M and f : M — V is a
continuous subanalytic map. Consider a real valued kernel k € LL (R). The case of
a complex kernel follows from the study of its real and imaginary parts. Choose xg €
R U {#o0} such that |K|: z € R — f;o k(t) dt is well-defined over R. For the sake of
readability, we extend the definition of K to any x € RU {400} such that the integral is

well-defined.

Theorem 7.17 (Index-theoretic formula for sublevel-sets). Let —oo < a < b < +00.
Assume that k- 1(_p) € LY*(R>0) and that K is subanalytic. For any & € V*,

(1) #f Ki(ap) is strictly increasing, then

Sub,, ) fiz] () =K®) - x({§o f <b}n2) —K(a) - x({£o f <a}nZ)

K1(a,b)

—/ K(€o f) [,
{a<€of<b}nZ

(i) if Ky(ap) is strictly decreasing, then

Sub,a, ) fiz] () =K®) - x({¢o f <b}n2) = K(a) - x({€o f <a}nZ)

k1 (a,b)

—/ K(€o f) [,
{a<€of<bINZ

with |KC(b)| < 400 and the convention that K(a) - x({{o f <a}NZ) =0 when a = —oc0.

The proof relies on the following technical lemma describing sublevel-sets constructible
functions, stated and proven before the proof of Theorem [7.17]

Lemma 7.18. Let g : M — R be a continuous subanalytic function. There exist a finite
family of integers {mi}ti<i<n and of real numbers —oo < ¢1 < -+ < ¢ < epy1 < +00,
such that:

(i) One has Pg, = Yoy milic, e q]s and oz = > i Milie; o0)-

(ii) For all —oo < a < b < +o0, denoting Z,p, = {a < g <b}NZ, one has:

909|Z,17b: Z mi]‘[ciﬂroo)'
a<c;<b
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(i) If K : R — R is a continuous subanalytic function that is strictly monotonic on an
interval containing Im(g), then

(’DIE(g)‘Z = Zmil[lC(c,-),-i-oo)'
=1

Proof of Lemma[7.18 Result|(i)]is a straightforward consequence of Proposition and
of the convolution of indicator functions of closed intervals (6.5). To prove , note
that [, N Z,p xR=T,NZ x (a,b], so that Ir,nZ, ;xR = 1r,nzxR " P"1(4p), and hence:

912, = Px <1FQOZXR 'P*l(a,b}) = L(ap) - Py

By Proposition we have go;lza , = oz, * 1R, SO that:

n
g12,, = Z Mile; cipa)n(ab] * 1R5o-
7 1=1

The result follows then from direct calculations, since:

lciyciv1] fa<c <cipr <D,
[ci, b] ifa <e¢ <b<cig,

(
(

¢, cit1] N(a,b| =
lei cia] 1 (o, 8 a,civ1] if ¢ <a<c¢yq <b,

a,b] ifci§a<b§ci+1.

Let us now prove . Suppose that a,b € R are such that Im(g) C [a,b] and K
is strictly increasing on [a,b]. In this setting, the ¢;’s appearing in the decomposition
of Py, can be chosen in [a,b]. If u < K(a), one has that x ({K(g9) <u}NZ) =0 and
if u > IC(b), then one has x ({K(g) < u} NZ) = x.(Z), hence the equality for such values
of u by the fact that x.(Z) = > m;. Now, if u € [K(a),K(b)], we have:

Lo ooy (K@) = e, i (K1) = Lpic(e s () = Liic(er),+00) (1),
so that we compute:
x({K(@g)<uinZ)=x({g <K' (w)}n2)

= Zm, Loy to0) (KT (W)
=1

= i L) o0) (1),

i=1
O

Remark 7.19. In the setting of the previous lemma, Bobrowski and Borman (2012,
Proposition 2.4) ensures that:

/Zg[dﬂ:z:mi-ci.
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Proof of Theorem[7.17. Let us first prove The function g = £ o f being continuous
and subanalytic, we can consider its sublevel-sets constructible function on Z written as

in Lemma . The fact that £-1(_p) € LY(R>0) then ensures that - 1(—oop) Py
is integrable over R. Thus, the left-hand side of the equation to be proven is well-defined.
Hence the result, by the computations:

b
JRCESCES Z e [ Lot () (0

-3 m (/:ﬂ(t)dt> £ m (/ab/i(t)dt)

a<c;<b c;i<a
= > mi(Kd) — K(c)) + > mi(K(b) — K(a))
a<c;<b ci<a
=K®)- > mi—K@)- > mi— > miK(c)
c; <b c;i<a a<c;<b
—K0) x({g <N 2) - Kla) (g <a}n2) = [ Kig) [l

where Z,, = {a < g < b}NZ, and where the last equality follows from Remark and

Lemma (i1)| and Lemma (ii1)| that yield:

9)\Zab Z Milic(c;), +00)-

a<c;<b

For , note that —K satisfies the assumption of|(i)| and that:

K(g) [dx] =— [ —K(g)[dx]. (7.9)
z' z!

for any subanalytic locally closed subset Z’ of M. This last equality is clear from the
definition, and has first been proven in Baryshnikov and Ghrist (2010, Lemma 4). O

From the index-theoretic formula for sublevel-sets transforms, we deduce a formula
for hybrid transforms of the level-sets constructible function ¢ for more general param-
eters ¢ : V — R morphisms of real analytic manifolds.

Corollary 7.20 (Index-theoretic formula for level-sets). Let —oo < a < b < +o00 and
assume that IC is subanalytic. For any ¢ : V — R morphism of real analytic manifolds,

(1) of Ki(ap) is strictly increasing, then
Taa [r2) © = [ KConlad- [ Ko nTa,
Za.,b Za,b
(i) if Ky(ap) is strictly decreasing, then

Ta [o1,] © = [ KCon T~ [ Kiconlax

whereZa,b:{aSCofgb}ﬂZ.
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Proof. We show the first result, the second being proven identically. By Lemma it
is sufficient to prove the case f = g : M — R and ¢ = Idg. To use Theorem [7.17] one
must first reduce to a situation where its conditions are met. Since Im(g) is compact,
consider —oo < @’ <V < 400 such that (a’,0’) D Im(g) 2 supp(py) and thus:

Tlten] [gog‘z} (D)= Tla, ) [‘Pg\z} (1),

where ¢ = max(a,a’) and d = min(b, V). Now, for any t € RU {£o00}, we have:

xHg=t3n2)=x{g<t}nZ)+x({g =t} N %) —x(2). (7.10)

This yields ¢, = Py, T ‘P;Z —x (Z) - 1g, and thus:

T ] [P0z] 0 = Thaa) [0 O+ Ta ) |90, ] D -x(2) /cd”"@ dt. (7.11)
Theorem yields first:

T, [#0,] (1D = K@) x({g <} 1 2) = K(0) -x({g < } 1 2)

-/ K(g) [ dx].
{e<g<d}inZz

Moreover, using that 90;|z () =97, (1), we get:

(7.12)

Tt [%F\Z} () =T, ) [S0:9|z] (1),

where we denoted 7 (t) = x(—t). In that case, K(z) = f;; R (t) dt satisfies K(t) = —K(—t),
so it is subanalytic and strictly increasing. Thus, Theorem [7.17] yields:

Tlat o] [%ﬁz] (1) =K(d) x({g >d}nZ) - K(c) - x({g > e} N Z)

w[ kgl
{e<g<d}nZ
Putting (7.12) and ( - ) back into ( - yields:

Tto] [sogxz} () =K@ (x{g<dtn2)+x({g>d}n2)—x(2))
—K(e) (x({g<eadnZ)+x{g=c}nZ) - x(2))

+ /{nggmz K(g) [dx] — /{KQSd}mz K(g) [dx].

(7.13)

Yet, Remark yields:

[ K(g) Ldx) = K(d) - x ({g = d} 1 2) +/ 9) Ldy).
Ze,d

{c<g<d}ﬂZ

/Cd/c ) Tdy] =K(c) - <{g—c}mz+/ g) [dx].

c<g<d}ﬂZ
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Thus, combined with ([7.10), we get:
T el W= [ K@)l - [ Ko) [ax.
(ed) Zc,d Zc,d

Hence the result, since {g > a'} = {g < b’} = M by definition of a’ and ¥’, so that:

chdéf{cggSd}ﬂZ:{agggb}ﬂngZL,b.

O

Remark 7.21. This corollary and Lemma also hold with identical proofs for f :
M — X and ¢ : X — R morphisms of real analytic manifolds, but we shall not make
use of such a general statement in this thesis.

Applications to known transforms. An index theoretic formula is proven in Gove
and Hepworth (2021, Theorem 6.1, Remark 6.2) for the sublevel-sets magnitude
when Z = M is a closed smooth manifold. The results of this section allow us to state
it for Z subanalytic locally closed and f continuous subanalytic:

Corollary 7.22 (ibid., Theorem 6.1). For any £ € V*,

€ (2.1)| = /Z el | dy).

The results of this section also yield new results for the GR-Euler-Fourier and the
Euler-Bessel transforms.

Corollary 7.23. Let v be a cone satisfying (C2). For any £ € Int(v°), we have:

eF® g1 | © —/ Eo fdxl.

{€of>0)nZ

Proof. Proposition yields (—f)*gp}lz = 90:£0f|z’ so that EFCGR [cp'}lz] (€) = X%Z(—g).
O

Corollary 7.24. For any £ € V*, we have:

EFR gp,] © :/

{¢of>04nZ

SOdexJ—/ €0 fdx].
{00}z

Example 7.25. Let Z be a relatively compact subset of V. Consider a compact real
analytic submanifold M of V containing Z and f : M — V the inclusion, so that ¢ fiz =
1. Corollary yields the following generalization of Ghrist and Robinson (2011}
Theorem 4.4):

GR _ _
EFOR (1] (6) = /{ oy Sl /{ oy ET

The parameter ¢ : V — R appearing in the definition of the Euler-Bessel transform is
not linear, so an index-theoretic formula for sublevel-sets constructible functions is out
of reach using the results of the present chapter. Yet, Corollary yields the following
formula for level-sets constructible functions.
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Corollary 7.26. Consider an analytic norm || - || on V. For any v € V, we have:

e8[r,) ) = [ o= slLax) - [ o= sITaxl,
where ||v — f|| :x € M — |jv — f(x)].

Example 7.27. In the setting of Example Corollary yields the following
generalization of Ghrist and Robinson (2011, Theorem 4.2):

EB[1/] <v>=/zuv—-||dej—/znv—-erxw.

7.3 Mean Euler-Bessel transform for random fil-
trations

In this section, we combine Bobrowski and Borman (2012, Theorem 4.1) and our index-
theoretic formula to prove expectation results for the Euler-Bessel transform of level-sets
constructible functions of Gaussian random fields.

Denote by d the dimension of M and let f : M — R* with & > 1 be a k-dimensional
Gaussian field with iid components all having zero mean and unit variance. Note that
if £ e (Rk)* is such that ||€|| = 1, then a direct checking ensures that £o f : M — R is
also a centered Gaussian field with unit variance. To state the result, we use classical
geometric quantities known as the Lipschitz-Killing curvatures £; (M) with respect to
the metric induced by the centered unit-variance Gaussian field £o f : M — R. We refer
to Adler and Taylor (2009, Section 7.6) for the definition of the curvatures and to Adler
and Taylor (ibid. Section 12.2) for the definition of the metric induced by a Gaussian
field.

