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Résumé de la these

N

Cette these vise a établir de maniere mathématiquement rigoureuse certains aspects d’'un lien entre
systémes intégrables et matrices aléatoires. Motivé par la compréhension de 1’échelle hydrodynamique
des systemes intégrables, Herbert Spohn a récemment remarqué qu’il est possible d’étudier les propriétés
statistiques de ces systémes en les comparant & des ensembles de matrices pour lesquelles on a acces a la
loi du spectre : les B-ensembles.

Les systémes que nous considérons sont des systemes de particules qui évoluent dans le temps selon une
interaction aux plus proches voisins. Le qualificatif "intégrable" signifie qu'un grand nombre de quantités
indépendantes sont conservées le long de la dynamique. Cette propriété tres spéciale permet d’accéder,
en principe, a des formules permettant d’analyser ces systémes. Cependant, ces formules peuvent étre
compliquées et il est commode de relier leur étude a celle de matrices aléatoires. Notre exemple clé est
celui de la chaine de Toda, un systéme introduit dans les années 1960, qui est un systéme de particules
interagissant selon un potentiel non linéaire. Une maniere directe de démontrer son intégrabilité est
d’établir 'existence d’une paire de Lax : la dynamique est encodée par I’évolution de deux matrices B et
L, appelées matrices de Lax, et qui satisfont une équation impliquant que les valeurs propres de L sont
conservées dans le temps. Dans cette these, par "systéme intégrable", on entend "systéme possédant une
paire de Lax".

Pour comprendre I’échelle hydrodynamique de ces systemes — c’est-a-dire une échelle ou on ne
s'intéresse plus au comportement individuel des particules, mais aux changements macroscopiques du
systeme — il est nécessaire d’adopter un point de vue statistique. Plutot qu’essayer de comprendre le
mouvement de chaque particule, on fait I'hypothése que localement, le systeme est a I’équilibre : aléatoire,
distribué selon une loi de probabilité bien précise, appelée Ensemble de Gibbs Généralisé (Generalized
Gibbs Ensemble), qui est invariante dans le temps. Sous cette hypothese, il s’agit alors de comprendre
la distribution de la matrice de Lax L lorsque le systeme est distribué selon les mesures invariantes de
Gibbs. Dans ce contexte, la matrice de Lax devient une matrice aléatoire dont on vise a comprendre
les valeurs propres : lorsque sa taille tend vers l'infini (ce qui correspond & considérer un nombre de
particules dans le systéme qui tend vers U'infini), a-t-on convergence du spectre ? Si oui, peut-on accéder
a une caractérisation de la limite 7 Que peut-on dire des fluctuations autour de cette limite ?

Les matrices de Lax des systéemes considérés ont la particularité d’étre a bande, en raison de la
structure d’interactions aux plus proches voisins. De plus, lorsque 'on considére une mesure de Gibbs
particuliere, on observe que celles-ci ressemblent a des matrices bien connues, en tant que représentation
matricielle des S-ensembles. Par exemple, dans le cas de la chaine de Toda, la matrice de Lax ressemble
a la représentation tridiagonale du -ensemble réel, découverte par Dumitriu et Edelman.

Le B-ensemble réel est une loi de probabilité sur RY, dépendant d’une température inverse 8 > 0
et d’un potentiel extérieur V', qui peut étre interprétée comme une loi de probabilité sur un ensemble
de particules vivant sur l'axe réel, se repoussant selon un potentiel logarithmique, et confinées par le
potentiel extérieur V. En particulier, on peut voir ce modele comme un gaz de Coulomb restreint a
la droite réelle. On peut également voir le S-ensemble réel comme la loi jointe du spectre de matrices
aléatoires : les plus fameux représentants de ce fait sont les cas du GOE (Gaussian orthogonal ensemble)
et du GUE (Gaussian unitary ensemble) dans les cas particuliers d’une température inverse 8 = 1 ou 2.

L’existence d’une représentation matricielle pour tout 8 a été établie par Dumitriu et Edelman, grace
a un modele de matrices tridiagonales. Le S-ensemble est donc 1'un des (trés rares) cas ou il est possible de
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donner explicitement la loi du spectre d’une matrice aléatoire. Pour ces raisons, les propriétés statistiques
du S-ensemble sont tres étudiées. Il est également possible de définir des S-ensembles sur d’autres espaces
que RY: d’autres exemples sont donnés par le S-ensemble circulaire, ou les particules sont sur le cercle
unité, ou encore le S-ensemble antisymétrique, avec des particules sur ’axe imaginaire pur. Dans tous
ces cas, on possede une représentation matricielle du type de celle donnée par Dumitriu et Edelman.

Pour comparer systémes intégrables et S-ensembles, on se place dans les S-ensembles a grande tem-
pérature, c’est & dire dans le régime ot 3 est de ordre de 1/N, N étant le nombre de particules. Ce régime
a beaucoup intéressé les communautés de physique mathématique et de matrices aléatoires récemment :
la limite du spectre, ses fluctations et ses statistiques locales ont entre autres été étudiées.

Dans ce contexte, cette these établit mathématiquement la correspondance entre systémes intégrables
et B-ensembles sous deux points de vue : celui des grandes déviations et de la mesure limite, et celui des
fluctuations autour de la limite.

Ce manuscrit se divise en cing chapitres :

1. Le premier chapitre introduit le probleme et son contexte, en présentant les principales idées per-
mettant de comprendre le lien entre ensembles de matrices et systemes intégrables.

2. Le deuxiéme chapitre, basé sur [GM22], en collaboration avec Alice Guionnet, établit ce lien d’un
point de vue des grandes déviations pour les mesures empiriques des matrices d’intérét, permettant
d’obtenir une caractérisation de la mesure limite de la matrice de Lax pour la chaine de Toda en
termes de la mesure limite dans le S-ensemble réel a grande température.

3. Le troisiéme chapitre, basé sur [MM23b], en collaboration avec Guido Mazzuca, établit ce lien d’un
point de vue des grandes déviations, cette fois pour le systéme d’Ablowitz-Ladik, une discrétisation
intégrable de I’équation de Schrodinger avec non-linéarité cubique, relié lui au S-ensemble circulaire
a grande température.

4. Le quatriéme chapitre, basé sur [DGM23], en collaboration avec Charlie Dworaczek Guera, établit
un théoreme central limite pour la mesure empirique du [-ensemble réel a grande température,
testée contre des fonctions test suffisamment régulieres.

5. Le cinquiéme chapitre, basé sur [MM23a], en collaboration avec Guido Mazzuca, établit pour divers
systemes intégrables le lien avec les $-ensembles d’un point de vue des fluctuations : on y établit
un théoréme central limite pour la mesure empirique de la matrice de Lax, et on le compare au
théoréme central limite dans le S-ensemble correspondant.
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Chapter 1

Introduction

1.1 Random matrices: A first example

Random matrix theory focuses on understanding the spectrum of large matrices with random entries. Its
use has proven to be extremely fruitful in various domains of mathematics and physics: Since its first use
in Statistics by Wishart in 1928 [Wis28], it has been extensively used in quantum mechanics, as pioneered
by Wigner in the 50’s who modeled the Hamiltonian of heavy nuclei by large random matrices. Other
important fields of application include statistical mechanics, number theory, and integrable models. This
manuscript aims at presenting recent developments and contributions to this last field, more precisely to
the theory of integrable systems, which are very particular systems evolving in time - in some sense
that we will describe precisely in the course of this first chapter. In this introduction, we try to give some
context to the problem we are concerned with, and some of the most important ideas of this topic. It is
divided in three main parts:

e Sections 1.1-1.4 are dedicated to the presentation of several random matrix models and some of
their statistical properties.

e Sections 1.5-1.8 present the notion of integrable system and a way to analyse them by linking them
to random matrix ensembles. Our key example is the one of the Toda chain.

e In Section 1.9, we present related works, and in Section 1.10 we give a summary of the main results
of this thesis.

Most of the time, it is not possible to work out directly the law of the spectrum of a given random
matrix, and one is led to search for asymptotic results about the spectrum. In this setting, of particular
interest is the empirical measure of eigenvalues, given by

1 N
an(A) = N ;5M(A) ,

where A is a N x N matrix, and A1(A),...,An(A) are its eigenvalues. When A is random, i.e. when its
entries are random variables, i(A) defines a random probability measure which one aims to understand.
In particular, a natural question is the existence (and computation when possible) of a limit for this
measure when the size N of the matrix goes to infinity. A fundamental example of such an asymptotic
result is given by Wigner’s semicircle law, which was discovered by Wigner in [Wigh5], motivated by the
statistical modelization of atoms with heavy nuclei:
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Definition 1.1.1 (Wigner matrix). Let K =R or C.

Let (a; j)1<i<j<n be a family of i.i.d random variables with values in K with E[a; ;] = 0, E[|a; ;]*] = 1,
and let (d;)is1 be i.i.d real random variables with E[d;] = 0, E[d?] = 02 > 0. We say that the hermitian
matriz X is a Wigner matrix if it is given by

TN i if i<j,

Xij = ﬁdi if i=j,
1 .
N otherwise.

Theorem 1.1.2 (Wigner’s semicircle law). Let XW) be a sequence of N x N Wigner matrices.
Then, the sequence of empirical measures iy = ﬂ(X(N)) converges almost surely in distribution
towards the semicircle law sc given by

1
dsc(x) = by 4 — 221_g 91(w)dz . (1.1.1)
T

Remark 1.1.3. The convergence of Theorem 1.1.2 says that on a set of probability one, the measures
[N converge in distribution towards sc, that is, for any f : R — R bounded continuous,

J fdin — J fdsc.
R [-2,2]
1

Because of the normalization TN in the definition of a Wigner matriz, and by the law of large numbers,

the euclidean norm of the rows of XN) are asymptotically of order one, which helps understand why we
find a non trivial limit for the empirical measure of eigenvalues.

This result can be proven for example via a moments method, which consists in establishing that the
moments of the measure fiy

R 1
Jm"d,uN = NTTX”

converge towards the moments of the semicircle law.
Given a family of random matrices whose empirical measure of eigenvalues converge, one can ask more
refined questions, among which:

o Can one compute the limiting measure ?
o Are there large deviations for this sequence of measures ?
e What is the rate of the convergence ? Is there an associated Central Limit Theorem ?

In the present work, we will be interested in those questions for particular models of random matrices.

1.2 GOE,GUE, j-ensembles

A symmetric N x N matrix is said to be in the Gaussian orthogonal ensemble GOE(N) if its entries
are independent (up to the symmetry constraint), standard real Gaussians outside the diagonal and real
Gaussians with mean zero and variance 2 on the diagonal, i.e.

Apg=ap fork <l, App =22k and Ay, = Apg,

where (21,1)1<k<i<n is an independent family of standard Gaussians.
The Gaussian unitary ensemble, formed of Hermitian matrices, is defined similarly in terms of complex
Gaussians, namely the Hermitian matrix A is in the Gaussian unitary ensemble GUE(N) if one has

Th,t + 1Yk,

A, =
k,l NG

s for k < l, Ak,k = Tk k, and Al,k = Ak,l
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for an independent family of real standard Gaussians (T, Yk,i)k<i-

Notice that those matrices are Wigner matrices. In particular, their empirical measures converge
towards the semi circle law. However, a lot more can be said about those particular cases: both models
are highly symmetric, in the sense that the GOE is invariant under orthogonal conjugation, and the
GUE is invariant under unitary conjugation. In symbols, for the case of the GOE, this means that if
A e GOE(N) and O is a non random N x N orthogonal matrix, then OAOT is also in GOE(N).

As a consequence of this symmetry, one is able to extract the joint law of eigenvalues of those ensem-
bles. The following Theorem can be found in [AGZ10][Theorem 2.5.2].

Theorem 1.2.1 (Law of the unordered spectrum of GOE/GUE). Let A € GOE(N) or A€ GUE(N).
Let B =1 in the first case, and B = 2 in the second case. Then, the law of the unordered spectrum of A
is given by the probability measure on RN

1
N i<j

Remark 1.2.2. One can also construct an analogue of the previous models having eigenvalue distribution
(1.2.1) with B = 4 using quaternions. For details, see [AGZ10][Section 4.1]. Furthermore, the normalizing

constant Zﬁ, in (1.2.1), called the partition function of the model, can be computed by the use of Selberg’s
integral formula, [AGZ10][Section 2.5.3].

Equation (1.2.1) is to be compared with the so-called Coulomb gas, defined as the probability measure
on (RHN

dPcoulomb,N (X1, - - ., XN)

N
exp {—/3 (Z V)= D, glxi— Xj)) } ;
=1 <N

ZCoulomb,N 1<i<j

where g is the fundamental solution of the Laplacian, i.e. satisfies
Ag = do

in the sense of distributions; and V' is a function going to infinity at infinity, having the effect of confining
the particles of the gas. In the case d = 2, the function g is given by g(x) = log|x|, hence one can
see the probability measure (1.2.1) as a two dimensional Coulomb gas constrained to the real line. This
comparison encourages to apply the statistical physics formalism to the GOE and the GUE, resulting in
a good understanding of the repartition of their eigenvalues. A natural generalization of these particular
ensembles of matrices is the S-ensemble on the real line.

Definition 1.2.3 (S-ensemble on the real line). Let 8 = 0 and N > 2 integer. Let V : R — R continuous
and such that for some § > 0 and ce R;

V(z) =2 (BN +1+0d)loglz|+c¢ forallzeR. (1.2.2)

The 3-ensemble (on the real line) of size N and potential V is the probability measure on RN given by

1
dPxﬂ(ml,...,xN) = U 1_[ | —xj|'86_211'v=1v(“)dx1...d:cN. (1.2.3)
N 1<i<j<N

The N x N random matriz A is said to be in the B-ensemble with potential V if its law of unordered
eigenvalues is given by (1.2.3).

Remark 1.2.4. A few comments about this definition.
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i) Condition (1.2.2) ensures that the partition function

N
Zv’ﬁzj exp | B log |x; — x| — Vi(x;) | dxq...dx
N . Z | J| Z:Z:l (i) 1 N

1<i<j<N
converges. This can be checked using that for x,y € R,

log [z — y| < log(1 + |z]) + log(1 + |y]) -

it) The parameter 8 can be interpreted as an inverse temperature 1/T as is classical in statistical
N

physics. Roughly speaking, at fized N, the smaller § is, the more the term Z V(x;) is prominent in
i=1

front ofBZ log |z; — x| (ignoring possible issues that may arise from the singularity of log at zero).
,J

The density of IP’]‘\/;B then almost factorizes into the law of independent variables, which intuitively

corresponds to a disordered system, that is a system at high temperature. On the contrary, increasing

B has the effect of introducing correlations between the x;’s, intuitively lowering the temperature of

the system.

Ba?
1i) The law ]P’?V of Theorem 1.2.1 corresponds to Py} ? in the notations of the previous definition.

By Theorem 1.2.1, GOE(N) is then contained in the 1-ensemble of size N with potential 22/4 and
GUE(N) is contained in the 2-ensemble of size N and potential 22/2. We can then adress the question
of the existence of a matrix representation for the S-ensembles with general 3:

For 8 =1, 2,4 the S-ensembles with quadratic potentials have matrix representations with indepen-
dent entries. Does such a matrix representation exist for any g >0 7

This question was positively answered by Dumitriu and Edelman in [DE02], giving a tridiagonal
representation of the 8 ensemble with quadratic potential. Before stating their theorem, recall that for
a > 0 the x, distribution is the probability measure on R with density

217a/2 a—1_—z2/2
falz) = F(a/Q)x e , (1.2.4)

where I' is the classical Gamma function and by convention the yo distribution is constant to zero. For
integer a = 0, x, is the law of the euclidean norm of a standard a-dimensional Gaussian vector:

—

)
Xa = g%+"'+ggv

where the g;’s are independents Gaussians N(0, 1).

Theorem 1.2.5 (Tridiagonal representation of the [-ensemble). Let 8 > 0 and N > 2 integer. Let
(9i,bj)1<i<n1<jen—1 be an idependent family with g; ~ N(0,1) and b; ~ x(n—jp- The tridiagonal
matric

g1 %
by by
vz 2
b
T= L
bn—1
V2
bn_1
V2 gnN

is in the B-ensemble of size N and potential x2/2.
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Let us say a few words about the particular case of § = 1 which is obtained via a tridiagonalization
procedure: Take A the N x N symmetric matrix with independent (up to the symmetry) centered
Gaussian entries, having variance 1/2 outside the diagonal and variance 1 on the diagonal (notice the
normalization by 1/4/2 of the GOE, a matrix of the GOE being in the 1-ensemble with potential x2/4).
In other words, A € %GOE(N). Write A as

T
(a1 T
(0 %)
where a7 is a standard Gaussian, x is a vector of size N —1 having independent Gaussian entries N (0, 1/2)
and B is in %GOE(N —1). Let then H € O(N — 1) such that Hx = |z|e;, with eI = (1,0,...,0). We

have
1 0 ain x¥ 1 0\ [ an |z]ef
o #H)\z B)\0 HT) ™ \|e|es HBHT)"

and because B € %GOE(N —1), HBHT also is. We now notice that ||z is \%XN—l distributed, and
we conclude by induction.

Theorem 1.2.5 is particularly useful when tackling problems related with the quadratic S-ensembles,
allowing one to study independent entries of a matrix instead of directly working with the correlated

1
probability measure (1.2.3). For instance, to investigate the moments of the empirical measure ~ vazl O,

22 1
of x = (x1,...,zn) distributed with respect to P2 ’ﬁ, it suffices to study the sequence of traces —TrT™
where the matrix T is given by Theorem 1.2.5. This substitution is then convenient because of the
independence of the coefficients of 7.

P
—, P > 0 independent

In this thesis, we are interested in the regime where [3 scales as %, namely 8 = N

of N.

Definition 1.2.6 (8 ensemble at high temperature). Let P > 0 and V : R — R continuous be such that
for some a > 2P + 1, there exists a constant ¢ such that for all x € R,

V(z) = alog|z| +c.

The B-ensemble at high temperature with parameter 2P = 0 and potential V : R — R is the probability
distribution on RY

2P 1

dPX’W(xl,...,xN)zﬁ H |xi—xj|2P/N672£V=1V(Ii)d:c1...de. (1.2.5)

ZN N 1<ig<N

This regime has attracted the attention of the mathematical physics and random matrices community
lately. It was first considered in [CL97]. In [ABG12], the authors derived the limiting measure of the
eigenvalues in the quadratic case. It was considered among others in [GZ19] from the large deviations
point of view, in [NT18], [HL21], [NTT23], where the authors studied the fluctuations of the empirical
measure around its limit, in [BGP15], [NT18] [Lam21] where the authors established local statistics in
those ensembles.

In this case, and with the quadratic potential V(z) = 2%/2, considering the N x N matrix T of
Theorem 1.2.5, the entries of T are of order 1:

T(i,i) ~ N(0,1) and Tj i1 ~ Xop(N—i)/N -
Let us consider the k-th moment of T,
1. . 1
N ITh =+ > oo

1<iq,..,ig <N,
3541 —4;]<1

1,i27-;2,i3 s Tikﬂ'l )
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where we used the tridiagonal structure of T. This last sum has O(N) terms which are all of order 1,
1
therefore NTer should converge towards some deterministic ¢, € R. With this heuristics, we guess that

- ~ 1 N z? /2,20 e
the empirical measure iy = — >, 0, of x ~ PN/ "N should converge towards some deterministic

probability measure on R. To make this statement more precise and in order to extend it to more general
potentials V', we next give some facts about large deviations, and some consequences for the S-ensembles,
and give a glimpse of Central Limit Theorems for such ensembles.

1.3 Large deviations, equilibrium measure, fluctuations

We give here the definition (in the case of a metric space) of a large deviation principle, and explain how
those can be applied to random matrix theory. We defer to Appendix A for some general facts about
large deviations.

Let (E,d) be a metric space and let (X ) nen be a sequence of E-valued random variables defined on
some probability space (92, F,P).
Let I : E —- R4 U +00 be a lower semi continuous function, meaning that for any a > 0, the level set
I71([0,a]) is closed.

Definition 1.3.1 (Large deviation principle).
We say that (Xn)n satisfies a Large deviation principle (LDP) with rate function I and at scale N
if for any borelian A € B(E), one has

1 1
—inf I(z) < liminf —logP (Xy € A) < limsup — logP(Xy € A) < — inf I(z), (1.3.1)
A N N N N

zeA TeA
with A the interior of A and A its closure.

Remark 1.3.2. We assume I to be lower semi continuous to ensure uniqueness of the rate function: the
chain of inequalities (1.3.1) uniquely determines I among the set of lower semicontinuous functions on
E.

Roughly speaking, (Xy)n satisfies the previous LDP if for small € and any = € E, we have for large
N (up to subexponential factors)
P(Xy € By(e)) ~ e~ NI(@)

where B (¢) is the open ball centered in x with radius e.

In our applications, the space E will always be the set of probability measures P(X) on a complete
separable (i.e. polish) metric space X such as R or the unit circle T, endowed with a metric compatible
with the topology of weak convergence. An example we will be using in the sequel of such a metric is

[flev<l,]flluip<t

given by
| tau—| sav
X X
with | f|sv the bounded variation of f defined as

Iflsv =sup D7 |f(@is1) = (@)l

T <. <xTn

d(u,v) = sup ) (1.3.2)

where the supremum runs over the subdivisions of X and | f|rip the Lipschitz norm of f.
Large deviations are a powerful tool to prove almost sure convergences. The following proposition is
a mere application of the Borel-Cantelli lemma.

Proposition 1.3.3. Let (Xn)n satisfy a LDP at scale N and with rate function I.
Suppose that I is good, meaning that for any a > 0, the set I=1([0,a]) is compact. Furthermore, assume
that I admits a unique minimizer xg.

Then Xy converges almost surely towards xg.
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Remark 1.3.4. If xy is a minimizer of the rate function I, then I(xg) = 0. This can be seen by taking
A=Fin (1.3.1).

By Sanov’s Theorem, see Theorem A.3.2, if (z;) is an i.7.d sequence of random variables, then its
sequence of empirical measures [iy satisfies a large deviation principle at scale IV, with good rate function

H(:|n) given by

(wlp) SX flog fdu if v is absolutely continuous with respect to p with density f = ¢
v =
a +00 otherwise.

Let us come back to the S-ensemble at high temperature with general potential V. The density of

2P
IP’]‘\/,’ N can be written in terms of the empirical measure jiy of x = (z1,...,zN) by
V.3 1
dPy N (21,...,2N) = 5F €Xp —N|—-P Jf log |z — y|ldian (x)din (y J Vix ,
N
Zn R2\A

where A = {(z,z); z € R} < R?. Let us ignore for a moment that the function log has a singularity
at zero. Then, as a consequence of Varadhan-Bryc Lemmas: Lemmas A.2.1 and A.2.2; and of Sanov’s
theorem, we deduce that the sequence of empirical measures satisfies a LDP at scale N and rate function

TY () = { EX (1) — inf epr) EY (v) if p is absolutely continuous with respect to Lebesgue measure

400 otherwise,
(1.3.3)
where, setting p for the density of p with respect to Lebesgue measure, £}, is given by

&V (n) = —P jj log o = sldua)uy) + | pla)logpla)de + | Vie)dta).

Of course, the singularity at zero of the log has to be properly handled. This is done in greater generality
in [GZ19]. As a consequence we have:

Theorem 1.3.5 (LDP for the empirical measure at high temperature).

2P
Assume x to be distributed with respect to Px N, The empirical measure
N
1
N %

satisfies a large deviation principle at scale N and with good, strictly convex rate function Jy given by
(1.3.3).

This result is in the continuity of the large deviations for the empirical measure in the regime where
B > 0 is fixed, that was established by Ben Arous and Guionnet in [BAG97]. As a consequence of their
result, one deduces that the limiting measure of the 5 ensemble at fixed g is the semicircle distribution
(1.1.1).

2P
Using Proposition 1.3.3, we deduce that under IP’X,’ N the sequence of empirical measures converges
almost surely in distribution towards the minimizer of the functional £5. The following result can be
found in Lemma 2.3.2 and Proposition 4.2.2.

2P
Proposition 1.3.6 (Equilibrium measure for ]P’X,’ N). Let u¥% be the minimizer of the functional £Y,
denote by pY its density with respect to Lebesque measure. Then, there exists some A% € R such that for
all x e R,

Vix) — QPJ log |z — y|dup(y) +logpp = A% (1.3.4)
R
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As a consequence, there exists a constant C¥ such that for all x € R,
0 < pp(z) < Cp(1+a|)*Fe V).

In contrast with the fixed 5 case, the equilibrium measure in the high temperature regime has un-
bounded support. This can be informally explained by the fact that the correlations are less prominent
in the high temperature regime than in the fixed temperature one, where the compactness of the limiting
measure is a manifestation of such correlations. Another way of illustrating this difference in both regimes
in via Central Limit Theorems. As was shown first in [Joh98] for 8 = 2 and quadratic potential, one has
the following convergence in distribution: let x be distributed according to P%; (1.2.1). Then, as N goes
to infinity, and for smooth enough functions f : R — R, the random variables

1 N
N (Ng Flay) - JRf(w)dsc(w)>

converge towards a Gaussian variable whose mean and variance depend on f. The fluctuations of the
empirical measure around its limit are thus of order 1/N. This theorem was then generalized and further
developed in the regime where § is fixed in [Shcl3], [BG13a], [BG13b],[BLS18],[LLW19], [BMP22]. In
contrast with the fixed § case, as was established by [NT18] in the high temperature regime with quadratic
potential V(x) = %2, the fluctuations of the empirical measure are of order 1/ \V/N:

1 & 2 ,
VN (7 23 £ = [ F@" ) = V(0,02 1),

Extending this result to more general potentials is the purpose of Chapter 4. As we will see in the next
section, the fluctuations are also of order 1 /\/JV in the circular 8 ensemble in the high temperature
regime. Consequently, the fluctuations in the high temperature regime are of bigger order than the
fluctuations in the fixed temperature regime, giving evidence of more disorder in the high temperature
case.

We close this section by mentioning the local statistics of the 8 ensemble in the high temperature
regime, see [BGP15], [NT18], [Lam21], from which the local statistics of the S-ensemble can be seen to
be described by Poisson processes. More precisely, consider x to be distributed according to the high
temperature $-ensemble. Then, the sequence of random measures

N
Z ONa,
j=1

converges (in an appropriate sense) towards a Poisson point process on R. This process has the property
that given two disjoint sets A and B, the number of particles that fall in A is independent of the number
of particles falling in B.

Again, this convergence can be put in contrast with the fixed temperature case, in which case, the
limiting process is number rigid as was shown in [DHLM21], meaning that under this point process,
the number of particles inside a compact set is a deterministic function of the configuration outside this
compact.

1.4 The circular S-ensemble at high temperature

Similarly to the [-ensemble on the real line, one can consider the circular S-ensemble at inverse
temperature 3. It is the probability measure on the set TV, where T = [—7, ) is the torus, given by

1 0. ; _§N _
RO 08) = —y [ e = Pemim VO, (14.1)
C,N 1<j<t<N
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where V' : T — R is a continuous potential. The definition of this probability measure is very similar to
the one of the -ensemble on the real line, and both ensembles share important common features. We
list in this section important results about the circular case. Those results always have (or are expected
to) have a counterpart in the S-ensemble on the real line.

The circular S-ensemble has a matrix representation, this time via unitary matrices. Before stating
the matrix representation, we introduce the law ©,, on the unit disk D, where v > 1, by:
The random variable X is ©, distributed if for any bounded measurable f : DoR

14

E[f(X)] = 2;1fﬁf(z)(1—|z|2)%3d22. (1.4.2)

For integer v > 2, ©, has the following geometrical interpretation: if u = (ug,...,u,41) is sampled
according to the surface measure on the unit sphere S” in R¥*!, then u; + iuy is ©,, distributed [KNO7].
We then define ©7 as the uniform measure on the unit circle.

Next theorem can be found in [KN04][Theorem 1.2].

Theorem 1.4.1 (Matrix representation of the circular S-ensemble with null potential). Consider the
block diagonal N x N matrices

L= dz'ag(El,Eg,E5...,) and M = diag(Eo,Eg,E4,...) 5 (143)
where the blocks Z;, j =1,...,N — 1, take the form

= _ (% Py _ S
= <IU __aj> Py ==yl (1.4.4)

while Eg = (1) and Exy = (an) are 1 x 1 matrices. Define the N x N sparse matrix
E=LM, (1.4.5)

and suppose that the entries o are independent complex random variables with a;j ~ ©Og(n_jy+1 for
1 <j <N -1 and ay is uniformly distributed on the unit circle. Then the eigenvalues of E are
distributed according to the Circular Ensemble (1.4.1) at temperature 3~ and potential V = 0.

Remark 1.4.2.

o The matriz E is called a CMV matriz (after Cantero, Moral and Velazquez [CMV05]).

o Because the Z;’s are unitary matrices, so are L, M and E, therefore the eigenvalues of E indeed
land on the unit circle.

We will be interested in the high temperature regime, that is in the case where 8 = 2a/N for some
a > 0. As in the real case, the circular 8 ensemble at high temperature displays large deviations for its
empirical measure

LN
ﬂN = N Z 5ei6j s
j=1
as can be deduced from [Ber18], [GZ19].

Theorem 1.4.3. Let 5 = QWO‘, with fixed o > 0 and assume V. : T — R to be continuous. Define for

any p € P(T) absolutely continuous with respect to the Lebesgue measure the functional

ﬂhﬁ=—af

log (e — ¢'#]) u(d8)u(dy) + alog(2) + | V(O)a(ds)+
TxT T

(1.4.6)
dp
[ 1o (dg(e)> u(d6) + log(2r)

then
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i. the functional f¥ (u) is strictly convex and achieves its minimal value at a unique probability measure
pY . absolutely continuous with respect to the Lebesgue measure;

ii. the sequence (fin) satisfies a large deviation principle in P(T) equipped with the weak topology at
speed aN with rate function defined for absolutely continuous p € P(T) with respect to Lebesgue
measure by 1V (u) = fY (u) — fY(u¥), and IV (1) = +o0 otherwise. In particular

UN —2s NZ . (1.4.7)

N—>wc

In particular, this last theorem implies the following law of large numbers: Let 6 be distributed

. v, 2% .
according to P/ & . If f is bounded measurable, we have the almost sure convergence

1§:f(9-)—>J £(0)duY (6)
szl J . Ha .

A natural question following this fact is the one of the fluctuations around the limit. Fix a reasonable
(smooth enough) function ¢ : T — R. Can one find 1 > 0 such that the random variables

N (1 3,00~ [ wioyd V(@)
N = J T oy

converge in distribution towards a non trivial random variable ? In [HL21], Hardy and Lambert solve
this problem with 7 = 1/2 and the limiting law being Gaussian with zero mean and variance depending
of the test function f.

Theorem 1.4.4 (CLT for the circular S-ensemble at high temperature, [HL21]). Let @ = (4,...,0N)
be distributed with respect to (1.4.1), with 3 = 22 for some o > 0. Let ¢ be C2Y+(T) for some integer
v = 2. Then, we have the convergence in distribution

N
JN (;jzlf(ej) — Lr f(é))d,ﬂ(&)) — N(0,02 v (1)),

where o2 (¢) = (P, L71Y)y, L being a linear operator on some Hilbert space H.

Remark 1.4.5. We do not explicit here the form of the operator L. We will come back to it (more
precisely, we will come back to its real line counterpart) when presenting the CLT in the [-ensemble on
the real line at high temperature. For the moment, we refer to [HL21] for detail. Let us also mention that
the proof of Hardy and Lambert is based on a normal approximation method, that was first established in
[LLW19] for the 3-ensemble on the real line in the fixed 8 > 0 regime. Using this approach, they are
able to derive a Berry-Esseen bound, that is a speed of convergence towards the limiting Gaussian.

1.5 Integrable systems: the example of the Toda chain

In this section we present a notion of integrability for systems of interacting particles, evolving with time.
We give the main ideas by illustrating them on the practical example of the Toda chain, also called the
Toda lattice. It was introduced in [Tod67] as a an example of one dimensional, continuous time and
discrete space system with nonlinear interaction, which has soliton solutions, i.e. traveling solutions
whose shape is conserved along time.

The (periodic) Toda chain is a system of N particles evolving on the real line, labeled 1 < j < N, with
positions q(t) = (g;(t))1<j<n, momenta p(t) = (p;(t))i<j<n, and governed by the system of ordinary
differential equations

dg; dp;

il N el —e™ 1< j <N, (1.5.1)
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where 7; = gj4+1 — g; is the stretch between particles j + 1 and j, and where we assume the periodicity
boundary condition

an+1=q + 4 (1.5.2)

for some £ € R.
The particles are not supposed to be ordered, thus the stretches can take negative values. The set of
equations (1.5.1) is a Hamiltonian system with Hamiltonian

N
H:Z}pz_i_e_rj
277 ’

j=1
i.e. (1.5.1) can be written
dg; _ 0H(q,p)7 dp; _ 0H(q,p) 1<j<N.
dt 6pj dt 6qj

An important feature of the Toda chain is its nearest neighbors type of interactions: during an infinitesimal
time, particle j only interacts with particles j + 1 and 57 — 1. We emphasize that we do not suppose any
ordering on the positions of the particles, and the expression "nearest neighbors" has to be taken in
the sense of "nearest labels". An equivalent way of seeing the Toda dynamic is as a disretization of a
continuous field (z,t) — g(x,t). With this point of view, neighboring sites interact during an infinitesimal
time.

eo oo
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oo e © . S e %L
.
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Figure 1.1: Simulation of the Toda chain with total stretch £ = 0 and "Dirac’ initial condition gn/ = 1,
g; =0 for j # N/2, and p; = 0 for all 1 < j < N, at three different times. The sites are represented on
the xz-axis, and on the y-axis we display the value of ¢ at the corresponding site.

Left: ’Dirac’ initial condition.

Middle: After a short time. The impulsion propagates through the nearest neighbors interaction of the
Toda chain.

Right: After some time. The systems almost looks random.

Aside from the obvious conserved quantity

N
2=t
Jj=1

the N-particles Toda chain was suspected via computer simulations, see [FST73], to have N nontrivial
conserved quantities. This fact was established by Hénon [Hen74], who gave formulae for those constants
of motion. Approximately in the same time, Flaschka [Fla74b] and Manakov [Man74] gave independently
an alternative proof of the existence of those conserved quantities. We use here the notations of Flaschka:
Introducing the variable a; = e~"i/2 the dynamic (1.5.1) is equivalent to

daj 1

7 = 3% P —pin),

dp;
) 42 1—a2»

SL=dl—a, 1<j<N.

(1.5.3)
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Introducing the N x N matrices

Pt ar O ayn 0 —aq 0 ayn
ar ps as - 0 . a 0 —ay . 0
Iv=10 a p ol Bv=5] 0 a 0o - |, (154
anN—1 : —aN-—1
ay 0 ... an_1 PN —an 0 ... aN_1 0

the set of equations (1.5.3) can then be rewritten as

dL
TtN = LyBy — ByLy .

The couple (Ly, By) is called a Lax pair.

In this manuscript, by "integrable system", we mean "system possessing a Lax pair".

Definition 1.5.1 (Integrable system). A system of N ordinary differential equations is said the be
integrable if it possesses a Lax pair, i.e if the dynamic is equivalent to
dL

— =IL.BI=LB-BL, (1.5.5)

where L and B are N x N matrices.

Remark 1.5.2. In general, a system of N particles evolving with time is said to be integrable if it
possesses N independent conserved quantities. As we will now see, having a Lax pair guarantees this

property.
Having a Lax pair is a very special property which has an immediate consequence about the existence
of conserved quantities. Indeed, with (L, B) of the previous definition, let S be the solution of the ODE

ds
= —BSW), S0)=1. (15.6)

Then, considering its determinant one sees that S is invertible at any time and that the matrix S(¢)L(0)S(¢) *
satisfies the Lax equation (1.5.5) and is equal to L(0) at time zero, thus

L(t) = S(t)L(0)S(t) ™. (1.5.7)

This ensures that the eigenvalues of L are conserved quantities. Furthermore, up to computing the matrix
S(t) and recovering the data of interest from L, the system is solved, hence the integrability. It is worth
to mention that finding a formula for S(t) is a delicate task in general.

Others examples of N-particles integrable systems (in the Lax pair sense) are given by the Ablowitz-
Ladik lattice [AL75] and the Schur flow [Gol06] (which we introduce in Chapter 3), the exponential
Toda lattice [GGGM23], the Volterra lattice and the Itoh-Narita-Bogoyavleskii lattices [Bog91]
(we introduce the latter three systems in Chapter 5). An important feature that those systems share is,
as in the Toda lattice case, the locality /nearest neighbors structure of the interactions. As a consequence,
the Lax matrices of all those systems are periodic band matrices with band size independent of NV,
meaning that for each of these systems, if (L, B) is the associated Lax pair, there is some K € N such
that

Li;iq =0and B; 4, = 0 whenever |a| > K,

where the indices are considered modulo V.
We now introduce the so-called Generalized Gibbs Ensemble (GGE) of the Toda chain.
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1.6 Generalized Gibbs Ensemble, and a link with $-ensembles

Let us start by recalling the following geometrical fact for Hamiltonian systems. We defer to the book
[Gio22] for an introduction to the topic of Hamiltonian dynamics.

Theorem 1.6.1 (Preservation of Lebesgue measure). Let (q,p) = (¢j,p;)1<j<n € RY x RN be a Hamil-
tonian system with Hamiltonian H(q,p), i.e. the equations of motions are given by
dg; _0H(q,p) dp; _ JH(q,p)

e e TR (16.1)

Then, the Lebesgue measure Aoy on RN x RN is preserved by the flow of (1.6.1), that is, denoting the
flow ®; defined by (q(t), p(t)) = ®:(q(0),p(0)), one has for any Borelian set A = RN x RN

Aoy (@77A) = Aon(4).

As we saw in the previous section, if V : R — R is any function, TrV (L) and Z;N:1 r; are conserved
quantities of the Toda chain. In combinations with Theorem 1.6.1, the following measure, introduced by
Spohn in [Spo20c] is invariant under the Toda flow.

Definition 1.6.2 (GGE for the Toda lattice). Let V : R — R such that there exist ¢,C' such that
V(z) = ca®+C forallzeR. (1.6.2)

The Generalized Gibbs Ensemble of the Toda chain with potential V' and pressure P > 0 is the probability
measure on RY x RN given by

N

1 .
ariY (p,r) = VP ©XP {(=Te(V(Ly))} [ [ e Fredridp; . (1.6.3)
N,T i=1

Remark 1.6.3.

i) Invariance of ’]I‘X,’P means that if the initial condition (q(0),p(0)) is sampled with respect to TX;P,
then the law of (q(t), p(t)) is ’H‘J‘\/,’P at any time t.

it) Condition (1.6.2) is enough to ensure that the partition function Z]‘Gﬁ converges.

The idea behind the introduction of the GGE (which can be introduced also for the other previously
mentioned integrable systems) is that when trying to understand the large N behavior of those systems,
and despite of the possible formulas one would be able to extract via equations (1.5.6),(1.5.7) (which
would be too complicated to analyse directly), a statistical approach is needed. In the framework of
statistical mechanics, the observables of the Toda chain are expected to tend, as time goes to infinity, to
be distributed according to ']I‘X,’P. More precisely, one expects for reasonable f : RY x RY — R and for
generic initial condition (q(0), p(0)) the convergence

7| raw.poi — BE @ (1.6.4)

where the last expectation is taken with respect to TX’P for some potential V' and pressure parameter
P > 0, depending on the initial condition and on the total stretch £ (1.5.2).

By invariance of the GGE, if the initial state is sampled according to ']I‘X,’P, the law of the Lax matrix
Ly is independent of time. Let us give here the fundamental observation made by Spohn in [Spo20c],
allowing to relate the study of the Toda chain with the one of the S-ensemble at high temperature.
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Consider the GGE for the Toda lattice with quadratic potential ']I‘ﬁ/ 2,F

we can compute the trace in (1.6.3) and find, in the notations of (1.5.4),

1 1N N
QTrL2 = 5;;0?4-;1%2,

. With this choice of potential,

2
and so the density of T, /2P factorizes into the law of independent random variables. More precisely, we
find

Q;

i ~ N(0,1) and ,
p ( ) \/i Xa2pP

where we recall (1.2.4), i.e.

N(O’ 1) X2P X2P
X2P N(\(/)i]_) X2P V2
V2 ’ V2
1@ LE 7 (1.6.5)
- ) xzp
b V2
% N0

where the entries are independent up to the symmetry. This matrix model is reminiscent of the tridiagonal
representation of the S-ensemble given by Theorem 1.2.5. We notice two differences in the structure of
the matrix (1.6.5):

o Here, Ly is periodic tridiagonal, meaning that the entries Ly (1, N) and Ly (N, 1) are nonzero.
e The law of the off diagonal variables is independent of their position: Ly (4,7 + 1) @ Ly(1,2),

whereas in Theorem 1.2.5 the parameter defining the law of the off diagonal entries varies linearly
with their position.

The first point is not going to play a big role in our analysis. Indeed, up to a perturbation of rank 2, L
is a true tridiagonal matrix. We take advantage of the second point as follows:

Denote by LE\},D) the matrix of (1.6.5). Take 8 = % in the representation of Theorem 1.2.5. Then, in
the top left corner of T', the off diagonal entries are y-distributed, with parameter approximately equal
to 2P, almost matching the top corner of the Lax matrix LE\I,J)‘ Now, fix some M > 1 and consider the
euclidean division of N by M: N = kM + r for some £k > 1 and 0 < r < M — 1. Assume here for
simplicity that » = 0. Then, consider a sequence of k x k Lax matrices with varying pressure parameter

L,E:P(lfj/M)), 0<j<M-—1, and form the block diagonal matrix

§ = diag (L7, L7V L{PADY

Last, replace the entries S(jk+1,(j + 1)k) and S((j + 1)k, jk+ 1) for 0 < j < M — 1 by zero and denote
by the resulting matrix by S’. Morally, replacing S by S’ should not produce too big of a mistake because
it can be written as a small rank perturbation. This statement can be made more precise:

Lemma 1.6.4. Let A and B be N x N Hermitian matrices, and consider the distance d defined in (1.3.2).
Then we have
N N . Jrank(A—B) 1
A(jix (). fix(B)) < min {N, v 3 M- Bm} .

1<i,j<N

Now, both matrices S’ and T are tridiagonal, their diagonal entries have same law and their off diagonal
entries are almost the same in law: the difference between the parameters defining their distributions is
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bounded by a O(1/M). We can now compare the empirical measures: because S’ is defined by blocks,

its empirical measure reads
—1

1 M
an(S) = 57 >} iw(By),

j=

where the B;’s are the blocks of S’. Using Lemma 1.6.4,

Z P(1=j/M))) Z

thus when taking the limits kK — oo then M — o0, and assuming that for any @ > 0 the empirical measure

[}

N(T),

ZZ
t>

,&k(L;Q) ) converges towards some measure vg as k — +00, it is reasonable to expect the equality between
measures

! z%/2
vspds = pip'", (1.6.6)
0
2
where up, /2 is the limiting measure of the high temperature 8 ensemble given by Proposition 1.3.6 and

where this equality means that for any f bounded continuous one has
f f fdv,pds = f Fdps?

i- Consider the measure ']I‘X’P with general V. Does the empirical measure of the Lax matrix of the
Toda chain converge 7

At this point, natural questions arise:

it- If yes, does equation (1.6.6) hold ?

7i4- Can this link between the Toda chain and the high temperature 5-ensemble be pushed further, in
other words, can we expect an analogue of (1.6.6) for different objects than empirical measures, for
example free energies, limiting variances, ... 7

iv- Does a similar picture hold for other integrable systems/S-ensembles ?

In Chapter 2, we tackle questions 7 and i by establishing a large deviation principle for the empirical
measure of the Toda chain, and comparing it with the large deviations for the empirical measure of the
high temperature S-ensemble.

In Chapter 3, we show a similar Large deviation principle for the empirical measure of the Ablowitz-
Ladik lattice and for the Schur flow, and link them respectively to the circular g-ensemble and the Jacobi
[B-ensemble at high temperature: this goes in the direction of question 7v, showing that this picture is
valid for other integrable systems than the Toda chain.

Those chapters are based on two publications of the present author, respectively [GM22] in collabo-
ration with Alice Guionnet, and [MM23b] in collaboration with Guido Mazzuca.

We now present the idea and stategy of derivation of a hydrodynamic equation for integrable systems,
following [Spo21], in the case of the Toda lattice. This will further motivate the results of Chapters 2
and 3, and motivate the results of Chapters 4 and 5.

1.7 Hydrodynamics, currents and fluctuations

An important - and open in most cases - question is the existence of a hydrodynamic limit of particle
systems, that is, informally, an equation over the density (number of particles per space unit) of particles
after a suitable rescaling:
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o ascaling in space so that the distance between two particles is of order 1/N, where N is the number
of particles in the system,

 ascaling in time such that after rescaling, in a time window of order one, one observes a macrospopic
evolution of the system.

Being able to derive such an equation on the density of particles is crucial to study the system from a global
perspective, rather than looking at the microscopic scale of single particles. However, a mathematically
rigorous proof of such a limit is very often far from reach.

As explained in [Spo21], the question of a hydrodynamic limit for integrable systems has been tackled
recently through the introduction of Generalized Gibbs Ensembles (as the one of Definition 1.6.3), based
on the idea that those systems should locally behave, in a suitable time scale, as if they where distributed
following a GGE. Before being more precise on this last point, let us mention that the structure of the
equation is expected to be common for a wide class of integrable systems, see for example [Spo22b] for
the Ablowitz-Ladik case, [Spo21][Sections 5 and 6] for the hard rods system and the for Toda chain
respectively.

In the example of the N particles periodic Toda chain, the space scaling is 1/N so that the distance
between two neighboring sites is of order 1/N. Let ®; be a local quantity, that is: there is some K
independent of N such that ®;(t) only depends on particles j — K,j — K +1,...,j,...,j + K at time ¢.
Then it is expected that:

For any ¢ > 0 and z € [0, 1], as j/N — =, there is a potential-pressure couple (V ¢, Py ¢) such that

]' Nt : V.ct Pzt
mJ; O, (s)ds feaed IIJ{IHEN’7 “[@;(0)] . (1.7.1)

This last equation is called a local equilibrium property at speed N for the system. The hydrodynamic
scaling in time is then ¢ — Nt. The local equilibrium assumption is at the basis of the derivation of the
hydrodynamic limit, and it is the biggest difficulty in a mathematical proof of such a limit. However,
based on this assumption, Spohn is able to derive a candidate hydrodynamic equation. The strategy is
based on the fact that the conserved quantities are local. Following the notations of [Spo21], we define
forn>1

QUIN = L% (5. 5)

so that the conserved quantity TrL’; can be written

N
TeLy = Y QU

Jj=1

where QE"]’N only depends on a;y;, pj+i, —n < ¢ < n due to the tridiagonal structure of the matrix Ly.
For n = 0, we denote

and the associated conserved quantity is the total stretch ¢ = Zjv=1 r;. We emphasize that while TrL7; is

invariant, each Q][-"]’N depends on time. Now, define the currents Jj[n]’N

the conservation law

(also depending on time) via

d n .
2 o =0, 1<j <N,

where 0; is the difference operator 0;f = f(j + 1) — f(j)-
Because of the local equilibrium assumption (1.7.1), it is enough to compute, for arbitrary pressure-
potential couple (P, V) the limiting means

mE)" [QE”]’N(O)] and HmEY" [J}"]’N(O)] . (1.7.2)
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Computing those means for each n > 1, Spohn is able to derive the hydrodynamic limit for the Toda
lattice [Spo21][Section 6] (establishing it in the weak sense, tested against all x — 2™, n > 0):
With the local equilibrium assumption (1.7.1), denote around the macroscopic point x at time ¢ the

average stretch

v(z,t) = hj{/n E}(;”*“Pz’t [1]

and the limiting measure
Vi, P, 1Y
nia,t;0) = ple.tiv)dv,  p(e,t) = Hm BT leZléxjuN)] :
Set pp(x,t;v) = v(x,t)p(x,t;v) and define implicitly the effective velocity through

Vet (T, t;0) = v + 2f log(Jv — w|pp(x, t; w)) (Ve (, t; W) — vVegr(, t;v))dw .
R

Finally, defining
0(a,t) = vl 1) | vpe(o.ti ),
R
the hydrodynamic equation reads

oy (x,t) — Opqr(2,t) =0
O (V(x, t)pp(x, t; v)) + 51([%&(%,75;1)) —q(z,t)]pp(z, t; v)) =0.

We now give the scheme for the derivation of limits (1.7.2), using the heuristic link between
the Toda chain and the high temperature S-ensemble explained earlier.
¢ By translation invariance of the law of the entries of the Lax matrix Ly under TX’P, we have

1

Ex” @ 0)] = 5

V,P V,P N
ENT [TrL}] = EX U x”duN] ,
and computing this quantity when N goes to infinity is thus associated with the question of the limiting
o . . VP
empirical measure of eigenvalues under the GGE Ty

By the heuristics leading to (1.6.6), and assuming that it is valid under a general potential V', we get the
formula
vp = 0p (Pup) , (1.7.3)
and because of the characterization of u¥% given by Proposition 1.3.6, we get a characterization of the
limiting density of v}.
e By the Lax pair formulation of the Toda chain

dLn

N _ 1y, B
dt [N> N]7

we can compute the evolution equation for such quantities as

d T n n n n
%QEL]’Nz(BL —L"B) = b L%,y —b;L" ;. (1.7.4)

J,j—1

Defining JJ["J’N =bj_1L}, ,, we have

d AN _ 4nl,N _ [n].N
29 = AT
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J J[n]’N is then the current of the local conserved field QE-”LN. In particular, defining the matrix L%V as

Lolid) ifi<ioriel i—N
L (i) = | Evtbd) ii<iori=1] (1.7.5)
0 otherwise
we can recast the previous definition as
n],N n ..

giving a formula for the currents in terms of the Lax matrix Ly. A priori, the derivation of the limiting
current

1
lim BR[N] = tim BN [TeLA LY ]
is more intricate than the derivation of the limiting average empirical measure, this expression not being
expressible only in terms of the eigenvalues of Ly. However, as explained in [Spo21], it can be expressed
via the associated fluctuations, by showing that taking derivatives with respect to P, and modulo the

decay of correlations between local observables,

. 1
op lij{anX’P[J][ LN = lim NCOVﬁP(TrLMTrL’;V) 7 (1.7.7)

where the last covariance is taken with respect to TX’P. From this perspective, it would then be sufficient
to show that the spectral statistics of the Toda Lax matrix

| aain o)

satisfy a Central Limit Theorem at speed /N, i.e. that for any n > 1, there is some o2 _4,(V, P,n) such
that we have as N — oo the convergence in distribution towards a Gaussian random variable

VI ([ adata) = [ sk @)) 4 NO.han VP,

To compute the currents, it would then suffice to compute the limiting variance a%oda(V, P,n). As an
analogue of equation (1.6.6), provided there is a central limit theorem for the empirical measure
in the 8 ensemble at high temperature with limiting variance oy, we might expect the following
equation between the limiting variances

1
J U%‘oda(‘/v 5P7 n)dS = U%IT(Va P, n)7 i.e. U%oda(va P7 n) = aP (PO'I%IT(Vv P7 n)) 3 (178)
0

therefore allowing to compute the limiting average currents in terms of the limiting variance in the CLT for
the high temperature S-ensemble. Chapter 4 is devoted to the Central Limit Theorem for the -ensemble
at high temperature, based on the joint work with Charlie Dworaczek-Guera [DGM23]. Chapter 5 is
devoted to the CLT in integrable systems and to their link with high temperature S-ensembles, allowing
to justify mathematically equation (1.7.8) not only for the couple Toda chain/real S-ensemble at high
temperature but for several other couples integrable systems/high temperature S-ensemble. It is based
on the joint work with Guido Mazzuca [MM23a].

