Résumé

L'athérosclérose est une maladie inflammatoire chronique qui se caractérise par la formation d'un dépôt lipidique au sein de la paroi artérielle. La première phase de l'athérogenèse est la dysfonction de l'endothélium, barrière physique régulant la perméabilité entre la couche tissulaire du vaisseau et le sang. Suite à l'altération de l'endothelium, le cholestérol de type lipoprotéine de faible densité (LDL) peut s'accumuler dans la paroi artérielle où il s'oxyde et devient inflammatoire. Pour l'éliminer, la paroi interne recrute des monocytes (globules blancs) qui se différencient en macrophages. Ces macrophages se gorgent de LDL oxydé, deviennent volumineux et meurent par apoptose. Ils créent ainsi les premières lésions, nommées stries lipidiques. Avec le temps, le phénomène inflammatoire se chronicise et mène à la formation de plaques d'athérome associées à l'épaississement de la paroi artérielle. Ces plaques peuvent conduire à l'obstruction du vaisseau. Elles mènent à de manifestations cliniques potentiellement sévères, voire mortelles.

Cette thèse a pour but la modélisation mathématique de l'athérosclérose. Elle étudie l'initiation de l'athérosclérose dans la paroi interne de l'artère: l'hyperperméabilité de l'endothélium comme précurseur de cette maladie et ses principaux aspects inflammatoires, le rôle de la chimiotaxie et de l'inflammation dans l'apparition des stries lipidiques, et l'épaississement progressif de la plaque rétrécissant ainsi la lumière du vaisseau sanguin à travers un modèle de frontière libre.

Le premier chapitre consiste en une introduction détaillée sur la pathogenèse de l'athérosclérose qui explique ses aspects pro-et anti-inflammatoires ainsi que la dysfonction endothéliale. L'introduction décrit également la rétroaction positive entre l'inflammation dans l'athérosclérose et le mouvement chimiotactique des macrophages ainsi que les différents types de plaques. Dans ce premier chapitre, nous présentons également un aperçu sur les modèles mathématiques de l'athérosclérose dans la litérature, notamment ceux qui étudient l'inflammation, la chimiotaxie des cellules et également les modèles de frontière libre.

Dans le deuxième chapitre, nous étudions les stades précoces de l'athérosclérose via un modèle mathématique d'équations aux dérivées partielles de type réaction-diffusion. Le modèle comprend plusieurs espèces et identifie l'hyperperméabilité endothéliale, considérée comme un précurseur de l'apparition de l'athérosclérose. Pour plus de simplicité, nous réduisons le système à un système monotone et fournissons une interprétation biologique pour l'analyse de stabilité en fonction de la permeabilité endothéliale. Nous démontrons également l'existence de solutions de type ondes suivis par des simulations numériques. Ensuite, nous prouvons l'existence de solutions perturbées pour le modèle réduit non monotone ainsi que l'existence de solutions perturbées de type ondes pour le cas bistable. Enfin, nous étendons l'étude en considérant le modèle complet proposé initialement et fournissons des résultats plus spécifiques à partir des simulations numériques. L'analyse du modèle complet pour certaines valeurs de paramètres est similaire à celle du modèle réduit. Les diagrammes de bifurcation élaborés montrent l'évolution de l'inflammation en fonction de la perméabilité endothéliale et de l'accumulation de LDL. Dans ce modèle, la régulation de la progression de l'athérosclérose est due à l'aspect anti-inflammatoire de l'athérosclérose qui pourra conduire à la régression de la plaque.

Dans le troisième chapitre, nous étudions un modèle d'équations de réaction-diffusion qui décrit les principaux facteurs de l'athérosclérose et prend en considération la rétroaction positive entre l'inflammation et le mouvement chimiotactique des macrophages. L'analyse de stabilité et les simulations numériques du modèle réduit comprenant des macrophages et des cytokines inflammatoires montrent la formation de structures spatiales. Ces structures correspondant à l'émergence de stries lipidiques suite à l'interaction entre chimiotaxie et inflammation. Enfin, nous considérons le modèle complet qui fournit une description plus réaliste de la maladie tout en effectuant des simulations numériques.

Le quatrième chapitre est consacré à l'étude d'un modèle mathématique de l'athérosclérose dans un domaine unidimensionnel à frontière libre. Le mouvement de la frontière est dûe à la concentration de cellules dans l'intima et à leur interaction dans l'espace sous-endothélial ainsi qu'à leur flux à travers la frontière. Un modèle mathématique décrivant les principaux processus inflammatoires de l'athérosclérose est proposé, puis, en considérant quelques simplifications, un modèle réduit est suggéré. Le modèle réduit est converti en un modèle aux frontières fixes avec des coefficients dépendants de l'espace et du temps, ainsi que des termes non linéaires. Nous prouvons l'existence de solution pour le modèle à frontière fixe à termes linéaires en appliquant le théorème du point fixe. La solution d'onde est également montrée à travers des simulations numériques. Ensuite, nous revenons au modèle réduit, prouvons l'existence de la solution et présentons les résultats numériques. Enfin, nous généralisons les résultats au modèle complet initialement proposé dans ce chapitre.

Le dernier chapitre présente les conclusions des travaux de cette thèse ainsi que des questions ouvertes à des travaux futurs.

Abstract

Atherosclerosis is a chronic inflammatory disease characterized by the deposition of a plaque of lipids within the arterial wall. The precursor of atherogenesis is the dysfunction of the endothelium, a physical barrier which regulates the permeability between the vessel wall and the blood. Due to the alteration of the endothelium, LDL cholesterol accumulates in the arterial wall where it oxidizes and becomes an inflammatory substance. To eliminate it, the arterial wall recruits monocytes (white blood cells) which differentiate into macrophages. These macrophages engulf oxidized LDL and die by apoptosis. They lead to the formation of the first atherosclerotic lesion, called fatty streak. Over time, a chronic inflammatory reaction set up resulting in the formation of atherosclerotic plaques associated with the thickening of the arterial wall. These plaques can cause injury to the arterial wall or lead to obstruction of the vessel. They lead to potentially severe, even fatal clinical manifestations.

This thesis is in the framework of the mathematical modeling of inflammatory diseases, in particular atherosclerosis. It studies the initiation of atherosclerosis in the inner wall of the artery: the hyperpermeability of the endothelium as a precursor of this disease and its main inflammatory aspects, the role of chemotaxis and inflammation in the emergence of fatty streaks, and the progressive thickening of the plaque narrowing the lumen of the vessel in a free boundary model.

The first chapter consists of a detailed introduction to the pathogenesis of atherosclerosis which explains the pro and anti-inflammatory aspects of atherosclerosis, and outlines the endothelial dysfunction. It describes as well the positive feedback between inflammation in atherosclerosis and the chemotactic movement of macrophages and plaque types. In this first chapter, we also present an overview of the mathematical models of atherosclerosis in the literature, particularly models that consider inflammation and cell chemotaxis and the models with free boundary.

In the second chapter, the early stages of atherosclerosis are described in a mathematical model of partial differential equations of the reaction-diffusion type. The model includes several key species in the inflammatory processes and highlights the endothelial hyperpermeability as a precursor to the onset of atherosclerosis. We reduce the system to a monotone system and interpret biologically the stability analysis based on endothelial functionality. Then, we examine the existence of traveling wave solutions and perform numerical simulations. The results obtained are consistent with current biological data. Next, we return to the non monotone reduced model. We prove the existence of perturbed solutions as well as perturbed wave solutions for the bistable case. Finally, we consider the complete model and provide results from numerical simulations. The analysis of the complete model for some values of the parameters is similar to the analysis of the reduced model. Bifurcation diagrams show the evolution of inflammation as a response to endothelial permeability and LDL accumulation. In this model, the anti-inflammatory process of atherosclerosis regulates the progression of the disease and may even lead to the regression of the plaque.

In the third chapter, we focus on the positive feedback between inflammation in atherosclerosis and the chemotaxis of macrophages in a model of reaction-diffusion equations. This model describes the key factors in atherosclerosis. We reduce the model to a model that includes the inflammatory macrophages and cytokines and investigate its stability analysis. Spatial structures arising in the numerical simulations correspond to the emergence of fatty streaks which result from the interaction between chemotaxis and inflammation. Finally, we study the initial model along with numerical simulations.

A one-dimensional free-boundary mathematical model of atherosclerosis is proposed in Chapter 4. In this model, the boundary motion is caused by the accumulation of cells in the intima and their interaction in the subendothelial space as well as their flux across the boundary. We start by reducing this model then we use a change of variables to transform it into a fixed boundary model. The new model has space and time dependent coefficients and nonlinear terms. To study the existence of a solution for the latter model, we start with a model with linear terms and then we apply the fixed point theorem. The wave solution is also studied with numerical simulations. Then, we prove the existence of the solution for the reduced model and present numerical results. Finally, we extend the results to the original model.

The last chapter presents the conclusions drawn from the models studied in the previous chapters and provides research topics related to these models that can be investigated in future works.

Chapter 1 Introduction 1.1 Motivation and biological background

Atherosclerosis is a chronic cardiovascular disease of the arterial wall that involves immunoinflammatory mechanisms as a response to abnormal cholesterol deposits in the inner layers of arteries. The chronic accumulation of fat contributes to the formation of fibrofatty lesions, called atheromatous plaques, resulting in pathologic thickening of the arterial wall. Atherosclerotic lesions develop in the coronary, cerebral, and peripheral arteries and the aorta and restrict the blood flow to vital organs.

Clinically, fatty streaks are the earliest pathologic descriptions of atherosclerotic lesions. They evolve into fibrous plaques, some of which develop into advanced plaques aggravated by hemorrhage, ulceration, calcification and thrombosis. The plaques sequentially induce major complications leading to morbidity and mortality worldwide, including myocardial infarctions and strokes, as well as disabling peripheral artery disease [1].

The history of atherosclerosis dates back to ancient times when its early description was considered to be the restriction of the transit of blood through thickening of the vessels. This conveys to the etymology of the term atherosclerosis derived from the Greek words athero, meaning gruel, or paste, corresponding to the accumulation of fatty material in the central core of the plaque, and the term sclerosis, meaning thickening of the intimal layer of arteries [START_REF] Ross | Atherosclerosis An Inflammatory Disease[END_REF]. However, recent atherosclerosis literature have profound implications in regarding atherosclerosis as a chronic, low-grade inflammation which is aggravated by hypercholesterolemia and other recognized risk factors [START_REF] Mozar | The natural history of atherosclerosis: an ecologic perspective[END_REF], including hypertension, cigarette smoking, sedentary activity and diabetes mellitus [START_REF] Nguyen | Inflammation as a Therapeutic Target in Atherosclerosis[END_REF].

Over the past several decades, studies of the pathophysiological process of atherogenesis have provided considerable insight into advanced preventive strategies and enhanced clinical outcomes in affected individuals [1]. But, rather than receding globally, the burden of ischemic cardiovascular conditions has risen to become a top cause of morbidity and mortality worldwide [START_REF] Mozaffarian | Heart Disease and Stroke Statistics 2016 Update: A Report From the American Heart Association[END_REF]. Thus, on a clinical basis and as a public health challenge, atherosclerosis remains high on the list of global challenges [START_REF] Libby | Atherosclerosis: Successes, Surprises, and Future Challenges[END_REF].

Continued research promises to provide further progress in combating this common chronic disease [1]. A deeper understanding of molecular mechanisms of atherosclerosis contributes to explore more effective preventive and therapeutic targets. 

Endothelial dysfunction and activation

Cardiovascular diseases involve altered size and structure of the arterial wall that typically consists of assembled and patterned layers to provide it with structural integrity and contractility [START_REF] Greif | Radial construction of an arterial wall[END_REF].

Some of the large and moderate arteries, such as the aorta and coronary artery, are composed of three layers: the tunica intima, the tunica media and the tunica adventitia (see Figure 1.1).

-The tunica intima consists of the endothelium, connective tissue, and a basal layer of elastic tissue called internal elastic lamina that separates the tunica intima from tunica media. The endothelium is a thin monolayer of cells that serves as the contact surface with blood.

-The tunica media is circumferentially composed of vascular smooth muscle cells and elastin-rich extracellular matrix.

-The tunica adventitia is the outermost layer of the vascular wall [START_REF] Moreno | Neovascularization in human atherosclerosis[END_REF]. A cross sectional view of the arterial wall that shows three different layers: the intima, the media and the adventitia. The endothelium is a thin layer of cells that lines the inner surface of the artery wall. It forms an interface between the circulating blood in the lumen and the rest of the arterial wall.

The endothelium separates blood from the arterial wall layers and actively regulates the exchange between these compartments. It forms a restrictive barrier: it actively regulates the extravasation of nutrients and selectively determines the movement of macromolecules and the recruitment of circulating cells from the blood into the underlying layers [START_REF] Van Hinsbergh | Endothelial Permeability for Macromolecules-Mechanistic Aspects of Pathophysiological Modulation[END_REF]. If the barrier function of the endothelium does not perform appropriately, leakage of macromolecules occurs, causing exposure of the intima to high concentrations of plasma constituents.

The endothelium is the main regulator of vascular homeostasis. Due to its strategic location, the endothelium is sequentially exposed to shear stress (SS), because of frictional force of the blood flow [START_REF] Zhou | Shear stress-initiated signaling and its regulation of endothelial function[END_REF]. A healthy endothelium, with its structural and functional properties, produces a balance of vasoconstrictive and vasodilatory molecules that coordinate vascular tone and can be altered in response to local stimuli [START_REF] Abraham | How does endothelial cell injury start? The role of endothelin in systemic sclerosis[END_REF].

MOTIVATION AND BIOLOGICAL BACKGROUND

There is a considerable evidence that the vasoprotective effects of the endothelium (vasodilation and inhibition of inflammatory response) are mediated by nitric oxide (NO), a soluble gas, synthesized in endothelial cells (ECs) [START_REF] Tousoulis | The role of nitric oxide on endothelial function[END_REF]. Studies have shown that shear stress stimulates the production of NO in endothelium [START_REF] Cabral | Shear stress increases nitric oxide production in thick ascending limbs[END_REF].

NO is produced due to the enzymatic activity of nitric oxide synthase NOS. Oxygen is a cofactor for the activity of NOS and therefore adequate oxygen is necessary for NO production. When circulation of blood flow is impaired (low shear stress), no sufficient oxygen is then delivered to endothelial cells. Therefore, a decrease in NO production is detected.

NOS is activated by the pulsatile flow of blood through vessels. NO, produced by NOS, is responsible of the stretching and relaxation of the blood vessel wall in response to each beat of the heart. It causes vasodilation by initiating a cascade of biological events that relax smooth muscle cells lining blood vessels. This regulates the diameter of the blood vessel so that perfusion of endothelial cells is maintained at optimal levels.

In addition, NO is critically involved in the entire continuum of events associated with wound repair, including cell division and maturation [START_REF] Kawashima | Dysfunction of Endothelial Nitric Oxide Synthase and Atherosclerosis[END_REF]. It is involved in proliferation of endothelial cells that maintain normal endothelial functions.

The decreased production or activity of NO causes serious problems to the endothelial equilibrium [START_REF] Tousoulis | The role of nitric oxide on endothelial function[END_REF], and any perturbation of the vascular tone balance leads to physiological adaptation or possibly injury of the endothelium.

Endothelial dysfunction comprises a loss of balance between endothelial-derived vasodilatory and vasoconstrictory factors, where the pro-vasoconstrictory state becomes dominant, leading to progressive pathophysiological changes [START_REF] Mudau | Endothelial dysfunction: the early predictor of atherosclerosis[END_REF]. It is commonly associated with reduced nitric oxide bioavailability [START_REF] Liao | Linking endothelial dysfunction with endothelial cell activation[END_REF], and is triggered via a number of different mechanisms, including turbulent blood flow, low shear stress, environmental irritants such as tobacco and hyperlipidaemia [START_REF] Abraham | How does endothelial cell injury start? The role of endothelin in systemic sclerosis[END_REF]. The decreased production or activity of nitric oxide further leads to endothelial cell activation [START_REF] Abraham | How does endothelial cell injury start? The role of endothelin in systemic sclerosis[END_REF], associated with endothelial expression of cell-surface adhesion molecules and endothelial leukocyte adhesion molecule [START_REF] Hunt | Endothelial cell activation[END_REF].

Collectively, endothelial dysfunction and endothelial cell activation exhibit pro-inflammatory features [START_REF] Mudau | Endothelial dysfunction: the early predictor of atherosclerosis[END_REF]: vasoconstriction, loss of vascular integrity causing the efflux of fluids from the intravascular space to the subendothelium, expression of leucocyte adhesion molecules, cytokine production and low density lipoprotein (LDL) oxidation [START_REF] Hunt | Endothelial cell activation[END_REF], [START_REF] Liao | Linking endothelial dysfunction with endothelial cell activation[END_REF] (see Figure 1.2).

And so, a dysfunctional endothelium promotes intimal retention of cholesterol that subsequently initiates an inflammatory response. Hence, endothelial dysfunction represents an initial step in the development of atherogenesis and is recognized as an early precursor of atherosclerosis [START_REF] Mudau | Endothelial dysfunction: the early predictor of atherosclerosis[END_REF].

Current research is examining strategies that might improve arterial endothelial function by therapeutic manipulation of NO pathways and lipid lowering. Recent studies showing that endothelial dysfunction may be improved or even reversible raise the possibility of slowing the progression of atherosclerosis or modifying arterial function, or both, to decrease the risk of acute cardiovascular events [START_REF] Celermajer | Endothelial Dysfunction: Does It Matter? Is It Reversible?[END_REF].

Structures involved in endothelial permeability

The vascular endothelium functions as a selective barrier between blood and surrounding tissue. It regulates the exchange of water, solutes and cells, maintaining normal homeostasis. Endothelial injury may lead to hyperpermeability, where components of the blood normally confined to the vascular lumen pass through the endothelium, and the rate of such passage is increased [START_REF] Ghim | The Role of Tricellular Junctions in the Transport of Macromolecules Across Endothelium[END_REF].

The pathways of plasma constituents such as LDL, HDL, monocytes and T-helper cells across the endothelium is accomplished via transcellular routes (by migrating directly through the body of a single
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Figure 1.2: Cardiovascular risk factors, such as hypercholesterolemia, smoking, and sedentary activity, lead to endothelial dysfunction associated with lack of nitric oxide. Endothelial cell activation is typically induced by pro-inflammatory cytokines, such as TNF-α and IL-6. It facilitates the recruitment and attachment of circulating leukocytes to the vessel wall [START_REF] Liao | Linking endothelial dysfunction with endothelial cell activation[END_REF]. Loss of NO leads to increased endothelial cell activation. Likewise, endothelial cell activation can cause endothelial dysfunction. Both endothelial dysfunction and endothelial cell activation lead to atherosclerosis and vascular disease.

endothelial cell) or paracellular routes (by opening a gap between two adjacent endothelial cells) [START_REF] Mundi | Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review[END_REF], [START_REF] Tran-Dinh | HDL and endothelial protection[END_REF], [START_REF] Gerhardt | Monocyte trafficking across the vessel wall[END_REF], [START_REF] Carman | T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity[END_REF]. In most healthy continuous endothelia, the paracellular pathway is only viable for small solutes. The first regulator of transendothelial passage is the glycocalyx, a thick matrix layer that lines the inner wall of healthy blood vessels. Once through the glycocalyx, plasma constituents can cross the endothelium via transcytosis, a process that occurs through vesicles which transport lipoproteins from the apical to the basolateral aspect of endothelial cells. Reducing the thickness of the glycocalyx, or decreasing its barrier function would both favour the access of LDL to the endothelial surface, expose endothelial receptors and enhance the binding capacity of monocytes, which lead to enhanced accumulation of LDL into the intima [START_REF] Mundi | Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review[END_REF], [START_REF] Tran-Dinh | HDL and endothelial protection[END_REF], [START_REF] Gerhardt | Monocyte trafficking across the vessel wall[END_REF], [START_REF] Carman | T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity[END_REF].

Under pathological conditions, they may also cross the endothelium through junctions with a wider inter-junctional space, the so-called 'leaky junctions', associated with dying or dividing endothelial cells [START_REF] Mundi | Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review[END_REF], [START_REF] Tran-Dinh | HDL and endothelial protection[END_REF], [START_REF] Gerhardt | Monocyte trafficking across the vessel wall[END_REF], [START_REF] Carman | T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity[END_REF] as shown in Figure 1. 3. Extracellular forces are transmitted through the glycocalyx to initiate intracellular signaling pathways. In endothelial cells, glycocalyx mediates NO production [25]: it protects the endothelium in order to regulate endothelial pathways by binding enzymes that metabolize oxygen radicals. These enzymes maintain nitric oxide (NO) bioavailability, decrease oxidative stress and prevent endothelial dysfunction [START_REF] Yilmaz | The role of endothelial glycocalyx in health and disease[END_REF]. Furthermore, the glycocalyx facilitates the release of NO when exposed to shear stress, thus reducing shear stress by dilating vessels [START_REF] Yilmaz | The role of endothelial glycocalyx in health and disease[END_REF].

The endothelial glycocalyx may be damaged by exposure to shear and oxidative stress in conditions of cardiovascular risk factors. The degradation of the endothelial glycocalyx layer reduces endothelial cells production of NO in response to blood shear stress [25]. NO decreased production significantly contributes to the induction of oxidant stress and subsequent impairment of endothelial function by disruption of tight junction integrity resulting in increased permeability [START_REF] Kawashima | Dysfunction of Endothelial Nitric Oxide Synthase and Atherosclerosis[END_REF]. The lack of NO caused by glycocalyx degradation is associated with worsening of disease states, such as atherosclerotic plaque formation [25].

MOTIVATION AND BIOLOGICAL BACKGROUND

Overview of cardiovascular risk factors effects on endothelial cell dysfunction and activation

Endothelial cells play a critical role in vascular homeostasis through the production of nitric oxide. Reduced bioavailability of NO is involved in the initiation, progression and complications of atherosclerosis. Cardiovascular risk factors are hallmarked by endothelial activation and dysfunction [START_REF] Theodorou | Endothelial Cell Metabolism in Atherosclerosis[END_REF]. Below, we show briefly how the occurrence of risk factors affects the functions of the endothelium and leads to the progression of atherosclerosis.

• Smoking: Smoking has been widely associated with reduced endothelial function. Cigarette smoke contains a large number of toxic elements, such as nicotine that exert an inhibitory effect on NO production pathways [START_REF] Zhang | Adverse Effects of Cigarette Smoke on NO Bioavailability :Role of Arginine Metabolism and Oxidative Stress[END_REF]. In fact, the long-term exposure to nicotine increases aortic endothelial cells injury and promotes the transendothelial transport of macromolecules [START_REF] Mundi | Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review[END_REF]. Moreover, cigarette smoke contains metals that catalyse the oxidation of cellular proteins, causing a contraction of vascular endothelial cells and endothelial leakiness. This enhances endothelial permeability and provide a site for the localization of atherosclerosis [START_REF] Mundi | Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review[END_REF].

• Obesity: Abdominal obesity results in the enhanced expression of systemic circulating pro-inflammatory cytokines and growth factors, including TNF-α and interleukin IL-6. Obesity also results in the reduced expression of an anti-inflammatory cytokine, adiponectin, which normally prevents endothelial dysfunction. TNF-α was demonstrated to increase the transcytosis of LDL across the endothelial barrier, and promote LDL retention in the subendothelial space. Adiponectin is an important mediator of vascular disease, as it increases in NO production in endothelial cells. Because of its markedly reduced production in obesity, adiponectin can be responsible of the loss of the NO-mediated protection [START_REF] Mundi | Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review[END_REF].

• Sedentary activity: Sedentary activity results in low shear stress in the lower extremities. Sitting appears to influence endothelial function due to multiple hemodynamic changes. This predisposes the vasculature to decreased NO production and subsequently impaired endothelial function [START_REF] Thosar | Sitting and endothelial dysfunction: The role of shear stress[END_REF].

• Hypercholesterolemia: Hypercholesterolemia is defined as excessively high plasma cholesterol levels.

It has been clearly demonstrated that evolution of hypercholesterolemia is associated with near-
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complete abrogation in nitric oxide bioavailability [START_REF] Stapleton | Hypercholesterolemia and microvascular dysfunction: interventional strategies[END_REF]. It generates a prominent increase in lipoprotein transcytosis that, together with changes in aortic endothelial permeability are the two major determinants of the LDL flux into the arterial wall and their deposition in the intima. The thickness and function of the endothelial glycocalyx are profoundly reduced in patients with familial hypercholesterolemia, and such changes may contribute to increased vulnerability to atherosclerosis [START_REF] Mundi | Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review[END_REF].

• Diabetes: In diabetes mellitus, the reduced NO bioavailability is caused by the increased free radicals that oxidize the cofactors of the nitric oxide synthase, diminishing their active forms and consequently leading to a decreased NO production [START_REF] Masha | Role of the decreased nitric oxide bioavailability in the vascular complications of diabetes mellitus[END_REF]. A damage to the vascular glycocalyx and the loss of glycocalyx function, followed by glycocalyx thinning might be of particular importance in diabetes. Type 1 diabetes is characterized by a damaged endothelial glycocalyx. Moreover, hyperglycaemia alters endothelial functions and markedly increases vascular permeability. All these changes might represent one of the first steps in atherogenesis in the presence of diabetes [START_REF] Mundi | Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review[END_REF].

• Hypertension: Hypertension, or high blood pressure is primarily characterized by morphological changes in the arterial endothelium. Many studies on hypertension have reported transient formation of leaky junctions and a serious damage of the glycocalyx, which increase endothelial permeability to macromolecules. LDL fluxes across the leaky junction, the intima and the media are all highly affected by the transmural pressure, which, in turns, affects endothelial cell turnover [START_REF] Mundi | Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review[END_REF].

Inducers and inhibitors of endothelial dysfunction and activation

Studies have shown that some factors promote endothelial dysfunction and activation. Some other factors have emerged as key regulators of many endothelial cell functions, including barrier function, which are deregulated during atherogenesis. In this section, we highlight the role of some inducers and inhibitors of endothelial cell dysfunction and activation.

• Effect of ox-LDL: Once LDL accumulates in the subendothelial space, it tends to become modified or oxidized.This oxidized LDL or ox-LDL plays several key roles in furthering the course of the inflammatory process. Oxidized LDL is known to enhance the expression of pro-inflammatory genes, leading to monocyte recruitment into the vessel wall and dysfunction of vascular endothelial cells. It is cytotoxic to endothelial cells via generation of free radicals and impairs nitric oxide synthase gene expression and its activity [START_REF] Li | Oxidized LDL, a critical factor in atherogenesis[END_REF]. It also promotes death of endothelial cells by augmenting apoptosis [START_REF] Libby | The Molecular Mechanisms of the Thrombotic Complications of Atherosclerosis[END_REF].

• Effect of ROS: In recent years, reactive oxygen species (ROS) have emerged as the major contributing factor in the pathogenesis of endothelial dysfunction. Importantly, ROS have a significant role in promoting endothelial dysfunction directly through NO sequestration, thereby rendering it unavailable to function in vasodilation [START_REF] Lund | Oxidants and Endothelial Dysfunction[END_REF].

• Effect of HDL: High-density lipoproteins (HDLs) represent a family of particles characterized by their ability to transport cholesterol from peripheral tissues back to the liver. In addition to this function, HDLs display antioxidant, anti-apoptotic, anti-inflammatory and anti-thrombotic effects that account for their protective action on endothelial cells. Vasodilatation via production of nitric oxide is also a hallmark of HDL action on endothelial cells [START_REF] Tran-Dinh | HDL and endothelial protection[END_REF].

MOTIVATION AND BIOLOGICAL BACKGROUND

• Effect of NO: The regulatory function of the endothelium on vascular tone is mediated through the release of several vasoactive substances, primarily NO [START_REF] Sandoo | The Endothelium and Its Role in Regulating Vascular Tone[END_REF]. This substance has a wide range of biological properties that maintain vascular homeostasis, including modulation of vascular dilator tone and regulation of local cell growth. NO suppresses platelet aggregation, leucocyte migration, and cellular adhesion to the endothelium. Endothelial dysfunction is characterized by alterations in endothelium regulating functions, resulting in imbalanced production of relaxing and contracting factors. Thus, the decreased production or activity of NO causes serious problems in endothelial equilibrium [START_REF] Tousoulis | The role of nitric oxide on endothelial function[END_REF].

• Effect of shear stress (mechanotransduction): Shear stress induces activation of endothelial nitric oxide synthase in an endothelial cell [START_REF] Sriram | Shear-Induced Nitric Oxide Production by Endothelial Cells[END_REF]. Low, oscillatory or turbulent shear stress impairs the nitric oxide bioavailability resulting in oxidative stress and decline in anti-atherosclerotic functions thus resulting in endothelial dysfunction and pro-atherosclerotic environment [START_REF] Thosar | Sitting and endothelial dysfunction: The role of shear stress[END_REF]. Low endothelial shear stress promotes the formation of early atherosclerotic lesions, which evolve through several stages of progression. At these early stages of atherosclerosis, physiological and high endothelial shear stress are atheroprotective [START_REF] Wentzel | Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions[END_REF].

• Effect of pro-inflammatory cytokines (IL-6 and TNF-α): The endothelial cell activation occurs upon exposure to the IL-6 and TNF-α pro-inflammatory cytokines [START_REF] Liao | Linking endothelial dysfunction with endothelial cell activation[END_REF].

Pathogenesis of atherosclerosis

Endothelial cells are joined together tightly to form a semi-permeable barrier that limits the efflux of large molecules, such as LDL, into the subendothelial spaces [37]. When the endothelium is exposed to cardiovascular risk factors, endothelial dysfunction occurs resulting an impaired vasorelaxation, primarily due to decreased NO bioavailability. Endothelial dysfunction comprises a specific state of endothelial activation [START_REF] Hadi | Endothelial Dysfunction: Cardiovascular Risk Factors, Therapy, and Outcome[END_REF]. The end-result of endothelial activation and dysfunction may be the loss of microvascular barrier integrity [START_REF] Lee | Endothelial activation, dysfunction and permeability during severe infections[END_REF], leading to the passage of LDL to the subendothelial space. Once in the intima, LDL particles undergo a series of chemical modifications that involves oxidation by free radicals as shown in Figure 1.4. Oxidized LDL, formed and retained in the subentothelial space, is a harmful type of cholesterol that decreases the availability of endothelial nitric oxide [START_REF] Laufs | Upregulation of Endothelial Nitric Oxide Synthase by HMG CoA Reductase Inhibitors[END_REF], and promotes the activation of endothelial cells through the induction of the cell surface adhesion molecules [37]. Ox-LDL can even induce endothelial cell death [START_REF] Leiva | Role of Oxidized LDL in Atherosclerosis[END_REF]. This results in a hyperpermeable endothelium.

However, high density lipoproteins, HDL, mediate an antiatherogenic function at this stage. They inhibit the oxidation of LDL through their direct oxidation. In fact, it has been demonstrated that the lipids of HDL are initially oxidized in preference to those in LDL in vivo [START_REF] Ito | High-Density Lipoprotein (HDL) Triglyceride and Oxidized HDL: New Lipid Biomarkers of Lipoprotein-Related Atherosclerotic Cardiovascular Disease[END_REF].

Adhesion molecules secreted by injured endothelial cells, recruits circulating phagocytic white blood cells, such as monocytes, and lymphocytes, such as T cells, to the subendothelium [START_REF] Laufs | Upregulation of Endothelial Nitric Oxide Synthase by HMG CoA Reductase Inhibitors[END_REF]. Monocytes enter lesions and differentiate into macrophages that internalize oxidized lipoproteins. Both monocyte-derived and tissue-resident macrophages can be induced to proliferate by IL-4 [START_REF] Lin | Macrophage Plasticity and Atherosclerosis Therapy[END_REF]. Macrophages become engorged with lipids resulting in dysregulated lipid metabolism and a shift in macrophage phenotype to that of lipid-laden foam cells [START_REF] Brophy | Eating the Dead to Keep Atherosclerosis at Bay[END_REF]. Foam cells, constitute the primary part of fatty streaks which then proceed with atherosclerosis plaque genesis [START_REF] Bi | M2 Macrophages as a Potential Target for Antiatherosclerosis Treatment[END_REF]. Recent research shows that macrophage proliferation is the primary contributor to macrophage accumulation in advanced atherosclerotic plaques [START_REF] Tang | Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation[END_REF] which depends on local macrophage proliferation rather than the recruitment of circulating monocytes [START_REF] Gwendalyn | Proliferating macrophages prevail in atherosclerosis[END_REF].

Macrophages have been classified as M1/M2 subtypes. M1 macrophages support inflammatory processes that protect the host from microbial infection and aid in the elimination of tumors and M2
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macrophages suppress ongoing inflammatory responses, and facilitate tissue repair/remodeling [START_REF] Bayik | Regulation of the maturation of human monocytes into immunosuppressive macrophages[END_REF]. Both M1 and M2 macrophages have been identified in atherosclerotic plaques. Whereas M2 macrophages are atheroprotective and display anti-inflammatory effects, M1 macrophages are heavily involved in atherosclerotic lesion enlargement and progression [START_REF] Tabas | Monocyte-Macrophages and T Cells in Atherosclerosis[END_REF]. Microenvironmental features, such as a variety of pro-inflammatory cytokines, determine the macrophage activation and polarization.

T cells, a type of leukocytes, have the ability to differentiate into various T-cell subtypes, including T helper Th1, Th2 and other lineages. There are various factors that may influence lineage phenotypes [START_REF] Bartlett | Macrophages and T cells in atherosclerosis: a translational perspective[END_REF]. They regulate the maturation of monocytes into macrophages [START_REF] Bayik | Regulation of the maturation of human monocytes into immunosuppressive macrophages[END_REF].

Th1 cells are considered pro-inflammatory through their affiliation with M1 macrophages. They secrete IFNγ [START_REF] Bartlett | Macrophages and T cells in atherosclerosis: a translational perspective[END_REF] known to activate M1 macrophages. M1 macrophages promote atherosclerosis progression through secretion of pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6, IL-12, and IL-23 [START_REF] Bartlett | Macrophages and T cells in atherosclerosis: a translational perspective[END_REF], [START_REF] Freigang | Kopf Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL -1α and sterile vascular inflammation in atherosclerosis[END_REF], and free radicals, to maintain local inflammation [START_REF] Tabas | Monocyte-Macrophages and T Cells in Atherosclerosis[END_REF]. Pro-inflammatory cytokines released by M1 macrophages induce increased vascular permeability and recruitment of inflammatory cells.

