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Motivation

Computer vision gains more and more ground in various practical applications, as it opens up the path to technological improvement. From digital cameras able to chase a smile to self-parking cars, or remote surgery systems, it is obvious that enriching a machine with vision capabilities can only widen its functionality and improve its precision and effectiveness. The purpose of a machine that sees can go from assisting (helping) humans in different activities to completely substituting the need of human presence.

In the last decade, the security systems based on recognising biometric features (fingerprint, face, iris, hand), which use extensively computer vision tools, have become very popular in person identification. Generally speaking, identification is the process by which the identity of a user is established. A different concept is the authentication, which represents the process by which a service confirms the claim of a user to use a specific identity. A biometric system exploits the irrefutable and indestructible bond between a person and his/her biometric features. The identification in this case contains intrinsically a mark of authenticity.

A similar system in the objects world would be highly needed, as the counterfeit becomes an issue encountered in the everyday life. The traditional (1D or 2D) bar codes or the RFID (Radio Frequency Identification) serve as identification means, but no proof of authenticity is available, as they can be easily produced and reproduced. An important step in this direction could be the use of the Bubble Tag TM , the solution patented by the Prooftag1 company and proposed as means for object authentication (figure 1.1).

Bubble Tag TM

According to the manufacturer's description, the Bubble Tag TM is the result of a chaotic selfgeneration of air bubbles within a transparent polymer. The randomness of the process makes nearly impossible the task of anticipating or planning the bubbles arrangement. The probability of obtaining two identical configurations tends to zero. Moreover, none of the existing technologies is able to reproduce this three-dimensional code, as it is impossible to generate vacuums with identical shapes, sizes and positions within a solidified material. The fact that it cannot be reproduced, not even by the manufacturer, allows qualifying the Bubble Tag TM as unique and non-reproducible, which is suitable for use in authentication purposes. By sticking a Bubble Tag TM on an object, the object becomes itself unique.

The Geowine Project

Geowine does not try to prove that there is truth in the wine (in vino veritas), but to prove that the wine is true.

The Geowine project profits from the qualities of the Bubble Tag TM in order to put in place an innovative system for wine bottle traceability and authentication. Developed within the Agrimip Innovation Pole, the Geowine project gathers six partners (Plaimont Producteurs, CCI du Gers, École d'Ingénieurs de Purpan, LEREPS, IRIT and Prooftag), led by a twofold motivation. On the one hand, they try to anticipate a foretold directive of the European Committee concerning the wine bottle labeling, and on the other hand, they seek for an improved approach to fight against wine counterfeiting. The Geowine system will enable the final clients to track the path of their wine bottle back to its producer. Whilst the traceability is not a novelty in the wine market (similar projects already exist, e.g. Tagdevin2 ), guaranteeing the authenticity of the retrieved information is an original feature, and is achieved by using the Bubble Tag TM . Providing the computer vision tools needed to deal with the automatic Bubble Tag TM identification is the motivation of this thesis.

Challenges and Proposed Solutions

A classic scenario of Bubble Tag TM object authentication is similar to a biometric-based person identification. First, the Bubble Tag TM is read, e.g. one or more images of it are taken, using ordinary cameras or dedicated readers. The images serve as raw information for computer vision tools, which extract some distinctive features (landmarks), like bubble positions and sizes. The extracted data, encoded in a convenient form, yields a discriminant signature which is stored in a database, as a reference signature. This represents the enrollment phase. The feature extraction procedure must be repeatable, as it will be applied again, later, when the stricto sensu authentication takes place. In this phase, another image of the Bubble Tag TM attached to the object we wish to authenticate, is taken, and its signature is computed. This query signature is compared to the reference signature stored in the database, and a decision on the similarity of the two is taken. Moreover, two protocols are possible. In the "1 to 1" case, each Bubble Tag TM comes with an id (e.g. an alphanumeric code or a bar code), which is used as index in the database to retrieve the corresponding reference signature, and then the two signatures are compared. In a "1 to many" protocol, no additional id is provided, and the identification is carried out exclusively using the Bubble Tag TM data, i.e. the query signature is compared with all the entries from the database, and its correspondent, if it exists, is returned.

The current industrial solution proposed by Prooftag for the Geowine project, consists in a quasi-realisation of a "1 to 1" identification protocol. Once generated, each Bubble Tag TM is associated with a unique identifier, namely a DataMatrix (figure 1.2), which serves as search key in the database. At the authentication time, a preregistered image of the Bubble Tag TM associated to the query DataMatrix is returned, and the user can visually verify the correspondence between the Bubble Tag TM attached to the wine bottle he wishes to authenticate and the Bubble Tag TM from the retrieved image. The implementation of a "1 to many" protocol, which would automate the identification process, drew the research directions of our work. In this context, the Bubble Tag TM identification in images amounts to matching the candidate tag contained in a query image against a database of tag images registered beforehand. An immediate strong constraint comes from the size of the database. Due to inherent variations between the shooting at the enrollment time and at the identification time, the query signature and the reference one will not necessarily be identical, an issue equally encountered in the biometric systems. Thus, searching the correspondent entry in the database for a given query signature becomes a problem of finding the nearest (not exact) match, in the sense of a predefined metric. When the database is large, the linear search, i.e. comparing the query signature with all the signatures stored in the database and keeping the one that resembles the best, becomes rather inconceivable. The uncontrollable signature variability and the size of the database entail that the matching must use techniques specific to research in high-dimensional spaces , for efficiency reasons (time and memory consumption). Some possible choices are the hashing procedures or the k-d trees. The locality sensitive hashing techniques prove to be suitable, as explained later. This brings the problem in the context of image hashing.

In general, the goal of image hashing is to map images into relatively short binary strings, to ease the database searching process. Two distinct steps can be identified in the image hashing process (figure 1.3): feature vector extraction and feature vector compression [START_REF][END_REF]]. Our work concentrates on the former step, whereas for the latter we only recommend the use of a particular family of locality sensitive hashing functions [Indyk 1998[START_REF] Andoni | [END_REF]], that we successfully tested.

