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Résumé

Cette thèse traite des méthodes d’éléments finis Galerkin discontinus d’ordre élevé

pour la résolution d’équations aux dérivées partielles, avec un intérêt particulier pour

l’équation de transport des neutrons. Nous nous intéressons tout d’abord à une méth-

ode de pré-traitement de matrices creuses par blocs, qu’on retrouve dans les méthodes

Galerkin discontinues, avant factorisation par un solveurmultifrontal. Des expériences

numériques conduites sur de grandes matrices bi- et tri-dimensionnelles montrent que

cette méthode de pré-traitement permet une réduction significative du ’fill-in’, par rap-

port aux méthodes n’exploitant pas la structure par blocs. Ensuite, nous proposons

une méthode d’éléments finis Galerkin discontinus, employant des éléments d’ordre

élevé en espace comme en angle, pour résoudre l’équation de transport des neutrons.

Nous considérons des solveurs parallèles basés sur les sous-espaces de Krylov à la fois

pour des problèmes ’source’ et des problèmes aux valeur propre multiplicatif. Dans cet

algorithme, l’erreur est décomposée par projection(s) afin d’équilibrer les contraintes

numériques entre les parties spatiales et angulaires du domaine de calcul. Enfin, un al-

gorithmeHP-adaptatif est présenté ; les résultats obtenus démontrent une nette supéri-

orité par rapport aux algorithmes h-adaptatifs, à la fois en terme de réduction de coût

de calcul et d’amélioration de la précision. Les valeurs propres et effectivités sont

présentées pour un panel de cas test industriels. Une estimation précise de l’erreur

(avec effectivité de 1) est atteinte pour un ensemble de problèmes aux domaines in-

homogènes et de formes irrégulières ainsi que des groupes d’énergie multiples. Nous

montrons numériquement que l’algorithme HP-adaptatif atteint une convergence ex-

ponentielle par rapport au nombre de degrés de liberté de l’espace éléments finis.
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Abstract

We consider high order discontinuous-Galerkin finite element methods for partial dif-

ferential equations, with a focus on the neutron transport equation. We begin by ex-

amining a method for preprocessing block-sparse matrices, of the type that arise from

discontinuous-Galerkin methods, prior to factorisation by a multifrontal solver. Nu-

merical experiments on large two and three dimensional matrices show that this pre-

processing method achieves a significant reduction in fill-in, when compared to meth-

ods that fail to exploit block structures. A discontinuous-Galerkin finite elementmethod

for the neutron transport equation is derived that employs high order finite elements

in both space and angle. Parallel Krylov subspace based solvers are considered for

both source problems and keff-eigenvalue problems. An a-posteriori error estimator is

derived and implemented as part of an h-adaptive mesh refinement algorithm for neu-

tron transport keff-eigenvalue problems. This algorithm employs a projection-based

error splitting in order to balance the computational requirements between the spatial

and angular parts of the computational domain. An hp-adaptive algorithm is presented

and results are collected that demonstrate greatly improved efficiency compared to the

h-adaptive algorithm, both in terms of reduced computational expense and enhanced

accuracy. Computed eigenvalues and effectivities are presented for a variety of chal-

lenging industrial benchmarks. Accurate error estimation (with effectivities of 1) is

demonstrated for a collection of problems with inhomogeneous, irregularly shaped

spatial domains as well as multiple energy groups. Numerical results are presented

showing that the hp-refinement algorithm can achieve exponential convergence with

respect to the number of degrees of freedom in the finite element space.
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Notation

The following notation is employed.

Domain and Variables

v Velocity

t Time

S2 Angular domain: the unit sphere

Ω ∈ S2 Angular variable

ϕ ∈ (0,π) Polar coordinate

θ ∈ [0, 2π) Azimuthal coordinate

E ∈ R
+ Energy variable

D The spatial domain

Γ The spatial domain boundary

Γ− The spatial domain inflow boundary

Γ+ The spatial domain outflow boundary

r ∈ D Spatial variable

x, y Spatial coordinates

∇ Spatial gradient function

Neutron transport

ψ The angular flux of neutrons

keff Reactivity eigenvalue

ψk Reactivity eigenfunction

α Time decay eigenvalue

ψα Time decay eigenfunction

φ The scalar flux

ζ The space averaged flux
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Σs Scattering cross section

Σ f Fission cross section

Σa Absorption cross section

Σt Total cross section

ν The average number of neutrons appearing from fission

χ The probability of a neutron appearing from fission

Q Additional neutron source

D Diffusion coefficient

c Scattering ratio

Multigroup approximation

g Energy group

G Number of energy groups

ψg Angular flux in energy group g

φg Scalar flux in energy group g

ζg Space averaged flux in energy group g

Qg Neutron source flux in energy group g

Σs,g→g′ Neutron cross section for scattering from group g to group g′

Σ f ,g Fission cross section in energy group g

Σa,g Absorption cross section in energy group g

Σt,g Total cross section in energy group g

νg The average number of neutrons from fission in energy group g

χg The probability of a neutron from fission in energy group g

Angular Discretisations

SN Discrete ordinates method

Ωi ith discrete ordinate

wi Weight on the ith discrete ordinate

NO Number of discrete ordinates

PN Spherical harmonics method

Yl,m The (l,m)th spherical harmonic function

Vectors and matrices

N Number of matrix rows/columns

NE Number of matrix entries

A, M Matrices
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P, Q Permutation matrices

L, U Triangular matrices

D Block diagonal matrix

Ai,j (i, j)th block in A

T Transport matrix

S Scattering matrix

F Fission matrix

ψ Vector of coefficients for the primal solution

q Discretised source term

z Vector of coefficients for the dual solution

Finite element method

ĝ Dirichlet boundary function

f Forcing function

p Order of polynomial approximation in space

q Order of polynomial approximation in angle

TS Spatial mesh

TA Angular mesh

T Space-angle mesh

κS Spatial element

κA Angular element

h Finite element diameter

Ŝ Canonical square

T̂ Canonical triangle

FκS Map from canonical element to κS

FκA
Map from canonical element to κA

FTS Set of FκS , where κS ∈ TS
FTA Set of FTA , where κA ∈ TA
S
p
S(TS, FTS) Spatial finite element space

S
q
A(TA, FTA) Angular finite element space

NS Number of degrees of freedom in S
p
S(TS, FTS)

NA Number of degrees of freedom in S
q
A(TA, FTA)

V p,q
h Space-angle finite element space

V p+1,q+1
h Enriched finite element space
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Qp Polynomial tensor product space of order p

Pp Restricted polynomial tensor product space of order p

Qq Polynomial tensor product space of order q

nκS Unit outward normal to κS

v+ Interior trace of v

v− Exterior trace of v

H Numerical flux function

ψh Discontinuous-Galerkin finite element solution

v Test function

vh Finite element test function

ξ T̂α,β Dubiner basis function

ξ Ŝα,β Legendre polynomial tensor product basis function

P
α,β
n Jacobi polynomial

ξ j jth basis function in the finite element space

Linear algebra

rm mth residual vector

Km (A, r0) mth Krylov subspace

qi ith orthogonal basis vector for Km (A, r0)

Vm Orthogonal basis for the mth Krylov subspace

Hi+1 Upper Hessenberg matrix

λ1 Largest eigenvalue

λ2 Second largest eigenvalue

Graph theory

G̃ =
(

Ṽ, Ẽ
)

A graph

Ṽ The set of vertices

Ẽ The set of edges

C̃ A cycle

S̃ A connected component

SCCi ith strongly connected component

Functionals

(T− S) (·, ·) Transport and scattering functional

F (·, ·) Fission functional

C (·, ·) Nonlinear functional for normalisation

N (·, ·) Semilinear functional
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J (·) Target functional

J (·) Mean value linearisation of J (·)
M (·, ·) Mean value linearisation of N (·, ·)
N ′[·] (·, ·) Frèchet derivative ofN (·, ·)
J′[·] (·) Frèchet derivative of J (·)
Res (·, ·) Residual functional

Refinement algorithms

ψ =
(

k
ψ
eff,ψ

)

Analytical primal eigenpair

v =
(

kveff, v
)

Test eigenpair

z =
(

kzeff, z
)

Analytical dual eigenpair

ψ
h
=
(

k
ψ
eff,ψ

)

DG primal eigenpair

vh =
(

kveff,h, vh

)

DG test function

zh =
(

kzeff,h, zh

)

DG dual eigenpair

ẑ =
(

kẑeff, ẑ
)

Dual eigenpair from enriched finite element space

ΠS L2-projection onto S
p
S(TS, FTS)

ΠA L2-projection onto S
q
A(TA, FTA)

ηS Spatial error indicator

ηA Angular error indicator

Ieff Effectivity

αFF Fixed fraction refine percentage

αFF
S Refine percentage for spatial elements

αFF
A Refine percentage for angular elements

p Polynomial degree vector

pκS Order of polynomial approximation on κS

Vp,q
hp hp-DG finite element space

Vp+1,q+1
hp Enriched hp-DG finite element space

ψ
hp

=
(

k
ψ
eff,hp,ψhp

)

Primal hp-eigenpair

vhp =
(

kveff,hp, vhp

)

Test hp-eigenpair

zhp =
(

kzeff,hp, zhp

)

Dual hp-eigenpair

ϑ hp-steering parameter

ϑκS Analyticity estimate on κS

ϑ
ψ
κS Primal analyticity estimate on κS

ϑz
κS

Dual analyticity estimate on κS
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CHAPTER 1

Introduction

Determining the solution to partial differential equations (PDEs) is essential for the

modelling of physical phenomena in a wide variety of engineering and scientific disci-

plines. For the vast majority of the PDEs arising from real world problems, however,

irregularly shaped domains and non-smooth problem data frequently mean it is not

possible to find analytical solutions. This has led to the development of a wide variety

of methods for the computation of approximate solutions to PDEs, including finite dif-

ference methods, finite volume methods, and continuous- and discontinuous-Galerkin

finite element methods, for example. In this thesis we consider the application of the

latter of these schemes, namely the discontinuous-Galerkin finite element method, also

known as the DG method or the DGFEM, to problems arising in the field of nuclear

engineering.

When utilising numerical methods for the solution of PDEs it is necessary to balance the

need for accurate approximations with the available computational resources, see [1].

For DG methods, as is the case with other finite element methods, greater accuracy can

be achieved through the introduction of more elements into the mesh (h-refinement),

as well as the utilisation of higher order polynomials (p-refinement). In particular local

mesh refinement and local polynomial enrichment may be combined (hp-refinement) in

order to focus resources in those regions in the computational domain that significantly

contribute to the total error in the computed finite element solution, when the error is

measured with respect to a suitable norm or target functional of interest.

The main computational cost stemming from the application of DG methods, as in-

deed for other discretisation methods, to the numerical approximation of PDEs, lies in

computing the solution of the underlying system of equations. In order to render such
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CHAPTER 1: INTRODUCTION

systems tractable, it is necessary to design parallel linear solvers that are efficient in

terms of both the number of floating point operations needed, as well as the amount

of memory required. These solvers can be classified as direct linear solvers, which

are usually based on computing a factorisation of the matrix, and iterative solvers,

which include Krylov subspace based methods and stationary iterative schemes. Di-

rect solvers benefit from considerable robustness and accuracy, however the increasing

memory requirements as the problem size grows, particularly for higher dimensional

equations, can render many problems intractable. Iterative solvers on the other hand

provide the user with greater control on the memory requirements, at the cost of re-

duced stability, which necessitates the design of sophisticated, and frequently problem

specific preconditioners.

For the safe design and operation of nuclear power stations it is necessary to find the so-

lution to the integro-differential equation that governs the distribution of neutron flux

inside the nuclear reactor: the neutron transport equation. The computation of accurate

numerical approximations to the full seven dimensional neutron transport equation is

not feasible in realistic geometries. Indeed, computing the key quantity of interest,

the critical eigenvalue, for the reduced four and five dimensional versions of the neu-

tron transport equation that nuclear engineers use to model modern nuclear reactors,

presents a considerable computational challenge. In this thesis we shall develop an

hp-adaptive algorithm for neutron transport criticality problems, that not only targets

computational resources in those areas in the spatial domain that contribute the most

error to the critical eigenvalue, but also balances the computational resources between

the spatial and angular parts of the DG discretisation. Furthermore, we demonstrate

the efficacy of our method by computing the solution to a series of industrially relevant

benchmark problems. We present semilog convergence plots for these which show that

the error appears to reduce exponentially quickly.

We begin by considering how the structure of the matrices arising from DG methods

can be utilised to design efficient algorithms for their solution. We present a method

for preprocessing matrices, such as DG matrices, that have the symmetric block sparse

structure with dense blocks, in order to reduce the memory required, and number of

operations, to compute a factorisation using a sparse direct solver. We then proceed

to consider a high-order DG method for the neutron transport equation which exploits

a DG method for both the spatial and the angular variables. We present an efficient

Krylov subspace based solver for neutron transport criticality problems that utilises the

2



CHAPTER 1: INTRODUCTION

aforementioned preprocessing method as part of an efficient preconditioner. We then

derive a computable a posteriori error representation formula for this scheme, which

can be used to design adaptive algorithms for the neutron transport keff-eigenvalue

problem. Finally, we implement an hp-version DG method for neutron transport crit-

icality problems and demonstrate the rapid convergence that can be obtained by such

a method with respect to the number of degrees of freedom required, for a series of

challenging test problems.

We continue the present chapter with a brief discussion of the development of DG

methods, followed by a description of the neutron transport equation. We then give

an overview of the key methods currently employed in the literature for its numerical

solution. The chapter is concluded with an outline of the remaining chapters in the

thesis.

1.1 Development of DG methods

In this section we provide a brief review of the development of DG methods. For a

more detailed history see the 1999 review paper by Cockburn, Karniadakis and Shu

[2], or the 2002 article by Arnold, Brezzi, Cockburn and Marini [3] which presents a

unified analysis of DG methods for elliptic problems. The important points from these

articles are discussed in the following.

In PDEs where convection plays a significant role, it is known that the analytical so-

lution can contain steep gradients and, for nonlinear problems, discontinuities. More-

over, close to these features, the solution can contain rich and complicated structures

that need to be resolved in order to compute an accurate approximate solution. Con-

forming finite element methods are known to suffer from unphysical oscillations in the

regions close to these features, which severely damage the quality of the computed nu-

merical approximation, see [4]. These oscillations are a consequence of the fact that

continuous-Galerkin (CG) methods attempt to represent discontinuous and rapidly

varying solutions in a continuous finite element space which are not, in general, con-

servative across element boundaries. In order to negate this problem, the streamlined

upwind Petrov Galerkin (SUPG) method has been developed [5], which includes an

artificial diffusion term in the streamwise direction in order to damp any such oscilla-

tions. The development of DGmethods however, which are locally conservative across

3



CHAPTER 1: INTRODUCTION

element boundaries, has enabled the computation of finite element approximations to

this class of problems that are more robust with respect to such spurious oscillations,

without the need to introduce artificial stabilisation terms. Though these oscillations

can still occur, the permissibility of discontinuities across element boundaries allow for

them to be damped by natural numerical dissipation.

DG methods were initially stimulated by the observation that the weak enforcement

of Dirichlet boundary conditions employed in conforming finite element methods can

be extended to enforce inter-element connectivity between elements. As such, it is

possible to design discontinuous finite element spaces that can represent a high order

approximation to the solution within finite elements, whilst permitting discontinuities

across element boundaries in order to facilitate the representation of sharp features in

the solution. Furthermore, such a framework results in a high degree of locality, en-

abling efficient parallel implementations. Indeed, the lack of a continuity restriction

also means that DG methods can easily support local variations in the order of polyno-

mial approximation, as well as supporting irregular meshes and meshes with hanging

nodes. This enables the implementation of hp-adaptive algorithms and facilitates the

application of DG methods to problems with complicated and irregular geometries.

The first implementation of a DG method was presented by Reed and Hill in 1973

[6], who developed a DG method for the spatial approximation of the neutron trans-

port equation. In 1974 LeSaint and Raviart [7] published an a priori analysis of their

method that demonstrated convergence of order O (hp) in the L2-norm for general tri-

angulations, where h is a typical element diameter and p is the order of polynomial

approximation. In 1983 Johnson and Pitkäranta [8], improved this to O
(

hp+
1
2

)

and

this rate was shown to be optimal for general meshes by Peterson in 1991 [9]. In 1988

Richter [10], proved a rate of O
(

hp+1
)

for some structured non-Cartesian grids. These

results, however, are all for problems where the underlying solution is smooth. In [11],

Houston, Schwab and Süli proved exponential convergence for the case when the un-

derlying solution is piecewise analytic.

The a posteriori analysis for the DGmethod for linear hyperbolic problems was first pre-

sented by Stroubolis and Oden in [12]. Later, in [13], Bey and Oden produced the first

a priori and a posteriori error estimates for the hp-version DG method, which reduces

to the result of Johnson and Pitkäranta [8], when h → 0 for fixed p. In 2002 Houston,

Schwab and Süli [14] generalised these results to a framework containing second order

4



CHAPTER 1: INTRODUCTION

advection diffusion PDEs with non-negative characteristic form.

In 2003, Cockburn, Luskin, Shu and Süli [15], developed a method for postprocessing

DG approximations to time dependent hyperbolic equations that increases the rate of

convergence from O
(

hp+
1
2

)

to O
(

h2p+1
)

. In the same year, Ryan and Shu [16], fur-

ther developed the method to apply to the entire domain and not just away from the

boundaries, discontinuities or interfaces of different mesh sizes. In 2005, Ryan, Shu,

and Atkins [17], extended this technique to equations in two spatial dimensions with

variable and discontinuous coefficients. Furthermore, they extended the method to

include superconvergence of the derivatives and to apply to multi-domains with dif-

ferent meshes.

Though originally presented in the context of neutron transport theory, the DGmethod

of Reed and Hill was no more than a discretisation of the linear advection-reaction

equation. Since then, DG methods have been successfully applied to a broad class of

PDEs including hyperbolic, elliptic and parabolic equations, as well as nonlinear prob-

lems. Examples of application areas include viscoelastic flows by Fortin and Fortin in

[18], magneto-hydrodynamics by Warburton and Karniadakis in [19] and to compress-

ible viscous flows by Lomtev, Quillen and Karniadakis in [20].

1.2 The neutron transport equation

In the next three sections we introduce the neutron transport equation and describe

the physical meaning of each of the terms that comprise it. We proceed to present an

overview of the key mathematical problems arising in the field of neutronics and de-

scribe the key discretisation methods that are used in the literature to find approximate

solutions to these. For a more comprehensive overview of the field we refer the reader

to the books, [21] and [22]. For a more detailed derivation of the neutron transport

equation we refer the reader to [23], and for consideration of the mathematical topics

in the neutron transport theory we refer the reader to [24].

It is important to have an accurate model of the distribution and energy of neutrons

inside nuclear reactors for the safe design and operation of modern nuclear power

stations. This is because the rate of nuclear fission is determined by the distribution

and energy levels of neutrons in and around the nuclear fuel. One of the most impor-

tant equations for the modelling of this distribution is known as the neutron transport
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CHAPTER 1: INTRODUCTION

equation, the Boltzmann equation or Boltzmann transport equation. Producing accu-

rate numerical solutions of this equation is an active area of contemporary research.

The neutron transport equation is a seven dimensional integro-differential equation in

space, angle, time and energywhich balances the number of neutrons being introduced

into the domain with those leaving it. Before stating the equation we first introduce

some modelling concepts.

When modelling a population of neutrons we need to have a way to represent the

various interactions that might occur, as well as a way to represent the motion of the

neutrons between those interactions. For sub-atomic particles such as neutrons this

could potentially require an involved quantum mechanical model incorporating wave

particle duality. However, neutrons moving at speeds typical for a nuclear reactor

are best modelled as point particles moving ballistically between interactions. This is

because, at the energies typical in a nuclear reactor, neutrons are moving too quickly for

the neutron wavelength to be important. Also they rarely obtain speeds greater than

0.17% of the speed of light, therefore relativistic effects are not significant. As there are

a large number of neutrons at motion throughout the system, we may model them as a

continuum. We introduce the angular flux of neutrons at the point r in the direction Ω

with energy E at time t, denoted by

ψ(r,Ω, E, t), (1.2.1)

this is the key quantity of interest that is modelled by the neutron transport equation.

Since ψ is a function of direction at each point in three dimensional space, it is necessary

to define the two dimensional angular domain in which this set of directions exist. For

that we introduce the concept of a solid angle. If we consider a point r in space, then the

surface of any object in our domain may be considered to take up a certain proportion

of the total view when looking out from that point. We call this quantity the solid angle

subtended by that surface from r. More precisely, we may describe the solid angle as

the area taken up by the projection of that surface onto the unit sphere centred at r.

As such the total solid angle measured from any point is equal to 4π sr, which is the

surface area of the unit sphere. The S.I. unit of solid angle is the steradian, denoted sr,

and like its two dimensional analogue, the radian, it is dimensionless. In the neutron

transport equation, solid angles are used to represent the continuum of directions in

which a flux of neutrons may be traveling from each point in the spatial domain.

Now that we have stated a suitable model for themotion of the neutrons between inter-
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actions, we consider the types of interaction that can occur. The model that we are con-

sidering assumes that there are a very large number of stationary, inert atomic nuclei in

our medium relative to the number of neutrons and therefore any neutron-neutron and

nuclide-nuclide interactions may be ignored. All that remains are the neutron-nuclide

interactions of which there are three types: scattering, capture, and fission. In order

to represent these interactions we introduce their macroscopic neutron cross sections,

which express the fractional probability of each reaction occurring per path length trav-

elled, thereby providing a continuum characterisation of the point collisions occurring

in the domain.

The first type of interaction that we consider is scattering, which happens when a neu-

tron collides with a nuclide and is not absorbed but is instead deflected away. The

differential scattering cross section represents the fractional probability that a neutron

at rwith energy E′ traveling in direction Ω′ will be scattered to direction Ω with energy

E at time t; it is written as

Σs(r,Ω
′,Ω, E′, E, t). (1.2.2)

The second type of interaction is absorption, which occurs when a neutron collides with

a nuclide and is absorbed into it, increasing its nuclear mass number. The absorption

cross section is given by

Σa(r, E, t). (1.2.3)

The third fundamental interaction is fission, which is the process that drives the nu-

clear reaction. Fission occurs when a large unstable nuclide splits into two or more

smaller nuclei, thereby releasing additional neutrons into the system, as well as a very

large amount of energy. The fission cross section quantifies the likelihood of a fission

occurring at each given point in the domain; it is given by

Σ f (r, E, t). (1.2.4)

As each fission can release many neutrons at various energies, two more functions

are required to fully describe the effect of fission on the angular flux. These are the

average number of neutrons produced per fission, which is denoted by ν(E), and the

probability of a neutron being introduced with energy E, which is written as χ(E).

Before stating the neutron transport equation we introduce one further cross section

which incorporates all neutrons lost from the system from absorption and scattering.

7
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This is called the total cross section and is written as

Σt(r, E, t). (1.2.5)

Now that we have defined all the necessary terms we may state the full neutron trans-

port equation which equates all neutrons lost to the angular flux on the left hand side

with all neutrons gained on the right-hand side: find ψ(r,Ω′, E′, t) such that

(

1

v

∂

∂t
+ Ω · ∇+ Σt(r, E, t)

)

ψ(r,Ω, E, t)

=
∫

R+

∫

S2
Σs(r,Ω

′,Ω, E′, E, t)ψ(r,Ω′, E′, t)dΩ′dE′

+
χ(E)

4π

∫

R+

∫

S2
ν(E′)Σ f (r, E

′, t)ψ(r,Ω′, E′, t)dΩ′dE′

+Q(r,Ω, E, t). (1.2.6)

Here v is the neutron speed and S2 is the surface of the unit sphere. The final term

Q(r,Ω, E, t) is an artificial forcing function which accounts for any additional neutrons

introduced into the system from other sources. For criticality problems, which com-

prise most of the problems considered in this thesis, this term is not present. When a

known solution angular flux is required for testing purposes, this may be chosen so

that the neutron transport equation will yield that specific solution. This is the strategy

adopted in Chapter 3 when an analytical value for the solution is needed in order to

investigate the order of convergence of the proposed DG method.

For all of the problems considered in this thesis, the nuclear cross sections are taken to

be time invariant, therefore we may omit t from each of the cross sections in equation

(1.2.6) to obtain

(

1

v

∂

∂t
+ Ω · ∇+ Σt(r, E)

)

ψ(r,Ω, E, t)

=
∫

R+

∫

S2
Σs(r,Ω

′,Ω, E′, E)ψ(r,Ω′, E′, t)dΩ′dE′

+
χ(E)

4π

∫

R+

∫

S2
ν(E′)Σ f (r, E

′)ψ(r,Ω′, E′, t)dΩ′dE′

+Q(r,Ω, E, t). (1.2.7)
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1.3 Criticality problems

One key property of interest for engineers when considering a systemof fissile nuclides

is the criticality, that is whether the system is sub-critical, critical or super-critical. In-

tuitively this property corresponds to the behaviour of the system as t → ∞ with the

neutron population going to zero if the system is sub-critical, remaining constant if it

is critical and increasing if the system is super-critical.

There are two versions of the criticality problem which both take the form of an eigen-

value problem. These are the time decay or α-eigenvalue problem and the reactivity or

keff-eigenvalue problem. To obtain the α-eigenvalue problem we consider solutions of

equation (1.2.7) of the form

ψα(r,Ω, E)eαt, (1.3.1)

where ψα(r,Ω, E) is the part of the angular flux which is time independent. Substitut-

ing this into equation (1.2.7) yields the following eigenvalue problem for the eigenpair

(α,ψα(r,Ω, E))

αψα(r,Ω, E) = −vΩ · ∇ψα(r,Ω, E)− vΣt(r, E)ψ
α(r,Ω, E)

+
∫

R+

∫

S2
v′Σs(r,Ω

′,Ω, E′, E)ψα(r,Ω′, E′)dΩ′dE′

+
χ(E)

4π

∫

R+

∫

S2
v′ν(E′)Σ f (r, E

′)ψα(r,Ω′, E′)dΩ′dE′,

(1.3.2)

where the source term has been omitted.

Given the possible set of solution eigenpairs (αi,ψ
αi(r,Ω, E)), i = 0, · · · , satisfying

(1.3.2), we order them so that α0 will be the eigenvalue with the largest real part. Writ-

ing the full time dependent angular flux as an expansion in terms of these eigenpairs,

we note that as t increases the angular flux will be proportional to etα0ψα0(r,Ω, E). Thus

we see that determining the criticality of the system is equivalent to determining the

sign of α0. For a sub-critical problem we have α0 < 0, for a super-critical problem we

have α0 > 0, and for a critical problem we have α0 = 0.

The second formulation of the criticality problem is known as the effective multipli-

cation factor, reactivity or keff-eigenvalue problem. Whereas the α-eigenvalue calcu-

lates whether a system is critical by considering what happens when t ≫ 0, the keff-

eigenvalue problem does so by considering how many neutrons would have to be re-

leased by every fission for the system to be critical. The eigenpairs
(

keff,ψ
k(r,Ω, E)

)

9
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are computed by solving the eigensystem obtained by rewriting equation (1.2.7) with

ψk(r,Ω, E) in place of ψ(r,Ω′, E′, t) and

ν(E)

keff
(1.3.3)

in place of ν(E); i.e., we consider

(Ω · ∇+ Σt(r, E)) ψk(r,Ω, E)

=
∫

R+

∫

S2
Σs(r,Ω

′,Ω, E′, E)ψk(r,Ω′, E′)dΩ′dE′

+
1

keff

χ(E)

4π

∫

R+

∫

S2
ν(E′)Σ f (r, E

′)ψk(r,Ω′, E′)dΩ′dE′. (1.3.4)

The existence in general of the eigenvalue keff and its associated eigenfunction

ψk(r,Ω, E) are assumed for physical reasons. If there are fissions taking place in the sys-

tem then we assume that by varying the number of neutrons released in each fission it

is possible to force the system into a state of balance between the number of neutrons

gained and the number of neutrons lost. A more detailed discussion of this eigenprob-

lem is given in [21] including the existence of a discrete dominant keff-eigenvalue under

the multigroup discretisation of the energy variable (see Section 1.5.1).

Whereas criticality was inferred from the α eigenvalue problem by checking the sign of

α0, criticality is inferred from the keff problem by comparing the dominant eigenvalue

with unity. If keff is greater than one then fewer neutrons per fission would need to

be released to create a critical system, therefore the system is super-critical. If keff is

less than one then more neutrons would need to be released per fission, therefore the

system is sub-critical. If keff is exactly one then the system is critical.

By comparing equations (1.3.2) and (1.3.4) we see that when the system is critical, with

α0 = 0 and keff = 1, the eigenfunctions ψα(r,Ω, E) and ψk(r,Ω, E) will be identical.

When the system is not critical, however, they will in general be different, therefore

when criticality needs to be verified, there is a choice to be made between solving

these two problems. As stated in [21] the more common choice is to compute the keff-

eigenvalue. This is because for sub-critical systems the α0 problem can be more difficult

to handle numerically, as well as the fact that for non critical systems the addition of α0
v

to the absorption term will change the spectrum. All of the criticality problems consid-

ered in this thesis are defined in terms of keff-eigenvalue problems.
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1.4 Reducing the dimensionality

The full neutron transport equation is an integro-differential equation of seven dimen-

sions (three in space, two in angle, one in energy and one in time) and as a consequence

the number of degrees of freedom that would be required for an accurate discretisation

of all the dimensions can grow extremely quickly. In order to mitigate this there are

several assumptions that we may make in order to reduce the dimensionality of the

mathematical problem that needs to be solved whilst maintaining a faithful represen-

tation of the physical system being modelled.

The first two assumptions that we may make are to assume that all nuclear cross sec-

tions are time independent and that the solution angular flux goes to zero as time goes

to infinity, i.e.,

lim
t→∞

ψ(r,Ω, E, t) = 0. (1.4.1)

This enables us to re-write equation (1.2.7) as the steady state neutron transport source

problem

(Ω · ∇+ Σt(r, E))ψ(r,Ω, E)

=
∫

R+

∫

S2
Σs(r,Ω

′,Ω, E′, E)ψ(r,Ω′, E′)dΩ′dE′

+
χ(E)

4π

∫

R+

∫

S2
ν(E′)Σ f (r, E

′)ψ(r,Ω′, E′)dΩ′dE′

+ Q(r,Ω, E), (1.4.2)

where the time independent angular flux is given by the integral over time of the time

dependent angular flux

ψ(r,Ω, E) =
∫

R+
ψ(r,Ω, E, t)dt. (1.4.3)

The steady state source termQ(r,Ω, E) now incorporates any non-zero initial condition

data.

Even the steady state neutron transport equation retains a high level of dimension-

ality, so it is frequently necessary to make further assumptions about the remaining

dimensions in order to render it computationally tractable. The five dimensions in

space and angle still remain, as well as the energy variable. In Section 1.5.1 we dis-

cuss the monoenergetic and the multigroup approximations for the energy spectrum.

Furthermore, geometrical approximation may be employed to reduce the dimension of
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the space-angle computational domain. We briefly describe the two dimensional case,

which we will use for our calculations, and the ‘slab’ geometry which is a popular one

dimensional approximation that we will refer to later in the thesis.

The two dimensional (2D) geometry, often referred to as pseudo-3D, is obtained by con-

sidering the spatial variable in Cartesian coordinates r = (x, y, z)⊤ and requiring that

the angular flux has no dependence on the z variable, which extends to infinity in either

direction. As nuclear reactors are frequently designed with a high degree of symmetry

in the z-direction, with geometries comprising long, narrow control rods and fuel rods,

this geometry provides a good approximation for many existing nuclear reactors. All

of the test problems in this thesis consider a two dimensional spatial geometry; this

reduction reduces the neutron transport problem to a five dimensional problem with

two spatial dimensions, two angular dimensions, and one dimension in energy.

In the early days of neutron transport theory even problems with two spatial dimen-

sions were too large from a computational viewpoint. Therefore, further reduction to

a single spatial dimension was frequently employed for computations. One way that

this was achieved was by prescribing that the solution has no dependence on either

the x or the y Cartesian variables in the R
2 plane. Under this assumption the spatial

domain is specified by a thickness in the z direction which is called the slab thickness.

This symmetry in the spatial domain also leads to a reduction in the number of coor-

dinates required to describe the angular variable, as the invariance in the (x, y) plane

renders the polar coordinate superfluous. The result is a reduced problem with one

spatial variable z and one angular variable µ = cos(ϕ), where µ ∈ [−1, 1] and ϕ is the

angle between the advective direction and the normal to the (x, y)-plane.

1.5 Discretisation methods

In this section we discuss a variety of deterministic methods that have been employed

to discretise the neutron transport equation. Monte Carlo methods, which model a

set of neutron histories using a random number generator to determine outcomes of

collisions, are also widely used within the neutron transport field. In this thesis, how-

ever we shall focus on deterministic methods; for a detailed description of the various

Monte Carlo methods that have been exploited to model the transport of neutrons, we

refer the reader to [25].
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We begin our consideration of deterministic methods for neutron transport with the

multigroup approximation for energy, see [26] for a more comprehensive review of

these. This is the most commonly used treatment for the energy variable in the liter-

ature and will be the energy approximation employed in all of our computations. We

shall then proceed to discuss various schemes that have been used to discretise the

spatial and angular variables.

1.5.1 Multigroup approximation for energy

There are two main approaches employed for the discretisation of the energy variable

that are commonly used in neutron transport theory: the monoenergetic approxima-

tion and the multigroup approximation. The monoenergetic neutron transport may be

derived directly from the physical system by assuming that all scattering is elastic (see

[23] for an example of this derivation) or alternatively it can be arrived at as a spe-

cial case of the multigroup approximation. As both of these approximations are used

in this thesis, we first describe the multigroup approximation and leave the monoen-

ergetic approximation to be deduced as the case where only a single energy group is

considered.

Themultigroup approximation provides a lightweight discretisation of the energy vari-

able by dividing the energy spectrum into G discrete energy groups. Once divided, the

neutron transport equation may be treated as a system of G transport problems of the

remaining independent variables, coupled by a scattering term. To obtain the multi-

group expansion, the full energy spectrum is first restricted to the range of interest,

[E0, EG] ⊂ R
+, which is then partitioned into G different intervals. Each energy group

g, g = 1, · · · ,G, consists of the values of the energy variable in the interval [Eg−1, Eg].