Corollary 7.28. Suppose that the components of f are almost surely subanalytic and
Morse functions. Then, for any v €'V,

d
N @m) TR L (M) ej(v) if d s odd,
BiEBlog ) = | 22 B0 AN i

0 if d is even.

where

+00 _||U||2/2|| 2 [G-1)/2] j—1-2 k2 —1

e v (]

Cj (U) = Zz; QZ—’L' ; mZ::O 1{k2j—m—2l—2i} <] —1—m— 2[)
(=)™ (G —D)ID((k+2i —j —2m + 20+ 1)/2)

8 ml12G—1-2m)/2T ((k + 2i)/2)

Proof. Let us first remark that the following equations are straightforward consequences
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of Bobrowski and Borman (2012, Theorem 4.1):

d

E[/Mdv(f)[dﬂ]=X(M)E[dv(f)]—§( 7925 (0) [ M (o) du
E[/Mdv(f)LdXJ]ZX(M)E[dv(f)Hi( L, (M) [ My (5, 50)

where we denoted by d, : u € R¥ s |ju — v|| € R, and where the Gaussian Minkowski
functionals M are defined by the tube formula (Adler and Taylor, 2009, Eq. 10.9.11).
Thus, the index theoretic formula for the Euler-Bessel transform (Corollary [7.26)) yields:

BleBlod 0] = | [ a0 L] -E| [ a0 1ad]

d
Z 2m) 2L ( /M Hu, +00)) + M (dy ! (=00, u])du.
7j=1
(7.14)

Following Taylor (2006, Section 5.2), we use the expressions of the densities and
their derivatives of noncentral X% random variables and tube formulae to compute the
Gaussian-Minkowski curvatures involved:

| fr (7.15)
My (05 +) = (1 0+ ()

for any u € R, where we denoted by f, i the density of the square root of a noncentral X%

random variable with noncentrality parameter ||v]|?, i.e., for any = € R, one has:

f k Z e_llvll /2 HUH . mk+2’i71€71.2/2
v, 2141 2(k+2i—2)/gr((k n 2i)/2) )

This yields the following expression:

“+00

d
E[EB[pf] ( Z om)~I/2L; (M) (14 (-1’71 M; (dyt (=00, u]) du.
Jj=1 0

The result for even dimensions d follows then from the fact that Lipschitz-Killing curva-
tures £; (M) vanish for odd values of j and 1+ (—1)7~! vanishes for even values of j.
For odd d, the result follows from the expression:

= = i —u l(G—1)/2] j—1-21
Y7 o =Y el 2 g ||v]|* b2 emut/2 > ]Z 1o .
dai=t ) _ : 21l T((k + 2i)/2)2(k+2i=2)/2 {k>j—m—21—2i}
=0 =0  m=0

o Fr2z-1 (=)™ —1)! 22l
j—1—m—2l ml2! ’
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for u > 0—see Taylor (2006, Section 5.2)—and the clear following one:
/—‘,—OO uk+2’i—j+2m+2le—u2/2 du — 2(k+2i—j+2m+2l—1)/21—\ ((k' 4 2% _j 4 om + 2l + 1)/2) .
0

O

We end this chapter by mentionning that the same methodology applies to sublevel-
sets persistent magnitude:

Corollary 7.29. For £ € V* such that ||&|| = 1 and & o f is almost surely subanalytic
and a Morse function,

[

j (M)
(2m)i/2

E[lg- (0, )] VS
j=0

Proof. By Corollary [7.22] we have:

Bl 0nnl) <[ [ e o] =& | [~ 1aq],

and Bobrowski and Borman (2012, Corollary 4.3) yields:

d .
(_1 IL; (M e —z
lle- 0] =3 S [ e da
j=0 —o0
where p(z) = 67;2. Since Hj(x) = (—1) p(z)~* djéﬁ;g‘x)’ an integration by parts yields:
e —x i oo d](p(at) —x
/_OO o(x)Hj(z)e " do = (—1) /_Oo Qi © dz

. [0
:(—1)3/ o(z)e *dx

—00

= (-1YVe.



Chapter 8

Euler characteristic profiles and
their transforms

Based on joint work with Olympio Hacquard.

Consider a practical scenario where a filtered simplicial complex is built from the data
at hand to extract some topological and geometric information. For instance, this fil-
tered complex could be a Cech filtration or a function-Cech filtration (Section [4.1.1)).
Computing the Euler characteristic at every value of the parameter of the filtration, one
obtains an integer-valued function describing the topological evolution of the filtration
with respect to the parameter. This function is called the Fuler characteristic profile of
the filtration. Under mild assumptions, this function is constructible and one can thus
consider its hybrid transforms. Several natural questions arise: how do these descriptors
of filtered simplicial complexes behave with respect to small perturbations on the data?
What are the properties of these tools in random contexts, such as Cech filtrations of
random point clouds? For instance, do they satisfy a central limit theorem?

Stability. One of the main reasons for the success of persistent homology in topolog-
ical data analysis is the stability theorem for persistence barcodes from Cohen-Steiner,
Edelsbrunner, and Harer (2007). Loosely speaking, it means that, under mild assump-
tions, small changes in the filtration function imply small changes in the barcode. Such
results are key to designing consistent estimators in statistical analysis, as it is done in Bo-
browski, Mukherjee, and Taylor (2017)) and Chazal, Glisse, et al. (2015)). Other distances
on persistence barcodes also satisfy some stability results, such as the p-Wasserstein dis-
tance between persistence barcodes (Cohen-Steiner, Edelsbrunner, Harer, and Mileyko,
2010; Skraba and Turner, [2020).

Distances on Euler characteristic profiles have already been studied and several sta-
bility results have been derived. In the one-parameter setting, stability results have been
proven for Euler characteristic curves in Curry, Mukherjee, and Turner (2022), Dlotko
and Gurnari (2022), and Perez (2022). All statements bound the L; distance on Eu-
ler curves by the 1-Wasserstein distance between the associated persistence barcodes.
The most general statements for functions in Sobolev spaces of compact Riemannian
manifolds can be found in Perez (2022). Results of loc. cit. rely crucially on a fine
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upper-bound of Buhovsky et al. (2022) on the number of bars greater than e in the
sublevel-sets persistence barcodes of functions in such Sobolev spaces.

In the multi-parameter setting, Y. Chen et al. (2022) define a distance between Euler
profiles of two-parameter filtrations indexed over finite grids and prove an associated
stability result. Their distance is the sum of the 1-Wasserstein distances between one-
parameter barcodes of the restrictions of persistent homology to rows and columns of the
grid. As explained in Dlotko and Gurnari (2022, Section 3.2), the stability result proven
in Y. Chen et al. (2022)) is trivial in most cases as the Wasserstein distance between two
barcodes is infinite as soon as their number of infinite bars is not the same. To cope
with these limitations, Dlotko and Gurnari (2022)) consider L; distances between Euler
profiles and prove stability results for the restrictions of Euler profiles to compact subsets
of their domain (Proposition 3.4 of loc. cit.). Similar results are obtained in Curry,
Mukherjee, and Turner (2022, Lemma 4.10). Meanwhile, the stability results of Oudot
and Scoccola (2021]) for the Hilbert functions of persistence modules can be transferred
to Euler characteristic profiles. In contrast, these last results are expressed in terms of
signed 1-Wasserstein distances between Hilbert functions and not in terms of classical
functional norms on constructible functions. Oudot and Scoccola (ibid.) prove that this
specific distance is related to other known distances between persistence modules, namely
the 1-Wasserstein distance in the one-parameter case and the 1-presentation distance
(Bjerkevik and Lesnick, [2021) in the two-parameter case.

Statistics. Euler characteristic tools have been extensively studied in random geom-
etry. Mean formulae for the Euler characteristic of superlevel sets of random fields are
proven in Adler and Taylor (2009)), and the limiting behavior of the Euler characteristic
of a complex built on a Poisson process are established in Corollary 4.2 of Bobrowski
and Adler (2014). Furthermore, Euler curves associated with random point clouds are
proven to be asymptotically normal for a well-chosen sampling regime in Krebs, Roy-
craft, and Polonik (2021]), where the authors also apply this construction to bootstrap.
See Bobrowski and Kahle (2018) for a survey on the asymptotic behavior of topological
descriptors of random complexes in the one-parameter setting. All these results con-
cern invariants of one-parameter persistence modules, and the multi-parameter setting
remains almost uncharted. The first result in this direction has been proven by Botnan
and Hirsch (2022) for multi-parameter persistent Betti numbers.

Outline. In this chapter, we consider constructible functions associated to the persis-
tent homology of multi-parameter simplicial filtrations, called Fuler characteristic profiles
(Section . We conduct a theoretical study of these constructible functions and their
hybrid transforms as descriptors of filtered simplicial complexes.

In Section [8:2] we prove stability properties that clarify the robustness of Euler char-
acteristic profiles and their transforms with respect to perturbations. First, we recall
the definition of the signed 1-Wasserstein distance introduced in Oudot and Scoccola
(2021) and state its connections with other known distances on persistence modules
(Section . Then, we prove that the L; distance between restrictions of Euler pro-
files to compact subsets is upper-bounded by the signed 1-Wasserstein distance between
them (Section [8.2.2). The combination of this result and of the results on the signed
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Wasserstein distance gives an essentially equivalent proof of the results of Dlotko and
Gurnari (2022)). However, the intermediate formulation using the signed Wasserstein
distance allows for a unified treatment of the one-parameter and multi-parameter cases.
In particular, it implies that the L; distance between two-parameter Euler profiles is
upper-bounded by the 1-presentation distance between the persistent homologies of the
filtrations. Moreover, we derive stability results for hybrid transforms of Fuler charac-
teristic profiles in terms of L, distances.

In Section [8.3] we establish the stability results for hybrid transforms associated to
filtered simplicial complexes of random point clouds. In Section[8.3.1] we state that under
some mild assumptions, hybrid transforms are universal in the sense that they converge
to an object that depends only on the kernel, the filtration, and the sampling scheme.
In addition, we illustrate how information on the sampling can be extracted from this
limiting object. This shows that if the number of sample points is large enough, hybrid
transforms are relevant tools to perform classification tasks on point clouds. Finally,
we establish a law of large numbers for hybrid transforms in a multi-filtration set-up in
Section [8:3.2] This result relies on the link between multi-parameter hybrid transforms
and one-parameter ones in the context of sublevel-sets persistence (Corollary and
is not obvious to prove for Euler characteristic profiles. This is another illustration of the
interest of hybrid transforms as topological descriptor of filtered complexes. Together
with the works of Botnan and Hirsch (2022), our results form the first occurrence of
limiting theorems in a multi-persistence framework in the literature.

Convention. We always consider the coordinatewise order on R™. As in Chapter
we assume for convenience in the rest of the chapter that all filtrations are simplicial
filtrations, that is, composed of simplicial subcomplexes. Recall that the dual of a vector
space V is denoted by V*, and that R™ is always identified with its dual under the
canonical isomorphism. For £ € R™* and t € R™, we often denote £(t) by

8.1 Persistent homology of simplicial filtrations

In this section, we introduce our notations for the persistent homology of simplicial
filtrations (Section [4.1.1)) and for the associated constructible functions (Section |5.4)).

Persistent homology. An m-parameter filtration is called finitely presentable if its p-
th persistent homology H,(F) is finitely presentable for all integer p > 0. In that case,
since IC is finite, only finitely many H),(F) are non-zero and the graded persistence mod-
ule H.(F) = @y, Hp(F) is finitely presentable in the sense of Section Throughout
this section, consider a finitely presentable m-parameter filtration F of a simplicial com-
plex K.

Euler characteristic profiles. Following Section [5.4] we consider the finitely pre-
sentable constructible function associated to the graded persistent module H,(F). We
call it the Fuler characteristic profile of F and denote it simply by [yz This is equiva-
lent to compute the Euler characteristic for every value of the parameter t € R™ of the
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filtration:
XxF:te€R™ — x(F),

where the Euler characteristic of a simplicial complex K’ is defined as:

X(K) = 3 (~1)dme.

oceK!

We often call xr simply the Fuler profile of F. The map xr is usually referred to as
the Euler characteristic curve (ECC) of F when m = 1 and as the Euler characteristic
surface of (ECS) of F when m = 2; see Beltramo, Skraba, et al. (2022), Dlotko and
Gurnari (2022)), and Turner, Mukherjee, and Boyer (2014a). We show in Figure an

Euler characteristic surface computed on an elementary example.