Studies have shown that pro-inflammatory cytokines secreted in macrophages are involved in their own production. For instance, IL-1β serves as an inflammatory master cytokine that enhances the expression of many pro-inflammatory cytokines [START_REF] Libby | Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond[END_REF]. Moreover, in stimulated macrophages, IL-1α is synthesized de novo and can be actively secreted [START_REF] Duque | Macrophage cytokines: involvement in immunity and infectious diseases[END_REF] in response to a variety of physiological stimuli, including oxidative stress, lipid overload, hormonal stimulation and exposure to cytokines (including IL-1β and IL-1α itself) [START_REF] Di Paolo | Interleukin 1α and the inflammatory process[END_REF].

All the same, M2 macrophages are induced by IL-4, IL-5, IL-13, IL-10 and TGFβ produced by Th2 cells [START_REF] Tabas | Monocyte-Macrophages and T Cells in Atherosclerosis[END_REF]. They produce anti-inflammatory cytokines such as IL-19, IL-27 and IL-33, that stimulate protective responses and suppress atherosclerosis development [START_REF] Fatkhullina | The Role of Cytokines in the Development of Atherosclerosis[END_REF].

The foam cells secrete pro-inflammatory cytokines which recruit additional monocytes and macrophages in a positive feedback mechanism. These foam cells accumulate within the subendothelium giving rise to the plaque. Vascular smooth muscle cells traditionally produce collagen forming the fibrous cap of the lesion and preventing plaque rupture and thrombosis [START_REF] Brophy | Eating the Dead to Keep Atherosclerosis at Bay[END_REF].

The foam cells eventually undergo apoptosis and necroptosis. M2 macrophages express anti-inflammatory markers that act to reduce the inflammation of the plaque due to apoptotic and necrotic cells and promote plaque stability. Dead and dying foam cells, if not efficiently cleared by M2 macrophages, become leaky and eventually release their contents into the subendothelium. This process results in the formation of the necrotic or lipid core. As the necrotic core grows and the fibrous cap thins, the plaque is vulnerable to rupture, which may result in acute cardiovascular events such as thrombosis [START_REF] Brophy | Eating the Dead to Keep Atherosclerosis at Bay[END_REF].

The balance between proatherosclerotic and atheroprotective immune cells in atherosclerotic plaques is a determining factor in plaque progression and vulnerability. While M1 macrophages have a role in stimulating an inflammatory response, M2 macrophages are responsible for plaque stabilization and plaque regression [START_REF] Tabas | Monocyte-Macrophages and T Cells in Atherosclerosis[END_REF]. Studies on macrophages heterogeneity lead to novel strategies of pharmacological intervention to combat cardiovascular diseases and their complications.

The clinical manifestations of atherosclerosis are the consequences of atherosclerotic plaque rupture or erosion. They comprise myocardial infarction, stroke and aortic aneurysms. Atherosclerotic disease remains the most important cause of death in developed nations, despite advances in medical, interventional, and surgical treatment [START_REF] Celermajer | Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection[END_REF].

Over the last decades, recent research and treatment studies in vascular medicine has markedly expanded the scientific understanding of cardiovascular diseases, in particular atherosclerosis, and revealed improved outcomes in prevention, diagnosis and therapeutic approaches. Although new insights in this area are being developed, cardiovascular diseases remain so far associated with high morbidity and mortality. Certainly, further studies are required to better understand the bioprocesses complexity of these diseases. 

Lumen

Chemotaxis of macrophages and inflammation

Migration of macrophages and foam cells in the subendothelial layer is determined by chemotaxis. At the cellular level, epidermal growth factor, EGF, a factor that may be expressed by the endothelium [START_REF] Gilbert | Endothelin receptor antag-onism ameliorates mast cell infiltration, vascular hypertrophy, and epidermal growth factor expression in experimental diabetes[END_REF], exhibits chemotactic activity towards monocytes [START_REF] Lamb | EGF mediates monocyte chemotaxis and macrophage proliferation and EGF receptor is expressed in atherosclerotic plaques[END_REF]. In fact, functional EGF receptors (EGFR, ErbB1/HER-1), identified on peripheral blood monocytes and monocyte-derived macrophages, mediate both chemotaxis in monocytes and macrophages and proliferation in macrophages [START_REF] Lamb | EGF mediates monocyte chemotaxis and macrophage proliferation and EGF receptor is expressed in atherosclerotic plaques[END_REF]. Studies of advanced lesions show that Mox macrophages express pro-inflammatory markers to support the inflammation, and display defective phagocytic and chemotactic capacities [START_REF] Xu | Vascular Macrophages in Atherosclerosis[END_REF]. Notably, the expression of growth factors EGF and their respective receptors EGFR has been detected in atherosclerotic lesions, but not in morphologically normal aortae [START_REF] Lamb | EGF mediates monocyte chemotaxis and macrophage proliferation and EGF receptor is expressed in atherosclerotic plaques[END_REF]. This confirms that the secretion of EGF is mediated by activated endothelial cells. Therefore, inflammatory macrophages and foam cells produce inflammatory cytokines which activate endothelial cells that in turn enhance the inflammatory process and release EGF responsible of chemotactic responses in macrophages. Consequently, a positive feedback occurs between inflammation and chemotaxis, as illustrated in Figure 1.5. Due to the accumulation of ox-LDL , macrophages become overladen and turn into foam cells. The excess of lipid causes foam cells to die and release their content outside. The debris is again engulfed by other macrophages resulting in a larger lesion area which can lead to an atherosclerotic plaque build-up.

The arterial plaque in atherosclerosis is essentially composed of lipids and macrophages. It progresses over time, harden and increases in size leading to deformation in the arterial wall. According to histological classification of human plaques, late plaque is associated with reduction in the lumen diameter [1], which restricts the blood flow leading to serious complications such as ischemic heart disease and stroke. 

Plaque types

Atherosclerosis may progress in different morphogenetic sequences, and results in several characteristic lesion types and clinical syndromes.

Many studies investigated the pathobiological mechanisms of this disease to provide a standard framework of lesions morphologies by elaborating histological classifications of atherosclerotic lesions. These classifications consider the mechanisms behind the development of minimal lesions into lesions that may produce symptoms and provide criteria for diagnosing the stage of development of the disease in patients.

Advanced lesions, whether overtly clinical or predisposing to complications that cause ischemic episodes, are preceded by a sequence of silent precursors arranged in three characteristic lesion types, according to the American Heart Association, and recognized when the intima is not deformed. Types I and II in Table (1.1) are generally the only lesion types that occur in infants and children, although they also occur in adults. Type I lesions consist of the first microscopically and chemically detectable lipid deposits in the intima and Type II lesions include the fatty streak lesion, the first grossly visible lesion [START_REF] Herbert | A Definition of Initial, Fatty Streak, and Intermediate Lesions of Atherosclerosis[END_REF]. While Type I lesions are characterized as an increase in the number of macrophages within the intima and the appearance of foam cells, Type II lesions are recognized by layers of macrophage foam cells, lipid droplets within intimal smooth muscle cells. Fatty streaks are flat or slightly elevated and generally vary in size from 3 to 5 mm [START_REF] Xu | Chapter 3 -Vascular Pathobiology: Atherosclerosis and Large Vessel Disease[END_REF]. They include fatty streaks, which may be visible to the unaided eye as yellow-colored streaks, patches, or spots on the intimal surface of arteries, as shown in Figure 1.6. Type III lesions links type II stage to advanced lesions and are characterized by pools of extracellular lipid [START_REF] Herbert | A Definition of Initial, Fatty Streak, and Intermediate Lesions of Atherosclerosis[END_REF]. Fatty streaks, consisting of multilayered foam cells, are distributed throughout the arterial tree [START_REF] Faggiotto | Studies of Hypercholesterolemia in the Nonhuman Primate I.Changes that Lead to Fatty Streak Formation[END_REF]. Figure 1.7 shows that fatty streaks appear at every level of the arterial tree.

As for Type II lesions, the extracellular space of fatty streaks contains small quantities of thinly dispersed lipid droplets and vesicular particles [START_REF] Herbert | A Definition of Initial, Fatty Streak, and Intermediate Lesions of Atherosclerosis[END_REF]. The distribution of fatty streaks along the aorta is shown in Figure 1.6 and appears to be non-uniform.

Despite the advances of studies that led to compelling hypotheses about the pathophysiology of atherosclerosis, researchers find significant challenges to understand the multiple aspects of this disease and develop more effective therapies. Mathematical studies of atherosclerosis propose ways to tackle the complexity of the disease and provide further insight which may lead to new clinical applications. 

Mathematical modeling of atherosclerosis

Over the recent decades, a broad spectrum of mathematical and computational models of the inflammatory process of atherosclerosis were established using different modeling techniques and strategies. Some consider several key species, where others identify the interaction between blood and the arterial wall. The mechanical factors that could initiate of atherosclerosis lesions have been widely explored by many authors.

The objective of these studies is to pave a way towards more precise understanding of the inflammatory aspect of atherosclerosis and to predict the fate of atherosclerosis. Below is a general overview of some existing models in literature.

Several models inspect the inflammatory aspects of atherosclerosis, considering different species that have a major role in the onset of atherosclerosis. In these works, the inflammation described through the interplay between the species taken into account is the main motive. The basic model studied in [START_REF] Khatib | Mathematical Modelling of Atherosclerosis as an Inflammatory Disease[END_REF] considers only two principal species; immune cells and cytokines. Other works consider more detailed biological studies and elaborate a system modeling many other species operating in the establishment of atherosclerosis, as in [START_REF] Bezyaev | A model of chronic inflammation in atherosclerosis[END_REF] and [START_REF] Younes | Mathematical Modeling of Atherogenesis: Atheroprotective Role of HDL[END_REF], where the pro and anti-inflammatory processes occurring during atherogenesis are described in detail and in [START_REF] Mckay | Towards a Model of Atherosclerosis[END_REF], where the cellular mechanisms behind the formation of an atherosclerotic plaque are studied through different stages. Some other works describe the chronic inflammatory response by highlighting the effect of a particular phenomenon contributing to plaque formation as in [START_REF] Calvez | Mathematical modelling of the atherosclerotic plaque formation[END_REF]. Likewise, in [START_REF] Cobbold | Lipoprotein Oxidation and its Significance for Atherosclerosis: a Mathematical Approach[END_REF], the authors focus on the oxidation of LDL particles approach and give a model which represents some of the in vitro experiments carried out on LDL particles oxidation and their antioxidant defense against free radical attack due to vitamin E particles they possess.

While some mathematical models consider biochemical reactions that initiate and maintain the overall progress of inflammation, some other works examine the contribution of fluid mechanics by investigating the fluid structure interaction and the effects of haemodynamic factors. For instance, in [START_REF] Khatib | Mathematical modelling of atherosclerosis[END_REF], plaque-flow interaction in atherosclerosis is investigated in an FSI model that considers the blood as a viscous fluid and the carotid artery with the atheromatous plaque as hyperelastic materials. In the same manner, in [START_REF] Mckay | Towards a Model of Atherosclerosis[END_REF], the authors take into account the blood flow to investigate the wall shear stress in cap degradation, as well as the wound healing applied to plaque rupture. Further, the authors in [START_REF] Atif Khan | Mathematical Models for Atherosclerotic Plaque Evolution[END_REF] examine complex dynamics associated with plaque growth in human arteries. They use bifurcation analysis to propose a mathematical model. The study considers the interaction between the blood flow and the artery wall combining both blood flow conditions and biochemical evolution of the plaque constituents. It explores the different plaque constituents evolution on short time scales, and their accumulation into the artery on a longer time scale. Coupling the inflammatory processes with the fluid dynamics-mechanical processes was also studied in [START_REF] Silva | Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability[END_REF]. This model describes the blood flow, the fluid flow inside the poroelastic vessel wall, and the transport, signaling and interaction processes initiating inflammation and atherosclerosis. While in [START_REF] Kafi | Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery[END_REF], the authors suggest that the plaque rupture may result from the interaction between the blood and the plaque and develop a three-dimensional idealized fluid-structure interaction model to study the blood-plaque and blood-vessel wall interaction studies. The rigidity of the wall affecting the wall shear stress is investigated. As a result, the authors show that plaque rupture is associated to the case of a moving wall, while the atheromatous plaque is associated to the case of a fixed wall. Many other works consider this topic, we list [START_REF] Calvez | Mathematical and numerical modeling of early atherosclerotic lesions[END_REF], where the authors coupled this inflammatory process with mass transfer from the lumen, in a model using fluid dynamics to study the emergence of plaques that correlates with low wall shear stress, and [START_REF] Yu | Blood Flow Simulation in Atherosclerotic Vascular Network Using Fiber-Spring Representation of Diseased Wall[END_REF], where the authors consider the fiber-spring elastic model of the arterial wall with atherosclerotic plaque and reproduce pressure to cross-sectional area relationship in order to examine the impact of the diseased region onto global haemodynamics.

Although endothelial dysfunction or injury is not fully understood, recently, several studies have included endothelial permeability to their models. These studies suggest that passage of key components in atherosclerosis to the intima is due to endothelial permeability. In [START_REF] Silva | Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability[END_REF], the authors consider the thickening of the vessel walls and focus on quantifying the functionality of the endothelium. Through this model, the authors describe the diapedesis of monocytes from their transport on the endothelial surface to their influx in the lumen. On the other hand, endothelial activation has been investigated in [START_REF] Bezyaev | A model of chronic inflammation in atherosclerosis[END_REF] and described as a variable depending on the concentration of ox-LDL and pro-inflammatory cytokines.

Mathematical models usually take the form of systems of either partial differential equations as in [START_REF] Khatib | Mathematical Modelling of Atherosclerosis as an Inflammatory Disease[END_REF] and [START_REF] Cobbold | Lipoprotein Oxidation and its Significance for Atherosclerosis: a Mathematical Approach[END_REF] or ordinary differential equations as in [START_REF] Bezyaev | A model of chronic inflammation in atherosclerosis[END_REF] and [START_REF] Ougrinovskaia | An ODE Model of Early Stages of Atherosclerosis: Mechanisms of the Inflammatory Response[END_REF]. The PDEs model normally are of reaction-diffusion type that describe local chemical reactions in which the substances are transformed into each other, and their diffusion. The spatial models are in general one-dimensional as in [START_REF] Khatib | Mathematical Modelling of Atherosclerosis as an Inflammatory Disease[END_REF] or two-dimensional as in [START_REF] El Khatib | Reaction-diffusion model of atherosclerosis development[END_REF]. Some works consider a one-dimensional model of PDEs then extend the domain into two spatial dimensions in order to generalize the results, as in [START_REF] Mckay | Towards a Model of Atherosclerosis[END_REF].

For a more prominent description of biological processes, many mathematical models in literature consider complex modeling techniques that result in heavy and complicated analysis. That being so, the authors opt for some simplifications, assumptions or even linearization of the functions, with regard to reducing sophistications and being able to handle the model. Even though these approaches weaken the rigor of the study in terms of illustrating phenomenological processes, the validation of the simplified model results with biological knowledge makes the predicted behavior of the disease through this model reliable within acceptable bounds. These techniques are employed in a large number of models in literature, for example in [START_REF] Ougrinovskaia | An ODE Model of Early Stages of Atherosclerosis: Mechanisms of the Inflammatory Response[END_REF] and [START_REF] Panfilov | INVITED) Reaction-diffusion waves in cardiovascular diseases[END_REF] Many works in literature, such as [START_REF] El Khatib | Reaction-diffusion model of atherosclerosis development[END_REF] and [START_REF] Khatib | Mathematical Modelling of Atherosclerosis as an Inflammatory Disease[END_REF] are devoted to the study of traveling wave solutions for some mathematical models of atherosclerosis of reaction-diffusion equations. The aim of these studies is to describe the propagation of the inflammation through a wave. The existence of traveling wave solutions is ensured due to the monotonicity of the systems. Whereas, in [START_REF] Panfilov | INVITED) Reaction-diffusion waves in cardiovascular diseases[END_REF], the authors not only consider the wave patterns in reaction diffusion systems but also they discuss the dynamics of wave patterns underlying cardiac arrhythmias that may lead to clot formation or stroke.

Mathematical models of atherosclerosis are effective tools used successfully in understanding fundamental processes in atherosclerosis. They have been studied with the objective of obtaining insights on inflammation. They essentially provide simulations detecting system behaviors and featuring the evolution of the disease. Collectively, numerical simulations and analytical data reported from biological studies are an attempt to quantify the inflammatory process and to afford predictive results. Several models provide numerical simulations and rely on existing data to convey to reliable predictive conclusions. One can list the following works : [START_REF] Khatib | Mathematical Modelling of Atherosclerosis as an Inflammatory Disease[END_REF], [START_REF] Khatib | Mathematical modelling of atherosclerosis[END_REF], [START_REF] Silva | Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability[END_REF], [START_REF] El Khatib | Reaction-diffusion model of atherosclerosis development[END_REF], [START_REF] Panfilov | INVITED) Reaction-diffusion waves in cardiovascular diseases[END_REF], [START_REF] Ibragimov | A mathematical model of atherogenesis as an inflammatory response[END_REF], .

Mathematical models of atherosclerosis support current concepts about the inflammation and can be useful tools to quantitatively evaluate the evolution of the disease. They afford a better understanding of different aspects of atherosclerosis. For example, the study in [START_REF] Khatib | Mathematical Modelling of Atherosclerosis as an Inflammatory Disease[END_REF] considers a critical parameter that affected the initiation of the disease represents the concentration of ox-LDL in the intima. The mathematical study of the kinetic system leads in the following biological interpretation: low ox-LDL concentrations do not trigger any chronic inflammatory reaction ; intermediate concentration of ox-LDL leads to a bistable case where a chronic inflammatory reaction can set up when the system overcomes a certain threshold ; and high ox-LDL concentrations correspond to a monostable system where even a small perturbation of the non inflammatory state leads to the setup of a chronic inflammatory response. Moreover, the authors in [START_REF] Khatib | Mathematical modelling of atherosclerosis[END_REF] conclude that recirculation of blood leads to clot formation and that the vessel wall movement due to the stress over the plaque is implicated in the plaque vulnerability. Coupled 0D-1D models of blood flow in atherosclerotic vasculature analyzed in this paper provide a basis for patient-specific analysis in surgery treatments of atherosclerosis. Further, paper [START_REF] Atif Khan | Mathematical Models for Atherosclerotic Plaque Evolution[END_REF] distinguishes the most relevant factors to the plaque formation. Besides, in [START_REF] Ougrinovskaia | An ODE Model of Early Stages of Atherosclerosis: Mechanisms of the Inflammatory Response[END_REF], the model shows that it is macrophage proliferation that drives lesion instability rather than an increasing influx of modified LDL. In other words, many individuals develop lesions despite having a normal lipoprotein profile. Likewise, the authors in [START_REF] Cobbold | Lipoprotein Oxidation and its Significance for Atherosclerosis: a Mathematical Approach[END_REF] conclude that HDL could provide a protection for LDL against radical attack through the reverse cholesterol transport mechanism and that vitamin E supplementation is not as beneficial as HDLs in reducing LDLs oxidation. Numerical simulations in [START_REF] Ibragimov | A mathematical model of atherogenesis as an inflammatory response[END_REF] lead to some results that are in agreement with cardiovascular disease features such as the localization of immune cells, the build-up of lipids and debris and the formation of a cap of smooth muscle cells. The results of paper [START_REF] Ai | A coupling model for macromolecule transport in a stenosed arterial wall[END_REF] lead to the conclusion that hypertension greatly increases the transmural filtration and concentration polarization at the lumen/endothelium interface and that geometrical variation on the LDL accumulation within the wall is greatly increased near the region of stenosis. The dynamical model of lipoprotein metabolism introduced in [START_REF] August | A Dynamical Model of Lipoprotein Metabolism[END_REF] shows bistability and hysteresis between a low and a high cholesterol state. The bifurcation analysis can be related to diet and statin medication and reverse cholesterol transport through HDL. Sensitivity analysis proves that the most robust feature in the low cholesterol state is the concentration of intracellular cholesterol, while the plasma concentrations can vary widely. Estimates for the characteristic time scales governing the dynamics of the model in the low and high cholesterol states are established. And finally, the study in paper [START_REF] Silva | Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability[END_REF] provides results on dynamics of endothelial permeability, as well as the growth and spread of immune cells populations and their dependence in particular on LDL and wall-shear stress.

Chemotaxis in atherosclerosis has been investigated as well in mathematical models. Many models studied the chemotactic activities during plaque formation and provide relevant qualitative and quantitative results. For instance, the model in [84] consists of a system of nonlinear evolution equations governing the interaction of chemical species (chemoattractant, native lipoproteins and oxidized LDL) and cellular species (immune cells, smooth muscle cells and debris). It describes the chemotactic activity of species and their diffuse transport in a classical way. The stability analysis of this model shows that cellular aggregation results from an unstable perturbation. Moreover, the authors in [START_REF] Michael | Myerscough A Two-Phase Model of Early Fibrous Cap Formation in[END_REF] consider the chemotactic response of vascular smooth muscle cells, SMCs, which usually reside in the medial layer, to the PDGF gradient and migrate into the intima. They study a multiphase model to investigate the mechanisms of cap formation and identify key parameters that may contribute to cap stability. Then, they derive a two-phase model that focusses on the chemotactic response of SMCs to endothelium-derived PDGF, and use a variety of in vivo, in vitro and in silico studies to obtain accurate estimates for some key parameters in the model. However, this model has some limitations since it does not include the inflammatory dynamics that take place in the plaque. The main result of this work is that SMCs accumulate near the endothelium and form fibrous caps for a wide range of parameter sets, but also that cap thickness is due to the variations in key parameters. Likewise, the model presented in [START_REF] Chalmers | Bifurcation and dynamics in a mathematical model of early atherosclerosis How acute inflammation drives lesion development[END_REF] has some similarities with the model presented in [84] with more details on the events at the endothelium (ingress of LDL into the intima, endothelium of activation by endothelial injury, presence of modified LDL inside the vessel wall). In this model, the authors take into account the chemotactic flux of macrophages in response to cytokines and modified LDL, within the intima and across the endothelium. The conclusions drawn from this study concern the events at the endothelium leading to the slow growth of plaques and infer on the state of inflammation in the lesion in defined region of parameter space where this bistability exists. While in [START_REF] Fok | Mathematical model of intimal thickening in atherosclerosis: Vessel stenosis as a free boundary problem[END_REF], the study focuses on intimal thickening, in a free boundary problem for the arterial radius. The authors consider the flux of smooth muscle cells from the media, their proliferation, and death resulting in stenosis and the analysis shows that bifurcations can occur giving rise to multiple steady states. This model provides an important prediction that cell chemotaxis is much weaker than in an acute inflammatory response. Furthermore, the aim of the mathematical model in [START_REF] Guoa | Mathematical modeling of atherosclerotic plaque destabilization: Role of neovascularization and intraplaque hemorrhage[END_REF] is to investigate the process of plaque destabilization and corresponding changes in plaque components and hemodynamic microenvironment. The authors couple a plaque progression model with a hemodynamics model by taking into account the chemotaxis of macrophages in response to monocyte chemoattractant protein MCP-1. Furthermore, the paper [START_REF] Friedman | A Mathematical Model of Atherosclerosis with Reverse Cholesterol Transport and Associated Risk Factors[END_REF] takes into account the movement of smooth muscle cells from the media into the intima by chemotactic forces due to MCP-1 and platelet-derived growth factor (PDGF) secreted mainly by macrophages. However, the main objective of this paper focuses on the role of reverse cholesterol transport mediated by HDL and does not outline the role of the chemotactic activity. Similarly, there are many other papers that consider the chemotaxis in atherosclerosis in the mathematical model, we list [START_REF] Chalmers | Nonlinear dynamics of early atherosclerotic plaque formation may determine the efficacy of high density lipoproteins (HDL) in plaque regression[END_REF], [START_REF] Reddy | Stability Analysis of a Model of Atherosclerotic Plaque Growth[END_REF] and [START_REF] Ibragimov | A mathematical model of atherogenesis as an inflammatory response[END_REF].

Recent studies on the modeling of atherosclerosis deal with free boundary problems of partial differential equations where the domain is unknown due to the evolution of the plaque size within the intima causing alteration to the endothelium. We list, by way of example, [START_REF] Silva | Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability[END_REF][START_REF] Fok | Mathematical model of intimal thickening in atherosclerosis: Vessel stenosis as a free boundary problem[END_REF][START_REF] Hamidul Islam | A mathematical model for atherosclerotic plaque formation and arterial wall remodelling[END_REF] and [START_REF] Hao | Bifurcation analysis of a free boundary model of plaque formation associated with the cholesterol ratio[END_REF]. These models were mostly studied in two-dimensional geometries and consider various reasons for the intimal thickening which determines the boundary dynamic. Some of these papers study the endothelial damage as an early marker of atherosclerosis and focus on the endothelial injury and permeability. For instance, the mathematical model proposed in [START_REF] Fok | Mathematical model of intimal thickening in atherosclerosis: Vessel stenosis as a free boundary problem[END_REF] describes the intimal thickening as driven by damage to the endothelium, resulting in the release of cytokines and migration of SMCs. The domain of this model is a concentric geometry, described with polar coordinates, where the lumen-intimal interface is a free boundary described through the lumen radius. The steady states analysis, and the bifurcation analysis allow predict the endothelial injury spread over time and PDGF penetration into different layers of the vessel wall. Likewise, for the formulation of the mathematical model in [START_REF] Silva | Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability[END_REF], the authors consider a domain in R 3 representing the lumen and the intima. The endothelial surface is a free interface between lumen and intima. The authors deduce that elevated LDL concentrations in the endothelium and inflammation conditions can lead to alteration of the endothelial permeability. Some papers focus on the plaque formation and its constituents and elaborate models where the plaque growth is due to the intimal accumulation of species and the evolution of their concentrations. By way of example, the biochemical model in [START_REF] Hamidul Islam | A mathematical model for atherosclerotic plaque formation and arterial wall remodelling[END_REF] takes into account various species and considers the effects of periodic damage to the endothelium and cycles of injury to the endothelium. The series of bifurcation analyses demonstrates that a large uptake rate of ox-LDL by macrophages results in a reduced abundance of ox-ldl particles in the lesion. Besides, in [START_REF] Hao | Bifurcation analysis of a free boundary model of plaque formation associated with the cholesterol ratio[END_REF], the authors study the radially symmetric steady-state solutions of a model that includes the RCT process. The authors establish the existence of bifurcation branches from radially symmetric steady-state solution, obtain the condition that the bifurcation occurs, and explore the linear stability of radially symmetric steady solutions. Some other papers focus on the role of lipids in the evolution of atheroscelrosis as well as the reverse cholesterol transport as in [START_REF] Hao | The LDL-HDL Profile Determines the Risk of Atherosclerosis: A Mathematical Model[END_REF][START_REF] Friedman | A free boundary problem for steady small plaques in the artery and their stability[END_REF] in a free boundary model.

Description of the thesis

This thesis investigates the initiation of atherosclerosis within the inner lining of the artery. First, it considers the hyperpermeability of the endothelium as a precursor of this disease and the main inflammatory processes. It studies, as well, the role of chemotaxis and inflammation in the emergence of fatty streaks. Moreover, it analyzes the progressive thickening of the arterial wall narrowing the vessel lumen in a free boundary model.

In the second chapter, we study the early stages of atherosclerosis via a mathematical model of partial differential equations of reaction-diffusion type. The model includes several key species and identifies endothelial hyperpermeability, believed to be a precursor on the onset of atherosclerosis. As a novelty, this model studies not only the pro-inflammatory process in atherosclerosis but also the anti-inflammatory pathways with a focus on their effect on the evolution of the inflammation. For simplicity, we reduce the system to a monotone system and provide a biological interpretation for the stability analysis according to endothelial functionality. We investigate as well the existence of solutions of traveling waves type along with numerical simulations. The obtained results are in good agreement with current biological knowledge. Likewise, they confirm and generalize results of mathematical models previously performed in literature. Then, we study the non monotone reduced model and prove the existence of perturbed solutions
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and perturbed waves, particularly in the bistable case. Finally, we extend the study by considering the complete model proposed initially, perform numerical simulations and provide more specific results. We study the consistency between the reduced and complete model analysis for a certain range of parameters, we elaborate bifurcation diagrams showing the evolution of inflammation upon endothelial permeability and LDL accumulation and we consider the effect of anti-inflammatory process on the system behavior. In this model, the regulation of atherosclerosis progression is mediated by anti-inflammatory responses that, up to certain extent, lead to plaque regression.

In the third chapter, we study the early stages of atherosclerosis with a mathematical model based on reaction-diffusion equations. The model includes the main factors in atherosclerosis and focuses on the positive feedback between the inflammation in atherosclerosis and the chemotactic movement of macrophages. Stability analysis and numerical simulations for a reduced model including macrophages and inflammatory cytokines show the formation of spatial structures corresponding to the emergence of fatty streaks as a result of interaction between chemotaxis and inflammation. Finally, we consider the complete model taking into account also endothelial cells and growth factor that provides a more realistic description of the disease and extend the results obtained by performing numerical simulations.

Chapter 4 is devoted to the study of a mathematical model of atherosclerosis in one-dimensional geometry with a free boundary. The motion of the boundary is attributable to the concentration of cells in the intima and their interaction in the subendothelial space as well as to their influx through the boundary. A mathematical model that describes the main inflammatory processes in atherosclerosis is proposed, then, by considering some simplifications, a reduced model is obtained. Using a change of variables, the reduced model is converted to a fixed boundary model with space and time dependent coefficients and non linear terms. We study the existence of solution for the fixed boundary model starting with a model with linear terms then by applying the fixed point theorem. The wave solution is as well investigated along with numerical simulations. Then, we return to the reduced model, prove the existence of solution and present numerical results. Finally, we generalize the results to the complete model initially proposed in this chapter.

In the last chapter, we list the conclusions drawn from the models in this thesis and present the limitations of these models. This chapter proposes topics related to theses models that can be studied in the future.

Chapter 2

Mathematical Modeling of Inflammatory Processes of Atherosclerosis

The mathematical model studied in this chapter describes the early stages of atherosclerosis and takes into account endothelial hyperpermeability. Since the proposed model is comprised of fourteen partial differential equations of the reaction-diffusion type, we reduce it and impose conditions to ensure its monotonicity. We then interpret biologically the stability analysis of the monotone reduced model in light of endothelial functionality along with numerical simulations. We also investigate the existence of traveling wave solutions. The non monotone reduced model is next examined, and the existence of perturbed solutions and perturbed wave is proved in the bistable situation. Finally, we extend the study to the complete model that was first proposed, perform numerical simulations, and present more detailed findings. The reduced and complete model analyses for a particular range of parameters are consistent. Then we show through bifurcation diagrams the development of inflammation in response to endothelial permeability and LDL accumulation, and we take into account how anti-inflammatory processes affect system behavior. According to this model, anti-inflammatory process in atherosclerosis limits the development of atherosclerosis and may result in plaque regression.

Mathematical model

In this section, we model the different cascades of atherogenesis in a system of coupled partial differential equations. We consider some key-role players in the inflammatory process shown in Table 2.1. The endothelial dysfunction and activation are taken into consideration through a term P considered to be an endothelial permeability indicator. The modeling of the term P can involve the effect of ox-LDL and free radicals in endothelial dysfunction, the effect of pro-inflammatory cytokines in endothelial activation, the effect of HDL in preserving endothelium and finally, the effect of nitric oxide or shear stress.

For l > 0, x ∈]0, l[ and t ∈ [0, ∞[, the system reads as follows: The following equation models the evolution of LDL concentration:
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∂L ∂t = D 1 ∂ 2 L ∂x 2 + σ L P L 0 -k L L. ( 2.1) 
The first right-hand side term in equation (2.1) represents the diffusion of LDL and the second right-hand side term describes the LDL penetration through the vessel wall, where L 0 is the concentration of LDL in the blood. The third right-hand side term describes the oxidization of LDL particles.

In subsequent equations, the terms D i , for i = 2, ..., 14, refer to the diffusion rates. Similar reactions are modeled for the HDL concentration as follows:

∂H ∂t = D 2 ∂ 2 H ∂x 2 + σ H P H 0 -k H H. (2.
2)

The HDL penetration through the vessel wall is described through the second right-hand side term in equation (2.2), where H 0 is the concentration of HDL in the blood. The consumption of HDL through oxidation reaction with free radicals is represented in the third right-hand side term.

The evolution of ox-LDL concentration in the intima is modeled by the following equation:

∂L ox ∂t = D 3 ∂ 2 L ox ∂x 2 + k L L -λ LoxM1 L ox k Lox + L ox M 1 -λ LoxM2 L ox k Lox + L ox M 2 -d Lox L ox . (2.3)
We model the production of ox-LDL due to LDL oxidation by reaction with the radicals through the term k L L in equation (2.3), and the ingestion of ox-LDL by M1 and M2 macrophages through the third and fourth right-hand side terms. The last term models the degradation of ox-LDL.

The description of monocytes concentrations evolution is given by:

∂A 1 ∂t = D 4 ∂ 2 A 1 ∂x 2 + λ P A1 P A 0 1 -λ C1A1 C 1 k C1 + C 1 + k 4 C 4 A 1 -d A1 A 1 , (2.4) ∂A 2 ∂t = D 5 ∂ 2 A 2 ∂x 2 + λ P A2 P A 0 2 -λ C2A2 C 2 k C2 + C 2 A 2 -d A2 A 2 .
(2.5)

The terms λ P A1 P A 0 1 and λ P A2 P A 0 2 , in equations (2.4) and (2.5), model the A 1 and A 2 monocytes penetration through the vessel wall, where A 0 1 and A 0 2 are densities of A 1 and A 2 monocytes in blood. The third right-hand side terms describe the differentiation of monocytes into macrophages, and the last right-hand side terms correspond to the death of monocytes.

The following equations describe the evolution of M1 and M2 macrophages concentrations:

∂M 1 ∂t = D 6 ∂ 2 M 1 ∂x 2 + λ C1A1 C 1 k C1 + C 1 + k 4 C 4 A 1 -λ LoxM1 L ox k Lox + L ox M 1 -d M1 M 1 , (2.6) ∂M 2 ∂t = D 7 ∂ 2 M 2 ∂x 2 + λ C2A2 C 2 k C2 + C 2 A 2 -λ LoxM2 L ox k Lox + L ox M 2 -d M2 M 2 .
(2.7)

The second right-hand side terms of equations (2.6) and (2.7) correspond to the differentiation of monocytes into macrophages, the third right-hand side terms describe the uptake of ox-LDL by macrophages and the transformation of macrophages into foam cells, and the fourth right-hand side terms represent the death of macrophages.