By convention group 1 is the highest energy group. The multigroup approximation

assumes that for each energy group, the angular flux and the source term may be sep-

arated into the product of its energy dependent and independent parts. For the time

independent case and energy group g, we have that

ψ(r,Ω, E) = f (E)ψg(r,Ω), (1.5.1)

Q(r,Ω, E) = h(E)Qg(r,Ω), (1.5.2)

where f (E) and h(E) are piecewise smooth functions on each interval [Eg−1, Eg], for
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each g ∈ {1, 2, · · · ,G}, that are normalised so that
∫ Eg

Eg−1
f (E)dE ≡ 1 and

∫ Eg

Eg−1
h(E)dE ≡ 1. (1.5.3)

To obtain the steady state multigroup equations we consider equation (1.4.2) and re-

place the integrals with respect to E′ with the sum of the integrals over each energy

sub-interval [Eg−1, Eg], g = 1, · · · ,G. Furthermore, we integrate the resulting integro-

differential equation with respect to E to obtain, for the interval [Eg−1, Eg]
∫ Eg

Eg−1
Ω · ∇ f (E)ψg(r,Ω) dE+

∫ Eg

Eg−1
Σt(r, E) f (E)ψg(r,Ω) dE

=
G

∑
g′=1

∫ Eg′

Eg′−1

∫ Eg

Eg−1

∫

S2
Σs(r,Ω

′,Ω, E′, E)ψg′(r,Ω
′) f (E′) dΩ′ dE dE′

+
G

∑
g′=1

∫ Eg′

Eg′−1

∫ Eg

Eg−1

χ(E)

4π

∫

S2
ν(E′)Σ f (r, E

′)ψg′(r,Ω
′) f (E′) dΩ′ dE dE′

+
∫ Eg

Eg−1
Qg(r,Ω)h(E) dE. (1.5.4)

Now we utilise the normalisation properties of f (E) and h(E) to define the following

group parameters

Σt,g(r) =
∫ Eg

Eg−1
Σt(r, E) f (E) dE, (1.5.5)

Σs,g′→g(r,Ω
′,Ω) =

∫ Eg′

Eg′−1

∫ Eg

Eg−1
Σs(r,Ω

′,Ω, E′, E) f (E′) dE dE′, (1.5.6)

χg =
∫ Eg

Eg−1
χ(E) dE, (1.5.7)

νgΣ f ,g(r) =
∫ Eg

Eg−1
ν(E)Σ f (r, E) f (E) dE. (1.5.8)

With this notation, we deduce the multigroup equation for energy group g, 1 ≤ g ≤ G

Ω · ∇ψg(r,Ω) + Σt,g(r)ψg(r,Ω)

=
G

∑
g′=1

∫

S2
Σs,g′→g(r,Ω

′,Ω)ψg′(r,Ω
′) dΩ′

+
G

∑
g′=1

χg

4π

∫

S2
νg′Σ f ,g′(r)ψg′(r,Ω

′) dΩ′ + Qg(r,Ω). (1.5.9)

In the case when G = 1, so that the interval [E0, E1] contains all values of interest

in the energy spectrum, we deduce the monoenergetic approximation of the neutron

transport equation.
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1.5.2 Angular approximation

Over the years several techniques have been developed for the discretisation of the an-

gular variable; indeed, the development of angular discretisations remains the subject

of current research, see [27], [28] and [29]. In this section, we discuss the treatment

of the angular domain by the three most common methods: the discrete ordinates

method, the spherical harmonics method and the reduction to a diffusion approxima-

tion. Other methods have been proposed, including the representation of the angular

dependence by spherical wavelets (see Cho et al. in [28] and Buchan et al. in [30]) and

the use of finite element discretisations in angle (see Martin et al. in [31], Briggs et al.

in [32], Becker et al. in [33] and Kanschat in [34]).

Discrete ordinates methods

One of the simplest and most popular methods for discretising the angular variable is

the discrete ordinates method (DOM), also known as the SN method. It is a collocation

methodwhich approximates the solution by representing it at a finite number of points

in the angular domain. This set of points, together with associated weights, on the

surface of the sphere form a quadrature for the integral over the angular domain. If

these points and weights are given by Ωi and wi, i = 1, · · · ,NO, respectively, then the

integral approximation of a function f (Ω) over the unit sphere is given by

∫

S2
f (Ω) dΩ ≈

NO

∑
i=1

wi f (Ωi). (1.5.10)

Approximating the integrals in the neutron transport equation in this manner uncou-

ples the streaming and absorption terms. This reduces the solution of the full space-

angle equation to a series of spatial linear advection problems, which can be discre-

tised and solved in parallel either as part of a stationary iterative scheme or as part of

a preconditioner for a Krylov subspace method. Discrete ordinates methods were first

proposed by Carlson in 1955 [35] and developed in greater detail by Chandrasekhar in

[36]. Further early development of discrete ordinates methods was spurred by healthy

competition between the team responsible for SN methods and another team at Los

Alamos who were working on Monte Carlo methods [37].

The main advantages of the DOM are the ease with which it can be implemented, as

well as the relative ease of imposing boundary conditions. Also the high level of con-
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currency makes the DOM very well suited to parallel architectures. For problems of

neutron absorption the DOM reduces the neutron transport equation to a set of hyper-

bolic problems in the spatial domain. This reduction to linear hyperbolic problems,

or coupled linear hyperbolic problems when there is scattering, also enables highly

memory-efficient sweeping techniques for the solution of the spatial part of the prob-

lem. However, the DOM does have some significant disadvantages, not least of which

is the occurrence of spurious oscillations in the angular solution, known as ray effects

[38], which can seriously affect the quality of the solution. The most common way

to mitigate these effects is through the introduction of additional ordinate directions,

leading to significantly larger problems to be solved.

Ray effects are a fundamental shortcoming of the DOM as they are a direct consequence

of the decision to restrict the angular flux to a discrete number of points. However,

there have been several strategies developed to reduce their occurrence. One approach

is to increase the number of discrete ordinates so that every element in the spatial do-

main is connected to the source regions along a discrete ordinate; another technique is

to select a more rotationally invariant set of ordinate directions. It has been shown (in

[39]) that though the introduction of additional directions was necessary, a much bet-

ter improvement may be achieved by improving the set of chosen directions. Another

strategy is to use artificial source terms which recast the discrete ordinates equations as

the spherical harmonics equations. As the spherical harmonics equations are known to

not suffer from ray effects, this eliminates the spurious fluctuations from the solution,

at the expense of inducing a coupling over the streaming terms [40].

In [32] Briggs et al. used the fact that the DOM can be written as a DG finite element

approximation in angle with piecewise constant basis functions in order to mitigate

ray effects. They tested piecewise constant basis functions as well as piecewise bilinear

finite elements and found that both schemes mitigated the ray effects when compared

to discrete ordinates. In [41] Kanschat also used a piecewise constant finite element ap-

proximation in angle and presented a novel method of finding a high quality partition

of the sphere into triangles, and consequently a new set of quadrature points for the

discrete ordinates method. An angular finite element discretisation similar to these is

implemented in this thesis, except that we permit the finite elements to have arbitrarily

high order; in Chapter 3 we discuss further the reduction of this scheme to a system of

discrete ordinates.
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For the design of a set of discrete ordinates one seeks a set of points and weights that

integrates the angular domain as accurately as possible, using as few points as possi-

ble to minimise computational requirements. For simplified geometries, such as one

dimensional problems where the angular domain is reduced to the real interval [−1, 1],
the quadrature points and weights can be chosen to correspond to a Gauss-Legendre

quadrature, which is the most accurate scheme for the integration of an unweighted

analytic function on a real interval. When there is isotropic scattering, this choice can

be shown to be equivalent to the spherical harmonics method in angle [21] and thus

not subject to any ray effects. It is possible, for spatial domains consisting of a thin

plate, to simplify further the 2D neutron transport problem so that the angular domain

is reduced to a unit circle. This is equivalent to setting the polar coordinate to π
2 and is

the strategy adopted by Johnson and Pitkäranta in [8], as well as Baker in [42] and Ben-

nison in [43]. For the integration of a smooth function on a circle it is well known that

evenly spaced, evenly weighted quadrature points provide exponential convergence

(see [44] for a fascinating explanation of this phenomenon).

For the full neutron transport equation, the angular domain is the surface of a sphere,

so there is no definitive method for the design of a system of discrete ordinates. This

is because an optimal quadrature for the integration of a sphere is not known. Many

methods have been proposed over the years and in [45], Koch and Becker analyse and

evaluate the accuracy of several of the most popular of these. There is a collection of

generally accepted design principles that all good sets of discrete ordinates try to meet

in order to remain physically realistic, cf. [46]. These are listed below.

• Every ordinate direction must be on the unit sphere, i.e. ∀i, |Ωi| = 1.

• Every ordinate weighting must be positive. This ensures that the error will be

minimised.

• The number of neutrons must be conserved. This is equivalent to requiring that

NO

∑
i=1

wi (n ·Ωi) = 0, (1.5.11)

for all n ∈ S2.

• The set of ordinates must be invariant under any rotation about the centre of the

sphere.
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There are many choices of spherical quadrature schemes that will satisfy the first two

of these conditions. The third condition is also easily satisfied if for each quadrature

point there is a corresponding point with the same weighting at a rotation of π around

S2 from the first point. It is therefore how the user seeks to satisfy the final principle

that distinguishes the various systems of discrete ordinates. It is clear that with a fi-

nite number of ordinate directions it is not possible to perfectly satisfy this condition.

Instead one seeks a set of ordinate directions that is invariant with respect to some spe-

cially chosen symmetry groups, such as the symmetries of a regular octahedron aligned

with the Cartesian coordinate axes and the set of cyclic rotations about some axis.

The angular finite element meshes exploited in this thesis will be constructed based on

a rectangular partitioning principle similar to that described in [47]. This method was

chosen because it respects the set of cyclic rotations about the z-axis, and is therefore

well suited to 2D problems where there is no variation in the spatial solution along this

axis. When a piecewise constant approximation is used in angle then the resulting finite

element mesh reduces to a set of discrete ordinates that all have equal weightings. This

is another desirable property that has been used to motivate the development of many

discrete ordinate schemes, see [48]. See Figure 1.1 for an illustration of the first three

meshes in the series utilised for the computations in this thesis. For these meshes the

longitudinal separator lines are equally spaced around the azimuthal coordinate and

the latitudinal separator lines are chosen so that all finite elements have equal area.

Spherical harmonics methods

The spherical harmonics, or PN , treatment of the angular variable was first suggested

for neutron transport in the 1940s by Mark in [49] and has since become, alongside the

discrete ordinates schemes, one of the most popular methods. The main advantages

of the PN methods over the discrete ordinates methods are that they are invariant un-

der rotation of the principal axes and are immune to ray effects. Therefore, they can

produce a high quality approximation for the angular solution even when a relatively

small number of basis functions are employed, particularly when the solution is close

to isotropic. This is because they represent a continuous solution in the angular do-

main; in contrast, SN methods select a set of discrete points on which to collocate the

solution. They are also well suited to problems with anisotropic scattering, as the scat-

tering kernel can be expanded exactly in terms of the spherical harmonics functions.
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(a) (b)

(c)

Figure 1.1: Three angular meshes constructed using the rectangular partitioning

method. Mesh (a) has a single angular element in each principal triangle, mesh (b)

has four and mesh (c) has 16.

For these reasons, the PN methods can be used to accurately model a wide variety of

neutron transport problems.

One arrives at the spherical harmonics equations by first expanding the angular flux as

the sum over the set of solutions to Laplace’s equation on the surface of the sphere. For

the time invariant scalar flux this is given by

ψ(r,Ω, E) =
∞

∑
l=0

l

∑
m=−l

ψl,m(r, E)Yl,m(ϕ, θ), (1.5.12)

where ϕ is the polar coordinate and θ is the azimuthal coordinate. Here, the ψl,m(r, E),

l = 0, · · · ,∞, m = −l, · · · , l, represent the angular flux at the angular moment associ-

ated with the spherical harmonic function indexed by l and m, i.e.,

Yl,m(ϕ, θ) =

√

(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (µ)e

imθ . (1.5.13)

Here, Pm
l (µ) is the associated Legendre function of the cosine of the polar variable, µ =

cos(ϕ). The square root term is a non-unique normalisation constant. These functions

form a complete orthonormal basis for the angular solution space with
∫

S2
Yl,m(ϕ, θ)Y∗l′,m′(ϕ, θ) dϕ dθ = δl,l′δm,m′, (1.5.14)

19



CHAPTER 1: INTRODUCTION

whereY∗l′,m′(ϕ, θ) is the complex conjugate ofYl′,m′(ϕ, θ), and δi,j denotes the Dirac delta

function. To obtain the discrete version of the PN approximation, the sum to infinity

in (1.5.12) is truncated with l = NSH. The scattering cross section and the external

source term are also expanded in terms of the spherical harmonics functions and both

are substituted into the neutron transport equation. Finally, the resulting equation is

multiplied by the complex conjugate of each Yl,m(ϕ, θ) and integrated over the angular

domain to yield a set of coupled equations to be solved for the flux moments ψl,m(r, E).

The main disadvantage of the PN methods when compared to discrete ordinates meth-

ods is that, even after utilising the orthogonality property of the spherical harmonics

functions, the set of equations that results is still complicated and difficult to solve. This

is due to the coupling that is introduced in the streaming term Ω · ∇ψ(r,Ω, E), as well

as the fact that the number of angular moments grows with O(N2
SH). Furthermore, the

fact that the flux at each angular moment is continuously represented for all directions

on the sphere makes the imposition of vacuum boundary conditions difficult. This

property also means that the direction of travel of information at each angular moment

is not distinct, therefore the sweeping method of preconditioning (discussed in detail

in Chapter 3) cannot be easily utilised. For a more comprehensive description of the

PN methods, see [21] and [22].

We note that there is a similarity between the numerical approximation of the neutron

transport equation based on the PN approach and the higher order finite element ap-

proximation proposed in this thesis. Indeed, when m = 0, the associated Legendre

functions reduce to the Legendre polynomials which form the basis for the finite el-

ement method introduced in Chapter 3. The principal differences between these two

methods are that, for the finite element approximation, the basis will be mapped onto a

patch on the sphere, therefore losing its orthogonality property for the basis functions

aligned in the polar direction. However, the finite element method in angle will allow

the partition of the angular flux solution into piecewise continuous sets of directions

on which the direction of travel of information is known; this will then facilitate the use

of a sweeping preconditioner.

Diffusion approximation

The final method for treating the angular variable that we discuss is the reduction of the

neutron transport equation to a diffusion equation. In certain situations the full integro-
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differential equation in space and angle may be reduced to a diffusion equation in just

the spatial dimensions. This approximation greatly reduces the computational require-

ments for determining a numerical solution to the neutron transport equation and,

moreover, it can provide very accurate solutions for problems with highly isotropic an-

gular solutions. For a diffusion approximation to be relevant, some key assumptions

have to be made regarding the underlying physical problem. In particular the source

term must be independent of angle and all scattering that occurs must be isotropic.

Finally, the probability of a neutron being scatteredmust be much larger than the prob-

ability of it being absorbed (see [50]). If these conditions are met, then the steady state

neutron diffusion equation can be derived from the P1 spherical harmonics expansion

of the steady state neutron transport equation, leading to

∇ · (D(r, E)∇φ(r, E)) + Σt(r, E) = Q(r, E), (1.5.15)

where the solution φ(r, E) is the scalar flux which is independent of angle. See [21]

for a detailed derivation of this equation. We have introduced the diffusion coefficient

D, which includes a factor of 1
Σt(r,E)

. The presence of this term represents one of the

drawbacks of the use of diffusion approximation: the difficulty of representing void

regions in the domain. A further problem with the diffusion approximation is its un-

suitability for modelling problems where the solution has a strong dependence on the

angular variable. Also there is a risk that the solutions computed via the standard dif-

fusion approximation can violate causality. In other words, φ(r, E) could be greater

than the neutron density multiplied by the maximum transport speed. Various meth-

ods have been developed to remedy this including the use of explicit flux limiting (as

implemented by Levermore in [51]), as well as the re-derivation of the diffusion ap-

proximation to naturally include a limit on the scalar flux (see the work of Pomraning

in [52]).

For problems where the solution to the diffusion approximation does not provide a

good model for the neutron distribution, the neutron diffusion equation can still be

useful as the basis of a preconditioner for the full neutron transport equation. This is

the strategy of the diffusion synthetic acceleration method for solving source and eigen-

value problemswhichwill be discussed again in Chapter 3. The inverse of the diffusion

operator is particularly well suited to being the basis of a preconditioner because of the

fact that it captures the effect of the scattering term in the full equation, which is not

well approximated by the more common transport sweep method of preconditioning.
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Solving the diffusion equation is also efficient in terms of memory requirements and

operation counts which makes it suitable for repeated application.

1.5.3 Spatial discretisation methods

In general the spatial part of the solution to neutron transport problems is much more

complicated than the solutions found in the angular domain. This is a consequence of

the great variety in the spatial geometries on which one is called upon to solve prob-

lems in neutronics. Therefore, there has been considerable focus on providing accurate

solutions to the spatial problem. This is in contrast to the angular discretisations where

the focus has been more towards retaining accuracy whilst limiting the total problem

size of the approximations. As a result, over the years many methods for the numer-

ical solution of the spatial problem have been developed. In this section we consider

deterministic methods in three broad categories: finite difference methods, character-

istics based methods and finite element methods. Monte Carlo methods are also used

in the field, where they are sometimes the only effective method for certain extreme

geometries, such as pebble bed reactors which comprise a large number of tennis ball-

sized ‘pebbles’ each containing thousands of micro-fuel particles. They are also well

suited to parallelisation and there exist many well established codes that implement

them such as the MCNPTM code by Briesmeister et al. [53] and the MCML code by

Wang et al. [54]. On the other hand the slow convergence of Monte Carlo methods

can lead to considerable computational requirements in order to compute sufficiently

accurate solutions.

Finite difference methods

Some of the earliest attempts at solving the neutron transport equation utilised finite

difference methods. Finite difference methods approximate the spatial solution on a

highly structured set of points in the spatial domain, usually aligned with the Carte-

sian coordinate axes, [55]. This requirement for a highly structured grid means that

the treatment of irregular spatial domains can be difficult and therefore the number of

problems that can be solved with finite difference methods is somewhat limited, espe-

cially for problems in more than one dimension. However, when they are applicable,

finite difference methods do yield very sparse and easy to solve linear systems.
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Characteristics based methods

The method of characteristics for solving hyperbolic PDEs has been applied many

times over the years to the solution of neutron transport problems from its first imple-

mentation on practical geometries by Askew [56] in 1972. For a review of many of this

class of schemes, we refer to [57]. Characteristics methods are well suited to discrete

ordinate approximations in angle; they are based on replacing the partial differential

operator by a total derivative along the characteristic lines defined by the direction of

travel of the neutrons. The resulting ODEs can then be solved by analytical methods

and the solution in the various directions can be combined to build a numerical approx-

imation of the flux within each element in a mesh over the spatial domain. Character-

istics methods have the advantage over schemes such as the finite difference method,

in that they are capable of computing solutions on irregular meshes, though computa-

tional challenges do arise for meshes with fine grained regions. This is because every

element in the mesh must have at least one characteristic line passing through it for

each of the selected characteristic directions; therefore, many closely packed, parallel

characteristic lines are needed to resolve fine regions in the mesh. Moreover, determin-

ing the intersection of each characteristic line with every element that they encounter

can be computationally expensive. Despite this, traditional (long) characteristics meth-

ods are used by several commercial codes, including the CACTUS module of Serco

Assurance’s WIMS software [58].

The challenges associated with the long characteristics method has led to work on

the development of the method of short characteristics, which were first proposed by

Takeuchi in [59]. Short characteristics methods differ from long characteristics meth-

ods in that the set of characteristics employed are defined element by element, rather

than across the entire spatial domain. This means that for regions where a finer mesh

is needed to compute an accurate representation of the solution, the introduction of

additional elements is not inhibited by excessive computational requirements. Though

the original work by Takeuchi was to create a linear approximation of the solution, the

short characteristics method can be extended to higher order, see [42].
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Finite element methods

Some of the most popular deterministic schemes for discretising the spatial part of the

neutron transport equation are based on employing finite element methods. This is

due to their accuracy, versatility and their ability to use unstructured meshes to accu-

rately represent physical phenomena on realistic computational domains. Finite ele-

ment methods approximate the solution in a finite element space consisting of the span

of a set of piecewise polynomial functions, known as basis functions, defined on amesh

over the computational domain. It is the design of these spaces which distinguish the

two broad categories of finite element methods: the continuous-Galerkin (CG) finite

element method and the DG finite element method. In the CG finite element method,

the finite element space consists of continuous piecewise polynomials, whereas the DG

method permits discontinuities across inter element-boundaries.

CG methods were initially applied to two dimensional neutron diffusion in the early

1970s [60]. For the application of CG methods to hyperbolic problems, such as the full

neutron transport equation, the quality of computed solution can be deteriorated by

the occurrence of spurious oscillations [61]. One way to eliminate these is to employ

streamline upwind Petrov-Galerkin methods, which mitigate these unphysical oscil-

lations by introducing an artificial diffusion term in the streamwise direction. This

method has proved very successful and is still commonly employed for neutron trans-

port problems, see [62] and [63].

The DG finite element method was in fact originally developed for neutron transport

by Reed and Hill in their influential 1973 paper [6]. This demonstrated the superiority

of employing discontinuous finite elements in comparison to their continuous coun-

terparts for two dimensional neutron transport calculations. Since then many authors

have used DG methods for solving neutron transport problems; see for example [7],

[64] and [65]. DGmethods have the advantage over CGmethods in that they are better

at resolving steep gradients in the computed flux, which occur frequently in neutron

transport problems, cf. the benchmarks computed later in this thesis. A key disad-

vantage of the DG method compared to the CG method is that there are more degrees

of freedom when the same mesh and polynomial degree are employed. However, the

flexibility and improved stability and robustness of DG methods makes them a highly

desirable set of schemes for large classes of PDE problems, including the neutron trans-

port problem. The DG finite element method is themain numerical method considered
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in this thesis and as such we will revisit it in Chapter 3.

Ridgelet methods

In the last couple of years we have seen the development of a new method for the

discretisation of linear transport problems based on ridgelets. Ridgelets belong to the

class of multiscale systems known as ‘α-molecules’ that also includes wavelets, shear-

lets and curvelets, see [66] for a discussion of this framework. The functions in this

group are known to each be particularly well suited to representing certain types of

functions optimally, for example wavelets are known to accurately represent functions

with point singularities and ridgelets are known to accurately represent functions with

line singularities. In [67] Grohs and Obermeier proved that ridgelets are optimal for

the representation of solutions to linear transport equations in the sense that the error

decays optimally for an N term approximation. In [68] they applied ridgelets to the

radiative transport equations which, like the neutron transport equation, can be rep-

resented as a series of linear transport equations via a discrete ordinates angular dis-

cretisation. In [69] they used a fast Fourier transform to develop a ridgelet based solver

for radiative transport that results in uniformly well conditioned systems. Though it

seems that thesemethods have not yet been applied in the field of neutronics, their suc-

cessful utilisation in the radiative transport field and similarity between the radiative

transport equation and the neutron transport equation suggests that they could have

great potential for the development of future optimal neutron transport solvers.

1.6 Thesis outline

The thesis is structured as follows. In Chapter 2 we consider the direct solution of

DG matrices for linear PDEs. In particular, we present a preprocessor that exploits the

particular structure of such matrices in order to compute a more efficient factorisation

when using sparse Gaussian elimination. This algorithm utilises the fact that the ma-

trices arising from DG methods have a block sparse structure with dense blocks. The

structure is determined by the underlying finite element mesh. Indeed the matrix pos-

sesses a dense block on the diagonal, which is associated with each element domain,

together with further dense blocks above and below the diagonal associated with each

interface between neighbouring elements. The preprocessor works by computing a
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fill-in reducing ordering for the structure of the blocks and then expanding it to the

full matrix. It is implemented for symmetric and non-symmetric solvers and tested

on a series of high order DG matrices, including a large three dimensional problem.

We demonstrate the benefits of such an approach both in terms of reduced memory

requirements and reduced computational time.

In Chapter 3 we present a DG finite element method for the neutron transport equation.

In contrast to many authors who exploit discrete ordinates methods or spherical har-

monics methods in the angular variables, we employ a high order DG method in both

the spatial and angular domain. This method provides an accurate discretisation for

the angular variables, as well as facilitating the development of a reliable dual weighted

residual based error estimator for the error arising in both the spatial and angular parts

of the discretisation scheme. A variety of parallel algorithms are then tested for the so-

lution to the neutron transport source and eigenvalue problems. These algorithms all

utilise the preprocessing method for block matrices that was developed in Chapter 3.

We demonstrate the advantage of utilising solvers based on Krylov subspace methods

for high order problems. The chapter is concluded with results demonstrating the rates

of convergence of the proposed DG method.

In Chapter 4 we consider neutron transport criticality problems and derive a com-

putable a posteriori error representation formula for our DG method, which provides

a high quality estimate for the error in the dominant eigenvalue. Moreover, we show

how projections between the different finite element spaces can be employed to quan-

tify the relative contributions to the error arising in the spatial and angular discretisa-

tions. We then develop an h-adaptive algorithm as well as an hp-adaptive algorithm

for the computation of the multiplicative eigenvalue. We present results for a monoen-

ergetic test problem, demonstrating that the effectivities are close to one for each algo-

rithm. The efficiency of the hp method is illustrated by results displaying computed

eigenvalues that are as accurate as for the h-method, but with an 80% reduction in the

problem size.

In Chapter 5 we present results from a selection of challenging industrial benchmark

problems that demonstrate the power and efficiency of the proposed adaptive algo-

rithms. In particular we demonstrate that the hp-refinement algorithm can achieve

exponential convergence with respect to the number of degrees of freedom in the finite

element space. We conclude, in Chapter 6, with some final summarising remarks and
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a discussion of possible directions for further research.
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CHAPTER 2

Methods for

Discontinuous-Galerkin Equations

for General PDEs

In a wide variety of academic and industrial problems, discontinuous-Galerkin (DG)

finite element methods are used to find the numerical solution to partial differential

equations. Usually the most computationally intensive step in the application of such

methods is the solution of a large, possibly unsymmetric, matrix with a symmetric

block structure. In this chapter we consider a method for preprocessing a DG matrix

prior to factorisation and solution by a sparse direct solver. The block structure of such

a matrix corresponds directly to the mesh selected over the computational domain,

with a diagonal block corresponding to each element in the mesh and off diagonal

blocks corresponding to each interface between two neighbouring elements. The size

and shape of the blocks is determined by the basis functions and order of approxima-

tion on each element as well as the numerical fluxes selected at the element boundaries.

As a consequence,when a varying order of approximation is used on different elements

the size of the square blocks on the diagonal can vary and the off-diagonal blocks be-

come rectangular. We assume that these blocks have sufficiently few zeros to be treated

as dense submatrices.

In this chapter we consider how this structure, common to all DG matrices, may be

used to adapt existing direct linear solvers to solve the present class of problem at a

greater speed and with reduced memory requirements. The two linear solvers consid-
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ered in this chapter are the MA57 symmetric solver and the MA41 unsymmetric solver,

which are both from the HSL Mathematical Software Library, [70]. Later in the thesis

we will employ the block preprocessor for MA41 as part of an efficient preconditioner

for the high order DG discretisation of the neutron transport equation.

Before proceeding, we shall briefly present a description of how a matrix equationmay

be extracted from a DG method for a linear PDE. A more detailed description, specific

to the neutron transport equation, is included in Section 3.2.1. If a DG finite element

space, Vh, is defined as the span of a set of basis functions Vh = Span (ξi), where

i = 1, · · · ,N, then a DG method, such as those presented in [71], may be written in

terms of the bilinear functional a (·, ·) and the linear functional l (·) as the following.

Find uh ∈ Vh such that:

a (uh, vh) = l (vh) , (2.0.1)

for all vh ∈ Vh. Here uh = ∑
N
j=1 u [j] ξ j is the DG solution, where u ∈ R

N . Then the DG

solution can be found by solving the matrix equation Au = b, where

A[i][j] = a
(

ξ j, ξi
)

, (2.0.2)

and

b[i] = l (ξi) . (2.0.3)

We note that each ξi is nonzero only on the closure of a single finite element and that

for the vast majority of combinations (i, j), i and j will index different finite elements

which do not share any boundaries, therefore most values of a
(

ξ j, ξi
)

will be zero, so

the matrix A will be sparse. A gets its block-sparse structure from the fact that, for

high order methods, each finite element will have many basis functions associated to

it. The indices of these may be ordered contiguously for each finite element so that the

matrix comprises dense matrix blocks associated with each finite element and element

interface.

2.1 Sparse Gaussian elimination

Before proceeding to look at how a preprocessor may be developed to enable MA57 to

solve the matrices from DG methods more efficiently, we will consider an overview of

the three principle computational phases that most direct sparse solvers use to solve
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the linear system. These phases are the preprocessing phase, ANALYSE, the factorisa-

tion phase, FACTORISE and the solution phase, SOLVE. For a more detailed overview of

the theory, algorithms and data structures necessary for the implementation of direct

methods for sparse linear systems, we suggest the books by Duff, Erisman and Reid

[72] and Davis [73].

Nearly all direct linear solvers implement some version of Gaussian elimination to fac-

torise the matrix and if they are to provide stable and accurate solutions, they must

select a suitable pivot order. For sparse direct solvers the order in which the pivots are

eliminated is also important for determining the number of floating-point operations

and the amount of memory required to perform the factorisation. This is because a

good ordering will reduce the amount of fill-in, that is the number of nonzero entries

that are introduced during the factorisation. If the symmetric positive-definite matrix

A is factorised via an LDLT decomposition, for example

PAP⊤ = LDL⊤, (2.1.1)

where P is a permutationmatrix,D is a diagonal matrix and L is a unit lower triangular

matrix, then the fill-in is the number of entries in the pattern of L + L⊤, that are not

present in the pattern of A. As the amount of memory required is crucial to the overall

performance of the software, it is important that a good ordering is chosen. However,

finding the optimal permutation for minimising fill-in is an NP-complete problem (see

[74]), therefore direct solvers must use a heuristic method in order to obtain an ordering

which reduces fill-in as much as possible.

Finding a fill-in reducing ordering is one of the key tasks performed by the ANALYSE

phase of the solver. Other operations performed by ANALYSE are the transfer of user

data into the internal data structures of the solver and the construction of data struc-

tures necessary for the following phases of the solver, such as the mappings and the

assembly tree for the ordering that was computed. The MA57 solver, [75], uses one of

three well known algorithms to compute the pivot order: the minimum degree algo-

rithm, the approximate minimum degree (AMD) algorithm and the nested dissection

algorithm. The minimum degree algorithmworks by, at each stage, looking at all of the

rows that correspond to variables that have not yet been chosen as pivots and select-

ing the next pivot to be the diagonal entry in the row for which there is fewest entries,

ignoring entries in columns corresponding to variables that have already been selected

as pivots. As this can be computationally expensive, Amestoy et al. developed the
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approximate minimum degree algorithm, in [76], which computes an ordering of sim-

ilar quality, though requiring less computation. These two algorithms are examples of

local strategies for choosing an ordering. That is because at each stage they only con-

sider the rows and columns of the variables that have not already been chosen, trying

to minimise the fill-in inherent from selecting the next pivot.

The nested dissection algorithm of George, [77], is an example of a global ordering

strategy in that it seeks to minimise fill-in globally. In general it produces superior

orderings to minimum degree methods when applied to finite element discretisations

in two and three spatial dimensions (see [73]). It works by considering the symmetric

matrix as an undirected graph, then recursively partitioning that graph into a hierar-

chy of subgraphs. At each stage in the recursion each subgraph is partitioned into two

evenly sized subgraphs by removing a subset of its vertices, known as the node sepa-

rator. It is known that the fill-in introduced by each stage of this procedure is limited

to the square of entries corresponding to the node separator that is removed from each

subgraph, together with the corresponding off-diagonals, thus nested dissection may

be used to reduce fill-in, given that small node separators can be found. The asymp-

totic superiority of nested dissection for ordering regular finite element meshes in two

dimensions has been proved by Lipton et al. in [78]. Their analysis was extended to

three dimensions by Duff et al. in [79].

Following the ANALYSE phase, the FACTORISE phase then proceeds to copy the numer-

ical values into the internal data structures and factorises them using the pivot order

decided by ANALYSE. For matrices that are not symmetric positive definite the software

must monitor the stability of the factorisation and make deviations from the pivot or-

der computed during the matrix preprocessing if a zero, or relatively small, pivot is

detected.

For the MA57 solver the factorisation involves computing a decomposition of the form

PAP⊤ = LDL⊤, where D is a diagonal matrix if A is positive definite, or a block di-

agonal matrix if it is not. For the MA41 solver the factorisation involves computing an

LU decomposition, PAQ⊤ = LU, where U is upper triangular and P and Q are both

permutation matrices. See [72] and [73] for explicit details of these factorisations.

Finally the SOLVE phase permutes the right-hand side to the ordering used by the solver,

then performs a forward substitution followed by a backward substitution with the

factors computed in FACTORISE, before finally permuting the solution back to the user’s
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ordering and returning the solution.

We note that when the matrix A is symmetric or close to symmetric, it is usual practice

to perform ANALYSE using just the sparsity pattern of A (or A+ A⊤ when A is nearly

symmetric) as opposed to requiring the numerical values of the entries in addition to

the pattern. This is important for the present implementation because it enables us to

treat the symmetric block structure as the pattern of a symmetric matrix of consider-

ably reduced size. We may then use an existing ANALYSE subroutine to find a good

ordering for the blocks before expanding the reduced ordering and ANALYSE output

data to the original matrix. Codes for the analysis of unsymmetric matrices however

frequently require numerical values on which to perform stability tests before select-

ing each pivot, thereby forming the factors as a byproduct of the ANALYSE phase. It

is not obvious how efficient tests on blocks as opposed to individual entries could be

designed, though if such a test was developed the use of optimized BLAS subroutines

could potentially improve the performance of ANALYSE and FACTORISE subroutines for

matrices with unsymmetric block structures.

