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Résumé de la thèse

Cette thèse vise à établir de manière mathématiquement rigoureuse certains aspects d’un lien entre
systèmes intégrables et matrices aléatoires. Motivé par la compréhension de l’échelle hydrodynamique
des systèmes intégrables, Herbert Spohn a récemment remarqué qu’il est possible d’étudier les propriétés
statistiques de ces systèmes en les comparant à des ensembles de matrices pour lesquelles on a accès à la
loi du spectre : les β-ensembles.

Les systèmes que nous considérons sont des systèmes de particules qui évoluent dans le temps selon une
interaction aux plus proches voisins. Le qualificatif "intégrable" signifie qu’un grand nombre de quantités
indépendantes sont conservées le long de la dynamique. Cette propriété très spéciale permet d’accéder,
en principe, à des formules permettant d’analyser ces systèmes. Cependant, ces formules peuvent être
compliquées et il est commode de relier leur étude à celle de matrices aléatoires. Notre exemple clé est
celui de la chaîne de Toda, un système introduit dans les années 1960, qui est un système de particules
interagissant selon un potentiel non linéaire. Une manière directe de démontrer son intégrabilité est
d’établir l’existence d’une paire de Lax : la dynamique est encodée par l’évolution de deux matrices B et
L, appelées matrices de Lax, et qui satisfont une équation impliquant que les valeurs propres de L sont
conservées dans le temps. Dans cette thèse, par "système intégrable", on entend "système possédant une
paire de Lax".

Pour comprendre l’échelle hydrodynamique de ces systèmes — c’est-à-dire une échelle où on ne
s’intéresse plus au comportement individuel des particules, mais aux changements macroscopiques du
système — il est nécessaire d’adopter un point de vue statistique. Plutôt qu’essayer de comprendre le
mouvement de chaque particule, on fait l’hypothèse que localement, le système est à l’équilibre : aléatoire,
distribué selon une loi de probabilité bien précise, appelée Ensemble de Gibbs Généralisé (Generalized
Gibbs Ensemble), qui est invariante dans le temps. Sous cette hypothèse, il s’agit alors de comprendre
la distribution de la matrice de Lax L lorsque le système est distribué selon les mesures invariantes de
Gibbs. Dans ce contexte, la matrice de Lax devient une matrice aléatoire dont on vise à comprendre
les valeurs propres : lorsque sa taille tend vers l’infini (ce qui correspond à considérer un nombre de
particules dans le système qui tend vers l’infini), a-t-on convergence du spectre ? Si oui, peut-on accéder
à une caractérisation de la limite ? Que peut-on dire des fluctuations autour de cette limite ?

Les matrices de Lax des systèmes considérés ont la particularité d’être à bande, en raison de la
structure d’interactions aux plus proches voisins. De plus, lorsque l’on considère une mesure de Gibbs
particulière, on observe que celles-ci ressemblent à des matrices bien connues, en tant que représentation
matricielle des β-ensembles. Par exemple, dans le cas de la chaîne de Toda, la matrice de Lax ressemble
à la représentation tridiagonale du β-ensemble réel, découverte par Dumitriu et Edelman.

Le β-ensemble réel est une loi de probabilité sur RN , dépendant d’une température inverse β ¡ 0
et d’un potentiel extérieur V , qui peut être interprétée comme une loi de probabilité sur un ensemble
de particules vivant sur l’axe réel, se repoussant selon un potentiel logarithmique, et confinées par le
potentiel extérieur V . En particulier, on peut voir ce modèle comme un gaz de Coulomb restreint à
la droite réelle. On peut également voir le β-ensemble réel comme la loi jointe du spectre de matrices
aléatoires : les plus fameux représentants de ce fait sont les cas du GOE (Gaussian orthogonal ensemble)
et du GUE (Gaussian unitary ensemble) dans les cas particuliers d’une température inverse β � 1 ou 2.

L’existence d’une représentation matricielle pour tout β a été établie par Dumitriu et Edelman, grâce
à un modèle de matrices tridiagonales. Le β-ensemble est donc l’un des (très rares) cas où il est possible de
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donner explicitement la loi du spectre d’une matrice aléatoire. Pour ces raisons, les propriétés statistiques
du β-ensemble sont très étudiées. Il est également possible de définir des β-ensembles sur d’autres espaces
que RN : d’autres exemples sont donnés par le β-ensemble circulaire, où les particules sont sur le cercle
unité, ou encore le β-ensemble antisymétrique, avec des particules sur l’axe imaginaire pur. Dans tous
ces cas, on possède une représentation matricielle du type de celle donnée par Dumitriu et Edelman.

Pour comparer systèmes intégrables et β-ensembles, on se place dans les β-ensembles à grande tem-
pérature, c’est à dire dans le régime où β est de l’ordre de 1{N , N étant le nombre de particules. Ce régime
a beaucoup intéressé les communautés de physique mathématique et de matrices aléatoires récemment :
la limite du spectre, ses fluctations et ses statistiques locales ont entre autres été étudiées.

Dans ce contexte, cette thèse établit mathématiquement la correspondance entre systèmes intégrables
et β-ensembles sous deux points de vue : celui des grandes déviations et de la mesure limite, et celui des
fluctuations autour de la limite.

Ce manuscrit se divise en cinq chapitres :

1. Le premier chapitre introduit le problème et son contexte, en présentant les principales idées per-
mettant de comprendre le lien entre ensembles de matrices et systèmes intégrables.

2. Le deuxième chapitre, basé sur [GM22], en collaboration avec Alice Guionnet, établit ce lien d’un
point de vue des grandes déviations pour les mesures empiriques des matrices d’intérêt, permettant
d’obtenir une caractérisation de la mesure limite de la matrice de Lax pour la chaîne de Toda en
termes de la mesure limite dans le β-ensemble réel à grande température.

3. Le troisième chapitre, basé sur [MM23b], en collaboration avec Guido Mazzuca, établit ce lien d’un
point de vue des grandes déviations, cette fois pour le système d’Ablowitz-Ladik, une discrétisation
intégrable de l’équation de Schrödinger avec non-linéarité cubique, relié lui au β-ensemble circulaire
à grande température.

4. Le quatrième chapitre, basé sur [DGM23], en collaboration avec Charlie Dworaczek Guera, établit
un théorème central limite pour la mesure empirique du β-ensemble réel à grande température,
testée contre des fonctions test suffisamment régulières.

5. Le cinquième chapitre, basé sur [MM23a], en collaboration avec Guido Mazzuca, établit pour divers
systèmes intégrables le lien avec les β-ensembles d’un point de vue des fluctuations : on y établit
un théorème central limite pour la mesure empirique de la matrice de Lax, et on le compare au
théorème central limite dans le β-ensemble correspondant.
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Chapter 1

Introduction

1.1 Random matrices: A first example
Random matrix theory focuses on understanding the spectrum of large matrices with random entries. Its
use has proven to be extremely fruitful in various domains of mathematics and physics: Since its first use
in Statistics by Wishart in 1928 [Wis28], it has been extensively used in quantum mechanics, as pioneered
by Wigner in the 50’s who modeled the Hamiltonian of heavy nuclei by large random matrices. Other
important fields of application include statistical mechanics, number theory, and integrable models. This
manuscript aims at presenting recent developments and contributions to this last field, more precisely to
the theory of integrable systems, which are very particular systems evolving in time - in some sense
that we will describe precisely in the course of this first chapter. In this introduction, we try to give some
context to the problem we are concerned with, and some of the most important ideas of this topic. It is
divided in three main parts:

• Sections 1.1-1.4 are dedicated to the presentation of several random matrix models and some of
their statistical properties.

• Sections 1.5-1.8 present the notion of integrable system and a way to analyse them by linking them
to random matrix ensembles. Our key example is the one of the Toda chain.

• In Section 1.9, we present related works, and in Section 1.10 we give a summary of the main results
of this thesis.

Most of the time, it is not possible to work out directly the law of the spectrum of a given random
matrix, and one is led to search for asymptotic results about the spectrum. In this setting, of particular
interest is the empirical measure of eigenvalues, given by

µ̂N pAq � 1
N

Ņ

i�1
δλipAq ,

where A is a N �N matrix, and λ1pAq, . . . , λN pAq are its eigenvalues. When A is random, i.e. when its
entries are random variables, µ̂pAq defines a random probability measure which one aims to understand.
In particular, a natural question is the existence (and computation when possible) of a limit for this
measure when the size N of the matrix goes to infinity. A fundamental example of such an asymptotic
result is given by Wigner’s semicircle law, which was discovered by Wigner in [Wig55], motivated by the
statistical modelization of atoms with heavy nuclei:

7



8 CHAPTER 1. INTRODUCTION

Definition 1.1.1 (Wigner matrix). Let K � R or C.
Let pai,jq1¤i j¤N be a family of i.i.d random variables with values in K with Erai,js � 0, Er|ai,j |2s � 1,
and let pdiqi¥1 be i.i.d real random variables with Erdis � 0, Erd2

i s � σ2 ¡ 0. We say that the hermitian
matrix X is a Wigner matrix if it is given by

Xi,j �

$'&'%
1?
N
ai,j if i<j,

1?
N
di if i=j,

1?
N
aj,i otherwise.

Theorem 1.1.2 (Wigner’s semicircle law). Let XpNq be a sequence of N �N Wigner matrices.
Then, the sequence of empirical measures µ̂N :� µ̂pXpNqq converges almost surely in distribution

towards the semicircle law sc given by

dscpxq � 1
2π

a
4� x21r�2,2spxqdx . (1.1.1)

Remark 1.1.3. The convergence of Theorem 1.1.2 says that on a set of probability one, the measures
µ̂N converge in distribution towards sc, that is, for any f : RÑ R bounded continuous,»

R
fdµ̂N Ñ

»
r�2,2s

fdsc .

Because of the normalization 1?
N

in the definition of a Wigner matrix, and by the law of large numbers,
the euclidean norm of the rows of XpNq are asymptotically of order one, which helps understand why we
find a non trivial limit for the empirical measure of eigenvalues.

This result can be proven for example via a moments method, which consists in establishing that the
moments of the measure µ̂N »

xndµ̂N � 1
N

TrXn

converge towards the moments of the semicircle law.
Given a family of random matrices whose empirical measure of eigenvalues converge, one can ask more

refined questions, among which:

• Can one compute the limiting measure ?

• Are there large deviations for this sequence of measures ?

• What is the rate of the convergence ? Is there an associated Central Limit Theorem ?

In the present work, we will be interested in those questions for particular models of random matrices.

1.2 GOE,GUE, β-ensembles
A symmetric N � N matrix is said to be in the Gaussian orthogonal ensemble GOEpNq if its entries
are independent (up to the symmetry constraint), standard real Gaussians outside the diagonal and real
Gaussians with mean zero and variance 2 on the diagonal, i.e.

Ak,l � xk,l for k   l, Ak,k �
?

2xk,k, and Ak,l � Al,k,

where pxk,lq1¤k¤l¤N is an independent family of standard Gaussians.
The Gaussian unitary ensemble, formed of Hermitian matrices, is defined similarly in terms of complex

Gaussians, namely the Hermitian matrix A is in the Gaussian unitary ensemble GUEpNq if one has

Ak,l � xk,l � iyk,l?
2

, for k   l, Ak,k � xk,k, and Al,k � Ak,l



1.2. GOE,GUE, β-ENSEMBLES 9

for an independent family of real standard Gaussians pxk,l, yk,lqk¤l.
Notice that those matrices are Wigner matrices. In particular, their empirical measures converge

towards the semi circle law. However, a lot more can be said about those particular cases: both models
are highly symmetric, in the sense that the GOE is invariant under orthogonal conjugation, and the
GUE is invariant under unitary conjugation. In symbols, for the case of the GOE, this means that if
A P GOEpNq and O is a non random N �N orthogonal matrix, then OAOT is also in GOEpNq.

As a consequence of this symmetry, one is able to extract the joint law of eigenvalues of those ensem-
bles. The following Theorem can be found in [AGZ10][Theorem 2.5.2].

Theorem 1.2.1 (Law of the unordered spectrum of GOE/GUE). Let A P GOEpNq or A P GUEpNq.
Let β � 1 in the first case, and β � 2 in the second case. Then, the law of the unordered spectrum of A
is given by the probability measure on RN

dPβ
N px1, . . . , xN q � 1

Zβ
N

¹
i j

|xi � xj |βe�β
°N

i�1 x2
i {4dx1 . . . dxN . (1.2.1)

Remark 1.2.2. One can also construct an analogue of the previous models having eigenvalue distribution
(1.2.1) with β � 4 using quaternions. For details, see [AGZ10][Section 4.1]. Furthermore, the normalizing
constant Zβ

N in (1.2.1), called the partition function of the model, can be computed by the use of Selberg’s
integral formula, [AGZ10][Section 2.5.3].

Equation (1.2.1) is to be compared with the so-called Coulomb gas, defined as the probability measure
on pRdqN

dPCoulomb,N px1, . . . ,xN q � 1
ZCoulomb,N

exp
#
�β

�
Ņ

i�1
V pxiq �

¸
1¤i j¤N

gpxi � xjq
�+

,

where g is the fundamental solution of the Laplacian, i.e. satisfies

∆g � δ0

in the sense of distributions; and V is a function going to infinity at infinity, having the effect of confining
the particles of the gas. In the case d � 2, the function g is given by gpxq � log |x|, hence one can
see the probability measure (1.2.1) as a two dimensional Coulomb gas constrained to the real line. This
comparison encourages to apply the statistical physics formalism to the GOE and the GUE, resulting in
a good understanding of the repartition of their eigenvalues. A natural generalization of these particular
ensembles of matrices is the β-ensemble on the real line.

Definition 1.2.3 (β-ensemble on the real line). Let β ¥ 0 and N ¥ 2 integer. Let V : RÑ R continuous
and such that for some δ ¡ 0 and c P R;

V pxq ¥ pβN � 1� δq log |x| � c for all x P R . (1.2.2)

The β-ensemble (on the real line) of size N and potential V is the probability measure on RN given by

dPV,β
N px1, . . . , xN q � 1

ZV,β
N

¹
1¤i j¤N

|xi � xj |βe�
°N

i�1 V pxiqdx1 . . . dxN . (1.2.3)

The N � N random matrix A is said to be in the β-ensemble with potential V if its law of unordered
eigenvalues is given by (1.2.3).

Remark 1.2.4. A few comments about this definition.
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i) Condition (1.2.2) ensures that the partition function

ZV,β
N �

»
RN

exp
�
β

¸
1¤i j¤N

log |xi � xj | �
Ņ

i�1
V pxiq

�
dx1 . . . dxN

converges. This can be checked using that for x, y P R,

log |x� y| ¤ logp1� |x|q � logp1� |y|q .

ii) The parameter β can be interpreted as an inverse temperature 1{T as is classical in statistical

physics. Roughly speaking, at fixed N , the smaller β is, the more the term
Ņ

i�1
V pxiq is prominent in

front of β
¸
i,j

log |xi � xj | (ignoring possible issues that may arise from the singularity of log at zero).

The density of PV,β
N then almost factorizes into the law of independent variables, which intuitively

corresponds to a disordered system, that is a system at high temperature. On the contrary, increasing
β has the effect of introducing correlations between the xi’s, intuitively lowering the temperature of
the system.

iii) The law Pβ
N of Theorem 1.2.1 corresponds to P

βx2
4 ,β

N in the notations of the previous definition.

By Theorem 1.2.1, GOEpNq is then contained in the 1-ensemble of size N with potential x2{4 and
GUEpNq is contained in the 2-ensemble of size N and potential x2{2. We can then adress the question
of the existence of a matrix representation for the β-ensembles with general β:

For β � 1, 2, 4 the β-ensembles with quadratic potentials have matrix representations with indepen-
dent entries. Does such a matrix representation exist for any β ¥ 0 ?

This question was positively answered by Dumitriu and Edelman in [DE02], giving a tridiagonal
representation of the β ensemble with quadratic potential. Before stating their theorem, recall that for
a ¡ 0 the χa distribution is the probability measure on R with density

fapxq � 21�a{2

Γpa{2qx
a�1e�x2{2 , (1.2.4)

where Γ is the classical Gamma function and by convention the χ0 distribution is constant to zero. For
integer a ¥ 0, χa is the law of the euclidean norm of a standard a-dimensional Gaussian vector:

χa
pdq�

b
g2

1 � . . .� g2
a ,

where the gi’s are independents Gaussians Np0, 1q.
Theorem 1.2.5 (Tridiagonal representation of the β-ensemble). Let β ¡ 0 and N ¥ 2 integer. Let
pgi, bjq1¤i¤N,1¤j¤N�1 be an idependent family with gi � Np0, 1q and bj � χpN�jqβ. The tridiagonal
matrix

T �

����������

g1
b1?

2
b1?

2 g2
b2?

2
b2?

2
. . . . . .
. . . . . . bN�1?

2
bN�1?

2 gN

���������
is in the β-ensemble of size N and potential x2{2.
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Let us say a few words about the particular case of β � 1 which is obtained via a tridiagonalization
procedure: Take A the N � N symmetric matrix with independent (up to the symmetry) centered
Gaussian entries, having variance 1{2 outside the diagonal and variance 1 on the diagonal (notice the
normalization by 1{?2 of the GOE, a matrix of the GOE being in the 1-ensemble with potential x2{4).
In other words, A P 1?

2 GOEpNq. Write A as

A �
�
a11 xT

x B



,

where a11 is a standard Gaussian, x is a vector of size N�1 having independent Gaussian entries Np0, 1{2q
and B is in 1?

2 GOEpN � 1q. Let then H P OpN � 1q such that Hx � }x}e1, with eT
1 � p1, 0, . . . , 0q. We

have �
1 0
0 H


�
a11 xT

x B


�
1 0
0 HT



�

�
a11 }x}eT

1
}x}e1 HBHT



,

and because B P 1?
2 GOEpN � 1q, HBHT also is. We now notice that }x} is 1?

2χN�1 distributed, and
we conclude by induction.

Theorem 1.2.5 is particularly useful when tackling problems related with the quadratic β-ensembles,
allowing one to study independent entries of a matrix instead of directly working with the correlated
probability measure (1.2.3). For instance, to investigate the moments of the empirical measure 1

N

°N
i�1 δxi

of x � px1, . . . , xN q distributed with respect to P
x2
2 ,β

N , it suffices to study the sequence of traces 1
N

TrTn

where the matrix T is given by Theorem 1.2.5. This substitution is then convenient because of the
independence of the coefficients of T .

In this thesis, we are interested in the regime where β scales as 1
N , namely β � 2P

N
, P ¥ 0 independent

of N .

Definition 1.2.6 (β ensemble at high temperature). Let P ¥ 0 and V : RÑ R continuous be such that
for some α ¡ 2P � 1, there exists a constant c such that for all x P R,

V pxq ¥ α log |x| � c .

The β-ensemble at high temperature with parameter 2P ¥ 0 and potential V : R Ñ R is the probability
distribution on RN

dPV, 2P
N

N px1, . . . , xN q � 1
Z

V, 2P
N

N

¹
1¤i,j¤N

|xi � xj |2P {Ne�
°N

i�1 V pxiqdx1 . . . dxN . (1.2.5)

This regime has attracted the attention of the mathematical physics and random matrices community
lately. It was first considered in [CL97]. In [ABG12], the authors derived the limiting measure of the
eigenvalues in the quadratic case. It was considered among others in [GZ19] from the large deviations
point of view, in [NT18], [HL21], [NTT23], where the authors studied the fluctuations of the empirical
measure around its limit, in [BGP15], [NT18] [Lam21] where the authors established local statistics in
those ensembles.

In this case, and with the quadratic potential V pxq � x2{2, considering the N � N matrix T of
Theorem 1.2.5, the entries of T are of order 1:

T pi, iq � Np0, 1q and Ti,i�1 � χ2P pN�iq{N .

Let us consider the k-th moment of T ,

1
N

TrT k � 1
N

¸
1¤i1,...,ik¤N,
|ij�1�ij |¤1

Ti1,i2Ti2,i3 . . . Tik,i1 ,



12 CHAPTER 1. INTRODUCTION

where we used the tridiagonal structure of T . This last sum has OpNq terms which are all of order 1,
therefore 1

N
TrT k should converge towards some deterministic ck P R. With this heuristics, we guess that

the empirical measure µ̂N � 1
N

°N
i�1 δxi

of x � Px2{2, 2P
N

N should converge towards some deterministic
probability measure on R. To make this statement more precise and in order to extend it to more general
potentials V , we next give some facts about large deviations, and some consequences for the β-ensembles,
and give a glimpse of Central Limit Theorems for such ensembles.

1.3 Large deviations, equilibrium measure, fluctuations
We give here the definition (in the case of a metric space) of a large deviation principle, and explain how
those can be applied to random matrix theory. We defer to Appendix A for some general facts about
large deviations.

Let pE, dq be a metric space and let pXN qNPN be a sequence of E-valued random variables defined on
some probability space pΩ,F ,Pq.
Let I : E Ñ R� Y �8 be a lower semi continuous function, meaning that for any a ¥ 0, the level set
I�1pr0, asq is closed.

Definition 1.3.1 (Large deviation principle).
We say that pXN qN satisfies a Large deviation principle (LDP) with rate function I and at scale N
if for any borelian A P BpEq, one has

� inf
xPÅ

Ipxq ¤ lim inf
N

1
N

logP pXN P Aq ¤ lim sup
N

1
N

logP pXN P Aq ¤ � inf
xPA

Ipxq , (1.3.1)

with Å the interior of A and A its closure.

Remark 1.3.2. We assume I to be lower semi continuous to ensure uniqueness of the rate function: the
chain of inequalities (1.3.1) uniquely determines I among the set of lower semicontinuous functions on
E.

Roughly speaking, pXN qN satisfies the previous LDP if for small ε and any x P E, we have for large
N (up to subexponential factors)

PpXN P Bxpεqq � e�NIpxq ,

where Bxpεq is the open ball centered in x with radius ε.
In our applications, the space E will always be the set of probability measures PpXq on a complete

separable (i.e. polish) metric space X such as R or the unit circle T, endowed with a metric compatible
with the topology of weak convergence. An example we will be using in the sequel of such a metric is
given by

dpµ, νq � sup
}f}BV¤1,}f}Lip¤1

����»
X

fdµ�
»

X

fdν

���� , (1.3.2)

with }f}BV the bounded variation of f defined as

}f}BV � sup
n

¸
x1 ... xn

|fpxi�1q � fpxiq|

where the supremum runs over the subdivisions of X and }f}Lip the Lipschitz norm of f .
Large deviations are a powerful tool to prove almost sure convergences. The following proposition is

a mere application of the Borel-Cantelli lemma.

Proposition 1.3.3. Let pXN qN satisfy a LDP at scale N and with rate function I.
Suppose that I is good, meaning that for any a ¥ 0, the set I�1pr0, asq is compact. Furthermore, assume
that I admits a unique minimizer x0.

Then XN converges almost surely towards x0.
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Remark 1.3.4. If x0 is a minimizer of the rate function I, then Ipx0q � 0. This can be seen by taking
A � E in (1.3.1).

By Sanov’s Theorem, see Theorem A.3.2, if pxiq is an i.i.d sequence of random variables, then its
sequence of empirical measures µ̂N satisfies a large deviation principle at scale N , with good rate function
Hp�|µq given by

Hpν|µq �
# ³

X
f log fdµ if ν is absolutely continuous with respect to µ with density f � dν

dµ

�8 otherwise.

Let us come back to the β-ensemble at high temperature with general potential V . The density of
PV, 2P

N

N can be written in terms of the empirical measure µ̂N of x � px1, . . . , xN q by

dPV, 2P
N

N px1, . . . , xN q � 1
Z

V, 2P
N

N

exp

����N
����P ¼

R2z∆

log |x� y|dµ̂N pxqdµ̂N pyq �
»
R
V pxqdµ̂N

���
�� ,

where ∆ � tpx, xq; x P Ru � R2. Let us ignore for a moment that the function log has a singularity
at zero. Then, as a consequence of Varadhan-Bryc Lemmas: Lemmas A.2.1 and A.2.2; and of Sanov’s
theorem, we deduce that the sequence of empirical measures satisfies a LDP at scale N and rate function

JV
P pµq �

#
EV

P pµq � infνPPpRq EV
P pνq if µ is absolutely continuous with respect to Lebesgue measure

�8 otherwise,
(1.3.3)

where, setting ρ for the density of µ with respect to Lebesgue measure, EV
P is given by

EV
P pµq � �P

¼
R2

log |x� y|dµpxqdµpyq �
»
R
ρpxq log ρpxqdx�

»
R
V pxqdµpxq .

Of course, the singularity at zero of the log has to be properly handled. This is done in greater generality
in [GZ19]. As a consequence we have:

Theorem 1.3.5 (LDP for the empirical measure at high temperature).
Assume x to be distributed with respect to PV, 2P

N

N . The empirical measure

µ̂N � 1
N

Ņ

i�1
δxi

satisfies a large deviation principle at scale N and with good, strictly convex rate function JV
P given by

(1.3.3).

This result is in the continuity of the large deviations for the empirical measure in the regime where
β ¡ 0 is fixed, that was established by Ben Arous and Guionnet in [BAG97]. As a consequence of their
result, one deduces that the limiting measure of the β ensemble at fixed β is the semicircle distribution
(1.1.1).

Using Proposition 1.3.3, we deduce that under PV, 2P
N

N the sequence of empirical measures converges
almost surely in distribution towards the minimizer of the functional EV

P . The following result can be
found in Lemma 2.3.2 and Proposition 4.2.2.

Proposition 1.3.6 (Equilibrium measure for PV, 2P
N

N ). Let µV
P be the minimizer of the functional EV

P ,
denote by ρV

P its density with respect to Lebesgue measure. Then, there exists some λV
P P R such that for

all x P R,
V pxq � 2P

»
R

log |x� y|dµV
P pyq � log ρV

P � λV
P . (1.3.4)
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As a consequence, there exists a constant CV
P such that for all x P R,

0   ρV
P pxq ¤ CV

P p1� |x|q2P e�V pxq .

In contrast with the fixed β case, the equilibrium measure in the high temperature regime has un-
bounded support. This can be informally explained by the fact that the correlations are less prominent
in the high temperature regime than in the fixed temperature one, where the compactness of the limiting
measure is a manifestation of such correlations. Another way of illustrating this difference in both regimes
in via Central Limit Theorems. As was shown first in [Joh98] for β � 2 and quadratic potential, one has
the following convergence in distribution: let x be distributed according to P2

N (1.2.1). Then, as N goes
to infinity, and for smooth enough functions f : RÑ R, the random variables

N

�
1
N

Ņ

j�1
fpxjq �

»
R
fpxqdscpxq

�

converge towards a Gaussian variable whose mean and variance depend on f . The fluctuations of the
empirical measure around its limit are thus of order 1{N . This theorem was then generalized and further
developed in the regime where β is fixed in [Shc13], [BG13a], [BG13b],[BLS18],[LLW19], [BMP22]. In
contrast with the fixed β case, as was established by [NT18] in the high temperature regime with quadratic
potential V pxq � x2

2 , the fluctuations of the empirical measure are of order 1{?N :

?
N

�
1
N

Ņ

j�1
fpxjq �

»
R
fpxqdµx2{2

P

�
Ñ Np0, σ2

x2{2,P pfqq .

Extending this result to more general potentials is the purpose of Chapter 4. As we will see in the next
section, the fluctuations are also of order 1{?N in the circular β ensemble in the high temperature
regime. Consequently, the fluctuations in the high temperature regime are of bigger order than the
fluctuations in the fixed temperature regime, giving evidence of more disorder in the high temperature
case.

We close this section by mentioning the local statistics of the β ensemble in the high temperature
regime, see [BGP15], [NT18], [Lam21], from which the local statistics of the β-ensemble can be seen to
be described by Poisson processes. More precisely, consider x to be distributed according to the high
temperature β-ensemble. Then, the sequence of random measures

Ņ

j�1
δNxj

converges (in an appropriate sense) towards a Poisson point process on R. This process has the property
that given two disjoint sets A and B, the number of particles that fall in A is independent of the number
of particles falling in B.

Again, this convergence can be put in contrast with the fixed temperature case, in which case, the
limiting process is number rigid as was shown in [DHLM21], meaning that under this point process,
the number of particles inside a compact set is a deterministic function of the configuration outside this
compact.

1.4 The circular β-ensemble at high temperature
Similarly to the β-ensemble on the real line, one can consider the circular β-ensemble at inverse
temperature β. It is the probability measure on the set TN , where T � r�π, πq is the torus, given by

dPV,β
C,N pθ1, . . . , θN q � 1

ZV,β
C,N

¹
1¤j¤ℓ¤N

|eiθj � eiθℓ |βe�
°N

j�1 V pθjq , (1.4.1)
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where V : T Ñ R is a continuous potential. The definition of this probability measure is very similar to
the one of the β-ensemble on the real line, and both ensembles share important common features. We
list in this section important results about the circular case. Those results always have (or are expected
to) have a counterpart in the β-ensemble on the real line.

The circular β-ensemble has a matrix representation, this time via unitary matrices. Before stating
the matrix representation, we introduce the law Θν on the unit disk D, where ν ¡ 1, by:
The random variable X is Θν distributed if for any bounded measurable f : DÑ R

ErfpXqs � ν � 1
2π

»
D
fpzqp1� |z|2q ν�3

2 d2z . (1.4.2)

For integer ν ¥ 2, Θν has the following geometrical interpretation: if u � pu1, . . . , uν�1q is sampled
according to the surface measure on the unit sphere Sν in Rν�1, then u1 � iu2 is Θν distributed [KN07].
We then define Θ1 as the uniform measure on the unit circle.

Next theorem can be found in [KN04][Theorem 1.2].

Theorem 1.4.1 (Matrix representation of the circular β-ensemble with null potential). Consider the
block diagonal N �N matrices

L � diag pΞ1,Ξ3,Ξ5 . . . , q and M � diag pΞ0,Ξ2,Ξ4, . . .q , (1.4.3)

where the blocks Ξj, j � 1, . . . , N � 1, take the form

Ξj �
�
αj ρj

ρj �αj



, ρj �

b
1� |αj |2, (1.4.4)

while Ξ0 � p1q and ΞN � pαN q are 1� 1 matrices. Define the N �N sparse matrix

E � LM, (1.4.5)

and suppose that the entries αj are independent complex random variables with αj � ΘβpN�jq�1 for
1 ¤ j ¤ N � 1 and αN is uniformly distributed on the unit circle. Then the eigenvalues of E are
distributed according to the Circular Ensemble (1.4.1) at temperature β�1 and potential V � 0.

Remark 1.4.2.

• The matrix E is called a CMV matrix (after Cantero, Moral and Velazquez [CMV05]).

• Because the Ξj’s are unitary matrices, so are L,M and E, therefore the eigenvalues of E indeed
land on the unit circle.

We will be interested in the high temperature regime, that is in the case where β � 2α{N for some
α ¡ 0. As in the real case, the circular β ensemble at high temperature displays large deviations for its
empirical measure

µ̂N � 1
N

Ņ

j�1
δeiθj ,

as can be deduced from [Ber18], [GZ19].

Theorem 1.4.3. Let β � 2α
N , with fixed α ¡ 0 and assume V : T Ñ R to be continuous. Define for

any µ P PpTq absolutely continuous with respect to the Lebesgue measure the functional

fV
α pµq � �α

»
T�T

log
�|eiθ � eiφ|�µpdθqµpdφq � α logp2q �

»
T
V pθqµpdθq�»

T
log

�
dµ

dθ
pθq



µpdθq � logp2πq ,

(1.4.6)

then
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i. the functional fV
α pµq is strictly convex and achieves its minimal value at a unique probability measure

µV
α , absolutely continuous with respect to the Lebesgue measure;

ii. the sequence pµ̂N q satisfies a large deviation principle in PpTq equipped with the weak topology at
speed αN with rate function defined for absolutely continuous µ P PpTq with respect to Lebesgue
measure by IV

α pµq � fV
α pµq � fV

α pµV
α q, and IV

α pµq � �8 otherwise. In particular

µN
a.s.ÝÝÝÝÑ

NÑ8
µV

α . (1.4.7)

In particular, this last theorem implies the following law of large numbers: Let θ be distributed
according to PV, 2α

N

C,N . If f is bounded measurable, we have the almost sure convergence

1
N

Ņ

j�1
fpθjq Ñ

»
T
fpθqdµV

α pθq .

A natural question following this fact is the one of the fluctuations around the limit. Fix a reasonable
(smooth enough) function ψ : TÑ R. Can one find η ¡ 0 such that the random variables

Nη

�
1
N

Ņ

j�1
ψpθjq �

»
T
ψpθqdµV

α pθq
�

converge in distribution towards a non trivial random variable ? In [HL21], Hardy and Lambert solve
this problem with η � 1{2 and the limiting law being Gaussian with zero mean and variance depending
of the test function f .

Theorem 1.4.4 (CLT for the circular β-ensemble at high temperature, [HL21]). Let θ � pθ1, . . . , θN q
be distributed with respect to (1.4.1), with β � 2α

N for some α ¡ 0. Let ψ be C2γ�1pTq for some integer
γ ¥ 2. Then, we have the convergence in distribution

?
N

�
1
N

Ņ

j�1
fpθjq �

»
T
fpθqdµV

α pθq
�
Ñ Np0, σ2

α,V pψqq ,

where σ2pψq � xψ,L�1ψyH, L being a linear operator on some Hilbert space H.

Remark 1.4.5. We do not explicit here the form of the operator L. We will come back to it (more
precisely, we will come back to its real line counterpart) when presenting the CLT in the β-ensemble on
the real line at high temperature. For the moment, we refer to [HL21] for detail. Let us also mention that
the proof of Hardy and Lambert is based on a normal approximation method, that was first established in
[LLW19] for the β-ensemble on the real line in the fixed β ¡ 0 regime. Using this approach, they are
able to derive a Berry-Esseen bound, that is a speed of convergence towards the limiting Gaussian.

1.5 Integrable systems: the example of the Toda chain
In this section we present a notion of integrability for systems of interacting particles, evolving with time.
We give the main ideas by illustrating them on the practical example of the Toda chain, also called the
Toda lattice. It was introduced in [Tod67] as a an example of one dimensional, continuous time and
discrete space system with nonlinear interaction, which has soliton solutions, i.e. traveling solutions
whose shape is conserved along time.

The (periodic) Toda chain is a system of N particles evolving on the real line, labeled 1 ¤ j ¤ N , with
positions qptq � pqjptqq1¤j¤N , momenta pptq � ppjptqq1¤j¤N , and governed by the system of ordinary
differential equations

dqj

dt
� pj ,

dpj

dt
� e�rj�1 � e�rj 1 ¤ j ¤ N , (1.5.1)
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where rj � qj�1 � qj is the stretch between particles j � 1 and j, and where we assume the periodicity
boundary condition

qN�1 � q1 � ℓ (1.5.2)
for some ℓ P R.

The particles are not supposed to be ordered, thus the stretches can take negative values. The set of
equations (1.5.1) is a Hamiltonian system with Hamiltonian

H �
Ņ

j�1

1
2p

2
j � e�rj ,

i.e. (1.5.1) can be written

dqj

dt
� BHpq,pq

Bpj
,

dpj

dt
� �BHpq,pqBqj

1 ¤ j ¤ N .

An important feature of the Toda chain is its nearest neighbors type of interactions: during an infinitesimal
time, particle j only interacts with particles j � 1 and j � 1. We emphasize that we do not suppose any
ordering on the positions of the particles, and the expression "nearest neighbors" has to be taken in
the sense of "nearest labels". An equivalent way of seeing the Toda dynamic is as a disretization of a
continuous field px, tq ÞÑ qpx, tq. With this point of view, neighboring sites interact during an infinitesimal
time.

Figure 1.1: Simulation of the Toda chain with total stretch ℓ � 0 and ’Dirac’ initial condition qN{2 � 1,
qj � 0 for j � N{2, and pj � 0 for all 1 ¤ j ¤ N , at three different times. The sites are represented on
the x-axis, and on the y-axis we display the value of q at the corresponding site.
Left: ’Dirac’ initial condition.
Middle: After a short time. The impulsion propagates through the nearest neighbors interaction of the
Toda chain.
Right: After some time. The systems almost looks random.

Aside from the obvious conserved quantity
Ņ

j�1
rj � ℓ,

the N -particles Toda chain was suspected via computer simulations, see [FST73], to have N nontrivial
conserved quantities. This fact was established by Hénon [Hen74], who gave formulae for those constants
of motion. Approximately in the same time, Flaschka [Fla74b] and Manakov [Man74] gave independently
an alternative proof of the existence of those conserved quantities. We use here the notations of Flaschka:
Introducing the variable aj � e�rj{2, the dynamic (1.5.1) is equivalent to

daj

dt
� 1

2ajppj � pj�1q, dpj

dt
� a2

j�1 � a2
j , 1 ¤ j ¤ N . (1.5.3)
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Introducing the N �N matrices

LN �

���������

p1 a1 0 . . . aN

a1 p2 a2
. . . 0

0 a2 p3
. . . ...

... . . . . . . . . . aN�1
aN 0 . . . aN�1 pN

��������
, BN � 1

2

���������

0 �a1 0 . . . aN

a1 0 �a2
. . . 0

0 a2 0 . . . ...
... . . . . . . . . . �aN�1

�aN 0 . . . aN�1 0

��������
, (1.5.4)

the set of equations (1.5.3) can then be rewritten as

dLN

dt
� LNBN �BNLN .

The couple pLN , BN q is called a Lax pair.

In this manuscript, by "integrable system", we mean "system possessing a Lax pair".

Definition 1.5.1 (Integrable system). A system of N ordinary differential equations is said the be
integrable if it possesses a Lax pair, i.e if the dynamic is equivalent to

dL

dt
� rL,Bs � LB �BL , (1.5.5)

where L and B are N �N matrices.

Remark 1.5.2. In general, a system of N particles evolving with time is said to be integrable if it
possesses N independent conserved quantities. As we will now see, having a Lax pair guarantees this
property.

Having a Lax pair is a very special property which has an immediate consequence about the existence
of conserved quantities. Indeed, with pL,Bq of the previous definition, let S be the solution of the ODE

dS

dt
� �BptqSptq, Sp0q � I . (1.5.6)

Then, considering its determinant one sees that S is invertible at any time and that the matrix SptqLp0qSptq�1

satisfies the Lax equation (1.5.5) and is equal to Lp0q at time zero, thus

Lptq � SptqLp0qSptq�1 . (1.5.7)

This ensures that the eigenvalues of L are conserved quantities. Furthermore, up to computing the matrix
Sptq and recovering the data of interest from L, the system is solved, hence the integrability. It is worth
to mention that finding a formula for Sptq is a delicate task in general.

Others examples of N -particles integrable systems (in the Lax pair sense) are given by the Ablowitz-
Ladik lattice [AL75] and the Schur flow [Gol06] (which we introduce in Chapter 3), the exponential
Toda lattice [GGGM23], the Volterra lattice and the Itoh-Narita-Bogoyavleskii lattices [Bog91]
(we introduce the latter three systems in Chapter 5). An important feature that those systems share is,
as in the Toda lattice case, the locality/nearest neighbors structure of the interactions. As a consequence,
the Lax matrices of all those systems are periodic band matrices with band size independent of N ,
meaning that for each of these systems, if pL,Bq is the associated Lax pair, there is some K P N such
that

Li,i�a � 0 and Bi,i�a � 0 whenever |a| ¡ K ,

where the indices are considered modulo N .
We now introduce the so-called Generalized Gibbs Ensemble (GGE) of the Toda chain.
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1.6 Generalized Gibbs Ensemble, and a link with β-ensembles
Let us start by recalling the following geometrical fact for Hamiltonian systems. We defer to the book
[Gio22] for an introduction to the topic of Hamiltonian dynamics.

Theorem 1.6.1 (Preservation of Lebesgue measure). Let pq,pq � pqj , pjq1¤j¤N P RN �RN be a Hamil-
tonian system with Hamiltonian Hpq,pq, i.e. the equations of motions are given by

dqj

dt
� BHpq,pq

Bpj
,

dpj

dt
� �BHpq,pqBqj

. (1.6.1)

Then, the Lebesgue measure λ2N on RN � RN is preserved by the flow of (1.6.1), that is, denoting the
flow Φt defined by pqptq,pptqq � Φtpqp0q,pp0qq, one has for any Borelian set A � RN � RN

λ2N

�
Φ�1

t A
� � λ2N pAq .

As we saw in the previous section, if V : R Ñ R is any function, TrV pLq and
°N

j�1 rj are conserved
quantities of the Toda chain. In combinations with Theorem 1.6.1, the following measure, introduced by
Spohn in [Spo20c] is invariant under the Toda flow.

Definition 1.6.2 (GGE for the Toda lattice). Let V : RÑ R such that there exist c, C such that

V pxq ¥ cx2 � C for all x P R . (1.6.2)

The Generalized Gibbs Ensemble of the Toda chain with potential V and pressure P ¡ 0 is the probability
measure on RN � RN given by

dTP,V
N pp, rq � 1

ZV,P
N,T

exp t�TrpV pLN qqu
N¹

i�1
e�P ridridpi . (1.6.3)

Remark 1.6.3.

i) Invariance of TV,P
N means that if the initial condition pqp0q,pp0qq is sampled with respect to TV,P

N ,
then the law of pqptq,pptqq is TV,P

N at any time t.

ii) Condition (1.6.2) is enough to ensure that the partition function ZV,P
N,T converges.

The idea behind the introduction of the GGE (which can be introduced also for the other previously
mentioned integrable systems) is that when trying to understand the large N behavior of those systems,
and despite of the possible formulas one would be able to extract via equations (1.5.6),(1.5.7) (which
would be too complicated to analyse directly), a statistical approach is needed. In the framework of
statistical mechanics, the observables of the Toda chain are expected to tend, as time goes to infinity, to
be distributed according to TV,P

N . More precisely, one expects for reasonable f : RN � RN Ñ R and for
generic initial condition pqp0q,pp0qq the convergence

1
T

» T

0
fpqptq,pptqqdt ÝÑ

TÑ8
EV,P

N,T rfpq,pqs , (1.6.4)

where the last expectation is taken with respect to TV,P
N for some potential V and pressure parameter

P ¡ 0, depending on the initial condition and on the total stretch ℓ (1.5.2).
By invariance of the GGE, if the initial state is sampled according to TV,P

N , the law of the Lax matrix
LN is independent of time. Let us give here the fundamental observation made by Spohn in [Spo20c],
allowing to relate the study of the Toda chain with the one of the β-ensemble at high temperature.



20 CHAPTER 1. INTRODUCTION

Consider the GGE for the Toda lattice with quadratic potential Tx2{2,P
N . With this choice of potential,

we can compute the trace in (1.6.3) and find, in the notations of (1.5.4),

1
2TrL2

N � 1
2

Ņ

i�1
p2

i �
Ņ

i�1
a2

i ,

and so the density of Tx2{2,P
N factorizes into the law of independent random variables. More precisely, we

find
pi � Np0, 1q and ai?

2
� χ2P ,

where we recall (1.2.4), i.e.

L
pdq�

����������

Np0, 1q χ2P?
2

χ2P?
2

χ2P?
2 Np0, 1q χ2P?

2
χ2P?

2
. . . . . .
. . . . . . χ2P?

2
χ2P?

2
bN�1?

2 Np0, 1q

���������
, (1.6.5)

where the entries are independent up to the symmetry. This matrix model is reminiscent of the tridiagonal
representation of the β-ensemble given by Theorem 1.2.5. We notice two differences in the structure of
the matrix (1.6.5):

• Here, LN is periodic tridiagonal, meaning that the entries LN p1, Nq and LN pN, 1q are nonzero.

• The law of the off diagonal variables is independent of their position: LN pj, j � 1q pdq� LN p1, 2q,
whereas in Theorem 1.2.5 the parameter defining the law of the off diagonal entries varies linearly
with their position.

The first point is not going to play a big role in our analysis. Indeed, up to a perturbation of rank 2, L
is a true tridiagonal matrix. We take advantage of the second point as follows:

Denote by LpP qN the matrix of (1.6.5). Take β � 2P
N in the representation of Theorem 1.2.5. Then, in

the top left corner of T , the off diagonal entries are χ-distributed, with parameter approximately equal
to 2P , almost matching the top corner of the Lax matrix LpP qN . Now, fix some M ¥ 1 and consider the
euclidean division of N by M : N � kM � r for some k ¥ 1 and 0 ¤ r ¤ M � 1. Assume here for
simplicity that r � 0. Then, consider a sequence of k � k Lax matrices with varying pressure parameter
L
pP p1�j{Mqq
k , 0 ¤ j ¤M � 1, and form the block diagonal matrix

S � diag
�
L
pP q
k , L

pP p1�1{Mqq
k , . . . , L

pP {Mq
k

	
.

Last, replace the entries Spjk� 1, pj� 1qkq and Sppj� 1qk, jk� 1q for 0 ¤ j ¤M � 1 by zero and denote
by the resulting matrix by S1. Morally, replacing S by S1 should not produce too big of a mistake because
it can be written as a small rank perturbation. This statement can be made more precise:

Lemma 1.6.4. Let A and B be N�N Hermitian matrices, and consider the distance d defined in (1.3.2).
Then we have

dpµ̂N pAq, µ̂N pBqq ¤ min
#

rankpA�Bq
N

,
1
N

¸
1¤i,j¤N

|Ai,j �Bi,j |
+
.

Now, both matrices S1 and T are tridiagonal, their diagonal entries have same law and their off diagonal
entries are almost the same in law: the difference between the parameters defining their distributions is
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bounded by a Op1{Mq. We can now compare the empirical measures: because S1 is defined by blocks,
its empirical measure reads

µ̂N pS1q � 1
M

M�1¸
j�0

µ̂kpBjq,

where the Bj ’s are the blocks of S1. Using Lemma 1.6.4,

1
M

M�1¸
j�0

µ̂kpLkpP p1� j{Mqqq � 1
M

M�1¸
j�0

µ̂kpBjq � µ̂N pT q ,

thus when taking the limits k Ñ8 then M Ñ8, and assuming that for any Q ¡ 0 the empirical measure
µ̂kpLpQqk q converges towards some measure νQ as k Ñ �8, it is reasonable to expect the equality between
measures » 1

0
νsP ds � µ

x2{2
P , (1.6.6)

where µx2{2
P is the limiting measure of the high temperature β ensemble given by Proposition 1.3.6 and

where this equality means that for any f bounded continuous one has» 1

0

»
fdνsP ds �

»
fdµ

x2{2
P .

At this point, natural questions arise:

i- Consider the measure TV,P
N with general V . Does the empirical measure of the Lax matrix of the

Toda chain converge ?

ii- If yes, does equation (1.6.6) hold ?

iii- Can this link between the Toda chain and the high temperature β-ensemble be pushed further, in
other words, can we expect an analogue of (1.6.6) for different objects than empirical measures, for
example free energies, limiting variances, ... ?

iv- Does a similar picture hold for other integrable systems/β-ensembles ?

In Chapter 2, we tackle questions i and ii by establishing a large deviation principle for the empirical
measure of the Toda chain, and comparing it with the large deviations for the empirical measure of the
high temperature β-ensemble.

In Chapter 3, we show a similar Large deviation principle for the empirical measure of the Ablowitz-
Ladik lattice and for the Schur flow, and link them respectively to the circular β-ensemble and the Jacobi
β-ensemble at high temperature: this goes in the direction of question iv, showing that this picture is
valid for other integrable systems than the Toda chain.

Those chapters are based on two publications of the present author, respectively [GM22] in collabo-
ration with Alice Guionnet, and [MM23b] in collaboration with Guido Mazzuca.

We now present the idea and stategy of derivation of a hydrodynamic equation for integrable systems,
following [Spo21], in the case of the Toda lattice. This will further motivate the results of Chapters 2
and 3, and motivate the results of Chapters 4 and 5.

1.7 Hydrodynamics, currents and fluctuations
An important - and open in most cases - question is the existence of a hydrodynamic limit of particle
systems, that is, informally, an equation over the density (number of particles per space unit) of particles
after a suitable rescaling:
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• a scaling in space so that the distance between two particles is of order 1{N , where N is the number
of particles in the system,

• a scaling in time such that after rescaling, in a time window of order one, one observes a macrospopic
evolution of the system.

Being able to derive such an equation on the density of particles is crucial to study the system from a global
perspective, rather than looking at the microscopic scale of single particles. However, a mathematically
rigorous proof of such a limit is very often far from reach.

As explained in [Spo21], the question of a hydrodynamic limit for integrable systems has been tackled
recently through the introduction of Generalized Gibbs Ensembles (as the one of Definition 1.6.3), based
on the idea that those systems should locally behave, in a suitable time scale, as if they where distributed
following a GGE. Before being more precise on this last point, let us mention that the structure of the
equation is expected to be common for a wide class of integrable systems, see for example [Spo22b] for
the Ablowitz-Ladik case, [Spo21][Sections 5 and 6] for the hard rods system and the for Toda chain
respectively.

In the example of the N particles periodic Toda chain, the space scaling is 1{N so that the distance
between two neighboring sites is of order 1{N . Let Φj be a local quantity, that is: there is some K
independent of N such that Φjptq only depends on particles j �K, j �K � 1, . . . , j, . . . , j �K at time t.
Then it is expected that:

For any t ¡ 0 and x P r0, 1s, as j{N Ñ x, there is a potential-pressure couple pVx,t, Px,tq such that

1
Nt

» Nt

0
Φjpsqds ÝÑ

NÑ8
lim
N

EVx,t,Px,t

N rΦjp0qs . (1.7.1)

This last equation is called a local equilibrium property at speed N for the system. The hydrodynamic
scaling in time is then tÑ Nt. The local equilibrium assumption is at the basis of the derivation of the
hydrodynamic limit, and it is the biggest difficulty in a mathematical proof of such a limit. However,
based on this assumption, Spohn is able to derive a candidate hydrodynamic equation. The strategy is
based on the fact that the conserved quantities are local. Following the notations of [Spo21], we define
for n ¥ 1

Q
rns,N
j � Ln

N pj, jq
so that the conserved quantity TrLn

N can be written

TrLn
N �

Ņ

j�1
Q
rns,N
j

where Qrns,N
j only depends on aj�i, pj�i, �n ¤ i ¤ n due to the tridiagonal structure of the matrix LN .

For n � 0, we denote
Q
r0s,N
j � rj ,

and the associated conserved quantity is the total stretch ℓ � °N
j�1 rj . We emphasize that while TrLn

N is
invariant, each Q

rns,N
j depends on time. Now, define the currents J rns,Nj (also depending on time) via

the conservation law
d

dt
Q
rns,N
j � BjJ

rns,N
j � 0, 1 ¤ j ¤ N ,

where Bj is the difference operator Bjf � fpj � 1q � fpjq.
Because of the local equilibrium assumption (1.7.1), it is enough to compute, for arbitrary pressure-

potential couple pP, V q the limiting means

lim
N

EV,P
N

�
Q
rns,N
j p0q

�
and lim

N
EV,P

N

�
J
rns,N
j p0q

�
. (1.7.2)
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Computing those means for each n ¥ 1, Spohn is able to derive the hydrodynamic limit for the Toda
lattice [Spo21][Section 6] (establishing it in the weak sense, tested against all x ÞÑ xn, n ¥ 0):

With the local equilibrium assumption (1.7.1), denote around the macroscopic point x at time t the
average stretch

νpx, tq � lim
N

EVx,t,Px,t

N rr1s
and the limiting measure

µpx, t; vq � ρpx, t; vqdv, µpx, tq � lim
N

EVx,t,Px,t

N

�
1
N

Ņ

j�1
δλjpLN q

�
.

Set ρPpx, t; vq � νpx, tqρpx, t; vq and define implicitly the effective velocity through

veffpx, t; vq � v � 2
»
R

logp|v � w|ρPpx, t;wqqpveffpx, t;wq � veffpx, t; vqqdw .

Finally, defining
q1px, tq � νpx, tq

»
R
vρPpx, t; vqdv ,

the hydrodynamic equation reads

Btνpx, tq � Bxq1px, tq � 0
Bt

�
νpx, tqρPpx, t; vq

�� Bx

�rveffpx, t; vq � q1px, tqsρPpx, t; vq
� � 0 .

We now give the scheme for the derivation of limits (1.7.2), using the heuristic link between
the Toda chain and the high temperature β-ensemble explained earlier.

 By translation invariance of the law of the entries of the Lax matrix LN under TV,P
N , we have

EV,P
N

�
Q
rns,N
j p0q

�
� 1
N

EV,P
N rTrLn

N s � EV,P
N

�»
R
xndµ̂N

�
,

and computing this quantity when N goes to infinity is thus associated with the question of the limiting
empirical measure of eigenvalues under the GGE TV,P

N

lim
N
µ̂N �: νV

P .

By the heuristics leading to (1.6.6), and assuming that it is valid under a general potential V , we get the
formula

νV
P � BP

�
PµV

P

�
, (1.7.3)

and because of the characterization of µV
P given by Proposition 1.3.6, we get a characterization of the

limiting density of νV
P .

 By the Lax pair formulation of the Toda chain

dLN

dt
� rLN , BN s ,

we can compute the evolution equation for such quantities as

d

dt
Q
rns,N
j � pBLn � LnBq � bj�1L

n
j,j�1 � bjL

n
j�1,j . (1.7.4)

Defining J rns,Nj � bj�1L
n
j,j�1, we have

d

dt
Q
rns,N
j � J

rns,N
j � J

rns,N
j�1 .
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J
rns,N
j is then the current of the local conserved field Q

rns,N
j . In particular, defining the matrix LÓN as

LÓN pi, jq �
#
LN pi, jq if j   i or i � 1, j � N

0 otherwise
(1.7.5)

we can recast the previous definition as

J
rns,N
j � pLn

NL
Ó
N qpj, jq , (1.7.6)

giving a formula for the currents in terms of the Lax matrix LN . A priori, the derivation of the limiting
current

lim
N

EV,P
N rJ rns,Nj s � lim

N

1
N

EV,P
N rTrLn

NL
Ó
N s

is more intricate than the derivation of the limiting average empirical measure, this expression not being
expressible only in terms of the eigenvalues of LN . However, as explained in [Spo21], it can be expressed
via the associated fluctuations, by showing that taking derivatives with respect to P , and modulo the
decay of correlations between local observables,

BP lim
N

EV,P
N rJ rns,Nj s � lim

N

1
N

CovV,P
N pTrLN ,TrLn

N q , (1.7.7)

where the last covariance is taken with respect to TV,P
N . From this perspective, it would then be sufficient

to show that the spectral statistics of the Toda Lax matrix»
R
xndµ̂N pxq

satisfy a Central Limit Theorem at speed
?
N , i.e. that for any n ¥ 1, there is some σ2

TodapV, P, nq such
that we have as N Ñ8 the convergence in distribution towards a Gaussian random variable

?
N

�»
R
xndµ̂N pxq �

»
R
xndνV

P pxq



pdqÝÑ Np0, σ2
TodapV, P, nqq .

To compute the currents, it would then suffice to compute the limiting variance σ2
TodapV, P, nq. As an

analogue of equation (1.6.6), provided there is a central limit theorem for the empirical measure
in the β ensemble at high temperature with limiting variance σ2

HT, we might expect the following
equation between the limiting variances» 1

0
σ2

TodapV, sP, nqds � σ2
HTpV, P, nq, i.e. σ2

TodapV, P, nq � BP

�
Pσ2

HTpV, P, nq
�
, (1.7.8)

therefore allowing to compute the limiting average currents in terms of the limiting variance in the CLT for
the high temperature β-ensemble. Chapter 4 is devoted to the Central Limit Theorem for the β-ensemble
at high temperature, based on the joint work with Charlie Dworaczek-Guera [DGM23]. Chapter 5 is
devoted to the CLT in integrable systems and to their link with high temperature β-ensembles, allowing
to justify mathematically equation (1.7.8) not only for the couple Toda chain/real β-ensemble at high
temperature but for several other couples integrable systems/high temperature β-ensemble. It is based
on the joint work with Guido Mazzuca [MM23a].

We now introduce the Ablowitz-Ladik lattice, which is an integrable system, similar to the Toda
lattice in many points: in particular, it can be compared to the high temperature circular β-ensemble.

1.8 The Ablowitz-Ladik lattice
The (periodic) Ablowitz-Ladik lattice is the system of ODEs

i
daj

dt
� �paj�1 � aj�1 � 2ajq � |aj |2paj�1 � aj�1q , (1.8.1)
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that describe the evolution of the complex functions ajptq, j P Z and t P R. We assume N -periodic
boundary conditions aj�N � aj , for all j P Z.

This system was introduced by Ablowitz and Ladik in [AL75, AL76] as a spatial discretization of the
defocusing cubic Nonlinear Schrödinger Equation

iBtψpx, tq � �1
2B

2
xψpx, tq � |ψpx, tq|2ψpx, tq. (1.8.2)

This equation is known to be integrable, in the sense that it possesses a Lax pair (the elements of the
pair being infinite dimensional operators), see [ZS72]. The Ablowitz-Ladik lattice is a discretization of
(1.8.2) that is itself integrable, as was shown by Ablowitz and Ladik in [AKN74, AL75] by discretizing
the Lax pair of the Cubic nonlinear Schrödinger equation.

In [Nen05, Sim05], Nenciu and Simon constructed another Lax pair for the Ablowitz-Ladik lattice as
follows. We take here N to be even for simplicity.

As a preliminary remark, we notice by a direct computation that the quantity

Kp0q :�
N¹

j�1

�
1� |aj |2

�
(1.8.3)

is a constant of motion for the AL lattice. This implies that if |ajp0q|   1 for all j � 1, . . . , N , then
|ajptq|   1 for all times. Therefore, considering an initial condition having coordinates in the unit disk,
a � pa1, . . . , aN q P DN , we can form the 2 � 2 unitary matrices Ξj (well defined at any time because of
our preliminary remark)

Ξj �
�
aj ρj

ρj �aj



, j � 1, . . . , 2N , ρj �

b
1� |aj |2 . (1.8.4)

Then, we define the 2N � 2N matrices L and M as

L �

�����
Ξ1

Ξ3
. . .

Ξ2N�1

���� , M �

�������
�a2N ρ2N

Ξ2
. . .

Ξ2N�2
ρ2N a2N

������ . (1.8.5)

Finally, define E as
E � LM (1.8.6)

and E� as

E�j,k �

$'&'%
1
2 Ej,j j � k

Ej,k k � j � 1 mod N or k � j � 2 mod N

0 otherwise.
(1.8.7)

Then, the equations (1.8.1) are equivalent to the Lax equation

dE
dt

� rE , i �E� � pE�q:�s
where : stands for the hermitian conjugate. We recognize a construction similar to the one of Theorem
1.4.1: the Lax matrix E is a periodic CMV matrix. In the spirit of Definition 1.6.2, and as in
[Spo22b, GM23], we introduce the Generalized Gibbs ensemble for the Ablowitz-Ladik lattice as

Definition 1.8.1 (GGE for the Ablowitz-Ladik lattice). Let α ¡ 0 and let V : T Ñ R be a continuous
function on the torus. Denote by D the unit disk.
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The Generalized Gibbs Ensemble (GGE) with parameters α, V for the Ablowitz-Ladik lattice is the
probability measure on DN given by

dPV,α
AL,N pa1, . . . , aN q � 1

ZV,α
AL,N

N¹
j�1

p1� |aj |2qα�1
1ajPDe

�TrV pEq . (1.8.8)

Remark 1.8.2. Because the state space DN is compact, any choice of continuous V ensures that the
partition function

ZV,α
AL,N �

»
DN

N¹
j�1

p1� |aj |2qα�1
1ajPDe

�TrV pEq

converges.