The intimal concentrations of T-helper cells satisfy the following equations:

∂T 1 ∂t = D 8 ∂ 2 T 1 ∂x 2 + λ P T1 P T 0 1 -d T1 T 1 , (2.8) ∂T 2 ∂t = D 9 ∂ 2 T 2 ∂x 2 + λ P T2 P T 0 2 -d T2 T 2 .
(2.9)

Equations (2.8) and (2.9) model the influx of T-helper cells from the blood into the intima due to the permeability of the endothelium and the death of T-helper cells.

The concentrations of cytokines released by T-helper cells are described through the following equations:

∂C 1 ∂t = D 10 ∂ 2 C 1 ∂x 2 + λ C1 T 1 -λ C1A1 C 1 k C1 + C 1 + k 4 C 4 A 1 -d C1 C 1 , (2.10) ∂C 2 ∂t = D 11 ∂ 2 C 2 ∂x 2 + λ C2 T 2 -λ C2A2 C 2 k C2 + C 2 A 2 -d C2 C 2 . (2.11)
We model the production of C 1 and C 2 cytokines by T-cells in equations (2.10) and (2.11) at rates of λ C1 and λ C2 . The differentiation of A 1 into M 1 macrophages (down regulated by C 4 ) and the differentiation of A 2 monocytes into M 2 macrophages are modeled by the third right-hand side terms. The last terms correspond to the degradation of cytokines.

In the following equations, we model the evolution in time of cytokines produced by M1 and M2 macrophages:

∂C 3 ∂t = D 12 ∂ 2 C 3 ∂x 2 + λ C3M1 C 3 k C3 + C 3 + kC 4 M 1 + λ C4F 1 k C4 + C 4 F -d C3 C 3 .
(2.12)

The second right-hand side term in equation (2.12) describes the production of pro-inflammatory cytokines due to the presence of macrophages and the pro-inflammatory cytokines themselves. This production is inhibited by the anti-inflammatory agents C 4 . The third right-hand side term models the secretion of pro-inflammatory cytokines by the foam cells, regulated by C 4 , and the last term refers to the degradation of pro-inflammatory cytokines.
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∂C 4 ∂t = D 13 ∂ 2 C 4 ∂x 2 + λ C4 M 2 -d C4 C 4 . (2.13)
The production of anti-inflammatory cytokines C 4 by M 2 macrophages is described by the second righthand side term in equation (2.13). The third right-hand side term corresponds to the degradation of cytokines.

The evolution of foam cells concentration is modeled as follows:

∂F ∂t = D 14 ∂ 2 F ∂x 2 + λ LoxM1 L ox k Lox + L ox M 1 + λ LoxM2 L ox k Lox + L ox M 2 -d F F. (2.14)
The second and third right-hand side terms of equation (2.14) correspond to the formation of foam cells due to the ingestion of ox-LDL by M 1 and M 2 macrophages. The last term describes the death of foam cells.

Reduced model

In this section, we consider a reduced model that originates from the complete model (2.1)- (2.14). In this reduced model, we particularly consider the pro-inflammatory process. Therefore, we let

H = A 2 = M 2 = T 2 = C 2 = C 4 = F = 0.
We further consider the production of Th1 cells and Th1 cytokines are compensated respectively by the loss of Th1 cells and Th1 cytokines, in an unbiased manner. For the sake of ease, we also take

d A1 = k C1 = 0.
We consider the following new notations:

λ 1 = σ L L 0 , λ 2 = λ LoxM1 , λ 3 = λ P A1 A 0 1 , λ 4 = λ C1A1 , λ 5 = λ C3M1 , k 2 = k Lox , k 3 = k C3 , d 1 = d Lox , d 2 = d M1 and d 3 = d C3 .
The reduced model becomes:

∂L ∂t = D 1 ∂ 2 L ∂x 2 + λ 1 P -k L L, (2.15 
)

∂L ox ∂t = D 3 ∂ 2 L ox ∂x 2 + k L L -λ 2 L ox k 2 + L ox M 1 -d 1 L ox , ( 2.16 
)

∂A 1 ∂t = D 4 ∂ 2 A 1 ∂x 2 + λ 3 P -λ 4 A 1 ,
(2.17)

∂M 1 ∂t = D 6 ∂ 2 M 1 ∂x 2 + λ 4 A 1 -λ 2 L ox k 2 + L ox M 1 -d 2 M 1 , (2.18 
)

∂C 3 ∂t = D 12 ∂ 2 C 3 ∂x 2 + λ 5 C 3 k 3 + C 3 M 1 -d 3 C 3 . (2.19)
In the ensuing sections, we study this reduced model with a constant permeability indicator P , and with a variable one.

Reduced model with variable P

In this section, we consider the term P to be a function of L ox and C 3 as follows:

P = H(α) P 0 + L ox + cC 3 k 1 + L ox + cC 3 , ( 2.20) 
where:

• α refers to the assessment of endothelial dysfunction due to external stimuli. Note that vascular function can be measured by several methods, including invasive and non-invasive techniques. α is an independant parameter that is altered upon exposure of the endothelium to cardiovascular risk factors such as low shear stress, nicotine circulating in blood and high plasma concentration of cholesterol.

• H(α) describes the activation and dysfunction of the endothelium and is given by

H(α) = 0 ifα < α 0 , 1 otherwise, (2.21) 
where α 0 represents a threshold to discriminate between normal and abnormal endothelial function.

A thick glycocalyx, active endothelial cells, an appropriate endothelial production of NO and a tight chain of junctions are typical features of a normal endothelium. An endothelium in good condition is then assessed through the parameter α with α < α 0 . When the glycocalyx is damaged by cardiovascular risk factors conditions, it causes a decreased production of NO, that in turn results in endothelial dysfunction and activation and tight junctions disruption. All the cascades together lead to increased endothelial permeability. Thus, it is the degradation of the glycocalyx that initiates endothelial dysfunction. Impaired endothelial function associated with a compromised glycocalyx is detected when α > α 0 .

• The term

P 0 + L ox + cC 3 k 1 + L ox + cC 3
describes the permeability of the endothelium, where P 0 refers to the selective permeability of a healthy endothelium, i.e. the permeability to small molecules and k 1 denotes the effect of endothelial regulators, i.e. HDL, NO and SS.

We substitute the following variables C3 = cC 3 , k3 = ck 3 , λ5 = cλ 5 and D12 = D 12 c , in equations (2.15)-(2.19), and use P as in equation (2.20), then we drop the tildes. The new reduced system reads:

∂L ∂t = D 1 ∂ 2 L ∂x 2 + λ 1 H(α) P 0 + L ox + C 3 k 1 + L ox + C 3 -k L L, ( 2.22 
)

∂L ox ∂t = D 3 ∂ 2 L ox ∂x 2 + k L L -λ 2 L ox k 2 + L ox M 1 -d 1 L ox , ( 2.23 
)

∂A 1 ∂t = D 4 ∂ 2 A 1 ∂x 2 + λ 3 H(α) P 0 + L ox + C 3 k 1 + L ox + C 3 -λ 4 A 1 , (2.24 
)

∂M 1 ∂t = D 6 ∂ 2 M 1 ∂x 2 + λ 4 A 1 -λ 2 L ox k 2 + L ox M 1 -d 2 M 1 , (2.25) ∂C 3 ∂t = D 12 ∂ 2 C 3 ∂x 2 + λ 5 C 3 k 3 + C 3 M 1 -d 3 C 3 .
(2.26)

The kinetic system becomes:

dL dt = λ 1 H(α) P 0 + L ox + C 3 k 1 + L ox + C 3 -k L L, (2.27)
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dL ox dt = k L L -λ 2 L ox k 2 + L ox M 1 -d 1 L ox , ( 2.28 
)

dA 1 dt = λ 3 H(α) P 0 + L ox + C 3 k 1 + L ox + C 3 -λ 4 A 1 , (2.29 
)

dM 1 dt = λ 4 A 1 -λ 2 L ox k 2 + L ox M 1 -d 2 M 1 , (2.30 
)

dC 3 dt = λ 5 C 3 k 3 + C 3 M 1 -d 3 C 3 .
(2.31)

The Jacobian matrix of system (2.22)-(2.26) reads:

J = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -k L λ 1 H(α) k 1 -P 0 (k 1 + L ox + C 3 ) 2 0 0 λ 1 H(α) k 1 -P 0 (k 1 + L ox + C 3 ) 2 k L λ 2 k 2 M 1 (k 2 + L ox ) 2 -d 1 0 -λ 2 L ox k 2 + L ox 0 0 λ 3 H(α) k 1 -P 0 (k 1 + L ox + C 3 ) 2 -λ 4 0 λ 3 H(α) k 1 -P 0 (k 1 + L ox + C 3 ) 2 0 -λ 2 k 2 M 1 (k 2 + L ox ) 2 λ 4 -λ 2 L ox k 2 + L ox -d 2 0 0 0 0 λ 5 C 3 k 3 + C 3 λ 5 k 3 M 1 (k 3 + C 3 ) 2 -d 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
We recall that a system is said to be monotone if the off-diagonal elements of its Jacobian are non negative. To ensure the monotonicity of system (2.22)-(2.26), we assume that k 1 > P 0 , and we conduct the study for λ 2 = 0 , then we can extend the results for λ 2 close to zero, by applying the implicit function theorem for the existence and stability of the fixed points.

For the sake of ease, we take P 0 = 0. Similarly, we use the implicit function theorem to conclude for P 0 in a small positive neighborhood of 0.

Therefore, finding the fixed points of system (2.27)-(2.31) with λ 2 = P 0 = 0 amounts to solving the following system:

λ 1 H(α) L ox + C 3 k 1 + L ox + C 3 -d 1 L ox = 0, (2.32 
)

λ 3 H(α) L ox + C 3 k 1 + L ox + C 3 -d 2 M 1 = 0, (2.33 
)

λ 5 C 3 k 3 + C 3 M 1 -d 3 C 3 = 0, (2.34) L = λ 1 k L H(α) L ox + C 3 k 1 + L ox + C 3 , ( 2.35 
)

A 1 = λ 3 λ 4 H(α) L ox + C 3 k 1 + L ox + C 3 . (2.36)
Since the unknowns of system (2.22)-(2.26) represent concentrations of physical quantities, we hereinafter consider only real nonnegative solutions.

Fixed points: In order to investigate the solutions of system (2.27)-(2.31), we start by examining the case where α < α 0 . Clearly, the unique solution is E 1 = (0, 0, 0, 0, 0).

As for α > α 0 , we proceed as follows:

Equation (2.34) leads to two different solutions:

C 3 = 0 or C 3 = λ 5 d 3 M 1 -k 3 .
We notice that solving equations (2.32) and (2.33) for C 3 = 0 is equivalent to solve

d 1 L 2 ox + (d 1 k 1 -λ 1 )L ox = 0. (2.37)
The latter equation admits two solutions:

L ox0 = λ 1 -d 1 k 1 -(λ 1 -d 1 k 1 ) 2 2d 1 and L ox1 = λ 1 -d 1 k 1 + (λ 1 -d 1 k 1 ) 2 2d 1 .
Therefore, in the hyperplane C 3 = 0, there exists two fixed points E 0 and E 1 having the following components:

E 0 = λ 1 k L L ox0 k 1 + L ox0 , L ox0 , λ 3 λ 4 L ox0 k 1 + L ox0 , d 1 λ 3 d 2 λ 1 L ox0 , 0 = ⎧ ⎨ ⎩ λ 1 -d 1 k 1 k L , λ 1 -d 1 k 1 d 1 , λ 3 λ 4 λ 1 -d 1 k 1 λ 1 , λ 3 d 2 λ 1 (λ 1 -d 1 k 1 ), 0 if λ 1 < d 1 k 1 , (0, 0, 0, 0, 0) if λ 1 > d 1 k 1 . E 1 = λ 1 k L L ox1 k 1 + L ox1 , L ox1 , λ 3 λ 4 L ox1 k 1 + L ox1 , d 1 λ 3 d 2 λ 1 L ox1 , 0 = ⎧ ⎨ ⎩ (0, 0, 0, 0, 0) if λ 1 < d 1 k 1 , λ 1 -d 1 k 1 k L , λ 1 -d 1 k 1 d 1 , λ 3 λ 4 λ 1 -d 1 k 1 λ 1 , λ 3 d 2 λ 1 (λ 1 -d 1 k 1 ), 0 if λ 1 > d 1 k 1 .
In a similar manner, we proceed in the plane

C 3 = λ 5 d 3 M 1 -k 3 .
The L ox component of the fixed points in this plane verify the following equation, that is obtained from equations (2.32) and (2.33):

-d 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 L 2 ox + λ 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 -d 1 (k 1 -k 3 ) L ox -k 3 λ 1 = 0. (2.38)
Equation 2.38 admits two solutions:

L oxu = λ1 ⎛ ⎝ 1+ d 1 λ 3 λ 5 d 2 d 3 λ 1 ⎞ ⎠ -d1(k1-k3)- ⎛ ⎝ λ1 ⎛ ⎝ 1+ d 1 λ 3 λ 5 d 2 d 3 λ 1 ⎞ ⎠ -d1(k1-k3) ⎞ ⎠ 2 -4d1k3λ1 ⎛ ⎝ 1+ d 1 λ 3 λ 5 d 2 d 3 λ 1 ⎞ ⎠ 2d1 ⎛ ⎝ 1+ d 1 λ 3 λ 5 d 2 d 3 λ 1 ⎞ ⎠
, and

L ox2 = λ1 ⎛ ⎝ 1+ d 1 λ 3 λ 5 d 2 d 3 λ 1 ⎞ ⎠ -d1(k1-k3)+ ⎛ ⎝ λ1 ⎛ ⎝ 1+ d 1 λ 3 λ 5 d 2 d 3 λ 1 ⎞ ⎠ -d1(k1-k3) ⎞ ⎠ 2 -4d1k3λ1 ⎛ ⎝ 1+ d 1 λ 3 λ 5 d 2 d 3 λ 1 ⎞ ⎠ 2d1 ⎛ ⎝ 1+ d 1 λ 3 λ 5 d 2 d 3 λ 1 ⎞ ⎠ .
Upon that, we consider the following inequalities:
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• Condition A:

λ 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 -d 1 (k 1 -k 3 ) 2 -4d 1 k 3 λ 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 > 0.
• Condition B:

λ 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 -d 1 (k 1 -k 3 ) > 0.
• Condition C:

d 1 λ 3 λ 5 d 2 d 3 λ 1 L ox2 -k 3 > 0.
For simplicity, when conditions A and B are satisfied and k 1 < k 3 , we assume that:

-λ 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 -d 1 (k 1 -k 3 ) + λ 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 -d 1 (k 1 -k 3 ) 2 -4d 1 k 3 λ 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 < 0.
In case that conditions A, B and C are verified, there exists two fixed points E u and E 2 in the plane

C 3 = λ 4 d 3 M 1 -k 3 ,
where:

E u = ( λ 1 k L L oxu + d 1 λ 3 λ 5 d 2 d 3 λ 1 L oxu -k 3 k 1 + L oxu + d 1 λ 3 λ 5 d 2 d 3 λ 1 L oxu -k 3 , L oxu , λ 3 λ 4 L oxu + d 1 λ 3 λ 5 d 2 d 3 λ 1 L oxu -k 3 k 1 + L oxu + d 1 λ 3 λ 5 d 2 d 3 λ 1 L oxu -k 3 , d 1 λ 3 d 2 λ 1 L oxu , d 1 λ 3 λ 5 d 2 d 3 λ 1 L oxu -k 3 ),
and 

E 2 = ( λ 1 k L L ox2 + d 1 λ 3 λ 5 d 2 d 3 λ 1 L ox2 -k 3 k 1 + L ox2 + d 1 λ 3 λ 5 d 2 d 3 λ 1 L ox2 -k 3 , L ox2 , λ 3 λ 4 L ox2 + d 1 λ 3 λ 5 d 2 d 3 λ 1 L ox2 -k 3 k 1 + L ox2 + d 1 λ 3 λ 5 d 2 d 3 λ 1 L ox2 -k 3 , d 1 λ 3 d 2 λ 1 L ox2 , d 1 λ 3 λ 5 d 2 d 3 λ 1 L ox2 -k 3 ).

Stability analysis:

The stability analysis of the fixed points is investigated analytically for E 0 and E 1 , and numerically for E u and E 2 .

We start by considering the case where α > α 0 . At (0, 0, 0, 0, 0), the Jacobian matrix reads: 

J = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -k L λ 1 k 1 0 0 λ 1 k 1 k L -d 1 0 0 0 0 λ 3 k 1 -λ 4 0 λ 1 k 1 0 0 λ 4 -d 2 0 0 0 0 0 -d 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
λ 1 < d 1 k 1 λ 3 λ 5 λ 3 λ 5 -d 2 d 3 k 3
. The trajectories are obtained by exhibiting the system of ODE's from different starting points. They tend to E 1 and E 2 as t → ∞.
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Clearly, the point (0, 0, 0, 0, 0) is stable if and only if

d 1 k 1 > λ 1 .
At the point (

λ 1 k L λ 1 -d 1 k 1 λ 1 , λ 1 -d 1 k 1 d 1 , λ 3 λ 4 λ 1 -d 1 k 1 λ 1 , λ 3 d 2 λ 1 (λ 1 -d 1 k 1 ), 0
), the Jacobian matrix becomes:

J = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -k L k 1 λ 1 0 0 k 1 λ 1 k L -d 1 0 0 0 0 λ 3 k 1 λ 2 1 -λ 4 0 λ 3 k 1 λ 2 1 0 0 λ 4 -d 2 0 0 0 0 0 λ 5 λ 3 (λ 1 -d 1 k 1 ) k 3 d 2 λ 1 -d 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
Therefore, this point is stable if and only if

d 1 k 1 < λ 1 and λ 5 λ 3 (λ 1 -d 1 k 1 ) k 3 d 2 λ 1 < d 3 .
We deduce from above that E 0 is always unstable. While

E 1 is stable if d 1 k 1 > λ 1 or if d 1 k 1 < λ 1 and λ 5 λ 3 (λ 1 -d 1 k 1 ) k 3 d 2 λ 1 < d 3 . We also notice that if d 1 k 1 < λ 1 , λ 5 > d 2 d 3 k 3 λ 3 and λ 5 λ 3 (λ 1 -d 1 k 1 ) k 3 d 2 λ 1 < d 3 then
the point E 1 is stable in the plane C 3 = 0. Regarding the stability of the points E u and E 2 , the numerical simulations show that E u is always unstable and E 2 is always stable when they exist. Figure (2.1) shows the numerical simulations and highlights the stability of the fixed points.

When α < α 0 , clearly this system has only one stable equilibrium (0, 0, 0, 0, 0). Table 2.2 shows a classification of the fixed points existence and stability when α > α 0 , according to the values of parameters.

We readily notice that when conditions A, B and C are satisfied, then λ 5 > d 2 d 3 k 3 λ 3 since otherwise:

d 1 λ 3 λ 5 d 2 d 3 λ 1 L ox2 -k 3 < d 1 k 3 λ 1 L ox2 -k 3 = k 3 2λ 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 -λ 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 -d 1 (k 1 -k 3 ) + λ 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 -d 1 (k 1 -k 3 ) 2 -4d 1 k 3 λ 1 1 + d 1 λ 3 λ 5 d 2 d 3 λ 1 ⎞ ⎠ <0.

Biological interpretations:

The fixed points E 1 , E u and E 2 have the following biological interpretations:

• E 1 belongs to the plane C 3 = 0. It corresponds the state where no pro-inflammatory cytokines are elaborated. Since the key role of modulating inflammation is attributed to cytokines, then this point conforms to the disease free situation. If α < α 0 , this fixed point is always stable while if α > α 0 , it is stable when λ 1 < d1k1λ3λ5 λ3λ5-d2d3k3 or when

λ 1 > d 1 k 1 and λ 3 λ 5 (λ 1 -d 1 k 1 ) < d 2 d 3 λ 1 k 3 . Conditions A, B Conditions A, B
and C are all satisfied and C are not all satisfied -Conditions A, B and C, when satisfied, indicate that the value of the parameter k 1 is small. This can be interpreted by inadequate effectiveness of endothelial regulators role, associated with an impaired vasodilation of the endothelium with a high permeability.

λ 5 > d 2 d 3 k 3 λ 3 λ 5 < d 2 d 3 k 3 λ 3 λ 5 > d 2 d 3 k 3 λ 3 λ 1 < d 1 k 1 λ 3 λ 5 λ 3 λ 5 -d 2 d 3 k 3 λ 1 > d 1 k 1 λ 3 λ 5 λ 3 λ 5 -d 2 d 3 k 3 λ 1 < d 1 k 1 λ 1 > d 1 k 1 λ 1 < d 1 k 1 λ 3 λ 5 λ 3 λ 5 -d 2 d 3 k 3 λ 1 > d 1 k 1 λ 3 λ 5 λ 3 λ 5 -d 2 d 3 k 3 E 1 stable stable stable stable stable in C 3 = 0 stable stable stable in C 3 = 0 E u unstable unstable E 2 stable stable
-

When λ 1 < d 1 k 1 or when d 1 k 1 < λ 1 < d1k1λ3λ5 λ3λ5-d2d3k3
, then the rate of LDL subendothelial penetration (λ 1 ) is moderate. Otherwise, it is considerable and critical.

-The condition λ 5 > d 1 d 2 k 3 λ 3 determines a high secretion of pro-inflammatory cytokines.

The following conclusions can be drawn from the stability analysis: * The trancytosis of LDL across the endothelium when regulated by a healthy glycocalyx (α < α 0 ) does not lead to subendothelial accumulation and aggregation of LDL. This prevents inflammation and avoids plaque buildup. * However, in the presence of certain cardiovascular risks, endothelial disruption is associated with compromised glycocalyx (α > α 0 ). The entrance of LDL in the arterial intima is then determined by endothelial vesicles, and open endothelial junctions. Therefore, LDL particles become more likely to aggregate and be retained in situ. At this stage, the inflammation may be triggered depending on the intimal LDL particles concentration and endothelial hyperpermeability. * In case of high endothelial permeability (conditions A, B and C are satisfied), we can elaborate the following:

CHAPTER 2. MATHEMATICAL MODELING OF INFLAMMATORY PROCESSES OF ATHEROSCLEROSIS

-Destabilization of the endothelium always requires a high release of pro-inflammatory cytokines

(λ 5 > d 1 d 2 k 3 λ 3 ).
-For a low rate of LDL penetration (λ 1 ), no inflammation is triggered normally (E 1 stable). However, endothelial hyperpermeability is a marker of vascular inflammatory state that induces the overexpression of inflammatory mediators. This may activates the inflammatory cascades within the intima: LDL oxidation, recruitment of inflammatory monocytes, macrophage accumulation, which induces LDL oxidation, and macrophage generation of inflammatory mediators. A positive feedback loop is then formed, which generates and promotes expansion of the atherosclerotic process (E 2 stable). Therefore, even an insignificant lipid deposition may initiate the inflammation. Thus, this case highlights the fact that LDL can be involved in the development of atherosclerosis as an initiator, without necessarily being a major factor.

-A high penetration of LDL to the intima leads to inflammation (E 2 stable). However, in patients with cytokine deficiency diseases (C 3 = 0), such as asthma, dermatitis and meningitis, autoinflammatory disorders are known to occur. These disorders are characterized by unprovoked episodes of inflammation and relative lack of autoimmune pathology. Then the inflammation is not fully established (E 1 stable).

Therefore, destabilized endothelium resulting in an increased vascular permeability promotes the disease severity according to lipid deposition. * When conditions A, B and C are not all satisfied, the endothelial permeability is considered to be moderate. In this case, the rate of LDL penetration and the rate pro-inflammatory cytokines production can acquire large or low values. We note that an excessive LDL penetration leads absolutely to a high LDL oxidation. Therefore, a large production of pro-inflammatory cytokines and/or a large penetration of LDL promote the endothelial permeability. However, due to different factors, such as nitric oxide and HDL, the endothelial permeability gets regulated. For this reason we may have a balanced endothelial permeability while the endothelial dysfunction is detected (α > α 0 ) and the secretion of inflammatory cytokines or the penetration of LDL is high. Hence we conclude the following:

-The vascular function regulators, such as NO and HDL, exhibit vasoprotective effects and contribute in improving endothelial function and homeostasis. The improvement/reversal of endothelial dysfunction is beneficial in the inhibition of inflammatory responses.

Therefore, regulated permeability of the endothelium prevents the inflammation. * In general, a low LDL penetration to the intima does not initiate an inflammation whereas an increased LDL penetration favors atherogenesis.

Risk zones diagram:

We used data reported in the literature to display reliable results and to provide predictive outcomes. In Table 2.3, we list values for some parameters used in our model. Using data of Table 2.3, we distinguish, in Figure 2.2, three different zones, according to the values of the parameters λ 1 and k 1 . We note that the values in Table 2.3 verify the condition:

λ 5 > d 2 d 3 k 3 λ 3 .
• In Zone I, conditions A, B and C are not all verified and λ 1 < d1k1λ3λ5 λ3λ5-d2d3k3 . Hence, it is a zone of low risk of inflammation. 

d 2 1.5 × 10 -2 day -1 [94] d 3 1.188 day -1 [94]
Thus, in this section, we study the reduced monotone system (2.27)-(2.31) for λ 2 = P 0 = 0, where the endothelial permeability indicator is variable. The study leads to the existence of at most four fixed points E 0 , E 1 , E u and E 2 . The stability analysis of the fixed points is investigated analytically for E 0 and E 1 , and numerically for E u and E 2 . It is determined by the value of H(α) that refers to the endothelial functionality. E 0 is always unstable. If α < α 0 (normal endothelium), E 1 is stable and E u and E 2 do not exist. For α > α 0 , the stability analysis is summarized in Table 2.2. Then we give a biological description
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for the equilibria, and we deduce a biological interpretation. Finally, we use data found in literature (in Table 2.3) to elaborate a risk map in Figure 2.2 that shows different zones of different risk levels.

Reduced model with constant P

In this section we consider the term P to be a P = H(α)p where H(α) is defined above and p is a constant.

The kinetic system of system (2.15)-(2. [START_REF] Ghim | The Role of Tricellular Junctions in the Transport of Macromolecules Across Endothelium[END_REF]) is then equivalent to the following system:

M 1 = f 1 (L ox ) := d 1 L ox + (λ 3 -λ 1 )P d 2 , ( 2.39 
)

M 1 = f 2 (L ox ) := λ 3 P (k 2 + L ox ) (λ 2 + d 2 )L ox + d 2 k 2 ,
(2.40)

λ 5 C 3 k 3 + C 3 M 1 -d 3 C 3 = 0, (2.41) L = λ 1 k L P, ( 2.42 
)

A 1 = λ 3 λ 4 P. ( 2.43) 
The intersection points between f 1 and f 2 satisfy the following equation in L ox :

d 1 (λ 2 + d 2 )L 2 ox + (λ 2 λ 3 P + d 1 d 2 k 2 -λ 1 (λ 2 + d 2 )P )L ox -λ 1 d 2 k 2 P = 0 (2.44)
Equation (2.44) admits a positive discriminant. Therefore, it has two real solutions, having a negative product. The positive solution is:

L oxe = -(λ 2 λ 3 P + d 1 d 2 k 2 -λ 1 (λ 2 + d 2 )P ) + (λ 2 λ 3 P + d 1 d 2 k 2 -λ 1 (λ 2 + d 2 )P ) 2 + 4d 1 λ 1 d 2 k 2 (λ 2 + d 2 )P 2d 1 (λ 2 + d 2 ) .
Hence, the fixed points of system (2.15)-(2.19), for P = H(α)p, are:

E 1 = ( λ 1 k L P, L oxe , λ 3 λ 4 P, M 1e , 0)
and

E 2 = ( λ 1 k L P, L oxe , λ 3 λ 4 P, M 1e , λ 5 M 1e d 3 -k 3 ), where M 1e = f 1 (L oxe ) = f 2 (L oxe ) > 0.
The Jacobian matrix of system (2.15)-(2.19) reads as follows:

J = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -k L 0 0 0 0 k L -λ 2 k 2 M 1 (k 2 + L ox ) 2 -d 1 0 -λ 2 L ox k 2 + L ox 0 0 0 -λ 4 0 0 0 -λ 2 k 2 M 1 (k 2 + L ox ) 2 λ 4 -λ 2 L ox k 2 + L ox -d 2 0 0 0 0 λ 5 C 3 k 3 + C 3 λ 5 k 3 M 1 (k 3 + C 3 ) 2 -d 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
The eigenvalues η i s of E 1 are solutions of the following equation in η:

λ 5 M 1e k 3 -d 3 -η (-k L -η)(-λ 4 -η)• (-λ 2 L oxe k 2 + L oxe -d 2 -η)(- λ 2 k 2 M 1e (k 2 + L oxe ) 2 -d 1 -η) - λ 2 2 k 2 L oxe M 1e (k 2 + L oxe ) 3 = 0 (2.45)
Let us examine the equation: 2 , the latter equation can be written as follows:

(-λ 2 L oxe k 2 + L oxe -d 2 -η)(- λ 2 k 2 M 1e (k 2 + L oxe ) 2 -d 1 -η) - λ 2 2 k 2 L oxe M 1e (k 2 + L oxe ) 3 = 0. If we denote a = λ 2 L oxe k 2 + L oxe and b = λ 2 k 2 M 1e (k 2 + L oxe )
η 2 + η(a + d 2 + b + d 1 ) + ad 1 + bd 2 + d 1 d 2 = 0. Its corresponding discriminant is: D = (a + d 2 -(b + d 1 )) 2 + 4ab > 0.
Then there are two real solutions having a positive product and a negative sum. Therefore, this equation admits two real negative solutions.

We deduce that the point

E 1 is stable if λ 5 M 1e d 3 < k 3 .
Similarly, the point E 2 is stable if

d 2 3 k 3 λ 5 M 1e < d 3 , which is equivalent to λ 5 M 1e d 3 > k 3 .
Since we are considering only positive solutions, then the point E 2 is stable when it exists. When E 2 does not exist, then E 1 becomes stable. Proposition 2.1.2. If α < α 0 , the only fixed point is E 1 = (0, 0, 0, 0, 0) and it is stable. While if α > α 0 , there may be either one fixed point E 1 or two fixed points E 1 and E 2 . E 2 exists when

λ 5 M 1e d 3 -k 3 > 0
and is stable when it exists. Whereas E 1 always exists and is unstable when E 2 exists.

We notice that:

λ 5 M 1e d 3 -k 3 > 0 ⇐⇒ λ 5 (d 1 L oxe + (λ 3 -λ 1 )P ) d 3 d 2 -k 3 > 0 ⇐⇒ λ 5 (d 1 L oxe + λ 3 P ) > d 3 d 2 k 3 + λ 5 λ 1 P
Then the inequality λ 5 M 1e d 3 > k 3 correlates with a high penetration of LDL into the intima (high λ 1 ).

As shown in the section above, E 1 and E 2 illustrate the disease free and the inflammatory states respectively. The following conclusions derive from this study:

• When no endothelial dysfunction is detected, the inflammation does not develop (E 1 stable).

• Otherwise, if the penetration of LDL to the intima is moderate, then no inflammation is triggered (E 1 stable). But, a high penetration of LDL leads to the inflammation (E 2 stable).

We recall that the above results are found for λ 2 ≥ 0 and P 0 ≥ 0. This reduced model with a constant permeability indicator term shows that we are able to retrieve the results of section 2.1.1 even for strictly positive values of λ 2 and P 0 .
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As a conclusion for this section, we study the reduced system (2.27)-(2.31) for λ 2 > 0 and P 0 > 0 where the endothelial permeability indicator is constant. The analysis leads to the existence of at most two fixed points E 1 and E 2 . The stability analysis of the fixed points is investigated analytically and is determined by the value of H(α) that refers to the endothelial functionality. If α < α 0 (normal endothelium), E 1 is the only fixed point and it stable. Otherwise, E 1 and E 2 are the fixed points. When E 1 is stable, E 2 is unstable, and vice versa. Then we give a biological description for the equilibria, and we deduce a biological interpretation of the results. The conclusions drawn from this model are in line with the results of the previous subsection.

Perturbed solutions

In this section, we investigate the existence and the stability of solutions for system (2.22)-(2.26) when P 0 > 0 and λ 2 > 0 by applying the implicit function theorem.

We start by fixing λ 2 = 0 and considering P 0 > 0 in equations (2.22)-(2.26). First, we check the existence of a solution near E 1 when P 0 is in a small neighborhood of 0 then we investigate its stability. We retrieve the same results for E 2 by proceeding in the same manner.

Let the operator A(P 0 , U) :

B(0, 1) × C 2 ([ 0, 1]) → C 0 ([ 0, 1]) be given in a neighborhood D of the point (0, E 1 ) ∈ B(0, 1) × C 2 ([ 0, 1]) such that A(P 0 , U) = F (U ) + P 0 f (x)
, where:

U = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ L L ox A 1 M 1 C 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , F (U ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ λ 1 H(α) L ox + C 3 k 1 + L ox + C 3 -k L L k L L -d 1 L ox λ 3 H(α) L ox + C 3 k 1 + L ox + C 3 -λ 4 A 1 λ 4 A 1 -d 2 M 1 λ 5 C 3 k 3 + C 3 M 1 -d 3 C 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ and f (x) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ λ 1 H(α) 1 k 1 + L ox + C 3 0 λ 3 H(α) 1 k 1 + L ox + C 3 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
We assume that U (x) is a non negative-valued function of class C 2 ([0, 1]) such that U (0) = 0 and U (1) = 0. The function F (U ) is of class C 1 and F (E 1 ) = 0.

We have that A(0, E 1 ) = 0. Moreover, the eigenvalues of the Jacobian matrix of system (2.22)-

(2.26) at E 1 , are -d 2 , -λ 4 , -k L -d 1 + (k L -d 1 ) 2 + 4k L λ 1 k 1 2 , -k L -d 1 + (k L -d 1 ) 2 + 4k L λ 1 k 1 2
and

d 1 λ 3 λ 5 d 2 λ 1 k 3 λ 1 -d 1 k 1 + (λ 1 -d 1 k 1 ) 2 2d 1 -d 3
, and none of these eigenvalues is zero.