We now introduce the Ablowitz-Ladik lattice, which is an integrable system, similar to the Toda
lattice in many points: in particular, it can be compared to the high temperature circular S-ensemble.

1.8 The Ablowitz-Ladik lattice

The (periodic) Ablowitz-Ladik lattice is the system of ODEs
;445

it = (a1 + 051 = 205) +|aj*(aj 1 + aj41) (1.8.1)
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that describe the evolution of the complex functions a;(t), 7 € Z and t € R. We assume N-periodic
boundary conditions a;+n = a;, for all j € Z.

This system was introduced by Ablowitz and Ladik in [AL75, AL76] as a spatial discretization of the
defocusing cubic Nonlinear Schrodinger Equation

16 (x, 1) = —%6iw(x,t) 0, )P, 8). (1.8.2)

This equation is known to be integrable, in the sense that it possesses a Lax pair (the elements of the
pair being infinite dimensional operators), see [2S72]. The Ablowitz-Ladik lattice is a discretization of
(1.8.2) that is itself integrable, as was shown by Ablowitz and Ladik in [AKN74, AL75] by discretizing
the Lax pair of the Cubic nonlinear Schrédinger equation.

In [Nen05, Sim05], Nenciu and Simon constructed another Lax pair for the Ablowitz-Ladik lattice as
follows. We take here IV to be even for simplicity.

As a preliminary remark, we notice by a direct computation that the quantity

N
KO =TT =1a) (1.8.3)

is a constant of motion for the AL lattice. This implies that if |a;(0)] < 1 for all j = 1,..., N, then
la;(t)] <1 for all times. Therefore, considering an initial condition having coordinates in the unit disk,

—N
a=(a1,...,an) €D, we can form the 2 x 2 unitary matrices Z; (well defined at any time because of
our preliminary remark)

—

a; i .
Hj=<ﬂ_ _”J,), J=1,....2N, p;j=4/1—|a;]?. (1.8.4)
Pj a;

Then, we define the 2N x 2N matrices £ and M as

:1 —a2N P2N
':3 EQ
L= ] , M = . (1.8.5)
- Hon—2
Zan-1 B
P2N as N
Finally, define £ as
E=LM (1.8.6)
and €1 as
3E i=k
Sxk =13 &kr k=j+1mod Nork=j+2mod N (1.8.7)

0 otherwise.

Then, the equations (1.8.1) are equivalent to the Lax equation

d€

=i +(ENN]

dt

where T stands for the hermitian conjugate. We recognize a construction similar to the one of Theorem
1.4.1: the Lax matrix £ is a periodic CMV matrix. In the spirit of Definition 1.6.2, and as in
[Spo22b, GM23], we introduce the Generalized Gibbs ensemble for the Ablowitz-Ladik lattice as

Definition 1.8.1 (GGE for the Ablowitz-Ladik lattice). Let o > 0 and let V : T — R be a continuous
function on the torus. Denote by D the unit disk.
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The Generalized Gibbs Ensemble (GGE) with parameters o, V for the Ablowitz-Ladik lattice is the
probability measure on DY given by

N
[ =1a;?)* g epe V) (1.8.8)

Jj=1

1

= V,a
ZAL,N

d]P’X’LO‘VN(al, co,aN)

Remark 1.8.2. Because the state space DV is compact, any choice of continuous V ensures that the
partition function

N
v, — —
Zit = [ TT0= )= e
j=1

CONVETgES.

We now make the fundamental observation that when taking the special potential V() = 0 (instead
of V(x) = 22/2 in the Toda case), the a;’s are independent and identically distributed with distribution
O24+1, where we recall that the © distribution is given by (1.4.2). As in the Toda case, we note that with
this specific choice of potential, the Lax matrix £ resembles the matrix model for the circular S-ensemble
given by Theorem 1.4.1. As before, the main difference between both models is that in the Ablowitz-Ladik
case, the law of the entries does not depend on their location in the matrix, whereas the parameter in
the law of the coefficients of the Killip and Nenciu representation depend linearly on their position. The
link between Ablowitz-Ladik lattice and circular S-ensemble therefore seems to be of the same nature
than the one between Toda and [ ensemble on the real line. We thus expect the ideas we presented in
the previous section to apply in this case also. In particular, Spohn derived the hydrodynamics of the
Ablowitz-Ladik lattice in [Spo22a] following those ideas.

We close this section by emphasizing that those ideas are expected to be fairly general, as the Toda
chain and the Ablowitz-Ladik lattice are not the only examples of systems displaying a link with a 3
ensemble in the high temperature regime. In [GGGM23], the authors draw this link for several integrable
systems/3-ensembles, which are listed in the following table.

Integrable System p-ensemble at high-temperature
Toda lattice Real
Defocusing Ablowitz-Ladik lattice Circular
Exponential Toda lattice Laguerre
Defocusing Schur flow Jacobi
Volterra lattice Antisymmetric Gaussian

Table 1.1: Integrable systems and random matrix ensembles

Beyond the question of hydrodynamics, the correspondance between integrable systems and random
matrix ensembles could help to have a broader understanding of both subjects. It would also be fascinating
to understand when an integrable system can be mapped to a S-ensemble and vice-versa.

1.9 Some related works

We list here some works in the context of the previously described ideas. We do not re-cite all of the
papers we already mentioned, but those are of course to be considered as related to our works.

The idea of analysing the Lax matrix of integrable systems from a random matrix perspective appeared
in [BGS09, BGS11]. This approach then regained attention through the work of Spohn [Spo20c, Spo20a,
Spo20b, Spo21, Spo22a]. The density of states (i.e. limiting empirical measure) of Laguerre, Jacobi and
Real B-ensembles at high temperature, and the relation of the latter with the Toda chain, were investigated
in [Maz22] in the case of a quadratic potential. In [GM23], the authors proved the analogue of (1.7.3)
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for the Ablowtiz-Ladik lattice/circular S-ensemble at high temperature for polynomial potentials, using
a transfer operator approach. The link between integrable systems and random matrix ensembles was
investigated for the systems of Table 1.8 in [GGGM23]|. Hydrodynamics and fluctuations for the hard
rods system are considered in [DS17], [OF22]. The generalized hydrodynamics of the Sinh-Gordon model
are considered in [BDWY18].

The real S-ensemble at high temperature was first considered [CL97]. In [ABG12], the authors
derived the limiting density of eigenvalues for the quadratic potential. The large deviations for high
temperature Gibbs measures were established in [GZ19], with a direct application for the S-ensembles
at high temperature. The fluctuations around the equilibrium measure, and the local statistics for the
high temperature S-ensembles were considered, among others, in [BGP15, NT18, Pak18, NT20, HL21,
NTT23, Lam21].

1.10 Presentation of the results

1.10.1 Main results of Chapter 2

This chapter is based on the collaboration with Alice Guionnet [GM22]. It is motivated by the justification
of formula (1.7.3) under the Generalized Gibbs Ensemble (1.6.3) with general potential V.

One way to tackle this problem is noticing that when the potential V' is a polynomial, the interactions
between the matrix entries are local. As noticed by Spohn in [Spo20c], this allows to use a transfer
operator approach. This idea was used in [GM23] to prove the analogue of equation (1.7.3) in the case
of the Ablowitz-Ladik lattice. We use this approach in Chapter 5.

Here, we adopt a large deviations strategy. In this chapter, we change the definition of ’]I‘Z’V (1.6.3)
by shifting the potential V' by 22/2:

1 1 a ,
de’P(I% ’f‘) = ZV’P eXp{—TI‘(V(LN)) - iTr(L?V)} H €_Pr7’d’l“idpi ' (1101)
N.T i=1

Notice that in particular, the definition of the normalizing constant ZX’? differs from the one of (1.6.3).
This definition is convenient in the present setup as we want to compare géneral potentials to the quadratic
one. The approach of large deviations allows us to tackle the case of potentials with polynomial growth.
More precisely, we prove the following.

Theorem 1.10.1. Let P > 0 and assume that V is continuous. Assume that either V is uniformly
bounded or there exists k € N* such that

Viw) _ (1.10.2)

|lz|>x z2k
witha >0 ifk>1anda > —1/2 ifk =1. Then:

1. The law of fir., under TX;P satisfies a large deviation principle in the scale N with a good rate
function, denoted T} .

2. TY achieves its minimal value at a unique probability measure v}, .

3. As a consequence fi,, converges almost surely and in L' towards v}.

Our proof is made of two independent parts: the case of a potential of the form % + V with V
bounded continuous, which can be seen as a perturbative case of the quadratic potential, and the case
of a general potential with polynomial growth. The second part applies to the first case, but the first
approach has the advantage of setting the basic ideas.
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Here also, we shift the potential by 22/2 in the definition of the 3 ensemble. In this section, and in
the corresponding chapter, we set

1 1
APV (2, ) = - H lzs — 2 |Pe” B GV E)) dgy - day (1.10.3)

= —7
ZN,C i<j
and as before take 5 = 2P/N. When needed, we add the subscript C' (for Coulomb) and write

]PX;,FC,, to avoid possible confusions between the 5 ensemble measure and the Toda GGE. The measure

PX;Z is not to be confused with the circular S-ensemble, which does not appear in this
chapter. In those notations, and with the ones of Definition 1.2.6,

2

Recall that as a consequence of [GZ19], the empirical measure of x = (x1,...,2y) following the S
ensemble szp/ N satisfies a large deviation principle at scale N with rate function IK (which is deduced

from JY of Theorem 1.3.5 by shifting V' by 2%/2), given by

I}.f( ) = f 1‘3/ (1) — inf,epr) f 1‘3/ (v) if p is absolutely continuous with respect to Lebesgue measure
+00 otherwise,

(1.10.4)
where, setting p for the density of p with respect to Lebesgue measure, f}.f is given by

7 ) = =P [ og ke = slduta)aut) + | pla)logpa)de + | (V) +a2/2) duto).
R2

The main point is that we are able to compare the minimizers of the Toda rate function T to

1
the ones of J%. This is done by comparing the free energies of both models F%/’P = ]\}im ﬁZXJ; and
—>0 ’
1 2P
Fg’P = 1\}1_1)n/v NZX]g , showing that the map P +— Fg’P is differentiable and

FP = 0p(PEYY). (1.10.5)

This identity is proven in the bounded case by expressing the rate function of the high temperature
[-ensemble I}.f in terms of the Toda rate function:

Theorem 1.10.2. For any continuous function V' such that

tim sup L] _ ¢ (1.10.6)

|¢|»o T

the law of the empirical measure iy under ]PX,’2P/N satisfies a large deviation principle in the scale N

and with good rate function Ib (p) = fF (p) —inf ¥ where

M
1
\% . . .
= lim 1 f f — T, ; dv; . 1.10.
fP ('u) 61—r>% llin uP/M,lp,l/ps.t. {M ;1( ZP/M(VZP/M) - J'V VzP/M)} ( 0 7)
o X Vip/MEBL(9) -
In the general case, equation (1.10.5) is proven directly, in Lemma 2.4.5.
Because of Varadhan’s lemma, those free energies are related with the minimizers of the rate functions,
and we deduce formula (1.7.3):
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Theorem 1.10.3. Let P be a positive real number. Then, denoting v} the minimizer of T and u% the
minimizer of 1%, we have:
for any bounded continuous function f on the real line,

[ 1@k @ = ore [ r@ant ).

Note that as a byproduct of this approach, we prove a large deviation principle for the empirical
measure of general tridiagonal matrices with independent coefficients, see Theorem 2.2.4.

1.10.2 Main results of Chapter 3

Chapter 3 is based on the collaboration with Guido Mazzuca [MM23b]. It is motivated by the justification
of the equivalent of equation (1.7.3) for the Ablowitz-Ladik lattice and the circular S-ensemble at high
temperature. As noticed at the begining of Paragraph 1.10.1 for the Toda chain, one can approach this
problem by a transfer operator approach: this was done in [GM23]. This approach allows the authors to
conclude for polynomial potentials.

We tackle the problem using large deviations, in the spirit of the results of Chapter 2. We therefore
consider the empirical measure of the matrix £ introduced in equation (1.8.6)

1 N
[LN(E) = sz::l5eiej(5) N

where the matrix £ is distributed with respect to

N
1
V,a . _
dPALvN(al""’aN) = ZV.a H(l - |aj|2) lﬂajeme TV(E)
AL,N j=1

We then show
Theorem 1.10.4. Let a > 0. For any continuous function V. : T — R the following holds:

a. the sequence [in(E) under the law ]P’X’E‘N satisfies a large deviations principle at speed N with a
good rate function JY

\%4

b. JY achieves its minimum at a unique probability measure vY

c. fin(E) converges almost surely and in L*(T) towards v .

To identify the limiting measure !, we compare the Ablowitz-Ladik lattice to the circular 3 ensemble

(e

at high temperature }P’g’j\?/ N (equation (1.4.1)), as previously motivated.
Recall that by Theorem 1.4.3, the empirical measure of the circular S-ensemble at high temperature
satisfies a large deviation principle with rate function given for p absolutely continuous with respect to

Lebesgue measure by
L () = fo (n) —inf £,
IV (1) = +00 otherwise, where

) =—a |

log (e — €1%]) w(d8)u(dp) + alog(2) + | VIO)u(ds)+
TxT T

L log (Z'Z(Q)) w(df) + log(2m) .

The rate function I) is stricly convex. Denoting its unique minimizer Y, we then show the following
equation linking vY to uY, for any choice of continuous V : T — R.
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Theorem 1.10.5. For any continuous V, f : T — R

Lf(e)du ) = 0a ( Jf YduY (6 > (1.10.8)

The advantage of this setup is the compactness of the torus: as before the proof is based on the
comparison of the measure PY; ALy to its version where V' = 0, namely Py AL N for which the entries of
the matrix & are easier to handle. As before, we are able to relate the free energies of both models by
showing

F% = 0a(aF5™). (1.10.9)

This is done by establishing the reformulation of the circular S-ensemble rate function in terms of the
Ablowtiz-Ladik one.
Theorem 1.10.6. Let « > 0, and V. : T — R continuous. The law of the empirical measures

20
fin(E) under d]P’g”j\\,’ satisfies a large deviations principle at speed N, with a good rate function I} (1) =
) — inf,ep(r) Y (v), where

1 q
Y1) = lim lim inf  inf { Z (Jm/q(l/m/q) + L VdZ/m/M> } . (1.10.10)

=0 g—>x afqre q i1

1
1% Via/q<Bu(®)

As a byproduct of this approach, we prove a large deviation principle for (periodic or non periodic)
CMV matrices (that is of the form of £ given by (1.8.6) or of the matrix representation E of Theorem
1.4.1), in the case where the a;’s appearing in its construction are i.7.d.

1.10.3 Main results of Chapter 4

Chapter 4 is based on the collaboration with Charlie Dworaczek Guera [DGM23]. It is dedicated to the
establishment of the Central Limit Theorem for the empirical measure in the [-ensemble on the real
line at high temperature. More precisely, we establish that for smooth enough, decaying at infinity test
functions ¢ : R — R, and for a class of confining potentials V : R — R, with x = (x1,...,zy) distributed
under the measure

V,2P/N B 1 22 SN (g
PN (xl,xN)—TP/N 1_[ |.’137;—ij|N€ =1 EEaN
ZN I<i<jsN

we have the convergence in distribution, as N — oo

N
VN (;7]2:1 o(zj) — JR ¢(:c)du¥(x)> - N<0» (Ug)z(@) -

In the previous equation, the measure ,ug is the limit given by Proposition 1.3.6 of the empirical measures

N
1
N = Z dz,. It is characterized by the equation
j 1
V(zx) —QPJ log |z — y|dup(y) +log ph = A} . (1.10.11)
R
1

The limiting variance o), is expressed in terms of a certain operator acting on test functions (the
counterpart of £ in Theorem 1.4.4).
In the context of Section 1.7, assuming that:

e The empirical measure of the Toda chain, tested against a test function f, statisfies a central limit
theorem with limiting variance o2, (P, V, ®),
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e We have the relation between the limiting variances

j 02ia(V. 5P 0)ds = (04(0))%, ie. 0Boaa(ViP.6) = dp(P(a())?

0

Then we are able to access the limiting variance of the Toda chain, therefore giving a way to compute
the currents of the conserved quantities.
Before stating the theorem, let us give a heuristic that, when made precise, leads to the proof:

Take ¢ : R — R smooth, vanishing fast enough at infinity, and do the change of variables in ZX’P,
T = Vs —i—\/iﬁqﬁ(yi)7 1<i< N, to get

VP J~ H

1<j

2P/N

N , 6*2?7:1 vit s o !
\/N(Qf’(%) o(y;)) o Zl( \/N

Expanding the different terms in this integral, one gets

:jz

y7)> dVy.

P(yi)—

24P = J 1—[ i — ;| ¥ e B V(yl)e\tf[mg Si<i #4‘2?7:1(¢’(yi)—V’(yi)¢(yi))]e—ga?\,gﬁ)dNy

i<j

where the term 0% (¢) converges towards a limiting variance 0?(¢) depending on ¢, P and V. After di-

viding both parts of the equation by Z}G’P

of the Laplace transform

, and because of equation (1.10.11) one deduces the convergence

E [etﬁ(uN(5¢)+error term)] — e ( . 02(¢)) ’

where we denoted N

(D)= 5 X S = [ f@ank

and where Z is a linear operator acting on test functions and defined by

o) =2p [ =) + ) - Vi), (110.12)

Once the error term is taken care of, this shows the central limit theorem for test functions of the form
E¢, with an explicit variance. Following [HL21], the operator £ given by

Lo =ZE¢ (1.10.13)

can be analyzed using Hilbert space techniques. In particular, the operator £, seen as an unbounded
operator of the Hilbert space

= fue ) [ e 22, [ b =0} oy = g,

can be decomposed as
—L=A+2PW,

where A is a positive Sturm-Liouville operator and W is positive and self-adjoint. Such a writing allows
us to show that —L is invertible, see Section 4.6. With the previous heuristics, assuming we can choose
L7 '¢ as a reasonable test function, we get

2
E [et\/ﬁ(w\;(qﬁ)-&-error term] — exp (_to— ((E ¢) )> (11014)
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We refer to Chapter 4 for the precise assumptions made on the potential V. See Assumptions 4.1.1
and 4.1.2.

To fix the ideas, confining potentials of the form
V= ‘/conv + @,

where Viopny is convex such that |V | — +oo at infinity and where ¢ is C? with bounded derivatives,
satisfy our assumptions.
We then have

Theorem 1.10.7. Assume that V satisfies Assumptions 4.1.1 and Assumption 4.1.2. Then for ¢ verifying
the following conditions:

« peC'(R)

o there exists e >0, p(z) = O (2727°) and ¢'(z) = ‘O (£27°) at infinity
x| —>AL

|| >0 \

. j o(x)dp(x) = 0
R

we have the convergence in law

VNuvn(6) — N(O, (0¥)2(¢>)> (1.10.15)

where the limiting variance (o%)?(¢) is given by

(0)(9) = (6, L7 dYyy = fR <(£1¢)”(x)2 + V”(x)(£1¢>)’<x)2> dp ()

—1 4\’ ) — 1.0\ 2
+Pﬂ ((C ¢) ( i ;E %) (y)> dp(x)dpb(y) . (1.10.16)
R2

As a consequence, we recover the equivalent of the formula giving the limiting variance in Theorem
1.4.4. The decay conditions on ¢ appear to ensure that the error term in (1.10.14) is well behaved.

As a tool for the proof of the CLT, we establish a concentration inequality for the empirical measure.
It is stated in terms of the following distance over the set of probability distributions P(R).
For u, ' € P(R), define the distance

d(p, ') = sup {deu—deu’
[fluip<1
[ flli2<1

} : (1.10.17)

where || f||Lip denotes the Lipschitz constant of f, and ||f||§/2 = JR |t| | F[F](®)]? dt, where F denotes the

Fourier transform.
We then have

Theorem 1.10.8. There exists K € R (depending on P and on V'), such that for any N =1 and r > 0,

2P 2 <
PU™ (d(fin, pf) > 1) < e N HOPlog Nb K (1.10.18)

This result is the analog of [HL21, Theorem 1.4], and its proof is inspired by an idea of Maida and
Maurel-Segala [MMS14], consisiting in a regularization of the empirical measure (making it absolutely
continuous). We also mention [CHM18], where the authors were able to establish a similar concentration
bound for Coulomb gases in dimension d > 2.
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1.10.4 Main results of Chapter 5

This chapter is based on the collaboration with Guido Mazzuca [MM23a], where we consider the question
of the fluctuations of the empirical measure in integrable systems and in high temperature 8 ensembles.

More precisely, motivated by the ideas of Section 1.7, we establish the existence of a central limit
theorem for the fluctuations of the empirical measure of the Lax matrix of several integrable systems,
including Toda and Ablowitz-Ladik, and we show the analogue of equation (1.7.8) for those systems and
their S-ensemble counterpart. The integrable systems and 3 ensembles are described in the following
table.

Integrable System b-ensemble at high-temperature
Toda lattice Real
Defocusing Ablowitz-Ladik lattice Circular
Exponential Toda lattice Laguerre
Defocusing Schur flow Jacobi
Volterra lattice Antisymmetric Gaussian

Table 1.2: Integrable systems and random matrix ensembles

The global picture is the one we described before:

o Each of the integrable systems at stake have a periodic, band (with fixed band size) Lax matrix,
which can be described by a set of coordinates x1,...,zx € X, where X is a subset of R or C. For
instance, in the case of the Toda lattice, recalling (1.5.4), X = R? and the matrix L is described
by z; = (a;,p;), 1 <i < N. In the Ablowitz-Ladik case, X = D and the matrix £ is described by
x; = a;, 1 <1 < N, see equations (1.8.5), (1.8.6). We label those matrix models as "type 1".

e The (8 ensembles at hand have a non periodic matrix representation (such as the Dumitriu-
Edelman representation, Theorem 1.2.5 or the Killip-Nenciu one, Theorem 1.4.1), which resembles
the Lax matrix of the corresponding integrable system in Table 1.10.4. We label those non
periodic representations as "type 2".

We refer to Chapter 5 for a description of the matrix models.

We model the Generalized Gibbs Ensembles of those integrable systems by the probability measure
on XN

N
1 _
W= (l [ F(a:j,a)> e IO
j=1

1
2y (0, @)
Here the matrix L is of type 1. The parameter « plays the same role as P in (1.6.3) and as « in (1.8.8),

and G is the potential.
The 8 ensemble counterpart of those ensembles is modeled by the probability measure

N-1 .
2) _ 1 J —TeG(L)
Uy = —5—— F<a:j,a<1—>>> R(zpn)e dx .
75 (2, @) < JUl N

Here the matrix L is of type 2. The function R is added because of the non periodicity of those matrices.
We consider circular potentials, in the sense that there exists some k > 1 such that, writing the
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euclidean division of N by k: N = kM + ¢, we have

Z]M:Il W(xj,%j+1) + Wi(XMy TkM 415+« -5 kMo, X1) for type 1
M—1
TrG(L) = Z W(Xj,Xj+1)+W1(X1)+W(X]y[,l‘kM_;,_l,...,$kM+g,0,...,0) ,
i1 for type 2
+ WN/z(kaH, s TEM )
(1.10.19)
here x; is the block of coordinates (z(j_1)x+1,---, 7). The function W is called the seed of Gi. The

functions Wl and Wg are to be seen like remainders and can be neglected for simplicity. The previous
decomposition is typically valid when the potential GG is a polynomial; in which case the number & is
related to its degree and to the size of the band of the matrices at stake.

For example, in the Toda/real 8 ensemble at high temperature case, L is tridiagonal (periodic if of
type 1, non periodic if of type 2): if G(z) = 2%, we have

TrG(L) = TrL? = D1 LiviyLisiy - Ligi »
1<i,...,ig<N,

lij+1—izl<1

and we can set k£ to be equal to d. This way, only neighboring blocks of coordinates interact in both

probability measures ,ug\l,) and Ng\z{)-

We also consider a test function H which has the same cyclicity property as G, i.e. the same decom-
position for TrH (L) as in (1.10.19).

We then show the following theorem. For readers convenience, we do not give all the assumptions,
see Theorem 5.1.3 for the full statement.

Theorem 1.10.9. Let L be a matriz of type 1 or 2, and let G, H be cyclic. Let

1
Sy = 7 TrH(L).

Then, there exist two continuous functions
A(z) : R, — R, (1.10.20)
o?(z) : Ry — R, (1.10.21)

such that under ,ug\lf) (5.1.12)
(Sy — NA(a)) /NN
converges to a Gaussian distribution N(0,02(c)) as N tends to infinity, and under M%) (5.1.13),

<SN -N L 1 A(am)dm) /NN

converges to a Gaussian distribution N (0, Sé o%(ax)dx) as N tends to infinity. Furthermore, defining the
free energies Fl(\,l)(a,G),fl(\?)(a,G) as

Fi(@,6) = - lim % log (Z](Vl)(a, G)) : (1.10.22)
Fi(,G) = = lim %log (700, 0) , (1.10.23)

then
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ol . .
iii. \, A(ax) = i0, F (o, G +itH))|,_
i, F(a,G) = 00 (aF (0, G)) 0 e

w. o%(a) = 03 F M (a,G + itH)

[t=0

ii. A(a) =0, F Y (a,G +itH) v. S(l) o?(ax)dx = 02 F P (a, G +itH)

[t=0 [t=0

This result therefore allows us to justify the equivalent of equation (1.7.8) for the couples integrable
model/S ensemble of Table 1.10.4. Furthermore, the limiting variances are expressed as the second
derivatives of the free energies.

As mentioned previously, we prove this result by a transfer operator approach. The idea is that
under our assumptions, because of the locality of the interactions in the both measures ug\l,) and ,uf,), the
expectations in both models can be written in the approximate forms, for ¢ € R, (see Theorems 5.2.1 and

5.2.2)

Eq [e7" ] = cpo(a, )M, )M 72 (1 + 0 (1)) (1.10.24)
and
M—2 ]
By [e T ] = ¢p g syt AMa=—,t](1+om(1)). 1.10.25
[ ] = i >JHI(M)< (1) (1.10.25)

In the two previous formulas, A(a,t) is the spectral radius of some operator £ defined on L?(X*), hence
the name of the approach. This approach was used in [GM23] to prove the relation (1.10.9) in the case
of a polynomial potential.

As a consequence of this approach, we are also able to prove the decay of correlations for local
functions (in the sense that they only depend on a fixed number, independent from N, of consecutive
variables) in those integrable systems, see Theorem 5.1.7 for a full statement.

Theorem 1.10.10 (Decay of correlations). Let G be cyclic, and let I,.J : X* — R two (local) functions.
Write N = kM + £, and let j € {1,..., M}. Then there exists some 0 < u < 1 such that

Ei [1(x1)J(x;)] = E1 [I(x1)] Eq [J(x;)] = O™~ +p7).

This results allows us to justify equation (1.7.7), derived in [Spo21], linking the computation of the
currents of the conserved quantities to the fluctuations of the empirical measure of the Lax matrix.
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Chapter 2

Large deviations for GGibbs ensembles
of the classical Toda chain

Abstract We prove large deviation principles for the distribution of the empirical measure of the eigen-
values of Lax matrices following the Generalized Gibbs ensembles of the classical Toda chain introduced
in [Spo20c]. We deduce the almost sure convergence of this empirical measure towards a limit which
we describe in terms of the limiting empirical measure of Beta-ensembles. Our results apply to general
smooth potentials.

2.1 Introduction

In a breakthrough paper [Spo20c|, Herbert Spohn introduced the generalized Gibbs ensembles of the
classical Toda chain as invariant measures of the dynamics of the classical Toda lattice. He analyzes
them by comparing the Toda Lax matrices for these Generalized Gibbs ensembles with Dumitriu-Edelman
tri-diagonal representations of S-ensembles. Thanks to this beautiful comparison, [Spo20c] showed that
the empirical measure of the eigenvalues of Toda Lax matrices converges towards a probability measure
related with the equilibrium measure for S-ensembles. One of the key tools of Herbert Spohn analysis is
the use of transfer matrices, which are restricted to polynomial potentials. We refer the interested reader
to subsequent developments in [Spo20a, Spo20b, Spo21] and [Maz22] where the transfer matrix approach
is used in the similar context of the so-called Ablowitz-Ladik lattice.

The main goal of this article is to generalize some of the results of [Spo20c] by using large deviations
theory, which allows to consider more general potentials. More precisely, we will show the convergence
of the free energy and of the empirical measure of the eigenvalues of Toda Lax matrices following these
Generalized Gibbs ensembles. Moreover, we will express the limits in terms of the well known S-ensembles.
Indeed, a key tool is again to compare the Toda Lax matrices with Dumitriu-Edelman tri-diagonal
representations of [-ensembles. Moreover, we will derive large deviation principles for the empirical
measure of the eigenvalues of tri-diagonal matrices with more general coefficients. However, in this
generality, the rate functions and the limits will not be explicit as the comparison with S-ensembles is
not possible.

More precisely, the Hamiltonian of the Toda chain on sites j = 1,..., N is given by

Z pj +e ), ri=gqi1—4;

with the periodic conditions gy 1; = g; +cN for some real constant c. The equations of motion are then

given by
d d _ s
ZU =P ppi=e T e (2.1.1)

37
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Let Ly be the Lax matrix given by the N x N tri-diagonal matrix with entries
(LN)]‘J' =DPj and (LN)j,j+1 = (LN)j+1,j = 67Tj/2 (212)

with periodic boundary conditions (Ly)1,ny = (Ln)~n+1,nv and (Ly)n1 = (Lny)n,N+1, then for all integer
number p,
N = Tr(LY)

is conserved by the dynamics (2.1.1) as well as Zf\il r;. It is therefore natural to consider that the finite
N Toda chain is distributed according to the Gibbs measure with density e T W(LN)=PXri with respect
to Lebesgue measure. Here, P > 0 controls the pressure of the chain and W is a potential to be chosen
later, which can be a polynomial or a general measurable function from R into R. We will assume it goes
to infinity faster than z2: namely there exists ¢ > 0 and a finite constant C' such that for all z € R

Wi(z)=ca? +C. (2.1.3)

This assumption is used to compare our distribution to the case where W (z) = cz? in which case the

entries of the Lax matrix Ly are independent. We can without loss of generality assume ¢ = % up to

rescaling and therefore put

W) %xQ +V(a). (2.1.4)

In the following we will denote
1 1 N
aryeF (p,r) = VP exp{—Tr(V(Ly)) — §Tr(L§V)} [[e Fredridp; (2.1.5)
N,T i=1
where ZX;E is the partition function of the Toda Gibbs measure :
1 N
Ly = f exp{—Tr(V(Ly)) — 5Tr(LQN)} [[e " dridp; . (2.1.6)
i=1

We denote in short T for T(I)\}P. Our goal in this article is to study the empirical measure of the
eigenvalues Ay < --- < Ay of Ly denoted by

1 N
BLy = NZ(SM :
i=1

We shall call fir,,, the empirical measure of Ly, or the empirical density of states of the Lax matrix
following [Spo20c]. Our main result is a large deviations principle for the distribution of fi, under
d']I‘X,’P, from which we deduce the almost sure convergence of [ir,,, under d’]I‘X,’P.

Theorem 2.1.1. Let P > 0 and assume that V is continuous. Assume that either V' is uniformly bounded
or there exists k € N* such that
V()

1m
|z|—oc x2k

witha >0 ifk>1and a>—=1/2 if k =1. Then:

=a, (2.1.7)

1. The law of fir.,, under ’]I%P satisfies a large deviation principle in the scale N with good rate function
Y.
2. T};/ achieves its minimal value at a unique probability measure llg.

3. As a consequence fi,, converges almost surely and in L* towards v}.
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v} corresponds to the density of states of the Lax matrix in [Spo20c]. Moreover, following [Spo20c], we

can identify the equilibrium measure v} using the equilibrium measure for Coulomb gases in dimension
one at temperature of order of the number of particles. More precisely, for a probability measure p on

the real line, we define the function f% by

) = 5 [ (564924 Vi) + V() = 2Plogle = ) due)dn() + [ g (o

if u « dz, whereas f) is infinite otherwise. £ achieves its minimal value at a unique probability measure
p¥% « dr which satisfies the non-linear equation

1 du,
51:2 + V() — 2Pflog |z — yldul (y) + log % =\ a.s (2.1.8)

where A}, is a finite constant. We show in section 2.3 that u¥ is absolutely continuous with respect to
Lebesgue measure and that its depends smoothly on the parameter P. In Lemma 2.3.6, we show it is in
fact differentiable in P. We then show that

Theorem 2.1.2. Let P be a positive real number. Then, for any bounded continuous function f on the
real line,

f F@)dvl(z) = op(P f @) ()

This result was already shown in [Spo20c] when V is a polynomial. Our strategy is to prove first a
large deviation principle in the case when V' vanishes: then, Ly has independent entries (modulo the
symmetry constraint) under ']I‘ﬁ. We then derive large deviation principles for more general bounded
continuous potentials by using Varadhan’s Lemma, see section 2.2.

Indeed, in the case where V' vanishes, the random variables (p;,7;)1<j<n are independent, (Ly), ; are
standard Gaussian N (0, 1) variables and v/2(L ) j.j+1 follows a xop distribution with density with respect
to Lebesgue measure given by

91-P2P—1

T(P)

2
e~ % /2

Xgp(af) = 1$>0. (2.1.9)

The central observation is that we can compare this matrix to the tri-diagonal matrix Cﬁ, introduced
by Dumitriu and Edelman [DE02]. This is the symmetric matrix with independent (up to symmetry)
entries whose diagonal elements are independent standard Gaussians variables, and off diagonal elements
so that \/501[3, (4,4 + 1) follow a x distribution with parameter S(N — j). When 8 = 2P/N, the matrix
is therefore similar to Ly except that the parameters of the off-diagonal entries vary linearly. The key
point is that the law of the eigenvalues of C’f, is explicit and given by the [-ensemble, see Section 2.3.
This comparison allows to compare the free energy, the rate function and the equilibrium measure of
the Toda chain with those of Coulomb gases in section 2.3. In section 2.4, we study the case of general
potentials. The proof is nearly independent from the quadratic case, but requires additional arguments in
particular because the eigenvalues of the Toda matrix are not simple functions of the empirical measure
of the entries. Note that the proof given in section 2.4 also applies to the case where V' is bounded. We
nevertheless choose to give a separate proof, dedicated to this case: the computations being simpler, the
core of the proof seems more accessible and introduces ideas we re-use in the case where V' is unbounded.

Moreover, our result allows to derive large deviation principles for the empirical measure of the tri-
diagonal matrices with independent standard Gaussian entries on the diagonal and independent chi
distributed variables with general parameters profile on the off-diagonal. Namely let L%, be a tri-
diagonal symmetric matrix with independent Gaussian variables on the diagonal and independent vari-
ables /2L, (j, 5 4+ 1) chi distributed with parameter o(),1 <i < N. Let ’]I‘j‘\/,"’ be the distribution with
density e’Tf(V(Lj’v))/Z with respect to the distribution of L%;.

Theorem 2.1.3. Assume that V is continuous and satisfies (2.1.7). Then, if o is bounded continuous,
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1. the law of firg, under TX;U satisfies a large deviation principle in the scale N with good rate function
T,

2. TY achieves its minimal value at a unique probability measure v¥ = S(l) uc‘f(P)dP,

3. As a consequence, i converges almost surely and in L' towards vY .

Acknowledgments : We are very grateful to Herbert Spohn for asking us to investigate the conver-
gence of the density of states for general potentials V' and many fruitful discussions that followed. We
would also like to thank David Garcia-Zelada for showing us how to derive Theorem 2.3.1 from [GZ19].
We thank an anonymous referee for helping us to improve the presentation of our results.

2.2 Large deviation principles for tri-diagonal matrices
In this section, we consider a tri-diagonal matrix My with entries
(MN)]',]‘ = aj and (MN)j,j+1 = (MN)j+1,j = bj (221)

with periodic boundary conditions, the random variables (a;, b;)1<;<n being iid, with (aj,b;) with law
Q. ® Qy on R%2. We denote by fiar, the empirical measure of the eigenvalues of My and prove the
existence of a large deviation principle for the distribution of fias, . In [Zhal7, Theorem 4.2], the author
proves a large deviation principle for the empirical moments jiyr, (¥) by noticing that

R 1 & o
g (2) = 5 D felaz by li = 31 < )
=1

where fi(aj,b;j,|i —j| < k) = (M¥);; is an homogeneous polynomial of degree k in the entries a;, b;, |i —
jl < k. Noting that f; does not depend on i, one can use the large deviation principle for Markov chains
(or k-dependent large deviation principle), see e.g [DZ10, Theorem 3.1.2 or Section 6.5.2], as well as the
contraction principle, to deduce a large deviation principle for the distribution of the empirical moments
{finry (%), k < p}. This could be used to deduce the existence of a large deviation principle for iy, for
the weak topology after approximations, but the rate function would not be particularly explicit. We
prefer to develop a more straightforward sub-additivity argument and prove separately the existence of
a weak large deviation principle and exponential tightness, see e.g [DZ10, Lemma 1.2.18].

2.2.1 Exponential tightness

In this section we assume that

Assumption 2.2.1. There exists v > 0 such that
D, := Jeran(x) X Jewdeb(y) <.

We equip the set of probability measures on the real line P(R) with the weak topology. We then show
that

Lemma 2.2.2. If (aj,bj)1<j<n are iid with law Qo ® Qp satisfying Assumption 2.2.1, the sequence
(fiary )N=0 is exponentially tight, namely for each L > 0 there exists a compact set K, (K = {u €
P(R) : §z?dp(x) < %(L +log D)} with v as in Assumption 2.2.1) such that

1
lim sup — logP(fipnr, € K5) < —L. (2.2.2)
N N
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Proof. For N > 1, notice that

Z\H 2|~

TY(MN)

N 2 1 N 2
Z (My);.;) NZ( MN“+1). (2.2.3)

fxzdﬂMN (2)

As a consequence, Tchebychev’s inequality implies that, for any v > 0,
P (J$2dﬂMN(x) > K> < efé'yNKE[e%N»ySIZdﬂMN(m)] < efé»yNKD’Jy\f )

The conclusion follows by taking K = %(L +log D).

2.2.2 Weak large deviation principle

We next establish a weak large deviation principle, based on the general ideas developed in [DZ10, Lemma
6.1.7]. To this end, we use the following distance on P(R):

ff Japu(z Jf Yz

where | f|gv is the total variation norm of f given by

dv) = sup {

[flev<1,|fluip<l

} (2.2.4)

Iflsv = sup D |f (@rer) = f (i),

keN

where the supremum holds over all increasing sequences (2 )ren € RY. | f|z is the Lipschitz norm of f. If
f is continuously differentiable and we put without loss of generality f(0) = 0, | f|sv = J:Z |f'(y)|dy and
[fle = |If'llc- The distance d is smaller than the Wasserstein distance where one takes the supremum
over all functions whose L”™ and Lipschitz norms are bounded by one, and is easily seen to be as well
compatible with the weak topology. Then, we shall prove that if B ( ) ={vePR):duv) < d}
denotes the open ball with radius ¢ centered at p, we have :

Lemma 2.2.3. For any p in P(R), there exists a limit
T | . - 1 .
}g% thlnf N log P (fiary € Bu(9)) = }13(1) hm]\?up i log P (fiary € BL(9)) . (2.2.5)

We denote this limit by —Jp ().

Proof. The advantage of the distance d is the following control: For any symmetric N x N matrices A
and B with empirical measures of eigenvalues jis and [ip, we have:

A . rank(A — B 1
d(fia, ip) < min { Z |A(2, 5) )|} (2.2.6)

Indeed, for any function f with bounded variation we have thanks to Weyl interlacing property, see e.g.

[Gui0g, (1.17)],
deﬂA - ffd/lB < %rank(A —B). (2.2.7)
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Moreover, one can check that, if f is continuously differentiable, we have

ffdﬂA—ffdﬂB = f*Tr )f’(aA+(1_Oé)B))da
N
: JO (flV 2 A Buflads (1 O‘)B)jl) do

which implies since for all indices 4, j, | f'(0A + (1 — @)B)i| < |[f'] that

‘ | saia - | tdns| <

Since continuously differentiable functions with bounded L™ norm are dense in Lipschitz functions, we
deduce (2.2.6) from (2.2.7) and (2.2.8). We are now ready to prove Lemma 2.2.3. To this end, we shall
approximate our matrix My by a diagonal block matrix with independent blocks. Let ¢ > 1. For N > 1
we decompose N = kyg + ry with 7y € {0,...,¢— 1} and set My = M}, + R}, where M}, is the
diagonal block matrix

If HocN 2 (A= B)i;] . (2.2.8)

7,7=1

My
q _
M3 = e . (2.2.9)
q
B

Here, for all i € {1,...,kn}, Mé has the same distribution than M, and B the same distribution than
M, . The matrices M, ;, 1 <i < ky, are independent, and are independent from B. R} is the self-adjoint
matrix with null entries except R% (1, N) = RL(N,1) = by, Ry (kng+1,N) = RL(N,kng+ 1) = —by,
and those given, for k€ {1,...,kn}, by R (kg +1,kq) = R%(kq,kq+ 1) = by, R ((k—1)q +1,kq)) =
R (kq,(k—1)g+1) = —bkq Therefore rank(R ) < 2kn + 2 < 4kn. By (2.2.6), we deduce that

. . 4
Ay fiars ) < 7 (2:2.10)
Moreover, we can write [i MY, as the sum
k
i _ N q ﬂ N
o 4 N
N AN N

Therefore, for any p € P(R) and ¢ > 0, we have
A kN A . A A
P (finsz € Bu(®)) P (fary, € Bu(®) =P (Vi€ {1, kb finsg € Bu(d), fin € B,(6))
<P (fineg € Bu())
. 4
< P (/’LMN € Bll«(6 + q)) )
where we used the convexity of balls and (2.2.10). As a consequence,

un(8) i= —log B (juny € BL(9))

satisfies
N(0 +4/q) < knug(d) + ury (6).
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It is easy (and classical) to deduce the convergence of un(d)/N when N goes to infinity, and then 6 goes
to zero. Indeed let § > 0 be given and choose ¢ large enough so that % < 4. Then, since § — un(9) is
decreasing and non-negative, we have:

un(29) - un (6 +4/q) < ug(9) = upy(9)

< < . 2.2.11
N N . TN (2:2.11)

. ry (8 i<q—1 Ui (d
Since “ JJVV( ) ¢ maxig Se=1t @) goes to zero when N — o0, we conclude that

2
lim sup un(29) < t4g(9) )
N N q

Since this is true for all g large enough, we get

un(20)
N

lim sup
N

.. .un(9)
< .
< hn}vlnf N

Since the left and right hand sides decrease as § goes to zero, we conclude that

1
lim hmsup—NlogP(ﬂMN € B,(6)) < lim hmmf—Nlog]P’(,uMN € B,(9)) ,

620 N 0—0 N—-ow

and the conclusion follows. O

2.2.3 Full large deviation principle

As a consequence of Lemmas 2.2.2 and 2.2.3, we have by [DZ10, Theorem 1.2.18] the following large
deviation principle.

Theorem 2.2.4. Under Assumption 2.2.1, the law of jip; satisfies a large deviation principle in the scale
N with a good rate function Jyr. Moreover, Jy; is convex. In other words,

o Jy : P(R) = [0, +c] has compact level sets {p : Jp(p) < L} for all L = 0. Moreover, Jyr is
conver.

o For any closed set F < P(R),

1
limsupﬁlogP(ﬂMN eF) < —irI;fJM7

N-ox

whereas for any open set O < P(R)

l%nJ?leogP(uMN €0) > irolf I -
Proof. Jys exists and is defined by Lemma 2.2.3. The lower semi-continuity of Jys follows from [DZ10,
Theorem 4.1.11]. We then deduce that the level sets of Jy; are compact by the exponential tightness, see
[DZ10, Lemma 1.2.18 (b)].

In the spirit of [DZ10, Lemma 4.1.21], we show that Jys is convex. Let ui, po € P(R). Since fins,y
can be decomposed as the independent sum of fips,, divided by 2 plus an error term of smaller than 4/N
by (2.2.7), we have for all 61,62 > 0

. ~ . +
P (d(ftatys 1) < 61) P (d(finy  12) < 32) <P (dwm RO < 53) : (22.12)

for any 63 > %(51 + d02) + %. Taking the logarithm, dividing by 2N and letting N go to infinity, 01, do
and then d3 to zero, we conclude that

Tar (’“;”‘2> ;<JM(M1) + JM(u2)> (2.2.13)
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from which we deduce the convexity of Jy as in [DZ10, Lemma 4.1.21].
The second point, namely that a weak large deviation principle and exponential tightness implies a full
large deviation principle, is classical, see [DZ10, Lemma 1.2.18]. O

2.2.4 Large deviation principle for the Toda-Chain with quadratic potential

Recall that we denoted by @, and @, respectively the laws of the a;’s and b;’s, see (2.2.1). In the case of
the Toda chain with Gaussian potential, that is V' = 0, with entries following T%, we take @, to be the

standard Gaussian law and @, to be the chi distribution \/571X2P given in (2.1.9). We let Ly (P) be the
tridiagonal matrix whose entries follow T%. These entries clearly satisfy Assumption 2.2.1 and therefore
we have

Corollary 2.2.5. For any P > 0, the law of iy p) satisfies a large deviation principle in the scale N
with good, convex, rate function denoted by Tp.

For further use, we show that
Lemma 2.2.6. For each p € P(R), the map P € (0, +0) — Tp(u) is lower semi-continuous.

Proof. Let P, h be positive real numbers. We first couple the matrices (Ly(P), Ly(P + h))n, where
Ly (u) follows T% for u = P and u = P + h, in such a way that there exists a finite constant ¢ so that

P (d(fipy () firn (Piny) > 0) < eNlemVTloa(h)o/2) (2.2.14)

This coupling is done as follows:
e The diagonal coefficients are the same set of standard independent Gaussian variables

e The coefficient below and above the diagonal X!, follow a No Xou for u =P ,u=hand P+ h. By
definition of the y distribution we can construct these variables so that almost surely

Xpon =4/ (Xp)2+ (X})2. (2.2.15)

This coupling allows by (2.2.6) to write

N N N

N N 2 i i 2 i i 2 i

d(NLN(P)7,ULN(P+h))) < = Z |XP+h - XP| =% Z(XPHL - XP) < = Z X
N Ni:l Ni:l

i=1

where we ultimately used that, for all 4 € {1,..., N}, X};Jrh < X}L + X}; because XﬁX}; is non-negative
and (2.2.15) holds. Equation (2.2.14) follows by Tchebychev inequality since E[exp{,/logh~1X}}] is
finite, see (2.3.14). (2.2.14) implies that (fiz, (p+n)) N0 is an exponential approximation of (fi,, (p))Nz0
when h goes to zero. By [DZ10, Theorem 4.2.16 | , we deduce that for any p € P(R), we have

Tp(p) = lim lim inf inf)Tp+}L.

0—>0 h—0 Bu(é

By monotonicity of the right hand side and the lower semi-continuity of Tpp, we deduce that, see [DZ10,
(4.1.2)],

li inf T =T
iy nf oo P+n(tt),

and therefore
Fe(i) = S BRIt iy T < im0

and so P — Tp(u) is lower semi-continuous.
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We shall also use later that Corollary 2.2.5 gives a large deviation principle for the empirical measure
of the Toda chain with general bounded continuous potential.

Corollary 2.2.7. Let V be a bounded continuous function on the real line and P be a positive real
number. Let Ly (P) be the tridiagonal matriz whose entries follow T%’P. Then:

o The law of fir,(py satisfies a large deviation principle in the scale N with convex good rate function
given, for any p € P(R),

T (1) = Tp(u) + JVdu — inf{Tp(v) + dey} .

o The set MY where TY achieves its minimum value is a compact convex subset of P(R). It is
continuous in the sense that for any € > 0, there exists . > 0 such that for all § < 6., any P,Q > 0
such that for |P — Q| < 4,

My c (M§)*
where A° = {u : d(p, A) < e}.

Proof. The first point is a direct consequence of Varadhan’s lemma since when V' is bounded continuous,
pu — §V(x)du(x) is also continuous. We hence need only to prove the second point, that is the continuity
of P € (0,+m) — M. Note that since T is a good rate function, My is compact for all positive real
number P. We let Ty be the coupling of Ly (P) and Ly (Q) introduced in Lemma 2.2.6. By definition,
for R = P and @, B a measurable subset of P(R), we have

~ 1 — x)df x
T (fiy € B) = le{ﬂLNm)EB}e NIV @ diey @ )Ty,
N,T

where we used the notation
ZVR _ fe—NSV(wMﬂLN(R)(z)dT%.

Therefore, since ((Mg )%)¢ is open, we can use the large deviation principle for the empirical measure of

Ly (P), Corollary 2.2.5, to state that for any x > 0
— inf T¥ <limsup 1 log LJ e NIV@)diLy ) (@) gT
((Mg)e)e Nox N ZX,:I; {d(iiL Py, MY )>c}

1 N
< max{limsup — log —5 e NIV@)diLy ) (@) g

Noxw N ZZX\?,]?; J;d(/:"LN(P)fM(‘Q/)>€}‘A‘{d(ﬂLN(P)uaLN(Q))$K}
2|V + ¢ —+/=log|P — Q|r/2} (2.2.16)

where we used (2.2.14) and Z}\/,’f; > e~ NIVl». We next remark that by Lemma 2.2.2, there exists a
positive constant ¢ and a finite constant C' such that uniformly on P in a compact set, if we denote by
Kp = {§a?dpu(z) < L},

TR (finy € K§) < e (cbHON,

Hence, fixing some L > 0, (2.2.16) implies
. irvlf) : TY < max {2||V|x +c—+/—log|P —Ql|k/2,2|V|, — cL — C, (2.2.17)
M )¢
Q

i ~ log —5 ; ; ; ; —N§V(@)dfir y (p) (@)
lim sup N log V,P J1d(ﬂLN(P),Mg)>51d(MLN(P)aNLN(Q))@'leLN(P)JLLN(Q)GKLe N dTn -
N—ox N.T

We next notice that {V(du — dv) is bounded by some ek (k) going to zero as k does uniformly on
{d(p,v) < Kk} and p,v in the compact set K. Indeed, this is obvious if V' has bounded variation and
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Lipschitz norms, with ey (k) = max{|V|sv, |[V|L}x. If V is bounded continuous, we let 17 > 0 and choose
M = +/2n7'L so that u([—M, M]°) + v([-M, M]°) < n for pu,v € K, and then V,, with finite bounded
variation and Lipschitz norm so that

sup  [V(z) = Vy(a)| <.
xe[—M,M]

We then check that

<|v

< (Ve +2)n + max{[[V, sy, [ValL}e

‘ J V(dy — dv)

wh +2n + UV,,(du —dv)

We finally choose n = n(k) going to zero slowly enough with x so that the above right hand side goes to
zero. Hence, we can bound the third term in the right hand side of (2.2.17) to find that
1

—7p *NSV(fI?)d/lLN(P)(l’)d’I[‘N
ZN'T

f ld(ﬂLN(p),M(‘?/)>51d(ﬂLN(p),ﬂLN(Q))$N1ﬂLN(P),ﬂLN(Q)EKLe

Zv8 1

Nep (k) ZNT 2
se ZV’P ZV,Q 1{d(ﬂLN(Q),M5)>5*N}€
N, T “N,T

~N§V(@)diry @ @) gT .