The feature vector compression expects as input a vectorial (1D) signal. Thus, the feature extraction step is itself a special form of dimensionality reduction: the two dimensional, real (integer)-valued image is mapped to a reduced, one dimensional, real-valued vector. This entails a constraint for the signature extraction procedure, namely the designated signature must be vectorial.

The feature vector summarises the qualities of the image, so that two images that look alike, end up having similar feature vectors in the sense of a predefined metric (e.g. Euclidean distance), and conversely, two completely different images should have clearly distinct feature vectors. The extraction problem can be tackled at two levels. On the one hand, low-level techniques aim at detecting image features that are perceptually significant, such as edges, shapes (lines, ellipses) or particular spatial relations (e.g. parallel lines [Lowe 1987], concentric circles [START_REF] Calvet | [END_REF]). This is accomplished either by considering the geometric and the photometric principles underlying the image formation or by machine learning procedures [ Mairal 2010]. On the other hand, high-level approaches use global image transforms, meant to capture image features in terms of abstract measures, without focusing on the local content of the image. For example, the principal component analysis highlights uncorrelated variables which account for as much of the variability in the data as possible. We suggest that the feature extraction process for Bubble Tag TM images should be carried out at a low level, because of various factors, such as the repetitiveness of the pattern, the lack of texture and possibly the very large database size 3 . Only a low level approach can capture the perceptual specificity of a bubble configuration, able to lead to its identification. To join the efforts of the industrial partner Prooftag, we followed the approach which considers the geometry of the image formation. The position and the size of the bubbles will constitute the features supporting the Bubble Tag TM identification, concentrating the research work around various aspects linked to circular features in images: detection, fitting, recognition.

Bubble Detection

The feature extraction comes thus to a problem of primitive detection in images. Depending on the Bubble Tag TM version (figure 1.1), the detection procedure seeks for ellipses (assuming that the bubbles can be represented by circles in the Euclidean plane), and possibly for line segments4 (figure 1.1 left). The poor quality of the images, the reduced, but variable size of the bubbles, the relative big number of bubbles in one image (a Bubble Tag TM may contain up to 100 bubbles), which can moreover form groupings of two or three bubbles, raise particular challenges in the detection problem.

Classic detection methods usually apply an edge detector, followed by a fitting method (e.g. based on least-squares methods or on voting techniques), and finally use detection thresholds to decide if the detection is valid or not. Each phase requires setting up a certain number of parameters. Several drawbacks of the classic methods when applied to the bubble detection problem can be immediately stated. The parameter tuning can reveal itself as a very costly operation which needs to be repeatedly performed each time the (type of the) image changes. First, the parameters of the edge detector must be carefully chosen, to avoid eliminating useful information. Second, the detection thresholds are crucial and they directly influence the false detections. Too stringent thresholds introduce false negatives, whereas the permissive ones favour the false positives. Furthermore, the task of setting up the detection thresholds is particularly difficult, as usually they bring no control on the overall detection result. The bubble detection must be carried out through a parameterless approach, controlling the number of false detections, in order to guarantee reasonable results on images particularly difficult, as the Bubble Tag TM images. To this end, we chose to put the detection problem in the statistical framework of the a contrario methods.

The a contrario approach, pioneered by Desolneux, Moisan and Morel in 2000, sets itself as objective the task of providing a statistical framework which allows obtaining parameterless computer vision algorithms. Grounded on perception principles (namely the Helmholtz principle) and theories (the Gestalt theory), the a contrario reasoning provides the necessary mathematical tools to keep under control the number of false detections in digital images. Indeed, by formalising the Helmholtz principle, which says that no perception should be reported in a noise image, the a contrario approach defines what should not be accepted as valid detection, by using as image model a noise image. This way, when given an image x to be analysed, every potential candidate of x, which is susceptible to appear in a noise image X of the same size as x, will be rejected, as its occurrence is considered potentially accidental.

The main concept of the a contrario approach is the number of false alarms (NFA), which denotes two distinct quantities. On the one hand, the NFA of a candidate gives a measure of how likely the candidate is to appear in a noise image, by computing the expected number of candidates at least as good 5 as the given one in a noise image. Thus, the smaller the NFA, the more meaningful the candidate is. A threshold ε is used as cut-off value to distinguish the meaningful candidates. For a given ε, a candidate s is accepted as valid if it is ε-meaningful, i.e. if N F A(s) ≤ ε. On the other hand, at the image level, NFA(ε) represents the overall expected number of ε-meaningful candidates. It is proven that, if the computation of the candidates' NFA takes into account the total number of possible candidates in an image, then N F A(ε) ≤ ε. Thus, ε is the unique detection threshold of the a contrario approach, which moreover up-bounds the expected number of detections in a noise image. The precision of the result has a log-dependence on ε and the simple value ε = 1 reveals as convenient for practical applications. With this choice, we assume the risk of accepting on average one false positive per image.

This framework has been successfully applied in various computer vision topics (line segment detection, segmentation, fundamental matrix estimation). In our work, we use it as validation procedure in the ellipse detection problem. The proposed ellipse detector performs actually a generalised primitive detection (to efficiently deal with Bubble Tags TM as the one in figure 1.1 left), which includes the detection of line segments, circular arcs and elliptical arcs. Due to targeting multiple primitive families, the NFA of a candidate becomes a decision criterion in the model selection problem. The advantages of the proposed detector, compared with other state-of-the-art algorithms, reside mainly in its ability to control the number of false detections and to give reasonable results on all kind of images, without the need of prior parameter tuning. These qualities yield the proposed algorithm a general primitive detector, which can be applied as is, on any kind of image, regardless its content/type/origin.

Bubble Pattern Signature

The features extracted from the Bubble Tag TM images, i.e. the position and size of bubbles, carry the mark of the image formation process, namely the distortions induced by the underlying projective transformation 6 . Under projective transformations, the classic metric properties (lengths, angles, parallelism) are not preserved, thus the features extracted from two Bubble Tag TM images, taken with non-calibrated cameras, whose position is non-rigid with respect to the Bubble Tag TM , are not directly comparable. A common approach to deal with this issue is to perform the Euclidean reconstruction of the plane containing the Bubble Tag TM , yielding exploitable metric properties. Nonetheless, considering the constraint previously enunciated on the vectorial form of the signature required in the image hashing procedure, and for efficiency reasons, the designated vectorial signature must be invariant under projective transformations. To this end, we propose an original technique which computes directly (i.e. without passing through an Euclidean reconstruction step) a signature which is left invariant under projective transformation, thus the signatures extracted from two different images of the same Bubble Tag TM will be directly comparable.