Euler characteristic surface
| 3.0 3
[ ; o [ - r [ r
2.5
| J | J | J 2.0 2
[ ) ° °
® ® L 15
L] L] | J 10 1
° [ ] [ ]
° [} [} 05
0.0 0
o ® ® 00 05 10 15 2.0 25 3.0

Figure 8.1: A finitely presentable two-parameter filtration (a) and its associated
Euler characteristic surface (b). All vertices have one birth time, while all other
simplices have two.

Example 8.1. Recall that given a non-decreasing map f : X — R™ one can define a the
sublevel-sets filtration Fy. We denote by its Euler characteristic profile. Recall from
Section [I.1.1] that one-critical filtrations are equivalent to sublevel-sets filtrations.

The Hilbert function of the p-th persistent homology of F is called the p-th Betti
function of F and denoted by In particular, we have:

vr= 3 (187,

p€ENp

Integral transforms. Since the Euler characteristic profile of a finitely presentable
filtration is constructible up to infinity, one can compute its Radon transform. Let us
denote by = Int(y*°) for the cone v = (R<p)", so that any £ € R’'* is proper on
the support of x 7. Then R’"* is the cone of linear forms on R that are non-decreasing
with respect to the coordinatewise order on R™. We restrict our study of the Radon
transform of Euler characteristic profiles to this cone. Specifically, we follow and
call Radon transform of xr the following map:

R (€.5) € R x R — Euxr(s).
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Let k € L'(R). Remark [6.14 ensures that the hybrid transform of y = with kernel x
is defined on R"*. Moreover, Corollary shows that hybrid transforms have a re-
markable property in the context of sublevel-sets persistence. Let f : K — R™ be a
non-decreasing function and let £ € R’?*. Then, for all s > 0, one has:

Tw [xy] (5€) = T [Xeos] (5). (8.1)

Euler characteristic profiles, Radon transforms, and hybrid transforms constitute the
three descriptors of data we use to perform topological data analysis in Chapter 0] We
give explicit expressions of these descriptors in two specific case below. These formulae
will allow us to design algorithms to compute them in Section [9.1] and to build intuition
on the type of behavior they capture all along Chapter [9

Connection with persistence barcodes. Suppose that F is a one-parameter
filtration. Since Hp(F) is finitely presentable, there exists a finite subset P of R such
that H,(F) is isomorphic to the left Kan extension along P — R of its restriction to P;
see Bauer and Scoccola (2022, Lemma 5) for a proof of this well-known fact. Using
Gabriel’s decomposition theorem of quiver representations over finite totally ordered
sets ((1972), it is easy to show that there exist an integer n, > 0 and (possibly infinite) real
numbers —oo < af < b’ < oo fori € {1,...,n,} such that the persistence module H,(F)
decomposes as:
p
Hp(]:) >~ @ k[af,bf)' (8.2)
i=1
The multiset of intervals [a}, oY) for i € {1,...,n,} is the barcode of H,(F) as defined in
Section [[.T]and denoted simply by [B,F} Note that this barcode B,F is empty for p >> 1.

In the above situation, the Euler characteristic profile of F has the following expres-

ng
XF =D D (=1 . (8.3)

k>0 i=1

sion:

Therefore, the Radon transform of x r is:

nj
Rr:(6s) €RY xR Y > (—1) e o ey (9)- (8.4)
k>0 i=1
Let x € L'(R) and consider a primitive & of x. The hybrid transform with kernel x of x =

Tolxr] € €Ry = Y fj(—l)’“(n (¢-0F) =7 (¢-al)), (8.5)

k>0 i=1

1S:

with the convention that %(¢ - bF) is the limit of & at +o0o when b} = +o0.

One-critical filtrations. Up to reducing K, one can assume that for any o € K,
there is t € R™ with o € F;. Then, one has:

YF = Z(_Udim“l%o), (8.6)
oce
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where @, := {t € R™; t > u} for any u € R™. As a consequence, one has by Lemmal5.10j

F (5,8) ERT* xR~ Z dlmal[ §t(a)>,+oo)(s)‘ (87)

cel

Let © € L'(R). Denote by % the primitive of x whose limit at +oc is 0. The hybrid
transform with kernel k of x r is:

Ti[xF) 1€ €RY" v = 3 (~1)7R (€, 4(0))) - (8.8)

e

Remark 8.2. We often define hybrid transforms by specifying the primitive & of the
kernel x whose limit at +oco is 0. We call & the primitive kernel of the hybrid transform.

8.2 Stability properties

In this section, we prove stability results for Euler characteristic based descriptors of
filtered simplicial complexes. More precisely, our results compare the L; distances be-
tween Kuler characteristic profiles to the signed 1-Wasserstein distance between their
signed barcodes. As a direct corollary, we bound the L, norms of Radon transforms
and hybrid transforms by the same quantity. The notions of signed barcodes and of
signed 1-Wasserstein distance are introduced in Oudot and Scoccola (2021) for Hilbert
functions and recalled below. We follow the same conventions as in Oudot and Scoccola
(ibid., Section 2) for the definitions of multisets and bijections between them.

8.2.1 Signed 1-Wasserstein distance

Finitely presentable functions possess a kind of barcode that is used by Oudot and Scoc-
cola (ibid.) to define an analogue of the 1-Wasserstein distance between one-parameter
persistence barcodes (Cohen-Steiner, Edelsbrunner, Harer, and Mileyko, 2010)). A de-
composition of ¢ € CFg(R™) is a couple (BT, B7) of finite multisets of points in R™

such that:
p= lo.— ) lo.

ueB+ veEB—™

Such a decomposition always exists, and there is a unique B = (B, B~) such that Bt N
B~ = @, called the signed barcode of ¢; see Oudot and Scoccola (2021, Proposition 13).
While two different notions of signed barcode are defined in loc. cit., we focus here on
the so-called minimal Hilbert decomposition signed barcode.

Let C and C’ be two finite multisets of points in R™ with the same cardinality and h :
C — (' be a bijection between them. The cost of h is the real number =
> uee |l — h(u)||1. For any two finitely presentable functions ¢ and ¢ with respective
signed barcodes (BT,B7) and (B'",B'"), the signed 1-Wasserstein distance between
them is:

31(80, ¢’) = inf {5 > 0; 3 bijection h: BT UB~ — B~ U Bt with cost(h) < 6} )

Hence, one has d ((p, ) [0, +00]. Note that bijections do not allow for unmatched bars,
as it is common in the persistence literature. Note that the signed 1-Wasserstein distance
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is defined in loc. cit. only on signed barcodes. Our definition is essentially equivalent
since signed barcodes are in one-to-one correspondence with finitely presentable functions.

Remark 8.3. In the following proofs, we make constant use of the fact that the dis-
tance c/l\l may be computed on any decomposition of the functions and not only on min-
imal ones, that is, on signed barcodes. More precisely, for any decompositions (C*,C™)
and (C'",C'™) of two finitely presentable functions ¢ and ¢’ respectively, one has:

d (¢,¢") =inf {e > 0; I bijection h: Ct UC'™ — C~ UC'" with cost(h) < e}.

The signed 1-Wasserstein distance between Euler characteristic profiles is upper-
bounded by the same distance between Betti functions, as stated in the lemma below.
It will be crucial to proving the other results.

Lemma 8.4. Let F and F' be two finitely presentable m-parameter filtrations of simpli-
cial complexes K and K' respectively. Then,

di(xF, x7) < Z dy (87 s Bri ) -
k>0

Proof. By assumption, the persistence modules Hy(F) and Hy(F') are finitely pre-
sentable hence so are the functions 87 ;, and Bz ;. A collection of decompositions (B,;L, B, )
of Br for all k € Ny induces a decomposition (BT,B87) = (UkB;, UpB, ) of xr. A sim-
ilar decomposition (B'",B'~) of xz is induced by decompositions (B,", B, ) of Bz
for all K € Ny. Moreover, a collection of bijections of multisets hy : B,‘; U B;C_ —
B, U Bt for all k € Ny induces a bijection of multisets h : BT U B~ — B~ U BT
with cost(h) = > jc, cost(hy). Taking the infimum over all bijections hy yields the
result by Remark O

Connection with 1-Wasserstein distance between barcodes. Our first mo-
tivation to consider the signed 1-Wasserstein distance on Euler characteristic profiles is
that when m = 1, it is upper-bounded by the 1-Wasserstein distance between the per-
sistent homology of the filtrations. Introduced by Cohen-Steiner, Edelsbrunner, Harer,
and Mileyko (2010), Wasserstein distances between persistence barcodes are inspired by
optimal transport theory. We recall their definition below.

Let F and F’ be two finitely presentable one-parameter filtrations. Denote by B
and B’ the respective barcodes of H,(F) and H,(F’). A partial matching between B
and B is a subset M of B x B such that (i) for any 8 € B, there is at most one 5’ € B’
such that (8,8) € M and (ii) for any 8 € B’, there is at most one 8 € B such
that (8,8") € M. The cost of a matched pair (8, 8") € M with § = [a,b) and ' = [a, 1)
is ¢(B, f') = max(|t/—b|,|a’—al). The cost of an unmatched bar v € BUB' with v = [¢, d)
is ¢(v) = |d — ¢|/2. The p-cost of a matching is then defined as:

1/p
costp(M):< oo sr+ > c(’y)p> .

(8,8")eM ~vEBUB’
unmatched

The p- Wasserstein distance between H,(F) and H,(F') is defined as:

0 (T, (F), H,(F))| = inf costy (M)
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where the infimum is taken over all partial matchings M between B and B’.

We can now prove the link between signed 1-Wasserstein distance between Euler
characteristic profiles and the 1-Wasserstein distance between persistence barcodes. This
fact is easy but not proven in Oudot and Scoccola (2021)).

Lemma 8.5. Let F and F' be two finitely presentable one-parameter filtrations of sim-
plicial complexes K and K', respectively. Then,

di(xF.xF) < 2 di(Hp(F), Hy(F)).
p=>0
Proof. The barcode B,F of the p-th persistent homology H,(F) is a multiset of bars
[af, b‘f) for i € {1,...,n,} and real numbers —oo < a! < b’ < co. This barcode induces
a decomposition (A, By) = ({al'};, {bF'}i) of Br . Similarly, the barcode B,F’ of Hy(F’)
is a multiset of bars [a}p , b;p ) for j € {1,...,n}} that induces a decompositon (A}, B}) =
({a;.p s {b;p };) of Bz ,. Moreover, a partial matching M between By F and B,F' induces
a bijection of multisets h : A, U B, — A, U B, defined by h(a’) = a and h(b) = V'
when ([a,b),[d’,V)) € M, by h(b) = a when [a,b) is unmatched and by h(a’) = ¥
when [a/,b’) is unmatched. Moreover, the cost of the matching M and the cost of the
bijection h satisfy cost(h) < 2cost(M). Taking the infimum over all partial matching M,

one has d (BFp, Brrp) <2di(Hp(F), Hy(F')). Lemma 8.4 yields the result. O

Connection with 1-presentation distance between persistence modules.
Our second motivation to consider the signed 1-Wasserstein distance on Euler charac-
teristic profiles is that in the two-parameter setting, the signed 1-Wasserstein distance
between signed barcodes is upper-bounded by the 1-presentation distance @ between
two-parameter persistence modules; see Oudot and Scoccola (ibid., Theorem 5). The
presentation distance is introduced in Bjerkevik and Lesnick (2021) and recalled in Sec-
tion 6.2 of Oudot and Scoccola (2021). We do not recall it here as it goes beyond the
scope of this section. Yet, we mention that combined with Lemma the result (ibid.}
Theorem 5) has the following direct consequence:

Lemma 8.6. Let F and F' be two finitely presentable two-parameter filtrations of sim-
plicial complexes K and K', respectively. Then,

k>0

Remark 8.7. Such a result is unknown for m-parameter filtrations with m > 3; see Oudot
and Scoccola (ibid., Question 27).

