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Nicolas Trotignon DR CNRS ENS de Lyon Thesis supervisor



To my parents, Matin and Peiman.



A mathematician will never be a perfect mathematician,
unless he [or she] is somewhat of a poet.

Ů Karl Weierstrass



Acknowledgements

Finishing the writing of my thesis, I realize how fortunate I am to be pursuing
what I have always loved, mathematics. In this journey, and in particular, during the
three years of my PhD, many people have accompanied me scientiĄcally or personally
and I cannot possibly thank them all appropriately. This section, however, is my try
to tell everyone how grateful I am for their presence in my personal and academic life.

I would like to start by expressing my gratitude toward my supervisor, Nicolas
Trotignon. I have learned so much from his experience and invaluable insight in
research. I am particularly grateful for our regular online meetings during the period
of COVID, which overlapped with the beginning of my PhD. I am glad to have had
the chance to work with one of the greatest researchers in the Ąeld.

I would also like to thank the jury of my thesis, Jérémie Chalopin, Sophie Morel,
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Summary

This dissertation is mainly about the theory of χ-boundedness and geometric
graph theory. In particular, we put much focus on a topic at the intersection of the
two: Burling graphs. The class of Burling graphs, deĄned by Burling [Bur65] in 1965,
is a class of triangle-free graphs with arbitrarily large chromatic number that has been
the object of much research since the 1960s until today. In this dissertation, we study
Burling graphs from different aspects: their characterizations, their structure, and
their applications.

We give several equivalent characterizations of Burling graphs with different
Ćavors: a combinatorial one (called derived graphs), an axiomatic one (called abstract
Burling graphs), and some geometric ones (called constrained graphs). The two
former ones, being the Ąrst non-inductive deĄnitions of Burling graphs, allow deriving
new results (see under). Historically, Burling graphs have been viewed as subclasses
of geometric graphs. The geometric characterizations, by introducing Burling graphs
as an exact class of geometric graphs for the Ąrst time, complete this historical
viewpoint.

We then study several structural properties of Burling graphs using the derived
graph deĄnition. Among other results, we give decomposition theorems, study the
structure of holes in Burling graphs, and analyse the effects of several operations
on the class. Using these results, we introduce new techniques for providing new
triangle-free graphs that are not Burling graphs. In addition, we prove probabilistic
results about the size of the class.

Finally, we provide some applications of our results to the theory of
χ-boundedness. We disprove a conjecture of Scott and Seymour from [SS20] and
answer a question of Trotignon from [Tro13], both about wheel-free graphs. We
also obtain the complete classiĄcation of weakly pervasive complete graphs, and
provide new families of non-weakly pervasive graphs (i.e. counterexamples to ScottŠs
conjecture).

A major part of this thesis is contained in [PT23, PT21a, PT21b] (joint works
with Nicolas Trotignon), in [Pou22], and in the authorŠs masterŠs thesis [Pou20].

– Keywords: graph theory, χ-boundedness, Burling graphs, intersection graphs
of geometrical objects
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Chapter 1

Introduction

This dissertation, in the broadest sense, is about the chromatic number of graphs1,
a concept that ages back to at least 1852, when Francis Guthrie made the famous
four-color conjecture: in any map drawn in the plane, one can color the regions
with at most four colors such that neighboring regions receive different colors. This
conjecture captures the general idea of graph coloring: coloring a set of objects so
that any two objects that are related receive different colors. It is common for graph
coloring problems to have simple statements, but to be hard to solve. For example,
the simple-looking four-color conjecture remained open for more than a century.2

This charming property of such problems, along with their vast applications, not
only has enlivened research on graph coloring but has made it expand into diverse
areas.

One of these areas is χ-boundedness, a Ąeld that aims to understand the behavior
of the chromatic number of graphs with respect to their structural properties. A
typical method in χ-boundedness is to set global or local (structural) restrictions
on graphs and ask whether these restrictions affect the behavior of chromatic
number. That is why the objects under study in χ-boundedness are often classes
of graphs rather than individual graphs. Such studies age as back as at least the
1950s (see for example [Des54] and [Myc55]), long before the Ąrst formalization of
χ-boundedness in todayŠs terminology from the historic article of Gyárfás [Gyá85]
in 1985. The four-color theorem is an example of the global restrictions. We
discuss more examples of the global point of view when studying the intersection
graphs of geometric objects. In the local point of view, it is common to study
the chromatic number in classes of graphs deĄned by forbidding Ąxed substructures
for some containment relation. Different substructures and different containment

1Chromatic number and any other notion in this introduction will be defined precisely later in
the dissertation. We keep this introduction informal.

2Kenneth Appel and Wolfgang Haken proved the four-color theorem in 1976. Their proof
included an extensive use of computers. Up to this date, all the existing proofs of this theorem are
computer-assisted.
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Chapter 1. Introduction

relations result in different types of results and conjectures. It is worth noting that
often, there is a duality between the global and the local point of view. For example,
due to KuratowskiŠs theorem [Kur30]3 and four-color theorem, the absence of some
precise local structures (namely subdivisions of K5 and K3,3 as subgraphs) forces the
chromatic number to be at most 4.

Let us give an example of a question from the local point of view that is important
in this dissertation. Let H be any graph, and consider the class C of graphs that do
not contain the topological shape of H (formally, they do not contain any subdivision
of H as an induced subgraph). number. But aside from this obvious reason, is there
any other reason Is it true that for every k, there exists a constant c = c(H, k) such
that all graphs in C with no clique of size k have chromatic number at most c? The
idea being, is the topology of H necessary for having arbitrarily large chromatic
number? When the answer to this question is positive, we say that H is weakly
pervasive. This question was Ąrst asked and studied by Scott [Sco97], who proved
that for all trees, the answer is positive, i.e. trees are weakly pervasive. He then
conjectured that all graphs are weakly pervasive.4

It is easy to see that K3, the complete graph on 3 vertices, is weakly pervasive:
if a graph does not contain any subdivision of K3, then it is a forest, and thus
is 2-colorable. The complete graph on 4 vertices, K4, is weakly pervasive as well
(see [LMT12]). When we started this research, what intrigued me was to know the
answer for K5, which was still open at the time. On the other hand, the question
for K5, as we explain in the dissertation, is related to well-known conjectures such
as HajósŠ conjecture and HadwigerŠs conjecture.

Research, like any other adventure, has surprises. Our work on Ąnding the
answer for K5 led us to study Burling graphs, a class of triangle-free graphs with
arbitrarily large chromatic number. They are deĄned by Burling [Bur65] in 1965, in
his Ph.D. thesis. Since then, they have appeared in other research with a variety of
applications (see, for instance, [Che12, CELOdM16, FJM+18, PKK+14, KPW14])
Ű in particular, the Ąrst graphs that are not weakly pervasive are found thanks
to Burling graphs [PKK+14]. Besides their numerous applications, Burling graphs
happened to be fascinating objects on their own, and soon we realized that there is
still so much to unveil about them. So, we began to focus our research on the class
itself. This led to new characterizations of Burling graphs and structural results
about them, which in turn enabled us to deduce some applications, including the
answer to our Ąrst question: no Kn, for n ≥ 5, is weakly pervasive.

To begin with, we realized that the existing deĄnition of Burling graphs is not
easy to work with and can be clariĄed. Therefore, we redeĄned them in other

3Kuratowski’s theorem, proved by Casimir Kuratowski in 1930, states that a graph is planar if
and only if it contains no subdivision of K3,3 and K5 as a subgraph.

4This conjecture remained open for another 15 years until the first non-weakly pervasive graphs
were found in [PKK+14].
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terms: we give new equivalent deĄnitions for this class of graphs. Among these
deĄnitions, one is combinatorial, one is axiomatic, and some are geometric (since
Burling graphs are historically deĄned as intersection graphs of geometrical objects).
Those deĄnitions gave us more Ćexibility in our studies: some are easier for deriving
structural properties of the graphs, and some are more general and help us with the
proofs, as well as Ąnding examples of Burling graphs. Moreover, we realized we can
beneĄt from regarding Burling graphs as oriented graphs instead of (non-oriented)
graphs. See [PT23].

Since Burling graphs were historically discovered [Bur65] (and
rediscovered [PKK+14]) as intersection graphs of geometric objects, we also
deĄne the precise subclass of intersection graphs of transformations of a set S (for
some general family of sets in R2 that we call Pouna sets and for boxes in R3) that
is equal to the class of Burling graphs. See [Pou22].

Later, we used these new characterization to study the structural properties of
Burling graphs: properties of their orientation, star cutsets in them, attachments of
holes in them, their closedness under different operations, etc. Among the advantages
of such studies were Ąnding a decomposition theorem for the class of Burling graphs
and Ąnding examples of graphs that are not in the class while introducing new
techniques to do so. See [PT21a].

Finally, we present some applications in χ-boundedness. We disprove a conjecture
of Scott and Seymour in [SS20], answer a question of Trotignon in [Tro13], and
provide new techniques and several examples of graphs that are not weakly pervasive.
See [PT21b].

Conventions and proofs

To improve the readability of the text, we have placed some of the proofs in
Appendix C. The results whose proofs are postponed to the appendix are either
folklore or belong to a topic not directly related to the rest of the thesis (such as
probabilities and point-set topology). However, we have not left any statements
without proof unless a reference is given.

Moreover, at some points, we would like to motivate or give insight into the topic
at hand, and it might require references to future or past texts in the thesis. In such
situations, to separate such explanations from the main text, and to increase the
readability, we include such texts in an environment titled Şa breach in timeŤ.
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Chapter 1. Introduction

Thesis outline

Part 1. Preliminaries
We Ąrst cover the bases of the topics in this dissertation, including the graph

theoretical deĄnitions, χ-boundedness, and geometric graph theory. We also present
the notation used throughout this dissertation. We end this part with a brief history
of Burling graphs and their applications from 1965 until today.

Part 2. Characterizations of Burling graphs
We introduce the several deĄnitions of Burling graphs, brieĆy discuss the

advantages of each, and Ąnally prove that they are all equivalent.

Part 3. Structure of Burling graphs
We prove some results about the structure of Burling graphs, including a

decomposition theorem for the class. We also provide examples of Burling graphs
and non-Burling graphs.

Part 4. Applications and open problems
We present some applications of Burling graphs using the results from previous

parts and then introduce some open problems.

Appendix.
In the appendix, we Ąrst provide a short biography of James Perkins Burling,

the discoverer of Burling graphs. Then, to answer a natural question that arises in
the thesis, we provide an example of a class of intersection graphs with unbounded
chromatic number which has no containment relations with Burling graphs. Finally,
the proofs that are not in the body of the thesis can be found in Appendix C.

We have written a summary in French, and then, we have provided a list of
Ągures, a list of notations, and an alphabetic index to facilitate the reading of this
document.
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Preliminaries
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Chapter 2

Main topics and notation

2.1 Graphs and oriented graphs . . . . . . . . . . . . . . . . . 6

2.2 χ-boundedness . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Geometric graph theory . . . . . . . . . . . . . . . . . . . 15

2.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

In this chapter, we introduce the main topics of this dissertation. In Section 2.1,
we Ąx our graph theory notions and deĄnitions. In Section 2.2, we introduce the
basics of χ-boundedness and some questions that we will consider, such as ScottŠs
conjecture. In Section 2.3, we introduce the intersection graphs of geometrical objects
and their relation to the topics that we discuss. Finally, we introduce the notation
used in this thesis in Section 2.4.

2.1 Graphs and oriented graphs

Graphs and oriented graphs

A graph G is a pair (V, E) where V is a set and E is a set of two-element subsets
of V . The elements of V are called the vertices of G and the elements of E are called
the edges of G. We often denote the vertex-set and the edge-set of a given graph H
by V (H) and E(H) respectively.

We say that two vertices u and v of a graph G are adjacent if ¶u, v♢ ∈ E(G). We
often denote an edge by uv or vu instead of ¶u, v♢, if there is no confusion.

A graph G is called finite if V (G) is Ąnite. Finite graphs are often visualized
by considering a distinct point on the plane for each vertex and joining two vertices
u and v by an injective path in the plane whenever they are adjacent. A graph is
called planar if there exists such a visualization on the plane such that each path is
disjoint from the interior of any other path.

6



2.1. Graphs and oriented graphs

An oriented graph G is a pair (V, A) where V is a set and A is a binary relation
on V that is irreĆexive and antisymmetric. The elements of V are called the vertices
of G and the elements of A are called the arcs of G. We often denote the vertex-set
and the arc-set of a given oriented graph H by V (H) and A(H) respectively. Also,
to refer to arcs, we often write uv instead of (u, v).

Similar to graphs, an oriented graph is called finite if V (G) is Ąnite. A Ąnite
oriented graph G is often visualized by considering a distinct point on the plane for
each vertex in V (G) joining two vertices u and v by an injective path in the plane
with an arrow showing the direction from u to v whenever (u, v) ∈ A(G).

To highlight, we sometimes use the term non-oriented graph to refer to a graph.
Notice that with these deĄnitions, an oriented graph is not a graph. However,

there is a close relation between the two notions.

Underlying graph of an oriented graph. Given an oriented graph G = (V, A),
we deĄne the underlying graph of G to be the graph Ĝ = (V, E) where

E = ¶¶u, v♢ ♣ (u, v) ∈ A or (v, u) ∈ A♢.

Orientations of a graph. Given a graph G = (V, E), an orientation of G is any

oriented graph G⃗ = (V, A) such that G is the underlying graph of G⃗. Informally, an
orientation of a graph G is assigning an orientation to each of its edges.

In this thesis, we only deal with Ąnite graphs and Ąnite oriented graphs, even
though some of the deĄnitions and theorems can be stated for inĄnite graphs as well.

Graph homomorphisms and isomorphisms

Let G and H be two graphs (resp. oriented graphs). A graph homomorphism
(resp. oriented graph homomorphism) is a function ϕ : V (G) → V (H) such that if
uv ∈ E(G), then ϕ(u)ϕ(v) ∈ E(H) (resp. if uv ∈ A(G), then ϕ(u)ϕ(v) ∈ A(H)).
A homomorphism ϕ is an isomorphism if it is a bijection and ϕ−1 is also a
homomorphism. We say that G and H are isomorphic, and we write G ≃ H, if
there exists an isomorphism ϕ : V (G) → V (H).

All the structural properties that we consider in this thesis, such as chromatic
number, clique number, stable sets, etc. are invariant under graph isomorphism.
They are properties that do not depend on the labels of the vertices of the graph.

Let n ∈ N1. A labeled (oriented or non-oriented) graph G on n vertices, is a graph
such that V (G) = ¶1, 2, . . . , n♢ (in particular, the only labeled graph on 0 vertices is
(∅,∅)). We use without a proof the fact that every Ąnite graph is isomorphic to a
labeled graph.

1In this first appearance of N in this thesis, we emphasize that in this document, N is the set of
all non-negative integers. So, 0 ∈ N. We sometimes denote N \ ¶0♢ by N∗.

7



Chapter 2. Main topics and notation

Classes of graphs

Remember that we deal only with Ąnite graphs in this dissertation. From the
deĄnition of a graph, it is clear that the collection of all (Ąnite) graphs is not a set.
The collection of all labeled graphs, however, is a set. We deĄne the class of all
graphs to be the set of all labeled graphs quotiented by isomorphism.

A class of graphs, in general, is a subset of the class of all graphs. Even though
the elements of a class of graphs are isomorphism classes of graphs, we lose precision
by referring to them as graphs.

Let us give some examples. Let n ∈ N and [n] := ¶1, 2, . . . , n♢ (so [0] = ∅). We
call any graph G isomorphic to ([n], ¶¶i, j♢ ♣ i, j ∈ [n], i ̸= j♢), the complete graph on
n vertices and denote it by Kn. In other words, the isomorphism class of the graph
mentioned above and any of its representatives are referred to as the complete graph
on n vertices.

Similarly, the path on n vertices, denoted by Pn, the cycle on
n vertices, denoted by Cn, and the complete bipartite graph with
parts of size m and n, denoted by Km,n are any graph isomorphic to
([n], ¶¶i, i + 1♢ ♣ i ∈ [n − 1]♢) , ([n], ¶¶i, i + 1♢ ♣ i ∈ [n − 1]♢ ∪ ¶n, 1♢), and
([n + m], ¶¶i, j♢ ♣ i ∈ ¶1, . . . , n♢, j ∈ ¶n + 1, . . . , n + m♢♢), respectively.

Induced subgraphs, subdivisions, minor

Let G be a graph (resp. oriented graph) and let S ⊆ V (G). The subgraph of
G induced by S is the graph (resp. oriented graph) H such that V (H) = S and
E(H) = ¶uv ∈ E(G) ♣ u, v ∈ S♢ (resp. A(H) = ¶uv ∈ A(G) ♣ u, v ∈ S♢). We denote
H by G[S].

We say that a graph H is an induced subgraph of a graph G if H is isomorphic
to a graph H ′ induced by a subset of V (G).

A graph H is a subgraph of G if it is isomorphic to a graph H ′ such that
V (H) ⊆ V (G) and E(H) ⊆ E(G). The subgraph relation for oriented graphs is
deĄned similarly by replacing the edge-sets by the arc-sets.

Subdividing k times an edge xy of a graph G, where k ≥ 1, is the operation of
replacing the edge by a path on k vertices. Formally, it is obtaining a graph G′ by
setting V (G′) = V (G) ∪ ¶v1, . . . , vk♢ and

E(G′) = (E(G) \ ¶xy♢) ∪ ¶xv1, v1v2, . . . , vk−1vk, vky♢.

A subdivision of a graph G is any graph obtained from G by subdividing some
(possibly none) of the edges of G. We denote the set of all subdivisions of a graph
G by G∗.

Let G be a graph (resp. oriented graph). Contracting an edge (resp. arc) xy of
G is the operation of obtaining another graph (resp. oriented graph) G′ as follows:

8



2.1. Graphs and oriented graphs

Let G0 = G \ ¶x, y♢, i.e. the subgraph of G induced by V (G) \ ¶x, y♢. We set
V (G′) = V (G0) ∪ ¶vxy♢, where vxy /∈ V (G0) is a new vertex, and

E(G′) = E(G0) ∪ ¶vxyu : u ∈ NG(x) ∪ NG(y)♢

(resp. A(G′) = A(G0) ∪ ¶vxyu : u ∈ N+
G (x) ∪ N+

G (y)♢ ∪ ¶uvxy : u ∈ N−
G (x) ∪ N−

G (y)♢).

. Informally, we identify x and y and remove the created loop.

We say that graph H is a minor of a graph G if it is obtained from a subgraph
G′ of G by a sequence of edge contractions. A similar deĄnition can be stated for
oriented graphs.

We remark that the relations (H, G)Šs such that

• H is an subgraph of G,

• H is an induced subgraph of G,

• G is a subdivision of H,

• H is a minor of G,

are all (partial) order relations on the class of all graphs.

Cliques and stable sets. Let G be a graph. A set S ⊆ V (G) is called a clique
if for all distinct x, y ∈ S, we have xy ∈ E(G), and it is called a stable set if for all
distinct x, y ∈ S, we have xy /∈ E(G). A clique or a stable set in an oriented graph
is a clique or a stable set in its underlying graph. A triangle is a clique of size 3. We
say that a graph G is triangle-free if is has no clique of size 3.

We denote the size of the biggest clique in G by ω(G) and we call this value the
clique number of G.

Hereditary classes of graphs

We say that the class C of graphs is hereditary if it is closed under taking induced
subgraphs, i.e. if, for every G ∈ C, we have that if H is an induced subgraph of G,
then H ∈ C.

Let S be a class of graphs. The hereditary class of graphs generated by S is the
smallest hereditary class of graphs containing all elements of S. Equivalently, it is
the class of graphs consisting of all induced subgraphs of graphs in S.

Let C be a hereditary class of graphs. Let H denote the class of minimal (for
the induced subgraph relation) elements of the complement of C in the class of all
graphs. Notice that a graph G is in C if and only if it contains no graph of H as
an induced subgraph. We refer to C as H-free graphs and we denote it by Forb(H).
If H = ¶H♢ is a singleton, then we write H-free graphs and Forb(H), instead of
¶H♢-free graphs and Forb(¶H♢).

An important example of H-free graphs for us is when H is the class of all
subdivisions of a graph H, i.e. the class of H∗-free graphs or Forb(H∗).

9



Chapter 2. Main topics and notation

2.2 χ-boundedness

Chromatic number

Let k be a positive integer. A proper k-coloring of a graph G is a function
ϕ : V (G) → ¶1, 2, . . . , k♢ such that if uv ∈ E(G), then ϕ(u) ̸= ϕ(v). When G admits
a proper k-coloring, we say that it is k-colorable.

The chromatic number of a graph G, denoted by χ(G), is the smallest integer
k such that G admits a proper k-coloring. Equivalently, it is the smallest integer k
such that V (G) can be partitioned into k stable sets.

It is worth mentioning that equivalently, the chromatic number of G is the
smallest integer k such that there exists a homomorphism from G to Kk.

The chromatic number of an oriented graph G, also denoted by χ(G), is deĄned
to be the chromatic number of its underlying graph.

Triangle-free graphs with arbitrarily large chromatic number

It is clear that for every graph G, we have χ(G) ≥ ω(G). Therefore, it is easy to
see that for every positive integer n, there exist graphs with chromatic number at least
n, namely Kn. But we can build less trivial examples: for every n, there exist graphs
with chromatic number at least n and clique number at most 2. Examples of such
graphs have been known for decades. See, for instance, TutteŠs construction [Des54]2,
Mycielski graphs [Myc55], Erdős random graphs [Erd59], and Burling graphs [Bur65].
For more examples, see Section 2 of [SS20].

Among these examples, we will discuss Burling graphs in detail. In particular,
Chapter 3 and Chapter 4 are devoted respectively to a brief history of Burling graphs
and to several equivalent deĄnitions of Burling graphs. The reader might refer to
DeĄnition 3.2 for a Ąrst deĄnition of these graphs. For now, we just explain that
the Burling sequence is a sequence (Gk, Sk)k∈N∗ where Gk is a triangle-free graph of
chromatic number k and Sk is a set of stable sets of Gk (whose role will be clariĄed
later). The class of Burling graphs is the hereditary class generated by ¶Gk ♣ k ∈ N∗♢,
i.e. the class of all induced subgraphs of GkŠs.

The existence of triangle-free graphs with arbitrarily large chromatic number
assures us that there is no function f such that χ(G) ≤ f(ω(G)), and that chromatic
number does not only depend on the clique number. Given this fact, one may ask
which other structural properties of graphs other than the clique number affect the

2The history of this example is pretty interesting. The Tutte’s construction, in the form that
we know today, is from [Des54] signed by Blanche Descartes, a collaborative pseudonym used by
Rowland Leonard Brooks, Arthur Harold Stone, Cedric Smith, and William Thomas Tutte, as an
answer to a question proposed by Peter Ungar. However, the ideas of the construction are already
present in [dC48] as a response to a problem [dC47] by the same author, but under the name F. de
Carteblanche.
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chromatic number, and which structural properties do not. Let us make this clearer
in what follows.

χ-boundedness

Let C be a hereditary class of graphs. We say that C is χ-bounded by a χ-binding
function f : N → N if for every G ∈ C we have χ(G) ≤ f(ω(G)). This notion
is deĄned by Gyárfás in the renowned paper [Gyá85] as a generalization of perfect
graphs. A graph G is called a perfect graph if, for every induced subgraph H of G,
we have χ(H) ≤ ω(H).

As we explained above, the class of all graphs and the class of triangle-free graphs
are not χ-bounded. The class of forests (i.e. graphs with no cycles), however, is
χ-bounded by the constant function 2, and the class of perfect graphs is χ-bounded
by the identity function.

Let us give some examples. Let C be the class of H-free graphs for some graph H.
Assume that H is not a forest, and let g be the girth of H, i.e. the length of a shortest
cycle in H. Erdős [Erd59] showed that for every k ∈ N, there are graphs with girth
strictly bigger than g (consequently, H-free) and chromatic number at least k. So, C
is not χ-bounded. Gyárfás [Gyá73] and Sumner [Sum81], independently, conjectured
the converse.

Conjecture 2.1 (Gyárfás-Sumner). For every forest F , the class of F -free graphs
is χ-bounded.

Conjecture 2.1 is still widely open. In [Sco97], proved a topological version of this
conjecture. He proved that the class of graphs that do not contain any subdivision
of a forest F as an induced subgraph is indeed χ-bounded.

Theorem 2.2 (Scott 1997). For every forest F , the class of F ∗-free graphs is
χ-bounded.

This paper [Sco97] lead to the study of χ-boundedness of H∗-free graphs, and to
ScottŠs conjecture, as follows.

Conjecture 2.3 (Scott 1997). For all graphs H, the class of H∗-free graphs is
χ-bounded.

We refer to the conjecture above as Scott’s conjecture. This conjecture was
disproved in 2012 [PKK+14]. They showed that for every graph H obtained from a
non-planar graph by subdividing each edge at least once, the class of H∗-free graphs
contains Burling graphs; therefore, it is not χ-bounded. We discuss this in Chapter 3.
The disproof of this conjecture created an interesting research path to understand
for which graphs the statement of the conjecture holds and for which ones it does
not, and why. We discuss in the following section.
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Scott’s conjecture and weakly pervasive graphs

Definition 2.4. A graph H is said to be weakly pervasive if the class of H∗-free
graphs is χ-bounded.

So, Conjecture 2.3 can be restated as Şall graphs are weakly pervasiveŤ, and
Theorem 2.2 can be restated as Şevery forest is weakly pervasiveŤ.

Let us repeat the examples in the introduction in this setting. Consider the case
where H is a complete graph. The class of K∗

3 -free graphs is exactly the class of
forests and thus is χ-bounded. Also, Scott observed that a structural description of
K∗

4 -free graphs by Lévêque, Maffray, and Trotignon [LMT12] implies that the class
of K∗

4 -free graphs is χ-bounded. Thus both K3 and K4 are weakly pervasive graphs.
In Chapter 10, we prove that Kn is not weakly pervasive for n ≥ 5. We also prove
that many other graphs, including some series-parallel graphs and graphs with star
cutsets, are not weakly pervasive.

A widely open problem in this regard is to characterize weakly pervasive graphs
which motivates numerous research on Ąnding more examples of graphs that are and
are not weakly pervasive.

Remark 2.5. The term weakly pervasive opposes the term pervasive. A graph is
pervasive if all its subdivisions are weakly pervasive. Therefore, if a graph is not
weakly pervasive, it is not pervasive either. In [SS20], Scott and Seymour suggest
the problem of characterizing pervasive graphs as a possibly easier question than
characterizing weakly pervasive graphs.

For more explanations about ScottŠs conjecture, see [SS20].

The complete graph Kn, from Hadwiger to Scott

The case of Kn in ScottŠs conjecture has other motivations as well. Let us describe
this case here.

As explained in the introduction, in 1852, Guthrie conjectured that every planar
graph is 4-colorable. In other words, the class of planar graphs is χ-bounded with
the constant function 4. Appel and Haken proved this conjecture in 1977.

Theorem 2.6 (4-color theorem, Appel and Haken, 1977). Every planar graph is 4
colorable.

Two famous characterizations of planar graphs in terms of their forbidden
substructures are due to Kuratowski [Kur30] and Wagner [Wag37] and are as follows.

Theorem 2.7 (Kuratowski [Kur30], 1930). A graph is planar if and only if it
contains no subdivision of K5 or K3,3 as a subgraph.

12
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Theorem 2.8 (Wagner [Wag37], 1937). A graph is planar if and only if it contains
no minor of K5 or K3,3.

Using the 4-color theorem, we can see Theorem 2.8 as follows: if a graph G has
chromatic number at least 5, then it contains either a minor of K5 or a minor of K3,3.
In 1943, Hadwiger [Had43] conjectured that in such case, G always contains a minor
of K5. Indeed, more generally, he conjectured that for n ∈ N∗, if G has chromatic
number at least n, then it contains a minor of Kn.

Similarly, knowing the 4-color theorem, Theorem 2.7 states that if a graph G
has chromatic number at least 5, then it contains either a subdivision of K5 or a
subdivision of K3,3 as a subgraph. Hajós conjectured that in such case G contains a
subgraph isomorphic to a subdivision of K5. More generally, he conjectured that if
a graph has chromatic number at least n, then it contains a subdivision of Kn as a
subgraph.

Let us state these two conjectures in the terminology of this chapter.

Conjecture 2.9 (Hadwiger [Had43], 1943). For all n ∈ N∗, the class of graphs that
do not contain a minor of Kn is χ-bounded with the constant function n − 1.

Conjecture 2.10 (Hajós, 1950s). 3 For all n ∈ N∗, the class of K∗
n-free graphs is

χ-bounded by the constant function n − 1.

Let us denote the class of graphs that contain no subdivision of Kn as a subgraph
by K∗

n-subgraph-free graphs, and the class of graphs that contain no minor of Kn by
Kn-minor-free graphs. Remember that K∗

n-free-graphs denotes the class of graphs
that do not contain any subdivision of Kn as an induced subgraph. Notice that
Kn-minor-free graphs are contained in K∗

n-subgraph-free graphs and the latter is
contained in the class of K∗

n-free graphs. Hence, in particular, HajósŠ conjecture is
stronger than HadwigerŠs conjecture.

HadwigerŠs conjecture is true for n ≤ 6. Indeed, for n ≤ 2, it is trivial. For n = 3,
it is followed from the fact that any graph with an odd cycle has a minor of K3, thus
K3-minor-free graphs are bipartite. Hadwiger [Had43], proved the case of n = 4 and

3There is a difficulty regarding the reference for this conjecture. In the literature, the conjecture
is mostly attributed to Hajós. However, there is no general agreement on the year in which it was
made. On the one hand, in several articles and books, including the one of Catlin [Cat79] (where
Hajós’ conjecture is disproved) and [GYZ13], Hajós’ [Haj61] from 1961 is cited as the reference of
the conjecture. On the other hand, some other references such as [BM08] and [Tho05] point out
that in 1952, Dirac [Dir52] was already aware of this conjecture and therefore suggest, without a
precise reference, that the conjecture is from the 1950s. Even though it is clear that Dirac was
aware of this conjecture (see the first sentence of Section 1 of [Dir52]), he does not refer to it as
Hajós’ conjecture and mentions it without any attribution. Therefore, it seems possible that the
conjecture was known to Dirac from other sources. In this dissertation, we refer to the conjecture
as it is generally known, i.e. Hajós’ conjecture, and we date it to the 1950s, as it is clear that it was
already a conjecture in 1952.
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Conjecture true open false

Hadwiger n = 1, 2, 3
1943 n = 4 (Hadwiger) n ≥ 7

n = 5 (Wagner)
n = 6

(Robertson, Seymour, Thomas)
Hajós n ≤ 4 (Dirac) n = 5, 6 n ≥ 7 (Catlin)
1950s

Scott (for Kn) n = 1, 2, 3 n ≥ 5
1994 n = 4 (PournajaĄ, Trotignon)

(Lévêque, Maffray, Trotignon)

Table 2.1: Hadwiger, Hajós, and ScottŠs conjecture

Wagner [Wag64] prove the case of n = 5. Finally, Robertson, Seymour, and Thomas
[RST93] prove the conjecture for n = 6. For n ≥ 7, the conjecture is open.

HajósŠ conjecture, on the other hand, is true for n ≤ 4 (which implies HadwigerŠs
conjecture for n ≥ 4) and this is proved by Dirac [Dir52]. Catlin [Cat79] disproved
the conjecture for n ≥ 7. The cases of n = 5 and n = 6 are still open.

It is noteworthy that if in each conjecture we ask that the class is χ-bounded
by a constant function depending on n (instead of the constant function n − 1),
then both are true. Indeed, it is not hard to show that for every n, there exists a
constant C = C(n) such that every graph that contains no subdivision of Kn as a
subgraph has a vertex of degree at most C − 1 (see, for instance, [KS94]), which
implies C-colorability of such graphs. So, we have the following folklore theorem.

Theorem 2.11. For every n ∈ N∗, the class of K∗
n-subgraph-free graphs, and

therefore the class of Kn-minor-free graphs, is χ-bounded.

Now, let us see what happens if we want to strengthen this theorem. The class of
K∗

n-free graphs contains the class of K∗
n-free graph. So, one might make the following

guess which is indeed a special case of ScottŠs conjecture.

Conjecture 2.12 (Scott [Sco97], 1994). For every n ∈ N∗, the class of K∗
n-free

graphs χ-bounded.

Notice that this question is a special case of ScottŠs conjecture. In particular, if
the answer to the question above is positive for some n, it means that n is weakly
pervasive.

But surprisingly, as explained, Conjecture 2.12 is true for n ≥ 4, and as we will
prove in Chapter 10, it is false for n ≥ 5.

Let us summarize the explanations of this section in Table 2.1
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2.3 Geometric graph theory

Intersection graphs

Let F be a family of sets. The intersection graph of F is the graph G where
V (G) = F and E(G) = ¶ST ♣ S ̸= T, S ∩ T ̸= ∅♢. A geometrical object, in this
setting, is a subset of a Euclidean space Rd.

Intersection graphs appear in different contexts in graph theory. Let us give some
examples:

• The Kneser graph Kn(n, k) is complement of the intersection graph of k-element
subsets of ¶1, 2, . . . , n♢.

• The line graph of a graph G is the intersection graph of E(G).

• Interval graphs are intersection graphs of families of intervals of R. Interval
graphs are therefore intersection graphs of geometrical objects.

• A chordal graph is the intersection graph of a set of subtrees of a tree.

• Every graph G is an intersection graph (e.g. of ¶Sv ♣ v ∈ V (G)♢ where Sv is
the union of ¶v♢ and the set of all edges containing the vertex v).

• Every graph G is even an intersection graph of geometrical objects (this can
be seen by applying the same idea as above to an embedding of G in R3, or
see [Tie05]).

For more examples see Chapter 9 of [GYZ13].

S-graphs

The class of S-graphs is a class of intersection graphs of geometrical objects. For
this section, Ąx d ∈ N and let S be a subset of Rd. Let us introduce some notations.

In this dissertation, we deal with the following type of transformations of Rd:
transformations T : Rd → Rd of the form

T (x1, . . . , xd) = (a1x1 + b1, . . . , adxd + bd)

where ai ∈ R∗ = R \ ¶0♢ and bi ∈ R. In other words T = (T1, . . . , Td) where each Ti

is an affine function from R to itself.
For a set S, we call every set of the form T (S), where T is a transformation, a

transformed copy of S. So a transformed copy of S is a set obtained from a translation
of S and independent scalings parallel to the axis.

Definition 2.13. Let S ⊆ Rd be a set. Let G be the intersection graph of a family
F of sets. We say that G is an S-graph if every element of F is a transformed copy
of S.
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For example, interval graphs can be deĄned as S-graphs where S is a non-empty
interval in R. Another example is the class of frame graphs, that is, the class of
S-graphs for S being the boundary of an axis-parallel rectangle in R2 with non-empty
interior.

χ-boundedness and intersection graphs

χ-boundedness of different families of intersection graphs has been studied
numerously. We give examples that are relevant to the topic of this thesis.

It is well-known that the class of interval graphs is χ-bounded (since it is a
subclass of perfect graphs Ű see [Tro13]). In [AG60], Asplund and Grünbaum
generalized this result to R2: the class of intersection graphs of axis-parallel rectangles
in R2 is χ-bounded (see Theorem 2.16 below).

Starting from the third dimension, however, the situation changes. In 1965,
in [Bur65], Burling proved that the intersection graphs of axis-parallel boxes
(cuboids) in Rn is not χ-bounded when n ≥ 3. The core of his proof was to deĄne
a sequence of triangle-free graphs with arbitrarily large chromatic number, known
as the Burling sequence, as the intersection graphs of axis-parallel boxes in R3. We
describe BurlingŠs work in detail in Chapter 3.

In 1970s, Erdős asked the following question:

Question 2.14 (Erdős). Is the class of intersection graphs of line segments in R2 a
χ-bounded class?

In 2012, Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, and Walczak [PKK+14]
proved that the class of line segment graphs contains all graphs of the Burling
sequence and thus is not χ-bounded.

Later, the same authors generalized this result to any other set S ⊆ R2 that has
some reasonable constraints.

Theorem 2.15 (Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, and Walczak ,
2013). For every compact and path connected set S different from an axis-parallel
rectangle, the class of S-graphs contains the Burling sequence and therefore is not
χ-bounded.

It is worth noting that if S is an axis-parallel rectangle, then by the following
theorem from [AG60], the class of S-graphs is not χ-bounded, which along with
Theorem 2.15, completes the study of χ-boundedness of S-graphs for compact and
path-connected subsets of R2.

Theorem 2.16 (Asplund and Grünbaum, 1960). The class of intersection graphs of
axis-parallel rectangles in R2 is χ-bounded by the χ-binding function f(k) = 4k2 −3k.
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Disproof of Scott’s conjecture

Let us Ąnish this chapter by explaining how the answer of [PKK+14] to
Question 2.14 leads to a disproof of ScottŠs conjecture.

Let us start by the following folklore theorem. We could not Ąnd the Ąrst mention
of it, so we add a sketch of proof in Appendix C for the sake of completeness. A
graph obtained from G by subdividing every edge at least once is said to be a
(≥1)-subdivision of G.

Theorem 2.17. If G is a (≥1)-subdivision of a non-planar graph H, then G is not
a line-segment graph.

Therefore for every graph G that is a (≥1)-subdivision of a non-planar graph,
the class of G∗-free graphs contains line segment graphs and thus is not χ-bounded
by Theorem 2.15. So, every (≥1)-subdivision of a non-planar graph is a non-weakly
pervasive graph, i.e. a counterexample to ScottŠs conjecture.