Then there exists an operator Φ given in some neighborhood G ⊂ B(0, 1) of the point 0 such that it maps this neighborhood into the space C 2 ([ 0, 1]) and satisfies the following properties:

1. A(P 0 , Φ(P 0 )) = 0 in G. 2. Φ(0) = E 1 .

Φ is continuous at 0.

Let us denote F 1 = Φ(E 1 ). Particularly, when P 0 ∈ G and P 0 > 0, the system admits a solution F 1 near E 1 . We note that, even when E 1 = (0, 0, 0, 0, 0), F 1 lies in the positive half-space. In fact, when P 0 > 0, in the plane C 3 = 0, the fixed points E 0 and E 1 of the system are the intersection

points between M 1 = d 1 λ 3 d 2 λ 1 L ox and M 1 = λ 3 d 2 P 0 + L ox k 1 + L ox . Therefore, the L ox -coordinate of E 0 and E 1 are λ 1 -d 1 k 1 -(λ 1 -d 1 k 1 ) 2 + 4λ 1 P 0 d 1 2d 1 and λ 1 -d 1 k 1 + (λ 1 -d 1 k 1 ) 2 + 4λ 1 P 0 d 1 2d 1 respectively. Clearly, the L ox -coordinate of E 1 is strictly positive.
In order to check the stability of F 1 , we consider the Jacobian matrix of the kinetic system (2.22)-(2.26) for λ 2 = 0 at F 1 . It is a square matrix whose elements depend smoothly on P 0 . By Theorem 2.7.3 of the appendix, if λ 0 is a simple eigenvalue for P 0 = 0 at E 1 , then for all τ near 0 there is a corresponding eigenvalue that depends smoothly on P 0 . Thus, since the eigenvalues at E 1 are all simple, when P 0 is small enough, each eigenvalue of the Jacobian matrix at F 1 lies in a small neighborhood which center is the corresponding eigenvalue of the Jacobian matrix at E 1 . In other words, the eigenvalues of the Jacobian at F 1 are all real, simple and have the same sign as the eigenvalues at E 1 . Then, we can deduce that F 1 is stable when E 1 is stable and when the parameter P 0 is close enough to 0.

Similarly, in order to confirm that the system (2.22)-(2.26) has two fixed points G 1 and G 2 when P 0 > 0 and λ 2 > 0, we consider the operator

A * (λ 2 , U) : B(0, 1) × C 2 ([ 0, 1]) → C 0 ([ 0, 1]) be given in a neighborhood D of the point (0, F 1 ) ∈ B(0, 1) × C 2 ([ 0, 1]) such that A * (P 0 , U) = F (U ) + λ 2 f * (x)
, where:

U = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ L L ox A 1 M 1 C 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , F (U ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ λ 1 H(α) P 0 + L ox + C 3 k 1 + L ox + C 3 -k L L k L L -d 1 L ox λ 3 H(α) P 0 + L ox + C 3 k 1 + L ox + C 3 -λ 4 A 1 λ 4 A 1 -d 2 M 1 λ 5 C 3 k 3 + C 3 M 1 -d 3 C 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ and f * (x) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 L ox k 2 + L ox M 1 0 L ox k 2 + L ox M 1 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
We proceed in the same manner as above, and we can even conclude that G 1 and G 2 are stable respectively, when E 1 and E 2 are stable.

Hence, this section is devoted to the application of the Implicit Function Theorem to the reduced model (2.22)-(2.26). We start by considering the reduced model for λ 2 = 0 and P 0 sufficiently small. We prove, using the Implicit Function Theorem, the existence of two fixed points F 1 and F 2 near E 1 and E 2 respectively. Then we show that the stability analysis for F 1 and F 2 correlates with the stability analysis for E 1 and E 2 , by applying the Implicit Function Theorem one more time. Then, for λ 2 and P 0 being sufficiently small, we proceed similarly, to prove the existence and stability of the two fixed points G 1 and G 2 near F 1 and F 2 .

Traveling wave solutions

In this section, we study the existence of traveling wave solutions of the reaction-diffusion system (2.22)-(2.26) for λ 2 = P 0 = 0. The system becomes:

∂L ∂t = D 1 ∂ 2 L ∂x 2 + λ 1 H(α) L ox + C 3 k 1 + L ox + C 3 -k L L, ( 2.46 
)

∂L ox ∂t = D 3 ∂ 2 L ox ∂x 2 + k L L -d 1 L ox , (2.47)
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∂A 1 ∂t = D 4 ∂ 2 A 1 ∂x 2 + λ 3 H(α) L ox + C 3 k 1 + L ox + C 3 -λ 4 A 1 , (2.48) ∂M 1 ∂t = D 6 ∂ 2 M 1 ∂x 2 + λ 4 A 1 -d 2 M 1 , (2.49) ∂C 3 ∂t = D 12 ∂ 2 C 3 ∂x 2 + λ 5 C 3 k 3 + C 3 M 1 -d 3 C 3 . (2.50)
Consider the following problem:

∂U ∂t = d ∂ 2 U ∂x 2 + F (U ), (2.51) 
where U = (U 1 , ..., U m ), F = (F 1 , ..., F m ) and d is a diagonal matrix with positive diagonal elements.

A traveling wave solution of this latter system is a particular solution which has the form

u(x, t) := ω(x -ct),
where the constant c is the speed of the wave. We assume that the traveling wave solution has the following limits: lim

x→±∞ ω(x) = ω ± .
Traveling waves usually describe transition processes from one fixed point to another. The existence of traveling wave solutions of reaction-diffusion systems is ensured in either monostable or bistable cases if the system is monotone, i.e. the off-diagonal elements of its Jacobian are positive (see [START_REF] Volpert | Elliptic Partial Differential Equations[END_REF], Chapter 4, Theorem 1.6 and Theorem 1.7). These results can be extended if the off-diagonal elements of the Jacobian are non negative.

The following theorem gives the existence of waves in the bistable case.

Theorem 2.3.1. Suppose that F (ω + ) = F (ω -) = 0, where ω + < ω -(the inequality is component-wise) and the matrices F (ω ± ) have all eigenvalues in the left half-plane. Suppose also that there exists a finite number of points

ω j = ω ± , j = 1, • • • , k such that ω + ≤ ω j ≤ ω -, F (ω j ) = 0 and each matrix F (ω j
) has at least one eigenvalue in the right half-plane. If the matrices F (ω j ) are irreducible with their principal eigenvalues found in the right half-plane then there exist a constant c and a unique monotonically decreasing traveling wave solution u(x, t) = ω(xct) of system (2.51) with the limits ω(±∞) = ω ± .

The following theorem gives the existence of waves in the monostable case. In what follows, we establish the existence of traveling wave solutions of system (2.46)-(2.50), then we show some numerical results that illustrate the wave propagation.

In order to study traveling wave solutions of system (2.46)-(2.50), we take:

U = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ L L ox A 1 M 1 C 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , F (U ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ λ 1 H(α) L ox + C 3 k 1 + L ox + C 3 -k L L k L L -d 1 L ox λ 3 H(α) L ox + C 3 k 1 + L ox + C 3 -λ 4 A 1 λ 4 A 1 -d 2 M 1 λ 5 C 3 k 3 + C 3 M 1 -d 3 C 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ and d = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ D 1 0 0 0 0 0 D 3 0 0 0 0 0 D 4 0 0 0 0 0 D 6 0 0 0 0 0 D 12 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ .
A traveling wave solution is of the form:

⎛ ⎜ ⎝ L(x,t) Lox(x,t) A1(x,t) M1(x,t) C3(x,t) ⎞ ⎟ ⎠ := ω(x -ct),
where the constant c is the speed of the wave. In our study, such solutions describe propagation of the inflammation.

We are interested in bounded solutions of system (2.46)-(2.50) on the whole axis. We consider the theoretical space domain to be the entire real line ] -∞, ∞[ and we assume that the traveling wave solution have limits at infinity: lim

x→±∞ ω(x) = ω ± ,
with ω + and ω -being two fixed points of system (2.46)-(2.50).

Proposition 2.3.3. The vector-valued function F (U ) satisfies the condition ∂F i ∂U j ≥ 0, i, j = 1, ..., 5, i = j, where U j is the j th component of U .

Proof. The Jacobian matrix of system (2.46)-(2.50) reads:

J = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -k L λ 1 H(α) k 1 (k 1 + L ox + C 3 ) 2 0 0 λ 1 H(α) k 1 (k 1 + L ox + C 3 ) 2 k L -d 1 0 0 0 0 λ 3 H(α) k 1 (k 1 + L ox + C 3 ) 2 -λ 4 0 λ 3 H(α) k 1 (k 1 + L ox + C 3 ) 2 0 0 λ 4 -d 2 0 0 0 0 λ 5 C 3 k 3 + C 3 λ 5 k 3 M 1 (k 3 + C 3 ) 2 -d 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
The off-diagonal elements of J are non negative. 

λ 1 < d1k1λ3λ5 λ3λ5-d2d3k3 . If λ 1 = d 1 (k 1 + k 3 - λ 3 λ 5 d 2 d 3 + 2 k 3 k 1 ) and λ 1 = d 1 (k 1 + k 3 - λ 3 λ 5 d 2 d 3 -2 k 3 k 1 )
then there exist a constant c and a unique monotonically decreasing traveling wave solution u(x, t) = ω(xct) of system (2.46)-(2.50) with the limits ω(±∞) = ω ± where ω + and ω -are the stable fixed points of the system. Proof. Suppose that conditions A, B and C are verified and that λ 5 > d 2 d 3 k 3 λ 3 and λ 1 < d1k1λ3λ5 λ3λ5-d2d3k3 , then the latter problem admits two different stable fixed points E 1 and E 2 and one unstable fixed point E u . If we denote by ω + = E 1 , ω -= E 2 , and ω 1 = E u , then F (ω + ) = F (ω -) = 0, ω + < ω -(the inequality is component-wise) and the matrices F (ω ± ) have all eigenvalues in the left half-plane. Moreover, there exists one point ω 1 = ω ± , such that ω + ≤ ω 1 ≤ ω -, F (ω 1 ) = 0 and the matrix F (ω 1 ) has at least one eigenvalue in the right half-plane. In addition to that, F (E u ) is irreductible since it has a strongly connected digraph as shown in Figure 2.3. Since E u is unstable then the corresponding Jacobian has at least one eigenvalue of non negative real part. Therefore, its principal eigenvalue has a nonnegative real part. To ensure that this eigenvalue lies in the right half-space, we impose that the derterminant of the Jacobian matrix at E u is different than 0. This latter condition is equivalent to having
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λ 1 = d 1 (k 1 + k 3 - λ 3 λ 5 d 2 d 3 + 2 k 3 k 1 )
and

λ 1 = d 1 (k 1 + k 3 - λ 3 λ 5 d 2 d 3 -2 k 3 k 1 )
. Therefore, by Theorem 2.3.1 there exists, in the bistable case, a constant c and a monotonically decreasing traveling wave solution u(x, t) = ω ( x-ct) of system (2.46)-(2.50)

with the limits ω(±∞) = ω ± if λ 1 = d 1 (k 1 + k 3 - λ 3 λ 5 d 2 d 3 + 2 k 3 k 1 ) and λ 1 = d 1 (k 1 + k 3 - λ 3 λ 5 d 2 d 3 -2 k 3 k 1 ).
We note that if

λ 1 = d 1 (k 1 + k 3 - λ 3 λ 5 d 2 d 3 + 2 k 3 k 1 ) or λ 1 = d 1 (k 1 + k 3 - λ 3 λ 5 d 2 d 3 -2 k 3 k 1
), the reduced system admits a traveling wave solution in the bistable case, if the Jacobian matrix at E u has at least an eigenvalue of strictly positive real part. Proof. Under the conditions of the latter theorem, system (2.46)-(2.50) admits one stable fixed point E 1 and one unstable fixed point E 2 . We let We note that traveling wave solutions propagate on infinite intervals. Since numerical simulations are carried out on bounded intervals, the behavior of solutions for sufficiently large times may be influenced near the boundaries. However, we are interested in the transition zone that is far from the boundaries and hence, is not affected by the solution behavior near boundaries. The intervals considered in the simulations are sufficiently large and the solutions obtained are good approximations for the exact solutions.

ω + = E 2 , ω -= E 1 . Then, we have F (ω + ) = F (ω -) = 0, ω + < ω -(
In conclusion, in this section, we prove the existence of traveling wave solution for the monotone reduced system (2.46)-(2.50) in both bistable case and monostable. Theorem 2.3.4 proves the existence of a traveling wave solution for system (2.46)-(2.50) in the bistable case and Theorem 2.3.5 proves the existence of a traveling wave solution for system (2.46)-(2.50) in the monostable case.

Perturbed waves in the bistable case

A traveling wave solution of speed c for problem

∂U ∂t = a ∂ 2 U ∂x 2 + F (U ), (2.52) 
where a is a constant matrix, that is of the form U (x, t) := ω(xct), is a solution for

aω + cω + F (ω) = 0. (2.53)
Suppose that F is continuous together with its third derivatives. Suppose that for some c = c 0 , there exists a solution w 0 (x) of this system with limits at infinity

lim x→±∞ ω 0 (x) = ω ± .
(2.54)
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We will study persistence of solutions under small perturbations of the system. We consider the operator

A(ω, c) = aω + cω + F (ω), (2.55) 
acting from C 2+D (R) × R into C D (R), 0 < D < 1, and the linearized operator

Lu = au + cu + F (ω 0 (x))u. (2.56)
The essential spectrum is the set of complex numbers λ satisfying the algebraic equation

det(-aξ 2 + ciξ + F (ω ± ) -λE) = 0, ξ ∈ R. (2.57)
Here E is the identity matrix. 

aω + cω + G (ω) = 0, ω(±∞) = ω ± ,
where G (ω) = F (ω) + g(ω) and G (ω ± ) = 0, has a solution ω for some c = c . Here

ω ± → ω ± ,c → c 0 and ω -ω 0 C 2+D (R) as → 0.
The functions F and g are uniformly bounded and continuous together with their third derivatives.

Proof. For a detailed proof of the theorem, one can refer to [START_REF] Volpert | Elliptic Partial Differential Equations[END_REF], Chapter 4, Theorem 1. [START_REF] Carman | T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity[END_REF].

System (2.46)-(2.50) for D 1 = D 3 = D 4 = D 6 = D 12 = a can be written ∂U ∂t = a ∂ 2 U ∂x 2 + F (U ),
where

U = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ L L ox A 1 M 1 C 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦
, and

F (U ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ λ 1 H(α) L ox + C 3 k 1 + L ox + C 3 -k L L k L L -d 1 L ox λ 3 H(α) L ox + C 3 k 1 + L ox + C 3 -λ 4 A 1 λ 4 A 1 -d 2 M 1 λ 5 C 3 k 3 + C 3 M 1 -d 3 C 3 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
The function F (U ) is continuous together with its third derivative. A traveling wave solution of velocity c of this problem is of the form ω(xct) = U (x, t). We consider as well , then for all P 0 sufficiently small the problem

f (U ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ λ 1 H(α) 1 k 1 + L ox + C 3 0 λ 3 H(α) 1 k 1 + L ox + C 3 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ and f * (U ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 L ox k 2 + L ox M 1 0 L ox k 2 + L ox M 1 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . When conditions A, B
aω + cω + G P0 (ω) = 0, ω(±∞) = ω P0 ± , (2.58)
where

G P0 (ω) = F (ω) + P 0 f (ω), G P0 (ω P0 ± ) = 0, has a solution ω P0 for some c = c P0 . Here ω P0 ± → ω ± where ω + = E 1 and ω -= E 2 , c P0 → c 0 and ω P0 -ω 0 C 2+D (R) → 0 as P 0 → 0.
The functions F and g are uniformly bounded and continuous together with their third derivatives.

Proof. The linearized operator Lu = au + cu + F (ω 0 (x))u has a zero eigenvalue of eigenfunction the derivative of ω 0 , the unique traveling wave solution for system (2.46)-(2.50) under the conditions of the theorem. This eigenvalue is simple since it has a one-dimensional eigenspace. The essential spectrum given by det(-

aξ 2 + ciξ + F (E 1 ) -λE) = 0, ξ ∈ R. (2.59)
is the set of λ i = η iaξ 2 + ciξ, where η i is an eigenvalue of the Jacobian matrix of system (2.46)-(2.50) at

E 1 , for i = 1, • • • , 5.
The eigenvalues η i 's are all real negative since the point E 1 is stable. Therefore, the essential spectrum lies in the left half-plane and for any real number λ ≥ 0, equation (2.61) with respect to ξ does not have solutions. Similarly, the essential spectrum given by det(-aξ 2 +ciξ +F (E 2 )-λE) = 0, ξ ∈ R lies in the left half-plane. Thus, by Theorem 2.4.1, for all P 0 sufficiently small, problem (2.58) has a solution ω P0 for some c = c P0 . Here ω P0 ± → ω ± where ω P0 

+ = F 1 , ω P0 -= F 2 , ω + = E 1 and ω -= E 2 , c P0 → c 0 and ω P0 -ω 0 C 2+D (R
aω + cω + G λ2 (ω) = 0, ω(±∞) = ω λ2 ± , (2.60) 
where

G λ2 (ω) = G P0 (ω) + λ 2 f * (ω), G λ2 (ω λ2 ± ) = 0, has a solution ω λ2 for some c = c λ2 . Here ω λ2 ± → ω P0 ± , c λ2 → c P0 and ω λ2 -ω P0 C 2+D (R) → 0 as λ 2 → 0.
The functions G P0 and f * are uniformly bounded and continuous together with their third derivatives.

Proof. The linearized operator Lu = au + cu + G P0 (ω P0 (x))u has a zero eigenvalue of eigenfunction the derivative of ω P0 , the unique traveling wave solution for problem (2.58) under the conditions of the theorem. This eigenvalue is simple since it has a one-dimensional eigenspace. The essential spectrum, given by det(- 

aξ 2 + ciξ + G P0 (F 1 ) -ζE) = 0, ξ ∈ R, ( 2 
λ2 + = G 1 , ω λ2 -= G 2 , ω P0 + = F 1 and ω P0 -= F 2 , c λ2 → c P0 and ω λ2 -ω P0 C 2+D (R) as λ 2 → 0.
The functions G P0 and f * are uniformly bounded and continuous together with their third derivatives.

To summarize, in this section, we prove the existence of perturbed traveling wave solution for system (2.22)-(2.26) in the bistable case. Theorem 2.4.2 proves the existence of a traveling wave solution for system (2.22)-(2.26) when λ 2 = 0 and P 0 is sufficiently small under the conditions of the bistable case. Theorem 2.4.3 proves the existence of a traveling wave solution for system (2.22)-(2.26) when λ 2 and P 0 are sufficiently small in the bistable case.

Transition from the reduced model to the complete model

In this section, we first examine the consistency of existence and stability of fixed points analysis of the complete model (2.1)-(2.14) for some given values of the parameters with the analysis of the reduced model (2.22)-(2.26), and we analyze bifurcation diagrams for the complete model. Next, we investigate the effect of the anti-inflammatory process on the behavior of the complete system by altering the value of the parameter λ P A2 that generates the anti-inflammatory responses in system (2.1)-(2.14).

To begin with, the parameters of the complete system (2.1)-(2.14) in this section are chosen in an appropriate way to ensure the existence of fixed points. For this aim we assume that the parameters k H ,

d A2 , d M2 , d T1 , d T2 , d C1 , d C2 , d C4
and d F are sufficiently big. For simplicity, we assume that they are all equal to 1. Moreover, the values of T 0 1 and T 0 2 are chosen conveniently to impose the positivity of the fixed points components C 1 and C 2 .

We fix some parameters as follows:

σ H = 10 -9 , H 0 = 10 -9 , k H = 1, A 0 2 = 1, λ LoxM2 = 10, k C1 = 0, k 4 = 0, λ C2A2 = 1, k C2 = 1, d A2 = 1, d M2 = 1, λ P T1 = 1, T 0 1 = 15, d T1 = 1, λ P T2 = 1, T 0 2 = 15, d T2 = 1, λ C1 = 1, d C1 = 1, λ C2 = 1, d C2 = 1, k = 0, λ C4F = 10 -9 , λ C4 = 10 -9 , d C4 = 1, d F = 1, k C4 = 1
and α > α 0 . We vary the remaining parameters by considering the conditions of Table 2.2.

The numerical study the ODE's system for the complete model shows that the analysis of fixed points existence and stability is identical to the one for the reduced model. In other words, the fixed points of the complete model verify the classification of Table 2.2 for λ LoxM1 and P 0 being equal 0 or positive and close enough to 0.

Moreover, the common components between the fixed points of the complete model and the ones of the reduced model have the same values under the same conditions of Table 2.2 for very small values of λ P A2 . Additionally, the study of the PDEs system of the complete model indicates the existence of traveling wave solution having same velocity as the traveling wave solution found for the reduced model, under the same conditions of Table 2.2, as shown in subfigures (a) and (b) of Figure 2.8.

We denote by P 1 and P 2 the solutions for the complete model that correspond to E 1 and E 2 respectively, the solutions of the reduced model. P 1 corresponds to the disease free state and P 2 refers to the inflammatory state.

Therefore, for a certain range of values of some parameters, there is rigorous conformity in the stability analysis between the complete model and the reduced one. By assigning small values to the parameter λ P A2 , a significant similarity in the components values of fixed points of the complete and reduced systems is perceived. Further, we noticed from the numerical results that the propagation of the traveling wave solutions for the reduced and complete models are close and have close velocities. This highlights that, for a certain range of parameters values, the inductive approach consisting of reducing the complete model and making broad generalizations of the results is valid.

The complete model provides a wider description of atherogenesis than the reduced model. To highlight the effect of endothelial permeability and intimal LDL penetration on the development of atherosclerosis, we use the bifurcation diagrams that enable the visualization of the system behavior for more general biological results.

Figure 2.5 shows that for a small k 1 , the only stable equilibrium is P 2 ; for an intermediate value of k 1 , the system has two stable points P 1 and P 2 ; and for a high value of k 1 , P 1 is the only stable point. Explicitly, a high endothelial permeability leads to inflammation, a regulated endothelial permeability prevents the disease, and an intermediate permeability may lead to the development of atherosclerosis up to a certain threshold.

While in Figure 2.6, we examine the effect of LDL penetration by varying the parameter λ 1 . Concretely, a low LDL penetration inhibits the initiation of inflammation (P 1 stable), an intermediate LDL penetration may trigger the inflammation up to a certain threshold (bistable case), and a high LDL penetration favors the inflammation to set up (P 2 stable). We note that in Figures 2.5 and 2.6, the parameter λ P A2 is taken to be equal to 1.

In order to investigate the anti-inflammatory effect on the ensue of atherogenesis, we proceed by varying the parameter λ P A2 . Figure 2.7 provides the values of selected stable fixed points components, as a result of the numerical simulations of both reduced and complete models, particularly in the bistable case. Whereas, Figure 2 of the traveling wave solution for the reduced model and for the complete model with different values of λ P A2 . The subfigures show trapezoidal form with lines that separate the blue surface from the red surface. The slopes of these lines are equal to the inverse of the velocities of the traveling wave solutions.

If we gradually expand the anti-inflammatory process by increasing the value of the parameter λ P A2 , we identify a smooth decrease of fixed points components of pro-inflammatory mediators such as L ox , A 1 and M 1 and a progressive increase of the fixed points components of anti-inflammatory mediators, such as A 2 and M 2 . Likewise, the traveling wave solution propagates with a gradually decreased velocity. Biologically, this highlights the regulatory effect of the anti-inflammatory responses in atherosclerosis progression. In fact, atherosclerosis regression has a significant correlation with LDL reduction, depicted when we incorporate the anti-inflammatory effects to the model. Anti-inflammatory agents are implicated in modulating inflammatory responses and contribute to reduce inflammation progression. This explains the delay in inflammation propagation observed. Thus, in our model, the attenuation of the disease severity is attributable to the anti-inflammatory responses.

A further increase in the value of λ P A2 leads to a considerable decrease of the L ox -coordinate of the fixed points and an important increase of the M 2 -coordinate associated with a negative velocity of wave propagation, as shown in Figure 2.9. To this magnitude of decreased wave propagation, the system behavior determines the plaque regression, that is, the reversal of the atherosclerosis process. It involves the depletion of cholesterol stores, a gradual decline in pro-inflammatory macrophage numbers and their replacement with anti-inflammatory macrophages, promoting the removal of necrotic material and tissue healing. Thus, our model emphasizes the beneficial role of anti-inflammatory effects exerted within the atherosclerotic lesion in plaque regression and stabilization. model with realistic parameters taken from Table 2.3. The simulations are exhibited by taking into account the real length of a plaque to be 8.8mm as reported in [START_REF] Wendelhag | On Quantifying Plaque Size and Intima-Media Thickness in Carotid and Femoral Arteries[END_REF]. This figure displays a decrease in the velocity of propagation of the inflammation when the anti-inflammatory process is amplified. We use the values of velocities in this graph and the length of a real plaque to compute the necessary time for plaque formation. We obtain the following results: If no anti-inflammatory responses are triggered (λ P A2 = 0), when the endothelial dysfunction occurs, the plaque takes 2.678 years to form. However, when the anti-inflammatory processes arise, the plaque needs a notably increased number of years to establish. For instance, it takes 5.47 years to form if λ P A2 = 10 and 12.05 years if λ P A2 = 20. We note that these predictive results are not considerably reliable since the parameters are obtained by performing studies in different contexts and circumstances. However, they clearly confirm that an anti-inflammatory lifestyle such as exercising, quitting smoking and adopting a balanced healthy diet prevents plaque progression. They emphasizes the role of anti-inflammatory therapeutics in treatment of atherosclerosis that proved efficient promising targets in controlling plaque development.

The results of this section are found for λ LoxM1 = P 0 = 0 and then verified for λ LoxM1 = P 0 = 0.01.

In sum, we show in this section the consistency of the existence and stability analysis of fixed points, as well as traveling wave solutions for the complete model (2.1)-(2.14) and the reduced model (2.22)-(2.26), when the parameter λ P A2 is sufficiently small. Figures 2.5 and 2.6 show bifurcation diagrams for the complete model and infer on the evolution of inflammation depending on the values of λ 1 and k 1 . By increasing the value of λ P A2 , we provide the evolution of L ox and M 2 coordinates of the fixed points in the bistable case in Figure 2.7. Figures 2.8 and 2.9 show the projection of the wave propagation onto the Space-Time plane, and give an idea about the wave propagation velocity. Finally, some conclusions on the effect of anti-inflammatory agents on inflammation regression are drawn.

Discussion

This work is devoted to the mathematical modeling of atherosclerosis. It provides an initial model that describes the anti and pro-inflammatory processes arising during the atherogenesis through partial differential equations of reaction-diffusion type. The endothelial functionality is examined and integrated to the model. A reduced model considering the pro-inflammatory process is then derived from the complete model and analyzed. It shows that the initiation of the inflammation is determined by the endothelial function and the penetration of LDL within the intima. Besides, experimental data reported from the literature contribute to providing a diagram of risk zones according to the values of two critical parameters. Likewise, numerical simulations emphasize the existence of traveling wave solutions for the reduced monotone model. The existence of perturbed solutions and perturbed traveling wave solutions are also investigated. Then the transition from reduced model to the complete initial model is studied along with graphical results. A conformity in results between the reduced and complete model is perceived for a certain range of parameters. Bifurcation diagrams show the evolution of the inflammation depending on endothelial permeability and LDL penetration to the intima. The analysis of the complete model simulations reveals a regulation of the inflammation development due to the integration of the antiinflammatory cascades. Even though the conclusions approve and generalize previous results, this model has some limitations.

In this model many assumptions were imposed. Some of them are related to the monotonicity of the reduced model. To overcome these conditions we proved the existence of perturbed solutions. Another assumption is required to achieve the classification of Table 2.2. It signifies that a high endothelial permeability is associated with a high release of pro-inflammatory cytokines. From a biological point of
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view, this assumption is commonly valid since endothelial dysfunction promotes endothelial activation and consequently the release of pro-inflammatory cytokines. However, due to some pathologic issues, this relationship between endothelial permeability and pro-inflammatory cytokines can be altered. More details on dependance of pro-inflammatory cytokines on endothelial dysfunction are beneficial to provide a more detailed classification. The domain of this model is one-dimensional. A more accurate representation for complex conditions can be done by considering 2D and 3D models, where the artery can be represented by a rectangular or cylindrical domain, the study infers on intimal accumulation of cholesterol and plaque formation. Moreover, a fluid-structure interaction study can describe interactions between blood dynamics and the structural mechanics of the arterial wall. Since the blood's behavior is greatly affected by the deformation of the artery, the mechanical analyses are used to provide rigorous representations of flow distribution and explore possible plaque rupture mechanisms.

This model considers permeability of the endothelium through the step function H(α) that only takes discrete values. For a better representation of endothelial permeability, it can be distributed by a continuous function. When this function depends on the space x, the model can provide more relevant results on plaque formation. In other words, when the site of lesion is taken into account, the study may derive to conclusions on vascular sites susceptibility to atherosclerotic lesions, and consequently may confirm suggestions on regional selectivity in atherosclerotic responses to risk factors.

Clinical information is a key point to improve the efficiency of the results. Integrating reliable clinical parameters for the complete model can provide objective evidence of resulting insights. Experimental data incorporated to the model can give quantitative description of atherosclerosis and reflect realistic physiological effects suggesting the possibility of clinical use of such a model in the prediction of disease progression, decisions on endothelial recovery drug dosages, and the estimation of time of inflammation. Based on physiological data, this model could contribute to improving the treatment of atherosclerosis. However, obtaining accurate data for this model is a fundamental challenge.

An important biological mechanism can be included to this model: the reverse cholesterol transport (RCT). RCT from macrophages in atherosclerotic plaques is a critical mechanism. The excess of ox-LDL is transferred from arterial macrophages to HDL with subsequent transport to the liver for degradation. Research has provided important insights into the molecular mechanisms of RCT and showed that HDL protective function through reverse cholesterol transport likely contributes to the regression of established plaques. This model considers only the anti-inflammatory function of HDL. By considering the RCT, this model can provide more detailed results on plaque regression matched to the concentration of HDL.

Further development of atherosclerosis model might also incorporate risk factors like hypercholesterolemia, diabetes or hypertension that have a significant impact on the evolution of the plaque. Risk factors can be modeled as parameters in the mathematical model. They influence the behavior of the system, and are crucial in inducing the inflammation. By combining the risk factor effect to the model, the biological results would comprise a wider spectrum of results that confirm epidemiological, and clinical trials concerning emerging risk factors and their available therapies.

A diverse array of studies examined therapeutics for the treatment of atherosclerosis. Using statins for primary prevention is recommended by guidelines, and is prevalent to lower cardiovascular risk. Although statins were developed to specifically reduce cholesterol synthesis, clinical trials have indicated that their beneficial effects extend beyond lipid lowering. These drugs further stabilize atherosclerotic plaque. The action of statins would be included to the model that can inspect on their role in the evolution of the inflammation. This would increase the accuracy of our understanding of atherosclerosis. Such model would allow to possibly predict the efficacy of drugs and helps in optimizing the treatments.

Atherosclerotic plaques have different chemical composition as well as structures. Some of them are significantly more predisposed to rupture than others. Atherosclerotic plaque rupture is a recognized major cause of acute coronary syndrome. Such mathematical model concerns in particular the atherogenesis and the onset of plaque formation. It describes some mechanisms through which the plaque builds up. However, the characteristic components and pathogenic mechanisms of the lesions are not considered. In order to study the consequences of the plaque formation, a more descriptive model considering types of plaque and their stability would enable a more powerful mathematical approach.

As the outbreak of COVID-19 becomes the major global concern, several articles appear currently analyzing the possible correlations between COVID-19 and atherosclerosis. Possible cardiovascular manifestations of COVID-19 include acute coronary syndrome, myocardial injury, and cardiac failure. Some researches focus on the role of the pro-inflammatory state during infection and the influence of respiratory infections in atherosclerosis complications. Multiple articles are published to emphasize the link between COVID-19 and atherosclerosis such as [START_REF] Lei | SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2[END_REF][START_REF] Vinciguerra | SARS-CoV-2 and Atherosclerosis: Should COVID-19 Be Recognized as a New Predisposing Cardiovascular Risk Factor?[END_REF][START_REF] Shi | COVID-19 and atherosclerosis: looking beyond the acute crisis[END_REF]. They provide a highly important knowledge on atherosclerotic plaque evolution and rupture in infected people that together with the wide range of available data afford various insights for mathematical models. An enhancement of the model of this chapter would be to include the effect of COVID-19 on atherosclerotic lesions. This gives rise to a deeper understanding of the impact of COVID-19 on atherosclerotic lesions and complications and may provide a scientific framework for studies of cardiovascular manifestations of COVID-19 infection and therapeutic interventions to mitigate inflammation and improve outcomes in patients with COVID-19.
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Appendix

Theorem 2.7.1. Let B 1 and B 2 be two Banach spaces and ( , U ) ∈ B 1 × B 2 . Let x ∈ [ 0, 1] and U (x) be a function of class C 2 ([0, 1]) such that U (0) = 0 and U (1) = 0. We define a function F such that F (U ) is of class C 1 and F (E) = 0. Let a be a constant. Suppose that the operator A( , U

) = aU + F (U ) + f (x) is given in a neighborhood D of a point (0, E) ∈ B 1 × B 2 , it maps it into a Banach space F . If F (E) = k 2 π 2 a
, ∀k ∈ N then there exists an operator Φ given in some neighborhood G ⊂ B 1 of the point 0 such that it maps this neighborhood into the space B 2 and satisfies the following properties:

1. A( , Φ( )) = 0. 2. Φ(0) = E. 3. Φ is continuous at 0.
The operator Φ is uniquely determined by these properties. Under the conditions of the theorem, if A is continuous everywhere in D, then the operator Φ is continuous in some neighborhood of the point 0. If we assume, moreover, that the partial derivative A exists in D and is continuous at (0, E), then the operator Φ is differentiable at 0 and

Φ (0) = -(A U (0, E)) -1 A (0, E).
(2.62)

Proof. We have the following:

A U ( , U )V = d dt A( , U + tV ) t=0 = aV + V F (U ). ( 2 

.63)

In particular,

d dt A( , U + tV ) U =E,t=0 = aV + V F (E). ( 2 

.64)

We let the operator L :

C 2 ([ 0, 1]) → C 0 ([ 0, 1]), such that ∀ V ∈ C 2 ([ 0, 1]), LV = aV + F (E)V is an approximation of A( , U ) about U = E.
After the substitution, the boundary conditions become: V (0) = 0 and V (1) = 0. We have:

• A is continuous on D and particularly at (0, E) and A(0, E) = 0.