Similarly, we find that
ZX’% < Je_NSVd'aLN(Q)lﬂ

4 (IVInte—r/=10g[P=QIx/2IN | oo (IV]m—cL—C)N
< Zx,’l';(eNs\L/(R) + e(ZHVH‘Z‘"'C—\/m“/Q)N + 26(2\|V|\w—0L—C)N)

1dT

Ly (P)AL (€KL 1{d((ﬂLN(P)7ﬁLN(Q))<R

where we used that the partition function is bounded from below by e~ IVI=N_ Moreover the previous
large deviation principle implies if k < /2 that

1 1 "
limsup — log —— J C_Nxv(x)duLN(Q)(x)dTN < - inf {TV} .
Nz N ZJ‘\//’,SJi‘2 {d(iL (@) MY )ze—r} d(n,Mg)=e/2 N

Hence, we find that if L is big enough, P — @ small enough so that el (k) > max{2|V|], + ¢ —

A/ —log|P — Q|k, 2|V s — cL — C}, (2.2.17) yields

— inf TY <2eh(k) - inf Y
()eye () d(uJ\}%)Be/?{ Q)

We then conclude that the right hand side is negative for such choices of parameters if « is small enough
and therefore inf((Mg)E)c TY > 0 so that ((Mg)g)c c (M}Y)¢ which yields the result. O

2.3 [-ensembles

2.3.1 Large deviation principles for $-ensembles

In this section we consider the S-ensembles and collect already known results about their large deviation
principles. We then relate these large deviation principles with the previous ones thanks to Dumitriu-
Edelman tri-diagonal representation, as pioneered in [Spo20c]. Coulomb gases on the real line are given
by the following S-ensembles distribution:

1
AP (y, -+ an) = v H |2; — z;]Pe T GV @D dg, - day. (2.3.1)
N,C i<jg
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V will be a continuous potential. When V' =0 and 8 = 1, it is well known [AGZ10, Section 2.5.2] that
dPY" is the law of the eigenvalues of the Gaussian orthogonal ensemble of random matrices with standard
Gaussian entries. Hereafter, we keep the potential to be under the form of a quadratic potential plus a
general potential only to have simpler notations later on. In this article, we are however interested in the
scaling where 8 = %. The large deviation principles for the empirical measure iy = % Zf\il 0z, have

been derived in [GZ19] and yields the following result.

Theorem 2.3.1. [GZ19] Let Py be a sequence of positive real numbers converging towards P > 0. Let
W(z) = %IZ +V(x) be a continuous function such that for some P’ > P+ 1 there exists a finite constant
Cy such that for all x

W(z) = P'log(|z|*> + 1) + Oy (2.3.2)

2PN
Then the law of iy under ]P"A/,’ N satisfies a large deviation principle in the scale N and with good rate

function I} (1) = f¥ (1) — inf f¥ where

1

£ ) = 5 [W(@)+ W) — 2P logle — yl)du(a)duty) + [ 1og Ldu(x)

if p < dx and log Z—Z is u-integrable, whereas f) is infinite otherwise.

In fact, neglecting the singularity of the logarithm, this result would be a direct consequence of Sanov’s
theorem and Varadhan’s lemma. Dealing with this singularity requires extra-care, a difficulty which was
addressed in [GZ19]. Indeed, [GZ19, Theorem 1.1] can be applied, as was kindly shown to us by David

Garcia-Zelada. For =L, <a<1—- 2L

5p7 57, We can rewrite

2Py 1
dIP’X’ v (x1,...,2N) =

v e 2PNNEN (o) e () L dm (2 ),
N

where, if y(N) = (1= N"1)55 + %’ we set

| W) W) vN) -
Hy(zr,. .. = — T logle— gl ) = T 2, Wi
N(mh ,.’L’N) N2 1<i<Zj<N < 2P! + 2P’ 0og |$ -/I;]| N a (.’L' )

and 7 is the probability measure given by
dr(z) = e~ W@ dg.

The sequence (Hy)n=o is (up to considering N large enough) uniformly bounded from below by (2.3.2).

Moreover, letting y(00) = 55 + S5, we set for € P(R),

10 = 5 [ (g + g~ Toxlke =) due)dn(s) = 2(e0) [ Wia)du(o)

we find [GZ19, Lemma 2.1] that the couple ({Hy}nz0, H) fulfills the assumptions of [GZ19, Theorem 1.1].
Thus the law of fiy satisfies a large deviation principle at speed N with rate function I}, = f% —inf f},
where

L () = 2PHy (u1) + §log %dﬂ if 4 « 7 and log Z—‘; is u-integrable
PUI=Y 4o otherwise.

It is not hard to see that

Lemma 2.3.2. For any continuously differentiable function W, any P’ > P + 1 such that (2.3.2) holds,
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o > IV (p) is strictly convez,

o IV achieves its minimal value at a unique probability measure u¥%(dx) « dx which satisfies the
non-linear equation

du¥
W(z) — 2Pflog |z — yldu¥ (y) + log % =y a.s (2.3.3)

where \Y, is a finite constant. Furthermore the support of uY is the whole real line and the density

of % is bounded from above by Cp(|x| + 1)2(P’P') where Cp is a constant which is uniformly
bounded on compact subsets of (0, P' — 1).

o Let D be the distance on P(R) given by

1/2
Du) = (—fmmx—mau—wxmau—wxw)

(J:O % Ueitld(u — i) (x) i dt) " (2.3.4)

Then P — uY, is locally 1/2-Hélder for the distance D: For any & > 0 such that [P — 0, P + 8]
(0, P" — 1), there exists a constant D > 0 such that for all P —§ < R < P + §, we have

D(uf, ) < D/IP - .

We will see later that in fact P : (0, P’ — 1) — u} is differentiable, see Lemma 2.3.6. Observe that if
fis in L? with derivative in L?, we can set £y = (SSC t|f¢|dt)"/?. Then, for any measure v with zero
mass,

v el N €L N 1
f f(z)dv(z) = f fiiydt = f it fi—idt
—% —% \/E
so that by Cauchy-Schwartz inequality, we get,

2 o0 o0
. 1.
<[ whPar| i =a1f,D0p (2:3.5)

— —o [t]

[ s

In particular, the last point in the theorem shows that for any f with finite | f|/,, P — § fdu¥ is Holder
1/2.

Proof. For P" > 1, we denote by Aps the probability measure on the real line given by Aps(dz) :=

Zon (|22 + 1)~ P"/2dx and rewrite f¥ (up to a constant log Zp) as

70 = 5 [07() + )~ 2Plog e = ydualdtr) + [ 1og 2547 o)

where W(y) := W(y) — $P"log(|y|*> + 1). Because Ap~ is a probability measure so that, for every
probability measure p,

dp
>
ﬁ%ﬁwwwm/o

by Jensen’s inequality since z +— zlogx is convex.

The first point of the lemma is clear as p +— {(W(x) + W(y) — 2Plog |z — y|)du(z)du(y) is strictly

convex [AGZ10, Lemma 2.6.2] whereas the relative entropy p — {log df\iZ,, (y)du(y) is well known to be

convex. Since f}.f is a good rate function, it achieves its minimal value at a unique probability measure
py. Writing that for any measure v with mass zero such that p} + ev is a probability measure for small
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enough &, I} (u¥ +¢ev) =I5 (%), we get that (2.3.3) holds p% almost surely and that the left hand side
in (2.3.3) is greater or equal than the right hand side outside of the support of u}. Since the left hand
side equals —oo when the density vanishes, we conclude that the support is the whole real line. We finally
show the boundedness of the density. Note that (2.3.3) implies that

v
%(x) — Mo W) +2P flog|z—yldu (v) (2.3.6)

We get from (2.3.2), and the fact that log |z — y| < 1 log(|z|*> + 1) + £ log(|y|*> + 1) the bound
—Wi(x) + 2leog |z — yldup(y) < —(P' — P)log(|z|* + 1) + Cy + leog(|az:|2 + 1)du¥ .

We thus only need to bound {log(|z|? + 1)du} and AY from above. We first notice that P — inf f is

concave since it is the limit of the free energy —N~!log ZX,"%. This is enough to guarantee that this
quantity is uniformly bounded on compact sets (as it is at any given point). We denote by C such a
bound for a fixed compact set. Asin [AGZ10, Lemma 2.6.2 (b)], since the relative entropy is non-negative
we find that

J07@ = Plogaf + ik (@) < ¥ ) < .
This implies by our hypothesis (2.3.2) that
(P'—P" - P) Jlog(|x|2 + Ddu¥(z) < C —Cy

and therefore plugging this estimate in the infimum of f} gives if P’ — P — P” > 0 (which is always
possible as we assumed P’ — P > 1)

C-Cy
v _v=v
l[W(x)dpP(x)ZC—l—Q( P — P

Moreover, again because the relative entropy is non-negative,

_PR(Y) = -P f log [ — yldu¥ (@) du¥ ()

< C— JW(x)du%(m) <C-2(P -P" Jlog(|ac|2 + 1)dup(z) — Cy
is uniformly bounded. Finally, from (2.3.3) we have after integration under u},

A =it ¥ = P [logle = ylduk (2)df 0 (2.3.7)

\'%4
is thus uniformly bounded from above. This completes the proof of the upper bound of the density: %

is bounded by Cp(|z|+ 1)2(P’P/) where Cp is uniformly bounded on compacts so that P’ —P —1>¢ > 0
for some fixed e.

We next study the regularity of the equilibrium measure ,ug in the parameter P. Let § > 0 be such
that [P —6,P+6] < (0,P' —1),and let P—§ < R< P+9. If Ap = p¥% — p¥%, since p¥% minimizes £,
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we have
0 = fplup)—rfp(up)
- | w@asu) —2Pflog|x—y|duR( )du(y) = P [ ogo ~ yldAu(a)dBn(y)

¥, ¥,
+ [ tog DLyl — [ 1o Lt
d
~ [ (2R [ tog o ~ yldut ) - 1og k) @)drp(z) - 2P [ 108l = sldyo)duty)
dpl, dpl

—P | log |z — yldAu(z)dAu(y) + | log = dup — | log £ I dpy
_ dup v
= 2(R—P) | log|z —yldug(x)dAu(y log |z — y|dAp(z)dAu(y) + logdﬂ—vdup

R

where in the second line we used (2.3.3) and the fact that Au(1) = 0. By using the Fourier transform of
the logarithm, the centering of Ap and the definition (2.3.4) we deduce

d 1%
[ o8 Sy + PO < 2P =R [ [logle —slaik@adut).  (233)
R

We can assume without loss of generality that R < P. We now show that the integral of the right
hand side is bounded independently of R € [P — §, P]. We have % < mmﬁ%, where R — Cp is
bounded on any compact of (0, P’ — 1), and in particular on [P — ¢, P 4+ ¢]. Thus there exists C' > 0

d
such that 5}?‘ < (1+\£\)2’ and the same bound holds for u}. Using that for any z, y with  # y we
have log(|z — y|) < log(l + |z|) + log(1l + |y|) and the previous bound on the density of uR7 we conclude
that | {log |z — y|du} ()dAu(y) is uniformly bounded in R € [P — §, P + §]. Since Slog dup duP 0 by

Jensen’s inequality equation (2.3.8) gives the existence of a finite constant D such that

D:U'Pa,u'R D+/|P - R|.

O

2.3.2 Relation with the large deviation principle for Toda matrices with
quadratic potential

When V' = 0, for any 8 > 0, Dumitriu and Edelman [DE02, Theorem 2.12] have shown that ]P’?\’,ﬁ is the
law of the eigenvalues of a N x N tri-diagonal matrix Cﬁ, such that <(C§,) j,j) v are independent
1sj<

standard normal variables, independent from the off diagonal entries (Cjﬁv)j’j+1 = (Cfv) j+1,j Which are
independent and such that \/56’53, (j,j + 1) follows a x(y—j;)p distribution. As in the case of the Toda
measure we hereafter identify IP’?\}B with ]P’]’i,. We are now going to give an alternate large deviation
principle for the empirical measure under ]P’?VP/ N based on this representation, this will allow to relate

the rate function Ip = I% of the Coulomb Gas in terms of the large deviation rate function T, s < P for
Toda matrices.

Lemma 2.3.3. The law of the empirical measure fiy under ]P’?\,P/N satisfies a large deviation principle
in the scale N and with good rate function

Ip(p) = lim lim inf inf {M D Tipe(v, ZP/M)} (2.3.9)

=0 M—x Vp /Myt VP St 1
i=
4 2 vip/MEBL(S)
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Observe for later purpose that we must have Ip = I3 where I}é is defined just above Lemma 2.3.2.

Proof. We shall proceed by exponential approximation. We write N = kxM +7ry, 0 <ry < M —1, and
consider the matrices
Ll
kN

L,
0

()

with (L};N )1<i<m a family of independent square matrices with size ky distributed according to Ty, ,
and a block with null entries of size ry x rn. We shall prove that they provide good exponential ap-

2P
proximation for the matrix Cy’ following the distribution IF’?\,P/ N see [DZ10, Definition 4.2.14]. More
precisely, we show that for any positive real number § :

1
Mli>n<§1»f 1im]5up N 1ogP(d(ﬂC;WP,ﬂS%) > 0) = —00. (2.3.10)

The lemma is then a direct application of [DZ10, Theorem 4.2.16 and Exercise 4.2.7]. We first approximate
S by the following matrix

Cy

Cum

RY

where the symbols * denote entries following the law of a matrix distributed according to ]P’?\,P/ N

UN(ikN,i]{JN+1)ZUN(ikN+1,i]€N)~ 1<i1<M;

)

1
%XQPN_;]’VN )

R%I has same distribution as the ry x ry-bottom-right corner of a ]P’?VP/ N_ distributed matrix. C; has the
same coefficients as Lj except for the top-right and bottom-left corner entries which are put to zero :

9(i—-Dkn+1 0

S
O

0 o Gikn
The (¢%)1<j<ky—1 are distributed according to XopN=itn

For 1 i< Mand1<j<ky—1let b =,/(ch)?+x3,, where (xi;)1<i<M.1<j<ky is an independent
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family of x variables with parameter 2P =

We set, for 1 < i < M, B; to be the matrix

, independent from ULY.

9(i—1)kn+1 0
B; = vi's
1 .
vl
0 e ik
The matrix
B,
&
&
2P/N *
cy’' = .
By
&
&
RY
is distributed according to IP’?VP/ N, where the symbols * denote the same coefficients as those of UAL.

Because the rank of S — U is bounded by 2M +ry < 3M, by (2.2.6) we have

3SM 3

d(fuar, fig) < N (2.3.11)

Let § be a positive real number. Then for N large enough so that ky verifies % < 4/2,

B (d(igarin. isy) > 8) < B (d(garm fwy) + (i fisy) > 3)

< P (d(ﬂclzvp/zv, ,LALU%) > 5/2) .

Moreover (2.2.6) yields

N
. . 2
iy fgarm) < 21 |Yil, (2.3.12)
1=
where Y; is the ith coefficient above or below the (i,i) the coefficient of C?VP/ N _UM. Applying the

inequality va + b < \Ja + Vb for a,b >0 and a = c§ and b = x; j, we deduce

knM

V2 R
) m;XZP/Mv (2.3.13)

(o figzr/n

where the last sum denotes the sum of iid variables with law x,p/ys (and we used that there exists a
coupling between a x,,ry-i and a xap/pr variable such that the first is always bounded above by the
N

second).
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Thus for all § > 0, for any integer numbers N such that % < 0/2 (i.e for N larger than some Ny
depending on M) and for any non-negative function A : M — A(M)

knM

. R knMo
P(d(ﬂsj‘\;{vﬂcip/lv) > 5) (Z X2P/M > ;V\[ )

< e~ AQDRyMS/(2VD [eA(M)mP/M]kNM

It is not hard to see that with A(M) = 4/log(M), there exists a finite constant K such that

sup EJ’eA(M)mdxl/M(x) <K (2.3.14)
M=0

insuring that

J

1 . .
N log P(d(figzr/ns fisy > 0) < _A(M)T\/i

+ K,

which yields the result.
O

We shall use the previous lemma to study the case with a non trivial potential. Indeed, as a direct
consequence of Lemma 2.3.3 and Varadhan’s lemma, we deduce the following Theorem.

Theorem 2.3.4. For any continuous function V' such that

lim sup 7|V(sc)|

|z|]—» L

=0, (2.3.15)

the law of the empirical measure jin under ]P’V2P/N satisfies a large deviation principle in the scale N

and with good rate function I% (1) = f¥(p) — mf fY where

fo(p) = %i_r)%limMinf UP/M} ot {M Z i/ (Vip/ar) JVdeP/M)} (2.3.16)
a7 X vip/ME€BL(9)

Remark 2.3.5. Varadhan’s lemma gives the result for bounded continuous function V. However, we can
approzimate V by V (z)(1 + ex?)~1 with overwhelming probability thanks to Lemma 2.2.2, which allows
to conclude for any potential V' satisfying (2.3.15)

We shall use this relation to give a better description of the rate function Tp. In fact we first consider
the free energy

V,P V,P V,P
EY FY

.1 .1 V,P Y
:]\}I_I)HINIOgZNTa —]\}E)nmNIOgZN',c:_lnffP~

Lemma 2.3.6. For any continuous function V satisfying (2.3.15),

e P FVP —inf f¥ is continuously differentiable on (0, +00). Moreover, for any P > 0
EYY = 0p(PEST)

e For any bounded continuous function f, the map P € (0, +00) — Pup(f) is continuously differen-
tiable. Moreover, there exists a unique minimizer v¥ of u— Tp(u )+ §Vdu(z), which satisfies, for
any bounded continuous function f,

vi(f) = op(Pup(f))-

Therefore, we have
vh = 0p(Puy). (2.3.17)
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e For any probability measure u,

Tp(p) = _vi?gg {JR Vidu + F{’P} : (2.3.18)

Proof. First notice that, for any probability measure y, Lemma 2.3.3 implies that

.1 .
fg(ﬂ) = Iplu)+ fR Vdu > hmMmf M ;1 H,}f {TiP/M(I/) + JR de}

1 1
:J inf{Tsp(u) +J de} ds = —J FYPds. (2.3.19)
0o Y R 0

In the equality between the lim inf and the integral, we used the fact that s € (0,1) — F%/ P is convex and
therefore continuous. We claim that this lower bound is achieved. For s € [0,1], let v¥, be a minimizer
of i Typ(p) + § Vdu. By Corollary 2.2.7, we can choose v*, such that s — v*, is continuous. Hence,

wh = Sé v¥pds makes sense and is a probability measure on R. We claim it minimizes f¥. Indeed, by
Lemma 2.3.3, we have

M
1
1% . .. .
fp(pp) = glm lim inf inf { M ; Tz‘P/M(Vz'P/M) + JR VdViP/M}

-0 M L¥M ViP/MEB“;li (6)
1 M
o . .
< lim inf Y z:zl {TiP/JVI(ViP/M) + JR VdViP/]VI}

M

o1 .
= hrrjlwmf i ;H’}f {TiP/M(l/) + JR de}

1 1
= J inf {TSP(V) + J de} ds= —J F’]}‘/7P5d8.
0o v R 0

With (2.3.19), we deduce that the above inequality is an equality and that f }.f achieves its minimal value
at p%. By Lemma 2.3.2, this minimizer is unique and therefore u% = u% for any choices of paths v* and
any positive real number P. Hence, we find that

1
—FYY =inf f = Ip(u}) +f Vdup = —f FyPsds.
R 0

By a change of variable we deduce

P
PF(‘;’sz Fy*ds.
0

Since s +— Fj}/ " is convex, it is continuous. This shows that P PF(‘J/’P is continuously differentiable,
and that for all P > 0,
FP = 0p(PEYY).

Moreover, we have seen that for any choice of continuous minimizing path v* of u— T.(1) + § Vdp and
any positive real number P,

1 P

1
uy = J vipds = —J vids.

0 P Jo

Integrating the last equality against f bounded continuous we have
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By continuity of s — v*(f), we deduce that P +— p%(f) is continuously differentiable and that

vE(f) = 0p(Pup(f)).

But Corollary 2.3.2 implies that any probability which minimizes T can be seen as the endpoint of a
continuous path s € (0, P] — v¥ where each v* minimizes 7. By the latter, such a measure is then
equal to dp(Pu%(f)), showing the uniqueness of the minimizer v} of T% and the equality

v = 0p(Pup).

The last point of the Lemma is a direct consequence of [DZ10, Theorem 4.5.10] since T},/ is convex for
all bounded continuous function V.
O

By Lemma 2.3.2, v} is a probability measure which satisfies almost surely
vl (@) = (CF +2P [ ogle ~ ylav o))l (z)
with C} a constant such that
CF + 2P [ log o — yldv} () (2) = 1

Furthermore we must have C§, + 2P {log |z — y|dvp (y) = 0 for all x.

2.4 Large deviations for Toda Gibbs measure with general po-
tentials

We now consider the measures TX’P given by (2.1.5), with potential given by W : x € R ~ az?* + U(z),

k > 2, with U(z)/z?* going to zero at infinity. We show that under these laws, the law of the empirical

measures (fir, )n=1 still fulfills a large deviation principle, by extending the subadditivity argument

previously used. We then identify the rate function as before. By Varadhan’s Lemma, it is enough to
1

consider the case where U(z) = 322 (we detail this in Section 2.5). We hereafter continue to use the

notation (2.1.5) with now V(z) = az?".

2.4.1 Exponential tightness

In this section we prove that if W(z) = az®*+32?, i.e V(z) = az®* with k > 2 and a > 0, then the

law of the empirical measure of the eigenvalues is exponentially tight under TX,’P. More precisely, we let
Kr ={peP(R)| §V(x)du(z) < L} which is a compact of P(R). Then we shall prove

Lemma 2.4.1. There exists a finite constant cy such that
T (v € Kf) < eEmewIn,

Proof. We first bound from below the free energy by Jensen’s inequality

V,P
ZNT = J

R2N

e Nl Vdin gl > exp{—Nf f VdjndTh} = exp{—cy N} . (2.4.1)
R2N JR



56 CHAPTER 2. LARGE DEVIATIONS FOR THE TODA CHAIN

From here we deduce exponential tightness for (fiy)ny under ’]I‘X;P : for L >0,

1 ~
’]I‘V7P 0 2 L — 1 N —NS VduN TP
N <JR Vap > Z]‘\?,}']l? J}Rmv {S]R Vd”NZL}e : dTy

< elNlev—L), (2.4.2)

For later purpose we prove the following result showing that the off diagonal entries b; = e "/2,1 < i < N
of the Lax matrix Ly do not become too small :

Lemma 2.4.2. For any P >0
1 ve 1 &
thsuphm;up v log T (N Z logb; < —L) = —00.

Proof. Since V is bounded from below and we have bounded from below the partition function (2.4.1), it
enough to prove this estimate when V' = 0. But, in this case the entries are independent and so we only
need to prove it for independent chi distributed variables. But then, for any 0 < § < P, with Z% ;. = Z(J)\’,}}
the partition function in (2.1.6), we find / 1

P—5/2 N
Z logh; < L) <e-tNENT T _ orn (TP —0/2)
Zy 2721 (P)

from which the result follows by taking for instance § = P/2.

2.4.2 Weak LDP

In this section, we prove that fir, satisfies a weak large deviation principle, namely Lemma 2.2.3. In
this more general setup, we follow again a subadditivity argument, which is however more sophisticated
since the entries of Ly are not independent anymore. We will restrict ourselves to the case where
V(z) = ax?*, a > 0, the case of a more general potential with the same asymptotic behavior being again
a consequence of Varadhan’s Lemma. We first show that the large deviation principles is the same if we
remove the entries (equal to by) in the corners (N, 1) and (1, N) in the Toda matrix. Namely, let Ly be
the tridiagonal matrix with entries equal to those of Ly except for the entries (1, N) and (N, 1) which
vanish and consider the following modification of 'H‘X,’P given by

d’]NI‘X’P _ e—TrV(EN)dTﬁ . (2.4.3)

=V, P
Zy

Lemma 2.4.3. For any probability measure pu, we have
6—0 N—ox 60 Now

1 —TrV(L P 1 —TrV (L P
lim lim mfﬁ Ingld(ﬂLN,#)<5€ ( N)d’]I‘ = lim lim inf Nlog ld(ﬂﬁN,u)<6€ ( N)dTN

Moreover,

hm mf— logf ~TV(Ln) d’]TP = hm 1nf— logJ —Tev( LN)d’]I‘N

The same results hold if we replace all the liminf by limsup.
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Proof. To simplify the notations we take a = 1 in the proof. First notice that V(Ly) — V(Ly) is an
homogeneous polynomial of degree 2k in Ly and ALy = Ly — Ly, with degree at least one in the
latter. Observe that ALy only depends on by. Therefore, there exists a finite constant Cj such that
on By™M = {by < K} n {LTe(L3F) < M} (or BNK = {by < K} 0 {ETe(L3F) < M}), Holder’s
inequality implies

1 2k 74 12k 2kl
7 2k 2k
‘NTr (V(Ln) - V(LN))‘ <Cr ) <NTr ((ALy) )> (NTr (LN)>

=1

< C(M,K)N ™2

where C'(M, K) is a finite constant depending only on M, K, k. Note that in the above right hand side
Tr(L3F) can be replaced by Tr(L3¥) as they play a symmetric role. Moreover, by (2.2.7), d(finy, fig,) <
2/N since ALy has rank at most two. We fix a probability measure p and first prove that

N>

PN 1 —TrV(L P B 1 —~TrV (L P
llmlanIngld(ﬂLN,u)<5€ ( N)d’]TN Zl%njgfﬁlog La(ag <€ ( N)dTN_ (2.4.4)

We can assume without loss of generality that the right hand side does not equal —co. Then, we have by
the previous remark

2k—1 .
J1d(;zLN,u)<56_TrV(LN)dT§ > T OO JlB%Km{d ye VAT

(Pp 1) <0—F
2k—1
> C'le_c(M’K)N 2k

=

—TrV (L P
Jl{Trv(EN)gNM}m{d(ﬂEN,M)<5_%}e (En) Tk

2k—1 .
> /e~ C(M,K)N "2k {fl{d(ﬁmwd_%}eTW(LN)dTﬁ _eNM}

where in the second line we integrated over by < K and in the last line we used that

J1{TrV(l~/N)2NM}e_TrV(LN)dTﬁ <e M.
We next choose M so that this term is smaller than the first term (which we assumed bounded below by
e~ N for some finite C). We deduce that (2.4.4) holds. To prove the converse inequality, we notice that
there exists one b; bounded by K with probability greater than 1 — e *(])N under TL, with a(K) =
—log P(b = K) > 0 which goes to + infinity when K does. By symmetry with respect to the order of
the indices, we may assume it is by. Therefore, because V' is bounded below by some finite constant C,
setting a/(K) = a(K) — C, and using Lemma 2.4.1, we find

J1d(ﬂw,m<5e*“v@w>d?ﬁ <e MU0 4N f1{bN<K}m{d<ﬂLN,u><6}€7T‘"V(L”)dT§

< e Na'(K) | No-N(M—cv) +N60(M,K)N2'§7;1 Jl TV (L) gl

s ~ (&
BMK A (d(pg i) <o+ 2}

21 i
< o N (K) | N N(M—ev) | NoC(MK)N o J1{d(ﬂLN’H)<6+%}67TI"V(LN)dTﬁ

which gives the converse bound, letting N going to infinity, provided K and M are large enough. The
same arguments also hold when there is no indicator function, giving the same estimates for the free

energy. O
Lemma 2.4.4. Let V(z) = az®* and P > 0. For any p in P(R), there exists a limit

T | V,P [~ - 1 VP

;I_,mOthmfNIOgTN (firy € B(9)) =%1_I)r(1)hm1\§upN10gTN (firy € Bu(0)) . (2.4.5)

We denote this limit by =Ty (n). Then, u— T¥ (i) is conver.
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Proof. We use the notations of Lemma 2.2.3. Let ¢ > 1 be fixed. For N > 1 we write N = kyq + rn,
0 < rny < ¢—1, and define LY, by removing the off diagonal entries byy = L (¢q,lq + 1), Ly (¢g+1,4q),1 <
¢ < ky, as well as the entries Ly (1, N), Ly (N, 1), from Ly. We set Ry, = Ly — L%. Let Z) = ZX/}%F
denote in short the partition function for the Toda Gibbs measure with potential V' and set

ZNg=Ere [em@?v)] = f e VIR ATY,.

We first show that there is some constant C}, (independent of N) such that for all N > 1,

1 Z]‘\?,q Ck
By Jensen’s inequality we have
12y, 1 Te(V(Ly)— V(L)) 1 q
N log ZV = N logETX’P e N 2 NETX/P TI“(V(LN) — V(LN)) . (247)
N

As in the proof of Lemma 2.4.1, we bound the right hand side by first noticing that V(Ly) — V(L)
is an homogeneous polynomial of degree 2k in Ly and Ly — L%, with degree at least one in the latter.
Therefore, Holder’s inequality implies that there exists a finite constant C' depending only on k such that

2k—1
1/2k 1 b

1
‘ ETz‘\//P [NTr(L%C)]

NET;QP [TY(V(LN) - V(L§V))” < CiETX’P H]Tr (Ly — L)) ]

Now, R% = Ly — L has non zero entries only at the sites (¢,i+1) and (i+1,i), i € J = {{g,1 < { < kn},
as well as (N, 1) and (1,N). We can assume without loss of generality that ¢ > 2k so that Tr(R% )
simply depends on the 2kth power of the its non-vanishing entries. Thus, there exists a finite constant
C), which only depends on k such that

Tr (R%)*) < Ck Y Ly (iyi+1)*" + CuLy (N, 1)* .
ieJ
Next notice that
Ln(iyi+1)% < Ln(iyi)* + Ly (iyi + 1) 4+ Ly (i, — 1)* = L (i, ).
Moreover, diagonalizing Ly = Z)\jvjva, we find by Hélder’s inequality (since Y v;(i)*> = 1 for all
1€ {l,...,N}) that
k

L3660 = (D N05(0)2) < Y3 A%0,(0)? = L3 (G,

Thus,
L (iyi+ 1) < L (i,4)" < LR (i, ) -

Because Ly has periodic boundary conditions, the distribution of the entries of Ly are invariant under

the shift § : ¢ — 7 4+ 1, so that under ’]I‘X,’P, Ly(i,i+ 1) has the same law than Ly (i + 1,7 + 2), and
Ln(i,) has the same law than Ly (i + 1,7+ 1). As a consequence, we have

1 ok 1 Peps kn 1 2%
ETK’P [NTr ((LN - L?V) ) :| < ch ;}ET}OP [LN (Z, Z) = CkWETx,P NTr(LN) .
But (2.4.2) implies that ETX'P %Tr(L%‘”‘) is bounded by some finite constant independent of N. We
therefore deduce (2.4.6) from (2.4.7).
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We next prove the subadditivity property. Let 6 > 0 and L > 0 be given. Let Kp, = {fip, (V) < L}.
As in equation (2.2.10), we have for ¢ big enough,
Mg 1

A
T ({firy € Bu(0)} nKp) = “5t

1, (VN gTE 2.4.8
ZV Z]‘\/fq K A qu €B,(5—4/q)¢ N> ( )

where we set Kq4 = Kan = njes{ b* < A} n {b3¥ < A}. As before, noticing that V(Ly) — V(L) is a
polynomial in L% and Ly — L%, we find a finite constant C' such that, on K, n K4, for N large enough,

1 . kN 1/2k —
Ty - v <0 (o) L

Therefore if we set I = {fzs (V) < L}, we deduce that K4 n Ky contains K4 n ICqL_E(q) for some &(q)

going to zero as g goes to infinity. We deduce from (2.4.6) and (2.4.8) that there exists a finite constant
C independent of ¢ (but dependent on L and k) such that

e_Ncq71/2k
V,P (¢~ '
Ty (s € Bu(0)} n Kp) = TJ i, en,o-a/ge " ERDATE, (2.4.9)
N,q Ka f'\K:L <(a) N

Since L%, is independent of the entries b;,7 € J and therefore of K 4, we see that we can integrate the
indicator function of K 4 yielding a contribution CZZN for some positive constant C'y depending only on
A. We observe as well that L, is a block diagonal matrix diag(L}, ..., LE¥, B) where L}, 1 < i < ky, are
independent and independent from B, Lfl following ’ﬁ‘qp defined in (2.4.3) and B following TfN. Finally,
we notice that K%ﬂ(q) contains ﬁ]gigkN{%’I‘r((Lé)Qk) <L—¢e(g)}n {kaNqTr(B%) < L —e(q)} since
the trace of (L% )%k is a linear combination of the latter traces. Thus by independence of the matrices
Ly, .. e~ VIR ATE and convexity of balls, we deduce by taking the logarithm that if we
set uN(a, L) —logTVP({uMN € B.(6)}nKy) and vy (6, L) = —log Ty" ({fiz,, € Bu(d)}n{Tr(Ly)?*) <
LN}), then we have

un (8 +4/q, L +e(q)) < N(Cq~?* +10g(Ca)/q) + knvy(8, L) + v,y (6, L). (2.4.10)

We conclude as in Lemma 2.2.3 that

Jim sup un(0+4/q,L +e(q) _ vq(0,L) b O log(Ca) _
N N q q

We then notice that for all N, d, un (0, L) = un (9, 00) and vy (9, L) < vn(d,0) +log2 for L large enough
by Lemma 2.2.2 (for L ~N). If therefore we choose a subsequence ¢ going to infinity along which the liminf
is taken, we deduce by Lemma 2.4.3 that

vg(8, 00)

2
lim sup M < liminf -2 = lim inf M
N N q—o L q q—o L q

(2.4.11)

YA\

If there is no such subsequence then both sides go to infinity and there is nothing to say. Otherwise we
conclude as in Lemma 2.2.3.

We see that we can adapt in the same fashion the proof of Theorem 2.2.4 (which stands for quadratic V)
to our setting and get that u+— T (u) is convex, which concludes the proof. O

2.4.3 Convergence of the free energy and large deviation principle

In the case where V(x) = ax?*,a > 0, Lemmas 2.4.1 and 2.4.4 of the previous two sections showed that a
large deviation principle holds for the empirical measure of the eigenvalues of L under 'H‘X,’P with good,

convex rate function which, using [DZ10, Theorem 4.5.10], can be represented as

TY (1) = — int {deu+FV+WP FOPy (2.4.12)
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where )
V,P . -
Fpt = ]\}13}/\: i log Je FHV(LN)dTﬁ .
To identify 7% and its minimizer, our goal is to show that

Lemma 2.4.5. For a >0 and V(z) = ax®* + U(x) with U € CY(R), for every P > 0, we have
1
j EY*Pds = FRP (2.4.13)
0

As a consequence, the unique minimizer of Ty is given by vy = dp(PuY) with u% the equilibrium measure
for the B-ensemble with parameter = 2P/N.

Proof. We first prove (2.4.13). Clearly, for all bounded continuous functions U, U’, uniformly in P,
|F’]?ac2k+U,P _ F§z2k+U',P| < ||U _ U/”% and |ng2k+U,P . ng2k+U',P| < ||U B U/”OO )
Therefore it is enough to prove (2.4.13) for U € C}(R) by density. We prove that for U € C}(R),

EYP = 0p(PEYY). (2.4.14)

2P
Let us consider the tridiagonal matrix C& of the Coulomb model with distribution P N - We decompose,
for £ > 0, this matrix as
N
T A
Ry C i

where M Ilf NMisa | Ne|x|Ne| tri-diagonal symmetric matrix with standard independent Gaussian variables
on the diagonal and chi distributed variables above the diagonal with parameters 2P, N — [eN| < i <

N — 1, ng is a N. = N — [eN] square tridiagonal Coulomb matrix with parameter 2Pg /N with
P5 = N.N“'P = (1—|eN|/N)P, and Ry has only one non-zero entry r at position (|eN|,|eN| + 1).
Our first goal is to show that, with V(z) = az?* + U(x), we have

. 1 —Trv (MmN 1 vp V,P— V,P—
dim —logE[e (Mp >]=E(FC —FYTT) 4 Fo e (2.4.15)

We will then complete the argument by showing that

_ 1 ~Tv(MENY _ LvP
lslﬁjl J\PLHf N logE[e P )= Fy (2.4.16)

We next turn to the proof of (2.4.15). Let us denote
eN
oN _ M}L o
P 0 Cp: |-
N

Tr((CH)?*) = Tr((CH)?*). (2.4.17)

Indeed, by Klein’s lemma [AGZ10, Lemma 4.4.12], B — Tr(B?F) is convex on the set of symmetric
matrices. Moreover VTr(B2?*) = (2kB2?*~1),;. As a consequence, for any symmetric matrices 4, B

We now show that

Tr((A + B)?*) — Tr(B?**) > Tr(2kB%**~1 A) .

We apply the above inequality with A = cN-CN and B = O} and notice that the entry |[eN|, |[eN|+1
of (C¥)?*~! vanishes so that Tr((CY)*~1(CK — CR)) = 0, proving (2.4.17).
Moreover, if U is C},
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1
ITe(U(CF)) = Tr(U(CR))| < L T (U'(aCP + (1 = a)CB) (O = CN)lda < |U'llr]  (24.18)

Consequently, using the independence of r and C'g and the fact that Cy = E[eJ’”U'” ’J"“'] is finite since
r has sub-Gaussian distribution, we deduce from (2.4.17) that

E[e T (V(CF)] < E[e ™V ICENHIT Il < Oy E[e ™V (CFN]. (2.4.19)
As a consequence

B[~V O] < Oy B[V OE gV )

which gives the desired lower bound:
| TV (MM PV P(1—¢),V
1%n1nf N logE[e P >F," —(1—¢€)F, (2.4.20)
— 0

where we used that Theorem 2.3.1 is valid for P§ — (1 —¢)P.
To get the complementary lower bound we restrict ourselves to

(Il < 1) 0 Tr(CF)™) < M)

Because of (2.4.18) and applying Holder’s inequality as in the proof of Lemma 2.4.3, we see that on this
set Tr(V(CR)) — Tr(V(CE)) goes to zero uniformly for all M. On the other hand the probability of the
set {|r| < &} is of order 1/N. Again by independence we deduce that

E[e ™ (V(CF)]

WV

° — AN
€ (1)]E[1ﬂﬂgﬁ}ﬁ{%Tr((C‘IJ;’)zk)gM}e Te(V(Cp ))]

o — AN Ty AN
> o) (E[e TVCEN] — E[L 1 oo ymyzanye TV (P ”]) . (24.21)
But we can show exactly as in the proof of Lemma 2.4.1 that for M large enough

i E[l{Tr((éﬁ)%)zMN}e_“(V(éfvv))]
lim sup o <
N—-oxw E[e (V( P))]

)

DN | =

yielding the desired lower bound and therefore (2.4.15).
To prove (2.4.16), we proceed by approximation. We notice that if we denote by D5 the density of

the distribution of M E N1 ith respect to the distribution of a Toda matrix E[s ~| with parameter P to
which we removed the extreme entries at (1, [eN]) and (|eN|, 1), then we get

Ne (i
Dy =o'
i=1

Therefore
[=N) 2 .
—TeV(M —2NMp—TeV(E. _
Ele M) > e Ele ( lNJ)l—QPZEN ilogbi/— 2N )

e_EzNME[ —TI’V(LlaNJ)](l _TVNJZJ QPZ log b; < —EQNM))

On the other hand

eN .
i=1
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has exponentially small probability under TE{,IZJ for ge enough. This shows, using Lemma 2.4.3, that

there exists a finite constant M such that

Lo L —Tev (MEN) V,P
P A
lim 1{1Df - logE[e P ] = Fy Me

Similarly, we can see that the density Ds. = Hi]\fl bfp(ﬁ_s) of the law a Toda matrix ELENJ with respect
c—

to MENJ is bounded below by —2N M on {Zfivl(
constant M’ such that

%) logb; < e2N M} so that we get similarly a finite

1 c -
lim sup — log E[e*TrV(MIL NJ)] < F%/’P(l 94 Me (2.4.22)
Nox Ne

We hence conclude by the continuity of ¢ — FﬂY Pi=e) (
follows then from (2.4.22).
We finally show that (2.4.13) implies that T)% achieves its minimum value at dp(Ppu)). Indeed, by

(2.4.12), for any bounded continuous U, any probability measure v, we have

which is due to its convexity) Equality (2.4.14)

TY (v) > — (JUdujLFq}/*U’P —Fq}”P>

We integrate this inequality at ¥ = vz;p a measurable probability measure valued process such that
u= Sé vspds to deduce from (2.4.13) that

1
J TY (vsp)ds = — (J Udp + FC‘/{+U,P _ FX’P> .
0

We finally optimize over U to conclude that

1
Jo TY (vsp)ds = —ir(}f (J Udp + Fg+U,P _ Fg,p) _ V().

Since I¥ vanishes only at u¥% we deduce that any measurable minimizing path (vsp)o<s<1 must satisfy
Sé Vspds = /Lg. If we can consider a continuous s — vgp, we conclude that 6p(Pug) makes sense and
that it is equal to vp. We therefore now show that such a path can be chosen to be continuous. But we
can follow arguments similar to those of Corollary 2.2.7 to show that the set MY where T achieves its
minimum value is a compact convex subset of P(R) and is continuous in the sense that for any ¢ > 0,
there exists . > 0 such that for all § < ., any P, @ > 0 such that for |P — Q| <o

My < (Mp)*.

Indeed, even if we do not have the coupling of Corollary 2.2.7, we easily see that the density of ']I‘X’Q with
respect to TX,’P is bounded by eMNIP=Ql with probability greater than 1 — e ¢V with (M) going
to infinity when M goes to infinity. Indeed, the density equals (P — Q) Y logb; from which the remark
follows from Lemma 2.4.2. This implies that

— ((N}r‘}f)e)c Tg < max{M|Q — P| — ((Z\Jir\}f)‘s)c Ty, —c(M)N}

which implies that for any € > 0, for M large enough and |Q — P| small enough inf((Mg)a)c Tg > 0, from
which the continuity follows. O
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2.5 Proof of Theorem 2.1.1 and 2.1.3

Lemma 2.4.4 combined with the exponential tightness of Lemma 2.4.1 proves a large deviation principle
for the potential V(x) = az?*. If now we consider the case where V(x)/22* goes to a > 0 at infinity, we
can always write V(z) = az?* + U(x) where U(z)/z?* goes to zero at infinity. We have seen by Lemma
2.4.1 that under Tf,’v, the event {+Tr(L3F) > M} has exponentially small probability. Let for € > 0,
V.(z) = ax®* + (1 + ex®*)~U(z). Then, the large deviation principle for the distribution of iy, under
TXE’P follows from Varadhan’s lemma. Moreover, on {Tr(L3F) < M N}, if |U(xz)| < 2% on |z| > L,

L v (y) = 2 vy < B U(z)| + 6 iTr(LiLIJLVk)
N NI TN e S Tk e N gL
eL?k

T3 oo s [U(@)] + Mo

which is as small as wished if M is fixed, L taken large so that § is small, provided ¢ is taken small
enough. This shows that we can approximate TI‘]‘\/,’P by TKE’P in the exponential scale from which the
result follows.

The proof of Theorem 2.1.3 follows the same arguments than those developed in the last section: we
approximate the general variance profile by a stepwise constant profile, remove a negligible number of off
diagonal entries and then use the large deviation principle for the Toda matrices. We leave the details to
the reader.
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Chapter 3

Large Deviations for Ablowitz-Ladik
lattice, and the Schur flow

Abstract We consider the Generalized Gibbs ensembles of the Ablowitz-Ladik lattice and of the Schur
flow. We derive large deviations principles for the distribution of the empirical measures for these ensem-
bles. As a consequence, we deduce their almost sure convergence. Moreover, we are able to characterize
their limit in terms of the equilibrium measure of the Circular, and the Jacobi beta ensemble respectively.

3.1 Introduction
The defocusing Ablowitz-Ladik (AL) lattice is the system of ODEs
ZOZJ = —(Olj_»,_l + a1 — ZOéj) + |Oéj|2(0tj_1 + Oéj+1), (311)

. do;
that describe the evolution of the complex functions «;(t), j € Z and t € R, here ¢&; = %. We assume

N-periodic boundary conditions a4+ n = «, for all j € Z. For simplicity, we consider the case IV even,
and, when not mentioned, the limits as N — o0 is taken along N even. This system was introduced
by Ablowitz and Ladik [AL75, AL76] as a spatial discretization of the defocusing Nonlinear Schrédinger
Equation (NLS)

10p)(x,t) = —%0gw(x,t) + [O(z, t)[Pah(x, t). (3.1.2)

The NLS is a well-known integrable model [ZS72], and the Ablowitz-Ladik lattice is one of the several
discretizations that preserve integrability [QNCVDLS84].
It is straightforward to verify that the two quantities

N N
H 1= oy?), KW ==Y aa,, (3.1.3)
j=1 j=1

are constants of motion for the AL lattice. Since K(® is conserved along the flow, it implies that if
loj(0)] < 1 for all j = 1,...,N, then |a;(t)| < 1 for all times. Thus, we can consider DV as our phase
space, where D = {z € C| |z| < 1}.

On this phase space we consider the symplectic form w [EL06, GN09, Nen05, Sim05]

w—zZ daJ/\cF], pi =4/1—]oj]?. (3.1.4)

jl]

65
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The corresponding Poisson bracket is defined for functions f, g € C*(DV) as

2 (0f 29 of % (5.15)
aaj 6aj (9aj 6@- ' o

{f.gt=1> 0}
j=1

Using this Poisson bracket, it is possible to rewrite the equations of motion (3.1.1) of the AL lattice in
Hamiltonian form as

&; = {ay, Har}, Hap(e) = —2log(K©) + KV 4+ KO, (3.1.6)

here a = (a1, ..., an).

Conserved quantities. As we already mentioned, the AL lattice is an integrable model: this was
proved by Ablowitz and Ladik [AKN74, AL75]. Specifically, they were able to obtain a Lax pair for
the Ablowitz-Ladik lattice by discretizing the 2 x 2 Zakharov-Shabat Lax pair of the cubic nonlinear
Schrédinger equation.

Nenciu and Simon in [Nen05, Sim05] constructed a new Lax pair for the Ablowitz-Ladik lattice,
exploiting the connection of this system to the orthogonal polynomials on the unit circle. This link is
the analogue of the well-known link between the Toda lattice and orthogonal polynomials on the real line
(see e.g. [Dei99]). This connection was also generalized to the non-commutative case [Caf09].

Following [Nen05, Sim05], we construct the Lax matrix as follows. Consider the 2 x 2 unitary matrices

:(aj)::j:<pj —pé])’ pi=+/1—las2, j=1,...,N, (3.1.7)

and the N x N matrices

—QN PN
E.g El
=) =3
M = ) , L= ) . (3.1.8)
EN_2 EN—l
PN oN
Now let us define the Lax matrix

E=LM, (3.1.9)

which has the following structure

L N
E R 3

*

* % ¥ %
®* K % ¥
* % % ¥

*

The matrix £ is a periodic CMV matrix (after Cantero, Moral and Velazquez [CMVO05]). Tt is straight-
forward to verify that the equations of motions (3.1.1) are equivalent to the following Lax equation for

the matrix &: )
E=il€,ET+(ENT], (3.1.10)
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where T stands for hermitian conjugate, and

1ce, N
2855 J=k

Ejfk =4 &xr k=j+1mod Nork=j+2mod N (3.1.11)
0 otherwise.

Remark 3.1.1. We notice that since all the Z; are unitary, then also £ is unitary, this implies that all
the eigenvalues \; lie on the unit circle, and they can be written in terms of their argument, namely for
all j=1,...,N there exists a 8 € T := [—m, ) such that

)\j=6

In view of this identification, and in order to simplify the notations, for any function f(z) : 0D — R,
we write f( ) in place of f(e') when it is convenient. Further, we will write indifferently §. f(0)du(6)
or SAD f(2)du(z) for any probability measure p having support on the circle.

Remark 3.1.2. We notice that (E1)" + (ET)* = &1 and [€,ET] = 0 since € is unitary. Therefore, the
Laz pair (3.1.10) can be rewritten in the equivalent form

E=il6, &7 —(eN]. (3.1.12)
The formulation (3.1.10) implies that the quantities
K® =T (Y, ¢=1,....N -1, (3.1.13)

are constants of motion for the defocusing AL system (3.1.1).
As in [Spo22b, GM23], we introduce the Generalized Gibbs ensemble for the Ablowitz-Ladik lattice,
namely the following probability measure on the phase space DV

N
AP} y(on, ... o) = ]‘[ (1= o )P 140, emy exp(—Tr(V(€)))d?a, (3.1.14)

ZHE(V, B) Vﬁ

where V() : T — R is a continuous function, 14 is the indicator function of the set A, and Z&%(V, B)
is the partition function of the system

(e - | H1—|aj| “Lexp(~Tr(V (£)))d%a.

Furthermore, we consider the empirical measure un(€) of the eigenvalues €1, ... e~ of the matrix £
(3.1.9), namely

)
= — 3,058 5 (3.1.15)
Nj:l !

here ¢, is the delta function centred at x, furthermore, we notice that we can just consider the arguments
01, ...,0nN of the eigenvalues since the matrix £ is unitary, see Remark 3.1.1.

Our main result is a large deviations principle (LDP) with good rate function for the sequence (uy (€))
under the law P A L ~ (3.1.14). Namely, denoting by P(T) the set of probability measures on the Torus T
endowed with the topology of weak convergence, there exists a function Jg : P(T) — [0, +0o0] such that:

1. it is lower semicontinuous/good, namely for any a > 0, {1 € P(T) | J)a/(ll) < a} € P(T) is compact,



68 CHAPTER 3. LARGE DEVIATIONS: ABLOWITZ-LADIK AND SCHUR FLOW

2. it satisfies a large deviations lower bound, namely for all O c P(T) open,

~inf J < lim inf % log P(x (€) € O), (3.1.16)

N even

3. it satisfies a large deviations upper bound, namely for all ' < P(T) closed,

1
lim sup N logP(un(€) e F) < —i%f J. (3.1.17)

N even

We refer to [DZ10] for a general introduction to large deviations.

Remark 3.1.3. We notice that, by compactness of P(T), it is sufficient to prove a weak large deviations
principle, see [DZ10, Section 1.2], which is the same as a full large deviations principle, except that the
large deviation upper bound (point 8) holds only for compact subsets of P(T).

From this large deviations principle we are able to deduce that py(€) converges almost surely as N
goes to infinity.

Theorem 3.1.4. Let 8> 0. For any continuous function V. : T — R the following holds:

a. the sequence pun(E) under the law PXfN satisfies a large deviations principle at speed N with a
good rate function J/X,

b. JX achieves its minimum at a unique probability measure I/g,

c. un (&) converges almost surely and in L'(T) towards l/g.