The constraints mentioned above, imposed by the industrial target application, namely the Bubble Tag TM identification, guided our work towards different computer vision topics related to circular primitives, and implicitly to the study of their projections in images, namely to ellipses. Although the Bubble Tag TM is the leitmotif of this thesis, the applicability of the proposed solutions is not restrained in any way to the Bubble Tag TM problem. The contributions on the detection, fitting and identification of circular/elliptical primitives in images yield general algorithms, which can be applied per se to any computer vision application.

Thesis Outline

The manuscript starts with a brief reminder of some basic notions on the projective and affine geometry of conics (Chapter 2).

Chapter 3 tackles the problem of conic fitting on scattered points, which is a recurrent problem in various scientific domains. In our work, the proposed bubble detection procedure requires the use of a conic fitting technique, that fulfils certain criteria, such as low complexity (the detection of about one hundred bubbles in an image entails a repeated use of the fitting procedure, yielding a considerable execution time) and good performance on incomplete data (when dealing with groupings of bubbles, the detection targets elliptical arcs, thus it is important to have a good performance when fitting is carried out on points distributed only along small circular/elliptical arcs). The chapter presents mainly a bibliographic work on existing methods for conic fitting, granting a special attention to fitting on incomplete data. A method to improve the precision of the direct algebraic fitting operators is introduced, based on the use of additional information available in images, namely the gradient orientations.

Chapter 4 studies the problem of ellipse detection within the a contrario framework. Due to the use of the a contrario validation technique, the proposed ellipse detector efficiently controls the number of false detections, while being parameterless. For a better illustration of the a contrario reasoning, an analogy between the a contrario approach and the multiple hypothesis testing framework is stated. Equally, the statistical background model is discussed, along with the usage of NFA as model selection criterion.

Chapter 5 deals with projective geometry topics that support the proposed Bubble Tag TM signature extraction technique, which leads to Bubble Tag TM identification in images, without the need of prior Euclidean reconstruction.

Chapter 6 details the target application of this thesis, namely the Bubble Tag TM identification in a "1 to many" authentication protocol and describes a family of suitable hashing functions, that could be used to optimise the research of the nearest match of a Bubble Tag TM in a large database.

Chapter 7 concludes the manuscript, pointing to some directions for future work.

Chapter 2

Basic Projective and Affine Geometry of Circles and Ellipses

Projective Geometry

This chapter is a brief reminder of some basic notions on the geometry of circles and ellipses, that will be used throughout this manuscript. We assume that the reader is familiar with the basics of projective geometry. A helpful introduction can be found in [START_REF] Hartley | [END_REF]]; for a more formal and comprehensive presentation with proofs, see [Semple 1952[START_REF] Mundy | [END_REF]]. Morin's thesis [Morin 1993] is a notable contribution to the formalisation of computer vision problems using projective geometry.

Let us denote by P n (R) the real projective space of dimension n, which is derived from the (n+1)-dimensional vector space R n+1 . Basically P n (R) is the quotient space of R n+1 \{0} by the parallelism relation denoted by ∼; P n (C) refers to its complexification. The symbol π denotes the canonical surjection from R n+1 \ {0} to P n (R) that maps a vector p to its equivalence class π(p); notation-wise π(p) will denote a (projective) point of P n (R).

Given a basis {a 1 , ..., a n+1 } of R n+1 and a point π(p) ∈ P n (R), if p = n+1 i=1 x i a i then (x 1 , ..., x n+1 ) is said to be a vector of homogeneous coordinates of π(p) w.r.t. {a 1 , ..., a n+1 }.

Abusing notation, such a point will be sometimes referred to as p, without referring to a basis when the underlying base in R n+1 is the canonical one.

The projective space P 2 (R) and its dual P * 2 (R). This work focuses on the geometry of the projective plane P 2 (R). Lines of P 2 (R) (i.e., 1-dimensional projective subspaces derived from vector planes of R 3 ) are in bijection with points of the dual projective plane P * 2 (R) derived from the dual 3D vector space, so a projective line l ⊂ P 2 (R) can be identified to a "projective point" π * (l) ∈ P * 2 (R), where π * is the canonical surjection from the dual 3D vector space to P * 2 (R). Note that if l is the vector of homogeneous coordinates of l ⊂ P 2 (R) with π * (l) ∈ P * 2 (R), then l = π(ker l ). Hence, we will say that a projective line l, whose "dual" is π * (l), has l as vector of homogeneous coordinates. A key property follows: if a point π(p) lies on the line l, then l p = 0.

Affine stratum of the projective plane. Given a projective line l ⊂ P 2 (R), an affine stratum of P 2 (R) is the subset P 2 (R) \ l, that is the complement of l w.r.t. P 2 (R). It is owing to the fact that P 2 (R) \ l is endowed with a 2D affine structure. Such a projective line l is known as the line at infinity of the affine stratum of P 2 (R) and it is denoted by l ∞ .

Embedding of the affine plane in the projective plane. We will embed the "ambient" affine plane by choosing a projective representation of P 2 (R) i.e., a system of homogeneous coordinates, in which the line at infinity l ∞ has l ∞ = (0, 0, 1) as vector of homogeneous coordinates, such a projective representation being called an affine representation of P 2 (R). Consequently, in any affine representation of P 2 (R)

• affine lines with slope φ have homogeneous coordinate vectors in the form (a, b, c) ∼ (-sin φ, cos φ, -ρ) with ρ ∈ R + being the orthogonal distance from the origin to the line. In other words, a, b, c are the coefficients of the line in its standard form.

• affine points π(p) ∈ P 2 (R) \ π(ker l ∞ ) can be derived from Cartesian coordinates, denoted as p = x y , by augmenting their vectors of homogeneous coordinates at p = p 1 .