• The operator A U defined as A U ( , U ) = a d 2 dx 2 + F (U ) exists because F is of class C 1 . Let us check the continuity of A U at (0, E): To start with, F is continuous because F is of class C 1 . Then there exists D 0 , such that ∀η > 0, if U -E C 2 < D 0 , then F (U ) -F (E) < η.
Let ( , U ) be near (0, 0), there exist D 1 and D 2 , such that | |< D 1 and U -E C 2 < min(D 0 , D 2 ).
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A U ( , U ) -A U (0, E) = sup V ≤1 (A U ( , U ) -A U (0, E))V = sup V ≤1 F (U )V -F (E)V ≤ F (U ) -F (E) sup V ≤1 V = F (U ) -F (E) ≤ η ∀η > 0.
• A U (0, E) = L is an operator from B 2 into F . To find the spectrum of L, we let λ be an eigenvalue of L, then for V ∈ C 2 ([ 0, 1]), LV = λV gives the following:

aV + (F (E) -λ)V = 0. (2.65) Thus, λ = F (E) -k 2 π 2 for k ∈ N when F (E) is constant or more generally |F (E) -λI| = 0. Therefore, the operator L is invertible if F (E) = k 2 π 2
, ∀k ∈ N or more generally when the eigenvalues of the Jacobian matrix at E are non zero.

The operator L is linear, and continuous between two normed spaces, therefore it is bounded. The bounded inverse theorem states that a bijective bounded linear operator from a Banach space to another one has a bounded inverse. Thus, when the operator L is invertible, its inverse is bounded.

We conclude that the implicit function theorem can be applied to A( , U ) if

F (E) = k 2 π 2 , ∀k ∈ N.
Corollary 2.7.2. Given a polynomial p(τ, x) = x n + a n-1 (τ )x n-1 + • • •+ a 1 (τ )x + a 0 (τ ) whose coefficients depend smoothly on a parameter τ such that at τ = 0 the number x = x 0 is a simple root of this polynomial, p(0, x 0 ) = 0. Then for all τ sufficiently near 0 there exists a unique root x(τ ) with x(0) = x 0 that depends smoothly on τ .

Proof. Given that p(0, x 0 ) = 0 we want to solve p(τ, x) = 0 for x(τ ) with x(0) = x 0 . The assertions are immediate from the implicit function theorem. Since x(0) = x 0 is a simple zero of p(0, x) = 0, then p(0, x) = (xx 0 )g(x) , where g(x 0 ) = 0. Thus the derivative p x (0, x 0 ) = 0.

Theorem 2.7.3. Given a square matrix A(τ ) whose elements depend smoothly on a real parameter τ , if λ = λ 0 is a simple eigenvalue at τ = 0, then for all τ near 0 there is a corresponding eigenvalue that depends smoothly on τ .

Proof. The proof is immediate from Corollary 2.7.2 applied to the characteristic polynomial.

In brief, this appendix is about the Implicit Function Theorem. We start by stating and proving Theorem 2.7.1 that emerges from the Implicit Function Theorem and that is applied to a particular form of problems. Finally, we recall Corollary 2.7.2 and Theorem 2.7.3.
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Chapter 3

Mathematical Modeling of the Interaction of Atherosclerotic Inflammation and Chemotaxis: Formation of Fatty Streaks

The review on mathematical modeling of atherosclerosis in the literature proves that the existing models involving chemotaxis of macrophages do not consider its interaction with the inflammatory processes for the lesion formation at once. As a novelty, we would like to emphasize the combination of chemotaxis of macrophages and inflammation in atherogenesis in one model for an in-depth analysis of the relationship between these two processes on one hand, and the impact of chemotaxis on the system behavior, on the other hand. By considering the early stages of atherosclerosis, therefore the results obtained from such model would reflect on the emergence of fatty streaks, the first detectable lesions in atherosclerosis. Since the biological review seems to confirm that fatty streaks appear along the artery, this conveys to deduce that mechanical forces, such as the blood flow, do not influence the emergence of fatty streaks. Hence, we hypothesize that the chemotaxis of macrophages can influence the emergence and distribution of fatty streaks along the arterial wall. In this chapter, we model the early stages of atherosclerosis in a mathematical model of reaction-diffusion equations that considers the positive feedback between the inflammation in atherosclerosis and the chemotactic movement of macrophages. The study consists of stability analysis and numerical simulations for a reduced model. The spatial structures in the solution refer to the emergence of fatty streaks. The results obtained are then extended to the model initially proposed in this chapter.

Proposed mathematical model

As reported by the biological studies, the main species that cause the interaction between chemotaxis and inflammation are macrophages, inflammatory cytokines, endothelial cells and EGF. We propose accordingly the following mathematical model, on an interval representing the intima:
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∂M ∂t = d 1 ∂ 2 M ∂x 2 -r ∂ ∂x M ∂G ∂x + α 1 + β 1 A 1 + A/τ 1 -λ 1 M, ( 3.1 
)

∂A ∂t = d 2 ∂ 2 A ∂x 2 + α 2 A 1 + A/τ 2 M -λ 2 A, (3.2) ∂E ∂t = k 1 A(E * -E) -σ 1 E, ( 3.3 
)

∂G ∂t = d 3 ∂ 2 G ∂x 2 + k 2 E -σ 2 G, (3.4) for x ∈ [0, L],
where L denotes the length of the intima in the longitudinal section of the damaged artery. Here M is the concentration of macrophages, A the concentration of inflammatory cytokines produced by macrophages, E the concentration of endothelial cells activated by inflammatory cytokines, G the concentration of EGF produced by activated endothelial cells and E * is the total concentration of endothelial cells. We consider for this problem homogeneous Neumann boundary conditions.

All the terms in these partial differential equations follow from the description of the behavior of these species during the early stages of atherosclerosis. The first right-hand side terms in equations (3.1), (3.2) and (3.4) are the diffusion terms, and the last right-hand side terms of these equation express the degradation of the quantity of concern. All the same, the second right-hand side term of the first equation models the chemotaxis of macrophages. In fact, the release of EGF in the activated endothelial cells allows and directs the movement of macrophages. For this reason, the chemotaxis term determines the flux of the macrophages in the direction ∂G ∂x . Besides, the third right-hand side term of the first equation describes the recruitment of the immune cells from the blood, due to the presence of the inflammatory cytokines. In the latter term, the factor α 1 corresponds to the recruitment of monocytes by reason of the oxidation of LDL. Likewise, the second right-hand side term of the second equation corresponds to the cytokines production rate, induced by the macrophages and the cytokines themselves. While in equation (3.3), the first right-hand side term models the activation of endothelial cells by reason of the presence of inflammatory cytokines, in proportion to the difference between the total concentration of endothelial cells and the concentration of activated endothelial cells. In this latter equation, the last right-hand side term designates the deactivation of endothelial cells. Finally, the second right-hand side term in equation (3.4) describes the production of EGF by the activated endothelial cells.

The goal behind this study is to justify mathematically that inflammation and macrophages chemotaxis in atherosclerosis result in the emergence of fatty streaks and to study their dependence on parameters.

Reduced mathematical model with chemotaxis

In order to study the proposed model, we choose to start with a simpler case. We reduce system (3.1)-(3.4) to a generic model of two equations, coupling the chemotaxis of macrophages to inflammation, without necessarily being related to endothelial cells and EGF. If the coefficient k 1 , k 2 , σ 1 and σ 2 are large enough, we can use the approximations:

G = k 2 E σ 2 and E = k 1 AE * σ 1 + k 1 A , that is G = k 1 k 2 AE * σ 2 (σ 1 + k 1 A) .
In the linear approximation with σ 1 >> k 1 A, we obtain the system of equations:
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⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ∂M ∂t = d 1 ∂ 2 M ∂x 2 -r ∂ ∂x M ∂A ∂x + α 1 + β 1 A 1 + A/τ 1 -λ 1 M, ∂A ∂t = d 2 ∂ 2 A ∂x 2 + α 2 A 1 + A/τ 2 M -λ 2 A. (3.5)
Let us note that, in system (3.1)-(3.2) for d 3 = 0, we obtain the same model in the stationary case considered below in the analysis of stationary spatial structures. We will return to the complete model in Section 3.

In this model, the chemotaxis term determines the flux of the macrophages in the direction ∂A ∂x , since the release of cytokines activates the endothelial cells responsible of the expression of EGF that in turn causes the movement of macrophages. In other words, in this model, the cytokines stimulate the movement of macrophages at rate r.

Through the reduced model, we address the study of the inflammatory process of atherosclerosis combined to the chemotaxis of macrophages on a large scale. Compared with the complete model, it conveys to more general conclusions on this topic, using simpler analysis and simulations. Even though we solicit the reduced model to reduce the complexity of system (3.1)-(3.4), the results obtained are rigorous enough to draw plausible conclusions.

Stationary points and stability analysis as an ODE model

This section is devoted to the study of the space dependent stationary solutions of system (3.5). By imposing τ 1 > α 1 β 1 , system (3.5) admits at most three stationary points:

S 0 = (α 1 /λ 1 , 0), S L = (M L , A L )
and S R = (M R , A R ), where:

A R = ζ + √ ι 2λ 1 λ 2 , A L = ζ - √ ι 2λ 1 λ 2 , M L = λ 2 α 2 τ 2 (τ 2 + A L ), M R = λ 2 α 2 τ 2 (τ 2 + A R ), ζ = β 1 α 2 τ 1 τ 2 -λ 1 λ 2 (τ 1 + τ 2 ), ι = (λ 1 λ 2 (τ 1 + τ 2 ) -β 1 α 2 τ 1 τ 2 ) 2 -4λ 2 1 λ 2 2 τ 1 τ 2 + 4λ 1 λ 2 τ 1 τ 2 α 1 α 2 .
We notice that S 0 is an equilibrium point for any values of the parameters and if S L and S R exist, then λ 1 (λ 2b * ) > a * c * , where:

a * = β 1 τ 1 -α 1 (τ 1 + A R ) 2 τ 1 , b * = λ 2 τ 2 τ 2 + A R , c * = τ 2 α 2 A R τ 2 + A R .
Table 3.1 shows the existence and stability of stationary solutions of system (3.5) in all possible cases. According to the values of the stationary solutions, one can elaborate a biological description for each point. S 0 refers to the disease free state, S R corresponds to the inflammatory state and S L is a threshold between the non-inflammatory state and the inflammatory state.

Stability analysis of the spatial model

By linearizing the equations of system (3.5) about the stationary point S R , we have the following eigenvalue problem:

⎧ ⎪ ⎨ ⎪ ⎩ d 1 d 2 M dx 2 -rM R d 2 A dx 2 + a * A -λ 1 M = λM d 2 d 2 A dx 2 + b * A + c * M -λ 2 A = λA (3.6)
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Table 3.1: Existence and stability of stationary solutions of system (3.5).

λ 1 λ 2 < α 1 α 2 α 1 λ 1 < λ 2 α 2 < β 1 τ 1 λ 1 and α 1 λ 1 < λ 2 α 2 < β 1 τ 1 λ 1 and 0 < λ 2 α 2 τ 2 < β 1 α 1 - α 1 τ 1 λ 1 - λ 2 α 2 τ 1 - α 1 τ 1 λ 1 2 λ 2 α 2 τ 2 > β 1 α 1 - α 1 τ 1 λ 1 - λ 2 α 2 τ 1 - α 1 τ 1 λ 1 2 S 0 Unstable Stable Stable S L - Unstable - S R Stable Stable -
We look for solutions of the form: M = p cos kx and A = q cos kx. Therefore, it is sufficient to study the eigenvalue problem A X = λX, where:

A = -d 1 k 2 -λ 1 rM R k 2 + a * c * -d 2 k 2 + b * -λ 2 , X = M A
The point S R is stable for r = 0. However, when r > 0, we would like to check wether for certain values of r, the stability of fixed point S R does not hold. For this aim, to check wether we may have zero eigenvalue, it is sufficient to study the values of r when det(A ) = 0. Analytically, det(A ) = 0 implies that

d 1 d 2 k 4 + (d 1 (λ 2 -b * ) + d 2 λ 1 -c * rM R ) k 2 + λ 1 (λ 2 -b * ) -a * c * = 0 (3.7)
Then, we can express r as a function of k:

r = f (k) = d 1 d 2 k 4 + (d 1 (λ 2 -b * ) + d 2 λ 1 ) k 2 + λ 1 (λ 2 -b * ) -a * c * c * M R k 2
Therefore, the curve r = f (k) reaches its minimum r 0 for:

k = ± λ 1 (λ 2 -b * ) -a * c * d 1 d 2 1/4
and the minimum r 0 takes the value:

r 0 = d 1 λ 2 -b * - c * a * λ 1 + √ d 2 λ 1 2 + d 1 c * a * λ 1 c * M R ≥ 0
In other words, if r > r 0 , some eigenvalues at the point S R become nonnegative, and consequently, the point S R is no more stable. This proves that the chemotaxis may lead to the instablility of the system. In conclusion, the critical value r 0 is the minimal value of r for which the loss of stability occurs, and if r = r 0 , the wavenumber of the solution is

k 0 = λ 1 (λ 2 -b * ) -a * c * d 1 d 2 1/4
.
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chemotaxis in leading to instability of the solution S R , found for r < r 0 in a uniform distribution. In this figure, the simulations were performed first for decreasing values of r of 0.005 difference between two consecutive values, starting with r = 0.5 till r = 0.35. The last branch of the graph is completed with a jump to the second one as of r = 0.37, where the solution of system (3.5) is shifted, and consequently has peaks at new points of the space interval.

At this stage, we increase r gradually of 0.005 from 0.355 till 0.5, then the solution amplitudes take increasing values and complete the second branch of the graph. Next, we find the solutions of system (3.5) by decreasing constantly the value of r from 0.495 till 0.3. Then, the solutions have peaks at the same points along the interval [0, 20], with decreasing amplitudes plotted in the second branch of the graph, provided that r remains greater strictly than 0.31. However, when r ≤ 0.31, the solutions reach their maximum at different points of the space interval. Hence, there is a discontinuity in the solution amplitude graph, and the first branch is reached.

From then on, we exhibit the simulations for r running from 0.305 till 0.5, and then back to 0.25. Then the solutions indicate the presence of spatial structures, only when r ≥ 0.3, and the first branch of the amplitude graph is achieved.

This figure shows that for the same value r, sytem (3.5) may have different periodic solutions depending on the initial condition. The solutions at the first branch are stable directly from the bifurcation point, and the tivial solution becomes unstable. Other branches also bifurcate from the trivial solution. Since the latter is unstable for the corresponding values of r, solutions at the second and third branches are unstable near the bifurcation point, but they become stable for larger values of r.

Impact of inflammation and chemotaxis on the emergence of fatty streaks

In an attempt to study the influence of the inflammatory activity in atherosclerosis on the instability of the uniform distribution that leads to the emergence of fatty streaks, we provide, in Figure 3.2, graphical representations on the dependance of the critical value r 0 on the values of α 1 and α 2 that correspond to the beginning of the inflammation, i.e. the recruitment of monocytes due to the presence of ox-LDL and the cytokines production rate, respectively. This figure shows that when either α 1 or α 2 increases, r 0 decreases. This suggests that when the concentration of ox-LDL in the plaque increases, or when the cytokines production is expanded, then the instability of the uniform distribution occurs for smaller values of r, i.e. for a minor chemotactic activity of macrophages. In plain terms, the ox-LDL particles within the plaque, and the cytokines production favor the emergence of fatty streaks.

For the purpose of studying the role of the inflammation and the chemotactic activity of macrophages in the dynamic of the atherosclerotic lesion, we elaborate the graphics of Figure 3.3, where A denotes the integral of solution, along the space interval of concern. Then, A refers to the size of the lesion. Figures 3.3a shows that elevated levels of intimal cholesterol accumulation and inflammatory cytokines production contribute to an increase in lesion size. While in Figure 3.3b, an elevated chemotactic activity of macrophages results in a reduced size of early lesions.

Wave propagation

Throughout this section, we present the results that highlight the propagation of the inflammation along the artery which correlates with the emergence of fatty streaks. Figure 3.4 shows the solutions of system (3.5) in the bistable case, for a value of the parameter r that is large enough to exceed the critical value. In this figure, the initial condition is a step function that takes the values of the components of the stationary points S 0 = (2, 0) and S R = (3.5, 12). We notice the propagation of the solution towards S R along with the emergence of spatial structures. 

d 1 = 1, d 2 = 1, β 1 = 1, τ 1 = 4, τ 2 = 2, λ 1 = 1, and λ 2 = 1.
Another visualization of these results is displayed in Figure 3.5a that provides a two-dimensional view of the solution in Figure 3.4. In this figure, the lateral sides of the trapezoidal shape that appears refer to the inverse of the velocity of the solution to reach the stationary point S R . Moreover, the borders of the striped area define oblique lines that refer to the inverse of the velocity of propagation of the spatial structures.

For a further study of the effect of chemotaxis on the solution, we consider the result in Figure 3.5a, then we increase the value of the parameter r. The result is shown in Figure 3.5b, where we can notice that no change in the velocity of propagation of the solution towards S R is perceived. However, the spatial structures propagate faster. Hence, we conclude that a higher chemotaxis accelerates the emergence of spatial structures.

Estimation of solution

In this section we provide estimates of solutions for system (3.5). In the stationary case, we get the system

D 1 M -r(MA ) + α 1 + β 1 A 1 + A/τ 1 -λ 1 M = 0, (3.8) D 2 A + α 2 A 1 + A/τ 2 M -λ 2 A = 0 (3.9)
70 CHAPTER 3. considered on the whole axis or in a bounded interval with zero-flux boundary conditions. We will obtain some estimates of solutions for system (3.8), (3.9). Similar methods can be applicable for the four-equation model. Set
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F 1 (M, A) = α 1 + β 1 A 1 + A/τ 1 -λ 1 M , F 2 (M, A) = α 2 A 1 + A/τ 2 M -λ 2 A,
and let (M 0 , A 0 ) be the largest positive stationary point of the ODE system

dM dt = F 1 (M, A) , dA dt = F 2 (M, A). (3.10)
Then this point is stable as solution of system (3.10).

From equation F 1 (M, A) = 0 we find M = f 1 (A), and from equation F 2 (M, A) = 0 we find M = f 2 (A), where

f 1 (A) = α 1 + β 1 A λ 1 (1 + A/τ 1 ) , f 2 (A) = λ 2 α 2 (1 + A/τ 2 ). Since ∂F 1 ∂A > 0, ∂F 2 ∂M > 0 for A > 0, if β 1 τ 1 > α 1 (monotone system) and α 1 α 2 < λ 1 λ 2 , then F 1 (M, A) < 0 , F 2 (M, A) < 0 if f 1 (A) < M < f 2 (A) (3.11) (Figure 3.6). Let us take some A 1 > A 0 and M 1 = f 2 (A 1 ).
Lemma 1. Suppose that solution M (x), A(x) of system (3.8), (3.9) is such that 

0 ≤ M (x) ≤ M 1 , 0 ≤ A(x) ≤ A 1 , 0 ≤ x ≤ L. (3.12) Then 0 ≤ A(x) < A 1 , 0 ≤ x ≤ L. (3.13)
α 1 = 2, α 2 = 2, β 1 = 1, τ 1 = 4, τ 2 = 2, λ 1 = 1, λ 2 = 1.
In this case r 0 = 0.00299 and r = 0.0035.

Proof. Suppose that A(x 0 ) = A 1 for some x 0 ∈ (0, L). Consider, first, the case where M (x 0 ) < M 1 (Figure 3.6). Since F 2 (A 1 , M 1 ) = 0 and ∂F2 ∂M > 0, then F 2 (A(x 0 ), M(x 0 )) < 0. Hence, we obtain a contradiction in signs in equation (3.9) at x = x 0 .

If M (x 0 ) = M 1 , then F 2 (A(x 0 ), M(x 0 )) = 0, and we conclude from equation (3.9) that A (x 0 ) = 0. On the other hand, since x 0 is a maximum of the function M (x), then M (x 0 ) = 0, M (x 0 ) ≤ 0. Since F 1 (M (x 0 ), A(x 0 )) < 0, then we obtain a contradiction in signs in equation (3.8).

Finally, we have considered the case where the maximum of the function A(x) is reached inside the interval. If it is reached at the boundary of the interval, we can use the same arguments for the solution extended beyond the interval [0, L] by symmetry. The lemma is proved.

Lemma 2. Suppose that solution M (x), A(x) of system (3.8), (3.9) is such that condition (3.12) is satisfied. For each M 1 > M 0 there exists r 0 (M 1 ) such that for any r < r 0 (M 1 )

0 ≤ M (x) < M 1 , 0 ≤ x ≤ L. (3.14)
Proof. Suppose that M (x 0 ) = M 1 for some x 0 ∈ (0, L). Then M (x 0 ) = 0. Substituting the expression for A (x 0 ) from equation (3.9) into equation (3.8), we obtain: Let us recall that F 1 (M (x 0 ), A(x 0 )) < 0. If r = 0, then we obtain a contradiction in signs in this equation. We will find conditions on r such that

D 1 M (x 0 ) + r D 2 MF 2 (M (x 0 ), A(x 0 )) + F 1 (M (x 0 ), A(x 0 )) = 0. ( 3 
r D 2 MF 2 (M (x 0 ), A(x 0 )) + F 1 (M (x 0 ), A(x 0 )) < 0. (3.16)
Then, as before, we will obtain a contradiction. It follows from the previous lemma that A(x 0 ) < A 1 , where A 1 is such that M 1 = f 2 (A 1 ). Hence, inequality (3.16) should be verified for 0 ≤ A ≤ A 1 . Let us note that F 1 (M, A) < 0 for any M > M 0 and 0 ≤ A ≤ A 1 . Therefore, there is r 0 (M ) > 0 such that for any r ∈ (0, r 0 (M )) inequality (3.16) holds. The lemma is proved. Theorem 3. Suppose that there is a branch of solutions (M r (x), A r (x)) of system (3.8), (3.9) continuous with respect to parameter r in C 1 norm. If this solution satisfies inequality (3.12) for some A 1 > A 0 and M 1 = f 2 (A 1 ) for r = 0, then it is also satisfied for all r ∈ [0, r 0 (M 1 )].

The proof of the theorem follows directly from Lemmas 1 and 2. The estimates of r 0 (M 1 ) for some given parameter range show that it remains below the instability onset. Therefore, this theorem does not allow us to prove the existence of patterns emerging for r sufficiently large. However, it can be used to prove the existence of other solutions such as pulses, that is, positive solutions decaying at infinity. Their existence for r = 0 is known [START_REF] Marion | Existence of pulses for the system of competition of species[END_REF][START_REF] Marion | Existence of pulses for monotone reaction-diffusion systems[END_REF]. A similar approach can be used to estimate the maxima of travelling wave which lose their monotonicity for positive r.

Two-dimensional model

In this section, we show the results of the numerical simulations on a two-dimensional square region with a side length L 2 = 30 with homogeneous Neumann boundary conditions. We can expect the existence of multiple branches of solutions with different 2D structures. Detailed analysis of these solutions is complicated by slow convergence to stationary solutions near the bifurcation points.
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Complete model

Similarly to system (3.5), system (3.1)-(3.4) admits at most three stationary space-independent solutions,

S 0 = (M 0 , A 0 , E 0 , G 0 ), S L = (M L , A L , E L , G L ) and S R = (M R , A R , E R , G R )
, having the first two components similar to the components of S 0 , S L and S R , respectively.

The remaining components follow from taking the reaction part of equations (3.3) and (3.4) to be equal to zero, therefore we have, for S R :

E R = k 1 A R E * σ 1 + k 1 A R , G R = k 1 k 2 A R E * σ 2 (σ 1 + k 1 A R ) .
We proceed in the same manner to find E 0 , G 0 , E L , and G L .

Linearizing system (3.1)-( 3.4) about the solution S R , we obtain the eigenvalue problem

d 1 M -rM R G + f 1 (A R )A -λ 1 M = λM, ( 3 
.17)

d 2 A + f 2 (A R )M R A + f 2 (A R )M -λ 2 A = λA, (3.18) k 1 A(E * -E R ) -k 1 A R E -σ 1 E = λE, (3.19) d 3 G + k 2 E -σ 2 G = λG, (3.20)
where

f 1 (A) = α 1 + β 1 A 1 + A/τ 1 , f 2 (A) = α 2 A 1 + A/τ 2 .
We look for the solution of this problem in the form

M (x) = p 1 cos(kx), A(x) = p 2 cos(kx), E(x) = p 3 cos(kx), G(x) = p 4 cos(kx).
Therefore, eigenvalues of problem (3.17)-(3.20) are determined by the eigenvalues of the matrix

T (r) = ⎛ ⎜ ⎜ ⎝ -d 1 k 2 -λ 1 f 1 (A R ) 0 rM R k 2 f 2 (A R ) -d 2 k 2 + f 2 (A R )M R -λ 2 0 0 0 k 1 (E * -E R ) -k 1 A R -σ 1 0 0 0 k 2 -d 3 k 2 -σ 2 ⎞ ⎟ ⎟ ⎠ .
Then det T (r) = P -rQ, where

P = (k 1 A R + σ 1 )(d 3 k 2 + σ 2 )Δ 2 , Q = M R k 2 k 1 k 2 (E * -E R )f 2 (A R ),
The term Δ 2 > 0 is the determinant of the 2 × 2 matrix formed by the first two rows and columns. It corresponds to the stable endemic equilibrium of the two-equation model. From the condition det T (r) = 0, we find the critical value r = P/Q for which a real eigenvalue crosses the origin. It provides the stability boundary. Figure 3.8 highlights the emergence of spatial structures in the solution of system (3.1)-(3.4) for a value of r large enough. The solutions in this figure are obtained for different values of d 3 . One can see that, for a certain range of values of d 3 , the solutions are close to each other and spatial structures arise for a fixed value of r that is greater than the critical value.

Similarly to system (3.5), the emergence of spatial structures in the solution for the complete system is due to the chemotaxis term. Since these spatial structures denote the emergence of fatty streaks, we conclude that fatty streaks appear due to the interaction of chemotaxis and inflammation modeled by the chemotaxis term in system (3.1)-(3.4). 

d 1 = 1, d 2 = 1, α 1 = 2, α 2 = 2, β 1 = 1, τ 1 = 4, τ 2 = 2, λ 1 = 1, λ 2 = 1, k 1 = 1.5, k2 = 1, E * = 20, σ1 = 1, σ2 = 2
, and r = 20.

Discussion

In this study, we provide a simplified mathematical model that describes the interplay between key species in atherogenesis, within the context of the biological information. For the purpose of studying the impact of the chemotactic activity of macrophages on the emergence of fatty streaks, we consider in the models of this paper a chemotaxis term that describes the positive feedback between the inflammation and the chemotaxis. In fact, the cytokines actively participate in stimulating the chemotactic activity of macrophages by activating endothelial cells, that produce the EGF to provoke and direct the movement of macrophages responsible of supporting the inflammation in atherogenesis.

In an effort to explain the main objective of this study, we consider the stability analysis of the constant stationary solution of system (3.5), S R , that refers to the inflammatory state. The stability of S R corresponds to the formation of early lesion that may develop into a plaque. The analytical study determines a minimal value of r, denoted by r 0 , for which the loss of stability of the solution occurs.

By way of explanation, if the chemotaxis is insignificant, i.e. 0 ≤ r < r 0 , the system reaches the constant stationary solution S R , that denotes the set up of inflammation, and describes the formation of a lesion of type I. Above a certain threshold, chemotaxis causes the spatial structures to arise. These spatial structures feature the formation of multilayers of foam cells and consequently refer to the emergence of fatty streaks by determining their heterogeneous distribution. This confirms that the chemotaxis influences the shape of fatty streaks through the instability of the uniform distribution of the stationary solution S R . A nearly periodic distribution of fatty streaks can be found as in Figure 1.6b.

Conforming to the numerical results, for the same value of r that is greater than a given value r * (such that r * ≥ r 0 ), the system may have different solutions of different amplitudes depending on the initial condition. Further conclusions can be made with regard to the value of the parameter r. In fact, solutions of larger amplitudes arise for larger values of the parameter r. Namely, an increase in the value of the parameter r is associated with an increase in the amplitude of the solution. This infers that an increased chemotactic activity of macrophages generates more accumulation of macrophages leading to a greater rise in the fatty streaks peaks. Likewise, this model suggests that, similarly to the chemotactic activity, the inflammation level positively correlates with the formation of fatty streaks. Here is a direct consequence from the positive feedback that occurs between the inflammation and the chemotaxis of macrophages, as cause and effect of each other. And since chemotaxis and inflammation act conjointly on the emergence of fatty streaks, the result in Figure 3.2 confirms that the formation of fatty streaks requires an adequate milieu produced by an inflammatory level and a chemotactic activity. More precisely, when the inflammatory level is raised, a reduced chemotactic activity is then sufficient to generate the non-uniform distribution of fatty streaks. Otherwise, the chemotactic activity should be intensified. Hence, chemotaxis of macrophages and the inflammation mutually complement each other to cause the emergence of fatty streaks.

Furthermore, this study outlines the impact of chemotaxis that concerns the rate of growth of fatty streaks. By increasing the value of the parameter r, the spatial structures reach higher amplitudes and spread along the whole space interval with a larger velocity. More precisely, a higher chemotaxis activity of macrophages leads to a faster emergence of fatty streaks over the arterial wall.

As for lesion size, the results of this model show that lipid accumulation and cytokines production positively correlate with the lesion size, which is in line with scientific observations on lesion progression. Precisely, the accumulation of lipids expands the lesion volume and the cytokines production causes an additional recruitment of macrophages which results in lesion extension. With regard to chemotactic activity of macrophages, the lesion progression is due to a decreased chemotactic movement of macrophages. Hence, this model suggests that, in early lesions, an elevated chemotactic activity stimulates a compact accumulation of macrophages and diminishes the total area of the lesion site.

The values of the parameters in the numerical simulations verify the conditions of existence of the stationary point that refers to the inflammatory state. The reason behind this choice is that we aim to retrieve results on the emergence of fatty streaks that arise once the inflammation is established. However, the choice of the diffusion parameters was determined by considering the appearance and propagation of spatial structures that we need to illustrate in the graphs. Likewise, some graphs show the dependence of the solution with respect to some critical parameters due to their importance in the inflammatory process or the chemotactic activity, the key points in our study. Certainly this study provides a variety of outcomes on the emergence of fatty streaks as a result of the interaction between the chemotaxis and inflammation, depending on the values of some parameters, however clinical data can be used to enhance the quality and the relevance of these results.

Fatty streaks are prone to proceed to more advanced lesions. In fact, it is in areas of artery flow dividers and branch points probably related to altered hemodynamic forces that fatty streaks tend to progress to advanced lesions [START_REF] Xu | Chapter 3 -Vascular Pathobiology: Atherosclerosis and Large Vessel Disease[END_REF]. Therefore, whether a fatty streak is progression-prone or progression-resistant is largely determined by the mechanical forces [START_REF] Herbert | A Definition of Initial, Fatty Streak, and Intermediate Lesions of Atherosclerosis[END_REF]. One of these forces is low shear stress [START_REF] Herbert | A Definition of Initial, Fatty Streak, and Intermediate Lesions of Atherosclerosis[END_REF]. Moreover, a recent study has shown that in the abdominal aortas of 15-to 24-year-old persons, fatty streaks develop in a characteristic pattern [102]. In some locations, like the thoracic aorta and portions of the ventrolateral intimal surface of the abdominal aorta, they are not likely to be converted raised lesions during young adulthood [START_REF] Jack | Prevalence and Extent of Atherosclerosis in Adolescents and Young Adults[END_REF]. On the other hand, fatty streaks in an area on the dorsolateral intimal surface of the abdominal aorta and in the right coronary artery are replaced by raised lesions in 25-to 34-year old persons [102]. Moreover, the distribution pattern of raised lesions in the dorsolateral portion of the 3.4. DISCUSSION 77 abdominal aorta and the distribution pattern of raised lesions in the right coronary artery of older persons follow those of the distribution of fatty streaks in younger persons [START_REF] Jack | Prevalence and Extent of Atherosclerosis in Adolescents and Young Adults[END_REF]. These results suggest that in specific locations, raised lesions, i.e. fibrous plaques and the other advanced lesions of atherosclerosis, arise from fatty streaks. In conclusion, fatty streaks, under certain conditions, are the precursors of clinical diseases. For the locations where there are similarities in the topographical distributions of fatty streaks and raised lesions, this model provides predictive information on the localization of potential lesions, hence its importance.

In the same spirit, the mechanism of accumulation of lipids in skin lesions is similar to the development of atheroma [START_REF] Dwivedi | Cutaneous markers of coronary artery disease[END_REF]. Among cutaneous clinical markers suggesting atherosclerosis at a young age, we list xanthelasma characterized by yellow plaques that occur most commonly near the inner canthus of the eyelid, corneal arcus recognized by a lipid-rich and predominantly extracellular deposit that forms at the corneoscleral limbus, tuberous xanthomas patterned by pink-yellow papules or nodules that occur on extensor surfaces, and tendon xanthomas causing subcutaneous nodules found in fascia, ligaments, and tendons [START_REF] Dwivedi | Cutaneous markers of coronary artery disease[END_REF]. Apparently, the patterns observed from lipid accumulation are categorized into two main types: streak patterns and dot patterns. Through this study, only streak patterns are reported from the simulations performed. This may be due to the choice of parameters. We also suggest that some modifications in the model can lead to solution with dot patterns.

Studies have shown that fatty streaks arise along the arterial wall. The distribution of fatty streaks over the artery justifies that hemodynamic forces do not influence on the onset of fatty streaks formation as flat non-elevated lesions. However, these forces may influence the macrophages motion in the lumen. By determining the delivery and penetration of monocytes, they may be the reason causing fatty streaks to be aligned along the vessel. On the other hand, as the fatty streaks localize near to the bifurcation sites, low shear stress at the bifurcation points promotes their development to more advanced lesions.