We now make the fundamental observation that when taking the special potential V pxq � 0 (instead
of V pxq � x2{2 in the Toda case), the ai’s are independent and identically distributed with distribution
Θ2α�1, where we recall that the Θ distribution is given by (1.4.2). As in the Toda case, we note that with
this specific choice of potential, the Lax matrix E resembles the matrix model for the circular β-ensemble
given by Theorem 1.4.1. As before, the main difference between both models is that in the Ablowitz-Ladik
case, the law of the entries does not depend on their location in the matrix, whereas the parameter in
the law of the coefficients of the Killip and Nenciu representation depend linearly on their position. The
link between Ablowitz-Ladik lattice and circular β-ensemble therefore seems to be of the same nature
than the one between Toda and β ensemble on the real line. We thus expect the ideas we presented in
the previous section to apply in this case also. In particular, Spohn derived the hydrodynamics of the
Ablowitz-Ladik lattice in [Spo22a] following those ideas.

We close this section by emphasizing that those ideas are expected to be fairly general, as the Toda
chain and the Ablowitz-Ladik lattice are not the only examples of systems displaying a link with a β
ensemble in the high temperature regime. In [GGGM23], the authors draw this link for several integrable
systems/β-ensembles, which are listed in the following table.

Integrable System β-ensemble at high-temperature
Toda lattice Real

Defocusing Ablowitz-Ladik lattice Circular
Exponential Toda lattice Laguerre

Defocusing Schur flow Jacobi
Volterra lattice Antisymmetric Gaussian

Table 1.1: Integrable systems and random matrix ensembles

Beyond the question of hydrodynamics, the correspondance between integrable systems and random
matrix ensembles could help to have a broader understanding of both subjects. It would also be fascinating
to understand when an integrable system can be mapped to a β-ensemble and vice-versa.

1.9 Some related works
We list here some works in the context of the previously described ideas. We do not re-cite all of the
papers we already mentioned, but those are of course to be considered as related to our works.

The idea of analysing the Lax matrix of integrable systems from a random matrix perspective appeared
in [BGS09, BGS11]. This approach then regained attention through the work of Spohn [Spo20c, Spo20a,
Spo20b, Spo21, Spo22a]. The density of states (i.e. limiting empirical measure) of Laguerre, Jacobi and
Real β-ensembles at high temperature, and the relation of the latter with the Toda chain, were investigated
in [Maz22] in the case of a quadratic potential. In [GM23], the authors proved the analogue of (1.7.3)
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for the Ablowtiz-Ladik lattice/circular β-ensemble at high temperature for polynomial potentials, using
a transfer operator approach. The link between integrable systems and random matrix ensembles was
investigated for the systems of Table 1.8 in [GGGM23]. Hydrodynamics and fluctuations for the hard
rods system are considered in [DS17], [OF22]. The generalized hydrodynamics of the Sinh-Gordon model
are considered in [BDWY18].

The real β-ensemble at high temperature was first considered [CL97]. In [ABG12], the authors
derived the limiting density of eigenvalues for the quadratic potential. The large deviations for high
temperature Gibbs measures were established in [GZ19], with a direct application for the β-ensembles
at high temperature. The fluctuations around the equilibrium measure, and the local statistics for the
high temperature β-ensembles were considered, among others, in [BGP15, NT18, Pak18, NT20, HL21,
NTT23, Lam21].

1.10 Presentation of the results

1.10.1 Main results of Chapter 2
This chapter is based on the collaboration with Alice Guionnet [GM22]. It is motivated by the justification
of formula (1.7.3) under the Generalized Gibbs Ensemble (1.6.3) with general potential V .

One way to tackle this problem is noticing that when the potential V is a polynomial, the interactions
between the matrix entries are local. As noticed by Spohn in [Spo20c], this allows to use a transfer
operator approach. This idea was used in [GM23] to prove the analogue of equation (1.7.3) in the case
of the Ablowitz-Ladik lattice. We use this approach in Chapter 5.

Here, we adopt a large deviations strategy. In this chapter, we change the definition of TP,V
N (1.6.3)

by shifting the potential V by x2{2:

dTV,P
N pp, rq � 1

ZV,P
N,T

expt�TrpV pLN qq � 1
2TrpL2

N qu
N¹

i�1
e�P ridridpi . (1.10.1)

Notice that in particular, the definition of the normalizing constant ZV,P
N,T differs from the one of (1.6.3).

This definition is convenient in the present setup as we want to compare general potentials to the quadratic
one. The approach of large deviations allows us to tackle the case of potentials with polynomial growth.
More precisely, we prove the following.

Theorem 1.10.1. Let P ¡ 0 and assume that V is continuous. Assume that either V is uniformly
bounded or there exists k P N� such that

lim
|x|Ñ8

V pxq
x2k

� a , (1.10.2)

with a ¡ 0 if k ¡ 1 and a ¡ �1{2 if k � 1. Then:

1. The law of µ̂LN
under TV,P

N satisfies a large deviation principle in the scale N with a good rate
function, denoted TV

P .

2. TV
P achieves its minimal value at a unique probability measure νV

P .

3. As a consequence µ̂LN
converges almost surely and in L1 towards νV

P .

Our proof is made of two independent parts: the case of a potential of the form x2

2 � V with V
bounded continuous, which can be seen as a perturbative case of the quadratic potential, and the case
of a general potential with polynomial growth. The second part applies to the first case, but the first
approach has the advantage of setting the basic ideas.
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Here also, we shift the potential by x2{2 in the definition of the β ensemble. In this section, and in
the corresponding chapter, we set

dPV,β
N px1, � � � , xN q � 1

ZV,β
N,C

¹
i j

|xi � xj |βe�
°N

i�1p 1
2 x2

i�V pxiqqdx1 � � � dxN , (1.10.3)

and as before take β � 2P {N . When needed, we add the subscript C (for Coulomb) and write
PV,P

N,C to avoid possible confusions between the β ensemble measure and the Toda GGE. The measure
PV,P

N,C is not to be confused with the circular β-ensemble, which does not appear in this
chapter. In those notations, and with the ones of Definition 1.2.6,

PV, 2P
N

N,C � PV � x2
2 , 2P

N

N .

Recall that as a consequence of [GZ19], the empirical measure of x � px1, . . . , xN q following the β

ensemble PV,2P {N
N satisfies a large deviation principle at scale N with rate function IV

P (which is deduced
from JV

P of Theorem 1.3.5 by shifting V by x2{2), given by

IV
P pµq �

#
fV

P pµq � infνPPpRq fV
P pνq if µ is absolutely continuous with respect to Lebesgue measure

�8 otherwise,
(1.10.4)

where, setting ρ for the density of µ with respect to Lebesgue measure, fV
P is given by

fV
P pµq � �P

¼
R2

log |x� y|dµpxqdµpyq �
»
R
ρpxq log ρpxqdx�

»
R

�
V pxq � x2{2� dµpxq .

The main point is that we are able to compare the minimizers of the Toda rate function TV
P to

the ones of JV
P . This is done by comparing the free energies of both models FV,P

T � lim
NÑ8

1
N

ZV,P
N,T and

FV,P
C � lim

NÑ8
1
N
Z

V, 2P
N

N,C , showing that the map P ÞÑ FV,P
C is differentiable and

FV,P
T � BP pPFV,P

C q . (1.10.5)

This identity is proven in the bounded case by expressing the rate function of the high temperature
β-ensemble IV

P in terms of the Toda rate function:

Theorem 1.10.2. For any continuous function V such that

lim sup
|x|Ñ8

|V pxq|
x2 � 0, (1.10.6)

the law of the empirical measure µ̂N under PV,2P {N
N satisfies a large deviation principle in the scale N

and with good rate function IV
P pµq � fV

P pµq � inf fV
P where

fV
P pµq � lim

δÑ0
lim inf

M
inf

νP {M ,��� ,νP s.t.
1

M

°
i νiP {MPBµpδq

#
1
M

M̧

i�1
pTiP {M pνiP {M q �

»
V dνiP {M q

+
. (1.10.7)

In the general case, equation (1.10.5) is proven directly, in Lemma 2.4.5.
Because of Varadhan’s lemma, those free energies are related with the minimizers of the rate functions,

and we deduce formula (1.7.3):
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Theorem 1.10.3. Let P be a positive real number. Then, denoting νV
P the minimizer of TV

P and µV
P the

minimizer of IV
P , we have:

for any bounded continuous function f on the real line,»
fpxqdνV

P pxq � BP pP
»
fpxqdµV

P pxqq .

Note that as a byproduct of this approach, we prove a large deviation principle for the empirical
measure of general tridiagonal matrices with independent coefficients, see Theorem 2.2.4.

1.10.2 Main results of Chapter 3
Chapter 3 is based on the collaboration with Guido Mazzuca [MM23b]. It is motivated by the justification
of the equivalent of equation (1.7.3) for the Ablowitz-Ladik lattice and the circular β-ensemble at high
temperature. As noticed at the begining of Paragraph 1.10.1 for the Toda chain, one can approach this
problem by a transfer operator approach: this was done in [GM23]. This approach allows the authors to
conclude for polynomial potentials.

We tackle the problem using large deviations, in the spirit of the results of Chapter 2. We therefore
consider the empirical measure of the matrix E introduced in equation (1.8.6)

µ̂N pEq � 1
N

Ņ

j�1
δ

eiθjpEq ,

where the matrix E is distributed with respect to

dPV,α
AL,N pa1, . . . , aN q � 1

ZV,α
AL,N

N¹
j�1

p1� |aj |2qα�1
1ajPDe

�TrV pEq .

We then show

Theorem 1.10.4. Let α ¡ 0. For any continuous function V : T Ñ R the following holds:

a. the sequence µ̂N pEq under the law PV,α
AL,N satisfies a large deviations principle at speed N with a

good rate function JV
α ,

b. JV
α achieves its minimum at a unique probability measure νV

α ,

c. µ̂N pEq converges almost surely and in L1pTq towards νV
α .

To identify the limiting measure νV
α , we compare the Ablowitz-Ladik lattice to the circular β ensemble

at high temperature PV,2α{N
C,N (equation (1.4.1)), as previously motivated.

Recall that by Theorem 1.4.3, the empirical measure of the circular β-ensemble at high temperature
satisfies a large deviation principle with rate function given for µ absolutely continuous with respect to
Lebesgue measure by

IV
α pµq � fV

α pµq � inf fV
α ,

IV
α pµq � �8 otherwise, where

fV
α pµq � �α

»
T�T

log
�|eiθ � eiφ|�µpdθqµpdφq � α logp2q �

»
T
V pθqµpdθq�»

T
log

�
dµ

dθ
pθq



µpdθq � logp2πq .

The rate function IV
α is stricly convex. Denoting its unique minimizer µV

α , we then show the following
equation linking νV

α to µV
α , for any choice of continuous V : TÑ R.
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Theorem 1.10.5. For any continuous V, f : T Ñ R»
T
fpθqdνV

α pθq � Bα

�
α

»
T
fpθqdµV

α pθq


. (1.10.8)

The advantage of this setup is the compactness of the torus: as before, the proof is based on the
comparison of the measure PV,α

AL,N to its version where V � 0, namely P0,α
AL,N , for which the entries of

the matrix E are easier to handle. As before, we are able to relate the free energies of both models by
showing

FV,α
AL � BαpαFV,α

C q. (1.10.9)
This is done by establishing the reformulation of the circular β-ensemble rate function in terms of the
Ablowtiz-Ladik one.

Theorem 1.10.6. Let α ¡ 0, and V : T Ñ R continuous. The law of the empirical measures
µ̂N pEq under dPV, 2α

N

C,N satisfies a large deviations principle at speed N , with a good rate function IV
α pµq �

fV
α pµq � infνPPpTq fV

α pνq, where

fV
α pµq � lim

δÑ0
lim inf

qÑ8 inf
να{q,...,να

1
q

°
i νiα{qPBµpδq

#
1
q

q̧

i�1

�
Jiα{qpνiα{qq �

»
T
V dνiα{M


+
. (1.10.10)

As a byproduct of this approach, we prove a large deviation principle for (periodic or non periodic)
CMV matrices (that is of the form of E given by (1.8.6) or of the matrix representation E of Theorem
1.4.1), in the case where the ai’s appearing in its construction are i.i.d.

1.10.3 Main results of Chapter 4
Chapter 4 is based on the collaboration with Charlie Dworaczek Guera [DGM23]. It is dedicated to the
establishment of the Central Limit Theorem for the empirical measure in the β-ensemble on the real
line at high temperature. More precisely, we establish that for smooth enough, decaying at infinity test
functions ϕ : RÑ R, and for a class of confining potentials V : RÑ R, with x � px1, . . . , xN q distributed
under the measure

PV,2P {N
N px1 . . . , xN q � 1

Z
V,2P {N
N

¹
1¤i j¤N

|xi � xj | 2P
N e�

°N
j�1 V pxjq ,

we have the convergence in distribution, as N Ñ8
?
N

�
1
N

Ņ

j�1
ϕpxjq �

»
R
ϕpxqdµV

P pxq
�
Ñ N

�
0, pσV

P q2pϕq


.

In the previous equation, the measure µV
P is the limit given by Proposition 1.3.6 of the empirical measures

µ̂N � 1
N

Ņ

j�1
δxj

. It is characterized by the equation

V pxq � 2P
»
R

log |x� y|dµV
P pyq � log ρV

P � λV
P . (1.10.11)

The limiting variance σV
P is expressed in terms of a certain operator acting on test functions (the

counterpart of L in Theorem 1.4.4).
In the context of Section 1.7, assuming that:

• The empirical measure of the Toda chain, tested against a test function f , statisfies a central limit
theorem with limiting variance σ2

T odapP, V, ϕq,
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• We have the relation between the limiting variances» 1

0
σ2

T odapV, sP, ϕqds � pσV
P pϕqq2, i.e. σ2

TodapV, P, ϕq � BP pP pσV
P pϕqq2 ,

Then we are able to access the limiting variance of the Toda chain, therefore giving a way to compute
the currents of the conserved quantities.

Before stating the theorem, let us give a heuristic that, when made precise, leads to the proof:

Take ϕ : R Ñ R smooth, vanishing fast enough at infinity, and do the change of variables in ZV,P
N ,

xi � yi � t?
N
ϕpyiq, 1 ¤ i ¤ N , to get

ZV,P
N �

»
RN

¹
i j

����yi � yj � t?
N
pϕpyiq � ϕpyjqq

����2P {N
e
�°N

i�1 V
�

yi� t?
N

ϕpyiq
	 N¹

i�1

�
1� t?

N
ϕ1pyiq



dN y .

Expanding the different terms in this integral, one gets

ZV,P
N �

»
RN

¹
i j

|yi � yj | 2P
N e�

°N
i�1 V pyiqe

t?
N

�
2P
N

°
i j

ϕpyiq�ϕpyjq
yi�yj

�°N
i�1pϕ1pyiq�V 1pyiqϕpyiqq

�
e�

t2
2 σ2

N pϕqdN y ,

where the term σ2
N pϕq converges towards a limiting variance σ2pϕq depending on ϕ, P and V . After di-

viding both parts of the equation by ZV,P
N , and because of equation (1.10.11) one deduces the convergence

of the Laplace transform

E
�
et
?

NpνN pΞϕq�error termq
�
ÝÑ

NÑ8
exp

� t2
2 σ

2pϕq
	
,

where we denoted

νN pfq � 1
N

Ņ

j�1
fpxjqdµ̂N �

»
R
fpxqdµV

P ,

and where Ξ is a linear operator acting on test functions and defined by

pΞϕqpxq � 2P
»
R

ϕpxq � ϕpyq
x� y

dµV
P pyq � ϕ1pxq � V 1pxqϕpxq . (1.10.12)

Once the error term is taken care of, this shows the central limit theorem for test functions of the form
Ξϕ, with an explicit variance. Following [HL21], the operator L given by

Lϕ � Ξϕ1 (1.10.13)

can be analyzed using Hilbert space techniques. In particular, the operator L, seen as an unbounded
operator of the Hilbert space

H �
"
u P L2pµV

P q
��� u1 P L2pµV

P q,
»
R
uρV

P dx � 0
*
, xu, vyH �

@
u1, v1

D
L2pρV

P
q ,

can be decomposed as
�L � A� 2PW ,

where A is a positive Sturm-Liouville operator and W is positive and self-adjoint. Such a writing allows
us to show that �L is invertible, see Section 4.6. With the previous heuristics, assuming we can choose
L�1ϕ as a reasonable test function, we get

E
�
et
?

NpνN pϕq�error term
�
Ñ exp

�
� t

2

2 σ
2�pL�1ϕq1�
 . (1.10.14)
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We refer to Chapter 4 for the precise assumptions made on the potential V . See Assumptions 4.1.1
and 4.1.2.
To fix the ideas, confining potentials of the form

V � Vconv � φ ,

where Vconv is convex such that |V 1
conv| Ñ �8 at infinity and where φ is C3 with bounded derivatives,

satisfy our assumptions.
We then have

Theorem 1.10.7. Assume that V satisfies Assumptions 4.1.1 and Assumption 4.1.2. Then for ϕ verifying
the following conditions:

• ϕ P C1pRq
• there exists ε ¡ 0, ϕpxq � O

|x|Ñ8
px� 1

2�εq and ϕ1pxq � O
|x|Ñ8

px 1
2�εq at infinity

•
»
R
ϕpxqdµV

P pxq � 0

we have the convergence in law

?
NνN pϕq Ñ N

�
0, pσV

P q2pϕq
�

(1.10.15)

where the limiting variance pσV
P q2pϕq is given by

pσV
P q2pϕq � xϕ,L�1ϕyH �

»
R

��
L�1ϕ

�2pxq2 � V 2pxq�L�1ϕ
�1pxq2�dµV

P pxq

� P

¼
R2

��
L�1ϕ

�1pxq � �
L�1ϕ

�1pyq
x� y

�2

dµV
P pxqdµV

P pyq . (1.10.16)

As a consequence, we recover the equivalent of the formula giving the limiting variance in Theorem
1.4.4. The decay conditions on ϕ appear to ensure that the error term in (1.10.14) is well behaved.

As a tool for the proof of the CLT, we establish a concentration inequality for the empirical measure.
It is stated in terms of the following distance over the set of probability distributions PpRq.

For µ, µ1 P PpRq, define the distance

dpµ, µ1q � sup
}f}Lip¤1
}f}1{2¤1

"����» fdµ� »
fdµ1

����* , (1.10.17)

where }f}Lip denotes the Lipschitz constant of f , and }f}2
1{2 �

»
R
|t| |Frf sptq|2 dt, where F denotes the

Fourier transform.
We then have

Theorem 1.10.8. There exists K P R (depending on P and on V ), such that for any N ¥ 1 and r ¡ 0,

PV, 2P
N

N

�
dpµ̂N , µ

V
P q ¡ r

� ¤ e�Nr2 P π2
2 �5P log N�K . (1.10.18)

This result is the analog of [HL21, Theorem 1.4], and its proof is inspired by an idea of Maïda and
Maurel-Segala [MMS14], consisiting in a regularization of the empirical measure (making it absolutely
continuous). We also mention [CHM18], where the authors were able to establish a similar concentration
bound for Coulomb gases in dimension d ¥ 2.
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1.10.4 Main results of Chapter 5

This chapter is based on the collaboration with Guido Mazzuca [MM23a], where we consider the question
of the fluctuations of the empirical measure in integrable systems and in high temperature β ensembles.

More precisely, motivated by the ideas of Section 1.7, we establish the existence of a central limit
theorem for the fluctuations of the empirical measure of the Lax matrix of several integrable systems,
including Toda and Ablowitz-Ladik, and we show the analogue of equation (1.7.8) for those systems and
their β-ensemble counterpart. The integrable systems and β ensembles are described in the following
table.

Integrable System β-ensemble at high-temperature
Toda lattice Real

Defocusing Ablowitz-Ladik lattice Circular
Exponential Toda lattice Laguerre

Defocusing Schur flow Jacobi
Volterra lattice Antisymmetric Gaussian

Table 1.2: Integrable systems and random matrix ensembles

The global picture is the one we described before:

• Each of the integrable systems at stake have a periodic, band (with fixed band size) Lax matrix,
which can be described by a set of coordinates x1, . . . , xN P X, where X is a subset of R or C. For
instance, in the case of the Toda lattice, recalling (1.5.4), X � R2 and the matrix L is described
by xi � pai, piq, 1 ¤ i ¤ N . In the Ablowitz-Ladik case, X � D and the matrix E is described by
xi � ai, 1 ¤ i ¤ N , see equations (1.8.5), (1.8.6). We label those matrix models as "type 1".

• The β ensembles at hand have a non periodic matrix representation (such as the Dumitriu-
Edelman representation, Theorem 1.2.5 or the Killip-Nenciu one, Theorem 1.4.1), which resembles
the Lax matrix of the corresponding integrable system in Table 1.10.4. We label those non
periodic representations as "type 2".

We refer to Chapter 5 for a description of the matrix models.
We model the Generalized Gibbs Ensembles of those integrable systems by the probability measure

on XN

µ
p1q
N � 1

Z
p1q
N pα,Gq

�
N¹

j�1
F pxj , αq

�
e�TrGpLq .

Here the matrix L is of type 1. The parameter α plays the same role as P in (1.6.3) and as α in (1.8.8),
and G is the potential.

The β ensemble counterpart of those ensembles is modeled by the probability measure

µ
p2q
N � 1

Z
p2q
N pα,Gq

�
N�1¹
j�1

F

�
xj , α

�
1� j

N



�
RpxN qe�TrGpLqdx .

Here the matrix L is of type 2. The function R is added because of the non periodicity of those matrices.
We consider circular potentials, in the sense that there exists some k ¥ 1 such that, writing the
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euclidean division of N by k: N � kM � ℓ, we have

TrGpLq �

$''''&''''%

°M�1
j�1 W pxj ,xj�1q �W1pxM , xkM�1, . . . , xkM�ℓ,x1q for type 1

M�1¸
j�1

W pxj ,xj�1q ��W1px1q �W pxM , xkM�1, . . . , xkM�ℓ, 0, . . . , 0q

��W2pxkM�1, . . . , xkM�ℓqq
for type 2

,

(1.10.19)
here xj is the block of coordinates pxpj�1qk�1, . . . , xjkq. The function W is called the seed of G. The
functions �W1 and �W2 are to be seen like remainders and can be neglected for simplicity. The previous
decomposition is typically valid when the potential G is a polynomial; in which case the number k is
related to its degree and to the size of the band of the matrices at stake.

For example, in the Toda/real β ensemble at high temperature case, L is tridiagonal (periodic if of
type 1, non periodic if of type 2): if Gpxq � xd, we have

TrGpLq � TrLd �
¸

1¤i1,...,id¤N,
|ij�1�ij |¤1

Li1,i2Li2,i3 . . . Lid,i1 ,

and we can set k to be equal to d. This way, only neighboring blocks of coordinates interact in both
probability measures µp1qN and µ

p2q
N .

We also consider a test function H which has the same cyclicity property as G, i.e. the same decom-
position for TrHpLq as in (1.10.19).

We then show the following theorem. For readers convenience, we do not give all the assumptions,
see Theorem 5.1.3 for the full statement.

Theorem 1.10.9. Let L be a matrix of type 1 or 2, and let G, H be cyclic. Let

SN � 1
N

TrHpLq .

Then, there exist two continuous functions

Apxq : R� ÝÑ R , (1.10.20)
σ2pxq : R� ÝÑ R� , (1.10.21)

such that under µp1qN (5.1.12)
pSN �NApαqq {

?
N

converges to a Gaussian distribution Np0, σ2pαqq as N tends to infinity, and under µp2qN (5.1.13),�
SN �N

» 1

0
Apαxqdx



{
?
N

converges to a Gaussian distribution Np0, ³1
0 σ

2pαxqdxq as N tends to infinity. Furthermore, defining the
free energies F p1q

N pα,Gq,F p2q
N pα,Gq as

F p1q
N pα,Gq � � lim

NÑ8
1
N

log
�
Z
p1q
N pα,Gq

	
, (1.10.22)

F p2q
N pα,Gq � � lim

NÑ8
1
N

log
�
Z
p2q
N pα,Gq

	
, (1.10.23)

then
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i. F p1qpα,Gq � Bα

�
αF p2qpα,Gq�

ii. Apαq � iBtF p1qpα,G� itHq|t�0

iii.
³1
0 Apαxq � iBtF p2qpα,G� itHq|t�0

iv. σ2pαq � B2
t F p1qpα,G� itHq|t�0

v.
³1
0 σ

2pαxqdx � B2
t F p2qpα,G� itHq|t�0

This result therefore allows us to justify the equivalent of equation (1.7.8) for the couples integrable
model/β ensemble of Table 1.10.4. Furthermore, the limiting variances are expressed as the second
derivatives of the free energies.

As mentioned previously, we prove this result by a transfer operator approach. The idea is that
under our assumptions, because of the locality of the interactions in the both measures µp1qN and µp2qN , the
expectations in both models can be written in the approximate forms, for t P R, (see Theorems 5.2.1 and
5.2.2)

E1
�
e�itTrH

� � ck,ℓpα, tqλpα, tqM�2 p1� oM p1qq , (1.10.24)

and

E2
�
e�itTrH

� � ck,ℓ,M pα, tq
M�2¹
j�1

λ

�
α
j

M
, t



p1� oM p1qq . (1.10.25)

In the two previous formulas, λpα, tq is the spectral radius of some operator L defined on L2pXkq, hence
the name of the approach. This approach was used in [GM23] to prove the relation (1.10.9) in the case
of a polynomial potential.

As a consequence of this approach, we are also able to prove the decay of correlations for local
functions (in the sense that they only depend on a fixed number, independent from N , of consecutive
variables) in those integrable systems, see Theorem 5.1.7 for a full statement.

Theorem 1.10.10 (Decay of correlations). Let G be cyclic, and let I, J : Xk Ñ R two (local) functions.
Write N � kM � ℓ, and let j P t1, . . . ,Mu. Then there exists some 0   µ   1 such that

E1 rIpx1qJpxjqs � E1 rIpx1qsE1 rJpxjqs � OpµM�j � µjq .

This results allows us to justify equation (1.7.7), derived in [Spo21], linking the computation of the
currents of the conserved quantities to the fluctuations of the empirical measure of the Lax matrix.
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Chapter 2

Large deviations for Gibbs ensembles
of the classical Toda chain

Abstract We prove large deviation principles for the distribution of the empirical measure of the eigen-
values of Lax matrices following the Generalized Gibbs ensembles of the classical Toda chain introduced
in [Spo20c]. We deduce the almost sure convergence of this empirical measure towards a limit which
we describe in terms of the limiting empirical measure of Beta-ensembles. Our results apply to general
smooth potentials.

2.1 Introduction
In a breakthrough paper [Spo20c], Herbert Spohn introduced the generalized Gibbs ensembles of the
classical Toda chain as invariant measures of the dynamics of the classical Toda lattice. He analyzes
them by comparing the Toda Lax matrices for these Generalized Gibbs ensembles with Dumitriu-Edelman
tri-diagonal representations of β-ensembles. Thanks to this beautiful comparison, [Spo20c] showed that
the empirical measure of the eigenvalues of Toda Lax matrices converges towards a probability measure
related with the equilibrium measure for β-ensembles. One of the key tools of Herbert Spohn analysis is
the use of transfer matrices, which are restricted to polynomial potentials. We refer the interested reader
to subsequent developments in [Spo20a, Spo20b, Spo21] and [Maz22] where the transfer matrix approach
is used in the similar context of the so-called Ablowitz-Ladik lattice.

The main goal of this article is to generalize some of the results of [Spo20c] by using large deviations
theory, which allows to consider more general potentials. More precisely, we will show the convergence
of the free energy and of the empirical measure of the eigenvalues of Toda Lax matrices following these
Generalized Gibbs ensembles. Moreover, we will express the limits in terms of the well known β-ensembles.
Indeed, a key tool is again to compare the Toda Lax matrices with Dumitriu-Edelman tri-diagonal
representations of β-ensembles. Moreover, we will derive large deviation principles for the empirical
measure of the eigenvalues of tri-diagonal matrices with more general coefficients. However, in this
generality, the rate functions and the limits will not be explicit as the comparison with β-ensembles is
not possible.

More precisely, the Hamiltonian of the Toda chain on sites j � 1, . . . , N is given by

H �
Ņ

j�1
p12p

2
j � e�rj q, rj � qj�1 � qj

with the periodic conditions qN�j � qj � cN for some real constant c. The equations of motion are then
given by

d

dt
qj � pj ,

d

dt
pj � e�rj�1 � e�rj . (2.1.1)

37
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Let LN be the Lax matrix given by the N �N tri-diagonal matrix with entries

pLN qj,j � pj and pLN qj,j�1 � pLN qj�1,j � e�rj{2 (2.1.2)

with periodic boundary conditions pLN q1,N � pLN qN�1,N and pLN qN,1 � pLN qN,N�1, then for all integer
number p,

Qp
N � TrpLp

N q
is conserved by the dynamics (2.1.1) as well as

°N
i�1 ri. It is therefore natural to consider that the finite

N Toda chain is distributed according to the Gibbs measure with density e�TrpW pLN qq�P
°

ri with respect
to Lebesgue measure. Here, P ¡ 0 controls the pressure of the chain and W is a potential to be chosen
later, which can be a polynomial or a general measurable function from R into R. We will assume it goes
to infinity faster than x2: namely there exists c ¡ 0 and a finite constant C such that for all x P R

W pxq ¥ cx2 � C . (2.1.3)

This assumption is used to compare our distribution to the case where W pxq � cx2 in which case the
entries of the Lax matrix LN are independent. We can without loss of generality assume c � 1

2 up to
rescaling and therefore put

W pxq � 1
2x

2 � V pxq. (2.1.4)

In the following we will denote

dTV,P
N pp, rq � 1

ZV,P
N,T

expt�TrpV pLN qq � 1
2TrpL2

N qu
N¹

i�1
e�P ridridpi (2.1.5)

where ZV,P
N,T is the partition function of the Toda Gibbs measure :

ZV,P
N,T �

»
expt�TrpV pLN qq � 1

2TrpL2
N qu

N¹
i�1

e�P ridridpi . (2.1.6)

We denote in short TP
N for T0,P

N . Our goal in this article is to study the empirical measure of the
eigenvalues λN ¤ � � � ¤ λ1 of LN denoted by

µ̂LN
� 1
N

Ņ

i�1
δλi

.

We shall call µ̂LN
the empirical measure of LN , or the empirical density of states of the Lax matrix

following [Spo20c]. Our main result is a large deviations principle for the distribution of µ̂LN
under

dTV,P
N , from which we deduce the almost sure convergence of µ̂LN

under dTV,P
N .

Theorem 2.1.1. Let P ¡ 0 and assume that V is continuous. Assume that either V is uniformly bounded
or there exists k P N� such that

lim
|x|Ñ8

V pxq
x2k

� a , (2.1.7)

with a ¡ 0 if k ¡ 1 and a ¡ �1{2 if k � 1. Then:

1. The law of µ̂LN
under TV,P

N satisfies a large deviation principle in the scale N with good rate function
TV

P .

2. TV
P achieves its minimal value at a unique probability measure νV

P .

3. As a consequence µ̂LN
converges almost surely and in L1 towards νV

P .
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νV
P corresponds to the density of states of the Lax matrix in [Spo20c]. Moreover, following [Spo20c], we

can identify the equilibrium measure νV
P using the equilibrium measure for Coulomb gases in dimension

one at temperature of order of the number of particles. More precisely, for a probability measure µ on
the real line, we define the function fV

P by

fV
P pµq �

1
2

» �
1
2 px

2 � y2q � V pxq � V pyq � 2P log |x� y|


dµpxqdµpyq �

»
log dµ

dx
dµpxq

if µ ! dx, whereas fV
P is infinite otherwise. fV

P achieves its minimal value at a unique probability measure
µV

P ! dx which satisfies the non-linear equation

1
2x

2 � V pxq � 2P
»

log |x� y|dµV
P pyq � log dµ

V
P

dx
� λV

P a.s (2.1.8)

where λV
P is a finite constant. We show in section 2.3 that µV

P is absolutely continuous with respect to
Lebesgue measure and that its depends smoothly on the parameter P . In Lemma 2.3.6, we show it is in
fact differentiable in P . We then show that

Theorem 2.1.2. Let P be a positive real number. Then, for any bounded continuous function f on the
real line, »

fpxqdνV
P pxq � BP pP

»
fpxqdµV

P pxqq

This result was already shown in [Spo20c] when V is a polynomial. Our strategy is to prove first a
large deviation principle in the case when V vanishes: then, LN has independent entries (modulo the
symmetry constraint) under TP

N . We then derive large deviation principles for more general bounded
continuous potentials by using Varadhan’s Lemma, see section 2.2.
Indeed, in the case where V vanishes, the random variables ppj , rjq1¤j¤N are independent, pLN qj,j are
standard Gaussian Np0, 1q variables and

?
2pLN qj,j�1 follows a χ2P distribution with density with respect

to Lebesgue measure given by

χ2P pxq � 21�Px2P�1e�x2{2

ΓpP q 1x¡0. (2.1.9)

The central observation is that we can compare this matrix to the tri-diagonal matrix Cβ
N introduced

by Dumitriu and Edelman [DE02]. This is the symmetric matrix with independent (up to symmetry)
entries whose diagonal elements are independent standard Gaussians variables, and off diagonal elements
so that

?
2Cβ

N pj, j � 1q follow a χ distribution with parameter βpN � jq. When β � 2P {N , the matrix
is therefore similar to LN except that the parameters of the off-diagonal entries vary linearly. The key
point is that the law of the eigenvalues of Cβ

N is explicit and given by the β-ensemble, see Section 2.3.
This comparison allows to compare the free energy, the rate function and the equilibrium measure of
the Toda chain with those of Coulomb gases in section 2.3. In section 2.4, we study the case of general
potentials. The proof is nearly independent from the quadratic case, but requires additional arguments in
particular because the eigenvalues of the Toda matrix are not simple functions of the empirical measure
of the entries. Note that the proof given in section 2.4 also applies to the case where V is bounded. We
nevertheless choose to give a separate proof, dedicated to this case: the computations being simpler, the
core of the proof seems more accessible and introduces ideas we re-use in the case where V is unbounded.

Moreover, our result allows to derive large deviation principles for the empirical measure of the tri-
diagonal matrices with independent standard Gaussian entries on the diagonal and independent chi
distributed variables with general parameters profile on the off-diagonal. Namely let Lσ

N be a tri-
diagonal symmetric matrix with independent Gaussian variables on the diagonal and independent vari-
ables

?
2Lσ

N pj, j � 1q chi distributed with parameter σp i
N q, 1 ¤ i ¤ N . Let TV,σ

N be the distribution with
density e�TrpV pLσ

N qq{Z with respect to the distribution of Lσ
N .

Theorem 2.1.3. Assume that V is continuous and satisfies (2.1.7). Then, if σ is bounded continuous,
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1. the law of µ̂Lσ
N

under TV,σ
N satisfies a large deviation principle in the scale N with good rate function

TV
σ ,

2. TV
σ achieves its minimal value at a unique probability measure νV

σ � ³1
0 ν

V
σpP qdP ,

3. As a consequence, µ̂Lσ
N

converges almost surely and in L1 towards νV
σ .

Acknowledgments : We are very grateful to Herbert Spohn for asking us to investigate the conver-
gence of the density of states for general potentials V and many fruitful discussions that followed. We
would also like to thank David García-Zelada for showing us how to derive Theorem 2.3.1 from [GZ19].
We thank an anonymous referee for helping us to improve the presentation of our results.

2.2 Large deviation principles for tri-diagonal matrices
In this section, we consider a tri-diagonal matrix MN with entries

pMN qj,j � aj and pMN qj,j�1 � pMN qj�1,j � bj (2.2.1)

with periodic boundary conditions, the random variables pai, biq1¤i¤N being iid, with pa1, b1q with law
Qa b Qb on R2. We denote by µ̂MN

the empirical measure of the eigenvalues of MN and prove the
existence of a large deviation principle for the distribution of µ̂MN

. In [Zha17, Theorem 4.2], the author
proves a large deviation principle for the empirical moments µ̂MN

pxkq by noticing that

µ̂MN
pxkq � 1

N

Ņ

i�1
fkpaj , bj , |i� j| ¤ kq

where fkpaj , bj , |i� j| ¤ kq � pMk
N qii is an homogeneous polynomial of degree k in the entries aj , bj , |i�

j| ¤ k. Noting that fk does not depend on i, one can use the large deviation principle for Markov chains
(or k-dependent large deviation principle), see e.g [DZ10, Theorem 3.1.2 or Section 6.5.2], as well as the
contraction principle, to deduce a large deviation principle for the distribution of the empirical moments
tµ̂MN

pxkq, k ¤ pu. This could be used to deduce the existence of a large deviation principle for µ̂MN
for

the weak topology after approximations, but the rate function would not be particularly explicit. We
prefer to develop a more straightforward sub-additivity argument and prove separately the existence of
a weak large deviation principle and exponential tightness, see e.g [DZ10, Lemma 1.2.18].

2.2.1 Exponential tightness
In this section we assume that

Assumption 2.2.1. There exists γ ¡ 0 such that

Dγ :�
»
eγx2

dQapxq �
»
eγy2

dQbpyq   8 .

We equip the set of probability measures on the real line PpRq with the weak topology. We then show
that

Lemma 2.2.2. If paj , bjq1¤j¤N are iid with law Qa b Qb satisfying Assumption 2.2.1, the sequence
pµ̂MN

qN¥0 is exponentially tight, namely for each L ¥ 0 there exists a compact set KL (KL � tµ P
PpRq :

³
x2dµpxq ¤ 2

γ pL� logDγqu with γ as in Assumption 2.2.1) such that

lim sup
N

1
N

logPpµ̂MN
P Kc

Lq   �L. (2.2.2)
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Proof. For N ¥ 1, notice that»
x2dµ̂MN

pxq � 1
N

TrpM2
N q

� 1
N

Ņ

j�1
ppMN qj,jq2 � 1

N

Ņ

j�1

�?
2pMN qj,j�1

	2
. (2.2.3)

As a consequence, Tchebychev’s inequality implies that, for any γ ¡ 0,

P
�»

x2dµ̂MN
pxq ¡ K



¤ e�

1
2 γNKEre 1

2 Nγ
³

x2dµ̂MN
pxqs ¤ e�

1
2 γNKDN

γ .

The conclusion follows by taking K � 2
γ pL� logDγq.

2.2.2 Weak large deviation principle
We next establish a weak large deviation principle, based on the general ideas developed in [DZ10, Lemma
6.1.7]. To this end, we use the following distance on PpRq:

dpµ, νq � sup
}f}BV¤1,|f |Lip¤1

"����»
R
fpxqdµpxq �

»
R
fpxqdνpxq

����* , (2.2.4)

where }f}BV is the total variation norm of f given by

}f}BV � sup
¸
kPN

|fpxk�1q � fpxkq|,

where the supremum holds over all increasing sequences pxkqkPN P RN. }f}L is the Lipschitz norm of f . If
f is continuously differentiable and we put without loss of generality fp0q � 0, }f}BV � ³�8

�8 |f 1pyq|dy and
}f}L � }f 1}8. The distance d is smaller than the Wasserstein distance where one takes the supremum
over all functions whose L8 and Lipschitz norms are bounded by one, and is easily seen to be as well
compatible with the weak topology. Then, we shall prove that if Bµpδq � tν P PpRq : dpµ, νq   δu
denotes the open ball with radius δ centered at µ, we have :

Lemma 2.2.3. For any µ in PpRq, there exists a limit

lim
δÑ0

lim inf
N

1
N

logP pµ̂MN
P Bµpδqq � lim

δÑ0
lim sup

N

1
N

logP pµ̂MN
P Bµpδqq . (2.2.5)

We denote this limit by �JM pµq.

Proof. The advantage of the distance d is the following control: For any symmetric N � N matrices A
and B with empirical measures of eigenvalues µ̂A and µ̂B , we have:

dpµ̂A, µ̂Bq ¤ min
#

rankpA�Bq
N

,
1
N

¸
i,j

|Api, jq �Bpi, jq|
+
. (2.2.6)

Indeed, for any function f with bounded variation we have thanks to Weyl interlacing property, see e.g.
[Gui09, (1.17)], ����» fdµ̂A �

»
fdµ̂B

���� ¤ 1
N

rankpA�Bq . (2.2.7)
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Moreover, one can check that, if f is continuously differentiable, we have»
fdµ̂A �

»
fdµ̂B �

» 1

0

1
N

Tr
�pA�Bqf 1pαA� p1� αqBq� dα

�
» 1

0

�
1
N

Ņ

i,j�1
pA�Bqijf 1pαA� p1� αqBqji

�
dα

which implies since for all indices i, j, |f 1pαA� p1� αqBqji| ¤ }f 1}8 that����» fdµ̂A �
»
fdµ̂B

���� ¤ }f 1}8 1
N

Ņ

i,j�1
|pA�Bqij | . (2.2.8)

Since continuously differentiable functions with bounded L8 norm are dense in Lipschitz functions, we
deduce (2.2.6) from (2.2.7) and (2.2.8). We are now ready to prove Lemma 2.2.3. To this end, we shall
approximate our matrix MN by a diagonal block matrix with independent blocks. Let q ¥ 1. For N ¥ 1
we decompose N � kNq � rN with rN P t0, . . . , q � 1u and set MN � Mq

N � Rq
N , where Mq

N is the
diagonal block matrix

Mq
N �

�����
M1

q

. . .
MkN

q

B

����� . (2.2.9)

Here, for all i P t1, . . . , kNu, M i
q has the same distribution than Mq and B the same distribution than

MrN
. The matrices M i

q, 1 ¤ i ¤ kN , are independent, and are independent from B. Rq
N is the self-adjoint

matrix with null entries except Rq
N p1, Nq � Rq

N pN, 1q � bN , Rq
N pkNq � 1, Nq � Rq

N pN, kNq � 1q � �bN ,
and those given, for k P t1, . . . , kNu, by Rq

N pkq � 1, kqq � Rq
N pkq, kq � 1q � bkq, Rq

N ppk � 1qq � 1, kqqq �
Rq

N pkq, pk � 1qq � 1q � �bkq. Therefore rankpRq
N q ¤ 2kN � 2 ¤ 4kN . By (2.2.6), we deduce that

dpµ̂MN
, µ̂Mq

N
q ¤ 4

q
. (2.2.10)

Moreover, we can write µ̂Mq
N

as the sum

µ̂Mq
N
�

kŅ

i�1

q

N
µ̂Mi

q
� rN

N
µ̂B .

Therefore, for any µ P PpRq and δ ¡ 0, we have

P
�
µ̂M1

q
P Bµpδq

	kN

P
�
µ̂MrN

P Bµpδq
	
� P

�
@ i P t1, . . . , kNu, µ̂Mi

q
P Bµpδq, µ̂B P Bµpδq

	
¤ P

�
µ̂Mq

N
P Bµpδq

	
¤ P

�
µ̂MN

P Bµpδ � 4
q
q


,

where we used the convexity of balls and (2.2.10). As a consequence,

uN pδq :� � logP pµ̂MN
P Bµpδqq

satisfies
uN pδ � 4{qq ¤ kNuqpδq � urN

pδq.
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It is easy (and classical) to deduce the convergence of uN pδq{N when N goes to infinity, and then δ goes
to zero. Indeed let δ ¡ 0 be given and choose q large enough so that 4

q   δ. Then, since δ Ñ uN pδq is
decreasing and non-negative, we have:

uN p2δq
N

¤ uN pδ � 4{qq
N

¤ uqpδq
q

� urN
pδq
N

. (2.2.11)

Since urN
pδq

N ¤ max1¤i¤q�1 uipδq
N goes to zero when N Ñ8, we conclude that

lim sup
N

uN p2δq
N

¤ uqpδq
q

.

Since this is true for all q large enough, we get

lim sup
N

uN p2δq
N

¤ lim inf
N

uN pδq
N

.

Since the left and right hand sides decrease as δ goes to zero, we conclude that

lim
δÑ0

lim sup
NÑ8

� 1
N

logP pµ̂MN
P Bµpδqq ¤ lim

δÑ0
lim inf
NÑ8

� 1
N

logP pµ̂MN
P Bµpδqq ,

and the conclusion follows.

2.2.3 Full large deviation principle
As a consequence of Lemmas 2.2.2 and 2.2.3, we have by [DZ10, Theorem 1.2.18] the following large
deviation principle.

Theorem 2.2.4. Under Assumption 2.2.1, the law of µ̂M satisfies a large deviation principle in the scale
N with a good rate function JM . Moreover, JM is convex. In other words,

• JM : PpRq Ñ r0,�8s has compact level sets tµ : JM pµq ¤ Lu for all L ¥ 0. Moreover, JM is
convex.

• For any closed set F � PpRq,

lim sup
NÑ8

1
N

logPpµ̂MN
P F q ¤ � inf

F
JM ,

whereas for any open set O � PpRq

lim inf
NÑ8

1
N

logPpµ̂MN
P Oq ¥ � inf

O
JM .

Proof. JM exists and is defined by Lemma 2.2.3. The lower semi-continuity of JM follows from [DZ10,
Theorem 4.1.11]. We then deduce that the level sets of JM are compact by the exponential tightness, see
[DZ10, Lemma 1.2.18 (b)].

In the spirit of [DZ10, Lemma 4.1.21], we show that JM is convex. Let µ1, µ2 P PpRq. Since µ̂M2N

can be decomposed as the independent sum of µ̂MN
divided by 2 plus an error term of smaller than 4{N

by (2.2.7), we have for all δ1, δ2 ¡ 0

P pdpµ̂MN
, µ1q   δ1qP pdpµ̂MN

, µ2q   δ2q ¤ P
�
dpµ̂M2N

,
µ1 � µ2

2 q   δ3



. (2.2.12)

for any δ3 ¥ 1
2 pδ1 � δ2q � 4

N . Taking the logarithm, dividing by 2N and letting N go to infinity, δ1, δ2
and then δ3 to zero, we conclude that

JM

�
µ1 � µ2

2



¤ 1

2

�
JM pµ1q � JM pµ2q



, (2.2.13)
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from which we deduce the convexity of JM as in [DZ10, Lemma 4.1.21].
The second point, namely that a weak large deviation principle and exponential tightness implies a full
large deviation principle, is classical, see [DZ10, Lemma 1.2.18].

2.2.4 Large deviation principle for the Toda-Chain with quadratic potential
Recall that we denoted by Qa and Qb respectively the laws of the ai’s and bi’s, see (2.2.1). In the case of
the Toda chain with Gaussian potential, that is V � 0, with entries following TP

N , we take Qa to be the
standard Gaussian law and Qb to be the chi distribution

?
2�1

χ2P given in (2.1.9). We let LN pP q be the
tridiagonal matrix whose entries follow TP

N . These entries clearly satisfy Assumption 2.2.1 and therefore
we have

Corollary 2.2.5. For any P ¡ 0, the law of µ̂LN pP q satisfies a large deviation principle in the scale N
with good, convex, rate function denoted by TP .

For further use, we show that

Lemma 2.2.6. For each µ P PpRq, the map P P p0,�8q ÞÑ TP pµq is lower semi-continuous.

Proof. Let P, h be positive real numbers. We first couple the matrices pLN pP q, LN pP � hqqN , where
LN puq follows Tu

N for u � P and u � P � h, in such a way that there exists a finite constant c so that

P
�
dpµ̂LN pP q, µ̂LN pP�hqq ¡ δ

� ¤ eNpc�
?
� logphqδ{2q . (2.2.14)

This coupling is done as follows:
 The diagonal coefficients are the same set of standard independent Gaussian variables
 The coefficient below and above the diagonal Xi

u, follow a
?

2�1
χ2u for u � P , u � h and P � h. By

definition of the χ distribution we can construct these variables so that almost surely

Xi
P�h �

b
pXi

P q2 � pXi
hq2 . (2.2.15)

This coupling allows by (2.2.6) to write

dpµ̂LN pP q, µ̂LN pP�hqqq ¤
2
N

Ņ

i�1
|Xi

P�h �Xi
P | �

2
N

Ņ

i�1
pXi

P�h �Xi
P q ¤

2
N

Ņ

i�1
Xi

h,

where we ultimately used that, for all i P t1, . . . , Nu, Xi
P�h ¤ Xi

h �Xi
P because Xi

hX
i
P is non-negative

and (2.2.15) holds. Equation (2.2.14) follows by Tchebychev inequality since Erexpt
a

log h�1Xi
hus is

finite, see (2.3.14). (2.2.14) implies that pµ̂LN pP�hqqN¥0 is an exponential approximation of pµ̂LN pP qqN¥0
when h goes to zero. By [DZ10, Theorem 4.2.16 ] , we deduce that for any µ P PpRq, we have

TP pµq � lim
δÑ0

lim inf
hÑ0

inf
Bµpδq

TP�h.

By monotonicity of the right hand side and the lower semi-continuity of TP�h we deduce that, see [DZ10,
(4.1.2)],

lim
δÑ0

inf
Bµpδq

TP�h � TP�hpµq,

and therefore
TP pµq � lim

δÑ0
lim inf

hÑ0
inf

Bµpδq
TP�h ¤ lim inf

hÑ0
TP�hpµq,

and so P ÞÑ TP pµq is lower semi-continuous.
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We shall also use later that Corollary 2.2.5 gives a large deviation principle for the empirical measure
of the Toda chain with general bounded continuous potential.

Corollary 2.2.7. Let V be a bounded continuous function on the real line and P be a positive real
number. Let LN pP q be the tridiagonal matrix whose entries follow TV,P

N . Then:

• The law of µ̂LN pP q satisfies a large deviation principle in the scale N with convex good rate function
given, for any µ P PpRq,

TV
P pµq � TP pµq �

»
V dµ� inf

ν
tTP pνq �

»
V dνu .

• The set MV
P where TV

P achieves its minimum value is a compact convex subset of PpRq. It is
continuous in the sense that for any ε ¡ 0, there exists δε ¡ 0 such that for all δ   δε, any P,Q ¡ 0
such that for |P �Q| ¤ δ,

MV
P � pMV

Q qε
where Aε � tµ : dpµ,Aq ¤ εu.

Proof. The first point is a direct consequence of Varadhan’s lemma since when V is bounded continuous,
µÑ ³

V pxqdµpxq is also continuous. We hence need only to prove the second point, that is the continuity
of P P p0,�8q ÞÑ MV

P . Note that since TV
P is a good rate function, MV

P is compact for all positive real
number P . We let TN be the coupling of LN pP q and LN pQq introduced in Lemma 2.2.6. By definition,
for R � P and Q, B a measurable subset of PpRq, we have

TV,R
N pµ̂LN

P Bq � 1
ZV,R

N,T

»
1tµ̂LN pRqPBue�N

³
V pxqdµ̂LN pRqpxqdTN ,

where we used the notation
ZV,R

N,T �
»
e�N

³
V pxqdµ̂LN pRqpxqdTR

N .

Therefore, since ppMV
Q qεqc is open, we can use the large deviation principle for the empirical measure of

LN pP q, Corollary 2.2.5, to state that for any κ ¡ 0

� inf
ppMV

Q
qεqc

TV
P ¤ lim sup

NÑ8

1
N

log 1
ZV,P

N,T

»
tdpµ̂LN pP q,MV

Q
q¡εu

e�N
³

V pxqdµ̂LN pP qpxqdTN

¤ maxtlim sup
NÑ8

1
N

log 1
ZV,P

N,T

»
tdpµ̂LN pP q,MV

Q
q¡εuXtdpµ̂LN pP q,µ̂LN pQqq¤κu

e�N
³

V pxqdµ̂LN pP qpxqdTN ,

2}V }8 � c�
a
� log |P �Q|κ{2u (2.2.16)

where we used (2.2.14) and ZV,P
N,T ¥ e�N}V }8 . We next remark that by Lemma 2.2.2, there exists a

positive constant c and a finite constant C such that uniformly on P in a compact set, if we denote by
KL � t³ x2dµpxq ¤ Lu,

TP
N pµ̂LN

P Kc
Lq ¤ e�pcL�CqN .

Hence, fixing some L ¡ 0, (2.2.16) implies

� inf
ppMV

Q
qεqc

TV
P ¤ max

"
2}V }8 � c�

a
� log |P �Q|κ{2, 2}V }8 � cL� C, (2.2.17)

lim sup
NÑ8

1
N

log 1
ZV,P

N,T

»
1dpµ̂LN pP q,MV

Q
q¡ε1dpµ̂LN pP q,µ̂LN pQqq¤κ1µ̂LN pP q,µ̂LN pQqPKL

e�N
³

V pxqdµ̂LN pP qpxqdTN

*
.

We next notice that
³
V pdµ � dνq is bounded by some εL

V pκq going to zero as κ does uniformly on
tdpµ, νq ¤ κu and µ, ν in the compact set KL. Indeed, this is obvious if V has bounded variation and
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Lipschitz norms, with εV pκq � maxt}V }BV, }V }Luκ. If V is bounded continuous, we let η ¡ 0 and choose
M �

a
2η�1L so that µpr�M,M scq � νpr�M,M scq ¤ η for µ, ν P KL, and then Vη with finite bounded

variation and Lipschitz norm so that

sup
xPr�M,Ms

|V pxq � Vηpxq| ¤ η .

We then check that����» V pdµ� dνq
���� ¤ }V }8η � 2η �

����» Vηpdµ� dνq
���� ¤ p}V }8 � 2qη �maxt}Vη}BV, }Vη}Luκ .

We finally choose η � ηpκq going to zero slowly enough with κ so that the above right hand side goes to
zero. Hence, we can bound the third term in the right hand side of (2.2.17) to find that

1
ZV,P

N,T

»
1dpµ̂LN pP q,MV

Q
q¡ε1dpµ̂LN pP q,µ̂LN pQqq¤κ1µ̂LN pP q,µ̂LN pQqPKL

e�N
³

V pxqdµ̂LN pP qpxqdTN

¤ eNεL
V pκq

ZV,Q
N,T

ZV,P
N,T

1
ZV,Q

N,T

»
1tdpµ̂LN pQq,MV

Q
q¥ε�κue

�N
³

V pxqdµ̂LN pQqpxqdTN .

Similarly, we find that

ZV,Q
N,T ¤

»
e�N

³
V dµ̂LN pQq1µ̂LN pP q,µ̂LN pQqPKL

1tdppµ̂LN pP q,µ̂LN pQqq¤κudTN

�ep}V }8�c�
?
� log |P�Q|κ{2qN � 2ep}V }8�cL�CqN

¤ ZV,P
N,T peNεL

V pκq � ep2}V }8�c�
?
� log |P�Q|κ{2qN � 2ep2}V }8�cL�CqN q

where we used that the partition function is bounded from below by e�}V }8N . Moreover the previous
large deviation principle implies if κ ¤ ε{2 that

lim sup
NÑ8

1
N

log 1
ZV,Q

N,T

»
tdpµ̂LN pQq,MV

Q
q¥ε�κu

e�N
³

V pxqdµ̂LN pQqpxqdTN ¤ � inf
dpµ,MV

Q
q¥ε{2

tTV
Q u .

Hence, we find that if L is big enough, P � Q small enough so that εL
V pκq ¡ maxt2}V }8 � c �a� log |P �Q|κ, 2}V }8 � cL� Cu, (2.2.17) yields

� inf
ppMV

Q
qεqc

TV
P ¤ 2εL

V pκq � inf
dpµ,MV

Q
q¥ε{2

tTV
Q u

We then conclude that the right hand side is negative for such choices of parameters if κ is small enough
and therefore infppMV

Q
qεqc TV

P ¡ 0 so that ppMV
Q qεqc � pMV

P qc which yields the result.

2.3 β-ensembles

2.3.1 Large deviation principles for β-ensembles
In this section we consider the β-ensembles and collect already known results about their large deviation
principles. We then relate these large deviation principles with the previous ones thanks to Dumitriu-
Edelman tri-diagonal representation, as pioneered in [Spo20c]. Coulomb gases on the real line are given
by the following β-ensembles distribution:

dPV,β
N px1, � � � , xN q � 1

ZV,β
N,C

¹
i j

|xi � xj |βe�
°N

i�1p 1
2 x2

i�V pxiqqdx1 � � � dxN . (2.3.1)
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V will be a continuous potential. When V � 0 and β � 1, it is well known [AGZ10, Section 2.5.2] that
dP0,1

N is the law of the eigenvalues of the Gaussian orthogonal ensemble of random matrices with standard
Gaussian entries. Hereafter, we keep the potential to be under the form of a quadratic potential plus a
general potential only to have simpler notations later on. In this article, we are however interested in the
scaling where β � 2P

N . The large deviation principles for the empirical measure µ̂N � 1
N

°N
i�1 δxi

have
been derived in [GZ19] and yields the following result.

Theorem 2.3.1. [GZ19] Let PN be a sequence of positive real numbers converging towards P ¡ 0. Let
W pxq � 1

2x
2�V pxq be a continuous function such that for some P 1 ¡ P � 1 there exists a finite constant

CV such that for all x
W pxq ¥ P 1 logp|x|2 � 1q � CV (2.3.2)

Then the law of µ̂N under PV,
2PN

N

N satisfies a large deviation principle in the scale N and with good rate
function IV

P pµq � fV
P pµq � inf fV

P where

fV
P pµq �

1
2

»
pW pxq �W pyq � 2P log |x� y|qdµpxqdµpyq �

»
log dµ

dx
dµpxq

if µ ! dx and log dµ
dx is µ-integrable, whereas fV

P is infinite otherwise.

In fact, neglecting the singularity of the logarithm, this result would be a direct consequence of Sanov’s
theorem and Varadhan’s lemma. Dealing with this singularity requires extra-care, a difficulty which was
addressed in [GZ19]. Indeed, [GZ19, Theorem 1.1] can be applied, as was kindly shown to us by David
García-Zelada. For 1

2P 1   α   1� P
P 1 , we can rewrite

dPV,
2PN

N

N px1, . . . , xN q � 1
Z̃V,PN

N

e�2PN NHN px1,...,xN qdπpx1q . . . dπpxN q,

where, if γpNq � p1�N�1q 1
2P 1 � α�1

2PN
, we set

HN px1, . . . , xN q � 1
N2

¸
1¤i j¤N

�
W pxiq

2P 1 � W pxjq
2P 1 � log |xi � xj |



� γpNq

N

Ņ

i�1
W pxiq

and π is the probability measure given by

dπpxq � 1
Z
e�αW pxqdx.

The sequence pHN qN¥0 is (up to considering N large enough) uniformly bounded from below by (2.3.2).
Moreover, letting γp8q � 1

2P 1 � α�1
2P , we set for µ P PpRq,

Hpµq :� 1
2

» �
W pxq
2P 1 � W pyq

2P 1 � log |x� y|


dµpxqdµpyq � γp8q

»
W pxqdµpxq,

we find [GZ19, Lemma 2.1] that the couple ptHNuN¥0, Hq fulfills the assumptions of [GZ19, Theorem 1.1].
Thus the law of µ̂N satisfies a large deviation principle at speed N with rate function IV

P � fV
P � inf fV

P ,
where

fV
P pµq �

"
2PHV pµq �

³
log dµ

dπdµ if µ ! π and log dµ
dx is µ-integrable

�8 otherwise.

It is not hard to see that

Lemma 2.3.2. For any continuously differentiable function W , any P 1 ¡ P � 1 such that (2.3.2) holds,
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• µ ÞÑ IV
P pµq is strictly convex,

• IV
P achieves its minimal value at a unique probability measure µV

P pdxq ! dx which satisfies the
non-linear equation

W pxq � 2P
»

log |x� y|dµV
P pyq � log dµ

V
P

dx
� λV

P a.s (2.3.3)

where λV
P is a finite constant. Furthermore the support of µV

P is the whole real line and the density
of dµV

P

dx is bounded from above by CP p|x| � 1q2pP�P 1q where CP is a constant which is uniformly
bounded on compact subsets of p0, P 1 � 1q.

