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Résumé

La thèse traite du problème de la résilience dans les systèmes informatiques à grande
échelle. En raison du développement rapide de la technologie de calcul à haute performance,
il est devenu crucial de développer des mécanismes de tolérance aux pannes efficaces et
robustes. Cette recherche se concentre sur l’optimisation des stratégies de sauvegarde,
l’analyse de différentes techniques de résilience et le développement de nouvelles approches
d’ordonnancement pour traiter les pannes.

Les contributions principales de la thèse incluent l’exploration de l’impact de dif-
férents modèles de panne sur les stratégies de sauvegardes, la conception d’algorithmes
d’ordonnancement adaptatifs prenant en compte la variabilité des resources, et l’optimi-
sation des stratégies de partage de bande passante d’entrées/sorties (E/S) pour les ap-
plications simultanées. Cette thèse comprend également la conception de stratégies de
sauvegardes pour les graphes de tâches parallèles.

Dans l’ensemble, cette thèse fournit une analyse approfondie de la résilience et des
stratégies de sauvegardes dans les systèmes informatiques de haute performance. Les
contributions de cette recherche ont des implications qui concernent l’optimisation des
systèmes de calcul scientifique de grande échelle, en répondant à certains défis posés par
les erreurs et les pannes dans les processus informatiques.
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Introduction en Français

Au cours des dernières années, l’informatique à haute performance (HPC) est devenue
essentielle dans de nombreux domaines scientifiques tels que la physique, la chimie et la
biologie. Les avancées scientifiques dans ces domaines impliquent souvent des simulations et
des calculs complexes, comme la modélisation des champs magnétiques, la compréhension
des interactions moléculaires ou la simulation de la dynamique des fluides. De telles
opérations demandent une immense puissance de calcul, dépassant souvent les limites des
systèmes informatiques actuels et nécessitant une innovation constante pour répondre aux
exigences en constante évolution. Comme les méthodes traditionnelles d’amélioration des
capacités de calcul, telles que l’augmentation du nombre de transistors sur une seule puce,
ont atteint leurs limites physiques, l’accent a été mis sur l’amélioration de la puissance
de calcul en augmentant le nombre de composants au sein d’un système. Cette approche
permet une exécution parallèle des tâches, répartissant efficacement la charge de calcul sur
de nombreux processeurs ou cœurs. Cependant, à mesure que l’échelle de ces plateformes de
calcul continue de croître, le défi de maintenir la résilience du système augmente également.
Cela devient de plus en plus important car le nombre de composants dans un système
HPC est directement proportionnel à la probabilité de défaillances, d’erreurs silencieuses et
d’erreurs d’arrêt, qui peuvent finalement compromettre l’exactitude et l’efficacité des calculs
scientifiques. En effet, les supercalculateurs de pointe tels que Frontier, Fugaku et LUMI,
qui occupent respectivement les 1ère, 2ème et 3ème places dans la liste TOP500 [157],
intègrent maintenant des millions de cœurs, avec Sunway TaihuLight (7e) atteignant un pic
de 10,6 millions. Ces vastes systèmes de calcul rencontrent souvent des défaillances ou des
erreurs d’arrêt, telles que des pannes matérielles ou des blocages dus à des interruptions
logicielles anormales. Bien que la probabilité de défaillance pour chaque cœur soit faible, la
probabilité globale de défaillance du système est considérablement plus élevée. Par exemple,
si le temps moyen entre les pannes (MTBF) pour une seule ressource de calcul est d’environ
dix ans, indiquant que la ressource ne devrait connaître une erreur que tous les dix ans
en moyenne, en utilisant un million de ressources, le MTBF tombe à cinq minutes, alors
que les codes s’exécutant sur de telles plateformes à grande échelle durent généralement
des heures ou des jours. À mesure que le besoin de puissance de calcul augmente, les
défaillances ne peuvent plus être ignorées, car même une seule erreur peut compromettre
la validité des résultats scientifiques, conduisant à des conclusions incorrectes et à une
utilisation inefficace des ressources. Ainsi, des mécanismes de tolérance aux pannes doivent
être mis en œuvre pour assurer la réussite des applications et la fiabilité des résultats.

Les techniques de résilience visent non seulement à garantir l’exécution correcte des
applications scientifiques, mais aussi à minimiser la dégradation des performances et
l’utilisation des ressources causées par les défaillances. Elles peuvent être largement
classées en approches proactives et réactives. Les approches proactives visent à prédire
et à prévenir les défaillances avant qu’elles ne se produisent, tandis que les approches
réactives se concentrent sur les mécanismes de récupération et d’adaptation pour faire face
aux défaillances après qu’elles se soient produites. De plus, la résilience des applications

2
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scientifiques dépend de divers facteurs tels que la nature de l’application, l’infrastructure
matérielle et logicielle sous-jacente et les mécanismes spécifiques de tolérance aux pannes
utilisés. Comprendre l’interaction entre ces facteurs est essentiel pour concevoir des
stratégies de résilience efficaces et pour évaluer leur impact sur les performances globales
du système, et nous étudierons différentes solutions pour bon nombre de ces différents
facteurs.

Plus précisément, dans cette thèse, nous distinguons deux types d’erreurs. Les erreurs
silencieuses sont un type d’erreur qui se produit pendant l’exécution d’une application
et qui n’est pas détecté par le système. Elles peuvent résulter de diverses sources, telles
que des inversions de bits dans la mémoire ou des unités arithmétiques et logiques (UAL)
défectueuses, et peuvent même être causées par des facteurs externes tels que les rayon-
nements cosmiques. Le principal défi avec les erreurs silencieuses est de les détecter, car elles
n’altèrent que les données ou la sortie d’un algorithme. Des mécanismes de vérification sont
disponibles et doivent être utilisés avec prudence pour détecter (et, si possible, corriger) ces
erreurs. Contrairement aux erreurs silencieuses, les erreurs d’arrêt sont automatiquement
détectées car elles entraînent l’arrêt complet d’une application. Elles peuvent provenir soit
d’un composant défectueux, soit d’un bogue dans le code de l’application qui provoque
une erreur de segmentation, par exemple. Bien que les erreurs d’arrêt soient plus simples
à détecter que les erreurs silencieuses, elles interrompent la progression de l’application,
entraînent la perte de toutes les opérations depuis le dernier point de contrôle (s’il y en a
eu), et ne peuvent pas être corrigées.

Une approche traditionnelle pour gérer les erreurs d’arrêt dans les systèmes informa-
tiques à grande échelle implique des mécanismes de sauvegardes/réexécutions. Périodique-
ment, une sauvegarde de l’application est créé, ce qui signifie que l’état de l’application
(généralement sa totalité en mémoire) est enregistré dans un stockage fiable. Si une
ressource de calcul connaît une défaillance, l’application se met en pause et redémarre à
partir du dernier point de contrôle valide. De nombreuses études ont examiné la période
de point de contrôle optimale, qui est le temps entre deux points de contrôle consécutifs,
de manière à minimiser le gaspillage. Si les points de contrôle sont pris trop fréquemment,
un temps précieux est consacré aux opérations d’entrées/sorties (E/S). À l’inverse, si les
points de contrôle sont trop rares, du temps est perdu à retraiter de grandes parties de
l’application après chaque erreur (voir Figure 1.1). De manière intéressante, la fiabilité
était déjà une préoccupation aux premiers jours de l’informatique : dans les années 1970,
Young a proposé une approximation initiale du temps optimal entre deux points de contrôle
qui minimise la durée de calcul totale [173]. Daly a ensuite affiné l’approximation de
Young [47], et la période de point de contrôle optimale est (approximativement) donnée
par la formule de Young/Daly comme WYD =

√
2µC, où µ est le temps moyen entre les

pannes de l’application et C est la durée de la sauvegarde. Cette formule s’applique aux
applications où un point de contrôle peut être pris à tout moment pendant le calcul, ce qui
est le cas pour les applications à charge divisible [27,136].

Pour relever le défi de la résilience dans les systèmes HPC, cette thèse est organisée
en deux parties principales, chacune comprenant trois chapitres qui se concentrent sur
différents aspects de la résilience dans le contexte des HPC. La première partie approfondit
la résilience sans point de contrôle, en mettant principalement l’accent sur la planification
des tâches, la détection et la récupération des erreurs, tandis que la deuxième partie étudie
différentes stratégies de point de contrôle et leur efficacité pour maintenir la résilience dans
différents scénarios.

Plus précisément, le chapitre 2 se concentre sur la planification résiliente des tâches
parallèles malléables sur des plateformes de HPC. Les tâches malléables offrent la flexibilité
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de choisir l’allocation de processeurs avant l’exécution et peuvent adhérer à divers modèles
de gain de vitesse, qui représentent le temps d’exécution d’une tâche en fonction du nombre
de cœurs qui lui sont alloués. L’objectif est de minimiser le temps total d’achèvement, tout
en tenant compte de la possibilité d’échecs de tâches dus à des erreurs silencieuses, qui
peuvent nécessiter une nouvelle exécution. Ce chapitre généralise le cadre de planification
classique pour les tâches sans défaillance et introduit deux algorithmes de planification
résilients, présente de nouveaux ratios d’approximation et démontre leur efficacité au moyen
d’un ensemble étendu de simulations.

Le chapitre 3 étend l’étude à la planification en ligne des graphes de tâches malléables
sur des systèmes multiprocesseurs, où les tâches ne sont découvertes qu’à la fin de leurs
prédécesseurs. L’objectif est de minimiser le temps total d’achèvement selon divers modèles
réalistes de gain de vitesse. Nous concevons un nouvel algorithme en ligne et dérivons des
ratios de compétitivité constants pour ces modèles de gain de vitesse. Nous établissons
également des bornes inférieures sur la compétitivité de tout algorithme dont l’allocation
de processeur ne dépend que des paramètres de la tâche et pas de sa position dans le
graphe, et nous montrons que notre algorithme a le meilleur ratio de compétitivité absolu
pour cette classe sous ce modèle.

Dans le chapitre 4, le focus se déplace vers la planification consciente des risques de
tâches indépendantes sur une plateforme avec une capacité de ressources variable. La
dépendance croissante des sources d’énergie renouvelable, telles que l’énergie solaire et
éolienne, a entraîné des variations dans le coût, la disponibilité et l’intensité en carbone
de l’énergie. Cela nécessite le développement d’algorithmes de planification qui peuvent
s’adapter à ces fluctuations. L’objectif d’optimisation de ce chapitre est le débit, défini
comme la fraction de temps consacrée à des calculs efficaces, excluant la ré-exécution.
Nous introduisons plusieurs algorithmes innovants qui: (i) déterminent la fraction de
ressources sûres à utiliser; (ii) maintiennent un indice de risque pour chaque machine; et
(iii) atteignent un équilibre de charge global tout en affectant les tâches plus longues aux
machines plus sûres. Les performances de ces algorithmes sont évaluées à l’aide de traces
de flux de travail réelles ainsi que de traces synthétiques, résultant en une augmentation
moyenne du débit sans compromettre d’autres métriques comme l’étirement maximal ou
moyen.

La deuxième partie traite de l’impact des erreurs de type fail-stop. Le chapitre 5 étudie
les stratégies de sauvegardes pour les tâches parallèles soumises aux erreurs de type fail-
stop. Alors que la stratégie optimale est bien établie lorsque les temps entre deux erreurs
suivent une distribution exponentielle, elle est inconnue pour les distributions de temps
non exponentielles. Nous abordons les idées fausses dans la littérature récente et proposons
une stratégie générale qui maximise l’efficacité attendue jusqu’à la prochaine erreur. Nous
démontrons que cette stratégie est asymptotiquement optimale pour les très longues tâches.
À travers des simulations approfondies, la nouvelle stratégie est montrée pour surpasser
constamment la stratégie classique de Young/Daly pour diverses distributions d’erreur.
Dans certains cas, elle réduit le temps d’exécution d’un facteur de 1.9 en moyenne, et
jusqu’à un facteur de 4.2 pour les plateformes récemment déployées.

Dans le chapitre 6, le focus se déplace vers les stratégies de sauvegardes pour les
processus comprenant plusieurs tâches s’exécutant sur des plateformes parallèles. L’objectif
est de minimiser le temps d’exécution total attendu. Alors que la formule de Young/Daly
fournit la période de sauvegarde optimale pour une tâche unique, la situation devient plus
complexe avec plusieurs tâches concurrentes. Nous explorons si l’ajout de sauvegardes
supplémentaires à chaque tâche au-delà de la stratégie de Young/Daly est bénéfique dans
un contexte global et présentons des résultats théoriques négatifs pour conserver la période
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de Young/Daly lorsque de nombreuses tâches sont exécutées simultanément. Enfin, nous
concevons de nouvelles stratégies de sauvegarde qui garantissent une exécution efficace
avec une forte probabilité. Des expériences approfondies démontrent la nécessité d’aller
au-delà de la période de Young/Daly et de faire des sauvegardes plus souvent dans diverses
applications/plateformes.

Enfin, parce que la vérification nécessite de grandes opérations d’entrées/sorties (E/S)
pour stocker et lire les données, elle augmente considérablement la charge sur le système
d’E/S. Plusieurs applications qui tentent de vérifier (ou de récupérer) simultanément
devront partager la bande passante d’E/S. Le chapitre 7 revoit les stratégies de partage de
bande passante d’E/S pour les applications HPC. Il compare les approches bien connues
telles que la sérialisation des opérations (FCFS) et le partage équitable de la bande passante
entre les opérations d’E/S concurrentes (MinYield) avec des approches plus récentes telles
que Set-10, qui attribue des priorités aux applications en fonction de la durée moyenne
de leurs itérations. Nous introduisons plusieurs nouvelles stratégies de partage de bande
passante, y compris des algorithmes gloutons simples et plus complexes, et évaluons leurs
performances par rapport aux stratégies existantes. Les stratégies proposées ne dépendent
pas de la connaissance préalable du comportement de l’application, tel que la durée des
phases de travail, le volume d’opérations d’E/S ou la périodicité. Nous présentons un
cadre rigoureux, appelé fenêtres à l’état stable, pour dériver des bornes sur le rapport
de compétition de toutes les stratégies de partage de bande passante pour trois objectifs
différents : le rendement minimal, l’utilisation de la plateforme et l’efficacité globale. Cette
évaluation théorique est complétée par des simulations approfondies à l’aide de traces
synthétiques et réalistes.

Chacun des six chapitres de contributions de cette thèse correspond à une publication
scientifique dont je suis co-auteur. Dans l’ensemble, cette thèse vise à fournir une analyse
approfondie de la résilience et de la vérification dans les systèmes HPC. En abordant
différents aspects de la résilience, notamment la planification, les stratégies de vérification
et les techniques de partage de bande passante d’E/S, cette thèse apporte de nouvelles
contributions à la compréhension et à l’optimisation des systèmes HPC. De plus, mon
travail a visé à améliorer la fiabilité et l’efficacité du calcul scientifique dans une gamme
diversifiée d’applications, aidant les chercheurs et les praticiens à surmonter les défis posés
par les pannes et les erreurs dans leur travail de calcul.

Ma liste complète de publications et de soumissions est fournie dans le Chapitre 9. Par
souci de concision, les travaux réalisés dans la publication [C2] et la soumission [S2] ne
sont pas inclus dans cette thèse. Ces travaux étendent les problèmes d’ordonnancement
classiques avec plusieurs ressources (comme les processeurs, le cache, la mémoire, les E/S
ou les ressources réseau). Nous introduisons un nouvel algorithme d’ordonnancement
multi-ressources avec des garanties théoriques, et nous confirmons expérimentalement ses
bonnes performances. Cet algorithme est complexe et nécessite plusieurs bijections pour
transformer l’instance ainsi que de la programmation linéaire, et le code est disponible
publiquement à l’adresse https://gitlab.inria.fr/luperoti/mrsa. Dans cette thèse,
nous omettons également les travaux réalisés dans la publication [C3], étant donné qu’un
nouvel algorithme et une analyse plus précise, soumis dans [S5], rendent les résultats
précédents obsolètes.

https://gitlab.inria.fr/luperoti/mrsa


Chapter 1

Introduction

In recent years, high-performance computing (HPC) has become essential in a wide range
of scientific domains, such as physics, chemistry, and biology. Scientific breakthroughs in
these domains often involve complex simulations and calculations, like modeling magnetic
fields, understanding molecular interactions, or simulating fluid dynamics. Such compu-
tations demand immense computational power, frequently pushing the limits of current
computing systems and necessitating constant innovation to keep up with the ever-growing
requirements. As traditional methods of enhancing computing capabilities, like increasing
the number of transistors on a single chip, have reached physical limitations, the focus
has shifted toward improving computing power by augmenting the number of components
within a system. This approach enables parallel execution of tasks, effectively distributing
the computational workload across numerous processors or cores. However, as the scale of
these computing platforms continues to grow, so does the challenge of maintaining system
resilience. This becomes increasingly important as the number of components in an HPC
system is directly proportional to the likelihood of faults, silent errors, and fail-stop errors,
which can ultimately compromise the accuracy and efficiency of scientific computations.
Indeed, cutting-edge supercomputers like Frontier, Fugaku, and LUMI, which rank 1st,
2nd, and 3rd in the TOP500 list [157], respectively, now incorporate millions of cores,
with Sunway TaihuLight (7th) reaching a peak of 10.6 million. These vast computing
systems often encounter failures or fail-stop errors, such as hardware malfunctions or
crashes. Although the probability of failure for each core is low, the overall system’s
failure probability is considerably higher. For example, if the Mean Time Between Failure
(MTBF) for a single computing resource is roughly ten years, indicating that the resource
should experience an error only every ten years on average, using one million resources,
the MTBF drops to five minutes, while codes running on such extreme-scale platforms
usually last for hours or days. As the need for computing power grows, failures can no
longer be overlooked, as even a single error can compromise the validity of scientific results,
leading to incorrect conclusions and wasted resources. Thus, fault-tolerance mechanisms
must be implemented to ensure the successful completion of applications and the reliability
of results.

Resilience techniques not only aim at ensuring the correct execution of scientific
applications but also at minimizing the performance degradation and resource utilization
caused by failures. They can be broadly classified into proactive and reactive approaches.
Proactive approaches strive for predicting and preventing failures before they occur, while
reactive approaches focus on recovery and adaptation mechanisms to deal with failures
after they have happened. Moreover, the resilience of scientific applications depends on
various factors, such as the nature of the application, the underlying hardware and software
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infrastructure, and the specific fault-tolerance mechanisms employed. Understanding the
interplay between these factors is essential for designing effective resilience strategies and
for evaluating their impact on the global system performance, and we will study different
solutions for many of these various factors.

More precisely, in this thesis, we distinguish two types of errors. Silent errors are
a type of errors that occur during an application’s execution and go undetected by the
system. They can result from various sources, such as bit-flips in memory or malfunctioning
Arithmetic Logic Units (ALUs), and may even be caused by external factors like cosmic
radiation. The primary challenge with silent errors is to detect them, since they only
alter the data or output of an algorithm. Verification mechanisms are available and must
be used carefully to detect (and, if possible, correct) these errors. In contrast to silent
errors, fail-stop errors are automatically detected since they lead to a complete halt of
an application. They can arise from either a non-functioning component or a bug in the
application code that causes a segmentation fault, for example. Although fail-stop errors
are simpler to detect than silent errors, they interrupt application progress, cause the loss
of all computations since the last checkpoint (if any), and cannot be corrected.

A traditional approach for handling fail-stop errors in extreme-scale computing sys-
tems involves checkpoint/rollback mechanisms. Periodically, an application checkpoint is
created, meaning the application’s state (typically its entire memory footprint) is saved to
reliable storage. If any computing resource experiences a failure, the application pauses
and restarts from the last valid checkpoint. Many studies have investigated the optimal
checkpointing period, which is the time between two consecutive checkpoints, so that the
waste is minimized. If checkpoints are taken too frequently, some valuable time is spent
on I/O operations. Conversely, if checkpoints are too sparse, time is wasted reprocessing
large parts of the application after each failure (see Figure 1.1). Interestingly, reliability
was already a concern in the early days of computing: in the 1970s, Young proposed an
initial approximation of the optimal time between two checkpoints that minimizes the
total computation duration [173]. Daly later refined Young’s approximation [47], and
the optimal checkpointing period is (approximately) given by the Young/Daly formula
as WYD =

√
2µC, where µ is the application MTBF (Mean Time Between Failures) and

C is the checkpoint duration. This formula applies to applications where a checkpoint
can be taken anytime during the computation, which is the case for divisible-load applica-
tions [27,136].

Figure 1.1: Trade-off for the optimal checkpoint period.
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To address the challenge of resilience in HPC systems, this thesis is organized into two
main parts, each comprising three chapters that focus on different aspects of resilience in
the context of HPC. The first part delves into resilience without checkpointing, emphasizing
mostly on task scheduling, error detection, and recovery, while the second part investigates
various checkpointing strategies and their effectiveness in maintaining resilience under
different scenarios.

More specifically, Chapter 2 focuses on the resilient scheduling of moldable parallel
jobs on HPC platforms. Moldable jobs provide the flexibility of choosing a processor
allocation before execution and can adhere to various speedup models, which is the function
representing the execution time of a job given the number of cores allocated to it. The
objective is to minimize the overall completion time, while accounting for the possibility
of job failures due to silent errors, which may necessitate re-execution. This chapter
generalizes the classical scheduling framework for failure-free jobs and introduces two
resilient scheduling algorithms, presents new approximation ratios, and demonstrates their
effectiveness through an extensive set of simulations.

Chapter 3 extends the study to the online scheduling of moldable task graphs on
multiprocessor systems, where tasks are discovered only upon the completion of their
predecessors. The goal is to minimize the overall completion time under various realistic
speedup models. We design a novel online algorithm and derive constant competitive
ratios for these speedup models. We also establish lower bounds on the competitiveness of
any algorithm whose processor allocation depends only on task parameters and not on its
position in the graph, and we show that our algorithm has the absolute best competitive
ratio for this class under this model.

In Chapter 4, the focus shifts to the risk-aware scheduling of independent jobs on a
platform with variable resource capacity. The increasing reliance on renewable energy
sources, such as solar and wind power, has led to variations in the cost, availability, and
carbon intensity of power. This necessitates the development of scheduling algorithms that
can adapt to these fluctuations. The optimization objective in this chapter is the goodput,
defined as the fraction of time devoted to effective computations, excluding re-execution.
We introduce several innovative algorithms that: (i) determine the safe fraction of resources
to use; (ii) maintain a risk index for each machine; and (iii) achieve global load balance
while mapping longer jobs to safer machines. The performance of these algorithms is
assessed using actual workflow traces as well as synthetic traces, resulting in an average
increase in goodput without compromising other metrics like maximum or average stretch.

The second part deals with the impact of fail-stop errors. Chapter 5 studies check-
pointing strategies for parallel jobs subject to fail-stop errors. While the optimal strategy
is well-established when failure inter-arrival times follow an Exponential distribution, it
remains unknown for non-memoryless failure distributions. We address misconceptions in
recent literature and propose a general strategy that maximizes the expected efficiency
until the next failure. We demonstrate that this strategy is asymptotically optimal for
very long jobs. Through extensive simulations, the new strategy is shown to consistently
outperform the classic Young/Daly strategy for various failure distributions. In some cases,
it reduces execution time by a factor of 1.9 on average and up to a factor of 4.2 for recently
deployed platforms.

In Chapter 6, the focus shifts to checkpointing strategies for workflows comprising
multiple tasks executing on parallel platforms. The objective is to minimize the expected
total execution time. While the Young/Daly formula provides the optimal checkpointing
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period for a single task, the situation becomes more complex with multiple concurrent
tasks. We explore whether adding extra checkpoints to each task beyond the Young/Daly
strategy is beneficial in a global context and present theoretical negative results for
retaining the Young/Daly period when many tasks execute concurrently. Finally, we design
novel checkpointing strategies that guarantee efficient execution with high probability.
Comprehensive experiments demonstrate the need to go beyond the Young/Daly period
and to checkpoint more often in various application/platform settings.

Finally, because checkpointing requires large I/O operations to store and read the
data, it dramatically increases the overhead on the I/O system. Several applications that
try and checkpoint (or recover) simultaneously will need to share the I/O bandwidth.
Chapter 7 revisits I/O bandwidth-sharing strategies for HPC applications. It compares
well-known approaches such as serializing operations (FCFS) and fair-sharing bandwidth
across concurrent I/O operations (MinYield) with newer approaches like Set-10, which
assigns priorities to applications based on the average length of their iterations. We
introduce several new bandwidth-sharing strategies, including simple greedy algorithms
and more complex ones, and assess their performance against existing strategies. The
proposed strategies do not rely on prior knowledge of application behavior, such as work
phase lengths, I/O operation volume, or periodicity. We present a rigorous framework,
called steady-state windows, to derive bounds on the competitive ratio of all bandwidth-
sharing strategies for three different objectives: minimum yield, platform utilization, and
global efficiency. This theoretical assessment is complemented by extensive simulations
using synthetic and realistic traces.

Each of the six chapters of contributions in this thesis corresponds to a scientific
publication that I have co-authored. Altogether, this thesis aims at providing a thorough
analysis of resilience and checkpointing in HPC systems. By addressing various aspects
of resilience, including scheduling, checkpointing strategies, and I/O bandwidth-sharing
techniques, this thesis makes new contributions to the understanding and optimization of
HPC systems. Furthermore, my work aspires to enhance the reliability and efficiency of
scientific computing in a diverse range of applications, helping researchers and practitioners
overcome the challenges posed by faults and errors in their computational work.

My complete list of publications and submissions is provided in Chapter 9. For the
sake of conciseness, the work done in Publication [C2] and Submission [S2] are not included
in this thesis. This work involves extending classical scheduling problems with multiple
resources (such as computing cores, cache, memory, I/O or network resources). We design a
new multi-resource scheduling algorithm with theoretical guaranties, and we experimentally
confirm its good performance. This algorithm is complex and requires multiple bijections
to transform the instance, as well as some linear programming, and the code is publicly
available at https://gitlab.inria.fr/luperoti/mrsa. In this thesis, we also omit the
work done in Publication [C3], since a newer algorithm and sharper analysis, submitted
in [S5], makes the previous results obsolete.

https://gitlab.inria.fr/luperoti/mrsa
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Chapter 2

Resilient Scheduling of Moldable Parallel Jobs
to Cope with Silent Errors

We study the resilient scheduling of moldable parallel jobs on high-performance computing
(HPC) platforms. Moldable jobs allow for choosing a processor allocation before execution,
and their execution time obeys various speedup models. The objective is to minimize the
overall completion time of the jobs, or the makespan, when jobs can fail due to silent errors
and hence may need to be re-executed after each failure until successful completion. Our
work generalizes the classical scheduling framework for failure-free jobs. To cope with
silent errors, we introduce two resilient scheduling algorithms, Lpa-List and Batch-List,
both of which use the List strategy to schedule the jobs. Without knowing a priori how
many times each job will fail, Lpa-List relies on a local strategy to allocate processors
to the jobs, while Batch-List schedules the jobs in batches and allows only a restricted
number of failures per job in each batch. We prove new approximation ratios for the two
algorithms under several prominent speedup models (e.g., roofline, communication, Amdahl,
power, monotonic, and a mixed model). An extensive set of simulations is conducted to
evaluate different variants of the two algorithms, and the results show that they consistently
outperform some baseline heuristics. Overall, our best algorithm is within a factor of 1.6
of a lower bound on average over the entire set of experiments, and within a factor of 4.2
in the worst case. This chapter mostly corresponds to Publication [J1], which was itself an
extension from Publication [C1] (see Chapter 9). However, it also contains some results
obtained later, such as the asymptotic optimality of Batch-List, which revisits results
from Publication [C3]. Finally, this chapter also incorporates results from Submission [S5],
which revisited the study of the speedup models.

2.1 Introduction

Scheduling parallel jobs on high-performance computing (HPC) platforms is crucial for
improving the application and system performance. In the scheduling literature, a moldable
job is a parallel job that can be executed on an arbitrary but fixed number of processors,
with an execution time depending on the number of processors on which it is executed.
More precisely, a moldable job allows a variable set of resources for scheduling but requires
a fixed set of resources to execute, which the job scheduler must allocate before it starts
the job. This corresponds to a variable static resource allocation, as opposed to a fixed
static allocation (rigid jobs) and to a variable dynamic allocation (malleable jobs) [59].
Moldable jobs can easily adapt to the amount of available resources, contrarily to rigid
jobs, while being easy to design and implement, contrarily to malleable jobs. Thus, many
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n Number of tasks
P Total number of processors
λ Error rate per unit of work (failures follow exponential law)
f Vector containing the number of failures for each task
p⃗ Vector containing the number of processors for each iteration of a given task
p Vector containing the p⃗ for all tasks
s⃗ Vector containing the starting time of each iteration of a given task
s Vector containing the s⃗ for all tasks
qj Probability of failure for a given task
wj Work of a given task (sequential execution time)
dj Inherently sequential fraction of a task (cannot be parallelized)
cj Communication overhead per processor for a task
p̄j Maximum degree of parallelism of a task

tj(pj) Execution time of task j when allocated pj processors
Roo Roofline Model
Com Communication Model
Amd Amdahl Model
Mix Mix Model

Table I: Summary of main notations for Chapter 2.

computational kernels in scientific libraries are provided as moldable jobs that can be
deployed on a wide range of processor numbers.

Because of the importance and wide availability of moldable jobs, scheduling algorithms
for such jobs have been extensively studied. An important objective is to minimize the
overall completion time, or makespan, for a set of jobs that are either all known before
execution (offline setting) or released on-the-fly (online setting). Many prior works have
published approximation algorithms or inapproximability results for both settings. These
results notably depend upon the speedup model of the jobs. Indeed, consider a job whose
execution time is t(p) with p processors (1 ≤ p ≤ P , and P denotes the total number of
processors on the platform). An arbitrary speedup model allows t(p) to take any value,
but realistic models call for t(p) non-increasing with p: after all, if t(p + 1) > t(p), then
why use that extra processor? Several speedup models have been introduced and analyzed,
including the roofline model, the communication model, the Amdahl’s model, the power
model, and the (more general) monotonic model, where the area of the job p · t(p) is
non-decreasing with p. Section 2.2 presents a survey of some important results for all these
models.

In this chapter, we revisit the problem of scheduling moldable jobs in a resilience
framework. Unlike the classical problem without job failures, we consider failure-prone
jobs that may need to be re-executed several times before successful completion. This
is primarily motivated by the threat of silent errors (a.k.a. silent data corruptions or
SDCs), which strike large-scale high-performance computing (HPC) platforms at a rate
proportional to the number of floating-point (CPU) operations and/or the memory footprint
of the applications (bit flips) [128,178]. When a silent error strikes, even though any bit can
be corrupted, the execution continues (unlike fail-stop errors), hence the error is transient,
but it may dramatically impact the result of a running application. Coping with silent
errors is a major challenge on today’s HPC platforms [119] and it will become even more
important at exascale [80]. Fortunately, many silent errors can be accurately detected by
verifying the integrity of data using dedicated, lightweight detectors (e.g., [41, 43, 74, 166]).
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When considering job failures caused by silent errors, we assume the availability of ad-hoc
detectors.

To model this resilient scheduling problem, we focus on a general setting, where the aim
is to schedule a set of moldable jobs subject to a failure scenario that specifies the number
of failures for each job before successful completion. The failure scenario is, however,
not known a priori, but only discovered as failed executions manifest themselves when
the jobs complete. Hence, the scheduling decisions must be made dynamically on-the-fly:
whenever an error has been detected, the job must be re-executed. As a result, even for the
same set of jobs, different schedules may be produced, depending on the failure scenario
that occurred in a particular execution. Intuitively, the problem lies in between an offline
problem (where all the jobs are known before the execution starts) and an online problem
(where the jobs are revealed on-the-fly). The goal is to minimize the makespan for any set of
jobs under any failure scenario. Since the problem is clearly NP-complete (as it generalizes
the NP-complete failure-free scheduling problem), we aim at designing approximation
algorithms that guarantee a makespan within a provable factor of the optimal makespan,
independently of the jobs’ failure scenarios.

Extending the literature on scheduling moldable jobs in the failure-free setting, this
work lays the theoretical and practical foundation for scheduling such jobs on failure-prone
platforms. Our key contributions are the design and analysis of two resilient scheduling
algorithms with new approximation results for various speedup models. We further show
that the two algorithms achieve good practical performance using an extensive set of
simulations. The following summarizes our main results:

• We present a formal model for the problem of resilient scheduling of moldable jobs on
failure-prone platforms. The model formulates both the worst-case and average-case
performance of an algorithm for general speedup models and under arbitrary failure
scenarios.

• We design a resilient scheduling algorithm, called Lpa-List, that relies on a local
processor allocation strategy and list scheduling to achieve O(1)-approximation for
some prominent speedup models, including the roofline model, the communication
model, the Amdahl’s model, and a mixed model. For the communication model,
our approximation ratio improves on that of the literature for failure-free jobs. We
also show that the algorithm is Θ(P 1/4)-approximation for the power model and
Θ(P 1/2)-approximation for the general monotonic model. All of these results apply
to both worst-case and average-case performance.

• We design another resilient scheduling algorithm, called Batch-List, which schedules
the jobs in batches using the list strategy, and each job is allowed only a restricted
number of failures per batch. We prove a tight Θ(log2 fmax)-approximation for
the algorithm under arbitrary speedup model in the worst case, where fmax is the
maximum number of failures of any job in a failure scenario. We also prove an ω(1)
lower bound on the average-case performance of the algorithm.

• We derive a lower bound on the competitiveness of any algorithm under the arbi-
trary speedup model, and show that no algorithm may have a competitive ratio in
o(log2 fmax), showing the near-optimality of Batch-List in the worst case.

• We conduct an extensive set of simulations to evaluate and compare different variants
of the two algorithms. The results show that they consistently outperform some
baseline heuristics. In particular, the first algorithm (Lpa-List) performs better for
the roofline and communication models, while the second algorithm (Batch-List)
performs better for the other models. Overall, our best algorithm is within a factor
of 1.6 of a lower bound on average and within a factor of 4.2 in the worst case for all
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speedup models.
The rest of this chapter is organized as follows. Section 2.2 surveys related work. The

formal model and problem statement are presented in Section 2.3. In Section 2.4, we
describe the two main algorithms and analyze their performance, providing several new
approximation results. Section 2.5 is devoted to proving a lower bound of any deterministic
online algorithm for the arbitrary speedup model. Section 2.6 presents an extensive set
of simulation results and highlights the main findings. Finally, Section 2.7 concludes the
chapter and discusses future directions.

2.2 Related Work

In this section, we review some related work on scheduling moldable jobs without failures,
and we highlight the differences of these models with the one studied in this chapter.

2.2.1 Offline Scheduling of Independent Moldable Jobs

In offline scheduling, all jobs are known a priori along with each job’s execution time t(p)
as a function of the processor allocation p. The following reviews some results in the
failure-free setting under various job speedup models (the definitions of these models can
be found in Section 2.3.1).

Roofline Model: This model assumes linear speedup up to a bounded degree of par-
allelism p̄. Some authors have considered this model for moldable jobs with precedence
constraints. We are not aware of any results for independent moldable jobs. In this chapter,
we show that allocating exactly p̄ processors to the job and then scheduling all jobs greedily
gives a 2-approximation when jobs are subject to failures.

Communication Model: This model assumes a communication overhead when using
more than one processor. Havill and Mao [78] presented a shortest execution time (Set)
algorithm, which selects a number of processors that minimizes the job’s execution time
(they use around

√
w/c processors when t(p) = w/p + (p− 1)c), and schedules each job as

early as possible. They showed that Set has an approximation ratio around 4. In this
chapter, we present an improved algorithm with an approximation ratio of 3. Furthermore,
the algorithm is able to handle job failures. Dutton and Mao [54] presented an earliest
completion time (Ect) algorithm, which allocates processors for each job that minimizes
its completion time based on the current schedule. They proved tight approximation ratios
of Ect for P ≤ 4 processors and presented a general lower bound of 2.3 for arbitrary P .
Kell and Havill [102] presented algorithms with improved approximation ratios for P ≤ 3
processors.

Monotonic Model: This model assumes that the execution time is a non-increasing
function and the area (product of processor allocation and execution time) is a non-
decreasing function of the processor allocation. Examples of this model include Amdahl’s
speedup [3], i.e., t(p) = w

(1−d
p + d

)
with d ∈ [0, 1], and the power speedup t(p) = w/pδ

[73,148] with δ ∈ [0, 1]. Belkhale and Banerjee [16] presented a 2/(1 + 1/P )-approximation
algorithm by starting from a sequential LPT schedule and then iteratively incrementing
the processor allocations. Błażewicz et al. [29] presented a 2-approximation algorithm
while relying on an optimal continuous schedule, in which the processor allocation of a job
may not be integral. Mounié et al. [123] presented a (

√
3 + ϵ)-approximation algorithm

using a two-phase approach and dual approximation. Using the same techniques, they
later improved the approximation ratio to 1.5 + ϵ [124]. Jansen and Land [90] showed the
same 1.5 + ϵ ratio but with a lower runtime complexity, when the execution time functions
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of the jobs admit certain compact encodings. They also proposed a PTAS for the problem.
Arbitrary Model: In this model, the execution time t(p) is an unrestricted function of

the processor allocation p. This model can be reduced to the monotonic model by scanning
all possible allocations and discarding those with both larger execution time and area.
Turek et al. [159] presented a 2-approximation list-based algorithm and a 3-approximation
shelf-based algorithm. Ludwig and Tiwari [116] improved the 2-approximation result with
lower runtime complexity. When each job only admits a subset of all possible processor
allocations, Jansen [89] presented a (1.5+ϵ)-approximation algorithm, which is the strongest
result possible for any polynomial-time algorithm, since the problem does not admit an
approximation ratio better than 1.5 unless P = NP [96]. However, when the number
of processors is a constant or polynomially bounded by the number of jobs, Jansen et
al. [91, 92] showed that a PTAS exists.

2.2.2 Online Scheduling of Independent Moldable Jobs

In online scheduling, jobs are released one by one to the scheduler, and each released job
must be scheduled irrevocably before the next job is revealed. As some algorithms discussed
in the previous section (e.g., [54,78,102]) make scheduling decisions independently for each
job, their results can be directly applied to this online problem with the corresponding
competitive ratios. In contrast, other algorithms rely on the information about all jobs to
make global scheduling decisions, so these algorithms and their approximation results are
not directly applicable to the online problem. In this online problem under the arbitrary
speedup model, Ye et al. [170] presented a technique to transform any ρ-bounded algorithm1

for rigid jobs to a 4ρ-competitive algorithm for moldable jobs. Then, relying on a 6.66-
bounded algorithm for rigid jobs [86, 171], they gave a 26.65-competitive algorithm for
moldable jobs. Both algorithms are based on building shelves. They also provided an
improved algorithm with a competitive ratio of 16.74 [170].

The problem studied in this chapter can be considered as semi-online, since all jobs are
known to the scheduler offline but their failure scenarios are revealed online. We point out
that the transformation technique by Ye et al. [170] does not apply here, since it implicitly
assumes the independence of all jobs, whereas the different executions of the same job in
our problem (due to failures) have linear dependence.

2.3 Models

In this section, we formally describe the models, and present the resilient scheduling
problem.

2.3.1 Job and Speedup Models

We consider a set J = {J1, J2, . . . , Jn} of n parallel jobs to be executed on a platform
consisting of P identical processors. All jobs are released at the same time, corresponding
to the batch scheduling scenario in an HPC environment. We focus on moldable jobs, which
can be executed using any number of processors at launch time. The number of processors
allocated cannot be changed once a job has started executing. For each job Jj ∈ J , tj(pj)

1An algorithm for rigid jobs is said to be ρ-bounded if its makespan is at most ρ times the lower bound

L = max
(∑

j
tj pj

P
, maxj tj

)
, where tj denotes the execution time of job Jj , and pj denotes its processor

allocation.
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denotes its execution time when allocated pj ∈ {1, 2, . . . , P} processors2, and the area of
the job is defined as aj(pj) = pj × tj(pj).

Let wj denote the total work of job Jj (or its sequential execution time tj(1)). The
parallel execution time tj(pj) of the job when allocated pj processors depends on the
speedup model. We consider several speedup models:

• Roofline model: linear speedup up to a bounded degree of parallelism p̄j ∈ [1, P ], i.e.,
tj(pj) = wj/pj for pj ≤ p̄j , and tj(pj) = wj/p̄j for pj > p̄j ;

• Communication model: there is a communication overhead cj ≥ 0 per processor when
more than one processor is used, i.e., tj(pj) = wj/pj + (pj − 1)cj ;

• Amdahl’s model: this is a particular case of the monotonic model with tj(pj) =
wj
(1−dj

pj
+ dj

)
, where dj ∈ [0, 1] denotes the inherently sequential fraction of the job;

• Mix model: this mixed model combines Roofline, Communication and Amdahl’s
models with tj(pj) = wj(1−dj)

min(p,p̄j) +wjdj+(pj−1)cj , which could capture more realistically
the speedups of some complex applications;

• Power model: this is another particular case of the monotonic model with tj(pj) =
wj/p

δj

j , where δj ∈ [0, 1] is a constant parameter;
• Monotonic model: the execution time (resp. area) is a non-increasing (resp. non-

decreasing) function of the number of allocated processors, i.e., tj(pj) ≥ tj(pj + 1)
and aj(pj) ≤ aj(pj + 1);

• Arbitrary model: there are no constraints on tj(pj).
In all of these models, the speedup of job Jj with pj processors is given by σj(pj) = tj(1)

tj(pj) .

2.3.2 Failure Model

We consider silent errors (or SDCs) that could cause a job to produce erroneous results
after an execution attempt. Further, we assume that such errors can be detected using
lightweight detectors with negligible overhead at the end of an execution. In that case, the
job needs to be re-executed followed by another error detection. This process repeats until
the job completes successfully without errors.

Let f = (f1, f2, . . . , fn) denote a failure scenario, i.e., a vector of the number of failed
execution attempts for all jobs, during a particular execution of the job set J . Note that
the number of times a job will fail is unknown to the scheduler a priori, and the failure
scenario f becomes known only after all jobs have successfully completed without errors.

2.3.3 Problem Statement

We study the following resilient scheduling problem: Given a set of n moldable jobs, find a
schedule on P identical processors under any failure scenario f . In this context, a schedule
is defined by the following two decisions:

• Processor allocation: a collection p = (p⃗1, p⃗2, . . . , p⃗n) of processor allocation vectors
for all jobs, where vector p⃗j = (p(1)

j , p
(2)
j , . . . , p

(fj+1)
j ) specifies the number of processors

allocated to job Jj at different execution attempts until success. Note that processor
allocation can change for each new execution attempt of a job.

• Starting time: a collection s = (s⃗1, s⃗2, . . . , s⃗n) of starting time vectors for all jobs,
where vector s⃗j = (s(1)

j , s
(2)
j , . . . , s

(fj+1)
j ) specifies the starting times for job Jj at

different execution attempts until success.
2In this work, we do not allow fractional processor allocation, which could otherwise be realized by

timesharing a processor among multiple jobs.
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The objective is to minimize the overall completion time of all jobs, or makespan, under
any failure scenario. Suppose an algorithm makes decisions p and s for a job set J during
a failure scenario f . Then, the makespan of the algorithm for this scenario is defined as:

T (J , f , p, s) = max
1≤j≤n

(
s

(fj+1)
j + tj(p(fj+1)

j )
)

. (2.1)

Both scheduling decisions should be made with the following two constraints: (1) the
number of processors used at any time should not exceed the total number P of available
processors; (2) a job cannot be re-executed if its previous execution attempt has not yet
been completed.

As the problem generalizes the failure-free moldable job scheduling problem, which
is known to be NP-complete for P ≥ 5 processors [53], the resilient scheduling problem
is also NP-complete. We therefore consider approximation algorithms. A scheduling
algorithm Alg is said to be an r-approximation3 if its makespan is at most r times that of
an optimal scheduler for any job set J under any failure scenario f , i.e.,

sup
J ,f

TAlg(J , f , p, s)
TOpt(J , f , p∗, s∗) = r , (2.2)

where TOpt(J , f , p∗, s∗) denotes the makespan produced by an optimal scheduler with
scheduling decisions p∗ and s∗.

2.3.4 Worst-Case vs. Average-Case Analysis

The problem above is agnostic of the failure scenario, which is given as an input of the
scheduling problem. A scheduling algorithm is an r-approximation only if it achieves a
makespan at most r times the optimal for any possible failure scenario. This can be viewed
as the worst-case analysis.

In contrast, some practical settings may call for an average-case analysis. In practice,
each job Jj ∈ J could fail with a probability qj in each execution attempt, independent of
the number of previous failures. For instance, consider silent errors that strike CPUs and
registers during the execution of a job: the probability of having a silent error is determined
solely by the number of flops of the job, or equivalently, by its sequential execution time.
On the contrary, the amount of resources used to execute the job does not matter, even if
the parallel execution time depends on the number of allocated processors. Suppose the
occurrence of silent errors follows an exponential distribution with rate λ, then the failure
probability for job Jj is given by:

qj = 1− e−λtj(1) , (2.3)

where tj(1) denotes the sequential execution time of job Jj . Then, the probability that
the job fails fj times before succeeding on the fj + 1-st execution is qj(fj) = q

fj

j (1− qj).
Assuming that errors occur independently for different jobs, the probability that a failure
scenario f = (f1, f2, . . . , fn) happens can then be computed as Q(f) = ∏n

j=1 qj(fj).

3We consider the studied problem offline, although the failure scenario is unknown to the scheduler a
prior and only revealed on-the-fly as jobs complete. One can also view the problem as semi-online, in which
case all of our obtained approximation ratios can be interpreted as competitive ratios.
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In general, given the probability Q(f) of each failure scenario f , we can define the
expected approximation ratio of an algorithm Alg for a job set J as follows4:

E
[

TAlg(J )
TOpt(J )

]
=
∑

f
Q(f) · TAlg(J , f , p, s)

TOpt(J , f , p∗, s∗) , (2.4)

and the algorithm is said to be r-approximation in expectation if its expected approximation
ratio is at most r for any job set J , i.e.,

sup
J

E
[

TAlg(J )
TOpt(J )

]
= r . (2.5)

While the approximation ratio of a scheduling algorithm under any failure scenario
shows its worst-case performance, the expected approximation ratio shows its average-
case performance. Clearly, a worst-case ratio will translate directly to the average case,
because if the ratio holds true for every failure scenario, it is also true for the weighted
sum. However, the converse may not be the case: an algorithm could have a very good
expected approximation ratio, but perform arbitrarily worse than the optimal in some (low
probability) failure scenarios.

In the theoretical analysis (Section 2.4), we mainly focus on bounding the worst-case
approximation ratios of the proposed algorithms (except in Section 2.4.6, where we study the
average-case performance of the Batch-List algorithm). For the experimental evaluations
(Section 2.6), we will instantiate the failure model with the silent error probability for each
job as defined in Equation (2.3), and report both worst-case and average-case performance
of the algorithms under a variety of experimental scenarios.

2.4 Resilient Scheduling Algorithms

In this section, we present two resilient scheduling algorithms (Lpa-List and Batch-List),
and derive their approximation ratios for some common speedup models.

2.4.1 A Lower Bound on the Makespan

We first consider a simple lower bound on the makespan of any scheduling algorithm under
a given failure scenario. This generalizes the well-known lower bound [116, 159] for the
failure-free case.

Let p denote the processor allocation decision made by a scheduling algorithm Alg for
job set J under failure scenario f . Then, we define, respectively, the maximum cumulative

4While we use expectation of ratios to define the average-case performance of an algorithm, some studies
in stochastic scheduling and online algorithms (e.g., [106,121]) have used ratio of expectations, i.e.,

E(TAlg)
E(TOpt) =

∑
f Q(f) · TAlg(J , f , p, s)∑

f Q(f) · TOpt(J , f , p∗, s∗)
.

This approach, however, has not been favored by recent studies, since E(TAlg) could be dominated by “a
few" instances with large objective functions, thus the ratio may not reflect the actual performance of the
algorithm for “most" instances. See [137,147] for a discussion on the two approaches.
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execution time and total cumulative area of the jobs under algorithm Alg to be:

tmax(J , f , p) = max
1≤j≤n

fj+1∑
i=1

tj(p(i)
j ) , (2.6)

A(J , f , p) =
n∑

j=1

fj+1∑
i=1

aj(p(i)
j ) . (2.7)

The following quantity serves as a lower bound on the makespan of the algorithm for
job set J under failure scenario f :

L(J , f , p) = max
(
tmax(J , f , p), A(J , f , p)

P

)
. (2.8)

Thus, we have:

TAlg(J , f , p, s) ≥ L(J , f , p) , (2.9)

regardless of the scheduling decision s of the algorithm.

2.4.2 Lpa-List Scheduling Algorithm

Our first algorithm, called Lpa-List, adopts a two-phase approach [116, 159]. The first
phase uses a Local Processor Allocation (Lpa) strategy to decide processor allocation p of
the jobs, and the second phase uses List scheduling to determine the starting time s of
the jobs.

List Scheduling Strategy

We first discuss List scheduling for the second phase, assuming a given processor allocation
p. Algorithm 1 shows the pseudocode.

The strategy first organizes all jobs in a list based on some priority. Then, at time 0 or
whenever a running job Jk completes and hence releases processors, the algorithm detects
if job Jk has errors. If so, the job will be inserted back into the list, again based on its
priority, to be re-scheduled later. It finally scans the list of pending jobs and schedules
all jobs that can be executed at the current time with the available processors. We point
out that the algorithm essentially resembles a greedy backfilling strategy. In our analysis
below, we will show that the worst-case approximation ratio is independent of the job
priorities used, although it may affect the algorithm’s practical performance. In Section
2.6, we will consider some commonly used priority rules for the experimental evaluation.

The following lemma shows the worst-case performance of the List scheduling strategy.
Note that the job set J is dropped from the notations since the context is clear.

Lemma 1. Given a processor allocation decision p for the jobs, the makespan of a List
schedule (that determines the starting times s) under any failure scenario f satisfies:

TList(f , p, s)≤
{ 2A(f ,p)

P , if pmin ≥ P
2

A(f ,p)
P −pmin

+ (P −2pmin)·tmax(f ,p)
P −pmin

, if pmin < P
2

where pmin ≥ 1 denotes the minimum number of utilized processors at any time during the
schedule.
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Algorithm 1: List (Scheduling Strategy)
begin

Organize all jobs in a list L according to some priority rule
Pavail ← P
fj ← 0, ∀j
when at time 0 or a running job Jk completes execution do

Pavail ← Pavail + p
(fk+1)
k

if job Jk failed then
L.insert_with_priority(Jk)
fk ← fk + 1

for j = 1, . . . , |L| do
Jj ← L(j)
if Pavail ≥ p

(fj +1)
j then

execute job Jj at the current time
Pavail ← Pavail − p

(fj +1)
j

L.remove(Jj)

Proof. We first observe that List only allocates and de-allocates processors upon job
completions. Hence, the entire schedule can be divided into a set of consecutive and non-
overlapping intervals I = {I1, I2, . . . , Iv}, where jobs start (or complete) at the beginning
(or end) of an interval, and v denotes the total number of intervals. Let |Iℓ| denote the
length of interval Iℓ. The makespan under a failure scenario f can then be expressed as
TList(f , p, s) = ∑v

ℓ=1 |Iℓ|.
Let p(Iℓ) denote the number of utilized processors during an interval Iℓ. Since the

minimum number of utilized processors during the schedule is pmin, we have p(Iℓ) ≥ pmin
for all Iℓ ∈ I. We consider the following two cases:

Case 1: pmin ≥ P
2 . In this case, we have p(Iℓ) ≥ pmin ≥ P

2 for all Iℓ ∈ I. Based on the
definition of total cumulative area, we have A(f , p) = ∑v

ℓ=1 |Iℓ| · p(Iℓ) ≥ P
2 · TList(f , p, s).

This implies that:

TList(f , p, s) ≤ 2A(f , p)
P

.

Case 2: pmin < P
2 . Let Imin denote the last interval in the schedule with processor

utilization pmin, and consider a job Jj that is running during interval Imin. Necessarily, we
have pj ≤ pmin. We now divide the set I of intervals into two disjoint subsets I1 and I2,
where I1 contains the intervals in which job Jj is running (including all of its execution
attempts), and I2 = I\I1. Let T1 = ∑

I∈I1 |I| and T2 = ∑
I∈I2 |I| denote the total lengths

of all intervals in I1 and I2, respectively. Based on the definition of maximum cumulative
execution time, we have T1 = ∑fj+1

i=1 tj(p(i)
j ) ≤ tmax(f , p).

For any interval I ∈ I2 that lies between the i-th execution attempt and the (i + 1)-th
execution attempt of Jj in the schedule, where 0 ≤ i ≤ fj , the processor utilization of
I must satisfy p(I) > P − pmin, since otherwise there are at least pmin ≥ pj available
processors during interval I and hence the i + 1-st execution attempt of Jj would have
been scheduled at the beginning of I.

For any interval I ∈ I2 that lies after the (fj + 1)-th (last) execution attempt of Jj ,
there must be a job Jk running during I and that was not running during Imin (meaning
no attempt of executing Jk was made during Imin). This is because p(I) > pmin, hence
the job configuration must differ between I and Imin. The processor utilization during
interval I must also satisfy p(I) > P − pmin, since otherwise the processor allocation of
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Jk will be pk ≤ p(I) ≤ P − pmin, implying that the first execution attempt of Jk after
interval Imin would have been scheduled at the beginning of Imin.

Thus, for all I ∈ I2, we have p(I) > P−pmin. Based on the definition of total cumulative
area, we have A(f , p) ≥ (P − pmin) · T2 + pmin · T1. The makespan of List under failure
scenario f can then be derived as:

TList(f , p, s) = T1 + T2

≤ T1 + A(f , p)− pmin · T1
P − pmin

= A(f , p)
P − pmin

+ (P − 2pmin) · T1
P − pmin

≤ A(f , p)
P − pmin

+ (P − 2pmin) · tmax(f , p)
P − pmin

.

While Lemma 1 bounds the general performance of a List schedule for a given processor
allocation p, the following lemma shows its approximation ratio when the processor
allocation strategy satisfies certain properties.

Lemma 2. Given any failure scenario f , if the processor allocation decision p satisfies:

A(f , p) ≤ α ·A(f , p∗) ,

tmax(f , p) ≤ β · tmax(f , p∗) ,

where p∗ denotes the processor allocation of an optimal schedule, then a List schedule
using processor allocation p is r(α, β)-approximation, where

r(α, β) =
{

2α, if α ≥ β
P

P −1α + P −2
P −1β, if α < β

Proof. Based on Lemma 1, when pmin ≥ P
2 , we have:

TList(f , p, s) ≤ 2A(f , p)
P

≤ 2α ·A(f , p∗)
P

≤ 2α · TOpt(f , p∗, s∗).

The last inequality above is due to the makespan lower bound, as shown in Equation (2.8).
When pmin < P

2 , we can derive:

TList(f , p, s) ≤ A(f , p)
P − pmin

+ (P − 2pmin) · tmax(f , p)
P − pmin

≤ α ·A(f , p∗)
P − pmin

+ β(P − 2pmin) · tmax(f , p∗)
P − pmin

≤ (α + β)P − 2βpmin
P − pmin

· TOpt(f , p∗, s∗)

=
(
α + β + (α− β) pmin

P − pmin

)
· TOpt(f , p∗, s∗).

We have 1
P −1 ≤

pmin
P −pmin

< 1, since 1 ≤ pmin < P
2 . Therefore, if α ≥ β, we get:

TList(f , p, s) ≤ 2α · TOpt(f , p∗, s∗),

and if α < β, we get:

TList(f , p, s) ≤
( P

P − 1α + P − 2
P − 1β

)
· TOpt(f , p∗, s∗).

Note that, in this case, P
P −1α + P −2

P −1β > 2α.
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Local Processor Allocation (Lpa)

The previous lemma is dealing with the global processor allocation, and in this section we
will extend those results to local choices, because the number of repetitions of each job is
unknown.

Lemma 3. Given any failure scenario f , and a collection p, if there exists (α,β) such that

for all job Jj and execution attempt i, tj(p(i)
j )

tj,min
≤ β and aj(pi

j)
aj,min

≤ α, where tj,min (resp. aj,min)
is the minimum time of execution (resp. area) obtainable out of all the possible allocation,
then a List schedule using processor allocation p is r(α, β)-approximation, where

r(α, β) =
{

2α, if α ≥ β
P

P −1α + P −2
P −1β, if α < β

, (2.10)

where p∗ denotes the processor allocation of an optimal schedule.

Proof. We consider the job Jj that achieves the maximum cumulative execution time i.e.
such that

tmax(f , p) =
fj+1∑
i=1

tj(p(i)
j ) ,

Then

tmax(f , p) =
fj+1∑
i=1

tj(p(i)
j ) ≤

fj+1∑
i=1

βtj,min ≤ β

fj+1∑
i=1

tj(p
∗(i)
j )

≤ β max
1≤k≤n

fk+1∑
i=1

tk(p∗(i)
k ) = βtmax(f , p∗),

Similarly,

A(f , p) =
n∑

j=1

fj+1∑
i=1

aj(p(i)
j ) ≤

n∑
j=1

fj+1∑
i=1

αaj,min ≤ α
n∑

j=1

fj+1∑
i=1

aj(p∗(i)
j ) ≤ A(f , p∗) .

This shows that the condition are verified, therefore we can apply Lemma 2 to conclude.

We now discuss the Lpa strategy for the first phase of the algorithm. Given the result
of Lemma 3, Lpa uses a parameter αmax allocates processors locally for each job and
its pseudocode is shown in Algorithm 2. For each job Jj , the strategy first computes its
minimum possible execution time and area. Then, it chooses a processor allocation that
leads to the smallest ratio βj while respecting the constraints on αmax. The choice of αmax

will depend on the model and will be discussed in the next section. More specifically, we
will give for each speedup models an αmax for which there always exists an allocation such
that βj ≤ αmax, and therefore using Lemma 3, we will show that List (αmax) is a 2αmax

approximation for the given speedup model. The αmax are given in Figure 2.1
Once the processor allocation of a job has been decided, the same allocation will be

used by the List scheduling strategy in the second phase throughout the execution until
the job completes successfully without failures.
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Model Roofline Communication Amdahl Mix Power Monotonic
αmax 1 1.5 2 27/13 P 1/4 √

P

Ratio 2 3 4 54/13 ≈ 4.15 O(P 1/4) O(
√

P )

Figure 2.1: Parameters for each speedup model

Algorithm 2: Lpa (αmax) (Processor Allocation Strategy)
begin

for j = 1, 2, . . . , n do
tmin ←∞, amin ←∞
for p = 1, 2, . . . , P do

if tj(p) < tmin then
tmin ← tj(p)

if p · tj(p) < amin then
amin ← p · tj(p)

pj ← 0, βmin ←∞
for p = 1, 2, . . . , P do

αj ← p · tj(p)/amin
βj ← tj(p)/tmin
if αj < αmax and βj < βmin then

pj ← p, βmin ← βj

2.4.3 Worst-Case Performance of Lpa-List for Some Common Speedup Models

We now analyze the worst-case performance of the Lpa-List algorithm for moldable jobs
that exhibit some common speedup models, as well as for the general monotonic model.
All derived approximation ratios are independent of the failure scenarios, hence based on
Equations (2.4) and (2.5). The same ratios also apply to the average-case performance of
the algorithm for the respective speedup models.

In the following, we first consider the three special speedup models (i.e., roofline,
communication and Amdahl) before tackling the mix model, and we finish with power and
monotonic models. For clarity, we introduce superscript M ∈ {Roo, Com, Amd, Mix} to
the notations αM and βM corresponding to Equation (2.10). Given a speedup model M ,
the analysis focuses on finding αM and βM for each individual task, thus we will drop the
task index j for simplicity.

Roofline Model

In the roofline model, the execution time of a job J when allocated p processors satisfies
t(p) = w

min(p,p̄) for a bounded degree of parallelism 1 ≤ p̄ ≤ P .

Theorem 1. Lpa-List (1) is a 2-approximation for jobs with the roofline speedup model.

Proof. In the roofline speedup model, the minimum execution time of a job J is tmin = w/p̄
and the minimum area of the job is amin = w. These two quantities can be achieved by
simply allocating p = p̄ processors to the job. This leads to the bounds of α = 1 and β = 1
for each job as well as globally under any failure scenario. Hence, based on Lemma 3, we
get an approximation ratio of 2α = 2.
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Communication Model

In the communication model [54, 78], the execution time of a job J when allocated p
processors is given by t(p) = w/p + (p − 1)c, where c ≥ 0 denotes the per-processor
communication overhead.

Lemma 4. For any task that follows the communication model, there exists a processor
allocation that achieves αCom = 4

3 and βCom = 3
2 .

Proof. For simplicity, we rewrite t(p) = w/p+(p−1)c = c (w′/p + p− 1). We note pmax the
number of processors that would minimize the task’s execution time t(p) if P was infinite,
i.e., t(pmax) = tmin

∗ ≤ tmin. Clearly, we have ⌊
√

w′⌋ ≤ pmax ≤ ⌈
√

w′⌉. By derivation,
√

w′

minimizes the time function, which is decreasing then increasing, therefore the integer
minimizing the function is the lower or higher integer part of

√
w′. Also, the minimum

area of the task is obtained with one processor, i.e., amin = a(1) = cw′.

Furthermore, for a given choice of p, we can show that f(w′, p) ≜ t(p)
tmin
∗

=
w′
p

+p−1
w′

pmax +pmax−1

is a non-decreasing function of w′ in the interval [p2,∞). To see that, we can check it is
continuous and compute the partial derivative:

∂f(w′, p)
∂w′ =

1
p

(
w′

pmax + pmax − 1
)
− 1

pmax

(
w′

p + p− 1
)

(
w′

pmax + pmax − 1
)2

=
pmax−1

p − p−1
pmax(

w′

pmax + pmax − 1
)2 ,

which is defined everywhere except at the points where pmax changes (due to changes of w′),
and has the same sign as pmax−1

p − p−1
pmax ≥ 0. The last inequality is because if p = pmax, it

is equal to 0, otherwise pmax−1
p ≥ 1 and p−1

pmax < 1. This remains true if p ≤ pmax, which is
satisfied when w′ ≥ p2.

We now consider three cases:
Case 1: w′ ≤ 6. In this case, we set p = 1, which gives the minimum area, i.e.,

a(p)
amin = 1. When w′ ≤ 1, setting p = 1 also gives the minimum execution time, i.e., t(p)

tmin = 1.
Otherwise, we have t(p)

tmin ≤ f(w′, 1) ≤ f(6, 1) = 6
min( 6

2 +1, 6
3 +2) = 3

2 , since pmax = 2 or
pmax = 3 when w′ = 6.

Case 2: 6 < w′ ≤ 25. In this case, we set p = 2 and get a(p)
amin = c(w′+2)

cw′ = 1 + 2
w′ < 4

3 .
As w′ > p2 = 4, we can also get t(p)

tmin = f(w′, 2) ≤ f(25, 2) =
25
2 +1

25
5 +4 = 27

18 = 3
2 , since pmax = 5

when w′ = 25.
Case 3: w′ > 25. In this case, we have tmin ≥ c(2

√
w′ − 1), which is the minimum

possible execution time if the processor allocation could be non-integers. We set p =⌊√
w′

3 + 1
2

⌋
and obtain a(p)

amin = c(w′+p(p−1))
cw′ ≤ 1+ 1

w′

(√
w′

3 + 1
2

)(√
w′

3 −
1
2

)
≤ 1+ 1

w′
w′

3 = 4
3 .

Finally, t(p)
tmin ≤

c

(
w′√
w′
3 − 1

2

+
√

w′
3

)
c(2

√
w′−1) = 1

2− 1√
w′

(
1

1√
3

− 1
2

√
w′

+ 1√
3

)
. This function is clearly

decreasing with w′, and using w′ > 25, we get t(p)
tmin ≤ 5

9

(
10

√
3

10−
√

3 + 1√
3

)
≈ 1.48 < 3

2 .

Theorem 2. Lpa-List (1.5) is a 3-approximation for jobs with the communication model.
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Proof. This results directly comes from Lemma 4 and Lemma 2, because if we have shown
the existence of the bound for αCom = 4

3 , it holds in particular for αCom.

Remarks. Our result improves upon the 4-approximation of the Set algorithm [78],
which is the best ratio known for this model. Our result further extends the one in [78]
in two ways: (1) The model in [78] assumes the same communication overhead c for all
jobs, while we consider an individual overhead c for each job J ; (2) The algorithm in [78]
applies to failure-free job executions, while our algorithm is able to handle job failures.

Amdahl’s Model

In Amdahl’s model [3], the execution time of a job J when allocated p processors satisfies
t(p) = w

(1−d
p + d

)
, where d ∈ [0, 1] denotes the inherently sequential fraction of the job. It

is a particular case of the monotonic model as described in Section 2.3.1. For convenience,
we consider an equivalent form of the model in the analysis: t(p) = w

p + d, where w denotes
the parallelizable work of the job and d denotes the inherently sequential work.

Lemma 5. For any α > 1, there exists a processor allocation p that satisfies the α bound,
i.e., a(p)

amin ≤ α and at the same time achieves β(α) = α
α−1 , i.e., t(p)

tmin ≤ β(α) = α
α−1

Proof. The minimum execution time of the task is obtained with all P processors, i.e.,
tmin = t(P ) = w

P + d, and the minimum area with just one processor, i.e., amin = a(1) =
w + d.

To show the result, for any given α > 1, we let x = α− 1, and set p = min(⌈xw
d ⌉, P ).

This implies p ≤ ⌈xw
d ⌉ ≤ xw

d + 1. Thus, we have a(p)
amin = w+dp

w+d ≤
w+d(x w

d
+1)

w+d = w+d+xw
w+d =

1 + xw
w+d ≤ 1 + x = α. Furthermore, if p = ⌈xw

d ⌉ ≥ xw
d , we have t(p)

tmin ≤
w

x w
d

+d

w
P

+d ≤
d
x

+d

d =
1
x + 1 = 1

α−1 + 1 = α
α−1 = β(α). Otherwise, if p = P , we get t(p) = tmin and thus

t(p)
tmin = 1 < α

α−1 = β(α).

Theorem 3. Lpa-List (2) is a 4-approximation for jobs with the Amdahl’s speedup model.

Proof. We use Lemma 2 altogether with Lemma 5 using α = 2, to get an approximation
ratio of 2α = 4.