Affine Geometry of Conics in the Projective Plane

• In the affine plane, a conic F is the locus of points that satisfy the second degree polynomial equation ax 2 + bxy + cy 2 + dx + ey + f = 0, (

where (x, y) denote the Cartesian coordinates of a point and (a, b, c, d, e, f ) the conic coefficients.

• The embedding of an affine conic in the projective space P 2 (R) is achieved by homogenisation of the polynomial equation (2.1), which yields the matrix form:

p C F p = 0, (2.2) 
with p = (x, y, 1) being the vector of homogeneous coordinates of the point π(p) and

C F =   a b/2 d/2 b/2 c e/2 d/2 e/2 f   (2.3)
the homogeneous matrix of the conic F . The obtained conic includes additional points compared to the affine one, namely some points at infinity, i.e. points whose third homogeneous coordinate is 0.

The affine classification of conics obeys the well-known algebraic rule about the leading principal order-2 minor of C F , obtained by deleting its third row and column, that is

D 2 (C F ) ≡ C 11 C 22 -C 2 12 = - 1 4 (b 2 -4ac), (2.4) 
where C ij denotes the element (i, j) of C F . Hence -for parabolas, D 2 (C F ) = 0, -for ellipses, D 2 (C F ) > 0, and -for hyperbolas, D 2 (C F ) < 0.

In order to exhibit the linearity of (2.2) with respect to the conic coefficients stacked as θ F = (a, b, c, d, e, f ) , (2.5) we will rewrite (2.2) as:

F (p, θ F ) = (p ⊗ p) J θ F = 0, (2.6) 
where ⊗ denotes the Kronecker product and

J =               
1 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 1/2 0 0 0 1/2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1/2 0 0 0 0 1/2 0 0 0 0 0 0 1/2 0 0 0 0 0 0 1

              
.

(2.7)

• The dual of a conic seen as a locus of points is the envelope of lines π * (l) ∈ P * 2 (R) satisfying the quadratic equation l C * F l = 0, where the order-3 matrix C * F plays the role dual to C F in P 2 (R). Such a "line conic" will be said a dual conic (see figure 2.1 right) and its matrix the dual matrix. • A conic is proper or degenerate, according to whether its matrix is full rank or not. A proper conic is a self-dual figure (the relation between its matrix and dual matrix is C * F ∼ C -1 F ), defining a bijection between P 2 (R) and P * 2 (R), known as the pole-polar relation, which maps "tangent lines" π * (l) to "contact points" π(p) by the projective equation

l ∼ C F p ⇔ p ∼ C * F l.
(2.8)

The (unique) line π * (l) with vector l ∼ C F p is called the polar of the point π(p) w.r.t. the conic locus, and dually, the point p ∼ C * F l is called the pole of the line π * (l) w.r.t. the conic envelope.

Planar homographies

Let P 2 (R) and P 2 (R) be two projective planes.

• Any non-singular matrix H ∈ R 3×3 defines a one-to-one correspondence between P 2 (R) and P 2 (R), called homography and denoted by H, which is linear in homogeneous coordinates.

• Two matrices G ∈ R 3×3 and H ∈ R 3×3 define the same homography if and only if G ∼ H, where ∼ is the projective equality extended to matrices.

• If points π(p) ∈ P 2 (R) are mapped to points π (p ) ∈ P 2 (R) by H through p ∼ Hp, then "lines" π * (l) ∈ P * 2 (R), are mapped to "lines" of π * (l

) ∈ P * 2 (R) by H l ∼ H -l,
where H -= (H -1 ) .

• A point conic (i.e., a locus of points) with matrix C is imaged under H via

C ∼ H -CH -1 ,
whereas a line conic (i.e., an envelope of lines) with matrix C * is imaged under H as

C * ∼ HC * H .

Parametric Form of Circles and Ellipses

In (Cartesian) parametric form, the equation of a circle C centred in O(x c , y c ), of radius r is:

x(t) = x c + r cos(t) y(t) = y c + r sin(t),
where t ∈ [0, 2π] is a parametric variable, interpreted geometrically as the angle between the radius from the centre O to the point P, with vector p = (x(t), y(t)) , and the x-axis, i.e. the angle ∠( -→ x , -→ OP), where -→ x is the unit vector of the x-axis.

An ellipse centred in O, with a and b as major and minor axis respectively, and oriented under an angle θ, can be expressed in parametric form as the path of a point P, with vector p = (x(t), y(t)) , where x(t) = x e + a cos t cos θ -b sin t sin θ y(t) = y e + a cos t sin θ + b sin t cos θ, as the parameter t varies from 0 to 2π. Note that the parameter t is not the angle between the line orthogonal to the ellipse in the point P and the x-axis, as it is for circles. The relation between the parameter t and the tangential angle φ(t) (also called the polar angle from the ellipse centre), is φ(t) = a b arctan(t). Geometrically, the polar angle can be computed by using the focal property of the ellipses, i.e. the tangent line in a point P belonging to the ellipse is orthogonal to the bisector of the angle formed by the lines passing through the ellipse foci, F and F , and the given point, as shown in figure 2.2.

Figure 2.2:

The tangent line to an ellipse in a point P is orthogonal to the bisector of the angle formed by the lines FP and F P.

Computing the Distance to a Conic

More generally, for any point of the plane, the quantity associated with the left member in ( 2.2) is referred to as the algebraic distance of the point to the conic.

The Euclidean distance between a point p = (x, y) and a circle

C centred in ō = (x c , y c ) , of radius r is d = (x -x c ) 2 + (y -y c ) 2 -r.
The power h of a point P with respect to the circle C, reflects the relative distance of P to the circle C, and is given by h = s 2 -r 2 , where s is the (Euclidean) distance between the point P and the centre of the circle (figure 2.3 left). Points inside the circle have negative power, points outside have positive power, and points on the circle have zero power. Figure 2.3 right shows the absolute value |h| of the power of a point, moving from the centre of a circle towards the exterior.

In the ellipse case, computing the exact distance between a point and an ellipse is cumbersome. We use two approximations throughout this manuscript: the pole-polar approximation and Rosin distance.