Sublevel-sets persistence. One can state stability results with respect to L; dis-
tance on filtration functions in the context of sublevel-sets persistence, as stated by the
lemma below. Let I be a finite simplicial complex, and f : K — R™ a non-decreasing

map. We define the 1-norm of f as[[fT1]= >,k [1f (o)1

Lemma 8.8. Let IC be a finite simplicial complex and f,g : K — R™ be non-decreasing
maps. We have that

~

di(xfsxg) < Nf =gl
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Proof. The couple Cy = ({f(a)}dimgeven,{f(a)}dimgodd) is a decomposition of x;.
There is a similar decomposition Cq4 of x,. Moreover, the mapping f(o) — g(o) in-
duces a bijection of multisets h : C; — C4 with cost Y i [[f(0) — g(o)|lr = llg — fll1-
The result follows from Remark O

Remark 8.9. Note that using Corollary 25 of Oudot and Scoccola (ibid.) on Betti
functions combined with Lemma [8:4] would yield a multiplicative constant of 4 on the
left-hand side of the inequality.

The above lemma clarifies the robustness of Fuler characteristic profiles with respect
to perturbations of filtrations defined on a fixed simplicial complex. This includes, for
instance, density estimators on point clouds or Ricci curvature and HKS functions on
graphs. The fact that these descriptors are controlled by the L; distance and not the L
distance between the functions is an indicator of their sensitivity to the underlying ge-
ometry. Persistent images (Adams et al., [2017)) share this property, while persistence
landscapes (Bubenik et al., 2015; Vipond, 2020) do not, as they are controlled by the L
distance between functions.

8.2.2 Stability results

We start by proving our stability result on Euler characteristic profiles. Recall from
Chapter [5| that we denote by L!'(I) the space of absolutely integrable complex-valued
functions on an interval I of R. Let p € [1,00] and let f : R™ — C be locally p-

integrable. We denote by the p-norm of f - 1_pspqm. If f is p-integrable, we
denote its p-norm by .

Proposition 8.10. Let F and F' be two finitely presentable m-parameter filtrations of
simplicial complezes K and K' respectively. For any M > 0, we have that

Ix7 = Xzl < M) di(xF, xF) -
In particular, if m = 1:
IxF = x7lli < dilxr, x7)-

Proof. Consider decompositions (Bt,B87) and (B',B'~) of x and xz respectively.
Assume there is a bijection h : Bt UB'~ — B~ U B'*. If no such bijection exists,
then di(xr, x7/) is infinite, and the inequality trivially holds. One has:

XF=xr= Y, lo,— >, lo,= Y, 1g,—1g,.-

ueBTUB— vEB~UB/T ueBTUB—
Therefore,
Ixr —xrmllh < D0 . — 1, h- (8.9)
ueBTUB/—

By an elementary induction on m > 1, we can prove that for all u,v € R™,
Ilq. — 1.l < 2M)"Hu — vl

This concludes the proof of the first inequality.
Now, assume that m = 1. The existence of h ensures that ||xr — xz|/1 is finite and
the second inequality follows from and the fact that [|1,.)ll1 = [u —v]. O
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Combined with Lemma the above proposition ensures that in the context of
sublevel-sets persistence of a fixed simplicial complex, the L; distance between Euler
profiles is upper-bounded by the L; distance between filtration functions. A similar
result is proven Dlotko and Gurnari (2022, Proposition 3.4) in terms of L., distance
between the filtration functions multiplied by the number of simplices in the complex K.
In addition, this result can be combined with Lemma [8.5| when m = 1 to obtain known
results stating that L; distances between Euler profiles is upper-bounded by the sum
of 1-Wasserstein distances between persistent homologies in all degrees; see Dlotko and
Gurnari (ibid., Proposition 3.2), Curry, Mukherjee, and Turner (2022, Lemma 4.10)
and Perez (2022, Corollary 3.8). Here, the result is more generally phrased in terms of
signed 1-Wasserstein distances between Euler profiles, to benefit from the other results of
the previous section. In particular, in the two-parameter setting, the L; distance between
Euler profiles is upper-bounded by the 1-presentation distance between the persistent
homology of the filtrations.

These stability results carry over to our other descriptors, as stated in the Corol-
lary below. Let K be a compact subset of R"*. For g € [1,00], we consider the
norms on functions R : R — R defined by:

</K (/R IRE ) d3>q df) " a0

IRl g |= (8.10)

sup/ |R(E,s)|ds for ¢ = oo.
EeEK JR

Corollary 8.11. Let K be a compact subset of R™* and q € [1,00|. Let F and F' be
finitely presentable m-parameter filtrations of simplicial complezes K and K' respectively.
Let k € LY(R) N L>®(R). There exists a constant Cy, depending only on K and q such
that:

|Rr~ R

L(}(yl S CK,q dl(X]'—v X]:,) ’

| Tw xF] — Tx x7] \Lg{ < Cr g ||6lloo di(xF, XF1) -

Proof. Let us prove the first inequality. Proposition [8.10] with m = 1 ensures that for
any ¢ € K,

/]R ‘R}—(57 8) - ’R]-‘/(f, S)‘ ds = ||€*X.7: - é‘*X}"”l < C/l\l(f*X}',g*X]—‘/) :
To prove the desired inequality, we will prove that for any £ € R*, one has:

dy (Exr, Ex7) < |€lloo di(xrs XF7) -

The result then follows from computing the g-norm on both sides. Consider decomposi-
tions (B*,B7) and (B't,B'~) of xx and x# respectively. By Lemma they induce
decompositions (£,87,&B7) and (&B'T,&B'7) of &xxr and & x 7 respectively by the
formula &,8%F = {{¢,u); u € Bt} and a similar one for F’. Consider a bijection of mul-
tisets h: BY UB'~ — B~ UB'". It induces a bijection of multisets he : BT UEB™ —
&BT U BT defined by (€, u) — (&, h(u)) with cost:

cost(he) = Y lt—he@®li=" Y &) — (& hw)li < [[€]los cost(h).

te&BTUEB~ ueB+UB/~
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Taking the infimum over all bijections h yields di(&xr, Exxr) < H{Hooc/l\l(xy:,xp)
by Remark [8:3]

Let us now prove the second inequality. It follows from the definition of hybrid
transforms that || Ty [x7] — Tk [x7] ||L‘}< < ||&]loo |RF — R}'/HL%J when x is bounded.
The first inequality yields the result. O

8.3 Statistical properties

In this section, we provide statistical guarantees for our descriptors computed on a ran-
dom sample, as the sample size tends to infinity. For the sake of readability, we denote

by the hybrid transform Ty [x#] .

8.3.1 Limit theorems for one-parameter hybrid transforms

This section is devoted to limit theorems for the hybrid transforms of the Cech complex
of an ii.d. sample in R?.  Theorem is a pointwise law of large numbers, while
Theorem [8.14] states a functional central limit theorem for the hybrid transforms of
compactly supported kernels.

Theorem 8.12. Let X1,..., X, be an i.i.d. sample drawn according to an a.e. continu-
ous bounded Lipschitz density g on R:. Consider a sequence (rn)nen, Such that m"g — 0
and nk+27“g(k+1) — 00 as n — oco. We denote by F,, the Cech filtration associated with
the rescaled sample %(Xi)?:l' Let T,a > 0 and k € L'(R). Further assume that k is
supported on [0,T|. Then there exist functions Ag, ..., Aq—1 on R’ that depend only on

the kernel k and such that for every & > a,

p s — k+2
e VRE kZOM’A’“@'/M ()dz  as.

This theorem is a direct consequence of the limit theorems derived in Owada (2022).
d
— 0.

n
In order to make this law of large numbers more comprehensible, we make a further
1<;+2T;il(k+1) = oo,

The sequence defined by r, = n~% for é <a< é + d% verifies these two assumptions.

It is a key assumption that we are in the so-called sparse regime, that is, nr
assumption that we are in the so-called divergence regime, that is n

Similar results can be derived for other subcases of the sparse regime, i.e., the Poisson

k2, dEFD) 05 0 and the vanishing regime k2D .

regime n
Proof of Theorem[8.13, Let Xi,...,X, be an i.i.d. sample drawn according to an a.e.
continuous bounded Lipschitz density g on R%. Consider a sequence (r,)nen, such
that nrd — 0 and n*F2r2* ) 5 o6 as n — 0.

Let us define A := {(z,y) : 0 <z <y < oo} U{(z,00) : 0 < = < oo} and for
every (s,t,u,v) such that 0 < s <t <wu <wv < oo, denote by R4, the rectangle (s,t] x
(u,v] of A. Recall that a finite barcode B = {[a;, b;) }i=1,...; can be turned into a discrete
measure [ = Zi:l O(azp;) o0 A. Denote by g, the barcode of the k-th persistent
homology of the Cech filtration of 1/r,(X;)7;, seen as a discrete measure on A.
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Theorem 3.2 of Owada (2022)) ensures that for every k € [0,d — 1] there exists a
unique Radon measure up on A such that we have the following vague convergence:

1 v 1 k+2
e 22 i (L@ ) ass e
n

where for every 0 < s <t < wu < v < o0, there is an indicator geometric function Hy ;4
on R4 +2) defined in Owada (ibid., Section 3.1), which does not depend on g and such
that the measure py is defined by:

,uk(Rs,t,u,v> - / Hs,t,u,v(oy Y1, .- 7yk+1) dyl e dykJrl-

Rd(k+1)

Recall from Remark [8.2]that the primitive kernel % is such that %(z) — 0 when z — +o0.
Therefore, the fact that x is supported on [0,7] implies that the primitive & is also
supported on [0,7]. For & > a, denote by he : (z,y) € A — R(§y) — K(&x). According
to , one has:

U
—_

U, (6)

(—1)k /A hg d,u;m.

e
Il

0
Since h¢ is continuous and supported on [0,7"/ a]?, we have by the vague convergence

in (8.11) that:

d—1

1 —1)k
pk+2p A4 vEE) 22 ~ (l(c +>2)! </Rd gk+2($)d$) AR(§)  as.,
where Ay (&) = [ hedp. -

Theorem [8.12] shows that the pointwise limit of the hybrid transform depends on
the sampling only through the quantities fRd "2 for k € {0,...,d — 1} and they can
therefore discriminate between different samplings as soon as n is large enough. In
addition to this law of large numbers, a finer limit result for the Euler characteristic
curve is proven in Krebs, Roycraft, and Polonik (2021)), which we recall hereafter for the
sake of completeness.

First, recall that a function A on R™ is blocked if it can be written h = Z?fl bily,
where by, ...,b,,« are non-negative real numbers and the A; are axis-aligned rectangles
in R™. Moreover, recall that the Skorohod Ji-topology on the space of cadlag func-
tions D([0,T]) is the topology induced by the metric:

dn(f 1) =it {1 0 A= e + A~ gy}
where the infimum is taken over all increasing continuous bijections A of [0, T7.

Theorem 8.13 (ibid., Theorem 3.4). Let T > 0 and X1,..., X, be sampled according to
a bounded density g on [0,1]%. Denote by F;, the Cech complez associated with the point
cloud n'/4(X;)P_, and: t € [0,T] = n(xz,(t) — E[xr,(t)]). Assume that blocked
functions can uniformly approzimate g. There is a Gaussian process & : [0,T] — R such
that:

Xr, — O,

n—o0
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in distribution in the Skorohod Ji-topology on D([0,T]). Furthermore, there exist two
real-valued functions v : [0,T]> — R and « : [0,T] — R such that the covariance of the
limiting process is defined by:

E[6(s)6()] = E |7 (9(2)"/(s,0))| ~ E o (9(2)"/"5) | E [ (9(2)"/")],
where Z s a random variable with density g.

We refer to Krebs, Roycraft, and Polonik (ibid.) for the expression of the two func-
tions v and «. Here again, the distribution of the points appears in the limiting object
and, more precisely, in its covariance function. We can adapt this theorem to show that
hybrid transforms of compactly supported kernels are also asymptotically normal.