In this study, we have limited ourselves to a simplified model of atherosclerosis. Fatty streaks formation in more complete models taking into account other cytokines and cell types, including anti-inflammatory macrophages, requires further investigation.

Chapter 4 A Free Boundary Mathematical Model of Atherosclerosis

In this chapter, we model the arterial inflammation in atherosclerosis in a one-dimensional free boundary problem. The plaque growth causing the motion of the domain boundary is not only considered as resulting from the influx of cells through the boundary as in the previous works, but also from their interaction in the subendothelial space. The main objective of this work is finding the solution of the model and drawing conclusions on the plaque growth. For this purpose, we simplify the model, formulate the model, by a change of variables, with a fixed boundary, space and time dependent coefficients and non linear terms.. The study of the latter model allows us to prove the existence of solution by applying the fixed point theorem. We also investigate the wave solution and analyze the numerical results. Finally, the results obtained are generalized to the original model.

Proposed model

Free boundary model of plaque growth

Our goal is to study the following system of equations of reaction-diffusion type:

∂M ∂t = D 1 ∂ 2 M ∂x 2 + δM (M 0 -M ) -d 1 M, ( 4.1) 
∂A ∂t = D 2 ∂ 2 A ∂x 2 + α 2 A 1 + A/τ 2 M -d 2 A, (4.2) 
∂F ∂t = λM, ( 4.3) 
where M is the concentration of inflammatory monocytes, monocytes derived macrophages and resident macrophages, M 0 is the concentration of the physiological equilibrium value of macrophages, A the concentration of inflammatory cytokines produced by macrophages and F the concentration of foam cells. The first right-hand side terms of equation (4.1) and (4.2) model the diffusion of macrophages and cytokines. The second right-hand side term of equation (4.1) models the proliferation of macrophages in the intima, while the third right-hand side term of equation (4.1) corresponds to the depletion of macrophages
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that leads to the formation of foam cells and the degradation of macrophages. Likewise, the second right-hand side term of equation (4.2) refers to the production of cytokines promoted by macrophages and cytokines themselves, the third right-hand side term of this equation models the degradation of cytokines and the first right-hand side term of equation (4.3) describes the differentiation of macrophages into foam cells.

The system of equations is considered in the interval is 0 < x < L(t) with a time dependence size L(t) illustrated in Figure 4.1 with the boundary conditions:

x = 0 : ∂M ∂x = ∂A ∂x = 0, (4.4) 
x = L(t) : In the existing free boundary problems of atherosclerosis presented in the literature review, the standard formulation of the free boundary motion is determined by the flux of macrophages. By considering that the macrophages do not undergo changes in the intima (differentiation, death, proliferation, ...), then one can justify that the motion of the boundary is proportional to their influx through the boundary. However, from the biological point of view, this interpretation is not conceivable since macrophages in the intima are subjected to several transformations and differentiations which are not related to the flux of macrophages through the boundary. More precisely, macrophages undergo in situ proliferation mediated by intimal T helper cells without recruitment of inflammatory cells from the blood [107]. In addition to proliferation, macrophages death and differentiation into foam cells are not related to the flux of macrophages through the boundary. For these reasons, the size of the domain is not determined uniquely by the flux of macrophages through the boundary. It is, in fact, essentially determined the number of macrophages, foams cells and the quantity of lipids in the intimal lesion site. In our case, the equilibrium size of the interval L eq (t) is given by the equality:

∂M ∂x = α 1 + β 1 A 1 + A/τ 1 , ∂A ∂x = 0. (4.5) 
L eq (t) = L 0 + Leq(t) 0 (k 1 M (x, t) + k 2 F (x, t)) dx, ( 4.6) 
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where L 0 is the initial size. The endothelium is considered as a linear elastic medium, then the force F needed to extend it is given by Hooke's law:

F = k(L eq (t) -L(t)), (4.7) 
where k is a constant. We consider the pressure of the blood flow, P, as an external force, then we have:

F = P. ( 4.8) 
For simplicity, we study this model by assuming that P = 0, then

L(t) = L 0 + L(t) 0 (k 1 M (x, t) + k 2 F (x, t)) dx. (4.9)

Simplified model

We consider problem (4.1)-(4.5) and (4.9). By assuming that diffusion of cytokines is insignificant and that the cytokines concentration is constant with time, we can neglect the diffusion term in the second equation , and use the quasi-stationary approximation to express A through M . Finally, we get:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂M ∂t = D 1 ∂ 2 M ∂x 2 + δM (M 0 -M ) -d 1 M, ∂F ∂t = λM, L(t) = L 0 + L(t) 0 k 1 M (x, t) + k 2 F (x, t)dx, x = 0 : ∂M ∂x = 0, x = L(t) : ∂M ∂x = a 1 + b 1 M a 2 + b 2 M . ( 4.10) 
where

a 1 = (α 1 -β 1 τ 2 )d 2 τ 1 , b 1 = α 2 β 1 τ 1 τ 2 , a 2 = d 2 (τ 1 -τ 2 ) and b 2 = α 2 τ 2 .
This paper is devoted to the study of the latter problem. However, a similar study can be easily done for problem (4.1)-(4.5) and (4.9) and the same results can be obtained. For this reason, this work focuses on the reduced problem. The results obtained for the simplified model are generalized to the original model at the end of the paper.

Fixed boundary model

In order to study problem (4.10) mentioned previously, we introduce, in this section, a more general model, and we investigate the solution along with numerical simulations. Then, we return to problem (4.10) in the subsequent section. Consider the equation

∂u ∂t = D ∂ 2 u ∂x 2 + G(u) (4.11)
in the interval 0 ≤ x ≤ L(t) with the variable size L(t). Here u is the concentration of cells, G(u) = f (u)g(u), f (u) is their birth rate and g(u) death rate. The boundary conditions are as follows:

x = 0 : ∂u ∂x = 0, x = L(t) : D ∂u ∂x = h(u), (4.12) 
where h(u) determines cell influx through the boundary. The concentration of dead cells v is described by the equation ∂v ∂t = g(u), (

The size of the interval L(t) is determined by the following equation

L(t) = L 0 + L(t) 0 (k 1 u(x, t) + k 2 v(x, t))dx. (4.14)
where L 0 is the initial size, and the integral in the right-hand side determines size increase due to live and dead cells. Differentiating the last equation with respect to t, we obtain:

L (t) = (k 1 u(L(t), t) + k 2 v(L(t), t))L (t) + L(t) 0 (k 1 u t (x, t) + k 2 v t (x, t))dx = (k 1 u(L(t), t) + k 2 v(L(t), t))L (t) + k 1 h(u(L(t), t)) + L(t) 0 ((k 2 -k 1 )g(u(x, t)) + k 1 f (u(x, t)))dx.
Hence,

L (t) = k 1 h(u(L(t), t)) + L(t) 0 ((k 2 -k 1 )g(u(x, t)) + k 1 f (u(x, t)))dx 1 -k 1 u(L(t), t) -k 2 v(L(t), t) . ( 4.15) 
In particular, if

k 1 = k 2 , f (u) = 0, and k 1 u(L(t), t) + k 2 v(L(t), t) << 1, then we obtain conventional free boundary problem L (t) = k 1 h(u(L(t), t)), (4.16) 
where the motion of the boundary is determined by cell influx through the boundary.

We reduce this problem with a moving boundary to a problem with a constant boundary by considering the following change of variable:

y = x L(t)
,

where y ∈ [0, 1]. We let u(x, t) = u(yL(t), t) = U (y, t) and v(x, t) = v(yL(t), t) = V (y, t).
Using the chain rule, we get

∂u ∂x = ∂U ∂y ∂y ∂x + ∂U ∂t ∂t ∂x = ∂U ∂y ∂y ∂x = 1 L(t) ∂U ∂y , ∂ 2 u ∂x 2 = 1 L 2 (t) ∂ 2 U ∂y 2 ,
and ∂u ∂t = ∂U ∂y ∂y ∂t + ∂U ∂t = - yL (t) L(t) ∂U ∂y + ∂U ∂t .
Substituting into equations (4.11), (4.12), (4.13) and (4.16), by assuming k 1 = k 2 , f (u) = 0, and

k 1 u(L(t), t) + k 2 v(L(t), t) << 1, we get: 4.2. EXISTENCE OF SOLUTION 83 ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂U ∂t = D L 2 (t) ∂ 2 U ∂y 2 + yL (t) L(t) ∂U ∂y -g(U ), ∂V ∂t = yL (t) L(t) ∂V ∂y + g(U ), y = 0 : ∂U ∂y = 0, y = 1 : D ∂U ∂y = L(t)h(U ), L (t) = k 1 h(U (1, t)).
(4.17)

We note that equations (4.11), (4.12), (4.13) and (4.15), without the previous assumptions, become after the change of variable as follows:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂U ∂t = D L 2 (t) ∂ 2 U ∂y 2 + yL (t) L(t) ∂U ∂y + f (U ) -g(U ), ∂V ∂t = yL (t) L(t) ∂V ∂y + g(U ), y = 0 : ∂U ∂y = 0, y = 1 : D ∂U ∂y = L(t)h(U ), L (t) = k 1 h(U (1, t)) + 1 0 ((k 2 -k 1 )g(U (y, t)) + k 1 f (U (y, t)))L(t)dy 1 -k 1 U (1, t) -k 2 V (1, t) . ( 4.18) 

Existence of solution 4.2.1 Existence of solution of the fixed boundary problem

We consider the following boundary value problem for y ∈ [0, 1]

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂U ∂t = D L 2 (t) ∂ 2 U ∂y 2 + yL (t) L(t) ∂U ∂y -g(U ), L (t) = k 1 h(U (1, t)), y = 0 : ∂U ∂y = 0, y = 1 : D ∂U ∂y = L(t)h(U ), U (y, 0) = 0. (4.19)
The latter system is a system of a partial differential equation of reaction-diffusion type coupled with an ordinary differential equation. The coefficients in the PDE are time and space dependent. Moreover, the functions g(U ) and h(U ) are non linear. To prove the existence of solution for this system, we start by studying it with linear PDE reaction term and boundary condition. Then, the fixed point method allows us to prove the existence of solution for system (4.37). For this purpose, we introduce two functions N (t) and V (y, t) and we consider the following problem for y

∈ [0, 1], t ∈ [0, T ]. ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂U ∂t = D N 2 (t) ∂ 2 U ∂y 2 + yN (t) N (t) ∂U ∂y + g(V (y, t)), y = 0 : ∂U ∂y = 0, y = 1 : D ∂U ∂y = N (t)h(V (1, t)), U (y, 0) = 0. (4.20) 
We denote the following notations:

Q T is the cylinder Q T = [0, 1] × (0, T ), i.e. the set of points (y, t) of R 2 with y ∈ [0, 1] and t ∈ (0, T ), S = {0, 1}, S T = S × (0, T ), Q is an arbitrary open subset of Q T and l is a a non integral number such that 0 < l < 1/2.
Theorem 4.2.1. Existence of solution of system (4.20) If the following conditions are satisfied:

• the function N belongs to class H l/2+1 ([0, T ]),
• there exists a constant N 0 > 0 such that the function N is bounded by N 0 from below,

• the function g belongs to class C 1 (R),

• the function h belongs to class C 1 (R),

• the function V belongs to class

H (l+1) ([0, 1] × [0, T ]), • h(V (1, 0)) = 0, then problem (4.20) has a unique solution U ∈ H l+2,l/2+1 (Q T ) with |U | (l+2) Q ≤ c h C 1 (R) + g C 1 (R) + |V | (l+1) QT h C 1 (R) + c V g C 1 (R) , (4.21) 
where c and c V are constants.

Proof. We define the operator L:

L(y, t, ∂ ∂y , ∂ ∂t ) = ∂U ∂t - D N 2 (t) ∂ 2 U ∂y 2 - yN (t) N (t) ∂U ∂y ,
the function f :

f : Q T -→ R (y, t) -→ f (y, t) = g(V (y, t)),
the function Φ:

Φ: [0, T ] -→ R t -→ Φ(t) = h(V (1, t)),
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and the function b 1 :

b 1 : S T -→ R (y, t) -→ b 1 (y, t) = D N (t) .
We have that

D N 2 (t) (l/2) (0,T ) = D N 2 (t) (l/2) (0,T ) + D N 2 (t) (0) (0,T ) = Sup t,t ∈(0,T ) |t-t |≤ρ0 D N 2 (t ) -N 2 (t) |t -t | l/2 |N 2 (t)N 2 (t )| + D N 2 (t) (0) (0,T ) ≤ D N 4 0 ⎛ ⎜ ⎜ ⎝ Sup t,t ∈(0,T ) |t-t |≤ρ0 |N (t )||N (t ) -N (t)| |t -t | l/2 + Sup t,t ∈(0,T ) |t-t |≤ρ0 |N (t)||N (t ) -N (t)| |t -t | l/2 ⎞ ⎟ ⎟ ⎠ + D N 2 0 = 2D N 4 0 N (0) [0,T ] N (l/2) [0,T ] + D N 2 0 ≤ 2Dc N N 4 0 |N | (l/2+1) [0,T ] 2 + D N 2 0 < ∞
where c N is a constant, and

N N (l/2) (0,T ) = N N (l/2) (0,T ) + N N (0) (0,T ) = Sup t,t ∈(0,T ) |t-t |≤ρ0 |N (t)N (t ) -N (t )N (t)| |t -t | l/2 |N (t)N (t )| + N N (0) (0,T ) ≤ 1 N 2 0 ⎛ ⎜ ⎜ ⎝ Sup t,t ∈(0,T ) |t-t |≤ρ0 |N (t)||N (t ) -N (t)| |t -t | l/2 + Sup t,t ∈(0,T ) |t-t |≤ρ0 |N (t)||N (t) -N (t )| |t -t | l/2 ⎞ ⎟ ⎟ ⎠ + |N | (0) (0,T ) N 0 ≤ 1 N 2 0 |N | (l/2+1) [0,T ] N (l/2) [0,T ] + N (l/2) [0,T ] + |N | (0) (0,T ) N 0 ≤ 1 N 2 0 |N | (l/2+1) [0,T ] (c N + 1)|N | (l/2+1) [0,T ] + |N | (l/2+1) [0,T ] N 0 ≤ |N | (l/2+1) [0,T ] N 0 ⎛ ⎝ (c N + 1)|N | (l/2+1) [0,T ] N 0 + 1 ⎞ ⎠ < ∞
We deduce that the coefficients of the operator L belong to the class H l,l/2 (Q T ).

Moreover, knowing that N is bounded from below and belongs to H l/2+1 ([0, T ]) ⊂ H (l+1)/2 ([0, T ]), we can prove that the function b 1 belongs to class H (l+1)/2 ([0, T ]) in a similar manner as for the coefficients of L.

Likewise, the function Φ(t) belongs to the space H (l+1)/2 ([0, T ]) if Φ is continuous and |Φ| (l+1)/2 (0,T ) is finite. We have:

|Φ| ((l+1)/2) (0,T ) = Φ (l+1)/2 (0,T ) + Φ (0) (0,T ) = Sup t,t ∈(0,T ) |t-t |≤ρ0 |Φ(t) -Φ(t )| |t -t | (l+1)/2 + max t∈(0,T ) |Φ(t)| = Sup t,t ∈(0,T ) |t-t |≤ρ0 |h(V (1, t)) -h(V (1, t ))| |V (1, t) -V (1, t )| |V (1, t) -V (1, t )| |t -t | (l+1)/2 + max t∈(0,T ) |h(V (1, t))| ≤ h C 1 (R) |V | (l+1) QT + h C 1 (R) < ∞
Therefore, the function Φ(t) belongs to the space H (l+1)/2 ([0, T ]), since the function h belongs to class C 1 (R), and the function V satisfies Hölder condition of order (l + 1)/2 on (0, T ). The function Φ(t) verifies the compatibility condition of order (l + 1)/2) if

∂ k U (y, t) ∂t k | t=0 = ∂ k Φ ∂t k | t=0 (k = 0, • • • , [(l + 1)/2]

and y ∈ S).

Given that h(V (1, 0)) = U (1, 0) = 0, we deduce that the function Φ(t) verifies the compatibility condition of order (l + 1)/2). Since g belongs to class C 1 (R), and V is continuous and satisfies Hölder condition of order l + 1, then f is continuous and |f | 

|y-y |≤ρ0 |g(V (y, t)) -g(V (y , t))| |V (y, t) -V (y , t)| |V (y, t) -V (y , t)| |y -y | l + Sup t,t ∈(0,T ) |t-t |≤ρ0 |g(V (y, t)) -g(V (y, t ))| |V (y, t) -V (y, t )| |V (y, t) -V (y, t )| |t -t | l/2 + max (y,t)∈QT |g(V (y, t))| ≤ g C 1 (R) |V | (l) QT + g C 1 (R) ≤ c V g C 1 (R) |V | (l+1) QT + g C 1 (R) (4.22)
where c V is a constant. Therefore, the function f (y, t) belongs to class H l,l/2 (Q T ). Hence, by Theorem 5.3 in Chapter IV of [START_REF] Ladyzenskaja | Linear and Quasi-linear Equations of Parabolic Type[END_REF], since the coefficients of the operator L belong to the space H l,l/2 (Q T ) and b 1 ∈ H l+1,(l+1)/2 (S T ), for any function f ∈ H l,l/2 (Q T ) and Φ(t) ∈ H (l+1)/2 ([0, T ]) satisfying the compatibility condition of order [(l + 1)/2], i.e U (1, 0) = Φ(0), problem (4.20) has a unique solution U (y, t) from class H l+2,l/2+1 (Q T ) with

|U | (l+2) Q ≤ c |f | (l) Q + |Φ| (l+1)/2 (0,T ) ≤ c h C 1 (R) + g C 1 (R) + |V | (l+1) QT h C 1 (R) + c V g C 1 (R)
where c is a constant.

Taking into account the assumptions of equation (4.16), then, by referring to the second equation of problem (4.37), after the change of variable, L (t) becomes:

L (t) = k 1 D N (t) ∂U ∂t (1, t) = k 1 h(V (1, t)).
We define L(t) by integrating the right hand-side term of the latter equation, and we get:

L(t) = t 0 k 1 h(V (1, s))ds + L(0). ( 4 

.23)

Since h belongs to class C 1 (R) and V (1, t) belongs to class H (l+1)/2 ([0, T ]), then L belongs to class

H l+3 2 ([0, T ]). We define the mapping A from H l/2+1 ([0, T ]) × H l+1 ([0, 1] × [0, T ]) to itself: A : H l/2+1 ([0, T ]) × H l+1 ([0, 1] × [0, T ]) -→ H l/2+1 ([0, T ]) × H l+1 ([0, 1] × [0, T ]) (N (t), V (y, t)) -→ A(N (t), V (y, t)) = (L(t) -L(0), U(y, t)),
where U is the solution of problem (4.20) and L verifies equation (4.23). Proof. We recall that:

|U (1, t)| (l/2+1) (0,T ) = D t (U (1, t)) (l/2) [0,T ] + |D t (U (1, t))| (0) [0,T ] + |U (1, t)| (0) [0,T ] .
Let B be any bounded set in H (l+1)/2 ([0, T ])×H l+1 ([0, 1]×[0, T ]). For all (N, V ) ∈ B, U verifies inequality (4.39) and

|L -L(0)| ( l+3 2 ) (0,T ) = D t t 0 k 1 h(V (1, s)ds ( l+1 2 ) 
[0,T ]

+ D t t 0 k 1 h(V (1, s)ds (0) [0,T ] + t 0 k 1 h(V (1, s)ds (0) [0,T ] = k 1 h(V (1, t) ( l+1 2 ) 
[0,T ] Proof. We partition the interval [0, T ] into n subintervals [T i , T i+1 ], where i = 0, 1, . . . , n -1, T 0 = 0 and T n = T . We would like to prove that problem (4.20) has a solution and that the operator A admits a fixed point over each subinterval, starting with the subinterval [0, T 1 ]. Then we generalize the result for the remaining subintervals. Finally, by the semi-group property, we prove the existence of a fixed point over the whole interval [0, T ].

+ |k 1 h(V (1, t)| (0) [0,T ] + t 0 k 1 h(V (1, s)ds (0) [0,T ] ≤ k 1 h C 1 (R) |V (1, t)| ( l+1 2 ) [0,T ] + k 1 h C 1 (R) + k 1 T h C 1 (R) = k 1 h C 1 (R) |V (1, t)| ( l+1 2 ) [0,T ] + 1 + T ≤ k 1 h C 1 (R) |V (y, t)| (l+1) [0,1]×[0,T ] + 1 + T Therefore, we conclude that the image of B, A(B), is bounded in H l/2+2 ([0, T ]) × H l+2 ([0, 1] × [0, T ]). Hence, the operator A acting from H l/2+1 ([0, T ])×H l+1 ([0, 1]×[0, T ]) to H l/2+2 ([0, T ])×H l+2 ([0, 1]×[0, T ]) is bounded. Since H l/2+2 ([0, T ])×H l+2 ([0, 1]×[0, T ]) is compactly embedded in H l/2+1 ([0, T ])×H l+1 ([0, 1]×[0, T ]), then A(B) is a compact set in H l/2+1 ([0, T ]) × H l+1 ([0, 1] × [0, T ]). Therefore, the operator A is compact as acting from H l/2+1 ([0, T ]) × H l+1 ([0, 1] × [0, T ]) to H l/2+2 ([0, T ]) × H l+2 ([0, 1] × [0, T ]).
Let us consider problem (4.20) for t ∈ [0, T 1 ]. Since the conditions of Theorem (4.2.1) are satisfied, then there exists a unique solution U 1 ∈ H l+2,l/2+1 ([0, 1] × [0, T 1 ]) and a non-negative constant c 1 such that:

|U 1 | (l+2) ((0,1)×(0,T1)) ≤ c 1 h C 1 (R) + g C 1 (R) + |V | (l+1) QT h C 1 (R) + c V g C 1 (R) ,
We define the operator A 1 :

A 1 : H l/2+1 ([0, T 1 ]) × H l+1 ([0, 1] × [0, T 1 ]) -→ H l/2+1 ([0, T 1 ]) × H l+1 ([0, 1] × [0, T 1 ]) (N (t), V (y, t)) -→ A 1 (N (t), V (y, t)) = (L 1 (t) -L(0), U 1 (y, t)),
where U 1 is the solution of problem (4.20) over [0, T 1 ] and L 1 verifies equation

L 1 (t) = t 0 k 1 h(V (1, s)ds + L(0), (4.24) 
for t ∈ [0, T 1 ]. We denote by B 1 the unit ball in

H l/2+1 ([0, T 1 ]) × H l+1 ([0, 1] × [0, T 1 ]
). Our goal is to prove that the ball B 1 is strictly mapped into itself by the operator

A 1 over [0, T 1 ].
By the first equation of problem (4.20) for t ∈ [0, T 1 ] and equation (4.43), we obtain for all (N, V ) ∈ B 1 :

|L 1 (T 1 ) -L(0)| = t 0 k 1 h(V (1, s)ds ≤ T1 0 k 1 |h(V (1, s)|ds ≤ k 1 h C 1 (R) T 1 ,
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and

|U 1 (y, T 1 ) -U 1 (y, 0)| ≤ T1 0 D N 2 (t) ∂ 2 U 1 ∂y 2 + yN (t) N (t) ∂U 1 ∂y + |g(V (y, t))|dt ≤ T1 0 D N 2 0 ∂ 2 U 1 ∂y 2 + |N | (l/2+1) [0,T1] N 0 ∂U 1 ∂y + g C 1 (R) dt ≤ ⎛ ⎝ ⎛ ⎝ D N 2 0 + |N | (l/2+1) [0,T1] N 0 ⎞ ⎠ |U 1 | (l+2) ((0,1)×(0,T1)) + g C 1 (R) ⎞ ⎠ T 1 ≤ ⎛ ⎝ c 1 ⎛ ⎝ D N 2 0 + |N | (l/2+1) [0,T1] N 0 ⎞ ⎠ h C 1 (R) + g C 1 (R) +|V | (l+1) QT h C 1 (R) + c V g C 1 (R) + g C 1 (R) T 1 ≤ ⎛ ⎝ c 1 ⎛ ⎝ D N 2 0 + |N | (l/2+1) [0,T1] N 0 ⎞ ⎠ 2 h C 1 (R) + (1 + c V ) g C 1 (R) + g C 1 (R) ⎞ ⎠ T 1 = m 1 T 1 where m 1 = ⎛ ⎝ c 1 ⎛ ⎝ D N 2 0 + |N | (l/2+1) [0,T1] N 0 ⎞ ⎠ 2 h C 1 (R) + (1 + c V ) g C 1 (R) + g C 1 (R) ⎞ ⎠ .
Therefore, we deduce that:

|U 1 (y, t)| (0) [0,T ] ≤ m 1 T 1 , and t 0 k 1 h(V (1, s)ds (0) [0,T ] ≤ k 1 h C 1 (R) T 1 , Moreover, |U 1 (y, t)| (0) [0,T ] and t 0 k 1 h(V (1, s)ds (0) [0,T ]
converge to 0 if T 1 is small enough.

By letting 1 < γ 1 < l + 3 2 and 2 < γ 2 < l + 2, we consider (N, V ) ∈ B 1 and the image by A 1 , (L 1 (t) -L(0), U 1 ). We choose T 1 small enough, then L 1 (t) -L(0) converges to 0 in C([0, T 1 ]). Moreover, it is bounded in H l+3 2 ([0, T 1 ]). Therefore, L 1 (t) -L(0) converges to 0 in H γ1 ([0, T 1 ]). Suppose that this is not the case. Then there is a sequence (L

1 k (t)-L(0)) k such that |L 1 k (t) -L(0)| (γ1) [0,T1] > for all > 0. Since this sequence is bounded in H l+3 2 ([0, T 1 ]), then it is compact in the space H γ1 ([0, T 1 ]
) and consequently has a convergent subsequence to some L 10 (t) -L(0). Then on one hand

|L 10 (t) -L(0)| (γ1) [0,T1] > , but on the other hand L 10 (t) -L(0) = 0 because |L 1 k (t) -L(0)| (0) [0,T1] → 0. Similarly, if T 1 is small enough, then U 1 converges to 0 in C([0, 1] × [0, T 1 ]). Knowing that it is also bounded in H l+2,l/2+1 ([0, 1] × [0, T 1 ]). Therefore, U 1 converges to 0 in H γ2,γ2/2 ([0, 1] × [0, T 1 ]).
We deduce that if T 1 is small enough, then the norm of the image of (N, V ) ∈ B 1 by the operator A 1 is strictly less than 1. In other words, the unit ball B 1 is strictly mapped into itself by the operator A 1 over [0, T 1 ], for T 1 small enough. This choice of T 1 allows us to deduce that the operator A 1 , acting from B 1 to itself has a fixed point U * 1 in B 1 , by the Fixed Point Theorem.

We would like to proceed in the same manner to prove, by analogy, the existence of solutions for problem (4.20) over the intervals [T i , T i+1 ] for i = 1, . . . , n -1, as well as the existence of fixed points for the corresponding operators.

For each i, i = 1, . . . , n -1, consider U i the solution of problem (4.20) over the interval

[T i-1 , T i ] such that ( t 0 k 1 h(U * i (1, s)ds, U * i (y, t))
is the fixed point of the operator A i . We would like to find a solution U i+1 of problem (4.20) over the interval [T i , T i+1 ] with initial condition U i+1 (y, T i ) = U * i (y, t). However, since the initial condition is not zero, in order to apply Theorem 4.2.1, we consider a new function μ = U -U * i (y, T i ) and the following problem over the interval [T i , T i+1 ]:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂μ ∂t = D N 2 (t) ∂ 2 μ ∂y 2 + yN (t) N (t) ∂μ ∂y + f(y, t), y = 0 : ∂μ ∂y = 0, y = 1 : ∂μ ∂y = h(V (1, t)) -h(V (1, T i )), μ(y, T i ) = 0, (4.25) 
where f(y, t) = g(V (y, t)) -D N 2 (t)

∂ 2 U * i ∂y 2 (y, T i ) - yN (t) N (t) ∂U * i ∂y (y, T i ).
To prove the existence of solution for problem (4.44), we would like to use Theorem 4.2.1. Let us check if all conditions are satisfied.

Since U * i (x, T i ) ∈ H l+2 ([0, 1]), g belongs to class C 1 (R), V belongs to class H (l+1) ([0, 1] × [0, T ]), N be- longs to class H l/2+1 ([0, T ]) and is bounded from below by N 0 , therefore f ∈ H l,l/2 ([0, 1]×[T i , T i+1 ])). More- over, since h ∈ C 1 (R) and V ∈ H (l+1)/2 ([T i , T i+1 ]), then h(V (1, t)) -h(V (1, T i )) ∈ H (l+1)/2 ([T i , T i+1 ]).
Finally, the compatibility condition is satisfied since 

∂μ ∂y (1, T i ) = μ(1, T i ) = 0.
Q i+1 of [0, 1] × [T i , T i+1 ] and Q i of [0, 1] × [T i-1 , T i ],
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|U i+1 | (l+2) Qi+1 ≤ c i+1 |f| (l) Qi+1 + |h(V (1, t)) -h(V (1, T i )| (l+1)/2 (Ti,Ti+1) ≤ c i+1 g(V (y, t)) - D N 2 (t) ∂ 2 U * i ∂y 2 (y, T i ) - yN (t) N (t) ∂U * i ∂y (y, T i ) (l) Qi+1 +|h(V (1, t)) -h(V (1, T i )| (l+1)/2 (Ti,Ti+1) ≤ c i+1 |g(V (y, t))| (l) Qi+1 + D N 2 (t) ∂ 2 U * i ∂y 2 (y, T i ) (l) Q + yN (t) N (t) ∂U * i ∂y (y, T i ) (l) Qi+1 +|h(V (1, t)) -h(V (1, T i )| (l+1)/2 (Ti,Ti+1) ≤ c i+1 c V g C 1 (R) |V | (l+1) [0,1]×[0,Ti] + g C 1 (R) + ⎛ ⎝ D N 2 0 + |N | (l/2+1) [Ti,Ti+1] N 0 ⎞ ⎠ |U * i | (l+2) Qi + h C 1 (R) |V | (l+1) QT + h C 1 (R) + |h(V (1, T i )| (l+1)/2 (Ti,Ti+1) ≤ c i+1 g C 1 (R) c V |V | (l+1) QT + 1 + h C 1 (R) |V | (l+1) QT + 1 + ⎛ ⎝ D N 2 0 + |N | (l/2+1) [Ti,Ti+1] N 0 ⎞ ⎠ |U * i | (l+2) Qi + |U * i (1, T i )| ≤ c i+1 g C 1 (R) c V |V | (l+1) QT + 1 + h C 1 (R) |V | (l+1) QT + 1 + ⎛ ⎝ D N 2 0 + |N | (l/2+1) [Ti,Ti+1] N 0 + 1 ⎞ ⎠ |U * i | (l+2) Qi ≤ c i+1 ⎛ ⎝ g C 1 (R) c V |V | (l+1) QT + 1 + h C 1 (R) |V | (l+1) QT + 1 + ⎛ ⎝ D N 2 0 + |N | (l/2+1) [Ti,Ti+1] N 0 + 1 ⎞ ⎠ ⎞ ⎠ .
Similarly to the proof for the interval [0, T 1 ], we define the operator A i+1 :

A : H l/2+1 ([T i , T i+1 ]) × H l+1 ([0, 1] × [T i , T i+1 ]) -→ H l/2+1 ([T i , T i+1 ]) × H l+1 ([0, 1] × [T i , T i+1 ]) (N (t), V (y, t)) -→ A(N (t), V (y, t)) = (L i+1 (t) -L i+1 (T i ), U i+1 (y, t)),
where U i+1 is the solution of problem (4.20) over

[T i , T i+1 ], L i+1 (T i ) = L i (T i ) and L i+1 verifies equation L i+1 (t) = t 0 k 1 h(V (1, s)ds + L(T i ), for t ∈ [T i , T i+1 ].
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In a similar manner as for the interval [0, T 1 ], we can prove that for all (N, V ) in the unit ball of

H l/2+1 ([T i , T i+1 ]) × H l+1 ([0, 1] × [T i , T i+1 ]): |L i+1 (T i+1 ) -L i+1 (T i )| = Ti+1 Ti k 1 h(V (1, s)ds ≤ Ti+1 Ti k 1 |h(V (1, s))|ds ≤ k 1 h C 1 (R) (T i+1 -T i ),
and

|U i+1 (y, T i+1 ) -U i+1 (y, T i )| = |U i+1 (y, T i+1 )| ≤ Ti+1 Ti D N 2 (t) ∂ 2 U i+1 ∂y 2 + yN (t) N (t) ∂U i+1 ∂y + |f(y, t)| dt ≤ Ti+1 Ti D N 2 (t) ∂ 2 U i+1 ∂y 2 + yN (t) N (t) ∂U i+1 ∂y + |g(V (y, t))| + D N 2 (t) ∂ 2 U * i ∂y 2 + yN (t) N (t) ∂U * i ∂y dt ≤ ⎛ ⎝ ⎛ ⎝ D N 2 0 + |N | (l/2+1) [Ti,Ti+1] N 0 ⎞ ⎠ |U i+1 | (l+2) ((0,1)×(Ti,Ti+1)) + |U * i | (l+2) ((0,1)×(Ti-1,Ti)) + g C 1 (R) (T i+1 -T i ) ≤ ⎛ ⎝ ⎛ ⎝ D N 2 0 + |N | (l/2+1) [Ti,Ti+1] N 0 ⎞ ⎠ c i+1 g C 1 (R) c V |V | (l+1) QT + 1 + h C 1 (R) |V | (l+1) QT + 1 + D N 2 0 + |N | (l/2+1) [Ti,Ti+1] N 0 + 1 ⎞ ⎠ + 1 ⎞ ⎠ + g C 1 (R) (T i+1 -T i ) ≤ ⎛ ⎝ ⎛ ⎝ D N 2 0 + |N | (l/2+1) [Ti,Ti+1] N 0 ⎞ ⎠ c i+1 g C 1 (R) (c V + 1) + 2 h C 1 (R) + D N 2 0 + |N | (l/2+1) [Ti,Ti+1] N 0 + 1 ⎞ ⎠ + 1 ⎞ ⎠ + g C 1 (R) ⎞ ⎠ (T i+1 -T i ) = m i+1 (T i+1 -T i ).
We choose T i+1 -T i small enough, then

L i+1 (t) -L i+1 (T i ) converges to 0 in C([T i , T i+1 ]) and since it is also bounded in H l+3 2 ([T i , T i+1 ]), therefore, L i+1 (t) -L i+1 (T i ) converges to 0 in H γ1 ([T i , T i+1 ]). Similarly, if T i+1 -T i is small enough, then U i+1 converges to 0 in C([0, 1] × [T i , T i+1 ]). Moreover, it is bounded in H l+2,l/2+1 ([0, 1] × [T i , T i+1 ]). Therefore, U i+1 converges to 0 in H γ2,γ2/2 ([0, 1] × [T i , T i+1 ]).
In order to ensure that A i+1 over [T i , T i+1 ] has a fixed point, it is sufficient to choose T i+1 such that the norm of L i+1 (t) -L i+1 (T i ) in H γ1 ([T i , T i+1 ]) and the norm of U i+1 in H γ2,γ2/2 ([0, 1] × [T i , T i+1 ]) are strictly less than 1. We note that the length of the time intervals is bounded from below and that the constants m i are uniformly bounded because these estimates do not depend on the initial condition.