• Let D be the distance on PpRq given by

Dpµ, µ1q �
�
�
»

log |x� y|dpµ� µ1qpxqdpµ� µ1qpyq

1{2

�
�» 8

0

1
t

����» eitxdpµ� µ1qpxq
����2 dt

�1{2
(2.3.4)

Then P ÞÑ µV
P is locally 1/2-Hölder for the distance D: For any δ ¡ 0 such that rP � δ, P � δs �

p0, P 1 � 1q, there exists a constant D ¡ 0 such that for all P � δ ¤ R ¤ P � δ, we have

DpµV
P , µ

V
Rq ¤ D

a
|P �R|.

We will see later that in fact P : p0, P 1 � 1q Ñ µV
P is differentiable, see Lemma 2.3.6. Observe that if

f is in L2 with derivative in L2, we can set }f} 1
2
� p³80 t|f̂t|2dtq1{2. Then, for any measure ν with zero

mass, »
fpxqdνpxq �

» 8

�8
f̂tν̂tdt �

» 8

�8

?
tf̂t

1?
t
ν̂tdt

so that by Cauchy-Schwartz inequality, we get,����» fpxqdνpxq����2 ¤ » 8

�8
|tf̂t|2dt

» 8

�8

1
|t| |ν̂t|2dt � 4}f}2

1{2Dpν, 0q2 (2.3.5)

In particular, the last point in the theorem shows that for any f with finite }f}1{2, P Ñ ³
fdµV

P is Hölder
1{2.

Proof. For P 2 ¡ 1, we denote by λP2 the probability measure on the real line given by λP2pdxq :�
Z�1

P2 p|x2| � 1q�P2{2dx and rewrite fV
P (up to a constant logZP2) as

fV
P pµq �

1
2

»
pW̄ pxq � W̄ pyq � 2P log |x� y|qdµpxqdµpyq �

»
log dµpxq

dλP2pxqdµpxq

where W̄ pyq :� W pyq � 1
2P

2 logp|y|2 � 1q. Because λP2 is a probability measure so that, for every
probability measure µ, »

log dµ

dλP2
pxqdµpxq ¥ 0

by Jensen’s inequality since x ÞÑ x log x is convex.
The first point of the lemma is clear as µ ÞÑ ³pW̄ pxq � W̄ pyq � 2P log |x � y|qdµpxqdµpyq is strictly

convex [AGZ10, Lemma 2.6.2] whereas the relative entropy µ ÞÑ ³
log dµ

dλP2
pyqdµpyq is well known to be

convex. Since fV
P is a good rate function, it achieves its minimal value at a unique probability measure

µV
P . Writing that for any measure ν with mass zero such that µV

P � εν is a probability measure for small
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enough ε, IV
P pµV

P � ενq ¥ IV
P pµV

P q, we get that (2.3.3) holds µV
P almost surely and that the left hand side

in (2.3.3) is greater or equal than the right hand side outside of the support of µV
P . Since the left hand

side equals �8 when the density vanishes, we conclude that the support is the whole real line. We finally
show the boundedness of the density. Note that (2.3.3) implies that

dµV
P

dx
pxq � eλV

P e�W pxq�2P
³

log |x�y|dµV
P pyq (2.3.6)

We get from (2.3.2), and the fact that log |x� y| ¤ 1
2 logp|x|2 � 1q � 1

2 logp|y|2 � 1q the bound

�W pxq � 2P
»

log |x� y|dµV
P pyq ¤ �pP 1 � P q logp|x|2 � 1q � CV � P

»
logp|x|2 � 1qdµV

P .

We thus only need to bound
³

logp|x|2 � 1qdµV
P and λV

P from above. We first notice that P ÞÑ inf fV
P is

concave since it is the limit of the free energy �N�1 logZV, 2P
N

N . This is enough to guarantee that this
quantity is uniformly bounded on compact sets (as it is at any given point). We denote by C such a
bound for a fixed compact set. As in [AGZ10, Lemma 2.6.2 (b)], since the relative entropy is non-negative
we find that »

pW̄ pxq � P logp|x|2 � 1qqdµV
P pxq ¤ fV

P pµV
P q ¤ C .

This implies by our hypothesis (2.3.2) that

pP 1 � P 2 � P q
»

logp|x|2 � 1qdµV
P pxq ¤ C � CV

and therefore plugging this estimate in the infimum of fV
P gives if P 1 � P � P 2 ¡ 0 (which is always

possible as we assumed P 1 � P ¡ 1)»
W pxqdµV

P pxq ¥ C � C � CV

2pP 1 � P � P 2q

Moreover, again because the relative entropy is non-negative,

�PΣpµV
P q :� �P

»
log |x� y|dµV

P pxqdµV
P pyq

¤ C �
»
W̄ pxqdµV

P pxq ¤ C � 2pP 1 � P 2q
»

logp|x|2 � 1qdµV
P pxq � CV

is uniformly bounded. Finally, from (2.3.3) we have after integration under µV
P

λV
P � inf fV

P � P

»
log |x� y|dµV

P pxqdµV
P pyq (2.3.7)

is thus uniformly bounded from above. This completes the proof of the upper bound of the density: dµV
P

dx

is bounded by CP p|x|�1q2pP�P 1q where CP is uniformly bounded on compacts so that P 1�P �1 ¥ ε ¡ 0
for some fixed ε.

We next study the regularity of the equilibrium measure µV
P in the parameter P . Let δ ¡ 0 be such

that rP � δ, P � δs � p0, P 1 � 1q, and let P � δ ¤ R ¤ P � δ. If ∆µ � µV
P � µV

R , since µV
P minimizes fV

P ,
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we have

0 ¥ fV
P pµV

P q � fV
P pµV

Rq
�

»
W pxqd∆µpxq � 2P

»
log |x� y|dµV

Rpxqd∆µpyq � P

»
log |x� y|d∆µpxqd∆µpyq

�
»

log dµ
V
P

dx
dµV

P �
»

log dµ
V
R

dx
dµV

R

�
»
p2R

»
log |x� y|dµV

Rpyq � log dµ
V
R

dx
qpxqd∆µpxq � 2P

»
log |x� y|dµV

Rpxqd∆µpyq

�P
»

log |x� y|d∆µpxqd∆µpyq �
»

log dµ
V
P

dx
dµV

P �
»

log dµ
V
R

dx
dµV

R

� 2pR� P q
»

log |x� y|dµV
Rpxqd∆µpyq � P

» »
log |x� y|d∆µpxqd∆µpyq �

»
log dµ

V
P

dµV
R

dµV
P

where in the second line we used (2.3.3) and the fact that ∆µp1q � 0. By using the Fourier transform of
the logarithm, the centering of ∆µ and the definition (2.3.4) we deduce»

log dµ
V
P

dµV
R

dµV
P � PDpµV

P , µ
V
Rq2 ¤ 2pP �Rq

» »
log |x� y|dµV

Rpxqd∆µpyq . (2.3.8)

We can assume without loss of generality that R   P . We now show that the integral of the right
hand side is bounded independently of R P rP � δ, P s. We have dµV

R

dx ¤ CR

p1�|x|q2pP 1�Rq , where R ÞÑ CR is
bounded on any compact of p0, P 1 � 1q, and in particular on rP � δ, P � δs. Thus there exists C ¡ 0

such that dµV
R

dx
¤ C

p1�|x|q2 , and the same bound holds for µV
P . Using that for any x, y with x � y we

have logp|x� y|q ¤ logp1� |x|q � logp1� |y|q and the previous bound on the density of µV
R , we conclude

that
³ ³

log |x� y|dµV
Rpxqd∆µpyq is uniformly bounded in R P rP � δ, P � δs. Since

³
log dµV

P

dµV
R

dµV
P ¥ 0 by

Jensen’s inequality equation (2.3.8) gives the existence of a finite constant D such that

DpµV
P , µ

V
Rq ¤ D

a
|P �R| .

2.3.2 Relation with the large deviation principle for Toda matrices with
quadratic potential

When V � 0, for any β ¡ 0, Dumitriu and Edelman [DE02, Theorem 2.12] have shown that P0,β
N is the

law of the eigenvalues of a N � N tri-diagonal matrix Cβ
N such that

�
pCβ

N qj,j

	
1¤j¤N

are independent

standard normal variables, independent from the off diagonal entries pCβ
N qj,j�1 � pCβ

N qj�1,j which are
independent and such that

?
2Cβ

N pj, j � 1q follows a χpN�jqβ distribution. As in the case of the Toda
measure we hereafter identify P0,β

N with Pβ
N . We are now going to give an alternate large deviation

principle for the empirical measure under P2P {N
N based on this representation, this will allow to relate

the rate function IP � I0
P of the Coulomb Gas in terms of the large deviation rate function Ts, s ¤ P for

Toda matrices.

Lemma 2.3.3. The law of the empirical measure µ̂N under P2P {N
N satisfies a large deviation principle

in the scale N and with good rate function

IP pµq � lim
δÑ0

lim inf
MÑ8

inf
νP {M ,��� ,νP s.t.

1
M

°
i νiP {MPBµpδq

#
1
M

M̧

i�1
TiP {M pνiP {M q

+
. (2.3.9)
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Observe for later purpose that we must have IP � I0
P where IV

P is defined just above Lemma 2.3.2.

Proof. We shall proceed by exponential approximation. We write N � kNM � rN , 0 ¤ rN ¤M � 1, and
consider the matrices

SM
N �

�����
L1

kN

. . .
LM

kN

0

����,

with pLi
kN
q1¤i¤M a family of independent square matrices with size kN distributed according to T

�
P

N�ikN
N

	
kN

,
and a block with null entries of size rN � rN . We shall prove that they provide good exponential ap-
proximation for the matrix C

2P
N

N following the distribution P2P {N
N , see [DZ10, Definition 4.2.14]. More

precisely, we show that for any positive real number δ :

lim
MÑ�8

lim sup
N

1
N

logPpdpµ̂
C

2P
N

N

, µ̂SM
N
q ¡ δq � �8 . (2.3.10)

The lemma is then a direct application of [DZ10, Theorem 4.2.16 and Exercise 4.2.7]. We first approximate
SM

N by the following matrix

UM
N �

��������������������

C1
�

�
. . .

�
�

CM

�
�

RM
N

�������������������

,

where the symbols � denote entries following the law of a matrix distributed according to P2P {N
N :

UN pikN , ikN � 1q � UN pikN � 1, ikN q � 1?
2
χ2P

N�ikN
N

, 1 ¤ i ¤M ;

RM
N has same distribution as the rN � rN -bottom-right corner of a P2P {N

N - distributed matrix. Ci has the
same coefficients as Li

kN
except for the top-right and bottom-left corner entries which are put to zero :

Ci �

���������
gpi�1qkN�1

. . . 0
. . . . . . 1?

2c
i
j

1?
2c

i
j

. . . . . .

0 . . . gikN

��������
.

The pci
jq1¤j¤kN�1 are distributed according to χ2P

N�ikN
N

.

For 1 ¤ i ¤M and 1 ¤ j ¤ kN � 1, let bi
j �

b
pci

jq2 � χ2
i,j , where pχi,jq1¤i¤M,1¤j¤kN

is an independent
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family of χ variables with parameter 2P kN�j
N , independent from UN

M .
We set, for 1 ¤ i ¤M , Bi to be the matrix

Bi �

���������
gpi�1qkN�1

. . . 0
. . . . . . 1?

2b
i
j

1?
2b

i
j

. . . . . .

0 . . . gikN

��������
.

The matrix

C
2P {N
N �

��������������������

B1
�

�
. . .

�
�

BM

�
�

RM
N

�������������������
is distributed according to P2P {N

N , where the symbols � denote the same coefficients as those of UM
N .

Because the rank of SM
N � UM

N is bounded by 2M � rN ¤ 3M , by (2.2.6) we have

dpµ̂UM
N
, µ̂SM

N
q ¤ 3M

N
� 3
kN

. (2.3.11)

Let δ be a positive real number. Then for N large enough so that kN verifies 3
kN

¤ δ{2,

P
�
dpµ̂

C
2P {N
N

, µ̂SM
N
q ¡ δ

	
¤ P

�
dpµ̂

C
2P {N
N

, µ̂UM
N
q � dpµ̂UM

N
, µ̂SM

N
q ¡ δ

	
¤ P

�
dpµ̂

C
2P {N
N

, µ̂UM
N
q ¡ δ{2

	
.

Moreover (2.2.6) yields

dpµ̂UM
N
, µ̂

C
2P {N
N

q ¤ 2
N

Ņ

i�1
|Yi|, (2.3.12)

where Yi is the ith coefficient above or below the pi, iq the coefficient of C2P {N
N � UM

N . Applying the
inequality

?
a� b ¤ ?

a�?
b for a, b ¥ 0 and a � ci

j and b � χi,j , we deduce

dpµ̂UM
N
, µ̂

C
2P {N
N

q ¤
?

2
kNM

kN M̧

i�1
χi

2P {M , (2.3.13)

where the last sum denotes the sum of iid variables with law χ2P {M (and we used that there exists a
coupling between a χ2P

kN�j

N

and a χ2P {M variable such that the first is always bounded above by the
second).
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Thus for all δ ¡ 0, for any integer numbers N such that 3
kN

¤ δ{2 (i.e for N larger than some N0
depending on M) and for any non-negative function A : M ÞÑ ApMq

P
�
dpµ̂SM

N
, µ̂

C
2P {N
N

q ¡ δ
	
¤ P

�
kN M̧

i�1
χ2P {M ¡ kNMδ

2
?

2

�

¤ e�ApMqkN Mδ{p2?2qE
�
eApMqχ2P {M

�kN M

.

It is not hard to see that with ApMq �a
logpMq, there exists a finite constant K such that

sup
M¥0

E
»
eApMqxdχ1{M pxq ¤ K (2.3.14)

insuring that
1
N

logPpdpµ̂
C

2P {N
N

, µ̂SM
N
¡ δq ¤ �ApMq δ

2
?

2
�K,

which yields the result.

We shall use the previous lemma to study the case with a non trivial potential. Indeed, as a direct
consequence of Lemma 2.3.3 and Varadhan’s lemma, we deduce the following Theorem.

Theorem 2.3.4. For any continuous function V such that

lim sup
|x|Ñ8

|V pxq|
x2 � 0, (2.3.15)

the law of the empirical measure µ̂N under PV,2P {N
N satisfies a large deviation principle in the scale N

and with good rate function IV
P pµq � fV

P pµq � inf fV
P where

fV
P pµq � lim

δÑ0
lim inf

M
inf

νP {M ,��� ,νP s.t.
1

M

°
i νiP {MPBµpδq

#
1
M

M̧

i�1
pTiP {M pνiP {M q �

»
V dνiP {M q

+
. (2.3.16)

Remark 2.3.5. Varadhan’s lemma gives the result for bounded continuous function V . However, we can
approximate V by V pxqp1 � εx2q�1 with overwhelming probability thanks to Lemma 2.2.2, which allows
to conclude for any potential V satisfying (2.3.15)

We shall use this relation to give a better description of the rate function TP . In fact we first consider
the free energy

FV,P
T � lim

NÑ8
1
N

logZV,P
N,T , F

V,P
C � lim

NÑ8
1
N

logZV,P
N,C � � inf fV

P .

Lemma 2.3.6. For any continuous function V satisfying (2.3.15),

• P ÞÑ FV,P
C � � inf fV

P is continuously differentiable on p0,�8q. Moreover, for any P ¡ 0

FV,P
T � BP pPFV,P

C q

• For any bounded continuous function f , the map P P p0,�8q ÞÑ PµV
P pfq is continuously differen-

tiable. Moreover, there exists a unique minimizer νV
P of µ ÞÑ TP pµq �

³
V dµpxq, which satisfies, for

any bounded continuous function f ,

νV
P pfq � BP pPµV

P pfqq.
Therefore, we have

νV
P � BP pPµV

P q . (2.3.17)
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• For any probability measure µ,

TP pµq � � inf
V PC0

b

"»
R
V dµ� FV,P

T

*
. (2.3.18)

Proof. First notice that, for any probability measure µ, Lemma 2.3.3 implies that

fV
P pµq � IP pµq �

»
R
V dµ ¥ lim inf

M

1
M

M̧

i�1
inf
ν

"
TiP {M pνq �

»
R
V dν

*
�

» 1

0
inf
ν

"
TsP pνq �

»
R
V dν

*
ds � �

» 1

0
FV,sP
T ds . (2.3.19)

In the equality between the lim inf and the integral, we used the fact that s P p0, 1q ÞÑ FV,sP
T is convex and

therefore continuous. We claim that this lower bound is achieved. For s P r0, 1s, let ν�sP be a minimizer
of µ ÞÑ TsP pµq �

³
V dµ. By Corollary 2.2.7, we can choose ν�sP such that s ÞÑ ν�sP is continuous. Hence,

µ�P :� ³1
0 ν

�
sP ds makes sense and is a probability measure on R. We claim it minimizes fV

P . Indeed, by
Lemma 2.3.3, we have

fV
P pµ�P q � lim

δÑ0
lim inf

M
inf

1
M

°M
i�1 νiP {MPB

µ�
P

pδq

#
1
M

M̧

i�1
TiP {M pνiP {M q �

»
R
V dνiP {M

+

¤ lim inf
M

1
M

M̧

i�1

"
TiP {M pν�iP {M q �

»
R
V dν�iP {M

*

� lim inf
M

1
M

M̧

i�1
inf
ν

"
TiP {M pνq �

»
R
V dν

*
�

» 1

0
inf
ν

"
TsP pνq �

»
R
V dν

*
ds� �

» 1

0
FV,P s
T ds.

With (2.3.19), we deduce that the above inequality is an equality and that fV
P achieves its minimal value

at µ�P . By Lemma 2.3.2, this minimizer is unique and therefore µ�P � µV
P for any choices of paths ν�. and

any positive real number P . Hence, we find that

�FV,P
C � inf fV

P � IP pµV
P q �

»
R
V dµV

P � �
» 1

0
FV,P s
T ds .

By a change of variable we deduce

PFV,P
C �

» P

0
FV,s
T ds .

Since s ÞÑ FV,s
T is convex, it is continuous. This shows that P ÞÑ PFV,P

C is continuously differentiable,
and that for all P ¡ 0,

FV,P
T � BP pPFV,P

C q .
Moreover, we have seen that for any choice of continuous minimizing path ν�� of µ ÞÑ T�pµq �

³
V dµ and

any positive real number P ,

µV
P �

» 1

0
ν�sP ds �

1
P

» P

0
ν�s ds .

Integrating the last equality against f bounded continuous we have

µV
P pfq �

1
P

» P

0
ν�s pfqds .
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By continuity of s ÞÑ ν�s pfq, we deduce that P ÞÑ µV
P pfq is continuously differentiable and that

ν�P pfq � BP pPµV
P pfqq.

But Corollary 2.3.2 implies that any probability which minimizes TV
P can be seen as the endpoint of a

continuous path s P p0, P s ÞÑ ν�s where each ν�s minimizes TV
s . By the latter, such a measure is then

equal to BP pPµV
P pfqq, showing the uniqueness of the minimizer νV

P of TV
P and the equality

νV
P � BP pPµV

P q.

The last point of the Lemma is a direct consequence of [DZ10, Theorem 4.5.10] since TV
P is convex for

all bounded continuous function V .

By Lemma 2.3.2, νV
P is a probability measure which satisfies almost surely

dνV
P pxq � pCV

P � 2P
»

log |x� y|dνV
P pyqqdµV

P pxq

with CV
P a constant such that

CV
P � 2P

»
log |x� y|dνV

P pyqdµV
P pxq � 1

Furthermore we must have CV
P � 2P

³
log |x� y|dνV

P pyq ¥ 0 for all x.

2.4 Large deviations for Toda Gibbs measure with general po-
tentials

We now consider the measures TV,P
N given by (2.1.5), with potential given by W : x P R ÞÑ ax2k � Upxq,

k ¥ 2, with Upxq{x2k going to zero at infinity. We show that under these laws, the law of the empirical
measures pµ̂LN

qN¥1 still fulfills a large deviation principle, by extending the subadditivity argument
previously used. We then identify the rate function as before. By Varadhan’s Lemma, it is enough to
consider the case where Upxq � 1

2x
2 (we detail this in Section 2.5). We hereafter continue to use the

notation (2.1.5) with now V pxq � ax2k.

2.4.1 Exponential tightness

In this section we prove that if W pxq � ax2k� 1
2x

2, i.e V pxq � ax2k with k ¥ 2 and a ¡ 0, then the
law of the empirical measure of the eigenvalues is exponentially tight under TV,P

N . More precisely, we let
KL � tµ P PpRq | ³ V pxqdµpxq ¤ Lu which is a compact of PpRq. Then we shall prove

Lemma 2.4.1. There exists a finite constant cW such that

TV,P
N pµ̂N P Kc

Lq ¤ e�pL�cW qN .

Proof. We first bound from below the free energy by Jensen’s inequality

ZV,P
N,T �

»
R2N

e�N
³
R V dµ̂NdTP

N ¥ expt�N
»
R2N

»
R
V dµ̂NdTP

Nu ¥ expt�cV Nu . (2.4.1)
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From here we deduce exponential tightness for pµ̂N qN under TV,P
N : for L ¡ 0,

TV,P
N

�»
R
V dµ̂N ¥ L



� 1
ZV,P

N,T

»
R2N

1t³R V dµ̂N¥Lue�N
³
R V dµ̂NdTP

N

¤ eNpcV �Lq. (2.4.2)

For later purpose we prove the following result showing that the off diagonal entries bi � e�ri{2, 1 ¤ i ¤ N
of the Lax matrix LN do not become too small :

Lemma 2.4.2. For any P ¡ 0

lim sup
L

lim sup
N

1
N

logTV,P
N

�
1
N

Ņ

i�1
log bi ¤ �L

�
� �8.

Proof. Since V is bounded from below and we have bounded from below the partition function (2.4.1), it
enough to prove this estimate when V � 0. But, in this case the entries are independent and so we only
need to prove it for independent chi distributed variables. But then, for any 0   δ   P , with ZP

N,T � Z0,P
N,T

the partition function in (2.1.6), we find

TP
N

�
1
N

Ņ

i�1
log bi ¤ �L

�
¤ e�δLN

ZP�δ{2
N,T

ZP
N,T

� e�δLN

�
ΓpP � δ{2q
2δ{2ΓpP q


N

from which the result follows by taking for instance δ � P {2.

2.4.2 Weak LDP
In this section, we prove that µ̂LN

satisfies a weak large deviation principle, namely Lemma 2.2.3. In
this more general setup, we follow again a subadditivity argument, which is however more sophisticated
since the entries of LN are not independent anymore. We will restrict ourselves to the case where
V pxq � ax2k, a ¡ 0, the case of a more general potential with the same asymptotic behavior being again
a consequence of Varadhan’s Lemma. We first show that the large deviation principles is the same if we
remove the entries (equal to bN ) in the corners pN, 1q and p1, Nq in the Toda matrix. Namely, let L̃N be
the tridiagonal matrix with entries equal to those of LN except for the entries p1, Nq and pN, 1q which
vanish and consider the following modification of TV,P

N given by

dT̃V,P
N � 1

Z̃V,P
N

e�TrV pL̃N qdTP
N . (2.4.3)

Lemma 2.4.3. For any probability measure µ, we have

lim
δÑ0

lim inf
NÑ8

1
N

log
»

1dpµ̂LN
,µq δe

�TrV pLN qdTP
N � lim

δÑ0
lim inf
NÑ8

1
N

log
»

1dpµ̂L̃N
,µq δe

�TrV pL̃N qdTP
N

Moreover,

lim inf
NÑ8

1
N

log
»
e�TrV pLN qdTP

N � lim inf
NÑ8

1
N

log
»
e�TrV pL̃N qdTP

N .

The same results hold if we replace all the liminf by limsup.
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Proof. To simplify the notations we take a � 1 in the proof. First notice that V pLN q � V pL̃N q is an
homogeneous polynomial of degree 2k in LN and ∆LN � LN � L̃N , with degree at least one in the
latter. Observe that ∆LN only depends on bN . Therefore, there exists a finite constant Ck such that
on BK,M

N :� tbN ¤ Ku X t 1
N TrpL2k

N q ¤ Mu ( or B̃M,K
N :� tbN ¤ Ku X t 1

N TrpL̃2k
N q ¤ Mu), Hölder’s

inequality implies���� 1
N

Tr
�
V pLN q � V pL̃N q

����� ¤ Ck

2ķ

l�1

�
1
N

Tr
�p∆LN q2k

�
l{2k � 1
N

Tr
�
L2k

N

�
 2k�l
2k

¤ CpM,KqN� 1
2k

where CpM,Kq is a finite constant depending only on M,K, k. Note that in the above right hand side
TrpL2k

N q can be replaced by TrpL̃2k
N q as they play a symmetric role. Moreover, by (2.2.7), dpµ̂LN

, µ̂L̃N
q ¤

2{N since ∆LN has rank at most two. We fix a probability measure µ and first prove that

lim inf
NÑ8

1
N

log
»

1dpµ̂LN
,µq δe

�TrV pLN qdTP
N ¥ lim inf

NÑ8
1
N

log
»

1dpµ̂LN
,µq δe

�TrV pL̃N qdTP
N . (2.4.4)

We can assume without loss of generality that the right hand side does not equal �8. Then, we have by
the previous remark»

1dpµ̂LN
,µq δe

�TrV pLN qdTP
N ¥ e�CpM,KqN

2k�1
2k

»
1B̃M,K

N
Xtdpµ̂L̃N

,µq δ� 2
N ue

�TrV pL̃N qdTP
N

¥ C 1e�CpM,KqN
2k�1

2k

»
1tTrV pL̃N q¤NMuXtdpµ̂L̃N

,µq δ� 2
N ue

�TrV pL̃N qdTP
N

¥ C 1e�CpM,KqN
2k�1

2k

"»
1tdpµ̂L̃N

,µq δ� 2
N ue

�TrV pL̃N qdTP
N � e�NM

*

where in the second line we integrated over bN ¤ K and in the last line we used that»
1tTrV pL̃N q¥NMue

�TrV pL̃N qdTP
N ¤ e�NM .

We next choose M so that this term is smaller than the first term (which we assumed bounded below by
e�NC for some finite C). We deduce that (2.4.4) holds. To prove the converse inequality, we notice that
there exists one bi bounded by K with probability greater than 1 � e�apKqN under TP

N , with apKq �
� logP pb ¥ Kq ¡ 0 which goes to � infinity when K does. By symmetry with respect to the order of
the indices, we may assume it is bN . Therefore, because V is bounded below by some finite constant C,
setting a1pKq � apKq � C, and using Lemma 2.4.1, we find»

1dpµ̂LN
,µq δe

�TrV pLN qdTP
N ¤ e�Na1pKq �N

»
1tbN¤KuXtdpµ̂LN

,µq δue�TrV pLN qdTP
N

¤ e�Na1pKq �Ne�NpM�cV q �NeCpM,KqN
2k�1

2k

»
1BM,K

N
Xtdpµ̂L̃N

,µq δ� 2
N ue

�TrV pL̃N qdTP
N

¤ e�Na1pKq �Ne�NpM�cV q �NeCpM,KqN
2k�1

2k

»
1tdpµ̂L̃N

,µq δ� 2
N ue

�TrV pL̃N qdTP
N

which gives the converse bound, letting N going to infinity, provided K and M are large enough. The
same arguments also hold when there is no indicator function, giving the same estimates for the free
energy.

Lemma 2.4.4. Let V pxq � ax2k and P ¡ 0. For any µ in PpRq, there exists a limit

lim
δÑ0

lim inf
N

1
N

logTV,P
N pµ̂LN

P Bµpδqq � lim
δÑ0

lim sup
N

1
N

logTV,P
N pµ̂LN

P Bµpδqq . (2.4.5)

We denote this limit by �TV
P pµq. Then, µ ÞÑ TV

P pµq is convex.
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Proof. We use the notations of Lemma 2.2.3. Let q ¥ 1 be fixed. For N ¥ 1 we write N � kNq � rN ,
0 ¤ rN ¤ q�1, and define Lq

N by removing the off diagonal entries bℓq � LN pℓq, ℓq � 1q, LN pℓq�1, ℓqq, 1 ¤
ℓ ¤ kN , as well as the entries LN p1, Nq, LN pN, 1q, from LN . We set Rq

N � LN � Lq
N . Let ZV

N � ZV,P
N,T

denote in short the partition function for the Toda Gibbs measure with potential V and set

ZV
N,q � ETP

N

�
e�TrV pLq

N
q
�
�

»
e�TrV pLq

N
qdTP

N .

We first show that there is some constant Ck (independent of N) such that for all N ¥ 1,

1
N

log
ZV

N,q

ZV
N

¥ � Ck

q1{2k
. (2.4.6)

By Jensen’s inequality we have

1
N

log
ZV

N,q

ZV
N

� 1
N

logETV,P
N

�
eTrpV pLN q�V pLq

N
qq
�
¥ 1
N

ETV,P
N

�
TrpV pLN q � V pLq

N qq
�
. (2.4.7)

As in the proof of Lemma 2.4.1, we bound the right hand side by first noticing that V pLN q � V pLq
N q

is an homogeneous polynomial of degree 2k in LN and LN � Lq
N , with degree at least one in the latter.

Therefore, Hölder’s inequality implies that there exists a finite constant C depending only on k such that���� 1
N

ETV,P
N

�
TrpV pLN q � V pLq

N qq
����� ¤ C

2ķ

l�1
ETV,P

N

�
1
N

Tr
�pLN � Lq

N q2k
� �l{2k

ETV,P
N

�
1
N

TrpL2k
N q

� 2k�l
2k

Now, Rq
N � LN �Lq

N has non zero entries only at the sites pi, i�1q and pi�1, iq, i P J � tℓq, 1 ¤ ℓ ¤ kNu,
as well as pN, 1q and p1, Nq. We can assume without loss of generality that q ¡ 2k so that TrpRq

N q2k

simply depends on the 2kth power of the its non-vanishing entries. Thus, there exists a finite constant
Ck which only depends on k such that

Tr
�pRq

N q2k
� ¤ Ck

¸
iPJ

LN pi, i� 1q2k � CkLN pN, 1q2k
.

Next notice that

LN pi, i� 1q2 ¤ LN pi, iq2 � LN pi, i� 1q2 � LN pi, i� 1q2 � L2
N pi, iq.

Moreover, diagonalizing LN � °
λjvjv

T
j , we find by Hölder’s inequality (since

°
vjpiq2 � 1 for all

i P t1, . . . , Nu) that
L2

N pi, iqk �
�¸

λ2
jvjpiq2

	k

¤
¸
λ2k

j vjpiq2 � L2k
N pi, iq.

Thus,
LN pi, i� 1q2k ¤ L2

N pi, iqk ¤ L2k
N pi, iq .

Because LN has periodic boundary conditions, the distribution of the entries of LN are invariant under
the shift θ : i Ñ i � 1, so that under TV,P

N , LN pi, i� 1q has the same law than LN pi� 1, i� 2q, and
LN pi, iq has the same law than LN pi� 1, i� 1q. As a consequence, we have

ETV,P
N

�
1
N

Tr
�pLN � Lq

N q2k
� � ¤ 1

N
Ck

¸
iPJ

ETV,P
N

�
L2k

N pi, iq
�
� Ck

kN

N
ETV,P

N

�
1
N

TrpL2k
N q

�
.

But (2.4.2) implies that ETV,P
N

�
1
N TrpL2k

N q
�

is bounded by some finite constant independent of N . We

therefore deduce (2.4.6) from (2.4.7).
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We next prove the subadditivity property. Let δ ¡ 0 and L ¡ 0 be given. Let KL � tµ̂LN
pV q ¤ Lu.

As in equation (2.2.10), we have for q big enough,

TV,P
N ptµ̂LN

P Bµpδqu XKLq ¥
ZV

N,q

ZV
N

1
ZV

N,q

»
KLXKA

1µ̂L
q
N
PBµpδ�4{qqe�TrpV pLN qqdTP

N , (2.4.8)

where we set KA � KA,N � XiPJt b2k
i ¤ Au X tb2k

N ¤ Au. As before, noticing that V pLN q � V pLq
N q is a

polynomial in Lq
N and LN �Lq

N , we find a finite constant C such that, on KL XKA, for N large enough,

1
N
|TrpV pLN q � V pLq

N qq| ¤ C

�
kN

N
CkA


1{2k

L
2k�1

2k .

Therefore if we set Kq
L � tµ̂Lq

N
pV q ¤ Lu, we deduce that KA XKL contains KA XKq

L�εpqq for some εpqq
going to zero as q goes to infinity. We deduce from (2.4.6) and (2.4.8) that there exists a finite constant
C independent of q (but dependent on L and k) such that

TV,P
N ptµ̂LN

P Bµpδqu XKLq ¥ e�NCq�1{2k

ZV
N,q

»
KAXKq

L�εpqq

1µ̂L
q
N
PBµpδ�4{qqe�TrpV pLq

N
qqdTP

N , (2.4.9)

Since Lq
N is independent of the entries bi, i P J and therefore of KA, we see that we can integrate the

indicator function of KA yielding a contribution CkN

A for some positive constant CA depending only on
A. We observe as well that Lq

N is a block diagonal matrix diagpL1
q, . . . , L

kN
q , Bq where Li

q, 1 ¤ i ¤ kN , are
independent and independent from B, Li

q following T̃P
q defined in (2.4.3) and B following T̃P

rN
. Finally,

we notice that Kq
L�εpqq contains X1¤i¤kN

t 1
q TrppLi

qq2kq ¤ L � εpqqu X t 1
N�kN q TrpB2kq ¤ L � εpqqu since

the trace of pLq
N q2k is a linear combination of the latter traces. Thus by independence of the matrices

L1
q, . . . , L

kN
q under 1

ZV
N,q

e�TrV pLq
N
qdTP

N and convexity of balls, we deduce by taking the logarithm that if we

set uN pδ, Lq � � logTV,P
N ptµ̂MN

P BµpδquXKLq and vN pδ, Lq � � log T̃V,P
N ptµ̂L̃N

P BµpδquXtTrpL̃N q2kq ¤
LNuq, then we have

uN pδ � 4{q, L� εpqqq ¤ NpCq�1{2k � logpCAq{qq � kNvqpδ, Lq � vrN
pδ, Lq. (2.4.10)

We conclude as in Lemma 2.2.3 that

lim sup
N

uN pδ � 4{q, L� εpqqq
N

¤ vqpδ, Lq
q

� Cq�1{2k � logpCAq
q

. (2.4.11)

We then notice that for all N, δ, uN pδ, Lq ¥ uN pδ,8q and vN pδ, Lq ¤ vN pδ,8q� log 2 for L large enough
by Lemma 2.2.2 (for L̃N ). If therefore we choose a subsequence q going to infinity along which the liminf
is taken, we deduce by Lemma 2.4.3 that

lim sup
N

uN p2δ,8q
N

¤ lim inf
qÑ8

vqpδ,8q
q

� lim inf
qÑ8

uqpδ,8q
q

If there is no such subsequence then both sides go to infinity and there is nothing to say. Otherwise we
conclude as in Lemma 2.2.3.
We see that we can adapt in the same fashion the proof of Theorem 2.2.4 (which stands for quadratic V )
to our setting and get that µ ÞÑ TV

P pµq is convex, which concludes the proof.

2.4.3 Convergence of the free energy and large deviation principle
In the case where V pxq � ax2k, a ¡ 0, Lemmas 2.4.1 and 2.4.4 of the previous two sections showed that a
large deviation principle holds for the empirical measure of the eigenvalues of LN under TV,P

N with good,
convex rate function which, using [DZ10, Theorem 4.5.10], can be represented as

TV
P pµq � � inf

WPC0
b

t
»
Wdµ� FV �W,P

T � FV,P
T u (2.4.12)
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where
FV,P
T � lim

NÑ8
1
N

log
»
e�TrV pLN qdTP

N .

To identify TV
P and its minimizer, our goal is to show that

Lemma 2.4.5. For a ¡ 0 and V pxq � ax2k � Upxq with U P C0
b pRq, for every P ¡ 0, we have» 1

0
FV,sP
T ds � FV,P

C . (2.4.13)

As a consequence, the unique minimizer of TV
P is given by νV

P � BP pPµV
P q with µV

P the equilibrium measure
for the β-ensemble with parameter β � 2P {N .

Proof. We first prove (2.4.13). Clearly, for all bounded continuous functions U,U 1, uniformly in P ,

|F ax2k�U,P
T � F ax2k�U 1,P

T | ¤ }U � U 1}8 and |F ax2k�U,P
C � F ax2k�U 1,P

C | ¤ }U � U 1}8 .
Therefore it is enough to prove (2.4.13) for U P C1

b pRq by density. We prove that for U P C1
b pRq,

FV,P
T � BP pPFV,P

C q . (2.4.14)

Let us consider the tridiagonal matrix CN
P of the Coulomb model with distribution P

2P
N

N . We decompose,
for ε ¡ 0, this matrix as

CN
P �

�
M

tεNu
P RN

RT
N CNε

P ε
N

�

whereM tεNu
P is a tNεu�tNεu tri-diagonal symmetric matrix with standard independent Gaussian variables

on the diagonal and chi distributed variables above the diagonal with parameters 2 i
N P,N � tεN u ¤ i ¤

N � 1, CNε

P ε
N

is a Nε � N � tεN u square tridiagonal Coulomb matrix with parameter 2P ε
N{N with

P ε
N � NεN

�1P � p1 � tεN u{NqP , and RN has only one non-zero entry r at position ptεN u, tεN u � 1q.
Our first goal is to show that, with V pxq � ax2k � Upxq, we have

lim
NÑ8

1
εN

logEre�TrV pM tεNu

P
qs � 1

ε
pFV,P

C � FV,P�ε
C q � FV,P�ε

C . (2.4.15)

We will then complete the argument by showing that

lim
εÓ0

lim
NÑ8

1
εN

logEre�TrV pM tεNu

P
qs � FV,P

T (2.4.16)

We next turn to the proof of (2.4.15). Let us denote

C̃N
P �

�
M

tεNu
P 0
0 CNε

P ε
N

�
.

We now show that
TrppCN

P q2kq ¥ TrppC̃N
P q2kq . (2.4.17)

Indeed, by Klein’s lemma [AGZ10, Lemma 4.4.12], B ÞÑ TrpB2kq is convex on the set of symmetric
matrices. Moreover ∇TrpB2kq � p2kB2k�1qij . As a consequence, for any symmetric matrices A,B

TrppA�Bq2kq � TrpB2kq ¥ Trp2kB2k�1Aq .
We apply the above inequality with A � CN

P � C̃N
P and B � C̃N

P and notice that the entry tεN u, tεN u�1
of pC̃N

P q2k�1 vanishes so that TrppC̃N
P q2k�1pCN

P � C̃N
P qq � 0, proving (2.4.17).

Moreover, if U is C1
b ,
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|TrpUpCN
P qq � TrpUpC̃N

P qq| ¤
» 1

0
|TrpU 1pαCN

P � p1� αqC̃N
P qpCP

N � C̃P
N qq|dα ¤ }U 1}8|r| (2.4.18)

Consequently, using the independence of r and C̃N
P and the fact that CU � Ere�}U 1}8|r|s is finite since

r has sub-Gaussian distribution, we deduce from (2.4.17) that

Ere�TrpV pCN
P qqs ¤ Ere�TrpV pC̃N

P qq�}U 1}8|r|s ¤ CUEre�TrpV pC̃N
P qqs . (2.4.19)

As a consequence

Ere�TrpV pCN
P qqs ¤ CUEre�TrV pM tεNu

P
qsEre�TrpV pCNε

P ε
N

qqs
which gives the desired lower bound:

lim inf
NÑ8

1
N

logEre�TrV pM tεNu

P
qs ¥ FP,V

C � p1� εqFP p1�εq,V
C (2.4.20)

where we used that Theorem 2.3.1 is valid for P ε
N Ñ p1� εqP .

To get the complementary lower bound we restrict ourselves to

t|r| ¤ 1
N
u X t 1

N
TrppC̃N

P q2kq ¤Mu

Because of (2.4.18) and applying Hölder’s inequality as in the proof of Lemma 2.4.3, we see that on this
set TrpV pCN

P qq �TrpV pC̃N
P qq goes to zero uniformly for all M . On the other hand the probability of the

set t|r| ¤ 1
N u is of order 1{N . Again by independence we deduce that

Ere�TrpV pCN
P qqs ¥ eop1qEr1t|r|¤ 1

N uXt 1
N TrppC̃N

P
q2kq¤Mue

�TrpV pC̃N
P qqs

¥ eop1q
�
Ere�TrpV pC̃N

P qqs � Er1t 1
N TrppC̃N

P
q2kq¥Mue

�TrpV pC̃N
P qqs

	
. (2.4.21)

But we can show exactly as in the proof of Lemma 2.4.1 that for M large enough

lim sup
NÑ8

Er1tTrppC̃N
P
q2kq¥MNue

�TrpV pC̃N
P qqs

Ere�TrpV pC̃N
P
qqs

¤ 1
2 ,

yielding the desired lower bound and therefore (2.4.15).
To prove (2.4.16), we proceed by approximation. We notice that if we denote by Dε

T the density of
the distribution of M tεNu

P with respect to the distribution of a Toda matrix L̃tεNu with parameter P to
which we removed the extreme entries at p1, tεN uq and ptεN u, 1q, then we get

Dε
T �

Nε¹
i�1

b
�2P p i

N q
i .

Therefore

Ere�TrV pM tεNu

P
qs ¥ e�ε2NMEre�TrV pL̃tεNuq1�2P

°εN
i�1

i
N log bi¥�ε2NM s

� e�ε2NMEre�TrV pL̃tεNuqsp1� T̃V,P
tNεup�2P

εŅ

i�1

i

N
log bi ¤ �ε2NMqq

On the other hand

t2P
εŅ

i�1

i

N
log bi ¥ ε2NMu � tP 1

Nε

εŅ

i�1
b2

i ¥Mu � t 1
Nε

TrppL̃tNεuq2q ¥M{P u



62 CHAPTER 2. LARGE DEVIATIONS FOR THE TODA CHAIN

has exponentially small probability under T̃V,P
tNεu for ge enough. This shows, using Lemma 2.4.3, that

there exists a finite constant M such that

lim inf
NÑ8

1
Nε

logEre�TrV pM tεNu

P
qs ¥ FV,P

T �Mε

Similarly, we can see that the density D̃ε
T �±Nε

i�1 b
2P p i

N �εq
i of the law a Toda matrix L̃tεNu with respect

to M tεNu
P is bounded below by �ε2NM on t°εN

i�1pε� i
N q log bi ¤ ε2NMu so that we get similarly a finite

constant M 1 such that

lim sup
NÑ8

1
Nε

logEre�TrV pM tεNu

P
qs ¤ F

V,P p1�εq
T �M 1ε (2.4.22)

We hence conclude by the continuity of ε Ñ F
V,P p1�εq
T (which is due to its convexity) Equality (2.4.14)

follows then from (2.4.22).
We finally show that (2.4.13) implies that TV

P achieves its minimum value at BP pPµV
P q. Indeed, by

(2.4.12), for any bounded continuous U , any probability measure ν, we have

TV
P pνq ¥ �

�»
Udν � FV �U,P

T � FV,P
T



We integrate this inequality at ν � νsP a measurable probability measure valued process such that
µ � ³1

0 νsP ds to deduce from (2.4.13) that

» 1

0
TV

P pνsP qds ¥ �
�»

Udµ� FV �U,P
C � FV,P

C



.

We finally optimize over U to conclude that» 1

0
TV

P pνsP qds ¥ � inf
U

�»
Udµ� FV �U,P

C � FV,P
C



� IV

P pµq .

Since IV
P vanishes only at µV

P we deduce that any measurable minimizing path pνsP q0¤s¤1 must satisfy³1
0 νsP ds � µV

P . If we can consider a continuous s ÞÑ νsP , we conclude that BP pPµV
P q makes sense and

that it is equal to νP . We therefore now show that such a path can be chosen to be continuous. But we
can follow arguments similar to those of Corollary 2.2.7 to show that the set MV

P where TV
P achieves its

minimum value is a compact convex subset of PpRq and is continuous in the sense that for any ε ¡ 0,
there exists δε ¡ 0 such that for all δ   δε, any P,Q ¡ 0 such that for |P �Q| ¤ δ

MV
Q � pMV

P qε .

Indeed, even if we do not have the coupling of Corollary 2.2.7, we easily see that the density of TV,Q
N with

respect to TV,P
N is bounded by eMN |P�Q| with probability greater than 1 � e�cpMqN with cpMq going

to infinity when M goes to infinity. Indeed, the density equals pP � Qq° log bi from which the remark
follows from Lemma 2.4.2. This implies that

� inf
ppMV

P
qεqc

TV
Q ¤ maxtM |Q� P | � inf

ppMV
P
qεqc

TV
P ,�cpMqNu

which implies that for any ε ¡ 0, for M large enough and |Q�P | small enough infppMV
P
qεqc TV

Q ¡ 0, from
which the continuity follows.
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2.5 Proof of Theorem 2.1.1 and 2.1.3
Lemma 2.4.4 combined with the exponential tightness of Lemma 2.4.1 proves a large deviation principle
for the potential V pxq � ax2k. If now we consider the case where V pxq{x2k goes to a ¡ 0 at infinity, we
can always write V pxq � ax2k � Upxq where Upxq{x2k goes to zero at infinity. We have seen by Lemma
2.4.1 that under TP,V

N , the event t 1
N TrpL2k

N q ¡ Mu has exponentially small probability. Let for ε ¡ 0,
Vεpxq � ax2k � p1� εx2kq�1Upxq. Then, the large deviation principle for the distribution of µ̂LN

under
TVε,P

N follows from Varadhan’s lemma. Moreover, on tTrpL2k
N q ¤MNu, if |Upxq| ¤ δx2k on |x| ¥ L,���� 1

N
TrV pLN q � 1

N
TrVεpLN q

���� ¤ εL2k

1� εL2k
max
|x|¤L

|Upxq| � δε
1
N

Trp L4k
N

1� εL2k
N

q

¤ εL2k

1� εL2k
max
|x|¤L

|Upxq| �Mδ

which is as small as wished if M is fixed, L taken large so that δ is small, provided ε is taken small
enough. This shows that we can approximate TV,P

N by TVε,P
N in the exponential scale from which the

result follows.
The proof of Theorem 2.1.3 follows the same arguments than those developed in the last section: we

approximate the general variance profile by a stepwise constant profile, remove a negligible number of off
diagonal entries and then use the large deviation principle for the Toda matrices. We leave the details to
the reader.
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Chapter 3

Large Deviations for Ablowitz-Ladik
lattice, and the Schur flow

Abstract We consider the Generalized Gibbs ensembles of the Ablowitz-Ladik lattice and of the Schur
flow. We derive large deviations principles for the distribution of the empirical measures for these ensem-
bles. As a consequence, we deduce their almost sure convergence. Moreover, we are able to characterize
their limit in terms of the equilibrium measure of the Circular, and the Jacobi beta ensemble respectively.

3.1 Introduction
The defocusing Ablowitz-Ladik (AL) lattice is the system of ODEs

i 9αj � �pαj�1 � αj�1 � 2αjq � |αj |2pαj�1 � αj�1q , (3.1.1)

that describe the evolution of the complex functions αjptq, j P Z and t P R, here 9αj � dαj

dt
. We assume

N -periodic boundary conditions αj�N � αj , for all j P Z. For simplicity, we consider the case N even,
and, when not mentioned, the limits as N Ñ 8 is taken along N even. This system was introduced
by Ablowitz and Ladik [AL75, AL76] as a spatial discretization of the defocusing Nonlinear Schrödinger
Equation (NLS)

iBtψpx, tq � �1
2B

2
xψpx, tq � |ψpx, tq|2ψpx, tq. (3.1.2)

The NLS is a well-known integrable model [ZS72], and the Ablowitz-Ladik lattice is one of the several
discretizations that preserve integrability [QNCVDL84].

It is straightforward to verify that the two quantities

Kp0q :�
N¹

j�1

�
1� |αj |2

�
, Kp1q :� �

Ņ

j�1
αjαj�1, (3.1.3)

are constants of motion for the AL lattice. Since Kp0q is conserved along the flow, it implies that if
|αjp0q|   1 for all j � 1, . . . , N , then |αjptq|   1 for all times. Thus, we can consider DN as our phase
space, where D � tz P C | |z|   1u.

On this phase space we consider the symplectic form ω [EL06, GN09, Nen05, Sim05]

ω � i
Ņ

j�1

1
ρ2

j

dαj ^ dαj , ρj �
b

1� |αj |2 . (3.1.4)

65
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The corresponding Poisson bracket is defined for functions f, g P C8pDN q as

tf, gu � i
Ņ

j�1
ρ2

j

� Bf
Bαj

Bg
Bαj

� Bf
Bαj

Bg
Bαj



. (3.1.5)

Using this Poisson bracket, it is possible to rewrite the equations of motion (3.1.1) of the AL lattice in
Hamiltonian form as

9αj � tαj , HALu, HALpαq � �2 logpKp0qq �Kp1q �Kp1q , (3.1.6)

here α � pα1, . . . , αN q.

Conserved quantities. As we already mentioned, the AL lattice is an integrable model: this was
proved by Ablowitz and Ladik [AKN74, AL75]. Specifically, they were able to obtain a Lax pair for
the Ablowitz-Ladik lattice by discretizing the 2 � 2 Zakharov-Shabat Lax pair of the cubic nonlinear
Schrödinger equation.

Nenciu and Simon in [Nen05, Sim05] constructed a new Lax pair for the Ablowitz-Ladik lattice,
exploiting the connection of this system to the orthogonal polynomials on the unit circle. This link is
the analogue of the well-known link between the Toda lattice and orthogonal polynomials on the real line
(see e.g. [Dei99]). This connection was also generalized to the non-commutative case [Caf09].

Following [Nen05, Sim05], we construct the Lax matrix as follows. Consider the 2�2 unitary matrices

Ξpαjq � Ξj �
�
αj ρj

ρj �αj



, ρj �

b
1� |αj |2, j � 1, . . . , N , (3.1.7)

and the N �N matrices

M �

���������

�αN ρN

Ξ2
Ξ4

. . .
ΞN�2

ρN αN

��������
, L �

�����
Ξ1

Ξ3
. . .

ΞN�1

���� . (3.1.8)

Now let us define the Lax matrix
E � LM , (3.1.9)

which has the following structure

E �

���������������

� � � �
� � � �

� � � �
� � � �

. . . . . .
� � � �
� � � �

� � � �
� � � �

��������������
.

The matrix E is a periodic CMV matrix (after Cantero, Moral and Velazquez [CMV05]). It is straight-
forward to verify that the equations of motions (3.1.1) are equivalent to the following Lax equation for
the matrix E :

9E � i
�
E , E� � pE�q:� , (3.1.10)
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where : stands for hermitian conjugate, and

E�j,k �

$'&'%
1
2 Ej,j j � k

Ej,k k � j � 1 mod N or k � j � 2 mod N

0 otherwise.
(3.1.11)

Remark 3.1.1. We notice that since all the Ξj are unitary, then also E is unitary, this implies that all
the eigenvalues λj lie on the unit circle, and they can be written in terms of their argument, namely for
all j � 1, . . . , N there exists a θj P T :� r�π, πq such that

λj � eiθj .

In view of this identification, and in order to simplify the notations, for any function fpzq : BDÑ R,
we write fpθq in place of fpeiθq when it is convenient. Further, we will write indifferently

³
T fpθqdµpθq

or
³
BD fpzqdµpzq for any probability measure µ having support on the circle.

Remark 3.1.2. We notice that pE�q: � pE:q� � E: and rE , E:s � 0 since E is unitary. Therefore, the
Lax pair (3.1.10) can be rewritten in the equivalent form

9E � i
�
E , E� � pE:q�� . (3.1.12)

The formulation (3.1.10) implies that the quantities

Kpℓq � Tr
�
Eℓ
�
, ℓ � 1, . . . , N � 1, (3.1.13)

are constants of motion for the defocusing AL system (3.1.1).
As in [Spo22b, GM23], we introduce the Generalized Gibbs ensemble for the Ablowitz-Ladik lattice,

namely the following probability measure on the phase space DN

dPV,β
AL,N pα1, . . . , αN q � 1

ZAL
N pV, βq

N¹
j�1

p1� |αj |2qβ�11tαjPDu expp�TrpV pEqqqd2α, (3.1.14)

where V peiθq : TÑ R is a continuous function, 1A is the indicator function of the set A, and ZAL
N pV, βq

is the partition function of the system

ZAL
N pV, βq �

»
DN

N¹
j�1

p1� |αj |2qβ�1 expp�TrpV pEqqqd2α.

Furthermore, we consider the empirical measure µN pEq of the eigenvalues eiθ1 , . . . , eiθN of the matrix E
(3.1.9), namely

µN pEq � 1
N

Ņ

j�1
δ

eiθjpEq , (3.1.15)

here δx is the delta function centred at x, furthermore, we notice that we can just consider the arguments
θ1, . . . , θN of the eigenvalues since the matrix E is unitary, see Remark 3.1.1.

Our main result is a large deviations principle (LDP) with good rate function for the sequence pµN pEqq
under the law PV,β

AL,N (3.1.14). Namely, denoting by PpTq the set of probability measures on the Torus T
endowed with the topology of weak convergence, there exists a function JV

β : PpTq Ñ r0,�8s such that:

1. it is lower semicontinuous/good, namely for any a ¥ 0, tµ P PpTq | JV
β pµq ¤ au � PpTq is compact,
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2. it satisfies a large deviations lower bound, namely for all O � PpTq open,

� inf
O
J ¤ lim inf

N even

1
N

logPpµN pEq P Oq, (3.1.16)

3. it satisfies a large deviations upper bound, namely for all F � PpTq closed,

lim sup
N even

1
N

logPpµN pEq P F q ¤ � inf
F
J. (3.1.17)

We refer to [DZ10] for a general introduction to large deviations.

Remark 3.1.3. We notice that, by compactness of PpTq, it is sufficient to prove a weak large deviations
principle, see [DZ10, Section 1.2], which is the same as a full large deviations principle, except that the
large deviation upper bound (point 3) holds only for compact subsets of PpTq.

From this large deviations principle we are able to deduce that µN pEq converges almost surely as N
goes to infinity.

Theorem 3.1.4. Let β ¡ 0. For any continuous function V : T Ñ R the following holds:

a. the sequence µN pEq under the law PV,β
AL,N satisfies a large deviations principle at speed N with a

good rate function JV
β ,

b. JV
β achieves its minimum at a unique probability measure νV

β ,

c. µN pEq converges almost surely and in L1pTq towards νV
β .

Moreover, following [GM23, Spo22b, GM22], we are able to characterize the measure νV
β in terms

of the equilibrium measure of the Circular beta ensemble at high temperature [KN04, HL21]. More
precisely, consider the functional µ ÞÑ fV

β pµq given, for any µ P PpTq absolutely continuous with respect
to Lebesgue measure and with density dµ

dθ , by

fV
β pµq � �β

»
T�T

log
�|eiθ � eiφ|�µpdθqµpdφq � β logp2q �

»
T
V pθqµpdθq

�
»
T

log
�
dµ

dθ
pθq



µpdθq � logp2πq .

(3.1.18)

It is shown in [HL21], that the previous functional reaches its minimum for a unique absolutely continuous
probability measure µV

β . Moreover, in [GM23] it is proved that this measure is almost surely differentiable
with respect to β. Exploiting this result, and Theorem 3.1.4 we are able to show that

Theorem 3.1.5. For any continuous V, f : T Ñ R»
T
fpθqdνV

β pθq � Bβ

�
β

»
T
fpθqdµV

β pθq


. (3.1.19)

Thus, we obtain a unique characterization of the measure νV
β .

In [Spo22b, GM23], the authors considered the GGE (3.1.14) with polynomial potential, and they
were able to prove Theorem 3.1.5 for this particular class of potentials using a transfer operator technique.
In this sense, we generalize their result, extending it to the class of continuous and bounded potentials.

In the last part of the manuscript, we consider another integrable model related to the Ablowitz-
Ladik lattice, namely the so-called Schur flow [Gol06]. Also for this system, the Lax matrix is E (3.1.9).
Following the same construction as in the Ablowitz-Ladik lattice case, we define a GGE for this model.
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We are able to show analogous results to Theorem 3.1.4 and Theorem 3.1.5 for the Schur flow. The main
difference is that in place of the Circular beta ensemble, we have the Jacobi one.

To give a wider overview of the relevant literature, we mention that, H. Spohn in [Spo22b], applying
the theory of generalized hydrodynamics [Doy20], argues that the correlation functions of the Ablowitz-
Ladik lattice with respect to the GGE (3.1.14) show a ballistic behaviour. As we already mentioned,
in [GM23] the authors rigorously proved Theorem 3.1.5 for polynomial potential V pzq. Moreover, they
computed explicitly the density of states in the case V pzq � ηpz � zq, which corresponds to the classical
Gibbs ensemble.

It is worth to mention that this link between random matrix and integrable system was first noticed in
[Spo20c]. In this paper the author considered the GGE for the Toda lattice, and he was able to study this
ensemble, comparing it with the Gaussian beta ensemble [DE06]. We refer to [Spo20a, Spo20b, Spo21,
Maz22, GM22, GM23] for subsequent developments.

In particular, our work was inspired by the recent paper [GM22]. In this paper, the authors obtained
a large deviations principle for the Toda lattice, and obtain an analogous result to Theorem 3.1.5, where
in place of the Circular beta ensemble, they had the Gaussian one.

Moreover, we want to underline that in [KS09, NT20, Lam21] the authors were able to describe the
local statistics at high temperature of respectively the Circular β ensemble, the Gaussian β ensemble, and
Coulomb and Riesz gases, including the case of the Gaussian β-ensemble with general potential. They
discovered that they are described by a Poisson point process.

Finally, we notice that in [BNR09] the authors introduced the Circular Jacobi Ensemble, which has
a matrix representation in terms of a Hessenberg matrix. It would be interesting to understand if this
ensemble admits a matrix representation in terms of a CMV matrix as the Circular β ensemble. In this
way, it would be possible to apply our result also to this other matrix ensemble.

The structure of the paper is the following. In Section 3.2, we prove the first point of Theorem 3.1.4. In
Section 3.3, we collect some known results related to the Circular beta ensemble in the high-temperature
regime. Moreover, we reformulate the already known large deviations principle for this ensemble in
terms of the AL lattice. In Section 3.4, we conclude the proof of Theorem 3.1.4, and we prove Theorem
3.1.5. Section 3.5, is dedicated to the Schur flow, where we prove the analogue of Theorem 3.1.4 and
Theorem 3.1.5 for this integrable model. Finally, we defer to the appendix the most technical results of
our manuscript.

3.2 Existence of a Large deviations principle for the empirical
measure of the Ablowitz-Ladik lattice

The aim of this section is to prove the first point of Theorem 3.1.4, namely to show that, for N Q N ¥ 2 and
even, the sequence of empirical measures µN pEq � 1

N

°N
j�1 δeiθjpEq satisfies a large deviations principle.

The strategy of proof is the following. First, we show that if E is distributed according to Pβ
AL,N :� P0,β

AL,N

defined in (3.1.14), then the sequence of random probability measures pµN pEqqN even satisfies a large
deviations principle in PpTq, the space of probability measures on T, endowed with the topology of weak
convergence. Since according to this toppology PpTq is compact, it suffices to show that the sequence
pµN pEqqN even satisfies a weak large deviations principle, see Remark 3.1.3. Then, applying Varadhan’s
Lemma [DE97, Theorem 1.2.1], we obtain the existence of a large deviations principle for arbitrary
continuous V , i.e. the first point of Theorem 3.1.4.

We also notice that when V � 0 in (3.1.14) the αi’s are independent and identically distributed (i.i.d)
with distribution Θ2β�1, where Θν is defined for ν ¡ 1 as the random variable such that for f : C Ñ R
bounded and measurable

ErfpXqs � ν � 1
2π

»
D
fpzqp1� |z|2q ν�3

2 d2z. (3.2.1)

Remark 3.2.1. We recall that for integer ν ¥ 2, such measure has the following geometrical interpreta-
tion: if u � pu1, . . . , uν�1q is chosen at random according to the surface measure on the unit sphere Sν
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in Rν�1, then u1 � iu2 is Θν distributed [KN07].

To show that the sequence pµN pEqqN even satisfies a weak large deviations principle according to the
law Pβ

AL,N , we only need the αi’s to be i.i.d according to some law σ with supppσq � D. Thus, we just
assume the latter hypothesis, and we prove the result in more generality.

3.2.1 Large Deviations Principle for periodic CMV matrix
Let d be the distance on PpTq defined by

dpµ, νq � sup
}f}Lip¤1,}f}BV¤1

"����» fdµ� »
fdν

����* , (3.2.2)

where the Lipschitz and the bounded variation norms are defined on the space of functions f : TÑ R as

}f}Lip � sup
θ1,θ2PT
θ1�θ2

|f �eiθ1
�� f

�
eiθ2

� |
|eiθ1 � eiθ2 | , (3.2.3)

}f}BV � sup
n¥1,0�θ1 θ2 ... θn�2π

n�1̧

k�1

��f �eiθk�1
�� f

�
eiθk

��� . (3.2.4)

The distance d is compatible with the weak convergence of probability measures [GM22]. We recall
that for a N �N matrix A, its empirical measure of eigenvalues is defined by

µpAq � 1
N

Ņ

j�1
δλjpAq,

where λjpAq, j � 1, . . . , N , are the eigenvalues of A. The following Lemma, whose proof can be found in
Appendix 3.6, gives an upper bound on the distance of the empirical measures of two unitary matrices.

Lemma 3.2.2. For any A, B unitary matrices of size N �N ,

• For f with bounded variation,����» fdµpAq � »
fdµpBq

���� ¤ }f}BV
rankpA�Bq

N
,

• For f Lipschitz, ����» fdµpAq � »
fdµpBq

���� ¤ }f}Lip
1
N

Ņ

i,j�1
|pA�Bqi,j |.

As a consequence,

dpµpAq, µpBqq ¤ min
#
rankpA�Bq

N
,

1
N

Ņ

i,j�1
|pA�Bqi,j |

+
. (3.2.5)

We are now in position to prove that the sequence µN pEq with pαiqi¥1 i.i.d with law σ, such that
supppσq � D, satisfies a large deviations principle. The proof of the following Lemma follows the same
line as the corresponding one in [GM22].

Lemma 3.2.3. Let pαiqi¥1 be an i.i.d sequence of law σ with supppσq � D, and E be the associated matrix
defined in (3.1.9). Then the sequence of empirical measures pµN pEqqN even satisfies a large deviations
principle in PpTq endowed with the topology of weak convergence.
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Proof. We use a subadditivity argument to show that for any fixed µ P PpTq the following holds

lim
δÑ0

lim inf
N even

1
N

logP
�
µN pEq P Bµpδq



� lim

δÑ0
lim sup
N even

1
N

logP
�
µN pEq P Bµpδq



, (3.2.6)

where Bµpδq :� tν P PpTq | dpµ, νq   δu. Then, applying [DZ10, Theorem 4.1.11], along with the fact
that in our setting a weak LDP is equivalent to a full LDP, due to the compactness of PpTq, see remark
3.1.3, we conclude.
The first step to prove the result is to approximate the matrix E (whose law we denote by EpNq) by a
diagonal block matrix of independent blocks. To this end, fix q P N even such that q ¤ N , write the
euclidean division of N by q, N � kq � r with 0 ¤ r   q. We consider M given by (3.1.8),

M �

���������

�αN ρN

Ξ2
Ξ4

. . .
ΞN�2

ρN αN

��������
,

and approximate it the following way.
Let �M � diagpM1, . . . ,Mk, Rq, where Mi is the block diagonal matrix given by

Mi �

���������

�rαpi�1qq rρpi�1qq
Ξpi�1qq�2

Ξpi�1qq�4
. . .

Ξiq�2rρpi�1qq rαpi�1qq

��������
,

where prαpi�1qqq1¤i¤k are i.i.d of law σ, independent of the αi’s, rρi �
a

1� |rαi|2, and the remaining block
(of size r � r) R is defined similarly:

R �

���������

�rαkq rρk

Ξkq�2
Ξkq�4

. . .
ΞN�2rρkq�1 rαkq

��������
.

Following the same decomposition of N � kq � r we write L � diagpL1, . . . ,Lk,Lk�1q, with Li of size q
for 1 ¤ i ¤ k and Lk�1 of size r.
Notice that by construction, we have

rankpM� �Mq ¤ 2pk � 1q. (3.2.7)

Now, defining rE � L �M, rE is a block diagonal matrix diagpE1, . . . , Ek, Ek�1q.Then, the blocks Ei, 1 ¤ i ¤
k � 1 are independent, each Ei, i � i, . . . , k, has law Epqq, and Ek�1 has law Eprq.
Furthermore, using that rankpABq ¤ min trankpAq; rankpBqu for A,B two square matrices, and (3.2.7)
we get

rankpE � Ẽq � rankpLpM� �Mqq ¤ 4pk � 1q.
By the first point of Lemma 3.2.2 we deduce

dpµN pEq, µN prEqq ¤ 4pk � 1q
N

¤ 8
q
.
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Moreover, we can rewrite µN prEq as

µN prEq � q

N

ķ

ℓ�1
µqpEℓq � r

N
µrpEk�1q . (3.2.8)

Using the independence of the blocks of rE , we deduce that

P
�
µqpE1q P Bµpδq


k

P
�
µrpEk�1q P Bµpδq



� P

�
µqpE1q, . . . , µqpEkq, µrpEk�1q P Bµpδq



¤ P

�
q

N

ķ

l�1
µqpElq � r

N
µrpEk�1q P Bµpδq



� P

�
µN pẼq P Bµpδq



¤ P

�
µN pEq P Bµ

�
δ � 8

q




,

Where we used the convexity of balls in the first inequality.
This implies that, setting

uN pδq � � log pPpµN P Bµpδqqq , (3.2.9)

we have
uN

�
δ � 8

q



¤ kuqpδq � urpδq. (3.2.10)

We now conclude as in [GM22, Lemma 2.3]. Let δ ¡ 0 and choose q in such a way that 8
q ¤ δ, so we

deduce that
uN p2δq
N

¤
uN

�
δ � 8

q

	
N

¤ uqpδq
q

� urpδq
N

, (3.2.11)

since urpδq
N Ñ 0 as N Ñ8, we deduce that

lim sup
NÑ8

uN p2δq
N

¤ uqpδq
q

. (3.2.12)

The previous inequality holds true for all q big enough, so we conclude that

lim sup
NÑ8

uN p2δq
N

¤ lim inf
NÑ8

uN pδq
N

. (3.2.13)

From this last inequality we deduce that

lim
δÑ0

lim sup
NÑ8

uN pδq
N

¤ lim
δÑ0

lim inf
NÑ8

uN pδq
N

, (3.2.14)

thus we obtain (3.2.6), and the conclusion follows applying [DZ10, Theorem 4.1.11].

Since pPpTq, dq is compact, Lemma 3.2.3 automatically implies the existence of a strong large devia-
tions principle. Furthermore, the corresponding rate function J , which depends on the distribution σ of
the entries of L and M, can be seen to be convex. We collect these results in the following proposition.

Proposition 3.2.4. In the same hypothesis and notations as in Lemma 3.2.3, the sequence of empirical
measures pµN pEqqN even satisfies a large deviations principle with good, convex rate function J : PpTq Ñ
r0,�8s, i.e.

• The function J is convex and its level sets J�1pr0, asq, a ¥ 0, are compact,
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• For all O � PpTq open,
� inf

O
J ¤ lim inf

N even

1
N

logPpµN pEq P Oq,

• For all F � PpTq closed,
lim sup
N even

1
N

logPpµN pEq P F q ¤ � inf
F
J.

Proof. We already established all the claims except the fact that the function J is convex and that the
level sets J�1pr0, asq are compact. The latter comes from the fact that these sets are closed, see [DZ10,
Theorem 4.1.11]. To prove the convexity of J , we follow the same argument as [GM22, Theorem 2.4].

Let µ1, µ2 P PpTq. Since µ2N pEq can be approximated by the sum of two independent µN pEq’s up to
a mistake smaller than 4

N by the first point of Lemma 3.2.2, for δ ¡ 0 the following holds

P pµN pEq P Bµ1pδqqP pµN pEq P Bµ2pδqq ¤ P
�
µ2N pEq P Bµ1�µ2

2

�
δ � 4

N




, (3.2.15)

taking minus the logarithm of both sides, dividing by 2N , taking the limit for N going to infinity and
then for δ to zero, we deduce that:

J

�
µ1 � µ2

2



¤ 1

2 pJpµ1q � Jpµ2qq , (3.2.16)

which, together with the lower semi-continuity of J , implies the convexity of J , see [DZ10, Lemma 4.1.21]
.

3.2.2 Large deviations principle for the Ablowitz-Ladik lattice
Taking σ � Θ2β�1 given by equation (3.2.1), Proposition 3.2.4 applies to pµN pEqqN even, where E follows
Pβ

AL,N defined in (3.1.14). Thus, pµN pEqqN even with law Pβ
AL,N satisfies a large deviations principle, with

a good convex rate function, that we denote by Jβ .
We can now state the existence of a large deviations principle for pµN pEqqN even under PV,β

AL,N for V
continuous.
Corollary 3.2.5. Let β ¡ 0, and V : T Ñ R be continuous. Under PV,β

AL,N the sequence pµN pEqqN even

fulfils a large deviations principle with good, convex rate function JV
β pµq � gV

β pµq� infνPPpTq gV
β pνq, where

gV
β pµq is given for µ P PpTq by

gV
β pµq � Jβpµq �

»
T
V dµ . (3.2.17)

Proof. Let us write

dPV,β
AL,N � ZAL

N p0, βq
ZAL

N pV, βqe
�N

³
T V dµNdPβ

AL,N � 1
ZAL,V

N

e�N
³
T V dµNdPβ

AL,N .

The function µ ÞÑ ³
T V dµ being bounded continuous, by the large deviations principle under Pβ

AL,N and
Varadhan’s Lemma, [DE97, Theorem 1.2.1], we see that for any bounded continuous f : PpTq Ñ R we
have

lim
N

1
N

log
»
DN

eNfpµN qdPV,β
AL,N � sup

µPPpTq

"
fpµq �

�
Jβpµq �

»
V dµ� inf

νPPpTq

"
Jβpνq �

»
V dν

*
*
,

which ensures by [DE97, Theorem 1.2.3] that pµN q satisfies a large deviations principle under PV,β
AL,N

with the announced rate function. Since the function JV
β is an affine perturbation of Jβ , which is convex,

JV
β is also convex.

The first point of Theorem 3.1.4 is proven.
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3.3 Circular β ensemble at high temperature
In this section, we consider the Circular β ensemble, and we collect some known results that we exploit
in our treatment. The aim of this section is to prove an alternative formulation of the large deviations
principle for the Circular beta ensemble in the high-temperature regime, see Theorem 3.3.11 below.
Our formulation allows us to relate the large deviations principle of the Coulomb gas with the one of
Ablowitz-Ladik, proved in the previous section.

3.3.1 Large deviations principle for Circular β ensemble

Coulomb gas on the torus T � r�π, πq at temperature rβ�1 are described by

dPV,rβ
C,N � 1

ZC
N pV, rβq

¹
j¤ℓ¤N

|eiθj � eiθℓ |rβe°N
j�1 V pθjqdθ , (3.3.1)

here V : T Ñ R is a continuous potential, and θ � pθ1, . . . , θN q. When V � 0, Killip and Nenciu showed
that dP0,rβ

C,N is the law of the eigenvalues of a CMV matrix [KN04], see Theorem 3.3.4. In this manuscript,
we are interested in the so-called high-temperature regime of this ensemble, namely the limit of number of
particles N going to infinity with the constraint that rβN Ñ 2β ¡ 0. From [GZ19], [Ber18], one deduces
the following large deviations principle for the measure µN � 1

N

°N
j�1 δeiθj , where the θj are distributed

according to (3.3.1).

Theorem 3.3.1. Let rβ � 2β
N , β ¡ 0 and assume V : TÑ R to be continuous. Define for any µ P PpTq

absolutely continuous with respect to the Lebesgue measure the functional

fV
β pµq � �β

»
T�T

log
�|eiθ � eiφ|�µpdθqµpdφq � β logp2q �

»
T
V pθqµpdθq�»

T
log

�
dµ

dθ
pθq



µpdθq � logp2πq ,

(3.3.2)

then
i. the functional fV

β pµq is strictly convex and achieves its minimal value at the unique probability
measure µV

β absolutely continuous with respect to the Lebesgue measure;

ii. the sequence pµN q satisfies a large deviations principle in PpTq equipped with the weak topology at
speed βN with rate function defined for absolutely continuous µ P PpTq with respect to Lebesgue
measure by IV

β pµq � fV
β pµq � fV

β pµV
β q, and IV

β pµq � �8 otherwise. In particular

µN
a.s.ÝÝÝÝÑ

NÑ8
µV

β . (3.3.3)

Exploiting this result, in [GM23] the authors deduced several useful properties of the minimizer µV
β ,

specifically they proved the following.
Lemma 3.3.2 (cf. [GM23] Lemma 3.5 ). Let β ¡ 0, consider a continuous potential V : T Ñ R, then
the following holds

i. The map β Ñ inf
�
fV

β pµq
	

is Lipschitz;

ii. Let D be the distance on PpTq given by

Dpµ, µ1q �
�
�
»
T�T

log
����sin�θ � ϕ

2


���� pµ� µ1qpdθqpµ� µ1qpdϕq

1{2

�
d¸

k¥1

1
k
|pµk � pµ1k|2 , (3.3.4)
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where pµk � ³
T e

ikθµpdθq. Then for any ε ¡ 0 there exists a finite constant Cε such that for all
β, β1 ¡ ε

DpµV
β , µ

V
β1q ¤ Cε

��β � β1
�� . (3.3.5)

Remark 3.3.3. We observe that if f P L2pTq with derivative in L2pTq, we can set ||f || 1
2
�

b°
k¥1 k| pfk|2.

So, for any measure ν with zero mass we obtain the following»
T
fpθqνpdθq �

¸
k�0

pfkpνk �
¸
k�0

a
|k| pfk

pνka|k| . (3.3.6)

Then, by Cauchy-Schwartz inequality, we deduce the following inequality����»
T
fpθqνpdθq

����2 ¤
�����¸
k�0

a
|k| pfk

¸
k�0

pνka|k|

����� ¤ 4||f ||21
2
Dpν, 0q2. (3.3.7)

Combining (3.3.5) and (3.3.7), we deduce that for any function f with finite ||f || 1
2

norm, the map β Ñ³
T fdµ

V
β pθq is Lipschitz for β ¡ 0.

3.3.2 Relation with the large deviations principle of the Ablowitz-Ladik lat-
tice

In the case V � 0, for any rβ ¡ 0, Killip and Nenciu in [KN04] showed that the law P0,rβ
C,N (3.3.1) coincides

with the distribution of the eigenvalues of a certain CMV matrix. Specifically they proved the following:

Theorem 3.3.4 (cf. [KN04] Theorem 1.2). Consider the block diagonal N �N matrices

L � diag pΞ1,Ξ3,Ξ5 . . . , q and M � diag pΞ0,Ξ2,Ξ4, . . .q , (3.3.8)

where the block Ξj, j � 1, . . . , N � 1, takes the form

Ξj �
�
αj ρj

ρj �αj



, ρj �

b
1� |αj |2, (3.3.9)

while Ξ0 � p1q and ΞN � pαN q are 1� 1 matrices. Define the N �N sparse matrix

E � LM, (3.3.10)

and suppose that the entries αj are independent complex random variables with αj � ΘrβpN�jq�1 for
1 ¤ j ¤ N � 1 and αN is uniformly distributed on the unit circle. Then the eigenvalues of E are
distributed according to the Circular Ensemble (3.3.1) at temperature β̃�1.

To simplify the notation, we will denote by Prβ
C,N the law P0,rβ

C,N . We give an alternative formulation of

the large deviations principle for the empirical measure under the law P
2β
N

C,N based on the Killip-Nenciu
matrix representation. This alternative formulation allows us to relate the rate function of the Coulomb
gas Iβ in terms of the rate function Jβ of the Ablowitz-Ladik lattice. Finally, applying Varadhan’s
Lemma [DE97, Theorem 1.2.1] we obtain an alternative formulation of the large deviations principle for
the Circular beta ensemble at high temperature with continuous potential, see Theorem 3.3.11 below.

To achieve our goal, we need several technical results regarding the distribution Θν (3.2.1), and the
CMV matrix E (3.3.10). First, in the next Lemma, we give a representation of Θν in terms of Gaussian,
and Chi distributions.
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Lemma 3.3.5. Let ν ¡ 1. Let X1, X2, Yν be independent, X1, X2 standard Gaussian variables and Yν

be χν�1 distributed, i.e. with density

χν�1pxq � 2 3�ν
2

Γpν�1
2 qx

ν�2e�x2{21x¡0 ,

here Γpxq is the classical Gamma function [DLMF, §5]

Γpxq �
» �8

0
tx�1e�tdt , (3.3.11)

Then, Z :� X1�iX2
pX2

1�X2
2�Y 2

ν q1{2 follows the law Θν .

Remark 3.3.6. If ν ¥ 2 is an integer, Y 2
ν has the law of

°ν�1
i�1 N

2
i where the Ni’s are i.i.d. standard

gaussians random variables, thus Z is equal in distribution to X1�iX2

pX2
1�����X2

ν�1q
1
2

, which follows the law Θν

by Remark 3.2.1.

Proof. We identify C with R2 and check that for any f : DÑ R bounded and measurable,

ErfpZqs � ν � 1
2π

»
D
fpzqp1� |z|2q ν�3

2 d2z,

i.e. that for some constant c,

»
R2�R��

f

�
x1

px2
1 � x2

2 � y2q1{2 ,
x2

px2
1 � x2

2 � y2q1{2


e�

x2
1�x2

2
2 e�

y2
2 yν�2dx1dx2dy

� c

»
D
fpu, vqp1� pu2 � v2qq ν�3

2 dudv .

(3.3.12)

For fixed y ¡ 0, we perform the diffeomorphic change of variables pu, vq � 1
px2

1�x2
2�y2q1{2 px1, x2q. Its

inverse px1, x2q � y
p1�pu2�v2qq1{2 pu, vq has Jacobian equal to y2p1� pu2 � v2qq�2. The integral becomes»

D

fpu, vq
p1� pu2 � v2qq2

»
R��
e
� y2

2p1�pu2�v2qq yνdydudv �
c
π

2

»
D

fpu, vq
p1� pu2 � v2qq3{2Er|Xu,v|νsdudv , (3.3.13)

where Xu,v denotes a Gaussian variable Np0, 1� pu2 � v2qq. By [Win14],

Er|Xu,v|νs � cνp1� pu2 � v2qq ν
2

for some constant cν independent of u, v. Substituting this last equality in the previous integral, we
conclude.

To obtain our main result, we need some technical lemmas. Since they are based on standard tech-
niques, we just state them here, and we defer their proofs to the appendix 3.6.

The first one gives an estimate that we use combined with Lemma 3.2.2.

Lemma 3.3.7. Let N � 2k be even and A be a N �N matrix. Then,

•
°N

i,j�1 |pLAqi,j | ¤ 2
°N

i,j�1 |Ai,j |,

•
°N

i,j�1 |pAMqi,j | ¤ 2
°N

i,j�1 |Ai,j |,
where M, and L are defined in (3.1.8).
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We now give an explicit coupling between Θν (3.2.1) and Θν�h for ν ¡ 1, h ¡ 0.
Let X1, X2 be Np0, 1q independent variables, and let Yν�1 � χν�1, Yh � χh be independent, and
independent of X1, X2 (notice that pY 2

h � Y 2
ν�1q

1
2 is χν�h�1 distributed). Let

αν � X1 � iX2

pX2
1 �X2

2 � Y 2
ν�1q

1
2
, αν�h � X1 � iX2

pX2
1 �X2

2 � Y 2
ν�1 � Y 2

h q
1
2
. (3.3.14)

By Lemma 3.3.5, αν � Θν and αν�h � Θν�h.

Exploiting this coupling, we bound the differences |αν � αν�h| and |ρν � ρν�h| by a random variable
Zh, where ρν � a

1� |αν |2, and ρν�h � a
1� |αν�h|2. Moreover, we find an upper bound for the

exponential moments of Zh.

Lemma 3.3.8. Let αν and αν�h defined by equation (3.3.14). Define ρν � a
1� |αν |2, and ρν�h �a

1� |αν�h|2, then the following holds

i.

|αν � αν�h| ¤ Yh

pX2
1 �X2

2 � Y 2
h q

1
2

almost surely ,

|ρν � ρν�h| ¤ Yh

pX2
1 �X2

2 � Y 2
h q

1
2

almost surely,
(3.3.15)

where X1, X2 � Np0, 1q, Yh � χh are all independent.

ii. define Zh � Yh

pX2
1�X2

2�Y 2
h
q 1

2
, and aphq � � 1

2 logphq � 1, then there exists a constant K independent
of h such that

sup
0 h 1

E rexppaphqZhqs ¤ K . (3.3.16)

Remark 3.3.9. Let h   h1, and let Zh, Zh1 be given by

Zh � Yh

pX2
1 �X2

2 � Y 2
h q

1
2
, Zh1 � Yh1

pX2
1 �X2

2 � Y 2
h1q

1
2
,

where Yh � χh and Yh1 � χh1 are χ variables coupled by

Yh1 �
b
Y 2

h � Z2,

Z being a χh1�h variable independent of Yh. Then, because of the monotonicity of the function x ÞÑ x?
a�x2

for a ¡ 0, we have almost surely Zh ¤ Zh1 .

We are now in position to give an alternate formulation of the large deviations principle for the
sequence of measures pµN pEqq under the law P

2β
N

C,N , given by Theorem 3.3.1.

Lemma 3.3.10. Let β ¡ 0. The law of the empirical measure pµN pEqqNeven under P
2β
N

C,N satisfies a large
deviations principle at speed N and with a good rate function

Iβpµq � lim
δÑ0

lim inf
qÑ8 inf

νβ{q,...,νβ
1
q

°
i νiβ{qPBµpδq

#
1
q

q̧

i�1
Jiβ{qpνiβ{qq

+
, (3.3.17)

where Jη is the rate function of Proposition 3.2.4 applied to σ � Θ2η�1.
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Proof. Following the same line as in [GM22, Lemma 3.3], we proceed by exponential approximation. Let
q ¥ 1 be an integer, since N is even, we can write N � kq � r, with k even, and with 0 ¤ r   2q � 2.
Consider the following family of matrices Lpiq,Mpiq, i � 1, . . . q defined as

Mpiq
k �

����������

�αik ρik

Ξpiq
2

Ξpiq
4

. . .
Ξpiq

k�2
ρik αik

���������
, Lpiq

k �

������
Ξpiq

1
Ξpiq

3
. . .

Ξpiq
k�1

����� , (3.3.18)

where Ξpiq
ℓ are defined as

Ξpiq
ℓ pαipk�1q�ℓq � Ξpiq

ℓ �
�
αipk�1q�ℓ ρipk�1q�ℓ

ρipk�1q�ℓ �αipk�1q�ℓ



,

ρipk�1q�ℓ �
b

1� |αipk�1q�ℓ|2 ,
ℓ � 1, . . . , k � 1 , (3.3.19)

and pαipk�1q�ℓq1¤i¤q,1¤ℓ¤k is a family of independent random variables such that

αipk�1q�ℓ � Θ2β N�ik
N �1, ℓ � 1, . . . k, i � 1, . . . , q.

From these two families of matrices, we can define a third one, namely Epiqk � Lpiq
k Mpiq

k , i � 1, . . . , q. We
notice that Epiqk is distributed according to Pβ N�ik

N

AL,k , and that the Epiqk , 1 ¤ i ¤ q, are independent.
Our aim is to prove that the empirical measure of the matrix Cq

N

Cq
N �

��������
Ep1qk

Ep2qk
. . .

Epqqk

0r�r

�������, (3.3.20)

where 0r�r is a null block of size r � r, is an exponential approximation (see [DZ10, Definition 4.2.14])
of the empirical measure of E � P

2β
N

C;N (3.3.10), that is, for any positive real number δ:

lim
qÑ8 lim sup

NÑ8

1
N

log pP pd pµN pEq, µN pCq
N qqq ¡ δq � �8 , (3.3.21)

where P denotes the coupling introduced in equation (3.3.14). In this way, we obtain the claim as an
application of [DZ10, Theorem 4.2.16]. The strategy of proof is the following. First we approximate Cq

N

and E by two block diagonal matrices rCq
N ,

rEq
N respectively. Finally, we will prove that both rCq

N , andrEq
N approximate a third matrix Bq

N .
Consider another family of matrices p�Mpiq

k q1¤i¤q of size k � k, defined as

�Mpiq
k � diag

�rΞpiq
0 ,Ξpiq

2 ,Ξpiq
4 , . . . , rΞpiq

k

	
, (3.3.22)

where the matrices Ξpiq
ℓ are defined in (3.3.19), while rΞpiq

0 � p1q and rΞpiq
k � pαikq are 1 � 1 matri-

ces, where the αik are independent, uniformly distributed on the unit circle for all i � 1, . . . , q, and
independent of pαipk�1q�lq1¤i¤q,1¤ℓ¤k�1. Define the k � k family of CMV matrices

rEpiqk � Lpiq
k

�Mpiq
k i � 1, . . . , q .
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From the family of matrices prEpiqk q1¤i¤q, we define the block diagonal matrix:

rCq
N �

��������

rEp1qk rEp2qk
. . . rEpqqk

0r�r

������� . (3.3.23)

We claim that rCq
N is such that

rankpCq
N � rCq

N q ¤ 2q . (3.3.24)

Indeed, we take the same αpiqj in the construction of rE i
k and of E i

k, except for the entries of the corners of
Mpiq

k , where Mpiq
k p1, 1q is replaced by 1, Mpiq

k pk, kq is replaced by a uniform variable on the circle, and
both entries Mpiq

k p1, kq and Mpiq
k pk, 1q are replaced by 0. This shows that

rankpMpiq
k � �Mpiq

k q ¤ 2,

and
rankpEpiqk � rEpiqk q � rankpLpiq

k pMpiq
k � �Mpiq

k qq ¤ rankpMpiq
k � �Mpiq

k q ¤ 2,

and we deduce (3.3.24). From (3.3.24) and Lemma 3.2.2, we deduce that

dpµN pCq
N q, µN p rCq

N qq ¤
2
k
, (3.3.25)

and for any δ ¡ 0 and sufficiently large N , we can take k such that 2
k ¤ δ

4 .
Consider now another two families of matrices pLpiqk q1¤i¤q, and pMpiq

k q1¤i¤q, constructed in the same
way as pLpiq

k q1¤i¤q, and p�Mpiq
k q1¤i¤q by means of independent variables rαpi�1qk�j , where each rαpi�1qk�j �

Θ2β
N�pi�1qk�j

N

is coupled to αpi�1qk�j by equation (3.3.14), for all j � 0, . . . , k � 1, and i � 1, . . . , q, and
where rαik � αik for i � 1, . . . , q is uniformly distributed on the unit circle. Define the family of CMV
matrices pEpiqk q1¤i¤q as

E
piq
k � L

piq
k M

piq
k , i � 1, . . . , q . (3.3.26)

Define the block diagonal matrix Eq
N as:

Eq
N �

��������
E
p1q
k

E
p2q
k

. . .
E
pqq
k

0r�r .

������� (3.3.27)

From the definition of P
2β
N

C,N and Eq
N , we conclude that for some E � P

2β
N

C,N , we have

rankpE � Eq
N q ¤ 2q � r . (3.3.28)

As before, from the previous inequality we deduce that

dpµN pEq, µN p rEq
N qq ¤

4
k
. (3.3.29)

Finally, we define the matrix Bq
N as
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Bq
N �

��������
B
p1q
k

B
p2q
k

. . .
B
pqq
k

0r�r ,

������� (3.3.30)

where Bpiq
k � L

piq
k

�Mpiq
k .

Let δ ¡ 0, for N large enough such that 4
k ¤ δ

4 , we have almost surely

dpµN pCq
N q, µN p rCq

N qq � dpµN pEq, µN pEq
N qq ¡

δ

2 .

As a consequence,

P pdpµN pCq
N q, µN pEqq ¡ δq

¤ P
�
dpµN pCq

N q, µN p rCq
N qq � dpµN p rCq

N q, µN pBq
N qq

� dpµN pBq
N q, µN pEq

N qq � dpµN pEq
N q, µN pEqq ¡ δ

	
¤ P

�
dpµN p rCq

N q, µN pBq
N qq � dpµN pBq

N q, µN pEq
N qq ¡

δ

2



.

(3.3.31)

Moreover, combining Lemma 3.2.2 and Lemma 3.3.7 we deduce that

dpµN p rCq
N q, µN pBq

N qq ¤
2
N

q̧

i�1

¸
1¤ℓ,j¤k

|Lpiqk pℓ, jq � Lpiq
k pℓ, jq| ,

dpµN pBq
N q, µN p rEq

N qq ¤
2
N

q̧

i�1

¸
1¤ℓ,j¤k

|Mpiq
k pℓ, jq � �Mpiq

k pℓ, jq| .
(3.3.32)

Applying Lemma 3.3.8 point i., we deduce that

dpµN p rCq
N q, µN pBq

N qq � dpµN pBq
N q, µN p rEq

N qq ¤
8
N

q̧

i�1

k�1̧

j�0
Z
piq
k�j

N

, (3.3.33)

where the last sum denotes the sum of independent random variables with law Z k�j
N

, defined in Lemma
3.3.8.

Thus, for N large enough such that 4
k ¤ δ

4 , we deduce that for any non-negative function apq�1q:

P pdpµN pCq
N q, µN pEqq ¡ δq ¤ P

�
q̧

i�1

k�1̧

j�0
Z
piq
k�j

N

¡ Nδ

16

�

¤ e�apq�1qNδ{16
�

sup
0 h 1

E rexppaphqZhqs

qk

,

(3.3.34)

Where in the last inequality we used Remark 3.3.9, namely, since k�j
N ¤ 1

q , we have

Erexppapq�1qZ k�j
N
s ¤ Erexppapq�1qZ 1

q
s.

Setting aphq � � 1
2 logphq�1 and applying Lemma 3.3.8 point ii., we deduce that there exist constantsrK and c ¡ 0, independent of q, such that
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1
N

log pP pdpµN pCq
N q, µN pEqq ¡ δqq ¤ �c logpqqδ � rK , (3.3.35)

And we obtain the claim.

We can apply the previous Lemma to study the case of continuous potential, indeed as a consequence
of Varadhan’s Lemma we obtain the main result of this section, namely

Theorem 3.3.11. In the same notation as before. Let β ¡ 0, and V : T Ñ R continuous. The law of
the empirical measures µN pEq under dPV, 2β

N

C,N satisfies a large deviations principle at speed N , with a good
rate function IV

β pµq � fV
β pµq � infνPPpTq fV

β pνq, where

fV
β pµq � lim

δÑ0
lim inf

qÑ8 inf
νβ{q,...,νβ

1
q

°
i νiβ{qPBµpδq

#
1
q

q̧

i�1

�
Jiβ{qpνiβ{qq �

»
T
V dνiβ{M


+
. (3.3.36)

3.4 Proof of the main results
In this section, we conclude the proof of Theorem 3.1.4 and prove Theorem 3.1.5. The main tool to prove
these theorems is the uniqueness of the minimizer of the rate function for the β ensemble.

Define the free energies of the Ablowtiz-Ladik lattice and the Circular beta ensemble at high temper-
ature as

FALpV, βq � inf
νPPpTq

gV
β pνq , FCpV, βq � inf

νPPpTq
fV

β pνq , (3.4.1)

where gV
β , and fV

β are given by (3.2.17) and (3.3.36). We claim that

Lemma 3.4.1. Let β ¡ 0, and V : TÑ R continuous, then the following holds:

a. the map β Ñ FCpV, βq is continuously differentiable on R�
�. Moreover:

FALpV, βq � BβpβFCpV, βqq ; (3.4.2)

b. for almost all β ¡ 0 there exists a unique minimizer νV
β of the functional JV

β pµq, see Corollary
3.2.5, given by

νV
β � BβpβµV

β q , (3.4.3)

i.e for continuous f : TÑ R, »
T
fdνV

β � Bβ

�
β

»
T
fdµV

β



. (3.4.4)

we recall that the measure µV
β is defined as the unique minimizer of the functional IV

β in Theorem
3.3.11.

Remark 3.4.2. Our definition of Free Energy is different from the one used in [GM23, Spo22b]. Indeed,
in virtue of Varadhan’s Lemma [DE97, Theorem 1.2.1], we have

FALpV, βq � inf
νPPpTq

gV
β pνq � � lim

N

1
N

logEβ
AL,N

�
e�TrV pEq

�
,

FCpV, βq � inf
νPPpTq

fV
β pνq � � lim

N

1
N

logEβ
C,N

�
e�TrV pEq

�
,

(3.4.5)
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instead in [GM23, Spo22b], the authors defined the free energies as

rFALpV, βq � � lim
NÑ8

1
N

logpZAL
N pV, βqq ,

rFCpV, βq � � lim
NÑ8

1
N

logpZC
N pV, βqq .

(3.4.6)

We notice that it is possible to recover one expression from the other since

FALpV, βq � rFALpV, βq � rFALp0, βq ,
FCpV, βq � rFCpV, βq � rFCp0, βq .

(3.4.7)

To prove uniqueness of the minimizer νV
β , we need to consider a continuous family pµ�s q0 s β , where

each µ�s minimizes JV
s , see Corollary 3.2.5. We address the existence of such a family in the next Lemma,

which we prove in the appendix 3.6.

Lemma 3.4.3. Let MV
β � pJV

β q�1pt0uq be the set of minimizers of JV
β , defined in Corollary 3.2.5. Then,

β ÞÑ MV
β is continuous in the sense that for all ε ¡ 0, there exists δ ¡ 0 such that for all 0 ¤ h ¤ δ,

MV
β�h � pMV

β qε, where for A � PpTq we denote Aε � tµ P PpTq | dpµ,Aq ¤ εu.
Proof of Lemma 3.4.1. First, we notice that for any probability measure µ P PpTq, Theorem 3.3.11
implies

fV
β pµq ¥ lim inf

qÑ8 inf
νPPpTq

#
1
q

q̧

i�1

�
Jiβ{qpνq �

»
T
V dν


+

�
» 1

0
inf

νPPpTq
gV

sβpνq �
» 1

0
FALpV, sβqds ,

(3.4.8)

Where we noticed that the Riemann sums indeed converge towards the integral since s ÞÑ FALpV, sβq is
concave, this can be seen by applying Hölder inequality to equation (3.4.5).

To prove the first part of the claim, we show that the lower bound is achieved. For s P r0, 1s, let ν�sβ

be a minimizer of infνPPpTq gV
sβpνq. From Lemma 3.4.3, we can choose ν�sβ such that the map sÑ ν�sβ is

continuous. This implies that µ�β � ³1
0 ν

�
sβds is a well-defined probability measure on T. We claim that

this measure minimizes fV
β (3.3.36), and so IV

β . Indeed, from Theorem 3.3.11, we deduce that

fV
β pµ�βq � lim

δÑ0
lim inf

qÑ8 inf
νβ{q,...,νβ

1
q

°
i νiβ{qPB

µ�
β

pδq

#
1
q

q̧

i�1

�
Jiβ{qpνiβ{qq �

»
T
V dνiβ{q


+

¤ lim inf
qÑ8

#
1
q

q̧

i�1

�
Jiβ{qpν�iβ{qq �

»
T
V dν�iβ{q


+

� lim inf
qÑ8

#
1
q

q̧

i�1
inf

νPPpTq

�
Jiβ{qpνq �

»
T
V dν


+

�
» 1

0
inf

νPPpTq
gV

sβpνq �
» 1

0
FALpV, sβqds .

(3.4.9)

Combining (3.4.8)-(3.4.9), and performing the change of coordinates sβ � t we deduce that:

βFCpV, βq �
» β

0
FALpV, tqdt . (3.4.10)
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Moreover, from Lemma 3.3.2 we deduce that the map β Ñ FCpV, βq is Lipschitz in β, and so almost
surely differentiable. This implies that for almost all β ¡ 0

FALpV, βq � BβpβFCpV, βqq . (3.4.11)
Furthermore, we have just shown that IV

β pµq � fV
β pµq � infνPPpTq fV

β pνq reaches its minimum at³1
0 ν

�
sβds. By uniqueness of the minimizer of IV

β pµq, Theorem 3.3.1, we deduce that we have the equality
between probability measures µV

β � ³1
0 ν

�
sβds. Taking f : TÑ R continuous we get

β

»
T
fdµV

β �
» β

0

»
T
fdν�s ds.

Note that the function s ÞÑ ³
T fdν

�
s is continuous, therefore by differentiating this equality, we get that

ν�β is the unique minimizer of JV
β , which we denote by νV

β , and satisfies for f continuous»
T
fνV

β � Bβ

�
β

»
T
fµV

β



, (3.4.12)

proving point b.

Remark 3.4.4. As a corollary of the previous Lemma we obtain Theorem 3.1.4.

3.5 The Schur Flow
In this section, we consider another integrable model, namely the Schur flow. Our goal is to show that
is possible to obtain a similar result to the one that we presented for the Ablowitz-ladik lattice. Namely,
we prove the existence of a large deviations principle for the Schur flow, and we relate its density of state
to the one of the Jacobi beta ensemble in the high temperature regime.

3.5.1 Generalized Gibbs Ensemble
The Schur flow is the system of ODEs [Gol06]

9αj � ρ2
j pαj�1 � αj�1q , ρj �

b
1� |αj |2 , (3.5.1)

and, as before, we consider periodic boundary conditions, namely αj � αj�N for all j P Z.
In [AL76], it is argued that the continuum limit of (3.5.1) is the modified Korteweg-de Vries equation:

Btu � B3
xu� 6u2Bxu . (3.5.2)

We notice that, if one chooses an initial data such that αjp0q P R for all j � 1, . . . , N , then αjptq P R
for all times. Moreover, it is straightforeward to verify that K0 �

±N
j�1

�
1� |αj |2

�
is conserved along

the Schur flow. This implies that we can choose as phase space for the Schur flow the N -cube IN , where
I :� p�1, 1q.

On this phase space, we consider the Poisson braket (3.1.5), so we can rewrite the Schur flow (3.5.1)
in Hamiltonian form as

9αj � tαj , HSu, HS � �i
Ņ

j�1
pαjαj�1 � αjαj�1q . (3.5.3)

It is well known that the Schur flow admits as Lax matrix the same one as the AL [Gol06], namely E
(3.1.9) is the Lax matrix of the Schur flow. This implies that the Ablowitz-Ladik’s constants of motion
are conserved also along the Schur flow (3.5.1).
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Following the same construction made for the Ablowitz-Ladik lattice, on IN we define the finite volume
limit GGE as

dPV,β
S,N pα1, . . . , αN q � 1

ZS
N pV, βq

N¹
j�1

p1� α2
j qβ�11tαjPIu expp�TrpV pEqqqdα, (3.5.4)

where ZS
N pV, βq is the partition function of the system

ZS
N pV, βq �

»
IN

N¹
j�1

p1� α2
j qβ�1 expp�TrpV pEqqqdα.

Since according to the measure (3.5.4) the matrix E is real, its eigenvalues come in pairs [Sim05],
meaning that if eiθj is an eigenvalue, then its conjugate e�iθj is also an eigenvalue. This implies that for
a system of size N even, there are just n � N{2 independent eigenvalues. Following the same idea as
in [KN04], it is more convenient to restrict the argument of the eigenvalues in r0, πq and then consider
xj � cospθjq, j � 1, . . . , n. In these variables, the empirical spectral measure µnpEq reads:

µnpEq � 1
n

ņ

j�1
δxj

, xj P I . (3.5.5)

As a corollary of Lemma 3.2.3 and Proposition 3.2.4, we obtain the existence of a large deviations
principle for the sequence pµnpEqq, namely:

Corollary 3.5.1. Let V : I Ñ R be continuous. Under PV,β
S,n the sequence pµnpEqqn¥1 fulfils a large

deviations principle with good, convex rate function SV
β pµq � hV

β pµq � infνPPpIq hV
β pνq, where

hV
β pνq � Kβpνq �

»
I
V dν , (3.5.6)

where Kβpνq is the rate function of µn under the law P0,β
S,n .

3.5.2 Jacobi beta ensemble in the high temperature regime
The Jacobi beta ensemble refers to the distribution of charges constrained to the segment I, and subjected
to an external potential W pxq � �a logp1 � xq � b logp1 � xq � V pxq, here a, b ¡ �1 and W pxq P C0pIq.
Specifically the joint distribution of these particles is

dPpV,rβq
J,n � 1

ZJ
N pV, rβq

¹
i j

|xi � xj |rβ
n¹

j�1
p1� xjqap1� xjqbe�V pxjqdxj . (3.5.7)

In [KN04], Killip and Nenciu were able to show that the distribution (3.5.7) can be realized as the
eigenvalues distribution of a particular CMV matrix, specifically they proved the following

Theorem 3.5.2 (cf. [KN04] Proposition 5.3). Let N � 2n, consider the CMV matrix E in (3.3.10) with
parameters α1, . . . , α2n�1 P I distributed according to

dBpV,rβq
n � 1

ZnpV, rβq
2n�1¹
j�1

p1� α2
j qrβp2n�jq{4�1

2n�1¹
j�1

p1� αjqa�1�rβ{4p1� p�1qj�1αjqb�1�rβ{4e�TrV pEqdαj ,

(3.5.8)
and α2n � �1, here ZN pV, βq is the normalization constant. Then all the eigenvalues of E come in pairs,
meaning that if eiθj is an eigenvalue, then also e�iθj is one. Moreover, under the change of variables
cospθjq � xj, the xjs are distributed according to (3.5.7).
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Remark 3.5.3. We notice that the previous proposition is not stated in this way in [KN04], but this
equivalent formulation is more useful for our purpose.

Also in this case, we are interested in the high temperature regime for this ensemble. Specifically we
consider the situation rβ � 4β

N � 2β
n , and a � b � �1� rβ

4 , in this regime dPpV, β
n q

J,n reads

dPpV, 2β
n q

J,n � 1
ZJ

N

�
V, β

n

	 ¹
i j

|xi � xj |
2β
n

n¹
j�1

p1� xjq�1� β
2n p1� xjq�1� β

2n e�V pxjqdxj , (3.5.9)

and dBpV, β
n q

n becomes

dBpV, β
n q

n � 1
Zn

�
V, β

n

	 2n�1¹
j�1

p1� α2
j qβp1�

j
2n q�1

2n�1¹
j�1

e�TrV pEqdαj . (3.5.10)

We mention that this particular regime was considered in [FM21, TT21]. In these papers the authors
computed the density of states for this ensemble in the case V � 0.

We can apply [GZ19, Corollary 1.3] to (3.5.9) to obtain a large deviations principle for the empirical
measure µnpEq � 1

n

°n
j�1 δxj . Specifically, we deduce that

Proposition 3.5.4. For any continuous V : I Ñ R. The law of the empirical measures µnpEq under
dPpV, 2β

n q
J,n satisfies a large deviations principle at speed n in the space PpIq, with a good rate function

µ ÞÑ QV
β pµq given for µ absolutely continuous with respect to Lebesgue measure, and with density dµ

dx , by
QV

β pµq � qV
β pµq � infνPPpIq qV

β pνq, where

qV
β pµq �

»
I
pV pxq� logp1�xq� logp1�xqqdµpxq� 2β

»
I�I

logp|x� y|qdµpxqdµpyq�
»
I
log

�
dµ

dx
pxq



dµpxq ,

(3.5.11)
and QV

β pµq � �8 otherwise.

We notice that the arguments in Section 3.3 and 3.4 can be applied also in this context with dPpV, 2β
n q

J,n

in place of dPpV, 2β
N q

C,N , and dPV,β
S,N in place of dPV,β

AL,N . Hence, we deduce the following result

Theorem 3.5.5. Consider the sequence of measures µnpEq (3.5.5) under the law dPV,β
S,2n (3.5.4), then

µnpEq a.s.ÝÝÑ νV
β . (3.5.12)

Moreover, νV
β is absolutely continuous with respect to the Lebesgue measure, and it reads

νV
β � BβpβµV

β q , (3.5.13)

where µV
β is the unique minimizer of the functional qV

β (3.5.11).

Finally, it is worth to mention that in the case V pxq � 0, it is possible to compute explicitly the
densities of states for both the Jacobi beta ensemble at high temperature and for the Schur flow [Maz22,
FM21].

3.6 Appendix: Technical Results
In this appendix we collect the proof of all the technical results that we exploit along the proof of the
main theorem. For reader convenience, we report here the statement of Lemmas.
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Proof of Lemma 3.2.2
Lemma 3.6.1. For any A, B unitary matrices of size N �N , we have

• For f with bounded variation,����» fdµ� »
fdν

���� ¤ }f}BV
rankpA�Bq

N
,

• For f Lipschitz, ����» fdµ� »
fdν

���� ¤ }f}Lip
1
N

¸
i,j

|pA�Bqi,j |.

As a consequence,

dpµpAq, µpBqq ¤ min
#
rankpA�Bq

N
,

1
N

¸
i,j

|pA�Bqi,j |
+
. (3.6.1)

Proof. The first point is a consequence of the fact that the eigenvalues of A and B interlace on the unit
circle.

First, we order the eigenvalues λ1pAq, . . . , λN pAq, λ1pBq, . . . , λN pBq of A,B in such a way that

�π ¤ argpλ1pAqq ¤ . . . ¤ argpλN pAqq   π , (3.6.2)
and analogously for B.

Write B � pIN � pB � AqA�1qA and set U :� IN � pB � AqA�1. One checks that U is unitary,
B � UA, and that rankpU � Iq � rankpB�Aq �: r. By [AG88, section 6, equation (85)], we deduce that
for 1 ¤ j ¤ N

argpλj�rpAqq ¤ argpλjpBqq ¤ argpλj�rpAqq . (3.6.3)
This means that λjpBq lies on the anticlockwise arc pargpλj�rpAqq, argpλj�rpAqqq of the circle. If

j � r ¤ 0 we identify λj�r with λj�r�N , and analogously for the case j � r ¡ N .
It is a classical result (see [AGZ10]) to deduce from (3.6.3) that����» fdµN pAq �

»
fdµN pBq

���� ¤ }f}BV
r

N
� r

N
,

for any f : TÑ R such that ||f ||BV ¤ 1. As a consequence, we obtain the first point.
The proof of the second point is the same as in the symmetric case, see [GM22, (16)]. Indeed, we only
use the fact that a normal matrix is unitarily diagonalizable.

Proof of Lemma 3.3.7
Lemma 3.6.2. Let N � 2k be even and A be a N �N matrix. Then,

•
°

i,j |pLAqi,j | ¤ 2
°

i,j |Ai,j |,
•

°
i,j |pAMqi,j | ¤ 2

°
i,j |Ai,j |,

where M, and L are defined in (3.1.8).
Proof. We will just prove the first point, since the proof of the second one follows the same lines.

For 0 ¤ l ¤ k � 1 and 1 ¤ j ¤ N , consider
pLAq2l�1,j � α2l�1A2l�1,j � ρ2l�1A2l�2,j and pLAq2l�2,j � ρ2l�1A2l�1,j � α2l�2A2l�2,j .

Summing over i, j,¸
i,j

|pLAqi,j | �
k�1̧

l�0

Ņ

j�1
|pLAq2l�1,j | � |pLAq2l�2,j | ¤ 2

k�1̧

l�0

Ņ

j�1
|A2l�1,j | � |A2l�2,j | � 2

¸
i,j

|Ai,j |,

where we used that |αi|, ρi ¤ 1.



3.6. APPENDIX: TECHNICAL RESULTS 87

Proof of Lemma 3.3.8

Lemma 3.6.3. Let αν and αν�h defined by equation (3.3.14). Define ρν � a
1� |αν |2, and ρν�h �a

1� |αν�h|2, then the following hold

i.

|αν � αν�h| ¤ Yh

pX2
1 �X2

2 � Y 2
h q

1
2
, almost surely ,

|ρν � ρν�h| ¤ Yh

pX2
1 �X2

2 � Y 2
h q

1
2
, almost surely ,

(3.6.4)

where X1, X2 � Np0, 1q, Yh � χh are all independent.

ii. define Zh � Yh

pX2
1�X2

2�Y 2
h
q 1

2
, and aphq � � 1

2 logphq � 1, then there exists a constant K independent
of h such that

sup
0 h 1

E rexppaphqZhqs ¤ K . (3.6.5)

Proof. First, we focus on claim i..
We recall that αν , αν�h are defined by

αν� X1 � iX2

pX2
1 �X2

2 � Y 2
ν�1q

, αν�h� X1 � iX2

pX2
1 �X2

2 � Y 2
ν�1 � Y 2

h q
. (3.6.6)

From the previous equation, we deduce that

|αν � αν�h| � |X1 � iX2|
pX2

1 �X2
2 � Y 2

ν�1q
1
2

�
1�

�
X2

1 �X2
2 � Y 2

ν�1
X2

1 �X2
2 � Y 2

ν�1 � Y 2
h


 1
2
�

� |X1 � iX2|
pX2

1 �X2
2 � Y 2

ν�1q
1
2

�
1�

�
1� Y 2

h

X2
1 �X2

2 � Y 2
ν�1 � Y 2

h


 1
2
�

¤
�

X2
1 �X2

2
X2

1 �X2
2 � Y 2

ν�1


 1
2 Yh

pX2
1 �X2

2 � Y 2
ν�1 � Y 2

h q
1
2
,

where we used in the previous line that for 0 ¤ a ¤ b we have
?
b ¤

?
b� a�?

a , (3.6.7)

and we took a � Y 2
h

X2
1�X2

2�Y 2
ν�1�Y 2

h

, b � 1. The last term is bounded by the announced bound.
One can proceed analogously for |ρν � ρν�h| obtaining that

|ρpαν�hq � ρpανq| �
a

1� |αν�h|2 �
a

1� |αν |2 ¤
a
|αν |2 � |αν�h|2

�
d

X2
1 �X2

2
X2

1 �X2
2 � Y 2

ν�1

d
1� X2

1 �X2
2 � Y 2

ν�1
X2

1 �X2
2 � Y 2

ν�1 � Y 2
h

¤ Yh

pX2
1 �X2

2 � Y 2
ν�1 � Y 2

h q
1
2
,

(3.6.8)

where we used again equation (3.6.7) with a � 1�|αν |2 and b � 1�|αν�h|2. Thus, point i. is proved.
To prove point ii., we find explicitly the law of Zh. Thus, we consider a continuous function f :

p0, 1q Ñ R, and we compute:
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»
R2�R�

f

�
y

px2
1 � x2

2 � y2q 1
2

�
e�

x2
1�x2

2�y2

2 yh�1dx1dx2dy . (3.6.9)

Performing the change of coordinates pu, vq � 1
px2

1�x2
2�y2q1{2 px1, x2q, which is the same one that we

performed in Lemma 3.3.5, we obtain that

»
R2�R�

f

�
y

px2
1 � x2

2 � y2q 1
2

�
e�

x2
1�x2

2�y2

2 yh�1dx1dx2dy

�
»
D�R�

f
�?

1� u2 � v2
�

p1� u2 � v2q2 e
� y2

2p1�u2�v2q yh�1dudvdy

?
1�u2�v2t�y�

»
D�R�

f
�a

1� u2 � v2
	 �

1� u2 � v2�h
2 �1

e�
t2
2 th�1dudvdt .

(3.6.10)

We can now explicitly compute the integral in t. Moreover, we can express the remaining part of the
integral in polar coordinates; namely, we apply the change of variables u � ρ cospθq, v � ρ sinpθq, obtaining
that:

»
D�R�

f
�a

1� u2 � v2
	 �

1� u2 � v2�h
2 �1

e�
t2
2 th�1dudvdt

� 2π2 h
2 Γ

�
h

2 � 1

» 1

0
ρfp

a
1� ρ2q �1� ρ2�h

2 �1
dρ

?
1�ρ2�w� 2π2 h

2 Γ
�
h

2 � 1

» 1

0
fpwqwh�1dw ,

(3.6.11)

here Γpxq is the gamma function (3.3.11). Thus, in order to obtain the estimate (3.6.5), we have to
deduce an upper bound for

sup
0 h 1

³1
0 e

aphqwwh�1dw³1
0 w

h�1dw
. (3.6.12)

For any 0   h   1, we can explicitly compute the denominator as» 1

0
wh�1dw � 1

h
. (3.6.13)

Moreover, we can give an upper bound on the numerator as» 1

0
eaphqwwh�1dw

aphqw�r� 1
aphqh

» aphq

0
errh�1dr � 1

aphqh
�» 1

0
errh�1dr �

» aphq

1
errh�1dr

�

¤ 1
aphqh

�
e

» 1

0
rh�1dr �

» aphq

1
erdr

�
¤ e

aphqhh �
eaphq

aphqh .
(3.6.14)

Combining (3.6.13)-(3.6.14), with our choice of aphq � � 1
2 logphq � 1, we deduce that there exists a

constant K independent of h such that (3.6.5) holds.
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Proof of Lemma 3.4.3
Lemma 3.6.4. Let MV

β � pJV
β q�1pt0uq be the set of minimizers of JV

β . Then, β ÞÑ MV
β is continuous

in the sense that for all ε ¡ 0, there exists δ ¡ 0 such that for all 0 ¤ h ¤ δ, MV
β�h � pMV

β qε, where for
A � PpTq we denote Aε � tµ P PpTq | dpµ,Aq ¤ εu.
Proof. Let ε ¡ 0. We are going to show that for h ¡ 0 small enough, we have

� inf
rpMV

β
qεsc

JV
β�h   0,

which will ensure that JV
β�h ¡ 0 on

�
pMV

β qε
�c

, thus
�
pMV

β qε
�c

�
�
pMV

β�hq
�c

, and hence the conclusion.

By the large deviations principle for pµN qN even under PV,β
AL,N , Corollary 3.2.5, since

�
pMV

β qε
�c

is open,
we have

� inf
rpMV

β
qεsc

JV
β�h ¤ lim inf

N even

1
N

logPV,β�h
AL,N

�
µN pEq P

�pMV
β qε

�c
	

� lim inf
N even

1
N

logPV,β�h
AL,N

�
dpµN pEq,MV

β q ¡ ε
�

¤ lim sup
N even

1
N

logPV,β�h
AL,N

�
dpµN pEq,MV

β q ¥ ε
�
.

Since for any positive h and α P DN
±N

j�1p1� |αj |2qh ¤ 1 ,we deduce that for any A � DN

1
N

log
�
PV,β�h

AL,N pAq
	
¤ 1
N

�
log

�
ZAL

N pV, βq
ZAL

N pV, β � hq


� log

�
PV,β

AL,N pAq
	


, (3.6.15)

we recall that PV,β
AL,N is defined in (3.1.14).

Applying the previous inequality in the case A � tdpµN pEq,MV
β q ¥ εu, we conclude that

� inf
rpMV

β
qεsc

JV
β�h ¤ lim sup

NÑ8

1
N

�
log

�
ZAL

N pV, βq
ZAL

N pV, β � hq


� log

�
PV,β

AL,N pdpµN pEq,MV
β q ¥ εq

	

. (3.6.16)

From Corollary 3.2.5, we deduce that there exists a positive constant c, independent of h, such that

lim sup
NÑ8

1
N

PV,β
AL,N pdpµN pEq,MV

β q ¥ εqq ¤ � inf
rpMV

β
qεsc

JV
β   �c . (3.6.17)

Thus, to conclude we have just to prove that the function gpβq � limNÑ8 1
N log

�
ZAL

N pV, βq� is continuous
in β. Actually, we prove that this function is convex in β. Let 1{p� 1{q � 1, and β1, β2 P R� then

ZAL
N

�
V,
β1

p
� β2

q



�

»
DN

N¹
j�1

p1� |αj |2q
β1
p � β2

q �1 expp�TrpV pEqqqd2α

�
»
DN

N¹
j�1

p1� |αj |2q
β1�1

p � β2�1
q exp

�
�
�

1
p
� 1
q



TrpV pEqq



d2α

¤ ZAL
N pV, β1q

1
p ZAL

N pV, β2q
1
q ,

(3.6.18)

where in the last inequality we used Hölder inequality. This implies that

g

�
β1

p
� β2

q



¤ 1
p
gpβ1q � 1

q
gpβ2q , (3.6.19)
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thus gpβq is convex, and so continuous, for β ¡ 0. We can now choose h is such a way that����� lim sup
NÑ8

1
N

log
�

ZAL
N pV, βq

ZAL
N pV, β � hq


 �����   c ,

so we obtain that
inf

rpMV
β
qεsc

JV
β�h ¡ 0 . (3.6.20)
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Chapter 4

CLT for real β-ensembles at high
temperature

Abstract We establish a central limit theorem for the fluctuations of the empirical measure in the β-
ensemble of dimension N at a temperature proportional to N and with confining smooth potential. The
space of test functions for which the CLT holds includes C1, vanishing functions at infinity. It is obtained
by the inversion of an operator which is a pertubation of a Sturm-Liouville operator. The method that
we use is based on a change of variables introduced in [BFG15] and in [Shc14b].

4.1 Introduction and main result
The β-ensemble of dimension N ¥ 1 with parameter β ¡ 0 and potential V is the probability measure
on RN given by

dPV,β
N px1, . . . , xN q � 1

ZV,β
N

¹
i j

|xi � xj |βe�
°N

i�1 V pxiqdx1 . . . dxN . (4.1.1)

The potential V has to be chosen so that the partition function

ZV,β
N �

»
RN

¹
i j

|xi � xj |βe�
°N

i�1 V pxiqdx1 . . . dxN

is finite. This is the case for example if for some β1 ¡ maxp1, βq,

lim inf
|x|Ñ8

V pxq
Nβ1 log |x| ¡ 1 , (4.1.2)

see [AGZ10, equation (2.6.2)]. The parameter β, which is allowed to depend on N , is the so-called inverse
temperature.

Under the special choice of VGpxq � x2

2 , the measure (4.1.1) can be seen as the joint law of the
(unordered) eigenvalues of certain matrix models:

• For β � 1 (resp. β � 2), it is the law of the eigenvalues of the Gaussian orthogonal ensemble (resp.
Gaussian unitary ensemble), [AGZ10][Theorem 2.5.2].

• For general β ¡ 0, potentially depending on N , it is the law of the spectrum of certain tri-diagonal
random matrices as shown by Dumitriu and Edelman in [DE02].
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We consider here the high temperature regime where β scales as 1{N , and write β � 2P
N for some

P ¡ 0. The corresponding measure is therefore

dPV, 2P
N

N px1, . . . , xN q � 1
Z

V, 2P
N

N

¹
i j

|xi � xj | 2P
N e�

°N
i�1 V pxiqdx1 . . . dxN , (4.1.3)

with partition function

Z
V, 2P

N

N �
»
RN

¹
i j

|xi � xj | 2P
N e�

°N
i�1 V pxiqdx1 . . . dxN . (4.1.4)

As a consequence of [GZ19], under PV, 2P
N

N , the sequence of empirical measures

µ̂N � 1
N

Ņ

i�1
δxi

satisfies a large deviation principle at speed N with strictly convex, good rate function. As a consequence,
µ̂N converges almost surely in distribution towards a deterministic measure µV

P as N goes to infinity,
meaning that almost surely, for every bounded continuous f : RÑ R,»

R
fdµ̂N ÝÑ

NÑ8

»
R
fdµV

P .

The limiting measure µV
P can be seen to have a density ρV

P which satisfies for almost every x P R

V pxq � 2P
»
R

log |x� y|ρV
P pyqdy � log ρV

P pxq � λV
P , (4.1.5)

where λV
P is constant (see [GM22, Lemma 3.2] for example).

The β-ensemble in the regime βN ÝÑ
NÑ8

2P ¡ 0 has drawn a lot of attention from the random matrix
and statistical physics communities lately. This regime was first considered by [CL97] with the study
of Dyson Brownian motion with vanishing repulsive coefficient scaled like 1

N
. Gases of vortices were

also studied with temperature proportional to N in [BG99]. The limiting density was then described
in the case of the quadratic potential in [ABG12], as a crossover between the Wigner semicircle law
(fixed β ¡ 0 case) and the Gaussian density (case β � 0). The fluctuations of the eigenvalues in the
bulk and at the edge of a configuration were studied for example in [BGP15],[NT18],[NT20],[Pak18],
[Lam21]. These fluctuations were shown to be described by Poisson statistics in this regime. Recently,
Spohn uncovered in [Spo20c] a link between the study of the Classical Toda chain and the β-ensemble
in the high temperature regime, showing that the limiting density of states of the classical Toda chain,
distributed according to the generalized Gibbs ensemble with polynomial potential, can be computed by
means of the limiting empirical measure of the β-ensemble at high temperature. In [Maz22], the author
established this relation using the matrix representation of the β-ensemble and a moment method, and
in [GM22] the authors proved a large deviation principle for the empirical measure of the Toda chain,
establishing the previous result for potentials with polynomial growth. See also [Spo22b],[GM23],[MM23b]
for a similar link between the Ablowitz-Ladik lattice and the circular β-ensemble at high temperature.
This relation can be further pushed to compute the limiting currents of the Toda chain through the
central limit theorem for the empirical measure in the β ensemble. The computation of these currents is
a crucial step to the derivation of a hydrodynamic equation for the Toda chain, and to the analysis of
the correlations of the locally conserved quantities at equilibrium through linearized hydodynamics, see
[Spo21].

The Central Limit Theorem for the fluctuations of the linear statistics of β-ensembles was first es-
tablished by [Joh98] for β � 2 and polynomial potential, then generalized and further developed in the
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regime where β is fixed in [Shc13], [BG13a], [BG13b],[BLS18],[LLW19]. Also an optimal local law was
found in this regime in [BMP22]. The CLT was obtained in the high-temperature regime βN Ñ 2P ¡ 0
by Nakano and Trinh in [NT18, Theorem 4.9] for quadratic V , relying on the tridiagonal representation
for the β-ensemble with quadratic potential in [DE02]. In [HL21], the authors prove the CLT in the
case of the circular β-ensemble at high temperature with general potential, using a normal approxima-
tion method involving the spectral analysis of an operator associated to the limiting covariance structure.
Their method allowed them to derive a Berry-Esseen bound, i.e. a speed of convergence of the fluctuations
towards a Gaussian variable.

In this paper, we adapt part of the arguments of [HL21] to our setup. More precisely, we show that
for a class of regular, convex potentials V satisfying a growth condition of the type

lim
|x|Ñ8

V 2pxq
V 1pxq2 � 0 ,

denoting νN � µ̂N � µV
P and considering test functions f belonging to the range of a certain integro-

differential operator, the scaled fluctuations of µ̂N , defined by
?
NνN pfq :�

?
N

�»
R
fdµN �

»
R
fdµV

P



,

converge in law towards centered Gaussian law with variance depending on f .
When considering the fixed temperature regime, i.e. β fixed, one has to renormalize the xi’s by

?
N .

It is shown in [AGZ10][Theorem 2.6.1] that the measure

1
N

Ņ

i�1
δxi{

?
N

satisfies a large deviation principle, and the limiting measure is characterized in [AGZ10][Lemma 2.6.2]
by an equation similar to (4.1.5). In fact, the term log ρV

P in the left-hand side of (4.1.5) is the only
difference in the equation characterizing the limiting measure in the fixed β case. We point out the
very similar characterization of the equilibrium measure corresponding to the minimization problem
arising in [BGK16]. There again, the limiting measure is compactly supported. The term log ρV

P is of
prime importance because its presence implies that the support of ρV

P is the whole real line. It leads to
technicalities to deal with the behavior at infinity of most of the associated objects, namely dealing with
weighted Lebesgue spaces L2pµV

P q and the corresponding Sobolev spaces HkpµV
P q.

Our strategy is based on a change of variables in the partition function ZV, 2P
N

N (4.1.4), used for the β-
ensemble at fixed temperature introduced in [BFG15] and [Shc14b], and used in [Gui19] and in [BGK16]
to derive the loop equations and in [BLS18] to derive a CLT in the β-ensemble with β fixed. The outline
of the argument goes as follows: Take ϕ : R Ñ R smooth, vanishing fast enough at infinity, and do the
change of variables in Z

V 2P
N

N , xi � yi � t?
N
ϕpyiq, 1 ¤ i ¤ N , to get

Z
V, 2P

N

N �
»
RN

¹
i j

����yi � yj � t?
N
pϕpyiq � ϕpyjqq

����2P {N
e
�°N

i�1 V
�

yi� t?
N

ϕpyiq
	 N¹

i�1

�
1� t?

N
ϕ1pyiq



dN y .

Expanding the different terms in this integral, one gets

Z
V, 2P

N

N �
»
RN

¹
i j

|yi � yj | 2P
N e�

°N
i�1 V pyiqe

t?
N

�
2P
N

°
i j

ϕpyiq�ϕpyjq
yi�yj

�°N
i�1pϕ1pyiq�V 1pyiqϕpyiqq

�
e�

t2
2 σ2

N pϕqdN y ,

where the term σ2
N pϕq converges towards a limiting variance σ2pϕq depending on ϕ, P and V . After

dividing both parts of the equation by ZV,P
N , and because of equation (4.1.5) characterizing µV

P , one can
deduce from the last equation the convergence of the Laplace transform

E
�
et
?

NpνN pΞϕq�error termq
�
ÝÑ

NÑ8
exp

� t2
2 σ

2pϕq
	
, (4.1.6)
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where Ξ is a linear operator acting on test functions and defined by

pΞϕqpxq � 2P
»
R

ϕpxq � ϕpyq
x� y

dµV
P pyq � ϕ1pxq � V 1pxqϕpxq . (4.1.7)

Once the error term is taken care of, (4.1.6) shows the central limit theorem for test functions of the form
Ξϕ. Following [HL21], the operator L given by

Lϕ � Ξϕ1 (4.1.8)

can be analyzed using Hilbert space techniques. In particular, the operator L, seen as an unbounded
operator of the Hilbert space

H �
"
u P L2pµV

P q
��� u1 P L2pµV

P q,
»
R
uρV

P dx � 0
*
, xu, vyH �

@
u1, v1

D
L2pρV

P
q ,

can be decomposed as
�L � A� 2PW ,

where A is a positive Sturm-Liouville operator and W is positive and self-adjoint. Such a writing allows
us to show that �L is invertible, see Theorem 4.6.7.

We now state the assumptions we make on the potential V . Recall that a probability measure µ
supported on R satisfies the Poincaré inequality if there exists C ¡ 0 such that for all f P C1pRq with
compact support:

Varµpfq :�
»
R

�
f �

»
R
fdµ


2
dµ ¤ C

»
f 12dµ . (4.1.9)

Assumptions 4.1.1. The potential V satisfies:

i) V P C3pRq, V pxq ÝÑ
|x|Ñ�8

�8, |V 1pxq| ÝÑ
|x|Ñ�8

�8 and is such that µV
P satisfies the Poincaré

inequality (4.1.9).

ii) For all polynomial Q P RrXs and α ¡ 0, Q
�
V 1pxq



e�V pxq � o

|x|Ñ8
px�αq .

iii) Furthermore, for any sequence xN such that |xN | goes to infinity, and for all real a   b, we have,
as N goes to infinity,

1
V 1pxN q2 sup

a¤x¤b
|V 2pxN � xq| ÝÑ

NÑ8
0 .

iv) The function 1
V 12 is integrable at infinity. V 2pxq

V 1pxq � O
|x|Ñ8

p1q and V p3qpxq
V 1pxq � O

|x|Ñ8
p1q.

Taking V � Vconv�ϕ with Vconv, ϕ P C3pRq such that ϕpkq is bounded for k � 0, . . . , 3, Vconv is convex
with |V 1

conv| Ñ �8 at infinity, satisfying hypotheses ii), iii) and iv) such that there exists ε ¡ 0 such
that Vconv � 2Pfε is convex (see Lemma 4.2.4), then V satisfies Assumptions 4.1.1.

Because i) implies that V goes to infinity faster than linearly, we will see that it ensures exponential
decay at infinity of ρV

P . Recalling the sufficient condition for PV, 2P
N

N of equation (4.1.2) to be defined,
this first assumption implies that there exists α ¡ 0 such that lim inf |x|Ñ8

V pxq
|x| ¡ α. This guarantees in

particular that the β-ensemble (4.1.3) is well-defined for all N ¥ 1 and P ¥ 0. We will use the fact that
µV

P satisfies the Poincaré inequality to ensure that H endowed with x�, �yH is a Hilbert space.
The second assumption ensures that any power of V 1 and V 2 is in L2pµV

P q and ρV
P , which behaves like

e�V up to a sub-exponential factor, belongs to the Sobolev space H2pRq � C1pRq. Indeed, for k ¤ 2, using
iv), ρV

P
pkq behaves at infinity like pV 1qkρV

P as shown in Lemma 4.2.2 which is in L2pRq by assumption ii).



4.1. INTRODUCTION AND MAIN RESULT 95

Assumption iii) will be used to localize the minimum/maximum point of a typical configuration
px1, . . . , xN q following the law PV, 2P

N

N : this will be done in Corollary 4.4.2, which comes as a consequence
of [Lam21][Theorem 3.4]. More precisely, Corollary 4.4.2 establishes that for sequences pα�N qN , pα�N qN
going to infinity, the random variables

α�N

�
max

1¤j¤N
xj � E�

N



and α�N

�
max

1¤j¤N
xj � E�

N



converge in distribution. For large N , the scalars E�

N and E�
N can thus be seen as the edges of a typical

configuration. Furthermore,
V pE�

N q � logN . (4.1.10)
We refer to Section 4.4 for detailed statements. The final step in the proof of Theorem 4.1.3 consists in
lifting the result of Proposition 4.5.1 from compactly supported functions to more general functions.

We use Assumption iv) to control integral remainders in the proof of Theorem 4.7.1, ensuring that
L�1 is regular enough i.e. that for sufficiently smooth functions f ,

�
L�1f

	1
P H2pRq.

We will need another technical assumption to ensure that Taylor remainders arising in the proof of
Theorem 4.5.2 are negligible.

Assumption 4.1.2. With the notations of Theorem 4.4.1, we have

sup
dpx,IN q¤1

���V p3qpxq
��� � opN1{2q ,

where IN � �
E�

N � 2;E�
N � 2

�
.

Again taking V � Vconv � ϕ with Vconv, ϕ P C3pRq such that ϕpkq is bounded for k � 0, . . . , 3, Vconv
is convex with |V 1

conv| Ñ �8 at infinity, satisfying hypotheses ii), iii), iv) and Assumption 4.1.2, such
that there exists ε ¡ 0 such that Vconv� 2Pfε is convex (see Lemma 4.2.4), then V satisfies Assumptions
4.1.1.

This last hypothesis is satisfied whenever Vconv is sufficiently convex in a compact centered at 0 and
is made so that Vconv compensate the small lack of concavity in the bulk of a function behaving like
� log |x| at infinity (note that assuming that V 2 ¥ α for some α ¡ 0 is sufficient). This is the reason
why we introduce the function fε, which are functions with required growth at infinity and with second
derivative as small as desired. The main point that needs to be checked is that the measure µV

P satisfies
the Poincaré inequality, this will be done in Proposition 4.2.6.

The type of potential Vconv that one can consider is typically the convex polynomials or coshpαxq.
On the other hand a scaled potentials like ex2 which have a faster growing derivative at infinity and so
doesn’t satisfy assumptions iii) and iv).

We are now able to state the main result, ie the central limit theorem for functions belonging to the
image of the operator L introduced in (4.1.8).

Theorem 4.1.3. Assume that V satisfies Assumptions 4.1.1 and Assumption 4.1.2. Then for ϕ verifying
the following conditions:

• ϕ P C1pRq
• there exists ε ¡ 0, ϕpxq � O

|x|Ñ8
px� 1

2�εq and ϕ1pxq � O
|x|Ñ8

px 1
2�εq at infinity

•
»
R
ϕpxqdµV

P pxq � 0

we have the convergence in law

?
NνN pϕq Ñ N

�
0, pσV

P q2pϕq
�

(4.1.11)
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where the limiting variance pσV
P q2pϕq is given by

pσV
P q2pϕq � xϕ,L�1ϕyH �

»
R

��
L�1ϕ

�2pxq2 � V 2pxq�L�1ϕ
�1pxq2�dµV

P pxq

� P

¼
R2

��
L�1ϕ

�1pxq � �
L�1ϕ

�1pyq
x� y

�2

dµV
P pxqdµV

P pyq . (4.1.12)

Remark 4.1.4. Since νN pϕ� cq � νN pϕq for all constant c P R, the assumption
»
R
ϕpxqdµV

P � 0 can be

dropped by replacing ϕ by ϕ�
»
R
ϕpxqdµV

P in the expression of the limiting variance.

As a tool to deal with the error term of equation (4.1.6), we establish a concentration inequality
for the empirical measure. This inequality is stated in terms of the following distance over the set of
probability distributions PpRq.

For µ, µ1 P PpRq we define the distance

dpµ, µ1q � sup
}f}Lip¤1
}f}1{2¤1

"����» fdµ� »
fdµ1

����* , (4.1.13)

where }f}Lip denotes the Lipschitz constant of f , and }f}2
1{2 �

»
R
|t| |Frf sptq|2 dt, where F denotes

the Fourier transform on L2pRq which takes the following expression Frf sptq �
»
R
fpxqe�itxdx for f in

L1pRq X L2pRq.
We then have

Theorem 4.1.5. There exists K P R (depending on P and on V ), such that for any N ¥ 1 and r ¡ 0,

PV, 2P
N

N

�
dpµ̂N , µ

V
P q ¡ r

� ¤ e�Nr2 P π2
2 �5P log N�K . (4.1.14)

This result is the analog of [HL21, Theorem 1.4].

The paper is organized as follows. In Section 4.2 we discuss the regularity of the equilibrium
density ρV

P under Assumption 4.1.1. In Section 4.3 we prove Theorem 4.1.5. Section 4.4 is dedicated to the
localization of the edge of a typical configuration, mentioned in the discussion preceding the statement of
Assumption 4.1.2. We next prove in Section 4.5 the convergence of the Laplace transform of

?
NνN pLϕq

for general functions ϕ which establishes Theorem 4.1.3 for functions of the form Lϕ. Section 4.6 is
dedicated to the diagonalization and inversion of L given by (4.1.8). In Section 4.7, we show regularity
properties of L�1 to establish Theorem 4.1.3. We detail in Appendix 4.8 elements of proof for the spectral
theory of Schrödinger operators, used in Section 4.6.
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would like to thank Jean-Christophe Mourrat for telling us about a more general framework for Poincaré
inequalities.
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4.2 Regularity of the equilibrium measure and Hilbert trans-
form

In this section, we discuss the regularity properties of the equilibrium density ρV
P , namely its decay at

infinity and its smoothness, and give formulas for its two first derivatives.
The Hilbert transform, whose definition we recall, plays a central role in the analysis of the equilibrium

measure. It is first defined on the Schwartz class through @ϕ P SpRq, @x P R,

Hrϕspxq :�
 
R

ϕptq
t� x

dt � lim
εÓ0

»
|t�x|¡ε

ϕptq
t� x

dt �
» �8

0

ϕpx� tq � ϕpx� tq
t

dt, (4.2.1)

where
 

denotes the Cauchy principal value integral, and then extended to L2pRq thanks to property

ii) of Lemma 4.2.1: }f}L2pdxq �
1
π
}Hrf s}L2pdxq. The last expression in (4.2.1) is a definition where the

integral converges in the classical sense. We also recall the definition of the logarithmic potential Uf of
a density of probability f : RÑ R, given for x P R by

Uf pxq � �
»
R

log |x� y|fpyqdy . (4.2.2)

Because we assume f P L1pRq to be nonnegative, Uf takes values in r�8,�8q. If f integrates the
function log, i.e

³
R log |x|fpxqdx   �8, then Uf takes real values. Additionally, one can check that

the logarithmic potential and the Hilbert transform of f are linked through the distributional identity�
Uf

�1 � Hrf s.
We recall in the next lemma some properties of the Hilbert transform that we will use in the rest of

the paper.

Lemma 4.2.1 (Properties of the Hilbert transform).

i) Fourier transform: For all ϕ P L2pRq, F
�
Hrϕs

�
pωq � iπsgnpωqFrϕspωq for all ω P R.

ii) As a consequence, 1
π

H is an isometry of L2pRq, and H satisfies on L2pRq the identity H2 � �π2I.

iii) Derivative: For any f P H1pRq, Hrf s is also H1pRq and Hrf s1 � Hrf 1s.
iv) For all p ¡ 1, the Hilbert transform can be extended as a bounded operator H : LppRq Ñ LppRq.
v) Skew-self adjointness: For any f, g P L2pRq, xHrf s, gyL2pRq � �xf,HrgsyL2pRq.

Proof. We refer to [Kin09] for the proofs of these properties.

As a consequence of [GZ19], µ̂N converges almost surely under PV, 2P
N

N towards the unique minimizer
of the energy-functional EV

P , defined for µ P PpRq by

EV
P pµq �

$'&'%
»
R

�
V � log

�dµ
dx

	�
dµ� P

¼
R2

log
��x� y

��dµpxqdµpyq if µ ! dx

�8 otherwise
. (4.2.3)

(Here we wrote µ ! dx for "µ is absolutely continuous with respect to Lebesgue measure")
Consequently, following [GM22, Lemma 3.2], the density ρV

P of µV
P satisfies equation (4.1.5), which

we rewrite here for convenience.
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V pxq � 2P
»
R

log |x� y|ρV
P pyqdy � log ρV

P pxq � λV
P , (4.2.4)

where λV
P is a constant (depending on V and P ). Using this equation, we will show in the next lemma

that ρV
P decays exponentially and is twice continuously differentiable via the representation:

@x P R, ρV
P pxq � exp

�
� V pxq � 2PUρV

P pxq � λV
P

	
In the Gaussian potential case ie VGpxq � x2

2 , an explicit formula has been found [ABG12]:

ρVG

P pxq � ΓpP q
P
?

2π

exp
�
� x2

2

	
» �8

0
tP�1e�

t2
2 �ixtdt

It has been established in [BGP15] that
?
P � 1ρVG

P p?P � 1xq converges to the Gaussian distribution
when P goes to zero and the semi-circle law when P goes to infinity. So in the Gaussian case, µP can
be seen as an interpolation between the Gaussian distribution and the semi-circular one. We now drop
the superscript of ρV

P and µV
P and denote it ρP and µP for convenience. In the next lemma, we

prove that ρP has the same regularity as V .

Lemma 4.2.2. Under Assumption 4.1.1,

• The support of µP is R and there exists a constant CV
P such that for all x P R,

ρP pxq ¤ CV
P p1� |x|q2P e�V pxq .

• The density ρP is in C3pRq and we have

ρ1P � �
�
V 1 � 2PHrρP s

	
ρP (4.2.5)

and
ρ2P �

�
� 2PHrρP s1 � V 2 � V 12 � 4P 2HrρP s2 � 4PV 1HrρP s

	
ρP . (4.2.6)

Proof. For the first point, [GM22, Lemma 3.2] establishes that the support of µP is the whole real axis,
and that under the first condition of Assumptions 4.1.1, we have the bound, valid for all x P R

ρP pxq ¤ KV
P

p1� |x|q2 , (4.2.7)

with KV
P a positive constant. Using (4.2.4) and the fact that

log |x� y| ¤ log
�
1� |x|�� log

�
1� |y|� ,

we see that for all x P R,
ρP pxq ¤ CV

P exp
�
� V pxq � 2P logp1� |x|q

	
, (4.2.8)

with
CV

P � exp
�

2P
»
R

logp1� |y|qρP pyqdy � λV
P

	
which is indeed finite by (4.2.7).
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For the second point, we use that
�
UρP

�1 � HrρP s weakly and equation (4.2.4) to conclude on the
distributional identity

ρ1P �
�
� V 1 � 2PHrρP s

	
ρP .

By the second point of Assumption 4.1.1, V 1pxqe�V pxq�2P logp1�|x|q � opx�1q as |x| Ñ 8, thus by (4.2.8),
V 1ρP P L2pRq. Also since ρP is L2pRq and bounded, we deduce, by using that H

�
L2pRq� � L2pRq, that

HrρP sρP P L2pRq. Adding up these terms we get ρP P H1pRq. Because HrρP s1 � Hrρ1P s in a weak sense
by Lemma 4.2.1, HrρP s P H1pRq. By the classical fact that H1pRq is contained in the set of 1{2-Hölder
functions C1{2pRq, we have HrρP s P C1{2pRq and so UρP P C1,1{2pRq, the set of functions in C1pRq with
derivative of class 1{2-Hölder.
Using the fact that V is continuously differentiable, the previous equation for the weak derivative of ρP

then ensures that ρP P C1pRq and equation (4.2.5) holds in the strong sense.
Differentiating (in a weak sense) equation (4.2.5) we obtain

ρ2P �
�
� 2PHrρP s1 � V 2 � V 12 � 4P 2HrρP s2 � 4PV 1HrρP s

	
ρP .

The three first terms belong to L2pRq for the same reasons as before. Since ρP P H1pRqn by Lemma
4.2.1iii) so is HrρP s P H1pRq, it is then bounded over R hence the two last term are in L2pRq when
multiplied by ρP . Finally, we can conclude that ρP P H2pRq and so that HrρP s P H2pRq with HrρP s2 �
Hrρ2P s (in a weak sense). As before, we conclude that ρP P C2pRq and that equation (4.2.6) holds in a
strong sense. By the exact same method, we can show that ρP P C3pRq.

We next show that the Hilbert transform of ρP is continuous and decays at infinity.

Lemma 4.2.3. Let u P L2pRq such that
³
R uptqdt exists and f : t ÞÑ tuptq P H1pRq then

Hruspxq �
|x|Ñ8

� ³
R uptqdt
x

.

Moreover if
»
R
uptqdt � 0,

³
R fptqdt exists and g : t ÞÑ t2uptq P H1pRq, then

Hruspxq �
|x|Ñ8

� ³
R tuptqdt
x2 .

As a consequence, we obtain that HrρP spxq �
|x|Ñ8

x�1 and the logarithmic potential UρP is Lipschitz

bounded, with bounded derivative HrρP s.
Proof. Let u P L2pRq, such that

³
R uptqdt exists and f : t ÞÑ tuptq P H1pRq. Then

xHruspxq �
»
R
uptqdt �

»
R

�xupx� tq � xupx� tq
2t � upx� tq

2 � upx� tq
2

�
dt � Hrf spxq.

Since f P H1pRq, so is Hrf s, proving that it goes to zero at infinity. Hence

Hruspxq �
|x|Ñ8

� ³
R uptqdt
x

Moreover if
»
R
uptqdt � 0,

³
R fptqdt exists and g : t ÞÑ t2uptq P H1pRq, then by the same argument:

x2Hruspxq � xHrf spxq � Hrgspxq �
»
R
fptqdt

where gptq � t2uptq. We deduce that Hruspxq �
|x|Ñ8

� ³
R tuptqdt
x2 since Hrgs goes to zero at infinity.
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Lemma 4.2.4 (Asymptotic of the logarithmic potential). We have the following asymptotic expansion
at infinity UρP � log |x| � O

|x|Ñ8
p1q.

Proof. Since HrρP spxq � x�1� O
|x|Ñ8

px�2q, and recalling that UρV
P (defined by (4.2.2)) satisfies pUρV

P q1 �
HrρV

P s, we deduce the result by integrating t ÞÑ HrρV
P sptq � 1{t in a neighborhood of infinity.

We conclude this section by stating the Poincaré inequality for the measure µP under the assumption
that V is a bounded perturbation of a strictly convex potential Vconv.

Lemma 4.2.5. Let ε ¡ 0, there exists a function f P C2pRq such that fεpxq � log |x| � O
|x|Ñ8

p1q, and

}f2ε }8 ¤ ε.

Proposition 4.2.6. Assume that V � Vconv � ϕ, where Vconv P C3pRq with Vconv convex, such that there
exists ε ¡ 0 such that ϕ is bounded and Vconv�2Pfε is convex (fε being given by Lemma 4.2.5). Then, the
measure µP satisfies the Poincaré inequality: there exists a constant C ¡ 0 such that for all f P C1

c pRq,

VarµP
pfq ¤ C

»
R
|f 1|2dµP . (4.2.9)

Proof. We use the fact that if µ1, µ2 are two absolutely continuous probability measures supported on R
such that 1

C
¤ dµ1

dµ2
¤ C for some C ¡ 0 and µ1 satisfies Poincaré inequality with constant C1 then so

does µ2 for some other constant. Indeed, in that case let f P C1
c pRq, we have

Varµ2pfq � inf
a

»
R
pf � aq2 dµ2 ¤ C Varµ1pfq ¤ C2C1

»
R
f 1dµ2.

Here we take dµ2pxq :� ρV
P pxqdx and we want to compare it to a measure µ1 supported on R defined

by dµ1pxq � 1
Z

exp
� �W pxq�dx for some convex function W . The measure µ1 then clearly verifies the

Poincaré inequality. This fact comes as a direct consequence of [BBCG08][Corollary 1.9], which states
that if a probability measure µ has a log-concave density on R, then it satisfies (4.2.9). With the definition
W :� Vconv � 2Pfε with ε ¡ 0 such that Vconv � 2Pfε is convex, W � V � 2PUρP is bounded on R. It is
then not hard to see that 1

C
¤ dµ1

dµP
¤ C for some C ¡ 0 which allows to conclude that µP satisfies the

Poincaré inequality.

Remark 4.2.7. We will apply later inequality (4.2.9) to more general functions than C1
c pRq, namely

functions of the weighted Sobolev space H1pρP q, defined in Section 4.6; which can be seen as the completion
of C8c pRq with respect to the norm }u}L2pρP q � }u1}L2pρP q.

4.3 Concentration inequality, proof of Theorem 4.1.5

We prove in this section the concentration Theorem 4.1.5. Its proof is a direct adaptation of Theorem
1.4 of [HL21], which shows the analogous estimate in the circular setup. It is inspired by [MMS14] and
based on a comparison between a configuration xN � px1, . . . , xN q sampled with PV, 2P

N

N and a regularized
version yN � py1, . . . , yN q, which we describe here.

Definition 4.3.1. y1 :� x1, and for 0 ¤ k ¤ N � 1, yk�1 :� yk �maxtxk�1 � xk, N
�3u.
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Note that the configuration yN given by the previous definition satisfies yk�1 � yk ¥ N�3, and yN is
close to xN in the sense that

Ņ

k�1
|xk � yk| ¤ 1

2N . (4.3.1)

Indeed, by construction we have |xk � yk| � yk � xk ¤ pk � 1qN�3, and we get the bound by summing
these inequalities.
The key point of the proof of Theorem 4.1.5 is comparing the empirical measure µ̂N � 1

N

°N
i�1 δxi

, where
xN follows PV, 2P

N

N , to the regularized measure

rµN :� λN�5 � 1
N

Ņ

i�1
δyi
, (4.3.2)

ie the convolution of λN�5 and the empirical measure, where λN�5 is the uniform measure on r0, N�5s.
The interest of introducing the measure rµN is that it is close to µ̂N , while having a finite energy EV

P prµN q,
given by (4.2.3). Finally, notice that the empirical measure doesn’t change when reordering x1, . . . , xN ,
and thus we do not lose in generality for our purposes in assuming that x1 ¤ . . . ¤ xN in definition 4.3.1.

We now introduce a distance on PpRq which is well-suited to our context.

Definition 4.3.2. For µ, µ1 P PpRq we define the distance (possibly infinite) Dpµ, µ1q by

Dpµ, µ1q :�
�
�
»

log |x� y|dpµ� µ1qpxqdpµ� µ1qpyq

1{2

(4.3.3)

�
�» �8

0

1
t

��Frµ� µ1sptq��2dt
1{2
. (4.3.4)

where the Fourier transform of a signed measure ν is defined by Frνspxq :�
»
R
e�itxdpµ� µ1qpxq

Let f : R Ñ R with finite 1{2 norm }f}1{2 :�
�³

R |t| |Frf sptq|2 dt
	1{2

. By Plancherel theorem and
Hölder inequality, for any µ, µ1 P PpRq, setting ν � µ� µ1,����»

R
fdµ�

»
R
fdµ1

����2 �
����� 1
2π

»
R
|t|1{2Frf sptqFrνsptq|t|1{2 dt

�����
2

¤ 1
2π2 }f}2

1{2D
2pµ, µ1q.

Therefore the metric d defined in (4.1.13) is dominated by D:

dpµ, µ1q ¤ 1?
2π
Dpµ, µ1q. (4.3.5)

The following lemma shows how the distance D is related to the energy-functional EV
P defined in (4.2.3),

we will write EP for simplicity.

Lemma 4.3.3. We have for any absolutely continuous µ P PpRq with finite energy EV
P pµq,

EP pµq � EP pµP q � PD2pµ, µP q �
»

log
�
dµ

dµP



dµ . (4.3.6)

Proof of Lemma 4.3.3. Subtracting EP pµq � EP pµP q we find

EP pµq � EP pµP q �
»
V dpµ� µP q �

»
log dµ

dx
dµ�

»
log ρP dµP � P

¼
log |x� y|dµpxqdµpyq

� P

¼
log |x� y|dµP pxqdµP pyq . (4.3.7)
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Now, if ν is a signed measure of mass zero, integrating (4.2.4) we get»
V pxqdνpxq � 2P

¼
log |x� y|dνpxqdµP pyq �

»
logpρP qpxqdνpxq � 0 .

We take ν � µ� µP , and get»
V pxqdpµ� µP qpxq � 2P

¼
log |x� y|dµpxqdµP pyq � 2P

¼
log |x� y|dµP pxqdµP pyq

�
»

logpρP qpxqdµpxq �
»

logpρP qpxqdµP pxq .

Plugging this last identity in (4.3.7), we find

EP pµq � EP pµP q � �P
¼

log |x� y|dνpxqdνpyq �
»

log
�
dµ

dµP



pxqdµpxq

which establishes the result.

Proof of Theorem 4.1.5. We first give a lower bound for the partition function Z
V, 2P

N

N (4.1.4) of PV, 2P
N

N .
We rewrite it as

Z
V, 2P

N

N �
»
RN

exp
�

2P
N

¸
i j

log |xi � xj | �
Ņ

i�1

�
V pxiq � log ρP pxiq

��
dρP px1q . . . dρP pxN q ,

and apply Jensen inequality to obtain:

logZV, 2P
N

N ¥
»
RN

�
2P
N

¸
i j

log |xi � xj | �
Ņ

i�1

�
V pxiq � log ρP pxiq

��
dρP px1q . . . dρP pxN q

¥ P pN � 1q
¼

log |x� y|dρP pxqdρP pyq �N

»
R

�
V � log ρP

�
dρP

¥ �NEV
P

�
µP

�� P

¼
log |x� y|dρP pxqdρP pyq.

Using this estimate and the fact that for 1 ¤ i, j ¤ N we have |xi�xj | ¤ |yi�yj |, with yN � py1, . . . , yN q
of definition 4.3.1, we deduce the bound on the density of probability

dPV, 2P
N

N

dx px1, . . . , xN q ¤ eNEP pµP q�P
´

log |x�y|dµP pxqdµP pyq� P
N

°
i�j log |yi�yj |�

°N
i�1 V pxiq . (4.3.8)

Recalling (4.3.2), we now show the following estimate¸
i�j

log |yi � yj | ¤ 2�N2
¼

log |x� y|drµN pxqdrµN pyq � 5N logN � 3
2N . (4.3.9)

Let i � j and u, v P r0, N�5s. Since for x � 0 and |h| ¤ |x|
2 , we have

�� log |x � h| � log |x|�� ¤ 2|h|
|x| , we

deduce �� log |yi � yj � u� v| � log |yi � yj |
�� ¤ 2|u� v|

|yi � yj | ¤
2N�5

N�3 � 2
N2 .

Thus, summing over i � j and integrating with respect to u and v, we get

¸
i�j

log |yi � yj | ¤ 2�
¸
i�j

¼
log |yi � yj � u� v|dλN�5puqdλN�5pvq

� 2�N2
¼

log |x� y|drµN pxqdrµN pyq �N

¼
log |u� v|dλN�5puqdλN�5pvq .
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The last integral is equal to � 3
2 � 5 logN , so we deduce (4.3.9). We now combine (4.3.8) and (4.3.9).

Recall (4.2.3) and set

cN � P

�¼
log |x� y|dµP pxqdµP pyq � 3{2� 2{N



.

Then we get

dPV, 2P
N

N

dx px1, . . . , xN q ¤ ecN�5P log N exp
�
N

"
EP pµP q � EP prµN q �

» �
V � log drµN

dx



drµN

*
�

Ņ

i�1
V pxiq

�

� ecN�5P log N exp
�
�NPD2prµN , µP q �N

»
pV � log ρP q drµN �

Ņ

i�1
V pxiq

�

where we used equation (4.3.6) in the last equality. Using again equation (4.2.4) we then see that the

density dPV, 2P
N

N

dx px1, . . . , xN q is bounded by

ecN�5P log N exp
�
�NPD2prµN , µP q � 2PN

¼
log |x� y|dprµN � µ̂N qpxqdµP pyq

� N¹
i�1

ρP pxiq .

Recalling (4.2.2), we used that
¼

log |x � y|dprµN � µ̂N qpxqdµP pyq � �
»
UρP dprµN � µ̂N q. As a conse-

quence of the bound on the density dPV, 2P
N

N

dx px1, . . . , xN q we established, we have for all r ¡ 0

PV, 2P
N

N

�
D2prµN , µP q ¡ r

� ¤ e�NP r�cN�5P log N

»
RN

exp
"
�2PN

»
UρP dprµN � µ̂N q

* N¹
i�1

ρP pxiqdxi .

(4.3.10)
Next, we show that �N ³

UρP dprµN�µ̂N q is bounded. By Lemma 4.2.3, UρP is differentiable with bounded
derivative HrρP s on R. As a consequence,����N »

UρP dprµN � µ̂N q
���� ¤ Ņ

i�1

»
|UρP pyi � uq � UρP pxiq| dλN�5puq

¤ }HrρP s}8
�

Ņ

i�1
|yi � xi| �N

»
udλN�5puq

�

¤ }HrρP s}8
� 1

2N �N�4{2
	
,

where we used (4.3.1) in the last inequality. Therefore, we deduce from (4.3.10)

PV, 2P
N

N

�
D2prµN , µP q ¡ r

� ¤ e�NP r�cN�5P log N� 2P
N }HrρP s}8 � e�NP r�5P log N�KN (4.3.11)

with KN :� cN � 2P
N
}H rρP s }8. Since pcN qN is bounded, so is pKN qN .

Finally, let f be a Lipschitz bounded function with }f}Lip ¤ 1, then, we have (as we did for UρP )����» fdµ̂N �
»
fdrµN

���� ¤ N�2 .

Thus by (4.3.5)
dpµ̂N , µP q ¤ dpµ̂N , rµN q � dprµN , µP q ¤ N�2 � 1?

2π
DprµN , µP q ,
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and for any N such that r �N�2 ¥ r{2 (in particular r �N�2 ¡ 0) we get

PV, 2P
N

N pdpµ̂N , µP q ¡ rq ¤ PV, 2P
N

N

�
1

2π2D
2prµN , µP q ¡ pr �N�2q2



¤ PV, 2P

N

N

�
1

2π2D
2prµN , µP q ¡ r2{4



,

and the last term is bounded by e�Nr2 P π2
2 �5P log N�K for some K large enough, which concludes the

proof.

As a consequence of Theorem 4.1.5, we are able to control the quantities

ζN pϕq :�
¼
R2

ϕpxq � ϕpyq
x� y

dpµ̂N � µP qpxqdpµ̂N � µP qpyq (4.3.12)

for a certain class of test functions ϕ.
Corollary 4.3.4. There exist C,K ¡ 0 such that for all ϕ P C2pRq X H2pRq with bounded second
derivative, we have for ε ¡ 0 and N large enough,

PV, 2P
N

N

�?
N |ζN pϕq| ¤ N�1{2�ε

	
¥ 1� exp

"
� PNε

2C}ψ}H2pRq
� 5P logN �K

*
with N2pϕq � }ϕ1}L2pdxq � }ϕ2}L2pdxq.
Proof. We follow the proof given in [Gui19][Cor. 4.16] and adapt it to our setting. Let us denote by�ζN pϕq the quantity ¼

R2

ϕpxq � ϕpyq
x� y

dprµN � µP qpxqdprµN � µP qpyq .

We have the almost sure inequality, by a Taylor estimate

|ζN pϕq � �ζN pϕq| ¤ 2N�2}ϕ2}8 . (4.3.13)

Thus, for any δ ¡ 0,

PV, 2P
N

N p|ζN pϕq| ¡ δq ¤ PV, 2P
N

N

�
|ζN pϕq � �ζN pϕq| ¡ δ{2

	
� PV, 2P

N

N

�
|�ζN pϕq| ¡ δ{2

	
¤ PV, 2P

N

N

�
2N�2}ϕ2}8 ¡ δ{2�� PV, 2P

N

N

�
|�ζN pϕq| ¡ δ{2

	
,

where the first term of the right-hand side is either 0 or 1. With δ � N�1�ε, ε ¡ 0, it is zero for N large
enough. For such a choice of δ, and for N large enough,

PV, 2P
N

N

�|ζN pϕq| ¡ N�1�ε
� ¤ PV, 2P

N

N

�
|�ζN pϕq| ¡ 1

2N
�1�ε



.

We next show that, for some C ¡ 0 independent of ϕ, we have

|�ζN pϕq| ¤ CD2prµN , µP q}ϕ}H2pRq . (4.3.14)

We begin by showing this inequality for ψ P SpRq. By using the inverse Fourier transform we have

rζN pψq � 1
2π

¼ ³
dtFrψsptqeitx � ³

dtFrψsptqeity

x� y
d
�rµN � µP

�pxqd�rµN � µP

�pyq
� 1

2π

»
dtitFrψsptq

¼
eity e

itpx�yq � 1
itpx� yq d

�rµN � µP

�pxqd�rµN � µP

�pyq
� 1

2π

»
dtitFrψsptq

¼
eity

» 1

0
dαeiαtpx�yqd

�rµN � µP

�pxqd�rµN � µP

�pyq
� 1

2π

»
dtitFrψsptq

» 1

0
dα

»
eiαtxd

�rµN � µP

�pxq » eip1�αqtyd
�rµN � µP

�pyq
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We then apply in order the triangular inequality, Cauchy-Schwarz inequality, a change of variable and
the fact that |F rrµN � µP s|2 is an even function.

|rζN pψq| ¤ 1
2π

»
R
dt |tFrψsptq|

» 1

0
dα |F rrµN � µP s pαtq| .

��F rrµN � µP s
�p1� αqt���

¤ 1
2π

»
R
dt |tFrψsptq|

� » 1

0
dα |F rrµN � µP s pαtq|2

	 1
2
� » 1

0
dα

��F rrµN � µP s
�p1� αqt���2 	 1

2

¤ 1
2π

»
R
dt |tFrψsptq|

» 1

0
dα |F rrµN � µP s pαtq|2

¤ 1
2π

» �8

0
dt |tFrψsptq|

» 1

0

tdα

tα
|F rrµN � µP s pαtq|2 � 1

2π

» 0

�8
dt |tFrϕsptq|

» 1

0

�tdα
�tα |F rrµN � µP s pαtq|2

¤ 1
2π

»
R
dt |tFrψsptq|D2prµN , µP q

¤ 1
2π

� »
R
dt |tFrψsptq|2 p1� t2q

	 1
2
� »

R

dt

1� t2

	 1
2
D2prµN , µP q

¤ 1
2
?
π
D2prµN , µP qN2pψq

¤ 1
2
?
π
D2prµN , µP q}ψ}H2pRq

By density of SpRq in H2pRq, and since rζN :
�
H2pRq, } � }H2pRq

	
Ñ R is continuous, the inequality still

holds for ϕ. Thus, using equation (4.3.11),

PV, 2P
N

N

�
|�ζN pϕq| ¡ 1

2N
�1�ε



¤ PV, 2P

N

N

�
D2prµN , µP q ¡ N�1�ε

2C}ϕ}H2pRq



¤ exp

"
�P Nε

2C}ϕ}H2pRq
� 5P logN �K

*
,

which concludes the proof.

4.4 Localization of the edge of a configuration

In [Lam21][Theorem 1.8, Theorem 3.4], Lambert was able to control the edge (i.e the minimum and the
maximum) of a typical configuration px1, . . . , xN q distributed according to PV, 2P

N

N , by showing that the
random measure

ΞN :�
Ņ

j�1
δφ�1

N
pxjq

converges in distribution towards a Poisson point process for a function φN which takes the form

φN pxq :� EN � α�1
N x .

Before being more precise on the construction of pEN qN and pαN qN , we explain, following [Lam21], how
one can use this convergence to localize the edge of a typical configuration px1, . . . , xN q. Let us assume for
a moment that ΞN converges towards a Poisson point process with intensity θpxq � e�x, with EN Ñ �8.
In particular, the random variable

ΞN pt,�8q
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converges in distribution towards a Poisson random variable with mean
³�8
t

e�xdx. Combined with the
equalities

PV, 2P
N

N

�
ΞN pt,�8q � 0



� PV, 2P

N

N

�
@ 1 ¤ j ¤ N, φ�1

N pxjq � αN pxj � EN q ¤ t



� PV, 2P

N

N

�
αN

�
max

1¤j¤N
xj � EN



¤ t



,

we deduce that for all t P R

PV, 2P
N

N

�
αN

�
max

1¤j¤N
xj � EN



¤ t



ÝÑ

NÑ8
expp�e�tq .

Therefore, the random variable
αN

�
max

1¤j¤N
xj � EN



converges in distribution to the Gumbel law, showing that the maximum of a configuration is of order
EN . Furthermore, as will be clear from the construction of αN and EN , αN is positive, and goes to
infinity as N goes to infinity.

Replacing in the previous analysis θpxq � ex and EN Ñ �8, we would have deduced in the same
fashion that

αN

�
min

1¤j¤N
xj � EN



converges in law.

With the above notations, we can apply [Lam21][Theorem 3.4] to our context.

Theorem 4.4.1. Let v � �. There exists pEv
N qN , pαv

N qN sequences of real numbers with |Ev
N | Ñ �8,

αv
N ¡ 0 for large enough N , satisfying V 1pEv

N q � αv
Nv, such that:

a) Ne�V pEv
N q�2P log |Ev

N |�λP
V

αv
N

ÝÑ
NÑ8

1 (recall λV
P is defined through equation (4.1.5)),

b) logpαv
N q

N ÝÑ
NÑ8

0 and αv
N |Ev

N | ÝÑ
NÑ8

�8 ,

c) For all compact K � R,
pαv

N q�2 sup
xPK

��V 2pφN pxqq
�� ÝÑ

NÑ8
0 .

As a consequence, the random measure ΞN converges in distribution as N Ñ8 to a Poisson point process
with intensity θpxq � e�vx.

Proof. We prove it in the case v � �, the case where v � � being similar. We show that there exists a
sequence pE�

N qN going to �8 satisfying fpE�
N q � � logN , where we defined the function f by

fpxq � �V pxq � 2P log |x| � λV
P � log |V 1pxq| .

Recalling Assumption 4.1.1 i), |V 1| goes to infinity at infinity, thus α�N � V 1pE�
N q Ñ �8 (in the case

v � �1 we would have looked for a sequence pE�
N qN going to �8 and α�N � �V 1pE�

N q).
As a consequence of Assumptions 4.1.1,ii), one shows that log |V 1| is negligible with respect to V at

infinity. Therefore, because log |x|
V pxq ÝÑ

|x|Ñ8
0,

fpxq � �V pxq � o
xÑ�8pV pxqq . (4.4.1)
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Because fpxq ÝÑ
xÑ�8 �8 there exists pE�

N qN going to infinity such that for all N ¥ 1, fpE�
N q � � logN .

Setting x � E�
N in (4.4.1), we obtain that �V pE�

N q � fpE�
N q � � logN . Property c) follows from

Assumptions 4.1.1, point ii), along with the fact that α�1
N stays bounded.

It remains to show that logpα�N q
N

� log |V 1pE�
N q|

N
ÝÑ

NÑ8
0. By construction, we have

log |V 1pE�
N q|

N
�

log
�
Ne�V pE�

N
q�2P log N�λP

	
N

� �V pE
�
N q

N
� op1q .

Using that V pE�
N q � logN , we can conclude that log |V 1pE�

N q| � opNq which concludes the proof.

By the discussion preceding Theorem 4.4.1, we deduce
Corollary 4.4.2 (Edge of a configuration). Let E�

N , α�N :� |V 1pE�
N q| be the sequences of Theorem 4.4.1

associated with v � �1. Then, both random variables

α�N

�
max

1¤j¤N
xj � E�

N



and

α�N

�
min

1¤j¤N
xj � E�

N



converge to a Gumbel law, whose distribution function is given for t ¥ 0 by Gpr0, tsq � exppe�tq. Fur-
thermore, V pE�

N q � logN and α�N ÝÑ
NÑ8

�8.

Remark 4.4.3. Note that[Lam21][Theorem 3.4] applies for V of class C2 outside of a compact set,
allowing to take V pxq � |x|a for a ¡ 1. In this case, we find E�

N � �plogNq1{a. If V pxq � coshpxq, we
find E�

N � �E�
N � arg coshplogNq � log logN .

The next lemma will be convenient in the proof of Theorem 4.5.2 when dealing with error terms.
Lemma 4.4.4. With the notations of Corollary 4.4.2, we have

µP prE�
N , E

�
N scq � opN�1{2q .

Proof. Let 0   δ   1, to be specified later. We have» �8

E�
N

ρP dx �
» �8

E�
N

pρP qδpρP q1�δdx ¤
»
R
pρP qδdx sup

rE�
N

,�8r
pρP q1�δ .

By the first inequality of Lemma 4.2.2, the integral is finite. Also from the same inequality, we have for
some constant C 1 and x big enough ρP pxq ¤ C 1e�

3
4 V pxq. Because V is increasing in a neighborhood of

�8, we get for N large enough

sup
rE�

N
,�8r

pρP q1�δ ¤ C 11�δe�p1�δq 3
4 V pE�

N
q .

Taking δ ¡ 0 such that 1
2 � p1 � δq 3

4 �: �γ   0 and using that V pE�
N q � logN � oplogNq (established

in the proof of Theorem 4.4.1),
?
N

» �8

E�
N

ρP dx ¤ Ke�γ log N�p1�δq 3
4 oplog Nq ,

and the right-hand side goes to zero as N goes to infinity. We deal with the integral
³E�

N

�8 ρP dx in the
same way.

Remark 4.4.5. We could improve the proof to show that µP prE�
N , E

�
N scq �

1
N

but showing that it is

opN 1
2 q is sufficient for what we need and requires less carefulness.
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4.5 Laplace transform for smooth test functions, proof of The-
orem 4.1.3

Section 4.3 allows us to justify in Proposition 4.5.1 the heuristics we gave in equation (4.1.6) for ϕ having
compact support. We will then extend in Theorem 4.5.2 this result to a more general set of functions,
by an approximation by compactly supported functions, using Corollary 4.4.2.

Proposition 4.5.1. For ϕ P C1pR,Rq with compact support, we have for any real t, as N goes to infinity,

EV, 2P
N

N

�
et
?

NνN pΞϕq
�
Ñ exp

"
t2

2 qP pϕq
*
, (4.5.1)

where Ξϕ is given by equation (4.1.7), and qP pϕq is given by

qP pϕq :�
»
R

�
ϕ1pxq2 � V 2pxqϕpxq2



dµP pxq � P

¼
R2

�ϕpxq � ϕpyq
x� y

	2
dµP pxqdµP pyq . (4.5.2)

Proof. Let ϕ P C1
c pR,Rq, and let t P R. We perform in equation (4.1.4) the change of variables

xi � yi � t?
N
ϕpyiq, 1 ¤ i ¤ N , which is a diffeomorphism for N big enough. We thus have

Z
V, 2P

N

N �
» ¹

1¤i j¤N

����yi � yj � t?
N

�
ϕpyiq � ϕpyjq

�����2P {N
.e
�°N

i�1 V
�

yi� t?
N

ϕpyiq
	
.

N¹
i�1

�
1� t?

N
ϕ1pyiq



dN y,

(4.5.3)
and we develop separately the different terms of this integral. The first term can be written as:

¹
i j

|yi � yj |2P {N ¹
i j

����1� t?
N

ϕpyiq � ϕpyjq
yi � yj

����2P {N
,

The second product above, setting ∆ϕi,j :� ϕpyiq�ϕpyjq
yi�yj

and using Taylor-Lagrange theorem, equals

exp
�

2P
N

¸
i j

log
����1� t?

N

ϕpyiq � ϕpyjq
yi � yj

���� 
 � exp
�

2P
N

¸
i j

�
t?
N

∆ϕi,j � t2

2N p∆ϕi,jq2 �RN,1pi, jq




,

where we noticed that 1� t?
N

∆ϕi,j ¥ 1� t?
N
}ϕ1}8 ¡ 0 if N is big enough, and where

|RN,1pi, jq| ¤ |t|3
3N3{2 }ϕ1}3

8.

Again by Taylor-Lagrange theorem, the second term in (4.5.3) equals

exp
�
�

Ņ

i�1

�
V pyiq � t?

N
V 1pyiqϕpyiq � t2

2N V 2pyiqϕpyiq2 �RN,2piq




where RN,2piq � t3

6N3{2V
p3q

�
yi � tθi?

N
ϕpyiq

	
ϕpyiq3 for some θi P r0, 1s, thus for N large enough

|RN,2piq| ¤ |t|3
6N3{2 }ϕ}3

8 sup
dpx,supp ϕq¤1

|V p3qpxq|.

The last term reads
N¹

i�1

�
1� t?

N
ϕ1pyiq



� exp

� Ņ

i�1

�
t?
N
ϕ1pyiq � t2

2N ϕ1pyiq2 �RN,3piq




,
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with |RN,3piq| ¤ t3

3N3{2 }ϕ1}3
8. Dividing both sides of equation (4.5.3) by ZV, 2P

N

N we get

EV, 2P
N

N

�
exp

$&%t?N
�
P

¼
R2

ϕpxq � ϕpyq
x� y

dµ̂N pxqdµ̂N pyq �
»
R
pϕ1 � V 1ϕqdµ̂N


,.-� exp tKN pt, ϕqu

� exp

$&% t2

2

���P ¼
R2

�
ϕpxq � ϕpyq

x� y


2
dµ̂N pxqdµ̂N pyq �

»
R
pV 2ϕ2 � ϕ12qdµ̂N

�,.-
�
� 1,

with |KN pt, ϕq| ¤ cpt,ϕq?
N

where cpt, ϕq ¥ 0 is independent of N . This bound shows that taking the limit
N Ñ8 we can get rid of KN :

lim
NÑ8

EV, 2P
N

N

�
exp

$&%t?N
�
P

¼
R2

ϕpxq � ϕpyq
x� y

dµ̂N pxqdµ̂N pyq �
»
R
pϕ1 � V 1ϕqdµ̂N


,.-
� exp

$&% t2

2

���P ¼
R2

�
ϕpxq � ϕpyq

x� y


2
dµ̂N pxqdµ̂N pyq �

»
R
pV 2ϕ2 � ϕ12qdµ̂N

�,.-
�
� 1.

Using Fubini’s theorem (the function px, yq ÞÑ ϕpxq�ϕpyq
x�y being bounded continuous on R2), the first line

in the expectation value can be rewritten as et
?

NΛN with

ΛN :� 2P
¼
R2

ϕpxq � ϕpyq
x� y

dµP pxqdpµ̂N � µP qpyq �
»
R
pϕ1 � V 1ϕqdpµ̂N � µP q � PζN pϕq (4.5.4)

where we used equation (4.1.5) and ζN pϕq is given by (4.3.12). Let F : PpRq Ñ R be defined by

F pµq � �P
¼
R2

�
ϕpxq � ϕpyq

x� y


2
dµpxqdµpyq �

»
R
pV 2ϕ2 � ϕ12qdµ . (4.5.5)

It is continuous for the topology of weak convergence since all the functions in the integrals are bounded
continuous. So far we have established that

lim
NÑ8

EV, 2P
N

N

�
et
?

NΛN� t2
2 F pµ̂N q

�
� 1,

with ΛN given by (4.5.4). We now replace in the latter equation the term F pµ̂N q by its limiting expression,
F pµP q. Fix a metric that is compatible with the weak convergence of probability measures on R. For
example,

dLippµ, νq � sup
����» fdµ� »

fdν

���� , (4.5.6)

where the supremum runs over f : RÑ R bounded and Lipschitz with }f}8 ¤ 1 and Lipschitz constant
|f |Lip ¤ 1. By the large deviations principle for pµ̂N qN under the probability (4.1.3) established by [GZ19,
Theorem 1.1], for all δ ¡ 0 the event tdLippµ̂N , µP q ¡ δu has (for N big enough) probability smaller than
e�Ncδ where cδ ¡ 0. Hence,

lim
NÑ8

EV, 2P
N

N

�
et
?

NΛN� t2
2 F pµ̂N q

�
� lim

NÑ8
EV, 2P

N

N

�
1tdLippµ̂N ,µP q¤δuet

?
NΛN� t2

2 F pµ̂N q
�
.

By continuity of F there is some εpδq which goes to 0 as δ Ñ 0 such that, for dLippν, µP q ¤ δ, we have
|F pνq � F pµP q| ¤ εpδq. Taking the (decreasing) limit as δ goes to zero we deduce

lim
NÑ8

EV, 2P
N

N

�
et
?

NΛN� t2
2 F pµ̂N q

�
� lim

δÑ0
lim

NÑ8
EV, 2P

N

N

�
1tdLippµ̂N ,µP q¤δuet

?
NΛN

�
e

t2
2 F pµP q.
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But the same large deviations argument shows that

lim
δÑ0

lim
NÑ8

EV, 2P
N

N

�
1tdLippµ̂N ,µP q¤δuet

?
NΛN

�
� lim

NÑ8
EV, 2P

N

N

�
et
?

NΛN

�
.

Thus, we have shown that

lim
NÑ8

EV, 2P
N

N

�
e

t
?

N
�

2P
´

R2
ϕpxq�ϕpyq

x�y dµP pxqdpµ̂N�µP qpyq�
³
Rpϕ1�V 1ϕqdpµ̂N�µP q�P ζN pϕq

	�
� e�

t2
2 F pµP q , (4.5.7)

Which establishes that
?
NΛN � ?

N
�
νN pΞϕq�PζN pϕq

	
converges in law towards a centered Gaussian

random variable with announced variance. We finally get rid of the remaining term ζN pϕq, using Corollary
4.3.4: taking ε � 1{4 for example, we see in particular that

?
NζN pϕq converges in probability towards

zero. The conclusion follows from Slutsky’s lemma.

We now extend the result of Proposition 4.5.1 to a more general set of functions. With the notations
of Proposition 4.5.1, we have

Theorem 4.5.2. Let ϕ P H2pRq X C2pRq such that ϕ2 is bounded. Additionally, suppose that V p3qϕ2,
V 2ϕϕ1, V 2ϕ2 and V 1ϕ are bounded. Then, recalling (4.5.2) we have the convergence in distribution as N
goes to infinity ?

NνN pΞϕq Ñ Np0, qP pϕqq .
Proof. For N ¥ 1, let E�

N , E
�
N be given by Corollary 4.4.2. Let χN : R Ñ r0, 1s be C2 with compact

support such that

χN pxq � 1 for x P rE�
N � 1, E�

N � 1s and χN pxq � 0 for x P rE�
N � 2, E�

N � 2sc

and such that, denoting ϕN � ϕχN , supN }ϕpkqN }8 � }ϕpkqN }L2pRq   �8 for k � 0, 1, 2 (we assumed
ϕ P H2pRq, in particular ϕ and ϕ1 is bounded and such a χN exists). The point of cutting ϕ outside the
set rE�

N � 1, E�
N � 1s is that with high probability, the empirical measure µ̂N doesn’t see the difference

between ϕ and ϕN .
The support of ϕN is then contained in rE�

N � 2, E�
N � 2s, and we now argue that the proof of

Proposition 4.5.1 can be adapted so that
?
NνN pΞϕN q Ñ Np0, qP pϕqq . (4.5.8)

Similarly as in Proposition 4.5.1, we perform in ZV,P
N the change of variables xi � yi � t?

N
ϕN pyiq,

1 ¤ i ¤ N , which is the same as before, but with ϕ replaced by ϕN . First, with IN :� rE�
N � 2, E�

N � 2s,
the error term

KN pt, ϕN q ¤ 2 t3

3N1{2 }ϕ1N }3
8 � t3

6N1{2 }ϕN }8 sup
dpx,IN q¤1

|V p3qpxq|

of the proof of Proposition 4.5.1 is still going to zero, because of our choice of χN and Assumption 4.1.2.
As previously, we then have

lim
NÑ8

EV, 2P
N

N

�
et
?

NΛN pϕN q� t2
2 FN pµ̂N q

�
� 1 (4.5.9)

with

ΛN pϕN q :� 2P
¼
R2

ϕN pxq � ϕN pyq
x� y

dµP pxqdpµ̂N � µP qpyq �
»
R
pϕ1N � V 1ϕN qdpµ̂N � µP q � PζN pϕN q ,

where ζN is given by (4.3.12), and

FN pµ̂N q � �P
¼
R2

�
ϕN pxq � ϕN pyq

x� y


2
dµ̂N pxqdµ̂N pyq �

»
R
pV 2ϕ2

N � ϕ12N qdµ̂N .
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Taking again the distance dLip defined in (4.5.6), one can check that for µ, ν probability measures over
R,

|FN pµq � FN pνq| ¤ CNdLippµ, νq ,
where CN is a term depending on the norms }ϕ1N }8, }ϕ2N }8, }V 2ϕ2

N }8 and }pV 2ϕ2
N q1}8. The choice of

χN and the fact that ϕ is chosen so that V p3qϕ2 and V 2ϕϕ1 are bounded guarantee that }pV 2ϕ2
N q1}8 is

bounded in N . The other norms are easily bounded by hypothesis. Therefore CN can be seen to be
uniformly bounded in N , and we find some C ¥ 0 independent of N such that

|FN pµq � FN pνq| ¤ CdLippµ, νq .

As in proposition 4.5.1, we use the large deviation principle for pµ̂N q to deduce

lim
NÑ�8

EV, 2P
N

N

�
et
?

NΛN pϕN q� t2
2 FN pµ̂N q

�
� lim

NÑ�8
EV, 2P

N

N

�
et
?

NΛN pϕN q
�
e

t2
2 FN pµP q .

By dominated convergence, FN pµP q converges to F pµP q, the function F being given by (4.5.5). This
shows the convergence as N goes to infinity

lim
NÑ�8

EV, 2P
N

N

�
et
?

NΛN pϕN q
�
� e�

t2
2 F pµP q ,

and
?
N
�
νN pΞϕN q�PζN pϕN q

	
converges towards a centered Gaussian variable with variance �F pµP q �

qP pϕq. Because supN }ϕN }H2pRq is finite, we can apply again Corollary 4.3.4 to deduce the convergence
in law (4.5.8). We now have the ingredients to conclude, by showing that the characteristic function

EV, 2P
N

N

�
eit

?
NνN pΞϕq

�
� EV, 2P

N

N

�
eit

?
N
³

Ξϕdµ̂N

�
e�it

?
N
³

ΞϕdµP

converges to the characteristic of a Gaussian variable with appropriate variance. By Corollary 4.4.2, the
probability under PV, 2P

N

N of the event EN �
"
x1, . . . , xN P rE�

N � 1, E�
N � 1s

*
converges to 1. Along with

the convergence (4.5.8), we deduce

e�
t2
2 qP pϕq � lim

N
EV, 2P

N

N

�
eit

?
N
³

ΞϕN dµ̂N

�
e�it

?
N
³

ΞϕN dµP � lim
N

EV, 2P
N

N

�
1EN

eit
?

N
³

ΞϕN dµ̂N

�
e�it

?
N
³

ΞϕN dµP ,

Where we used ���EV, 2P
N

N

�
1Ec

N
eit

?
N
³

ΞϕN dµ̂N

�
e�it

?
N
³

ΞϕN dµP

��� ¤ PV, 2P
N

N pEc
N q ÝÝÝÝÝÑ

NÑ�8
0 .

Using that ϕN � ϕ on JN � rE�
N � 1, E�

N � 1s,»
ΞϕNdµP � 2P

¼
ϕN pxq � ϕN pyq

x� y
dµP pxqdµP pyq �

»
pϕ1N � V 1ϕN qdµP

� 2P
¼
J2

N

ϕpxq � ϕpyq
x� y

dµP pxqdµP pyq � 2P
¼

pJ2
N
qc

ϕN pxq � ϕN pyq
x� y

dµP pxqdµP pyq

�
»

JN

pϕ1 � V 1ϕqdµP �
»

Jc
N

pϕχ1N � ϕ1χN � V 1ϕχN qdµP .

By boundedness of p}ϕ1N }8qN , the second term is bounded by

CP

¼
pJ2

N
qc

dµP dµP ¤ 2CPµP pJc
N q � opN�1{2q ,
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where we used the union bound and Lemma 4.4.4. By the same estimate and the fact that χN can be
chosen so that p}χ1N }8qN is bounded, and because ϕ1, V 1ϕ are bounded, the last term is also opN�1{2q.
By the previous arguments, we also conclude that

2P
¼

pJ2
N
qc

ϕpxq � ϕpyq
x� y

dµP pxqdµP pyq �
»

Jc
N

pϕ1 � V 1ϕqdµP � opN�1{2q ,

thus »
ΞϕNdµP �

»
ΞϕdµP � opN�1{2q ,

and so far we have
e�

t2
2 qP pϕq � lim

N
EV, 2P

N

N

�
1EN

eit
?

N
³

ΞϕN dµ̂N

�
e�it

?
N
³

ΞϕdµP .

Finally, on EN , using ϕN � ϕ and that µ̂N is supported in JN ,»
ΞϕNdµ̂N � 2P

¼
J2

N

ϕpxq � ϕpyq
x� y

dµP pxqdµ̂N pyq � 2P
¼

pJ2
N
qc

ϕN pxq � ϕN pyq
x� y

dµP pxqdµ̂N pyq �
»

JN

pϕ1 � V 1ϕqdµ̂N

� 2P
¼

ϕpxq � ϕpyq
x� y

dµP pxqdµ̂N pyq �
»
pϕ1 � V 1ϕqdµ̂N � opN�1{2q ,

Where in the second line we used, using Lemma 4.4.4 again, that¼
pJ2

N
qc

ϕN pxq � ϕN pyq
x� y

dµP pxqdµ̂N pyq �
¼

JN�Jc
N

ϕN pxq � ϕN pyq
x� y

dµP pxqdµ̂N pyq � opN�1{2q ,

and the same estimate holds for ϕN replaced by ϕ. Therefore,

e�
t2
2 qP pϕq � lim

N
EV, 2P

N

N

�
1EN

eit
?

N
³

Ξϕdµ̂N

�
e�it

?
N
³

ΞϕdµP .

This establishes that
lim
N

EV, 2P
N

N

�
eit

?
N
³

Ξϕdν̂N

�
� e�

t2
2 qP pϕq ,

which concludes the proof.

Remark 4.5.3. Taking ϕ such that ϕ1 satisfies the conditions of Theorem 4.5.2, we then have

EV, 2P
N

N

�
et
?

NνN pLϕq
�
ÝÑ

NÑ8
exp

"
t2

2 qP pϕ1q
*
, (4.5.10)

where the operator L is defined as Lϕ :� Ξϕ1, ie

Lϕ � 2P
»
R

ϕ1pxq � ϕ1pyq
x� y

dµP pyq � ϕ2pxq � V 1pxqϕ1pxq . (4.5.11)

Note that qV
P pϕ1q �

�
σV

P

�2pLϕq where σV
P is defined in (4.1.12). By Theorem 4.7.1, the class of functions

in L�1pT q where

T :�
"
f P C1pRq, Dε ¡ 0, fpxq � O

|x|Ñ8

�
x�

1
2�ε

	
, f 1pxq � O

|x|Ñ8

�
x�

1
2�ε

	
,

»
R
fρP � 0

*
satisfies (4.5.10). This proves Theorem 4.1.3.
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We now prove a more compact formula for the variance such as the one appearing in [HL21].

Lemma 4.5.4. The following equality holds for all ϕ P T

xL�1ϕ, ϕyH �
�
σV

P

�2pϕq :�
»
R

��
L�1ϕ

�2pxq2 � V 2pxq�L�1ϕ
�1pxq2�dµP pxq

� P

¼
R2

��
L�1ϕ

�1pxq � �
L�1ϕ

�1pyq
x� y

�2

dµP pxqdµP pyq (4.5.12)

Proof. It suffices to show that
�
σV

P

�2pLϕq � xLϕ, ϕyH for all ϕ, such that ϕ1 P H2pRq.

xLϕ, ϕyH � �
»
R

� pϕ1ρP q1
ρP

	1
ϕ1ρP � 2P

»
R

Hrϕ1ρP s1ϕ1ρP

Proceeding to integration by parts in the first integral leads to

�
»
R

� pϕ1ρP q1
ρP

	1
ϕ1ρP �

»
R

� pϕ1ρP q1
ρP

	2
ρP �

»
R
ϕ22ρP � 2ϕ1ϕ2ρ1P � ϕ12

�ρ1P
ρP

�2
ρP

�
»
R
ϕ22ρP � ϕ12

ρ2P
ρP

ρP � ϕ12
�ρ1P
ρP

�2
ρP

Since

ρ2P
ρP

�
�
� V 2 � 2PHrρP s1 � V 12 � 4P 2HrρP s2 � 4PV 1HrρP s

	
� �V 2 � 2PHrρP s1 �

�ρ1P
ρP

	2

we obtain
xLϕ, ϕyH �

»
R
ϕ22ρP � V 2ϕ2ρP � 2P

»
R

Hrϕ1ρP s1ϕ1ρP � 2P
»
R

HrρP s1ϕ12ρP

To conclude, we just have to show that¼
R2

�ϕ1pxq � ϕ1pyq
x� y

	2
dµP pxqdµP pyq � 2

»
R

HrρP s1ϕ12ρP �Hrϕ1ρP s1ϕ1ρP

First »
R

Hrϕ1ρP s1ϕ1ρP �
»
R

»
R

ϕ1pxqϕ1pyq
py � xq2 dµP pxqdµP pyq

Secondly »
R

HrρP s1ϕ12ρP � 1
2

¼
R2

ϕ12pxq � ϕ12pyq
py � xq2 dµP pxqdµP pyq

which allows to conclude that
�
σV

P

�2pLϕq � xLϕ, ϕyH.

4.6 Inversion of L
This section is dedicated to the definition of L given by (4.1.8) and its domain and then we focus on its
inversion. We rely heavily on results of Appendix 4.8: the diagonalization of the operator A by the use
of the theory of Schrödinger operators.
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Let P ¡ 0 be fixed. We introduce the operators A and W, acting on sufficiently smooth functions of
L2pρP q, by

Aϕ � �

�
ϕ1ρP

	1
ρP

� �
�
ϕ2 � ρ1P

ρP
ϕ1



and Wϕ � �H
�
ϕ1ρP

�
. (4.6.1)

One can show that the operator A corresponds to the operator verifying:

xϕ, ψyH �
»
R
ϕ1ψ1dµP �

»
R
ϕAψdµP � xϕ,AψyL2pµP q

We first show the following decomposition of L.

Lemma 4.6.1. For ϕ twice differentiable we have the following pointwise identity

�Lϕ � Aϕ� 2PWϕ . (4.6.2)

Proof. We write for x P R

2P
»
R

ϕ1pxq � ϕ1pyq
x� y

ρP pyqdy � �2Pϕ1pxqHrρP spxq � 2PHrϕ1ρP spxq . (4.6.3)

Then,
Lϕ � ϕ2 � V 1ϕ1 � 2Pϕ1HrρP s � 2PH

�
ϕ1ρP

�
.

By (4.2.5) we have �V 1 � 2PHrρP s � ρ1P
ρP

, which concludes the proof.

In order to state the next theorem, whose proof we detail in the Appendix, we introduce the following
Sobolev-type spaces. Let

H1
V 1pRq :�

!
u P H1pRq, uV 1 P L2pRq

)
.

We now define
DpSq �

!
u P H1

V 1pRq,�u2 � pwP � αqu P L2pRq
)

and
DL2pRqpAq :� ρ

�1{2
P DpSq

and its homogeneous counterpart

DL2pRq,0pAq :�
!
u P DL2pRqpAq,

»
R
uρP dx � 0

)
.

Finally, we let L2
0pρP q be the subset of L2pρP q of zero mean functions with respect to ρP .

We detail the proof of the following theorem in Appendix 4.8 which is based on Schrödinger operators
theory.

Theorem 4.6.2 (Diagonalization of A in L2
0pρP q). There exists a sequence 0   λ1   λ2   . . . going to

infinity, and a complete orthonormal set pϕnqn¥1 of L2
0pρP q of associated eigenfunctions for A, meaning

that

• Spantϕn, n ¥ 1u is dense in L2
0pρP q,

• For all i, j, xϕi, ϕjyL2pρP q � δi,j,

• For all n ¥ 1, Aϕn � λnϕn.

Furthermore, each ϕn is in DL2pRq,0pAq, A : DL2pRq,0pAq Ñ L2
0pρP q is bijective, and we have the writing,

for u P L2
0pρP q

A�1u �
¸

n¥1
λ�1

n xu, ϕnyL2pρP q ϕn .
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We see the operators A and W as unbounded operators on the space

H �
!
u P H1pρP q |

»
R
uρP dx � 0

)
endowed with the inner product xu, vyH � xu1, v1yL2pρP q. This defines an inner product on H and makes
it a complete space: it can be seen that H1pρP q is the completion of C8c pRq with respect to the inner
product xu, vyL2pρP q�xu1, v1yL2pρP q. The space H is then the kernel of the bounded (with respect to } � }H)
linear form, xr1, �yL2pρP q on H1pρP q, and both inner products are equivalent on H because of the Poincaré
inequality, Proposition 4.2.6. The use of H is motivated by the fact that both A and W are self-adjoint
positive on this space as we show in Lemma 4.6.4.

In the next proposition, we deduce from Theorem 4.6.2 the diagonalization of A in H.

Proposition 4.6.3 (Diagonalization of A in H). With the same eigenvalues 0   λ1   λ2   . . . as in
Theorem 4.6.2, there exists a complete orthonormal set pψnqn¥1 of H formed by eigenfunctions of A.

Proof. With pϕnqn¥1 of Theorem 4.6.2,

δi,j � xϕi, ϕjyL2pρP q �
1
λj
xϕi,AϕjyL2pρP q

� 1
λj
xϕ1i, ϕ1jyL2pρP q

� 1
λj
xϕi, ϕjyH.

With ψn � 1?
λn
ϕn, pψnqn¥1 is then orthonormal with respect to the inner product of H. To show that

Spantψn, n ¥ 1u is dense in H, let u P H be such that for all j ¥ 1, xu, ϕjyH � 0. In the last series of
equalities, replace ϕi by u: we see that u is orthogonal to each ϕj in L2pρP q, thus u is a constant as
shown in the proof of Lemma 4.8.10, and because u P H it has zero mean against ρP . This shows that
u � 0.

We set for what follows DpAq :�  
u P DL2pRq,0pAq |Au P H

(
and DpWq :� tu P H |Wu P Hu.

Lemma 4.6.4. The following properties hold:

• The operator W : DpWq Ñ H is positive: for all ϕ P DpWq,

xWϕ, ϕyH � 1
2}ϕ

1ρP }2
1{2 ¥ 0 ,

with equality only for ϕ � 0, where the 1{2-norm of u is given by

}u}2
1{2 �

»
R
|x|. |Fruspxq|2 dx .

• Both A and W are self-adjoint for the inner product of H.

Proof. To prove the first point, let ϕ P DpWq. Then,

2π xWϕ, ϕyH � �2π
@
Hrϕ1ρP s1, ϕ1ρP

D
L2pdxq � � @

ixF
�
Hrϕ1ρP s

�
,Frϕ1ρP s

D
L2pdxq

� π
@ ��x ��Frϕ1ρP s,Frϕ1ρP s

D
L2pdxq � π}ϕ1ρP }2

1{2 ¥ 0 ,

and because ϕ is in H, this last quantity is zero if and only if ϕ vanishes.
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For the second point, let u, v P DpWq. Using Plancherel’s isometry and i) of Lemma 4.2.1,

xWu, vyH �
@pWuq1, v1ρP

D
L2pdxq �

1
2
@ ��x ��Fru1ρP s,Frv1ρP s

D
L2pdxq ,

and this last expression is symmetric in pu, vq. The proof of the self-adjointness of A follows from
integration by parts.

Definition 4.6.5 (Quadratic form associated to �L). We define for all u, v P HX C8c pRq the quadratic
form associated to �L by

q�Lpu, vq � xAu,AvyL2pρP q � 2P xFru1ρP s,Frv1ρP syL2p|x|dxq

Note that for all u, v P HX C8c pRq, q�Lpu, vq � x�Lu, vyH and that whenever u P DpAq XDpWq,

q�Lpu, uq � xAu, uyH � 2P xWu, uyH ¥ λ1pAq}u}2
H (4.6.4)

by Proposition 4.6.3 and Lemma 4.6.4. After extending the q�L to its form domain QpLq which is
equal to

!
u P H,Au P L2pρP q, Fru1ρP s P L2p|x|dxq

)
� DL2pRq,0pAq. The equality comes from the

fact that A�1
�
L2

0pρP q
	
� DL2pRq,0pAq, that DL2pRq,0pAq � H and that Fru1ρP s P L2px2dxq whenever

u P DL2pRq,0pAq, indeed u1ρP P H1pRq because pu1ρP q1 � �ρP Au P L2pRq. We now define DpLq the
domain of definition of �L by:

DpLq :�
!
u P QpLq, v ÞÑ q�Lpu, vq can be extended to a continuous linear form on H

)
Proposition 4.6.6. DpLq � DpAq XDpWq.
Proof. Let u P DpLq, by Riesz’s theorem there exists fu P H, such that q�Lpu, vq � xfu, vyH for all v P H,
we set �Lu :� fu, it is called the Friedrichs extension of �L. Then for all v P HX C8c pRq, by integration
by part we get:

x�Lu, vyH � q�Lpu, vq � xu,AvyH � 2P xu,WvyH ,

hence we deduce the distributional identity �Lu � Au � 2PWu. Since u P DL2pRq,0pAq, Wu P H1pρP q
implying that Au P H and then that Wu P H. The converse is trivially true.

We are now ready to state the main theorem of this section, that is the inversion of L on DpLq.
Theorem 4.6.7 (Inversion of L). �L : DpLq ÝÑ H is bijective. Furthermore, p�Lq�1 is continuous
from pH, }.}Hq to pDpLq, q�Lq.
Proof. Let f P H, since xf, .yH is a linear form on QpLq � DL2pRq,0pAq which is, by (4.6.4), continuous
with respect to q�L, one can applies Riesz’s theorem so there exists a unique uf P DL2pRq,0pAq, such that
for all v P H, xf, vyH � q�Lpuf , vq. Since, uf is clearly in DpLq by definition of the Friedrichs extension
of �L, we have �Lu � f .

Remark 4.6.8. We can diagonalize L by the same argument we used in Appendix 4.8 to diagonalize A
in L2

0pρP q.
We now state a result that could allow one to extract more regularity for L�1 by the help of an

explicit form that uses Fredholm determinant theory for Hilbert-Schmidt operators, the reader can refer
to [GGK12].

Definition 4.6.9 (Fredholm determinant). Let U be a self-adjoint Hilbert-Schmidt operator, we denote
the Fredholm determinant by detpI � Uq.
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Theorem 4.6.10 (Determinant formula for L�1). For all u P H, such that x ÞÑ 1
ρP pxq

» �8

x

uptqρP ptqdt
is integrable at �8, we have:

L�1u � A�1u� ρ
�1{2
P R

�
ρ

1{2
P A�1u

�
(4.6.5)

where R is the kernel operator defined for all v P L2pRq by:

Rrvspxq �
»
R
Rpx, yqvpyqdy

where
Rpx, yq � 1

detpI �Kq
¸

n¥0

1
n!

»
Rn

det
n�1

�
Kpx, yq Kpx, λbq
Kpλa, yq Kpλa, λbq

�
a,b�1...n

dλ1 . . . dλn

where K is the kernel operator defined for all w P L2pρP q by:

Krwspxq �
»
R
Kpx, yqwpyqdy (4.6.6)

with
Kpx, yq � �2PρP pxqρP pyq log

���1� y

x

���. (4.6.7)

Proof. Let f P H, there exists a unique u P DpAq such that Au � f . Since pu1ρP q1 � ρP Au P L2pRq,
hence u1ρP P H1pRq so u1pxqρP pxq ÝÑ

|x|Ñ�8
0. By definition, �pu

1ρP q1
ρP

� f hence

pA�1fq1pxqρP pxq � u1pxqρP pxq �
» �8

x

fptqρP ptqdt. (4.6.8)

Using the fact that
³
R upxqρP pxqdx � 0, integrating again we get:

upxq � �
» �8

x

ds

ρP psq
» �8

s

fptqρP ptqdt� C

where C �
»
R
ρP pxqdx

» �8

x

ds

ρP psq
» �8

s

fptqρP ptqdt. Now let g P H, there exists a unique v P DpLq, such

that �Lv � Av � 2PWv � g and then v � 2PWA�1v � A�1g. using (4.6.8), we get:

WA�1vpxq �
 
R

ds

s� x

» �8

s

dtvptqρP ptq

By Sokhotski-Plejmel formula, we have:
 
R

ds

s� x

» �8

s

dtvptqρP ptq � lim
MÑ�8

lim
εÑ0

» M

�M

ds

2

! 1
x� s� iε �

1
x� s� iε

) » �8

s

dtvptqρP ptq

We then proceed to an integration by part:
 
R

ds

s� x

» �8

s

dtvptqρP ptq � lim
MÑ�8

lim
εÑ0

�
� log

�px� sq2 � ε2�
2

» �8

s

dtvptqρP ptq
�M

�M

�
»
R
ds log |x� s|vpsqρP psq

To conclude that WA�1vpxq � � ³
R ds log |x� s|vpsqρP psq, we just need to show that

logpxq
» �8

x

dtvptqρP ptq ÝÑ
|x|Ñ8

0
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which can be seen by Cauchy-Schwarz inequality:��� logpxq
» �8

x

dtvptqρP ptq
��� ¤ | logpxq|}v}L2pρP q.ρP pxq1{4

� »
R
ρP ptq1{2dt

	1{2
.

In this inequality, we used that ρP is decreasing in a neighborhood of �8, hence

log |x|
» �8

s

dtvptqρP ptq ÝÑ
xÑ�8 0

the exact same argument allows us to conclude when x goes to �8. Using the fact that
³
R vptqρP ptqdt � 0,

we obtain the following equality:

v � 2P
»
R
ds log |x� s|vpsqρP psq � A�1g :� h.

Now setting ṽptq � ρ
1{2
P ptqvptq and h̃ � ρ

1{2
P ptqhptq, we obtain ṽ � Krṽs � h̃ where K is defined in

(4.6.6). Since its kernel (defined in (4.6.7)) belongs to L2pR2q, K is Hilbert-Schmidt. Hence by Fredholm
determinant theory:

ṽ � h̃�Rrh̃s
or L�1g � A�1g � ρ

�1{2
P R

�
ρ

1{2
P A�1g

�
as expected.

4.7 Regularity of the inverse of L and completion of the proof
of Theorem 4.1.3

Since we have proven the central limit theorem for functions of the type Lϕ with ϕ regular enough and
satisfying vanishing asymptotic conditions at infinity, we exhibit a class of functions f for which L�1f is
regular enough to satisfy conditions of Theorem 4.5.2. We define T the subset of H defined by

T :�
"
f P C1pRq, Dε ¡ 0, fpxq � O

|x|Ñ8

�
x�

1
2�ε

	
, f 1pxq � O

|x|Ñ8

�
x�

1
2�ε

	
,

»
R
fρP � 0

*
Theorem 4.7.1. For all f P T , there exists a unique u P C3pRq such that u1 P H2pRq with up3q bounded
wich verifies:

• u1pxq � O
|x|Ñ8

�
1

x
1
2�εV 1pxq




• u2pxq � O
|x|Ñ8

�
1

x
1
2�εV 1pxq




• up3qpxq � O
|x|Ñ8

�
1

x
1
2�ε



such that f � Lu.

Proof. Let f P T � H, then since �L is bijective from DpLq Ñ H, there exists a unique u P DpLq such
that �Lu � f ie:

�u2 � ρ1P
ρP

u1 � 2PHru1ρP s � f (4.7.1)

Hence we have
�pu1ρP q1 � ρP

�
f � 2PHru1ρP s

	
. (4.7.2)
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Since u P DpLq � tu P DL2pRq,0pAq,Au P Hu, the functions u1ρP and its distributional derivatives

pu1ρP q1 � �ρP Au and pu1ρP q2 � �ρ
1
P

ρP
ρ

1{2
P .

�
ρ

1{2
P Au

	
�ρP

�
Au

	1
are in L2pRq. In particular u1ρP goes to

zero at infinity, and Hru1ρP s P H2pRq � C1pRq. So we can integrate (4.7.2) on rx,�8r , since by Lemma

4.2.3, the right-hand side behaves like a O
|x|Ñ8

�
ρP pxq
|x| 1

2�ε



, to get the following expression

u1pxqρP pxq �
» �8

x

ρP ptq
ρ1P ptq

pf � 2PHru1ρP sq.ρ1P ptqdt (4.7.3)

From this expression, we can see that u1 P C2pRq so we just have to check the integrability condition at
infinity and the fact that up3q is bounded. After proceeding to an integration by parts, which is permitted
by the previous argument, we obtain:

u1pxq � �ρP pxq
ρ1P pxq

�
fpxq � 2PHru1ρP spxq

	
� 1
ρP pxq

» �8

x

�
ρP ptq
ρ1P ptq

pf � 2PHru1ρP sq
�1
ρP ptqdt (4.7.4)

and we define R1pxq :� 1
ρP pxq

» �8

x

�
ρP ptq
ρ1P ptq

pf � 2PHru1ρP sq
�1
ρP ptqdt, we will need to show that R1 is a

remainder of order O
xÑ�8

�
1

x
1
2�εV 1pxq2



at infinity. In this case, we will have u1pxq � O

xÑ�8

�
1

x
1
2�εV 1pxq



which will be useful for the following. If we reinject (4.7.4) in (4.7.1), we find:

u2 � �pf � 2PHru1ρP sq � ρ1P
ρP

�
� ρP

ρ1P

�
f � 2PHru1ρP s

	
�R1

	
� ρ1P
ρP

R1 (4.7.5)

Hence

u2pxq � ρ1P
ρ2

P

pxq
» �8

x

ρP ptqdt
# �ρP

ρ1P

	1
ptqloooomoooon

� O
tÑ�8

�
V 2ptq
V 1ptq2

	
�
f � 2PHru1ρP s

�ptqlooooooooooomooooooooooon
� O

tÑ�8

�
t�

1
2�ε

	 � ρP

ρ1P
ptqloomoon

� O
tÑ�8

�
1

V 1ptq

	
�
f 1 � 2PHrρP Aus�ptqlooooooooooooomooooooooooooon

� O
tÑ�8

�
t�

1
2�ε

	
+
.

The fact that HrρP Ausptq � O
tÑ�8pt

�2q comes again from lemma 4.2.3. Finally we have that,

up3qpxq �
�ρ1P
ρ2

P

	1
pxqρP pxqR1pxq �

�ρ1P
ρ2

P

	
pxq

�
ρP

ρ1P
pf � 2PHru1ρP sq

�1
pxqρP pxq

�
� ρ2P
ρP

� 2ρ
12
P

ρ2
P

	
pxqloooooooomoooooooon

� O
xÑ�8

�
V 1pxq2

	
R1pxq �

�ρ1P
ρP

	
pxq

�
ρP

ρ1P
pf � 2PHru1ρP sq

�1
pxqloooooooooooooooooooooooomoooooooooooooooooooooooon

� O
xÑ�8

� V 2pxq
x

1
2�εV 1pxq�x�

1
2�ε

	

The second term is O
xÑ�8

�
x�

1
2�ε

	
by the assumption that V 2

V 1 pxq � O
|x|Ñ8

p1q. Hence, we just have to

check that R1pxq � O
xÑ�8

� 1
x

1
2�εV 1pxq2

	
to establish that u1, u2, up3q are in L2pRq. By a comparison

argument, we control R1 by controlling

I1pxq :�
» �8

x

ρP ptq
t

1
2�εV 1ptqdt
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By integration by parts:

I1pxq :� � ρP pxq
x

1
2�εV 1pxq

ρP

ρ1P
pxqloooooooooomoooooooooon

� O
xÑ�8

� ρP pxq
x

1
2�εV 1pxq2

	
�
» �8

x

ρP ptq
� 1
t

1
2�εV 1

ρP

ρ1P

	1
ptqdt

� O
xÑ�8

� ρP pxq
x

1
2�εV 1pxq2

	
�
» �8

x

ρP ptqdt
#

� 1
2 � ε

t
3
2�εV 1ptq

ρP

ρ1P
ptq � V 2ptq

t
1
2�εV 1ptq2

ρP

ρ1P
� 1
t

1
2�εV 1ptq

�ρP

ρ1P

	1
ptq

+
(4.7.6)

By the same argument as before, the last integral is of the form
» �8

x

O
tÑ�8

� ρP ptq
t

1
2�εV 1ptq2

	
dt so if

I2pxq :�
» �8

x

ρP ptq
t

1
2�εV 1ptq2 dt � O

xÑ�8

� ρP pxq
x

1
2�εV 1pxq2

	
then so is I1. By integration by parts, we obtain:

I2pxq � ρP pxq 1
x

1
2�εV 1pxq2

ρP

ρ1P
pxq�

» �8

x

ρP ptqdt
#�ρP

ρ1P

	1
ptq 1
t

1
2�εV 1ptq2�

ρP

ρ1P
ptq

� 1
t

3
2�εV 1ptq2�

2V 2ptq
t

1
2�εV 1ptq3

	+

� O
xÑ�8

� ρP pxq
x

1
2�εV 1pxq2

	
�
» �8

x

O
tÑ�8

� ρP ptq
t

1
2�εV 1ptq3

	
dt

The last integral is a O
xÑ�8

� ρP pxq
x

1
2�εV 1pxq2

	
because, again, by integration by part:

» �8

x

ρP ptq
t

1
2�εV 1ptq3 dt � ρP pxq 1

x
1
2�εV 1pxq3

ρP

ρ1P
pxq �

» �8

x

O
tÑ�8

� ρP ptq
t

1
2�εV 1ptq4

	
and finally » �8

x

ρP ptq
t

1
2�εV 1ptq4 dt ¤

ρP pxq
x

1
2�εV 1pxq2

» �8

x

dt

V 1ptq2 � O
xÑ�8

� ρP pxq
x

1
2�εV 1pxq2

	
In the final step, we used the fact that x ÞÑ ρP pxq

x
1
2�εV 1pxq is decreasing in a neighborhood of �8 (which

can be checked by differentiating) and that x ÞÑ 1
V 1pxq2 is integrable at 8 by assumption iv). Hence

R1pxq � O
xÑ�8

� 1
x

1
2�εV 1pxq2

	
(the exact same result can be shown at �8), which leads to the fact

u1pxq � O
|x|Ñ�8

� 1
x

1
2�εV 1pxq

	
, u2pxq � O

|x|Ñ�8

� 1
x

1
2�εV 1pxq

	
and up3qpxq � O

|x|Ñ�8

� 1
x

1
2�ε

	
(4.7.7)

which establishes that these functions are in L2 in a neighborhood of 8. Since we already showed that
u P C3pRq � H3

locpRq, it establishes that u P H3pRq X C3pRq with up3q bounded. To complete the proof
we just have to show that pu1q2V p3q, u1u2V 2, pu1q2V 2 and u1V 1 are bounded which is easily checked by
(4.7.7) and Assumption 4.1.1 iv).

Remark 4.7.2. We choose here the functions that vanishes at infinity at worst like |x|�1{2�ε, but func-
tions like x ÞÑ |x|�1{2 log�1{2�ε |x| or x ÞÑ |x|�1{2 log�1{2 |x| log�1{2�ε log |x| also work, the proof being
the same. The only hypotheses that we use is that f P H1pRq X C1pRq, that f 1 � O

|x|Ñ�8
pfpxqq and that

f is decreasing (resp. increasing) in a neighborhood of + (resp.-) 8.
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4.8 Appendix: proof of Theorem 4.6.2
In order to analyze A, we let, for u P L2pRq,

Su :� ρ
1{2
P Aρ�1{2

P u .

Note that u P �
L2pRq, }.}L2pdxq

� ÞÑ ρ
�1{2
P u P �

L2pρP q, }.}L2pρP q
�

is an isometry. It turns out that it will
be easier to study first the operator S in order to get the spectral properties of A.

Proposition 4.8.1. The operator S is a Schrödinger operator: it admits the following expression for all
u P C2

c pRq: Su � �u2 � wPu with

wP � 1
2

�
1
2V

12 � V 2 � 2PV 1HrρP s � 2PHrρ1P s � 2P 2HrρP s2


� 1

2

�
plog ρP q2 � 1

2 plog ρP q12
�
.

Furthermore, wP is continuous and we have wP pxq �8
V 1pxq2

4 ÝÑ
|x|Ñ8

�8.

Proof. We compute directly�
ρP

�
ρ
�1{2
P u

�1	1
ρP

� �
ρ
�1{2
P u

�2 � ρ1P
ρP

�
ρ
�1{2
P u

�1
� �

ρ
�1{2
P u1 � 1

2ρ
�3{2
P ρ1Pu

�1 � ρ1P ρ
�3{2
P u1 � 1

2ρ
�5{2
P

�
ρ1P

�2
u

� ρ
�1{2
P u2 � 1

4ρ
�5{2
P

�
ρ1P

�2
u� 1

2ρ
�3{2
P ρ2Pu

� ρ
�1{2
P

�
u2 � 1

4ρ
�2
P

�
ρ1P

�2
u� 1

2ρ
�1
P ρ2Pu

�
� ρ

�1{2
P

�
u2 � 1

2

��ρ2P
ρP

�� 1
2
�ρ1P
ρP

�2
�
u

�

� ρ
�1{2
P

�
u2 � 1

2

�
plog ρP q2 � 1

2 plog ρP q12
�
u

�
� ρ

�1{2
P

�
u2 � wPu

�
.

Now, using Lemma 4.2.2, we have

wP � 1
2

�
1
2V

12 � V 2 � 2PV 1HrρP s � 2PHrρ1P s � 2P 2HrρP s2


.

Notice that Hrρ1P s and HrρP s are bounded since they belong to H1pRq, as we showed in Lemma 4.2.2
that ρP is H2pRq. Along with Assumption 4.1.1 iii) and Lemma 4.2.3, we deduce wP pxq �8

1
4V

12pxq.

Remark 4.8.2. Note that the function wP need not be positive on R. In fact, neglecting the terms
involving the Hilbert transforms of ρP and ρ1P , wP would only be positive outside of a compact set.
However, using the positivity of A, which will be shown further in the article, we can show that the
operator �u2 � wPu is itself positive on L2pRq. It can also be checked that, by integration by parts, S is
self-adjoint on C8c pRq with the inner product of L2pRq.

We now introduce an extension of S by defining its associated bilinear form.

Definition 4.8.3 (Quadratic form associated to S).
Let α ¥ 0 such that wP � α ¥ 1. We define the quadratic form associated to S � αI, defined for all
u P C8c pRq by

qαpu, uq :�
»
R
u12dx�

»
R
u2pwP � αqdx
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This quadratic form can be extended to a larger domain denoted by QpS�αIq, called the form domain
of the operator S � αI. By the theory of Schrödinger operators, it is well-known (see [Dav96][Theorem
8.2.1]) that such a domain is given by

QpS � αIq �
!
u P H1pRq, upwP � αq1{2 P L2pRq

)
�  

u P H1pRq, uV 1 P L2pRq( �: H1
V 1pRq .

The space H1
V 1pRq can be seen to be the completion of C8c pRq under the norm qα. Now that the quadratic

form associated to S �αI has been extended to its form domain, it is possible to go back to the operator
and extend it by its Friedrichs extension.

Theorem 4.8.4 (Friedrichs extension of S � αI).
There exists an extension pS � αIqF of the operator S � αI, called the Friedrichs extension of S � αI

defined on D
�
pS � αIqF

	
�

!
u P H1

V 1pRq,�u2 � pwP � αqu P L2pRq
)

.

Proof. We denote

D
�
pS � αIqF

	
:�

!
v P H1

V 1pRq, u P H1
V 1pRq ÞÝÑ qαpu, vq can be extended to a continuous linear form on L2pRq

)
If v P D

�
pS�αIqF

	
, by Riesz’s theorem there exists a unique fv P L2pRq such that qαpu, vq � xu, fvyL2pdxq

holds for all u P L2pRq and we can set pS�αIqF v :� fv. Note that it is indeed a way of extending S�αI
since for all u, v P C8c pRq, qαpu, vq � xu, pS � αIqvyL2pdxq.

We want to show that D
�
pS�αIqF

	
�

!
u P H1

V 1pRq,�u2�pwP�αqu P L2pRq
)

. Let f P D
�
pS�αIqF

	
and g :� pS � αIqF f P L2pRq. By definition of qα, for all u P C8c pRq:»

R
gudx �

»
R
f 1u1dx�

»
R
pwP � αqfudx � �

»
R
fu2dx�

»
R
pwP � αqfudx

Therefore in the sense of distributions, we get �f2 � pwP � αq � g which is a function in L2pRq, hence
f P

!
u P H1

V 1pRq,�u2 � pwP � αqu P L2pRq
)

. Conversely, if f P H1
V 1pRq such that �f2 � pwP � αqf P

L2pRq, it is possible to extend u ÞÑ qαpf, uq to a continuous linear form on L2pRq by

u ÞÑ
»
R
u
�
� f2 � fpwP � αq

	
dx

which concludes the fact that D
�
pS � αIqF

	
�

!
u P H1

V 1pRq,�u2 � pwP � αqu P L2pRq
)

.

In the following, we will deal only with pS � αIqF : D
�
pS � αIqF

	
ÝÑ L2pRq and denote it S � αI :

DpS � αIq.
Remark 4.8.5. Note that in the previous proof, the application of Riesz’s theorem doesn’t allow to say
that pS � αIq : v P

�
DpS � αIq, }.}qα

	
ÞÑ fv P

�
L2pRq, }.}L2pdxq

	
, where }.}qα

stands for the norm
associated to the bilinear positive definite form qα, is continuous. It can be seen by the fact that
v P

�
DpS � αIq, }.}qα

	
ÞÑ qp., vq P

�
L2pRq1, }.}L2pdxq1

	
, where L2pRq1 stands for the topological dual of

L2pRq equipped with its usual norm, is not continuous. Indeed the }.}qα
norm doesn’t control the second

derivative of v and hence doesn’t provide any module of continuity for the L2pRq-extended linear form
qp., vq.

Also note that, even though it would be convenient that D
�
pS�αIqF

	
� L2pR, pwP �αq2dxqXH2pRq

it is not true without more properties on wP . Such a result holds, for example when wP belongs to B2,
the class of reverse Hölder weights, see [ABA07][Theorem 1.1].
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Theorem 4.8.6 (Inversion of S � αI).
For every f P L2pRq, there exists a unique u P D

�
pS � αIqF

	
such that pS � αIqu � f . Furthermore,

the map pS � αIq�1 is continuous from
�
L2pRq, }.}L2pdxq

�
to

�
DpS � αIq, }.}qα

�
.

Proof. Let f P L2pRq, the map u ÞÝÑ xu, fyL2pdxq is continuous on
�
H1

V 1pRq, }.}qα

�
which is a Hilbert

space. Therefore by Riesz’s theorem, there exists a unique vf P H1
V 1pRq such that for all u P H1

V 1pRq,
xf, uyL2pdxq � qαpvf , uq from which we deduce that, in the sense of distributions, f � �v2f � pwP �
αqvf which implies that vf P DpS � αIq. Since vf P DpS � αIq, we have then for all u P L2pRq,
xf, uyL2pdxq � qαpvf , uq � xpS � αqvf , uyL2pdxq, hence pS � αIqvf � f . Finally, by Riesz’s theorem,
f P L2pRq ÞÑ vf P H1

V 1pRq is continuous hence so is pS � αIq�1.

Remark 4.8.7. It would be tempting to use Banach’s isomorphism theorem to say that since pS�αIq�1

is bijective and continuous, so must be S � αI. But since
�
DpS � αIq, }.}qα

�
is not a Banach space (it’s

not closed in H1
V 1pRq) we can’t apply it.

We are now able to diagonalize the resolvent of S.

Theorem 4.8.8 (Diagonalization of pS � αIq�1).
There exists a complete orthonormal set pψnqn¥0 of L2pRq (meaning that

Spantψn, n ¥ 0u}.}L2pdxq � L2pRq

and xψi, ψjyL2pdxq � δi,j), where each ψn P DpS � αIq and
�
µnpαq

�
n¥0 P r0, 1sN with µnpαq ÝÑ

NÑ8
0 such

that pS � αIq�1ψn � µnpαqψn for all n ¥ 0. We also have
����������S � αI

��1
���������

L
�

L2pdxq
� ¤ 1.

Proof. By Proposition 4.8.1, wP � α is continuous and goes to infinity at infinity. By Rellich criterion
[RS78][see Theorem XIII.65], the unit ball of DpS � αIq, ie the set!

u P DpS � αIq,
»
R
u12 �

»
R
pwP � αqu2 ¤ 1

)
considered as a subset of L2pRq is relatively compact in

�
L2pRq, }.}L2pdxq

�
. Hence, we can conclude

that the injection ι :
�
DpS � αIq, }.}qα

� ÝÑ �
L2pRq, }.}L2pdxq

�
is a compact operator. Since pS � αIq�1 :�

L2pRq, }.}L2pdxq
� ÝÑ �

DpS�αIq, }.}qα

�
is continuous then pS�αIq�1 is compact from

�
L2pRq, }.}L2pdxq

�
to itself. The fact that pS � αIq�1 is self-adjoint and positive allows us to apply the spectral theorem
to obtain

�
µnpαq

�
n¥0 positive eigenvalues verifying µnpαq ÝÑ

NÑ8
0 by compactness and a Hilbertian basis

pψnqn¥0 P L2pRqN, such that for all n ¥ 0, pS � αIq�1ψn � µnpαqψn. It is then easy to see that for
all n, ψn P DpS � αIq since they belong to the range of pS � αIq�1. Finally, since for all ϕ P L2pRq,
xpS � αIqϕ, ϕyL2pdxq ¥ }ϕ}2

L2pdxq, the spectrum of pS�αIq�1 is contained in r0, 1s. It allows us to conclude
that

������pS � αIq�1
������

L2pdxq ¤ 1.

Since for all u P H1
V 1pRq, pS � αqu P L2pRq iff Su P L2pRq, if we define DpSq in the same manner

that we did before, DpSq � DpS � αIq. It is now straightforward to see how to extend A � ρ
�1{2
P Sρ1{2

P

on DL2pRqpAq :� ρ
�1{2
P DpSq equipped with the norm }.}qα,ρP

to
�
L2pρP q, }.}L2pρP q

�
. The norm }.}qα,ρP

is defined for all u P DL2pRqpAq by

}u}qα,ρP
�

»
R
u12ρP dx�

»
R
u2pwP � αqρP dx .

It is easy to see that pA� αIq�1 is continuous.
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Remark 4.8.9. The kernel of A is generated by the function r1. Indeed if ϕ P DL2pRqpAq is in the kernel
of A then

0 � �
�
ϕ1ρP

�1
ρP

ñ Dc P R, ϕ1 � c

ρP

But since ϕ1 is in L2pρP q then c � 0 which implies that ϕ is constant. We must restrict A to the orthogonal
of KerA with respect to the inner product of L2pρP q, ie

DL2pRq,0pAq :�
"
u P DL2pRqpAq |

»
R
uρP � 0

*
.

Doing so makes A injective.

Before inverting A, we need the following lemma:

Lemma 4.8.10. The following equality holds

pA� αIq
�

DL2pRq,0pAq
	
� L2

0pρP q :�
!
u P L2pρP q,

»
R
uρP dx � 0

)
Proof. Let ϕ � rc for c P R, pA� αIqϕ � �αc then pA� αIqpR.r1q � Rr1. Hence since A� αI is self-adjoint
with respect to the inner product of L2pρP q and that Rr1 is stable by A � αI, then pA � αIq

�
pR.r1qK X

DL2pRqpAq
	
� pR.r1qK. For the converse, let u P pR.r1qK, since A�αI is bijective, there exists v P DL2pRqpAq

such that u � pA� αIqv. For all w P R.r1,

0 � xu,wyL2pρP q � xpA� αIqv, wyL2pρP q � xv, pA� αIqwyL2pρP q

Hence v P �pA� αIqpRr1q�K � Rr1K and so pR.r1qK � pA� αIq
�
pR.r1qK	.

It is easy to see that L2
0pρP q is a closed subset of L2pρP q as it is the kernel of the linear form

ϕ P L2pρP q ÞÑ
A
ϕ,r1E

L2pρP q
, making it a Hilbert space.

Proposition 4.8.11 (Diagonalization and invertibility of A). There exists a complete orthonormal set
of

�
L2

0pρP q, x., .yL2pρP q
	

, pϕnqnPN P DL2pRq,0pAqN such that Aϕn � λnϕn (meaning that

Spantϕn, n ¥ 0u}.}L2pρP q � L2
0pρP q

and xϕi, ϕjyL2pρP q � δi,j). Furthermore, A : DL2pRq,0pAq ÝÑ L2
0pρP q :�

!
u P L2pρP q,

³
R uρP dx � 0

)
is

bijective, A�1 is continuous when considered as an operator of L2
0pρP q.

Proof. Since pS � αIq�1 considered as an operator of L2pRq, is compact so is pA � αIq�1 on L2pρP q
and since A is self-adjoint, by the spectral theorem, pA� αIq�1 is diagonalizable. With the notations of
Theorem 4.8.8, pA�αIq�1 has eigenvalues

�
µnpαq

�
n¥0 and corresponding eigenfunctions ϕn � ρ

�1{2
P ψn P

DL2pRqpAq. Hence for all n P N, Aϕn � λnϕn with λn :� � 1
µnpαq � α

�
. Now,

λn}ϕn}L2pρP q �
»
R
pAϕnqϕnρP dx � �

»
R
pρPϕ

1
nq1ϕn �

»
R
ϕ12n ρP ¥ 0 .

Furthermore, the kernel of A is R.r1, thus the spectrum of A restricted to DL2pRq,0pAq is positive. But
since pA � αIq�1 is a compact operator of L2pρP q and that pA � αIq maps R.r1K to R.r1K with respect
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to the inner product of L2pρP q (see lemma 4.8.10), then
�
A � αI

��1 is compact as an operator from
L2

0pρP q to itself. By Fredholm alternative, for every λ P R λ � 0, either pA � αIq�1 � λI is bijective
either λ P Sp�pA � αIq�1�. These conditions are equivalent to: either A � pα � 1

λ
qI is bijective as an

operator from DL2pRq,0pAq to L2
0pρP q, either �α� 1

λ
P Sp�A�

. If we set λ � 1
α

then either A is bijective
either 0 P SppAq, since the latter is wrong then A : DL2pRq,0pAq Ñ L2

0pρP q is bijective. The spectrum of

A is
�

1
µnpαq � α



n¥0

� pλ1,�8q � p0,�8q, where λ1 is the smallest eigenvalue, hence we deduce that������A�1
������

LpL2pρP qq ¤ λ�1
1 .
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Chapter 5

CLT for β ensembles at
high-temperature, and for integrable
systems: a transfer operator
approach

Abstract In this paper, we prove a polynomial Central Limit Theorem for several integrable models,
and for the β ensembles at high-temperatures with polynomial potential. Furthermore, we are able to
relate the mean values, the variances and the correlations of the moments of these integrable systems with
the one of the β ensembles. Moreover, we show that for several integrable models, the local functions’
space-correlations decay exponentially fast.

5.1 Introduction

In this paper, we study eigenvalue fluctuations for several random matrix models related to some inte-
grable dynamical systems and to the classical β ensembles in the high-temperature regime. Specifically,
we consider random band matrices with fixed bandwidth and, under some mild assumptions, we prove a
central limit theorem (CLT) for polynomial test functions for the empirical measure of the eigenvalues.
In particular, we consider the following kind of matrices

• Type 1-i) Periodic Jacobi matrices, which are periodic tridiagonal matrix of the form���������

a1 b1 0 . . . bN

b1 a2 b2
. . . ...

0 b2 a3
. . . 0

... . . . . . . . . . bN�1
bN . . . 0 bN�1 aN

��������
, (5.1.1)

for a � pa1, . . . , aN q P RN , b � pb1, . . . , bN q P RN
� .

• Type 1-ii) Antisymmetric Bidiagonal Periodic matrices:

127
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���������

0 a1 0 . . . �aN

�a1 0 a2
. . . ...

0 �a2 0 . . . 0
... . . . . . . . . . aN�1
aN . . . 0 �aN�1 0

��������
, (5.1.2)

for a � pa1, . . . , aN q P RN
� .

• Type 1-iii) Periodic CMV (after Cantero, Moral and Velazquez) matrices, which are
2N � 2N unitary matrices given by

E � LM , (5.1.3)
where we define L and M in the following way. Let a � pa1, . . . a2N q be complex numbers of the
unit disk D. Define the 2� 2 unitary matrix Ξj

Ξj �
�
aj ρj

ρj �aj



, j � 1, . . . , 2N , ρj �

b
1� |aj |2 . (5.1.4)

Then, L and M are the 2N � 2N matrices

L �

�����
Ξ1

Ξ3
. . .

Ξ2N�1

���� , M �

�������
�a2N ρ2N

Ξ2
. . .

Ξ2N�2
ρ2N a2N

������ . (5.1.5)

The matrix E is a pentadiagonal periodic matrix and is unitary.

• Type 1-iv) Two diagonals periodic matrices given by

���������������

0 a1 0 � � � bN�r�1 0 0 0
0 0 a2 � � � 0 bN�r�2 0 0
... . . . . . . . . . . . . . . . . . .
0 0 0 � � � ar�1 0 0 bN

b1 0 � � � � � � 0 ar 0 0

0 b2 0 � � � . . . . . . . . .
... . . . . . . . . . . . . 0 0 aN�1
aN 0 � � � bN�r � � � 0 0 0

��������������
r � 1 row

N � r column

(5.1.6)

Where a,b P RN
� . In applications, we consider either a1 � a2 � . . . � aN � 1 or b1 � b2 � . . . �

bN � 1.

We also consider the non-periodic counterparts of the previous matrices. More specifically:

• Type 2-i) Jacobi matrices, which are symmetric tridiagonal matrices��������

a1 b1
b1 a2 b2

b2
. . . . . .
. . . . . . bN�1

bN�1 aN

�������, (5.1.7)
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where a P RN and b P RN�1
� .

• Type 2-ii) Bidiagonal Antisymmetric matrices:���������

0 a1 0

�a1 0 a2
. . .

0 �a2 0 . . . 0
. . . . . . . . . aN�1

0 �aN�1 0

��������
, (5.1.8)

for a P RN�1
� .

• Type 2-iii) CMV matrices, 2N � 2N unitary matrices of the form

E � LM , (5.1.9)

where

L � diag pΞ0,Ξ2,Ξ4, . . . ,Ξ2N q and M � diag pΞ1,Ξ3,Ξ5 . . . ,Ξ2N�1q , (5.1.10)

and the blocks Ξj , j � 1, . . . , 2N � 1 are defined in (5.1.4), while Ξ0 � p1q and Ξ2N � pa2N q are
1� 1 matrices.

The periodic matrices that we consider are the Lax matrices of some integrable models. These are
particular dynamical systems that are Liouville integrable, and their integrability is proved obtaining a
Lax pair pL,Aq [Lax68] representation of the model, meaning that the equations of motions for each of
these systems are equivalent to the following linear system for some matrices L,A

9L � dL
dt � rL;As � LA�AL . (5.1.11)

This formulation is useful since it implies that tTrLkuN
k�1 are a system of independent constants of

motion
�

d
dtTrLk � 0q



for the system at hand, so the system is integrable in classical sense. We call

these quantities conserved fields.
Specifically, the Toda lattice [Tod89] and the Exponential Toda lattice [GGGM23] have as Lax matrix

a periodic Jacobi matrix, the Volterra lattice [GGGM23] has an antisymmetric periodic one, the Ablowitz-
Ladik lattice [AL75] and the Schur flow [Gol06] have a periodic CMV one, and the family of Itoh–Narita–
Bogoyavleskii [Bog88] lattices have a bidiagonal periodic one.

We endow the periodic matrices L of type 1 with the so-called Generalized Gibbs Ensemble of the
corresponding dynamical system. The main property of these measures is that they are invariant with
respect to the dynamics of the corresponding integrable system. These Generalized Gibbs Ensembles
have the form

µ
p1q
N � 1

Z
p1q
N pα,Gq

�
N¹

j�1
F pxj , αq

�
e�TrGpLqdx , (5.1.12)

where x � pa,bq for Jacobi matrices, x � a for antisymmetric matrix, x � a for periodic CMV matrices,
x � a (resp. x � b) for bidiagonal periodic matrices if b1 � . . . � bN � 1 (resp. if a1 � . . . � aN � 1)
and G is a real-valued continuous function.

The non-periodic matrices of type 2 are related to the classical β ensembles, indeed both the real β
ensemble and the Laguerre β ensemble [DE06] can be represented through a Jacobi matrix, the circular
and the Jacobi ensemble have a representation in terms of CMV matrices [KN04], and the Antisymmetric
β ensemble has a representation in terms of an antisymmetric matrix [DF10]. Specifically, we consider
these ensembles in the high-temperature regime, meaning that the parameter β is not fixed, but scales
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with the matrix size N as β � 2α
N , α P R�. The joint density for the entries of the matrix representation

reads

µ
p2q
N � 1

Z
p2q
N pα,Gq

�
N�1¹
j�1

F

�
xj , α

�
1� j

N



�
RpxN qe�TrGpLqdx , (5.1.13)

where x � pa,bq for tridiagonal matrices, x � a for the antisymmetric one and x � a for CMV one.
As we already mentioned, we focus on the fluctuations (or linear statistics) around the equilibrium

measure of these general models, where we choose the functions F and G so that the partition functions

Z
p1q
N pα,Gq �

»
XN

�
N¹

j�1
F pxj , αq

�
e�TrGpLqdx

Z
p2q
N pα,Gq �

»
XN

�
N�1¹
j�1

F

�
xj , α

�
1� j

N



�
RpxN qe�TrGpLqdx

(5.1.14)

are finite for all N . Here X is a subset of Rd (C being identified with R2).
Specifically, we study the fluctuations of polynomial test functions Qpzq, i.e.»

C
QdνN �

»
γ

Qdν , (5.1.15)

where νN is the empirical measure of eigenvalues of L given by

νN � 1
N

Ņ

j�1
δλjpLq . (5.1.16)

Here the λjpLq are the eigenvalues of L and δx is the Dirac delta function centred at x, ν is the equilibrium
measure (or density of states) of the system and γ is the support of the measure ν. In this paper, we
are able to analyse the random variable (5.1.15) for polynomial potentials G, using a transfer operator
technique.

The study of spectral properties of Lax matrices of integrable models was initiated by Spohn in
[Spo20c], see also [Maz22]. In this paper, the author investigated time correlation functions for the
Toda lattice. Applying the theory of Generalized Hydrodynamic [Doy20], Spohn argued that they have
a ballistic behaviour, meaning that they have symmetrically located peaks, which travel in opposite
directions at constant speed and decay as t�1 when t Ñ 8. To obtain this result, Spohn had to
compute the density of states of the Toda Lax matrix; he did it by connecting the Generalized Gibbs
Ensemble of the Toda lattice to the real β ensemble in the high-temperature regime [ABG12]. After
that, the Generalized Gibbs ensemble for the Ablowitz-Ladik lattice and the Schur flow were connected
to the Circular β ensemble and the Jacobi β ensemble in the high-temperature regime [HL21, FM21]
respectively by one of the present authors and T. Grava [GM23] and, independently, by H. Spohn [Spo20b].
For all these models, a large deviation principle for their mean density of states were developed in
[MM23b, GM22]. Furthermore, in [GGGM23] the authors were able to connect the classical Gibbs
ensemble for the Exponential Toda lattice and the Volterra one to the Laguerre [DE06] and to the
Antisymmetric β ensemble [DF10] respectively.

As we mentioned, our study does not only involve integrable systems, but also the classical β en-
sembles. Specifically, we study the random variable (5.1.15) for these ensembles in the so-called high-
temperature regime. The study of these quantities was initiated by Johansson in [Joh98], where the
author obtained a CLT for the Gaussian unitary ensemble with polynomial potential, then generalized
for other models and other values of β in [BG13b, Shc14a, DP12], and, more recently, in [BMP22], where
the authors obtained also a rigidity result for the eigenvalues of the β ensembles. We mention also the
work [NT18], where the author obtained a CLT for the Gaussian β ensemble in the high-temperature
regime for a quadratic potential, the work [HL21] where the authors obtained a CLT for the Circular
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β ensemble at high-temperature using a normal approximation method, and the recent paper [DGM23]
where the authors obtained a CLT for the real β ensemble in the high-temperature regime for general
confining potentials. Another relevant paper that it is worth mentioning is [AS21], where the authors
studied Coulomb gases in dimension d ¥ 2 and studied the local laws for any temperature regime. Finally,
we recall also the recent work [CJ21, CJL22] where the authors obtained a super-exponential bound for
the convergence for the moments of the CUE, COE and CSE to a Gaussian vector.

Statement of the results. We come to precise statements of the main results of the present paper.
We consider the previously mentioned family of random matrices and make the following assumptions.

Assumption 5.1.1. The following hypotheses are valid throughout the paper:

HP 1. X � Rd;

HP 2. F px, ηq is such that for any η ¡ 0 F p�, ηq P C1pXq, and for any x P X,F px, �q P C8pp0,�8qq ;

HP 3. F px, ηq ¡ 0 almost surely for x P X, η P p0,8q;
HP 4. F p�, ηq P L1pX,Bq X L2pX,Bq for all η P p0,8q, and BηF p�, ηq P L1pX,Bq X L2pX,Bq; moreover

there exist a c P N and a compact set O � X such that

• ||F px, ηq||2 � Opη�cq
• There exists d ¡ 0 such that for all η ¡ 0,

³
O F px, ηqdx ¥ dη�c

HP 5. The function TrGpLq, where L is one of the matrices of type 1 or 2, is circular, meaning that
there exists some k P N¥1 and two functions W : Xk �Xk Ñ C, W1 : Xℓ�Xk Ñ C, �W1 : Xk Ñ
C, �W2 : Xℓ Ñ C, such that writing N � kM � ℓ with M ¥ 0 and 0 ¤ ℓ ¤ k � 1, we have

TrGpLq �

$''''&''''%

°M�1
j�1 W pxj ,xj�1q �W1pxM , xkM�1, . . . , xkM�ℓ,x1q for type 1

M�1¸
j�1

W pxj ,xj�1q ��W1px1q �W pxM , xkM�1, . . . , xkM�ℓ, 0, . . . , 0q

��W2pxkM�1, . . . , xkM�ℓqq
for type 2

,

(5.1.17)
here xj � pxpj�1qk�1, . . . , xjkq. In this case, we say that W is the seed of G, and W1,�W1,�W2 are
the weeds.

HP 6. The real parts of W,W1,�W1,�W2 are lower bounded. Furthermore, exp p�W q P L2pXk � Xkq,
exp p�W1q P L2pXk �Xℓ �Xkq, exp

�
��W1

	
P L2pXkq, and exp

�
��W2

	
P L2pXℓq

HP 7. Both integrals »
Xk

�
Bη

k¹
q�1

F pxq, ηq
�2

e�2W px,yqdxdy ,

»
Xk

�
Bη

k¹
q�1

F

�
xq, η

�
1� pj � 1qk � q

N



�2

e�2W px,yqdxdy

are finite.

HP 8. Rpxq P L2pXq X C8pXq, and Rpxq ¡ 0 for all x P X, or Rpxq � δypxq for some y P X.

Here LppX,Bq is the usual Lp space.

Remark 5.1.2. The definition of circular function and seeds was introduced in this context in [GPP14].
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Under these assumptions, we are able to prove our main theorem:

Theorem 5.1.3. Under hypotheses 5.1.1. Consider µp1qN , µ
p2q
N (5.1.12)-(5.1.13), and let pSN qN¥1 be a

sequence of real random variables such that there exists a function H : C Ñ R such that TrHpLq is
circular, it satisfies HP 6., and

E1
�
e�itSN

� � Z
p1q
N pα,G� itHq
Z
p1q
N pα,Gq

, E2
�
e�itSN

� � Z
p2q
N pα,G� itHq
Z
p2q
N pα,Gq

, (5.1.18)

are finite, here E1 r�s , E2 r�s are the mean values taken with respect to µp1qN , µ
p2q
N respectively. Furthermore,

let W,h be the seeds of TrGpLq and TrHpLq respectively, and assume that
³
X2k |hpx,yq|ne�2W px,yqdxdy

for n � 2, 4, 6 are finite. Then, there exist two continuous functions

Apxq : R� ÝÑ R , (5.1.19)
σ2pxq : R� ÝÑ R� , (5.1.20)

such that under µp1qN (5.1.12)
pSN �NApαqq {

?
N

converges to a Gaussian distribution N p0, σ2pαqq as N tends to infinity, and under µp2qN (5.1.13),�
SN �N

» 1

0
Apαxqdx



{
?
N

converges to a Gaussian distribution N p0, ³1
0 σ

2pαxqdxq as N tends to infinity. Furthermore, defining the
free energies F p1q

N pα,Gq,F p2q
N pα,Gq as

F p1q
N pα,Gq � � lim

NÑ8
1
N

ln
�
Z
p1q
N pα,Gq

	
, (5.1.21)

F p2q
N pα,Gq � � lim

NÑ8
1
N

ln
�
Z
p2q
N pα,Gq

	
, (5.1.22)

then

i. F p1qpα,Gq � Bα

�
αF p2qpα,Gq�

ii. Apαq � iBtF p1qpα,G� itHq|t�0

iii.
³1
0 Apαxq � iBtF p2qpα,G� itHq|t�0

iv. σ2pαq � B2
t F p1qpα,G� itHq|t�0

v.
³1
0 σ

2pαxqdx � B2
t F p2qpα,G� itHq|t�0

Remark 5.1.4. In the central part of the proof we introduce a family of operators acting on L2pXkq by

Lt,αfpyq �
»

Xk

fpxq
k¹

j�1
F pxjqe�pW�ithqpx,yqdxdy .

