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Localization and acoustic radiation from complex structures

Résumé

Des vibrations localisées se produisent dans une variété de systèmes physiques, de la mécanique quantique aux tables dŠharmonie des pianos. Le nouvel outil appelé paysage de localisation est la première méthode générale pour prédire la localisation. Il est ainsi possible dŠétudier ces phénomènes sans avoir à résoudre de problèmes aux valeurs propres ou à effectuer des analyses dynamiques. Le paysage de localisation est une fonction statique qui permet de prédire où les modes se localisent, à quel point leur localisation sera forte et le passage entre localisation et délocalisation. Les modes localisés ressemblent à la déformée statique et permettent une estimation des fréquences en utilisant le quotient de Rayleigh. Cela permet dŠextraire des informations dynamiques du paysage et dŠétudier ses effets à la fois sur les vibrations et sur le rayonnement acoustique.

Dans ce contexte, cette thèse vise à fournir les bases pour étudier le rayonnement acoustique à partir des propriétés du paysage, en considérant les modes localisés comme des radiateurs individuels. Cette thèse se structure en trois parties.

Une partie traite de la relation entre la statique et la dynamique où on a étudié la déformation statique de géométries simples, circulaires et rectangulaires. En exprimant la solution statique en termes de modes, il est possible, par exemple, de dériver des équations qui relient la tension des membranes avec leur déformée statique. La même méthode est utilisée pour les plaques rectangulaires simplement appuyées. De plus, on peut en déduire tout le spectre en prenant en compte la valeur maximale de la déformation statique, dans les membranes et les plaques. On teste cette approche sur des plaques et des membranes avec diverses géométries complexes.

La deuxième partie se concentre sur le rayonnement acoustique de structures complexes. Une méthode est proposée pour estimer le rayonnement modal dans des géométries simples et complexes, en utilisant des pistons circulaires comme radiateurs élémentaires. Grâce à lŠapproche de type piston, nous sommes en mesure de dériver des approximations analytiques pour le rayonnement modal dans des géométries complexes. En utilisant une approche modale, où tous les modes sont également favorisés, on peut exprimer des valeurs moyennes du rayonnement acoustique. Avec lŠapproche de type piston, la solution estimée peut être trouvée en quelques secondes, simplement en connaissant la forme de la structure et les fréquences de résonance.

La troisième partie porte sur la localisation. Dans un premier temps, on développe une méthode de mesure quasi-statique de la fonction paysage, dans des cas de membranes complexes. Nos résultats conĄrment que la fonction de paysage peut prédire les modes localisés et les premières fréquences de résonance dans les membranes, même avec des champs de tension non uniformes et en plus inconnus. Dans un second temps, nous étudions le rayonnement de structures présentant des modes localisés. On propose une meilleure estimation des fréquences des modes localisées en exploitant la valeur moyenne des lignes de vallée. EnĄn, le paysage est combiné avec deux modèles : lŠun pour estimer les spectres, et lŠautre pour estimer le rayonnement de plusieurs zones localisées. Les deux modèles permettent dŠaller au-delà du premier mode localisé. Par conséquent, les valeurs moyennes de rayonnement acoustique peuvent être estimées grâce à lŠutilisation du paysage et des modèles présentés dans cette thèse.
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Preamble

In the beginning was the Word John 1:1

Historical introduction

The vibration, motion, and sound generated by bodies have fascinated philosophers since the beginning of science. Historically, Pythagoras1 (Ąfth century BC) and his school of thought are credited with the Ąrst notions of harmony. Pythagoreans understood that an attached string at both ends possesses a frequency and that if one divides its length by two, a harmonic is produced. Moreover, they are credited with discovering the ŞpleasantŤ sounds produced by the cord when it is divided into fractions such as 4/3 or 3/2; these are equivalent to a perfect fourth or a perfect Ąfth in music.

It was also thought by the Greeks that sound and light require a medium to propagate, namely (pneuma, πνϵυµα) by Anaximenes or aether (αιθήρ) by Anaximandro. This ŞsurroundingŤ was of pure and higher nature, everlasting, alive, and intelligent Ű in fact divine, this description applies to the aperiron of Anaximander, the air of Anaximenes and Diogenes of Apollonia, perhaps also to the logos-Ąre of Heraclitus. 2Although their predictions for the light case were proven incorrect in the 19th century, their intuition regarding the propagation of sound remains true. Greeks did not develop any further theories on sound radiation, but their remarkable knowledge inĆuenced science as we understand it today. In the words of mathematician and historian Boyer: Şwe know from PlatoŠs own writings that he was thinking out the solutions of the problems that lead directly to the discovery of the calculus.Ť 3As skilled geometers, the Greeks also had a thorough understanding of the geometric properties of polygons, as demonstrated by ZenodorusŠ (200 BC) proof that a circle has a greater area than any other polygon of the same perimeter. As with many other discoveries, this discovery was purely practical and mercantile. It allowed the area of a city to be calculated by giving the perimeter of its walls.

Among the Greeks, Pythagoreans believed in unity and centered their philosophy on it. It is worth noting that also Leibniz, one of the fathers of calculus, centers his philosophy in monism, primarily serving as a mathematical tool for reasoning. Initially, this may appear to be esoteric, but this type of thinking persists to this day when determining the uniqueness of solutions, lower or upper bounds of a solution, or fundamental frequencies of arbitrarily shaped structures. Rayleigh [START_REF] Rayleigh | The Theory of Sound[END_REF], for instance, conjectured that the principal frequency of any shape corresponds to the circle that has the same area. Pólya [START_REF] Pólya | ŞTorsional rigidity, principal frequency, electrostatic capacity and symmetrization[END_REF], Pólya and Szego [START_REF] Pólya | Isoperimetric Inequalities in Mathematical Physics[END_REF] found using symmetrization processes and isoperimetric inequalities, that increasing the degree of symmetry of any shape, while conserving its surface, decreases both its perimeter and principal frequency. There continue to be several applications for Ąnding lower bounds or estimating principal frequencies: in structural dynamics, such as the vibrations of buildings or bridges; in music, such as tuning drum heads or building musical instruments; or in signal analysis, such as identifying and classifying signals.

It was not until the 17th century that Hook Ąrst attempted to link pitch and frequency. Joshep Sauver, developed the theory of vibrating strings and its application to music. The Ąrst study of a vibrating string was conducted by Brook Taylor (1713), providing only a particular solution to the problem. According to Lagrange, any oscillation can be decomposed into simple harmonic oscillations: the superposition principle, which he asserted to be the ŞrealŤ basis of vibration. In response, Euler counterattacked by asserting that any type of function that match the boundary conditions could be used as basis function. Fourier (1822) proved the former incorrect in his well-acclaimed Traité analytique de la chaleur, which describes how heat propagates, decomposing any signal into sinus and cosines, and revolutionized signal analysis. Today it is possible to solve static and dynamic vibration problems using arbitrary functions that satisfy boundary conditions (Euler team), such as the Rayleigh-Ritz method, or using orthogonal functions (Lagrange and Fourier team), which correspond to mode shapes.

Scientists have argued about the boundaries between statics and dynamics for a long time. Newton suggestively called calculus the method of ŞĆuxionsŤ, meaning by this expression he was not dealing with static quantities, but rather with dynamic quantities. In spite of the fact that both phenomena are continuously present in vibrations, it is common for them not to appear related within the same expressions. For instance, during the 15th century, the equilibrium of a heavy string (la chaînette) was a popular topic of discussion. The presence of gravity created a non-uniform tension on the string due to its weight. The problem was studied also by Leibniz and it was Bernouilli (1732) who solved it, using what we call now Bessel functions. The functions that solve the static heavy string problem are also the mode shapes in axisymmetric problems and circular membranes.

It was Poisson 4 (1828) who Ąrst dealt formally with free vibrations of a circular membranes in his Mémoire sur lŠéquilibre et le mouvement des corps élastiques. However, when we think about Poisson, we refer to the static problem: PoissonŠs equation that describes the static deĆection of a membrane and the diffusion of heat.

Many centuries after the Classical period, the same musical intuitions used by them to study vibrations were used by German/Hungarian physician and former lawyer Ernst Chladni (1809) in the study of plate dynamics. Chladni formalized what Galileo, a couple of centuries before, previously saw. Galileo listened to sound and see patterns in the deformations of the plate:

As I was scraping a brass plate with a sharp iron chisel in order to remove some spots from it and was running the chisel rather rapidly over it, I once or twice, during many strokes, heard the plate emit a rather strong and clear whistling sound: on looking at the plate more carefully, I noticed a long row of Ąne streaks parallel and equidistant from one another. Scraping with the chisel over and over again, I noticed that it was only when the plate emitted this hissing noise that any marks were left upon it; when the scraping was not accompanied by this sibilant note there was not the least trace of such marks. 5Galileo noticed some apparent links between vibrations and the generated sound. Nowadays we call Şvibro-acousticianŤ someone who, as Galileo, studies both phenomena at the same time.

The vibration patterns of plates described by Chladni were formalized later in Kirchhoff and Love plateŠs theory, describing the vibration of thin Ćat structures. The vibration of bodies started to gain the attention of scientist at the beginning of the 20th century, at the sunset of the industrial revolution. Kirchhoff-LoveŠs model is still used today to study the vibration of thin Ćat structures. While analytical solutions are only possible for simple geometries, as complexity increases, it becomes increasingly difficult to Ąnd analytical solutions and one must rely on numerical models. The vibration patterns Ąrst observed by Galileo and Chladni, i.e. the mode shapes of a structure, are related to the sound they produce. The sound is affected not only by the resonance frequencies of vibration but also by the spatial distribution of these patterns. Kac (1954), for example, forgot this last detail when asking the famous question Can One Hear the Shape of a Drum? In other words, if it is possible to identify the geometry of a membrane only by pitch. Attempts will be made to reopen this debate, which appears to be closed.

A bit earlier, at the end of the 19th century, Lord Rayleigh came on the scene. His previous studies in optics allowed him to pioneer from electromagnetism to acoustics, deriving equations such as the famous Rayleigh integrals for describing the radiation from structures, the Rayleigh quotient to estimate resonance frequencies, among many other remarkable contributions. His understandings and contributions to sound generation and propagation revolutionized the acoustic domain. Rayleigh was considered an outstanding experimental physicist. During the annus miraculus and the sprint to the discovery of quantum mechanics, Rayleigh was studying the electromagnetic radiation from black bodies. Similar to acoustics, he viewed the problem as resonances within an organ pipe and introduced the density of states or modal density to the black body radiation problem. By doing so, he was able to determine that the energy of the cavity is proportional to its volume but is independent of its shape. Later, Weyl demonstrated and popularized this asymptotic behavior of the eigenvalues of the Laplace operator in what is now referred to as WeylŠs Law. Rayleigh (1870) also predicted one of the Ąrst observed phenomena in localized vibrations: solitary waves and ŞsolitonsŤ. 6 As a consequence of non-linear dynamics, small amplitude vibrations are localized. KortewegŰDe Vries solitary waves will not be treated due to their non-linear nature, but they are other type of localized waves.

Anderson [4] noted in 1958 that the measured decay in energy did not obey the diffusion law for no apparent reason. Energy measurements indicated that some energy was missing, and the only way to guarantee the conservation of energy principle was that the energy was localized somewhere. Due to the complex lattice and the random paths taken, the energy was physically constrained in some a priori unknown regions. Today, we refer to this phenomenon as Anderson localization. In strong or Anderson localization, amplitude decays exponentially across a domain, whereas weak localization exhibits a slow decay, about one or two orders of magnitude in amplitude. [START_REF] Filoche | ŞUniversal mechanism for Anderson and weak localization[END_REF] demonstrated in 2012 that Anderson and weak localization are, in fact, two representations of the same phenomenon. Both phenomena can be predicted by the landscape of localization. A static measurement of the deformation of a structure reveals a hidden landscape that can predict the location and strength of localization. In the present state, the landscape is deĄned for the Laplace, Hamilton and biharmonic operators, as well as any second order divergence form elliptic operator. This makes it applicable to the study of localization in quantum mechanics, wave propagation, as well as in vibrations of strings, membranes, and plates.

Filoche and Mayboroda

The landscape of localization has been shown in some experiments to be able to predict not only low-frequency localization but also higher frequencies where the asymptotic behavior complies with WeylŠs law [START_REF] Arnold | ŞComputing spectra without solving eigenvalue problems[END_REF]. In many complex problems, localization occurs in vibrations: trapped modes in ducts, vibration modes in stiffened plates, as in piano and guitar soundboards, or in waves propagating in random media. Despite this, there is still a lack of understanding and research on this subject. Localization may often determined a posteriori: after Ąnding the solution to a dynamical problem, it may possible to determine if and where modes have localized.

Preamble

As the landscape predicts mode localization, it is possible to study and predict localized vibrations and frequencies from a single static measurement of the deformation Ąeld, i.e. study localization a priori. This opens the door to exploring the relationships between the landscape, statics, dynamics, and acoustic radiation from a structure with localized modes. Currently, a limited number of references describe the effects of localized modes on sound radiation, and this study represents a small contribution to the Ąeld.

Context and Objectives

In this thesis, we seek to link two phenomena: localization and radiation, i.e. the effects of localized modes on the acoustic radiation from structures. There is still some debate about the behavior of localized modes in the simplest cases, and a theory for using the landscape to predict localization at high frequencies is currently being developed [START_REF] Lyra | ŞDual landscapes in Anderson localization on discrete lattices[END_REF][START_REF] Colas | ŞCrossover Between Quantum and Classical Waves and High Frequency Localization Landscapes[END_REF]. We will not attempt to answer these issues. Instead, we will explore the possibilities given by the landscape to predict the radiation from complex structures. If a mode is localized, how does it radiate sound? What happens when multiple localized modes are present? How will higher modes affect the overall radiation if they are localized? What information can be extracted from static measurements?

Dissertation Structure

This dissertation is organized into Ąve principal chapters, the latter four of which actually present the work accomplished during this doctorate. In Chapter 1, we provide an introduction to statics, dynamics, localization, and acoustic radiation. It covers static and dynamic problem-solving methods, such as PoissonŠs method and GreenŠs functions. The landscape function is described in depth as well as the properties to estimate the geographical location of localized modes and estimates of resonance frequencies. This chapter concludes with an overview of acoustic radiation from Ćat structures.

Chapter 2 presents a method for measuring the landscape in complex membranes, based on their quasi-static deformation. Even with two sets of unknown tensions, uniform and non-uniform, the landscape provides close estimates of localized frequencies. An approach to achieving uniform tension of a membrane from the quasi-static measurement is also presented, as well as a method to calculate its tension value.

In Chapter 3, we explore analogous ways of expressing localized modesŠ radiation. In this sense, we derive analytical solutions to the radiation efficiency of a random distribution of baffled pistons, regardless of their phase, size, and position. Solutions comprise only self-and mutual radiation efficiencies, allowing the analysis of discrete systems to be performed analytically. Afterward, a comparison is made between the radiation efficiency of multiple pistons vibrating in phase opposition and that of Ćat structures.

In Chapter 4, we present a method for calculating the average radiation properties of plates with complex shapes using circular pistons. The equivalent piston model simulates the radiation of each mode and provides an estimate of the average radiation efficiency and power. Only with the geometrical information about the plateŠs shape it is possible to design an equivalent array of pistons that would radiate the same amount of energy into the far-Ąeld. At this stage, the method uses the natural frequencies calculated by the Ąnite element method. Using this approach, we can estimate the average radiated efficiency and power in a matter of seconds without integrating or solving large matrices.

Chapter 5 explores the radiation from structures using the localization landscape. First, we develop a model for estimating the spectrum of arbitrary shaped plates using static measurements. As 

Introduction

| Localized vibrations in complex structures

| Vibrations of thin flat structures

Poisson [START_REF] Poisson | Mémoire Sur l'équilibre et Le Mouvement Des Corps Élastiques[END_REF] is the Ąrst to treat successfully the vibrations of membranes. In his work, he derived three-dimensional elasticity formulations that will be used some decades later by Kirchhoff [START_REF] Kirchhoff | ŞÜber das Gleichgewicht und die Bewegung einer elastischen Scheibe, (On the balance and motion of an elastic disc)[END_REF], and afterwards by Love [START_REF] Love | A Treatise on the Mathematical Theory of Elasticity[END_REF], to treat the vibration of thin Ćat plates. In Love words, KirchhoffŠs energy model is an expression that consists of two parts: one a quadratic function of the quantities deĄning the extension of the middle surface with a coefficient proportional to the thickness of the plate, and the other a quadratic function of the quantities deĄning the Ćexure of the middle-surface with a coefficient proportional to the cube of the thickness. [11, pp. 27-28] A more general equation describing the normal displacement w of tensioned plates was considered by Wah [START_REF] Wah | ŞVibration of Circular Plates[END_REF]. Using WahŠs model and including non-uniform tension Ąelds, as seen in membranes [13, p. 19], results in

ρ(r)h ∂ 2 w ∂t 2 + D∆ 2 w -div τ (r) • grad (w) = f (r, t) + P ext , ( 1.1) 
where ρ(r) is the volumetric density and h the thickness. The rigidity of the plate D = Eh 3 /12(1-ν 2 ) considers YoungŠs modulus E and PoissonŠs ratio ν. For membrane effects, τ (r) is a symmetric tension
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tensor of order two. The acting force is f (r, t) and the external pressure P ext = p(r, 0 -) -p(r, 0 + ) takes into account Ćuid charges of both sides of the structure. Often only one side is loaded with Ćuid and the pressure value is multiplied by a factor two. Equation (1.1) can be shortened as

ρ(r)h ∂ 2 w ∂t 2 + Kw = f (r, t) + P ext , (1.2)
where the spatial operator K consider plate, membrane or both effects. In the membrane case, multiple analytical solutions are available for different geometries [START_REF] Rayleigh | The Theory of Sound[END_REF]. In many classical texts, only uniformly distributed tension Ąelds are considered, without shear. 1 This may have been done for pedagogical purposes, as it allows simple analytical solutions to be derived. However, shear, as will be described later, can dramatically alter the distribution of a tension Ąeld. Anyhow, a membrane under uniform tension remains the simplest and most studied case. In this case, the tension is unchanged by the operator, leading to the Laplace operator. LaplaceŠs operator enables us to relate membrane vibrations to other physical phenomena, such as wave propagation and heat distribution. Due to their low mass density, membranes are coupled to Ćuids and their dynamics are thus altered. As a result, the study of radiation from membranes becomes a bit more complicated. For the plate case, there are many analytical solutions to the vibrationŠs equation [START_REF] Leissa | Vibration of Plates[END_REF]. Since restoring forces arise from bending, boundary conditions play a signiĄcant role when Ąnding analytical solutions. For instance, for the rectangular plate, there are 21 possible combinations of the boundary conditions [START_REF] Ůů | ŞThe free vibration of rectangular plates[END_REF]. Special cases for point supported plates [START_REF] Reed | ŞComparison of methods in calculating frequencies of corner-supported retangular plates[END_REF], tapered [START_REF] Ashton | ŞNatural Modes of Vibration of Tapered Plates[END_REF], trapezoidal [START_REF] Chopra | ŞVibration of simply-supported trapezoidal plates I. Symmetric trapezoids[END_REF], triangular [START_REF] Kim | ŞThe free Ćexural vibration of isotropic and orthotropic general triangular shaped plates[END_REF], parallelogram [START_REF] Conway | ŞThe free Ćexural vibrations of triangular, rhombic and parallelogram plates and some analogies[END_REF], skew [START_REF] Barton | ŞVibration of Rectangular and Skew Cantilever Plates Repre-senting Idealized Missile Fins[END_REF], regular polygonal [START_REF] Shahady | ŞApplication of Complex-Variable Theory to the Determination of the Fundamental Frequency of Vibrating Plates[END_REF][START_REF] Laura | ŞFundamental frequency of vibration of clamped plates of arbitrary shape subjected to a hydrostatic state of in-plane stress[END_REF] have been studied over the past century in vibrations. Pnueli [START_REF] Pnueli | ŞLower Bounds to the Gravest and All Higher Frequencies of Homogeneous Vibrating Plates of Arbitrary Shape[END_REF] studied the plate of arbitrary shape, where the analytical approaches are centered on estimating the resonance frequencies by giving lower and upper bounds.

In regard to the plate case, we are primarily interested in Ąnding possible links between geometry, statics, and dynamics. Irregularly-shaped plates can serve as a Ąctional basis for better understanding localized modes and their contribution to radiation problems.

Eigenvalue problem

Consider the general eigenvalue problem in a bounded domain Ω

Lϕ = λMϕ, in Ω, (1.3) 
with eigenfunctions ϕ and eigenvalues λ that satisfy the dynamic equation, and boundary conditions on ∂Ω. L and M are linear homogeneous operators of order 2p and 2q, respectively, so that p > q. An associated eigenvalue λ m to an eigenfunction ϕ m must satisfy both Eq. (1.3) and boundary conditions, so that

Lϕ m = λ m Mϕ m , in Ω. (1.4)
If the operator L is self-adjoint (symmetric), the eigenvalues are positive and the eigenfunctions are real. The special eigenvalue problem, where the operator M is only a function of spatial variables, is analogous to the diagonal mass matrix used in vibrations. From now on, we will consider this type of eigenvalue problem. Note that, in the plate case L relates to the biharmonic operator while, for the membrane case it takes the form of the Laplacian.

Rayleigh's quotient [16, pp. 190-192] Multiplying both sides of Eq. (1.4) by ϕ m , and integrating over the domain Ω yields to

Ω ϕ m Lϕ m dx = λ m Ω ϕ m Mϕ m dx, (1.5) 
or

λ m = Ω ϕ m Lϕ m dx Ω ϕ m Mϕ m dx m = 1, 2, ..., N. (1.6)
RayleighŠs quotient consists in using test functions that satisfy the boundary conditions to Ąnd approximate values of λ i or

ω 2 = R(w) = Ω wLw dx Ω wMw dx . (1.7)
If the test functions correspond to the proper eigenfunctions, RayleighŠs quotient gives an exact value of the frequency, according to RayleighŠs principle:

The frequency of vibration of a conservative system vibrating about the equilibrium position has a stationary value in the neighborhood of a natural mode. This stationary value is actually a minimum in the neighborhood of the fundamental mode. 2The Ąrst eigenvalue is the minimum value that R(w) can take and a set of comparison functions can be formulated that minimizes the Rayleigh quotient.

| The Poisson problem

Consider the static problem, where a structure is subjected to a static force f . In the case of a membrane under uniform tension, the operator takes the form of LaplaceŠs operator. The Poisson problem can generally be solved by looking at the eigenfunctions of the Laplacian in a generalized Fourier series. The DirichletŠs problem for PoissonŠs equation is

-∆w = f in Ω w = g on ∂Ω, (1.8) 
where g = 0 for a membrane Ąxed on the borders. We express f and w as eigenfunction expansions

f = m F m ϕ m , w = m W m ϕ m .
(1.9) Substituting Eq. (1.9) into Eq. (1.8) and using the eigenvalue decomposition

-∆ϕ = λϕ, m -λ m W m ϕ m = m F m ϕ m . (1.10)
The coefficients of the generalized Fourier series F m are calculated with

F m = Ω f ϕ ⋆ m dx Ω ϕ m ϕ ⋆ m dx , (1.11) 1 | Introduction
in which ϕ ⋆ is the complex conjugate of ϕ. The amplitude coefficients are given by

W m = - F m λ m (1.12)
and Ąnally, the displacement can be expressed as

w = m Ω f ϕ ⋆ m dx Ω ϕ m ϕ ⋆ m dx ϕ m λ m . (1.13)
Static problems can be therefore solved using orthogonal harmonic functions and eigenfrequencies solution to the eigenvalue problem, i.e. the structure modes.

| Green's Functions

Another way to solve PoissonŠs problem is by means of GreenŠs Functions G. Consider that we want to solve the problem

-∆ r 0 G(r♣r 0 ) = δ(r -r 0 ) r 0 ∈ Ω G(r♣r 0 ) = 0 r 0 ∈ ∂Ω, (1.14)
where δ is the Dirac delta distribution, then it is possible to say that a solution of Eq. (1.8) is

w(r) = Ω δ(r -r 0 )w(r 0 ) dr 0 = - Ω G(r♣r 0 )∆ r 0 w(r 0 ) dr 0 + ∂Ω G(r♣r 0 ) ∂w ∂n (r 0 ) dS(r 0 ) - ∂Ω ∂G ∂n (r♣r 0 )w(r 0 ) dS(r 0 ) = Ω G(r♣r 0 )f (r 0 ) dr 0 - ∂Ω ∂G ∂n (r♣r 0 )g(r 0 ) dS(r 0 ).
(1.15)

The GreenŠs function can be constructed with two terms: a so-called fundamental solution, which is independent of the shape of the region, and a compensating part that ensures the GreenŠs function to satisfy the imposed boundary conditions

G(r♣r 0 ) = G 0 (r♣r 0 ) + γ(r, r 0 ). (1.16)
For instance, in vibration problems, we often seek for GreenŠs functions as the sum of the solution in an inĄnite case (G 0 ) plus the solutions related to the boundaries effects (γ), as seen in the image theory. 3Solving PoissonŠs problem using GreenŠs functions can be summarized as

Theorem 1. If w ∈ C 2 (Ω) is a solution of -∆w = f r 0 ∈ Ω w = g r 0 ∈ ∂Ω, (1.17)
where f and g are continuous, then

w(r) = - ∂Ω ∂G ∂n (r♣r 0 )g(r 0 ) dS(r 0 ) + Ω G(r♣r 0 )f (r) dr 0 (1.18)
for r in Ω, where G(r♣r 0 ) is the GreenŠs function for Ω.

The GreenŠs function, which is also called the resolvent kernel, can also be sought in a modal expansion. It was Sommerfeld [START_REF] Sommerfeld | ŞDie Greensche Funktion der Schwingungsgleichung für ein beliebiges Gebiet, (The GreenŠs function of the vibrational equation for an arbitrary domain)[END_REF][START_REF] Sommerfeld | ŞDie Greensche Funktion der Schwingungslgleichung, (The GreenŠs function of the oscillation equation),Ť Jahresber[END_REF], in a 1910 talk who introduced GreenŠs functions to solve forced vibration problems as

G(r♣r 0 , λ) := m ϕ m (r)ϕ m (r 0 ) (λ m -λ) Ω ϕ 2 m (r 0 ) dr 0 , (1.19)
where λ m is the eigenvalue of mode ϕ m . Since the mode shapes satisfy the motionŠs equation and boundary conditions, we can use GreenŠs functions to solve static and dynamic problems using modes.

| Landscape of localization theory [5, 35, 36, 37]

Complex structures may exhibit localized modes, where vibrations are concentrated on speciĄc parts of the structure and almost disappears on the rest. However, the deĄnition of a complex structure can be a bit vague. The holistic deĄnition of complexity considers complex structures as the sum of simple structures; the physical deĄnition of complexity involves complex modes resulting from traveling waves, but it is also feasible to deĄne complexity for non-canonical shapes. Anyhow, mode localization may occur even in the ŞsimplestŤ of cases and is a phenomenon that has not been fully explored in the vibrations Ąeld.