By the semi-group property, we deduce that the operator A admits a fixed point U * defined over the interval [0, T ], such that for i = 0, . . . , n -1, and for t ∈ [T i , T i+1 ], U * (y, t) = U * i+1 (y, t). Theorem 4.2.4. If the functions g and h belongs to class C 1 (R) then the following problem: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂U ∂t = D L 2 (t) ∂ 2 U ∂y 2 + yL (t) L(t) ∂U ∂x -g(U ), L (t) = k 1 h(U (

Existence of solution for the reduced model

In this section, we consider problem (4.10). Moreover, we simplify the expression of L, as in equation (4.16). Finally, we get: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂M ∂t = D 1 ∂ 2 M ∂x 2 + δM (M 0 -M ) -λM -d 1 M, ∂F ∂t = λM, L (t) = k 1 (α 1 -β 1 τ 2 )d 2 τ 1 + α 2 β 1 τ 1 τ 2 M (L(t), t) d 2 (τ 1 -τ 2 ) + α 2 τ 2 M (L(t), t) , x = 0 : ∂M ∂x = 0, x = L(t) : ∂M ∂x = (α 1 -β 1 τ 2 )d 2 τ 1 + α 2 β 1 τ 1 τ 2 M d 2 (τ 1 -τ 2 ) + α 2 τ 2 M .

Traveling wave solution

Consider equation (4.11) on the half-axis -∞ < x ≤ L(t) with the boundary condition:

x = L(t) : D ∂u ∂x = h(u),
and equation (4.16). We look for the solution of this problem in the form u(x, t) = w(xct) and L(t) = ct.

Then ξ = x -ct ≤ 0, Dw + cw -g(u) = 0, ξ < 0, Dw (0) = h(w(0)), c = k 1 h(w(0)). (4.28)
Function w(x) satisfies the system of two first order equations w = p, Dp = -cp + g(w).

(4.29)

The system (4.29) can be written as a single equation with respect to the function p(w):

dp dw = -c/D + g(w)
Dp .

The change of variables z(w) = p(w) w gives:

wz = - c D -z + g(w) Dp . (4.30)
In particular, for g(w) = dw, equation (4.30) becomes:

wz = - c D -z + d Dz .
This equation can be solved by the separation of variables.

Dz -Dz 2 -cz + d dz = dw w .
By using the partial fraction decomposition, we get:

A z -z 1 + B z -z 2 dz = dw w ,
where

A = D(c - √ c 2 + 4dD) 2 √ c 2 + 4dD , B = -D(c + √ c 2 + 4dD) 2 √ c 2 + 4dD , z 1 = c + √ c 2 + 4dD -2D and z 2 = -c + √ c 2 + 4dD 2D .
Then, the solution is:

(z -z 1 ) A (z -z 2 ) B = ρw, (4.31)
where ρ is a constant. We notice that (0, 0) is a stationary solution of system (4.29). From equation (4.31), we can deduce that the trajectories that departs from (0, 0) are p = z 1 w and p = z 2 w. We will solve system (4.29) for g(u) = du, where d is a constant coefficient, by the eigenvalue method. The matrix of the system is:

0 1 d/D -c/D .
The eigenvalues are z 1 and z 2 and their corresponding eigenvectors are: 0 z 1 and 0 z 2 . The general solution is:

w p = ρ 1 1 z 1 e z1x + ρ 2 1 z 2 e z2x ,
where ρ 1 and ρ 2 are arbitrary constants.

If x = 0, w(0) = u(L(t), t) and p(0) = h(w(0)) D , and if x → -∞, w → 0 and p → 0. Therefore, we compute ρ 1 and ρ 2 and we get:

ρ 1 = w(0), ρ 2 = 0.
We can also find the velocity of propagation of the solution as follows: From equation (4.28), we deduce that:

p(0) = h(w(0)) D , ρ 1 z 1 = h(w(0)) D , c + √ c 2 + 4dD -2D = h(w(0)) w(0)D , then c = h(w(0)) Ddw(0) h(w(0)) 2 - 1 w(0) .
k 1 = Ddw(0) h(w(0)) 2 - 1 w(0)
.

Finally, we can compute from the last equation the exact value of w(0) which allows us to compare the analytical and numerical solutions.

In the lower figure of Figure 4.3, we compare the analytical and numerical solutions of system (4.29) to check the accuracy of the simulations. 

(u) = du, h(u) = u 2 /(1 + u 2 ), D = 1, d = 0.1, k 1 = 1.
The numerical solutions is computed for t = 150, the time step is 0.01 and the space step is 0.001.

Numerical simulations

The results of the numerical simulations for system (4.11), (4.12), (4. (4.18). By comparing the results of simulations of system (4.11), (4.12), (4.13) for L (t) verifying equation (4.16) on one hand and (4.15) on the other hand, we notice that the solutions have the same behavior with close values for the same values of parameters. Moreover, in Figure 4.4, it is apparent that when the parameters k 1 and/or b increase, then the solution reaches larger values. We also notice from the simulations that the size of the domain L(t) and the wave velocity increase when the latter parameters increase. It is to say that a higher production and/or accumulation of macrophages in the intima expands the plaque size which increases with a higher velocity.

Finally, the numerical solution of system (4.27) in Figure 4.5 converges to the wave, similarly to the solution for system (4.11), (4.12), (4.13) and (4.16). 

Model of general form

In this section, we prove the existence of solution for problem of reaction-diffusion equations of general form, with free boundary, in 1D.

Free boundary model of general form

Consider the vectors u, F and h of m elements and the following system in the interval is 0 < x < L(t) with a time dependence size L(t): where u is the concentration of species and D is a diagonal matrix with positive diagonal elements D j , j = 1, • • • , m. The boundary conditions are as follows:

∂u ∂t = D ∂ 2 u ∂x 2 + F (u), ( 4 
(u) = du, f (u) = bu, h(u) = u 2 /(1 + u 2 ), D = 1, d = 0
x = 0 : ∂u ∂x = 0, x = L(t) : ∂u ∂x = h(u), ( 4.33) 
where h(u) determines the species influx through the boundary. The size of the interval L(t) is determined as follows:

L(t) = L 0 + L(t) 0 f (u)dx, (4.34) 
where L 0 is the initial size, the function f belongs to class C 2 (R) and the integral in the right-hand side determines the size increase. We will assume everywhere below that 0 < ≤ f (u) < f 0 + f (u) < 1 for all u ≥ 0 for some positive constants and f 0 . where inequalities between vectors are understood component-wise. Moreover, F (0) ≥ 0 and h(u) ≥ 0 for all u ≥ 0, such that solution of problem (4.32), (4.33) with a non-negative initial condition remains non-negative for all t ≥ 0. Other conditions on these functions are formulated below. Differentiating the equation (4.34) with respect to t, we obtain: We deduce that L (t) verifies: 

L (t) = f (u(L(t), t))L (t) + L(t) 0 ⎛ ⎝ m j=1 ∂f ∂u j (u(x, t)) ∂u j (x, t) ∂t ⎞ ⎠ dx = f (u(L(t), t))L (t) + L(t) 0 ⎛ ⎝ m j=1 ∂f ∂u j (x, t) (u(x, t)) D j ∂ 2 u j ∂x 2 + F j (u(x, t)) ⎞ ⎠ dx. 0 0.5 1 
L (t) = L(t) 0 ⎛ ⎝ m j=1 ∂f ∂u j (x, t) (u(x, t)) D j ∂ 2 u j ∂x 2 + F j (u(x, t)) ⎞ ⎠ dx 1 -f (u(L(t), t)) . ( 4 

Fixed boundary model of general form

In an attempt to study system (4.32)-(4.34), we first reduce it to a system with fixed boundary through a change of variable, then we prove that the solution for the latter problem exists. This allows us to deduce the existence of solution for the initial problem with moving boundary. We consider the following change of variable: 

y = x L(t
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂U ∂t = D L 2 (t) ∂ 2 U ∂y 2 + yL (t) L(t) ∂U ∂y + F (U ), y = 0 : ∂U ∂y = 0, y = 1 : ∂U ∂y = L(t)h(U ), L (t) = 1 0 ⎛ ⎝ m j=1 ∂f ∂U j (y, t) (U (y, t)) D j L 2 (t) ∂ 2 U j ∂y 2 + F j (U (y, t)) ⎞ ⎠ L(t)dy 1 -f (U (1, t)) .
(4.36)

Existence of solution of the fixed boundary problem of general form

In this section, we prove the existence of solution for the fixed boundary problem, then we deduce the existence of solution for the free boundary problem. We consider the following boundary value problem for y ∈ [0, 1]:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂U ∂t = D L 2 (t) ∂ 2 U ∂y 2 + yL (t) L(t) ∂U ∂y + F (U ), y = 0 : ∂U ∂y = 0, y = 1 : ∂U ∂y = L(t)h(U ), U (y, 0) = 0, L (t) = 1 0 ⎛ ⎝ m j=1 ∂f ∂U j (y, t) (U (y, t)) D j L 2 (t) ∂ 2 U j ∂y 2 + F j (U (y, t)) ⎞ ⎠ L(t)dy 1 -f (U (1, t)) . ( 4.37) 
Let us introduce two functions N (t) and V (y, t) and consider the following problem for y ∈ [0, 1], t ∈ [0, T ], where U j , F j and h j , are the elements of the vectors U , F and h, respectively. We consider the following linear problem:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂U j ∂t = D j N 2 (t) ∂ 2 U j ∂y 2 + yN (t) N (t) ∂U ∂y + F j (V (y, t)), y = 0 : ∂U j ∂y = 0, y = 1 : ∂U j ∂y = N (t)h j (V (1, t)), U j (y, 0) = 0. (4.38)
We introduce the following notation: Q T is the cylinder Q T = [0, 1] × (0, T ), i.e. the set of points (y, t) of R 2 with y ∈ [0, 1] and t ∈ (0, T ), S = {0, 1}, S T = S × (0, T ), Q is an arbitrary open subset of Q T and l is a non-integer number such that 0 < l < 1/2. • there exists a constant N 0 > 0 such that the function N is bounded by N 0 from below,
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• the function F j belongs to class C 1 (R),

• the function h j belongs to class C 1 (R),

• the function V belongs to class H (l+1) ([0, 1] × [0, T ]), • h j (V (1, 0)) = 0, then problem (4.38) has a unique solution U j ∈ H l+2,l/2+1 (Q T ) with |U j | (l+2) Q ≤ c j h j C 1 (R) + F j C 1 (R) + |V | (l+1) QT h j C 1 (R) + c V F j C 1 (R) , (4.39) 
where c j and c V are constants.

Proof. We define the operator L j :

L j (y, t, ∂ ∂y , ∂ ∂t ) = ∂U j ∂t - D j N 2 (t) ∂ 2 U j ∂y 2 - yN (t) N (t)
∂U j ∂y , the function f j :

f j : Q T -→ R (y, t) -→ f j (y, t) = F j (V (y, t)), the function Φ j : Φ j : [0, T ] -→ R t -→ Φ j (t) = h j (V (1, t)),
and the function b 1 :

b 1 : S T -→ R (y, t) -→ b 1 (y, t) = 1 N (t) .
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We have that

D j N 2 (t) (l/2) (0,T ) = D j N 2 (t) (l/2) (0,T ) + D j N 2 (t) (0) (0,T ) = Sup t,t ∈(0,T ) |t-t |≤ρ0 D j N 2 (t ) -N 2 (t) |t -t | l/2 |N 2 (t)N 2 (t )| + D j N 2 (t) (0) (0,T ) ≤ D j N 4 0 ⎛ ⎜ ⎜ ⎝ Sup t,t ∈(0,T ) |t-t |≤ρ0 |N (t )||N (t ) -N (t)| |t -t | l/2 + Sup t,t ∈(0,T ) |t-t |≤ρ0 |N (t)||N (t ) -N (t)| |t -t | l/2 ⎞ ⎟ ⎟ ⎠ + D j N 2 0 = 2D j N 4 0 N (0) [0,T ] N (l/2) [0,T ] + D j N 2 0 ≤ 2D j c N N 4 0 |N | (l/2+1) [0,T ] 2 + D j N 2 0 < ∞
where c N is a constant, and

N N (l/2) (0,T ) = N N (l/2) (0,T ) + N N (0) (0,T ) = Sup t,t ∈(0,T ) |t-t |≤ρ0 |N (t)N (t ) -N (t )N (t)| |t -t | l/2 |N (t)N (t )| + N N (0) (0,T ) ≤ 1 N 2 0 ⎛ ⎜ ⎜ ⎝ Sup t,t ∈(0,T ) |t-t |≤ρ0 |N (t)||N (t ) -N (t)| |t -t | l/2 + Sup t,t ∈(0,T ) |t-t |≤ρ0 |N (t)||N (t) -N (t )| |t -t | l/2 ⎞ ⎟ ⎟ ⎠ + |N | (0) (0,T ) N 0 ≤ 1 N 2 0 |N | (l/2+1) [0,T ] N (l/2) [0,T ] + N (l/2) [0,T ] + |N | (0) (0,T ) N 0 ≤ 1 N 2 0 |N | (l/2+1) [0,T ] (c N + 1)|N | (l/2+1) [0,T ] + |N | (l/2+1) [0,T ] N 0 ≤ |N | (l/2+1) [0,T ] N 0 ⎛ ⎝ (c N + 1)|N | (l/2+1) [0,T ] N 0 + 1 ⎞ ⎠ < ∞
We deduce that the coefficients of the operator L j belong to the class H l,l/2 (Q T ).

Moreover, since N is bounded from below and belongs to H l/2+1 ([0, T ]) ⊂ H (l+1)/2 ([0, T ]), we can similarly prove that the function b 1 belongs to class H (l+1)/2 ([0, T ]).

Further, if Φ j is continuous and

|Φ j | (l+1)/2 (0,T )
is finite then we deduce that the function Φ j (t) belongs to
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103 the space H (l+1)/2 ([0, T ]). We have:

|Φ j | ((l+1)/2) (0,T ) = Φ j (l+1)/2 (0,T ) + Φ j (0) (0,T ) = Sup t,t ∈(0,T ) |t-t |≤ρ0 |Φ j (t) -Φ j (t )| |t -t | (l+1)/2 + max t∈(0,T ) |Φ j (t)| = Sup t,t ∈(0,T ) |t-t |≤ρ0 |h j (V (1, t)) -h j (V (1, t ))| |V (1, t) -V (1, t )| |V (1, t) -V (1, t )| |t -t | (l+1)/2 + max t∈(0,T ) |h j (V (1, t))| ≤ h j C 1 (R) |V | (l+1) QT + h j C 1 (R) < ∞
Therefore, knowing that the function h j belongs to class C 1 (R) and the function V satisfies Hölder condition of order (l + 1)/2 on (0, T ), then the function Φ j (t) belongs to the space H (l+1)/2 ([0, T ]).

The function Φ j (t) verifies the compatibility condition of order (l + 1)/2) if

∂ k U j (y, t) ∂t k | t=0 = ∂ k Φ j ∂t k | t=0 (k = 0, • • • , (l + 1)/2

and y ∈ S).

Given that h j (V (1, 0)) = U j (1, 0) = 0, we deduce that the function Φ j (t) verifies the compatibility condition of order (l + 1)/2). Since F j belongs to class C 1 (R), and V is continuous and satisfies Hölder condition of order l + 1, then f j is continuous and

|f j | (l)
QT is finite since:

|f j | (l) QT = f j (l) y,QT + f j (l/2) t,QT + f j (0) QT = Sup y,y ∈(0,1) |y-y |≤ρ0 |F j (V (y, t)) -F j (V (y , t))| |y -y | l + Sup t,t ∈(0,T ) |t-t |≤ρ0 |F j (V (y, t)) -F j (V (y, t ))| |t -t | l/2 + |f j | (0) QT = Sup y,y ∈(0,1) |y-y |≤ρ0 |F j (V (y, t)) -F j (V (y , t))| |V (y, t) -V (y , t)| |V (y, t) -V (y , t)| |y -y | l + Sup t,t ∈(0,T ) |t-t |≤ρ0 |F j (V (y, t)) -F j (V (y, t ))| |V (y, t) -V (y, t )| |V (y, t) -V (y, t )| |t -t | l/2 + max (y,t)∈QT |F j (V (y, t))| ≤ F j C 1 (R) |V | (l) QT + F j C 1 (R) ≤ c V F j C 1 (R) |V | (l+1) QT + F j C 1 (R) (4.40)
where c V is a constant. Therefore, the function f j (y, t) belongs to class H l,l/2 (Q T ). Hence, since the coefficients of the operator L j belong to the space H l,l/2 (Q T ) and b 1 ∈ H l+1,(l+1)/2 (S T ), for any function f j ∈ H l,l/2 (Q T ) and Φ(t) ∈ H (l+1)/2 ([0, T ]) satisfying the compatibility condition of order [(l + 1)/2], i.e U j (1, 0) = Φ j (0), by Theorem 5.3 of [START_REF] Ladyzenskaja | Linear and Quasi-linear Equations of Parabolic Type[END_REF], for all j such that j = 1, • • • , m, problem (4.38)
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has a unique solution U j (y, t) from class H l+2,l/2+1 (Q T ) with

|U j | (l+2) Q ≤ c j |f j | (l) Q + |Φ j | (l+1)/2 (0,T ) ≤ c j h j C 1 (R) + F j C 1 (R) + |V | (l+1) QT h j C 1 (R) + c V F j C 1 (R)
where c j is a constant.

By referring to the last equation of problem (4.37), we define L(t) by:

L(t) = t 0 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 ⎛ ⎝ m j=1 ∂f ∂U j (U (y, s)) D j N 2 (s) ∂ 2 U j ∂y 2 + F j (U (y, s)) ⎞ ⎠ N (s)dy 1 -f (U (1, s)) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ds + L(0). (4.41)
where U is the solution of problem (4.38). We denote by

ψ(y, s) = ⎛ ⎝ m j=1 ∂f ∂U j (U (y, s)) D j N 2 (s) ∂ 2 U j ∂y 2 + F j (U (y, s)) ⎞ ⎠ N (s).
The integration by parts of ψ(y, s) between 0 and 1 with respect to y gives:

1 0 ψ(y, s)dy = m j=1 1 0 ∂f ∂U j (U (y, s)) D j N (s) ∂ 2 U j ∂y 2 + ∂f ∂U j (U (y, s))F j (U (y, s))N (s) dy = m j=1 ⎡ ⎣ ∂f ∂U j (U (y, s)) D j N (s) ∂U j ∂y 1 0 - 1 0 m k=1 ∂ 2 f ∂U j ∂U k (U (y, s)) ∂U k ∂y D j N (s)
∂U j ∂y dy

+ 1 0 ∂f ∂U j (U (y, s))F j (U (y, s))N (s) dy ⎤ ⎦ = m j=1 ⎡ ⎣ h j (V (1, s)) ∂f ∂U j (U (y, s))D j - 1 0 m k=1 ∂ 2 f ∂U j ∂U k (U (y, s)) ∂U k ∂y D j N (s) ∂U j ∂y dy + 1 0 ∂f ∂U j (U (y, s))F j (U (y, s))N (s) dy ⎤ ⎦ . (4.42)
Then, we deduce that L belongs to class

H (l+3) 2 ([0, T ]). We define the mapping A j from H l/2+1 ([0, T ]) × H l+1 ([0, 1] × [0, T ]) to itself: A j : H l/2+1 ([0, T ]) × H l+1 ([0, 1] × [0, T ]) -→ H l/2+1 ([0, T ]) × H l+1 ([0, 1] × [0, T ]) (N (t), V (y, t)) -→ A j (N (t), V (y, t)) = (L(t) -L(0), U(y, t)),
where U j is the solution of problem (4.38) and L verifies equation (4.41). Proposition 4.5.2. Let the vector U whose components U j 's are solutions for (4.38). Under the condition of Theorem 4.5.1, for t ∈ [0, T ], then the operator A j is bounded and compact.

Proof. Let B be any bounded set in H (l+1)/2 ([0, T ]) × H l+1 ([0, 1] × [0, T ]). For all (N, V ) ∈ B, U j verifies inequality (4.39). Moreover, knowing that:

|L(t) -L(0)| ((l+3)/2) (0,T ) = D t (L(t) -L(0)) ( l+1 
2 ) (0,T )

+ |D t (L(t) -L(0))| (0) (0,T ) + |L(t) -L(0)| (0) (0,T ) ,
we have

D t (L(t) -L(0)) ( l+1 2 ) (0,T ) = m j=1 1 1 -f (U (1, t)) h j (V (1, t)) ∂f ∂U j (U (y, t))D j - 1 0 m k=1 ∂ 2 f ∂U j ∂U k (U (y, t)) ∂U k ∂y D j N (t)
∂U j ∂y dy

+ 1 0 ∂f ∂U j (U (y, t))F j (U (y, t))N (t) dy ⎤ ⎦ ( l+1 2 ) [0,T ] ≤ m f 0 D j h j C 1 (R) f C 2 (R) V (1, t) ( l+1 2 ) [0,T ] + mD j N 0 f C 2 (R) max k=1,••• ,m ∂U k ∂y ( l+1 2 ) t,QT ∂U j ∂y ( l+1 2 ) t,QT + f C 2 (R) F j C 1 (R) N ( l+1 2 ) [0,T ] ≤ m f 0 D j h j C 1 (R) f C 2 (R) |V (1, t)| ( l+1 2 ) [0,T ] + mD j N 0 f C 2 (R) max j=1,••• ,m ∂U j ∂y ( l+1 2 ) t,QT 2 + f C 2 (R) F j C 1 (R) |N | ( l+1 2 ) [0,T ] , |D t (L(t) -L(0))| (0) (0,T ) ≤ m f 0 D j h j C 1 (R) f C 2 (R) + mD j N 0 f C 2 (R) max j=1,••• ,m ∂U j ∂y ( l+1 2 ) t,QT 2 + f C 2 (R) F j C 1 (R) |N | ( l+1 2 ) [0,T ]
and

|L(t) -L(0)| (0) (0,T ) ≤ mt f 0 f C 2 (R) D j N 0 |U j | (l+2) Q + F j C 1 (R) |N | (l/2+1) [0,T ] . Then, |L(t) -L(0)| ((l+3)/2) (0,T )
is bounded for all (N, V ) ∈ B. Therefore, we conclude that the image of B, A j (B), is bounded in Proof. In this proof, we partition the interval [0, T ] into n subintervals [T i , T i+1 ], where i = 0, 1, . . . , n -1, T 0 = 0 and T n = T . Our goal is to prove that, for all j such that j = 1, • • • , m, problem (4.38) has a solution and that the operator A j admits a fixed point over each subinterval, starting with the subinterval [0, T 1 ]. The result over the subinterval [0, T 1 ] is then generalized to the remaining subintervals. Finally, the proof of the existence of a fixed point over the whole interval [0, T ] follows from the semi-group property.

H l/2+2 ([0, T ]) × H l+2 ([0, 1] × [0, T ]). Hence, the operator A j acting from H l/2+1 ([0, T ]) × H l+1 ([0, 1] × [0, T ]) to H l/2+2 ([0, T ]) × H l+2 ([0, 1] × [0, T ]) is bounded. Since H l/2+2 ([0, T ])×H l+2 ([0, 1]×[0, T ]) is compactly embedded in H l/2+1 ([0, T ])×H l+1 ([0, 1]×[0, T ]), then A j (B) is a compact set in H l/2+1 ([0, T ]) × H l+1 ([0, 1] × [0, T ]). Therefore, the operator A j is compact as acting from H l/2+1 ([0, T ]) × H l+1 ([0, 1] × [0, T ]) to H l/2+2 ([0, T ]) × H l+2 ([0, 1] × [0, T ]).
Let us start by considering problem (4.38) for t ∈ [0, T 1 ] and for j = 1, • • • , m. Since the conditions of Theorem 4.5.1 are satisfied, then, for all j such that j = 1, • • • , m, there exists a unique solution

U j1 ∈ H l+2,l/2+1 ([0, 1] × [0, T 1 ]
) and a non-negative constant c j1 such that:

|U j1 | (l+2) ((0,1)×(0,T1)) ≤ c j1 h j C 1 (R) + F j C 1 (R) + |V | (l+1) QT h j C 1 (R) + c V F j C 1 (R) ,
We define the operator A j1 :

A j1 : H l/2+1 ([0, T 1 ]) × H l+1 ([0, 1] × [0, T 1 ]) -→ H l/2+1 ([0, T 1 ]) × H l+1 ([0, 1] × [0, T 1 ]) (N (t), V (y, t)) -→ A j1 (N (t), V (y, t)) = (L 1 (t) -L(0), U j1 (y, t)),
where U j1 is the solution of problem (4.38) over [0, T 1 ] and L 1 verifies equation

L 1 (t) = t 0 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 ψ(y, s)dy 1 -f (U (1, s)) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ds + L(0). (4.43) for t ∈ [0, T 1 ]. We denote by B 1 the unit ball in H l/2+1 ([0, T 1 ]) × H l+1 ([0, 1] × [0, T 1 ]
). Our goal is to prove that the ball B 1 is strictly mapped into itself by the operator A j1 over [0, T 1 ].

By the first equation of problem (4.38) for t ∈ [0, T 1 ] and equation (4.43), we obtain for all (N, V ) ∈ B 1 :

|L 1 (T 1 ) -L(0)| = T1 0 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 ψ(y, s)dy 1 -f (U (1, s)) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ds ≤ T 1 m f 0 f C 1 (R) |N | (l/2+1) [0,T ] D j N 0 |U j | (l+2) Q + F j C 1 (R) ≤ T 1 m f 0 f C 1 (R) D j c j1 N 0 2 h j C 1 (R) + (1 + c V ) F j C 1 (R) + F j C 1 (R) = l j1 T 1 ,
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where 

l j1 = m f 0 f C 1 (R) D j c j1 N 0 2 h j C 1 (R) + (1 + c V ) F j C 1 (R) + F j C 1 (R) , and 
|U j1 (y, T 1 ) -U j1 (y, 0)| ≤ T1 0 D N 2 (t) ∂ 2 U j1 ∂y 2 + yN (t) N (t) ∂U j1 ∂y + |F j (V (y, t))|dt ≤ T1 0 D N 2 0 ∂ 2 U j1 ∂y 2 + |N | (l/2+1) [0,T1] N 0 ∂U j1 ∂y + F j C 1 (
N 0 ⎞ ⎠ h j C 1 (R) + F j C 1 (R) +|V | (l+1) QT h j C 1 (R) + c V F j C 1 (R) + F j C 1 (R) T 1 ≤ c j1 D N 2 0 + 1 N 0 2 h j C 1 (R) + (1 + c V ) F j C 1 (R) + F j C 1 (R) T 1 = m j1 T 1
where

m j1 = c j1 D N 2 0 + 1 N 0 2 h j C 1 (R) + (1 + c V ) F j C 1 (R) + F j C 1 (R) .
Therefore, we deduce that: [0,T1] converge to 0 if T 1 is small enough. By letting 1 < γ 1 < l + 3 2 and 2 < γ 2 < l + 2, we consider (N, V ) ∈ B 1 and the image by A j1 , (L 1 (t) -L(0), U 1 ). We choose T 1 small enough, then L 1 (t) -L(0) converges to 0 in C([0, T 1 ]). Moreover, it is bounded in H l+3 2 ([0, T 1 ]). Therefore, L 1 (t) -L(0) converges to 0 in H γ1 ([0, T 1 ]). Suppose that this is not the case. Then there is a sequence (L 1 k (t)-L(0)) k such that |L 1 k (t) -L( 0 Similarly, if T 1 is small enough, then U j1 converges to 0 in C([0, 1] × [0, T 1 ]). Knowing that it is also bounded in H l+2,l/2+1 ([0, 1] × [0, T 1 ]). Therefore, U j1 converges to 0 in H γ2,γ2/2 ([0, 1] × [0, T 1 ]).

We deduce that if T 1 is small enough, then the norm of the image of (N, V ) ∈ B 1 by the operator A j1 is strictly less than 1. In other words, the unit ball B 1 is strictly mapped into itself by the operator A j1 over [0, T 1 ] for all j such that j = 1, • • • , m for T 1 small enough.

This choice of T 1 small allows us to deduce that the operator A j1 , acting from B 1 to itself has a fixed point U * j1 in B 1 , by the Fixed Point Theorem.

CHAPTER 4. A FREE BOUNDARY MATHEMATICAL MODEL OF ATHEROSCLEROSIS

We would like to prove, in the same manner, the existence of solutions for problem (4.38) over the intervals [T i , T i+1 ] for i = 1, . . . , n -1, and the existence of fixed points for the corresponding operators. 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
is the fixed point of the operator A ji .

We would like to find a solution U ji+1 of problem (4.38) over the interval [T i , T i+1 ] with initial condition U ji+1 (y, T i ) = U * ji (y, t). However, since the initial condition is not zero, in order to apply Theorem 4.5.1, we consider a new function μ j = U j -U * ji (y, T i ) and the following problem over the interval [T i , T i+1 ]:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂μ j ∂t = D N 2 (t) ∂ 2 μ j ∂y 2 + yN (t) N (t)
∂μ j ∂y + F j (y, t), y = 0 : ∂μ j ∂y = 0, y = 1 : ∂μ j ∂y = N (t)h j (V (1, t)) -N (t)h j (V (1, T i )),

μ j (y, T i ) = 0, (4.44) 
where F j (y, t) = F j (V (y, t)) -D N 2 (t) To prove the existence of solution for problem (4.44), we would like to use Theorem 4.5.1. Let us check if all conditions are satisfied.

∂ 2 U *
Since U * ji (x, T i ) ∈ H l+2 ([0, 1]), F j belongs to class C 1 (R), V belongs to class H (l+1) ([0, 1] × [0, T ]), N belongs to class H l/2+1 ([0, T ]) and is bounded from below by N 0 , therefore F j ∈ H l,l/2 ([0, 1] × [T i , T i+1 ])). Moreover, since h j ∈ C 1 (R) and V (1, t) ∈ H (l+1)/2 ([T i , T i+1 ]), then N (t)h j (V (1, t)) -N (t)h j (V (1, T i )) ∈ H (l+1)/2 ([T i , T i+1 ]). Finally, the compatibility condition is satisfied since Similarly to the proof for the interval [0, T 1 ], we define the operator A ji+1 :

A ji+1 : H l/2+1 ([T i , T i+1 ]) × H l+1 ([0, 1] × [T i , T i+1 ]) -→ H l/2+1 ([T i , T i+1 ]) × H l+1 ([0, 1] × [T i , T i+1 ])
(N (t), V (y, t)) -→ A ji+1 (N (t), V (y, t)) = (L i+1 (t) -L i+1 (T i+1 ), U ji+1 (y, t)),

where U ji+1 is the solution of problem (4.38) over [T i , T i+1 ], L i+1 (T i ) = L i (T i ) and L i+1 verifies equation

L i+1 (t) = t 0 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0
ψ(y, s)dy

1 -f (U (1, s)) ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ds + L(0), for t ∈ [T i , T i+1 ].
In a similar manner as for the interval [0, T 1 ], we can prove that for all (N, V ) in the unit ball of

H l/2+1 ([T i , T i+1 ]) × H l+1 ([0, 1] × [T i , T i+1 ]): |L i+1 (T i+1 ) -L i+1 (T i )| ≤ l ji+1 (T i+1 -T i ),
where 

l ji+1 = m f 0 f C 1 (R) D j c ji+1 N 0 F j C 1 (R) (c V + 1) + 2 h j C 1 (R) + D N 2 0 + 1 N 0 + 1 + F j C 1 (
N 0 + 1 ⎞ ⎠ + 1 ⎞ ⎠ + F j C 1 (R) (T i+1 -T i ) ≤ D N 2 0 + 1 N 0 c ji+1 F j C 1 (R) (c V + 1) + 2 h j C 1 (R) + D N 2 0 + 1 N 0 + 1 + 1 + F j C 1 (R) (T i+1 -T i )
= m ji+1 (T i+1 -T i ).
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We choose T i+1 -T i small enough, then L i+1 (t) -L i+1 (T i ) converges to 0 in C([T i , T i+1 ]) and since it is also bounded in H l+3 2 ([T i , T i+1 ]), therefore, L i+1 (t) -L i+1 (T i ) converges to 0 in H γ1 ([T i , T i+1 ]). Similarly, if T i+1 -T i is small enough, then U ji+1 converges to 0 in C([0, 1] × [T i , T i+1 ]). Moreover, it is bounded in H l+2,l/2+1 ([0, 1] × [T i , T i+1 ]). Therefore, U ji+1 converges to 0 in H γ2,γ2/2 ([0, 1] × [T i , T i+1 ]).

In order to ensure that A ji+1 over [T i , T i+1 ] has a fixed point, it is sufficient to choose T i+1 -T i such that the norm of L i+1 (t) -L i+1 (T i ) in H γ1 ([T i , T i+1 ]) and the norm of U ji+1 in H γ2,γ2/2 ([0, 1] × [T i , T i+1 ]) are strictly less than 1. Since, for all j such that j = 1, • • • , m, the operator A ji+1 has a fixed point and the conditions of Proposition 4.5.2 are verified, we deduce that system (4.37) defined over [T i , T i+1 ] has a solution

U * i+1 = U * 1i+1 , U * 2i+1 , • • • , U * mi+1 in the unit ball of H l+2,(l+2)/2 ([0, 1] × [T i , T i+1 ]) m .
By the semi-group property, we deduce that system (4.37) has a solution U * defined over the interval [0, T ], such that for i = 0, . . . , n -1, and for t ∈ [T i , T i+1 ], U * (y, t) = U * i+1 (y, t).