Treating each block as an individual entry for the preprocessing and then expanding

the output data structures forces entries from the same block to be kept together and

eliminated at the same time during the factorisation. This was a key goal for the present

work and it makes sense not just structurally in that it keeps the dense blocks together,

but also geometrically in that each block corresponds to either a finite element or an

interface between elements in the finite element mesh. It would seem intuitive that

variables associatedwith the same finite element are eliminated at the same time, as op-

posed to variables from different parts of the domain being eliminated together. Simple

tests on matrices from DG methods show that the orderings produced by sparse direct

solvers do, in general, split up variables from the same block – and therefore from

the same part of the computational domain – prior to factorisation. The preprocessing

method presented in this chapter is designed to preserve the block structure. Further-

more, as blocks in the structure can be of size 25× 25 or larger, and larger still for 3D

problems, the size of the ordering problem tackled by the ANALYSE phase of the solve

can be reduced to a fraction of its original size. This is indeed significant when we

consider that the ordering algorithm used might involve O(N2) operations, where N

is the size of the matrix. The potential gain in time, as well as memory, of reducing N

to N
25 might be considerable. In Section 2.3 we show plots displaying the speedup that

can be realised in the ANALYSE phase.
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2.2 Adapting MA57 for block matrices

The goal of the present chapter is to show how a specific property of the matrices being

considered, the fact that all of their entries are contained within dense blocks in a block

sparse structure, may be exploited to yield an improvement in the performance of two

direct sparse linear solvers MA57 and MA41.

In order to make use of this block symmetric structure we will look specifically at the

ANALYSE phase of the MA57 solver, adapting it so that it reorders the blocks, treating

each block as if it were a single entry in a reduced matrix as opposed to a collection of

entries. When this pivot ordering has been computed, it is then expanded to the full

structure. Following this, all other information output by the ANALYSE routine must be

expanded to correspond to the expanded ordering before proceeding to the FACTORISE

and SOLVE phases of MA57. The ordering from the block ANALYSE version of MA57 may

also be passed to the MA41 solver to find the solution to an unsymmetric system with

the same symmetric block structure. MA41 can then use this ordering to prepare its own

internal data structures. We note, however, that though the ordering passed to MA41

will have all the variables from each block in contiguous positions, the solver is not

forced to assign them to the same node in the internal tree data structure. Indeed, it is

well known that user supplied orderings in general perform less well than orderings

computed internally within sparse direct solvers.

An illustration of the difference and some of the possible benefits of applying ANALYSE
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block by block is illustrated by the following symmetric example matrix

A =



























































1 × × × × × × × ×
2 × × × × × × ×

3 × × × × × ×
4 × × × × ×

5 × × × ×
6 × × ×

7 × × × × ×
8 × × × ×

9 × × ×
10 × ×

11 ×
12



























































, (2.2.1)

with block structure

A =















A1,1 A1,2 A1,3

A2,2 A2,4

A3,3 A3,4

A4,4















. (2.2.2)

The structure of A corresponds to the structure of a DG matrix with a p = 1 approxi-

mation, on a regular 2× 2 mesh. Though it is too small to demonstrate potential perfor-

mance advantages of the block method, it does demonstrate three benefits of utilising

a block preprocessor: the potential to reduce both the amount of memory required and

the operation count of the ANALYSE routine, as well as eliminating the possibility of

unnecessary reordering within the blocks.

First consider the ordering computed by the METIS implementation of nested dissec-

tion, [80]. When the block structure is not taken into consideration, the pivot order

computed is
[

3 1 2 12 10 11 7 8 9 6 4 5
]

, (2.2.3)
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which reorders the matrix to

Areord1 =



























































3 × × × × × × × ×
1 × × × × × × ×

2 × × × × × ×
12 × × × × × × × ×

10 × × × × × × ×
11 × × × × × ×

7 × ×
8 ×

9

6 × ×
4 ×

5



























































. (2.2.4)

The first thing we notice about this is that blocks A1,1 and A4,4 have been reordered

internally by the software. This is in fact redundant, as MA57 does not consider the

numerical values when it analyses the matrix. In this case the blocks have not been

split up, with the variables corresponding to each diagonal block, {1, 2, 3}, {4, 5, 6},
{7, 8, 9} and {10, 11, 12}, respectively, remaining consecutive in the reordered matrix.

This is merely good fortune on our part as there is nothing which would prevent the

splitting of blocks for general matrices.

Now consider the ordering computed by METIS applied only to the block structure,

and then expanded to the full matrix. The pivot order computed for the block structure

is [ A2,2 A3,3 A4,4 A1,1 ] which expands to

[

4 5 6 7 8 9 10 11 12 1 2 3
]

. (2.2.5)
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Then A reordered by blocks is

Areord2 =



























































4 × × × × × × × ×
5 × × × × × × ×

6 × × × × × ×
7 × × × × × × × ×

8 × × × × × × ×
9 × × × × × ×

10 × ×
11 ×

12

1 × ×
2 ×

3



























































. (2.2.6)

We notice that the pattern of the second ordering is precisely the same as the first, in

other words we have achieved an equivalent outcome with fewer operations. With

larger problems the second preprocessing method would have taken less time and

memory than the first, though with extremely small problems such as this one the

memory required to store the block structure and the operations required for the ex-

pansion negate these advantages. The blocks in the reordered matrix remain precisely

the same despite being permuted, which is a property of the ordering that is preserved

when moving to larger matrices with more irregular block structures. For larger DG

matrices, ordering algorithms applied to the full matrix frequently break up the blocks,

resulting in reordered systems where the variables from the same finite elements are in

non-consecutive positions in the pivot order. As we see from the results in the next sec-

tion, this leads to poorer quality orderings that lead to more fill-in than can be achieved

by algorithms that force blocks to remain contiguous.

2.3 Results

To look at the difference that selecting a block based preprocessing strategy makes to

MA57 and MA41, we consider a simple interior penalty DG discretisation of Poisson’s

equation with Dirichlet conditions on the boundary of a two dimensional square do-
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Figure 2.1: The pattern of the first two matrices in a series of matrices generated by a

DG method for Poisson’s equation.

main: find u such that

∇2u = f on D = (0, 1)2 (2.3.1)

u = ĝ (r) on ∂D, (2.3.2)

where ĝ (r) is a known function. See [71] for details of this scheme.

A series of matrices of increasing size, N, and varying block sizes were obtained by

refining the spatial mesh and increasing the order of approximation on individual el-

ements. The pattern of the first two matrices in this series is given by the two plots

in Figure 2.1. Note the clear blocking in both structures and the fact that the second

matrix has a less regular structure. The reduced regularity in the second matrix is a

consequence of the adaptive mesh refinement that has taken place, with certain areas

in the mesh requiring more refinement than others. Table 2.1 displays some informa-

tion about the series of 2D matrices on which the solvers were tested. The reason for

two columns for the number of entries is because MA57 requires the matrix to be stored

in a symmetric coordinate format as opposed to the regular coordinate format used in

MA41. This assumption permitted the amount of data passed to MA57 to be reduced con-

siderably. An equivalent assumption was made for the storage of the block structure,

with the entries below the diagonal not explicitly stored. Notice how much smaller

the block structure is compared to the full matrix by comparing the third and sixth

columns. This allows the ordering problem solved by the modified ANALYSE subrou-

tine to be reduced by a factor close to the average block size.

Figure 2.2 contains plots illustrating the CPU time taken for the three phases of the MA57

linear solver for the series of matrices in Table 2.1. Timings were taken both with the
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Figure 2.2: The time taken to solve a series of block matrices from a DG method with

MA57. The data is split into four plots, the time taken (in seconds) for the modified

ANALYSE phase, then the time taken for the FACTORISE and SOLVE phases and finally

the total time taken to solve the linear system.
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Figure 2.3: Plots displaying the reduction in the memory required to store the factors

computed by the MA57 FACTORISE subroutine for the cases when a block version of

ANALYSE preceded the call to FACTORISE and for the case when the unaltered version

of ANALYSE was used.
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Matrix Size Entries

Entries

with

symmetric

storage

Order

of

block

matrix

Entries

in

block

structure

Largest

block

size

Average

block

size

1 400 20 186 10 293 16 40 25 25

2 700 52 012 26 356 28 78 25 25

3 1 225 90 361 45 793 49 140 25 25

4 2 125 186 327 94 226 85 254 25 25

5 4 000 326 548 165 274 160 468 25 25

6 4 696 449 908 227 302 172 508 36 27.3

7 6 168 649 654 327 911 208 610 36 29.7

8 7 624 927 500 467 562 244 734 49 31.2

9 10 511 1 449 359 729 935 319 975 49 32.9

10 12 946 1 929 784 971 365 379 1158 64 34.2

Table 2.1: This table gives information on the series of two dimensional matrices used

to test the block version of the MA57 ANALYSE subroutine.

block version preprocessor as well as with the original. The AMD algorithm was used

for both methods. Observe how the block version of ANALYSE performs considerably

faster than the unblocked version. However when we consider the reduction in prob-

lem size (see the second and fifth columns of Table 2.1) we see that the improvement

in speed is not proportional to the reduction in the size of the problem. This is be-

cause, following the computation of the ordering, the routine must necessarily proceed

to expand the ordering to the full system as well as constructing the other necessary

data structures before returning from the ANALYSE subroutine. There is also some sig-

nificant improvement in the FACTORISE and SOLVE phases as well as in the total time.

This is because of a reduction in the fill-in created by the factorisation and is a direct

consequence of forcing the solver to keep the blocks together following the ANALYSE

phase. Indeed when comparing the scales in these plots it is the improvement in the

FACTORISE phase that makes the biggest difference to the overall performance of the

solver.

The improvements in the fill-in introduced by FACTORISE are illustrated in Figure 2.3.

Observe that although the reduction in the integer storage required appears more dra-

matic, it is in fact the 10% reduction in the real storage that has the greater effect on the

total memory required. Indeed, for the largest matrix, we see a reduction in the storage

requirements of approximately 150 000 four byte integers, whereas we see a reduction
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of approximately 500 000 eight byte reals. This reduction in real storage corresponds

directly to a reduction in fill-in introduced by the LDLT factorisation and consequently

to the reduction to the total time to solve the linear system.

Figure 2.4 displays plots of the CPU time taken to perform the three phases of the linear

solve, for the same series of matrices, for the MA41 solver. These results for MA41 used an

AMD ordering on the full structure as well as an AMD ordering on the block structure.

Observe that though there are improvements in the speed for each of the phases, the

improvements are not as dramatic as those achieved by the block version of MA57. This

is because, though the block structure was exploited to find an ordering which kept

all blocks together, the ANALYSE subroutine in MA41 was permitted to freely interpret

the expanded ordering computed by the block ANALYSE routine and so constructed an

elimination tree which did not keep the blocks together. The result was that the degrees

of freedom associated with each finite element were not restricted to the same node of

the elimination tree. Indeed, it is well known that user supplied orderings produce

poorer results than solver generated orderings, however, despite this, there was still an

improvement in the amount of fill-in produced by the factorisation. Figure 2.5 displays

the reduction in the amount of integer and real storage required for the factorisation.

The codes were also tested on the largest matrices that could be factorised by MA57

from DG methods of order p = 1, · · · , 7. As the order of polynomial approximation

grows so does the size of the blocks as well as the density of the linear systems, leading

to more challenging matrices. It is the size of the arrays required to store the factors

which limits the maximum problem size that can be solved with the release version of

MA57. As the code always uses 32-bit integers to index the array containing the factors,

the solvers cannot deal with matrices whose factors contain more than 231 − 1 entries.

Tables 2.2 and 2.3 contain data on the largest matrices that could be solved by both

the regular and block versions of MA57. These were computed with the most efficient

available ordering algorithm, the METIS implementation of the nested dissection algo-

rithm. Observe that the solvers can deal with problems more than five times as large

when a lower order finite element approximation is used compared to when a higher

order approximation is used. This is because the additional density of the matrices

in the higher order problems leads to much more fill-in during factorisation. This ta-

ble also shows the percentage improvement in the time and memory required to solve

these matrices when using block preprocessing in place of the regular MA57 preproces-

sor. The best improvements are made on the largest matrices, generated from the DG
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Figure 2.4: The time taken to for MA41 to solve the series of block matrices from a

DG method with regular and block preprocessing. The four plots show the time (in

seconds) for the ANALYSE , FACTORISE , SOLVE and the total time to solve the linear

system, respectively.
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Figure 2.5: Plots displaying the reduction in the memory required to store the factors

computed by MA41 for a series of block matrices for the cases when the pivot order was

computed using the block version of MA57 and for when it was determined using the

MA41 ANALYSE routine on the full matrix.
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p N NE

Entries

in

factors

(regular)

Entries

in

factors

(block)

Total

time

(regular)

Total

time

(block)

1 5 008 644 42 979 904 1 184 466 559 969 943 114 7099.082 4361.738

2 4 004 001 86 664 261 1 625 511 039 1 321 414 443 10667.95 6183.452

3 2 509 056 94 256 589 1 539 811 502 1 313 303 424 11567.23 8554.046

4 2 002 225 122 906 040 1 584 765 379 1 405 605 175 12290.28 9669.956

5 1 512 900 132 366 556 1 542 669 556 1 390 159 818 13554.54 11203.12

6 1 002 001 121 072 385 1 173 537 254 1 112 921 516 10987.73 9609.322

7 1 000 000 154 360 936 1 570 107 115 1 361 385 760 17340.59 13632.63

Table 2.2: Information on the results found when testing the block MA57 code until the

length of the arrays containing the factors exceeded the 32-bit limit. Each line gives

information on the largest matrix that could be solved by both the regular and block

versions of MA57 for a given order of approximation, p, in the finite element method.

methods with lowest polynomial order, though there is still a significant improvement

for all polynomial orders.

In order to factorise matrices whose factors have more than 231 − 1 entries, code was

written to enable MA57 to interface with METIS 5, which has an option for the use of 64-

bit indexing, see [81] for documentation. Then all of the Fortran codes were recompiled

with a compiler flag to force all integers to be allocated 8 bytes of memory. These

changes enabled the factorisation of matrices that were much more challenging than

those that could be handled by the 32-bit code. A 64-bit integer can index an array

containing up to 263 − 1 entries, therefore the new limit on problem size was imposed

by the amount of virtual memory permitted by the computer operating system. Table

2.4 contains data on thememory required to factorise amatrix from a three dimensional

finite element problem of size N = 1 061 208, an order of approximation of p = 2 and

blocks of size 27× 27. Thematrix was obtained from a discretisation of equation (2.3.1),

with the domain D = (0, 1)3, and the boundary condition u = ĝ (r) on ∂D.

The matrix was solved by regular and block versions of the software, with both the

AMD ordering as well as the METIS 5 implementation of nested dissection. We note a

substantial reduction in the amount of memory required for both real and integer stor-

age when using the block version of either ordering. In particular, we observe a 35%

reduction in the amount of memory required when moving from the regular version
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% improvement

p N Memory CPU Time

1 5 008 644 18.111 38.559

2 4 004 001 18.708 42.037

3 2 509 056 14.71 26.049

4 2 002 225 11.305 21.32

5 1 512 900 9.8861 17.348

6 1 002 001 5.1652 12.545

7 1 000 000 13.293 21.383

Table 2.3: The percentage improvement when using the block ANALYSE version of

MA57 in the memory and CPU time required to solve a series of matrices from DG

methods with increasing order of polynomial approximation, p. These matrices were

the largest that could be solved with 32 bit array indexing.

of nested dissection to the block version. Furthermore these data confirm the superi-

ority of the nested dissection algorithm for computing orderings for three dimensional

finite element problems, compared to AMD orderings. We see that the AMD ordering

requires considerably less integer storage to compute its factorisation, however, this ad-

vantage is negated by a much greater quantity of fill-in compared to nested dissection.

These results hint at the improvements that can be made when using direct solvers

to solve block sparse matrices with dense blocks, in particular those derived from DG

finite element problems. Greater use of optimized BLAS subroutines may yield im-

provements. Also an improvement in the format used to store the block matrix could

reduce the memory footprint significantly. As each block is dense, there is no need

to store the coordinates of each entry within each block. The coordinates of the first

entry and the size and shape of the block suffices to specify the position of all the re-

maining entries in that block, thus the full matrix structure could be stored as an array

of the entries within the blocks together with a pointer to the start of each block, the

size of each diagonal block and the pattern of the block structure. Though some im-

provement was realised by primarily considering the ANALYSE phase, possibly a more

significant improvement could be made by tailoring the FACTORISE phase to take into

account the block structure of the system. There is certainly an argument for this when

we consider that Figures 2.2 and 2.4 show us how this stage in the solver dominates
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Preprocessing Storage

algorithm Integer Real

AMD regular 22 082 190 8 942 957 652

AMD block 14 365 669 7 381 431 801

% improvement 34.945 17.461

METIS regular 93 711 047 7 734 840 693

METIS block 17 563 466 5 035 436 901

% improvement 81.258 34.899

Table 2.4: The amount of memory required to solve a large 3D matrix with N =

1 061 208 for four different methods of preprocessing. The preprocessing algorithms

are the MC47 implementation of the approximate minimum degree algorithm applied

to the full matrix as well as the block structure, and the METIS implementation of the

nested dissection algorithm applied to the full matrix as well as the block structure.

the total time. If this stage were to be tailored to utilise the block structures present

in DG matrices, then improvements could be made by extracting further efficiencies

from the optimized level 3 BLAS and LAPACK subroutines that the leading sparse direct

solvers already employ. Problems may arise, however, if there were singular blocks on

the diagonal, which could be possible for general block matrices, even if the full matrix

is itself nonsingular. Consequently an efficient test for selecting a suitable block pivot

would be essential.
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Discontinuous Galerkin

Discretisation of the Neutron

Transport Equation

In this chapter we introduce the discontinuous-Galerkin (DG) finite element discretisa-

tion of the neutron transport equation, which incorporates high order finite elements

in both the spatial and the angular domain. To this end we outline both the under-

lying discrete scheme, together with potential solution strategies to solve the result-

ing linear system of equations. In particular, we present a preconditioner exploiting

Tarjan’s strongly connected components algorithm to find an ordered partition of the

spatial elements for each element in the angular domain. This preconditioner employs

a block preprocessor, developed in the previous chapter, in order to efficiently solve

a reduced linear system on each of these strongly connected components. We then

proceed to demonstrate the benefits of Krylov subspace methods when compared to

simpler schemes for both the underlying source problem and the keff-criticality prob-

lem. The results from a parallel implementation of these solution algorithms are then

presented. Finally, we numerically investigate the rates of convergence of the proposed

finite element method by solving an artificially forced source problem. We conclude by

providing results that demonstrate the benefits of employing higher order finite el-

ements for the angular discretisation when compared to the more common discrete

ordinates angular discretisation.
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3.1 A high order DG method for neutron transport

In this section we outline a DGmethod for the monoenergetic neutron transport source

problem. This discretisation may then readily be extended to the multigroup equations

(see equation (1.5.9)) and and for the approximation of the keff and α neutron transport

eigenvalue problems (see Section 1.3).

We begin by stating the steady state monoenergetic neutron transport source problem

with isotropic scattering. Let the spatial domain D be an open Lipschitz domain in R
2,

with spatial variable r = (x, y)⊤ ∈ D. Furthermore we let the angular domain consist

of the surface of the unit sphere S2 ⊂ R
3 centred at the origin. The angular variable Ω

is parametrised by spherical polar coordinates:

Ω =

(

cos(θ) sin(ϕ)
sin(θ) sin(ϕ)

cos(ϕ)

)

∈ R
3, (3.1.1)

where
(ϕ

θ

) ∈ (0,π)× [0, 2π). The polar coordinate ϕ is measured from the north pole,

(0, 0, 1)⊤ and the azimuthal coordinate is θ. We note that
∫

S2
dΩ =

∫ 2π

0

∫ π

0
sin(ϕ) dϕ dθ. (3.1.2)

The boundary of the spatial domain is denoted Γ = ∂D with unit outward normal n.

For a given direction in the angular domain Ω ∈ S2 we denote the inflow and outflow

parts of the spatial domain respectively by

Γ− = {r ∈ Γ | Ω · n < 0} (3.1.3)

and

Γ+ = {r ∈ Γ | Ω · n > 0} . (3.1.4)

By setting the number of groups to be one in equation (1.5.9) we obtain: find ψ ∈
(D ∪ Γ+)× S2 → R

2 such that

Ω · ∇ψ(r,Ω) + Σt(r)ψ(r,Ω) =
Σs(r) + νΣ f (r)

4π
φ(r) +Q(r,Ω), (3.1.5)

when (r,Ω) ∈ D × S2 and

ψ(r,Ω) = ĝ(r,Ω), (3.1.6)

when (r,Ω) ∈ Γ− × S2. The angular variable in the scattering cross section Σs(r) has

been omitted, thereby we assume that scattering occurs equally in all directions. More-

over we have introduced the scalar flux φ given by

φ(r) =
∫

S2
ψ(r,Ω) dΩ. (3.1.7)
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To define the underlying space-angle finite element space, we proceed by first intro-

ducing meshes and corresponding finite element spaces over the spatial and angular

domains respectively. The resulting space-angle mesh is defined based on employing a

tensor product construction between these two meshes. The full space-angle finite ele-

ment space is then defined as the tensor product between finite element spaces defined

on each of the space and angle finite element meshes.

3.1.1 Spatial finite element space

Let TS = {κS} be a shape regular subdivision of the spatial domainD into disjoint open

elements κS such that

D =
⋃

κS∈TS
κS. (3.1.8)

We assume that each κS ∈ TS is a smooth bijective image of a fixed reference element κ̂,

i.e.

κS = FκS(κ̂) ∀κS ∈ TS, (3.1.9)

where FκS(·) is the smooth bijective mapping associated with the element κS. The ref-

erence element κ̂ is taken to be either the reference square Ŝ or the reference triangle T̂,

i.e,

κ̂ ≡ Ŝ = (−1, 1)2 or (3.1.10)

κ̂ ≡ T̂ =
{

x, y ∈ R
2| x, y > 0 , x+ y < 1

}

, (3.1.11)

respectively. Within this construction we admit 1-regular meshes; i.e., each face of

κS ∈ TS has at most one hanging node, typically located at the barycentre of the face.

In order to define the finite element space in the spatial domain we first define the

following polynomial spaces of order p ≥ 1 on the reference element:

Qp = Span
{

x̂αŷβ | 0 ≤ α ≤ p , 0 ≤ β ≤ p
}

, (3.1.12)

and

Pp = Span
{

x̂αŷβ | α ≥ 0 , β ≥ 0 , 0 ≤ α + β ≤ p
}

. (3.1.13)

Writing FTS = {FκS | κS ∈ TS}, we define

S
p
S(TS, FTS) = {ψS ∈ L2(D) | ψS|κS ◦ FκS ∈ R} , (3.1.14)
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where R = Qp if κ̂ = F−1κS
(κS) is a square and R = Pp if κ̂ = F−1κS

(κS) is a triangle.

Thereby S
p
S(TS, FTS) consists of discontinuous piecewise polynomials of degree p ≥ 0.

Note that we make no requirement that the finite element space be continuous at the

element boundaries, instead within the DG setting we enforce inter element continuity

weakly through the use of an appropriate numerical flux function.

3.1.2 Angular finite element space

For the angular domain we consider a mesh over the parameter space (0,π)× [0, 2π)

as opposed to the true angular domain S2; thereby both the spatial and angular meshes

comprise partitions of a bounded subset of R
2 into spatial and angular elements κS

and κA, respectively. We construct the angular mesh similarly to the spatial one with

(0,π) × [0, 2π) in place of D and the map from the canonical square to each angular

element κA given by FκA
(·). Thus we have

TA =
{

κA | κA = FκA
(Ŝ)
}

, (3.1.15)

where
⋃

κA∈TA
κA = [0,π]× [0, 2π]. (3.1.16)

As before, TA is a shape regular mesh consisting of potentially 1-irregular quadrilateral

elements. Given q ≥ 0 we again define

Qq = Span
{

ϕ̂αθ̂β | 0 ≤ α ≤ q , 0 ≤ β ≤ q
}

, (3.1.17)

and the set of element maps FTA = {FκA
| κA ∈ TA}. Then the angular finite element

space of order q is given by

S
q
A(TA, FTA) =

{

ψA ∈ L2(S2) | ψA|κA
◦ FκA

∈ Qq

}

, (3.1.18)

which is the set of all square integrable functions that belong to the polynomial tensor

product space of order q when they are restricted to a single angular element κA and

projected onto the canonical element. As for the spatial finite element space we impose

no continuity condition between angular elements, however unlike the spatial problem

we will not later impose numerical flux conditions between the elements. This is jus-

tified on physical grounds. As described in Chapter 1 there is no interaction between

the neutron flux in different directions and the modelling of any change in angle of
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the neutrons is incorporated into the scattering cross-section term. This uncoupling of

the angular elements will facilitate the development of a preconditioner for the Krylov

methods considered later in this chapter, as well as enabling the implementation of the

solvers in parallel.

3.1.3 Space-angle finite element space

To define a finite element space on the space-angle domainD× S2 we first introduce the

space-angle mesh T defined as the tensor product of the spatial and angular meshes,

i.e.,

T = TS × TA = {κS × κA | κS ∈ TS , κA ∈ TA} . (3.1.19)

Then the corresponding finite element space is given by

V p,q
h = {ψh ∈ L2(D× S2) | ψh = ψS × ψA ,

ψS ∈ S
p
S(TS, FTS) , ψA ∈ S

q
A(TA, FTA)}.

(3.1.20)

Each function in V p,q
h corresponds to a tensor product between a member of the angu-

lar finite element space and the spatial finite element space. From an implementational

point of view this means that every degree of freedom in the angular finite element

space will have a full set of spatial degrees of freedom associated with it, and, analo-

gously, every degree of freedom in the spatial finite element space will have a full set

of angular degrees of freedom associated with it.

3.1.4 Finite element discretisation

Now that we have defined a finite element space over the full computational domain

we may proceed to derive the discretisation of the neutron transport equation. We

begin by writing equation (3.1.5) in weak form. To this end, wemultiply by an arbitrary

smooth test function v and integrate over a single space-angle element κS × κA ∈ T ,
∫

κA

∫

κS
Ω · ∇ψ(r,Ω)v(r,Ω) dr dΩ +

∫

κA

∫

κS
Σt(r)ψ(r,Ω)v(r,Ω) dr dΩ

=
∫

κA

∫

κS

Σs(r) + νΣ f (r)

4π
φ(r)v(r,Ω) dr dΩ +

∫

κA

∫

κS
Q(r,Ω)v(r,Ω) dr dΩ.

(3.1.21)

We assume that v|κS ∈ H1(κS) for each κS ∈ TS and we denote the spatial interior trace

of v on κS × κA by v+ and the spatial exterior trace of v on (∂κS \ Γ)× κA by v−. Then
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we integrate the spatial part of the advection term by parts to get,

∫

κA

∫

κS
−ψ(r,Ω)Ω · ∇v(r,Ω) dr dΩ +

∫

κA

∫

∂κS
(Ω · nκS)ψ

+(r,Ω)v+(r,Ω) ds dΩ

+
∫

κA

∫

κS
Σt(r)ψ(r,Ω)v(r,Ω) dr dΩ =

∫

κA

∫

κS

Σs(r) + νΣ f (r)

4π
φ(r)v(r,Ω) dr dΩ

+
∫

κA

∫

κS
Q(r,Ω)v(r,Ω) dr dΩ,

(3.1.22)

where nκS is the unit outward normal to κS and s parametrises the spatial element

boundary. To obtain our DG finite element discretisation we replace ψ by the DG solu-

tion ψh ∈ V p,q
h and v by vh ∈ V p,q

h and sum equation (3.1.22) over all spatial elements.

As ψh is discontinuous over internal spatial element boundaries we replace (Ω ·nκS )ψ
+

with a numerical flux function H(ψ+
h ,ψ

−
h ,nκS ,Ω) whenever ∂κS is not on Γ. Thus we

obtain the DG finite element discretisation of the neutron transport equation as follows:

find ψh ∈ V p,q
h such that

∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS
−ψh(r,Ω)Ω · ∇vh(r,Ω) dr dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS\Γ
H(ψ+

h (r,Ω),ψ−h (r,Ω), nκS ,Ω)v+h (r,Ω) ds dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS∩Γ+

(Ω · nκS )ψh(r,Ω)vh(r,Ω) ds dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS
Σt(r)ψh(r,Ω)vh(r,Ω) dr dΩ

= ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS

Σs(r) + νΣ f (r)

4π
φh(r)vh(r,Ω) dr dΩ

− ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS∩Γ−
(Ω · nκS )ĝ(r,Ω)vh(r,Ω) ds dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS
Q(r,Ω)vh(r,Ω) dr dΩ,

(3.1.23)

for all vh ∈ V p,q
h . Here we have included the Dirichlet boundary condition at Γ− and

an outflow term at Γ+. The choice of the numerical flux is independent of the finite

element space and can be any two-point monotone Lipschitz function that is consistent

and conservative (see [82]). A numerical flux, H(·, ·, ·, ·), is consistent if for each κS ∈
TS,

H(v, v,nκS ,Ω)|∂κS = (Ω · nκS)v. (3.1.24)

It is conservative if for each pair of elements κS, κS
′ ∈ TS where κS ∩ κS

′ 6= ∅,

H(v,w,nκS ,Ω)|∂κS = −H(w, v,−nκS ,Ω)|∂κS , (3.1.25)
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where we note that nκS = −nκS ′ . For the present implementation we use the local

Lax-Friedrichs flux which is defined by,

H(ψ+,ψ−, nκS ,Ω) =
1

2
(Ω · nκS + |Ω · nκS |)ψ+ +

1

2
(Ω · nκS − |Ω · nκS |)ψ−. (3.1.26)

3.1.5 Relationship with the discrete ordinates method

When the order of approximation on each angular element is q = 0, the angular part of

the above DG finite element method is very similar to the discrete ordinates method.

However, the proposedDG scheme is not precisely the same due to the fact that we per-

mit irregular meshes and curved boundaries in the spatial domain, as well as boundary

conditions and a forcing function which are not constant with respect to angle. This can

be seen by considering what happens to the various terms in (3.1.23) when a constant

approximation order is employed in angle, i.e. when q = 0. In the terms containing

the scattering and fission cross sections the scalar flux may be written as the weighted

sum over NO discrete ordinate directions, where NO is the number of elements in the

angular mesh, i.e.,

φh(r) =
∫

S2
ψh(r,Ω) dΩ (3.1.27)

= ∑
κA∈TA

∫

κA

ψh(r,Ω) dΩ (3.1.28)

=
NO

∑
i=1

wiψh(r,Ωi), (3.1.29)

where the ordinate directions Ωi are the centroids of each κA on the surface of the

sphere and the discrete ordinates weighting wi is equal to the area of κA. The integra-

tion over the angular elements may be treated similarly in each of the terms in equa-

tion (3.1.23) that do not involve an integration over a spatial element boundary ∂κS or

the source term Q(r,Ω). For example, if i indexes the discrete ordinate direction and

weighting associated with the angular element κA, we may rewrite the first term as

∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS

−ψh(r,Ω)Ω · ∇vh(r,Ω) dr dΩ

=
NO

∑
i=1

wi ∑
κS∈TS

∫

κS
−ψh(r,Ωi)Ωi · ∇vh(r,Ωi) dr.

(3.1.30)
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If we require that Q(r,Ω) is constant with respect to angle on each κA then we may

write the final term as

∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS

Q(r,Ω)vh(r,Ω) dr dΩ

=
NO

∑
i=1

wi ∑
κS∈TS

∫

κS
Q(r,Ωi)vh(r,Ωi) dr.

(3.1.31)

If we further require that ĝ(r,Ω) is constant with respect to angle on each κA and that

there does not exist a pair (κS, κA) for which both ∂κS ∩ Γ+ 6= ∅ and ∂κS ∩ Γ− 6= ∅ for

all Ω ∈ κA, then we may also write the terms involving the boundary of the spatial

domain in terms of a sum over weighted discrete ordinate directions, i.e.,

∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS∩Γ+

(Ω · nκS)ψh(r,Ω)vh(r,Ω) ds dΩ

=
NO

∑
i=1

wi ∑
κS∈TS

∫

∂κS∩Γ+

(Ωi · nκS)ψh(r,Ωi)vh(r,Ωi) ds

(3.1.32)

and

∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS∩Γ−
(Ω · nκS)ĝ(r,Ω)vh(r,Ω) ds dΩ

=
NO

∑
i=1

wi ∑
κS∈TS

∫

∂κS∩Γ−
(Ωi · nκS)ĝ(r,Ωi)vh(r,Ωi) ds.

(3.1.33)

Finally, if we require that the spatial and angular meshes are chosen so that there does

not exist an interface between two spatial elements κS and κS
′ and two values of the

angular variable on the same angular element Ω,Ω′ ∈ κA such that Ω · nκS > 0 and

Ω′ · nκS < 0, then we may write the numerical flux term as

∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS\Γ
H(ψ+

h (r,Ω),ψ−h (r,Ω),nκS ,Ω)v+h (r,Ω) ds dΩ

=
NO

∑
i=1

wi ∑
κS∈TS

∫

∂κS\Γ
H(ψ+

h (r,Ωi),ψ
−
h (r,Ωi),nκS ,Ωi)v

+
h (r,Ωi) ds.

(3.1.34)

We can then rewrite the space-angle finite element discretisation as a variational prob-

lem for the spatial solution on the ith discrete ordinate. Indeed writing the finite ele-

ment space with piecewise constants in angle restricted to a single angular element by

V p,0
h

∣

∣

∣

κA

and the solution in the ith ordinate by ψh,i(r) ≡ ψh(r,Ωi), then we have the
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following problem for each discrete ordinate: find ψh,i ∈ V p,0
h

∣

∣

∣

κA

such that

∑
κS∈TS

∫

κS
−ψh,i(r)Ωi · ∇vh(r) dr+ ∑

κS∈TS

∫

∂κS∩Γ+

(Ωi · nκS )ψh,i(r)vh(r) ds

+ ∑
κS∈TS

∫

∂κS\Γ
H(ψ+

h,i(r),ψ
−
h,i(r), nκS ,Ωi)v

+
h (r) ds+ ∑

κS∈TS

∫

κS
Σt(r)ψh,i(r)vh(r) dr

= ∑
κS∈TS

∫

κS

Σs(r) + νΣ f (r)

4π
φh(r)vh(r) dr− ∑

κS∈TS

∫

∂κS∩Γ−
(Ωi · nκS )ĝ(r,Ωi)vh(r) ds

+ ∑
κS∈TS

∫

κS
Q(r,Ωi)vh(r) dr

(3.1.35)

for all vh ∈ V p,0
h

∣

∣

∣

κA

. These equations are coupled by the sum over the ordinate direc-

tions implicit in φ(r). Here we have divided all terms by the constant wi.