Burling graphs as intersection graphs

It is noteworthy that not all S-graphs are Burling graphs. In Section 4.4,
by setting some conditions on the interactions of the sets, we deĄne the class of
constrained S-graphs, the (proper) subclass of S-graphs equal to the class of Burling
graphs.

Moreover, we remark that Burling graphs are not the only reason for a class
of intersection graphs of geometric objects to have unbounded chromatic number.
We prove in Appendix B that there exist classes of intersection graphs of geometric
objects that are not χ-bounded and yet they do not contain Burling graphs.

2.4 Notation

We have already introduced some notation used in this dissertation throughout
the current chapter. In this last section, we present other general notations that we
need. It is important to make our terminology and notation clear since we often
work simultaneously with different objects (e.g. trees and graphs derived from them,
oriented graphs and graphs, etc.) and it is important to make the distinction using
different terminologies.

Graphs and oriented graphs

The notation for graphs and oriented graphs are the standard deĄnitions in graph
theory. For any graph theoretical notion not deĄned here, we refer to [BM08].
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Let G be a graph and v ∈ V (G). The set of neighbors of v, denoted by N(v) is
the set ¶u ∈ V (G) ♣ vu ∈ E(G)♢. The closed neighborhood of v, denoted by N [v], is
the set N(v) ∪ ¶v♢. The degree of v, denoted by d(v) is the number of neighbors of
v. An isolated vertex is a vertex v such that N(v) = ∅.

A path (resp. a cycle) in G is a subgraph of G isomorphic to a path Pn (resp. a
cycle Cn), as deĄned in Section 2.1, for some n ∈ N. The length of a path or a cycle
is its number of edges (so, a vertex forms a path of length zero). A hole in G is an
induced cycle. We say that a path P joins vertices v and u or that it is a path from
u to v if v and u are the vertices of P that are not of degree 2 (notice that v and u
are not necessarily distinct).

We say that a graph G is connected if for every u, v ∈ V (G) there exist a path
joining u and v. A connected component of a graph is any of its inclusion-wise
maximal connected induced subgraph.

Let G be an oriented graph and let v ∈ V (G). An in-neighbor (resp. out-neighbor)
of v is any vertex u ∈ V (G) such that uv ∈ A(G) (resp. vu ∈ A(G)). The in-degree
and out-degree of v is the number of its in-neighbors and out-neighbors respectively.
The set of all in-neighbors and all out-neighbors of V are denoted respectively by
N−(v) and N+(V ). A source (resp. sink) is a vertex v ∈ V (G) such that N−(v) = ∅
(resp. N+(v) = ∅).

Terms from the non-oriented realm, such as degree, neighbor, isolated vertex,
connected component, and path, when applied to an oriented graph, implicitly apply
to its underlying graph.

Star cutsets

A full in-star cutset in an oriented graph G is a set S = N−[v] for some vertex
v ∈ V (G) such that G \ S is disconnected.

A full star cutset in a graph or oriented graph G is a set S = N [v] for some vertex
v ∈ V (G) such that G \ S is disconnected.

A star cutset in a graph or oriented graph G is a set S such that for some vertex
v ∈ V (G), we have ¶v♢ ⊆ S ⊆ N [v], and G \ S is disconnected.

In all cases above, we say that the star cutset S is centered at v (thus a star
cutset might have more than one center).

We say that in graph G, the star cutset S separates two vertices u and v if u and
v are in two distinct connected components of G \ S.

Trees and rooted trees

A tree is a graph T such that for every pair of vertices u, v ∈ V (T ), there exists
a unique path from u to v. Equivalently, a tree is a connected graph that contains
no cycles. A leaf of a tree is any vertex of degree at most 1. Every tree has at least
one leaf. We denote by L(T ) the set of all leaves of T .
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A rooted tree is a pair (T, r) such that T is a tree and r ∈ V (T ). The vertex r is
called the root of (T, r). When r is clear from the context, we often refer to (T, r)
as T . In a rooted tree, each vertex v except the root has a unique parent which is
the neighbor of v in the unique path from the root to v. We denote the parent of v
by p(v). If u is the parent of v, then v is a child of u. A leaf of a rooted tree is a
vertex that has no children. Notice that with this deĄnition, the leaves of (T, r) are
not equal to the leaves of T . For instance, if d(r) = 1, then it is not a leaf of (T, r),
but it is a leaf of the underlying tree T .

A branch in a rooted tree is a path v1v2 . . . vk such that for each i ∈ ¶1, . . . , k−1♢,
the vertex vi is the parent of vi+1. We say that this branch starts at v1 and ends at
vk. A branch that starts at the root and Ąnishes at a leaf is a principal branch.

Let (T, r) be a rooted tree. The descendants of a vertex v are all the vertices that
are on a branch starting at v. The ancestors of v are the vertices on the unique path
from v to the root of T . Notice that a vertex is a descendant and an ancestor of
itself. Any descendant of a vertex v, other than itself, is called a proper descendant
of v.

An in-tree is any oriented graph obtained from a rooted tree (T, r) by orienting
every edge towards the root. Formally, e = uv is oriented from u to v if and only if
v is on the unique path of T from u to r. A leaf in an in-tree is a vertex with no
in-neighbors (so the root is not a leaf unless the in-tree has only one vertex). Notice
that in an in-tree, every vertex but the unique sink has a unique out-neighbor. An
in-forest is an oriented forest whose connected components are in-trees.

To avoid any confusion, when working with rooted trees, we avoid using terms
such as neighbors and adjacent and use parent, child, descendant, and ancestor only.

Binary relations

Let S be a set, and let R be a binary relation on S, that is, R ⊆ S × S. We write
x R y for (x, y) ∈ R, and x��R y for (x, y) /∈ R. For an element s ∈ S, we denote by
[s R] the set ¶t ∈ S : s R t♢.

The relation R is asymmetric if for all x, y ∈ S, x R y implies y��R x, and it is
transitive if for all x, y, z ∈ S, x R y and y R z implies x R z. The relation R is a
strict partial order if it is asymmetric and transitive.

A directed cycle in R is a set of elements x1, x2, . . . , xn, with n ∈ N, such that
x1 R x2, x2 R x3, . . . , xn R x1. Note that when we deal with relations, we allow cycles
on one or two elements. So, strict partial orders do not have directed cycles. In
fact, a relation R has no directed cycles if and only if its transitive closure is a strict
partial order.

An element s ∈ S is said to be a minimal element with respect to R if there
exists no element t ∈ S \ ¶s♢ such that t R s. Notice that if a relation R on a Ąnite
set S has no directed cycle, then S has a minimal element with respect to R.

19



Chapter 2. Main topics and notation

Subsets of Rn and their transformations

We refer to [Mun00] for any topological notion not deĄned in the thesis. We
introduce the notions for Rn even though they are mostly deĄned for general
topological spaces.

We always consider Rn with its usual topology. As explained in Section 2.3, in
this dissertation, we only consider transformations of Rn whose projection on each
axis is an affine function.

For a set S in Rd, we denote the interior and the closure of S respectively by S◦

and S̄. Moreover, we denote the boundary of S by ∂S, i.e. ∂S = S̄ \ S◦. We denote
the ball of radius r and center c in Rd by D(c, r). For a function f , we denote its
image by im(f), and its restriction to a set A in its domain by f ♣A. We denote the
projection on the i-th axis in Rn by ρi.

A path in Rn is a continuous function γ : I → Rn where I is a closed interval in
R. We say that the path γ : [0, 1] → Rn joins the two points γ(0) and γ(1). Two
paths γ1 : [0, 1] → and γ2 : [0, 1] → Rn are said to be internally disjoint if

γ1([0, 1]) ∩ γ2([0, 1]) ⊆ ¶γ1(0), γ1(1)♢ ∩ ¶γ2(0), γ2(1)♢.

A set S ⊆ Rn is path-connected if for every x, y ∈ S, there exists a path γ joining
x and y with im(γ) ⊆ S. We say that a set S is compact if every covering of S with
open subsets of Rn has a Ąnite subcovering. In our case, equivalently, S is compact
if it is closed and bounded.

A subset S of R2 is said to be a Pouna set if it is path-connected and compact,
and is not an axis-parallel rectangle.

A box in Rd, is a set of the form B =
∏d

i=1 Ii, where Ii is a closed interval (thus
possibly empty) in R. So, boxes in R are intervals, in R2 are axis-parallel rectangles,
and in R3 are axis-parallel cuboids. A frame is the boundary of a box with non-empty
interior in R2.

Now let us focus on R2. Let S be a bounded subset of R2. We deĄne the following
notions on S:

l(S) = inf¶x : ∃y (x, y) ∈ S♢,

r(S) = sup¶x : ∃y (x, y) ∈ S♢,

b(S) = inf¶y : ∃x (x, y) ∈ S♢,

t(S) = sup¶y : ∃x (x, y) ∈ S♢.

The letters l, r, b, and t stand for left, right, bottom, and top, respectively. If S is a
compact set in R2, then all the values above are Ąnite and also, we can replace inf
and sup by min and max respectively. In this case, we also deĄne w(S) = r(S)− l(S)
and h(S) = t(S)−b(S). The letters w and h stand for width and height respectively.
Notice that if S ′ ⊆ S, we have l(S ′) ≥ l(S), r(S ′) ≤ r(S), b(S ′) ≥ b(S), and
t(S ′) ≤ t(S).
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2.4. Notation

The bounding box of a bounded set S ⊆ R2, denoted by box(S), is the
(inclusion-wise) smallest closed rectangle in R2 containing S. Equivalently,

box(S) = [l(S), r(S)] × [b(S), t(S)].

So, l(box(S)) = l(S), r(box(S)) = r(S), etc. If F is a family of bounded subsets
of R2 and T is a transformation (of the form mentioned earlier), we use the
unconventional notation T (F) for the family ¶T (S) : S ∈ F♢. It is easy to see
that box(T (F)) = T (box(F)).

With the mentioned constraint on transformations of Rn, any transformation
T : R2 → R2 of R2 that we deal with is of the form

T (x, y) = (ax + c, by + d),

for some a, b ∈ R∗ = R\¶0♢ and c, d ∈ R. We say that T is a positive transformation
if a > 0 and b > 0. It is easy to see that positive transformations with composition
form a group. In particular:

• the composition of two positive transformations is a positive transformation,

• every positive transformation has an inverse.

Several times, we use the fact that if T : (x, y) 7→ (ax + c, by + d) is a positive
transformation and S is a Pouna set, then setting S ′ = T (S), we have:

l(S ′) = a.l(S) + c, r(S ′) = a.r(S) + c, b(S ′) = b.b(S) + d, and t(S ′) = b.t(S) + d.

In particular, box(T (S)) = T (box(S)).
We say that S ′ is a positive transformed copy of S if S ′ = T (S) for some

positive transformation T . The horizontal reflection of S is T (S) where T is the
transformation that maps (x, y) to (−x, y).
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Chapter 3

A brief history of Burling graphs
and their applications

In this chapter, we explain brieĆy the history of Burling graphs and some of
their applications from 1965 until today. For coherence, the order of sections is not
chronological. See Figure 3.1 for a visualization of the content of this chapter in
chronological order.

The discovery and χ-boundedness of intersection graphs of
polytopes, 1965

In 1965, Burling introduced Burling graphs in his Ph.D. thesis [Bur65]. The
language of his thesis is mostly geometrical, even though he mentions the graph
theoretical view of his work (See 1.2 in [Bur65]).

Let us describe the study in [Bur65] more precisely. Let n, m, k ∈ N with m ≥ k.
A Ąnite family F of sets is of type (n, m, k) if

• the elements of F are convex polytopes in Rn,

• there are m Ąxed vectors in Rn such that for each polytope P ∈ F , there are
at most k vectors v1, . . . , vk among these m vectors such that each edge of P
is parallel to one of the viŠs.

The question under study in [Bur65] is the following. Consider the set
S(n, m, k, r) of all Ąnite families of type (n, m, k) such that the number of two-by-two
intersecting polytopes in every family in S(n, m, k, r) is at most r. Is there a constant
c ∈ N such that for every F ∈ S(n, m, k, r), one can partition F into at most c sets
each containing mutually disjoint polytopes?

One can rephrase the question above and the theorems of Burling into the
following setting. Let C(n, m, k) be the class of intersection graphs of type (n, m, k)
families. Is C(n, m, k) a χ-bounded class of graphs? However, the notion of
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1965
First deĄnition as box-graphs

[Bur65]

Study of chromatic number of
intersection graphs of polytopes [Bur65]

2011
Disproving nice labeling conjecture
for event structures [Che12]

2012
DeĄnition as line segment graphs

[PKK+14]
Disproving ScottŠs conjecture [PKK+14]

Answer to ErdősŠ question [PKK+14]

2013DeĄnition as S-graphs [PKK+13]

2014
Study of chromatic number of
frame graphs [KPW14]

2016
Studied as restricted frame graphs

[CELOdM16]

More examples of graphs that are
not weakly pervasive [CELOdM16]

2018
Answer to question about orthogonal
tree-decomposition [FJM+18]

2020-21 Chromatic number of
wheel-free graphs [Dav21, Pou20]

More graphs that are not
weakly pervasive [PT21b]

A decomposition theorem [PT21a]

DeĄnition as derived graphs,
abstract Burling graphs,

and strict box graphs [PT23]

2022-23
DeĄnition as constrained S-graphs

[Pou22]

Figure 3.1: History of Burling graphs and their applications.
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Chapter 3. A brief history of Burling graphs and their applications

Figure 3.2: Figure from [Bur65]. The Ąrst three families in the sequence deĄned by
Burling.

χ-boundedness was not introduced until more than two decades after the Ph.D.
of Burling (by Gyárfás in [Gyá85]). Burling proved the following (see Theorems 9,
10, and 11 of [Bur65]).

Theorem 3.1 (Burling 1965). With the notation above, we have:

• C(2, m, k) is χ-bounded by χ-binding function f(ω) =


m

k



4kω(2k

3 )+1, for every
m, k ∈ N with m ≥ k,

• C(n, m, k) is not χ-bounded for every n ≥ 3 and k ≥ 3.

To prove the second item in the theorem above, Burling Ąrst reduced the problem
to the case C(3, 3, 3), i.e. without loss of generality, the intersection graphs of
axis-parallel boxes in R3. Then, he showed that there is a sequence ¶Fk♢k∈N of
axis-parallel boxes in R3 (thus, of type (3, 3, 3)) such that:

• no three polytopes are mutually intersecting (i.e. the intersection graph is
triangle-free),

• the chromatic number of the intersection graph of Fk is at least k.

See Figure 3.2.
Let us present the graph theoretical rephrasing of BurlingŠs work.
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Figure 3.3: The Ąrst three graphs in the Burling sequence.

Definition 3.2 (due to [Bur65]). We define, inductively, a pair (Gk, Sk) of a graph
Gk and a set of its stable sets Sk. For k = 1, define G1 to be the complete graph
on 1 vertex, and set S1 = ¶V (G1)♢. Assume that (Gk, Sk) is defined. Let us define
(Gk+1, Sk+1).

For each S ∈ Sk, consider a copy (GS
k , SS

k ) of (Gk, Sk). Also, consider ♣Sk♣ new
vertices vS,Q corresponding to each Q in each SS

k .

First, define

V (Gk+1) = V (Gk) ⊔
⊔

S∈Sk



V (GS
k ) ⊔ ¶vS,Q ♣ Q ∈ SS

k ♢


,

and

E(Gk+1) = E(Gk) ⊔
⊔

S∈Sk

E(GS
k ) ⊔

⊔

S∈Sk

⊔

Q∈SS

k

¶qvS,Q ♣ q ∈ Q♢.

Informally, in each copy (GS
k , SS

k ) of (Gk, Sk), for each stable set Q ∈ SS
k , we add a

vertex vS,Q and join it to all of the vertices in Q and define Gk+1 to be the disjoint
union of these new graphs and the first copy of (GS

k , SS
k ).

Second, define:

Sk+1 = ¶S ∪ Q, S ∪ ¶vS,Q♢ ♣ S ∈ Sk, Q ∈ SS
k ♢.

The pair (Gk+1, Sk+1) is the new pair.

The sequence ¶(Gk, Sk)♢k∈N∗ is called the Burling sequence.

When there is no risk of confusion, we call the sequence ¶Gk♢k∈N∗ , the Burling
sequence as well. Figure 3.3 shows the Ąrst three graphs in the Burling sequence.

The class of Burling graphs is the hereditary class generated by the graphs in this
sequence, i.e. the class of all induced subgraphs of GkŠs.
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Chapter 3. A brief history of Burling graphs and their applications

Burling graphs: definitions and structure, 2021

It will become clear throughout this chapter that understanding the structure
of Burling graphs plays a crucial role in providing applications of them in graph
theory. So, in 2021, as a start of a study on Burling graphs, Nicolas Trotignon and
the author provided several equivalent deĄnitions for Burling graphs, in [PT23] and
later in [Pou22]. We introduce all these deĄnitions in Chapter 4 and prove that they
are equivalent in Chapter 5. Here, we only present a list of them.

• Derived graphs: a class of graphs deĄned completely combinatorially from a
tree structure.

• Abstract Burling graphs: a class of graphs deĄned axiomatically from a poset
S and a relation ↷ on it which satisĄes a set of 4 axioms.

• Some geometric deĄnitions (constrained graphs, strict graphs): classes of graphs
that are deĄned as intersection graphs of geometrical objects.

An important point is that all these deĄnitions give us classes of oriented graphs.
Of course, by taking the underlying graphs we can go back to the classical setting of
Burling graphs as non-oriented graphs. But it appears that the information encoded
in the orientation is crucial in the study of the structure of Burling graphs (see
Chapter 7).

Burling graphs as intersection graphs and the question of
Erdős, 2012-2023

Burling graphs were not only deĄned as intersection graphs of boxes, but also
appeared to be closely related to intersection graphs of many other objects. Let
us describe this connection in this section. We have partially explained this in
Section 2.3.

As explained in Section 2.3, Erdős asked in 1970s whether the triangle-free
intersection graphs of line segments have bounded chromatic number. In 20121,
Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, and Walczak answered the question
of Erdős in [PKK+14] by showing that there is a sequence ¶Gk♢k∈N of triangle-free
intersection graphs of line segments such that χ(Gk) ≥ k (thus the class of line
segment graphs is not χ-bounded). The sequence that they deĄned appeared to be
exactly the same as the Burling sequence, and thus once more, Burling graphs were
the core of a proof about the chromatic number of intersection graphs of geometrical
objects.

Later, Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, and Walczak, generalized
their ideas in [PKK+14] to deĄne a sequence of intersection graphs of S-graphs for
any Pouna set S that is the same as the Burling sequence, thus showing that for any

1The paper is published in 2014, however, the first version on arXiv is from 2012
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Pouna set S the class of S-graphs is not χ-bounded. Among Pouna sets are frames.
In [KPW14] and [CELOdM16], the presentation of Burling graphs as frame graphs
play an important role.

In 2014, Krawczyk, Pawlik, and Walczak [KPW14] prove the following (see
Theorems 1 and 2 of [KPW14]).

Theorem 3.3 (Krawczyk, Pawlik, and Walczak, 2014). For every n ∈ N∗,
an intersection graph of n frames has a proper coloring with O(log log n) colors.
Moreover, this bound is best possible, i.e. there is a sequence ¶Gk♢k∈N∗ of intersection
graphs of frames with increasing number of vertices such that the chromatic number
of Gk is Θ(log log ♣V (Gk)♣).

To show the optimality of the bound, Krawczyk, Pawlik, and Walczak used the
presentation of Burling graphs as frame graphs and used the fact that the chromatic
number of the k-th graph Gk in the Burling sequence is k which is Θ(log log ♣V (Gk)♣).

In 2016, Chalopin, Esperet, Li, and Ossona de Mendez [CELOdM16] study
the structure of restricted frame graphs, a subclass of frame graphs introduced
in [KPW14]. Let us present the deĄnition of restricted frame graphs as is
in [CELOdM16].

Definition 3.4 (DeĄnition 2.2 of [CELOdM16]). A graph G is a restricted frame
graph if it is the intersection graph of a family of frames with the following
restrictions:

1. corners of a frame do not coincide with any point of another frame,

2. the left side of any frame does not intersect any other frame,

3. if the right side of a frame intersects a second frame, this right side intersects
both the top and bottom of this second frame,

4. if two frames have non-empty intersection, then no frame is (entirely) contained
in the intersection of the regions bounded by the two frames.

Chalopin, Esperet, Li, and Ossona de Mendez also provided a decomposition
theorem for triangle-free restricted frame graphs: a triangle-free restricted frame
graph either has a star cutset or belongs to a ŞsimpleŤ class of graphs. A luxury
chandelier is any graph G that can be obtained as follows: start with tree T with
the property that the unique neighbor of each leaf has degree 2, and then add a new
vertex v and add an edge between v and every leaf of T to obtain G.

Theorem 3.5 (Chalopin, Esperet, Li, and Ossona de Mendez, 2016). Suppose that H
is a connected triangle-free graph with no full star-cutset and G is a subdivision of H.
Then G is a restricted frame graph if and only if H is either a path on at most 4
vertices or a luxury chandelier.
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Chapter 3. A brief history of Burling graphs and their applications

As a result of their theorem, the authors of [CELOdM16] showed that triangle-free
restricted frame graphs are indeed a strict subclass of triangle-free frame graphs: they
form a proper subclass of triangle-free intersection graphs with unbounded chromatic
number.

This discussion raises the following question: can we Ąnd a strict subclass of
restricted frame graphs that is exactly the class of Burling graphs? The answer
is positive, in [PT23], Nicolas Trotignon and the author deĄned the class of strict
frame graphs by adding an extra restriction to the class of restricted frame graphs
and proved that they are exactly the class of Burling graphs. This deĄnition is
given in Section 4.3. To follow the historical deĄnitions of Burling graphs, we also
gave a similar deĄnition for the classes of strict line segment graphs, a subclass of
triangle-free line segment graphs, and strict box graphs, a subclass of box graphs,
that are both equal to the class of Burling graphs. The latter deĄnition is given in
Chapter 6.

In [Pou22], we generalized the ideas above to deĄne the class of constrained
S-graphs, the strict subclass of S-graphs that is equal to the class of Burling graphs,
for every set S by setting a set of restrictions on the transformed copies of S. This
deĄnition is given in Section 4.4.

Burling graphs and Scott’s conjecture

As explained in Section 2.3, the presentation of Burling graphs as line segment
graphs provided the Ąrst counterexample to ScottŠs conjecture (Conjecture 2.3).
Remember that weakly pervasive graphs are graphs for which ScottŠs conjecture
holds.

Remember that a graph obtained from G by subdividing every edge at least once
is said to be a (≥1)-subdivision of G.

Theorem 3.6 (Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, and Walczak,
2012). If G is a ≥1-subdivision of a non-planar graph, then it is not a weakly pervasive
graph.

Burling graphs were also used later to Ąnd more examples of graphs that are not
weakly pervasive.

The studies in [CELOdM16] on restricted frame graphs led to the Ąnding of new
graphs that are not weakly pervasive.

Theorem 3.7 (Chalopin, Esperet, Li, and Ossona de Mendez, 2016). Let H be a
connected triangle-free graph with no full star cutset which is neither a path on at
most 4 vertices, nor a luxury chandelier. Then H is not a weakly pervasive graph.
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We remark that some of the graphs that the theorem above provides as examples
of graphs that are not weakly pervasive are line segment graphs, thus this theorem
improves Theorem 3.6. The theorem above is indeed an immediate corollary of
Theorem 3.5 which follows from the careful study of restricted frame graphs without
star cutsets.

In [PT21b], Nicolas Trotignon and the author followed the path of using Burling
graphs to provide more examples of graphs that are not weakly pervasive. Our study,
however, instead of focusing on the study of structural properties of intersection
graphs, was based on the study of the oriented derived graphs (whose underlying
graphs are Burling graphs). As a result, we could provide some new examples of
graphs that are not weakly pervasive. Some terms in the following theorem are not
deĄned so far and will be deĄned later (see Section 8.3).

Theorem 3.8 (PournajaĄ, Trotignon, 2021). The following graphs are not weakly
pervasive:

• The complete graph Kn for n ≥ 5 and any of its subdivisions.

• Necklaces with 2 disjoint beads, three long beads, or more than 3 beads.

• Dumbbells of any two graphs with global subordinate vertices.

• Graphs in Figures 8.14, 8.15, and 8.16.

Some graphs that are provided in the theorem above as graphs that are not weakly
pervasive are restricted frame graphs, and therefore this theorem also improves the
previous results.

Other applications to χ-boundedness, 2016-2022

Chromatic number of wheel-free graphs

A wheel is a graph made of hole H called the rim together with a vertex c
called the center that has at least three neighbors in H. The class of wheel-free
graphs is the class of graphs that contain no wheel as an induced subgraph. In 2013,
Trotignon [Tro13] asked whether wheel-free graphs are χ-bounded (see Question
5.1 in [Tro13]). In 2020, Scott and Seymour [SS20] made a related conjecture (see
Conjectrue 12.16 in [SS20]).

In 2020, Nicolas Trotignon and the author [Pou20, PT21a] proved that Burling
graphs contain no wheels, which answers negatively to the question in [Tro13] and
disproves the conjecture in [Sco97]. We explain this in more details in Chapter 10,
Davies [Dav21] also, independently, proved the same result with a different technique,
in 2021.
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Chapter 3. A brief history of Burling graphs and their applications

Star cutsets and chromatic number

In [CPST13], the following question is asked (see Question 3 in [CPST13]).

Question 3.9 (Chudnovsky, Penev, Scott, Trotignon, 2013). Is there a constant
c such that if a graph G is triangle-free and all induced subgraphs of G either are
3-colorable or have a star cutset, then G is c-colorable?

Burling graphs also answers negatively to Question 3.9: by Theorem 3.5, luxury
chandelier are 3-colorable and Burling graphs are triangle-free graphs of unbounded
chromatic number.

k-tree-width, 2018

Let G be a graph. A tree-decomposition (resp. path-decomposition) of G is a tuple
(T, β) where T is a tree (resp. a path) and β = ¶βt : t ∈ V (T )♢ is a set of subsets of
V (G) such that:

1. for every uv ∈ E(G), there exist a t ∈ V (T ) such that u, v ∈ βt,

2. for every v ∈ V (G), the set ¶t ∈ V (T ) : v ∈ βt♢ ⊆ V (T ) induces a connected
subgraph of T .

Let G be a graph and let k ∈ N∗ be a positive integer. Let (T 1, β1), (T 2, β2),
. . . , (T k, βk) be k tree-decompositions of G. The k-width of these decompositions is
deĄned as follows:

k-width((T 1, β1), . . . , (T k, βk)) = max
(t1,...,tk)∈V (T 1)×...V (T k)

♣β1
t1

∩ · · · ∩ βk
tk

♣.

The k-tree-width (resp. k-path-width) of a graph G, denoted by k-tw (resp.
k-pw) is the minimum k-width of a k-tuple of its tree-decompositions (resp. path
decompositions).

Setting k = 1, one Ąnds back the well-known notion of tree-width and path-width
in graphs.

It is known that for every graph G, the chromatic number of G is at most the
2-path-width of G (see [DJM+18]). Based on this observation, Dujmović, Joret,
Morin, Norin, and Wood [DJM+18] ask the following question (Open problem
3 in [DJM+18]): is there a function f such that for every graph G, we have
χ(G) ≤ f(2-tw(G))?

In 2018, Felsner, Joret, Micek, Trotter, and Wiechert [FJM+18] answer negatively
to the question above by showing that the graphs in the Burling sequence have
bounded 2-tree-width (see Theorem 2 of [FJM+18]).
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Nice labeling for event structures, 2011

An event structure is a triple (E , ≤E , #) where

• E is a set (whose elements are called events),

• ≤E is a partial order on E (called the casual dependency),

• # is an irreĆexive and symmetric relation (called the conflict),

such that

• for every e ∈ E , the set ¶e′ ∈ E ♣ e′ ≤E e♢ is Ąnite,

• for every e1, e2, e3 ∈ E , if e1 ≤E e2 and e1#e3, then e2#e3.

From now on, let us phrase everything in the language of graph theory. One can
deĄne a graph H = H(E , ≤E , #) from the event structure as follows: V (H) = E , and
ee′ ∈ E(H) if and only if at least one of the following happens:

• neither e ≤E e′, nor e′ ≤E e, nor e#e′,

• e#e′ and for every e′′ /∈ ¶e, e′♢ if e′′ ≤E e, then we do not have e′′#e′ and if
e′′ ≤E e′, then we do not have e′′#e.

The nice labeling conjecture for event structures can then be stated as follows.

Conjecture 3.10 (Rozoy and Thiagarajan, 1991). The class of graphs defined as
above from event structures is χ-bounded.

In [Che12], Chepoi disproved this conjecture using Burling graphs.
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Part II

Characterizations of Burling
graphs
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Chapter 4

Definitions of Burling graphs and
examples

4.1 Burling sequence and Burling graphs . . . . . . . . . . . 34

4.2 Derived graphs . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Abstract Burling graphs . . . . . . . . . . . . . . . . . . . 39

4.4 Constrained graphs and constrained S-graphs . . . . . . 42

4.5 About definitions . . . . . . . . . . . . . . . . . . . . . . . 47

In this chapter, we introduce several equivalent deĄnitions for the class of Burling
graphs. We postpone the proof of their equivalence to Chapter 5 and only describe
a few proof ideas in this chapter. Some of these deĄnitions complete historical works
on Burling graphs, and some have applications in the next chapters. We brieĆy
discuss the differences and usages of these deĄnitions in each section.

• We start with the classical deĄnition of Burling graphs in the literature in
Section 4.1 which is an inductive deĄnition.

• In Section 4.2, we introduce the deĄnition of derived graphs, a more
combinatorial deĄnition which is the main topic of study in Part 3.

• We then describe abstract Burling graphs that have a more axiomatic deĄnition
in Section 4.3.

• Lastly, in Section 4.4, we introduce the more geometric deĄnitions: constrained
graphs and constrained S-graphs.

A point that is worth mentioning is that we are working with different
mathematical objects in different sections of this chapter: Section 4.2 deals with
rooted trees with two functions deĄned on their vertex sets, Section 4.3 deals with
posets with an extra binary relation deĄned on them that satisfy some axioms, and
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Chapter 4. DeĄnitions of Burling graphs and examples

Section 4.4 deals with families of subsets of R2 with restrictions on their interactions.
We could, of course, only study the properties of these mathematical objects as they
are, and deĄne structure preserving morphisms between those objects. However, we
Ąnd it convenient to deĄne a class of graphs using those objects (and then prove
that these classes are all equal to each other and to the class of Burling graphs),
and regard the graphs as the common point to all these words. We, however, later
use speciĄc properties of these mathematical objects to study the properties of the
classes of graphs deĄned from them.

Before presenting the deĄnition, we need to point out that each deĄnition has
two versions: oriented and non-oriented. Indeed, in each section, we deĄne a class C
of oriented graphs and the non-oriented version is the class of all underlying graphs
of graphs in C. This, however, does not create much of complication, as in Chapter 5
we will show that the classes deĄned in this chapter as classes of oriented graphs are
all equal, and thus are their underlying graph classes. Whenever we talk about an
oriented graph, we emphasize that it is oriented. But for non-oriented graphs, we do
not always emphasize.

The content of this chapter is mainly from [PT23] and [Pou22].

4.1 Burling sequence and Burling graphs

In Chapter 3, we gave a Ąrst deĄnition of Burling graphs based on [Bur65]. Here,
we describe an oriented version of DeĄnition 3.2.

Definition 4.1. Let (G, S) be a pair where G is an oriented graph and S is a set
of stables sets of G. We define a function SB associating to a pair (G, S) another
pair (G′, S ′) as follows:

1. Make a copy of (G, S).

2. For each stable set S ∈ S, make a new copy of (G, S) and denote it by (GS, SS).

3. For each S ∈ S and Q ∈ SS, add a new vertex vS,Q adjacent to all vertices in
Q. Orient the arcs from vS,Q to Q.

4. Denote by G′ the graph obtained by the union of all graphs in the previous steps,
i.e.

V (G′) = V (G) ⊔
⊔

S∈S
(V (GS) ∪Q∈SS

¶vS,Q♢),

and

A(G′) = A(G) ⊔
⊔

S∈S
(A(GS) ∪Q∈SS

∪q∈Q¶vS,Qq♢).

5. Define

S ′ = ¶S ∪ Q, S ∪ ¶vS,Q♢ : S ∈ S, Q ∈ SS♢.
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4.1. Burling sequence and Burling graphs

The pair (G′, S ′) is defined to be SB(G, S).

Definition 4.2. The Burling sequence is a sequence ¶Gk♢k∈N∗ where:

• G1 = K1 and S1 = ¶V (G1)♢,

• for every n ∈ N∗, we have (Gk+1, Sk+1) = SB(Gk, Sk).

An oriented Burling graph is any induced subgraph of a graph in the Burling sequence.
A non-oriented Burling graph is any underlying graph of an oriented Burling graph.

It is worth noticing that every (oriented or non-oriented) Burling graph G inherits
a set of stable sets, that is the set ¶S∩V (G) : S ∈ Sk♢ where G is an induced subgraph
of Gk, the k-th graph in the Burling sequence.

A breach in time. The small change of adding an orientation to the definition of
Burling graphs, based on the order of addition, plays an important role in the study
of their structure. This will become clear in Chapter 7. To give a sense of how this
will be useful, let us describe an example of such structural results: in an oriented
Burling graph, a hole has two sources and two sinks and the sources have a common
neighbor (see Corollary 7.31).

In Figure 4.1, the Ąrst three graphs in the Burling sequence are represented. The
edges of the graphs are represented as solid black and the dashed curves represent
the stable sets. By deĄnition, the graph C5 is a Burling graph, because it is an
induced subgraph of the third graph in the Burling sequence. One can see that C6

and K3,3 are also Burling graphs since they are induced subgraphs of the fourth and
the sixth graphs in the Burling sequence respectively. Notice that neither of C5, C6,
or K3,3 is an element of the Burling sequence.

From the construction, it follows by induction on k, that Gk, the k-th graph in
the Burling sequence, is triangle-free. Therefore, all Burling graphs are triangle-free.
The next theorem shows that they also have arbitrarily large chromatic number, and
thus the class of Burling graphs is not χ-bounded.

Theorem 4.3 ([Bur65], Theorem 11). The chromatic number of Gk, the k-th graph
in the Burling sequence, is k.

Proof. Adopting the notations from the deĄnition above, we prove the theorem by
induction on k. For k = 1 the statement obviously holds. Assume that χ(Gk) = k
and consider Gk+1.

First, let us show that Gk+1 is (k + 1)-colorable. Consider a k-coloring of Gk and
apply the same coloring to every copy of Gk is Gk+1. Notice that this is possible
because there is no edge between different copies of Gk in Gk+1. Then, assign a
new color to every vertex of the form vS,Q added in Step 3 of the deĄnition of SB

function. This is also possible because such vertices are mutually non-adjacent. This
gives a (k + 1)-coloring of Gk+1.
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Figure 4.1: The Ąrst three graphs in the Burling sequence, as oriented graphs (on
the top) and non-oriented graphs (on the bottom).

For the inverse inequality, we prove the following stronger statement: In every
coloring of the vertices of Gk, one of the stable sets in the family Sk receives at least
k colors.

Consider a coloring of Gk+1. By the induction hypothesis, in the Ąrst copy of
Gk in Gk+1, there exists a stable set S ∈ Sk which receives at least k colors. Again,
by the induction hypothesis, in GS, the copy of Gk associated to S, there exists a
stable set Q ∈ SS receiving k colors. Now either the k colors of S are the same as
the k colors of Q, in which case vS,Q has a new color, and therefore S ∪¶vS,Q♢ ∈ Sk+1

receives k + 1 different colors, or the colors in S and Q are different, in which case
S ∪ Q ∈ Sk+1 receives k + 1 different colors. This completes the proof.

4.2 Derived graphs

In [PT23], Trotignon and the author deĄne the class of derived graphs. We present
this deĄnition here.

Definition 4.4. A Burling tree is a 4-tuple (T, r, ℓ, c) in which:

1. T is a rooted tree and r is its root,

2. ℓ : V (T ) \ L(T ) → V (T ) is a function associating to each vertex v of T that is
not a leaf, one child ℓ(v) of v, called the last-born of v,
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Figure 4.2: Complete bipartite graphs seen as derived graphs.

3. c : V (T ) → P(V (T )) is a function defined on the vertices of T . If v is
a non-last-born vertex in T other than the root, then c associates to v the
vertex-set of a (possibly empty) branch in T starting at the last-born of p(v).
If v is a last-born or the root of T , then c(v) = ∅. We call c the choose-path
function of T .

By abuse of notation, we may use T to denote the 4-tuple deĄned above.

Definition 4.5. The oriented graph G fully derived from the Burling tree (T, r, ℓ, c)
is the oriented graph whose vertex-set is V (T ) and uv ∈ A(G) if and only if v ∈ c(u).
A non-oriented graph G is fully derived from T if it is the underlying graph of the
oriented graph fully derived from T .

A graph (resp. oriented graph) G is derived from a Burling tree T if it is an
induced subgraph of a graph (resp. oriented graph) fully derived from T . The oriented
or non-oriented graph G is called a derived graph if there exists a Burling tree T
such that G is derived from T .

Notice that the set of all derived graphs (resp. oriented derived graphs) is closed
under induced subgraph and isomorphism, thus it forms a class: the class of derived
graphs (resp. oriented derived graphs).

Convention. In all figures, the tree T is represented with black edges while the arcs
of the oriented graph G are represented in red. The last-born of a vertex of T is
presented as its rightmost child. Moreover, shadow vertices, the vertices of T that
are not in G, are represented in white.