Because of our assumptions, each Lt,α is Hilbert-Schmidt, meaning that the kernel

px,yq ÞÑ
k¹

j�1
F pxjqe�pW�ithqpx,yq
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is in L2pXk � Xkq, thus Lt,α is compact, and, as we show in the proof of Theorem 5.2.1, L0,α has a
simple dominating eigenvalue. Hypothesis HP 7. and the assumption that the integrals»

X2k

|hpx,yq|ne�2W px,yqdxdy n � 2, 4, 6

are finite is merely to ensure that pα, tq ÞÑ Lt,α is regular. In particular, it is differentiable with respect to
α, and three times differentiable with respect to t as an operator valued function, which in turn ensures
that for t small enough, the operator Lt,α has a simple, dominating eigenvalue λpt, αq and that t ÞÑ λpt, αq
is three times differentiable. Note that we only use the existence of a second derivative with respect to t in
the proof of the main theorem, but use the existence of a third derivative in the proof of the Berry-Esseen
bound, Theorem 5.4.5. We use the differentiability with respect to α in the proof of Theorem 5.2.2.

In the central part of our paper, we show how to use the previous result to obtain a polynomial CLT
for the integrable models that we mentioned, and for the classical β ensemble in the high-temperature
regime. Specifically, we use the previous theorem with G and H polynomials and

SN � 1
N

TrHpLq (5.1.16)�
»
C
HpxqdνN pxq .

The expectations we want to compute then reduce to

Ej

�
e�itSN

� � Z
pjq
N pα,G� itHq
Z
pjq
N pα,Gq

, j � 1, 2 .

Furthermore, as a by-product, we are also able to compute the so-called susceptibility matrix C for
integrable models. This is the matrix of the space-correlation functions of the conserved fields, i.e.

Cm,n � lim
NÑ8

1
N
pE1 rTrLmTrLns � E1 rTrLmsE1 rTrLnsq , (5.1.23)

where L is the Lax matrix of the integrable system at hand and the mean values are taken with respect to
the corresponding Generalized Gibbs ensemble. The computation of such quantities is relevant to obtain
the decay of the correlation functions for these integrable systems, as it is shown by Spohn in [Spo20a].
In particular, we can prove the following:

Theorem 5.1.5. Under the same hypotheses as Theorem 5.1.3. Consider µp1qN (5.1.12) and define the
free energy F p1qpα,Gq as in (5.1.21), then

Cm,n � Bt1Bt2

�
F p1qpα,G� it1x

m � it2x
nq
	
|t1�t2�0

. (5.1.24)

Remark 5.1.6. In view of Theorem 5.1.3, we can rewrite (5.1.24) as

Cm,n � BαBt1Bt2

�
α
�

F p2qpα,G� it1x
m � it2x

nq
		

|t1�t2�0
. (5.1.25)

In our context, the previous equality implies that we can compute the susceptibility matrix of the integrable
systems that we are considering in terms of just the free energy of the corresponding classical β ensemble
in the high-temperature regime.

Finally, considering the type 1 measures (5.1.12), we investigate the space-correlations for local func-
tions, meaning that they depend only on a finite number (independent of N) of consecutive variables,
proving the following
Theorem 5.1.7 (Decay of correlations). Let W be the seed of TrGpLq and I, J : Xk Ñ R two local
functions such that

³
Xk�Xk

���Ipxq±k
i�1 F pxi, αqe�W px,yq

���2 dxdy   8, and analogously for Jpxq. Write
N � kM � ℓ, and let j P t1, . . . ,Mu. Then there exists some 0   µ   1 such that

E1 rIpx1qJpxjqs � E1 rIpx1qsE1 rJpxjqs � OpµM�j � µjq .
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In particular, this result implies that the space-correlations between two local functions acting on two
different parts of the chain decay exponentially fast according to the distance between the set of particles
they are acting on. In section 5.3.1, we use the previous result to rigorously justify the assumption of H.
Spohn on the decay of space-correlations between the local conserved fields and their currents [Spo21];
we mention also that one can follow exactly the same reasoning for all the other integrable systems that
we consider.

The paper is organized as follows, in section 5.2 we state the theoretical results that lead to the proofs
of Theorems 5.1.3 and 5.1.5. In section 5.3 we show how to apply our results to obtain a central limit
theorem for several integrable systems and for the corresponding β ensembles in the high-temperature
regime. A summary of these models can be found in Table 5.1. Specifically, we obtain a CLT for the
Toda lattice and the real β ensemble, for the Exponential Toda lattice and the Laguerre β ensemble,
the defocusing Ablowitz–Laddik lattice and the Circular β ensemble, the defocusing Schur flow and the
Jacobi β ensemble, the Volterra lattice and the antisymmetric β ensemble, and for the families of Itoh–
Narita–Bogoyavleskii (INB) multiplicative, and additive lattices. Furthermore, we apply Theorem 5.1.7
to the Toda lattice to derive the limiting currents of the conserved fields. In section 5.4, we prove the
technical results we used in section 5.2, we prove Theorem 5.1.7 and deduce a Berry-Esseen type bound
for all the previously considered integrable models. Finally, in section 5.5 we give some conclusions and
outlooks for future developments on this topic.

Integrable System (Type 1) β-ensemble at high-temperature (Type 2)
Toda lattice Real

Defocusing Ablowitz-Ladik lattice Circular
Exponential Toda lattice Laguerre

Defocusing Schur flow Jacobi
Volterra lattice Antisymmetric

Table 5.1: Integrable systems and random matrix ensembles

5.2 Nagaev–Guivarc’h theory: a transfer operator approach

In this section, we prove Theorem 5.1.3-5.1.5, to do that we need to develop the fluctuations’ theory
of Nagaev–Guivarc’h [Nag57, GH88, HH01, Gou15] through transfer operator methods, see for example
[KRB01, KS75, PB89].

The proof of these theorems is divided into 3 main parts. In the first one, we compute E1
�
e�itTrH

�
,E2

�
e�itTrH

�
through transfer operator techniques. Since the proof of these results is technical, we postpone it to sec-
tion 5.4. Our proof follows the same line as the corresponding one in [GM23]. In the second part, we
prove a slight generalization of Nagaev–Guivarc’h theorems [Gou15]. In the last part, we combine the
previous two results to complete the proof of Theorem 5.1.3-5.1.5.

In view of the hypotheses 5.1.1, we consider the following decomposition of N � kM � ℓ, in this
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notation, we can rewrite our measures as

µ
p1q
kM�ℓ �

1
Z
p1q
kM�ℓpα,W q

kM�ℓ¹
j�1

F pxj , αq
M�1¹
j�1

exp p�W pxj ,xj�1qq (5.2.1)

� exp p�W1pxM , xkM�1, . . . , xkM�ℓ,x1qq
kM�ℓ¹

j�1
dxj (5.2.2)

µ
p2q
kM�ℓ �

1
Z
p2q
kM�ℓpα,W q

kM�ℓ�1¹
j�1

F

�
xj , α

�
1� j

kM � ℓ



M�1¹
j�1

exp p�W pxj ,xj�1qq (5.2.3)

� exp
�
��W1px1q �W pxM , xkM�1, . . . , xkM�ℓ, 0, . . . , 0q

	
(5.2.4)

� exp
�
��W2pxkM�1, . . . , xkM�ℓq

	
RpxN q

kM�ℓ¹
j�1

dxj , (5.2.5)

Where xj � pxkpj�1q�1, . . . , xkjq and the partition functions become:

Z
p1q
kM�ℓpα,W q �

»
XkM�ℓ

kM�ℓ¹
j�1

F pxj , αq
M�1¹
j�1

exp p�W pxj ,xj�1qq (5.2.6)

� exp p�W1pxM , xkM�1, . . . , xkM�ℓ,x1qq
kM�ℓ¹

j�1
dxj (5.2.7)

Z
p2q
kM�ℓpα,W q �

»
XkM�ℓ

kM�ℓ�1¹
j�1

F

�
xj , α

�
1� j

kM � ℓ



M�1¹
j�1

exp p�W pxj ,xj�1qq (5.2.8)

� exp
�
�W pxM , xkM�1, . . . , xkM�ℓ, 0, . . . , 0q ��W2pxkM�1, . . . , xkM�ℓq

	
(5.2.9)

� exp
�
��W1px1q

	
RpxN q

kM�ℓ¹
j�1

dxj , (5.2.10)

we set Zpsq
N pα,W q � Z

psq
N pα,Gq, s � 1, 2.

On the space L2pXk,Bkq we introduce the standard scalar product for f, g P L2pXk,Bkq as

xf ; gy �
»

Xk

fpxqgpxqdx . (5.2.11)

Furthermore, for I, J � R, and E a normed space, denote by Cs,dpI � J,Eq the functions f : I � J Ñ X
that are Cs (respectively Cd) with respect to the first (respectively the second) variable. If s � d, then
we set CdpI � J,Eq � Cd,dpI � J,Eq, and if the normed space E � C we just omit it.

Transfer operator for partitions functions. As we already stated, in the first part of the section,
we apply the transfer operator method in order to compute E1

�
e�itH

�
,E2

�
e�itH

�
. In particular, we

prove the following theorems
Theorem 5.2.1. Under Assumptions 5.1.1. Consider a real function H : C Ñ R such that TrHpLq
is circular, and let W be the seed of TrGpLq � itHpLq, thus W px,yq � V px,yq � itUpx,yq for V,U :
Xk � Xk Ñ R seeds of TrGpLq,TrHpLq. Furthermore, assume that U P LdpX2k, expp�2V qq, with
N Q d ¥ 6. Then, there exists an ε ¡ 0, and two complex valued functions λ py, tq P C1,dpR� � r�ε, εsq
and ck,ℓpy, tq P C1,dpR� r�ε, εsq such that for all q P N :

E1
�
e�itTrH

� � Z
p1q
kM�ℓpα, tq

Z
p1q
kM�ℓpα, 0q

� ck,ℓpα, tqλpα, tqM�2 �1� opM�qq� , as M Ñ8 , (5.2.12)
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for |t|   ε, here Zp1q
kM�ℓpα, tq � Z

p1q
kM�ℓpα, V � itUq. Furthermore,

λpx, 0q � 1 , (5.2.13)
ck,ℓpx, 0q � 1 . (5.2.14)

Moreover, there exist two functions rck,ℓpα, tq P C1,dpR � r�ε, εsq and rλpα, tq P C1,dpR� � r�ε, εsq such
that there exist two constants C1, C2 ¡ 0 such that for all q P N:

C1   rck,ℓpα, tq   C2 ,

λpα, tq �
rλpα, tqrλpα, 0q ,

Z
p1q
kM�ℓpα, tq � rck,ℓpα, tqrλpα, tqM�2 �1� opM�qq� .

(5.2.15)

In the next theorem, we prove an analogue decomposition of the partition function for the second
type of measure. This decomposition involves the same function λpy, tq as in Theorem 5.2.1.

Theorem 5.2.2. Under Assumptions 5.1.1. Consider a real function H : C Ñ R such that TrHpLq
is circular (HP 5.), and let W be the seed of TrGpLq � itHpLq, thus W px,yq � V px,yq � itUpx,yq for
V,U : Xk �Xk Ñ R seeds of TrGpLq,TrHpLq. Furthermore, assume that U P LdpX2k, expp�2V qq, with
N Q d ¥ 6.

Then, there exists an ε ¡ 0 and ck,ℓ,M py, tq P C1,dpR � r�ε, εsq, such that, with λ given by Theorem
5.2.1,

E2
�
e�itTrH

� � Z
p2q
kM�ℓpα, tq

Z
p2q
kM�ℓpα, 0q

� ck,ℓ,M pα, tq
M�2¹
j�1

λ

�
α
j

M
, t



p1� oM p1qq (5.2.16)

for |t|   ε. Furthermore,

λpx, 0q � 1 (5.2.17)
lim
tÑ0

ck,ℓ,M pα, tq � 1 uniformly in M (5.2.18)

the remainder oM p1q is independent of t P r�ε, εs. (5.2.19)

Moreover, there exist two functions rck,ℓ,M pα, tq P C1,dpR��r�ε, εsq, rλpα, tq P C1,dpR��r�ε, εsq, and
three constants C1, C2 ¡ 0 and p P N such that

C1N
p   rck,ℓ,M pα, tq   C2N

p ,

λpα, tq �
rλpα, tqrλpα, 0q ,

Z
p2q
kM�ℓpα, tq � rck,ℓ,M pα, tq

M�2¹
j�1

rλ�α j

M
, t



p1� oM p1qq .

(5.2.20)

Since the proof of these results is technical, we postpone it to Section 5.4.

Generalization of Nagaev–Guivarc’h method. In this second part, we need to generalize some
standard results from the fluctuation theory of Nagaev–Guivarc’h [Gou15] to our situation. Specifically,
we prove the following:
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Theorem 5.2.3. Let pXnqn¥1 be a sequence of real random variables with partial sums pSnqn¥1 P R.
Assume that there exists ε ¡ 0, two functions λptq P C1pr0, εqq, cptq P C0pr0, εqq and hnptq P C0pr0, εqq,
such that for all t P r�ε, εs, and all n ¥ 1 we have

E
�
e�itSn

� � cptqλptqm p1� hnptqq , (5.2.21)

Where limnÑ8 n{m � k P N.
Furthermore, assume that:

a. there exists A, σ2 P C such that λptq � exp
��iAt� σ2t2{2� opt3q� as tÑ 0;

b. hn
nÑ8ÝÝÝÑ 0 uniformly in r�ε, εs, and hnp0q � 0;

c. cp0q � 1.

Then A P R, σ2 ¥ 0, and pSn � nA{kq {?n converges to a Gaussian distribution N p0, σ2{kq as n
tends to infinity.

Proof. First, evaluating (5.2.21) at t � 0, we deduce that λp0q � 1. Then, we use the asymptotic
expansion of λptq, and properties b.-c. to prove that

E
�
exp

�
�itSn �mA

n


�
ÝÝÝÑ
nÑ8 1 .

Thus, by Lévy theorem [Wil91], we deduce that Sn{n � A{k converges in distribution to 0. So, since
Sn is real, then A P R. Exploiting again the asymptotic expansion of λptq and properties b.-c., we show
that E

�
exp

�
�itSn�mA?

n

	�
converges to the function exp

�
�σ2t2

2k

	
. By Lévy theorem [Wil91], this must

be the characteristic function of a real random variable, proving that σ2 ¥ 0, and that pSn � nA{kq{?n
converges to a Gaussian distribution N p0, σ2{kq.

Further, we prove the following:

Theorem 5.2.4. Let pXnqn¥1 be a sequence of random variables with partial sums pSnqn¥1 P R. Assume
that there exists ε ¡ 0 and functions λpx, tq P C1,0pr0, 1q �Rq, cnptq P C0pRq, and hnptq continuous in 0,
such that for all t P r�ε, εs, and all n ¥ 1 we have

E
�
e�itSn

� � cnptq
�

m¹
j�1

λ pj{m, tq
�
p1� hnptqq , (5.2.22)

where limnÑ8 n{m � k.
Furthermore, assume that:

a. there exists two continuous functions Apxq, σ2pxq : r0, 1s Ñ C such that

λpx, tq � exp
��iApxqt� σ2pxqt2{2� opt2q� as tÑ 0;

b. ||hn||8 nÑ8ÝÝÝÑ 0 uniformly in r�ε, εs, and hnp0q � 0;

c. cnp0q � 1 and limnÑ8 cnpt{
?
nq � limnÑ8 cnpt{nq � 1.

Then
³1
0 Apxqdx P R,

³1
0 σ

2pxqdx P R�, and
?
n
�

Sn

n �
³1
0 Apxqdx

k

	
converges to a Gaussian distribution

N
�

0,
³1
0 σ2pxqdx

k

	
as n tends to infinity.
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Proof. First, let t � rt{n, then by hypothesis c.

lim
nÑ8E

�
e�irtpSn{n� 1

n

°m
ℓ�1 Apℓ{mqq� � lim

nÑ8E

�
e
�irt�Sn{n�

³1
0 Apxqdx

k


�
� 1 . (5.2.23)

Thus, by Levy theorem, Sn{nÑ
³1
0 Apxqdx

k almost surely, thus, since Sn P R, this implies that
³1
0 Apxqdx P

R. Consider now t � rt{?n, following the same reasoning one conclude that

lim
nÑ8E

�
e�irt?npSn{n� 1

n

°n
ℓ�1 Apℓ{mqq� � lim

nÑ8E

�
e
�irt?n

�
Sn{n�

³1
0 Apxqdx

k


�
� lim

nÑ8 e
� rt2

2n

°m
ℓ�1 σ2pℓ{mq � e�

rt2
2k

³1
0 σ2pxqdx ,

(5.2.24)

thus, by Lévy theorem [Wil91], e�
rt2
2k

³1
0 σ2pxqdx must be the characteristic function of a real random variable,

proving that
³1
0 σ

2pxq P R�.

Proof of Theorem 5.1.3-5.1.5. We are now ready to prove Theorem 5.1.3-5.1.5, for convenience, we
split the proof into two Lemmas, which combined give the full proof of our results.

Lemma 5.2.5. Under hypotheses 5.1.1. Consider µp1qkM�ℓ, µ
p2q
kM�ℓ (5.2.1)-(5.2.3), and let H : C Ñ R

such that TrHpLq is circular (HP.5) with seed U , so that W � itU is the seed of TrGpLq � itHpLq. Let
SkM�ℓ � TrHpLq. Then

E1
�
e�itSkM�ℓ

� � Z
p1q
kM�ℓpα, tq

Z
p1q
kM�ℓpα, 0q

, E2
�
e�itSkM�ℓ

� � Z
p2q
kM�ℓpα, tq

Z
p2q
kM�ℓpα, 0q

, (5.2.25)

where E1 r�s , E2 r�s are the mean values taken with respect to µ
p1q
kM�ℓ, µ

p2q
kM�ℓ respectively. Furthermore,

assume that U P LdpX2k, expp�2W qq, with N Q d ¥ 3. Then, there exist four continuous functions

Apxq : R� ÝÑ R , rApxq : R� ÝÑ R , (5.2.26)
σpxq : R� ÝÑ R� , rσpxq : R� ÝÑ R� , (5.2.27)

such that under µp1qkM�ℓ,
pSkM�ℓ � pkM � ℓqApαq{kq {

?
kM � ℓ

converges to a Gaussian distribution N p0, σ2pαq{kq as M tends to infinity, and under µp2qkM�ℓ,�
SkM�ℓ � pkM � ℓq rApαq{k	 {?kM � ℓ

converges to a Gaussian distribution N p0, rσ2pαq{kq as M tends to infinity.

The proof of the previous result is a trivial application of Theorem 5.2.1-5.2.2-5.2.3-5.2.4. Furthermore,
we can interpret the previous relations through the free energies of µp1qkM�ℓ, µ

p2q
kM�ℓ (5.2.1) -(5.2.3):

Lemma 5.2.6. Under the same hypotheses and notation of Lemma 5.2.5. Consider the two measures
µ
p1q
kM�ℓ, µ

p2q
kM�ℓ (5.2.1)-(5.2.3), and define the free energies as

F p1qpα,W q � � lim
MÑ8

lnpZp1q
kM�ℓpα,W qq
kM � ℓ

, F p2qpα,W q � � lim
MÑ8

lnpZp2q
kM�ℓpα,W qq
kM � ℓ

, (5.2.28)

then, using the same notation as in Lemma 5.2.5, the following holds:
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i. F p1qpα,W q � Bα

�
αF p2qpα,W q�

ii. Apαq � ikBtF p1qpα,W � itUq|t�0

iii. rApαq � ikBtF p2qpα,W � itUq|t�0

iv. σpαq � kB2
t F p1qpα,W � itUq|t�0

v. rσpαq � kB2
t F p2qpα,W � itUq|t�0

Remark 5.2.7. The previous theorem implies that

Apαq � Bαpα rApαqq , σ2pαq � Bαpαrσ2pαqq . (5.2.29)

Proof. To prove i., we can just compute the free energy of µp1qkM�ℓ, µ
p2q
kM�ℓ using Theorem 5.2.1-5.2.2. For

F p1qpα,W q we deduce immediately that

F p1qpα,W q � � lim
MÑ8

1
kM � ℓ

lnpZp1q
kM�ℓq

(5.2.15)� � lim
MÑ8

M

kM � ℓ
lnprλpα, 0qq

� �1
k

lnprλpα, 0qq . (5.2.30)

The proof for F p2qpα,W q follows in the same way. We now prove ii.� iv. First, we notice that following
the notation of Theorem 5.2.3 - 5.2.1 :

cptq � ck,ℓpα, tq , hn � 1� opM�qq , λptq � λpα, tq , (5.2.31)
thus to compute explicitly Apα,W q, σpα,W q we have just to expand λpα, tq around t � 0

λpα, tq � 1� tBtλpα, 0q � t2

2 B
2
t λpα, 0q � opt3q , (5.2.32)

which implies that

λpα, tq � exp
�
tBt lnpλpα, tqq|t�0 �

t2

2 B
2
t lnpλpα, tqq|t�0 � opt3q



. (5.2.33)

This implies that Apαq � �iBt lnpλpα, tqq|t�0 , σ
2pαq � �B2

t lnpλpα, tqq|t�0 . From (5.2.15), we deduce that
Bt lnpλpα, tqq|t�0 � Bt lnprλpα, tqq|t�0 , thus from the previous expressions and the explicit form of the free
energy (5.2.30) we conclude.

To prove iii.� v. we proceed in the same way, thus following the notation of Theorem 5.2.4 - 5.2.2:

cnptq � ck,ℓ,M pα, tq , hn � 1� op1q , λ pj{M, tq � λ

�
α
j

M
, t



. (5.2.34)

Thus, as in (5.2.33) except that αÑ α j
M , we expand λ

�
α j

M , t
�

around t � 0, leading to

rApαq � Bt

�» 1

0
lnpλpαx, tqqdx



|t�0

,

rσ2pαq � B2
t

�» 1

0
lnpλpαx, tqqdx



|t�0

(5.2.35)

which concludes the proof.

Remark 5.2.8. We notice that the Lemma 5.2.6, and Lemma 5.2.5 imply that we can compute the
expected values, and the variances of SkM�ℓ according to µ

p1q
kM�ℓ, µ

p2q
kM�ℓ just computing derivatives of

the corresponding free energy. This property is broadly used in the physics literature, but we lacked of a
precise statement, and of a proof for the general result. Furthermore, we can compute the expected value,
and the variance of SkM�ℓ according to µp1qkM�ℓ starting from the corresponding values for µp2qkM�ℓ. Thus,
we have reduced all this problem to the computation of the free energy of µp2qkM�ℓ.
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The proof of both Theorem 5.1.3 and Theorem 5.1.5 follows from the four previous lemmas. Thus, we
have completed the proof of our main theorems, and now we show how to apply them to some integrable
models, and the β ensembles in the high-temperature regime.

5.3 Application
In this section, we show how to apply Theorem 5.1.3 to obtain a CLT for some integrable systems and
for the classical β ensembles in the high-temperature regime. Namely, we prove a CLT for the systems
of table 5.1.

Specifically, we are able to prove that all the integrable systems in table 5.1 in the periodic case
have a Generalized Gibbs ensemble of the form µ

p1q
kM�ℓ (5.2.1), that is the reason of the label "type 1".

Meanwhile, the β ensembles at high-temperatures are characterized by a probability distribution of the
form µ

p2q
kM�ℓ (5.2.3), that is the reason for the label "type 2". In this way, we proved a further connection

between the theory of integrable systems and Random Matrix Theory. Indeed, in view of Theorem 5.1.3
and Theorem 5.1.5, for any integrable system in the previous table, we can relate its free energy, moments,
variances and covariances with the corresponding quantities of the random matrix model on the same
line. Moreover, in the final part of this section, we consider the family of INB lattices that do not have
a known β ensemble counterpart. Despite that, we are still able to derive the existence of a polynomial
central limit theorem. Finally, applying Theorem 5.1.7, we are able to show that for the Toda lattice the
space-correlations between the local conserved fields and the currents decay exponentially.

5.3.1 The Toda lattice, and the real β ensemble at high-temperature
In this subsection, we focus on the Toda lattice, which is an integrable model, and its relation with
the real β ensemble in the high-temperature regime. The connection between these two systems was
first realized by Spohn in [Spo20c], see also [Maz22, Spo20a]. In this seminal paper, the author was
able to compute the density of states for the Toda lattice when the initial data is sampled according
to a Generalized Gibbs ensemble in terms of one of the Gaussian β ensemble in the high-temperature
regime. This was further developed in [GM22] where the authors obtained a Large Deviations Principle
for the Toda lattice, and they connect it to the one for the real β ensemble in the high-temperature
regime. In this paper, we further develop this analysis, obtaining a CLT theorem for these two systems,
and connecting them. This result is particularly relevant in the context of the so-called Generalized
Hydrodynamics, a recent physical theory that allows computing the correlation functions for classical
integrable models, for an introduction to the subject see [Doy20, Spo21]. According to this theory, one of
the main ingredients to compute the correlation functions for the integrable model at hand is to be able
to calculate the correlation functions for the conserved fields at time 0. Thanks to our result, we are able
to access these quantities. We show how to do it at the end of this subsection. We mention also the recent
work [GKM�23], where the authors made molecular dynamics simulations of the correlation functions
of the Toda lattice, and they compared them with the predictions of linear Generalized Hydrodynamics,
showing an astonishing agreement.

The Toda lattice. The classical Toda chain [Tod89] is the dynamical system described by the following
Hamiltonian:

HT pp,qq :� 1
2

Ņ

j�1
p2

j �
Ņ

j�1
VT pqj�1 � qjq , VT pxq � e�x � x� 1 , (5.3.1)

with periodic boundary conditions qj�N � qj � Ω @ j P Z, Ω ¡ 0. Its equations of motion take the
form

9qj � BHT

Bpj
� pj , 9pj � �BHT

Bqj
� V 1

T pqj�1 � qjq � V 1
T pqj � qj�1q, j � 1, . . . , N . (5.3.2)
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It is well known that the Toda chain is an integrable system [Tod89, Hen74], one way to prove it is to
put the Toda equations in Lax pair form. This was obtained by Flaschka [Fla74b], and Manakov [Man74]
through the following non-canonical change of coordinates:

aj :� �pj , bj :� e
1
2 pqj�qj�1q � e�

1
2 rj , 1 ¤ j ¤ N , (5.3.3)

where rj � qj�1 � qj is the relative distance.
Defining the Lax operator L as the periodic Jacobi matrix [vM76]

L :�

���������

a1 b1 0 . . . bN

b1 a2 b2
. . . ...

0 b2 a3
. . . 0

... . . . . . . . . . bN�1
bN . . . 0 bN�1 aN

��������
, (5.3.4)

and the antisymmetric matrix B

B :�

���������

0 b1 0 . . . �bN

�b1 0 b2
. . . ...

0 �b2 0 . . . 0
... . . . . . . . . . bN�1
bN . . . 0 �bN�1 0

��������
, (5.3.5)

a straightforward calculation shows that the equations of motions (5.3.2) are equivalent to

9L � rB;Ls , (5.3.6)

where rB;Ls � BL�LB is the commutator of two matrices. This form implies that TrLk, k � 1, . . . , N
are constants of motions for the Toda lattice, so the system is integrable. We call these quantities
conserved fields.

On the phase space RN � RN
� , we introduce the Generalized Gibbs Ensemble

dµT :� 1
ZT

N pα, P q
N¹

j�1
b2α�1

j 1bj¡0e
�TrP pLqda db , (5.3.7)

where P pxq is a polynomial of even degree with positive leading coefficients, and α ¡ 0 is a pressure
parameter.

Our aim is to obtain a central limit theorem for the conserved fields when the initial data is sampled
according to (5.3.7). So, we want to apply Theorem 5.1.3 to this model. To do that, we need some
preparation. First, we recall the following result about the structure of the trace of periodic Jacobi
matrices which was proved in [GMMP20]:

Theorem 5.3.1 (cf. Theorem 3.1 [GMMP20]). For any 1 ¤ m ¤ N � 1, consider the matrix L given by
(5.3.4). One has

TrLm �
Ņ

j�1
h
pmq
j , (5.3.8)

where hpmq
j :� rLmsjj is given explicitly by

h
pmq
j pp, rq �

¸
pn,qqPApmq

ρpmqpn,qq
�m�1¹

i���m
aqi

j�1

�m�1¹
i���m�1

b2ni
j�i , (5.3.9)
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where it is understood aj � aj mod N�1, bj � bj mod N�1 and Apmq is the set

Apmq :�
!
pn,qq P NZ

0 � NZ
0 :

�m�1̧

i���m
p2ni � qiq � m,

@i ¥ 0, ni � 0 ñ ni�1 � qi�1 � 0,

@i   0, ni�1 � 0 ñ ni � qi � 0
)
.

(5.3.10)

The quantity rm :� t1u, N0 � NY t0u and ρpmqpn,qq P N is given by

ρpmqpn,qq :�
�
n�1 � n0 � q0

q0


�
n�1 � n0

n0


 �m�1¹
i���m
i��1

�
ni � ni�1 � qi�1 � 1

qi�1


�
ni � ni�1 � 1

ni�1



. (5.3.11)

This Theorem immediately leads to the following Corollary

Corollary 5.3.2. Fix m P N, and consider the matrix L (5.3.4). Then for N big enough, there exists
some k � kpmq P N, and two polynomial functions V : R2k � R2k

� Ñ R, V1 : R2k�ℓ � R2k�ℓ
� Ñ R such

that

TrLm �
M�1¸
j�1

V paj ,bj ,aj�1,bj�1q � V1paM , akM�1, . . . , akM�ℓ,a1,bM , bkM�1, . . . , bkM�ℓ,b1q , (5.3.12)

where N � kM � ℓ, aj � papj�1qk�1, apj�1qk�2, . . . ajkq, and similarly for bj.

Remark 5.3.3. In other words, the function TrLm is circular in the sense of Hypotheses 5.1.1, HP. 5.
Furthermore, we notice that the local potential V px1,y1,x2,y2q is bounded from below, this can be proved
using the explicit formula in Theorem 5.3.1 or applying the properties of super-Motzkin paths used for
the proof of the theorem in [GMMP20].

We apply the previous Corollary to the Gibbs measure of the Toda lattice (5.3.7), so it can be written
as

dµT � 1
ZT

N pβ, P q
N¹

j�1
b2α�1

j 1bj¡0 exp
�
�

M̧

j�1
V paj ,bj ,aj�1,bj�1q

� V1paM , akM�1, . . . , akM�ℓ,a1,bM , bkM�1, . . . , bkM�ℓ,b1q
	

da db .

(5.3.13)

We would like to apply Theorem 5.1.3 to the previous density with F pbq � b2α�1, and W � V , but in
this case F R L2pR�q, so we have to take care of this issue. To do it, we fix ε ¡ 0, and consider the
following measure

dµT � 1
ZT

N pβ, P q
N¹

j�1
b2α�1

j e�εpa2
j�b2

j q1aj¡0 exp
�
�

M̧

j�1
V paj ,bj ,aj�1,bj�1q

� V1paM , akM�1, . . . , akM�ℓ,a1,bM , bkM�1, . . . , bkM�ℓ,b1q

� ε
Ņ

j�1
a2

j � b2
j

	
da db ,

(5.3.14)

this is exactly the same measure as before, but, following the notation of Theorem 5.1.3, we can now set
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F pa, b, αq � b2α�1e�εpa2�b2q ,

W paj ,bj ,aj�1,bj�1q � V paj ,bj ,aj�1,bj�1q � ε

2

2ķ

n�1
a2
pj�1qk�n � b2

pj�1qk�n .
(5.3.15)

These functions satisfy the hypotheses of Theorem 5.1.3, so we can apply it and deduce the following

Corollary 5.3.4 (CLT for the Toda lattice). Consider the Lax matrix L (5.3.4) of the Toda lattice
distributed according to the Generalized Gibbs Ensemble (5.3.7), and assume that P pxq is a polynomial
of even degree with positive leading order coefficient. Then, defining the Free energy FT pα, P q as

FT pα, P q � � lim
NÑ8

1
N

lnpZT
N pα, P qq , (5.3.16)

for all j P N fixed, we have the following weak limit

lim
NÑ8

TrLj � E
�
TrLj

�
?
N

á N p0, σ2q . (5.3.17)

Where
E
�
TrLj

� � iNBtFT pα, P � itxjq|t�0 , σ2 � |B2
t FT pα, P � itxjq|t�0 | . (5.3.18)

Moreover, we can also apply Theorem 5.1.5 to compute the correlation between the conserved fields
at time zero, indeed the theorem immediately implies that

lim
NÑ8

E
�
TrLjTrLn

�� E
�
TrLj

�
E rTrLns

N
� Bt1Bt2FT pα, P � it1x

j � it2x
nq|t1,t2�0 , (5.3.19)

where the mean value is taken with respect to the Gibbs measure of the Toda lattice (5.3.7). We notice
that this implies that we can compute the susceptibility matrix of the Toda lattice (5.1.24) in terms of
the derivative of the Free energy.

The Toda chain’s currents

Since the conserved fields are local quantities, they must satisfy a local conservation law. Following the
notation of [Spo22b], we define

Q
rns,N
j � Ln

j,j , (5.3.20)

where L P MatpN,Rq is (5.3.4). We can easily compute the evolution equation for such quantities as

d

dt
Q
rns,N
j � pBLn � LnBq � bj�1L

n
j,j�1 � bjL

n
j�1,j . (5.3.21)

Defining J rns,Nj � bj�1L
n
j,j�1, we have

d

dt
Q
rns,N
j � J

rns,N
j � J

rns,N
j�1

and we say that J rns,Nj is the current of the local conserved field Qrns,N
j . In particular, defining the matrix

LÓ as

LÓi,j �
#
Li,j if j   i or i � 1, j � N

0 otherwise
(5.3.22)
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we can recast the previous definition as

J
rns,N
j � pLnLÓqj,j . (5.3.23)

We notice that both Qrns,N
j and J rns,Nj depend on time, and we adopt the convention that if not explicitly

written the evaluation is at time 0. Furthermore, we define

Qrns,N �
Ņ

j�1
Q
rns,N
j , J rns,N �

Ņ

j�1
J
rns,N
j , (5.3.24)

and we refer to Qrns,N as the nth-conserved field, and to J rns,N as the nth-total current.
The evaluation of the expected values of both the currents J rns,Nj and the total current J rns,N according

to the Generalized Gibbs ensemble (5.3.7) is one of the crucial steps to apply the theory of Generalized
Hydrodynamics to the Toda lattice, as it is explained in [Spo22b]. In this manuscript, the author used
some heuristic arguments to explicitly derive the expression for these quantities, here we rigorously justify
his argument applying Theorem 5.1.7.

First, we extend the definition of Qrns,N
j and J

rns,N
j for n � 0, setting Q

r0s,N
j � rj , and J

r0s,N
j �

�pj � �Qr1s,N
j . We notice that

°N
j�1 J

r0s,N
j � �°N

j�1 Q
r1s,N
j is still a conserved field. We are now in

position to show how to compute the limiting Toda average current

lim
NÑ8

1
N

E
�
J rns,N

�
, (5.3.25)

in terms of the susceptibility matrix (5.1.24) of the Toda chain, so in particular of the derivative of the
Free energy (5.3.19). Indeed, we prove the following:

Lemma 5.3.5. Consider the Lax matrix L (5.3.4) of the Toda lattice distributed according to the Gener-
alized Gibbs Ensemble (5.3.7), and assume that P pxq is a polynomial of even degree with positive leading
order coefficient. Then, for any fixed n P N, and α P R� defining the total currents J rns,N as in (5.3.24)
we have the following equality

lim
NÑ8

1
N

E
�
J rns,N

�
�

» α

0
Bt1Bt2FT ps, P � it1x� it2x

nq|t1,t2�0ds. (5.3.26)

Proof. In view of the cyclic structure of the measure µT and of the total current, we deduce that

1
N

E
�
J rns,N

�
� E

�
J
rns,N
1

�
. (5.3.27)

Furthermore, for any fixed N , we deduce, by differentiating with respect to the parameter α, the following
equality

BαE
�
J
rns,N
1

�
� �Cov

�
J
rns,N
1 ;

Ņ

j�1
rj

�
� �

Ņ

j�1
Cov

�
J
rns,N
1 ; Qr0s,N

j

	
, (5.3.28)

where we defined for any functions f, g P L2pXN , µT q

Covpf ; gq � E rfgs � E rf sE rgs . (5.3.29)

We show now that the following limits coincide

lim
NÑ8

Ņ

j�1
Cov

�
J
rns,N
1 ; Qr0s,N

j

	
� lim

NÑ8

Ņ

j�1
Cov

�
J
r0s,N
1 ; Qrns,N

N�j�2

	
. (5.3.30)
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Indeed, for any n,m ¥ 0 and t P R

Cov
�
J
rns,N
j�1 ptq � J

rns,N
j ptq ; Qrms,N

1 p0q
	
� � d

dt
Cov

�
Q
rns,N
j ptq ; Qrms,N

1 p0q
	

� � d

dt
Cov

�
Q
rns,N
1 p0q ; Qrms,N

N�j�2p�tq
	

� Cov
�
Q
rns,N
1 p0q ; J rms,N

N�j�3p�tq � J
rms,N
N�j�2p�tq

	
,

(5.3.31)

where we used that s ÞÑ Q
rns,N
j pt� sqQrms,N

1 psq is constant in law under the Toda dynamic, and the
periodicity of the matrix L (5.3.4). Denoting the difference operator Bjfpjq � fpj � 1q � fpjq, equation
(5.3.31) shows that

Bj

�
Cov

�
J
rns,N
j ptq ; Qrms,N

1 p0q
	
� Cov

�
Q
rns,N
1 p0q; J rms,N

N�j�2p�tq
		

� 0 (5.3.32)

Evaluating the previous expression at t � 0, we deduce that there is some constant cN , independent of
j, such that

Cov
�
J
rns,N
j ; Qrms,N

1

	
� Cov

�
Q
rns,N
1 ; J rms,N

N�j�2

	
� cN . (5.3.33)

Furthermore, since both Q
rns,N
j , and J

rms,N
j are local quantities, in view of Theorem 5.1.7, we deduce

that limNÑ8NcN � 0. So, evaluating the previous expression for m � 0, we deduce (5.3.30). Thus, in
the large N limit, we can recast (5.3.28) as

lim
NÑ8

BαE
�
J
rns,N
1

�
� � lim

NÑ8

Ņ

j�1
Cov

�
J
r0s,N
1 ; Qrns,N

j

	
� lim

NÑ8

Ņ

j�1
Cov

�
Q
r1s,N
1 ; Qrns,N

j

	
. (5.3.34)

Moreover, in view of the periodicity properties ot the conserved fields and (5.3.19)

lim
NÑ8

BαE
�
J
rns,N
1

�
� lim

NÑ8
1
N

Cov
�
Qr1s,N ; Qrns,N

	
� Bt1Bt2FT pα, P � it1x� it2x

nq|t1,t2�0 . (5.3.35)

Noticing that limαÑ0 E
�
J
rns,N
1

�
� 0, and that we can always uniformly bound E

�
J
rns,N
1

�
by a constant

independent of N , the previous equation implies that

lim
NÑ8

E
�
J
rns,N
1

�
�

» α

0
Bt1Bt2FT ps, P � it1x� it2x

nq|t1,t2�0ds. (5.3.36)

So, we conclude.

The real β-ensemble in the high-temperature regime. The real β-ensemble is the probability
measure on RN given by

dPHpλ1, . . . , λN q � 1
ZH

N pβ, P q
¹
i j

|λj � λi|βe�
°N

j�1 P pλjqdλ , (5.3.37)

where β ¡ 0 and P is a continuous function such that the partition function

ZH
N pβ, P q �

»
RN

¹
i j

|λj � λi|βe�
°N

j�1 P pλjqdλ

is finite. This is the case if P grows to infinity fast enough, namely if for some β1 ¡ maxp1, βq,

lim inf
|x|Ñ8

P pxq
Nβ1 ln |x| ¡ 1 , (5.3.38)
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see [AGZ10, equation (2.6.2)].
Dumitriu and Edelman showed in [DE02] that the β-ensemble admits a tridiagonal representation

H �

��������

a1 b1 0
b1 a2 b2

. . . . . . . . .
. . . . . . bN�1

0 bN�1 aN

������� , (5.3.39)

where the entries of the matrix are distributed according to the following probability measure

dµH � 1
ZH

N pβ, P q
N�1¹
j�1

b
βpN�jq�1
j 1bj¥0 exp p�TrP pHqq dadb . (5.3.40)

Then, the eigenvalues of H are distributed according to dPH (5.3.37). An important example is the case
P pxq � x2{2 for which we recover the classical Gaussian β Ensemble, see [AGZ10, Section 2.5], and the
distribution µH factorizes in the following way: the entries of H can be seen to be independent (modulo
the symmetry of the matrix), Gaussian N p0, 1q on the diagonal, and the law of the off-diagonal elements
is given by renormalized chi variables

bj � 1?
2
χpN�jqβ ,

where the variable X is χκ-distributed if its law is given by the density function

fpxq � xκ�1e�x2{2

2κ{2�1Γpκ{2q .

We are interested in the so-called high-temperature regime for this model, specifically, we are interested
in the infinite size N limit, in such a way that β � 2α

N for some α ¡ 0. In this regime the probability
distribution (5.3.40) becomes

dµH � 1
ZH

N pβq
N�1¹
j�1

b
2αp1� j

N q�1
j 1bj¥0 exp p�TrP pHqq dadb . (5.3.41)

This regime has drawn a lot of attention from the random matrix and statistical physics communities
lately. Introducing the empirical measure by

dµ̂N � 1
N

Ņ

i�1
δλi

,

this model was first considered in [ABG12], where the authors were able to compute the limiting empirical
measure for this model when P pxq � x2{2. Recently, Garcia-Zelada showed in [GZ19] that under a general
choice of P , the sequence of empirical measures satisfies a large deviation principle with strictly convex
rate function, ensuring the convergence of µ̂N . Although the limiting measure is not explicit, its density
ρP

α satisfies for almost every x the nonlinear equation

P pxq � 2α
»
R

log |x� y|ρP
α pyqdy � log ρP

α pxq � λP
α

for some constant λP
α , see [GM22, Lemma 3.2] for example.

The fluctuations of the eigenvalues in the bulk and at the edge of a configuration were studied for
example in [BGP15, NT18, NT20, Pak18, Lam21]. These fluctuations were shown to be described by
Poisson statistics in this regime. With the choice P pxq � x2{2, Nakano and Trinh proved in [NT18] a
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Central Limit theorem for this ensemble, namely they proved that for smooth enough f : R Ñ R, the
random variables ?

N

�»
R
fdµ̂N �

»
R
fρP

α dx



converge towards a centred Gaussian variable with variance depending both on α and P . In [DGM23], the
authors showed this central limit theorem for general confining potentials and smooth enough, decaying
at infinity test functions. In this paper, we consider the case where P is a polynomial of even degree ¥ 2.
We deduce here from Section 5.2 a central limit theorem for polynomial test functions.

Indeed, in view of Corollary 5.3.2, following the same reasoning as in the case of Toda lattice, we can
apply Theorem 5.1.3 to the real β ensemble in the high-temperature regime, thus we deduce that

Corollary 5.3.6 (CLT for Gaussian β ensemble). Consider the matrix representation (5.3.39) of the
real β ensemble in the high-temperature regime, and let P pxq be a polynomial of even degree with positive
leading order coefficient. Then, defining the Free energy FHpα, P q as

FHpα, P q � � lim
NÑ8

1
N

lnpZT
N pα, P qq , (5.3.42)

for all j P N fixed, we have the following weak limit

lim
NÑ8

TrHj � E
�
TrHj

�
?
N

á N p0, σ2q , (5.3.43)

where
E
�
TrHj

� � iNBtFHpα, P � itxjq|t�0 , σ2 � |B2
t FHpα, P � itxjq|t�0 | . (5.3.44)

Thus, we obtained a central limit theorem for the real β ensemble in the high-temperature regime
with polynomial potential.

Furthermore, we are in place to apply the second part of our result; indeed, we deduce the following
identities

BαpαBtFHpα, P � itxjq|t�0q � BtFT pα, P � itxjq|t�0 ,

BαpαB2
t FHpα, P � itxjq|t�0q � B2

t FT pα, P � itxjq|t�0

(5.3.45)

so we are able to compute both the moments and their variances of the Toda lattice starting from the
one of the real β ensemble at high-temperature.

Remark 5.3.7. Applying the second part of Theorem 5.1.3, we deduce the following equality valid for
the currents of the Toda lattice:

lim
NÑ8

E
�
J
rns,N
1

�
�

» α

0
Bt1Bt2FT ps, P � it1x� it2x

nq|t1,t2�0ds � αBt1Bt2FHpα, P � it1x� it2x
nq|t1,t2�0 .

(5.3.46)

5.3.2 The exponential Toda lattice, and the Laguerre β ensemble at high-
temperature

In this subsection, we focus on the Exponential Toda lattice and its relation with the Laguerre β ensemble
in the high-temperature regime [FM21]. These two systems were considered in [GGGM23]. In this paper,
the authors considered the classical Gibbs ensemble for the Exponential Toda lattice and were able to
compute the density of states for this model connecting it to the Laguerre α ensemble [Maz22], which is
related to the classical β one in the high-temperature regime. Here we consider both the Generalized Gibbs
ensemble for the integrable lattice and the Laguerre β ensemble at high-temperature with polynomial
potential, and we obtain a CLT for both systems, furthermore, we connect the two in the same way as
we did for the Toda lattice and the real β ensemble.
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The exponential Toda lattice. The exponential Toda lattice is the Hamiltonian system on R2N

described by the Hamiltonian

HEpp,qq �
Ņ

j�1
e�pj �

Ņ

j�1
eqj�qj�1 , pj , qj P R , (5.3.47)

with canonical Poisson bracket. Here, we consider periodic boundary conditions

qj�N � qj � Ω, pj�N � pj , @ j P Z, (5.3.48)

and Ω ¥ 0 is an arbitrary constant. The equations of motion are given in Hamiltonian form as

9qj � BHE

Bpj
� �e�pj ,

9pj � �BHE

Bqj
� eqj�1�qj � eqj�qj�1 .

(5.3.49)

Following [GGGM23], we perform the non-canonical change of coordinates

xj � e�
pj
2 , yj � e

qj�qj�1
2 � e�

rj
2 , rj � qj�1 � qj , j � 1, . . . , N, (5.3.50)

to obtain a Lax Pair for this system. Indeed, in these variables, the Hamiltonian (5.3.47) transform into

HEpx,yq �
Ņ

j�1
px2

j � y2
j q , (5.3.51)

and the Hamilton’s equations (5.3.49) become

9xj � xj

2
�
y2

j � y2
j�1

�
, 9yj � yj

2
�
x2

j�1 � x2
j

�
, j � 1, . . . , N, (5.3.52)

where xN�1 � x1, y0 � yN .
Let us introduce the matrices L,A P MatpNq as

L �

��������

x2
1 � y2

N x1y1 xNyN

x1y1 x2
2 � y2

1 x2y2
. . . . . . . . .

. . . . . . xN�1yN�1
xNyN xN�1yN�1 x2

N � y2
N�1

������� , (5.3.53)

A � 1
2

��������

0 x1y1 �xNyN

�x1y1 0 x2y2
. . . . . . . . .

. . . . . . xN�1yN�1
xNyN �xN�1yN�1 0

������� , (5.3.54)

The system of equations (5.3.52) admits the Lax representation
9L � rA,Ls. (5.3.55)

Hence, the quantities Hm � TrLm, m � 1, . . . , N are constants of motion as well as the eigenvalues of L.
For this integrable model, we define the generalized Gibbs ensemble as

dµET � 1
ZHE

N pα, γ, P q
N¹

j�1
x

2 α
γ �1

j y2α�1
j 1xj¥01yj¥0e

�TrP pLqdxdy , (5.3.56)
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where α, γ ¡ 0, and P is a real valued polynomial with positive leading coefficient. ZHE

N pα, γ, P q is the
normalization constant.

Remark 5.3.8. The definition of our Gibbs ensemble is slightly different from the one given in [GGGM23],
indeed there the authors were considering just the classical Gibbs ensemble for this model, so the case
P pxq � x{2.

We notice that the structure of (5.3.56) resembles the one of µp1qkM�ℓ (5.2.1), thus we want to apply
Theorem 5.1.3. To do this, we have to identify the functions F,W . First, as an application of Theorem
5.3.1, we obtain the following corollary

Corollary 5.3.9. Fix m P N, and consider the matrix L (5.3.53). Then for N big enough, there exists
some k � kpmq P N, and two polynomial functions V : R2k

� � R2k
� Ñ R and V1 : R2k�ℓ

� � R2k�ℓ
� Ñ R

such that

TrLm �
M̧

j�1
V pxj ,yj ,xj�1,yj�1q

� V1pxM , xkM�1, . . . , xkM�ℓ,x1,yM , ykM�1, . . . , ykM�ℓ,y1q ,
(5.3.57)

where N � kM � ℓ.

As in the Toda lattice case, if we naively set F px, yq � x2 α
γ �1y2α�1, this would not fit in the hypotheses

of our theorem, since this is not an L2pR2
�q function. As in the previous case, we have just to consider a

slight modification of the measure:

dµET � 1
ZHE

N pα, γ, P q
N¹

j�1
x

2 α
γ �1

j y2α�1
j exp

�
�εx

2
j � y2

j

2

�
1xj¥01yj¥0e

�TrP pLq�ε
x2

j
�y2

j
2 dxdy , (5.3.58)

for fixed ε ¡ 0, but small. In this way, defining F px, y, αq � x2 α
γ �1y2α�1 expp�εx2�y2

2 q, andW px1,y1,x2,y2q �
V px1,y1,x2,y2q � ε

2
°2k

j�1 x
2
j � y2

j we are in the same hypotheses as Theorem 5.1.3, thus we deduce the
following corollary

Corollary 5.3.10 (CLT for the Exponential Toda lattice). Consider the Lax matrix L (5.3.53) of the
Exponential Toda lattice distributed according to the Generalized Gibbs Ensemble (5.3.56). Then, defining
the Free energy FHEpα, γ, P q as

FET pα, γ, P q � � lim
NÑ8

1
N

lnpZHE

N pα, γ, P qq , (5.3.59)

for all j P N fixed, we have the following weak limit

lim
NÑ8

TrLj � E
�
TrLj

�
?
N

á N p0, σ2q , (5.3.60)

where
E
�
TrLj

� � iNBtFET pα, γ, P � itxjq|t�0 , σ2 � |B2
t FET pα, γ, P � itxjq|t�0 | (5.3.61)

The Laguerre β ensemble in the high-temperature regime. The Laguerre β ensemble is a ran-
dom matrix ensemble introduced by Dumitriu and Edelman in [DE02]. It has the following matrix
representation
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Q �

��������

x2
1 x1y1

x1y1 x2
2 � y2

1 x2y2
. . . . . . . . .

. . . . . . xN�1yN�1
xN�1yN�1 x2

N � y2
N�1

������� , (5.3.62)

where the entries of Q are distributed according to

dµL � 1
ZL

N pβq
N¹

j�1
x

βpM�j�1q�1
j 1xj¥0

N�1¹
j�1

yβpN�jq�1
1yj¥0 exp p�TrP pQqq dxdy , (5.3.63)

where M is such that limNÑ8N{M � γ P p0, 1s, and P can be any continuous function such that the
partition function is well-defined, for our purpose we consider P pxq to be a polynomial.

The remarkable property of this ensemble is that it is possible to explicitly compute the joint eigenvalue
density as

dPL � 1
ZL

N pβ, P q
N¹

j�1
λ

β
2 pM�N�1q�1
j 1λj¥0

¹
j i

|λj � λi|βe�
°N

j�1 P pλjqdλ . (5.3.64)

We are interested in the so-called high-temperature limit, i.e. when β � 2α
N , α P R�, which was

considered in [ABMV13], where the authors were able to compute the density of states for the particular
case P pxq � x{2.

In this regime, the density (5.3.63) takes the form

dµL � 1
ZL

N pα, γ, P q
N¹

j�1
x

2 α
γ p1� j�1

N q�1
j 1xj¥0

N�1¹
j�1

y2αp1� j
N q�1

1yj¥0 exp p�TrP pQqq dxdy . (5.3.65)

The structure of this density resembles the one of dµp2qkM�ℓ(5.2.3), indeed proceeding as in the case of
the Exponential Toda lattice, we deduce the following corollary

Corollary 5.3.11 (CLT for Laguerre β ensemble). Consider the matrix representation (5.3.62) of the
Laguerre β ensemble in the high-temperature regime, and let P pxq be a real polynomial of degree at least
1. Then, defining the Free energy FLpα, γ, P q as

FLpα, γ, P q � � lim
NÑ8

1
N

lnpZL
N pα, γ, P qq , (5.3.66)

for all j P N fixed, we have the following weak limit

lim
NÑ8

TrQj � E
�
TrQj

�
?
N

á N p0, σ2q , (5.3.67)

where
E
�
TrQj

� � iNBtFLpα, γ, P � itxjq|t�0 , σ2 � |B2
t FLpα, γ, P � itxjq|t�0 | (5.3.68)

Which is the perfect analogue of the result for the Exponential Toda lattice. Furthermore, we are in
position to apply the second part of our result, indeed we can deduce the following identities

BαpαBtFLpα, γ, P � itxjq|t�0q � BtFET pα, γ, P � itxjq|t�0 ,

BαpαB2
t FLpα, γ, P � itxjq|t�0q � BtFET pα, γ, P � itxjq|t�0 ,

(5.3.69)

thus, we can compute all the quantities involved in the previous theorems from the Free Energy of the
Laguerre ensemble.
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5.3.3 The Volterra lattice, and the antisymmetric β ensemble at high-temperature
In this subsection, we focus on the Volterra lattice and its relation with the Antisymmetric β ensemble
[DF10] in the high-temperature regime [FM21]. These two systems were considered in [GGGM23]. In
this paper, the authors considered the classical Gibbs ensemble for the Volterra lattice and were able
to compute the density of states for this model connecting it to the Antisymmetric α ensemble [FM21],
which is related to the classical β one introduced by Dumitriu and Forrester [DF10].

The Volterra Lattice. The Volterra lattice (or discrete KdV equation) is the following systems of N
coupled ODEs

9aj � aj paj�1 � aj�1q , j � 1, . . . , N, (5.3.70)

here aj P R� for j � 1, . . . , N , and we consider periodic boundary conditions aj � aj�N for all j P Z.
Volterra introduced it to study evolution of populations in a hierarchical system of competing species.
This system was considered by Kac and van Moerbeke in [KvM75], who solved it explicitly using a discrete
version of the inverse scattering transform introduced by Flaschka [Fla74a].

Introducing on the phase space RN
� the following Poisson bracket

taj , aiuVolt � ajaipδi,j�1 � δi,j�1q , (5.3.71)

and defining the Hamiltonian H1 �
°N

j�1 aj , we can rewrite the equations of motion (5.3.70) in Hamil-
tonian form as

9aj � taj , H1uVolt . (5.3.72)

An elementary constant of motion for the system is H0 �
±N

j�1 aj which is independent of H1.
The Volterra lattice is a completely integrable system, and it admits several equivalents Lax repre-

sentations, see e.g. [KvM75, Mos75, GGGM23]. We use the one presented in [GGGM23]. Specifically,
we introduce the matrices L,A P MatpR, Nq as

L �

��������

0 ?
a1 �?aN

�?a1 0 ?
a2

. . . . . . . . .
. . . . . . ?

aN�1?
aN �?aN�1 0

������� , (5.3.73)

A � 1
2

Ņ

j�1

?
ajaj�1pEj,j�2 � Ej�2,jq , (5.3.74)

where Er,s is defined as pEr,sqij � δi
rδ

j
s and Ej�N,i � Ej,i�N � Ej,i. Then, it follows that the equations

of motion (5.3.72) are equivalent to

9L � rL;As . (5.3.75)

In view of this Lax pair, we know that TrLk are constant of motion for the model.
Following [GGGM23], we introduce the Generalized Gibbs Ensemble of the Volterra lattice (5.3.70)

as

dµVoltpaq �
eTrP pLq±N

j�1 a
α�1
j 1aj¡0da

ZVolt
N pα, P q , (5.3.76)

where α ¡ 0, P pxq is a polynomial of the form P pxq � p�1qjx2j � l.o.t , otherwise the previous measure
is not normalizable, moreover, we notice that, in view of the antisymmetric nature of L, TrL2j�1 � 0.
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For this reason, we perform the change of coordinates ?aj � xj , where we take just the positive root, so
the previous measure read

dµVoltpxq �
eTrP pLq±N

j�1 x
2α�1
j 1xj¡0dx

ZVolt
N pα, P q . (5.3.77)

This Generalized Gibbs ensemble resembles the structure of µp1qkM�ℓ (5.2.1), we have just to identify
F,W . We notice that it is possible to generalize Theorem 5.3.1 also for the antisymmetric situation, so
we deduce the following Corollary:

Corollary 5.3.12. Fix m P N, and consider the matrix L (5.3.73). Then for N big enough, there exists
a k � kpmq P N, and two polynomial functions V : Rk

� � Rk
� Ñ R, V1 : Rk

� � Rℓ
� � Rk

� Ñ R such that

TrLm �
M̧

j�1
V pxj ,xj�1q � V1pxM , xkM�1, . . . , xkM�ℓ,x1q , (5.3.78)

where N � kM � ℓ.

Thus, following the same kind of reasoning as in the Toda lattice, section 5.3.1, and the Exponential
Toda lattice, section 5.3.2, we deduce the following:

Corollary 5.3.13 (CLT for Volterra lattice). Consider the Lax matrix L (5.3.73) of the Volterra lat-
tice distributed according to the Generalized Gibbs Ensemble (5.3.76). Then, defining the Free energy
FVoltpα, P q as

FVoltpα, P q � � lim
NÑ8

1
N

lnpZVolt
N pα, P qq , (5.3.79)

for all j P N fixed, we have the following weak limit

lim
NÑ8

TrLj � E
�
TrLj

�
?
N

á N p0, σ2q , (5.3.80)

where
E
�
TrLj

� � iNBtFVoltpα, P � itxjq|t�0 , σ2 � |B2
t FVoltpα, P � itxjq|t�0 | . (5.3.81)

The Antisymmetric β ensemble in the high-temperature regime The Antisymmetric β ensem-
ble is a random matrix ensemble introduced by Dumitriu and Forrester in [DF10]; it has the following
matrix representation

Q �

��������

0 x1
�x1 0 x2

. . . . . . . . .
. . . . . . xN�1

�xN�1 0

������� , (5.3.82)

and the entries of the matrix Q are distributed according to

dµAG � 1
ZAG

N pβ, P q
N�1¹
j�1

x
βpN�jq�1
j 1xj¥0 exppTrP pQqqdx , (5.3.83)

here P pxq can be any function that makes (5.3.83) normalizable, but for our purpose we will consider
P pxq polynomial of the form P pxq � p�1qjx2j � l.o.t.
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As in the previous cases, we are interested in the high-temperature regime for this model, so we set
β � 2α

N , and we rewrite the previous density as

dµAG � 1
ZAG

N pα, P q
N�1¹
j�1

x
αp1� j

N q�1
j 1xj¥0 exppTrP pQqqdx . (5.3.84)

This regime was introduced in [GGGM23], where the author computed the density of states for this model
in the case P pxq � x2{2. The structure of this last density (5.3.84) resembles the one of µp2qkM�ℓ(5.2.3),
indeed proceeding as in the case of the Volterra lattice, we deduce the following corollary

Corollary 5.3.14 (CLT for Antisymmetric Gaussian β ensemble). Consider the matrix representation
(5.3.82) of the Antisymmetric β ensemble in the high-temperature regime, endowed with the probability
distribution dµAG (5.3.84), and let P pxq be a polynomial of the form P pxq � p�1qjx2j � l.o.t.. Then,
defining the Free energy FAGpα, P q as

FAGpα, P q � � lim
NÑ8

1
N

lnpZAG
N pα, P qq , (5.3.85)

for all j P N fixed, we have the following weak limit

lim
NÑ8

TrQj � E
�
TrQj

�
?
N

á N p0, σ2q . (5.3.86)

where
E
�
TrQj

� � iNBtFAGpα, P � itxjq|t�0 , σ2 � |B2
t FAGpα, P � itxjq|t�0 | . (5.3.87)

Which is the perfect analogue of the result for the Volterra lattice.