Filoche and Mayboroda [START_REF] Filoche | ŞUniversal mechanism for Anderson and weak localization[END_REF] proposed the landscape of localization as a way to study weak and strong localization. Localized vibrations decrease in amplitude as they move away from the region where they localize. Weak localization occurs when this decay is slow; Anderson or strong localization if the decay is exponential. The landscape of localization predicts these regions where mode localize. A ŞlandscapeŤ is drawn by the lobes that appear after subjecting the structure to a uniformly distributed force, assuming Dirichlet boundaries (see Fig. 1.1). Besides the geographical location of localized modes, dynamic information regarding localized modes is also provided, as well as the transition between localized delocalized states. Although the landscape is very powerful for predicting localized modes, it only deals with low frequency localization for now. By using the landscape of localization, it is possible to accurately predict the Ąrst localized modes.

Definitions

Let Ω be an arbitrary open set in | n and L an elliptic differential operator of order 2p, p ∈ ◆ deĄned in a weak sense

Ω Lvu dx := B[u, v] ∀u, v ∈ • H p (Ω), (1.20)
where B is a bounded positive bilinear form and

• H is the Sobolev space of the functions given by the completion of C ∞ 0 in the norm of Ω and denote by ε the boundary data of ϕ on ∂D i . Denote by λ the eigenvalue corresponding to ϕ. Then either λ is an eigenvalue of L in D i or

∥u∥ • H p (Ω) := ♣♣∇ p u♣♣ L 2 (Ω) . ( 1 
∥ϕ∥ L 2 (D i ) ≤ 1 + max λ k (D i ) 1 - λ k (D i ) λ -1 ∥ε∥ = 1 + λ min λ k (D i ) ¶♣λ -λ k (D i )♣♢ ∥ε∥, (1.28) 
where the maximum is taken over all the eigenvalues of L in Ω.

In a sub-region D i ∈ Ω, modes are conĄned according to the values on the boundaries in that region ε. If ε = 0, then the mode can be non zero only if the eigenvalues λ and λ k are equal. If ε ̸ = 0, the distance from λ -λ k determines that, when λ is far from the eigenvalue of L in D i , the norm of ϕ is smaller than ε. This inequality explains the formation of weak localization and consequently, the height of the valley lines determines the strength of coupling between the respective sub-regions. In systems with multiple regions, the decay in amplitude of a mode when trespassing a region is slow (weak localization) and proportional to one or two orders of magnitude. It decays exponentially (strong localization) for distances larger than the characteristic length of each region. Filoche and Mayboroda demonstrated that Anderson localization is a particular case of weak localization.

Dynamical information of the fundamental localized frequencies [37]

The eigen-decomposition of the landscape function results in Lu = λ.

(1.29)

Based on the similarity of the landscape with the Ąrst localized modes, one can obtain an approximation of the eigenfrequencies of the Ąrst localized mode λ i 0 = λ 0 (D i ) within each sub-region D i of the landscape using RayleighŠs quotient

λ i 0 = D i ϕ i 0 Lϕ i 0 dx D i (ϕ i 0 ) 2 dx ≈ D i uLu dx D i u 2 dx = D i u dx D i u 2 dx
.

(1.30)

| Introduction

Generally speaking, in vibrations, Ąrst modes can be seen as a smooth lobe for both Laplace and biharmonic operators for any n dimension. In each localized region, if a mode is localized, it will appear in this manner. A simple bump-like function, i.e. the solution of a rectangular membrane, inside the sub-region n k=1 [-l k ; +l k ] can be used as a test function for RayleighŠs quotient:

u(x) = u max n k=1 cos πx k 2l k . (1.31)
Inserting Eq. (1.31) into Eq. (1.30) and after integration, it is possible to derive an approximation of the Ąrst eigenvalue for n dimensions

λ i 0 ≈ u i max 4 π n n k=1 l k (u i max ) 2 n k=1 l k = 1 u i max 4 π n , ( 1.32) 
where u i max is the maximum of the landscape function in the region D i . For a 2D structure n = 2 and the estimator results in [START_REF] Lefebvre | ŞOne Single Static Measurement Predicts Wave Localization in Complex Structures[END_REF] 

ω i 0 ≈ (4/π)/ max(u i ). (1.33)
The resonance frequency of each localized mode within every subdomain D i is expected to be estimated with Eq. (1.33), due to the similarity of the landscape within the subdomain D i and the Ąrst mode in D i . In summary, it is possible to exploit, at least four speciĄc contributions offered by the landscape in case of vibration of plates and membranes:

1. Location of the localized modes, drawn by the minima of the landscape function u 2. The transition from localized to delocalized modes as a function of frequency, given by Eq. (1.27) 3. Estimation of the spectrum: Ąrst resonance frequencies calculated by RayleighŠs quotient Eq. (1.33)

The strength of coupling between sub-regions determined by the height of the valley lines

Considering the possibility to deduce dynamic information about localized modes from the landscape, we developed a method to measure the landscape in complex membranes (Chapter 2) for the Ąrst localized modes. Unfortunately, the landscape is not yet, in its present form, suitable for calculating higher frequency localized modes. For instance, if we consider musical instruments, guitar top plates and piano boards [START_REF] Ege | ŞVibroacoustics of the piano soundboard: (Non)linearity and modal properties in the low-and mid-frequency ranges[END_REF] exhibit localized modes as a result of their complexity. As localized modes appear at higher frequencies, these modes do not correspond to the Ąrst modes of the structure, so the landscape cannot predict them. High frequency localization is also seen in other phenomena related to vibroacoustics such as in trapped modes [39, p. 199] and there are recent attempts in course to describe high frequency localization using the landscape [START_REF] Lyra | ŞDual landscapes in Anderson localization on discrete lattices[END_REF][START_REF] Colas | ŞCrossover Between Quantum and Classical Waves and High Frequency Localization Landscapes[END_REF].

Although the landscape of localization predicts only low-frequency localization, restricting the type of structures that can be explored using this tool, it serves as a starting point for a better understanding of the behavior of localized modes a priori, i.e. before any dynamical analysis, and its implications for vibration and radiation problems.

| Acoustic radiation

Acoustic waves need a medium to propagate, in contrast to electromagnetic waves. At the beginning of the century, there were still two schools for explaining how light propagates: one, led by Newton, argued that light was corpuscular, while the other, led by Huygens, claimed that light propagates as the water waves generated by a rock hitting its surface. Now, it seems odd that the majority of acoustic discoveries come often from optics and electromagnetism, whereas initially, it seems that it was the opposite. In Ćuids, acoustic waves propagate precisely as in HuygensŠ example and are described by the wave equation. A large portion of the present mémoire is devoted to the acoustic radiation from Ćat structures. The purpose of this section is to give a general overview of acoustic radiation, provide some context for futur Chapters and reinforce some other aspects that, though not addressed here, could be investigated in future research.

| Definitions

Wave and Helmholtz equations

The propagation of the acoustic pressure p is described by the inhomogeneous wave equation ∆p -

1 c 2 ∂ 2 p ∂t 2 = ρ 0 div f - ∂q ∂t , (1.34)
where c is the speed of sound in the medium, ρ 0 is the density of the Ćuid, f an exterior force, q a volume Ćow source and ω the wave angular frequency. From now on, when considering a harmonic oscillation s(r, t), its temporal dependence is expressed by exp(-jωt) and s(r, t) = ŝ(r) exp(-jωt).

Considering the harmonic dependence of variables, Eq. (1.34) results in Helmholtz equation (∆ + k)p = ρ 0 div f -jω q .

(1.35)

The particle velocity v is related to the pressure by linearized EulerŠs equation, without force sources ρ 0 ∂v ∂t = -grad p.

(1.36)

Acoustic intensity and power

The acoustic intensity is deĄned as the time average of the instantaneous intensity, or as the average rate at which sound energy is transmitted through a unit of area perpendicular to the speciĄed direction at the point considered

I = lim T →∞ 1 T T 0 p(r, t)v(r, t) dt (1.37a) = 1 2 Re p(r)v ⋆ (r) if harmonic regime (1.37b) = ♣p♣ 2 ρ 0 c
in the direction of propagation.

(1.37c)

The power radiated by a structure can be calculated by integrating its normal acoustic intensity

P(ω) = S I • n dS.
(1.38)

| Introduction

According to Massa [START_REF] Massa | ŞRadiation of Sound[END_REF], the acoustic radiated power generated by any vibrating source can be expressed by P = U 2 R A 10 -7 watts, where U is the rate of volume displacement of the Ćuid. R A is the acoustic radiation resistance seen by the source, in acoustic ohms (rayls).

Impedance [15]

There are many impedances that must be differentiated. The mechanical impedance Z M is equal to the ratio of the effective force acting on a speciĄed area of an acoustic medium to its resulting effective linear velocity

Z M = f v N•s•m -1 ( rayl•m 2 ). (1.39)
The acoustic impedance Z A is deĄned as the complex ratio between the effective sound pressure averaged over a surface S and its effective volume velocity over that surface

Z A = p Q N•s•m -5 ( rayl/m 2 ), (1.40) 
where Q = Sv and v is the particle velocity.

The speciĄc acoustic radiation impedance Z s is the complex ratio of the effective sound pressure at a point of an acoustic medium to the effective particle velocity at that point

Z s = p v N•s•m -3 ( rayls ) = R s + jX s . (1.41)
There are two parts to the speciĄc impedance radiation: resistive and reactive. The resistive part is responsible for radiating into the far-Ąeld while the reactive part generates evanescent waves in the near-Ąeld. Additionally, the resistive part acts as damping and the reactive part as added mass. It is easy to observe these effects when plates are in contact with water or membranes under low tension values. The reactive part is, however, often overlooked for plates vibrating in the air (light Ćuid assumption) since it does not alter the mode shapes (RayleighŠs hypothesis) and the added mass effect is negligible. In cavities, for example, axisymmetric modes are the most ŞaffectedŤ by the cavity (damping and mass effects) [13, p. 666] lowering the frequencies of resonance, primarily of the Ąrst modes.

This is not to be confused with the characteristic impedance of a medium, which is deĄned as the ratio of the effective sound pressure at a given point to the effective particle velocity at that point in a free, plane, progressive sound wave. It is equal to the product of the density of the medium and the speed of sound in that medium

Z 0 = ρ 0 c ( rayls ).
(1.42)

Because particle velocity and pressure are in phase, the characteristic impedance has a real value. The characteristic impedance of the air at 22 • C and at static pressure of 10 5 Pa is Z 0 = 407 (rayls).

Mean square velocity

One of the most important physical quantities is the spatial average of the square of the velocity. It relates the total energy contained in a vibrating system to its overall mass [41, p. 327]. The space-average value of the time-average squared vibration velocity is deĄned by [42, p. 151]

⟨v 2 ⟩ = 1 S S 1 T T 0 v 2 dt dS = 1 S S ♣v 2 ♣ 2 dS
for harmonic variables [14, p. 11], (1.43) where the bar over the normal velocity v refers to spatial averages and the angle brackets ⟨⟩ to temporal averages. In the following, time and space average values will be referred to as average mean values.

Radiation efficiency

In Ąnite structures, it is possible to determine the relationship between structural vibrations and acoustic power to indicate how efficient a structure is radiating sound, namely radiation efficiency

σ = P(ω) ρ 0 c⟨v 2 ⟩ = Re ¶Z s ♢ ρ 0 c . (1.44)
It is important to note that the radiated efficiency can be derived directly from the speciĄc radiation impedance as well as by the radiated power into the far-Ąeld.

| Radiation from simple sources [43, 44]

Point sources

The pressure generated by a point source with volume velocity Q, located at a point r 0 in the space as seen from a point r, is

p(r) = -jkZ 0 Q e jk∥r-r 0 ∥ 4π∥r -r 0 ∥ = -jkZ 0 Q Ĝ(r♣r 0 ), (1.45) 
where Ĝ is the harmonic free-Ąeld GreenŠs function. In the far-Ąeld, ∥rr 0 ∥ = r and the pressure simpliĄes to p1 (r) = -jkZ 0 Q e jkr 4πr .

(1.46)

The particle velocity, using linearized EulerŠs equation, is

v1 (r) = (1 -jkr) Q e jkr 4πr 2 . (1.47)
Using the deĄnition of the intensity in Eq. (1.37) and integrating over a half-sphere, the radiated power is then

P 1 (ω) = Z 0 k 8π ♣ Q♣ 2 . (1.48)
Point sources radiate proportional to the square of their volume Ćow.

Two point sources with arbitrary phases

Two point sources with volume velocities Q1 and Q2 are located at r 1 and r 2 and vibrating with phases Φ 1 and Φ 2 , respectively. The pressure at the point r is

1 | Introduction p(r) = -jkZ 0 Q1 e jk(∥r-r 1 ∥+Φ 1 ) 4π∥r -r 1 ∥ -jkZ 0 Q2 e jk(∥r-r 2 ∥+Φ 2 ) 4π∥r -r 2 ∥ = - jkZ 0 4π Q1 ∥r -r 1 ∥ e jk(∥r-r 1 ∥+Φ 1 ) + Q2
∥rr 2 ∥ e jk(∥r-r 2 ∥+Φ 2 ) .

(1.49)

Two point sources in phase

Two point sources vibrate in phase with the same volume velocity, Q1 = Q2 = Q/2. The origin of coordinates is located at the medium-point between the point sources, r 1 = -d and r 2 = d. In polar coordinates r = r(cos θ, sin θ). The far-Ąeld pressure is

p ⊕ ⊕ (r, θ) = -jkZ 0 Q e jkr 8π e jkd cos θ r +✘ ✘ ✘ ✘ ✿ d cos θ + e -jkd cos θ r +✘ ✘ ✘ ✘ ✿ d cos θ if d ≪ r = -jkZ 0 Q e jkr 4π cos(kd cos θ) = p1 (r) cos(kd cos θ) ≃ p1 (r) if kd ≪ 1.
(1.50)

When d is small compared to the wavelength or when the sources are close to each other, the two sources radiate to the far-Ąeld as a monopole, as in Eq. (1.46).

Two point sources in anti-phase

When point sources vibrate in anti-phase, Q1 = -Q2 if both sources have the same volume velocity. The pressure can be expressed as p ⊕ ⊖ (r, θ) = j p1 (r) sin(kd cos θ) (1.51) and the radiated power as

P(ω) = (kd) 2 3 P 1 (ω). (1.52)
Point sources are a simple way to describe the low-limit radiation behavior of more complex structures. At low frequencies, complex structures may radiate as monopoles, dipoles, or a combination of both. This low-frequency asymptotic behavior occurs when the wavelength is smaller than the characteristic dimension. Thus, the monopole Ąeld generated by point sources is proportional to the GreenŠs function while the dipole Ąeld is proportional to its derivative.

Pulsating spheres

Spheres are the simplest Ąnite-size acoustic sources, and they can be readily modeled analytically. The far-Ąeld pressure of a pulsating sphere of radius a can be calculated either by solving the Helmholtz equation in spherical coordinates or by using spherical harmonics. As a result,

p(r) = -j kZ 0 Q 1 -jka e jk(r-a) 4πr = p1 (r) if ka ≪ 1, (1.53) 
in which Q = 4πa 2 V0 and V0 is the velocity amplitude. The particle velocity, using EulerŠs equation As a Ąnite structure vibrates, its surface normal velocity displaces Ćuid particles around it, creating a pressure Ąeld. The parietal pressure or surface pressure is the pressure surrounding a surface and propagating through the Ćuid. At the structureŠs surface, vibrations create both evanescent and propagative waves. Evanescent waves can affect the structureŠs vibration in a variety of ways, such as lowering resonance frequencies or altering the mode shapes, and do not radiate energy into the far-Ąeld. On the opposite, propagative waves are responsible for radiating sound into the far-Ąeld and are of main interest for studying the radiation from structures. In the near-Ąeld, constructive and destructive interference are observed due to the phase of the particleŠs vibration. This zone is called Fresnel zone. The last of these interference mark the end of the near-Ąeld and the beginning of the far-Ąeld. Some authors deĄne the start of the far-Ąeld by RayleighŠs distance [50, pp. 447-449]. In the far-Ąeld, also called FraunhoferŠs zone, the Ąeld decays uniformly due to attenuation and absorption. An attenuating wave decreases in amplitude as it propagates over a large surface due to divergence. In a dissipative medium, absorption is associated with thermoelastic dissipation. Generally speaking, the radiation from a structure is described by three key parameters: meansquare velocity, radiation efficiency and radiation power [51, p. 70][52]. These parameters are normally inĆuenced by boundary conditions and Ćuid characteristics. In simple cases, such as a piston, a uniform velocity proĄle simpliĄes calculations. Conversely, in membranes, plates, and other structures with non-uniform velocity proĄles, these values are also inĆuenced by material properties and excitation positions. Under some circumstances, it is possible to use the equipartition theorem, or according to Rayleigh [START_REF] Rayleigh | Remarks upon the law of complete radiation[END_REF], the ŞBoltzmann-Maxwell doctrine of the partition of energy ... [that]... every mode of vibration should be alike favoredŤ. 9 Using this philosophy, average values of the radiated power and efficiency may be determined, providing a general overview of acoustic radiation. The radiated pressure from a structure is fully determined by the Kirchhoff-Helmholtz equation, which is a formal formulation of HuygensŠ principle or Huygens-Fresnel principle.

results in v(r) = 1 + jkr 1 -jka Q e jk(

Huygens' Principle

In 1678, in his Traité de la lumière, dutch physician Huygens describes the propagation of light as analogous to the propagation of waves:

Les vibrations qui se propagent à lŠextérieur dŠune surface fermée Σ 0 contenant la source sont identiques à celles quŠon obtiendrait en supprimant cette source et en la remplaçant par des sources convenablement réparties sur la surface Σ 0 . 10

In other words, a front wave can be replaced by an arrangement of secondary point sources. Fresnel (Mémoire sur la diffraction de la lumière, 1818 ) will refer to this as HuygensŠ ŞvibrationŤ principle, where les vibrations produites en un point quelconque dŠun Ćuide élastique par plusieurs ébranlemens sont égales à la résultante de toutes les agitations envoyées au même instant dans ce point par ces différens centres dŠondulation, quels que soient leur nombre leurs positions respectives, la nature et lŠépoque des ébranlemens divers [...] je supposerai que les vîtesses imprimées aux molécules sont toutes dirigées dans le même sens, perpendiculairement à la surface sphérique [...] Il est donc vrai de dire que les vibrations dŠune onde lumineuse dans chacun de ses points peuvent être regardées comme la résultante de tous les mouvemens élémentaires quŠy enverraient au même instant, en agissant isolément, toutes les parties de cette onde considérée dans une quelconque de ses positions antérieures [55, pp. 384-385].

HuygensŠ principle describes the basis for the diffraction of light and sound. The theory also explains a fundamental radiation principle: all front waves can be viewed as a sum of inĄnite equivalent sources. It is similar to the Fourier decomposition applied to vibration in signal processing but considers the propagative nature of sound.

| Kirchhoff-Helmholtz Integral [43]

HuygensŠ principle is the basis of the integral formulation of Ćat structures radiating into the far-Ąeld. Consider for a moment the potential ϕ(r) representing an acoustic Ąeld (pressure, velocity potential or potential displacement) solution of the Helmholtz equation

(∆ + k 2 ) φ(r) = -ŝ(r), (1.64) 
where ŝ(r) is a volume source therm. The solution can be sought with GreenŠs functions. By deĄnition, the GreenŠs function Ĝ(r♣r 0 ) is solution of the inhomogeneous wave equation due to a punctual excitation located at r 0

(∆ + k 2 ) Ĝ(r♣r 0 ) = -δ(r -r 0 ). (1.65)
The propagation of a wave at any point r generated by a point source located at rr 0 is described by the GreenŠs function. Now, multiplying Eq. (1.64) by Ĝ(r♣r 0 ), Eq. (1.65) by φ(r), integrating over the volume Ω and subtracting each other results in

Ω Ĝ(r♣r 0 )∆ φ(r 0 ) -φ(r 0 )∆ Ĝ(r♣r 0 ) dr 0 = Ω φ(r 0 )δ(r -r 0 ) dr 0 - Ω Ĝ(r♣r 0 )ŝ(r 0 ) dr 0 .
(1.66) Using the Ąrst GreenŠs theorem or divergence theorem it is possible to write

Ω Ĝ(r♣r 0 )∆ φ(r 0 ) -φ(r 0 )∆ Ĝ(r♣r 0 ) dr 0 = ∂Ω Ĝ(r♣r 0 ) ∂ φ(r 0 ) ∂n 0 -φ(r 0 ) ∂ Ĝ(r♣r 0 ) ∂n 0 dS(r 0 ).
(1.67) As a result of equating the previous equations and integrating the volume integral using the delta function properties, KirchhoffŠs theorem is derived

φ(r) = ∂Ω φ(r 0 ) ∂ Ĝ(r♣r 0 ) ∂n 0 dipole -Ĝ(r♣r 0 ) ∂ φ(r 0 ) ∂n 0 monopole dS(r 0 ) + Ω ŝ(r 0 ) Ĝ(r♣r 0 ) dr 0 . volumetric source (1.68)
As seen in point sources, a monopolar Ąeld is proportional to the GreenŠs function, whereas a dipolar Ąeld is proportional to the derivative of the GreenŠs function. As Huygens explained, any waveĄeld can be expressed as a sum of secondary sources, here represented by monopoles and dipoles.

The acoustic pressure and potential are related as p = jωρ 0 φ, and the acoustic pressure can be calculated with KirchhoffŠs theorem

p(r) = ∂Ω p(r 0 ) ∂ Ĝ(r♣r 0 ) ∂n 0 -Ĝ(r♣r 0 ) ∂ p(r 0 ) ∂n 0 dS(r 0 ) Kirchhoff-Helmholtz Integral -jωρ 0 Ω q(r 0 ) Ĝ(r♣r 0 ) dr 0 . (1.69)
According to KirchhoffŠs theorem, one can calculate the pressure Ąeld at a given point r by knowing the pressure Ąeld on r 0 , the GreenŠs function and their normal derivatives. Often, the last term is used in scattering problems to represent the contribution of external volumetric sources or to calculate directly the radiation from simple sources, such as point and line sources. Without the source term, in the frequency domain this results in Kirchhoff-Helmholtz integral, widely used to calculate the radiation from any vibrating structure.

Rayleigh Integral

For a baffled structure, a GreenŠs function can be found that satisĄes both the boundary conditions at the vibrating surface and at the baffle. In order to do this, we can use the free-Ąeld GreenŠs function and the image source method.

Free-field Green's function

Several types of problems can be solved using GreenŠs functions, including statics, dynamics, and radiation problems. Any function that satisĄes Eq. (1.65) can be chosen as a GreenŠs function a priori. Finding GreenŠs functions is not an easy task. Some GreenŠs functions, however, are known for simple cases and one of them is the free-Ąeld GreenŠs function Ĝ(r♣r 0 ) = e jk∥r-r 0 ∥ 4π∥rr 0 ∥ , (1.70) solution of Eq. (1.65) and which describes the radiation from a monopole point source at r 0 .

Image source method

In the case of baffled structures, the GreenŠs function must also satisfy boundary conditions on the baffle, i.e. its normal derivative must be zero. The image source method can readily be used to Ąnd the GreenŠs function, in this case due to the symmetry provided by the inĄnite baffle. The method consists of placing a virtual source at the opposite of the plane of symmetry (the baffle). At point r, the pressure is equal to the sum of the pressure at point r 1 plus the pressure at point r 2 .

Using an image source, as illustrated in Fig. 1.6, the GreenŠs function for baffled structures is Ĝ

(r♣r 0 ) = e jk∥r-r 1 ∥ 4π∥r -r 1 ∥ + e jk∥r-r 2 ∥ 4π∥r -r 2 ∥ = e ik∥r-r 0 ∥ 2π∥r -r 0 ∥ , when r → ∞.
(1.71)

Circular baffled piston and the Rayleigh Integral

The simplest vibrating baffled structure is a circular piston. A baffled circular piston vibrates with a harmonic velocity which is constant on the pistonŠs surface v(r 0 ) = V0 . Using the boundary conditions

∂ p(r 0 ) ∂n =    -jρωv(r 0 ), ∀r 0 ∈ S(r 0 ) and at z = 0 0, ∀r / ∈ S(r 0 ) and at z = 0, (1.72) 
for any velocity proĄle. By combining these boundary conditions with Eq. (1.69), Kirchhoff-Helmholtz integral is simpliĄed to RayleighŠs integral

p(r) = S p(r 0 ) ∂ Ĝ(r♣r 0 ) ∂n 0 -jωρ 0 v(r 0 ) Ĝ(r♣r 0 ) dS(r 0 ) = jωρ 0 2π S e jk∥r-r 0 ∥ ∥r -r 0 ∥ v(r 0 ) dS(r 0 ). (1.73)
RayleighŠs integral and the radiation from a circular piston are two of the fundamental problems in the study of acoustic radiation. Note that the only unknown is the velocity proĄle V (r 0 ), which remains constant for pistons. The Rayleigh integral must be evaluated numerically in most cases, and many numerical methods are available to solve this problem [START_REF] Williams | ŞNumerical evaluation of the Rayleigh integral for planar radiators using the FFT[END_REF][START_REF] Kirkup | ŞComputational solution of the acoustic Ąeld surrounding a baffled panel by the Rayleigh integral method[END_REF][START_REF] Mast | ŞSimpliĄed expansions for radiation from a baffled circular piston[END_REF].

Using Eqs. (1.37) and (1.38), it is possible to calculate the radiated mean power with a little extra motivation. However, in the following section, a generalized formulation is presented for the piston case and other circular radiators presenting axisymmetric velocity proĄles.

Circular radiators

Greenspan [START_REF] Greenspan | ŞPiston radiator: Some extensions of the theory[END_REF] calculated the power of different type of circular radiators and proposed a method valid not only for the piston case,11 but extended also to simply supported and clamped circular radiators. Circular radiators (also called resilient radiators) are Ćat Ćexural disks presenting axisymmetric velocity proĄles that satisfy simply supported and clamped boundary conditions. The radiated power of baffled circular radiators is

P(ω) = 2 2n+1 [(n + 1)!] a 2n Q2 πa 2 jρ 0 ck ∞ 0 J 2 n+1 (au) mu 2n+1 du, (1.74) 
where m = (u 2 -k 2 ) 1/2 , n = 0 for the rigid piston, n = 1 for the simply supported radiator, n = 2 for the clamped radiator and Q the total volume velocity on the plane z = 0. Taking the deĄnition in Eq. (1.44), the speciĄc radiation impedance is derived from the power presented by Greenspan [59, Eqs. ( 44), ( 45) and ( 47)]. Normalizing the power for all radiators moving the same amount of Ćuid yields to

Z s = ρ 0 c Q                      1 - J 1 (2ka) ka + iH 1 (2ka) ka if n = 0 1 - 96 (2ka) 5 [F 1 (2ka) + iF 2 (2ka)] if n = 1 1 - 5 • 2 11 (2ka) 9 [F 1 (2ka) + iF 2 (2ka)] if n = 2, (1.75) 
where the functions F 1 and F 2 are deĄned as

F 1 (y) =            (10 -y 2 )J 1 (y) -5yJ 0 (y) - y 3 8 if n = 1 (y 4 -91y 2 + 504)J 1 (y) + 14y(y 2 -18)J 0 (y) -y 5 /16 -y 7 /768 if n = 2, (1.76) F 2 (y) =        (y 2 -10)yH 1 (y) + 5H 0 (y) - 10y 2 3 if n = 1 -(y 4 -91y 2 + 504)H 1 (y) -14y(y 2 -18)H 0 (y) + 14y 2 /15π -168y 2 /π if n = 2, (1.77) 
and in which H n (z) is the Struve function of the Ąrst kind of order n. As shown in Fig. 1.7, the normalized efficiency of circular radiators is similar to that of circular plates that are simply supported and clamped. There is a small difference between the two because the mesh size used to calculate the impedance, and the results seem to converge to GreenspanŠs theoretical values. A larger gap is shown in the simply supported case, perhaps due to a difference in the velocity proĄle (see Fig. 1.8).