Let us give some examples. In the Burling tree of the graph in the left of
Figure 4.2, we have c(x) = c(y) = ¶z, w♢. It shows that at least one orientation
of C4 is a derived graph. So, C4, as a non-oriented graph, is a derived graph. The
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v

Figure 4.3: Cycle of length 6 seen as a derived graph

second graph shows that K3,3 is a derived graph, and it is easy to generalize this
construction to Kn,m for all integers n, m ≥ 1. In both graphs, the vertex r of T is a
shadow vertex: it is not a vertex of G. Figure 4.3 is a presentation of an orientation
of C6 as a derived graph. Notice that, in this presentation, v is a shadow vertex.
Generally, it is easy to see that any cycle Ck for k ≥ 4 is a derived graph.

Notice that if a graph G is derived from T , the branches of T , restricted to the
vertices of G, are stable sets of G. In particular, no edge of T is an edge of G.

A breach in time. We will see in Chapter 5 that we can define an appropriate
sequence ¶Tk♢k∈N∗ of Burling trees (called the tree-sequence), such that the graph
fully derived from Tk is the k-th graph in the Burling sequence and the principal
branches of T (the branches from the root to a leaf) form the stable sets in Sk.

Remark 4.6. As mentioned in the introduction of this chapter, all the information
of a derived graph G is encoded already in the Burling tree from which G is derived.
We could indeed not define the derived graphs and only work with Burling trees.
However, it is convenient to deal with graphs as the common object which encodes
all the definitions in this chapter.

Let us now present some basic properties of oriented derived graphs. The rest of
the properties will be postponed to Chapter 7 where we study the structure of these
graphs.

Definition 4.7. Let G be an oriented graph derived from a Burling tree T . A vertex v
in G is a top-left vertex if its distance in T to the root of T is minimum among all
vertices of G, and one of the following holds:

1. v is not a last-born,

2. v is a last-born and every vertex of G whose distance in T to the root is
minimum is also a last-born.
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There might be more than one top-left vertex in a graph. For example, in the
Ąrst graph of Figure 4.2, both vertices x and y are top-left vertices.

Lemma 4.8 ([PT23], Lemma 3.1). Every non-empty oriented graph G derived from
a Burling tree (T, r, ℓ, c) contains at least one top-left vertex and every such vertex is
a source of G. Moreover, the neighborhood of a top-left vertex is a stable set.

Proof. By the deĄnition of top-left vertex, it exists in G. Let v be a top-left vertex of
G. Suppose for the sake of contradiction that uv ∈ A(G) for some vertex u ∈ V (G).
Thus v is a vertex in c(u). Denote by d(x) the distance in T of a vertex x to r.
The fact that v ∈ c(u) means that v is a descendant of a brother of u, and therefore
d(v) ≥ d(u). Since v is a vertex that minimizes the distance to the root, we must
have d(v) = d(u), and in particular p(v) = p(u). Notice that u and v cannot both be
last-born. On the other hand, v is a last-born because u cannot be connected to one
of its non-last-born brothers. This contradicts the deĄnition of a top-left vertex. So
N(v) = N+(v). It follows that N(v) is included in a branch of T , and is therefore a
stable set.

Lemma 4.9 ([PT23], Lemma 3.2). An oriented derived graph has no directed cycles
and its underlying graph has no triangles.

Proof. Adding a source whose neighborhood is a stable set to an oriented graph with
no directed cycle and no triangle does not create a triangle or a directed cycle. Since
every induced subgraph of a derived graph is a derived graph, the statement follows
from Lemma 4.8 by a trivial induction.

4.3 Abstract Burling graphs

Here, we deĄne the class of abstract Burling graphs , Ąrst deĄned in [PT23].

Definition 4.10. A Burling set is a triple (S, ≺,↷) where S is a non-empty set, ≺
is a strict partial order on S, ↷ is a binary relation on S that does not have directed
cycles, and such that the following axioms hold:

(A1) if x ≺ y and x ≺ z, then either y ≺ z or z ≺ y,

(A2) if x ↷ y and x ↷ z, then either y ≺ z or z ≺ y,

(A3) if x ↷ y and x ≺ z, then y ≺ z,

(A4) if x ↷ y and y ≺ z, then either x ↷ z or x ≺ z.

Notice that the tuple (S,↷) is an oriented graph.

Definition 4.11. An oriented graph G is an abstract Burling graph if there exists a
partial order ≺ on V (G) such that (V (G), ≺, A) forms a Burling set. A non-oriented
abstract Burling graph is the underlying graph of an oriented abstract Burling graph.
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Notice that if (S, ≺,↷) is a Burling set and G = (S,↷) is its corresponding
abstract Burling graph, then for every induced subgraph G′ of G is of the form
(S ′,↷) for some S ′ ⊆ S. Moreover S ′ itself forms a Burling set with inherited
relations ≺ and ↷. So, the set of all (oriented or non-oriented) abstract Burling
graphs forms a class of graphs.

Let us give an example of a Burling set. Let (T, r, ℓ, c) be a Burling tree, and set
V = V (T ). For x, y ∈ V , we deĄne x ≺ y if and only if x is a proper descendant of y
in T and x ↷ y if and only if y ∈ c(x). Notice that x ↷ y if and only if there is an
arc from x to y in the oriented graph fully derived from (T, r, ℓ, c).

We show that (V, ≺,↷) forms a Burling set. First, notice that the proper
descendant relation on a rooted tree forms a strict partial order. Second, remember
that by Lemma 4.9, the relation ↷ has no directed cycles. Now we check Axioms
(A1)-(A4). Let x, y, and z be three elements of V :

Axiom (A1): Suppose that x ≺ y and x ≺ z. So both y and z are ancestors of x
in T , so they are on the same branch and hence comparable with respect to ≺.

Axiom (A2): Suppose that x ↷ y and x ↷ z. So y, z ∈ c(x). Thus by deĄnition,
they are on the same branch and are comparable with respect to ≺.

Axiom (A3): Suppose that x ↷ y and x ≺ z. So y ∈ c(x) and thus y is a
descendant of p(x). On the other hand, z is an ancestor of x, so it is an ancestor of
y too, and it is different from y. Hence y ≺ z.

Axiom (A4): Suppose that x ↷ y and y ≺ z. Let l be the last-born of p(x). So y
is a descendant of l, and z is an ancestor of y. Either z is a descendant of l too, in
which case x ↷ z or z is a proper ancestor of l, in which case it is a proper ancestor
of x too, i.e. x ≺ z.

So, in particular, every derived graph is an abstract Burling graph. The converse
is also true as we will show in Chapter 5.

Let us see another example of abstract Burling graphs.
Let A and B be two frames (i.e. borders of axis-parallel rectangles in R2). We

write A ↷ B, and say that the frame A enters the frame B, if A ∩ B has exactly
two elements which are both on the right-side of B, but exactly one of them is on
the top-side of A and one of them is on the bottom-side of A. See Figure 4.4.

A

B

Figure 4.4: A ↷ B, i.e. the frame A enters the frame B.
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Figure 4.5: Left: the forbidden structure in strict frame graph, right: the allowed structure.

Definition 4.12. A family F of frames (i.e. borders of axis-parallel rectangles in
R2) is strict if the following constraints hold:

1. there are no three frames that are mutually intersecting,

2. corners of a frame do not coincide with any point of another frame,

3. if two distinct frames A and B intersect, then either A ↷ B or B ↷ A,

4. if two distinct frames intersect, then no frame is (entirely) contained in the
intersection of the interior of the two frames,

5. for any two frames A and B such that A is entirely inside the interior of B, if
a frame C, different from A and B, intersects both, then C enters both A and
B. See Figure 4.5.

The only possibility for two frames to intersect with these restrictions is shown
in Figure 4.4. In such case, we say that the frame A enters the frame B.

A graph G is called a (non-oriented) strict frame graph if it is the intersection
graph of a family F of frames with the conditions above.

We write A ≺ B if A is a subset of B ◦. One can check that (F , ≺,↷) is a Burling
set and therefore a strict frame graph is an abstract Burling graph.

We do not contain the proof that (F , ≺,↷) is a Burling set here, because the
class of strict frame graphs is a special case of the constrained S-graphs deĄned in
the next section, and we will see the proof of the fact that constrained S-graphs are
Burling graphs in Chapter 5.

We would like to mention that by removing the last condition in the deĄnition,
we reach a strict superclass of strict frame graphs that is known as restricted frame
graphs Ąrst deĄned in [KPW14] and later studied in [CELOdM16].
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4.4 Constrained graphs and constrained S-graphs

4.4.1 Pouna sets and their territories

In this section, we deĄne two classes of intersection graphs for a general family
of sets that we call Pouna sets.

Definition 4.13. A Pouna sets is a compact and path-connected subset of R2

different from an axis-parallel rectangle.

We recall that for a compact set A, the set box(A) is the (inclusion-wise) smallest
closed rectangle in R2 containing A. Equivalently,

box(A) = [l(A), r(A)] × [b(A), t(A)].

Definition 4.14. The territory of a Pouna set S, denoted by ter(S), is defined as
follows:

ter(S) = ¶(x, y) ∈ box(S) \ S : ∃x′ ∈ R s.t. x′ > x and (x′, y) ∈ S♢.

Notice that the territory of a Pouna set is not necessarily a connected set.

Definition 4.15. We say that a Pouna set S is strong if it has a non-empty territory.

In Figure 4.6, some examples of strong Pouna sets and their territories are
represented. In particular, a frame is an example of a strong Pouna set.

Convention. In figures of Pouna sets, we do not always represent the territory as
it is well-defined given the Pouna set. But whenever we represent the territory, we
show the Pouna set in solid colors, and the territory in hatch pattern of the same
color.

Strong Pouna sets give us the possibility of using the properties of the territory
in our deĄnition, and they are not more restrictive than general Pouna sets as
Lemma 4.18 below shows.

We Ąrst need a lemma whose proof can be found in Appendix C.

Lemma 4.16. Let X be a topological space and let A, B ⊆ X. If B is connected,
B ∩ A◦ ̸= ∅, and B ∩ [X \ Ā] ̸= ∅, then B ∩ ∂A ̸= ∅.

Property 4.17. If S a Pouna set, then box(S)◦ \ S ̸= ∅.

Proof. First of all, S is not a subset of an axis-aligned line-segment. So, the closure
of box(S)◦ is equal to box(S). Now, if box(S)◦ \ S = ∅, then box(S)◦ ⊆ S ⊆ box(S),
and since S is closed, we have S = box(S), and S is an axis-aligned rectangle.
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Figure 4.6: Examples of strong Pouna sets and their territories. The Pouna sets are
shown in black and their territories in hatch.

Lemma 4.18. For every Pouna set S, either S or its horizontal reflection is strong.

Proof. Let S ′ = T (S) be the horizontal reĆection of S (thus, T : (x, y) 7→ (−x, y)).
By Property 4.17, we can choose a point p = (x, y) ∈ box(S)◦ \ S. Let L be the

horizontal line passing through p, and set A to be the closed half-plane consisting
of the points on L and under L. Notice that b(S) < y < t(S), so S has a point
on the top-side of box(S), thus outside A = Ā and a point on the bottom-side of
box(S), thus inside A◦. Setting B = S in the statement of Lemma 4.16, we conclude
that S ∩ L ̸= ∅. In other words, there is a point p = (x′, y) ∈ S. If x′ > x, then
p ∈ ter(S), and S is strong. If x′ < x, then −x′ > −x. Notice that (−x′, y) ∈ S ′ and
(−x, y) ∈ box(S ′) \ S ′. So, (−x, y) ∈ ter(S ′), and S ′ is strong.

Let S be a Pouna set. In [PKK+13], Pawlik, Kozik, Krawczyk, Lasoń, Micek,
Trotter, and Walczak rediscover the Burling sequence as S-graphs. However, the class
of S-graphs is a strict superclass of Burling graphs. In this section, we introduce the
class of constrained S-graph that is a subclass of S-graphs which is exactly equal to
the class of Burling graphs. This has been done for S equal a frame or a line segment
in [PT23], and later for any Pouna set in [Pou22]. We also introduce the class of
constrained graphs that is a subclass of intersection graphs of any Pouna sets (the
sets do not need to be transformations of each other).

4.4.2 Constrained graphs

Let A and B be two strong Pouna sets. We write A ≺ B if box(A) ⊆ ter(B).
We also write A ↷ B if A and B are distinct intersecting sets with the following

properties:

• l(B) ≤ l(A) < r(B) < r(A),

• b(B) < b(A) < t(A) < t(B),
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Figure 4.7: The relation A ↷ B. In the Ągures above, A is shown in gray and B in
black.

• ¶(x, y) ∈ A : x = l(A)♢ ⊆ ter(B).

See Figure 4.7 for some examples.
Let F be a non-empty and Ąnite family of strong Pouna sets satisfying the

following constraints:

(C1) for every A, B ∈ F , if A ̸= B and A ∩ B ̸= ∅, then, either A ↷ B or B ↷ A.

(C2) For every A, B ∈ F , if A ∩ B = ∅ and A ∩ ter(B) ̸= ∅, then A ≺ B.

(C3) For every A, B ∈ F , if A ̸= B and A ∩ B ̸= ∅, then there exists no C ∈ F
such that C ⊆ ter(A) ∩ ter(B).

(C4) There exist no A, B, C ∈ F such that A ≺ B, A ↷ C, and B ↷ C.

(C5) The maximum number of pairwise intersecting and distinct elements in F is
at most two.

Let F be a Ąnite family of strong Pouna sets satisfying (C1). We say that G
is the oriented intersection graph of F if V (G) = F and A(G) = ¶AB : A ↷ B♢.
Notice that the underlying graph of G is the intersection graph of F because for
distinct element A, B ∈ F , we have A ∩ B ̸= ∅ if and only if A ↷ B or B ↷ A.

Definition 4.19. An oriented graph (resp. graph) is called an oriented constrained
graph (resp. a constrained graph) if it is isomorphic to the oriented intersection
graph (resp. intersection graph) of a non-empty family of strong Pouna sets satisfying
Constraints (C1)-(C5).

A breach in time. We will see in Chapter 5 that because of the Constraints
(C1)-(C5), the triple (F , ≺,↷) is a Burling set and thus constrained graphs are
abstract Burling graphs.

Strict frame graphs are examples of constrained graphs. In Figure 4.8, C6 is
represented as a constrained graph. The sets in this Ągure are all Pouna sets and
their territories are represented in hatch.
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Figure 4.8: C6 as a constrained graph.

4.4.3 Constrained S-graphs

Definition 4.20. Let S be a Pouna set. An oriented graph (resp. graph) is called an
oriented constrained S-graph (resp. a constrained S-graph) if it is isomorphic to the
oriented intersection graph (resp. intersection graph) of a non-empty family of F of
transformed copies of S that satisfies Constraints (C1)-(C5), as well as the following
constraint:

(C6) if S is strong, then all elements of F are positive transformed copies of S, and
otherwise, they are all positive transformed copies of the horizontal reflection
of S.

Notice that the set of all oriented constrained S-graphs and the set of all
constrained S-graphs both form hereditary classes of graphs.

By deĄnition, every constrained S-graph is a constrained graph. However, as we
will see in Chapter 5, the two classes are indeed equal, and in particular, the class
of constrained S-graphs does not change for different sets S.

Remark 4.21. Remember that for every Pouna set S, either S or its horizontal
reflection is a strong Pouna set (see Lemma 4.18). Therefore, restricting our
definition of constrained graphs and constrained S-graphs to strong Pouna sets
instead of Pouna sets does not reduce the generality of the definition.

Applied to a speciĄc set S, the deĄnition of constrained S-graphs becomes rather
intuitive. For example, when S is the boundary of a rectangle in R2, constrained
S-graphs are exactly strict frame graphs. Also, when S is a non-vertical and
non-horizontal line segment, constrained S-graphs are exactly strict line-segment
graphs (deĄned in Section 6 of [PT23]).
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S C1 C2 C3 C4

Figure 4.9: Examples of constrained S-graphs

See Figure 4.9 for two more examples of constrained S-graphs where S is a circle
and when S is a square that is not axis-aligned. In each row of the Ągure, from left
to right, the pictures represent the following:

• The Ąrst picture shows the set S (in solid color) and its territory (in hatch
pattern). For the rest of the Ągures, we have not shown the territory anymore.

• The second picture shows the way that two sets can intersect, i.e. what is
described by Constraint (C1).

• The third picture represents Constraint (C2). In other words, it shows that if
two sets do not intersect but one has an intersection with the territory of the
other, how they must be placed. Notice that in the Ąrst line, there are two
possibilities to place a transformation of the circle in the territory of the other
transformation of the circle with no intersection.

• The fourth picture shows the forbidden construction in Constraint (C3).

• The Ąfth picture shows the forbidden construction in Constraint (C4).

• Finally, we must keep in mind that there must not be three distinct sets that
mutually intersect.

Figure 4.10 shows that C6 and K3,3 are Constrained S-graphs for S equal to a
circle and a positively sloped line-segment respectively.

Remark 4.22. A set of frames in R2 satisfies constraints (C1)-(C6) if and only if
it is strict. So, strict frame graphs are constrained S-graphs.
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Figure 4.10: Left: C6 as a constrained circle-graph. Right: K3.3 as a constrained
positively-sloped-line-segment-graph.

4.5 About definitions

In this short section, we descuss different aspects of the deĄnitions introduced in
this chapter.

Let us start by discussing the problem of showing that a graph is Burling. Let
(Gk, Sk) be the k-th element of the Burling sequence. Setting ♣V (Gk)♣ = vk, and
♣Sk♣ = sk, for k ∈ N∗, we have:

sk+1 = 22k−1−1 and vk+1 = (22k−1−1 + 1)vk + 22k−2.

So, both the number of vertices and the size of the stable sets have doubly exponential
grow. This means that even for Ąnding K3,3 as a Burling graph, with the inductive
deĄnition of the Burling sequence, we need to Ąnd it in a graph with 23757552501
vertices.

On the other hand, showing that a graph is Burling by using the derive graph
deĄnition or the geometric deĄnitions is easier. In this dissertation, we use derived
graphs several times to show that some graphs are Burling graphs.

Abstract Burling graphs also, because of their generality, make good tools to
prove that a graph is Burling or a class of graphs is a subclass of Burling graphs.
Consider an oriented graph (G, A) (possibly an arbitrary graph in a class C). To
show that it is a Burling graph, it is enough to show that there is a partial order <
on V (G) such that (V (G), <, A) forms a Burling set. An example of such application
is the proof that constrained graphs are abstract Burling graphs (and thus Burling
graphs) in Section 5.4.

Another type of problem involving Burling graphs is to show that Burling graphs
do not include a graph H or a set of graphs H (see motivations for it, for example,
in Chapter 10). The inductive deĄnition, again, is not very suitable for such proofs,
since one needs to keep track of the (inherited from the graphs in the sequence) stable
sets. This makes the proofs based on induction more complicated that if one uses
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other deĄnitions, such as derived graphs, the induction is on the number of vertices
of the graph, and not the index in a sequence of graphs.

Moreover, as we will see in the rest of this thesis, the derived graph deĄnition,
enables us to study the structure of the graphs in this class in more detail: The tree
structure allowed us to encode at the same time the precise stable sets of any Burling
graphs through the branches of the tree and the time that a vertex has been added
the Burling sequence through the depth of the vertex in the tree (see Chapter 5).
Moreover, the tree gives us some more tools to study star cutsets in Burling graphs
(see Section 7.4), and to deĄne some useful subclasses of Burling graphs, called
k-Burling graphs (see Section 7.3) Finally, the combination of the tree structure and
the orientation reveals the particularity of this orientation (see Section 7.5).
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In this chapter, we prove that all deĄnitions in Chapter 4 are equivalent. The
whole chapter is dedicated to the proof of Theorem 5.1, broken into many sections.
It is worth mentioning that many of the lemmas and insights from this chapter will
be useful in the rest of this thesis as well.

In the last section of the chapter, using a category-theoretical language, we
describe how the proofs of this chapter not only show an equality of the classes
of graphs, but also provide a functor between the categories corresponding to them.

Theorem 5.1. Let G be a finite oriented graph and S be any Pouna set. The
following are equivalent:

1. G is a derived graph,

2. G is a Burling graph,

3. G is a constrained S-graph,

4. G is a constrained graph,

5. G is an abstract Burling graph.

As a corollary of Theorem 5.1, we have that the classes of non-oriented derived
graphs, Burling graphs, constrained S-graphs (for any Pouna set S), constrained
graphs, and abstract Burling graphs are all equal as well.
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5.1 The proof’s outline

Since the proof of the theorem is long, we break it into different sections. The
outline of the proof is as follows:

1
5.2

=⇒ 2
5.3

=⇒ 3 =⇒ 4
5.4

=⇒ 5
5.5

=⇒ 1.

Indeed, we prove a stronger result than Theorem 5.1. Let us explain how the
proof works.

1 =⇒ 2 We prove that for any given Burling tree (T, r, ℓ, c), there exists a pair (G, S) of
a Burling graph and its inherited stable set, and a function f : V (T ) → V (G)
that is structure preserving in the sense that the principle branches of T are
sent to S (so, the ancestor structure is preserved), and that the graph fully
derived from T is isomorphic to G (so, the c relation is sent to the arc-set
relation in G). See Lemma 5.9. As a result, every fully derived graph, and
thus every derived graph, is a Burling graph.

Indeed, we deĄne f only on a Şgenerating setŤ (that we call the tree-sequence)
¶Tk♢k≥1, of Burling trees. But thanks to Lemma 5.8, the function f can be
extended to all trees.

2 =⇒ 3 For proving this equivalence, we use an already existing construction of Burling
graphs as S-graph from [PKK+13] and show that this construction satisĄes
(C1)-(C6). Thus, every Burling graph is a constrained S-graph.

3 =⇒ 4 This is obvious from the deĄnition.

4 =⇒ 5 For a given set F of strong Pouna sets, we prove that (F , ≺,↷) form a Burling
set, and that (F ,↷) is indeed the oriented intersection graph of F . As a result,
every constrained graph is an abstract Burling graph.

5 =⇒ 1 For every Burling set (S, ≺,↷), we show that there is a Burling tree (T, r, ℓ, c)
and a function f : S → T that is structure preserving in the sense that the
≺ relation is sent to the descendant relation and the ↷ relation is sent to c
relation.

5.2 Derived graphs are Burling graphs

In this section, we prove that every derived graph is a Burling graph. In order
to do so, we Ąrst need to study some properties of Burling trees and to deĄne some
new notions.

The contents of this section are mainly from [PT23].
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u

va b
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Figure 5.1: Sliding b into uv

Some properties of Burling trees

Let G be an oriented graph derived from a Burling tree T . An arc uv of G is a
top-arc with respect to T if v is the out-neighbor of u that is closest (in T ) to the
root of T . An arc uv of G is a bottom-arc with respect to T if v is the out-neighbor
of u that is furthest (in T ) from the root of T . Notice that the we need to mention
the Burling three T for talking about top-arcs and bottom-arc since the top-arcs
and bottom-arcs of G with respect to different Burling trees from which G is derived
might not be the same. We, however, omit Şwith respect to TŤ when T is clear from
the context.

Suppose that (T, r, ℓ, c) is a Burling tree, u is a non-leaf vertex of T and v is its
last-born. Suppose that b is a non-last-born child of u. Consider the tree T ′ obtained
from T by removing the edges uv and ub, and adding a vertex w adjacent to u, v,
and b. DeĄne ℓ′(u) = w, ℓ′(w) = v and ℓ′(z) = ℓ(z) for all non-leaf vertices z of
T \ ¶u♢. DeĄne c′(z) = c(z) ∪ ¶w♢ for every vertex z ∈ V (T ) \ ¶b♢ such that v ∈ c(z)
or b ∈ c(z), deĄne c′(w) = ∅, and deĄne c′(z) = c(z) otherwise. See Figure 5.1.

The Burling tree (T ′, r′, ℓ′, c′) deĄned above is said to be obtained from (T, r, ℓ, c)
by sliding b into uv (notice that the deĄnition requires that v is a last-born).

Lemma 5.2. If (T ′, r′, ℓ′, c′) is obtained from (T, r, ℓ, c) by sliding a vertex into an
edge, then any oriented graph derived from (T, r, ℓ, c) can be derived from (T ′, r′, ℓ′, c′).
Moreover, for all arcs uv of G, we have that uv is a top-arc (resp. bottom-arc) of G
with respect to T ′ if and only if it is a top-arc (resp. bottom-arc) of G with respect to
T .

Proof. Let G be derived from T . The Ąrst part of the statement follows directly from
the fact that the function c is the restriction of c′ to V (G). The second part of the
statement follows from the fact that for every vertex u, the order of its out-neighbors,
with respect to their distance to the root has not changed, and that w is not a vertex
of G.
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Chapter 5. Equivalence of deĄnitions

The next lemma shows that all derived graphs can be derived from Burling trees
with speciĄc properties. This will reduce the technical difficulties in some proofs.

Lemma 5.3. Let G be an oriented graph derived from a Burling tree (T, r, ℓ, c). The
graph G can be derived from a Burling tree (T ′, r′, ℓ′, c′) such that:

1. r′ is not in V (G),

2. every non-leaf vertex in T ′ has exactly two children,

3. no last-born of T ′ is in V (G),

4. for all arcs uv of G, we have that uv is a top-arc (resp. bottom-arc) of G with
respect to T ′ if and only if it is a top-arc (resp. bottom-arc) of G with respect
to T .

Proof. Let us deĄne (T ′, r′, ℓ′, c′) from (T, r, ℓ, c) as follows. In what follows, we write
Ti for (Ti, ri, ℓi, ci) where i ∈ ¶1, 2, 3, 4♢.

Step 1. If r /∈ V (G), then Item 1 holds for T . Set T1 = T . If r ∈ V (G), build
a tree T1 by adding to T a new vertex r1 adjacent to r. DeĄne ℓ1(r1) = r and
ℓ1(v) = ℓ(v) for all vertices v of T . Moreover set c1(r1) = ∅, and do not change the
choose-path function on the rest of the vertices. Now, G can be derived from T1 such
that item 1 holds. Moreover, the top-arcs and bottom-arcs of G with respect to T1

are the same as the ones with respect to T .

Step 2. Suppose that u is a non-leaf vertex of T1 which has only one child. Build
a tree T ′ by adding a new child v to u and deĄne c′(v) = ∅. Notice that v is a leaf,
so it does not have a last-born in T ′. The graph G is also derived from T ′. Apply
this process until that every non-leaf vertex in T has at least two children. Call the
obtained Burling tree T2. So, G can be derived from T2. Notice that the top-arcs
and bottom-arcs of G with respect to T2 are the same as the ones with respect to T1

and thus to T . Moreover, Item 1 holds for T2 as well.

Step 3. Suppose that u is a vertex in T with at least three children, let v be the
last-born of u and a, b be two distinct children of u other than v. We deĄne a Burling
tree T ′ by sliding b into the edge uv, and observe that the degree of u in T ′ is smaller
than in T . And by Lemma 5.2, G can be derived from T ′ and that the top-arcs
and the bottom-arcs stay the same. Notice that during this process we decrease the
number of children of u, the new vertex w has two children, and we do not increase
the number of children of any other vertex. Also, in applying this process on a vertex
u, we do not decrease the number of children of any vertex other than u, and once
again the new vertex that we create has two children. Hence the process terminates
if we apply the same process until Item 2 of the lemma is satisĄed. Call the Burling
tree obtained by applying this process until Item 2 is satisĄed T3. Notice that Item
1 still holds, and that the top-arcs and bottom-arcs of G with respect to T3 are the
same as the ones with respect to T .
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Figure 5.2: Turning v into a non-last-born

Step 4. If v is a last-born of T that is in V (G), then let u be the parent of v.
Observe that c(v) = ∅. We build a tree T ′ by removing the edge uv, adding a new
vertex w adjacent to u and v, and a new vertex x adjacent to w. DeĄne ℓ′(u) = w,
ℓ′(w) = x and ℓ′(y) = ℓ(y) for all non-leaf vertices y of T \u. DeĄne c′(y) = c(y)∪¶w♢
for every vertex y ∈ V (T ) such that v ∈ c(y) and c′(y) = c(y) otherwise. We see
that G can be derived from (T ′, r′, ℓ′, c′), and v is not a last-born in T ′, so we have
reduced the number of last-borns of the Burling tree in V (G). Moreover, for every
vertex u, the order of its out-neighbors, with respect to their distance to the root has
not changed, and that w is not a vertex of G. Thus, the top-arcs and bottom-arcs
remain the same. Apply this process until there is no last-born of the Burling tree
in V (G). See Figure 5.2. Call the Burling tree obtained at the end T4. Notice that
Items 1 and 2 remain true for T4 as well and that the top-arcs and bottom-arcs of
G with respect to T4 are the same as the ones with respect to T , so Item 4 holds for
T4 as well.

To Ąnish, set T ′ = T4, and observe that T ′ satisĄes all the items of the lemma.

Tree sequence

A principal branch of a Burling tree (T, r, ℓ, c) is any branch starting in its root
r and ending in one of its leaves. The principal set of (T, r, ℓ, c) is the set of all
vertex-sets of the principal branches of T . We denote the principal set of T by P(T ).
Notice that there is a one-to-one correspondence between P(T ) and L(T ), the set of
leaves of T .

If a graph G is derived from a Burling tree T , then the restriction of each principal
branch of T to the vertices of G, form a stable set in G. In particular, P(T ), restricted
to V (G), is a set of stable sets of G.

We deĄne a sequence ¶Tk♢k≥1 of Burling trees and we prove that the sequence
(Tk, Pk)k≥1 of Burling trees and their principle sets is in correspondence to the
sequence (Gk, Sk)k≥1 of Burling graphs. More precisely, we will show that the k-th
oriented Burling graph, Gk, is isomorphic to the oriented graph fully derived from
Tk, and Sk is the same as Pk = P(Tk).
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Chapter 5. Equivalence of deĄnitions

In order to deĄne the mentioned sequence, we Ąrst deĄne a function ST on Burling
trees.

Definition 5.4 ([PT23], DeĄnition 4.2). Let (T, r, ℓ, c) be a Burling tree, and let P
denote its principal set. We build a Burling tree (T ′, r′, ℓ′, c′) with principal set P ′ as
follows:

1. Consider a copy of (T, r, ℓ, c).

2. For each principal branch P ∈ P ending in the leaf l, pend a leaf lP to l, and
define ℓ′(l) = lP . Then add a copy (T, r, ℓ, c)P of (T, r, ℓ, c) on lP identifying
its root with lP . Denote the principal set of (T, r, ℓ, c)P by PP .

3. For each copy (T, r, ℓ, c)P , corresponding to a leaf l ∈ P , and for each Q ∈ PP ,
add a new leaf lP,Q to l.

4. The tree obtained so far is T ′, and r′ is the same vertex as r in the first copy
of (T, r, ℓ, c).

5. To obtain ℓ′, extend the function ℓ naturally to the copies of (T, r, ℓ, c), and
notice that this, along with the definition of ℓ′ on leaves of the first copy in
Step 2, completes the definition of ℓ′.

6. To obtain c′, first extend the function c naturally to the copies of (T, r, ℓ, c),
and then also define c′(lP,Q) = Q for P ∈ P and Q ∈ PP .

7. Notice that the result is a Burling tree (T ′, r′, ℓ′, c′).

8. Observe that the principal branches of T ′ are of the form P ∪ Q or P ∪ ¶lP,Q♢
for P ∈ P and Q ∈ PP . Thus P ′ = ¶P ∪ Q, P ∪ ¶lP,Q♢ : P ∈ P, Q ∈ PP ♢.

We denote (T ′, r′, ℓ′, c′) by ST(T, r, ℓ, c). By abuse of notation, we may
write T ′ = ST(T ).

Starting from T1, the one vertex Burling tree, and applying the ST function
iteratively, we reach a sequence (Tk, rk, ℓk, ck)k∈N∗ of Burling trees that we call the
tree sequence.

In Figure 5.3, the Ąrst three Burling trees in the tree sequence are represented.
To show the choose-path function, we have also presented the oriented graphs fully
derived from them.

In the rest of this section whenever we use the notation (Gk, Sk), we mean the
k-th graph in the Burling sequence and its set of stable sets. Similarly, when we
write (Tk, rk, ℓk, ck), or simply Tk, we mean the k-th Burling tree in the tree sequence
and we denote by Pk = P(Tk) its principle set.

Let us present some properties of the tree sequence.

Lemma 5.5. Let v be a vertex in (Tk, rk, ℓk, ck)k.

1. If v is not a leaf, then it has at least two children in Tk.
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5.2. Derived graphs are Burling graphs

Figure 5.3: The Ąrst three Burling trees in the tree sequence and the oriented graphs
fully derived from them.

2. If v is a non-last-born vertex in Tk which is not the root, then ck(v) ̸= ∅. In
particular, the last-born brother of v is in ck(v).

Proof. We prove the lemma by induction on k. For k = 1, there is nothing to prove.
Suppose that the statements are true for Tk where k ≥ 1.

To prove the Ąrst item, let v be a vertex in Tk+1 = ST(Tk) which is not a leaf.
The vertex v appears in one of the copies of Tk, and because it is not a leaf, either
it is a non-leaf vertex of a copy of Tk, and thus it has at least 2 children by the
induction hypothesis, or it is a leaf of the main copy of Tk in Tk+1. But notice that
as a leaf of the main copy of Tk, in the second step of DeĄnition 5.4, in receives a
child, and in the third step it receives at least one more child. So v has at least 2
children in Tk+1.

To prove the second item, let v be a non-last-born vertex in Tk+1 other than its
root. There are two possibilities:

First, v is a non-last-born vertex in one of the copies of Tk (either the main copy,
or a copy corresponding to a principal branch). In this case, the results follows from
the induction hypothesis.

Second, v is a vertex of the form lP,Q as in the third step of DeĄnition 5.4. Then
in the sixth step we deĄne ck+1(v) to be Q which is not empty.

Now we deĄne the notion of extension for Burling trees, which is, as we will see
formally in Lemma 5.7, closely related to the notion of induced subgraph in fully
derived graphs.

Definition 5.6. Let (T, r, ℓ, c) and (T ′, r′, ℓ′, c′) be two Burling trees. We say that
T ′ is an extension of T if there exists an injection φ from V (T ) to V (T ′) with the
following properties:

1. φ(r) = r′,

2. φ preserves ancestors, i.e. if u is an ancestor of v in T , then φ(u) is an ancestor
of φ(v) in T ′,

3. φ preserves the last-born vertices, i.e. if v ∈ V (T ) is a last-born in T , then φ(v)
is a last-born in T ′.
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Figure 5.4: When c(u) = ∅, T3 (right) is an extension of T (left)

4. φ preserves the choose-path function on T , i.e. for every vertex v ∈ T , we have
φ(c(v)) = c′(φ(v)) ∩ φ(V (T )).

Lemma 5.7. Let G and G′ be two oriented graphs fully derived from T and T ′

respectively. If T ′ is an extension of T , then G is an induced subgraph of G′.

Proof. Let φ be the injection from V (T ) to V (T ′). Since G and G′ are fully derived
from T and T ′, V (G) = V (T ) and V (G′) = V (T ′). Thus φ can be seen as an
injection from V (G) to V (G′). By Property 4 in DeĄnition 5.6, v ∈ c(u) if and only
if φ(v) ∈ c′(φ(u)). In other words, uv ∈ A(G) if and only if φ(u)φ(v) ∈ A(G′). Thus,
G is an induced subgraph of G′.

Next lemma shows that the tree sequence (Tk)k≥1 contains all the Burling trees
in the extension sense.

Lemma 5.8. If (T, r, ℓ, c) is a Burling tree such that every non-leaf vertex has exactly
two children, then there exist an integer k ≥ 1 such that Tk is an extension of T .

Proof. We prove the lemma by induction on the number of vertices of T .
For the induction step, the smallest possible T is a tree on three vertices: the

root r, the last-born of the root v, and the other child of the root u. If c(u) = ¶v♢,
then T2 is an extension of T . If c(u) = ∅, then T3 is an extension of T as shown in
Figure 5.4.

Suppose that the lemma is true for every Burling tree on at most n vertices.
Suppose that T on n > 1 vertices is given.

Consider the set of all the vertices of T which have the maximum distance to r.
Because every non-leaf vertex in T has two children, there is a non-last-born vertex
x in this set. Notice that x has no children. Denote by p the parent of x and by y
the last-born of p. Notice that y also has the maximum distance to the root, and
thus both x and y are leaves of T .

Consider the tree (T ′, r, ℓ′, c′), obtained from T by removing the two leaves x and
y, and restricting the functions ℓ and c. By induction hypothesis, there exist k such
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Figure 5.5: Case 1 of the proof of Lemma 5.8

that Tk is an extension of T . Let φ be the injection from V (T ) to V (Tk). In the rest
of the proof, we will deĄne φ on x and y in order to extend φ to V (T ), in a way that
all the four properties of DeĄnition 5.6 remain satisĄed.

Now there are two possible cases.

Case 1: y ∈ c(x).

If φ(p) is not a leaf of Tk, then deĄne φ(x) to be a non-last-born child of
φ(p), which exists by lemma 5.5, and deĄne φ(y) to be the last-born of φ(p).
By Lemma 5.5, φ(y) is in ck(φ(x)). Notice that this extension of ϕ has all
the properties of DeĄnition 5.6. Properties (1) to (3) are easy to verify, and
for Property (4), notice that no descendant of φ(y) is in the image of φ, thus
φ(c(x)) = φ(¶y♢) = ¶ℓk(p)♢ = ck(φ(y)) ∩ im(φ).