Moreover, following [GM23, Spo22b, GM22], we are able to characterize the measure l/g in terms

of the equilibrium measure of the Circular beta ensemble at high temperature [KN04, HL21]. More
precisely, consider the functional p — f?{ () given, for any u € P(T) absolutely continuous with respect

to Lebesgue measure and with density (;—Z, by

£ = =5 | log (e~ &) n(d)u(dp) + Flog(2) + | V(O)uldp)
e B (3.1.18)

+ [[10g (55©) uta) + og(ar).

It is shown in [HL21], that the previous functional reaches its minimum for a unique absolutely continuous
probability measure ug. Moreover, in [GM23] it is proved that this measure is almost surely differentiable
with respect to 8. Exploiting this result, and Theorem 3.1.4 we are able to show that

Theorem 3.1.5. For any continuous V, f : T — R

[ r@ao) = o (5 [ f(ﬁ)du§(9)> . (3.1.19)

Thus, we obtain a unique characterization of the measure Y .

In [Spo22b, GM23], the authors considered the GGE (3.1.14) with polynomial potential, and they
were able to prove Theorem 3.1.5 for this particular class of potentials using a transfer operator technique.
In this sense, we generalize their result, extending it to the class of continuous and bounded potentials.

In the last part of the manuscript, we consider another integrable model related to the Ablowitz-
Ladik lattice, namely the so-called Schur flow [Gol06]. Also for this system, the Lax matrix is £ (3.1.9).
Following the same construction as in the Ablowitz-Ladik lattice case, we define a GGE for this model.
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We are able to show analogous results to Theorem 3.1.4 and Theorem 3.1.5 for the Schur flow. The main
difference is that in place of the Circular beta ensemble, we have the Jacobi one.

To give a wider overview of the relevant literature, we mention that, H. Spohn in [Spo22b], applying
the theory of generalized hydrodynamics [Doy20], argues that the correlation functions of the Ablowitz-
Ladik lattice with respect to the GGE (3.1.14) show a ballistic behaviour. As we already mentioned,
in [GM23] the authors rigorously proved Theorem 3.1.5 for polynomial potential V(z). Moreover, they
computed explicitly the density of states in the case V(z) = n(z + Z), which corresponds to the classical
Gibbs ensemble.

It is worth to mention that this link between random matrix and integrable system was first noticed in
[Spo20c]. In this paper the author considered the GGE for the Toda lattice, and he was able to study this
ensemble, comparing it with the Gaussian beta ensemble [DE06]. We refer to [Spo20a, Spo20b, Spo21,
Maz22, GM22, GM23] for subsequent developments.

In particular, our work was inspired by the recent paper [GM22]. In this paper, the authors obtained
a large deviations principle for the Toda lattice, and obtain an analogous result to Theorem 3.1.5, where
in place of the Circular beta ensemble, they had the Gaussian one.

Moreover, we want to underline that in [KS09, NT20, Lam21] the authors were able to describe the
local statistics at high temperature of respectively the Circular 8 ensemble, the Gaussian 3 ensemble, and
Coulomb and Riesz gases, including the case of the Gaussian S-ensemble with general potential. They
discovered that they are described by a Poisson point process.

Finally, we notice that in [BNRO9] the authors introduced the Circular Jacobi Ensemble, which has
a matrix representation in terms of a Hessenberg matrix. It would be interesting to understand if this
ensemble admits a matrix representation in terms of a CMV matrix as the Circular 5 ensemble. In this
way, it would be possible to apply our result also to this other matrix ensemble.

The structure of the paper is the following. In Section 3.2, we prove the first point of Theorem 3.1.4. In
Section 3.3, we collect some known results related to the Circular beta ensemble in the high-temperature
regime. Moreover, we reformulate the already known large deviations principle for this ensemble in
terms of the AL lattice. In Section 3.4, we conclude the proof of Theorem 3.1.4, and we prove Theorem
3.1.5. Section 3.5, is dedicated to the Schur flow, where we prove the analogue of Theorem 3.1.4 and
Theorem 3.1.5 for this integrable model. Finally, we defer to the appendix the most technical results of
our manuscript.

3.2 Existence of a Large deviations principle for the empirical
measure of the Ablowitz-Ladik lattice

The aim of this section is to prove the first point of Theorem 3.1.4, namely to show that, for N3 N > 2 and
even, the sequence of empirical measures uyn (&) = % Z;\;l d,i0;e) satisfies a large deviations principle.

The strategy of proof is the following. First, we show that if £ is distributed according to Pi LN = P%g N
defined in (3.1.14), then the sequence of random probability measures (1n (€))n even satisfies a large
deviations principle in P(T), the space of probability measures on T, endowed with the topology of weak
convergence. Since according to this toppology P(T) is compact, it suffices to show that the sequence
(N (E))N even satisfies a weak large deviations principle, see Remark 3.1.3. Then, applying Varadhan’s
Lemma [DE97, Theorem 1.2.1], we obtain the existence of a large deviations principle for arbitrary
continuous V, i.e. the first point of Theorem 3.1.4.

We also notice that when V' = 0 in (3.1.14) the «;’s are independent and identically distributed (i.7.d)
with distribution ©2541, where O, is defined for v > 1 as the random variable such that for f : C - R

bounded and measurable
v

E[f(X)] =

o |- e, (3.2.1)

Remark 3.2.1. We recall that for integer v = 2, such measure has the following geometrical interpreta-
tion: if u = (u1,...,uyy1) s chosen at random according to the surface measure on the unit sphere S”
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in RYTL then uy + iug is O, distributed [KNO7].

To show that the sequence (un(E)) N even satisfies a weak large deviations principle according to the
law PiLN, we only need the a;’s to be i.i.d according to some law ¢ with supp(c) € D. Thus, we just
assume the latter hypothesis, and we prove the result in more generality.

3.2.1 Large Deviations Principle for periodic CMV matrix
Let d be the distance on P(T) defined by

d(p,v) = sup {deu—ffdv
1 lLip <L flev<

where the Lipschitz and the bounded variation norms are defined on the space of functions f : T — R as

|f (eiel) _ f (eiez) |

}, (3.2.2)

| flleip = U g (3.2.3)
017#62
n—1
I flBv = sup DU () — £ (e)] (3.2.4)

n=1,0=01<60s<...<0,=27 k=1

The distance d is compatible with the weak convergence of probability measures [GM22]. We recall
that for a N x N matrix A, its empirical measure of eigenvalues is defined by

1 X
n(A) = N;(sxj(A),

where A\;(A4), j =1,..., N, are the eigenvalues of A. The following Lemma, whose proof can be found in
Appendix 3.6, gives an upper bound on the distance of the empirical measures of two unitary matrices.

Lemma 3.2.2. For any A, B unitary matrices of size N x N,
e For f with bounded variation,

rank(A — B)

[ rauar - [ rautm| < 171 ™2,

e For f Lipschitz,
N
[ fauta) = [ rans)| < 11usry 3 104 By

4,5=1

As a consequence,
rank(A— B) 1 &
A(u(4), p(B)) < min {N7 Y- B)i,j|} . (3.2.5)
ij=1

We are now in position to prove that the sequence pn(€) with (a;)i>1 4.4.d with law o, such that
supp(o) € D, satisfies a large deviations principle. The proof of the following Lemma follows the same
line as the corresponding one in [GM22].

Lemma 3.2.3. Let (a;)i=1 be an i.i.d sequence of law o with supp(c) € D, and € be the associated matriz
defined in (3.1.9). Then the sequence of empirical measures (un(E))N even Satisfies a large deviations
principle in P(T) endowed with the topology of weak convergence.
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Proof. We use a subadditivity argument to show that for any fixed p € P(T) the following holds

%li)l})l}l\flrleigf % logIP’(;LN(S) € BM(6)> = ;Lmolillneig]lp % logIP’(uN(S) € Bu(5)>v (3.2.6)
where B,,(6) := {v € P(T) | d(p,v) < 6}. Then, applying [DZ10, Theorem 4.1.11], along with the fact
that in our setting a weak LDP is equivalent to a full LDP, due to the compactness of P(T), see remark
3.1.3, we conclude.

The first step to prove the result is to approximate the matrix £ (whose law we denote by £)) by a
diagonal block matrix of independent blocks. To this end, fix ¢ € N even such that ¢ < N, write the
euclidean division of N by ¢, N = kq + r with 0 < r < g. We consider M given by (3.1.8),

—Qan PN

PN an

and approximate it the following way.
Let M = diag(My, ..., Mg, R), where M; is the block diagonal matrix given by

—(i—1)q _ P(i—1)q
S(i—-1)g+2

[1]

(i—1)g+4

Sig—2

P(i-1)q g(i—l)q

where (Q(;_1)q)1<i<k are i.i.d of law o, independent of the a;’s, p; = 4/1 — |@;|?, and the remaining block
(of size r x r) R is defined similarly:

_akq Pk
Skq+2
Skqt4

SN-2
Plq+1 kg
Following the same decomposition of N = kq + r we write £ = diag(L1, ..., Lk, Lr+1), with £; of size ¢

for 1 <9<k and Lg,q of size r.
Notice that by construction, we have

rank(M — M) < 2(k + 1). (3.2.7)

Now, defining E= EM, & is a block diagonal matrix diag(&y, ..., Ek, Ek+1)-Then, the blocks &;, 1 < i <
k +1 are independent, each &, i =, ..., k, has law £, and &4, has law ().
Furthermore, using that rank(AB) < min {rank(A);rank(B)} for A, B two square matrices, and (3.2.7)
we get N

rank(€ — &) = rank(L(M — M)) < 4(k + 1).

By the first point of Lemma 3.2.2 we deduce

(@) (@) < D <2,
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Moreover, we can rewrite uy(€) as

k
(@) = 1 D (€0 + e (). (3.2.8)
=1

Using the independence of the blocks of E , we deduce that

Where we used the convexity of balls in the first inequality.
This implies that, setting
un(8) = —log (Pl € B(6))) | (3.2.9)

we have

8
un (5 + q> < kug(9) + ur(9). (3.2.10)

We now conclude as in [GM22, Lemma 2.3]. Let 6 > 0 and choose ¢ in such a way that % < 4, so we
deduce that

un@) 5 (0+3) w0 | w0

< < ) 211
N N . TN (3.2.11)
since “TT(‘S) — 0 as N — o0, we deduce that
20 )
lim sup (20 ¢ 4a(®) (3.2.12)
N« q
The previous inequality holds true for all g big enough, so we conclude that
. un(26) .. . un(0)
1 <1 f . 2.1
pra R (3.2.13)
From this last inequality we deduce that
N un(0) . .. . _un(d)
< _ 2.
Jmlve =y < Ity Ty (3214
thus we obtain (3.2.6), and the conclusion follows applying [DZ10, Theorem 4.1.11]. O

Since (P(T),d) is compact, Lemma 3.2.3 automatically implies the existence of a strong large devia-
tions principle. Furthermore, the corresponding rate function J, which depends on the distribution o of
the entries of £ and M, can be seen to be convex. We collect these results in the following proposition.

Proposition 3.2.4. In the same hypothesis and notations as in Lemma 3.2.3, the sequence of empirical
measures (un(E))N even Satisfies a large deviations principle with good, convex rate function J : P(T) —
[0, +00], i.e.

o The function J is convexr and its level sets J=([0,a]), a = 0, are compact,
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e For all O c P(T) open,
—1an lim inf N logP(un(€) € O),

N even

o For all F < P(T) closed,
1
limsup — logP(un(€) € F) < —iI}f J.

N even
Proof. We already established all the claims except the fact that the function J is convex and that the
level sets J~1([0,a]) are compact. The latter comes from the fact that these sets are closed, see [DZ10,
Theorem 4.1.11]. To prove the convexity of J, we follow the same argument as [GM22, Theorem 2.4].
Let p1, po € P(T). Since puson(E) can be approximated by the sum of two independent pn(€)’s up to
a mistake smaller than % by the first point of Lemma 3.2.2, for § > 0 the following holds

P (i () € By () P (1 (€) € Bua(6)) < P(me»eBM?u(a+§)), (3.2.15)

taking minus the logarithm of both sides, dividing by 2N, taking the limit for N going to infinity and
then for § to zero, we deduce that:

+ 1
JC“2”> <5 (Jm) +J(n2)) (3.2.16)
which, together with the lower semi-continuity of J, implies the convexity of J, see [DZ10, Lemma 4.1.21]
O

3.2.2 Large deviations principle for the Ablowitz-Ladik lattice

Taking o = ©2511 given by equation (3.2.1), Proposition 3.2.4 applies to (4n(E))N even, Where £ follows
]P’ZL’N defined in (3.1.14). Thus, (un(€))N even With law PiL,N satisfies a large deviations principle, with
a good convex rate function, that we denote by J3.

We can now state the existence of a large deviations principle for (un(€))N even under ]P’X’g y for V
continuous.
Corollary 3.2.5. Let >0, and V : T — R be continuous. Under ]P’X’LBW the sequence (un(E))N even
fulfils a large deviations principle with good, convez rate function JX () = QX(M) —inf ep(r) g},/(u), where
gy (w) is given for € P(T) b

o ) = T5(u)+ | V. (3.2.17)
Proof. Let us write
Z3E(0,8) 1
dIPVB N ) €7N §r Vdun d]P)B _ efN §r Vdun d]P)ﬁ )
ALN = ZAL(V, B) ALN = ZXX/L,V AL,N

The function p — ST Vdu being bounded continuous, by the large deviations principle under Pi L. and
Varadhan’s Lemma, [DE97, Theorem 1.2.1], we see that for any bounded continuous f : P(T) —» R we
have

1
lim — lo J eNIunygp¥ih - — sup { ( JVd — inf {J v +JVdV})},
N g . ) AL,N = LeP(T) f(w) H e (T) 5(v)

which ensures by [DE97, Theorem 1.2.3] that (uy) satisfies a large deviations principle under PY; L N
with the announced rate function. Since the function JY 5 1s an affine perturbation of Jg, which is convex,
J é/ is also convex. O

The first point of Theorem 3.1.4 is proven.
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3.3 Circular § ensemble at high temperature

In this section, we consider the Circular § ensemble, and we collect some known results that we exploit
in our treatment. The aim of this section is to prove an alternative formulation of the large deviations
principle for the Circular beta ensemble in the high-temperature regime, see Theorem 3.3.11 below.
Our formulation allows us to relate the large deviations principle of the Coulomb gas with the one of
Ablowitz-Ladik, proved in the previous section.

3.3.1 Large deviations principle for Circular 5 ensemble

Coulomb gas on the torus T = [—m,7) at temperature 5*1 are described by

1 . .
dﬂ»g‘jv - e — e |P 2= Vi) gg | (3.3.1)
Z5(V.B) KQN

here V : T — R is a continuous potential, and @ = (61, ...,0x). When V = 0, Killip and Nenciu showed

that dP%’ﬁV is the law of the eigenvalues of a CMV matrix [KN04], see Theorem 3.3.4. In this manuscript,
we are interested in the so-called high-temperature regime of this ensemble, namely the limit of number of
particles N going to infinity with the constraint that SN — 2[3 > 0. From [GZ19], [Ber18], one deduces

the following large deviations principle for the measure uy = Z i1 d 0, where the 6; are distributed
according to (3.3.1).

Theorem 3.3.1. Let E = %, B >0 and assume V : T — R to be continuous. Define for any p € P(T)
absolutely continuous with respect to the Lebesgue measure the functional

Y =—p [ log(le? — ) u(dd)u(dg) + Blog(2 j V(o
T (3.3.2)

[ 1oe (;‘j’; (9)) (d9) + log(2r)
then

1. the functional fé/(u) is strictly convexr and achieves its minimal value at the unique probability
measure u‘é absolutely continuous with respect to the Lebesgue measure;

ii. the sequence (un) satisfies a large deviations principle in P(T) equipped with the weak topology at
speed BN with rate function defined for absolutely continuous p € P(T) with respect to Lebesque
measure by Ig(,u) = fé/(,u) — fé/(/ﬁ};/); and Iv(u) = 400 otherwise. In particular

N~ (3.3.3)

N-ow

Exploiting this result, in [GM23] the authors deduced several useful properties of the minimizer ,ug,
specifically they proved the following.

Lemma 3.3.2 (cf. [GM23] Lemma 3.5 ). Let 5 > 0, consider a continuous potential V. : T — R, then
the following holds

i. The map B — inf (f}{(,u)) is Lipschitz;

it. Let D be the distance on P(T) given by
0— o 1/2
DGty = (= [ toglsin (“52) \ (= ) 0) = 1))
1 . ~
= Z E |/u’k - ,LL;€|2 ’

k=1

(3.3.4)



3.3. CIRCULAR g ENSEMBLE AT HIGH TEMPERATURE 75

where i, = § €™ u(d). Then for any e > 0 there exists a finite constant C. such that for all

BB >e
D(pg,up) < C=|B—=5] . (3.3.5)

Remark 3.3.3. We observe that if f € L?(T) with derivative in L*(T), we can set 1f1ly = A [Dks1 k|fk|2

So, for any measure v with zero mass we obtain the following

FOW(dO) = 3, fibr = D) V] fk: W (3.3.6)
-LI‘ k#0 k#0
Then, by Cauchy-Schwartz inequality, we deduce the following inequality
[ sowan)| <3 ViR X 25| < a1 pesor (3:37)
k#0 k#0 | |

Combining (3.3.5) and (3.3.7), we deduce that for any function f with finite ||f||% norm, the map B —
Sy fdp (0) is Lipschitz for 5> 0.

3.3.2 Relation with the large deviations principle of the Ablowitz-Ladik lat-
tice

In the case V = 0, for any B > 0, Killip and Nenciu in [KN04] showed that the law IP’%%V (3.3.1) coincides
with the distribution of the eigenvalues of a certain CMV matrix. Specifically they proved the following;:

Theorem 3.3.4 (cf. [KN04] Theorem 1.2). Consider the block diagonal N x N matrices
L= dl'ag(El,Eg,Eg,...,) and M = diag(Eo,Eg,E4,...) 5 (338)

where the block =, j =1,...,N — 1, takes the form

= — @ pj L N PO
=J (pj —Oéj> ) Pj 1 |aj| ) (339)

while Zg = (1) and Ex = (an) are 1 x 1 matrices. Define the N x N sparse matriz
E = LM, (3.3.10)

and suppose that the entries oy are independent complex random wvariables with o ~ @E(N—j)+1 for
1 <j < N-—1and ay is uniformly distributed on the unit circle. Then the eigenvalues of E are
distributed according to the Circular Ensemble (3.3.1) at temperature 3~ 1.

To simplify the notation, we will denote by ]P’g N the law }P’%e\, We give an alternative formulation of
23
the large deviations principle for the empirical measure under the law ]P’C n based on the Killip-Nenciu

matrix representation. This alternative formulation allows us to relate the rate function of the Coulomb
gas Ig in terms of the rate function Jg of the Ablowitz-Ladik lattice. Finally, applying Varadhan’s
Lemma [DE97, Theorem 1.2.1] we obtain an alternative formulation of the large deviations principle for
the Circular beta ensemble at high temperature with continuous potential, see Theorem 3.3.11 below.

To achieve our goal, we need several technical results regarding the distribution ©, (3.2.1), and the
CMV matrix E (3.3.10). First, in the next Lemma, we give a representation of 0, in terms of Gaussian,
and Chi distributions.
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Lemma 3.3.5. Let v > 1. Let X1, Xs,Y, be independent, X1, Xo standard Gaussian variables and Y,
be x,—1 distributed, i.e. with density

3—v
22 v—2 _—x2/2
Xufl(l') = 1L € 1:n>07
L(*3)

here T'(x) is the classical Gamma function [DLMF, §5]

+x
I'(z) = J t" e tdt (3.3.11)
0

Then, Z := (X%f)lér% follows the law ©,,.

Remark 3.3.6. If v > 2 is an integer, Y2 has the law of Ziy_ll N? where the N;’s are i.i.d. standard

gaussians random variables, thus Z is equal in distribution to —=14X2_ “which follows the law ©,,

(X2+.+X2, )2
by Remark 3.2.1.

v+1

Proof. We identify C with R? and check that for any f : D — R bounded and measurable,

v

B2 = = | 10— )T e,

i.e. that for some constant c,

2 2
T ) _mptey 42 _9
f< )e 7 e 2 yY “drydrady
f B+ @+ R+ P

(3.3.12)
= CJD flu,v)(1 — (u? + vz))%dudv.

For fixed y > 0, we perform the diffeomorphic change of variables (u,v) (z1,22). Its

_ 1
IRC T TR

inverse (z1,%2) = 7z 77z (U, v) has Jacobian equal to y2(1 — (u? 4+ v?))~2. The integral becomes

f(u,v) J — sy \/?J f(u,v)
- 20—(uZ+07) gy N E v 31
JD (1= (W2 +09))2 Jes e )y dydudv 3 ) Tz v o) (| Xu,|"]dudv, (3.3.13)

where X, , denotes a Gaussian variable N (0,1 — (u? + v?)). By [Win14],

]E[|Xu71)|u] =c,(1-— (u2 + ,UQ))%

for some constant ¢, independent of w,v. Substituting this last equality in the previous integral, we
conclude.
O

To obtain our main result, we need some technical lemmas. Since they are based on standard tech-
niques, we just state them here, and we defer their proofs to the appendix 3.6.
The first one gives an estimate that we use combined with Lemma 3.2.2.

Lemma 3.3.7. Let N = 2k be even and A be a N x N matriz. Then,
N N
o o1 (LAYl <2300 Al

- X (AM)isl <285 1Al
where M, and L are defined in (3.1.8).
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We now give an explicit coupling between ©,, (3.2.1) and O, for v > 1, h > 0.
Let X1, X5 be N(0,1) independent variables, and let Y,_1 ~ X,—1, Y4 ~ X be independent, and
independent of X1, X» (notice that (Y;2 + Y2 )2 is xypn_1 distributed). Let

X +1Xy X1 +1Xs

f— 5 a h f— .
(X2 4 X24Y2 YRR

(3.3.14)
(XP+ X3 +Y2 )2

Qy

By Lemma 3.3.5, a, ~ 0, and a4 ~ Opqp,.

Exploiting this coupling, we bound the differences |«, — 11| and |p, — py+r| by a random variable

Zp, where p, = 4/1 —|a,|?, and p,1p = 4/1 — |ay4n|?. Moreover, we find an upper bound for the

exponential moments of Zj,.

Lemma 3.3.8. Let o, and «,yp defined by equation (3.3.14). Define p, = +/1 —|a,|?, and pyyn =

/1= |ayin|?, then the following holds

1.

| | < Y Imost surel
y — Quap| <  almost surely,
S X2+ X3 4vR)E Y
v (3.3.15)
h
v — Py < - almost surely,
low = punl T X2+ 17) y
where X1, Xo ~ N(0,1), Y, ~ xn are all independent.
.. _ Y, _ _1 . ,
. define Zy, 7(Xf+x§+yhz)% , and a(h) 5 log(h) + 1, then there exists a constant K independent
of h such that
sup E[exp(a(h)Zn)] < K. (3.3.16)

0<h<1
Remark 3.3.9. Let h < /', and let Zy,, Zy: be given by

Yh Yh’

1 Zh’ = 1
(X2 +X24+Y2)2 (X2 +X24Y72)2

Zp =

where Yy, ~ xn and Ypr ~ xp are x variables coupled by

Y =1/Y2 + Z2,

Z being a xn—p variable independent of Yy,. Then, because of the monotonicity of the function r —

T
atx?
for a >0, we have almost surely Zy, < Z,.

We are now in position to give an alternate formulation of the large deviations principle for the

28
sequence of measures (un(E)) under the law PZ y, given by Theorem 3.3.1.

28
Lemma 3.3.10. Let § > 0. The law of the empirical measure (un(E)) N even under P&y satisfies a large
deviations principle at speed N and with a good rate function

6—0 gL VBla VB —
i=

1
1% vip/q€Bu ()

1 q
I5(p) = lim lim inf inf {q » Jw/q(yw/q)} , (3.3.17)

where Jy, is the rate function of Proposition 3.2.4 applied to 0 = Ogy11.
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Proof. Following the same line as in [GM22, Lemma 3.3], we proceed by exponential approximation. Let
g = 1 be an integer, since NN is even, we can write N = kq + r, with k£ even, and with 0 < r < 2g — 2.
Consider the following family of matrices £, M i =1,...q defined as

—Qik Pik

MO = § 7 = - . , (3.3.18)
=0, g
Pik Qi

ol

where Egi) are defined as

=0)(a, )= =) = (aiu«—lw Pifl—1)+¢ >
— i(k— ) = = - ’
T ‘ Pitk=—D+t  ~Qi(k—1)+0) g1 k-1, (3.3.19)

Pitk—1)+¢ = A/ 1 = ai—1)+el? >

and (ov(p—1)4¢)1<i<q,1<e<k is a family of independent random variables such that
Qi(k—1) 4L ~ @zﬂNEik+l, {=1,...kii=1,...,q.

From these two families of matrices, we can define a third one, namely 5,9 = ES)M,(;), i1=1,...,q. We

. N—ik .
notice that 5,?) is distributed according to Pi Lk > and that the 8,52), 1 <i < ¢, are independent.
Our aim is to prove that the empirical measure of the matrix C%

CY = , (3.3.20)

OT'XT
where 0,.», is a null block of size r x r, is an exponential approximation (see [DZ10, Definition 4.2.14])

28
of the empirical measure of £ ~ P4 (3.3.10), that is, for any positive real number §:

lim lim sup %log (P(d(un(E), pn(C%))) > 6) = —0, (3.3.21)

a0 N
where P denotes the coupling introduced in equation (3.3.14). In this way, we obtain the claim as an
application of [DZ10, Theorem 4.2.16]. The strategy of proof is the following. First we approximate C%
and F by two block diagonal matrices 6’5{,, E'qu respectively. Finally, we will prove that both CNV?V, and
E?\, approximate a third matrix BY,.

Consider another family of matrices (M,(j))lgigq of size k x k, defined as
M = diag (ig)ag)zfﬁ o E;“) : (3.3.22)
where the matrices Egi) are defined in (3.3.19), while i((f) = (1) and él(:) = (@;x) are 1 x 1 matri-

ces, where the a;; are independent, uniformly distributed on the unit circle for all i = 1,...,q, and
independent of (cj(r—1)41)1<i<q,1<6<k—1- Define the & x k family of CMV matrices
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From the family of matrices (glgi))lgigq, we define the block diagonal matrix:

0
Ze
Y = : (3.3.23)
g}gq)
OT‘XT
We claim that 5’}’\, is such that
rank(C%, — 5’1'{,) < 2g. (3.3.24)

Indeed, we take the same ozg»i) in the construction of E}C and of &/, except for the entries of the corners of
./\/l,(j), where ./\/l,(j)(l, 1) is replaced by 1, M,(Ci)(k, k) is replaced by a uniform variable on the circle, and

both entries ./\/l,(j)(l7 k) and /\/l,(:)(k, 1) are replaced by 0. This shows that
(i) _ @)
rank(M,’ — M,;"”) < 2,
rank(é‘,gz) - E,EZ)) = rank(ﬁ,(;) (./\/l,(;) - /\/l,(;))) < rank(./\/l,(;) - ./\/l,(;)) < 2,
and we deduce (3.3.24). From (3.3.24) and Lemma 3.2.2, we deduce that
d(un (CF), v (CR)) < - (3.3.25)
and for any & > 0 and sufficiently large N, we can take k such that % < %.

Consider now another two families of matrices (g](ci))lgigq, and (%éi))lggq, constructed in the same
way as ([,g))lgigq, and (M](;))lgigq by means of independent variables &(;_1yxj, where each &¢;_1y4; ~

923 NGk is coupled to a(;_1yx+; by equation (3.3.14), for all j =0,...,k—1,and i = 1,...,q, and

where q;, = au for i = 1,...,q is uniformly distributed on the unit circle. Define the family of CMV
matrices (@g))l@sq as

€ — g i1, g 3.3.26
k k k

Define the block diagonal matrix EY, as:

EY = (3.3.27)

OTXT' .
28 28
From the definition of Py and Ef;, we conclude that for some £ ~ P&y, we have
rank(E — EY) <2q+r. (3.3.28)

As before, from the previous inequality we deduce that

d(un (E), by (ER)) < (3.3.29)

El N

Finally, we define the matrix B} as
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B
BY — (3.3.30)

OT‘XT i

where B,(f) = gg)ﬂg).
Let 6 > 0, for N large enough such that % < %, we have almost surely

d(pun(CL), un(C4)) + d(un(E), un (EY)) >

| 9

As a consequence,

P (d(un(CY), in (E)) > )
< P(d(un(C%), nn (CR)) + (TR, v (BY)

+d(un(BY), un(EY)) + d(pn(BY), un (E)) > 5) (3.3.31)

]

< P (d(uv (C4), i (BA) + e (BR). v (BR) > 3 ) -

Moreover, combining Lemma 3.2.2 and Lemma 3.3.7 we deduce that

~

d(un(CR), un(BY)) <

=]
e

S - £,

i=11<4,j<k (3 3 32)
~ 2 i . ~(i . -
d(un (BY), nn(E)) < < ) [ (¢,5) = M ().
i=11<0,j<k
Applying Lemma 3.3.8 point i., we deduce that
o - g L k=l
Ay (O, 1 (BY)) + dun (B, i (B ) < 1 D 3 20, (3.3.33)

where the last sum denotes the sum of independent random variables with law Zx—;, defined in Lemma
N
3.3.8.
Thus, for N large enough such that % < %, we deduce that for any non-negative function a(q—*):

, k—1 . NS
P (d(un (Ch) un (E) > ) <P (31 3 280, > 22

(3.3.34)

qk
< e—olaINO/16 ( sup E[eXp(a(h)Zh)]> )
0<h<1

Where in the last inequality we used Remark 3.3.9, namely, since k—;ﬂ < %, we have

E[exp(a(q™)Zs—;] < E[exp(a(qg~)Z1].
N q
Setting a(h) = —3 log(h)+1 and applying Lemma 3.3.8 point ii., we deduce that there exist constants
K and ¢ > 0, independent of ¢, such that
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108 (B (d(un (C), pv(B)) > ) < ~clog(q)i + K (3.3.35)

And we obtain the claim. O

We can apply the previous Lemma to study the case of continuous potential, indeed as a consequence
of Varadhan’s Lemma we obtain the main result of this section, namely
Theorem 3.3.11. In the same notation as before. Let >0, and V : T — R continuous. The law of
28
the empirical measures py(E) under d]P’C N satisfies a large deviations principle at speed N, with a good
rate function I[‘{(,u) = fé/(u) inf,ep(r) fB (v), where

—_

q
£ () = limliminf  inf {qz ( i5/0WVig/q) deyw/M>}. (3.3.36)

1ivip/qeBu(®

3.4 Proof of the main results

In this section, we conclude the proof of Theorem 3.1.4 and prove Theorem 3.1.5. The main tool to prove
these theorems is the uniqueness of the minimizer of the rate function for the 8 ensemble.

Define the free energies of the Ablowtiz-Ladik lattice and the Circular beta ensemble at high temper-
ature as

Far(V.B) = lgfmgg() Fo(V,B) = el;gfmfg() (3.4.1)

where gy, and fé/ are given by (3.2.17) and (3.3.36). We claim that

Lemma 3.4.1. Let >0, andV : T — R continuous, then the following holds:

a. the map 8 — Fc(V, B) is continuously differentiable on R% . Moreover:
Far(V,B) = 0s(BFc (V. B)); (3.4.2)

b. for almost all § > 0 there exists a unique minimizer l//‘;/ of the functional Jg(,u), see Corollary
3.2.5, given by

vy = 30s(Buy ), (3.4.3)

f fdvy = a5 <ﬂf fdug> ) (3.4.4)
T T

we recall that the measure u‘ﬁ/ is defined as the unique minimizer of the functional Ig in Theorem

3.3.11.

i.e for continuous f : T — R,

Remark 3.4.2. Our definition of Free Energy is different from the one used in [GM23, Spo22b]. Indeed,
in virtue of Varadhan’s Lemma [DE97, Theorem 1.2.1], we have

1 .
Far(V.B) = lng) gy (v) = —th logEY, v [e T V(S)] ,
(3.4.5)
Fo(V,B) = Velgfm fw) = —lim log]EB [ —T‘YV(E)]’
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instead in [GM23, Spo22b], the authors defined the free energies as

~ 1
Far(V,B) = — ]\}linf N log(Zy"(V, B)),

1 (3.4.6)
~ . c
Fo(V,5) = - lim ~log(Z§(V,5))
We notice that it is possible to recover one expression from the other since
Far(V.) = Far(V.5) = Far(0.5), (3.47)

Fc(V,B) = Fo(V,B) — Fc(0,8).

To prove uniqueness of the minimizer 1//‘3/, we need to consider a continuous family (u¥)o<s<g, where
each p* minimizes JY, see Corollary 3.2.5. We address the existence of such a family in the next Lemma,
which we prove in the appendix 3.6.

Lemma 3.4.3. Let Mg/ = (Jg)_l({O}) be the set of minimizers of JX, defined in Corollary 3.2.5. Then,
8 — Mg is continuous in the sense that for all € > 0, there exists § > 0 such that for all 0 < h < 4,
MXHZ c (Mg/)s, where for A  P(T) we denote A* = {ue P(T) | d(u, A) < €}.

Proof of Lemma 3.4.1. First, we notice that for any probability measure p € P(T), Theorem 3.3.11
implies

1q
v liminf inf {= de
f3 ) > limnf inf, {qZ( i)+ J Ve

i=1

1 1
= J inf g¥(v) = J’ Fur(V,sB)ds
0

0 VEP(T)

(3.4.8)

Where we noticed that the Riemann sums indeed converge towards the integral since s +— Far,(V, s5) is
concave, this can be seen by applying Holder inequality to equation (3.4.5).
To prove the first part of the claim, we show that the lower bound is achieved. For s € [0, 1], let I/:B

be a minimizer of inf,cp(t) g;/ﬁ (v). From Lemma 3.4.3, we can choose 1/;‘5 such that the map s — 1/;‘/3 is

continuous. This implies that pf = Sé visds is a well-defined probability measure on T. We claim that
this measure minimizes f} (3.3.36), and so I} Indeed, from Theorem 3.3.11, we deduce that

. IS
f5 (u3) = limlminf inf {q > (Jiﬂ/q(Viﬁ/q) + LVde‘ﬁ/q> }

*.\_:z' "iB/qEBﬂg () =1

1< (
< liminf { — Jigrg(Wis, ) + J Vdv >
gL {q ;1 ,B/q( lﬂ/q) T iBlq (349)

S S R
= llgg}f {q ;1 uel’g(fﬁl’) (JiB/q(l/) + J:Jr le/) }
1 1
= J inf gJs(v) = J Far(V,sf3)ds

o veP(T) 0

<

Combining (3.4.8)-(3.4.9), and performing the change of coordinates s =t we deduce that:

B8
BFo(V, 8) = jo Fap(V, t)dt. (3.4.10)
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Moreover, from Lemma 3.3.2 we deduce that the map § — F¢o(V, ) is Lipschitz in 8, and so almost
surely differentiable. This implies that for almost all 3 > 0

Far(V,p) = ds(BFc(V, B)) - (3.4.11)
Furthermore, we have just shown that I/‘;(u) = fg,/ (1) — inf ep(r) féf (v) reaches its minimum at
é vigds. By uniqueness of the minimizer of I X (1), Theorem 3.3.1, we deduce that we have the equality

between probability measures MZ = Sé v;‘ﬁds. Taking f : T — R continuous we get

5Lfdug _ fo Bjrfdu:ds.

Note that the function s — ST fdv¥ is continuous, therefore by differentiating this equality, we get that
1/2; is the unique minimizer of .J [‘3/ , which we denote by 1/23/, and satisfies for f continuous

J fvy =0g <5J f@{) , (3.4.12)
T T

proving point b.

Remark 3.4.4. As a corollary of the previous Lemma we obtain Theorem 3.1.4.

3.5 The Schur Flow

In this section, we consider another integrable model, namely the Schur flow. Our goal is to show that
is possible to obtain a similar result to the one that we presented for the Ablowitz-ladik lattice. Namely,
we prove the existence of a large deviations principle for the Schur flow, and we relate its density of state
to the one of the Jacobi beta ensemble in the high temperature regime.

3.5.1 Generalized Gibbs Ensemble
The Schur flow is the system of ODEs [Gol06]

aj = P?(OljJrl —aj-1), pj= m’ (3:5.1)

and, as before, we consider periodic boundary conditions, namely a; = a4 for all j € Z.
In [AL76], it is argued that the continuum limit of (3.5.1) is the modified Korteweg-de Vries equation:

Opu = 03u — 6u?0,u . (3.5.2)
We notice that, if one chooses an initial data such that «;(0) e R for all j = 1,..., N, then o;(t) e R
for all times. Moreover, it is straightforeward to verify that K, = vazl (1 = |oy|?) is conserved along

the Schur flow. This implies that we can choose as phase space for the Schur flow the N-cube IV, where
I:=(-1,1).

On this phase space, we consider the Poisson braket (3.1.5), so we can rewrite the Schur flow (3.5.1)
in Hamiltonian form as

N
& = {aj, Hs}, Hs = =i ), (@41 — @jayp1) - (3.5.3)
j=1

It is well known that the Schur flow admits as Lax matrix the same one as the AL [Gol06], namely &
(3.1.9) is the Lax matrix of the Schur flow. This implies that the Ablowitz-Ladik’s constants of motion
are conserved also along the Schur flow (3.5.1).
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Following the same construction made for the Ablowitz-Ladik lattice, on IV we define the finite volume
limit GGE as

N
dpgﬁ(ah s, aN) = Zf,(lvﬁ) H(l - a?)ﬂ_ll{ajeﬂ} exp(—=Tr(V(€)))de, (3.5.4)
? i=1

where Z%(V, B) is the partition function of the system

Zy(V,B) = H (1-— a “Lexp(=Tr(V(£)))da.
v 3

Since according to the measure (3.5.4) the matrix £ is real, its eigenvalues come in pairs [Sim05],
meaning that if €% is an eigenvalue, then its conjugate e % is also an eigenvalue. This implies that for
a system of size N even, there are just n = N/2 independent eigenvalues. Following the same idea as
in [KNO04], it is more convenient to restrict the argument of the eigenvalues in [0, 7) and then consider
xj = cos(b;), 7 =1,...,n. In these variables, the empirical spectral measure p,,(€) reads:

Z o, zjel. (3.5.5)

As a corollary of Lemma 3.2.3 and Proposition 3.2.4, we obtain the existence of a large deviations
principle for the sequence (u,,(£)), namely:

Corollary 3.5.1. Let V. : T — R be continuous. Under ng the sequence (pbn(E))n>1 fulfils a large
deviations principle with good, convex rate function SX () = h‘ﬁ/ (p) — infep ) hg(u), where

By () fvczy (3.5.6)

where Kg(v) is the rate function of p, under the law ]P’g’fl .

3.5.2 Jacobi beta ensemble in the high temperature regime

The Jacobi beta ensemble refers to the distribution of charges constrained to the segment I, and subjected
to an external potential W(x) = —alog(1 — x) — blog(1 + =) + V(z), here a,b > —1 and W (x) € C°(I).
Specifically the joint distribution of these particles is

v, “ o
dP' nB) ZJ Vﬂ H|zz—x1| H (1 —x;)" 1+:c]) e J)dzj' (3.5.7)

1<j j=1

In [KNO04], Killip and Nenciu were able to show that the distribution (3.5.7) can be realized as the
eigenvalues distribution of a particular CMV matrix, specifically they proved the following

Theorem 3.5.2 (cf. [KN04] Proposition 5.3). Let N = 2n, consider the CMV matriz E in (3.3.10) with

parameters aq, ..., Qo, 1 € I distributed according to
2n— 2n—1 N
nglv} (1- a B(2n—j)/a—1 ya+1- /3/4(1 + (= 1)j+1aj)b+17,8/4efTrV(E)daj,
5 1 Ia
(3.5.8)
and agy, = —1, here 35(V, B) is the normalization constant. Then all the eigenvalues of E come in pairs,

meaning that if €% is an eigenvalue, then also e=*% is one. Moreover, under the change of variables

cos(0;) = x;, the x;s are distributed according to (3.5.7).
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Remark 3.5.3. We notice that the previous proposition is not stated in this way in [KNO4], but this
equivalent formulation is more useful for our purpose.

Also in this case, we are interested in the high temperature regime for this ensemble. Specifically we

(v.%)

consider the situation 5 = % = %, anda=b=—-1+ %, in this regime dPj, "’ reads
V.28 1 n A

ap ) [Tl =l ¥ T =) (b ) eV, (3.5.9)

z3 (V, 5) i<j i=1
B
and dIB%glV’") becomes
(V%) 1 Ees 81— g )1 TT TV (E
dBy " = < [ (1—a2)?(=2)=1 TT e ™V qgq, | (3.5.10)
8n (V, ;) j=1 j=1

We mention that this particular regime was considered in [FM21, TT21]. In these papers the authors
computed the density of states for this ensemble in the case V = 0.

We can apply [GZ19, Corollary 1.3] to (3.5.9) to obtain a large deviations principle for the empirical
measure p,(E) = %Z?zl dz,. Specifically, we deduce that

Proposition 3.5.4. For any continuous V' : 1 — R. The law of the empirical measures p,(E) under
v,28

dIF"(]’n ") satisfies a large deviations principle at speed n in the space P(I), with a good rate function

e Qg (1) given for u absolutely continuous with respect to Lebesgue measure, and with density Z—Z, by

Qp (1) = gy (1) — infLep) g (v), where

800 = [V 101 +2) + 1081~ () =25 [ toathe — (el + [ tox () ) aute).

(3.5.11)
and QY (n) = +00 otherwise.

(v)
n

We notice that the arguments in Section 3.3 and 3.4 can be applied also in this context with dP

28
in place of dIE”S/I’VN ), and dIF’Z”J% in place of dIP’X’g - Hence, we deduce the following result

Theorem 3.5.5. Consider the sequence of measures pun(E) (3.5.5) under the law dIP’Z)’gn (3.5.4), then
[in () 225 vy (3.5.12)
Moreover, l/g is absolutely continuous with respect to the Lebesgue measure, and it reads
vy = 0s(Buy ), (3.5.13)

where ,u‘ﬁ/ is the unique minimizer of the functional qg (3.5.11).

Finally, it is worth to mention that in the case V(z) = 0, it is possible to compute explicitly the
densities of states for both the Jacobi beta ensemble at high temperature and for the Schur flow [Maz22,
FM21].

3.6 Appendix: Technical Results

In this appendix we collect the proof of all the technical results that we exploit along the proof of the
main theorem. For reader convenience, we report here the statement of Lemmas.
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Proof of Lemma 3.2.2

Lemma 3.6.1. For any A, B unitary matrices of size N x N, we have

e For f with bounded variation,

‘fﬂm—ffw
‘jﬁm—ffw

d(u(A),u(B))gmin{W 1Z|A B) ,J|} (3.6.1)

rank(A — B)

< |flsv N ;

e For f Lipschitz,

1
<l DA =B l.
i

As a consequence,

Proof. The first point is a consequence of the fact that the elgenvalues of A and B interlace on the unit
circle.
First, we order the eigenvalues A\1(A4),...,An(A4),A\1(B),...,An(B) of A, B in such a way that

—r < arg(A(A4)) < ... <arg(An(A)) <, (3.6.2)

and analogously for B.

Write B = (Iy + (B — A)A™Y)A and set U := Iy + (B — A)A™!. One checks that U is unitary,
B = UA, and that rank(U — I) = rank(B — A) =: r. By [AGS88, section 6, equation (85)], we deduce that
for1<j<N

arg(\y— (4)) < arg(\(B)) < gy (4). (3.63)
This means that A;(B) lies on the anticlockwise arc (arg(A;j—,(A)),arg(A;j+-(A))) of the circle. If
j —r < 0 we identify A\;_, with A\;_,;~, and analogously for the case j +r > N.
It is a classical result (see [AGZ10]) to deduce from (3.6.3) that

r

[ sauta = [ sautm| < 1wy = 5

for any f: T — R such that || f||pv < 1. As a consequence, we obtain the first point.
The proof of the second point is the same as in the symmetric case, see [GM22, (16)]. Indeed, we only
use the fact that a normal matrix is unitarily diagonalizable. O

Proof of Lemma 3.3.7

Lemma 3.6.2. Let N = 2k be even and A be a N x N matriz. Then,
o 2 l(LA) ;I <22 1Al
o S AM) <23 A,
where /\/l, and L are defined in (3.1.8).
Proof. We will just prove the first point, since the proof of the second one follows the same lines.
For0<I<k—1and1<j< N, consider
(EA)QHLJ‘ = a2l+1z421+1,j + P21+1A21+2,j and (EA)2l+2,j = P2l+1A2l+1,j - 0421+2A21+2,j.
Summing over i, 7,

k-1 N

1N
Z| (LA)i ;] = Z Z |(LA) 2115 + [(LA)2142,5] < Z Z |Asip1] + [Aziga ] =20 Ai ],

1=0 j=1 .7
where we used that |0¢i|7 pi < 1. O
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Proof of Lemma 3.3.8

Lemma 3.6.3. Let o, and «,yp defined by equation (3.3.14). Define p, = 1/1 — |, |?, and pyyn =

1= |aysp|?, then the following hold

1.
Yy

(XE+ X3 +Y2)*
Yy

(X?+ X3 +Y2)2

|, — apyn| < , almost surely,
(3.6.4)

, almost surely,

|pV - Pu+h| <

where X1, X9 ~ N(0,1), Y, ~ xn are all independent.

ii. define Zy, = m, and a(h) = —%log(h) + 1, then there exists a constant K independent
of h such that

OilillglE [exp(a(h)Zp)] < K. (3.6.5)

Proof. First, we focus on claim i..
We recall that ay,, ay,4p are defined by

X +1Xs X1 +1Xy

rh= . 3.6.6
KT XI V2, T RITXIAYE, 1Y) (3.6:6)

Q=

From the previous equation, we deduce that
X1 + i X . ( XP+X5+Y7, )
(X2 4+ X24+Y2 )3 XP+X3+Y72, +Y?
1
_ | X1 + i Xo| 1 (1- Y? 2
(X2+X2+Y2,)} XP+X3+Y7 +Y)

<< X2 + X2 )5 Y
CA\XP XY ) (XPH XS Y2 YRR

|au - au+h| =

where we used in the previous line that for 0 < a < b we have
Vb <AVb—a++a, (3.6.7)

2
and we took a = W’ b = 1. The last term is bounded by the announced bound.

One can proceed analogously for |p, — p, 15| obtaining that

lp(win) = plaw)] = V1 = |awyn? = V1 = |ow? < V] — oninl?
B X? + X3 X2+ X2+Y2, - Y,
S\ X2 X2+ Y2 XP+X5+Y72 +Y) T (X2 4+ X2+Y2, +Y2)2
(3.6.8)

)

where we used again equation (3.6.7) with a = 1 — |, |* and b = 1 —|ay44|?. Thus, point i. is proved.
To prove point ii., we find explicitly the law of Z;. Thus, we consider a continuous function f :
(0,1) — R, and we compute:
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Yy 7wf+w§+y2 h—1
f fl————— e 3y drydaady . (3.6.9)
et \ (o + 2 + 42)?

Performing the change of coordinates (u,v) = W(wl,m), which is the same one that we
1 2
performed in Lemma 3.3.5, we obtain that

SIS

w2422 4y?
J Fl—Y ) ey ldr daady
R2xRy  \ (27 + 23 +y?)

~ f F(VI—uZ—1?)
DxR4 (1 —u? —v?)?
- DxR,

y2
e 20T yh L gy dudy (3.6.10)
h_ 2
f (m) (1 —u? - v2) 271 e~ Tt dududt .

We can now explicitly compute the integral in ¢. Moreover, we can express the remaining part of the
integral in polar coordinates; namely, we apply the change of variables u = pcos(6),v = psin(6), obtaining
that:

J f (\/ 1—u?— v2> (1 —u® =% o= i qududt
DxR4
1 v
= 27257 (Z +1>J pf(\/1 = p?) (1—p2)%*1dp (3.6.11)

0

—p2=w ) h 1
LT gnotT (2 + 1) f f(w)w"tdw,
0

here I'(x) is the gamma function (3.3.11). Thus, in order to obtain the estimate (3.6.5), we have to
deduce an upper bound for

Sé ea(h)wwh—ldw

sup 3.6.12
0<h<1 Sé wh—ldw ( )
For any 0 < h < 1, we can explicitly compute the denominator as
! 1
J whldw = . (3.6.13)
0 h
Moreover, we can give an upper bound on the numerator as
1 a(h) 1 a(h)
a w=r 1 1
f ee(Mwyh=1 gy, *P L 7’1‘], e"rhldr = - J e"r"tdr +J e"r"tdr
0 a(h)" Jo a(h) 0 1
(3.6.14)

1 v a(h) e e
< - r < .
\a(h)h (eJOr dr—i—f1 e"dr \a(h)hh+a(h)h

Combining (3.6.13)-(3.6.14), with our choice of a(h) = —%log(h) + 1, we deduce that there exists a
constant K independent of h such that (3.6.5) holds.
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Proof of Lemma 3.4.3

Lemma 3.6.4. Let Mé/ = (Jé/)’l({O}) be the set of minimizers of Jé/. Then, f — Mé/ is continuous

in the sense that for all € > 0, there exists § > 0 such that for all 0 < h < 6, Mg/+h c (Mé/)s, where for
A < P(T) we denote A° = {r€ P(T) | d(u, A) < e}.

Proof. Let € > 0. We are going to show that for A > 0 small enough, we have

— inf  JY,, <0,
[y

which will ensure that JY,, > 0 on [(Mg{)g] , thus [(Mg{)s] c [(Mg/+h)] , and hence the conclusion.

By the large deviations principle for (ptn)n even under IP’AL . Corollary 3.2.5, since [(M[;/)E] is open,

we have

. % V,B+h Viyele
[w}?f)’i]c Joyn < lzlvmlanlog]P’ALN (MN(E) e [(My)7] )

= lim mf I log PXE;V’I (d(un(E), Mé/) > ¢)

N even

1
< limsup N log]P’ijVh (d(pn(E), Mé/) >e).

N even

Since for any positive h and o € DV Hj.vzl(l — |aj[?)" <1 ,we deduce that for any A € DV

%10 (PRI () < % <log (%) +log (PZfN(A))> : (3.6.15)

we recall that ]P’Xf’ y s defined in (3.1.14).
Applying the previous inequality in the case A = {d(un(E), M IX ) = e}, we conclude that

— inf Jgﬁrh < limsupi (10g (W) + log (PX’EN(d(uN(E),MX) > 5))) . (3.6.16)
[(Y)]° Nox N Zy (V. B+ h) ’

From Corollary 3.2.5, we deduce that there exists a positive constant ¢, independent of h, such that

lim sup NIP’AL Ndpn(E),MY) =z e) < —__inf JY < —c. (3.6.17)
N> [(MX)E]C

Thus, to conclude we have just to prove that the function g(8) = limy_ % log (Zjé,L(V, 5)) is continuous
in 8. Actually, we prove that this function is convex in 8. Let 1/p+ 1/q = 1, and f1, f2 € R then

(V % + ) f ﬁ 1— oy [2) 3+ exp(—Tr(V (€)))d2ax

J ]f[ 1— Joy[2) 7+ 5 exp <_ (; n ;) Tr(V(g))> P (3.6.18)

{E(V,B1)7 ZRE (V, Ba) 7

where in the last inequality we used Hoélder inequality. This implies that

B1 P2 1
g<p+q) < 2g(6) + g(0a), (3.6.19)
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thus ¢g(8) is convex, and so continuous, for 8 > 0. We can now choose h is such a way that

1 ZHH (V. 5)
li 1 _ N \"F) <
Noe N8 (ZfeL(v, B+ h)) “

so we obtain that
inf  JY,, >0. (3.6.20)
[y 7*
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Chapter 4

CLT for real S-ensembles at high
temperature

Abstract We establish a central limit theorem for the fluctuations of the empirical measure in the (-
ensemble of dimension N at a temperature proportional to N and with confining smooth potential. The
space of test functions for which the CLT holds includes C', vanishing functions at infinity. It is obtained
by the inversion of an operator which is a pertubation of a Sturm-Liouville operator. The method that
we use is based on a change of variables introduced in [BFG15] and in [Shcl4b].