In acoustic problems, circular radiators are of great interest. Many complex problems are simulated as vibrating pistons, such as in loudspeakers, and research continues to address this issue to this day [START_REF] Chiang | ŞVibration and sound radiation of an electrostatic speaker based on circular diaphragm[END_REF][START_REF] Ůů | ŞResonance mode and sound pressure produced by circular diaphragms of electrostatic and piezoelectric speakers[END_REF].

According to Pelesko and Bernstein [START_REF] Pelesko | ŞModeling MEMS and NEMS[END_REF], these proĄles of velocity are valid for static cases, but not for dynamic cases, since inertial effects change the equation of motion. Using the motionŠs equation where v(r 0 ) is the normal velocity of the panel. The normal velocity can be expanded in terms of structural modes and the power expressed in a matrix form as v = ¶φ♢ ⊺ ¶v♢ where the column vector ¶v♢ = [v 1 , v2 , . . . , vm ], the row vector containing the modes ¶φ(r 0 )♢ = [ϕ 1 (r 0 ), ϕ 2 (r 0 ), . . . , ϕ m (r 0 )], and ⊺ stands for the vectorŠs transpose

P(ω) = ¶v♢ H ωρ 0 4π S S ¶φ(r 0 )♢ ⊺ sin(k∥r -r 0 ∥) ∥r -r 0 ∥ ¶φ(r ′ 0 )♢ dS ′ dS ¶v♢ = ¶v♢ H [A(ω)] ¶v♢, (1.79) 
where [A(ω)] is commonly called Power Transfer Matrix.

Using the other deĄnition of the intensity, i.e. Eq. (1.37c), Maidanik [START_REF] Maidanik | ŞResponse of ribbed panels to reverberant acoustic Ąelds[END_REF] presented in 1962 an exhaustive study of baffled structures, including stiffeners, low-frequency limits as well as response to diffuse Ąelds. Even in the most simple cases, the derived formulas for radiated power and impedance lack canonical solutions. In order to calculate the acoustic radiation, one must deal with quadruple integrals, making the solution of this problem either semi-analytical or purely numerical. A decade later, Wallace [START_REF] Wallace | ŞRadiation resistance of a rectangular panel[END_REF][START_REF] Ůů | ŞRadiation resistance of a baffled beam[END_REF] determined the radiation resistance of beams and plates following MaidanikŠs work. Using Eq. (1.37c), Wallace found that the acoustic intensity equals

♣p♣ 2 ρ 0 c = 2ρ 0 c u m kL x L y π 3 rmn 2   cos sin α 2 cos sin β 2 [(α/mπ) 2 -1][(β/nπ) 2 -1]   2 , (1.80)
in which u m is the amplitude of vibration of the mode m, L x and L y are the dimensions of the rectangular panel; α = kL x sin θ cos ϕ and β = kL y sin θ sin ϕ; the angles θ and ϕ are the azimuth and elevation angles; cos(α/2) or cos(β/2) is used when m or n are odd integers, respectively and sin(α/2) or sin(β/2) when m and n are even integers, respectively. The modal radiation efficiency is therefore

σ mn = 64k 2 L x L y π 6 m 2 n 2 π/2 0 π/2 0    cos sin α 2 cos sin β 2 [(α/mπ) 2 -1][(β/nπ) 2 -1]    2 sin θdθdϕ. (1.81)
The modal radiation efficiency is a dimensionless parameter. It determines how efficiently a single mode radiates sound. The low frequency limit is proportional to the volume velocity displaced by each mode and the position of each lobe within the total surface. It hits its peak just after the coincidence frequency and decays asymptotically. The radiation efficiency is inversely proportional to the meansquare velocity [START_REF] Putra | ŞSound radiation from perforated plates[END_REF] and is used to convert a panelŠs vibration levels into radiated acoustic power by forming the four-factor product of panel mean-square normal velocity, panel area, characteristic acoustic impedance of ambient medium, and radiation efficiency [START_REF] Rumerman | ŞThe effect of Ćuid loading on radiation efficiency[END_REF].

Some physical trends have become well known since then: the radiated power is principally driven by the Ąrst mode of vibration, the piston-type mode, which drives monopole behavior for baffled cases and dipole behavior for unbaffled cases [START_REF] Atalla | ŞAcoustic radiation of an unbaffled vibrating plate with general elastic boundary conditions[END_REF]. Modal efficiency, the self-, and mutual-radiation efficiency inĆuence the radiation of sound. Self-radiation efficiency describes the radiation of each mode and mutual radiation efficiency describes how each mode affects the other mode. Many great references deal in detail with this 12 and these parameters will be treated exhaustively in Chapter 4.

The low-frequency behavior of baffled plates is governed by monopolar radiation. Zero-Ćow modes do not radiate well sound and radiation efficiency falls proportionally to damping at those frequencies. Radiation is then governed by corner, and edge modes, where larger variations occur based on point

1 | Introduction Rm•=H/(lu•[•), (6) 
where H, the average acoustic power radiated from one side of the panel, is found from excitations [START_REF] Putra | ŞSound radiation from rectangular baffled and unbaffled plates[END_REF]. Modal efficiency is affected by interference effects between traveling waves, causing amplitude variations before they reach peaks at frequencies where the acoustic wavenumber equals the plate wavenumber. The non-canceled volume of Ćuid displaced by the plateŠs mode comes from the edge and border of the plate. For instance, Williams [48, pp.77-83][78] proposes a method called supersonic intensity that illustrates where radiation originates (corners, edges, etc.). The method consists in utilizing only the supersonic components to calculate the power as these components are responsible for radiating sound into the far-Ąeld [START_REF] Cunefare | ŞThe minimum multimodal radiation efficiency of baffled Ąnite beams[END_REF].

H = .r • sinOdOd • (7) 
According to Snyder and Tanaka [START_REF] Snyder | ŞCalculating total acoustic power output using modal radiation efficiencies[END_REF], modal radiation efficiencies can be used to calculate the total acoustic power output. Li and Gibeling [START_REF] Li | ŞDetermination of the mutual radiation resistances of a rectangular plate and their impact on the radiated sound power[END_REF] proposed a method to calculate the mutual radiation efficiency based on the self-radiation efficiency; no further integration is required and it enables the calculation of the total acoustic power based on the self-efficiencies. It was found that sound power may be over or under-estimated if cross-modal couplings are not taken into account, which is always observed off-resonances.

For calculating the radiated power of Ćat plates, the Kirchhoff plate theory is Ąrst applied to solve the vibration problem. The classical plate theory ignores shear and rotational inertia and, according to Mindlin [START_REF] Mindlin | ŞInĆuence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates[END_REF], is only valid for thin plates vibrating at low frequencies. Honda et al. [START_REF] Honda | ŞRadiation efficiency of a baffled circular plate in Ćexural vibration[END_REF] demonstrated that, when the ratio thickness to width is less than 0.2, the difference is less than 1 decibel using both plate theories and observed only in the region k/k p < 1. Therefore, it is not necessary to use the ŞimprovedŤ plate theory instead of the ŞclassicalŤ plate theory for calculating the modal radiation, as Honda used to call Mindlin and Kirchhoff plate theories, respectively. While this brief overview of deĄnitions discusses a few classical cases, further research is still being done in the simplest case, i.e. the rectangular plate. Recently, Yu and Hopkins [START_REF] Yu | ŞReduced order integration for the radiation efficiency of a rectangular plate[END_REF], for example, proposed an adaptive quadrature integration for the radiation efficiency of rectangular cases.

In Chapter 4, we will see how to decompose the modal radiation efficiency of a rectangular plate, as the contribution from every lobe to the total radiated energy, using circular pistons. Although this may seem confusing at Ąrst, it can be useful for describing and understanding radiation of complexshaped plates, for which there are no analytical solutions. radiated power decrease (Fig. 1.11a), but its velocity remains relatively unchanged (Fig. 1.11b). The radiation from baffled structures is dominated by the Ąrst mode, but if this mode is not excited, its radiation is comparable to unbaffled cases [START_REF] Atalla | ŞAcoustic radiation of an unbaffled vibrating plate with general elastic boundary conditions[END_REF].

Boundary conditions

Different boundary conditions can affect sound radiation but Ąnding analytical solutions may be complicated for general boundary types. Atalla et al. [START_REF] Atalla | ŞAcoustic radiation of an unbaffled vibrating plate with general elastic boundary conditions[END_REF] presented a model to determine the acoustic radiation considering elastic boundary conditions. He ignored the pressure jump when calculating the plate velocity, obtaining inaccurate results at high frequencies [START_REF] Rdzanek | ŞThe acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials[END_REF].

Radiation efficiency is less affected by the plate boundary conditions in the unbaffled case than in the baffled case [START_REF] Putra | ŞSound radiation from perforated plates[END_REF]. Nélisse et al. [START_REF] Nélisse | ŞA generalized approach for the acoustic radiation from a baffled or unbaffled plate with arbitrary boundary conditions, immersed in a light or heavy Ćuid[END_REF] developed a method for Ąnding a set of functions that Ąts arbitrary boundary conditions on the plateŠs edge without using a contour spring, as in the works of Leissa [START_REF] Leissa | Vibration of Plates[END_REF], Berry et al. [START_REF] Berry | ŞA general formulation for the sound radiation from rectangular, baf-Ćed plates with arbitrary boundary conditions[END_REF], Berry [START_REF] Berry | ŞA new formulation for the vibrations and sound radiation of Ćuid-loaded plates with elastic boundary conditions[END_REF], since this can lead to some ill-conditioned matrices. In this case, the set of functions proposed was trigonometric functions and the method was called the Trigonometric Ritz Method (TRM). [START_REF] Arenas | ŞSound radiation efficiency of a baffled rectangular plate excited by harmonic point forces using its surface resistance matrix[END_REF] criticized MaidanikŠs [START_REF] Maidanik | ŞResponse of ribbed panels to reverberant acoustic Ąelds[END_REF] assumption that plates with clamped edges are twice as efficient as simply supported plates; while this assumption holds for higher modes, it does not hold for the Ąrst few modes. Gomperts [START_REF] Gomperts | ŞSound radiation from baffled, thin, rectangular plates[END_REF] revealed that plates with clamped edges do not always have higher radiation efficiency in the low-frequency range than plates with simply supported edges. It was also found that a plate with a combination of simply supported and clamped edges has about the same radiation efficiency (difference <1 dB) as a simply supported plate.

Arenas and Crocker

Added mass and damping effects

The imaginary part of the radiation impedance acts as added mass. The frequency shifts caused by Ćuid-added masses are not the same whether the plate is baffled or not [START_REF] Laulagnet | ŞSound radiation by a simply supported unbaffled plate[END_REF]. Baffles heavily inĆuence propagating waves at low frequencies, but only slightly those that are not propagating, and removing them decrease the added mass effect a little [START_REF] Nélisse | ŞA generalized approach for the acoustic radiation from a baffled or unbaffled plate with arbitrary boundary conditions, immersed in a light or heavy Ćuid[END_REF]. Generally, only the real part of the impedance is evaluated since it governs the power radiated into the far-Ąeld [START_REF] Nélisse | ŞA generalized approach for the acoustic radiation from a baffled or unbaffled plate with arbitrary boundary conditions, immersed in a light or heavy Ćuid[END_REF].

The imaginary part of the radiation impedance translates into an extra damping term [START_REF] Levine | ŞA note on the acoustic power output of a circular plate[END_REF][START_REF] Nicolas | ŞVibrations et rayonnement de plaques complexes en Ćuide léger et en Ćuide lourd[END_REF], resulting in an Şeffective dampingŤ parameter. 

Acoustic coupling

There are two types of coupling involved in the radiation of vibrating structures: mechanical and acoustic coupling. A mode-coupling occurs when vibrations of one mode (letŠs say at its resonance frequency) affect mechanically another mode. Acoustic coupling is due to the presence of Ćuid around the structure. The pressure generated by the vibration of one mode affects the vibration of another. This phenomenon is called cross-modal acoustic coupling and is described by mutual radiation impedances. Generally, this is important for structures vibrating in heavy Ćuids (e.g. a plate vibrating in water). Acoustics and dynamics must be therefore studied simultaneously [START_REF] Atalla | ŞReview of numerical solutions for low-frequency structural-acoustic problems[END_REF]. According to Rumerman [START_REF] Rumerman | ŞThe effect of Ćuid loading on radiation efficiency[END_REF], calculating the radiation efficiency without taking into account the Ćuid loading may result in overestimation of the radiated power when the Ćuid loading is not light, such as a plate vibrating in water. In rectangular plates, analytical solutions are available for the self and mutual resistances [96, Eqs. ( 35)-( 38)]. Keltie and Peng [START_REF] Keltie | ŞThe effects of modal coupling on the acoustic power radiation from panels[END_REF] demonstrated that modal coupling is negligible when a panel is under resonance excitation or is driven at high frequencies. However, at low frequencies or under off-resonance excitation, modal coupling may play a signiĄcant role. When both modes are slow (k m /k 0 ≫ 1, k n /k 0 ≫ 1), odd modes radiate more efficiently than even modes since odd modes create two in-phase monopoles at the ends [START_REF] Levine | ŞA note on the acoustic power output of a circular plate[END_REF]. Radiated coupling occurs at non-resonance frequencies, so the modal coupling can be totally ignored without affecting radiated power signiĄcantly. According to Skudrzyk [START_REF] Skudrzyk | Simple and Complex Vibratory Systems[END_REF], if more than one plate mode is excited, the total sound power will not equal the sum of the individual sound powers. Nélisse et al. [START_REF] Nélisse | ŞA generalized approach for the acoustic radiation from a baffled or unbaffled plate with arbitrary boundary conditions, immersed in a light or heavy Ćuid[END_REF] stated that the intermodal radiation impedance coefficients can be safely neglected only when the Ćuid is considered to be ŞlightŤ, regardless of the excitation position. As a rule of thumb, a light Ćuid can be considered when the ratio ρ 0 /kρ s ≪ 1 [START_REF] Tao | ŞSound radiation of a thin inĄnite plate in light and heavy Ćuids subject to multi-point excitation[END_REF], where ρ s is the surface density of the plate. Modal coupling in air has a negligible effect on the baffled problem. Modal coupling in water, on the other hand, is signiĄcant, including small errors in the velocity but large errors in the acoustic radiated power. As the ĆuidŠs density increases, loading effects cannot be described by a simple added mass effect or by a radiation impedance [START_REF] Mattei | ŞSound radiation by baffled and constrained plates[END_REF].

Li and Gibeling [START_REF] Li | ŞDetermination of the mutual radiation resistances of a rectangular plate and their impact on the radiated sound power[END_REF] correctly observed that after the coincidence frequency, the mutual-radiation resistance decays with frequency. Due to this, it can be safely assumed that a cross-modal coupling between two modes can be ignored when they are both acoustically fast. It was Cremer and Heckl [41, pp. 327-331] who noted that by integrating power and velocity over all possible force positions, average values could be determined. As a result of this assumption, the Equipartition theorem is implicated, and in the summation of the total power, the cross terms (i.e. those due to modal coupling) disappear as a consequence of the orthogonality of the modal eigenfunctions. Xie et al. [START_REF] Xie | ŞThe radiation efficiency of baffled plates and strips[END_REF] developed further this concept for simply supported plates and strips.

In this mémoire, we will apply this method, mathematically equivalent to statistical values, to calculate radiation from structures. This approach will be used in Chapter 4 to describe average values of radiation from complex-shaped plates, and for plates with localized modes in Chapter 5. Since Ćuid couples the modes, we can assume that it may also couple localized modes, but we will not consider these effects. Our study will only consider vibrating structures in light-Ćuids.

Effects of damping

It is usually assumed that structural damping is homogeneously distributed across the spectrum. Thus, eigenvalue problem is generally solved without considering damping, so it is possible to solve a system in which the operator is self-adjoint, leading to real positive eigenvalues and real eigenfunctions. Then, damping is included after the solution of the problem, as a complex Young modulus, complex stiffness, or complex eigenvalue. In the presence of a non-homogeneous distribution of damping, complex eigenfunctions appear in the system, meaning that in addition to stationary waves, traveling waves are also present. According to Unruh et al. [START_REF] Unruh | ŞSound Radiation Properties of Complex Modes in Rectangular Plates: A Numerical Study[END_REF], vibration points of complex modes do not pass through their minima and maxima at the same time, and the minimum strain energy is greater than zero. In this manner, complex modes are distinguished from real modes in which the minimum strain energy is zero [START_REF] Koruk | ŞA novel deĄnition for quantiĄcation of mode shape complexity[END_REF].

Using energy based methods, Kou et al. [START_REF] Kou | ŞRadiation efficiency of damped plates[END_REF] demonstrated that a viscoelastic damping layer attached to a plate could increase radiation efficiency. This is due to the fact that damping treatment reduces the plateŠs response signiĄcantly while having a minimal effect on the radiated sound. Radiation efficiency is not inĆuenced by the structural loss factor above the critical frequency. Radiation efficiency is proportional to the structural loss factor below the critical frequency and inversely proportional to the square root of the structural loss factor at the critical frequency. A number of factors inĆuence sound radiation, such as the order of the structural mode, the ratio and direction of the traveling waves, and the ratio and direction of the traveling waves [START_REF] Unruh | ŞSound Radiation Properties of Complex Modes in Rectangular Plates: A Numerical Study[END_REF]. Several groups of modes were shown to be capable of signiĄcantly increase their modal radiation capability below the coincidence frequency. In contrast to the acoustic radiation from the conventional fundamental mode (1, 1), mode (2, 1) exhibits a remarkable increase in radiation abilities below the critical frequency of nearly 10 dB in UnruhŠs work [START_REF] Unruh | ŞSound Radiation Properties of Complex Modes in Rectangular Plates: A Numerical Study[END_REF]. Thus, the mean Ćow of a dipole becomes different from zero in presence of damping, which creates a residual monopole.

Radiation efficiency of structural modes below the critical frequency is affected by the eigenvectorŠs complexity. For instance, it is signiĄcantly enhanced in modes with even orders in the main direction of traveling waves. Oddly ordered modes, in the main direction of travel, have a slight reduction a) Zero-Ćow cancellation of Ćexural waves on inĄnite plates.

Top: without damping. Bottom: with damping. wave ratio (SWR) e it is demonstrated that spatial distribution of travelling wave components is nearly constant. The characterisation of calculated complexm ode shapes in terms of modal radiation efficiency, distribution of acoustic intensity and sound field directivity shows, that travelling wavesh avev arying influence on important acoustic indicators, concerning different groups of modes.

According to these results, structural modes with odd order in main direction of travelling wavess lightly decrease and modes with even order significantly increase their radiation efficiency. Whereas odd order modes are slightly affected almost in the entire frequencyr ange belowc oincidence, the influence on even order modes is focussed on very lowf requencies. This means that especially plates with small dimensions and loweigenfrequencies (low stiffness and thickness)can increase their sound radiation at even order resonances. The reason for this observation is as ignificant change in volume velocity and therefore am odified coupling to the first radiation mode, which results in as ignificant variation of sound radiation properties.

Analysing spatial distribution of far-field intensity,t he first study also indicates that travelling bending wavesi n rectangular plates considerably disturb near-field acoustic in radiation efficiency. In spite of attributing non-proportional damping to modal complexity, most non-proportional damping systems exhibit modes that are almost real, with the degree of complexity being determined rather by the characteristics of the system than by the damping value itself [START_REF] Imregun | ŞComplex Modes -Origins and Limits[END_REF]. Inhomogeneous damping distributions in rectangular plates results in traveling waves that negatively impact sound radiation [START_REF] Unruh | ŞParametric Study of Sound Radiation Properties of Complex Vibration Patterns in Rectangular Plates using an Analytical Model[END_REF]. However, non-proportional damping generally leads to signiĄcantly complex modes only when some of these modes are close to their natural frequencies [START_REF] Imregun | ŞComplex Modes -Origins and Limits[END_REF]. Finally, the amateur luthier may Ąnd it useful to know that small-scale damping variations can cause complex structural modes to appear on a guitarŠs top plate [START_REF] Torres | ŞComplex modes of vibration due to small-scale damping in a guitar top-plate[END_REF].

| Semi-analytical methods for calculating the radiated power

Elementary radiators, Acoustic Radiation Resistance Matrix [R] and radiation modes

Essentially, elementary radiators result from discretizing the total structureŠs surface S into N R equalsized rectangular sections [START_REF] Elliott | ŞRadiation modes and the active control of sound power[END_REF]. In analogy with Eq. (1.79), the radiated power is

P(ω) = S 2N R Re ¶v e ♢ H [Z] ¶v e ♢ = ¶v♢ H [Ψ] H [R][Ψ] ¶v♢.
(1.82)

The velocity vector, through eigenfunction expansion, is represented in a matrix form as ¶v e ♢ = [Ψ] ¶v♢, in which matrix [Z] is the impedance matrix. The mutual impedance between each pair of radiators is then calculated as if they were point sources with volume velocity proportional to each radiatorŠs surface. Assuming each radiator to be of the same size, matrix [R] would be a Toeplitz matrix. This allows reducing the matrix size, which grows as the square of the number of elements. The advantage of using equally-sized radiators is that computation speed is greatly improved, but the shape of the structure is limited to simple shapes. When the elements are not of the same size, the matrix becomes a symmetric matrix containing mutual impedances at off-diagonal entries and self-impedance components at diagonal entries. It is possible also to use monopoles placed at the center of each radiator and assign them the volume Ćow of each section [41, p. 512]. The monopole approximation is particularly useful at row frequencies, but when frequencies increase, it becomes ineffective. In order to address this issue, Hashimoto [START_REF] Hashimoto | ŞMeasurement of sound radiation efficiency by the discrete calculation method[END_REF] proposes a method in which each elementary radiator is treated as a circular piston. HashimotoŠs method is in accordance with StepanishenŠs Ąndings [START_REF] Stepanishen | ŞEvaluation of mutual radiation impedances between circular pistons by impulse response and asymptotic methods[END_REF] and the radiation matrix is expressed as self and mutual components of the pistonŠs impedance. This is known as the Direct Calculation Method (DCM). It was possible to accomplish this because of the circular symmetry of the pistons, which is

| Introduction

Structural modes

Elementary radiators

With vibration modes

P(ω) = {v} H [A(ω)]{v} P(ω) = {v} H [Ψ] H [R][Ψ]{v} Eigen-decomposition [A] = [P] ⊺ [Ω][P] [R] = [Q] ⊺ [Λ][Q] P(ω) = {v} H [P] ⊺ [Ω][P]{v} P(ω) = {ve} H [Q] ⊺ [Λ][Q]{ve} { b} = [P]{v} {ŷ} = [Q]{ve} With radiation modes P(ω) = { b} H [Ω]{ b} = N n=1 Ωn| bn| 2 P(ω) = {ŷ} H [Λ]{ b} = N R r=1 Λr|ŷr| 2
Table 1.1. A summary of the calculation of radiated power using structural and radiation modes.

not possible with square pistons. Hashimoto used DCM to measure the radiation resistance of various types of plates. The radiation resistance matrix has become a popular alternative to BEM methods for calculating radiation from baffled structures assuming weak light-Ćuid coupling [START_REF] Bai | ŞEstimation of sound power of baffled planar sources using radiation matrices[END_REF]. In these cases, vibration and radiation problems are decoupled, and only the velocity Ąeld is used as an input. [START_REF] Arenas | ŞSound radiation efficiency of a baffled rectangular plate excited by harmonic point forces using its surface resistance matrix[END_REF]. Nevertheless, the auto-spectrum of the normal velocity at the center point of each element alone is not sufficient to determine the sound power radiated from the plate; the phase must also be taken into consideration, according to Kozupa and Kolusz [START_REF] Kozupa | ŞAcoustic radiation efficiency parameter in assessment of transformer noise[END_REF] and Berkhoff [START_REF] Berkhoff | ŞSensor scheme design for active structural acoustic control[END_REF]. Since real and imaginary parts of [Z] act as additional masses and damping, this approach can also be applied to solve coupled problems [START_REF] Tarazaga | ŞVibro-acoustics of a pressurized optical membrane[END_REF][START_REF] Ůů | ŞExperimental validation of the vibro-acoustic model of a pressurized membrane[END_REF][START_REF] Amine | ŞContrôle du rayonnement acoustique de membranes structurées[END_REF] The main disadvantage of the ARM is its size. It requires the square of the number of elements N 2 R for every frequency of interest. Matrix [R] size is determined by the grid size of the plate, which accuracy depends on the frequency of interest. In his proposal, Hashimoto suggested a grid spacing smaller than a half wavelength at the critical frequency, while Kim and Park [START_REF] Kim | ŞCalculation and reduction of sound radiation from a thin plate structure excited by complex inputs[END_REF] proposed a coarser grid of about ka < 0.2 within the frequency band of interest.

Based on the ARM, it is possible to calculate the radiation efficiency as

σ = 1 ρ 0 cS ¶v e ♢ H [R] ¶v e ♢ ¶v e ♢ H ¶v e ♢ , ( 1.83) 
which is actually a RayleighŠs quotient [START_REF] Cunefare | ŞThe minimum multimodal radiation efficiency of baffled Ąnite beams[END_REF]. Lee and Singh [START_REF] Lee | ŞAnalytical formulations for annular disk sound radiation using structural modes[END_REF] demonstrated that the minimization of radiation efficiency is essentially an eigenvalue problem, which is also identical to RayleighŠs quotient. One compelling reason for studying the radiation matrix is that it is a symmetric real square matrix. It is possible, therefore, to perform an eigenanalysis of the matrix, whose eigenvectors are radiation modes Λ r and eigenvalues are radiation efficiencies ŷr (refer to Table 1.1) [START_REF] Arenas | ŞSound radiation efficiency of a baffled rectangular plate excited by harmonic point forces using its surface resistance matrix[END_REF][START_REF] Elliott | ŞRadiation modes and the active control of sound power[END_REF][START_REF] Naghshineh | ŞMaterial tailoring of structures to achieve a minimum radiation condition[END_REF][START_REF] Naghshineh | ŞA design method for achieving weak radiator structures using active vibration control[END_REF][START_REF] Cunefare | ŞThe radiation efficiency grouping of free-space acoustic radiation modes[END_REF][START_REF] Maury | ŞAnalytic solutions of the radiation modes problem and the active control of sound power[END_REF] In this way, the radiated power can be expressed in terms of the independent contributions of each radiation mode.

Expressing the radiated power in this formulation has some useful advantages but also some disadvantages too. Starting from the latter, an eigen-decomposition of the matrix [R] is required for every single frequency of interest for the radiation problem, which can be computationally very expensive. By contrast, the advantage of matrix [R] is that it only depends on geometry, which means that it can be calculated once, as well as the eigen-decomposition. In this way, it be can stored and used later for different modes, excitations, material properties, boundary conditions, or velocity proĄles.