Discussion

This chapter provides a study of the essential inflammatory interplays in atherosclerosis and deals with plaque growth in a free boundary model. In the previous works dealing with free boundary models of atherosclerosis, the motion of the boundary is considered as resulting from the influx of cells through the boundary. As a novelty, in this model, the plaque evolution is investigated as arising not only from the influx of macrophages through the boundary but also from the intimal accumulation of macrophages and foam cells and their interactions in the intima. By considering the boundary motion resulting from the intimal accumulation of cells and their interaction, this model provides a better biological description of the plaque formation than the previous works, since many processes, which are not necessarily related to the influx of cells, occur within the intima and lead to plaque growth, like for instance, degradation, differentiation and proliferation of cells. A problem of three partial differential equations is proposed. It considers the interaction between macrophages, cytokines and foam cells in atherosclerosis. For the sake of ease, we impose some simplifications to reduce the system in an attempt to prove the existence of the solution. However, proving the existence of solution of the model with three PDEs follows the same reasoning as for the reduced model.

A change of variable done to the space variable allows us to transform the reduced problem with a free boundary to a problem with fixed boundary with time and space dependent coefficients. The new problem with fixed boundary is a system of a PDE of reaction-diffusion type with a nonlinear reaction term, coupled with an ODE and has a nonlinear boundary condition. For the purpose of proving the existence of solution for the problem with fixed boundary, we first consider the problem with linear terms then we use the fixed point theorem to prove the existence of solution in the nonlinear case. At this point, proving the existence of solution for the reduced model follows from the the existence of solution for the fixed boundary model. Chapter 5

Conclusions and perspectives

revised Atherosclerosis is an inflammatory disease characterized by the deposition of fats, cholesterol and other substances in the arterial wall to form a plaque. This plaque restricts the blood flow, causing serious complications such as heart attack and aneurysms. This thesis is devoted to the mathematical modeling of atherosclerosis. It examines different aspects of this disease through different models. In the first mathematical model of Chapter 2, we analyze the inflammatory processes of atherosclerosis and study the evolution of inflammation as a response to endothelial functionality. Then in the second model presented in Chapter 3, we consider the interaction between inflammation and chemotaxis of macrophages and its role in the formation of fatty streaks. Finally, we investigate, in Chapter 4, a mathematical model that outlines the principal inflammatory activities in atherosclerosis in a free boundary domain. The latter model provides insight of plaque growth.

In the first model in Chapter 2, we identify the anti and pro-inflammatory processes during the initiation of atherosclerosis and elaborate a model of fourteen partial differential equations of reaction-diffusion type. We combine the endothelial hyperpermeability known to anticipate the set up of inflammation to the model. For the sake of ease, we reduce this model by considering uniquely the pro-inflammatory process and impose its monotonicity. The analysis of the monotone reduced model shows that endothelial function and penetration of LDL within the intima determine the evolution of inflammation. This result is illustrated in a diagram of risk zones using experimental data. Then we study the existence of traveling wave solution for the reduced monotone system with graphical results. Using the perturbation method, we prove the existence of perturbed solutions and perturbed traveling wave solutions for the reduced non monotone system. Finally, we return to the complete model and show the conformity in results through bifurcation diagrams. This model confirms that the anti-inflammatory process in atherosclerosis regulates the inflammation and may even provoke plaque regression.

A new mathematical model describing the early formation of atherosclerotic lesions and based on reaction-diffusion equations is studied in Chapter 3. This model provides a one-dimensional description of the inflammatory factors in atherosclerosis and highlights the positive feedback between the inflammation in atherosclerosis and the chemotactic movement of macrophages. It takes into account macrophages, inflammatory cytokines, endothelial cells and growth factor. We then provide a reduced model on the role of macrophages and inflammatory cytokines only. This model includes a chemotaxis term that describes the positive feedback between the inflammation and the chemotaxis of coefficient r. The stability analysis proves the existence of a constant stationary solution for the reduced model, S r , corresponding to the inflammatory state, more precisely, the formation of early lesion. The analytical study determines a 116 CHAPTER 5. CONCLUSIONS AND PERSPECTIVES minimal value of r, denoted by r 0 , for which the loss of stability of the solution occurs. The loss of stability appears in the numerical simulations through the formation of spatial structures corresponding to the emergence of fatty streaks resulting from the interaction between chemotaxis and inflammation. Finally, numerical simulations are performed for the complete model and the results obtained for the reduced model are extended to the complete one. As a conclusion, the study of these models suggests that the chemotaxis of macrophages influences the emergence of fatty streaks along the artery. It explains in a theoretical way, the appearance of fatty streaks over the arterial wall as dispersed patches as a result of chemotaxis. Moreover, it demonstrates that chemotaxis does not trigger the inflammation, however, it stimulates the inflammation once it is established. Furthermore, it outlines the mutual relationship between chemotaxis and inflammation in the non-uniform distribution of fatty streaks and attributes the velocity of fatty streaks emergence as well as their evolution to the level of the chemotactic activity of macrophages. Besides, it supports the role of chemotaxis in reducing early lesion size. In other words, one of the ways to prevent the formation of fatty streaks or to diminish their size and frequency would be to decrease the chemotactic activity of macrophages. Finally, this study provides predictive information to estimate the dispersion and the size of fatty streaks peaks over a given artery.

In Chapter 4, we provide a study on a one-dimensional free boundary model of atherosclerosis. First we propose a model of three partial differential equations describing the role of macrophages, cytokines and foam cells. In this model, the motion of the boundary results not only from the influx of cells through the boundary, as in the previous works, but also from the intimal accumulation of macrophages and foam cells and their interactions in the intima. For simplicity, we reduce this model to only two equations. In order to prove the existence of solution, we apply a change of variable to the space variable. The new model is a system with fixed boundary, time and space dependent coefficients and nonlinear terms. To prove the existence of solution for the problem with fixed boundary, we first consider the problem with linear terms then we use the fixed point theorem which allows us to prove the existence of solution in the nonlinear case. Consequently, this leads to prove the existence of solution for the reduced model. The study of the wave solution for the fixed boundary model allows us to find the velocity of propagation of the wave, that corresponds to the velocity of propagation of inflammation. The numerical results prove that the accumulation of macrophages and foam cells in the intima increase the plaque size. We note that the proofs of existence of solution as well as the numerical simulations can be generalized for the proposed model. In this chapter, the existence of solution for a free boundary model of reaction-diffusion equations of general form is proved in 1D.

These different models provide a broad description of the inflammatory processes of atherosclerosis and consider two significant aspects of this disease: the interaction between chemotaxis of macrophages and inflammation and plaque growth. They lead to many relevant conclusions. Some of them are in agreement with biological knowledge on atherosclerosis and some other feature the development of atherosclerosis from the mathematical point of view. However, theses models have some limitations which provide new topics for future work. First, in the model of Chapter 2, we impose an assumption to carry out the classification of stability. According to this assumption, a high endothelial permeability is associated with a high release of pro-inflammatory cytokines. Biologically, this relation between the endothelial permeability and the release of pro-inflammatory cytokines is not always valid due to some pathologic reasons. Therefore, a more detailed classification can be done by also considering the case where this assumption does not hold. Moreover, in this model, we consider permeability of the endothelium through the step function H(α) taking discrete values. It can be distributed by a continuous function that depends on the space x, for more accurate results. In the same spirit, the pressure of the blood in the model of Chapter 4 is considered 0. For a better description, one can take it as function of time to study the impact of blood pressure on the plaque growth. Second, all these models are studied in1D. By extending the studies to 2D and 3D geometries, where the artery can be represented by a rectangular or cylindrical domain, the study would provide a better description of the lesion site, and consequently more rigorous results. Moreover, fluid-structure interactions between blood dynamics and the arterial wall can be examined especially in the model of Chapter 4. The mechanical analyses of the artery deformation and blood behavior concern the endothelial dysfunction, intimal accumulation of cells, and consequently plaque growth. They also enter in the study of plaque stability. Furthermore, in order to use these models as predictive tools on the evolution of the plaque, the use of clinical data is necessary since they lead to reliable quantitative results that help in improving the treatment of the disease. Finally, since atherosclerosis is a very complex disease, one can enhance these models by incorporating important biological mechanisms in an attempt to study their influence on the establishment of the disease. For instance, risk factors can be combined to the model through some critical parameter, the cardio-vascular manifestations of COVID-19 can be incorporated, the evolution of fatty streaks into atherosclerotic plaque can be examined as well through these models. They can improve the results by giving new insights on the evolution of the disease as well as on preventive and treatment strategies. revised
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Figure 1 . 1 :

 11 Figure 1.1:A cross sectional view of the arterial wall that shows three different layers: the intima, the media and the adventitia. The endothelium is a thin layer of cells that lines the inner surface of the artery wall. It forms an interface between the circulating blood in the lumen and the rest of the arterial wall.

Figure 1 . 3 :

 13 Figure 1.3: Paracellular and transcellular pathways of LDL across the endothelium. Endothelial cell junctions prevent passage of large molecules towards the intima and a healthy glycocalyx regulates the transcytosis of LDL across endothelial cells. However, loss of tight junctions and distortion of the glycocalyx increase penetration of large molecules into subendothelium.
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 1420 Figure 1.4: Injured endothelial cells increase endothelial permeability allowing LDL particles to reach the intima. LDL particles within the artery walls undergo oxidative and enzymatic modifications, creating ox-LDL. Accumulation of ox-LDL can trigger an inflammatory response inducing the adherence of monocytes to the endothelium and migration into the arterial intima. T helper cells mediate the differentiation of monocytes into macrophages. Monocytes differentiating into M1 or M2 macrophages favoring either a proatherogenic or atheroprotective profile. The excessive internalization of lipid inside the macrophage results in foamy cells formation.

Figure 1 . 5 :

 15 Figure 1.5: Schematic representation of the model: macrophages produce inflammatory cytokines and activate endothelial cell. The latter produce chemoattractant EGF stimulating macrophage motion to the cite of inflammation.

Figure 1 . 6 :

 16 Figure 1.6: Non-homogeneous dispersion of fatty streaks on aortas, nearly periodic sometimes as in Figure 1.6b. Figure 1.6a is taken from [62] and reprinted with permission. Figure 1.6b is adapted from [63].

Figure 1 .

 1 Figure 1.6: Non-homogeneous dispersion of fatty streaks on aortas, nearly periodic sometimes as in Figure 1.6b. Figure 1.6a is taken from [62] and reprinted with permission. Figure 1.6b is adapted from [63].

Figure 1 . 7 :

 17 Figure 1.7: Location of fatty streaks and plaques in six animals under fat diet after 5 months. Fatty streaks form along the whole artery while plaques more often (though not exclusively) near vessel bifurcations. This figure is adapted from [65].
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 211 When λ 2 = P 0 = 0, the system (2.22)-(2.26) always has two fixed points, E 0 and E 1 , belonging to the plane C 3 = 0, and two other fixed points, E u and E 2 , in the planeC 3 = λ 5 d 3 M 1k 3provided that conditions A, B and C are satisfied.

Figure 2 . 1 :

 21 Figure 2.1: Numerical simulations showing the stability of the fixed points when conditions A, B and C are satisfied and λ 1 < d 1 k 1 λ 3 λ 5

Figure 2 . 2 :

 22 Figure 2.2: This figure shows three different zones, according to the values of the parameters λ 1 and k 1 . Zone III is of high risk of inflammation. Zone I is a zone of low risk where the inflammation is unlikely to develop. Zone II is of intermediate risk where the inflammation may possibly occur.

Theorem 2 . 3 . 2 .

 232 Suppose that F (ω + ) = F (ω -) = 0, where ω + < ω -(the inequality is component-wise), and there are no other zeros of the function F (ω) for ω + ≤ ω ≤ ω -. Assume that the matrix F (ω -) has all eigenvalues in the left half-plane while the matrix F (ω + ) has an eigenvalue with a positive real part. Then there exists a constant c * such that ∀c ∈ [c * , ∞[, there exists a monotonically decreasing traveling wave solution u(x, t) = ω(xct) of system (2.51) of velocity c with the limits ω(±∞) = ω ± .Proof. For a detailed proof of these theorems, one can refer to[START_REF] Volpert | Elliptic Partial Differential Equations[END_REF], Chapter 4, Theorem 1.6 and Theorem 1.7.
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 2343 Suppose that conditions A, B and C are satisfied. Suppose also that λ 5 > and

Figure 2 . 3 :

 23 Figure 2.3: Directed graph of the Jacobian matrix at Eu, in the bistable case.

Theorem 2 . 3 . 5 . 5 > d 2 d 3 k 3 λ 3 and λ 1

 23551 If conditions A, B and C are satisfied, λ > d1k1λ3λ5 λ3λ5-d2d3k3 or if not all conditions A, B and C are satisfied, then there exists a constant c * such that ∀c ∈ [c * , ∞[, there exists a monotonically decreasing traveling wave solution u(x, t) = ω(xct) of system (2.46)-(2.50) of velocity c with the limits ω(±∞) = ω ± , where ω + and ω -are the fixed points of the system.

Figure 2 . 4 : 1 < d 1 k 1 λ 3 λ 5 λ 3 λ 5 -d 2 d 3 k 3 .

 241553 Figure 2.4: Numerical simulations showing the wave propagation of C 3 when conditions A, B and C are satisfied andλ 1 < d 1 k 1 λ 3 λ 5 λ 3 λ 5 -d 2 d 3 k 3. A large perturbation of the non inflammatory state leads to the propagation of an inflammatory reaction and a small perturbation of the non inflammatory state does not lead to the propagation of an inflammatory reaction.
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 243 ) as P 0 → 0. The functions F and g are uniformly bounded and continuous together with their third derivatives. When conditions A, B and C are verified, λ 5 > d 2 d 3 k 3 λ 3 and λ 1 < d1k1λ3λ5 λ3λ5-d2d3k3 , then for all λ 2 sufficiently small the problem

Figure 2 . 5 :

 25 Figure 2.5: Bifurcation diagram for the complete model showing the behavior of the system when the value of the parameter λ 1 is fixed and the parameter k 1 is variable. The curves of same color belong to the same plane where λ 1 is constant.
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 262728 Figure 2.6: Bifurcation diagram for the complete model showing the behavior of the system when the value of the parameter k 1 is fixed and the parameter λ 1 is variable. The curves of same color belong to the same plane where k 1 is constant.

Finally, Figure 2 .Figure 2 . 9 :

 229 Figure 2.9: For a large value of λ P A 2 (λ P A 2 > 20), the velocity of the wave propagation becomes negative. Figures (a)-(c) show the wave propagation at different increasing times for a large value of λ P A 2 .

Figure 2 . 10 :

 210 Figure 2.10: Wave velocities found for the complete model with parameters of Table2.3 for different values of λ P A 2 . The space interval of the simulations corresponds to the real length of a plaque, and the velocities unit is mm/day.

Figure 3 . 2 :

 32 Figure 3.2: The dependence of the critical value r 0 with respect to α 1 and α 2 for: d 1 = 1, d 2 = 1, β 1 = 1, τ 1 = 4, τ 2 = 2, λ 1 = 1, and λ 2 = 1.

Figure 3 . 3 :

 33 Figure 3.3: Dependence of the integral of the M component of the solution for system (3.5), denoted by A, over the space interval on α 1 , α 2 and r 0 . For the simulations, we choose d 1 = 1, d 2 = 1, β 1 = 1, τ 1 = 4, τ 2 = 2, λ 1 = 1 and λ 2 = 1 over the space interval [0, 20]. In Figure 3.3a, r = 0.5 and In Figure 3.3b, α 1 = 2.
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 34 Figure 3.4: Solutions of system 3.5 for r > r 0 . The upper figure shows the solution for M and the lower subfigure shows the solution for A. The parameters in this figure take the following values:d 1 = 0.01, d 2 = 0.01, α 1 = 2, α 2 = 2, β 1 = 1, τ 1 = 4, τ 2 = 2, λ 1 = 1, λ 2 = 1.In this case r 0 = 0.00299 and r = 0.0035.
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 153536 Figure 3.5: Projection of solutions of system (3.5) onto the Space-Time plane. The parameters in this figure take the following values: d 1 = 0.01, d 2 = 0.01, α 1 = 2, α 2 = 2, β 1 = 1, τ 1 = 4, τ 2 = 2, λ 1 = 1, λ 2 = 1. In Figure 3.5a, r = 0.0035 and in Figure 3.5b, r = 0.005.

Figure 3 .

 3 [START_REF] Greif | Radial construction of an arterial wall[END_REF] provides three examples of stationary distributions of variable A for three different values of r. The initial conditions in simulations corresponded to slight non-homogeneous perturbations of a uniform state S R . The evolution of such perturbations led to the emergence of domains of differently oriented stripes, which gradually merged together, yielding the final patterns. In some cases, like in Figure3.7c, the resulting pattern could maintain only one domain with a certain alignment of stripes. Interestingly, as demonstrated in this figure, under r = 0.5 the system could converge to a stationary solution with lower amplitude of structures, than under lower value of r = 0.4, depicted in Figure3.7b. The distributions of M are similar to that of A.

Figure 3 . 7 :

 37 Figure 3.7: Stationary solutions of system (3.5) in two-dimensional case. Variable A is shown. The parameters in this figure are the same as in Figure 3.1, except for r, which is (a) 0.35, (b) 0.4, (c) 0.5.

1 Figure 3 . 8 :

 138 Figure 3.8: Solutions of system (3.1)-(3.4) for different values of d 3 . The parameters in this figure take the following values:d 1 = 1, d 2 = 1, α 1 = 2, α 2 = 2, β 1 = 1, τ 1 = 4, τ 2 = 2, λ 1 = 1, λ 2 = 1, k 1 = 1.5, k2 = 1, E * = 20, σ1 = 1, σ2 =2, and r = 20.
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 41 Figure 4.1: Cross section of an artery showing the penetration of cells from the blood towards the arterial wall and their accumulation in the intima. The cells in the intima form a plaque which grows through the opposite direction of the vessel and narrows the blood flow. The red arrow represents the domain with time dependence size L(t).
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 422 Under the condition of Theorem 4.2.1, the operator A is bounded and compact.

Proposition 4 . 2 . 3 .

 423 Under the condition of Theorem 4.2.1, the operator A admits a fixed point.

(4. 27 )

 27 By Theorem 4.5.4, problem (4.27) has a solution M * ∈ H l+2,l/2+1 ([0, L(t)] × [0, T ]).

Figure 4 .

 4 Figure 4.2 displays the solutions w(x) and p(x) of system (4.29) for different values of c. The lower subfigure shows the intersection between the trajectories p(w) for different values of c and h(w). The value of the velocity c such that the condition Dw (0) = h(w(0)) is verified can be found if the curves of p(w) and h(w) intersect at w(0).From equation (4.28), we deduce that:

Figure 4 . 2 :

 42 Figure 4.2: Solutions of system (4.29) for different values of the velocity c, where g(u) = du, h(u) = u 2 /(1 + u 2 ), D = 1, d = 0.1 and k 1 = 1. The lower panel shows the intersection of the solution p(w) with the curve of h(u) for different velocities. The velocity such that the condition Dw (0) = h(w(0)) is obtained if the p(w) intersects h(u) at w = w(0).

Figure 4 .

 4 Figure 4.4 represents the solutions for system (4.11), (4.12), (4.13) and(4.15) for different values of k 1 and b. These solutions are constructed after simulating system(4.18). By comparing the results of simulations of system (4.11), (4.12), (4.13) for L (t) verifying equation (4.16) on one hand and (4.15) on the other hand, we notice that the solutions have the same behavior with close values for the same values of parameters.

Figure 4 . 3 :

 43 Figure 4.3: In the upper panel, solution u(x, t) of system (4.11)-(4.12) where g(u) = du, h(u) = u 2 /(1 + u 2 ), D = 1, d = 0.1 and k 1 = 1 at different times showing a steady wave. In the lower panel, numerical and analytical solutions w(x) of system (4.29), for the same parameters. The numerical solution is found from the solution u(x, 150) in the upper panel and is accurate with the analytical one.

. 1 ,

 1 b = 0 and k1 = k2 = 0.0001. Numerical results of system (4.11), (4.12), (4.13) and (4.15) for g(u) = du, f (u) = bu, h(u) = u 2 /(1 + u 2 ), D = 1, d = 0.1, b = 0 and k1 = k2 = 0.0002. Numerical results of system (4.11), (4.12) , (4.13) and (4.15) for g(u) = du, f (u) = bu, h(u) = u 2 /(1 + u 2 ), D = 1, d = 0.1, b = 0.01 and k1 = k2 = 0.0001.

Figure 4 . 4 :

 44 Figure 4.4: Comparison of the numerical results for system (4.11), (4.12), (4.13) and (4.15). Compared to Figure (a), in Figure (b), the parameter k 1 is greater, and in Figure (c), the parameter b is greater.

Figure 4 . 5 :

 45 Figure 4.5: Numerical solution of problem (4.27). The values of the parameters are: D = 1, d = 0.1, k 1 = 1, k 2 = 0.002, α 1 = 1.2, α 2 = 1.2, β 1 = 0.1, τ 1 = 0.11, τ 2 = 1, λ = 1.6, δ = 0.5, d 2 = 0.1, u 0 = 0.01, and d 1 = 3.2.
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 451 (Existence of solution of system(4.38).) If the following conditions are satisfied:• the function N belongs to class H l/2+1 ([0, T ]),

Proposition 4 . 5 . 3 .

 453 Under the condition of Theorem 4.5.1, the operator A j admits a fixed point.

  1]×[0,T1] ≤ m j1 T 1 , and |L 1 (T 1 ) -L(0)| (0) [0,T1] ≤ l j T 1 , Moreover, |U j1 (y, t)| (0) [0,1]×[0,T1] and |L 1 (T 1 ) -L(0)| (0)

  T1] > for all > 0. Since this sequence is bounded inH l+3 2 ([0, T 1 ]), then it is compact in the space H γ1 ([0, T 1 ]) and consequently has a convergent subsequence to some L 10 (t) -L(0). Then on one hand|L 10 (t) -L(0)| (γ1) [0,T1] > , but on the other hand L 10 (t) -L(0) = 0 because |L 1 k (t) -L(0)| (0) [0,T1] → 0.

For each i

  and j, i = 1, . . . , n -1 and j = 1, • • • , m, consider U ji the solution of problem (4.38) over the interval [T i-1 , T i ] such that

ji ∂y 2

 2 (y, T i ) -yN (t) N (t) ∂U * ji ∂y (y, T i ).

∂μ j ∂y ( 1 ,( 1 ,⎛⎝

 11 T i ) = μ j (1, T i ) = 0.Therefore, by Theorem 4.5.1, problem (4.44) has a unique solutionU ji+1 ∈ H l+2,(l+2)/2 ([0, 1] × [T i , T i+1 ])and there exists a constant c ji+1 such that, for any arbitrary open subsetsQ i+1 of [0, 1] × [T i , T i+1 ] and Q i of [0, 1] × [T i-1 , T i ], Qi+1 ≤ c ji+1 |F j | (l) Qi+1 + |h j (V (1, t))h j (V (1, T i )| (l+1)/2 (Ti,Ti+1) ≤ c ji+1 F j (V (y, t)) -D N 2 (t) ∂ 2 U * ji ∂y 2 (y, T i ) -Qi+1 +|h j (V (1, t))h j (V (1, T i )| (l+1)/2 (Ti,Ti+1) ≤ c ji+1 |F j (V (y, t))| Qi+1 +|h j (V (1, t))h j (V (1, T i )| (l+1)/2 (Ti,Ti+1) ≤ c ji+1 c V F j C 1 (R) |V | (l+1) [0,1]×[0,Ti] + F j C 1 (R) Qi + h j C 1 (R) |V | (l+1) QT + h j C 1 (R) + |h j (V (1, T i )| (l+1)/2 (Ti,Ti+1) ≤ c ji+1 F j C 1 (R) c V |V | (l+1) QT + 1 + h j C 1 (R) |V | T i ) ≤ c ji+1 F j C 1 (R) c V |V | (l+1) QT + 1 + h j C 1 (R) |V | F j C 1 (R) c V |V | (l+1) QT + 1 + h j C 1 (R) |V |

+⎞⎠ 1 +

 1 F j C 1 (R) (T i+1 -T i ) c ji+1 F j C 1 (R) c V |V | (l+1) QT + h j C 1 (R) |V |
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 454 If the functions F j and h j belong to class C 1 (R) for j = 1, • • • , m, then the problem (4.37) has a solution U * ∈ H l+2,l/2+1 (Q T ). Consequently, system (4.32),(4.33) and(4.34), with initial condition u(x, 0) = 0, has a solutionU * ∈ H l+2,l/2+1 ([0, L(t)] × [0, T ]).Proof. Since, for all j such that j = 1, • • • , m, the operator A j1 has a fixed point and the conditions of Proposition 4.5.2 are verified, we deduce that system (4.37) defined over [0, T 1 ] has a solutionU * 1 = U * 11 , U * 21 , • • • , U * m1 in the unit ball of H l+2,(l+2)/2 ([0, 1] × [0, T 1 ]) m .

  

Table 1 . 1 :

 11 American Heart Association (AHA) classification of coronary atherosclerotic plaques.

	1.1. MOTIVATION AND BIOLOGICAL BACKGROUND	21
	Plaque type	Definition of plaque type
	I	Initial lesion with foam cell
	II	Fatty streak with multiple foam cell layers
	III	Preatheroma with extracellular lipid pools
	IV	Atheroma with a confluent extracellular lipid core
	V	Fibroatheroma
	VI	Complex plaque with possible surface defect, hemorrhage or thrombus
	VII	Calcified plaque
	VIII	Fibrotic plaque without lipid core

Table 2 . 1 :

 21 Notations description.

	L	Concentration of LDL
	H	Concentration of HDL
	L ox Concentration of ox-LDL
	A 1 Concentration of pro-inflammatory monocytes
	A 2 Concentration of anti-inflammatory monocytes
	M 1 Concentration of pro-inflammatory (M1) macrophages
	M 2 Concentration of anti-inflammatory (M2) macrophages
	T 1	Concentration of Th1
	T 2	Concentration of Th2
	C 1	Concentration of Th1 cytokines
	C 2	Concentration of Th2 cytokines
	C 3	Concentration of pro-inflammatory cytokines produced by M1 macrophages
	C 4	Concentration of anti-inflammatory cytokines produced by M2 macrophages
	F	Concentration of foam cells

Table 2 . 2 :

 22 Stability of the fixed points for α > α 0 .

• E 2 belongs to the plane C 3 = λ 5 M 1 d 3 k 3 . It represents the case where LDL, ox-LDL, inflammatory immune cells and cytokines arise in the lesion. They identify the development of the inflammatory processes. Thus the point E 2 corresponds to the inflammatory state. When α > α 0 , E 2 is always stable when it exists. • E u belongs to the plane C 3 = λ 5 M 1 d 3 k 3 . It represents a threshold between E 1 and E 2 and is always unstable. The conditions shown in Table (2.2) are interpreted as follows:

Table 2 . 3 :

 23 Values of some parameters.

	Parameters	Value	Source
	λ 3 λ 4 λ 5 k 3 d 1	1.296 pg.cm -3 .day -1 [69]&[94] 8.64 × 10 -2 day -1 [69] 4.2 day -1 [79] 70 pg.cm -3 [94] 2.0736 day -1 [69]

  Theorem 2.4.1. Suppose that problem (2.53)-(2.54) has a solution ω 0 (x) for some c = c 0 . If the zero eigenvalue of the linearized operator L given by (2.56) is simple and equation(2.57) with respect to ξ does not have solutions for any real number λ ≥ 0, then for all sufficiently small the problem

  and C are satisfied, λ 5 > d 2 d 3 k 3 λ 3 and λ 1 < d1k1λ3λ5 λ3λ5-d2d3k3 , system (2.46)-(2.50) admits two stable equilibria E 1 and E 2 and a unique traveling wave solution ω 0 of velocity c = c 0 connecting E 1 to E 2 . The solution ω 0 verifies equation (2.53) and lim x→±∞ ω 0 (x) = ω ± where ω + = E 1 and ω -= E 2 .

	Theorem 2.4.2. When conditions A, B and C are satisfied, λ 5 >	d 2 d 3 k 3 λ 3	and λ 1 < d1k1λ3λ5 λ3λ5-d2d3k3

  .[START_REF] Xu | Chapter 3 -Vascular Pathobiology: Atherosclerosis and Large Vessel Disease[END_REF] is the set of ζ i = μ iaξ 2 + ciξ, where μ i is an eigenvalue of the Jacobian matrix of problem (2.58) at F 1 , for i = 1, • • • , 5. The eigenvalues μ i 's are all real negative since the point F 1 is stable. Therefore, the essential spectrum lies in the left half-plane and for any real ζ ≥ 0, equation (2.61) with respect to ξ does Similarly, the essential spectrum given by det(-aξ 2 + ciξ + G P0 (F 2 ) -ζE) = 0, ξ ∈ Rlies in the left half-plane. Thus, by Theorem 2.4.1, for all λ 2 sufficiently small, problem (2.60) has a solution ω λ2 for some c = c λ2 .

	CHAPTER 2.	MATHEMATICAL MODELING OF INFLAMMATORY PROCESSES OF ATHEROSCLEROSIS
	not have solutions. Here ω λ2 ± → ω P0 ± where ω	

  Proof. Since problem (4.26) verifies the conditions of Theorem 5.3 of [108], the result follows from Theorem 4.2.1 and Proposition 4.5.3. The solution is the fixed point U * found in Proposition 4.5.3.

			1, t)),		
					(4.26)
	y = 0 :	∂U ∂y	= 0, y = 1 : D	∂U ∂y	= L(t)h(U ),
	U (y, 0) = 0			
	has a solution U * ∈ H l+2,l/2+1 (Q T ). Consequently, system (4.11), (4.13), (4.12) and (4.16) has a solution
	u * ∈ H l+2,l/2+1 ([0, L(t)] × [0, T ]).				

Table 4 .

 4 1 shows the values of the velocities and maximal values of the analytical and numerical solutions for a better comparison.

		Analytical solution	Numerical solution
	w(0)	10.7438	10.7434
	c	0.9914	k 1 h(w(0)) = 0.9914, L(t)/t = 0.9904

Table 4 . 1 :

 41 Comparison between the velocities and maxima values of the analytical and numerical solutions of system (4.29) for g

  R) , andU ji+1 (y, T i+1 ) -U ji+1 (y, T i ) = U ji+1 (y, T i+1 )

	≤	Ti+1 Ti	D N 2 (t)	∂ 2 U ji+1 ∂y 2	+	yN (t) N (t)	∂U ji+1 ∂y	+ |F j (y, t)| dt
	≤	Ti+1 Ti	D N 2 (t)	∂ 2 U ji+1 ∂y 2	+	yN (t) N (t)	∂U ji+1 ∂y	+ |F j (V (y, t))|
	+	N 2 (t) D	∂ 2 U * ji					
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CHAPTER 5. CONCLUSIONS AND PERSPECTIVES

Bibliography

One-dimensional model

In this section, we consider system (3.5) in one dimension, on an interval [0, L] representing the arterial intima and we illustrate the results of the numerical simulations on the interval [0, L] with the homogeneous Neumann boundary conditions.

To my family

Emergence of periodic spatial structures

In this section, we show some numerical simulations to emphasize the role of chemotaxis in influencing the emergence of fatty streaks through the instability of the uniform distribution. The solutions of system (3.5) in the bistable case are shown in the upper subfigure of Figure 3.1 for different values of r, by using the continuation method. Starting with r = 0.5, we find the solution of system (3.5), then we find the solution when r = 0.495 by choosing as an initial condition the solution obtained for r = 0.5. Similarly, we find the solutions with different values of r chosen appropriately as explained subsequently, such that the initial condition is the solution of the previous simulation. As a result, three branches of solutions appear along the space interval [0, 20].

The lower subfigure of Figure 3.1 shows the amplitude of the solution for each value of r. One can see that only when r ≥ r 0 , spatial structures appear in the final solution. This emphasizes the role of

CHAPTER 4. A FREE BOUNDARY MATHEMATICAL MODEL OF ATHEROSCLEROSIS

The wave solution for the fixed boundary model is studied as well. This study allows us to find the velocity of propagation of the wave, that corresponds to the velocity of propagation of inflammation. The comparison between the analytical and numerical solution shows a high accordance.

The numerical results are examined and analyzed. They indicate the linear relation between the size of the domain and the time. This infers on the fact that the plaque size increases with time due to the accumulation of macrophages and foam cells in the intima.

The existence of solution for a system of reaction-diffusion equations of general form with free boundary in 1D is as well proved, and consequently, the results and conclusions obtained hold for the general model.

However, this model has some limitations. In fact, even though we considered the external forces to the blood pressure, the pressure is taken to be 0. A more realistic description is to take the pressure exerted by the blood as a function of time. Moreover, the values of the parameters are chosen arbitrarily in the numerical simulations. However, the use of clinical data in the simulations would provide more precise predictions on the plaque growth. In addition, this model is studied in one-dimensional geometry which is not a good representation of the arterial wall. In fact, a two-dimensional model describes better the lesion site in the arterial wall and the study in 2D provides more realistic results. The two-dimensional study involves more complexity in the definition of the moving boundary and the existence of solution and would be investigated in a future work.

Appendix

In this appendix, we define the functional spaces and norms used across the paper. In order to define Hölder spaces and their norms, we let E n the n-dimensional euclidean space, Ω a domain in E n and Q T is the cylinder Ω × (0, T ) i.e. the set of points (x, t) of E n+1 with x ∈ Ω, and t ∈ (0, T ). We denote by S T the lateral surface of Q T or more precisely the set of points (x, t) of E n+1 with x ∈ S, t ∈ [0, T ].

• A function u(x) defined in Ω satisfies a Hölder condition in x with exponent α, α ∈ (0, 1), and Hölder constant u

is the Banach space whose elements are continuous functions u(x) in Ω having in Ω continuous derivatives up to order [l] inclusively and a finite value for the quantity:

where u

Ω in H l (Ω). • H l,l/2 (Ω) is the Banach space of functions u(x, t) that are continuous in Q T together with all derivatives of the form D r t D s x for 2r + s < l and have a finite norm: