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THÈSE Pour obtenir le grade de

In this thesis, we study stabilization problems for the Korteweg-de Vries (KdV) equation in a bounded domain and on a star-shaped network structure. More specifically, the focus of this thesis is to analyze the cases where the feedback terms include delay and saturation. In Chapter 2, we deal with the internal stabilization of the nonlinear KdV equation posed on a star-shaped network when the feedback terms involve time delay. Using Lyapunov techniques and an appropriated observability inequality, we managed to show the exponential stability of the associated system. In Chapter 3, we study the saturated internal stabilization of the KdV equation on a star-shaped network. In this case, we show first a global well-posedness result by using an appropriated linear system and the Kato smoothing property. Then, we show the exponential stability via a contradiction argument and an observability inequality. In Chapter 4, the stability analysis of the KdV equation on a bounded domain in presence of boundary saturation is studied. Using nonlinear semigroup theory and fixed-point arguments, we show the well-posedness. The exponential stability is proved by using compactness ideas to get an observability inequality. In Chapter 5, we consider the stability analysis of the KdV equation on a bounded domain with time-dependent delay on the boundary or internal feedbacks. We study the well-posedness using time-varying semigroup theory. The exponential stability is derived by using Lyapunov theory. Finally, in Chapter 6 some comments and future research problems are addressed.

Résumé

Dans cette thèse, nous étudions des problèmes de stabilisation de l'équation de Korteweg-de Vries dans un domaine borné et dans une structure de réseau étoilée. Plus spécifiquement, l'objectif de cette thèse est d'analyser les cas où les termes de feedback incluent du retard et de la saturation. Dans le chapitre 2, nous traitons la stabilisation interne de l'équation non linéaire de KdV posée sur un réseau étoilé lorsque les termes de feedback incluent des retards. À l'aide de techniques de Lyapunov et d'une inégalité d'observabilité, nous avons réussi à montrer la stabilité exponentielle du système. Dans le chapitre 3, nous étudions la stabilisation interne saturée de l'équation de KdV sur un réseau étoilé. Dans ce cas, nous montrons d'abord un résultat de caractère bien posé global en utilisant un système linéaire approprié et la propriété de régularisation de Kato. Puis via un argument de contradiction et une inégalité d'observabilité, nous montrons la stabilité exponentielle. Dans le chapitre 4, l'analyse de la stabilité de l'équation de KdV sur un domaine borné en présence de saturation à la frontière est étudiée. En utilisant la théorie des semigroupes non linéaires et des arguments de points fixes, nous montrons le caractère bien posé de l'équation. La stabilité exponentielle est prouvée en utilisant des idées de compacité pour obtenir une inégalité d'observabilité. Dans le chapitre 5, nous considérons l'analyse de la stabilité de l'équation de KdV sur un domaine borné avec un retard dépendant du temps dans le feedback frontière ou interne. Nous étudions le caractère bien posé à l'aide de la théorie des semigroupes qui dépendent du temps. La stabilité exponentielle est dérivée en utilisant la théorie de Lyapunov. Finalement, le chapitre 6 présente quelques commentaires et des possibles pistes de recherche futures.
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CHAPTER 1

Semigroup theory

Let H be a complex Hilbert space, we denote by ⟨•, •⟩ H and ∥ • ∥ H its scalar product and norm, respectively. Consider a linear operator A : D(A) ⊂ H → H, where the domain D(A) := {u ∈ H : Au ∈ H} is a linear space of H. We say that A is a closed operator if its graph G(A) := {(u, Au) : u ∈ H} is a closed set in H × H, in this case D(A) is also a Hilbert space with the graph norm ∥u∥ In the case where A : D(A) -→ H is a nonlinear operator, the dissipative property is defined as Re⟨Au 1 -Au 2 , u 1 -u 2 ⟩ H ≤ 0, ∀u 1 , u 2 ∈ D(A).

Definition 1.1.3 (Maximal dissipative operator). A dissipative operator A : D(A) -→ H is called maximal dissipative or m-dissipative if, for all λ > 0, R(I -λA) = H.

Actually, to get that A is m-dissipative, it is enough to check that R(I -λA) = H for some λ > 0 [Miy92, Lemma 2.13].

Definition 1.1.4 (Strongly continuous semigroups). A one-parameter family S(t), 0 ≤ t < ∞ of continuous operators from H to H is a semigroup of strongly continuous operators if 1. S(t) ∈ L(H), for all t ≥ 0, 2. S(0) = I, 3. S(t 1 + t 2 ) = S(t 1 ) • S(t 2 ), for all t 1 , t 2 ∈ [0, ∞), 4. lim t→0 + S(t)u = u, for all u ∈ H.

We say that S(t) is a semigroup of contractions if ∥S(t)∥ L(H) ≤ 1, for all t ≥ 0, where L(H) is the space of linear continuous maps from H into itself. Finally, the infinitesimal generator of a semigroup S is the linear operator A : D(A) ⊂ H -→ H defined by

D(A) = u ∈ H : lim t→0 + S(t)u -u t exists , Au = lim t→0 + S(t)u -u t , ∀u ∈ D(A).
With all this in mind, we can introduce the following result (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF])

Theorem 1.1.1 (Lumer-Phillips). Let us assume that A is densely defined, closed and that A and A * are both dissipative. Then A is the infinitesimal generator of a strongly continuous semigroup of contractions.

Cauchy problem

In our aim to study evolutions equations, let T > 0, A : D(A) ⊂ H → H be the infinitesimal generator of a strongly continuous semigroup of contractions S(t), u 0 ∈ D(A) and f ∈ C 1 ([0, T ]; H). Consider the following homogeneous Cauchy problem:

∂ t u = Au(t), t ∈ [0, T ], u(0) = u 0 , (1.1.1)
and the in-homogeneous one

∂ t u = Au(t) + f (t), t ∈ [0, T ], u(0) = u 0 . (1.1.2)
A classical solution of (1.1.1) (resp. (1.1.2)) on [0, T ] is a function u(t) ∈ C 1 ([0, T ]; H), u(t) ∈ D(A) for all t ∈ [0, T ] such that u(t) satisfies (1.1.1) (resp. (1.1.2)) for all t ∈ [0, T ]. As A generates a strongly continuous semigroup of contractions S(t), the unique classical solution of (1.1.1) is given by u(t) = S(t)u 0 ∈ C([0, ∞); D(A)) ∩ C 1 ([0, ∞); H). Similarly, as f ∈ C 1 ([0, T ]; H), the unique classical solution of (1.1.2) is given by u(t) = S(t)u 0 + t 0 S(t -s)f (s)ds.

(1.1.3) Consider now, the case u 0 ∈ H, we call a mild solution of (1.1.1) to the function u(t) = S(t)u 0 ∈ C([0, T ]; H). Similarly, if f ∈ L 1 (0, T ; H), we call a mild solution of (1.1.2) to a function u(t) ∈ C([0, T ]; H) satisfying (1.1.3).

Control and stabilization of abstract systems

In this part, we give some basic notions about control and stability of abstract evolution equations. Let T > 0, H and V be real Hilbert spaces and consider the following control system

∂ t u = Au + Bv, t ∈ [0, T ], u(0) = u 0 . (1.1.4)
where u corresponds to the state and v ∈ L 2 (0, T ; V ) stands for the control variable. The operator A : D(A) -→ H is a linear m-dissipative operator and B ∈ L(V, D(A * ) ′ ), where D(A * ) ′ is the dual space of D(A * ). This functional setting gives the possibility to consider boundary control operators (instead to the stronger one B ∈ L(V, H)). To define solutions of (1.1.1) when B ∈ L(V, D(A * ) ′ ) we ask the operator B to be admissible for the semigroup S(t), i.e.

T 0 ∥B * S(t) * z∥ 2 V dt ≤ C T ∥z∥ 2 H , ∀z ∈ D(A * ).

For the system (1.1.4) several notions of controllability can be considered, the most classical are the following ones:

Definition 1.1.5 (Exactly controllable). Let T > 0. The control system (1.1.4) is exactly controllable in time T if, for every u 0 , u T ∈ H, there exists v ∈ L 2 (0, T ; V ) such that the solution of (1.1.4) satisfies u(T ) = u T .

Definition 1.1.6 (Null controllable). Let T > 0. The control system (1.1.4) is null controllable in time T if, for every u 0 ∈ H, there exists v ∈ L 2 (0, T ; V ) such that the solution of (1.1.4) satisfies u(T ) = 0.

Definition 1.1.7 (Approximately controllable). Let T > 0. The control system (1.1.4) is approximately controllable in time T if, for every u 0 , u T ∈ H, and for every ε > 0, there exists v ∈ L 2 (0, T ; V ) such that the solution of (1.1.4) satisfies ∥u(T ) -u T ∥ H ≤ ε.

Clearly, we have that exact controllability implies null and approximate controllability. For linear systems, we can consider u 0 = 0 for the exact controllability. Moreover, if the system is reversible in time, then the exact controllability is equivalent to the null controllability. We can characterize these control problems in the following sense using the HUM method. Consider the operator Λ : L 2 (0, T ; V ) -→ H,

Λ(v) = u(T ),
where given v ∈ L 2 (0, T ; V ), u is the associate solution of (1.1.4). Take u 0 = 0, thus Λ is linear. If we focus on the exact controllability we see Exactly controllable ⇐⇒ Λ surjective.

By [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Theorem 2.20], the operator Λ is onto if and only if, there exists C > 0 such that ∥z T ∥ H ≤ C∥Λ * (z T )∥ L 2 (0,T ;V ) , ∀z T ∈ H.

(1.1.5) It is not difficult to see that, for every z T ∈ H, Λ * (z T ) = B * S(T -t) * z T . Thus, recalling that D(A * ) is dense in H, the exact controllability reads as

∥z T ∥ H ≤ C T 0 ∥B * S(T -t) * z T ∥ 2 V dt, ∀z T ∈ D(A * ).
The above inequality is called observability inequality for the adjoint system

∂ t z = -A * z, t ∈ [0, T ], z(T ) = z T . (1.1.6)
Finally, consider the uncontrolled case v = 0 in (1.1.4). Let u be an equilibrium solution, i.e. Au = 0, with u ∈ D(A).

Definition 1.1.8 (Stability). We say that u is stable, if for any ε > 0 there exists δ > 0 such that for all u 0 ∈ H with ∥u 0 -u∥ H ≤ δ, the unique mild solution u(t) of (1.1.4) satisfies ∥u(t) -u∥ H ≤ ε, for all t ≥ 0.

Definition 1.1.9 (Asymptotic stability). We say that u is asymptotically stable, if it is stable and there exists δ > 0 such that for all u 0 ∈ H with ∥u 0 -u∥ H ≤ δ, the unique mild solution u(t) of (1.1.4) satisfies lim t→∞ ∥u(t) -u∥ H = 0.

Definition 1.1.10 (Exponential stability). We say that u is exponentially stable, if it is asymptotically stable and there exists µ > 0 such that for all u 0 ∈ H, the unique mild solution u(t) of (1.1.4) satisfies ∥u(t) -u∥ H ≤ e -µt ∥u 0 -u∥ H .

In this context, the focus of the stabilization problems is to design a feedback control law v = F(u), such that an equilibrium point of the closed-loop system (1.1.4) be stable, asymptotically stable, exponentially stable, etc.

Stabilization and saturation

In most real-life setting, we have to take into account saturation in the input control due to some (physical, economical, etc.) constraints. With respect to saturated control in infinite-dimensional systems, we can refer to [START_REF] Prieur | Wave equation with cone-bounded control laws[END_REF] where a wave equation with distributed and boundary saturated feedback law was studied, [START_REF] Marx | Global Stabilization of a Korteweg-de Vries Equation with saturating distributed control[END_REF] where the saturated internal stabilization of a single KdV equation was studied and recently [START_REF] Mironchenko | Local stabilization of an unstable parabolic equation via saturated controls[END_REF] where a saturated feedback control law was derived for a linear reaction-diffusion equation. Sometimes adding saturation to the feedback control, destabilize the system. To clarify these ideas, we consider now the following finite dimensional system.

u = Au + Bv, (1.1.7)
where u ∈ R N is the state and v ∈ R M is the control, and A, B are real matrices with the appropriate dimensions. With the aim to find a state feedback law v = F(u) and due to the linearity of the system, we can take the control v as v = Ku, where the matrix K is called the feedback gain. Thus, the closed-loop system is u = (A + BK)u.

(1.1.8)

For system (1.1.8) it is well-known that if the pair (A, B) is controllable (i.e. the system (1.1.7) is controllable) we can find a matrix K such that the closed-loop system (1.1.8) is exponentially stable. The fact that the pair (A, B) is controllable is equivalent to the following Kalman condition rank[B, AB, . . . , A N -1 B] = N.

Moreover, via the pole-shifting theorem, we can find a matrix K such that the eigenvalues of A + BK be as we want. We take now the following example [TGdSJQ11, Example 1.1]. Consider the system

u(t) = 0 1 1 0 u(t) + 0 -1 v(t).
(1.1.9)

This system is clearly open-loop unstable, because the eigenvalues of A are 1 and -1. The pair (A, B) satisfies the Kalman condition. Moreover, we can take the feedback gain K = 13 7 , thus the eigenvalues of the closed-loop system are -3 and -4, hence the closed-loop system is exponentially stable. Consider now the case where due to some physical restrictions the control function is bounded, for instance |v(t)| ≤ 5. Adding this restriction, the new closed-loop system is u(t) = Au(t) + Bsat(Ku(t)), (1.1.10) where

sat(s) = s, if |s| ≤ 5, 5sgn(s), if |s| ≥ 5.
In this case we can observe some very interesting behaviours.

• For the initial condition u(0) = [-1 -3] ⊤ , the solution converges to the origin, see We can observe that in the finite-dimensional case adding saturation to a feedback controller could it destabilizes the system and even create new points of equilibrium.

Stabilization and delay

Time delay phenomena appear in many applications, for example in biology, mechanics or engineering. Delay terms are unavoidable in practice due to measurement lag, analysis time, or computation time. Very active research has been developed recently on stability problems of partial differential equations with delay. It is well known that even a small delay in the feedback mechanism can destabilize a system (see for example [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF][START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF]). But a delay term can also improve the performance of the system ( [START_REF] Abdallah | Delayed positive feedback can stabilize oscillatory systems[END_REF]). The problems of stability of systems with delay are of both theoretical and practical interest. To fix ideas, consider the following one-dimensional ODE

u(t) = 1 2 u(t),
the above equation is clearly unstable, but introducing for instance the feedback law v = -u(t), we have that u(t) = 1 2 u(t) -u(t) = -1 2 u(t) is exponentially stable. Suppose now that the feedback term v has a time delay of h seconds, and we study now the system u(t) = 1 2 u(t) -u(t -h). (1.1.12)

It is possible to show that even for small delays h, there exist solutions a > 0, b ∈ R of (1.1.12). In particular, as a > 0 the solution u(t) = e at cos(bt) of (1.1.11) diverges.

The Korteweg-de Vries equation

The Korteweg-de Vries equation, or KdV, is a third-order, nonlinear, dispersive equation introduced in 1895 by the Dutch mathematicians Diederik Korteweg and Gustav de Vries in [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave[END_REF]. It was written to describe the one-way propagation of long-period, small-amplitude waves, such as those found in shallow water channels. In 1965, Zabusky and Kruskal discovered the idea of solitary wave solutions, also known as "solitons", while analyzing numerical results related to the KdV equation [START_REF] Zabusky | Interaction of "solitons" in a collisionless plasma and the recurrence of initial states[END_REF]. Since then, it has been widely studied in both mathematics and physics, and has been utilized to model a variety of phenomena, including water waves, tsunamis, transmission of electrical signals in nerve fibers, plasma, cosmology, etc (see for instance [START_REF] Gardner | The effect of temperature on the width of a small-amplitude, solitary wave in a collision-free plasma[END_REF][START_REF] Lidsey | Cosmology and the Korteweg-de Vries equation[END_REF][START_REF] Kever | Korteweg-de Vries equation for nonlinear hydromagnetic waves in a warm collision-free plasma[END_REF]). The KdV equation derived by Diederik Korteweg and Gustav de Vries was (up to rescaling)

∂ t u(t, x) + ∂ 3 x u(t, x) + u(t, x)∂ x u(t, x) = 0, x ∈ R, t ≥ 0, where the function u = u(t, x) modelizes the amplitude of the water wave at position x and time t ≥ 0. In this thesis, we are mainly interested in the KdV equation posed in a bounded domain and networks with bounded edges. If we study the KdV equation in a bounded domain, we say x ∈ [0, L], as was suggested by Bona and Winter in [START_REF] Bona | The Korteweg-de Vries equation, posed in a quarter-plane[END_REF] the extra term ∂ x u should be incorporated. Moreover, as the KdV equation is of third order in space, we need to impose two boundary conditions at the right and one at the left. For instance, we can consider boundary conditions acting on u(t, 0), u(t, L) and ∂ x u(t, L).

Well-posedness ideas

This section is mainly based on [START_REF] Rosier | Control and stabilization of the Korteweg-de Vries equation: recent progresses[END_REF][START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF]. The first results about controllability and stabilization of the KdV equation were derived by Russell and Zhang [START_REF] Russell | Controllability and stabilizability of the thirdorder linear dispersion equation on a periodic domain[END_REF][START_REF] Russell | Smoothing and decay properties of solutions of the korteweg-devries equation on a periodic domain with point dissipation[END_REF], in the case of periodic boundary conditions and by Rosier in the case of boundary control [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]. In the work of Rosier, the exact controllability of the KdV equation was studied by acting on the right Neumann boundary condition. In particular, he focused on the linear system

         ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = u(t, L) = 0, t ∈ [0, T ], ∂ x u(t, L) = h(t), t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L), (1.2.1)
where the function h ∈ L 2 (0, T ) denotes the control. Consider first the uncontrolled system

     ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3
x u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = u(t, L) = ∂ x u(t, L) = 0, t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L).

(1.2.2) Let A : D(A) → L 2 (0, L) defined by Aw = -w ′ -w ′′′ , D(A) = {w ∈ H 3 (0, L); w(0) = w(L) = w ′ (L) = 0}.

By [Ros97, Proposition 2.1] we know that A generates S(t), t ≥ 0 a strongly continuous semigroup of contractions in L 2 (0, L). Define the space B T = C([0, T ], L 2 (0, L)) ∩ L 2 (0, T ; H 1 (0, L)), ∥u∥ B T = ∥u∥ C([0,T ],L 2 (0,L)) + ∥u∥ L 2 (0,T ;H 1 (0,L)) .

In virtue of [Ros97, Proposition 3.2], for all u 0 ∈ L 2 (0, L), there exists a unique mild solution u = S(•)u 0 ∈ B T of (1.2.2). Moreover, the following estimate holds ∥∂ x u(•, 0)∥ L 2 (0,T ) ≤ ∥u 0 ∥ L 2 (0,L) .

(1.2.3)

This estimate is typically called hidden regularity. Consider now, the nonlinear system

         ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + u(t, x)∂ x u(t, x) = 0, t ∈ [0, T ],
x ∈ (0, L), u(t, 0) = u(t, L) = 0, t ∈ [0, T ], ∂ x u(t, L) = h(t), t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L).

(1.2.4)

The main idea in the proof of the well-posedness result for nonlinear system (1.2.4) is to use the following estimate (see [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF] for the proof).

Proposition 1.2.1. Let u ∈ B T . Then u∂ x u ∈ L 1 ((0, T ), L 2 (0, L)) and the map u ∈ B T → u∂ x u ∈ L 1 ((0, T ), L 2 (0, L)) is continuous. Moreover, there exists C > 0 such that, for any u, z ∈ B T ∥u∂ x u -z∂ x z∥ L 1 ((0,T ),L 2 (0,L)) ≤ CT 1/4 (∥u∥ B T + ∥z∥ B T )∥u -z∥ B T .

Using the above proposition and a fixed-point argument, we get the local well-posedness of (1.2.4).

Critical lengths phenomena

Now, given T > 0, u 0 , u T ∈ L 2 (0, L) the exact controllability problem for (1.2.1) consists in finding h ∈ L 2 (0, T ) such that, the solution u of (1.2.1) satisfies u(T, •) = u T ∈ L 2 (0, L). Let T > 0 and define the operator Λ : L 2 (0, T ) → L 2 (0, L) as Λ(h) := u(T, •), where u is the unique solution of (1.2.1). In particular, by linearity we can assume u 0 = 0. Thus, from (1.1.5) the exact controllability is equivalent to the observability inequality, ∥φ T ∥ L 2 (0,L) ≤ C∥Λ * (φ T )∥ L 2 (0,T ) , where Λ * is the adjoint operator. It is not difficult to see that given φ T ∈ L 2 (0, L), Λ * (φ T ) = ∂ x φ(•, L), where φ is the solution of the backward in time equation

     -∂ t φ(t, x) -∂ x φ(t, x) -∂ 3
x φ(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), φ(t, 0) = φ(t, L) = ∂ x φ(t, 0) = 0, t ∈ [0, T ], φ(T, x) = φ T , x ∈ (0, L).

(1.2.5) Moreover, making the change of variable ξ = L -x and τ = T -t, we get that φ(T -t, L -x) is solution of (1.2.2) and thus the observability inequality reads as ∥u 0 ∥ L 2 (0,L) ≤ C∥∂ x u(•, 0)∥ L 2 (0,T ) , which is indeed the reverse inequality of (1.2.3). In [Ros97, Proposition 3.3] it was proved that this observability inequality is true if and only if L / ∈ N , where the set N is called the set of critical lengths and is given by

N = 2π k 2 + kl + l 2 3 ; k, l ∈ N * , (1.2.6)
and thus (1.2.1) is exactly controllable if and only if L / ∈ N . Furthermore, we have the following lemma due to [Ros97, Lemma 3.5],

Lemma 1.2.1. The following assertions are equivalent • There exist λ ∈ C and u ∈ H 3 (0, L) \ {0}, such that λu + u ′ + u ′′′ = 0, x ∈ (0, L) u(0) = u(L) = u ′ (0) = u ′ (L) = 0,

• L ∈ N .

This lemma implies the existence of unobservable solutions of (1.2.2), for instance in the case l = k = 1, the associate critical length is L = 2π and this yields the unobservable steady solutions u(t, x) = a(cos(x) -1), a ∈ R. Consider now the L 2 -energy of a mild solution of (1.2.2), i.e.

E(t) = 1 2 L 0 (u(t, x)) 2 dx.
Formally, taking the time-derivative of the energy, we get after some integrations by parts

Ė(t) = - 1 2 (∂ x u(t, 0)) 2 ,
from where we deduce that the energy is a non-increasing function of time. Moreover, if L ∈ N , by Lemma 1.2.1, there exist solutions of (1.2.2) which satisfy ∂ x u(•, 0) = 0 and thus with constant energy.

Stability on non-critical lengths

In the non-critical case, L / ∈ N we can prove that the energy of solutions of (1.2.2) decays exponentially. Indeed, multiplying (1.2.2) by u and integrating on (0, T ) × (0, L) we get after integration by parts Using the fact that the energy is non-increasing and the observability inequality

E(T ) ≤ E(0) ≤ C T 0 (∂ x u(t, 0)) 2 dt ≤ C(E(0) -E(T )),
that implies

E(T ) ≤ γE(0), with γ = C C + 1 < 1.
In particular, as the system is invariant by translation in time, we can repeat this argument on [(m -1)T, mT ], for m = 1, 2, . . . to obtain

E(mT ) ≤ γE((m -1)T ) ≤ • • • ≤ γ m E(0).
Hence, we have E(mT ) ≤ e -µmT E(0) where µ = 1 T ln( 1 γ ) > 0. Let t > 0, then there exists m ∈ N * such that (m -1)T < t ≤ mT , and then using again the non-increasing property of the energy we get E(t) ≤ E((m -1)T ) ≤ e -µ(m-1)T E(0) ≤ 1 γ e -µt E(0).

Finally, we get the exponential stability.

Consider now the nonlinear KdV equation

     ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + u(t, x)∂ x u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = u(t, L) = ∂ x u(t, L) = 0, t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L). (1.2.7)
The previous result of exponential stability for the linear system can be extended for small amplitude solutions of the nonlinear system (1.2.7) using a perturbation approach. That is, there exists ε > 0 small enough such that, for all u 0 ∈ L 2 (0, L) satisfying ∥u 0 ∥ L 2 (0,L) ≤ ε the unique mild solution of (1.2.7) satisfies E(t) ≤ Ce -µt E(0), for some C, µ > 0.

Stability on the critical case: internal damping

In order to achieve the exponential stability in the case L ∈ N a dissipative mechanism was introduced in [PMVZ02] taking the form F (u) = -au, where a ∈ L ∞ (0, L) satisfying

a(x) ≥ a 0 > 0, ∀x ∈ ω,
where ω is nonempty open subset of (0, L).

(1.2.8)

The systems addressed in [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF] are the linear equation

     ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + a(x)u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = u(t, L) = ∂ x u(t, L) = 0, t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L).
(1.2.9) and the nonlinear one

     ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + u(t, x)∂ x u(t, x) + a(x)u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = u(t, L) = ∂ x u(t, L) = 0, t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L).
(1.2.10) Using a contradiction argument and compactness ideas Perla, Menzala and Zuazua proved in [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF], the following results Theorem 1.2.1. Let L > 0 and a ∈ L ∞ (0, L) satisfying (1.2.8).

• There exists C > 0 and µ > 0 such that for any u 0 ∈ L 2 (0, L), the unique mild solution of the linear equation (1.2.9) satisfies ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , ∀t ≥ 0.

• There exists C, ε > 0 and µ > 0 such that for any u 0 ∈ L 2 (0, L) with ∥u 0 ∥ L 2 (0,L) ≤ ε, the unique mild solution of the nonlinear equation (1.2.10) satisfies∥u(t,

•)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , ∀t ≥ 0.
The second point of the last result was derived using a perturbative argument, is due to this fact that we add the smallness assumption on the initial condition. Moreover, in [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF] a semiglobal exponential stability result was proved for the nonlinear system (1.2.10). First, in [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF] a stronger condition on the acted set ω was used, ∃δ > 0, (0, δ) ∪ (L -δ, L) ⊂ ω. In [START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF] this condition was dropped, obtaining just (1.2.8). Working directly with the nonlinear system, two main difficulties appear, the first one is to pass to the limit in the nonlinear term and the second that Holmgrem's Theorem does not apply in the nonlinear case. Thus, we need the next unique continuation property of Saut and Scheurer.

Theorem 1.2.2 (Theorem 4.2, [START_REF] Saut | Unique continuation for some evolution equations[END_REF]). Let L > 0 and u ∈ L 2 (0, T ; H 3 (0, L)) be a solution of

∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + u(t, x)∂ x u(t, x) = 0, such that u(t, x) = 0, for (t, x) ∈ (t 1 , t 2 ) × ω, where ω is a nonempty open subset of (0, L). Then u(t, x) = 0, for (t, x) ∈ (t 1 , t 2 ) × (0, L).

The semiglobal stability result reads as

Theorem 1.2.3. Let L > 0, a ∈ L ∞ (0, L) satisfying (1.2.8) and R > 0. There exists C(R) > 0 and µ(R) > 0 such that for any u 0 ∈ L 2 (0, L) with ∥u 0 ∥ L 2 (0,L) ≤ R, the unique mild solution of (1.2.10)

satisfies ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , ∀t ≥ 0.
The semiglobal sense of this result arises from the fact that we can choose as we want the parameter R > 0 of the initial data, which means arbitrary big initial conditions, but the decay rate depends on it.

Boundary stabilization results

In this part, we some recall some boundary stabilization results for the KdV equation. Consider the linear system

         ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = K 1 (u), t ∈ [0, T ], u(t, L) = K 2 (u), ∂ x u(t, L) = K 3 (u), t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L), (1.2.11)
and the nonlinear one

         ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + u(t, x)∂ x u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = K 1 (u), t ∈ [0, T ], u(t, L) = K 2 (u), ∂ x u(t, L) = K 3 (u), t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L).
(1.2.12)

The following result was proved by Cerpa and Crépeau in [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF] and is related to the rapid stabilization.

Theorem 1.2.4 (Rapid stabilization). Let µ > 0 and consider K 1 (u) = K 2 (u) = 0. Then, there exists an operator

F µ : H 1 0 (0, L) → R such that if K 3 (u) = ∂ x u(t, 0) + F µ (u), then the closed-loop system (1.2.11) is globally well posed in H 1 0 (0, L). Moreover, ∃C > 0, such that for all u 0 ∈ H 1 0 (0, L), ∥u(t, •)∥ H 1 0 (0,L) ≤ Ce -2µt ∥u 0 ∥ H 1 0 (0,L)
, for all t ≥ 0. The main idea of this result was to use a Gramian-based approach. Due to this technique the feedback term K 3 (u), takes the form K 3 (u) = ∂ x u(t, 0) + F µ (u) in such way that the associate operator to the free control system be skew-adjoint (i.e. A * = -A). Another rapid stabilization result was proved in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], this time acting on the left Dirichlet boundary condition and based on the backstepping techniques (see [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF] for an introduction about backstepping techniques for partial differential equations).

Theorem 1.2.5 (Rapid stabilization). Let µ > 0 and consider K 2 (u) = K 3 (u) = 0. Then, there exist an operator K 1 (u) = K 1,µ (u) and C > 0, such that for any mild solution u of (1.2.11), ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , for all t ≥ 0.

This result can be extended to the nonlinear equation (1.2.12) using a perturbation approach and small initial data. In the aim to show an exponential stability result, acting from the right in [START_REF] Coron | Local rapid stabilization for a Korteweg-de Vries equation with a neumann boundary control on the right[END_REF] Coron and Lü introduce a Neumann feedback based on a Fredholm Transform inspired by previous results for the Kuramoto-Sivashinsky equation [START_REF] Coron | Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation[END_REF].

Theorem 1.2.6 (Rapid stabilization, non-critical case). Let L / ∈ N and µ > 0 and consider K 1 (u) = K 2 (u) = 0. Then, there exists an operator K 3 (u) = K 3,µ (u) and C > 0, such that for any mild solution u of (1.2.11), ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , for all t ≥ 0.

This result can be extended to the nonlinear equation (1.2.12) using a perturbation approach and small initial data. The restriction L / ∈ N in the above theorem is due again to the lack of controllability of (1.2.2). In the case L ∈ N , the bad control properties improve if we study the nonlinear system (see Section 1.2.6). By [Ros97] L 2 (0, L) = H ⊕ M , where H corresponds to the controllable space of (1.2.1) and M the uncontrollable space (depending both on L). Moreover, dim(M ) < ∞ and dim(M ) is the number of different pairs of positive integers (l j , k j ) satisfying (1.2.6). Consider P H (resp. P M ) the projection on H (resp. M ), the following result was proved in [START_REF] Coron | Local exponential stabilization for a class of Korteweg-de Vries equations by means of time-varying feedback laws[END_REF] Theorem 1.2.7 (Time-varying feedback). Let K 1 (u) = K 2 (u) = 0. If dim(M ) = 2n with n ∈ N * , then, there exist a periodic time-varying feedback law K 3 : R × L 2 (0, L) → R and positive constants C, µ, r, such that letting K 3 (u) = K 3 (t, u), every solution of (1.2.12) with ∥u 0 ∥ L 2 (0,L) ≤ r satisfies

∥P H u(t, •)∥ L 2 (0,L) + ∥P M u(t, •)∥ 1/2 L 2 (0,L) ≤ Ce -µt ∥P H u 0 ∥ L 2 (0,L) + ∥P M u 0 ∥ 1/2 L 2 (0,L) , ∀t ≥ 0.
Now, to eliminate the restriction on the critical length in the boundary feedbacks by the right a modified version of the backstepping technique called pseudo-backstepping was used in [START_REF] Özsarı | Pseudo-backstepping and its application to the control of Korteweg-de Vries equation from the right endpoint on a finite domain[END_REF], the price to pay is to use two controllers.

Theorem 1.2.8. Let L > 0 and µ > 0 and consider K 1 (u) = 0. Then, there exist operators K 2 , K 3 and positive constants C, µ, such that for any mild solution u of (1.2.11), ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , for all t ≥ 0.

Again, this result can be extended to the nonlinear equation (1.2.12) using a perturbation approach and small initial data.

Control and stability on the critical cases

As we said in Section 1.2.5, even if the linear system (1.2.1) is uncontrollable it is possible to show controllability results for the nonlinear system thanks to the nonlinear term

         ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + u(t, x)∂ x u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = u(t, L) = 0, t ∈ [0, T ], ∂ x u(t, L) = h(t), t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L).
(1.2.13) These results are summarized in the following theorem Theorem 1.2.9. The nonlinear KdV equation (1.2.13) is locally controllable if • (Coron and Crépeau [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF]) dim(M ) = 1, for all T > 0.

• (Cerpa [START_REF] Cerpa | Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain[END_REF]) dim(M ) = 2, for T big enough.

• (Cerpa and Crépeau [START_REF] Cerpa | Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain[END_REF]) dim(M ) > 2, for T big enough.

The proof of those results was based on the power expansion method. Roughly speaking by the work of Rosier [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], the first order approximation of (1.2.13) (the linear system (1.2.1)) is not controllable, the idea to use higher order approximations to reach the uncontrollable space. As is stated in the above theorem, in some cases the authors needed a large time to achieve the controllability. For many years the necessity of this condition was an open problem, but recently Coron, Koenig and Nguyen in [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF] gave a negative answer.

Theorem 1.2.10. Let L ∈ N such that 2k + l / ∈ 3N * . Then, (1.2.13) is not small-time locally null controllable with controls in H 1 (0, T ) and initial and final datum in H 3 (0, L) ∩ H 1 0 (0, L). In the case of stability analysis, a similar natural question arises. In the critical case, does the nonlinear system (1.2.7) enjoy better stability properties than the linear one (1.2.2)? In Section 1.2.3 we said that in the non-critical case L / ∈ N , the nonlinear system (1.2.7) is locally exponentially stable. If L ∈ N the following results are known, Theorem 1.2.11. The system (1.2.7) is locally asymptotically stable if

• (Chu, Coron and Shang [CCS15]) dim(M ) = 1,
• (Tang, Chu, Shang and Coron [START_REF] Tang | Asymptotic stability of a Korteweg-de Vries equation with a two-dimensional center manifold[END_REF]) L = 2π 7 3 .

• (Nguyen [Ngu21]1 ) dim(M ) = 1 and moreover the system decays locally at least with a rate 1/t 2 .

The firsts two results are based on the center manifold theory, note that L = 2π 7 3 is the smallest length for which dim(M ) = 2, while the third result is inspired on the power series expansion, theory of quasi-periodic functions and the analysis developed in [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF]. There still some open question related to control and stability of the nonlinear KdV equation, for instance regarding Theorem 1.2.10:

• To show the not small-time controllability in the classical regularity setting, i.e. control in L 2 (0, T ) and initial data in L 2 (0, L).

• Replace the condition L ∈ N such that 2k + l / ∈ 3N * in Theorem 1.2.10, by the more general one dim(M ) > 1.

• By Theorem 1.2.9, the nonlinear KdV equation (1.2.13) is large time controllable, thus to search for the optimal time of controllability is an interesting open question.

The Korteweg-de Vries equation on networks

In recent years, partial differential equations in networks have been used to model various physical systems such as transport networks, electrical networks, communication systems and flexible multi-link structures, in particular flows in networks such as gas pipelines, irrigation canals, blood circulation, etc, (see for instance [BČG + 14, DZ06, LLS12]). These networks are usually represented by graphs, in which their nodes represent the interconnections of the system. To solve a PDE in a network, one needs to know its transmission conditions at the nodes, which in general can be a difficult task. In particular, control and stabilization problems have been widely studied in the network context, we refer for instance [DZ06, AC18, AD21, BCV11, IPR11, CIP18, BPCC + 23].

After the years of studying control and stabilization proprieties for a single KdV equation, a natural question arises about coupled systems. In the case of internal couplings, we have some very interesting works as [MOP09, CP11, CFGP17, PR08]. Recently, in [START_REF] Crépeau | A reduced model of pulsatile flow in an arterial compartment[END_REF] the KdV equation was proposed for modelling the pressure in an arterial compartment, this work motivated the use of the KdV to model the pressure on the arterial tree [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF]. Now, following [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF][START_REF] Dáger | Wave propagation, observation and control in 1-d flexible multi-structures[END_REF] we give some definitions and notations of networks that we will use along this thesis. Let Γ be a connected topological graph embedded in R with N ∈ N * edges. Let K = {k j : 1 ≤ n ≤ N } be the set of Γ. Each edge k j is a Jordan curve in R and is assumed to be parametrized by its arc length x j such that the parametrization π j : [0, ℓ j ] → k j :

x j → π j (x j ) is ν-times differentiable, that is, π j ∈ C ν ([0, ℓ j ], R) for all j = 1, . . . , N . The C ν -network T associated with Γ is defined by T = N j=1 k j .
In our study, we focus on a system related to the mathematical modelling of the human cardiovascular system. On each edge k j , the function u j (t, x) modelizes the wave information about displacement at location x and time t. Specifically, we are going to consider the next evolution problem for the KdV equation:

                     (∂ t u j + ∂ x u j + u j ∂ x u j + ∂ 3 x u j )(t, x) = 0, ∀x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, u j (t, 0) = u j ′ (t, 0), ∀j, j ′ = 1, . . . N, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0) - N 3 u 2 1 (t, 0), t > 0, u j (t, ℓ j ) = ∂ x u j (t, ℓ j ) = 0, t > 0, j = 1, . . . , N, u j (0, x) = u 0 j (x), x ∈ (0, ℓ j ), (1.2.14)
and its linearization around 0:

                     (∂ t u j + ∂ x u j + ∂ 3 x u j )(t, x) = 0, ∀x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, u j (t, 0) = u j ′ (t, 0), ∀j, j ′ = 1, . . . N, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0), t > 0, u j (t, ℓ j ) = ∂ x u j (t, ℓ j ) = 0, t > 0, j = 1, . . . , N, u j (0, x) = u 0 j (x), x ∈ (0, ℓ j ), (1.2.15)
where α ≥ N 2 .

Figure 1.4: star-shaped network for N = 3.

The central node conditions are obtained taking account the following: if we denote by u j and v j the dimensionless and scaled variables standing respectively for the deflection from rest position and the velocity on the branch j of a long water wave, then we get from [Whi99, Equation (13.102)]

   (∂ t u j + ∂ x u j + ∂ 3 x u j + u j ∂ x u j )(t, x) = 0, ∀x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, v j (t, x) = u j (t, x) - 1 6 u 2 j (t, x) + 2∂ 2 x u j (t, x), ∀x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N.
Moreover, at the central node, we can suppose that the elevation of water is the same in all branches and that the sum of the flux is null, which implies:

       u j (t, 0) = u j ′ (t, 0), ∀j, j ′ = 1, . . . N, N j=1 u j (t, 0)v j (t, 0) = 0, t > 0.
Then we obtain the following boundary conditions at the junction:

       u j (t, 0) = u j ′ (t, 0), ∀j, j ′ = 1, . . . N, N j=1 ∂ 2 x u j (t, 0) = - N 2 u 1 (t, 0) + N 12 u 2 1 (t, 0), t > 0.
(1.2.16)

If we linearize (1.2.16) around 0, we find the transmission conditions of the linear system (1.2.15). For the nonlinear system (1.2.14), we adapt the transmission conditions in order to have a decreasing energy. The hypothesis α > N 2 was introduced in [AC18] and then in [START_REF] Cerpa | On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network[END_REF] the case α = N 2 was included. To study these equations, we consider the following functional setting. We define the following spaces

H s r (0, ℓ j ) = v ∈ H s (0, ℓ j ), d dx i-1 v(ℓ j ) = 0, 1 ≤ i ≤ s , s = 1, 2,
where the index r is related to the null right boundary conditions. The space H s e (T ) will be the cartesian product of H s r (0, ℓ j ) including the continuity condition on the central node (u

j (0) = u k (0), ∀j, k = 1, . . . , N ) H s e (T ) =    u = (u 1 , • • • , u N ) ∈ N j=1 H s r (0, ℓ j ), u j (0) = u k (0), ∀j, k = 1, . . . , N    , s = 1, 2 and 
∥u∥ 2 H 1 e (T ) = N j=1 ∥u j ∥ 2 H 1 (0,ℓj )
where the index e, indicates that each edge belongs to H s r (0, ℓ j ).

L 2 (T ) = N j=1 L 2 (0, ℓ j ), L ∞ (T ) = N j=1 L ∞ (0, ℓ j ), H 3 (T ) = N j=1 H 3 (0, ℓ j ).
The space L 2 (T ) is equipped with the inner product

(u, v) L 2 (T ) = N j=1 ℓj 0 u j v j dx, ∀u, v ∈ L 2 (T ).
(1.2.17)

We also define the space

B T = C([0, T ], L 2 (T )) ∩ L 2 (0, T ; H 1 e (T ))
endowed with the norm

∥u∥ B T = ∥u∥ C([0,T ],L 2 (T )) + ∥u∥ L 2 (0,T ;H 1 e (T )) = max t∈[0,T ] ∥u∥ L 2 (T ) + T 0 ∥u(t, •)∥ 2 H 1 e (T ) dt 1/2
, and Y T be the space of all functions u ∈ B T such that

∂ κ x u j ∈ L ∞ x (0, ℓ n ; H 1-κ 3 (0, T )) for κ = 0, 1, 2, with the induced norm ∥u∥ Y T = ∥u∥ B T + 2 κ=0 ∥∂ κ x u∥ N j=1 L ∞ x (0,ℓj ;H 1-κ 3 (0,T ))
.

With respect to the well-posedness of (1.2.14), in [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF][START_REF] Cerpa | On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network[END_REF] the next well-posedness result was proved for small initial condition and for any time horizon.

Theorem 1.2.12.

[Theorem 2.7, [AC18]] Let (ℓ n ) n=1,...N ∈ (0, ∞) N , α ≥ N 2
and T > 0. Then there exist ϵ > 0 and C > 0 such that for all u 0 ∈ L 2 (T ) with ∥u 0 ∥ L 2 (T ) ≤ ϵ, there exists a unique solution of (1.2.14). Moreover, it satisfies ∥u∥ B T ≤ C∥u 0 ∥ L 2 (T ) .

The main complication to get a global well-posedness result is the action of the nonlinear boundary condition on the central node. This arises the following open question:

Open problem 1. Is the system (1.2.14) globally well-posedness in L 2 (T )?

A positive answer of the Open problem 1 is given in Chapter 3. The main focus of [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF] is to study the exponential stability of (1.2.14) by adding internal dampings as follows

                   (∂ t u n + ∂ x u n + u n ∂ x u n + ∂ 3 x u n )(t, x) + a n (x)u n (t, x) = 0, x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, u n (t, 0) = u n ′ (t, 0), ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x u n (t, 0) = -αu 1 (t, 0) - N 3 u 2 1 (t, 0), t > 0, u n (t, ℓ n ) = ∂ x u n (t, ℓ n ) = 0, t > 0, n = 1, . . . , N, u n (0, x) = u 0 n (x), x ∈ (0, ℓ n ), (1.2.18)
where the damping terms (a n ) n=1,...,N ∈ L ∞ (T ) act locally on all branches, formally written as

a n ≥ c n > 0 in an open nonempty set ω n of (0, ℓ n ), for all n = 1, . . . , N. (1.2.19)
The first main result of [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF] states the semiglobal exponential stability of (1.2.18).

Theorem 1.2.13. Assume that the damping terms

(a n ) n=1,...,N satisfy (1.2.19). Let (ℓ n ) N n=1 ⊂ (0, ∞) and R > 0, then there exist C(R) > 0 and µ(R) > 0 such that for all u 0 ∈ L 2 (T ) with ∥u 0 ∥ L 2 (T ) ≤ R, the solution of (1.2.18) satisfies ∥u(t, •)∥ L 2 (T ) ≤ C(R)∥u 0 ∥ L 2 (T ) e -µ(R)t for all t > 0.
Then, in order to add damped terms only on the critical lengths, let I c = {n ∈ {1, . . . , N }; ℓ n ∈ N } be the set of critical lengths and I * c be the subset of I c where we remove one index. The damping

(a n ) n=1,...,N ∈ L ∞ (T ) satisfy      a n = 0 for n ∈ {1 . . . , N }\I * c , a n ≥ c n in
an open nonempty set ω n of (0, ℓ n ), for all n ∈ I * c , and c n > 0 is a constant.

(1.2.20) Then, the following local stabilization result, was proved in [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF].

Theorem 1.2.14. Assume that the damping terms (a n ) n=1,...,N satisfy (3.1.6) and let (ℓ n ) N n=1 ⊂ (0, ∞). Then, there exist ε, C > 0 and µ > 0 such that for all u 0 ∈ L 2 (T ), with ∥u 0 ∥ L 2 (T ) ≤ ε, the solution of (1.2.18) satisfies ∥u(t, •)∥ L 2 (T ) ≤ C∥u 0 ∥ L 2 (T ) e -µt for all t > 0.