Naghshineh et al. [START_REF] Naghshineh | ŞMaterial tailoring of structures to achieve a minimum radiation condition[END_REF] used this formulation to distinguish weak and strong radiators. A strong radiator falls in the supersonic region whereas a weak radiator in the subsonic region. Therefore, the structure is optimized as a weak radiator which minimizes the radiation of sound. Elliott and Johnson [START_REF] Elliott | ŞRadiation modes and the active control of sound power[END_REF] employed this approach to minimize the contribution of radiating modes to the power output. A radiation modeŠs radiation efficiency is proportional to the eigenvalues in the radiation resistance matrix. As long as the excitation frequency is sufficiently low, few radiation modes can contribute signiĄcantly to the radiation, if the panel size is small compared to the acoustic wavelength. In this sense, the piston and rocking modes are the most efficient radiation modes.

While optimization methods tend to focus on lowering only one frequency of radiation, it is generally the case that the rest of frequencies are also lowered and many works deal with this problem [START_REF] Arenas | ŞSound radiation efficiency of a baffled rectangular plate excited by harmonic point forces using its surface resistance matrix[END_REF][START_REF] Berkhoff | ŞSensor scheme design for active structural acoustic control[END_REF]. It is possible to control one frequency by using the inverse method, that is, by varying the shape of the structure, its mass or stiffness. As a result, the resonance frequency will be displaced. It is possible also to minimize the average mean-square surface velocity through structural optimization in order to minimize the radiated power only if the acoustic wavelengths are smaller than the structural wavelengths, in which case the radiation impedance approaches the plane wave impedance everywhere [START_REF] Junger | Sound, Structures, and Their Interaction[END_REF], but at low frequencies this does not hold and one must perform acoustic based optimizations [START_REF] Wodtke | ŞSound power minimization of circular plates through damping layer placement[END_REF].

Using an analogy to spatial Ąlters, Maury and Elliott [START_REF] Maury | ŞAnalytic solutions of the radiation modes problem and the active control of sound power[END_REF] developed analytical solutions to the radiation modes problem. Concentration problems involve the determination of which band-limited functions in a domain possess the greatest concentration of energy. Radiation modes are analogous to the eigenfunctions that solve the concentration problem and the goal of this problem is to determine a set of independent optimal velocity distributions on the surface of a planar structure, i.e. the radiation modes, that are the most accurate representation of the radiated power.

Radiation modes do not depend on the structureŠs properties, but rather on its acoustics. In 2015, Ji and Bolton [START_REF] Ji | ŞSound power radiation from a vibrating structure in terms of structure-dependent radiation modes[END_REF] introduced the concept of structure-dependent radiation modes. Contrary to acoustic radiation modes (a-modes), which are calculated by decomposing the ARM matrix, structural radiation modes (s-modes) rely on the structure. The number of s-modes generated is generally lower than the number of a-modes, because the former relies on the number of structural modes involved in the vibration, whereas the latter relies on the number of segmented elemental radiators. Thus, the need for large data storage can be greatly reduced. Studies have shown that radiation modes perform well in the near-Ąeld. On the basis of the theory of radiation modes, Kaizuka and Nakano [START_REF] Kaizuka | ŞRadiation modes and acoustic Ąeld conĄned near acoustic sources[END_REF] propose a method for driving loudspeaker arrays in order to increase the reactive-to-active ratio.

In light of this, developing a formulation based on radiation modes would provide an interesting approach for treating localized modes, since radiation modes are directly related to the structureŠs radiation efficiency.

Equivalent sources

According to HuygensŠs principle, a front-wave can be decomposed into multiple secondary sources. It is this concept that is at the heart of multipole expansion and some other equivalent source techniques [START_REF] Koopmann | ŞA method for computing acoustic Ąelds based on the principle of wave superposition[END_REF]. Using this principle, the radiated energy can be described as a sum of the radiated energy by equivalent sources for a given vibrating structure. Multipole expansion, in essence, is a Taylor development or the free-Ąeld GreenŠs function, and is a wide used method employed to reduce the order of magnitude in high demanding computation tasks (see the approximation methods in [START_REF] Fritze | ŞEstimation of Radiated Sound Power: A Case Study on Common Approximation Methods[END_REF]). Using multipole expansion, it is possible to derive higher-order n-poles from simple sources [14, p. 312]. The GreenŠs function is developed as a Taylor series in the lumped parameter method as well [START_REF] Fahnline | ŞA lumped parameter model for the acoustic power output from a vibrating structure[END_REF][START_REF] Ůů | ŞNumerical implementation of the lumped parameter model for the acoustic power output of a vibrating structure[END_REF], used to calculate the radiated power from structures.

Among the other methods, Cremer and Heckl [41, p. 510] employed an array of point sources to construct equivalent plane radiators in order to describe modal radiation. With spheroidal sources, Williams et al. [START_REF] Williams | ŞAcoustic Radiation from a Finite Cylinder[END_REF] described the radiation of a cylinder of Ąnite length. When a radiating structure lies far from a sphere, Ochmann [START_REF] Ochmann | ŞCalculation of sound radiation from complex structures using the multipole radiator synthesis with optimized source locations[END_REF] prefers to use multipole expansion, but the optimal position of the sources remains unknown. Bouchet [START_REF] Bouchet | ŞCalcul du rayonnement acoustique de structures à partir de données vibratoires par une méthode de sphère équivalente[END_REF] presented a model for constructing equivalent sources that contain more information about a given structureŠs radiation, which allows the reduction of unknowns. Using spherical harmonics, Liu et al. [START_REF] Liu | ŞCalculation of acoustic radiation modes by using spherical waves and generalized singular value decomposition[END_REF] generalized the multipole expansion for structures vibrating in their acoustic radiation modes. Equivalent sources are particularly relevant since they can capture the essence of radiation. They are able to provide accurate results, reduce computation time, and provide also a physical interpretation of the contribution of independent sources to radiation. It is for this reason that we are interested in analyzing localized modes with equivalent sources.

Localization in membranes dale al bombo para tocar la cumbia porque en todo el pueblo se escucha la bulla

Latin Brothers, 1990 This chapter is an extended version of the paper entitled Localized modes prediction in a membrane with non-uniform tension from the quasi-static measurement of its localization landscape, published in the Journal of Sound and Vibration, on October 2021.

In this chapter, an experimental methodology is presented in order to extract the dynamic properties of localized modes of a complex membrane. By applying the localization landscape theory, the resonance frequencies and regions of the localized modes can be obtained experimentally. This is implemented by a quasistatic measurement of the membrane deformation, and is performed without the knowledge of its tension Ąeld or any hypothesis about its homogeneity (uniform or non-uniform). The results are compared to Finite Element simulations and modal measurements made in vacuum conditions. 

| Introduction

Localization is a term that may refer to different concepts: the process of identifying the location of a speciĄc measurable quantity, i.e. source localization; or the energy concentration within a system. The latter is achievable by focalizing energy into a point, called focal point and is the main interest of this chapter. This can be obtained by changing the geometry of reĆectors or the properties of the propagation medium, as seen in lenses [START_REF] Lefebvre | ŞExperiments on MaxwellŠs Ąsh-eye dynamics in elastic plates[END_REF] and parabolic antennas, or by the convergence of one or multiple sources into a zone, as used in lithotripsy [START_REF] Segura | ŞPercutaneous Lithotripsy[END_REF]. Reversal propagation techniques [START_REF] Fink | ŞTime reversal of ultrasonic Ąelds. I. Basic principles[END_REF] are other means for energy localization. When dealing with standing waves, localization is used to achieve high levels for acoustic levitation [START_REF] Yarin | ŞOn the acoustic levitation of droplets[END_REF][START_REF] Baudoin | ŞFolding a focalized acoustical vortex on a Ćat holographic transducer: Miniaturized selective acoustical tweezers[END_REF], acoustic tweezers [START_REF] Shi | ŞAcoustic tweezers: Patterning cells and microparticles using standing surface acoustic waves (SSAW)[END_REF] or nonlinear ultrasound demodulation [START_REF] Yoneyama | ŞThe audio spotlight: An application of nonlinear interaction of sound waves to a new type of loudspeaker design[END_REF].

The present chapter deals with localized vibration modes. Commonly, in a complex structure, when localized vibrations are presented, they can be seen as local modes, existing only in small areas of the structure, in opposition to global modes, involving the whole structure. Local modes or more precisely localized modes are a common phenomenon studied in vibrations, for example when performing sub-structuring processes.

As a general physical phenomenon, localized waves have been studied in optics, electromagnetism, acoustics and many physical domains. Strong or Anderson localization [4] and weakly localized waves have special attention in optics and quantum mechanics, due to the disordered media, but also can be found in mechanical waves. Multiples experiments have been carried out such as the work of He and Maynard [START_REF] He | ŞDetailed measurements of inelastic scattering in Anderson localization[END_REF], where localized states were observed in a complex wire; Even et al. [START_REF] Even | ŞLocalizations in Fractal Drums: An Experimental Study[END_REF] implemented the Ąrst experiment with localization in fractal drums, showing the presence of both strong and weak localization; Chulkin et al. [START_REF] Chulkin | ŞWeak localization of low-frequency sound in a quasi-one-dimensional crystal[END_REF] revealed the appearance of weak localization and its implications on the damping coefficient in a dielectric chain crystal. More recently, Filoche and Mayboroda [START_REF] Filoche | ŞStrong Localization Induced by One Clamped Point in Thin Plate Vibrations[END_REF] exposed that even a simple clamped point in a thin plate can induce strong localization.

The work of Filoche and Mayboroda led to an important discovery: both Anderson and weak localization are representations of the same phenomenon and can be uniĄed by the landscape of localization theory [START_REF] Filoche | ŞUniversal mechanism for Anderson and weak localization[END_REF]. The landscape of localization exposes the presence of localized regions, where the modes can be present, by splitting the whole structure into several regions determined exclusively by the geometry and the operator which describes the motion (Laplacian, Bi-Laplacian or Hamiltonian operators). Lefebvre et al. [START_REF] Lefebvre | ŞOne Single Static Measurement Predicts Wave Localization in Complex Structures[END_REF] showed that one static measurement can provide low-frequency information about the dynamic behavior of a complex plate: geographical placement of the localized modes, their eigenfrequencies and their localized state given by the network of valley lines. In the domain of structural vibrations, and mainly in vibroacoustics, plates and shells have been the subject of many works (see books of Fahy and Gardonio [START_REF] Fahy | Sound and Structural Vibration -2nd Edition[END_REF], Norton and Karczub [START_REF] Norton | Fundamentals of Noise and Vibration Analysis for Engineers[END_REF], Lesueur [47], Soedel [START_REF] Soedel | Vibration and Sound[END_REF], for instance), while membranes dynamics is commonly Ąrst introduced because of its relative simplicity in vacuum conditions [14]. This is the case when uniform tension and density are considered and this assumption does not hold anymore when a non-uniform tension is presented. Much of the research dealing with membranes is centered on the musical domain [START_REF] Rossing | ŞAcoustics of drums[END_REF][START_REF] Worland | ŞDrum tuning: An experimental analysis of membrane modes under non-uniform tension[END_REF][START_REF] Ůů | ŞNormal modes of a musical drumhead under non-uniform tension[END_REF], although membranes are widely present, from the auditory system [START_REF] Christian | ŞEffects of air loading on timpani membrane vibrations[END_REF] to room acoustics [START_REF] Calder | ŞNew research on low-frequency membrane absorbers[END_REF]. To the knowledge of the authors, complex membranes presenting localized modes have been little studied, except in the case of fractal boundary conditions [START_REF] Even | ŞLocalizations in Fractal Drums: An Experimental Study[END_REF].

The aim of this chapter is to show how the landscape of localization enables the study of localized modes in a heterogeneous membrane without having knowledge of its tension Ąeld. Even if the motion of a membrane with uniform tension is a well-known problem governed by the wave equation, imposing a uniform tension Ąeld is an arduous task and cannot always be guaranteed. In this sense, conĄgurations with uniform and non-uniform tension Ąelds are presented in this work, and a complete methodology for extracting the dynamic properties with one quasi-static measurement using laser vibrometry is exhibited. The chapter is organized as follows: Ąrst, the theoretical background and the landscape of localization theory applied to a heterogeneous membrane are presented. Then, simulations of the landscape function and modal decomposition are exposed to illustrate the general characteristics of the localization landscape. An experimental method is then established to measure the landscape function in a membrane having localized modes. Finally, the results from the landscape of localization theory are compared to experimental modal analysis made in vacuum conditions.

| Theory

| Membrane dynamics

The tension Ąeld on a membrane is characterized by the symmetric tensor τ (r), where τ ij are the components of the tensor and ij, being x or y as the tension is in the plane, and respecting a valid tension Ąeld [START_REF] Wagner | ŞEbene blechwandträger mit sehr dünnem stahlblech (Flat sheet metal girders with very thin sheet web)[END_REF][START_REF] Kondo | ŞThe Geometry of the Perfect Tension Field[END_REF]. The vertical displacement w of a heterogeneous membrane with surface density ρ s (r) can be derived by taking the small displacements hypothesis, where rotations θ x , θ y on the planes (x, z) , (y, z) are approximated as θ x ≈ ∂w/∂x and θ y ≈ ∂w/∂y. Exposing the equilibrium of forces and projecting them onto the z plane [13] results in

ρ s (r) ∂ 2 w ∂t 2 -div τ (r) • grad (w) = 0. ( 2.1) 
In the case of a homogeneous membrane under a uniform tension Ąeld, the tension Ąeld becomes isotropic and the tensor τ (r) can be reduced to τ = T • ✶, ✶ being the identity matrix and T the uniform tension value on the membrane. Taking this into consideration

T div grad (w) = T ∆w = ρ s ∂ 2 w ∂t 2 , ( 2.2) 
and thus

∂ 2 w ∂t 2 -c 2 ∆w = 0. ( 2.3) 
where c = T /ρ s is the speed of sound in the membrane and ∆ the Laplace operator.

| The eigenvalue problem

The displacement can be expressed as an inĄnite sum of orthogonal basis functions, determined by the eigenvalue problem. In a modal decomposition, this results in mode shapes ϕ p and associated resonance frequencies ω where the spatial operator L = -ρ s (r) -1 ∇ • τ (r) • ∇ in the case of a heterogeneous membrane, which can be simpliĄed as L = -c 2 ∆ for a homogeneous membrane.

Using the separation of variables method, the mode shapes of a circular membrane can be expressed, in polar coordinates r, θ, in terms of BesselŠs functions of the Ąrst kind J m ϕ mn (r, θ) = J m (k mn r)e ±jmθ = J m (k mn r)e jmθ , m = 0, ±1, ±2... and n = 1, 2 . . . , (2.5) which form an orthogonal basis for L 2 (Ω) if m ∈ ) + . The eigenvalues are

k mn = χ mn a , ( 2.6) 
where χ mn are the zeros of J m and a the membraneŠs radius.

| Quasi-static limit

When a membrane is subjected to a uniform harmonic pressure, Eq. (2.1) becomes

ρ s (r) ∂ 2 w ∂t 2 -div τ (r) • grad (w) = P cos(ωt). (2.7)
where ω is the excitation frequency and P is the amplitude of the imposed pressure. Tensor τ is a rank 2 symmetric tension tensor whose components in the plane x, y are

τ = τ xx τ xy τ xy τ yy (2.8)
The separation of variables method is used to Ąnd the solution of Eq. (2.7)

w(x, y, t) = γ(t)X(x)Y (y).

(2.9)

In Eq. (2.7), ignoring the temporal dependence, the dot product τ • grad (w) is calculated as

τ • grad (w) =   τ xx X ′ (x)Y (y) + τ xy X(x)Y ′ (y) τ xy X ′ (x)Y (y) + τ yy X(x)Y ′ (y)   .
(2.10)

The divergence of Eq. (2.10) is

div τ • grad (w) = ∂ ∂x τ xx X ′ (x)Y (y) + ∂ ∂x τ xy X(x)Y ′ (y) + ∂ ∂y τ xy X ′ (x)Y (y) + ∂ ∂y τ yy X(x)Y ′ (y) = ∂τ xx ∂x X ′ (x)Y (y) + τ xx X ′′ (x)Y (y) + ∂τ xy ∂x X(x)Y ′ (y) + τ xy X ′ (x)Y ′ (y)+ ∂τ xy ∂y X ′ (x)Y (y) + τ xy X ′ (x)Y ′ (y) + ∂τ yy ∂y X(x)Y ′ (y) + τ yy X(x)Y ′′ (y) =τ xx X ′′ (x)Y (y) + τ yy X(x)Y ′′ (y) + 2τ xy X ′ (x)Y ′ (y)+ X ′ (x)Y (y) ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✿ ∂τ xx ∂x + ∂τ xy ∂y + X(x)Y ′ (y) ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✿ ∂τ yy ∂y + ∂τ xy ∂x , (2.11)
and it is a necessary condition for a valid tension Ąeld to exist (div (τ ) = 0) [START_REF] Wagner | ŞEbene blechwandträger mit sehr dünnem stahlblech (Flat sheet metal girders with very thin sheet web)[END_REF][START_REF] Kondo | ŞThe Geometry of the Perfect Tension Field[END_REF], i.e. a tension Ąeld allowing the static equilibrium of the membrane. Equation (2.11) simpliĄes to

div τ • grad (w) = τ xx X ′′ (x)Y (y) + τ yy X(x)Y ′′ (y) + 2τ xy X ′ (x)Y ′ (y).
(2.12)

Expressing the displacement in a modal expansion, the forced response results in

w = p P m p ϕ p cos(ωt) ω 2 p -ω 2 S ϕ p dS. (2.13)
The resonance frequency of the p mode is ω 2 p = κ p /m p , where κ p is the modal stiffness and m p the modal mass deĄned as

m p = S ρ s (r)ϕ 2 p dS, κ p = S ϕ p τ xx ∂ 2 ϕ p ∂x 2 + τ yy ∂ 2 ϕ p ∂y 2 + 2τ xy ∂ 2 ϕ p ∂x∂y dS.
(2.14)

The quasi-static regime is expected when the excitation frequency is small compared to the principal frequency, that is ω ≪ ω 0 . In Eq. (2.13), ω tend to zero and given that m p ω 2 p = κ p , the quasi-static regime tends to the static case, where no mass is involved

w ∼ p P k p ϕ p S ϕ p dS. (2.15)
In practice, when ω = ω 0 /10, the relative error between the quasi-static deformation and the static deformation is below 1%. Therefore, ten times below the Ąrst resonance frequency, quasi-static and static deformations are equivalent.

| Evaluation of the tension from the static deformation

To estimate the tension of a uniform membrane (see Section 2.4.4), we can derive a relationship between the tension and the maximum displacement of the membrane under static load. The static problem, according to Eq. (2.7), is -div τ (r) • grad (w) = P.

(2.16)

When a uniform tension Ąeld is assumed, the tension is independent of the operator, as stated in Eq. (2.2). By imposing Ąxed boundary conditions, Eq. (2.16) becomes a standard Poisson problem

-T ∆w = P in S w = 0 on ∂S.
(2.17)

We express the variables f = -P/T = const and w as eigenfunction expansions

f = m n F mn ϕ mn , w = m n
W mn ϕ mn .

(2.18)

Using the Poisson method, the coefficients can be calculated as

F mn = S f ϕ mn dS S ϕ 2 mn dS . (2.19)
The numerator has a solution that differs from zero when m = 0

S ϕ 0n dS = π -π a 0 J 0 (k 0n r)r dr dθ = 2π a λ 0n J 1 (k 0n ).
(2.20)

The denominator in Eq. (2.19) for m=0 is

S ϕ 2 0n dS = π -π a 0 J 0 (χ 0n r/a) 2 r dr dθ = πa 2 (J 1 (χ 0n )) 2
(2.21)

and coefficients for the series expansion of the solution of w are given by

W 0n = -F 0n k 0n = P T ∞ n=1 2a 2 (χ 0n ) 3 J 1 (χ 0n
) .

(2.22)

The static deformation under homogeneous pressure is then axis-symmetrical and is given by

w(r) = ∞ n=1 W 0n J 0 (χ 0n r/a), (2.23) 
Note that the homogeneous case of Eq. (2.15) is analogous to Eq. (2.23). Finally, by taking the maximum displacement w max of the membrane at r = 0, it can be seen that J m (r = 0) is equal to 0 when m ̸ = 0 on this point. Taking this into account, the tension of the membrane is directly related to the maximum displacement

w max = P T 2a 2 ∞ n=1 1 (χ 0n ) 3 J 1 (χ 0n ) . ( 2 

.24)

The residue theorem can be used to prove that the series presented in Eq. (2.24) converges

∞ n=1 1 (χ 0n ) 3 J 1 (χ 0n ) = 1 8 , ( 2.25) 
and the tension of the membrane directly relates to the maximal displacement

T = P w max a 2 4 .
(2.26)

| The landscape of localization

According to Filoche and Mayboroda [START_REF] Filoche | ŞUniversal mechanism for Anderson and weak localization[END_REF], the low-frequency behavior is fully described by the landscape of localization theory, summarized in the Dirichlet problem The landscape theory is a tool for investigating multiple localized modes in complex structures. The separation between each localized mode is marked by a network of valley lines. These valley lines are in fact the minima of the landscape function, the lowest gradient regions, and can be obtained by inverse Ćooding algorithms like the watershed algorithm [START_REF] Mahmoudi | ŞAnalyses of the Watershed Transform[END_REF]. The network of valley lines is frequencydependent and constrains the local displacement of the eigenmodes. Each eigenmode satisĄes the inequality [START_REF] Filoche | ŞUniversal mechanism for Anderson and weak localization[END_REF] ♣

Lu = 1 in S u = 0 on ∂S, ( 2 
ϕ p ♣ ≤ ω 2 p u in S, (2.29) 
where ϕ p is normalized such that the maximum amplitude equals 1. When increasing the frequency, the valley will open, allowing the modes to exist beyond the initial localized state.

Based on the similarity of the landscape with the Ąrst localized modes, we can obtain an approximation to the eigenfrequencies of the i th localized mode in each sub-region D i of the landscape [START_REF] Lefebvre | ŞOne Single Static Measurement Predicts Wave Localization in Complex Structures[END_REF] 

ω i 0 ≈ (4/π)/ max(u i ).
(2.30)

| Simulations

To illustrate the application of the landscape theory to a membrane, a Ąnite element calculation of Eq. (2.27) is implemented in FreeFem++ [START_REF] Hecht | ŞNew development in FreeFem++[END_REF]. The subject of study is a circular membrane of radius a = 0.272 m1 (22 inches diameter). Null displacement conditions are applied to two areas within the domain in order to induce localization. The rectangular areas have dimensions of 36 mm by 16 mm. The rectangleŠs center are placed at the coordinates [0.02, 0.088] and [0.02, -0.088] considering the coordinate origin the membraneŠs center. Uniform tension (about 1892 N•m -1 ) and non-uniform tension Ąelds are simulated. For the last case, the tension Ąeld is established in order to respect valid tension Ąelds (div (τ ) = 0 [START_REF] Wagner | ŞEbene blechwandträger mit sehr dünnem stahlblech (Flat sheet metal girders with very thin sheet web)[END_REF][START_REF] Kondo | ŞThe Geometry of the Perfect Tension Field[END_REF]) and the components τ xx and τ yy of the tensor τ are established as linear functions of y and x, respectively. This results in a tension Ąeld varying from 250 N•m -1 to 750 N•m -1 for each coordinate. No shear tension was taken into account at this stage.

| Results

The results of the simulated landscapes are presented in Fig. 2.1 and the Ąrst four modes of the membrane in Fig. 2.2. The white lines represent the network of valley lines of the landscape function, and their superposition on modes, according to Eq. (2.29), provides insight into the strength of conĄnement of each mode. This will be explained more in detail in the experimental section. These lines follow the lowest gradient points, dividing the structure into two sub-regions where modes localize. It is seen that the area of the sub-region of each localized mode depends on the tension Ąeld. The red crosses mark the peak values in each of the two sub-regions and the amplitude of these peaks will be used, according to Eq. (2.30), to estimate the localized mode frequencies.

In both cases, it is clear that the two Ąrst membrane modes correspond to the two Ąrst localized modes in each sub-region. This behavior is changed in the fourth mode, where the modes appear differently. The resonance frequencies are well predicted by the landscape theory, with a difference of less than 5% (refer to Section 2.3.1). 
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Vacuum conditions

It is well known that, as the tension of a membrane increases, the coupling between membrane and air cavity becomes weaker. To determine the optimal experimental conditions for landscape and modal measurements, multiple tension values were tested. Figure 2.5 shows the evolution of the frequency of the Ąrst mode as a function of the pressure inside the cavity, for two dissimilar tension conditions around 700 N•m -1 and 2200 N•m -1 [calculated with Eq. (2.26)]. With higher tension values, the Ąrst modeŠs frequency converges faster. In fact, the normalized frequency (determined by 1/300 A.P.) exceeds 0.95 above 1/10 A.P. in contrast to 1/100 A.P. for the less tensed membrane. To minimize the effect of air loading, subsequent measurements will be performed at a pressure of 1/300 A.P. 

| Configuration of landscape measurements

The landscape function is determined by measuring the static deformation of a structure. Several techniques can be used for this purpose, including holographic interferometry [START_REF] Frejlich | ŞAdvances in real-time holographic interferometry for the measurement of vibrations and deformations[END_REF], electronic speckle pattern interferometry [START_REF] Yang | ŞReview of electronic speckle pattern interferometry (ESPI) for three dimensional displacement measurement[END_REF] and digital speckle pattern interferometry [START_REF] Kumar | ŞMeasurement of out-of-plane static and dynamic deformations by processing digital speckle pattern interferometry fringes using wavelet transform[END_REF]. These techniques, however, require specialized equipment. In this study, a quasi-static deformation method was used, which allows dynamic sensors to be used to measure the deformation. To ensure a uniform pressure load, the excitation frequency must be much smaller than the Ąrst vibration mode, so that the quasi-static regime approximates the static regime [as seen in Eq. (2.15)]. Under normal atmospheric pressure (∼ 1000 hPa), the cavityŠs Ąrst mode is around 120 Hz, while the membraneŠs Ąrst mode is expected to be above 100 Hz. We choose 12 Hz as the appropriate excitation frequency. The kick drum cavity is sealed at the back with a one inch plywood plate, where a six inches loudspeaker is mounted. The air cavity inside the drum will act as an intermediate medium to apply uniform pressure to the membrane, which can be monitored using a microphone (referenced by 4 on Fig. 2.6). The Ąrst pair of magnets is inserted into the cavity in the same plane as the membrane, and the second pair of magnets blocks the membrane on the other side without adding any static force. Using a Polytec PSV-400 scanning laser vibrometer, conĄgured in fast-scan mode, the displacement of the membrane is measured at 1013 points, averaging over 16 cycles, under harmonic acoustic excitation.

| Tensioning the membrane

Uniform tension

It is a challenging task to achieve a perfect uniform tension. Most musicians, for example, tune their instruments, even if the tension is not perfectly uniform, by adjusting the frequency pitch when kicking speciĄc parts of the membrane [START_REF] Scott | ŞDrum tuning bible[END_REF]. Others by using commercial tuners such as the Drum dial, which measures the deformation caused by its own load on the membrane. Chaigne [13] explains how to calculate the tension value using the deĆection of a small section of the membrane due to a load and gravity, but it requires static deformation measurements. Because of the low sensitivity of the torque-meter wrench and the manufacturing uncertainty, the imposed force on the tuning rods cannot ensure uniform tension. As described in the previous section, we use the quasi-static deformation of the circular membrane under a uniform load to achieve a circularly symmetric deformation and, therefore, a uniform tension. The method is illustrated in Fig. 2.8a through several measurements. By adjusting the tension rods surrounding the kick drum, the tension is adjusted between each step. The displacement is measured around seven concentric circles on the membrane; the positions of three of them are shown in Fig. 2.7a.