Theorem 8.14. Consider the setting of Theorem . Let a,M > 0 and x € L*(R).
Further assume that k is supported on [0,T]. Denote by E;_-" €€ fa, M]— (Y% ()~
E [1/)}71 ({)]) Then, there is a Gaussian process & : [a, M] — R such that:

~

@;ﬂ — & a.s.,

n—oo

in (C%la, M), || - [|o). Furthermore, the covariance of the limiting process is defined by:

N N T/& T/&
E [(’5(51)(’5(52)] = 5152/ / K(&1t) K(&as) cov (B(s), &(t)) dsdt,
0 0
where & is the Gaussian process defined in Theorem [8.13
Proof of Theorem[8.1) Let T > 0 such that x is supported in [0,7]. Let a, M > 0.
According to Lemma one has for any & € [a, M]:

T/€
W) = ¢ /0 R(E )X (u)du,

and similarly for yz,. For any ¢ € [a, M], linearity of the mapping x +— & fOT/ ¢ k(€ -
u)x(u)du ensures that:

T/¢
Vi (05 (€) ~E [ (©)]) = ¢ / w(€ ) [y (xr, (u) — Elxr, (w)])] du.

Moreover, the functions ¢ and ¢%. are continuous on [a, M] since £ is in L*(R). There-
fore, denoting by ¥ the mapping from the space of cadlag functions D([0,7T]) with Sko-
rohod Ji-topology to (C°([a, M]), | - |ls) defined by:

T/¢
Uiy (mg/o ﬁ<5-u>x(u>du>,

one has /n (V5 —E[% ]) = ¥ (v/n(xr —Elxz.])). Moreover, it is easy to check
that for any two x1 and 2 in D([0,77]), one has:

M
< =

T
¥(0) = ¥l < s =l | RO
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so that the mapping W is Lipschitz and, therefore, continuous.

Now, according to Theorem there is a Gaussian process & : [0,7/a] — R such
that denoting X7, : u € [0,T/a] — /n (xz,(w) — E[xx,(u)]) we have:

ﬁ — 67
n—oo

in distribution in the Skorohod Ji-topology on D([0,T"/a]). Thus, continuity of ¥ and the
continuous mapping theorem yield that almost surely, one has the following convergence
in (C%([a, M]), || ll0), )

n—oo

where & : ¢ € [a, M] — ffoT/ k(€ - u)®(u) du. The covariance of the limiting process &
follows immediately from that of &. O

8.3.2 Limit theorem for multi-parameter hybrid transforms

In this section, we derive a law of large numbers for the hybrid transform in the multi-
parameter case. We adopt the sampling model of Hiraoka, Shirai, and Trinh (2018)) and
refer to Section 3 of loc. cit. for the definition of a stationary ergodic point process.
Consider a point process ® on R? and its restriction @1, to [~L/2, L/2]%. Let be
the set of all finite (non-empty) subsets in R?, to be thought of as the set of all simplices.
Let f = (f1,..., fm) : S(RY) — [0,00]™ be a measurable function, non-decreasing with
respect to inclusion. According to Example [4.1] the map f induces a filtration on every
simplicial complex of R%. In particular, the map f induces a filtration on the simplicial
complex 2%~ that we denote by F7. We prove the following:

Theorem 8.15. Assume that ® is a stationary ergodic point process having finite mo-
ments. Let T,a > 0 and k € L*(R). Assume that r is supported on [0,T]. Assume that
there is an increasing function p : R — R and i € [1,m] such that for all (z,y) € (R%)?,

lz —yll < p (fi({z,y})) - (8.12)

Under these assumptions, there exists a function H : R x R — C that depends only
on k and f such that for all & = (&1,...,6m) € RT* and X\ > a, one has

1
S5 08— HIEN  as.

This limit theorem is a direct consequence of the results from Hiraoka, Shirai, and
Trinh (ibid.). Note that this encompasses most cases of usual point processes such
as Poisson, Ginibre, or Gibbs. This result makes use of the smoothness properties of
the hybrid transforms and follows directly from Corollary that expresses multi-
parameter hybrid transforms of sublevel-sets constructible functions as one-parameter
hybrid transforms. Similar results cannot be derived that easily for Euler characteristic
profiles, as one would need to consider the joint law of several one-parameter filtrations.

Proof of Theorem[8.15, Let & = (&1,...,&m) € R, Denote by uiog the measure as-
sociated with the barcode of the k-th persistent homology of ®;, for the filtration func-
tion o f =3 " & fio In virtue of the hypotheses, there exists ¢ € [1,m] such that
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for all (z,y) € (R)2, |z —y| < p(fi({z,y})). Let p' : z > p(x/&;). Therefore, as the
filtration functions f; are non-negative and p and p’ are increasing, we have that:

Y &yl | 20 Efiz ) = p(filla,yh) = |z — yll- (8.13)
j=1

The filtration function (¢, f) therefore verifies the assumptions of Theorem 1.5 of Hiraoka,
Shirai, and Trinh (ibid.), which states that there exists a Radon measure v such that
almost surely, we have the vague convergence 73 Mi g — v as L — oo. Note that in loc.
cit., the authors make the additional hypothesis that the filtration function is translation
invariant. However, this assumption is only needed to derive a central limit theorem on
persistent Betti numbers but not required for the above law of large numbers, for which
we only need to hold. As in the proof of Theorem we introduce a continuous
function hy : (z,y) € A — R(\y) — ®(Az). This function is supported on [0,7/al?.
According to together with , we have that:

d—1
05,00 = S0 [ i auf].
k=0
Hence the result, by the vague convergence 73 ,ui }j — vy for all k € [0,d — 1]. O

Deriving a multi-dimensional central limit theorem from Penrose and Yukich (2001])
would require the filter £ o f to verify some translation invariance property. In practice,
this very strong assumption is verified only by Cech and Vietoris-Rips filtrations as well
as marked processes; see Botnan and Hirsch (2022). Alpha and function-Cech filtrations
that we used in our experiments do not verify this assumption.

As pointed out in Hiraoka, Shirai, and Trinh (2018, Example 1.3), Cech and Vietoris-
Rips filtrations satisfy for p : t — 2t. We provide below a broad family of multi-
parameter filtrations satisfying . We begin with some simple examples.

Example 8.16. One can readily check that the function-Cech filtration (Section |4.1.1)
and the function-alpha filtrations (see the beginning of Section satisfy (8.12)). The
latter one is used on point clouds in Chapter [0}

Finally, we give another class of filtrations satisfying (8.12)) that contains the distance-
to-measure (DTM) filtrations (Anai et al., 2020).

Example 8.17. Let h be a positive and bounded function from R? to R. The weighted
Cech complex introduced in Anai et al. (ibid.) is defined as follows. For every z € R?
and real number ¢t > 0, we define:

() = {—oo if t < h(x),

t —h(x) otherwise.

We denote by Bp(x,t) = B (x,7,(t)) the closed Euclidean ball with center z and ra-
dius 7;(t). A simplex {xg,...,zr} in some finite set X belongs to the weighted Cech
complex at scale t > 0 if the intersection of closed balls ﬂfzoﬁh (21, t) is non-empty. Con-
sidering the weighted Cech complex for all scales ¢ defines a filtration of 2% called weighted
Cech filtration. The weighted Cech filtration satisfies for p : t — max(max h, 2t).






Chapter 9

Experimental study

Based on joint work with Olympio Hacquard.

As explained in the introduction of this thesis, extracting topological information from
data sets using persistence barcodes follows a machinery that finds its origins in the
works of Edelsbrunner, Letscher, and Zomorodian (2000). These diagrams are often
turned into vectors to perform various learning tasks such as classification, clustering,
or regression. This operation is done at the cost of losing some information since the
space of persistence diagrams endowed with the bottleneck distance cannot be isometri-
cally embedded into a Hilbert space (Bubenik and A. Wagner, |2020; Carriére and Bauer,
2019). Most commonly used techniques include persistence images (Adams et al., 2017)),
landscapes (Bubenik et al., 2015, and more recently measure-oriented vectorizations in
Royer et al. (2021) and neural network methods from Carriére, Chazal, et al. (2020) and
Reinauer, Caorsi, and Berkouk (2021). An overview of topological methods in machine
learning has been presented in the survey of Hensel, Moor, and Rieck (2021). Although
not intrinsically multi-parameter, several vectorization techniques have been generalized
to cope with multi-parameter filtrations, such as persistence landscapes (Vipond, 2020)
and persistence images (Carriére and Blumberg, [2020). Beside their high level of sophis-
tication, the main limitation of these tools is their computational cost; see Carriére and
Blumberg (ibid., Table 2).

In contrast, Euler characteristic profiles introduced in Chapter [8] do not compute
homological information but rather compute the Euler characteristic of the topological
spaces at hand. As shown by the previous chapters, these descriptors satisfy many ap-
pealing theoretical properties. In comparison to persistence barcodes, Euler profiles may
appear too coarse to capture relevant information in data analysis contexts. However,
it turns out not to be the case, as shown for instance in (Amézquita et al., [2022; Jiang,
Kurtek, and Needham, 2020; Smith and Zavala, 2021). Moreover, computing these de-
scriptors amounts to counting simplices appearing at each value of the parameter of the
filtration. This translates into a reduced computational cost: the overall complexity is
linear in the total number of simplices in a simplicial filtration, versus matrix multipli-
cation time for persistence barcodes (Milosavljevié¢, D. Morozov, and Skraba, 2011)). In
addition, the locality of the Euler characteristic has been exploited in many ways (Heiss
and H. Wagner, 2017; Richardson and Werman, 2014; Wang, H. Wagner, and C. Chen,
2022) to design highly efficient algorithms to compute Euler characteristic curves.

171
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Outline. In this chapter, we conduct an in-depth experimental study of Euler char-
acteristic profiles and their hybrid transforms. We show that they are informative and
highly efficient topological descriptors of the data at hand. First, we provide algorithms
for computing them as well as a Python implementation (Section . In addition, we
give heuristics on how to choose the kernel of hybrid transforms in practical contexts.
Then, we illustrate on many examples the type of topological and geometric structures
Euler curves and their integral transforms can capture from the data (Section [9.2). In
a series of quantitative experiments, we demonstrate that Euler profiles achieve state-of-
the-art accuracy in supervised classification and regression tasks when coupled with a

random forest or a gradient boosting algorithm (Sections|9.3.1}(9.3.2]and [9.3.4)) at a very

low computational cost (Section . Moreover, the multi-parameter nature of our
tools and their computational simplicity allows us to use up to 5-parameter filtrations to
classify graph data. However, due to their simplicity, these descriptors do not manage to
linearly separate the different classes or be competitive on unsupervised tasks. Inspired
by signal analysis, we cope with these limitations by studying hybrid transforms of Euler
characteristic curves and profiles. We demonstrate that these transforms act as highly
efficient information compressors. As a consequence, they outperform Euler profiles in
unsupervised classification tasks and in supervised tasks when plugging a linear classifier

(Figure and Sections to [9.3.3). Along the way, we illustrate their ability to

capture fine-grained information on a real-world data set in Section [9.3.3

Convention. We follow the conventions and notations introduced in Chapter

9.1 Algorithms

In this section, we begin by describing the algorithms used to compute our descriptors
as well as their implementation. We also give some intuition on how to choose the kernel
of hybrid transforms.

Algorithm. In all our experiments, and hence in our implementation, we restrict our-
selves to one-critical filtrations. In that case, formulae and (8.8) can readily be
turned into algorithms computing Euler characteristic profiles and their hybrid trans-
forms. Each algorithm takes as input a grid of size d; X ... X d,, on which the Euler
characteristic profile or the hybrid transform is evaluated. For the Radon transform, we
use the fact that Rr(£,s) = Rx(£/s,1). Our algorithm then takes as input a grid of
size di X ... X dy, on which the map n € R — Rz (n,1) is evaluated. In any case, the
output array of size dy X ... X d, is an exact sampling of the descriptor. Therefore, our
topological descriptors vectorize m-parameter filtrations into d; X ... X d,, arrays that
can be used as input to any classical machine learning algorithm.