The above stabilization results were derived using a contradiction argument to obtain an appropriate observability inequality and will be a starting point for the analysis developed in this thesis.

Stabilization of KdV with delay

In the works [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF] and [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF] the problem of robustness with respect to time delay for a KdV equation was studied with boundary and internal stabilization respectively. The system addressed in [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF] and [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF] are respectively

               ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + u(t, x)∂ x u(t, x) = 0, t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, L) = α∂ x u(t, 0) + β∂ x u(t -h, 0), t > 0, ∂ x u(t, 0) = z 0 (t) t ∈ (-h, 0), u(0, x) = u 0 , x ∈ (0, L), (1.2.21) and                (∂ t u + ∂ x u + ∂ 3 x u + u∂ x u)(t, x) + a(x)u(t, x) + b(x)u(t -h, x) = 0, t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, L) = 0, t > 0, u(t, x) = z 0 (t, x) t ∈ (-h, 0), x ∈ (0, L), u(0, x) = u 0 , x ∈ (0, L),
(1.2.22) where h > 0 is the time delay,

|α| + |β| < 1, (1.2.23) and a, b ∈ L ∞ (0, L), b(x) ≥ b 0 > 0, a.e in supp b, ∃c 0 > 0, b(x) + c 0 ≤ a(x), a.e in supp b. (1.2.24)
In [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF], under condition (1.2.23) and L / ∈ N the authors proved that the system (1.2.21) is exponentially stable. Similarly, in [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF], under the condition (1.2.24), the authors proved that the system (1.2.22) is exponentially stable. These results were obtained by Lyapunov techniques and by proving suitable observability inequalities. Regarding these results, Theorem 1.2.13 and Theorem 1. This open problem is answered in Chapter 2 in the case of internal delays. This problem is interesting because in the network case, we could have different behaviour on each branch (critical or not). Also following [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF] we are able to consider the case where in some branches we only have feedback term with delay a j = 0, b j ̸ = 0 (see Theorem 2.1.3). Following with questions related with delay, the following natural question emerge Open problem 3. Can we prove the exponential stability of a single KdV equation in presence of time-varying delay?

We deal with this question in Chapter 5. In this case, the KdV equation with time-varying delay is no longer invariant by translation in time, thus the we can not show the exponential stability by proving an observability inequality. In particular the ideas presented in Section 1.2.3 are no longer possible. Another complication arise from the fact that in the case of time-varying delay, the associate operator is time-varying too, thus the study of the well-posedness requires more attention.

Stabilization of KdV with saturation

In Section 1.2.4, we saw that in the case of critical lengths, the system (1.2.10) with feedback law F (u) = -au, is exponentially stable. Regarding this feedback law, in [START_REF] Marx | Global Stabilization of a Korteweg-de Vries Equation with saturating distributed control[END_REF] the saturated case was analysed, i.e

     (∂ t u + ∂ x u + ∂ 3 x u + u∂ x u)(t, x) + sat(a(x)u(t, x)) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = u(t, L) = ∂ x u(t, L) = 0, t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L), (1.2.25)
where, the saturation map sat that could be any of the following cases:

• sat = sat loc : First consider the following scalar saturation,

sat(f ) =    -M, if f ≤ -M, f, if -M ≤ f ≤ M, M, if f ≥ M,
where M > 0 is given and denotes the saturation level. Then, we take the next extension to infinite dimensional setting

sat loc (f )(x) = sat(f (x)).
• sat = sat 2 : For f ∈ L 2 (0, L) we define

sat 2 (f )(x) =    f (x), if ∥f ∥ L 2 (0,L) ≤ M, f (x)M ∥f ∥ L 2 (0,L) , if ∥f ∥ L 2 (0,L) ≥ M.
In [START_REF] Marx | Global Stabilization of a Korteweg-de Vries Equation with saturating distributed control[END_REF], the global well-posedness and semiglobal exponential stability was proved by adapting the ideas of [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF] to the saturated case. Following Open problem 2 and the stability results Theorem 1.2.13 and Theorem 1.2.14, the following question arise

Open problem 4. Can we prove exponential stability of the KdV equation on a star shaped network in presence of saturation?

Open problem 4 is closely related to Open problem 1. In fact, without a global well-posedness result for (1.2.14), the saturation case has no sense. Indeed, in the case sat = sat 2 , if the initial data satisfies ∥u 0 ∥ L 2 (T ) < ε. Then, ∥u∥ C([0,T ];L 2 (T )) ≤ ∥u 0 ∥ L 2 (T ) , and

∥a n u n (t, •)∥ L 2 (0,ℓn) ≤ ∥a n ∥ L ∞ (0,ℓn) ∥u n (t, •)∥ L 2 (0,ℓn) ≤ ε∥a n ∥ L ∞ (0,ℓn) . Thus if ε ≤ M ∥a n ∥ L ∞ (0,ℓn)
, we have that sat 2 (a n u n (t, •)) = a n u n (t, •), that means that the saturation is not active. We deal with Open problem 4 in Chapter 3. Following with the effect of saturation on the KdV equation and in a sake of completeness, we can ask ourselves if the exponential stability holds in the case of boundary saturation:

Open problem 5. Can we prove exponential stability of a single KdV equation in presence of boundary saturation?

In Chapter 4 we study the above problem, we base our strategy on a contradiction argument and LaSalle's invariance principle.

Main results of this thesis

In this part we describe the main contributions of this thesis.

Delayed stabilization of the KdV equation on a star-shaped network

In Chapter 2 we focus on the Open problem 2. The well-posedness and exponential stability of a KdV equation on a star-shaped network with internal delayed feedback terms are studied. To achieve well-posedness, a new variable was introduced to account for the delay, and local well-posedness for the nonlinear equation was obtained through linearization and application of the Banach fixed-point theorem. Local exponential stability is demonstrated using a Lyapunov function, with an associated estimation of the decay rate that strongly depends on the chosen Lyapunov function, in this case we ask for small lengths. An observability inequality for the nonlinear system was then derived using a contradiction argument, which allowed exponential stability to be proven without restrictions on the lengths. Next, the case where the support of delayed terms was not necessarily included in the support of the feedback terms without delay is considered. Finally, numerical simulations were presented, which demonstrate how feedback delayed terms affected stability. This chapter is mainly based on the paper In this chapter, we deal with the exponential stability of the nonlinear Korteweg-de Vries (KdV) equation on a finite star-shaped network in the presence of delayed internal feedback. We start by proving the well-posedness of the system and some regularity results. Then we state an exponential stabilization result using a Lyapunov function by imposing small initial data and a restriction over the lengths. In this part also, we are able to obtain an explicit expression for the decay rate. Then we prove a semiglobal exponential stability result, which is based on an observability inequality working directly on the nonlinear system. Next, we study the case where it may happen that a control domain with delay is outside the control domain without delay. In that case, we obtain also a local exponential stabilization result. Finally, we present some numerical simulations to illustrate the stabilization. This chapter is based on the paper: 

Introduction

In this chapter, we are interested in the stability properties of the Korteweg-de Vries equation with internal input delay posed on a star-shaped network. Specifically, we are going to consider the next evolution problem for the KdV equation with internal input delay on each edge.

                             ∂ t u j (t, x) + ∂ x u j (t, x) + u j (t, x)∂ x u j (t, x) + ∂ 3 x u j (t, x) +a j (x)u j (t, x) + b j (x)u j (t -h j , x) = 0,
x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, u j (t, 0) = u j ′ (t, 0), ∀j, j ′ = 1, . . . N,

N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0) - N 3 u 2 1 (t, 0), t > 0, u j (t, ℓ j ) = ∂ x u j (t, ℓ j ) = 0, t > 0, j = 1, . . . , N, u j (0, x) = u 0 j (x), x ∈ (0, ℓ j ), u j (t, x) = z 0 j (t, x), (t, x) ∈ (-h j , 0) × (0, ℓ j ), (KdVd) 
where α ≥ N 2 and for all j = 1, . . . , N , h j > 0 is the time delay on the edge j, a j , b j ∈ L ∞ (0, ℓ j ) are non-negative and supp b j = ω j is a nonempty, open subset of (0, ℓ j ) such that b j (x) ≥ b 0 > 0, a.e on ω j ,

(2.1.1) there exists c 0 > 0, such that b j (x) + c 0 ≤ a j (x), ∀x ∈ ω j .

(2.1.2)

In this chapter, we consider α > N 2 in some cases and α ≥ N 2 in others. The classical internal feedback law for the one dimensional KdV equation is a(x)u(t, x) (see e.g., [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF]) and hence a j (x)u j (t, x) in the network case. Therefore, one might think that the delayed internal feedback law should be a j (x)u j (t-h j , x), which differs from a j (x)u j (t, x)+b j (x)u j (t-h j , x). The introduction of this damped term and the conditions over the damped terms with and without delay (2.1.1)-(2.1.2) are the analogues of the conditions (1.2)-(1.3) appearing in [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF]. In [NP06, Theorem 1.4] it is proved that some instabilities appear in the case a j = 0 (see also [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF][START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF][START_REF] Nicaise | Stabilization of second order evolution equations with unbounded feedback with delay[END_REF]). Moreover, the necessity of adding a j (x)u j (t, x) is shown at least numerically in Section 2.5. Note first (2.1.1) and (2.1.2) imply ω j = supp b j ⊂ supp a j , and a j (x) ≥ b 0 + c 0 > 0, in ω j .

(2.1.3)

To deal with delays we introduce the following space

H = L 2 (T ) ×   N j=1 L 2 ((-h j , 0) × (0, ℓ j ))   , endowed with ∥(u, z)∥ 2 H = N j=1 ℓj 0 (u j (x)) 2 dx + 0 -hj ℓj 0 ξ j (x)(z j (s, x)) 2 dxds ,
where ξ ∈ L ∞ (T ) be such that supp ξ j = supp b j = ω j and

b j (x) + c 0 ≤ ξ j (x) ≤ 2a j (x) -b j (x) -c 0 , in ω j . (2.1.4)
For (KdVd), we define the energy

E(t) = N j=1 ℓj 0 (u j (t, x)) 2 dx + h j ωj 1 0 ξ j (x)(u j (t -h j ρ, x)) 2 dρdx .
(2.1.5)

The above expression corresponds to the squared norm of (u(t, •), u(t + •, •)) in H, with the change of variable s = -h j ρ for u j (t + s, x).

Finally, we denote L 2 (Ω) = N j=1

L 2 ((0, 1) × ω j ), and let H = L 2 (T ) × L 2 (Ω), with its inner product

u z , v y = N j=1 ℓj 0 u j (x)v j (x)dx + h j ωj 1 0 ξ j (x)z j (ρ, x)y j (ρ, x)dρdx,
we denote by ∥ • ∥ H its associated norm.

Our first main result is the following one, where the local exponential stability of (KdVd) is obtained for a restricted assumption over L = max j=1,...,N ℓ j , but an estimation of the decay rate is given.

Theorem 2.1.1. Assume a, b ∈ L ∞ (T ) are componentwise non-negative that satisfy (2.1.1) and (2.1.2). Let α > N 2 , (ℓ j ) N j=1 ⊂ (0, ∞) such that L < √ 3 2 π and 0 < ϵ < 3 2 (3π 2 -4L 2 )
π 2 L 3/2 . Then, for every (u 0 , z 0 (-h•, •)) ∈ H satisfying ∥(u 0 , z 0 (-h•, •))∥ H ≤ ϵ, the energy (2.1.5) of the unique mild solution of (KdVd) decays exponentially. That is, there exist C > 0, γ > 0 such that

E(t) ≤ CE(0)e -2γt , t > 0, where γ ≤ min        3µ 1 π 2 + 2 3 L 3/2 ϵµ 1 π 2 -µ 1 4L 2 8L 2 ((1 + Lµ 1 )) , min j=1,...,N µ 2 2h j (µ 2 + ∥ξ j ∥ L ∞ (0,ℓj ) )        , (2.1.6) C = 1 + max Lµ 1 , µ 2 b 0 ,
for µ 1 and µ 2 such that

0 < µ 1 < min 1, 1 N (2α -N ) min j=1,...,N inf ωj 2a j -b j -ξ j Lb j , inf ωj ξ j -b j Lb j , 0 < µ 2 < min j=1,...,N inf ωj {2a j -b j -ξ j -µ 1 Lb j } .
This result is proved in this chapter constructively by using a Lyapunov function, similar to those used in [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF][START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF].

On the other hand, our second main result is obtained without restriction on the lengths of T . The semiglobal exponential stability is obtained by studying directly the nonlinear system (KdVd).

Theorem 2.1.2. Assume a, b ∈ L ∞ (T ) are componentwise non-negative that satisfies (2.1.1) and (2.1.2). Let (ℓ j ) N j=1 ⊂ (0, ∞) and R > 0. Then for all (u 0 , z 0 (-h•, •)) ∈ H with ∥(u 0 , z 0 (-h•, •))∥ H ≤ R then there exist C = C(R) > 0 and µ = µ(R) > 0 such that the energy of the unique mild solution of (KdVd) satisfies E(t) ≤ CE(0)e -µt for all t > 0.

The main difference between Theorem 2.1.1 and Theorem 2.1.2 is that Theorem 2.1.2 is based on an observability inequality, which is proved using a contradiction argument. Thus, we can not estimate the decay rate.

In the last results presented, it is not possible to take a j = 0 and b j ̸ = 0 for some j ∈ {1, . . . , N } (by (2.1.3) if a j = 0 then b j = 0). In the case a j = 0 and b j = 0, the system (KdVd) with the condition L < √ 3 2 π is naturally exponentially decreasing. Thus, if a j = 0 and b j is a small enough perturbation, it is expected that the system (KdVd) is still exponentially decreasing with the condition L < √ 3 2 π. The next result we deal with this problem in a more general case, we suppose for this part that ω j = supp b j ̸ ⊂ supp a j , for j ∈ I ⊂ {1, . . . , N }.

(2.1.7)

In this case, we write now the analogues of the condition (2.1.2) in the setting (2.1.7), take I * = {1, . . . , N }\I, there exists c 0 > 0, such that b j (x) + c 0 ≤ a j (x), ∀x ∈ ω j , for j ∈ I * .

(2.1.8)

Then we write our last result of stabilization when the internal delay is not necessarily supported in the domain of a j .

Theorem 2.1.3. Assume a, b ∈ L ∞ (T ) are componentwise non-negative that satisfy (2.1.1) and (2.1.8). Let α > N 2 , η > 1 and (ℓ j ) N j=1 ⊂ (0, +∞) such that L < √ 3 2 π. Then there exists δ = δ(α, η, L, h) > 0 and ϵ > 0, such that for every (u 0 , z 0 (-h•, •) satisfying ∥b∥ L ∞ (T ) ≤ δ and ∥(u 0 , z 0 (-h•, •))∥ H ≤ ϵ, the energy of the unique mild solution of (KdVd) decays exponentially to 0.

Remark 2.1.1. Note that, in all our results, there are no bound conditions for the delay parameters h j . That is, we have the exponential stability for all given delays. Of course, as follows from (2.1.6) the decay rate depends on the value of the delay and the larger the delay is, the slower is the decay rate.

The organization of this chapter is the following: Section 2.2 is devoted to the study of the well-posedness of (KdVd). More precisely we consider the linearization around 0 of (KdVd) and using semigroup theory as recalled in Chapter 1, we show the well-posedness of the linear system. Then, using a fixed-point argument, we obtain the well-posedness for the nonlinear system. In Section 2.3 we present our stabilization results when the feedback terms a, b ∈ L ∞ (T ) satisfy (2.1.1) and (2.1.2). The first one, namely Theorem 2.1.1 is obtained following the same steps as [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF][START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF]. Then we detail the proof of Theorem 2.1.2 which based on an observability inequality. In Section 2.4, we study the case where (2.1.2) is not satisfied, and we show the proof of Theorem 2.1.3 using a suitable auxiliary system and a perturbation argument. Some numerical simulations are presented in Section 2.5 in order to illustrate the results obtained.

Well-posedness of a delayed KdV system

Our idea is the following, first we work with the linearization around 0 of (KdVd), then we add a boundary source term at the central node g(t) to consider the nonlinear boundary condition

- N 3 u 2 1 (t, 0
) and secondly we add the internal source terms f j to consider after the term u j ∂ x u j . Finally, to pass to the nonlinear (KdVd) we use a fixed-point argument.

Well-posedness of the linear case

We start by proving the well-posedness for the linearization of (KdVd) around 0, that writes

                             ∂ t u j (t, x) + ∂ x u j (t, x) + ∂ 3 x u j (t, x) + a j (x)u j (t, x) +b j (x)u j (t -h j , x) = 0, x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, u j (t, 0) = u j ′ (t, 0), ∀j, j ′ = 1, . . . N, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0), t > 0, u j (t, ℓ j ) = ∂ x u j (t, ℓ j ) = 0, t > 0, j = 1, . . . , N, u j (0, x) = u 0 j (x), x ∈ (0, ℓ j ), u j (t, x) = z 0 j (t, x), (t, x) ∈ (-h j , 0) × (0, ℓ j ). (LKdVd) 
We set z j (t, ρ, x) = u j ωj (t -h j ρ, x) x ∈ ω j , ρ ∈ (0, 1). Then we can check that

       h j ∂ t z j (t, ρ, x) + ∂ ρ z j (t, ρ, x) = 0, x ∈ ω j , ρ ∈ (0, 1), t > 0, z j (t, 0, x) = u j (t, x),
x ∈ ω j , t > 0, z j (0, ρ, x) = u j ωj (-h j ρ, x) = z 0 j (-h j ρ, x), ρ ∈ (0, 1).

(2.2.1) Then (LKdVd) can be written as

∂ t U (t) = AU (t), t > 0 U (0) = U 0 , (2.2.2)
where

U = u z , U 0 = u 0 z 0 ω (-h•, •)
and the operator A is defined by:

AU =   -(∂ x + ∂ 3 x )u -a • u -b • z(1, •) - 1 h • ∂ ρ z   for u = (u j ) N j=1 , a = (a j ) N j=1 , b = (b j ) N j=1 , h = (h j ) N j=1 , 1 h j = 1 h j and z(1, •) = (z j (1, •)) N j=1 in which zj (1, •) ∈ L 2 (0, ℓ j )
is the extension by 0 of z j (1, •) outside ω j . The domain of A is the following

D(A) =    u z , u ∈ H 3 (T ) ∩ H 2 e (T ), N j=1 d 2 u j dx 2 (0) = -αu 1 (0), z ∈ N j=1 L 2 (H 1 (0, 1) × ω j ) , z j (0, x) = u j ωj (x) .
Note that if u z ∈ D(A) then u ∈ H 2 e (T ) that implies u j (t, ℓ j ) = ∂ x u j (t, ℓ j ) = 0.

Theorem 2.2.1. Assume a, b ∈ L ∞ (T ) are componentwise non-negative that satisfy (2.1.1) and (2.1.2). Let U 0 ∈ H. Then there exists a unique mild solution U ∈ C([0, ∞); H) of (2.2.2). Moreover, if U 0 ∈ D(A) then U is a classical solution and

U ∈ C([0, ∞); D(A)) ∩ C 1 ([0, ∞); H). Proof. Let U = u z ∈ D(A), then ⟨AU, U ⟩ = N j=1 ℓj 0 (-∂ 3 x u j (x) -∂ x u j (x) -a j (x)u j (x))u j (x)dx - ωj b j (x)z j (1, x)u j (x)dx -h j ωj 1 0 ξ j (x) 1 h j ∂ ρ z j (ρ, x)z j (ρ, x)dρdx = N j=1 ℓj 0 ∂ 2 x u j (x)∂ x u j (x)dx -∂ 2 x u j (x)u j (x) ℓj 0 - 1 2 (u j (x)) 2 ℓj 0 - ℓj 0 a j (x)(u j (x)) 2 dx - ωj b j (x)z j (1, x)u j (x)dx - 1 2 ωj ξ j (x)(z j (ρ, x)) 2 1 0 dx = N j=1 1 2 (∂ x u j (x)) 2 ℓj 0 + ∂ 2 x u j (0)u 1 (0) + 1 2 (u 1 (0)) 2 - ℓj 0 a j (x)(u j (x)) 2 dx - ωj b j (x)z j (1, x)u j (x)dx - 1 2 ωj ξ j (x)(z j (1, x)) 2 dx + 1 2 ωj ξ j (x)(z j (0, x)) 2 dx .
Thus, for all U ∈ D(A),

⟨AU, U ⟩ ≤ - 1 2 N j=1 (∂ x u j (0)) 2 + N 2 -α (u 1 (0)) 2 - N j=1 (0,ℓj )\ωj a j (x)(u j (x)) 2 dx + N j=1 ωj -a j (x) + b j (x) 2 + ξ j (x) 2 (u j (x)) 2 dx + N j=1 ωj b j (x) 2 - ξ j (x) 2 (z j (1, x)) 2 dx.
(2.2.3) Using (2.1.3), (2.1.4) and that α ≥ N 2 we conclude that for all U ∈ D(A), ⟨AU, U ⟩ ≤ 0, thus A is dissipative as introduced in Definition 1.1.2. Easy calculations show that

A * v y =   (∂ x + ∂ 3 x )v -a • v + ξ • ỹ(0, •) 1 h • ∂ ρ y   ,
in which ỹj (0, •) ∈ L 2 (0, ℓ j ) is the extension by 0 of y j (0, •) outside ω j and with

D(A * ) =    v y , v ∈ H 3 (T ) ∩ H 1 e (T ), N j=1 d 2 v j dx 2 (0) = (α -N )v 1 (0), ∂ x v j (0) = 0, ∀j = 1, . . . , N, y ∈ N j=1 L 2 (H 1 (0, 1) × ω j ), y j (1, x) = - b j (x) ξ j (x) v j ωj (x)    . Note that v y ∈ D(A * ) then v ∈ H 1 e (T ) that implies v j (t, ℓ j ) = 0. Let V = v y ∈ D(A * ), then ⟨A * V, V ⟩ = N j=1 ℓj 0 (∂ 3 x v j (x) + ∂ x v j (x) -a j (x)v j (x))v j (x)dx + ωj ξ j (x)y j (0, x)v j (x)dx + ωj h j 1 0 ξ j (x) 1 h j ∂ ρ y j (ρ, x)y j (ρ, x)dρdx , = N j=1 - ℓj 0 ∂ 2 x v j (x)∂ x v j (x)dx + ∂ 2 x v j (x)v j (x) ℓj 0 + 1 2 (v j (x)) 2 ℓj 0 - ℓj 0 a j (x)(v j (x)) 2 dx + ωj ξ j (x)y j (0, x)v j (x)dx + 1 2 ωj ξ j (x)(y j (ρ, x)) 2 1 0 dx ≤ N j=1 - 1 2 (∂ x v j (x)) 2 ℓj 0 -∂ 2 x v j (0)v 1 (0) - 1 2 (v 1 (0)) 2 - ℓj 0 a j (x)(v j (x)) 2 dx + 1 2 ωj ξ j (x)(y j (0, x)) 2 dx + 1 2 ωj ξ j (x)(v j (x)) 2 dx + 1 2 ωj ξ j (x)((y j (1, x)) 2 -(y j (0, x)) 2 )dx ≤ - 1 2 N j=1 (∂ x v j (ℓ j )) 2 + N 2 -α (v 1 (0)) 2 + ωj -a j (x) + ξ j (x) 2 + b 2 j (x) 2ξ j (x) (v j (x)) 2 dx - (0,ℓj )\ωj a j (x)(v j (x)) 2 dx - 1 2 ωj ξ j (x)(y j (0, x)) 2 dx.
Moreover, we know that ξ j (x) > b j (x) > b 0 > 0, for x ∈ ω j , then we have that b 2 j (x) ξ j (x) < b j (x), for

x ∈ ω j and then

-a j (x) + ξ j (x) 2 + b 2 j (x) 2ξ j (x) < -a j (x) + ξ j (x) 2 + b j (x) 2 ≤ 0, for x ∈ ω j ,
thus as α ≥ N 2 , A * is dissipative. Finally, A and A * are dissipative, also A is a densely defined closed operator. Thus, by Theorem 1.1.1, A is the infinitesimal generator of a C 0 semigroup of contractions on H.

As the systems (LKdVd) and (2.2.2) are equivalent, we obtain the well-posedness of (LKdVd). Let S(t), t ≥ 0 the semigroup of contractions associated with A. Next result gives us some a priori estimates for (LKdVd).

Proposition 2.2.1. Assume a, b ∈ L ∞ (T ) are componentwise non-negative that satisfy (2.1.1) and (2.1.2). Then, the map

U 0 = (u 0 , z 0 (-h•, •)) → S(•)(u 0 , z 0 (-h•, •)) (2.2.4) is continuous from H to B T × C([0, T ]; L 2 (Ω)
) and the following estimates hold, for all

(u 0 , z 0 (-h•, •)) ∈ H, N j=1 T 0 ℓj 0 a j (x)(u j (t, x)) 2 dxdt + T 0 ωj (z j (t, 1, x)) 2 dxdt ≤ C ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) ,
(2.2.5)

∥u 0 ∥ 2 L 2 (T ) ≤ 1 + 2T ∥a∥ L ∞ (T ) + 2T ∥b∥ L ∞ (T ) T ∥u∥ 2 L 2 (0,T ;L 2 (T )) + 2 α - N 2 ∥u 1 (•, 0)∥ 2 L 2 (0,T ) + ∥∂ x u(•, 0)∥ 2 L 2 (0,T ) + ∥b∥ L ∞ (T ) ∥z 0 (-h•, •)∥ 2 L 2 (Ω) , (2.2.6) ∥z 0 (-h•, •)∥ 2 L 2 (Ω) ≤ ∥z(T, •, •)∥ 2 L 2 (Ω) + N j=1 1 h j T 0 ωj (z j (t, 1, x)) 2 dxdt. (2.2.7) Proof. Taking (u 0 , z 0 (-h•, •)) ∈ H, Theorem 2.2.1 implies S(•)(u 0 , z 0 (-h•, •)) = (u, z) ∈ C([0, T ]; H)
and using that A generates a C 0 semigroup of contractions, we get for all t ∈ [0, T ]

N j=1 ℓj 0 (u j (t, x)) 2 dx + N j=1 h j ωj 1 0 ξ j (x)(z j (t, ρ, x)) 2 dρdx ≤ N j=1 ℓj 0 (u 0 j (x)) 2 dx + N j=1 h j ωj 1 0 ξ j (x)(z 0 j (-h j ρ, x)) 2 dρdx. (2.2.8) Let p ∈ (C ∞ ([0, T ] × (0, 1))) N and q ∈ N j=1 C ∞ ([0, T ] × (0, ℓ j ))
. Now multiplying (LKdVd) by q j u j and (2.2.1) by p j z j and integrating on (0, s) × (0, ℓ j ) and (0, s) × (0, 1) × ω j we can obtain

ℓj 0 q j (t, x)(u j (t, x)) 2 dx | s 0 - s 0 ℓj 0 (∂ t q j + ∂ x q j + ∂ 3 x q j )(u j ) 2 dxdt + 2 s 0 ℓj 0 a j q j (u j ) 2 dxdt +2 s 0 ℓj 0 b j (x)q j (t, x)u j (t -h j , x)u j (t, x)dxdt + 3 s 0 ℓj 0 (∂ x u j ) 2 ∂ x q j dxdt = s 0 (q j + ∂ 2 x q j )(u j ) 2 + 2q j u j ∂ 2 x u j -2∂ x q j u j ∂ x u j -q j (∂ x u j ) 2 (t, 0)dt, (2.2.9) 1 0 ωj (z j (t, ρ, x)) 2 p j (t, ρ)dxdρ s 0 - 1 h j s 0 1 0 ωj (h j ∂ t p j + ∂ ρ p j )(z j ) 2 dxdρdt + 1 h j s 0 ωj (z j (t, 1, x)) 2 p j (t, 1) -(u j (t, x)) 2 p j (t, 0)dxdt = 0.
(2.2.10)

Taking s = T and p j = ρ in (2.2.10) we get

1 0 ωj ρ (z j (T, ρ, x)) 2 -(z 0 j (-ρh j , x)) 2 dxdρ - 1 h j T 0 1 0 ωj (z j ) 2 dxdρdt + 1 h j T 0 ωj (z j (t, 1, x)) 2 dxdρ = 0.
(2.2.11) Thus,

1 h j T 0 ωj (z j (t, 1, x)) 2 dxdρ ≤ 1 h j T 0 1 0 ωj (z j ) 2 dxdρdt + 1 0 ωj ρ(z 0 j (-ρh j , x)) 2 dxdρ.
and hence with (2.2.8) we get

N j=1 ωj (z j (t, 1, x)) 2 dxdρ ≤ C ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) .
(2.2.12)

Then taking q j = 1 in (2.2.9)

N j=1 ℓj 0 (u j (s, x)) 2 dx + N j=1 s 0 (∂ x u j (t, 0)) 2 dt + (2α -N ) s 0 (u 1 (t, 0)) 2 dt +2 N j=1 s 0 ℓj 0 a j (u j ) 2 dxdt + N j=1 2 s 0 ℓj 0 b j u j (t -h j , x)u j (t, x)dxdt = N j=1 ℓj 0 (u j (0, x)) 2 dx. Thus N j=1 ℓj 0 (u j (s, x)) 2 dx + N j=1 s 0 (∂ x u j (t, 0)) 2 dt + 2 N j=1 T 0 ℓj 0 a j (u j ) 2 dxdt ≤ N j=1 ℓj 0 (u j (0, x)) 2 dx + N j=1 2 T 0 ℓj 0 b j |u j (t -h j , x)||u j (t, x)|dxdt.

Note now that

2 s 0 ℓj 0 b j (x)|u j (t -h j , x)||u j (t, x)|dxdt ≤ s 0 ℓj 0 b j (x)(u j (t -h j , x)) 2 dxdt + s 0 ℓj 0 b j (x)(u j (t, x)) 2 dxdt, = s 0 ℓj 0 b j (x)(u j (t, x)) 2 dxdt + s-hj -hj ωj b j (x)(u j (t, x)) 2 dxdt, ≤ 2 s 0 ℓj 0 b j (x)(u j (t, x)) 2 dxdt + 0 -hj ωj b j (x)(z 0 j (t, x)) 2 dxdt, which implies 2 N j=1 s 0 ℓj 0 b j (x)|u j (t -h j , x)||u j (t, x)|dxdt ≤ C ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) .
(2.2.13) Thus, we have

N j=1 ℓj 0 (u j (s, x)) 2 dx + T 0 N j=1 (∂ x u j (t, 0)) 2 dt + N j=1 T 0 ℓj 0 a j (x)(u j (t, x)) 2 dxdt ≤ C ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) , (2.2.14) 
that brings (2.2.5) using (2.2.12). Note also that ∂ x u j (•, 0) ∈ L 2 (0, T ), for all j = 1, . . . , N . Moreover, integrating (2.2.14) with respect to s over [0, T ] we can obtain.

∥u∥ 2 L 2 (0,T ;L 2 (T )) ≤ CT ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) .
(2.2.15)

We are going to consider the following multiplier presented in [START_REF] Cerpa | On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network[END_REF], q j (t, x) =

x(2ℓj -x) ℓ 2 j , this multiplier satisfies the next properties

• q j (t, 0) = 0, ∀t ∈ [0, T ]. • 0 ≤ q j (t, x) ≤ 1, ∀(t, x) ∈ [0, T ] × [0, ℓ j ]. • 0 ≤ ∂ x q j (t, x) ≤ 2 ℓj , ∀(t, x) ∈ [0, T ] × [0, ℓ j ]. • ∂ 2 x q j (t, x) = -2 ℓ 2 j , ∀(t, x) ∈ [0, T ] × [0, ℓ j ]. Taking q j (t, x) = x(2ℓj -x) ℓ 2 j and s = T in (2.2.9) we get N j=1 0 ℓ j q j (t, x)(u j (T, x)) 2 dx + 2 N j=1 T 0 ωj q j (t, x)b j (x)u j (t -h j , x)u j (t, x)dxdt +2 T 0 u 1 (t, 0) N j=1 2 ℓ j ∂ x u j (t, 0)dt + 2 N j=1 T 0 ℓj 0 q j (t, x)a j (x)(u j (t, x)) 2 dxdt - N j=1 T 0 ℓj 0 ∂ x q j (t, x)(u j (t, x)) 2 dxdt + 3 N j=1 T 0 ℓj 0 (∂ x u j (t, x)) 2 ∂ x q j (t, x)dxdt = N j=1 0 ℓ j q j (0, x)(u 0 j ) 2 dx -   N j=1 2 ℓ 2 j   T 0 (u 1 (t, 0)) 2 dt.
and then recalling that L = max j=1,...,N ℓ j and taking ℓ = min j=1,...,N

ℓ j 2 L 2 ∥u 1 (•, 0)∥ 2 L 2 (0,T ) ≤ 2 ℓ 2 ∥u∥ 2 L 2 (0,T ;L 2 (T )) -2 T 0 u 1 (t, 0) N j=1 ∂ x u j (t, 0) 2 ℓ j dt -2 N j=1 T 0 ωj q j (t, x)b j (x)u j (t -h j , x)u j (t, x)dxdt + ∥u 0 ∥ 2 L 2 (T ) .
(2.2.16) Using Young's inequality, (2.2.13) and (2.2.15) we get that u 1 (•, 0) ∈ L 2 (0, T ) and

∥u 1 (•, 0)∥ 2 L 2 (0,T ) ≤ C ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) .
Now, let us choose q j = x and s = T in (2.2.9)

ℓj 0 x(u j ) 2 dx T 0 dx - T 0 ℓj 0 (u j ) 2 dxdt + 2 T 0 ℓj 0 xb j (x)u j (t -h j , x)u j (t, x)dxdt +2 T 0 ℓj 0 a j (x)x(u j ) 2 dxdt + 3 T 0 ℓj 0 (∂ x u j ) 2 dxdt = T 0 -2u j (t, 0)∂ x u j (t, 0)dt Then 3 N j=1 T 0 ℓj 0 (∂ x u j ) 2 dxdt ≤ 1 + 2L∥b∥ L ∞ (T ) N j=1 T 0 ℓj 0 (u j ) 2 dxdt +L∥b∥ L ∞ (T ) N j=1 0 -hj ωj (z 0 j (t, x)) 2 dxdt + L N j=1 ℓj 0 (u j (0, x)) 2 dx -2 N j=1 T 0 u 1 (t, 0)∂ x u j (t, 0)dt and hence 3 N j=1 T 0 ℓj 0 (∂ x u j ) 2 dxdt ≤ C ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) ,
that brings with (2.2.8) the continuity of the map (2.2.4) from H to B T × C([0, T ] : L 2 (Ω)). Now taking q j = T -t and s = T in (2.2.9), we obtain,

- ℓj 0 T (u j (0, x)) 2 dx + T 0 ℓj 0 (u j ) 2 dxdt + 2 T 0 ℓj 0 a j (x)(T -t)(u j ) 2 dxdt +2 T 0 ℓj 0 b j (x)(T -t)u j (t -h j , x)u j (t, x)dxdt = T 0 (T -t)(u j (t, 0)) 2 +2(T -t)u j (t, 0)∂ 2 x u j (t, 0) -(T -t)(∂ x u j (t, 0)) 2 dt, then T N j=1 ℓj 0 (u j (0, x)) 2 dx = N j=1 T 0 ℓj 0 (u j ) 2 dxdt + +2 T 0 ℓj 0 (T -t)a j (u j ) 2 dxdt +2 T 0 ℓj 0 b j (x)(T -t)u j (t -h j , x)u j (t, x)dxdt + (2α -N ) T 0 (T -t)(u 1 (t, 0)) 2 dt + N j=1 T 0 (T -t)(∂ x u j (t, 0)) 2 dt.
Finally we get (2.2.6), that is

∥u 0 ∥ 2 L 2 (T ) ≤ 1 + 2T ∥a∥ L ∞ (T ) + 2T ∥b∥ L ∞ (T ) T ∥u∥ 2 L 2 (0,T ;L 2 (T )) + 2 α - N 2 ∥u 1 (•, 0)∥ 2 L 2 (0,T ) + ∥∂ x u(•, 0)∥ 2 L 2 (0,T ) + ∥b∥ L ∞ (T ) ∥z 0 (-h•, •)∥ 2 L 2 (Ω) .
Lastly, taking p j = 1 and s = T in (2.2.10)

1 0 ωj (z j (T, ρ, x)) 2 dxdρ - 1 0 ωj (z 0 j (-h j ρ, x)) 2 dxdρ + 1 h j T 0 ωj (z j (t, 1, x)) 2 -(u j (t, x)) 2 dxdt = 0
and hence we obtain (2.2.7), concluding the proof of Proposition 2.2.1.

Extra boundary conditions

Following [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF], we need now some regularity results for the linear delayed KdV equation with extra boundary source term g(t) at the central node

                             ∂ t u j (t, x) + ∂ x u j (t, x) + ∂ 3 x u j (t, x) + a j (x)u j (t, x) +b j (x)u j (t -h j , x) = 0, x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, u j (t, 0) = u j ′ (t, 0), ∀j, j ′ = 1, . . . N, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0) + g(t), t > 0, u j (t, ℓ j ) = ∂ x u j (t, ℓ j ) = 0, t > 0, j = 1, . . . , N, u j (0, x) = u 0 j (x), x ∈ (0, ℓ j ), u j (t, x) = z 0 j (t, x), (t, x) ∈ (-h j , 0) × (0, ℓ j ).
(2.2.17)

Recall that z j (t, ρ, x) = u j ωj (t -h j ρ, x), for x ∈ ω j , ρ ∈ (0, 1) is the solution of        h j ∂ t z j (t, ρ, x) + ∂ ρ z j (t, ρ, x) = 0, x ∈ ω j , ρ ∈ (0, 1), t > 0, z j (t, 0, x) = u j (t, x), x ∈ ω j , t > 0, z j (0, ρ, x) = u j ωj (-h j ρ, x) = z 0 j (-h j ρ, x), ρ ∈ (0, 1). (2.2.18) Define h = max j=1,...N h j . Proposition 2.2.2. Assume a, b ∈ L ∞ (T ) are componentwise non-negative that satisfy (2.1.1) and (2.1.2). Let (U 0 , g) ∈ D(A) × C 2 0 ([0, T ]) where C 2 0 ([0, T ]) := {φ ∈ C 2 ([0, T ]) : φ(0) = 0}. Then there exists a unique classical solution U = u z ∈ C([0, T ], D(A)) ∩ C 1 ([0, T ]; H) of (2.2.17)-(2.2.18).
Proof. Let v = u -gϕ, where ϕ is defined as

ϕ j (x) = (x -ℓ j ) 2 ℓ 2 j   2 N j=1 ℓ -2 j + α   .
We can easily check that

                     ϕ j (ℓ j ) = ϕ ′ j (ℓ j ) = 0, ∀j = 1, . . . , N ϕ j (0) = 1 2 N j=1 ℓ -2 j + α = ϕ j ′ (0), ∀j, j ′ = 1, . . . N, N j=1 ϕ ′′ j (0) = 1 -αϕ 1 (0), t > 0. (2.2.19) We extend g on [-h, 0] by g(t) ≡ 0 for t ∈ [-h, 0]. Then v satisfies                              ∂ t v j (t, x) + ∂ x v j (t, x) + ∂ 3 x v j (t, x) + a j (x)v j (t, x) +b j (x)v j (t -h j , x) = f j (t, x), x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, v j (t, 0) = v j ′ (t, 0), ∀j, j ′ = 1, . . . N, N j=1 ∂ 2 x v j (t, 0) = -αv 1 (t, 0), t > 0, v j (t, ℓ j ) = ∂ x v j (t, ℓ j ) = 0, t > 0, j = 1, . . . , N, v j (0, x) = u 0 j (x), x ∈ (0, ℓ j ), v j (t, x) = z 0 j (t, x), (t, x) ∈ (-h j , 0) × (0, ℓ j ).
(2.2.20)

for f j (t, x) = -ϕ j (x)g ′ (t) -(ϕ ′ j + ϕ ′′′ j + a j ϕ j )(x)g(t). Then, taking y j (t, ρ, x) = v j ωj (t -h j ρ, x)        h j ∂ t y j (t, ρ, x) + ∂ ρ y j (t, ρ, x) = 0, x ∈ ω j , ρ ∈ (0, 1), t > 0, y j (t, 0, x) = v j (t, x),
x ∈ ω j , t > 0,

y j (0, ρ, x) = v j ωj (-h j ρ, x) = z 0 j (-h j ρ, x), ρ ∈ (0, 1).
(2.2.21)

Thus defining V = v y , as -ϕg ′ -(ϕ ′ + ϕ ′′′ + aϕ)g ∈ C 1 ([0, T ], L 2 (T ))
, by the classical semigroup theory and the well-posedness of the linear case, we deduce the existence of a unique solution V of (2.2.20)-(2.2.21). Moreover,

V ∈ C([0, T ], D(A)) ∩ C 1 ([0, T ]; H) and hence (2.2.17)-(2.2.18) admit a unique solution U ∈ C([0, T ], D(A)) ∩ C 1 ([0, T ]; H).
Now, we study the same system but with less regular data.