Mix Model

We now consider the mixed model combining Roofline, Communication and Amdahl’s
models as follows: t(p) = w(1−d)

min(p,p̄) + wd + (p− 1)c, which could capture more realistically
the speedups of some complex applications. In this model, we only need to consider p ≤ p̄,
since any p > p̄ will obviously be a bad choice. To simplify the analysis, we also factorize
the function by c and obtain the following equivalent form: t(p) = c

(
w′

p + d′ + (p− 1)
)
,

with w′ = w(1−d)
c and d′ = wd

c .

Lemma 6. For any task that follows the mix model, there exists a processor allocation
that achieves αMix = 2 and βMix = 27

13 .

Proof. If we allow the processor allocation to take non-integer values and assuming un-
bounded p̄, the execution time function t(p) would be minimized at p∗ =

√
w′. Thus, the

minimum execution time should satisfy tmin ≥ c(2
√

w′ + d′ − 1). Note that this bound
will hold true regardless of the value of p̄: it is obviously true if p̄ ≥ p∗, otherwise tmin is
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achieved at p̄, with a value also higher than c(2
√

w′ + d′ − 1). Furthermore, the minimum
area is obtained with one processor, i.e., amin = a(1) = c(w′ + d′).

Again, we let pmax denotes the number of processors that minimizes the execution time
if we had an infinite number of processors, i.e., t(pmax) ≤ tmin. Clearly, we have either
pmax = p̄ or ⌊

√
w′⌋ ≤ pmax ≤ ⌈

√
w′⌉.

We consider three cases.
Case 1: w′ ≤ 4 or p̄ = 1. In this case, we must have pmax ≤ 2. We can then set p = 1,

and get a(p)
amin = 1 and t(p)

tmin ≤ 2.
Case 2: 4 < w′ ≤ 49 and p̄ ≥ 2. In this case, we set p = 2 and get a(p)

amin ≤ w′+2d′+2
w′+d′ ≤ 2.

Similarly to the proof of Lemma 4 (for the communication model), we can show that

f(w′, p) ≜ t(p)
tmin =

w′
p

+d′+p−1
w′

pmax +d′+pmax−1
is increasing with w′ if w′ ≥ p2. Therefore, we can get

t(p)
tmin ≤ f(49, 2) ≤

49
2 +d′+1

2
√

49+d′−1 = 51+2d′

26+2d′ ≤ 2.

Case 3: w′ > 49 and p̄ ≥ 2. In this case, we will set p = min
(⌊

w′+d′
√

w′+d′ + 1
2

⌋
, p̄
)

and
get:

a(p)
amin = w′ + p(d′ + p− 1)

w′ + d′

≤
w′ +

(
w′+d′

√
w′+d′ + 1

2

) (
d′ + w′+d′

√
w′+d′ −

1
2

)
w′ + d′

=
w′ + d′

2 −
1
4 + w′+d′

√
w′+d′

(
d′ + w′+d′

√
w′+d′

)
w′ + d′

≤
w′ + d′ + w′+d′

√
w′+d′

(
d′ + w′+d′

√
w′+d′

)
w′ + d′

= 1 + d′(
√

w′ + d′) + w′ + d′

(
√

w′ + d′)2

= 1 + d′2 + d′√w′ + d′ + w′

d′2 + 2d′
√

w′ + w′

≤ 2 .

The last inequality above comes from w′ > 1 and d′ > 0.
Since w′ > 1, we get tmin ≥ c(2

√
w′ + d′ − 1) > c(

√
w′ + d′). To derive the execution

time ratio, we further consider two subcases.
• If p =

⌊
w′+d′

√
w′+d′ + 1

2

⌋
, then p ≥ w′+d′

√
w′+d′ −

1
2 ≥

w′− 1
2

√
w′

√
w′+d′ . We can then get:

t(p)
tmin ≤

w′

p + d′ + p− 1
√

w′ + d′

≤
w′(

√
w′+d′)

w′− 1
2

√
w′

√
w′ + d′

+
d′ + w′+d′

√
w′+d′√

w′ + d′

≤ 1
1− 1

2
√

w′

+ d′(
√

w′ + d′) + w′ + d′

(
√

w′ + d′)2

≤ 1
1− 1

2
√

w′

+ 1
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For the last inequality, we recognize the same term we had when bounding the area
ratio, which is at most 1. Finally, the last expression above decreases with w′, so
using w′ > 49, we get t(p)

tmin ≤ 1
1− 1

14
+ 1 = 27

13 .

• If p = p̄ <
⌊

w′+d′
√

w′+d′ + 1
2

⌋
, and since p̄ is an integer, then it is necessarily the case that

p̄ ≤
⌊

w′+d′
√

w′+d′ + 1
2

⌋
− 1 ≤ w′+d′

√
w′+d′ ≤

√
w′ (because w′ > 1). Therefore, we should also

have pmax = p̄ = p, and thus t(p)
tmin = 1.

Theorem 4. Lpa-List (3) is a 54
13 -approximation for jobs with the mixed model.

Proof. The result of Lemma 6 also holds with α = β = 27
13 . Thus, with Lemma 2, we get

an approximation ratio of 2α = 54
13 .

Power Model

In the power model, the execution time of a job Jj when allocated p processors satisfies
tj(p) = wj/pδj , where δj ∈ [0, 1] is a constant parameter. This speedup has been observed
in some linear algebra applications [73, 148] and it is also an example of the monotonic
model.

Theorem 5. Lpa-List (P 1/4 is a Θ(P 1/4)-approximation for jobs with the power model.

Proof. In the power model, the minimum execution time of a job Jj is tmin = wj

P δj
(achieved

by allocating P processors), and the minimum area of the job is amin = wj (achieved by
allocating one processor).

By allocating pj processors to the job, we will get α = aj(pj)
amin

= p
1−δj

j and β =
tj(pj)
tmin

= ( P
pj

)δj . Hence, to minimize Equation (2.10), the algorithm will choose pj = Θ(P δj )
processors, resulting in an approximation ratio of Θ(P δj(1−δj)). Since δj ∈ [0, 1], the value
of δj(1− δj) is maximized at δj = 1/2, leading to an approximation ratio of Θ(P 1/4).

Monotonic Model

We now consider the general monotonic model. Recall that a job Jj is monotonic, if
tj(p) ≥ tj(p′) and aj(p) ≤ aj(p′) for any p ≤ p′. This means that the execution time of the
job will not increase with the processor allocation and the area will not decrease with the
processor allocation. In particular, the area assumption implies that the speedup efficiency
of the job will not increase as more processors are allocated to it, i.e., σj(p)/p ≥ σj(p′)/p′,
a property that has been observed in many practical parallel applications.

Theorem 6. Lpa-List (
√

P ) is an O(
√

P )-approximation for jobs with the monotonic
model.

Proof. In a general monotonic model, the minimum execution time of a job Jj is achieved
with P processors, i.e., tmin = tj(P ), and the minimum area is achieved with one processor,
i.e., amin = aj(1) = tj(1).

Consider an allocation pj = ⌊
√

P ⌋. Based on the monotonic assumption, we get
aj(pj) = pjtj(pj) ≤

√
P · tj(1) =

√
P · amin, and tj(pj) ≤ P

pj
tj(P ) = O(

√
P ) · tmin. Thus,

based on Lemma 2, we get an approximation ratio of O(
√

P ).

We show that the above ratio is asymptotically tight for any algorithm that makes local
processor allocation decisions based on individual job characteristics. Examples of such
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(a) (b) (c)

Figure 2.2: Speedup (a), execution time (b), and area (c) profiles of the job used in the
proof of Theorem 7.

algorithms include the Lpa algorithm considered in this chapter and the Set algorithm
studied in [78]. The result holds even under the additional assumption that the speedup
profiles of the jobs are concave [93] and that jobs do not fail. In the next section, we will
propose another algorithm that overcomes this limitation by making coordinated processor
allocation decisions for a set of jobs.

Theorem 7. Any scheduling algorithm that relies on local processor allocation for each
individual job is Ω(

√
P )-approximation with the monotonic model.

Proof. Assume that
√

P is an integer and P ≥ 4. We consider a job with a concave speedup
profile5 that contains two piece-wise linear segments defined by three points: σ(1) = 1,
σ(
√

P ) = 2 and σ(P ) =
√

P (see Figure 2.2(a)). Suppose the execution time of the job
with one processor is t(1) = 1. We can then derive the execution time profile of the job as
follows (see Figure 2.2(b)):

t(p) =


√

P −1
p+

√
P −2 if p ≤

√
P ,

P −
√

P
p(

√
P −2)+P

if p >
√

P ;

and the area profile of the job as follows (see Figure 2.2(c)):

a(p) =


p(

√
P −1)

p+
√

P −2 if p ≤
√

P ,

p(P −
√

P )
p(

√
P −2)+P

if p >
√

P .

The job is obviously monotonic.
Suppose there are n identical such jobs in the system, where n depends on the processor

allocation algorithm (denoted as Alg). Since the jobs are identical and processors are
allocated locally, the processor allocation p for each job should be the same. We consider
two cases.

Case 1 : If p ≤
√

P , then there is only n = 1 job. In this case, the algorithm has
a makespan of TAlg ≥ t(

√
P ) = 1

2 and the optimal makespan is TOpt = t(P ) = 1√
P

by
allocating P processors to the job.

Case 2 : If p >
√

P , then there are n = P jobs. In this case, the makespan of the
algorithm satisfies TAlg ≥ n·a(p)

P ≥ a(
√

P ) =
√

P
2 , and the optimal makespan is TOpt = 1

by allocating one processor to each job.
Thus, in both cases, we have TAlg

TOpt
≥

√
P

2 .
5The speedup profile is concave because σ′(p) = 1√

P −1 for any p ∈ [1,
√

P ), and σ′(p) =
√

P −2
P −

√
P

<
√

P

P −
√

P
= 1√

P −1 for any p ∈ (
√

P , P ].
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2.4.4 Batch-List Scheduling Algorithm

We now present the second algorithm, called Batch-List. Unlike the Lpa-List algorithm,
which allocates processors locally for each job, Batch-List coordinates the processor
allocation decisions for different jobs. While not knowing the failure scenario in advance,
the algorithm organizes the execution attempts of the jobs in multiple batches, where each
batch executes the pending jobs (i.e., the jobs that have not been successfully completed so
far) up to a certain number of attempts that doubles after each batch. The idea is inspired
by the doubling strategy [44] that has been commonly applied in many online problems.
The following describes the details of the Batch-List algorithm.

Let Bk denote the k-th batch created by the algorithm, where k ≥ 1. Let nk denote the
number of pending jobs immediately before Bk starts, and let Jk = {Jk,1, Jk,2, . . . , Jk,nk

}
denote this set of pending jobs. For convenience, we define gk = 2k−1. In batch Bk, we
allow each pending job Jk,j to have at most fk,j = gk − 1 failures, i.e., each job is allowed
to make gk execution attempts in the batch; if the job is still not successfully completed
after that, it will be handled by the next batch Bk+1. Let fk = (fk,1, fk,2, . . . , fk,nk

) denote
this worst-case failure scenario for the jobs in batch Bk. Given fk, each job Jk,j can be
represented by a chain J

(1)
k,j → J

(2)
k,j → · · · → J

(gk)
k,j of gk sub-jobs with linear precedence

constraint, where each sub-job represents an execution attempt of Jk,j in the batch. Thus,
all sub-jobs in batch Bk form a set of nk linear chains, one for each pending job.

To allocate processors for all the sub-jobs (or the different execution attempts of
the pending jobs) in batch Bk, we adopt the pseudo-polynomial time algorithm, called
Mt-Allotment, proposed in [110] for series-parallel precedence graphs (of which a set
of independent linear chains is a special case). Specifically, the algorithm determines
an allocation p

(m)
k,j for each sub-job J

(m)
k,j (or the m-th execution attempt of job Jk,j).

Let p⃗k,j = (p(1)
k,j , p

(2)
k,j , . . . , p

(fk,j+1)
k,j ) be the vector of processor allocations for job Jk,j , and

let pk = (p⃗k,1, p⃗k,2, . . . , p⃗k,nk
) be the processor allocations for all jobs in batch Bk. The

following lemma shows the property of the allocation pk returned by Mt-Allotment for
jobs with any arbitrary speedup model.

Lemma 7. For any ϵ > 0, Mt-Allotment can compute, with complexity polynomial
in 1/ϵ, a processor allocation pk for all jobs in batch Bk that approximates the minimum
makespan lower bound as defined in Equation (2.8) as follows:

L(Jk, fk, pk) ≤ (1 + ϵ) ·min
p

L(Jk, fk, p) . (2.11)

We refer to [110] for a detailed description of the Mt-Allotment algorithm and
its analysis6. Once the processor allocation pk has been decided, Batch-List schedules
all pending jobs in a batch Bk using the List strategy as shown in Algorithm 1, while
restricting each job to execute at most gk times. After batch Bk completes and if there are
still pending jobs, the algorithm will create a new batch Bk+1 to schedule the remaining
pending jobs.

2.4.5 Worst-Case Performance of Batch-List for Arbitrary Speedup Model

We analyze the worst-case performance of Batch-List for moldable jobs with any arbitrary
speedup model.

6In a nutshell, the algorithm uses dynamic programming to decide whether there exists an allocation p
such that L(Jk, fk, p) ≤ (1 + ϵ) ·X for a positive integer bound X, and performs a binary search on X.
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First, we define the following concept: a job set J ′ with failure scenario f ′ is said to be
dominated by a job set J with failure scenario f , denoted by (J ′, f ′) ⊆ (J , f), if for every
job Jj ∈ J ′, we have Jj ∈ J and f ′

j ≤ fj . The following lemma gives two trivial properties
without proof for a dominated pair of job set and failure scenario.

Lemma 8. If (J ′, f ′) ⊆ (J , f), then we have:
(a) L(J ′, f ′, p) ≤ L(J , f , p);
(b) TOpt(J ′, f ′, p′∗, s′∗) ≤ TOpt(J , f , p∗, s∗).

Lemma 9. Suppose a job set J with failure scenario f is executed by Batch-List. Then,
any job Jj ∈ J will successfully complete in bj = ⌈log2(fj + 2)⌉ batches, and in any batch
Bk, where 1 ≤ k ≤ bj, we have fk,j ≤ fj.

Proof. Since the algorithm allows the number of execution attempts of a job to double in
each new batch, the maximum number of execution attempts of the job in a total of b
batches is given by ∑b

k=1 2k−1 = 2b− 1. Thus, if a job Jj fails fj times (i.e., executes fj + 1
times), then the number of batches it takes to complete the job is bj = ⌈log2(fj + 2)⌉ =
1 + ⌊log2(fj + 1)⌋.

In any batch Bk until job Jj completes, where 1 ≤ k ≤ bj , we have fk,j = 2k−1 − 1 ≤
2⌊log2(fj+1)⌋ − 1 ≤ fj .

The following theorem shows the approximation ratio of Batch-List for jobs with
arbitrary speedup model.

Theorem 8. Batch-List is an O((1+ϵ) log2(fmax))-approximation for jobs with arbitrary
speedup model, where fmax = maxj fj denotes the maximum number of failures of any job
in a failure scenario.

Proof. According to Lemma 9, the total number of batches for any job set J with failure
scenario f is given by bmax = ⌈log2(fmax + 2)⌉. Further, for any batch Bk, where 1 ≤ k ≤
bmax, we have (Jk, fk) ⊆ (J , f).

Let f ′
k = (f ′

k,1, f ′
k,2, . . . , f ′

k,nk
) denote the actual failure scenario for the jobs in batch

Bk. Clearly, we have f ′
k,j ≤ fk,j for any Jj ∈ Jk, and thus, (Jk, f ′

k) ⊆ (Jk, fk).
Since Batch-List uses the Mt-Allotment algorithm to allocate processors and the

List strategy to schedule all jobs in each batch, according to Lemmas 1, 7 and 8, we can
bound the execution time of any batch Bk as follows:

TList(Jk, f ′
k, pk, sk) ≤ 2 · L(Jk, f ′

k, pk)
≤ 2 · L(Jk, fk, pk)
≤ 2(1 + ϵ) · L(Jk, fk, p∗

k)
≤ 2(1 + ϵ) · TOpt(Jk, fk, p∗

k, s∗
k)

≤ 2(1 + ϵ) · TOpt(J , f , p∗, s∗) .

Therefore, the makespan of Batch-List satisfies:

TBatch-List(J , f , p, s) =
bmax∑
k=1

TList(Jk, f ′
k, pk, sk)

≤ 2(1 + ϵ)⌈log2(fmax + 2)⌉ · TOpt(J , f , p∗, s∗) .

We now show that the approximation ratio of Batch-List is tight up to a constant
factor.
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Figure 2.3: An illustration of the lower bound instance for the Batch-List algorithm
shown in Theorem 9 with K = 5 jobs.

Theorem 9. Batch-List is Ω(log2(fmax))-approximation.

Proof. We consider a set J = {J1, J2, . . . , JK} of K jobs and at least as many processors, so
that each job can be executed on a dedicated processor. For each job Jj , where 1 ≤ j ≤ K,
its (sequential) execution time is tj = 1

2j , and it fails fj = 2j−1 − 1 times (i.e., executes
2j−1 times). Given this failure scenario f , the total time to complete job Jj is given by
2j−1 · 1

2j = 1
2 . The optimal makespan for this failure scenario is therefore TOpt(J , f) = 1

2 .
In the above failure scenario, the maximum number of failures of any job is fmax = fK =

2K−1− 1. Based on Lemma 9, Batch-List will complete each job Jj in ⌈log2(fj + 2)⌉ = j
batches, and will complete all jobs in ⌈log2(fmax + 2)⌉ = K batches. Figure 2.3 illustrates
the execution of this failure scenario for K = 5. In each batch Bk, where 1 ≤ k ≤ K,
the set of pending jobs is given by Jk = {Jk, Jk+1, . . . , JK}. For the first batch B1, it
takes t1 = 1

2 time to complete job J1 and thus the entire batch. For any batch Bk, where
2 ≤ k ≤ K − 1, it takes tk+1 = 1

2(k+1) time for each execution attempt of job Jk+1, which
will have 2k−1 execution attempts. Thus, batch Bk will take 2k−1 · 1

2(k+1) = 1
4 time to

complete. The makespan of Batch-List for the entire job set J then satisfies:

TBatch-List(J , f) ≥ 1
2 + (K − 2) · 1

4

= K

4 = ⌈log2(fmax + 2)⌉
2 · TOpt(J , f) .

2.4.6 A Lower Bound on the Average-Case Performance of Batch-List
The preceding section shows that the worst-case approximation ratio of Batch-List grows
linearly with the number b of batches. However, when jobs have fixed failure probabilities,
the probability of having b batches tends to 0 as b approaches infinity. Thus, one might
expect a constant approximation in expectation. In this section, we show that it is not
true by providing an ω(1) lower bound. Despite this negative result, the experimental
evaluation (in Section 2.6) shows that the average-case performance of the algorithm is
very close to the optimal under many practical settings. Deriving an upper bound on the
average-case approximation ratio of Batch-List remains an open question.

Theorem 10. The expected approximation ratio of Batch-List is ω(1), if all jobs have
constant failure probabilities.

We point out that the above lower bound applies when the jobs’ failure probabilities
are either arbitrarily defined or related to their sequential execution times as defined in
Equation (2.3). In fact, Theorem 10 holds generally true as long as the failure probability qj

of each job Jj is upper-bounded by a constant ρ, i.e., qj ≤ ρ < 1 for all j = 1, . . . , n.
Before proving the theorem, we first compute the probability that Batch-List produces

exactly b batches.



2.4. RESILIENT SCHEDULING ALGORITHMS 33

Lemma 10. The probability that there are exactly b batches in a Batch-List schedule,
where b ≥ 1, is given by:

Qb =
n∏

j=1
(1− q2b−1

j )−
n∏

j=1
(1− q2b−1−1

j ) .

Proof. For any b ≥ 0, let Rb denote the probability that there are at most b batches in
the schedule. According to the Batch-List algorithm, this happens when the number of
failures fj of any job Jj satisfies fj ≤ 2b − 2, for all 1 ≤ j ≤ n. Thus, we can compute Rb

as follows:

Rb =
n∏

j=1
P(fj ≤ 2b − 2)

=
n∏

j=1

2b−2∑
k=0

P(fj = k)

=
n∏

j=1

2b−2∑
k=0

(1− qj)qk
j

=
n∏

j=1
(1− q2b−1

j ) .

The probability that there are exactly b batches is therefore given by Qb = Rb −Rb−1,
for any b ≥ 1.

(Proof of Theorem 10). To prove the claim, we show that, for any given constant C > 0,
there exists an instance such that the expected approximation ratio of the Batch-List
algorithm is strictly larger than C.

We construct the instance similarly to the one in the proof of Theorem 9. Specifically, we
consider a set J = {J1, J2, . . . , JK} of K sequential jobs and at least as many processors, so
that each job can be executed on a dedicated processor. For each job Jj , where 1 ≤ j ≤ K,
its (sequential) execution time is given by tj = 1

2j and its failure probability qj is defined
arbitrarily but upper-bounded by a constant ρ < 1.

Consider a failure scenario f , in which each job Jj fails until batch BK+j where it
finally completes successfully. Hence, the total number of execution attempts of job Jj is
at most 2K+j , and the time to complete the job is at most 2K+j · 1

2j = 2K . The optimal
makespan for this failure scenario therefore satisfies TOpt(J , f) ≤ 2K .

Consider the Batch-List algorithm under the same failure scenario f . In each batch
BK+j , where 1 ≤ j ≤ K − 1, job Jj+1 does not complete successfully and is thus executed
2K+j−1 times. The execution time of this batch is therefore at least 2K+j−1 · 1

2(j+1) = 2K−2.
The total time to complete batches BK+1 to B2K−1, and hence the makespan of Batch-
List, is at least TBatch-List(J , f) ≥ (K − 1)2K−2 ≥ K−1

4 · TOpt(J , f).
Now, suppose the above failure scenario f happens with probability Q(f) > 1

2 . Then,
based on Equation (2.5), the expected approximation ratio of Batch-List satisfies:

E
[

TBatch-List(J )
TOpt(J )

]
> Q(f) · TBatch-List(J , f)

TOpt(J , f) >
K − 1

8 .

If we fix K > 8C + 1, we would get the results if Q(f) > 1
2 is true, given any bounded

probabilities for the jobs. Intuitively, if a job has a very low failure probability, the
probability that it completes successfully in the required batch is also very low. To resolve



34 CHAPTER 2. RESILIENT SCHEDULING OF MOLDABLE JOBS

this issue, we use the following technique: replace each job Jj with a cluster Cj of nj jobs
that are all identical to Jj , i.e., each with an execution time tj and a failure probability qj .
We also scale up the number of processors accordingly so that each job can still be executed
on a dedicated processor. Then, by choosing nj wisely, we can make sure that cluster
Cj completes successfully in batch BK+j with high probability, and thus, collectively, the
failure scenario f happens with high probability. To do so, we choose nj as follows:

nj =

2K+j−1 ln(1/qj)
q2K+j−1−1

j

 .

Lemma 11. Under the above choice of nj and when K is large enough, the probability
that any cluster Cj, where 1 ≤ j ≤ K, takes exactly K + j batches to complete satisfies:

Sj ≥ 1− 2Kρ2K − ρ2K−1
.

Proof. Based on Lemma 10, the probability that cluster Cj takes exactly K + j batches to
complete is given by:

Sj =
(
1− q2K+j−1

j

)nj −
(
1− q2K+j−1−1

j

)nj
. (2.12)

We now apply the following inequalities that hold for any x ∈ [0, 1] and n ∈ N:

1− nx ≤ (1− x)n ≤ e−nx .

In particular, the first inequality comes from the Bernoulli’s Inequality, and the second
inequality can be derived from the well-known inequality (1 + 1/x)x < e for any x ≥ 1.
Applying these two inequalities to Equation (2.12), we get:

Sj ≥
(
1− q2K+j

j

)nj −
(
1− q2K+j−1−1

j

)nj

≥ 1− njq2K+j

j − e−njq2K+j−1−1
j . (2.13)

We will now provide upper bounds for the second term Xj = njq2K+j

j and the third term

Yj = e−njq2K+j−1−1
j .

To bound Xj , we note that ln(x) ≤ x for any x > 0 and nj ≤ 2K+j−1 ln(1/qj)
q2K+j−1−1

j

. The

second term then satisfies:

Xj ≤
2K+j−1 ln(1/qj)

q2K+j−1−1
j

q2K+j

j

≤ 2K+j−1

q2K+j−1
j

q2K+j

j

= 2K+j−1q2K+j−1
j

≤ 2K+j−1ρ2K+j−1
.

Further, we can easily check that xρx is a decreasing function of x when x ln(ρ) < −1. Thus,
when K is large enough, and since j ≥ 1, we have 2K+j−1ρ2K+j−1 ≤ 2Kρ2K . Therefore, we
can get the following upper bound for the second term:

Xj ≤ 2Kρ2K
. (2.14)
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To bound the third term, we note that nj ≥ 2K+j−1 ln(1/qj)
2·q2K+j−1−1

j

, so we can get:

Yj ≤ e
−

2K+j−1 ln(1/qj )

2·q2K+j−1−1
j

q2K+j−1−1
j

= e−2K+j−2 ln(1/qj)

= q2K+j−2
j

≤ ρ2K+j−2

≤ ρ2K−1
. (2.15)

The lemma is then proved by substituting Inequalities (2.14) and (2.15) into Inequality
(2.13).

Based on the result of Lemma 11, the probability of the desired failure scenario f can
be computed as:

Q(f) =
K∏

j=1
Sj

≥
(
1− 2Kρ2K − ρ2K−1)K

≥ 1−K2Kρ2K −Kρ2K−1
.

The last inequality is again due to the Bernoulli’s Inequality.
For any constant ρ < 1, two terms above, namely, K2Kρ2K and Kρ2K−1 both tend

to 0 as K → ∞. Therefore, there must exist a K∗ such that Q(f) ≥ 1
2 . Setting K =

max(K∗, 8C + 1) proves the theorem.

2.5 A Lower Bound of Any Algorithm for Arbitrary Speedup
Model

So far, we have focused on special speedup models. In this section, we show that the
competitive ratio of any deterministic online algorithm (including ours) can be unbounded
under an arbitrary speedup model7.

Theorem 11. Any algorithm is at least Ω(ln(fmax))-competitive under an arbitrary
speedup model.

Proof. We fix an arbitrary integer ℓ > 1 and set K = 2ℓ. The instance consists of n = 2K−1
identical tasks organized in groups. Specifically, for any i ∈ [1, K], group i contains 2K−i

tasks, each with exactly i − 1 failures. Thus, fmax = K − 1. Figure 2.4 shows such an
instance for ℓ = 2, K = 4 and n = 15. All tasks in the graph are identical, with an execution
time function t(p) = 1

log2(p)+1 . We set the total number of processors to be P = K · 2K−1.
We show that the optimal offline algorithm completes the above instance with a

makespan at most 1, whereas any deterministic online algorithm may produce a makespan
at least ln(K)− ln(ℓ)− 1

ℓ , thus proving the result.
First, the optimal offline algorithm could schedule the tasks as follows: for any group

i ∈ [1, K], it allocates 2i−1 processors to each linear chain in the group. The total number of
7Under an arbitrary speedup model, the execution time t(p) of a task can take any arbitrary function of

its processor allocation p.
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Figure 2.4: A lower bound instance in Theorem 11 with ℓ = 2, K = 4, and n = 15 linear
task chains. Each circle represents a task and the number inside each circle indicates the
ID of the linear chain the task is in (and the number in the parenthesis indicates the task’s
position in that linear chain).

required processors is then ∑K
i=1 2i−1×2K−i = K×2K−1 = P . Thus, all linear chains could

be executed in parallel. Furthermore, they will all be completed at time 1, since each task
in group i has i repetitions, and each task has an execution time t(2i−1) = 1

lg(2i−1)+1 = 1
i .

Figure 2.5(a) illustrates the schedule for this instance with ℓ = 2.
Now, we establish a lower bound on the makespan of any deterministic online algorithm.

For any i ∈ [1, K − 1], let Li denote the set of tasks in all groups j ≤ i, and let L′
i denote

the set of tasks in all groups j > i. Let us define ti to be the first time a task in L′
i

completes i repetitions. We further define t0 = 0 and let tK denote the makespan of the
online algorithm.

Lemma 12. Any algorithm could produce a schedule that satisfies ti − ti−1 ≥ 1
ℓ+i , for all

i ∈ [1, K].

Proof. Since all tasks are identical, an online algorithm cannot distinguish them. Thus, for
any i ∈ [1, K], an adversary could make tasks that first complete i repetitions by the online
algorithm be from Li. Therefore, at time ti, all tasks containing exactly i repetitions (i.e.,
the ones from group i) are already completed, and at time ti−1, no task has started its i-th
repetition by definition (this also holds for t0 and tK). Hence, all repetitions in the i-th
position of the tasks in group i must be entirely processed between ti and ti−1, and the
number of such tasks is 2K−i.

For the sake of contradiction, suppose we have ti − ti−1 < 1
ℓ+i . Thus, the execution

time of these tasks must satisfy t(p) = 1
lg(p)+1 ≤

1
ℓ+i , hence their processor allocation

must be at least p ≥ 2ℓ+i−1 = K · 2i−1. As the area of the task a(p) = pt(p) = p
lg(p)+1

is increasing with the number of processors, the total area of all tasks that needs to be
processed between ti and ti−1 is at least 2K−i · a(K × 2i−1) = 2K−i·K·2i−1

lg(K·2i−1)+1 = K·2K−1

ℓ+i = P
ℓ+i .

Since we have P processors, the total time required to process this area is at least 1
ℓ+i ,

which contradicts ti − ti−1 < 1
ℓ+i .

One strategy to cope with the worst-case scenario above is to allocate the same number
of processors to each linear chain (or more precisely allocate one more processor to some
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Figure 2.5: For the lower bound instance of Figure 2.4: (a) An offline schedule with a
makespan of 1; (b) An online algorithm’s schedule, allocating (approximately) the same
number of processors to all linear chains and producing a makespan of t4 ≈ 1.23.

linear chains in order to utilize all the processors). Figure 2.5(b) illustrates this strategy
for the same instance with ℓ = 2. This is roughly what Batch-List does.

Finally, we can use the result of Lemma 12 to lower bound the makespan of an online
algorithm, which is given by tK = ∑K

i=1(ti − ti−1). Since for all j, ln(j) + γ <
∑j

i=1
1
i <

ln(j) + γ + 1
j where γ is the Euler constant, we obtain:

tK ≥
K∑

i=1

1
ℓ + i

>

K∑
i=ℓ+1

1
i

=
K∑

i=1

1
i
−

ℓ∑
i=1

1
i

> (ln(K) + γ)−
(

ln(ℓ) + γ + 1
ℓ

)
= ln(K)− ln(ℓ)− 1

ℓ
.

Remark 1. This shows that the competitive ratio of Batch-List is on the same order of
magnitude as the best competitive ratio achievable.

2.6 Performance Evaluation
In this section, we evaluate and compare the performance of different scheduling algorithms
using simulations on synthetic moldable jobs that follow various speedup models.

2.6.1 Simulation Setup
Evaluated Algorithms: We evaluate the performance of our two scheduling algorithms,

namely, Lpa-List (or Lpa in short) and Batch-List (or Batch in short). For Batch,
we set ϵ = 0.3 for its processor allocation procedure (Lemma 7). Their performance is also
compared against that of the following two baseline heuristics:

• MinTime: allocates processors to minimize the execution time of each job and
schedules all jobs using the List strategy (Algorithm 1). This is also known as the
shortest execution time (Set) algorithm in [78];

• MinArea: allocates processors to minimize the area of each job and schedules all
jobs using the List strategy.
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Priority Rules: We consider three priority rules that have been shown to give good
performance when (rigid) jobs are scheduled with the List strategy [25], which is used
in all four evaluated algorithms (recall that Batch uses List in each batch). The three
priority rules are:

• LPT (Longest Processing Time): a job with a longer processing time has a higher
priority;

• HPA (Highest Processor Allocation): a job with a higher processor allocation has a
higher priority;

• LA (Largest Area): a job with a larger area has a higher priority.
Speedup Models: We generate synthetic moldable jobs that follow six speedup models:

roofline, communication, Amdahl, mix (in two different versions) and power. Each job
Jj is defined by two parameters: the total work wj (i.e., the sequential execution time),
which is drawn uniformly in [5000, 4000000], and another parameter that depends on the
speedup model.

• Roofline: the maximum degree of parallelism p̄j is an integer drawn uniformly in
[100, 4000];

• Communication: the communication overhead is set as cj = α · 2r, where r is an
integer uniformly chosen in [0, 3] and α is drawn uniformly in [1, 2].

• Amdahl: the sequential fraction is set as γj = α
10r , where r is an integer uniformly

chosen in [2, 7] and α is drawn uniformly in [0, 10].
• Mix: we consider two different parameter settings: the first one, called mix-low-com,

uses the same set of parameters as what is chosen for the roofline, communication,
and Amdahl’s model. The second one, called mix, uses 3cj instead of cj for the
communication overhead.

• Power: the parameter δj is chosen uniformly in [0, 1].
Failure Distribution: To generate failures for the jobs, we assume that silent errors

follow the exponential distribution [80]. Let λ denote the error rate per unit of work,
so a job will be struck by a silent error for every 1/λ unit of work executed on average.
Following our failure model (Section 2.3), we assume parallelizing a job does not change the
total number of computational operations (it may increase the communication, which we
consider protected). Hence, the failure probability of a job will not depend on its processor
allocation nor its execution time, but solely on its total work. For a job Jj with total work
wj , its failure probability is given by qj = 1− e−λwj .

In the simulations, we set λ = 10−7 by default. Given the chosen values of wj , this
corresponds to a failure probability between 0.0005 and 0.33 for a job. We also set the
default number of processors and number of jobs to be P = 7500 and n = 500, but we will
also vary all of these parameters to evaluate their impact on the performance.

Evaluation Methodology: The evaluation is done as follows: we generate 30 different
sets of jobs, and for each set, 100 failure scenarios are drawn randomly from the failure
distribution described above. For each of the failure scenarios, the simulated makespan of
an algorithm is normalized by a lower bound (described below), which is then averaged
over the 100 failure scenarios to estimate the expected ratio for the job set. Lastly, this
ratio is averaged over the 30 job sets to compute the final expected performance of the
algorithm. In addition, we also estimate the worst-case performance of the algorithm by
using its largest normalized makespan over all job sets and failure scenarios.

Given job set J and a failure scenario f , the makespan lower bound given in Equation
(2.8) depends on the processor allocation and hence the scheduling algorithm. To ensure
that the performance of all algorithms is normalized by the same quantity, we use the
following rather loose lower bound, which is, however, independent of the scheduling
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decision:
L′(J , f) = max

(
t′
max(J , f), A′(J , f)

P

)
,

where t′
max(J , f) = maxj minp(fj + 1)tj(p) is the minimum possible maximum execution

time of all jobs, and A′(J , f) = ∑
j minp(fj + 1)aj(p) is the minimum possible total area.

Since this lower bound gives a pessimistic estimation on the optimal schedule, the actual
performance of the algorithms is likely to be better than reported.

The simulation code for all experiments is publicly available at http://www.github.
com/vlefevre/job-scheduling.

2.6.2 Comparison of Algorithms and Priority Rules

We first compare the performance of different algorithms and study the impact of priority
rules on their performance.

Figure 2.6 shows the normalized makespans for the 11 combinations of algorithms and
priority rules under all speedup models. For the MinArea algorithm, priority rules LA
and LPT are identical, as the algorithm allocates one processor to all jobs, so only the
results of LPT are reported. As we can see, MinArea fares poorly in most cases, because
it allocates one processor to each job in order to minimize the area. This results in very
long job execution (and re-execution) times, which leads to extremely large makespan.
Moreover, allocating only one processor per job also results in idle processors thus resource
inefficiency whenever the number of processors is higher than the number of jobs. The
MinTime algorithm performs well for the roofline and mix models, but as more overhead
is introduced in the communication, Amdahl and power models, it continues to allocate a
large number of processors to the jobs in order to minimize the execution time. This leads
to a significant increase in the total area and hence degrades the performance. On the other
hand, the Lpa and Batch algorithms maintain a good balance between the execution time
and area of a job, thus they perform well for all speedup models in terms of both expected
performance (bars) and worst-case performance (top endpoints of lines). Independently of
the priority rules, Lpa performs the best for the roofline and communication models while
Batch performs the best for the other models.

Figure 2.7 further shows the results of four combinations of P and n with similar
performance trends. We notice that these two parameters do have an impact on the
performance of Batch under the communication, Amdahl and mix models, in particular
at P =1000 and n=500. Indeed, under these models and when P is significantly larger
than n, Batch tends to reduce all jobs to similar length and execute them at the same
time, which gives the best tradeoff between the area and maximum execution time. In that
case, the first batch, where all jobs are executed exactly once, is done almost perfectly. As
the makespan of the first batch is dominant under λ=10−7, the overall makespan is closer
to the lower bound. However, with P =1000 and n=500, there are not enough processors
to execute all jobs at the same time. Thus, the performance of Batch becomes worse than
that of Lpa.

We also notice that the performance of MinTime under the two mix models becomes
better when the number of processors is large compared to the number of jobs (e.g.,
P = 10000, n = 100). Indeed, MinTime is able to simultaneously minimize the execution
time of all jobs in this case without using up all the processors, thus achieving near-optimal
performance. Note this is not possible with fewer processors, as minimizing the execution
time alone for each job will increase the total area, which also plays an important role
under such circumstance to have overall good performance.

http://www.github.com/vlefevre/job-scheduling
http://www.github.com/vlefevre/job-scheduling
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Figure 2.6: Performance of different algorithms and priority rules under six speedup models
with P = 7500, n=500 and λ=10−7. The bars represent expected performance and the
top endpoints of the lines represent worst-case performance.

Comparing the three priority rules, no significant difference is observed. In general,
LPT and LA give similar results, and slightly better results than HPA. This is consistent
with the results observed in [25] for scheduling rigid jobs. Given these results, we will
only consider the LPT priority rule in the subsequent evaluation. We will also omit the
MinArea and MinTime algorithms for the models under which they perform badly, while
focusing on comparing the expected performance of the remaining algorithms.

2.6.3 Impact of Different Parameters

We now study the impact of different parameters on the performance of the algorithms.
We start from P =7500, n=500, and λ=10−7, and vary one of these parameters in each
experiment.

Impact of Number of Processors (P ): Figure 2.8 shows the performance when the
number of processors P is varied between 1000 and 15000 for different speedup models.
For the roofline model, all three algorithms return the same processor allocation, i.e.,
the maximum degree of parallelism or the maximum number of processors, for each
job. Further, both Lpa and MinTime use the List strategy for scheduling, so the two
algorithms have exactly the same performance. In contrast, Batch does not perform as
well, because it schedules the jobs in batches, and thus needs to wait for every job in a batch
to finish before starting the next one, which causes delays. The initial up-and-down of the
normalized makespans is due to the upper limit (i.e., 4000) we set on the maximum degree
of parallelism: when P ≪ 4000, few processors are wasted so the resulting schedules are
very efficient; when P ≫ 4000, most jobs are fully parallelized and thus completed faster.
For Batch, however, the proportion of idle processors at the end of a batch increases
with P , which explains the widening of performance gap from the other two algorithms.

For the communication model, parallelizing a job becomes less efficient due to the extra
communication overhead, so Batch starts to perform better than MinTime thanks to its
smarter processor allocation strategy. Here, both Batch and Lpa have similar processor
allocations, so the performance difference between the two algorithms is still induced by
the idle times at the end of the batches, which are again increasing with the number of
processors.



2.6. PERFORMANCE EVALUATION 41

P = 1000
n = 100

P = 1000
n = 500

P = 10000
n = 100

P = 10000
n = 500

100

101

102

103

N
or

m
al

iz
ed

m
ak

es
pa

n

roofline

Lpa / LPT

Lpa / LA

Lpa / HPA

Batch / LPT

Batch / LA

Batch / HPA

MinTime / LPT

MinTime / LA

MinTime / HPA

MinArea / LPT

MinArea / HPA

P = 1000
n = 100

P = 1000
n = 500

P = 10000
n = 100

P = 10000
n = 500

100

101

102

103

N
or

m
al

iz
ed

m
ak

es
pa

n

communication

P = 1000
n = 100

P = 1000
n = 500

P = 10000
n = 100

P = 10000
n = 500

100

101

102

N
or

m
al

iz
ed

m
ak

es
pa

n

amdahl

P = 1000
n = 100

P = 1000
n = 500

P = 10000
n = 100

P = 10000
n = 500

100

101

102

N
or

m
al

iz
ed

m
ak

es
pa

n

mix-low-com

Lpa / LPT

Lpa / LA

Lpa / HPA

Batch / LPT

Batch / LA

Batch / HPA

MinTime / LPT

MinTime / LA

MinTime / HPA

MinArea / LPT

MinArea / HPA

P = 1000
n = 100

P = 1000
n = 500

P = 10000
n = 100

P = 10000
n = 500

100

101

N
or

m
al

iz
ed

m
ak

es
pa

n

mix

P = 1000
n = 100

P = 1000
n = 500

P = 10000
n = 100

P = 10000
n = 500

100

101

N
or

m
al

iz
ed

m
ak

es
pa

n

power

Figure 2.7: Performance of different algorithms and priority rules under six speedup models
with λ = 10−7 and four other different combinations of P and n. The bars represent
expected performance and the top endpoints of the lines represent worst-case performance.

For the Amdahl’s model, the results look very different, as Batch now outperforms
Lpa despite the idle time at the end of each batch. This is due to Batch’s ability to
better balance the job execution times globally, which becomes more important in this
case. Moreover, the trend is not affected by the number of processors.

For the two mix models, Lpa and Batch behave similarly as in the Amdahl’s model,
because they tend to allocate a relatively small number of processors for each job, thus the
maximum degree of parallelism is not reached and the communication cost is relatively
small. We also notice that the performance of MinTime is getting better with increasing
number of processors, especially under higher communication cost. Indeed, contrary to the
Amdahl’s model (where the execution time of a job is minimized when we allocate all the
processors), the minimum execution time of a job is achieved with a reasonable number of
processors because of the communication overhead. Thus, when P is high enough such that
all jobs can be processed in parallel while minimizing their execution times, MinTime’s
allocation becomes close to optimal.

Unlike the previous models, the power model has a relatively slow-increasing speedup
curve, thus allocating one processor to each job as in MinArea is not a bad choice. For
the same reason, MinTime that allocates all the processors to a job performs badly, so it
is not showed here. The relative performance of Lpa and Batch is similar to that in the
Amdahl’s and mix models, again due to Batch’s coordinated processor allocation strategy.
Because of the jobs’ slow speedup curves, the benefit of allocating more processors also gets
smaller, thus having more processors barely impacts the performance of the algorithms.

Impact of Number of Jobs (n): Figure 2.9 shows the performance when the number of
jobs n is varied between 100 and 1000. Again, we can see that Batch performs the worst
in the roofline model, gets better than MinTime in the communication model, and has
the best performance in the other models. While the varying number of jobs has a small
impact on the performance of Lpa, the performance of Batch improves as the number of
jobs increases in the roofline and communication models. Indeed, with a constant number
of processors P , having more jobs decreases the number of available processors per job,
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Figure 2.8: Performance of the algorithms for different speedup models with n = 500,
λ=10−7 and P ∈ [1000, 15000].

thus reduces the performance gap between scheduling algorithms due to the idle processors
between batches. For the other models, the number of jobs has a small impact even for
Batch. Overall, as the number of jobs increases, the trend in the relative performance of
the algorithms is consistent with the previous results we have observed in Figure 2.8 when
the number of processors decreases.

Impact of Error Rate (λ): Figure 2.10 shows the impact of the error rate λ when
it is varied between 10−8 (corresponding to 0.03 error per job on average) and 10−6

(corresponding to 12 errors per job on average). Once again, the relative performance of
the three algorithms remains the same as before under the respective speedup models.
While the performance of Lpa is barely affected, which is not surprising considering
that its processor allocation is performed locally and separately from job scheduling, the
performance of Batch gets worse with increasing error rate λ (and hence the number of
failures), which corroborates the theoretical analysis (Theorem 8). In particular, when the
error rate is small, there are very few failures and almost all jobs will complete in one batch.
In this case, the processor allocation procedure of Batch (Lemma 7) is very precise. With
increased error rate, more failures will occur and thus more batches will be introduced,
causing scheduling inefficiencies from both idle times between the batches and possible
imprecision in the processor allocations (especially with a large batch, since the actual
number of failures may deviate significantly from the anticipated values). Finally, although
the processor allocation is also performed locally for MinTime and MinArea, the effect
of increasing λ is similar to that of increasing P (or the opposite to that of increasing n):
when there are more failures, we spend more time processing few large jobs that fail a
lot, meaning that after some time only very few jobs are not finished yet. This effectively
increases the total number of processors for these jobs or reduces the total number of jobs.

2.6.4 Summary of Results

Table II summarizes the makespan ratios of the four algorithms over the entire set of
experiments, in terms of both average-case performance (expected ratio) and worst-case
performance (maximum ratio). Overall, the results confirm the efficiency of our two
resilient scheduling algorithms (Lpa and Batch), which outperform the baseline heuristics
(MinTime and MinArea) in all settings. For the simplest roofline model, Lpa is equivalent
to MinTime, both achieving a makespan very close to the lower bound (with a ratio around
1.06 on average). For the other models, we can observe significant performance difference



2.6. PERFORMANCE EVALUATION 43

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

roofline
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

communication
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

amdahl
Lpa

Batch

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

mix-low-com
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

mix
Lpa

Batch

MinTime

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

power
Lpa

Batch

MinArea

Figure 2.9: Performance of the algorithms for different speedup models with P = 7500,
λ=10−7 and n ∈ [100, 1000].
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Figure 2.10: Performance of the algorithms for different speedup models with P =7500,
n=500 and λ∈ [10−8, 10−6].

Table II: Summary of the performance for the four algorithms (with LPT priority rule)
under the six speedup models.

Speedup Model Roofline Communication Amdahl Mix-low-com Mix Power

Lpa Expected 1.057 1.312 1.961 1.896 1.867 1.861
Maximum 1.219 2.241 2.349 1.987 1.995 9.655

Batch Expected 1.158 1.434 1.529 1.548 1.571 1.549
Maximum 1.999 2.449 2.874 3.674 4.164 3.975

MinTime Expected 1.057 2.044 15.567 2.810 2.704 20.386
Maximum 1.219 2.666 49.795 12.611 27.174 61.726

MinArea Expected 114.079 122.199 23.594 16.875 9.686 2.571
Maximum 1217.13 871.38 199.572 259.163 120.9 27.109
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between our best algorithm and the baseline. In particular, Lpa achieves good performance
with an expected ratio around 1.3 for the communication model, and an expected ratio
less than 2 for the other models. We also notice that the maximum ratios are only slightly
larger than the ones in the average case, and they remain much lower than those predicted
by the theoretical bounds (except for the power model where the ratio is more than 9).
Batch also achieves excellent results thanks to its coordinated processor allocation and
failure handling ability. It achieves a better average ratio (less than 1.6) for all models,
but has larger worst-case ratios compared to Lpa (except for the power model). On the
other hand, the two baseline heuristics, although doing well in some scenarios, tend to have
more irregular performance that depends on the model and parameter. In contrast, our
algorithms exhibit more robust performance under various models and parameter settings.

2.7 Conclusion and Future Work
In this chapter, we have studied the problem of scheduling moldable parallel jobs to cope
with silent errors.

We present a formal model of the problem and design two resilient scheduling algorithms
(Lpa and Batch). While not knowing the failure scenarios of the jobs in advance, Lpa
utilizes a delicate local processor allocation strategy and Batch extends the notion of
batches to coordinate the processor allocations. Both algorithms use an extended List
strategy with failure-handling ability to schedule the jobs. On the theoretical side, we
derived new approximation results for both algorithms under several classical speedup
models. In particular, Lpa is shown to be a constant approximation for the roofline model,
the communication model, the Amdahl’s model, as well as a mixed model. We also derived
its approximation ratios for the power model and general monotonic model.

Also, we prove that Batch achieves a Θ(log2 fmax)-approximation for arbitrary speed-
up models, where fmax is the maximum number of failures of any job in a failure scenario.
All of these results are worst-case results: they hold for any failure scenario. We also
derived an ω(1) lower bound on the average-case performance of Batch. Extensive
simulations show good performance of the two proposed algorithms compared to some
baseline heuristics, demonstrating their practical usefulness and robustness under common
job speedups and parameter settings.

Future work will be devoted to the investigation of alternative failure models, such as
fail-stop errors (as opposed to silent errors) or schedule-dependent failure probabilities
(that depend on the number of processors allocated to a job, and hence on its area).

One may also consider checkpointing and rollback recovery for long-running jobs to
avoid re-executing a failed job from scratch. On the practical side, we seek to validate
the performance of our algorithms by evaluating them using datasets extracted from job
execution logs with realistic speedup profiles and failure traces.



Chapter 3

Online Scheduling of Moldable Task Graphs
under Common Speedup Models

In Chapter 2, we have studied the scheduling of moldable tasks subject to failures, where
an instance could be seen as a graph of linear chains of identical tasks. In each chain,
only the first task is visible, i.e., we only discover a task when its predecessor is completed.
In this chapter, we extend this study to the general online scheduling problem graph
of moldable task graphs on multiprocessor systems, where we still aim at minimizing
the overall completion time (or makespan). Moldable job scheduling has been widely
studied in the literature, in particular when tasks have dependencies (i.e., task graphs)
or when tasks are released on-the-fly (i.e., online). However, few studies have focused on
both (i.e., online scheduling of moldable task graphs). In this chapter, we design a new
online scheduling algorithm for this problem and derive constant competitive ratios under
several common yet realistic speedup models (i.e., roofline, communication, Amdahl, and
a general combination). We also prove, for each speedup model, a lower bound on the
competitiveness of any online list scheduling algorithm that allocates processors to a task
based only on the task’s parameters and not on its position in the graph. This lower bound
matches exactly the competitive ratio of our algorithm for the roofline, communication and
Amdahl’s model, and is close to the ratio for the mix model. Finally, we provide a lower
bound on the competitive ratio of any deterministic online algorithm for the arbitrary
speedup model, which is not constant but depends on the number of tasks in the longest
path of the graph. This chapter corresponds to Submission [S5] (see Chapter 9). Although
Publication [C3] focused on the same problem, the analysis was sharpened significantly
since then, with strong additional results on lower bounds. Therefore, the initial algorithm
and analysis from Publication [C3] are obsolete and omitted.

3.1 Introduction

This work investigates the online scheduling of parallel task graphs on a set of identical
processors, where each task in the graph is moldable. In the scheduling literature, a moldable
task (or job) is a parallel task that can be executed on an arbitrary but fixed number
of processors. The execution time of the task depends upon the number of processors
used to execute it, which is chosen once and for all when the task starts its execution
but cannot be modified later on during execution. This corresponds to a variable static
resource allocation, as opposed to a fixed static allocation (rigid tasks) and to a variable
dynamic allocation (malleable tasks) [59].

Moldable tasks offer a nice trade-off between rigid and malleable tasks: they easily
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n Number of tasks
P Number of processors
µ Maximum fraction of processors used by our algorithm

Opt Optimal Offline Scheduler
wj Work of a given task (sequential execution time)
dj Inherently sequential fraction of a task (cannot be parallelized)
cj Communication overhead per processor for a task
p̄j Maximum degree of parallelism of a task

tj(pj) Execution time of task j when allocated pj processors
Roo Roofline Model
Com Communication Model
Amd Amdahl Model
Mix Mix Model

Table I: Summary of main notations for Chapter 3.

adapt to the number of available resources, contrarily to rigid tasks, while being easy to
design and implement, contrarily to malleable tasks. Thus, many computational kernels
in scientific libraries (e.g., for numerical linear algebra and tensor computations) can be
deployed as moldable tasks to efficiently run on a wide range of processors. Because of the
importance and wide availability of moldable tasks, scheduling algorithms for such tasks
have received considerable attention in the literature (see Section 3.2 for details). Like
many other scheduling problems, scheduling moldable tasks comes in different flavors, and
the following provides a brief taxonomy:

• Offline Scheduling vs. Online Scheduling. In the offline version of the scheduling
problem, all tasks are known in advance, before the execution starts. The problem
is NP-complete for both independent and dependent tasks [160], and the goal is
to design scheduling algorithms with good approximation ratio, which measures the
worst-case performance of an algorithm against an optimal scheduler for all possible
input instances. On the contrary, in the online version of the scheduling problem,
tasks are released on the fly, and the objective is to design online algorithms with good
competitive ratio [144], against an optimal offline scheduler that knows in advance all
the tasks and their dependencies in the graph. The competitive ratio is established
against all possible strategies devised by an adversary trying to force the online
algorithm to take bad decisions.

• Independent Tasks vs. Task Graphs. In a scheduling problem, different tasks
can be either independent of each other or dependent forming a task graph. If tasks
are independent, they are either all known to the scheduling algorithm initially (in
the offline version), or released on the fly and the scheduler only discovers their
characteristics upon release (in the online version). For task graphs, either the entire
graph is known at the start (in the offline version), or each new task along with its
characteristics is only released when all of its predecessors have completed execution
(in the online version). For the latter case, the shape of the graph as well as the
nature of the tasks are not known in advance, and they are revealed only as the
execution progresses.

In this chapter, we investigate arguably the most difficult version of the problem,
namely, the online scheduling of moldable task graphs, which is the version that has received
the least research attention so far. The objective is to minimize the overall completion
time of the task graph, or the makespan. We assume that the scheduling of each task is
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non-preemptive and without restarts [60], which is highly desirable to avoid large overheads
incurred by checkpointing partial results, context switching, and task migration, etc.

While the performance of a scheduling algorithm greatly depends upon the speedup
model of the tasks, we consider several common yet realistic speedup models, including the
roofline model, the communication model, the Amdahl’s model, and a general combination
of them (as already seen in Chapter 2, and see Section 3.3.1 for their precise definitions).
These models have been widely assumed and studied in the literature for modeling the
scaling behavior of parallel applications. We design a new online scheduling algorithm that
achieves good competitive ratios for these models. This is done through a novel analysis
framework, which provides a tighter and more coupled analysis between a local processor
allocation algorithm and the list scheduling algorithm. To the best of our knowledge, a
competitive ratio was previously known only for task graphs under the roofline model [60],
while our work offers the first results for several other speedup models, and these results
lay the foundations for this scheduling problem.

Our main contributions are summarized as follows:
• We present a new online algorithm and prove its constant competitive ratio for the

four speedup models. In particular, results are derived for the communication model,
the Amdahl’s model, and the mix model.

• For each speedup model, we prove a lower bound on the competitiveness of any
online list scheduling algorithm whose processor allocation is local and deterministic,
i.e., the decision depends only on P and the task’s parameters, but not on its
position in the graph. The results show that our algorithm achieves the best possible
competitive ratios for the roofline, communication and Amdahl’s models for this class
of algorithms.

The rest of this chapter is organized as follows. Section 3.2 surveys some related works
on moldable task scheduling. The formal model and problem statement are presented in
Section 3.3. Section 3.4 introduces the new online algorithm and proves its competitive
ratios for different speedup models. Section 3.5 presents, for each model, a lower bound
of any online list scheduling algorithm with deterministic local processor allocation. Our
algorithm belongs to this class and has the best possible competitive ratio for the roofline,
communication, and Amdahl’s models. Finally, Section 3.6 concludes the chapter and
provides hints for future directions.

3.2 Related Work

In this section, we discuss some related works on moldable task scheduling. Following
the taxonomy of the previous section, we consider four versions of the problem combining
offline vs. online scheduling and independent tasks vs. task graphs scheduling. We mainly
focus on works that have derived approximation or competitive ratios. While some of these
results depend on specific speedup models, others hold for a more general class of models.

Offline Scheduling of Independent Tasks

Belkhale and Banerjee [16] considered moldable tasks that follow the monotonic model,
where the execution time of a task is non-increasing and the area (processor allocation
times execution time) is non-decreasing with the number of processors. They presented a

2
1+1/P -approximation algorithm by iteratively updating the processor allocations. For the
same model, Błażewicz et al. [29] also presented a 2-approximation algorithm while relying
on an optimal continuous schedule. Mounié et al. [123] presented a (

√
3 + ϵ)-approximation
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algorithm using dual approximation. They later improved the ratio to 1.5 + ϵ [124]. Finally,
Jansen and Land [90] proposed a Polynomial-Time Approximation Scheme (PTAS) for the
problem.

If the execution time of a task can be an arbitrary function of the processor allocation
(i.e., the arbitrary model), Turek et al. [159] designed a 2-approximation list-based algorithm
and a 3-approximation shelf-based algorithm. Ludwig and Tiwari [116] showed the same
result but with lower computational complexity. When each task only admits a subset of
all possible processor allocations, Jansen [89] presented a (1.5+ ϵ)-approximation algorithm,
which is tight since the problem cannot have an approximation ratio better than 1.5 unless
P = NP [96]. When the number of processors is a constant or polynomially bounded by
the number of tasks, Jansen et al. [92] showed that a PTAS exists.

Offline Scheduling of Task Graphs

For offline scheduling of moldable task graphs, Wang and Cheng [163] showed that the
earliest completion time algorithm is a (3 − 2

P )-approximation for the roofline model.
Since the processor allocation is done independently for each task, their algorithm and
corresponding ratio can also be applied to the online setting as discussed below.

For the monotonic model, Belkhale and Banerjee [17] presented a 2.618-approximation
algorithm while assuming the availability of an optimal processor allocation. Lepère et
al. [110] proposed an algorithm with an approximation ratio of 5.236. They also showed that
the optimal allocation can be achieved in pseudo-polynomial time for some special graphs,
such as series-parallel graphs and trees, thus leading to a 2.618-approximation for these
graphs. Jansen and Zhang [94] later improved the approximation ratio for general graphs
to around 4.73. When assuming that the area of a job is a concave function of the number
of processors, Jansen and Zhang [93] proposed a 3.29-approximation algorithm. Chen and
Chu [42] improved the ratio to around 2.95 by further assuming that the execution time of
a job is strictly decreasing in the number of allocated processors.

Online Scheduling of Task Graphs

Feldmann et al. [60] designed an online algorithm to schedule moldable task graphs under
the roofline model. They showed that their algorithm achieves a competitive ratio of 2.618,
thus improving the previous result by Wang and Cheng [163]. Furthermore, their algorithm
works in the non-clairvoyant setting, where the task execution time is also unknown to
the scheduler. In the last chapter we investigated the problem of scheduling moldable
tasks subject to failures, where a task needs to be re-executed after a failure until it is
successfully completed. This corresponds to a special task graph consisting of multiple
linear chains (one per task), where the length of each chain corresponds to the total number
of executions of a task. The problem is semi-online, since all the tasks are known at the
beginning, but the task failures and hence their re-executions are only discovered on-the-fly.
They considered several common speedup models (as in this chapter) and presented a
scheduling algorithm that achieves constant competitive ratios for these models. In this
chapter, we study the general online scheduling of moldable task graphs (as in [60]). We
present improved competitive ratios as well as lower bounds for the common speedup
models. We do not consider task failures as before, but our results can readily carry over
to the failure scenario.

Table II summarizes different versions of the moldable task scheduling problem together
with the related papers within each version.
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Table II: Different versions of the moldable task scheduling problem, and related papers in
each version.

Offline scheduling Online scheduling

Independent tasks

Monotonic model: [16, 29, 90,
123,124]
Arbitrary model: [89, 90, 116,
159]

Comm. model (over time) [54,
78,102]
Arbitrary model (one-by-one):
[170]

Task graphs
Roofline model: [163]
Monotonic model: [17, 42, 93,
94,110]

Roofline model: [60, 163]
Common models: [23, 24, 26],
[this chapter]

3.3 Problem Statement

In this section, we formally present the online scheduling model and the objective function.
We also show a simple lower bound on the optimal makespan, against which the performance
of our online algorithms will be measured.

3.3.1 Model and Objective

We consider the online scheduling of a Directed Acyclic Graph (DAG) of moldable
tasks on a platform with P identical processors. Let G = (V, E) denote the task graph,
where V = {1, 2, . . . , n} represents a set of n tasks and E ⊆ V × V represents a set of
precedence constraints (or dependencies) among the tasks. An edge (i, j) ∈ E indicates
that task j depends on task i, and therefore it cannot be executed before task i is completed.
Task i is called the predecessor of task j, and task j is called the successor of task i.
In this work, we do not consider the costs associated with the data transfers between
dependent tasks.

The tasks are assumed to be moldable, meaning that the number of processors allocated
to a task can be determined by the scheduling algorithm at launch time, but once the
task has started executing, its processor allocation cannot be changed. The execution
time tj(pj) of a task j is a function of the number pj of processors allocated to it, and we
assume that the processor allocation must be an integer between 1 and P . In this chapter,
we focus on the first four speedup models of the previous papers, i.e.:

• Roofline model: linear speedup up to a bounded degree of parallelism p̄j ∈ [1, P ], i.e.,
tj(pj) = wj/pj for pj ≤ p̄j , and tj(pj) = wj/p̄j for pj > p̄j ;

• Communication model: there is a communication overhead cj ≥ 0 per processor when
more than one processor is used, i.e., tj(pj) = wj/pj + (pj − 1)cj ;

• Amdahl’s model: this is a particular case of the monotonic model with tj(pj) =
wj
(1−γj

pj
+ γj

)
, where γj ∈ [0, 1] denotes the inherently sequential fraction of the job;

• Mix model: this mixed model combines Roofline, Communication and Amdahl’s
models with

tj(pj) = wj(1− γj)
min(p, p̄j) + wjγj + (pj − 1)cj , (3.1)

which could capture more realistically the speedups of some complex applications.
From the execution time function of the task j, we can further define the area of the

task as a function of the processor allocation as follows: aj(pj) = pjtj(pj). Intuitively, the
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area represents the total amount of processor resources utilized over the entire period of
task execution.

In this work, we consider the online scheduling model, where a task becomes
available only when all of its predecessors have been completed. This represents a common
scheduling model for dynamic task graphs, whose dependencies are only revealed upon
task completions [1, 34, 60, 97]. Furthermore, when a task j is available, all of its execution
time parameters (i.e., wj , p̄j , dj , cj) become known to the scheduling algorithm as well.
The goal is to find a feasible schedule of the task graph that minimizes its overall completion
time or makespan, denoted by T . The performance of an online scheduling algorithm
is measured by its competitive ratio: the algorithm is said to be c-competitive if, for
any task graph, its makespan T is at most c times the makespan T Opt produced by an
optimal offline scheduler, i.e., T

T Opt ≤ c. Note that the optimal offline scheduler knows in
advance all the tasks and their speedup models, as well as all dependencies in the graph.
The competitive ratio is established against all possible strategies by an adversary trying
to force the online algorithm to take bad decisions.

3.3.2 Lower Bound on Optimal Makespan

Given the execution time function in Equation (3.1), let us define sj =
√

wj

cj
. We can then

compute the maximum number of processors that should be allocated to the task as:

pmax
j = min (P, p̄j , p̃j) , (3.2)

where

p̃j =
{
⌊sj⌋, if tj(⌊sj⌋) ≤ tj(⌈sj⌉)
⌈sj⌉, otherwise

Indeed, allocating more than pmax
j processors to the task will no longer decrease its execution

time while only increasing its area. Thus, we can safely assume that the processor allocation
of the task should never exceed pmax

j by any reasonable algorithm.
Furthermore, the task is said to satisfy the monotonic property [110] if the following

two conditions hold:
• The execution time is a non-increasing function of the processor allocation, i.e.,

tj(p) ≥ tj(q) for all 1 ≤ p < q ≤ pmax
j ;

• The area is a non-decreasing function of the processor allocation, i.e., aj(p) ≤ aj(q)
for all 1 ≤ p < q ≤ pmax

j .
Note that the second condition above also suggests that the task cannot achieve

superlinear speedup, i.e.,

tj(p)
tj(q) ≤

q

p
for all 1 ≤ p < q ≤ pmax

j . (3.3)

Lemma 13. A task j with execution time function given in Equation (3.1) is monotonic
if its processor allocation is in the range [1, pmax

j ].

Proof. When the processor allocation is in the range [1, pmax
j ], we have pj ≤ pmax

j ≤ p̄j .
Thus, the execution time function simplifies to tj(pj) = wj

pj
+ dj + cj(pj − 1). This is a

convex function whose minimum value is achieved at p̃j . Since we also have pj ≤ pmax
j ≤ p̃j ,

it shows that the execution time is a non-increasing function of pj in the range [1, pmax
j ].

Similarly, when pj ≤ pmax
j ≤ p̄j , the area becomes aj(pj) = pjtj(pj) = wj + djpj +

cj(p2
j − pj), which is non-decreasing for any pj ≥ 1.
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Based on Lemma 13, the minimum execution time of the task is achieved as tmin
j =

tj(pmax
j ) and the minimum area of the task is achieved as amin

j = aj(1). Further, we let tOpt
j

and aOpt
j denote the execution time and area of the task under the processor allocation of

an optimal schedule. We now define two quantities that can be used as a lower bound of
the optimal makespan.

Definition 1. Given the processor allocations of all the tasks in an optimal schedule,
• the total area AOpt of the task graph is the sum of the areas of all the tasks in the

graph, i.e., AOpt = ∑n
j=1 aOpt

j .
• the length LOpt(f) of a path1 f in the graph is the sum of the execution times of all the

tasks along that path, i.e., LOpt(f) = ∑
j∈f tOpt

j . The critical path length COpt of
the graph is the longest length of any path in the graph, i.e., COpt = maxf LOpt(f).

Clearly, the optimal makespan cannot be smaller than AOpt

P and COpt. This follows
from the well-known area and critical-path bounds for scheduling any task graph [71]. The
following lemma states this result.

Lemma 14. T Opt ≥ max
(

AOpt

P , COpt
)
.

3.4 A New Online Algorithm
In this section, we present a new online scheduling algorithm and derive its competitive
ratio for the mix speedup model and its three special cases.

3.4.1 Algorithm Description
Algorithm 3 presents the pseudocode of the online scheduling algorithm, which at any
time maintains the set of available tasks in a waiting queue Q. At time 0 or whenever a
running task completes execution, it checks if new tasks have become available. If so, for
each newly available task j, it finds a processor allocation pj for the task (using Algorithm
4) before inserting it into the queue Q. Then, it applies the well-known list scheduling
strategy [71] by scanning through all the available tasks in Q and executing each one right
away if there are enough processors. Note that tasks are inserted into the queue without
any priority considerations, although in practice certain priority rules may work better.