4.1 Introduction and main result

The p-ensemble of dimension N > 1 with parameter § > 0 and potential V is the probability measure
on RV given by

dIP%ﬁ(xl,... H|z, —xj|ﬁefzfv=1v(zi)dx1...de. (4.1.1)

) 1
y TN ) = V.5
2% i<j

The potential V' has to be chosen so that the partition function

N .
Zxﬂ = J]RN H |z — l‘j|ﬁ€_2"=1 VEde, ... dey

1<j
is finite. This is the case for example if for some 5’ > max(1, §),

V(z)
liminf — ) 54 41.2
by Ngloglz] ~ (4.12)

see [AGZ10, equation (2.6.2)]. The parameter 3, which is allowed to depend on N, is the so-called inverse

temperature.
2

Under the special choice of Vg (z) = %, the measure (4.1.1) can be seen as the joint law of the

(unordered) eigenvalues of certain matrix models:

o For 8 =1 (resp. 8 = 2), it is the law of the eigenvalues of the Gaussian orthogonal ensemble (resp.
Gaussian unitary ensemble), [AGZ10][Theorem 2.5.2].

e For general § > 0, potentially depending on N, it is the law of the spectrum of certain tri-diagonal
random matrices as shown by Dumitriu and Edelman in [DE02].

91
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We consider here the high temperature regime where [ scales as 1/N, and write 8 = % for some
P > 0. The corresponding measure is therefore

2P 1
dIP’X,’ N (x1,...,TN) = — H |z; — acj|%e_ il VEdde, .. doy, (4.1.3)
ZN7N 1<j

with partition function

2P 2
ZX’W = f H|xl —xj|WPe*Z£V:1V(””"')dx1...de. (4.1.4)
RN

1<j

v, 2L -
As a consequence of [GZ19], under P,/ ¥, the sequence of empirical measures

1 N
ﬂN = N;étl

satisfies a large deviation principle at speed N with strictly convex, good rate function. As a consequence,
[y converges almost surely in distribution towards a deterministic measure ,ug as N goes to infinity,
meaning that almost surely, for every bounded continuous f : R — R,

[ sann =, [ saut.
R N—>w R

The limiting measure u‘lé can be seen to have a density p% which satisfies for almost every z € R
V(@) =2 [ loglo ~ ylp}(u)dy + log () = A} (4.1.5)
R

where \Y is constant (see [GM22, Lemma 3.2] for example).

The -ensemble in the regime SN fens 2P > 0 has drawn a lot of attention from the random matrix
—>aC

and statistical physics communities latelyj This regime was first considered by [CL97] with the study
of Dyson Brownian motion with vanishing repulsive coefficient scaled like —. Gases of vortices were

also studied with temperature proportional to N in [BG99]. The limiting density was then described
in the case of the quadratic potential in [ABG12], as a crossover between the Wigner semicircle law
(fixed 8 > 0 case) and the Gaussian density (case 8 = 0). The fluctuations of the eigenvalues in the
bulk and at the edge of a configuration were studied for example in [BGP15],[NT18],[NT20],[Pak18],
[Lam21]. These fluctuations were shown to be described by Poisson statistics in this regime. Recently,
Spohn uncovered in [Spo20c] a link between the study of the Classical Toda chain and the S-ensemble
in the high temperature regime, showing that the limiting density of states of the classical Toda chain,
distributed according to the generalized Gibbs ensemble with polynomial potential, can be computed by
means of the limiting empirical measure of the S-ensemble at high temperature. In [Maz22], the author
established this relation using the matrix representation of the S-ensemble and a moment method, and
in [GM22] the authors proved a large deviation principle for the empirical measure of the Toda chain,
establishing the previous result for potentials with polynomial growth. See also [Spo22b],[GM23],[MM23b]
for a similar link between the Ablowitz-Ladik lattice and the circular S-ensemble at high temperature.
This relation can be further pushed to compute the limiting currents of the Toda chain through the
central limit theorem for the empirical measure in the $ ensemble. The computation of these currents is
a crucial step to the derivation of a hydrodynamic equation for the Toda chain, and to the analysis of
the correlations of the locally conserved quantities at equilibrium through linearized hydodynamics, see
[Spo21].

The Central Limit Theorem for the fluctuations of the linear statistics of S-ensembles was first es-
tablished by [Joh98] for 5 = 2 and polynomial potential, then generalized and further developed in the
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regime where 8 is fixed in [Shcl3], [BG13a], [BG13b],[BLS18],[LLW19]. Also an optimal local law was
found in this regime in [BMP22]. The CLT was obtained in the high-temperature regime SN — 2P > 0
by Nakano and Trinh in [NT18, Theorem 4.9] for quadratic V, relying on the tridiagonal representation
for the f-ensemble with quadratic potential in [DE02]. In [HL21], the authors prove the CLT in the
case of the circular S-ensemble at high temperature with general potential, using a normal approxima-
tion method involving the spectral analysis of an operator associated to the limiting covariance structure.
Their method allowed them to derive a Berry-Esseen bound, i.e. a speed of convergence of the fluctuations
towards a Gaussian variable.

In this paper, we adapt part of the arguments of [HL21] to our setup. More precisely, we show that
for a class of regular, convex potentials V satisfying a growth condition of the type

V/I(l,)
I -
el V()2

denoting vy = fiy — p}p and considering test functions f belonging to the range of a certain integro-
differential operator, the scaled fluctuations of iy, defined by

VN (f < | ranv = fdup> ,

converge in law towards centered Gaussian law with variance depending on f.
When considering the fixed temperature regime, i.e. 8 fixed, one has to renormalize the x;’s by v/IV.
It is shown in [AGZ10][Theorem 2.6.1] that the measure

N Z:lari/\/ﬁ

satisfies a large deviation principle, and the limiting measure is characterized in [AGZ10][Lemma 2.6.2]
by an equation similar to (4.1.5). In fact, the term log p¥% in the left-hand side of (4.1.5) is the only
difference in the equation characterizing the limiting measure in the fixed 8 case. We point out the
very similar characterization of the equilibrium measure corresponding to the minimization problem
arising in [BGK16]. There again, the limiting measure is compactly supported. The term log p} is of
prime importance because its presence implies that the support of p¥% is the whole real line. It leads to
technicalities to deal with the behavior at infinity of most of the associated objects, namely dealing with
weighted Lebesgue spaces L?(u)%) and the corresponding Sobolev spaces Hk(/tp)

Our strategy is based on a change of variables in the partition function Z Vi (4.1.4), used for the -
ensemble at fixed temperature introduced in [BFG15] and [Shcl4b], and used in [Guil9] and in [BGK16]
to derive the loop equations and in [BLS18] to derive a CLT in the S-ensemble with S fixed. The outline
of the argument goes as follows: Take ¢ : R — R smooth, vanishing fast enough at infinity, and do the

2P
change of variables in Zx Noxp =y + ﬁ(ﬁ(yi), 1<i< N, to get

A= [

i<j

S )

=

< 60) = 6(0) (1 N ’“‘N¢'<yi>) aVy.

Expanding the different terms in this integral, one gets

J [Tlwi = ¥ e 2 Vi) I [ By TR AR (600 -V 00600)] - 203, 0) gy
i j
i<j

where the term 0% (¢) converges towards a limiting variance 02(¢) depending on ¢, P and V. After

dividing both parts of the equation by Zx’P, and because of equation (4.1.5) characterizing u}, one can
deduce from the last equation the convergence of the Laplace transform

E [et\/ﬁ(uN(Eqb)Jrerror term)] —> exp (t; o2 (¢)> , (4.1.6)

N>
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where E is a linear operator acting on test functions and defined by

—_ ¢ €T)— ¢ !

€)= 2p [ =) + 60) - Vi), (417

Once the error term is taken care of, (4.1.6) shows the central limit theorem for test functions of the form
E¢. Following [HL21], the operator £ given by

Lé=Z¢ (4.1.8)

can be analyzed using Hilbert space techniques. In particular, the operator £, seen as an unbounded
operator of the Hilbert space

H={ue 22 | e 22 [usbds =0}, Gty = Gy,

can be decomposed as
—L=A+2PW,

where A is a positive Sturm-Liouville operator and W is positive and self-adjoint. Such a writing allows
us to show that —L is invertible, see Theorem 4.6.7.

We now state the assumptions we make on the potential V. Recall that a probability measure p
supported on R satisfies the Poincaré inequality if there exists C' > 0 such that for all f € C*(R) with
compact support:

2
Var, (f) := f (f - J fdu> dp < Cff’zdu. (4.1.9)
R R
Assumptions 4.1.1. The potential V' satisfies:

i)V e C3(R), V(z) — 4o, [V'(z)] —> +oo and is such that u% satisfies the Poincaré

|z| >+ |z| >+

inequality (4.1.9).

it) For all polynomial Q € R[X] and a > 0, Q(V’(m))e‘v(“) = o (z79).

|z| >0

iti) Furthermore, for any sequence xn such that |xn| goes to infinity, and for all real a < b, we have,
as N goes to infinity,

1
VII 0 -
Vilan ) o, Vi en + o)l 72
1 " (3)
i) The function 777 is integrable at infinity. 1‘;(;)) = .0 () and VV/(S) " ol

Taking V' = Veony + ¢ wWith Veony, ¢ € C3(R) such that #*¥) is bounded for k = 0, ..., 3, Veony i convex
with |V | — 400 at infinity, satisfying hypotheses i), %) and 4v) such that there exists € > 0 such

that Veony — 2P fc is convex (see Lemma 4.2.4), then V satisfies Assumptions 4.1.1.
Because i) implies that V' goes to infinity faster than linearly, we will see that it ensures exponential

2P
decay at infinity of p%. Recalling the sufficient condition for IP’J‘\/,’ N of equation (4.1.2) to be defined,

this first assumption implies that there exists v > 0 such that liminf, . Vl(mT) > «. This guarantees in

particular that the S-ensemble (4.1.3) is well-defined for all N > 1 and P > 0. We will use the fact that
pY satisfies the Poincaré inequality to ensure that H endowed with (-, )y is a Hilbert space.

The second assumption ensures that any power of V' and V" is in L?(u}) and p}, which behaves like
e~ up to a sub-exponential factor, belongs to the Sobolev space H?(R) < C!(R). Indeed, for k < 2, using
), p¥ %) behaves at infinity like (V')*p} as shown in Lemma 4.2.2 which is in L?(R) by assumption ).
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Assumption iii) will be used to localize the minimum/maximum point of a typical configuration

2P
(z1,...,2zN) following the law IP’X,’ ~: this will be done in Corollary 4.4.2, which comes as a consequence
of [Lam21][Theorem 3.4]. More precisely, Corollary 4.4.2 establishes that for sequences (ax)n, (ay)n
going to infinity, the random variables

+ ot — o
oN <121J'2XN zj EN) and oy <1r$njang x; EN)
converge in distribution. For large IV, the scalars EX, and Ey can thus be seen as the edges of a typical
configuration. Furthermore,

V(ET) ~log N . (4.1.10)

We refer to Section 4.4 for detailed statements. The final step in the proof of Theorem 4.1.3 consists in
lifting the result of Proposition 4.5.1 from compactly supported functions to more general functions.
We use Assumption ) to control integral remainders in the proof of Theorem 4.7.1, ensuring that

l4
L7" is regular enough i.e. that for sufficiently smooth functions f, (,C_lf) e H%(R).

We will need another technical assumption to ensure that Taylor remainders arising in the proof of
Theorem 4.5.2 are negligible.

Assumption 4.1.2. With the notations of Theorem 4.4.1, we have

sup [V (@) = o(N12),
d((L‘,IN)Sl

where Iy = [E;,—Q;EK,—#—Q].

Again taking V = Veony + ¢ with Viony, ¢ € C3(R) such that %) is bounded for k = 0,...,3, Viony
is convex with |V/,.,| — 400 at infinity, satisfying hypotheses i), i), iv) and Assumption 4.1.2, such
that there exists e > 0 such that Veony — 2P f. is convex (see Lemma 4.2.4), then V satisfies Assumptions
4.1.1.

This last hypothesis is satisfied whenever V., is sufficiently convex in a compact centered at 0 and
is made so that V.., compensate the small lack of concavity in the bulk of a function behaving like
—log|z| at infinity (note that assuming that V” > « for some a > 0 is sufficient). This is the reason
why we introduce the function f., which are functions with required growth at infinity and with second
derivative as small as desired. The main point that needs to be checked is that the measure u} satisfies
the Poincaré inequality, this will be done in Proposition 4.2.6.

The type of potential Vopny, that one can consider is typically the convex polynomials or cosh(az).
On the other hand a scaled potentials like ¢*" which have a faster growing derivative at infinity and so
doesn’t satisfy assumptions #) and iv).

We are now able to state the main result, ¢e the central limit theorem for functions belonging to the
image of the operator £ introduced in (4.1.8).

Theorem 4.1.3. Assume that V satisfies Assumptions 4.1.1 and Assumption 4.1.2. Then for ¢ verifying
the following conditions:

« 9eCi(R)
o there exists £ >0, p(z) = O (2727%) and ¢'(z) = O (227°) at infinity

|z| >0 || >

o | o@anta) =0
R

we have the convergence in law

VNu(9) - N(o, <a¥>2<¢>> (4.1.11)
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where the limiting variance (o)0)?(¢) is given by
(05)*(8) = (&, L™ o)y = jR <(£—1¢)”(x)2 + V”(m>(£—1¢)’<x)2) A ()

+PH< _55 ) )) duy(z)dpp(y) . (4.1.12)

Remark 4.1.4. Since vn(¢ + ¢) = vn(9) for all constant ¢ € R, the assumption f o(x)dp¥ =0 can be
R

dropped by replacing ¢ by ¢ — J gzﬁ(x)d,ug in the expression of the limiting variance.
R

As a tool to deal with the error term of equation (4.1.6), we establish a concentration inequality
for the empirical measure. This inequality is stated in terms of the following distance over the set of
probability distributions P(R).

For p, ' € P(R) we define the distance

d( 1) = sup {deu fau

} (4.1.13)

[£ et

FVES
where | f|lLip, denotes the Lipschitz constant of f, and HfH1/2 J |t| | F[f](t))? dt, where F denotes
the Fourier transform on L?(R) which takes the following expression F[f J f(z)e " dz for f in

L'(R) n L?(R).
We then have

Theorem 4.1.5. There exists K € R (depending on P and on V'), such that for any N = 1 and r > 0,
V.37 —Nr*Ez2 15Plog N+ K
Py ™ (dpin,pp) >7) <e 2 & . (4.1.14)

This result is the analog of [HL21, Theorem 1.4].

The paper is organized as follows. In Section 4.2 we discuss the regularity of the equilibrium
density p% under Assumption 4.1.1. In Section 4.3 we prove Theorem 4.1.5. Section 4.4 is dedicated to the
localization of the edge of a typical configuration, mentioned in the discussion preceding the statement of
Assumption 4.1.2. We next prove in Section 4.5 the convergence of the Laplace transform of v/Nvy (L)
for general functions ¢ which establishes Theorem 4.1.3 for functions of the form L¢. Section 4.6 is
dedicated to the diagonalization and inversion of £ given by (4.1.8). In Section 4.7, we show regularity
properties of £~ to establish Theorem 4.1.3. We detail in Appendix 4.8 elements of proof for the spectral
theory of Schrodinger operators, used in Section 4.6.
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4.2 Regularity of the equilibrium measure and Hilbert trans-
form

In this section, we discuss the regularity properties of the equilibrium density p%, namely its decay at
infinity and its smoothness, and give formulas for its two first derivatives.

The Hilbert transform, whose definition we recall, plays a central role in the analysis of the equilibrium
measure. It is first defined on the Schwartz class through V¢ € S(R), Vz € R,

H[6)(x) = Mﬂﬁzhmf MﬂﬁzJ%Idz+ﬂ_Mx_ﬂﬁ, (4.2.1)
|t—z|>e

rRU—x €l0 t—x 0 t
where ][ denotes the Cauchy principal value integral, and then extended to L?(R) thanks to property

1
ii) of Lemma 4.2.1: | f|12(42) = = |H[f]l£2(dz)- The last expression in (4.2.1) is a definition where the
T

integral converges in the classical sense. We also recall the definition of the logarithmic potential U/ of
a density of probability f: R — R, given for x € R by

Ul (@) = - f log = — I (y)dy. (4.2:2)

Because we assume f € L'(R) to be nonnegative, U/ takes values in [—o0,4+0o0). If f integrates the
function log, i.e SR log |z|f(x)dx < 400, then U7 takes real values. Additionally, one can check that
the logarithmic potential and the Hilbert transform of f are linked through the distributional identity
U = H[f].

We recall in the next lemma some properties of the Hilbert transform that we will use in the rest of
the paper.

Lemma 4.2.1 (Properties of the Hilbert transform).

i) Fourier transform: For all ¢ € L*(R), f[H[¢]] (w) = imsgn(w)F[¢](w) for all w e R.

1
i) As a consequence, —H is an isometry of L*(R), and H satisfies on L*(R) the identity H? = —m*1.
™
iii) Derivative: For any f € H*(R), H[f] is also H*(R) and H[f]' = H[f'].
iv) For all p > 1, the Hilbert transform can be extended as a bounded operator H : LP(R) — LP(R).
v) Skew-self adjointness: For any f,g € L*(R), (H[f], g>L2(R) = —f, "HlgDr>mw)-

Proof. We refer to [Kin09] for the proofs of these properties. O

2P
As a consequence of [GZ19], fiy converges almost surely under PX’ N towards the unique minimizer
of the energy-functional £}, defined for u € P(R) by

Ep(p) = dx . (4.2.3)

+00 otherwise

J]R [V +log (ju)]d“ B Pﬂlog |z — y|du(z)du(y) if p « dz
o

(Here we wrote u « dx for "u is absolutely continuous with respect to Lebesgue measure")
Consequently, following [GM22, Lemma 3.2], the density p% of u¥% satisfies equation (4.1.5), which
we rewrite here for convenience.
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Via) = 2P | Toglo — ulob)dy +log @) = ¥ (4.2.4)

where A\Y is a constant (depending on V and P). Using this equation, we will show in the next lemma
that p¥% decays exponentially and is twice continuously differentiable via the representation:
VreR, ph(z) = exp (— V(z) — 2PUPF () — Ag)
2
In the Gaussian potential case ie Vg(z) = 5 an explicit formula has been found [ABG12]:
72

e v (-7)
- +

P\/27TJ' B (P15 iat gy

0

Py ()

It has been established in [BGP15] that v/P + 1py¢ (VP + Lz) converges to the Gaussian distribution
when P goes to zero and the semi-circle law when P goes to infinity. So in the Gaussian case, pup can
be seen as an interpolation between the Gaussian distribution and the semi-circular one. We now drop
the superscript of p¥ and ;% and denote it pp and pp for convenience. In the next lemma, we
prove that pp has the same regularity as V.

Lemma 4.2.2. Under Assumption 4.1.1,

o The support of up is R and there exists a constant C} such that for all x € R,
pp(x) < CF(L+|a])*Pe V().
e The density pp is in C3(R) and we have
pp = —(V' + QPH[pP])pP (4.2.5)

and
ol = ( —2PH[pp] = V" + V" + 4P*H[pp]? + 4PV’7—[[pp]) op - (4.2.6)

Proof. For the first point, [GM22, Lemma 3.2] establishes that the support of up is the whole real axis,
and that under the first condition of Assumptions 4.1.1, we have the bound, valid for all x € R

() < —KP (4.2.7)
PPES W el -
with K} a positive constant. Using (4.2.4) and the fact that
log |z —y| < log (1 + |z]) +log (1 + Jy]),
we see that for all x € R,
pp(z) < Cp exp ( —V(x) +2Plog(1 + |x|)) , (4.2.8)

with
Cp = exp (QPJ log(1 + [y[)pp (y)dy + AIVJ)
R

which is indeed finite by (4.2.7).
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For the second point, we use that (U”P)I = H[pp] weakly and equation (4.2.4) to conclude on the
distributional identity

Pp = ( -V - 2P’H[pp])pp :

By the second point of Assumption 4.1.1, V’(x)e~V (@)+2Plog(+]z]) — o(2=1) as || — oo, thus by (4.2.8),
V'pp € L*(R). Also since pp is L*(R) and bounded, we deduce, by using that #[L?(R)] = L*(R), that
H[pp]pp € L?(R). Adding up these terms we get pp € H*(R). Because H[pp]' = H[p)p] in a weak sense
by Lemma 4.2.1, H[pp] € H}(R). By the classical fact that H!(R) is contained in the set of 1/2-Holder
functions CY2(R), we have H[pp] € C'/?(R) and so UP? € CL/?(R), the set of functions in C*(R) with
derivative of class 1/2-Holder.

Using the fact that V' is continuously differentiable, the previous equation for the weak derivative of pp
then ensures that pp € C}(R) and equation (4.2.5) holds in the strong sense.

Differentiating (in a weak sense) equation (4.2.5) we obtain

pp = (— 2PH[pp] — V" + V'* + 4P*H[pp)? + 4PV’H[”P])”P '

The three first terms belong to L?(R) for the same reasons as before. Since pp € H!(R)n by Lemma
4.2.14ii) so is H[pp] € H*(R), it is then bounded over R hence the two last term are in L?(R) when
multiplied by pp. Finally, we can conclude that pp € H?(R) and so that H[pp] € H?(R) with H[pp]" =
H[ph] (in a weak sense). As before, we conclude that pp € C3(R) and that equation (4.2.6) holds in a
strong sense. By the exact same method, we can show that pp € C3(R). O

We next show that the Hilbert transform of pp is continuous and decays at infinity.

Lemma 4.2.3. Let u € L*(R) such that §, u(t)dt exists and f : t — tu(t) € H'(R) then

—S]Ru(t)dt.

|z| >0 x

Hlu](z)

Moreover zfj u(t)dt =0, §, f(t)dt exists and g : t — t*u(t) € H*(R), then
R

H[u](z) ~ M.

|z]— T

As a consequence, we obtain that H[pp](x) | ‘~ z~' and the logarithmic potential UPP is Lipschitz

bounded, with bounded derivative H[pp].
Proof. Let u e L*(R), such that { u(t)dt exists and f : ¢ — tu(t) € H'(R). Then

xH[u](z) + J

R

dt = His@)

u(t)dt = JR [mu(x +1) 2—txu(3: —1) n u(:c2+ t) N u(ch— t)

Since f € HY(R), so is H[f], proving that it goes to zero at infinity. Hence

Hulw) ~ 0%

|z| >0

Moreover if f u(t)dt = 0, § f(t)dt exists and g : t — t?u(t) € H'(R), then by the same argument:
R

#mwm=xmmm=ﬂmm—LﬂWﬁ

—\ tu(t)dt
where g(t) = t>u(t). We deduce that H[u](x) ~ M since H[g] goes to zero at infinity. O

|| > x2
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Lemma 4.2.4 (Asymptotic of the logarithmic potential). We have the following asymptotic expansion
at infinity UPP = log |z| + | O (1).
x| —0

Proof. Since H[pp](z) = + O (x_2), and recalling that U¥ (defined by (4.2.2)) satisfies (U?F )’ =

H[p%], we deduce the result by 1ntegrating t — H[pp](t) — 1/t in a neighborhood of infinity. O

We conclude this section by stating the Poincaré inequality for the measure pp under the assumption
that V is a bounded perturbation of a strictly convex potential Veopny.

Lemma 4.2.5. Let ¢ > 0, there exists a function f € C*(R) such that f-(z) —log|x| = ‘ ‘O (1), and
xT|—L

[ £l <

Proposition 4.2.6. Assume that V = Viony + ¢, where Veony € C3(R) with Veony conver, such that there
exists € > 0 such that ¢ is bounded and Veony —2P f- is convex (f. being given by Lemma 4.2.5). Then, the
measure pp satisfies the Poincaré inequality: there exists a constant C' > 0 such that for all f € CL(R),

Var,, (f) < CJ}R R (4.2.9)

Proof. We use the fact that if py, us are two absolutely continuous probability measures supported on R
dp

dpz
does py for some other constant. Indeed, in that case let f € CL(R), we have

1
such that — < < C for some C' > 0 and p; satisfies Poincaré inequality with constant C7 then so

Var,, (f) = ian- (f —a)dus < C'Var,, (f) < C’QC'lf Fdus.
¢ Jr R

Here we take dus(z) := p%(z)dr and we want to compare it to a measure p; supported on R defined
1
by dps(z) = — OXP (— W(z))dz for some convex function W. The measure y; then clearly verifies the

Poincaré inequality. This fact comes as a direct consequence of [BBCGOS8][Corollary 1.9], which states
that if a probability measure p has a log-concave density on R, then it satisfies (4.2.9). With the definition
W = Veonv — 2P f. with € > 0 such that Veony — 2P f is convex, W —V — 2PUPP? is bounded on R. It is
dp

Hp

1
then not hard to see that — < < C for some C' > 0 which allows to conclude that up satisfies the

Poincaré inequality.
O

Remark 4.2.7. We will apply later inequality (4.2.9) to more general functions than C}(R), namely
functions of the weighted Sobolev space H'(pp), defined in Section 4.6; which can be seen as the completion
of CL(R) with respect to the norm |[ullr2(,py + 4] £2(pp)-

4.3 Concentration inequality, proof of Theorem 4.1.5

We prove in this section the concentration Theorem 4.1.5. Its proof is a direct adaptation of Theorem
1.4 of [HL21], which shows the analogous estimate in the circular setup. It is 1nsp1red by [MMS14] and

based on a comparison between a configuration xy = (x1, ..., zy) sampled with IP’ A and a regularized
version yn = (y1,-..,yn), which we describe here.

Definition 4.3.1. y; := 21, and for 0 < k< N — 1, ypy1 := yp + max{zp 1 — x5, N3},
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Note that the configuration yx given by the previous definition satisfies yr4+1 — yx = N3, and yy is
close to x in the sense that
1

g (4.3.1)

|Te — yr| <

=

k=1

Indeed, by construction we have |xy — yx| = yx — 21 < (k — 1)N~3, and we get the bound by summing
these inequalities.

The key point of the proof of Theorem 4.1.5 is comparing the empirical measure iy = % 21111 0z, , where
2P
xy follows IP’X" N to the regularized measure

N
- 1
IN = Ay-5 * N ;51”, (4.3.2)

ie the convolution of \y-s and the empirical measure, where \y-s is the uniform measure on [0, N=5].

The interest of introducing the measure fiy is that it is close to i, while having a finite energy £Y (jin ),

given by (4.2.3). Finally, notice that the empirical measure doesn’t change when reordering 1, ..., zy,

and thus we do not lose in generality for our purposes in assuming that z; < ... < a2y in definition 4.3.1.
We now introduce a distance on P(R) which is well-suited to our context.

Definition 4.3.2. For u,p’' € P(R) we define the distance (possibly infinite) D(u, ') by

D i) = (— [1oste = slat = )1 - u’)(y)) v (43.3)
_ < fo o %|]—"[p - u'](t)|2dt> " (4.3.4)

where the Fourier transform of a signed measure v is defined by F[v](z) := f e d(p— p')(x)
R

5 \1/2
Let f: R — R with finite 1/2 norm | f|;2 := (SR [t] | FLF1(P)] dt) . By Plancherel theorem and
Holder inequality, for any p, 4’ € P(R), setting v = p — g/,

[

Therefore the metric d defined in (4.1.13) is dominated by D:

3 |, e T

1 2 2 /
< ﬁ“f“uzD (15 ")

d(p, 1) < ﬁmu,u'). (4.3.5)

The following lemma shows how the distance D is related to the energy-functional £ defined in (4.2.3),
we will write Ep for simplicity.

Lemma 4.3.3. We have for any absolutely continuous p € P(R) with finite energy % (1),

Ep(p) — Ep(pp) = PD*(u, up) + flog (dd;;) dp. (4.3.6)

Proof of Lemma 4.3.3. Subtracting Ep(u) — Ep(pp) we find

Ep(p) — Ep(pp) = JVd(u — pp) + flog %du - Jlog ppdup — P ” log |z — yldpu(x)dp(y)

+ P [[1ogle = yldur @) (@37)
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Now, if v is a signed measure of mass zero, integrating (4.2.4) we get

| Viwavta) —2p [ [1og ke = yldv@)dur () + [10g(pr) @do @) = 0.

We take v = 4 — pp, and get
fV(x)d(u — pp)(w) = 2P H log |z — y|du(x)dpp(y) — 2P H log |z — y|dpp(z)dup(y)
~ [ 1ospr) @)duo) + [ tog(pr)2)dup (o).

Plugging this last identity in (4.3.7), we find

d
€r(y) ~ Epur) = - | toele ~ slav(eavis) + [tog (715 ) @dn(o
which establishes the result. ]

2P 2P
Proof of Theorem 4.1.5. We first give a lower bound for the partition function Zx’ N (4.1.4) of IP’J‘\/,’ N
We rewrite it as

Z;\?% = J exp ( Z log |z — x| — Z [V(mi) + 10gPP($i)]>dPP(3«”1) ...dpp(zN),

i<j

and apply Jensen inequality to obtain:

2P 2P o
log ZX’ N o> J ( Z log |z; — x| — Z [V(wz) + log pp(%)])dpp(xl) ...dpp(zN)
RN

1<j i=1

N—1) Ulog |z —yldpp(x)dpp(y) — NJ V+ logpp]dpp

_NEY [ur] f f log [z — yldpp(z)dpp(y).

Using this estimate and the fact that for 1 <i,j < N we have |z; — ;| < |y; —y;|, with yny = (y1,...,yn)
of definition 4.3.1, we deduce the bound on the density of probability
v,2E
dPN (551 -TN) < eN(‘:P(MP)+P8810g|Z*y‘duP($)duP(y)+% Sisj log |y —y; | =2, V{z;) (4 3 8)
dx AR ~ . .
Recalling (4.3.2), we now show the following estimate
3
Z log |y; — y;| <2+ N? fflog |z — ylditn (z)diin (y) + 5N log N + 2N (4.3.9)
1#£]
Let i # j and u,v € [0, N"°]. Since for z # 0 and |h| < %, we have |log |z + h| — log |z|| < %, we
deduce
|1g| n |~ log| ||<2|u—v|<2N_5 2
og lyi — y; +u—v| = logly; —y;|| < < ~V75 =
! N yi—yl T NS N2

Thus, summing over ¢ # j and integrating with respect to v and v, we get

Stoglys —usl <2+ X, [[1oglus = vy + 0 = vlddw-s ()0

i#£] i#]

=24+ 3" [[loglo ~ yldin ()i () ~ N [ [ 0g]u = vlddy-2 (@A (o).
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The last integral is equal to —3 — 5log N, so we deduce (4.3.9). We now combine (4.3.8) and (4.3.9).
Recall (4.2.3) and set

ex = P ([[togle ~ sldnperdnrt) + 372 + 278 )

Then we get
dIPV’ 215 cny+5Plog N ~ d~ l
I (@1 an) S et oxp | N\ Ep(up) = Ep(fin) + [ |V +log— = | din ¢ — D V(i)
i=1

_ CN+5P10gNeXpl NPD? (MN,MP -‘rNJ V‘l‘lngP)dMN—ZV
i=1

where we used equation (4.3.6) in the last equality. Using again equation (4.2.4) we then see that the
V.5

density (z1,...,2znN) is bounded by

N
e 15718 ey [N P D o) + 2PN ([l = ld = i) @) )] [ T et
i=1

Recalling (4.2.2), we used that ff log | — yld(finy — fon)(z)dpp(y) = —fUde(ﬁN — fin). As a conse-

quence of the bound on the density (z1,...,2n) we established, we have for all r > 0

2P

PX’W (DZ(,HN,,UP) > r) < efNPr+cN+5Plong
]RN

exp{ 2PNJUde IN — [N }pr x;)dx; .

i=1
(4.3.10)
Next, we show that —N {UPPd(fix — iy ) is bounded. By Lemma 4.2.3, UP” is differentiable with bounded
derivative H[pp] on R. As a consequence,

\N U”Pd(uzv—uzv‘ f|UPPy+u> U7 ()| dAy s (1)

< [H[pp]lle <Z lyi — 4] +Nfud)w s (u ))

1 4
< [Hlprll (5 + N72),
where we used (4.3.1) in the last inequality. Therefore, we deduce from (4.3.10)

v, 2k ~ - 2P S -
P]\/Z N (DQ(,U/NHU/P) > ’I“) <e NPr+cy+5Plog N+ 25 Hppl|o — e NPr+5Plog N+ Kn (4311)

2P
with Ky :=cy + W”H [pp] |- Since (cy)n is bounded, so is (Kn)n
Finally, let f be a Lipschitz bounded function with | f||r;p, < 1, then, we have (as we did for U??)

deﬂN - ffdﬁN‘ <N

1 -
d(fiv, pp) < d(fin, fin) + d(fin, pp) < N2+ —D(fin, pp)
\2m

Thus by (4.3.5)
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and for any N such that 7 — N=2 > r/2 (in particular r — N=2 > 0) we get
G viae (1 ~ - vize (1 N
Py~ (d(fin,pp) > 1) <Py~ (WD2(MN7MP) >(r—N 2>2) <PyY (zszQ(uwP) >r2/4> :

—N72 P‘rr

and the last term is bounded by e +5Plog N+ K {41 some K large enough, which concludes the
proof. O

As a consequence of Theorem 4.1.5, we are able to control the quantities

ﬂ 2= — ) @) = 1)) (13.12)

for a certain class of test functions ¢.

Corollary 4.3.4. There exist C, K > 0 such that for all $ € C*(R) n H?(R) with bounded second
derivative, we have for e > 0 and N large enough,

P (VNICw(@)] < NT2) > 1 exp{—

with Na(¢) = 6" L2 (a2) + |9"] 2 (da) -
Proof. We follow the proof given in [Guil9][Cor. 4.16] and adapt it to our setting. Let us denote by
(n (@) the quantity

PN¢®

Y 4y 5PlogN + K}
20| Y|l g2 (w)

H oz - — pp)(z)d(fiy — pp)(y) -

We have the almost sure inequahty, by a Taylor estimate

ICn (6) = Cv ()] < 2N 26", - (4.3.13)
Thus, for any § > 0,

Py (6n (@) > ) < BN (Iow(0) = v (@) = 62) + BN (I0v(0)] > 6/2)
"le > 8/2) + BN F (IGv(0)] > 6/2) .

where the first term of the right-hand side is either 0 or 1. With § = N~!1*% ¢ > 0, it is zero for N large
enough. For such a choice of §, and for N large enough,

PR (v > N7 < BV (1G> 5]

We next show that, for some C' > 0 independent of ¢, we have

<PLY (2N~

[Cn ()] < CD?(fins 1p) 0] 2 ) - (4.3.14)
We begin by showing this inequality for w € S(R). By using the inverse Fourier transform we have
dtF[](t)elt® dtF[](t)e' -
O ( =5 JJ J i d(fin = pp)(@)d(fin — p1p)(y)

o dtit F[v JJ llthy_ ! d(fin — pp) (2)d(fin — pp)(y)
or | drre [[ e f dae® @ (i — ) (2)d (i — 1) (v)

% J dtF[P](t) Ll dajeiatxd(ﬁN — pp)(2) Jei(l_“)tyd(ﬁzv —1p)(y)
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We then apply in order the triangular inequality, Cauchy-Schwarz inequality, a change of variable and
the fact that |F[fiy — pp]|” is an even function.

|<~N(¢)|\7J dt|tF[y |J do |F [iin — pp] (at)]. |]: (AN — pp] ((l—a) )|

1
2

<JﬁﬁfWWM(JdemN—mﬂmﬂff(Ldﬂfmw—uﬂﬁl—wﬂf)

< 7J. dt |tF [ |,[ do | F [fiy — pp] (at)]®
+0 d 1 (° d
< 7[ dt [tF[y |J = |F [fin — pp] (at)| +§ — dt [tF[4] J gv [N — pp] (0475)|2
< ;ﬂ dt [tF[¢](t)| D*(Bin, p)
1 9 3 dt N7 o~
< 7(fR aL LRl (1 + 1)) (JR : +t2) D?(fin, ip)
< %DQ(ﬁN,MP)M(W

1 ~
< ﬁDQ(MN»NP)”"/}”HQ(R)

By density of S(R) in H2(R), and since (y : (H2 (R), ] - HH2(R)) — R is continuous, the inequality still
holds for ¢. Thus, using equation (4.3.11),

V. 2P —~ 1 1 V2P 9~ N—1+e N¢€

PyY ([Cn(p)| > =N +€)s]P”N<D , > ————— ) <exp{ —P——+——+5PlogN+ K},
SMGTIS: AR el e 2076l e

which concludes the proof. O

4.4 Localization of the edge of a configuration

In [Lam21][Theorem 1.8, Theorem 3.4], Lambert was able to control the edge (z ¢ the minimum and the

maximum) of a typical configuration (x1,...,2zx) distributed according to ]P’ , by showing that the
random measure
N
SN 2315<P§1(90j)
j=

converges in distribution towards a Poisson point process for a function ¢ which takes the form
on(x) = EN + a]_\,lac

Before being more precise on the construction of (En )y and (an)n, we explain, following [Lam21], how
one can use this convergence to localize the edge of a typical configuration (x1,...,2y). Let us assume for
a moment that =y converges towards a Poisson point process with intensity 6(z) = e™*, with Ex — +c0.
In particular, the random variable

HN(t, +OO)
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converges in distribution towards a Poisson random variable with mean S:L e~ *dx. Combined with the
equalities

v,22 [ V.55 . -1
Py Y (En(t,40)=0) =Py~ (V1I<j<N, oy (zj) =an(z; — En) <t

we deduce that for all t e R

v, 2k —t
Py~ (an | max z; —En | <t)] — exp(—e ).

1<j<N N—ox
Therefore, the random variable

an ( max T, —EN>
1<j<N
converges in distribution to the Gumbel law, showing that the maximum of a configuration is of order
Ex. Furthermore, as will be clear from the construction of ay and Epy, ay is positive, and goes to
infinity as N goes to infinity.
Replacing in the previous analysis #(z) = e* and Ey — —o0, we would have deduced in the same

fashion that
aN (131;11\[ Tj — EN>

converges in law.
With the above notations, we can apply [Lam21][Theorem 3.4] to our context.

Theorem 4.4.1. Let v = +. There exists (E¥)n, ()N sequences of real numbers with |E¥;| — +0o0,

a¥ > 0 for large enough N, satisfying V'(EY,) = a%v, such that:

Ne—V(EX)+2Plog |EX|+A7

a)

- — 1 (recall \Y, is defined through equation (4.1.5)),
N N-ow

log(ay) v v
b) ==§ s 0 and o |EY| o, o
¢) For all compact K C R,
(af)~*sup [V"(on(2))| — 0.
zeK N—x

As a consequence, the random measure Zx converges in distribution as N — oo to a Poisson point process
with intensity 0(x) = e~ "*.

Proof. We prove it in the case v = +, the case where v = — being similar. We show that there exists a
sequence (E}) N going to +oo satisfying f(E) = —log N, where we defined the function f by

f(z) = =V (z) + 2Plog|z| + A% —log |V ()] .

Recalling Assumption 4.1.1 i), |[V'| goes to infinity at infinity, thus af, = V/(E) — 4o (in the case
v = —1 we would have looked for a sequence (Ey)n going to —o0 and ay = —V'(Ey)).
As a consequence of Assumptions 4.1.1,i7), one shows that log|V’| is negligible with respect to V at
log ||

—

infinity. Therefore, because

flz)==V(@)+ o (V(x)). (4.4.1)

T—>+0
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Because f(z) —> —oo there exists (Ey)n going to infinity such that for all N > 1, f(Ey) = —log N.

T+
Setting * = Ej; in (4.4.1), we obtain that —V(Ey) ~ f(Ef) = —logN. Property c) follows from
Assumptions 4.1.1, point ), along with the fact that aj_\,l stays bounded.

log(ay) log|V/(EX) :
~ = ~ ol 0. By construction, we have

~V(Ef)+2Plog N+
g V()| _ e (NN RI) vy
N N N ’

Using that V(E};) ~ log N, we can conclude that log |V/(E};)| = o(N) which concludes the proof. O

It remains to show that

By the discussion preceding Theorem 4.4.1, we deduce

Corollary 4.4.2 (Edge of a configuration). Let EX, o := |V/(E%)| be the sequences of Theorem 4.4.1
associated with v = +1. Then, both random variables

+ +
« max x; — F
E——
and
Qo min x; — Ey
N <1<j<1v J N)

converge to a Gumbel law, whose distribution function is given for t = 0 by G([0,t]) = exp(e'). Fur-

thermore, V(ES) ~ log N and af;, — +c0.
N—w

Remark 4.4.3. Note that[Lam21][Theorem 3.4] applies for V of class C* outside of a compact set,
allowing to take V(z) = |z|* for a > 1. In this case, we find By ~ £(log N)¥*. If V(z) = cosh(z), we
find E}; ~ —E5 ~ argcosh(log N) ~ loglog N.

The next lemma will be convenient in the proof of Theorem 4.5.2 when dealing with error terms.
Lemma 4.4.4. With the notations of Corollary 4.4.2, we have
up([Bx ES]F) = o(N712).
Proof. Let 0 < § < 1, to be specified later. We have
+oc +o
| orde= | (ory(or) e < [ (or)dn sup (o).
By By R [EY ol

By the first inequality of Lemma 4.2.2, the integral is finite. Also from the same inequality, we have for
some constant €’ and x big enough pp(z) < C'e~3V(®) . Because V is increasing in a neighborhood of
400, we get for N large enough

sup (pP)176 < 0/17567(175)3\/(13;).
(B}, 4]
Taking 6 > 0 such that 1 — (1 —0)2 =: —y < 0 and using that V(E}) = log N + o(log N) (established
in the proof of Theorem 4.4.1),

+90
IN | ppde < Ke v 1osN+1-0)5o(logN)
E+

N

and the right-hand side goes to zero as N goes to infinity. We deal with the integral Sfﬁ\;’v ppdzx in the

same way.
O

1
Remark 4.4.5. We could improve the proof to show that pup([Ey, Ex]¢) ~ i but showing that it is

O(N%) is sufficient for what we need and requires less carefulness.



108 CHAPTER 4. CLT FOR REAL B-ENSEMBLES AT HIGH TEMPERATURE

4.5 Laplace transform for smooth test functions, proof of The-
orem 4.1.3
Section 4.3 allows us to justify in Proposition 4.5.1 the heuristics we gave in equation (4.1.6) for ¢ having

compact support. We will then extend in Theorem 4.5.2 this result to a more general set of functions,
by an approximation by compactly supported functions, using Corollary 4.4.2.

Proposition 4.5.1. For ¢ € C*(R,R) with compact support, we have for any real t, as N goes to infinity,

B [t/ FvE0)] S exp {t;qp(gb)}, (4.5.1)
where Z¢ is given by equation (4.1.7), and qp(¢) is given by
(@)= [ (@2 + V" @000 ) +Pﬂ XN Gup@aue).  (152)

Proof. Let ¢ € CL(R,R), and let t € R. We perform in equation (4.1.4) the change of variables
T, =Y + \/tfﬁ(b(yi), 1 € i < N, which is a diffeomorphism for N big enough. We thus have

2P/N N . N t
et f (1o L)

w—w+§§w@ww@»

1<i<j<N i=1 VN
(4.5.3)
and we develop separately the different terms of this integral. The first term can be written as:
2P/N
2P/N t o(yi) — d(y;) /
H lyi — sl H f ’
1<j <] Yi y]
(yi) = (y;)

The second product above, setting Ag; ; := and using Taylor-Lagrange theorem, equals

exp ( Z log |1

i<j

Yi—Y;

2P 2
) = exp <N Z <\;NA¢i,j - ;W(A¢i,j)2 + RN,l(iJ)) >,
i<j

where we noticed that 1 + ﬁAqﬁm >1- ﬁ“d”oo > 0 if N is big enough, and where

t ¢>(yz)—¢(yj)
Yi —Yj

t®

e AP

|Rn,1 (i, 7)) <

Again by Taylor-Lagrange theorem, the second term in (4.5.3) equals

exp <— ; <V(yi) + \/%V’(yi)aﬁ(yz) + ;—NV”(yz)ﬂb(yi)Q + RN,2(2')) >

where Ry (i) = mf,—?;pv(g) (yZ + %qﬁ(yz)) #(y;)? for some 6; € [0, 1], thus for N large enough

|t 3 (3)
lols sup  [VE(z)].
6N3/2 (z,supp ¢)<1

|Rn2(7)| <

The last term reads

Z.Nl <1+\/tﬁ¢ )‘eXP<§] (\/t]v (yi —*sb(yl) +RN,3(i)>>,

<.
—



4.5. LAPLACE TRANSFORM FOR SMOOTH TEST FUNCTIONS, PROOF OF THEOREM 4.1.3109

2P

with [Ry 3(7)] < 3N3/2 |¢']3,. Dividing both sides of equation (4.5.3) by ZX’T we get
2
B oxn {1V (P f [ 2= i) + [ (@ = Vi ) § x exp Kt o)

cep{ & —Pg(chzﬂN(w)dﬂN(y)—JR(V”</>2+¢'2)dﬂN ]=,

with |Kn (¢, 9)| < dt—\/%ﬁ) where ¢(t,¢) = 0 is independent of N. This bound shows that taking the limit
N — o0 we can get rid of Ky:

i, BN exp { v (7 ( f [ =2 iyt n) + [ (@ - vorian )
—0 R
2
xexpd = Pﬂ ( ) iy (e)dioe () = [ (V762 + 6%y ] _1
R
Using Fubini’s theorem (the function (z,y) — % being bounded continuous on R?), the first line

in the expectation value can be rewritten as eVNAN with
x) — N N
= o ([ A=A gy iy — r)0) + [ (6 = V'Ol — ) + Pex(0) (45.0)
R2

where we used equation (4.1.5) and (n(¢) is given by (4.3.12). Let F': P(R) — R be defined by

=-P ﬂ <W> 2 dp(x)dp(y) — JR(V”qb2 +¢")dp. (4.5.5)
o

It is continuous for the topology of weak convergence since all the functions in the integrals are bounded
continuous. So far we have established that

lim E, G [ t\/ﬁAN+%F(ﬂN)] =1

N—x ’

with Ay given by (4.5.4). We now replace in the latter equation the term F'(fiy) by its limiting expression,
F(up). Fix a metric that is compatible with the weak convergence of probability measures on R. For

example,
| s | sav

where the supremum runs over f : R — R bounded and Lipschitz with ||f||, < 1 and Lipschitz constant
| flrip < 1. By the large deviations principle for (in)n under the probability (4.1.3) established by [GZ19,
Theorem 1.1], for all § > 0 the event {drip(fin, up) > } has (for N big enough) probability smaller than
e~N¢s where ¢s > 0. Hence,

dLip(p, V) = sup ; (4.5.6)

+2 N 2P +2 ~
lim E, Vi [ t‘/NANJrTF(“N)] = ]\}ILHI]EX’ N [1{dLip(ﬂN,up)<6}et\/ﬁANJrTF(HN)] :

N-ow
By continuity of F' there is some £(4) which goes to 0 as 6 — 0 such that, for dpi, (v, pp) < J, we have
|F'(v) — F(up)| < €(0). Taking the (decreasing) limit as ¢ goes to zero we deduce

t2 N
lim Ey G [ t‘/ﬁAN+7F(“N)] = lim lim EV w [l{dmp(ﬂmup)@}etf/&w] F(up)

N-ox >0 N->w
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But the same large deviations argument shows that

t‘/ﬁAN] = lim Ey G [ t‘/ﬁAN].

2P
lim lim ]E [l{dmp(ﬂw,up)sé}e Hm

6—>0 N—>wo

Thus, we have shown that

N>

lim ES ¥ VN (2P §fio WduP(fﬂ)d(ﬂN—#P)(y)+§ng(¢'—v'¢)d(ﬂzv—uP)+PCN(¢))] — e 5FuR) | (457)

Which establishes that vV NAy = VN (VN (2¢) + P¢ N((b)) converges in law towards a centered Gaussian
random variable with announced variance. We finally get rid of the remaining term (n(¢), using Corollary
4.3.4: taking ¢ = 1/4 for example, we see in particular that VN(n(9) converges in probability towards
zero. The conclusion follows from Slutsky’s lemma. O

We now extend the result of Proposition 4.5.1 to a more general set of functions. With the notations
of Proposition 4.5.1, we have

Theorem 4.5.2. Let ¢ € H*(R) n C?(R) such that ¢" is bounded. Additionally, suppose that V(3)$?,
V"¢, V'$? and V'¢p are bounded. Then, recalling (4.5.2) we have the convergence in distribution as N
goes to infinity

VN (Ep) — N(0,qp(d)).

Proof. For N > 1, let Ey, EY; be given by Corollary 4.4.2. Let yn : R — [0,1] be C? with compact
support such that

xn(x)=1forxe[Ey —1,EY +1] and xy(z) =0 for z € [Ey — 2, Ef; +2]°

and such that, denoting ¢ = dxn, supy ||¢Alf e + ||¢A],€) lz2@) < +oo for k = 0,1,2 (we assumed
¢ € H?(R), in particular ¢ and ¢’ is bounded and such a yx exists). The point of cutting ¢ outside the
set [Ey —1, EX, + 1] is that with high probability, the empirical measure jiy doesn’t see the difference
between ¢ and ¢y .