Proposition 2.2.3. Assume a, b ∈ L ∞ (T ) are componentwise non-negative that satisfy (2.1.1) and (2.1.2). Let (U 0 , g) ∈ H × L 2 (0, T ), then there exists a unique mild solution U ∈ B T × C [0, T ]; L 2 (Ω) of (2.2.17)-(2.2.18). Furthermore u 1 (•, 0) and ∂ x u(•, 0) belong to L 2 (0, T )
and we have the following estimates

∥u∥ 2 B T ≤ C ∥g∥ 2 L 2 (0,T ) + ∥u 0 ∥ 2 L(T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) . (2.2.22) ∥z∥ 2 C([0,T ],L 2 (Ω)) ≤ C ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) + ∥g∥ 2 L 2 (0,T ) .
(2.2.23)

∥u 0 ∥ 2 L 2 (T ) ≤ 1 + 2T ∥a∥ L ∞ (T ) + 2T ∥b∥ L ∞ (T ) T ∥u∥ 2 L 2 (0,T ;L 2 (T )) + ∥b∥ L ∞ (T ) ∥z 0 (-h•, •)∥ 2 L 2 (Ω) + C ∥u 1 (•, 0)∥ 2 L 2 (0,T ) + ∥g∥ 2 L 2 (0,T ) (2.2.24) ∥z 0 (-h•, •)∥ 2 L 2 (Ω) ≤ ∥z(T, •, •)∥ 2 L 2 (Ω) + N j=1 1 h j T 0 ωj (z j (t, 1, x)) 2 dxdt.
(2.2.25)

Proof. Those estimates are obtained similarly as Proposition 2.2.1 and for that many calculations are omitted. First, suppose that (U 0 , g) ∈ D(A) × C 2 0 ([0, T ]) and thus the solution of (2.2.17)

-(2.2.18) satisfies U ∈ C([0, T ]; D(A) ∩ C 1 ([0, T ]; H).
Multiplying (2.2.17) by u j and integrating on [0, s] × [0, ℓ j ] gives us

N j=1 ℓj 0 (u j (s, x)) 2 dx + s 0 N j=1 (∂ x u j (t, 0)) 2 dt + (2α -N ) s 0 (u 1 (t, 0)) 2 dt + 2 N j=1 s 0 ℓj 0 a j (u j ) 2 dxdt + 2 N j=1 s 0 ℓj 0 b j u j (t -h j , x)u j (t, x)dxdt = N j=1 ℓj 0 (u j (0, x)) 2 dx + 2 s 0 u 1 (t, 0)g(t)dt, then using that 2 s 0 ℓj 0 b j (x)u j (t -h j , x)u j (t, x)dxdt ≤2 s 0 ℓj 0 b j (x)(u j (t, x)) 2 dxdt + 0 -hj ωj b j (x)(z 0 j (t, x)) 2 dxdt, N j=1 ℓj 0 (u j (s, x)) 2 dx + s 0 N j=1 (∂ x u j (t, 0)) 2 dt + (2α -N ) s 0 (u 1 (t, 0)) 2 dt+ 2 N j=1 s 0 ℓj 0 (a j -b j )(u j ) 2 dxdt ≤ 2 s 0 u 1 (t, 0)g(t)dt + C ∥u 0 ∥ 2 L(T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) .
(2.2.26) Note now that (2.2.16) still holds in this case, and we can obtain

∥u 1 (•, 0)∥ 2 L 2 (0,T ) ≤ C   ∥u∥ 2 L 2 (0,T ;L 2 (T )) + ∥u 0 ∥ 2 L 2 (T ) + N j=1 T 0 (∂ x u j (t, 0)) 2 dt + ∥z 0 (-h•, •)∥ 2 L 2 (Ω)   .
From (2.2.26) we obtain

∥u 1 (•, 0)∥ 2 L 2 (0,T ) ≤ C ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) + T 0 u 1 (t, 0)g(t)dt
and again by Young's inequality

∥u 1 (•, 0)∥ 2 L 2 (0,T ) ≤ C ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) + ∥g∥ 2 L 2 (0,T ) Thus u 1 (•, 0) ∈ L 2 (0, T ) and from (2.2.26) u(s, •) ∈ L 2 (T ) for s ∈ [0, T ], ∂ x u(•, 0) ∈ L 2 (0, T ) and max s∈[0,T ] ∥u(s, •)∥ 2 L 2 (T ) ≤ C ∥g∥ 2 L 2 (0,T ) + ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-• h.•)∥ 2 L 2 (Ω) .
(2.2.27)

Now multiplying (2.2.17) by xu j yields

ℓj 0 x(u j ) 2 dx T 0 dx - T 0 ℓj 0 (u j ) 2 dxdt + 2 T 0 ℓj 0 xb j (x)u j (t -h j , x)u j (t, x)dxdt +2 T 0 ℓj 0 a j (x)x(u j ) 2 dxdt + 3 T 0 ℓj 0 (∂ x u j ) 2 dxdt = T 0 -2u j (t, 0)∂ x u j (t, 0)dt. Then 3 N j=1 T 0 ℓj 0 (∂ x u j ) 2 dxdt ≤ 1 + 2L∥b∥ L ∞ (T ) N j=1 T 0 ℓj 0 (u j ) 2 dxdt + L N j=1 ℓj 0 (u j (0, x)) 2 dx + L∥b∥ L ∞ (T ) N j=1 0 -hj ωj (z 0 j (t, x)) 2 dxdt + ∥u 1 (•, 0)∥ 2 L 2 (0,T ) + ∥∂ x u(•, 0)∥ 2 L 2 (0,T )
and using (2.2.27) we deduce (2.2.22). Now multiplying (2.2.17) by (T -t)u j yields,

- ℓj 0 T (u j (0, x)) 2 dx + T 0 ℓj 0 (u j ) 2 dxdt + 2 T 0 ℓj 0 a j (x)(T -t)(u j ) 2 dxdt +2 T 0 ℓj 0 b j (x)(T -t)u j (t -h j , x)u j (t, x)dxdt = T 0 (T -t)(u j (t, 0)) 2 +2(T -t)u j (t, 0)∂ 2 x u j (t, 0) -(T -t)(∂ x u j (t, 0)) 2 dt, then T N j=1 ℓj 0 (u j (0, x)) 2 dx = N j=1 T 0 ℓj 0 (u j ) 2 dxdt + 2 T 0 ℓj 0 (T -t)a j (u j ) 2 dxdt+ 2 T 0 ℓj 0 b j (x)(T -t)u j (t -h j , x)u j (t, x)dxdt + (2α -N ) T 0 (T -t)(u 1 (t, 0)) 2 dt + N j=1 T 0 (T -t)(∂ x u j (t, 0)) 2 dt -2 T 0 (T -t)u 1 (t, 0)g(t)dt.
Finally we get

∥u 0 ∥ 2 L 2 (T ) ≤ 1 + 2T ∥a∥ L ∞ (T ) + 2T ∥b∥ L ∞ (T ) T ∥u∥ 2 L 2 (0,T ;L 2 (T )) + ∥b∥ L ∞ (T ) ∥z 0 (-h•, •)∥ 2 L 2 (Ω) + C ∥u 1 (•, 0)∥ 2 L 2 (0,T ) + ∥g∥ 2 L 2 (0,T )
and hence (2.2.24). We can conclude that the estimates for (2.2.18) are the same as Proposition 2.2.1. By density of D(A) in H, C 2 0 ([0, T ]) in L 2 (0, T ), we extend our result to arbitrary data (U 0 , g) ∈ H × L 2 (0, T ).

Extra source term

We add now a source term f j (t, x) on each edge in our KdV problem.

                             ∂ t u j (t, x) + ∂ x u j (t, x) + ∂ 3 x u j (t, x) + a j (x)u j (t, x) +b j (x)u j (t -h j , x) = f j (t, x), x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, u j (t, 0) = u j ′ (t, 0), ∀j, j ′ = 1, . . . N, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0) + g(t), t > 0, u j (t, ℓ j ) = ∂ x u j (t, ℓ j ) = 0, t > 0, j = 1, . . . , N, u j (0, x) = u 0 j (x), x ∈ (0, ℓ j ) u j (t, x) = z 0 j (t, x), (t, x) ∈ (-h j , 0) × (0, ℓ j ).
(2.2.28)

We set, as in the previous cases

z j (t, ρ, x) = u j ωj (t -h j ρ, x) x ∈ ω j , ρ ∈ (0, 1). Then        h j ∂ t z j (t, ρ, x) + ∂ ρ z j (t, ρ, x) = 0, x ∈ ω j , ρ ∈ (0, 1), t > 0, z j (t, 0, x) = u j (t, x),
x ∈ ω j , t > 0,

z j (0, ρ, x) = u j ωj (-h j ρ, x) = z 0 j (-h j ρ, x), ρ ∈ (0, 1).
(2.2.29)

Proposition 2.2.4. Assume a, b ∈ L ∞ (T ) are componentwise non-negative that satisfy (2.1.1) and (2.1.2). Let (U 0 , g, f ) ∈ H × L 2 (0, T ) × L 1 (0, T ; L 2 (T ))
then there exists a unique mild solution

U = u z ∈ B T × C [0, T ]; L 2 (Ω) to (2.2.28)-(2.2.29
). Furthermore, we have the following estimates,

∥(u, z)∥ 2 C([0,T ],H) ≤ C ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) + ∥f ∥ 2 L 1 (0,T ;L 2 (T )) + ∥g∥ 2 L 2 (0,T ) , (2.2.30) ∥∂ x u∥ 2 L 2 (0,T ;L 2 (T )) ≤C(1 + T ) ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) + ∥f ∥ 2 L 1 (0,T ;L 2 (T )) +∥g∥ 2 L 2 (0,T ) .
(2.2.31)

Proof. The well-posedness of (2.2.28)-(2.2.29) follows from classical semigroup theory and from the propositions given considering the source term f 0 . Also, this gives us the first inequality, for the second one note that multiplying (2.2.28) by u j and integrating we get

N j=1 ℓj 0 (u j (T, x)) 2 dx + (2α -N ) T 0 (u 1 (t, 0)) 2 dt + N j=1 T 0 (∂ x u j (t, 0)) 2 dt +2 N j=1 T 0 ℓj 0 a j (x)(u j (t, x)) 2 dxdt + 2 N j=1 T 0 ℓj 0 b j u j (t, x)u j (t -h j , x)dxdt -2 T 0 u 1 (t, 0)g(t)dt = 2 N j=1 T 0 ℓj 0 f j (t, x)u j (t, x)dxdt + ∥u 0 ∥ 2 L 2 (T ) .
Note that

2 N j=1 T 0 ℓj 0 f j (t, x)u j (t, x)dxdt ≤ 2 N j=1 T 0 ∥f j ∥ L 2 (0,ℓj ) ∥u j ∥ L 2 (0,ℓj ) dt, ≤ 2 N j=1 ∥u j ∥ C([0,T ],L 2 (0,ℓj )) T 0 ∥f j ∥ L 2 (0,ℓj ) dt ≤ ∥u∥ 2 C([0,T ],L 2 (T )) + ∥f ∥ 2 L 1 (0,T ;L 2 (T )) .
Following the same steps as in Proposition 2.2.1 and Proposition 2.2.3 we can get

N j=1 ℓj 0 (u j (T, x)) 2 dx + N j=1 T 0 (∂ x u j (t, 0)) 2 dt ≤C ∥u∥ 2 L 2 (0,T ;L 2 (T )) + ∥(u 0 , z 0 (-h•, •))∥ 2 H + T 0 u 1 (t, 0)g(t)dt + ∥u∥ 2 C([0,T ],L 2 (T )) +∥f ∥ 2 L 1 (0,T ;L 2 (T )) .
Now multiplying (2.2.28) by q j u j for q j = x(2ℓj -x) ℓ 2 j and using the last inequality we get

∥u 1 (•, 0)∥ 2 L 2 (0,T ) ≤ C ∥u 0 ∥ 2 L 2 (T ) + ∥z 0 (-h•, •)∥ 2 L 2 (Ω) + ∥g∥ 2 L 2 (0,T ) + ∥f ∥ 2 L 1 (0,T ;L 2 (T ))
and we can also have

∥u 1 (•, 0)∥ 2 L 2 (0,T ) + ∥∂ x u(•, 0)∥ 2 L 2 (0,T ) ≤ C ∥f ∥ 2 L 1 (0,T ;L 2 (T )) + ∥g∥ 2 L 2 (0,T ) + ∥(u 0 , z 0 (-h•, •))∥ 2 H .
Now multiplying (2.2.28) by xu j gives us

3 N j=1 T 0 ℓj 0 (∂ x u j ) 2 dxdt + N j=1 ℓj 0 x(u j (T, x)) 2 dx - N j=1 T 0 ℓj 0 (u j ) 2 dxdt +2 N j=1 x(u j ) 2 a j dxdt + 2 N j=1 T 0 ℓj 0 xb j u j (t -h j , x)u j (t, x)dxdt = 2 N j=1 T 0 ℓj 0 xu j f j dxdt -2 N j=1 T 0 u 1 (t, 0)∂ x u j (t, 0)dt. Hence 3∥∂ x u∥ 2 L 2 (0,T ;L 2 (T )) ≤ T ∥u∥ 2 C([0,T ];L 2 (T )) + L ∥u∥ 2 C([0,T ],L 2 (T )) + ∥f ∥ 2 L 1 (0,T ;L 2 (T )) +N ∥u 1 (•, 0)∥ 2 L 2 (0,T ) + ∥∂ x u(•, 0)∥ 2 L 2 (0,T ) ,
which concludes the proof of Proposition 2.2.4

Well-posedness of nonlinear system

The aim of this section is to use the estimates obtained in the last sections to pass to the nonlinear system. For the internal nonlinearity we use Proposition 1.2.1, for nonlinearity in the boundary we have the following proposition Proposition 2.2.5 (Proposition 2.6, [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF]). Let u ∈ B T , then, (u 1 (t, 0)) 2 ∈ L 2 (0, T ) and the map

u ∈ B T → (u 1 (t, 0)) 2 ∈ L 2 (0, T )
is continuous. Moreover, we have the estimate,

∥u 2 1 (•, 0)∥ L 2 (0,T ) ≤ 1 √ 2 ∥u∥ 2 B T . (2.2.32)
We are ready to establish our well-posedness result of the nonlinear (KdVd) for small initial data.

Theorem 2.2.2. Assume a, b ∈ L ∞ (T ) are componentwise non-negative that satisfy (2.1.1) and (2.1.2). Let (ℓ j ) N j=1 ⊂ (0, +∞), T > 0, there exists ϵ > 0 and C > 0 such that for all

U 0 = (u 0 , z 0 (-h•, •)) ∈ H with ∥U 0 ∥ H ≤ ϵ, the nonlinear equation (KdVd) has a unique mild solution u ∈ B T . Moreover, it satisfies ∥u∥ B T ≤ C∥(u 0 , z 0 (-h•, •))∥ H . ∥∂ x u∥ 2 L 2 (0,T ;L 2 (T )) ≤ C ∥U 0 ∥ 2 H + ∥U 0 ∥ 4 H . (2.2.33) Proof. Let U 0 ∈ H, with ∥U 0 ∥ H < ϵ
, where ϵ > 0 will be chosen later, u ∈ B T and consider the map Φ :

B T → B T defined by Φ(u) = v where v is the solution of                              ∂ t v j (t, x) + ∂ x v j (t, x) + ∂ 3 x v j (t, x) + a j (x)v j (t, x) +b j (x)v j (t -h j , x) = -u j (t, x)∂ x u j (t, x), x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, v j (t, 0) = v j ′ (t, 0), ∀j, j ′ = 1, . . . N, N j=1 ∂ 2 x v j (t, 0) = -αv 1 (t, 0) - N 3 (u 1 (t, 0)) 2 , t > 0, v j (t, ℓ j ) = ∂ x v j (t, ℓ j ) = 0, t > 0, j = 1, . . . , N, v j (0, x) = u 0 j (x), x ∈ (0, ℓ j ), v j (t, x) = z 0 j (t, x), (t, x) ∈ (-h j , 0) × (0, ℓ j ).
(2.2.34)

Clearly, u ∈ B T is solution of (KdVd) if u is a fixed-point Φ. From Proposition 1.2.1 and Proposition 2.2.5, we get for all u ∈ B T ∥Φ(u)∥ B T = ∥v∥ B T ≤ C ∥U 0 ∥ H + ∥u∥ 2 B T and for u, ũ ∈ B T ∥Φ(u) -Φ(ũ)∥ B T ≤ C (∥u∥ B T + ∥ũ∥ B T ) ∥u -ũ∥ B T
Let us choose R > 0 to be defined later and consider Φ restricted to the closed ball

B B T (0, R) = {u ∈ B T : ∥u∥ B T ≤ R}. Then, for any u, ũ ∈ B B T (0, R), we have ∥Φ(u)∥ B T ≤ C(ϵ + R 2 ) ∥Φ(u) -Φ(ũ)∥ B T ≤ 2CR∥u -ũ∥ B T . Thus if R < 1 2C and ϵ > 0 such that C(ϵ + R 2 ) < R
we obtain the local well-posedness result applying the Banach fixed-point Theorem.

To obtain (2.2.33), let u the solution of (KdVd), multiplying (KdVd) by q j u j with, q j (x) =

x(2ℓj -x) ℓ 2 j we can obtain

∥u 1 (t, 0)∥ 2 L 2 (0,T ) ≤ C∥U 0 ∥ 2 H + 2 3 N j=1 T 0 ℓj 0 (u j (t, x)) 3 dxdt. As ∀j = 1, . . . , N u j ∈ L 2 (0, T ; H 1 (0, ℓ j )) and H 1 (0, ℓ j ) embeds into C([0, ℓ j ]) we get following [Cer14, PMVZ02] N j=1 T 0 ℓj 0 (u j ) 3 dxdt ≤ CT 1/2 ∥U 0 ∥ 2 H ∥u∥ L 2 (0,T ;H 1 e (T ))
and then

∥u 1 (t, 0)∥ 2 L 2 (0,T ) ≤ C∥U 0 ∥ 2 H + CT 1/2 ∥U 0 ∥ 2 H ∥u∥ L 2 (0,T ;H 1 e (T )
) . Similarly, multiplying (KdVd) by xu j and using the last inequality we deduce

∥∂ x u∥ 2 L 2 (0,T ;L 2 (T )) ≤ C ∥U 0 ∥ 2 H + ∥U 0 ∥ 2 H ∥u∥ L 2 (0,T ;H 1 e (T )
) . Using Young's inequality, we can find C > 0 such that (2.2.33) holds.

Stabilization of delayed KdV system

Lyapunov stabilization of the delayed system

The aim of this part is to prove Theorem 2.1.1. As we said before, this proof is developed in a constructive manner by using a Lyapunov function.

Proof of Theorem 2.1.1:

Let u a regular enough solution of (KdVd) with U 0 ∈ D(A) satisfying ∥U 0 ∥ H ≤ ϵ, where ϵ > 0 will be chosen later. Following [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF][START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF] we consider the next Lyapunov candidate for (KdVd)

V (t) = E(t) + µ 1 V 1 (t) + µ 2 V 2 (t). (2.3.1)
where E is defined by (2.1.5)

V 1 (t) = N j=1 ℓj 0 x(u j (t, x)) 2 dx, and V 2 (t) = N j=1 h j ωj 1 0 (1 -ρ)(u j (t -h j ρ, x)) 2 dρdx.
Clearly

E(t) ≤ V (t) ≤ 1 + max Lµ 1 , µ 2 b 0 E(t).
After some computations we have,

d dt E(t) ≤ -(2α -N )(u 1 (t, 0)) 2 - N j=1 (∂ x u j (t, 0)) 2 - N j=1 (0,ℓj )\ωj a j (x)(u j (t, x)) 2 dx + N j=1 ωj (-2a j (x) + b j (x) + ξ j (x))(u j (t, x)) 2 dx + N j=1 ωj (b j (x) -ξ j (x))(u j (t -h j , x)) 2 dx, d dt V 1 (t) = N j=1 ℓj 0 (u j (t, x)) 2 dx -3 N j=1 ℓj 0 (∂ x u j (t, x)) 2 dx -2u 1 (t, 0) N j=1 ∂ x u j (t, 0) + 2 3 N j=1 ℓj 0 (u j (t, x)) 3 dx -2 N j=1 ℓj 0 xa j (x)(u j (t, x)) 2 dx -2 N j=1 ωj xb j (x)u j (t, x)u j (t -h j , x)dx ≤ N j=1 ℓj 0 (u j (t, x)) 2 dx -3 N j=1 ℓj 0 (∂ x u j (t, x)) 2 dx + N 2 (u 1 (t, 0)) 2 + 1 2 N j=1 (∂ x u j (t, 0)) 2 + 2 3 N j=1 ℓj 0 (u j (t, x)) 3 dx + L n j=1 ωj b j (x)(u j (t, x)) 2 dx + L n j=1 ωj b j (x)(u j (t -h j , x)) 2 dx,
and d dt V 2 (t) = N j=1 ωj (u j (t, x)) 2 dx - N j=1 ωj 1 0 (u j (t -h j ρ, x)) 2 dρdx.
Our idea now is to prove that for a suitable choice of µ 1 , µ 2 , γ > 0 we have that d dt V (t)+2γV (t) ≤ 0, which gives the exponential stability. Using the following Poincaré's inequality: If u ∈ H 1 (0, L) and u(0) = 0 or u(L) = 0, we have

∥u∥ L 2 (0,L) ≤ 2L π ∥∂ x u∥ L 2 (0,L)
. We can check easily that for γ > 0

d dt V (t) + 2γV (t) ≤ -2 α - N 2 -µ 1 N 2 (u 1 (t, 0)) 2 + (µ 1 -1) N j=1 (∂ x u j (t, 0)) 2 + N j=1 ωj (-2a j + b j + ξ j + Lµ 1 b j + µ 2 )(u j ) 2 dx + 2 3 µ 1 N j=1 ℓj 0 (u j ) 3 dx + N j=1 ωj (b j -ξ j + µ 1 Lb j )(u j (t -h j , x)) 2 dx + 4L 2 (µ 1 + 2µ 1 γL + 2γ) π 2 -3µ 1 N j=1 ℓj 0 (∂ x u j (t, x)) 2 dx + N j=1 ωj 1 0 (2γµ 2 h j + 2γh j ξ j -µ 2 )(u j (t -h j ρ, x)) 2 dρdx.
For the term involving

ℓj 0 (u j (t, x)) 3 dx, note that ℓj 0 u 3 j (t, x)dx ≤ ∥u j ∥ 2 L ∞ (0,ℓj ) ℓj 0 |u j (t, x)|dx ≤ ∥u j ∥ 2 L ∞ (0,ℓj ) ∥u j ∥ L 2 (0,ℓj ) ℓ j .
By the injection of

H 1 (0, ℓ j ) into L ∞ (0, ℓ j ) we know that ∥u j ∥ L ∞ (0,ℓj ) ≤ ℓ j ∥∂ x u j ∥ L 2 (0,ℓj ) , then ℓj 0 u 3 j (t, x)dx ≤ ∥u j ∥ 2 L ∞ (0,ℓj ) ∥u j ∥ L 2 (0,ℓj ) ℓ j ≤ ℓ j ∥∂ x u j ∥ 2 L 2 (0,ℓj ) ℓ j ∥u j ∥ L 2 (0,ℓj ) .
Recalling that L = max j=1,...,N ℓ j and as the energy is not increasing we get ∥u j ∥ L 2 (0,ℓj ) ≤ ∥U 0 ∥ H . Choosing ∥U 0 ∥ H ≤ ϵ we get

2 3 µ 1 N j=1 ℓj 0 (u j (t, x)) 3 dx ≤ 2 3 µ 1 ϵL 3/2 N j=1 ℓj 0 (∂ x u j (t, x)) 2 dx. Now taking 0 < µ 1 < min j=1,...,N inf ωj 1, 2a j -b j -ξ j Lb j , ξ j -b j Lb j , 1 N (2α -N ) , 0 < µ 2 < min j=1,...,N inf ωj {2a j -b j -ξ j -µ 1 Lb j } .
Then -(2α -N -µ 1 N ) < 0 and (µ 1 -1) < 0. Moreover, for all j = 1, . . . , N

(-2a j + b j + ξ j + Lµ 1 b j + µ 2 ) < 0, (b j -ξ j + µ 1 Lb j ) < 0.
Finally, joining the estimates

d dt V (t) + 2γV (t) ≤ 4L 2 (µ 1 + 2µ 1 γL + 2γ) π 2 -3µ 1 + 2L 3/2 ϵµ 1 3 ∥∂ x u(t, x)∥ 2 L 2 (T ) + N j=1 ωj 1 0 (2h j γ(µ 2 + ξ j ) -µ 2 )(u j (t -h j ρ, x)) 2 dρdx,
and then as

L < √ 3 2 π, we can choose ϵ < 3 2 (3π 2 -4L 2 ) π 2 L 3/2
and then take γ > 0 satisfying (2.1.6) to obtain d dt V (t) + 2γV (t) ≤ 0. We get the desired exponential stability, by density we can extend the result to any U 0 ∈ H, with ∥U 0 ∥ H ≤ ϵ. □ Remark 2.3.1. As in [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF][START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF] we obtain an estimation of the rate of decay. In addition, recall that we can improve the result searching for a better Poincaré's inequality, and as is commented in [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF][START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF] looking for a new multiplier for the Lyapunov function V 1 , in the sense that the restriction on the lengths, comes from the multiplier x.

Remark 2.3.2. Note that in absence of the feedback terms (with and without delay) this result can be seen as an alternative proof via Lyapunov theory of Theorem 3.4 [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF] (in our case with a more restrictive condition on the lengths).

Semiglobal stabilization

The aim of this section is to prove Theorem 2.1.2, which is a semiglobal result without restriction on the lengths and for α ≥ N/2. The main idea is to obtain the following observability inequality

N j=1 ℓj 0 (u 0 j (x)) 2 dx + N j=1 h j ωj 1 0 ξ j (x)(z 0 j (-h j ρ, x)) 2 dxdρ ≤ C   N j=1 T 0 (∂ x u j (t, 0)) 2 dt + N j=1 T 0 ℓj 0 a j (x)(u j (t, x)) 2 dxdt + N j=1 T 0 ωj (z j (t, 1, x)) 2 dxdt + (2α -N ) T 0 (u 1 (t, 0)) 2 dt   , (Obs-D) for u z
, solution of (KdVd) and some C > 0.

Following Section 1.2.4, we work directly with the nonlinear system. Recall that the two main difficulties are: to pass to the limit in the nonlinear term and the that Holmgrem's Theorem does not apply in the nonlinear case. For that, we use the unique continuation property of Saut and Scheurer Theorem 1.2.2.

Proof of Theorem 2.1.2:

To prove this result, we adapt the techniques of [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF]. We split our proof in three steps. In the first step, we derive an inequality which is quite similar to (Obs-D). In the second step, we obtain (Obs-D) using a contradiction argument and Theorem 1.2.2. Finally, using (Obs-D) and the non-increasing of the energy, we obtain the exponential stability.

• First step. First defining z j (t, ρ, x) = u j ωj (t -h j ρ, x) x ∈ ω j , ρ ∈ (0, 1), for u solution of (KdVd), we can check that        h j ∂ t z j (t, ρ, x) + ∂ ρ z j (t, ρ, x) = 0, x ∈ ω j , ρ ∈ (0, 1), t > 0, z j (t, 0, x) = u j (t, x), x ∈ ω j , t > 0, z j (0, ρ, x) = u j ωj (-h j ρ, x) = z 0 j (-h j ρ, x), ρ ∈ (0, 1).
(2.3.2) Multiplying (2.3.2) by z j and integrating on (0, s) × (0, 1) × ω j we can obtain

∥z 0 (-h•, •)∥ 2 L 2 (Ω) ≤ ∥z(s, •, •)∥ 2 L 2 (Ω) + N j=1 1 h j T 0 ωj (z j (t, 1, x)) 2 dxdt.
Now integrating this relation on (0, T )

T ∥z 0 (-h•, •)∥ 2 L 2 (Ω) ≤ N j=1 T 0 1 0 ωj (z j (t, ρ, x)) 2 dxdρdt + N j=1 T h j T 0 ωj (z j (t, 1, x)) 2 dxdt.
Note now that for T > h we have

T 0 1 0 ωj (z j (t, ρ, x)) 2 dxdρdt = T 0 1 0 ωj (u j (t -ρh j , x)) 2 dxdρdt = T 0 t t-hj ωj (u j (s, x)) 2 dxdsdt ≤ T h j T -hj ωj (u j (s, x)) 2 dxds = T -h j h j T -hj ωj (u j (s, x)) 2 dxds + T h j T T -hj ωj (u j (s, x)) 2 dxds ≤ T h j T 0 ωj ((u j (t, x)) 2 + (u j (t -h j , x)) 2 )dxdt ≤ C T 0 ωj a j (u j ) 2 dxdt + T 0 ωj (z j (t, 1, x)) 2 dxdt ,
which gives us

T ∥z 0 (-h•, •)∥ 2 L 2 (Ω) ≤ C   N j=1 T 0 ωj a j (u j ) 2 dxdt + T 0 ωj (z j (t, 1, x)) 2 dxdt   .
Multiplying (KdVd) by u j and integrating on time and space, we have

∥u(s, •)∥ 2 L 2 (T ) + (2α -N ) s 0 (u 1 (t, 0)) 2 dt + 2 N j=1 s 0 ℓj 0 a j (u j ) 2 dxdt + N j=1 s 0 (∂ x u j (t, 0)) 2 dt + 2 N j=1 s 0 ℓj 0 b j u j (t -h j , x)u j (t, x)dxdt = ∥u 0 ∥ 2 L 2 (T ) .
Integrating again over (0, T ) this relation, we get,

T ∥u 0 ∥ 2 L 2 (T ) ≤ T 0 ∥u(t, •)∥ 2 L 2 (T ) dt + T T 0 N j=1 (∂ x u j (t, 0)) 2 dt + (2α -N )T T 0 (u 1 (t, 0)) 2 dt + 2T N j=1 T 0 ℓj 0 a j (u j ) 2 dxdt + 2T N j=1 T 0 ℓj 0 b j u j (t -h j , x)u j (t, x)dxdt. Note now that T 0 ℓj 0 b j u j (t -h j , x)u j (t, x)dxdt ≤ 1 2 T 0 ωj b j (u j ) 2 dxdt + 1 2 T 0 ωj b j (u j (t -h j , x)) 2 dxdt,
and then

T ∥u 0 ∥ 2 L 2 (T ) ≤ C   T 0 ∥u(t, •)∥ 2 L 2 (T ) dt + (2α -N ) T 0 (u 1 (t, 0)) 2 dt + N j=1 T 0 (∂ x u j (t, 0)) 2 dt + N j=1 T 0 ℓj 0 a j (u j ) 2 dxdt + N j=1 T 0 ωj (z j (t, 1, x)) 2 dxdt   .
Joining the estimates for u 0 and z 0 we get

N j=1 ℓj 0 (u 0 j ) 2 dx + N j=1 h j ωj 1 0 ξ j (x)(z 0 j (-h j , ρ, x)) 2 dxdρ ≤ C   T 0 ∥u(t, •)∥ 2 L 2 (T ) dt + N j=1 T 0 (∂ x u j (t, 0)) 2 dt + (2α -N ) T 0 (u 1 (t, 0)) 2 dt + N j=1 T 0 ℓj 0 a j (u j ) 2 dxdt + N j=1 T 0 ωj (z j (t, 1, x)) 2 dxdt   .
This inequality is quite similar to the observability inequality (Obs-D). Moreover, to prove our result, it is enough to get that for any T , R > 0 there exists C = C(R, T ) > 0 such that for any solutions of (KdVd) with ∥U 0 ∥ H ≤ R we have

T 0 ∥u(t, •)∥ 2 L 2 (T ) dt ≤ C   N j=1 T 0 (∂ x u j (t, 0)) 2 dt + (2α -N ) T 0 (u 1 (t, 0)) 2 dt + N j=1 T 0 ℓj 0 a j (u j ) 2 dxdt + N j=1 T 0 ωj (z j (t, 1, x)) 2 dxdt   .
• Second step.

Suppose that this inequality does not hold. Then there exists

(u n ) n∈N ⊂ B T solution of (KdVd) with ∥U n 0 ∥ H ≤ R such that lim n→∞ T 0 ∥u n (t, •)∥ 2 L 2 (T ) dt I n = ∞,
where

I n =∥∂ x u n (t, 0)∥ 2 L 2 (0,T ) + (2α -N )∥u n 1 (t, 0)∥ 2 L 2 (0,T ) + N j=1 T 0 ℓj 0 a j (u n j ) 2 dxdt + N j=1 T 0 ωj (z n j (t, 1, x)) 2 dxdt. Take λ n = ∥u n ∥ L 2 (0,T ;L 2 (T )) , v n := u n λ n and y n j (t, ρ, x) = v n j ωj (t -h j ρ, x) x ∈ ω j , ρ ∈ (0, 1). Then, v n satisfies                          ∂ t v n j (t, x) + ∂ x v n j (t, x) + ∂ 3 x v n j (t, x) + a j (x)v n j (t, x) +b j (x)v n j (t -h j , x) + λ n v n j (t, x)∂ x v n j (t, x) = 0, x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, v n j (t, 0) = v n j (t, 0), ∀j, j ′ = 1, . . . N, N j=1 ∂ 2 x v n j (t, 0) = -αv n 1 (t, 0) -λ n N 3 (v n 1 (t, 0)) 2 , t > 0, v n j (t, ℓ j ) = ∂ x v n j (t, ℓ j ) = 0, t > 0, j = 1, . . . , N, ∥v n ∥ L 2 (0,T ;L 2 (T )) = 1, (2.3.3) and ∥∂ x v n (t, 0)∥ 2 L 2 (0,T ) + (2α -N )∥v n 1 (t, 0)∥ 2 L 2 (0,T ) + N j=1 T 0 ℓj 0 a j (v n j ) 2 dxdt + N j=1 T 0 ωj (y n j (t, 1, x)) 2 dxdt -→ 0.
(2.3.4)

Now multiplying (2.3.3) by v n j and integrating over (0, T ) × (0, t) × (0, ℓ j ) we can get

T ∥v n (0, •)∥ 2 L 2 (T ) ≤ C T 0 ∥v n (t, •)∥ 2 L 2 (T ) dt + ∥∂ x v n (t, 0)∥ 2 L 2 (0,T ) + ∥v n (-h•, •)∥ 2 L 2 (Ω) +(2α -N )∥v n 1 (t, 0)∥ 2 L 2 (0,T ) . Now for T > h, ∥v n (-h•, •)∥ 2 L 2 (Ω) = N j=1 ωj 1 0 (v n j (-h j ρ, x)) 2 dρdx = N j=1 1 h j ωj 0 -hj (v n j (t, x)) 2 dtdx ≤ N j=1 1 h j ωj T -hj -hj (v n j (t, x)) 2 dtdx = N j=1 1 h j ωj T 0 (v n j (t -h j , x)) 2 dtdx = N j=1 1 h j ωj T 0 (y n j (t, 1, x)) 2 dtdx.
These estimates show us that (v n (0, •)) n∈N is bounded in L 2 (T ), also we can see that from the well-posedness of (KdVd) we get

λ n = ∥u n ∥ L 2 (0,T ;L 2 (T )) ≤ T ∥U n 0 ∥ H ≤ T R.
Consequently, in the same sense as (2.2.33) we can obtain

∥v n ∥ 2 L 2 (0,T ;H 1 e (T )) ≤ C ∥U n 0 ∥ 2 H + ∥U n 0 ∥ 4 H . Thus (v n ) n∈N ⊂ L 2 (0, T ; H 1 e (T )
) is bounded and

∥v n j ∂ x v n j ∥ L 2 (0,T ;L 1 (0,ℓj )) ≤ ∥v n ∥ C([0,T ],L 2 (T )) ∥v n ∥ L 2 (0,T ;H 1 e (T )) , what implies that (v n j ∂ x v n j ) n∈N is subset of L 2 (0, T ; L 1 (0, ℓ j )). From this, we can see that ∂ t v n j = -(∂ 3 x v n j + ∂ x v n j + λ n v n j ∂ x v n j + a j v n j + b j v n j (t -h j ))
is bounded in L 2 (0, T ; H -2 (0, ℓ j )) and hence by Aubin-Lions Lemma we can deduce that (v n ) n∈N is relatively compact L 2 (0, T ; L 2 (T )) and hence we can assume that v n converges strongly to v in L 2 (0, T ; L 2 (T )) with ∥v∥ L 2 (0,T ;L 2 (T )) = 1. Furthermore, passing to the limit on (2.3.4) we get

∥∂ x v(t, 0)∥ 2 L 2 (0,T ) + (2α -N )∥v 1 (t, 0)∥ 2 L 2 (0,T ) + N j=1 T 0 ωj (v j (t -h j )) 2 dxdt + N j=1 T 0 ℓj 0 a j (v j ) 2 dxdt ≤ lim inf ∥∂ x v n (t, 0)∥ 2 L 2 (0,T ) + (2α -N )∥v n 1 (t, 0)∥ 2 L 2 (0,T ) + N j=1 T 0 ℓj 0 a j (v n j ) 2 dxdt + N j=1 T 0 ωj (v n j (t -h j )) 2 dxdt   = 0.
Thus, v j (t, x) ≡ 0 in (-h j , T )×ω j and (2α-N )v j (t, 0) = ∂ x v j (t, 0) = 0 in (0, T ) for all j = 1, . . . , N .

In addition, as (λ n ) n∈N is bounded, we can extract a convergent sub-sequence such that λ n → λ ≥ 0, consequently v satisfies ∥v∥ L 2 (0,T ;L 2 (T )) = 1 and the following equation

                     (∂ t v j + ∂ x v j + ∂ 3 x v j + λv j ∂ x v j )(t, x) = 0, ∀x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, (2α -N )v j (t, 0) = ∂ x v j (t, 0) = 0, ∀j = 1, . . . N, v j (t, ℓ j ) = ∂ x v j (t, ℓ j ) = 0, ∀j = 1, . . . N, N j=1 ∂ 2 x v j (t, 0) = -αv 1 (t, 0) -λ N 3 (v 1 (t, 0)) 2 , t > 0, v j (t, x) = 0 (t, x) ∈ (-h j , T ) × ω j .
1. If λ = 0 the system satisfied by v is linear, then thanks Holmgrem's Theorem v = 0, that contradicts the fact that ∥v∥ L 2 (0,T ;L 2 (T )) = 1.

2. If λ > 0. In this case, we have to prove that v j ∈ L 2 (0, T ; H 3 (0, ℓ j )) in order to apply Theorem 1.2.2. Consider

w j = ∂ t v t then                          ∂ t w j + ∂ x w j + ∂ 3 x w j + λw j ∂ x v j + λv j ∂ x w j = 0, x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, (2α -N )w j (t, 0) = ∂ x w j (t, 0) = 0, ∀j = 1, . . . N, w j (t, ℓ j ) = ∂ x w j (t, ℓ j ) = 0, ∀j = 1, . . . N, N j=1 ∂ 2 x w j (t, 0) = -αw 1 (t, 0) -λ 2N 3 w 1 (t, 0)v 1 (t, 0), t > 0, w j (t, x) = 0 (t, x) ∈ (-h j , T ) × ω j , w j (0, x) = -v ′ (0, x) -v ′′′ (0, x) -λv(0, x)v ′ (0, x), x ∈ (0, ℓ j ), j = 1, . . . , N.
Note that w j (0, x) ∈ H -3 (0, ℓ j ), with Lemma A.2 [START_REF] Cerpa | Control of a Korteweg-de Vries equation: a tutorial[END_REF] we can get that w j (0, x) ∈ L 2 (0, ℓ j ) and

w j ∈ C([0, T ], L 2 (0, ℓ l )) ∩ L 2 (0, T ; H 1 (0, ℓ j )). Thus, ∂ 3 x v j = -(∂ t v j -∂ x v j -λv j ∂ x v j ∈ L 2 (0, T ; L 2 (0, T )) that implies v j ∈ L 2 (0, T ; H 3 (0, ℓ j )).
Applying Theorem 1.2.2 we obtain that v j = 0 for all j = 1, . . . , N that contradicts the fact that ∥v∥ L 2 (0,T ;L 2 (T )) = 1.

Finally, we obtain that (Obs-D) is valid for a solution (KdVd) with ∥U 0 ∥ H ≤ R.

• Third step. Now we derive the exponential stability from the observability inequality (Obs-D) and following Section 1.2.3 (see also [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF]). □ Remark 2.3.3. We can observe that the semiglobal character is given by the assumption ∥U 0 ∥ H ≤ R which is necessary in our proof. Specifically, it is used to show that (λ n ) n∈N is bounded. An interesting open problem is the following: Is (KdVd) globally well-posed and globally exponentially stable?

Remark 2.3.4. Another way to obtain an exponential stability result is to derive (Obs-D) for u z solution of (LKdVd). In that case, we use Holmgrem's Theorem to deduce (Obs-D) that gives us the exponential stability of (LKdVd) without restriction on the initial data. Finally, using a smallness condition for the initial condition, we can prove the exponential stabilization of (KdVd). We do not follow this proof because Theorem 2.1.2 is a more general result, avoiding the smallness condition on the initial data.

Stabilization when not all damped terms are activated

It is known that to obtain exponential stability of a single KdV equation, we only need to add a damped term if the length is critical (L ∈ N ) [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF]. In the network case, more precisely in [AC18] Theorem 3.6, the authors consider damping terms a j applying on the critical lengths edges except at most on one edge. Now we will prove Theorem 2.1.3 following closely Section 6 of [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF] and [START_REF] Nicaise | Stabilization of second-order evolution equations with time delay[END_REF]. First note that if (2.1.7) holds the energy (2.1.5) of the solution of (KdVd) satisfies

d dt E(t) ≤ -(2α -N )(u 1 (t, 0)) 2 - N j=1 (∂ x u j (t, 0)) 2 -2 j∈I supp aj a j (u j ) 2 dx + j∈I ωj (b j -ξ j )(u j (t -h j , x)) 2 dx + j∈I ωj (b j + ξ j )(u j ) 2 dx + j∈I * ωj (-2a j (x) + b j (x) + ξ j (x))(u j (t, x)) 2 dx - j∈I * (0,ℓj )\ωj a j (x)(u j (t, x)) 2 dx + j∈I * ωj (b j (x) -ξ j (x))(u j (t -h j , x)) 2 dx.
From the last inequality we can see that in this case the energy of the solution of (KdVd) is not decreasing in general, this by the action of the terms b j + ξ j > 0 in ω j for j ∈ I. Following [START_REF] Nicaise | Stabilization of second-order evolution equations with time delay[END_REF] we consider the next auxiliary problem for which the energy will be decreasing. This system is close to (KdVd)

                             ∂ t u j (t, x) + ∂ x u j (t, x) + u j (t, x)∂ x u j (t, x) + ∂ 3 x u j (t, x) +a j (x)u j (t, x) + b j (x)u j (t -h j , x) + ηb j (x)u j (t, x)1 I (j) = 0, x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, u j (t, 0) = u j ′ (t, 0), ∀j, j ′ = 1, . . . N, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0) - N 3 u 2 1 (t, 0), t > 0, u j (t, ℓ j ) = ∂ x u j (t, ℓ j ) = 0, t > 0, j = 1, . . . , N, u j (0, x) = u 0 j (x), x ∈ (0, ℓ j ), u j (t, x) = z 0 j (t, x), (t, x) ∈ (-h j , 0) × (0, ℓ j ). (Aux)
where 1 I (j) is the indicator function of the set I and η > 0. Then we consider the energy (2.1.5) with ξ j = ηb j for j ∈ I, that is

E(t) = N j=1 ℓj 0 (u j ) 2 dx + η j∈I h j ωj 1 0 b j (u j (t -h j ρ, x)) 2 dxdρ + j∈I * h j ωj 1 0 ξ j (u j (t -h j ρ, x)) 2 dxdρ (2.4.1)
where in this case for all j ∈ I * , ξ j is a non-negative function belonging to L ∞ (0, ℓ j ) such that supp ξ j = supp b j = ω j and

b j (x) + c 0 ≤ ξ j (x) ≤ 2a j (x) -b j (x) -c 0 , in ω j , for j ∈ I * . (2.4.2) Easy calculations show us that if η > 1, then d dt E(t) ≤ -(2α -N )(u 1 (t, 0)) 2 - N j=1 (∂ x u j (t, 0)) 2 -2 j∈I supp aj a j (u j ) 2 dx + j∈I (1 -η) ωj b j (u j ) 2 dx + j∈I (1 -η) ωj b j (u j (t -h j )) 2 dx + j∈I * ωj (-2a j (x) + b j (x) + ξ j (x))(u j (t, x)) 2 dx - j∈I * (0,ℓj )\ωj a j (x)(u j (t, x)) 2 dx + j∈I * ωj (b j (x) -ξ j (x))(u j (t -h j , x)) 2 dx ≤ 0.
The main idea to deal with the case when supp b j ̸ ⊂ supp a j is to show the exponential stability of the linearization around 0 of (Aux) via a Lyapunov function following Section 2.3.1 and then pass to (LKdVd) using a perturbation result. More precisely, we are going to use the following theorem.

Theorem 2.4.1 (Theorem 1.1, Chapter 3 [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Let X be a Banach space and let A be the infinitesimal generator of a C 0 semigroup T (t) on X satisfying ∥T (t)∥ ≤ M e ωt . If B is a bounded linear operator on X, then A + B is the infinitesimal generator of a C 0 semigroup S(t) on X satisfying ∥S(t)∥ ≤ M e (ω+M ∥B∥)t) .

Remark 2.4.1. As we said before, we use a Lyapunov approach for the auxiliary system, for that we expect that our result holds for L < √ 3 2 π, α > N/2 and small initial data. Also, observing Theorem 2.4.1 we must require that ∥b∥ L ∞ (T ) is small enough.

We start by proving the well-posedness of the linearization of (Aux) around 0. We omitted the details because they are closely similar to Section 2.2,

                             ∂ t u j (t, x) + ∂ x u j (t, x) + ∂ 3 x u j (t, x) + a j (x)u j (t, x) +b j (x)u j (t -h j , x) + ηb j (x)u j (t, x)1 I (j) = 0, x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N, u j (t, 0) = u j ′ (t, 0), ∀j, j ′ = 1, . . . N, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0), t > 0, u j (t, ℓ j ) = ∂ x u j (t, ℓ j ) = 0, t > 0, j = 1, . . . , N, u j (0, x) = u 0 j (x), x ∈ (0, ℓ j ), u j (t, x) = z 0 j (t, x), (t, x) ∈ (-h j , 0) × (0, ℓ j ). (LAux) 
We set again z j (t, ρ, x) = u j ωj (t -h j ρ, x) x ∈ ω j , ρ ∈ (0, 1). Note that in this case as ξ j = ηb j the inner product defined for H in Section 2.2 becomes

u z , v y H = N j=1 ℓj 0 u j (x)v j (x)dx + η j∈I h j ωj 1 0 b j (x)z j (ρ, x)y j (ρ, x)dρdx + j∈I * h j ωj 1 0 ξ j (x)z j (ρ, x)y j (ρ, x)dρ.
Then (LAux) can be written as

∂ t U (t) = A 0 U (t), t > 0 U (0) = U 0 . . (2.4.3) where, U = u z , U 0 = u 0 z 0 ω (-h•, •)
and the operator A 0 is defined by:

A 0 U =   -(∂ x + ∂ 3 x )u -a • u -b • z(1, •) -ηb I • u - 1 h • ∂ ρ z   in which (b I ) j = b j , j ∈ I, 0, j ∈ I * . and D(A 0 ) = D(A).
Theorem 2.4.2. Assume a, b ∈ L ∞ (T ) are componentwise non-negative that satisfy (2.1.1) and (2.1.8). Let U 0 ∈ H and η > 1. Then there exist a unique mild solution

U ∈ C([0, ∞); H) of (2.4.3). Moreover, if U 0 ∈ D(A) then U is a classical solution and U ∈ C([0, ∞); D(A 0 )) ∩ C 1 ([0, ∞); H). Proof. Let U = u z ∈ D(A 0 ), then ⟨A 0 U, U ⟩ ≤ N 2 -α (u 1 (0)) 2 - 1 2 N j=1 (∂ x u j (0)) 2 - j∈I supp aj a j (u j ) 2 dx + 1 2 j∈I (1 -η) ω b j (u j ) 2 dx + 1 2 j∈I (1 -η) ω b j (u j (t -h j )) 2 dx - 1 2 j∈I * (0,ℓj )\ωj a j (x)(u j (t, x)) 2 dx + j∈I * ωj (-a j (x) + b j (x) 2 + ξ j (x) 2 )(u j (t, x)) 2 dx + 1 2 j∈I * ωj (b j (x) -ξ j (x))(u j (t -h j , x)) 2 dx ≤ 0. thus A 0 is dissipative. Moreover A * 0 v y =   (∂ x + ∂ 3 x )v -a • v + ηb • ỹ(0, •) -ηb I • v 1 h • ∂ ρ y   D(A * 0 ) =    v y , v ∈ H 3 (T ) ∩ H 1 e (T ), N j=1 d 2 v j dx 2 (0) = (α -N )v 1 (0), ∂ x v j (0) = 0, ∀j = 1, . . . , N, y ∈ N j=1 L 2 (H 1 (0, 1) × w j ), y j (1, x) = - 1 η v j ωj (x) for j ∈ I, and y j (1, x) = - b j ξ j v j ωj (x)
for j ∈ I * } .

Let V = v y ∈ D(A * 0 ), then ⟨A * 0 V, V ⟩ ≤ - 1 2 N j=1 (∂ x v j (ℓ j )) 2 + N 2 -α v 2 1 (0) - N j=1 supp aj a j (v j ) 2 dx + N j=1 ωj - η 2 + 2 2η b j (x)v 2 j (x)dx + j∈I * ωj -a j + ξ j 2 + b 2 j 2ξ j (v j ) 2 dx - j∈I * (0,ℓj )\ωj a j (v j ) 2 dx - 1 2 j∈I * ωj ξ j (y j (0, x)) 2 dx ≤ 0
thus A * 0 is dissipative. Now to prove the exponential stability of (LAux) we consider the following Lyapunov function:

V (t) = E(t) + µ 1 V 1 + µ 2 V 2 (2.4.4)
where µ 1 , µ 2 > 0, E(t) is defined by (2.4.1), V 1 (t) defined in (2.3.1) and V 2 (t) is given by

V 2 (t) = j∈I h j ωj 1 0 (1 -ρ)b j (x)(u j (t -h j ρ, x)) 2 dxdρ + j∈I * h j ωj 1 0 (1 -ρ)(u j (t -h j ρ, x)) 2 dxdρ.
Proposition 2.4.1. Assume a, b ∈ L ∞ (T ) are componentwise non-negative that satisfy (2.1.1) and (2.1.8). Let α > N 2 , η > 1 and (ℓ j ) N j=1 ⊂ (0, +∞) such that L < √ 3 2 π. Then for every U 0 ∈ H, the energy (2.4.1) of the unique mild solution of (LAux) decays exponentially, that is, there exists C > 0, γ > 0 such that E(t) ≤ CE(0)e -2γt , where

γ ≤ min (3µ 1 π -µ 1 4L 2 ) 8L 2 (1 + Lµ 1 ) , min j∈I µ 2 2h j (η + µ 2 ) , min j∈I * µ 2 2h j (ξ j + µ 2 ) , C = 1 + max Lµ 1 , µ 2 η , µ 2 b 0 , (2.4.5)
for µ 1 and µ 2 such that

0 < µ 1 < 1, η -1 L , 1 N (2α -N ) , min j∈I * inf ωj ξ j -b j Lb j , inf ωj 2a j -b j -ξ j Lb j , 0 < µ 2 < min η -1 -Lµ 1 , min j∈I * 2a j -b j -ξ j -Lµ 1 b j .
Proof. Let u be a regular enough solution of (LAux) with U 0 ∈ D(A 0 ). Clearly, with this definition of V (t) we have that

E(t) ≤ V (t) ≤ 1 + max Lµ 1 , µ 2 η , µ 2 b 0 E(t).
Now, integrating by parts we get

d dt E(t) ≤ (N -2α) (u 1 (t, 0)) 2 - N j=1 (∂ x u j (t, 0)) 2 -2 j∈I supp aj a j (u j ) 2 dx + (1 -η) j∈I ωj b j (u j ) 2 dx + (1 -η) j∈I ωj b j (u j (t -h j , x)) 2 dx + j∈I * ωj (-2a j + b j + ξ j )(u j ) 2 dx - j∈I * supp aj \ωj a j (u j ) 2 dx + j∈I * ωj (b j -ξ j )(u j (t -h j , x)) 2 dx, together with d dt V 1 (t) = N j=1 ℓj 0 (u j ) 2 dx -3 N j=1 ℓj 0 (∂ x u j ) 2 dx -2 N j=1 u 1 (t, 0)∂ x u j (t, 0) -2η j∈I ωj xb j (u j ) 2 dx -2 N j=1 supp aj xa j (u j ) 2 dx -2 N j=1 ωj xb j u j (t, x)u j (t -h j , x)dx, d dt V 2 (t) = j∈I ωj b j (u j ) 2 dx + j∈I * ωj (u j ) 2 dx - j∈I ωj b j 1 0 (u j (t -h j ρ, x)) 2 dρdx - j∈I * ωj 1 0 (u j (t -h j ρ, x)) 2 dρdx.
Using integration by parts and Poincaré's inequality, we can easily check that for γ > 0

d dt V (t) + 2γV (t) ≤ (N -2α + µ 1 N ) (u 1 (t, 0)) 2 + (µ 1 -1) N j=1 (∂ x u j (t, 0)) 2 + j∈I ωj b j (1 -η + µ 2 + µ 1 L)(u j ) 2 dx + j∈I ωj b j (1 -η + µ 1 L)(u j (t -h j , x)) 2 dx + j∈I * ωj (-2a j + b j + ξ j + µ 2 + Lµ 1 b j )(u j ) 2 dx + j∈I * ωj (b j -ξ j + µ 1 Lb j )(u j (t -h j )) 2 dx + j∈I ωj 1 0 (2γh j (µ 2 + η) -µ 2 )(u j (t -h j ρ, x)) 2 dx + j∈I * ωj 1 0 (2γh j (µ 2 + ξ j ) -µ 2 )(u j (t -h j ρ, x)) 2 dx + 4L 2 (µ 1 + 2µ 1 γL + 2γ) π 2 -3µ 1 N j=1 ℓj 0 (∂ x u j (t, x)) 2 dx. Taking 0 < µ 1 < 1, η -1 L , 1 N (2α -N ) , min j∈I * inf ωj ξ j -b j Lb j , inf ωj 2a j -b j -ξ j Lb j , 0 < µ 2 < min η -1 -Lµ 1 , min j∈I * 2a j -b j -ξ j -Lµ 1 b j ,
and using that L > √ 3 2 π we can take

γ ≤ min (3µ 1 π -µ 1 4L 2 ) 8L 2 (1 + Lµ 1 ) , min j∈I µ 2 2h j (η + µ 2 ) , min j∈I * µ 2 2h j (ξ j + µ 2 )
.

With this, d dt V (t) + 2γV (t) ≤ 0 which implies

E(t) ≤ 1 + max Lµ 1 , µ 2 η , µ 2 b 0 E(0)e -2γt .
By density, we can extend the result to U 0 ∈ H. Now we will obtain a stability result of (LKdVd) using a perturbation argument. Note first that the operator A introduced in Section 2.2 and associated with (LKdVd) can be written as

A = A 0 + B,
where D(A) = D(A 0 ) and B is the bounded operator on H defined by

BU = ηb I u 0 , U = u z ∈ H. Proposition 2.4.2. Assume a, b ∈ L ∞ (T )
are componentwise non-negative that satisfy (2.1.1) and (2.1.8). Let α > N 2 , η > 1 and (ℓ j ) N j=1 ⊂ (0, +∞) such that L < √ 3 2 π, then for every U 0 ∈ H there exists a unique mild solution U ∈ C([0, ∞), H) for (LKdVd). Moreover, if U 0 ∈ D(A) then the solution is classical and

U ∈ C([0, ∞); D(A)) ∩ C 1 ([0, ∞), H). Furthermore, there exists δ = δ(α, η, L, h) > 0 such that if ∥b∥ L ∞ (T ) ≤ δ,
then for every U 0 ∈ H, the unique mild solution of (LKdVd) satisfies

E(t) ≤ CE(0)e -γt , t > 0,
for C, γ > 0 defined in Proposition 2.4.1.

Proof. It is enough to apply Theorem 2.4.1. We note that ∥B∥ ≤ η∥b∥ L ∞ (T ) and then remark that

- γ 2 + √ Cη∥b∥ L ∞ (T ) < 0 ⇐⇒ ∥b∥ L ∞ (T ) < γ 2η √ C .
Finally, we obtain the local exponential stability for (KdVd) in the case when supp b j ̸ ⊂ supp a j , for j ∈ I * ⊂ {1, . . . , N } stated in Theorem 2.1.3.

Proof of Theorem 2.1.3:

We just adapt the proof of Theorem 2.2.2 and Remark 2.3.4 to obtain the exponential stability of the nonlinear case using the stability of (LAux) and small initial data. □

Numerical simulations

The purpose of this section is to illustrate the stabilization results obtained in this chapter.

For that, we are going to present some numerical simulations adapting the schemes used in [BCV19, CG01, PSVV10]. We choose a final time T and for simplicity we take ℓ j = L and a j , b j constant on their support for all j = 1, . . . , N . We build a uniform spatial and time discretization of N x + 1 and N t + 1 points respectively, separated by the steps ∆x = L/N x and ∆t = T /N t .

To deal with the delay term, we choose the delay step ∆ρ = 1/N ρ . Now we introduce the notation u j (n∆t, i∆x) = u n j,i and z j (n∆t, k∆ρ, i∆x) = z n j,i,k for i = 0, . . . , N x , k = 0, . . . , N ρ and n = 0, . . . , N t . We use the following approximation for the derivatives:

D + x y i = y i+1 -y i ∆x , D - x y i = y i -y i-1 ∆x , D x y i = y i+1 -y i-1 2∆x , D + ρ e k = e k+1 -e k ∆ρ .
In order to approximate the term of third order ∂ 3 x , we use D + x D + x D - x . Now, to consider the nonlinear terms we use explicit approximation y n i D + x y n i and for the nonlinear boundary condition we use a forward approximation for the second derivative which gives

N j=1 1 (∆x) 2 + α N u n+1 j,0 - 2 (∆x) 2 u n+1 j,1 + 1 (∆x) 3 u n+1 j,2 = - N 3 (u n 1,0 ) 2 , n = 1 . . . , N t .
Note now that by the boundary conditions we have that u n j,Nx = u n j,Nx-1 = 0, u n j,0 = u n k for all n = 0, . . . , N t and j, k = 1 . . . , N . Now we define I ωj , the set of index such that i ∈ I ωj if i∆x ∈ ω j . Then taking C = D +

x D + x D - x + D x our scheme can be seen as

                                                         N j=1 1 (∆x) 2 + α N u n+1 j,0 - 2 (∆x) 2 u n+1 j,1 + 1 (∆x) 3 u n+1 j,2 = - N 3 (u n 1,0 ) 2 , n = 1 . . . , N t , u n+1 j,i -u n j,i ∆t + (Cu n+1 j ) i + a j u n+1 j + b j z j,i,Nρ + u n j,i D + x u n j,i = 0, i ∈ I ωj , i ̸ = 0, j = 1, . . . , N, u n+1 j,i -u n j,i ∆t + (Cu n+1 j ) i + u n j,i D + x u n j,i = 0, i ∈ {1, . . . , N }\I ωj , i ̸ = 0, j = 1, . . . , N, h j z n+1 j,i,k -z n j,i,k ∆t + (D + ρ z n+1 j,i ) k = 0, k = 1, . . . , N ρ , u n j,Nx = u n j,Nx-1 = 0 j = 1, . . . , N, u n j,0 = u n k j, k = 1, . . . , N, z n j,i,0 = u n j,i , i ∈ I ωj , j = 1, . . . , N, u 0 j,i = u 0 j (i∆x) i = 1, . . . , N x , j = 1, . . . , N, z 0 j,i,k = z 0 j (k∆ρ, i∆x), k = 1, . . . , N ρ , i ∈ I ωj , j = 1, . . . , N.
(2.5.1) Now we use this scheme with the following parameters, N = 4, L = 2 and α = 3, for the discretization we use N x = 100, N ρ = 100, the initial conditions are u 0 j = (1 -cos(2πx/L)) and z 0 j = (1 -cos(2πx/L)) cos(2πρh j ). As we say before, we consider that the feedback terms are constant on their support, and we take ω 1 = (0, L/2), ω 2 = (0, L/4), ω 3 = (0, L/2) and ω 4 = (0, L/4).

For Figure 2.1 we use T = 5, N t = 100 and delay h 1 = 1, h 2 = 0.5, h 3 = 1 and h 4 = 1. We can see that when there are no feedback terms (a j = b j = 0), the energy is exponentially decreasing and if we only activate the feedback term without delay, the energy decays more quickly. If we activate both feedback terms with and without delay, the energy still decreases exponentially but slowly. Similar case happens if we not activate a feedback term without delay, but we consider a feedback term with a small delay (a 4 = 0, b j = 0.5). Finally, if we consider only the action of delay feedback terms, we can observe that in this case the energy decays very slowly. For Figure 2.2 we use T = 10, N t = 200, a j = 0 for j = 1, . . . 4. In this figure, we can observe that in the case a j = 0, the energy decays exponentially if the feedback terms with delay are small enough. Also, we can see that if the delay is bigger, the feedback term with delay has to be smaller as is written in Theorem 2.1.3. From here, we can see that the theoretical decay rate given by Theorem 2.1.1 is much smaller than for different values of θ > 0.

the one obtained numerically, at least for this initial condition.

CHAPTER 3

Global well-posedness of KdV equation on a star-shaped network and stabilization by saturated controllers In this chapter, we deal with the global well-posedness and stability of the linear and nonlinear Korteweg-de Vries equation on a finite star-shaped network by acting with saturated controls. We obtain the global well-posedness by using the Kato smoothing property for the linear case and then using some estimates and a fixed-point argument we deal with the nonlinear system. Finally, we obtain the exponential stability using two different kinds of saturation by proving an observability inequality via a contradiction argument. This chapter is based on the paper; 

Introduction and presentation of our results

In the works [AC18, CCM20] stabilization and controllability problems were studied, for the KdV equation on a star-shaped network, and recently the problem of stabilization using internal delay was addressed in [START_REF] Parada | Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network[END_REF], we also mention the work [START_REF] Cavalcante | The Korteweg-de Vries equation on a metric star graph[END_REF] where well-posedness of the KdV equation on a star metric graph was studied. In this chapter, we are interested in the global well-posedness and stability properties of a Korteweg-de Vries equation posed on a star-shaped network using internal saturated feedback terms. Consider the next evolution problem for the KdV equation on a star-shaped network

                   (∂ t u n + ∂ x u n + u n ∂ x u n + ∂ 3 x u n )(t, x) = 0, ∀x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, u n (t, 0) = u n ′ (t, 0), ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x u n (t, 0) = -αu 1 (t, 0) - N 3 u 2 1 (t, 0), t > 0, u n (t, ℓ n ) = ∂ x u n (t, ℓ n ) = 0, t > 0, n = 1, . . . , N, u n (0, x) = u 0 n (x), x ∈ (0, ℓ n ), (KdV-N)
where α ≥ N 2 . In [AC18, CCM20] the next well-posedness result was proved for small initial condition and for any time horizon.

Theorem 3.1.1. [Theorem 2.7, [AC18]] Let (ℓ n ) n=1,...N ∈ (0, ∞) N , α ≥ N 2
and T > 0. Then there exist ϵ > 0 and C > 0 such that for all u 0 ∈ L 2 (T ) with ∥u 0 ∥ L 2 (T ) ≤ ϵ, there exists a unique solution of (KdV-N). Moreover, it satisfies ∥u∥

B T ≤ C∥u 0 ∥ L 2 (T ) .
The main complication to get a global well-posedness result is the action of the nonlinear boundary condition on the central node. Similar boundary conditions appear for the first time up to our knowledge in the work [START_REF] Rosier | Control of the surface of a fluid by a wavemaker[END_REF] where a wave maker control for a single KdV equation is studied and then in the work [START_REF] Andres | Well-posedness of a nonlinear boundary value problem for the Korteweg-de Vries equation on a bounded domain[END_REF] where a well-posedness result was given. The system studied in these papers is the next one,

           ∂ t u(t, x) + ∂ x u(t, x) + u(t, x)∂ x u(t, x) + ∂ 3 x u(t, x) = 0, ∀x ∈ (0, L), t > 0, ∂ 2 x u(t, 0) = -u(t, 0) + 1 6 u 2 (t, 0) + h(t), t > 0, u(t, L) = ∂ x u(t, L) = 0, t > 0, u(0, x) = ϕ(x),
x ∈ (0, L),

(3.1.1)
and the following well-posedness result local in time for bounded initial data was proven in [START_REF] Andres | Well-posedness of a nonlinear boundary value problem for the Korteweg-de Vries equation on a bounded domain[END_REF].

Theorem 3.1.2. (Theorem 1.1 [CZ17]) Let T > 0 and γ > 0 be given. There exists T * ∈ (0, T ] such that for any ϕ ∈ L 2 (0, L) and h ∈ H -1 3 (0, T ) satisfying, ∥ϕ∥ L 2 (0,L) + ∥h∥

H -1 3 (0,T ) ≤ γ.
Then, the problem (3.1.1) admits a unique solution u ∈ C([0, T * ]; L 2 (0, L)) ∩ L 2 (0, T * ; H 1 (0, L)). Moreover, the corresponding solution map is Lipschitz continuous and the solution possesses the hidden regularities (the Sharp Kato smoothing properties)

∂ κ x u ∈ L ∞ x (0, L; H 1-κ 3 (0, T * )), κ = 0, 1, 2.
The first main result of this chapter is the following global in-time well-posedness theorem.

Theorem 3.1.3. Let (ℓ n ) n=1,...N ∈ (0, ∞) N , α ≥ N 2 and T > 0.
Then, for all u 0 ∈ L 2 (T ), there exists a unique solution u ∈ B T of (KdV-N). Moreover, there exist

0 < T * ≤ T , C > 0 such that u ∈ Y T * and ∥u∥ Y T * ≤ C∥u 0 ∥ L 2 (T ) .
Note that our result generalized Theorem 3.1.1 in the sense that the smallness assumption on the initial data is not needed. Our idea is to follow [START_REF] Andres | Well-posedness of a nonlinear boundary value problem for the Korteweg-de Vries equation on a bounded domain[END_REF] to obtain a similar Sharp Kato smoothing regularity presented in Theorem 3.1.2 for a linear problem of the KdV equation on a star-shaped network. In order to deal with the nonlinear part, we use a fixed-point argument to obtain global well-posedness for small-time. Finally, we use an energy estimation to obtain a global well-posedness in time. Similar ideas were applied in the case of single KdV equation in [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF].

Our idea closely follows works [START_REF] Marx | Global Stabilization of a Korteweg-de Vries Equation with saturating distributed control[END_REF] and [START_REF] Parada | Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network[END_REF] to prove the stability of the KdV equation in a star-shaped network with saturated internal control. In this chapter, we consider a saturation map sat that could be any of the following cases:

• sat = sat loc : First consider the following scalar saturation,

sat(f ) =    -M, if f ≤ -M, f, if -M ≤ f ≤ M, M, if f ≥ M,
where M > 0 is given and denotes the saturation level. Then we take the next extension to infinite dimensional setting

sat loc (f )(x) = sat(f (x)). (3.1.2) • sat = sat 2 : For f ∈ L 2 (0, L) we define sat 2 (f )(x) =    f (x), if ∥f ∥ L 2 (0,L) ≤ M, f (x)M ∥f ∥ L 2 (0,L) , if ∥f ∥ L 2 (0,L) ≥ M. (3.1.3)
In what follows, sat corresponds to either sat loc or sat 2 . In order to consider the saturated stabilization problem, we study the next system

                         (∂ t u n + ∂ x u n + u n ∂ x u n + ∂ 3 x u n )(t, x) + sat(a n (x)u n (t, x)) = 0, x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, u n (t, 0) = u n ′ (t, 0), ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x u n (t, 0) = -αu 1 (t, 0) - N 3 u 2 1 (t, 0), t > 0, u n (t, ℓ n ) = ∂ x u n (t, ℓ n ) = 0, t > 0, n = 1, . . . , N, u n (0, x) = u 0 n (x), x ∈ (0, ℓ n ), (KdV-S)
where the damping terms (a n ) n=1,...,N ∈ L ∞ (T ) act locally on all branches, formally written as a n ≥ c n > 0 in an open nonempty set ω n of (0, ℓ n ), for all n = 1, . . . , N.

(3.1.4)

In this chapter, we are going to consider the following energy

E(t) of u = (u 1 , • • • , u N ) ⊤ ∈ L 2 (T ) by 
E(t) = 1 2 ∥u∥ 2 L 2 (T ) . (3.1.5)
The second main result of this chapter states the semiglobal exponential stability of (KdV-S).

Theorem 3.1.4. Assume that the damping terms (a n ) n=1,...,N satisfy (3.1.4). Let (ℓ n ) N n=1 ⊂ (0, ∞) and R > 0, then there exist C(R) > 0 and µ(R) > 0 such that for all u 0 ∈ L 2 (T ) with ∥u 0 ∥ L 2 (T ) ≤ R, the energy of the solution of (KdV-S) defined by (3.1.5) satisfies E(t) ≤ C(R)E(0)e -µ(R)t for all t > 0.

Then, in order to add damped terms only on the critical lengths as in [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF] we neglect the term u n ∂ x u n in the KdV equation (KdV-N). Let I c = {n ∈ {1, . . . , N }; ℓ n ∈ N } be the set of critical lengths and I * c be the subset of I c where we remove one index. We consider now the following problem

                   (∂ t u n + ∂ x u n + ∂ 3 x u n )(t, x) + sat(a n (x)u n (t, x)) = 0, x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, u n (t, 0) = u n ′ (t, 0), ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x u n (t, 0) = -αu 1 (t, 0), t > 0, u n (t, ℓ n ) = ∂ x u n (t, ℓ n ) = 0, t > 0, n = 1, . . . , N, u n (0, x) = u 0 n (x), x ∈ (0, ℓ n ), (LKdV-S)
where the damping (a n ) n=1,...,N ∈ L ∞ (T ) satisfy

     a n = 0 for n ∈ {1 . . . , N }\I * c , a n ≥ c n in
an open nonempty set ω n of (0, ℓ n ), for all n ∈ I * c , and c n > 0 is a constant.

(3.1.6)

Then we are able to prove the following global stabilization result, which is the last main result.

Theorem 3.1.5. Assume that the damping terms (a n ) n=1,...,N satisfy (3.1.6) and let (ℓ n ) N n=1 ⊂ (0, ∞). Then, there exist C > 0 and µ > 0 such that for all u 0 ∈ L 2 (T ), the energy of the solution of (LKdV-S) defined by (3.1.5) satisfies E(t) ≤ CE(0)e -µt for all t > 0.

Remark 3.1.1. Note that for the system (LKdV-S) the stabilization result is global, instead of the one for (KdV-S) which is semiglobal. This difference comes from the action of the term u n ∂ x u n : the condition ∥u 0 ∥ L 2 (T ) ≤ R is necessary to handle this term.

Well-posedness

This section is devoted to prove the well-posedness results for (KdV-N)-(KdV-S) and (LKdV-S), in particular we focus on Theorem 3.1.3. Our scheme will be to consider appropriate linear systems to derive regularity properties. Then, using a fixed-point result, we obtain the well-posedness for the nonlinear systems.

Linear Problems

We start by considering the following linear system for KdV equation on a star-shaped network T

                   ∂ t u n (t, x) + ∂ 3 x u n (t, x) = f n (t, x), ∀x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, u n (t, 0) = u n ′ (t, 0), ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x u n (t, 0) = h(t), t > 0, u n (t, ℓ n ) = 0, ∂ x u n (t, ℓ n ) = 0, t > 0, n = 1, . . . , N, u n (0, x) = u 0 n (x), ∀x ∈ (0, ℓ n ), j = 1, . . . , N.
(LKdV-N)

The terms f n and h are internal and boundary functions that are useful for the fixed-point approach. First, we deal with the linear system (LKdV-N) with homogeneous initial condition and homogeneous internal source terms (f n = 0).

                   ∂ t u n (t, x) + ∂ 3 x u n (t, x) = 0, ∀x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, u n (t, 0) = u n ′ (t, 0), t > 0, ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x u n (t, 0) = h(t), t > 0, u n (t, ℓ n ) = 0, ∂ x u n (t, ℓ n ) = 0, t > 0, n = 1, . . . , N, u n (0, x) = 0, ∀x ∈ (0, ℓ n ), n = 1, . . . , N, (3.2.1)
The fact that we work with the linear system [START_REF] Bona | A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain[END_REF][START_REF] Andres | Well-posedness of a nonlinear boundary value problem for the Korteweg-de Vries equation on a bounded domain[END_REF]. It is well known, that the term ∂ x u n yields problematic behaviors with respect to regularity and controllability properties, as well noted Rosier in [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] and then several works as [START_REF] Capistrano-Filho | General boundary value problems of the Korteweg-de Vries equation on a bounded domain[END_REF][START_REF] Zhang | Exact boundary controllability of the Korteweg-de Vries equation[END_REF][START_REF] Andres Caicedo | Neumann boundary controllability of the Korteweg-de Vries equation on a bounded domain[END_REF]. Now, formally we apply the usual Laplace Transform with respect to time to the system (3.2.1) and obtain

∂ t u n + ∂ 3 x u n = 0 instead of ∂ t u n + ∂ x u n + ∂ 3 x u n = 0 is motivated by
                   sû n + ∂ 3 x ûn = 0, ∀x ∈ (0, ℓ n ), n = 1, . . . , N, ûn (s, 0) = ûn ′ (s, 0), ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x ûn (s, 0) = ĥ(s), ûn (s, ℓ n ) = 0, ∂ x ûn (s, ℓ n ) = 0, n = 1, . . . , N, ûn (0, x) = 0, ∀x ∈ (0, ℓ n ), n = 1, . . . , N, (3.2.2) where ûn (s, x) = ∞ 0 e -st u n (t, x)dt, ĥ(s) = ∞ 0 e -st h(t)dt, ∀x ∈ (0, ℓ n ).
Following [START_REF] Bona | A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain[END_REF], we can see that the N component solutions to (3.2.2) can be written as

ûn (s, x) = 3 j=1 c N 3(n-1)+j (s)e λj (s)x , (3.2.3)
where λ j (s), j = 1, 2, 3 are the solutions of the characteristic equation s + λ 3 = 0 and c N = (c k ) N k=1,...,3N solves the following linear system 

                                                       N n=1 3 j=1 c N 3(n-1)+j λ 2 j = ĥ,
                       ∀n = 2, . . . N.
(3.2.4)

We write this previous system in its matrix form A N c N = ĥe 1 , where e 1 is the first vector of the canonical basis in R 3N . We can see easily that A N ∈ M 3N can be decomposed by induction in blocks as:

A 1 =   (λ 1 ) 2 (λ 2 ) 2 (λ 3 ) 2 e λ1ℓ1
e λ2ℓ1 e λ3ℓ1 λ 1 e λ1ℓ1 λ 2 e λ2ℓ1 λ 3 e λ3ℓ1   , (3.2.5)

A N =           A N -1 (λ 1 ) 2 (λ 2 ) 2 (λ 3 ) 2 0 3(N -1)-1×3 1 1 1 0 0 0 0 3×3(N -2) 0 0 0 D N           = A N -1 B N C N D N , (3.2.6)
for an appropriate choice of B N , C N and

D N =   -1 -1 -1 e λ1ℓ N e λ2ℓ N e λ3ℓ N λ 1 e λ1ℓ N λ 2 e λ2ℓ N λ 3 e λ3ℓ N   .
(3.2.7)

Formally, taking the inverse of the Laplace Transform of ûn in (3.2.3), we get for t ≥ 0 and x ∈ (0, ℓ n )

u n (t, x) = 1 2πi i∞ -i∞ e st ûn (s, x)ds = 3 j=1 1 2πi i∞ -i∞
e st c N 3(n-1)+j ĥ(s)e λj (s)x ds.

If we denote, for t ≥ 0 and x ∈ (0, ℓ n ),

I n (t, x) = 3 j=1 1 2πi
i∞ 0 e st c N 3(n-1)+j ĥ(s)e λj (s)x ds,

J n (t, x) = 3 j=1 1 2πi 0 -i∞
e st c N 3(n-1)+j ĥ(s)e λj (s)x ds, we have

u n (t, x) = I n (t, x) + J n (t, x). (3.2.8)
Now we introduce the notation, super index, +\-which corresponds to taking s = ±iρ 3 , ρ > 0 in the characteristic equation. Then, the roots of the characteristic equation are given by

   λ + 1 (ρ) = iρ, λ + 2 (ρ) = 1 2 ρ( √ 3 -i), λ + 3 (ρ) = 1 2 ρ(- √ 3 -i), λ - j (ρ) = λ + j (ρ), j = 1, 2, 3.
Let ∆ N,+ (ρ) be the determinant of A N (iρ 3 ), ∆ N,+ 3(n-1)+j (s) be the determinant of the matrix that is obtained by replacing the column 3(n -1) + j of the matrix A N (iρ 3 ) by [1 0 . . . 0] ⊤ and ĥ+ (ρ) = ĥ(iρ 3 ). Assume that ∆ N,+ (ρ) ̸ = 0 (this property will be justified in Proposition 3.2.1), Cramer's Rule implies that c N,+ 3(n-1)+j (ρ) = c N 3(n-1)+j (iρ 3 ) is given by

c N,+ 3(n-1)+j (ρ) = ∆ N,+ 3(n-1)+j (ρ) ∆ N,+ (ρ) ĥ+ (ρ).
(3.2.9) Thus, I n and J n can be seen as

I n (t, x) = 3 j=1 1 2π ∞ 0 e iρ 3 t e λ + j (ρ)x ∆ N,+ 3(n-1)+j (ρ) ∆ N,+ (ρ) ĥ+ (ρ)3ρ 2 dρ, (3.2.10) J n (t, x) = 3 j=1 1 2π ∞ 0 e -iρ 3 t e λ - j (ρ)x ∆ N,- 3(n-1)+j (ρ) ∆ N,-(ρ) ĥ-(ρ)3ρ 2 dρ, (3.2.11)
where we use the notation

∆ N,- k (ρ) = ∆ N,+ k (ρ), ∆ N,-(ρ) = ∆ N,+ ( 
ρ) and ĥ-(ρ) = ĥ+ (ρ). Our idea now is to obtain estimates for u n , for that we are going to prove some asymptotic properties for

∆ N,+ 3(n-1)+j (ρ)
∆ N,+ (ρ) , the following proposition collects these properties.

Proposition 3.2.1. For all ρ > 0, ∆ N,+ (ρ) ̸ = 0. Moreover, the following asymptotic properties hold, for ρ → ∞

∆ N,+ 3(n-1)+1 ∆ N,+ ∼ -δ N ρ -2 e -1 2 ρ √ 3ℓn-i 3 2 ρℓn , ∆ N,+ 3(n-1)+2 ∆ N,+ ∼ δ N ρ -2 e -ρ √ 3ℓn+i π 3 , ∆ N,+ 3(n-1)+3 ∆ N,+ ∼ δ N ρ -2 e -i π 3 , 3 j=1 ∆ N,+ 3(n-1)+j ∆ N,+ ∼ δ N ρ -2 e -i π 3 , n = 1, . . . , N,
(3.2.12)

where δ N > 0 only depends on N and satisfies δ N = δ N -1 δ N -1 + 1 .

Proof. The main problem in this proof is to deal with the determinant of the matrix without making explicit computations. Recall that, in the case of N branches, the matrix A N has size 3N × 3N . Our proof is based on an induction argument over the number N of branches of the network.

• N = 1, in this case, system (3.2.4) is exactly the system studied in [START_REF] Andres | Well-posedness of a nonlinear boundary value problem for the Korteweg-de Vries equation on a bounded domain[END_REF] for ℓ 1 = 1. By Appendix B.2, it holds ∆ 1,+ (ρ) ̸ = 0 for all ρ > 0. Moreover, following the explicit calculations given in [START_REF] Andres | Well-posedness of a nonlinear boundary value problem for the Korteweg-de Vries equation on a bounded domain[END_REF] we can deduce:

∆ 1,+ 1 ∆ 1,+ ∼ -ρ -2 e -1 2 ρ √ 3ℓ1-i 3 2 ρℓ1 , ∆ 1,+ 2 ∆ 1,+ ∼ ρ -2 e -ρ √ 3ℓ1+i π 3 , ∆ 1,+ 3 ∆ 1,+ ∼ ρ -2 e -i π 3 , 3 j=1 ∆ 1,+ j ∆ 1,+ ∼ ρ -2 e -i π 3 .
That gives (3.2.12) in the case N = 1.

• Suppose now that ∆ N -1,+ (ρ) ̸ = 0 for all ρ > 0 and that the asymptotic property (3.2.12) is true for any network of N -1 branches. Let us prove that ∆ N,+ (ρ) ̸ = 0 for all, ρ > 0 and that the asymptotic property (3.2.12) holds for a network of N branches. As

A N = A N -1 B N C N D N ,
and we have det(A N -1 ) = ∆ N -1,+ ̸ = 0 by hypothesis, we can write

A N = I 3(N -1) 0 3(N -1) C N A -1 N -1 I 3(N -1) A N -1 0 3(N -1) 0 3(N -1) D N -C N A -1 N -1 B N I 3(N -1) A -1 N -1 B N 0 3(N -1) I 3(N -1)
, (3.2.13) which implies directly that

∆ N,+ = det(A N ) = det(A N -1 ) det(D N -C N A -1 N -1 B N ). (3.2.14)
The difficulty of the last expression is the role of the matrix A -1 N -1 . In fact, to calculate this inverse explicitly is quite complicated. Note now that if

A -1 N -1 =         x 1 . . . . . . . . . x 2 . . . . . . . . . x 3 . . . . . . . . . . . . . . . . . . . . .        
, then, we have

C N A -1 N -1 B N =   (λ + 1 ) 2 (x 1 + x 2 + x 3 ) (λ + 2 ) 2 (x 1 + x 2 + x 3 ) (λ + 3 ) 2 (x 1 + x 2 + x 3 ) 0 0 0 0 0 0   , (3.2.15)
from here we can see that it is not necessary to calculate all the entries of the matrix A -1 N -1 . Indeed, we only need the 3 first entries of the first column. Straightforward calculations show that 

x 1 = ∆ N -1,+ 1 ∆ N -1,+ , x 2 = ∆ N -1,+ 2 ∆ N -1,+ , x 3 = ∆ N -1,+ 3 ∆ N -1,+ . ( 3 
C N A -1 N -1 B N =        (λ + 1 ) 2 3 j=1 ∆ N -1,+ j ∆ N -1,+ (λ + 2 ) 2 3 j=1 ∆ N -1,+ j ∆ N -1,+ (λ + 3 ) 2 3 j=1 ∆ N -1,+ j ∆ N -1,+ 0 0 0 0 0 0        .
Then with (3.2.7)

D N -C N A -1 N -1 B N =     -1 -(λ + 1 ) 2 3 j=1 ∆ N -1,+ j ∆ N -1,+ -1 -(λ + 2 ) 2 3 j=1 ∆ N -1,+ j ∆ N -1,+ -1 -(λ + 3 ) 2 3 j=1 ∆ N -1,+ j ∆ N -1,+ e λ + 1 ℓ N e λ + 2 ℓ N e λ + 3 ℓ N λ + 1 e λ + 1 ℓ N λ + 2 e λ + 2 ℓ N λ + 3 e λ + 3 ℓ N     (3.2.17)
and using the multilinearity of the determinant

det(D N -C N A -1 N -1 B N ) = - 3 j=1 ∆ N -1,+ j ∆ N -1,+ det(F N ) + det(D N ),
where

F N =      (λ + 1 ) 2 (λ + 2 ) 2 (λ + 3 ) 2 e λ + 1 ℓ N e λ + 2 ℓ N e λ + 3 ℓ N λ + 1 e λ + 1 ℓ N λ + 2 e λ + 2 ℓ N λ + 3 e λ + 3 ℓ N      . (3.2.18)
Then, it holds 

∆ N,+ = ∆ N -1,+   - 3 j=1 ∆ N -1,+ j ∆ N -1,+ det(F N ) + det(D N )   . ( 3 
det(D N ) = ρ √ 3e -iρℓ N + - ρ √ 3 2 - 3 2 iρ e -ρ √ 3 2 +i ρ 2 ℓ N + - ρ √ 3 2 + 3 2 iρ e ρ √ 3 2 +i ρ 2 ℓ N , (3.2.20) det(F N ) = √ 3ρ 3 e -iρℓ N + √ 3ρ 3 e -1 2 ρ( √ 3-i)ℓ N + √ 3ρ 3 e -1 2 ρ(- √ 3-i)ℓ N . (3.2.21)
Now, to compute ∆ N,+ 3(n-1)+j , let A n N,j the matrix obtained by replacing the column 3(n -1) + j of A N by [1 0 • • • 0] ⊤ , for j = 1, 2, 3 and n = 1, . . . , N -1, that is

A n N,j =           (j+3(n-1)-th) 1 0 . . . B N . . . . . . 0 D N           =                                                       A n N -1,j B N 0 1 1 0 0 0 0 0 0 0 D N          if j = 1, n = 1          A n N -1,j B N 1 0 1 0 0 0 0 0 0 0 D N          if j = 2, n = 1          A n N -1,j B N 1 1 0 0 0 0 0 0 0 0 D N          if j = 3, n = 1   A n N -1,j B N C N D N   if j = 1, 2, 3, n = 2, . . . , N -1.
(3.2.22)

We claim the following property of ∆ N,+ 3(n-1)+j . Lemma 3.2.1.

∆ N,+ 3(n-1)+j = ∆ N -1,+ 3(n-1)+j det(D N ), n = 1, . . . , N -1, j = 1, 2, 3. (3.2.23)
Proof. Using the decomposition given by (3.2.22), we get

A n N,j =   A n N -1,j B N C n N,j D N   ,
for an appropriated choice of C n N,j . Thus, with the same idea as (3.2.14) it holds

∆ N,+ 3(n-1)+j = det(A n N,j ) = det(A n N -1,j ) det(D N -C n N,j (A n N -1,j ) -1 B N ). (3.2.24)
Similarly, as before, we need to study the product C n N,j (A n N -1,j ) -1 B N , in particular the first column of the matrix (A n N -1,k ) -1 . To do that, note that

A n N -1,j v =           (j+3(n-1)-th) 1 0 . . . B N -1 . . . . . . 0 D N           v =    1 0 . . . 0    ,
by simple inspection, the solution of the above problem is

v = [0 • • • j+3(n-1) 1 • • • 0] ⊤ which coincides with the first column of (A n N -1,j ) -1 and hence C n N,j (A n N -1,j ) -1 B N = 0 3×3 , therefore with (3.2.24)
∆ N,+ 3(n-1)+j = ∆ N -1,+ 3(n-1)+j det(D N ), n = 1, . . . , N -1, j = 1, 2, 3. which finished the proof of Lemma 3.2.1.

In order to show that ∆ N,+ ̸ = 0, note that by (3.2.19) we get

∆ N,+ = - 3 j=1 ∆ N -1,+ j det(F N ) + ∆ N -1,+ det(D N ), j = 1, 2, 3.

Using (3.2.23) recursively, we get

∆ N -1,+ j = ∆ 1,+ j N -1 ℓ=2 det(D ℓ ).
Noticing that ∆ 1,+ = det(F 1 ), - det(F j ) det(D j ) ̸ = 0, thus ∆ N,+ ̸ = 0. Now as ∆ N,+ ̸ = 0, we can obtain using (3.2.19) and (3.2.23) that

∆ N,+ 3(n-1)+j ∆ N,+ = ∆ N -1,+ 3(n-1)+j ∆ N -1,+ det(D N ) - 3 l=1 ∆ N -1,+ l ∆ N -1,+ det(F N ) + det(D N ) , (3.2.25) 
for j = 1, 2, 3, n = 1, . . . , N -1. Then, using (3.2.21) we get

det(F N ) ∼ √ 3ρ 3 e ρ 2 √ 3ℓ N +i ρ 2 ℓ N ,
and by the induction assumption

3 l=1 ∆ N -1,+ l ∆ N -1,+ ∼ δ N -1 ρ -2 e -i π 3 . Thus 3 l=1 ∆ N -1,+ l ∆ N -1,+ det(F N ) ∼ δ N -1 √ 3ρe ρ 2 √ 3ℓ N +i ρ 2 ℓ N -i π 3 ,
and then for ρ → ∞

det(D N ) - 3 l=1 ∆ N -1,+ l ∆ N -1,+ det(F N ) + det(D N ) ∼ 1 δ N -1 + 1 . (3.2.26)
Now by the induction assumption

∆ N -1,+ 3(n-1)+1 ∆ N -1,+ ∼ -δ N -1 ρ -2 e -1 2 ρ √ 3ℓn-i 3 2 ρℓn , ∆ N -1,+ 3(n-1)+2 ∆ N -1,+ ∼ δ N -1 ρ -2 e -ρ √ 3ℓn+i π 3 , ∆ N -1,+ 3(n-1)+3 ∆ N -1,+ ∼ δ N -1 ρ -2 e -i π 3 ,
and (3.2.25)-(3.2.26) we have:

∆ N,+ 3(n-1)+1 ∆ N,+ ∼ -δ N ρ -2 e -1 2 ρ √ 3ℓn-i 3 2 ρℓn , ∆ N,+ 3(n-1)+2 ∆ N,+ ∼ δ N ρ -2 e -ρ √ 3ℓn+i π 3 , ∆ N,+ 3(n-1)+3 ∆ N,+ ∼ δ N ρ -2 e -i π 3 , 3 j=1 ∆ N,+ 3(n-1)+j ∆ N,+ ∼ δ N ρ -2 e -i π 3 , n = 1, . . . , N -1, (3.2.27) where δ N = δ N -1 δ N -1 + 1
. It just remains to study the case n = N . Note that using the block decomposition of A N we get

C N                        ∆ N,+ 1 ∆ N,+ ∆ N,+ 2 ∆ N,+ ∆ N,+ 3 ∆ N,+ . . . ∆ N,+ 3N -5 ∆ N,+ ∆ N,+ 3N -4 ∆ N,+ ∆ N,+ 3N -3 ∆ N,+                        + D N         ∆ N,+ 3N -2 ∆ N,+ ∆ N,+ 3N -1 ∆ N,+ ∆ N,+ 3N ∆ N,+         =      0 0 0     
, and recalling (3.2.6) and (3.2.7) explicit calculations show that

        ∆ N,+ 3N -2 ∆ N,+ ∆ N,+ 3N -1 ∆ N,+ ∆ N,+ 3N ∆ N,+         =   - 3 j=1 ∆ N,+ j ∆ N,+   det(D N )              -ρ √ 3e -iρℓ N ρ √ 3 2 + 3 2 iρ e   - ρ √ 3 2 + iρ 2   ℓN ρ √ 3 2 - 3 2 iρ e    ρ √ 3 2 + iρ 2   ℓN              , (3.2.28) 
and using (3.2.27) we can conclude from (3.2.28)

∆ N,+ 3N -2 ∆ N,+ ∼ -δ N ρ -2 e - 1 2 ρ √ 3ℓ N -i 3 2 ρℓ N , ∆ N,+ 3N -1 ∆ N,+ ∼ δ N ρ -2 e -ρ √ 3ℓ N +i π 3 , ∆ N,+ 3N ∆ N,+ ∼ δ N ρ -2 e -i π 3 , 3 j=1 ∆ N,+ 3(N -1)+j ∆ N,+ ∼ δ N ρ -2 e -i π 3 ,
which gives the induction and concludes the proof of Proposition 3.2.1.

Remark 3.2.1. Recently, in [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF], the problem of small-time local controllability of the nonlinear single KdV equation was addressed. To reach the obstruction to small-time controllability in [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF] new regularity results in the spirit of [START_REF] Bona | A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane[END_REF] were established. Those results have some connections with the analysis developed in this chapter. Here, the analysis of the linear problem (3.2.4) is based on the estimate of the terms I n and J n ( (3.2.10) and (3.2.11)). These involve two integrals of ρ from 0 to infinity, and Proposition 3.2.1 shows the integrands are well-defined (∆ N,+ ̸ = 0) and deal with their behavior at infinity. However, in [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF] the behavior of the integrands might be infinite for finite ρ. This is the case where L ∈ N , with 2k + l / ∈ 3N * [CKN22, Lemma B1]. The main difference between this two different behavior is because in [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF] they worked with the linear system including the term, ∂ x u which is necessary to study controllability issues. Now we are going to state the next regularity result for the solution (3.2.1) using the Laplace representation obtained in (3.2.8) and Proposition 3.2.1. Proposition 3.2.2. Let T > 0 and h ∈ H -1 3 (0, T ), then we have a unique solution u ∈ Y T of (3.2.1). Moreover, there exists C > 0 such that for all h ∈ H -1 3 (0, T ), ∥u∥ Y T ≤ C∥h∥

H -1 3 (0,T )
.

Proof. This proof uses Proposition 3.2.1 and follows closely [CZ17, Proposition 2.2] and [START_REF] Bona | A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain[END_REF], thus it is omitted here.

Note that Proposition 3.2.2 justifies the formal computations given in (3.2.8). Let W the operator that corresponds to the integral representation obtained in Proposition 3.2.2, i.e. given T > 0 and h ∈ H -1 3 (0, T ), the unique solution u of (3.2.1) is given by

u =    u 1 . . . u N    = W h ∈ Y T .
Our next step is to consider the linear problem including non-homogeneous initial data and source terms, as follows

                   ∂ t v n (t, x) + ∂ 3 x v n (t, x) = f n (t, x) ∀x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, v n (t, 0) = v n ′ (t, 0), ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x v n (t, 0) = h(t), t > 0, v n (t, ℓ n ) = 0, ∂ x v n (t, ℓ n ) = 0, t > 0, n = 1, . . . , N, v n (0, x) = v 0 n , x ∈ (0, ℓ n ).
(3.2.29)

We know from [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF] that in the case, h = 0 the solution of (3.2.29) can be written as

v(t, x) = W 0 (t)v 0 + t 0 W 0 (t -τ )f (τ )dτ,
for any v 0 ∈ L 2 (T ) and f ∈ L 1 (0, T ; L 2 (T )), where {W 0 (t)} t≥0 is the C 0 -semigroup in the space L 2 (T ) generated by the operator Av = -∂ 3 x v, with domain

D(A) = v ∈ H 3 (T ) ∩ H 2 e (T ), N n=1 d 2 v n dx 2 (0) = 0 .
Using semigroup theory it is possible to show that v ∈ C([0, T ]; L 2 (T )) and also using multipliers we can obtain the classical Kato smoothing result v ∈ L 2 (0, T ; H 1 e (T )), but it is difficult (if not impossible) to derive the Sharp Kato smoothing property established in Proposition 3.2.2 using energy methods. Now, we use the following result obtained in [START_REF] Bona | A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain[END_REF] for a single KdV equation posed on a bounded domain

     ∂ t ψ(t, x) + ∂ 3 x ψ(t, x) = f (t, x), x ∈ (0, L), t ≥ 0, ψ(t, 0) = ψ(t, L) = ∂ x ψ(t, L) = 0, t ≥ 0, ψ(0, x) = ψ 0 (x), x ∈ (0, L), (3.2.30) Proposition 3.2.3. (Lemma 3.3 [BSZ03]
) Let T > 0 and L > 0 be given. For any ψ 0 ∈ L 2 (0, L) and f ∈ L 1 (0, T ; L 2 (0, L)), the problem (3.2.30) admits a unique solution

ψ ∈ C([0, T ]; L 2 (0, L)) ∩ L 2 (0, T ; H 1 (0, L)), with ∂ κ x ψ ∈ L ∞ x (0, L; H 1-κ 3 (0, T )), κ = 0, 1, 2.
Moreover, there exists C > 0 depending only on T and L such that

∥ψ∥ B T + 2 κ=0 ∥∂ κ x ψ∥ L ∞ x (0,L;H 1-κ 3 (0,T )) ≤ C ∥ψ 0 ∥ L 2 (0,L) + ∥f ∥ L 1 (0,T ;H 1 (0,L)) .
Now for any v 0 n ∈ L 2 (0, ℓ n ) and f n ∈ L 1 (0, T ; L 2 (0, ℓ n )). Consider

ψ n = ψ n (t, •) = W n 1 (t)v 0 n (•) + t 0 W n 1 (t -τ )f n (τ, •)dτ
where W n 1 (t) is the C 0 -semigroup associated to the boundary-value problem (3.2.30) on (0, ℓ n ).

Let h(t) = N n=1
∂ 2 x ψ n (t, 0) ∈ H -1 3 (0, T ) by Proposition 3.2.3. Now take h ∈ H -1 3 (0, T ), then by Proposition 3.2.2 the function w = W (t)(h -h) is well-defined and is the solution of (3.2.1) with boundary data h -h. Finally, the solution v of (3.2.29) can be expressed as

v(t, •) = W 1 (t)v 0 (•) + t 0 W 1 (t -τ )f (τ, •)dτ + W (t)(h -h)(t).
The next result resumes these ideas.

Proposition 3.2.4. Let T > 0 be given, then, for any v 0 ∈ L 2 (T ), h ∈ H -1 3 (0, T ) and f ∈ L 1 (0, T ; L 2 (T )), then the problem (3.2.29) admits a unique solution v ∈ Y T . Moreover, there exists C > 0 depending only on T and ℓ 1 , . . . , ℓ n such that

∥v∥ Y T ≤ C ∥h∥ H -1 3 (0,T ) + ∥f ∥ L 1 (0,T ;L 2 (T )) + ∥v 0 ∥ L 2 (T ) .

Nonlinear Problem

With all the tools developed in the last sections we are ready to prove the global well-posedness result established on Theorem 3.1.3, the main ingredients of this proof are the regularity obtained in the linear cases, energy and multiplier estimates and a fixed-point argument. Let T > 0 and define

X T = L 2 (T ) × H -1 3 (0, T ).
Proof of Theorem 3.1.3: Let (u 0 , 0) ∈ X T and R, θ > 0 that will be chosen after. Consider the closed ball

B Y θ (0, R) := {v ∈ Y θ , ∥v∥ Y θ ≤ R}. Then B Y θ (0, R) is a complete metric space. Consider the map Φ : Y θ → Y θ defined by Φ(v) = u where u is the solution of                    (∂ t u n + ∂ 3 x u n )(t, x) = -(∂ x v n + v n ∂ x v n )(t, x), ∀x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, u n (t, 0) = u n ′ (t, 0), ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x u n (t, 0) = -αv 1 (t, 0) - N 3 (v 1 (t, 0)) 2 , t > 0, u n (t, ℓ n ) = ∂ x u n (t, ℓ n ) = 0, t > 0, n = 1, . . . , N, u n (0, x) = u 0 n , x ∈ (0, ℓ n ).
(3.2.31)

Clearly, u ∈ Y θ is solution of (KdV-N) if u is a fixed-point of Φ. Now we write two lemmas to deal with the source term and boundary conditions.

Lemma 3.2.2. (Lemma 3.1 [BSZ03]

)There exists a constant C > 0 such that for any T > 0 and u, v

∈ Y T T 0 ∥u(t, •)∂ x v(t, •)∥ L 2 (0,L) dt ≤ C(T 1/2 + T 1/3 )∥u∥ Y T ∥v∥ Y T .
where Y T is Y T for N = 1.

Lemma 3.2.3. (Lemma 3.2 [JZ12]

) There exist constants C, β > 0 such that for any T > 0 and g 1 ,

g 2 ∈ H 1 3 (0, T ), it holds, g 1 g 2 ∈ H -1 3 (0, T ) and ∥g 1 g 2 ∥ H -1 3 (0,T ) ≤ CT β ∥g 1 ∥ H 1 3 (0,T ) ∥g 2 ∥ H 1 3 (0,T )
.

From Proposition 3.2.4, Lemma 3.2.2 and Lemma 3.2.3 we get for all v ∈ Y θ

∥Φ(v)∥ Y θ ≤ C ∥u 0 ∥ L 2 (T ) + -αv 1 (t, 0) - N 3 (v 1 (t, 0)) 2 H -1 3 (0,θ) + θ 0 ∥∂ x v(t, •)∥ L 2 (T ) dt + θ 0 ∥v(t, •)∂ x v(t, •)∥ L 2 (T ) dt ≤ C ∥u 0 ∥ L 2 (T ) + θ β (∥v∥ Y θ + ∥v∥ 2 Y θ ) + (θ 1/2 + θ 1/3 )∥v∥ 2 Y θ + θ 1/2 ∥v∥ Y θ .
We consider Φ restricted to the closed ball

B Y θ (0, R) = {u ∈ Y θ : ∥u∥ Y θ } and choose θ, R > 0 such that                R = 3C∥u 0 ∥ L 2 (T ) , C(θ β + θ 1/2 ) ≤ 1 3 , C(θ β + θ 1/2 + θ 1/3 )R ≤ 1 6 .
(3.2.32)

Thus, for u ∈ B Y θ (0, R) , Φ maps B Y θ (0, R) into itself. Take now v and v ∈ B Y θ (0, R) then w = Φ(v) -Φ( v) solves the equation                                  ∂ t w n + ∂ 3 x w n = -(∂ x v n -∂ x v n ) - 1 2 ∂ x ((v n -v n )(v n + v n )), ∀x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, w n (t, 0) = w n ′ (t, 0), ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x w n (t, 0) = -α(v 1 (t, 0) -v 1 (t, 0)), - N 3 ((v 1 (t, 0) -v 1 (t, 0))(v 1 (t, 0) + v 1 (t, 0))), t > 0, w n (t, ℓ n ) = ∂ x w n (t, ℓ n ) = 0, t > 0, n = 1, . . . , N, w n (0, x) = 0, x ∈ (0, ℓ n ).
Now from Proposition 3.2.4 we obtain

∥Φ(v) -Φ( v)∥ Y θ ≤ C θ 1/2 ∥v -v∥ Y θ + 1 2 (θ 1/2 + θ 1/3 )∥v -v∥ Y θ ∥v + v∥ Y θ +θ β ∥v -v∥ Y θ + θ β ∥v -v∥ Y θ ∥v + v∥ Y θ . ≤ C (θ 1/2 + θ β )∥v -v∥ Y θ + 1 2 (θ 1/2 + θ 1/3 + 2θ β )∥v -v∥ Y θ 2R
then with (3.2.32)

∥Φ(v) -Φ( v)∥ Y θ ≤ 1 3 + 1 3 ∥v -v∥ Y θ = 2 3 ∥v -v∥ Y θ .
That means that the map Φ is a contraction on B Y θ and by the Banach fixed-point theorem has a unique fixed-point u ∈ Y θ . It gives the local in-time well-posedness for bounded initial data. Now take T > 0, we can check using integration by parts and the boundary conditions that every solution of (KdV-N) satisfies

d dt E(t) = -α - N 2 (u 1 (t, 0)) 2 - 1 2 N n=1 (∂ x u n (t, 0)) 2 ≤ 0. (3.2.33)
since N ≤ 2α. This dissipation law tells us that the energy is a non-increasing function of the time variable, that means

E(t) ≤ E(θ) ≤ E(0) = 1 2 ∥u 0 ∥ L 2 (T ) , ∀t > θ > 0. (3.2.34)
From here, taking the maximum for t ∈ [0, T ] we can see that

∥u∥ C([0,T ];L 2 (T )) ≤ ∥u 0 ∥ L 2 (T ) . (3.2.35)
Finally, following [PCP22a, CCM20] we multiply (KdV-N) by q n u n , integrate on (0, T ) × (0, ℓ n ) and sum on n = 1, . . . , N to obtain the following equality:

N n=1 ℓn 0 q n (t, x)(u n (t, x)) 2 dx T 0 - N n=1 T 0 ℓn 0 (∂ t q n + ∂ x q n + ∂ 3 x q n )(u n ) 2 dxdt + 3 N n=1 T 0 ℓn 0 (∂ x u n ) 2 ∂ x q n dxdt - 2 3 N n=1 T 0 ℓn 0 (u n ) 3 ∂ x q n dxdt = N n=1 T 0 (q n + ∂ 2 x q n )(u n ) 2 + 2q n u n ∂ 2 x u n -2∂ x q n u n ∂ x u n -q n (∂ x u n ) 2 + 2 3 q n (u n ) 3 (t, 0)dt.
(3.2.36)

• Taking q n = 1 in (3.2.36) we can derive:

N n=1 T 0 (∂ x u n (t, 0)) 2 dt ≤ ∥u 0 ∥ 2 L 2 (T ) .
(3.2.37)

• If we take q n = x(2ℓn-x) ℓ n , we can obtain:

2N L 2 ∥u 1 (•, 0)∥ 2 L 2 (0,T ) ≤ 2T ℓ 2 ∥u∥ 2 C([0,T ];L 2 (T )) -2 T 0 u 1 (t, 0) N n=1 ∂ x u n (t, 0) 2 ℓ n dt + ∥u 0 ∥ 2 L 2 (T ) + 4 3ℓ N n=1 T 0 ℓn 0 (u n (t, x)) 3 dxdt.
Using (3.2.35)-(3.2.37) and Young's inequality we derive

∥u 1 (t, 0)∥ 2 L 2 (0,T ) ≤ C(T + 1)∥u 0 ∥ 2 L 2 (T ) + C N n=1 T 0 ℓn 0 (u n (t, x)) 3 dxdt. (3.2.38) As H 1 (0, ℓ n ) embed compactly into C([0, ℓ n ]) we get N n=1 T 0 ℓn 0 (u n ) 3 dxdt ≤ CT 1/2 ∥u 0 ∥ 2 L 2 (T ) ∥u∥ L 2 (0,T ;H 1 e (T ))
and then with (3.2.38)

∥u 1 (t, 0)∥ 2 L 2 (0,T ) ≤ C(T + 1)∥u 0 ∥ 2 L 2 (T ) + CT 1/2 ∥u 0 ∥ 2 L 2 (T ) ∥u∥ L 2 (0,T ;H 1 e (T )) .
(3.2.39)

• Finally, considering q j = x and using (3.2.35)-(3.2.37)-(3.2.39)

∥∂ x u∥ 2 L 2 (0,T ;L 2 (T )) ≤ C(T + 1)∥u 0 ∥ 2 L 2 (T ) + CT 1/2 ∥u 0 ∥ 2 L 2 (T ) ∥u∥ L 2 (0,T ;H 1 e (T )
) . Using Young's inequality, we can find C > 0 which does not depend on T > 0 such that 

∥∂ x u∥ 2 L 2 (0,T ;L 2 (T )) ≤ C(T + 1) ∥u 0 ∥ 2 L 2 (T ) + ∥u 0 ∥ 4 L 2 (T ) . ( 3 

Stabilization

In this section, we are going to prove our stabilization results inspired by [START_REF] Marx | Global Stabilization of a Korteweg-de Vries Equation with saturating distributed control[END_REF]. The proofs are based on observability inequalities for (KdV-S) and (LKdV-S) respectively. These inequalities imply the exponential stability. First, note that, given T > 0, we can check that every solution of (KdV-S) and (LKdV-S) has a non-increasing energy,

d dt E(t) = -α - N 2 (u 1 (t, 0)) 2 - 1 2 N n=1 (∂ x u n (t, 0)) 2 - N n=1 ℓn 0 u n sat(a n u n )dx ≤ 0, (3.3.1)

Stability of KdV-S

We start by studying (KdV-S). First, note that multiplying (KdV-S) by u n and integrating on (0, s) × (0, ℓ n ) we get

N n=1 ℓn 0 (u n (s, x)) 2 dx + N n=1 s 0 ℓn 0 sat(a n u n )u n dxdt + (2α -N ) s 0 (u 1 (t, 0)) 2 dt + N n=1 s 0 (∂ x u n (t, 0)) 2 dt = ∥u 0 ∥ 2 L 2 (T ) .
Integrating again this expression with respect to time on (0, T ) we obtain

T ∥u 0 ∥ 2 L 2 (T ) ≤ T 0 ∥u(t, •)∥ 2 L 2 (T ) dt + (2α -N )T T 0 (u 1 (t, 0)) 2 dt + T N n=1 T 0 (∂ x u n (t, 0)) 2 dt + T N n=1 T 0 ℓn 0 sat(a n u n )u n dxdt.
(3.3.2) Our goal here is to prove the following observability inequality

∥u 0 ∥ 2 L 2 (T ) ≤ C (2α -N ) T 0 (u 1 (t, 0)) 2 dt + N n=1 T 0 (∂ x u n (t, 0)) 2 dt + N n=1 T 0 ℓn 0 sat(a n u n )u n dxdt .
(Obs-S)

Note that (Obs-S) is quite similar to (3.3.2). From (3.3.2) we can observe that to get (Obs-S) it is enough to prove the following inequality

T 0 ∥u(t, •)∥ 2 L 2 (T ) dt ≤ C (2α -N ) T 0 (u 1 (t, 0)) 2 dt + N n=1 T 0 (∂ x u n (t, 0)) 2 dt + N n=1 T 0 ℓn 0 sat(a n u n )u n dxdt .
Suppose that it is false and take ∥u 0 ∥ L 2 (T ) ≤ R, then we can find (u 0,j ) j∈N ⊂ L 2 (T ) such that ∥u 0,j ∥ L 2 (T ) ≤ R and

lim j→∞ ∥u j ∥ 2 L 2 (0,T ;L 2 (T )) (2α -N )∥u j 1 (•, 0)∥ 2 L 2 (0,T ) + ∥∂ x u j (•, 0)∥ 2 L 2 (0,T ) + N n=1 T 0 ℓn 0 sat(a n u j n )u j n dxdt = ∞.
where u j is the corresponding solution of (KdV-S) with initial data u 0,j . Note now that using (3.2.33), we deduce

∥u j (t, •)∥ L 2 (T ) ≤ ∥u 0,j ∥ L 2 (T ) ≤ R. (3.3.3) Take λ j = ∥u j ∥ L 2 (0,T ;L 2 (T )) , then λ j ≤ T 1/2 ∥u 0,j ∥ L 2 (T ) ≤ T 1/2 R. Thus (λ j ) j∈N ⊂ R is bounded. Take v j n = u j n λ j , then v j fulfills                            ∂ t v j n + ∂ x v j n + ∂ 3 x v j n + λ j v j n ∂ x v j n + sat(a n λ j v j n ) λ j (t, x) = 0, ∀x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, v j n (t, 0) = v j n ′ (t, 0), ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x v j n (t, 0) = -αv j 1 (t, 0) -λ j N 3 (v j 1 (t, 0)) 2 , t > 0, v j n (t, ℓ n ) = ∂ x v j n (t, ℓ n ) = 0, t > 0, n = 1, . . . , N, ∥v j ∥ L 2 (0,T ;L 2 (T )) = 1, (3.3.4)
and satisfies

(2α -N )∥v j 1 (t, 0)∥ 2 L 2 (0,T ) + ∥∂ x v j (t, 0)∥ 2 L 2 (0,T ) + N n=1 T 0 ℓn 0 1 λ j sat(a n λ j v j n )v j n dxdt → 0. (3.3.5)
First, note that multiplying (3.3.4) by v j n and integrating on (0, s) × (0, ℓ n ) we get

N n=1 ℓn 0 (v j n (s, x)) 2 dx + N n=1 s 0 ℓn 0 1 λ j sat(a n λ j v j n )v j n dxdt + (2α -N ) s 0 (v j 1 (t, 0)) 2 dt + N n=1 s 0 (∂ x v j n (t, 0)) 2 dt = ∥v j (0, •)∥ 2 L 2 (T ) , (3.3.6)
which gives us, using that sat is odd,

∥v j ∥ 2 C([0,T ];L 2 (T )) ≤ ∥v j (0, •)∥ 2 L 2 (T ) , ∥∂ x v j (t, 0)∥ 2 L 2 (0,T ) ≤ ∥v j (0, •)∥ 2 L 2 (T ) . (3.3.7)
Now integrating again (3.3.6) with respect to time on (0, T ) we obtain

T ∥v j (0, •)∥ 2 L 2 (T ) ≤ T 0 ∥v j (t, •)∥ 2 L 2 (T ) dt + (2α -N )T T 0 (v j 1 (t, 0)) 2 dt + T N n=1 T 0 (∂ x v j n (t, 0)) 2 dt + 2T N n=1 T 0 ℓn 0 1 λ j sat(a n λ j v j n )v j n dxdt.
(3.3.8) This last inequality implies that (v j (0, •)) j∈N is bounded in L 2 (T ). Again using that sat is odd and similar estimates as (3.2.37)-(3.2.39)-(3.2.40) we conclude

∥v j ∥ 2 L 2 (0,T ;H 1 e (T )) ≤ C ∥v j (0, •)∥ 2 L 2 (T ) + ∥v j (0, •)∥ 4 L 2 (T ) . (3.3.9) Thus (v j ) j∈N ⊂ L 2 (0, T ; H 1 e (T )
) is bounded and it holds

∥v j n ∂ x v j n ∥ L 2 (0,T ;L 1 (0,ℓn)) ≤ ∥v j ∥ C([0,T ],L 2 (T )) ∥v j ∥ L 2 (0,T ;H 1 e (T )) . which implies that (v j n ∂ x v j n ) j∈N is a subset of L 2 (0, T ; L 1 (0, ℓ n )). Using Lemma B.1.1 we have sat(a n λ j v j n ) λ j L 2 (0,T ;L 2 (0,ℓn)) ≤ 3∥a n ∥ L ∞ (0,ℓn) ℓ 1/2 n ∥v j ∥ L 2 (0,T ;H 1 e (T )) ,
and then sat(a n λ j v j n ) λ j j∈N is a subset of L 2 (0, T ; L 2 (0, ℓ n )). From this, we can see that

∂ t v j n = -∂ 3 x v j n + ∂ x v j n + λ j v j n ∂ x v j n + sat(a n λ j v j n ) λ j
is bounded in L 2 (0, T ; H -2 (0, ℓ n )). Hence, by Aubin-Lions Lemma ([SS97, Proposition 1.3, Chapter III]) we can deduce that (v j ) j∈N is relatively compact in L 2 (0, T ; L 2 (T )) and we can assume that v j converges strongly at v in L 2 (0, T ; L 2 (T )) with ∥v∥ L 2 (0,T ;L 2 (T )) = 1. Now we are going to study the case sat = sat 2 and sat = sat loc separately.

Case sat = sat 2 First, we consider the case sat = sat 2 . We know that by (3.3.3), ∥u j (t, •)∥ L 2 (T ) ≤ R and then by Lemma B.1.2 we have that

0 ≤ N n=1 T 0 ℓn 0 a n k n (R)(v j n ) 2 dxdt ≤ N n=1 T 0 ℓn 0 1 λ j sat 2 (a n λ j v j n )v j n ,
which gives us using (3.3.5), as j → ∞

(2α -N )∥v j 1 (t, 0)∥ 2 L 2 (0,T ) + ∥∂ x v j (t, 0)∥ 2 L 2 (0,T ) + N n=1 T 0 ℓn 0 a n k n (R)(v j n ) 2 dxdt → 0. (3.3.10)
Furthermore, passing to the limit in (3.3.10) we get

(2α -N )∥v 1 (t, 0)∥ 2 L 2 (0,T ) + ∥∂ x v(t, 0)∥ 2 L 2 (0,T ) + N n=1 T 0 ℓn 0 a n k n (R)(v n ) 2 dxdt ≤ lim inf (2α -N )∥v j 1 (t, 0)∥ 2 L 2 (0,T ) + ∥∂ x v j (t, 0)∥ 2 L 2 (0,T ) + N n=1 T 0 ℓn 0 a n k n (R)(v j n ) 2 dxdt = 0. Thus, v n (t, x) = 0 in (0, T ) × ω n and (2α -N )v 1 (t, 0) = ∂ x v n (t, 0) = 0 in (0, T ) for all n = 1, . . . , N .
Additionally, as (λ j ) j∈N is bounded and non-negative, we can extract a convergent sub-sequence such that λ j → λ ≥ 0, consequently v satisfies ∥v∥ L 2 (0,T ;L 2 (T )) = 1 and solves the following system

         (∂ t v n + ∂ x v n + ∂ 3 x v n + λv n ∂ x v n )(t, x) = 0, ∀x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, v n (t, ℓ n ) = ∂ x v n (t, ℓ n ) = ∂ x v n (t, 0) = 0, t ∈ (0, T ), ∀n = 1, . . . N, (2α -N )v n (t, 0) = 0, t ∈ (0, T ), v n (t, x) = 0, (t, x) ∈ (0, T ) × ω n .
(3.3.11)

1. If λ = 0 the system satisfied by v is linear, then we can use Holmgrem's Theorem as in [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF] to conclude that v = 0, that contradicts the fact that ∥v∥ L 2 (0,T ;L 2 (T )) = 1.

2. If λ > 0. In this case, we have to prove that v n ∈ L 2 (0, T ;

H 3 (0, ℓ n )) in order to apply [SS87, Theorem 4.2]. Consider w n = ∂ t v n then                (∂ t w n + ∂ x w n + ∂ 3 x w n + λw n ∂ x v n + λv n ∂ x w n )(t, x) = 0, x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, w n (t, ℓ n ) = ∂ x w n (t, ℓ n ) = ∂ x w n (t, 0) = 0, ∀n = 1, . . . N, (2α -N )w n (t, 0) = 0, t ∈ (0, T ), ∀j = 1, . . . N, w n (t, x) = 0, (t, x) ∈ (0, T ) × ω n , w n (0, x) = w 0 n (x) x ∈ (0, ℓ n ), j = 1, . . . , N,
where

w 0 n (x) = -v ′ n (0, x) -v ′′′ n (0, x) -λv n (0, x)v ′ n (0, x) ∈ H -3 (0, ℓ n ). With [Cer14, Lemma A.2] we can get that w n (0, x) ∈ L 2 (0, ℓ n ) and w n ∈ C([0, T ], L 2 (0, ℓ n )) ∩ L 2 (0, T ; H 1 (0, ℓ n )). Thus, ∂ 3 x v n = -(∂ t v n -∂ x v n -λv n ∂ x v n ) ∈ L 2 (0, T ; L 2 (0, ℓ n )) that implies v n ∈ L 2 (0, T ; H 3 (0, ℓ n ))
. Applying [SS87, Theorem 4.2] we obtain that v n = 0 for all n = 1, . . . , N that contradicts the fact that ∥v∥ L 2 (0,T ;L 2 (T )) = 1.

Case sat = sat loc

Let us consider the case where sat = sat loc , by the injection of H 1 (0, ℓ n ) in C([0, ℓ n ]), we can derive using similar estimate as (3.3.9)

T 0 (u j n (t, x)) 2 dt ≤ ℓ n ∥u j ∥ 2 L 2 (0,T ;H 1 e (T )) ≤ ℓ n β, (3.3.12)
for β = (R 2 + R 4 ). Now, inspired by [START_REF] Marx | Global Stabilization of a Korteweg-de Vries Equation with saturating distributed control[END_REF], take Ω n,i ⊂ [0, T ] defined as follows:

Ω n,i = t ∈ [0, T ], sup x∈[0,ℓn] |u n (t, x)| > i . (3.3.13)
Then denote Ω c n,i the complement of Ω n,i and observe that

T 0 sup x∈[0,ℓn] (u j n (t, x)) 2 dt ≥ Ωn,i sup x∈[0,ℓn] (u j n (t, x)) 2 dt ≥ i 2 ν(Ω n,i ),
for ν(Ω n,i ) the Lebesgue measure of Ω n,i . Thus, using (3.3.12) we obtain ν(Ω n,i ) ≤

ℓ n β i 2 . Hence, max T - ℓ n β i 2 , 0 ≤ ν(Ω c n,i ) ≤ T. (3.3.14) Now using Lemma B.1.2 N n=1 T 0 ℓn 0 1 λ j sat loc (a n λ j v j n )v j n dxdt = N n=1 Ωn,i ℓn 0 1 λ j sat loc (a n λ j v j n )v j n dxdt + N n=1 Ω c n,i ℓn 0 1 λ j sat loc (a n λ j v j n )v j n ≥ N n=1 Ω c n,i ℓn 0 1 λ j sat loc (a n λ j v j n )v j n ≥ N n=1 Ω c n,i ℓn 0 a n k n (R)(v j n ) 2 dxdt,
which gives us, using (3.3.5),

(2α -N )∥v j 1 (t, 0)∥ 2 L 2 (0,T ) + ∥∂ x v j (t, 0)∥ 2 L 2 (0,T ) + N n=1 Ω c n,i ℓn 0 a n k n (R)(v j n ) 2 dxdt → 0. (3.3.15)
Thus, the limit function v satisfies (2α -N )v 1 (t, 0) = ∂ x v n (t, 0) = 0 in (0, T ) for all n = 1, . . . , N and v n (t, x) = 0 in ∪ i∈N Ω c n,i × ω n . Using (3.3.14), we know that ν(∪ i∈N Ω c n,i ) = T , thus we get that, for almost every t ∈ [0, T ] v n (t, x) = 0 for x ∈ ω n . Lastly v is a solution to (3.3.11) and we conclude as in the case sat = sat 2 . Finally, we obtain that (Obs-S) is valid for a solution (KdV-S) with ∥u∥ L 2 (T ) ≤ R and Theorem 3.1.4 follows as in Section 1.2.3.

Stability LKdV-S

Now we study the stabilization of (LKdV-S). For doing that, we follow the approach of Section 3.3.1, and we prove the following observability inequality

∥u 0 ∥ 2 L 2 (T ) ≤ C   (2α -N ) T 0 (u 1 (t, 0)) 2 dt + N j=1 T 0 (∂ x u n (t, 0)) 2 dt + j∈I * c T 0 ℓn 0 sat(a n u n )u n dxdt   , (Obs-S2)
for the unique solution u of (LKdV-S). Suppose that it is false, then there exists a sequence (u 0,j ) j∈N ⊂ L 2 (T ) such that ∥u 0,j ∥ L 2 (T ) = 1 and the corresponding solution of (LKdV-S) satisfies,

(2α -N )∥u j 1 (•, 0)∥ 2 L 2 (0,T ) + ∥∂ x u j (•, 0)∥ 2 L 2 (0,T ) + n∈I * c T 0 ℓn 0 sat(a n u j n )u j n dxdt → 0.
as j → ∞. Using the same arguments as in Theorem 3.1.4 we can find a non-trivial solution v ∈ B T of (LKdV-S) such that

         (2α -N ) ∥v 1 (•, 0)∥ L 2 (0,T ) = 0, ∥∂ x v(•, 0)∥ L 2 (0,T ) = 0, v n = 0, in (0, T ) × ω n , n ∈ I * c , ∥v∥ L 2 (0,T ;L 2 (T )) = 1.
We distinguish three cases

• For n ∈ I * c , v n = 0 in (0, T ) × ω n . Then, ∂ t v n + ∂ x v n + ∂ 3
x v n = 0 and thanks to Holmgrem's Theorem, v n = 0 for all n ∈ I * c . Note that this implies that v n (t, 0) = 0 for all n ∈ I * c and by the continuity condition v n (t, 0) = 0 for all n = 1, . . . , N .

• For n ∈ {1, . . . , N }\I c , v n is solution to

                   (∂ t v n + ∂ x v n + ∂ 3 x v n )(t, x) = 0, x ∈ (0, ℓ n ), t ∈ (0, T ), n = 1, . . . , N, v n (t, 0) = 0, t ∈ (0, T ), ∀n = 1, . . . N, N n=1 ∂ 2 x v n (t, 0) = 0, t ∈ (0, T ), v n (t, ℓ n ) = ∂ x v n (t, ℓ n ) = 0, t ∈ (0, T ), n = 1, . . . , N, v n (0, x) = v 0 n , x ∈ (0, ℓ n ).
Then thanks [AC18, Lemma 3.2], v n ≡ 0.

• For n ∈ I c \I * c , then v n satisfies          (∂ t v n + ∂ x v n + ∂ 3 x v n )(t, x) = 0, t ∈ (0, T ), ∀x ∈ (0, ℓ n ), v n (t, 0) = ∂ x v n (t, 0) = ∂ 2 x v n (t, 0) = 0, t ∈ (0, T ) v n (t, ℓ n ) = ∂ x v n (t, ℓ n ) = 0, t ∈ (0, T ) v n (0, x) = v 0 n x ∈ (0, ℓ n ).
Due to the three null conditions at the central node, we obtain that v n = 0.

Thus v ≡ 0 and we get a contradiction, with ∥v∥ L 2 (0,T ;L 2 (T )) = 1 which ends the proof of (Obs-S2). As we have the observability inequality (Obs-S2), to derive the exponential decay of the energy of the solution of (LKdV-S) given in Theorem 3.1.5, it is enough to follow the proof of Theorem 3.1.4.

[MCPA17] and [START_REF] Parada | Global well-posedness of the KdV equation on a star-shaped network and stabilization by saturated controllers[END_REF] to prove the stability of the KdV equation with saturated actuator. To be more specific, let us define the following saturation map:

sat(s) = s, if |s| ≤ M, M sgn(s), if |s| ≥ M, (4.1.1)
where M > 0 is the saturation level and sgn is the sign function. In this chapter, we are going to consider the following equations

         (∂ t u + ∂ x u + ∂ 3 x u + u∂ x u)(t, x) = 0, t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, L) = sat(α∂ x u(t, 0)), t > 0, u(0, x) = u 0 (x),
x ∈ (0, L).

(KdVs)

and

         (∂ t u + ∂ x u + ∂ 3 x u)(t, x) = 0, t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, L) = sat(α∂ x u(t, 0)), t > 0, u(0, x) = u 0 (x),
x ∈ (0, L).

(KdVLs)

Note that both (KdVs) and (KdVLs) are nonlinear equations due to the action of the saturation. Keep in mind that (KdVLs) is just (KdVs) but without the nonlinear internal term u∂ x u. The next theorem is the main result of this chapter, Theorem 4.1.1. Let L / ∈ N and |α| < 1, then there exist C > 0 and µ > 0 such that:

• For all u 0 ∈ L 2 (0, L), the unique mild solution u ∈ C([0, ∞), L 2 (0, L)) ∩ L 2 ((0, ∞), H 1 (0, L)) of (KdVLs) satisfies ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) .

• For all u 0 ∈ L 2 (0, L), satisfying ∥u 0 ∥ L 2 (0,L) ≤ ϵ for some ϵ > 0, the unique mild solu-

tion u ∈ C([0, ∞), L 2 (0, L)) ∩ L 2 ((0, ∞), H 1 (0, L)) of (KdVs) satisfies ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) .
The chapter is organized as follows. Section 3.2 is devoted to prove the well-posedness results associated to (KdVLs) and (KdVs). In Section 4.3 we study the stability analysis of (KdVLs) and (KdVs) using an observability inequality. In Section 4.4 we show the asymptotic stability of (KdVLs) by using LaSalle's invariance principle. From now on, C > 0 will be a generic positive constant.

Well-posedness results

The goal of this section is to prove the appropriate well-posedness results for (KdVLs) and (KdVs).

The proof for (KdVLs) is based on semigroup theory. For (KdVs) we use the result for (KdVLs), then we will add an internal source term in order to take in account the nonlinear term u∂ x u, and derive some multiplier estimates to obtain the needed regularity. Consider the operator A : D(A) → L 2 (0, L) defined by

Aw := -w ′ -w ′′′ (4.2.1)
where

D(A) = {w ∈ H 3 (0, L) ∩ H 1 0 (0, L) : w ′ (L) = sat(αw ′ (0))}.
Well-posedness demands to handle the fact that the operator A is nonlinear. We follow the approach presented in [START_REF] Marx | Stabilization of a linear Korteweg-de Vries equation with a saturated internal control[END_REF][START_REF] Prieur | Wave equation with cone-bounded control laws[END_REF], i.e. we show that A is a closed, dissipative operator and that for some λ > 0, D(A) ⊂ R(I -λA), where R denotes the range of the operator.

Note that by the Rellich-Kondrachov theorem [Bre10, Theorem 9.19, Page 285] we know that the inclusion H 1 0 (0, L) → L 2 (0, L) is compact and then K C is a bounded set in H 1 0 (0, L) and relatively compact in L 2 (0, L). Moreover, as K C is closed in L 2 (0, L) we conclude that K C is compact in L 2 (0, L). Then in order to apply Schauder fixed-point theorem [START_REF] Coron | Control and Nonlinearity[END_REF]Theorem B.19], we need to find C > 0 such that T (H 2 (0, L)) ⊂ K C . Lemma 4.2.1. There exists C > 0 such that T (H 2 (0, L)) ⊂ K C .

Proof of Lemma 4.2.1:

Multiplying the first line of (4.2.5) by z and integrating on (0, L) we get,

λ L 0 z 2 dx + L 0 z ′ zdx + L 0 z ′′′ zdx = λ L 0 wzdx. (4.2.7)
integrating by parts we yield

λ L 0 z 2 dx + 1 2 z ′ (0) 2 = 1 2 sat(αu ′ (0)) 2 + λ L 0 wzdx.
Then, using Cauchy-Schwarz inequality and the definition of the saturation (4.1.1), we get

λ 2 ∥z∥ 2 L 2 (0,L) ≤ M 2 2 + λ 2 ∥w∥ 2 L 2 (0,L) . (4.2.8)
Similarly, multiplying the first line of (4.2.5) by xz and integrating on (0, L) we get

λ L 0 xz 2 dx + L 0 xz ′ zdx + L 0 xz ′′′ zdx = λ L 0 xwzdx. (4.2.9)
Performing integration by parts and by the second line of (4.2.5) we obtain,

λ L 0 xz 2 dx + 3 2 L 0 (z ′ ) 2 dx = 1 2 L 0 z 2 dx + L 2 sat(αu ′ (0)) 2 + λ L 0 xwzdx, which yields 3 2 ∥z ′ ∥ 2 L 2 (0,L) ≤ L λ 2 + 1 2 ∥z∥ 2 L 2 (0,L) + LM 2 2 + L λ 2 ∥w∥ 2 L 2 (0,L) , (4.2.10)
and hence using (4.2.8) we deduce, ∥z ′ ∥ 2 L 2 (0,L) ≤ C, where C > 0 only depends on the level of saturation M , L, λ and u which finishes the proof of Lemma 4.2.1. □ Then, applying Schauder fixed-point theorem to T , we find the solution v ∈ H 2 (0, L) of (4.2.4). Moreover, as w ∈ D(A), then v ∈ H 3 (0, L) and hence by the boundary conditions v ∈ D(A). We conclude that for all λ > 0, D(A) ⊂ R(A -λI). Using [Miy92, Theorem 4.2, Page 77] A is the generator of a semigroup of contractions S(t), t > 0 and by [Miy92, Theorem 4.2, Page 81] (or [Bar76, Theorem 1.2, Page 102]) for all T > 0, u 0 ∈ D(A), u = S(t)u 0 ∈ C([0, T ]; D(A)) ∩ C 1 ((0, T ); L 2 (0, L)) is a classical solution to (KdVLs). Moreover, by [Miy92, Theorem 4.10, Page 87] this solution is unique. Also, we can deduce that for all T > 0, for all u 0 ∈ L 2 (0, L), there exists a unique mild solution of (KdVLs) u ∈ C([0, T ]; L 2 (0, L)) and then, the proof of Proposition 4.2.1 is finished.

Well-posedness of equation (KdVLs) with a source term

Now, we deal with the well-posedness of the system (KdVLs) with an extra source term f

         ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) = f (t, x), t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, L) = sat(α∂ x u(t, 0)), t > 0, u(0, x) = u 0 (x),
x ∈ (0, L). 

Proposition 4.2.2. Let u 0 ∈ L 2 (0, L), |α| < 1, f ∈ L 1 ((0, ∞), L 2 (0, L)), then there exists a unique mild solution u ∈ C([0, ∞), L 2 (0, L)) of (4.2.11). Moreover, if u 0 ∈ D(A) and f ∈ W 1,1 ((0, ∞), L 2 (0, L)) this solution is classical and u ∈ C([0, ∞), L 2 (0, L)), u(t) ∈ D(A), for all t ≥ 0 and u ∈ C 1 ((0, ∞), L 2 (0, L)).
Our idea now is to show that, indeed, the unique mild solution of (4.2.11) has the extra-regularity u ∈ B T .

Proposition 4.2.3. Let u 0 ∈ L 2 (0, L), |α| < 1, f ∈ L 1 ((0, T ), L 2 (0, L)) and T > 0, consider u ∈ C([0, T ], L 2 (0, L))
, the restriction of the unique mild solution of (4.2.11) on [0, T ], then u ∈ B T . Moreover, the following estimate holds,

∥u∥ B T ≤ C(1 + √ T ) ∥u 0 ∥ L 2 (0,L) + ∥f ∥ L 1 ((0,T ),L 2 (0,L)) . (4.2.12)
Proof. Suppose u is a classical solution of (4.2.11), let T > 0 and 0 ≤ s ≤ T . Several computations are quite similar to those performed in the proof of Lemma 4.2.1 and for that reason are omitted here. Multiplying the first line of (4.2.11) by u and integrating on (0, L) × (0, s), we get

s 0 L 0 ∂ t uudxdt + s 0 L 0 ∂ x uudxdt + s 0 L 0 ∂ 3 x uudxdt = s 0 L 0 f udxdt. (4.2.13)
Note that, by integration by parts, this expression becomes

1 2 L 0 (u(s, x)) 2 dx + 1 2 s 0 (∂ x u(t, 0)) 2 -(sat(α∂ x u(t, 0))) 2 dt = 1 2 L 0 (u 0 ) 2 dx + s 0 L 0 f udxdt. (4.2.14) First, note that for all s ∈ [0, T ] s 0 L 0 f udxdt ≤ T 0 ∥u(t, •)∥ L 2 (0,L) ∥f (t, •)∥ L 2 (0,L) dt ≤ ∥u∥ C([0,T ],L 2 (0,L)) ∥f ∥ L 1 ((0,T ),L 2 (0,L)) .
(4.2.15) Now, using (4.1.1), (4.2.14) and (4.2.15) we get for all s ∈ [0, T ],

1 2 L 0 (u(s, x)) 2 dx + C α s 0 (∂ x u(t, 0)) 2 dt ≤ 1 2 L 0 (u 0 ) 2 dx + ∥u∥ C([0,T ],L 2 (0,L)) ∥f ∥ L 1 ((0,T ),L 2 (0,L)) .
(4.2.16)

Taking the supremum for s ∈ [0, T ], and with Young's inequality, we get

∥u∥ 2 C([0,T ],L 2 (0,L)) ≤ C ∥u 0 ∥ 2 L 2 (0,L) + ∥f ∥ 2 L 1 ((0,T ),L 2 (0,L)) .
(4.2.17) Moreover, from (4.2.16) taking s = T , and using (4.2.17) we can derive the following hidden regularity

T 0 (∂ x u(t, 0)) 2 dt ≤ C ∥u 0 ∥ 2 L 2 (0,L) + ∥f ∥ 2 L 1 ((0,T ),L 2 (0,L)) . (4.2.18)
Now, we multiply the first line of (4.2.11) by xu and integrate on (0, L) × (0, T ) and we get

T 0 L 0 x∂ t uudxdt + T 0 L 0 x∂ x uudxdt + T 0 L 0 x∂ 3 x uudxdt = T 0 L 0 xf udxdt.
Thus, integrating by parts we obtain

1 2 L 0 x(u(T, x)) 2 dx + 3 2 T 0 L 0 (∂ x u) 2 dxdt = 1 2 L 0 x(u 0 ) 2 dx + 1 2 T 0 L 0 (u) 2 dxdt + L 2 T 0 (sat(α∂ x u(t, 0))) 2 dt + T 0 L 0 xf udxdt. (4.2.19) Note that T 0 L 0 (u) 2 dxdt ≤ T 0 sup t∈[0,T ] L 0 (u(t, •)) 2 dx dt = T ∥u∥ 2 C([0,T ],L 2 (0,L)) .
(4.2.20) Moreover, by (4.1.1) and (4.2.18)

T 0 (sat(α∂ x u(t, 0))) 2 dt ≤ C ∥u 0 ∥ 2 L 2 (0,L) + ∥f ∥ 2 L 1 ((0,T ),L 2 (0,L)) ,
and by (4.2.15) and (4.2.17)

T 0 L 0 xf udxdt ≤ C ∥u 0 ∥ 2 L 2 (0,L) + ∥f ∥ 2 L 1 ((0,T ),L 2 (0,L)) .
Therefore, joining these estimates, we deduce from (4.2.19)

∥∂ x u∥ 2 L 2 ((0,T ),L 2 (0,L)) ≤ C(1 + T ) ∥u 0 ∥ 2 L 2 (0,L) + ∥f ∥ 2 L 1 ((0,T ),L 2 (0,L)) , (4.2.21) 
and thus u ∈ L 2 ((0, T ), H 1 (0, L)). Mixing (4.2.17) and (4.2.21) we deduce (4.2.12). The result can be extended by density to mild solutions.

Well-posedness of the nonlinear system

Now, we are ready to give the proof of the well-posedness result for (KdVs). For that the next proposition we use the Proposition 1.2.1. The main result of this subsection is the following one.

Proposition 4.2.4. Let u 0 ∈ L 2 (0, L) and |α| < 1, then there exists a unique mild solution u ∈

C([0, ∞), L 2 (0, L)) ∩ L 2 ((0, ∞), H 1 (0, L)) of (KdVs).
Proof. Let u 0 ∈ D(A) and R, θ > 0 to be chosen later. Consider the closed ball

B B θ (0, R) := {z ∈ B θ , ∥z∥ B θ ≤ R}. Then, B B θ (0, R) is a complete metric space. Let the map Φ : B θ → B θ defined for z ∈ B θ by Φ(z) = u, where u is the solution of          (∂ t u + ∂ x u + ∂ 3 x u)(t, x) = -z(t, x)∂ x z(t, x), t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, L) = sat(α∂ x u(t, 0)), t > 0, u(0, x) = u 0 (x),
x ∈ (0, L).

Note first that u is well-defined, since by Proposition 1.2.1, z∂ x z ∈ L 1 ((0, θ), L 2 (0, L)). Clearly, u ∈ B θ is solution of (KdVs) if u is a fixed-point of Φ. From Proposition 4.2.3 and Proposition 1.2.1, we get for all z ∈ B θ

∥Φ(z)∥ B θ = ∥u∥ B θ ≤ C(1 + θ 1/2 ) ∥u 0 ∥ L 2 (0,L) + ∥z∂ x z∥ L 1 ((0,T ),L 2 (0,L)) ≤ C 1 (1 + θ 1/2 )∥u 0 ∥ L 2 (0,L) + C 2 (1 + θ 1/2 )θ 1/4 ∥z∥ 2 B θ , for some C 1 , C 2 > 0. Then taking R = 3C 1 ∥u 0 ∥ L 2 (0,L) and θ > 0 small enough such that C 2 (1 + θ 1/2 )θ 1/4 R < 1 3 and (1 + θ 1/2 ) < 2, we have that ∥Φ(z)∥ B θ ≤ R. Thus, Φ maps the ball B B θ (0, R) into itself. Now, take z 1 , z 2 ∈ B B θ (0, R), u 1 = Φ(z 1 ), u 2 = Φ(z 2 ), then w = Φ(z 1 ) -Φ(z 2 ) satisfies          ∂ t w(t, x) + ∂ x w(t, x) + ∂ 3 x w(t, x) = f (t, x), t > 0, x ∈ (0, L), w(t, 0) = w(t, L) = 0, t > 0, ∂ x w(t, L) = h(t), t > 0, w(0, x) = 0,
x ∈ (0, L).

(4.2.22) 

where f = -z 1 ∂ x z 1 + z 2 ∂ x z 2 and h = sat(α∂ x u 1 (t, 0)) -sat(α∂ x u 2 (t, 0)). First,
∥w∥ B θ ≤ C ∥h∥ L 2 (0,θ) + ∥f ∥ L 1 ((0,θ),L 2 (0,L)) . (4.2.23)
We can not use directly the estimates obtained in Section 4.2.2, because h ̸ = sat(α∂ x w(t, 0)), but similar estimates can be obtained. If we multiply the first line of (4.2.22) by w and integrate on (0, L) × (0, θ), we get

θ 0 L 0 ∂ t wwdxdt + θ 0 L 0 ∂ x wwdxdt + θ 0 L 0 ∂ 3 x wwdxdt = θ 0 L 0 f wdxdt. (4.2.24) 
Similar computations as in (4.2.14) show that

1 2 L 0 (w(θ, x)) 2 dx + 1 2 θ 0 (∂ x w(t, 0)) 2 dt - 1 2 θ 0 (h(t)) 2 dt = θ 0 L 0 f wdxdt. (4.2.

25)

Since h = sat(α∂ x u 1 (t, 0)) -sat(α∂ x u 2 (t, 0)), using (4.2.2) we derive,

∥h∥ L 2 (0,θ) = ∥sat(α∂ x u 1 (t, 0)) -sat(α∂ x u 2 (t, 0))∥ L 2 (0,θ) ≤ ∥α∂ x u 1 (•, 0) -α∂ x u 2 (•, 0)∥ L 2 (0,θ) = |α|∥∂ x w(•, 0)∥ L 2 (0,θ) . (4.2.26)
Thus, plugging (4.2.26) in (4.2.25), we obtain

1 2 L 0 (w(θ, x)) 2 dx + C α θ 0 (∂ x w(t, 0)) 2 dt ≤ θ 0 L 0 f wdxdt, (4.2.27) 
which implies using Young's inequality 

∥w∥ C([0,θ],L 2 (0,L)) ≤ C∥f ∥ L 1 ((0,θ),L 2 (0,L)) . ( 4 
(∂ x w(t, 0)) 2 dt ≤ C∥f ∥ 2 L 1 ((0,θ),L 2 (0,L)) ,
and then (4.2.26) brings ∥h∥ L 2 (0,θ) ≤ C∥f ∥ L 1 ((0,θ),L 2 (0,L)) , which transforms (4.2.23) into

∥w∥ B θ ≤ C∥f ∥ L 1 ((0,θ),L 2 (0,L)) . (4.2.29)
Finally, by (4.2.29) and Proposition 1.2.1 we conclude:

∥Φ(z 1 ) -Φ(z 2 )∥ B θ = ∥w∥ B θ ≤ C 3 θ 1/4 R∥z 1 -z 2 ∥ B θ ,
for some C 3 > 0. Then taking θ > 0, small enough such that C 3 θ 1/4 R < 1, we get that Φ is a contraction, and we conclude by using the Banach fixed-point theorem [Bre10, Theorem 5.7] and density argument to extend the result for all u 0 ∈ L 2 (0, L). Thus, we have proved the following local in-time well-posedness result:

Proposition 4.2.5. Let u 0 ∈ L 2 (0, L), |α| < 1 and T > 0. Then there exists 0 < T * ≤ T and a unique mild solution u ∈ B T * of (KdVs) on the time interval [0, T * ]. Moreover, there exists

C > 0 such that ∥u∥ B T * ≤ C∥u 0 ∥ L 2 (0,L) .
To conclude the proof of the global well-posedness result stated on Proposition 4.2.4, we need some a priori estimates, based on a multiplier approach, similar to those presented in Section 4.2.2. Let T > 0 and u a classical solution of (KdVs). Multiplying the first line of (KdVs) by u, integrating on (0, L) × (0, s) we get

s 0 L 0 ∂ t uudxdt + s 0 L 0 ∂ x uudxdt + s 0 L 0 ∂ 3 x uudxdt + s 0 L 0 ∂ x uu 2 dxdt = 0. (4.2.30)
We derive using integration by parts

1 2 L 0 (u(s, x)) 2 dx + 1 2 s 0 (∂ x u(t, 0)) 2 -(sat(α∂ x u(t, 0))) 2 = 1 2 L 0 (u 0 ) 2 dx. (4.2.31) 
Using the definition of the saturation (4.1.1) we derive

1 2 L 0 (u(s, x)) 2 dx + C α s 0 (∂ x u(t, 0)) 2 dt ≤ 1 2 L 0 (u 0 ) 2 dx. (4.2.32)
Then, taking the supremum for s ∈ [0, T ] in (4.2.32),

∥u∥ 2 C([0,T ],L 2 (0,L)) ≤ ∥u 0 ∥ 2 L 2 (0,L) . (4.2.33)
On the other hand, taking s = T in (4.2.32),

T 0 (∂ x u(t, 0)) 2 dt ≤ 1 2 C -1 α ∥u 0 ∥ 2 L 2 (0,L) . (4.2.34)
Now, we multiply the first line of (KdVs) by xu and integrate on (0, L) × (0, T ), obtaining

T 0 L 0 x∂ t uudxdt + T 0 L 0 x∂ x uudxdt + T 0 L 0 x∂ 3 x uudxdt + T 0 L 0 xu 2 ∂ x udxdt = 0. (4.2.35)
Hence, we infer after integration by parts

1 2 L 0 x(u(T, x)) 2 dx + 3 2 T 0 L 0 (∂ x u) 2 dxdt = 1 2 L 0 x(u 0 ) 2 dx + 1 2 T 0 L 0 u 2 dxdt + L 2 T 0 (sat(α∂ x u(t, 0))) 2 dt + 1 3 T 0 L 0 u 3 dxdt. (4.2.36)
For the term involving

L 0 u 3 (t, x)dx, by the injection of H 1 0 (0, L) into L ∞ (0, L) we know that ∥u∥ L ∞ (0,L) ≤ C∥∂ x u∥ L 2 (0,L) , for some C > 0 then T 0 L 0 (u(t, x)) 3 dxdt ≤ T 0 ∥u∥ L ∞ (0,L) ∥u∥ 2 L 2 (0,L) dt ≤ C T 0 ∥∂ x u∥ L 2 (0,L) ∥u∥ 2 L 2 (0,L) dt,
which implies using (4.2.33) 

T 0 L 0 (u(t, x)) 3 dxdt ≤ C √ T ∥u 0 ∥ 2 L 2 (0,L) ∥∂ x u∥ L 2 ((0,T ),L 2 (0,L)) . ( 4 
∥∂ x u∥ 2 L 2 ((0,T ),L 2 (0,L)) ≤ C(1 + T )∥u 0 ∥ 2 L 2 (0,L) + C √ T ∥u 0 ∥ 2 L 2 (0,L) ∥∂ x u∥ L 2 ((0,T ),L 2 (0,L)) .
Using Young's inequality 

∥∂ x u∥ 2 L 2 ((0,T ),L 2 (0,L)) ≤ C(1 + T )∥u 0 ∥ 2 L 2 (0,L) + CT ∥u 0 ∥ 4 L 2 (0,L) . ( 4 

Exponential stability

In this section, we are going to prove the main result of this chapter, namely Theorem 4.1.1. For all t > 0, we define the energy of a solution of (KdVs) (or (KdVLs)) by

E(t) = 1 2 L 0 (u(t, x)) 2 dx. (4.3.1)
Then, for a classical solution of (KdVs) (or (KdVLs)) performing integration by parts, we get using |α| < 1

Ė(t) = 1 2 (sat(α∂ x u(t, 0))) 2 - 1 2 (∂ x u(t, 0)) 2 ≤ 0. (4.3.2)
Thus, formally, the energy is a non-increasing function of time. Now, we will prove that indeed, the energy decays exponentially to 0 when L / ∈ N . Our approach will be based on an observability inequality for the system (KdVLs).

Proposition 4.3.1. Let L / ∈ N , |α| < 1 and u 0 ∈ L 2 (0, L).
For any solution y of (KdVLs), the following inequality holds:

L 0 (u 0 ) 2 dx ≤ C obs T 0 (∂ x u(t, 0)) 2 dt, (4.3.3) 
for some C obs > 0, that does not depend on u 0 .

Proof. In order to prove the observability inequality, we follow [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] and use a contradiction argument. Let us suppose that (4.3.3) is false, then there exists

(u n 0 ) n∈N ⊂ L 2 (0, L) such that L 0 (u n 0 ) 2 dx = 1, and T 0 (∂ x u n (t, 0)) 2 dt → 0
when n → ∞ and where u n = S(t)u n 0 . Now, using (4.2.21) with f = 0 we get that (u n ) n∈N is bounded in L 2 ((0, T ), H 1 (0, L)). Then as u n t = -u n x -u n xxx , we can see that (u n t ) n∈N is bounded in L 2 ((0, T ), H -2 (0, L)), thus by Aubin-Lions lemma (u n ) n∈N is relatively compact in L 2 ((0, T ), L 2 (0, L)), therefore we can assume that u n → u in L 2 ((0, T ), L 2 (0, L)). Now, multiplying the first line of (KdVLs) by (T -t)u, integrating on (0, L) × (0, T ), we get

T 0 L 0 (T -t)∂ t uudxdt + T 0 L 0 (T -t)∂ 3 x uudxdt + T 0 L 0 (T -t)∂ x uudxdt + T 0 L 0 (T -t)u 2 ∂ x udxdt = 0. (4.3.4)
After integration by parts

T 2 L 0 (u 0 ) 2 dx + 1 2 T 0 (T -t)(sat(α∂ x u(t, 0))) 2 dt = 1 2 T 0 L 0 u 2 dxdt + 1 2 T 0 (T -t)(∂ x u(t, 0)) 2 dt. Therefore, L 0 (u 0 ) 2 dx ≤ 1 T ∥u∥ 2 L 2 (0,T,L 2 (0,L)) + T 0 (∂ x u(t, 0)) 2 dt. (4.3.5)
Hence, using (4.3.5) we derive that

(u n 0 ) n∈N is a Cauchy sequence in L 2 (0, L) . Let u 0 = lim n→∞ u n 0 , then L 0 (u 0 ) 2 dx = 1, and T 0 (∂ x u(t, 0)) 2 dt = 0.
Thus, as sat(0) = 0, we conclude that u solves the following linear equation:

     ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) = 0, t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, 0) = ∂ x u(t, L) = 0, t > 0, (4.3.6) 
But by [Ros97, Lemma 3.4] if L / ∈ N , there is no function satisfying this system and ∥u 0 ∥ L 2 (0,L) = 1, which gives us the contradiction and finishes the proof of Proposition 4.3.1. Now, Theorem 4.1.1 follows from Section 1.2.3. Since (KdVs) is also invariant by translation in time, to prove the second point of Theorem 4.1.1, the goal is to prove a similar observability inequality (4.3.3) for a solution of (KdVs). This idea was used in several works, for instance [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Parada | Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network[END_REF]. More specifically, we are going to show that ∥u(t, •)∥ L 2 (0,L) ≤ γ∥u 0 ∥ L 2 (0,L) , for some γ ∈ (0, 1). Let ∥u 0 ∥ L 2 (0,L) ≤ ϵ for ϵ > 0 to fix later. Take u the solution of (KdVs), then we can split u as u = u + ũ, where

         ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) = 0, t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, L) = sat(α∂ x u(t, 0)), t > 0, u(0, x) = u 0 (x),
x ∈ (0, L), and

         ∂ t ũ(t, x) + ∂ x ũ(t, x) + ∂ 3 x ũ(t, x) = -u(t, x)∂ x u(t, x), t > 0, x ∈ (0, L), ũ(t, 0) = ũ(t, L) = 0, t > 0, ∂ x ũ(t, L) = h(t), t > 0, ũ(0, x) = 0, x ∈ (0, L),
where h(t) = sat(α∂ x u(t, 0)) -sat(α∂ x u(t, 0)). Now clearly,

∥u(T, •)∥ L 2 (0,L) ≤ ∥u(T, •)∥ L 2 (0,L) + ∥ũ(T, •)∥ L 2 (0,L) . (4.3.7)
Moreover, as u satisfies (KdVLs), we get using (4.3.3), Section 1.2.3 and u(0, x) = u 0 (x) that there exists γ < 1 such that

∥u(T, •)∥ L 2 (0,L) ≤ γ∥u 0 ∥ L 2 (0,L) . (4.3.8) Besides, ∥ũ(T, •)∥ L 2 (0,L) ≤ ∥ũ∥ C([0,T ],L 2 (0,L)) .
To estimate ∥ũ∥ C([0,T ],L 2 (0,L)) using (4.2.28) we get

∥ũ∥ C([0,T ],L 2 (0,L)) ≤ C∥u∂ x u∥ L 1 ((0,T ),L 2 (0,L)) ,
by Proposition 1.2.1,

∥u∂ x u∥ L 1 ((0,T ),L 2 (0,L)) ≤ C∥u∥ 2 B T , using (4.2.33)-(4.2.38), we derive ∥u∥ 2 B T ≤ C ∥u 0 ∥ 2 L 2 (0,L) + ∥u 0 ∥ 4 L 2 (0,L) . Thus, we get for ũ ∥ũ∥ C([0,T ],L 2 (0,L)) ≤ C ∥u 0 ∥ 2 L 2 (0,L) + ∥u 0 ∥ 4 L 2 (0,L) , and hence ∥ũ(T, •)∥ L 2 (0,L) ≤ C ∥u 0 ∥ L 2 (0,L) + ∥u 0 ∥ 3 L 2 (0,L) ∥u 0 ∥ L 2 (0,L) , (4.3.9) 
Finally, as ∥u 0 ∥ L 2 (0,L) ≤ ϵ using (4.3.8) and (4.3.9), we deduce from (4.3.7)

∥u(T, •)∥ L 2 (0,L) ≤ ∥u(T, •)∥ L 2 (0,L) + ∥ũ(T, •)∥ L 2 (0,L) ≤ γ∥u 0 ∥ L 2 (0,L) + (Cϵ + Cϵ 3 )∥u 0 ∥ L 2 (0,L) = (γ + Cϵ + Cϵ 3 )∥u 0 ∥ L 2 (0,L) ,
we conclude by choosing ϵ > 0 small enough such that γ = γ + Cϵ + Cϵ 3 < 1. □

Asymptotic stability via LaSalle's invariance principle

Another approach to prove the stability of (KdVLs) is to use Lyapunov techniques and LaSalle's invariance principle. This idea was developed in the case of internal saturation in [START_REF] Marx | Stabilization of a linear Korteweg-de Vries equation with a saturated internal control[END_REF]. The Lyapunov function to take in account is the energy defined by (4.3.1).

Proposition 4.4.1. Let L / ∈ N and |α| < 1, then for all u 0 ∈ L 2 (0, L), the mild solution y of (KdVLs) satisfies:

∥u(t, •)∥ L 2 (0,L) → 0, as t → ∞.
Proof. First, note that by (4.3.2), Ė(t) ≤ 0 that tells us that for regular initial data the solution of (KdVLs) is stable and moreover Ė(t) = 0 if and only if ∂ x u(t, 0) = 0. In fact, we consider now two cases:

• |sat(α∂ x u(t, 0))| = M . This happens when |α∂ x u(t, 0)| ≥ M which implies |∂ x u(t, 0)| ≥ M |α| . By (4.3.2), Ė(t) = 0 if and only if M = |∂ x u(t, 0)|. Then M ≥ M |α| , which is a contradiction because |α| < 1. • sat(α∂ x u(t, 0)) = α∂ x u(t, 0). Then Ė(t) = 0 if and only if α 2 |∂ x u(t, 0)| 2 = |∂ x u(t, 0)| 2 , which is only possible if ∂ x u(t, 0) = 0.
To apply LaSalle's invariance principle, we need that the trajectories are compact, in this context, it is possible to show the following result.

Lemma 4.4.1. The canonical embedding from D(A), equipped with the graph norm, into L 2 (0, L) is compact.

Now as A generates a semigroup of contractions, then from [Bre73, Theorem 3.1, Page 54], we get that for all t ≥ 0 and u(0, •) ∈ D(A),

∥u(t, •)∥ L 2 (0,L) ≤ ∥u(0, •)∥ L 2 (0,L) , ∥Au(t, •)∥ L 2 (0,L) ≤ ∥Au(0, •)∥ L 2 (0,L) .
Thus, by Lemma 4.4.1, we have that the trajectory {v(t) = S(t)v 0 , t ≥ 0} is pre-compact in L 2 (0, L), then by [Sle89, Theorem, 3.1] the ω-limit set, ω[u(0, •)] ⊂ D(A), is not empty and invariant to the semigroup S(t). Take now a regular solution such that Ė(t) = 0, that is ∂ x u(t, 0) = 0 t ≥ 0. Then u solves (4.3.6) and by [Ros97, Lemma 3.4] if L / ∈ N , u(t, x) = 0 a.e x ∈ (0, L). Consequently,

∥u(t, •)∥ L 2 (0,L) → 0, as t → ∞
for the regular solution of (KdVLs). It is possible to extend this result to mild solutions by density.

CHAPTER 5 In this chapter, we consider the Korteweg-de Vries equation with time-dependent delay on the boundary or internal feedbacks. Under some assumptions on the time-dependent delay, on the weights of the feedbacks and on the length of the spatial domain, we prove the exponential stability results, using appropriate Lyapunov functionals. We finish by some numerical simulations that illustrate the stability results and the influence of the delay on the decay rate. This work was initiated during a research stay in Nancy with Julie Valein and is based on the submitted paper: 

Stability results of the KdV equation with time-varying delay

Introducction

Recently, the problem of robustness with respect to constant time-delay of the KdV equation was studied in [BCV19, PCP22a, Val22] using Lyapunov theory or deriving suitable observability inequalities. In the case where the KdV equation is in presence of memory terms, stability results were obtained in [START_REF] Chentouf | Qualitative analysis of the dynamic for the nonlinear Kortewegde Vries equation with a boundary memory[END_REF][START_REF] Chentouf | Well-posedness and stability results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations with infinite memory: A history approach[END_REF]. The stability of PDE's involving time-varying delays was analyzed in [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF] for one-dimensional heat and wave equations, in [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF][START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF] for wave equations in domains in R n and in [START_REF] Fridman | Stabilization of second order evolution equations with unbounded feedback with time-dependent delay[END_REF] for general second-order evolution equations. We can also mention [START_REF] Sun | Decay rate estimates for a weak viscoelastic beam equation with time-varying delay[END_REF] where a weak viscoelastic beam equation with time-varying delay was considered and the recent work [KNL + 22] studying exponential stability of piezoelectric beams. In our best knowledge, there is no work dealing with this problem for the KdV equation. In this chapter, we are going to consider the two following systems

               (∂ t u + ∂ x u + ∂ 3 x + u∂ x u)(t, x) = 0, t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, L) = α∂ x u(t, 0) + β∂ x u(t -τ (t), 0), t > 0, u(0, x) = u 0 (x), x ∈ (0, L), ∂ x u(t -τ (0), 0) = z 0 (t -τ (0)), 0 < t < τ (0), (5.1.1) and          (∂ t u + ∂ x u + ∂ 3 x u + u∂ x u)(t, x) + a(x)u(t, x) + b(x)u(t -τ (t), x) = 0, t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = ∂ x u(t, L) = 0, t > 0, u(0, x) = u 0 (x), x ∈ (0, L), u(t -τ (0), x) = z 0 (t -τ (0), x), 0 < t < τ (0), x ∈ (0, L),
(5.1.2) where L > 0 is the length of the spatial domain, u(t, x) is the amplitude of the water wave at position x. We assume that the delay τ is a function of time t, which satisfies the following conditions

0 < τ 0 ≤ τ (t) ≤ M, ∀t ≥ 0, (5.1.3) τ (t) ≤ d < 1, ∀t ≥ 0, (5.1.4) 
where 0 ≤ d < 1, and

τ ∈ W 2,∞ ([0, T ]), ∀T > 0. 
(5.1.5) Moreover, we assume that α, β, d in (5.1.1) are real constants satisfying

The matrix

Φ α,β = α 2 -1 + |β| αβ αβ β 2 + |β|(d -1)
is definite negative.

(5.1.6)

In (5.1.2), a = a(x) and b = b(x) are nonnegative functions in L ∞ (0, L). We will also assume that supp b = ω and b

(x) ≥ b 0 > 0 in ω, (5.1.7) 
where ω is an open nonempty subset of (0, L). We assume that the coefficients a and b satisfy the following assumption:

∃c 0 > 0, 2 -d 2 -2d b(x) + c 0 ⩽ a(x) in ω.
(5.1.8)

Then ω = supp b ⊂ supp a and a(x) ≥ b 0 + c 0 > 0 in ω. Some examples of functions satisfying these conditions are given in Section 5.4.

Remark 5.1.1. We can note the following points on the coefficients of the boundary or internal feedback:

• A sufficient condition to obtain (5.1.6) is |α| + |β| + d < 1. Indeed, on the one hand, we have

tr(Φ α,β ) = α 2 + β 2 -1 + |β|d < 0 ⇔ α 2 + β 2 + |β|d < 1, and 
α 2 + β 2 + |β|d < |α| + |β| + d < 1.
On the other hand we have,

det(Φ α,β ) = |β|(β 2 -2|β| + 1 -α 2 + dα 2 -d + |β|d) = |β|((1 -|β|) 2 + d(|β| -1) + α 2 (d -1)) = |β|((1 -|β|)(1 -|β| -d) + α 2 (d -1)) > |β|(α 2 + α 2 d -α 2 ) = |β|α 2 d > 0.
Then, |α| + |β| + d < 1 implies that Φ α,β is definite negative.

• If d = 0, (5.1.6) (resp. (5.1.8)) is equivalent to |α| + |β| < 1 (resp. b(x) + c 0 ≤ a(x) in ω) which corresponds to the assumption for a constant time-delay given in [BCV19] (resp. [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF]).

• If d → 1 -, 2 -d 2 -2d
→ +∞, and so we need that the the internal feedback without delay a(t, x)

to be very large.

In [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF], two different approaches for the exponential stability of the nonlinear KdV equation with boundary (constant) time-delay feedback were studied. The first was a Lyapunov functional approach with an estimation of the decay rate, but with a restrictive assumption on the length L of the spatial domain. The second one was an observability inequality approach without estimation on the decay rate and for any non-critical lengths. The asymptotic stability of the nonlinear KdV equation with (constant) time-delay internal feedback was studied in [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF]. A semiglobal stability result for any lengths was proven in the case where the weight of the term with delay is smaller than the weight of the term without delay, using an observability inequality directly on the nonlinear system. A local exponential stability result was given in the case where the support of the term with delay is not included in the support of the term without delay. The aim of this chapter is to extend these results in the case where the delay depends on the time. An important fact about systems (5.1.1) and (5.1.2) is that due to the effect of the time-varying delay, these systems are no longer invariant in time. Thus, the observability inequality approach does not work anymore, and we have to choose a new appropriate Lyapunov functional. An other difficulty, beyond the difficulty of dealing with a nonlinear equation, is that the first order linear operator depends on time (contrary to constant delay case) and the well-posedness is not trivial.

The outline of this chapter is as follows. In Section 5.2, we prove the well-posedness results, firstly for the boundary case, secondly for the internal case. The stability results are proved in Section 5.3. Finally, we illustrate our results by some numerical simulations in Section 5.4.

Well-posedness results

The goal of this section is to prove appropriate well-posedness results of (5.1.1) and (5.1.2). We first prove the well-posedness result of the linearization around 0 of (5.1.1) (resp. (5.1.2)). The proof will be based on the semigroup theory and on introducing a new function for the delayed term. Then, we add a source term that plays the role of the nonlinearity. Finally, using a fixed-point approach, we show the well-posedness of the nonlinear systems (5.1.1) and (5.1.2).

Well-posedness result of (5.1.1)

The goal of this section is to prove appropriate local well-posedness result of (5.1.1).

Well-posedness result of the linear system

In this part, we focus on the study of linearization around 0 of (5.1.1), that is

               (∂ t u + ∂ x u + ∂ 3 x u)(t, x) = 0, t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, L) = α∂ x u(t, 0) + β∂ x u(t -τ (t), 0), t > 0, u(0, x) = u 0 (x), x ∈ (0, L), u x (t -τ (0), 0) = z 0 (t -τ (0)), 0 < t < τ (0).
(5.2.1) Now, classically, we introduce a new variable that takes into account the delay term (see, for instance, [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF]). Let z(t, ρ) = ∂ x u(t -τ (t)ρ, 0) for ρ ∈ (0, 1) and t > 0. Then, z verifies the following transport equation

     τ (t)∂ t z(t, ρ) + (1 -τ (t)ρ)z ρ (t, ρ) = 0, t > 0, ρ ∈ (0, 1), z(t, 0) = ∂ x u(t, 0), t > 0, z(0, ρ) = z 0 (-τ (0)ρ), ρ ∈ (0, 1). Define U = (u, z) ⊤ , then U satisfies ∂ t U = ∂ t u ∂ t z =   -∂ x u -∂ 3 x u τ (t)ρ -1 τ (t) z ρ   .
This problem can be rewritten as the following first-order evolution equation

∂ t U (t) = A(t)U (t), t > 0, U (0) = (u 0 , z 0 (-τ (0)•)) ⊤ =: U 0 , (5.2.2)
where the time-dependent operator A(t) is defined by

A(t) u z =   -∂ x u -∂ 3 x u τ (t)ρ -1 τ (t) z ρ   , with domain D(A(t)) = (u, z) ∈ H 3 (0, L) ∩ H 1 0 (0, L) × H 1 (0, 1), z(0) = ∂ x u(0), ∂ x u(L) = α∂ x u(0) + βz(1)} .
Note that the domain of the operator A(t) is independent of time t, i.e., D(A(t)) = D(A(0)), t > 0. Now, we introduce the Hilbert space H = L 2 (0, L) × L 2 (0, 1), equipped with the usual inner product In particular, we are going to prove the following result.

Theorem 5.2.2. Assume (5.1.3)-(5.1.6). Let U 0 ∈ H, then there exists a unique mildsolution U ∈ C([0, +∞), H) to (5.2.2). Moreover, if U 0 ∈ D(A(0)) then the solution is classical and

U ∈ C([0, +∞), D(A(0))) ∩ C 1 ([0, +∞), H).
Proof. Clearly, the space Y = D(A(0)) is a dense subset of H and, by definition, D(A(t)) = D(A(0)), for all t > 0. Now, to prove the third point of Theorem 5.2.1, we introduce the following timedependent inner product on H to use the variable norm technique of Kato 

(1 + |β|τ 0 )∥(u, z)∥ 2 H ≤ ∥(u, z)∥ 2 t ≤ (1 + |β|M )∥(u, z)∥ 2 H .
(5.2.3)

We first observe that, following [FNV10, Theorem 2.4],

∥U ∥ t ∥U ∥ s ≤ e c 2τ 0 |t-s| , ∀t, s ∈ [0, T ],
(5.2.4)

where U = (u, z) ⊤ ∈ H and c is a positive constant. Now, we calculate ⟨A(t)U, U ⟩ t for a fixed t ∈ [0, T ]. Take U = (u, z) ⊤ ∈ D(A(0)), then

⟨A(t)U, U ⟩ t =   -∂ x u -∂ 3 x u τ (t)ρ -1 τ (t) z ρ   , u z t = L 0 (-∂ x u -∂ 3 x u)udx + |β| 1 0 ( τ (t)ρ -1)z ρ zdρ.
By integrating by parts in space and in ρ, we have

⟨A(t)U, U ⟩ t = 1 2 (∂ x u) 2 L 0 - |β| 2 τ (t) 1 0 z 2 dρ + |β| 2 [( τ (t)ρ -1)z 2 1 0 .
Moreover using the boundary conditions, we obtain

⟨A(t)U, U ⟩ t = 1 2 (α∂ x u(0) + βz(1)) 2 - 1 2 (∂ x u(0)) 2 - |β| 2 τ (t) 1 0 z 2 dρ + |β| 2 ( τ (t) -1)(z(1)) 2 + |β| 2 (∂ x u(0)) 2 .
Now, by (5.1.4) we derive

⟨A(t)U, U ⟩ t -κ(t)⟨U, U ⟩ t ≤ 1 2 ∂ x u(0) z(1) ⊤ Φ α,β ∂ x u(0) z(1) ,
where κ(t) = ( τ (t) 2 + 1) 1/2 2τ (t) and where Φ α,β is defined by (5.1.6). Finally, using (5.1.6), we get

⟨A(t)U, U ⟩ t -κ(t)⟨U, U ⟩ t ≤ 0.
The above inequality proves the dissipativeness of Ã(t) = A(t) -κ(t)I for the inner product ⟨•, •⟩ t . Let us prove that for all t ∈ [0, T ], A(t) is maximal, i.e., that λI -A(t) is surjective for some λ > 0. Let t ∈ [0, T ] be fixed, and (f, h) ⊤ ∈ H. We look for U = (u, z) ⊤ ∈ D(A(t)) solution of (λI -A(t))U = (f, h) ⊤ , that is

             λu + ∂ x u + ∂ 3 x u = f, λz + 1 -τ (t)ρ τ (t) z ρ = h, u(0) = u(L) = 0, ∂ x u(0) = z(0), ∂ x u(L) = α∂ x u(0) + βz(1).
(5.2.5)

Following [START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF], if we find u with the appropriate regularity, then we can obtain z, given by

z(ρ) =        ∂ x u(0)e λ τ (t) τ (t) ln(1-τ (t)ρ) + e λ τ (t) τ (t) ln(1-τ (t)ρ) ρ 0 h(σ)τ (t) 1 -τ (t)σ e -λ τ (t) τ (t) ln(1-τ (t)σ) dσ, if τ (t) ̸ = 0, ∂ x u(0)e -λτ (t)ρ + τ (t)e -λτ (t)ρ ρ 0 e λτ (t)σ h(σ)dσ, if τ (t) = 0.
In particular z(1) = ∂ x u(0)g 0 (t) + g h (t), where

g 0 (t) = e λ τ (t) τ (t) ln(1-τ (t)) , if τ (t) ̸ = 0, e -λτ (t) , if τ (t) = 0, g h (t) =        e λ τ (t) τ (t) ln(1-τ (t)) 1 0 h(σ)τ (t) 1 -τ (t)σ e -λ τ (t) τ (t) ln(1-τ (t)σ) dσ, if τ (t) ̸ = 0, τ (t)e -λτ (t) 1 0 e λτ (t)σ h(σ)dσ, if τ (t) = 0.
This implies that u must satisfy

     λu + ∂ x u + ∂ 3 x u = f, u(0) = u(L) = 0, ∂ x u(L) = (α + βg 0 (t))∂ x u(0) + βg h (t). Consider now ψ(x) = βx(x -L)g h (t) L(1 + α + βg 0 (t))
(t is fixed here) and α = α(t) = α + βg 0 (t). After some computations, we can observe that φ = y -ψ solves

     λφ + ∂ x φ + ∂ 3 x φ = f := f -λψ -∂ x ψ -∂ 3 x ψ, φ(0) = φ(L) = 0, ∂ x φ(L) = α∂ x φ(0).
(5.2.6) As t is fixed, the problem can be seen as (λI -A α)φ = f where the operator A α is defined by A αφ = -φ ′ -φ ′′′ , with D(A α) = {φ ∈ H 3 (0, L)∩H 1 0 (0, L), φ ′ (L) = αφ ′ (0)} and where f ∈ L 2 (0, L) (since φ ∈ C ∞ ([0, L]) and f ∈ L 2 (0, L)). To conclude this part, we show that under the condition, (5.1.6) the operator A α is maximal.

Lemma 5.2.1. If |α| < 1, then the operator A α is maximal.

Proof. Consider |α| < 1, clearly A α is closed. Let us prove that A α and A * α are dissipative. Let φ ∈ D(A α), then we get

(A αφ, φ) L 2 (0,L) = L 0 (-φ ′ -φ ′′′ )φdx = 1 2 ( α2 -1)(φ ′ (0)) 2 ≤ 0.
The dual of the operator A α is defined by

A * αζ = ζ ′ + ζ ′′′ with domain D(A * α ) = {ζ ∈ H 3 (0, L) ∩ H 1 0 (0, L), ζ ′ (0) = αζ ′ (L)}. Similarly, for ζ ∈ D(A * α) we have (A * αζ , ζ) L 2 (0,L) = 1 2 (α 2 -1)(ζ ′ (L)
) 2 ≤ 0. Thus, by [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], A α is the generator of a C 0 semigroup of contraction on L 2 (0, L). By the Lumer-Phillips theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Theorem 4.3]), A α is a maximal operator. Thus, it is enough to check that |α| < 1: as |g 0 (t)| < 1, then |α| ≤ |α| + |β| < 1 by (5.1.6) and Remark 5.1.1. Therefore, by Lemma 5.2.1, we have the existence of φ ∈ D(A α) solution of (5.2.6) and hence (u, z) ⊤ ∈ D(A(t)) solution of (5.2.5).

We have then shown that λI -A(t) is surjective. Then, as κ(t) > 0, we have that λI -Ã(t) = (λ + κ(t))I -A(t) is surjective for some λ > 0 and t ∈ [0, T ]. We conclude that Ã(t) generates a strongly continuous semigroup on H and à = { Ã(t), t ∈ [0, T ]} is a stable family of generators in H with a stability constant independent of t, using (5.2.4), by [Kat70, Proposition 3.4] (see also [START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF]).

Finally, κ(t) = τ (t) τ (t) 2τ (t)( τ (t) 2 +1) 1/2 -τ (t)( τ (t) 2 +1) 1/2 2τ (t) 2
is bounded on [0, T ] for all T > 0 (by (5.1.5)) and we have

d dt A(t)U =   0 τ (t)τ (t)ρ -τ (t)( τ (t)ρ -1) τ (t) 2 z ρ   with τ (t)τ (t)ρ -τ (t)( τ (t)ρ -1) τ (t) 2
bounded on [0, T ] by (5.1.5). Thus,

d dt Ã(t) ∈ L ∞ * ([0, T ], B(D(A(0)), H)),
which proves the fourth point of Theorem 5.2.1. Therefore, all assumptions of Theorem 5.2.1 are verified, thus the problem

∂ t Ũ (t) = Ã(t) Ũ (t), t > 0, Ũ (0) = U 0 has a unique solution Ũ ∈ C([0, ∞), H) and Ũ ∈ C([0, ∞), D(A(0)))∩C 1 ([0, ∞), H) if U 0 ∈ D(A(0)).
Lastly, we can check that our solution of (5.2.1) is U (t) = e t 0 κ(s)ds Ũ (t). Indeed,

∂ t U (t) = κ(t)e t 0 κ(s)ds Ũ (t) + e t 0 κ(s)ds Ũt (t) = κ(t)e t 0 κ(s)ds Ũ (t) + e t 0 κ(s)ds Ã(t) Ũ (t) = e t 0 κ(s)ds (κ(t) Ũ (t) + Ã(t) Ũ (t)) = e t 0 κ(s)ds A(t) Ũ (t) = A(t)e t 0 κ(s)ds Ũ (t) = A(t)U (t),
which concludes the proof.

Well-posedness of the linear system with extra source term Consider now (5.2.1) with a source term f in the u-equation

                       (∂ t u + ∂ x u + ∂ 3 x u)(t, x) = f (t, x), t > 0, x ∈ (0, L), τ (t)∂ t z(t, ρ) + (1 -τ (t)ρ)z ρ (t, ρ) = 0,
t > 0, ρ ∈ (0, 1), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, L) = α∂ x u(t, 0) + βz(t, 1), t > 0, z(t, 0) = ∂ x u(t, 0), t > 0, u(0, x) = u 0 (x), x ∈ (0, L), z(0, ρ) = z 0 (-τ (0)ρ), ρ ∈ (0, 1).

(5.2.7) Proposition 5.2.1. Assume that (5.1.3)-(5.1.6) hold. Let U 0 = (u 0 , z 0 ) ∈ H and f ∈ L 1 ((0, ∞), L 2 (0, L)). Then there exists a unique mild solution U = (u, z) ∈ C([0, +∞), H) to (5.2.7). Moreover, for T > 0, the following estimates hold

∥(u, z)∥ C([0,T ],H) ≤ C ∥U 0 ∥ H + ∥f ∥ L 1 ((t,0),L 2 (0,L)) ,
(5.2.8)

∥u∥ L 2 ((t,0),H 1 (0,L)) ≤ C ∥U 0 ∥ H + ∥f ∥ L 1 ((t,0),L 2 (0,L)) .
(5.2.9)

Proof. The above system can be written as ∂ t U (t) = A(t)U (t) + (f, 0). Using [Kat75, Theorem 2] we can show that if U 0 ∈ H and f ∈ L 1 ((0, ∞), L 2 (0, L)), then there exists a unique solution

U ∈ C([0, ∞), H). Furthermore, U ∈ C([0, ∞), D(A(0))) ∩ C 1 ([0, ∞), H) if U 0 ∈ D(A(0)) and f ∈ C([0, ∞), L 2 (0, L)) ∩ L 1 ((0, ∞), D(A(0)))
. Now take U = (u, z) a classical solution of (5.2.7). Let us choose the following energy 

E(t) = 1 2 L 0 (u(t, x)) 2 dx + |β|τ (t
Ė(t) = 1 2 (α 2 -1 + |β|)(∂ x u(t, 0)) 2 + 2αβ∂ x u(t, 0)z(t, 1) +(β 2 -|β|(1 -τ (t)))(z(t, 1)) 2 + L 0 uf dx.
Using (5.1.4)-(5.1.6) we get

Ė(t) + ∂ x u(t, 0) z(t, 1) ⊤ - 1 2 Φ α,β ∂ x u(t, 0) z(t, 1) ≤ L 0 uf dx.
Notice that -Φ α,β is a symmetric positive definite matrix. Then there exists C > 0 such that

Ė(t) + (∂ x u(t, 0)) 2 + (z(t, 1)) 2 ≤ C L 0 uf dx.
Now take 0 ≤ s ≤ T and integrate the above expression on [0, s] to obtain

E(s) + s 0 (∂ x u(t, 0)) 2 dt + s 0 (z(t, 1)) 2 dt ≤ C s 0 L 0 uf dxdt + E(0) .
(5.2.11) Thus, by (5.2.3) and the Cauchy-Schwarz inequality, we have

∥(u(s, •), z(s, •))∥ 2 H ≤ C ∥U 0 ∥ 2 H + ∥f ∥ L 1 ((t,0),L 2 (0,L)) ∥(u, z)∥ C([0,T ],H) .
Taking the maximum for s ∈ [0, T ] and using the Young inequality, we conclude (5.2.8). In addition, taking s = T in (5.2.11) and using (5.2.8) we obtain the following hidden regularity:

T 0 (∂ x u(t, 0)) 2 dt + T 0 (z(t, 1)) 2 dt ≤ C ∥U 0 ∥ 2 H + ∥f ∥ 2 L 1 ((t,0),L 2 (0,L)) .
(5.2.12)

Multiplying u-equation of (5.2.7) by xu, integrating on (t, 0) × (0, L) and performing integration by parts, we get

1 2 L 0 x(u(T, x)) 2 dx + 3 2 T 0 L 0 (∂ x u) 2 dxdt = 1 2 L 0 x(u 0 ) 2 dx + 1 2 T 0 L 0 u 2 dxdt + 1 2 T 0 L(∂ x u(t, L)) 2 dt + T 0 L 0 xf udxdt,
and then

∥∂ x u∥ 2 L 2 ((0,L)×(t,0)) ≤C L 0 (u 0 ) 2 dx + T 0 L 0 u 2 dxdt + T 0 (∂ x u(t, 0)) 2 dt + T 0 (z(1, t)) 2 dt + T 0 L 0 f udxdt .
Finally, using (5.2.8) and (5.2.12) we derive (5.2.9).

Well-posedness of the nonlinear system

Now we are ready to prove the local well-posedness result for the nonlinear system (5.1.1).

Theorem 5.2.3. Let T > 0, L > 0 and assume that (5.1.3)-(5.1.6) hold. Then there exist r, C > 0 such that for every (u 0 , z 0 ) ∈ H satisfying ∥(u 0 , z 0 )∥ H ≤ r, there exists a unique mild solution u ∈ B T of the system (5.1.1) verifying ∥u∥ B T ≤ C∥(u 0 , z 0 )∥ H .

Proof. Let (u 0 , z 0 ) ∈ H such that ∥(u 0 , z 0 )∥ H ≤ r for r > 0 chosen small enough later. Take ũ ∈ B T and consider the map P : B T → B T , defined by P (ũ) = u, where u is the solution of

               (∂ t u + ∂ x u + ∂ 3 x u)(t, x) = (-ũ∂ x ũ)(t, x), t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = 0, t > 0, ∂ x u(t, L) = α∂ x u(t, 0) + β∂ x u(t -τ (t), 0), t > 0, u(0, x) = u 0 (x), x ∈ (0, L), ∂ x u(t -τ (0), 0) = z 0 (t -τ (0)), 0 < t < τ (0).
Clearly, u ∈ B T is a solution of (5.1.1) if and only if u is a fixed-point of P . Now from Proposition 5.2.1 we find that the map P is well-defined and from Proposition 1.2.1, (5.2.8)-(5.2.9), we get

∥P (ũ)∥ B T = ∥u∥ B T ≤ C ∥(u 0 , z 0 )∥ H + ∥ũ∂ x ũ∥ L 1 ((t,0),L 2 (0,L)) ≤ C ∥(u 0 , z 0 )∥ H + ∥ũ∥ 2 B .
Following the same arguments, we can show that

∥P (ũ 1 ) -P (ũ 2 )∥ B ≤ C (∥ũ 1 ∥ B + ∥ũ 2 ∥ B ) ∥ũ 1 -ũ2 ∥ B .
Now we restrict P to the closed ball {ũ ∈ B, ∥ũ∥ B T ≤ R}, where R > 0 to be chosen later. Then,

∥P (ũ)∥ B T ≤ C(r + R 2 ), ∥P (ũ 1 ) -P (ũ 2 )∥ B T ≤ 2CR∥ũ 1 -ũ2 ∥ B T .
Finally, it is enough to consider R < 1 2C and r < R 2C . With this choice, P maps the closed ball {ũ ∈ T B, ∥ũ∥ ≤ R} into itself and ∥P (ũ 1 ) -P (ũ 2 )∥ B T ≤ 2CR∥ũ 1 -ũ2 ∥ B T with 2CR < 1. Lastly, we deduce the well-posedness result by invoking the Banach fixed-point theorem on the map P .

Well-posedness result of (5.1.2)

The goal of this section is to prove appropriate global well-posedness result of (5.1.2). We adopt the same methodology as in subsection 5.2.1, so we skip here some details.

Well-posedness of the linear system

In this subsection, we will study the well-posedness result of the KdV equation (5.1.2) linearized around 0, that is

         (∂ t u + ∂ x u + ∂ 3 x u)(t, x) + a(x)u(t, x) + b(x)u(t -τ (t), x) = 0, t > 0, x ∈ (0, L), u(t, 0) = u(t, L) = ∂ x u(t, L) = 0, t > 0, u(0, x) = u 0 (x), x ∈ (0, L), u(t -τ (0), x) = z 0 (t -τ (0), x), 0 < t < τ (0), x ∈ (0, L).
As previously, we introduce z(t, ρ, x) = u ω (t -τ (t)ρ, x) for any x ∈ ω, ρ ∈ (0, 1) and t > 0, and define U = (u, z) ⊤ . This problem can be rewritten as the following first-order evolution equation

∂ t U (t) = A 2 (t)U (t), t > 0, U (0) = (u 0 , z 0 (-τ (0)•, •)) ⊤ =: U 0 ,
(5.2.13)

where the time-dependent operator A 2 (t) is defined by

A 2 (t) u z =   -∂ x u -∂ 3 x u -au -bz(1, •) τ (t)ρ -1 τ (t) z ρ   ,
where z(1, •) ∈ L 2 (0, L) is the extension of z(1, •) by zero outside ω, with domain

D(A 2 (t)) = (u, z) ∈ H 3 (0, L) × L 2 (ω, H 1 (0, 1)), u(0) = u(L) = ∂ x u(L) = 0, z(0, x) = u |ω (x) .
The domain of the operator A 2 (t) is independent of the time t, i.e D(A 2 (t)) = D(A 2 (0)), t > 0.

The Hilbert space H = L 2 (0, L) × L 2 (ω × (0, 1)), is provided with the time-dependent inner product

u z , ũ z t = L 0 uũdx + τ (t) ω 1 0 ξ(x)z zdρdx,
where ξ is a nonnegative function in L ∞ (0, L) such that supp ξ = supp b = ω and

1 1 -d b(x) + c 0 ⩽ ξ(x) ⩽ 2a(x) -b(x) -c 0 in ω. (5.2.14)
This choice of ξ is possible due to (5.1.8).

It is clear that the norm ∥ • ∥ t is equivalent to the usual norm ∥ • ∥ H on H: ∀t ≥ 0, ∀(u, z) ∈ H, Proof. As for Theorem 5.2.2, we prove the four assumptions of Theorem 5.2.1. We have, for all t > 0, D(A 2 (t)) = D(A 2 (0)), which is a dense subset of H. Let t ∈ [0, T ] be fixed. To prove 3. of Theorem 5.2.1, we start by computing ⟨A 2 (t)U, U ⟩ t . Let U = (u, z) ⊤ ∈ D(A 2 (0)). Similarly to the proof of Theorem 5.2.2, integrating by parts in space and in ρ, we obtain

(1 + τ 0 b 0 )∥(u, z)∥ 2 H ≤ ∥(u, z)∥ 2 t ≤ (1 + 2M ∥a∥ ∞ )∥(u, z)∥ 2 H , (5.2 
⟨A 2 (t)U, U ⟩ t = 1 2 (∂ x u) 2 L 0 - L 0 a(x)u 2 dx - ω b(x)z(1, x)u(x)dx + 1 2 ω ξ(x)(z(0, x)) 2 dx + 1 2 ω ξ(x)( τ (t) -1)(z(1, x)) 2 dx - 1 2 τ (t) ω 1 0 ξ(x)z 2 dρdx.
Since we have

- ω b(x)z(1, x)u(x)dx ⩽ 1 2 ω b(x)(z(1, x)) 2 dx + 1 2 ω b(x)u 2 dx, then ⟨A 2 (t)U, U ⟩ t ≤ - 1 2 (∂ x u(0)) 2 + ω -a(x) + b(x) 2 + ξ(x) 2 u 2 (x)dx - (0,L)\ω a(x)u 2 dx + ω b(x) 2 + ξ(x)( τ (t) -1) 2 (z(1, x)) 2 dx - 1 2 τ (t) ω 1 0 ξ(x)z 2 dρdx.
Then

V (t) + 2γV (t) ≤ 1 2 ω (-2a(x) + b(x) + ξ(x) + 2µ 1 Lb(x) + 2µ 2 )(u(t, x)) 2 dx + 1 2 ω (b(x) -(1 -d)ξ(x) + 2µ 1 Lb(x))u 2 (t -τ (t), x)dx - (0,L)\ω a(x)(u(t, x)) 2 dx + (µ 1 + γ + 2γµ 1 L) L 0 (u(t, x)) 2 dx -3µ 1 L 0 (∂ x u(t, x)) 2 dx + 2 3 µ 1 L 0 (u(t, x)) 3 dx + ω 1 0 (γξ(x)τ (t) + 2γµ 2 τ (t) -µ 2 (1 -d))u 2 (t -τ (t)ρ, x)dρdx.
Using Poincaré's inequality, we obtain

V (t) + 2γV (t) ≤ 1 2 ω (-2a(x) + b(x) + ξ(x) + 2µ 1 Lb(x) + 2µ 2 )(u(t, x)) 2 dx + 1 2 ω (b(x) -(1 -d)ξ(x) + 2µ 1 Lb(x))(u(t -τ (t), x)) 2 dx + L 2 (µ 1 + γ + 2γµ 1 L) π 2 -3µ 1 L 0 (∂ x u(t, x)) 2 dx + 2 3 µ 1 L 0 (u(t, x)) 3 dx + ω 1 0 (γξ(x)M + 2γµ 2 M -(1 -d)µ 2 )(u(t -τ (t)ρ, x)) 2 dρdx.
From (5.2.14), we can choose µ 1 and µ 2 small enough to get -2a(x)+b(x)+ξ(x)+2µ 1 Lb(x)+2µ 2 ≤ 0 and b(x) 

-(1 -d)ξ(x) + 2µ 1 Lb(x) ≤ 0 in ω.
(u(t, x)) 3 dx ≤ L √ Lr∥∂ x u(t, •)∥ 2 L 2 (0,L) .
Finally, we obtain

V (t) + 2γV (t) ≤ L 2 (µ 1 + γ + 2γµ 1 L) π 2 -3µ 1 + 2rL 3/2 µ 1 3 L 0 ∂ x u 2 (t, x)dx + ω 1 0 (γξ(x)M + 2γµ 2 M -(1 -d)µ 2 )u 2 (t -τ (t)ρ, x)dρdx.
It is sufficient to have

L 2 (µ1 + γ + 2γµ1L) π 2 -3µ1 + 2rL 3/2 µ1 3 ≤ 0 and γξ(x)M +2γµ 2 M -(1-d)µ 2 ≤ 0.
Hence, we take γ as in (5.3.18), where r can be chosen such that 9π 2 -3L 2 -2L 3/2 rπ 2 > 0 which means that 0 < r < 9π 2 -3L 2 2L 3/2 π 2 , and which is possible since 0 < L < √ 3π.

Finally, we integrate V (t) + 2γV (t) ≤ 0 over (t, 0) to obtain V (t) ≤ V (0)e -2γt , for all t > 0. From (5.3.17), we obtain

E(t) ≤ E(0) 1 + max{Lµ 1 , 2µ 2 b 0 } e -2γt , ∀t > 0.
Since D(A 2 (0)) is dense in H, we can take (u 0 , z 0 (-τ (0)•, •)) ∈ H.

Numerical simulations

The aim of this section is to illustrate the stability results obtained in this work with some numerical simulations that adapt the schemes used in [BCV19, CG01, PCP22a]. We choose a final time T CHAPTER 6 

Conclusions and perspectives

Comments on Chapter 2

In Chapter 2, it was studied the well-posedness and exponential stability of a KdV equation on a star-shaped network with internal delayed feedback terms. The well-posedness was addressed including a new variable in order to take into account the delay and then studying the linearization around 0 of our system, we obtain the local well-posedness for the nonlinear equation using the Banach fixed-point theorem. First, was considered the case where the support of delayed term b j is included in the support of the feedback term without delay a j . In this case, it was possible to obtain the local exponential stability using a Lyapunov function. This result holds for restricted lengths L < √ 3 2 π, α > N 2 and implies an estimation of the decay rate. This estimation of the decay rate depends strongly on the Lyapunov function used. Secondly, using a contradiction argument an observability inequality for the nonlinear system was derived, that allowed to prove the exponential stability system without restrictions on the lengths and α ≥ N 2 . In the last stabilization results, the case where non necessarily the support of delayed terms b j is included in the support of the feedback terms without delay a j has been considered. If this is the case and if the feedback delayed term b j is small enough, the local exponential stability for L < √ 3 2 π and α > N 2 has been obtained.

Finally, some numerical simulations have been presented. We showed how feedback delayed terms affect the stability (see Figure 2.1 and Figure 2.2). In addition, we observe that numerically in the case a j = 0 if the feedback delayed terms b j are big enough, the system becomes unstable. Besides, we showed that the decay rate given by Theorem 2.1.1 is smaller than those obtained in simulations.

Open questions following Chapter 2

To conclude, we present some open questions to be investigated:

1. As written in Remark 2.3.1 the restriction on L comes from the multiplier x in V 1 . Finding a new multiplier in order to obtain a result less restrictive is an open problem.

2. In this chapter, internal delay has been studied. A possible research line is to consider a delay term acting on the central node.

3. In [START_REF] Guzmán | Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control[END_REF] a stabilization problem for the linear Kuramoto-Sivashinsky with delayed boundary control was studied. Studying a Kuramoto-Sivashinsky equation on networks with or without delay is also a possible future work.

Comments on Chapter 3

In Chapter 3, the global well-posedness was studied and the exponential stability of a KdV equation on a star-shaped network with internal saturated feedback terms has been established. The wellposedness was addressed using the Laplace transform of the linearization and obtaining Kato smoothing properties which gave the local in-time well-posedness, then using multiplier estimates the global in-time result was dealt.

Open questions following Chapter 3

Generalization of the well-posedness result

In the work [START_REF] Capistrano-Filho | General boundary value problems of the Korteweg-de Vries equation on a bounded domain[END_REF] a complete result for general linear boundary conditions for the KdV equation on a bounded domain was derived. In this work, homogeneous Dirichlet and Neumann right conditions (u n (t, ℓ n ) = ∂ x u n (t, ℓ n ) = 0) were considered. These conditions come from the problems studied in [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF][START_REF] Parada | Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network[END_REF], but in a more general framework the following problem could be studied:

                 (∂ t u n + ∂ x u n + u n ∂ x u n + ∂ 3 x u n )(t, x) = f n (t, x), ∀x ∈ (0, ℓ n ), t > 0, n = 1, . . . , N, u n (t, 0) = u n ′ (t, 0), ∀n, n ′ = 1, . . . N, N n=1 ∂ 2 x u n (t, 0) = -αu 1 (t, 0) - N 3 u 2 1 (t, 0) + h(t), t > 0, u n (t, ℓ n ) = g n (t), ∂ x u n (t, ℓ n ) = p n (t), t > 0, n = 1, . . . , N, u n (0, x) = u 0 n , x ∈ (0, ℓ n ), (6.2.1)
We expect that adapting the ideas introduced in this chapter and in [START_REF] Bona | A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain[END_REF], it could be possible to obtain the following result.

Conjecture 6.2.1. Let (ℓ n ) n=1,...N ∈ (0, ∞) N , 0 ≤ s ≤ 3 and T > 0. There exists 0 < T * ≤ T such that for all

u 0 ∈ N n=1 H s (0, ℓ n ), (h, g, p) ∈ H s-1 3 (0, T ) × N n=1 H s+1 3 (0, T ) × N n=1 H s 3 (0, T ), f ∈ N n=1 W s 3 ,1 (0, T ; L 2 (0, ℓ n ))
satisfying the compatibility condition,

                 u 0 n (ℓ n ) = g n (0) n = 1, . . . , N if 1 2 < s ≤ 3. ∂ x u 0 n (ℓ n ) = p n (0) n = 1, . . . , N if 3 2 < s ≤ 3. N n=1 ∂ 2 x u 0 n (0) = h(0) if 5 2 < s ≤ 3.
there exists a unique solution u ∈

N n=1 C([0, T ]; H s (0, ℓ n )) ∩ L 2 (0, T * ; H s+1 (0, ℓ n )) of (6.2.1). Moreover ∂ κ x u n ∈ L ∞ x (0, ℓ n ; H s+1-κ 3 (0, T * )), for κ = 0, 1, 2.
The complications would come from the study of the matrix, which is obtained by replacing the

column j + 3(n -1) of A N by [0 1 0 • • • 0] ⊤ for g n case and [0 0 1 • • • 0] ⊤ for p n case.
It is not clear how to derive a similar result as (3.2.23).

Generalization of stabilization results

The stabilization results were obtained, proving appropriate observability inequalities working directly on the nonlinear systems. In the work [START_REF] Prieur | Wave equation with cone-bounded control laws[END_REF] 

Comments on Chapter 4

The exponential stability of the nonlinear KdV equation with a saturated feedback on the boundary was addressed. The well-posedness was obtained using nonlinear semigroup theory and fixed-point results. The exponential stability was shown via the classical observability approach, and the asymptotic stability of the linear KdV was addressed using LaSalle's invariance principle.

Open question following Chapter 4

An important open question arising in this context is to design a saturated boundary feedback term which gives stability when L ∈ N . What it is known about the linear KdV equation with boundary conditions on u(t, 0), u(t, L) and ∂ x u(t, L) is that it is never exactly controllable with one control from the right side when L ∈ N (see [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] and [START_REF] Glass | Controllability of the Korteweg-de Vries equation from the right Dirichlet boundary condition[END_REF]). In particular, concerning the system (KdVs) the feedback term α∂ x u(t, 0), and the strategies employed here are not capable of dealing with critical lengths. A possible solution to this problem could be to take another boundary feedback term acting on the left Dirichlet condition as in [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF](see also Section 1.2.5), where a backstepping controller was designed. To saturate this control, an idea is to follow [KF17] and [START_REF] Kang | Regional stabilization of linear delayed Schrödinger equation by constrained boundary control[END_REF].

Comments on Chapter 5

In Chapter 5, we presented some boundary and internal stability results for the nonlinear KdV equation with time-varying delay. We proved appropriate well-posedness results, and we studied the local stability using some Lyapunov functionals. Finally, numerical simulations were presented to illustrate the results obtained.

Open question following Chapter 5

We could improve this paper in the following directions: remove the assumption supp b ⊂ supp a, consider the case L non-critical (and not only L < √ 3π) and the case τ 0 = 0 in (5.1.3). These questions remain open, since, for the two first, the system is not invariant by translation in time contrary to constant delay (see [START_REF] Capistrano | Stabilization results for delayed fifth order KdV-type equation in a bounded domain[END_REF][START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF]), and for the last one, we need more regularity of the solutions (see [START_REF] Nicaise | Exponential stability of the wave equation with boundary time-varying delay[END_REF]). Moreover, the condition L < √ 3π is a technical one and comes from the choice of the multiplier x in the expression of V 1 . To find a better multiplier is an open problem as far as we know. We mention here some possible future research: the cases of mixed boundary and internal damping with time-varying delay, time-and spatially-varying delay as in [START_REF] Lhachemi | Robustness of constantdelay predictor feedback for in-domain stabilization of reaction-diffusion PDEs with time-and spatially-varying input delays[END_REF] or study the stabilization problem when the delay (constant or variable) is in the nonlinear term as in [START_REF] Liu | Asymptotic behavior of solutions of time-delayed Burgers' equation[END_REF][START_REF] Zhu | Asymptotic behavior of solutions for the time-delayed Kuramoto-Sivashinsky equation[END_REF] for Burger's and Kuramoto-Sivashinsky equations, respectively.

Works in progress

The next two sections are related to some works in progress about the KdV equation on a star-shaped network.

Asymptotic behavior of KdV equation in a star-shaped network with bounded and unbounded lengths

This section is based on a work in progress with Emmanuelle Crépeau and Christophe Prieur.

In this case we consider the KdV equation on star-shaped networks mixing finite and infinite lengths as for example [START_REF] Assel | Optimal decay rate for the local energy of a unbounded network[END_REF][START_REF] Assel | Energy decay for the damped wave equation on an unbounded network[END_REF] in the case of wave equation. With respect to the KdV equation posed on the half-line, we can mention, for instance, [START_REF] Bona | The Korteweg-de Vries equation, posed in a quarter-plane[END_REF][START_REF] Holmer | The initial-boundary value problem for the Korteweg-de Vries equation[END_REF] which focus on the well-posedness properties. In [START_REF] Rosier | Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line[END_REF], the exact controllability of the linear KdV equation posed on the half-line was obtained by using Carleman estimates. A first result of exponential stability of the KdV equation in the half-line considering a localized damping was derived in [START_REF] Linares | Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane[END_REF] under the assumption that the damping term a(x) ≥ c > 0 in (0, δ) ∪ (b, ∞) with b > δ (see [START_REF] Cavalcanti | Global well-posedness and exponential decay rates for a KdV-Burgers equation with indefinite damping[END_REF] for a similar problem in the context of KdV-Burger equation in the whole-line and half-line). Then, in [START_REF] Pazoto | Uniform stabilization in weighted sobolev spaces for the KdV equation posed on the half-line[END_REF] exponential decay of the energy in weighted spaces was derived, and it was noticed that the interval (0, δ) can be dropped. We can mention also [START_REF] Pazoto | Well-posedness and stabilization of a model system for long waves posed on a quarter plane[END_REF] where similar ideas of [START_REF] Pazoto | Uniform stabilization in weighted sobolev spaces for the KdV equation posed on the half-line[END_REF] were applied in the case of a Gear-Grimshaw system modeling long waves. Here inspired by [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF][START_REF] Linares | Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane[END_REF] we study the exponential stabilization problem of the KdV equation posed in a star shaped network where the branches mix finite intervals and half-lines. Let N = N F + N ∞ the number of edges of the network T described as the intervals I j for j = 1, . . . N , where I j = (0, ℓ j ) with ℓ j > 0 for j = 1, . . . N F and I j = (0, ∞) for j = N F + 1, . . . N . We consider the next evolution problems for the KdV equation Theorem 6.5.2. Assume that the damping terms (a j ) j=1,...,N satisfy (3.1.6) and let R > 0. If I act = {1, . . . , N }, then, there exist C(R) > 0 and µ(R) > 0 such that for all u 0 ∈ Z with ∥u 0 ∥ L 2 (T ) ≤ R, the unique solution u of (KdVinf) satisfies ∥u(t, •)∥ L 2 (T ) ≤ Ce -µt ∥u 0 ∥ L 2 (T ) , for all t > 0.

The space Z is introduced in order to have a well-posedness result. In this context, the main complication to derive Theorem 6.5.2 is to show that the nonlinear system (KdVinf) enjoys similar regularity results than the linear one (LKdVinf) to apply the compactness arguments. Once Theorem 6.5.2 is proved, and introducing some Lyapunov functionals, we can prove the next result about the exponential stability in the same space as the well-posedness. Theorem 6.5.3. Assume that the damping terms (a j ) j=1,...,N satisfy (3.1.6) and let R > 0. If I act = {1, . . . , N }, then, there exist C(R) > 0 and µ(R) > 0 such that for all u 0 ∈ Z with ∥u 0 ∥ Z ≤ R, the unique solution u of (KdVinf) satisfies ∥u(t, •)∥ Z ≤ Ce -µt ∥u 0 ∥ Z , for all t > 0.

The results corresponding to the linear case has been submitted to to 62nd IEEE Conference on Decision and Control, 2023 Singapore.

Boundary null controllability of KdV equation in a star-shaped network

This section is based on a personal work in progress.

In this section, we talk about the null controllability problem of the linear KdV equation posed in a star shaped network. In the case of null controllability for a single KdV equation, we have the work [START_REF] Rosier | Control of the surface of a fluid by a wavemaker[END_REF] where null controllability was achieved by using a Dirichlet control on the left, [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF] where a uniform null controllability result was obtained and [START_REF] Guilleron | Null controllability of a linear KdV equation on an interval with special boundary conditions[END_REF] where null controllability was derived in the case of special boundary conditions. With respect to controllability problems in networks, we can mention [START_REF] Dáger | Wave propagation, observation and control in 1-d flexible multi-structures[END_REF][START_REF] Lagnese | Modeling, analysis and control of dynamic elastic multi-link structures[END_REF] where control of multi-structures was studied, [START_REF] Cazacu | Null-controllability of the linear Kuramoto-Sivashinsky equation on star-shaped trees[END_REF] where the null controllability of the Kuramoto Sivashinsky equation on a star-shaped network was addressed. In [START_REF] Baudouin | Global carleman estimate on a network for the wave equation and application to an inverse problem[END_REF] and [START_REF] Ignat | Inverse problem for the heat equation and the schrödinger equation on a tree[END_REF], Carleman inequalities were obtained for wave, heat and Schrödinger equations in networks. We study in this part the null controllability of the linear KdV equation posed in a star shaped network, and we expect that our result can be extended to the nonlinear case.

Let T > 0 and define

Q j = (0, T ) × I j                      ∂ t u j (t, x) + ∂ x u j (t, x) + ∂ 3 x u j (t, x) = 0, (t, x) ∈ Q j , j = 1, . . . , N, u j (t, 0) = u 1 (t, 0)(t), t ∈ (0, T ), ∀j = 2, . . . N, N j=1 ∂ 2 x u j (t, 0) = -αu 1 (t, 0), t ∈ (0, T ), u j (t, ℓ j ) = g j (t), ∂ x u j (t, ℓ j ) = p j (t), t ∈ (0, T ), j = 1, . . . , N, u j (0, x) = u 0 j (x),
x ∈ I j , (6.5.2) work are related to the well-posedness. Along this thesis, we used semigroup theory to prove the well-posedness results, in the case of Dirichlet controls for the KdV equation the solutions are defined typically by transposition [GG08, GG10], thus extend these ideas to the network case is the work in progress.

6.6 Open problems and future research lines An interesting open problem coming from our contradiction strategy to prove the observability inequalities is the possibility to remove one index in the semiglobal stability results for the networks (Theorem 2.1.2, Theorem 3.1.4, Theorem 6.5.2 and Theorem 6.5.3). Following the proof of these results, we are asking to prove that the unique solution of

   ∂ t v(t, x) + ∂ x v(t, x) + v(t, x)∂ x v(t, x) + ∂ 3 x v(t, x) = 0, ∀x ∈ (0, ℓ), t ∈ (0, T ), v(t, 0) = ∂ x v(t, 0) = ∂ 2 x v(t, 0) = 0, t > 0, v(t, ℓ) = ∂ x v(t, ℓ) = 0, t > 0, (6.6.1)
is the null solution. Up to our knowledge, it is an open problem, but it is known that the condition ∂ 2 x v(t, 0) = 0 is really needed. In fact, in [START_REF] Germanovitch Doronin | An example of non-decreasing solution for the KdV equation posed on a bounded interval[END_REF] the following result was proved regarding the stationary solutions of the KdV equation, considering the system

∂ x ϕ + 1 2 ∂ x (ϕ 2 ) + ∂ 3 x ϕ = 0, in [0, L], (6.6.2) 
Theorem 6.6.1 (Theorem 1, [START_REF] Germanovitch Doronin | An example of non-decreasing solution for the KdV equation posed on a bounded interval[END_REF]). For all L ∈ (0, 2π), there exists a stationary solution ϕ ∈ C ∞ (R) of (6.6.2) with boundary conditions ϕ(0) = ∂ x ϕ(0) = 0, satisfying ϕ(x + L) = ϕ(x), ∀x ∈ R and ∂ 2 x ϕ(0) ̸ = 0. Note that by the periodicity we have in particular ϕ(L) = ∂ x ϕ(L) = 0. In [FN16] a more general result was presented, Lemma 6.6.1 (Lemma 1, [START_REF] Faminskii | On stationary solutions of KdV and mKdV equations[END_REF]). If ϕ ∈ C 3 ([0, L]) is a solution of (6.6.2) with boundary conditions ϕ(0) = ϕ(L) = ∂ x ϕ(L) = 0, then it is infinitely smooth and periodic with period L. Theorem 6.6.2 (Theorem 1, [START_REF] Faminskii | On stationary solutions of KdV and mKdV equations[END_REF]). If L 2 ̸ = 4π 2 , then there exists a unique non-trivial solution of period L of (6.6.2) with boundary conditions ϕ(0) = ϕ(L) = ∂ x ϕ(L) = 0. If L 2 = 4π 2 such a solution does not exist. By Lemma 6.6.1 and Theorem 6.6.2, we have the existence of a stationary solution ϕ ∈ C ∞ ([0, L]) of (6.6.1). But this solution does not satisfy ∂ 2

x ϕ(0) = 0. Indeed, consider the substitution η(x) = L 2 4 ϕ L 4 (x + 1) , then η satisfies system

b∂ x η + η∂ x η + ∂ 3 x η = 0, in [-1, 1], η(-1) = ∂ x η(-1) = 0, where b = L 2 4 . Note that this equation is equivalent to bη + 1 2 η 2 + ∂ 2 x η = c, for some c ∈ R. In particular, if ∂ 2
x η(-1) = 0 we get c = 0. But from [FN16, Theorem 1] and [FN16, Lemma 2] we have that c must be not null. Similarly, in [GS07, Section 4.4] the existence of some stationary solutions η of KdV equation in [-1, 1] with η(-1) = η(1) = ∂ x η(-1) = ∂ x η(1) = 0 was showed, but ∂ 2

x η(-1) ̸ = 0.

Controllability results

Exact controllability

In the [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF] the exact controllability of linearization around 0 of (KdVs) was achieved by acting with N + 1 boundary controls (N controls in the external nodes and one in the central node) if #{ℓ n ∈ N } ≤ 1. Recently, in [START_REF] Cerpa | On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network[END_REF] the authors could reduce the numbers of controls (N controls acting on the external nodes), but the controllability holds for a large time and small lengths. This raises the question of what happens for the boundary control and how many components corresponding to the critical lengths one needs to control in the network case. In particular, we can mention the following open problems:

• Is the linearization around 0 of (KdVs) exactly controllable with N controls acting in the external nodes for T > 0 and ℓ n / ∈ N for all n ∈ {1, . . . , N }?

• Is (KdVs) exactly controllable from the boundary in the case where for some lengths we have ℓ n ∈ N ? A starting point could be, to consider the smallest critical lengths (k = l = 1 or k = l = 2).

Boundary null controllability

Another immediate question about the possibility to reduce the numbers of controls or acted edges remains open in the case of null controllability. In our result we are not able to eliminate more acted edges (N -1 acted edges, 2N -2 controls), an idea could be to study the null controllability of the KdV equation on a tree network as in [START_REF] Cerpa | Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network[END_REF] and use the direction of propagation of the KdV equation to eliminate some controls.

Internal null controllability

In the case of systems of KdV equations with internal couplings, the problem of null controllably was studied in [START_REF] Carreño | Internal null controllability of the generalized Hirota-Satsuma system[END_REF] for a Hirota-Satsuma system and in [START_REF] Asier Bárcena-Petisco | Local null controllability of a model system for strong interaction between internal solitary waves[END_REF] for a Gear-Grimshaw system. In these two works, the controllability was proved by using Carleman estimates, the controls act internally and locally and due to the internal couplings term they were able to use less controls than equations. An interesting question is the internal null controllability for the KdV equation in a star shaped network, and then if the central node conditions transmit enough information to reduce the numbers of controls.

Dispersive limits

In [BPCC + 23] the null controllability problem of a parabolic system on networks was studied with diffusive parameter ε → 0. In this setting, a possible future research line could be to consider a dispersive parameter ν in the KdV equation on networks and to study the uniform null controllability, as for instance in [START_REF] Glass | Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit[END_REF]. Some complications are how to adapt the junction conditions in the hyperbolic limit problem on the network.

Inverse problems

In [AC18] a KdV system on networks was proposed to model blood pressure. In this context, an interesting inverse problem to study about the determination of cardiac outflow pressure through noninvasive measurements arise. Also, considering different principal coefficients in each edge of the KdV equation and studying the inverse problem of recovering them through measurements at the ends of the network could be considered. The main tool proposed to solve this kind of problems are the Carleman inequalities.

supposer que u 0 = 0. Ainsi, d'après (1.1.5) la contrôlabilité exacte est équivalente à l'inégalité d'observabilité, ∥φ T ∥ L 2 (0,L) ≤ C∥Λ * (φ T )∥ L 2 (0,T ) , où Λ * est l'opérateur adjoint. Il n'est pas difficile de voir qu'étant donné φ T ∈ L 2 (0, L), Λ * (φ T ) = ∂ x φ(•, L), où φ est la solution de l'équation en temps rétrograde 

     -∂ t φ(t, x) -∂ x φ(t, x) -∂ 3 x φ(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), φ(t, 0) = φ(t, L) = ∂ x φ(t, 0) = 0, t ∈ [0, T ], φ(T, x) = φ T , x ∈ (0, L).
∥u 0 ∥ L 2 (0,L) ≤ C∥∂ x u(•, 0)∥ L 2 (0,
• Il existe λ ∈ C et u ∈ H 3 (0, L) \ {0}, tel que λu + u ′ + u ′′′ = 0, x ∈ (0, L) u(0) = u(L) = u ′ (0) = u ′ (L) = 0, • L ∈ N .
Ce lemme implique l'existence de solutions de (A.1.2) qui ne sont pas observables, par exemple dans le cas l = k = 1, la longueur critique associée est L = 2π et cela donne les solutions inobservables u(t, x) = a(cos(x) -1), a ∈ R. Considérons maintenant l'énergie L 2 d'une solution faible de (A.1.2), c'est-à-dire

E(t) = 1 2 L 0 (u(t, x)) 2 dx.
Formellement, en prenant la dérivée par rapport au temps de l'énergie, nous obtenons après quelques intégrations par parties 

Ė(t) = - 1 2 (∂ x u(t, 0 

Stabilité avec longueurs non critiques

Dans le cas non critique L / ∈ N nous pouvons montrer que l'énergie des solutions de (A.1.2) décroît exponentiellement. En effet, en multipliant (A.1.2) par u et en intégrant sur (0, T ) × (0, L) nous obtenons après intégrations par parties 

0 (u(T, x)) 2 dx - L 0 u 2 0 (x)dx = - T 0 (∂ x u(t, 0)) 2 dt.
Comme l'énergie est décroissante et avec l'inégalité d'observabilité, on obtient

E(T ) ≤ E(0) ≤ C T 0 (∂ x u(t, 0)) 2 dt ≤ C(E(0) -E(T )), ce qui implique E(T ) ≤ γE(0), avec γ = C C + 1 < 1.
En particulier, comme le système est invariant par translation en temps, on peut répéter cet argument sur les intervalles de la forme [(m -1)T, mT ], avec m = 1, 2, . . . pour obtenir

E(mT ) ≤ γE((m -1)T ) ≤ • • • ≤ γ m E(0).
Par conséquent, nous avons E(mT ) ≤ e -µmT E(0) où µ = 1 T ln( 1 γ ) > 0. Soit t > 0, alors il existe m ∈ N * telle que (m -1)T < t ≤ mT , et en utilisant encore que l'énergie est décroissante, nous obtenons

E(t) ≤ E((m -1)T ) ≤ e -µ(m-1)T E(0) ≤ 1 γ e -µt E(0).
Enfin, on a la stabilité exponentielle.

Considérons maintenant l'équation non linéaire de KdV

     ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + u(t, x)∂ x u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = u(t, L) = ∂ x u(t, L) = 0, t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L). (A.1.7)
On peut étendre le résultat précédant de la stabilité exponentielle aux solutions faibles du système non linéaire (A.1.7) à l'aide d'une approche de type perturbation. C'est-à-dire qu'il existe ε > 0 suffisamment petit pour lequel, pour tout u 0 ∈ L 2 (0, L) satisfaisant ∥u 0 ∥ L 2 (0,L) ≤ ε, l'unique solution faible de (A.1.7) satisfait E(t) ≤ Ce -µt E(0), pour C, µ > 0.

Stabilité avec longueurs critiques : amortissement interne

Dans le but d'obtenir la stabilité exponentielle dans le cas L ∈ N , un mécanisme dissipatif a été introduit dans [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF] prenant la forme F (u) = -au, où a ∈ L ∞ (0, L) satisfait a(x) ≥ a 0 > 0, ∀x ∈ ω, où ω est un sous-ensemble ouvert non vide de (0, L).

(A.1.8)

Les systèmes traités dans [PMVZ02] sont, l'équation linéaire

     ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + a(x)u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = u(t, L) = ∂ x u(t, L) = 0, t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L). (A.1.9) et le non linéaire      ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + u(t, x)∂ x u(t, x) + a(x)u(t, x) = 0, t ∈ [0, T ],
x ∈ (0, L), u(t, 0) = u(t, L) = ∂ x u(t, L) = 0, t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L).

(A.1.10) En utilisant un argument de contradiction et des idées de compacité, Perla, Menzala et Zuazua ont montré dans [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF] les résultats suivants.

Théorème A.1.1. Soient L > 0 et a ∈ L ∞ (0, L) satisfaisant (A.1.8).

• Il existe C > 0 et µ > 0 de sorte que pour tout u 0 ∈ L 2 (0, L), l'unique solution faible de l'équation linéaire (A.1.9) satisfait ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , ∀t ≥ 0.

• Il existe C, ε > 0 et µ > 0 de sorte que pour tout u 0 ∈ L 2 (0, L) avec ∥u 0 ∥ L 2 (0,L) ≤ ε, l'unique solution faible de l'équation non linéaire (A.1.10) satisfait ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , ∀t ≥ 0.

Le deuxième point du dernier résultat a été dérivé en utilisant un argument de type perturbatif, ce qui explique pourquoi ex nous ajoutons l'hypothèse de petitesse sur la donnée initiale. Alors, u(t, x) = 0, pour (t, x) ∈ (t 1 , t 2 ) × (0, L).

Le résultat de stabilité semi-globale est le suivant Théorème A.1.3. Soient L > 0, a ∈ L ∞ (0, L) satisfaisant (A.1.8) et R > 0. Il existe C(R) > 0 et µ(R) > 0 de telle sorte que pour tout u 0 ∈ L 2 (0, L) avec ∥u 0 ∥ L 2 (0,L) ≤ R, l'unique solution faible de (A.1.10) satisfait ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , ∀t ≥ 0.

Le sens semi-global de ce résultat provient du fait que nous pouvons choisir comme on veut le paramètre R > 0 de la donnée initiale, ce qui signifie des conditions initiales arbitraires, mais le taux de décroissance dépend du R.

Résultats de stabilisation frontière

Dans cette partie, nous rappelons quelques résultats de stabilisation frontière pour l'équation de KdV. Considérons le système linéaire

        
∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = K 1 (u), t ∈ [0, T ], u(t, L) = K 2 (u), ∂ x u(t, L) = K 3 (u), t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L), (A.1.11) et le non linéaire

         ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3
x u(t, x) + u(t, x)∂ x u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = K 1 (u), t ∈ [0, T ], u(t, L) = K 2 (u), ∂ x u(t, L) = K 3 (u), t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L).

(A.1.12) Le résultat suivant a été prouvé par Cerpa et Crépeau dans [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF] et est lié à la stabilisation rapide.

Théorème A.1.4 (Stabilisation rapide). Soit µ > 0 et considérons K 1 (u) = K 2 (u) = 0. Donc, il existe un opérateur F µ : H 1 0 (0, L) → R tel que si K 3 (u) = ∂ x u(t, 0) + F µ (u), alors le système en boucle fermée (A.1.11) est globalement bien posé dans H 1 0 (0, L). De plus, ∃C > 0, tel que pour tout u 0 ∈ H 1 0 (0, L), ∥u(t, •)∥ H 1 0 (0,L) ≤ Ce -2µt ∥u 0 ∥ H 1 0 (0,L) , pour tout t ≥ 0.

L'idée principale de ce résultat est d'utiliser une approche basée sur la méthode du Gramian. Grâce à cette technique, le terme de feedback K 3 (u), prendre la forme K 3 (u) = ∂ x u(t, 0) + F µ (u) de telle sorte que l'opérateur associé au système sans contrôle soit anti-symétrique (c-à-d A * = -A). Un autre résultat de stabilisation rapide a été prouvé dans [START_REF] Cerpa | Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition[END_REF], cette fois-ci, en agissant sur la condition de Dirichlet à gauche et en utilisant la technique de backstepping (voir [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF] pour une introduction sur la technique de backstepping pour les équations aux dérivées partielles).

Théorème A.1.5 (Stabilisation rapide). Soit µ > 0 et considérons K 2 (u) = K 3 (u) = 0. Alors, il existe un opérateur K 1 (u) = K 1,µ (u) et C > 0, tel que pour toute solution faible u de (A.1.11), ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , pour tout t ≥ 0.

Ce résultat peut être étendu à l'équation non linéaire (A.1.12) en utilisant un argument de perturbation et des donnés initiales petites. Dans le but de montrer un résultat de stabilité exponentielle en agissant par la droite, dans Théorème A.1.6 (Stabilisation rapide, cas non critique). Soient L / ∈ N et µ > 0 et considérons K 1 (u) = K 2 (u) = 0. Alors, il existe un opérateur K 3 (u) = K 3,µ (u) et C > 0, tel que pour toute solution faible u de (A.1.11), ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , pour tout t ≥ 0.

Ce résultat peut être étendu à l'équation non linéaire (A.1.12) en utilisant un argument de perturbation et des donnés initiales petites. La restriction L / ∈ N dans le théorème ci-dessus, est encore due au manque de contrôlabilité de (A.1.2). Dans le cas L ∈ N , les mauvaises propriétés de contrôle s'améliorent si l'on étudie le système non linéair (voir section A.1). Par [Ros97] L 2 (0, L) = H ⊕ M , où H correspond à l'espace contrôlable de (A.1.1) et M l'espace non contrôlable (dépendant tous deux de L). De plus, dim(M ) < ∞ et dim(M ) est le nombre de paires différentes d'entiers positifs (l j , k j ) satisfaisant (A.1.6). Considérons P H (resp. P M ) la projection H (resp. M ), le résultat suivant a été prouvé dans [START_REF] Coron | Local exponential stabilization for a class of Korteweg-de Vries equations by means of time-varying feedback laws[END_REF] Théorème A.1.7 (Feedback variable dans le temps). Soient K 1 (u) = K 2 (u) = 0. Si dim(M ) = 2n avec n ∈ N * , alors il existe un feedback periodique, variable dans le temps K 3 : R × L 2 (0, L) → R et des constantes positives C, µ, r, telles que si on laisse K 3 (u) = K 3 (t, u), toute solution de (A.1.12) avec ∥u 0 ∥ L 2 (0,L) ≤ r vérifie ∥P H u(t, •)∥ L 2 (0,L) + ∥P M u(t, •)∥ 1/2 L 2 (0,L) ≤ Ce -µt ∥P H u 0 ∥ L 2 (0,L) + ∥P M u 0 ∥ 1/2 L 2 (0,L) , ∀t ≥ 0.

Maintenant, afin d'éliminer la restriction sur les longueurs critiques dans les feedbacks qui agissent par la droite, une version modifiée de la technique de backstepping appelé pseudo-backstepping a été utilisée dans [START_REF] Özsarı | Pseudo-backstepping and its application to the control of Korteweg-de Vries equation from the right endpoint on a finite domain[END_REF], le coût à assumer est l'utilisation de deux contrôleurs.

Théorème A.1.8. Soient L > 0 et µ > 0 et considérons K 1 (u) = 0. Alors, il existe des opérateurs K 2 , K 3 et des constantes positives C, µ, tels que pour toute solution faible u de (A.1.11), ∥u(t, •)∥ L 2 (0,L) ≤ Ce -µt ∥u 0 ∥ L 2 (0,L) , pour tout t ≥ 0.

Là, encore une fois, ce résultat peut être étendu à l'équation non linéaire (A.1.12) en utilisant une approche de type perturbation et des donnés initiales petites.

Contrôle et stabilité dans le cas critique

Comme nous l'avons mentionné à la section A.1, même si le système linéaire (A.1.1) n'est pas contrôlable, il est possible de montrer des résultats de contrôlabilité pour le système non linéaire à l'aide du terme non linéaire

         ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3
x u(t, x) + u(t, x)∂ x u(t, x) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = u(t, L) = 0, t ∈ [0, T ], ∂ x u(t, L) = h(t), t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L).

(A.1.13) Ces résultats sont résumés dans le théorème suivant Théorème A.1.9. L'équation non linéaire de KdV (A.1.13) est localement contrôlable si • (Coron et Crépeau [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF]) dim(M ) = 1, pour tout T > 0.

• (Cerpa [START_REF] Cerpa | Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain[END_REF]) dim(M ) = 2, pour T suffisamment grand.

• (Cerpa et Crépeau [START_REF] Cerpa | Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain[END_REF]) dim(M ) > 2, pour T suffisamment grand.

La preuve de ces résultats est basée sur la méthode de développement en puissances (power expansion method). Grosso modo, d'après le travail de Rosier [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], l'approximation du premier ordre de (A.1.13) (le système linéaire (A.1.1)) n'est pas contrôlable, l'idée étant d'utiliser des approximations d'ordre supérieur pour atteindre l'espace non contrôlable. Comme l'indique le théorème ci-dessus, dans certains cas, les auteurs ont eu besoin d'un temps grand pour atteindre la contrôlabilité. Pendant plusieurs années, la nécessité de cette condition est restée un problème ouvert, mais récemment Coron, Koenig et Nguyen ont donné une réponse négative dans [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF].

Théorème A.1.10. Soit L ∈ N tel que 2k + l / ∈ 3N * . Alors (A.1.13) n'est pas localement contrôlable à zéro en temps petit avec des contrôles dans H 1 (0, T ) et donnés initiales et finales dans H 3 (0, L) ∩ H 1 0 (0, L). Dans le cas de l'analyse de stabilité, une question similaire se pose naturellement. Dans le cas où la longueur est critique, le système non linéaire (A.1.7) présent-t-il de meilleures propriétés de stabilité que le système linéaire (A.1.2) ? Dans la section A.1 nous avons signalé que dans le cas non critique L / ∈ N , le système non linéaire (A.1.7) est localement exponentiellement stable. Si L ∈ N , les résultats suivants sont connus, • (Nguyen [START_REF] Nguyen | Decay for the nonlinear KdV equations at critical lengths[END_REF]) dim(M ) = 1 et de plus, le système decroît localement avec un taux de 1/t 2 .

Les deux premiers résultats sont basés sur la théorie de variété centrale (central manifold), notons que L = 2π 7 3 est la plus petite longueur pour laquelle dim(M ) = 2, tandis que le troisième résultat s'inspire du développement en séries de puissances, de la théorie des fonctions quasi-périodiques et de l'analyse développée dans [START_REF] Coron | On the small-time local controllability of a KdV system for critical lengths[END_REF]. Il reste encore des questions ouvertes concernant le contrôle et la stabilité de l'équation non linéaire de KdV, par exemple en ce qui concerne le théorème A.1.10 :

• Prouver la non contrôlabilité en temps petit dans le cadre de la régularité classique, c'est-à-dire le contrôle dans L 2 (0, T ) et des donnés initiales dans L 2 (0, L).

• Remplacer la condition L ∈ N telle que 2k +l / ∈ 3N * dans le théorème A.1.10, par la condition plus générale dim(M ) > 1.

• D'après le théorème A.1.9, l'équation non linéaire de KdV (A.1.13) est contrôlable en temps long. Donc, la recherche du temps optimal de contrôlabilité est une question ouverte intéressante.

L'équation de Korteweg-de Vries dans des réseaux 

B.2 First determinant computation

Recall that by (3.2.5)

A 1 =   (λ 1 ) 2 (λ 2 ) 2 (λ 3 ) 2 e λ1ℓ1
e λ2ℓ1 e λ3ℓ1 λ 1 e λ1ℓ1 λ 2 e λ2ℓ1 λ 3 e λ3ℓ1   , where λ j = λ j (s), j = 1, 2, 3 are the solutions of the characteristic equation s + λ 3 = 0. Let ∆ 1 (s) be the determinant of A 1 .

Here we show that: For all s ̸ = 0 with Re(s) ≥ 0, it holds ∆ 1 (s) ̸ = 0. This property was stated in [CFSZ18, Remark 2.5] without proof, here for a sake of completeness we give a proof based on [START_REF] Capistrano-Filho | Neumann boundary controllability of the Gear-Grimshaw system with critical size restrictions on the spatial domain[END_REF]. Suppose that ∆ 1 (s) = 0 for some s with Re(s) ≥ 0. Then, there exists f ∈ H 3 (0, ℓ 1 ), non-trivial solution of sf (x) + f ′′′ (x) = 0,

x ∈ (0, ℓ 1 ), f ′′ (0) = f ′ (ℓ 1 ) = f (ℓ 1 ) = 0.

(B.2.1) Now, consider the conjugate of (B.2.1) sf (x) + f ′′′ (x) = 0, x ∈ (0, ℓ 1 ), f ′′ (0) = f ′ (ℓ 1 ) = f (ℓ 1 ) = 0. 

B.3 Second determinant computation

Recall that by (3.2.7) where λ + j = λ j (iρ 3 ), j = 1, 2, 3 are the solutions of the characteristic equation iρ 3 + λ 3 = 0. Here we show that: For all ρ > 0 and n ∈ {1, . . . , N }, it holds det(D n ) ̸ = 0. Let n ∈ {1, . . . , N }. Following [START_REF] Capistrano-Filho | Neumann boundary controllability of the Gear-Grimshaw system with critical size restrictions on the spatial domain[END_REF] and Appendix B.2. Suppose that det(D n ) = 0 for some ρ > 0. Then, there exists f ∈ H 3 (0, ℓ n ), non-trivial solution of iρ 3 f (x) + f ′′′ (x) = 0,

D n =   -1 -1 -1 e λ +
x ∈ (0, ℓ n ),

f (0) = f (ℓ n ) = f ′ (ℓ n ) = 0. (B.3.1)
Now, consider the conjugate of (B.3.1) 

-iρ 3 f (x) + f ′′′ (x) = 0, x ∈ (0, ℓ n ), f (0) = f (ℓ n ) = f ′ (ℓ n ) =

B.4 Sum of determinants

Recall that by (3.2.7) and (3.2.18) where λ + j = λ j (iρ 3 ), j = 1, 2, 3 are the solutions of the characteristic equation iρ 3 + λ 3 = 0.

D n =   -1 -1 -1 e λ +
Here we show that: For all ρ > 0, it holds it can be shown that for all ρ > 0, ℓ n > 0 it holds F (ρ, ℓ n ) < 0. Thus, Re 

  2 D(A) := ∥u∥ 2 H + ∥Au∥ 2 H . Definition 1.1.1 (Adjoint operator). If D(A) is a dense subset of H, we can define the adjoint A * of A as the linear operator A * : D(A * ) ⊂ H → H characterized by ⟨Au, z⟩ H = ⟨u, A * z⟩ H , (u, z) ∈ D(A) × D(A * ), where D(A * ) := {z ∈ H : ∃C > 0 depending on z : |⟨Au, z⟩ H | ≤ C∥z∥ H , ∀u ∈ D(A)}. Definition 1.1.2 (Dissipative operator). The linear operator A : D(A) -→ H is called dissipative if Re⟨Au, u⟩ H ≤ 0, ∀u ∈ D(A).

  Figure 1.1.4. • For the initial condition u(0) = [-2 -3] ⊤ , the solution converges to a new equilibrium point [-5 0] T , see Figure 1.1.4. • For the initial condition u(0) = [-3 -3] ⊤ , the solution diverges, see Figure 1.1.4.

Figure 1 . 1 :

 11 Figure 1.1: Initial condition u(0) = [-1 -3] ⊤

  (1.1.11) Straightforward computations show that the function u(t) = e at cos(bt) is a solution of (1.1.11) if a, b satisfy -ah cos(bh), b = e -ah sin(bh).

  u(t, 0)) 2 dt.

  2.14 the following open question appears:Open problem 2. Can we prove exponential stability of the KdV equation on a star shaped network in presence of time delay?

Figure 2

 2 Figure 2.1: Time-evolution of t → ln(E(t)) for different values of feedback terms.

Figure 2

 2 Figure 2.2: Time-evolution of t → ln(E(t)) for different values of feedback with delay term.

Figure 2

 2 Figure 2.3: Time-evolution of t → ln E(t) E(0)
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  Hugo Parada, Emmanuelle Crépeau, and Christophe Prieur. Global well-posedness of the KdV equation on a star-shaped network and stabilization by saturated controllers. SIAM Journal on Control and Optimization, 60(4):2268-2296, 2022.

  -1)+j e λj ℓn = 0, 3 j=1 c N 3(n-1)+j λ j e λj ℓn = 0

  =j det(D ℓ ).Then, from Appendix B.3, it holds, for all j = 1, . . . , N , det(D j ) ̸ = 0, thus∆ N,+ =

ℓ 2 n

 2 in (3.2.36), defining L = max n=1,...,N ℓ n and ℓ = min n=1,...,N

  .2.40) which concludes the proof of Theorem 3.1.3. □ To obtain a well-posedness result for the systems (KdV-S) and (LKdV-S) we can use the same idea presented in Theorem 3.1.3 and Lemma B.1.3 to take in account the saturation. It is very important that in Lemma B.1.3 appears the time in the right-side, this estimate gives us the possibility to take small-time in the fixed-point approach. Then to derive the global in time well-posedness similar estimates as (3.2.35)-(3.2.40) can be obtained. Theorem 3.2.1. Let (ℓ n ) n=1,...N ∈ (0, ∞) N , α ≥ N 2 and T > 0. Then, for all u 0 ∈ L 2 (T ), there exists a unique solution u ∈ B T of (KdV-S) or (LKdV-S). Moreover, there exist 0 < T * ≤ T and C > 0 such that u ∈ Y T * and ∥u∥ Y T * ≤ C∥u 0 ∥ L 2 (T ) .

  system can be written as ∂ t u = Au + f . The following result can be obtained using [Pav87, Theorem 10.1, Page 129] and [Pav87, Theorem 10.1, Page 132]
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  norm ∥ • ∥ H . To prove the well-posedness of (5.2.2) we follow[START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF]. The proof is based on showing that the triplet {A, H, Y}, with A = {A(t) : t ∈ [0, T ]}, for some T > 0 fixed and Y = D(A(0)), forms a constant domain system (CD-system), see[START_REF] Kato | Linear evolution equations of "hyperbolic" type[END_REF][START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF]. The following theorem gives the existence and uniqueness results and is proved in[START_REF] Kato | Linear evolution equations of "hyperbolic" type[END_REF]:Theorem 5.2.1. Assume that 1. Y = D(A(0)) is a dense subset of H, 2. D(A(t)) = D(A(0)), for all t > 0, 3. for all t ∈ [0, T ], A(t)generates a strongly continuous semigroup on H and the family A = {A(t) : t ∈ [0, T ]} is stable with stability constants C and m independent of t (i.e. the semigroup (S t (s)) s≥0 generated by A(t) satisfies ∥S t (s)U ∥ H ≤ Ce ms ∥U ∥ H , for all U ∈ H and s ≥ 0), 4. ∂ t A(t) belongs to L ∞ * ([0, T ], B(Y, H)), the space of equivalent classes of essentially bounded, strongly measure functions from [0, T ] into the set B(Y, H) of bounded operators from Y into H. Then, problem (5.2.2) has a unique solution U ∈ C([0, T ], Y) ∩ C 1 ([0, T ], H) for any initial datum in Y.

  denoted by ∥ • ∥ t . By (5.1.3), the norms ∥ • ∥ H and ∥ • ∥ t are equivalent in H: ∀t ≥ 0, ∀(u, z) ∈ H,

  .15) using (5.1.3) and (5.1.7). The following theorem gives the existence and uniqueness results of (5.2.13).Theorem 5.2.4. Assume (5.1.3)-(5.1.5), that a and b are nonnegative functions belonging to L ∞ (0, L) satisfying (5.1.7)-(5.1.8) and that U 0 ∈ H. Then there exists a unique mild solution U ∈ C([0, +∞), H) to (5.2.13). Moreover, if U 0 ∈ D(A 2 (0)), then the solution is classical and U ∈ C([0, +∞), D(A 2 (0))) ∩ C 1 ([0, +∞), H).

Figure 5

 5 Figure 5.2: Time-evolution of t → ln(E(t)) for different values of M (internal delay).Finally, in Figure5.3 we present a comparison between the action of time-varying delay and constant delay for boundary and internal feedbacks. We take τ (t) = d(1.5 + sin(t)), τ max = 2.5d and τ min = 0.5d. In both figures, we see how the energy associates to time-varying delay is oscillating between the associated to τ max = 2.5d and τ min = 0.5d.

Figure 6

 6 Figure 6.1: Star Shaped Network for N F = 3 and N ∞ = 3.

Figure 6 . 3 :

 63 Figure 6.3: Possible acted branches of Theorem 3.1.5

6.6. 1

 1 About the nonlinear KdV equation with 5 null boundary conditions

(

  A.1.5) On peut remarquer, que en faisant le changement de variable ξ = L -x et τ = T -t, on obtient que φ(T -t, L -x) est solution de (A.1.2) et donc, l'inégalité d'observabilité se lit comme suit

  )) 2 , d'où l'on déduit que l'énergie est une fonction non croissante du temps. En outre, si L ∈ N , par le lemme A.1.1, il existe des solutions de (A.1.2) qui satisfont ∂ x u(•, 0) = 0 et donc avec une énergie constante.

L

  

  [CL14] Coron et Lü introduisent un feedback agissant sur la condition au bord Neumann. Ce feedback est basé sur une transformation de Fredholm et inspiré par des résultats précédents pour l'équation de Kuramoto-Sivashinsky [CL15].

  Théorème A.1.11. Le système (A.1.7) est localement asymptotiquement stable si • (Chu, Coron et Shang [CCS15]) dim(M ) = 1, • (Tang, Chu, Shang et Coron [TCSC18]) L = 2π 7 3 .

0 |f | 2 dx - ℓ1 0 ff 0 |f | 2 dx + ℓ1 0 f3 ℓ1 0 x|f | 2 dx + 3 ℓ1 0 |f ′ | 2 dx - ℓ1 0 iρ 3 ℓ1 0 x|f | 2 dx + ℓ1 0 xf

 000000000 (B.2.2) Multiplying (B.2.1) by f , integrating over (0, ℓ 1 ) and performing integration by parts, we gets ℓ1 ′′′ dx + |f ′ (0)| 2 = 0. (B.2.3)Similarly, multiplying (B.2.2) by f and integrating over (0, ℓ 1 ), we gets ℓ1 ′′′ f dx = 0. (B.2.4)Then adding (B.2.3) and (B.2.4) yields to 2Re(s)ℓ1 0 |f | 2 dx = -|f ′ (0)| 2 . (B.2.5)As f is non-trivial and Re(s) ≥ 0, we get f ′ (0) = 0. Then, by (B.2.5) Re(s) = 0. Thus, we can make the change of variable s = iρ 3 for ρ ∈ R. Multiplying (B.2.1) by xf , integrating over (0, ℓ 1 ) and performing integration by parts, we getiρ xf f ′′′ dx = 0. (B.2.6)Similarly, multiplying (B.2.2) by xf and integrating over (0, ℓ 1 ), we get-′′′ f dx = 0. (B.2.7)Then, adding (B.2.6) and (B.2.7), we obtain f ′ ≡ 0. Using the boundary conditions of (B.2.1) we deduce f ≡ 0 which is a contradiction. Finally f ≡ 0 and ∆ 1 (s) ̸ = 0 for all s ̸ = 0 with Re(s) ≥ 0.

0 |f | 2 dx + ℓn 0 f3 ℓn 0 x|f | 2 dx + 3 ℓn 0 |f ′ | 2 dx - ℓn 0 iρ 3 ℓn 0 x|f | 2 dx + ℓn 0 xf

 0000000 .3.1) by f , integrating over (0, ℓ n ) and performing integration by parts, we getiρ 3 ℓn 0 |f | 2 dx -ℓn 0 f f ′′′ dx + |f ′ (0)| 2 = 0. (B.3.3) Similarly, multiplying (B.3.2) by f and integrating over (0, ℓ n ), we get -iρ 3 ℓn ′′′ f dx = 0. (B.3.4) Then, adding (B.3.3) and (B.3.4) yields to f ′ (0) = 0. Multiplying (B.3.1) by xf , integrating over (0, ℓ n ) and performing integration by parts, we get iρ xf f ′′′ dx = 0. (B.3.5) Similarly, multiplying (B.3.2) by xf and integrating over (0, ℓ n ), we get -′′′ f dx = 0. (B.3.6) Then, adding (B.3.5) and (B.3.6), we obtain f ′ ≡ 0. Using the boundary conditions of (B.3.1) we deduce f ≡ 0 which is a contradiction. Hence, det(D n ) ̸ = 0 for all ρ > 0.

  Let n ∈ {1, . . . , N }, we are going to show that Re det(F n ) det(D n ) < 0. Using (3.2.20) and (3.2.21) we getdet(F n ) det(D n ) = √ 3ρ 3 e -iρℓn + e -1 2 ρ( √ 3-i)ℓn + e -1 2 ρ(-√ 3-i)ℓn

  n ) det(D n ) ̸ = 0.Remark B.4.1. In the case ℓ 1 = • • • = ℓ N , the proof become easier. In fact, (F 1 ) = ∆ 1,+ ̸ = 0 thanks to Appendix B.2.
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  note that by (4.2.18), h ∈ L 2 (0, θ) and hence (4.2.22) is well-posed [Cer14, Proposition 3]. Moreover,

  .2.38) Finally, with (4.2.33) and (4.2.38) and arguing by density, the proof of Proposition 4.2.4 is finished.

  More precisely, by (5.2.14), we can take µ 1 and µ

	2 as
	in (5.3.19)-(5.3.20). From the Cauchy-Schwarz inequality and Proposition 5.3.2, we get, as in the
	proof of Theorem 5.3.1,
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  more general feedback laws were considered as cone bounded control laws. Note that Theorem 3.1.4 and Theorem 3.1.5 hold, replacing sat by any odd nonlinearity that satisfies the properties given in Lemma B.1.1, Lemma B.1.2 and Lemma B.1.3.

  T ) , ce qui est en effet, l'inégalité inverse de (A.1.3). Dans [Ros97, proposition 3.3] il a été prouvé que cette inégalité est vraie si et seulement si L / ∈ N , où l'ensemble N est appelé l'ensemble des longueurs critiques et est donné par

	N = 2π	k 2 + kl + l 2 3	; k, l ∈ N * .	(A.1.6)
	Donc (A.1.1) est exactement contrôlable si et seulement si L / ∈ N . De plus, on a le lemme suivant
	dû a [Ros97, lemme 3.5],			
	Lemme A.1.1. Les affirmations suivantes sont équivalentes	

  De plus, dans[START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF], un résultat de stabilité exponentielle semi-global a été démontré pour le système non linéaire (A.1.10). Tout d'abord, dans[START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF], une condition plus forte sur l'ensemble ω a été utilisée : ∃δ > 0, (0, δ) ∪ (L -δ, L) ⊂ ω. Dans[START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF] cette condition a été améliorée, ce qui permet d'obtenir (A.1.8). En travaillant directement avec le système non linéaire, deux difficultés principales apparaissent, la première étant de passer à la limite dans le terme non linéaire et la seconde que le Théorème de Holmgrem ne s'applique pas dans le cas non linéaire. Donc, nous avons besoin de la propriétée suivante de continuation unique de Saut et Scheure.Théorème A.1.2 (Théorème 4.2, [SS87]). Soient L > 0 et u ∈ L 2 (0, T ; H 3 (0, L)) une solution de ∂ t u(t, x) + ∂ x u(t, x) + ∂ 3 x u(t, x) + u(t, x)∂ x u(t, x) = 0,telle que u(t, x) = 0, pour (t, x) ∈ (t 1 , t 2 ) × ω, où ω est un sous-ensemble ouvert non vide de (0, L).

  Ces dernières années, les équations aux dérivées partielles dans des réseaux ont été utilisées pour modéliser plusieurs systèmes physiques parmi eux, les réseaux de transport, les réseaux électriques, les systèmes de communication et les structures flexibles à liens multiples, en particulier les flux dans des réseaux comment les gazoducs, les canaux d'irrigation, la circulation sanguine, etc, (voir par exemple [BČG + 14, DZ06, LLS12]). Ces réseaux sont généralement représentés par des graphes,Ainsi, s ε ≤ M ∥a n ∥ L ∞ (0,ℓn) , on a que sat 2 (a n u n (t, •)) = a n u n (t,•), ce qui signifie que la saturation n'est pas active. Nous traitons le problème ouvert 4 au chapitre 3. En continuant l'étude de l'effet de la saturation sur l'équation de KdV, nous pouvons nous demander si la stabilité exponentielle est valable dans le cas d'une saturation dans la frontière : Problème ouvert 5. Peut-on prouver la stabilité exponentielle d'une équation de KdV en présence de saturation dans la frontière ? Dans le chapitre 4 nous étudions le problème ci-dessus, nous basons notre stratégie sur un argument de contradiction et sur le principe d'invariance de LaSalle. A.2 Résultats principaux de cette thèse Dans cette partie, nous décrivons les principales contributions de cette thèse Stabilisation avec retard de l'équation de KdV dans un réseau étoilé Dans le chapitre 2 nous nous concentrons sur le problème ouvert 2. Nous étudions le caractère bien posé et la stabilité exponentielle d'une équation de KdV dans un réseau en forme d'étoile avec des termes de feedback internes retardés. Pour l'étude du caractère bien posé, une nouvelle variable a été introduite pour tenir compte du retard, et le caractère bien posé local de l'équation non linéaire a été obtenue par linéarisation et application du théorème du point fixe de Banach. La stabilité exponentielle locale est démontrée à l'aide d'une fonction de Lyapunov, avec une estimation associée du taux de décroissance qui dépend fortement de la fonction de Lyapunov choisie, dans ce cas nous demandons de petites longueurs. Une inégalité d'observabilité pour le système non linéaire a ensuite été dérivée à l'aide d'un argument de contradiction, ce qui a permis de prouver la stabilité exponentielle sans restriction sur les longueurs. Ensuite, le cas où le support des termes retardés n'est pas nécessairement inclus dans le support des termes de feedback sans retard est considéré. Enfin, des simulations numériques ont été présentées, qui démontrent comment les termes de rétroaction retardés affectent la stabilité. Ce chapitre est principalement basé sur l'article • Hugo Parada, Emmanuelle Crépeau, and Christophe Prieur. Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network. Mathematics of Control, Signals, and Systems, 34(3):559-605, 2022. Bien posé global de l'équation de KdV dans un réseau étoilé et stabilisation par des contrôleurs saturés Le chapitre 3 est consacré à l'étude des problèmes ouverts 1 et 4. Nous nous concentrons sur le caractère bien posé global et la stabilité exponentielle d'une équation de KdV sur un réseau en forme d'étoile avec des termes de feedback internes saturés. Pour établir le caractère bien posé, on utilise la transformée de Laplace d'un système linéaire dans le réseau pour obtenir les propriétés de lissage de Kato, qui ont permis d'obtenir le bien posé locale en temps du système non linéaire. Des estimations d'énergie sont ensuite utilisées pour établir le caractère bien posé global en temps. En outre, la stabilité exponentielle avec un contrôleur saturé est démontrée. Ce chapitre est principalement adapté de l'article • Hugo Parada, Emmanuelle Crépeau, and Christophe Prieur. Global well-posedness of the KdV equation on a star-shaped network and stabilization by saturated controllers. SIAM Journal on Control and Optimization, 60(4):2268-2296, 2022. Analyse de stabilité d'une équation de KdV avec feedback frontière saturé Le chapitre 4 est lié au problème ouvert 5. Nous discutons de la stabilité exponentielle de l'équation non linéaire de KdV avec un feedback saturé sur la frontière. Le caractère bien posé de l'équation est obtenu en utilisant la théorie des semigroupes non linéaires et des résultats de points fixes. La stabilité exponentielle est établie par l'approche classique de l'observabilité, et la stabilité asymptotique de l'équation linéaire de KdV est abordée en utilisant le principe d'invariance de LaSalle. Ce chapitre est basé sur l'article de conférence suivante : • Hugo Parada. Stability analysis of a Korteweg-de Vries equation with saturated boundary feedback. IFAC-PapersOnLine, 55(26):1-6, 2022. 4th IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2022. Résultats de la stabilité de l'équation de KdV avec un retard variable dans le temps Dans le chapitre 5 concernant le problème ouvert 4, nous présentons des résultats de stabilité interne et aux frontières pour l'équation non linéaire de KdV avec un retard variable dans le temps. Le chapitre comprend des résultats caractère bien posé utilisant la théorie des opérateurs à domaine constant, une analyse de stabilité locale utilisant les fonctionnelles de Lyapunov avec des estimations explicites des taux de décroissance, et des simulations numériques pour illustrer les résultats. Ce chapitre est basé sur l'article • Hugo Parada, Chahnaz Timimoun, and Julie Valein. Stability results for the KdV equation with time-varying delay. Systems & Control Letters, 177:105547, 2023.

In fact, the result presented in [Ngu21, Theorem 1.1] is more general and holds if L ∈ N , dim(M ) > 1, with an extra condition, which is also checked for a big quantity of values [Ngu21, Corollary 1.1]
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In this chapter, the stability analysis of the linear and nonlinear Korteweg-de Vries equations in presence of a saturated feedback actuator is studied. The well-posedness is derived by using nonlinear semigroup results, Schauder's and Banach fixed-point theorems. The exponential stability is shown thanks to an observability inequality, which is obtained via contradiction and compactness arguments. Finally, an alternative proof of the asymptotic stability of the linear Korteweg-de Vries equation is presented. This chapter is based on the paper: 

Introduction

In [START_REF] Marx | Global Stabilization of a Korteweg-de Vries Equation with saturating distributed control[END_REF] the saturated internal stabilization of a single KdV equation was studied and recently in [START_REF] Parada | Global well-posedness of the KdV equation on a star-shaped network and stabilization by saturated controllers[END_REF] these ideas were extended to the network case. In our best knowledge, there are no work dealing with the stability of a KdV equation with saturated feedback on the boundary, thus this chapter gives a sake of completeness on this topic. The plan is to follow the ideas presented in 4.2.1 Well-posedness of (KdVLs)

In this part, we focus on the study of (KdVLs), in particular we prove the following result.

Proposition 4.2.1. Let u 0 ∈ L 2 (0, L) and |α| < 1, then there exists a unique mild solution u ∈ C([0, ∞), L 2 (0, L)) of (KdVLs). Moreover, if u 0 ∈ D(A), this solution is classical and u ∈ C([0, ∞), D(A)) ∩ C 1 ((0, ∞), L 2 (0, L)).

Proof. By [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] the operator A 0 : D(A 0 ) → L 2 (0, L), D(A 0 ) = {w ∈ H 3 (0, L) ∩ H 1 0 (0, L) : w ′ (L) = 0} such that A 0 w = Aw is closed and by [KG02, Page 91] the operator sat satisfies

Thus, sat is a Lipschitz continuous function and hence the operator A is closed. Now, let us prove that A is dissipative, let w, v ∈ D(A), then we get

Thus, using integration by parts and that w, v ∈ D(A) we get

Therefore, denoting

which is positive by |α| < 1, and using (4.2.2) ⟨Aw -Av, w -v⟩ L 2 (0,L) ≤ -C α |w ′ (0) -v ′ (0)| 2 ≤ 0.

Thus, we get A dissipative. Now, we are going to prove that, for λ > 0 small enough D(A) ⊂ R(I -λA). In other words, for each w ∈ D(A), there exists v ∈ D(A) such that (I -λA)v = w. Let w ∈ D(A) and λ = 1 λ we are looking for solutions of λv + v ′ + v ′′′ = λw, v(0) = v(L) = 0, v ′ (L) = sat(αv ′ (0)). (4.2.4)

Consider the map T : H 2 (0, L) → L 2 (0, L) defined by T (u) = z, where z is the solution of

Note that the operator T is well-defined, that is, for all u ∈ H 2 (0, L) there exists a unique solution to (4.2.5). Indeed, let ψ

that can be written as (A 0 -λI)φ = -f . But as λ > 0 then λ / ∈ σ(A 0 ) (see for instance [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF]). Thus (A 0 -λI) is invertible, and we conclude that φ is well-defined and hence z. Now, we show that T has a fixed-point. Let C > 0 to be defined after and consider the set

Taking ξ such that (5.2.14) is satisfied and from (5.1.4), we get -a(x)

which means that the operator A 2 (t) := A 2 (t) -κ(t)I is dissipative. Now we will compute ⟨A 2 (t) * U, U ⟩ t , where A 2 (t) * is the adjoint of A 2 (t). The adjoint A 2 (t) * is defined by

with domain

Then, for all U = (u, z) ⊤ ∈ D(A 2 (t) * ), we get integrating by parts in space and in ρ,

Then, using the boundary conditions, we have

Using Young's inequality, we obtain

By (5.2.14) and (5.1.4), we have

which means that the operator A 2 (t) * = A 2 (t) * -κ(t)I is dissipative. Since A 2 (t) and A 2 (t) * are dissipative and A 2 (t) is a densely defined closed linear operator, then A 2 (t) is the infinitesimal generator of a C 0 semigroup of contraction on H (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]) for any t ∈ [0, T ] be fixed. As the proof of Theorem 5.2.2, we can easily prove (5.2.4). Consequently, for all t ∈ [0, T ],

A 2 (t) generates a strongly continuous semigroup on H and the family A 2 = { A 2 (t) : t ∈ [0, T ]} is stable with stability constants C and m independent of t (see Proposition 3.4 of [START_REF] Kato | Linear evolution equations of "hyperbolic" type[END_REF]). These mean that 3. of Theorem 5.2.1 is satisfied. Finally, we can also prove, similarly to the proof of Theorem 5.2.2, that

. Since all assumptions of Theorem 5.2.1 are verified, then the problem

The requested solution of (5.2.13) is then given by U (t) = e t 0 κ(s)ds Ũ (t), similarly to the proof of Theorem 5.2.2.

Well-posedness of the linear system with a source term

In this subsection, we will study the well-posedness of the following linear KdV equation with a source term

(5.2.16) Proposition 5.2.2. Assume (5.1.3)-(5.1.5) and that a and b are nonnegative functions belonging to L ∞ (0, L) satisfying (5.1.7)-(5.1.8). For any (u 0 , z 0 (-τ (0)•, •)) ∈ H and f ∈ L 1 (0, T, L 2 (0, L)) there exists a unique mild solution (u, u(t -τ (t)•, •)) ∈ B T × C([0, T ], H) to (5.2.16). Moreover, there exists C > 0 independent of T such that (5.2.8) and (5.2.9) hold.

Proof. The proof is similar to the proof of Proposition 5.2.1 and is left to the readers (see also [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF]).

Well-posedness of the nonlinear system (5.1.2)

Finally, we will show the global well-posedness result of the nonlinear system (5.1.2).

Theorem 5.2.5. Let L > 0 and assume (5.1.3)-(5.1.5) and that a and b are nonnegative functions belonging to L ∞ (0, L) satisfying (5.1.7) and (5.1.8). Then for any (u 0 , z 0 (., -τ (0).)) ∈ H, there exists a unique mild solution u ∈ B T of (5.1.2).

Proof. Following [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF], we can get the global existence of the solution by showing the local (in time) existence and using the decay of the energy. Let ũ ∈ B T , we consider the map Ψ : B T -→ B T defined by Ψ(ũ) = u where u is the solution of the following system

We can prove similarly to the proof of [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF]Proposition 4] (see also Theorem 5.2.3) that Ψ is a contraction on the closed ball {u ∈ B T : ∥u∥ B T ≤ R} for some chosen R. Hence, from the Banach fixed-point theorem, the map Ψ has a unique fixed-point u ∈ B T which is the solution of the nonlinear system (5.1.2).

Exponential stability results

In this section, we prove the exponential stability results, firstly with the boundary damping, secondly with the internal damping.

Boundary stability result

We start this section showing that for a solution of (5.1.1) the energy is a not-increasing function of time. We recall that the energy of (5.1.1) is defined by

(5.3.1)

Proposition 5.3.1. Suppose that (5.1.3)-(5.1.6) be satisfied. Then for any solution of (5.1.1), the energy defined by (5.3.1) is not increasing and satisfies

Proof. It is enough to follow the proof of Proposition 5.2.1 and notice that for u ∈ H 1 0 (0, L),

Consider the following new Lyapunov candidate

where E is defined by (5.3.1), µ 1 , µ 2 > 0 and

x(u(t, x)) 2 dx, (5.3.4)

(5.3.5)

Note that V 1 is classical for the KdV equation and V 2 comes from the delay term depending on time.

Theorem 5.3.1. Suppose that (5.1.3)-(5.1.6) are satisfied and assume that the length L fulfills L < π √ 3. Then, there exists r > 0 such that, for every (u 0 , z 0 ) ∈ H satisfying ∥(u 0 , z 0 )∥ 0 ≤ r, the energy of the unique mild solution of (5.1.1) decays exponentially. More precisely, there exist two positive constants γ and C such that

where, µ 1 and µ 2 are taken such that

(5.3.8)

(5.3.9)

Remark 5.3.1. We note that the decay rate γ decreases when the upper bound M of the delay τ (t) increases, as shown in the estimation of the decay rate (5.3.7). We can also observe the same phenomenom when d tends to 1.

Proof. Note that the function V is equivalent to the energy E. More precisely, for every t > 0,

(5.3.10) Thus, it suffices to show that V decays exponentially. Let γ > 0 to fix later, we are going to prove that V (t) + 2γV (t) ≤ 0. Let u solution of (5.1.1) with (u 0 , z 0 ) T ∈ D(A(0)) such that ∥(u 0 , z 0 )∥ 0 ≤ r with r > 0 chosen later. First, we differentiate V 1 and use integration by parts to have

Similarly, we differentiate V 2 :

) and performing integration by parts, we get

(5.3.12) Joining (5.3.2), (5.3.11) and (5.3.12) we have

where the matrix Ψ α,β is defined by

Then, as Φ α,β is definite negative and by the continuity of the trace and the determinant, we find that for µ 1 and µ 2 small enough, the matrix 1 2 Φ α,β + Ψ α,β is negative definite. More precisely, following [BCV19, Remark 5], we can take µ 1 and µ 2 as in (5.3.8)-(5.3.9). For the term involving

By the injection of

Finally, using Proposition 5.3.1 we can obtain ∥U ∥ 0 ≤ r and hence invoking Poincaré's inequality

Thus, we can easily obtain (5.3.7). Therefore, we have V (t)+2γV (t) ≤ 0 and hence

for all t > 0. Using (5.3.10) we obtain (5.3.6). Since D(A(0)) is dense in H, we can take (u 0 , z 0 ) ∈ H.

Internal stability result

In this section, we will study the local stability of (5.1.2) using some Lyapunov functional. We consider the following definition of the energy of the nonlinear system (5.1.2)

where ξ is defined by (5.2.14). In the following proposition, we will prove the decay of the energy of the nonlinear system (5.1.2).

Proposition 5.3.2. Assume (5.1.3)-(5.1.5) and that a and b are nonnegative functions belonging to L ∞ (0, L) satisfying (5.1.7) and (5.1.8). Then, for any solution of (5.1.2), the energy E defined by (5.3.13) is non-increasing and satisfies

(5.3.14)

Proof. The proof is similar to the proof of the dissipativity of A 2 (t), noting that

(see also the proof of Proposition 5.2.1). Now we take the following Lyapunov functional

where µ 1 > 0 and µ 2 > 0 are fixed constants taken small enough, E is the energy defined by (5.3.13), V 1 by (5.3.4) and V 3 is defined by

From the definition of V (t) and E(t), we have for any t > 0,

(5.3.17)

In the following theorem, we will prove that the energy of the nonlinear system (5.1.2) decays exponentially.

Theorem 5.3.2. Assume (5.1.3)-(5.1.5) and that a and b are nonnegative functions belonging to L ∞ (0, L) that satisfy (5.1.7) and (5.1.8), and assume that the length L satisfies L < π √ 3. Then, there exists r > 0 small enough, such that, for every (u 0 , z 0 ) ∈ H satisfying ∥(u 0 , z 0 )∥ 0 ≤ r, the energy of the unique mild solution of (5.1.2) decays exponentially. More precisely, there exist two positive constants γ and C such that

where, µ 1 and µ 2 are taken such that

(5.3.20)

Remark 5.3.2. We note that the decay rate γ decreases when the upper bound M of the delay τ (t) increases, as shown in the estimation of the decay rate (5.3.18). We can also observe the same phenomenon when d tends to 1.

Proof. Since E and V are equivalent from (5.3.17), we will prove that V decays exponentially, so we will prove that V (t) + 2γV (t) ≤ 0 for all t > 0. Assume that u is a solution of (5.1.2) with

We start by differentiating V 1 and integrating by parts, we get

Now, we differentiate V 3 and integrating by parts, we get, using -τ

and build a uniform spatial and time discretization of N x + 1 and N t + 1 points, respectively, separated by the steps ∆x = L/N x and ∆t = T /N t . We present now the numerical scheme in the case of boundary delay. The internal case follows similar ideas, (see [START_REF] Parada | Delayed stabilization of the Korteweg-de Vries equation on a star-shaped network[END_REF] for a similar scheme in the case of constant delay in a network). We choose the delay step ∆ρ = 1/N ρ . Now we introduce the notation u(i∆x, n∆t) = u n i and z(k∆ρ, n∆t) = z n k for i = 0, . . . , N x , k = 0, . . . , N ρ and n = 0, . . . , N t . We use the following approximation for the derivatives:

To approximate the term of third order ∂ 3 x , we use D

To approximate the nonlinear term, we use explicit approximation u n i D + x u n i . Note now that by the boundary conditions we have that

Nρ for all n = 0, . . . , N t . Then, taking

and τ n = τ (n∆t), our scheme can be seen as 

and its linearization around zero: For the linear system (LKdVinf), we can prove the following stabilization result:

, assume that the damping terms (a j ) j=1,...,N satisfy (3.1.6). Then, there exist C, µ > 0 such that for all u 0 ∈ L 2 (T ), the unique solution u of (LKdVinf) satisfies ∥u(t, •)∥ L 2 (T ) ≤ Ce -µt ∥u 0 ∥ L 2 (T ) , for all t > 0. Theorem 6.5.1 is interesting in the sense that we derive an exponential stability result for the nonlinear system without all the damping actives (see Figure 6.5.1). The main idea to prove Theorem 6.5.1 is to show appropriated regularity results to derive an observability inequality using compactness ideas.

Consider the space, Z =

Then, if all the damping terms are active and working directly with the nonlinear system (KdVinf), we expect to show the following exponential stability result:

where α > N 2 and the control functions g = (g 1 , • • • , g N ) T , p = (p 1 , • • • , p N ) T ∈ (L 2 (0, T )) N act on the exterior Dirichlet and Neumann conditions. The focus of this part is to study the null controllability of the linear KdV equation posed in a star-shaped network without acting in all the branches, i.e. 2N -2 boundary controls using Carleman estimates. It is worth to mention that in the case of null controllability of a single KdV equation by the right via Carleman estimates two controls are needed, in this sense in the network case we are able to reduce the number of controls. Without loss of generality, we will consider that the not acted edge is the first one, that is p 1 = g 1 = 0. 

x φ j (t, x) = 0, (t, x) ∈ Q j , j = 1, . . . , N, φ j (t, 0) = φ 1 (t, 0), t ∈ (0, T ), ∀j = 2, . . . N,

x ∈ I j , (6.5.3) where φ T ∈ L 2 (T ). Note that if the controls g 2 , . . . , g N and p 2 , . . . , p N steer the system (KdVLs) from u 0 to 0 in L 2 (T ), then, multiplying (KdVLs) by φ solution of (6.5.3) and integrating with respect to (t, x) on Q j , we get the next after some integrations by parts

which leads to the following observability inequality;

In this sense, we can prove the following null controllability result.

Theorem 6.5.4. Let u 0 ∈ L 2 (T ), then, for every T > 0, there exist controls g = (0, g 2 , . . . , g N ) T ), p = (0, p 2 , . . . , p N ) T ∈ (L 2 (0, T )) N , such that the unique solution u ∈ B of (6.5.2) satisfies u j (T, •) = 0, for all j = 1, . . . , N .

Theorem 6.5.4 is proved using Carleman estimates. We manage to show a Carleman inequality using the external measures of N -1 equations of the network. The main complications of this APPENDIX A 

Resumé étendu en français

Par [Ros97, proposition 2.1] nous savons que A est le générateur d'un semigroupe fortement continu de contractions S(t), t ≥ 0 dans L 2 (0, L). Définissons l'espace

D'après [Ros97, proposition 3.2], pour tout u 0 ∈ L 2 (0, L), il existe une unique solution faible (mild solution) u = S(•)u 0 ∈ B T de (A.1.2). En outre, l'estimation suivante est valable

Cette estimation est généralement appelée régularité cachée. Considérons maintenant le système non linéaire

L'idée principale de la démonstration du caractér bien posé du système non linéaire (A.1.4) est d'utiliser l'estimation suivante (voir [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF]).

En utilisant la proposition ci-dessus et un argument du point fixe, nous obtenons le caractér bien pose local de (A.1.4).

Phénomène des longueurs critiques

Maintenant, étant donné T > 0, u 0 , u T ∈ L 2 (0, L) le problème de contrôlabilité exacte pour (A.1.1) consiste à trouver h ∈ L 2 (0, T ) de telle sorte que la solution u de (A.1.1) satisfasse u(T, Dans notre étude, nous nous concentrons sur un système lié à la modélisation mathématique du système cardiovasculaire humain. Sur chaque bras j, la fonction u j (t, x) modélise l'information de l'onde sur le déplacement à distance x et au temps t. Plus précisément, nous allons considérer le problème d'évolution suivante :

et sa linéarisation autour de 0 :

Les conditions du noeud central sont obtenues en prenant en compte l'argument suivant : si nous notons par u j et v j les variable sans dimension et à échelle répresentant respectivement la déflexion à partir de la position de repos et la vitesse sur la branche j d'une longue vague d'eau, alors nous obtenons [Whi99, équation (13.102)]

x u j (t, x), ∀x ∈ (0, ℓ j ), t > 0, j = 1, . . . , N. De plus, au niveau du noeud central, on peut supposer que l'élévation de l'eau est la même dans toutes les branches et que la somme des flux et nulle, ce qui implique :

Donc, à la jonction nous obtenons les suivantes conditions aux limites : Le premier résultat principal de [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF] énonce la stabilité exponentielle semi-globale de (A.1.17).

Théorème A.1.13. Supposons que les termes d'amortissement (a n ) n=1,...,N satisfont (A.1.18). Soient (ℓ n ) N n=1 ⊂ (0, ∞) et R > 0, alors il existe C(R) > 0 et µ(R) > 0 de sorte que pour tout u 0 ∈ L 2 (T ) avec ∥u 0 ∥ L 2 (T ) ≤ R, la solution de (A.1.17) satisfait ∥u(t, •)∥ L 2 (T ) ≤ C(R)∥u 0 ∥ L 2 (T ) e -µ(R)t pour tout t > 0. Puis, le résultat de stabilisation locale suivant a été prouvé dans [START_REF] Ammari | Feedback Stabilization and Boundary Controllability of the Korteweg-de Vries Equation on a Star-Shaped Network[END_REF].

Théorème A.1.14. Supposons que les termes d'amortissement (a n ) n=1,...,N satisfont (A.1.19) et soit (ℓ n ) N n=1 ⊂ (0, ∞). Il existe alors ε, C > 0 et µ > 0 de sorte que pour tout u 0 ∈ L 2 (T ), avec ∥u 0 ∥ L 2 (T ) ≤ ε, la solution de (A.1.17) satisfait ∥u(t, •)∥ L 2 (T ) ≤ C∥u 0 ∥ L 2 (T ) e -µt pour tout t > 0.

Les résultats de stabilisation ci-dessus ont été démontrés en utilisant un argument de contradiction pour obtenir une inégalité d'observabilité appropriée et nous serviront de point de départ dans l'analyse développée dans cette thèse.

Stabilisation de KdV avec retard

Les phénomènes de retard apparaissent dans de nombreuses applications, par exemple en biologie, en mécanique ou en ingénierie. Les termes de retard sont inévitables dans la pratique en raison du décalage des mesures, du temps d'analyse ou du temps de calcul. Des recherches très actives ont été menées récemment sur les problèmes de stabilité des équations aux dérivées partielles avec retard. Il est bien connu que même un petit retard dans le mécanisme de rétroaction peut déstabiliser un système (voir par exemple [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF][START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF]). Mais, un terme de retard peut également améliorer les performances du système ([ADBRB93]). Les problèmes de stabilité des systèmes avec retard présentent un intérêt à la fois théorique et pratique. Dans les travaux [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF] et [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF] le problème de la robustesse par rapport à un retard temporel pour une équation de KdV a été étudié avec contrôle au bord et interne respectivement. Les systèmes traités dans [START_REF] Baudouin | Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback[END_REF] et [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF] sont respectivement Problème ouvert 2. Peut-on prouver la stabilité exponentielle de l'équation de KdV dans un réseau en étoile en présence des retardes ?

Le chapitre 2 répond à ce problème ouvert dans le cas des retards internes. Ce problème est intéressant car dans le cas du réseau, nous pourrions avoir un comportement différent sur chaque branche (critique ou non). De plus, en suivant [START_REF] Valein | On the asymptotic stability of the Korteweg-de Vries equation with timedelayed internal feedback[END_REF] nous sommes capables de considérer le cas où, dans certaines branches, nous n'avons qu'un terme de feedback avec un retard a j = 0, b j ̸ = 0 (voir le théorème 2.1.3). Suite aux questions liées au retard, la question suivante émerge Problème ouvert 3. Peut-on prouver la stabilité exponentielle d'une équation de KdV en présence d'un retard variable dans le temps ? Nous traitons cette question au chapitre 5. Dans ce cas, l'équation de KdV avec un retard variant dans le temps n'est plus invariante par translation dans le temps, et nous ne pouvons donc pas montrer la stabilité exponentielle en prouvant une inégalité d'observabilité. En particulier, les idées présentées dans la section A.1 ne sont plus possibles. Une autre complication provient du fait que dans le cas d'un retard variable dans le temps, l'opérateur associé est également variable dans le temps, ce qui fait que l'étude du caractère bien posé a besoin de plus d'attention.

Stabilisation de KdV avec saturation

Dans la plupart des situations réelles, nous devons prendre en compte la saturation du contrôle des entrées en raison de certaines contraintes (physiques, économiques, etc.). En ce qui concerne le contrôle saturé dans les systèmes à dimensions infinies, nous pouvons nous référer à [START_REF] Prieur | Wave equation with cone-bounded control laws[END_REF] où une équation d'onde avec une loi de feedback distribuée et saturée aux frontières a été étudiée, [START_REF] Marx | Global Stabilization of a Korteweg-de Vries Equation with saturating distributed control[END_REF] où la stabilisation interne saturée d'une équation KdV unique a été étudiée et récemment [START_REF] Mironchenko | Local stabilization of an unstable parabolic equation via saturated controls[END_REF] où une loi de contrôle feedback saturée a été dérivée pour une équation linéaire de réaction-diffusion. Parfois, l'ajout d'une saturation au contrôle par rétroaction déstabilise le système et peut même créer de nouveaux points d'équilibre.

Dans la section A.1, nous avons vu que dans le cas de longueurs critiques, le système (A.1.10) avec la feedback F (u) = -au, est exponentiellement stable. En ce qui concerne cette loi de feedback, dans [START_REF] Marx | Global Stabilization of a Korteweg-de Vries Equation with saturating distributed control[END_REF] le cas saturé a été analysé, c'est-à-dire

x u + u∂ x u)(t, x) + sat(a(x)u(t, x)) = 0, t ∈ [0, T ], x ∈ (0, L), u(t, 0) = u(t, L) = ∂ x u(t, L) = 0, t ∈ [0, T ], u(0, x) = u 0 , x ∈ (0, L), • sat = sat 2 : pour f ∈ L 2 (0, L) nous définissons

, si ∥f ∥ L 2 (0,L) ≥ M. L 2 (0, T ; H 1 (0, L)) then sat(ay) ∈ L 1 (0, T ; L 2 (0, L)) is continuous and ∀y, z ∈ L 2 (0, T ; H 1 (0, L)) we have ∥sat(ay) -sat(az)∥ L 1 (0,T ;L 2 (0,L)) ≤ 3L 1/2 T 1/2 a * ∥y -z∥ L 2 (0,T ;H 1 (0,L)) .