If φ(p) is a leaf of Tk, then consider Tk+1. In building Tk+1, every leaf of the Ąrst
copy of Tk, including φ(p), will receive a last-born and at least one non-last-born
child. DeĄne again φ(x) to be a non-last-born child of φ(p) and φ(y) to be the
last-born of φ(p). See Figure 5.5. Notice that again φ has all the required properties.
So Tk+1 is an extension of T .

Case 2: y /∈ c(x).

If φ(p) is not a leaf of Tk, by Lemma 5.5 it has at least two children. Choose two
paths starting at two different children of φ(p) and ending at two different leafs l and
ℓ′ of Tk. In Tk+1, consider l and ℓ′ in the Ąrst copy of Tk. DeĄne φ(x) to be some
non-last-born of l in Tk+1 and φ(y) to be the last-born of ℓ′ in Tk+1. See Figure 5.6,
left. Notice that l ̸= ℓ′, thus φ(y) /∈ φ(x). The new function φ has all the required
properties. Hence Tk+1 is an extension of T .

If φ(p) is a leaf of Tk, then consider Tk+1. In Tk+1, the vertex φ(p) in the main
copy of Tk has a last-born l and at least one non-last-born. Choose any non-last-born
child of φ(p) and denote it by n. Notice that n is a leaf of Tk+1. Thus in Tk+2, this
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Figure 5.6: Case 2 of the proof of Lemma 5.8

vertex will have a some children, including at least one non-last-born, that we denote
by l′. Notice that l /∈ ck+2(l′). DeĄne φ(x) = l′ and φ(y) = l. See Figure 5.6, right. It
is easy to check that φ has all the properties of DeĄnition 5.6, so Tk+2 is an extension
of T .

Comparing Figure 5.3 and Figure 4.1, one sees that the Ąrst three graphs in
the Burling sequence are isomorphic to the graphs fully derived from the Ąrst three
Burling trees in the tree sequence. The next lemma shows that this is indeed true
for every k.

Lemma 5.9. For every k ≥ 1, the oriented graph Gk is isomorphic to the oriented
graph fully derived from Tk. Moreover, the isomorphism induces a bijection between
the elements of Sk and the elements of Pk = P(Tk).

Proof. We prove the lemma by induction on k. If k = 1, the statement holds.
Suppose that Gk is isomorphic to the graph fully derived from Tk and Sk is equal to
Pk.

To build Tk+1, to every leaf l of Tk, we add a new leaf and we pend a copy of Tk to
this new leaf. Since every leaf in Tk identiĄes exactly one of the principal branches,
or by the induction hypothesis, one stable set in Sk, this step is equivalent to the
second step of DeĄnition 4.1. Then for each copy (Tk)P of Tk, we add ♣Pk♣ = ♣Sk♣
new leaves to the leaf corresponding to the principal branch P . For a new vertex
lP,Q corresponding to the branch Q ∈ P(Tk)P , we deĄne the choose-path function to
be Q ∈ (Tk)P which assures that in the graph fully derived from T , this vertex is
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complete to Q. Thus these new vertices lP,Q are the vertices vP,Q that we add in the
third step of DeĄnition 4.2, and Gk+1 is the graph fully derived from Tk+1.

Finally we notice that the vertex sets of the principal branches of Tk+1 are exactly
sets of the form P ∪ Q and P ∪ ¶lP,Q♢ for P ∈ Pk = Sk and Q ∈ (Pk)P = (Sk)P .
Thus Sk+1 = Pk+1.

Main theorem

Theorem 5.10. Every oriented derived graph is an oriented Burling graph.

Proof. Let H be an oriented graph derived from a Burling tree T . By Lemma 5.3,
we may assume that every non-leaf vertex in T has exactly two children. Notice
that H is an induced subgraph of G, the oriented graph fully derived from T . By
Lemma 5.8, there exists k such that Tk is an extension of T . Moreover, by Lemma
5.9, Gk is the graph fully derived from Tk. Thus by Lemma 5.7, G is an induced
subgraph of Gk, and thus it is a Burling graph. Therefore, so is H.

5.3 Burling graphs are constrained S-graphs

In this section, we prove that Burling graphs are constrained S-graphs for every
Pouna set S. To do so, we need to Ąnd a sequence (Fk)k∈N∗ of families of Strong
Pouna sets satisfying Constraints (C1)-(C6) such that the oriented intersection graph
of Fk is the k-th graph in the Burling sequence. In [PKK+13], Pawlik, Kozik,
Krawczyk, Lasoń, Micek, Trotter, and Walczak introduce Burling graphs as S-graph
for every Pouna set S. After repeating the construction from [PKK+13] (with slightly
different terminology and details so it matches our earlier deĄnitions), we show that
it satisĄes all Constraints (C1)-(C6). Before that, however, we need to introduce
some geometric notions and to study some more properties of Pouna sets.

The contents of this chapter are mainly from [Pou22].

Some geometric notions and lemmas

Here, we deĄne the geometric notions and lemmas that we need in the proofs of
this section. The proofs of Lemmas 5.11, 5.12, and 5.13 are in Appendix C.

Let R be an axis-parallel rectangle. Let A ⊆ R2. We say that A crosses R
vertically (resp. horizontally) if there exists a γ : [0, 1] → A ∩ R such that γ(0) and
γ(1) are respectively on the bottom-side and on the top-side (resp. on the left-side
and on the right-side) of R.

Lemma 5.11. Let y0, y1 ∈ R such that y0 ≤ y1. For i ∈ ¶0, 1♢, let Li denote the line
y = yi in R2. Let γ : [0, 1] → R2 be a continuous function such that for i ∈ ¶0, 1♢, we
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R

E Er

Figure 5.7: Er is the right extension of E in R.

have γ(i) ∈ Li. Then, there exist x0, x1 ∈ [0, 1] such that x0 ≤ x1 and the following
hold:

• the path γ′ = γ♣[x0,x1] is always between or on the lines L0 and L1, i.e.
im(γ′) ⊆ ¶(x, y) : y0 ≤ y ≤ y1♢,

• for i ∈ ¶0, 1♢, we have γ′(i) ∈ Li.

Lemma 5.12. Let R and R′ be two axis-aligned rectangles such that:

• l(R′) ≤ l(R) ≤ r(R) ≤ r(R′),

• b(R) ≤ b(R′) ≤ t(R′) ≤ t(R).

If a set A crosses R vertically, then it crosses R′ vertically as well.

Lemma 5.13. Let R be a rectangle in R2. Let α : [0, 1] → R and β : [0, 1] → R
be two paths joining the bottom side of R to its top side and the left side of R to its
right side respectively. Then im(α) ∩ im(β) ̸= ∅.

Some properties of Pouna sets

The following lemma shows that strong Pouna sets and their territories behave
well under positive transformations. For some properties that are easy to check, we
have provided the proof in Appendix C.

Property 5.14. Let S be a strong Pouna set and T be a positive transformation.
Then, ter(T (S)) = T (ter(S)). In particular, T (S) is strong.

The proof is in Appendix C.
Let B and E be two rectangles such that E ⊆ R. The right-extension of E in R

is the rectangle Er deĄned as follows:

Er = [r(E), r(R)] × [b(E), t(E)].

See Figure 5.7.

Definition 5.15. A subterritory for a strong Pouna set S is a non-empty closed
rectangle E such that
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Figure 5.8: For proof of Lemma 5.16.

1. E ⊆ ter(S),

2. l(E) > l(S), r(E) < r(S), b(E) > b(S), and t(E) < t(S),

3. S crosses the right extension of E vertically.

A strong Pouna set always has a subterritory, as we prove in the following lemma.

Lemma 5.16. Every strong Pouna set has a subterritory.

Proof. Let S be a strong Pouna set and let B = box(S). By Property 4.17 there
exist a point p = (xp, yp) ∈ B◦ \ S. So, there is ϵ > 0 such that D(p, ϵ) ⊆ B◦ \ S.

Let LP be the ray ¶(x, y) : y = yp, x ≥ xp♢. Notice that LP ∩ S is non-empty and
compact. Let s = (xs, ys) be the point in LP ∩ S which obtains the value l(LP ∩ S).
Notice that ys = yp. Consider the following rectangle in B:

R = [xS − ϵ/2, r(S)] × [ys − ϵ, ys + ϵ].

See Figure 5.8.
In particular, s ∈ R◦. Also, R = R̄ does not intersect the border of B. On the

other hand, there is a point s′ of S on the top-side of B. Since S is a path-connected
set, we must have a path γ from s to s′. By Lemma 4.16, the image of γ must
intersect ∂B, and in particular in a point other than (xS − ϵ/2, ys) and (r(S), ys).
So, im(γ) ∩ B is not a horizontal line. In particular, there are y0, y1 ∈ R such that
ys − ϵ ≤ y0 < y2 ≤ ys + ϵ and such that there is a path δ in R joining a point on the
line y = y0 to a point on the line y = y1.

So, by Lemma 5.11, applied to δ, there is a path δ′ : [0, 1] → R such that
π2(δ(0)) = y0, π2(δ(1)) = y1, and im(δ′) ⊆ [xS − ϵ/2, r(S)] × [y0, y1].

Now, let E be a rectangle entirely inside D(p, ϵ) deĄned as follows:

E = [xp − ϵ/2, xp + ϵ/2] × [(yp + y0)/2, (yp + y1)/2].

Notice that by Lemma 5.12, δ′ crosses the right extension of E vertically. Clearly,
E satisĄes all other properties of subterritory as well. So, E is a subterritory of S.
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The next property, whose proof is in Appendix C, shows that subterritories behave
well under positive transformations.

Property 5.17. If E is a subterritory of a strong Pouna set S, then for every positive
transformation T , we have that T (E) is a subterritory of T (S).

Finally, the following property states that positive transformations preserve the
Constraints (C1)-(C6) of the deĄnition of constrained S-graphs.

Property 5.18. Let S be a strong Pouna set, and let F be a finite family of
transformed copies of S satisfying Constraints (C1)-(C6), then for every positive
transformation T the family ¶T (S) : S ∈ F♢ also satisfies (C1)-(C6).

Again, the proof is in Appendix C.

Construction of Pawlik, Kozik, Krawczyk, Lasoń, Micek,
Trotter, and Walczak

Let S be a Pouna set, and let F be a Ąnite family of transformed copies of S.
Set B = box(F).

A prob for F is a closed rectangle P such that: P ⊆ B and r(P ) = r(B). We
denote the set ¶A ∈ F : A ∩ P ̸= ∅♢ by NF(P ), or N(P ) if there is no confusion.

Let P be a prob for F . A root of P is a rectangle of the form ¶(x, y) ∈ P : x ≤ x0♢,
for some x0 ∈ (l(P ), r(P )), which does not intersect any element of F . Notice that
not every prob has a root, and that when a prob has a root, it has inĄnitely many
roots. Moreover, the roots of a prob form a totally ordered set with inclusion.

The prob P is said to be stable if:

1. P has a root, and there exists a root R of P such that for every A ∈ N(P ), we
have R ⊆ ter(A),

2. the elements of N(P ) are mutually disjoint,

3. for every A ∈ N(P ), we have b(A) < b(P ) and t(P ) < t(A),

4. every A ∈ N(P ) crosses P .

Remark 5.19. It is worth mentioning that the fourth item in the definition of stable
prob does not follow from the three other items. In Figure 5.9, a prob P with a root
R and N(P ) = ¶A♢ are shown. All items 1-3 of the definition hold here, but not
item 4.

What we call a stable prob in this thesis is similar to what is called a prob
in [PKK+13].

Property 5.20. Let P be a stable prob for a family F of Pouna sets. Then, for
every root R of P and for every A ∈ N(P ), we have R ⊆ ter(A).
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5.3. Burling graphs are constrained S-graphs

R

P

A

Figure 5.9: The fourth item in the deĄnition of stable prob does not hold here.

Proof. Let R0 be the root in the deĄnition of stable prob. If R ⊆ R0, the result
is obvious. If not, let p = (x, y) ∈ R \ R0. So, there exist x0 < x such that
p0 = (x0, y) ∈ R0 So, in particular p0 ∈ ter(A). Also, p0 ∈ R, because R0 ⊆ R. So,
there exists x′ > x0 such that p′ = (x′, y) ∈ A. Since p′ ∈ A, we have p′ /∈ R. So,
in particular, x′ ̸= x. If x′ < x, then x′ is on the strait line joining p0 and p. But
p0, p ∈ R and R is convex, so (x′, y) ∈ R, a contradiction. Hence x′ > x. Now, to
show that p ∈ ter(A), it is enough to show that p ∈ box(A) \ A. But p being in
R, is not in A. On the other hand, p is in on the straight line between p0 and p′.
Now because p0 ∈ ter(A) ⊆ box(A) and p′ ∈ A ⊆ box(A), we have p ∈ box(A). This
completes the proof.

Let E be a rectangle in box(F). The prob defined by E in B is the prob P
which is obtained by extending the right side of E to reach the border of B, i.e.
P = ¶(x, y) ∈ B : l(E) ≤ x ≤ r(B), b(E) ≤ y ≤ t(E)♢. Notice that if E does not
intersect any member of F , then it is a root for P .

From now on, Ąx a strong Pouna set S and a subterritory E of S. Also, from now
on, for the transformed copy S ′ = T (S), we consider the subterritory T (E). Refer
to Figure 5.10 for a visualization of the construction described hereunder, applied to
a very simple 1-element family of a set S.

Let (F , P) be a tuple where F is a family of transformed copies of S and P is a
set of probs of F . We deĄne an operation Γ where (F ′, P ′) = Γ(F , P) is obtained as
follows:

(S′1) For every P ∈ P, let P ↑ and P ↓ be respectively the top one-third and the
bottom one-third of P , i.e.

P ↑ = [l(P ), r(P )] × [
b(P ) + 2t(P )

3
, t(P )]

and

P ↓ = [l(P ), r(P )] × [b(P ),
2b(P ) + t(P )

3
].

(S′2) Set SP to be a transformed copy of S where we Ąrst match the boundary of

box(S) on the boundary of P ↑, and then we scale it horizontally by 2w(S)
l(E)−l(S)
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S

RP

P

P ↑

P ↓

P1

P2

PP1

PP2

SP

(F ,P)

Γ(F ,P)

(F ′,P ′)

Figure 5.10: Construction of [PKK+13] applied to (F , P). The second line presents
Γ(F , P) and the third line presents (F ′, P ′) = SF(F , P). The shapes in gray are not
parts of the object and are presented to make following the construction easier. The
scales have changed to make the illustration clearer.
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5.3. Burling graphs are constrained S-graphs

keeping the left-side of box(S) Ąxed. Formally, the transformation described
above is TP = T2 ◦ T1 : R2 → R2, where

T1(x, y) =


w(P ↑)

w(S)
x + l(P ↑) −

l(S)w(P ↑)

w(S)
,
h(P ↑)

h(S)
y + b(P ↑) −

b(S)h(P ↑)

h(S)



and

T2(x, y) =


2w(S)

l(E) − l(S)
x + l(P ↑)(1 −

2w(S)

l(E) − l(S)
), y



.

This transformation ensures that the subterritory of SP , i.e. TP (E), is
outside box(F) (See Property 5.23). Denote TP (E) by EP .

(S′3) Set F ′ = F ∪


∪P ∈P SP



.

(S′4) For P ∈ P, denote by P1 the prob for F ′ deĄned by EP , and denote by P2 the
prob for F ′ deĄned by P ↓.

(S′5) Set P ′ = ¶P1, P2 : P ∈ P♢.

Definition 5.21. Let S be a strong Pouna set. Let F be a family of positive
transformed copies of S, and let P be a set of its probs. We define SF(F , P) as
follows.

(S1) Set (F0, P0) = Γ(F , P).

(S2) For every P ∈ P, choose a root RP . (To see that P has a root, see [PKK+13]
or Theorem 5.27.) Create a transformed copy (FP , PP ) of (F0, P0) such that
box(FP ) is matched to RP . Formally, apply the transformation:

T ′
P (x, y) =



w(RP )

w(BP )
x+ l(RP )−

l(BP )w(RP )

w(BP )
,
h(RP )

h(BP )
y+b(RP )−

b(BP )h(RP )

h(BP )



,

where BP = box(FP ).

(S3) Set F ′ = F ∪


∪P ∈P FP


.

(S4) Now, for P ∈ P and for Q ∈ PP , let PQ be the prob for F defined by Q.

(S5) Set P ′ = ¶PQ : P ∈ P, Q ∈ PP ♢.

The tuple (F ′, P ′) is SF(F , P).

Now, we can deĄne a sequence ¶(Fk, Pk)♢k≥1 from [PKK+13], where Fk is a family
of positive transformed copies of S, and Pk is a set of probs for Fk.

Definition 5.22 (The construction from [PKK+13]). For k = 1, set F1 = ¶S♢
and P1 = ¶P♢ where P is the prob defined by E. For every k ∈ N∗, define
(Fk+1, Pk+1) = SF(Fk, Pk).
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Let us state some properties about the construction of Pawlik, Kozik, Krawczyk,
Lasoń, Micek, Trotter, and Walczak. The proof of Properties 5.23 and 5.24 can be
found in Appendix C.

Property 5.23. Adopting the notation from the definition of Γ, for every P ∈ P,
we have:

1. the transformation TP is positive.

2. l(EP ) > r(box(F )), so in particular, EP ∩ box(F ) = ∅.

Property 5.24. Let F be a family of strong Pouna sets, and let P be a set of
probs for F that are mutually disjoint. Setting (F ′, P ′) = Γ(F , P) and adopting the
notation from the definition of Γ, we have that for every P ∈ P:

1. if Q ∈ P \ ¶P♢, then SP ∩ Q = ∅, SP ∩ SQ = ∅, and ter(SP ) ∩ Q = ∅,

2. NF ′(P1) = ¶SP ♢,

3. NF ′(P2) ⊆ NF(P ) and NF ′(P2) ⊆ F ,

4. for every A ∈ F ′, we have SP ↷ A if and only if A ∈ N(P ), and there exists
no B ∈ F ′ such that B ↷ SP .

Main theorem

Let C be the class of oriented graphs generated by the intersection graphs of
the families Fk deĄned in DeĄnition 5.22. This class is exactly the class of Burling
graphs. Indeed, as has been mentioned in [PKK+13] (for the non-oriented case) the
sequence of the intersection graphs of FkŠs is exactly the sequence deĄned by Burling
[Bur65] in 1965. The proof of this fact is not complicated but is long. However, for
the sake of completeness, we included a sketch of the proof of the oriented version of
this fact in Lemma 5.25.

Let S be a Pouna set. We say that (G, S), where G is an oriented graph and
S is a set of stable sets of G, is isomorphic to (F , P), where F is a family of
strong transformed copies of S and P is a set of its probs, if there exists a function
ϕ : V (G) → F such that:

1. it induces an isomorphism between G and the oriented intersection graph of
F , i.e. for every xy ∈ A(G), we have ϕ(x) ↷ ϕ(y),

2. it induces a bijection between S and N(P) = ¶N(P ) : P ∈ P♢, i.e. for every
S ∈ S, we have

ϕ(S) ∈ N(P),

and for every P ∈ P, we have

ϕ−1(P ) ∈ S.
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5.3. Burling graphs are constrained S-graphs

Lemma 5.25. Let S be a strong Pouna set, G be an oriented graph, S be a set of
stable sets of G, F be a family of positive transformed copies of S, and P be a set
of probs for F . If (G, S) is isomorphic to (F , P), then SB(G, S) is isomorphic to
SF(F , P).

As a corollary, the oriented intersection graph of Fk, as in Definition 5.21, is
isomorphic to the k-th graph in the Burling sequence.

Proof. We adapt the notations from DeĄnition 4.2 and DeĄnition 5.21. Let
(G′, S ′) = SB(G, S). For S ∈ S, denote by ĜS the subgraph of G′ induced by
V (GS) ∪Q∈SS

¶vS,Q♢. In particular, G′ is the disjoint union of the graphs ĜS and a
copy of G.

By induction hypothesis, (G, S) and (F , P) are isomorphic. Let ϕ be the
isomorphism as in the deĄnition. Let us extend ϕ to an isomorphism ϕS between
(ĜS, SS) and (Fϕ(S), Sϕ(S)) for every S ∈ S. DeĄne ϕ(vQ,S) = S

ϕ(S)
Q , i.e. the set

added in step (SŠ2) for the prob Q.

DeĄne ϕ′ : V (G′) → F ′ as the union of ϕ and all ϕS for S ∈ S. Let us check that
ϕ′ has the two required properties.

First, let xy ∈ A(G). If x /∈ ¶vS,Q : S ∈ S, Q ∈ SS♢, then the result follows from

induction hypothesis. If x = vS,Q for some S ∈ S and Q ∈ SS, then ϕS(x) = S
ϕ(S)
Q .

Moreover, by construction, y ∈ Q, so ϕS(y) ∈ ϕS(Q). Therefore, by item (4) of
Property 5.24, we have ϕ′(x) ↷ ϕ′(y).

Second, ϕ′(S ∪ ¶vS,Q♢) = ϕ(S) ∪ ϕSS
ϕ(S)
Q = ϕ(S)1, and

ϕ′(S ∪ Q) = ϕ(S) ∪ ϕS(Q) = ϕ(S)2. So, the second item holds as well,
which completes the proof.

With the lemma above, we can prove that for any Pouna set S, an oriented
Burling graphs (thus, here, a subgraphs of the oriented intersection graphs of some
Fk) is a constrained S-graph.

Lemma 5.26. Let S be a strong Pouna set. Let F be a family of transformed copies
of S that satisfies Constraints (C1)-(C6). Let P be a set of mutually disjoint stable
probs of F . If (F ′, P ′) = Γ(F , P), then

1. elements of P ′ are mutually disjoint,

2. every element of P is a stable prob for F ′,

3. F ′ satisfies Constraints (C1)-(C6).

Proof. We adopt the notation from the deĄnition of Γ.

Set B = box(F) and B′ = box(F ′). Notice that l(B′) = l(B), b(B′) = b(B), and
t(B′) = t(B). However, r(B′) > r(B).

Claim. Elements of P ′ are mutually disjoint.
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Corresponding to every P ∈ P , there are two probs in P ′, that is, P1 and P2.
Notice that P1 ∩ P2 = ∅. So, the fact that the probs in P ′ are mutually disjoint is
implies directly by the same property for P .
Claim. Elements of P ′ are stable probs for F ′.

Fix P ∈ P. We prove that both P1 and P2 are stable probs, and thus every prob
in P ′ is stable.

First, the prob P1 is deĄned by a subterritory EP . By Property 5.23, EP ∩B = ∅.
Therefore, for every A ∈ F , we have EP ∩ A = ∅. Moreover, by deĄnition of
subterritory, EP ∩ SP = ∅. Finally, since EP ⊆ P , by Property 5.24, we have
EP ∩SQ = ∅ for every Q ∈ P \¶P♢ as well. Thus EP does not intersect any element
of F ′. So, EP is a root for P1.

Now, notice that by Property 5.24, we have N(P1) = ¶SP ♢, so item (2) of the
deĄnition of stable prob holds. Moreover, since EP is a subterritory of SP , we have

• EP ⊆ ter(SP ),

• b(EP ) > b(SP ) and t(E) < t(SP ),

• SP crosses P1 vertically,

which proves item (1), (3), and (4) of the deĄnition of stable prob, respectively. For
item (3), we have used the facts that b(P1) = b(EP ) and t(P1) = t(EP ).

Second, by the hypothesis, P has a root. Let R be a root of P . Set R↓ = R ∩ P ↓

and notice that R↓ is a root of P ↓, as a prob for F . In particular, R↓ does not
intersect any element of F . Now, let A ∈ NF ′(P2). By Property 5.24, we have
A ∈ NF(P ). Therefore, R ⊆ ter(A). Consequently, R↓ ⊆ ter(A). This implies item
(1) of the deĄnition of stable prob. Moreover, since A ∈ NF(P ) and P is stable, we
have

b(A) < b(P ) = b(P ↓) = b(P2), and t(A) > t(P ) ≥ t(P ↓) = t(P2),

which implies item (3) of the deĄnition. Also, since A crosses P vertically, by
Property 5.12, it crosses P ↓ vertically as well, which implies item (4) of the deĄnition.

Now, assume that A, B ∈ NF ′(P2) and A ̸= B. Again, by Property 5.24, we have
A, B ∈ NF(P ). Thus, A ∩ B = ∅, implying item (2) of the deĄnition. Hence, P2 is
a stable prob.

Now, we prove that F ′ satisĄes Constraints (C1)-(C6).
Claim. F ′ satisfies (C1).

Let A, B ∈ F ′ be two distinct and intersecting transformed copies of S. Set
LA = ¶(x, y) ∈ A : x = l(A)♢. Notice that l(A) = l(LA).

If A, B ∈ F , then the result holds because F satisĄes (C1). Furthermore, by
Property 5.23, we cannot have A, B ∈ F ′ \ F . So, without loss of generality, assume
A ∈ F ′ \ F , so A = SP for some P ∈ P, and B ∈ F . In particular, B ⊆ B, and
by construction, A ∩ (B \ P ↑) = ∅. Hence, B ∩ P ↑ ̸= ∅, and therefore B ∈ NF(P ).
Thus, by Property 5.24, for every root R of P , we have R ⊆ ter(B). Moreover, we
have b(B) < b(P ) and t(B) > t(P ). Also, notice that by construction, for every
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s ∈ ¶l, r, b, t♢, we have s(A) = s(P ↑). Let p = (x, y) ∈ L(A). So, x = l(A)l(P )
and y ∈ (b(P ), t(P )). Moreover, b(P ) ≤ b(A) ≤ y ≤ t(A) ≤ t(P ). Therefore,
(x, y) ∈ ¶(x′, y′) ∈ P : x′ = l(P )♢. Consequently, (x, y) ∈ R. So, LA ⊆ R ⊆ ter(B).

Moreover, we have:

l(B) = l(box(B)) ≤ l(ter(B)) ≤ l(LA)

= l(A) = l(P ↑) = l(P ) = l(R) < r(R)

≤ r(ter(B)) ≤ r(box(B)) = r(B)
(a)

≤ r(B)
(b)
< r(A),

where (a) is because B ∈ F , and (b) follows from Step (S′2) of the construction.
Therefore l(B) ≤ l(A) < r(B) < r(A).

On the other hand,

b(B) < b(P ) < b(P ↑) = b(A)
(c)
< t(A) = t(P ) < t(B),

where (c) follow from the fact that A, a strong Pouna set, cannot be a subset of a
horizontal line segment. Therefore b(B) < b(A) < t(A) < t(B).

Hence, all the items in Constraint (C1) hold and A ↷ B.
Claim. F ′ satisfies (C2).

Let A and B be two disjoint sets in F ′ such that A ∩ ter(B) ̸= ∅. We prove that
A, B ∈ F . For the sake of contradiction, assume that ¶A, B♢ ⊈ F . There are three
cases possible.

Case 1: A, B ∈ F ′. So, there exists P, Q ∈ P such that P ̸= Q and A = SP

and B = SQ. But in that case, by construction, box(B) ⊆ Q, and A ⊆ P . So, from
A ∩ ter(B) ̸= ∅, we have P ∩ Q ̸= ∅, a contradiction.

Case 2: A = SP for some P ∈ P, and B ∈ F . Since A ⊆ P , form A ∩ ter(B) ̸= ∅
we deduce that P ∩ ter(B) ̸= ∅. Choose p = (x, y) ∈ P ∩ ter(B). Because by
deĄnition of Territory, there exists a point p′ = (x′, y) ∈ B with x′ > x. Now,
because B ⊆ F , we have p′ ∈ B and therefore p′ ∈ P . Hence P ∩ B ̸= ∅, i.e.
B ∈ N(P ). Therefore, B crosses P vertically. Moreover, A = SP crosses P1 and
therefore P horizontally. So, by Lemma 5.13, we have A ∩ B ̸= ∅, a contradiction.

Case 3: A ∈ F and B = SP for some P ∈ P . In this case ter(B) ⊆ P , and
therefore A ∩ P ̸= ∅, i.e. A ∈ N(P ). So, A crosses P vertically. On the other
hand, B crosses P1 and thus P horizontally. Therefore, by Lemma 5.13, we have
A ∩ B ̸= ∅, a contradiction.
Claim. F ′ satisfies (C3).

Let A, B ∈ F be two distinct sets with non-empty intersection. For the sake of
contradiction, assume that there exists C ∈ F such that C ⊆ ter(A) ∩ ter(B). We
Ąrst show that C ∈ F . Suppose not, so C = SP for some P ∈ P . Since C ⊂ P ,
neither of A and B can be some set of the form SQ. Therefore A, B ∈ F . Now,
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notice that C ⊆ ter(A) ⊆ box(A). On the other hand, box(A) ⊆ B, but C ⊈ B, a
contradiction.

Now we prove that both A and B are in F . Suppose not. Without loss of
generality, assume that A = SP for some P ∈ P . Since C ⊆ ter(A), we must
have C ∈ N(P ). Therefore b(C) < b(P ) ≤ b(A). On the other hand, because
C ⊆ ter(A) ⊆ box(A), we have b(C) ≥ b(A), a contradiction. So, A, B ∈ F as well,
and the result follows from the fact that F satisĄes (C3).
Claim. F ′ satisfies (C4).

Fix P ∈ P. Let us Ąrst prove that there exists no A ∈ F ; such that A ↷ SP or
SP ≺ A. First, if A ↷ SP , then, in particular, A ∩ SP ̸= ∅. Thus, by Property 5.24,
we have A ∈ F . Therefore, r(A) ≤ r(F) < r(P ↑) = r(SP ). But on the other hand,
A ≺ SP implies r(A) > r(SP ), a contradiction. Second, if SP ≺ A, then in particular
SP ⊆ ter(A). Also, by construction SP ⊆ P . Therefore, ter(A) ∩ P ̸= ∅. Hence, by
Property 5.24, we have A ∈ F . Therefore r(A) ≤ r(F) < r(P ↑) = r(SP ). On the
other hand, by Lemma 5.29, SP ≺ A implies that r(SP ) < r(A), a contradiction.

Now, for the sake of contradiction, assume that there exists A, B, C ∈ F ′ such
that A ≺ B, A ↷ C, and B ↷ C. From what we proved above, we know that
A, C ∈ F . Therefore, since F satisĄes (C4), we cannot have B ∈ F . So, B = SP for
some P ∈ P. In particular ter(B) ⊆ box(B) ⊆ P ↑.

From A ≺ B, we have A ⊆ ter(B) ⊂ P ↑ ⊆ P . Therefore, A ∈ NF(P ).
On the other hand, from B ≺ C, we have B ∩ C ̸= ∅, therefore C ∩ P ↑ ̸= ∅. So,

C ∈ NF(P ).
So, A and C are two sets in NF(P ) that are not disjoint, which contradicts the

fact that P is stable.
Claim. F ′ satisfies (C5).

For the sake of contradiction, assume that A, B, and C are three sets in F ′ that
two by two intersect. At least one of the three sets must be in F ′ \ F , because (C5)
holds for F . Moreover, because of Property 5.24, at most one of the three sets is in
F ′ \ F . So, without loss of generality, assume that A = SP for some P ∈ P, and
that B, C ∈ F . But since B ∩ A ̸= ∅, we have B ∩ P ̸= ∅, i.e. B ∈ N(P ). Similarly,
C ∈ N(P ). But B ∩ C ̸= ∅ contradicts the fact that P is stable for F . Hence, (C5)
holds for F ′.
Claim. F ′ satisfies (C6).

By assumption, S is strong. So, it is enough to show that TP , in Step (S′2), is
a positive transformation for every P ∈ P . This follows from the fact that Tp is
positive, as shown in Property 5.23.

This completes the proof of the lemma.

Theorem 5.27. Let S be a Pouna set. Every Burling graph is a constrained S-graph.

Proof. For this proof, we adopt the notations in the deĄnition of the construction of
Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, and Walczak.
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5.3. Burling graphs are constrained S-graphs

We may assume that S is a strong Pouna set, otherwise, we replace every S in
this proof with the horizontal reĆection of S. Fix a subterritory E of S (which exists,
by Lemma 5.16), and apply the construction on it. For every k ≥ 1, we know that
Fk is a family of transformed copies of S. We Ąrst prove that Fk satisĄes Constraints
(C1)-(C6). To do so, we prove the following stronger statement by induction on k.

Statement 5.28. For every k ≥ 1, we have:

1. the elements of Pk are mutually disjoint,

2. Pk is a family of stable probs of Fk,

3. Fk satisfies constraints (C1)-(C6).

First of all, for k = 1, the Ąrst item of the statement follows from the fact that the
fact that E is a subterritory of S. Statement (2) and (3) hold trivially, as ♣F1♣ = 1.

Now, assume that the statement holds for some k ≥ 1, we prove that it holds for
k + 1.

Notice that for every P ∈ P, the transformation T ′
P is positive, so the tuple

(FP , PP ) in a positive transformed copy of Γ(Fk, Pk). So, by Property 5.18, we
know that

for every P ∈ P, the family FP satisĄes Constraints (C1)-(C6). (5.1)

Moreover, it is easy to check the following:

for every P ∈ P, the elements of PP are stable probs for F and are mutually disjoint.
(5.2)

Claim. The elements of Pk are mutually disjoint.
Let PQ and P ′

Q′ be two probs in Pk+1. In order to show that these two probs
are disjoint, it is enough to show that (b(Q), t(Q)) and (b(Q′), t(Q′)) are disjoint
intervals. If P = P ′, then this follows from (5.2), and if P ̸= P ′ from the fact that
Q and Q′ are inside the roots of P and P ′ respectively, and P and P ′ are disjoint by
induction hypothesis.
Claim. Every P ∈ Pk+1 is a stable prob for Fk+1.

Let PQ ∈ Pk+1. Notice that Q ∈ PP is a prob for FP . So, by (5.2), Q has a
root R such that for every A ∈ NFP (Q), we have R ⊆ ter(A). So, item (1) of the
deĄnition of stable prob holds.

Set N1 = NFP (Q) and N2 = NFk+1
(P ).

The elements in NFk+1
(PQ) are either the neighbors of Q as a prob for FP , so

they are in N1, or are outside RP and thus are in N2. The elements in N1 are
mutually disjoint by (5.2) and the elements in N2 are mutually disjoint by induction
hypothesis. Finally, one element in N1 and one element in N2 are disjoint because
the former is inside RP and the latter does not intersect RP . So, item (2) of the
deĄnition holds as well.
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Chapter 5. Equivalence of deĄnitions

Now, Ąx A ∈ NFk+1
(PQ). If A ∈ N1, then

b(A) < b(Q) = b(PQ), and t(A) > t(Q) = t(PQ).

Moreover, there is a path in A crossing Q. So, the same path crosses PQ as well.
If A ∈ N2, then

b(A) < b(P ) = b(RP ) ≤ b(Q) = b(PQ),

and
t(A) > t(P ) = t(RP ) ≥ t(Q) = t(PQ).

Moreover, there is a path in A crossing P , so by Lemma 5.12, it crosses PQ as well.
Now, we check that Fk+1 satisĄes Constraints (C1)-(C6). In what follows, we use

several times the fact that that by (5.1) and by induction hypothesis, the conditions
hold when all the elements are chosen inside Fk or inside FP for some P ∈ Pk.

Moreover, notice that by induction hypothesis, elements of Pk are disjoint. Now,
because every A ∈ FP is entirely inside P , we know that

if P ̸= Q, then the elements of FP are disjoint from the elements of F Q. (5.3)

Furthermore, for every P ∈ Pk, the elements of FP are all inside RP . Moreover,
by deĄnition of root, no element of Fk intersect RP , so,

for every P ∈ P, the elements of Fk are disjoint from the elements of FP . (5.4)

Claim. Fk+1 satisfies (C1).
Let A, B ∈ Fk+1 be two distinct elements such that A ∩ B ̸= ∅. By (5.3) and

(5.3), either A, B ∈ Fk or there exists P ∈ Pk such that A, B ∈ FP . In the former
case, by induction hypothesis, we have A ↷ B or B ↷ A. In the latter case, by
(5.1), we have A ↷ B or B ↷ A.
Claim. Fk+1 satisfies (C2).

Let A, B ∈ Fk+1 such that A ∩ B = ∅ and A ∩ ter(B) ̸= ∅. There are four cases
possible:

Case 1: A, B ∈ Fk, in which case the result follows from (5.1).
Case 2: A ∈ Fk and B ∈ FP for some P ∈ Pk.
This case is not possible, because ter(B) ⊆ box(B) ⊆ RP . However, A ∈ Fk, so

A does not intersect RP as it is a root of a prob for Fk.
Case 3: A ∈ FP for some P ∈ Pk and B ∈ Fk.
Since A ⊆ RP , we have RP ∩ ter(B) ̸= ∅. Let p = (x, y) ∈ RP ∩ ter(B). By the

deĄnition of territory, there exists x′ > x such that p = (x′, y) ∈ B. Moreover, since
RP is a root of P , we have p′ ∈ P . So, p′ ∈ B ∩ P . Therefore, B ∈ NFk

(P ). Hence,
by (5.2) and using Property 5.20, we have that every root of P is inside the territory
of B. Hence, A ⊆ RP ⊆ ter(B). So, the result holds.
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5.3. Burling graphs are constrained S-graphs

Case 4: A ∈ FP and B ∈ FQ for P, Q ∈ Pk. Let p ∈ A∩ ter(B). So, in particular
p ∈ A ⊆ P and p ∈ ter(B) ⊆ box(F Q) ⊆ Q. Therefore P ∩ Q ̸= ∅. Hence, by the
induction hypothesis, we must have P = Q. So, the result follows from (5.1).

Claim. Fk+1 satisfies (C3).