The support of ¢ is then contained in [Ey — 2, EX + 2], and we now argue that the proof of
Proposition 4.5.1 can be adapted so that

VNun(Ehn) — N(0,qp(0)). (4.5.8)

Similarly as in Proposition 4.5.1, we perform in Z}G’P the change of variables z; = y; + ﬁ@v(yi),
1 <i < N, which is the same as before, but with ¢ replaced by ¢n. First, with Iy := [Ey — 2, Ex + 2],
the error term

léxloe  sup [V (x)]

3
I 15 6N1/2 oD

KN(tvd)N) < 3N1/2

of the proof of Proposition 4.5.1 is still going to zero, because of our choice of xx and Assumption 4.1.2.
As previously, we then have

lim By [t NAON BRG] g (4.5.9)

N>
with
Aston) i= 2P [[ 2= i = ) + [ (W = VVom )l = nr) + P (o).
R2

where (v is given by (4.3.12), and
=-r H <¢N T — ¢N( )) iy (x)din (y) — JR(V”QS?V + ¢R)dfiy
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Taking again the distance dpp defined in (4.5.6), one can check that for p, v probability measures over
R

)

[Fn (1) = Fn (V)] < Ondrip(p,v)

where Cy is a term depending on the norms Hgb oo, | Moo, IV" D3 llon and (V"% ) ||l. The choice of
xn and the fact that ¢ is chosen so that V(®)¢? and V”¢¢' are bounded guarantee that ||(V"¢%,)’ | is
bounded in N. The other norms are easily bounded by hypothesis. Therefore C can be seen to be
uniformly bounded in N, and we find some C' > 0 independent of N such that

|Fn () = Fn(v)] < Cdyip(p, v) -
As in proposition 4.5.1, we use the large deviation principle for (fiy) to deduce

lim ELF [thwNH%Fw(w)] lim ELF [ NNANWN)]@%FN(MP)_
N—+ N—>+x

By dominated convergence, Fy(up) converges to F(up), the function F being given by (4.5.5). This
shows the convergence as N goes to infinity

lim Ey V.5 [ tﬁAN(@v)] - eféF(#p)

N>+ ’

and \/N(I/N(Egb]v) +PCn (QSN)) converges towards a centered Gaussian variable with variance —F(up) =

qr(¢). Because supy ||¢n | g2(r) is finite, we can apply again Corollary 4.3.4 to deduce the convergence
in law (4.5.8). We now have the ingredients to conclude, by showing that the characteristic function

ijf ¥ [ itv/Nuy (2 ¢)] ]EV’QJ\}’) [ it\/ﬁgs¢dﬂN]e—it\/ﬁya¢dup

converges to the characteristic of a Gaussian variable with appropriate variance. By Corollary 4.4.2; the
2P
probability under Py, V'V of the event En = {:1:1, ey €e[Ey—1, E;{, + 1]} converges to 1. Along with

the convergence (4.5.8), we deduce

)

eféqp(@ _ limEx% [eit\/ﬁgaqudﬂN] o itVN §Endup _ limEX’% [1£Neit\/N§E¢NdﬂN] o itVN {Zondur
N N

Where we used

2P . = . . = 2P
BN [1eg eV Imondin | mitVN Zondur | < PR (£5) —— 0.

Using that ¢y = ¢ on Jy = [Ey — 1, E}, + 1],

J~¢NdMP = QPJ (ijN(y)dMP(x)dﬂP(y) + J((b/N —V'on)dup

2PH¢’ D eyie() + 20 [[ PN )iy
(J3)e

+ f (¢' = V'¢)dup + f (oxX'n + &' xn — V'oxn)dup -
JN JS

N

By boundedness of (||¢/y |« )n, the second term is bounded by

Cp J dupdpup < 2Cpup(JS) = o( N2,
(J3)e
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where we used the union bound and Lemma 4.4.4. By the same estimate and the fact that xx can be
chosen so that (||xy]«)~ is bounded, and because ¢’, V'¢ are bounded, the last term is also o(N~1/?),
By the previous arguments, we also conclude that

2 ff o T — d“P( Jdpp(y) + f (¢' = V'¢)dup = o(N~'?),

c

thus
| Zondur = [ Zodup + o1,

and so far we have ) V2P
t 22 ; = i i =
677(117((17) hNn EOW [151\7 elt\/NS~¢NdHN:| e*lt\/NS_tbdMP .

Finally, on £y, using ¢ = ¢ and that [iy is supported in Jy,

J~¢Nduzv = 2P ﬂ udu (x)din(y) +2P H Wdup(x)dﬂzv(y) ) JJ Ve
(J3)e N

Where in the second line we used, using Lemma 4.4.4 again, that
on(z) — PN (Y N ¢n(x) — N (Y . _
[[ 2= @it = [ D= i) = ov ),
(J%)e InNxTY
and the same estimate holds for ¢y replaced by ¢. Therefore,

_t2 . v, 2 itv/N {Zodp —itv/N {Z¢d
e qu(¢):111{/nENN [lgNeltrS ¢MN]6 itv/N § ddpp

This establishes that op
lim E‘I\/;W [eit\/ﬁgaqadmv] — o 5ar(9)
N

which concludes the proof. O

Remark 4.5.3. Taking ¢ such that ¢’ satisfies the conditions of Theorem 4.5.2, we then have

]E]\; % [ thN(£¢)] N_; exp{t;qP(¢l)}, (4510)
where the operator L is defined as Lo := Z¢’, ie
£o=op [ HOZEW ) 4 () - V)6 o). (45.11)
R r—=y

Note that gb(¢') = (J¥)2(£¢) where o), is defined in (4.1.12). By Theorem 4.7.1, the class of functions
in L7Y(T) where

) {fecl(m),awo’ = 0 (+ 49, o) = f for _o}

|z|—w0

satisfies (4.5.10). This proves Theorem 4.1.3.
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We now prove a more compact formula for the variance such as the one appearing in [HL21].

Lemma 4.5.4. The following equality holds for all ¢ € T
&0 = )0 = | ((ﬁlszs)”(x)? + V”<x>(£1¢)’(x>2)dup<x>

1 1 2
ip ﬂ (‘ o) e “””) dnp(@)dpp(y) (45.12)

Proof. Tt suffices to show that (U%)Q(ﬁqb) = (L, ¢y, for all ¢, such that ¢’ € H*(R).

Loy == JR (w;f)l)IWPP —2pP JRH[¢IPP]I¢IPP

Proceeding to integration by parts in the first integral leads to
ISRV ’ 2 2
_J (((pr))q,)/pP_J‘ <(¢PP J¢//2p +2¢¢// / +¢/2(p ) op
R R

PP PP
p p/ 2
J //2p /2 rpP 12 (pP)

Since
p// p/ 2
e _ (= v" —2PH[pp] + V™ + 4P H[pp]* +4PV'H[pp]) = —V" = 2PH[pp]) + (22)
PP PP
we obtain

(L, by = JR " pp + V"¢ pp — 2P fRH[qs’pprp +2P JRH[ppW?pP

To conclude, we just have to show that

J (7(#(%) — ) )Qdup(m)dup(y) = 2f Hlpp|'¢?pp —H [ pp)'¢'vp
) r—y R

First
T ¢'(2)¢'(y)
JR H[¢'pp]'¢'pp = JR JR WdﬂP(ﬂf)dﬂP(y)
Secondly
/2 /2
JRH[:OP]/ Jf Al ¢ )dMP( )dup(y)
which allows to conclude that (Jg) (Lo) =L, Py O

4.6 Inversion of L

This section is dedicated to the definition of £ given by (4.1.8) and its domain and then we focus on its
inversion. We rely heavily on results of Appendix 4.8: the diagonalization of the operator A by the use
of the theory of Schrédinger operators.
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Let P > 0 be fixed. We introduce the operators .4 and W, acting on sufficiently smooth functions of
L*(pp), by

¢/ !
A¢ - _ ( pP) — (¢” + pl:)¢,> and W¢ = —H[(b/pp] . (4.6.1)
PP PP

One can show that the operator A corresponds to the operator verifying:

@ = [ #vdup = [ 0Avdur = 0. A,

We first show the following decomposition of L.

Lemma 4.6.1. For ¢ twice differentiable we have the following pointwise identity

—Lp=Ap+2PW¢. (4.6.2)
Proof. We write for x € R
2P J]R Wﬁp(y)dy = —2P¢(e)H[pp](x) + 2PH[¢'pp](x) . (4.6.3)
Then,
Lo=¢"—V'¢)—2P¢H[pp] +2PH[¢ pp].
By (4.2.5) we have =V’ —2PH|[pp]| = %, which concludes the proof. O

In order to state the next theorem, whose proof we detail in the Appendix, we introduce the following
Sobolev-type spaces. Let

HL(R) := {u e H\(R), uV' € LQ(R)} .

We now define
D(S) = {u € HL.(R), —u” + (wp + a)u € L?(R)}

and o
Drawy(A) == pp *D(S)

and its homogeneous counterpart

DLz(R)QO(.A) = {u € 'DLz(R)(.A), f uppdl’ = 0} .

R

Finally, we let LZ(pp) be the subset of L?(pp) of zero mean functions with respect to pp.
We detail the proof of the following theorem in Appendix 4.8 which is based on Schrédinger operators
theory.

Theorem 4.6.2 (Diagonalization of A in L(pp)). There exists a sequence 0 < \; < Xg < ... going to
infinity, and a complete orthonormal set (¢n)n>1 of L(pp) of associated eigenfunctions for A, meaning
that

o Span{e¢,, n = 1} is dense in Li(pp),
o For all iaj; <¢i7¢j>L2(pP) = 51',]';
e Foralln>=1, Ap, = \ydn-

Furthermore, each ¢, is in Dp2w),0(A), A: Draw),0(A) — L3(pp) is bijective, and we have the writing,
forue L(pp)
A_lu = Z /\7_11 <u, ¢n>L2(pp) ¢)n .

n=1
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We see the operators A and W as unbounded operators on the space

H= {u e H' (pp)| J}Ruppda: = 0}

endowed with the inner product (u,v), = {u',v"),. (o))" This defines an inner product on H and makes

it a complete space: it can be seen that H'(pp) is the completion of C*(R) with respect to the inner
product {u, v}z, +<u', )2,y The space H is then the kernel of the bounded (with respect to | -[n)

linear form, (1, -) L2(pp) 00 H'(pp), and both inner products are equivalent on H because of the Poincaré
inequality, Proposition 4.2.6. The use of H is motivated by the fact that both A and W are self-adjoint
positive on this space as we show in Lemma 4.6.4.

In the next proposition, we deduce from Theorem 4.6.2 the diagonalization of A in H.

Proposition 4.6.3 (Diagonalization of A in H). With the same eigenvalues 0 < Ay < Ay < ... as in
Theorem 4.6.2, there exists a complete orthonormal set (1,)n=1 of H formed by eigenfunctions of A.

Proof. With (¢,)n>1 of Theorem 4.6.2,
1
05 =Lbi, Bi)r2(pp) = Y<¢i7A¢j>L2(pp)

Y
1 / /

= )fj<¢i,¢j>m(pp)

= (60 b)

- )\j iy Pj/H-

With 1, = \/%\quﬁn, (¥n)n>1 is then orthonormal with respect to the inner product of H. To show that

Span{t,,n > 1} is dense in H, let u € H be such that for all j > 1, {u, ¢;>n = 0. In the last series of
equalities, replace ¢; by u: we see that u is orthogonal to each ¢; in L?(pp), thus u is a constant as
shown in the proof of Lemma 4.8.10, and because v € H it has zero mean against pp. This shows that
u = 0. O

We set for what follows D(A) := {u € Dp2(r)o(A) | Au e H} and DW) := {u € H| Wu € H}.
Lemma 4.6.4. The following properties hold:
o The operator W : D(W) — H is positive: for all $ € D(W),

1
W, = 516'prlie 20,
with equality only for ¢ = 0, where the 1/2-norm of u is given by
fulf, = | lol. |FLal@) do.
e Both A and W are self-adjoint for the inner product of H.
Proof. To prove the first point, let ¢ € D(W). Then,

2m (W, g = =21 CHIS o', &'pP) 2y = — i[RI pP]]. 10 0P1) L2 4
= (] $|]:[¢IPP],.7:[¢'0P]>L2(CII) =7|¢'ppl3; 20,

and because ¢ is in H, this last quantity is zero if and only if ¢ vanishes.
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For the second point, let u,v € D(W). Using Plancherel’s isometry and %) of Lemma 4.2.1,

! 2 1 ! !
Wu, vy, = <(Wu) » U pP>L2(dz) =3 < | T | Flu'ppl, Flv pP]>L2(dz) )

and this last expression is symmetric in (u,v). The proof of the self-adjointness of A follows from
integration by parts. O

Definition 4.6.5 (Quadratic form associated to —L). We define for all u,v € H n CF(R) the quadratic
form associated to —L by

q-c(u,v) = <AU>AU>L2(pP) + 2P<«7:[u/PP]7-F[U/PP]>L2(\z\dw)
Note that for all u,v € H n CX(R), g, (u,v) = {(—Lu,v),, and that whenever u € D(A) n D(W),
q-c(u,u) = (Au, uy + 2P Wu, udy = M (A)|uli (4.6.4)
by Proposition 4.6.3 and Lemma 4.6.4. After extending the ¢_, to its form domain Q(L£) which is
equal to {u € H,Au € L?*(pp), Flu'pp] € L2(|x|dm)} = Dr2(m),0(A). The equality comes from the

fact that A~! (L%(pp)) = Dr2(ry,0(A), that Dr2r)o(A) © H and that Fu'pp] € L*(2*dx) whenever

u € Dp2ry0(A), indeed v/ pp € H'(R) because (u'pp) = —ppAu € L*(R). We now define D(L) the
domain of definition of —L by:

D(L) := {u € Q(L),v — q_r(u,v) can be extended to a continuous linear form on H}

Proposition 4.6.6. D(L) = D(A) n D(W).

Proof. Let u € D(L), by Riesz’s theorem there exists f,, € H, such that ¢q_,(u,v) = (fy,,v)y for all v e H,
we set —Lu := f,, it is called the Friedrichs extension of —£. Then for all v € Hn C¥(R), by integration
by part we get:

<_‘Cu7 v>H = Q—L‘(uv U) = <uv AU>H +2P <7.L, WU>H s

hence we deduce the distributional identity —Lu = Au + 2PWu. Since u € D2y o(A), Wu € H'(pp)
implying that Au € H and then that Wu € H. The converse is trivially true. O

We are now ready to state the main theorem of this section, that is the inversion of £ on D(L).

Theorem 4.6.7 (Inversion of £). —L : D(L) —> H is bijective. Furthermore, (—L)' is continuous
from (H,||-|n) to (D(£),q-c)-

Proof. Let f € H, since (f,.), is a linear form on Q(£) = Dr2(r),0(A) which is, by (4.6.4), continuous
with respect to ¢_., one can applies Riesz’s theorem so there exists a unique uy € Dr2(r)o(A), such that
for all v e H, {f,v)y = q—r(us,v). Since, uys is clearly in D(L) by definition of the Friedrichs extension
of —L, we have —Lu = f. O

Remark 4.6.8. We can diagonalize L by the same argument we used in Appendiz 4.8 to diagonalize A
in L§(pp).

We now state a result that could allow one to extract more regularity for £~! by the help of an
explicit form that uses Fredholm determinant theory for Hilbert-Schmidt operators, the reader can refer
to [GGK12].

Definition 4.6.9 (Fredholm determinant). Let U be a self-adjoint Hilbert-Schmidt operator, we denote
the Fredholm determinant by det(I + U).
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+w

1
Theorem 4.6.10 (Determinant formula for £71). For all u € H, such that z ﬁf u(t)pp(t)dt
PP T) Jg
is integrable at +00, we have:

L7lu=A"u— p}lmR[p};mA_lu] (4.6.5)
where R is the kernel operator defined for all v e L*(R) by:

MW@=LmeWMy

where . ) (.9) (2. 00)
- - - K T,y K T, Ap
R@w) = T+ 2w J,. det [K(Aa,y) K(Aa,xb)]a?b1,__,16”1“'0“”

=0

where KC is the kernel operator defined for all w € L?(pp) by:

Klol@) = | KG.g)u)dy (46.6)
with y

K(z,y) = =2Ppp(z)pp(y)log ‘1 - 5‘. (4.6.7)
Proof. Let f € H, there exists a unique u € D(A) such that Au = f. Since (v'pp)’ = ppAu € L*(R),

hence u/pp € H'(R) so v/ (z)pp(x) ‘ ‘—> 0. By definition, — (uppp) = f hence

T| >+ P
+oC

(A1) (@)pp(2) = W/ (x)pp(z) = f()pp(t)dt. (4.6.8)

x

Using the fact that {; u(z)pp(x)dz = 0, integrating again we get:

+o0 ds +oo
mm=—£ S| swerwi+c

+c d +wc

where C' = J pp(x)dxf % f(t)pp(t)dt. Now let g € H, there exists a unique v € D(L), such
R x pPP\S) Js

that —Lv = Av + 2PWo = g and then v + 2PWA™ v = A~ 1g. using (4.6.8), we get:

ds

S—X

WA tu(z) = ]@ LM dtv(t)pp(t)

By Sokhotski-Plejmel formula, we have:

fR ds [:thv(t)pp(t): lim lim " ds{ ! + ! }LJr%dtU(t)PP(t)

s—x M—twes0 ) 3 2 loz—s54+ie x—s5—ie

We then proceed to an integration by part:

]i & FI dtv(t)pp(t) = lim lim [— el ) fI dw(t)pp(t)]M

S—T Jg M-+ e—>0 2 M

- J dslog |z — s|v(s)pp(s)
R

To conclude that WA= v(z) = — {; dslog |z — s|v(s)pp(s), we just need to show that

+oo
log(x)f dtv(t)pp(t) — 0

z |z| >0
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which can be seen by Cauchy-Schwarz inequality:

og@) [ ate(0pp (0] < gl 0y 0@ ([ pr(02a1)".

x R
In this inequality, we used that pp is decreasing in a neighborhood of 400, hence

o
10g|x|J dtv(t)pp(t) — 0

r—>+AL

the exact same argument allows us to conclude when x goes to —co. Using the fact that {3 v(t)pp(t)dt = 0,
we obtain the following equality:

v— 2PJ dslog |z — s|v(s)pp(s) = A~ g := h.
R

Now setting v(t) = ng(t)v(t) and h = ng(t)h(t)7 we obtain © 4+ K[0] = h where K is defined in
(4.6.6). Since its kernel (defined in (4.6.7)) belongs to L?(R?), K is Hilbert-Schmidt. Hence by Fredholm
determinant theory:

o =h—R[R]

or L7lg=A"1g— p;l/QR[p;ﬂA’lg] as expected. 0

4.7 Regularity of the inverse of £ and completion of the proof
of Theorem 4.1.3
Since we have proven the central limit theorem for functions of the type L¢ with ¢ regular enough and

satisfying vanishing asymptotic conditions at infinity, we exhibit a class of functions f for which £7!f is
regular enough to satisfy conditions of Theorem 4.5.2. We define 7 the subset of H defined by

T = {fecl(R),35>0, fle)= 0 (x—%—f), flloy= 0 (m—%—E) ,fprp =0}

|| >0 || >

Theorem 4.7.1. For all f € T, there exists a unique u € C>(R) such that u' € H*(R) with u® bounded
wich verifies:
1
s i@ = 0 ()
|z| > 1'§+5V’(x)

o u'(z) = mg’ﬁ (M>

1
o 13 = 0O
u (.’E) |z|—oc <x;+5)

such that f = Lu.

Proof. Let f € T < H, then since —L is bijective from D(L) — H, there exists a unique u € D(L) such
that —Lu = f ie:

/
—u” — Z—Pu' —2PH[u pp] = f (4.7.1)
P

Hence we have
—(u'pp) = pp (f + QPH[u'pp]). (4.7.2)



4.7. REGULARITY OF THE INVERSE OF £L AND COMPLETION OF THE PROOF OF THEOREM 4.1.3119

Since u € D(L) < {u € Dre2(w),0(A), Au € H}, the functions u'pp and its distributional derivatives
/ I
(u'pp) = —ppAu and (u'pp)" = —'D—Pp})p. (p})ﬂAu) —pp (Au) are in L2(R). In particular u/pp goes to
PP
zero at infinity, and H[u'pp] € H?(R) < C}(R). So we can integrate (4.7.2) on [x, +00[ , since by Lemma

4.2.3, the right-hand side behaves like a O (pp(x) ), to get the following expression

|z| =00 |x|%+5

" pp(t)
dpp() = [
+  Pp(t)
From this expression, we can see that v’ € C2(R) so we just have to check the integrability condition at
infinity and the fact that u® is bounded. After proceeding to an integration by parts, which is permitted

by the previous argument, we obtain:

(f +2PH[u' pp]).pp(t)dt (4.7.3)

@)= =220 () 4 2PHl @) - s [ <”f’ ) s+ 2PH[u’pp])> pp(dt (4.7.4)

pp() pp(z) Js Pp(t)
1 +c (t) 4
and we define R;(x) := f 'D/P (f +2PH[u' pp]) | pp(t)dt, we will need to show that Ry is a
@ Je \Apld)
1 1
remainder of order O | ——————— | at infinity. In this case, we will have v/(z) = O (1)
T—+0 $5+EV/(Z‘)2 r—+L $5+EV'(.%‘)
which will be useful for the following. If we reinject (4.7.4) in (4.7.1), we find:
/ /
no_ ! _ pl _ pl ! _ — pl
W = ~(f +2PH[ pp) = I ( o (f +2PH[u pp]) Rl) oL, (4.7.5)

/ + i
() = P2 (a) j pp<t>dt{ (B5) @ [ +2Pulppll)+ 200 [f'—2PH[pPAu]]<t>}.

Pp x Pp ~~ Pp ~~
1 1
V(L) = O (tiéia) 1 = 0O (tijia)
:t_,O_'_‘r V()2 t—+w :t_g—% o) t—+o0

The fact that H[ppAu](t) = O (t~2) comes again from lemma 4.2.3. Finally we have that,

t——+o0

2
Pp P

uO@) = (22) @pr@) Ra(a) - (22) @) (fj(f . 2PH[u'pp]>> (2)op(x)

PP P?o PP Pp

_ (é _ 2’)—,’%) () Ba () — (@)(x) <p,P<f - 2PH[u’pP]>> (2)

(. J

v

n"
::L'—>O+D(VI($)2> = O ( V (x) +I—%_E)
=+

2tV (z)
1 V/I
The second term is O (x_i_s) by the assumption that —(z) = O (1). Hence, we just have to
T—+0 1% |z| >
1
0 (s
T+5 x§+€V'(I)2
argument, we control Ry by controlling

Ii(z) == JH _rr®)

. t%-&-svl(t)

check that Ry(z) = ) to establish that u’, u”, u® are in L?(R). By a comparison
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By integration by parts:

+0

Lg)=— —L2@) _pp gy f or0) (e )

.CL'%+EV/(.13) pIP . t%JrsV/E

J

1‘@(%)

€T +% —l—é‘ V”t 1 !
= 0 (2 [ et 2o - (0
Ty FV) T EVIR e )

' (4.7.6)

+o0 t
By the same argument as before, the last integral is of the form f 0] (L())dt so if

t—to t%“V’(t)Q
+o0
() ::J pp(t) pp(x)

) m = w_ﬁm(m) then so is I;. By integration by parts, we obtain:

Iry(x) = pP(x)lw(z)_J+I pp(t)dt{ (pi)/(t);_pi(tm 1 + 2V"(¢) )}

- op L‘%*EV’(t)Q o’p t%+5V’(t)2 t%“V’(t)?’
+0 +

- 0 (f&)# 0 (229 Yar

z—+0\ 13 evl(x)2 t—+w0 t2+svl(t)3

T

The last integral isa O

r—>+0

T t 1 +x ¢
f U S S L 0 J 0 (lﬂﬂ)
z t2+€V’(t)3 x2+5V’(1‘)3 o’p . totow t2+evl(t)4

( pp(z)

a:%JFEV’(x)Q) because, again, by integration by part:

and finally

+o0 +xC
J 1 prt) ., < pr () dt
z tz +e V! (t)4

_ _pp@)
ar V()2 ), V()P _H%(ﬁ“‘/’(wﬁ)
_pp(x)
2tV ()

1
can be checked by differentiating) and that = +— m is integrable at oo by assumption v). Hence
x
1

(17) (the exact same result can be shown at —o0), which leads to the fact
T—+0 1-5""5‘//(:1;)2

In the final step, we used the fact that z — is decreasing in a neighborhood of +oo (which

R1 (J}) =

d@)= 0 (). @)= 0 (o) ad w®@)= 0 ()
lz| >+ \ g2 TEV/ (1) lz|>+o N\ g2 eV (1) |z| >+ \gp2Te
(4.7.7)
which establishes that these functions are in L? in a neighborhood of 0. Since we already showed that
ue C3(R) c H? _(R), it establishes that u € H3*(R) n C3(R) with u(3) bounded. To complete the proof

loc

we just have to show that (u/)2V®)| w/v”V”, (u/)?V" and w/V’ are bounded which is easily checked by
(4.7.7) and Assumption 4.1.1 4v). O

Remark 4.7.2. We choose here the functions that vanishes at infinity at worst like |:E|*1/2’5, but func-

tions like x — |z|"Y21og™ 27 |2| or z v |z| Y2 log™"? |z|log™/*% log || also work, the proof being

the same. The only hypotheses that we use is that f € H'(R) n C1(R), that f' = ‘ |O (f(x)) and that
T|—>+%L

f is decreasing (resp. increasing) in a neighborhood of + (resp.-) c.
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4.8 Appendix: proof of Theorem 4.6.2

In order to analyze A, we let, for u € L?(R),
Su = p}D/Q.Ap;/Qu.

Note that u € (L*(R), .| r2(dz)) — p;1/2u € (L*(pp) -l L2(pp)) is an isometry. It turns out that it will
be easier to study first the operator S in order to get the spectral properties of A.

Proposition 4.8.1. The operator S is a Schrédinger operator: it admits the following expression for all
ue C2(R): Su=—u" +wpu with

1/1 1 1
wp = 5 (§V7 = V" + 2PV Hlpr] — 2PHIG] + 2P Hlprel? ) = 3|z pr )+ o))
. . V'(x)?
Furthermore, wp is continuous and we have wp(x) ~ 1 H—> +00.
e x| —>%L
Proof. We compute directly
_1/2 ! !
(pr(p70)") . /
—1/2 \" | Pp s —1/2 N/
-— = u) + — U
pp (pr ) pr (e )
_ 1 _ _ 2
= (pp'*u ’—§p 2 plou) + plpppu — 2,01:5/2(/)’1») u
—1/2 —5/2 1 _32
= pp' %" + 4p " (0p)*u —5Pp " g
~1/2 1
/ [U + PP ) ipplplzgu]

2 _1Ppye
< 2(PP) ]u)
—1/2 1 1 P Yy
OgPP) sUlogpp)™|u | =pp | u" —wpu | .

Now, using Lemma 4.2.2, we have
1/1
wp =5 <2V’2 — V" +2PV'H[pp] — 2PH[pp] + 2P2H[pp]2) .

Notice that H[p»] and H[pp] are bounded since they belong to H'(R), as we showed in Lemma 4.2.2
1
that pp is H?(R). Along with Assumption 4.1.1 74i) and Lemma 4.2.3, we deduce wp(z) ~ ZV’Q(m). O
[e0]

Remark 4.8.2. Note that the function wp need not be positive on R. In fact, neglecting the terms
involving the Hilbert transforms of pp and p'p, wp would only be positive outside of a compact set.
However, using the positivity of A, which will be shown further in the article, we can show that the
operator —u” + wpu is itself positive on L*(R). It can also be checked that, by integration by parts, S is
self-adjoint on CX(R) with the inner product of L*(R).

We now introduce an extension of S by defining its associated bilinear form.

Definition 4.8.3 (Quadratic form associated to S).
Let a = 0 such that wp + « = 1. We define the quadratic form associated to S + al, defined for all
ue Cr(R) by

Go (U, 1) := f u?dx +J u?(wp + a)dx
R R
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This quadratic form can be extended to a larger domain denoted by Q(S+al), called the form domain
of the operator S + al. By the theory of Schrédinger operators, it is well-known (see [Dav96][Theorem
8.2.1]) that such a domain is given by

QS +al) = {u e H'(R), u(wp + )% ¢ LZ(R)} = {ue H'(R),uV’ € LA(R)} = HL/(R).

The space H{,,(R) can be seen to be the completion of CZ(R) under the norm g,. Now that the quadratic
form associated to S + ol has been extended to its form domain, it is possible to go back to the operator
and extend it by its Friedrichs extension.

Theorem 4.8.4 (Friedrichs extension of S + al).
There exists an extension (S + al)p of the operator S + al, called the Friedrichs extension of S + ol

defined on D((S + aI)F) = {u € HL/(R),—u" + (wp + a)u € L2(R)} .
Proof. We denote

D((S +al) F)

= {v € Hi(R),u € H{; (R) —> qu(u,v) can be extended to a continuous linear form on LQ(R)}

Ifve D((S+0J)F), by Riesz’s theorem there exists a unique f,, € L?(RR) such that g, (u,v) = {(u, fodr2(da
holds for all u € L?(R) and we can set (S +al)rv := f,. Note that it is indeed a way of extending S +
since for all u,v € CX(R), qa(u,v) = (u, (S + al)v) 124,

We want to show that D((S-{-OJ)F) = {u € H(R), —u"+(wp+a)u € LZ(R)}. Let f € D((S—i—od)p)
and g := (S + al)rf € L*(R). By definition of ¢, for all u € C*(R):

JR gudxr = .[R flu'de + JR(wp + ) fudr = — J,R fu"dx + JR(wp + a) fudz

Therefore in the sense of distributions, we get —f” + (wp + ) = g which is a function in L?(R), hence
fe {u € H/(R),—u" + (wp + a)u € LQ(R)}. Conversely, if f € H,(R) such that —f” + (wp + a)f €

L?(R), it is possible to extend u +— ¢, (f,u) to a continuous linear form on L?(R) by
u— J u( — "+ f(wp + a))d:r
R
which concludes the fact that D((S + aI)F) = {u € HL/(R), —u" + (wp + a)u € LQ(R)}. O

In the following, we will deal only with (S + al)p : D((S + aI)F) — L%(R) and denote it S + o :
D(S + o).

Remark 4.8.5. Note that in the previous proof, the application of Riesz’s theorem doesn’t allow to say
that (S +al) : v € (D(S + aI),||.||qa) — f, € (LQ(R),H.HLz(dI)), where |.|lq. stands for the norm
associated to the bilinear positive definite form q., is continuous. It can be seen by the fact that
v E (D(S + al), ||.an) — q(.,v) € (L2(IR)’, H"|L2(da:)’)7 where L?(R)" stands for the topological dual of
L*(R) equipped with its usual norm, is not continuous. Indeed the |.|,. norm doesn’t control the second
derivative of v and hence doesn’t provide any module of continuity for the L?(R)-extended linear form
q(.,v).

Also note that, even though it would be convenient that D((S—i—aI)F) = L*(R, (wp + a)?dz) n H?(R)

it is not true without more properties on wp. Such a result holds, for example when wp belongs to Ba,
the class of reverse Holder weights, see [ABAQ7][Theorem 1.1].
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Theorem 4.8.6 (Inversion of S + o).
For every f € L?(R), there exists a unique u € D((S + aI)F) such that (S + al)u = f. Furthermore,
the map (S + al)™! is continuous from (L*(R),|.|12(az)) to (D(S+ al),|.]q.)-

Proof. Let f € L*(R), the map u — (u, f) 24, is continuous on (Hy, (R),|.|q,) which is a Hilbert
space. Therefore by Riesz’s theorem, there exists a unique vy € H{, (R) such that for all u € H{,(R),
(f,Wr2(4s) = da(vy,u) from which we deduce that, in the sense of distributions, f = —v} + (wp +
a)vs which implies that vy € D(S + al). Since vy € D(S + al), we have then for all u € L*(R),
{f, 'U/>L2(dw) = qa(vp,u) = (S +0‘)”f7“>L2(dx)’ hence (S + al)vy = f. Finally, by Riesz’s theorem,
f € L*(R) — vy € H(R) is continuous hence so is (S + al)™L. O

Remark 4.8.7. It would be tempting to use Banach’s isomorphism theorem to say that since (S +al)™!
is bijective and continuous, so must be S + al. But since (D(S + o), |.|q.) is not a Banach space (it’s
not closed in H{,(R)) we can’t apply it.

We are now able to diagonalize the resolvent of S.

Theorem 4.8.8 (Diagonalization of (S + al)™1).
There exists a complete orthonormal set (¥n)nso of L*(R) (meaning that

Span{in, 0> 0] = *(®)

and (i, V)12 (ax) = 0i,5), where each v, € D(S + al) and (pn(e))
that (S + aI)™Y, = (), for alln = 0. We also have H‘(S + OJ)_IH‘L(

e [0, 11N with () P 0 such

n=0 o0

<1
L2(dw))

Proof. By Proposition 4.8.1, wp + « is continuous and goes to infinity at infinity. By Rellich criterion
[RS78][see Theorem XIII.65], the unit ball of D(S + o), de the set

{u e D(S + al), JRUQ + JR(U)P +a)u? < 1}

considered as a subset of L?(R) is relatively compact in (LQ(R), [ Lz(dz)). Hence, we can conclude
that the injection ¢ : (D(S + o), |.[q.) — (L*(R), |.|£2(4s)) is & compact operator. Since (S +ad) ™' :
(L2R), || 2(de)) — (P(S+al),|.|lq.) is continuous then (S +al)~* is compact from (L?(R), ||l 12(dx))
to itself. The fact that (S + al)~! is self-adjoint and positive allows us to apply the spectral theorem
to obtain (/‘”(O‘))nzo positive eigenvalues verifying ., () s 0 by compactness and a Hilbertian basis

(Yn)n=0 € L?>(R)N, such that for all n > 0, (S + al) 4, = p,(a),. It is then easy to see that for
all n, 1, € D(S + al) since they belong to the range of (S + af)~!. Finally, since for all ¢ € L*(R),
S+ ad)d, D)4y = ||¢||2L2(dz), the spectrum of (S+al) ! is contained in [0, 1]. It allows us to conclude

that [[(S + al) 7Y 2 4 < 1. O

Since for all u € H{,(R), (S + a)u € L2(R) iff Su € L*(R), if we define D(S) in the same manner
that we did before, D(S) = D(S + al). It is now straightforward to see how to extend A = p}l/QSp}D/Q

on Drzgy(A) := p}l/zD(S) equipped with the norm |.q. . to (L*(pp), ||| £2(pp)). The norm ||.]lq¢. 0p
is defined for all u € Dr2(g)(A) by

lelawr = [ Wprda + [ o2wp + @)prde.

It is easy to see that (A + o)~ is continuous.



124 CHAPTER 4. CLT FOR REAL B-ENSEMBLES AT HIGH TEMPERATURE

Remark 4.8.9. The kernel of A is generated by the function 1. Indeed if ¢ € Dpr2(w)(A) is in the kernel
of A then

’ !
M:)HCER,(Z)/:i

pP ppP

But since ¢' is in L*(pp) then ¢ = 0 which implies that ¢ is constant. We must restrict A to the orthogonal
of Ker A with respect to the inner product of L?(pp), ie

0= —

Dram.o(A) = {“ € Dp2r)(A) | JR upp = 0} .

Doing so makes A injective.
Before inverting A, we need the following lemma:

Lemma 4.8.10. The following equality holds
(A+al) (DLQ(R)’O(A)) = L2(pp) = {u e L2(pp), f uppdz = o}
R

Proof. Let ¢ = ¢ for ce R, (A+ al)¢ = ac then (A + al)(R.1) = RI. Hence since A + ol is self-adjoint
with respect to the inner product of L2(pp) and that R is stable by A 4+ oI, then (A + o) ((RT)L

Dra(w) (A)) c (R.I)*. For the converse, let u € (R.1)*, since A+al is bijective, there exists v € Drawy(A)
such that u = (A 4 al)v. For all w e R.1,

0=Cu, w)r2(,,y = (A+al)v,wira,,.) =, (A+al)w)ra,,,

PP)
Hence v € [(A + al)(RD)]" = RTL and so (RI) (A + al) ((R.T)L). O

It is easy to see that LZ(pp) is a closed subset of L?(pp) as it is the kernel of the linear form
¢ e L?(pp) <¢, > ) making it a Hilbert space.
pP)

Proposition 4.8.11 (Diagonalization and invertibility of A). There exists a complete orthonormal set
Of (L(z)(pP)7<~a '>L2(PP)>’ (¢n)neN € DLQ(R),O(-A)N such that A¢n = )\n(bn (meaning that

Span{gn, n > 0] ¢ = [2(pp)

and {$i, $;)12(pp) = 0i,;). Furthermore, A : Dp2(g) o(A) — Li(pp) := {u € L*(pp), S uppde = O} is

bijective, A7 is continuous when considered as an operator of Li(pp).

Proof. Since (S + al)~! considered as an operator of L?(R), is compact so is (A + )~ on L?(pp)
and since A is self-adjoint, by the spectral theorem, (A + af)~! is diagonalizable. With the notations of

Theorem 4.8.8, (A+al)~! has eigenvalues (un(a))n>0
Dr2k)(A). Hence for all n € N, Ap, = A\, with A, := (

and corresponding eigenfunctions ¢, = p}_;,l/ 2@/1” €
1

_ a). Now,

pn ()

Ml6ulizion = [ (Abnouprds == [ (or6! Yo = [ 200>

Furthermore, the kernel of A is R.1, thus the spectrum of A restricted to Dyr2ry,0(A) is positive. But
since (A + al)~! is a compact operator of L2(pp) and that (A + aI) maps R+ to R.I with respect
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to the inner product of L?(pp) (see lemma 4.8.10), then (A + aI)_l is compact as an operator from
L3(pp) to itself. By Fredholm alternative, for every A € R X # 0, either (A + ol)~! — A is bijective

1

cither A € Sp((A + aI)™'). These conditions are equivalent to: either A + (o — X)I is bijective as an
1 1

operator from Dyz gy (A) to L3(pp), either —a + X € Sp(A). If we set A = — then either A is bijective
«

either 0 € Sp(A), since the latter is wrong then A : Dy2g) o(A) — L(pp) is bijective. The spectrum of

1
A s <() — a) < (Ay, +00) < (0, +00), where A; is the smallest eigenvalue, hence we deduce that
Hn & nz0

A= <A O

L2(pp)
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Chapter 5

CLT for S ensembles at
high-temperature, and for integrable
systems: a transfer operator
approach

Abstract In this paper, we prove a polynomial Central Limit Theorem for several integrable models,
and for the 8 ensembles at high-temperatures with polynomial potential. Furthermore, we are able to
relate the mean values, the variances and the correlations of the moments of these integrable systems with
the one of the S ensembles. Moreover, we show that for several integrable models, the local functions’
space-correlations decay exponentially fast.

5.1 Introduction

In this paper, we study eigenvalue fluctuations for several random matrix models related to some inte-
grable dynamical systems and to the classical 5 ensembles in the high-temperature regime. Specifically,
we consider random band matrices with fixed bandwidth and, under some mild assumptions, we prove a
central limit theorem (CLT) for polynomial test functions for the empirical measure of the eigenvalues.
In particular, we consider the following kind of matrices

o Type 1-i) Periodic Jacobi matrices, which are periodic tridiagonal matrix of the form

ai by O by
b1 az b :
0 by a3 . 0 ) (5.1.1)
: by_1
by ... 0 by_1 an
fora = (ar,...,an) RN, b= (b,...,by) e RY.

e Type 1-ii) Antisymmetric Bidiagonal Periodic matrices:

127
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0 aq 0 —anN

anN-—1
an 0 —aN-—-1 0

for a = (a,...,an) € RY.

o Type 1-ii) Periodic CMV (after Cantero, Moral and Velazquez) matrices, which are

2N x 2N unitary matrices given by
E=LM, (5.1.3)

where we define £ and M in the following way. Let a = (aq,...asy) be complex numbers of the
unit disk ID. Define the 2 x 2 unitary matrix Z;

_ s . )
:'j:<j- _pj»>’ Jj=1,...,2N, pj:\/1_|aj|2' (514)
Pj aj

Then, £ and M are the 2N x 2N matrices

—QaaN P2N

(1]

(1]
w

L= , . M= . (5.L5)
' Hon—2

Eon—1 _
P2N agN

The matrix £ is a pentadiagonal periodic matrix and is unitary.

o Type 1-iv) Two diagonals periodic matrices given by
iN — r column

0 a 0 - by 0 0 0

0 0 a9 0 bN7r+2 0 0

0 0 0 Ar_1 0 0 bN

+1

by 0 .- 0 a, 0 0 " oW (5.1.6)

0 by O '

: - . - . 0 0 an-—1

ay 0 -+ by, 0 0 0
Where a,b € Rf. In applications, we consider either a1 = a3 =...=ay =1lorby =by =... =

by = 1.
We also consider the non-periodic counterparts of the previous matrices. More specifically:

o Type 2-i) Jacobi matrices, which are symmetric tridiagonal matrices

aq b1
bl as b2
by . . , (5.1.7)
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where a € RY and b e Rffl.

o Type 2-ii) Bidiagonal Antisymmetric matrices:

0 a1 0
—a; 0 as
0 —ay O 0 ) (5.1.8)
anN—1
0 —an-1 0

forae Rf‘l.
o Type 2-iii) CMV matrices, 2N x 2N unitary matrices of the form
€=M, (5.1.9)
where
¢ = diag (29, Z2,Z4, ..., Za2N) and M = diag (Z1,23,Z5 ..., Zan-1) , (5.1.10)

and the blocks Z;, j = 1,...,2N — 1 are defined in (5.1.4), while Z¢ = (1) and Zon = (Ga2n) are
1 x 1 matrices.

The periodic matrices that we consider are the Laz matrices of some integrable models. These are
particular dynamical systems that are Liouville integrable, and their integrability is proved obtaining a
Lax pair (L, A) [Lax68] representation of the model, meaning that the equations of motions for each of
these systems are equivalent to the following linear system for some matrices L, A

_dr
T dt

This formulation is useful since it implies that {TrLk}kN:1 are a system of independent constants of

—[L;A] = LA — AL. (5.1.11)

d
motion (dtTrLk = 0)) for the system at hand, so the system is integrable in classical sense. We call

these quantities conserved fields.

Specifically, the Toda lattice [Tod89] and the Exponential Toda lattice [GGGM23] have as Lax matrix
a periodic Jacobi matrix, the Volterra lattice [GGGM23] has an antisymmetric periodic one, the Ablowitz-
Ladik lattice [AL75] and the Schur flow [Gol06] have a periodic CMV one, and the family of Itoh-Narita—
Bogoyavleskii [Bog88] lattices have a bidiagonal periodic one.

We endow the periodic matrices L of type 1 with the so-called Generalized Gibbs Ensemble of the
corresponding dynamical system. The main property of these measures is that they are invariant with
respect to the dynamics of the corresponding integrable system. These Generalized Gibbs Ensembles

have the form
pg\}) = Z(l) <HF zj, o ) e G x | (5.1.12)

where x = (a, b) for Jacobi matrices, x = a for antisymmetric matrix, x = a for periodic CMV matrices,
x = a (resp. x = b) for bidiagonal periodic matrices if by = ... =by =1 (resp. if a3 = ... =any = 1)
and G is a real-valued continuous function.

The non-periodic matrices of type 2 are related to the classical 8 ensembles, indeed both the real
ensemble and the Laguerre 5 ensemble [DE06] can be represented through a Jacobi matrix, the circular
and the Jacobi ensemble have a representation in terms of CMV matrices [KN04], and the Antisymmetric
[ ensemble has a representation in terms of an antisymmetric matrix [DF10]. Specifically, we consider
these ensembles in the high-temperature regime, meaning that the parameter 8 is not fixed, but scales
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with the matrix size N as § = Qﬁ, « € R.. The joint density for the entries of the matrix representation
reads

N-1 .

(2) _ 1 ( ( ( J ))) —TrG(L)

Uy = —m—— Flzj,a(l-= R(zn)e dx, (5.1.13)
Z{ (. G) Jl:[l N

where x = (a, b) for tridiagonal matrices, x = a for the antisymmetric one and x = a for CMV one.
As we already mentioned, we focus on the fluctuations (or linear statistics) around the equilibrium
measure of these general models, where we choose the functions F' and G so that the partition functions

N
Z](\})(a, G) = J (H F(xj7a)) e~ TrG(L) gx
XN j=1

N1 (5.1.14)
Z](\?)(a,G) = f H F <;vj,a (1 — j)) R(:vN)e*TrG(L)dx
XN j:1 N
are finite for all N. Here X is a subset of R? (C being identified with R?).
Specifically, we study the fluctuations of polynomial test functions Q(z), i.e.
J Qdvy — J Qdv, (5.1.15)
C vy
where v is the empirical measure of eigenvalues of L given by
1N
UN = Njgl(sAj(L). (5116)

Here the \;(L) are the eigenvalues of L and §, is the Dirac delta function centred at z, v is the equilibrium
measure (or density of states) of the system and ~ is the support of the measure v. In this paper, we
are able to analyse the random variable (5.1.15) for polynomial potentials G, using a transfer operator
technique.

The study of spectral properties of Lax matrices of integrable models was initiated by Spohn in
[Spo20c], see also [Maz22]. In this paper, the author investigated time correlation functions for the
Toda lattice. Applying the theory of Generalized Hydrodynamic [Doy20], Spohn argued that they have
a ballistic behaviour, meaning that they have symmetrically located peaks, which travel in opposite
directions at constant speed and decay as t~' when t — oo. To obtain this result, Spohn had to
compute the density of states of the Toda Lax matrix; he did it by connecting the Generalized Gibbs
Ensemble of the Toda lattice to the real 5 ensemble in the high-temperature regime [ABG12]. After
that, the Generalized Gibbs ensemble for the Ablowitz-Ladik lattice and the Schur flow were connected
to the Circular § ensemble and the Jacobi § ensemble in the high-temperature regime [HL21, FM21]
respectively by one of the present authors and T. Grava [GM23] and, independently, by H. Spohn [Spo20b)].
For all these models, a large deviation principle for their mean density of states were developed in
[MM23b, GM22|. Furthermore, in [GGGM23] the authors were able to connect the classical Gibbs
ensemble for the Exponential Toda lattice and the Volterra one to the Laguerre [DE06] and to the
Antisymmetric 5 ensemble [DF10] respectively.

As we mentioned, our study does not only involve integrable systems, but also the classical S en-
sembles. Specifically, we study the random variable (5.1.15) for these ensembles in the so-called high-
temperature regime. The study of these quantities was initiated by Johansson in [Joh98], where the
author obtained a CLT for the Gaussian unitary ensemble with polynomial potential, then generalized
for other models and other values of 5 in [BG13b, Shcl4a, DP12], and, more recently, in [BMP22], where
the authors obtained also a rigidity result for the eigenvalues of the 5 ensembles. We mention also the
work [NT18], where the author obtained a CLT for the Gaussian S ensemble in the high-temperature
regime for a quadratic potential, the work [HL21] where the authors obtained a CLT for the Circular
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B ensemble at high-temperature using a normal approximation method, and the recent paper [DGM23]
where the authors obtained a CLT for the real 8 ensemble in the high-temperature regime for general
confining potentials. Another relevant paper that it is worth mentioning is [AS21], where the authors
studied Coulomb gases in dimension d > 2 and studied the local laws for any temperature regime. Finally,
we recall also the recent work [CJ21, CJL22] where the authors obtained a super-exponential bound for
the convergence for the moments of the CUE, COE and CSE to a Gaussian vector.

Statement of the results. We come to precise statements of the main results of the present paper.
We consider the previously mentioned family of random matrices and make the following assumptions.
Assumption 5.1.1. The following hypotheses are valid throughout the paper:

HP 1. X Cc RY;

HP 2. F(z,n) is such that for any n >0 F(-,n) € CY(X), and for any x € X, F(x,-) € C*((0, +0)) ;

HP 3. F(x,n) > 0 almost surely for x € X, n € (0,00);

HP 4. F(-,n) € LY(X,B) n L*(X,B) for all n € (0,00), and 0,F(-,n) € LY(X,B) n L*(X,B); moreover
there exist a c € N and a compact set O € X such that
o [[F(@,n)llz2 =00n™)
o There exists d > 0 such that for alln >0, §, F(z,n)dz > dn=°
HP 5. The function TrG(L), where L is one of the matrices of type 1 or 2, is circular, meaning that

there exists some k € Nx1 and two functions W : X* x X* - C, W, : X x X* - C, VT/; c XF -
C, Wy : X* - C, such that writing N = kM + ¢ with M >0 and 0 < £ < k — 1, we have

ij\gl W(xj,%541) + Wi(Xar, Tears1, -+ Thdi0,X1) for type 1
M—1
TrG(L) = W(xj,xj41) + Wi(x1) + W(xar, ety - - o, Temr+e, 0, ..., 0) ,
izl for type 2
+ Wz(ﬂkaH, e TRMr))
(5.1.17)
here x; = (x(j—l)k+1a <. xk). In this case, we say that W is the seed of G, and Wi, Wy, Wy are

the weeds.

HP 6. The real parts of WWl,Wl,Wg are lower bounded. Furthermore, exp (—W) € L?*(X* x X%),
exp (=W1) € LA(X* x X¢ x X¥), exp (—Wl) € L2(X*), and exp (—Wg) e L2(XY)

HP 7. Both integrals

A 2
J <6,, H F(zg, n)) e 2WY) dxdy ,
Xk g=1

k ) 2
N ) p
g=1

HP 8. R(z) € L*(X) n C*(X), and R(x) > 0 for allz € X, or R(z) = §,(x) for some y € X.
Here LP(X, B) is the usual LP space.

are finite.

Remark 5.1.2. The definition of circular function and seeds was introduced in this context in [GPP1/).
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Under these assumptions, we are able to prove our main theorem:

Theorem 5.1.3. Under hypotheses 5.1.1. Consider ,ug\l,), ,ug\Q,) (5.1.12)-(5.1.13), and let (Sn)n=1 be a
sequence of real random variables such that there exists a function H : C — R such that TrH (L) is
circular, it satisfies HP 6., and

(1) . (2) i
B, [e=5V] = Zy (O;vG + ZtH)7 E, [e~5N] = ZN (a2’G + itH) ; (5.1.18)
Z7W(a,q) 73 (o, G)

(1 (2

are finite, here Eq [-], Eq [-] are the mean values taken with respect to py’, pn’ respectively. Furthermore,
let W, h be the seeds of TrG(L) and TrH(L) respectively, and assume that § ., |h(x,y)| e 2V ¥)dxdy
form =2,4,6 are finite. Then, there exist two continuous functions

A(z) : Ry — R, (5.1.19)
o?(x) : Ry — Ry, (5.1.20)

such that under ug\l,) (5.1.12)
(Sy — NA(a)) /NN

converges to a Gaussian distribution N'(0,0%(a)) as N tends to infinity, and under ,ug\?) (5.1.13),
1
(SN — Nf A(oz:z:)dz) /NN
0

converges to a Gaussian distribution N(0, Sé o?(ax)dz) as N tends to infinity. Furthermore, defining the
free energies .7:](\, (o, G), ]-" (a G) a

1 1 1

FP(@.G) == lim —n (Z§V>(a,G)) , (5.1.21)
2 1 2

FO(@,G) = = lim ~In (Z§V>(a,G)) , (5.1.22)

then

iti. §y Alax) = i, F® (o, G + itH)

[t=0

i. FO(a, Q) = 0, (a]-"@)(oz, G))
w. o*(a) = 03 F D (a,G + itH)

lt—o0

ii. A(a) = i0,FV(a, G +itH)),_, v. Sé o*(az)dx = 02 F P (a,G + itH)),_,

Remark 5.1.4. In the central part of the proof we introduce a family of operators acting on L*(X*) by

k
Liof(y) f ]_[ ~(WHith)xY) qxdy .

Because of our assumptions, each Ly is Hilbert-Schmidt, meaning that the kernel

k
(6.3) = [ Play)em 00
j=1
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is in L2(XF x X*), thus Lo s compact, and, as we show in the proof of Theorem 5.2.1, Ly o has a
simple dominating eigenvalue. Hypothesis HP 7. and the assumption that the integrals

J |h(x,y)["e 2V Y dxdy  n=2,4,6
X2k

are finite is merely to ensure that (o, t) v Ly o s reqular. In particular, it is differentiable with respect to
«, and three times differentiable with respect to t as an operator valued function, which in turn ensures
that for t small enough, the operator L, o has a simple, dominating eigenvalue A(t, ) and that t — (¢, &)
is three times differentiable. Note that we only use the existence of a second derivative with respect to t in
the proof of the main theorem, but use the existence of a third derivative in the proof of the Berry-Esseen
bound, Theorem 5.4.5. We use the differentiability with respect to « in the proof of Theorem 5.2.2.