The Şmost uniformŤ tension state is determined after 14 tuning steps. As can be seen in Fig. 2.7b, three of the seven concentric circles used to tune the membrane are approaching zero standard deviation. This methodology has the disadvantage that it is difficult to target a speciĄc tension value due 
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| Uniform tension case

Following the iterative process and after the membrane has been tensed uniformly, the tension is calculated using Eq. (2.26) at 1890 N•m -1 . The magnets are then placed as shown in Section 2.4.3.

The cavity is airtight sealed, and a harmonic excitation of 12 Hz is generated by the loudspeaker. The acoustic pressure inside the cavity is 10.4 Pa.

The measured landscape is shown in Fig. 2.9. Two main lobes appear over the landscape, indicating two localized modes. The white lines represent the network of valley lines calculated by the watershed algorithm. This valley line divides the structure into two regions. The peak values of each region allows for approximating the frequencies of the localized modes according to Eq. (2.30) and are given in Table 2.2.

In addition, Fig. 2.10 shows the Ąrst four modes obtained by modal measurements. The effective valley networks are projected onto the modes based on Eq. (2.29). The valley lines tend to open when frequency increases, allowing the modes to extend. Valleys must not be mistaken for modal lines, but as a reference that guarantees the geographic limits of localized modes.

According to Table 2.2, the estimated frequencies differ by less than 2% and 4% from their measured values. A small difference of 3% in frequencies is observed between simulations and measurements in the uniform case. This is due to the difficulty of maintaining a perfectly uniform tension and of ensuring the exact position of the magnets. The landscape function provides a fairly good estimation of the localized modes frequencies, with a difference similar to the difference obtained by simulations. It is important to note that knowledge of tension is not required for the estimation.

| Non-uniform tension case

The tension Ąeld is relaxed on the left side of the membrane (see Fig. 2.8b), allowing for greater displacement there. As in the preliminary numerical test, the order of the modes is modiĄed. It is noteworthy that not only the fourth mode but also the second mode changed. The second mode is now localized on the same side of the membrane as the Ąrst mode, and the third mode corresponds to the mode on the right side. Despite this change, the landscape theory still identiĄes the Ąrst localized mode correctly. The landscape function predicts the frequencies of both localized modes well, showing the predictive ability of the landscape function regardless of the tension Ąeld, showing a difference of less than 4% for the second localized mode and less than 0.5% for the Ąrst localized mode.

Choosing a linear variation of the tension Ąeld without shear is insufficient to describe the behavior of the complex tension Ąeld in this experiment. Replicating such a non-uniform tension Ąeld would probably require a more complex tension Ąeld involving shear.

| Conclusion

To conclude, we demonstrate that the landscape function can be easily computed from the quasi-static deformation of a complex membrane. As a result of the quasi-static measurement of the landscape function, it is possible to determine the frequencies of localized modes in the membrane, regardless of the homogeneity of the tension Ąeld (uniform or non-uniform) or its strength (lower tension or higher tension).

A comparison of modal analysis with the landscape of localization theory shows a good agreement for membranes with uniform and non-uniform tension Ąelds. Both localized modes are well identiĄed by the landscape of localization with a difference of less than 5%.

In complex membrane structures, and by extension in other types of structures, the landscape function can be considered an effective tool to characterize localized modes. In the case of a membrane, direct measurements of the landscape function allow us to ignore the shape and value of the tension Ąeld and still recover the modal frequencies precisely.

Even in complex cases, such as a membrane under non-uniform tension, the landscape function indicates the Ąrst localized modes in each sub-region, constrained geographically by the valley lines network.

Radiation of pistons with arbitrary phases, positions and sizes

The totality is not, as it were, a mere heap, but the whole is something besides the parts; there is a cause.

Aristote, fourth century BC

This chapter is an extended version of the paper entitled Radiation efficiency of a distribution of baffled pistons with arbitrary phases, published in The Journal of the Acoustical Society of America, on August 2022.

The radiation resistance and efficiency of a collection of circular pistons, randomly placed on a plane and vibrating with arbitrary phases, are expressed as a combination of the self-and mutual-radiation components.

We use the Ąrst product or bridge theorem to construct the directivity pattern of this type of arrangement and the radiation properties are calculated according to BouwkampŠs impedance theorem. To illustrate the versatility of our approach, we refer to special cases for symmetric arrangements, for example, to compare with the modal radiation efficiency in structures having ŞregularŤ modal patterns. 

| Introduction

The acoustic radiation impedance of a circular piston is a fundamental problem in acoustics and has been well-documented over the last two centuries. Early studies in optics describing the passage of plane waves through circular apertures by Babinet [START_REF] Babinet | ŞMémoires dŠoptique météorologique, (Memoirs of meteorological optics)[END_REF], Rayleigh [START_REF] Rayleigh | ŞOn the passage of waves through apertures in Plane screens, and allied problems[END_REF] and Bouwkamp [START_REF] Bouwkamp | ŞTheoretical and numerical treatment of diffraction through a circular aperture[END_REF] were used later to deĄne the radiation of a baffled piston. The Rayleigh integral [START_REF] Rayleigh | The Theory of Sound[END_REF], as a consequence of these previous studies, has become a widely used tool to express not only the radiation of a circular piston in an inĄnite baffle, but to approximate the radiation of loudspeakers in enclosures. Special equations describing the force over the surface of the piston were studied by Rayleigh, King [START_REF] King | ŞOn the acoustic radiation Ąeld of the piezo-electric oscillator and the effect of viscosity on transmission[END_REF], Struve [START_REF] Struve | ŞBeitrag zur Theorie der Diffraction an Fernröhren[END_REF] and Greenspan [START_REF] Greenspan | ŞPiston radiator: Some extensions of the theory[END_REF] who derived a solution of the Hankel transform and obtained the exerted force over the radiator and thus, the acoustic impedance. While the imaginary part of the acoustic impedance, the radiation reactance, creates an evanescent Ąeld and does not radiate sound, the radiation resistance is responsible for the radiation of sound into the far-Ąeld. The radiation resistance can be obtained by calculating the acoustic sourceŠs power by integrating the real part of the intensity over a hemisphere and letting the radius tend to inĄnity. A generalization of this procedure led later to BouwkampŠs impedance theorem [START_REF] Bouwkamp | ŞA contribution to the theory of acoustic radiation[END_REF]: if the directivity of a source is known, its radiation impedance can be calculated by integrating the squared directivity over a hemisphere. This method was employed to calculate, for example, the radiation impedance of circular, rectangular and elliptic [START_REF] Mellow | ŞExpansions for the radiation impedance of a rectangular piston in an inĄnite baffle[END_REF] Ćat rigid disks.

When two sources are present, the acoustic effect of one source on the other is described by the mutual-radiation impedance. Pritchard [START_REF] Pritchard | ŞMutual acoustic impedance between radiators in an inĄnite rigid plane[END_REF] calculated the mutual radiation of two pistons in a series formed by expanding the Bessel functions with LommelŠs theorem and identifying speciĄc cases of Sonine integrals. Porter [START_REF] Porter | ŞSelf-and Mutual-Radiation Impedance and Beam Patterns for Flexural Disks in a Rigid Plane[END_REF] generalized this method for Ćexural baffled disks and Chan [START_REF] Chan | ŞMutual acoustic impedance between Ćexible disks of different sizes in an inĄnite rigid plane[END_REF] extended it for radiators of different sizes. Crane [START_REF] Crane | ŞMethod for the calculation of the acoustic radiation impedance of unbaffled and partially baffled piston sources[END_REF] used the ŞGutinŤ concept to explore the radiation of unbaffled and partially baffled pistons, and Van Buren and King [START_REF] Van Buren | ŞSelf and mutual acoustic radiation impedances for two coplanar unbaffled disks[END_REF] studied the selfand mutual-impedance of two coplanar unbaffled disks. Stepanishen [START_REF] Stepanishen | ŞEvaluation of mutual radiation impedances between circular pistons by impulse response and asymptotic methods[END_REF] used the impulse response method approach to give a simple approximation of the mutual radiation coefficient. This method was later utilized by Hashimoto [START_REF] Hashimoto | ŞMeasurement of sound radiation efficiency by the discrete calculation method[END_REF] to calculate the radiation of a structure in terms of elementary radiators with the acoustic radiation resistance matrix (ARM): a Ćat structure is decomposed into equally small sections or elementary radiators, each radiator is considered a circular piston and the acoustic impedance of the structure is expressed in a matrix form, taking into account the selfand mutual-radiation impedance. Going further, this semi-analytical formulation was employed by Arenas [START_REF] Arenas | ŞNumerical computation of the sound radiation from a planar baffled vibrating surface[END_REF] for calculating the radiation properties of simple baffled structures in terms of structural and radiation modes (see also [START_REF] Elliott | ŞRadiation modes and the active control of sound power[END_REF][START_REF] Naghshineh | ŞA design method for achieving weak radiator structures using active vibration control[END_REF]). Arenas [START_REF] Ůů | ŞOn the sound radiation from a circular hatchway[END_REF] employed the same method for a circular hatchway and pointed out its validity for studying the radiation of a baffled complex shaped structure, with no numerical integration needed for calculating the acoustic radiation but still required in the eigenanalysis of the structureŠs vibration.

A general approach for studying more than two sources is by means of the bridge theorem [START_REF] Beranek | Acoustics Sound Fields, Transducers and Vibration[END_REF] or Ąrst product theorem [START_REF] Williams | FOURIER ACOUSTICS Sound Radiation and Nearfield Acoustical Holography[END_REF], which states that it is possible to construct the directivity pattern of an array composed by N number of sources if the directivity of a single elementary source is known. Following this course, particular attention has been given to the study of transducer arrays, such as antennas in communications, line arrays and directive speakers in audio, sonars in underwater acoustics and ultrasonic transducers for medical purposes. In these cases, the study of mutual impedance plays a primordial role: Lee et al. [START_REF] Lee | ŞEffects of mutual impedance on the radiation characteristics of transducer arrays[END_REF] studied the effect of the mutual impedance for optimizing the transducer placement in arrays present in sonars; Maadi et al. [START_REF] Maadi | ŞMutual radiation impedance for modeling of multi-frequency CMUT arrays[END_REF] used the mutual radiation impedance for modelling capacitive micro-fabricated ultrasonic transducers (CMUTs). However, neither of these works included the phase component. Audoly [START_REF] Audoly | ŞSome aspects of acoustic interactions in sonar transducer arrays[END_REF] used the Kirchhoff-Helmholtz integral to investigate the baffled and unbaffled cases for arrays, where the mutual impedance had to be solved numerically; Caronti et al. [START_REF] Caronti | ŞAcoustic coupling in capacitive microfabricated ultrasonic transducers: Modeling and experiments[END_REF] showed that an equivalent circuit (lumped method instead of radiators) does not always return accurate results due to the effect of the Ćuid load, but here the phase component plays an important role, allowing the energy to be focalized without changing the geometry of the array.

In this chapter, we present a generalized method for constructing the radiation resistance and efficiency of a distribution of circular pistons vibrating with arbitrary phases regardless of their size and position. The directivity pattern of the arrangement is calculated by means of the Ąrst product/bridge theorem and BouwkampŠs impedance theorem is then employed for deriving complete expressions of the radiation resistance and efficiency. The method described here is an extension of that presented by Beranek and Mellow [15,, which allowed us to explore the radiation of multiple sources. Several examples are given when multiple sources of the same size are placed side by side. In these examples, the sources vibrate in-phase or in anti-phase. The radiation efficiency is then analyzed and compared to other kinds of structures such vibrating and oscillating spheres, circular radiators [START_REF] Greenspan | ŞPiston radiator: Some extensions of the theory[END_REF] or Ćat simply supported rectangular plates [START_REF] Ůů | ŞRadiation resistance of a baffled beam[END_REF], where the modal radiation patterns are found to be similar given the structure symmetry. With this approach, the underlying physics can be revealed allowing us to better understand the radiation traces, and the effects of the self-and mutual-radiation efficiency.

| Radiation from planar sources

The pressure p of a baffled structure at any point in the space r is described by RayleighŠs integral,

p(r) = jkρ 0 c 2π S e jk∥r-r 0 ∥ ∥r -r 0 ∥ V (r 0 ) dS(r 0 ), (3.1) 
in which k is the acoustic wavenumber, ρ 0 c the speciĄc impedance of a medium with volume density ρ 0 and speed of sound c, V (r 0 ) the pistonŠs normal surface velocity. The radiation impedance of a baffled structure Z s can be calculated directly using BouwkampŠs impedance theorem. Given a structureŠs directivity pattern D(k) for a vector k, the radiation impedance is calculated as

Z s = R s + jX s = k 2 ρ 0 cS 4π 2 2π 0 π 2 0 ♣D(k)♣ 2 sin θ dθ dϕ + 2π 0 π 2 +j∞ π 2 +j0 ♣D(k)♣ 2 sin θ dθ dϕ , ( 3.2) 
where R s and X s are the speciĄc radiation resistance and reactance, respectively. Since the reactive part does not radiate sound into the far-Ąeld, throughout the remainder of this chapter only the resistive part will be considered.

| Radiation from multiple sources

| The first product and bridge theorems

The Ąrst product theorem for arrays was stated as follows [48, p. 49]:

The directivity pattern of an array of N identical (size and shape) radiators is equal to the product of the directivity pattern of one of the radiators times the transform of the array of N baffled point sources positioned at the centers of the original radiators (now removed) with the same relative amplitude and phases as the original radiators.

D(θ, ϕ) = a 2 1 a 2 1 + a 2 2 D 1 (θ)e jΦ 1 + a 2 2 a 2 1 + a 2 2 D 2 (θ)e j(kd sin θ cos ϕ+Φ 2 ) , (3.7)
where D 1 and D 2 are deĄned by Eq. (3.4). The squared modulus of the directivity is

♣D(θ, ϕ)♣ 2 = 2π 2 (kS) 2 2a 2 1 J 2 1 (ka 1 sin θ) sin 2 θ 2a 2 2 J 2 1 (ka 2 sin θ) sin 2 θ + 4a 1 a 2 J 1 (ka 1 sin θ)J 1 (ka 2 sin θ) sin 2 θ cos(kd sin θ cos ϕ + Φ 12 ) , (3.8)
in which the total surface S = π(a 2 1 + a 2 2 ) and Φ 12 = Φ 1 -Φ 2 . The speciĄc radiation resistance R s for the two pistons is expressed as

R s = ρ 0 c 2S 2π 0 π 2 0 2a 2 1 J 2 1 (ka 1 sin θ) sin θ dθ dϕ + 2π 0 π 2 0 2a 2 2 J 2 1 (ka 2 sin θ) sin θ dθ dϕ + 2 2π 0 π 2 0 2a 1 a 2 J 1 (ka 1 sin θ)J 1 (ka 2 sin θ) sin θ cos(kd sin θ cos ϕ) cos Φ 12 + sin(kd sin θ cos ϕ) sin Φ 12 dθ dϕ = π S a 2 1 R p (a 1 ) + a 2 2 R p (a 2 ) + 2a 1 a 2 R 2p (a 1 , a 2 , d, Φ 12 ) . (3.9)
R p (a l ) is the self-radiation resistance of piston l and R 2p is the mutual-radiation resistance between pistons 1 and 2. Employing the integral representation [refer to Eqs. (3.29) and (3.30)] and setting s = sin θ, the mutual radiation is calculated as 

R 2p (a 1 , a 2 , d, Φ 12 ) = 2ρ 0 c π 2 0 J 1 (ka 1 sin θ)J 1 (ka 2 sin θ) sin θ J 0 (kd sin θ) cos Φ 12 + H 0 (kd sin θ) sin Φ 12 dθ = 2ρ 0 c 1 0 J 1 (ka 1 s)J 1 (ka 2 s) s √ 1 -s 2 J 0 (
R 2p (a 1 , a 2 , d, Φ 12 ) = 2ρ 0 c ∞ m=0 ∞ n=0 ka 1 2 m ka 2 2 n J m+1 (ka 1 )J n+1 (ka 2 ) m!n! × 1 0 J 0 (kds) cos Φ 12 + H 0 (kds) sin Φ 12 (1 -s 2 ) m+n-1/2 s ds, = ρ 0 c 2 √ π ∞ m=0 ∞ n=0 a 1 d m a 2 d n J m+1 (ka 1 )J n+1 (ka 2 ) m!n! Γ m + n + 1 2
× j m+n (kd) cos Φ 12 + h m+n (kd) sin Φ 12 .

(3.11)

The gamma function of a positive half-integer is deĄned for any n ∈ )

+ as Γ[n+(1/2)] = √ π/2 n (2n-1)!
and j m and h m are the spherical Bessel and Struve functions of the Ąrst kind of order m, respectively this chapter, but could occur when two sources are too close to each other, or when the Ćuid loading cannot be ignored and couples vibration from multiple sources simultaneously. The versatility of this approach allows different scenarios to be explored, such as the inverse problem in antennas and the radiation in ultrasonic instrumentation. The mode shapes of Ćat vibro-acoustic structures, such as membranes and plates, of any shape could be approximated by vibrating pistons. Considering that only numerical solutions are available in complex scenarios, this method can be used both to estimate the radiated efficiency and to provide information on the underlying physics in complex cases.

Appendix: Integrals

Lommel integral representation [177, Eq. ( 1), p. 47]

J ν (z) = 1 Γ ν + 1 2 Γ 1 2 z 2 ν π 0 sin 2ν (ϕ) cos(z cos ϕ) dϕ, Re ν > -1 2 (3.29)
Integral representation of the Struve function [START_REF] Zwillinger | Table of Integrals, Series, and Products[END_REF]Eq. (3.715,[START_REF] Meirovitch | Analytical Methods in Vibrations[END_REF]]

π 2 0 sin(z cos ϕ) sin 2ν ϕ dϕ = √ π 2 2 z ν Γ ν + 1 2 H ν (z), Re ν > -1 2 (3.30)
Integral representation of the Bessel function [177, Eq. ( 1), p. 19]

J ν (z) = 1 2π 2π 0 cos(z sin ϕ -νϕ) dϕ [ν = 1, 2, . . . ] (3.31)
Lommel expansion [15, Eq. (13.343)]

J ν (bz) = z ν ∞ k=0 b 2 k (1 -z 2 ) k k! J ν+k (b) (3.32)
SonineŠs Integral [15, Eq. (A2.96)]

a 0 1 - z 2 a 2 µ+ 1 2 J 0 (bz)z dz = a 2 2 Γ µ + 3 2 2 ab µ+ 3 2 J µ+ 3 2 (ab), a ∈ N + , Re b > 0, Re ν > 3 2 (3.33)
Integral of the Struve function [178, Eq. ( 6.815, 1)]

1 0 z 1 2 ν (1 -z) µ-1 H ν (b √ z) dz = 2 µ b -µ Γ(µ)H µ+ν (b), Re ν > -3 2 , Re µ > 0 (3.34)
Bessel expansion [START_REF] Zwillinger | Table of Integrals, Series, and Products[END_REF]Eq. (8.402)]

J ν (z) = ∞ k = 0 (-1) k k!Γ(ν + k + 1) z 2 ν+2k [♣arg z♣ < π] (3.35)
Bessel trigonometric half-integer expansion [START_REF] Zwillinger | Table of Integrals, Series, and Products[END_REF]Eq. (8.463,[START_REF] Rayleigh | The Theory of Sound[END_REF]]

J ν+ 1 2 (z) = (-1) ν z ν+ 1 2 2 π d ν (zdz) ν sin z z (3.36)
Neumman function

Y ν (z) = cos νπJ ν (z) -J -ν (z) sin νπ (3.37)
Spherical Bessel function (Rayleigh formula)

j ν (z) = (-z) ν 1 z d dz ν sin z z (3.38) Spherical Hankel function h (2) n (z) = j n (z) -y n (z) (3.39)
Spherical Neumann function

y n (z) = √ π 2z Y n+ 1 2 (z) (3.40)

Modeling the acoustic radiation of plates using circular pistons

Do we use models to help us Ąnd the truth? Or do we know the truth Ąrst, and then develop the mathematics to explain it? Arthur C. Clarke

This chapter is an extended version of the paper entitled Modeling the acoustic radiation of plates using circular pistons, published in the Journal of Sound and Vibration, on March 2023.

We propose an equivalent piston model (EPM) for estimating the modal radiation efficiency of complexshaped plates. In this model, the structure is not discretized into small elementary radiators. Instead, it involves determining the minimum number, size, volume velocity, and position of vibrating pistons that radiate in accordance with the mode shape they emulate, i.e. one piston per lobe within the mode shape, regardless the plateŠs shape. For shapes relatively close to rectangles, a speciĄc version of the method is proposed by representing the shape only by two characteristic lengths (EPM-RD), and paving the virtual surface with pistons vibrating at alternate phases along a rectangular grid. The validity of this assumption is evaluated in terms of shape dissymmetry, which can cause residual radiators to appear, and where the dissymmetry can affect the spatial distribution of lobes. With a known spatial distribution mimicking the mode shapes, it is possible to estimate also average values of radiation parameters, such as the average radiation efficiency and time-average mean power. The average radiation efficiency and power follow the Equipartition Theorem and allow the calculation to be performed without cross-terms and using only the modal efficiencies and resonance frequencies. Due to their simplicity and ease of implementation, piston-based equivalent models have great potential for solving radiation problems from Ćat structures. Any mode shape can be modeled with vibrating pistons and analytical formulations can be easily derived, even for complex geometries. Moreover, with EPM-RD, average values can also be calculated, which provides an estimation of average radiated properties within seconds without requiring any integration or large matrices to be solved. 

| Introduction

Several decades have been spent studying the vibration and radiation from planar structures. The pioneering works of Rayleigh [START_REF] Rayleigh | The Theory of Sound[END_REF], Maidanik [START_REF] Maidanik | ŞResponse of ribbed panels to reverberant acoustic Ąelds[END_REF] and Leissa [START_REF] Leissa | Vibration of Plates[END_REF] paved the way for understanding vibration and radiation from such structures, paying particular attention to the radiation resistance and efficiency of rectangular [START_REF] Ůů | ŞRadiation resistance of a baffled beam[END_REF] and circular [START_REF] Honda | ŞRadiation efficiency of a baffled circular plate in Ćexural vibration[END_REF] plates, with simply supported, clamped [START_REF] Rdzanek | ŞThe acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials[END_REF] or general boundary conditions [START_REF] Atalla | ŞAcoustic radiation of an unbaffled vibrating plate with general elastic boundary conditions[END_REF]; with or without the presence of a baffle [START_REF] Laulagnet | ŞSound radiation by a simply supported unbaffled plate[END_REF]. In general, acoustic radiation can be categorized into two types, depending on the excitation characteristics. The Ąrst category involves modes that are excited unevenly, and the acoustic response is highly dependent on the characteristics of the excitation. Punctual forces and plane waves hitting structures at grazing angles are examples of this. In this case, cross-modal radiation must be taken into account in order to calculate the sound power, and omitting it may result in overestimating or underestimating the radiated power [START_REF] Putra | ŞSound radiation from rectangular baffled and unbaffled plates[END_REF]. While modal coupling has little effect on the radiated power of a plate when excited above resonance, it can become signiĄcant under off-resonant excitations [START_REF] Keltie | ŞThe effects of modal coupling on the acoustic power radiation from panels[END_REF] and if more than one mode is excited at the same time, the total power cannot be calculated as a sum of all modes [98, p. 409]. In the second category, the acoustic response is less affected by the characteristics of the excitation. This can be seen in diffuse Ąelds, turbulent boundary layer (TBL) and rain on roof (ROFs) excitations. The orthogonality of the modal eigenfunctions in the latter case tends to eliminate the effects of modal coupling [41, p. 328]. In light of this argument, Xie et al. [START_REF] Xie | ŞThe radiation efficiency of baffled plates and strips[END_REF] calculated the average radiation efficiency of a simply supported plate by integrating over all the possible punctual positions and using the modal radiation efficiencies given by Maidanik and Wallace.

The equations describing the radiation, even for the simplest cases, i.e. the rectangular simply supported or circular clamped plate, do not have canonical solutions, so they must be expanded in a sum series [START_REF] Rdzanek | ŞThe acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials[END_REF][START_REF] Li | ŞAn analytical solution for the self-and mutual-radiation resistances of a rectangular plate[END_REF][START_REF] Williams | ŞA series expansion of the acoustic power radiated from planar sources[END_REF] or solved numerically. Adding a small amount of complexity to the geometry render analytical solutions impossible. It is necessary to use numerical tools, such as the Ąnite element method (FEM), boundary element method (BEM), coupled FEM and BEM or semianalytical approaches that match the boundary conditions, such as the Rayleigh-Ritz method or using elementary radiators. Essentially, elementary radiators result from discretizing the total structureŠs surface S into N R equal-sized rectangular sections [START_REF] Elliott | ŞRadiation modes and the active control of sound power[END_REF]. The self and mutual impedances between each pair of elementary radiators is then calculated as if they were point sources with volume velocity proportional to the surface of each radiator. Hashimoto [START_REF] Hashimoto | ŞMeasurement of sound radiation efficiency by the discrete calculation method[END_REF] proposed to use circular elementary radiators and to calculate the self and mutual impedances as if they were circular pistons, in accordance with StepanishenŠs Ąndings [START_REF] Stepanishen | ŞEvaluation of mutual radiation impedances between circular pistons by impulse response and asymptotic methods[END_REF]. The direct calculation method (DCM) proposed by Hashimoto has been proven useful for calculating the radiated power and efficiency given measurements or simulations of the vibrating Ąeld [START_REF] Kim | ŞCalculation and reduction of sound radiation from a thin plate structure excited by complex inputs[END_REF][START_REF] Arenas | ŞNumerical computation of the sound radiation from a planar baffled vibrating surface[END_REF][START_REF] Ůů | ŞOn the sound radiation from a circular hatchway[END_REF][START_REF] Milton | ŞExperimental identiĄcation of the radiation resistance matrix[END_REF][START_REF] Kolber | ŞThe Effect of Plate Discretization on Accuracy of the Sound Radiation Efficiency Measurements[END_REF]. All these numerical tools are precise in accordance with the number of discretization elements, but it is generally impossible to have insights into how modal efficiency plots are constructed. Due to their nature, no numerical method yields analytical solutions or approximations. In complex cases, DCM is easier to implement and faster than FEM-FEM or FEM-BEM. However, it produces large matrices, which makes it difficult to use, for example, to calculate averages of radiation power and radiation efficiency.