Complexity. The algorithm computing Euler characteristic profiles with resolution
dy X ... X dy, has time complexity O(|K|+d; - ... d;,) in the worst case. The algorithm
computing Radon and hybrid transforms with the same resolution has a worst-case time
complexity of O(|K|-dy - ... dy). In comparison, recall that computing a persistence
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barcode has time complexity O(|K|¥) in the worst case where 2 < w < 2.373 is the
exponent for matrix multiplication (Milosavljevi¢, D. Morozov, and Skraba, [2011)).

Implementation. A Python implementation of our algorithms is freely available on-
line on our GitHub repository: https://github.com/vadimlebovici/eulearning. In
practice, our implementation allows for several ways of choosing a grid of sampling. The
first method is to provide bounds [(aj, b1),. .., (am,bmn)] and a resolution d; X ... X dy,.
We then compute a sampling of our descriptors on a uniform discretization of the sub-
set [a1,b1] X ... X [am, by] € R™. This method has the disadvantage of requiring prior
knowledge about the data.

For Euler characteristic profiles, the second way is to provide a list [(p1,4¢1),...,
(Pm, @m)] of real numbers 0 < p; < ¢; < 1. The algorithm then computes the p;-th and
the ¢;-th percentiles of the i-th filtration for each i € {1,...,m}. Finally, Euler profiles
are uniformly sampled on a dy X ... X d,,, grid ranging from the lowest to the highest
percentile on each axis. For the Radon and hybrid transforms, the second way consists
in providing a list [pi,...,pn] of real numbers 0 < p; < 1 and a positive real number
«a. The algorithm then computes the p;-th percentiles v; of the i-th filtration for each
i € {1,...,m}. The integral transforms are uniformly sampled on a d; x ... X d,,, grid
ranging from 0 to «a/v; on each axis. Note that filtrations have to be positive, which is
always satisfied up to translation. This method does not require any prior knowledge
of the data but depends on a choice of parameters. More importantly, doing as such is
justified for primitive kernels of type % : s — exp(—aP) and % : s — 2P exp(—zP) by the
paragraph Kernel choice below.

Kernel choice. To interpret integral transforms of Euler curves, we set m = 1 and
compute them on the rectangular function xr = 1,3 associated with a persistence
barcode with a single bar [a,b) with a < b € (0, 4+00). Recall that the hybrid transform
has the simple expression . Figure shows the hybrid transforms for several
kernels. For every p > 0, the hybrid transform with primitive kernel % : s — — exp(—sP)

has a minimum in %, which tends to 1/b as p — oo. As a consequence,

transforms of this type yield smoothed versions of the curve ¢t — xx(1/t), that is, of an
Euler curve with inverted scales. Similarly, the hybrid transform with primitive kernel
R : s — —sPexp(—sP) has a minimum that tends to 1/a and a maximum that tends

(a) %(s) = exp(—s") (b) F(s) = s*-exp(—s')  (c) F(s) = 5% exp(—s")

Figure 9.1: Hybrid transforms of x 7 = 1,4 for several choices of kernel x
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to 1/b as p — oo, with a spikier aspect as p — oco. Transforms of this type record the
variations of the Euler characteristic curve with inverted scales. We refer to the following
section for more involved experiments on synthetic data.

9.2 Heuristics for the Euler curves and their trans-
forms

In this section, we assume that m = 1 and study Euler characteristic curves associated
with the filtered Cech complex (Example of several point clouds as well as hybrid
transforms of these curves. We overview how these descriptors can extract information
about the topology, geometry, and sampling density of the input data.

For computational reasons, we rather use a homotopy equivalent complex in numerical
experiments, called the filtered alpha complex, or alpha filtration, which is a subcomplex
of the Delaunay triangulation; see Bauer and Edelsbrunner . Similarly, we consider
function-alpha filtrations instead of function-Cech filtrations in multi-parameter settings.

Topology, sampling: ORBIT5K data set

While apparently coarse descriptors, Euler characteristic curves allow us to extract rele-
vant scales at which topological differences between two different processes are revealed.
We illustrate this fact on the ORBIT5K data set.

The ORBITEK data set is often used as a standard benchmark for classification methods
in topological data analysis (Adams et al., ; Carriére, Chazal, et al., Reinauer,
Caorsi, and Berkouk, . This data set consists of subsets of a thousand points in the
unit cube [0,1]? generated by a dynamical system that depends on a parameter p > 0.
To generate a point cloud, an initial point (xg, o) is drawn uniformly at random in [0, 1]
and then the sequence of points (x,,y,) for n = 0,...,999 is generated recursively via
the dynamic:

Tp1 = Tn + pyn (1 — yn) mod 1,

Yn+1 = Yn + PTn41 (1 - $n+1) mod 1.

In Figure we illustrate typical orbits for p € {2.5,3.5, 4.0,4.1,4.3}.

(d) p=41 (e) p=4.3

Figure 9.2: Examples of point clouds from the ORBIT5K data set.

In Figure we display the Euler characteristic curves for several realizations
with parameters p = 4.1 and p = 4.3. We also plot the feature importance function
of a random forest classifier trained on Euler characteristic curves of a small sample
of 50 point clouds. In Figures [0.3b] and we display the alpha complexes for two
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typical processes truncated at the filtration value corresponding to the largest feature
importance. For a large range of high filtration values—approximately between 60 and
90—, the Euler characteristic curve of each class of process typically differs by one unit
since the class with parameter p = 4.3 has an extra hole. This phenomenon is easily
captured by the random forest classifier.

We apply the same methodology to discriminate between p = 2.5 and p = 3.5 in
Figure[9.4] The difference between these two classes is more related to the distribution of
points than to a persistent topological feature of the point clouds. At the scale selected by
the feature importance of the random forest, the alpha complex for p = 2.5 in Figure [0.4D]
tends to have many tiny connected components, while the one for p = 3.5 is almost
connected. We were then able to select a relevant scale at which the difference in the
distribution of points is revealed by the topology of the alpha filtration.

— rho=4.1
— rho=4.3
— RF feature importance

Y

[ 20 40 60 80 100

(a) ECC and feature im- (b) p=4.1 (c) p=4.3
portance

Figure 9.3: ORBIT5K classification problem: p = 4.1 VS p = 4.3.

o ! — rho=25

— tho=35

—— RF feature importance

(a) ECC and feature im-
portance

Figure 9.4: ORBIT5K classification problem: p = 2.5 VS p = 3.5.

Sampling: Poisson and Ginibre point processes

We perform a similar analysis to discriminate between two types of point processes: a
Poisson point process (PPP) and a Ginibre point process (GPP). This setup has been
introduced in Obayashi, Hiraoka, and Kimura . The specificity of Ginibre processes
lies in repulsive interactions between points. While a standard PPP could have some very
small and very large cycles, we expect the GPP to have more medium-sized cycles since
points tend to be well dispersed. We classify this toy data set with a random forest



176 CHAPTER 9. EXPERIMENTAL STUDY

classifier and select the two scales corresponding to the most important features of the
classifier. Ginibre point processes are generated using Moroz (2020). In Figure we
plot two examples of point clouds together with their alpha complexes at these scales.

— ~ -
-~ . .
. U R B I
R U T
O = TR O et e
(a) PPP (b) GPP (c) PPP (d) GPP

Figure 9.5: Examples of alpha complexes on PPP and GPP point clouds at two
scales t; (Figures (a) and (b)) and ¢y (Figures (c) and (d)) with ¢; < to.

We plot Euler curves in Figure [0.6a] The Euler curves suggest that these classes
differ at different scales, as it was visible in Figure [9.5

o The Euler curves of the PPP class decrease in a steeper way. Indeed, a GPP has
repulsive interactions between the points. Therefore, the pairwise distance between
points tends to be larger and connected components do not die too early.

« The global minimum for the GPP class is lower since cycles appear all at once
at some medium scale. In comparison, cycles of PPP classes are better dispersed
across scales.

o Compared to curves of the GPP class, the curves of the PPP class tend to stay
negative for a longer time. Indeed, unlike GPP, PPP allow for very large cycles to
exist.

We plot the transforms of these curves for several kernels in Figures [9.6D] and
Choosing the primitive kernel & : s — exp(—s) emphasizes the small scales of the Euler
curves in the larger scales of the transform. Such a descriptor separates well the two
classes due to the earlier death of connected components for the PPP class. The primitive
kernel % : s — exp(—s*) also extracts this information. In addition, it has a higher global
maximum for the GPP class that also enables distinction between the two classes. This
maximum is created by the global minimum of the Euler curves. This experiment is a
piece of evidence that this kernel carries more information than the exponential kernel
and will therefore be preferred for applications.

Geometric features, sampling: different samplings on a manifold

We now show an experiment where we can illustrate how our various descriptors can
discriminate between samplings and characterize the shape of a manifold. We consider
two set-ups. The first set-up consists of clouds of 500 points sampled in two different
ways on a torus embedded in R3. The first sampling is a uniform sampling (Diaconis,
Holmes, Shahshahani, et al., 2013). The second is a non-uniform sampling where we
draw (6, ) uniformly in [0,27]? and obtain a point on the torus through the embedding
Wre : (6, @) — (21,22, x3) where:
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(b) HT, %(s) = exp(—s) (c) HT, ®(s) = exp(—s?)

Figure 9.6: Euler characteristic curves (ECC) and their transforms (HT) for PPP
VS GPP data set

x1 = (2 + cos(d)) cos(yp),
x2 = (24 cos(0)) sin(y),
x3 = sin(6).

The second set-up consists of clouds of 500 points drawn in two ways on the unit
sphere of R?. The first sampling is uniform. The second sampling is a non-uniform
sampling where we draw 6 uniformly in [0, 7] and ¢ according to a normal distribution
centered on m. We obtain a point on the sphere via the classical spherical coordinates
parametrization Vg2 : (6, ) — (21, x2, x3) where:

x1 = sin(0) cos(p),
x9 = sin(f) sin(yp),
x3 = cos().

In Figures [0.74] and [0.7b] we show the Euler curves and their hybrid transforms with
primitive kernel % : s — cos(s) for these two classes of samplings on the torus. Up to
a rescaling, this corresponds to a Fourier sine transform. In Figure [9.7¢|, we show the
hybrid transforms for our two classes of samplings on the sphere.

In both cases, Euler curves associated with the data drawn on the same manifold
all have the same profile, with a minimum value that tends to be lower for the uniform
sampling. Similarly, the oscillations of the transforms are in phase and have the same
amplitude. However, from one manifold to another, the phase and amplitude of the
oscillations of the transforms differ significantly. This suggests that they are related to
global quantities and are signatures of the support manifold. In contrast, the samplings
show up in the vertical shifts of the oscillations of the transforms. This interpretation
allows us to go beyond the classical signal/noise dichotomy in the persistence barcodes.
Although it makes no doubt that this sampling information can be retrieved from low-
persistence features, it is still unclear how to read it from a persistence barcode. We
claim this is another step towards a more thorough analysis of the geometric quantities
involved in the low-persistence features.

Geometric features, sampling: two different patterns in noise

In this final illustrative experiment, we try to distinguish patterns in a heavy clutter
noise. One class has one line hidden in the noise, while the other has only two. Each line
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— Nan-unifarm sampling
— Uniform sampling

014 —— Non-uniform sampling
— Uniform sampling

0 2 5
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(a) ECC, torus data (b) HT, torus data (c) HT, sphere data

Figure 9.7: ECC and HT, two sampling on a torus and sphere

will induce a very dense zone creating early dying connected components. In Figure
we plot two examples of point clouds, the Euler curves of each class, and their hybrid
transforms with primitive kernel % : s + exp(—s?). We also provide principal component
analysis (PCA) plots of these two descriptors. The difference between the two classes is
visible at the beginning of the Euler characteristic curves. However, looking at the full
curve does not allow us to correctly see this difference, as shown by the PCA plot. On
the contrary, the transform puts a strong emphasis on the beginning of the Euler curves,
leading to a direct linear separation of the two classes. As a final sanity check, we ran
a k-means algorithm to cluster between the two classes and reached an accuracy of 99%
for the hybrid transforms and only 52.5% for the Euler curves.
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Figure 9.8: Pattern hidden in clutter noise
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9.3 Experiments

In this section, we present all quantitative experiments conducted on synthetic and real-
world point cloud data and on real graph data sets. Material to reproduce our experi-
ments is available online on our GitHub repository: https://github.com/vadimlebovici/
eulearning,.

9.3.1 Curvature regression

We consider a set-up from Bubenik, Hull, et al. (2020) where we draw 1000 points
uniformly at random on the unit disk of a surface of constant curvature K and try to
predict K in a supervised fashion. Recall that if K > 0 (resp. K = 0, K > 0), the
corresponding surface is a sphere (resp. the Euclidean plane, the hyperbolic plane). We
observe 101 samples from space with curvature [—2,—1.96,...,1.96,2] and validate our
model on a testing set of 100 point clouds sampled from space with random curvature
drawn uniformly in [—2,2]. We compare the R? score in Tablewith that of the original
paper, which uses persistent landscapes (PL) along with a support vector regressor (SVR)
and with Persformer (Reinauer, Caorsi, and Berkouk, 2021)). Note that since we are trying
to tackle a regression problem, we use an SVR or a random forest regressor to predict
the curvature from our vectorization.

Method | PL+SVR | Persformer | ECC+SVR | ECC+RF | HT+SVR | HT+RF

R? score 0.78 0.94 0.70 0.93 0.79 0.89

Table 9.1: R? score for curvature regression data

First, we remark that the ECC descriptor combined with a random forest has an
accuracy comparable to the state-of-the-art. We also remark that taking a transform
does not improve the regression accuracy when considering a robust classifier such as RF
but does improve the accuracy when using a linear regressor (SVR). Note that hybrid
transforms combined with a linear regressor have an accuracy similar to that of persis-
tent landscapes. However, persistent landscapes require the computation of the entire
persistence barcodes, while hybrid transforms bypass this costly operation.

9.3.2 O0ORBITS5K data set

Supervised setting. Here, we perform a supervised analysis of the ORBIT5K data set
introduced in Section Given an orbit, we try to predict the value of the parameter p,
which takes value in {2.5,3.5,4.0,4.1,4.3}. We generate 700 training and 300 testing
orbits for each class. We compare our score with standard classification methods in
Table 9.2 The results are averaged over ten runs. PWG-K, SW-K and PF-K are kernel
methods on persistence barcodes taken respectively from Carriere, Cuturi, and Oudot
(2017), Kusano, Hiraoka, and Fukumizu (2016), and Le and Yamada (2018). Perslay
and Persformer are two methods that use a neural network architecture to vectorize
persistence barcodes (Carriére, Chazal, et al., 2020; Reinauer, Caorsi, and Berkouk,
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2021). The Euler characteristic curves and one-parameter hybrid transforms (HT1) are
computed on the alpha filtration of the point cloud. The Euler characteristic surfaces, the
two-parameter Radon transform (RT) and hybrid transforms (HT2) are computed using a
function-alpha filtration associated with a kernel density estimator post-composed with a
decreasing function. The decreasing function is 2 ++ —x for the ECSs and z + exp(—x?)
for the HTs. All descriptors have a resolution of 900 (hence of 30 x 30 for two-parameter
ones) and were trained with an XGBoost classifier (T. Chen and Guestrin, 2016). We
select the hyperparameters of our descriptors by cross-validation:

« For the ECC, the quantiles (see Implementation in Section are selected in
{(0.1,0.9), (0.2,0.8),(0.3,0.7)}.

« For the ECS, the quantiles are selected in the same set as for the ECC for both
parameters.

. For the HT1, the range is selected in {[0,50], [0, 100], [0, 500], [0, 1000]} and the
primitive kernel % in {s — exp(—s?), s = stexp(—st), s — s8exp(—s®)}.

o For the HT2, the primitive kernel and the range for the first parameter are the same
as for the HT'1, and the range for the second parameter is selected in {[0, 50, [0, 80],
[0, 100], [0, 500]}.

« For the RT, the ranges are selected in the same set as the HT?2 for both parameters.

We show in Figure some examples of each descriptor renormalized by the number
of points for the classes p = 2.5 and p = 4.3, where the HT2 is computed with § : s —

stexp(—s?).

Method PWG-K SW-K PF-K Perslay Persformer

Accuracy | 76.6 £ 0.7 83.6 £ 0.9 85.9 + 0.8 87.7+1.0 | 91.2+0.8

Method | ECC + XGB | HT1 + XGB | ECS + XGB | RT + XGB | HT2 + XGB
Accuracy | 83.8 £0.5 828 £ 1.4 91.8 + 0.4 90.5 £ 04 | 89.9 £ 0.5

Table 9.2: Classification scores for the ORBITSK data set

One-parameter descriptors have accuracy similar to kernel methods on persistence
barcodes at a reduced computational cost, while two-parameter descriptors compete with
neural network-based vectorization methods. We make our claims on computational
times more precise in Section [9.3.5]

Ablation study. We also study the role of the dimension of the feature vector in the
supervised classification task. The results are shown in Figure [9.10, When plugging a
random forest classifier, all descriptors are robust to a decrease in the size of the feature
vector. However, hybrid transforms seem to maintain a competitive accuracy for low-
dimensional features, especially the two-parameter ones. When using an SVM classifier
for the one-parameter descriptors, the gain from considering a hybrid transform is clear,
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Figure 9.9: Examples of 2D descriptors

and the accuracy of the SVM benefits from this strong dimension reduction. Evaluat-
ing hybrid transforms at only three values of { € R* yields feature vectors achieving
approximately 80% accuracy, demonstrating the compression properties of this tool.

Unsupervised setting. We consider several unsupervised classification tasks on the
same data set. We consider 50 point clouds for each choice of p € {2.5,3.5,4.3}. We map
all descriptors in R? using a tSNE dimension reduction (Van der Maaten and Hinton,
and report the results in Figure Here, hybrid transforms differ from the other
two methods and succeed in adequately separating the three classes.
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Figure 9.10: Accuracy with respect to feature dimension.
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Figure 9.11: tSNE of our descriptors computed on several classes of the ORBIT5K
data set.

9.3.3 Sidney object recognition data set

The Sidney urban objects recognition data set consists of 3D point clouds of everyday
urban road objects scanned with a LIDAR (De Deuge et al., 2013) traditionally used for
multi-class classification. Likewise to Section all descriptors are computed using a
function-alpha filtration associated with a kernel density estimator post-composed with
a decreasing function.

Unsupervised setting. In Figure we show a PCA of the ECSs and HTs on
the classes 4-wheeler vehicles (labelled 0), buses (2), cars (3), and pedestrians (4).
this case, the ECSs separate the class of pedestrians from all the vehicle classes. The

In

same separation is achieved by the HTs with primitive kernel & : s + s*exp(—s?). In
contrast, HTs with primitive kernel & : s — exp(—s*) separate buses from other classes.
These experiments illustrate the flexibility provided by a broad choice of kernels for the
hybrid transforms.

Supervised setting. Even more striking are the experiments from Figure [9.13] We
perform a Linear Discriminant Analysis for classes cars (3), pedestrians (4), and vans (13)
to embed the HTs and ECSs in R?. All the classes are separated for the RTs and the
HTs with primitive kernel % : s + s*exp(—s*). In comparison, the ECSs only manage
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to separate the pedestrian class from the two motor-vehicle classes.
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Figure 9.12: PCA plots of ECSs and HTs for the Sidney object recognition data
set.

(a) ECS (b) HTs, &(s) = s* exp(—s*) (c) RTs

Figure 9.13: LDA plots of ECSs, HTs, and RTs for the Sidney object recognition
data set.

9.3.4 Graph data

We have applied our method to the supervised classification of graph data. To build
sublevel-sets filtrations of graphs, we consider the heat-kernel signature introduced in
Sun, Ovsjanikov, and Guibas (2009)) and defined as follows. For a graph G = (V, E), the
HKS function with diffusion parameter t is defined for each v € V' by:

|4

hksy(v) = > exp(—tAe) v (v)?,

k=1

where Ay is the k-th eigenvalue of the normalized graph Laplacian and 1y, the correspond-
ing eigenfunction. We consider the HKS with parameters ¢t = 1 and ¢ = 10 as filtrations.
We also consider the 1/2-Ricci and Forman curvatures (Samal et al., [2018), centrality,
and edge betweenness on connected graphs. In addition, some data sets (PROTEINS,
COX2, DHFR) come with functions defined on the graph nodes. We can use several com-
binations of these functions to define sublevel-sets filtrations of graphs and compute Euler
characteristic profiles (ECP), Radon transforms (RT) and hybrid transforms (HTn).
For this set of experiments, we cross-validate over several combinations of the filtra-
tion functions proposed above, several truncations of the vectorization (which had little
impact in practice), and a primitive kernel chosen among {s + cos(s), s + cos(s?), s
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| Method | MUTAG | CcOX2 | DHFR [ PROTEINS | COLLAB | IMDB-B | IMDB-M | NcIl |
SV || 88.2(0.1) | 78.4(0.4) | 78.8(0.7) | 72.6(0.4) | 79.6(0.3) | 74.2(0.9) | 49.9(0.3) | 71.3(0.4)
RetGK || 90.3(1.1) | 81.4(0.6) | 81.5(0.0) | 78.0(0.3) | 81.0(0.3) | 71.9(1.0) | 47.7(0.3) | 84.5(0.2)
FGSD 92.1 - - 73.4 80.0 73.6 52.4 79.8
GIN | 90(8.8) - - 76.2(2.6) | 80.6(1.9) | 75.1(5.1) | 52.3(2.8) | 82.7(1.6)
Perslay || 89.8(0.9) | 80.0(1.0) | 80.3(0.8) | 74.8(0.3) | 76.4(0.4) | 71.2(0.7) | 48.8(0.6) | 73.5(0.3)
Atol || 88.3(0.8) | 79.4(0.7) | 82.7(0.7) | 71.4(0.6) | 88.3(0.2) | 74.8(0.3) | 47.8(0.7) | 78.5(0.3)
ECC 1D || 87.2(0.7) | 78.1(0.2) | 79.4(0.5) | 74.7(04) | 77.3(0.2) | 72.4(04) | 48.5(0.3) | 74.4(0.2)
HT 1D | 87.4(0.8) | 78.1(0.2) | 77.9(0.4) | 73.3(0.4) | 78.2(0.2) | 73.9(0.4) | 49.7(0.4) | 73.9(0.2)
ECV || 90.0(0.8) | 80.3(0.4) | 82.0(0.4) | 75.0(0.3) | 78.3(0.1) | 73.3(0.4) | 48.7(0.4) | 76.3(0.1)
RT || 87.3(0.6) | 79.7(0.4) | 8L.3(0.4) | 75.4(0.4) | 77.5(0.2) | 74.0(0.5) | 50.2(0.4) | 75.6(0.2)
HT nD || 89.4(0.7) | 80.6(0.4) | 83.1(0.5) | 75.4(0.4) | 77.6(0.2) | 74.7(0.5) | 49.9(0.4) | 66.4 (0.2)

Table 9.3: Mean accuracy and standard deviation for graph data.

exp(—s?),s — s*exp(—s*)} for HTn. We report our scores in Table . The first four
methods are state-of-the-art classification methods on graphs that use kernels or neural
networks. We report the scores from the original papers, Tran, Vo, and Hasegawa (2019),
Verma and Z.-L. Zhang (2017), Xu et al. (2019)), and Z. Zhang et al. (2018). Perslay
(Carriere, Chazal, et al., [2020), and Atol (Royer et al., [2021) are topological methods
that transform the graphs into persistence barcodes using HKS functions. It is known
that Atol performs especially well on large data sets (both in terms of number of data
and graphs size), i.e., COLLAB and NCI1. Still, we reach a similar to better accuracy for
all the other data sets.

Besides highly competitive classification scores, our method has two advantages over
the other topological methods. First, we bypass the computation of persistence barcodes
and thus classify with lower computational cost; see Sections and [9.3.5] Second,
as opposed to other invariants such as multi-parameter persistent images (Carriére and
Blumberg, 2020), our method naturally generalizes to m-parameter persistence with
m > 3 at a very low computational cost. To our knowledge, this is the first time
a topology-based method uses more than 3 filtration parameters. This results in an
increase in accuracy since each filtration function leverages information on the graph-
data structures.

Note that the methods SV, FGSD, and GIN do not average ten times and rather
consider a single 10-fold sample which can slightly boost their accuracies.

9.3.5 Timing

In this section, we compare the computational cost of our different methods to that
of persistence images. Persistence images have been introduced as a vectorization of
one-parameter persistence modules in Adams et al. (2017) and generalized to the multi-
parameter setting in Carriére and Blumberg (2020]). We choose to compare the compu-
tational cost of our methods to that of persistence images as they appear to be a faster
vectorization method than persistence kernels and persistence landscapes; see Carriére
and Blumberg (ibid., Table 2).



9.3. EXPERIMENTS 185

Constant resolution. We report in Table the time to compute our descrip-
tors and persistent images on the full ORBIT5K data set with a fixed resolution of 900.
We assume that simplex trees are precomputedlﬂ using the Gudhi library (Rouvreau,
2015). Our descriptors are computed using the parameters achieving the highest ac-
curacy for the classification task; see Section [9.3.2] Persistence images are computed
with the Gudhi library for one-parameter filtrations and with the MMA package for two-
parameter filtrations (Loiseaux, Carriére, and Schreiber, |2022)) with default parameters
and the same resolution as our two-parameter descriptors, i.e., 30 x 30. To compute
persistence images, one first needs to compute the persistence barcodes of simplex trees
in the one-parameter case or persistence modules approximations in the two-parameter
case (Loiseaux, Carriere, and Blumberg, 2022, Section 3). We include these additional
costs in the computational times of persistent images. However, the time to compute the
PI1 descriptor on the full ORBIT5K data set breaks down to 5 seconds to compute the
persistence barcodes and 134 seconds for the persistence images themselves.

ECC | HT1 | PI1 || ECS | Radon | HT2 | PI2
16 719 | 139 || 144 119 805 | 2034

Table 9.4: Computation times (s) for ORBIT5K with constant resolution.

As expected from the time complexities of the algorithms (Section , Euler char-
acteristic profiles and Radon transforms are at least ten times faster than persistence
images, and hybrid transforms are four times faster in the two-parameter case. One-
parameter hybrid transforms may appear costly to compute, but this will be mitigated
in the next paragraph. Finally, we point out that we implemented our tools in Python and
not in C++, which is very likely to result in longer computation times. On the contrary,
persistence images in one and two parameters both benefit from a C++ implementation.

Constant accuracy. We report in Table the time to compute our descriptors
on the full ORBIT5K data set with the lowest resolution before accuracy drop-out as
reported in Figure More precisely, we chose the lowest possible resolutions to
ensure a classification accuracy of 82% for one-parameter descriptors and of 89% for
two-parameter descriptors, that is, a resolution of 30 for ECC, of 9 for HT'1, of 20 x 20
for ECS and Radon, and of 6 x 6 for HT2. Other parameters remain unchanged. The
interest in using hybrid transforms over Euler characteristic profiles is now clear: the
concentration of information provided by hybrid transforms makes it possible to classify
the data set with feature vectors of reduced dimension, which considerably speeds up the
computations.

9.3.6 Take-home message

The experiments from this section suggest that Euler characteristic profiles are very
powerful descriptors since they allow for state-of-the-art accuracy when coupled with a

!Note that computing simplex trees takes around 66s in the one-parameter setting and around
420s in the two-parameter setting; the difference lies in the cost of computing codensity on point
clouds.
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ECC | HT1 || ECS | Radon | HT?2
16 5 135 45 69

Table 9.5: Computation times (s) for ORBIT5K with smallest resolution before
accuracy drop-out.

robust classifier (XGB or RF) at a very competitive computational cost. On the one
hand, Radon transforms show accuracy and computational complexity very similar to
Euler characteristic profiles. On the other hand, hybrid transforms have similar accuracy
but are more costly to compute, especially in the one-parameter setting; see Table
In addition to the theoretical properties exposed in the previous chapters, the motivation
to use hybrid transforms is two-fold.

First, in an unsupervised setting or when plugging a linear classifier, the lack of
diversity in Euler characteristic profiles and Radon transforms can be detrimental to the
separation of classes. In contrast, hybrid transforms are competitive descriptors in such
tasks due to the wide diversity in the choice of kernels and their sensitivity to slight
variations in Euler characteristic profiles.

Second, hybrid transforms provide a very powerful compression of the signal from
the Euler profile (Figure at a very low computational cost (Table . This makes
hybrid transforms a very robust descriptor combining dimension reduction and feature
extraction.



Conclusion

In this thesis, we explored two complementary approaches to describe multi-parameter
filtrations of topological spaces in an informative and implementable manner.

Direct-sum decompositions. In the first part, we followed the approach developed
in persistence theory, which consists in applying homology to the filtration. This yields
an algebraic object called a persistence module. In the one-parameter case, the persis-
tence module is fully characterized by a multiset of intervals called a barcode. In the case
of multiple parameters, the resulting persistence modules do not admit such simple de-
scriptions. Therefore, we sought for subclasses of persistence modules that are described
by a multiset of connected and convex subsets—intervals—of the parameter space. In
more formal terms, we studied the subclasses of persistence modules that are decompos-
able into a direct sum of interval modules, and restricted ourselves to the two-parameter
case. Keeping in mind the need to algorithmically test membership in these subclasses,
we studied the existence of those that admit a local characterization, i.e., those that can
be tested for membership by observing only the restrictions of the persistence modules
to finite subsets of the parameter space. We showed that interval-decomposability can-
not be tested locally by means of restrictions to finite grids of bounded size. However,
our main result shows that global rectangle-decomposability is equivalent to rectangle-
decomposability of all restrictions to squares, i.e., 2x2 grids. This allowed us to construct
efficient algorithms for testing decomposability and computing decompositions of mod-
ules induced in homology by a finite simplicial filtration. Moreover, we showed that
rectangle-decomposable modules naturally appear in the study of the homology of level
sets of real-valued functions. Finally, we proved that the class of rectangle-decomposable
modules is maximal, in a precise sense, among classes that can be locally characterized
on squares.

The work conducted in this first part raises several natural questions. Since rectangle-
decomposability is maximal when testing on squares, one may wonder if it is possible to
locally characterize interval-decomposability beyond rectangles when allowing for other
test subsets than squares. Moreover, is it possible to move beyond indecomposables
which are pointwise 0- or 1-dimensional? Can one determine “locally” if a given persis-
tence module decomposes into a direct sum of indecomposables belonging to a certain
predefined class of indecomposables? Finally, do the results generalize to persistence
modules over R"? For persistence modules indexed over Z2, the ezactness condition
(Definition ensuring global block-decomposability can be expressed as the vanishing
of specific homology groups of the Koszul complex associated to the persistence module.
Although this condition generalizes to persistence modules indexed over Z" for n > 3,
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the question of whether a block-decomposability result is true in this case remains open.

Euler characteristic based invariants. In the second part of the thesis, we stud-
ied descriptors of topological filtrations based on calculations of Euler characteristic
rather than homology. These descriptors have the advantage of completely bypassing
the construction of persistence modules and can thus be computed much more efficiently
than the barcode and its multi-parametric analogues presented above. We defined these
invariants and formulate our results using the convenient language of constructible func-
tions and Euler calculus. Our main contribution is the introduction of integral transforms
of constructible functions involving integration with respect to Lebesgue measure and Eu-
ler characteristic—hybrid transforms. We began with a thorough and general theoretical
study of these integral transforms. We showed that beside giving access to a wide variety
of kernels (Fourier, Laplace, etc.), Lebesgue integration allows for smooth output func-
tions. On the other hand, Euler calculus induces transforms that are compatible with
topological operations on functions, such as (constructible) convolution or duality. Im-
portantly, the hybrid Fourier transform satisfies a reconstruction result when restricted
to the subgroup of compactly supported ~y-constructible functions. Moreover, the use
of Euler characteristic allowed us to prove index formulae in the context of persistence
of sublevel sets of subanalytic functions. Combined with the work of Bobrowski and
Borman (2012), these index formulae yield expressions for the mean values of these in-
variants in the context of sublevel-sets persistence of Gaussian random fields. Then, we
focused on Euler profiles—the constructible functions associated with finitely presentable
simplicial filtrations—and their transforms. We proved stability results for these objects
with respect to the L; distance on constructible functions and on filtration functions. We
also showed statistical results for these objects, which are essentially direct consequences
of existing results, but which crucially used the reduction property of multi-parameter
hybrid transforms to one-parameter ones (Corollary. Finally, we showed that these
invariants are powerful descriptors in topological data analysis by comparing ourselves to
existing persistence based methods. Euler profiles are informative at very low computa-
tional cost while hybrid transforms provide powerful descriptors in unsupervised learning
at a reasonable to better cost due to their compression power. Along the way, we pro-
vided numerous examples of the type of topological and geometric information captured
by our tools.

Celebrated results on the classical Fourier transform state that it is an isometry of L?
and a Lipschitz mapping from L' to L>°. One can naturally wonder if similar results
hold on hybrid transforms. Remark shows that it does not for L, metrics between
constructible functions and the L metric between transforms. The question remains
open for other metrics on constructible functions and their transforms. Considering the
pushforward operation involved in the definition of hybrid transforms, these stability
results would likely require a metric on the group of constructible functions with respect
to which Euler calculus operations are continuous. As a byproduct, such a metric might
allow us to design approximation schemes of shapes (e.g. compression) with converging
topological and hybrid transforms. Following the correspondence between constructible
functions and characteristic cycles (Kashiwara and Schapira, 1990, Theorem. 9.7.11),
a metric on functions would induce a metric on cycles with respect to which classical
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operations on cycles (such as pushforward) are continuous. Several facts suggest that
this metric should not be straightforward to find: as shown by Berkouk (2022), a non-
trivial metric on constructible functions cannot be upper-bounded by the convolution
distance between sheaves.

On the applied side, it would be interesting to explore several directions. While we
have validated our method on filtered simplicial complexes built on point clouds and
graph data, it is common to build cubical complexes from images or 3D volumes data.
Euler characteristic curves have been used as descriptors of such complexes in the one-
parameter setting (Jiang, Kurtek, and Needham, 2020; Smith and Zavala, 2021). As there
is a vast number of filtration functions one can consider on images, it would be worth
investigating the predictive power of the multi-parameter Euler profiles in this setting.
While several applications are considered in Beltramo, Skraba, et al. (2022) and Dlotko
and Gurnari (2022)), a thorough benchmarking against other persistence methods and
state-of-the-art image processing methods is still missing. Moreover, Radon transforms
and hybrid transforms have still not been studied in this applied context. Another
direction is based on the remark that Euler characteristic profiles are well-defined for
families of topological spaces that are not necessarily non-decreasing with respect to
inclusions. This widely extends the potential range of applications of our tools, notably
to the study of time-varying simplicial complexes, as done in Xian et al. (2022)). With the
success of the classical Fourier transform on time signals in mind, it would be relevant to
examine hybrid transforms of Euler profiles associated to such time-varying complexes.
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