Let A, B ∈ Fk+1 be two distinct sets such that A ∩ B ̸= ∅. For the sake of
contradiction, assume that there exists C ∈ Fk+1 such that C ⊆ ter(A) ∩ ter(B).

First of all, by (5.3) and (5.4), there are only two possible cases for A and B:
either A, B ∈ Fk or A, B ∈ FP for some P ∈ Pk.

Case 1: A, B ∈ Fk. In this case, by induction hypothesis, we cannot have C ∈ Fk.
So, C ∈ FP for some P ∈ Pk. Consequently, C ⊆ RP . Now, let p = (x, y) ∈ C.
Since C ⊆ ter(A), there exists x′ > x such that p′ = (x′, y) ∈ A. But also, p′ ∈ P .
Therefore A ∈ NFk

(P ). Similarly, we can show that B ∈ NFk
(P ). A contradiction

with the fact that the elements in NFk
(P ) are mutually disjoint.

Case 2: A, B ∈ FP for some P ∈ Pk. Notice that

ter(A) ⊆ box(A) ⊆ box(FP ) ⊆ RP .

So, C ⊆ RP . Therefore C ∈ FP as well, and the result follows from (5.1).

Claim. Fk+1 satisfies (C4).

Assume, for the sake of contradiction, that there exists A, B, C ∈ Fk+1 such that
A ≺ B, A ↷ C, and B ↷ C. By (5.3) and (5.4), since A ∩ C ̸= ∅ and B ∩ C ̸= ∅,
either A, B, C ∈ Fk or A, B, C ∈ FP for some P ∈ Pk. The former is not possible
because of induction hypothesis, and the latter because of (5.1). So, there exist no
such triple.

Claim. Fk+1 satisfies (C5).

For the sake of contradiction, assume that there exist three distinct sets
A, B, C ∈ Fk+1 that are mutually intersecting. By induction hypothesis, such triple
does not exists in Fk. So, at least on of the sets is in FP for some P ∈ Pk. But then,
(5.3) and (5.4) imply that the three sets are all in FP , a contradiction with (5.1).

Claim. Fk+1 satisfies (C6). By assumptions, S is strong. Thus, we only need to
show that every element of Fk+1 is a positive transformed copy of S. This is true
since the elements of Fk are positive transformed copies of S and the elements of
each FP are also positive transformed copies of S, because by (5.1), the family FP

satisĄes (C6).

This Ąnishes the proof of the statement.

To complete the proof of the theorem, it is enough to notice that thanks to
Lemma 5.25, by Statement 1, the graphs in the Burling sequence are all constrained
S-graphs, and that the class of constrained S-graphs is closed under induced
subgraph.
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Chapter 5. Equivalence of deĄnitions

5.4 Constrained graphs are abstract Burling

graphs

The contents of this chapter are mainly from [Pou22].

Some properties of Pouna sets

Lemma 5.29. Let A and B be two strong Pouna sets. If A ≺ B, then

1. r(A) < r(B),

2. h(A) ≤ h(B).

Proof. To prove (1), let r = r(A). Because A is compact, there exists a point (r, y)
in A. Since A ≺ B, we have (r, y) ∈ ter(B). Therefore, there exists r′ such that
r′ > r and (r′, y) ∈ B. Notice that, r′ ≤ r(B). Hence, r(A) < r(B).

To prove (2), notice that A ⊆ box(A) ⊆ ter(B) ⊆ box(B). So,
b(A) ≥ b(box(B)) = b(B) and t(A) ≤ t(box(B)) = t(B). Therefore,
h(A) = t(A) − b(A) ≤ t(B) − b(B) = h(B).

We say that two strong Pouna sets A and B are comparable if one of the following
happens: A ↷ B, B ↷ A, A ≺ B, or B ≺ A.

Lemma 5.30. Let A and B be two strong Pouna sets in a family F which satisfies
Constraints (C1) and (C2). If ter(A) ∩ ter(B) ̸= ∅, then A and B are comparable.

Proof. If A ∩ B ̸= ∅, then by Constraint (C1), either A ↷ B or B ↷ A. So, we
may assume A ∩ B = ∅. Choose a point p = (x, y) ∈ ter(A) ∩ ter(B). There exists
x′, x′′ ∈ R, both bigger than x, such that p′ = (x′, y) ∈ A and p′′ = (x′′, y) ∈ B.
Since A and B are disjoint, x′ ̸= x′′. First, assume that x′′ > x′. Notice that p′ /∈ B
and that p′ is on the straight line joining p and p′′, which are both points in box(B).
Therefore, p′ ∈ box(B). Consequently, p′ ∈ ter(B). Therefore A ∩ ter(B) ̸= ∅, and
by Constraint (C2), we have A ≺ B. Second, assume that x′′ < x. With a similar
argument, we deduce B ≺ A.

Main Theorem

Theorem 5.31. Every oriented constrained graph is an oriented abstract Burling
graph.

Proof. Let G be an oriented constrained graph. So, G is the oriented intersection
graph of a non-empty and Ąnite family F of strong Pouna sets which satisĄes
Constraints (C1)-(C5). We prove that (F , ≺,↷) is a Burling set.
Claim. The relation ≺ is a strict partial order.
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5.5. Abstract Burling graphs are derived graphs

By Lemma 5.29, if A ≺ B, then r(A) < r(B). This implies that ≺ is
antisymmetric.

Now assume that A ≺ B and B ≺ C. So, box(A) ⊆ ter(B) ⊆ box(B) ⊆ ter(C).
Thus A ≺ C. So, ≺ is transitive.

Being antisymmetric and transitive, ≺ is a partial order.
Claim. The relation ↷ has no directed cycles.

If A ↷ B, then by deĄnition, r(B) < r(A). Thus, ↷ cannot have any directed
cycles.
Claim. Axiom (A1) holds.

Let A ≺ B and A ≺ C. So, A ⊆ ter(B) ∩ ter(C), and in particular,
ter(B) ∩ ter(C) ̸= ∅. So, by Lemma 5.30, B and C are comparable. However,
because of Constraint (C3), we have B ∩ C = ∅. So, either B ≺ C or B ≺ C.
Claim. Axiom (A2) holds.

Let A ↷ B and A ↷ C. So, the set ¶(x, y) ∈ A : x = l(A)♢ is a subset of both
ter(B) and ter(C). In particular, ter(B) ∩ ter(C) ̸= ∅, and therefore by Lemma 5.30,
B and C are comparable. However, because of Constraint (C5), we have B ∩C = ∅.
Therefore, either B ≺ C or B ≺ C.
Claim. Axiom (A3) holds.

Let A ↷ B and A ≺ C. Hence, by deĄnition, r(B) ≤ r(A), and by Lemma 5.29,
r(A) < r(C). Consequently, r(B) < r(C). So, if B ∩ C ̸= 0, we must have C ↷ B.
But then A ↷ B, C ↷ B, and A ≺ C contradict Constraint (C4). Thus, B ∩C = ∅.
Now, choose a point p in A ∩ B. Since A ⊆ ter(C), we have p ∈ ter(C). Hence,
B ∩ ter(C) ̸= ∅. Therefore, by Constraint (C2), we have B ≺ C.
Claim. Axiom (A4) holds.

Let A ↷ B and B ≺ C. So, by deĄnition of ↷, we have h(A) < h(B), and by
Lemma 5.29, we have h(B) < h(C). So, h(A) < h(C). Hence, if A ∩ C ̸= ∅, we have
A ↷ C. On the other hand, if A ∩ C = ∅, since A ∩ B ̸= ∅ and B ⊆ ter(C), we
have A ∩ ter(C) ̸= ∅. Therefore, by constraint (C2), A ≺ C.

So, (F , ≺,↷) is a Burling set. Finally, because of Constraint (C1), the
oriented abstract Burling graph Ĝ obtained from the Burling set (F , ≺,↷) is indeed
isomorphic to G, the oriented intersection graph of F . So, G is an oriented abstract
Burling graph.

5.5 Abstract Burling graphs are derived graphs

The contents of this section are mainly from [PT23].

Some properties of Burling sets

Lemma 5.32. Let S be a Burling set, and let x, y ∈ S. At most one of the following
holds: x ↷ y, y ↷ x, x ≺ y, or y ≺ x. In particular, ↷ ∩ ≺ = ∅.
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Chapter 5. Equivalence of deĄnitions

Proof. Notice that if any of the four relations hold, then x ̸= y, because ≺ is a strict
partial order and ↷ has no directed cycle of length 1.

First suppose that x ↷ y. Because ↷ has no directed cycles, we cannot have
y ↷ x. Moreover, if x ≺ y, then by Axiom (A3), we must have y ≺ y, a contradiction.
If y ≺ x, then by Axiom (A4), we have either x ↷ x or x ≺ x, in both cases, it is a
contradiction.

It just remains to check that x ≺ y and y ≺ x cannot happen simultaneously, which
is clear by the deĄnition of strict partial orders.

Lemma 5.33. Let R =↷ ∪ ≺. The relation R has no directed cycle. In particular,
R has some minimal element which is therefore minimal for both ↷ and ≺.

Proof. Suppose for the sake of contradiction that there is a cycle in R, and let
x1, x2, . . . , xn be a minimal cycle.

By deĄnition, n ̸= 1, and by Lemma 5.32, we have n ̸= 2.
Now suppose that n ≥ 4. Notice that none of ↷ and ≺ has a directed cycle, thus

there exists 1 ≤ i ≤ n, such that xi ↷ xi+1 and xi+1 ≺ xi+2 (summations modulo
n). Hence by Axiom (A4), we must have either xi ↷ xi+2 or xi ≺ xi+2. In any case,
xi R xi+2, which is in contradiction to the minimality of the chosen directed cycle.

Finally, suppose that n = 3. Up to symmetry, we have x1 ↷ x2 and x2 ≺ x3, and
therefore by Axiom (A4), we have x1 R x3. But because this is a cycle, we must have
x3 R x1. This is in contradiction with Lemma 5.32.

So R has no directed cycle. So there exists a minimal element in R which is, by
deĄnition, a minimal element for both ↷ and ≺.

We recall that in a given Burling set S, and for an element s in S,
[s↷] = ¶t ∈ S : s ↷ t♢, and [s≺] = ¶t ∈ S : s ≺ t♢.

Lemma 5.34. Let s be an element of a Burling set S. Then there exists an ordering
of the elements of [s↷] such as u1, u2, · · · uk and an ordering of the elements of [s≺]
such as v1, v2, . . . vl such that u1 ≺ u2 ≺ . . . ≺ uk ≺ v1 ≺ v2 ≺ . . . ≺ vl.

Proof. By Axiom (A2), all the elements of [s↷] form a chain u1 ≺ u2 ≺ . . . ≺ uk.
Moreover, by Axiom (A1), all the elements of [s≺] also form a chain v1 ≺ v2 ≺ . . . ≺ vl.
Finally, uk ≺ v1 follows from Axiom (A3) since s ↷ uk and s ≺ v1.

Main theorem

Theorem 5.35. Every oriented abstract Burling graph is an oriented derived graph.

Proof. Let G be an oriented abstract Burling graph obtained from a Burling set S.
We prove the following statement by induction on the number of elements of S.

Statement 5.36. There exists a Burling tree (T, r, ℓ, c) such that S ⊆ V (T ), and
for every two distinct elements x and y in S:
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1. x ≺ y if and only if x is a descendant of y in T ,

2. x ↷ y if and only if y ∈ c(x) in T .

If ♣S♣ = 1, then the result obviously holds. Suppose that the statement holds for
every Burling set on at most k − 1 elements, and let S be a Burling set on k ≥ 2
elements.

Let v ∈ S be a minimal element of ↷ ∪ ≺ which exists by Lemma 5.33. Set
S ′ = S \ ¶v♢. By the induction hypothesis, there exists a Burling tree (T ′, r′, ℓ′, c′)
such that S ′ ⊆ V (T ′) and the two properties of the statement hold.

Now let [v↷] = ¶u1, u2, . . . , um♢ and [v≺] = ¶w1, w2, . . . , wn♢ (both
possibly empty). By Lemma 5.34, suppose without loss of generality that
u1 ≺ u2 ≺ . . . ≺ um ≺ w1 ≺ w2 ≺ . . . ≺ wn. Thus by the induction hypothesis, they
appear on the same branch of T ′. So from the root to the leaf, they appear in
this order: wn, · · · w1, un, . . . , u1. Now we consider two cases:

Case 1: [v≺] = ∅. In this case, add a parent r to r′ and deĄne ℓ(r) = r′. Then
add v as a child of r. If [v↷] = ∅, then deĄne c(v) = ∅. Otherwise, let P be the
set of vertices on the path between r′ and u1, including both of them, and deĄne
c(v) = P . Call this new Burling tree T .

Case 2: [v≺] ̸= ∅. In this case, if w1 is a leaf, and hence [v↷] = ∅, then add v
as a last-born child of w1 and deĄne c(v) = ∅. If w1 is not a leaf, then add v as a
non-last-born child of w1. If [v↷] = ∅, deĄne c(v) = ∅. Otherwise, let P be the set
of vertices on the path between ℓ(w1) and u1, and deĄne c(v) = P . Call the obtained
Burling tree T .

In both cases, we obviously have S ⊆ V (T ), so it remains to prove the two
properties of the statement. For any two distinct elements of S which are both
different from v, the result follows from the induction hypothesis. So consider v and
an element u of S different from v. Notice that by minimality of v with respect to
both relations, we have neither u ↷ v nor u ≺ v in S, and by the construction of T ,
in both cases, v is not in c(u), and it has no descendant, so in particular, u is not a
descendant of v. Moreover, by construction of T in both cases, if v ≺ u in S, then v
is a descendant of u in T , and if v ↷ u in S, then u ∈ c(v) in T .

Now suppose that x is an element of S, and in T , x is an ancestor of v, and
thus we are necessarily in case 2. We prove that v ≺ x. If x = w1, then the result
is immediate. Otherwise, x is an ancestor of w1. Thus by the induction hypothesis,
w1 ≺ x. On the other hand, v ≺ w. Since ≺ is an strict partial order, v ≺ x.

Finally, suppose that x is an element of S and in T , x ∈ c(v). We show that
v ↷ x in S. From x ∈ c(v), we know that x is a vertex among the vertices of the
path from the last-born of w1 to u1. If x = u1, then the result is immediate. If not,
we have v ↷ u1 and u1 ≺ x. So by Axiom (A1), either v ↷ x or v ≺ x. But the
latter is not possible because otherwise from v ≺ x and the fact that v ̸= x, we know
that x is either w1 or it is an ancestor of w1 in T . But this is not possible, because
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x ∈ c(v).
To complete the proof we notice that G is exactly the subgraph of the graph

derived from T , induced by the vertices of S.

5.6 Concluding the proof

Proof of Theorem 5.1. We have:

1
T heorem 5.10

=⇒ 2
T heorem 5.27

=⇒ 3
by definition

=⇒ 4
T heorem 5.31

=⇒ 5
T heorem 5.35

=⇒ 1.

5.7 A category theoretical view of this chapter

We close this chapter by a discussion about the proof of Theorem 5.1. We will
see that we have proved something stronger than Theorem 5.1: that not only these
graph classes are equal, but their structure-preserving morphisms are also preserved
through the equivalences given in the proofs.

It might be easier to explain this from a category theoretical point of view.
We keep this section very informal, with no proofs or details. First, because it
will not be used in any other parts of the thesis, and second, because despite not
being complicated, writing the details can be long. However, we believe that this
presentation has the advantage of giving a global view on how this long proof works.

What we have seen so far can be viewed as the interaction of Ąve categories that
we introduce hereunder. Since the morphisms are all structure-preserving maps, the
compositions and the units are the natural ones (i.e. the compositions of functions
and the identity functions). In the category S-Sets below, S is a Ąxed Pouna set.

BTrees Objects: partial Burling trees: tuples (T, r, ℓ, c, V ) where (T, r, ℓ, c) is a Burling
tree (DeĄnition 4.4) and V is a subset of V (T ).

Hom(A, B): extensions ϕ (DeĄnition 5.6) from the Burling tree of
A = (T, r, ℓ, c, V ) to the Burling tree of B = (T ′, r′, ℓ′, c′, V ′) such that
ϕ(V ) ⊆ ϕ(V ′).

BGraphs Objects: Burling graphs and their inherited stable sets, i.e. pairs (G, S) of a
graph G and a set S of stable sets of G such that G is an induced subgraph of
a graph Gk in the Burling sequence (DeĄnition 4.2) and S is the restriction of
Sk to the vertex-set of G.

Hom(A, B): graph morphisms that preserve the stable sets, i.e. if A = (G, S)
and B = (G′, S ′), then Hom(A, B) is the set of graph homomorphisms
ϕ : V (G) → V (G′) such that ϕ(S) ⊆ S ′.
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S-Sets Objects: Ąnite families of transformed copies of S (see under S-graphs in
Section 2.3) that satisfy constraints (C1)-(C6) (DeĄnition 4.20).

Hom(A, B): functions from A to B that preserve ↷ and ≺, , i.e. function
f : F → F ′ such that for every R ∈ ¶↷, ≺♢ if S, S ′ ∈ F such that S R S ′, then
f(S) R f(S ′).

PounaSets Objects: Ąnite families of strong Pouna sets (DeĄnition 4.15) that satisfy
constraints (C1)-(C5) (DeĄnition 4.19).

Hom(A, B): functions from A to B that preserve ↷ and ≺.

BSets Objects: Burling sets (S, ≺,↷) (DeĄnition 4.10).

Hom(A, B): functions from the underlying set of A = (S, ≺,↷) to the
underlying set of B = (S, ≺′,↷′) that preserve the relations. Notice that,
in particular, f is a graph homomorphism from the graph (S,↷) to the graph
(S ′,↷′).

Now, each section of the proof in this chapter provides the existence of a functor
from one category to the other.

Section 5.2 might be the trickiest one. We can deĄne F12 to be a functor from
BTrees to BGraphs. Let A = (T, r, ℓ, c, V ) be an object in BTrees. We deĄne
F12(A) as follows: let H be the graph fully derived from T , and set G = H[V ], i.e. the
subgraph of G induced by V . Also, denoting the principle branches of T by P(T ),
set S = ¶P ∩ V : P ∈ P(T )♢. DeĄne F12(A) = (G, S). Also, when an extension
ϕ ∈ Hom(A, B) is given, one can easily restrict it to Ąnd a morphism F12(ϕ) from
F12(A) to F12(B), Lemma 5.7 and Theorem 5.10 imply that F12 is well-deĄned and
indeed is a functor.

The functor F23 from BGraphs to S-Sets also needs some explanations.
Skipping details, we Ąrst need to mention that every family F of transformed copies
of S satisfying (C1)-(C6) is equivalent (in the sense described above) to a subset of
some Fk, where ¶(Fk, Pk)♢k≥1 is the sequence deĄned in Section 5.3 for the set S. So,
following the lines of proofs in Section 5.3, we Ąrst need to Ąnd a functor F ′

23 from
BGraphs to a category whose objects are equivalence classes of families of Pouna
sets satisfying (C1)-(C5) with their inherited ŞprobsŤ from ¶(Fk, Pk)♢k≥1 by sending
(G, S) to the class of F (and its inherited probs) where G is the intersection graph of
F (the reason that this is well-deĄned is once again the deĄnition of the equivalence
classes). Then, decomposing F ′

23 with a forgetful functor from the latter category to
S-Sets gives us F23 on the objects. For a morphisms in Hom(A, B), we simply use
the fact that each graph G is sent to the class of F where G is the intersection graph
of F to send a graph morphism to a morphism in Hom(F23(A), F23(B)).

DeĄning F34 from S-Sets to PounaSets might be the easiest one among all,
since we need it to be a natural forgetful functor.
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Chapter 5. Equivalence of deĄnitions

To deĄne F45 from PounaSets to BSets we simply send a family F to the Burling
set (F , ≺,↷) where ↷ and ≺ are as deĄned at the beginning of Section 4.4.2. They
extend naturally to morphisms.

Finally, to deĄne F51 from BSets to BTrees. Following the proof of
Statement 5.36, we can deĄne F51 on the objects: for A = (S, ≺,↷), we deĄne
F51(A) to be the tuple (T, r, ℓ, c, S) as in Statement 5.36. Theorem 5.35 assures us
that we can extend F51 to morphisms.
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Chapter 6

Intersection graphs of boxes

As explained in the introduction, the Ąrst deĄnition of Burling graphs introduced
them as the intersection graph of boxes in R3 [Bur65]. In [PT23], Trotignon and the
author deĄned the class of strict box-graphs that is a proper subclass of box-graphs
(i.e. intersection graphs of axis-parallel boxes in R3) and is equal to the class of
Burling graphs. Here, we describe this class.

Let F be a strict family of frames (see DeĄnition 4.12) in R2. Let I (R) denote
the set of all non-empty closed intervals in R. Let i : F → I (R) be a function that
to each frame A in F associates an interval i(A). We say that i is compatible with
F if for every A, B ∈ F we have:

1. if A ↷ B, then IB ⊊ IA,

2. if A ≺ B, then IA ∩ IB = ∅.

Lemma 6.1. For every strict family F of frames in R2, there exists an interval
function i compatible with F .

Proof. Let G denote the oriented intersection graph of S. By Theorem 5.1, G can
be derived from a Burling tree (T, r, ℓ, c). Moreover, by Lemma 5.3, we may assume
that r is not in V (G), every non-leaf vertex in T has exactly two children, and no
last-born of T is in V (G). So, every frame A of F corresponds to a vertex vA ̸= r
of T that is not a last-born. Moreover, A ≺ B if and only if vA is a descendant of
vB in T and A ↷ B if and only if vB ∈ c(vA). So, in order to prove the lemma, it is
enough to show that there exists i′ : V (T ) → I (R) such that:

1. if u ∈ c(v), then Iu ⊊ Iv,

2. if u is a proper descendant of v then Iu ∩ Iv = ∅.

We Ąrst deĄne an injective function f : V (T ) → ¶1, 2, . . . , ♣V (T )♣♢ such that:

1. f(r) = 1,

2. for every non-leaf vertex v with the last-born child u and the non-last-born
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Figure 6.1: Intervals associated to the non-last-borns of a Burling tree.

child w, we have f(u) = f(v) + 1 and

f(w) = max¶f(x) : x is a descendant of u♢ + 1.

To Ąnd such function one can perform a depth-Ąrst search on T starting at the
root and giving priority to the last-borns, and assign to each vertex the step that it
is seen in the algorithm. See Figure 6.1, left.

Notice that in particular, for a vertex v with the last-born child u and the
non-last-born child w, we have f(u) < f(w). So, [f(u), f(w)] ∈ I (R). Now, let
w ∈ V (G). So, w is a vertex of T that is neither r nor a last-born. It follows that w
has a parent v. Set u = ℓ(v). DeĄne i′(w) = [f(u), f(w)].

Let us prove that i satisĄes the two conditions claimed. Let w, w′ ∈ V (T ) and
suppose that i(w) = [f(u), f(w)] and i(w′) = [f(u′), f(w′)] with notation as above.

First, suppose that w′ ∈ c(w). Then, u′ and w′ are both descendant of u. So
f(u) < f(u′) < f(w′). And since w′ is a descendant of u, f(w′) < f(w). Hence
[f(u′), f(w′)] ⊊ [f(u), f(w)].

Second, suppose that w is a proper descendant of w′. In this case, both u and w
are descendant of w′, so by the properties of DFS, f(u) > f(w′). This implies that
[f(u), f(w)] and [f(u′), f(w′)] are disjoint.

Given a frame A in R2 and an interval I ⊆ R, we can deĄne a box B associated
to A and I as follows: B = box(A) × I.

For a set S ⊆ R3, we denote by ρ1,2(S) the set ¶(x, y)♣(x, y, z) ∈ S♢.

Definition 6.2. Let F be a family of boxes in R3. We say that F is strict if the
following happen:

1. The border of the images of the boxes in the xy plane forms a strict set of
frames in the plane. Formally, the set F0 = ¶∂(ρ1,2(S))♣S ∈ B♢ forms a strict
family of boxes in R2.

2. The intervals of the boxes are compatible with F0. Formally, the function
i : F0 → I (R) defined as i(ρ1,2(S)) = ρ3(S) is compatible with F0.
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Definition 6.3. A graph G is a strict box-graph if it is isomorphic to the intersection
graph of a strict family of boxes in R3.

Now, let us prove that strict box graphs are also equal to Burling graphs.

Lemma 6.4. Suppose that a strict family F ′ of boxes is obtained from a strict family
of frames F . Let A, B ∈ S be frames, and A′, B′ be the respective boxes associated to
them. Then, A ∩ B ̸= ∅ if and only if A′ ∩ B′ ̸= ∅. In particular, the intersection
graph of S is isomorphic to the intersection graph of S ′.

Proof. If A enters B, then A′ ∩ B′ ̸= ∅ because both the frames and the interval
associated to them have a non-empty intersection. If A is inside B, then A′ ∩B′ = ∅
because the intervals associated to A and B are disjoint. If A and B are incomparable,
then A′ ∩ B′ = ∅ because A ◦ ∩B ◦ = ∅.

Theorem 6.5. The class of strict box graphs is equal to the class of Burling graphs.

Proof. Suppose that G is a Burling graph. Then, by Theorem 5.1, G is the
intersection graph of a strict set F of frames. By Lemma 6.1, a set of intervals
compatible with S exists. Hence, by Lemma 6.4, G is isomorphic to a strict box
graph.

Suppose conversely that G is a strict box graph. Then, by deĄnition, it arises from
a strict set of frames and a set of interval compatible with it. Hence, by Lemma 6.4,
G is isomorphic to a strict frame graph. So by Theorem 5.1, G is a Burling graph.
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Structure of Burling graphs
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Structure of Burling graphs
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In this chapter, we study the structure of Burling graphs, mostly by using the
derived graphs deĄnition. Thanks to Theorem 5.1, from now on, we use the terms
Burling graph and derived graph interchangeably.

Section 7.1 contains some basic observations about the class. In Section 7.2 we
study the behavior of Burling graphs under some operations. Section 7.3 is about
k-Burling graphs, which are subclasses of Burling graphs that are χ-bounded and
form a hierarchy in the class of Burling graphs. In particular, we study 1-Burling
graphs and 2-Burling graphs in detail. In Section 7.4 we study the star cutsets in
Burling graphs and use this study to state and prove a decomposition theorem for the
class. Finally, in Section 7.5, we analyze the orientation of holes in Burling graphs
and study their interactions.

7.1 First observations about derived graphs

Lemma 7.1. Every oriented Burling graph contains a source.

Proof. Follows from Lemma 4.9.

Lemma 7.2. Suppose that G is an oriented graph derived from a Burling tree T . If
uv ∈ A(G), then p(u) is an ancestor of p(v).

Proof. Follows directly from the deĄnition of derived graphs.
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Chapter 7. Structure of Burling graphs

7.2 Operations on Burling graphs

In this section, we study subdivision and contraction of edges and adding leaves
in Burling graphs. We show that adding a leaf always preserves the property of Being
a Burling graph. We also give conditions under which we can subdivide some edges
of a Burling graph and obtain another Burling graph.

A breach in time. In Chapter 9, were we study the closedness of Burling graphs
under several operations, we show that this class is not closed under subdivision and
contraction of edges, which justifies the need for the results in this section.

7.2.1 Adding a leaf

Let us start by showing that adding a leaf preserves being a Burling graph. Adding
a leaf l to vertex v of a graph G, is the operation of building a graph G′ such that
V (G′) = V (G)∪¶l♢ and E(G′) = E(G)∪¶lv♢. When G is an oriented graph, adding
an in-leaf (resp. out-leaf) is adding a leaf to the underlying graph of G and orienting
the new edge from l to v (resp. from v to l).

Theorem 7.3. Let G be an oriented graph derived from a Burling tree (T, r, ℓ, c).
Let v ∈ V (G). If G′ is the graph obtained by adding an in-leaf or an out-leaf l to
vertex v of G, then G′ is a derived graph.

Proof. By 5.3, we may assume that v is not the root of T . Let p = p(v) in T . By
5.3, we may assume that v is not the last-born of p. Subdivide the edge pv of T once
and call the new vertex p′. Add a new child l to p′ to obtain a tree T ′.

In case of in-leaf (resp. out-leaf), i.e. when lv ∈ A(G′) (resp. vl ∈ A(G′)), deĄne
ℓ′(p′) = v (resp. ℓ′(p′) = l), and for every u ∈ V (T ) different from p, set ℓ′(u) = ℓ(u).
Also, deĄne c′(l) = ¶v♢ (resp. c′(l) = ¶v♢). For any vertex u ∈ V (T ), if v ∈ c(u),
deĄne c′(u) = c(u) ∪ ¶p′♢, otherwise, set c′(u) = c(u). Finally, set c′(p′) = ∅. The
tuple (T ′, r, ℓ′, c′) is a Burling tree, and G′ is derived from T ′.

Corollary 7.4. The class of Burling graphs is closed under adding leaves.

7.2.2 Subdivision

Now we study how to obtain new oriented Burling graphs by subdividing arcs
of another Burling graph. Before starting the proofs, it is worth observing that
in a Burling tree (T, r, ℓ, c), when v is the last-born of some vertex u, one may
obtain another Burling tree (T ′, r, ℓ′, c′) by setting (T ′, r, ℓ′, c′) = (T, r, ℓ, c) and then
applying the following transformations to T ′. First, delete the edge uv from T ′ and
add a new vertex w adjacent to u and v. Then set ℓ′(u) = w and ℓ′(w) = v. To deĄne
c′, add w to all sets c(x) that contain v. A fact that we do not state formally but
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Figure 7.1: Subdividing a bottom-arc.

is easy to check and is implicit in some of the proofs below is that this new Burling
tree T ′ is equivalent to T in the sense that every graph that can be derived from T
can be derived from T ′. This is simply because V (G) ⊆ V (T ) ⊆ V (T ′) and because
for all x ∈ V (G), c(x) ∩ V (G) = c′(x) ∩ V (G).

Subdividing an arc uv into uwv in an oriented graph means removing the arc uv
and adding instead a directed path uwv where w is a new vertex.

Top-subdividing an arc uv into wu and wv means removing uv and adding instead
two arcs wv and wu where w is a new vertex.

Lemma 7.5. Let G be an oriented graph derived from a Burling tree T and uv be a
bottom-arc of G. The graph G′ obtained from G by subdividing uv into uwv can be
derived from a Burling tree T ′ in such a way that:

• uw is a bottom-arc of G′,

• wv is both a bottom-arc and a top-arc of G′,

• every top-arc of G with respect to T (except uv) is a top-arc of G′ with respect
to T ′,

• every bottom-arc of G with respect to T (except uv) is a bottom-arc of G′ with
respect to T ′.

Proof. By Lemma 5.3, we may assume that v is neither the root not a last-born of
T . Let x be the parent of v, and let t be the last-born of x. See Figure 7.1.

Build from T a Burling tree (T ′, r′, ℓ′, c′) by removing the edge xt from T . Then
add to T ′ a path xx′t, and set ℓ′(x) = x′, and ℓ′(x′) = t. Add to T ′ a new vertex w
adjacent to x. Set c′(u) = ¶w♢ ∪ c(u) \ ¶v♢. Set c′(w) = ¶x′, v♢. Replace c′(z) by
c′(z) ∪ ¶x′♢ for all z ̸= v such that t ∈ c(z) or v ∈ c(z).

We see that the oriented graph G′ obtained from G by subdividing arc uv into
uwv can be derived from T ′.

Lemma 7.6. Let G be an oriented graph derived from a Burling tree T and uv be
a top-arc of G such that u is a source of G. The graph G′ obtained from G by
top-subdividing uv can be derived from a Burling tree T ′ in such a way that:
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Figure 7.2: Top-subdividing a top-arc.

• wv is a top-arc,

• wu is a bottom-arc,

• every top-arc of G with respect to T (except uv) is a top-arc of G′ with respect
to T ′,

• every bottom-arc of G with respect to T (except uv) is a bottom-arc of G′ with
respect to T ′.

Proof. Note that u is not a last-born since there exists an arc uv in G. Let x be the
parent of u. Let y be the last-born of v (if v is a leaf of T , just add y to T ). By
Lemma 5.3, we may assume that y is not in G. Let v′ be the child of v such that
v′ ∈ c(u) (it is possible that v′ = y if no child of v is in c(u), but in that case we just
add y to c(u)). See Figure 7.2, where the cases v′ ̸= y and v′ = y are represented.
Notice that the proof below applies to the two cases at the same time.

Build from T a Burling tree (T ′, r′, ℓ′, c′) by removing the edges xu, vv′ and vy
from T . Then add to T ′ the edge vu, the path vy′y and the edge y′v′, and set ℓ′(v) = y′
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and ℓ′(y′) = y. Add to T ′ a new vertex w adjacent to x (in T ′). Set c′(u) = c(u)\V (P )
where P is the path of T ′ from x to v. Set c′(w) = ¶u♢ ∪ V (P ) \ ¶x♢. Replace c′(z)
by c′(z) ∪ ¶y′♢ for all z such that y ∈ c(z) or v′ ∈ c(z).

We see that the oriented graph G′ obtained from G by top-subdividing uv into
wu and wv can be derived from T ′ because v /∈ c′(u) and u, v ∈ c′(w), and the rest
of the arcs between the vertices of G have remained unchanged. Observe that v and
u are the only vertices of G in V (P ) \ ¶x♢ since uv is a top-arc of G. Observe that
no vertex z of G has u in c(z) since u is a source of G.

Theorem 7.7. Let G be an oriented Burling graph derived from a Burling tree T .
Any graph obtained from G after performing the following operations is an oriented
Burling graph:

• Replacing some bottom-arcs uv by a path of length at least 1, directed from u
to v.

• Replacing some top-arcs uv such that u is a source of G by an arc wv and a
path of length of length at least 1 from w to u.

Proof. Clear by repeatedly applying Lemma 7.5 Lemma 7.6.

Let us now give some examples and applications of Theorem 7.7. In Figures 7.3
and 7.4, some oriented Burling graphs are represented. In the three Ągures, we
have represented top-arcs such that one of their end-points is a source by dotted
lines, bottom-arc by dashed lines, and the other arcs by solid lines. Therefore, by
Theorem 7.7, by top-subdividing any of the dotted arcs and subdividing any of the
dashed arcs, we obtain an oriented Burling graph. In Figure 7.3, the oriented graphs
derived from the Burling trees from Figure 4.2 are represented. In Figure 7.4, a
Burling tree, together with the oriented graph derived from it, is represented. By
considering its underlying graph, we see how to obtain several subdivisions of K4,
namely any subdivision in which every edge except uy and wy is possibly subdivided.
As a consequence, all graphs arising from the three non-oriented graphs in Figure 7.5
by subdividing dashed edges are Burling graphs.

A breach in time. We will see in Section 8.2 that Figure 7.4 provides all
subdivisions of K4 that are Burling graphs (see Theorem 8.5).

7.2.3 Contraction

Lemma 7.8. Let G be an oriented derived graph, and let uv be an arc such that
N+(u) = ¶v♢ and N−(v) = ¶u♢. Then the graph G′ obtained by contracting uv is
also an oriented derived graph and the top-arcs (resp. bottom-arcs) of G except uv
are the top-arcs (resp. bottom-arcs) of G′.
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Figure 7.5: Subdivisions of non-oriented graphs.
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Proof. Suppose that G is derived from the Burling tree (T, r, ℓ, c). Let S be the
vertex-set (possibly empty) of the path starting at the last-born of the parent of u
and ending at the parent of v in T . Notice that S ⊆ c(u), and since c(u)∩V (G) = ¶v♢,
no vertex of S and no descendant of v in c(u) is a vertex of G.

DeĄne c′(u) = S ∪ c(v) and deĄne c′(w) = c(w) for any vertex w of T other than
u. It is easy to see that (T, r, ℓ, c′) is a Burling tree. The graph G′ is derived from
this new Burling tree. Indeed, G′ is the subgraph of the graph fully derived from
(T, r, ℓ, c′) induced on V (G) \ ¶v♢.

Finally, it is easy to see that no top-arcs or bottom-arcs are changed except
for uv.

7.3 k-Burling graphs

Definition 7.9. Let k ∈ N be a non-negative integer. An oriented graph G is a
oriented k-Burling graph if it can be derived from a Burling tree T such that on
each branch of T , at most k vertices belong to G. In such a case, we say that G is
derived from T as a k-Burling graph. A k-Burling graph is the underlying graph of
an oriented k-Burling graph.

The empty graph is the unique 0-Burling graph. Notice that every k-Burling
graph is a k + 1-Burling graph as well. So, k-Burling graphs form a hierarchy inside
the class of Burling graphs. We will see in this section that

• One can build all k + 1-Burling graphs using k-Burling graphs following a
particular procedure. (See sequential graphs Section 7.3.2.)

• The chromatic number of k-Burling graph is bounded (by k +1) for each k (see
Theorem 7.11). So, they are χ-bounded subclass of Burlign graphs.

• (oriented) 1-Burling graphs are exactly all (oriented) forest (see Theorem 7.12).

• (oriented) 2-connected 2-Burling graphs with no vertex of degree at most 1 are
exactly (oriented) chandeliers (see Theorem 7.23).

A breach in time. In Section 7.4, we will see that all Burling graphs can be
decomposed into 2-Burling graphs and a few other simple graphs. So, 2-Burling
graphs are an important class in this hierarchy. See Theorem 7.30.

Definition 7.10. The nobility of an oriented graph is the smallest integer k such
that G is a k-Burling graph. The nobility of a non-oriented Burling graph G is the
smallest nobility of an oriented Burling graph G′ such that G is the underlying graph
of G′.

Let us see some examples. In Figure 7.6, G is an oriented Burling graph G.
Indeed, two presentation of G as derived graphs (from Burling trees T1 and T2
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Figure 7.6: G can be derived from T1 and T2.

respectively) is presented. Observe that G is derived from T1 as a 3-Burling graph,
and is derived from T2 as a 4-Burling graph. Therefore, the notability of G is at
most 3. However, we can see that the notability of G is at least 3 as well since it has
a vertex of out-degree 3 (and the out-neighbors of a vertex must be on a common
branch of the Burling tree).

In Figure 7.7, two oriented graphs G1 and G2 are represented. Since G1 can be
derived from T1, we see that G1 is an oriented 2-Burling graph. In fact, the nobility
of G1 must be at least 2, because since c is a source of degree 2, its two out-neighbors
must be on the same branch. Similarly, G2 is an oriented 3-Burling graph and has
nobility 3 (because of y being a source of degree 3). Hence, G is a 2-Burling graph (in
fact it has nobility 2 since only forests have nobility 1, as we show in Theorem 7.12).
This shows that an oriented graph (for instance G2) may have a nobility different
from the nobility of its underlying graph.

It should be pointed out that the nobility of an oriented graph may be strictly
greater than its maximum out-degree, as shown on Figure 7.8. The graph G has three
sources with out-neighborhood ¶1, 2, 3♢, ¶2, 3, 4♢ and ¶3, 4, 5♢. It can be checked that
at least four vertices among 1, 2, 3, 4 and 5 must lie on the same branch of any Burling
tree from which G can be derived. So, the nobility of G is 4.

A graph or oriented graph G is said to be d-degenerate if every induced subgraph
H of G has a vertex v with dH(v) ≤ d. By induction on ♣V (G)♣, we can show that
every d-degenerate graph is (d + 1)-colorable.

Theorem 7.11. Every k-Burling graph G is k-degenerate and thus is
(k + 1)-colorable.

Proof. Assume G is derived from a Burling tree T as a k-Burling graph. For k = 1
the result is obvious. Fix k ≥ 1. We proceed by induction on ♣V (G)♣. If G has only
one vertex, then it is clearly (k+1)-colorable. Now, assume that G has n+1 vertices.
Let v be a top-left vertex. Notice that all the neighbors of v are out-neighbors and
thus lie on one branch of the tree. Therefore d(v) ≤ k. So, the result follows from
the induction hypothesis.
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7.3.1 1-Burling graphs

Theorem 7.12. An oriented graph G is an in-forest if and only if it is an oriented
1-Burling graph.

Proof. Suppose that G is derived from a Burling tree T as a 1-Burling graph. By
Lemma 7.1, every Burling graph contains a source and since the out-neighborhood
of any vertex is included in a branch and G is 1-Burling, this source has degree at
most 1. So, every 1-Burling oriented graph has a source of degree at most 1. This
implies by an easy induction that every 1-Burling oriented graph is an in-forest.

To prove the converse statement, it is enough to check that for every 1-Burling
graph G derived from a Burling tree (T, r, ℓ, c) and every vertex v of G, adding an
in-neighbor u of v with degree 1 yields a 1-Burling graph G′. Here is how to construct
G′. Build a rooted tree T ′ from T by adding a new root r′ adjacent to r. DeĄne for
V (T ′) the functions ℓ′ and c′ as equal to ℓ and c for vertices of T . Nominate r as
the last-born child of r′ and add u as a non-last-born child of r′. Then consider a
branch B of T that contains v and set c′(u) = B. Note that by deĄnition of 1-Burling
graphs, B ∩ V (G) = ¶v♢. So G′ is indeed derived from (T ′, r′, ℓ′, c′) and it is clearly
a 1-Burling graph.

7.3.2 Sequential graphs

Now that we know what 1-Burling graphs are, we can deĄne the notion of top-set
of a representation of a derived graph. This notion will be used in the rest of this
section and in the next section. Here we just describe the notion and some facts
about it.

Top-sets

Definition 7.13. When G is derived from a Burling tree (T, r, ℓ, c), we call the
top-set of G the set S of all vertices v of G such that v is the unique vertex of G in
the branch of T from r to v.

Lemma 7.14. If S is the top-set of the oriented graph G derived from a Burling
tree, then G[S] is an in-forest. Moreover, if G is a k-Burling graph (k ≥ 1), then
G \ S is a (k − 1)-Burling graph.

Proof. By the deĄnition of the top-sets, G[S] is a 1-Burling graph, thus by
Theorem 7.12, it is an in-Forest. and also G \ S is a (k − 1)-Burling graph since
on each branch T , at most k − 1 vertices belong to G \ S.

When G is derived from a Burling tree T , every vertex u of G has a unique
ancestor in the top-set of G. This ancestor is called the top-ancestor of u.
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Lemma 7.15. Let G be derived from a Burling tree (T, r, ℓ, c). Let u and v be two
vertices of G with top-ancestors u′ and v′ respectively. If uv is an arc of G then
either:

1. u′ = v′, u′ ̸= u, and v′ ̸= v, or

2. u = u′ and uv′ ∈ A(G).

Proof. Suppose u = u′. So, v ∈ c(u). The branch from r to v therefore contains
p(u), and since u is in the top-set, v′ must be in the branch from p(u) to v (and
v′ ̸= p(u)). Hence, v′ ∈ c(u′). So, u = u′ and uv′ ∈ A(G).

Suppose u ̸= u′. So, u′ is ancestor of p(u). By Lemma 7.2, p(u) is an ancestor of
p(v), so u′ is an ancestor of v. Hence u′ = v′. Also, v ̸= v′ because u and v′ are in
the same branch.

k-sequential graphs

Top-sets suggest deĄning Burling graphs as the graphs obtained from the empty
graph by repeatedly adding in-forests, with several precise rules about the arcs
between them. A graph obtained after k steps of such a construction will be called a
k-sequential graph, and we will prove that k-sequential graphs are k-Burling graphs.
The advantage of k-sequential graphs is that they have no shadow vertices like in
the deĄnition of derived graphs. Also, they directly form a hereditary class. The
price to pay, however, is that we have to maintain a set of stable sets in the inductive
process.

Definition 7.16. The (unique) 0-sequential graph is the pair (G, S) where G is the
empty graph (so V (G) = ∅) and S = ¶∅♢).

A k-sequential graph is any pair (G, S) obtained as follows:

1. Pick a (possibly empty) in-forest H.

2. For every vertex v of H, pick a (k − 1)-sequential graph (Hv, Rv).

3. For every vertex u of H that is not a sink, consider the unique out-neighbor v
of u, choose a stable set R in Rv and add all possible arcs from u to R.

4. The previous steps define all the vertices and arcs of G.

5. Set S = ¶∅♢ ∪ ¶¶v♢ ∪ R : v ∈ V (H), R ∈ Rv♢.

We call an oriented graph G k-sequential if, for some set S, (G, S) is k-sequential.
The in-forest H in the deĄnition above is called the base forest of the k-sequential
graph. Observe that the graph on one vertex is k-sequential for all k ≥ 1 and the
empty graph is k-sequential for all k ≥ 0. The graph G in Figure 7.9 is a 2-sequential
graph. The in-forest H is the subgraph of G induced by ¶a, b, c, d, e♢. The graphs
Ha, Hb, and Hc are shown in the Ągure, and they are all 1-sequential graphs.
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Figure 7.9: A Burling graph viewed as a sequential graph.

Theorem 7.17. For all k ∈ N, an oriented graph G is a k-Burling graph with top-set
S if and only if it is a k-sequential graph with base forest H where H = G[S].

Proof. First, let G be a k-Burling graph derived from a Burling tree (T, r, ℓ, c) as a
k-Burling graph, and let S be the top-set of G. We call a branch of T a top-branch if
it contains r. We prove by induction on k that (G, S) is a k-sequential graph where

S = ¶∅♢ ∪ ¶S : S is the intersection of a top-branch of T with V (G)♢.

For k = 0, this is clear. Suppose that k ≥ 1 and that the statement holds for k−1.
Let us prove that (G, S) is a k-sequential graph, by building it as in DeĄnition 7.16.
DeĄne H = G[S] where S is the top-set of G. By Lemma 7.14, H is an in-forest.

For each vertex v of H, consider the Burling tree (Tv, v, ℓv, cv) where Tv is induced
by all descendants of v in T and ℓv, cv are the restrictions to V (Tv) of ℓv and cv

respectively. By the induction hypothesis, the subgraph of G which is derived from
(Tv, v, ℓv, cv) is a (k − 1)-sequential graph, and we denote it by (Hv, Rv) and

Rv = ¶∅♢ ∪ ¶S : S is the intersection of a top-branch of Tv with V (Hv)♢.

By Lemma 7.15, all arcs of G are either arcs of H, or arcs of Hv for some v ∈ V (H),
or arcs of the form uw where w is a descendant of v such uv ∈ A(H). It follows
that G can be obtained from H and the HvŠs by adding for every arc uv of H all
arcs of the form uw where w ∈ c(u) ∩ (V (G) \ ¶v♢). It follows that for every vertex
u of H that is not a sink and has the unique out-neighbor v, all possible arcs from
u to R are added where R = c(u) ∩ (V (G) \ ¶v♢) ∈ Rv. It follows that (G, S) is a
k-sequential graph.

Let us prove the converse statement. Consider a k-sequential graph (G, S)
obtained as in the deĄnition from a base forest H and (k − 1)-sequential graphs
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(Hv, Rv) for each v ∈ V (H). We have to prove that G is a k-Burling graph and
V (H) is the top-set of G. We prove by induction on k that G can be derived from a
Burling tree (T, r, ℓ, c) as a k-Burling graph such that

S = ¶S : S is the intersection of a top-branch of T with V (G)♢.

For k = 0, this is clear, so suppose k ≥ 1 and the statement is true for k−1. So, G
is obtained from H as in the deĄnition of k-sequential graphs. By Theorem 7.12, H is
a 1-Burling graph derived from a tree (TH , rH , ℓH , cH). By the induction hypothesis,
for every v ∈ V (H), Hv can be derived from a Burling tree (Tv, rv, ℓv, cv) and

Rv = ¶S : S is the intersection of a top-branch of Tv with V (Hv)♢.

We now build a Burling tree (T, r, ℓ, c) from TH and the TvŠs. For every v ∈ V (H),
we add an edge from v to rv. This deĄnes T . We set r = rH . We deĄne the last-borns
in T as inherited from the last-borns in TH and the TvŠs, and declare rv to be the
last-born of v (except if v is not a leaf of TH , in which case it keeps its last-born).
For every vertex u of H that is not a a sink, we consider the unique out-neighbor v
of u, and the chosen set R in Rv. We set c(u) = ¶v♢ ∪ R. For every vertex u of H
that is a sink, we set c(u) = ∅. For all other vertices, we deĄne c(u) as inherited
from cH or cv. We that G can be derived from (T, r, ℓ, c) and

S = ¶S : S is the intersection of a top-branch of T with V (G)♢.

This completes the proof.

7.3.3 Pivots and antennas

Similar to top-set, the role of pivots and antennas will be clear in the next sections.
Thus, here, we only deĄne them and prove some lemmas about them.

Definition 7.18. Suppose that G is derived from a Burling tree (T, r, ℓ, c) with top-set
S, we call a pivot of G any sink of G[S] and an antenna of G any source of G[S].

Let us start with some simple observations about pivots and antennas.

Lemma 7.19. If G is derived from a Burling tree (T, r, ℓ, c), then every pivot of G
is a sink of G and every antenna of G is a source of G.

Proof. Let S be the top-set of G. By Theorem 7.17, there exists k such that G is a
k-sequential graph with base forest H = G[S]. By Lemma 7.15, if u is a pivot of G,
there cannot be an arc uv in G, so u is a sink of G. Similarly, if v is an antenna of
G, then Lemma 7.15 implies that there exists no arc wv in G. So, v is a source of
G.
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The following lemma makes the structure of a connected graph derived from a
Burling tree more clear. In particular, it shows that the top-set is connected when
the graph is connected.

Lemma 7.20. If a connected oriented graph G is derived from a Burling tree
(T, r, ℓ, c) with top-set S, then G[S] is an in-tree (in particular G has a unique pivot).
Moreover, no vertex of G is a strict descendant of an antenna of G.

Proof. By Theorem 7.17, there exists an integer k such that G is a k-sequential
graph with base forest H = G[S]. For the sake of contradiction, suppose that H is
disconnected. Let X and Y be two connected components of H. By the deĄnition
of k-sequential graphs, X and Y are in distinct components of G, a contradiction to
G being connected. So, H is connected and thus is an in-tree.

Again, for the sake of contradiction, let u be a strict descendant of an antenna
of G. By the construction of k-sequential graphs, u and the unique pivot of G
are in distinct connected components of G, a contradiction to G being connected.
Therefore, no vertex of G is a strict descendant of an antenna of G.

Next, we can study the properties of the top-set under stronger connectivity
assumptions.

An in-star is an in-tree whose unique sink is adjacent to all other vertices.

Lemma 7.21. Let G be a connected oriented graph derived from a Burling tree
(T, r, ℓ, c). Suppose that G has no cut-vertex and no vertex of degree at most 1.
Then the following statements hold:

1. The top-set of G is an in-star S with at least two leaves (so G has a unique
pivot and its in-neighbors are the antennas of G).

2. All vertices of S \ ¶v♢ are sources of G where v is the unique sink of S.

3. The pivot of G is an ancestor of all vertices of V (G) \ S.

Proof. By Lemma 7.20, G[S] is an in-tree. Let v be the sink of G[S]. If G[S] is
not an in-star, then there exists a directed path yxv in G[S]. By the construction
of k-sequential graphs, we see that x is a cut-vertex of G that separates v from y.
A contradiction. By Lemma 7.19, all vertices of S \ ¶v♢ are sources of G because
they are the antennas of G. Since G is connected, by Lemma 7.20, no vertex of G
is a strict descendant of an antenna. Therefore, the pivot of G is an ancestor of all
vertices of V (G) \ S.

7.3.4 2-Burling graphs

Recall that a leaf in an in-tree is any vertex with no children.
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Definition 7.22. An oriented chandelier is any oriented graph G obtained from an
in-tree G′ whose root is of degree at least 2 by adding a vertex v and all arcs uv where
u is a leaf of G′.

Observe that in the deĄnition above, v is a sink and all its neighbors are sources
of degree 2.

Theorem 7.23. An oriented graph is an oriented chandelier if and only if it is a
connected 2-Burling graph with no cut-vertex and no vertex of degree at most 1.

Proof. First, suppose that G is an oriented chandelier. So G is clearly connected,
has no cut-vertex, and has no vertex of degree at most 1. It remains to prove that
it is a 2-Burling graph. Let G′ and v be as in the deĄnition of oriented chandelier.
Let u1, . . . , uk be the leaves of G′, and for i ∈ [k], let vi be the neighbor of ui in
G (viŠs are not necessarily distinct). Set G′′ = G′ \ ¶u1, . . . , uk♢. Since in G′, the
root has degree at least 2, G′′ contains the root and thus is a non-empty in-tree.
By Theorem 7.12, G′′ can be derived from a Burling tree (T, r, ℓ, c) as a 1-Burling
graph (i.e. on every branch of T , at most one vertex belongs to V (G)). Let us build
a tree T ′ from T . Add a new root r′ adjacent to r, and add k new children v1, . . . , vk

to r′. This deĄnes the rooted tree (T ′, r′). Then, deĄne ℓ′(r′) = r and for any
vertex x ∈ V (T ′) \ ¶r′, v1, . . . , vk♢, we deĄne ℓ′(x) = ℓ(x). Notice that the vertices
v1, . . . , vk are leaves in T ′, thus ℓ′ is not deĄned for them. Now, for every i ∈ [k],
let Bi be the branch of T starting at r and ending at ui. DeĄne c′(vi) = Bi and
c′(r′) = ∅. For every vertex x ∈ V (T ′) \ ¶r′, v1, . . . , vk♢, set c′(x) = c(x). The tuple
(T ′, r′, ℓ′, c′) is a Burling tree. Renaming r as v, we see that G can be derived from
T ′. Indeed, G is the subgraph of the oriented graph fully derived from T ′ induced
by V (G′′) ∪ ¶v, v1, . . . , vk♢. Moreover, on each branch of T ′, at most 2 vertices are in
V (G), thus G is a 2-Burling graph.

Conversely, suppose that G is a connected graph with no cut-vertex and no vertex
of degree at most 1 that is derived as a 2-Burling graph from a Burling tree T . By
Lemma 7.21, G has a unique pivot v, all antennas of G are in-neighbors of v, and
the rest of the vertices of G are all descendants of v in T . In particular, considering
v as a shadow vertex of T , we see that G \ v is a 1-Burling graph. Therefore, by
Theorem 7.12, G \ v is an in-forest. On the other hand, since G has no vertex cut,
G \ v is connected and thus is an in-tree. Let r be the root of this in-tree. Since
r cannot be of degree 1 in G, it has at least two in-neighbors. But v is not an
in-neighbor of r (because it is among its ancestor). Therefore, in G \ v, the root r
has at least 2 children. Moreover, if a leaf u of G \ v is not adjacent to v in G, then,
u has degree at most 1 in G, a contradiction. So, v is adjacent to all leaves of G′.
Hence G is an oriented chandelier.

Remark 7.24. In the construction of oriented chandeliers in the proof above, v is
the pivot of G and its neighbors are the antennas. The unique sink of G \ v is called
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the bottom of G. Note that every source of G is an antenna. The pivot and the
bottom are the only sinks of G. Also, in the Burling tree T from which G is derived,
every vertex of G except the antennas are descendants of the pivot.

To Ąnish, let us prove that every chandelier is a 2-Burling graph, and thus a
Burling graph, as well.

Lemma 7.25. Every oriented chandelier G is an oriented 2-Burling graph.

Proof. Adapting the notation from DeĄnition 7.22, G contains an in-forest G′ and
a vertex v adjacent to every leaf of G′. By Theorem 7.12, G′ can be derived
from a Burling tree (T, r, ℓ, c) as a 1-Burling graph. Since G′ has at least 3
vertices, r /∈ V (G′). Let U be the set of all out-neighbors of the leaves of G′,
i.e. U = ∪u∈L(G′)N

+(u). In T , let a be the deepest common ancestor of all vertices
in U . Let b = ℓ(a). Build a Burling tree (T ′, r′, ℓ′, c′) by subdividing the edge ab in
T once. Call the new vertex added from the subdivision v. DeĄne r′ = r. For every
w ̸= ¶a, v♢, deĄne ℓ′(w) = ℓ(w), and deĄne ℓ′(a) = v and ℓ′(v) = b. Finally, for every
w ∈ V (T ), if b ∈ c(w), then deĄne c′(w) = c(w)∪¶v♢, otherwise deĄne c′(w) = c(w).
Let H denote the oriented graph fully derived from T ′. The subgraph of H induced
by V (G0) ∪ ¶v♢ is (isomorphic to) G.

7.4 Star cutsets and decomposition theorem

In this section, we study star cutsets in derived graphs. We also give a
characterization problem for oriented Burling graphs: an oriented Burling graph
either has a full in-star cutset, or is an oriented chandelier, or contains a vertex of
degree at most 1. See Theorem 7.30. This can be seen as an oriented version of a
result in [CELOdM16] (See Theorem 3.5 for the statement and some explanations).

Lemma 7.26. Suppose that G is an oriented graph derived from a Burling tree T .
Let v and w be two vertices of G such that v is an ancestor of w in T . Then every
neighbor of w in G is either an in-neighbor of both v and w or a descendant of v.

Proof. Let u be a neighbor of w in G. If u is an out-neighbor of w, then p(w) is
an ancestor of u. However, p(w) is a descendant of v (possibly v itself). So u is
a descendant of v. If u is an in-neighbor of w, then p(u) is an ancestor of w, and
therefore it is on the unique branch in T between w and the root. This branch
includes v as well. There are two cases: either p(u) is a descendant of v or p(u) is an
ancestor of v. In the former case, u is a descendant of v. In the latter case, u is an
in-neighbor of v because u is connected to every vertex in the path between w and
the last-born of p(u), and v is on this path.
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Lemma 7.27. Suppose that G is an oriented graph derived from a Burling tree T .
Let u, v, and w be three vertices of G such that w is a descendant of v and u is not
a descendant of v. Then every path (not necessarily directed) in G between u and w
contains an in-neighbor of v in G.

Proof. Let P be a path in G from u to w. Since u is not a descendant of v while w
is, P must contain an edge u′w′ such that u′ is not a descendant of v while w′ is. By
Lemma 7.26 applied to v and w′, u′ is a in-neighbor of v.

We recall that the deĄnition of star cutsets is given in Section 2.4.

Lemma 7.28. Suppose that G is an oriented graph derived from a Burling tree T .
Let u, v, and w be three vertices of G appearing in this order along a branch of
T . Then every path (not necessarily directed) in G from u to w goes through an
in-neighbor of v in G.

In particular, N−[v] is a full in-star cutset of G, and N [v] is a full star cutset of
G, which separates u and v.

Proof. Follows from Lemma 7.27, and u and w are in distinct connected components
of G \ N−[v].

Lemma 7.29. If a triangle-free oriented graph G has a cut-vertex, then either G has
a full in-star cutset, or G has a vertex of degree at most 1.

Proof. Let v be a cut-vertex of G. Let A and B be two connected components of
G\v. If ♣A♣ ≤ 1 or ♣B♣ ≤ 1, then G has a vertex of degree at most 1, so let us assume
that ♣A♣ ≥ 2 and ♣B♣ ≥ 2. Notice that in particular, A and B each have at least one
edge. Therefore, since G is triangle-free, A (resp. B) contains a non-neighbor a (resp.
b) of v. It follows that a and b are in distinct connected components of G \ N−[v].
So, G has a full in-star cutset centered at v.

A decomposition theorem for oriented Burling graphs

Now we can prove the following decomposition theorem.

Theorem 7.30. If G is an oriented Burling graph, then either G has a full in-star
cutset, or G is an oriented chandelier, or G contains a vertex of degree at most 1.

Proof. Suppose that G has no vertex of degree at most 1. In particular, ♣V (G)♣ ≥ 3.
By Lemma 7.29, we may assume that G has no cut-vertex (in particular G is
connected since ♣V (G)♣ ≥ 3). We may assume that G is a 2-Burling graph, for
otherwise some branch of T contains at least three vertices of G and by Lemma 7.28,
G has a full in-star cutset. So, G is a connected 2-Burling graph with no cut-vertex
and no vertex of degree at most 1. Hence by Theorem 7.23, G is an oriented
chandelier.

Theorem 7.30 is the best possible in the sense that oriented chandeliers do not
have full in-star cutsets.
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7.5 Holes in Burling graphs

Studying holes in oriented Burling graphs, or more precisely, oriented derived
graphs, can reveal several properties of their structure and help in understanding
whether a graph is a Burling graph. If we forget about the orientation, there is not
much to say. For every integer n ≥ 4, the cycle of length n is a Burling graph: this
is easy to see using the derived graph deĄnition or the constrained graphs deĄnition
(see Figures 4.3 and 4.8). However, considering the oriented derived graphs, we see
that not every orientation of Cn can be an oriented derived graph, and therefore, the
holes in Burling graphs are restricted.

By Theorem 7.30, since a hole has no in-star cutset (whatever the orientation)
and no vertex of degree 1, every hole in an oriented graph derived from a Burling
tree T is an oriented chandelier. In particular, the explanations given in Remark 7.24
apply. Therefore, every hole H has four particular vertices that we describe here:

• two sources called the antennas,

• one common neighbor of the antennas that is also an ancestor in T of all the
vertices but the antennas, called the pivot,

• one sink distinct from the pivot, called the bottom.

Every other vertex of H lies on a directed path from an antenna to the bottom.
See Figure 7.10. Notice that the notions of pivot, antennas, and bottom coincide
with the ones of chandeliers.

We call subordinate vertex of a hole any vertex distinct from its pivot and antennas
(in particular, the bottom is subordinate).

We call a vertex of a hole a singularity if it is a sink or source in that hole.
Let us summarize the explanation above as a corollary of Theorem 7.30.

Corollary 7.31. Every hole in an oriented Burling graph has exactly two sources
and two sinks, and the two sources have a common neighbor.

Lemma 7.32. Let H be a hole in an oriented graph G derived from a Burling tree
T . Let p be the pivot of H and C be the connected component of G \ N−[p] that
contains H \ N−[p]. Then every vertex of C is a descendant of p.

Proof. Suppose for the sake of contradiction, that the statement does not hold. So,
C contains a vertex u that is not a descendant of p. Since every vertex of H \ N−[p]
is a descendant of p, there exists a descendant v of p in C. Let P be a path from
u to v in C. By Lemma 7.27, P contains an in-neighbor of p. This contradicts the
deĄnition of C.

Now let us study the interaction of holes in Burling graphs. We categorize this
interaction in three parts: informally, when two holes are joined by a path of length
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Figure 7.10: Orientation of a hole in a Burling graph. Dashed arcs can be subdivided.

at least 0 (dumbbells), when two holes have exactly one common edge (dominoes),
and Ąnally, when three holes form a theta.

Definition 7.33. A dumbbell is a graph made of path P = x . . . x′ (possibly x = x′),
a hole H that goes through x, and a hole H ′ that goes through x′. Moreover,
V (H) ∩ V (P ) = ¶x♢, V (H) ∩ V (P ′) = ¶x′♢, V (H) ∩ V (H ′) = ¶x♢ ∩ ¶x′♢ and
there are no other edges than the edges of the path and the edges of the holes.

Informally, a dumbbell consists of two holes H and H ′ where one speciĄc vertex
of H is connected by a path P of length at least 0 to one speciĄc vertex of H ′.

Lemma 7.34. Suppose that a dumbbell with holes H, H ′ and path P = x . . . x′ as
in the definition is the underlying graph of some oriented graph G derived from a
Burling tree T . Then in G, either x is not a subordinate vertex of H or x′ is not a
subordinate vertex of H ′.

Proof. Suppose, for the sake of contradiction, that the statement does not hold. So,
the pivot p of H is in the interior of the path H \ x and the pivot p′ of H ′ is in the
interior of the path H ′ \ x′. By Lemma 7.32 applied to H, every vertex of G \ N [p]
is a descendant of p in T (notice that N [p] = N−[p] since the pivot is a sink). By
Lemma 7.32 applied to H ′, every vertex of G \ N [p′] is a descendant of p′ in T . It
follows that p and p′ are on the same branch of T . So, up to symmetry, we may
assume that p is an ancestor of p′. Let q and r be three vertices of H such that p, q
and r are consecutive along H. So, q is an antenna of H (because it is adjacent to the
pivot), and r is a descendant of p. But also, by Lemma 7.32, r is also a descendant
of p′. Thus p′ is between p and r in some branch of T . Now because p and r are
both in c(q), so is p′. Hence q is adjacent to p′, a contradiction to the deĄnition of
dumbbells.
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Definition 7.35. A domino is a graph made of one edge xy and two holes H1 and
H2 that both go through xy. Moreover, V (H1) ∩ V (H2) = ¶x, y♢ and there are no
other edges than the edges of the holes.

Informally, a domino consists of two holes H1 and H2 that have a common edge xy.

Lemma 7.36. Suppose that a domino with holes H1 and H2, and edge xy as in the
definition is the underlying graph of some oriented graph G derived from a Burling
tree T . Then for some z ∈ ¶x, y♢ and some i ∈ ¶1, 2♢, z is the pivot of Hi and z is
a subordinate vertex of H3−i.

Proof. Let us Ąrst prove that one of x or y is the pivot of one of H1 or H2. Assume,
for the sake of contradiction, that the pivot p1 of H1 is in the path H1 \ ¶x, y♢ and
the pivot p2 of H2 is in the path H2 \ ¶x, y♢. Without loss of generality, assume
that yx is an arc of G. Notice that x is different from p1 and p2. Moreover, it is
not a neighbor of p1 or p2, because it cannot be a source of H1 or H2. Therefore,
x ∈ V (G) \ (N [p1] ∪ N [p2]). Applying Lemma 7.32 to H1 and H2, we conclude that
x is a descendant of both p1 and p2. Therefore, up to symmetry, p1 is a descendant
of p2.

Let a and a′ be the antennas of H2. Note that a, a′ ̸= x. Up to symmetry,
suppose that x, a, p2, and a′ appear in this order along H2. Let x′ be the neighbor
of a in H \ p2 (so possibly, x = x′). Since x and x′ are in the same component of
G \ (N [p1] ∪ N [p2]), we have that x′ is a descendant of both p1 and p2. And since
ax′ ∈ A(G), we have x′ ∈ c(a), so p1 ∈ c(a) and ap1 ∈ A(G), a contradiction to the
deĄnition of dominoes. Hence, one of x or y is the pivot of one of H1 or H2.

Up to symmetry, suppose that x is the pivot of H1. It remains to prove that x is
a subordinate vertex of H2. First, x cannot be an antenna of H2 because yx ∈ A(G).
Hence, we just have to prove that x is not the pivot of H2. Suppose, for the sake of
contradiction, that x is the pivot of H2. It follows that y is an antenna of both H1

of H2, so it is a source of G. Let y1 and y2 be the neighbors of y in H1 \ x and H2 \ x
respectively. Vertices x, y1 and y2 are on the same branch B of T (because they
are all in c(y)). Moreover, since y1 and y2 are not centers of star cutsets in G, by
Lemma 7.27, in B, the vertex x appears between y1 and y2. If y2 is deeper than y1 in
T , then y1 is an ancestor of x while being in the hole H1 for which x is the pivot, a
contradiction. On the other hand, if y1 is deeper than y2 in T , then y2 is an ancestor
of x while being in the hole H2 for which x is the pivot, again a contradiction. This
completes the proof of the lemma.

Definition 7.37. A theta is a graph made of three internally vertex-disjoint paths
of length at least 2, each linking two vertices u and v called the apexes of the theta,
and such that there are no other edges in the graph than those of the paths. A long
theta is a theta such that all the paths between the two apexes of the theta have length
at least 3.
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7.5. Holes in Burling graphs

Lemma 7.38. Suppose a long theta with apexes u and v is the underlying graph of
some oriented graph G derived from a Burling tree T . Then exactly one of u and v
is the pivot of every hole of G.

Proof. Let Q1, Q2, and Q3 denote the set of the internal vertices of the Ąrst, the
second, and the third path between u and v, respectively. In particular, ♣Qi♣ ≥ 2.
For i = 1, 2, 3, let Hi be the hole induced by Qi ∪ Qi+1 ∪ ¶u, v♢ (with subscripts
taken modulo 3) and let pi, ai, and a′

i denote the pivot and the two antennas of Hi,
respectively.

For the sake of contradiction, assume that there is a hole in G, say H1, for which
neither of u and v is a pivot. Without loss of generality, assume that p1 ∈ Q1. Also,
notice that a1 and a′

1 are the two neighbors of p1. Thus:

(i) neither of a1 and a′
1 are in Q2, and consequently, no vertex of Q2 is a source in

G,

(ii) because the underlying graph is a long theta, at least one of a1 and a′
1, say a1,

is in Q1.

Now consider the hole H2. Since the theta is long, if p2 is in Q2 ∪ ¶u, v♢, then
at least one antenna of H2 must be in Q2 which contradicts (i). Thus, p2 ∈ Q3.
Therefore, with the same argument as before, at least one of a2 and a′

2, say a2 also
should be in Q3.

Finally, consider the hole H3. Notice that a1, p1 ∈ Q1 respectively form a source
and a sink for H3. On the other hand, a2, p2 ∈ Q3 also, respectively form a source
and a sink for H3. So, these are the four vertices of H that are not transitive,
and therefore, at least three of these four vertices should be consecutive, which is
impossible. This contradiction Ąnishes the proof of the lemma.

Definition 7.39. We say that a graph G admits a cordate orientation if it admits
an orientation in which every hole of G is oriented as in Corollary 7.31, i.e. it has
two sources and two sinks, and the sources have a common neighbor.

A breach in time. Using the terminology above, we saw that every Burling graph
admits a cordate orientation. What about the converse: if a graph G admits a cordate
orientation, is it a Burling graph? The answer is negative. In the next chapter, we
introduce some examples of non-Burling graphs that admit cordate orientations. See,
for example, flowers and Theta+ in Section 8.5.
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In Section 8.1, we prove that Burling graphs are wheel-free. In Section 8.2, we
give a complete characterization of subdivisions of K4 that are Burling and thus
complete the studies started in [CELOdM16]. Sections 8.3 and 8.5 contain several
new examples of non-Burling graphs. The difference between the examples of the
two sections is that the examples in Section 8.3 are such that no subdivision of them
is Burling. In Section 8.4, we show that this is indeed the case for almost all graphs.
As described in the introduction, this has applications related to ScottŠs conjecture.
The examples of Section 8.5, are all examples of triangle-free non-Burling graphs
that have some subdivisions that are Burling.

The examples in this chapter have three types of applications. First, each example
demonstrates a general technique for proving that a graph is not Burling. Second,
they allow us to derive results about the class of Burling graphs. We see examples of
such applications in Chapter 9. Finally, they have applications outside the world of
Burling graphs (e.g. in χ-boundedness). We postpone this third type of application
to Chapter 10.
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8.1. Wheels

8.1 Wheels

We recall that a wheel is a graph made of hole H called the rim together with a
vertex c called the center that has at least three neighbors in H. In this section, we
show that no wheel is a Burling graph.

Theorem 8.1. No wheel is a Burling graph.

Proof. Suppose that a graph G is wheel with rim H and center c. Let v be the pivot
of H, u and u′ its antennas, and w its bottom. So, there is an edge-partition of H
into a directed path Pu from u to w, a directed path Pu′ from u′ to w and the edges
uv and u′v.

We claim that c has at most one neighbor in Pu. Otherwise, c and a subpath
Pu form a hole J , and since Pu is directed, this hole cannot contain two sources, a
contradiction. Similarly, Pu′ contains at most one neighbor of c. Hence, the only
possibility for c to have at least three neighbors in H is that c is adjacent to v, to
one internal vertex of Pu and to one internal vertex of Pu′ . Notice that c cannot be
adjacent to u or u′ otherwise there will be a triangle in G.

Two holes Hu and Hu′ of G, containing respectively u and u′, go through the edge
vc, forming a domino. Since c is not adjacent to the sources of u and u′, it can be
the pivot of neither Hu nor Hu′ . Hence, by Lemma 7.36 v must be the pivot of either
Hu or Hu′ , say of Hu up to symmetry. Let x be the neighbor of c in Pu. Since v is
the pivot of Hu, cx is an arc of G. Since x is not the pivot of Hu, by Lemma 7.36
x is the pivot of Hw, that is the hole of G containing c and w. Hence, x is a sink of
Hv, a contradiction to Pu being directed from u to w.

The theorem above has been also proved independently by Davies [Dav21] in
2021, with a different technique. However, the Ąrst written proof of it that we are
aware of is from 2020, in the master thesis of the author, see [Pou20] (which is the
same proof that also appears in [PT23]).

Remark 8.2. Wheels are restricted frame graphs. (see Theorem A.1 and Figure
7 in [CELOdM16]). So, wheels are among the examples which show that Burling
graphs form a strict subclass of restricted frame graphs.

Remark 8.3. It is easy to see that wheels are critically non-Burling, i.e. removing
any vertex from a wheel results in a Burling graph because removing a vertex from a
wheel, possibly after removing also some vertices of degree 1, results in an underlying
graph of an oriented chandelier. Moreover, the subdivisions of subgraphs of a wheel
also can be Burling graphs. See Figure 8.1.

107



Chapter 8. Burling graphs and non-Burling graphs

1

2

3
45

6

7 v 1 2 3 4 5 6 7

v

12

34

56

7

v

1 2 3 4 5 6 7

v

1

2

3 45

67

8

v 1 2 3 4 5 6 7 8

v

Figure 8.1: Burling graphs close to wheels. Dotted and dashed edges can be
subdivided.

108



8.2. Subdivisions of K4

8.2 Subdivisions of K4

In this section, we determine exactly which subdivisions of K4 are Burling graphs
and which are not.

We recalled the deĄnition of restricted frame graphs from [CELOdM16] in
Chapter 3 (see DeĄnition 3.4). In [CELOdM16], Chalopin, Esperet, Li, and Ossona
de Mendez, characterized subdivisions of K4 that are restricted frame graphs.

Theorem 8.4 (Chalopin, Esperet, Li, and Ossona de Mendez). Let G be a
triangle-free subdivision of K4. Then G is a restricted frame graph if and only if
one of the following happens:

1. at most 3 of the edges of the K4 are subdivided to obtain G,

2. exactly 4 edges of the K4 is subdivided and the two non-subdivided edges share
an end-point.

Restricted frame graphs, however, are a superclass of Burling graphs, and it might
be that some of the subdivisions of K4 that are restricted frame graphs are not
Burling graphs. It appears that this is the case. So, we characterize the subdivisions
of K4 that are Burling graphs.

Theorem 8.5. Let G be a non-oriented graph obtained from K4 by subdividing edges.
Then G is a Burling graph if and only if G contains four vertices a, b, c, and d of
degree 3 such that ab, ac ∈ E(G) and ad, bc /∈ E(G).

Proof. Suppose that G is a Burling graph. Let a, b, c and d be the four vertices
of degree 3 of G. If G[¶a, b, c, d♢] contains no vertex of degree at least 2, then G is
isomorphic to one of the graphs represented in Figure 8.2, so G has no star cutset, a
contradiction to Theorem 8.4. So, up to symmetry, we may assume that a has degree
at least 2 in G[¶a, b, c, d♢], so up to symmetry ab, ac ∈ E(G). If bc ∈ E(G), then G
contains a triangle, a contradiction to Lemma 4.9. So, bc /∈ E(G). If ad ∈ E(G),
then G is a wheel, a contradiction to Theorem 8.1. So, ad /∈ E(G). We proved that
ab, ac ∈ E(G) and ad, bc /∈ E(G).