In the central part of our paper, we show how to use the previous result to obtain a polynomial CLT
for the integrable models that we mentioned, and for the classical 5 ensemble in the high-temperature
regime. Specifically, we use the previous theorem with G and H polynomials and

Sy = ~TrH(L) CL f H(z)dvy (z).
N C

The expectations we want to compute then reduce to

. Z0(a, G + itH)
E;[e75n] = == j=1,2.
Z{(a,G)

) ] )

Furthermore, as a by-product, we are also able to compute the so-called susceptibility matriz C for
integrable models. This is the matrix of the space-correlation functions of the conserved fields, i.e.

L (B, [TeL™ T L] — By [TL™] By [TeL"]) (5.1.23)

A

C’m,n =

where L is the Lax matrix of the integrable system at hand and the mean values are taken with respect to
the corresponding Generalized Gibbs ensemble. The computation of such quantities is relevant to obtain
the decay of the correlation functions for these integrable systems, as it is shown by Spohn in [Spo20a].
In particular, we can prove the following:

Theorem 5.1.5. Under the same hypotheses as Theorem 5.1.3. Consider ,ug\l,) (5.1.12) and define the
free energy FV (o, G) as in (5.1.21), then

Conn = 01, 00, (f“)(a, G +itiz™ + itgm")) . (5.1.24)

[t; =tg=0
Remark 5.1.6. In view of Theorem 5.1.3, we can rewrite (5.1.24) as
Conn = Oy, 00, (a (f<2>(a, G +ity™ + im")))l . (5.1.25)
t1=to=0

In our context, the previous equality implies that we can compute the susceptibility matriz of the integrable
systems that we are considering in terms of just the free energy of the corresponding classical 5 ensemble
in the high-temperature regime.

Finally, considering the type 1 measures (5.1.12), we investigate the space-correlations for local func-
tions, meaning that they depend only on a finite number (independent of N) of consecutive variables,
proving the following

Theorem 5.1.7 (Decay of correlations). Let W be the seed of TrG(L) and I,J : X* — R two local
2

functions such that § . |I(x) Hle F(zi,0)e”WY)| dxdy < o0, and analogously for J(x). Write

N =EkEM +¢, and let j € {1,...,M}. Then there exists some 0 < 1 < 1 such that

Eq [1(x1)J(x;)] = E1 [1(x1)] E1 [J(x;)] = O™~ + 7).
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In particular, this result implies that the space-correlations between two local functions acting on two
different parts of the chain decay exponentially fast according to the distance between the set of particles
they are acting on. In section 5.3.1, we use the previous result to rigorously justify the assumption of H.
Spohn on the decay of space-correlations between the local conserved fields and their currents [Spo21];
we mention also that one can follow exactly the same reasoning for all the other integrable systems that
we consider.

The paper is organized as follows, in section 5.2 we state the theoretical results that lead to the proofs
of Theorems 5.1.3 and 5.1.5. In section 5.3 we show how to apply our results to obtain a central limit
theorem for several integrable systems and for the corresponding 3 ensembles in the high-temperature
regime. A summary of these models can be found in Table 5.1. Specifically, we obtain a CLT for the
Toda lattice and the real 8 ensemble, for the Exponential Toda lattice and the Laguerre S ensemble,
the defocusing Ablowitz—Laddik lattice and the Circular 5 ensemble, the defocusing Schur flow and the
Jacobi 8 ensemble, the Volterra lattice and the antisymmetric 5 ensemble, and for the families of Itoh—
Narita—Bogoyavleskii (INB) multiplicative, and additive lattices. Furthermore, we apply Theorem 5.1.7
to the Toda lattice to derive the limiting currents of the conserved fields. In section 5.4, we prove the
technical results we used in section 5.2, we prove Theorem 5.1.7 and deduce a Berry-Esseen type bound
for all the previously considered integrable models. Finally, in section 5.5 we give some conclusions and
outlooks for future developments on this topic.

Integrable System (Type 1) p-ensemble at high-temperature (Type 2)
Toda lattice Real
Defocusing Ablowitz-Ladik lattice Circular
Exponential Toda lattice Laguerre
Defocusing Schur flow Jacobi
Volterra lattice Antisymmetric

Table 5.1: Integrable systems and random matrix ensembles

5.2 Nagaev—Guivarc’h theory: a transfer operator approach

In this section, we prove Theorem 5.1.3-5.1.5, to do that we need to develop the fluctuations’ theory
of Nagaev—Guivarc’h [Nag57, GH88, HHO1, Goul5] through transfer operator methods, see for example
[KRBO01, KS75, PB89].

The proof of these theorems is divided into 3 main parts. In the first one, we compute E; [e*“TrH ] , Eo [
through transfer operator techniques. Since the proof of these results is technical, we postpone it to sec-
tion 5.4. Our proof follows the same line as the corresponding one in [GM23]. In the second part, we
prove a slight generalization of Nagaev—Guivarc’h theorems [Goul5]. In the last part, we combine the
previous two results to complete the proof of Theorem 5.1.3-5.1.5.

In view of the hypotheses 5.1.1, we consider the following decomposition of N = kM + ¢, in this

efitTrH]
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notation, we can rewrite our measures as

" 1 kM +0 M-
Fenvive =~y on H I], H x]7xj+1)) (521)
ZIEJ\Z[+£(O‘7W) Jj=1 j=1
kM +0
x exp (=Wi(Xar, Trarst, - - - ToM+e,X1)) H dz; (5.2.2)
) 1 kM +e—1 , M—
Y s H F (931',06 (1 - >> H exp (=W (x;,%x;41)) (5.2.3)
ZIEA)4+Z(O‘7W) j=1 kM—i_E j=1
X exp (—Wl (Xl) — W(XM, ThMA41y--+y ThM+L, o,..., 0)) (524)
N EM+£
X exp (_WQ(xk}M+17 e l“k:MJre)) R(zy) ] daj, (5.2.5)
j=1
Where x; = (T4(j—1)+1,- - -, Tk;) and the partition functions become:
" kM+£ M-
Zypry o, W) e H F(xj,a H W(x;,X;11)) (5.2.6)
EM+¢
x exp (—Wi(Xam, TeM+1, - - ThM 40, X1)) 1_[ dz; (5.2.7)
, EM+0—1 M-1
Zli]\zl+é(047 W) = JX,CMH H F <96j,a (1 5 +£)> 1_[ exp (—W(x;,%X;41)) (5.2.8)
j=1
X exp (_W(XMa-TkMJrla e @0y 0y, 0) = Wo(Zparg,s - - - 7$kM+€)> (5.2.9)
kM40
X exp( W1 (x1 ) (zn) H dz;, (5.2.10)

we set Z](\?)(a, W)= ZJ(\‘,s)(a,G), s=1,2.
On the space L?(X*, B¥) we introduce the standard scalar product for f,g e L?(X* BF) as

i) = | s, (5211)

Furthermore, for I,.J c R, and E a normed space, denote by C*%(I x J, E) the functions f: I x J — X
that are C*® (respectively C¢) with respect to the first (respectively the second) variable. If s = d, then
we set CUI x J,E) = C%Y(I x J, E), and if the normed space £ = C we just omit it.

Transfer operator for partitions functions. As we already stated, in the first part of the section,
we apply the transfer operator method in order to compute Ey [e™*#] Ey [e7"#] . In particular, we
prove the following theorems

Theorem 5.2.1. Under Assumptions 5.1.1. Consider a real function H : C — R such that TrH(L)
is circular, and let W be the seed of TrG(L) + itH(L), thus W(x,y) = V(x,y) + itU(x,y) for V,U :
Xk x X* — R seeds of TrG(L), TrH(L). Furthermore, assume that U € LY(X?F exp(—2V)), with
N 3d > 6. Then, there exists an € > 0, and two complex valued functions \ (y,t) € CH4(R, x [—¢,€])
and ci ¢(y,t) € CL4R x [—¢,€]) such that for all ge N :

(1)
) Z t
Ey [e”#TH] = Ziaree@,t) ere(a, )Mo, )2 (1 + o(M™9)) , as M — o, (5.2.12)

1
Zi (@, 0)
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for |t| < e, here Zﬁ&ﬁ(a,t) = ZS&H(a, V +itU). Furthermore,

A(z,0) =1, (5.2.13)
cke(x,0) = 1. (5.2.14)

Moreover, there exist two functions ¢y ¢(a,t) € CH4(R x [—¢,¢]) and Ma,t) € CH4(R, x [—¢,e]) such
that there exist two constants C1,Cy > 0 such that for all q € N:

Cl < Ek-’g(a,t) < OQ,

St
Mo t) = 2ast) (5.2.15)
(o, 0

Z401(00) = Beala OX@, M (14 0(071) |

>

>

In the next theorem, we prove an analogue decomposition of the partition function for the second
type of measure. This decomposition involves the same function A(y,t) as in Theorem 5.2.1.

Theorem 5.2.2. Under Assumptions 5.1.1. Consider a real function H : C — R such that TrH(L)
is circular (HP 5.), and let W be the seed of TrG(L) + itH(L), thus W(x,y) = V(x,y) +itU(x,y) for
V,U : X¥ x Xk — R seeds of TrG(L), TrH(L). Furthermore, assume that U € L4(X?* exp(—2V)), with
Nasd>6.

Then, there exists an ¢ > 0 and cx o0 (y,t) € CHYR x [—e¢,€]), such that, with X given by Theorem
5.2.1,

. Zi (o) M2
By [e7TH] = 22 — o par(ast) [T A et ) (1+ om(D)) (5.2.16)

Z(2) (a O) ” L - M

kM 4L\ Jj=1
for |t| < e. Furthermore,

Az,0) =1 (5.2.17)
7111% crem(a,t) =1 uniformly in M (5.2.18)
the remainder op (1) is independent of t € [—e,€]. (5.2.19)

Moreover, there exist two functions Gy ¢ (v, t) € CH(R . x [—&,€]), Aa,t) € CV4R, x [—¢,e]), and
three constants C1,Cy > 0 and p € N such that

Cle < Ek)[yM(Cmt) < CQNP,
Ao t) = 228
e, 0) (5.2.20)

M—-2 .
Zie(et) = Gopar(ast) [T X <a]\34,t> (1+ oar(1)) .
j=1

Since the proof of these results is technical, we postpone it to Section 5.4.

Generalization of Nagaev—Guivarc’h method. In this second part, we need to generalize some
standard results from the fluctuation theory of Nagaev—Guivarc’h [Goul5] to our situation. Specifically,
we prove the following:



5.2. NAGAEV-GUIVARC'H THEORY: A TRANSFER OPERATOR APPROACH 137

Theorem 5.2.3. Let (X,,)n>1 be a sequence of real random variables with partial sums (Sp)n=1 € R.
Assume that there exists ¢ > 0, two functions \(t) € C1([0,¢)), c(t) € C°([0,¢)) and h,(t) € C°(]0,¢)),
such that for all t € [—e,¢€], and all n = 1 we have

E[e 5] = c(t)A()™ (1 + hn(2)) | (5.2.21)

Where lim,, o, n/m = k € N.
Furthermore, assume that:

a. there exists A, 0% € C such that \(t) = exp (—iAt — 02t?/2 + o(t?)) as t — 0;
b. hp 22250 uniformly in [—¢, €], and h,(0) = 0;
c. ¢(0)=1.

Then A € R, 02 > 0, and (S, —nA/k) /\/n converges to a Gaussian distribution N(0,02/k) as n
tends to infinity.

Proof. First, evaluating (5.2.21) at t = 0, we deduce that A(0) = 1. Then, we use the asymptotic
expansion of A(t), and properties b.-c. to prove that

E [exp (—it Sn = mA)] 1.
n n—%

Thus, by Lévy theorem [Wil91], we deduce that S, /n — A/k converges in distribution to 0. So, since
Sy, is real, then A € R. Exploiting again the asymptotic expansion of \(¢) and properties b.-c., we show

that E [exp (—itw)] converges to the function exp (—%) By Lévy theorem [Wil91], this must

v
be the characteristic function of a real random variable, proving that o2 > 0, and that (S, — nA/k)/\/n
converges to a Gaussian distribution N'(0,02/k). O

Further, we prove the following:

Theorem 5.2.4. Let (X,,)n>1 be a sequence of random variables with partial sums (Sp)n>1 € R. Assume
that there exists € > 0 and functions \(z,t) € C10([0,1) x R), ¢, (t) € CO(R), and h,(t) continuous in 0,
such that for all t € [—e,¢€], and all n = 1 we have

E[e7"%"] = ¢, (t (ﬁ (j/m,t) ) (1+ ha(1)) (5.2.22)

where lim,,_,., n/m = k.
Furthermore, assume that:

a. there exists two continuous functions A(x), o%(z) : [0,1] — C such that
Mz, t) = exp (—iA(z)t — 0% (x)t?/2 + o(t?)) as t — 0;
b |[halle ==L 0 uniformly in [—¢, €], and h,(0) = 0;
c. cp(0) =1 and limy,_yo ¢ (t/5/m) = limy, o e (t/n) = 1.
Then So z)dx € R, So x)dx e Ry, and f( W) converges to a Gaussian distribution

N( oo éz)dm) as n tends to infinity.
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Proof. First, let t = t~/n, then by hypothesis c.

n—ao0 n—xX

~ (L A(z)da
e m —it| S, /n—20—
lim ]E[e—”(sn/”—% i A“/m))] = lim E le (CUSS. >] =1. (5.2.23)

L A(x)

Thus, by Levy theorem, S,,/n — SO% almost surely, thus, since S, € R, this implies that Sé A(z)dx €

R. Consider now t = f/ A/n, following the same reasoning one conclude that

o~ § A(z)dz
lim E [e—if\/ﬁ(sn/n—% D1 A(Z/m))] — lim F le_Ztﬁ(STL/n_U % )]
(5.2.24)

2 cm 2
= lim 6_;7 22:1 02“/7’7’) = e_%c Sé 02($)d$
n—w

)

72
thus, by Lévy theorem [Wil91], e~ 5% 30 7° ()47 1t be the characteristic function of a real random variable,
proving that Sé o?(r) e R,. O

Proof of Theorem 5.1.3-5.1.5. We are now ready to prove Theorem 5.1.3-5.1.5, for convenience, we
split the proof into two Lemmas, which combined give the full proof of our results.

Lemma 5.2.5. Under hypotheses 5.1.1. Consider u,glj\)4+e, u,(j\)/[% (5.2.1)-(5.2.3), and let H : C > R
such that TrH(L) is circular (HP.5) with seed U, so that W + itU is the seed of TrG(L) + itH(L). Let
SkM+g = TI'H(L), Then

(1) (2)
E, [efitSkZ\/I+£] — ZZI\)/[+7M7 E, [e*itSkzu+£] — Zg\)/[*iz(a’t), (5_2_25)
ZkM+e(av0) ZkM+£(a’0)
where By [-], E2[] are the mean values taken with respect to ,LL,(:]&H, usj\)/ﬂre respectively. Furthermore,

assume that U € LY(X?* exp(—2W)), with N 3d > 3. Then, there exist four continuous functions

A(z) : Ry — R, A(z) : Ry — R, (5.2.26)
o(z) : Ry — R, o(z) : Ry — R, (5.2.27)
such that under u,(clj\)/[M,

(Searse — (KM + ) Aa)/k) /NRM + 1

converges to a Gaussian distribution N'(0,02(a)/k) as M tends to infinity, and under u,(f]&_*_e,
(SkMH — (kM + 0)A(a) /k) INKM + ¢

converges to a Gaussian distribution N'(0,5%(a)/k) as M tends to infinity.

The proof of the previous result is a trivial application of Theorem 5.2.1-5.2.2-5.2.3-5.2.4. Furthermore,
we can interpret the previous relations through the free energies of u,(:]&%, u,(j\)4+e (5.2.1) -(5.2.3):

Lemma 5.2.6. Under the same hypotheses and notation of Lemma 5.2.5. Consider the two measures

/LI(:]\)/[_M, “l(czj\)/[M (5.2.1)-(5.2.3), and define the free energies as

m(ZY (o, W)
(1) T M0\ .
FileW) == Jm —— e Mow kM40

then, using the same notation as in Lemma 5.2.5, the following holds:
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iii. Aq) = ikd, F@ (a, W + itU)

lt=0

i. FD(a, W) = 0o (aF @ (a, W))
. o(a) = koZFD (o, W +itU),,_,
ii. A(a) = ik6, F N (o, W +4tU)),_, v. 5(a) = ko}FP (o, W +itU)), _,
Remark 5.2.7. The previous theorem implies that
Al@) = 0a(@A(a)),  o%(a) = du(ad?()). (5.2.29)

Proof. To prove i., we can just compute the free energy of N/(clj\)4+za u,(j\)/IH using Theorem 5.2.1-5.2.2. For

FD(a, W) we deduce immediately that

1 (5.2.15) . M ~
m(Z ) =" =1 n(Xa,0))

(1) _ M
F e, W) RSy

Mo BM + 0

| (5.2.30)
— In(X(0,0)).

The proof for F(2) (o, W) follows in the same way. We now prove ii. —iv. First, we notice that following
the notation of Theorem 5.2.3 - 5.2.1 :

c(t) = cpea,t), hp=1+0M"7), At)=Xot), (5.2.31)
thus to compute explicitly A(a, W), o(a, W) we have just to expand A(«,t) around ¢ = 0
Ma,t) = 1+ toMa,0) + g@f)\(aﬁ) +o(t?), (5.2.32)
which implies that
AMa,t) = exp <t(3’t In(A(a, t))),_, + g@f In(A(a, t))},_, + o(tg)) . (5.2.33)

This implies that A(«a) = —id; In(A(, 1))

O In(Ma, t))|,_, = 0¢ In(AM(e, 1))

energy (5.2.30) we conclude.
To prove iii. — v. we proceed in the same way, thus following the notation of Theorem 5.2.4 - 5.2.2:

o%(a) = =02 In(\(a, t)) From (5.2.15), we deduce that

thus from the previous expressions and the explicit form of the free

[e=0 > [t=0"

‘t=07

en(t) = coonr(ast), hn=1+0(1), AG/M,t)=A (a&,t) . (5.2.34)

Thus, as in (5.2.33) except that o — aﬁ', we expand A (a%, t) around t = 0, leading to

0 [t=0
1 (5.2.35)
52(a) = 07 (J ln()\(am,t))dm)
0 |t=0
which concludes the proof. O

Remark 5.2.8. We notice that the Lemma 5.2.6, and Lemma 5.2.5 imply that we can compute the
expected values, and the variances of Skyr+e according to u,(:]\)/”z, u,(f]\)/He just computing derivatives of
the corresponding free energy. This property is broadly used in the physics literature, but we lacked of a
precise statement, and of a proof for the general result. Furthermore, we can compute the expected value,

and the variance of Sgare according to “I(cll\)/l+€ starting from the corresponding values for /1,(621\)4+€. Thus,

we have reduced all this problem to the computation of the free energy of u,(ja”[
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The proof of both Theorem 5.1.3 and Theorem 5.1.5 follows from the four previous lemmas. Thus, we
have completed the proof of our main theorems, and now we show how to apply them to some integrable
models, and the 8 ensembles in the high-temperature regime.

5.3 Application

In this section, we show how to apply Theorem 5.1.3 to obtain a CLT for some integrable systems and
for the classical S ensembles in the high-temperature regime. Namely, we prove a CLT for the systems
of table 5.1.

Specifically, we are able to prove that all the integrable systems in table 5.1 in the periodic case
have a Generalized Gibbs ensemble of the form u,(cl& +¢ (5:2.1), that is the reason of the label "type 1".
Meanwhile, the 8 ensembles at high-temperatures are characterized by a probability distribution of the
form ,u,(jal +¢ (5.2.3), that is the reason for the label "type 2". In this way, we proved a further connection
between the theory of integrable systems and Random Matrix Theory. Indeed, in view of Theorem 5.1.3
and Theorem 5.1.5, for any integrable system in the previous table, we can relate its free energy, moments,
variances and covariances with the corresponding quantities of the random matrix model on the same
line. Moreover, in the final part of this section, we consider the family of INB lattices that do not have
a known ( ensemble counterpart. Despite that, we are still able to derive the existence of a polynomial
central limit theorem. Finally, applying Theorem 5.1.7, we are able to show that for the Toda lattice the
space-correlations between the local conserved fields and the currents decay exponentially.

5.3.1 The Toda lattice, and the real 5 ensemble at high-temperature

In this subsection, we focus on the Toda lattice, which is an integrable model, and its relation with
the real 5 ensemble in the high-temperature regime. The connection between these two systems was
first realized by Spohn in [Spo20c|, see also [Maz22, Spo20a]. In this seminal paper, the author was
able to compute the density of states for the Toda lattice when the initial data is sampled according
to a Generalized Gibbs ensemble in terms of one of the Gaussian [ ensemble in the high-temperature
regime. This was further developed in [GM22] where the authors obtained a Large Deviations Principle
for the Toda lattice, and they connect it to the one for the real § ensemble in the high-temperature
regime. In this paper, we further develop this analysis, obtaining a CLT theorem for these two systems,
and connecting them. This result is particularly relevant in the context of the so-called Generalized
Hydrodynamics, a recent physical theory that allows computing the correlation functions for classical
integrable models, for an introduction to the subject see [Doy20, Spo21]. According to this theory, one of
the main ingredients to compute the correlation functions for the integrable model at hand is to be able
to calculate the correlation functions for the conserved fields at time 0. Thanks to our result, we are able
to access these quantities. We show how to do it at the end of this subsection. We mention also the recent
work [GKM™23], where the authors made molecular dynamics simulations of the correlation functions
of the Toda lattice, and they compared them with the predictions of linear Generalized Hydrodynamics,
showing an astonishing agreement.

The Toda lattice. The classical Toda chain [Tod89] is the dynamical system described by the following
Hamiltonian:

HT(pa q) =

DN =
1=

N
P+ 2 Velgi—ay), Ve(a)=e4+w—1, (5.3.1)
j=1

J

with periodic boundary conditions g¢j4+n = g; +Q Vj e Z, Q > 0. Its equations of motion take the
form

_ OHrp ' .___6HT
q; = - =Dj, Pj= aqj

= V(g1 —4j) = Vrlgs —g¢j1), 7=1,...,N. (5.3.2)
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Tt is well known that the Toda chain is an integrable system [Tod89, Hen74], one way to prove it is to
put the Toda equations in Lax pair form. This was obtained by Flaschka [Fla74b], and Manakov [Man74]
through the following non-canonical change of coordinates:

aj == —pj, bj i= e3(U=0+1) = =373, 1<j<N, (5.3.3)

where r; = gj4+1 — ¢; is the relative distance.
Defining the Lax operator L as the periodic Jacobi matrix [vMT76]

ap by 0 bn
b1 as b :
L:= 0 by az - 0 , (5.3.4)
: br-1
by ... 0 by_1 an

and the antisymmetric matrix B

0 by 0 —bn
—b 0 b :
B:= 0 —by 0 0 ) (5.3.5)
T by
by ... 0 —by_: 0

a straightforward calculation shows that the equations of motions (5.3.2) are equivalent to

L=[B;I], (5.3.6)

where [B; L] = BL — LB is the commutator of two matrices. This form implies that TrL*, k = 1,..., N
are constants of motions for the Toda lattice, so the system is integrable. We call these quantities
conserved fields.

On the phase space R x Rf, we introduce the Generalized Gibbs Ensemble

N
[]03* '1b,50e7 """ dadb, (5.3.7)
j=1

dpr : !

M= 7T (@, P)
where P(z) is a polynomial of even degree with positive leading coefficients, and o > 0 is a pressure
parameter.

Our aim is to obtain a central limit theorem for the conserved fields when the initial data is sampled
according to (5.3.7). So, we want to apply Theorem 5.1.3 to this model. To do that, we need some
preparation. First, we recall the following result about the structure of the trace of periodic Jacobi
matrices which was proved in [GMMP20]:

Theorem 5.3.1 (cf. Theorem 3.1 [GMMP20]). For any 1 < m < N — 1, consider the matriz L given by
(5.3.4). One has

N
TeL™ = 3 Al (5.3.8)
j=1

(m)

where b, i= [L™];; is given explicitly by

m—1 m—1
B = Y pMma) [T e T 03, (5:3.9)

(n,q)eAl™) i=—T i=—m+1
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where it is understood a; = ajmod N+1, 0j = bjmod N+1 and A™) s the set

mi—1
A = {(n, q) e N2 x N Z (2n; + qi) = m,
= 5.3.10
Viz0, n;=0=n41=¢41 =0, ( )

VZ<0, n2+1=O:>TL1=q2=0}

The quantity m := |1}, Ng = N U {0} and p{™ (n,q) € N is given by

-1
o™ (n, q) ::<n1 +no + (Jo) (711 + no) 1—[ (nz + g1+ i1 — 1) (nz + i1 — 1) (5.3.11)

qo o qi+1 Ni4+1

i=—

it—1
This Theorem immediately leads to the following Corollary

Corollary 5.3.2. Fiz m € N, and consider the matriz L (5.3.4). Then for N big enough, there exists
some k = k(m) € N, and two polynomial functions V : R?** x R?* > R, V; : R2k+ Ri’”é — R such
that

M—1
Ter: Z V(aj7bj7aj+17bj+1)+‘/vl(aMaak‘M+17"'7akM+Zval7bM7bkM+1;"'7bk]V[+Z7b1)7 (5312)
j=1

where N = kM +{, aj = (aj—1)k+1, A(j—1)k+2> - - - Ojk), and similarly for b;.

Remark 5.3.3. In other words, the function TrL™ is circular in the sense of Hypotheses 5.1.1, HP. 5.
Furthermore, we notice that the local potential V (X1,y1,X2,y2) s bounded from below, this can be proved
using the explicit formula in Theorem 5.3.1 or applying the properties of super-Motzkin paths used for
the proof of the theorem in [GMMP20)].

We apply the previous Corollary to the Gibbs measure of the Toda lattice (5.3.7), so it can be written
as

N M
dur ) H b?ail]lbj>0 exp ( — Z V(aj,bj,a;11,bj41)
j=1 j=1

1
-~ ZL(B.P) (5.3.13)

—Vi(anm, apr+1s- -5 Qnige, a1, b, bpnrga, - - ,bkM+e,b1))dadb-
We would like to apply Theorem 5.1.3 to the previous density with F(b) = 2>~ and W = V, but in

this case F ¢ L%(R,), so we have to take care of this issue. To do it, we fix ¢ > 0, and consider the
following measure

N M
1 20—1_—e(a?+b?)
dHT = W}:{lbj e AL ]]_aj>0 exp (— Z V(aj,bj,aj+1,bj+1)

=1
—Vi(am, agnr+1s - - aknte, @1, bar, bgars, - - biare, br) (5.3.14)
N
+e )l +b?)dadb,
j=1

this is exactly the same measure as before, but, following the notation of Theorem 5.1.3, we can now set
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F(a,b, a) _ b2a71675(a2+b2) ;
(5.3.15)

2k
Wi(aj,bj,aj11,bj1) = V(aj, bj,a;11,bj1) Z (j—1 k+n+b(j Dk+n

w\m

These functions satisfy the hypotheses of Theorem 5.1.3, so we can apply it and deduce the following

Corollary 5.3.4 (CLT for the Toda lattice). Consider the Laz matriz L (5.3.4) of the Toda lattice
distributed according to the Generalized Gibbs Ensemble (5.3.7), and assume that P(z) is a polynomial
of even degree with positive leading order coefficient. Then, defining the Free energy Fr(a, P) as

Fr(a,P) = — lim %m(zﬁ(a,m), (5.3.16)

N>

for all j € N fized, we have the following weak limit

. Tl —E [TrLj] 9
]\}LH}L T N(0,07%). (5.3.17)
Where

E [TrL’] = iNOyFr(a, P + ita’) o? = |02 Fr(a, P + itx?) (5.3.18)

[t=0 7 |t=0| :

Moreover, we can also apply Theorem 5.1.5 to compute the correlation between the conserved fields
at time zero, indeed the theorem immediately implies that

5 E [TrLjTrL"] —E [TrLj] E[TrL"]
NILI}% N

= 0y, 01, Fr(a, P +itya? + itax™) (5.3.19)

‘tl‘t2=0 ?

where the mean value is taken with respect to the Gibbs measure of the Toda lattice (5.3.7). We notice
that this implies that we can compute the susceptibility matrix of the Toda lattice (5.1.24) in terms of
the derivative of the Free energy.

The Toda chain’s currents

Since the conserved fields are local quantities, they must satisfy a local conservation law. Following the
notation of [Spo22b], we define

[n.N _
Qj o L?J )

(5.3.20)

where L € Mat(N,R) is (5.3.4). We can easily compute the evolution equation for such quantities as

d n],N n n
%QE’L] = (BL" - L"B) = J= 1L]] 1 bJLJ-HJ (5.3.21)

we have

Defining Jj[n]’ =bj_1L7; 4,

d [N _ SN _ nlN
@Qj =Jj =i

and we say that J ][n]’N

LY as

is the current of the local conserved field Qg-n]’N. In particular, defining the matrix

i (5.3.22)

[ Li; ifj<iori=1,j=N
0 otherwise
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we can recast the previous definition as

n],N n
TN = (LY. (5.3.23)
We notice that both Qj[-n]’N and J J["]’N depend on time, and we adopt the convention that if not explicitly
written the evaluation is at time 0. Furthermore, we define

N N
QUIN = 3 QE‘HLN’ g = 3 J]["]’N, (5.3.24)
i=1

j=1

and we refer to QU as the n'"-conserved field, and to JI-N as the n'-total current.

The evaluation of the expected values of both the currents .J J["] N and the total current JI"-N according
to the Generalized Gibbs ensemble (5.3.7) is one of the crucial steps to apply the theory of Generalized
Hydrodynamics to the Toda lattice, as it is explained in [Spo22b]. In this manuscript, the author used
some heuristic arguments to explicitly derive the expression for these quantities, here we rigorously justify
his argument applying Theorem 5.1.7.

First, we extend the definition of an]’N and JJ["]’N for n = 0, setting Q][-O]’N = rj, and J][O]’N =

—-pj = —le]’N. We notice that Zj\;l J][O]’N = — Zjvzl QE”’N is still a conserved field. We are now in

position to show how to compute the limiting Toda average current
lim —F [J[”W] (5.3.25)
Noxn N ’

in terms of the susceptibility matrix (5.1.24) of the Toda chain, so in particular of the derivative of the

Free energy (5.3.19). Indeed, we prove the following:

Lemma 5.3.5. Consider the Lax matriz L (5.3.4) of the Toda lattice distributed according to the Gener-
alized Gibbs Ensemble (5.3.7), and assume that P(x) is a polynomial of even degree with positive leading
order coefficient. Then, for any fized n € N, and o € R defining the total currents JU"N as in (5.3.24)
we have the following equality

ds. (5.3.26)

[t1,t0=0

1 [e3%
lim —E [J[”]’N] = J’ 01, 01, Fr(s, P + it1x + itox™)
N 0

N>

Proof. In view of the cyclic structure of the measure pr and of the total current, we deduce that

%E [ J[nJ,N] —E [ Jl[”]’N] . (5.3.27)

Furthermore, for any fixed IV, we deduce, by differentiating with respect to the parameter «, the following
equality

N N
0oE [J{"J’N] = —Cov (J{"LN 5% rj> = -3 Cov (Jl["]’N ; ngw) : (5.3.28)
j=1 j=1
where we defined for any functions f,g € L>(X¥, ur)

Cov(f; 9) =E[fg] —E[f]1E[g] . (5.3.29)

We show now that the following limits coincide

N> 4

N N
tim 37 Cov (715 Q) = tim 7 Cov (175 QULY) (5.3.30)
j=1 j=1



5.3. APPLICATION 145

Indeed, for any n,m > 0 and t € R
n m], d n m
Cov (1™ (1) = 7 (1) QI7(0)) = = F0ov (@1 (1) QIM(0)
d n m],
= —=Cov (I (0): QUYL (1) (5.3.31)

- Cov (@10 5 Y- - R (-0).

where we used that s — Qg-n]’N(t + s)ng]’N(s) is constant in law under the Toda dynamic, and the
periodicity of the matrix L (5.3.4). Denoting the difference operator d;f(j) = f(j + 1) — f(j), equation
(5.3.31) shows that

0; (cov (J}"]’N(t) : ng]’N(O)) - cov( [N gy, J][V"i];.L(—t))) =0 (5.3.32)

Evaluating the previous expression at ¢ = 0, we deduce that there is some constant cy, independent of
7, such that

Cov (J[”]»N; ng],N) (Q1 7 leﬂz) - (5.3.33)

Furthermore, since both Q[n] N, and J [N arve local quantities, in view of Theorem 5.1.7, we deduce
that limy_,.. Ney = 0. So evaluating the previous expression for m = 0, we deduce (5.3.30). Thus, in
the large N limit, we can recast (5.3.28) as

N N
lim 4 E[J["] N] = — lim ) Cov (J{O]*N ; QE.”]’N) = lim )] Cov (QE”’N : QE"]’N) . (5.3.34)
1

N— o 4 N 4
j=

Moreover, in view of the periodicity properties ot the conserved fields and (5.3.19)

1
lim 9,F [Jl n ] = lim —Cov (Q[”’N ; Q[”]’N> = 0,01, Frla, P + ity + itaa™)

N> N—o

(5.3.35)

[t1,t0=0 *

Noticing that lim,_,g E [Jl["]’N] = 0, and that we can always uniformly bound E [JI["J’N] by a constant

independent of N, the previous equation implies that

lim B[] = f 00 00, Fr(s, P+ itz + itsa™), . ds. (5.3.36)
N> 0

lt1.,t2=0

So, we conclude. O

The real S-ensemble in the high-temperature regime. The real S-ensemble is the probability
measure on RV given by

APy (A1, ..., AN) = H|)\ — Niffe Tm PN (5.3.37)

1<J

3%(8,P) ﬁ,
where 8 > 0 and P is a continuous function such that the partition function

356.P) = [ T = aem i roax

i<j
is finite. This is the case if P grows to infinity fast enough, namely if for some 3’ > max(1, §),

lim inf P(z)

> 1, 5.3.38
|x| > Nﬁ’ln|x| ( )
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see [AGZ10, equation (2.6.2)].
Dumitriu and Edelman showed in [DE02] that the 8-ensemble admits a tridiagonal representation

aiq b1 0
bl a9 b2
H= , (5.3.39)
bn-1
0 bnv_1  an

where the entries of the matrix are distributed according to the following probability measure

dpy = H b/ N7, g exp (~TrP(H)) dadb. (5.3.40)

ZH(B. P) /6’ ; .
Then, the eigenvalues of H are distributed according to dPy (5.3.37). An important example is the case
P(z) = 22/2 for which we recover the classical Gaussian 3 Ensemble, see [AGZ10, Section 2.5], and the
distribution pg factorizes in the following way: the entries of H can be seen to be independent (modulo
the symmetry of the matrix), Gaussian N(0, 1) on the diagonal, and the law of the off-diagonal elements

is given by renormalized chi variables
1

ﬁxw—j)ﬁ )

where the variable X is y,.-distributed if its law is given by the density function

bj ~

mm—le—w2/2

1=y

We are interested in the so-called high-temperature regime for this model, specifically, we are interested
in the infinite size N limit, in such a way that g = QWO‘ for some a > 0. In this regime the probability
distribution (5.3.40) becomes

1 N2l o1y
durr = o= || b; (=%)=1y, o exp (~TrP(H)) dadb. (5.3.41)
ZN(ﬂ) i=1

This regime has drawn a lot of attention from the random matrix and statistical physics communities
lately. Introducing the empirical measure by

1N
il O,
N;A

this model was first considered in [ABG12], where the authors were able to compute the limiting empirical
measure for this model when P(z) = 22/2. Recently, Garcia-Zelada showed in [GZ19] that under a general
choice of P, the sequence of empirical measures satisfies a large deviation principle with strictly convex
rate function, ensuring the convergence of jiy. Although the limiting measure is not explicit, its density
pL satisfies for almost every x the nonlinear equation

P(z) - 2a f log [z — ylp? (y)dy + log pF () = AP
R

for some constant \Y, see [GM22, Lemma 3.2] for example.

The fluctuations of the eigenvalues in the bulk and at the edge of a configuration were studied for
example in [BGP15, NT18, NT20, Pakl8, Lam21]. These fluctuations were shown to be described by
Poisson statistics in this regime. With the choice P(z) = x?/2, Nakano and Trinh proved in [NT18] a
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Central Limit theorem for this ensemble, namely they proved that for smooth enough f : R — R, the

random variables
VN (j fai ~ | fpfdm)
R R

converge towards a centred Gaussian variable with variance depending both on o and P. In [DGM23], the
authors showed this central limit theorem for general confining potentials and smooth enough, decaying
at infinity test functions. In this paper, we consider the case where P is a polynomial of even degree > 2.
We deduce here from Section 5.2 a central limit theorem for polynomial test functions.

Indeed, in view of Corollary 5.3.2, following the same reasoning as in the case of Toda lattice, we can
apply Theorem 5.1.3 to the real § ensemble in the high-temperature regime, thus we deduce that

Corollary 5.3.6 (CLT for Gaussian § ensemble). Consider the matriz representation (5.3.39) of the
real B ensemble in the high-temperature regime, and let P(x) be a polynomial of even degree with positive
leading order coefficient. Then, defining the Free energy Fu(a, P) as

Fu(a, P) = — lim %IH(Z}C,(@,P)), (5.3.42)

N—ox
for all j € N fized, we have the following weak limit
TrH’ —E [TrHj]

: N 2
]\}I_I)I\lw IN N(0,07), (5.3.43)

where

E[TrH’]| = iN0 Fp (o, P + ita’) 0% = |02 Fu(a, P +ita?) (5.3.44)

|t=0 ’ |t=0| :

Thus, we obtained a central limit theorem for the real 5 ensemble in the high-temperature regime
with polynomial potential.

Furthermore, we are in place to apply the second part of our result; indeed, we deduce the following
identities

Ou(0t Fr(a, P + itwj)h:o) = Oy Fr(a, P + itxj)h:o , (5.3.45)
0o (0} Fr (o, P +ita?),_,) = 07 Fr (o, P + ita?) o

|f,=(J
so we are able to compute both the moments and their variances of the Toda lattice starting from the
one of the real  ensemble at high-temperature.

Remark 5.3.7. Applying the second part of Theorem 5.1.3, we deduce the following equality valid for
the currents of the Toda lattice:

ds = a0y, 0, Fr (o, P + ity + itaz™)

|t11t2=0'

(5.3.46)

[t1,t5=0

lim E [J{”]’N] = JO 01,00, Fr(s, P + ity + itya™)

N—>x

5.3.2 The exponential Toda lattice, and the Laguerre § ensemble at high-
temperature

In this subsection, we focus on the Exponential Toda lattice and its relation with the Laguerre 5 ensemble
in the high-temperature regime [FM21]. These two systems were considered in [GGGM23]. In this paper,
the authors considered the classical Gibbs ensemble for the Exponential Toda lattice and were able to
compute the density of states for this model connecting it to the Laguerre a ensemble [Maz22], which is
related to the classical 8 one in the high-temperature regime. Here we consider both the Generalized Gibbs
ensemble for the integrable lattice and the Laguerre 8 ensemble at high-temperature with polynomial
potential, and we obtain a CLT for both systems, furthermore, we connect the two in the same way as
we did for the Toda lattice and the real 5 ensemble.
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The exponential Toda lattice. The exponential Toda lattice is the Hamiltonian system on RV
described by the Hamiltonian

N N
= Z e P4 Z elimdi+t - pig; € R, (5.3.47)
i=1 =
with canonical Poisson bracket. Here, we consider periodic boundary conditions
4G+N =q; +Q, pjyn=pj, VjEL, (5.3.48)
and 2 > 0 is an arbitrary constant. The equations of motion are given in Hamiltonian form as
0H .
q]: a E :_eip]7
g% (5.3.49)
pj = — £ _ e9i-179% _ %9i—49i+1
aq]‘
Following [GGGM23], we perform the non-canonical change of coordinates
o P .
;= e 7, Yy =e = o e 7, ri =qj+1—4q;, j=1,...,N, (5.3.50)

to obtain a Lax Pair for this system. Indeed, in these variables, the Hamiltonian (5.3.47) transform into

Pﬁ

Hg(x,y) = (x +yj) (5.3.51)
j=1
and the Hamilton’s equations (5.3.49) become
b= i) =L ), G L, 652
where zn11 = 21, Yo = YN.
Let us introduce the matrices L, A € Mat(N) as
ity T TNYN
zyr w3yl T2y
L= S g 7 (5.3.53)
IN-1YN-1
TNYN INYN-1 TR YR
0 T1y1 —TNYN
—z1y1 0 maye
1 . . .
A== S .. , (5.3.54)
2
IN-1YN-1
TNYN —TN-1YN-1 0

The system of equations (5.3.52) admits the Lax representation
=[A, L] (5.3.55)

Hence, the quantities H,, = TrL™, m = 1,..., N are constants of motion as well as the eigenvalues of L.
For this integrable model, we define the generalized Gibbs ensemble as

dugr = H.Q? Za— l]lezollyj/oe TeP(L) 4xdy , (5.3.56)

Z%(
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where «,y > 0, and P is a real valued polynomial with positive leading coefficient. ZﬁE (a0, 7, P) is the
normalization constant.

Remark 5.3.8. The definition of our Gibbs ensemble is slightly different from the one given in [GGGM23],
indeed there the authors were considering just the classical Gibbs ensemble for this model, so the case
P(z) = x/2.

We notice that the structure of (5.3.56) resembles the one of Ml(cl]\/)[+€ (5.2.1), thus we want to apply
Theorem 5.1.3. To do this, we have to identify the functions F,W. First, as an application of Theorem
5.3.1, we obtain the following corollary

Corollary 5.3.9. Fiz m € N, and consider the matriz L (5.3.53). Then for N big enough, there exists
some k = k(m) € N, and two polynomial functions V : R2* x R?* - R and V; : Rf_]”e X Ri’”e - R
such that

M
TrL™ = > V(X), Y5 Xj41, Yi+1)
i=1 (5.3.57)
+ V1(XM,$1¢M+17 sy LM +£, X1 YM s Y M +15 - - - 7ykM+27Y1),

where N = kM + ¢.

As in the Toda lattice case, if we naively set F'(x,y) = 225 ~1y22=1 this would not fit in the hypotheses
of our theorem, since this is not an LQ(Ri) function. As in the previous case, we have just to consider a
slight modification of the measure:

N 2 2 2.2
1 e T —‘,— - % 4ys
e = gy Lm v ew (‘zy) 1 0l s0e PO axdy | (5.358)
N s I ji=1
for fixed € > 0, but small. In this way, defining F(x,y, a) = 225 1929~ exp(—e ””2;“2 ), and W (X1, y1,X2,y2) =

V(x1,¥1,%X2,y2) — %Z?il ;U? + y]2 we are in the same hypotheses as Theorem 5.1.3, thus we deduce the

following corollary

Corollary 5.3.10 (CLT for the Exponential Toda lattice). Consider the Lax matriz L (5.3.53) of the
Ezxponential Toda lattice distributed according to the Generalized Gibbs Ensemble (5.3.56). Then, defining
the Free energy Fug(a,vy, P) as

1 Hp
Fer(a,v,P)=— 1\}1—I>HL N In(Zy”(a,7,P)), (5.3.59)
for all j € N fized, we have the following weak limit

. TrL7—E [TrLj ]
lim —m——=

N 2
NS N N(0,0%), (5.3.60)

where

E[TrL/| = iNé.Fer(o, v, P + ita?) o? = |02 Frr(a,y, P +itx?) (5.3.61)

[t=0 7 |t:0|
The Laguerre S ensemble in the high-temperature regime. The Laguerre § ensemble is a ran-
dom matrix ensemble introduced by Dumitriu and Edelman in [DE02]. It has the following matrix
representation
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2
) T1Y1

2 2
T1Y1 T3+ Y7 Taye

0= , (5.3.62)
TN-1YN-1
TN_1YN—1 TR+ YR_1

where the entries of @) are distributed according to

N
1 B(M—j+1)— B(N—3)
dur = 750 j[[lxj - H yPWN=D=11, ~gexp (-TrP(Q)) dxdy, (5.3.63)
where M is such that limy_ oo N/M =~ € (O7 1], and P can be any continuous function such that the
partition function is well-defined, for our purpose we consider P(z) to be a polynomial.

The remarkable property of this ensemble is that it is possible to explicitly compute the joint eigenvalue
density as

N
AP = ———— H AFOI-N+D-1) o[ T = Ale dA. (5.3.64)
3% (ﬁ,
We are interested in the so-called high-temperature limit, i.e. when g = ZWO‘, a € R, which was
considered in [ABMV13], where the authors were able to compute the density of states for the particular
case P(x) = z/2.
In this regime, the density (5.3.63) takes the form

1 N 22 (1-44) N
dpp = —r——— | [ 2} H "1, >0exp (-TrP(Q))dxdy.  (5.3.65)

The structure of this density resembles the one of dugj\)/f +¢(5.2.3), indeed proceeding as in the case of

the Exponential Toda lattice, we deduce the following corollary

Corollary 5.3.11 (CLT for Laguerre 8 ensemble). Consider the matriz representation (5.3.62) of the
Laguerre B ensemble in the high-temperature regime, and let P(x) be a real polynomial of degree at least
1. Then, defining the Free energy Fr(a,~y, P) as

1
Fr(a,v, P) = — lim Nm(zfv(a,% P)), (5.3.66)

N>

for all j € N fized, we have the following weak limit

lim TrQ! — E [Ter]

R 2
dim NG N(0,02), (5.3.67)

where ‘ ‘
E [TrQJ] = 1IN0 Fp (a7, P+ itx?)

Which is the perfect analogue of the result for the Exponential Toda lattice. Furthermore, we are in
position to apply the second part of our result, indeed we can deduce the following identities

= |02 Fr(a,, P +itx) (5.3.68)

|t=0 ) ‘t=0|

da(@liFr (0, v, P +ita?)), ) = 0 Fpr(a,y, P +ita?),_, . (5.3.69)
6a(aat -/—'.L(a,’.YvP +Zt‘rj)\t:0) = atFET(a773P+ Z‘tl'j)hzo’ N

thus, we can compute all the quantities involved in the previous theorems from the Free Energy of the
Laguerre ensemble.
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5.3.3 The Volterra lattice, and the antisymmetric 5 ensemble at high-temperature

In this subsection, we focus on the Volterra lattice and its relation with the Antisymmetric 5 ensemble
[DF10] in the high-temperature regime [FM21]. These two systems were considered in [GGGM23]. In
this paper, the authors considered the classical Gibbs ensemble for the Volterra lattice and were able
to compute the density of states for this model connecting it to the Antisymmetric o ensemble [FM21],
which is related to the classical 5 one introduced by Dumitriu and Forrester [DF10].

The Volterra Lattice. The Volterra lattice (or discrete KdV equation) is the following systems of N
coupled ODEs
dj = aj (a]‘+1 —aj,l), ] = 1,...,N, (5370)

here a; € Ry for j = 1,..., N, and we consider periodic boundary conditions a; = a;n for all j € Z.
Volterra introduced it to study evolution of populations in a hierarchical system of competing species.
This system was considered by Kac and van Moerbeke in [KvM75], who solved it explicitly using a discrete
version of the inverse scattering transform introduced by Flaschka [Fla74a].

Introducing on the phase space Rf the following Poisson bracket

{aj, ai}volt = ajai(5i7j+1 — 57;7]'_1) s (5371)

and defining the Hamiltonian Hy = Z;VZI a; , we can rewrite the equations of motion (5.3.70) in Hamil-
tonian form as
a; = {aj, Hi }ols - (5.3.72)

An elementary constant of motion for the system is Hy = H;\;l a; which is independent of H;.

The Volterra lattice is a completely integrable system, and it admits several equivalents Laz repre-
sentations, see e.g. [KvMT75, Mos75, GGGM23|. We use the one presented in [GGGM23]. Specifically,
we introduce the matrices L, A € Mat(R, N) as

0 Jar —\/an
—Jai 0 ap
L= : (5.3.73)
VAN -1
A/AN —A/AN_—-1 0

N
A=< 3 a5a551(Ejji0 — Bjiay) (5.3.74)
=1

N |

where E, , is defined as (ET,,S)”. =0.0J and Ejin; = Ejitn = Ej;;. Then, it follows that the equations
of motion (5.3.72) are equivalent to

L=[L:A]. (5.3.75)

In view of this Lax pair, we know that TrL* are constant of motion for the model.
Following [GGGM23], we introduce the Generalized Gibbs Ensemble of the Volterra lattice (5.3.70)
as
eTrP(L) vazl a;?‘*]lapoda
2@

dpvor(a) = (5.3.76)

where a > 0, P(z) is a polynomial of the form P(x) = (—=1)72% +l.o.t , otherwise the previous measure
is not normalizable, moreover, we notice that, in view of the antisymmetric nature of L, TrL?+!1 = 0.
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For this reason, we perform the change of coordinates ,/a; = x;, where we take just the positive root, so
the previous measure read

TP(L) TN 2a—1
eTrP( )]_[jzlxj Iy;>0dx

Z5" (o, P)

dpivors (x) = (5.3.77)

This Generalized Gibbs ensemble resembles the structure of ug]\)/f +¢ (5:2.1), we have just to identify
F,W. We notice that it is possible to generalize Theorem 5.3.1 also for the antisymmetric situation, so
we deduce the following Corollary:

Corollary 5.3.12. Fiz m € N, and consider the matriz L (5.3.73). Then for N big enough, there exists
a k= k(m) €N, and two polynomial functions V : RE x RX - R, V; : R x RY x R — R such that

M
TrL™ = ) V(X Xj41) + Vi(X0, Thars 1, - - Tkaro, X1) 5 (5.3.78)
j=1

where N = kM + /4.