In this chapter, we present an alternative to numerical methods for estimating the modal and average radiation of plates. By using the mode shapeŠs geometry, it is possible to replicate the modal radiation efficiency and power of complex-shaped plates through vibrating pistons. Each mode shape has a speciĄed number of lobes, which indicates the number of pistons to be used in the model. The geometry of each lobe determines the geographical position and size of the pistons. The volume velocity of each lobe is calculated with FEM and assigned to each piston. By doing so, we avoid discretizing the geometry or the Ąeld for calculating the acoustic radiation, as in FEM, BEM, or DCM. Neither large matrices nor radiation integrals need to be computed or stored. Instead, analytical formulations of modal radiation from complex-shaped plates can be easily derived. This analytical nature of the method enables the estimation to be performed within seconds. In addition, if the shape has strong resemblance to a rectangular surface, the average radiation efficiency and mean power can be also calculated without any further integration, using solely on the geometry and resonance frequencies. Cremer and Heckl [41, p. 532], once said, ŞOne cannot determine the efficiency of a plate from only its dimensions and material propertiesŤ; this is our Ąrst attempt to elaborate on their statement.

The rest of the chapter is organized as follows: Section 4.2, presents the main descriptors of the radiation from baffled plates vibrating in light Ćuids. In Section 4.3, we propose an equivalent piston model (EPM) for estimating the modal radiation efficiencies of complex-shaped plates and the process to Ąnd the main characteristics of model. In Section 4.4, EPM is used with a rectangular distribution of pistons (EPM-RD) to evaluate also the average radiation of complex-shaped plates, focusing on analytical formulae and pedagogical examples that illustrate the modelŠs main characteristics and limitations.

| Acoustic radiation from flat structures 4.2.1 | Baffled plates

The Kirchhoff-Helmholtz integral can be used to calculate the acoustic pressure p at any point in space r, given the normal velocity v on any point in the vibrating surface r 0 . For harmonic regimes, the time dependency is translated by a term exp(-jωt), where ω is the pulsation frequency, t the temporal variable and j = √ -1. Harmonic variables will be noted as κ(r, t) = κ(r) exp(-jωt), and henceforth the dependence on time will be suppressed.

When considering a baffled plate, choosing a GreenŠs function that cancels at the baffle boundary leads to RayleighŠs integral

p(r) = jωρ 0 2π S e jk∥r-r 0 ∥ ∥r -r 0 ∥ v(r 0 ) dS(r 0 ), (4.1)
where the characteristic impedance of the medium is ρ 0 c, for a medium with density ρ and speed of sound c; k = ω/c is the acoustic wavenumber and ∥rr 0 ∥ is the Euclidean norm between the two points. The Rayleigh integral relates the far-Ąeld radiation from planar sources to the Fourier transform of their surface velocity and is one of the fundamental equations in acoustic radiation. The time-averaged power can be calculated when the pressure is integrated over a hemisphere of surface S h as

P(ω) = 1 ρ 0 c S h ♣p(r)♣ 2 dS. (4.2)
Wallace [START_REF] Ůů | ŞRadiation resistance of a baffled beam[END_REF], Gomperts [START_REF] Gomperts | ŞSound radiation from baffled, thin, rectangular plates[END_REF], Bouwkamp [START_REF] Bouwkamp | ŞTheoretical and numerical treatment of diffraction through a circular aperture[END_REF], Donato [START_REF] Donato | ŞDirect derivation of radiation resistance of a vibrating panel[END_REF] and Dym [START_REF] Dym | ŞA more direct derivation of the radiation resistance of a panel[END_REF] used this deĄnition to express the analytical solution for a rectangular plate. The time-averaged power can also be calculated by averaging the complex conjugate of the normal velocity v⋆ and the pressure over the vibrating structureŠs surface S

P(ω) = 1 2 S Re p(r 0 )v ⋆ (r 0 ) dS. (4.3) 
Numerous authors have adopted this approach for computing the radiated power since the integration takes place at the surface of the structure [START_REF] Rdzanek | ŞThe acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials[END_REF][START_REF] Arenas | ŞNumerical computation of the sound radiation from a planar baffled vibrating surface[END_REF][START_REF] Ůů | ŞOn the sound radiation from a circular hatchway[END_REF][START_REF] Williams | ŞA series expansion of the acoustic power radiated from planar sources[END_REF]. Inserting Eq. (4.1) into Eq. ( 4.3) and expanding the velocity into a sum of m modes, the acoustic power can be expressed in terms of structural modes v = ¶φ♢ ⊺ ¶v♢, where the column vector ¶v♢ = [v 1 , v2 , . . . , vm ]; the row vector containing the modes ¶φ(r 0 )♢ = [ϕ 1 (r 0 ), ϕ 2 (r 0 ), . . . , ϕ m (r 0 )], and ⊺ stands for the vectorŠs transpose. Similarly, by discretizing the structure into small sections, i.e. elementary radiators, the power can also be expressed as a sum of the parietal pressure calculated with the acoustic radiation resistance matrix (ARM) and the vector velocities of the elements ¶v e ♢ = [Ψ] ¶v♢, where [Ψ] is the matrix containing the row vectors of the modal amplitudes at the centers of the surface elements. Hence [42, pp. 161, 165-168],

P(ω) = ωρ 0 4π ¶v♢ H S S ¶φ(r 0 )♢ ⊺ sin(k∥r -r 0 ∥) ∥r -r 0 ∥ ¶φ(r ′ 0 )♢ dS(r ′ 0 ) dS(r 0 ) ¶v♢ (4.4a) = ¶v♢ H [A(ω)] ¶v♢, in terms of structural modes (4.4b) = ¶v♢ H [Ψ H ][R][Ψ] ¶v♢, in terms of elementary radiators. (4.4c) 
[A(ω)] is commonly called the Power Transfer Matrix (PTM). It relates the contribution to sound power radiated by each mode in ¶φ(r 0 )♢ ⊺ to the vibration of each mode in ¶φ(r ′ 0 )♢ and ¶z♢ H is the Hermitian transpose of the vector ¶z♢. Analytical solutions of the PTM for the rectangular case are found in [START_REF] Snyder | ŞCalculating total acoustic power output using modal radiation efficiencies[END_REF][START_REF] Li | ŞAn analytical solution for the self-and mutual-radiation resistances of a rectangular plate[END_REF]. The quadruple integral in the PTM can be avoided by using the elementary radiatorŠs approach, but the accuracy is frequency-limited by the squared number of elements and large matrices may need to be stored. [R] is the acoustical radiation resistance matrix, whose coefficients can be calculated using a discrete version of RayleighŠs integral [START_REF] Fahy | Sound and Structural Vibration -2nd Edition[END_REF][START_REF] Berkhoff | ŞSensor scheme design for active structural acoustic control[END_REF], and in which the elementary radiators are commonly equally sized and spaced rectangles. Since the wavelength must be small in comparison with the distance between radiators, the size and number of the elements determine also the maximum frequency of interest. Using the discrete calculation method (DCM) [START_REF] Hashimoto | ŞMeasurement of sound radiation efficiency by the discrete calculation method[END_REF], the elementary radiators are considered as circular pistons and ARMŠs coefficients are calculated as

R ii = ρ 0 cS i 1 - J 1 (2ka i ) ka i , R ij = 2ρ 0 ck 2 S i S j π J 1 (ka i ) ka i J 1 (ka j ) ka j sinc (kd ij ) (4.5) 
and where the notation ij refers to a pair of pistons of radii a i,j = S i,j /π separated a distance d ij . J n is the Bessel function of the Ąrst kind of n order and sinc (x) = sin(x)/x. Equation (4.5) is an approximate expression sufficient within the long wave limit. According to HashimotoŠs DCM method, all pistons are in-phase and are used to determine the acoustic impedance and resistance between each pair of pistons, so no vibration of pistons is involved. The accuracy of both the ARM and DCM methods depends on the number of elements. It was proposed by Hashimoto that grid spacing should be smaller than half the wavelength at the critical frequency, but Kim and Park [START_REF] Kim | ŞCalculation and reduction of sound radiation from a thin plate structure excited by complex inputs[END_REF] demonstrated that appropriate grid spacing is achieved if the radius size satisĄes ka < 0.2 within the frequency range of interest. Note also that, in the case of a plate vibrating in light-Ćuid, vibration and radiation problems can be decoupled. As a rule of thumb, this occurs when ρ 0 /kρ s ≪ 1 [START_REF] Tao | ŞSound radiation of a thin inĄnite plate in light and heavy Ćuids subject to multi-point excitation[END_REF], where ρ s is the surface density of the plate.

| Average values of the mean-square velocity

A harmonic force F = F e -jωt generates kinetic energy depending on where it is applied. For a plate with homogeneous distribution of the mass ρ(r 0 ) = ρ, uniform thickness h, M = Sρh and homogeneous damping loss factor η, it is straightforward to average the mean-square velocity over all possible punctual positions, which results in an average value independent of the modal mass and excitation position. Hence, the time average of the spatial average mean-square velocity, averaged then over all possible force positions in a modal decomposition is [101]

⟨v 2 ⟩ = 1 S S ⟨v 2 ⟩ dx 0 dy 0 = m ♣ F ♣ 2 2M 2 ω 2 (ω 2 m -ω 2 ) 2 + η 2 ω 4 m , ( 4.6) 
in which ω m is the natural frequency of mode m. For simplicity, we will refer to this parameter as average mean-square velocity. Further, the mean-square velocity, or, for formalityŠs sake, the time average of the spatial average mean-square velocity is [14, p. 11]

⟨v 2 ⟩ = 1 S S ♣v 2 ♣ 2 dS. (4.7) 
In case of harmonic oscillations, the spatial mean-square of the velocity v2 corresponds also to the kinetic energy of the system divided by the overall mass [41, p. 327].

| Radiation efficiency

The radiation efficiency is a dimensionless parameter used to describe the acoustic performance of structures. It is deĄned physically as the ratio of the radiated acoustic power over a reference power σ = P/P 0 [START_REF] Gösele | ŞSchallabstrahlung von platten, die zu biegeschwingungen angeregt sind (Sound radiation from panels from to Ćexural vibrations)[END_REF], where P 0 is commonly the mechanical power driven by a piston vibrating at the same mean-square velocity,

σ = P(ω) ρ 0 cS⟨v 2 ⟩ . ( 4.8) 

Modal radiation efficiency σ m

Using a modal formalism, Eq. (4.8) also deĄnes the modal efficiency and modal power. Below the coincidence frequency k p = k, where k p is the plateŠs wavenumber, the modal radiation efficiency of the Ąrst modes can be spotted by their slope. The slope is proportional to the 2(m + 1) power of ka in circular cases, where m is to the number of concentric circular nodal lines [START_REF] Honda | ŞRadiation efficiency of a baffled circular plate in Ćexural vibration[END_REF]. In rectangular cases, the slope is proportional to the 2(m + n -1) power; m, n corresponds to the modal indices (see also Table 4.4.1). Using DCM or EPM (see Section 4.3), above the coincidence frequency, convergence to one is expected due to the use of pistons.

In any case, the Ąrst mode in baffled cases radiates as a monopole, with a slope of 6 dB/octave. The next mode is expected to be a dipole disposed along the larger length and presenting a slope of 12 dB/octave, if a pure dipole is present, i.e. a mode with zero volume velocity. Afterwards, even for simple geometries, it becomes difficult to predict which mode will appear. According to Euler-LagrangeŠs principle of minimal energy, lower order modes will appear before higher-order modes. Usually, this occurs alongside two characteristic lengths, such as in a rectangular plate, but following the natural axis of coordinates for each structure, such as in circular plates with polar coordinates and in elliptical plates with elliptic coordinates. Identifying the axes for arbitrary shapes is still is an open question.

Increasing the mode order leads to oscillations in modal radiation efficiency and the literature in this area is vast. Maidanik [START_REF] Maidanik | ŞResponse of ribbed panels to reverberant acoustic Ąelds[END_REF], for example, states that modes can be classiĄed according to where they lie in the k-space: corners, edges, and surfaces modes (also in [48, p. 70] and in [START_REF] Putra | ŞSound radiation from perforated plates[END_REF]): the side to side lobes in mode shapes cancel each other out, and the remainder radiation is ŞgovernedŤ by the remaining most distant non-cancelled lobes, which tend to increase radiation proportionally to their virtual surfaces and distances. Radiation of edges occurs when the remainder of non-cancelled lobes are disposed on opposite edges, presenting monopolar or dipolar characteristics depending on their phase. While this is true at low frequencies, the way the mode radiates changes as frequency increases. Even if these oscillations in modal efficiencies are well known, there have been few attempts to describe them in detail, perhaps because there are no simple analytical formulations available. shows the radiation efficiency of a simply supported rectangular plate excited at ten random positions, the mean radiation averaged over the ten positions as well as the average radiation efficiency. No matter the plate shape, similar behavior is to be expected under a light-Ćuid assumption, whether they are circular, rectangular, elliptical, etc. Radiation efficiency is affected by the excitation position within the structure, but global trends can still be observed.

Radiation efficiency due to punctual excitations σ

Below the Ąrst resonance, the plate radiates as a monopole, whether it is clamped or simply supported (see [START_REF] Rdzanek | ŞThe acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials[END_REF] for circular cases). The radiation efficiency then drops in presence of zero-volume velocity modes due to the average velocity of the plate tending to zero, as well as the stiffer slope depending on the radiation type (dipole, quadrupole, etc.). Afterwards, radiation is mainly governed by edge and corner modes [42, p. 190], [73, p. 44]. Because the radiation depends on the excitation forceŠs position, large variations may be observed within this zone. As shown in Fig. 4.2.1, radiation efficiency is also proportional to damping; increasing the damping also increases the radiation efficiency (see also [START_REF] Kou | ŞRadiation efficiency of damped plates[END_REF]) between the fundamental f 0 and the critical frequency f c and decreases its efficiency at the peak just above the critical frequency (see Figs. Radiation efficiency peaks indeed just afterwards the critical frequency [START_REF] Davy | ŞThe forced radiation efficiency of Ąnite size Ćat panels that are excited by incident sound[END_REF]. Above the critical frequency, radiation efficiency is not inĆuenced by the damping factor [START_REF] Kou | ŞRadiation efficiency of damped plates[END_REF] and decays asymptotically to 4/3 and 9/5 in simply supported and clamped circular radiators, since both authors normalize the power by the square of the average velocity instead of the mean square velocity over the radiating surface. Radiation efficiency depends on boundary conditions also below the critical frequency. In this zone, there is a 3 dB increase in radiation efficiency if the plate is clamped [START_REF] Edwins | Encyclopedia of Vibration[END_REF], or twice as much as if simply supported [47, p. 150]. However, this holds true for higher modes and not for the Ąrst modes [START_REF] Arenas | ŞSound radiation efficiency of a baffled rectangular plate excited by harmonic point forces using its surface resistance matrix[END_REF]. A plate with a combination of simply supported and clamped edges has almost the same radiation efficiency as a simply supported plate (difference < 1 dB) [START_REF] Gomperts | ŞSound radiation from baffled, thin, rectangular plates[END_REF].

Average radiation efficiency σ and mean power

The average radiation efficiency can be determined independently of the excitation position by considering all possible force positions. As a consequence, Şevery mode of vibration [is] alike favoredŤ, as Rayleigh [START_REF] Rayleigh | Remarks upon the law of complete radiation[END_REF] used to call the equipartition theorem, giving a global overview of the plateŠs efficiency.

P(ω) = 1 ρ 0 c 2π 0 π 2 0 ♣p(r)♣ 2 2 r 2 sin θ dθ dϕ = k 2 ρ 0 c 8π 2 2π 0 π 2 0 N l=1 Ql D l (k)e j(k•r l +Φ l ) 2 sin θdθdϕ = k 2 ρ 0 c 8π 2 2π 0 π 2 0 N l=1 Q2 l 4J 2 1 (ka l sin θ) k 2 a 2 l sin 2 θ + 2 N i=1 N j>i Qi Qj 2J 1 (ka i sin θ) ka i sin θ 2J 1 (ka j sin θ) ka j sin θ cos(kd ij sin θ cos ϕ + Φ ij ) sin θ dθ dϕ = ρ 0 c 2   N l=1 a 2 l V 2 l σ p (a l ) + 2 N i=1 N j>i a i a j Vi Vj σ 2p (a i , a j , d ij , Φ ij )   , (4.13) 
where σ p (a l ) is the self-radiation efficiency of piston l; d ij is the distance, Φ ij the relative phase and σ 2p is the mutual-radiation efficiency between each pair of pistons ij, respectively. Dividing the acoustic power to the time average reference power P 0 = ρ 0 c l S l V 2 l /2, the radiation efficiency is calculated as

σ = 1 l a 2 l V 2 l   N l=1 a 2 l V 2 l σ p (a l ) + 2 N i=1 N j>i a i a j Vi Vj σ 2p (a i , a j , d ij , Φ ij )   . ( 4.14) 
When pistons of equal size are considered, Eq. (4.14) can be simpliĄed further as

σ = 1 l V 2 l   N l=1 V 2 l σ p (a l ) + 2 N i=1 N j>i Vi Vj σ 2p (a, d ij , Φ ij )   . ( 4.15) 
This equation will be used in Section 4.4.6. Additionally, if all pistons are all driven at the same velocity,

σ = σ p (a l ) + 2 N N i=1 N j>i σ 2p (a, d ij , Φ ij ). (4.16) 
The self-radiation efficiency σ p (a) is the radiation efficiency of a circular piston of radius a,

σ p (a) = 1 - J 1 (2ka) ka = (ka) 2 2 - (ka) 4 2 2 • 3 + (ka) 6 2 4 • 3 2 -• • • (4.17)
and the mutual-radiation efficiency σ 2p describes how the radiated pressure of each piston affects other pistons in the distribution. This effect is not solely inĆuenced by the piston size or effective area, but also by the distances d ij and phases Φ ij between each pair of pistons. The mutual efficiency for a pair of pistons ij can be calculated as [START_REF] Ůů | ŞRadiation efficiency of a distribution of baffled pistons with arbitrary phases[END_REF] 

σ 2p (a i , a j , d ij , Φ ij ) = 2 √ π ∞ p=0 ∞ q=0 a i d ij p a j d ij q J p+1 (ka i )J q+1 (ka j ) p!q! Γ p + q + 1 2 × j p+q (kd ij ) cos Φ ij + h p+q (kd ij ) sin Φ ij , (4.18) 
where the gamma function of a positive half-integer is deĄned for any n ∈ Z + as Γ(n + 1/2) = √ π/2 n (2n -1)! and j n and h n are the spherical Bessel and Struve functions of the Ąrst kind of order n, respectively. The double sum series in Eq. ( 4.18) appears when the Bessel function in the directivity pattern is integrated and the integral expanded using LommelŠs expansion (see [START_REF] Beranek | Acoustics Sound Fields, Transducers and Vibration[END_REF][START_REF] Ůů | ŞRadiation efficiency of a distribution of baffled pistons with arbitrary phases[END_REF]). In general, the series tends to converge with only a few terms. For instance, considering two pistons of equal size vibrating in phase or in phase opposition, a good approximation of Eq. (4.18) using the Ąrst three terms yields to

σ 2p (a, d) ≃ ±2 J 2 1 (ka) + a d ΥJ 1 (ka)J 2 (ka) + a d 2 ΛJ 2 2 (ka) sinc (kd), (4.19) 
in which Υ = 1/kd -cot(kd) and Λ = 3/4(3Υ/kd -1), and the sign + is relates a couple of pistons vibrating in phase, and -for the opposite case. Equation (4.18) can be analyzed similarly for pistons vibrating in phase; if the distance between a pair of pistons is larger than their radii, one Ąnds the mutual coefficients R ij of the radiation resistance matrix [Eq. (4.5)] in DCM HashimotoŠs method [START_REF] Hashimoto | ŞMeasurement of sound radiation efficiency by the discrete calculation method[END_REF] (see [START_REF] Ůů | ŞRadiation efficiency of a distribution of baffled pistons with arbitrary phases[END_REF] for the approximation errors).

In DCM, the structure is discretized into circular radiators and their self-and mutual-radiation impedances are calculated as if they were in phase circular pistons; then the radiated power and efficiency are determined using Eqs. (4.4c) and (4.5). Instead of discretizing the structure, we propose Ąnding an equivalent piston distribution that simulates the acoustic contribution of each lobe within a mode shape to the radiated power. Eqs. (4.14) to (4.19) allow for calculating the self-and mutualefficiency of any conĄguration of pistons. The number of pistons equals the number of lobes in a mode shape. Various characteristics of the distribution can be determined by the mode shape, including piston size, amplitude, phase, and position.

| Equivalent radius of radiation

The aim is to determine the radius of the piston that will radiate as a single lobe within a mode shape. Then, each lobe can be considered as a simply supported plate, with boundaries that match the modal lines. As a Ąrst step towards recreating the radiation of the Ąrst mode of a simply supported plate with arbitrary shape, let us begin by linking two circular geometries: the simply supported Ćexural disk and a circular piston.

Greenspan [START_REF] Greenspan | ŞPiston radiator: Some extensions of the theory[END_REF] calculated the radiated power of different types of circular radiators, and proposed a method applicable not only to piston cases but also to simply supported and clamped radiators. He showed that the low frequency behavior in the three cases is proportional to (ka) 2 /2 with a factor given by the total volume velocity Q. As frequency increases, however, the radiated efficiency of circular radiators convergences to 1 for pistons, 4/3 for simply supported radiators and to 9/5 for clamped radiator. If all radiators have the same volume velocity, it is possible to match the low frequency behavior between pistons and other circular radiators, re-scaling the efficiency of the simply supported radiator to match that of the piston. Consider, for instance, the volume displaced by a piston Qp with radius a p and the volume velocity Qs of the Ąrst mode of a circular plate with radius a s with simply supported boundaries. The result of equating Qp and Qs ,

ap 0 π -π r dr dθ = as 0 π -π J 0 (χ 01 r/a s ) - J 0 (χ 01 ) I 0 (χ 01 ) I 0 (χ 01 r/a s ) r dr dθ, (4.20) 
where χ 01 is the Ąrst zero of J 0 (x) and I n (x) is the modiĄed Bessel function of the Ąrst kind, leads to an equivalence between radii a p and a s . Re-scaling the radiated efficiency to match the behavior of a piston gives

C = 4 3 2J 1 (χ 01 ) χ 01 . ( 4.21) 
For a simply supported radiator, a eq = a s C gives the equivalent radius of radiation, where a s = S/π and S represents the surface of a lobe in the mode shape. We may now follow the same procedure for an arbitrary shaped plate, i.e. to match the radiation of the Ąrst mode with that of a circular piston.

It may be possible to Ąnd an equivalent radius based on the geometric information of the structure, such as its surface S and perimeter P . The idea of Ąnding an equivalent radius based on the surface and perimeter was Ąrst presented by Mechel (1989), who linked the speciĄc impedance of air plugs in Helmholtz resonators to that of circular pistons. Moreover, for resonators with non-circular holes, he found experimentally an equivalent effective radius a eff ≈ 1.06S 3/4 P -1/2 [193, p. 575]. As a result of using this model of effective radius and including the simply supported radiator-to-piston coefficient, we deĄne the equivalent piston radius as

a eq ≈ 1.06CS 3/4 P -1/2 . ( 4.22) 
By knowing the perimeter and the surface of a plate, it is possible to Ąnd an equivalent piston that will radiate the same energy into the far-Ąeld for the Ąrst mode. Furthermore, one can extend this model to higher frequency modes due to the fact that each lobe vibrates as an individual simply supported plate whose boundaries are deĄned by the nodal lines.

| Location of the pistons

Based on the mode shapes, we may consider locating each piston following the delimited areas enclosed by the nodal lines and using the peak of the lobes as a reference point. A generalized model for a plate with arbitrary shape must include automatic positioning of each piston, which can be explored using FEM mode shapes. Alternatively, a geometrical approach to cover a surface with circles that minimize the covered area could be used if these numerical methods are not desired to be employed. Corrective measures can be applied in a second stage if necessary.

| Case study: Tetris plates

With the piston model, we can treat any mode shape analytically. Four tetris-shaped geometries are shown in Fig. 4.3.2, as if they were simply supported thin plates, with volumetric density ρ = 2700 kg•m -3 , PoissonŠs ratio ν = 0.3, Young Modulus E = 71 GPa, side l = 0.2 m and thickness e = 0.003 m. Modal analysis was carried out with FEM [START_REF] Alnaes | ŞThe FEniCS project version 1.5[END_REF]. Mode four (N = 4) exhibits four lobes with the same areas and perimeters within each shape. Four pistons are used to simulate the modal radiation of each tetris shape. Since the plates are of the same material and thickness, they all have the same natural frequency, but their radiation efficiency varies. Using Eq. (4.22), we can determine the piston radii for each square within each mode, and thereby derive analytical equations that describe the modal radiation (see Table 4.3.1). Changing the dimensions or materials can change the resonance frequency, but the modal radiation remains the same. By solely changing the position of the pistons to type of shape by its inertia tensor. In this way, an equivalent rectangular geometry can be found for any complex-shaped structure and the number of pistons N determined according to the mode order (N = m × n). Additionally, it is possible to determine the similarity to a rectangular surface by using the inertia tensor and the exact area of the shape.

| Tensor of inertia and characteristic lengths

Consider the 2D inertia tensor I, for a structure with mass density ρ(r 0 ),

I = I x -I xy -I xy I y =       S y 2 ρ(r 0 ) dS - S xyρ(r 0 ) dS - S xyρ(r 0 ) dS S x 2 ρ(r 0 ) dS       . (4.23)
The principal axis of inertia comes from the eigenvectors of the inertia tensor. The characteristic lengths embedded within the eigenvalues λ 1,2 are calculated by eigenvalue analysis, expecting exact values if the geometry is known. The components of the inertia tensor for a rectangular surface, normalized by the mass and with respect to the center of inertia, are I x = L x L 3 y /12 and I y = L 3 x L y /12. As for a rectangular surface S = L x L y , the characteristic lengths and the aspect ratio ζ = L x /L y are given by

L x,y = 12λ 1,2 S and ζ = λ 1 λ 2 , L x ≥ L y .
(4.24)

| Modal characteristic dimension

In a rectangular structure, the number of lobes are determined by the mode order N = m × n. As all the lobes are considered to be equal, the equivalent modal radius of radiation is simply calculated as a eqmn = 1.06CS 3/4 mn P -1/2 mn , (

where the surface of each lobe for the mode (m,n) is S mn = L x L y /mn and the perimeter P mn = 2(L x /m + L y /n). To the best of our knowledge, in the literature, there is no reference to equivalent radius to match the radiation of a piston to a plate.

| The distance matrix

Higher-order modes can be modeled by placing the center of the pistons in the geometric center of an equally divided rectangle whose dimensions L x and L y are given by the inertia tensor in Eq. (4.24). Thus, the distance between each pair of pistonsŠ centers is determined by the distance matrix [d], which coefficients d ij are A larger mode order results in a growing size of the distance matrix since the indices correspond both to the matrix coefficients and to the mode order.

d ij = (i -1)L x m 2 + (j -1)L y n 2 , i = 1,

| Mode classification

EPM-RD uses a rectangular model. Assuming that the plate shape is close enough to a rectangle (see Section 4.4.7), we assume that each mode with N = m × n lobes appears in frequency similarly as it does rectangular plates, i.e.

idx mn = ζ 2 m 2 + n 2 1 + ζ 2 , ( 4.27) 
where ζ is obtained with Eq. (4.24). idx mn is a dimensionless frequency that determines the order in which modes appear in rectangular isotropic plates. It is thus used to assign a modal efficiency to a known resonance frequency. This opens the possibility to estimate average values of the radiation efficiencies for complex shaped-plates.

| Average radiation efficiency of a rectangular plate estimated with the EPM-RD

Since the rectangular structure is symmetric, repeated elements will be included in the estimation of modal radiation efficiency [refer to Eq. (4. [START_REF] Meirovitch | Analytical Methods in Vibrations[END_REF]]. By counting them, repeated calculations can be avoided, speeding up the process. Therefore, the radiation efficiency can be expressed as a linear combination of the self-efficiencies of pistons, mutual efficiencies between in-and out-of-phase pairs of pistons, and mutual efficiencies between a pair of pistons with opposite phases. We will refer to pistons with positive velocity as +, and pistons with negative velocity as -. In order to represent a mode with N lobes (N = N + + N -), m × n pistons will be used. The number of radiators in each mode are summarized as follows:

• Self efficiencies :

N = N + + N -
• Mutual efficiency of positive pairs ⊕ ⊕ : 2[ (N + -1) C 2 ] = (N + -1) P 2

• Mutual efficiency of negative pairs ⊖ ⊖ : 2[ (N --1) C 2 ] = (N --1) P 2

• Mutual efficiency of positive-negative pairs ⊕ ⊖ : 2[ (N --1)(N + -1) C 2 ] = (N --1)(N + -1) P 2

where n C 2 and n P 2 are the combination and permutations of the sources deĄned as

n C k = n! k!(n -k)! , n P k = n! (n -k)! .
The radiation efficiency can be expressed simply by a sum of self and mutual efficiencies as

σ = σ p (a) + 1 N (N + -1) P 2 i ++ =1 σ 2p (a, d ++ i ) ⊕ ⊕ + (N --1) P 2 i --=1 σ 2p (a, d -- i ) ⊖ ⊖ - (N + -1)(N --1) P 2 i +-=1 2σ 2p (a, d +- i ) ⊕ ⊖ . (4.28)
The plus sign before the mutual efficiency comes from the pistons vibrating in-phase, either positive or negative, which increases radiation efficiency. On the other hand, the minus sign indicates that pistons are in vibrating in anti-phase and decreasing radiation efficiency.