Algorithm 4 presents the details of the processor allocation strategy for any task j. It
consists of two steps. The first step performs an initial allocation for the task, which is
inspired by the local processor allocation strategy proposed in [23, 24]. Specifically, for
each possible allocation p ∈ [1, pmax

j ], we define the following:
• gj(p) ≜ aj(p)

amin
j

: ratio between the area of the task and its minimum area;

• fj(p) ≜ tj(p)
tmin
j

: ratio between the execution time of the task and its minimum execution
time.

We then find an allocation p that minimizes fj(p) subject to the constraint gj(p) ≤ αM ,
where αM ≥ 1 is a constant whose exact value will be determined based upon the specific
speedup model M under consideration. Since gj(p) is non-decreasing with p and fj(p)
is non-increasing with p, the above optimization problem can be efficiently solved using
binary search in O(log P ) time.

1A path f consists of a sequence of tasks with linear dependency, i.e., f = (jπ(1), jπ(2), . . . , jπ(v)), where
the first task jπ(1) in the sequence has no predecessor in the graph, the last task jπ(v) has no successor,
and, for each 2 ≤ i ≤ v, task jπ(i) is a successor of task jπ(i−1).
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Algorithm 3: Online_Scheduling_Algorithm
1 initialize a waiting queue Q
2 when at time 0 or a running task completes execution do

// Processor Allocation
3 for each new task j that becomes available do
4 Allocate_Processor(j)
5 insert task j into the waiting queue Q

// List Scheduling
6 for each task j in the waiting queue Q do
7 if there are enough processors to execute the task then
8 execute task j now

Algorithm 4: Allocate_Processor(j)
Input: Task j and its speedup model M ; parameters αM , µM

Output: Processor allocation p′
j for the task

// Step 1: Initial Allocation
1 Compute pmax

j based on Equation (3.2)
2 Compute tmin

j = tj(pmax
j ) and amin

j = aj(1)
3 Find an allocation pj ∈ [1, pmax

j ] from the following optimization problem:

min
p

fj(p) ≜ tj(p)
tmin
j

s.t. gj(p) ≜ aj(p)
amin

j

≤ αM

// Step 2: Allocation Adjustment
4 if pj > ⌈µM P ⌉ then p′

j ← ⌈µM P ⌉ else p′
j ← pj

In the second step, the algorithm reduces the initial allocation to ⌈µM P ⌉ if it is more
than ⌈µM P ⌉; otherwise the allocation will be unchanged. Here, µM ≤ 0.5 is also a constant
whose value will be determined by the speedup model M . Let pj denote the initial allocation
for the task and p′

j the final allocation. Thus, after the second step, we have:

p′
j =

{
⌈µM P ⌉, if pj > ⌈µM P ⌉
pj , otherwise

. (3.4)

This step adopts the technique first proposed in [110] and subsequently used in [93, 94].
The purpose is to enable the execution of more tasks at any time, thus potentially increasing
the overall resource utilization of the platform and reducing the makespan.

The exact values of the two parameters αM and µM for each speedup model M will be
presented in Section 3.4.3 when analyzing the above algorithm.

3.4.2 A Novel Analysis Framework
We first outline an analysis framework, under which the competitive ratio of the proposed
online algorithm will be derived for different speedup models. The framework is inspired by
the analysis shown in [93, 94, 110] for list scheduling as well as the analysis used in [23, 24]
for local processor allocation. Together, the result nicely connects the makespan of the
online algorithm to the lower bound (Lemma 14), thus proving the competitive ratio.

Since the analysis framework in this section applies to any speedup model M , for
simplicity, we will drop the superscript M for αM and µM , and re-introduce it later in
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Section 3.4.3 for each specific speedup model we consider.
Recall that T denotes the makespan of the online scheduling algorithm. Since the

algorithm allocates and de-allocates processors upon task completions, the schedule can be
divided into a set I = {I1, I2, . . . } of non-overlapping intervals, where tasks only start (or
complete) at the beginning (or end) of an interval, and the number of utilized processors
does not change during an interval. For each interval I ∈ I, let p(I) denote its processor
utilization, i.e., the total number of processors used by all tasks running in interval I. We
first classify the set of all intervals into the following two categories:

• I0: subset of intervals that satisfy p(I) ∈ (0, ⌈(1− µ)P ⌉);
• I3: subset of intervals that satisfy p(I) ∈ [⌈(1− µ)P ⌉, P ].
The following lemma shows a property for the subset of intervals in I0.

Lemma 15. There exists a path f in the graph in which a task is always running in I0.

Proof. During I0, the processor utilization is at most ⌈(1− µ)P ⌉ − 1, so there are at least
P − (⌈(1 − µ)P ⌉ − 1) ≥ ⌈µP ⌉ available processors. Based on Algorithm 4, any task is
allocated at most ⌈µP ⌉ processors. Thus, there are enough processors to execute any new
task (if one is available). This implies that there is no available task in the queue Q during
I0. When a task graph is scheduled by the list scheduling algorithm, it is well known that
there exists a path f in the graph such that some task along that path will be running
whenever there is no available task in the queue [60,94,110], hence the result.

Using the path f stated in Lemma 15, we further split I0 into the following two
sub-categories:

• I1: subset of I0 where the processor allocation for the currently running task in f
was not reduced (by the second step of Algorithm 4);

• I2: subset of I0 where the processor allocation for the currently running task in f
was reduced (i.e., the task is running on ⌈µP ⌉ processors).

Finally, given the processor allocation of an optimal schedule, we further split I2 into
the following two sub-categories:

• I2′ : subset of I2 where the currently running task in f was allocated with strictly
fewer processors than in the optimal schedule;

• I2′′ : subset of I2 where the currently running task in f was allocated with equal or
more processors than in the optimal schedule.

Let |I| denote the duration of an interval I, and let T1 = ∑
I∈I1 |I|, T2 = ∑

I∈I2 |I|,
T2′ = ∑

I∈I2′ |I|, T2′′ = ∑
I∈I2′′ |I| and T3 = ∑

I∈I3 |I| denote the total durations of the
different categories of intervals, respectively. Since I1, I2 and I3 are obviously disjoint and
partition I, we have T = T1 + T2 + T3. Finally, we define z ∈ [0, 1] such that T2′ = zT2
and T2′′ = (1− z)T2.

The next two lemmas relate these durations to the total area AOpt and critical path
length COpt of the task graph under an optimal schedule, given certain conditions on the
initial processor allocations of the tasks under our algorithm.

Lemma 16. If there exists a constant α such that, for each task j, its initial processor
allocation satisfies aj(pj) ≤ αamin

j , then we have:

µ

(
z + 1− z

α

)
T2 + (1− µ)

α
T3 ≤ T Opt . (3.5)

Proof. As the area of each task j is non-decreasing with its processor allocation and p′
j ≤ pj ,

the final area of the task should satisfy aj(p′
j) ≤ aj(pj) ≤ αamin

j ≤ αaOpt
j . Furthermore,
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during I2′ , any running task j from path f satisfies aj(p′
j) ≤ aj(pOpt

j ) = aOpt
j . We let

A2′|f (resp. A2′′|f ) denote the total area of the fraction of tasks from f running in I2′ (resp.
I2′′), and AOpt

2′|f (resp. AOpt
2′′|f ) the corresponding fraction of area in an optimal schedule.

We have A2′|f ≤ AOpt
2′|f and A2′′|f ≤ αAOpt

2′′|f . Since ⌈µP ⌉ ≥ µP processors are used to run

tasks from f in I2′ ∪ I2′′ , we have µT2′ ≤
A2′ |f

P ≤
AOpt

2′|f
P and µT2′′ ≤

A2′′ |f
P ≤

αAOpt
2′′|f
P .

Finally, let A3 denote the total area of the fraction of tasks running in I3 and AOpt
3 the

corresponding fraction of area in an optimal schedule. Since at least ⌈(1−µ)P ⌉ ≥ (1−µ)P
processors are utilized during I3, we have (1− µ)T3 ≤ A3

P ≤
αAOpt

3
P .

Thus, altogether we can derive:

µ

(
z + 1− z

α

)
T2 + (1− µ)

α
T3

= µT2′ + µT2′′

α
+ (1− µ)

α
T3

≤
AOpt

2′|f
P

+
AOpt

2′′|f
P

+ AOpt
3
P

≤ AOpt

P
≤ T Opt .

The last inequality is due to the makespan lower bound shown in Lemma 14.

Lemma 17. If there exists a constant β such that, for each task j, its initial processor
allocation satisfies tj(pj) ≤ βtmin

j , then we have:

T1
β

+ (µz + 1− z)T2 ≤ T Opt . (3.6)

Proof. For any task j from path f running during I1, its processor allocation was not
reduced by the second step of Algorithm 4, thus we must have p′

j = pj ≤ ⌈µP ⌉. Therefore,
its execution time should satisfy tj(p′

j) = tj(pj) ≤ βtmin
j ≤ βtOpt

j .
For any task j from path f running during I2′ , its processor allocation has been

reduced, i.e., p′
j = ⌈µP ⌉. Based on Equation (3.3), the task’s execution time should satisfy

tj(p′
j)

tmin
j

= tj(⌈µP ⌉)
tj(pmax

j ) ≤
pmax

j

⌈µP ⌉ ≤
P

µP = 1
µ . Thus, we have tj(p′

j) ≤ 1
µ tmin

j ≤ 1
µ tOpt

j .
Finally, for any task j from path f running during I2′′ , its processor allocation is

higher than that of an optimal schedule. Therefore, its execution time should satisfy:
tj(p′

j) ≤ tj(pOpt
j ) = tOpt

j .
Now, let LOpt

1|f (resp. LOpt
2′|f and LOpt

2′′|f ) denote the length for the portion of path f

executed during I1 (resp. I2′ and I2′′) under an optimal schedule. The argument above
implies that T1 ≤ βLOpt

1|f , T2′ ≤ 1
µLOpt

2′|f and T2′′ ≤ LOpt
2′′|f . Thus, we can derive:

T1
β

+ (µz + 1− z)T2

= T1
β

+ µT2′ + T2′′

≤ LOpt
1|f + LOpt

2′|f + LOpt
2′′|f

≤ LOpt(f) ≤ COpt ≤ T Opt .

The last inequality is again due to the makespan lower bound shown in Lemma 14.
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Based on the results of Lemmas 16 and 17, we can now derive an upper bound on the
makespan of the online scheduling algorithm as shown below.

Lemma 18. If there exist two constants α and β such that, for each task j, its initial
processor allocation satisfies:

gj(pj) ≜ aj(pj)
amin

j

≤ α , (3.7)

fj(pj) ≜ tj(pj)
tmin
j

≤ β , (3.8)

then by setting µ such that β + α
1−µ = 1

µ , i.e., µ = α+β+1−
√

(α+β+1)2−4β

2β , and under the
condition β ≥ µ(α−1)

(1−µ)2 , we get:

T

T Opt ≤
1
µ

= 2β

α + β + 1−
√

(α + β + 1)2 − 4β
. (3.9)

Proof. As the makespan is given by T = T1 + T2 + T3, we can multiply both sides by 1−µ
α

and apply Equation (3.5) to remove the T3 term, which gives:

1− µ

α
T ≤ 1− µ

α
T1 +

(1− µ− zαµ− (1− z)µ
α

)
T2 + T Opt .

We can then multiply both sides of the above inequality by α
(1−µ)β and apply Equa-

tion (3.6) to remove the T1 term. This gives:

T

β
≤
(1− µ− zαµ− (1− z)µ

(1− µ)β − µz + z − 1
)

T2 +
(

1 + α

(1− µ)β

)
T Opt .

Now, if f(z) = 1−µ−zαµ−(1−z)µ
(1−µ)β − µz + z − 1 ≤ 0 is true for all z ∈ [0, 1], we can omit

the T2 term in the above inequality and get:

T ≤
(

β + α

(1− µ)

)
T Opt = 1

µ
T Opt .

We have f ′(z) = µ(1−α)
(1−µ)β +(1−µ) ≥ 0 under the condition β ≥ µ(α−1)

(1−µ)2 , which makes f(z)
an increasing function of z. Thus, we simply need to ensure that f(1) = 1−µ−αµ

(1−µ)β − µ ≤ 0,
which is true if β + α

1−µ = 1
µ . One can then solve for µ from the above second-degree

equation, and get µ = α+β+1−
√

(α+β+1)2−4β

2β .
Finally, we show that the value of µ above is well-defined and is a valid choice satisfying

µ ∈ (0, 0.5].
• First, we can derive that ∆ = (α + β + 1)2 − 4β > (β + 1)2 − 4β = (β − 1)2 ≥ 0.

Thus, the value of µ is well-defined.
• We have µ >

α+β+1−
√

(α+β+1)2

2β = 0, since α, β > 0.

• We can show µ = α+β+1−
√

(α+β+1)2−4β

2β ≤ 0.5, which after some manipulations is
equivalent to showing 0 ≤ β2 + 2β(α− 1). The latter inequality is always true since
α ≥ 1.
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Remarks. We point out that the two bounds shown in Lemma 18, i.e., Inequalities (3.7)
and (3.8), must be satisfied by all tasks in a task graph for the derived competitive ratio
shown in Equation (3.9) to hold. In Section 3.4.3, we will prove that, for a given speedup
model and regardless of the task parameters, there always exists a processor allocation
that satisfies the two bounds with a particular (α, β) choice that achieves the minimum
(or close to minimum) competitive ratio. We then show in Section 3.5 that the obtained
competitive ratios are tight (or almost tight) by proving matching (or nearly matching)
lower bounds for different speedup models. Thus, given an (α, β) pair for a speedup model,
the processor allocation algorithm should find an allocation for each task to satisfy the
two bounds. However, there could be multiple allocations that all satisfy the bounds.
Among these allocations, Algorithm 4 finds one that, subject to the α bound, minimizes
the execution time of the task, thus satisfying the β bound as well. Intuitively, this is a
good practical choice and it also helps to simplify the analysis, which we will present in
Section 3.4.3.

3.4.3 Competitive Ratios

In this section, we prove the competitive ratios for the online algorithm under differ-
ent speedup models. Based on Lemma 18, the competitive ratio is given by: 1

µ =
2β

α+β+1−
√

(α+β+1)2−4β
subject to the constraint β ≥ α−1

(1−µ)2 .
For a given speedup model with parameters P ⊆ {w, d, c, p̄}, a generic approach for

minimizing the ratio above can be outlined as follows: First, compute β(α) as small as
possible based on the model parameters P for any fixed α ≥ 1. To do that, since the
area of a task is non-decreasing with the processor allocation and the time non-increasing
in the range [1, pmax], we can find the largest processor allocation p∗(P) ∈ [1, pmax] that
satisfies a(p∗(P))

amin ≤ α and then compute β(α) = supP
(

t(p∗(P))
tmin

)
. Finally, plug β(α) into

the expression of the competitive ratio and find the α that minimizes it while satisfying
the constraint.

Although the technique outlined above is a good generic approach, the computations
involved are often too complicated for some speedup models and solving it will rely on
numerical tools. Therefore, to derive the competitive ratios analytically, we will simply
find a valid pair (α, β) below for each considered speedup model while verifying that the
constraint is satisfied. We will then show the tightness (or near tightness) of the obtained
competitive ratios by computing the lower bounds in Section 3.5.

As in previous paper, we now re-introduce superscript M ∈ {Roo, Com, Amd, Mix}
to the notations αM , βM and µM in the lemmas and theorems below. Given a speedup
model M , the analysis focuses on finding αM and βM for each individual task, thus we
will drop the task index j for simplicity.

Roofline Model

Recall that a task follows the roofline speedup model if its execution time satisfies t(p) =
w

min(p,p̄) for some p̄ ≤ P .

Lemma 19. For any task that follows the roofline speedup model, there exists a processor
allocation that achieves αRoo = βRoo = 1.

Proof. For any task with p̄, setting the processor allocation to p = p̄ clearly achieves
the minimum execution time tmin = w

p̄ for the task. It also achieves the minimum area
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amin = w, which is not affected by the processor allocation in [1, p̄] due to the task’s linear
speedup in this range. Thus, this gives αRoo = βRoo = 1.

Theorem 12. Algorithm 3 is 2
3−

√
5 < 2.62-competitive for any graph of tasks that follow

the roofline speedup model. This is achieved with µRoo = 3−
√

5
2 ≈ 0.382.

Proof. With α = β = 1, the constraint β ≥ µ(α−1)
(1−µ)2 = 0 is obviously satisfied. Thus, we

get µ = α+β+1−
√

(α+β+1)2−4β

2β = 3−
√

5
2 , and the competitive ratio is given by 1

µ = 2
3−

√
5 <

2.62.

Remarks. The above ratio retains the same result by Feldmann et al. [60]2, who also
proved a matching lower bound for any online deterministic algorithm under the “non-
clairvoyant" setting, where the work w of a task is unknown to the scheduler. In Section
3.5, we will prove the same lower bound, but without the non-clairvoyant setting for a class
of list scheduling algorithms with deterministic local decisions for processor allocation.

Communication Model

Remarks. Using the generic approach outlined at the beginning of this section, we could
actually compute the best possible β(α) for any α > 1.

The analysis, however, is very technical, and finding the optimal α then requires
numerical analysis tools. It turns out that the best (α, β) pair is (4

3 , 3
2), and we will show

that this pair is optimal in Section 3.5.

Theorem 13. Algorithm 3 is 18
23−

√
313 < 3.391-competitive for any graph of tasks that

follow the communication model. This is achieved with µCom = 23−
√

313
18 ≈ 0.295.

Proof. We use Lemma 4 giving α = 4
3 and β = 3

2 , pluf it to µ = α+β+1−
√

(α+β+1)2−4β

2β =
23−

√
313

18 , and the constraint β ≥ µ(α−1)
(1−µ)2 ≈ 0.2 is satisfied. Thus, the competitive ratio is

given by 1
µ = 18

23−
√

313 < 3.391.

Amdahl’s Model

Recall that a task follows the Amdahl’s model if its execution time function is t(p) = w
p + d,

with d ≥ 0, thus the area function is given by a(p) = pt(p) = w + dp.

Lemma 20. For any task that follows the Amdahl’s model, there exists a processor
allocation that achieves αAmd =

√
2+1+
√

2
√

2−1
2 ≈ 1.883 and βAmd = 1+

√
4
√

2+5
2 ≈ 2.132.

Proof. In Lemma 5, we have shown that for any α > 1, we could find a processor allocation
such that β ≤ α

α−1 ≜ β(α). We can now substitute β(α) into the expression of the
competitive ratio and get:

1
µ

=
2 α

α−1

α + α
α−1 + 1−

√(
α + α

α−1 + 1
)2
− 4 α

α−1

.

2In [60], each task has a parallelism p, and can be virtualized if p′ ≤ p processors are used for execution,
with a linear slowdown. This is equivalent to the roofline model.
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To minimize the ratio above, one can use the standard technique of differentiating and
setting the derivative to zero. The expression is quite long, and the full analysis is omitted.
It turns out that αAmd =

√
2+1+
√

2
√

2−1
2 minimizes the ratio (again, Section 3.5 will prove

the optimality of this choice anyway). Plugging it back into β(α) = α
α−1 and simplifying,

we can get βAmd = 1+
√

4
√

2+5
2 .

Theorem 14. Algorithm 3 is 2
1−
√

8
√

2−11
< 4.55-competitive for any graph of tasks that

follow the Amdahl’s model. This is achieved with µAmd = 1−
√

8
√

2−11
2 ≈ 0.22.

Proof. By substituting α =
√

2+1+
√

2
√

2−1
2 and β = 1+

√
4
√

2+5
2 into the expression of µ and

simpifying (hard!), we can get µ = α+β+1−
√

(α+β+1)2−4β

2β = 1−
√

8
√

2−11
2 . We can also check

that the constraint β > µ(α−1)
(1−µ)2 ≈ 0.32 is satisfied. Thus, the competitive ratio is given by

1
µ = 2

1−
√

8
√

2−11
< 4.55.

Remark 2. Another way to find the expression of µAmd is to show that αAmd minimizes
the ratio βAmd + αAmd

1−µAMD = αAmd

αAmd−1 + αAmd

1−µAmd . By deriving and simplifying, we can show
the much easier expression µAmd = (αAmd − 1)2 in the Amdahl’s case.

Mix Model

We finally consider the mix speedup model given by tj(pj) = wj(1−dj)
min(p,p̄j) + wjdj + (pj − 1)cj .

Without loss of generality, we assume w > 0 (otherwise we get α = β = 1 using one
processor), and c, d > 0 (otherwise the model reduces to the communication or the Amdahl’s
model and also results in smaller α and β). We rewrite the execution time function as:
t(p) = c

(
w′

min(p,p̄) + d′ + p− 1
)

with w′ = w
c and d′ = d

c . We further assume p̄ ≤ P

(otherwise changing p̄ to P does not affect the execution time of the task for any feasible
processor allocation). Finally, any reasonable scheduling algorithm will not allocate more
than p̄ processors to the task since it would increase both execution time and area. Thus,
assuming p ≤ p̄, we can simplify the execution time function as t(p) = c

(
w′

p + d′ + p− 1
)

and the area function is given by a(p) = c(w′ + d′p + p(p− 1)).

Theorem 15. Algorithm 3 is 27
33−

√
738 < 4.63-competitive for any graph of tasks that follow

the mix speedup model given in Equation (3.1). This is achieved with µMix = 33−
√

738
27 ≈

0.216.

Proof. With α = 2 and β = 27
13 , we get µ = α+β+1−

√
(α+β+1)2−4β

2β = 33−
√

738
27 and the

constraint β ≥ µ(α−1)
(1−µ)2 ≈ 0.35 is satisfied. Thus, the competitive ratio is given by 1

µ =
27

33−
√

738 < 4.63.

Finally, Table III summarizes the parameters and competitive ratios derived for all the
considered speedup models.
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Table III: Summary of parameters and competitive ratios for different speedup models.

Model M µM αM βM Competitive Ratio

Roofline (Roo) 3−
√

5
2 1 1 2

3−
√

5 ≈ 2.62

Com. (Com) 23−
√

313
18

4
3

3
2

18
23−

√
313 ≈ 3.39

Amdahl (Amd) 1−
√

8
√

2−11
2

√
2+1+
√

2
√

2−1
2

1+
√

4
√

2+5
2

2
1−
√

8
√

2−11
≈ 4.55

Mix (Mix) 33−
√

738
27 2 27

13
27

33−
√

738 ≈ 4.63

3.5 Lower Bounds for Online List Scheduling Algorithms with
Deterministic Local Decisions

In Section 3.4.3, we derived the competitive ratios of our online algorithm under several
common speedup models. In this section, we will show corresponding lower bounds on the
competitive ratios.

Definition 2. An online algorithm is said to make deterministic local decisions if it
allocates processors by considering only P and the parameters of a task’s speedup function
(i.e., w, p̄, d, c). Thus, two identical tasks will receive exactly the same allocation regardless
of their relative positions in the task graph as well as the graph structure.

Ultimately, we will show that our algorithm has the optimal competitive ratios over all
algorithms in this class for the roofline, communication, and Amdahl’s models. The result
also indicates that our algorithms’s competitive ratio for the mix model is close to optimal
using the lower bound of the Amdahl’s model.

3.5.1 Analysis Overview

Under any model M , we have shown in Section 3.4 that, for any task, our online algorithm
achieves:

a

amin ≤ αM and t

tmin ≤ βM , (3.10)

where αM

1−µM + βM = 1
µM . In particular, for any possible instance consisting of a set T of

tasks, if our algorithm achieves a makespan of T and the optimal makespan is T Opt, then
we have shown that:

T

T Opt ≤ max
j∈T

aj

amin
j (1− µM ) + max

j∈T

tj

tmin
j

≤ αM

1− µM
+ βM = 1

µM
. (3.11)

Two-step Approach

To prove the lower bounds, we will proceed in two steps corresponding to proving the
tightness of the above two inequalities (3.10) and (3.11), respectively. More precisely, we
will fix a model M and suppose an online list scheduling algorithm A respecting Definition 2
and having a competitive ratio strictly less than 1

µM exists. Specifically, we will assume
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that A’s competitive ratio is 1
µM − 4ϵ for some 0 < ϵ < 1. In the first step (Section 3.5.2),

we will show the existence of two tasks A and B as well as another algorithm A∗ such that:
aB

a∗
B(1− µM ) + tA

t∗
A

≥ 1
µM
− ϵ , (3.12)

thus showing the tightness of our local analysis. In the second step (Section 3.5.3), we will
build an instance using these two tasks (as well as two other tasks C and D) such that, by
using list scheduling, algorithm A has no choice but to achieve a makespan that satisfies:

T

T ∗ ≥
aB

a∗
B(1− µM ) + tA

t∗
A

− 2ϵ ≥ 1
µM
− 3ϵ , (3.13)

where T and T ∗ denote the makespans of A and A∗ for this instance, respectively. This
contradicts the assumed competitive ratio, thus showing the tightness of our global analysis
and hence the non-existence of algorithm A.

Notations

We will use four different tasks A, B, C, D to construct the lower bound instances. For
algorithm A, we let pA (resp. pB, pC , pD) denote its processor allocation for task A
(resp. B, C, D), let tA (resp. tB, tC , tD) denote the resulting execution time of the tasks,
and let aA = tApA (resp. aB, aC , aD) denote the resulting area of the tasks. Similarly,
we use p∗

A, p∗
B, p∗

C , p∗
D, t∗

A, t∗
B, t∗

C , t∗
D, a∗

A, a∗
B, a∗

C , a∗
D to denote the corresponding values for

algorithm A∗.

Constraints

The lower bound instances need to respect a set of constraints (or rules) for the tasks and
for the task graph, which are required to show the global results. This will allow us to
prove the lower bound regardless of the model, as long as these constraints are satisfied.
For convenience, Table IV lists and labels all the required constraints (R’s) along with
some definitions (F ’s). We will refer to them according to their labels, and use (R : ✓) to
denote that a constraint R is satisfied in the subsequent analysis.

3.5.2 Step 1: Local Analysis
In this section, we will show that, for a given model M and any online list scheduling
algorithm A respecting Definition 2, there exist tasks A and B as well as another algorithm
A∗ such that aB

a∗
B(1−µM ) + tA

t∗
A
≥ 1

µM − ϵ. We start with the following theorem and will prove
it separately for each considered model.
Theorem 16. Given a model M ∈ {Roo, Com, Amd}, let A be an online list scheduling
algorithm respecting Definition 2 with a competitive ratio of 1

µM −4ϵ for some 0 < ϵ < 1, and

let P ≥
(

120900
ϵ

)4
. Then, there exist four tasks A, B, C and D satisfying the constraints

on tasks in Table IV (R1 to R12) and another algorithm A∗ such that:
aB

a∗
B(1− µM ) + tA

t∗
A

≥ 1
µM
− ϵ . (3.14)

Proof. First, we set tC(p) = ϵ
121P 2·p . Indeed, this execution time function belongs to all

speedup models3, and clearly, we have (R11 : ✓), i.e., constraint (R11) is satisfied. Further,
3For all models, we have w = ϵ

121P 2 . Additionally, for the roofline model, p̄ =∞; for the communication
model, c = 0; and for the Amdhal’s model, d = 0.
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Table IV: List of constraints (R’s) and definitions (F ’s) for constructing lower bound
instances.

For tasks For task graph

p∗
A ≤ P 3/4 (R1) P ≥

(
120900

ϵ

)4
(F1)

0.1 ≤ t∗
B ≤ 100

(R2)
X =

⌈
P −pC+1

pB

⌉
(F2)

pB ≤ P 3/4 (R3) K =
⌈ 5t∗

A
ϵXt∗

B

⌉
(F3)

tD ≤ tB (R4) Y =
⌊

XKt∗
B

t∗
A

⌋
(F4)

t∗
D ≤ ϵ

121P 2 (R5) Z = K(P − p∗
A) (F5)

pD ≤ 4 (R6)
t∗
A ≤ 24t∗

B (R7) 1 ≤ X ≤ P (R13)
t∗
B = a∗

B = tB(1)
(R8)

XKt∗
B

(
1− ϵ

5
)
≤ Y t∗

A ≤ XKt∗
B (R14)

tA ≤ 5t∗
A (R9) K(P − P 3/4) ≤ Z ≤ 121P

ϵ (R15)
aB ≤ 5a∗

B (R10)
t∗
C ≤ ϵ

121P 2 (R11)
pC ≥ µM P (R12)

if we had pC < µM P , then we would have tC
t∗
C

>
ϵ

121P 2·µM P
ϵ

121P 2·P
= 1

µM , which contradicts the
competitive ratio of A on an instance consisting of only one task C (R12 : ✓). Similarly,
for task A, we must have tA ≤ 5t∗

A to respect the competitive ratio of A on an instance
consisting of a single such task, as 1

µM < 5 for all models (R9 : ✓). For task B, we will
set p∗

B = 1 for all models (R8✓). Also, if we had aB > 5a∗
B, then an instance consisting

of P independent such tasks would result in a makespan at least P aB
P = aB for A, since

PaB is the total area to be completed on P processors, while A∗ can execute all tasks
simultaneously in parallel with a resulting makespan of a∗

B, which also contradicts the
competitive ratio of A (R10 : ✓).

The following three lemmas will conclude the proof of the theorem by considering each
of the three models separately. Note that we only need to define tasks A, B and D, and
verify the constraints (R1) to (R7).

Lemma 21. Theorem 16 is true for the roofline model.

Proof. For the roofline model, we will only use sequential tasks with p̄ = 1, and set
tA(p) = tB(p) = 1 and tD(p) = ϵ

121P 2 for all p. Thus, we have (R2, R4, R5, R7 : ✓). Clearly,
if A allocates 3 or more processors to task B or D, then running P independent such tasks
would result in a makespan at least 3 times that of the optimal using a single processor,
constradicting the competitive ratio of A. Thus, we can assume that pB ≤ 2 ≤ P 3/4

(R3 : ✓) and pD ≤ 2 ≤ 4 (R6 : ✓). We further set p∗
A = p∗

B = 1 (R1 : ✓). These give
aB
a∗

B
≥ 1 and tA

t∗
A

= 1. With µRoo = 3+
√

5
2 , we obtain:

aB

a∗
B(1− µRoo) + tA

t∗
A

≥ 1
1− µRoo + 1 = 1

µRoo .

Lemma 22. Theorem 16 is true for the communication model.
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Proof. Given algorithm A, we define U to be the subset of {x ∈ R+} such that A allocates
one processor to a task whose execution time function has the form: t(p) = x

p + p− 1. By
definition, A always has the same allocation for identical tasks, so U is well-defined and
must satisfy:

• [0, 0.1] ⊆ U , otherwise there would exist an x ≤ 0.1 such that A allocates at least two
processors for t(p) = x

p + p− 1, and we would have a
amin ≥ a(2)

a(1) = x+2
x = 1 + 2

x ≥ 21,
which contradicts the competitive ratio of A.

• U ⊆ [0, 64], otherwise there would exist an x > 64 such that A allocates one processor
for t(p) = x

p + p− 1, and we would have t
tmin ≥ x

x/8+7 = 8x+448
x+56 −

448
x+56 ≥ 8− 448

120 > 4,
which also contradicts the competitive ratio of A.

Based on the previous analysis, we now consider s = sup(U) ∈ [0.1, 64]. By definition,
there exists a δ ∈ [0, 1

P ) such that (s− δ) ∈ U and (s− δ + 1
P ) /∈ U . We choose such δ, and

set w̄ = s− δ > 0.09, tA(p) = w̄
p + p− 1 and tB(p) = w̄+ 1

P
p + p− 1 with pA = 1 and pB > 1.

Thus, we get t∗
B = w̄ + 1

P (R2 : ✓).

We also have aB

amin
B

= w̄+ 1
P

+pB(pB−1)
w̄+ 1

P

≥ 1 + (pB−1)2

65 , from which we can assume pB ≤ 15,
otherwise aB

amin
B

> 4, again contradicting A’s competitive ratio. As P > 81, it leads to
pB ≤ P 3/4 (R3 : ✓). We now show that Inequality (3.14) is true:

aB

a∗
B(1− µCom) + tA

t∗
A

≥ w̄ + 2
(w̄ + 1

P )(1− µCom)
+ w̄

w̄
p∗

A
+ p∗

A − 1

= w̄ + 2
w̄(1− µCom) ·

1
1 + 1

P w̄

+ w̄
w̄
p∗

A
+ p∗

A − 1

≥ w̄ + 2
w̄(1− µCom) ·

(
1− 1

Pw̄

)
+ w̄

w̄
p∗

A
+ p∗

A − 1

= w̄ + 2
w̄(1− µCom) −

(w̄ + 2)
Pw̄2(1− µCom) + w̄

w̄
p∗

A
+ p∗

A − 1

≥ w̄ + 2
w̄(1− µCom) −

2(w̄ + 2)
Pw̄2 + w̄

w̄
p∗

A
+ p∗

A − 1

≥ w̄ + 2
w̄(1− µCom) −

16297
P

+ w̄
w̄
p∗

A
+ p∗

A − 1

≥
1 + 2

w̄

1− µCom + 1
1

p∗
A

+ p∗
A−1
w̄

− ϵ .

We further consider two cases:
Case 1: w̄ ≤ 6. In this case, we set p∗

A = 2 and obtain:

aB

a∗
B(1− µCom) + tA

t∗
A

≥
1 + 2

w̄

1− µCom + 1
1
2 + 1

w̄

− ϵ .

We define f(w̄) ≜ 1+ 2
w̄

1−µCom + 1
1
2 + 1

w̄

, and get f ′(w̄) = 4
(w̄+2)2 − 2

(1−µCom)w̄2 , which is negative
in [0, w0), where w0 is the smallest positive w̄ such that f ′(w̄) = 0. Solving the equation
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above, we find w0 = 2+2
√

2−2µCom

1−2µCom > 6. Therefore, we can replace w̄ by 6 to obtain:

aB

a∗
B(1− µCom) + tA

t∗
A

≥ 4
3(1− µCom) + 3

2 − ϵ

= αCom

1− µCom + βCom − ϵ

= 1
µCom − ϵ .

Case 2: w̄ > 6. In this case, we set p∗
A = 3 and obtain:

aB

a∗
B(1− µCom) + tA

t∗
A

≥
1 + 2

w̄

1− µCom + 1
1
3 + 2

w̄

− ϵ .

We again define f(w̄) ≜
1+ 2

w̄

1−µCom + 1
1
3 + 2

w̄

, and get f ′(w̄) = 18
(w̄+6)2 − 2

(1−µCom)w̄2 , which is
positive in (w0,∞), where w0 is the largest positive w̄ such that f ′(w̄) = 0. Solving the
equation above, we find w0 = 6+18

√
1−µCom

8−9µCom < 6. Therefore, we can replace w̄ by 6 to
obtain:

aB

a∗
B(1− µCom) + tA

t∗
A

≥ 4
3(1− µCom) + 3

2 − ϵ

= αCom

1− µCom + βCom − ϵ

= 1
µCom − ϵ .

In both cases, we get the desired result with (R1 : ✓). Further, because p∗
A ≤ 3 and

w̄ > 0.09, we get t∗
A ≤ w̄ + 2 ≤ 24w̄ ≤ 24t∗

B (R7 : ✓).
Finally, for task D, we set tD(p) = ϵ

121P 2·p + p − 1 and p∗
D = 1. Thus, A must also

allocate one processor to the task (i.e., PD = 1), otherwise aD

amin
D
≥

ϵ
121P 2 +2

ϵ
121P 2

> 5, which
contradicts its competitive ratio. Therefore, we have (R4, R5, R6 : ✓).

Lemma 23. Theorem 16 is true for the Amdahl’s model.

Proof. Given algorithm A, we define U to be the subset of {x ∈ R+} such that A allocates
strictly less than

√
P processors to a task whose execution time function has the form:

t(p) = x
p + 1√

P
. By definition, A always has the same allocation for identical tasks, so U is

well-defined and must satisfy:
• [0, 0.1] ⊆ U , otherwise there would exist an x ≤ 0.1 such that A allocates at least√

P processors for t(p) = x
p + 1√

P
, and we would have a

amin ≥ a(
√

P )
a(1) = x+1

x+ 1√
P

=

1 +
1− 1√

P

x+ 1√
P

≥ 1 + 0.99
0.11 = 10, which contradicts the competitive ratio of A.

• U ⊆ [0, 10], otherwise there would exist an x > 10 such that A allocates less than
√

P processors for t(p) = x
p + 1√

P
, and we would have t

tmin ≥ t(
√

P )
t(P ) =

x√
P

+ 1√
P

x
P

+ 1√
P

>

x
x√
P

+1 = 1
1√
P

+ 1
x

> 1
0.11 > 9, which also contradicts the competitive ratio A.

Based on the previous analysis, we now consider s = sup(U) ∈ [0.1, 10]. By definition,
there exists a δ ∈ [0, 1√

P
) such that (s− δ) ∈ U and (s− δ + 1√

P
) /∈ U . We choose such δ,
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and set w̄ = s− δ > 0.09, tA(p) = w̄
p + 1√

P
and tB(p) =

w̄+ 1√
P

p + 1√
P

with pA <
√

P and
pB ≥

√
P . Thus, we get t∗

A ≤ w̄ + 1√
P

and t∗
B = w̄ + 2√

P
(R2, R7 : ✓).

We can further assume pB ≤ P 3/4, otherwise we would have aB

amin
B
≥

w̄+ P 3/4
√

P

w̄+ 2√
P

≥
0.09+P 1/4

11 > 5, which contradicts the competitive ratio of A (R3 : ✓). Finally, we set
p∗

A = ⌊P 3/4⌋ (R1 : ✓) and get:

aB

a∗
B(1− µAmd) + tA

t∗
A

≥ w̄ + 1
(w̄ + 2√

P
)(1− µAmd)

+
w̄√
P

+ 1√
P

w̄
P 3/4−1 + 1√

P

= w̄ + 1
w̄(1− µAmd) ·

1
1 + 2

w̄
√

P

+ w̄ + 1
1 + w̄

P 1/4− 1√
P

≥ w̄ + 1
w̄(1− µAmd)

(
1− 2

w̄
√

P

)
+ (w̄ + 1)

1− w̄

P 1/4 − 1√
P


≥ w̄ + 1

w̄(1− µAmd) + w̄ + 1− 22
0.092 × 0.5

√
P
− 110

P 1/4 − 1√
P

≥ w̄ + 1
w̄(1− µAmd) + w̄ + 1− ϵ .

We now set x = w̄+1
w̄ > 1, so x

x−1 = w̄ + 1. We can finally conclude that:

aB

a∗
B(1− µAmd) + tA

t∗
A

≥ x

1− µAmd + x

x− 1 − ϵ

≥ min
x′>1

(
x′

1− µAmd + x′

x′ − 1

)
− ϵ

= αAmd

1− µAmd + βAmd − ϵ

= 2

1−
√

8
√

2− 11
− ϵ .

To show the third step above, we can take the derivative of x′

1−µAmd + x′

x′−1 and show
that its minimum is achieved when x′ satisfies (x′ − 1)2 = 1− µAmd. This is equivalent to

x′ = αAmd, because
(
αAmd − 1

)2
=

(√
2−1+
√

2
√

2−1
)2

4 = 1+(
√

2−1)
√

2
√

2−1
2 = 1+

√
8
√

2−11
2 =

1− µAmd = (x′ − 1)2. As x′ > 1, the only solution is x′ = αAmd. From the proof of Lemma
20, we also get that βAmd = αAmd

αAmd−1 = x′

x′−1 .
Finally, for task D, we set tD(p) = ϵ

121P 2 and p∗
D = 1. Thus, we must have pD ≤ 4,

otherwise aD

amin
D

> 4, which contradicts the competitive ratio of A (R4, R5, R6 : ✓).

3.5.3 Step 2: Global Analysis
In this section, we assume that algorithm A and model M are fixed, while the tasks
A, B, C, D and algorithm A∗ are chosen such that the conditions of Theorem 16 hold.
We construct a task graph (as shown in Figure 3.1), based on which we will show that
T
T ∗ ≥ aB

a∗
B(1−µM ) + tA

t∗
A
− 2ϵ ≥ 1

µM − 3ϵ.
In our constructed task graph, the tasks are partitioned into four different groups:

TA, TB, TC and TD. Specifically,
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D1 C1 D2 C2 · · · DZ CZ A1

A2

· · ·

AY

B1,1

B1,2

· · ·

B1,X

B2,1

B2,2

· · ·

B2,X

· · ·

· · ·

· · ·

· · ·

BZ,1

BZ,2

· · ·

BZ,X

Figure 3.1: A task graph for proving lower bounds.

time

P

P − pC

B1,X

B1,2
B1,1

D1C1

B2,X

B2,2
B2,1

D2C2

BZ,X

BZ,2
BZ,1

DZCZ
A1 A2 · · · AY

time

P

Di’s
Ci’s

all the Bi,j ’s

all the Ai’s

Figure 3.2: Shapes of algorithm A’s schedule (a) and algorithm A∗’s schedule (b) for the
task graph of Figure 3.1.

• TA has Y tasks identical to A, labeled as (Ai)i∈[1,Y ];
• TB has XZ tasks identical to B, labeled as (Bi,j)i∈[1,Z],j∈[1,X];
• TC has Z tasks identical to C, labeled as (Ci)i∈[1,Z];
• TD has Z tasks identical to D, labeled as (Di)i∈[1,Z],

where X =
⌈

P −pC+1
pB

⌉
, and using K =

⌈ 5t∗
A

ϵXt∗
B

⌉
, we set Y =

⌊
XKt∗

B
t∗
A

⌋
and Z = K(P − p∗

A).
These parameters are specified as definitions (F ’s) in Table IV.

The tasks are organized in layers and have the following precedence constraints:
• task Ci is the predecessor of task Di+1 for 1 ≤ i < Z, and of tasks Bi+1,j for 1 ≤ i < Z

and 1 ≤ j ≤ X;
• task Di is the predecessor of task Ci for 1 ≤ i ≤ Z;
• task CZ is the predecessor of task A1;
• task Ai is the predecessor of task Ai+1 for 1 ≤ i < Y .
To prove the lower bound, we will first show that the constraints (R13) to (R15) in

Table IV pertaining to the parameters of the task graph are also respected (Lemma 24). We
will then show that algorithm A’s schedule must follow the shape as shown in Figure 3.2(a)
(Lemma 25), whereas algorithm A∗ could wait until tasks in TC and TD are finished before
launching tasks in TA and TB, resulting in a better schedule as shown in Figure 3.2(b).
This last result together with Theorem 16 will lead to a contradiction, hence proving the
lower bound (Theorem 17). In the following analysis, we will provide a reference to a
constraint or a definition whenever it is used.

Lemma 24. Given the setting above, constraints (R13), (R14) and (R15) in Table IV are
satisfied.

Proof. Constraint (R13) can be obtained directly from the definition of X:

1 ≤ X =
⌈

P − pC + 1
pB

⌉
≤ P . (F2)
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Constraint (R14) can be derived from the definitions of Y and K:

XKt∗
B ≥ Y t∗

A ≥ XKt∗
B − t∗

A (F4)

= XKt∗
B

(
1− t∗

A

XKt∗
B

)

≥ XKt∗
B

(
1− ϵ

5

)
. (F3)

Finally, constraint (R15) can be obtained with:

K(P − P 3/4) ≤ Z ≤ KP (F5, R1)

≤
(

5t∗
A

ϵXt∗
B

+ 1
)

P (F3)

≤
(120

ϵ
+ 1

)
P (R7, R13)

≤ 121P

ϵ
. (ϵ < 1)

Lemma 25. For a given task T , let s(T ) denote its starting time in algorithm A’s schedule
and e(T ) its ending time. If all constraints in Table IV are satisfied, then algorithm A’s
schedule must follow the shape as shown in Figure 3.2(a), i.e.:

• s(Di) = s(Bi,1) = · · · = s(Bi,X),∀i ∈ [1, Z];
• s(Ci) = e(Bi,1) = · · · = e(Bi,X),∀i ∈ [1, Z];
• s(Di) = e(Ci−1),∀i ∈ [2, Z];
• s(A1) = e(CZ);
• s(Ai) = e(Ai−1),∀i ∈ [2, Y ].

As a result, the makespan of A must satisfy: T ≥ ZtB + Y tA.

Proof. It is possible to simultaneously run all the tasks Bi,j ’s and Di in layer i, as the
total number of processors required is:

XpB + pD ≤
(

P − pC + 1
pB

+ 1
)

PB + 4 (F2, R6)

= P − PC + PB + 5
≤ (1− µM )P + P 3/4 + 5 (R3, R12)
< 0.8P + 0.01P + 5 < P . (F1, µM > 0.2)

However, it is not possible to run all the Bi,j ’s and Ci in parallel, as the number of
processors required would be:

XpB + pC ≥
P − pC + 1

pB
pB + pC (F2)

= P + 1 .

Therefore, given that algorithm A uses list scheduling to schedule the tasks, we get
s(D1) = s(B1,1) = · · · = s(B1,X). Furthermore, since tD ≤ tB (R4), C1 becomes available
before the first layer of tasks in TB finishes and will be launched as soon as the layer is
done, which gives s(C1) = e(B1,1) = · · · = e(B1,X). A direct induction shows that, using
list scheduling, the same scenario would happen for all the Z layers. Finally, the tasks in
TA are executed one after another after the completion of CZ , so the schedule corresponds
to the exactly one shown in Figure 3.2(a). Since there are Z layers of tasks in TB and Y
layers of tasks in TA, the makespan of algorithm A must satisfy T ≥ ZtB + Y tA.
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Theorem 17. Given a model M ∈ {Roo, Com, Amd}, there is no online list scheduling
algorithm respecting Definition 2 with a competitive ratio strictly less than 1

µM .

Proof. We prove the theorem by contradiction. Specifically, we assume that there exists
such an algorithm A with a competitive ratio of 1

µM − 4ϵ for some 0 < ϵ < 1, as also
assumed in Theorem 16. We will then show, using the constructed task graph, that the
makespan of A satisfies T

T ∗ ≥ 1
µM − 3ϵ, which leads to a contradiction, hence suggesting

that no such algorithm should exist.
We first bound the makespan T ∗ of algorithm A∗, assuming that it follows the schedule

of Figure 3.2(b) by first running all the Ci’s and Di’s before running the Ai’s sequentially
while at the same time using one processor to run each of the Bi,j ’s. As there are XZ tasks
of Bi,j ’s, executing them all on P−p∗

A processors takes time
⌈

XZ
P −p∗

A

⌉
t∗
B =

⌈
XK(P −p∗

A)
P −p∗

A

⌉
t∗
B =

XKt∗
B (F5), whereas executing all the Ai’s takes time Y t∗

A ≤ XKt∗
B (R14). Therefore, T ∗

should satisfy:

T ∗ ≤ Z(t∗
C + t∗

D) + XKt∗
B

≤ 121P

ϵ

(
ϵ

121P 2 + ϵ

121P 2

)
+ XKt∗

B (R5, R11, R15)

≤ 2
P

+ XKt∗
B .

Now, using the result of Lemma 25, we get:

T

T ∗ ≥
ZtB + Y tA
2
P + XKt∗

B

≥ K(P − P 3/4)tB

2 + XKt∗
B

+ Y tA
2
P + Y t∗

A/
(
1− ϵ

5
) (R14, R15)

= (P − P 3/4)tB
2
K + Xt∗

B

+ tA

t∗
A/
(
1− ϵ

5
)

+ 2
Y P

≥ (P − P 3/4)tB

2 + t∗
B

(
P (1−µM )+1

pB
+ 1

) + tA

t∗
A

·
1− ϵ

5
1 + 2

P XKt∗
B

(1− ϵ
5)

(F2, R12, F4)

≥ (P − P 3/4)tB

2 + 2t∗
B + P t∗

B(1−µM )
pB

+ tA

t∗
A

·
1− ϵ

5
1 + 2

P t∗
B

≥ tBpB

pB(2+2t∗
B)

P −P 3/4 + P t∗
B(1−µM )
P −P 3/4

+ tA

t∗
A

·
1− ϵ

5
1 + 20

P

(R2)

≥ aB

2+2t∗
B

P 1/4−1 + t∗
B(1−µM )
1−P −1/4

+ tA

t∗
A

·
1− ϵ

5
1 + 20

P

(R3)

≥ aB

(4 + 4t∗
B)P −1/4 + t∗

B(1− µM )(1 + 2P −1/4)
+ tA

t∗
A

·
1− ϵ

5
1 + 20

P

.

The last step above assumes 1
P 1/4−1 ≤ 2P −1/4 and 1

1−P −1/4 ≤ 1+2P −1/4, both of which
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are true if P 1/4 ≥ 2, i.e., P ≥ 16. We conclude with the following derivations:

T

T ∗ ≥
aB

t∗
B(1− µM ) + (4 + 6t∗

B)P −1/4 + tA

t∗
A

·
1− ϵ

5
1 + 20

P

≥ aB

a∗
B(1− µM ) + 604P −1/4 + tA

t∗
A

·
1− ϵ

5
1 + 20

P

(R2, R8)

= aB

a∗
B(1− µM ) ·

1
1 + 604P −1/4

a∗
B

(1−µM )

+ tA

t∗
A

·
1− ϵ

5
1 + 20

P

≥ aB

a∗
B(1− µM ) ·

1
1 + 12080P −1/4 + tA

t∗
A

·
1− ϵ

5
1 + 20

P

(R2, µM ≤ 0.5)

≥ aB

a∗
B(1− µM )

(
1− 12080P −1/4

)
+ tA

t∗
A

(
1− 20

P

)(
1− ϵ

5

)
≥ aB

a∗
B(1− µM ) + tA

t∗
A

− 120800P −1/4 − 100
P
− ϵ (R9, R10, µM ≤ 0.5)

≥ aB

a∗
B(1− µM ) + tA

t∗
A

− 120800P −1/4 − 100P −1/4 − ϵ

= aB

a∗
B(1− µM ) + tA

t∗
A

− 120900P −1/4 − ϵ

≥ aB

a∗
B(1− µM ) + tA

t∗
A

− 2ϵ (F1)

≥ 1
µM
− 3ϵ .

The last step above applies Theorem 16, and the result proves this theorem and the
optimal competitive ratio of our algorithm for these speedup models.

Remarks. Since the Amdahl’s model is a special case of the mix model, its lower bound
also applies to the mix model.

3.6 Conclusion and Future Work
In this chapter, we have studied the online scheduling of moldable task graphs to minimize
makespan with tasks obeying several common speedup models. To the best of our knowledge,
no competitive ratio was known under this setting, except for the roofline model [60]. Owing
to the design of a new online algorithm and a novel analysis framework, we have extended
the result and derived competitive ratios for several other speedup models, including the
communication model, the Amdahl’s model and a mix combination. We have also shown
that no online list scheduling algorithm with deterministic local decisions for processor
allocation may have a better competitive ratio than ours for the roofline, communication
and Amdahl’s models. Finally, we have considered the arbitrary speedup model and
established a lower bound for any deterministic online algorithm. Altogether, these new
results lay the foundations for further study of this important but difficult scheduling
problem.

For future work, we will consider extending the algorithm and analysis to other common
speedup models. We also plan to extend our algorithm and analysis to other online
scheduling settings (e.g., for independent tasks released over time, and for special task
graphs such as fork-join graphs or trees). Finally, we will expand this study to a more
practical side by experimentally benchmarking the performance of our algorithm using
realistic workflows.



Chapter 4

Risk-Aware Scheduling Algorithms for Variable
Capacity Resources

In Chapters 2 and 3, we have studied scheduling problems where the jobs (tasks) were
subject to failures, and we have generalized these results to the online scheduling problem.
In this chapter, we rather focus on the resilience when the variability is induced by the
platform instead of the jobs. Indeed, the drive to decarbonize the power grid to slow the
pace of climate change has caused dramatic variation in the cost, availability, and carbon-
intensity of power. This has begun to shape the planning and operation of datacenters.
This chapter focuses on the design of scheduling algorithms for independent jobs that are
submitted to a platform whose resource capacity varies over time. Jobs are submitted
online and assigned on a target machine by the scheduler, which is agnostic to the rate
and amount of resource variation. The optimization objective is the goodput, defined as
the fraction of time devoted to effective computations (re-execution does not count). We
introduce several novel algorithms that: (i) decide which fraction of the resources can be
used safely; (ii) maintain a risk index associated to each machine; and (iii) achieves a global
load balance while mapping longer jobs to safer machines. We assess the performance
of these algorithms using one set of actual workflow traces together with three sets of
synthetic traces. The goodput achieved by our algorithms increases up to 10% compared to
standard first-fit approaches, while we never experience any loss in complementary metrics
such as the maximum or average stretch. This chapter corresponds to Submission [S4] (see
Chapter 9).

4.1 Introduction

With growing global concern about climate change [161,162], the end of Dennard scaling,
and continued exponential growth of computing use [98, 152], there is growing interest
in how to reduce the negative environmental impacts of computing, that is, improve
its sustainability [63, 75, 135, 168]. A popular approach that exploits the variation of
renewable generation (wind, solar), is the idea of temporal and spatial load shifting to
match computing power consumption with the availability of low-carbon power [72]. Viewed
at a single computing site, this appears as a datacenter or HPC platform whose capacity
evolves with time, depending upon the cost and the environmental policy (e.g., reduce
power supply when the power source is coal instead of wind or solar), termed the variable
capacity scheduling problem [177].

Online scheduling techniques for independent jobs have received considerable attention
since they lie at the heart of batch schedulers. The traditional setting deals with fixed-

69
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J Set of jobs
n Total number of jobs
τi Represents a job to execute
ri Release date of job τi

ci Number of cores required to process job τi

wi Length of job τi

Ci Category of job τi (based on its length)
Tavg Average job length
nc Number of cores per machine

M+ Total number of machines
M− Number of machines always available
Mra Range of the machines (Mavg = M+ −Mra = M− −Mra)
Mavg Average number of machines
Muse Current number of machines usable by our heuristics
D+ Maximum distance between the target machine (based on Ci)

and the machine chosen by our heuristic
u(m) Utilization of a machine

U Total utilization of machines
ϕ The number of machines change every ϕ seconds

S+ Maximum Stretch of the jobs processed so far
[Tbegin , Tend ] Steady-state window

Table I: Summary of main notations for Chapter 4.

capacity resources that do not evolve over time, such as a parallel HPC platform. In
this standard setting, there are many optimization objectives. From the platform owner’s
perspective, the standard objective is to maximize utilization, defined as the fraction of
time where platform resources execute computations [133]. From the user’s perspective, the
standard objective is to minimize the maximum (or sometimes average) stretch. The stretch
of a job is the ratio of its response time (time elapsed between submission and completion)
over its execution time, and is preferred to the plain response time for fairness [19,40].

This chapter focuses on scheduling techniques for independent jobs, when variations
in power supply imply changes in the number of available computing resources over time.
The scheduler is agnostic to the rate and amount of resource variations but must prepare
for such variations. In particular, a given resource may be shut down abruptly because
of a power shortage, in which case all the jobs executing on that resource are interrupted
and must be re-executed later on. Therefore, we design risk-aware strategies that assign
incoming jobs to the right target machine, with some optimization criteria in mind. Because
today’s power grids have rapid (hourly, daily, weekly) and large variation (3-5x today,
growing to 10x), and shifting benefit increases with the magnitude of load shifted, we
consider dynamic ranges as large as 80% of the maximum capacity. With varying resources,
platform utilization is no longer an adequate criterion, because partial executions of jobs
that get interrupted do not count as actual progress of the jobs. We use the goodput
instead to account for this.

This chapter lays the foundation for a risk-aware strategy that maps jobs onto machines.
We make several simplifying assumptions that enable us to design a model and assess the
efficiency of our algorithms by simulation:

• The target platform consists of a collection of identical parallel machines, each
equipped with many cores;
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Figure 4.1: Daily CAISO Variation of CO2/MWh is 5x and can exceed 100x (CAISO,
2022); seasonal variation (carbon/MWh) is 3x and growing.

• Variations in power capacity imply changes in the number of machines that can be
alive at a given time t Alive machines at time t are defined as machines that are
switched on and execute jobs at time t;

• Power consumption at time t is directly proportional to the number of machines that
are switched on at time t; thereby we ignore possible variations due to the actual
load, operating frequency and application behavior on each machine at time t;

• The number of alive machines at time t is not known before time t. Instead, it obeys
a random walk that evolves from the number of alive machines at time t− 1;

Maybe the most drastic assumption is the last one: machines are added to and removed
from the pool of available machines without explicit warning. It implies that jobs that
are running on an alive machine get interrupted without notice when that machine gets
removed from the pool. One can envision several alternative approaches, such as:

1. Execution can continue when the machine is removed from the pool, but at a higher
price. This would model the scenario where alive machines are powered by green
sources, and brown power can complement green power when needed.

2. Variations of capacity are known some time in advance, so that jobs running on
machines that are going to be switched off soon could take a proactive checkpoint and
then continue on another machine from the checkpointed state, instead of resuming
execution from scratch.

The first approach requires to use total cost as a complementary objective, and a model
to take it into account. The second approach requires many additional parameters, both for
the prediction mechanism (prediction time, recall and precision) and for job characteristics
(checkpointable or not, checkpoint durations). Instead, we rely on a simple but reasonable
Markov model for machine availability, which has been shown accurate to model resource
variation in several frameworks [164]. Variations in wind power nicely obey such a Markov
model [134]. Variations in solar power would require a more complicated model, such as a
heterogeneous Markov chain to account for different contexts (e.g., day or night) [175].

Our main contributions are the following:
1. We provide a simplified yet realistic model for power variation that translates into the

number of available machines obeying a random walk at each step, and we present
the first complexity results for the variable capacity scheduling problem

2. We design novel risk-aware scheduling and mapping algorithms that are capable of
mitigating the impact of power variation by using several new techniques, such as:
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(i) keeping an ordered list of machines ordered by potential risk; (ii) mapping each
job to a given set of machines according to its relative length w.r.t. the set of jobs
released so far; (iii) maintaining local queues to achieve a bounded maximum stretch;
(iv) re-execute interrupted jobs on new machines when power supply decreases; and
(v) re-distribute pending jobs on new machines when power supply increases

3. We assess the performance of these novel algorithms using an extended set of simu-
lations, and report significant gains in the achieved goodput over standard first-fit
algorithms. Nicely, this increase of the goodput is achieved without any loss in
complementary metrics such as maximum or average stretch.

The rest of the chapter is organized as follows. Section 4.2 surveys related work.
In Section 4.3, we provide the framework for platforms, jobs, resource variability and
optimization objectives. Section 4.4 presents complexity results. In Section 4.5, we
introduce our novel scheduling and resource assignment algorithms, whose experimental
assessment is conducted in Section 4.6. Finally, we give concluding remarks and hints for
future work in Section 4.7.

4.2 Related Work

Prior research has explored resource management for sustainability from many different
perspectives. Several surveys [33, 114,117,118,131] detailed current energy awareness and
power management techniques that are regularly applied in HPC centers. In [117], the
authors summarize a set of recent efforts to study new techniques by a collection of HPC
centers around the world. Notably, those include:

• experiments to evaluate energy and costs savings by allowing the job scheduler to
inform the selection of the power source at RIKEN Japan (the alternative energy
sources are limited to the electrical grid and local production of electricity via gas
turbines);

• researchers at Tokyo Tech Japan study the possibility to shut down idle nodes, by
coupling the job scheduler decision with the resource manager;

• some centers (CEA France, STFC UK, LANL USA, CINECA Italy) evaluate tech-
nologies to couple performance metric gathering and job scheduling, in order to
report energy usage to the user, or build statistical databases of energy usage to
inform future decisions;

• other centers are experimenting with monitoring and power capping tools to manage
power usage and adapt it to variable external conditions (KAUST Saudi Arabia, LRZ
Germany).

While most research efforts on energy efficiency focus on fixed resource capacities, a
body of research that deals with the addition and removal of resources with time has
continued to grow. [167] considers the case of volatile computing resources that are
turned fully on or off to best utilize stranded renewable generation. Live migration of
VMs between hosts as an energy efficiency mechanism is explored in [18]. The scheduler
would continuously consolidate VMs and migrate between hosts, while respecting Quality
of Service (QoS) requirements. Energy saving are achieved by switching off idle physical
nodes. [177] defines a framework of dimensions for variation, including dynamic range,
frequency of change, and shape.

Shut-down models, where a system is put into a sleep state when idle, are also shown
to reduce energy consumption, and provide energy-saving algorithms that execute in
polynomial time [12]. Speed scaling mechanisms, such as Dynamic Voltage and Frequency
Scaling (DVFS), allow processors and servers to run at lower speed at the cost of increased
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execution times. [165] provides a scheduling algorithm that uses DVFS to allocate jobs in
cloud datacenters, reducing energy consumption.

Past studies have explored scheduling policies that assure secure job execution in the
presence of unpredictable resource failures. [145] extends the known scheduling heuristics,
preemptive, replication and delay-tolerant, to provide security assurances. [146] constructs
statistical models to assess the reliability of resources based on prior performance and
behavior, considering this reputation-based reliability rating in the job allocation algorithm.
Reputation-based scheduling on unreliable resources [11,146] can be considered parallel
to our work. However, this body of work deals with assigning jobs to redundancy groups,
while our work relates to scheduling independent jobs on volatile nodes.

Prediction of renewable generation has been considered in providing insights to job
scheduling for energy efficiency. GreenSlot [68] is a parallel batch job scheduler for a
datacenter powered by solar energy and connected to the electrical grid as a backup.
GreenSlot predicts near-term solar energy generation and schedules the workload to
maximize the green energy consumption while meeting the jobs’ deadlines based on slack.
Similarly, [2] utilizes short-term prediction of both solar and wind energy generation to
improve green energy utilization, while reducing the number of terminated jobs.

Opportunities to mitigate performance degradation from capacity variation through
intelligent termination of jobs are explored in [177]. Two policies that terminate jobs such
that wasted work is minimized or terminated jobs with the least fraction completed are
evaluated. While [177] takes a reactive approach on handling variable resource capacity, our
work takes a proactive approach in scheduling jobs on these resources, and provides novel
algorithms to assign jobs to machines. Scheduling on computing resources provisioned with
100% renewable energy is further analyzed in [101]. Greedy and binary search scheduling
algorithms are evaluated as heuristics for minimizing the makespan and flowtime without
job preemption.

None of the aforementioned work directly addresses the problem of online risk-aware
scheduling on variable capacity resources. However, they provide an important backdrop
to techniques that could potentially be adapted for this purpose. We build upon widely
accepted heuristics, assigning jobs to individual physical nodes in a highly volatile renewable
based environment.

4.3 Framework

This section details the framework and the objective function.

4.3.1 Target Platform

We consider a parallel platform that consists of a setM of M+ identical parallel machines,
each equipped with N cores. Each machine m ∈M requires a certain amount of power P̂ to
run. For simplicity, we assume that P̂ is constant whenever the machine is switched on, even
if some of the cores are unused. In other words, P̂ is proportional to the number of cores
N available in machine m, i.e. P̂ = p×N for some constant p. Our scheduling problem
includes capacity variations, where the overall available power capacity is a function of time
t, denoted as P (t). We discretize time and assume that t takes integer values expressed in
the appropriate unit, e.g., seconds. We never need a power exceeding P̂M+, so we can
safely assume that P (t) ≤ P̂M+ at any time t. We use bm,t as a boolean decision variable
which is equal to 1 if machine m is active at time t and 0 otherwise. Then, at any time t,
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the total number of resources used by all machines must remain below P (t), i.e.

∀t,
∑

m∈M
bm,t × P̂ ≤ P (t). (4.1)

The scheduling strategies described in this chapter easily extend to a collection of
heterogeneous machines with different number of cores, and more generally different
hardware characteristics. However, we do not have log traces to simulate such heterogeneous
clusters.

4.3.2 Jobs
We schedule a set of independent jobs J on the M parallel machines. Each job τi ∈ J is
released at date ri, needs ci cores for execution, and has length wi. We allocate each job τi

to a machine mi at a starting date si. We use ei as the (predicted) completion date of job
τi. If job τi is not interrupted, we have ei = si + wi. We let bi,m,t be the boolean decision
variable which is equal to 1 if job τi is running on machine m at time t, and is equal to 0
otherwise. More formally,

bi,m,t = 1⇔ (mi = m and si ≤ t < ei) .

We note that a machine m is on at time t if and only if one job is executing:

bm,t = 1⇔
∑

τi∈J
bi,m,t > 0

As already mentioned, it might happen that a job τi needs to be interrupted, see
Section 4.3.3. In this case, we let si = ei = 0 and re-update these values accordingly
whenever the job is rescheduled.

The goal is to schedule all jobs on the machines, given the cores available on each
machine. More precisely, if t ∈ T denotes any time of the whole execution (all jobs), the
schedule must verify:

∀m ∈M, ∀t ∈ T ,
∑

τi∈J
bi,m,tci ≤ N ; (4.2)

∀τi ∈ J , si ≥ ri. (4.3)

Equation (4.2) expresses the constraint on the number of cores on each machine, while
Equation (4.3) simply states that execution cannot start before release time. For simplicity,
we assume that all times t take integer values (seconds).

4.3.3 Variable Resources
At a given time, a low power capacity may impose to turn some machines off. The
jobs currently executing on these machines have to be interrupted immediately, and
rescheduled at a further time. Of course, all previous constraints must still be enforced
for re-execution. Because we target identical parallel machines, we directly consider the
variation in the number of available machines Malive(t) instead of the power variation, using
Malive(t) =

⌊
P (t)
pN

⌋
.

To simulate resource variations, we use a bounded random walk for the number of
machines. This walk is defined by a lower bound M− and a higher bound M+ on the
number of machines, a variation period ϕ, and a variation step step on the number of
machines. Every ϕ time units, the number of machines can decrease or increase by step or
remain the same, while respecting the constraints that Malive(t) ∈ [M−, M+].
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4.3.4 Objective Function
As already mentioned, the objective is to optimize the goodput [13,177], which measures
useful platform utilization by accounting only for jobs that have been completed, so that
re-execution does not count. For any time T , we say that job τi ∈ Jcomp,T if ei ≤ T . Hence
Jcomp,T is the set of jobs that are complete at time T . Similarly, we say τi ∈ Jstarted,T

if s ≤ T < ei (and τi is not dead at time T ). At any time t ∈ [0, T − 1], the maximal
number of cores that may be turned on is at most Malive(t)N , otherwise the number of
machines turned on would require a power larger than P (t). Therefore, the total number
of units of work that can be executed in [0, T ] is at most ∑t∈[0,T −1] Malive(t)N , and we
define Goodput(T ), the goodput at time T , as the fraction of useful work up to time T :

Goodput(T ) =
∑

τi∈Jcomp,T
wici +∑

τi∈Jstarted,T
(T − si)ci

N
∑

t∈[0,T −1] Malive(t) . (4.4)

4.4 Complexity
In this section, we give two complexity results that show that resource variation dramatically
complicates the online scheduling problem. First, we consider a very simple problem instance
with only one machine, and we show that an adversary can force any scheduling algorithm
to err and achieve no goodput at all :

Theorem 18. An adversary can force any schedule to achieve no goodput at all, even with
a single unicore machine.

Proof. Consider a single unicore machine. Initially, job τ1 of size c1 = 1 and duration
w1 = 3 is released at time t = r1 = 0. We consider the goodput of the machine at time
T = 3. Recall that time takes integer values.

If the scheduler starts the execution of τ1 at time s1 > 0, the adversary shutdowns the
machine at time t = 2. Then at time T = 3 the goodput is Goodput(T ) = Goodput(3) =
0 because the job has not completed,. The optimal solution was to start the job immediately
at time s1 = 0 and achieve Goodput(3) = 3.

If the scheduler starts the execution of τ1 at time s1 = 0, the adversary releases a second
job τ2 of size c1 = 1 and length w2 = 1 at time r2 = 1. Then the adversary shutdowns
the machine at time t = 2. At time T = 3, job τ1 has not completed and the goodput is
Goodput(3) = 0. The optimal solution was to ignore job τ1 and start τ2 at time s2 = 1,
thereby achieving a goodput Goodput(3) = Goodput(2) = 1.

In both cases, the goodput of the scheduler is 0, and infinitely worse than the optimal
goodput.

Now, we introduce another problem instance with parallel machines and make a
digression to show that the makespan of any polynomial scheduling algorithm can be
arbitrarily larger than the optimal makespan. The makespan is defined as the completion
time of the last job. The problem instance that we target here is completely offline: it
assumes that all job release times and characteristics, as well as power variations over time,
are known to the scheduling algorithm in advance, before the beginning of the execution.
This strong result does not translate to the goodput directly, but demonstrates the intrinsic
difficulty of the problem:

Theorem 19. Unless P = NP , there is no constant polynomial-time approximation
algorithm of the makespan, for the offline instance of the problem with parallel unicore
machines.
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Proof. Given any constant K > 0, assume by contradiction that there is exists a K
approximation algorithm A for the offline problem with two unicore machines. Consider
an arbitrary instance I1 of 3-PARTITION-K, which is a variation 3-PARTITION, a well-
known NP-complete problem in the strong sense [66]: given 3n strictly positive integers
a1, a2, . . . , a3n of sum nB, where B

4 < ai < B
2 for all i, can we find a partition of these 3n

integers into n triplets each with sum B? The difference with 3-PARTITION is that we
add the condition n > K in 3-PARTITION-K. Obviously, restricting to large instances
does not change the difficulty of the problem, and it is easy to see that 3-PARTITION-K
remains NP-complete in the strong sense. We can encode the instance I1 in unary due to
the strong completeness of the problem and let size(I1) = O(n + B).

We construct an instance I2 of the offline problem which is defined as follows: (i) we
have n unicore machines; (ii) 3n unicore jobs τ1, τ2, . . . , τ3n are released at time 0. The
length of τi is wi = ai for all i. The number of alive machines at any time is the following:

• all n machines are alive up to time B: for 0 ≤ t < B, Malive(t) = n
• then no machine is available during KB seconds: Malive(B + t) = 0 for 0 ≤ t < KB
• all n machines are alive afterwards: Malive(B + KB + t) = n for 0 ≤ t < nB

The size of I2 is size(I2) = O(n + B + K) = O(n + B) since K < n, hence the size of I2 is
polynomial in the size of I1.

We use A for I2 to determine whether I1 has a solution or not, thereby showing that
P = NP , the desired contradiction.

First if I1 has a solution, the optimal scheduling will complete all jobs at time B, by
perfectly balancing jobs across machines using the n triplets of the solution of I1. Because
A is a K-approximation, it will return a makespan not exceeding K times the optimal,
hence KB.

But if I1 does not have a solution, one cannot complete all jobs by time B. Because
Malive(B) = 0, at least one job will need to be re-executed later. But no machine is available
until time B + KB. Hence the optimal makespan, and a fortiori the makespan returned
by A, will be at least (1 + K)B > KB. We can indeed use the makespan returned by A to
decide whether I1 has a solution or not.

4.5 Algorithms

In this section, we describe various scheduling algorithms for our problem with varying
number of machines. Each algorithm will be defined by its actions on the following four
key events that occur during execution: job arrival, job completion, machine addition, and
machine removal. More specifically:

• Job Arrival Event: When a job is released, a decision must be made to decide
when to schedule it and on which machine.

• Job Completion Event: When a job is completed, the cores it was using are
released, possibly allowing for additional jobs to be scheduled.

• Machine Addition Event: When a new machine becomes available, a decision
must be made on how to utilize it.

• Machine Removal Event: When a machine has to be turned off, jobs currently
executing on that machine are killed, and a decision must be made on how to
reallocate them.

Defining a strategy for each of these events fully describes the algorithm’s decision-
making process in response to changes in resource availability. In the following, each
algorithm will be presented in a dedicated subsection, with a detailed description of its
actions on each event.
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4.5.1 FirstFitAware

In this section, we present a baseline heuristic against which we will compare our own
scheduling algorithms. The heuristic is called FirstFitAware, labels the machines from
1 to M+, and schedules jobs on the machine with the smallest available index that has
enough free resources to execute it. Similarly, when a machine needs to be removed,
FirstFitAware kills the machine with the highest index. We describe the actions of
FirstFitAware on each of the four key events:

• Job Arrival Event: For each incoming job, FirstFitAware assigns it to the
machine with the smallest available index that has enough free resources to execute
it. If no machine can execute the job, it is placed in a waiting queue.

• Job Completion Event: When a job is completed, FirstFitAware checks the
queue for the job with the smallest release date that fits in the machine where the
job was completed, and assigns it to this machine. If there are no jobs in the queue
or if the machine does not have enough cores available to process any of the waiting
jobs, no action is taken. If a job is assigned, FirstFitAware continues to search the
queue for additional jobs that can be assigned to the same machine until none fits.

• Machine Addition Event: When a machine is added, FirstFitAware examines
the queue and assigns jobs to the new machine in order of increasing release date
until no further jobs can be assigned or the queue is empty.

• Machine Removal Event: When a machine must be removed, FirstFitAware
shuts down the machine with the highest index and places all jobs running on that
machine in the queue. It then examines the queue and assigns jobs to available
machines in order of increasing release date until no further jobs can be assigned or
the queue is empty.

FirstFitAware is risk-aware in the sense it maintains an ordered list of machines from
left (small indices) to right (large indices). Jobs are mapped to leftmost machines whenever
possible, and rightmost machines are those that are shutdown whenever necessary.

4.5.2 FirstFitUnaware

For the sake of comprehensiveness, we also compare our algorithms to a second baseline
heuristic, FirstFitUnaware. This second heuristic is identical to FirstFitAware except
that it selects a random machine to be removed instead of always choosing the machine
with the highest index. More precisely, while FirstFitAware obeys the permutation
(M+, M+ − 1, · · · , 1) for the order of extinction (larger machine index first), FirstFitU-
naware applies a random permutation. This means that FirstFitUnaware does not
give priority to machines that are less likely to be removed, so we say it is not aware of
the risk of shutdown incurred by the machines. Comparing both variants will help assess
whether a very simple risk-aware approach is more efficient than a traditional approach
unaware of power variation.

4.5.3 TargetStretch

In this section, we present TargetStretch, the first of our novel algorithms. The
rationale for TargetStretch is as follows: even though FirstFitAware gives priority
to machines with lower indices when assigning jobs, jobs running on machines with higher
indices may have been running for a long time, and their interruption could result in
significant work loss. To address this limitation, we schedule smaller jobs on machines that
are likely to be turned off after some time; and longer jobs on machines that will never be
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turned off. Like FirstFitAware, we always turn off the machine with the highest index.
However, for job assignment, we make decisions based on job lengths. This requires several
new concepts:

• Unlike before, instead of using a single queue for all machines, we have one queue per
machine. Specifically, when a job arrives, we choose a machine for it and schedule it
on that machine. Specifically, if the job can start immediately on the machine, we
proceed and remember its (expected) end date. Otherwise, we plan for the earliest
possible start date for the job, which corresponds to the smallest start-finish interval
that contains enough cores to schedule our job. At each time t, all jobs planned for
this machine have an exact predicted start date si and end date ei. If the machine has
one or more jobs planned but not yet started (for which si > t), we say its utilization
u(m) is 1. Otherwise, its utilization is the proportion of active cores u(m) = cA

m
N .

Here cA
m denotes the total number of cores used by all the jobs running at time t

• In addition, we define the number of usable, i.e., risk-free, machines at any given
time, Muse, as follows. Initially, we set Muse = M−. Thus, when a job is assigned to
a machine with an index between 1 and Muse, we take no initial risk. However, it
would be a waste not to use the more risky machines at all, if the current set of jobs
cannot fit on the risk-free machines. For this reason, we update the number of usable
machines based on the utilization of the machines U defined as U =

∑
m∈[1,Muse ] u(m)

Muse
.

Whenever we have U > 0.95, if the number of active machines Malive(t) is greater
than Muse, we increase Muse. Conversely, if U drops below 0.8, we decrease Muse
without interrupting the jobs running on the machines whose index is larger than
Muse. This allows us to avoid taking too many risks unnecessarily, while using all
machines when needed.

• Finally, we calculate for each job τi its category Ci which is based upon its relative
area (defines as wi × ci) with respect to a set J ′ of other jobs, as follows:

Ci =
∑

k∈J ′,wk≥wi
wkck∑

k∈J ′ wkck
(4.5)

Here, the set of jobs J ′ is chosen as a set of jobs that resemble the set of jobs J
that we are currently scheduling. For example, if we are studying a job trace, we can
consider for J ′ the set of jobs that were scheduled during the previous week. If a job
τi has category Ci = 0, it means that it is longer than all the jobs in the reference
trace. Conversely, if τi has category Ci = 1, it means that it is shorter than all the
jobs in the reference trace. Categories will allow us to select the target machine for
the jobs. More precisely, we assign job τi to machine

M c
i =

{
⌊CiMuse⌋+ 1 if Ci < 1
Muse otherwise (4.6)

• At any given time, we store S+, the maximum stretch obtained so far. Recall that
the stretch of a completed job τi is defined as the ratio ei−ri

wi
of its response time

ei − ri (end time minus release time, or time spent in the system) over its length wi.
Maximum stretch is preferred to plain response time for fairness to short jobs.

We are now ready to describe the different decision processes for the events:
• Job Arrival Event: When a job arrives, we calculate its target machine M c

i , and
attempt to schedule it on this machine. If the job can start immediately, or is
scheduled such that its estimated stretch does not exceed the maximum stretch S+,
we do schedule it on M c

i . Otherwise, we choose the machine that can provides its
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earliest start time among all machines whose index does not differ more than D+ of
that of M c

i . In other words, we bound the distance from M c
i to explore alternate

target machines.
• Job Completion Event: When a job completes, no action is required since we

have already scheduled the next jobs on each machine. However, since the number of
cores of the machine changes, we need to update the total utilization of the machines
and potentially change Malive if necessary. We may also need to update S+.

• Machine Addition Event: When a machine is added, no action is required unless
Malive corresponds to the previous number of machines and the total utilization is
greater than 95%. In this case, we update Malive and place all jobs that are in the
waiting lists of machines and have not started into a global waiting list, and we
re-allocate them: we process these jobs in ascending order of release dates ri and
allocate them to a machine using the same procedure as described above for job
arrivals (which amounts to considering them as newly submitted jobs for mapping).

• Machine Removal Event: When a machine is removed and jobs are interrupted,
we recalculate Muse, and reallocate all pending jobs as described in the previous
point.

4.5.4 TargetASAP

In the previous section, we described TargetStretch, an algorithm that assigns a specific
machine based upon the job length. This algorithm ensures that those machines that
get killed only contain jobs among the shortest ones. However, some machines may be
under-utilized if few jobs target them initially. Indeed, if the maximum stretch S+ is very
high, the algorithm will always favor the target machine, and thus could neglect a machine
very close in terms of index that has idle cores, which is bad for goodput. For this reason,
we have developed a second algorithm that differs from the previous one only in one aspect:
when a job arrives, instead of scheduling it on its target machine M c

i if its stretch is not
higher than the maximum stretch, we proceed as follows:

• Job Arrival Event: If the job can start immediately upon arrival on its target
machine M c

i , we launch it there. Otherwise, we go through all machines whose index
is at a distance smaller than D+ and look for the closest machine to our target
machine on which the job can run immediately, if one exists. If all machines around
are full or do not have enough cores to run the job, we check whether the job can
be scheduled on the target machine without increasing the maximum stretch S+.
If it is indeed possible, we schedule the job on the target machine. Otherwise, we
schedule it on the machine that can start it at the earliest time among those within
an acceptable distance.

• Any Other Event: Same as TargetStretch.

4.5.5 PackedTargetASAP

While TargetASAP solves the issue of under-utilized machines, it may leave some
machines partially empty, in contrast to FirstFitAware that fills the machines perfectly
by always using them in ascending order. For example, if jobs only use 60% of the
available cores, FirstFitAware would use approximately 60% of the machines, whereas
TargetASAP may use all the machines each at at 60% capacity. Furthermore, if a new
job arrives and requires a large number of cores, TargetASAP may not be able to start
it immediately while FirstFitAware could.

To address this issue, we group machines into packs. Instead of defining the target
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machine as M c
i as in Equation (4.6), we will round it to the nearest multiple of 5. The five

machines corresponding to a pack will then be filled one after the other using D+instead
of all at once. For instance, if three jobs were assigned to machines 0, 1, and 2 by
TargetASAP, all three jobs will be assigned to machine 0 by PackedTargetASAP,
leaving machines 1 and 2 available for future jobs.

4.6 Experiments

We conduct experiments using an in-house simulator, both on synthetic traces and on
actual workflow traces. An instance of the simulation consists of a combination of two
traces, a resource variation trace that represents the number of machines alive at any
given time (defined in Section 4.6.1), and a job trace as defined in Sections 4.6.2 and
4.6.3. We generate multiple simulation traces using the method given in Section 4.6.4.
The experimental results are reported in Section 4.6.5. The code is publicly available at
https://graal.ens-lyon.fr/~yrobert/experiments.zip.

4.6.1 Resource Traces

The generation of the resource variation trace takes three parameters: Mavg, Mra, and ϕ.
We start the resource variation trace at time 0 and end it at time Tend , where Tend is
three weeks. The window begins at time Tbeginafter one week, so that the first week is a
warmup. The number of machines follows a random walk that evolves periodically, with
period ϕ, hence this number is a constant within each period and changes only at the end
of a period.

Specifically, the average number of machines is Mavg. The total number of available
machines always stays within the range [Mavg−Mra, Mavg +Mra]. It evolves randomly,
staying constant, increasing or decreasing with equal probability unless one bound of the
range is reached. In the latter case, the number of machines either stays constant or evolves
in the unique possible direction, with same probability. Changes in the number of available
machines always involve step = ⌊Mra

4 ⌋ machines, hence step controls the magnitude of
resource variation from one period to the next.

Formallly, let mi the number of machines during the interval [iϕ, (i + 1)ϕ] (period
number i):

• m0 = Mavg;
• If mi =Mavg−Mra,P{mi+1 =mi+ step} = P{mi+1 =mi} = 1

2 ;
• If mi =Mavg +Mra,P{mi+1 =mi− step} = P{mi+1 =mi} = 1

2 ;
• Otherwise, P{mi+1 =mi− step} = P{mi+1 =mi} = P{mi+1 =mi+ step} = 1

3 .

4.6.2 Job Traces: Borg

We experiment on traces of workloads running on Google compute cells that are managed
by the cluster management software internally known as Borg [69]. We cut the Borg
trace into slices of windows [Tbegin , Tend ] of length 2 weeks. Inside each window, we keep
the jobs τi for which ri ∈ [Tbegin − wi, Tend ]. We assume that the jobs τi that have been
released before the beginning of the window (ri < Tbegin) have actually been running since
their release date, hence job τi has wi− (Tbegin − ri) units of work remaining at time Tbegin .
Several jobs in the Borg trace are permanently running, we ignore them (or assume that
these jobs execute on specific risk-less machines), and we focus on jobs that are lasting less
than a day. Finally, we prune the traces so that the total work hours do not exceed the

https://graal.ens-lyon.fr/~yrobert/experiments.zip
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maximum capacity of 26 machines, each with 24 cores, running during 2 weeks with full
peak load. This is to match the dimensioning of the experimental window.

4.6.3 Job Traces: Synthetic Traces

A synthetic trace consists of a set of jobs J of n jobs, where each job τi is defined by the
three parameters (ri, ci, wi), where ri is its release date, ci its number of cores, and wi its
length.

Release dates ri Similarly to the Borg trace, we study a two-week window. Because
we want to start with a steady state, we add one week before the start of the window to
generate jobs, therefore we assume the trace starts at time 0, and finishes at time Tend
corresponding to 3 weeks, with Tbegin corresponding to 1 week. For the beginning of the
window at date Tbegin , we will again assume that all jobs released at time ri < Tbegin have
been running for Tbegin − ri units of time, for the jobs verifying wi > Tbegin − ri.

We assume the jobs get released regularly, therefore if we generate a trace of n jobs
for a total window [0, Tend ], one job will be released each Tend/n units of time. Therefore,
ri = i

n Tend .

Number of cores ci The number of cores per jobs is drawn randomly, following roughly
the distribution of the Borg traces, more specifically ∀τi ∈ J ,P{ci = 1} = 1

6 ,P{ci = 2} =
1
3 ,P{ci = 4} = 1

3 ,P{ci = 8} = 1
6 .

Length wi Depending on the workflow type, the execution time of jobs is generated using
different probability distributions. Similarly to Borg traces, the average job length Tavg
is defined accordingly to n, so that the total number of machines required to process all
jobs if there were no resource variations and if all machines were always used at maximum
capacity is around 26 (e.g. such that the total core hour is around 209664, which means
Tavg = 209664/n hours). We create jobs along three different workflow types:

• For SyntheticUniform, we generate the length of the jobs uniformly in [0, 2Tavg],
so that their average length is around Tavg.

• For SyntheticLogScale, we draw the category c as a random integer in [1, 4] such
that P{c = 1} = 4P{c = 2} = 4P{c = 3} = 4P{c = 4}, then we draw the length
uniformly in [5c−1K, 5cK], where K is chosen so that the expected length of this
random variable matches Tavg. Because c is not drawn uniformly, all categories have a
non-negligible impact on the total core hours of the trace, although the category with
the highest length is the most significant. We also experimented drawing c uniformly
in [1, 4] so that the longest jobs have a more significant impact. This version is called
SyntheticLogScaleU; the results are very close to SyntheticUniform; most of
them are omitted in this thesis but available in [4].

• For Synthetic3types, we generate three types of jobs of three different length, tshort,
tmiddle and thigh, such that thigh = 3tmiddle = 9tshort. We generate the jobs so that the
total work hours of these three type of jobs is equal, i.e., P{wi = tshort} = 3P{wi =
tmiddle} = 9P{wi = thigh}. Therefore, we get tshort = 13

27Tavg, tmiddle = 39
27Tavg,

thigh = 117
27 Tavg, P{wi = thigh} = 1

13 , P{wi = tmiddle} = 3
13 , and P{wi = tshort} = 9

13 .

4.6.4 Experimental Setup

An instance is defined by four parameters, that were defined in Sections 4.6.1 to 4.6.3:



82 CHAPTER 4. SCHEDULING FOR VARIABLE CAPACITY RESOURCES

• The average number of machines Mavg = 24, to be slightly below the number of
machines required in average.

• The period of machine variation ϕ = 1200s: one change every 20 minutes.
• The range of machine variation Mra = 8, therefore the machines will always be in

[M− = 16, M+ = 32]; half the machines are safe.
• The number of cores per machine N = 24.
One last parameter for the synthetic traces is the number of jobs n = 20000. The values

above are the ones used by default, and we further study the impact of each parameter
separately. Specifically, we consider:

• Mavg ∈ [20, 22, 24, 26, 28] (with ϕ = 1200s, Mra = 8 and N = 24). This experiment
is to explore what happens if the number of machines is too small to process the
workload, or, in contrary if there are (in average) enough machines to process every
job.

• ϕ ∈ [400, 1200, 3600, 10800, 32400] (between 7 minutes and 9 hours, with Mavg = 24,
Mra = 8 and N = 24). The average number of available machines remains the same,
but the number of job interruptions is likely to decrease when ϕ increases.

• Mra ∈ [4, 6, 8, 12, 16] (with Mavg = 24, ϕ = 1200s, and N = 24): in the most extreme
scenarios, only 8 machines are safe while we could have up to 40 machines available.

• N ∈ [8, 16, 24, 32, 48] (with ϕ = 1200s and Mra = 8). Here we do not keep the same
number of machines when we vary the number of cores per machine, because we
have already studied the impact of the total number of resources when varying Mavg.
Instead, we scale the range of Mavg ∈ [72, 36, 24, 18, 12] and of Mra ∈ [24, 12, 8, 6, 4]
accordingly, so that Mra × N remains constant and Mra = Mavg

3 (i.e., half of the
machines are safe). This experiment assesses the impact of the target platform
configuration, comparing few machines with many cores against many machines with
fewer cores.

• n ∈ [8000, 14000, 28000, 40000] (with Mavg = 24, ϕ = 1200s, Mra = 8 and N = 24).
This experiment explores the impact of system load.

For each set of parameters, we run each heuristic under six 2-week traces per workflow
type, each of them with 30 different variation traces. Results are shown using boxplots
where the average is represented by a star, the boxes show the 25th to 75th percentiles,
and the whiskers indicate the 10th and 90th percentiles.

Finally, while Goodput remains the major focus, we also report the performance of
each heuristic for three other interesting metrics:

• MaximumStretch: Recall from Section 4.5.3 that the stretch of a completed
job τi ∈ Jcomp,T is defined as the ratio ei−ri

wi
of its response time ei − ri (end

time minus release time, or time spent in the system) over its length wi. The
maximum stretch corresponds to S+defined earlier taken at time Tend , e.g., S+ =

max
τi∈Jcomp,Tend

(
ei − ri

wi

)
.

• AbortedVolume is defined as the total amount of core hours lost because of job
interruptions, normalized by the total amount of core hours that were available. More
precisely, if we define a family of events corresponding to all interruptions I, where
each interruption ik ∈ I corresponds to a time tk and a related job τk that started at
time sk with ck cores, then AbortedVolume =

∑
ik∈I(tk−sk)ck

N
∑

t∈[0,T −1] Malive(t) . Note that we
always have

Goodput + AbortedVolume ≤ 1,

because we have normalized by to the total core hours of work available during the
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processing. This sum may be lower than 1 because cores are sometimes idle.
• AverageAbortedTime is the average time lost at each interruption, defined as∑

ik∈I(tk−sk)
card(I) .

Two more metrics are omitted in this thesis but can be found in [4].

4.6.5 Experimental Results

In this section, we provide the experimental results that follow the setup described above.
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Figure 4.2: Goodput when varying the number of machines Mavg.

Varying the number of machines Mavg Figure 4.2 shows the results of all five heuristics
for the Goodput metric when the average number of machines Mavg vary. First, note
that Goodput corresponds to the total work successfully executed divided by the number
of available core hours. Therefore, we compute the proportion of machines used over
time, rather than the total amount of work done. This explains why the results of all
the heuristics decrease between 26 and 28 average machines in terms of goodput. For
Mavg = 28, even if all jobs were completed (which is almost the case for TargetASAP
and PackedTargetASAP), the goodput would not be high because not all machines are
fully utilized. The increasing portion between 20 and 26 machines can be explained by the
fact that Mra is fixed. Thus, the proportion of machines experiencing variability is higher
for a low number of average machines, resulting in more aborted work.

Regarding the differences between the heuristics, we observe that the TargetASAP
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and PackedTargetASAP heuristics are always better than the two competitors, First-
FitAware and FirstFitUnaware. In fact, this observation is over all the experimental
results, including those in the appendices. The overall trend of TargetASAP, Packed-
TargetASAP, FirstFitAware, and FirstFitUnaware is similar because these four
heuristics share the characteristic of having a good allocation of jobs on the machines, with
cores rarely being idle when jobs are waiting. The difference in results is due to the fact
that FirstFitAware and FirstFitUnaware do not specifically preserve the longest
jobs, which leads to more interrupted work. TargetStretch has a different behavior
because even though it takes into account the length of jobs that need to be preserved,
it lacks flexibility, and some machines tend to remain partially inactive even when jobs
are waiting. This phenomenon increases as the number of machines grows, because the
likelihood of having discrepancy between machines increases with the number of jobs.

Finally, TargetASAP and PackedTargetASAP have fairly similar results, with
a slight advantage for PackedTargetASAP. Similarly, FirstFitAware and FirstFi-
tUnaware have fairly similar results (except for SyntheticLogScale where FirstFi-
tUnaware is much lower). While this may seem surprising at first, it can be explained
by the fact that when there are too many jobs for the number of machines, they are all
either turned off or saturated; then, not knowing which machine will be turned off first
is not penalizing. In the opposite case, there are enough machines available to support
interruptions and re-executions. The workflow type generally has a limited impact on
the relative performance of the heuristics, both for synthetic traces or for Borg. There
are some minor relative performance details, e.g. TargetStretch is at the same level
or even better than TargetASAP for SyntheticLogScale and Borg, while it is
below FirstFitAware and FirstFitUnaware for SyntheticUniform. Altogether,
the differences in goodput between the heuristics differ from a workflow type to another,
from around 2% for SyntheticUniform and Synthetic3types and up to almost 10%
for Borg, showing that the potential gain is substantial. The heuristics preserving long
jobs should improve the Goodput in many practical scenarios.

Varying the period ϕ of machine variation Figure 4.3 shows the results of all five
heuristics for the Goodput metric when the period ϕ of machine variation varies. Once
again, we observe in this figure that the impact of the workflow type seems limited since the
four figures are generally similar, except for the scale of the y-axis. For FirstFitAware and
FirstFitUnaware, the goodput can reach values lower than 75% for SyntheticUniform,
while it remains above 84% for Synthetic3types and Borg.

We note that the goodput generally increases with the period ϕ. This is logical since
the less machine changes, the lower the risk of interruption, even if the average number of
machines remains unchanged. We also observe a strong increase in variability for a given
heuristic and set of parameters when the period is high. This is due to the fact that the
goodput is scaled by the total available cores. The longer the period, the fewer states the
random walk of the number of machines will take, and therefore the average of this specific
random walk will be further away from its statistical average. In other words, there is a
high variability in total available core hours: if the random walk stays with high values of
machine numbers, all jobs can be executed; but since the system load is fixed, the goodput
will be reduced.

Finally, we note that the relative performance of TargetStretch improves when the
period is low. Indeed, the lower the period, the more interesting it is to be safe and preserve
long jobs. Conversely, the higher the period, the more problematic its shortcomings on the
overall quality of the schedule.
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Figure 4.3: Goodput when varying the period ϕ of machine variation.
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Figure 4.4: Goodput when varying the range Mra of machine variation.

Varying the range Mra of machine variation Figure 4.4 shows the results of all five
heuristics for the Goodput metric when the range of machine variations Mra vary. Of
course, the higher the machine range Mra, the lower the goodput, since more jobs are
interrupted. We observe this for all types of workflows and for all heuristics, which generally
maintain their relative performance. We simply note that TargetStretch is slightly
less impacted by the increase in range, again because it is scheduling more safely than the
other heuristics.

Varying the number of cores per machine N Figure 4.5 shows the results of all five
heuristics for the Goodput metric when the number of cores per machines N varies. In
this experiment, we varied the number of cores per machine while keeping the average
total number of cores constant. This means that the number of machines is scaled
inversely proportional to the number of cores. While it is difficult to extrapolate a general
dynamic related to the number of cores for the FirstFitAware, FirstFitUnaware,
TargetASAP, and PackedTargetASAP heuristics, this experiment confirms the quality
of TargetStretch when the number of cores is high (and therefore, when the number
of machines is low.) This is because the drawback of this heuristic, that sometimes leads
to partially unused machines even when jobs are waiting, is drastically reduced with the
number of machines is low; TargetStretch becomes the best heuristic for all workflow
types except Borg (where it is close) for a high number of cores and therefore a low
number of machines.
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Figure 4.5: Goodput when varying the number of cores per machines N .
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Figure 4.6: Goodput when varying the number n of synthetic jobs.
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Varying the number n of synthetic jobs Figure 4.6 shows the results of all five heuristics
for the Goodput metric when the number of synthetic jobs n varies. The goodput
increases when the number of jobs increases. This is because the total volume of work
is constant, and the more jobs, the shorter they are. Thus, the work lost during a job
interruption is on average lower regardless of the heuristic. The relative performance
between heuristics is the same for all types of workflows and all numbers of jobs, with
FirstFitAware and FirstFitUnaware being worse than TargetStretch, which is
itself worse than TargetASAP and PackedTargetASAP. Once again, the advantage
of the packed version PackedTargetASAP is visible, although relatively small compared
to TargetASAP. This experiment does not apply to Borg since the jobs are fixed in
this trace, so we decided to replace Borg with SyntheticLogScaleU, which is the last
synthetic workflow type we studied. In general, the results of SyntheticLogScaleU are
particularly close to SyntheticUniform (more details can be found in [4]).
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Figure 4.7: Different metrics to analyze the results on Borg for varying range of machine
variation Mra.

Exploring other metrics Figure 4.7 shows the results of all five heuristics for Borg
when the range Mra of machine variation varies, and for different metrics: Goodput
(reproduced from Figure 4.4 for convenience), MaximumStretch, AbortedVolume, and
AverageAbortedTime. First and as expected, the results for all metrics are degraded by
increasing the range Mra for each of the five heuristics. While TargetStretch is clearly
worse than TargetASAP and PackedTargetASAP for the goodput, it turns out to be
the best heuristic for MaximumStretch. Indeed, it is the heuristic that best preserves
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long jobs, which is reflected both in the total volume aborted AbortedVolume and in the
average time lost per interrupted job AverageAbortedTime, where TargetStretch
achieves the lowest values. Obviously, FirstFitAware and FirstFitUnaware, which
have no consideration for job length, perform poorly for these metrics.

More details for these metrics are omitted in this thesis but can be found in [4]. Overall,
TargetStretch is not always better than TargetASAP and PackedTargetASAP
for the maximum stretch: this depends on the experiments performed. On the contrary, the
basic heuristics FirstFitAware and FirstFitUnaware are always the ones that perform
the worst for all other metrics. We observe that the difference in maximum stretch is not at
all negligible, with a factor of 2 to 3 compared to TargetASAP, PackedTargetASAP,
and TargetStretch.

It is also worth studying the sum of Goodput and AbortedVolume. For First-
FitAware, FirstFitUnaware, TargetASAP, and PackedTargetASAP, this sum
is close to 1 generally, which means that the machines are often used to their maximum
capacity. This is not the case for TargetStretch, which, for example, is well below
TargetASAP and PackedTargetASAP for both metrics, which means that there is a
frequent under-utilization of machines, even though it better preserves long jobs.

4.6.6 Summary

In summary, there are scenarios for which TargetStretch can be a decent heuristic, for
instance when the number of machines is low or the variability is high. In this case, it
is necessary to be very careful in sorting jobs by length in order to preserve the longest
ones and not loose too much work due to interruptions. However, the lack of flexibility
of TargetStretch can be problematic when the impact of machine variation is not
critical, which is the case for most of the experiments we have done. Then, although it
was designed to preserve the maximum stretch MaximumStretch, its performance is
generally comparable to TargetASAP and PackedTargetASAP for this metric.

Furthermore, TargetASAP and more particularly PackedTargetASAP (which is
slightly better) offer a greater flexibility. Hence, even if they are slightly less precise for
preserving the longest jobs, they allow for an excellent overall utilization of machines and
a good preservation of the longest jobs, which makes them the best heuristics in almost all
scenarios. They are better than their standard competitors FirstFitAware and FirstFi-
tUnaware, in all cases. The superiority of TargetASAP and PackedTargetASAP
is significant: up to 10% increase in goodput and a maximum stretch two to three times
smaller. We conclude that the use of FirstFitAware and FirstFitUnaware should be
reconsidered with variable resources.

4.7 Summary and Future Work

With growing variation in power cost, availability, and carbon-intensity, driven by integra-
tion of more renewable generation to the power grid, the incentives to operate datacenters as
variable loads, producing variable computing capacity are growing. Resource management
(schedulers) must be advanced to handle large-scale and perhaps increasingly frequent
capacity variation, yet achieve high utilization of the available capacity. The primary
challenge is that when capacity decreases, running jobs may need to be terminated to meet
the required power load reduction.

We present online risk-aware scheduling strategies to preserve performance in this
variable capacity environment. Specifically, we design novel risk-aware scheduling and
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mapping algorithms that assign the right job to the right machine, optimizing for the
system’s goodput. Our algorithms employ a variety of techniques to mitigate the impact
of resource variation, including maintaining a risk index per machine, mapping longer jobs
to safer machines, maintaining local queues at machines, re-executing interrupted jobs
on new machines, and redistributing pending jobs as resource capacity increases. Our
assessment using workload trace from Google’s Borg system and three synthetic traces
shows significant gains over first-fit algorithms with up to 10% increase in goodput, with
no loss in complementary metrics, such as the maximum and average stretch. We conclude
that standard first-fit algorithms are insufficient for future variable capacity environments
and require re-design in order to maintain the expected level of performance.

Directions for future work are bountiful; they include exploration of different workloads,
different job execution models (e.g. migration or deferral), different variation models, and
the recent interesting direction of malleable workloads.
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Chapter 5

Checkpointing strategies to tolerate non-mem-
oryless failures on HPC platforms

In the first part of this thesis (Chapters 2 to 4), we delved into resilience without checkpoint-
ing, where tasks or jobs must be redone completely when they failed or needed to be cut,
emphasizing mostly on task scheduling, error detection, and recovery. From this chapter
and onward, we will consider checkpointing strategies for parallel applications subject to
failures to avoid re-executing an application from scratch. This chapter focuses on tightly-
coupled parallel applications that are preemptible, meaning that one can take a checkpoint
at any instant. The optimal strategy to minimize total execution time, or makespan, is well
known when failure inter-arrival times obey an Exponential distribution, but it is unknown
for non-memoryless failure distributions. We explain why the latter fact is misunderstood
in recent literature. We propose a general strategy that maximizes the expected efficiency
until the next failure, and we show that this strategy achieves an asymptotically optimal
makespan, thereby establishing the first optimality result for arbitrary failure distributions.
Through extensive simulations, we show that the new strategy is always at least as good
as the Young/Daly strategy for various failure distributions. For distributions with a high
infant mortality (such as LogNormal with shape parameter k = 2.51 or Weibull with shape
parameter 0.5), the execution time is divided by a factor 1.9 on average, and up to a factor
4.2 for recently deployed platforms. This chapter corresponds to Submission [S1] (See
Chapter 9).

5.1 Introduction

Checkpoint/restart is the standard technique to protect applications running on High
Performance Computing (HPC) platforms. Such platforms experience several failures1

per day [36, 61, 139, 142] per day. After each failure, the application executing on the
faulty processor (and likely on many other processors for a large parallel application) is
interrupted and must be restarted. Without checkpointing, all the work executed for the
application is lost. With checkpointing, the execution can resume from the last checkpoint,
after some downtime (enroll a spare to replace the faulty processor) and a recovery (read
the checkpoint).

Consider a parallel application executing on a platform whose processors are subject to
failures. How frequently should it be checkpointed so that expected total execution time,
or makespan, is minimized? There is a well-known trade-off: taking too many checkpoints
leads to a high overhead, especially when there are few failures, while taking too few

1Failures are also called fail-stop errors

94
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checkpoints leads to a large re-execution time after each failure. However, the optimal
strategy to minimize the expected makespan is known only when failure inter-arrival times,
or IATs for short2, obey an Exponential distribution on each processor. In that case, the
optimal checkpointing period is known and can be expressed with a complicated formula
(see Sections 5.3.1 to 5.3.3). In practice, the optimal checkpointing period is approximated
by the Young/Daly formula as WYD =

√
2µC [47,173], where µ is the application Mean

Time Between Failures (MTBF) and C is the checkpoint duration. The Young/Daly
formula is widely used across a variety of applications and platforms (see [22] for a survey)
and represents a major progress compared to naive strategies where each application would
checkpoint, say, every hour, independently of the values of its MTBF µ and checkpoint
duration C.

This chapter revisits checkpointing strategies for parallel applications on platforms
subject to failures that obey arbitrary probability distributions. This is a very important
topic because the most accurate probability distributions to model processor failures are
LogNormal [79] and Weibull [138, 139, 150, 151] instead of Exponential. For instance,
failure traces from Los Alamos National Laboratory are best fit by Weibull distributions
of different shapes [57]. However, dealing with non-memoryless distributions induces
dramatic difficulties when aiming at optimality. Indeed, if each processor experiences
failures distributed according to some non-memoryless distribution, then the platform as a
whole will NOT experience failures distributed according to the same (scaled) distribution.
This is because after each failure, only the processor struck by that failure is replaced by a
fresh (spare) processor. The other thousands of processors in the platform are not replaced
and continue execution; even if we wanted to replace them all by fresh processors, we
would not have enough spares for such a massive replacement. Hence, after a few failures
have struck the platform, processors have a different history, meaning that the time since
the last failure is different from one processor to another. As a consequence, the platform
experiences failures which do no longer obey the same probability distribution from one
failure to the next. Worse, computing the probability distribution of the time at which the
next platform failure will strike would require a massive convolution over all processors. In
practice, such a computation is out-of-reach as soon as the number of processors exceeds a
few dozens.

The striking difference between the Exponential distribution and any other non-
2IATs are the times elapsed between two consecutive failure events (or until the first failure at the start

of the application).

D Probability distribution of failures
Tplat Age of the platform
Tbase Base time of the application (without failures nor checkpoints)

C Checkpoint time
R Recovery time
D Downtime
τ⃗ History vector (or age) of all processors
N Number of checkpoints/segments currently planned.
W Work of a segment

Psuc(x|τ⃗) Probability that there are no failures in the next x units of time,
Psuc(x|τ⃗) = ∏p

i=1 P(X ≥ x + τi|X ≥ τi)
τ⃗∗, C∗, W ∗, · · · , Variables expressed in numbers of quanta (integers)

Table I: Summary of main notations for Chapter 5.
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memoryless distribution is further detailed in Sections 5.3.5 and 5.3.6. In a nutshell,
when each processor experiences failures obeying an Exponential distribution, so does
each parallel application (and the whole platform). Take a parallel application with p
processors; if processor IATs are Exp(λ), then application IATs are Exp(pλ); the MTBF
for each individual processor is the expectation of Exp(λ), namely µind = 1

λ , while the
application MTBF is µ = µind

p . The knowledge of the distribution of application IATs is
key to derive an analytic expression for the optimal checkpointing period, and to show
that the Young/Daly formula is an accurate first-order approximation. But when each
processor experiences failures obeying any other distribution, then platform failures are
no longer identically distributed, and not much is known about the optimal checkpoint
strategy. This does not prevent to use the Young/Daly formula, because it relies on the
application MTBF only, not on any probability distribution. The application MTBF can
still be computed as µ = µind

p , as shown in Section 5.3.6. What is completely unknown
though is the accuracy of the Young/Daly formula for a non-memoryless distribution.

To the best of our knowledge, this chapter is the first to provide a provenly correct
strategy for arbitrary distributions. The main contributions are the following:

• A synthetic overview of known results for Exponential distributions, some of which
being frequently rediscovered;

• A detailed explanation of why non-memoryless distributions require a fully different
approach;

• The design of a new checkpointing strategy, NextStep, which is asymptotically
optimal for arbitrary distributions;

• A practical and fast implementation of NextStep through time discretization and
numerical approximation;

• A detailed experimental comparison with the standard Young/Daly approach.
This work focuses on the classical coordinated checkpointing protocol, which has well-

known limitations because of the potential bottleneck incurred when all processors transfer
data to stable storage simultaneously [35,36]. Section 5.2.3 surveys more complicated (multi-
level) approaches designed for large-scale platforms. Future work will aim at extending the
NextStep strategy to such approaches.

The chapter is organized as follows. We first survey related work in Section 5.2.
Then, we provide background on checkpointing parallel applications with Exponential or
non-memoryless distributions in Section 5.3. We detail the design of the checkpointing
strategy NextStep in Section 5.4, and show that it is asymptotically optimal for arbitrary
distributions. The experimental evaluation in Section 5.6 presents extensive simulation
results comparing NextStep and the usual approach à la Young/Daly. Finally, we conclude
in Section 5.7.

5.2 Related work
We survey related work related to checkpointing preemptible applications in Section 5.2.1
and task-based applications in Section 5.2.2. Section 5.2.3 is devoted to the presentation
of several extensions of the standard approach.

5.2.1 Checkpointing preemptible parallel applications
Checkpoint-restart is one of the most widely used strategy to deal with failures. Several
variants of this policy have been studied; see [80] for an overview. The natural strategy is
to checkpoint periodically, and one must decide how often to checkpoint, i.e., derive the
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optimal checkpointing period. An optimal strategy is defined as a strategy that minimizes
the expectation of the execution time of the application. For a preemptible application,
where one can checkpoint at any time, the classical formula due to Young [173] and
Daly [47] states that the optimal checkpointing period is WYD =

√
2µC, where µ is the

application MTBF and C the checkpoint cost. This formula is a first-order approximation.
For memoryless failures, Daly provides a second-order, more accurate, approximation
in [47], while our previous work [31] provides the optimal value; both [47] and [31] use the
Lambert function, whose Taylor expansion is key to assess the accuracy of the Young/Daly
formula. The derivation in [31] is based on Equation (26) (see Section 5.3.2), a formula
rediscovered ten years later, with a quite different proof based on a Markov model, in [142].

As explained in Section 5.3.6, non-memoryless failures are more difficult to deal with
for parallel applications. Several papers study non-periodic checkpointing strategies, either
with a single processor or with total rejuvenation of all processors after a failure [82,113,129].
A recent paper [111] also uses full rejuvenation while [150] wrongly assumes independent
and identically distributed (IID) failures for a range of classic distributions, including
Weibull and LogNormal, which are not memoryless (see Section 5.3.6). An unorthodox
approach is used in [64], where it is assumed that the failures striking the whole platform
obey a Weibull distribution; this is misleading for two reasons: (i) it is not clear what is
the failure distribution on each individual processor; and (ii) after one processor is struck
by a failure and rejuvenated, the platform failure distribution does not remain Weibull
(see a more detailed discussion in Section 5.3.6).

In order to deal with non-memoryless failures, the NextFailure problem is studied
in [31], where the goal is to maximize the expected amount of work completed before the
next failure. This problem is solved using a dynamic programming algorithm, and it is used
as a solution to the initial problem of makespan minimization. Simulations are done with
Exponential and Weibull distributions, showing that the proposed algorithm outperforms
existing solutions with Weibull distributions. In this chapter, we propose to maximize
the expected efficiency rather than the expected work, with our new NextStep heuristic.
This requires a much more subtle approach, but is key to proving asymptotic optimality.

5.2.2 Checkpointing task-based applications

Going beyond preemptible applications, some works have studied task-based applications,
using a model where checkpointing is only possible right after the completion of a task.
The problem is then to determine which tasks should be checkpointed. This problem has
been solved for linear workflows (where the task graph is a simple linear chain) by Toueg
and Babaoglu [158], using a dynamic programming algorithm. This algorithm was later
extended in [21] to cope with both fail-stop and silent errors simultaneously. Another
special case is that of a workflow whose dependence graph is arbitrary but whose tasks
are parallel tasks that each executes on the whole platform. In other words, the tasks
have to be serialized. The problem of ordering the tasks and placing checkpoints is proven
NP-complete for simple join graphs in [7], which also introduces several heuristics. For
general workflows, deciding which tasks to checkpoint has been shown #P-complete [76],
but several heuristics are proposed in [77].

5.2.3 Extensions: multi-criteria, hierarchical checkpointing, independence

For completeness, in this section we briefly reference several works that go beyond make-
span optimization and independent failures. First, other optimization criteria have been
considered in the literature. Indeed, I/O is a scarce resource on modern platforms, and
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several works aim at minimizing I/O volume while enforcing an efficient checkpoint for
makespan [81,99]. Similarly, energy-makespan bi-criteria optimization has been addressed
in [57,67].

Next, to reduce I/O overhead, various two-level checkpointing protocols have been
studied [51,143]. Some authors have also generalized two-level checkpointing to account
for an arbitrary number of levels [15,20,49,122].

As for failure independence, the standard model assumes IID failure IATs, on each
processor, with a common distribution D. While it is reasonable to assume that IATs are
identically distributed on a given processor, because the faulty processor is rejuvenated
(replaced by a spare) after each failure, it is very questionable to assume that IATs are
independent across the platform. As for temporal dependence, it has been observed many
times that when a failure occurs, it may trigger other failures that will strike different
system components [14,79,156]. As an example, a failing cooling system may cause a series
of successive crashes of different processors. Also, an outstanding error in the file system
will likely be followed by several others [105, 140]. As for spatial dependence, it is clear
that the overheating of some processor in a cabinet is quite likely to be followed by the
overheating of neighbor processors (which comes atop of a temporal dependence as well!)
Bautista-Gomez et al. [14] have studied nine systems, and they report periods of high
failure density in all of them. They call these periods cascade failures. This observation has
led them to revisit the temporal failure independence assumption, and to design bi-periodic
checkpointing algorithms that use different periods in normal (failure-free) and degraded
(with failure cascades) modes. [156] introduces a dynamic strategy called lazy checkpointing
to adjust to changes in the failure rate. Another approach has been proposed in [10], using
quantiles of consecutive IAT pairs.

5.3 Background
This section overviews known results for checkpoint strategies. We cover uni-processor and
multi-processor applications, either with Exponential failure distributions or with arbitrary
failure distributions. Beforehand, we detail the platform and application model.

5.3.1 Model

Platform and applications

We consider a large parallel platform with P identical processors. We point out that
this work is agnostic to the granularity of the computing resources, which can vary from
individual cores up to complete multicore nodes equipped with several GPUs. Each of
the P processors is subject to failures. A failure interrupts the execution of the processor
and provokes the loss of its whole memory. We consider parallel applications that can be
checkpointed at any time. In scheduling terminology, the applications are preemptible.
Consider a parallel application running on several processors: when one of these processors
is struck by a failure, the state of the application is lost, and execution must restart from
scratch, unless a fault-tolerance mechanism has been deployed. The classical technique
to deal with failures makes use of a checkpoint-restart mechanism: the state of the
application is periodically checkpointed, i.e., all participating processors take a checkpoint
simultaneously. This is the standard coordinated checkpointing protocol, which is routinely
used on large-scale platforms [39], where each processor writes its share of application
data to stable storage (checkpoint of duration C). When a failure occurs, the platform is
unavailable during a downtime D, which is the time to enroll a spare processor that will
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replace the faulty processor [47, 80]. Then, all application processors (including the spare)
recover from the last valid checkpoint in a coordinated manner, reading the checkpoint
file from stable storage (recovery of duration R). Finally, the execution is resumed from
that point on, rather than starting again from scratch. Note that failures can strike during
checkpoint and recovery, but not during downtime (otherwise we can include the downtime
in the recovery time). When a failure hits a processor, that processor is replaced by a
spare. This amounts to start anew with a fresh processor. In the terminology of stochastic
processes, the faulty processor is rejuvenated. However, all the other processors are not
rejuvenated: this would be infeasible due to the multitudinous spares needed!

Failures

We assume that each processor experiences failures whose IATs follow IID random variables
obeying an arbitrary probability distribution D. We only assume that D is continuous and
of finite expectation and variance, a condition satisfied by all standard distributions. We
let µind denote the expectation of D, also known as the individual processor MTBF. Even
if each processor has an MTBF of several years, large-scale parallel platforms are composed
of so many processors that they will experience several failures per day [36,61]. Hence, a
parallel application using a significant fraction of the platform will typically experience a
failure every few hours.

Checkpointing strategy

Given a parallel application with base time Tbase without checkpoints nor failures, the
optimization problem is to decide when and how often to checkpoint in order to minimize
the expected execution time of the application. The application base time is divided into
N segments of length Wi, 1 ≤ i ≤ N , each followed by a checkpoint of length C. Of
course ∑N

i=1 Wi = Tbase. Throughout the chapter, we add a final checkpoint at the end of
the last segment, e.g., to write final outputs to stable storage. Symmetrically, we add an
initial recovery when re-executing the first segment of an application (e.g., to read inputs
from stable storage) if it has been struck by a failure before completing the checkpoint.
Adding a last checkpoint and an initial recovery brings symmetry and simplifies formulas,
but it is not at all mandatory: see Section 5.3.4 for an extension relaxing either or both
assumptions.

5.3.2 Uni-processor application and Exponential failure distribution
This is the simplest case. Consider an application A executing on a single processor
experiencing failures whose IATs follow an Exponential distribution D = Exp(λ) of
parameter λ > 0, whose probability density function (PDF) is f(x) = λe−λx for x ≥ 0.
The processor MTBF is µind = 1

λ . The optimal checkpointing strategy, i.e., the strategy
minimizing the expected execution time, can be derived as shown below.

Lemma 26. The expected time E(W, C, R) to execute a segment of W seconds of work
followed by a checkpoint of C seconds and with recovery cost R seconds is

E(W, C, R) =
(

1
λ

+ D

)
eλR

(
eλ(W +C) − 1

)
. (5.1)

Lemma 26 comes from [31, Theorem 1]. It also applies when the segment is not followed
by a checkpoint (take C =0). The slowdown function is defined as f(W, C, R) = E(W,C,R)

W .
We have the following properties:
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Lemma 27. The slowdown function W 7→ f(W, C, R) has a unique minimum Wopt that
does not depend on R, is decreasing in the interval [0, Wopt] and is increasing in the interval
[Wopt,∞).

Proof. Again, see [31, Theorem 1]. The exact value of Wopt is obtained using the Lambert
W function, but a first-order approximation is the Young/Daly formula WYD =

√
2C
λ .

Lemma 27 shows that infinite applications should be partitioned into segments of size
Wopt followed by a checkpoint. What about finite applications? Back to our application A of
duration Tbase, we partition it into N segments of length Wi, 1 ≤ i ≤ N , each followed by a
checkpoint C. By linearity of the expectation, the expected time to execute application A is

E(J)=
N∑

i=1
E(Wi, C, R) =

(
1
λ

+ D

)
eλR

N∑
i=1

(
eλ(Wi+C)− 1

)
,

where ∑N
i=1 Wi = Tbase. By convexity of the Exponential function, or by using Lagrange

multipliers, we see that E(J) is minimized when the Wi’s take a constant value, i.e., all
segments have same length. Thus, we obtain Wi = Tbase

N for all i, and we aim at finding N
that minimizes

E(J) = N E
(

Tbase
N

, C, R

)
= f

(
Tbase

N
, C, R

)
× Tbase , (5.2)

where f is the slowdown function. We let Kopt = Tbase
Wopt

, where Wopt achieves the minimum
of the slowdown function. Kopt would be the optimal number of segments if we could have
a non-integer number of segments. Lemma 27 shows that the optimal value NME of N
is either NME = max(1, ⌊Kopt⌋) or NME = ⌈Kopt⌉, whichever leads to the smallest value
of E(J). In the experiments, we use the simplified Young/Daly expression NME =

⌈
Tbase
WYD

⌉
.

5.3.3 Parallel application and Exponential failure distribution
Because of the memoryless property of the Exponential distribution, the multi-processor
case can be reduced to the uni-processor case. Everything holds by replacing the parameter
λ by pλ, where p is the number of processors of application A. To see this formally, say the
application A is executed on p processors {Pq}1≤q≤p. Let Xq

i ∼ Exp(λ), i ≥ 1, 1 ≤ q ≤ p,
denote the IID failure IATs on processor Pq. In other words, Xq

i is the random variable
for the time between failure number i − 1 (or the application start if i = 1) and failure
number i on processor Pq. Let Yi, i ≥ 1, denote the failure IATs for (the p processors
executing) application A. In other words, Yi is the random variable for the time between
failure number i− 1 (or the application start if i = 1) and failure number i on the whole
application.

The assumption Xq
i ∼ Exp(λ) formally means that when processor Pq is rejuvenated

(or when it is used for the first time), the next failure will strike according to a distribution
Exp(λ). If the application starts at time t, and the last failure struck at time t1 < t on
processor Pq, what is the distribution of the probability of the next failure, knowing that
Pq has been alive for t− t1 seconds? The memoryless property of Exponential distributions
is the key: it is still the same Exponential distribution. To keep notation simple, we let
Xq

i ∼ Exp(λ), i ≥ 0, denote the failure IATs on Pq once the application has started (and
similarly for Yi, i ≥ 0).

First, we have Y1 = minq(Xq
1). Hence Y1 ∼ Exp(pλ) (minimum of p Exp(λ) distribu-

tions). Assume that the first failure for application A stroke at time t2 (hence Y1 = t2 − t)
on some processor, say processor Pq0 , which is then rejuvenated. Because of the memoryless
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property, knowing this failure does not change the distribution of the next failure on any
other processor, and Y2 ∼ Exp(pλ) for the very same reason that Y1 ∼ Exp(pλ).

5.3.4 Extension without final checkpoint nor initial recovery, and D Exponential
Consider a parallel application A with p processors, which is partitioned into segments.
This section deals with the case where no checkpoint is enforced at the end of the last
segment. By symmetry, we also deal with the case where no recovery is paid when re-
executing the first segment after a failure. Let pλ denote the failure rate for application A,
assuming that application failures obey an Exponential distribution D = Exp(pλ).

The application is partitioned into N segments of length Wi, with checkpoint cost Ci and
recovery cost Ri. Let Ctot = ∑N

i=1 Ci and Rtot = ∑N
i=1 Ri. In the model of Sections 5.3.2

and 5.3.3, we had Ci = C, Ri = R for 1 ≤ i ≤ N , Ctot = NC, and Rtot = NR. If no
checkpoint is taken after the last segment, CN = 0 and Ctot = (N − 1)C. If no recovery is
paid when re-executing the first segment, R1 = 0 and Rtot = (N − 1)R.

What is the optimal strategy (number N of segments and length of each segment) to
minimize the expected execution time EN of the application? From Lemma 26, we have

EN =
N∑

i=1
E(Wi, Ci, Ri)=

( 1
pλ

+D

) N∑
i=1

epλRi

(
epλ(Wi+Ci) − 1

)
,

where ∑N
i=1 Wi = Tbase. Given N , EN is minimized when the sum ∑N

i=1 epλ(Wi+Ci+Ri) is
minimized. By convexity of the Exponential function, or by using Lagrange multipliers, we
see that EN is minimized when the Wi + Ci + Ri’s take a constant value Wseg. This value
is given by

NWseg = Tbase + Ctot + Rtot, (5.3)

and the length Wi of each segment is then computed as Wi = Wseg − Ci −Ri. If CN = 0,
the last segment involves an additional amount C of work duration. Similarly, if R1 = 0,
the first segment involves an additional amount R of work duration. Then, we can derive
the optimal value of N and Wseg as follows: Equation (5.3) gives N = Tbase−R−C+R1+CN

Wseg−R−C .
Plugging this value into

EN =
( 1

pλ
+ D

) [
(N − 1)epλR + epλR1 + NepλWseg

]
enables to solve for Wseg, using the Lambert function in a similar way as in [31].

While the derivation is painful, the conclusion is comforting: in the optimal solution, all
segments have same length of work, up to an additional recovery for the first segment and
an additional checkpoint for the last one. The Young/Daly approximation still holds, as
well as all the results of this chapter (whose presentation is much simpler with all segments
followed by a checkpoint).

5.3.5 Uni-processor application and arbitrary failure distribution
When failure IATs obey an arbitrary distribution D, they are still IID, because the processor
is rejuvenated (replaced by a spare) after each failure. To the best of our knowledge, even
the optimal value Wopt for the slowdown function is not known analytically. For some
distributions, Wopt can be computed numerically, using partial moments for the expectation
of the time lost due to failures. But note that Wopt does not give the optimal checkpointing
period for infinite applications, in contrast to the memoryless case. In fact, the optimal
checkpointing strategy is not known for infinite applications, let alone for finite applications.
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For instance, consider a Weibull distribution D ∼Weibull(k, λ) of shape k and scale λ;
its PDF is P(X = t) = k

λ( t
λ)k−1e−( t

λ
)k for t > 0. If k < 1, the instantaneous failure rate of

D is decreasing with time (infant mortality), checkpoints should be spaced more and more
as time progresses since the last failure. On the contrary, if k > 1, the instantaneous failure
rate of D is increasing with time (ageing) and, hence, checkpoints should be spaced less and
less. This explains that the optimal checkpointing strategy is aperiodic. See [82,113,129]
for more details.

5.3.6 Parallel application and arbitrary failure distribution
When D is arbitrary, even though the failure IATs Xq

i are IID on each processor, they are
not for (the p processors executing) application A. In other words, the Yi are not IID,
unless D is Exponential. However, owing to the theory on the superposition of renewal
processes, whenever D is continuous and of finite expectation µind, we know that the
following limit exists, where n is the number of failures:

lim
n→∞

E
(∑n

i=1 Yi

n

)
= µind

p
. (5.4)

This result is given as Formula 1.4 in [103]. See also [80] for an elementary proof using
Wald’s equation. Equation (5.4) is good news because we can define the application MTBF
as µind

p : in average, a failure will strike the application every µind
p seconds. Note that the

MTBF is given a new definition here: the failures striking the parallel application A are not
IID, so there is no longer a mean time before the next failure of the application. Instead,
there is a limit on the average time between failures.

At any time, the distribution of the next failure is complicated because it must account
for the history of the p− 1 processors that have not been rejuvenated when the last failure
stroke. Indeed, assume that the execution of application A was started on p fresh processors
{Pq}1≤q≤p, and that the last failure stroke on processor Pq at time tq (where tq = 0 if Pq

has never been struck). Let i(q) be the index of the last failure on Pq (where i(q) = 0 if Pq

has never been struck). To simplify notation, say that the last failure stroke processor P1,
meaning that tq < t1 for q ≥ 2. Now for q ≥ 2, the probability that the next failure on Pq

strikes at time t (it will be failure number i(q) + 1 for Pq) is

P(Xq
i(q)+1 = t|Xq

i(q)+1 ≥ t− tq).

In other words, only X1
i(1)+1 follows the distribution D, while each Xq

i(q)+1, q ≥ 2, is shifted.
To compute the distribution of the next failure of application A, we need to compute the
distribution of the minimum of all the Xq

i(q)+1’s, which are not identical because of their
history.

There is a theoretical approach that simplifies the problem, namely rejuvenating all the
p processors of the application after each failure (and before starting the execution of the
application). Of course, this is impossible in practice when p exceeds a small number, but
it is nice from a theory perspective: with total rejuvenation, each failure becomes a renewal
point for the whole application, and the failure IATs that strike the application become
IID: their distribution is the minimum of p IID distributions D. Even better, there are a
few failure distributions D such that the minimum of p IID instances also obey the same
distribution D (with scaled parameters). For instance, consider a Weibull distribution
D ∼Weibull(k, λ) of shape k and scale λ, whose expectation is µind = λΓ(1 + 1

k ), where
Γ denotes the Gamma function Γ(t) =

∫∞
0 xt−1e−xdx for t > 0. Then the minimum Y of

p IID Weibull(k, λ) is also a Weibull distribution Y ∼ Weibull(k, λ
p1/k ). We observe
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that the MTBF does not scale linearly with p, unless k = 1: the expectation of Y is
µ = µind

p1/k . This discussion explains the errors in [64]: (i) the platform cannot obey a Weibull
distribution, unless total rejuvenation is used; and (ii) assuming total rejuvenation, the
MTBF of an application is not inversely proportional to its number of processors.

A realistic approach to cope with the not-IID problem is to discretize time into
small quanta, and to use dynamic programming to compute the best checkpoint strategy
for application A up to the next failure [31]. Obviously, the smaller the quanta, the
more accurate the results, but the more costly the dynamic programming algorithm. The
approach in [31] greedily uses this strategy from one failure to another, up to the completion
of the application. However, optimizing checkpoints up to the next failure, while optimal
from one failure to the next (up to the precision of the quanta), may well be sub-optimal
for the whole application. A main contribution of this chapter is to introduce a new greedy
strategy and to prove an approximation bound for its performance. To the best of our
knowledge, this is the first theoretical result for parallel applications with non-memoryless
failures.

5.4 The NextStep heuristic

In this section, we present the NextStep heuristic to checkpoint parallel applications
under any failure probability distribution. The main idea of NextStep is the following:
after each failure, NextStep is able to find the checkpointing strategy that maximizes
the expected efficiency (see below) before the next failure or the end of the application.
Intuitively, optimizing the expected efficiency on a failure-by-failure basis should lead to
a good approximation on the optimal solution, at least for large application sizes. One
major contribution of this work is to show that NextStep is asymptotically optimal for
arbitrary failure distributions.

We first introduce notation in Section 5.4.1, before formally describing NextStep in
Section 5.4.2. Finally, we prove the asymptotic optimality in Section 5.4.3.

5.4.1 Preliminaries

Consider a parallel application A of length Tbase executing on p processors, with checkpoint
time C. We define one unit of work of the applicationA as the parallel work executed
within one second, so that we can express application progress either in seconds or in
work units, whichever is more natural for the reader. Assume that the application just
experienced a failure, and it is ready to resume execution of the remaining W seconds
of work (or the application is just starting, and then W = Tbase). For any processor Pj ,
1 ≤ j ≤ p, let τj be the time elapsed since its last failure. In particular, if Pj has been hit
by the last failure, then τj = 0; note also that we do not assume fresh processors when
starting the application. We call τ⃗ = (τ1, τ2, . . . , τp) the history vector.

Given a checkpointing strategy, an application with W remaining work units and a
history vector τ⃗ , the function first(W |τ⃗) returns the size Wfirst of the segment preceding
the first checkpoint.

Work. Let W(W |τ⃗) be the random variable that quantifies the number of work units
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successfully executed before the next failure. We have the following recursion:
W(0|τ⃗) = 0

W(W |τ⃗) =


Wfirst +W(W −Wfirst |τ⃗ +−−−−−−−→Wfirst + C)

if the p processors do not fail during
the next W1 + C units of time,

0 otherwise.

(5.5)

In Equation (5.5), given a scalar quantity x, −→x = (x, x, . . . , x) denotes the vector with
p identical components equal to x. Weighting the two cases in Equation (5.5) by their
probabilities of occurrence, we obtain the expected number of work units successfully
computed before the next failure:

E(W(W |τ⃗))=Psuc(Wfirst + C|τ⃗)(W1 + E(W(W −Wfirst |τ⃗ +−−−−−−−→Wfirst + C))), (5.6)

where the probability of success Psuc is computed as

Psuc(x|τ⃗) =
p∏

i=1
P(X ≥ x + τi|X ≥ τi). (5.7)

X is a generic random variable following the probability distribution D, the failure inter-
arrival time on each processor. Given any such distribution D, Psuc(x|τ⃗) can be computed
in time O(p).
Efficiency. Rather than focusing solely on the work done, we aim at maximizing the
expected efficiency, which also depends on the number of checkpoints that have been taken.
This is particularly crucial at the end of the application, where maximizing the number
of work units until the next failure may not be the best strategy if the application is
about to complete. Indeed, the efficiency also depends on the time spent computing; if
no failures occur, it depends on the number of checkpoints that are taken. Hence, we
define EW (W, τ⃗ , N) as the maximum expected number of work units until the next failure
(or the completion of the application if no failure occurs) using N checkpoints; similarly,
ETnext (W, τ⃗ , N) is the expected time until the next failure, or before the completion of the
application if no failure occurs. Note that the number N of checkpoints only matters in
the latter case where the application has completed.

Finally, if an application still needs to be processed for W units of time, with a history
τ⃗ , we define the maximum possible efficiency among all possible numbers of checkpoints N :

Ee(W, τ⃗) = max
N

EW (W, τ⃗ , N)
ETnext (W, τ⃗ , N) . (5.8)

Time discretization. We introduce a time quantum u, and discretize time into quanta.
This means that all quantities (segment sizes, checkpoint and recovery times) are integer
multiples of u, and that failures strike at the end of a quantum. More precisely, the
probability that a failure happens at the end of quantum i is

∫ iu
(i−1)u f(x|τ⃗)dx, where f(x|τ⃗)

is the probability density function of the platform failure distribution D in the continuous
case conditioned by the history. This discretization restricts the search for an optimal
execution to a finite set of possible executions. The trade-off is that a smaller value of u
leads to a more accurate solution, but also to a higher number of states in the algorithm,
hence, to a higher computing time.

In what follows, if a variable y is defined in work units, y∗ = y/u is the corresponding
number of quanta, which we always suppose integer. For instance, the application size
becomes W ∗ = W/u and the checkpoint size C∗ = C/u. Similarly, we let P∗

suc(x∗|τ⃗∗) ≜
Psuc(ux|uτ⃗) be the probability that the next x∗ quanta succeed given the history τ⃗∗,
expressed in number of quanta.
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Algorithm 5: compE(x∗,Np,Nf )
1 if x∗ = 0 then return 0;
2 if Nf = 1 then
3 τ⃗∗ ← τ⃗∗

0 +−−−−−−−−−−−−→W ∗ − x∗ + NpC∗;
4 best← x∗P∗

suc(x∗ + C∗|τ⃗∗) ;
5 solve[x∗][Np][Nf ]← (best, x∗);
6 return best;
7 if solve[x∗][Np][Nf ] = (best, W ∗

first) then return best;
8 else
9 best← −∞;

10 τ⃗∗ ← τ⃗∗
0 +−−−−−−−−−−−−→W ∗ − x∗ + NpC∗;

11 for i = 1 to x∗ do
12 work ← compE(x∗ − i, Np + 1, Nf − 1);
13 cur ← P∗

suc(i + C∗|τ⃗∗)× (i + work);
14 if cur > best then
15 best← cur;
16 W ∗

first ← i;

17 solve[x∗][Np][Nf ]← (best, W ∗
first);

18 return best;

5.4.2 NextStep

We define NextStep formally as: find a function returning the size of the first segment
to be checkpointed, such that Ee(W, τ⃗0) is maximized. Here, τ⃗0 corresponds to the initial
history of the platform when the execution starts. Solving NextStep analytically seems
out of reach, but the recursive definition of E(W(W |τ⃗)) (see Equation (5.6)), together
with time discretization, allows us to compute the maximum efficiency. Indeed, there is no
need to keep the time elapsed since the last failure of each processor as a parameter of the
recursive calls. This is because the τ variables of all processors evolve identically: recursive
calls only correspond to cases where no failure has occurred, hence the same quantity is
added to the history of each processor. The algorithm is called again each time a failure
occurs, to decide where checkpoints should be taken.

Thanks to the discretization, all the EW (W, τ⃗0, N) values can be computed with a time
quantum u. We let x∗ be the number of quanta that remain to proceed (where initially,
x∗ = W ∗). We need to find and store the best solutions for any possible values of x∗ and
N in the recursive call. Hence, we further consider Np, the number of checkpoints already
taken, and Nf , the number of checkpoints that can still be taken (where Np + Nf = N).
This corresponds to Algorithm 5: the compE procedure fills a table solve that contains,
for any triple (x∗, Np, Nf ), the maximum expected work duration until the next failure
for these parameters, and the best segment size W ∗

first that achieves this. For Nf = 1, the
only possibility is to compute x∗ in its entirety and then checkpoint. Otherwise, we try all
possible places for the first checkpoint, and recursively call compE . If a value with a given
(x∗, Np, Nf ) had been computed before, we retrieve the corresponding result line 7.

There remains to compute ETnext (W ∗, τ⃗∗, N), i.e., the expected time until next failure
or application completion. The following lemma helps us compute these values efficiently
with discrete segments:

Lemma 28. Using discrete quanta of size u, the expectation of the time before the next
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Algorithm 6: NextStep (W ∗)
/* Compute ETnext (W ∗, τ⃗∗

0 , nc) for nc ∈ [1, W ∗] */
1 S ← 0;
2 for i = 0 to W ∗ − 1 do S ← S + P∗

suc(i|τ⃗∗
0 );

3 for nc = 1 to W ∗ do
4 for i = 1 to C∗ do
5 S ← S + P∗

suc(W ∗ + (nc − 1)C∗ + i|τ⃗∗
0 );

6 ETnext (W ∗, τ⃗∗
0 , nc)← S;

/* Compute EW (W ∗, τ⃗∗
0 , nc) (array solve) */

7 for nc = 1 to W ∗ do compE(W ∗, 0, nc);
/* Solution of NextStep */

8 best← −∞; Nc ← 0; W ∗
first ← 0;

9 for nc = 1 to W ∗ do
10 cur ← argfirst(solve[W ∗][0][nc])/ETnext (W ∗, τ⃗∗

0 , nc);
11 cursegment← argsecond(solve[W ∗][0][nc]);
12 if cur > best then
13 best← cur; Nc ← nc; W ∗

first ← cursegment;

14 return (Nc, W ∗
first);

failure or the completion of the application, expressed in number of quanta, is the following:

ETnext (W ∗, τ⃗∗
0 , N) =

W ∗+NC∗−1∑
i=0

P∗
suc(i|τ⃗∗

0 ).

Proof. Let X denote the random variable of the number of quanta executed before the
next failure (or the completion of the application) given the history τ⃗∗

0 , the total number
of quanta of the application W ∗ and the number of checkpoints N . Clearly, X is taking
integer values in [1, W ∗ + NC∗], thus

E(X) =
W ∗+NC∗∑

i=1
iP{X = i} =

W ∗+NC∗∑
i=1

P{X ≥ i}

=
W ∗+NC∗∑

i=1
P∗

suc(i− 1|τ⃗∗
0 ) =

W ∗+NC∗−1∑
i=0

P∗
suc(i|τ⃗∗

0 ).

From Lemma 28, we derive that:
ETnext (W ∗, τ⃗∗

0 , nc + 1) = ETnext (W ∗, τ⃗∗
0 , nc) +∑W ∗+(nc+1)C∗−1

i=W ∗+ncC∗ P∗
suc(i|τ⃗∗

0 ).
This is used in Algorithm 6 to compute all the ETnext values more efficiently on lines 1–6.
Algorithm 5 is called to fill the solve table with all values of EW in line 7. We obtain the
efficiency Ee(W ∗, τ⃗∗

0 ) for all possible number of checkpoints and keep the maximum, see
lines 8–13. Finally, the algorithm returns the values for N and W ∗

first corresponding to
the maximum efficiency, which allows us to rebuild completely the corresponding solution
using the table solve.

Proposition 1. Using a time quantum u, and for any failure inter-arrival time distri-
bution, Algorithm 6 computes the solution to NextStep (maximizing efficiency) in time
O(p(W ∗)4).
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Proof. The NextStep algorithm consists of three steps. In the first step, it computes all
values of ETnext (W ∗, τ⃗∗

0 , nc) for nc ∈ [1, W ∗]. To do so, two loops are executed. The first one
has W ∗ steps, where each step computes a single addition. The value of P∗

suc(W ∗ + (nc −
1)C∗ + i|τ⃗∗

0 ) is the product of the individual probability of failure of the p processors (as in
Equation (5.7)). We assume that the individual probabilities of failure can be computed
in O(1), thus the loop takes a time O(pW ∗). The second loop is similar, with two nested
loops, and its complexity is O(pW ∗C∗). We can safely assume that C∗ ≤W ∗, otherwise
doing any checkpoint is straightforwardly bad (if we succeed the checkpoint, we would
have succeeded the entire application), and the complexity is at most O(p(W ∗)2).

In the second step, the algorithm fills the table solve and calls compE(W ∗, 0, nc)
for nc ∈ [1, W ∗]. The function compE(x, y, z) fills the table entry corresponding to its
parameters if necessary, with eventual recursive calls to compE where y + z is constant
and x decreases. Given the initial calls with x = W ∗ and y + z ∈ [1, W ∗] the number of
entries written in the table is at most W ∗3

2 . To upper bound the overall complexity of this
step, we first note that an entry may only be written in the table if the compE function is
called with the same parameters. In the sub-case Nf = 1, this takes few operations and
involves a call to P∗

suc, thus a time O(p). Otherwise, this means compE has been called
with parameters corresponding to the last sub-case. If so, a loop is executed x∗ ≤ W ∗

times, and each iteration requires a call to compE , which either takes time O(1) or fills
another entry of the table (therefore the complexity is taken into account for this other
entry), and the other operations are in O(1), except the computation of P∗

suc in O(p).
Overall, the individual cost of each entry of the table is at most in O(pW ∗). Finally the
calls to compE that do not fill the table may only be made recursively and were taken into
account in the analysis. Given the size of the table in O((W ∗)3), this second step is in
O(p(W ∗)4).

Finally, the last step returning the solution consists of a loop with W ∗ iterations, where
each iteration is done in O(1), which gives a complexity in O(W ∗). The complexity is
dominated by the second step; hence, the result.

5.4.3 Asymptotic analysis

We proceed in two steps. First, we show that for an infinite application and for any integer
n, the expected work completed by NextStep before the n-th failure (which happens at
a random time) is larger than or equal to the one of any other strategy. Then, we show
that the expected work processed within T units of time is asymptotically optimal with T
(Theorem 20).

Expected work completed before the n-th failure

We compare NextStep to any other strategy for an infinite application that has an infinite
number of failures. We assume that the application starts at time t0 = 0. For k ≥ 1, let
tk be the random variable representing the date of the k-th failure, and for k ≥ 0, let τ⃗k

be the random variable representing the history of the application at time tk. Note that
neither tk nor τ⃗k depend on the checkpointing strategy. For any n ≥ 1, let WFn be the
random variable corresponding to the expected work executed from the start up to failure
n by NextStep, and let OPTn denote the same variable for an optimal strategy, both
depending on the initial history τ⃗0. We show that E(WFn) ≥ E(OPTn).

We define wfk (resp. optk) the random variable representing the work executed by
NextStep (resp. an optimal strategy) between times tk−1 and tk. At any decision point,
i.e., after each failure, the expected time before the next failure or the completion is in fact
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the expected time before the next failure, because the application is infinite; hence, this
time does not depend upon the number of checkpoints. From Equation (5.8), we deduce
that, for any history, NextStep maximizes the expected work accomplished before the
next failure. Hence, we have for any k ≥ 1 and any possible history τ⃗ at the (k − 1)-th
failure (or τ⃗ = τ⃗0 if k = 1):

E(wfk|τ⃗k−1 = τ⃗) ≥ E(optk|τ⃗k−1 = τ⃗).

This inequality holds for any possible history τ⃗ , i.e., for any possible event {τ⃗k−1 = τ⃗}, and
τ⃗k−1 does not depend on the strategy. Therefore, this inequality can be directly extended to
E(wfk|τ⃗k−1) and E(optk|τ⃗k−1). Note that these expectations are conditioned by a random
variable instead of an event, thus are random variables themselves (constant for k = 1 if we
consider τ⃗0 as a constant random variable) which always verify E(wfk|τ⃗k−1) ≥ E(optk|τ⃗k−1).
In particular:

E(E(wfk|τ⃗k−1)) ≥ E(E(optk|τ⃗k−1)).

This result can be combined with the property E(X) = E(E(X|Y )) (Law of Total Expecta-
tion) whenever both sides exist [149, p. 179] to obtain, for all k ≥ 1,

E(wfk) = E(E(wfk|τ⃗k−1)) ≥ E(E(optk|τ⃗k−1)) = E(optk).

Finally, we obtain:

E(WFn) = E
(

n∑
k=1

wfk

)
=

n∑
k=1

E(wfk)

≥
n∑

k=1
E(optk) = E

(
n∑

k=1
optk

)
= E(OPTn).

This shows that the expected work completed by NextStep before the n-th failure is
larger than or equal to the one of any other strategy.

NextStep is asymptotically optimal

For any T , we show how to define n(T ), the index of a failure striking at a time close
enough to T , so that the relative work difference performed between T and tn(T ) (whichever
comes first) is negligible:

Lemma 29. Let n(T ) = p⌊ T
E(X)⌋, then lim

T →∞
E(|T −tn(T )|)

T = 0.

Proof. Consider an infinitely long application executing on p processors Pi, 1 ≤ i ≤ p. Let
X denote the random variable for failure IATs on each processor if there is no history. For
T > 0, we fix K(T ) =

⌊
T

E(X)

⌋
, thus n(T ) = pK(T ).

Let ti,j be the random variable representing the time when processor Pi fails for the
j-th time. Clearly, for all i and k > 0, ti,k+1 − ti,k follows the distribution X, because Pi is
rejuvenated after each failure. Therefore, E(ti,j) = E(Xi,0) + (j − 1)E(X), where E(Xi,0)
depends on the initial state of processor Pi. We then use a variant of the strong law of
large numbers [45, Ex. 8 p. 137]: If (X1, X2, . . . , Xj) are identically distributed with finite
expectations and Sj = ∑j

k=1 Xk, then Sj

j → E(X1) in L1, i.e., lim
j→∞ E

(∣∣∣Sj

j − E(X1)
∣∣∣) = 0.

Applying this result with Xk = ti,k+1 − ti,k, we obtain Sj−1 = ti,j − ti,1 and

∀i, lim
j→∞ E

(∣∣∣∣ ti,j − ti,1
j − 1 − E(X)

∣∣∣∣) = 0.
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For any given j, since the ti,j − ti,1’s are identically distributed for all i, we can define a
function ϵ(j) verifying lim

j→∞ ϵ(j) = 0 and such that, using triangular inequalities:

E(|ti,j − jE(X)|) ≤ jϵ(j) + E(X) + ti,1

for all i and j. Finally, min
1≤i≤p

ti,K(T ) ≤ tn(T ) ≤ max
1≤i≤p

ti,K(T ), because the total number of
failures is the sum of the number of failures of each processor and n(T ) = pK(T ). Hence,

E(|tn(T ) −K(T )E(X)|) ≤ E( max
1≤i≤p

(|ti,K(T ) −K(T )E(X)|))

≤ E(
p∑

i=1
(|ti,K(T ) −K(T )E(X)|))

≤ pK(T )ϵ(K(T )) + pE(X) +
p∑

i=1
ti,1.

By definition, K(T )E(X) ≤ T ≤ (K(T )+1)E(X), and, because of the triangular inequality,
we have:

E(|T − tn(T )|)
T

=
E(|(T −K(T )E(X)) + (K(T )E(X)− tn(T ))|)

T

≤ E(X)
K(T )E(X) + K(T )pϵK(T )

K(T )E(X) + pE(X)
K(T )E(X) +

∑p
i=1 ti,1

K(T )E(X)

= 1
K(T ) + p

E(X)ϵ(K(T )) + p

K(T ) +
∑p

i=1 ti,1

K(T )E(X) .

Here, p, E(X), and ∑p
i=1 ti,1 are fixed, while lim

T →∞ K(T ) =∞. Hence the result, using
lim

K(T )→∞ ϵ(K(T )) = 0.

Theorem 20. For any T , with n(T ) = p⌊ T
E(X)⌋, let w∗

n(T ) be the optimal expected work done
up to time tn(T ) (from the start to the n(T )-th failure). Then, for any checkpointing strategy,

we have EW ([0,T ])
T ≤

w∗
n(T )
T + o(1). Furthermore, with NextStep, we have EW ([0,T ])

T ≥
w∗

n(T )
T − o(1). Hence, NextStep is asymptotically optimal.

Proof. Assuming EW ([a, b]) = 0 if a > b, thanks to Lemma 29, we obtain that, for any
strategy,

EW (T )
T

≤
EW ([0, tn(T )])

T
+

EW ([tn(T ), T ])
T

≤
w∗

n(T )
T

+
E(|T − tn(T )|)

T
=

w∗
n(T )
T

+ o(1).

Furthermore, for NextStep, we have:

EW (T )
T

≥
EW ([0, tn(T )])

T
−

EW ([T, tn(T )])
T

≥
w∗

n(T )
T
−

E(|T − tn(T )|)
T

=
w∗

n(T )
T
− o(1),

which concludes the proof.
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Counter-example to optimality

The NextStep heuristic is asymptotically optimal but not always optimal. This is
because, for short applications, maximizing the efficiency until the next failure is not
exactly equivalent to minimizing the makespan. An example where NextStep is not
optimal, for an Exponential distribution is omitted here for this thesis conciseness but can
be found in [R3, Appendix A]. The example is designed as a worst-case scenario and shows
that the number of checkpoints may differ between NextStep and the optimal.

5.5 On the dynamic version of the optimal static strategy for an
Exponential distribution

Sections 5.3.2 and 5.3.3 have shown how to statically compute the optimal strategy to
minimize the expected makespan of an application when the failures obey an Exponential
distribution. This optimal strategy is static, meaning that we compute the number and
length of the application segments once and for all, before starting the execution. On the
contrary, the NextStep strategy is dynamic, since it is called after each failure. One may
envision a dynamic version of the optimal static strategy, where one would recompute the
number and length of the application segments after each failure (and maybe after each
checkpoint too), as a function of the remaining size of the application. Here we show that
this dynamic approach is identical to the static one. This new result demonstrates the
fairness of comparing NextStep with a static approach.. We start with a few notations
before formally stating this result.

5.5.1 Notations
In the following, we consider a sequential or parallel application of length Tbase. A
checkpointing strategy S is defined as S = {c1, c2, . . . , cm}, where each ck ∈ (0, Tbase)
denotes the amount of the work executed until checkpoint number k. Note that we assume
that there is a checkpoint at the end, i.e., cm = Tbase.

When a failure occurs, let E(R) be the expected time before the processors are ready
to work again. This includes the downtime and a recovery time, but may be longer if we
encounter another failure during the recovery time3. For a given checkpointing strategy
S and a work w ∈ S ∪ {0}, we denote by E([0, w],S) the expected time between the
start of the application and the completion of the checkpoint corresponding to w units of
work. Similarly, we denote by E([w, Tbase],S) the expected time between the moment the
checkpoint corresponding to w units of work is completed (or the start of the application
if w = 0) and the moment the application finishes the completion, including the last
checkpoint. If we do not have w ∈ S ∪ {0}, both expectations are considered infinite. With
these definitions, we clearly have:

∀w ∈ S,E([0, Tbase],S) = E([0, w],S) + E([w, Tbase],S).

Finally, given a work w ∈ [0, Tbase], we let S∗
w be a checkpointing strategy such that for all

S, we have E([w, Tbase],S) ≥ E([w, Tbase],S∗
w). Although multiple checkpointing strategies

may minimize this expectation, the value of this expectation E∗
w ≜ E([w, Tbase],S∗

w) is
unique and well defined. Intuitively, S∗

w is an optimal checkpointing strategy for the end of
the application after w units have been processed and checkpointed.

3Similarly to Equation (5.1), we have E(R) = DeλR + 1
λ

(
eλR − 1

)
. But we do not need to know the

value of E(R) in this derivation.
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5.5.2 Main result
Theorem 21. For an application of length Tbase, consider the following two approaches:

• (A) Static Strategy: Find an optimal checkpointing heuristic S∗
0 that minimizes the

total expected makespan E∗
0 and does not update the strategy until the application is

completed.
• (B) Dynamic Strategy: Start with the best static strategy S∗

0 , then whenever an event
occurs, i.e., a segment is completed or a failure happens, find an optimal static
checkpointing strategy minimizing the remaining expected makespan. If the remaining
expected makespan is strictly smaller with the new strategy, update the checkpointing
strategy accordingly.

The static strategy (A) and the dynamic strategy (B) are identical.

The optimal static strategy (A) is well-known and uses NME segments, where NME is
given in Section 5.3.2. The value of NME depends upon the length of the application that
remains to be processed, so strategy (B) could compute a different value when called after
the first checkpoint or the first failure. The proof shows that this is never the case.

Proof. Initially, both strategies are identical by definition. We assume that the strategy
(B) can diverge from the strategy (A) and obtain a contradiction. Suppose that both
strategies are different. Then, there exists a failure scenario in which both strategies diverge.
Consider such scenario and let W be the total work executed and backed-up when the first
event e occurs, after which strategy (B) becomes different from strategy (A).

After this event e, the expected resulting makespan of strategy(A) is EA
remain =

t(e) + E([W, Tbase],S∗
0 ), where t(e) = 0 if the event is the end of a segment, t(e) = D if the

event is a failure in the first segment for the model in which a recovery is not necessary for
the first segment, and t(e) = E(R) otherwise. In any case, t(e) is a cost in execution time
independent to the checkpointing heuristic. We must finish the processing of the as planned
with strategy S∗

0 . The latter is identical to E([W, Tbase],S∗
0 ), because the distribution is

memoryless, therefore we are exactly at the same point after the recovery as we were when
we first succeeded the checkpoint corresponding to W units of work.

Strategy (B) also needs to spend t(e) units of time to deal with the event and is able
to find a new checkpointing strategy such that the overall expected remaining makespan is
reduced. As before, because the distribution is memoryless, an optimal strategy is S∗

W . By
assumption, this new strategy reduces the total expected makespan. Thus,

E(R) + E([W, Tbase],S∗
W ) = EB

remain < EA
remain

E(R) + E([W, Tbase],S∗
W ) < E(R) + E([W, Tbase],S∗

0 )

Finally,
E([W, Tbase],S∗

W ) < E([W, Tbase],S∗
0 ).

Now, suppose that we had applied the strategy S2 = (S∗
0 \ [W, Tbase]) ∪ (S∗

W \ (0, W )).
The total expectation would have been:

E([0, Tbase],S2) = E([0, W ],S2) + E([W, Tbase],S2)
= E([0, W ],S∗

0 ) + E([W, Tbase],S∗
W )

E([0, Tbase],S2) < E([0, W ],S∗
0 ) + E([W, Tbase],S∗

0 )
E([0, Tbase],S2) < E([0, Tbase],S∗

0 )
E([0, Tbase],S2) < E∗

0

This contradicts the definition of S∗
0 and E∗

0.
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5.6 Performance Evaluation

In this section, we evaluate and compare the performance of NextStep with the Young/-
Daly periodic checkpointing heuristic, using simulations on synthetic applications with
various parameters, and subject to failures that are sampled from a wide range of proba-
bility distributions. Section 5.6.1 details application parameters and failure distributions.
Section 5.6.2 presents all simulation results.

To the best of our knowledge, the Young/Daly periodic checkpointing heuristic is the
only competitor to our new approach. Indeed, we deal with parallel applications, arbitrary
failure probability distributions, and after a failure we only rejuvenate the faulty processor.
While some strategies have been derived for Weibull probability distributions [82, 113,129],
they either assume a single processor or total rejuvenation, so that application IATs always
obey a scaled Weibull distribution. As already mentioned, total rejuvenation is not an
option for HPC platforms.

5.6.1 Simulation Setup

Algorithms

We compare the performance of NextStep with YoungDaly, the Young/Daly periodic
checkpointing strategy (see Sections 5.3.2 and 5.3.3). For YoungDaly, an application A
of length Tbase and using p processors is divided into NME =

⌈
Tbase
WYD

⌉
equal-size segments,

each followed by a checkpoint. Here, WYD =
√

2Cµind
p . By default, we use µind = 10 years

in the simulations.
Because YoungDaly is a periodic strategy, the size of its checkpointed segments are

defined once and for all. On the contrary, NextStep adapts its checkpointing strategy to
the failure history. Hence, after each failure, NextStep must recompute the size of its
checkpointed segments. We take this recomputation time into account in the simulation,
and conservatively add it to the recovery time4. To keep the recomputation time as low
as possible, we introduce two optimizations to Algorithm 6. The goal is to dramatically
shorten its execution time while maintaining the quality of the produced solution.

The first optimization is about the loop at Line 9. In Algorithm 6, the loop is over all
possible numbers of checkpoints, ranging from a single checkpoint to one checkpoint per
time quantum (i.e., W ∗ checkpoints). This latter solution would lead to a huge number of
checkpoints. A natural conjecture is that the expected performance of NextStep would be
a bell-shaped function of the number of checkpoints that are taken, first increasing and then
decreasing after a threshold number has been reached. Therefore, in our implementation,
we have replaced the for loop at Line 9 by a while loop that continues to look for a
solution involving one additional checkpoint only if at least one of the five prior attempts
leads to the best solution overall.

The second optimization is about the computation of the probability of success in
Algorithm 5, Lines 4 and 13; and Algorithm 6, Line 2 and 5. This probability is the
product of the individual probabilities of the processors. Hence, the execution time of
this step is linear in the number of processors, while we want to consider platforms with
tens of thousands of processors. Furthermore, this probability is computed many times,
for many different values of i and nc. We replace the exact computation by the following
approximation. We first sort the values in τ∗

0 and we retain the smallest ten and largest
4An alternative would be to perform this recomputation on dedicated resources, and in parallel to the

recovery. We study the most costly scenario for NextStep.
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ten values; then we approximate the remaining values using 100 quantiles, according to the
distribution. When i and nc vary, they add an additive term to the history, which does
not change the ranking of the values. We can thus replace the exact computation by one
that uses the 10 smallest and 10 largest values of the history, and the 100 quantiles with
their frequency of occurrences (if there are k values for a quantile, we compute a single
probability and its exponentiation rather than k probabilities that we multiply). Hence,
for a pre-processing cost of O(p log p) we approximate in constant time the probability of
success, since the processors that define the 120 history values remain the same up to the
next failure.

Probability Distributions

We experiment with a wide range of probability distributions:
• The Exponential distribution, with probability density function f(t) = e−t/µind

µind
;

• The Weibull distribution, for which the probability density function has a shape
parameter k, a scale parameter λ and verify f(t; k, λ) = k

λ

(
t
λ

)k−1
e−(t/λ)k . To obtain

an MTBF of µind, we chose λ = µind
Γ(1+ 1

k
) , and therefore the probability density function

becomes f(t, k) = kΓ(1+ 1
k

)
µind

(
tΓ(1+ 1

k
)

µind

)k−1
e

−
(

tΓ(1+ 1
k

)
µind

)k

. In the experiments, k is varied in
{0.5, 0.7, 1.5}. The first two shape values are realistic values taken from [57,138,139]; for
k < 1, processors are more likely to fail if the processor is recent (infant mortality). The
last shape value k = 1.5 provides an example of a distribution whose instantaneous failure
rate increases with time. Note that k = 1 corresponds to the Exponential distribution;
• The Gamma distribution, with probability density function f(t, k, Θ) = tk−1e

− t
Θ

Γ(k)Θk ,
where k is the shape parameter and Θ is the scale parameter. To obtain an MTBF of

µind, we scale it using Θ = µind
k and obtain f(t, k) = kktk−1e

− kt
µind

Γ(k)µk
ind

, where k is the shape
parameter and Γ is the Gamma function. In the experiments, k is varied in {0.5, 0.7}.
Note that k = 1 corresponds again to the exponential distribution;
• The LogNormal distribution, with probability density function defined as f(t, µ, σ) =

1
tσ

√
2π

e

(
− (ln t−µ)2

2σ2

)
and with expectation eµ+σ2/2, where µ and σ are respectively the

expectation and the standard deviation of the variable’s natural logarithm. We tested
with two sets of (µ, σ), used in [50] and [172]: (µ1 = 6.6025, σ1 = 1.6206) and (µ2 =
10.89, σ2 = 1.08). In order to harmonize with the other probability distributions, we aim
at having µind = eµ+σ2/2 = 10 years. To achieve this without altering the shape of the
probability distribution, we fix a parameter k = µ/σ2, in order to express the probability
density function with (µind, k). After scaling, we obtain two sets (µind = 10, k = 2.51) and
(µind = 10, k = 9.34) that we consider in the experiments. We retrieve the probability
density function with:

µ = ln(µind)
1 + 1

2k

; σ =
√

µ

k
=
√

ln(µind)
k + k

2
.

Traces

We generate a failure trace for each failure distribution and for each processor. In that
trace, failure IATs obey the distribution, and the last failure happens after time h, where
h is the horizon of the failure trace. The horizon is set to two years (h = 730 days) for all
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Figure 5.1: Expected performance of both heuristics under all failure distributions for a
100 days old platform with a workflow of Tbase = 48 hours.

the traces. The different heuristics are then evaluated using the trace, thereby making sure
that all heuristics are evaluated using the very same failure scenario. If during a simulation,
a checkpointing strategy reaches time h before the completion of the application, the
simulation is said to fail.

Simulation Parameters

In the experiments, we compare both checkpointing strategies under the following parameter
settings:
• The number of processors p, logarithmically varied in the range 103 to 105. These values
represent mid-size to large parallel platforms.
• The checkpoint/recovery/downtime C = R = 10D, in seconds, varied in {60, 600}. In
practice, the small value of C is optimistic while the later is pessimistic; and the low value
of D = C

10 assumes that spares are immediately available.
• The duration of the application Tbase, in hours, varied in {1, 3, 10, 48}. Tbase corresponds
to the total length of the application, excluding checkpoints, if no failure occurs, when it is
run on p processors (weak scaling). This corresponds to the duration range of typical HPC
applications, lasting from one hour up to two days.
• The age of the platform Tplat, in days, varied in {0, 10, 30, 100, 365}. This is the time
from which we start using the failure traces: either from their very beginning if Tplat = 0,
or from a later time if Tplat > 0. The age of the platform plays an important role for
non-memoryless failure distributions. At the creation of the platform, all the processors
are new and without any failure history. After a failure, the processor that failed is
replaced/rejuvenated, but the other processors are not and keep their history. For instance,
if the processors experience infant mortality, we expect the number of failures to be much
higher with Tplat = 0, when all processors are new, than after a year of service (Tplat = 365).

Evaluation Methodology

For each possible choice of parameters, we generate 50 different failure scenarios. For each
failure scenario, the simulated makespan (duration of the whole execution) of both heuristics
is computed. We include the time spent to compute the segment sizes of NextStep. On
the plots, we report the average makespan over these 50 instances, together with the tenth
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Table II: Ratio of the execution time achieved by YoungDaly to that of NextStep for
the 8 failure distributions, when Tbase = 48 and Tplat = 100, and when aggregating all
results.

LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
2.51 0.5 0.5 0.7 0.7 1.5 9.34

Tbase =48, Tplat =100 1.89 (2.02) 1.15 (1.34) 1.04 (1.17) 1.04 (1.14) 1 (1.1) 1.01 (1.06) 1.03 (1.06) 1.02 (1.11)
Aggregated 2.48 (2.26) 1.44 (1.6) 1.24 (1.43) 1.13 (1.28) 1.07 (1.21) 1.01 (1.07) 1.04 (1.07) 1.03 (1.09)

and the ninetieth percentiles, as a function of the number of processors. The YoungDaly
heuristic is shown in red, and NextStep in blue. In all figures, the y-axis is the makespan
in hours, and the x-axis corresponds in most cases to the number of processors; both axes
are in log-scale.

In the tables, we report the relative performance of YoungDaly and NextStep.
More precisely, for each failure scenario, we compute the ratio of the makespan achieved
by YoungDaly divided by that of NextStep. Hence, NextStep achieves a better
makespan when the ratio is greater than 1; the larger the ratio, the higher the benefit
of using NextStep. To produce meaningful statistics on these ratios, we compute and
report their geometric mean and geometric standard deviation (in parentheses). For a
few configurations, YoungDaly does not succeed to complete the application before
the trace horizon. For these cases, in order to be able to compute statistics, we take
for the execution time of YoungDaly a lower bound, namely the time at which the
execution was stopped: h− Tplat. We checked that using this lower-bound or computing
the statistics while just discarding these configurations leads to almost identical results
(differences below 1%). The simulation code for all experiments is publicly available at http:
//perso.ens-lyon.fr/frederic.vivien/resilience/non-memoryless-checkpoint.

5.6.2 Results

We first compare the behavior of both checkpointing heuristics with the different probability
distributions on a particular set of parameters, before studying the impact of the different
parameters.

Comparison of Probability Distributions

Figure 5.1 compares the two heuristics for the different failure distributions, with a
checkpoint length of one or ten minutes, where the application length is 48 hours and
the platform is 100 days old. In this case, although the platform is not new, we see that
the NextStep heuristic is performing either better than or similarly to YoungDaly.
Moreover, the difference tends to be more important when the checkpoint length is higher
(bottom graphs). Recall that lower is better, since we plot execution times.

Although the MTBF of any individual processor is the same for all failure distributions
(µind = 10 years), the shape of these distributions significantly impacts the number of
failures that occur during the processing of the application, as well as the distribution of the
failures. For instance, if the processors tend to have infant mortality (which corresponds to
distributions on the left of the figure), and if the platform is not very old, then applications
may actually experience more failures than expected. This is the case for the LogNormal
distribution with k = 2.51 or Weibull with k = 0.5 in Figure 5.1. This explains the higher
execution times of YoungDaly for both heuristics.

Furthermore, YoungDaly does not checkpoint often enough, as it considers the global
long term MTBF of the platform instead of its actual instantaneous failure rate. This

http://perso.ens-lyon.fr/frederic.vivien/resilience/non-memoryless-checkpoint
http://perso.ens-lyon.fr/frederic.vivien/resilience/non-memoryless-checkpoint
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Table III: Ratio of the execution time achieved by YoungDaly to that of NextStep for
the 8 failure distributions for the different platform sizes and when averaging over all the
other parameters.

Platform LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
size 2.51 0.5 0.5 0.7 0.7 1.5 9.34

1000 1.34 (1.6) 1.14 (1.33) 1.08 (1.22) 1.03 (1.11) 1.01 (1.08) 1 (1.04) 1.01 (1.04) 1.01 (1.04)
1778 1.53 (1.82) 1.18 (1.41) 1.11 (1.3) 1.03 (1.12) 1.02 (1.1) 1 (1.04) 1.01 (1.04) 1.01 (1.04)
3162 1.88 (2.07) 1.26 (1.49) 1.16 (1.37) 1.05 (1.16) 1.02 (1.13) 1.01 (1.04) 1.02 (1.04) 1.01 (1.05)
5623 2.22 (2.28) 1.33 (1.54) 1.19 (1.38) 1.07 (1.19) 1.04 (1.14) 1.01 (1.06) 1.03 (1.04) 1.02 (1.06)

10000 2.72 (2.33) 1.38 (1.58) 1.23 (1.42) 1.09 (1.24) 1.06 (1.18) 1.01 (1.05) 1.03 (1.05) 1.02 (1.06)
17783 3.2 (2.33) 1.51 (1.66) 1.26 (1.44) 1.14 (1.29) 1.08 (1.22) 1.01 (1.07) 1.04 (1.06) 1.03 (1.07)
31623 3.74 (2.18) 1.72 (1.72) 1.36 (1.5) 1.22 (1.36) 1.12 (1.27) 1.02 (1.08) 1.07 (1.08) 1.05 (1.12)
56234 3.65 (2.02) 1.76 (1.63) 1.37 (1.5) 1.24 (1.35) 1.14 (1.3) 1.01 (1.1) 1.08 (1.09) 1.05 (1.13)

100000 3.5 (1.92) 1.85 (1.55) 1.41 (1.48) 1.33 (1.41) 1.15 (1.32) 1.01 (1.09) 1.08 (1.1) 1.07 (1.16)

Table IV: Ratio of the execution time achieved by YoungDaly to that of NextStep for
the 8 failure distributions as a function of platform age, with p = 56234 and Tbase = 48
and when averaging over the two checkpoint sizes. The last column provides an average
over all distributions.

Platform LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal Average
age 2.51 0.5 0.5 0.7 0.7 1.5 9.34

0 4.17 (2.06) 2.33 (1.48) 1.85 (1.44) 1.42 (1.38) 1.28 (1.32) 1.03 (1.08) 1.08 (1.07) 1.08 (1.07) 1.58 (1.78)
10 3.27 (2.26) 1.61 (1.66) 1.29 (1.46) 1.13 (1.29) 1.06 (1.2) 1.01 (1.06) 1.04 (1.06) 1.02 (1.06) 1.31 (1.71)
30 2.57 (2.17) 1.36 (1.55) 1.15 (1.32) 1.08 (1.21) 1.03 (1.16) 1 (1.06) 1.03 (1.06) 1 (1.06) 1.21 (1.58)

100 1.89 (2.02) 1.15 (1.34) 1.04 (1.17) 1.04 (1.14) 1 (1.1) 1.01 (1.06) 1.03 (1.06) 1.02 (1.11) 1.12 (1.42)
365 1.42 (1.72) 1.05 (1.17) 1.01 (1.1) 1.02 (1.11) 1 (1.08) 1 (1.06) 1.01 (1.07) 1.03 (1.13) 1.06 (1.27)

is because YoungDaly does not take the failure history into account. On the contrary,
NextStep does take that history into account. Therefore, it correctly estimates the
instantaneous failure rate. This results in a makespan that can be up to two times lower.

There are some distributions for which processors tend to be more robust at the
beginning because of their young age (distributions on the right of the figure). In this case,
when the platform is rather young, the number of failures is lower than what would be
expected regarding the MTBF of the platform. A good example is the Weibull distribution
with k = 1.5 in Figure 5.1. In that case, the actual instantaneous failure rate of the
platform is lower than expected, YoungDaly tends to over-checkpoint because it does
not take into account this actual failure rate, whereas NextStep adapts its checkpointing
strategy according to this history, showing once again its versatility. Yet this time, the
difference between heuristics is low, because the overall checkpointing cost remains small
in both cases.

Finally, if the platform actual instantaneous failure rate is in accordance with the
expected MTBF, as is the case for an Exponential distribution, YoungDaly is optimal.
We check that the performance of NextStep and YoungDaly are similar in this setting.

Altogether, these results show that NextStep always adapts to the actual instantaneous
failure rate, because it accounts for the failure history of processors. Its versatility makes
it a better strategy in all the cases: Table II summarizes the results, reporting the ratio of
the execution time achieved by YoungDaly to that of NextStep (geometric average,
geometric standard deviation). We point out that the difference is more significant for
the realistic probability distributions that have been advocated in the literature: namely
Weibull with a shape parameter smaller than one [57,138,139], and LogNormal [50,172].

The previous study was for long applications lasting 48 hours and Tplat = 100. We also
present the aggregated results over all application lengths and platform ages in Table II.
We observe that NextStep achieves even larger gains. For instance, for LogNormal 2.51,
the average ratio becomes 2.48, instead of 1.89 for the scenario with Tplat = 100.
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Table V: Ratio of the execution time achieved by YoungDaly to that of NextStep for
the 8 failure distributions for the two checkpoint durations (in seconds) when averaging
over all the other parameters.

Checkpoint LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
duration 2.51 0.5 0.5 0.7 0.7 1.5 9.34

60 2.18 (2.27) 1.33 (1.52) 1.17 (1.37) 1.08 (1.2) 1.03 (1.14) 1 (1.03) 1.02 (1.04) 1.01 (1.04)
600 2.83 (2.2) 1.56 (1.66) 1.3 (1.47) 1.18 (1.34) 1.11 (1.26) 1.02 (1.09) 1.06 (1.08) 1.05 (1.12)

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34
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Figure 5.2: Expected performance of both heuristics under all failure distributions, with
p = 56234 and Tbase = 48 hours.

Impact of the Different Parameters

Impact of the number of processors. It can be observed on Figure 5.1: the more
processors, the more failures, and the larger the makespan for both heuristics, as one could
have foretold. In most settings, the performance of YoungDaly worsens relatively to that
of NextStep when the number of processors increases (recall that the y-axis is in log-
scale). Again, this can be explained as follows: the difference between the estimated failure
rate and the instantaneous failure rate increases with the number of processors; hence,
worse results for YoungDaly. On the contrary, NextStep adapts to the instantaneous
failure rate. Table III provides a comprehensive summary of results for each platform size,
averaging over all other parameters. The table confirms this observation.
Impact of the age of the platform. The age of the platform has a great impact on
the performance of both heuristics, because the instantaneous failure rate of the platform
highly depends on it. When processors have a high infant mortality, a younger platform
leads to more errors and thus to a higher makespan for both heuristics. This can be
observed in Figure 5.2, especially on the leftmost graphs. On this figure, the x-axis is now
the age of the platform (in a linear scale). The number of processors is fixed to p = 56234
and the application execution time is Tbase = 48 hours.

For all distributions to the left of the Exponential, the newer the platform, the higher
the difference between the heuristics. Indeed, for younger platforms, processors are more
likely to fail due to infant mortality; and the older the platform, the more the instantaneous
failure rate resembles an Exponential. The same observation can be made for Weibull 1.5,
although in this case, this is due to low infant mortality. Indeed, with this distribution,
less failures occur for younger platforms.

LogNormal 9.34 behaves slightly differently. For this distribution, once again, Young-
Daly does not adapt to the instantaneous failure rate: either it underestimates the
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Figure 5.3: Expected performance of both heuristics under all failure distributions on a
365 day old platform, with C = 60 seconds.

instantaneous failure rate of a new platform and does not checkpoint enough, or it overesti-
mates the instantaneous failure rate of an old platform and checkpoints too much. On the
contrary, NextStep adjusts the checkpointing strategy for both cases. For intermediate
platform ages, both heuristics have close performance because this is where the instanta-
neous failure rate is closest to what is expected (µind

p ) by YoungDaly. Nevertheless, the
variance is different from that of the Exponential distribution, and NextStep achieves
slightly better performance.

Table IV summarizes these results. Most gains are obtained for young platforms.
NextStep always achieves a performance at least similar to YoungDaly, and much
better in many cases.
Impact of the checkpoint time. As expected, the larger the checkpoint cost, the larger
the execution time for both heuristics, as shown in Figure 5.1. Having a larger checkpoint
cost exacerbates the differences between both heuristics. Indeed, when checkpoints cost
more, both heuristics execute fewer checkpoints and thus lose more time at each failure. In
the end, this increases the performance loss due to a bad checkpointing strategy. Table V
summarizes the results for the two checkpoint costs (one minute or ten minutes).
Impact of the application length. Again, the larger the application length, the larger
the execution time for both heuristics, as shown in Figure 5.3. Moreover, the error bars are
much wider for a small workload, because having larger applications will smooth the impact
of each individual failure. Table VI summarizes results for the four application lengths by
aggregating all results. Overall, more gain can be achieved with smaller application lengths.
Indeed, relative to the lengths of applications, checkpoints are more expensive for small
applications. This conclusion is similar to that on the impact of the cost of checkpoints.
This phenomenon can be observed by comparing Tables V and VI, where the impact of
increasing the checkpoint cost is similar to the impact of decreasing the application length.

5.7 Conclusion
In this chapter, we have investigated checkpointing strategies to protect parallel applications
from non-memoryless failures. Indeed, the optimal strategy has been well studied when
failure IATs obey an Exponential distribution, but it is not well understood for non-
memoryless failure distributions. We have designed a general strategy, NextStep, which
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Table VI: Ratio of the execution time achieved by YoungDaly to that of NextStep
for the 8 failure distributions for the different application lengths (in hours) and when
averaging over all the other parameters.

application LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
length 2.51 0.5 0.5 0.7 0.7 1.5 9.34

1 2.36 (2.84) 1.42 (1.81) 1.25 (1.58) 1.12 (1.39) 1.07 (1.29) 1.02 (1.09) 1.05 (1.08) 1.04 (1.12)
3 2.83 (2.47) 1.52 (1.71) 1.29 (1.49) 1.15 (1.32) 1.09 (1.25) 1.01 (1.07) 1.04 (1.08) 1.03 (1.1)

10 2.63 (2) 1.47 (1.51) 1.25 (1.35) 1.14 (1.23) 1.07 (1.17) 1 (1.05) 1.04 (1.06) 1.03 (1.08)
48 2.16 (1.6) 1.35 (1.32) 1.16 (1.21) 1.11 (1.15) 1.05 (1.11) 0.997 (1.03) 1.03 (1.05) 1.02 (1.06)

maximizes the expected efficiency until the next failure. While it may not be optimal
because of side-effects towards the end of the application, we proved that this strategy is
asymptotically optimal for very long applications.

Instead of maximizing the expected efficiency until the next failure, traditional solutions
consist in checkpointing periodically according to the platform MTBF (YoungDaly strat-
egy). Our extensive simulation results show that this strategy works well for Exponential
distributions, but not for the other distributions, because it either underestimates or
overestimates the actual instantaneous failure rate. On the contrary, NextStep is always
at least as good as YoungDaly for any failure distribution, and significantly outperforms
it in many cases. Overall, our study demonstrates the interest of always using NextStep
instead of YoungDaly.

In particular, the difference between NextStep and YoungDaly is very important
for distributions whose infant mortality of the distribution is high, e.g. LogNormal 2.51 or
Weibull 0.5. The latter distributions have been advocated to model failures on real-life
platforms [57, 79, 138, 139,150, 151], which further evidences the impact and significance of
NextStep.

Future work will focus on checkpointing strategies for workflows composed of parallel
tasks with dependencies, instead of single parallel applications as in this study. The
criticality of some tasks in the workflow may lead to checkpoint them more often than
prescribed by the NextStep strategy tuned for a given non-memoryless failure distribution.



Chapter 6

Checkpointing Workflows à la Young/Daly Is
Not Good Enough

In Chapter 5, we have studied checkpointing strategies for non-memoryless failure dis-
tributions with a tightly-coupled preemptible application, and showed the limits of the
Young/Daly formula. In this chapter, we assume memoryless failure distributions, and
show that Young/Daly is again perfectible when workflows composed of multiple tasks
execute on a parallel platform, and we propose novel checkpointing strategies for this case.
Again, the objective is to minimize the expectation of the total execution time. For a
single task, the Young/Daly formula provides the optimal checkpointing period. However,
when many tasks execute simultaneously, the risk that one of them is severely delayed
increases with the number of tasks. To mitigate this risk, a possibility is to checkpoint
each task more often than with the Young/Daly strategy. But is it worth slowing each task
down with extra checkpoints? Does the extra checkpointing make a difference globally?
This chapter answers these questions. On the theoretical side, we prove several negative
results for keeping the Young/Daly period when many tasks execute concurrently, and
we design novel checkpointing strategies that guarantee an efficient execution with high
probability. On the practical side, we report comprehensive experiments that demonstrate
the need to go beyond the Young/Daly period and to checkpoint more often, for a wide
range of application/platform settings. This chapter corresponds to Publication [J2] (see
Chapter 9); some proofs that are omitted here for conciseness are available in the research
report [R2].

6.1 Introduction

Checkpointing is the standard technique to protect applications running on HPC (High
Performance Computing) platforms. Every day, the platform will experience a few fail-stop
errors (or failures; we use both terms indifferently). After each failure, the application
executing on the faulty processor (and likely on many other processors for a large parallel
application) is interrupted and must be restarted. Without checkpointing, all the work
executed for the application is lost. With checkpointing, the execution can resume from
the last checkpoint, after some downtime (enroll a spare to replace the faulty processor)
and a recovery (read the checkpoint).

Consider an application, composed of a unique task, executing on a platform whose
nodes are subject to fail-stop errors. Say the application executes for Tbase = 10 hours, can
checkpoint in C = 6 minutes, and experiences failures whose inter-arrival times follow an
Exponential distribution with mean µ = 4 hours. This means that a failure strikes the

120
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P Total number of processors
n Number of tasks

µind = 1
λ Individual processor’s MTBF

C Checkpoint time
R Recovery time
D Downtime

Tbase Task duration without failures
Nopt Number of segments of a task with Lambert strategy
NME Number of segments of a task with MinExp strategy
WME Segment length of a task with MinExp strategy

∆ max. number of tasks processed concurrently by the failure-free schedule

Table I: Summary of main notations for Chapter 6

application every 4 hours in expectation (see Section 6.2.1 for details). Assume a short
downtime D = 1 minute, and a recovery time R = C. How frequently should the task
be checkpointed so that its expected execution time E(T1-task) is minimized? There is a
well-known trade-off: taking too many checkpoints leads to a high overhead, especially
when there are few failures, while taking too few checkpoints leads to a large re-execution
time after each failure. Here is an illustration of this trade-off:

• If we take no checkpoint at all, then the expected execution time is E(T1-task) ≈ 46
hours (see Equation (5.1) in Section 6.2.5 to derive this value);

• If we take a checkpoint at the end of the execution, e.g., to save final results on
stable storage1, then E(T1-task) increases by about 76 minutes, which is surprising
given the short checkpoint time; but keep in mind that if a failure strikes during
the checkpoint, which happens with a low probability of 2.5%, then the 10 hours of
execution are wasted;

• If we checkpoint every hour (an application-agnostic approach that has been imple-
mented for several HPC platforms [80]), then we have 10 equal-length segments, each
of duration of 1 hour and followed by a checkpoint. We obtain E(T1-task) ≈ 13 hours.
Checkpointing every hour brings a huge benefit!

• Finally, if we checkpoint every 20 minutes, then we obtain E(T1-task) ≈ 14 hours.
Checkpointing too frequently becomes an overkill.

As seen in the previous chapter, the optimal checkpointing period is given by the
Young/Daly formula as WYD =

√
2µC [47, 173], where µ is the application MTBF (Mean

Time Between Failures, and C the checkpoint duration. In the example above with µ = 4
hours and C = 6 minutes, we obtain WYD ≈ 54 minutes. This value would be the optimal
checkpointing period for a task of infinite length. For a task of length Tbase = 10 hours,
the optimal solution (see Section 6.2.5) is to use either max(1, ⌊ Tbase

WYD
⌋) = 11 or ⌈ Tbase

WYD
⌉ = 12

equal-length segments, whichever leads to the smaller E(T1-task) . We find that the best
value is E(T1-task) ≈ 13 hours with 12 segments of length 50 minutes. The best value is
smaller by only 1 minute than the value with 11 segments, and by only 3 minutes than the
value with 10 segments, which shows the robustness of the approach.

We now move to a more complicated example and assume that 300 independent
applications have been launched concurrently on the platform. These 300 applications

1We make this assumption throughout the chapter for simplicity. We can easily extend the analysis
to the case where no checkpoint is taken at the end of the execution of a task. Changes are minimal and
results are quite similar. The details are omitted in this thesis but can be found in [R2, Appendix A]
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are identical to the application above: each has a unique task of length Tbase = 10 hours,
checkpoint duration C = 6 minutes, recovery time R = C, and the downtime is D = 1
minute. For the example to be more realistic in terms of failure rate, we assume that each
application executes with p = 30 processors. Hence, the platform has at least m = 9, 000
processors. Each processor is subject to failures following an Exponential distribution
Exp( 1

µind
), where µind is the individual processor’s MTBF. Since each task executes on

p = 30 processors, its MTBF is µ = µind
p . In other words, the MTBF of a task is inversely

proportional to the number of processors enrolled, which is intuitive in terms of failure
frequency (see [80] for a formal proof). We now assume that each task has 0.5% chances
to fail during execution; this setting corresponds to an individual MTBF µind such that
1− e

− pTbase
µind = 0.005, i.e., µind = 59, 850 hours (or 6.8 years). This is in accordance with

MTBFs typically observed on large-scale platforms, which range from a few years to a
few dozens of years [36]. For each task, the Young/Daly period is WYD =

√
2µind

p C ≈ 20
hours, and the expected execution time of a single task E(T1-task) is minimized either when
no checkpoint is taken or if a single checkpoint is taken at the end of the execution (see
Section 6.2.6). Recall that, as stated above, we assume that we always take a checkpoint
at the end of the execution of a task. Then, we derive that E(T1-task) ≈ 10.4 with a single
checkpoint taken at the end of each task (see Section 6.2.6 for details of this computation).

Is it safe to checkpoint each task individually à la Young/Daly? The problem comes
from the fact that the expectation E(Tall-tasks) of the maximum execution time over
all tasks, i.e., the expectation of the total time required to complete all tasks, is far
larger than the maximum of the expectations (which in the example have all the same
value E(T1-task)). When a single checkpoint is taken at the end of each task, we compute
that E(Tall-tasks) > 14, while adding four intermediate checkpoints to each task reduces
it down to E(Tall-tasks) < 12.75 (see Section 6.2.6 for details of the computation of both
numbers). Intuitively, this is because adding these intermediate checkpoints greatly reduces
the chance of re-executing any single task from scratch when it is struck by a failure, and
the probability of having at least one failed task increases with the number of tasks. Of
course, there is a penalty from the user’s point of view: Adding four checkpoints to each
task augments their length by 24 minutes, while the majority of them will not be struck
by a failure. In other words, users may feel that their response time has been unduly
increased, and state that it is not worth to add these extra checkpoints.

Going one step further, consider now a single application whose dependence graph is
a simple fork-join graph, made of 302 tasks: an entry task, 300 parallel tasks identical
to the tasks above (each task runs on p = 30 processors for Tbase = 10 hours, and is
checkpointed in C = 6 minutes) and an exit task. Such applications are typical of HPC
applications that explore a wide range of parameters or launch subproblems in parallel.
Now, the extra checkpoints make full sense, because the exit task cannot start before
the last parallel task has completed. The expectation of the total execution time is
E(Ttotal) = E(Tentry) +E(Tall-tasks) +E(Texit), where E(Tentry) and E(Texit) are the expected
durations of the entry and exit tasks, and E(Ttotal) is minimized when E(Tall-tasks) is
minimized. By diminishing E(Tall-tasks), we save 1.25 hour, or 75 minutes (and in fact
much more than that, because the lower and upper bounds for E(Tall-tasks) are loosely
computed).

This last example shows that the optimal execution of large workflows on failure-prone
platforms requires to checkpoint each workflow task more frequently than prescribed by the
Young/Daly formula. The main focus of this chapter is to explore various checkpointing
strategies, and our main contributions are the following:

• We provide approximation bounds for the performance of MinExp, a strategy à la
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Young/Daly that minimizes the expected execution time of each task, and for a novel
strategy CheckMore that performs more checkpoints than MinExp.

• Both bounds apply to workflows of arbitrary shape, and whose tasks can be either
rigid or moldable. In addition, we exhibit an example where the bounds are tight
and where CheckMore can be an order of magnitude better than MinExp.

• The novel CheckMore strategy comes in two flavors, one that tunes the number
of checkpoints as a function of the degree of parallelism in the failure-free schedule,
and a simpler one that does not require any knowledge of the failure-free schedule,
beyond a priority list to decide in which order to start executing the tasks.

• We report comprehensive simulations results based on WorkflowHub testbeds [62],
which demonstrate the significant gain brought by CheckMore over MinExp for
almost all testbeds.

The chapter is organized as follows. We first describe the model in Section 6.2. We
assess the performance of MinExp in Section 6.3; performance bounds are proven both
for independent tasks and for general workflows. Section 6.4 presents the novel strategy
CheckMore that checkpoints workflow tasks more often than MinExp, and analyzes its
theoretical performance. The experimental evaluation in Section 6.5 presents extensive
simulation results comparing both strategies. Finally, we discuss related work in Section 6.6,
and conclude in Section 6.7.

6.2 Model and Background

In this section, we first detail the platform and application models, and describe how
to practically deploy a workflow with checkpointed jobs. Then, we discuss the objective
function before providing background on the optimal checkpointing period for preemptible
tasks, and getting back to the example of the introduction. Key notations are summarized
in Table I.

6.2.1 Platform

We consider a large parallel platform with P identical processors, or nodes. These nodes
are subject to fail-stop errors, or failures. A failure interrupts the execution of the node and
provokes the loss of its whole memory. There are many causes of failures, including power
outages or network errors, and they cause the node to stall or crash [56, 139]. Consider
a parallel application running on several nodes: when one of these nodes is struck by a
failure, the state of the application is lost, and execution must restart from scratch, unless
a fault-tolerance mechanism has been deployed.

The classical technique to deal with failures makes use of a checkpoint-restart mechanism:
the state of the application is periodically checkpointed, i.e., all participating nodes take a
checkpoint simultaneously. This is the standard coordinated checkpointing protocol, which
is routinely used on large-scale platforms [39], where each node writes its share of the
application data to stable storage (checkpoint of duration C). When a failure occurs, the
platform is unavailable during a downtime D, which is the time to enroll a spare processor
that will replace the faulty processor [47, 80]. Then, all application nodes (including
the spare) recover from the last valid checkpoint in a coordinated manner, reading the
checkpoint file from stable storage (recovery of duration R). Finally, the execution is
resumed from that point on, rather than starting again from scratch. Note that failures
can strike during checkpoint and recovery, but not during downtime (otherwise we can
include the downtime in the recovery time).
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Throughout the chapter, we add a final checkpoint at the end of each application task,
to write final outputs to stable storage. Symmetrically, we add an initial recovery when
re-executing the first checkpointed segment of a task (to read inputs from stable storage)
if it has been struck by a failure before completing the checkpoint. These assumptions are
done here for simplicity but have a negligible impact. Some more details can be found in
[R2, Appendix A], and they are omitted from this thesis for conciseness.

We assume that each node experiences failures whose inter-arrival times follow an
Exponential distribution Exp(λ) of parameter λ > 0, whose PDF (Probability Density
Function) is f(x) = λe−λx for x ≥ 0. The individual MTBF of each node is µind = 1

λ . Even
if each node has an MTBF of several years, large-scale parallel platforms are composed of
so many nodes that they will experience several failures per day [36,61]. Hence, a parallel
application using a significant fraction of the platform will typically experience a failure
every few hours.

6.2.2 Application

We focus on HPC applications expressed as workflow graphs, such as those available in
WorkflowHub [62] (formerly Pegasus [154]). The shape of the task graph is arbitrary, and
the tasks can be parallel. We further assume that all tasks are preemptible, i.e., that we
can take a checkpoint at any instant.

For the theoretical analysis, we use workflows whose tasks can be rigid or moldable
parallel tasks. A moldable task can be executed on an arbitrary number of processors, and
its execution time depends on the number of processors allotted to it. This corresponds to
a variable static resource allocation, as opposed to a fixed static allocation (rigid tasks)
and a variable dynamic allocation (malleable tasks) [59]. Scheduling rigid or moldable
workflows is a difficult NP-hard problem (see the related work in Section 6.6) . We take as
input a failure-free schedule for the workflow and transform it by adding checkpoints as
follows. The failure-free schedule provides an ordered list of tasks, sorted by non-decreasing
starting times. Our failure-aware algorithms are list schedules that greedily process the
tasks (augmented with checkpoints) in this order: if task T is number i in the original
failure-free schedule, then T is scheduled after the i − 1 first tasks in the failure-aware
schedule, and no other task can start before T does. Hence, the processors allocated to T
in the failure-aware schedule may differ from those allocated in the failure-free schedule.
Enforcing the same ordering of execution of the tasks may be sub-optimal, but it is the
key to guarantee approximation ratios for the total execution time.

For the experiments, we restrict to workflows with uni-processor tasks, in accordance
with the characteristics of the workflow benchmarks from WorkflowHub.

6.2.3 Implementation in a Cluster Environment

This section briefly describes two approaches to deploy a workflow with checkpointed jobs
in a cluster environment.

The first approach is to use the job scheduler LSF [87] and to submit a set of jobs with
their dependencies: there are as many jobs as tasks in the workflow, and these jobs are
declared checkpointable. The system will relaunch a job after it is hit by a failure, from the
last checkpoint on and until success (see the ‘job failover’ section in [87]). If the failed job
was using j processors, then it releases j − 1 surviving processors right after the failure; if
there is at least one other processor available, the job can be rescheduled right away (jobs
usually get high priority when they are rescheduled after a failure). Otherwise, the failed
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job will have to wait and this waiting time, a.k.a. the re-submission time, is dependent on
the platform scheduling policy and on the availability of nodes.

A second approach is to submit a single job with p + q processors, where p processors
represent the allotment for the whole workflow and q processors are spare. The job uses a
master process that spans the workflow tasks and controls how their execution progresses;
the tasks are checkpointed using a standard software such as VeloC [37]. The spare
nodes are mutualized across the tasks either by using a fault tolerant MPI library like
ULFM [28, 58], or by having the master process launch each task as independent MPI
applications spanning on subgroups of the reservation, and re-launching them from their
last checkpoint on the surviving nodes and the spare nodes if some task is subject to failure.

In the first approach, the downtime would be non-constant, because it corresponds
to the re-submission time, while in the second approach with spares, the downtime can
be approximated as a constant. Regardless, all the results of this chapter are taken in
expectation, and they extend to using an average value of the downtime whenever a fixed
value is not appropriate.

Finally, we stress that this work is agnostic of system management policies and does
not modify any parameter specified by the user for the job allocations; we simply increase
the checkpoint frequency when needed, which results in shorter execution time and better
processor utilization for the workflow.

6.2.4 Objective Function
Given a workflow composed of a set of tasks, where each task executes on a given number
of processors, the objective function is to minimize the expected makespan of the workflow,
i.e., the expected total execution time to complete all tasks. We aim at determining the
best checkpointing strategy for the tasks that compose the workflow. This is the only
parameter that we modify in the execution: we keep the number of processors specified
by the user, and we even keep the order of the tasks as given by the user schedule. The
replacement of failed nodes, or the resubmission of failed tasks, is decided by the system
and does not depend upon the checkpointing policy, either à la Young/Daly, or one of our
new strategies.

As a result, minimizing the expected makespan of the workflow also maximizes processor
utilization of the platform, because the processors reserved by the user will be released
earlier on, and with no additional cost for the rest of the platform.

In the analysis of the checkpointing strategies, we focus on bounding the ratio, which
is defined as the expected makespan of the workflow (i.e., the expected total execution
time) divided by the makespan in the failure-free execution (no checkpoints nor failures),
given a user-specified schedule. Hence, the ratio shows the overhead induced by failures
and the checkpointing strategy: the closer to one, the better.

6.2.5 MinExp Checkpointing strategy
Following the results of Section 5.3.2, we define the MinExp strategy as follows:
Definition 3. The MinExp checkpointing strategy partitions a parallel task of length
Tbase, with p processors and checkpoint time C, into NME =

⌈
Tbase
WYD

⌉
equal-length segments,

each followed by a checkpoint, where WYD =
√

2C
pλ =

√
2µindC

p . Each segment is of length
WME = Tbase

NME
.

The experimental results in Section 6.5 show that using NME, whose value is based upon
the Young/Daly formula, leads to almost the same results as when using Nopt, whose value
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is based on the Lambert function. Because we are assuming the failure probability function
follow the exponential law MinExp is near-optimal in expectation for each individual task.

6.2.6 Back to the Example
In the introduction, we used the example of 300 identical tasks, each with Tbase = 10 hours,
p = 30, and C = 6 minutes. We also had D = 1 minute and R = C. We assume that each
task has 0.5% chances to fail during execution, which corresponds to an individual MTBF
µind such that 1− e

− pTbase
µind = 0.005. This equality leads to µind = 59, 850 hours. We derive

WYD =
√

2µindC/p ≈ 20 hours, hence NME = 1. With a single segment, we then compute
the optimal expected execution time E(T1-task) for each task as:

E(T1-task) =
(

µind
p

+ D

)
e

pR
µind

(
e

p
µind

(Tbase+C) − 1
)
≈ 10.4.

With 300 tasks executing concurrently, we compute that the expectation of the total time
required to complete all tasks is at least E(Tall-tasks) > 14, hence the ratio is 14

10 = 1.4.

Indeed, there is no failure at all with probability
(
e

− p(Tbase+C)
µind

)300
< 0.23, and in this case

the execution time is Tbase + C = 10.1. The other case, happening with a probability larger
than 0.77, is when at least one failure occurs in the process, and we will bound its expected
execution time if exactly one failure occurs, which is clearly lower than the actual expected
execution time. To that end, we compute the expected time lost before the failure occurs
when attempting to successfully execute for T = Tbase +C hours: E(Tlost(T )) =

∫∞
0 xP(X =

x|X < T )dx = 1
P(X<T )

∫ T
0 xpλe−pλxdx, with P(X < T ) = 1− e−pλT . Integrating by parts,

we derive that:
E(Tlost(T )) = 1

pλ
− T

epλT − 1 . (6.1)

In the example, we have T = Tbase + C = 10.1, p = 30, and λ = 1
µind

= − ln(0.995)
pTbase

.
Thus, if a failure strikes one of the tasks, the expected time lost is higher than 5.045
hours. After that, we also have to wait D > 0.016 hour of downtime and recover for a
duration of R = 0.1 hour. Overall, the expected execution time satisfies E(Tall-tasks) ≥
10.1 + 0.77× (E(Tlost(T )) + R + D) > 10.1 + 0.77× 5.161 > 14. Note that this lower bound
is far from tight.

When adding four intermediate checkpoints to each task, we obtain E(Tall-tasks) < 12.75.
Indeed, the tasks are now slightly longer (10.5 hours without failure), and they fail with
probability 1− e− 30×10.5

59850 < 0.006. Let Mf denote the maximum number of failures of any
tasks. Clearly, we have P{Mf ≥ k} ≤ 300×0.006k. The worst-case scenario for each failure
is when it happens just before the end of a checkpoint, and in that case we loose at most
2 + 0.1 + 0.1 + 0.017 < 2.22 for each failure (the length of a segment, the checkpoint time,
the recovery time and the downtime). Thus, E(Tall-tasks) < 10.5 + 2.22∑k≥1 P{Mf ≥ k} <

10.5 + 2.22 + 2.22× 300×∑k≥2 0.006k < 12.75, hence a ratio lower than 1.275, to compare
with 1.4 with the MinExp strategy. Note that this upper bound is far from tight. This
example shows that the optimal checkpointing strategy should not only be based upon the
task profiles, but also upon the number of other tasks that are executing concurrently.

6.3 Young/Daly for Workflows: the MinExp Strategy
In this section, we prove performance bounds for the MinExp checkpointing strategy,
which adds NME checkpoints to each task, thereby minimizing the expected execution time
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for each task. We start in Section 6.3.1 with independent tasks, first identical and then
arbitrary, that can be executed concurrently (think of a shelf of tasks). Next, we move to
general workflows in Section 6.3.2.

6.3.1 MinExp for Independent Tasks

We start with a word of caution: throughout this section, the proofs of the theorems and
the analysis of the examples are long and technically involved. We state the results and
provide proof sketches in the text below; all details are available in the WSM.

Identical Independent Tasks

First we consider identical independent tasks that can be executed concurrently. Recall
that P is the total number of processors. We identify a task T with its type (i.e., set of
parameters) T=(Tbase, p, C, R): length Tbase, number of processors p, checkpoint time C,
recovery time R.

Theorem 22. Consider n identical tasks of same type T=(Tbase,p,C,R) to be executed
concurrently on n× p ≤ P processors with individual failure rate λ = 1

µind
. The downtime

is D. For the MinExp strategy, NME is the number of checkpoints, and WME is the length
of each segment, as given by Definition 3. Let Psuc(R̃) = e−pλ(WME+C+R̃) be the probability
of success of a segment with re-execution cost R̃ (R̃ = 0 if no re-execution, or R̃ = R

otherwise), and Q∗ = 1
1−Psuc(R) . Let the ratio be rME

id (n, T ) = E(Ttot)
Tbase

, where E(Ttot) is the
expectation of the total time Ttot of the MinExp strategy. We have:

rME
id (n, T ) ≤

( logQ∗ (n)
NME

+ logQ∗(logQ∗(n)) + 1 + ln(Q∗)
12NME

+ 1
ln(Q∗)NME

)
×
(
1 + C+R+D

WME

)
+ C

WME
+ 1 + o(1).

(6.2)

Note that if n is small, the ratio holds by replacing all negative or undefined terms by 0.

Proof. First, a segment consists of the re-execution cost R̃, the work WME and the
checkpoint cost C. Since failures may occur during recovery or checkpoint, the total
processing time is WME + R̃ + C. Thus, given the exponential failure probability, we have
Psuc(R̃) = e−pλ(WME+C+R̃). The MinExp strategy is a rME

id (n, T )-approximation of the
base time Tbase = NMEWME, hence also of the optimal expected execution time. Let Mf

be the maximum number of failures over all tasks. We process NME segments of length
WME + C, and each failure in a segment incurs an additional time upper bounded by
D + R + WME + C. The expectation E(Ttot) of the total time Ttot of the MinExp strategy
is at most:

E(Ttot) ≤ Tbase + NMEC + E(Mf )(WME + C + R + D),

hence
rME

id (n, T ) = E(Ttot)
Tbase

≤ 1 + C

WME
+ E(Mf )

NME

(
1 + C + R + D

WME

)
. (6.3)

We continue with the computation of E(Mf ). We first study the random variable (RV)
Nf of the number of failures before completing a given task. We have identical segments
(s1, s2, ...) to process, each of them having a probability of success psi ∈ {Psuc(R), Psuc(0)},
and we stop upon reaching the NME successes. Hence, s1 is the first trial of the first
segment; if s1 succeeds, which happens with probability Psuc(0), s2 corresponds to the
first trial of the second segment, and succeeds with probability Psuc(0); otherwise, s2
corresponds to the second trial of the first segment, and succeeds with probability Psuc(R).
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We are interested in the number of failures Nf before having NME successes. Clearly, if N ′
f

represents the RV for the same problem except that all segments have the same probability
of success Psuc(R), all segments are less likely or equally likely to succeed, and

∀x,P{N ′
f ≤ x} ≤ P{Nf ≤ x}. (6.4)

Now, let M ′
f be the RV equal to the maximum of n IID (Independent and identically

Distributed) RVs following N ′
f . Equation (6.4) leads to E(M ′

f ) ≥ E(Mf ). Each N ′
f is a

negative binomial RV with parameters (NME, Psuc(R)). We refine the analysis from [70] by
bounding the sum of some Fourier coefficients. The details are technicals and not required
for this thesis, but can be found in [R2, Appendix A] to show that:

E(M ′
f ) ≤ logQ∗(n)+(NME−1) logQ∗(logQ∗(n))+NME +

( ln(Q∗)
12 + 1

ln(Q∗)

)
+o(1). (6.5)

Recall that Q∗ = 1
1−Psuc(R) . Here, we assume for convenience that logQ∗(logQ∗(n)) ≥ 0, but

otherwise we can replace it by 0 and the ratio holds. Plugging the bound of Equation (6.5)
back into Equation (6.3) leads to Equation (6.2).

We provide an informal simplification of the bound in Equation (6.2). Under reasonable
settings, we have C, D, R ≪ µind, and the probability of success Psuc of each segment is
pretty high, hence Q∗ > e. For this reason, we have (i) ∀x, logQ∗(x) < ln(x); (ii) C+R+D

WME
≈

0; (iii) ln(Q∗)
12NME

≤ 1; and (iv) 1
ln(Q∗)NME

≈ 0. Altogether, the bound simplifies to:

rME
id (n, T ) ≤ ln(n)

NME
+ ln(ln(n)) + 3 + o(1). (6.6)

Here is a more precise statement (again, the proof just uses simple maths and is omitted
here, but it can be found in [R2, Appendix H]):

Proposition 2. We have rME
id (n, T ) ≤ 4

5

(
ln(n)
NME

+ ln(ln(n))
)

+3 + 3
NME

+ o(1) under the
following assumptions:

• A checkpoint of length C succeeds with probability at least 0.99;
• D ≤ R ≤ C;
• A segment of length WME fails with probability at least 10−10;
• Tbase > 2(C + R + D) (otherwise the tasks are so small that no checkpoints are

needed).

Tightness of the bound rME
id (n, T ) of Theorem 22

Consider a set T of n identical uni-processor tasks with Tbase = 2K − 1, C = 1, D = R = 0
and λ = ln(1+ 1

2K
)

2K so that e−λ(Tbase+C) = 2K
2K+1 . Here, K ≥ 2 is fixed, and n is the variable.

We assume that all tasks execute in parallel, i.e., P ≥ n. Under these settings, we show
that rME

id (n, T ) = Θ(ln(n)), thereby showing the asymptotical tightness of the bound given
in Theorem 22.

Arbitrary independent tasks

We now proceed with different independent tasks that can be executed concurrently:
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Theorem 23. Consider a set T of n tasks. The i-th task has profile Ti = (T i
base, pi, Ci,Ri).

These tasks execute concurrently, hence
∑n

i=1 pi ≤ P . The individual fault rate on each
processor is λ. The downtime is D. For the MinExp strategy, N i

ME is the number of check-
points, and W i

ME is the length of each segment, for task i. Let P i
suc(Ri) = e−piλ(W i

ME+Ci+Ri)

be the probability of success of a segment of task i with re-execution cost Ri, and
Q∗

i = 1
1−P i

suc(Ri) . Then, the MinExp strategy is a rME(n, T )-approximation of the failure-
free execution time, hence also of the optimal expected execution time, where:

rME(n, T ) ≤ 2 max
1≤i≤n

(
rME

id (n, Ti)
)
. (6.7)

The key element of this proof is a new result (to the best of our knowledge) on
expectations of RVs:

Theorem 24. Let (X1, . . . , Xn) be n independent positive RVs with finite expectation, and
let Y = max(X1, . . . , Xn). Let Zi be the maximum of n IID RVs Xi,j with the same law
as Xi (thus, Zi = max(Xi,1, Xi,2, . . . , Xi,n)).
Then, E(Y ) ≤ 2 maxi(E(Zi)).

Proof. The key idea is to build a worse case scenario, and then show that any set of positive
RVs may be transformed to this worse case scenario using "algorithmic steps" that may
only increase E(Y )

2 maxi(E(Zi)) . The proof is however very long and is kept in Appendix A, in
case the reviewers want to take a quick glance at it.

In fact, Theorem 24 allows us to directly extend Theorem 22 to Theorem 23. For all i,
let Ti be the Random Variable representing the execution time of the task with profile Ti

and let Xi = Ti

T i
base

. Clearly, the Xi’s are independent and positive, so Y = max(X1, . . . , Xn)
matches the condition of Theorem 23. Furthermore, for any given i, we suppose that we
were to schedule a shelf of n identical tasks of type Ti in which Ti,j is the Random Variable
representing their execution time and Xi,j = Ti,j

T i
base

. Then, clearly, the Xi,j ’s are IID and
follow the same law as Xi, thus we can define Zi = maxj(Xi,j) to reach the conditions of
Theorem 24. Finally, the two following equations hold:

rME(n, T ) = E
(

maxi

(
Ti

maxi(T i
base)

))
≤ E

(
maxi

(
Ti

T i
base

))
= E(Y )

∀i, rME
id (n, Ti) = E

(
max

j

(
Ti,j

T i
base

))
= E

(
max

j
(Xi,j)

)
= E(Zi)

We can then apply Theorem 24 and obtain the result:

rME(n, T ) ≤ E(Y ) ≤ 2 max
i

(E(Zi)) = 2 max
1≤i≤n

(
rME

id (n, Ti)
)
. (6.8)

Similarly to identical tasks, under reasonable assumptions, we derive a simplified bound:

rME(n, T ) ≤ 2 ln(n)
min1≤i≤n(N i

ME) + 2 ln(ln(n)) + 6 + o(1).
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6.3.2 MinExp for Workflows
We proceed to the study of MinExp for a workflow of tasks, with task dependencies. We
build upon the results for identical tasks (see Equation (6.2)), that can be reused for each
task of the workflow.

Theorem 25. Let S be a failure-free schedule of a workflow W of n tasks. The i-th task has
profile Ti = (T i

base, pi, Ci,Ri). The individual fault rate on each processor is λ. The downtime
is D. Let ∆ be the maximum number of tasks processed concurrently by the failure-free
schedule S at any instant. Then, the MinExp strategy is a rME(∆,W)-approximation of
the failure-free execution time, where

rME(∆,W) ≤ 2 max
1≤i≤n

rME
id (∆, Ti). (6.9)

In other words, the degree of parallelism ∆ of the schedule becomes the key parameter
to bound the performance of the MinExp strategy, rather than the total number n of
tasks in the workflow. Similarly to independent tasks, under reasonable assumptions, we
derive a simplified bound:

rME(∆,W) ≤ 2 ln(∆)
min1≤i≤n(N i

ME) + 2 ln(ln(∆)) + 6 + o(1).

Proof. As stated in Section 6.2.2, we enforce the same ordering of starting times in the
initial schedule S and in the failure-aware schedule S’ returned by MinExp: if task i
starts after task j in S, the same will hold in S’. However, we greedily start a task as
soon as enough processors are available, which may result in using different processors
for a given task in S and S’. Consider an arbitrary failure scenario, and let Ti be the exe-
cution time of task i in S’. Let T (S′) be the total execution time of S’. We want to prove that:

E(T (S′)) ≤ 2 max
1≤i≤n

rME
id (∆, Ti)T (S), (6.10)

where T (S) is the (deterministic) total execution time of S.
To analyze S’, we partition S into a series of execution slices, where a slice is determined

by two consecutive events. An event is either the starting time or the ending time of a
task. Formally, let si be the starting time of task i in S, and ei be its ending time. We let
{tj}0≤j≤K = ∪n

i=1{si, ei} denote the set of events, labeled such that ∀j ∈ [0, K−1], tj < tj+1.
Note that we may have K + 1 < 2n if two events coincide. We partition S into K slices
Sj , 1 ≤ j ≤ K, which are processed sequentially. Slice Sj spans the interval [tj−1, tj ]. In
other words, the length of Sj is tj − tj−1. Let Bj ⊂ W denote the subset of tasks that
are (partially or totally) processed during slice Sj ; note that ∆ = maxj∈[1,K] |Bj |. Finally,
for a task i in Bj , let ai,j be the fraction of the task that is processed during Sj (and let
ai,j = 0 if i /∈ Bj).

As an example, we consider a workflow W consisting of n = 4 independent tasks, with
T 1

base = 6, T 2
base = 4, T 3

base = 8 and T 4
base = 9. We have P = 4, p1 = p2 = 2 and p3 = p4 = 1.

The optimal failure-free schedule S is shown in Figure 6.1, and has length 10. Note that
task i is represented by its profile Ti. There are five time-steps where an event occurs,
thus K = 4 and {tj}0≤j≤K = {0, 6, 8, 9, 10}. Therefore, S is decomposed into four slices,
S1 running in [0, 6], S2 in [6, 8], S3 in [8, 9], and S4 in [9, 10]. The (ai,j)i∈[1,n],j∈[1,K] are
represented in brackets. Finally, B1 = {1, 3, 4}, B2 = {2, 3, 4}, B3 = {2, 4}, B4 = {4},
and ∆ = 3. We use the decomposition into slices to define a virtual schedule Svirt, which
consists of scaling the slices Sj to account for failures in S’. For each slice Sj , the scaling
is the largest ratio Ti

T i
base

over all tasks i ∈ Bj . Hence, Svirt is composed of K slices Svirt
j
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Figure 6.1: Example for the proof of Theorem 25: Schedule S.

whose length is T (Svirt
j ) =

(
maxi∈Bj

Ti

T i
base

)
T (Sj). Within each slice Svirt

j , for each task
i ∈ Bj , we execute the same fraction ai,j of task i as in the original schedule S, for a
duration ai,jTi, so that some tasks in Bj may not execute during the whole length of Svirt

j ,
contrarily to during the initial schedule S. The (ai,j)i∈[1,n],j∈[1,K] for the example in the
proof of Theorem 25 are given by

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 =


1 0 0 0
0 1/2 1/4 1/4

3/4 1/4 0 0
2/3 2/9 1/9 0



The total execution time of Svirt is ∑K
j=1 T (Svirt

j ). From Theorem 23, we directly have
that

E(T (Svirt
j )) ≤ 2 maxi∈Bj (rME

id (|Bj |, Ti))T (Sj)
≤ 2 max1≤i≤n(rME

id (∆, Ti))T (Sj)

The second inequality holds because |Bj | ≤ ∆ and because rME
id increases when the number

of tasks increases. Finally,

E(T (Svirt)) = ∑K
j=1 E(T (Svirt

j ))
≤ 2 max1≤i≤n(rME

id (∆, Ti))
∑K

j=1 T (Sj),

where ∑K
j=1 T (Sj) = T (S).

Finally, here is the proof by induction to prove that no task starts nor ends later in S’
than in Svirt. Recall that the key element is that the ordering of starting times from S is
preserved in both Svirt and S′.

• The first task starts at time 0 for both Svirt and S′, and may be suspended in Svirt,
hence its ending time cannot be larger in S′;

• Let i > 1, and suppose the induction hypothesis holds for the first i− 1 tasks. Let
x be the starting time of task i in schedule Svirt. By definition of the slices in Svirt,
when a task starts, all the unfinished tasks are running concurrently; thus there are
enough processors to process task i and all the unfinished tasks among the first i− 1
ones. Since the ending time of all these unfinished tasks may not be larger in S′,
there are enough processors to start task i in S’ at time x if it has not started yet.
Because we try to start the i-th task in S’ before the ones that are started later in S,
we will indeed not start task i later in S′ than in Svirt. And because task i will not
be suspended in S′, it will not end later either.

This concludes the induction and the proof of Theorem 25.
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Figure 6.2: Schedules Svirt (top) and S′ (bot.) for the example.

Going back to the example, assume that T1 = 15, T2 = 4, and T3 = T4 = 12 in S’. Then,
we obtain the task with the largest ratio Ti

T i
base

for each slice: task 1 for S1, task 3 for S2,
task 4 for S3, and task 2 for S4. The schedule Svirt is shown at the top of Figure 6.2 and
has length T (Svirt) = 20 + 1/3 (and the tasks with largest ratio in each slice are hatched).
Finally, the schedule S′ is shown at the bottom of Figure 6.2, and T (S′) = 16.

We point out that Theorem 25 applies to workflows with arbitrary dependences, and
with rigid or moldable tasks. The bound given for rME(∆,W) is relative to the execution
time of the failure-free schedule. If this failure-free schedule is itself a ρ-approximation of
the optimal solution, then we have derived a rME(∆,W)× ρ approximation of the optimal
solution.

6.4 The CheckMore Strategies

The previous section has shown that, in the presence of failures, the ratio of the actual
execution time of a workflow over its failure-free execution time, critically depends upon
the maximum degree of parallelism ∆ achieved by the initial schedule.

In this section, we introduce CheckMore strategies, which checkpoint workflow tasks
more often than MinExp, with the objective to decrease the ratio above. The number of
checkpoints for each task becomes a function of the degree of parallelism in the execution.
We define SafeCheck(δ), the number of checkpoints for a task, given a parameter δ
(typically the degree of parallelism):

Definition 4. SafeCheck(δ) partitions a parallel task of length Tbase, with p processors
and checkpoint time C, into NSC(δ) =

⌈
(ln(δ)+1)Tbase

WYD

⌉
equal-length segments, each followed by

a checkpoint, where WYD =
√

2C
pλ =

√
2µindC

p . Each segment is of length WSC(δ) = Tbase
NSC(δ) .

Because NSC(1) = NME, MinExp corresponds to applying SafeCheck (1) to all tasks.
The key building block of the analysis of MinExp is Theorem 22 for identical independent
tasks. The good news is that Theorem 22 holds for any checkpointing strategy, not just
for the Young/Daly approach, and can easily be extended if each task is checkpointed
following SafeCheck(δ):
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Theorem 26.Consider n identical tasks of same type T=(Tbase,p,C,R) to be executed
concurrently on n× p ≤ P processors with individual failure rate λ = 1

µind
. The downtime

is D. For the SafeCheck(δ) strategy, NSC (δ) is the number of checkpoints, and WSC (δ)
is the length of each segment, as given by Definition 3. Let Psuc(R̃) = e−pλ(WSC+C+R̃) be
the probability of success of a segment with re-execution cost R̃ (R̃ = 0 if no re-execution,
or R̃ = R otherwise), and Q∗ = 1

1−Psuc(R) . Let rSC
id (δ, n, T ) = E(Ttot)

Tbase
, where E(Ttot) is the

expectation of the total time Ttot of the SafeCheck(δ) strategy. Then:

rSC
id (δ, n, T ) ≤

( logQ∗ (n)
NSC(δ) + logQ∗(logQ∗(n)) + 1 + ln(Q∗)

12NSC(δ) + 1
ln(Q∗)NSC(δ)

)
×
(
1 + C+R+D

WSC(δ)

)
+ C

WSC(δ) + 1 + o(1).
(6.11)

Note that if n is small, the ratio holds by replacing all negative or undefined terms by 0.

To prove this theorem, we reuse the proof of Theorem 22: we just need to replace NME
by NSC(δ), and WME by WSC(δ).

The idea behind SafeCheck(δ) is the following: when processing δ jobs in parallel,
the expected maximum number of failures given by Equation (6.5) eventually grows
proportionally to its first term, logQ∗(δ), which is Θ(ln(δ)). To accommodate this growth,
we reduce the segment length by a factor ln(δ), so that the total failure-induced overhead
does not increase much. This is exactly what SafeCheck(δ) does, when δ tasks are
processed in parallel. Similarly, the first term logQ∗ (n)

NME(n) of the ratio in Equation (6.2) was
dominant for MinExp, while it becomes almost constant in Equation (6.11). To that
extent, CheckMore generalizes this idea to general workflows using SafeCheck(δ) as a
subroutine. We provide two variants of CheckMore:

Definition 5. Consider a failure-free schedule S for a workflow W of n tasks:
• The CheckMore algorithm applies SafeCheck(∆i) to each task i, where ∆i is the

largest number of tasks that are executed concurrently during the processing of task i.
• The BasicCheckMore algorithm applies SafeCheck(min(n, P )) to all tasks,

where P is the number of processors.

The main reason for introducing BasicCheckMore is that we do not need to know
the maximum degree ∆ of parallelism in S to execute BasicCheckMore (because we
always have ∆ ≤ min(n, P ). In fact, we do not even need to know the failure-free schedule
for BasicCheckMore (contrarily to CheckMore), we just need an ordered list of tasks
and to greedily start them in this order.

Theorem 27. Let S be a failure-free schedule of a workflow W of n tasks. The i-th
task has profile Ti = (T i

base, pi, Ci,Ri). Let ∆i be the maximum number of tasks processed
concurrently to task i by S at any instant, and let ∆ = max1≤i≤n ∆i. Then CheckMore
is a rCM ((∆i)i≤n,W)-approximation of the failure-free execution time in expectation:

rCM ((∆i)i≤n,W) ≤ 2 max
1≤i≤n

rSC
id (∆i, ∆i, Ti). (6.12)

And BasicCheckMore is a rBCM (min(n, P ),W)-approximation of the failure-free execu-
tion time in expectation:

rBCM (min(n, P ),W) ≤ 2 max
1≤i≤n

rSC
id (min(n, P ), ∆, Ti). (6.13)

Proof. To prove this theorem, we just need to adapt the proof of Theorem 25. In fact,
the analysis in Theorem 25 did not depend upon the checkpoint strategy, thus using
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the same slices (Sj)j∈[1,K] and virtual schedule Svirt, we have for both CheckMore and
BasicCheckMore:

E(T (S′)) ≤ E(T (Svirt)) =
K∑

j=1
E(T (Svirt

j )). (6.14)

Again, for all slices Sj and all tasks i ∈ Bj (recall that Bj is the set of tasks in slice Sj),
we have Xi = Ti

T i
base

. Then, the scaling of Sj ,
T (Svirt

j )
T (Sj) , corresponds to maxi∈Bj Xi. We

then can safely use Theorem 24; assuming that each task i is checkpointed according to
SafeCheck(δi), we obtain:

E(T (Svirt
j ))

T (Sj) ≤ 2 maxi∈Bj

(
rSC

id (δi, |Bj |, Ti)
)

≤ 2 max1≤i≤n

(
rSC

id (δi, ∆i, Ti)
) (6.15)

Finally, using Equation (6.15), Equation (6.14), and ∀i, ∆i ≤ ∆, we obtain for Check-
More and BasicCheckMore respectively:

E(T (S′)) ≤ 2 max
1≤i≤n

(
rSC

id (∆i, ∆i, Ti)
) K∑

j=1
T (Sj);

E(T (S′)) ≤ 2 max
1≤i≤n

(
rSC

id (min(n, P ), ∆, Ti)
) K∑

j=1
T (Sj).

Note that for all i, ∆i ≤ ∆ and ∆i ≤ min(n, P ), so it is extremely likely that the
bound obtained for rCM is smaller than the one obtained for rBCM . To illustrate the
difference between the bounds of CheckMore and MinExp, we have also shown in this
work that for a shelf of n identical uni-processor tasks running in parallel, rCM

id is an order
of magnitude lower than rME

id under reasonable assumptions and when n is large enough.
Again, the details are not needed for this thesis (see [R2, Appendix H]).

We conclude this section by returning to the example of Section 6.3.1, and showing that
CheckMore (equivalent to BasicCheckMore in this case) can be arbitrarily better than
MinExp, for reasonable tasks when their number is large enough. This is not surprising
because the larger n is, the more important it is to checkpoint more. Therefore, we omit
the proof in this thesis (but it can be found in [R2, Appendix G.2]).

Proposition 3. Consider a set T of n(K) identical uni-processor tasks with type T =
(2K − 1, 1, 10), D = 0 and λ(K) = ln(1+ 1

2K
)

2K . We assume that all tasks execute in parallel,
i.e., P ≥ n(K). When letting n(K) =

⌊
e
√

2/λ(K)−1⌋ (hence ln(n(K)) = Θ(K)), and K

tending to infinity, we have rME(n(K), T )=Θ
(

K
ln(K)

)
and rBCM (n(K), T )=Θ(1).

6.5 Experimental Evaluation
We evaluate the performance of the different checkpointing strategies through simulations.
We describe the simulation setup in Section 6.5.1, present the main performance comparison
results in Section 6.5.2, and assess the impact of different parameters on the performance in
Section 6.5.3. We further provide some performance statistics in Section 6.5.4 and conclude
with a brief summary in Section 6.5.5. Our in-house simulator is written in C++ and is
publicly available for reproducibility purpose in https://graal.ens-lyon.fr/~yrobert/
simulator.zip.

https://graal.ens-lyon.fr/~yrobert/simulator.zip
https://graal.ens-lyon.fr/~yrobert/simulator.zip
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6.5.1 Simulation Setup

We evaluate and compare the performance of the three checkpointing strategies MinExp,
CheckMore and BasicCheckMore. All strategies are coupled with a failure-free
schedule computed by a list scheduling algorithm (see below). The workflows used for
evaluation are generated from WorkflowHub [62] (formerly Pegasus [154]), which offers
realistic synthetic workflow traces with a variety of characteristics and they have been shown
to accurately resemble the ones from real-world workflow executions [6,62]. Specifically,
we generate the following nine different types of workflows offered by WorkflowHub that
model applications in various scientific domains:

• Blast: a bioinformatics workflow for searching biological sequence databases and
identifying amino-acid or DNA sequences that resemble query sequences;

• Bwa: a bioinformatics workflow for performing DNA sequence alignment using the
"Burrows-Wheeler Aligner";

• Cycles: an agroecosystem workflow for conducting simulations of crop production
and water, carbon and nitrogen cycles in the soil-plant-atmosphere continuum;

• Epigenomics: a bioinformatics workflow for automating various operations in ge-
nome sequence processing;

• Genome: a bioinformatics workflow for identifying mutational overlaps to provide
statistical evaluation of potential disease-related mutations;

• Montage: an astronomy workflow for analyzing multiple input images to create
custom mosaics of the sky;

• Seismology: a seismology workflow for performing seismogram deconvolutions to
estimate earthquake source time functions;

• SoyKB: a bioinformatics workflow for performing large-scale next-generation se-
quencing of soybean lines within the Soybean Knowledge Base (SoyKB);

• Sras: a bioinformatics workflow for downloading and aligning data in the Sequence
Read Archive (SRA).

Each trace defines the general structure of the workflow, whose number of tasks and
total execution time can be specified by the user2. All tasks generated in WorkflowHub
are uni-processor tasks.

In the experiments, we evaluate the checkpointing strategies under the following
parameter settings:

• Number of processors: P = 214 = 16384;
• Checkpoint/recovery/down time: C = R = 1 min, D = 0;
• MTBF of individual processor: µind = 10 years;
• Number of tasks of each workflow: n ≈ 50000.
Furthermore, the total failure-free execution times of all workflows are generated such

that they complete in 3-5 days. This is typical of the large scientific workflows that often
take days to complete as observed in some production log traces [5, 127]. To demonstrate
the robustness of our evaluation, we also generate small workflow traces that take less
than a day (i.e., 15 - 24 hours) to complete. This is roughly one fifth of the size of large
workflows. As a result, to keep the average number of failures per task the same, we also
scale the individual MTBF from 10 years to 2 years, while all the other parameters are
kept the same. Section 6.5.2 will present the comparison results of different checkpointing
strategies under the above parameter settings. In Section 6.5.3, we will further evaluate
the impacts of different parameters (i.e., P , C, µind and n) on the performance.

2Note that the workflow generator may offer a different number of tasks so as to guarantee the structure
of the workflow. The difference, however, is usually small.
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The evaluation methodology is as follows: for each set of parameters and each type
of workflow trace, we generate 30 different workflow instances and compute their failure-
free schedules. We use the list scheduling algorithm that orders the tasks using the
Longest Processing Time (LPT) first policy: if several tasks are ready and there is at least
one processor available, the longest ready task is assigned to the available processor to
execute. Since all tasks are uni-processor tasks, LPT is known to be a 2-approximation
algorithm [71]; also, LPT is known to be a good heuristic for ordering the tasks [108].
This order of execution will be enforced by all the checkpointing strategies. For each
workflow instance, we further generate 50 different failure scenarios. Here, a failure scenario
consists of injecting random failures to the tasks by following the Exponential distribution
as described in Section 6.2.1. The same failure scenario will then be applied to each
checkpointing strategy to evaluate its execution time for the workflow. We finally compute
the ratio of a checkpointing strategy under a particular failure scenario as T

Tbase
, where

Tbase is the failure-free execution time of the workflow, and T is the execution time under
the failure scenario. The statistics of these 30× 50 = 1500 experiments are then compared
using boxplots (that show the mean, median, and various percentiles of the ratio) for each
checkpointing strategy. The boxes bound the first to the third quantiles (i.e., 25th and
75th percentiles), the whiskers show the 10th percentile to the 90th percentile, the black
lines show the median, and the stars show the mean.

6.5.2 Performance Comparison Results

Figure 6.3 (left) shows the boxplots of the three checkpointing strategies in terms of their
ratios for the nine different workflows, when their failure-free execution time is 3-5 days
(i.e., large workflows).

First, we observe that CheckMore and BasicCheckMore have very similar perfor-
mance, which in most cases are indistinguishable. This shows that BasicCheckMore
offers a simple yet effective solution without the need to inspect the failure-free schedule,
thus making it an attractive checkpointing strategy in practice. Also, both versions of
CheckMore perform significantly better and with less variation than MinExp, except for
the few workflows where the ratios of all strategies are very close to 1 (e.g., Bwa, SoyKB,
Sras). Overall, the 90th percentile ratio of CheckMore never exceeds 1.08, whereas
that of MinExp is much higher for most workflows and reaches almost 1.5 for Montage.
Similarly, the average ratio of CheckMore never exceeds 1.03, while that of MinExp is
again significantly higher and reaches more than 1.2 for Seismology and Montage.

We now examine a few workflows more closely to better understand the performance.
For Sras, MinExp is slightly better than CheckMore, but the ratios of all strategies
are near optimal (i.e., <1.003). In this workflow, very few tasks are extremely long while
many others are very short, and there are very few dependencies among them. Thus,
failures hardly ever hit the long tasks due to their few number, while failures that hit short
tasks have little impact on the overall execution time. This is why the ratio is so small
for all strategies. It also explains why MinExp outperforms CheckMore: although the
maximum degree of parallelism is important, only a few tasks matter and they should be
checkpointed à la Young/Daly to minimize their own expected execution time, and thereby
that of the entire workflow. SoyKB and Bwa also have very low ratios. In the case of
SoyKB, there is just not enough parallelism during the majority of the execution time, so
all strategies are making reasonable checkpointing decisions, with CheckMore performing
slightly better for taking into account this small parallelism. Bwa, on the other hand, has
two source tasks that must be executed first and two sink tasks that must be executed
last. Among them, one source task and one sink task are extremely long, so failures in
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Figure 6.3: Performance (ratio) comparison of the three checkpointing strategies for the
nine different workflows, with large workflows (i.e., failure-free execution time of 3-5 days)
shown on the left, and small workflows (i.e., failure-free execution time of 15-24 hours) on
the right.

other tasks have little impact (as in the case of Sras). Yet the small tasks are not totally
negligible here, because the dominant sink task must be processed after all of them, so it
is still worth to optimize these tasks with CheckMore, which explains why it is slightly
better than MinExp.

For all the other workflows, CheckMore performs better than MinExp by a significant
margin. This is due to CheckMore’s more effective checkpointing strategies given the
specific structure of these workflows. For instance, Montage has some key tasks that
are dominant, so a failure that strikes most of the other tasks does not impact the overall
execution time. This is similar to the case of Sras and explains why, for all strategies, the
first quantile of the ratio is very low (i.e., around 1). However, when a failure does strike
one of the key tasks, the execution time will be heavily impacted. The difference with
Sras is that Montage contains more key tasks that can run in parallel, so it is much more
likely that one of them will fail, which is why checkpointing them with CheckMore is
better. Next, Blast and Seismology have some source and sink tasks (as Bwa), which,
however, are not so dominant in length, making the difference between CheckMore and
MinExp higher even from the first quantile. Other workflows also have similar structures,
which eventually contribute to the better performance of CheckMore over MinExp.

Figure 6.3 (right) further shows the comparison results for the nine workflows when
their failure-free execution time is 15-24 hours (i.e., small workflows). We can observe
that the results are very similar to those for large workflows, which demonstrates that the
relative performance of the three checkpointing strategies is not affected by the size of the
workflows, provided that the average number of failures per task remains the same. Thus,
in the subsequent experiments, we will only report results for the large workflows.

6.5.3 Impact of Different Parameters

We now study the impact of different parameters on the performance of the checkpointing
strategies. In each set of experiments below, we vary a single parameter while keeping the
others fixed at their base values. The results are shown in Figures 6.4-6.7, where the scale
of the y-axis is kept the same for ease of comparison. For some figures with really small
values, zoomed-in plots are also provided on the original figure for better viewing.

Impact of Number of Processors (P ). We first assess the impact of the number of
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Figure 6.4: Impact of the number of processors (P ) on the performance of the checkpointing
strategies for different workflows.

processors, which is varied between 4096 and 50000, and the results are shown in Figure 6.4.
In general, increasing the number of processors increases the ratio. This corroborates our
theoretical analysis, because for most types of workflows, having more processors means
having a larger ∆ and thus a larger potential ratio, until P surpasses the width of the
dependence graph. However, CheckMore and BasicCheckMore appear less impacted
than MinExp.

For Blast, Bwa, Genome, Seismology, the ratio is very low when P is small for all
checkpointing strategies. In fact, for these workflows, most tasks are quite independent.
Thus, when n is large compared to P , even if a failure strikes a task, it will have little
impact on the starting times of the other tasks. This is because we only maintain the
order of execution but do not stick to the same mapping as in the failure-free schedule.
For this reason, it is better to minimize each task’s own execution time by using MinExp
(i.e., CheckMore checkpoints a bit too much). However, when P becomes large, the
performance of MinExp degrades significantly, with an average ratio even reaching 1.7 for
Blast at P = 50000, whereas it stays below 1.1 for CheckMore.

For Epigenomics, Cycles and Montage, the ratio does not vary significantly with
the number of processors, but is not negligible for MinExp even when P is small (between
1.05 and 1.2 depending on the workflow). For these workflows, the ratio of MinExp is 4
to 10 times higher than that of CheckMore, demonstrating the advantage of the latter
checkpointing strategy.

Finally, for Sras, as the number of dominating tasks that could be run in parallel
is way less than 4096, the ratio of MinExp does not vary much with P , while that of
CheckMore increases with P as it tends to checkpoint more with an increasing number
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Figure 6.5: Impact of the checkpoint time (C) on the performance of the checkpointing
strategies for different workflows.
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Figure 6.6: Impact of the individual MTBF (µind) on the performance of the checkpointing
strategies for different workflows.

of processors. Also, in more than 90% of the cases, the failures have strictly no impact on
the overall execution time, since they do not hit the dominating tasks. This is why the
average ratio is above the 90th percentile for all checkpointing strategies. Similarly, for
SoyKB, the ratio is not impacted much for MinExp and CheckMore, especially for
P ≥ 11000.
Impact of Checkpoint Time (C). We now evaluate the impact of the checkpoint time
by varying it between 15 and 240 seconds, and the results are shown in Figure 6.5. The
ratio generally increases with C; this is consistent with Equation (6.2). when R = C and
D = 0, the approximation ratio satisfies r ≤

(
X
N + Y

) (
2C
W + 1

)
+ C

W + Z, where X, Y and
Z barely depend on C, N decreases with C, and C

W ≈
√

C
2µ increases with C. Intuitively,

the checkpoint time impacts the ratio in two ways. First, as C increases, we pay more for
each checkpoint, which could lead to an increased ratio. Second, as we use WYD =

√
2C
pλ

to determine the checkpointing period and hence the number of checkpoints, a task will
become less safe when C increases, because it will be checkpointed less, and this could also
increase the ratio.

For example, looking at Genome under MinExp, we can see a clear increase in the
ratio when C increases from 15 to 21. This is because the typical number of checkpoints for
the critical tasks (that affect the overall execution time the most) drops from 3 to 2, thus
the time wasted due to a failure increases from 33% to 50%. As C increases from 60 to 85,
the typical number of checkpoints of these tasks further drops from 2 to 1, making the
waste per failure increase to 100%, and so the ratio also greatly increases. For values of C
between 21 and 42, even if the number of checkpoints does not change, the ratio increases
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Figure 6.7: Impact of the number of tasks (n) on the performance of the checkpointing
strategies for different workflows.

smoothly due to the increase in checkpoint time. The ratio of CheckMore, on the other
hand, only increases slightly with the checkpoint time, which is, however, not visible in
the figure due to the small values. Some other workflows, such as Bwa, Montage and
Seismology, also clearly illustrate these phenomena.

For the remaining workflows, we can again see the impact of these two factors or their
combination on the ratio. For instance, as most failures in Sras does not affect the overall
execution time, the ratio of all strategies is only impacted by the checkpoint time. For
Blast under MinExp, because most tasks are short and we have a single checkpoint to
start with, the increase in checkpoint time is negligible compared to the waste induced by
failures.

Impact of Individual MTBF (µind). We evaluate the impact of individual processor’s
MTBF by varying it between 30 months and 40 years, and the results are shown in
Figure 6.6. Intuitively, when µind increases (or equivalently, the failure rate λ decreases),
we would have fewer failures and expect the ratio to decrease. This is generally true for
CheckMore but not always for MinExp. To understand why, we refer again to the
simplified approximation ratio r ≤

(
X
N + Y

) (
2C
W + 1

)
+ C

W + Z, where X, Y and Z are
barely affected by µind. Here, when the number of failures decreases, WYD =

√
2C
pλ increases,

so the number of checkpoints decreases and the time wasted for each failure increases.
This could potentially lead to an increase in the ratio. To illustrate this compound effect,
we again look at Genome under MinExp. When µind goes from 2.5 to 3.5 years, the
typical number of checkpoints for the critical tasks (that affect the overall execution time
the most) drops from 3 to 2, which increases the waste per failure by around 50%. This
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together with the fact that MinExp does not take into account the parallelism results in
an increase in the ratio. When µind goes from 3.5 to 7 years, the ratio decreases simply
because we have fewer failures. As µind continues to increase to 14 years, the number of
checkpoints for the critical tasks further drops from 2 to 1. This increases the waste per
failure to 100%, which again leads to an increase in the ratio. From this point on, the ratio
will just decrease with µind, again due to fewer failures. The same phenomenon can be
observed for some other workflows, such as Bwa, Montage and Seismology.

In yet some other workflows, the ratio simply decreases with µind, such as for Blast and
Sras. For Blast, even when µind is small, we only checkpoint once, so the ratio decreases
due to fewer failures. For Sras, failures usually do not impact the overall execution time,
so the decrease in ratio is mainly due to the decrease in the number of checkpoints.

Finally, it is worth noting that the ratio variance increases as µind increases. This is
because when there are only a few failures and the length of the segments is large, the
failure location (inside the segments) will matter significantly, especially for MinExp.

Impact of Number of Tasks (n). Finally, we study the impact of the number of tasks
in the workflow, which is varied between 8800 and 70000, and the results are shown in
Figure 6.7. Again, the ratio is impacted by the number of tasks in two different ways.
First, when n increases, the width of the graph increases and so does ∆, and this would
increase the ratio according to our analysis. Second, when n increases and P is fixed, the
average number of tasks executed by each processor increases. This means that, if a failure
occurs early in the execution, it is less likely to have a significant impact on the ratio, since
multiple other tasks will be processed afterwards to balance the load, especially if the tasks
are relatively independent.

These two phenomena are clearly observed in Blast under MinExp. This workflow
mainly consists of a large batch of independent tasks. When n increases to 17680, which
is approximately the number of processors (P = 16384), the ratio increases because ∆
increases. After that, the ratio starts to decrease because n > P . In this case, when a failure
strikes an early task, the subsequent tasks could be assigned to other processors to reduce
the impact of the failure. Ultimately, if n ≫ P , MinExp would become more efficient.
Indeed, since the tasks are almost independent and uni-processor tasks, list scheduling
is able to dynamically balance the loads of different processors. Thus, minimizing the
expected execution time of each individual task using MinExp would be a good strategy
for the overall execution time of the workflow.

For most of the other workflows, we can similarly observe the same up-and-down effect
as a result of these two phenomena, except for Sras, which is not impacted by the number
of tasks. For this workflow, only a few key dominating tasks matter and their width
remains well below the number of processors. Since these tasks form a small proportion of
the total number of tasks, varying n does not significantly alter their chance of being hit
by a failure, so the ratio remains close to 1.

6.5.4 Statistics

We provide some statistics related to the experiments of Section 6.5.3, still focusing on the
four workflows Blast, Seismology, Genome and Sras. First, we check the quality of
the strategy MinExp for each task, hence with NME segments: we make a comparison
with the strategy Lambert that uses the exact optimal number of segments Nopt (with the
notations of Section 6.2.5). In Table II, we report the mean and standard deviation of the
ratio of the expected execution time achieved by Lambert over that achieved by MinExp.
Hence, a value greater than 1 means that MinExp is better. Because we consider statistics
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Table II: Geometric mean and standard deviation of the ratio of the expected execution
time achieved by Lambert over that achieved by MinExp.

Blast Genome Seismology Sras
Geometric Mean 1.00017 1.02691 1.02895 1.000041
Geometric SD 1.01564 1.02486 1.05626 1.00077

Instances where MinExp is better 462(51.3%) 778(86.4%) 677(75.2%) 405(45%)
Instances where Lambert is better 436(48.4%) 122(13.6%) 220(24.4%) 444(49.3%)
Instances where both are identical 2(0.2%) 0(0%) 3(0.3%) 51(5.7%)

# tasks with identical number of checkpoints 95.5% 93.1% 94.2% 91.5%
# tasks where Lambert has one less checkpoint 4.5% 6.9% 5.8% 8.5%

# tasks where Lambert has neither of above 0.0% 0.0% 0.0% 0.0%

Table III: Average performance ratio of each checkpoint strategy.

Blast Genome Seismology Sras
MinExp 1.19228 1.08755 1.19537 1.000737
Lambert 1.19256 1.11702 1.23072 1.000778

BasicCheckMore 1.02758 1.00688 1.00714 1.00329
CheckMore 1.02723 1.00698 1.00717 1.00330

on ratios, we use the geometric mean and standard deviation instead of classical values.
For each workflow type, an instance in Table II corresponds to a given set of parameters
(out of 30 possible sets), which is tested for 30 different task graphs. Hence there are 900
instances per workflow type. For each instance, the expected execution times are averaged
over 50 failure scenarios.

In the last three rows of Table II, we compare the number of checkpoints for each task
in each graph, with a total of around 25, 000, 000 task comparisons per workflow type. The
0.0% is exactly 0 out of around 25 millions: we never found a task for which Lambert
would not have either the same number of checkpoints as MinExp, or one less checkpoint
than MinExp. Altogether, we conclude that MinExp and Lambert perform almost the
same. The slight superiority of MinExp in terms of performance is due to its conservative
approach: MinExp rounds up the number of checkpoints of each task to the higher number
(taking the ceiling instead of the floor), which turns out to be a good decision when several
tasks execute in parallel.

Next in Table III, for each of the four workflow types, we report the average value,
over all 900 instances, of the performance ratio of each checkpointing strategy. As in
Section 6.5.2, the performance ratio is T

Tbase
, where Tbase is the failure-free execution time

of the workflow, and T is the execution time under the failure scenario. The major
difference from the results of Section 6.5.3 is that we now add the Lambert strategy to
the comparison. Clearly, MinExp and Lambert are quite similar, while CheckMore
and BasicCheckMore bring huge benefits, except for Sras.

6.5.5 Summary

Our experimental evaluation demonstrates that MinExp and Lambert are not resilient
enough for checkpointing workflows, although they provide an optimal strategy for each
individual task. However, CheckMore proves to be a very useful strategy, except for
Sras whose ratios are extremely low. When varying the key parameters, the simulation
results nicely corroborate our theoretical analysis. Furthermore, the easy-to-implement
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BasicCheckMore strategy always leads to ratios that are close to those of CheckMore,
regardless of the parameters.

6.6 Related work

6.6.1 Scheduling Workflows
Scheduling a computational workflow consisting of a set of tasks in a dependency graph to
minimize the overall execution time (or makespan) is a well-known NP-complete problem
[66]. Only a few special cases are known to be solvable in polynomial time, such as when all
tasks are of the same length and the dependency graph is a tree [84] or when there are only
two processors [46]. For the general case, some branch-and-bound algorithms [83,141] have
been proposed to compute the optimal solution, but the problem remains tractable only for
small instances. In the seminal work, Graham [71] showed that the list scheduling strategy,
which organizes all tasks in a list and schedules the first ready task at the earliest time
possible, achieves an execution time that is no worse than 2− 1

P times the optimum, where
P denotes the total number of processors, i.e., the algorithm is a (2− 1

P )-approximation.
This performance guarantee holds regardless of the order of the tasks in the list. Some
heuristics further explore the impact of different task orderings on the overall execution
time, with typical examples including task execution times, bottom-levels and critical paths
(see [108] for a comprehensive survey of the various heuristic strategies).

While the results above are for workflows with uni-processor tasks (or tasks that share
the same degree of parallelism), scheduling workflows with parallel tasks has also been
considered. Li [112] proved that, for precedence constrained tasks with fixed parallelism of
different degrees (i.e., rigid tasks), the worst-case approximation ratio for list scheduling
under a variety of task ordering rules is P . However, if all tasks require no more than qm
processors, where 0 < q < 1, the approximation ratio becomes (2−q)P

(1−q)P +1 . Demirci et al. [48]
proved an O(log n)-approximation algorithm for this problem using divide-and-conquer,
where n is the number of tasks in the workflow. Furthermore, for parallel tasks that can
be executed using a variable number of processors at launch time (i.e., moldable tasks),
list scheduling is shown to be an O(1)-approximation when coupled with a good processor
allocation strategy under reasonable assumptions on the tasks’ speedup profiles [60,94,110].

In this chapter, we augment the workflow scheduling problem with the checkpointing
problem for its constituent tasks. We analyze the approximation ratios of some checkpoint-
ing strategies while relying on the ratios of existing scheduling algorithms to provide an
overall performance guarantee for the combined problem.

6.6.2 Checkpointing Workflows
Checkpoint-restart is one of the most widely used strategy to deal with fail-stop errors.
Several variants of this policy have been studied; see [80] for an overview. The natural
strategy is to checkpoint periodically, and one must decide how often to checkpoint, i.e.,
derive the optimal checkpointing period. An optimal strategy is defined as a strategy that
minimizes the expectation of the execution time of the application. For an preemptible
application, given the checkpointing cost C and platform MTBF µ, the classical formula due
to Young [173] and Daly [47] states that the optimal checkpointing period is WYD =

√
2µC.

Going beyond preemptible applications, some works have studied task-based applica-
tions, using a model where checkpointing is only possible right after the completion of a
task. The problem is then to determine which tasks should be checkpointed. This problem
has been solved for linear workflows (where the task graph is a simple linear chain) by
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Toueg and Babaoglu [158], using a dynamic programming algorithm. This algorithm was
later extended in [21] to cope with both fail-stop and silent errors simultaneously. Another
special case is that of a workflow whose dependence graph is arbitrary but whose tasks
are parallel tasks that each executes on the whole platform. In other words, the tasks
have to be serialized. The problem of ordering the tasks and placing checkpoints is proven
NP-complete for simple join graphs in [7], which also introduces several heuristics. Finally,
for general workflows, deciding which tasks to checkpoint has been shown #P-complete [76],
but several heuristics are proposed in [77].

In this chapter, we depart from the above model [21, 76, 77, 158], and assume that
each workflow task is a preemptible task that can be checkpointed at any instant. This
assumption is quite natural for many applications, such as those involving dense linear
algebra kernels or tensor operations. It is even mandatory for coarse-grain workflows: unless
the failure rate can be decreased below the current standard, the successful completion of
any large task, say executing a few hours with 1K nodes, is very unlikely.

6.7 Conclusion
In this chapter, we have investigated checkpointing strategies for parallel workflows, whose
tasks are either sequential or parallel, and in the latter case either rigid or moldable.
Because HPC tasks may have a large granularity, we assume that they can be checkpointed
at any instant. Starting from a failure-free schedule, the natural MinExp strategy consists
in checkpointing each task so as to minimize its expected execution time; hence MinExp
builds upon the classical results of Young/Daly, and uses the optimal checkpointing period
for each task. We derive a performance bound for MinExp, and exhibit an example where
this bound is tight.

Intuitively, MinExp may perform badly in some cases, because there is an important
risk that the delay of one single task will slow down the whole workflow. To mitigate this
risk, we introduce CheckMore strategies that may checkpoint some tasks more often
than other tasks, and more often than in the MinExp strategy. This comes in two flavors.
CheckMore decides, for each task, how many checkpoints to take, building upon its
degree of parallelism in the corresponding failure-free schedule. BasicCheckMore is
just using, as degree of parallelism for each task, the maximum possible value min(n, P )
(hence it is equivalent to CheckMore for independent tasks all running in parallel). The
theoretical bounds for BasicCheckMore are not as good as those of CheckMore, but
its performance in practice is very close, thus BasicCheckMore proves to be very efficient
despite its simplicity.

An extensive set of simulations is conducted at large scale, using realistic synthetic
workflows from WorkflowHub with between 8k and 70k tasks, and running on a platform
with up to 50k processors. The results are impressive, with ratios very close to 1 on all
workflows for both CheckMore strategies, while MinExp has much higher ratios, for
instance 1.7 on average for Blast and 1.46 for Seismology. Hence, the simulations
confirm that it is indeed necessary in practice to checkpoint workflow tasks more often
than the classical Young/Daly strategy. As future work, we plan to extend the simulation
campaign to parallel tasks (rigid or moldable), as soon as workflow benchmarks with parallel
tasks are available to the community. We will also investigate the impact of the failure-free
list schedule on the final performance in a failure-prone execution, both theoretically and
experimentally. Indeed, list schedules that control the degree of parallelism in the execution
may provide a good trade-off between efficiency (in a failure-free framework) and robustness
(when many failures strike during execution).



Chapter 7

Revisiting I/O bandwidth-sharing strategies
for HPC applications

In the last two chapters, we have studied checkpointing strategies for different scenarios.
However, we have not considered bandwidth limitations when processing I/O operations
to actually checkpoint, especially when several applications are checkpointing at the same
time. To address this, we revisit in this chapter I/O bandwidth-sharing strategies for
HPC applications. When several applications post concurrent I/O operations, well-known
approaches include serializing these operations (FCFS) or fair-sharing the bandwidth
across them (FairShare). Another recent approach, I/O-Sets, assigns priorities to the
applications, which are classified into different sets based upon the average length of their
iterations. We introduce several new bandwidth-sharing strategies, some of them simple
greedy algorithms, and some of them more complicated to implement, and we compare them
with existing ones. Our new strategies do not rely on any a-priori knowledge of the behavior
of the applications, such as the length of work phases, the volume of I/O operations, or some
expected periodicity. We introduce a rigorous framework, namely steady-state windows,
which enables to derive bounds on the competitive ratio of all bandwidth-sharing strategies
for three different objectives: minimum yield, platform utilization, and global efficiency. To
the best of our knowledge, this work is the first to provide a quantitative assessment of the
online competitiveness of any bandwidth-sharing strategy. This theory-oriented assessment
is complemented by a comprehensive set of simulations, based upon both synthetic and
realistic traces. The main conclusion is that our simple and low-complexity greedy strategies
significantly outperform FCFS, FairShare and I/O-Sets, and we recommend that the
I/O community implements them for further assessment. This chapter corresponds to
Submission [S3] (see Chapter 9).

7.1 Introduction

HPC applications do not share computing resources: all the nodes assigned to a given
application are dedicated to that application throughout its execution. Such a mode of
operation is enforced to guarantee a sustained level of performance to all applications that
execute concurrently on the platform. However, concurrent applications do share both the
interconnexion network and the parallel file system. When several applications request to
perform an I/O operation simultaneously, they have to share the resource, which leads to
interferences and performance degradation.

Several researchers have already identified and addressed this problem (see [9,52,88,
155,174,176] among others). Performance degradation due to I/O is already significant for
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m number of applications
pi size (number of nodes) of application Ai

ri release time of application Ai

W
(j)
i duration of work phase number j for application Ai

v(j)
i volume of I/O operation number j for application Ai

B total bandwidth of the I/O system
b bandwidth of each platform node
bi maximal bandwidth of application Ai: bi = min(pib, B)
αj

i fraction of bandwidth assigned to Ai for I/O operation j (it can vary)
[Tbegin , Tend ] steady-state window

yi(t) yield of application Ai at time t

Table I: Summary of main notations for Chapter 7.

current state-of-the-art platforms and is expected to worsen due to the faster increase in
processing speed than in I/O bandwidth [130]. The problem can be partially mitigated by
reducing the volume of data transfers, e.g., via compression or in-situ processing. But the
main question remains: given several applications executing concurrently and competing
for I/O resources, how to orchestrate I/O operations? In other words, scheduling strategies
must be designed and evaluated to dynamically assign a fraction of the total I/O bandwidth
to individual application transfers. Well-known strategies are FCFS, which gives exclusive
I/O access to the first pending I/O operation, and FairShare, which assigns bandwidth
proportionally to application transfers.

From a scheduling perspective, which fraction goes to which application at any given
time depends upon the optimization metric, such as application progress rate (minimum
or average) or platform utilization. When targeting fairness across concurrent applications,
a classical objective is to maximize the minimum yield, where the yield of an application is
the ratio of its actual progress rate over the progress rate that would have been achieved if
the application was executing with a dedicated I/O system and always granted the total
available bandwidth. We discuss optimization metrics in detail in Section 7.3.3.

This work focuses on I/O bandwidth-sharing scheduling strategies for HPC applications,
revisiting existing strategies and introducing new ones. Our major contributions are
described in the following four paragraphs.

General framework We provide and assess online scheduling strategies that are agnostic
of the characteristics of the concurrent applications in terms of processing time and I/O
requests. In particular, we do not assume any periodic behavior; several applications
execute concurrently and alternate phases of work and phases of I/O operations, whose
lengths are not known a priori. Instead, we discover the timing and size of I/O transfers
on the fly, as each application posts its operations. We allow for interrupting and resuming
on-going I/O operations dynamically, and launching newly posted ones.

Novel strategies We introduce novel I/O bandwidth-sharing strategies that aim at
allocating a fraction of the bandwidth to each application as a function of the current
progress of all applications. The main motivation is to maximize the minimum yield that
can be achieved each time a scheduling decision is made. These novel heuristics come in
several flavors, from simple greedy algorithms to sophisticated decision mechanisms.
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Competitiveness analysis We provide a rigorous framework by focusing on a steady-
state time window, defined with the following three rules. Throughout the window: (i)
several applications, each with a processing history, execute concurrently; (ii) none of them
terminates; and (iii) no new application can start. Thus, the window corresponds to a
steady-state mode of behavior where each application progresses at the rate enforced by the
I/O bandwidth-sharing strategy. Focusing on such a window is key to assess performance.
Otherwise, say if some application would terminate before the end of the window, the
batch scheduler would likely launch a new application, whose starting time and progress
up to the end of the window would depend on all previous scheduling decisions. The
same holds if a new application is launched in the middle of the window. Getting rid of
the interaction with the batch scheduler, we provide the first complexity results on the
performance of several I/O bandwidth-sharing strategies, some old and some new, and for
various optimization objectives.

Comprehensive simulation campaign We compare existing and novel I/O bandwidth-
sharing strategies on an extensive set of application scenarios, some generated from realistic
traces derived from the APEX workflows report [109] , and some with synthetic parameters.
A key parameter is the I/O pressure W , defined for a steady-state window [Tbegin , Tend ],
as the ratio V

B(Tend−Tbegin) , where (i) V is the total I/O volume (accumulated for all
applications) to transfer during the window; and (ii) B is the total I/O bandwidth (see
Section 7.6.1 for details). In a nutshell, if this ratio is close to 1 or even exceeds 1, the
set of I/O operations saturate the I/O system, and many I/O operations will have to be
delayed. We study how rapidly the performance of each strategy degrades for high I/O
pressures, thereby paving the way for a fair bandwidth allocation on future platforms. We
point out that simulations are a first but mandatory step to assess the limitations and
strengths of all the I/O bandwidth-sharing strategies. Our extensive set of experiments
corresponds to several months of platform usage and would have been impossible to deploy
on a large-scale platform, even if we had both permission and budget to conduct them.
The main conclusion is that two simple and low-complexity greedy strategies significantly
outperform FCFS, FairShare and I/O-Sets, and we recommend that the I/O community
would implement them for further assessment.

The chapter is organized as follows. We first survey related work in Section 7.2.
Then, we detail the application and platform framework in Section 7.3, together with the
optimization objectives. We detail well-known bandwidth-sharing strategies, and introduce
new ones, in Section 7.4. Complexity results are stated in Section 7.5 in the form of
lower bounds for competitive ratios. The experimental evaluation in Section 7.6 presents
extensive simulation results comparing all the strategies. Finally, we conclude and provide
hints for future work in Section 7.7.

7.2 Related Work
We discuss related work in this section. We survey existing approaches before pointing to
a related problem in the scheduling literature.

CALCioM [52] This seminal paper introduces and experimentally compares three poli-
cies to manage cross-application coordination of I/O operations: (i) Interference (called
FairShare in this chapter), where the total bandwidth is shared equally1 among all

1More precisely, FairShare shares the total bandwidth in proportion to the size of the concurrent
applications, see Section 7.4.1 for details.
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concurrent operations; (ii) FCFS-based serialization (called FCFS in this chapter), where
I/O operations are serialized based upon an FCFS priority; and (iii) Interruption-based
serialization, where I/O operations are serialized but preemptive, allowing for another
operation B to interrupt the current operation A, which resumes only after the completion
of B. Some examples are given to explain when to favor a given strategy, but no general
approach is explored. In particular, interruption-based serialization would require to set
priorities among applications, which are not detailed in the chapter. Altogether, this work
presents one of the first comparisons of bandwidth-sharing strategies, and we build upon
their ideas to cast a general framework and introduce new strategies.

CLARISSE [88] This paper introduces a middleware designed to enhance data-staging
coordination and control in the HPC software storage I/O stack. Among many other
contributions, the CLARISSE middleware enables to directly compare the no-scheduling
strategy (called FairShare in this chapter) with FCFS and reports performance gains
for the latter. Intuitively, the superiority of FCFS can be expected as it comes from
a classic result in parallel computing: when scheduling two identical communications
that can each make use of the full bandwidth, better serialize them than execute them
concurrently. Indeed, with serialization, the first communication ends at time t and the
second one at time 2t (for a duration t, assuming a start at time 0), while in parallel,
both communications end at time 2t. However, our analysis and experiments reveal that
this intuition can be misleading and that (i) FairShare prevails over FCFS in many
practical scenarios and (ii) more sophisticated policies that account for past history to set
priority-based bandwidth assignments perform even better.

I/O-Cop [155] I/O-Cop is a prototype system aimed at exploring access control mech-
anisms to manage the shared Parallel File System (PFS) of the platform. This work is
motivated by revealing the contention incurred when several applications aim at performing
I/O transfers simultaneously. The I/O-Cop prototype is limited to the case when the access
controller to the Parallel File System (PFS) provides exclusive access to a single application
at a given time, and without allowing for preemption of ongoing I/O operations.

QoS-based and reward-based approaches In [169], the authors also advocate controlling
accesses to the PFS in order to achieve some Quality of Service (QoS) for each application.
They envision a system with several I/O storage devices (disks, SSDs or NVRAMs) and
aim at load-balancing I/O requests across all storage types to minimize contention. In [153],
the authors consider several applications that execute concurrently and post I/O requests.
They partition all the I/O requests into several queues, one per application, and aim at
establishing priorities across the applications. The idea is that after completing some I/O
transfer, a given application could be granted access for its next I/O transfer before all the
other applications would have completed one I/O transfer themselves. At each time-step,
the progress of each application is monitored as the number of I/O transfers that have
been granted so far. In a related paper [85], the authors survey I/O capabilities of state-of-
the-art supercomputers and enforce QoS constraints for I/O transfers by implementing a
token-based bucket algorithm that works similarly to that of [153]. Finally, the authors
of [132] target a system with several I/O sub-systems (OST, which stands for Object
Storage Target, typically a RAID array of disks). For each application, they aim at the
same share of available bandwidth on each OST, because it balances transfers (one needs
to wait for the last node to complete its transfer before resuming work). The allocation
of nodes (hence applications) to the different OSTs is given by some external mechanism.
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Then, on a given OST, some application may benefit from an increased bandwidth, which is
done by throttling another application. The throttled application is issued a coupon, to be
redeemed later. They do not deal with the interplay of successive I/O operations and work
phases, and no comparison is made with other strategies. In contrast, our work restricts
to a single OST but provides a comprehensive comparison of several bandwidth-sharing
strategies

Periodic applications A series of papers [8,9,38,65,95] focus on periodic applications that
consist of work phases followed by I/O operations. More precisely, each application repeats
a two-phase period with a fixed computing length followed by an I/O of volume. The
CPU lengths and I/O volume depend upon the application, but remain the same from one
period to the next. The major goal of these works is to orchestrate a global periodic scheme
where I/O transfers are meticulously shaped to fill up the smallest possible rectangle that
will repeat. While the problem of finding the minimum size rectangle is shown to be
NP-complete in the initial work [65], several interesting heuristics have been developed in
the subsequent papers. The approach is quite flexible, with I/O transfers possibly split into
different sub-transfers, each with a different bandwidth. The main limitation is of course
the assumed periodicity of each application. An extension is provided by other authors
in [176], where applications still consist of phases with work followed by I/O transfers, but
now CPU phases have stochastic lengths taken from some probability distribution, while
I/O phases have constant length. As a motivation, for CPU phases, we can think of a
constant amount of flops to perform, with some system-dependent or data-dependent noise,
while for I/O transfers, we can think of a fixed-size checkpoint operation. In contrast, our
approach does not assume any a priori knowledge of the concurrent applications.

I/O-Sets [174] This recent work can be viewed as an interesting extension of the work
in [9] for periodic applications. Each application consists of several iterations, which as
above are work phases followed by I/O operations. Periodicity is no longer assumed.
Instead, for each application, they determine the value of ω, which is the average length
of an iteration so far. In [174], CPU lengths and I/O volumes are sampled from some
probability distributions (that differ for each application), which enables to compute ω
with the expectations of these distributions, but one could envision to acquire the value
of ω on the fly, as the application progresses. Then, the applications are partitioned into
I/O-sets: two applications belong to the same set if they have the same value for ⌈log10 ω⌉.
Each I/O-set is assigned a priority. The I/O bandwidth-sharing strategy is described in
detail in Section 7.4.2. In a nutshell, FCFS is enforced within each I/O-set; hence, at
most one application per I/O-set is competing for bandwidth at any time-step. Then some
priority-based sharing is enforced across I/O-sets. The motivation for using a mixture
of FCFS and FairShare (or more precisely a priority-based variant of sharing) is very
interesting: small and large applications (characterized by different orders of magnitude
for ω) should not be treated equally by the scheduler. The I/O-sets strategy has several
parameters, and we use the same instantiation as in [9], with the same name Set-10. We
use Set-10 as a competitor for our novel strategies.

A note on the painter problem In the scheduling literature, the painter problem, a.k.a
the scheduling with delays problem, is the following: (i) several chains of tasks are to be
scheduled on a single machine; (ii) for each chain, there is a minimal delay to be enforced
between the completion of a task and the start of its successor. As for the analogy with
a painter: the painter is the machine and has several rooms to paint on its agenda, each
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with several paint layers (a task is the application of a paint layer); for each room (each
chain), there is a delay between the end of a layer and the next one. The tasks are not
preemptive. Release times can be simulated by adding delays from a fake source task. This
is an offline problem where the objective is to minimize either the makespan (maximum
completion time of a task) or the total flow (unweighted or weighted sum of all completion
times). The analogy with the I/O problem is clear: the machine is the I/O resource, the
task chains are the applications, the tasks are the I/O operations, and the delays are the
computing phases between two consecutive I/O operations. The main differences with the
I/O scheduling problem are the following:

1. Execution is not preemptive in the painter problem, while one can pause an on-going
I/O operation;

2. A single task is executed at any time step while several I/O operations (from different
applications) can share the I/O bandwidth;

3. All chain parameters (task lengths and delay values) are known at the beginning of
the execution while the lengths of work phases and the volumes of I/O operations
are discovered on the fly in the I/O scheduling problem.

Particular instances of the painter problem have been shown to have polynomial complexity.
We refer to the interested reader to [32, 55, 115, 125, 126] for details. A survey of recent
results and extensions is available in [107].

7.3 Framework
In this section, we describe the framework. We start with application characteristics and
detail rules for I/O operations and bandwidth allocation in Section 7.3.1. We discuss
the interaction with the batch scheduler and explain why we restrict to steady-state time
windows in Section 7.3.2. We conclude with optimization objectives in Section 7.3.3. Main
notations are summarized in Table I.

7.3.1 Applications

Application Characteristics

We consider a very general framework where applications are submitted online to the batch
scheduler. Each application Ai requests pi nodes and starts executing as soon as the batch
scheduler has been able to allocate that many nodes. Thus, each application executes
on a dedicated set of nodes throughout its execution, which is the standard approach
on large-scale HPC platforms. However, all applications execute I/O transfers (reads
and writes) through the I/O controller and share the bandwidth of the I/O system. Our
approach is agnostic of the nature of the storage (SSDs, NVRAMs, disks or tapes), and of
the organization of the PFS (Parallel File System).

Each application Ai executes an alternating sequence of work phases and I/O operations,
which we represent as follows:

Ai ≡ v(0)
i , W

(1)
i , v(1)

i , W
(2)
i , . . . , v(ni−1)

i , W
(ni)
i , v(ni)

i , . . .

where v(j)
i stands for I/O volumes, and W

(j)
i > 0 stands for (parallel) work units. Because

computing nodes are dedicated to the application, we can assume w.l.o.g. that one unit
of work lasts one second, so that the W

(j)
i represent the duration of the work phases;

more precisely, within Wi seconds, each of the pi nodes performs Wi work units. However,
because we do not know the bandwidth of I/O operations in advance, we have to express
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them in volume (amount of bytes) rather than in duration. We detail rules for bandwidth
allocation in Section 7.3.1. We will discuss rules for posting and managing I/O operations
in Section 7.3.2.

As stated before, the length W
(j)
i of each work phase is not known until it terminates,

and the volume v(j)
i of each I/O operation is not known until the operation is posted to the

I/O controller. Similarly to the related work surveyed in Section 7.2, we also assume that
I/O operations are blocking and coordinated between the different nodes of the application,
and that the application does not overlap I/O operations with some work phase. This is
typical of HPC applications using a synchronous global interface like MPI-IO [100,120],
which also provides the I/O controller with critical information like the volume of data to
transfer.

Bandwidth Allocation

Consider an application Ai executing on pi nodes and initiating an I/O operation of volume
v(j)

i . What are the bandwidth allocation rules for this operation? We let b be the bandwidth
of the network card (of interface card) of each node, and B be the total bandwidth of the
I/O system.

First, assume for simplicity that the I/O operation is not interrupted, and is granted the
same bandwidth from start to completion. The maximal bandwidth that can be granted
by the I/O controller is

bi = min (pib, B) . (7.1)

Note that Equation (7.1) implicitly assumes that each node of Ai has to transfer (approxi-
mately) the same volume of data to/from the PFS. If transfers are unbalanced from one
node to another, we should redefine v(j)

i as v(j)
i = piv

(j)
i,max, where v

(j)
i,max is the maximum

volume of data to be transferred by any of the pi nodes of Ai. The main rule of the
game for the scheduler is to assign a fraction α

(j)
i of the maximal bandwidth bi to the I/O

operation v(j)
i . The duration of the I/O operation will then be

d(j)
i = v(j)

i

α
(j)
i bi

. (7.2)

Of course, if no I/O operation has been posted by another application, the scheduler will
enforce α

(j)
i = 1 to ensure fastest possible completion. In that case, we use the notation

d(j)
i,min = v(j)

i

bi
(7.3)

to denote the minimal possible duration of the I/O operation. On the contrary, in the
presence of several concurrent I/O operations, the scheduler will resort to some bandwidth-
sharing strategies, like the ones studied in this chapter.

We are ready to discuss the general case, which will require some additional notations.
Intuitively, a given I/O operation will NOT be granted the same bandwidth fraction
throughout execution. At any time-step t, some I/O operations that were posted before
are granted some bandwidth and executing, while some others may be pending (that is to
say their fraction is currently 0). A new I/O operation may be posted at time t, which
the scheduler can account for by granting it some bandwidth, at the price of reducing
the fraction of other applications. On the contrary, some on-going I/O operation may
complete at time t, thereby opening the possibility of a larger fraction to be granted to some



7.3. FRAMEWORK 153

applications. We see that bandwidth fractions are granted only for some duration, which
we call the horizon. Decisions are taken at specific instants, which we call events. Typically,
an event corresponds to the posting of a new I/O operation, or to the termination of an
on-going one. But an event can also be triggered by the I/O scheduler, e.g., for a strategy
where additional events are created periodically, say every 10 seconds. The I/O controller
takes a new decision at every event, as explained below. The constraints on the number of
events, and the cost of bandwidth-sharing strategies, will be detailed in Section 7.3.2.

Consider an event at time t, and let S(t) be the index set of active applications, i.e.,
applications that have posted an I/O operation before time t which is not yet completed, or
applications that post a new I/O operation exactly at time t. Among the applications with
incomplete I/O-operations, some may be transferring data at some bandwidth fraction and
some may be kept waiting. Each active application Ai, i ∈ S(t), is allotted a bandwidth
αt

ibi (with some αt
i possibly 0) so that∑

i∈S(t)
αt

ibi ≤ B. (7.4)

This bandwidth allocation remains valid until the next event at time t + h, where h is
the horizon. The bandwidth allocation depends upon the bandwidth-sharing strategy,
whose inputs are the volume of data that must still be transferred for each on-going
I/O operation, the knowledge of the progress of all active applications so far, and the
optimization objective.

We stress that the horizon h is unknown at time t. The next event is triggered either
by a new post or a completion, or again by an external decision given to the I/O controller.
At time t, after having granted bandwidth fractions to active applications, we only know
that h is greater than the time needed to complete the shortest on-going I/O operation,
given that no new event (new post or external) will happen before that.

When the next event takes place at time t + h, we update the set of active applications,
leaving out I/O operations that have completed and including new posts, if any. We also
update the remaining volume of data still to be transferred for each active application.
The I/O controller applies the bandwidth-sharing strategy for this new set of parameters.

7.3.2 Steady-State Windows
In this section, we recall the management of HPC applications by the batch scheduler, and
explain why we need to restrict to steady-state time windows to assess the performance of
bandwidth-sharing strategies.

Interaction with the Batch Scheduler

HPC applications are submitted to the batch scheduler. Each application Ai has a release
time ri, a size pi and a wall-time resi (length of the reservation slot). Upon release,
application Ai is put in the queue of the batch scheduler and will be allocated resources
at time talloc

i ≥ ri, which means that pi nodes are dedicated to the application during the
interval [talloc

i , talloc
i + resi). The pi nodes are released as soon as the application completes

its execution or its deadline is reached, whichever comes first.
Each application has dedicated nodes but all applications that execute concurrently

share the I/O system. I/O operations are posted by the applications and managed by the
I/O controller. If an application posts an I/O operation while another I/O operation has
already been granted access, several scenarios can happen, depending upon the bandwidth-
sharing policy implemented by the I/O controller. We have already discussed the FCFS
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and FairShare strategies in Section 7.2, and will introduce other strategies in Section 7.4.
Whenever the I/O controller makes a decision according to its bandwidth-sharing policy,
this decision has an impact on the progress of all active applications. Altogether, the
bandwidth-sharing policy will change the termination time of all applications. In theory,
some applications may even fail to complete before the end of their reservation due to
the bandwidth-sharing strategy being disadvantageous to them. On the contrary, some
applications may benefit from the strategy and complete early, thereby releasing their
resources early. In summary, the opportunities for decisions of the batch scheduler to
allocate new applications will depend upon the bandwidth-sharing strategy applied to
the applications that are currently executing. Furthermore, any decision of the batch
scheduler changes the mix of applications that run concurrently and possibly compete
for I/O resources. This, in turn, changes the scope and impact of the decisions of the
bandwidth-sharing policy implemented by the I/O controller. Altogether, the interplay
between the batch scheduler and the decisions of the I/O controller is hard to comprehend.

To the best of our knowledge, none of the papers surveyed in Section 7.2 has dealt
with this difficulty. Instead, these papers consider a fixed number of applications that
execute concurrently (each on a dedicated set of nodes) and compete for I/O access.
This amounts to consider an execution window [Tbegin , Tend ] where all applications start
executing at time Tbegin and do not complete execution before time Tend , regardless of
the I/O policy that is implemented. In other words, the platform operates in steady-
state mode during the window [Tbegin , Tend ] with no application terminating nor no new
application launched throughout the window. This assumption is never stated in recent
papers. Again, the reason why it is assumed that applications do not complete before
the end of the window is the following: if an application terminates at time T < Tend ,
the batch scheduler might launch another application right after the completion. Because
T depends on the bandwidth-sharing strategy that is enforced, it becomes impossible to
assess the performance of the strategy by itself.

In this chapter, we use a steady-state execution window [Tbegin , Tend ] and assume that
m applications Ai (1 ≤ i ≤ m) execute concurrently throughout the window. To eliminate
side effects and deal with a general scenario, we do not assume that the applications start
executing at time Tbegin : on the contrary, the applications may have been launched earlier
and have been executing for some time. The history of the applications will be taken into
account when evaluating the objective function (see Section 7.3.3).

Cost Model for Steady-State Windows

Given a steady-state execution window [Tbegin , Tend ], assume that m applications Ai

(1 ≤ i ≤ m) execute concurrently throughout the window. Each application Ai will execute
a series of work phases followed by I/O transfers. If the application Ai was alone on
the platform, all I/O transfers would be granted maximal bandwidth bi. Let Nop(i) be
the number of I/O operations that would be initiated from time Tbeginuntil time Tend ,
assuming such a dedicated mode.

In concurrent mode, we introduce two events for each I/O operation, one when it is
posted, and one when it completes. The total number of events due to I/O operations is
upper bounded by

E =
m∑

i=1
2Nop(i). (7.5)

Indeed, no application will perform more I/O operations by the end of the window than in
dedicated mode, hence the number of events for each application Ai never exceeds 2Nop(i),
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regardless of the bandwidth-sharing strategy.
The value of E is a key parameter to the size of the problem (other parameters include

the binary encoding of work lengths and I/O volumes). We enforce that all bandwidth
strategies have a cost polynomial in E, meaning that the number of bandwidth-sharing
decisions remains polynomial in E. For instance, if the I/O controller enforces periodic
decisions every h seconds, where h is a fixed horizon, the number of additional events
E(+) = ⌊Tend−Tbegin

h ⌋ must remain polynomial in E. We use E(+) = E in the simulations to
add equi-spaced decisions across the steady-state window. Note that triggering an external
event every second would lead to Tend −Tbegin external events, which is exponential in the
problem size (we use a logarithmic encoding for all parameters).

To the best of our knowledge, none of the papers surveyed in Section 7.2 has discussed
how frequently decisions should be taken, nor has included the cost of the bandwidth-
sharing strategy each time a decision is taken. We could easily include that cost into the
assessment of the performance of the strategies. We do not, because the cost is inherent to
the strategy and independent of the actual length of the work phase and I/O operations:
if we multiply the latter quantities (and the window size) by a factor 10 or 100, the cost of
the strategy remains the same and becomes negligible in front of the execution time of the
applications.

7.3.3 Objectives

In this section, we define the yield of an application. The major objective of our novel
bandwidth-sharing strategies is MinYield, the maximization of the minimum yield over
all applications executing within the steady-state window [Tbegin , Tend ]. However, we also
report performance for two other objectives, Utilization and Efficiency, which we
describe at the end of this section.

Consider an application Ai that is released at time ri = 0. Consider a steady-state
window [Tbegin , Tend ]. At any time t ≥ Tbegin , we want to monitor the progress of Ai in
terms of work done and data volume transferred. Recall that Ai executes an alternating
sequence of work phases (work) and I/O operations:

Ai ≡ v(0)
i , W

(1)
i , v(1)

i , W
(2)
i , . . . , v(ni−1)

i , W
(ni)
i , v(ni)

i , . . .

We have assumed unit speed for work phases, and we normalize I/O volumes by the
maximal possible bandwidth bi = min (pib, B). Letting d(j)

i,min = v(j)
i
bi

be the minimum
duration for I/O operation number j of volume v(j)

i , we rewrite Ai as

Ai ≡ d(0)
i,min, W

(1)
i , d(1)

i,min, W
(2)
i , . . . , d(ni−1)

i,min , W
(ni)
i , d(ni)

i,min, . . .

The ideal progress of Ai at time t is the amount of work plus the volume of data
transferred since its release time ri and up to time t, when all I/O operations have taken
place with no delay and at the maximal possible bandwidth bi. This corresponds to
Ai progressing at maximal rate, which happens if it executes in dedicated mode on the
platform. By definition, at time t, the ideal progress is equal to t− ri.

In a concurrent execution, the actual progress of Ai at time t is the amount of work
plus the volume of data transferred since its release time ri and up to time t. While work
phases still progress at full (unit) speed, I/O operations are slowed down by interferences.
For any time t ∈ [Tbegin , Tend ], let W

(done)
i (t) be the total amount of work done up to time

t, and V
(transferred)

i (t) be the total volume of data transferred up to time t. The yield of Ai
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at time t is defined as the ratio of the actual progress over the ideal progress, namely

yi(t) =
W

(done)
i (t) + V

(transferred)
i (t)

bi

t− ri
. (7.6)

As a side note, we show how to compute the value of V
(transferred)

i (t) as the concurrent
execution goes. We do this computation incrementally, one work phase or I/O operation
after another. Consider the I/O operation number j and assume that it has occurred
during the interval [start(j)

i , end(j)
i ] (end(j)

i is equal to the completion time of this I/O
operation and start(j)

i to the completion time of the previous work phase). Let α
(j)
i (u)bi

be the bandwidth granted at time u ∈ [start(j)
i , end(j)

i ], where 0 ≤ α
(j)
i (u) ≤ 1 (and let

α
(j)
i (u) = 0 for u outside this interval). If the I/O operation number j is not complete at

time t, i.e., if t ∈ [start(j)
i , end(j)

i ), the amount of data volume V
(j)

i (t) transferred up to
time t is ∫ t

start(j)
i

α
(j)
i (u)bidu = V

(j)
i (t). (7.7)

In fact, the integral is a discrete sum of at most E components, since we change bandwidth
allocation only when a new event takes place. Note that if t ≥ end(j)

i , we obtain V
(j)

i (t) =
v(j)

i . Equation (7.7) enables us to compute the actual progress incrementally, from one
work phase or I/O operation to the next. Of course, the actual progress depends upon
the bandwidth-sharing strategy through the choice of the fractions α

(j)
i (u) of the maximal

bandwidth bi allotted at every instant u.
We are ready to state the optimization objectives, together with their initial motivation.

Consider a steady-state window [Tbegin , Tend ] and m applications. Each application Ai has
a yield yi(Tbegin) when entering the window. The three target objectives are MinYield,
Utilization and Efficiency.

MinYield The objective is to maximize the minimum yield at the end of the window:

Maximize min
1≤i≤m

yi(Tend). (7.8)

This objective aims at enforcing fairness among all the applications, regardless of their
characteristics. The intuition is that all applications suffer from the same slowdown factor
if they achieve the same yield. As discussed in Sections 7.1 and 7.2, previous work has
shown the limitations of FCFS and FairShare, which give priority to some applications
and severely slow down other ones. MinYield will guide bandwidth-sharing decisions so
that all applications exit the window with balanced yields. An application entering the
window with a very low yield will be granted more bandwidth to catch up.

Utilization The objective is to maximize platform utilization throughout the window:

Maximize
∑m

1≤i pi

(
W

(done)
i (Tend)−W

(done)
i (Tbegin)

)
(Tend − Tbegin)∑m

1≤i pi
. (7.9)

The work W
(done)
i (Tend)−W

(done)
i (Tbegin) done by each application Ai within the window

is weighted by its size pi. This objective is the classical performance objective from the
perspective of the administrator or owner of the platform, because it measures the fraction
of time where computing nodes have been used for actual application work. Hence, this
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objective is natural for HPC applications that perform no or little I/O transfers. However,
it may seem ill-suited in a framework focusing on I/O transfers, because it is very sensitive
to the ratio of work over data volumes (normalized by maximal bandwidth). For instance,
if we multiply all data volumes by, say, 10, platform utilization will plummet, even if
we keep the same bandwidth-sharing strategy. This observation leads to introducing the
objective Efficiency.

Efficiency The objective is to maximize the sum of the actual progress of all applications
throughout the window:

Maximize

∑m
1≤i pi

(
W

(done)
i (Tend)−W

(done)
i (Tbegin) + V

(transferred)
i (Tend)−V

(transferred)
i (Tbegin)

bi

)
(Tend − Tbegin)∑m

1≤i pi

(7.10)
Comparing Equations (7.9) and (7.10), we see that I/O operations are taken into account
with Efficiency: this objective aims at optimizing the combined progress of all applications.
It can be viewed as a measure of how efficiently platform resources (both compute nodes
and the I/O system) are used.

7.4 Bandwidth-Sharing Strategies
We describe bandwidth-sharing strategies in this section. We start by recalling a few
notations and introducing new ones. Consider a steady-state window [Tbegin , Tend ] with
m applications executing concurrently. Consider an event at time t and let S(t) be the
index set of active applications at time t. Note that applications that are not active are
engaged in work phases at time t and progress independently of the decisions made by the
I/O controller.

Each active application Ai, i ∈ S(t), has posted an I/O operation at time Ri ≤ t that
is not complete at time t. Let Vi denote the remaining volume still to be transferred for
the I/O operation. Each active application is allotted a fraction αt

i (with some αt
i possibly

0) of its maximum possible bandwidth bi = min(pib, B). The bandwidth-sharing strategy
consists in determining αt

i for each active application Ai. Finally, let BW i (t′, y) denote
the bandwidth that should be alloted to application Ai for it to achieve a yield of at least
y at time t′.

We start with some simple greedy strategies, some old and some new, in Section 7.4.1.
Then in Section 7.4.2, we detail the recent Set-10 strategy proposed in [30]. Finally, in
Section 7.4.3, we sketch an elaborate strategy whose aim is to compute the best horizon
for maximizing the minimum yield.

7.4.1 Greedy Strategies

We discuss below six greedy strategies. The first three strategies do not rely on any
(tentative) horizon, while the last two aim at taking some future events into account.
Finally, the sixth strategy re-evaluates the current bandwidth allocation at periodic time-
steps.

• FairShare: each active application Ai with i ∈ S(t) is allocated the bandwidth
αi = min(1, B∑

j∈S(t) bj
). Therefore, each application will either saturate its maximal

bandwidth bi, or it will receive a fair share (proportional to its size pi) of the total
bandwidth B. This is the de-facto strategy implemented by the parallel filesystems
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available in most HPC centers. This strategy does not need to consider what
application is requesting the I/O operation, but just how many I/O operations are
currently concurrent.

• FCFS: greedily allocate the bandwidth to active applications by non-decreasing
order of arrival Ri. More precisely, up to some re-ordering, let S(t) = {1, 2, . . . k}
with Ri ≤ Ri+1 for 1 ≤ i < k. A1 is granted its maximum bandwidth b1 (hence,
α1 = 1), then A2 is granted α2b2 = min(b2, B − α1b1), and so on until no more
bandwidth is available.

• GreedyYield: greedily allocate the bandwidth to active applications sorted by
non-decreasing yields yi(t). The greedy allocation process is the same as for FCFS
but with a different criterion, current minimum yield instead of oldest posting time.
This strategy gives priority to applications with low yield, so that they can catch up.

• GreedyCom: greedily allocate the bandwidth to the applications sorted by non-
decreasing ratio Vi/bi, i.e., by the remaining time to complete the pending I/O
operation at maximum possible bandwidth. This strategy gives priority to completing
shorter transfers, with the goal of freeing the I/O system as fast as possible and/or
give more bandwidth to forthcoming I/O operations.

• LookAheadGreedyYield: for each active application Ai, compute the minimum
yield Zi that can be achieved (over all active applications) if Ai is given priority and
allocated the maximum possible bandwidth bi, and where the remaining bandwidth
B − bi is allocated following GreedyYield for the other applications in S(t). Then,
we retain the allocation that maximizes the minimum yield Zi obtained with these
|S(t)| possible priority choices. The rationale for LookAheadGreedyYield is to
look ahead and maximize the minimum yield not at time t, but at time t + h, where
the horizon h is (tentatively) computed as the end of one ongoing I/O operation.

• PeriodicGreedyYield (δ): this strategy is a variant of GreedyYield where I/O
decisions are triggered by external (periodic) events submitted to the I/O controller
every δ seconds, in addition to the regular events that correspond to posting and
completion of I/O operations. As discussed in Section 7.3.2, we must restrict to a
polynomial number of external events. With the notations of Section 7.3.2, we use
E(+) = E in the simulations, which leads to choosing δ = Tend−Tbegin

E(+) . At every event,
external or regular, bandwidth-sharing decisions are the same as for GreedyYield.
The rationale for adding periodic events is to avoid the risk that GreedyYield
would apply a bad decision for too long: with several concurrent I/O operations
lasting for a long time, greedy decisions are updated every δ seconds, instead of
waiting for the first completion of one of these I/O operations.

7.4.2 Set-10 Strategy

This section provides a description of Set-10, the I/O-sets bandwidth-sharing strategy
from [30].

Determination of I/O-sets With the notations of Section 7.3.3, consider an application
Ai composed of operations

v(0)
i , W

(1)
i , v(1)

i , W
(2)
i , . . . , v(ni−1)

i , W
(ni)
i , v(ni)

i , . . .
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Assume that Ai has just completed the I/O operation v(j)
i . Then, the current value of ωi,

the average length of an iteration for Ai, is defined as

ωi = 1
j

j∑
k=1

(W (k)
i + d(k)

i,min),

where d(j)
i,min = v(j)

i
bi

, and bi = min (pib, B). Note that we neglect the initial I/O operation v(0)
i

to match the specification of [30]. Then, Ai is assigned to I/O-set Sn, where n = ⌊log10 ωi⌉,
and ⌊x⌉ denotes the nearest integer to x. Note that an application Ai may be dynamically
reassigned to another I/O-set depending upon the duration of its next work phases and
I/O operations. In [30], I/O-set Sn, where n = ⌊log10 ωi⌉, receives a priority qn = 10−n.

Bandwidth assignment Consider an event occurring at time t, and let S(t) denote
the index set of active applications that have a pending I/O transfer at time t. Each
participating application Ai, i ∈ S(t), is allotted a bandwidth αibi computed via the
following algorithm [30]:

1. Assume that the applications in S(t) belong to s different I/O-sets Sn1 ,Sn2 , . . . ,Sns .

2. Within each I/O-set, a single application is granted access to the I/O system. In
other words, there is exclusive access within sets. If several applications in S(t)
belong to the same I/O set, the one with the smallest value of Ri (FCFS, the one
that posted its request first) is selected.

3. Now, we have a subset of s applications, one per I/O subset, which will be granted
some bandwidth. The intuition is to partition the bandwidth according to the
priorities defined above. For simplicity, let us renumber the applications so that Aj

is the application chosen from set Snj , for 1 ≤ j ≤ s. Then, each application Aj

should be granted the fraction αj = qnj∑
1≤k≤s

qnk

of the total bandwidth B.

4. As usual, this bandwidth assignment remains valid until the next event.

However, this bandwidth-sharing algorithm implicitly assumes that each application
can use the whole system bandwidth: bi = B for each application Ai. To cope with general
scenarios where this is not the case, we have to extend the algorithm. The natural idea is
allocate bandwidth to several applications in the same I/O subset, rather than one, while
still enforcing the priorities. More precisely, the fraction qnj∑

1≤k≤s
qnk

of the total bandwidth
B is now assigned to several applications from Snj , chosen greedily in FCFS order. Here
is the extended algorithm for bandwidth-sharing:

1. Assume that the applications in S(t) belong to s different I/O-sets Sn1 ,Sn2 , . . . ,Sns .

2. For each I/O-set Snj , compute the maximum bandwidth fraction that it can receive,

namely βj =
∑

k∈Snj
bk

B . As before, let αj = qnj∑
1≤k≤s

qnk

.

3. We partition the s I/O sets into two categories, those that can receive the fraction
αj and those that are limited by their maximal bandwidth fraction βj . Let C be the
set of I/O sets of the latter category, i.e., such that βj ≤ αj .

4. All the applications Ak in an I/O set belonging to C receive their maximal band-
width bk.
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5. We compute the remaining bandwidth Bleft = (1−∑Snj ∈C βj)B.

6. We repeat the whole procedure with the remaining I/O-sets and Bleft , until either
there is no I/O-set left, or all remaining I/O-sets have a larger maximal bandwidth
than their priority share: βj ≥ αj . In the final step, the remaining I/O-sets are
granted the fraction αj of the remaining bandwidth Bleft . Within each of these I/O
sets, bandwidth is allotted greedily in FCFS order.

Remark on Framework The I/O-sets strategy [30] does not assume that the total volume
of an I/O operation is known when that operation is posted. Instead, they assume that
this volume is unknown until the I/O operation ends. They rely on the knowledge of the
average length of an iteration for each application, which is acquired from past behavior
traces. In our simulations of Set-10, we acquire information on average iteration length
on the fly as execution progresses.

As stated in Section 7.3.1, we do assume that the total volume of each I/O operation
is known when posted. This knowledge is necessary for GreedyCom, LookAhead-
GreedyYield (described in Section 7.4.1) and BestNextEvent (described below in
Section 7.4.3). However, GreedyYield and LookAheadGreedyYield (also described
in Section 7.4.1) do not need any information at all on the applications, they only need to
compute application yields on the fly. And of course FairShare and FCFS do not need
any information either.

7.4.3 Maximizing the Minimum Yield at the Next Event

Given an event at time t ∈ [Tbegin , Tend ], the aim of strategy BestNextEvent is to find
the best predictable event in the remainder of the window ]t, Tend ]. A predictable event is
either the end of the execution window (at time Tend) or the first time one of the currently
on-going I/O operations is completed, whichever comes first. The best predictable event is
the predictable event at which point the minimum yield will be maximized. Of course, if
an unpredictable event, such as the posting of a new I/O operation, surges before the best
predictable event, the bandwidth-sharing strategy will account for it and recompute the
best predictable event from that time on.

A priori, there are infinitely many dates in the interval [t, Tend ], at which the next
predictable event can happen; hence, we cannot test each and every one of them. Instead,
we partition the interval [t, Tend ] into a polynomial (in practice, quadratic) number of
sub-intervals. The extremities of these sub-intervals will be either the earliest date at which
an I/O operation can complete, or the time at which the characteristic yield functions of
two applications intersect (see below for details; the characteristic yield function of an
application will be, for instance, its maximum achievable yield at time t′, or its yield at
time t′ if it is allocated no bandwidth, etc.).

Let t = t1 ≤ t2 ≤ . . . ≤ tnint = Tend be the extremities of these sub-intervals. For
each sub-interval [ti, ti+1], we will consider each application Ak that can define an event
in (ti, ti+1) (hence, each application Ak such that ti ≥ Vk

bk
). Then, we search for the event

defined by Ak that maximizes the minimum yield in [ti, ti+1]. For that purpose, we start
by looking for the best solution at time ti. Once we have identified that solution, we
determine the largest interval [ti, t′

i] ⊂ [ti, ti+1] such that for any t′ ∈ [ti, t′
i] the optimal

solution at time t′ has the same structure (which applications are allocated bandwidth,
which application is allocated its maximal bandwidth, etc.) as the one at time ti. If
ti = ti+1 we conclude. Otherwise, we call recursively the algorithm on the interval [t′

i, ti+1].
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Because application Ak is defining an event at time ti, it receives the bandwidth Vk
ti−t ,

where Vk is the remaining volume at time t (hence, the I/O operation completes at time
ti). The remaining bandwidth B − Vk

ti−t must be distributed among the other applications.
We first compute an upper-bound, yUB, on the maximum minimum yield: yUB is the
minimum, over all applications, of the maximum yield achievable by each application at
time ti. We then check whether this upper-bound can be achieved without exceeding the
total bandwidth B. In the following, let yj (t′, b) denote the yield of application j at time
t′ if it is allocated a bandwidth of b during the interval [t, t′].

Assume first that yUB is not achievable. Then, let yopt(ti) denote the maximum minimum
yield at ti. The goal is to find the value of yopt(ti) and compute the set I of applications
to which some bandwidth must be allocated. This is exactly the set of applications whose
yield (yj (ti, 0)) is strictly lower than yopt(ti) if they were not allocated any bandwidth. I
can be computed by checking the total bandwidth required for all applications to achieve
a yield of at least yj (ti, 0), for any application Aj in S(t) \ {k}. We can show that all
applications receiving bandwidth must achieve the same yield. Then, knowing I, we can
compute the value of yopt(ti). Hence, we know how to maximize the optimal minimum
yield at time ti (under our hypothesis, namely that Ak defines an event at that time). We
have built a solution: Ak defines an event and the remaining bandwidth is distributed
among the applications in I which all achieve the same yield. We can write the yield
achieved by this solution has a function of t′ − ti for t′ ∈ [ti, ti+1]. This function is of
the form: a b+(t′−ti)

c+t′−ti
. Hence, it is monotonic. If it is non-increasing, we conclude that the

optimal is found at time ti. If it is increasing, we compute the latest time t′
i ∈ [ti, ti+1]

for which our solution defines the optimal solution. t′
i is the last time at which all the

conditions defining the solution hold, namely, for all t′ ∈ [ti, t′
i]:

• only applications in I receive bandwidth: ∀j ∈ S(t) \ I, j ̸= k ⇒ yj (t′, 0) ≥ yopt(t′);
• the bandwidth limits of all applications are satisfied: ∀j ∈ I,BWj

(
t′, yopt(t′)

)
≤ bj ;

• yopt(t′) is not greater than the yield of Ak: yopt(t′) ≤ yk

(
t′, Vk

t′

)
.

t′
i is computed by solving a set of second degree polynomials. Then, if t′

i = ti+1, the
optimum is achieved at time ti+1. Otherwise, the algorithm is called recursively on the
interval [t′

i, ti+1].

Now, assume that yUB is achievable. If the upper-bound is achieved by application Ak,
because its yield is decreasing on [ti, ti+1], the optimum is achieved at time ti. Otherwise,
let Aj be an application whose maximum achievable yield is minimal throughout [ti, ti+1]
(which implies ymax

j (ti) = yUB). Therefore, Aj achieves its maximum achievable yield at
time ti. Two cases can happen.

• Aj I/O operation ends at time ti. Then, the optimum is achieved at time ti because
the maximum achievable yield of Aj is then decreasing on [ti, ti+1].

• Aj is allocated its maximum bandwidth bj . Then, the yield of Aj is increasing over
[ti, ti+1] (as long as we can allocate it a bandwidth of bj). Once again, we compute
the set I of applications to which bandwidth must be allocated. Then, we compute
the latest time t′

i ∈ [ti, ti+1] for which our solution defines the optimal solution. t′
i is

the last time at which all the conditions defining the solution hold, namely:
– only applications in I receive bandwidth: ∀l ∈ S(t) \ I, l ̸= k ⇒ yl (t′, 0) ≥

yj (t′, bj);
– the total bandwidth is not exceeded: ∑l∈I BW l (t′, yj (t′, bj)) ≤ B − Vk

t′ ;
– the yield of Aj is not greater than the yield of Ak: yj (y′, bj) ≤ yk

(
t′, Vk

t′

)
.
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t′
i is computed by solving a set of second degree polynomials. Then, if t′

i = ti+1, the
optimum is achieved at time ti+1. Otherwise, the algorithm is called recursively on
the interval [t′

i, ti+1].
This concludes the high-level description of BestNextEvent. All details and algo-

rithms are available in Appendix B. Altogether, BestNextEvent is quite complicated,
and admittedly too complicated for practical use. However, it will serve as a reference to
help us assess the quality of the (simpler) greedy strategies of Section 7.4.1.

7.5 Lower Bounds on Competitive Ratios

This section provides lower bounds for the performance of the bandwidth-sharing strategies.
The results are summarized in Table II. For instance, the first entry m(1) in the table
means that FairShare has a competitive ratio not better than m, and that the proof of
this result is given by Example 1. An entry ∞ means that the strategy does not have a ρ
competitive ratio for any value of ρ ≥ 1. Sections 7.5.1 to 7.5.6 deal with the examples
that fill the lower bounds in Table II. Finally, we give some tight bounds in Section 7.5.7.

7.5.1 Example 1

We consider a window [Tbegin , Tend ] = [T, T + 1] with T ≫ 1. The first m− 1 applications
are released at time 0, and have a yield of 1 at the beginning of the window. The m-th
application is released at time T . Each application Ai verifies bi = B = 1 and pi = 1, and
posts an I/O operation of volume 1 at time T . FairShare allocates a bandwidth of 1

m to
all applications, resulting in a yield of T + 1

m
T +1 for the first m− 1 applications, and a yield of

1
m for the last one. Therefore, the minimum yield is 1

m .
However, if we had allocated all the bandwidth to the last application, its yield would be

1 and the minimum yield would be T
T +1 . By taking T large enough, we see that FairShare

has not a competitive ratio smaller than m for MinYield. This gives the first entry in
Table II.

When all applications are released at time Tbegin We now provide another example
where each application Ai is released at the beginning of the window: ri = Tbegin for all i.
This example establishes another negative result for the competitiveness of FairShare for

MinYield Efficiency Utilization
FairShare [52, 88] m(1) m

4
(2) ∞(2)

FCFS [52, 88] ∞(2) m(3) ∞(2)

Set-10 [174] ∞(2) m(3) ∞(2)

GreedyYield ∞(2) m(3) ∞(2)

GreedyCom ∞(2) m
4

(2) ∞(2)

LookAheadGreedyYield ∞(2) m(3) ∞(2)

PeriodicGreedyYield (δ → 0) 2(4) m(3) ∞(2)

BestNextEvent m
2 − 4(6) m(3) ∞(2)

Any strategy 3
2

(5) m
4

(2) ∞(2)

Table II: Lower bounds for the competitive ratios of bandwidth-sharing strategies.
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MinYield: there is no constant competitive ratio even when all the applications are fresh
when entering the window.

For this example, we consider a window [Tbegin , Tend ] = [0, K] with K ≥ 3. The
m = K2 + 1 applications are all released at time 0. Each application Ai verifies bi = B = 1
and pi = 1. The applications are as follows:

• ∀i ∈ [1, K], Ai consists of the phases v(0)
i = 1

K+1 , W
(1)
i = K;

• ∀j ∈ [1, K − 1], ∀i ∈ [Kj + 1, K(j + 1)], Ai consists of the phases v(0)
i = 0, W

(1)
i =

j, v(1)
i = 1

K+1 , W
(2)
i = K;

• AK2+1 consists of the phases v(0)
K2+1 = 1, W

(1)
K2+1 = K.

Thus, the first K applications and the last one post an I/O operation at time 0, while the
others start with a work phase. The schedule of FairShare is presented on the left of
Figure 7.1; it is as follows:

• During the interval [0, 1], applicationsA1,A2, . . . ,AK and AK2+1 receive a bandwidth
1

K+1 . Applications A1,A2, . . . ,AK finish their I/O operation at time 1. The other
applications work. Applications AK+1,AK+2, . . . ,A2K finish their work at time 1.

• During the interval [1, 2], applications AK+1,AK+2, . . . ,A2K and AK2+1 receive a
bandwidth 1

K+1 . Applications AK+1,AK+2, . . . ,A2K finish their I/O operation at
time 2. The other applications work. Applications A2K+1,A2K+2, . . . ,A3K finish
their work at time 2.

• · · ·
• During the interval [K − 1, K], applications AK2−K+1,AK2−K+2, . . . ,AK2 ,AK2+1

receive a bandwidth 1
K+1 . AK2−K+1,AK2−K+2, . . . ,AK2 finish their I/O operation

at time K. The other applications work.
In the end, the minimum yield is the yield of application AK2+1 which is 1

K+1 .

We consider the following alternative schedule (presented on the right of Figure 7.1):
• During the interval [0, 1], application AK2+1 executes its I/O operation. The other

applications do nothing (even the applications that could have processed their work).
• During the interval [1, 2], A1,A2, . . . ,AK receive a bandwidth 1

K+1 . A1,A2, . . . ,AK

finish their I/O operation at time 2. The other applications work. Applications
AK+1,AK+2, . . . ,A2K finish their work at time 2.

• During the interval [2, 3], applications AK+1,AK+2, . . . ,A2K receive a bandwidth
1

K+1 . Applications AK+1,AK+2, . . . ,A2K finish their I/O operation at time 3. The
other applications work. Applications A2K+1,A2K+2, . . . ,A3K finish their work at

time0 1 2 3

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10

time0 1 2 3

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10

Figure 7.1: Illustration of the example for FairShare when all applications are released at
time Tbegin , with K = 3 (hence, m = 10). The schedule achieved by FairShare is depicted
on the left, and the alternative schedule on the right. Blue areas represent computations,
red ones I/Os, and white ones idle time. The height of a red area shows whether the I/O
uses the whole bandwidth (like A10 during [0, 1] in the second schedule) or which fraction
of it (one fourth for all other I/Os).
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time 3.
• · · ·
• During the interval [K − 1, K], applications AK2−2K+1, . . . ,AK2−K receive a band-

width 1
K+1 . AK2−2K+1,AK2−2K+2, . . . ,AK2−K finish their I/O operation at time K.

The other applications work. Applications AK2−K+1,AK2−K+2, . . . ,AK2 finish their
work at time K.

In [1, K], all applications either work or communicate. They communicate during a time
at most 1, therefore they work during at least K − 2 units of time. The minimum yield
is therefore larger than K−2

K . This shows that FairShare has not a ρ competitive ratio,
where ρ ≤ (K−2)(K+1)

K . But (K−2)(K+1)
K > K − 2 =

√
m− 1 − 2 >

√
m − 3; hence, the

result that FairShare has not a
√

m − 3 competitive ratio when all applications start
execution at the beginning of the window.

7.5.2 Example 2

time0 1

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10

time0 1

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10

Figure 7.2: Illustration of Example 2 for the case m = 10 and ϵ = 1/5. The best schedule
for MinYield that completes the initial I/O of each application of category A (resp. of
category B) is depicted on the left (resp. on the right).

We consider a window [Tbegin , Tend ] = [0, 1]. m ≥ 4 applications are released at time
0. Each application Ai verifies bi = B = 1 and pi = 1. We assume that m is even. We
suppose that m/2 applications are in category A, i.e., have an I/O operation of volume 2

m ,
followed by a work phase of length 1. The other m

2 applications are in category B, i.e.,
have an I/O operation of volume 2

m followed by a work phase of length α = ε
m/2−1 , where

ε > 0 is a small number, and by another I/O operation phase of volume 1.
There are m I/O operations of volume 2

m posted at time 0. With a total bandwidth
B = 1, it is impossible to complete more than m/2 of them by time 1. Because the m
applications are not distinguishable at time 0, the adversary might force the scheduler
to complete only I/O operations of applications of category B at time 1, and have no
application of category A having completed its I/O operation by the end of the window.
Proceeding with this scenario, only applications of category B may have executed some
work at time 1. In fact, the most efficient scenario (which is illustrated on the right side of
Figure 7.2) is to grant the full bandwidth to each application in category B one after the
other, so that m/2− 1 of them can complete their work phase by the end of the window;
indeed, it is impossible for all m/2 applications in category B to terminate their work
phase by t = 1, and the best, in order to maximize the work done, is to schedule the I/O
operations without sharing. Finally, no application of category B can complete its second
I/O transfer by t = 1. The efficiency at time t = 1 is therefore upper bounded as

E =
∑

i∈A∪B V
(transferred)

i +∑
i∈B W

(done)
i

m
≤ 1

m
+ (m/2− 1)α

m
≤ 1 + ε

m
.

A strategy that would process the I/O operations of the jobs in category A without sharing
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is illustrated on the left side of Figure 7.2 and would reach an efficiency

E ′ =
∑m/2

i=1
i

m/2
m

= m/2 + 1
2m

>
m

4 E

for ε small enough. Therefore, there is no competitive ratio lower than m
4 for Efficiency

for any strategy.
Now, if we consider the Utilization objective function, we get u = ϵ

m with the first

scenario and u′ =
∑m/2−1

i=1
i

m/2
m = m−2

4m with the second scenario. Therefore, we can get a
competitive ratio arbitrarily large by choosing ε small enough.

Finally, for the MinYield objective, the best strategy is sharing I/O bandwidth
equally among the m = 2K applications, with gives a minimum yield of 1

m . Any heuristic
that serializes the I/O operations reaches a minimum yield of 0. For this example, this
includes FCFS, GreedyYield, GreedyCom, LookAheadGreedyYield and Set-10
(if additionally we assume that all applications belong to the same I/O-set when starting
execution at time t = 0).

7.5.3 Example 3
We consider a window [Tbegin , Tend ] = [1, 2]. m applications are released at time 0. Each
application Ai verifies bi = B = 1 and pi = 1. The first m− 1 applications have a yield
of 1 at time 1 and consists of an I/O operation of volume ε

m followed by a work phase of
length 1. The last application has an initial yield of 0 at time t = 1, and consist of an I/O
operation of volume 1.

A schedule that executes the I/O operations of the first m− 1 applications in parallel
completes these operations in time less than ε. These first m− 1 applications then work
for at least 1 − ϵ units of time, while the last application executes a fraction of its I/O
operation. This schedule has an efficiency Efficiency larger than 1− ϵ.

However, GreedyYield, LookAheadGreedyYield, PeriodicGreedyYield and
BestNextEvent would all allocate the whole bandwidth to the last application, because
of its low initial yield. Thus they obtain an efficiency of 1

m (although they optimize the
minimum yield). The same is true for FCFS, which could allocate the whole bandwidth to
the last application (since all I/O operations are posted at time t = 1 and applications are
indistinguishable). Finally, if additionally we assume all applications belong to the same
I/O-set when starting execution at time t = 1, Set-10 might do the same and select the
last application. Altogether, all these heuristics have a competitive ratio of at least m.

7.5.4 Example 4

time0 1 2

A1
A2
A3
A4
A5

time0 1 2

A1
A2
A3
A4
A5

Figure 7.3: Illustration of Example 4 for the case m = 5 and T = 2. The schedule of
PeriodicGreedyYield ( 1

m2 ) is depicted on the left, and an alternative schedule on the
right.

We consider a window [Tbegin , Tend ] = [0, T ]. m identical applications are released at
time 0. Each application Ai verifies bi = B = 1 and pi = 1. Each application Ai repeats
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the same cycle indefinitely, namely an I/O operation of volume 1
m followed by a work phase

of length 1− 1
m .

We study PeriodicGreedyYield (δ) with δ = 1
m2 . This strategy will interleave the

I/O operations of all applications in a cyclic fashion, moving from one application to the
next every δ units of time. This is illustrated on the left-hand side of Figure 7.3. Without
loss of generality, Ai will be the i-th application to complete its first I/O operation, at
time m−1

m + i
m2 . The same cyclic sequence of I/O operations may well repeat after the first

work phase, and so on until the end of the window. The minimum yield is that of Am, and
it reaches its highest value at the end of each work phase (and then decreases during the
next I/O operation). This highest value is 1

2− 1
m

. Indeed, by induction, Am finishes its k-th

phase of work at time k
(
1 + 1− 1

m

)
, while its progress at the end of this k-th phase is

equal to k.
However, a strategy that processes the I/O operations in sequence would result in a

schedule with perfect yield after time 1. Such a strategy is illustrated on the right-hand
side of Figure 7.3. In such a strategy, application Ai, with 1 ≤ i ≤ m would perform I/O
in the intervals [j + i−1

m , j + i
m ] and work in the intervals [j + i

m , j + 1 + i−1
m ] for all j ≥ 0.

Therefore the yield of each application will be at least T −1
T with that strategy.

Letting T large enough, this shows that PeriodicGreedyYield (δ) has a competitive
ratio at least 2− 1

m for MinYield. Letting m large enough, this shows that Periodic-
GreedyYield (δ) has a competitive ratio at least 2 for MinYield.

7.5.5 Example 5

time0 1 2 3 4 5 6 7 8 9 101112131415

A1
A2
A3
A4

time0 1 2 3 4 5 6 7 8 9 101112131415

A1
A2
A3
A4

Figure 7.4: Illustration of Example 5 for the case m = 4. The schedule on the left maximizes
MinYield. The first phase (first I/O and first computation of each application) of the
schedule on the right is the best possible schedule when the first set of I/Os is completed in
the worst possible order. In the second phase of the schedule, the only thing that matters
is not to share the bandwidth (the order of I/O completions has no impact).

This example provides a general lower bound for the competitive ratio of any bandwidth-
sharing strategy for the MinYield objective:

Lemma 30. Given ε > 0, there does not exist any 3
2 − ϵ competitive algorithm for

MinYield.

Proof. We consider a set of m applications A1, . . . , Am and the window [Tbegin , Tend ] =
[0, 4m− 1]. The characteristics of application Ai, 1 ≤ i ≤ m, are as follows:

• bi = B = 1 and pi = 1;
• Ai starts with an I/O operation of volume 1;
• Ai then has a work phase of duration m− 2 + i;
• Ai then has an I/O operation of volume 2;
• Ai then has a work phase of duration 3m.
A possible schedule for each application Ai is the following (it is illustrated on the

left-hand side of Figure 7.4):
• Ai waits during the time interval [0, i− 1];
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• Ai performs its initial I/O operation during the time interval [i− 1, i];
• Ai computes during the time interval [i, m + 2i− 2];
• Ai performs its second I/O operation during the time interval [m + 2i− 2, m + 2i];
• Ai computes during the time interval [m + 2i, 4m + 2i] (note that 4m + 2i ≥ 4m− 1).

All the initial I/O operations are scheduled one after the other. The same holds for all
second I/O operations. Moreover, the last initial I/O operation (by Am) ends at time m,
while the first second I/O operation (by A1) starts at time m + 2− 2 = m. Hence, the 2m
I/O operations are sequentialized and performed at maximal bandwidth. The application
that suffers from the largest slowdown is Am. Its yield is ym = (4m−1)−(m−1)

4m−1 = 3m
4m−1 .

Because all m applications start with an I/O operation of volume 1, an arbitrary
bandwidth-sharing strategy has no way do differentiate them. Hence, an adversary can
decide that the initial I/O operations are completed in reverse order of application indices:
the first completed I/O operation is that of Am, the second completed I/O operation is
that of Am−1, and so on. Such a scenario is illustrated on the right-hand side of Figure 7.4.
Then, the initial I/O operation of application Ai cannot finish before time m − i + 1,
because the total volume transferred when Ai completes its I/O operation is m − i + 1.
Then Ai cannot finish its work phase before time (m − i + 1) + (m − 2 + i) = 2m − 1.
Therefore, the second I/O operation of all applications starts at or after time 2m − 1.
Because the total volume of all second I/O operations is 2m, at least one application, say
Ai0 , will not finish its second I/O operation before time 4m− 1, which is the end of the
window. In total, this application Ai0 will have executed at most 3 units of time of I/O
operation and m− 2 + i0 ≤ 2m− 2 work units. Hence, the yield of Ai0 satisfies yi0 ≤ 2m+1

4m−1 .
We can then derive a bound on the competitive ratio ρ of any strategy:

ρ ≥
3m

4m−1
2m+1
4m−1

= 3m

2m + 1 −−−−−→
m→+∞

3
2 .

7.5.6 Example 6

We consider m > 10 applications and a window [Tbegin , Tend ] = [m, m2

2 − 2m + 2]. Each
application Ai is released at time 0, verifies bi = B = 1, pi = 1 and has an initial yield
of 1 at time Tbegin . The first application, A1, repeats the same cycle indefinitely, namely
an I/O operation of volume 1

m , followed by a work phase of length ϵ
m3 . The other m− 1

applications are identical and consist of an I/O operation of volume 1 + ε, where ε > 0 is a
small number, followed by a work phase of length m2.

A possible schedule would first share the bandwidth among the I/O operations of the
last m − 1 applications up to time t = m + (m − 1)(1 + ε). The first application would
then remain idle up to time t. After time t, only the first application A1 is posting I/O
operations, so there is no further interference until the end of the window. The minimum
yield would then be that of A1 and would verify:

y∗
1 = Tend − t

Tend − Tbegin
=

m2

2 − 2m + 2− (m− 1)(1 + ε)
m2

2 − 3m + 2
≥

m2

2 − 3m
m2

2 − 2m + 2

if ε is small enough (say ε < 1
m).

We now study the performance of BestNextEvent. Intuitively, the parameters
of the example have been chosen so that: (i) each time A1 posts an I/O operation,
BestNextEvent assigns it the whole bandwidth immediately; and (ii) during each work
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phase of A1, BestNextEvent assigns the whole bandwidth to the same application (the
one that was granted the whole bandwidth during the first work phase of A1). We now
prove these facts by induction on the number of events, with time Tbegin = m corresponding
to event number 1.

Lemma 31. All events taking place at a time t < m2

2 − 2m are triggered by A1 (and maybe
other applications). Odd-numbered events correspond to A1 posting an I/O operation,
and even-numbered events correspond to A1 completing an I/O operation. Up to time t,
BestNextEvent will never share the I/O bandwidth, and it will assign it as follows:

• A1 is granted the whole bandwidth at every odd-numbered event;
• the same application, say A2, is granted the whole bandwidth at every even-numbered

event.
Therefore, only A1 and A2 make some progress up to time m2

2 − 2m.

Proof. We proceed by induction on events. We assume that we are currently at the i-th
event and that all previous decisions have fulfilled the conditions of the lemma so far.
Case 1: i = 2k + 1 for k ≥ 0. Since the lemma is true so far, i = 2k+1 means application

A1 is ready to perform an I/O operation, and t = m + k
(

1
m + ϵ

m3

)
≤ m2

2 − 2m, thus
k < m3, and the m− 1 last applications Ai for i ≥ 2 have more than 1 unit of I/O
volume remaining (by induction, because A1 has been working for at most k phases
of length ϵ

m3 , hence for a duration at most ε). We distinguish two cases:
Case 1.1: the next event happens in δ ≥ 1 units of time. In this case, we

consider the yield of the application that has been assigned, in the interval
[t, t + δ], the least bandwidth, b, among the last m− 2 applications that have
not started their first I/O operation and have a current progress of m. We have
b ≤ 1

m−2 . The minimum yield at the next event would verify y ≤ f(δ) = m+bδ
t+δ .

Using b ≤ 1
m−2 and t ≤ m2

2 − 2m, we differentiate and find that f is non

increasing. Hence, we can safely replace δ by 1 to get y ≤ m+b
t+1 ≤

m+ 1
m−2

t+1 .
Case 1.2: the next event happens in δ < 1 units of time. In this case, the

next event is defined by the completion of the I/O operation of A1 (the end
of the window is in Tend − t > 1 time units; therefore, the next event cannot
be the completion of the I/O operation of one the last m − 1 applications).
Letting x be the fraction of bandwidth assigned to A1, we have δ = 1

mx . We
consider the yield of the application that has the least bandwidth, b, allocated
during the interval [t, t+δ], among the m−2 applications whose processing have
not yet started (by induction): b ≤ 1−x

m−2 . Clearly the minimum yield will not

exceed y = m+bδ
t+δ ≤

m+ 1
mx

1−x
m−2

t+ 1
mx

= (m−2)m2x+1−x
(m−2)(1+mtx) . We let f(x) = (m−2)m2x+1−x

(m−2)(1+mtx) .

We differentiate and get f ′(x) = m3−2m2−mt−1
(m−2)(1+tmx)2 , which is positive if m is large

enough, since t ≤ m2

2 − 2m. Therefore, we can safely replace x by 1 and get
y ≤ m

t+ 1
m

. This upper bound on the minimum yield can actually be achieved by
allocating all the bandwidth to A1; indeed, A1 would then have a yield of 1 and
every other application a yield at least equal to m

t+ 1
m

.
To conclude, we need to show that Case 1.2 results in a better minimum yield
than Case 1.1, i.e., that m+ 1

m−2
t+1 ≤ m

t+ 1
m

. This last inequality is equivalent to

m ≥ 1 + t
m−2 + 1

m(m−2) , and is true as t ≤ m2

2 − 2m < (m−2)2

2 . As a consequence, the
best decision is to allocate all the bandwidth to A1, which concludes the induction
step for i = 2k + 1.
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Case 2: i = 2k for k > 0. Since the lemma is true so far, the event i = 2k occurs at time
t = m + (k− 1)

(
1
m + ϵ

m3

)
+ 1

m ≤
m2

2 − 2m. Hence, again, k < m3 and A1 is starting
a work phase. If k = 1 we will show that the whole bandwidth is assigned to one
application, say A2. If k > 1, by induction A2 has transferred a volume (k−1)ϵ

m3 < ϵ
so far. Regardless of the value of k, by induction, any application Ai with i ≥ 3 has
not started its execution.
Case 2.1: The next event is the end of the window. In this case, let b be the

minimum bandwidth allocated to an application other than A2 (and A1) during
the interval [t, t + δ]. Thus, b ≤ 1

m−2 and δ ≥ Tend − t > 2 does not depend

on b. We get y ≤ f(δ) = m+ 1
m−2 δ

t+δ . We obtain f ′(δ) = −m2+2m+t
(m−2)(δ+t)2 < 0 (because

t < m2

2 − 2m). We replace δ by 2 and get y ≤ m+ 2
m−2

t+2 .
Case 2.2: The next event is not the end of the window. If the next event is

not the end of the window, let Ai0 be the application defining the next event
at time t + δ and let x be the bandwidth allocated to Ai0 (we will eventually
show that Ai0 = A2). Let Ai1 be the application with smallest bandwidth, b,
allocated to it during t, t + δ], among the applications that are not A1, A2 and
Ai0 . Therefore, b ≤ 1−x

m−3 and by assumption Ai1 has not started. The minimum
yield will not exceed the yield of Ai1 , which is y = m+bδ

t+δ . We distinguish two
last sub-cases:
Case 2.2.1: i0 = 2. We have δ = 1+ϵ− (k−1)ϵ

m
x , and y ≤ y(Ai1) ≤ f(x) =

m+ 1−x
m−3

1+ϵ− (k−1)ϵ
m

x

t+ 1+ϵ− (k−1)ϵ
m

x

.

We obtain f ′(x) = (ϵ(−k+m+1)+m)(ϵ(k−m−1)+m(m2−3m−t−1))
(m−3)(ϵ(−k+m+1)+mtx+m)2 . If ϵ is small

enough f ′(x) will have the sign of m2(m2 − 3m− t− 1) which is positive as
t ≤ m2

2 − 2m. We can safely bound f(x) by f(1) and the minimum yield
will verify y ≤ m

t+1+ϵ− (k−1)ϵ
m

. We point out that this bound on the minimum
yield is achievable by allocating all the bandwidth to application A2; hence,
we have an equality.

Case 2.2.2: i0 ̸= 2. In this case, we have δ = 1+ϵ
x , and y ≤ y(Ai1) ≤ f(x) =

m+ 1−x
m−3

1+ϵ
x

t+ 1+ϵ
x

. We obtain f ′(x) = (ϵ+1)(m2−3m−t−1−ϵ)
(m−3)(ϵ+tx+1)2 . If ϵ is small enough,

f ′(x) will have the sign of m2 − 3m − t − 1, which is strictly positive as
t ≤ m2

2 − 2m. We can safely bound f(x) by f(1) and the minimum yield
will verify y ≤ m

t+1+ϵ . Note that, once again, this bound on the minimum
yield is achievable by allocating all bandwidth to application Ai0 ; hence we
have an equality.

A quick computation shows that if k = 1, cases 2.2.1 and 2.2.2 are equivalent and
better than 2.1 because m

t+1+ϵ >
m+ 2

m−2
t+2 ⇔ m(m− 2) > 2(t+1+ϵ)

1−ϵ , which is true if ϵ is
small enough. Therefore, if k = 1, the algorithm allocates all the bandwidth to an
arbitrarily chosen application. When k > 1, Case 2.2.1 achieves a strictly better yield
than the other two cases. Hence, BestNextEvent will always chose to allocate
bandwidth to the same application.
This concludes the proof of the lemma.

A direct consequence of Lemma 31 is that each application Ai with i ≥ 3 will not
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have any progress in the interval [m, m2

2 − 2m]. Therefore, the minimum yield is at most
y′ = m+2

m2
2 −2m+2

= 2(m+2)
m2−4m+4 . Therefore, y∗

y′ ≥ m2−6m
2(m+2) > m

2 − 4.

7.5.7 Tight Bounds

This section provides additional results on the performance of the bandwidth-sharing
strategies.

The competitive ratio of FairShare is exactly m for MinYield

Section 7.5.1 has shown that the competitive ratio of FairShare for the MinYield
objective is at least m. In fact, this competitive ratio is exactly m. Intuitively, with
FairShare, each application progresses at full rate when computing, and at least at the
fraction 1

m of the optimal rate when performing an I/O operation.
To see this formally, whenever an application Ai posts an I/O operation at time t, it

receives either its maximal bandwidth bi or the fair fraction bi∑
j∈S(t) bj

≥ bi
m . Therefore, if

Ai was released at time ri with an initial yield yi(Tbegin) at the beginning of the window
[Tbegin , Tend ], we get

yi(Tend) ≥
yi(Tbegin)× (Tbegin − ri) + Tend−Tbegin

m

Tend − ri

≥ yi(Tbegin)× (Tbegin − ri) + (Tend − Tbegin)
m(Tend − ri)

≥ yopt
i

m
,

where yopt
i is the best achievable yield for Ai.

The competitive ratios of FCFS, Set-10, GreedyYield, LookAheadGreedyYield, and
PeriodicGreedyYield are exactly m for Efficiency

Any bandwidth-sharing strategy that always allocates the whole bandwidth that can be
allocated (regardless of the details of the allocation) does achieve a competitive ratio of m
for Efficiency. Indeed, if there is no I/O operation at time t, the efficiency is 1, and if
there is some I/O operation, the efficiency is at least 1

m . The five strategies listed here
do allocate the whole possible bandwidth at each event. The lower bounds come from
Section 7.5.3.

FairShare can be arbitrarily better than BestNextEvent

In the example of Section 7.5.6, the I/O operations of applications Ai for i > 1 will
always receive a fraction of the total bandwidth greater than 1

m with FairShare. These
applications will complete their I/O operations at time at most m + m(1 + ϵ) < 3m.
After this point, there would not be further interference, and the minimum yield y∗ for
FairShare verifies

y∗ ≥
m2

2 − 5m
m2

2 − 2m + 2
>

(
m

2 − 6
) 2(m + 2)

(m− 2)2 ≥
(

m

2 − 6
)

yN ,

where yN is the minimum yield achieved by BestNextEvent, whose upper bound 2(m+2)
(m−2)2

is given in Section 7.5.6.
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7.6 Performance Evaluation

We first formally define the main parameter for the experiments, namely the I/O pressure,
in Section 7.6.1. Then, we detail the simulations conducted with synthetic traces in
Section 7.6.2 before discussing results for the APEX workloads in Section 7.6.3. This code
is publicly available at https://gitlab.inria.fr/luperoti/BandwithStrategies.

7.6.1 I/O Pressure

For a given a steady-state window [Tbegin , Tend ] with m applications, we compute the
volume Vi that each application Ai would be able to transfer if it was executed in dedicated
mode throughout the window. The total I/O volume to transfer during the window is
V = ∑m

i=1 Vi. The I/O pressure W is then

W = V

B(Tend − Tbegin) . (7.11)

The I/O pressure W is the ratio of this total volume V over the maximum volume that
could have been transferred during the window, assuming that it consists of a single block
of data available at Tbegin . Of course, if W exceeds 1, some transfers will necessarily be
delayed. But even if W is lower than 1 but high, say 0.8, it is likely that I/O interferences
and delays due to work phases will prevent to transfer the whole data volume V before the
end of the steady-state window.

The I/O pressure W is a key parameter for the simulations: most bandwidth-strategies
are expected to perform well when W is low, but we aim to assess how much their
performance drops when W is high.

7.6.2 Synthetic Traces

Framework

The synthetic traces follow the methodology of [30] and consist of m = 60 applications, each
of them being able to saturate the bandwidth (we have bi = B = 1), with an approximate
horizon of h = 2, 000, 000. For a given aimed pressure W GOAL, each application Ai

(1 ≤ i ≤ m) is defined by the three parameters (µi, σ′
i, νi): µi and σ′

i represents expectation
and standard deviation and impact the length of the repetitions for each applications
and νi determines how much the application differs from one iteration to another. More
precisely,

• We generate an iteration duration ωi for Ai, which corresponds to the sum of a
work phase and an I/O phase if the application was alone on the platform. This
duration is generated using the two parameters µi and σ′

i: ωi is drawn from the
normal distribution N (µi, σ′

i), truncated so that we consider only positive results.
• The number of iterations of application Ai is ni =

⌈
h
ωi

⌉
so its total completion time

if it were alone on the platform is close to h.
• All applications are released at time Tbegin : ri = Tbegin for each application Ai. In

other words, all applications are fresh when entering the window and have the same
yiled (equal to 0). To avoid having all applications synchronized, we add a work phase
w

(0)
i whose length is generated in U [0, ωi], so that application Ai effectively starts

at time w
(0)
i . To simulate Set-10, we put all applications in the same I/O-set with

highest priority initially, and hence process them in FCFS order at the beginning of

https://gitlab.inria.fr/luperoti/BandwithStrategies
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the execution. After that each application has completed its first I/O operation, the
duration of each iteration is updated on the fly, and applications get classified into
different I/O-sets.

• Next, for each application, we fix the time spent on I/Os vs. on computing, so that
the total pressure is around W GOAL. This is done by drawing a value uk uniformly
at random in U [0, 1] for each application Ak (1 ≤ k ≤ m), and then by defining the
fraction of I/O for application Ai as ϕi = uiW

GOAL∑m

k=1 uk
. This guarantees that the I/O

pressure W is around W GOAL. Indeed, ϕi allows us to define the average duration
of computing phases ti,cpu = (1 − ϕi)ωi and the average volume of I/O phases:
ti,io = ϕiωi. Thus

W ≈
∑m

i=1 ti,ioni

B(Tend − Tbegin) =
∑m

i=1 ϕiωini

B(Tend − Tbegin)

≈
∑m

i=1 ϕiTend
B(Tend − Tbegin) = TendW GOAL

Tend
= W GOAL.

We point out that we cannot enforce exactly W = W GOAL due to the randomness in
the generation of instances.

• Finally, for each application Ai, we consider a noise parameter νi to generate iterations
of different lengths. For all j ≤ ni, we draw two variables γ

(j)
cpu and γ

(j)
io from a uniform

distribution U [−νi, νi] and let W
(j)
i = (1 + γ

(j)
cpu)ti,cpu and v(j)

i = (1 + γ
(j)
io )ti,io.

Results for Synthetic Traces

Still following the methodology of [30], the experiments are conducted by varying four
different key parameters for the 60 applications. For the application length, we consider
20 applications of medium size, and then a proportion of smaller and larger applications,
as determined by the parameter nsmall (number of small applications). The standard
deviation is dictated by parameter σ, the noise is set to ν, and the pressure is W GOAL.
Overall, the applications are as follows:

• nsmall small applications with parameters (µ = 1 000, σ′ = µσ, ν);
• 20 medium applications with parameters (µ = 10 000, σ′ = µσ, ν);
• 40− nsmall big applications with parameters (µ = 100 000, σ′ = µσ, ν).

The time window is defined as [Tbegin = 0, Tend ≈ h], where Tend is the smallest time
required to complete an application when it is running alone on the platform. Each
application is generated in such a way that Tend is approximately equal to h = 2, 000, 000.
For each set of experiments, we study the results of all the heuristics for the three objectives
(MinYield, Efficiency, Utilization).

Finally, for each set of parameters, we generate K = 200 instances on which we test
all the heuristics presented in Section 7.4 (including the reference heuristics FairShare,
FCFS and Set-10). In the following sections, we vary the parameters one by one and
present the results on different figures. Each set of instances is represented by a boxplot
of a color associated with the studied heuristic. In these boxplots, the 25th and 75th
percentiles of the K instances delimit the box, and the 10th and 90th percentiles are at the
end of the whiskers. Finally, the boxplots are connected by a line passing through their
means.

Impact of the target I/O pressure (W GOAL). We first set ν = σ = 0.5, and nsmall = 20
(20 applications of each category), and we present the results of the experiments for all
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Figure 7.5: Impact of the aimed I/O pressure (W GOAL).

values of the aimed I/O pressure W GOAL ∈ [0.2, 0.5, 0.8, 0.9, 1.0, 1.1] on Figure 7.5. As soon
as the pressure increases, we see that the state-of-the-art strategies FairShare, FCFS,
and Set-10, along with the new GreedyCom, fail to keep a minimum yield close to 1. The
other newly proposed strategies, which all focus on the yield, successfully maintain a very
high minimum yield, and achieve a similar performance which very slowly degrades when
the I/O pressure increases. LookAheadGreedyYield and BestNextEvent achieve a
very slightly worse performance than GreedyYield and PeriodicGreedyYield. This
counter-intuitive result may be explained by the fact that an I/O phase is always followed by
a computation phase during which the progress rate of an application is perfect. Hence, what
heuristics GreedyYield and PeriodicGreedyYield may loose in terms of application
yield during an I/O phase may be made up later on in the subsequent computation phase.
The fact that GreedyYield, PeriodicGreedyYield and LookAheadGreedyYield
achieve a minimum yield no worse than that of BestNextEvent, a costly strategy which
exhaustively looks for the best solution, strongly validates these three low-cost strategies.

The classical FCFS strategy also has very poor results in terms of efficiency and
utilization, while GreedyCom is actually the best for these objective functions since
it will complete short I/Os first, with a risk of starvation for applications with long
I/Os. This explains the poor performance of GreedyCom for MinYield for higher
values of W GOAL. The yield-based strategies tend to balance the yield of all applications,
which optimizes the MinYield. However, not allowing any application to starve requires
prioritizing some long I/Os that saturate the bandwidth, which can negatively impact
both Efficiency and Utilization. The underlying tradeoff explains why heuristics
achieving a significantly better performance than FairShare for the MinYield usually
achieve slightly worse performance than FairShare for Efficiency and Utilization.
However, the performance degradation in terms of either Efficiency or Utilization is
quite small (under 5%) and only happens for the largest value of I/O pressure. For all but
the largest value of W GOAL, LookAheadGreedyYield even achieves better Efficiency
and Utilization than FairShare.

Impact of iteration size (ω) and I/O fraction (ϕ). We investigate the impact of ω
and ϕ on the yield of each individual application for a fixed set of parameters: ν = 0.5,
σ = 0.5, nsmall = 20, and W GOAL ∈ {0.5, 0.8, 1.1}. More precisely, for each experiment
Ek, we define two permutations on the index set {1, 2, . . . , 60} to sort the applications
by increasing values of ω (permutation πk

ω) or of ϕ (permutation πk
ϕ). For each value

of W GOAL, we compute the average yield of applications in each position i under each
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permutation, denoted as y
(ω)
i (resp. y

(ϕ)
i ), for i ∈ {1, 2, . . . , 60}. It is computed as follows:

y
(ω)
i = 1

K

K∑
k=1

yπk
ω(i) and y

(ϕ)
i = 1

K

K∑
k=1

yπk
ϕ

(i).

We then plot the value of y
(ω)
i for i varying in [1, 60] on Figure 7.6 and the value of y

(ϕ)
i

on Figure 7.7. Therefore, the leftmost point on Figure 7.6 (respectively, on Figure 7.7)
corresponds to the average yield of the application with the smallest value of ω (resp., of
ϕ), while the rightmost point corresponds to the average yield of the application with the
largest value of ω (resp., of ϕ).

Impact of iteration size (ω). On Figure 7.6, we observe that the differences between the
heuristics are more pronounced when W GOAL increases. This is because the increase in
W GOAL increases the I/O interferences. For this reason, we now focus on the figure on the
right (case W GOAL = 1.1). First, we can observe that the variation of ω has little impact
on the yields achieved by FairShare, GreedyYield, LookAheadGreedyYield, Peri-
odicGreedyYield, and BestNextEvent. GreedyYield, LookAheadGreedyYield
PeriodicGreedyYield, and BestNextEvent tend to balance the yield of the different
applications, resulting in a constant function. For FairShare, there seems to be no
correlation between ω and the yield. This can be explained by the fact that there is no
correlation between ω and ϕ in the generated instances.

This figure is more enlightening for the other heuristics. First, the yield seems to be
positively correlated with ω for FCFS. This is because ϕ is not correlated with ω. Hence, a
small value of ω corresponds to short I/O phases. For FCFS, the longest I/Os will saturate
the bandwidth more often. Indeed, a single application can saturate the bandwidth, so
when a long I/O is executed, all the other applications wanting to performa some I/O are
stopped. For an application with a small I/O, the waiting time may be very long compared
to its size, and the next waiting phase may also come quickly if some long I/O is posted
between two of its I/O phases. Therefore, applications with short I/Os, i.e., a small value
of ω, will spend a large part of their time waiting.

We observe the opposite behavior for the GreedyCom strategy since, this time, small
I/Os are given priority. As previously mentioned, a low value of ω induces short I/Os;
hence, the yield decreases with ω.

Finally, this figure perfectly illustrates the behavior of Set-10. Indeed, we can clearly
distinguish the three steps corresponding to the three priority categories in these synthetic
traces. Moreover, within each of these steps, we see that the yield increases with ω, just
like for FCFS. This is because Set-10 behaves like FCFS inside each of these categories.

Impact of I/O fraction (ϕ). Figure 7.7 may appear a bit more cluttered, but illustrates
some interesting behaviors. Once again, we only focus on the figure on the right, that is,
on the case W GOAL = 1.1. First, we can see a difference between GreedyYield (hidden
under PeriodicGreedyYield) and LookAheadGreedyYield for small values of ϕ,
showing that the best immediate choice is not always the best choice in the long term. We
can also see that BestNextEvent favors applications with smaller I/Os so that the next
event arrives as soon as possible and the yield do not have the time to significantly decrease
(because of I/O interference). FCFS is erratic because an application with a large ω but a
small ϕ will still have larger I/O volumes per phase than an application with a small ω but
a large ϕ. The same argument also explains the non-monotonic behavior of GreedyCom
when ϕ becomes large. The only heuristic that is strongly (negatively) correlated with ϕ is
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Figure 7.6: Yields sorted by iteration size (ω).
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Figure 7.7: Yields sorted by I/O fraction (ϕ).

FairShare. Indeed, the larger ϕ, the longer the application will spend performing I/Os,
and the lower the yield will be, whereas in a working phase, the instantaneous yield is 1.
The linear shape of this curve is related to the uniform distribution of ϕ.

Impact of the number of small applications nsmall. We let ν = σ = 0.5, and run
experiments for all values of nsmall ∈ [10, 20, 30], both in the low I/O pressure scenario
(Figure 7.8, with W GOAL = 0.8) and in the high I/O pressure scenario (Figure 7.9, with
W GOAL = 1.1). The results are pretty similar for all values of nsmall, and we draw the
same conclusions as in Section 7.6.2), in particular when the I/O pressure is high. Indeed,
with a low I/O pressure, almost all heuristics succeed to achieve a high value of MinYield.
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Figure 7.8: Impact of the number of small tasks (nsmall) with low I/O pressure (W GOAL =
0.8).
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Figure 7.9: Impact of the number of small tasks (nsmall) with high I/O pressure (W GOAL =
1.1).
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Figure 7.10: Impact of the standard deviation (σ) with low I/O pressure (W GOAL = 0.8).

Impact of the standard deviation σ. We set ν = 0.5, nsmall = 20, and consider σ ∈
[0, 0.25, 0.5, 0.75, 1], both in the low I/O pressure scenario (Figure 7.10, with W GOAL = 0.8)
and in the high I/O pressure scenario (Figure 7.11, with W GOAL = 1.1). We observe that
the novel heuristics (except maybe GreedyCom when the I/O pressure is high) are not
affected by an increase in the standard deviation σ, while FCFS suffers from high standard
deviation. In the scenario with a high I/O pressure, the MinYield achieved by Set-10
significantly decreases when σ increases.

Impact of the noise. In these experiments, we set σ = 0.5, nsmall = 20, and we consider
values ν ∈ [0, 0.25, 0.5, 0.75, 1], both in the low I/O pressure scenario (Figure 7.12, with
W GOAL = 0.8) and in the high I/O pressure scenario (Figure 7.13, with W GOAL = 1.1).
We see that the noise does not affect any of the heuristics, which are resilient to variations
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Figure 7.11: Impact of the standard deviation (σ) with high I/O pressure (W GOAL = 1.1).
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Figure 7.12: Impact of the noise (ν) with low I/O pressure (W GOAL = 0.8).
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Figure 7.13: Impact of the noise (ν) with high I/O pressure (W GOAL = 1.1).

in the lengths of the working and I/O phases.

Synthesis of the Evaluation on Synthetic Scenarios

For the MinYield objective, the greedy strategies LookAheadGreedyYield,
GreedyYield and PeriodicGreedyYield achieve comparable performance, and much
better performance than the competitors FCFS, FairShare and Set-10. Furthermore,
we stress that the complicated strategy BestNextEvent does not turn out to be superior
to the simpler ones, which is good news: GreedyYield, LookAheadGreedyYield and
PeriodicGreedyYield are all simple to implement and use. Finally, for the Efficiency
and Utilization objectives, GreedyCom is the best, FCFS is the worst, and the other
strategies achieve close performance in between.

7.6.3 Evaluation on APEX workloads

Apex Traces [109]

We use the workload and platform described in [109] to evaluate the bandwidth-sharing
strategies on realistic scenarios. The table in Figure 3 of [109] describes two very different
workloads: the NERSC workload and the TRILAB workload. The NERSC workload
contains a large number of small applications (e.g., a single pipeline of the SkySurvey
workflow runs over 24 cores for 4 hours, but the set of SkySurvey workflows represents 12%
of the overall core-hours used by the workload on the machine), some large applications
(GTS spans over 16,512 cores, or 1/8 of the platform, for 48 hours), and some very long
running applications (CESM applications run for 10 days over 8,000 cores). The TRILAB
workload contains a more homogeneous set of applications (4096 to 32768 cores), and
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all applications run for a significantly longer time (64 hours for the smallest duration,
and up to 12 days for the longest). From this table, we take the application walltime,
its number of cores, and the data information to build a possible schedule on the target
machine. The table reports how much input, output, and checkpoint data each application
uses. The trace does not provide fine-grain information on how the data is consumed or
produced. To simulate the schedules, we assume that all inputs happen at the beginning
of the application, which then does periodic checkpoints, and eventually outputs all its
output data just before its completion. As is often the practice in HPC centers [80], we
use a fixed period of 1 hour for the checkpoint interval.

Based on this information, we generate machine schedules using the first-fit strategy.
We consider independently NERSC or TRILAB workloads and, for a given workload, we
randomly pick applications from this workload, and place them on the schedule, until two
conditions are met: 1) the schedule follows the application workload distribution described
in the APEX table, and 2) the schedule represents at least 3 months of machine use. For
each target machine considered (see below), we generate 100 schedules for the TRILAB
workload and 100 schedules for the NERSC workload. In each schedule, we then find the
20 longest windows during which no application is joining or leaving the machine, to fit
the analysis conditions with steady-state windows described in Sections 7.3 and 7.4. We
then assume that each application joined the system at the window start (ri = Tbegin for
each application Ai).

On the Celio system2, both the NERSC and TRILAB workloads represent a small
I/O pressure (about 0.15 on average). However, I/O pressure is a metric that tends to
increase as we consider larger platforms and newer systems. In [104], the authors look at
the architectural trends and system balance of the top 500 supercomputers. The Parallel
File System (PFS) bandwidth is studied for systems that existed between 2009 and 2018.
The authors compare the PFS bandwidth with the aggregated memory bandwidth. The
different systems have a ratio of aggregated memory bandwidth by PFS bandwidth between
50 and 17000, with an average of 13,353, without a clear trend in time.

The ratio of aggregated memory bandwidth per computing performance, however,
shows a clear diminishing trend. As an example, this ratio decreased by a factor 9 between
the No. 1 machine in 2009 and the No. 1 machine in 2018. As a consequence, the ratio
between the PFS bandwidth and the computing performance also has a clearly decreasing
trend. In [30], the authors note that this ratio has decreased by a factor 24.8 over 20 years.
Over long periods of time, it looks like the trend of the PFS bandwidth progresses more
slowy than the computing power by a linear factor.

To study how the different algorithms behave with higher values of the I/O pressure,
we have considered a set of target machines that are scaled versions of the Celio system.
Let Cc and Cbw be respectively the total number of cores and system bandwidth of Celio,
and let t represent the passing time. The system Mt has Cc × 2 t

α cores (representing a
doubling of computing power every α time units, in accordance of the observed progression
in [104]), and Cbw × 2 t

α /t system bandwidth, following the observation above. My, y > 0,
represents machines built y time units later than the Celio machine, and for each target
machine, we compute the schedules and corresponding windows for both workloads. We
thus obtain a range of I/O pressures between 0.15 and 1.4, and simulate the behavior of
the bandwidth-sharing strategies in each window, to evaluate our metrics as a function of
the I/O pressure.

2Celio is the platform used for the NERSC and TRILAB workloads [109].
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Figure 7.14: MinYield of the FairShare strategy for the NERSC and TRILAB workloads,
as a function of the I/O pressure and of the target platform.

MinYield of FairShare on APEX Scenarios

We use the FairShare strategy as the basis for our evaluation, so we study first how
FairShare behaves as a function of the I/O pressure. Figure 7.14 presents the MinYield
obtained by the FairShare strategy within each of the 2,000 windows obtained during
the simulation, as a function of the I/O pressure observed inside each window. The color
of points denote on which target platform this I/O pressure and MinYield were observed.

On the NERSC workload, we see that the MinYield stays above 0.8 when the I/O
pressure is low (0.4), and the distribution tends to decrease as the I/O pressure increases,
with some scenarios that obtain a MinYield under 0.5 when the I/O pressure is 1, and
the number of runs that have a low MinYield continue to increase as the I/O pressure
continues to increase. The machine scale has some impact on the I/O pressure inside
the various windows, but most of the runs present a relatively low I/O pressure, and a
MinYield of 1 for FairShare is observed for some runs with high I/O pressures (up
to 1.4). We conjecture that this is a consequence of the relatively small windows for
the NERSC workload. Small scale, short lived applications constitute the bulk of many
windows of the NERSC workload. These applications only do I/O at the beginning and
end of their execution, limiting the opportunities for interferences. These I/O are also
small (even relative to the short duration of the application), so when they interfere (which
is unavoidable when the I/O pressure is higher than 1), they still reduce the MinYield by
only a fraction. Only on windows that feature the few larger applications and those with
costly checkpoints can we observe a measurable decrease of MinYield for FairShare.

This conjecture is corroborated by the measurement of the TRILAB workload. The
same trends for this workload are more clearly marked: the larger the machine, the higher
the I/O pressure, and the higher the I/O pressure, the lower MinYield for FairShare.
Although there are no scenarios where MinYield goes under 0.4, there are also no scenarios
with a MinYield close to 1 when the I/O pressure is above 1. The windows are much
longer in the TRILAB experiments, and applications have time to checkpoint regularly
during these windows. As a consequence, interferences between applications that have
overlapping I/O create slowdowns that reduce the MinYield. We note from the left graph
of Figure 7.14 that no NERSC scenario on the Celio platform obtains an I/O pressure of at
least 0.5, while some scenarios of the TRILAB workload can saturate the I/O bandwidth.

MinYield of All Strategies on APEX NERSC Scenarios

Figure 7.15 presents all the scenarios used in Figure 7.14 for the NERSC workload, and
considers the MinYield of each strategy as a ratio of MinYield for FairShare, with
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Figure 7.15: MinYield of all strategies, as a ratio of the MinYield with the FairShare
strategy for the same experiment, for the NERSC workload, as a function of the I/O
Pressure.

an independent graph per strategy. As a reference, the MinYield of FairShare is also
presented in a different color. A value of 1 of the ratios means that the target strategy
obtains the exact same MinYield as FairShare for the scenario, while a value higher
than 1 means that a higher MinYield than FairShare is obtained for this scenario, and
a value lower than 1 that on this scenario, the strategy obtains a lower MinYield than
FairShare.

There are three classes of graphs in this figure. The strategy GreedyCom presents on
average a ratio distributed approximately uniformly between 0.9 and 1.1. This means that
this strategy fails to reliably improve the MinYield in at least half of the scenarios. The
second set of graphs show that FCFS, Set-10, and GreedyYield have a non-negligible
set of scenarios where they decrease MinYield compared to FairShare, but as the I/O
pressure increases they tend to behave slightly better than MinYield on average (with still
a risk of significant performance degradation for all I/O pressures). When they experience
gains, the gains are more pronounced for high I/O pressures. Set-10 and FCFS behave
strictly identically over the NERSC workload, and this is because the NERSC workload
featuring very small windows with typically at most one phase for many applications,
Set-10 does not have time to learn the phases, and thus puts all the applications in the
same set, behaving as FCFS.

The third set of graphs include LookAheadGreedyYield, PeriodicGreedyYield,
and BestNextEvent. These three strategies have a very high probability of increasing
MinYield compared to FairShare, and that performance increase tends to be higher
as the I/O pressure increases. BestNextEvent is the strategy of this set that features
the highest risk of decreasing MinYield (although the decrease is limited to 95% of the
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Figure 7.16: MinYield of all strategies, as a ratio of the MinYield with the FairShare
strategy for the same experiment, for the TRILAB workload, as a function of the I/O
pressure.

MinYield of FairShare in the worst scenario), while PeriodicGreedyYield has almost
no scenario with a MinYield lower than FairShare.

MinYield of All Strategies on APEX TRILAB Scenarios

Figure 7.16 presents the same evaluation, for the TRILAB workload (relative to the
experiments shown in the right graph of Figure 7.14). With this workload, the ratio of
MinYield behaves differently than with the NERSC workload. Overall, all strategies tend
to behave better (with relatively less scenarios presenting a ratio lower than 1), and the
gains over FairShare are on average higher for all strategies at low I/O pressure and for
most strategies at high I/O pressure.

GreedyCom presents better behaviors than over the NERSC workload, with only a
few scenarios underperforming FairShare, until the I/O pressure reaches a ratio of 1, i.e.,
until the system reaches saturation of the communication system. Then, the performance
of GreedyCom quickly drops dramatically, with eventually all scenarios obtaining a lower
MinYield than FairShare.

FCFS, Set-10 and GreedyYield continue to behave similarly, but the trend is more
clear, with a significant risk of MinYield degradation for low I/O pressures, but significant
gains as the I/O pressure, and consistent gains at I/O saturation (when the I/O pressure is
higher than 1). FCFS and Set-10 continue to behave identically. However, this time this
is not due to a lack of time to learn the periodicity of the applications: in the TRILAB
workload, each application has a minimum of 5 phases during the window, which is long
enough to converge on the phase duration and categorize the application in the appropriate
set. Because all applications checkpoint with the same approximate checkpointing period,
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Figure 7.17: Efficiency of all strategies for the NERSC and TRILAB workloads, as a
function of the I/O pressure.

only the duration of the checkpoint operation can define different categories of phases. The
checkpoint duration of the different applications can vary by an order of magnitude or
more in the TRILAB workload, but the duration of the slowest checkpointing operation
still remains small compared to the checkpointing period. As a consequence, the Set-10
strategy tends to put all applications in the same category, and falls back to applying the
FCFS strategy.

Among the three wining strategies for the NERSC workload, PeriodicGreedyYield,
LookAheadGreedyYield and BestNextEvent, the trends observed for the NERSC
workload are enforced: until the system reaches I/O saturation, PeriodicGreedyYield
and BestNextEvent feature a few scenarios where MinYield can be slightly decreased
compared to FairShare, but in most scenarios (and in almost all scenarios for LookA-
headGreedyYield), these strategies improve MinYield, and that improvement becomes
higher as the I/O pressure increases. Contrarily to NERSC traces, GreedyYield performs
similarly to PeriodicGreedyYield and BestNextEvent on the TRILAB traces.

On these longer windows, the I/O pressure seems to have a more significant impact
than on the smaller windows of the NERSC workload, and as the I/O pressure increases,
the gains relative to FairShare tend to increase (see paragraph "Note on APEX traces" in
the same section below for detailed data on the window’s length). When the I/O pressure
is higher than 1, interference is unavoidable, and the I/O scheduling strategy becomes
critical to the performance of applications. Naive strategies, or strategies that are not well
suited for the irregular nature of the applications present in these workloads, have then a
higher risk of taking the wrong decision and performing worse than FairShare.

Efficiency of All Strategies on APEX Scenarios

Figure 7.17 presents the mean and standard deviation of the Efficiency metric for each
strategy as a function of the I/O pressure. To synthetize these graphs, we split the I/O
pressure domain in 25 intervals and compute the mean Efficiency value and its standard
deviation for all scenarios with an I/O pressure that falls in this interval. The point is
presented at the middle of the interval.

The NERSC and TRILAB workloads present both some commonalities and some
significantly different features. In the NERSC workload, Efficiency quickly drops as the
I/O pressure increases for all strategies, while each strategy seems to hold its Efficiency
until the system reaches saturation (I/O pressure of 1) in the TRILAB workload. Once the
I/O pressure is above 1, Efficiency drops with the I/O pressure for both workloads, but
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Figure 7.18: Utilization of all strategies for the NERSC and TRILAB workloads, as a
function of the I/O Pressure.

this drop is more pronounced, and becomes chaotic, for the NERSC workload, while the
Efficiency with the TRILAB workload remains stable and supports higher I/O pressures
for all strategies.

Efficiency measures the sum of actual progress of all applications throughout the
window. As NERSC has on average much smaller windows than TRILAB, the effect of a
few bad I/O schedule decisions can be much more impactful on a small window than on a
large one. This explains the chaotic Efficiency measurement on the NERSC workload
compared to TRILAB.

TRILAB is also a workload on which it is easier, for all strategies, to maintain a
high Efficiency compared to NERSC, because the windows feature a lower number
of long and large-scale applications, where the I/O is close to periodic per application
(mostly driven by fixed-period checkpointing), allowing many opportunities to overlap I/O
operations and computation. However, at high I/O pressure, we observe three groups
of strategies on the TRILAB workload: GreedyCom, which targets a balance of I/O
operation progress, remains the most efficient; FairShare, LookAheadGreedyYield
and BestNextEvent provide a similar Efficiency, slightly under GreedyCom; and
in the third group, Set-10, FCFS (hidden by Set-10 in the figure), GreedyYield
(hidden by PeriodicGreedyYield in the figure), and PeriodicGreedyYield present
the worst Efficiency. As the I/O pressure is above 1, contentions are unavoidable, and
the strategies that pursue too eagerly an optimization of MinYield fail at providing a
good Efficiency. FCFS and Set-10 take I/O scheduling decisions that are detrimental
to Efficiency because the I/O that is favored is arbitrary.

In the NERSC workload, the metric is too chaotic at high I/O pressure to define a
clear order, but GreedyCom remains the strategy with the highest Efficiency, which is
expected as GreedyCom targets this metric.

Utilization of All Strategies on APEX Scenarios

Figure 7.18 presents the mean and standard deviation of the Utilization metric for each
strategy as a function of the I/O pressure. We used the same binning approach as for
Figure 7.17 to present trends from individual scenarios.

Utilization is overall lower in the NERSC workload than in the TRILAB workload.
This is corroborated by the window characteristics detailed in paragraph "Notes on Apex
Traces" in the same section below: windows in the NERSC workload have on average a lower
Utilization than for the TRILAB workload, even without considering I/O interferences.
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Figure 7.19: Simulation time of all strategies for the NERSC and TRILAB workloads, as a
function of the I/O Pressure.

As the I/O pressure increases and in the saturated domain in particular, I/O interfer-
ences reduce even more Utilization, for all strategies and in all scenarios. GreedyCom,
which targets a balance of I/O operation progress, shines with this metric as well as for
Efficiency, at the cost of a worst MinYield as illustrated in Figures 7.15 and 7.16. On
these practical scenarios, Efficiency and Utilization seem to behave very similarly.

Computation Time of All Strategies on APEX Scenarios

Last, we look at the computation time of the different strategies. Each strategy decides to
take a scheduling decision at different times, and each scheduling decision impacts the order
of events and when the next scheduling decision will happen. To compare the computation
time of the different strategies in a practical setup, we have thus chosen to measure the
entire simulation time of a given window, for a given strategy. This time includes the
simulation, but also, for each scheduling event, the cost of computing the decision, as an
implementation of the strategy would have to do.

The mean and standard deviation of the time to simulate each of the windows is
presented in Figure 7.19. We used the same binning approach as for Figures 7.17 and 7.18,
in order to present trends. As the different strategies exhibit very different simulation
computation times, the time axis is using a logarithmic scale.

BestNextEvent is the only strategy that requires significant computation time, with
a few seconds (and never more than 60 seconds) needed to simulate an entire window
for both the NERSC and TRILAB workloads. The second highest demanding strategy,
LookAheadGreedyYield, only requires 10s of milliseconds to simulate an entire window,
and all the other strategies are yet an order of magnitude faster.

Although BestNextEvent is the most demanding strategy in terms of computational
complexity, its runtime remains small enough to be considered in practice. The Periodic-
GreedyYield strategy, which needs to re-compute regularly the entire schedule, can be
called with a very small period (seconds to milliseconds), as its computational demand on
realistic scenarios is achieved in a fraction of this time.

Note on APEX traces

To understand the results obtained on the APEX traces, we look at the characteristics of the
TRILAB and NERSC workloads on the different projected machines. Figure 7.20 presents
the distribution of the window duration for both workloads, and for 11 projected machines
(Celio, and M1 to M10). We observe that window duration is an order of magnitude longer
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Figure 7.20: Distribution of the window durations for the APEX campaign on the NERSC
and TRILAB workloads, as function of the projected machine.

Figure 7.21: Distribution of the number of applications within each window for the APEX
campaign on the NERSC and TRILAB workloads, as function of the projected machine.

for the TRILAB workload compared to the NERSC workload, for all machines. This is
easily explained by the difference of jobs between the workloads: the NERSC workload
features a large number of short-lived applications, it is thus hard to find long time windows
during which no application completes or starts, compared to the TRILAB workload. We
also observe that, as the platform becomes larger, the average window duration increases
for both workloads. Problem size, and thus amount of I/O, is defined as a function of
the aggregated memory in the APEX report. When we scale up the number of nodes to
project a future machine, we maintain a memory of 1GB per core, but as the number of
cores per node increases, the amount of memory per application increases. This results in
longer-running applications, and thus in longer windows.

These observations are corroborated by Figure 7.21. This figure observes how many
applications belong to a given window, for the different machines. The TRILAB workload
presents windows that have an order of magnitude fewer applications than the NERSC
workload, which corresponds well to the relative workload distribution of the different
workloads.

Figure 7.22 presents the distribution of platform usage during a simulation window
for both workloads. This metric varies significantly, but is clearly higher for the TRILAB
workload in average than what is observed for the NERSC platform. Again, the small
duration of some applications in the NERSC workload introduces this imbalance: selecting
long windows in order to provide a statistically accurate result favors windows that have
only a few occurences of the short-lived application, which increases the probability that
some nodes are left idle by the first-fit scheduler. This low utilization translates in a lower
I/O pressure, which explains why the NERSC workload shows less points in the high I/O
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Figure 7.22: Distribution of the number of applications within each window for the APEX
campaign on the NERSC and TRILAB workloads, as function of the projected machine.

pressure end of the figures.

Synthesis of the Evaluation on APEX Scenarios

Overall, LookAheadGreedyYield is the strategy that shows the best performance for
the MinYield metric on the most variety of scenarios, closely followed by Periodic-
GreedyYield and BestNextEvent. PeriodicGreedyYield requires to re-compute
goals at a higher frequency, namely twice the frequency of the other greedy strategies with
our choice for the periodicity of external events; but LookAheadGreedyYield remains
more costly, because each decision requires a set of goal computations, one per active
application, and BestNextEvent, with its exhaustive search, is far more computationally
demanding. GreedyCom is a strategy that would perform the best on the Utilization
and Efficiency metrics, and its MinYield remains reasonable on the TRILAB workload,
as long as the I/O pressure is not saturated, but it is a risky choice for the NERSC
workload.

7.7 Conclusion

This work has revisited I/O bandwidth-sharing strategies for concurrent applications. Our
main contributions are two-fold. On the theoretical side, we have provided the first com-
petitive ratios for such strategies, owing to a rigorous framework based upon steady-state
windows. These competitive ratios are mostly negative. In particular, the lower bound
for MinYield is as high as the (order of) number of applications for all strategies except
PeriodicGreedyYield. These results bring new insights on the hardness of the problem,
and lay the foundations for the study of its complexity. On the practical side, we have
introduced several new greedy heuristics and have compared them to well-established
strategies such as FCFS, FairShare and Set-10. We have used a comprehensive set of
experiments, some based upon synthetic traces and some based upon an extended version of
APEX traces. In both cases, the well-established strategies perform worse, and often much
worse, than the new heuristics. As a global conclusion, although there is no absolute winner
for all scenarios and objectives, we recommend using LookAheadGreedyYield, which
achieves an excellent performance for MinYield on all scenarios, achieves better Effi-
ciency and Utilization than FairShare for the NERSC workload and comparable ones
for the TRILAB and synthetic workloads. LookAheadGreedyYield requires knowing
the volume of an I/O operation when it is posted. If such an information is not available,
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one can use PeriodicGreedyYield: it achieves very good MinYield on all scenarios,
achieves better Efficiency and Utilization than FairShare for the NERSC workload,
comparable ones for the synthetic workload, but worse ones for the TRILAB workload.
We recommend that the I/O community would implement LookAheadGreedyYield
and PeriodicGreedyYield for further assessment.



Chapter 8

Conclusion and future work

Throughout this thesis, we have delved into the critical issue of resilience in large-scale
computing systems. The rapid development of high-performance computing has brought
forth new challenges, and one of the most pressing among them is the need for efficient and
robust fault-tolerance mechanisms. Our research has sought to address this challenge by
focusing on the optimization of checkpointing strategies, the analysis of various resilience
techniques, and the development of novel scheduling approaches for handling failed jobs in
batch schedulers.

Over the course of our investigation, we have made several contributions to the field.
These contributions have provided valuable insights into the design and implementation of
fault-tolerance mechanisms, helping to improve the efficiency and reliability of large-scale
scientific computations. In addition, our research has shed light on the performance trade-
offs associated with different resilience techniques, offering guidance for researchers and
practitioners seeking to develop effective strategies for dealing with failures in large-scale
computing systems.

One important aspect of our work has been the exploration of the impact of different fail-
ure models on the performance of checkpointing strategies. By considering non-memoryless
failure distributions, we have been able to develop more accurate models of real-world
computing systems, leading to more effective checkpointing strategies that can provide sub-
stantial performance improvements. Moreover, we have shown that our proposed strategies
are applicable not only to single parallel applications but also to workflows composed of
parallel tasks with dependencies, thereby further expanding their potential impact.

We have also advanced the state of the art in the design of scheduling algorithms that
account for failures and performance variations. We have developed online risk-aware
scheduling strategies that adapt to variable capacity environments and provide better
performance than traditional first-fit algorithms. These strategies have demonstrated their
value in real-world settings, where performance variations and failures are commonplace,
and have shown potential for further refinement and improvement.

In addition to these primary areas of focus, our work has also touched upon the
challenges associated with I/O bandwidth-sharing in concurrent applications. We have
presented novel greedy heuristics that outperform well-established strategies, and we have
provided the first competitive ratios for these strategies, laying the groundwork for further
study of the problem complexity.

Future research could explore several directions. More specifically, we first detail direct
extensions of the work presented in this thesis. In Chapter 2, we have studied the problem
of scheduling moldable parallel jobs to cope with silent errors. We presented a formal
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model and designed two resilient scheduling algorithms. The results demonstrated their
practical usefulness and robustness under common job speedups and parameter settings.
Future work includes investigating alternative failure models and exploring checkpointing
and rollback recovery for long-running jobs.

In Chapter 3, we focused on the online scheduling of moldable task graphs to minimize
makespan under various speedup models. We designed a new online algorithm and derived
competitive ratios for several other speedup models. Future work involves extending the
algorithm and analysis to other common speedup models, online scheduling settings, and
evaluating the performance of our algorithm using realistic workflows.

In Chapter 4, we presented online risk-aware scheduling strategies to preserve per-
formance in variable capacity environments. Our assessment using workload traces and
synthetic traces showed significant gains over first-fit algorithms. Future work includes
exploring different workloads, job execution models, variation models, and malleable
workloads.

In Chapter 5, we investigated checkpointing strategies to protect parallel applications
from non-memoryless failures. We designed a general strategy, NextStep, which maximizes
the expected efficiency until the next failure. Our extensive simulation results showed the
significant impact and superiority of NextStep compared to traditional solutions.

In Chapter 6, we investigated checkpointing strategies for parallel workflows, assuming
that tasks can be checkpointed at any instant. We introduced CheckMore strategies that
may checkpoint some tasks more often than others, and more often than in the MinExp
strategy. Our simulations demonstrated the necessity of checkpointing workflow tasks more
often than with the classical Young/Daly strategy. Future work includes extending the
simulation campaign to parallel tasks and investigating the impact of the failure-free list
schedule on the final performance.

In Chapter 7, we revisited I/O bandwidth-sharing strategies for concurrent applica-
tions. We provided the first competitive ratios for such strategies and introduced several
new greedy heuristics. Our experiments showed that the new heuristics outperformed
well-established strategies. We recommend using PeriodicGreedyYield for further
assessment.

Altogether, this thesis has made contributions to the understanding and improvement of
resilience in high-performance computing systems. By developing innovative checkpointing
strategies, scheduling algorithms, and I/O bandwidth-sharing techniques, we have laid the
foundation for more efficient, reliable, and scalable computing systems in the future. Since
the field of high-performance computing continues to evolve, the insights and methods
gained from our research will serve as a valuable resource for researchers and practitioners
working to address the ever-present challenge of resilience.

In the long term, a promising research direction is the integration of multiple fault-
tolerance mechanisms, such as combining checkpointing with replication or erasure coding,
to provide even greater resilience in the presence of failures. Additionally, the development
of adaptive and self-tuning fault-tolerance strategies that can respond to changing system
conditions and application requirements could lead to even more efficient and robust
computing systems.
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Appendix A. Proof of Theorem 24
We start with two lemmas before proving Theorem 24:

Lemma 32. Let z, a, b ∈ R+ and n ∈ N∗ defined in the following domain:

1 ≤ z

1 ≤ n(
z − 1

z

) 1
n

≤ p0 < 1

0 < pz < 1− p0

Then the following equation holds:

(1− (p0 + pz))z[(p0 + pz)n − pn
0 ]

1− (p0 + pz)n
− pz(z − 1) ≥ 0 (1)

Proof. If we multiply by 1− (p0 + pz)n and develop, we see that this equation is equivalent
to proving that the polynomial P (z, p0, pz) is nonnegative over its domain, where

P (z, p0, pz) = z(p0 + pz)n + z(p0 + pz)pn
0

+ (z − 1)pz(p0 + pz)n − zpn
0 − z(p0 + pz)n+1 − (z − 1)pz

Consider fixed values of of p0 and pz with 0 < pz < 1 − p0. The polynomial Q(z) =
P (z, p0, pz) s affine in z. The range of z is 1 ≤ z ≤ 1

1−pn
0

, so it is sufficient to prove that
Q(1) ≥ 0 and Q( 1

1−pn
0

) ≥ 0 to get the result.
We compute easily that Q(1) = (1−p0−pz)((p0 +pz)n−pn

0 ) ≥ 0. Now, 1− 1
1−pn

0
= pn

0
1−pn

0
and

Q( 1
1− pn

0
) = 1

1− pn
0

[
((p0 + pz)n − pn

0 )(1− p0)− (p0 + pz)n(1− pn
0 )pz

]
Letting R(pz) = ((p0 + pz)n − pn

0 )(1 − p0) − (p0 + pz)n(1 − pn
0 )pz, we need to show that

R(pz) ≥ 0 for 0 ≤ pz ≤ 1 − p0. But we have R(0) = R(1 − p0) = 0, and differentiating,
R′(pz) = (p0 + pz)n−1S(pz) where

S(pz) = n(1− p0)− p0(1− pn
0 )− pz(1− pn

0 )(1 + p0)

We see that S(pz) is affine, positive then negative over R, hence R(pz) is strictly increasing
and then strictly decreasing over R. Given that R(0) = R(1−p0) = 0, R(pz) is nonnegative
for 0 ≤ pz ≤ 1− p0, which concludes the proof.

Lemma 33. Let ϵ ∈ (0, 1) and (X1, X2, . . . , Xn) be n independent random variables
such that Xi can take only two values: 0 and Mi > 0. We assume that for all i,
E(max(Xi,1, Xi,2, . . . , Xi,n)) = 1, where all the Xi,j follow the same law as Xi. We
finally define X0, a constant random variable always equal to 1. Then if for all i > 0,
Mi ≥ 2

ϵ , we have E(Y ) = E(max(X0, X1, X2, . . . , Xn)) ≤ 2 + ϵ.
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Proof. We define for all i > 0, pi = P{Xi = 0} = 1 − P{Xi = Xi}. From the condition
∀i > 0,E(max(Xi,1, Xi,2, . . . , Xi,n)) = 1, we obtain the following relation between Mi and
pi:

∀i > 0,E(max(Xi,1, Xi,2, . . . , Xi,n)) = Mi(1− pn
i ) = 1,

from which we derive:

∀i > 0, Mi = 1
1− pn

i

∀i > 0, pn
i = 1− 1

Xi
≥ 1− ϵ

2
We can then upper bound E(Y ) to obtain:

E(Y ) = E(max(X0, X1, X2, . . . , Xn))

≤
n∑

i=0
E(Xi)

≤ 1 +
n∑

i=1
(1− pi)Mi

≤ 1 +
n∑

i=1

1− pi

1− pn
i

= 1 +
n∑

i=1

1∑n−1
j=0 pj

i

≤ 1 +
n∑

i=1

1
npn

i

≤ 1 + n

n(1− ϵ
2)

= 1 + 1 + ϵ

2− ϵ
≤ 2 + ϵ.

We are now ready to prove Theorem 24.

Proof of Theorem 24. The sketch of the proof is as follows. Let R0 = E(Y )
maxi(E(Zi)) . We

fix ϵ ∈ (0, 1) arbitrarily small. We apply a set of transformations to the xi so that they
eventually satisfy the conditions described in Lemma 33, while decreasing the ratio by a
factor at most (1 + ϵ)3. To show this, we will use the equation of Lemma 32. This will
prove that the ratio is less than (1 + ϵ)3(2 + ϵ) for all ϵ, thus not greater than 2.

Transformation 1: Bound Xi

We prove that we can bound the Xi in such a way that the ratio is increased by a
factor at most (1 + ϵ). Let i > 0 and f be the probability density function of Zi, thus
E(Zi) =

∫∞
0 xf(x) dx. First consider g(z) =

∫ z
0 xf(x) dx. We know that g(z) increases

monotonically towards E(Zi) thus there exists Mi such that g(Mi) ≥ E(Zi)
(
1− ϵ

2
)
. We

define Z ′′
i as follows:

Z ′′
i = Zi if Zi ≤Mi

Z ′′
i = 0 otherwise

Then E(Z ′′
i ) = g(Mi) ≥ E(Zi)

(
1− ϵ

2
)
. We now define X ′

i in a similar manner:

X ′
i = Xi if Xi ≤Mi

X ′
i = 0 otherwise
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Clearly, if we let Z ′
i = max(X ′

i,1, X ′
i,2, . . . , X ′

i,n), with all the X ′
i,j corresponding to the

bounded Xi,j , we obtain that

Z ′
i = Zi if Zi ≤Mi

Z ′
i ≥ 0 otherwise

Thus E(Z ′
i) ≥ E(Z ′′

i ) ≥ E(Zi)
(
1− ϵ

2
)
.

We can apply this for all i, and replace the Xi by the X ′
i. Clearly E(Y ) will decrease and

maxi(E(Zi)) decreases by a factor at most
(
1− ϵ

2
)
. Thus after the first transformation,

the new ratio R1 will verify:

R0 ≤
R1

1− ϵ
2

= R1

(
1 + ϵ

2− ϵ

)
≤ R1(1 + ϵ)

From now on, we assume that all the Xi are bounded by Mi.
Transformation 2: Discretize Xi

We prove that we can transform the Xi so that they take only a finite number of values
and so that the ratio is increased by a factor at most (1 + ϵ).

For all i > 0, we split the domain of Xi, [0, Mi] into Ni = ⌈ Mi
ϵE(Y )⌉ segments so that each

segment is smaller than ϵE(Y ), and if Xi is in a segment we replace it by the largest value
of the segment. This will naturally increase E(Y ) by a factor at most (1 + ϵ) and it will
also increase maxi(E(Zi)). Thus the ratio R2 will verify R1 ≤ (1 + ϵ)R2. More formally,
we define X ′

i as the following:

X ′
i =

⌈
XiNi

Mi

⌉
Mi

Ni

We apply this change for all i and define Y ′ = max(X ′
1, . . . , X ′

n) as well as Z ′
i =

max(X ′
i,1, X ′

i,2, . . . , X ′
i,n) and we have:

Y ′ − Y ≤ max
i

(X ′
i −Xi)

≤
(⌈

XiNi

Mi

⌉
− XiNi

Mi

)
Mi

Ni
≤ Mi

Ni
≤ ϵE(Y )

E(Y ′) ≤ (1 + ϵ)E(Y )
E(Z ′

i) ≥ E(Zi)

We can replace the Xi by the X ′
i, and after transformation 2 we have

R0 ≤ R1(1 + ϵ) ≤ R2(1 + ϵ)2

From now on, we assume that all the Xi can take a finite number of values bounded by Mi.
Transformation 3: Add a high value in the domain of Xi

In addition to needing that all the Xi take a finite number of values, we also want that
Xi may be extremely large, in order to end up with the conditions described in Lemma 33.
More precisely, for any i we define M ′

i = max
(

2(1+ϵ)E(Zi)
ϵ , Mi

)
, pi = ϵ2

2(1+ϵ)n2 and X ′
i as

follows:

X ′
i = Xi with probability 1− pi

X ′
i = M ′

i otherwise (e.g., if Xi is within pi

proportion of its highest values)
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We define Z ′
i and Y ′ accordingly. Then:

∀i,E(Z ′
i)− E(Zi) ≤ npiM

′
i ≤

ϵE(Zi)
n

E(Y ′)− E(Y ) ≤
n∑

i=1
piM

′
i ≤

n∑
i=1

ϵE(Zi)
n2

≤
n∑

i=1

ϵE(Xi)
n

≤
n∑

i=1

ϵE(Y )
n

≤ ϵE(Y )

∀i,E(Zi) ≤ E(Z ′
i) ≤ (1 + ϵ)E(Zi)

E(Y ) ≤ E(Y ′) ≤ (1 + ϵ)E(Y )

∀i, M ′
i ≥

2E(Z ′
i)

ϵ

We replace the Xi by the X ′
i (with maximum value Mi := M ′

i) and the new ratio R3
verifies:

R0 ≤ R2(1 + ϵ)2 ≤ R3(1 + ϵ)3

From now on, we assume that all the xi can take a finite number of values, with a maximal
value Mi larger than 2E(Zi)

ϵ .
Transformation 4: Normalize E(Zi)

For all i, we alter the Xi such that all the E(Zi) becomes equal to one. In practice we do
the following:

X ′
i = Xi

E(Zi)

As usual, if we define Z ′
i accordingly to Zi under a draw (Xi,1, . . . , Xi,n), as well as Y ′

accordingly to Y from a draw of (X1, . . . , Xn), we straightforwardly have:

∀i,E(Z ′
i) = 1

E(Y ′)
E(Y ) ≥

1
maxi(E(Zi))

maxi(E(Z ′
i))

maxi(E(Zi))
= 1

maxi(E(Zi))

M ′
i ≥

Mi

E(Zi)
≥ 2

ϵ

As before we can replace the Xi by the X ′
i, and the new ratio increases, so we have:

R0 ≤ R3(1 + ϵ)3 ≤ R4(1 + ϵ)3 = E(Y )(1 + ϵ)3

From now on, we assume that the Xi verify: E(Zi) = 1, Xi can only take a finite number
of different values, whose highest is at least 2

ϵ . We are getting closer to the conditions of
Lemma 33, we just need to add X0 (easy) and to transform the Xi so that they can take
only two values.

Transformation 5: Add X0 = 1
We add the random variable X0 which is always equal to one. We adapt Y :=

max(X0, X1, . . . , Xn). Clearly Y can only increase while maxi(E(Zi)) is still equal to one.
Thus

R0 ≤ R4(1 + ϵ)3 ≤ R5(1 + ϵ)3 = E(Y )(1 + ϵ)3
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From this point, we apply a transformation that zero out the smaller possible value for Xi,
reducing the number of possible values while E(Zi) remains unchanged even though Mi

and E(Y ) increases. The first step will be zeroing out all the positive values smaller than
one.

Transformation 6: Remove the minimal strictly positive possible value for a
Xi ̸= X0, if this value is at most 1 (to be processed iteratively until all the Xi

can only be equal to 0 or larger than 1)
This is easy to understand: if z is the minimal strictly positive value that Xi can reach

with probability pz, with z ≤ 1, and if we want to transform Xi so that pz = 0 while
keeping E(Zi) = 1, we will need to increase the other values (or increase their probability).
Either way, if Xi = z ≤ 1 or if Xi = 0 it is strictly the same for Y because Y ≥ X0 ≥ 1.
Thus this transformation can only increase E(Y ).

Let us choose i such that Xi can be in (0, 1] and fix z as the minimal strictly positive
value that Xi can reach. (if such i does not exist, we move on to the next step). We
let p0 ≜ P{Xi = 0}, pz ≜ P{Xi = z} and pz+ ≜ P{Xi > z}. Similarly, we define
P0 ≜ P{Zi = 0}, Pz ≜ P{Zi = z} and Pz+ ≜ P{Zi > z}. We first compute all these values
using only p0 and pz:

pz+ = 1− p0 − pz

P0 = pn
0

Pz = (p0 + pz)n − P0 = (p0 + pz)n − pn
0

Pz+ = 1− (P0 + Pz) = 1− (p0 + pz)n

The idea of the transformation is the following: we zero out pz (p0 := p0 + pz and pz := 0)
which makes E(Zi) decrease by zPz. To balance that, we increase all the other possible
values (and not their probability) by X = zPz

Pz+
which will increase E(Zi) by zPz. Formally,

we define our new variable X ′
i as follows:

X ′
i = 0 if Xi ≤ z

X ′
i = Xi + zPz

Pz+
otherwise

Consider a draw (x1, . . . , xn) following (X1, . . . , Xn), and compare Y = max(x0, . . . , xn)
and Y ′ = max(x0, x1, . . . , xi−1, x′

i, xi+1, . . . , xn). If xi ≤ z < 1 or if x′
i ≤ Y , Y = Y ′;

otherwise Y ′ > Y . Thus E(Y ′) > E(Y ), E(Z ′
i) = 1, and the ratio increases as well as Mi.

When we may not apply transformation 6 again, each Xi can only be equal to 0 or
larger than 1, with a maximum possible value greater than 2

ϵ , and we can move on to the
last transformation before concluding the proof.

Transformation 7: If some Xi can take more than two different values,
remove its smallest strictly positive value (to be processed iteratively until
meeting the conditions of Lemma 33)

We take an Xi and its minimum strictly positive value z ≥ 1; we apply the same
transformation as in transformation 6 although the analysis differs, i.e.

X ′
i = 0 if Xi ≤ z

X ′
i = Xi + zPz

Pz+
otherwise
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Consider a draw (x1, . . . , xn) following (X1, . . . , Xn), and compare Y = max(x0, . . . , xn)
and Y ′ = max(x0, x1, . . . , xi−1, x′

i, xi+1, . . . , xn). If xi ≤ z < 1 or if x′
i ≤ Y , Y = Y ′;

otherwise Y ′ > Y . Thus E(Y ′) > E(Y ), E(Z ′
i) = 1, and the ratio increases as well as Mi.

Straightforwardly if xi ≤ Y then Y ′ ≥ Y ; otherwise xi = maxn
j=0(xj). There are two cases:

• Case 1: xi = z. This happens with a probability pz
∏n

i=0,i ̸=j P{xj ≤ z} and in this
case Y ′ − Y = maxi=0,i ̸=j(xj)− z ≥ 1− z.

• Case 2: xi > z. This happens with a probability pz+
∏n

i=0,i ̸=j P{xj ≤ xi|xi > z} ≥
pz+

∏n
i=0,i ̸=j P{xj ≤ z} and in this case Y ′ − Y = zPz

Pz+
.

We are now able to bound E(Y ′ − Y ) and show that it is nonnegative.

E(Y ′ − Y ) ≥
n∏

i=0,i ̸=j

P{xj ≤ z}
(

pz+
zPz

Pz+
− pz(z − 1)

)

If ∏n
i=0,i ̸=j P{xj ≤ z} = 0, we are done; otherwise:

E(Y ′ − Y ) ≥ 0
⇔ pz+

zPz
Pz+
− pz(z − 1) ≥ 0

⇔ (1− (p0 + pz)) z[(p0+pz)n−pn
0 ]

1−(p0+pz)n − pz(z − 1) ≥ 0

We are now under the conditions described in Lemma 32 and can conclude. Indeed, the
following conditions are obvious:

n ∈ N∗

1 ≤ z

1 ≤ n

p0 < 1
0 < pz < 1− p0

So we only need to show that p0 ≥ ( z−1
z ) 1

n , i.e. P0 ≥ z−1
z . A quick study of E(Zi) shows

us what we need:

1 = E(Zi) = (1− P0)E(Zi|Zi > 0) ≥ (1− P0)z thus

P0 ≥ 1− 1
z
≥ z − 1

z

Applying Lemma 32, we finally show that E(Y ′) ≥ E(Y ). We fix xi := x′
i and we have

increased the ratio while decreasing the number of possible values for xi, increasing Mi

and keeping E(Zi) = 1. Once all the xi can only take two possible values, 0 and Xi ≥ 2
ϵ ,

we cannot apply transformation 7 any more, and are ready to conclude.
Conclusion of the proof of Theorem 24:

We are now exactly under the conditions of Lemma 33, Furthermore, transformations 6
and 7 increased the ratio, thus:

R0 ≤ (1 + ϵ)3E(Y ) ≤ (1 + ϵ)3(2 + ϵ)

Now suppose there exists a case such that R0 = 2 + µ with µ > 0. Applying the
transformations with ϵ small enough (for example ϵ = min(1

2 , µ
22)) we reach a contradiction.

We can finally conclude the proof and claim:

R0 ≤ 2
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Tightness:
For any ϵ > 0, it is possible to build an example such that R0 ≥ 2− 1

n − ϵ. We provide a
brief argument as follows. Consider n independent positive random variables, X1 = 1 and
for i > 1, Xi = 0 with probability p and x otherwise, such that E(Zi) = 1. As in Lemma 33
we have x = 1

1−pn . Then

E(Y ) = P{Y = 1}+ XiP{Y = x}

= pn−1 + 1− pn−1

1− pn

= 1 + pn−1 − 1∑n−1
i=0 pi

−→
p→1

2− 1
n

This shows that we can build an example with a ratio arbitrarily close to 2− 1
n .
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Appendix B. Detailed description of BestNextEvent

In this appendix, we detail Algorithm BestNextEvent, which was sketched in Sec-
tion 7.4.3.

The aim of algorithm BestNextEvent is to maximize the minimum yield lexicograph-
ically at the next predictable event, that is, either at the end of the execution window or
the first time one of the current communication requests is completed, whichever comes
first. BestNextEvent is called each time an event occurs, either the completion of a
communication request, the release of a new communication request, or the beginning of a
new execution window. Then BestNextEvent defines a constant bandwidth allocation
that will be applied up to the next event.

The algorithm itself is the combination of three algorithms. Algorithm BestNex-
tEvent itself partitions the whole execution window in a set of what we call “simple
intervals”. Searching for an event that maximizes the minimum yield is relatively easy
in a “simple interval” because the peculiar events which may change the nature of the
optimal solution can only happen at the extremities of a simple interval. Algorithm
BestNextEvent is described in Section 25. Once BestNextEvent has partitioned the
whole execution window it searches, in each simple interval, and for each application that
can define the next event in that interval, the solution maximizing the minimum yield by
calling algorithm MinYieldInInterval (described in Section 9.4). Then, among all the
solutions maximizing the minimum yield, BestNextEvent picks the one that maximizes
the yield lexicographically by calling Algorithm LexicoMinYield (Section 20).

Before describing in detail algorithm MinYieldInInterval we describe its working
principle.

Algorithm principle. Even if algorithm MinYieldInInterval looks complicated because
of the many cases it has to deal with, its principle is rather simple. Let us consider a
time t + u and an application Ak defining an event at that time. Because application Ak

defines an event at time t + u its communication ends precisely at that time, it uses a
bandwidth Vk

u and its yield is yk

(
t + u, Vk

u

)
. The remaining bandwidth is used to maximize

the minimum yield achieved by the other applications. This minimum yield is defined
either by the maximal bandwidth of an application (mini yi (t + u, bi)) or by the amount of
remaining bandwidth. In the latter case, it turns out that all applications receiving some
bandwidth achieve the same yield.

So far, we have described the algorithm principle for a given value of u. However,
whatever the type of solution found (yield defined by the event-defining application, the
maximal bandwidth of an application, etc.), the solution is valid in a neighbourhood
of u. Therefore we study whether the minimum yield increases in this neighbourhood.
Finally the neighbourhood itself is defined by the set of conditions defining the solution:
which applications must receive bandwidths (which depends on the rankings and thus
the intersection of the functions mini yi (t + u, 0)), etc. In many cases we will have to
determine the extent of this neighbourhood.

Preliminary remark. If the communication requests can not saturate the available band-
width, that is, if ∑i∈S(t) bi ≤ B then, obviously, each application is alloted its maximum
bandwidth and there is nothing to discuss. Otherwise, there is nothing we can do to
optimize the yield of a computing application and the yield of an application is increasing
while it computes. Hence, in the following, we only consider applications which have posted
I/O operations.
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Let t denote the date of the considered event. For each application Ai which has an
I/O operation pending at time t (i.e., i ∈ S(t)), let Ti be the (minimum) time it would
have required application Ai to progress as much as it did by time t if it was the sole
application running on the platform. If Ai is the only application running on the platform
them Ti = t− ri.

Maximizing the minimum yield in an interval
Let us consider a sub-interval [t + umin, t + umax] of the window and the case where
application Ak defines the next event. We will later loop over all applications to find the
overall best solution in [t + umin, t + umax]. As stated in the introduction of this section,
in order to simplify the study and the computations, we assume that the sub-interval
[t + umin, t + umax] is “simple”, that is, that it does not contain any “peculiar” events,
except maybe at its extremities (t + umin and/or t + umax). We will define these “peculiar”
events and show how to compute them during the algorithm walkthrough. Algorithm
MinYieldInInterval (Algorithm 7) shows how to find the solution maximizing the
minimum yield in the considered interval.

Algorithm MinYieldInInterval starts by studying the situation at time t + umin.
That is, we consider the case where the next-event happens at time t + u = t + umin.
Because Ak is the event-defining application, its communication completes at time t + umin
and it is allocated a bandwidth Vk

umin
. Hence, αk = Vk

uminbk
and the remaining bandwidth

will be distributed among the other applications (Step 1).
The algorithm then computes an upper bound on the achievable minimum yield. Let

us consider any application Ai. The maximum bandwidth allocatable to Ai is bi. Hence,
the earliest time Ai’s communication request could complete is at time t + Vi

bi
. This time is

a peculiar time and thus we add the set{Vi

bi
| i ∈ S(t)

}
to the set of peculiar times (Step 3 of Algorithm 8).

By hypothesis, if the next event happens at time t + u, no communication request can
complete in the interval (t, t + u). Therefore, because the yield of an application at time
t + u is a decreasing function of its allocated bandwidth, the maximum achievable yield for
application Ai at time t + u is

ymax
i (t + u) =

{
yi (t + u, bi) if u ≤ Vi

bi

yi

(
t + u, Vi

u

)
otherwise. (2)

MinYieldInInterval starts by computing (at Step 2) an upper bound on the maximal
minimum yield, that is, the minimum, over all communicating applications, of their
maximum achievable yield, and of the yield of the event-defining application Ak. We then
check whether there is enough bandwidth overall to achieve this upper bound (Step 3).

The yield upper-bound is not achievable. We first consider the case where there is
not enough bandwidth overall to achieve the upper bound. We want to compute the
optimal yield yopt . If no bandwidth is allocated to an application Ai, it achieves a yield
of yi (t + umin, 0) at time t + umin. Therefore, the only applications to which bandwidth
is allocated are those such that yopt > yi (t + umin, 0). At Step 4, MinYieldInInterval
builds and sorts the set Y0 of the minimum yields achieved by the different applications
(application Ak excepted) if they are not allocated any bandwidth. Let us denote by l the
index of the element of Y0 such that Y0[l] ≤ yopt and, either yopt < Y0[l + 1] or l = |Y0|
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Algorithm 7: MinYieldInInterval(Ak, umin, umax,S)
1 RB ← B − Vk/umin /* Remaining bandwith */

2 yUB ← min
{

mini∈S ymax
i (t + umin) , yk

(
t + umin, Vk

umin

)}
3 if

∑
i∈S BW i

(
t + umin, yUB

)
> RB then

4 Y0 ← sort({yi (umin, 0) | i ∈ S})
5 Find l such that ∑i∈S BW i (umin,Y0[l]) ≤ RB and l = |Y0| or∑

i∈S BW i (umin,Y0[l + 1]) > RB
6 I ← {i ∈ S|yi (umin, 0) ≤ Y0[l]}

7 yopt
I (u) = uB−Vk+

∑
i∈I biTi∑

i∈I bi(t+u−ri)

8 if yopt
I (u) is a non-increasing function then return (yopt

I (umin), umin)
9 If l < Y0 let Aj be such that yj (umin, 0) = Y0[l + 1] and yj (umax, 0) is minimal

10 Let uintersect be the first intersection (if it exists) in [umin, umax] of yopt
I (u) with

either yk

(
t + u, Vk

u

)
or yj (t + u, 0) (if the later exists) or with ym (t + u, bm)

for some m ∈ I
11 if uintersect does not exist then return (yopt

I (umax), umax)
12 else if yopt

I (uintersect) = yk

(
t + uintersect,

Vk
uintersect

)
then return

(yk

(
t + uintersect,

Vk
uintersect

)
, uintersect)

13 else return MinYieldInInterval(Ak, uintersect, umax,S)

14 if yUB = yk

(
t + umin, Vk

umin

)
then

15 return (yk

(
t + umin, Vk

umin

)
, umin)

16 else
17 Let Aj be such that ymax

j (t + umin) = yUB and ymax
j (t + umax) is minimal

18 if BWj

(
umin, ymax

j (t + umin)
)

= Vj

umin
then return (ymax

j (t + umin) , umin)
19 I ← {i ∈ S | yi (umin, 0) ≤ yUB}

20 yopt
I (u) = uB−Vk+

∑
i∈I biTi∑

i∈I bi(t+u−ri)

21 If I ≠ S then let Al be an application in S \ I such that yl

(umin+umax
2 , 0

)
is

minimal
22 Let uintersect be the first intersection (if it exists) in [umin, umax] of ymax

j (t + u)
with yopt

I (u), yk

(
t + u, Vk

u

)
, or yl (t + u, 0)

23 if uintersect does not exist then return ymax
j (t + umax)

24 if ymax
j (t + uintersect) = yk

(
t + uintersect,

Vk
uintersect

)
then return

yk

(
t + uintersect,

Vk
uintersect

)
25 else return MinYieldInInterval(Ak, uintersect, umax,S)
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(i.e., Y0[l] is the largest element in Y0 smaller than or equal to yopt). l is computed at
Step 5 either in linear time through an exhaustive search or, more cleverly, in logarithmic
time through a binary search. Then, bandwidth should be allocated to all applications
if l = |Y0| and, otherwise, bandwidth should only be allocated to applications such that
yi (t + umin, 0) ≤ Y0[l]. The yield of each of these applications is then equal to yopt . Indeed,
by definition of yopt the yield of an application cannot be smaller. Because we are in the
case where the upper-bound on the yield is not achievable, each application (if allocated
enough bandwidth) can achieve a yield strictly larger than yopt at time t + umin without
violating its bandwidth limit bi. Then, if the yield of one application receiving some
bandwidth was strictly larger than yopt , some of its bandwidth could be distributed to the
other applications to increase the value of yopt which would contradict the optimality of
yopt .

Finally, the total bandwidth should be distributed among the applications. Hence, the
constraints on the distribution of bandwidth are:

∀i ∈ I, yopt
I (u) = Ti + αiu

t + u− ri
and

∑
i∈I

αibi = B − Vk

u

where I is the set of the communicating applications requiring bandwidth, as defined at
Step 6. We wrote the constraints for an undefined variable u rather than just for the value
umin for which we know there are true. This is because we are next going to study the
evolution of the defined solution in a neighbourhood of t + umin.

From the first equation we obtain:

(t + u− ri)yopt
I (u) = Ti + αiu ⇔ 1

u

(
(t + u− ri)yopt

I (u)− Ti

)
= αi.

Then the second equation can be rewritten:

∑
i∈I

bi

u

(
(t + u− ri)yopt

I (u)− Ti

)
= RB ⇔ yopt

I (u) = uRB +∑
i∈I biTi∑

i∈I bi(t + u− ri)

Hence:
yopt

I (u) = uB − Vk +∑
i∈I biTi∑

i∈I bi(t + u− ri)
· (3)

We then study the variations of yopt
I (u):

yopt
I (u) = uB − Vj +∑

i∈I biTi∑
i∈I bi(t + u− ri)

= B∑
i∈I bi

+ 1∑
i∈I bi

(∑i∈I bi) (∑i∈I biTi)− (∑i∈I bi(B(t− ri) + Vj))∑
i∈I bi(t + u− ri)

·

Therefore, the yield is increasing with u on the considered interval if and only if the
expression (∑

i∈I
bi

)(∑
i∈I

biTi

)
−
(∑

i∈I
bi(B(t− ri) + Vj)

)
(4)

is negative. Hence, if this expression is non-negative, the yield is non-increasing over the
interval and the optimum is found for u = umin (Step 8).

If the yield is increasing, things are more complicated. Equation (3) defines the optimum
yield for a given set I of applications among which the remaining bandwidth should be
distributed. In turn, the definition of I depends on the considered time t + u and on the
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amount of remaining bandwidth which is also a function of u. Let us assume that the
interval (t + umin, t + umax) is such that no two curves u 7→ yi (t + u, 0) intersects in this
interval (except if the two curves are identical). Therefore, the intersection of two curves
u 7→ yi (t + u, 0) defines a “peculiar event” and the set of these intersections is computed at
Step 9 of Algorithm 8. Then, if l = |Y0|, there is no curve u 7→ yi (t + u, 0) above the curve
u 7→ yopt

I (u). Otherwise, let application Aj be an application whose curve is the first one
above the curve u 7→ yopt

I (u). In practice, let application Aj be an application such that
yj (t + umin, 0) = Y0[l + 1] and such that yj (t + umax, 0) is minimal (Step 9). When the
yield is increasing, it may intersects the curve yj (t + u, 0), changing the definition of the
set I of applications requiring bandwidth. If this happens at a date t + uintersect, then we
know that the maximal min yield on the interval [umin, uintersect] is achieved for uintersect.
Then, we recursively call Algorithm MinYieldInInterval on the interval [uintersect, umax]
(Step 13).

Another potential problem when the yield is increasing is that the (minimum) yield
of the applications receiving bandwidth, yopt

I (u), becomes equal to the yield of the event-
defining applications, Ak, at some date t + uintersect. Then, we know that the maximal
min yield on the interval [umin, uintersect] is achieved for uintersect. Furthermore, because
the function yk

(
t + u, Vk

u

)
is non-increasing, the minimum yield is non increasing on

the interval [uintersect, umax]. Hence, the maximum minimum yield is obtained at time
t + uintersect (Step 12).

The last problem that may happen, when u is increasing, is that the bandwidth
allocated to an application Am may increase so much that it reaches its limit bm, at
some date t + uintersect. At that point, the nature of the solution changes. We know that
the maximal min yield on the interval [umin, uintersect] is achieved for uintersect and, once
again, we recursively call Algorithm MinYieldInInterval on the interval [uintersect, umax]
(Step 13).

All the “problems” we just highlighted are defined by the equality of two yield functions.
All these yield functions are of the form αu+β

γu+δ . Therefore, looking for the equality of two
such functions requires to solve a second degree polynomial and to see whether it has
roots in the interval [umin, umax] and, if there are two of them, which one is the smallest.
Therefore, the algorithm can easily check, at Step 10, whether any of these potential
problems occurs and if this is the case, which one happens the earliest. If no problem
occurs, yopt

I (u) defines a valid, increasing, solution throughout the interval and the best
solution is found at time t + umax (Step 11). Otherwise, the algorithm applies the relevant
case, as defined above.

The yield upper-bound is achievable. We now consider the case where there is enough
bandwidth overall to achieve the upper bound. We first check whether the application
defining the upper-bound is also the event-defining application Ak (Step 14). If this is
the case, because the yield of the event-defining application is a non-increasing function,
yk

(
t + u, Vk

u

)
, the optimal solution on the interval [t + umin, t + umax] is obtained in umin

(Step 15).
Otherwise, we identify (Step 17) an application, say Aj , which defines the upper bound

on the minimum yield at time t + umin. If there are several candidates we pick one which
also defines this bound at the end of the interval; this is possible because we assume the
interval includes no peculiar events. Therefore we add to the set of peculiar events the
times at which two curves u 7→ ymax

i (t + u) intersect (Steps 5, 6, and 7 of Algorithm 8). If
there are still several candidates we pick one arbitrarily as they all have the same maximum
yield throughout the interval.
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The yield achieved by application Aj , namely ymax
j (t + u), is an increasing function

of u. This yield defines the optimal minimum yield as long as two conditions hold: 1) it
is not greater than the yield yk

(
t + u, Vk

u

)
of application Ak; 2) the bandwidth required

for all applications to achieve a yield at least equal to ymax
j (t + u) does not exceed the

total available bandwidth. Algorithm MinYieldInInterval first identifies (at Step 19) to
which applications bandwidth should be allocated for all applications to have a yield of at
least ymax

j (t + u). Then it computes the maximal yield yopt
I (u) achieved when the total

remaining bandwidth is distributed among these applications. Note that this equation
is only meaningful when one must distribute at least the total remaining bandwidth to
achieve a yield at least equal to ymax

j (t + u). Finally, the algorithm computes the latest
time, in the interval [t + umin, t + umax], at which the two above conditions hold (Step 22):
it computes the earliest time t + uintersect in [t + umin, t + umax] (if it exists) when the
curves ymax

j (t + u) and yk

(
t + u, Vk

u

)
intersect or when the curves ymax

j (t + u) and yopt
I (u)

intersect.1
If uintersect does not exist, the optimal solution is ymax

j (t + umax) (Step 23). Otherwise,
the best solution in [t + umin, t + uintersect] is reached at time t + uintersect at which time
the nature of the solution changes. If ymax

j (t + uintersect) = yk

(
t + uintersect,

Vk
uintersect

)
then, like previously, the best solution in [t + umin, t + umax] is reached in t + uintersect
(Step 24). Otherwise, Algorithm MinYieldInInterval is recursively called on the interval
[uintersect, umax] (Step 25).

Maximizing the minimum yield in the whole execution window

BestNextEvent starts by partitioning the whole (remaining) execution window [t, Tend ]
based on the peculiar events identified in the previous section. This is done at Step 1 and
at Steps 5 through 10.

We compute at Step 1 the earliest time each communication can complete. If none
of these dates happens before the end of the window, the next event happens at the
end of the window (Step 2). If there is enough total bandwidth for all communications
to be allocated their maximum bandwidth, the next event happens the first time a
communication can complete (Step 3). Otherwise, BestNextEvent scans one by one the
intervals defined by the peculiar events. For each of these intervals, and for each application
whose communication can complete in the studied interval, it calls MinYieldInInterval
to find the best possible solution. The best solution, among all the identified candidates, is
eventually selected at Step 20.

The test at Step 18 enables us to implement an optimization: once a candidate solution
is identified where the event-defining application is also the application with minimum
yield then, because the yield yk

(
t, Vk

t

)
is a decreasing function, and it is the highest yield

application Ak can achieve at time t, we know that no better solution can be found for
larger values of t and the search can stop.

Maximizing the minimum yield lexicographically at time t + u

LexicoMinYield (see Algorithm 9) is an algorithm which builds a bandwidth allocation
that lexicographically maximizes the minimum yield at the date t + u (if no event occurs in

1It may happen (especially after a recursive call), that ymax
j (t + umin) = yopt

I (umin). In such a case, the
algorithm determines which of the two functions ymax

j (t + u) and yopt
I (u) achieves the smallest yield on

[t + u, t + u + ϵ], that is, when u is infinitesimally greater than umin. If it is ymax
j (t + u), it is used instead

of yopt
I (u) to compute uintersect.
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Algorithm 8: BestNextEvent(t, Tend)
1 S ←

{
Vi
bi
| i∈S(t)

}
∩ [0, Tend − t]

2 if S = ∅ then return LexicoMinYield(t, Tend , ∅)
3 if

∑
i∈S(t) bi ≤ B then return LexicoMinYield(t, minS, ∅)

4 D ← {(h, ∅)}
5 JointEvents ←{

u
∣∣∣∃i, j ∈ S(t), Tend − t ≥ u ≥ Vi

bi
≥ Vj

bj
, yi(u, Vi

u ) = yj(u,
Vj

u ), Ti + Vi
bi ̸= Tj + Vj

bj

}
6 M1 ←{

u
∣∣∣0 ≤ u ≤ Tend − t, i, j ∈ S(t), i ̸= j, yi (u, bi) = yj

(
u,

Vj

u

)
, u ≤ Vi

bi
, u ≥ Vj

bj

}
7 M2 ←{

u
∣∣∣0 ≤ u ≤ Tend − t, i, j ∈ S(t), i ̸= j, yi (u, bi) = yi (u, bj) , u ≤ Vi

bi
, u ≤ Vj

bj

}
8 X ←{

u

∣∣∣∣∣0 ≤ u ≤ Tend − t, i, j ∈ S(t), i ̸= j, Tend − t ≥ u ≥ Vj

bj
, yi (u, 0) = yj

(
u,
Vj

u

)}

9 Z ← {u |0 ≤ u ≤ Tend − t, i, j ∈ S(t), i ̸= j, 0 ≤ u ≤ Tend − t, yi (u, 0) = yj (u, 0)}
10 U ← sort(JointEvents ∪ S ∪ X ∪M1 ∪M2 ∪ {Tend − t})
11 DominantSolutionNotFound ← true
12 i← 1
13 while i ≤ |U| − 1 and DominantSolutionNotFound do
14 for k ∈ S(t) do
15 if ui ≥ Vk

bk
then

16 (y, u)←MinYieldInInterval(k, ui, ui+1, S(t) \ {k})
17 D ← D ∪ {u, k}
18 if y = yk

(
u, Vk

u

)
then DominantSolutionNotFound ← false

19 i← i + 1
20 return max(u,k)∈D LexicoMinYield(t, u, k)
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the interval (t, t + u)) and an event defined by application Ak happens at time t + u. The
algorithm principle is straightforward. It starts, if an event-defining application Ak is de-
signed, to allocate it the required bandwidth (Steps 3 through 5). Then, LexicoMinYield
calls, at Step 10, MinYield to obtain a bandwidth allocation maximizing the minimum
yield. By definition, the yield of an optimal solution cannot be increased. The yield of
a solution cannot be increased because achieving such a yield requires either to saturate
the total available bandwidth, or to allocate one application its maximum allocatable
bandwidth, or for a communication request to end at time t + u. In the first case, the yield
of each communicating application is equal to the maximum minimum yield and an optimal
solution has been built (Steps 12 and 14). For the other cases (which are not excluding),
we fix the bandwidth of the applications whose communication ends at time t + u and
those whose allocated bandwidth is equal to the maximum allocatable one (Step 18). We
compute the total remaining bandwidth (Step 19) and the minimum yield maximization is
redone on the remaining applications (defined at Step 20) with the remaining bandwidth.

Algorithm LexicoMinYield has complexity of O(m2 log(m)), because of the complex-
ity of MinYield and because the while loop is executed at most m times.

Algorithm MinYield is pretty straightforward. It finds the minimum yield that can
be achieved among the set of applications whose bandwidth has not already been fixed,
knowing the amount of bandwidth that remains to be allocated.

Algorithm 9: LexicoMinYield(t, u, k)
1 ∀i ∈ S(t) bi ← 0 /* Current bandwidth allocation */
2 if k ̸= ∅ then
3 bk ← Vk

u
4 RB ← B − bk /* Remaining bandwith */
5 F ← S(t) \ {k} /* Applications whose bandwith allotment is not yet

fixed */

6 else
7 RB ← B /* Remaining bandwith */
8 F ← S(t) /* Applications whose bandwith allotment is not yet

fixed */

9 while F ̸= ∅ and RB > 0 do
10 y ←MinYield(t, u, RB,F)
11 if

∑
i∈F BW i (u, y) = RB then /* The whole remaining bandwidth is

used */
12 ∀i ∈ F , bi ← BW i (u, y)
13 F ← ∅
14 RB ← 0
15 else
16 for i ∈ F do
17 if BW i (u, y) = bi or BW i (u, y) u = Vi then

/* The application bandwidth cannot be increased */
18 bi ← BW i (u, y)
19 RB ← RB − bi

20 F ← F \ {i}

21 if RB > 0 then Error
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Algorithm 10: MinYield(t, u, B,S)
1 ymax ← mini∈S ymax

i (u)
2 if

∑
i∈S BW i (u, ymax) ≤ B then return ymax

3 Y0 ← sort({yi (u, 0) | i ∈ S})
4 Find l such that ∑i∈S BW i (umin,Y0[l]) ≤ B and l = |Y0| or∑

i∈S BW i (umin,Y0[l + 1]) > RB
5 I ← {i | i ∈ S, yi (u, 0) ≤ Y0[l]}

6 return uB +∑
i∈I Tibi∑

i∈I(t + u− ri)bi
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