The pole-polar approximation [Hartley 2004, p. 31].

The pole-polar relation introduced above, can be used to obtain a linear approximation for the distance between a point and a conic. Indeed, for a given point π(p), and a conic F , if the point lies on the conic, the polar of π(p), computed as l = C F p, with l

  1 0 0 0 1 0 0 0 0   l = 1,
will be tangent to the conic, thus the distance will be 0. Otherwise, the distance to the conic is approximated by the (Euclidean) distance between π(p) and its polar π * (l), i.e. the Euclidean distance between the points p and q, as illustrated in figure 2.4 left. Rosin distance [Rosin 1998]. A more accurate approximation for the distance between a point P and an ellipse E can be computed using orthogonal conics, namely confocal families of ellipses and hyperbolae, which are known to be mutually orthogonal. Assuming that a hyperbola is piecewise linear, then the confocal hyperbola passing through P is a reasonable approximation of the straight line passing through P and normal to the ellipse, on the segment between P and the intersecting point of the ellipse with the hyperbola, as illustrated in figure 2.4 right.

To compute the Rosin distance, first the unique hyperbola H, confocal with E and passing through P is determined. Next, the four intersection points I i , i = {1, .., 4} are computed, and the Euclidean distances between P and I i , i = {1, .., 4} are found. The minimal distance among the four is kept as the distance between the point P and the ellipse E.

More precisely, we consider the ellipse E and the hyperbola H represented through their canonical equations:

E : x 2 a 2 e + y 2 b 2 e = 1, H : x 2 a 2 h -y 2 b 2 h = 1, (2.9)
where a e , b e (known) and a h , b h (unknown) are the major and the minor axes of the ellipse and hyperbola, respectively. The position of the foci along the x-axis for the ellipse E and the hyperbola H are given by:

E : f e = ± a 2 e -b 2 e H : f h = ± a 2 h + b 2 h .
(2.10)

Since we are interested in confocal conics, f e = f h . To determine the parameters of the confocal hyperbola passing through P, the following substitutions are used:

A = a 2 h F = f 2 h = f 2 e X = x 2 Y = y 2 .
(2.11) With (2.11), the equation of the hyperbola from (2.9) becomes:

X A - Y F -A = 1,
which produces a quadratic in A:

A 2 -A(X + Y + F ) + XF = 0.
(2.12) Solving (2.12) for A and re substituting in (2.11) and (2.10), yields the values of a h and b h . The intersection points I i (x i , y i ), i = {1, .., 4}, are found by solving (2.9). We obtain:

x i = ±a h a 2 e (b 2 e +b 2 h ) a 2 h b 2 e +a 2 e b 2 h y i = ±b e b h a 2 e -a 2 h a 2 h b 2 e +a 2 e b 2 h .
(2.13)

The calculation of the (Euclidean) distance between P and I i is now straightforward. Among the four solutions obtained, the shortest distance is kept. Figures 2.5 and 2.6 give an idea on the precision of the two approximations, pole-polar and Rosin distance. It can be observed that the pole-polar approximation has a significant error and cannot be used when an accurate value of the distance between a point and an ellipse is needed. Nonetheless, being a convex function descending to its minimum as the point approaches the ellipse (figure 2.6), this approximation appears to be useful in minimisation problems, due to its simplicity. Rosin distance is accurate enough to be used as distance function, at a cost of increased complexity. 

Introduction

The problem of fitting standard shapes or curves to measured data is a notorious issue in various fields of science and engineering (e.g. physics [START_REF] Chernov | [END_REF]], biology [Paton 1970], metrology [START_REF] Ahn | [END_REF]], computer graphics [Guennebaud 2007], biometrics [START_REF] Marsico | [END_REF]).

In computer vision, the conic fitting (especially ellipse and circle fitting) holds the researchers' interest as conics possess important features (like some projective invariant features), which make them suitable for use in solving particular problems like camera calibration [START_REF] Wu | [END_REF], Gurdjos 2006], object detection [START_REF] Kanatani | [END_REF], Zhang 2005], camera tracking [START_REF] Calvet | [END_REF]], projective reconstruction of quadrics of revolution [START_REF][END_REF]]. This chapter presents mostly a bibliographic work on circle and ellipse fitting, necessary in our context, as the bubble detector that we propose, ELSD (chapter 4), requires a circle/ellipse fitting step. With the constraints of the ELSD detector in sight, namely good performance in fitting partially occluded circles/ellipses and time efficiency, a special attention will be given to conic fitting on incomplete data.

Informally, conic fitting is the process of constructing a curve that fits well (or best ), according to a predefined criterion, to a series of data. In image processing, these data are obtained from image pixels, which are endowed with integer Cartesian coordinates (relative to the image coordinate system), and possibly with some gradient information. As there exist methods that use a subpixel precision, or normalised pixel coordinates, we will use the generic term points when referring to pixel or subpixel measurements.

The task of fetching the points of interest is carried out by standard methods, like edge detection [START_REF] Marr | [END_REF], Canny 1986] or other heuristics that group together points with common features (e.g. gradient orientation1 , intensity, color) [Burns 1986, Grompone von Gioi 2010]. In either case, for the fitting procedure we assume that a set of input points is known and the goal is to provide the parameters of the curve.

After a good look on the fitting methods in the literature, and considering the needs of the ELSD detector in terms of execution time (in a Bubble Tag TM image, containing about 40 -100 bubbles, the fitting is performed a considerable number of times), and precision on partially occluded ellipses (the bubbles can form groupings, thus in 2D they will be approximated by elliptical arcs), we headed towards direct algebraic estimators, and we give here a means for improving their performance on incomplete data, by using additional information available in images, namely the gradient orientation.

The proposed circle/ellipse fitting technique was published as a step of a circle detector in [START_REF] Pătrăucean | [END_REF]].