Thus, following the same kind of reasoning as in the Toda lattice, section 5.3.1, and the Exponential
Toda lattice, section 5.3.2, we deduce the following:

Corollary 5.3.13 (CLT for Volterra lattice). Consider the Lax matriz L (5.3.73) of the Volterra lat-
tice distributed according to the Generalized Gibbs Ensemble (5.3.76). Then, defining the Free energy
-FVolt(Ol, P) as

1
Fvoir(a, P) = — lim Nln(zx"“(a,P)), (5.3.79)

N—>w

for all j € N fized, we have the following weak limit

. Tl —E [TrLj]
lim ———

R 2
Jim NG N(0,02), (5.3.80)

where

E[TrL?| = iN6Fyou(e, P — itz?) 0? = |02 Fvou(a, P —ita?) (5.3.81)

‘t=0 ’ \z=o| ‘
The Antisymmetric 8 ensemble in the high-temperature regime The Antisymmetric 5 ensem-
ble is a random matrix ensemble introduced by Dumitriu and Forrester in [DF10]; it has the following
matrix representation

0 X1
—X1 0 To
Q= , (5.3.82)
ITN-1
—IN-1 0
and the entries of the matrix @ are distributed according to
1 = B(N—j)-1
dpsc = ——— 2T 1,20 exp(TrP(Q))dx, 5.3.83
ZX}G(B,P)]]:‘E 7 =0 ( ( )) ( )

here P(x) can be any function that makes (5.3.83) normalizable, but for our purpose we will consider
P(z) polynomial of the form P(z) = (=1)72% + lLo.t.
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As in the previous cases, we are interested in the high-temperature regime for this model, so we set

B =22, and we rewrite the previous density as

dpac = ZAG H 1,20 exp(TrP(Q))dx . (5.3.84)

This regime was introduced in [GGGM23], where the author computed the density of states for this model

in the case P(x) = x2/2. The structure of this last density (5.3.84) resembles the one of u,(ci\)/[+e(5.2.3),
indeed proceeding as in the case of the Volterra lattice, we deduce the following corollary

Corollary 5.3.14 (CLT for Antisymmetric Gaussian § ensemble). Consider the matriz representation
(5.3.82) of the Antisymmetric [ ensemble in the high-temperature regime, endowed with the probability
distribution dpac (5.3.84), and let P(x) be a polynomial of the form P(x) = (—1)72% + Lo.t.. Then,
defining the Free energy Fac(«, P) as

Fac(o, P) = — lim NIH(Z Y(a, P)), (5.3.85)

N—x

for all j € N fized, we have the following weak limit

Tr@Q’ — E [Tr@Q’|

Jim TN — N(0,0%). (5.3.86)
where
E[TrQ’] = iN6\Fac(a, P —itad),_,, o =|0fFac(a, P —itz)),_,|. (5.3.87)
Which is the perfect analogue of the result for the Volterra lattice.
Remark 5.3.15. In view of Theorem 5.1.3, we deduce the following identities
Oa(0t Fag(a, P — ztg;ﬂ) _o) = Ot Fag(a, P —ita? )‘t=0 , (5.3.88)

0a(a6t Fac(a, P — ztacj)|t=0) = Ot Fac(a, P — zt:c])‘mo
5.3.4 The defocusing Ablowitz-Ladik lattice, and the Circular $ ensemble at
high-temperature

In this subsection, we focus on the defocusing Ablowitz-Ladik lattice, and its relation to the Circular
B ensemble at high-temperature [HL21, GM23, Spo22b]. This relation was highlighted by one of the
present authors and T. Grava [GM23], and independently by H. Spohn [Spo22b]. In these papers, the
authors were able to characterize the density of states of the Ablowitz-Ladik lattice in terms of the
one of the Circular 8 ensemble in the high-temperature regime. Moreover, in [GM23] the authors were
able to compute explicitly the density of states in the case of linear potential in terms of the solution
of the Double Confluent Heun Equation [DLMF] highlighting a connection with the Painlevé equations
[LN21, FIKNOG6]. In [MM23b], the two present authors obtained a large deviations principles for the
empirical spectral measure for any continuous and bounded potential.

The defocusing Ablowitz-Ladik lattice. The defocusing Ablowitz-Ladik (dAL) lattice is defined by
the following system of nonlinear equations
zaJ = _(aj+1 +aj-1— Zaj) + |aj|2(aj,1 + aj+1) s (5389)

where a;(t) € C. We assume N-periodic boundary conditions a;,n = a;, for all j € Z. The dAL
lattice was introduced by Ablowitz and Ladik [AL75, AL76] as the spatial integrable discretization of the
defocusing cubic nonlinear Schrédinger Equation for the complex function 1 (z,t), z € St and t € R:

i0pb(w,t) = —024p(x, t) + 2| (z, t)*e(z, t). (5.3.90)
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As for the others dynamical systems that we considered, the dAL is an integrable system. Its inte-
grability was proved by Ablowitz and Ladik by discretizing the 2 x 2 Zakharov-Shabat Lax pair [AKN74,
AL75] of the cubic nonlinear Schrodinger equation. Furthermore, Nenciu and Simon [Nen05, Sim05]
constructed a new Lax pair for this lattice. Following their construction we double the size of the chain
according to the periodic boundary condition, thus we consider a chain of 2N particles a1, ...,asn such
that a; = aj4n for j = 1,..., N. Define the 2 x 2 unitary matrix =;

. a . .
:j=<? _ﬁ)J), J=1,....2N, pj=4/1—|a;? (5.3.91)
Pj aj

and the 2N x 2NN matrices

—a2N P2N

[1]
(]
i

[1]
W
(1]
w

M = , . L= , : (5.3.92)

Hon—2 Hon—1
P2N asN

Now let us define the unitary Lax matrix

£=LM, (5.3.93)

that has the structure of a 5-band periodic diagonal matrix. The matrix £ is a periodic CMV matrix
[CMVO05]. The equations of motion (5.3.89) are equivalent to the following Lax equation for the matrix
E:

E=ilg, T+ (N1, (5.3.94)
where T stands for hermitian conjugate and
36 J=k
£l =1 &x k=j+1mod 2Nork = j+2 mod 2N (5.3.95)

0 otherwise.

Since the matrix £ is a periodic band matrix with fixed bandwidth, we can follow the same reasoning
as in the previous cases and conclude the following

Lemma 5.3.16. Fiz m € N, and consider the matriz € (5.3.93). Then for N big enough, there ezists a
k = k(m) € N, and two polynomials V : C¥ x C¥ - R, and V : C¥ x C{ x Ck — R such that

M
TrE™ = Z V(aj, aj+1) + V1(aM, Ak M+1y--+5 ALM+2, a1) 5 (5396)
j=1

where N = kM + /4.

Following [Spo22b, GM23, MM23b], we notice that the quantity Ky = H;V:l(l — |a;|?) is conserved,
so this means that if |a;(0)] <1 forall j =1,...,N then |a;(t)] <1lforall j=1,...,N forall teR, so
we can consider DV as our phase space, here D = {z € C||z| < 1}. On this phase space, we introduce
the Generalized Gibbs ensemble for the defocusing AL lattice as

a—1
1‘\[:1 (1—1a;])" Laepexp (=Tr (P (£))) d%a
Qe = L ) 5.3.97
HdAL ZJ%,AL(a,P) ) ( )

where P is a real-valued Polynomial, meaning that there exists a polynomial P such that P = %(f’) In
view of Lemma 5.3.16, we are in the hypotheses of Theorem 5.1.3, thus we deduce the following:
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Corollary 5.3.17 (CLT for defocusing Ablowitz-Ladik lattice). Consider the Lax matriz € (5.3.93) of
the defocusing Ablowitz—Ladik lattice distributed according to the Generalized Gibbs Ensemble (5.3.97).
Then, defining the Free energy Faar(o, P) as

ln(fo,AL(a, P))

Faar(a, P) = — lim 5N , (5.3.98)
for all j € N fized, we have the following weak limit
. Tr&l —E|Tr&d | 5
where . ' .
E[Tré?] = iNoyFaarle, P +ita?),_,, o> =|0;Faar(e, P +ital)),_, | (5.3.100)

The circular $ ensemble at high-temperature. The circular § ensemble was introduced by Killip
and Nenciu in [KN04]; as the other 8 ensembles that we considered, it possesses a matrix representation.
Consider the two block diagonal matrices

M = diag (£1,23,Z5...,) and &£ =diag(5g,Z2,Z4,...), (5.3.101)

where the block =;, j = 1,...,N — 1 are defined in (5.3.91), while =y = (1) and Exy = (@n) are 1 x 1
matrices. Then, we define € as follows
¢ = em. (5.3.102)

The entries of this matrix are distributed according to

- B(N—j)—1 - a
L2 (= JasP) ™ ep exp (T (P ) [, da; g2 (53109
2375, P) | -

As for the other 8 ensembles, one can explicitly compute the joint eigenvalue density for this ensemble
as

duc =

H |€i9j — et |’816je1r672-?]=1 P(eiej)d97 (5'3'104)
j<t

1
dPr = ————
“ 7 358, P)

here T = [—7, ), €% are the eigenvalues of €, and P can be any continuous function that makes the

measure normalizable. We restrict our attention to the class of real polynomial P(z).
We are interested in the high-temperature limit for this ensemble [GM23, Spo22b], so we set 5 = %",
obtaining

_ 20(1—4)—1 - a
T (1 Jay2)** %) 7 0, g oxp (T (P (@) T d%a, e
o . (5.3.105)

ZN (a,P)

So, in view of Lemma 5.3.16, we are in the hypotheses of Theorem 5.1.3, so we deduce the following

duc =

Corollary 5.3.18 (CLT for Circular § ensemble). Consider the matriz representation (5.3.102) of
the Clircular B ensemble in the high-temperature regime, endowed with the probability distribution duc
(5.3.105), and let P(x) be a real-valued polynomial. Then, defining the Free energy Fo(a, P) as

. In(Z§(a, P
Fo(a,P) = — Jim MNP

for all j € N fized, we have the following weak limit

(5.3.106)

. Tr¢ —E[Tr¢’| N
Nhian N(0,0?), (5.3.107)
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where

E[Tr€¢’| = iNoFc(a, v, P + ita?) o? = |02 Fc(a, P + ita?) (5.3.108)

lem » lemol -

Remark 5.3.19. We notice that

o Hardy and Lambert in [HL21] already proved a CLT theorem for the Circular 8 ensemble in the
high-temperature regime for a wider class of functions and potentials than we can consider with our
result. Nevertheless, we highlight the fact that in our case we can explicitly compute the means, and
the variances in terms of the Free energy.

e The following identities hold in view of the last part of Theorem 5.1.3

Oa(adrFo(a, P +ita’)|,_,) = 0 Faar(e, P +ita’),_, , (5.3.109)
Oa(adi Fo(a, P+ ital)|,_) = 0, Faar(a, P + ita?)),_ N

0"

This relation was already proven in [GM23] with the same kind of argument that we followed.

5.3.5 The defocusing Schur flow, and the Jacobi f ensemble at high-temperature

In this subsection, we focus on the defocusing Schur flow [Gol06], and its relation to the Jacobi 8 ensemble
at high-temperature [FM21]. This relation was first noticed in [Spo22b], and then the two present authors
obtained a large deviations principles for the empirical spectral measure for the defocusing Schur flow,
and they were able to link it to the one of the Jacobi 5 ensemble in the high-temperature regime [MM23b)].

The defocusing Schur flow. The defocusing Schur flow is the system of ODEs [Gol06]

dj = P?(aj+1 - Clj—l)» Pj = mv (5.3.110)

and, as before, we consider periodic boundary conditions, namely a; = a;.x for all j € Z.

We notice that, if one chooses an initial data such that a;(0) e R for all j =1,..., N, then a;(¢) e R
N

for all times. Moreover, it is straightforward to verify that Ky =[] =1 (1 — |aj|2) is conserved along the

Schur flow. This implies that we can choose as phase space for the Schur flow the N-cube IV, where
I:=(—1,1). Furthermore, it was shown in [Gol06], that the Schur flow has the same Lax matrix as the
focusing Ablowitz—Laddik lattice.

Following [Spo22b, GGGM?23], on IV we define the finite volume limit GGE as

dnaa(a) = [, (1= a3 Lyerexp (~Tr (P (€))) da
Hds = Zg{s (Oé, P) )
where P(z) : R — R is a polynomial. Thanks to Lemma 5.3.16, we can apply Theorem 5.1.3 obtaining
a CLT theorem for the defocusing Schur flow

Corollary 5.3.20 (CLT for defocusing Schur flow). Consider the Laxz matriz £ (5.3.93) of the defocusing
Schur flow distributed according to the Generalized Gibbs Ensemble (5.3.111). Then, defining the Free
energy Fas(a, P) as

(5.3.111)

In(Z#(a, P))

Fas(a, P) = = lim ——5-—=, (5.3.112)
for all j € N fized, we have the following weak limit
. Tv&I —E [Tré’j] 9
where _ _ _
E [Txé?] = iNO, Fas(a, P +ita?),_,, o> =|0;Fas(a, P +ita?)),_,|. (5.3.114)
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The Jacobi S ensemble in the high-temperature regime. The Jacobi 8 ensemble is a random
matrix ensemble introduced by Killip and Nenciu in [KN04]. It has two slightly different matrix repre-
sentations. The first one is the same as the Circular 8 ensemble (5.3.102), but the distribution of the
entries of the matrix is

l—[ngl (1 _ ag)ﬂ(2ij)/4*1 1—[2N71(1 . aj)a+176/4(1 + (_1)jaj)b4r176/4]lajelI exp (—Tr (P (@))) da

J j=1

Jj=1
dus(a) Z}{[(ﬂJg)
(5.3.115)
where a,b > —1, P(x) is a real value polynomial. We notice that we are considering an even number
of random variables, and a; € R; for these reasons, all the eigenvalues of € come in pairs, meaning that if
e'? is an eigenvalue, then e~% is another one. Exploiting this symmetry, Killip and Nenciu found another
matrix representation for this ensemble

C1 bl
bi 2 b2 o
J— 7 b; = ((l—agjfg)(l —agj_l)(l—i-agj)) ’ (5.3.116)
¢j = (1 —azj—2)azj—1 — (1 + azj—2)az;j—3
bn-1
bv-1 N
where ag = asy = —1, and the eigenvalues {)\j}é\;l of J are related to the one of € as A\; = cos(6;).

Also, in this case, it is possible to compute explicitly the joint eigenvalue density for this model as

H | cos(8;) — COS(95)|519].6T672Z§V:1 Pleos(05))qg . (5.3.117)
j<t

1
dP; = ———
77378, P)

As in the previous cases, we are interested in the high-temperature regime for this ensemble, so we
wet 3 = 22, thus the measure (5.3.115) read

T2 (1= a2) (o) P28 (1 ) (14 (= 1) ay)P 5 Ly e exp (—Tr (P (€))) da |

J j=1

dus(a) = =

Z3(5, P)
(5.3.118)
This regime was considered in [TT21] and in the recent paper [NTT23], where the authors established a
CLT for polynomial test functions in the absence of external potential (P = 0 in (5.3.118) ) by considering
orthogonal polynomials, obtaining an explicit recurrence relation for the limiting variance.
Again, thanks to Lemma 5.3.16, we can apply Theorem 5.1.3 deducing the following

Corollary 5.3.21 (CLT for Jacobi 8 ensemble in the high-temperature). Consider the matriz represen-
tation € (5.3.102) of the Jacobi B ensemble in the high-temperature regime (5.3.118) . Then, defining the
Free energy Fj(a, P) as

Fi(a,P) =— lim w#v (5.3.119)

N>

for all j € N fized, we have the following weak limit

. T¢ —E [Tr@j ]
lim ———=

N 2
N JN N(0,07), (5.3.120)

where

E[Tr€¢’| = iNoFy(a, P +ita?),_,, o> =|0;Fs(e, P +ital),_,|. (5.3.121)

)
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Remark 5.3.22. We notice that for N even, fora+b= -1+ g we can apply the final part of Theorem
5.1.8, thus we deduce that

aa(aat]:‘](a’ P+ itwj)\mo) = at]:ds(a7 P+ itmj)\t=o ) (5 3 122)
0a(a0}Fs(a, P +ital)),_,) = 07 Fas(ev, P + ita?) 2

‘t=0

5.3.6 The Itoh—Narita—Bogoyavleskii lattices

In this section, we apply our results to two families of integrable lattices with short-range interaction
that generalize the Volterra one (5.3.70). These families are described in [Bog91] (see also [Bog88, Ito75,
Nar82]).

One is called additive Itoh—Narita—Bogoyavleskii (INB) r-lattice and is defined by the following equa-
tions

T

0 = a; (Z iy — Y aij) , i=1,...,N,N>reN. (5.3.123)
j=1

Jj=1

The second family is called the multiplicative Itoh—Narita—Bogoyavleskii (INB) r-lattice and is defined by
the equations

a; = a; (H aiv;— | | ai_j> , i=1,....,N, N>reN. (5.3.124)
j=1 j=1

In both cases we consider the periodicity condition aj4ny = a;. We notice that setting » = 1, we recover
in both cases the Volterra lattice. Moreover, both families admit the KdV equation as continuum limits,
see [Bog91].
In both cases the interaction is short-range, but in the additive case (5.3.123) the nonlinearity is
quadratic as in the Volterra lattice, instead in the multiplicative one (5.3.124) it is of polynomial order.
As we already mentioned, both families are integrable for all » € N, indeed both families admits a Lax
pair formulation. For the additive INB lattice (5.3.123), it reads

N
L+ = Z (aixrEipri + Eiit1) (5.3.125)
izl lN — r column
0 1 0 ce AN —r 0 0 0
0 0 1 0 AN—rit1 0 0
0 0 0 1 0 aN—ry2 O
T 0 . o ol TELlrovss.i126)

0 arpz 0---

1 0 e AN—p—1 0 0

N T
AT — Z <Z aiﬂ.) Eii+Eiiiri1, (5.3.127)

i=1 \j=0

we recall that we are always considering periodic boundary conditions, so for all j € Z, a;4ny = a; and
E, j+n = Eixnj; = E; ;. In this notation, the equations of motion (5.3.123) are equivalent to

L) = [L+); A+0)] (5.3.128)
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Analogously, the multiplicative INB r-lattices have a Lax Pair formulation, which reads

N

LY =3 (aiEiic1 + Eigri) (5.3.129)
i=1 lN — r column

0 a 0 -1 0 O 0

0 0 ay - 0 1 0 0

0 0 0 ag - 0 1 0
1 o . 0 a o o |"TELOY (53130

0 1 0
. .. .. .. 0 0 an_1
ay 0O 1 -« 0 0 0

N
A — 3

=1 =

( aHj) Ei,i+r+1 . (53131)
7=0

Following the construction made in [GGGM23], where the authors numerically computed the density
of states for these two families of lattices, we introduce the generalized Gibbs ensemble for these models
as

exp(—TrP(LENTTY . a2 11, 50da
dfy s = PP " ))HH S (5.3.132)
ZN " (a7P)

exp(=TrP(L>M)) 1—[;\/:1 a?il 1a;>0da

dpx r = Z](VX‘T)(a,P) , (5.3.133)
where P(z) is a polynomial. Moreover, enforcing the result of [GGGM23]
Lemma 5.3.23. Fiz { € N. Then for N large enough
Tr(LH) = Te(L>) =0, (5.3.134)

if £ is not an integer multiple of r + 1.

we can consider just the polynomials P(z) such that P(z) = #/("*1) 4+ Lo.t. for some j € N.
Due to the local structure of L(+") L") one can deduce the following:

Lemma 5.3.24. Fiz m € N, and consider the matrices LT L") (5.3.125)-(5.3.129). Then for
N big enough, there exist k(T = k(+7)(m), k057 = EC57)(m) € N, and four polynomial functions
Yy R,i(w) y R,i(w) SR, VOO R,j:x.,r) y R,i(x,r) SR, V1(+,r) . R’jr“’r) « Rﬂ(”) y R,i(w) >R,
VO RECT R S RECY SR such that

M)
(L™ = VT (x5, %541)
JZ:l P (5.3.135)
+ V1(+’r) (RALCH) s TRCE) ML) 11y -+ - > Tlhr) M (+0) ()5 K1)
MO
TH(L)™ = 3] V(s x50)
Jo} (5.3.136)
(x,r)
+ ‘/1 (XM(X,’V‘))xk(X,T)]\/[(X,T)Jrl’ e 7xk(X,T)M(X,T)+Z(X"V‘)7Xl) s

where N = k(T M) 4 g+r) = gOon) proon) 4 p0r),
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Thus, proceeding as we have done for the others systems previously considered, we obtain the following;:

Corollary 5.3.25 (CLT for INB lattices). Consider the Lax matrices L™ LO4T) (5.3.125)-(5.3.129)
of the additive and multiplicative INB lattices respectively distributed according to their Generalized Gibbs
Ensemble (5.3.132)-(5.3.133). Then, defining the Free energies F (o, P), Fx (e, P) as

1 -
Fir(a,P) =—Nh£1wﬁln(z§v+ )(a, P)), (5.3.137)
1 -
Frwlo, P) = — ]\}g}ﬁﬁln(zj(\,x N, P)), (5.3.138)
(5.3.139)

for all j € N fized, we have the following weak limit

Tr(L(Jr,r))(rJrl)j -E [Tr(L(+,r))(’r+1)j]

. R 2

lim. N N(0,02 ), (5.3.140)
Te( LS r+1)5 _ | [Te( L)) (r+1)3

i ) [Tr(L o)) —~ N(0,02,), (5.3.141)

Nox \/N

where

E [Tr(LH’T))(T“)j] = iNO,Fy (o, P+ ita(r+19) 02 = |PF . (o, P+ ita"tI) |

‘t:O ?

(5.3.142)
E[Te(L) 07| = iNOFo (o, P ita ™), 0%, = |08 F o Pt it )|
(5.3.143)

Remark 5.3.26. We recall that in [GGGM23], it was shown that the density of states for this model
has support on the complex plane, but despite that all the moments of the Generalized Gibbs ensemble are
reals. Furthermore, in this case, we lack a 8 ensemble to compare with.

5.4 Technical Results

In this section, we prove the technical results that we used to prove our main Theorems 5.1.3-5.1.5, the
proof follows the same line as the proof of [GM23, Proposition 4.2], and we prove Theorem 5.1.7, whose
proof uses the same machinery as the latter proofs. In the last part, we prove a Berry-Esseen type bound
for the type 1 measure N%)- We start by proving Theorem 5.2.1 and Theorem 5.2.2.

To prove these results, we follow the same ideas as in [Goul5, Theorem 2.4]. In particular, we enforce

the following proposition, which can be easily deduced from [Goul5, Proposition 2.3]:

Proposition 5.4.1. Let A(0) be an isolated eigenvalue of the operator Lo with multiplicity one, and
assume that the family of operators t — L; depends on t in a C? way, with d > 3. Then, \(t), the
corresponding eigenprojection m; and its eigenfunction @, are C?* with respect to t.

Moreover, assume that the rest of the spectrum of Loy it is contained in a disk of radius |A(0)] — 6.
Writing Q¢ = (I — m¢)Le, so that Ly = AN(t)we + Qr. For any r > |A\(0)| — 4§, there exists a constant C > 0
independent of t,n such that |Q}| < Cr™ for all n € N.

Applying the previous proposition, we can prove both Theorem 5.2.1 and Theorem 5.2.2. For the
reader’s convenience, we report the two statements here.
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Theorem 5.4.2. Under Assumptions 5.1.1. Consider a real function H : C — R such that TrH(L)
is circular (HP 5.), and let W be the seed of TrG(L) + itH (L), thus W(x,y) = V(x,y) + itU(x,y) for
V,U : X* x X¥ — R the seeds of TrG(L), TrH(L). Furthermore, assume that U € L*?(X?k exp(—2V)),
withN 3.d > 3. Then, there exists ane > 0, and two complex valued functions X (y,t) € CH4(R, x[—¢,€]),
and c ¢(y,t) € CH4R x [—¢,¢]) such that for all ge N :

(1)
. Z ot
E, [e_”TrH(L)] = M = cpo(a, )\ (o, t)M 2 (L+o(M™9), as M — w0, (5.4.1)

1
Zitrsol@,0)
for |t| < e, here Z,S&H(a,t) = Z,S&He(a, V +itU). Furthermore,

A(z,0) =1 (5.4.2)
Ck7g($, 0) =1. (543)

Moreover, there exist two functions Cx¢(c,t) € CH4R x [—¢,€]) and Mo, t) € CH4(R, x [—¢,e]) such
that there exist two constants Cq,Co > 0 such that for all ¢ € N:

Cl < E}M(a,t) < CQ,

AMa,t) = = : (5.4.4)

)

Proof. Define the kernel operator (depending on k€ N, a > 0 and t € R) £, : L*(X*) - L?(X*) as

k
Loaf®) = | 160 [ Plp)e i, (5.45)
g=1

Then, for all k € N, a > 0 and t € R, L, is a Hilbert-Schmidt operator [Kat95], meaning that the
function (x,y) — ]_[];:1 F(zy,a)e”V ) is L2(X* x X*), and so it is compact. Moreover, since the kernel
is positive, we can apply a generalization of Jentzsch’s theorem [Zaa83, Theorem 137.4] in combinations
with Proposition 5.4.1 deducing that there exist two functions (y,t) — X (y,t) € CHI(RF x [—¢,€]),

(y,t) = o(-,y,t) € OLYRY x [—¢,¢], L2(XF)), and an operator Q; : L2(X*) — L?(X*) such that

Liad(y) =X, t) (b, at)ely, at) + Qoly), VoeL*(XF) (5.4.6)

where X (y,0) > 0, ¢ (x,y,0) > 0 is the associated eigenfunction of Ly« with ||, = 1 and there exists

a 6 > 0 such that ||Qs|| < |X (a, t)| — 4, denoting by (-,-) the standard scalar product in L2(X*).
For x € X* define Gy (y) as

Goly) = { §x Hfg;é-&-l F(z;, o) exp (=Wi(y, zxm+1, - - Tomr4e, X)) Hfﬁ*gjﬂ dz;, (>0,
exp (—W(y,x)) ) (=0,
(5.4.7)
and the linear operator S; : L?(X* x X*) — C as
2%k
Sip = J H F(xj, a)exp (=W (x1,x%2)) ¢(x1,X2)dx1dx2, (5.4.8)
Xkx Xk j=1

: 2% - :
we notice that |S;| < ¢|F[;", and so it is continuous.
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In this notation, we can recast (5.2.6), applying S; to (x,y) — (E%szx) (y), as

Zieilant) = Sy ((LM72Gx,) (x2)) = XM 2(a, 1), ((p (- 1) s Gy Y o2, . 1)) + 81 (QM 2 G, ((?2)9,)

where here and in the sequel, if h € L?(X* x X*), we write abusively S;(h(x,y)) for S;(h). Defining

St(<<)0 ('v a, t) ;GX1><P(XM7a7t))

crela,t) = ,
SO(<QO ('7 «, 0) 5 Gx1> ()D(XM7 «, 0))
- (5.4.10)
AM=2(q, )
Moy t) = =—————,
AM=2(a,0)
and since in view of Proposition 5.4.1 |Q7| < (|A(t)| — §)" we conclude. O

Theorem 5.4.3. Under Assumptions 5.1.1. Consider a real function H : C — R such that TrH(L)
is circular, and let W be the seed of TrG(L) + itH(L), thus W(x,y) = V(x,y) + itU(x,y) for V.U :
X* x X*¥ — R seeds of TrG(L), TrH(L). Furthermore, assume that U € L?>*(X?F exp(—2V)), with
N3 d > 3. Then there exists an e > 0 and two scalar functions X (y,t) € CL4 (R x [—¢,e],C), cxoem(y,t) €
CH(R x [—¢,¢]), such that

. z% (a, t) M2 j
E, [thrH(L)] = SRt oy (e t) T A (ast) (1 +onr(1)) (5.4.11)

Z(Q) (OL Y i M

kM +0\"" Jj=1
for |t| < e. Furthermore,

Az,0) =1 (5.4.12)
%in% cremla,t) =1 uniformly in M (5.4.13)
the remainder opr(1) is independent of t € [—e¢,€]. (5.4.14)

Moreover, there exist two functions Cx o n(,t) € CH4(Ry x [—¢,€]), Xa, t) € CY4YR, x [—¢,¢]), and
three constants C1,Cs > 0 and p € N such that

Cle < Ekl’M(Ogt) < CQNP,
Xav, t
Mayt) = 208
Xa,0) (5.4.15)

M-2 .
Z3 oty = Gem(ont) [ X <a1\34,t) (1+om(1)) .
j=1

Proof. Define the family of kernel operators (depending on k € N, a > 0 and ¢ € R) nga : LA(XF) -
L2(X*) as

(3) : (G—Dk+g
L) = | feo]]F <xq,a (1 _ )) W) gy (5.4.16)
) Xk g=1 N
Then, for all k € N, a > 0 and ¢ € R, the kernel of EEJ; is in L2(X* x X*), thus it is a Hilbert-

Schmidt operator, and so it is compact. Moreover, since for ¢ = 0 the kernel is positive, we can apply
a generalization of Jentzsch’s theorem [Zaa83, Theorem 137.4] in combinations with Proposition 5.4.1
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deducing that there exist two functions \ = /A\(y,t) e CH(R* x [—¢,¢]), (y,t) = (-, y,t) € CLYRY x
[—¢,¢€], L2(X¥)) and an operator QEJ) : L2(X*) — L2(X*) such that V¢ € L2(X*), V|t| < ¢,

M

) o(y) =<¢;<p<-,a(1—]{4> ,t>><p(y,a<1—]\j4> ,t) :

where X(a (1 — ﬁ) ,t) is the biggest eigenvalue (in modulus) of £§{g, S\(y,()) > 0, ¢(-,y,0) > 0,
lo(-,y,t)], = 1 and there exists a §; > 0 such that ‘ng)‘ < |3\ (a(1— ﬁ) ,t)] — d;, and we recall

£ o(y) = A (a (1 - j) ,t> M o(y) + o o(y) (5.4.17)

with

that we denote by (-,-) the standard scalar product in L*(X*). Furthermore, with X the function of
Theorem 5.4.2, we have

(Bl relh) e

Where the O (ﬁ) term is uniform in ¢ € (—¢,¢). Indeed, recalling that £; , is defined in (5.4.5), by the
integrability assumptions on U and on d,F (HP 7. of Assumptions 5.1.1), we have

j o
Ez(:j(l - ‘Ct,a(l—j/M)‘ < CtM (5.4.19)

where C} > 0 is bounded on [—¢,e]. We then deduce (5.4.18) by applying Proposition 5.4.1.
Define the function h; on X* by

k+0—1 .
+ k(M -1
hi(x) = L(He H F <$k(M—1)+ja o (1 - W)) exp ( - W(x, XM)) X
=l

k+¢

X exp (—W(XM,kaH, v ,ka_,_g,O, ‘e .,0)—W(.7jkM+1, v ,xk]\/[+g,0, ‘e .,0))R(.23N) H dxk(M,l)Jrj .
j=1

(5.4.20)

Note that in view of assumptions 5.1.1, |||, = O(NSE+F)),
We recall that W =V + itU so h; depends on t , and the linear operator S; : L?(X*) — C as

k . k
Si(¥) = L(k 1_[1F <x]—,a (1 — kM]—I— é)) e W00 gy (x) r[ldxj . (5.4.21)
J Jj=

We notice that, again in view of the assumptions 5.1.1 the operator &; is uniformly bounded in k, ¢
for all ¢t € R, and it is continuous in ¢ in the operator norm sense.

In this notation, we can rewrite Z,gv)”@(a, t) as

M—1
2oty = S (L8 £ ) = 80 ( I1 cif;ht> (5.4.22)
j=2

Applying the decomposition (5.4.17), it follows that we can decompose the previous expression as
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M—1 .
Z;g\)ﬂe(a,t) = A (a (1 - Xi)) S, (7%(2) o Wt(M_l)ht)

j=2

+ S (ﬁﬁ?a LM §M‘”ht) (5.4.23)
M-2 M-1 . j

+ A <a (1 - >> S, (cﬁ{ i glm) pet ) wﬁM*”ht) :
n=2 j=n+1 M , ,

where we arranged the terms of the product of the E,E{O)é’s by order of the first appearance from the right
of a factor ng ) (the first term being the product where no ng ) appears). We notice that

M-2

- a(l—1 a(l—(1 4 1—%

St <W§2)~-~7Tt(M Dht) = (o™ by [ <t (A=A, (=DM 5, (Wt( )) ,
=2

a(1—i/M)

where we set @, = ¢ (-,a(l —i/M),t) to shorten the notation. Furthermore, the ratio

converges uniformly to 1 in M > 1, t € (—¢,€). This is due to the fact that

i

G T 210 (£,

because of (5.4.19) and Proposition 5.4.1, thus the product
M-1 : v
al(l—5F a(1-4L
1_[<‘Pt( M)é@t( Y )>
i=2

stays bounded below and above uniformly on M > 1, t € (—¢, €).
Denoting the first term of (5.4.23) by f(«,t), and the second and third terms by ¢1(«, t) and g2(a, t),
we can rewrite (5.4.11) as

(2) g (O‘vt) g (a,t)
Zinpe(t) _ flont) [ 1+ 5y * e (5.4.24)
J CEORA (CHI A
Zinre(0,0)  F(@00) {14 905 + 205

Thus, to prove our result we need to show that there exist 3 constants ¢y, ¢z, c3 independent of M such
that for all ¢t € (—¢,¢),

g;(((j’tt)) ‘ <er, (5.4.25)
ga2(a, t)
%) ‘ <ec, (5.4.26)

a(l—-2
<90§1/M); ht>3t90t (-4)

<5081/M); ho>80¢3(1_%)

If we are able to show this, then defining

<es. (5.4.27)
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<%0t1/M ht>3t80t ) M-1 <¢?(1 ),cp?(l 1;11)>

CkgMOét

1 -2 ! « i af1-4tL ’
<90(/ ) h0>50800 ) i <sﬁo( ),%( )y (5.4.28)
Ay, t
Ay, t) = ~( )
A(y,0)
Ay t) .
we obtain (5.4.11) with the wanted properties. Notice that in the definition of A we took m instead
Y,
Ay,
of 3\((%0)). This is indeed possible because of equation (5.4.18).
Y,

First, we focus on (5.4.26). The term go(«, t) is given by
AR B B e @ pn1) o) o=
s 33 T 3 (o (1-57) 1) TT fse™s, (e el a0t )
n=2 j=n+1

Because ¢ (x,y, t) is regular with respect to y, we deduce that there exists a function (y, t) — (-, y,t) €
C*(R* x [—e,¢e], L*(X*)) with ¢f(1_"/M)‘ uniformly bounded in n, M and ¢ such that

o (so? (1%) = Q" (so?( * )> Q0T = gy (5.4.29)

given this equality, it is trivial to prove (5.4.26), recalling that for any ¢, j, TE(J has operator norm
A

smaller than one.
For (5.4.25), it suffices to show that there exists a constant ¢y independent of M such that

M <co. (5.4.30)
(A0
t

From the assumptions, (5.4.17) and the definition of h; (5.4.20), we deduce that there exists a constant
dy such that

QM k| <y (A (55) 1) e, (5.4.31)

on the other hand, in view of the previous proof and the assumptions, we conclude that, for ¢ small
enough, there exists a constant ds such that

(M) 1 )| = dapaetirs). (5.4.32)

Indeed, for t = 0, <<p0 h0> is given by

k+4—1 .
1M k(M —1)+j ~ ~
JX%H @6 / )(x) jl:[l F <xk(M1)ﬂ-, Q <1 ~ M il r(x, Xp, X)dxdxdX

where we denoted X = (Tgpr41,-- -, Trpm+e) and

r(x, X, X) = e~ Wexn)=W(xar, Bha 4150 @M +£,050,.0) =W (ka1 4150,k M +2,0501,0)
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By Assumptions 5.1.1 HP.4, and positivity of (pél/M),

L R S R

By continuity of n — ¢{, this last integral converges to So cp(()l/ M)(x)dx > 0, thus we conclude for the

case t = 0. Finally, we conclude on (5.4.32) for ¢ small enough by continuity.
Combining the two previous estimates, and setting p = c(k + £) we deduce (5.4.30), which leads to
(5.4.26). The proof of (5.4.27) is analogous, thus we conclude. O

We now turn on the proof of Theorem 5.1.7, which we rewrite here for convenience.
Theorem 5.4.4 (Decay of correlations). Let W be the seed of TrG(L) and I,J : X* — R two local
functions such that . i |I(x) Hle F(z;,0)e” W) ’ dxdy < oo, and analogously for J(x). Write
N =kM +¢, and let j € {1,...,M}. Then there exists some 0 < p < 1 such that
Eq [1(x1)J(x;)] = E1 [L(x0)] Eq [J(x)] = O™ + ).
Proof. Let L = Ly, with £ o given by (5.4.5). Furthermore, define £

k

£O6(y) = | | 60 [[Flei,0)I@)e™" 0 = LITO)(y),

i=1

and £ analogously. With G (v) = I(x)Gx(y), G given in (5.4.7), we have for j > 3

So ((ﬁM*jﬁ(")U*:”Gﬁé)) (xz))
So(LM=2G, (x2))
MM (0, 018y (mo £ L13GY) (x2)) + O(X—3rM 1))
T (0, 0)80(mG, () + O 2)

Eq [1(x1)J(x;)] =

)

where S; is defined in (5.4.8), and we used the decomposition
L =M (a,0)m0 + O,

where g is the orthogonal projection on the (one dimensional) eigenspace associated with X(a, 0), and
Qo is an operator such that | Q%[ < Cr* for some 0 < r < ). Similarly,

So(mo LD LI3GY) (x2)) = M3 (o, 0)Sa(mo L oG (x2)) + O(r7 7).

We deduce

(1) N —j N\ji—
Ey [I(x1)7(x;)] = So((mo L) moGx,)) (x2)) + O((r/N)M =9 + (r/X)1—3) .

X (So(moGre (x2) + O((r/N)4-2))

Similarly, we deduce

(I) N —j r N j—
B 1 () JEa[ (x)] = S(moC (62))So (oL moGiny () + O /DY 2+ WAV (o o)

X (So(moGi, (x2))2 + O((r/ D)V -2))

By a direct computation, recalling that mo¢ = {p1,®) 1 where ; is the eigenfunction associated
with A\, we deduce the following

So (7T0£(J)7T0G5c11) (X2)) =LY gy, <P1>J’<Gx, 1) I(x)F(x)p1(x)dx,
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8 (oG (2)) = [ G o) 1 GOFOYEx, S0 (oG (x2)) = [ (G L0 F (1 ().

and
o (ML m0G (x2)) = L1, 01) [ (G 1) Flx)in ()
These formulas imply that

SO('/TOG)((Il) (XQ))SO (WQE(J)Wonl (Xg))
So (moGx, (x2)) 7

So((mo LD 1G D) (x2)) =

and so

Eq [I(x1)J(x;)] — Eq1 [I(x1)] Eq [J(x;)] = O((T/X)M*j " (T/X)j,g) '

Finally, we prove a Berry-Esseen bound type theorem for the measure ug]ej S

Theorem 5.4.5. Under Hypotheses 5.1.1. Consider the measure Nl(clz\)/uz; G satisfying assumptions

5.1.1 and H : C - R such that TrH(L) is cyclic (HP. 5) with seed h and weed hy such that h,hy €
LA(X?k exp(—2W)), with N> d > 6, so that

(1) :

E, [e—itTrH(L)] _ Zimrye(o, G +itH)

1 .

Zillr14(,G)

(5.4.34)

Then, there exists A€ R, o,C > 0 such that if Y ~ N(0,02%) we have for any interval J of the real line

C

‘1}» (ITeH (L) = (6M + 0 A] M + 0 € T) P (Y € J)‘ < Targ (5.4.35)

Proof. We adapt the arguments of [Goul5, Theorem 3.7]. By [Fel71, Lemma XVI.3.2], there exists a
constant C' such that for any X real random variable, and Y Gaussian random variable, for any interval
J c R and for any T > 0, we have

T ]E[e—z‘tX] _ e—azt2/2| C

|IP’(XeJ)—IP(YeJ)|<Cf dt + —.

We take X = (TrH(L) — (kM + £)A) /N EM + £. We are going to show that, taking T = e/ (kM + ¢) for

some small enough ¢, the last integral remains bounded by \/%, where C}, ¢ is a constant depending

on k,f. Recall N = kM + ¢. By Theorem 5.1.3, there exists an A € R,0 > 0 such that as N goes
to infinity X converges to A'(0,02). Since t~! is not integrable at 0, we consider the special interval
[0, N~!]. In this interval, we have the following estimate, denoting by W the seed of TrG(L):

(1) b _ 71
‘E [e—itX] - e—itWA‘ (5.2:8) | Zat v (O[7 G+ Z\/N}I) Zpsr e (0, G))
Z,SWH (o, G)

1 & Xj,X Xp,Xp
~ 70 (a,G)‘ 2 JXWHS x He A Gl )deﬂ

kM+¢ p=1

+

+ 3(x) (eiT’Nhl(XM7$kM+17~--,70kM+é7x1) _ 1)
X kM 4L

)

(5.4.36)
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with the convention that the empty product is equal to one. Here we defined

kML M—1
§(x) = 1_[ F(zj,o)exp (— Z W(x;,%j41) — W1(XM7$CkM+17~-,37kM+e7X1)>
=1 =1 (5.4.37)

it
X exp (lhl(XM,l‘kM_,_l, . ,l‘kM_;,_g,Xl)) s
VN

where hy is the weed of H in the sense of HP 5 of Hyphotheses 5.1.1. Thus, since |eiﬁh(x’”’x‘7+l) -1 <
|h(Xp, Xp11)|N~1/2t, we deduce the following inequality

’ . t
El[efti] i efzt\/NA‘ <E,; [|h(x17X2)|] t\/ﬁ + ﬁEl [|h1(XM,£CkM+1, o ,sz+ZaX1)|] s (5438)

and this last term is by assumption bounded by Ctv/N for some C independent of N and ¢t. Thus
integrating for ¢ € [0, N~1] we deduce the following

* IE, [e—itX] _ 6—02t2/2|
) :

dt

1 |g, [emitX] = e—it\/ﬁA‘ i ‘e—it\/ﬁA _ 1‘ I ‘1 _ e—o2t2/2‘
< fN e t & (5.4.39)
0

(5.4<.38) jzlv CVNt +tvVNA + 02t2/2dt - o)
< . 7 S \/N’

for some constant C7.

We now consider the integral on [1/N,ev/N]. Here we use the spectral decomposition of E;[e
Since h € L4(X?F exp(—2W)) for some d > 6, we deduce (following Remark 5.1.4) applying Proposition
5.4.1, and from Theorem 5.2.1, that there exist two continuous functions p(t) € C°([—e,¢]) and ¢k ¢(y, t) €
CH4(R x [—¢,¢]) for some & > 0, such that cx,(y,0) = 1 and |p|l. < 400, such that for ¢ > 1

itX].

dt,

J,E\/ﬁ Iy [efitX] _ 6702t2/2|dt - fgﬁ ‘Ck’z(a,t/\/ﬁ)6702t2/2+t3p(t/\/ﬁ)/\/ﬁ(1 +o(N—9)) — o2 t2/2
1 t N L t

(5.4.40)
thus we have the following estimate

N ‘(1 _ et%(t/ﬁ)/ﬁ) 670%2/2‘

fsﬁ ‘El[efitX] _ 67(72152/2‘

< - —q
5 7 dt < ||Ck7g(04, )(1 +0(M )) ,[0,e] N 7 dt
N lr‘/ﬁ |1 — g (o, t/N/N)(1 + O(M_q))| =t/ &
1 t ’
N
(5.4.41)
where || ||, [0,e] in the L” norm on [0, €].
We notice that ||c e(c, -)(1 4+ o(M~9))||., [0,¢] 1 uniformly bounded in N. Moreover,
eV N o242 c o242
T RS _ AN TN
" e 1|dt < TN e t°|pllo,fo,7dE
1 1
N N (5.4.42)

eV N 670'2t2/2 2 Il )
< Z ot7elpleo,f0,e _
b L JN £ [Pllc, o, 1

N
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where in the first inequality we used the bound |e* — 1| < |z|el®l. Since for ¢ small enough ||p||.ce < 02/4,
thus integrating, we deduce that

VN ‘efa2t2/2+t3p<t/ﬁ>/¢ﬁ _ 670%2/2‘ )
dt=0(—). 5.4.43
J; t <W> ( )

N

To conclude, we have to show that the last integral is of order N~1/2. Since ¢y, ¢(,t) is C* in ¢, and

ck,e(e,0) = 1, it is easy to deduce that there exists a constant C' such that

2
JSW 11— cpe(a, t/NN) (L + o(M—9))| e~ 42 < C (5.4.48)
| ; < JN 4.
so we conclude. O

5.5 Conclusion and Outlooks

In this paper, we proved a general Central Limit Theorem type result and we apply it to several models
in random matrix theory and integrable systems. By doing this, we strengthen the connection between
these two subjects. Specifically, we could connect the expected values and the variances of the moments
of each classical § ensemble in the high-temperature regime with one specific integrable model, see Table
5.1.

The results that we have obtained are relevant for two main reasons. Under the random matrix theory
perspective, we were able to develop a general framework to prove polynomial central limit theorems for
the classical § ensemble in the high-temperature regime, based on their band matrix representation
and on the transfer operator technique. Under the integrable systems’ theory point of view, our result
enables the explicit computation of the so-called susceptibility matrix, which is a fundamental object in
the theory of Generalized Hydrodynamics in order to compute the correlation functions for integrable
models. Furthermore, we are able to prove rigorously the exponential decay of correlation for short-range
interacting systems with polynomial potential.

It would be fascinating to generalize our result to a wider class of potential and functions and to
obtain a Berry-Esseen bound for the classical § ensemble in the high-temperature regime. Furthermore,
defining a new ( ensemble related to the INB lattice would be interesting. Finally, we point out that it
would be interesting to obtain large deviation principles for the Exponential Toda lattice and the Volterra
one in the spirit of [GM22, MM23Db)].
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Appendix A

Large deviations

We present here definitions and results about large deviation theory that we use throughout this manuscript.
For a detailed and general introduction to this topic, we refer to [DZ10].

A.1 Definition and first results

Definition A.1.1. Let (X,T) be a topological space. Let I : X — [0,00]. We say that I is a rate
function if it is lower semicontinuous (that is, for all « >0, I-1([0,«]) is closed). We say that I is a
good rate function is for all a« = 0, I71([0,a]) is compact.

Let (un)nen be a sequence of probability measures on (X,B(T)), where B(T) is the Borel sigma
algebra. We say that (un)nen satisfies a large deviation principle (LDP) at scale v(N), where
limy v(N) = +00, and with rate function I if, for all A € B(T), we have

—inf I(z) < liminfw < limsupw < —inf I(z),

zeA N v(N) N v(N) zeA
with A the interior of A and A its closure.

Remark A.1.2. The inequality

. . dog(un(A))
—inf I(2) < liminf —CN)
AT <t

is called the large deviations lower bound, and the inequality

: log(pn(A)) .
limsup ———% < —inf I(z
N P U(N) zeA ( )

is the large deviations upper bound.

Let (Q, F,P) be a probability space, and (Xy) be a sequence of X-valued random variables, defined
on (9, F). We say that (Xn)nen satisfies a large deviation principle at scale v(N) and rate function I if
the sequence of the laws, defined by un(A) =P (Xy € A), does.

In the previous definition, we assume I to be lower semi continuous to ensure uniqueness of the rate
function:

Recall that the topological space X' is Hausdorff if for all distinct x, y there exist disjoint neighborhoods
of x and y, and it is regular if for all C' closed and all x € C¢, there exist disjoint open sets O; and O-
such that z € Oy and F < Oy. We then have:

Proposition A.1.3. Assume that (un)n satifies a large deviation principle at scale v(N) for two rate
functions Iy and Is, and that (X,T) is Hausdorff and regular, then Iy = I5.
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We now introduce a weaker form of large deviation principle.

Definition A.1.4. Assume that the compact sets of (X,T) are in B(T). The sequence of probability
measures (un)NeN 5 said to satisfy a weak large deviation principle at scale v(N) and rate function
I if the large deviation lower bound (Remark A.1.2) holds, and if the large deviation lower bound holds
for all compacts K such that sup,c I(z) < +00.

A weak large deviation principle can be strengthened into a full one through the following property.

Definition A.1.5. Suppose that the compacts of (X,T) are in B(T). The sequence (un)n is said to be
exponentially tight at scale v(N) if for all M > 0, there exists a compact Ky such that

lim sup —— log(un (K§;)) < —M .
N

1
v(N)
We then have the following result.

Proposition A.1.6. Assume that (un)nen satisfies a weak large deviation principle at scale v(N) and
with rate function I, and assume that it is exponentially tight. Then, I is a good rate function and
(un)Nen satisfies a full large deviation principle at scale v(N) and good rate function I.

The previous result is convenient in practice because of the following result.
Proposition A.1.7. Let A be a base of the topology T . Suppose that for all x € X, we have
1 1
sup |—limsup —=logun(A)| = sup [—liminf ——Ilogun(4)] .
AcAlzeA N = v(N) AcAlzeA N v(N)
Then (un)Nen satisfies a weak LDP at scale v(N) with rate function I given by
1
I(z) = sup |—limsup ——=logun(A)| .
AeA|ze A N ( )
An important example is the one of a metric space: to meet this criterium in a metric space, it suffices

to have, for all z € X, denoting by B,(0) the ball centered at z and with radius 9,

lim lim sup —— log un (Bz(d)) = lim lim inf —— log un (B, (9)) =: —I(x).

6—0 N ( ) 60 N ( )

A.2 Varadhan’s Lemma and Bryc’s inverse Lemma

One of the principal applications of large deviations is the derivation of the asymptotic behavior of Laplace
integrals § e?MN)e(@) dyy 5 (x) for continuous .

Proposition A.2.1 (Varadhan’s Lemma). Let (un)nen be the law of the sequence of random variables
(XN)nen. Assume it satisfies a LDP at scale v(N) with good rate function I. Let p : X — R satisfying
the following condition:

Jim Tim sup —— logIE[ vy )W(XN)lw(xN)zM}] = —©
N

( )

and the following moment condition for some v > 1:

logE [e”“(N)“"(XN)] < .

lim s 1
imsup ——
N pU(N)
Then,

lim logE [e”(N)“’(XN)] = sup{p(x) — I(z)}.
N TEX

1
v(N)
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This result can be thought of as an extension of the Laplace method for real integrals. It is of
particular interest in applications since it allows to link the computation of the partition function and
the free energy of a model to a large deviation principle for this model.

The next proposition gives a way to reconstruct the rate function of a sequence satisfying a large
deviation principle by means of its Laplace integrals.

Proposition A.2.2 (Bryc’s inverse Lemma). Let (un)nen be an exponentially tight sequence of measures
on (X,B(T)), and such that for any f € Cp(X,R) the following limit exists:

logf eNIF@) dpn ()
x
Then (un)Nnen Ssatisfies a large deviation principle at scale v(N) with good rate function

I(z) = sup {f(x)—As}.
feCp(X)

A.3 Cramér and Sanov theorems

We now state two important results of large deviations theory, which establish large deviation principles
for respectively i.i.d sequences, and empirical measures of i.i.d sequences.

Let (X,T) be a topological vector space. For p a probability measure on X, and for A € X* a
continuous linear form on X, define

A(X) =log La A dp(z) .

Also define its Fenchel-Legendre transform A*, defined on X' by
A*(@) = sup {A(x) — AV} € [0, 0]
AEX *®

We have:

Theorem A.3.1 (Camér Theorem). Let (X;)en be a sequence of i.i.d. random wvariables with values
in a locally convex vector space (X,T) and with law p. Denote by un the law of (X1 + ...+ Xn)/N.
Assume:

1. There exists a conver, closed set £ ¢ X with u(€) = 1 and such that the induced topology on & is
compatible with a metric d such that (€,d) is a Polish space (that is, separable and complete).

2. The closed convex hull of any compact K C £ is compact.
Then, the sequence (un)nen satisfies a weak LDP at scale N, with rate function A*.

The next result, due to Sanov, can be seen as a consequence of Cramér’s Theorem in the set of finite,
signed measures on a Polish space 3. The set £ ¢ P(X) is then the set of probability measures.
Let ¥ be a polish space, and let u be a probability measure on X.

Theorem A.3.2 (Sanov’s Theorem). Let (X;)ien be i.i.d. with law . Let fin be the empirical measure
of the X;’s:

1 N
ﬂN=N;6X1.

Then, the sequence of random measures (fin)Nen satisfies a large deviation principle at scale N and with
good rate function H(-|u) given by

dv

SZ flog fdu if v is absolutely continuous with respect to p with density f = Em

H(vl) = {

400 otherwise.

The function H(-|p) is called the relative entropy with respect to p.
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