Remark 5.3.15. In view of Theorem 5.1.3, we deduce the following identities

BαpαBtFAGpα, P � itxjq|t�0q � BtFAGpα, P � itxjq|t�0 ,

BαpαB2
t FAGpα, P � itxjq|t�0q � BtFAGpα, P � itxjq|t�0

(5.3.88)

5.3.4 The defocusing Ablowitz-Ladik lattice, and the Circular β ensemble at
high-temperature

In this subsection, we focus on the defocusing Ablowitz-Ladik lattice, and its relation to the Circular
β ensemble at high-temperature [HL21, GM23, Spo22b]. This relation was highlighted by one of the
present authors and T. Grava [GM23], and independently by H. Spohn [Spo22b]. In these papers, the
authors were able to characterize the density of states of the Ablowitz-Ladik lattice in terms of the
one of the Circular β ensemble in the high-temperature regime. Moreover, in [GM23] the authors were
able to compute explicitly the density of states in the case of linear potential in terms of the solution
of the Double Confluent Heun Equation [DLMF] highlighting a connection with the Painlevé equations
[LN21, FIKN06]. In [MM23b], the two present authors obtained a large deviations principles for the
empirical spectral measure for any continuous and bounded potential.

The defocusing Ablowitz-Ladik lattice. The defocusing Ablowitz-Ladik (dAL) lattice is defined by
the following system of nonlinear equations

i 9aj � �paj�1 � aj�1 � 2ajq � |aj |2paj�1 � aj�1q , (5.3.89)

where ajptq P C. We assume N -periodic boundary conditions aj�N � aj , for all j P Z. The dAL
lattice was introduced by Ablowitz and Ladik [AL75, AL76] as the spatial integrable discretization of the
defocusing cubic nonlinear Schrödinger Equation for the complex function ψpx, tq, x P S1 and t P R:

iBtψpx, tq � �B2
xψpx, tq � 2|ψpx, tq|2ψpx, tq. (5.3.90)
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As for the others dynamical systems that we considered, the dAL is an integrable system. Its inte-
grability was proved by Ablowitz and Ladik by discretizing the 2�2 Zakharov-Shabat Lax pair [AKN74,
AL75] of the cubic nonlinear Schrödinger equation. Furthermore, Nenciu and Simon [Nen05, Sim05]
constructed a new Lax pair for this lattice. Following their construction we double the size of the chain
according to the periodic boundary condition, thus we consider a chain of 2N particles a1, . . . , a2N such
that aj � aj�N for j � 1, . . . , N . Define the 2� 2 unitary matrix Ξj

Ξj �
�
aj ρj

ρj �aj



, j � 1, . . . , 2N , ρj �

b
1� |aj |2 (5.3.91)

and the 2N � 2N matrices

M �

���������

�a2N ρ2N

Ξ2
Ξ4

. . .
Ξ2N�2

ρ2N a2N

��������
, L �

�����
Ξ1

Ξ3
. . .

Ξ2N�1

���� . (5.3.92)

Now let us define the unitary Lax matrix
E � LM , (5.3.93)

that has the structure of a 5-band periodic diagonal matrix. The matrix E is a periodic CMV matrix
[CMV05]. The equations of motion (5.3.89) are equivalent to the following Lax equation for the matrix
E :

9E � i
�
E , E� � pE�q:� , (5.3.94)

where : stands for hermitian conjugate and

E�j,k �

$'&'%
1
2 Ej,j j � k

Ej,k k � j � 1 mod 2N or k � j � 2 mod 2N
0 otherwise.

(5.3.95)

Since the matrix E is a periodic band matrix with fixed bandwidth, we can follow the same reasoning
as in the previous cases and conclude the following

Lemma 5.3.16. Fix m P N, and consider the matrix E (5.3.93). Then for N big enough, there exists a
k � kpmq P N, and two polynomials V : Ck

� � Ck
� Ñ R, and V : Ck

� � Cℓ
� � Ck

� Ñ R such that

TrEm �
M̧

j�1
V paj ,aj�1q � V1paM ,akM�1, . . . , akM�ℓ,a1q , (5.3.96)

where N � kM � ℓ.

Following [Spo22b, GM23, MM23b], we notice that the quantity K0 �
±N

j�1p1� |aj |2q is conserved,
so this means that if |ajp0q|   1 for all j � 1, . . . , N then |ajptq|   1 for all j � 1, . . . , N for all t P R, so
we can consider DN as our phase space, here D � tz P C | |z|   1}. On this phase space, we introduce
the Generalized Gibbs ensemble for the defocusing AL lattice as

dµdAL �
±N

j�1
�
1� |aj |2

�α�1
1ajPD exp p�Tr pP pEqqqd2a

ZdAL
N pα, P q , (5.3.97)

where P is a real-valued Polynomial, meaning that there exists a polynomial rP such that P � ℜp rP q. In
view of Lemma 5.3.16, we are in the hypotheses of Theorem 5.1.3, thus we deduce the following:
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Corollary 5.3.17 (CLT for defocusing Ablowitz–Ladik lattice). Consider the Lax matrix E (5.3.93) of
the defocusing Ablowitz–Ladik lattice distributed according to the Generalized Gibbs Ensemble (5.3.97).
Then, defining the Free energy FdALpα, P q as

FdALpα, P q � � lim
NÑ8

lnpZdAL
N pα, P qq

2N , (5.3.98)

for all j P N fixed, we have the following weak limit

lim
NÑ8

TrEj � E
�
TrEj

�
?
N

á N p0, σ2q , (5.3.99)

where
E
�
TrEj

� � iNBtFdALpα, P � itxjq|t�0 , σ2 � |B2
t FdALpα, P � itxjq|t�0 | . (5.3.100)

The circular β ensemble at high-temperature. The circular β ensemble was introduced by Killip
and Nenciu in [KN04]; as the other β ensembles that we considered, it possesses a matrix representation.
Consider the two block diagonal matrices

M � diag pΞ1,Ξ3,Ξ5 . . . , q and L � diag pΞ0,Ξ2,Ξ4, . . .q , (5.3.101)

where the block Ξj , j � 1, . . . , N � 1 are defined in (5.3.91), while Ξ0 � p1q and ΞN � pαN q are 1 � 1
matrices. Then, we define E as follows

E � LM. (5.3.102)

The entries of this matrix are distributed according to

dµC �
±N�1

j�1
�
1� |aj |2

�βpN�jq�1
1ajPD exp p�Tr pP pEqqq±N�1

j�1 d2aj
daN

iaN

ZdAL
N pβ, P q . (5.3.103)

As for the other β ensembles, one can explicitly compute the joint eigenvalue density for this ensemble
as

dPC � 1
ZC

N pβ, P q
¹
j ℓ

|eiθj � eiθℓ |β1θjPTe
�°N

j�1 P peiθj qdθ , (5.3.104)

here T � r�π, πq, eiθj are the eigenvalues of E, and P can be any continuous function that makes the
measure normalizable. We restrict our attention to the class of real polynomial P pzq.

We are interested in the high-temperature limit for this ensemble [GM23, Spo22b], so we set β � 2α
N ,

obtaining

dµC �
±N�1

j�1
�
1� |aj |2

�2αp1� j
N q�1

1ajPD exp p�Tr pP pEqqq±N�1
j�1 d2aj

daN

iaN

ZdAL
N pα, P q . (5.3.105)

So, in view of Lemma 5.3.16, we are in the hypotheses of Theorem 5.1.3, so we deduce the following

Corollary 5.3.18 (CLT for Circular β ensemble). Consider the matrix representation (5.3.102) of
the Circular β ensemble in the high-temperature regime, endowed with the probability distribution dµC

(5.3.105), and let P pxq be a real-valued polynomial. Then, defining the Free energy FCpα, P q as

FCpα, P q � � lim
NÑ8

lnpZC
N pα, P qq
2N , (5.3.106)

for all j P N fixed, we have the following weak limit

lim
NÑ8

TrEj � E
�
TrEj

�
?
N

á N p0, σ2q , (5.3.107)
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where
E
�
TrEj

� � iNBtFCpα, γ, P � itxjq|t�0 , σ2 � |B2
t FCpα, P � itxjq|t�0 | . (5.3.108)

Remark 5.3.19. We notice that

• Hardy and Lambert in [HL21] already proved a CLT theorem for the Circular β ensemble in the
high-temperature regime for a wider class of functions and potentials than we can consider with our
result. Nevertheless, we highlight the fact that in our case we can explicitly compute the means, and
the variances in terms of the Free energy.

• The following identities hold in view of the last part of Theorem 5.1.3

BαpαBtFCpα, P � itxjq|t�0q � BtFdALpα, P � itxjq|t�0 ,

BαpαB2
t FCpα, P � itxjq|t�0q � BtFdALpα, P � itxjq|t�0 .

(5.3.109)

This relation was already proven in [GM23] with the same kind of argument that we followed.

5.3.5 The defocusing Schur flow, and the Jacobi β ensemble at high-temperature
In this subsection, we focus on the defocusing Schur flow [Gol06], and its relation to the Jacobi β ensemble
at high-temperature [FM21]. This relation was first noticed in [Spo22b], and then the two present authors
obtained a large deviations principles for the empirical spectral measure for the defocusing Schur flow,
and they were able to link it to the one of the Jacobi β ensemble in the high-temperature regime [MM23b].

The defocusing Schur flow. The defocusing Schur flow is the system of ODEs [Gol06]

9aj � ρ2
j paj�1 � aj�1q , ρj �

b
1� |aj |2 , (5.3.110)

and, as before, we consider periodic boundary conditions, namely aj � aj�N for all j P Z.
We notice that, if one chooses an initial data such that ajp0q P R for all j � 1, . . . , N , then ajptq P R

for all times. Moreover, it is straightforward to verify that K0 �
±N

j�1
�
1� |aj |2

�
is conserved along the

Schur flow. This implies that we can choose as phase space for the Schur flow the N -cube IN , where
I :� p�1, 1q. Furthermore, it was shown in [Gol06], that the Schur flow has the same Lax matrix as the
focusing Ablowitz–Laddik lattice.

Following [Spo22b, GGGM23], on IN we define the finite volume limit GGE as

dµdSpaq �
±N

j�1
�
1� a2

j

�α�1
1ajPI exp p�Tr pP pEqqq da
ZdS

N pα, P q , (5.3.111)

where P pxq : R Ñ R is a polynomial. Thanks to Lemma 5.3.16, we can apply Theorem 5.1.3 obtaining
a CLT theorem for the defocusing Schur flow
Corollary 5.3.20 (CLT for defocusing Schur flow). Consider the Lax matrix E (5.3.93) of the defocusing
Schur flow distributed according to the Generalized Gibbs Ensemble (5.3.111). Then, defining the Free
energy FdSpα, P q as

FdSpα, P q � � lim
NÑ8

lnpZdS
N pα, P qq
2N , (5.3.112)

for all j P N fixed, we have the following weak limit

lim
NÑ8

TrEj � E
�
TrEj

�
?
N

á N p0, σ2q , (5.3.113)

where
E
�
TrEj

� � iNBtFdSpα, P � itxjq|t�0 , σ2 � |B2
t FdSpα, P � itxjq|t�0 | . (5.3.114)
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The Jacobi β ensemble in the high-temperature regime. The Jacobi β ensemble is a random
matrix ensemble introduced by Killip and Nenciu in [KN04]. It has two slightly different matrix repre-
sentations. The first one is the same as the Circular β ensemble (5.3.102), but the distribution of the
entries of the matrix is

dµJpaq �
±2N�1

j�1
�
1� a2

j

�βp2N�jq{4�1 ±2N�1
j�1 p1� ajqa�1�β{4p1� p�1qjajqb�1�β{4

1ajPI exp p�Tr pP pEqqqda
ZJ

N pβ, P q
,

(5.3.115)
where a,b ¡ �1, P pxq is a real value polynomial. We notice that we are considering an even number

of random variables, and aj P R; for these reasons, all the eigenvalues of E come in pairs, meaning that if
eiθ is an eigenvalue, then e�iθ is another one. Exploiting this symmetry, Killip and Nenciu found another
matrix representation for this ensemble

J �

��������

c1 b1
b1 c2 b2

. . . . . . . . .
. . . . . . bN�1

bN�1 cN

������� ,

#
bj �

�p1� a2j�2qp1� a2
2j�1qp1� a2jq

�1{2

cj � p1� a2j�2qa2j�1 � p1� a2j�2qa2j�3
, (5.3.116)

where a0 � a2N � �1, and the eigenvalues tλjuN
j�1 of J are related to the one of E as λj � cospθjq.

Also, in this case, it is possible to compute explicitly the joint eigenvalue density for this model as

dPJ � 1
ZJ

N pβ, P q
¹
j ℓ

| cospθjq � cospθℓq|β1θjPTe
�2

°N
j�1 P pcospθjqqdθ . (5.3.117)

As in the previous cases, we are interested in the high-temperature regime for this ensemble, so we
wet β � 2α

N , thus the measure (5.3.115) read

dµJpaq �
±2N�1

j�1
�
1� a2

j

�αp1� j
2N q±2N�1

j�1 p1� ajqa�1� α
2N p1� p�1qjajqb�1� α

2N 1ajPI exp p�Tr pP pEqqq da
ZJ

N pβ, P q
.

(5.3.118)
This regime was considered in [TT21] and in the recent paper [NTT23], where the authors established a

CLT for polynomial test functions in the absence of external potential (P � 0 in (5.3.118) ) by considering
orthogonal polynomials, obtaining an explicit recurrence relation for the limiting variance.

Again, thanks to Lemma 5.3.16, we can apply Theorem 5.1.3 deducing the following

Corollary 5.3.21 (CLT for Jacobi β ensemble in the high-temperature). Consider the matrix represen-
tation E (5.3.102) of the Jacobi β ensemble in the high-temperature regime (5.3.118) . Then, defining the
Free energy FJpα, P q as

FJpα, P q � � lim
NÑ8

lnpZJ
N pα, P qq
N

, (5.3.119)

for all j P N fixed, we have the following weak limit

lim
NÑ8

TrEj � E
�
TrEj

�
?
N

á N p0, σ2q , (5.3.120)

where
E
�
TrEj

� � iNBtFJpα, P � itxjq|t�0 , σ2 � |B2
t FJpα, P � itxjq|t�0 | . (5.3.121)
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Remark 5.3.22. We notice that for N even, for a� b � �1� β
4 we can apply the final part of Theorem

5.1.3, thus we deduce that

BαpαBtFJpα, P � itxjq|t�0q � BtFdSpα, P � itxjq|t�0 ,

BαpαB2
t FJpα, P � itxjq|t�0q � B2

t FdSpα, P � itxjq|t�0

(5.3.122)

5.3.6 The Itoh–Narita–Bogoyavleskii lattices
In this section, we apply our results to two families of integrable lattices with short-range interaction
that generalize the Volterra one (5.3.70). These families are described in [Bog91] (see also [Bog88, Ito75,
Nar82]).

One is called additive Itoh–Narita–Bogoyavleskii (INB) r-lattice and is defined by the following equa-
tions

9ai � ai

�
ŗ

j�1
ai�j �

ŗ

j�1
ai�j

�
, i � 1, . . . , N, N ¥ r P N. (5.3.123)

The second family is called the multiplicative Itoh–Narita–Bogoyavleskii (INB) r-lattice and is defined by
the equations

9ai � ai

�
r¹

j�1
ai�j �

r¹
j�1

ai�j

�
, i � 1, . . . , N, N ¥ r P N. (5.3.124)

In both cases we consider the periodicity condition aj�N � aj . We notice that setting r � 1, we recover
in both cases the Volterra lattice. Moreover, both families admit the KdV equation as continuum limits,
see [Bog91].

In both cases the interaction is short-range, but in the additive case (5.3.123) the nonlinearity is
quadratic as in the Volterra lattice, instead in the multiplicative one (5.3.124) it is of polynomial order.

As we already mentioned, both families are integrable for all r P N, indeed both families admits a Lax
pair formulation. For the additive INB lattice (5.3.123), it reads

Lp�,rq �
Ņ

i�1
pai�rEi�r,i � Ei,i�1q (5.3.125)

�

���������������

0 1 0 � � � aN�r 0 0 0
0 0 1 � � � 0 aN�r�1 0 0
0 0 0 1 � � � 0 aN�r�2 0
... . . . . . . . . . . . . . . .

ar�1 0 � � � � � � 0 1 0 0

0 ar�2 0 � � � . . . . . . . . .
... . . . . . . . . . . . . 0 0 1
1 0 � � � aN�r�1 � � � 0 0 0

��������������
r � 1 row

N � r column

(5.3.126)

Ap�,rq �
Ņ

i�1

�
ŗ

j�0
ai�j

�
Ei,i � Ei,i�r�1 , (5.3.127)

we recall that we are always considering periodic boundary conditions, so for all j P Z, aj�N � aj and
Ei,j�N � Ei�N,j � Ei,j . In this notation, the equations of motion (5.3.123) are equivalent to

9Lp�,rq � rLp�,rq;Ap�,rqs . (5.3.128)
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Analogously, the multiplicative INB r-lattices have a Lax Pair formulation, which reads

Lp�,rq �
Ņ

i�1
paiEi,i�1 � Ei�r,iq , (5.3.129)

�

���������������

0 a1 0 � � � 1 0 0 0
0 0 a2 � � � 0 1 0 0
0 0 0 a3 � � � 0 1 0
... . . . . . . . . . . . . . . .
1 0 � � � � � � 0 ar 0 0

0 1 0 � � � . . . . . . . . .
... . . . . . . . . . . . . 0 0 aN�1
aN 0 � � � 1 � � � 0 0 0

��������������
r � 1 row

N � r column

(5.3.130)

Ap�,rq �
Ņ

i�1

�
r¹

j�0
ai�j

�
Ei,i�r�1 . (5.3.131)

Following the construction made in [GGGM23], where the authors numerically computed the density
of states for these two families of lattices, we introduce the generalized Gibbs ensemble for these models
as

dµ�,r �
expp�TrP pLp�,rqqq±N

j�1 a
α�1
j 1aj¥0da

Z
p�,rq
N pa, P q

, (5.3.132)

dµ�,r �
expp�TrP pLp�,rqqq±N

j�1 a
α�1
j 1aj¥0da

Z
p�,rq
N pα, P q

, (5.3.133)

where P pxq is a polynomial. Moreover, enforcing the result of [GGGM23]
Lemma 5.3.23. Fix ℓ P N. Then for N large enough

TrpLp�,rqqℓ � TrpLp�,rqqℓ � 0 , (5.3.134)

if ℓ is not an integer multiple of r � 1.
we can consider just the polynomials P pxq such that P pxq � xjpr�1q � l.o.t. for some j P N.
Due to the local structure of Lp�,rq, Lp�,rq, one can deduce the following:

Lemma 5.3.24. Fix m P N, and consider the matrices Lp�,rq, Lp�,rq (5.3.125)-(5.3.129). Then for
N big enough, there exist kp�,rq � kp�,rqpmq, kp�,rq � kp�,rqpmq P N, and four polynomial functions
V p�,rq : Rkp�,rq

� � Rkp�,rq
� Ñ R, V p�,rq : Rkp�,rq

� � Rkp�,rq
� Ñ R, V p�,rq

1 : Rkp�,rq
� � Rℓp�,rq

� � Rkp�,rq
� Ñ R,

V
p�,rq

1 : Rkp�,rq
� � Rℓp�,rq

� � Rkp�,rq
� Ñ R such that

TrpLp�,rqqm �
Mp�,rq¸

j�1
V p�,rqpxj ,xj�1q

� V
p�,rq

1 pxMp�,rq , xkp�,rqMp�,rq�1, . . . , xkp�,rqMp�,rq�ℓp�,rq ,x1q ,
(5.3.135)

TrpLp�,rqqm �
Mp�,rq¸

j�1
V p�,rqpxj ,xj�1q

� V
p�,rq

1 pxMp�,rq , xkp�,rqMp�,rq�1, . . . , xkp�,rqMp�,rq�ℓp�,rq ,x1q ,
(5.3.136)

where N � kp�,rqM p�,rq � ℓp�,rq � kp�,rqM p�,rq � ℓp�,rq.
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Thus, proceeding as we have done for the others systems previously considered, we obtain the following:

Corollary 5.3.25 (CLT for INB lattices). Consider the Lax matrices Lp�,rq, Lp�,rq (5.3.125)-(5.3.129)
of the additive and multiplicative INB lattices respectively distributed according to their Generalized Gibbs
Ensemble (5.3.132)-(5.3.133). Then, defining the Free energies F�,rpα, P q,F�,rpα, P q as

F�,rpα, P q � � lim
NÑ8

1
N

lnpZp�,rq
N pα, P qq , (5.3.137)

F�,rpα, P q � � lim
NÑ8

1
N

lnpZp�,rq
N pα, P qq , (5.3.138)

(5.3.139)

for all j P N fixed, we have the following weak limit

lim
NÑ8

TrpLp�,rqqpr�1qj � E
�
TrpLp�,rqqpr�1qj�

?
N

á N p0, σ2
�,rq , (5.3.140)

lim
NÑ8

TrpLp�,rqqpr�1qj � E
�
TrpLp�,rqqpr�1qj�

?
N

á N p0, σ2
�,rq , (5.3.141)

where

E
�
TrpLp�,rqqpr�1qj

�
� iNBtF�,rpα, P � itxpr�1qjq|t�0 , σ2

�,r � |B2
t F�,rpα, P � itxpr�1qjq|t�0 | ,

(5.3.142)

E
�
TrpLp�,rqqpr�1qj

�
� iNBtF�,rpα, P � itxpr�1qjq|t�0 , σ2

�,r � |B2
t F�,rpα, P � itxpr�1qjq|t�0 | .

(5.3.143)

Remark 5.3.26. We recall that in [GGGM23], it was shown that the density of states for this model
has support on the complex plane, but despite that all the moments of the Generalized Gibbs ensemble are
reals. Furthermore, in this case, we lack a β ensemble to compare with.

5.4 Technical Results
In this section, we prove the technical results that we used to prove our main Theorems 5.1.3-5.1.5, the
proof follows the same line as the proof of [GM23, Proposition 4.2], and we prove Theorem 5.1.7, whose
proof uses the same machinery as the latter proofs. In the last part, we prove a Berry-Esseen type bound
for the type 1 measure µp1qN . We start by proving Theorem 5.2.1 and Theorem 5.2.2.

To prove these results, we follow the same ideas as in [Gou15, Theorem 2.4]. In particular, we enforce
the following proposition, which can be easily deduced from [Gou15, Proposition 2.3]:

Proposition 5.4.1. Let λp0q be an isolated eigenvalue of the operator L0 with multiplicity one, and
assume that the family of operators t Ñ Lt depends on t in a Cd way, with d ¥ 3. Then, λptq, the
corresponding eigenprojection πt and its eigenfunction φt are Cd with respect to t.

Moreover, assume that the rest of the spectrum of L0 it is contained in a disk of radius |λp0q| � δ.
Writing Qt � pI � πtqLt, so that Lt � λptqπt �Qt. For any r ¡ |λp0q| � δ, there exists a constant C ¡ 0
independent of t, n such that |Qn

t | ¤ Crn for all n P N.

Applying the previous proposition, we can prove both Theorem 5.2.1 and Theorem 5.2.2. For the
reader’s convenience, we report the two statements here.
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Theorem 5.4.2. Under Assumptions 5.1.1. Consider a real function H : C Ñ R such that TrHpLq
is circular (HP 5.), and let W be the seed of TrGpLq � itHpLq, thus W px,yq � V px,yq � itUpx,yq for
V,U : Xk �Xk Ñ R the seeds of TrGpLq,TrHpLq. Furthermore, assume that U P L2dpX2k, expp�2V qq,
with N Q d ¥ 3. Then, there exists an ε ¡ 0, and two complex valued functions λ py, tq P C1,dpR��r�ε, εsq,
and ck,ℓpy, tq P C1,dpR� r�ε, εsq such that for all q P N :

E1

�
e�itTrHpLq

�
� Z

p1q
kM�ℓpα, tq

Z
p1q
kM�ℓpα, 0q

� ck,ℓpα, tqλpα, tqM�2 �1� opM�qq� , as M Ñ8 , (5.4.1)

for |t|   ε, here Zp1q
kM�ℓpα, tq � Z

p1q
kM�ℓpα, V � itUq. Furthermore,

λpx, 0q � 1 (5.4.2)
ck,ℓpx, 0q � 1 . (5.4.3)

Moreover, there exist two functions rck,ℓpα, tq P C1,dpR � r�ε, εsq and rλpα, tq P C1,dpR� � r�ε, εsq such
that there exist two constants C1, C2 ¡ 0 such that for all q P N:

C1   rck,ℓpα, tq   C2 ,

λpα, tq �
rλpα, tqrλpα, 0q ,

Z
p1q
kM�ℓpα, tq � rck,ℓpα, tqrλpα, tqM�2 �1� opM�qq� .

(5.4.4)

Proof. Define the kernel operator (depending on k P N, α ¡ 0 and t P R) Lt,α : L2pXkq Ñ L2pXkq as

Lt,αfpyq �
»

Xk

fpxq
k¹

q�1
F pxq, αqe�W py,xqdx . (5.4.5)

Then, for all k P N, α ¡ 0 and t P R, Lt,α is a Hilbert-Schmidt operator [Kat95], meaning that the
function px,yq ÞÑ±k

q�1 F pxq, αqe�V py,xq is L2pXk�Xkq, and so it is compact. Moreover, since the kernel
is positive, we can apply a generalization of Jentzsch’s theorem [Zaa83, Theorem 137.4] in combinations
with Proposition 5.4.1 deducing that there exist two functions py, tq ÞÑ rλ py, tq P C1,dpR� � r�ε, εsq,
py, tq ÞÑ φp�, y, tq P C1,dpR� � r�ε, εs, L2pXkqq, and an operator Qt : L2pXkq Ñ L2pXkq such that

Lt,αϕpyq � rλ pα, tq xϕ, φ p�, α, tqyφ py, α, tq �Qtϕpyq , @ϕ P L2pXkq (5.4.6)

where rλ py, 0q ¡ 0, φ px, y, 0q ¡ 0 is the associated eigenfunction of Lt,α with |φ|2 � 1 and there exists
a δ ¡ 0 such that ||Qt|| ¤ |rλ pα, tq | � δ, denoting by x�, �y the standard scalar product in L2pXkq.

For x P Xk define Gxpyq as

Gxpyq �
# ³

Xℓ

±kM�ℓ
j�kM�1 F pxj , αq exp p�W1py, xkM�1, . . . , xkM�ℓ,xqq

±kM�ℓ
j�kM�1 dxj , ℓ ¡ 0 ,

exp p�W py,xqq , ℓ � 0 ,
(5.4.7)

and the linear operator St : L2pXk �Xkq Ñ C as

Stφ �
»

Xk�Xk

2k¹
j�1

F pxj , αq exp p�W px1,x2qqφpx1,x2qdx1dx2 , (5.4.8)

we notice that |St| ¤ c |F |2k
2 , and so it is continuous.
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In this notation, we can recast (5.2.6), applying St to px,yq ÞÑ �
LM�2

t,α Gx
� pyq, as

Z
p1q
kM�ℓpα, tq � St

��
LM�2

t,α Gx1

� px2q
� � rλM�2pα, tqSt

� xφ p�, α, tq ;Gx1yφpx2, α, tq
�� St

�
QM�2

t Gx1px2q
�
,

(5.4.9)
where here and in the sequel, if h P L2pXk �Xkq, we write abusively Stphpx,yqq for Stphq. Defining

ck,ℓpα, tq �
St

� xφ p�, α, tq ;Gx1yφpxM , α, tq�
S0
� xφ p�, α, 0q ;Gx1yφpxM , α, 0q� ,

λpα, tq �
rλM�2pα, tqrλM�2pα, 0q

,

(5.4.10)

and since in view of Proposition 5.4.1 |Qn
t | ¤ p|rλptq| � δqn we conclude.

Theorem 5.4.3. Under Assumptions 5.1.1. Consider a real function H : C Ñ R such that TrHpLq
is circular, and let W be the seed of TrGpLq � itHpLq, thus W px,yq � V px,yq � itUpx,yq for V,U :
Xk � Xk Ñ R seeds of TrGpLq,TrHpLq. Furthermore, assume that U P L2dpX2k, expp�2V qq, with
N Q d ¥ 3. Then there exists an ε ¡ 0 and two scalar functions λ py, tq P C1,dpR�r�ε, εs,Cq, ck,ℓ,M py, tq P
C1,dpR� r�ε, εsq, such that

E2

�
e�itTrHpLq

�
� Z

p2q
kM�ℓpα, tq

Z
p2q
kM�ℓpα, 0q

�ck,ℓ,M pα, tq
M�2¹
j�1

λ

�
α
j

M
, t



p1� oM p1qq (5.4.11)

for |t|   ε. Furthermore,

λpx, 0q � 1 (5.4.12)
lim
tÑ0

ck,ℓ,M pα, tq � 1 uniformly in M (5.4.13)

the remainder oM p1q is independent of t P r�ε, εs. (5.4.14)

Moreover, there exist two functions rck,ℓ,M pα, tq P C1,dpR��r�ε, εsq, rλpα, tq P C1,dpR��r�ε, εsq, and
three constants C1, C2 ¡ 0 and p P N such that

C1N
p   rck,ℓ,M pα, tq   C2N

p ,

λpα, tq �
rλpα, tqrλpα, 0q ,

Z
p2q
kM�ℓpα, tq � rck,ℓ,M pα, tq

M�2¹
j�1

rλ�α j

M
, t



p1� oM p1qq .

(5.4.15)

Proof. Define the family of kernel operators (depending on k P N, α ¡ 0 and t P R) Lpjq
t,α : L2pXkq Ñ

L2pXkq as

Lpjq
t,αfpyq �

»
Xk

fpxq
k¹

q�1
F

�
xq, α

�
1� pj � 1qk � q

N




e�W py,xqdx . (5.4.16)

Then, for all k P N, α ¡ 0 and t P R, the kernel of Lpjq
t,α is in L2pXk � Xkq, thus it is a Hilbert-

Schmidt operator, and so it is compact. Moreover, since for t � 0 the kernel is positive, we can apply
a generalization of Jentzsch’s theorem [Zaa83, Theorem 137.4] in combinations with Proposition 5.4.1
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deducing that there exist two functions pλ � pλ py, tq P C1,dpR� � r�ε, εsq, py, tq ÞÑ φp�, y, tq P C1,dpR� �
r�ε, εs, L2pXkqq and an operator Qpjq

t : L2pXkq Ñ L2pXkq such that @ϕ P L2pXkq, @|t|   ε,

Lpjq
t,αϕpyq � pλ�α�1� j

M



, t



π
pjq
t ϕpyq �Qpjq

t ϕpyq (5.4.17)

with

π
pjq
t ϕpyq �

B
ϕ;φ

�
�, α

�
1� j

M



, t


F
φ

�
y, α

�
1� j

M



, t



,

where pλ �α �1� j
M

�
, t
�

is the biggest eigenvalue (in modulus) of Lpjq
t,α, pλpy, 0q ¡ 0, φp�, y, 0q ¡ 0,

|φp�, y, tq|2 � 1 and there exists a δj ¡ 0 such that
∣∣∣Qpjq

t

∣∣∣ ¤ |pλ �α �1� j
M

�
, t
� | � δj , and we recall

that we denote by x�, �y the standard scalar product in L2pXkq. Furthermore, with rλ the function of
Theorem 5.4.2, we have

pλ�α�1� j

M



, t



� rλ�α�1� j

M



, t



�O

�
1
M



, (5.4.18)

Where the O
� 1

M

�
term is uniform in t P p�ε, εq. Indeed, recalling that Lt,α is defined in (5.4.5), by the

integrability assumptions on U and on BαF (HP 7. of Assumptions 5.1.1), we have∣∣∣Lpjq
t,α � Lt,αp1�j{Mq

∣∣∣ ¤ Ct
α

M
(5.4.19)

where Ct ¥ 0 is bounded on r�ε, εs. We then deduce (5.4.18) by applying Proposition 5.4.1.
Define the function ht on Xk by

htpxq �
»

Xk�ℓ

k�ℓ�1¹
j�1

F

�
xkpM�1q�j , α

�
1� j � kpM � 1q

kM � ℓ




exp

��W px,xM q��
�exp

��W pxM , xkM�1, . . . , xkM�ℓ, 0, . . . , 0q�W pxkM�1, . . . , xkM�ℓ, 0, . . . , 0q
�
RpxN q

k�ℓ¹
j�1

dxkpM�1q�j .

(5.4.20)

Note that in view of assumptions 5.1.1, }ht}8 � OpNcpℓ�kqq.
We recall that W � V � itU so ht depends on t , and the linear operator St : L2pXkq Ñ C as

Stpψq �
»

Xk

k¹
j�1

F

�
xj , α

�
1� j

kM � ℓ




e�W p0,...,0,xqψpxq

k¹
j�1

dxj . (5.4.21)

We notice that, again in view of the assumptions 5.1.1 the operator St is uniformly bounded in k, ℓ
for all t P R, and it is continuous in t in the operator norm sense.

In this notation, we can rewrite Zp2q
kM�ℓpα, tq as

Z
p2q
kM�ℓpα, tq � St

�
Lp2q

t,α . . .L
pM�1q
t,α ht

	
� St

�
M�1¹
j�2

Lpjq
t,αht

�
(5.4.22)

Applying the decomposition (5.4.17), it follows that we can decompose the previous expression as
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Z
p2q
kM�ℓpα, tq �

M�1¹
j�2

pλt

�
α

�
1� j

M




St

�
π
p2q
t . . . π

pM�1q
t ht

	
� St

�
Lp2q

t,α . . .L
pM�2q
t,α QpM�1q

t ht

	
�

M�2¸
n�2

M�1¹
j�n�1

pλt

�
α

�
1� j

M




St

�
Lp2q

t,α . . .L
pn�1q
t,α Qpnq

t π
pn�1q
t . . . π

pM�1q
t ht

	
,

(5.4.23)

where we arranged the terms of the product of the Lpjq
t,α’s by order of the first appearance from the right

of a factor Qpjq
t (the first term being the product where no Qpjq

t appears). We notice that

St

�
π
p2q
t . . . π

pM�1q
t ht

	
� xφ1{M

t ;hty
M�2¹
i�2

xφαp1�i{Mq
t ;φαp1�pi�1q{Mq

t ySt

�
φ

αp1� 2
M q

t



,

where we set φαp1�i{Mq
t � φ p�, αp1� i{Mq, tq to shorten the notation. Furthermore, the ratio

M�1¹
i�2

xφαp1� i
M q

t ;φαp1� i�1
M q

t y
xφαp1� i

M q
0 ;φαp1� i�1

M q
0 y

converges uniformly to 1 in M ¥ 1, t P p�ε, εq. This is due to the fact that

xφαp1� i
M q

t ;φαp1� i�1
M q

t y � 1�O
� α
M

	
,

because of (5.4.19) and Proposition 5.4.1, thus the product

M�1¹
i�2

xφαp1� i
M q

t ;φαp1� i�1
M q

t y

stays bounded below and above uniformly on M ¥ 1, t P p�ε, εq.
Denoting the first term of (5.4.23) by fpα, tq, and the second and third terms by g1pα, tq and g2pα, tq,

we can rewrite (5.4.11) as

Z
p2q
kM�ℓpα, tq

Z
p2q
kM�ℓpα, 0q

� fpα, tq
fpα, 0q

�� 1� g1pα,tq
fpα,tq � g2pα,tq

fpα,tq
1� g1pα,0q

fpα,0q � g2pα,0q
fpα,0q

� . (5.4.24)

Thus, to prove our result we need to show that there exist 3 constants c1, c2, c3 independent of M such
that for all t P p�ε, εq,

����g1pα, tq
fpα, tq

���� ¤ c1 , (5.4.25)����g2pα, tq
fpα, tq

���� ¤ c2 , (5.4.26)�������
A
φ
p1{Mq
t ;ht

E
Stφ

αp1� 2
M q

tA
φ
p1{Mq
0 ;h0

E
S0φ

αp1� 2
M q

0

������� ¤ c3 . (5.4.27)

If we are able to show this, then defining
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ck,ℓ,M pα, tq �

A
φ
p1{Mq
t ;ht

E
Stφ

αp1� 2
M q

tA
φ
p1{Mq
0 ;h0

E
S0φ

αp1� 2
M q

0

M�1¹
i�2

xφαp1� i
M q

t ;φαp1� i�1
M q

t y
xφαp1� i

M q
0 ;φαp1� i�1

M q
0 y

,

λpy, tq �
rλ py, tqrλ py, 0q ,

(5.4.28)

we obtain (5.4.11) with the wanted properties. Notice that in the definition of λ we took
rλpy, tqrλpy, 0q instead

of
pλpy, tqpλpy, 0q . This is indeed possible because of equation (5.4.18).

First, we focus on (5.4.26). The term g2pα, tq is given by

xφp1{Mq;hty
M�2¸
n�2

M�1¹
j�n�1

pλ�α�1� j

M



, t


M�n�2¹
i�1

xφαi
M
t ;φ

αpi�1q
M

t ySt

�
Lp2q

t,α . . .L
pn�1q
t,α Qpnq

t φ
αp1�n�1

M q
t



.

Because φ px, y, tq is regular with respect to y, we deduce that there exists a function py, tq ÞÑ ψp�, y, tq P
C8pR� � r�ε, εs, L2pXkqq with

∣∣∣ψαp1�n{Mq
t

∣∣∣
2

uniformly bounded in n,M and t such that

Qn
t

�
φ

αp1�n�1
M q

t



� Q

pnq
t

�
φ

αp1� n
M q

t



� 1
M

Qpnq
t ψ

αp1�n{Mq
t � 1

M
Qpnq

t ψ
αp1�n{Mq
t . (5.4.29)

given this equality, it is trivial to prove (5.4.26), recalling that for any t, j, 1pλpjqt

Lpjq
t,α has operator norm

smaller than one.
For (5.4.25), it suffices to show that there exists a constant c2 independent of M such that������ QpM�1q

t htA
φ
p1{Mq
t , ht

E
������ ¤ c2 . (5.4.30)

From the assumptions, (5.4.17) and the definition of ht (5.4.20), we deduce that there exists a constant
d1 such that ���QpM�1q

j ht

��� ¤ d1

�
λ
� α
M

	
� δ1

	
M cpk�ℓq , (5.4.31)

on the other hand, in view of the previous proof and the assumptions, we conclude that, for t small
enough, there exists a constant d2 such that���Aφp1{Mq

t , ht

E��� ¥ d2M
cpk�ℓq . (5.4.32)

Indeed, for t � 0,
A
φ
p1{Mq
0 , h0

E
is given by

»
X2k�ℓ

φ
p1{Mq
0 pxq

k�ℓ�1¹
j�1

F

�
xkpM�1q�j , α

�
1� kpM � 1q � j

kM � ℓ




rpx,xM , rxqdxdxM drx ,

where we denoted rx � pxkM�1, . . . , xkM�ℓq and

rpx,xM , rxq � e�W px,xM q�W pxM ,xkM�1,...,xkM�ℓ,0,...,0q�W pxkM�1,...,xkM�ℓ,0,...,0q .
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By Assumptions 5.1.1 HP.4, and positivity of φp1{Mq
0 ,A

φ
p1{Mq
0 , h0

E
¥ pdpN{αqcqk�ℓ�1

»
O
φ
p1{Mq
0 pxqdx inf

O2k�ℓ
r ¥ ck,ℓM

k�ℓ

»
O
φp1{Mqpxqdx.

By continuity of η ÞÑ φη
0 , this last integral converges to

³
O φ

p1{Mq
0 pxqdx ¡ 0, thus we conclude for the

case t � 0. Finally, we conclude on (5.4.32) for t small enough by continuity.
Combining the two previous estimates, and setting p � cpk � ℓq we deduce (5.4.30), which leads to

(5.4.26). The proof of (5.4.27) is analogous, thus we conclude.

We now turn on the proof of Theorem 5.1.7, which we rewrite here for convenience.

Theorem 5.4.4 (Decay of correlations). Let W be the seed of TrGpLq and I, J : Xk Ñ R two local
functions such that

³
Xk�Xk

���Ipxq±k
i�1 F pxi, αqe�W px,yq

���2 dxdy   8, and analogously for Jpxq. Write
N � kM � ℓ, and let j P t1, . . . ,Mu. Then there exists some 0   µ   1 such that

E1 rIpx1qJpxjqs � E1 rIpx1qsE1 rJpxjqs � OpµM�j � µjq .
Proof. Let L � L0,α with Lt,α given by (5.4.5). Furthermore, define LpJq

LpJqϕpyq �
»

Xk

ϕpxq
k¹

i�1
F pxi, αqJpxqe�V py,xq � LpJϕqpyq ,

and LpIq analogously. With G
pIq
x pyq � IpxqGxpyq, G given in (5.4.7), we have for j ¥ 3

E1 rIpx1qJpxjqs �
S0

��
LM�jLpJqLj�3G

pIq
x1

	
px2q

	
S0pLM�2Gx1px2qq

�
rλM�jpα, 0qS0pπ0LpJqLj�3G

pIq
x1 px2qq �Oprλj�3rM�jqqrλM�2pα, 0qS0pπ0Gx1px2qq �OprM�2q

,

where St is defined in (5.4.8), and we used the decomposition

Lk
0 � rλkpα, 0qπ0 �Qk

0 ,

where π0 is the orthogonal projection on the (one dimensional) eigenspace associated with rλpα, 0q, and
Q0 is an operator such that }Qk

0} ¤ Crk for some 0   r   rλ. Similarly,

S0pπ0LpJqLj�3GpIq
x1
px2qq � rλj�3pα, 0qS0pπ0LpJqπ0G

pIq
x1
px2qq �Oprj�3q.

We deduce

E1 rIpx1qJpxjqs � S0ppπ0LpJqπ0G
pIq
x1 qpx2qq �Oppr{rλqM�j � pr{rλqj�3qrλ�S0pπ0Gx1px2qq �Oppr{rλqM�2q

	 .

Similarly, we deduce

E1rIpx1qsE1rJpxjqs �
S0pπ0G

pIq
x1 px2qqS0

�
π0LpJqπ0Gx1px2q

��Oppr{rλqM�j � pr{rλqj�3qrλ�S0pπ0Gx1px2qq2 �Oppr{rλqM�2q
	 . (5.4.33)

By a direct computation, recalling that π0ϕ � xφ1, ϕyφ1 where φ1 is the eigenfunction associated
with rλ, we deduce the following

S0

�
π0LpJqπ0G

pIq
x1
px2q

	
� xLpJqφ1, φ1y

»
xGx, φ1y IpxqF pxqφ1pxqdx ,
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S pπ0Gx1px2qq �
»
xGx, φ1yφ1pxqF pxqdx , S0

�
π0G

pIq
x1
px2q

	
�

»
xGx, φ1y IpxqF pxqφ1pxqdx ,

and
S0

�
π0LpJqπ0Gx1px2q

	
� xLpJqφ1, φ1y

»
xGx, φ1yF pxqφ1pxqdx .

These formulas imply that

S0ppπ0LpJqπ0G
pIq
x1
qpx2qq �

S0pπ0G
pIq
x1 px2qqS0

�
π0LpJqπ0Gx1px2q

�
S0 pπ0Gx1px2qq ,

and so
E1 rIpx1qJpxjqs � E1 rIpx1qsE1 rJpxjqs � Oppr{rλqM�j � pr{rλqj�3q .

Finally, we prove a Berry-Esseen bound type theorem for the measure µp1qkM�ℓ:

Theorem 5.4.5. Under Hypotheses 5.1.1. Consider the measure µ
p1q
kM�ℓ, G satisfying assumptions

5.1.1 and H : C Ñ R such that TrHpLq is cyclic (HP. 5) with seed h and weed h1 such that h, h1 P
LdpX2k, expp�2W qq, with N Q d ¥ 6, so that

E1

�
e�itTrHpLq

�
� Z

p1q
kM�ℓpα,G� itHq
Z
p1q
kM�ℓpα,Gq

. (5.4.34)

Then, there exists A P R, σ,C ¡ 0 such that if Y � N p0, σ2q we have for any interval J of the real line���P�rTrHpLq � pkM � ℓqAs {
a
pkM � ℓq P J

	
� P pY P Jq

��� ¤ CapkM � ℓq . (5.4.35)

Proof. We adapt the arguments of [Gou15, Theorem 3.7]. By [Fel71, Lemma XVI.3.2], there exists a
constant C such that for any X real random variable, and Y Gaussian random variable, for any interval
J � R and for any T ¡ 0, we have

|P pX P Jq � P pY P Jq| ¤ C

» T

0

|Ere�itX s � e�σ2t2{2|
t

dt� C

T
.

We take X � pTrHpLq � pkM � ℓqAq {?kM � ℓ. We are going to show that, taking T � ε
apkM � ℓq for

some small enough ε, the last integral remains bounded by Ck,ℓ?
pkM�ℓq , where Ck,ℓ is a constant depending

on k, ℓ. Recall N � kM � ℓ. By Theorem 5.1.3, there exists an A P R, σ ¡ 0 such that as N goes
to infinity X converges to N p0, σ2q. Since t�1 is not integrable at 0, we consider the special interval
r0, N�1s. In this interval, we have the following estimate, denoting by W the seed of TrGpLq:

���E �
e�itX

�� e�it
?

NA
��� (5.2.8)�

|Zp1q
kM�ℓ

�
α,G� i t?

N
H
	
� Z

p1q
kM�ℓ pα,Gq|

Z
p1q
kM�ℓ pα,Gq

� 1
Z
p1q
kM�ℓ pα,Gq

���M�1¸
p�1

»
XkM�ℓ

Fpxq
p�1¹
j�1

e
i t?

N
hpxj ,xj�1q

�
e

i t?
N

hpxp,xp�1q � 1
	 N¹

j�1
dxj

�
»

XkM�ℓ

Fpxq
�
e

i t?
N

h1pxM ,xkM�1,...,xkM�ℓ,x1q � 1
	 ��� ,

(5.4.36)
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with the convention that the empty product is equal to one. Here we defined

Fpxq �
kM�ℓ¹

j�1
F pxj , αq exp

�
�

M�1¸
j�1

W pxj ,xj�1q �W1pxM , xkM�1, . . . , xkM�ℓ,x1q
�

� exp
�

it?
N
h1pxM , xkM�1, . . . , xkM�ℓ,x1q



,

(5.4.37)

where h1 is the weed of H in the sense of HP 5 of Hyphotheses 5.1.1. Thus, since |ei t?
N

hpxp,xp�1q � 1| ¤
|hpxp,xp�1q|N�1{2t, we deduce the following inequality

���E1re�itX s � e�it
?

NA
��� ¤ E1 r|hpx1,x2q|s t

?
N � t?

N
E1 r|h1pxM , xkM�1, . . . , xkM�ℓ,x1q|s , (5.4.38)

and this last term is by assumption bounded by Ct
?
N for some C independent of N and t. Thus

integrating for t P r0, N�1s we deduce the following» 1
N

0

|E1re�itX s � e�σ2t2{2|
t

dt

¤
» 1

N

0

���E1
�
e�itX

�� e�it
?

NA
���� ���e�it

?
NA � 1

���� ���1� e�σ2t2{2
���

t
dt

(5.4.38)
¤

» 1
N

0

C
?
Nt� t

?
NA� σ2t2{2
t

dt ¤ C1?
N
,

(5.4.39)

for some constant C1.
We now consider the integral on r1{N, ε?N s. Here we use the spectral decomposition of E1reitX s.

Since h P LdpX2k, expp�2W qq for some d ¥ 6, we deduce (following Remark 5.1.4) applying Proposition
5.4.1, and from Theorem 5.2.1, that there exist two continuous functions pptq P C0pr�ε, εsq and ck,ℓpy, tq P
C1,dpR� r�ε, εsq for some ε ¡ 0, such that ck,ℓpy, 0q � 1 and }p}8   �8, such that for q ¥ 1

» ε
?

N

1
N

|E1re�itX s � e�σ2t2{2|
t

dt �
» ε

?
N

1
N

���ck,ℓpα, t{
?
Nqe�σ2t2{2�t3ppt{?Nq{?N p1� opN�qqq � e�σ2t2{2

���
t

dt ,

(5.4.40)
thus we have the following estimate

» ε
?

N

1
N

���E1re�itX s � e�σ2t2{2
���

t
dt ¤ ����ck,ℓpα, �qp1� opM�qqq����8,r0,εs

» ε
?

N

1
N

����1� et3ppt{?Nq{?N
	
e�σ2t2{2

���
t

dt

�
» ε

?
N

1
N

��1� ck,ℓpα, t{
?
Nqp1� opM�qqq�� e�σ2t{2

t
dt ,

(5.4.41)

where || � ||8,r0,εs in the L8 norm on r0, εs.
We notice that ||ck,ℓpα, �qp1� opM�qqq||8,r0,εs is uniformly bounded in N . Moreover,» ε

?
N

1
N

e�σ2t2{2

t

���et3ppt{?Nq{?N � 1
���dt ¤ » ε

?
N

1
N

e�σ2t2{2

t
?
N

et3}p}8,r0,εs{
?

N t3}p}8,r0,εsdt

¤
» ε

?
N

1
N

e�σ2t2{2
?
N

et2ε}p}8,r0,εst2}p}8,r0,εsdt ,
(5.4.42)
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where in the first inequality we used the bound |ex�1| ¤ |x|e|x|. Since for ε small enough ||p||8ε   σ2{4,
thus integrating, we deduce that

» ε
?

N

1
N

���e�σ2t2{2�t3ppt{?Nq{?N � e�σ2t2{2
���

t
dt � O

�
1?
N



. (5.4.43)

To conclude, we have to show that the last integral is of order N�1{2. Since ck,ℓpα, tq is C1 in t, and
ck,ℓpα, 0q � 1, it is easy to deduce that there exists a constant C such that» ε

?
N

1
N

��1� ck,ℓpα, t{
?
Nqp1� opM�qqq�� e�σ2t{2

t
dt ¤ C?

N
(5.4.44)

so we conclude.

5.5 Conclusion and Outlooks
In this paper, we proved a general Central Limit Theorem type result and we apply it to several models
in random matrix theory and integrable systems. By doing this, we strengthen the connection between
these two subjects. Specifically, we could connect the expected values and the variances of the moments
of each classical β ensemble in the high-temperature regime with one specific integrable model, see Table
5.1.

The results that we have obtained are relevant for two main reasons. Under the random matrix theory
perspective, we were able to develop a general framework to prove polynomial central limit theorems for
the classical β ensemble in the high-temperature regime, based on their band matrix representation
and on the transfer operator technique. Under the integrable systems’ theory point of view, our result
enables the explicit computation of the so-called susceptibility matrix, which is a fundamental object in
the theory of Generalized Hydrodynamics in order to compute the correlation functions for integrable
models. Furthermore, we are able to prove rigorously the exponential decay of correlation for short-range
interacting systems with polynomial potential.

It would be fascinating to generalize our result to a wider class of potential and functions and to
obtain a Berry-Esseen bound for the classical β ensemble in the high-temperature regime. Furthermore,
defining a new β ensemble related to the INB lattice would be interesting. Finally, we point out that it
would be interesting to obtain large deviation principles for the Exponential Toda lattice and the Volterra
one in the spirit of [GM22, MM23b].
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Appendix A

Large deviations

We present here definitions and results about large deviation theory that we use throughout this manuscript.
For a detailed and general introduction to this topic, we refer to [DZ10].

A.1 Definition and first results
Definition A.1.1. Let pX , T q be a topological space. Let I : X Ñ r0,8s. We say that I is a rate
function if it is lower semicontinuous (that is, for all α ¥ 0, I�1pr0, αsq is closed). We say that I is a
good rate function is for all α ¥ 0, I�1pr0, αsq is compact.

Let pµN qnPN be a sequence of probability measures on pX ,BpT qq, where BpT q is the Borel sigma
algebra. We say that pµN qNPN satisfies a large deviation principle (LDP) at scale vpNq, where
limN vpNq � �8, and with rate function I if, for all A P BpT q, we have

� inf
xPÅ

Ipxq ¤ lim inf
N

logpµN pAqq
vpNq ¤ lim sup

N

logpµN pAqq
vpNq ¤ � inf

xPA
Ipxq ,

with Å the interior of A and A its closure.

Remark A.1.2. The inequality

� inf
xPÅ

Ipxq ¤ lim inf
N

logpµN pAqq
vpNq

is called the large deviations lower bound, and the inequality

lim sup
N

logpµN pAqq
vpNq ¤ � inf

xPA
Ipxq

is the large deviations upper bound.

Let pΩ,F ,Pq be a probability space, and pXN q be a sequence of X -valued random variables, defined
on pΩ,Fq. We say that pXN qNPN satisfies a large deviation principle at scale vpNq and rate function I if
the sequence of the laws, defined by µN pAq � P pXN P Aq, does.

In the previous definition, we assume I to be lower semi continuous to ensure uniqueness of the rate
function:

Recall that the topological space X is Hausdorff if for all distinct x, y there exist disjoint neighborhoods
of x and y, and it is regular if for all C closed and all x P Cc, there exist disjoint open sets O1 and O2
such that x P O1 and F � O2. We then have:

Proposition A.1.3. Assume that pµN qN satifies a large deviation principle at scale vpNq for two rate
functions I1 and I2, and that pX , T q is Hausdorff and regular, then I1 � I2.
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We now introduce a weaker form of large deviation principle.

Definition A.1.4. Assume that the compact sets of pX , T q are in BpT q. The sequence of probability
measures pµN qNPN is said to satisfy a weak large deviation principle at scale vpNq and rate function
I if the large deviation lower bound (Remark A.1.2) holds, and if the large deviation lower bound holds
for all compacts K such that supxPK Ipxq   �8.

A weak large deviation principle can be strengthened into a full one through the following property.

Definition A.1.5. Suppose that the compacts of pX , T q are in BpT q. The sequence pµN qN is said to be
exponentially tight at scale vpNq if for all M ¡ 0, there exists a compact KM such that

lim sup
N

1
vpNq logpµN pKc

M qq   �M .

We then have the following result.

Proposition A.1.6. Assume that pµN qNPN satisfies a weak large deviation principle at scale vpNq and
with rate function I, and assume that it is exponentially tight. Then, I is a good rate function and
pµN qNPN satisfies a full large deviation principle at scale vpNq and good rate function I.

The previous result is convenient in practice because of the following result.

Proposition A.1.7. Let A be a base of the topology T . Suppose that for all x P X , we have

sup
APA|xPA

�
� lim sup

N

1
vpNq logµN pAq

�
� sup

APA|xPA

�
� lim inf

N

1
vpNq logµN pAq

�
.

Then pµN qNPN satisfies a weak LDP at scale vpNq with rate function I given by

Ipxq � sup
APA|xPA

�
� lim sup

N

1
vpNq logµN pAq

�
.

An important example is the one of a metric space: to meet this criterium in a metric space, it suffices
to have, for all x P X , denoting by Bxpδq the ball centered at x and with radius δ,

lim
δÑ0

lim sup
N

1
vpNq logµN pBxpδqq � lim

δÑ0
lim inf

N

1
vpNq logµN pBxpδqq �: �Ipxq .

A.2 Varadhan’s Lemma and Bryc’s inverse Lemma
One of the principal applications of large deviations is the derivation of the asymptotic behavior of Laplace
integrals

³
X evpNqφpxqdµN pxq for continuous φ.

Proposition A.2.1 (Varadhan’s Lemma). Let pµN qNPN be the law of the sequence of random variables
pXN qNPN. Assume it satisfies a LDP at scale vpNq with good rate function I. Let φ : X Ñ R satisfying
the following condition:

lim
MÑ8

lim sup
N

1
vpNq logE

�
evpNqφpXN q1tφpXN q¥Mu

�
� �8

and the following moment condition for some γ ¡ 1:

lim sup
N

1
vpNq logE

�
eγvpNqφpXN q

�
  8 .

Then,
lim
N

1
vpNq logE

�
evpNqφpXN q

�
� sup

xPX
tφpxq � Ipxqu .
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This result can be thought of as an extension of the Laplace method for real integrals. It is of
particular interest in applications since it allows to link the computation of the partition function and
the free energy of a model to a large deviation principle for this model.

The next proposition gives a way to reconstruct the rate function of a sequence satisfying a large
deviation principle by means of its Laplace integrals.
Proposition A.2.2 (Bryc’s inverse Lemma). Let pµN qNPN be an exponentially tight sequence of measures
on pX ,BpT qq, and such that for any f P CbpX ,Rq the following limit exists:

Λf :� lim
NÑ8

1
vpNq log

»
X
evpNqfpxqdµN pxq .

Then pµN qNPN satisfies a large deviation principle at scale vpNq with good rate function
Ipxq � sup

fPCbpX q
tfpxq � Λfu .

A.3 Cramér and Sanov theorems
We now state two important results of large deviations theory, which establish large deviation principles
for respectively i.i.d sequences, and empirical measures of i.i.d sequences.

Let pX , T q be a topological vector space. For µ a probability measure on X , and for λ P X � a
continuous linear form on X , define

Λpλq � log
»

X
eλpxqdµpxq .

Also define its Fenchel-Legendre transform Λ�, defined on X by
Λ�pxq � sup

λPX�
tλpxq � Λpλqu P r0,8s .

We have:
Theorem A.3.1 (Camér Theorem). Let pXiqiPN be a sequence of i.i.d. random variables with values
in a locally convex vector space pX , T q and with law µ. Denote by µN the law of pX1 � . . . � XN q{N .
Assume:

1. There exists a convex, closed set E � X with µpEq � 1 and such that the induced topology on E is
compatible with a metric d such that pE , dq is a Polish space (that is, separable and complete).

2. The closed convex hull of any compact K � E is compact.
Then, the sequence pµN qNPN satisfies a weak LDP at scale N , with rate function Λ�.

The next result, due to Sanov, can be seen as a consequence of Cramér’s Theorem in the set of finite,
signed measures on a Polish space Σ. The set E � PpΣq is then the set of probability measures.

Let Σ be a polish space, and let µ be a probability measure on Σ.
Theorem A.3.2 (Sanov’s Theorem). Let pXiqiPN be i.i.d. with law µ. Let µ̂N be the empirical measure
of the Xi’s:

µ̂N � 1
N

Ņ

i�1
δXi

.

Then, the sequence of random measures pµ̂N qNPN satisfies a large deviation principle at scale N and with
good rate function Hp�|µq given by

Hpν|µq �
# ³

Σ f log fdµ if ν is absolutely continuous with respect to µ with density f � dν
dµ

�8 otherwise.

The function Hp�|µq is called the relative entropy with respect to µ.
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