Consider the aluminum rectangular simply supported plate with dimensions of 0.6×0.5×0.003 m 3 , volumetric density ρ = 2700 kg•m -3 , Young Modulus E = 71 GPa, PoissonŠs ratio ν = 0.3, studied by matrix, which allows for reducing the matrix size [START_REF] Ebeling | ŞImproved efficiency of vibrationbased sound power computation through multi-layered radiation resistance matrix symmetry[END_REF]. For complex geometries, such reductions are not possible and the size of an ARM is determined by the square of the number of discrete elements, so it is important to consider the size of the computerŠs RAM as well. These constrains may also contribute to the under-utilization of modal approaches for studying structure average radiation.

A discretization of the plates shown in Fig. 4.4.7 was performed using FEniCS code [START_REF] Alnaes | ŞThe FEniCS project version 1.5[END_REF] with around 20k P2 Lagrange elements. Using the same triangular mesh elements as ARM elementary radiators would have resulted in a square matrix of 20k×20k. If 300 log-spaced frequencies are calculated, this would result in a matrix of 947 Gb in size. Matrix [R] can be arranged in this way to calculate the radiation faster rather than calculating frequency by frequency, but large matrices must be stored. By downsampling the mesh to 1600 elements, the matrix size is reduced to 6.6 Gb. Upon downsampling, the velocity proĄles must be projected onto the resampled mesh. It will take approximately four minutes to compute the average radiation and power after that. EPM-RD, on the other hand, offers some advantages. To begin with, EPM-RD eliminates the need to resample the mesh, which is time-consuming and must be evaluated prior to use. Large matrices may not be stored in memory, while small matrices with large elements may reduce accuracy. Depending on the complexity of the shape, this downsampling may not be possible, and one would either have to store large matrices in RAM or increase the computation time. In any case, with EPM-RD, it only takes Ąve seconds to estimate average values of radiation with no additional load in RAM. Both processes were conducted on a laptop equipped with an Intel Core i7 8th Generation processor running at 1.8 GHz and with eight gigabytes of memory. By removing these time and computational barriers, EPM and EPM-RD can become valuable estimation tools.

The method could be improved in some ways, such as determining automatically the location of pistons in the EPM to treat any shape, as shown in Fig. 4.4.9. It would also be useful to include non-uniform velocity proĄles (see [START_REF] Beranek | Acoustics Sound Fields, Transducers and Vibration[END_REF][START_REF] Lehrmann Christiansen | ŞModal radiation patterns of baffled circular plates and membranes[END_REF][START_REF] Pritchard | ŞMutual acoustic impedance between radiators in an inĄnite rigid plane[END_REF][START_REF] Chan | ŞMutual acoustic impedance between Ćexible disks of different sizes in an inĄnite rigid plane[END_REF]), in order to mimic the smooth transition between lobes and reduce the gap above the critical frequency.

By comparing the plate shapes with their equivalent rectangular surfaces, we can classify them according to the degree of similarity to rectangles. As a result, we can determine the precision of our approach and whether or not it is convenient to use the EPM-RD. There is still a large gap in determining eigenfrequencies without using Ąnite element analysis. The rectangular plate model (see Eq. (4.27)) may be adequate for classifying modes, but it may fail to predict eigenfrequencies. Such improvements can transform this method into a purely geometrical method for estimating the acoustic radiation from complex-shaped plates.

| Conclusion

We present a general method for estimating modal radiation efficiencies of complex-shaped plates based on vibrating pistons (EPM). Equivalent-sized pistons replicate the vibrations of each lobe within the mode shapes, whose dimensions are determined by the geometrical information contained within the structure. Various scenarios illustrate how to match modal efficiencies based on piston size and volume velocity. As symmetry starts to break, general effects can be spotted; such as non-null-Ćux ŞevenŤ modes radiating as monopoles as a result of their uncancelled volume velocity. Even modes in slightly asymmetrical shapes may present higher-order residual radiators, which are easily modeled by adjusting the piston positions. Through Tetris-shaped plates, we illustrate how different piston positioning affects the modal radiation. The EPM provides analytical formulations that are not readily available for structures with complex shapes.

Average values of the mean-square velocity, power and radiation efficiency are found by averaging over all possible excitation positions. This formulation implies the Equipartition Theorem and consequently, since all modes are equally excited, there is no acoustic coupling between modes when calculating the average radiated power. By using this average formulation, we can separate radiation from excitation, which is useful for Ąnding global indicators. It helps also, as a side note, to explain why one can actually hear the shape of a drum even for isospectral geometries, i.e. in vibration argot, structures with the same average mean-square velocity.

We also derive a speciĄc version (EPM-RD) for geometries close to rectangles. We use Ąnite element analysis to calculate the eigenfrequencies, a rectangular plate model to correlate each frequency with the estimated modal efficiency and the average deĄnition to Ąnd the global parameters of acoustic radiation. Using the inertia tensor, it is possible to determine two characteristic lengths for setting the pistonsŠ size and position in a rectangular array. The radiation of a rectangular plate can be approximated very precisely using this formulation, for a far less expensive computation than an analytical solution. The simpliĄed method SPEM is examined on plates of various geometries, in order to illustrate its limitations, such as missing residual radiators or some mismatches when a modal efficiency does not correspond to a frequency mode. Nonetheless, if the shape is in some way ŞsimilarŤ to a rectangle, EPM-RD can be used efficiently to estimate the acoustic radiated power and efficiency.

The rectangular model provides a simple and complete method for evaluating the acoustic radiation of plates. Aside from this possibility, as we have shown, pistons can be combined in other ways for better estimating the efficiency, which is applicable to a wider range of geometries. The versatility of expressing radiated efficiency with pistons of different sizes, amplitudes, and phases, as well as the simplicity of the formulation, suggest great potential for equivalent piston-based models. Additionally, this work may serve to predict the radiation of localized modes in plates or membranes [START_REF] García | ŞLocalized modes prediction in a membrane with non-uniform tension from the quasi-static measurement of its localization landscape[END_REF]. A further perspective of this work is to include in the model a method for estimating eigenfrequencies solely based on the geometry and material of the structure, without any dynamical analysis.

Localization and acoustic radiation

No huye el que se retira Don Quixote, 1605

| Introduction

Flat structures are considered complex when they exhibit irregular shapes, non-homogeneous boundary conditions, heterogeneous mass distributions, and non-homogeneous damping and thicknesses. Complexity is also viewed holistically. Typical examples of this are stiffened plates, added masses on the surface or periodic structures, where simple structures are combined to create complex structures. In these complex structures, modes may localize and this phenomenon has not been thoroughly examined, specially from a vibro-acoustic sight. When the Ąrst modes localize in a structure, we refer to it as low-frequency localization and when some modes above the fundamental localize, we refer to it as high-frequency localization.

The Ąrst localized modes can be detected by analyzing the landscape of localization [START_REF] Filoche | ŞUniversal mechanism for Anderson and weak localization[END_REF]. The landscape of localization is static in nature and is characterized by the emergence of lobes from the surface as a result of imposing a uniform force on the structure. Lobes appear in accordance with the number of low-frequency localized modes and are inĆuenced by the complexity of the structure. For instance, by clamping a single point on a long strip rectangular plate, Filoche and Mayboroda [START_REF] Filoche | ŞStrong Localization Induced by One Clamped Point in Thin Plate Vibrations[END_REF] demonstrated that modes tend to localize within the smallest region. Through the use of holographic means, Lefebvre et al. [START_REF] Lefebvre | ŞOne Single Static Measurement Predicts Wave Localization in Complex Structures[END_REF] measured the static deformation of a clamped plate with complex-shaped | 95 boundaries, validating experimentally the predicted capabilities of the landscape. These capabilities did not felt short to describe localized regions but to predict also low-frequency resonances by using RayleighŠs quotient. In reference [START_REF] García | ŞLocalized modes prediction in a membrane with non-uniform tension from the quasi-static measurement of its localization landscape[END_REF], we used a vibrometry-based method to measure the landscape using a quasi-static approach. We demonstrated the possibility of using dynamic sensors to measure the landscape as well. Predict the effects on localization in vibroacoustics could be useful, for instance, for describing the effects of localized modes on the radiation of musical instruments, such as piano boards [START_REF] Ege | ŞVibroacoustics of the piano soundboard: (Non)linearity and modal properties in the low-and mid-frequency ranges[END_REF] and guitar top plates. It could also be useful for studying its effects on sound transmission in aircraft shells [START_REF] Berry | ŞStructural acoustics and vibration behavior of complex panels[END_REF]. Despite the fact that localization occurs in high-frequency modes, its actual form makes it impossible to predict them in advance.

In this Ąnal chapter, we examine the radiation of complex-shaped structures based on the information provided by the landscape. In addition to determining the location of localized modes and their principal frequencies, we extend our estimation to include higher-order frequencies and their contribution to radiation. As a Ąrst step, we derive analytical solutions to calculate natural frequencies in rectangular and circular geometries, in plates and membranes, using static GreenŠs functions. Based on the maximal value of the displacement Ąeld, as well as the applied pressure and mass density, an exact spectrum can be calculated for circular and rectangular geometries. We Ąnd better estimates of fundamental frequencies for complex membrane shapes using circular and rectangular models. The proposed models show a clear advantage over conventional models in terms of accuracy, even for the most difficult geometries. Next, we test the method based on static deformation to predict high-order frequencies in complex geometries used in the previous chapter, without localization. Due to the similarity between these geometries and rectangular surfaces, we hypothesize that natural frequencies above the fundamental will appear the same as in a rectangular structure that has the same proportional ratio between two characteristic lengths, calculated with the inertia tensor. Lastly, we use the previous developed methods to estimate average values of the radiation, namely LGP (Landscape, GreenŠs functions based method, Piston Model). We use the landscape with GreenŠs functions to estimate the spectrum based on the peaks of localized modes and the surface delimited by the valley lines; the modal radiation indicators are estimated with circular pistons. This allows us to Ąnd modal and average radiation indicators of complex plates presenting localized modes. We explore Ąrst a complex plate that presents multiple Ąrst localized modes. For low-frequency localization, the radiated power can be approximated by single monopoles, thereby allowing us to use the volume Ćow generated by the landscape. The second plate presents localization above the principal frequencies. Based on the landscape, we propose a not-yet-fully developed method for estimating higher-order frequencies and identifying radiation indicators directly. We use the approach taken in Chapter 4, where we use the Bridge Theorem to determine the radiated pressure and power through circular pistons. Regarding the landscape itself, we propose a correction that takes into account the mean values of valley lines. The valley lines that divide the landscape into multiple zones usually have low mean values. A high mean value of the value lines, however, may reduce the accuracy of the estimation. This approach aims to improve the accuracy of the estimation.

| Membrane and plate dynamics

In vacuum conditions, as described in Chapter 1, the out-of-plane displacement w of an isotropic homogeneous tensioned thin plate with volume density ρ, thickness h, YoungŠs Modulus E, Poisson ratio ν and subjected to a harmonic pressure P is ρh ∂ 2 w ∂t 2 + Kw = P cos(ωt).

(5.1)

The spatial operator K = D∆ 2 w -div τ (r) • grad (w) , in which the plateŠs rigidity D = Eh 3 /12(1ν 2 ) and τ (r) is the imposed non-uniform tension Ąeld. The operator also can be expressed as L = K/ρh, and if a uniform tension value T is present, L = (D∆ where n represents the exterior normal to the boundary ∂Ω of Ω. Even though the simply supported boundary condition is not precisely correct, the terminology appears to be widely accepted [START_REF] Schot | ŞThe GreenŠs Function Method for the Supported Plate Boundary Value Problem[END_REF]. According to Schot [START_REF] Schot | ŞThe GreenŠs Function Method for the Supported Plate Boundary Value Problem[END_REF], the boundary condition in this case should read as

M (ϕ) = ∆ϕ -(1 -ν) ∂ϕ 2 ∂κ 2 -Q ∂ϕ ∂n = 0, (5.3) 
in which ν is the Poisson ratio, Q and κ are the curvature of ∂Ω and the arclength along ∂Ω, respectively.

| Using the static deformation to calculate the spectrum

Analytically, natural frequencies can be calculated for different types of geometries and boundary conditions [START_REF] Leissa | Vibration of Plates[END_REF]. For complex-shaped plates, semi-analytical methods, such as Rayleigh-Ritz, or numerical methods, such as the Ąnite element method, can be used to obtain accurate results. An unorthodox method is to calculate natural frequencies using the static deformation. A struc-tureŠs static deformation can be expressed as the sum of basis functions that satisfy boundary conditions (the mode shapes) and natural frequencies. By doing so, direct relationships between statics and dynamics are found in simple cases, such as rectangular and circular geometries.

We will show that the Ąrst eigenvalues of complex-shaped structures can be reasonably estimated with these equations. Furthermore, if a geometry resembles a rectangle, we hypothesize that higher frequencies will appear as they would in a rectangular case. Due to the fact that all modes contribute to the static deformation, we anticipate that the Ąrst resonance frequencies will be in reasonable agreement. This hypothesis is Ąnally tested on membranes and plates of complex shapes.

| Green's method for fixed membranes

The Dirichlet problem for the static deformation of a Ąxed membrane is

-∆w(r) = f (r)
in Ω w(r) = 0 on ∂Ω. (5.4) This problem can be solved by the well-known Poisson method, employed in Chapters 1 and 2. The solution can also be found using GreenŠs functions. By deĄnition, the GreenŠs function is solution to the inhomogeneous Helmholtz equation

(∆ + k 2 )G(r♣r 0 ) = -δ(r -r 0 ), (5.5) 
where δ is a localized point source and the acoustic wavenumber k = ω/c. The GreenŠs function solution of Eq. (5.5) can be expressed in a modal form,

G(r♣r 0 , k) = m ϕ m (r)ϕ ⋆ m (r 0 ) (k 2 m -k 2 ) Ω ϕ m (r 0 )ϕ ⋆ m (r 0 ) dr 0 , ( 5.6) 
in which k m the eigenvalue of mode m and the ⋆ stands for the complex conjugate. In the static case, k = 0 and the solution of Eq. (5.4) using GreenŠs functions is

w(r) = Ω G(r♣r 0 )f (r 0 ) dr 0 = m=0 ϕ m (r) Ω ϕ ⋆ m (r 0 )f (r 0 ) dr 0 k 2 m Ω ϕ m (r 0 )ϕ ⋆ m (r 0 ) dr 0 .
(5.7)

Circular membranes

The mode shapes and eigenvalues in circular membranes can be written as

ϕ mn (r, θ) = J m (k mn r) cos(mθ), k mn = χ mn a , ( 5.8) 
where χ mn are the zeros of the Bessel function of the Ąrst kind J m . Under vacuum conditions, the membrane natural frequencies are

ω mn = T ρ s χ mn a . ( 5.9) 
The static GreenŠs function for a circular membrane, 1 solution of Eq. (5.4), is

G(r♣r 0 ) = m n ϕ mn (r)ϕ mn (r 0 ) k 2 mn Ω ϕ 2 mn (r 0 ) dr 0 = ∞ m=0 ∞ n=1 J m (k mn r) cos(mθ)J m (k mn r ′ ) cos mθ ′ k 2 mn π -π a 0 J m (k mn r ′ ) 2 cos 2 (mθ ′ )r ′ dr ′ dθ ′ = 2a 2 π ∞ m=0 ∞ n=1 J m (k mn r) cos(mθ)J m (k mn r ′ ) cos(mθ ′ ) (1 + δ m0 )χ 2 mn J m+1 (χ mn ) 2 , ( 5.10) 
in which δ mn is the Kronecker delta function and the apostrophe relates to the coordinate r 0 . Under static pressure, f = P/T = const, and the static displacement is since the cosine integral is zero ∀m > 0 which also means that only axis-symmetrical modes contribute to the static deformation. It is worth recalling that at the center, i.e. r = 0, the displacement is maximal so that

w(r) = P T Ω G(r♣r 0 ) dr 0 = P T 2a 2 π ∞ m=0 ∞ n=1 J m (k mn r) cos(mθ) π -π a 0 J m (k mn r ′ ) cos mθ ′ r ′ dr ′ dθ ′ (1 + δ m0 )χ 2 mn J m+1 (χ mn ) 2 = P T 2a 2 ∞ n=1 J 0 (χ 0n r/a) (χ 0n ) 3 J 1 (χ 0n ) , ( 5 
w max = P T 2a 2 ∞ n=1 1 (χ 0n ) 3 J 1 (χ 0n )
.

(5.12)

Moreover, the series converges to 1/8 and as a result, it is possible to relate the tension to the maximal displacement as

T = P w max a 2 4 .
(5.13)

As described in Chapter 2, this equation was used to determine the tension of a membrane based on its static deformation. When we insert it in Eq. (5.9), we obtain a direct relation between the maximal displacement and the whole membraneŠs spectrum ω mn = χ mn 2 P ρ s w max .

(5.14)

Rectangular membrane

In the rectangular membrane, using Cartesian coordinates x, y, sinusoidal mode shapes appear

ϕ mn (x, y) = sin(k m x) sin(k n y), (5.15) 
with eigenvalues

k 2 mn = k 2 m + k 2 n = mπ L x 2 + nπ L y 2 (5.16)
and natural frequencies

ω mn = T ρ s mπ L x 2 + nπ L y 2 1/2 .
(5.17)

The static GreenŠs function for a rectangular membrane,2 solution of Eq. (5.4), is

G(r♣r 0 ) = ∞ m=1 ∞ n=1 sin(k m x) sin(k n y) sin(k m x ′ ) sin(k n y ′ ) k 2 mn Ly 0 Lx 0 sin 2 (k m x) sin 2 (k n y) dx ′ dy ′ = 4 ∞ m=1 ∞ n=1 sin(k m x) sin(k n y) sin(k m x ′ ) sin(k n y ′ ) k 2 mn L x L y . ( 5.18) 
Again, under static pressure, f = P/T = const and the solution using GreenŠs functions

w(r) = 4P T ∞ m=1 ∞ n=1 sin(k m x) sin(k n y) Ly 0 Lx 0 sin k m x ′ sin k n y ′ dx ′ dy ′ k 2 mn L x L y = 4 π 4 P T ∞ m=1 ∞ n=1 sin mπx L x sin nπy L y 1 mn [1 -(-1) m ] [1 -(-1) n ] (m/L x ) 2 + (n/L y ) 2 .
(5.19)

Similar to the circular case, the maximum amplitude w max of the membrane static deformation is found at the center i.e. at L x /2 and L y /2. Also at the center, the sinus functions representing the mode shapes in Eq. (5.19) are 0 if m, n are even and equals 1 or -1 if odd. Moreover, if m and n are odd numbers, the product [1 -(-1) m ] [ 1 -(-1) n ] = 4, this leads to

w max = 1 π 2 P T ∞ m odd ∞ n odd 4 π 2 j (m+n-2) (m/L x ) 2 + (n/L y ) 2 mn = L x π 2 P T ∞ m odd ∞ n odd 4 π 2 j (m+n-2) (m 2 + α 2 n 2 )mn = L x π 2 P T Γ ∆ (α), (5.20) 
where j = √ -1, α = L x /L y and Γ ∆ (α) represents the double series that varies with α. The tension is related to the maximum displacement, as in the circular case

T = P w max L x π 2 Γ ∆ (α), (5.21) 
which allows us to determine the natural frequencies as

ω mn = P Γ ∆ (α)(m 2 + α 2 n 2 ) ρ s w max . ( 5.22) 
Using these equations, one can calculate the spectrum of simple membranes without knowing their tension or, calculate the tension form the maximum value of the static deformation. We will analyze the series in more detail later. In the Ąrst instance, we will use these equations for estimating the fundamental frequencies in other geometries.

Fundamental frequencies of complex-shaped membranes

The exact value of the Ąrst mode found by GreenŠs method for circular membranes is ω 0 = 1.2024 P ρ s w max (5.23) and for a squared membrane ω 0 = 1.2033 P ρ s w max .

(5.24)

A previous method based the Rayleigh Quotient assumed a simple sinusoidal functions for approaching the static deformation to estimate fundamental frequencies for any shape [START_REF] Lefebvre | ŞOne Single Static Measurement Predicts Wave Localization in Complex Structures[END_REF], which is

ω 0 ≈ 1.27 P ρ s w max , ( 5.25) 
where calculation details were presented in Chapter 1. Recall that our main interest is to exploit the information given by the landscape of localization. Using this last equation, only the Ąrst mode is taken into account to model the static deformation, so better accuracy is expected by using Eqs. (5.23) and (5.24). However, even when utilizing only the Ąrst mode for the estimation, in membranes that localize, Eq. (5.25) gives an estimate within 5% (see Chapter 2). For complex shapes, in [START_REF] García | ŞModeling the acoustic radiation of plates using circular pistons[END_REF], authors measured the distance between the area of an equivalent rectangle and that of complex shaped geometries, according to two characteristic lengths given by the inertia tensor. We use here the geometries that appear the more distant to rectangles (Fig. 4.4.6), to test the strength of this method for estimating fundamental frequencies of complex shaped membranes

G p (r♣r 0 ) = Ω G(r♣r 1 )G(r 1 ♣r 0 ) dr 1 = m n ϕ mn (r)ϕ mn (r 0 ) Ω ϕ 2 mn (r 1 ) dr 1 k 4 mn Ω ϕ 2 mn (r 1 ) dr 1 Ω ϕ 2 mn (r 0 ) dr 0 = m n ϕ mn (r)ϕ mn (r 0 ) k 4 mn Ω ϕ 2 mn (r 0 ) dr 0 , (5.27) or G p (r♣r 0 ) = 1 k 2 mn G(r♣r 0 ).
(5.28)

For a rectangular simply supported plate under static force f = P/D = const, the displacement can be expressed as

w(r) = P D Ω G p (r♣r 0 ) dr 0 = P D ∞ m=1 ∞ n=1 sin mπx L x sin nπy L y 4 π 6 mn [1 -(-1) m ] [1 -(-1) n ] [(m/L x ) 2 + (n/L y ) 2 ] 2 .
(5.29)

Similarly to the circular membrane, we use the maximum displacement that occurs at the center of the membrane

w max = 1 π 4 P D ∞ m odd ∞ n odd 4 π 2 j (m+n-2) (m/L x ) 2 + (n/L y ) 2 2 mn = L x π 4 P D ∞ m odd ∞ n odd 4 π 2 j (m+n-2) (m 2 + α 2 n 2 ) 2 mn = L x π 4 P D Γ ∆ 2 (α), (5.30) 
and the natural frequencies relate directly to the maximal displacement of the plate as

ω mn = (m 2 + α 2 n 2 ) Γ ∆ 2 (α)P ρ s w max . ( 5.31) 
For a squared plate, the principal frequency simpliĄes to ω 0 = 1.2507 P ρ s w max .

(5.32)

| Analysis of different aspect ratios in rectangular shapes

According to Eqs. (5.22) and (5.31), the spectrum of rectangular Ąxed membranes and simply supported plates can be derived from the static deformation. Measuring the maximum deĆection value is sufficient to determine all natural frequencies without knowing the exact dimensions of the surface. Only the ratio between two characteristic lengths, i.e. L x and L y is required and the tensor of inertia can be used to calculate these two lengths. By supposing that the spectrum will grow as if it were The mode is fully constrained by the projected valleys, although the contribution of other modes is considerable.

ω i mn = m 2 + (αn) 2 d 2 Γ ∆ d (α) max(u i ) + (d -1) ∂Ω i u i dS i . ( 5.38) 
As modes delocalize, they cover a larger area and estimation accuracy may decrease.

| Average radiation indicators

In Chapter 4, we presented a method for estimating the radiation of plates with complex boundaries using circular pistons. A rectangular distribution of pistons can be used to simulate the radiated power if the plate shape resembles a rectangular shape. An average value can be found by taking into account all possible force positions, resulting in the equipartition theorem: all modes contribute equally to radiation. The orthogonality of modes eliminates the need to account for cross-modal efficiencies and allows the radiated power and efficiency to be calculated by summing the contribution of each mode separately. In analysis of radiation, three indicators are considered: average mean square velocity, mean radiated power, and average radiation efficiency. Consider for a moment each region as an independent vibrating structure. A localized zone can be viewed as an independent simply supported plate, whose boundaries are deĄned by valley lines that separate them. Each sub-region contributes to global radiation from the plate. To begin with, we assume that each substructure contributes to the total radiation as if, theoretically, all modes never delocalize. Tildes over quantities represent sums over N localized sub-regions.