We have stated several assumptions for the finite element method with piecewise con-

stants in angle to be the same as the discrete ordinates method. In practice however it is

found that even when these requirements are not fully satisfied and general meshes are

used in space and angle then the numerical results from these two methods are almost

identical.

3.2 Developing a solver

Now that we have written down a discrete version of the neutron transport equation

we consider how to solve the resulting system of linear equations in order to compute

the numerical solution. In this sectionwe begin bywriting the neutron transport source

problem and keff-eigenvalue problem in terms of matrices that represent the transport,

scattering, fission and source terms, we then proceed to consider how the application of

the inverse of the transport matrix may be computed using Tarjan’s strongly connected

components algorithm. We then compare two possible solution algorithms for each of

the source and eigenvalue problems and give results from a parallel implementation of

these strategies.

3.2.1 The discrete neutron transport equation in matrix form

We employ the finite element discretisation outlined in the previous section to write

down the neutron transport source and eigenvalue problems in terms of three matri-

53



CHAPTER 3: DISCONTINUOUS GALERKIN DISCRETISATION OF THE NEUTRON

TRANSPORT EQUATION

ces, T, S and F, as well as a vector representing the discretised source term q. The

three matrices will each be unassembled and will be implemented as the application

of matrix vector product on a vector of length N, where N is the number of degrees of

freedom in the finite element space V p,q
h . An algorithm for the application of the inverse

of the transport matrix, T−1, will also be developed.

We define the polynomial basis functions for the finite element spaces on each of the

canonical elements Ŝ and T̂. For triangular elements we use Dubiner basis functions

[83], which we denote ξ T̂α,β. These basis functions are constructed by taking a weighted

product of Jacobi polynomials as

ξ T̂α,β(x, y) = P0,0
α

(

2x

1− y
− 1

)

(1− y)αP2α+1,0
β (2y− 1) . (3.2.1)

Then the polynomial space Pp may be written as

Pp = Span
{

ξ T̂α,β | α, β ≥ 0 , α + β ≤ p
}

. (3.2.2)

For square elements the basis functions, ξ Ŝα,β, are constructed on Ŝ as the product of

Legendre polynomials in either direction, i.e.,

ξ Ŝα,β(x, y) = P0,0
α (x) P0,0

β (y) . (3.2.3)

Then the polynomial space Qp may be written as

Qp = Span
{

ξ Ŝα,β | 0 ≤ α ≤ p , 0 ≤ β ≤ p
}

. (3.2.4)

The angular polynomial spaceQq is constructed similarly. These sets of basis functions

for Qp, Pp and Qq together with the definitions of S
p
S(TS, FTS), S

q
A(TA, FTA) and V p,q

h

induce a set of basis functions,
{

ξ j
}

, for the space-angle finite element space

V p,q
h = Span

{

ξ j
}

(3.2.5)

where j = 1, · · · ,N. Then the finite element solution ψh ∈ V p,q
h is determined by a

vector ψ ∈ R
N , where

ψh(r,Ω) =
N

∑
j=1

ψ[j]ξ j(r,Ω). (3.2.6)

The solution to the discrete neutron transport equation is the unique function ψh ∈ V p,q
h

for which equation (3.1.23) holds for all vh ∈ V p,q
h . Equivalently we seek the vector ψ

for which this equation holds for all test functions ξ j ∈ V p,q
h . This enables the advection,
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absorption, numerical flux and boundary terms to be written as an N×N sparsematrix

T in terms of the functions ξi and ξ j. T[i, j] is nonzero only when i and j index basis

functions defined on the same space-angle element κS× κA or the same angular element

κA and neighbouring spatial elements κS and κS
′, where κS ∩ κS

′ 6= ∅. If ξi is defined

on κS then ξ+i (r,Ω) denotes the interior trace of ξi at r ∈ ∂κS. Then when i and j index

the same κS × κA

T[i, j] = − ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS
ξ j(r,Ω)Ω · ∇ξi(r,Ω) dr dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS∩Γ+

(Ω · nκS )ξ j(r,Ω)ξi(r,Ω) ds dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS\Γ
1

2
(Ω · nκS + |Ω · nκS |)ξ+j (r,Ω)ξ+i (r,Ω) ds dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS
Σt(r)ξ j(r,Ω)ξi(r,Ω) dr dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS∩Γ−
(Ω · nκS )ĝ(r,Ω)ξi(r,Ω) ds dΩ.

(3.2.7)

If i and j index the same angular element and neighbouring spatial elements then

T[i, j] = ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS\Γ
1

2
(Ω · nκS − |Ω · nκS |)ξ+j (r,Ω)ξ+i (r,Ω) ds dΩ. (3.2.8)

T is a block diagonal matrix with a diagonal block corresponding to each angular

element. This facilitates the parallel implementation of the action of T and T−1 on a

vector. An OpenMP implementation of these operations will be presented later in this

chapter.

We obtain matrices corresponding to the fission and scattering terms in the neutron

transport equation in a similar manner to the transport matrix by selecting the ap-

propriate terms in equation (3.1.23) and then re-writing the numerical solution as in

equation (3.2.6). The [i, j]th entry of the matrices S and F are non zero only when i

and j index basis functions on the same spatial element. Then the entries of the matrix

associated with the scattering term are given by

S[i, j] = ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS

Σs(r)

4π

(

∑
κA ′∈TA

∫

κA ′
ξ j(r,Ω

′) dΩ′
)

ξi(r,Ω) dr dΩ, (3.2.9)

and the entries of the matrix associated with the fission term are given by

F[i, j] = ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS

νΣ f (r)

4π

(

∑
κA
′∈TA

∫

κA
′
ξ j(r,Ω

′) dΩ′
)

ξi(r,Ω) dr dΩ. (3.2.10)

For the present case with a monoenergetic energy approximation and isotropic scat-

tering both S and F have the same structure which is sparse, symmetric and singular.
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Thesematrices couple together the angular elements and their action is fast to compute

compared to the action of T and T−1. This is because, as the scattering cross section is

isotropic, the spatial and angular basis functions may be separated prior to the com-

putation of the integrals over each κS × κA. The value of the integral over the full

space-angle element may then be obtained by taking a tensor product afterwards. The

spatial and angular variables may similarly be separated in the matrix associated with

the fission term. For T however, the spatial and angular variables may not be separated

in this fashion.

Finally, the source term may be written as a vector q, with the ith entry given by

q[i] = ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS
Q(r,Ω)ξi(r,Ω) dr dΩ. (3.2.11)

The matrix definitions for T, F and S, as well as the vector q, describe the discre-

tised form of the monoenergetic neutron transport equation with isotropic scattering,

which is the simplest form of the neutron transport equation that we consider. The

finite element discretisation of the neutron transport problem with anisotropic scatter-

ing, as well as the multigroup equations can be written in terms of matrices for the

transport, scattering and fission terms, in an analogous manner. Whilst consideration

of anisotropic scattering is not considered, we will solve problems with a multigroup

discretisation in the energy spectrum. When a multigroup approximation is employed

the transport matrix T retains the same structure and properties on each of the energy

groups, with no coupling between energy groups. Under a multigroup approximation,

the scattering and fission matrices couple together the energy group, however only the

fission matrix retains its symmetry. The presence of the scattering cross section,

Σs,g′→g(r) 6= Σs,g→g′(r), (3.2.12)

in the multigroup equations however means that the scattering matrix Swill no longer

be symmetric.

Utilising these matrix representations of the discrete equations we may now write the

finite element discretisation of the neutron transport source problemmore concisely as:

find ψ ∈ R
N such that

(T− F− S)ψ = q. (3.2.13)

The discrete form of the keff-eigenvalue equation may be written as: find ψ ∈ R
N and

keff,h ∈ R such that

(T− S)ψ =
1

keff,h
Fψ. (3.2.14)
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Though we will not be solving the time decay eigenvalue problem, we include its dis-

crete representation for completeness: find ψ ∈ R
N and α ∈ R such that

αψ = (S+ F− T)ψ. (3.2.15)

3.2.2 Inverting the transport matrix

In this thesis we consider two algorithms for the solution of the neutron transport

source problem and two algorithms for the solution to the keff-eigenvalue problem.

Each of these algorithms uses four different types of ‘level 2’ sparse matrix operation,

as well as various ‘level 1’, vector-vector operations. In practice it is seen that the four

‘level 2’ operations dominate the computational time of each of the solution algorithms,

with the application of T requiring more time than the application of S or F, and the

application of T−1 requires most time of all by a considerable margin. In this section

we consider an algorithm for the application of T−1 based on the sweeping technique

described in the literature for the SN method for neutron transport and radiative trans-

port.

The sweeping technique for inverting a matrix relies on finding an ordering of the spa-

tial elements so that the matrix may be written in block triangular form followed by

using a block forward substitution procedure to assemble and solve for each element

without ever assembling the full matrix. Physically this ordering follows the charac-

teristics of the differential equation being solved; for the present case the direction is

determined by the angular variable. For the case when the angular part of our finite

element method reduces to a discrete ordinates approximation the ordering is easily

computed using a simple topological sorting algorithm. However, when higher or-

der finite elements are used in angle we find that groups of spatial elements become

coupled together and a more sophisticated algorithm is needed to identify groups of

elements that need to be solved together. We begin by considering the simplest case

and showing that a topological ordering will exist and give an algorithm to find it. We

then proceed to the more challenging case and describe Tarjan’s strongly connected

components algorithm for identifying the required irreducible ordering for the matrix.

Before proceeding, we first revisit some graph theory. A directed graph G̃ = (Ṽ, Ẽ),

is composed of a set of vertices Ṽ, and a set of ordered pairs of vertices called edges,
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Figure 3.1: (a) A spatial mesh over some spatial domain with an ordinate direction Ωi

with (b) the associated acyclic directed graph.

(m, n) = e ∈ Ẽ, where m, n ∈ Ṽ. A cycle is a set C̃

C̃ = {(n1, n2), (n2, n3), ..., (nN, n1)} ⊂ Ẽ.

A graph is said to be acyclic if such a subset does not exist. A connected component S̃

is a subset of Ṽ for which there is a path between any two nodes in S̃. S̃ is said to be

a strongly connected component if there does not exist another connected component

S̃′ 6= S̃ such that S̃ ⊂ S̃′. It is clear that any cycle is also a connected component, though

not necessarily a strongly connected component, and that any directed graph may be

uniquely partitioned into strongly connected components.

Given a characteristic direction Ωi, the topological properties of our spatial finite ele-

ment mesh TS may be illustrated by representing it as a directed graph G̃. Each element

in TS corresponds to a vertex in Ṽ and each element boundary which is not parallel to

Ωi corresponds to an edge in Ẽ, with that edge directed in the direction of the charac-

teristic flow across that boundary.

Figure 3.1 illustrates how a mesh may be represented as a graph in this manner. The

further relationship between the graph and the structure of the stiffness matrix may be

understoodwith reference to the numerical flux term in the discrete ordinates equation

(3.1.35), which corresponds to an internal element boundary e, where e = ∂κS ∩ ∂κS
′

for two spatial elements κS and κS
′. The term in the numerical flux involving ψ−h,i(r)

is responsible for the off-diagonal blocks in the angular element stiffness matrix. As

this term considers the product of the basis functions on the element for which e is
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an outflow boundary, and the test functions for the element on which e is an inflow

boundary, this will yield a block below the diagonal if the elements are ordered so

that the outflow element comes before the inflow element. If the ordering sets the

inflow element before the outflow element, then the associated block will be above the

diagonal.

Similarly, we may assert that an edge (m, n) on the graph corresponds to a lower tri-

angular block in the stiffness matrix if m comes before n in the current ordering and

an upper triangular block if n comes before m. Note that in the unlikely event that an

element boundary is parallel to the characteristic direction, the aforementioned term

will be zero and thus there will be no corresponding edge on the graph; in Figure 3.1

this occurs between elements 5 and 6.

We now present a lemma which demonstrates that we may reorder the matrix T into

a block triangular structure. This was first proved in my qualifying dissertation to the

University of Nottingham, see [84].

Lemma 3.2.1. For the discrete ordinates equation with ordinate direction Ωi, there exists an

element ordering such that the spatial discontinuous Galerkin method will yield a block lower

triangular stiffness matrix for any spatial mesh TS, if for all κS ∈ TS , the inflow boundary

∂κS
− is a connected set.

Proof. For a graph G̃ = (Ṽ, Ẽ), we say that a vertex ordering is topological if for all

(m, n) ∈ Ẽ, m precedes n in that ordering. If this is the case then the associated stiffness

matrix will be block lower triangular. As at least one topological ordering of Ṽ will

exist for any acyclic graph it will suffice to show that the graph associated with any

permissible mesh will not contain any cycles.

To show this, we define a particle P that exists inside the mesh, as in Figure 3.2a. The

particle is permitted to move freely within each element, but it may only move to an-

other element through an outflow boundary; see Figure 3.2b. It is clear that P may

move from one element to another if and only if there exists an edge in E that connects

those two elements in the associated graph. Therefore we may state that a cycle ex-

ists in the graph G̃ if and only if it is possible for P to re-enter an element that it has

previously left.

To demonstrate that this may never happen, consider the limits of the inflow boundary

for some element κS, these are denoted by red circles in Figure 3.2a. Without loss of
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Figure 3.2: (a) A particle, P, is defined inside an element κS. (b) P may only move to

another element through an outflow boundary.

generality we have performed a coordinate change so that the characteristic vector field

points upwards; i.e. Ωi = (0, 1)⊤.

Now, as P may only re-enter κS through its inflow boundary, if it is able to return to κS

it must take one of two possible routes. It must either circle round to the right of the

right-hand circle illustrated in Figure 3.2a, or circle round to the left of the left circle

in the same figure. We show that it may not take the right-hand route and the other

follows by symmetry.

To follow the necessary path, P must move to a lower y-coordinate than the circled

node. As P may not move to another element by leaving through an inflow boundary,

the only way that it may move to a lower coordinate is within an element. However, if

P enters such an element (see Figure 3.2b) we are presented with the same problem as

for the previously circled node, but with the right-hand limit of the inflow boundary in

the new element.

Thus, we will never be able to move P into a position from which it may re-enter κS

because every time that we are in a position to move to a lower y-coordinate than the

currently circled node we will be presented with the same problem, but for the limit of

the inflow boundary on the element in which P currently resides.

So, as P may never leave and re-enter any element on any mesh composed of elements

with connected inflow boundaries, the associated graph for those meshes must neces-

sarily be acyclic. Therefore, a topological element ordering will exist, and the stiffness

matrix for that ordering will be block lower triangular.
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Note that this lemma applies to all meshes with convex elements, as they will always

have a single, connected inflow boundary. A simple extension of this lemma also ap-

plies to meshes that have elements with characteristic boundaries; if we specify that

P may not cross any boundary that coincides with a characteristic direction, then the

same proof may be employed.

Once it has been deduced that a topological ordering exists, we require an efficient

method for finding it. Tarjan’s algorithm (see [85]) will find such an ordering for the

case where cycles might exist, however, as we have deduced that the associated graph

will be acyclic, the ‘topological sort’ algorithm may be applied to the problem and will

find the order in a comparable speed but with less memory required.

The topological sort works by gradually removing vertices that have no incoming

edges from the graph, placing them in the ordering and then deleting their associated

outgoing edges, until the empty graph is all that remains. As every vertex and edge

is considered (and removed from) the graph once, the algorithm takes O(|Ṽ| + |Ẽ|)
operations to determine the ordering.

Algorithm 3.2.2. (Topological Sort)

For a directed acyclic graph G̃ = (Ṽ, Ẽ), the following pseudo-code will output an ordered list

L, which gives a, possibly not unique, topological ordering. Let n,m be vertices in the graph,

then the algorithm is as follows:

L← list to contain ordered vertices

S← set of nodes with no incoming edges

while S 6= ∅ do

S← S \ n
L← L+ n

for m ∈ Ṽ such that (n,m) ∈ Ẽ do

E← E \ (n,m)

if 6 ∃ l ∈ Ṽ such that (l,m) ∈ Ẽ then

S← S+m

end if

end for

end while

output(Proposed order: ‘L’)

This topological sorting algorithm is sufficient for the case when it is known that no
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cycles occur in the directed graph associated with the current spatial mesh and angular

element (or ordinate direction). However, when there is a possibility that cycles will

occur we need a more sophisticated algorithm. Figure 3.3 provides an illustration of

how such a situation may arise for a simple unstructured mesh and an angular ele-

ment κA. In order to deal with such a scenario we utilise Tarjan’s strongly connected

components algorithm, Algorithm 3.2.3, which both partitions the graph into strongly

connected components and outputs these strongly connected components in reverse

topological order. With the output from Tarjan’s strongly connected components al-

gorithm it is possible to implement a version of the sweeping procedure to efficiently

apply the inverse of T by performing linear solves on each strongly connected compo-

nent in the reverse order that they are outputted from the algorithm.

The basic idea of the algorithm is to use a recursively implemented depth first search

to visit every vertex in the graph, putting each onto a stack data structure. The stack

contains all vertices that have already been visited but have not yet been assigned to

a strongly connected component. The algorithm also requires an array of length |Ṽ|
which contains indices indicating the order in which each vertex is visited by the depth

first search and an array of length |Ṽ| which contains a pointer to the vertex with the

lowest index that can be reached from each vertex on the stack. Any time a new vertex

is visited it receives an index and a pointer and is pushed onto the stack. When the

depth first search has finished recursing on a vertex, if its pointer points to itself then

it is the root of a strongly connected component. Vertices are then popped off the top

of the stack until it is no longer on the stack. As the algorithm progresses through the

graph, no strongly connected component is output before its successors, and therefore

a topological ordering of the strongly connected components is obtained.

Tarjan’s Strongly Connected Components Algorithm is given by Algorithm 3.2.3 and

the recursive procedure that it calls for each newly visited vertex is given by Algorithm

3.2.4 .

Algorithm 3.2.3. ( Tarjan’s Strongly Connected Components Algorithm )

For a directed graph G̃ = (Ṽ, Ẽ), the following pseudo-code will identify the strongly connected

components and output them in reverse topological order. Let n,m ∈ Ṽ then the algorithm is

as follows:

Stack ← a stack to contain the vertices in the graph

n.ind← the index of vertex n
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Figure 3.3: In (a) is the same spatialmesh as in Figure 3.1with an angular element κA ∈
TA. As κA incorporates a continuum of values in its azimuthal coordinate it defines a

graph that contains several nontrivial strongly connected components (see (b)). In (c)

is the samemesh except the elements of each nontrivial strongly connected component

are agglomerated so that an acyclic graph can be obtained (see (d)). Tarjan’s strongly

connected components algorithm will take (b) as an input and its output will tell us

which elements need to be agglomerated in order to produce (d). It will also give us a

topological ordering of (d) that will enable us to quickly apply T−1 to a vector.
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n.ptr ← the pointer to the lowest vertex reachable from n

i = 0

for n ∈ Ṽ do

n.ind = 0

n.ptr = 0

end for

for n ∈ Ṽ do

if n.ind = 0 then

Call Algorithm 3.2.4 for vertex n

end if

end for

Algorithm 3.2.4. ( TSCC Recursive Procedure )

A recursive procedure required by Algorithm 3.2.3 to process successor vertices to the current

vertex n ∈ Ṽ. The algorithm proceeds as follows:

i = i+ 1

n.ind = i

n.ptr = i

Push n onto Stack

for m ∈ Ṽ such that (n,m) ∈ Ẽ do

if m.ind == 0 then

Call Algorithm 3.2.4 for vertex m

n.ptr = min(n.ptr , m.ptr)

else

if m ∈ Stack then

n.ptr = min(n.ptr , m.ptr)

end if

end if

end for

if n.ind == n.ptr then

Output the next strongly connected component

repeat

Pop m off stack

until n==m

End of current strongly connected component
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end if

As every vertex is visited once, when we call the recursive procedure, every edge is

considered at most twice and we see that this algorithm will requireO(|Ṽ|+ |Ẽ|) oper-
ations. Due to its usefulness and popularity, there are many available implementations

of Tarjan’s strongly connected components algorithm. For the software developed in

this thesis we use the version from the HSL Mathematical Software Library, see [86].

The routine used is the MC13 subroutine which comes packaged as part of the MA48

linear solver.

Now that we have the tools to write the matrix T in block triangular form, we can de-

scribe the sweeping procedure for applying T−1 to a vector without assembling either

matrix. Algorithm 3.2.5 describes the procedure, which is equivalent to a block for-

ward substitution algorithm for a block triangular matrix, in terms of our spatial finite

element mesh and angular element.

Algorithm 3.2.5. (Sweeping Algorithm)

This algorithm takes a spatial finite element mesh TS, its directed graph (Ṽ, Ẽ) associated with

an angular element κA and a topologically ordered list of its strongly connected components

SCCi ⊂ Ṽ, where i = 1, · · · ,NSCC and

⋃

i

SCCi = Ṽ

and sweeps through the spatial domain applying T−1
∣

∣

κA
to a vector v1. The algorithm proceeds

as follows:

Get maximum strongly connected component size

Allocate local matrix A, solution x and right-hand side b

Allocate data structures for the linear solver

Label all κS ∈ TS UNSOLVED

for i = 1, · · · ,NSCC do

Include values from v1 in b

for κS ∈ SCCi do

Compute volume integrals for κS

Add to A and b

if ∂κS ∩ Γ+ 6= ∅ then

Compute face integrals for ∂κS and include in b
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end if

end for

for κS ∩ κS
′ ∈ Ẽ do

if {κS, κS ′} ⊂ SCCi then

Compute face integrals for κS ∩ κS
′

Add to A and b

end if

if κS ∈ SCCi and κS
′ 6∈ SCCi then

Compute face integrals for κS ∩ κS
′

if κS
′ is marked SOLVED then

Get solution values from κS
′, xκS ′

Build a block BκS∩κS ′ from the values from equation (3.2.8)

Subtract BκS∩κS ′xκS ′ from the κS values in b

else

Include ∂κS \ Γ face integrals in A

end if

end if

if κS
′ ∈ SCCi and κS 6∈ SCCi then

Compute face integrals for κS ∩ κS
′

if κS is marked SOLVED then

Get solution values from κS, xκS

Build a block BκS∩κS ′ from the values from equation (3.2.8)

Subtract BκS∩κS ′xκS from the κS
′ values in b

else

Include ∂κS
′ \ Γ face integrals in A

end if

end if

end for

Solve Ax = b

Store solution values

for κS ∈ SCCi do

Label κS SOLVED

end for

end for
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Note that at the beginning of the algorithm we allocate memory for the individual

strongly connected component matrices and the linear solver. It is an advantage of this

algorithm that wemay allocate this memory only once for a very large number of linear

solves as memory allocation can be a significant time bottleneck for computer software.

It is an additional advantage that the maximum amount of memory required for these

data structures is limited by the maximum size of a strongly connected component in

the graph, which in practice is much smaller than the full problem size.

The choice of a linear solver to solve the strongly connected componentmatrix equation

Ax = b was found to have a significant effect on the performance of our implementa-

tion of this algorithm. The vast majority of these linear systems that need to be solved

are small enough that they are most efficiently tackled by a dense solver, however it

is possible that for some combinations of spatial and angular meshes linear systems

could arise for which a sparse solver is preferable. This will be the case when one

or more large strongly connected components are identified by Algorithm 3.2.3. For

2 dimensional problems this can occur for regular meshes, when the angular element

couples togethermany adjacent spatial elements. See [87] for an example of when large

strongly connected components arise in discrete ordinates methods for irregular 3 di-

mensional spatial meshes. It was decided that a sparse direct solver would be the most

suitable choice of linear solver. This is because modern sparse direct solvers will auto-

matically detect when a system would be better treated as dense and then switch to a

dense factorisation implemented using efficient level 3 BLAS subroutines.

Two linear solvers were compared for the solution to the strongly connected compo-

nent matrices, the MA41 linear solver from the HSL library, together with the block pre-

processor developed in Chapter 2, and the sequential version of the MUMPS linear

solver. Though these pieces of software implement the same sparse direct method for

the solution of linear systems, it was found that MA41 was preferable for the present

case for three reasons. Firstly, MUMPS allocates the memory that it uses for the LU

factorisation dynamically whereas MA41 requires the user to allocate arrays of integers

and real numbers prior to using its interface subroutines. This control of memory al-

location provided by MA41 means that many systems can be solved without repeated

deallocation and reallocation of memory, whereas MUMPS needs to be reinitialised be-

fore each solve. The second reason that MA41 is preferable is because it is thread-safe
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and can therefore be used inside an OpenMP loop. Finally, tests on a variety of struc-

tured and unstructured meshes for high order DG methods showed that MA41 with

block preprocessing was much faster than sequential MUMPS.

3.2.3 Solving the source problem

For the neutron transport source problemwe seek to compute the vector of solution val-

ues ψ which solves equation (3.2.13) for a given spatial domain, material cross sections

and source term. To this end we consider two algorithms: a stationary iterative proce-

dure, referred to as the source iteration and the GMRES algorithm. The source iteration

is the most commonly referred to solution strategy in the literature and is equivalent to

a Jacobi iteration, though some authors have explored using various Krylov methods

such as GMRES, Orthomin(k) and the conjugate gradient method (these are discussed

below).

We explain the source iteration by first rewriting equation (3.2.13) as:

Tψi = (F+ S)ψi−1 + q, (3.2.16)

where ψi is the approximate solution vector at the ith iteration of this (or any) iterative

procedure. We select an initial guess for the solution of ψ0 and then repeatedly solve

equation (3.2.16) until:

‖ψi −ψi−1‖ ≤ tol, (3.2.17)

where tol is a small positive real number. Note that solving equation (3.2.16) requires

applying the inverse of the discrete transport matrix T−1 to the vector obtained by

computing the right-hand side. In fact all of the solution procedures considered will

utilise the application of this matrix, either directly or as a preconditioner for a Krylov

method, which is why the efficient computation of its action discussed in Section 3.2.2

is essential.

The convergence properties of the source iteration are determined by the spectral ra-

dius of the system, which has been shown via the Fourier analysis of Reed to be equal

to the scattering ratio c = Σs/Σt (see [88]). As c becomes close to 1, as can happen in

problems with large diffusive regions, the number of iterations required can become

prohibitively large. In order to render such problems tractable many authors use dif-

fusion synthetic acceleration (DSA) to reduce the number of iterations required for the

solution procedure. DSA, described by Larsen in [89], works by alternating transport
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sweeps with the multiplication by the inverse of a diffusion operator; this effectively

reduces the spectral radius of the iterated system. When the discretisation of the dif-

fusion operator is consistent with the discretisation of the transport operator it can be

shown that the spectral radius of the DSA system is bounded above by 0.2247c for fi-

nite difference discretisations in one dimensional geometries (see [90]); this can lead

to massive reductions in the number of iterations required for convergence. For the

main results collected in this thesis we do not implement DSA but instead use a GM-

RES iteration preconditioned by transport sweeps; this has been shown by Patton and

Holloway in [91] to perform comparably to DSA, at least in slab geometries.

The source iteration is not the only stationary iterative method that has been used for

neutron transport. An improvement on it is the damped Richardson iteration which

uses an appropriately chosen damping factor α to guarantee convergence. The ith

damped Richardson iterate is given by:

ψi = ψi−1− α
[

(T− F− S)ψi−1− q
]

. (3.2.18)

It can be shown that if (T− F− S) is sufficiently well conditioned then the sequence

ψi−1 will converge geometrically, see [68]. Both the source iteration and the damped

Richardson iteration compute the next approximation of the solution based only on the

solution from the previous iteration via the product with a matrix. Whilst this may

have the advantage of using a small amount of memory, there is a lot of information

about the problem contained in each iterate of the solution which is discarded after

every iteration. It is for this reason that one would expect a Krylov method could be

utilised to speed up the convergence.

Several Krylovmethods have been investigated in the literature for solving linear trans-

port problems including the conjugate gradient method (applied to a symmetrised sys-

tem in [92] and [93]), Orthomin(k) (see [94]), GMRES (see [88] and [95] amongst many

others) and conjugate gradient squared [96]. As the matrix T induced by our discreti-

sation is not symmetric we may not exploit the conjugate gradient method without

computing an expensive symmetrisation. We may also dismiss Orthomin(k) as it is

mathematically equivalent to GMRES but with worse numerical properties (see [97]).

In order to decide between the remaining methods we make reference to the paper

of Oliveira and Deng ([96]) which compares various Krylov methods for problems in

a slab geometry with ILU and multigrid preconditioners and finds that GMRES and

conjugate gradient squared solved their test problems with the lowest amount of CPU
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time. Thus we choose GMRES as our Krylov method.

The generalised minimal residual of Saad and Shultz, or GMRES, method solves a

linear system Aψ = b by constructing a succession of approximate solution vectors

ψm that minimise the residual norm over ψ0 + Km (A, r0), where A is the matrix,

rm = b−Aψm is the mth residual vector and the mth Krylov subspace is

Km (A, r0) = span
{

r0,Ar0,A
2r0, · · · ,Am−1r0

}

. (3.2.19)

Given an initial guess to the solution ψ0 we use the Arnoldi process to build Vm which

is an orthonormal basis of the mth Krylov space, and then the mth approximation to

the solution is given by

ψm = ψ0 +Vmym, (3.2.20)

where ym is a real vector of length m that is chosen so that rm is minimised over

Km (A, r0). The orthogonal projection of A onto Km (A, r0) gives the upper Hessen-

berg matrix Hm = V⊤mAVm of order m. We obtain ym by minimising the functional

J(y) = ‖b−Aψ‖2 (3.2.21)

= ‖b−A (ψ0 +Vmy) ‖2 (3.2.22)

= ‖r0 −AVmy‖2. (3.2.23)

From the Arnoldi process we have

AV = VHm + hm+1,mvm+1e
⊤
m , (3.2.24)

where em is the mth canonical basis vector. If we write

H̄ =

[

Hm

0, · · · , hm+1,m

]

, (3.2.25)

then

AVm = Vm+1H̄m. (3.2.26)

We can use this to rewrite the functional

J(y) = ‖r0 −AVmy‖2 (3.2.27)

= ‖βv1 −Vm+1H̄my‖2 (3.2.28)

= ‖Vm+1 (βe1 − H̄my) ‖2, (3.2.29)
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where β = ‖r0‖2 and v1 = r0/β. Then we can compute ym by computing the following

minimisation problem:

ym = min
y∈Rm

‖βe1 − H̄my‖. (3.2.30)

As this is a linear least squares problem of size (m+ 1)×m, while m is relatively small

the solution to this problem is quick to compute. With exact arithmetic the GMRES

method is guaranteed to converge in N iterations, where N is the size of the system,

so GMRES could potentially be used as a direct method. However, as the number of

operations and the amount of memory required to store Vm increase with each itera-

tion, this would rapidly become unfeasible for large sparse systems. In order to limit

the memory requirements we employ the restarted GMRES method, or GMRES(M).

GMRES(M) is exactly the same as GMRES except that the size of the orthonormal basis

is limited to M. If the stopping criterion is not met after M iterations then the process

is restarted with a new initial guess, ψ0 ← ψM.

For the results collected in this thesis we use the CERFACS implementation of the

GMRES(M) algorithm by Frayssé, Giraud, Gratton and Langou (see [98] for documen-

tation). These routines use a backwards communication interface which allows the

user to implement the most computationally intensive parts of the algorithm; the ma-

trix vector products and the scalar products. As the GMRES(M) algorithm can be slow

to converge we will utilise a preconditioner to speed convergence by solving a trans-

lated system with the same solution. For our preconditioner we use transport sweeps,

that are equivalent to the application of T−1, which were found to perform well by

Patton et al. in [91].

The solution of the source problem by the right preconditioned GMRES(M) method is

then obtained by writing equation (3.2.13) as

(T− F− S)T−1y = q, (3.2.31)

and solving Ay = b where A = (T− F− S)T−1, b = q and y = Tψ. The solution

vector ψ may then be obtained by applying T−1 to y.

Table 3.1 compares the number of iterations required to solve the artificially forced

source problem that wewill define in Section 3.4 byGMRES compared to using a source

iteration. The data is for a series of five uniformly refined meshes, each for a p = 1, q =

0 approximation and a p = 2, q = 1 approximation. The convergence tolerances were

set to 10−9. We note that the GMRES algorithm uses far fewer iterations than the source
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q = 0, p = 1 q = 1, p = 2

N
GMRES

iterations

Source

iterations
N

GMRES

iterations

Source

iterations

64 7 19 576 7 21

1 024 7 21 9 216 7 23

16 384 7 24 147 456 8 25

262 144 8 26 2 359 296 8 26

4 194 304 8 27 - - -

Table 3.1: The total number of iterations required to solve the source problem from

Section 3.4 using the source iteration and preconditioned GMRES for a series of five

uniformly refined meshes.

q = 0, p = 1 q = 1, p = 2

N
Source

iteration

GMRES

method
N

Source

iteration

GMRES

method

64 0.011041 0.052615 576 2.4137 1.4723

1 024 0.040212 0.10498 9 216 24.25 13.699

16 384 0.6375 1.5918 147 456 450.488 260.14

262 144 13.281 30.246 2 359 296 7 665.235 4 252.223

4 194 304 343.321 525.125 - - -

Table 3.2: The total time (in seconds) to complete a solve of the source problem from

Section 3.4 for a series of five uniformly refined meshes.
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iteration and that the number of iterations required for the convergence of the source

iteration grows with problem size whereas it remains constant for GMRES. Table 3.2

gives the total time required for these problems. Note that though the source iteration

solves the lower order problems more quickly, GMRES is the preferable algorithm for

the higher order problems. As the p = 1, q = 0 solutions are all computed in under

10 minutes for both algorithms, we conclude that either algorithm is suitable for lower

order computations. However, as GMRES performs considerably better for more time

consuming higher order problems, we choose GMRES for all further source problem

calculations.