Chapter organisation. This chapter is organised as follows. Section 3.2 gives a classification of the most commonly used methods for conic fitting. In section 3.3, the problem is stated in a least-squares sense. Section 3.4 presents and compares briefly existing least-squares methods for circle and ellipse fitting, both geometric and algebraic procedures. A particular case of direct algebraic fitting, namely fitting using information on gradient orientation, is detailed in section 3.5, where an improved technique for circle and ellipse fitting is proposed. Section 3.6 shows the performance of the proposed method, compared to existing estimators, and section 3.7 concludes the chapter.

Classification of Methods for Conic Fitting

Many methods have been proposed in the literature to address the conic fitting problem. Two important issues need to be considered by the conic fitting techniques, namely accuracy and complexity. Usually, accurate methods are iterative, therefore costly, while the computationally efficient ones may lack precision to a certain extent. Depending on the application needs, a trade-off must be established. Figure 3.1 tries to give an image of the most commonly used.

First of all, the fitting methods can be grouped with respect to the model used to represent the input data, and we distinguish the methods based on deterministic models from those based on statistical models. The former combine voting procedures or different least-squares formulations, whereas the latter consider fitting as a statistical estimation in presence of noise. a) Methods using deterministic models. In the class of methods considering deterministic models to represent the input data, we can further identify deterministic and non-deterministic operators. In the deterministic category, the simplest methods for conic fitting rely on some basic operations performed on the input data. For example, the moment-based method has been widely used as it provides a very simple, yet efficient technique for locating circular features when images are taken under some favorable conditions. It computes the centre of the circle as the barycentre of the input points, and afterwards, the radius is given, for example, by the mean distance between the estimated centre and the input points [START_REF] Shafiq | [END_REF]]. This method is sensitive to illumination variations, and above all, to occlusions. As soon as the input points are not distributed all along the circle contour, the results can be highly erroneous. For this reason, these techniques are more likely to be used as initial estimates for some iterative, more accurate, procedures [START_REF] Ahn | [END_REF]], rather than as fitting methods per se.

In the early sixties, a parametric approach for line detection (fitting) in images was proposed by Hough [START_REF] Duda | [END_REF]]. Due to the generalisation proposed by Ballard [Ballard 1987], it soon became very popular in image processing for detecting arbitrary shapes and many versions have been published (see [Leavers 1993] for a survey). The Hough-based methods have the advantage of being robust to occlusions. In exchange, the high computational complexity and the nonuniqueness of the solution render them rather unsuitable for real-time applications. More details on this approach will be given in chapter 4, section 4.2.

With the least-squares (LS) formulation, one defines an error distance and tries to minimise in a least-squares sense this distance between the input points and the fitted curve. We identify two main classes of LS fitting techniques, namely algebraic and geometric fitting. They are differentiated through the definition of the error measure: the former account for methods that seek to minimise an error distance which has a geometric meaning (e.g. Euclidean distance) [Kasa 1962, Gander 1994[START_REF] Ahn | [END_REF], Sturm 2007], whereas the latter use an algebraic expression as error distance [Sampson 1982, Pratt 1987, Taubin 1991, Fitzgibbon 1999].

The non-deterministic class is represented by RANSAC (RANdom Sample Consensus) methods, which are iterative algorithms, consisting in two repeated steps: (1) randomly gener-ating an hypothesis from a minimal subset of the input data (i.e. which contains enough points to compute exactly the sought model, e.g. 2 points for a line) and ( 2) verifying it against the whole input set. At each iteration, the equation of the curve is computed exactly using the chosen sample and afterwards, the rest of the input data (not belonging to the chosen subset), are split into inliers (points that belong to the curve with a given precision) and outliers (points that do not adapt well to the proposed model), using an error distance together with a threshold. The objective is to find the hypothesis that maximises the number of inliers [START_REF] Frahm | [END_REF]], in a given number of iterations. The number of iterations needed to find the best subset can be computed adaptively, as a function of two quantities: the predicted proportion of outliers and the desired probability of finding the best subset [Hartley 2004, p. 119].

b) Methods based on statistical models. Some authors consider the conic fitting as statistical inference from noisy data. In this context, one needs to define a noise model and an optimality criterion. The standard noise model considered is the independent Gaussian noise. As optimality criterion, the maximum likelihood (ML) is chosen: the likelihood function obtained by substituting the observed data into the probability density of the noise model is maximised. The obtained solution achieves the theoretical accuracy bound, called the Cramér-Rao lower bound [START_REF] Hartley | [END_REF], Chernov 2005[START_REF] Kanatani | [END_REF]]. It has been proven that some methods belonging to the deterministic class previously presented also reach the Cramér-Rao lower bound. Therefore, they can be considered statistically optimal. The geometric LS methods that seek to minimise the sum of the squares of the orthogonal distances are such an example and can be seen as direct methods that attempt to obtain the ML solution [Gander 1994[START_REF] Ahn | [END_REF], Sturm 2007]. RANSAC can equally be put in a statistical framework if instead of maximising the number of inliers, one tries to maximise the robust likelihood [START_REF] Frahm | [END_REF]]. A particular statistical RANSAC is the variant proposed by [START_REF] Moisan | A Probabilistic Criterion to Detect Rigid Point Matches between Two Images and Estimate the Fundamental Matrix[END_REF], where the objective is to minimise the number of false alarms, a quantity which will be detailed in chapter 4.

Analysing the behaviour of the different fitting methods in terms of execution time and accuracy, we headed towards the deterministic LS formulation, and we investigated the behaviour of different algorithms when the input data are incomplete.

Problem Statement in the Least-Squares Sense

Denote by p = (x, y) the vector of Cartesian coordinates of a point in the Euclidean plane. Let F be an affine conic (ellipse, hyperbola or parabola) represented by an implicit second order polynomial equation, written in matrix form as: Given n points {p i } 1≤i≤n , the problem of fitting to the data the conic F in the least-squares sense can be stated as:

p C F p = 0, ( 3 
min θ n i=1 (δ(p i , C F )) 2 (3.5) subject to h(θ) = 0, (3.6) 
where δ() is an error distance (called error-of-fit ) between the input points (x i , y i ) and the estimated curve, which is to be defined with respect to the curve type (e.g. for circle fitting, one can consider the Euclidean distance, whereas for ellipse fitting some approximations of the geometric distance are sometimes preferred, for complexity reasons).

In the context of our work, we consider an additional term for each point, namely a photometric consistency from which we expect a reasonable behaviour of the fitting when the input data are incomplete (see section 3.5).

Circle and Ellipse Fitting through Geometric and Algebraic Procedures

In the last decades, tremendous research work was concentrated on the LS formulation (3.5-3.6) of the circle and ellipse fitting in images, and the problem seems to be settled from a theoretical point of view. Nonetheless, when the input data is sampled along a small arc, many of the known estimators became instable. In this section we briefly present some reference works and try to point out their pros and cons.

Geometric Fitting of Circles and Ellipses

a) Geometric fitting of circles Geometric fitting algorithms for circles commonly use the Euclidean distance as error-of-fit in the minimisation problem (3.5). When fitting a circle C of radius r and centred in O(x c , y c ), a possible circle parametrisation is given by:

(x -x c ) 2 + (y -y c ) 2 = r 2 , (3.7)
and hence the error-of-fit is

δ i = (x i -x c ) 2 + (y i -y c ) 2 -r. (3.8)
The minimum obtained using this formulation is considered as a statistical optimal solution, as the problem is equivalent to the maximum likelihood estimation under the common assumption that the noise altering the input data has a Gaussian distribution [Chernov 2005]. The major drawback is its non linearity with respect to the sought-after parameters (x c , y c , r), requiring the use of an iterative procedure to reach its minimum. Various iterative procedures have been proposed. Gander et al. [Gander 1994] use a parametric representation of a circle in order to improve the performance of the classic non-linear least-squares problem solved using Gauss-Newton scheme. Späth introduces a set of dummy parameters along the set of parameters (x c , y c , r) and switches between the minimisation with respect to these dummy parameters and the real ones [Späth 1997]. This way, the function to be minimised is surely descending towards the solution. Ahn et al. [START_REF] Ahn | [END_REF]] describe non-parametric algorithms for circle and ellipse fitting, with improved convergence speed compared to Gander and Späth. To lighten the computational complexity of the iterative method, Kasa [Kasa 1962] suggests using the power of a point (defined in chapter 2) as error distance in (3.5). So (3.8) becomes

δ i = (x i -x c ) 2 + (y i -y c ) 2 -r 2 .
In [Chernov 2005], Chernov and Lesort give an interesting study on the convergence of the iterative schemes when the estimation is carried out on incomplete data: only points sampled along a small arc (20 degrees or less) are known. The methods using the classic parametrisation (3.7) get stuck as soon as the points are sampled along a circular arc with low curvature or along a line. They recommend the use of an alternative parametrisation that accepts the equation of a line as a solution [Pratt 1987, Gander 1994, Guennebaud 2007] and describe an iterative algorithm suitable for the new parameter space. More details on this parametrisation will be given later.

b) Geometric fitting of ellipses

Solving a non-linear least-squares problem is costly, as in general, no closed-form solution exists, and therefore an iterative procedure needs to be used. In the case of ellipse fitting, another difficulty arises, namely the computation of the error-of-fit. Finding the orthogonal distance between a point and an ellipse requires solving a high degree polynomial. Safaee-Rad et al. solve a quartic equation and choose the minimal value among the four solutions [Safaee-Rad 1991]. [START_REF] Ahn | [END_REF]] solve simultaneously two quadratic equations through an iterative procedure. Gander et al. [Gander 1994] use a parametric representation of an ellipse, thus having a larger number of fitting parameters (2m non-linear equations for m + 5 unknowns when m measurements are available). A similar approach was proposed in [Sturm 2007], where the authors describe a parametrisation applicable to the fitting of any type of conic, i.e. the method is not restricted to ellipse fitting. With this parametrisation, the geometric fitting of conics becomes more feasible from a computational point of view, but the procedure remains yet iterative.

More efficiently computable approximations for the orthogonal distance have been proposed. Rosin describes and compares several error-of-fit expressions, among which the most efficient are those using the focal property of ellipses [START_REF] Rosin | Assessing Error of Fit Functions for Ellipses[END_REF]] or confocal families of ellipses and hyperbolae [Rosin 1998]. The latter was described in chapter 2.

Algebraic Fitting of Circles and Ellipses

Algebraic methods substitute an algebraic distance to the geometric one used by the techniques previously mentioned, basically because it yields the cost function linear in θ, and -in the case where the constraint h(θ) is quadratic-a closed-form solution is available. Referring to (2.6), we first do some algebraic rewriting of (3.1) as

(ν(p)) θ = 0, (3.9) 
where

ν(p) = (p ⊗ p) J = [x 2 , y 2 , xy, x, y, 1], (3.10) 
denotes the Veronese embedding of the point p in 5-dimensional projective space and J is the matrix given in (2.7).

The error F (p, θ) (ν(p)) θ in (3.9) is called the algebraic distance of the point p to the conic F . Under the algebraic formulation, one needs to solve (3.5-3.6) by minimising the sum of the squares of the algebraic distances. The objective function in (3.5) becomes:

F = n i=1 (F (p i , θ)) 2 = n i=1 (ax 2 i + bx i y i + cy 2 i + dx i + ey i + f ) 2 ,
and the optimisation problem becomes:

min θ n i=1 F (p i , θ) 2 = Dθ 2 (3.11) subject to h(θ) = 0, (3.12) 
where

D =    (p 1 ⊗ p 1 ) . . . (p n ⊗ p n )    J (3.13)
is the so-called n × 4 design matrix.

a) Algebraic fitting of circles

As shown by [Chernov 2005], representing a circle using the standard equation (3.7) may introduce a significant loss in accuracy and convergence issues for the geometric fitting when the input data are sampled along circular arcs which can be fairly approximated by a line segment. An elegant way to avoid this is to consider the homogeneous parameterisation of a circle, used in [Pratt 1987, Gander 1994, Guennebaud 2007]: .14) The conversion between the geometric parameters of a circle -centre ( x c , y c ) and radius r-and the algebraic ones is given by:

a(x 2 + y 2 ) + dx + ey + f = 0. ( 3 
x c = - d 2a , y c = - e 2a , r = d 2 + e 2 4a 2 - f a .
A key property of (3.14) is that it describes a circle C when a = 0 and a line when a = 0. We now give a projective interpretation of this property, albeit not mentioned by the authors, which explains why it holds. From the general matrix form (3.1), the equation (3.14) writes as

p C C p = 0, (3.15) 
where

C C =   a 0 d/2 0 a e/2 d/2 e/2 f  
is the matrix of the circle C. When a = 0 the matrix C C degenerates to a rank-2 matrix. If we consider now that l = (d, e, f ) is the vector of some affine line l, then it is easy to verify that when a = 0, we have