Average radiation efficiency

The average radiation efficiency of the entire structure considers each modeŠs contribution individually. Summing over N sub-regions D i , the radiation efficiency of localized modes is calculated as

σ = N i=1 m σ i m (v i m ) 2 ⟨v 2 ⟩ i = N i=1 m σ i m (ω i m ) 2 -ω 2 2 + η 2 (ω i m ) 4 -1 m (ω i m ) 2 -ω 2 2 + η 2 (ω i m ) 4 -1 .
(5.39)

Observe that Eq. (5.39) depends only on the way each mode radiates sound σ m and its resonance frequency ω m . The modal radiation efficiency is calculated using the EPM (see Section 4.3 of Chapter 4) and ω m is calculated with Eq. (5.38).

likely that the Ąnal 3D matrix will be very large, requiring a large amount of RAM. Often, matrix sizes are downsampled [START_REF] Kim | ŞCalculation and reduction of sound radiation from a thin plate structure excited by complex inputs[END_REF], and DCM has been shown to yield results similar to those obtained via boundary element methods. In this study, we calculated the power below and above 10% of each resonance frequency. We can thus better identify the peaks in the power, but the matrix size imposes a limit. Therefore, this frequency step was performed only for the Ąrst 160 modes, resulting in a frequency vector with N f = 500, which shows clearly recognizable peaks up to 7 kHz, as shown in Figs. 5.5.2b to 5.5.2d. The process was conducted on a server using approximately 800 GB of RAM, with 96 cores, and took approximately one day to complete. It was not possible to implement parallelization processes in this study, but they could speed up the process. By using equivalent piston radiators, the solution can be achieved in seconds. Also, it is possible to consider increasing the number of frequencies N f to improve resolution. We used a frequency vector with N f = 2000. For the Ąrst modes, the plateŠs radiation efficiency approaches one rapidly, indicating a high radiation characteristic. The larger oscillations in the reference value of radiation efficiency, shown in Fig. 5.5.2b come from the radiation matrix. As the frequency increases, DCM can underestimate the calculations (see Fig. 4 in [START_REF] Hashimoto | ŞMeasurement of sound radiation efficiency by the discrete calculation method[END_REF]). As in this example, resonance frequencies lie around this zone. Small Ąctive oscillations appear, decreasing DCM precision.

Both radiated power and efficiency are very similar, showing the monopole contribution. The piston model enhances the visibility of all modes in detail, which may otherwise be missed or misplaced due to the frequency discretization.

| Radiation from higher frequency modes

Eight circular clamped patches of 1 cm radius, marked in green, are placed on the surface to induce localization. The structure is a rectangular simply supported plate of dimensions 0.5 × 0.6 × 0.003 m with the same material properties as before. The landscape is plotted and shown in Fig. 5.4.1.

Four lobes appear housing localized modes at low frequencies. We compare three estimates for l-modes: GreenŠs method with a correction taking into account the mean valley value [Eq. (5.38)], without the correction and using a square plate model [Eq. (5.32)], and the previous estimation based only on the Ąrst mode [Eq. (5.25)]. These values are given in Table 5.5.1. Global radiation properties can be easily calculated with the help of the landscape and are shown in Figs. 5.5.4 to 5.5.6. The radiating plateŠs behavior is greatly inĆuenced by low-frequency modes. Thus, determining the lowfrequency behavior requires estimating accurately the Ąrst modes and a couple of harmonics.

In this example, we estimate localized frequencies with Eq. (5.38), which yields better results on average as seen in Table 5.5.1. For the rest of the spectrum, the effective ratio α is detailed in Table 5.5.2. These values are adjusted manually. As frequency increases, it may become increasingly difficult to identify each modeŠs contribution to the global behavior of the radiating plate, mostly due to modal density. This principle is the basis for high-frequency methods such as Statistical Energy Analysis (SEA). Using a modal approach to estimate the radiation as a sum of all modes is similar to SEA. However, here all modes have the same probability of contributing to radiation.

By combining the landscape, EPM-RD, and GreenŠs method for calculating radiation indicators, namely LGP, it is possible to identify the radiating behavior of the Ąrst localized modes, such as monopoles, dipoles, etc (see Fig. 5.5.5b). At the moment, we consider only pistons of equal area and volume velocity when calculating the modal radiation. This results in imprecisions in some modes throughout the analysis that can be treated as indicated in Chapter 4.

For FEM and classical radiation models, one must compute all the modes in interest and calculate the radiation (see Fig. 5.5.3). Finally, a posteriori it may be possible to identify the contribution and radiation of localized modes. With the LGP method, it is possible to estimate also average values of radiation (see Fig. 5.5.4) and also to determine a priori how a structure that presents localization precision of calculating or measuring the maximum displacement value, and they remain constant throughout the spectrum. Using this method, very accurate predictions can be made for the whole spectrum of membranes, regardless of how complex the perimeter or geometry is. The geometry of plates plays an essential role in their behavior, making it impossible to present this method as mature without a thorough understanding of the geometric effects. Instead, it is a Ąrst attempt to understand and describe the spectrum in complex-shaped plates. However, there are some phenomenological characteristics to be observed. According to our Ąndings, when considering the static GreenŠs function, as frequency increases accuracy decreases. The difference between calculated and predicted eigenvalues converges very fast, over the tenth eigenvalue, and this difference varies between different geometries. By making some corrections, such as Ąnding ŞeffectiveŤ ratios between the two characteristic lengths, the prediction accuracy may be improved, allowing it to match the high-frequency region and increasing the estimation of higher-order frequencies. Indicators that take into account the shape, perimeter, and surface of the platesŠ convexity can be tested to determine how eigenvalues behave and appear in complex shapes.

Applying static GreenŠs functions to localization problems allows us to improve the prediction accuracy of fundamental localized frequencies. If a mode is fully localized within the boundaries, depicted by the valley lines, the values of the modes on those boundaries are almost zero. This explains the formulaŠs accuracy. In the case of membranes, this may not happen and the estimation using the Ąrst mode yields reliable estimates.

Boundary values ε between two contiguous zones indicate the degree of coupling between them. Until now, we have observed that Ąrst modes strongly inĆuence the values of ε in membranes, showing the difficulty of localizing modes. For low-frequency localization, membranes may have to be imposed with larger null displacement zones along the domain than plates.

A plateŠs rigidity and operator facilitate mode localization, resulting in low levels of valleys on the boundary. Modes can be more often contained within boundary values in plates than in membranes. This also means that if the boundary value is high in the plate case, higher frequency modes may contribute to the boundary value. This may indicate delocalization to some extent. Despite the fact that the landscape draws these valley lines, it does not tell us if modes are tightly or loosely contained within this region. We have not yet been able to identify any indication of this scenario.

In the second case study, the reader may wonder whether the position of the Ąxed patches affects localization. We paid particular attention to their positioning since the surface of each sub-region is inversely proportional to its resonance frequency. It was intended that multiple zones would not have close fundamental frequencies and harmonics to better understand each modeŠs contribution. Random distributions of points may result in localization, but it may be difficult to separate intervals in the spectrum, since multiple zones may resonate simultaneously.

Although using the model to predict radiation remains a challenge, the preliminary results are promising. It must be noted that, as stated multiple times, delocalized modes cover larger surfaces. The radiation surface must, in theory, also cover this area in order to predict the modal radiation in a satisfactory manner. This process is, however, slow. After establishing a delocalized regime, we observe that average behavior dominates rather than modal behavior, which has a smaller effect on the estimated radiation.

| Conclusion

The main results presented in this chapter can be divided into two categories. On the one hand, we propose a method for estimating the spectrum of complex-shaped surfaces close to rectangular shapes. This method involves calculating the static GreenŠs function in simple cases. On the other hand, the second part of this chapter examines how to utilize the landscapeŠs information to predict acoustic radiation from complex plates. A detailed discussion and analysis of the main characteristics and error margins of both methods were also presented.

A formulation based on static GreenŠs functions leads to inĄnite series containing both modes shapes and resonance frequencies for circular and rectangular cases. These series can be solved analytically. A direct link is established between statics and dynamics, where the solution relates the maximal displacement to the spectrum of simple rectangular and circular geometries. For other geometries, the square membrane or plate model can be used to estimate the fundamental frequency accurately, even for geometries with complex shapes.

It is also possible to evaluate the rest of the spectrum by applying this formulation. The relationship between the eigenfrequencies and the static deformation is determined by the ratio between characteristic lengths L x and L y in the rectangular case. We compare the applicability of the method to any geometry close to a rectangle in terms of the difference between their surfaces. The results are accurate for membranes. The whole spectrum is predicted with a difference below 3% in one case and below 1% in the other three. The direct application of this method to plates does not result in accurate results. Only the Ąrst resonance frequency can be accurately estimated. In addition, we provide some intuitions for considering this issue.

In the second part of this chapter, we applied these models to estimate localized frequencies. As an example, we demonstrate how the radiation of a plate governed by monopole-localized modes can be calculated directly from the fundamental frequency. Analyzing in more detail the landscape, we evidenced that it is possible that other modes may contribute to the static deformation of a plate presenting localization. Therefore, the estimation of the fundamental frequency and spectrum includes a correction factor based on the degree of coupling of one region with others. We show that the mean value of the boundaries provides a valid correction factor, at least for plates.

Acoustic radiation from localized modes can be modeled using equivalent sources, such as the equivalent piston model for a rectangular distribution (EPM-RD). In this sense, it is possible to calculate equivalent modal radiation efficiencies for localized modes. Currently, we are unable to propose a complete method for estimating higher-order frequencies, so an empirical correction factor is included in static GreenŠs method to illustrate its potential capabilities.

Considering each modeŠs contribution and classifying them according to their radiation characteristics can be used to analyze the radiation characteristics of a complex plate with localized modes. There is no need to solve eigenvalue problems for the dynamic problem nor store large matrices for the radiation problem. As the reader will be aware, the results are not ŞexactŤ but rather estimates, and we wholeheartedly agree. However, within seconds these estimates provide a great deal of information that can be useful in the design and optimization of structures based on their radiating properties.

A single measurement of static deformation, or more precisely, the maximum deformation of a structure under uniform pressure, is sufficient to determine the spectrum and average values of acoustic radiation. The presence of more than one peak in the landscape indicates low-frequency localization. The landscape of localization provides information about localized modes; equivalent radiation models such as the EPM can be used to estimate the modal radiation of complex-shaped structures, and static GreenŠs functions give estimates of the spectrum. With the three ingredients, namely LGP, the average radiation properties of complex structures exhibiting localization can be assessed in seconds without resorting to lengthy numerical calculations.

General conclusions

This dissertation presents my work at the Roberval Mechanics Laboratory of the Université de technologie de Compiègne. It explores the inĆuence of localized vibrations on acoustic radiation in complex Ćat structures, such as membranes and plates, by means of experimental, numerical and analytical methods. A number of models have been developed to predict eigenvalues and modal radiation in complex structures without localization. Combining these models with the landscape can provide useful information on structure localization and acoustic radiation.

First, we designed and implemented an experiment for measuring the landscape function in membranes. Regardless of the complexity of the tension Ąeld, the landscape was able to accurately predict the resonance frequencies of localized modes within 5%.

Through the study of possible links between statics and dynamics, we demonstrated that tension values in circular membranes can be calculated as

T = P w max a 2 4 .
This simple equation relates the applied pressure P and the maximum value of the displacement w max to the tension value T , of a membrane of radius a. We show also how to tense a membrane with uniform tension based on its static deformation, then the tension value can be calculated. Our research on acoustic radiation focuses on developing equivalent models for structures weakly coupled to Ćuids. We also propose an analytical solution to a fundamental acoustic problem: the radiation of baffled pistons. The phase component is introduced to describe the radiation of pistons of arbitrary sizes and positions on a baffle plane. Then we use this approach to show that modal radiation efficiencies of plates can be estimated accurately with circular pistons (EPM). We also show that, for geometries close to rectangles, average values of the radiation can also be estimated with a piston model and rectangular piston distributions (EPM-RD). The methodŠs accuracy is discussed and the calculation takes a couple of seconds. As a side note, we attempt to reopen the debate on whether it is possible to Hear the shape of a drum, since we have demonstrated that even isospectral geometries can radiate sound differently.

Using static GreenŠs functions, we generalize the method for calculating the spectrum of circular membranes from their static deformation to both rectangular membranes and simply supported plates, demonstrating that ω mn = χ mn 2 P ρ s w max , ω mn = m 2 + (αn) 2 It is surprising that the radius of the membrane is not even necessary for calculating its natural frequencies (left equation). All the information lies in the maximal displacement. For rectangular plates and membranes (right equation), only the ratio between two characteristic dimensions is needed. Then, we test the applicability of both equations to complex-shaped structures. For membranes, this method yields astonishingly accurate estimates of the spectrum, while for plates, it yields only accurate estimates of fundamental frequencies. A number of possible correction factors were also discussed. In
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this way, we show that it is possible to estimate the entire spectrum of some complex geometries based on the maximum value of their static deformation. With regard to the localization landscape, we provide evidence that, by considering the mean value within each localized zone, it is possible to obtain more accurate estimates of localized mode frequencies. In conclusion, we demonstrate that the landscape in conjunction with the models for predicting eigenfrequencies and modal radiation developed within this thesis, can be readily applied to the prediction of acoustic radiation from complex structures.

Perspectives

It is possible to extend this research on localized modes to more complex structures, such as membranes with added masses or stiffened plates. Localization is most prevalent at high frequencies in these examples, making it impossible to utilize the landscape in its current form. For structures with small added masses, where the mass density is greater than the membraneŠs, our current understanding is that, as frequencies increase, the masses tend to behave as Ąxed points, as discussed in Chapter 2. It is therefore possible to formulate a modiĄed version of the landscape that changes with frequency, reaching its current static form at an unknown frequency. We examined some of these effects on complex membranes within a masterŠs internship project [START_REF] Amine | ŞContrôle du rayonnement acoustique de membranes structurées[END_REF] in which I was able to co-tutor. Additionally, another project was conducted to investigate the effects of added masses on the absorption of membranes with localization. Both projects involve more complex problems where Ćuid coupling plays a signiĄcant role in membrane dynamics and high frequency localization. Membranes with added masses can be used in research to develop sound absorption materials and metamaterials. For now, researchers have investigated metamaterials consisting of arrays of cells containing one membrane and one mass (decorated membrane resonators), in series or parallel [START_REF] Ma | ŞAcoustic metasurface with hybrid resonances[END_REF], but localization effects have not been reported. At this point, some preliminary attempts have been made to model and measure some of these phenomena. It would be interesting to pursue these projects in the future.

Stiffened plates offer also an excellent opportunity for studying localized modes. One can Ąnd stiffened plates in civil engineering, ship buildings, and aircraft structures, as well as in soundboard plates in musical instruments. However, stiffened plates are also likely to exhibit localization at high frequencies. Modes are localized within the stiffeners space at high frequencies. In musical instruments, for instance, localized modes may alter the pitch. Better understanding the behavior of localized modes may be helpful in determining what type of soundboard possesses the ŞbestŤ radiation properties, determining which type of soundboard should be chosen, or that in the end, it doesnŠt even matter. Localization and acoustic radiation from complex structures Carlos García A.
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Doctoral thesis in Vibration and Acoustics

Localized vibrations occur in a variety of physical systems, from quantum mechanics to piano soundboards. The novel tool called landscape of localization is the Ąrst general method for predicting localization. It is therefore possible to study such phenomena without having to solve any eigenvalue problem or perform dynamic analyses. The landscape of localization is a static function that allows for predicting where modes will localize, how strong their localization will be, and when they will start delocalizing. Localized modes will resemble the static deformation, allowing for estimations of resonance frequencies using RayleighŠs quotient. As a result, it is possible to extract dynamic information from the landscape and to investigate its effects on both vibrations and acoustic radiation.

Within this context, this thesis aims to provide the basis for studying acoustic radiation using the landscapeŠs properties, considering localized modes as individual radiators. We will summarize this thesis structure, for the sake of simplicity, into three parts.

One part of this dissertation deals with the relationship between statics and dynamics. We study the static deformation of simple geometries, such as circles and rectangles. By expressing the static solution in terms of modes, it is possible to derive equations that relate the tension of membranes to their static deformation. The same method is used for simply supported rectangular plates. Further, we infer the total spectrum from the maximum value of the static deformation of both geometries, in membranes and plates. This approach is then tested on various complex geometries of plates and membranes.

The second part is centered on the radiation of complex structures. A method is proposed for estimating the modal radiation of simple and complex geometries, using circular pistons as basis radiators. Through this piston approach, we derive analytical approximations for modal radiation of complex geometries. Moreover, with a modal approach, where all modes are alike favored, one can express average values of the acoustic radiation. Hence, the estimated solutions can be found within seconds, just by knowing the structureŠs shape and its natural frequencies.

The third part focuses on localization. As a Ąrst step, we develop a quasi-static method for measuring the landscape function in complex membranes. Our results conĄrm that the landscape function can predict localized modes and Ąrst resonance frequencies in membranes, even with non-uniform and additionally unknown tension Ąelds. As a second step, we study the radiation of structures displaying localized modes. We propose better estimations of localized frequencies based on the mean value of the valley lines. Then, the landscape is combined with two models: one to estimate spectra, and the other to estimate modal radiation from multiple localized zones. The two models allow for going beyond the Ąrst localized mode. Therefore, acoustic radiation average values can be estimated through the use of the landscape and the models presented in this dissertation.
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  [42, pp. 165-173]. Matrices [A] and [R] are symmetric, positive and real (normal matrices) which enables the eigenvalue decomposition. Matrices [P] and [Q] are orthogonal matrices containing the modes while [Ω] and [Λ] are diagonal matrices with the eigenvalues Ω n and Λ r on the diagonal.
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 2 , where each mode satisĄes the dynamic equation [Eq. (2.1)]. Imposing Ąxed boundary conditions results in the Dirichlet problem Lϕ p = ω 2 p ϕ p in S
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 22 Figure 2.2. Mode shape simulations.
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 24 Figure 2.4. Modal measurement setup: 1 kick-drum cavity, 2 magnets used to create null displacement boundary conditions, 3 support structure, 4 automatic hammer (solenoid and force sensor), 5 membrane, 6 plexiglass door.
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 25 Figure 2.5. InĆuence of the atmospheric pressure on the evolution of the Ąrst mode frequency at different ratios. ŞLowŤ and ŞhighŤ uniform tension values are presented here.
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 26 Figure 2.6. ConĄguration of landscape measurements: 1 kick-drum cavity, 2 magnets used to create null displacement boundary conditions, 3 support structure, 4 microphone, 5 membrane, 6 back enclosure, 7 loudspeaker.
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 210 Figure 2.10. Modal measurements.

Contents 3 . 1 3 . 4

 3134 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 Radiation from planar sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 Radiation from multiple sources . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.1 The Ąrst product and bridge theorems . . . . . . . . . . . . . . . . . . . . . . 55 3.3.2 Single baffled piston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.3 Two pistons with arbitrary phases . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.4 Two pistons vibrating in phase . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.5 Two pistons vibrating in anti-phase . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.6 Three pistons on the plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Radiation resistance and efficiency of a random distribution of pistons . . 64 3.5 Analysis of the radiation efficiency in some typical cases . . . . . . . . . . . 64 3.5.1 Dipole with non-zero Ćux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5.2 Three sources aligned and in ŞLŤ shape . . . . . . . . . . . . . . . . . . . . . 64 3.5.3 Quadrupole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 | 53

1 4 . 4

 144 Baffled plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2.2 Average values of the mean-square velocity . . . . . . . . . . . . . . . . . . . 75 4.2.3 Radiation efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2.4 Case study: Can one hear the shape of a drum? . . . . . . . . . . . . . . . . 77 4.3 Equivalent piston model (EPM) . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.3.1 Modal radiation analogous to vibrating pistons . . . . . . . . . . . . . . . . . 79 4.3.2 Equivalent radius of radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3.3 Location of the pistons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3.4 Case study: Tetris plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Equivalent piston model -rectangular distribution (EPM-RD) . . . . . . . 83 | 71

Figure 4 .

 4 Figure 4.2.1shows the radiation efficiency of a simply supported rectangular plate excited at ten random positions, the mean radiation averaged over the ten positions as well as the average radiation efficiency. No matter the plate shape, similar behavior is to be expected under a light-Ćuid assumption, whether they are circular, rectangular, elliptical, etc. Radiation efficiency is affected by the excitation position within the structure, but global trends can still be observed.

  4.2.1b and 4.2.1c and [185, Fig. 5]).
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 543 Figure 5.4.3. An illustration of the inĆuence of valley lines on the estimation of the fundamental frequency in one dimension. a) Despite traversing the valley line, the mode is similar to the static deformation. b)The mode is fully constrained by the projected valleys, although the contribution of other modes is considerable.
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	r-a)		
	4πr	.	(1.54)

  In practice, this relationship enables us to determine the landscape function from the measured static deformation of the membrane, which can then be approximated by its quasi-static deformation [see Eq.(2.15)].

	u =	ρ s w P	.	(2.28)

.27) 

where u is the landscape function and L is the spatial operator previously introduced describing the motion of a membrane. Eqs. (2.16) and (2.27) are then equivalent; the static deformation and the landscape function differ only by a constant factor so that

Table 2 .
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	Mode 1	144.68	151.49	+4.7	79.66	83.09	+4.30
	Mode 2	170.12	166.22	-2.29	99.09	97.98	-1.12
	Mode 3	196.55	-	-	107.17	-	-
	Mode 4	225.95	-	-	128.72	-	-

b (Hz) diff. % FEM a (Hz) Landscape b (Hz) diff. % 1. Simulations: Membrane under two different tension Ąelds.

a Simulated with FreeFem++

[START_REF] Hecht | ŞNew development in FreeFem++[END_REF] 

b Calculated with Eq.

(2.30) 

Table 2 .

 2 

	Mode 1	149.74	152.54	+1.87	80.65	80.45	-0.24
	Mode 2	174.67	168.43	-3.57	96.87	-	-
	Mode 3	195.67	-	-	106.25	102.74	-3.30
	Mode 4	223.92	-	-	116.56	-	-

a (Hz) Landscape b (Hz) diff. % Meas. a (Hz) Landscape b (Hz) diff. % 2. Measurements: Two different conĄgurations of the membraneŠs tension. a Computed in PLM Siemens b Calculated with Eq. (2.30)

  LommelŠs expansion [see Eq.(3.32)] is used to expand J 1 , then Bessel and Struve functions [Eqs.(3.33) and(3.34)] are integrated to Ąnd

kds) cos Φ 12 + H 0 (kds) sin Φ 12 ds;

(3.10) 

  2 -T ∆)w/ρh. The eigenvalue problem consider m modes ϕ solution of Eq. (5.1) in a bounded domain Ω, which can be summarized in the Dirichlet problem

	Lϕ m = ω 2 m ϕ m	in Ω
	ϕ m = 0	on ∂Ω for plate/membrane
	∆ϕ m = 0	on ∂Ω if simply supported plate	(5.2)
	∂ϕ m ∂n	= 0	on ∂Ω if clamped plate,

Table 5 .5.1.

 5 First localized modes. The estimations are given, from top to bottom by: the analysis of the landscape based solely on the Ąrst mode, with the full eigenmode basis of a square plate, and a rectangular plate taking into account the mean value of the boundary.

		Mode 1		Mode 2	Mode 3	Mode 8
	FEM (Hz)	185.36			291.31	327.45	554.52
	Eq. (5.25)	187.65	1.24%	296.68 1.84% 350.90 7.16% 575.73 3.83%
	Eq. (5.32)	184.32 -0.56% 291.43 0.04% 344.69 5.26% 565.54 1.98%
	Eq. (5.38)	185.15 -0.11% 292.58 0.43% 333.55 1.86% 565.59 1.99%
				Zone 1	Zone 2	Zone 3	Zone 4
		Real α			1.24	1.4	2	1.5
	α = L i x × L i y	1.0 1.0 1.8 1.1 1.0 1.0 1.1 1.6

Table 5 .

 5 5.2.The effective ratio α found for each i zone. Each dimension must be assessed separately.

Note that PythagorasŠs theorem was found on the Plimton 322 Sumerian tablet, more than one millennium before Pythagoras. In this sense, the concept of harmony may also be older.

GUTHRIE, W., A History of Greek Philosophy, Cambridge University Press, Vol.1, 1983, p. 272. 

BOYER, Carl B. The History of the Calculus and its Conceptual Development, New York, Dover, 1959, pp. 27Ű29. | 1

It is still debated whether PoissonŠs work is original and if Sophie GermainŠs work was an uncited inspiration for him.
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See the work of Cuenca[START_REF] Cuenca | ŞWave models for the Ćexural vibrations of thin plates Model of the vibrations of polygonal plates by the image source method[END_REF] for deriving GreenŠs functions for polygonal shapes and that from Pleijel[START_REF] Pleijel | ŞA study of certain GreenŠs functions with applications in the theory of vibrating membranes[END_REF], deriving special GreenŠs functions for the membrane case.

The results from Greenspan are in accord with the calculations by Morse and Ingard [14, p. 383], Struve [60], Gray et al. [61, p. 210], King [62], Rayleigh [1, p. 302].

See Cremer and Heckl [41, pp. 532-533], Chaigne [13, pp. 629-636], Norton and Karczub [45, pp. 221-227], Fahy and Gardonio [42, pp.151-156, pp. 192-193], Lesueur [47, p142, pp. 150-152], Leppington et al. [76].

| Introduction

This is the effective measured radius of the kick drum used for the experiment.

See also Beranek and Mellow [15, p. 866])

Average mean-square velocity

The mean square velocity, by taking into consideration the contribution of localized modes can be expressed as

.

(5.40)

F represents the applied force, M the total mass, and η the structural damping. Taking into account all possible punctual excitations, all modes contribute equally to radiation. In this case, it is not necessary to calculate the modal mass, but rather the total mass. The average mean square velocity is independent of the punctual forceŠs spatial location.

Mean acoustic power

Finally, Eqs. (5.39) and (5.40), the mean acoustic power radiated results in

(5.41)

These three indicators will provide us with an overview of how localized modes affect radiated power. Currently, the principal hypothesis is that modes do not delocalize and remain conĄned within each region. It is important to note that the transition from localized to delocalized states is smooth. In Eq. (5.36), the geographical limits of the modes are shown as a function of frequency. A mode extends to cover a larger area when the valley lines open. Consequently, one would not expect to Ąnd localized modes within a domain

Within the sub-region of D i , a total aperture of the valley lines marks the end of localization.

The landscape of localization reveals the fundamental localized modes within every sub-region, if they exist. Each of these modes will radiate, as a monopole in a baffled case or as a dipole radiator in an unbaffled case. After that, it may be difficult to predict a priori the mode shapes above the Ąrst mode in complex structures. However, if a given surface is similar to a rectangle, it is possible to pave a rectangular surface with circular pistons (EPM-RD) to determine the modal radiated power. By combining the EPM and the model for estimating higher frequencies in complex structures, more information is extracted from the landscape, allowing one to estimate radiation from complex structures as well.

| Complex plates

The radiation models based on the landscape developed in this thesis are illustrated through two case studies. First, a plate with multiple localized monopoles is presented, where the Ąrst mode and resonance frequency are directly related to the acoustic radiation. In the second example, we consider a plate with a limited number of localized sub-regions in order to explore the contribution of highfrequency modes to acoustic radiation. Higher-order frequencies are estimated using GreenŠs method, and modal radiation is estimated using EPM.

| A plate with multiple monopoles

Consider the following structure: a homogeneous 0.6 × 0.6 × 0.003 m aluminum plate with density ρ = 2700 kg•m -3 , Young modulus E = 71 GPa, and Poisson coefficient ν = 0.23. The plate was perforated irregularly, as depicted in Fig. 5.5.1, and mounted on an inĄnite baffle with simply supported boundaries.