3.2.4 Solving the eigenvalue problem

We also collect results from two candidate algorithms for the solution of the discrete

keff-eigenvalue problem from equation (3.2.14). The first algorithm that we consider is

a simple power iteration, which is the most commonly used method in the literature

and the second is the Implicitly Restarted Arnoldi Method. The generalised eigenvalue

problem in equation (3.2.14) may be written as a regular eigenvalue problem by first

considering a series expansion of the T − S term. By multiplying both sides of the

equation by T−1 we obtain

(

I− T−1S
)

ψ =
1

keff,h
T−1Fψ. (3.2.32)

Then by multiplying through by keff,h
(

I− T−1S
)−1

on both sides of the equation, we

get

keff,hψ =
(

I− T−1S
)−1

T−1Fψ. (3.2.33)

We then write
(

I− T−1S
)−1

as the Neumann series

(

I− T−1S
)−1

=
∞

∑
k=0

(

T−1S
)k

, (3.2.34)

to obtain

keff,hψ = Mψ, (3.2.35)

where

M =
∞

∑
k=0

(

T−1S
)k

T−1F. (3.2.36)
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Then at each iteration of the power method the ith approximation of the dominant

eigenvector is given by

ψi =
Mψi−1
‖Mψi−1‖

, (3.2.37)

and the ith approximation of the dominant eigenvalue is given by ‖Mψi−1‖. The power

iteration is terminated when the absolute value of the difference between successive

eigenvalue approximations falls below a given outer tolerance tolout. The application

of thematrixM is computed by truncating the Neumann sumwhen the norm of the so-

lution vector settles at a given value, within some inner tolerance tolin. More precisely

we approximate the application of M by

Mψi−1 =
∞

∑
k=0

(

T−1S
)k

T−1Fψi−1 (3.2.38)

≈
K

∑
k=0

(

T−1S
)k

T−1Fψi−1, (3.2.39)

where
∣

∣

∣

∣

∣

∣

∣

∣

(

T−1S
)K

T−1Fψi−1

∣

∣

∣

∣

∣

∣

∣

∣

≤ tolin. (3.2.40)

This is the simpler of the two eigenvalue algorithms and, like the fixed point iteration

for the source iteration, it may be implemented as the repeated application of T−1 to

a given vector. The convergence of this algorithm is determined by the ratio between

the dominant eigenvalue and the next largest eigenvalue. If λ1 = keff,h is the largest

eigenvalue and λ2 < λ1 is the next largest eigenvalue then the error after i iterations is

proportional to
∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

i

. (3.2.41)

The ratio λ2
λ1

is referred to as the dominance ratio. For problems where the dominance

ratio is close to one it is clear that the power iteration will take a very large number of

iterations to converge. In [99] the authors use power iterations to compute approxima-

tions to keff for a series of three dimensional keff-eigenvalue problems with dominance

ratio approaching 1 and found that power iteration could take more than 1000 outer it-

erations to compute the eigenvalue, even with the relatively modest tolerance of 10−4.

For many practical problems, however, the dominant eigenvalue is sufficiently isolated

so that the power iteration will converge in an acceptable manner; hence many authors

still use the power iteration for their computations.
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The potentially high computational requirements of the power iteration has led many

researchers to investigate how it may be accelerated. In [100] Adams et al. review sev-

eral of the strategies that have been proposed. The power iteration can be accelerated

by storing the vectors from previous iterations and combining them to produce the next

approximate eigenvector. This is the strategy of the Chebyshev iteration, which uses

a combination of all previous iterates weighted to correspond to a Chebyshev polyno-

mial, see [101]. For problems where the dominance ratio approaches 1 the Chebyshev

iteration can greatly reduce the number of iterations required. One advantage of the

Chebyshev iteration is that not all of the previous iterates need to be stored in order to

incorporate the information that they contained into the next iterate. This is achieved

using the three term recursion formula for the Chebyshev polynomial, which means

that only the previous two iterates need to be stored.

Other methods for accelerating power iteration use an assumed prior knowledge of the

spectrum in order to accelerate the convergence. One such method is the shifted power

iteration which works by shifting the spectrum by a positive constant kshift > keff. If

this shifting parameter is well chosen the shifted power iteration can converge very

rapidly. In [102] an estimate of the eigenvalue is also used to accelerate convergence

in the inverse power iteration method, which at each iteration applies the inverse of

the difference between the original matrix and kestI, where kest is an estimate of the

eigenvalue. These methods yield convergence proportional to
∣

∣

∣

∣

keff − kshift
λ2 − kshift

∣

∣

∣

∣

, (3.2.42)

and
∣

∣

∣

∣

keff − kest
λ2 − kest

∣

∣

∣

∣

, (3.2.43)

respectively. The inverse power iteration method has the advantage over the shifted

power iteration in that the estimated eigenvalue does not have to be larger than the so-

lution eigenvalue but the disadvantage of increased computational cost per iteration.

Both of these methods have the disadvantage that they require a reasonable estimate

of the leading eigenvalue in order to be effective, which might not be available. Also as

neutron transport problems in general have matrices that are not symmetric, the spec-

trummay extend into the complex plane, this can lead to complications when trying to

compute optimal estimates of the required acceleration parameters, see [103].

These iterative eigenvalue algorithms can all be seen as Krylov subspace methods in

that they look for their solutions in a space constructed by taking the span of the images

75



CHAPTER 3: DISCONTINUOUS GALERKIN DISCRETISATION OF THE NEUTRON

TRANSPORT EQUATION

induced by the matrix on a vector. The power iteration, shifted power iteration and

inverse power iteration look for their solutions in a Krylov space of order 1 and the

Chebyshev iteration seeks a solution using all previous iterates. The next method that

we consider can be seen as an improvement on these in that it uses the Krylov subspace

constructed from the span of all previous images, but this time uses a more robust

algorithm to compute the eigenvalue. This method is the Implicitly Restarted Arnoldi

Method.

The basic Arnoldi eigenvalue algorithm works similarly to the GMRES method in that

it uses a stabilised Gram-Schmidt iteration to build an orthogonal basis q1,q2, · · · ,qi+1

of the present Krylov subspace:

Ki+1 (M,ψ0) = Span
{

ψ0,Mψ0,M
2ψ0, · · · ,Miψ0

}

(3.2.44)

= Span {q1,q2, · · · ,qi+1} . (3.2.45)

It then considers the upper Hessenberg matrix Hi+1 which is the orthogonal projection

ofM onto the Krylov subspace, represented by the basis {qi}. The eigenvalues of Hi+1

are known as Ritz eigenvalues and converge to the extreme eigenvalues of M. As we

seek the dominant eigenvalue, no shifting of the spectrum will be required for the Ritz

values to include keff,h. As the matrix Hi+1 is upper Hessenberg, its eigenvalues can be

quickly computed using a version of the QR algorithm.

The Implicitly Restarted Arnoldi Method (IRAM) is an algorithmic variant on the basic

Arnoldi eigenvalue algorithmwhich uses a restart in order to limit the amount ofmem-

ory that will be used, at the cost of possibly increasing the number of iterations that

will be needed for convergence. It can be viewed as a synthesis between the Arnoldi

eigenvalue iteration and the Implicitly Shifted QR scheme. For the results collected in

this thesis we use the ARnoldi PACKage (ARPACK) implementation of the Implicitly

Restarted Arnoldi Method, see [104] for documentation.

The ARPACK software package has been used for keff-eigenvalue problems before by

Warsa et al., in [99]. The authors compared the ARPACK implementation of IRAMwith

a basic power iteration and found it to be robust and extremely efficient for several

challenging three dimensional test problems. Indeed they found that the additional

computational cost per iteration of using the ARPACK routines was vastly outweighed

by the convergence behaviour, particularly for problems with a dominance ratio close

to 1.
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Inner iterations

q = 0, p = 1 q = 1, p = 2

N GMRES Neumann sum N GMRES Neumann sum

480 151 597 4 224 149 441

7 680 150 467 67 584 148 399

122 880 149 420 1 081 344 150 357

1 966 080 150 378 - - -

Outer iterations

q = 0, p = 1 q = 1, p = 2

N IRAM Power method N IRAM Power method

480 15 23 4 224 15 21

7 680 15 21 67 584 15 21

122 880 15 21 1 081 344 15 21

1 966 080 15 21 - - -

Table 3.3: The total number of inner and outer iterations to solve the seventh Los

Alamos criticality problem for four different iterative procedures on a series of uni-

formly refined meshes. The convergence tolerances were set at 10−9.

To exploit ARPACK to compute the eigenvalue-eigenvector pair, the user must supply

the action of a matrix on a vector. So in order to use ARPACK we once again rewrite

equation (3.2.14) as

keff,hψ = Mψ, (3.2.46)

but this time instead of writing M as a Neumann sum, we write it as:

M = (T− S)−1 F, (3.2.47)

where the action of (T− S)−1 is computed using the GMRES method preconditioned

by T−1. Note that though this is not precisely the same as in equation (3.2.33), its action

on a vector will be the same.

Table 3.3 compares the number of iterations required to solve a keff-eigenvalue problem

for a series of uniformly refined meshes for a p = 1, q = 0 approximation and a p = 2,

q = 1 approximation. The table compares the stationary iterative procedure of the
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q = 0, p = 1 q = 1, p = 2

N
Power

method
IRAM N

Power

method
IRAM

480 3.1728 1.2798 4 224 265.909 158.902

7 680 36.824 19.093 67 584 2 212.118 1 381.509

122 880 547.158 305.355 1 081 344 31 649.974 19 735.881

1 966 080 10 476.424 6 021.301 - - -

Table 3.4: The total time taken (in seconds) to perform the calculations from Table 3.3.

Neumann iteration nested inside a power iteration with the Krylov based algorithm of

preconditioned GMRES nested inside the IRAM iteration. The total number of inner

iterations for each procedure is given as well as the total number of outer iterations.

Note that the Krylov based algorithm yields significant reductions in both the number

of outer iterations, as well as the total number of inner iterations to be computed. As

for the two source iterative procedures that we compared, this results in a significant

reduction in the overall number of iterations required. Table 3.4 gives the time, in

seconds, for each of these solves and the percentage reduction in the time required by

the IRAM compared to the power method. Note that, in contrast to the algorithms

tested for the source problem, the Krylov subspace based method out performs the

stationary method for all problems, including small lower order problems. For this

reason we select the Krylov based method for all further criticality computations in

this thesis.

Notice that as the problem size grows the number of iterations for the Krylov based

method remains constant, however the number of terms in the Neumann sum gets

smaller. This is due to the weak stopping criterion for the Neumann iteration defined

in equation (3.2.40). The more robust norm wise backwards error stopping criterion

utilised for the GMRES method leads to the number of iterations remaining constant.

3.2.5 Parallel implementation

Each of the solution algorithms discussed in the previous two sections requires a very

large number of floating-point operations to compute its solution. Indeed, in con-

trast to what might be expected for the discretisation of a higher dimensional integro-

differential equation, it is the time required by the number of operations that typically
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determines the largest problem size that can be tackled and not the limits on the avail-

able memory. Therefore, utilisation ofmodern parallel computer architectures is crucial

if one wishes to compute the solution to challenging problems of industrial interest.

As the nuclear field and computational science have in many ways developed in syn-

ergy with one another it is not surprising that parallel computers have been used to

tackle problems in neutronics almost as long as these architectures have been available.

In [105], Azmy gives a review of the applications of parallel computing to neutronics

up until the late 90s. For modern neutron transport codes it is almost assumed that

the implementation will be parallel, whether on a shared memory, distributedmemory

or GPU environment. The most coarsely grained parallelism is best implemented on

shared memory machines, for medium grained parallelism a network of CPUs with

distributed memory is more suitable and for the most fine grained and highly regular

computations GPU computing can be used.

In parallel computing there is a strong link between the architecture that is being used

and the types of algorithms that will be most efficient. As such the choice of how to

parallelise a code is determined by the computing resources available. For example in

[87] Plimpton et al. discuss a distributed memory implementation of a code for source

problems in radiative transport with unstructured meshes. In order to compute the

mesh orderings and find any cycles prior to the sweeping procedure in parallel the

authors replace Tarjan’s strongly connected components algorithm with an alternative

algorithm by Fleischer. This is because Tarjan’s algorithm uses a depth first search

which does not parallelise well over a distributed architecture so an alternative algo-

rithm which uses a breadth first search had to be employed.

The present code was developed to run on a shared memory architecture with 8-16

physical CPU cores. In order to parallelise it we first need to decide which tasks to

parallelise and how to partition the independent variables between the processors. As

discussed in previous sections the tasks that form the greatest bottleneck in terms of

computational time are the computation of the action of T and T−1. We have three

options for splitting the independent variables between processors: we can divide them

by energy group, by a partition of the angular domain or by a partition of the spatial

domain.

The option to partition work between processors by dividing the energy groups would

provide the coarsest grain parallelism. This partitioning would benefit from the fact
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that the multigroup approximation leaves the energy groups uncoupled in the T ma-

trix. However, though some early authors parallelised over the energy spectrum, it

is not suitable for the present implementation because the typical number of energy

groups in a multigroup approximation is lower than the number of available proces-

sors. This would lead to a severe load balancing problem as some processors would be

left unoccupied at run time while others would be doing all the work.

The second option would be to partition the angular domain between processors. This

would clearly be the best option as our decision to leave the angular elements in our

mesh uncoupled by our finite element discretisation will allow parallel sweeps on dif-

ferent angular elements to happen concurrently between processors. This should lead

to evenly balanced loading between processors because each sweep covers the same

number of spatial elements, even on irregular meshes. The only potential drawback of

partitioning by angular elements is if the code was ported onto a machine with many

more CPU cores, there would not be enough angular elements to split loading between

a large number of processors.

The third option of partitioning the spatial domain would have provided the finest

grained parallelism. Decompositions of the spatial domain are more difficult to imple-

ment and require more communication between processors. Also, parallel efficiency

can be difficult to maintain compared to angular decompositions. However, decompo-

sitions of the spatial domain are popular in the literature for the discretisation of large

3D problems where the size of the spatial part of the problem can get very large.

We now state our parallel algorithm for the application of the inverse of T in a shared

memory environment.

Algorithm 3.2.6. (Parallel algorithm for the application of T−1)

For a spatial mesh TS and an angular mesh TA this algorithm applies the action of T−1 in

parallel via a sweeping procedure on each angular element. The algorithm implements the

following matrix vector product

v2 ← T−1v1 (3.2.48)

and proceeds as follows:

Allocate shared data structures

Compute shared data

BEGIN PARALLEL REGION

Allocate private data structures
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Threads Speed up

(T− S)−1F T T−1

2 1.956 1.9806 1.9536

4 1.9829 1.9768 1.9948

8 1.897 1.9281 1.9329

16 1.8003 1.8653 1.8829

Table 3.5: This table gives the rate of speed up given by doubling the number of

threads to the value in the leftmost column. These are for the application of the ma-

trices (T− S)−1F, T and T−1 and are computed from the same data as Figure 3.4. For

the application of T−1 the speed up is close to perfect for up to 8 threads.

BEGIN DYNAMICALLY SCHEDULED PARALLEL LOOP

for κA ∈ TA do

Get data for κA

Build G = (V, E) for TS and κA

Call Algorithm 3.2.3 to get strongly connected components for G and κA

for g = 1, · · · ,G do

Perform sweep using Algorithm 3.2.5

end for

end for

END PARALLEL LOOP

END PARALLEL REGION

This algorithm was implemented using OpenMP and then each of the various subrou-

tines from the four solution algorithms were benchmarked against each other incor-

porating the parallel version of the product by T−1. Performing these tests revealed

that the application of T had overtaken the application of T−1 as the most time con-

suming operation. An OpenMP implementation of the application of T was written in

order to tackle this new bottleneck. The parallel implementation of the action of T was

based on Algorithm 3.2.6, but with the construction of the graph and use of Tarjan’s

strongly connected components algorithm removed. The sweeping procedure was re-

placed with a loop over spatial elements and the use of the BLAS subroutine DGEMV to

perform a matrix vector product on the individual blocks.
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Figure 3.4: A log-log plot of the time taken to apply the action of threematrices against

the number of OpenMP threads used. The matrix size was N = 294 912 split into 144

by 144 blocks. Themachine incorporated two Intel R© Xeon R© E5-2665 8-core processors

(32 logical cores total) and 512Gb of RAM.We observe good speed upwhen increasing

the number of threads up to 16, which is the number of physical cores present. The

application of (T − S)−1F involves the repeated application of F, S, T and T−1. As

T−1 is the most computationally challenging of these matrices to apply we observe

that the performance of the application of (T− S)−1F degrades in the same way that

it does for the application of T−1 when the limits of the machine are reached. Exact

figures for the speed up are given in Table 3.5.
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With this version of the code a set of tests were completed to examine the performance

of the parallel code as more threads were added. The problem considered was the

seventh criticality benchmark problem from the set compiled by Sood, Forster, and

Parsons in [106]. For the discretisation we set the order of approximation in space to

p = 3 and the order of approximation in angle to q = 2. A total of 2048 space-angle

elements were used and the matrix size was N = 294 912. Timings were taken for the

application of T and T−1, as well as (T−S)−1Fwhich requires the repeated application

of both T and T−1. Figure 3.4 and Table 3.5 present the results.

These computations were completed on a machine incorporating 16 physical cores, or

32 logical cores. When increasing the number of threads up to eight we see a speed

up factor close to the optimal factor of two for the application of T−1 and T. This is

very encouraging as it is these operations which provide the bottleneck in all of our

computations. When doubling from 8 cores to 16 however, the speed up drops to 1.8.

We believe that this is the result of congestion of memory access when all physical

cores are in operation at the same time. A reduction in the speed up for T is also

observed, though it is not as severe because the application of the transport matrix

does not require as much memory as the application of its inverse.

The parallel timing data for the computation of the application of (T− S)−1F is a good

indicator of the overall performance of the algorithm. This is because it not only incor-

porates the twomost demanding operations but also many of the sequential operations

that need to be used in every iteration. The speed up factor of 1.8 for the application

of this operator when doubling the number of processors corresponds closely to the

overall speed up of the eigenvalue algorithm.

3.3 Implementation

The algorithms described in this thesis were implemented using a mixture of existing

academic software libraries and newly developed code. In particular, the AptoFEM

[107] finite element software was used to provide data structures for the storage of 2 di-

mensional meshes and solutions. Furthermore, extensive use was made of AptoFEM’s

routines for the generation of 2 dimensional basis functions, integration in the spatial

domain and spatial mesh refinement. AptoFEM routines were also used for analyt-

icity testing of finite element solutions, which will be discussed in the next chapter.
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Other libraries that were used include the CERFACS GMRES library [98], the ARPACK

eigenvalue code [104], MA41, MA57 and MC13 [86] as well as GotoBLAS [108] and the

Triangle [109] 2 dimensional unstructured mesh generation software.

All other aspects of the software were originally implemented. This includes, but is

not limited to, all of the code necessary to extend the aforementioned libraries to be

applicable to the full 4 dimensional multienergetic problem as well as all of the mesh

generation, integration and refinement routines in the angular domain. Furthermore,

the routines necessary for the application of the matrices T, T−1, F and S to a vector,

the generation of structured 2 dimensional spatial meshes and the incorporation of

problem data from the benchmark problems were all written by the author. All of

the code necessary for the computation of global and local error estimators was also

originally implemented. This includes routines for the computation of L2-projections in

4 dimensions which are utilised for the restriction of the error estimators to the spatial

and angular variables, as well as the computation of a-posteriori error representation

formulas for the error in the critical eigenvalue.

3.4 Convergence results

In order to test the rates of convergence of the proposedDGfinite element discretisation

we consider a simple test problem for which the analytical solution is known. In order

to obtain such a problem, we first specify an analytical value of the scalar flux at each

point in the space-angle domain and then use this to determine the value of an artificial

forcing function to be included in the equation to be discretised.

Consider a two dimensional monoenergetic neutron transport source problem defined

on the following spatial domain

D =
[

0,
π

2

]2
. (3.4.1)

We specify that the analytical value for the angular flux is to be given by the following

function:

ψ(r,Ω) = xy cos(x) cos(y) sin2(ϕ) sin2(θ). (3.4.2)

Thus the analytical value for the scalar flux is given by

φ(r) = xy cos(x) cos(y)
2π

3
. (3.4.3)
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We also define the space averaged flux, which allows us to visualise the angular distri-

bution of the solution by

ζ(Ω) =
∫

D
ψ(r,Ω) dr =

(π − 2)2

4
sin(ϕ)2 sin(θ)2. (3.4.4)

The forcing function is easily computed by substituting (3.4.2) into the neutron trans-

port source problem. The source problem prescribed by this spatial domain and forcing

function was solved on a series of uniformly refined meshes in order to investigate the

order of convergence of the underlying DG finite element method.

3.4.1 Spatial convergence

When the finite element method presented in this chapter had been implemented tests

were run to verify the rates of convergence achieved. As the spatial part of the discreti-

sation is a standard higher order DG method for a first order hyperbolic problem the

theoretical convergence rate is well known. In [110] Johnson and Pitkäranta proved

that the error will decay at O(hp+ 1
2 ) in the L2-norm and in [9] Peterson showed that

this rate of convergence cannot be improved upon, even for problems with smooth ex-

act solutions, without making some assumptions on the regularity of the finite element

mesh being used. In [11] Houston et al. proved a similar bound in the DG-norm and

displayed numerics demonstrating the exponential convergence at this rate that can

be achieved for sufficiently analytical test problems. Finally in [111] Cockburn et al.

showed that for a mesh of simplexes, each with a unique outflow face, the standard

higher order DG method will converge like O(hp+1) in the L2 norm. It is this rate of

convergence that we demonstrate in the results collected here. In order to test specifi-

cally the convergence for the spatial scheme, an angular scheme with a fine mesh and

high order of approximation was selected in order to render the angular contribution

to the total error negligible. An initial spatial mesh of 4 elements was chosen and then

uniformly refined. Table 3.6 contains the results and shows that the asymptotic order

of convergence achieved by the present code matches the theoretical value.

3.4.2 Angular convergence

In contrast to the spatial part of the discretisation there is no literature on the use of

a higher order DG finite element method for the approximation of the angular part of
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Spatial mesh

Number

of

elements

||φ(r)− φh(r)||L2(D) ||ζ(Ω)− ζh(Ω)||L2(S2)
Order of

convergence

in scalar flux

p = 0 spatial approximation, q = 4 angular approximation

1 4 0.3558640 0.1566136 -

2 16 0.1634107 7.8206420E-02 1.1228

3 64 8.3881803E-02 4.1815333E-02 0.9621

4 256 4.3445326E-02 2.1997901E-02 0.9492

5 1 024 2.2260459E-02 1.1337632E-02 0.9647

6 4 096 1.1289563E-02 5.7635941E-03 0.9795

p = 1 spatial approximation, q = 4 angular approximation

1 4 7.9475768E-02 1.2850358E-02 -

2 16 1.9341335E-02 1.7416134E-03 2.0388

3 64 4.7903312E-03 2.3518868E-04 2.0135

4 256 1.1943334E-03 5.9661892E-05 2.0039

5 1 024 2.9836851E-04 5.1859213E-05 2.0010

p = 2 spatial approximation, q = 5 angular approximation

1 4 5.3683207E-03 1.4575111E-04 -

2 16 6.8253360E-04 7.9472275E-06 2.9755

3 64 8.5342872E-05 4.5220477E-07 2.9996

4 256 1.0659324E-05 2.5583245E-07 3.0012

Table 3.6: The error under spatial h-refinement. The angular schemes were chosen

to to be very high order (q = 4 or 5) to render the error in the angular discretisation

negligible. These results indicate that the spatial scheme converges at O(hp+1).
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neutron transport problems. The only other attempt at a higher order DG approxima-

tion for the angular variables in neutron transport problems was by Bennison in [43].

However Bennison first projected the angular domain from the unit hemisphere onto

the unit disk, therefore a factor of cos−1(ϕ) needed to be included in all of his calcu-

lations. The inclusion of this factor, which introduces a coordinate singularity at the

boundary of his angular domain, meant that he was unable to collect accurate data on

the convergence of the angular part of his approximation.

Though there has been no analysis published for a higher order DG method in angle

for neutron transport, there have been theoretical results published on the convergence

of the discrete ordinates method. As the DG method considered here reduces to a

scheme similar to a discrete ordinates method when the order of approximation is q =

0, we can use these results to confirm the precision of the implementation considered

here, at least for a scheme with a constant approximation on each angular element. In

[8] Johnson and Pitkäranta prove an error bound for the error in the scalar flux for a

version of the neutron transport problem where the angular domain is restricted to the

equator of S2. This result was improved upon by Asadzadeh in [112] who proved an

equivalent error bound for a discrete ordinates approximation on S2. To prove this he

used a discrete ordinates quadrature defined on the projection of S2 onto a disk. This

quadrature comprised NO = nm points, with m points in the azimuthal direction and

n points in the radial (polar on S2) direction. When the spatial error is small this error

bound implies convergence of at least O(n−1 + m−1) in the angular variables. This

discrete ordinates method can be written like a rectangular partitioned finite element

mesh on S2, with angular element diameters of h ∼ m−1. Then if n = m we would

expect convergence of at least O(h).

To test the order of convergence of the angular discretisation a series of progressively

finer angular meshes was defined, each comprising angular elements of equal area. A

spatial mesh was chosen which was sufficiently fine to render the spatial contribution

to the error negligible compared to the angular error and the system was solved using

finite element spaces of increasing order on the series of angular meshes. The results are

given in Table 3.7. Note that for the q = 0 problem the rate of convergence is computed

as O(h2), which is better than the more pessimistic O(h) convergence predicted by the

analysis of Asadzadeh.
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Angular mesh

Number

of

elements

||φ(r)− φh(r)||L2(D) ||ζ(Ω)− ζh(Ω)||L2(S2)
Order of

convergence

in scalar flux

q = 0 angular approximation

1 4 9.6385024E-02 1.8744055E-02 -

2 16 2.4848044E-02 5.1731984E-03 1.9557

3 64 6.3705621E-03 1.4139627E-03 1.9636

4 256 1.6160379E-03 3.7319103E-04 1.9790

5 1024 4.0717906E-04 9.6241070E-05 1.9887

6 4096 1.0217800E-04 2.4444935E-05 1.9946

q = 1 angular approximation

1 4 3.1649128E-03 3.2750253E-02 -

2 16 1.6101586E-03 2.1599442E-02 0.9750

3 64 3.4734685E-04 7.2245649E-03 2.2128

4 256 6.4424865E-05 2.5444836E-03 2.4307

5 1024 8.8051283E-06 9.0981479E-04 2.8712

6 4096 1.2965155E-06 3.2566828E-04 2.7637

q = 2 angular approximation

1 4 3.9649173E-03 3.0746141E-02 -

2 16 1.3688076E-04 4.3400726E-03 4.8563

3 64 8.6517275E-06 7.3444797E-04 3.9838

4 256 9.1425471E-07 1.2617772E-04 3.2423

Table 3.7: The error under angular h-refinement. The spatial scheme was chosen to

to be very high order (p = 5) to render the error in the spatial discretisation negligi-

ble. These results indicate that the angular scheme converges at O(h2) for a q = 0

approximation.
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CHAPTER 4

Adaptive Algorithms for Neutron

Transport Criticality Problems

In the previous chapter we presented a high order hp-version discontinuous-Galerkin

(DG) finite element discretisation for neutron transport criticality problems, as well as

an efficient parallel solution algorithm for the resulting generalised eigenvalue prob-

lem. However the high dimensionality of problems arising in neutronics results in very

large systems of equations that are extremely expensive to solve, even when employ-

ing a higher order numerical method and an efficient solution algorithm. Furthermore,

once these calculations have been completed it will not be possible to quantify the size

of the error in the computed eigenvalue.

In this chapter we will discuss how these deficiencies may be overcome using an a

posteriori error estimator together with an adaptive mesh refinement algorithm. For

an introduction to a posteriori methods we direct the reader to the reviews by Verfürth

[113], and Ainsworth and Oden [114], as well as the book by Szabo and Babuška [115],

and the article by Becker [116]. We shall present both an h-adaptive, as well as an

hp-adaptive refinement algorithm for the numerical approximation of neutron trans-

port keff-eigenvalue problems. These algorithms both feature a dual weighted residual

(DWR) based a posteriori error representation formula, derived in Section 4.2, which

provides reliable estimates of the error in the dominant eigenvalue. Both the h- and

hp-refinement algorithms exploit a projection of the error onto the spatial degrees of

freedom so that the relative contribution of the spatial and angular portions of the er-

ror may be quantified in order to balance the computational resources between the two

computational domains. In Section 4.3 we present the h-refinement algorithm; here
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we demonstrate the efficiency gains that can be attained compared to a more naive re-

finement strategy. In Section 4.4 we present the hp-refinement algorithm and include

results which demonstrate the exponential convergence of this approach with respect

to the number of degrees of freedom employed.

4.1 Adaptive mesh refinement for the neutron transport equa-

tion

In this thesis we are concerned with deriving a computable a posteriori estimate on the

error committed by our DG finite element method in order to design an automatic

adaptive mesh refinement algorithm. We elect to employ the dual weighted residual

method which provides an estimate of the error in a given target functional of physical

interest as opposed to a global norm of the error over the whole domain. This enables

us to identify the regions in the computational domain that contribute most signifi-

cantly to the error measured with respect to our quantity of interest. Thereby, only

these regions will be refined, thus avoiding excessive computation in regions that have

little effect on the target functional of interest. See [117] by Bangerth and Rannacher for

a detailed description of the DWR method.

The DWRmethod has been applied to a wide variety of finite elementmethods, includ-

ing continuous and discontinuous Galerkin methods for a range of partial differential

equations, such as elliptic and hyperbolic equations, as well as for linear and non-linear

conservation laws. Most relevant to the presentwork is the analysis of a posteriorimeth-

ods for first order hyperbolic problems by Houston and Süli in [118], the application to

nonlinear hyperbolic conservation laws by Hartmann et al. in [82], and the application

to eigenvalue problems in incompressible flow problems in [119] by Cliffe et al., as well

as to bifurcation problems in [120], [121] and [122], also by Cliffe and collaborators.

Such methods have recently received considerable interest in the fields of neutron

transport; indeed DWR error estimation has been employed by several authors to con-

trol the error arising from the spatial discretisation of neutron transport problems. In

particular Duo et al., in [123], followed on from the work of Houston and Süli [118] and

implemented an adaptive algorithm for the spatial part of the SN equations, control-

ling the error measured by the L2-norm over the spatial domain. Fournier developed a

similar algorithm for the nodal transport method in [124], again for an SN angular dis-
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cretisation and with error of the scalar flux measured in the L2-norm. In [34] Kanschat

applies a DWR method to obtain a mesh refinement algorithm for radiative transfer

problems in astrophysics. In [125] Lathouwers employed a DWR approach to develop

an adaptive spatial mesh refinement algorithm for the neutron transport source prob-

lem, controlling the error in a variety of functionals of practical interest. Furthermore,

in [126] Lathouwers employed a DWR method, similar to the one derived in the next

section, to control the spatial contribution to the error in the keff-eigenvalue, as well as

developing an adaptive mesh refinement algorithm in the spatial variables.

Finally, in [65], Merton et al. employed an analysis based on a Taylor series expan-

sion of the residual functional in order to obtain a spatial correction to the computed

primal eigenvalue. Their error recovery formula utilises a convolution of the primal

residual with a higher order dual eigenpair computed on the same spatial mesh, this

is then subtracted from the computed primal eigenvalue. It was shown to accelerate

convergence of the eigenvalue for both the neutron diffusion equation as well as the

full neutron transport equation.

We remark that until now there has been very little attention devoted to a posteriori

error estimation for the full space-angle discretisation of the neutron transport prob-

lem. Moreover, the work presented in this chapter represents the first attempt to de-

velop hp-adaptive methods for neutron transport problems. In the following section

we derive an error representation formula which provides a computable estimate of

the error in the keff-eigenvalue. We then proceed to consider projections between finite

element spaces in order to quantify the relative contribution to the error in the eigen-

value from each of the spatial and angular discretisations. We conclude the chapter by

considering adaptive mesh refinement algorithms in both space and angle, as well as

an hp-refinement algorithm.

4.2 An a posteriori error estimator for criticality computations

In this section we present a computable a posteriori error representation formula for the

DG approximation of neutron transport criticality problems, which is derived in the

book by Bangerth and Rannacher, [117]. In order to derive the error representation

formula we first write equation (3.2.14) in terms of the bilinear forms (T − S) (·, ·) and
F(·, ·). Here, (T − S) (·, ·) contains terms for the streaming, absorption, scattering and
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boundary conditions and is defined by

(T − S) (ψh, vh) = ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS
−ψh(r,Ω)Ω · ∇vh(r,Ω) dr dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS\Γ
H(ψ+

h (r,Ω),ψ−h (r,Ω), nκS ,Ω)v+h (r,Ω) ds dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS∩Γ+

(Ω · nκS )ψh(r,Ω)vh(r,Ω) ds dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

κS
Σt(r)ψh(r,Ω)vh(r,Ω) dr dΩ

+ ∑
κA∈TA

∑
κS∈TS

∫

κA

∫

∂κS∩Γ−
(Ω · nκS )ĝ(r,Ω)vh(r,Ω) ds dΩ

− ∑
κS∈TS

∫

κS

Σs(r)

4π

(

∑
κA∈TA

∫

κA
ψh(r,Ω) dΩ

)(

∑
κA ′∈TA

∫

κA ′
vh(r,Ω

′) dΩ′
)

dr.

(4.2.1)

The fission terms are given by,

F(ψh, vh) = ∑
κS∈TS

∫

κS

νΣ f (r)

4π

(

∑
κA∈TA

∫

κA
ψh(r,Ω) dΩ

)(

∑
κA
′∈TA

∫

κA
′
vh(r,Ω

′) dΩ′
)

dr. (4.2.2)

With this notation, the DG approximation for the monoenergetic neutron transport

keff-eigenvalue problemwith isotropic scattering is given by: find (keff,h,ψh) ∈ R×V p,q
h

such that,

keff,h (T − S) (ψh, vh) = F(ψh, vh) + kveff,h(1− C(ψh)) (4.2.3)

for all (kveff,h, vh) ∈ R × V p,q
h . Here we have introduced the nonlinear functional, C(·),

which is chosen so that C(ψ) = C(ψh) = 1, and an analogue to the eigenvalue for

the test function, kveff,h, which will become the eigenvalue for the dual problem. We

note that C(·) may be chosen to be any nonlinear functional, up to a scaling, such that

C(ψh) 6= 0 and C(ψ) 6= 0. For the present numerical implementation we take the

value of C(ψh) to be the same as ‖ψ‖2, where ψ is the vector of coefficients of the basis

functions of ψh, as defined in Chapter 3.