Conversely, if we suppose that ab, ac ∈ E(G) and ad, bc /∈ E(G), then G is
obtained by subdividing dashed edges of the graph represented in Figure 7.5. It is
therefore a Burling graph as explained after the proof of Theorem 7.7.

Let G be a subdivision of K4, which is a Burling graph. We say that G is of type
i, for i = 2, 3, 4, if exactly i edges of the K4 are properly subdivided to obtain G.
Notice that by Theorem 8.5, up to symmetry, there is only one possibility for the
choice of the edges to subdivide for each type. See Figure 8.3.

Let us Ąnish this section by proving a few more structural theorems about type
4 subdivisions of K4 as derived graphs. The following results, as well as the previous
ones, appear to be useful in proving the results of the next sections.
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Figure 8.2: Some subdivisions of K4 that are not Burling graphs.
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Figure 8.3: Subdivisions of K4 that are Burling graphs. In order from left to right:
type 2, type 3, and type 4. Only dashed edges can be subdivided.

We start with the fact that the type 4 subdivisions of K4 are restricted in the
way that they can be derived from a Burling tree. In particular, they always have a
unique center of an in-star cutset, as shown in Lemma 8.6.

Lemma 8.6. Let G be an oriented derived graph whose underlying graph is a type 4
subdivision of K4. If x is the common end-point of the two non-subdivided arcs, then
x is the unique center of an in-star cutset in G. In particular, the two non-subdivided
arcs are oriented toward x. See Figure 8.4.

Proof. First, G has an in-star cutset due to Theorem 7.30 because it is not a
chandelier and has no vertex of degree 1.

Moreover, if a vertex v is the center of an in-star cutset in G, then v is the center
of a star cutset in the underlying graph of G. Since any vertex other than x cannot

x

y z

Figure 8.4: The vertex x is the unique center of an in-star cutset in G.
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8.3. Graphs whose subdivisions are not Burling

be the center of a star cutset in the underlying graph of G, x is the unique center of
an in-star cutset in G.

Let G be a non-oriented derived graph. We call a vertex v a global subordinate
vertex of G if for any oriented derived graph G̃ for which G is the underlying graph,
v is a subordinate vertex of some hole in G̃. Our goal is to prove that type 4
subdivisions of K4 have a precise global subordinate vertex.

Lemma 8.7. Let G be a type 4 subdivision of K4. Let x be the common end-point
of the two non-subdivided edges of G, and let y and z be its degree 3 neighbors. For
any subdivision G∗ of G which is a derived graph, yx, zx ∈ E(G∗), and for any
w ∈ ¶y, z♢, x is the pivot of exactly one of the two holes going through xw, and is a
subordinate vertex of the other. In particular, x is a global subordinate vertex of G∗.

Proof. If either of xy or xz are not edges of G∗, then by Theorem 8.5, G∗ is not a
derived graph and there is nothing to prove. So, suppose that yx, zx ∈ E(G∗), and
hence G∗ is a derived graph, meaning that it is the underlying graph of an oriented
derived graph. Consider this orientation on G∗. By Lemma 8.6, x is the only center
of an in-star cutset in G∗. So, x is not the antenna of any hole in G∗. Consider
the two holes passing through the arc xw in G∗ and call them H1 and H2. They
form a domino, so by Lemma 7.36, for some u ∈ ¶x, w♢ and for some i ∈ ¶1, 2♢,
u is the pivot of Hi and u is a subordinate vertex of H3−i. Because the arc wx is
oriented from w to x, then w cannot be the pivot of any of the two holes. Thus in
G∗, the vertex x is the pivot of one of the two holes, and the subordinate vertex of
another.

8.3 Graphs whose subdivisions are not Burling

In this section, we provide several examples of graphs G such that no subdivision
of G is a Burling graph.

8.3.1 Complete graphs

We saw in Section 8.2 that some subdivisions of K4 are Burling graphs. In this
section, we prove that for n ≥ 5, no subdivision of Kn is a Burling graph.

Lemma 8.8. Let G be a triangle-free subdivision of K5. If all the subdivisions of K4

in it are of types 2, 3, and 4, then G has one of the following forms:

(i) type A: edges of a 4-cycle in G are not subdivided at all, and any other edge is
subdivided at least once.

(ii) type B: edges of a 5-cycle in G are not subdivided at all, and any other edge is
subdivided at least once.
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Chapter 8. Burling graphs and non-Burling graphs

Figure 8.5: Subdivisions of K5, type A subdivision on the left and type B subdivision
on the right. Only dashed edges can be subdivided.

See Figure 8.5.

Proof. Let M = ¶a, b, c, d, e♢ be the set of vertices of G of degree 4. For x ∈ M , we
denote by Hx the subdivision of K4 containing M \ ¶x♢ in G. By Lemma 8.5, for all
x ∈ M , Hx is a type 2, 3, or 4 subdivision of K4. In particular, consider He. There
are three cases:

Case 1. He is of type 2. Without loss of generality, let ac and bd be the subdivided
edges of He. Let v ∈ ¶a, b, c, d♢. If ev ∈ E(G), then v is the center of a wheel in G,
a contradiction. Thus, ev is subdivided, and G is a type A subdivision of K5.

Case 2. He is of type 3. Without loss of generality, let ab, ac, and bd be the
subdivided edges of He. So, ad, cd, bc ∈ E(G). If ce is not subdivided in G, then Ha

is a wheel centered at c, a contradiction. Thus, ce is subdivided in G. Similarly, one
can prove that de must be subdivided. Now, because Hd must be of type 2, 3, or 4,
be ∈ E(G). Then, because Hc must be of type 2, 3, or 4, ae ∈ E(G). So, G is a type
B subdivision of K5.

Case 3. He is of type 4. Without loss of generality, let ab, ac, ad, and bd be the
subdivided edges of He. First of all, ce must be subdivided, otherwise, Ha will be a
wheel centered at c. Secondly, because Hb should be of type 2, 3, or 4, we must have
de ∈ E(G). In the same way, because Hd should be of type 2, 3, or 4, we must have
be ∈ E(G). Finally, ae must be subdivided, otherwise, Hc will be a wheel centered
at e. So, in this case, G is a type A subdivision of K5.

Lemma 8.9. If G is a type A subdivision of K5, then it is not a derived graph.

Proof. Let ¶a, b, c, d, e♢ be the set of vertices of degree 4 in G. Without loss of
generality, assume that ab, bc, cd, da ∈ E(G). The graph H shown in Figure 8.6 is
an induced subgraph of G.

Notice that H has no star cutset, it has no vertex of degree 1, and it is not a
chandelier (because in H, for every vertex there is a cycle not containing it). Hence,
by Theorem 7.30, H is not a derived graph, and thus, G is not a derived graph
either.
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8.3. Graphs whose subdivisions are not Burling

d

a

c
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e

Figure 8.6: A subgraph of a type A subdivision of K5.

Lemma 8.10. If G is a type B subdivision of K5, then it is not a derived graph.

Proof. Let M = ¶a, b, c, d, e♢ be the set of degree 4 vertices of G. Without loss of
generality, we may assume that ab, bc, cd, de, ea ∈ E(G). For u, v ∈ M , u ̸= v, let
Puv denote the degree 2 vertices of the path replacing the edge uv when subdividing
it. In particular u, v /∈ Puv. For simplicity in writing, we denote a hole of G by only
naming the vertices of M in that hole, if there is no confusion.

For the sake of contradiction, suppose that G is a derived graph. So there is an
orientation of G such that G is an oriented derived graph. From now on, consider G
with this orientation. We denote the arcs of G in this orientation by A(G).

Consider the hole abcdea in G. Without loss of generality, by Corollary 7.31, we
may assume that a and c are its sources, and b and e are its sinks.

Now, consider the hole ecde. Vertex d is neither a sink nor a source for this hole,
and c also cannot be a sink of it because cd ∈ A(G). Therefore, the two sinks of
ecde are among Pce ∪¶e♢. Call them t1 and t2, and without loss of generality assume
t1 ∈ Pce.

Then, consider the hole abca. For this hole, a and c cannot be sinks because
ab, cd, ∈ A(G), and b is a sink. So, there is exactly one sink in Pac, call it t3.

Finally, consider the hole acea. Notice that t1 and t3 are the two sinks of acea.
If t2 ∈ Pce then it will be a third sink for acea, a contradiction. If t2 = e, let f ∈ Pce

be the neighbor of e on the subdivided edge between c and e. Then fe ∈ A(G),
and since we also have ae ∈ A(G), then again e will be a third sink for acea, a
contradiction. So G is not a Burling graph.

Theorem 8.11. Let n ≥ 5 be an integer. The class of derived graphs contains no
subdivision of Kn.

Proof. Let us Ąrst prove the theorem for n = 5. Let G be a subdivision of K5. If it has
a triangle, then it is not a derived graph. So, we may assume that G is triangle-free.
If G includes a subdivision of K4 as an induced subgraph, this subdivision of K4

must be of type 2, 3, or 4, otherwise, by Lemma 8.5, G cannot be a derived graph.
Thus, by Lemma 8.8, G is either a type A or a type B subdivision of K5. So, the
result follows from Lemmas 8.9 and 8.10. Now, for n > 5, the result follows from
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Figure 8.7: A type B subdivision of K5 and its representation as a restricted frame graph.
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Figure 8.8: A type B subdivision of K5 minus one vertex, shown as a derived graph

the fact that every subdivision of Kn contains a subdivision of K5 as an induced
subgraph.

Remark 8.12. There are subdivisions of K5 that are restricted frame graphs.
Figure 8.7 represents a type B subdivision of K5 as a restricted frame graph. Type
A subdivisions of K5, however, are not restricted frame graphs (this follows from
Theorem 3.3 of [CELOdM16], see Theorem 3.5.)

Remark 8.13. Let G be the graph shown in Figure 8.7. This graph is minimally
non-Burling: if one removes one vertex of it, it becomes a Burling graph. By deleting
a vertex of degree 4 (e.g. vertex 1), one obtains a type 3 subdivision of K4 which is a
Burling graph, and by deleting a vertex of degree 2 (e.g. vertex 10) on obtains a graph
isomorphic to the underlying graphs of the derived graph represented in Figure 8.8.

8.3.2 Necklaces

We remind that connecting two vertices by a path of length 0 means identifying
the two vertices.
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8.3. Graphs whose subdivisions are not Burling

Figure 8.9: A 4-necklace (left) and a 3-necklace (right). Any edge of the two graphs
can be subdivided.

Let B1, B2, . . . , Bm, (m ≥ 2), be cycles of length at least 4. For 1 ≤ i ≤ m, let
ai and bi be two non-adjacent vertices of Bi. For 1 ≤ i ≤ m, connect bi and ai+1 by
a path of length at least 0 (where am+1 = a1). The resulting graph G is called an
m-necklace. A necklace graph is a graph which is an m-necklace for some m ≥ 2.
Each Bi is called a bead of G. We say that Bi is a short bead if ai and bi have a
common neighbor. Notice that necklaces are triangle-free graphs. See Figure 8.9.

In this section, we characterize the necklaces which are Burling graph. Table 8.1
shows a summary of the results of this section.

without star cutset with star cutset

m = 2
Burling graph ⇔ the two beads

have a common vertex
(Lemma 8.15)

always Burling graph
(Lemma 8.15)

m = 3
never Burling graph

(Lemma 8.16)

Burling graph ⇔ there exists a
short bead such that the two
other beads have a common

vertex (Lemma 8.16)
m ≥ 4 never Burling graph (Lemma 8.17)

Table 8.1: m-Necklaces and the class of Burling graphs.

Lemma 8.14. A necklace graph G has a star cutset if and only if it has a short
bead.

Proof. If G has a short bead Bi, the common neighbor of ai and bi is the center of
a star cutset. On the other hand, if G has no short bead, then it is easy to see that
it does not have a star cutset.

Lemma 8.15. A 2-necklace graph G is a derived graph if and only if it has a star
cutset or its two beads have a common vertex.

Proof. First, suppose that G is a derived graph. If it has a star cutset, we are done.
Otherwise, because it has no vertex of degree 1, by Theorem 7.30, it should be a
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Figure 8.10: A 2-necklace presented as a derived graph

chandelier. In particular, there exists a vertex v in G which is contained in all cycles
of G. So, the two beads of G both contain v.

Conversely, if the beads of G have a common vertex, then G is a chandelier (with
the pivot being a common vertex of the two beads). So, it is a Burling graph by
Lemma 7.25. If the beads of G do not have a common vertex, then G has a star
cutset, and thus by Lemma 8.14, it has a short bead. Therefore, G can be obtained
from the underlying graph of the graph shown in Figure 8.10 (right) by subdividing
some (possibly none) of the dashed arcs. In Figure 8.10, a presentation of the graph
on the right as a derived graph is shown. Notice that all the dashed arcs are either
a top-arc starting in a source of G or a bottom-arc of G, so by Theorem 7.7, we may
subdivide them. So, every 2-necklace with a short bead is a derived graph.

Lemma 8.16. Let G be a 3-necklace. The graph G is a derived graph if and only if
it has at least one short bead B and the two other beads have a vertex in common.

In particular, if G has no star cutset, then it is not a derived graph.

Proof. First, assume that G is a derived graph and let Bi, 1 ≤ i ≤ 3 be its beads.
There is an orientation of G such that G with this orientation is an oriented derived
graph. For each bead Bi, let Pi and Qi denote the internal vertices of the two paths
between ai and bi in Bi. We recall that a vertex of a hole is a singularity if it is a
sink or source in that hole. Notice that each Bi is a hole in G, so by Corollary 7.31
it should have four singularities, and thus there is at least one of Pi and Qi, say Pi,
which contains at least one singularity of Bi. Denote this singularity by xi. Let C
be the cycle in G obtained by removing the vertices of Q1, Q2, and Q3. Notice that
C is a hole in G, and that x1, x2, and x3 are singularities for it. Let x4 be the fourth
singularity of C. Notice that three of the singularities of C should be consecutive
vertices and that no two vertices among x1, x2, and x3 are neighbors. So, x4 should
be the common neighbor of two of x1, x2, and x3, and x4 cannot be inside QiŠs or
PiŠs. We assume without loss of generality that x4 is a common neighbor of x1 and
x2. So, B1 and B2 have a common vertex which is a2 = b1. Thus, x4 is the common
vertex of B1 and B2. This implies that x1 and x2 are the antennas of the hole C.
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Figure 8.11: A 3-necklace presented as a derived graph.

So, C cannot have another antenna. In particular, P3 contains no source. Also, Q3

contains no source, because we can repeat the same argument by exchanging the role
of P3 and Q3. Thus, the antennas of B3 should be a3 and b3. Hence, they should
have a common neighbor, and therefore B3 is a short bead.

Now, suppose that G has two beads B1 and B2 with a common vertex, and a
short bead B3. In such case, an orientation of G can be obtained from the graph
in Figure 8.11 by Ąrst possibly contracting arc 6-8 or both arcs 6-8 and 7-9, and
then subdividing some of the dashed arcs (including 6-8 and 7-9, if they are not
contracted). By Lemma 7.8, we can contract one or both arcs 6-8 and 7-9, preserving
the top-arcs and bottom-arcs. Then, all the dashed edges (including 6-8 and 7-9, if
they are not contracted) are top-arcs starting at a source of the graph or bottom-arcs
of the graph. So, we can subdivide them as many times as needed. So G is a derived
graph.

Finally, notice that if G has no star cutset, then by Lemma 8.14 it cannot have
a short bead, so it is not a derived graph.

Lemma 8.17. Let G be an m-necklace graph. If m ≥ 4, then G is not a derived
graph.

Proof. Assume, for the sake of contradiction, that G is a derived graph. So, it is the
underlying graph of an oriented derived graph. Consider this orientation on G. Let
B1, B2, . . . , Bm be the beads of G. Let Pi and Qi be the internal vertices of the two
paths between ai and bi on the bead Bi, 1 ≤ i ≤ m. Each Bi is a hole in G and thus
by corollary 7.31, it has four singularities. In particular, at least one of Pi and Qi,
say Pi, has at least one singularity. Let C be the cycle in G obtained by removing
the vertices of Qi,1 ≤ i ≤ m, and notice that C is a hole in G. A singularity in Pi for
Bi is also a singularity for C. But C should have exactly four singularities, so m ≤ 4,
and hence m = 4, and each Pi has exactly one singularity, and the singularities on
PiŠs are exactly the singularities of C. Now, notice that three of the singularities of
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Figure 8.12: A 4-necklace, presented as a frame graph.

C should be consecutive vertices, which is not possible because no vertex of Pi is a
neighbor of a vertex of Pj if i ̸= j. This is a contradiction. So, G is not a Burling
graph.

We can summarize all the lemmas above in the following theorem.

Theorem 8.18. Let G be an m-necklace.

1. If m = 1, then G is a Burling graph.

2. If m = 2, then G is a Burling graph if and only if either it has a star cutset or
the two beads of G have a common neighbor.

3. If m = 3, then G is a Burling graph if and only if there exists a short bead
among its beads such that the two other beads have a common vertex.

4. If m ≥ 4, then G is not a Burling graph.

See Table 8.1.

Proof. Follows directly from Lemmas 8.15, 8.15, 8.16, and 8.17.

Remark 8.19. Let G be a necklace. If G does not have a star cutset, then G is not
even a restricted frame graph. This follows from Theorem 8.4. But if G has a star
cutset, then it might be a restricted frame graph. See Figure 8.12 for an example of
a non-Burling necklace which is a restricted frame graph.

8.3.3 Dumbbells

Given two graphs G1 and G2 and two vertices x1 ∈ V (G1) and x2 ∈ V (G2), one
can build a graph D as follows: Ąrst take the disjoint union of G1 and G2 and then
connect x1 and x2 by a path of length at least 0, to obtain D. Any graph D built as
above is called a dumbbell of G1 and G2 with respect to x1 and x2. See Figure 8.13
for some examples.
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Recall that in a non-oriented derived graph G, a vertex v a global subordinate
vertex of G if for any oriented derived graph G̃ for which G is the underlying graph,
v is a subordinate vertex of some hole in G̃.

Theorem 8.20. Let G1 and G2 be two derived graphs, and let x1 ∈ V (G1) and
x2 ∈ V (G2). If xi is a global subordinate vertex of Gi, for i = 1, 2, then any dumbbell
D of G1 and G2 with respect to x1 and x2 is not a derived graph.

Proof. Assume that D is a derived graph. By deĄnition of global subordinate vertex,
for i = 1, 2, there is a hole Hi in Gi for which xi is a subordinate vertex. So, the
dumbbell built by holes H1 and H2 and the path between x1 and x2 is an induced
subgraph of D, and thus is a derived graph, a contradiction with Lemma 7.34.

Remark 8.21. Notice that if one of G1 or G2 is not a derived graph, then the
dumbbell of G1 and G2 with respect to any two vertices is not a derived graph, because
Burling graphs are closed under taking induced subgraphs.

Theorem 8.20 provides a tool for Ąnding a new family of graphs that are not
weakly pervasive. In particular, we can Ąnd examples of graphs with vertex-cuts.

We prove a lemma for thetas, similar to Lemma 8.7 for type 4 subdivision of K4.

Lemma 8.22. Let G be a long theta with apexes u and v. If x is a vertex of degree
2 in G such that its two neighbors are also of degree 2, then x is a global subordinate
vertex in any subdivision of G.

Proof. By Lemma 7.38, for any derived graph G̃ for which G is an underlying graph,
there is w ∈ ¶u, v♢ such that w is the pivot of all holes of G̃, and thus the antennas
of all holes are among the neighbors of w. By assumptions, x is distinct from w and
is not one of its neighbors. Thus, x is a global subordinate vertex of G.

Theorem 8.23. Let G be a dumbbell of two graphs G1 and G2 with respect to x1

and x2 where for each i ∈ ¶1, 2♢, the graph Gi and vertex xi is one of the following:

• Gi is any type 4 subdivision of K4 and xi is the common end-point of its two
non-subdivided edges,

• Gi is any long theta and xi is a degree 2 vertex in Gi whose neighbors are also
of degree 2.

Then, no subdivision of G is not a Burling graph. See Figure 8.13.

Proof. If a subdivision of Gi is not a Burling graph, then neither is the dumbbell
containing it. Otherwise, the result follows from Lemma 8.7 and Lemma 8.22 by
applying Theorem 8.20.

119



Chapter 8. Burling graphs and non-Burling graphs

Figure 8.13: Some graphs that are not Burling graphs. One can subdivide any edge,
or contract the dotted edges, and still have a graph that is not a Burling graph.

x

y

z wu v

Figure 8.14: No subdivision of this graph is a Burling graph. Theorem 8.24.
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Figure 8.15: No subdivision of this graph is a Burling graph. Theorem 8.25.

8.3.4 Miscellaneous

First example

Theorem 8.24. Let G be the graph shown in Figure 8.14. No subdivision of G is a
derived graph.

Proof. Let G∗ be a subdivision of G. The graph G∗ contains two subdivisions of K4

as induced subgraphs: one whose degree 4 vertices are exactly ¶u, x, y, z♢ and does
not contain v and w, which we denote by Hl, and the other whose degree 4 vertices
are exactly ¶v, x, y, w♢ and does not contain u and z, which we denote by Hr.

If in constructing G∗, any of the edges xy, zy, or xw is subdivided, then G∗

contains a subdivision of K4 which, by Theorem 8.5, is not a Burling graph, so G∗

is not a Burling graph. Hence, we may assume that xy, zy, xw ∈ E(G∗).
For the sake of contradiction, assume that G∗ is a derived graph, and consider

its orientation as an oriented derived graph. Notice that Hl and Hr are also derived
graph. But neither of Hr and Hl are chandeliers, so by Theorem 7.30, each of them
should have an in-star cutset. Now by Lemma 8.6, the center of the in-star cutset of
Hl can only be y, so the edge xy should be oriented from x to y in G∗. On the other
hand, again by Lemma 8.6, the center of the in-star cutset of Hr can only be x, so
the edge xy should be oriented from y to x in G∗. This contradiction shows that G∗

is not a Burling graph.

Second example

Theorem 8.25. Let G be the graph shown in Figure 8.15. No subdivision of G is a
derived graph.

Proof. Let G∗ be a subdivision of G. If any of the edges x1y1, x1z, x2y2, and x2z
are subdivided in G∗, then by Theorem 8.5, it contains a non-Burling subdivision of
K4 and thus is not a derived graph. So, we may assume that all those 4 edges are
edges of G∗, in which case if x1x2 ∈ E(G∗), then G∗ has a triangle and thus is not a
Burling graph. So, we may also assume that x1x2 is subdivided in G∗.
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Figure 8.16: No subdivision of this graph is a Burling graph. Theorem 8.26.

For the sake of contradiction, consider any orientation on G∗ which makes it an
oriented derived graph, and let A(G∗) be the set of the arcs of G∗. Let i ∈ ¶1, 2♢.
By Lemma 8.7, yixi, zxi ∈ A(G∗). Also, by Lemma 8.7, xi is the pivot of exactly
one of the following two holes containing the edge zxi: the hole containing the paths
obtained by subdividing xici and ciz, and the hole containing xiyi and the path
obtained by subdividing the yiz. Denote this hole by Hi. Now consider the hole H
formed by zx1, zx2, and the path obtained by the subdivision of the edge x1x2. The
two holes H and Hi form a domino. Therefore, by Lemma 7.36, for some u ∈ ¶xi, z♢,
u is a subordinate vertex of one of the holes and the pivot of the other. Notice that
u cannot be z because zxi ∈ A(G∗). Thus u = xi, and as xi is the pivot of Hi, it is
a subordinate vertex of H.

Therefore, in H, the vertex z is a source, and both its neighbors, namely x1 and
x2, are subordinate vertices of H. This contradicts Corollary 7.31. Thus, G∗ is not
a derived graph.

Third example

Theorem 8.26. Let G be the graph shown in Figure 8.16. No subdivision of G is a
derived graph.

Proof. Let G∗ be a subdivision of G. If any of the edges x1y1, x1z1, x2y2, and x2z2

are subdivided in G∗, then by Theorem 8.5, it contains a non-Burling subdivision of
K4 and thus is not a derived graph. So, we may assume that all those 4 edges are
edges of G∗.

For the sake of contradiction, consider any orientation on G∗ which makes it an
oriented derived graph, and let A(G∗) be the set of the arcs of G∗. Let i ∈ ¶1, 2♢.
By Lemma 8.7, yixi, zixi ∈ A(G∗). Again By Lemma 8.7, xi is the pivot of exactly
one of the following two holes containing the edge zixi: the hole containing the paths
obtained by subdividing xici and cizi, and the hole containing xiyi and the path
obtained by subdividing the yizi. Denote this hole by Hi. Now consider the hole H

122



8.4. Almost no graph has a subdivision that is Burling

passing through z1x1, z2x2, the path obtained by the subdivision of the edge z1z2,
and the path x1w1 . . . w2x2. The two holes H and Hi form a domino. Therefore,
by Lemma 7.36, for some u ∈ ¶xi, zi♢, u is the subordinate vertex of one of the
holes and the pivot of the other. Notice that u cannot be z because zixi ∈ A(G∗).
Thus u = xi, and as xi is the pivot of Hi, it is a subordinate vertex of H. But by
Lemma 7.38, either x1 or x2 should be the pivot of every hole in the long theta in
G∗. This contradiction completes the proof.

8.4 Almost no graph has a subdivision that is

Burling

Since Burling graphs are triangle-free, almost all graphs are not Burling. However,
in this short section, we prove that almost all graphs have no Burling subdivision.1

Let us start by Ąxing our model of random graphs. We use G(n, pn) model,
which, for a Ąxed n ∈ N and pn ∈ [0, 1], is a probability space (Ωn, P(Ωn),Pn)
where Ωn is the set of all labeled graphs G with V (G) = ¶1, 2, . . . , n♢ and Pn is
the edge-percolation probability measure, i.e. if G ∈ Ωn with m edges, the we have

Pn(G) = pm
n (1 − pn)(

n

2)−m.
Let P be a property of graphs that does not depend on the labeling of the vertices

(e.g. being a Burling graph, having a clique of size at least 5, etc.), precisely, let P be a
class of graphs. Let XP

n : Ωn → ¶0, 1♢ be a random variable deĄned by XP
n = 1P ∩Ωn

.
In other words, XP

n (G) = 1 if and only if G has property P . When we say that
Şalmost all graphs have property PŤ if

lim
n→∞

P(XP
n (G) ♣ G ∈ G(n, pn)) = 1.

We state the following well-known theorem here and include the proof in
Appendix C.

Lemma 8.27. Let p ∈ (0, 1]. Then we have

lim
n→+∞

P(ω(G) ≥ 5 ♣ G ∈ G(n, p)) = 1.

In particular, Lemma 8.27 states that almost all graphs have a clique of size 5.
We say that a graph G is strongly non-Burling if no subdivision of G is a Burling

graph.

Theorem 8.28. Almost all graphs are strongly non-Burling.

Proof. Notice that if G has a K5, then Theorem 8.11 implies that G is strongly
non-Burling. So, the result follows from Lemma 8.27.

1This was pointed out to the author by Paul Meunier.
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Chapter 8. Burling graphs and non-Burling graphs

Figure 8.17: Examples of Ćowers.

8.5 Non-Burling graphs with Burling subdivisions

In this section, we give some examples of graphs that are not Burling and show
that some of their subdivisions are Burling. It is noteworthy that the examples in
this section all have star cutsets and thus we need to go beyond the method following
from [CELOdM16], where all examples have no star cutsets.

Flowers

A flower is a graph G made of a hole H where every edge e is part of a hole He.
Moreover, V (H) ∩ V (He) = e, for all edges e, f of H, V (He) ∩ V (Hf ) = e ∩ f , and
the only edges and vertices of G are those of the HeŠs. In Figure 8.17, two examples
of Ćowers are represented.

Theorem 8.29. No flower is a Burling graph.

Proof. Suppose G is a Ćower with a hole H as in the deĄnition. Let v be the pivot
of H, and u, w the two neighbors of v in H. So, Huv and H form a domino, and by
Lemma 7.36, one of the two vertices u and v should be the pivot of one of the two
holes and a subordinate vertex of the other. Notice that u cannot be a pivot of any
of the two holes because uv is an arc. So, v is a subordinate vertex of Huv. Similarly,
v is a subordinate vertex of Hvw. Hence, Hvw and Huv contradict Lemma 7.34 (since
Hvw and Huv form a dumbbell).

Remark 8.30. It is easy to see that every flower admits a cordate orientation. So,
flowers are examples of graphs that show that there are graphs that admit cordate
orientations but are not Burling graphs.

Remark 8.31. Flowers are vertex-critical non-Burling graphs. We leave this fact
unproved for the general case. For flowers with 4 or 5 petals, however, this can
be seen from Figure 8.18 (and noticing that Burling graphs are stable under adding
leaves). Figure 8.18 also shows that some graphs close to flowers are Burling graphs.
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Figure 8.18: Burling graphs close to Ćowers. Dotted and dashed edges can be
subdivided.
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x

ba c

G G′

Figure 8.19: Theta+, non-Burling graph.

Notice that there are subdivisions of Ćowers that are Burling graphs. For example,
see Figure 8.18 (top) which shows that there are subdivisions of a 4-petal Ćower that
are Burling. Showing that for any Ćower, there are subdivisions that are Burling is
similar, but we do not include a proof here.

Theta+

We call the (non-oriented) graph in Figure 8.19 (left) theta+.

Theorem 8.32. Theta+ is not a Burling graph.

Proof. For the sake of contradiction, suppose that G is a Burling graph. So, some
orientation of G can be derived from a Burling tree. Hence, every C4 of this
orientation must contain a pivot, a bottom, and two antennas. One can check
that with this condition, up to symmetry, the orientation of G is as G′ shown in
Figure 8.19, right. Note that a, b, and c are out-neighbors of x, so they must be on
the same branch of the Burling tree. Therefore, by Lemma 7.27, one of a, b, or c
must be the center of a full in-star cutset, a contradiction.

Remark 8.33. Notice that theta+ is another example of graphs that admit cordate
orientations, but are not Burling graphs.

Remark 8.34. Theta+ is a vertex-critical non-Burling graph. Removing one of
the vertices of degree 4 yields to a tree (thus a Burling graph by Theorem 7.12),
and removing any other vertex results in a chandelier (again a Burling graph, by
Lemma 7.25).

Notice that in the theta+, subdividing the edge between the two degree 4 vertices
results in a chandelier, which is a Burling graph (by Lemma 7.25). So, there are
subdivisions of theta+ that are Burling.

126



Chapter 9

More operations on Burling graphs

9.1 Subdivision and contraction . . . . . . . . . . . . . . . . . 127

9.2 Gluing along cliques . . . . . . . . . . . . . . . . . . . . . . 128

9.3 Subgraphs and supergraphs . . . . . . . . . . . . . . . . . 129

9.4 Dissolution of vertices . . . . . . . . . . . . . . . . . . . . . 130

9.5 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

In Section 7.2, we discussed three operations on Burling graphs: subdivision,
contraction, and adding a leaf. In particular, we saw that Burling graphs are closed
under adding a leaf, and for subdivision and contraction, we found some sufficient
conditions under which subdividing or contracting an arc of a Burling graph results
in another Burling graph. In this section, we study more operations on Burling
graphs.

9.1 Subdivision and contraction

As promised in Section 7.2, let us show that Burling graphs are not closed under
either of these operations.

The examples of Section 8.5 show that there are non-Burling with Burling
subdivisions. This shows that Burling graphs are not closed under contraction of
edges.

Moreover, we saw that some subdivisions of K4 are Burling (see Theorem 8.5),
but subdividing the same graph enough to obtain a (≥1)-subdivision of K4, we obtain
a non-Burling graph. Thus Burling graphs are not closed under subdivision of edges.
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Chapter 9. More operations on Burling graphs

Figure 9.1: A non-Burling graph obtained by gluing two Burling graphs along a
vertex.

9.2 Gluing along cliques

Let G1 and G2 be two graphs. For i ∈ ¶1, 2♢, let Xi ⊆ V (Gi) (possibly empty)
be a clique in Gi. Moreover, assume ♣X1♣ = ♣X2♣. Gluing G1 and G2 along the
cliques X1 and X2 is the operation of taking the disjoint union of G1 and G2 and
then identifying each vertex of X1 with a unique vertex of X2.

Burling graphs do not have cliques of size 3 or more, so we only need to study
gluing along a clique of size 0 (or disjoint union), gluing along cliques of size 1 (also
called gluing along a vertex), and gluing along a clique of size 2 (also called gluing
along an edge).

We show that Burling graphs are closed under disjoint union, but not under
gluing along a vertex or an edge.

9.2.1 Disjoint union

Observation 9.1. Oriented Burling graphs are closed under disjoint union.

Proof. Let G1 and G2 be two oriented Burling graphs. Since G1 and G2 are
constrained graphs, one can consider F1 and F2, two families of transformed copies
of S such that Gi is the oriented intersection graph of Fi. Moreover, one can assume
that box(F1) and box(F2) are disjoint. Set F = F1 ⊔ F2. It is easy to see that F
satisĄes Constraints (C1)-(C5). The oriented intersection graph of F is the disjoint
union of G1 and G2.

9.2.2 Gluing along a vertex

For i ∈ ¶1, 2♢, let Gi be a type 4 subdivisions of K4. We proved in Section 8.2
that Gi is a Burling graph (see Theorem 8.5). Let xi ∈ V (Gi) be the unique vertex
of Gi that has two degree 3 neighbors. Let G be the graph obtained by gluing G1

and G2 along x1 and x2. We proved in Theorem 8.23 that G is not a Burling graph.
See Figure Figure 9.1
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9.3. Subgraphs and supergraphs

Under some assumptions, however, the operation of gluing along a vertex
preserves being Burling: for example, when G1 is a complete graph on two vertices
(see Section 7.2). The following lemma provides another sufficient condition for
gluing along a vertex to preserve being Burling. Gluing two oriented derived graphs
along a vertex that is an antenna in both also results in a derived graph.

Observation 9.2. Let G and G′ be two oriented graphs derived from Burling trees
T and T ′ respectively. Let v be an antenna of G and v′ be an antenna of G′. The
oriented graph obtained by gluing G and G′ along v and v′ is an oriented derived
graph.

Sketch of proof. Let us only sketch the proof here. In T , let r′′ be the last-born of
the deepest neighbor of v in G (if r′′ does not exist, just add a child to the deepest
neighbor of v and call it r′′). Add a leaf to r′′ and identify r′, the root of T ′, with this
new leaf to build a new tree T ′′. Turn v′ into a shadow vertex. DeĄne the last-borns
appropriately. DeĄne c′′(v′) to be the union of c(v), r′′, the leaf added to r′′, and
c′(v′). DeĄne c′′ of other vertices appropriately. It is easy to see that the graph
resulting from the gluing operation can be derived from T ′′.

9.2.3 Gluing along an edge

Theorem 8.24 provides an example for the fact that the class of Burling graphs
is not closed under gluing along one edge. The graph in Figure 8.14 is obtained
by gluing two type 4 subdivisions of K4 along an edge. The type 4 subdivisions of
K4 are Burling graphs by Theorem 8.5, but the graph in Figure Figure 8.14 is not
Burling as proved in Theorem 8.24.

9.3 Subgraphs and supergraphs

By deĄnition, Burling graphs are closed under taking induced subgraphs, i.e.
removing vertices. However, it is not the case fo removing edges. In particular,
Burling graphs are not closed under taking subgraphs. Let G be a wheel consisting
of a rim of size 6 and a center adjacent to every other vertex of the wheel. The graph
G is a subgraph of K3,4, which is a Burling graph. However, G is not Burling by
Theorem 8.1.

On the other hand, non-Burling graphs are not closed under taking induced
subgraph and subgraph neither. The graph theta+ in Figure 8.19 is not a Burling
graph (see Theorem 8.32), but removing the edge between the two apexes of the
theta (i.e. the edge joining the two degree 4 vertices of the theta+) results in a
chandelier, which is Burling. Also, every induced subgraph of it is a Burling graph.
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9.4 Dissolution of vertices

Dissolution of a vertex v of degree 2 in a graph G is the operation of removing
vertex v and joining its neighbors by an edge. Formally, it is to obtain a graph G′

such that V (G′) = V (G) \ ¶v♢ and E(G′) = (E(G) \ ¶vv1, vv2♢) ∪ ¶v1v2♢ where v1

and v2 are the neighbors of v.

We saw in Section 8.5 that there are non-Burling graphs with some Burling
subdivisions. Thus, in general, Burling graphs are not closed under dissolution of
vertices.

In some particular cases, however, it is possible to dissolute a vertex of a Burling
graph and obtain another Burling graph.

Observation 9.3. Let G be an oriented graph derived from (T, r, ℓ, c). If a vertex v
of G has exactly one in-neighbor u and exactly one out-neighbor w, then the graph
obtained from the dissolution of v in G, is a derived graph.

Sketch of proof. Let us again only sketch the proof. Let c(v) = V1 = ¶v1, . . . , vk♢
and c(u) = U1 = ¶u1, . . . , ul♢ where viŠs and uiŠs are in order from the least deep
to the deepest in T . From the hypothesis, V1 ∩ V (G) = ¶w♢ and V2 ∩ V (G) = ¶v♢.
Notice that v, having out-neighbors, cannot be a last-born, therefore p(v) ∈ U1.
Assume that p(v) = us for some s ∈ ¶1, . . . , l♢. Also the last-born of p(v) is in V1.
Indeed, ℓ(p(v)) = v1. DeĄne c′(u) = ¶u1, . . . , us, v1, . . . , vk♢. set c′(x) = c(x) for
every x ∈ V (T ) \ ¶u♢. The graph obtained from the dissolution of v is derived from
(T ′, r, ℓ, c′) induced on V (G) \ ¶v♢.

9.5 Substitution

Let G and H be two graphs. The graph obtained by substituting H for a vertex
v in G is a graph G′ where V (G′) = (V (G) \ ¶v♢) ∪ V (H), and

E(G′) = E(G \ v) ∪ V (H) ∪ ¶wu : w ∈ V (H), u ∈ NG(v)♢.

where G \ v = G[V (G) \ ¶v♢].

Let G and H be Burling graphs, and v ∈ V (G), we study whether G′ deĄned as
above is a Burling graph.

If v is an isolated vertex in G, then G′ is the disjoint union of two Burling graphs
G \ v and H and thus is a Burling graph. So, let us assume that v is not an isolated
vertex. On the other hand, if E(H) ̸= ∅, then G′ contains a triangle and thus is not
a Burling graph. So, let us also assume that E(H) = ∅.

The operation of substituting a graph with no edge for v is also referred to as
duplicating the vertex v, ♣V (H)♣ − 1 times.
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9.5. Substitution

Figure 9.2: A non-Burling graph obtained from cycles by duplicating vertices.

Generally, even in the simple case of duplicating a vertex only once, this operation
does not preserve being Burling. Let us give an example. Let G be a 3-necklace whose
beads are all short and have no common vertices, e.g. the graph in Figure 9.2. By
Theorem 8.18, G is not a Burling graph. However, G can be obtained from a cycle
by three applications of duplicating vertices, so at some point, the duplication of a
vertex in a Burling graph has created a non-Burling graph (one can indeed see easily
that this happens in the last duplication).

The following observation is easy to prove, thus we only sketch the proof.

Observation 9.4. Let G be an oriented graph derived from a Burling tree (T, r, ℓ, c).
Let v be a source or a sink in G. Then any graph G′ obtained from duplication of v
for any number of times is a derived graph as well.

Sketch of proof. Let us sketch the proof. It is enough to prove the theorem for one
time of duplication. By Lemma 5.3, we can assume that v is neither a last born nor
the root. In case where v is a source, add a child v′ to the parent of v to obtain a
tree T ′, and extend c to c′ on T ′ by deĄning c′(v′) = c(v). In the case where v is a
sink, subdivide the edge vp(v) in T to obtain tree T ′, and name the new vertex v′.
Extend ℓ and to T ′ by deĄning ℓ(v′) = v. Moreover, for every vertex w, if v ∈ c(w),
deĄne c′(w) = c(w) ∪ ¶v′♢ and c′(w) = c(w), otherwise. In both cases, the graph G′

is derived from T ′.

The example of 3-necklace (Figure 9.2) shows that the observation above is the
best possible.
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Applications and open problems
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Chapter 10

Applications to χ-boundedness

10.1 Wheel-free graphs . . . . . . . . . . . . . . . . . . . . . . . 133

10.2 Graphs that are not weakly pervasive . . . . . . . . . . . 134

10.3 Almost no graph is weakly pervasive . . . . . . . . . . . . 136

With all the result we have proved in the previous chapters, we can use Burling
graphs to conclude some results in χ-boundedness. The theorems here are immediate
results of theorems in the previous chapters, but we Ąnd it useful to devote a chapter
to these applications only.

10.1 Wheel-free graphs

As explained in the history of Burling graphs, in [Tro13], Trotignon asked the
following question.

Question 10.1 (Trotignon, 2013). Is the class of wheel-free graphs χ-bounded?

A k-wheel is a wheel whose center has exactly k neighbors in its rim. In [SS20],
made the following conjecture.

Conjecture 10.2 (Scott and Seymour, 2020). The class of k-wheel-free graphs is
χ-bounded.

Theorem 8.1 (which states that Burling graphs are contained in wheel-free graphs)
answers negatively to Question 10.1 and disproves Conjecture 10.2 since k-wheel-free
graphs contain wheel-free graphs.
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10.2 Graphs that are not weakly pervasive

Theorems of Section 8.3 provide several examples of graphs for which ScottŠs
conjecture does not hold, i.e. of non-weakly pervasive graphs. Indeed, the idea is
that if for a graph G, Burling graphs do not contain any subdivision of G, then
G∗-free graphs contain Burling graphs, and therefore, G is not weakly pervasive.
With this idea, we have the following results. See Figure 10.1 for some examples in
this chapter.

To our knowledge some of the examples in this section are the Ąrst known weakly
pervasive graphs with star cutsets, thus the methods here go beyond the previous
ones such as [PKK+14, CELOdM16].

Theorem 10.3. For every n ≥ 5, the graph Kn is not a weakly pervasive graph.

Proof. Follows from Theorem 8.11.

Theorem 10.4. Let G be an m-necklace graph. If any of the following happens,
then G is not a weakly pervasive graph:

1. m = 2, G has no star cutset, and the beads do not share a vertex,

2. m = 3 and G has no star cutset,

3. m = 3 and for every short bead B of G, the two other beads have no common
vertex.

4. m ≥ 4.

Proof. Let G be in one of the above four forms. Notice that a subdivision of G will
also be in one of the above forms. So, by Theorem 8.18, neither G nor any of its
subdivisions are Burling graphs. Notice that we have used the fact that having a
short bead and having a star cutset are equivalent in necklaces (Lemma 8.14). So,
G is not a weakly pervasive graph.

Theorem 10.5. Let G1 and G2 be two derived graphs and let x1 and x2 be global
subordinate vertices in G1 and G2 respectively. Then, no dumbbell of G1 and G2 with
respect to x1 and x2 is weakly pervasive.

In particular, if for each i ∈ ¶1, 2♢, the graph Gi and the vertex xi are one of the
following, then the resulting dumbbell is not weakly pervasive.

• Gi is any type 4 subdivision of K4 and xi is the common end-point of its two
non-subdivided edges,

• Gi is any long theta and xi is a degree 2 vertex in Gi whose neighbors are also
of degree 2.

See Figure 8.13.

Proof. The Ąrst part follows from Theorem 8.20 and the second from Theorem 8.23
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10.2. Graphs that are not weakly pervasive

(a) complete graphs on at least 5 vertices - Theorem 10.3

(b) some necklaces - Theorem 10.4

(c) dumbbells - Theorem 10.5

(d) some other graphs - Theorem 10.6

Figure 10.1: Some graphs that are not weakly pervasive. Dotted edges can be
subdivided or contracted, and every other edge can be subdivided. For explanations,
see the corresponding Theorems.
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Theorem 10.6. None of the three graphs in row (d) of Figure 10.1 are weakly
pervasive.

Proof. Immediate from Theorems 8.24, 8.25, and 8.26.

10.3 Almost no graph is weakly pervasive

The following theorem seems to be folklore and can be obtained in different ways,
using the other examples of graphs that are not weakly pervasive as well. However,
for the sake of completeness, we include a proof here based on the results in this
dissertation.

Theorem 10.7. Almost all graphs do not satisfy Scott’s conjecture.

Proof. It follows immediately from Theorem 8.28 by noticing that if a graph is
strongly non-Burling, i.e. none of its subdivisions is a Burling graph, then it is
not weakly pervasive.
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Open problems

11.1 Minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
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11.1 Minimality

We saw that the advantage of Burling graphs over some other classes of
triangle-free graphs of unbounded chromatic number is that they are a small class of
graphs in the sense that there exist triangle-free graphs that are not Burling graphs
(compared, for instance, to Mycielski graphs that generate all triangle-free graphs).

It is thus natural to ask whether there are proper subclasses of Burling graphs
that are not χ-bounded.

Question 11.1. Is there a Burling graph H such that the class of H-free Burling
graphs is not χ-bounded?

We remark that the class of Km,m-free Burling graphs is χ-bounded. The reason
is the following theorem of Kühn and Osthus [KO04].

Theorem 11.2 (Kühn and Osthus, 2004). For every graph H and every integer m,
there exists an integer d = d(H, m) such that every graph of average degree at least
d contains either Km,m or a subdivision of H as an induced subgraph.
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Chapter 11. Open problems

Applying this theorem to H = K5 and using Theorem 8.11 implies that Km,m-free
Burling graphs form a χ-bounded class of graphs (because by theorem above,
their average degree is less than d, so they are (d − 1)-degenerate, and therefore
d-colorable).

11.2 Burling graphs and weakly pervasive graphs

So far, the techniques to prove that a graph G is not weakly pervasive have had
Burling graphs in their core. That is, to prove that G is not weakly pervasive, we
prove that G∗-free graphs contain Burling graphs.

Question 11.3. Are there Burling graphs that are not weakly pervasive?

One way to work on Question 11.3 is to Ąnd new techniques to prove that a graph
is not weakly pervasive.

Question 11.4. Are there triangle-free graphs G that are not Burling but are weakly
pervasive?

A candidate for checking Question 11.4 is a wheel, e.g. a wheel W with a rim of
size 6 and a center connected to every other vertex of the rim. From Theorem 8.1
we know that wheels, in particular W , are not Burling graphs, but it is not known
whether W is a weakly pervasive graph or not. Remember that there are subdivisions
of W that are Burling graphs (for example, some subdivisions of W are type 4
subdivisions of K4 that are Burling graphs by Theorem 8.5).

11.3 Deciding if a graph is Burling

Question 11.5. What is the complexity of deciding whether a graph belongs to the
class of Burling graphs?

A closely related problem is to study whether given a graph G, one can determine
in polynomial time if G has a cordate orientation (DeĄnition 7.39). Notice, however,
that having a cordate orientation does not imply being Burling (see Section 8.5 for
examples of non-Burling graphs with cordate orientations).

It is worth mentioning that some problems of recognizing superclasses of Burling
graphs are NP-hard, e.g. recognizing intersection graphs of line segment-graphs
and wheel-free graphs are both NP-hard (see [KM91] and [Sch10] for the former
and [DTT14] for the latter).
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11.4 Critical non-Burling graphs

Another question to ask is whether we can characterize Burling graphs in terms
of their minimal forbidden induced subgraphs. From the explanations in Section 2.1,
there is class H of graphs such that G is a Burling graph if and only if it contains no
graph in H as an induced subgraph. The class H is exactly the class containing all
vertex-critical non-Burling graphs or, as is common to say, minimal forbidden induced
subgraphs of Burling graphs. These are non-Burling graphs such that removing any
vertex from them results in a Burling graph.

Question 11.6. What are all the vertex-critical non-Burling graphs?

Examples of minimal forbidden induced subgraphs of Burling graphs given
throughout this thesis are Ćowers, wheels, some subdivisions of K5, Theta+, etc.

11.5 Categories related to Burling graphs

In Section 5.7, we introduced some categories related to Burling graphs (namely
BTrees, BGraphs, S-Sets, PounaSets, and BSets). We also explained how the
proofs in Chapter 5 introduce functors between these categories. It is natural to ask
whether the functors introduced in that chapter are equivalences of categories. More
generally, we ask the following:

Question 11.7. Which of the categories BTrees, BGraphs, S-Sets, PounaSets,
and BSets are equivalent?

11.6 Scott’s conjecture for graphs on 5 vertices

It is noteworthy that graphs on at most 4 vertices are all weakly pervasive
(see [CPST11]). So, since K5 is non-weakly pervasive, the minimum number of
vertices of a graph that is not weakly pervasive is 5. Moreover, so far, K5 is the only
graph on 5 vertices that is proved to be non-weakly pervasive. So, it is natural to
ask the following question.

Question 11.8. Which graphs on 5 vertices are weakly pervasive?

An example of a graph that is not known to be weakly pervasive or non-weakly
pervasive is the graph obtained from K5 by removing an edge (remember that some
subdivisions of this graph are Burling, see Figure 8.8.) Examples of graphs on 5
vertices that are weakly pervasive are all trees [Sco97], bull (the graph obtained from
a triangle by adding leaves to two distinct vertices) [CPST13], and K4+ (the graph
obtained from K4 by subdividing one edge once) [ET19].
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11.7 Operations on Burling graphs

In Chapter 9 we saw that Burling graphs are not closed under many operations,
including subdivision, gluing along a vertex or an edge, dissolution of vertices, and
substitution. For some of these operations, we also gave some sufficient conditions
under which applying that operation on a Burling graph results in another Burling
graph. However, there is still room to improve these results by Ąnding more such
conditions. Not only such studies help us to understand the structure of Burling
graphs better, but also they might be helpful in recognition of Burling graphs. In
particular, the following (purposefully openly stated) question can be of interest.

Question 11.9. Under which conditions gluing two Burling graphs along a vertex
or an edge results in a Burling graph?
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Appendix A

Biography of James Perkins
Burling

James Burling, the discoverer of Burling graphs, loved mathematics. He used
to say, Şgiven a choice, why would anybody be anything but a mathematician?Ť

Figure A.1: James Burling in 1990s.

This section is devoted to some notes about
his life and his journey as a mathematician.1

James Perkins Burling, or Jim Burling,
was born on May 29, 1930, in Baltimore,
Maryland.

After school, Jim attended the same
college his parents were educated in, Grinnell
College in Iowa, to major in physics.

Right after graduating in 1952, he was
drafted into the army for two years. His duty
there was to do calculations using advanced
calculators of the time, a job that he found
extremely tedious and could not wait to
Ąnish.

During his undergraduate studies, Jim
realized that what he liked about physics
was mathematics. Hence, after the army, he
started his masterŠs studies in mathematics
at the State University of New York at
Albany and received his degree in 1957.

After his masterŠs studies, he started teaching at the State University of New
York at Oneonta. Soon, however, he decided to do a PhD in mathematics. He

1The information in this chapter is mainly from my interviews with Temple Burling, James
Burling’s son.
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started his PhD in geometry at the University of Colorado at Boulder: a choice that
was affected by his interest in skiing. His supervisor was Aboulghassem Zirakzadeh,
an Iranian mathematician, with whom Jim used to work very well.

During his PhD, Jim worked on a geometrical problem about polytopes in
Euclidean space.2 He, in particular, introduced a sequence of families of cuboids
in R3 whose intersection graphs are now called after him: the Burling sequence,
a work that later inĆuenced much research. Even though Jim started his PhD in
geometry, he gradually moved toward combinatorics and graph theory.

Simultaneously, he met Lee Chadbourne, an accomplished athlete who studied
at the same university, and they got married. During the same time, they had both
their children, Koren and Temple. He was a caring spouse and a supportive father.

Figure A.2: James Burling in 1970s.

After obtaining his PhD in 1965, Burling
started teaching at the State University of
New York at Oswego where he was one of
the founding members of the mathematics
department. Before his retirement in 1995,
he taught many courses at the University
of Oswego, including combinatorics, number
theory, calculus, and history of mathematics.
He was a devoted teacher who admired
teaching. He believed that teachers play a
key role in studentsŠ success. It is noteworthy
that his father and his children are also all
educators.

In his last 15 years of teaching, he
designed and taught a very successful course
about the history of mathematics where his

approach was to describe the evolution of ideas in mathematics: he liked to
discover how mathematicians see the world and how mathematical thinking has
evolved throughout history. He, therefore, saw his course as a course to develop
mathematicians.

He enjoyed corresponding and spending time with mathematicians from all over
the world. As an example, he met Paul Erdős on a sabbatical in Canada.

He retired in 1995, and his former student Margaret Groman took his chair which
made him delighted.

At a time when the world was very different, he believed in gender equality, and
he was showing it both in his private life and professional life. He, in particular,
was very supportive of LeeŠs profession. 3 At work too, he was insisting on making

2The problem that he was working on is explained in detail in Chapter 3.
3Lee was in the United States’ field hockey team and was ranked number 1 in tennis in the

United States in her age group for several years.
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mathematics accessible to everyone, and in particular to women.
Jim Burling had a humble and humorous character. He used to name his cats

after Greek mathematicians. He was a caring person. And he liked to share his
interests with others. He enjoyed music, especially Bach and Mozart. He used to
regularly go to symphonies and operas, and one of his common gifts to his children
was a subscription to the symphony orchestra of their city. He loved nature and used
to spend a lot of time with his family in nature. Above all, he loved mathematics.
He wanted mathematics to be accessible to everyone, from all around the world, of
any gender and all ages.

James Burling passed away on July 7th, 2005 at the age of 75. His name, however,
remains alive in mathematics.
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Intersection graphs that do not
contain Burling graphs

In Section 2.3, we claimed the following theorem.

Theorem B.1. There exists a class C of intersection graphs of geometric objects
that is not χ-bounded and does not contain Burling graphs.

As promised in Section 2.3, we prove this claim in this appendix by giving an
example of a class of intersection graphs that have unbounded chromatic number
but has no inclusion relation with Burling graphs.

The class of Contact graphs of boxes with unidirectional contacts, or CBU graphs
for short, is a class of intersection graphs of boxes with arbitrarily large chromatic
number. A 3-dimensional version of it was Ąrst deĄned by Magnant and Martin
in 2011 [CM11] and then generalized by Gonçalves, Limouzy, and Ochem in 2023
[GLO23]. Let us give their deĄnition here.

Fix d ≥ 1 and let F be a family of axis-parallel boxes with non-empty interior
in Rd (denote its usual basis by e1, e2, . . . , ed) such that for any two distinct boxes
A and B in F , the set A ∩ B is contained in a plane perpendicular to e1. In other
words, any two distinct boxes are either disjoint or they intersect only on one of the
faces of each that is perpendicular to e1. The intersection graph of such family F is
called a d-CBU graph.

Definition B.2. A graph called a CBU graph if it is a d-CBU graph for some d ≥ 1.

Let us give an example. In Figure B.1, a wheel is shown as a 2-CBU graph.
In [GLO23] Gonçalves, Limouzy, and Ochem consider also an orientation for such

graphs which helps them derive several conclusions about them. Here, however, we
only work with the non-oriented case.

It is straightforward to check that the class of CBU-graphs is triangle-free (see
Claim 1 in [GLO23]). Moreover, Magnant and Martin [CM11] proved that the class
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Figure B.1: A wheel presented as a 2-CBU graph.

Figure B.2: The graph M , a Burling graph that is not a CBU graph.

of 3-CBU graphs has unbounded chromatic number (see Theorem 3 in [CM11]).
Therefore so does the class of CBU graphs.

In this section, we prove the following which implies Theorem B.1.

Theorem B.3. Neither of the two classes of CBU graphs and Burling graphs
contains the other.

To prove this, we Ąrst need a result from [GLO23]. For this section only, let M
denote the graph in Figure B.2.

Theorem B.4 (Gonçalves, Limouzy, and Ochem 2023, Lemma 16 of [GLO23]). The
graph M in Figure B.2 is not a CBU graph.

Now, let us show that the graph M is a Burling graph. To do so, we use the
derived graph deĄnition. In Figure B.3, we show that the presented orientation of
M is a derived graph.

Now, we can prove Theorem B.3.
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Figure B.3: The graph M presented as a derived graph.

Proof of Theorem B.3. As shown in Figure B.3, and orientation of the graph M is a
derived graph, and therefore M is a Burling graph. However, by Theorem B.4 M is
not a CBU graph.

On the other hand, the wheel in Figure B.1 is a CBU graph, but by Theorem 8.1,
it is not a Burling graph.

Proof of Theorem B.1. It is implied directly from Theorem B.3.
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Other proofs

C.1 Proof for Chapter 2

Proof of Theorem 2.17

Sketch of proof of Theorem 2.17. Suppose, for the sake of contradiction, that G is
isomorphic to the intersection graph of a Ąnite family F of line segments in R2. Let
V ′ be the set of degree 2 vertices of G obtained after the subdivision of the edges of
H. We are going to lose precision by referring to the vertices of G as line segments.
Each v ∈ V ′ intersects exactly two other line segments and in two distinct points,
since (≥1)-subdivision of a graph is triangle-free. Therefore, we can assume, without
loss of generality, that these two intersection points are the end-points of v.

Now, let u be a vertex in V (G) \ V ′. So, N(u) ⊆ V ′. Let N(u) = ¶v1, . . . , vd♢
and let pi be the intersection point of vi and u. Let pu be a point on u that is not
in any other elements of F . Since the graph is Ąnite, it is possible to Ąnd injective
paths γuvi

: [0, 1] → R2 such that γuvi
(0) = pu, γuvi

(1) = pi, and the images of γuvi
Šs

are all disjoint but on pu.

Finally, for two distinct vertices u, u′ ∈ V (G) \ V ′ that are adjacent vertices of
H, let pu and pu′ be chosen as above. Also, let u, v1, . . . , vk, u′, k ≥ 1, be the path
between u and u′ in G. By pasting lemma, there is an invective path in R2 between
pu and pu′ whose image, with notation above, is γuvi

∪v1 ∪· · ·∪vk ∪γu′vk
. These paths

along with ¶pu : u ∈ V (G)\V ′♢ give a planar presentation of H, a contradiction.

Notice that the same idea of proof works if we replace line-segment in the
statement with any path-connected compact subset of R2.

We would also like to mention that in [Sin66], Sinden proved that a
(≥1)-subdivision of K5 is not an intersection graph of curves in the plane.
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C.2 Proof for Chapter 4

Proof of Lemma 4.16

Proof of Lemma 4.16. Notice that

B = [B ∩ A◦] ∪ [B ∩ (X \ Ā)] ∪ [B ∩ ∂A].

The sets, B ∩ A◦ and B ∩ (X \ Ā) are both open in B and each is non-empty by the
assumption. Moreover, their intersection is the empty set. So, if B ∩ ∂A ̸= ∅, then
B can be written as the union of two non-empty and non-intersecting sets that are
open in B, and thus B is not connected.

C.3 Proofs for Chapter 5

Proof of Lemma 5.11

Proof of Lemma 5.11. Let X0 = γ−1(L0) = ¶x ∈ [0, 1] : γ(x) ∈ L0♢. Notice that X0

is closed since it is the pre-image of a closed set under a continuous function, and
is bounded. So, X0 is compact. Moreover, 0 ∈ X0, so X0 ̸= ∅. Thus, we can set
x0 = max X0.

Set γ′′ = γ♣[x0,1], and let X1 = γ′′−1(L1) = ¶x ∈ [x0, 1] : γ′′(x) ∈ L1♢. Again, X1

is compact, and it is non-empty since 1 ∈ X1. So, we can set x1 = min X1.
Set γ′ = γ′′♣[x0,x1]. We prove that im(γ′) ⊆ ¶(x, y) : y0 ≤ y ≤ y1♢.
Assume, for the sake of contradiction, that there exists a point t ∈ (x0, x1) such

that (π2 ◦ γ′′)(t) ≤ y0 or (π2 ◦ γ′′)(t) ≥ y1. In the former case, by the intermediate
value theorem, there exists t′ ≥ t > x0 such that (π2 ◦ γ′′)(t) = y0. Thus t′ ∈ X0,
contradicting the choice of x0. In the latter case, there exists t′ ≤ t < x1 such that
(π2 ◦ γ′′)(t) = y0. Thus t′ ∈ X1, contradicting the choice of x1.

The second point is clear from the choice of x0 and x1.

Proof of Lemma 5.12

Proof of Lemma 5.12. Let γ : [0, 1] → R ∩ A be the crossing path. By two times
use of the intermediate theorem on the function π2 ◦ γ, we conclude that there exists
x0 and x1 with x0 ≤ x1 such that γ(x0) and γ(x1) are respectively on the bottom
side-and the top-side of R′. Applying Lemma 5.11 to the path γ♣[x0,x1] completes the
proof of the lemma.

Proof of Lemma 5.13

We recall that an arc in a topological space X is a homeomorphism from a
closed interval in R to X. In particular, every arc is a path. We say that two
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paths γ1 : [a1, b1] → R and γ2 : [a2, b2] → R are internally disjoint if their images
do not intersect but possibly on common endpoints, i.e. for i ∈ ¶1, 2♢, we have
γi((ai, bi)) ∩ im(γ3−i) = ∅.

It is well known that K5 is not a planar graph. In other words, if we have 5
distinct points in the plane and every two distinct points among them are joined
by an arc, then at least two of these arcs are not internally disjoint. However, it is
possible to replace the ŞarcŤ in the above statement with ŞpathŤ. This fact follows
from the Flores-Van Kampen theorem. In the following presentation of this theorem
from [Sar91], σd

k denotes the k-skeleton of the d-dimensional simplex.

Theorem C.1 (Flores-Van Kampen theorem; Flores [Flo32]; Van Kempen [VK33]).
For any continuous map f : σ2s

s−1 → R2(s−1) there exist a pair (s1, s2) of disjoint
simplices of σ2s

s−1 such that f(s1) ∩ f(s2) ̸= ∅.

Applying Theorem C.1 to s = 2 results in the desired statement as follows.

Corollary C.2. Let S be a set of 5 distinct points in the plane such that for every
a, b ∈ S with a ̸= b, there exists a path γa,b joining a to b. Then, there are four
distinct points a, b, c, d ∈ S such that im(γa,b) ∩ im(γc,d) ̸= ∅.

We believe that the following proof is folklore, but we could not Ąnd a reference
for it.

Proof of Lemma 5.13. Assume, for the sake of contradiction, that
im(α) ∩ im(β) = ∅. Set a0 = α(0), a1 = α(1), b0 = β(0), and b1 = β(1).
Fix a real number ϵ >. Let γ1, γ2, γ3, and γ4 be paths that respectively join b1 to a1,
a1 to b0, b0 to a0, and a0 to b1 such that every two paths among them are internally
disjoint, the image of each of them is entirely outside R except for its endpoints,
and all of them are entirely inside the rectangle

R′ = [l(R) − ϵ, r(R) + ϵ] × [b(R) − ϵ, t(R) + ϵ].

See Figure C.1.
Finally, choose a point c outside R′, and let δ1, δ2, δ3, and δ4 be four paths from c

to b1, a1, b0, and a0 respectively. Choose δiŠs such that they are two-by-two internally
disjoint, and such that for each i, j ∈ ¶1, 2, 3, 4♢, the two paths γi and δj are also
internally disjoint.

The existence of the set S = ¶a0, a1, b0, b1, c♢ of points and the paths

¶α̂, β̂, γi, δi : i ∈ ¶1, 2, 3, 4♢♢ contradicts Corollary C.2.

Proofs of Properties of Pouna sets

Proof of Property 5.14. Let T : (x, y) 7→ (ax + c, bx + d). Denote the inverse of T
by T −1.
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Figure C.1: Proof of Lemma 5.11: a planar embedding of K5.

If (x, y) ∈ box(S) \ S, then

T (x, y) ∈ box(S) \ S = T (box(S)) \ T (S) = box(T (S)) \ T (S).

Moreover, x′ > x implies ax′ + b > ax + b. Therefore, (x, y) ∈ ter(S) implies
T (x, y) ∈ ter(T (S)). Hence, ter(S) ⊆ ter(T (S)).

To Ąnish the proof, notice that S = T −1(T (S)) and T −1 is also a positive
transformation. Thus, by what precedes, ter(T (S)) ⊆ ter(S).

Proof of Property 5.17. Set S ′ = T (S) and E ′ = T (E). We prove that the three
items of the deĄnition hold and E ′ is a subterritory of S ′.

First, by Property 5.14, we have that E ′ = T (E) ⊆ T (ter(S)) = ter(S ′). So the
Ąrst item of the deĄnition holds.

Second, since a and b are positive, for every compact set A we have

l(T )(A) = min¶x : (x, y) ∈ T (A)♢

= min¶x :
x − c

a
,
y − d

b



∈ A♢

= min¶au + c : (u, v) ∈ E♢ = a.l(A) + c.

In the equations above we have again used the change of variables u = x−c
a

and

v = y−d

b
. So,

l(E ′) = a.l(E) + c < a.l(S) + c = l(S ′).

The proof of the rest of the inequalities is similar. This proves the second item.
Finally, let P be the prob for box(S) deĄned by E and let γ : [0, 1] → S ∩P be the

path connecting the top-side of P to the bottom-side of P . Denote by P ′ the prob for
box(S ′) deĄned by E ′. Notice that P ′ = T (P ). So, T (S∩P ) = T (S)∩T (P ) = S ′∩P ′.
Thus, the function T ◦ γ : [0, 1] → S ′ ∩ P ′ is a path entirely inside S ′ ∩ P ′. Moreover,
since T sends the top-side (resp. bottom-side) of P to the top-side (resp. bottom-side)
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of P ′, we have that (T ◦ γ)(0) is on the top-side of P ′ and (T ◦ γ)(1) is on the
bottom-side of P ′, and this Ąnishes the proof of the third item.

Proof of Property 5.18. Set F ′ = ¶T (S) : S ∈ F♢. Suppose that

T : (x, y) 7→ (ax + c, by + d)

where a > 0 and b > 0.
First of all, notice that A ∩ B ̸= ∅ if and only if T (A) ∩ T (B) ̸= ∅. So, two sets

T (A) and T (B) in F ′ intersect if and only if A and B intersect in F .
Second, notice that for every set A, l(T (A)) = a.l(A) + c. So, since a > 0, if

l(A) ≤ l(B), then l(T (A)) ≤ l(T (B)).
Third, if A ⊆ B, then T (A) ⊆ T (B), because if p ∈ T (A), then p = (ax+c, by+d)

for some (x, y) ∈ A. Now, since (x, y) ∈ B, we have p ∈ T (B).
Fourth, notice that ter(T (A)) = T (ter(A)). This, along with the third fact implies

that if A ⊆ ter(B), then T (A) ⊆ ter(T (B)).
With the four facts above, it is easy to check that F ′ satisĄes Constraints

(C1)-(C6).

Proofs of the Properties of the construction in Section 5.3

Proof of Property 5.23. The proof of (1) is immediate from the deĄnition of TP .
To prove (2), set TP : (x, y) 7→ (ax + c, bx + d). We have

a =
2w(S)

l(E) − l(S)
.
w(P ↑)

w(S)
,

and

c =
2w(S)

l(E) − l(S)



l(P ↑) −
l(S)w(P ↑)

w(S)



+ l(P ↑)(1 −
2w(S)

l(E) − l(S)
).

Now, notice that

l(TP (E)) = a.l(E) + c

= l(E).
2w(S)w(P ↑)

w(S)(l(E) − l(S))
+

2w(S)l(P ↑)

l(E) − l(S)

− l(BS).
2w(S)w(P ↑)

w(S)(l(E) − l(S))
+ l(P ↑) −

2w(S)l(P ↑)

l(E) − l(S)

= l(P ↑) + (l(E) − l(S))
2w(S)w(P ↑)

w(S)(l(E) − l(S))

> l(P ↑) + 2w(P ↑) = r(P ↑) + w(P ↑) > r(P ↑).

To complete the proof, notice that r(P ↑) = r(box(F)).
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Proof of Property 5.24. Item (1) follows from the facts that box(SP ) ⊆ P , SP ⊆ P ,
SQ ⊆ Q, and P ∩ Q = ∅.

To prove (2), notice that by Property 5.23, we have l(EP ) > r(box(F)). Since P1

is the prob deĄned by EP , the prob P1 is also outside box(F). So, for every A ∈ F ,
we have A /∈ NF ′(P1). Moreover, by item (1) of this property, for every Q ∈ P \¶P♢,
we have SQ /∈ NF ′(P1). Finally, since EP is a subterritory of S, by deĄnition of
SP ∩ P1 ̸= ∅. Therefore NF ′(P1) = ¶SP ♢.

To prove (3), assume that A ∈ F ′ is of the form A = SQ for some Q. Case 1,
Q = P , in which case SQ = SP ⊆ P1, and since P1 ∩ P2 = ∅, we have A /∈ NF ′(P2).
Case 2, Q ̸= P , and thus item (1) of this property implies that A /∈ NF ′(P2).
Therefore, NF ′(P2) ⊆ F .

Hence, NF ′(P2) = NF(P2). So, since P2∩box(F ) ⊆ P , we have NF ′(P2) ⊆ NF(P ).
To prove (4), Ąrst notice that r(SP ) > r(F), along with (1), imply that there exists

no B ∈ F ′ such that B ↷ SP . Now, set N(SP ) to be the set ¶A ∈ F ′ : SP ↷ A♢.
by construction, N(SP ) ⊆ N(P ). Moreover, since SP crosses P horizontally and all
elements of N(P ) cross P vertically, by Lemma 5.13, SP intersects all elements of
N(P ). Moreover, if A ∈ N(P ), we have

¶(x, y) : x = r(SP )♢ = ¶(x, y) : x = r(P ↑)♢ ⊆ ter(A).

Finally,
l(A) ≤ l(P ↑) = l(SP ) < r(A) ≤ r(F) < r(SP ),

and
b(A) < b(P ↑) = b(SP ) < t(SP ) = t(P ↑) < t(A).

So, A ↷ N(P ) for all A ∈ N(P ), and this completes the proof.

C.4 Proof for Chapter 8

Proof of Lemma 8.27

Using the same notations as in Section 8.4, we state the following two results
from [Bol01]. In the second one, however, we have stated a special case of the
theorem.

Theorem C.3 (Ballobás, Theorem 2.1 in [Bol01]). Let n ∈ N and let P be a property
closed under taking subgraph. If p, q ∈ [0, 1] such that p < q, then

P(XP
n (G)♣G ∈ G(n, p)) ≤ P(XP

n (G)♣G ∈ G(n, q)).

From now on, we deĄne Xn to be a random variable on G(n, pn) which returns
the number of distinct induced K5Šs in a graph G. So, Xn(G) > 0 if and only if
ω(G) ≥ 5.
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Theorem C.4 (Ballobás, Theorem 4.1 in [Bol01]). Fix c > 0. Set pn = min¶1, c√
n
♢

and λ = c10

5!
. Then for every r ∈ N, we have

lim
n→+∞

P(Xn(G) = r ♣ G ∈ G(n, pn)) = e−λ λr

r!
.

Now we can prove Lemma 8.27, that is prove that for p ∈ (0, 1], we have

lim
n→+∞

P(Xn(G) ≥ 1 ♣ G ∈ G(n, p)) = 1.

Proof of Lemma 8.27. Fix c > 0 and deĄne pn = c√
n
. For all n such that pn < p, by

Theorem C.3, we have:

P(Xn(G) ≥ 1 ♣ G ∈ G(n, p)) ≥ P(Xn(G) ≥ 1 ♣ G ∈ G(n, pn)). (C.1)

On the other hand, using Theorem C.4, we have:

lim
n→∞

P(Xn(G) ≥ 1 ♣ G ∈ G(n, pn)) = lim
n→∞

(1 − P(Xn(G) = 0 ♣ G ∈ G(n, pn)))

= 1 − exp(−
c10

5!
).

(C.2)

So, from (C.1) and (C.2), we have

lim inf
n→∞

P(Xn(G) ≥ 1 ♣ G ∈ G(n, p)) ≥ 1 − exp(−
c10

5!
).

This being true for every c > 0, we conclude that

lim inf
n→+∞

P(Xn(G) ≥ 1 ♣ G ∈ G(n, p)) = 1,

which implies the desired result.
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Summary in French

Cette thèse porte principalement sur la théorie de la χ-boundedness et la théorie
géométrique des graphes. En particulier, nous mettons l’accent sur un sujet à l’intersection
de ces deux domaines : les graphes de Burling. La classe des graphes de Burling, définie par
Burling [Bur65] en 1965, est une classe de graphes sans triangle avec un nombre chromatique
arbitrairement grand qui a fait l’objet de nombreuses recherches depuis les années 1960
jusqu’à aujourd’hui. Dans cette thèse, nous étudions les graphes de Burling sous différents
aspects : leurs caractérisations, leur structure et leurs applications.

Nous donnons plusieurs caractérisations équivalentes des graphes de Burling avec
différentes saveurs : une combinatoire (appelée graphes dérivés), une axiomatique (appelée
graphes de Burling abstraits), et certaines géométriques (appelées graphes contraints).
Les deux premières, qui sont les premières définitions non inductives des graphes de
Burling, permettent d’obtenir de nouveaux résultats (voir ci-dessous). Historiquement,
les graphes de Burling ont été considérés comme des sous-classes de graphes géométriques.
Les caractérisations géométriques, en introduisant pour la première fois les graphes de
Burling comme une exacte classe de graphes géométriques, complètent ce point de vue
historique.

Nous étudions ensuite plusieurs propriétés structurelles des graphes de Burling en
utilisant la définition des graphes dérivés. Entre autres résultats, nous donnons des
théorèmes de décomposition, étudions la structure des trous dans les graphes de Burling
et analysons les effets de plusieurs opérations sur la classe. En utilisant ces résultats, nous
introduisons de nouvelles techniques pour fournir de nouveaux graphes sans triangle qui
ne sont pas des graphes de Burling. En outre, nous prouvons des résultats probabilistes
sur la taille de la classe.

Enfin, nous présentons quelques applications de nos résultats à la théorie de la
χ-boundedness. Nous réfutons une conjecture de Scott et Seymour de [SS20] et répondons
à une question de Trotignon de [Tro13], toutes deux concernant les graphes sans roue.
Nous réalisons également la classification des graphes complets faiblement pervasifs, et
fournissons de nouvelles familles de graphes non faiblement pervasifs (i.e. contre-exemples
à la conjecture de Scott).

Une majeure partie de cette thèse est contenue dans [PT23, PT21a, PT21b] (travaux
conjoints avec Nicolas Trotignon), dans [Pou22], et dans le mémoire de master de
l’autrice [Pou20].

– Mots-clés: théorie des graphes, χ-boundedness, graphes de Burling, graphes

d’intersection d’objets géométriques
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Piotr Micek, William T Trotter, and Bartosz Walczak. Triangle-free
geometric intersection graphs with large chromatic number. Discrete
& Computational Geometry, 50(3):714Ű726, 2013.

158



Bibliography

[PKK+14] Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Micha l Lasoń,
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