Writing vh = (kveff,h, vh) and the DG solution eigenpair as ψ
h
= (k

ψ
eff,h,ψh), where k

ψ
eff,h =

keff,h, we introduce the semilinear functional

N
(

ψ
h
, vh

)

= k
ψ
eff,h (T − S) (ψh, vh)− F(ψh, vh) + kveff,h(C(ψh)− 1). (4.2.4)

Thereby, the primal DG finite element problem may be written in the following equiv-

alent form: find ψ
h
∈ R×V p,q

h such that,

N
(

ψ
h
, vh

)

= 0 (4.2.5)
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for all vh ∈ R×V p,q
h .

If the analytical eigenpair is given by ψ = (k
ψ
eff,ψ) and if the eigenfunction ψ is suffi-

ciently smooth, then the consistency property of the numerical flux implies that

N
(

ψ, vh

)

= 0, (4.2.6)

for all vh ∈ R× V p,q
h . The Galerkin orthogonality property for the DG method defined

by this weak problem is expressed as follows

N
(

ψ, vh

)

−N
(

ψ
h
, vh

)

= 0 (4.2.7)

for all vh ∈ R×V p,q
h .

Before we consider the a posteriori error estimator for the critical eigenvalue, we first

outline the general framework for deriving a dual weighted residual (DWR) error rep-

resentation formula for some target functional, J(·), of physical interest. Assuming J(·)
is differentiable we define the mean value linearisation of J(·) between ψ and ψ

h
by

J
(

ψ,ψ
h
;ψ− ψ

h

)

= J
(

ψ
)

− J
(

ψ
h

)

=
∫ 1

0
J′
[

χψ + (1− χ)ψ
h

] (

ψ− ψ
h

)

dχ,
(4.2.8)

where J′[w](·) denotes the Frèchet derivative evaluated at some w ∈ R × V , where

V ⊃ V p,q
h is a suitably chosen space. Similarly, we write the mean value linearisation of

the semilinear functional N (·, ·) as

M
(

ψ,ψ
h
;ψ− ψ

h
, v
)

= N
(

ψ, v
)

−N
(

ψ
h
, v
)

=
∫ 1

0
N ′
[

χψ + (1− χ)ψ
h

] (

ψ− ψ
h
, v
)

dχ,
(4.2.9)

for all v ∈ R× V , where N ′[w](·, v) is the Frèchet derivative in the first argument for

some fixed v ∈ R×V , evaluated at w ∈ R×V . We define the formal dual problem as:

find z ∈ R× V such that

M
(

ψ,ψ
h
; v, z

)

= J
(

ψ,ψ
h
; v
)

(4.2.10)

for all v ∈ R×V .

Then the error in J(·) is given by

J
(

ψ
)

− J
(

ψ
h

)

= J
(

ψ,ψ
h
;ψ− ψ

h

)

(4.2.11)

=M
(

ψ,ψ
h
;ψ− ψ

h
, z
)

(4.2.12)

= N
(

ψ, z
)

−N
(

ψ
h
, z
)

. (4.2.13)
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Given zh ∈ R×V p,q
h , exploiting Galerkin orthogonality we obtain

J
(

ψ
)

− J
(

ψ
h

)

= N
(

ψ, z− zh

)

−N
(

ψ
h
, z− zh

)

. (4.2.14)

Employing the consistency property of the DG method we obtain the following error

representation formula

J
(

ψ
)

− J
(

ψ
h

)

= −N
(

ψ
h
, z− zh

)

(4.2.15)

for all zh ∈ R×V p,q
h . To obtain an error representation formula for k

ψ
eff,h we set

J
(

ψ
)

= k
ψ
effC (ψ) . (4.2.16)

Then the error in J(·) between the true solution and the DG approximation is given by

J
(

ψ
)

− J
(

ψ
h

)

= k
ψ
effC (ψ)− k

ψ
eff,hC (ψh) = k

ψ
eff − k

ψ
eff,h. (4.2.17)

Assuming that J(·) is sufficiently smooth around ψ, then for small ψ− ψ
h
we can make

the following approximation

J
(

ψ,ψ
h
;ψ− ψ

h

)

≈ J′
[

ψ
] (

ψ− ψ
h

)

. (4.2.18)

Analogously assuming thatN (·, ·) is sufficiently smooth, then for small ψ− ψ
h
we can

make the following approximation at ψ

M
(

ψ,ψ
h
;ψ− ψ

h
, v
)

≈ N ′
[

ψ
] (

ψ− ψ
h
, v
)

, (4.2.19)

for all v ∈ R× V . Then, in place of the formal dual problem (4.2.10), we consider the

following approximate dual problem: find z ∈ R×V such that

N ′
[

ψ
]

(v, z) = J′
[

ψ
]

(v) , (4.2.20)

for all v ∈ R × V . We note that the z considered here is not the same as the z from

the formal dual problem, however the same symbol is employed for notational conve-

nience. By differentiating J(·) and N (·), (4.2.20) may be written in the following form:

find z ∈ R× V such that

kveffC(ψ) + k
ψ
effC

′[ψ](v) = kveff(T − S)(ψ, z) + k
ψ
eff(T − S)(v, z)− F(v, z) + kzeffC

′[ψ](v)

(4.2.21)

for all v ∈ R × V . If the dual eigenfunction z is normalised so that (T − S)(ψ, z) =

C(ψ) = 1 then (4.2.21) may be written in the following equivalent form: find z ∈ R×V
such that

k
ψ
effC

′[ψ](v) = k
ψ
eff(T− S)(v, z)− F(v, z) + kzeffC

′[ψ](v). (4.2.22)
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for all v ∈ R × V . Since F(·, ·) is symmetric, we note that kzeff = k
ψ
eff. Thereby, the

approximate dual eigenpair satisfies: find z ∈ R× V such that

F(v, z) = kzeff(T − S)(v, z), (4.2.23)

for all v ∈ V . We may now write down our error representation formula for the primal

keff-eigenvalue as

k
ψ
eff − k

ψ
eff,h ≈ −N

(

ψ
h
, z
)

. (4.2.24)

This formula requires knowledge of the adjoint eigenfunction to the continuous eigen-

problem (4.2.23). As this will not be known in general we are required to compute a

numerical approximation ẑ ∈ V p̂,q̂

ĥ
, where V p̂,q̂

ĥ
is the space-angle finite element space

over the mesh T̂ of granularity ĥwith polynomials of order p̂ and q̂ in space and angle,

respectively. Notice that Galerkin orthogonality necessitates that ẑ /∈ V p,q
h , otherwise

the error representation formula will evaluate identically to zero. Therefore we com-

pute an approximation to z with T̂ = T , p̂ = p + 1 and q̂ = q + 1, i.e. we seek the

solution to the following adjoint finite element problem: find ẑ ∈ R × V p+1,q+1
h such

that

F(vh, ẑ) = kẑeff(T − S)(vh, ẑ), (4.2.25)

for all vh ∈ V p+1,q+1
h .

We may write (4.2.25) in matrix form by considering the set of N basis functions,
{

ξ j
}

,

of the finite element space V p+1,q+1
h , where each ξ j is defined as in Section 3.2.1. Then

ẑ ∈ V p+1,q+1
h is determined by a vector z ∈ R

N , where

ẑ (r,Ω) =
N

∑
j=1

z [j] ξ (r,Ω) . (4.2.26)

The dual eigenpair can be computed as the solution to: find z ∈ R
N and kẑeff ∈ R such

that

kẑeff (T− S)⊤ z = F⊤z, (4.2.27)

where T, S and F are defined as in Section 3.2.1. We remark that, by replacing T, S,

F and T−1 by T⊤, S⊤, F⊤ and T−⊤, respectively, this discrete approximate dual eigen-

problem may be solved by the same parallel Krylov subspace based method that was

developed for the primal problem in Section 3.2.4. Indeed the fact that this solution

algorithm was shown to be robust when raising the order of polynomial approxima-

tion in the finite element space is crucial for the efficient implementation of the mesh

adaptation algorithms presented herein.
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Utilising the approximate dual eigenpair, the computable error representation formula

for the multiplicative eigenvalue in neutron transport criticality computations is given

by

k
ψ
eff − k

ψ
eff,h ≈ −N

(

ψ
h
, ẑ− zh

)

, (4.2.28)

for all zh ∈ R×V p,q
h .

Note that this formula cannot be rearranged to provide a correction for the primal

DG eigenvalue, as is the strategy of Merton et al., in [65]. Computing an equivalent

correction for the error representation formula considered here leads to a corrected

primal eigenvalue which is precisely the same as the computed dual eigenvalue kẑeff.

We see this clearly by writing the above formula as

k
ψ
eff ≈ k

ψ
eff,h −N

(

ψ
h
, ẑ− zh

)

(4.2.29)

= k
ψ
eff,h − k

ψ
eff,h (T− S) (ψh, ẑ) + F(ψh, ẑ)− kẑeff(C(ψh)− 1). (4.2.30)

Utilising the fact that C(ψh) = (T − S) (ψh, ẑ) = 1, this becomes

k
ψ
eff ≈ k

ψ
eff,h − k

ψ
eff,h + F(ψh, ẑ) (4.2.31)

= kẑeff (T− S) (ψh, ẑ) (4.2.32)

= kẑeff, (4.2.33)

from the definition of the computed dual problem, 4.2.25, and the fact that ψh ∈ V p,q
h ⊂

V p+1,q+1
h .

An analogous error representation formula can be computed for the error in λ
ψ
h = 1

k
ψ
eff,h

if we consider the following semilinear functional in place of N (·, ·):

Nλ

(

ψ
h
, vh

)

= (T − S) (ψh, vh)−
1

k
ψ
eff,h

F(ψh, vh) +
1

kveff,h
(1− C(ψh)), (4.2.34)

with the following functional,

Jλ

(

ψ
)

=
1

k
ψ
eff

C (ψ) . (4.2.35)

In this case, we then normalise the dual eigenvalue so that F(ψ, z) = 1. Effectivities

based on the error representation formulae for both the primal eigenvalue and its re-

ciprocal are computed for all test problems.
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4.3 h-refinement

In this section we employ the error representation formulas derived in the previous

section to develop an adaptive mesh refinement (AMR) algorithm for keff-eigenvalue

computations. At each iteration of this mesh refinement algorithm we seek to reduce

the total error in the DG approximation to the critical eigenvalue by refining the finite

element mesh T in those parts of the domain that contribute the most error to the com-

puted eigenvalue. As T results from taking a tensor product between a mesh defined

over the spatial domain TS and a mesh defined over the angular domain TA, any mesh

refinement algorithm requires a method for quantifying the relative contribution to the

error from the spatial and angular parts of the problem in order to decide which to

refine.

4.3.1 Space-angle error splitting

We describe a method for writing our error representation formula as a sum between

the contributions from the spatial and angular variables respectively. First we write

(4.2.15) in terms of a residual function Res(·, ·),

J
(

ψ
)

− J
(

ψ
h

)

= −N
(

ψ
h
, z− zh

)

(4.3.1)

= −kψ
eff,h (T − S) (ψh, z− zh) + F (ψh, z− zh) (4.3.2)

≡ Res(ψ
h
, z− zh). (4.3.3)

We write ΠS and ΠA to denote the L2-projection operators onto the spatial and angular

finite element spaces, S
p
S(TS, FTS) and S

q
A(TA, FTA), respectively, such that zh = ΠSΠAz.

Then we have

J
(

ψ
)

− J
(

ψ
h

)

= Res
(

ψ
h
, z−ΠSΠAz

)

(4.3.4)

= Res
(

ψ
h
, z−ΠSz+ ΠSz−ΠSΠAz

)

(4.3.5)

= Res
(

ψ
h
, z−ΠSz

)

+ Res
(

ψ
h
,ΠS (z−ΠAz)

)

. (4.3.6)

This provides a splitting between the spatial and angular parts of the discretisation

error, respectively. We can then write our computable error representation formula

(4.2.28) as,

k
ψ
eff − k

ψ
eff,h ≈ ηS + ηA, (4.3.7)
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where the spatial error indicator is defined as

ηS = Res
(

ψ
h
, ẑ−ΠS ẑ

)

, (4.3.8)

and the angular error indicator is given by

ηA = Res
(

ψ
h
,ΠS (ẑ−ΠAẑ)

)

. (4.3.9)

Note that the angular projection does not need to be computed explicitly, since ηA =

Res
(

ψ
h
,ΠS ẑ

)

due to Galerkin orthogonality. Furthermore we define the elementwise

spatial error indicators as,

ηκS = Res
(

ψ
h
, ẑ−ΠS ẑ

)∣

∣

∣

κS
(4.3.10)

for all κS ∈ TS, and the elementwise angular error indicators as

ηκA
= Res

(

ψ
h
,ΠS(ẑ−ΠAẑ)

)∣

∣

∣

κA

(4.3.11)

for all κA ∈ TA. In order to verify the accuracy of our a posteriori error estimator we in-

troduce the effectivity index Ieff, which is the ratio between the true error in the eigen-

value and the value of the computed error representation formula, i.e.,

Ieff =
Res

(

ψ
h
, ẑ
)

k
ψ
eff − k

ψ
eff,h

. (4.3.12)

An analogous definition holds when the error representation formula is computed for

the reciprocal of k
ψ
eff.

4.3.2 Algorithm development

The following adaptive algorithms considered for keff-eigenvalue calculations follow

the same basic structure. We begin with initial coarse spatial and angular meshes, then

at each iteration we compute the primal and dual eigenpairs, ψ
h
and ẑ, respectively.

Thereby Res
(

ψ
h
, ẑ
)

, ηS, ηA and all of the elementwise error indicators, ηκS and ηκS

may be computed. If
∣

∣

∣
Res

(

ψ
h
, ẑ
)∣

∣

∣
is less than a prescribed convergence tolerance the

algorithm terminates. Otherwise, the spatial and angular meshes and finite element

spaces undergo refinement (and/or derefinement) based on the computed error indi-

cators and the next iteration is then performed.
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Figure 4.1: The process of isotropic refinement divides an element into four daughter

elements by introducing a newmesh node at the centre of each face. This is illustrated

for rectangular and triangular elements.

The primary difference between the algorithms is how the error indicators are em-

ployed to determine which elements in the spatial and angular meshes are refined. We

consider two possible strategies for deciding which of the elements will be refined and

which will be derefined. The first strategy is, at each iteration, to refine a proportion

of the spatial elements where |ηκS | is large and a proportion of the angular elements

where |ηκA
| is large. These proportions are determined by dividing the ‘total’ amount

of refinement αFF, between the spatial and angular meshes. In particular, writing

αFF
S =

αFF |ηS|
|ηS|+ |ηA|

, (4.3.13)

and

αFF
A =

αFF |ηA|
|ηS|+ |ηA|

, (4.3.14)

then we refine αFF
S percent of the spatial elements and αFF

A percent of the angular ele-

ments. The elements to refine are selected as those that have the largest elementwise

error indicators. When an element in TS or TA is marked for refinement it is divided

into four sub-elements as illustrated in Figure 4.1. We now describe the first algorithm.

Algorithm 4.3.1. h-refinement algorithm 1
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The following algorithm employs a DWR based error estimator to compute an approximation

to the multiplicative eigenvalue in neutron transport criticality problems. The order of approx-

imation in space and angle, p and q, respectively, the initial spatial and angular meshes, TS1 and
TA1, respectively, and the total percentage to refine αFF are taken as input.

for i = 1, · · · ,maximum number of meshes do

Compute ψ
h
, ẑ and Res

(

ψ
h
, ẑ
)

if
∣

∣

∣Res
(

ψ
h
, ẑ
)∣

∣

∣ < tol then

Exit loop

end if

Compute |ηκS | for all κS ∈ TSi

Compute |ηκA
| for all κA ∈ TAi

Compute ηS, ηA, αFF
S and αFF

A

Mark αFF
S percent of κS ∈ TSi with the largest |ηκS | for refinement

Mark αFF
A percent of κA ∈ TAi with the largest |ηκA

| for refinement

Build TSi+1 by refining marked elements in TSi

Build TAi+1 by refining marked elements in TAi

end for

Output solution

In order to study the performance of this algorithm, tests were run on the benchmark

problem published by Maire and Talay in [127]. It had previously been proposed in a

technical report for the International Atomic Energy Agency [128]. The spatial geom-

etry is given in Figure 4.2 and incorporates a rectangular geometry divided into five

different materials. At the centre of the domain are four adjacent rectangles of different

materials, two of which are fissile. Surrounding these is an insulating layer of uniform

thickness. The nuclear cross sections for the five regions in the spatial domain are given

in Table A.1. The analytical value of this benchmark is not known, however the most

accurate value computed by Maire and Talay is 1.00894. They also quoted a value of

1.00890 from Xavier Warin at EDF and the thesis of Baker suggests a value of 1.00888.

Following our benchmarking of this problem we take a value of 1.00887 to be the true

solution to five decimal places. Figure 4.3 contains plots of the scalar flux and the space

averaged flux for the dominant eigenfunction, which provide a visualisation of the spa-

tial and angular parts of the solution, respectively. The scalar flux is largest in Region

1, where the fissile material with the highest value of the fission cross section is located,
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Region 1 Region 2

Region 3Region 4

Region 5

18 cm 30 cm 30 cm

18 cm

18 cm

25 cm

25 cm

18 cm

Figure 4.2: The domain for theMaire and Talay test problem. Thematerial coefficients

for the five regions marked here are given in Table A.1.

with relatively few neutrons elsewhere in the spatial domain. For this problem there

is much more structure in the spatial solution than the angular solution. We note that,

though there appears to be some structure to the angular part of the solution, the space

averaged flux varies by no more than 1.08% from the mean, hence the angular solution

varies very little throughout S2, as expected for a problem with isotropic scattering.

Table 4.1 contains the values for the critical eigenvalues computed for a series of uni-

formly refinedmeshes in space and angle at p = q = 0, 1 and 2. Note the rapid increase

of the number of degrees of freedom required when uniformly refining the spatial and

angular meshes. We shall see that the adaptive mesh refinement algorithms presented

herein yield much more accurate computed eigenvalues, with many fewer degrees of

freedom.

Algorithm 4.3.1 was applied to this problem with αFF set to 25% and with orders of

approximation chosen in space and angle to be p = 1 and q = 0, respectively. Table 4.2

contains the computed eigenvalues and effectivity indices at each iteration, together

with the number of degrees of freedom in the primal and dual problems, respectively.

We note that the computed effectivities are very close to one, which confirms the accu-
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p = q = 0 p = q = 1 p = q = 2

Mesh N keff,h N keff,h N keff,h

1 256 0.7962051 4 096 0.9486699 20 736 1.007130

2 4 096 0.8351545 65 536 0.9993939 331 776 1.008381

3 65 536 0.8870401 1 048 576 1.006814 - -

4 1 048 576 0.9334042 - - - -

Table 4.1: Eigenvalues computed for the Maire and Talay benchmark under uniform

refinement.

(a) (b)

Figure 4.3: The critical eigenfunction for the Maire and Talay benchmark problem.

4.3a is an elevated plot of the scalar flux. 4.3b is a polar plot of the space averaged flux

with the polar coordinate plotted radially.
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Figure 4.4: h-refinement data from algorithm 4.3.1 for the Maire and Talay benchmark

problem with p = 1, q = 0 in the primal problem.

racy of the computed error representation formula. Figure 4.4 contains a log-log plot

of the absolute value of the error in the primal and dual eigenvalues against the size

of the linear systems. We remark that the eigenvalues computed achieve significantly

improved accuracy, for fewer degrees of freedom, compared to the values computed

under uniform refinement. Furthermore, we observe that the primal eigenvalue does

not converge monotonically to the computed true value, k
ψ
eff. Indeed, k

ψ
eff,h begins be-

neath the true value before overshooting it and then settling down towards the true

value. From the spatial and angular error indicators we see that this is due to persistent

error in the angular variables. Table 4.3 presents the values of the spatial and angular

contributions to the error estimates, denoted ηS and ηA respectively, and the refinement

percentages for this problem. The number of spatial and angular degrees of freedom in

each energy group are denoted NS and NA, respectively, where the N = G× NS × NA,

and G = 1, as the present problem is monoenergetic. Here, we observe that despite sig-

nificant refinement taking place in the angular mesh following the second, third and

fourth iterations, |ηA| remains relatively large.

Figure 4.5 contains polar plots of the upper hemisphere of the first six angular meshes,

with the polar coordinate plotted radially. Notice that the sixth mesh is the same as the
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Primal Dual

Mesh Ieff for
1
keff

Ieff for keff N k
ψ
eff,h N kẑeff

1 0.90482 0.90199 2880 0.9766 23040 1.0057

2 0.70898 0.70853 4608 1.0066 36864 1.0082

3 1.1605 1.1601 9405 1.0112 75240 1.0085

4 1.0358 1.0357 19152 1.0122 153216 1.0088

5 1.0006 1.0006 37152 1.0111 297216 1.0089

6 1.0096 1.0096 71424 1.0096 571392 1.0089

7 1.0000 1.0000 139590 1.0097 1116720 1.0089

Table 4.2: The eigenvalues and effectivities for the Maire and Talay benchmark with

p = 1, q = 0 in the primal problem under adaptive Algorithm 4.3.1.

Spatial Angular

Mesh NS ηS αFFS NA ηA αFFA

1 180 0.035158 21.5 16 -0.005722 3.5

2 288 0.008243 13.95 16 -0.006527 11.05

3 495 0.003638 9.13 19 -0.006319 15.87

4 684 0.001948 6.67 28 -0.00535 18.33

5 864 0.001498 7.16 43 -0.003734 17.84

6 1116 0.001072 9.27 64 -0.001817 15.73

7 1485 0.000677 7.93 94 -0.001457 17.07

Table 4.3: The error indicators and proportion of elements refined for each iteration

of adaptive Algorithm 4.3.1 for the problem in Table 4.2.
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(a) Angular mesh 1 (b) Angular mesh 2

(c) Angular mesh 3 (d) Angular mesh 4

(e)Angular mesh 5 (f) Angular mesh 6

Figure 4.5: A series of angular meshes under fixed fraction refinement for the Maire

and Talay benchmark problem, p = 1, q = 0 approximation.
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initial mesh following a uniform refinement. By comparing the values of ηA with these

meshes we see that the greatest reduction in the angular error occurs when moving

from the fifth to the sixth mesh. This suggests that the error in the angular variables is

evenly distributed throughout S2. Analysis of the values of the elementwise angular

error indicators confirm this hypothesis. The mean and standard deviation of all of the

local error indicators, |ηκA
| and |ηκS | were computed at each iteration. It was observed

that, for every angular mesh, except mesh 5, the extreme values of |ηκA
| were within

two standard deviations of the mean. For angular mesh 5 all error indicators were

within 2.5 standard deviations of the mean. This contrasts with the elementwise spa-

tial error indicators, for which the extreme values were at least 3.75 standard deviations

from the mean for all meshes. Similar analyses were conducted for the elementwise er-

ror indicators for a variety of benchmark problems and analogous results were found.

Indeed this is expected for all of the problems considered in this thesis, since for prob-

lems with isotropic scattering the neutrons are scattered with equal likelihood in all

directions. This leads to very smooth solutions in the angular domain and therefore we

expect the error to be evenly distributed throughout S2.

We note that the improved accuracy obtained when using regular angular meshes in

the present order 0 DG method supports the use of the ‘equal weight’ quadrature

schemes, as is common in the discrete ordinates literature, see [48]. However, con-

sidering the data from the second, third, fourth and fifth angular meshes in Figure 4.4

we note that while the error stays relatively constant in the primal problem, the dual

eigenvalue benefits from a significant improvement in its accuracy despite the use of

irregular angular meshes. This suggests that regular meshes in the angular domain

may not be necessary for higher order DG angular discretisations. This could make

high order DG methods in angle useful for problems with highly structured angular

solutions, such as problems with anisotropic scattering.

Figures 4.6 and 4.7 plot the spatial meshes that were computed. As the method pro-

gresses, the algorithm targets the region in the spatial domain where the scalar flux

of the dominant eigenvector takes its largest values (see Figure 4.3). We observe that

the area targeted is centred on Region 1, the region of fissile material at the centre of

the spike in the scalar flux. Furthermore, we note that there is very little refinement in

Region 3, where the remainder of the fissile material is located. This contrasts with the

mesh that would be obtained by utilising a mesh design-heuristic that was based on

considering the material cross sections.
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(a) Spatial mesh 1 (b) Spatial mesh 2

(c) Spatial mesh 3 (d) Spatial mesh 4

Figure 4.6: A series of spatial meshes under fixed fraction refinement for the Maire

and Talay benchmark problem, p = 1, q = 0 approximation. We note with reference

to Figure 4.3a that the algorithm quickly identifies the region in the domain with the

highest values of the scalar flux as the area which contains the most error.
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(a) Spatial mesh 5 (b) Spatial mesh 6

(c) Spatial mesh 7

Figure 4.7: A series of spatial meshes under fixed fraction refinement for the Maire

and Talay benchmark problem, p = 1, q = 0 approximation.
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These results prompt us to suggest an improvement to the h-refinement algorithm 4.3.1:

we propose an adaptive algorithm that decides at each iteration whether to perform

refinement in space or angle based on the relative absolute size of |ηS| and |ηA|. If

spatial refinement is selected then the algorithm refines a fixed fraction of the spatial

elements. If angular refinement is selected then we move to the next angular mesh in a

predetermined series of uniform angular meshes. The angular meshes will be based on

an equal weighted rectangular partition of S2. The first mesh TA1, will have an element

in each principal triangle of the unit hemisphere. Each further angular mesh will have

four evenly sized angular elements for each element in the previous mesh. The new

algorithm is as follows.

Algorithm 4.3.2. h-refinement algorithm 2

The following algorithm employs a DWR based error estimator to compute an approximation

to the multiplicative eigenvalue in neutron transport criticality problems. The order of ap-

proximation in space and angle, p and q, respectively, the initial spatial mesh, TS1, the refine
percentage for the spatial mesh, αFF, and a series of uniform angular meshes TAi, are taken as

input.

for i = 1, · · · ,maximum number of meshes do

Compute ψ
h
, ẑ and Res

(

ψ
h
, ẑ
)

if
∣

∣

∣
Res

(

ψ
h
, ẑ
)∣

∣

∣
< tol then

Exit loop

end if

Compute ηS and ηA

if |ηS| ≥ |ηA| then
Compute |ηκS | for all κS ∈ TSi

Mark αFF percent of κS ∈ TSi with the largest |ηκS | for refinement

Build TSi+1 by refining marked elements in TSi

Set TAi+1 as TAi

end if

if |ηS| < |ηA| then
Move to mesh TAi+1

Set TSi+1 as TSi

end if

end for

Output solution

109



CHAPTER 4: ADAPTIVE ALGORITHMS FOR NEUTRON TRANSPORT CRITICALITY

PROBLEMS

2.5 3 3.5 4 4.5 5 5.5 6 6.5
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

log10 (N)

Primal eigenvalue, k
ψ
eff,h

Dual eigenvalue, kẑeff
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Figure 4.8: h-refinement data from algorithm 4.3.2 for the Maire and Talay benchmark

problem with p = 1, q = 0 in the primal problem.

This algorithm was tested on the Maire and Talay benchmark with the same initial

spatial mesh as for the previous set and the fixed fraction refinement percentage in

the spatial variables was chosen to be αFF = 25%. The computed eigenvalues and

effectivities are given in Tables 4.4 and 4.5. Figure 4.8 contains a log-log plot of the

absolute values of the error in the eigenvalue against the number of degrees of freedom.

We note a much more accurate value of the final primal eigenvalue compared to the

previous strategy. Also note that each time the algorithm decides to refine in either

space or angle, there is a significant reduction in either ηS or ηA, respectively, at the

next iteration. This contrasts with the previous algorithmwhere refinement was taking

place in the angular variables without a significant reduction in the angular error.

Finally, this set of results illustrates an important property of the type of error control

employed here. As we are controlling the error in a functional, as opposed to a norm,

we do not expect that the error will reduce monotonically under refinement. The non-

monotonic convergence of general target functionals is expected and observed bymany

other authors. Since functionals are not metrics, we can have positive and negative

contributions to the error in different parts of the computational domain. In particu-

lar, consider the values of ηS and ηA for the third and fourth mesh in Table 4.5 and
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Primal Dual

Mesh Ieff for
1
keff

Ieff for keff N k
ψ
eff,h N kẑeff

1 0.89044 0.88855 720 0.98963 5760 1.0067

2 0.96111 0.9616 1296 1.0224 10368 1.0094

3 0.64124 0.64093 5184 1.0075 41472 1.0084

4 1.025 1.0249 9648 1.0131 77184 1.0087

5 0.66214 0.66202 38592 1.0083 308736 1.0087

6 0.99527 0.99528 76032 1.0099 608256 1.0089

7 1.0000 1.0000 304128 1.0084 2433024 1.0088

Table 4.4: The eigenvalues and effectivities for the Maire and Talay benchmark with

p = 1, q = 0 in the primal problem under adaptive Algorithm 4.3.2.

Spatial Angular

Mesh NS ηS NA ηA Refine space Refine angle

1 180 0.034697 4 -0.017625 .TRUE. .FALSE.

2 324 0.007316 4 -0.020305 .FALSE. .TRUE.

3 324 0.007396 16 -0.006538 .TRUE. .FALSE.

4 603 0.002321 16 -0.006691 .FALSE. .TRUE.

5 603 0.002317 64 -0.001969 .TRUE. .FALSE.

6 1188 0.000967 64 -0.001981 .FALSE. .TRUE.

7 1188 0.000966 256 -0.000563 .TRUE. .FALSE.

Table 4.5: The spatial and angular error indicators for each iteration of adaptive Al-

gorithm 4.3.2 for the problem in Table 4.4.

compare them with the primal eigenvalues from Table 4.4. For the third mesh we have

ηA ≈ −ηS, and as a consequence the computed eigenvalue is accurate to within 0.0013

of the true value. When the problem then undergoes spatial refinement, the spatial

error is reduced and contribution to the error from the spatial and angular parts of the

problem no longer cancel each other out. The result is that the error as measured by the

eigenvalue increases to 0.0042. Note also how this affects the effectivity index. When

there is significant error cancelling, as for meshes 3 and 5, our error representation for-

mula slightly underestimates the total error compared to the other meshes. Despite

this, the computed effectivities remain close to one, again confirming the quality of the

computed error representation formula.

In order to choose which algorithm to use for our remaining computations we consider

the total time required to compute the primal eigenvalue, compared to the error. Both

sets of computations were completed on the same server and were both allocated 8
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Figure 4.9: Cumulative time to compute the primal eigenvalues under h-refinement

for Algorithm 4.3.1 and Algorithm 4.3.2. Data from the Maire and Talay benchmark

problem with p = 1, q = 0 in the primal problem. Computed on 8 OpenMP threads.

OpenMP threads. Figure 4.9 plots the series of primal eigenvalues against the total time

that the code had been running when they were computed. We note that Algorithm

4.3.2 computes its values considerably quicker than Algorithm 4.3.1. Consequently,

all further h-refinement computations in this thesis will be computed with Algorithm

4.3.2. We remark that if we compare the dual eigenvalues computed by either algo-

rithm, it is the first algorithm that achieves the more accurate results. However, as our

error representation formula was derived for the error in the primal eigenvalue, it is by

comparing k
ψ
eff,h that we obtain the most pertinent comparison.

4.4 An hp-refinement algorithm

In this section we present an hp-adaptive refinement algorithm for the keff-eigenvalue

problem. The exploitation of hp-methods are motivated by the fact that when the un-

derlying solution is sufficiently smooth, or indeed analytic, p-adaptivity can achieve

convergence which is exponential with respect to the number of degrees of freedom in

the finite element space. However, for many problems of practical interest the solution
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is only piecewise analytic and consequently a combination of h- and p-refinement is

required in order to accurately represent the solution. An hp-adaptive algorithm pro-

vides the flexibility to select the type of refinement most appropriate to each region in

the domain, thus recovering exponential convergence even for non smooth problems

whose solution is piecewise analytic.

We choose hp-refinement for the spatial part of the neutron transport equation because

we need to treat irregularly shaped domains featuring discontinuities in the nuclear

cross sections. Hence we expect that the underlying solutions will not be analytic ev-

erywhere in the domain. The hp-version of the DGFEM was first introduced for linear

hyperbolic problems by Bey and Ogen in [13]. They proved a priori and a posteriori

error estimates for their method that reduce to the optimal O(hp+ 1
2 ) estimates for the

h-DGFEM when p is fixed, with respect to a mesh dependent norm. Houston, Schwab

and Süli, in [11], extended this analysis to obtain bounds that are also optimal in p, and

derived an exponential convergence estimate for problems with an elementwise ana-

lytic solution. To the author’s knowledge, this is the first attempt at employing hp-finite

element methods to criticality problems in neutron transport. As we consider problems

with isotropic scattering we expect the analytical solutions in the angular domain to be

extremely smooth; thereby we employ q-refinement in angle.

4.4.1 hp-finite element space

We define the hp-finite element space in which we will seek our DG solutions. We

utilise the spatial finite element mesh defined in Chapter 3, TS, as well as the polyno-

mial spaces, Pp andQp, and the spatial element maps to the canonical elements, FκS(·).
Let

p = { pκS | κS ∈ TS} (4.4.1)

be a polynomial degree vector on TS. Then the discontinuous spatial hp-finite element

space is

S
p
S(TS, FTS) =

{

ψS ∈ L2(D) | ψS|κS ◦ FκS ∈ RpκS

}

, (4.4.2)

where RpκS
= QpκS

if κ̂ = F−1κS
(κS) is a square and RpκS

= PpκS
if κ̂ = F−1κS

(κS) is a

triangle. We note that when the polynomial degrees are uniform, namely when pκS = p

for all κS, then this is the same as the h-adaptive finite element space S
p
S(TS, FTS), which

was defined in the previous chapter.
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We combine this with the angular finite element space S
q
A(TA, FTA), to define the full

space-angle hp-finite element space by

Vp,q
hp = {ψh ∈ L2(D × S2) | ψh = ψS × ψA ,

ψS ∈ S
p
S(TS, FTS) , ψA ∈ S

q
A(TA, FTA)}.

(4.4.3)

Then the hp-DG approximation to the keff-eigenvalue problem is given by: find ψ
hp
∈

R× Vp,q
hp such that

N
(

ψ
hp
, vhp

)

= 0, (4.4.4)

for all vhp ∈ R × Vp,q
hp . We introduce the dual hp-DG space, Vp+1,q+1

hp , where 1 is a

vector of 1s. Then the computable dual hp-DG solution is given by: find (kzeff,hp, zhp) ∈
R× Vp+1,q+1

hp such that

F
(

vhp, zhp
)

= kzeff,hp (T − S)
(

vhp, zhp
)

(4.4.5)

for all vhp ∈ Vp+1,q+1
hp . We compute the error representation formula, as well as spatial,

angular and elementwise error indicators analogously to the case when h-refinement

was employed. Furthermore, we define the scalar flux in the hp framework for the

primal eigenfunction as φψ ∈ S
p
S(TS, FTS), where,

φψ (r) =
∫

S2
ψhp (r,Ω) dΩ, (4.4.6)

and the scalar flux in the hp framework for the dual eigenfunction as φz ∈ S
p+1
S (TS, FTS),

where,

φz (r) =
∫

S2
zhp (r,Ω) dΩ. (4.4.7)

The final ingredient necessary for the hp-refinement algorithm is a decision mecha-

nism for determining whether the spatial elements that are marked for refinement un-

dergo h-refinement, whereby the present element is subdivided into sub-elements, or

p-refinement, where the local finite element space is enriched to a higher order approx-

imation. Several methods for determining the refinement type have been proposed in

the literature, a comparison of which can be found in [129]. For the present imple-

mentation we employ the hp-refinement criterion developed by Houston and Süli in

[130]. This criterion assesses the local smoothness of the underlying solution within

each finite element based on considering the local decay rate of the Legendre coeffi-

cients which comprise the finite element solution in each dimension. This is justified

with reference to the result of Eibner and Melenk, in [131], which states that the decay
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rate of the coefficients of a function expanded in orthogonal polynomials on a triangle

will be exponential if and only if the function is analytic. In particular, for each element

that has been marked for refinement κS, the test of Houston and Süli uses the solution

coefficients to compute an estimate of the size of the domain of analyticity, ϑκS . This

estimate is then compared to a steering parameter ϑ, if ϑκS ≤ ϑ then the local solution

is judged to be locally ‘smooth’, otherwise the local solution is judged to not be locally

‘smooth’.

We utilise this test on the primal and dual scalar fluxes, φψ and φz, respectively, in

order to determine the analyticity of the computed solutions on each spatial element

that has been marked for refinement. If either of φψ or φz is locally ‘smooth’ on an

element κS, then p-refinement will be more effective than h-refinement, since the error

will be expected to decay exponentially as pκS is increased. However, if φψ and φz are

not locally ‘smooth’, then h-refinement will be necessary in order to isolate those areas

in D where the primal and dual solutions are non-‘smooth’ from the ‘smooth’ areas.

In this way we seek to reduce the influence of singularities and discontinuities on the

computed solutions, thereby enhancing the convergence achieved by the p-refinement

in the ‘smooth’ regions.

We propose an algorithm which incorporates an hp-refinement in the spatial domain

whenever the error in the spatial variables exceeds the angular error. As we expect

highly unstructured angular solutions in all of the benchmarks computed in this the-

sis, we select a scheme of uniform q-refinement in the angular variables whenever the

angular error exceeds the spatial error. The hp-refinement algorithm is as follows:

Algorithm 4.4.1. hp-refinement algorithm

The following algorithm employs a DWR based error estimator to compute an approximation to

the multiplicative eigenvalue in neutron transport criticality problems. An angular mesh TA,
an initial spatial mesh, TS1, the spatial refinement percentage, αFF, the hp-steering parameter

ϑ, and initial orders of polynomial approximation in space p1, and angle q1 are taken as input.

for i = 1, · · · ,maximum number of meshes do

Compute ψ
hp
, zhp and Res

(

ψ
hp
, zhp

)

if
∣

∣

∣
Res

(

ψ
hp
, zhp

)∣

∣

∣
< tol then

Exit loop

end if
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Set pi+1 ← pi

Compute ηS and ηA

if |ηS| ≥ |ηA| then
Compute |ηκS | for all κS ∈ TSi

Mark αFF percent of κS ∈ TSi with the largest |ηκS | for refinement

Compute the scalar fluxes, φψ and φz

for κS ∈ TSi do
if κS has been marked for refinement then

Compute ϑ
ψ
κS for φψ|κS

Compute ϑz
κS

for φz|κS
if ϑ

ψ
κS > ϑ and ϑz

κS
> ϑ then

Mark κS for h-refinement

end if

if ϑ
ψ
κS ≤ ϑ or ϑz

κS
≤ ϑ then

Set pκS ← pκS + 1 in pi+1

end if

end if

end for

Build TSi+1 by refining elements marked for h-refinement in TSi

Set qi+1 ← qi

end if

if |ηS| < |ηA| then
Set qi+1 ← qi + 1

Set TSi+1 as TSi

end if

end for

Output solution

This algorithm was tested on the Maire and Talay benchmark problem with the same

initial spatial mesh as for the h-refinement Algorithm 4.3.2. The angular mesh was

selected to be as coarse as possible, with just a single angular element in each of the

four polar triangles in the hemisphere (see Figure 1.1a). αFF was set at 25%, q1 was

set to 0 and p1 was set to 1. The computed eigenvalues and effectivities are given in

Table 4.6. Note the accuracy of the primal eigenvalues, which are considerably more

accurate than those values obtained by previous algorithms. This table also displays
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Primal Dual

Mesh Ieff for
1
keff

Ieff for keff N k
ψ
eff,h N kẑeff

1 0.88959 0.88768 720 0.98963 5760 1.0067

2 0.96627 0.96682 1584 1.0259 11904 1.0094

3 0.86001 0.85958 6336 1.0053 26784 1.0084

4 1.5931 1.5929 10032 1.009 42408 1.0088

5 0.88904 0.88895 22572 1.008 75392 1.0088

6 1.0000 1.0000 39672 1.0086 125312 1.0089

7 - - 60984 1.00883 - -

Table 4.6: The eigenvalues and effectivities for the Maire and Talay benchmark under

the hp-refinement algorithm.

Spatial Angular

Mesh NS ηS NA ηA Refine space Refine angle

1 180 0.034697 4 -0.017625 .TRUE. .FALSE.

2 396 0.004111 4 -0.020627 .FALSE. .TRUE.

3 396 0.004141 16 -0.001048 .TRUE. .FALSE.

4 627 0.000808 16 -0.001068 .FALSE. .TRUE.

5 627 0.000811 36 −4× 10−06 .TRUE. .FALSE.

6 1102 0.000273 36 −4× 10−06 .TRUE. .FALSE.

Table 4.7: The spatial and angular error indicators for each iteration of the hp-

refinement algorithm.

effectivities close to one for most meshes, confirming the quality of the error estimates

given by our error representation formula. However we observe that the effectivities

for mesh 4 show a slight overestimation of the error. We remark that this coincides with

significant error cancelling between the spatial and angular solutions.

Details of the spatial and angular error estimates at each mesh are given in Table 4.7.

The values of ηA demonstrate the benefit of using a higher order finite element method

in the angular variables. Despite using an extremely coarse mesh containing only four

angular elements, we still obtain a very accurate angular solution by using a q = 2

approximation. Indeed, we see the angular error estimate reduced to−4× 10−06 for an

approximation containing only 36 degrees of freedom. Figure 4.10 contains a semi-log

plot of the error in keff against the number of degrees of freedom in the primal finite

element space. In addition to the hp-refinement convergence we plot two sets of results

from Algorithm 4.3.2; the p = 1, q = 0 results from Tables 4.4 and 4.5, and results from
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Figure 4.10: The log of the error in the primal eigenvalue against the number of de-

grees of freedom for the Maire and Talay benchmark problem.

a run with the same initial meshes and a p = 1, q = 1 approximation. We note that the

hp-refinement data achieves the same accuracy as the most accurate primal eigenvalue

computed by the h-refinement algorithm, but with approximately 80% fewer degrees of

freedom required. Furthermore, we note an improvement in the accuracy of more than

an order of magnitude when comparing eigenvalues computed using finite element

spaces with the same number of degrees of freedom.

Though Figure 4.10 only compares the algorithms in terms of the number of degrees of

freedom, we note that the hp-refinement algorithm also outperforms the h-refinement

algorithm both in terms of the total memory required as well as the total CPU time

required. As each of the algorithms was implemented without fully assembling the

matrices, the amount of memory required is dominated by the memory required by

the two Krylov subspace based algorithms. Therefore, as the software that implement

these specify the memory that they need in terms of a multiple of the system size (see
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[98] and [104]), Figure 4.10 also tells us that the hp-refinement algorithm is highly mem-

ory efficient compared to the other two algorithms. Furthermore, we note that the

seven data points obtained by the algorithm took approximately the same amount of

CPU time to compute as the seven data points computed by the p = 1, q = 0 h-

refinement algorithm, despite computing the eigenvalue to a much greater accuracy.

The p = 1, q = 1 h-refinement algorithm took approximately 3 times as much CPU

time as these, and whilst it did achieve more accurate results than the p = 1, q = 0

h-refinement algorithm, it was easily outperformed by the hp-refinement algorithm.

Figures 4.11 and 4.12 contain the seven spatial meshes that were computed, with each

element, κS, coloured to indicate the order of polynomial approximation employed

there, pκS . We note a mixture of h- and p-refinement in the bottom left of the spatial

domain, where the scalar flux is largest. This refined region is centred on Region 4 from

Figure 4.2, where the fissile material with the highest fission cross section is located. We

note that, at the centre of this region, slightly less refinement is required compared to its

edges. Indeed, it is the finite elements close to the material discontinuities that receive

the most refinement. Furthermore, the elements where h-refinement takes place but

p-refinement does not are all close to these material discontinuities. We remark that the

computed solution must manifest a lack of smoothness in these parts of the domain,

and the algorithm is h-refining in order to isolate the non-smooth region from those

regions that exhibit greater regularity.

We note that though we have presented results for both h and hp-refinement in the

spatial variables, we have not studied pure p-refinement in space. The decision not

to study p-refinement independently of hp-refinement was made with reference to the

literature on DG methods for hyperbolic problems, in particular [130] and [11], which

give examples of how the DG solution to hyperbolic equations can become locally non-

smooth in certain areas of the domain. Furthermore we can see in Figure 4.12 an exam-

ple of how the analyticity testing procedure used for the present calculations locates

the parts of the domain where the DG solution is not analytic. If a pure p-refinement

algorithm were used to attempt to reduce the error in these non-smooth regions we

would expect little or no reduction. We might even see the error increasing under re-

finement, whilst at the same time increasing the computational requirements of finding

the solution.
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(a) Spatial mesh and pκS , mesh 1

(b) Iterations 2 and 3

(c) Iterations 4 and 5

pκS = 1 pκS = 2 pκS = 3

Figure 4.11: The polynomial vector pi plotted on the spatial meshes for the Maire and

Talay benchmark under hp-refinement.
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(a) Iteration 6

(b) Iteration 7

pκS = 1 pκS = 2 pκS = 3

Figure 4.12: The polynomial vector pi plotted on the spatial meshes for the Maire and

Talay benchmark under hp-refinement.
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CHAPTER 5

Application to Industrial Problems

In order that we may have full confidence in the discontinuous-Galerkin (DG) neu-

tron transport criticality solver developed in this thesis, it is necessary to compute the

solution to a variety of problems with known solutions. In Chapter 3 we considered a

simple, artificially forced source problem that was solved in order to compute the order

of convergence of the DG method employed. In Chapter 4 we used the monoenergetic

criticality problem of Maire and Talay [127] to develop h- and hp-adaptive algorithms,

finding that our most accurate eigenvalues matched the values of keff quoted in the

literature, up to four decimal places. In this chapter we further verify the code by com-

puting a set of challenging, and industrially relevant, benchmarks, including problems

that incorporate inhomogeneous spatial domains as well as multigroup approxima-

tions for the energy spectrum.

We consider three problems from the published literature followed by two problems

from a technical report compiled by Albrecht Kyrieleis at Serco Assurance [132]. We be-

gin with a simple monoenergetic problem and then proceed to consider a further four

problems that incorporate a multigroup approximation. The problems have increas-

ingly complicated spatial domains, beginning with a spatially homogeneous problem

and proceeding to problems with up to 18 different spatial regions representing up to

8 different sets of material coefficients. We model reactors in a variety of shapes, begin-

ning with a cylindrical reactor, for which we employ a mixture of triangular finite ele-

ments, quadrilateral finite elements and quadrilateral finite elements with polynomial

shaped boundaries in order to accurately represent the geometry. We consider a geom-

etry composed of a tessellation of hexagonal prisms, for which we employ triangular

finite elements, and three cuboidal reactors, for which we employ unstructured trian-

122



CHAPTER 5: APPLICATION TO INDUSTRIAL PROBLEMS

(a) (b)

Figure 5.1: The critical eigenfunction for the Los Alamos benchmark problem. 5.1a is

an elevated plot of the scalar flux. 5.1b is a polar plot of the space averaged flux with

ϕ plotted radially.

gular and unstructured rectangular meshes. For the unstructured triangular meshes

the Triangle mesh generator [109], is employed. For all other problems, meshes were

generated manually.

5.1 Los Alamos benchmark

The first benchmark we consider is taken from a comprehensive problem set compiled

by Sood, Forster, and Parsons from the Los Alamos National laboratory, NM [106].

Sood, Foster and Parsons present 75 different criticality problems in slab, spherical and

cylindrical geometries, including problems with inhomogeneous spatial domains and

anisotropic scattering in the angular domain. All of these problems are taken from re-

viewed journal articles and are known to have critical eigenvalues of 1, to at least 5

decimal places. The problem selected for this thesis was originally presented by West-

fall, in [133], and is a monoenergetic problem which incorporates an infinite cylinder

of Plutonium-239 (239Pu) with vacuum boundary conditions. The cylinder is of radius

4.279960 centimetres and the material cross sections for 239Pu are given in Table A.2. It

is indexed as problem 7 in [106].

We note that though this benchmark is simpler than the problem of Maire and Talay
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p = q = 0 p = q = 1 p = q = 2

Mesh N keff,h N keff,h N keff,h

1 256 1.054552 3 968 1.001798 19 872 1.000181

2 4 096 1.011031 63 488 1.000118 317 952 0.999968

3 65 536 1.000611 1 015 808 0.999961 5 087 232 0.999996

4 1 048 576 0.998932 - - - -

Table 5.1: Eigenvalues computed for the Los Alamos benchmark under uniform re-

finement.

that was approximated in the previous chapter, it does enable us to demonstrate a use-

ful feature of the present solver: the ability to represent spatial domains with piecewise

polynomial shaped boundaries. As the Los Alamos benchmark problem comprises a

circle in the (x, y)-plane, a very large number of square or triangular finite elements

would be required in order to accurately represent the shape of the physical bound-

ary. Indeed, a much larger number of elements would be needed at the boundary than

would otherwise be needed to resolve an accurate solution within the actual compu-

tational domain. The present computations avoid this pitfall, however, by deforming

each spatial element κS, where ∂κS ∩ Γ 6= ∅, so that the element boundary coincident

with Γ is shaped as a parabola. As before, each κS that is deformed in this way is de-

fined as a mapping from either the reference square or the reference triangle, though

this mapping is no longer affine. When such an element is marked for h-refinement, a

similar isotropic refinement process is undertaken as was illustrated in Figure 4.1, how-

ever, the new mesh node that is introduced on the boundary of κS is at the midpoint

between the existing nodes along Γ, as opposed to the geometric midpoint between

those nodes. This means that each h-refinement that occurs at the domain boundary

leads to the replacement of a single quadratic boundary segment with two quadratic

boundary segments, thus improving the accuracy with which the computational do-

main represents the physical domain. We remark that under p-refinement no such

improvement takes place.

The scalar flux and the space averaged flux from the critical eigenfunction are shown

in Figure 5.1. We notice that the solution appears to be very smooth in both space,

as illustrated by the scalar flux, and angle, as illustrated by the space averaged flux.

Consequently, we expect the hp-refinement algorithm to select p-refinement for those
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elements that are marked for refinement. Table 5.1 gives the computed keff values for

this problem under uniformly refined meshes, with order of approximation in the spa-

tial and angular domain of p = q = 0, 1 and 2 respectively. We note that the most

accurate eigenvalue computed here is within 10−5 of the value quoted by Sood et al.

of keff = 1, which they claim is accurate to five decimal places. This value compares

favourably with the most accurate values presented in [42] and [43], which computed

values within 10−4 and 10−1 of the expected eigenvalue respectively.

The present problem was solved using the h-refinement algorithm with a p = 1, q = 0

method and a p = 1, q = 1 method, as well as by the hp-refinement algorithm. The

same initial spatial and angular meshes were chosen for all three runs, with the spatial

mesh comprising 32 elements, with four elements in the radial direction and eight in

the azimuthal direction, and the initial angular mesh comprising 4 elements, with a

single angular element in each principal triangle of the hemisphere. The fixed fraction

refine percentage in the spatial problem was chosen as αFF = 25%. Table 5.2 gives the

total problem sizes and computed eigenvalues from the primal and dual solves at each

iteration, together with the effectivities for both keff and its reciprocal.

We remark that nearly all of the effectivities are close to 1, especially for the hp-refinement

algorithm. This confirms the accuracy of the computed error representation formula.

However, some of the effectivities computed for the h-refinement algorithm show a

slight over- or under-estimation of the error at certain stages in the computation. In

particular we see an over-estimation of the error at the fourth iteration of the p = 1,

q = 0 data and an under-estimation at the second and fifth iterations of the p = 1,

q = 1 data. We note with reference to Table 5.3, which gives the spatial and angular

error indicators, ηS and ηA respectively, that the iterations for which the values of Ie f f

are not close to one coincide with those for which ηS ≈ −ηA. In other words, there is a

cancellation between the error contained in the spatial discretisation and that contained

in the angular discretisation.

We observe that the hp-refinement algorithm does not converge to the same value as

the h-refinement algorithm. This is because, for the hp-refinement data, the imperfect

representation of the domain boundary provided by the initial coarse spatial mesh re-

mains in the final mesh. We see this by considering Figure 5.2, which contains plots

of the final meshes from each of the h-refinement runs, as well as a colour-plot of the

distribution of p on the final hp-refinement mesh. The final mesh for the hp-refinement
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Primal Dual

Mesh Ieff for
1
keff

Ieff for keff N k
ψ
eff,h N kẑeff

h-refinement, p = 1, q = 0

1 0.939785 0.943307 480 1.066059 4 224 1.003714

2 0.925801 0.926711 1 920 1.013384 16 896 1.000950

3 0.995781 0.995794 7 680 1.003023 67 584 0.999980

4 3.317106 3.316302 30 720 1.000071 270 336 0.999725

5 0.720393 0.720188 122 880 0.998950 1 081 344 0.999682

6 1.013495 1.013502 221 184 0.999445 1 966 080 0.999974

7 0.984741 0.984746 417 792 1.000296 3 735 552 0.999972

8 1.000000 1.000000 1 671 168 0.999861 14 942 208 0.999967

h-refinement, p = 1, q = 1

1 0.935931 0.936078 1 920 1.002450 9 504 1.000150

2 0.206110 0.206053 7 680 0.999641 38 016 0.999713

3 0.821873 0.821887 13 824 1.000091 69 120 1.000010

4 0.967777 0.967749 55 296 0.999101 276 480 0.999964

5 0.329697 0.329687 104 448 0.999947 525 312 0.999962

6 1.028219 1.028216 190 464 1.000089 960 768 0.999990

7 1.000000 1.000000 761 856 0.999830 3 843 072 0.999993

hp-refinement

1 0.935684 0.939446 480 1.066059 4 224 1.003714

2 0.834547 0.834927 1 920 1.002450 9 504 1.000150

3 0.968486 0.968456 4 320 0.998705 16 896 0.999664

4 0.976771 0.976760 5 760 0.999206 20 480 0.999684

5 1.049801 1.049787 7 200 0.999967 24 064 0.999682

6 1.016976 1.016980 12 800 0.999478 37 600 0.999699

7 1.076184 1.076188 15 360 0.999649 43 200 0.999699

8 1.000000 1.000000 18 944 0.999668 50 400 0.999695

Table 5.2: The eigenvalues and effectivities for the Los Alamos benchmark problem.
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Spatial Angular

Mesh NS ηS NA ηA Refine space Refine angle

h-refinement, p = 1, q = 0

1 120 0.001976 4 -0.064321 .FALSE. .TRUE.

2 120 0.001581 16 -0.014014 .FALSE. .TRUE.

3 120 0.001440 64 -0.004483 .FALSE. .TRUE.

4 120 0.001400 256 -0.001747 .FALSE. .TRUE.

5 120 0.001393 1024 -0.000661 .TRUE. .FALSE.

6 216 0.001186 1024 -0.000657 .TRUE. .FALSE.

7 408 0.000334 1024 -0.000659 .FALSE. .TRUE.

8 408 0.000333 4096 -0.000228 .TRUE. .FALSE.

h-refinement, p = 1, q = 1

1 120 0.001399 16 -0.003699 .FALSE. .TRUE.

2 120 0.001398 64 -0.001325 .TRUE. .FALSE.

3 216 0.001197 64 -0.001277 .FALSE. .TRUE.

4 216 0.001181 256 -0.000317 .TRUE. .FALSE.

5 408 0.000333 256 -0.000318 .TRUE. .FALSE.

6 744 0.000214 256 -0.000312 .FALSE. .TRUE.

7 744 0.000214 1024 -0.000051 .TRUE. .FALSE.

hp-refinement

1 120 0.001976 4 -0.064321 .FALSE. .TRUE.

2 120 0.001399 16 -0.003699 .FALSE. .TRUE.

3 120 0.001356 36 -0.000397 .TRUE. .FALSE.

4 160 0.000980 36 -0.000502 .TRUE. .FALSE.

5 200 0.000219 36 -0.000504 .FALSE. .TRUE.

6 200 0.000201 64 0.000020 .TRUE. .FALSE.

7 240 0.000030 64 0.000020 .TRUE. .FALSE.

8 296 0.000025 64 0.000001 .TRUE. .FALSE.

Table 5.3: The ηA and ηS for the Los Alamos benchmark problem.
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(a) h-refinement, p = 1, q = 0. (b) h-refinement, p = 1, q = 1.

pκS = 1 pκS = 2 pκS = 3

(c) hp-refinement with pκS .

Figure 5.2: The final spatial meshes from the Los Alamos benchmark.

algorithm is the same as the initial mesh, with eight spatial elements on the boundary.

This is because, each time an element has been marked for refinement, the analyticity

testing procedure, discussed in Section 4.4.1, has determined that either the primal or

the dual solution is sufficiently smooth that p-refinement can be performed. The result

is that the coarse representation of the domain boundary defined by the initial spatial

mesh is retained throughout the computation. By contrast, when we consider the final

spatial meshes from the h-refinement data we see that every element at the boundary

has been h-refined at least once, resulting in a representation of Γ comprising at least

16 parabolic line segments, as opposed to 8 for the hp-refinement algorithm. Conse-

quently, the meshes from the h-refinement data provide a more accurate representation

of the true domain.

We remark that the hp-refinement algorithm does compute an accurate value for keff,

for the spatial domain on which it computes its solution. This is evidenced by the

fact that the primal eigenvalue converges towards the dual eigenvalue. Indeed the

primal eigenvalue achieves four decimal places of accuracy, when referenced against

the most accurate dual eigenvalue, with only 18 944 degrees of freedom in the finite
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Figure 5.3: The rates of convergence for the h- and hp-refinement algorithms for the

Los Alamos benchmark problem.

element space. This compares favourably with the problem size required to compute

the eigenvalue to four decimal places for each of the h-refinement algorithms, as well

as for the uniform refinement computations.

Figure 5.3 contains a log-log plot of the absolute value of the error contained in k
ψ
eff,h

against the number of degrees of freedom in the finite element space for each of the

three adaptive runs. In order to have a fair comparison between the h-refinement

data and the hp-refinement data, the true solution is taken to be 0.999695 for the hp-

refinement data, and 1.0 for the h-refinement data. We observe that, though eventually

the hp-refinement algorithm outperforms the h-refinement algorithm, it does require

seven meshes before it produces an eigenvalue that is more accurate than the third

eigenvalue in the p = 1, q = 1 data. Furthermore, we note that the p = 1, q = 0 data

requires a very large problem size before it achieves three decimal places of accuracy.

These observations highlight the benefit of employing a high order method in angle,

compared to using a zero order method such as the present q = 0 DG method, or the

discrete ordinates method.
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5.2 Larsen and Alcouffe benchmark

The second test problem considered in this chapter was proposed by Larsen and Al-

couffe in a Los Alamos technical report on the long characteristics method, see [134].

This problem is considerably more challenging than the first two due to the fact that it

incorporates a G = 3 multigroup approximation for the energy spectrum. As a conse-

quence, three times as many degrees of freedom are required than would be required

for an equivalent monoenergetic problem. The spatial domain is given in Figure 5.4. It

comprises a square of fissile material at the centre, bounded on two sides by rectangu-

lar blocks of absorbing material, all surrounded by a uniform layer of shielding. The

dimensions of the spatial domain are given in Figure 5.4 and the nuclear cross sections

for the three regions are given in Table A.3. We note that, for multienergetic problems,

when computing the dual eigenpair we must not only reverse the order of the ordered

partition of the spatial elements computed by Algorithm 3.2.3, but we must also re-

verse the direction of scattering so that the scattering cross section Σs,g−1→g denotes

scattering from group g to group g− 1.

In [134], the authors quote a value of the critical eigenvalue of 0.6036, however they

specify that this value is computed with a somewhat coarse S4 approximation. In [42]

the author computes a slightly more accurate value of 0.60074 for this benchmark, em-

ploying a rectangular partitioned discrete ordinates method comprising 24× 8 = 192

ordinate directions. However, following our own computations, we believe that both

of these approximations include a significant amount of angular error. For the com-

putation of our convergence data we take the final dual eigenvalue computed by the

hp-refinement algorithm to be the true value. It is kẑeff = 0.599730.

The present problem was solved using the h-refinement algorithm with a p = 1, q = 0

finite element space and a p = 1, q = 1 finite element space, as well as by the hp-

refinement algorithm. The same initial spatial and angular meshes were chosen for all

three runs. The initial spatial mesh is given in Figure 5.5a. The initial angular mesh

comprised 4 elements, with a single angular element in each principal triangle of the

hemisphere. The fixed fraction refine percentage in the spatial problem was chosen as

αFF = 25%. Table 5.4 gives the total problem sizes and computed eigenvalues from

the primal and dual solves at each iteration, together with the effectivities for both keff

and its reciprocal. Table 5.5 gives the spatial and angular error indicators, ηS and ηA

respectively, together with the number of spatial and angular degrees of freedom in
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Region 1

Region 2

Region 3

7.2cm 2cm 19.2cm 2cm 7.2cm

7.2cm

19.2cm

7.2cm

Figure 5.4: The domain for the Larsen and Alcouffe test problem. The material coef-

ficients for the three regions marked here are given in Table A.3.

each energy group, NS and NA respectively. The total number of degrees of freedom in

the primal problem is given by 3× NS × NA.

We note that all of the effectivites shown in Table 5.4 are very close to one, indicating

that there is no significant over- or under-estimation of the error by our computed error

representation formula. Furthermore, we note that the problem size required to com-

pute the dual eigenpair for the present multigroup benchmark problem is considerably

larger than for the previous, monoenergetic, problems. Indeed, for the h-refinement al-

gorithm with p = 1 and q = 0, the dual problem size exceeds 24 000 000 degrees of

freedom. Such computations are extremely time consuming, and would be infeasi-

ble without the efficient parallel solution algorithm that was developed in Chapter 3.

When we compare this problem size to those from the hp-refinement algorithm, where

the largest dual problem required fewer than 360 000 degrees of freedom, we see the

benefit of utilizing a higher ordermethod. In Table 5.5 we see the reason for such a large

problem size. It is caused by the fact that there is a large amount of error in the angular

variables, which necessitates repeated angular refinement. As the hp-refinement algo-

rithm utilises q-refinement in the angular variables, it is able to eliminate the angular
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(a)

(b)

pκS = 1 pκS = 2 pκS = 3

(c)

Figure 5.5: Meshes from the Larsen and Alcouffe benchmark problem. 5.5a shows the

initial spatial mesh employed for each algorithm. 5.5b shows the final mesh from the

h-refinement algorithm with p = 1, q = 1. 5.5c shows the final mesh and distribution

of p from the hp-refinement algorithm.
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Primal Dual

Mesh Ieff for
1
keff

Ieff for keff N k
ψ
eff,h N kẑeff

h-refinement, p = 1, q = 0

1 0.961691 0.964638 3 456 0.651720 27 648 0.601585

2 0.986248 0.986416 13 824 0.607283 110 592 0.599850

3 0.886988 0.886451 55 296 0.596548 442 368 0.599384

4 1.022348 1.022280 100 224 0.601530 801 792 0.599708

5 0.922760 0.922571 400 896 0.598167 3 207 168 0.599625

6 0.964840 0.964851 767 232 0.599946 6 137 856 0.599755

7 1.000000 1.000000 3 068 928 0.598864 24 551 424 0.599748

h-refinement, p = 1, q = 1

1 0.957959 0.957559 13 824 0.593845 62 208 0.599497

2 1.100439 1.100598 25 920 0.598886 116 640 0.599834

3 0.757842 0.758113 50 976 0.600632 229 392 0.599961

4 1.021664 1.021694 203 904 0.598947 917 568 0.599765

5 0.863120 0.863152 430 272 0.599912 1 936 224 0.599770

6 1.000000 1.000000 1 721 088 0.599451 7 744 896 0.599747

7 - - 3 518 208 0.599677 - -

hp-refinement

1 0.961327 0.964302 3 456 0.651720 27 648 0.601585

2 0.960808 0.960435 13 824 0.593845 62 208 0.599497

3 1.212404 1.212591 17 568 0.599293 74 088 0.599822

4 0.833063 0.833382 21 888 0.601108 87 588 0.599959

5 1.069484 1.069567 49 248 0.599060 155 712 0.599776

6 1.197883 1.197973 65 772 0.599504 199 104 0.599774

7 0.786923 0.786958 77 976 0.599853 228 864 0.599756

8 1.000000 1.000000 138 624 0.599686 357 600 0.599730

Table 5.4: The eigenvalues and effectivities for the Larsen and Alcouffe benchmark

problem.
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Spatial Angular

Mesh NS ηS NA ηA Refine space Refine angle

h-refinement, p = 1, q = 0

1 288 0.009386 4 -0.059520 .FALSE. .TRUE.

2 288 0.007949 16 -0.015383 .FALSE. .TRUE.

3 288 0.007591 64 -0.004755 .TRUE. .FALSE.

4 522 0.003064 64 -0.004886 .FALSE. .TRUE.

5 522 0.003000 256 -0.001542 .TRUE. .FALSE.

6 999 0.001370 256 -0.001561 .FALSE. .TRUE.

7 999 0.001359 1024 -0.000476 .TRUE. .FALSE.

h-refinement, p = 1, q = 1

1 288 0.007489 16 -0.001837 .TRUE. .FALSE.

2 540 0.002913 16 -0.001965 .TRUE. .FALSE.

3 1062 0.001371 16 -0.002042 .FALSE. .TRUE.

4 1062 0.001339 64 -0.000521 .TRUE. .FALSE.

5 2241 0.000398 64 -0.000540 .FALSE. .TRUE.

6 2241 0.000386 256 -0.000090 .TRUE. .FALSE.

7 4581 - 256 - - -

hp-refinement

1 288 0.009386 4 -0.059520 .FALSE. .TRUE.

2 288 0.007489 16 -0.001837 .TRUE. .FALSE.

3 366 0.002483 16 -0.001953 .TRUE. .FALSE.

4 456 0.000893 16 -0.002042 .FALSE. .TRUE.

5 456 0.000877 36 -0.000161 .TRUE. .FALSE.

6 609 0.000441 36 -0.000171 .TRUE. .FALSE.

7 722 0.000078 36 -0.000175 .FALSE. .TRUE.

8 722 0.000073 64 -0.000030 .TRUE. .FALSE.

Table 5.5: The ηA and ηS for the Larsen and Alcouffe benchmark problem.
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error much more efficiently. Indeed, we observe that the angular discretisation with 36

degrees of freedom in each energy group, from iterations 5,6 and 7 of the hp-refinement

algorithm, achieves a more accurate angular solution than the finest angular scheme

employed in the p = 1, q = 0 h-refinement algorithm, which employs 1024 degrees of

freedom in each energy group.

Figure 5.5 contains plots of the final mesh from the h-refinement algorithm with p = 1

and q = 1, as well as a colour-plot of the distribution of the pκS on the final mesh from

the hp-refinement algorithm. We note that both of these algorithms target the border

between the fissile material and the shielding material for the most refinement. Rel-

atively less refinement occurs at the boundary with the absorbing material. Further-

more, we note that the hp-refinement algorithm primarily selects p-refinement, with

only 5 spatial elements undergoing h-refinement. This signifies a significant amount of

smoothness in the computed eigenfunction.

Figure 5.6 contains a log-log plot of the absolute value of the error in the primal eigen-

value against the total primal problem size for each of the runs. We observe that the

hp-refinement algorithm is significantly more efficient than the h-refinement algorithm.

5.3 KNK fast reactor benchmark

The next test problem is a model of the Kompakte Natriumgekühlte Kernreaktoranlage

(Compact Sodium Nuclear Reactor Plant) in Germany. We shall refer to it as the KNK

fast reactor benchmark. It was originally published by Takeda and Ikeda in [135] and

has since been computed by several authors, including Kim and Cho, in [136], Wang,

in [137] and Baker, in [42]. The spatial domain is considerably more complicated than

the previous problems, comprising a tessellation of 169 regular hexagons split into 18

regions with 8 distinct materials. The energy spectrum is discretised into G = 4 energy

groups. The spatial domain is given in Figure 5.7. Takeda and Ikeda published three

sets of data for the KNK fast reactor benchmark, modelling the case with control rods

inserted, control rods half inserted and the unrodded case, respectively. We compute

eigenvalues for the unrodded case, for which the material cross sections are given in

Tables A.4 and A.5.

In [135], the authors published several approximate values of the critical eigenvalue,

computed employing a variety of numerical methods, ranging between 1.0887 and

135



CHAPTER 5: APPLICATION TO INDUSTRIAL PROBLEMS

10 3 10 4 10 5 10 6 10 7
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

hp-refinement
h-refine p = 1, q = 1
h-refine p = 1,q = 0

lo
g
10
(e
rr
or
)

N

Figure 5.6: The rates of convergence for the h- and hp-refinement algorithms for the

Larsen and Alcouffe benchmark problem.
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Figure 5.7: The domain for the KNK test problem. The domain is composed of a

tessellation of regular hexagons, each of which has sides of length 7.5cm. The numbers

mark the eight different regions, the nuclear cross sections for these are given in Tables

A.4 and A.5.

1.0951. More recently, Wang published a value of 1.01082, Baker computed a value

of 1.0105 and Kim and Cho published values ranging between 1.0094 and 1.01055. The

most accurate dual eigenvalues computed by our codes are 1.010316 and 1.010370 in

the h− and hp− refinement codes respectively. For the purposes of error quantifica-

tion in the present code we take the true keff to be the most accurate dual eigenvalue

computed by the hp solver, 1.010370. The critical eigenvalue for the KNK fast reactor

benchmark was computed by the h-refinement algorithm with a p = 1, q = 0 finite

element space, as well as by the hp-refinement algorithm. The same initial spatial and

angular meshes were chosen for both runs. The initial spatial mesh is given in Figure

5.8a. The initial angular mesh comprised 4 elements, with a single angular element in

each principal triangle of the hemisphere. The fixed fraction refine percentage in the

spatial problem was chosen as αFF = 25%.

Table 5.6 gives the total problem sizes and computed eigenvalues from the primal and

dual solves at each iteration, together with the effectivities for both keff and its recip-

rocal. Table 5.7 gives the spatial and angular error indicators, ηS and ηA respectively,

together with the number of spatial and angular degrees of freedom in each energy
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(a)

(b)

pκS = 1 pκS = 2

pκS = 3 pκS = 4

(c)

Figure 5.8: Meshes from the KNK fast reactor benchmark problem. 5.8a shows the

initial spatial mesh employed for each algorithm. 5.8b shows the final mesh from the

h-refinement algorithm with p = 1, q = 0. 5.8c shows the final mesh and distribution

of p from the hp-refinement algorithm.
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Primal Dual

Mesh Ieff for
1
keff

Ieff for keff N k
ψ
eff,h N kẑeff

h-refinement, p = 1, q = 0

1 0.954984 0.956818 32 448 1.055231 259 584 1.012255

2 1.032756 1.032598 129 792 1.015041 1 038 336 1.010162

3 0.939630 0.939274 519 168 1.004013 4 153 344 1.009933

4 1.018679 1.018634 931 584 1.012680 7 452 672 1.010272

5 0.928592 0.928522 3 726 336 1.009261 29 810 688 1.010240

6 1.000000 1.000000 7 412 736 1.011165 59 301 888 1.010316

hp-refinement

1 0.956193 0.957977 32 448 1.055231 259 584 1.012255

2 0.941291 0.940792 129 792 1.001320 584 064 1.009834

3 1.193111 1.192740 166 080 1.011999 701 568 1.010056

4 0.744608 0.744460 373 680 1.009584 1 247 232 1.010169

5 1.000000 1.000000 532 368 1.009999 1 671 936 1.010370

6 - - 740592 1.010223 - -

Table 5.6: The eigenvalues and effectivities for the KNK fast reactor benchmark.

group, NS and NA respectively. We note that much more refinement was required in

the angular domain than in the spatial domain. This is because the initial spatial mesh

needed to be quite fine in order to accurately represent the problem geometry, whereas

the initial angular mesh was extremely coarse. We note that the effectivities presented

in Table 5.6 are very close to one, once again confirming the accuracy of our DWR error

representation formula. Furthermore, we note a rapid increase in the problem size as

the h-refinement algorithm progresses, particularly for the dual problem. We note that

the problem size increases less quickly as the hp-refinement algorithm progresses.

Figure 5.8b contains the refined spatial mesh from the h-refinement run. Figure 5.8c

contains a colour plot of the distribution of p in the final mesh from the hp-refinement

data. We note that both of these algorithms target most of the refinement at the central

region. This is where the test zone, control rods and driver are located. There is also

a limited amount of refinement in region 5, which contains reflecting material, with a

moderator. We note that, once again, the majority of refinement undertaken by the hp-

refinement algorithm is p-refinement, however there is some h-refinement, signifying

that there are areas where the computed solution is not perfectly smooth.

Figure 5.9 contains a log-log plot of the absolute value of the error in the primal eigen-
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Spatial Angular

Mesh NS ηS NA ηA Refine space Refine angle

h-refinement, p = 1, q = 0

1 2 028 0.012217 4 -0.055193 .FALSE. .TRUE.

2 2 028 0.011060 16 -0.015939 .FALSE. .TRUE.

3 2 028 0.010608 64 -0.004688 .TRUE. .FALSE.

4 3 639 0.002454 64 -0.004862 .FALSE. .TRUE.

5 3 639 0.002417 256 -0.001438 .TRUE. .FALSE.

6 7 239 0.000602 256 -0.001451 .FALSE. .TRUE.

hp-refinement

1 2 028 0.012217 4 -0.055193 .FALSE. .TRUE.

2 2 028 0.010654 16 -0.002139 .TRUE. .FALSE.

3 2 595 0.000498 16 -0.002441 .FALSE. .TRUE.

4 2 595 0.000481 36 0.000105 .TRUE. .FALSE.

5 3 697 0.000256 36 0.000115 .TRUE. .FALSE.

Table 5.7: The ηA and ηS for the KNK fast reactor benchmark problem.

value against the total primal problem size for each of the runs. We observe that the

convergence of the hp-refinement algorithm reduces the error to just over 10−4, whereas

the h-refinement algorithm fails to achieve the same accuracy despite using 10 times as

many degrees of freedom in its finite element space.

5.4 SILENE reactor

We now consider two benchmark problems from a set compiled by Albrecht Kyrieleis

at Serco Assurance, [132]. The first of these is a model of an experimental reactor in

France called the SILENE reactor. It comprises a steel cylindrical tank filled with uranyl

nitrate with a cylindrical steel pipe positioned vertically down the middle through

which a control rod may be inserted, see Figure 5.10 for the exact dimensions. We

model the unrodded case with a G = 2 multigroup approximation for energy, the cross

sections for which are reproduced in Table A.6. For this problem, the MONK Monte

Carlo code computed a value of 1.1293 for the critical eigenvalue. The two most accu-

rate dual eigenvalues that we computed were 1.129432 and 1.129459. For the purpose

of computing the convergence data for our adaptive algorithms we take the most accu-

rate dual eigenvalue from the hp solver to be the true eigenvalue: 1.129459.
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Figure 5.9: The rates of convergence for the h- and hp-refinement algorithms for the

KNK benchmark problem.
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Figure 5.10: The domain for the Serco SILENE test problem. The region boundaries

are all squares, therefore the horizontal dimensions are the same as the vertical ones.

The material coefficients for the three regions are given in Table A.6.
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(a)

(b)

pκS = 1 pκS = 2

pκS = 3 pκS = 4

(c)

Figure 5.11: Meshes from the SILENE reactor benchmark problem. 5.11a shows the

initial spatial mesh employed for each algorithm. 5.11b shows the final mesh from the

h-refinement algorithm with p = 1, q = 0. 5.11c shows the final mesh and distribution

of p from the hp-refinement algorithm.
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Primal Dual

Mesh Ieff for
1
keff

Ieff for keff N k
ψ
eff,h N kẑeff

h-refinement, p = 1, q = 0

1 0.939108 0.942367 7 200 1.197436 64 800 1.133351

2 0.984227 0.984492 28 800 1.149016 259 200 1.129736

3 1.010127 1.010088 115 200 1.133840 1 036 800 1.129388

4 0.587143 0.587102 460 800 1.129241 4 147 200 1.129353

5 1.000000 1.000000 804 864 1.130390 7 243 776 1.129432

6 - - 3 219 456 1.129013 - -

hp-refinement

1 0.939500 0.942738 7 200 1.197436 64 800 1.133351

2 1.083026 1.082883 28 800 1.131261 145 800 1.129309

3 0.947996 0.947900 64 800 1.127252 259 200 1.129344

4 0.957356 0.957328 84 960 1.128662 309 376 1.129425

5 0.960837 0.960828 105 696 1.129176 360 576 1.129448

6 0.945649 0.945645 128 160 1.129363 414 848 1.129454

7 1.000000 1.000000 156 384 1.129415 479 360 1.129459

8 - - 278 016 1.129450 - -

Table 5.8: The eigenvalues and effectivities for the Serco SILENE benchmark.

The critical eigenvalue for this benchmark was computed by the h-refinement algo-

rithm with a p = 1, q = 0 finite element space, as well as by the hp-refinement algo-

rithm. The same initial spatial and angular meshes were chosen for both runs. The

initial spatial mesh is given in Figure 5.11a. Note that we have utilised long, thin ele-

ments to represent the thin layers of steel around the central region and at the domain

boundary. The initial angular mesh comprised 4 elements, with a single angular ele-

ment in each principal triangle of the hemisphere. The fixed fraction refine percentage

in the spatial problem was chosen as αFF = 25%. Table 5.8 gives the total problem sizes

and computed eigenvalues from the primal and dual solves at each iteration, together

with the effectivities for both keff and its reciprocal. As for all previous benchmark

problems, we observe excellent effectivities. Table 5.9 gives the spatial and angular er-

ror indicators, ηS and ηA respectively, together with the number of spatial and angular

degrees of freedom in each energy group, NS and NA respectively.

Figure 5.11b shows the final spatial mesh from the h-refinement algorithm. We note

that all of the refinement has taken place in the uranyl nitrate, with no refinement tak-

ing place in the inner pipe or the steel shielding. This is in contrast to the hp-refinement
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Spatial Angular

Mesh NS ηS NA ηA Refine space Refine angle

h-refinement, p = 1, q = 0

1 900 0.002228 4 -0.066313 .FALSE. .TRUE.

2 900 0.002083 16 -0.021364 .FALSE. .TRUE.

3 900 0.002056 64 -0.006509 .FALSE. .TRUE.

4 900 0.002044 256 -0.001932 .TRUE. .FALSE.

5 1572 0.000982 256 -0.001940 .FALSE. .TRUE.

6 1572 - 1024 - -

hp-refinement

1 900 0.002228 4 -0.066313 .FALSE. .TRUE.

2 900 0.002052 16 -0.004003 .FALSE. .TRUE.

3 900 0.002040 36 0.000051 .TRUE. .FALSE.

4 1 180 0.000722 36 0.000040 .TRUE. .FALSE.

5 1 468 0.000231 36 0.000040 .TRUE. .FALSE.

6 1 780 0.000055 36 0.000036 .TRUE. .FALSE.

7 2 172 0.000012 36 0.000031 .FALSE. .TRUE.

8 2 172 - 64 - - -

Table 5.9: The ηA and ηS for the Serco SILENE benchmark problem.

data, where the error in the nuclear fuel was more quickly eliminated by p-refinement,

with the algorithm then detecting and eliminating error in the inner tube and the steel

pipe. Figure 5.11c contains a colour-plot of the distribution of p on the final iteration

of the hp-refinement algorithm. Notice that this algorithm has exclusively selected p-

refinement, with no h-refinement taking place. This is because, for each spatial element

that is marked for refinement, either the local primal solution or the local dual solution

was found to be smooth. However, the solution eigenvector for this problem does have

some very sharp features. In particular, when moving from the inner region, through

the steel pipe to the nuclear fuel, there is a sudden and extreme increase in the scalar

flux. However, the fact that we have designed a mesh with narrow finite elements iso-

lating the air from the fuel means that the numerical approximation remains smooth

on either side of this sharp gradient. Indeed, this can be seen as an example of why

hp-refinement is so efficient at finding numerical approximations to problems whose

solutions contain sharp features: h-refinement enables the non-smooth parts of the so-

lution to be isolated from the smooth parts, where p-refinement can be used to obtain

locally exponential convergence.
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Figure 5.12: The log10 of the error against the fourth root of N for the h- and hp-

refinement algorithms for the SILENE benchmark problem.

The hp-refinement algorithm seems to be particularly efficient for solving this bench-

mark problem. In order to investigate its convergence we consider a plot of the log of

the error against Ns, where we take s to be 1
4 , see Figure 5.12. In such a plot, exponential

convergence would be signified by a straight line with a negative gradient. Consider-

ing the third to the sixth data points of the hp refinement data, ignoring the second

point where we can see from Table 5.9 there has been significant error cancelling, it

does appear as if the line of convergence is indeed straight and with a negative gradi-

ent. Therefore we can conclude that this method does converge exponentially quickly,

at least until the final point breaks the trend.

5.5 Water-cooled reactor

The second problem that we consider from [132] is a model of a water-cooled reactor.

The spatial domain comprises a central region containing the nuclear fuel, surrounded

by a steel reflector, which is itself surrounded by water, see Figure 5.13 for the exact di-

mensions. The model incorporates a G = 2 multigroup approximation for energy, the
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Figure 5.13: The domain for the water-cooled reactor test problem.

nuclear cross sections for which are given in Table A.7. When applied to this problem,

the MONKMonte Carlo code computed a critical eigenvalue of 1.0118. The short char-

acteristics code of Baker [42] computed a value of 1.0129. However, we find that our

most accurate dual eigenvalues from each algorithm both take the value 1.012132. For

the purposes of computing convergence data we take 1.012132 to be the true solution.

The critical eigenvalue for the water-cooled reactor was computed by the h-refinement

algorithm with a p = 1, q = 0 finite element space, as well as by the hp-refinement

algorithm. The same initial spatial and angular meshes were chosen for both runs.

The initial spatial mesh is given in Figure 5.14a. The initial angular mesh comprised 4

elements, with a single angular element in each principal triangle of the hemisphere.

The fixed fraction refine percentage in the spatial problem was chosen as αFF = 25%.

Table 5.10 gives the total problem sizes and computed eigenvalues from the primal

and dual solves at each iteration, together with the effectivities for both keff and its

reciprocal. Notice that these effectivities are very close to unity, confirming the accuracy

of our error estimation.
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pκS = 1 pκS = 2

(a)

(b)

(c)

Figure 5.14: Water-cooled reactor benchmark problem. 5.14a shows the mesh and final

distribution of p from the hp-refinement algorithm. As no h-refinement took place, this

is the same as the original mesh. 5.14b and 5.14c contain the space averaged flux for

the critical eigenfunction in the high and low energy group, respectively.
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Primal Dual

Mesh Ieff for
1
keff

Ieff for keff N k
ψ
eff,h N kẑeff

h-refinement, p = 1, q = 0

1 0.950727 0.953365 12 800 1.072370 115 200 1.014941

2 0.987397 0.987611 51 200 1.029824 460 800 1.012351

3 0.996965 0.996979 204 800 1.016790 1 843 200 1.012146

4 1.000000 1.000000 819 200 1.012910 7 372 800 1.012132

5 - - 3 276 800 1.011785 - -

hp-refinement

1 0.950726 0.953365 12 800 1.072370 115 200 1.014941

2 1.015304 1.015273 51 200 1.014119 259 200 1.012101

3 0.993352 0.993347 115 200 1.011316 460 800 1.012126

4 1.000000 1.000000 151 200 1.011894 550 400 1.012132

5 - - 187 200 1.012099 - -

Table 5.10: The eigenvalues and effectivities for the water-cooled reactor benchmark.

Table 5.11 gives the spatial and angular error indicators, ηS and ηA respectively, to-

gether with the number of spatial and angular degrees of freedom in each energy

group, NS and NA respectively. From the values of ηS we see that the initial spatial

scheme provides a very accurate spatial approximation. Indeed, every spatial error in-

dicator is computed to be less than 10−3. As a consequence, the refinement for each al-

gorithm is initially targeted towards the angular variables. In fact, for the h-refinement

algorithm, spatial refinement is never selected. For the hp-refinement algorithm, where

q-refinement eliminates the error much more efficiently, spatial refinement is not se-

lected until the fourth iteration.

The scalar flux of the critical eigenfunction at energy groups 1 and 2 are given in Figures

5.14b and 5.14c, respectively. The spatial solution appears to be very smooth at the high

energy group (g = 1), whereas there is more structure in the solution at the low energy

group (g = 2). Furthermore, we note that the peak value of the scalar flux in the high

energy group is five times higher than the peak value in the low energy group. Figure

5.14a shows the mesh and the distribution of p from the hp-refinement algorithm. We

note that the hp-adaptive algorithm has chosen p-refinement for every element that was

selected for refinement. This indicates that the computed primal and dual solutions are

smooth within all of the spatial elements that were refined. Moreover, we note that the

refinement algorithm has identified the structures in the solution at the low energy
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Spatial Angular

Mesh NS ηS NA ηA Refine space Refine angle

h-refinement, p = 1, q = 0

1 1600 0.000854 4 -0.058283 .FALSE. .TRUE.

2 1600 0.000806 16 -0.018279 .FALSE. .TRUE.

3 1600 0.000795 64 -0.005439 .FALSE. .TRUE.

4 1600 0.000791 256 -0.001570 .FALSE. .TRUE.

hp-refinement

1 1600 0.000854 4 -0.058283 .FALSE. .TRUE.

2 1600 0.000791 16 -0.002808 .FALSE. .TRUE.

3 1600 0.000789 36 0.000021 .TRUE. .FALSE.

4 2100 0.000212 36 0.000026 .TRUE. .FALSE.

5 2600 - 36 - - -

Table 5.11: The ηA and ηS for the Serco water-cooled reactor benchmark problem.

group, as well as the extreme values in the high energy group.

As for the SILENE problem, the hp-refinement algorithm seems to be highly efficient

for solving this benchmark problem. In order to investigate whether we are achieving

exponential convergence we consider a plot of the log of the error against Ns, where we

take s to be 1
4 , see Figure 5.15. We note that the gradient of the line of convergence for

the hp-refinement algorithm is increasing. Therefore, for the data points that we have,

the algorithm is converging at a rate that is exponential.
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Figure 5.15: The log10 of the error against the fourth root of the total problem size for

the h- and hp-refinement algorithms for the water-cooled reactor benchmark problem.
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Conclusions

In this thesis we have investigated the numerical approximation of partial differential

equations by discontinuous-Galerkin (DG) finite element methods. We began by con-

sidering solution strategies that take advantage of the structure of the matrices which

arise from the application of DG methods to general PDEs. We then focused on prob-

lems arising in the field of neutron transport. In particular, we focused on criticality

eigenvalue problems. In this context we developed a high order discretisation of the

Boltzmann transport equation and implemented h- and hp-adaptive algorithms for the

computation of the effective multiplication factor, keff.

In Chapter 2 we considered a method for preprocessing DG matrices for sparse direct

solvers. It was based on analysing the structure of the dense blocks associated with

the finite element mesh, where each finite element and each interface between finite

elements corresponds to one or two dense blocks, respectively. The computed block

ordering was then expanded to correspond to a pivot order for the full linear system.

Such a method encourages the solver to keep the degrees of freedom associated with

each finite element together during the factorisation phase of the solve. It was tested for

two direct solvers from the HSL software library [86]: the MA57 symmetric linear solver

and the MA41 unsymmetric linear solver. Significant improvements in the performance

of each solver was noted, both in terms of the amount of memory required, and the

amount of time required to analyse, factorise and solve a selection of DG matrices.

The MA57 solver saw the greatest improvement in its performance when moving to the

bespoke preprocessor. When tested on matrices arising from two dimensional geome-

tries, a reduction in CPU time of between 12% and 39% was observed. The memory

requirements were reduced by between 5% and 19%. For a large matrix arising from a
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three dimensional geometry, memory requirements were reduced by 35%.

In the following chapter we derived the DG discretisation of the neutron transport

equation which incorporated high order finite elements in both the spatial and the

angular domains. The asymptotic rate of convergence for the spatial part of the dis-

cretisation error, measured in the L2-norm of the scalar flux, was shown to be of order

hp+1 in agreement with the theoretical value, where p is the order of polynomial ap-

proximation in the spatial variables. The angular discretisation was found to converge

at the rate O(hq+2), when computed with respect to the same norm, where q is the

order of polynomial approximation in the angular variables. Fast Krylov subspace

based solvers for the neutron transport source and keff-eigenvalue problem were then

investigated. These solvers utilise a preconditioner which was based on computing

the action of the inverse of the matrix T, which comprises the streaming, absorption

and boundary terms from the discretisation. This preconditioner employed Tarjan’s

strongly connected components algorithm in order to determine an ordered partition

of the spatial elements for each angular element. These orderings, together with the ef-

ficient preprocessor for block matrices developed in the previous chapter, enabled the

parallel, unassembled computation of the action of T−1. The Krylov subspace solvers

were shown to be robust when the problem size was increased by introducing more

finite elements to the mesh, as well as when the order of polynomial approximation in

the underlying finite element space was increased.

In Chapter 4 we derived a dual weighted residual error representation formula for neu-

tron transport criticality problems. This, together with a projection-based error split-

ting, enabled the computation of accurate a posteriori indicators for the error stemming

from the spatial and angular parts of the discretisation. The restriction of these quan-

tities to individual elements in the spatial and angular meshes yielded elementwise

spatial and angular error indicators, respectively, thus facilitating the development of

an h-adaptive algorithm for the computation of the effective multiplication factor, keff.

These error indicators were then used in conjunction with an analyticity testing pro-

cedure to develop an hp-adaptive algorithm for keff problems. Numerical experiments

for a monoenergetic test problem led to effectivities of close to one for both of these

algorithms, confirming the quality of the computed error estimation formula. Further-

more, these numerical tests demonstrated that the hp-adaptive method could compute

the critical eigenvalue to the same accuracy as the h-adaptive method, but with a fi-

nite element space containing approximately 80% fewer degrees of freedom. Finally, in
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Chapter 5 we presented results from a series of industrial benchmark problems. These

incorporated multigroup discretisations for the energy variable that greatly increased

the size and difficulty of the problems at hand. Despite this, accurate eigenvalues were

computed and effectivities close to one were obtained.

6.1 Further work

The results collected in this thesis suggest several avenues of further research. Firstly,

the efficiency gains made when solving DG matrices with MA41 and MA57 by utilis-

ing the underlying block structure during preprocessing could further be enhanced

by exploiting these structures in the FACTORISE and SOLVE phases of the sparse direct

solvers. In particular, if an efficient test could be developed for determining whether a

diagonal block was singular, or close to singular, then it should be possible to construct

a sparse block unsymmetric solver that factorises all degrees of freedom associated

with each finite element at the same time. Such a solver could utilise efficient level 3

BLAS and LAPACK routines to achieve a highly efficient factorisation for high order

DG matrices.

There are three principal ways in which the methods for neutron transport problems

described herein could be further developed in order to more faithfully represent the

physical systems being modelled. Firstly, incorporating the potential for anisotropic

scattering of neutrons would lead to more physically relevant solutions, though this

would come at the cost of increased computational expense for the computation of

the action of the scattering matrix S. Even more computationally demanding would

be to extend the spatial domain to model the full three dimensional space, as in [87].

Such an extension would be necessary to obtain a truly accurate representation of the

physical systems considered; however, the problem size could grow prohibitively large

without significant enhancements to the present code. This is because we would now

be required to solve, in the monoenergetic case, a five dimensional integro-differential

eigenvalue equation. Indeed, in order to solve a source problem in the field of radia-

tion transport, the authors of [87] needed to run their discrete ordinates solver in par-

allel on hundreds of cores. The computation of the keff-eigenvalue in such a geometry

would be considerably more challenging. Finally, the recent development of hp-finite

element methods with general polygonal elements, see [138], could be exploited in or-
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der to retain a faithful representation of the physical domain for complicated reactor

geometries, whilst reducing the overall problem size. Such methods define their basis

functions in physical space on a bounding box containing the polygonal finite element,

which is then restricted to the element. These methods permit the modelling of fine

details in the spatial domain that could not otherwise be modelled without employing

a large number of smaller elements.

The speed of the software could also potentially be improved in three ways. Firstly, the

incorporation of reflective boundary conditions could enable a significant reduction in

the size of the spatial domain, and hence the overall problem size, when permitted

by symmetries in the spatial geometry. For example, the Larsen and Alcouffe bench-

mark problem from Section 5.2 could be computed to the same accuracy with a 75%

reduction in the number of degrees of freedom required if reflective boundaries were

placed along the horizontal and vertical lines of symmetry. Then the critical eigenvector

could be computed in a quarter of the original spatial domain, yielding the same value

for the critical eigenvalue with a large reduction in both the amount of memory and

the number of floating point operations required. Secondly, if large three dimensional

problems were to be tackled, it would be necessary to utilise distributed processing

environments. For the two dimensional problems considered in this thesis, the spatial

domains were sufficiently small that transport sweeps could be efficiently computed

for the full spatial domain on a single processor for each angular element. However,

in [87], the authors found that for large 3D problems, it was necessary to consider a

decomposition of the spatial domain so that the full spatial geometry did not need to

be stored on each processor. In this case multiple processors were used for the trans-

port sweeps in each ordinate direction. Such a strategy raises significant computational

challenges, including the necessity to time the transport sweeps between processors so

that computational resources are not left idle while waiting for information from neigh-

bouring subdomains. Finally, the number of iterations required by the Krylov subspace

solvers could be reduced for some problems by using diffusion synthetic acceleration

(see [89] and [90]). DSA preconditioners interleave transport sweeps with the appli-

cation of an inverse diffusion operator derived from a discretisation of the neutron

diffusion equation (see Section 1.5.2). Such methods capture not only the physical pro-

cess of neutron advection, modelled by the transport sweeps, but also the scattering,

modelled by the diffusion operator. Though the transport sweep based preconditioner

considered in this thesis was found to be effective and scalable for the problems con-
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sidered herein, for scattering dominated problems a DSA type preconditioner could

provide significant efficiency gains.
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Problem data

In this appendix we give the nuclear cross sections from the benchmark problems that

are included in this thesis.

A.1 Maire and Talay benchmark

Table A.1 gives the cross sections for the benchmark problem published by Maire and

Talay in [127].

A.2 Los Alamos benchmark

Table A.2 gives the nuclear cross sections for the seventh benchmark problem from the

set compiled by Sood, Forster, and Parsons from the Los Alamos National Laboratory,

Region Σs νΣ f Σt

1 0.53 0.079 0.6

2 0.20 0 0.48

3 0.66 0.043 0.70

4 0.50 0 0.65

5 0.89 0 0.90

Table A.1: The material coefficients for the five regions marked in the diagram in

Figure 4.2 of the Maire and Talay benchmark problem.
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Σt Σs Σ f ν

0.32640 0.225216 0.081600 2.84

Table A.2: The material coefficients for Plutonium-239 used in the computation of the

LA7 benchmark.

Group (g) χ Σs,g→g Σs,g−1→g Σs,g−2→g νΣ f Σt

Region 1

1 0.7 0.0871 0 0 0.0524 0.144

2 0.2 0.2486 0.0453 0 0.01 0.2591

3 0.1 0.3883 0.0387 0.0001 0.006 0.4062

Region 2

1 0 0 0 0 0 0.1

2 0 0 0 0 0 0.3

3 0 0 0 0 0 5.0

Region 3

1 0 0.176 0 0 0 0.2163

2 0 0.3236 0.0399 0 0 0.3255

3 0 0.9328 0 0 0 1.1228

Table A.3: The material coefficients for the three regions marked in the diagram in

Figure 5.4 of the Larsen and Alcouffe benchmark problem.

NM [106].

A.3 Larsen and Alcouffe benchmark

Table A.3 gives the cross sections for the benchmark problem published by Larsen and

Alcouffe in the Los Alamos technical report, [134].
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g Σt Σs,g→1 Σs,g→2 Σs,g→3 Σs,g→4 νΣ f χ

Region 1

1 1.24526E-01 1.05964E-01 1.12738E-02 1.46192E-04 9.62178E-07 1.79043E-02 0.908564

2 2.01025E-01 0.00000E-00 1.89370E-01 3.64847E-03 1.06888E-06 1.59961E-02 0.087307

3 2.86599E-01 0.00000E-00 0.00000E-00 2.70207E-01 1.80479E-03 2.40856E-02 0.004129

4 3.68772E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.18960E-01 7.33104E-02 0.000000

Region 2

1 1.40226E-01 1.19887E-01 1.30790E-02 1.59938E-04 1.07166E-06 1.59878E-02 0.908564

2 2.28245E-01 0.00000E-00 2.15213E-01 4.00117E-03 1.82716E-06 1.64446E-02 0.087307

3 3.25806E-01 0.00000E-00 0.00000E-00 3.06885E-01 1.67341E-03 2.71541E-02 0.004129

4 4.18327E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.60906E-01 8.45807E-02 0.000000

Region 3

1 1.41428E-01 1.14337E-01 2.09664E-02 1.39132E-03 6.10281E-05 1.01663E-02 0.908564

2 2.45394E-01 0.00000E-00 2.12006E-01 2.67269E-02 1.08186E-03 9.46359E-03 0.087307

3 3.98255E-01 0.00000E-00 0.00000E-00 3.52093E-01 3.29030E-02 1.87325E-02 0.004129

4 4.35990E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.70872E-01 8.25335E-02 0.000000

Region 4

1 1.59346E-01 1.47969E-01 1.06607E-02 2.49956E-04 1.82565E-06 - -

2 2.16355E-01 0.00000E-00 2.10410E-01 5.46711E-03 1.00157E-06 - -

3 3.48692E-01 0.00000E-00 0.00000E-00 3.42085E-01 5.36879E-03 - -

4 6.24249E-01 0.00000E-00 0.00000E-00 0.00000E-00 6.19306E-01 - -

Table A.4: The material coefficients for the first four regions marked in the diagram

of the KNK benchmark problem from Figure 5.7.

A.4 KNK fast reactor benchmark

Tables A.4 and A.5 give the cross sections for the KNK fast reactor benchmark problem

originally published by Takeda and Ikeda in [135]. This is for the unrodded case.

A.5 SILENE benchmark

Table A.6 gives the cross sections for the SILENE benchmark problem. This is from the

technical report compiled by Albrecht Kyrieleis at Serco Assurance, [132].
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g Σt Σs,g→1 Σs,g→2 Σs,g→3 Σs,g→4 νΣ f χ

Region 5

1 1.39164E-01 1.05911E-01 2.96485E-02 3.06502E-03 1.41697E-04 - -

2 2.46993E-01 0.00000E-00 1.84820E-01 5.91780E-02 2.69229E-03 - -

3 4.52425E-01 0.00000E-00 0.00000E-00 3.73072E-01 7.81326E-02 - -

4 5.36256E-01 0.00000E-00 0.00000E-00 0.00000E-00 5.12103E-01 - -

Region 6

1 1.51644E-01 1.38427E-01 1.23901E-02 3.66930E-04 1.69036E-06 - -

2 1.42382E-01 0.00000E-00 1.37502E-01 4.41927E-03 1.63280E-06 - -

3 1.65132E-01 0.00000E-00 0.00000E-00 1.60722E-01 3.33075E-03 - -

4 8.04845E-01 0.00000E-00 0.00000E-00 0.00000E-00 7.98932E-01 - -

Region 7

1 9.65097E-02 8.83550E-02 7.73409E-03 1.94719E-04 8.89615E-07 - -

2 9.87095E-02 0.00000E-00 9.52493E-02 3.22568E-03 7.98494E-07 - -

3 1.34200E-01 0.00000E-00 0.00000E-00 1.30756E-01 2.90481E-03 - -

4 4.12670E-01 0.00000E-00 0.00000E-00 0.00000E-00 4.09632E-01 - -

Region 8

1 1.39085E-01 1.17722E-01 1.26066E-02 1.33314E-04 1.08839E-06 - -

2 2.28152E-01 0.00000E-00 1.94699E-01 4.32219E-03 1.85491E-07 - -

3 3.18806E-01 0.00000E-00 0.00000E-00 2.44352E-01 3.68781E-04 - -

4 6.27366E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.14816E-01 - -

Table A.5: The material coefficients for the final four regions marked in the diagram

of the KNK fast reactor benchmark problem from Figure 5.7.
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g Σt Σs,g→1 Σs,g→2 Σ f ν χ

Region 1, Uranyl Nitrate

1 2.633073E-01 2.161793E-01 4.400309E-02 1.610373E-03 2.448503E+00 1.0

2 1.954845E+00 4.147318E-04 1.855253E+00 6.961299E-02 2.437871E+00 0.0

Region 2, Air

1 1.306052E-04 1.251169E-04 2.182610E-06 - - -

2 4.765118E-04 3.166587E-07 4.236728E-04 - - -

Region 3, Steel

1 3.354474E-01 3.287258E-01 1.357145E-03 - - -

2 1.045146E+00 8.654190E-04 8.624749E-01 - - -

Table A.6: The material coefficients for the three regions marked in Figure 5.10 for the

SILENE benchmark problem.

A.6 Water-cooled reactor benchmark

Table A.7 gives the cross sections for the 2-groupwater-cooled reactor benchmark prob-

lem. This is from the technical report compiled by Albrecht Kyrieleis at Serco Assur-

ance, [132].
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g Σt Σs,g→1 Σs,g→2 Σ f ν χ

Region 1, Fuel

1 2.905902E-01 2.563342E-01 2.354509E-02 3.108461E-03 2.551354E+00 1.0

2 1.309916E+00 7.488663E-04 1.193697E+00 7.984104E-02 2.438050E+00 0.0

Region 2, Steel

1 3.355475E-01 3.293120E-01 1.186761E-03 - - -

2 1.017820E+00 1.190808E-03 8.452682E-01 - - -

Region 3, Water

1 1.983542E-01 1.678229E-01 2.988528E-02 - - -

2 1.294089E+00 5.246971E-04 1.266390E+00 - - -

Table A.7: The material coefficients for the three regions marked in Figure 5.13 for the

water-cooled reactor benchmark problem.
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