  0 0 d/2 0 0 e/2 d/2 e/2 f   = 1 2 ll ∞ + l ∞ l , (3.16) 
where l ∞ = (0, 0, 1) denotes the vector of the line at infinity. Hence, an affine line l with vector l can be seen as a circle provided it is treated as a rank-2 (degenerate) conic consisting of the line-pair (l, l ∞ ) [Semple 1952, p. 117]. This is owing to the fact that, by definition, a conic is a circle if and only if it contains the (complex conjugate) circular point-pair at infinity [Semple 1952, p. 32] whose vectors are of the form I ± = (1, ± √ -1, 0) , in any affine Euclidean representation of the projective plane (i.e., obtained by embedding an affine Euclidean plane into the projective plane). In other words, if C is a conic with matrix C C , then C is a circle if and only if

I ± C C I ± = 0. (3.17)
It is easy to verify that the rank-2 conic with matrix (3.16) is a circle in the projective sense, as the circular points with vectors I ± lie on the line at infinity with vector l ∞ i.e., l ∞ I ± = 0.

For the algebraic methods, this parameterisation is suitable as well as it provides the possibility to obtain a seamless algebraic estimator for circles and lines, useful in applications where both types of contours (lines and circles) are of interest (e.g. document/character analysis).

Thus, for n input points expressed in homogeneous coordinates p i = (x i , y i , 1) , i = {1, .., n}, we obtain a linear system containing n equations of the form

p i C C p i = 0. (3.18)
The algebraic optimisation problem is written as:

min β Dβ 2 subject to h(β) = 0, (3.19) 
where

D =    p 1 p1 p 1 . . . . . . p n pn p n    =    x 2 1 + y 2 1 x 1 y 1 1 . . . . . . x 2 n + y 2 n x n y n 1    (3.20)
is the so-called n × 4 design matrix and

β = (a, d, e, f )
is a vector containing the unknown algebraic coefficients of the circle.

As for the constraint on β, in order to avoid the trivial solution β = 0 4 , some authors suggest h(β) = β 2 -1 [Paton 1970]. As reported by Bolles and Fischler in [Bolles 1981] under the constraint h(β) = a -1, it is easy to verify that what is minimised is the sum of the squares of the power of the n points to the circle [Kasa 1962]. When h(β) = β 2 -1, providing the rank of the design matrix D is at least three, the (unique) "total least-squares" solution of problem (3.19) is given by the eigenvector corresponding to the smallest eigenvalue of the matrix D D. This algorithm is very fast, but it is inaccurate when data are sampled along small circular arcs: it tends to grossly underestimate the radius.

An improved version is the gradient-weighted algebraic fit (GRAF ), that was originally applied for ellipse and hyperbola estimation [Sampson 1982]. One minimises the sum of the squares of the Sampson error, which represents the algebraic distance normalised by the gradient norm. From the geometric point of view, GRAF works better than the simple algebraic scheme, as it can be shown that the new algebraic measure is a linear approximation of the orthogonal (Euclidean) distance. Unfortunately, there is no closed solution for this formulation. However, there are two approximations proposed by Pratt [Pratt 1987] and Taubin [Taubin 1991], that lead to non-iterative solutions. But, although efficient to solve, these approximations still act poorly on incomplete noisy data, as it will be shown in the experimental section 3.6.

b) Algebraic fitting of ellipses

For the ellipse algebraic fitting, one considers the general equation of a conic ( 3.1), and the optimisation problem (3.11-3.12). Different linear or quadratic constraints h(θ) have been proposed: f = 1 [START_REF] Rosin | Assessing Error of Fit Functions for Ellipses[END_REF]], a + c = 1 [Gander 1994[START_REF] Rosin | Assessing Error of Fit Functions for Ellipses[END_REF]], a 2 + 1 2 b 2 + c 2 = 1 [Bookstein 1979]. However, care must be taken when imposing such constraints, as they can affect the invariance of the estimator with respect to similarity transformations (translation, rotation, scale): for example, f = 1 is not invariant (see [START_REF] Rosin | Assessing Error of Fit Functions for Ellipses[END_REF]] for a review). The direct algebraic solution is easy to compute, but the results are inaccurate on incomplete data. Different weighting schemes have been proposed, that try to bring the algebraic solution closer to the geometric one [Sampson 1982, Gander 1994]. The error distance used by the GRAF method mentioned above, became a standard in computer vision for various estimation problems (2D homography estimation, conic fitting) as the solution is considered statistically optimal, in the sense that the covariance matrix of the parameter estimates satisfies the Rao-Cramér lower bound [Chernov 2005[START_REF] Kanatani | [END_REF]]. This is true, however, only for small noise levels [START_REF] Kanatani | [END_REF]]. Kanatani et al. give a deep analysis of this problem in [START_REF] Kanatani | [END_REF]].

The problem statement previously given does not restrict the fitted curve to be an ellipse. As it uses the equation of a general conic, the result can be an hyperbola or a parabola, even when given elliptical data. A number of articles addressed this issue, and proposed different iterative schemes. In [Porrill 1990], a Kalman filter is used and at each iteration the discriminant b 2 -4ac < 0 is tested and non-ellipse fits are rejected. [START_REF] Haralick | Computer and robot vision[END_REF]] had a different approach: they considered particular expressions for the parameters (a, b, c) that ensure the discriminant to be negative. Indeed, if a = p 2 , b = 2pq, c = q 2 + r 2 , the discriminant becomes -4p 2 r 2 , which is surely negative.

Fitzgibbon et al. [Fitzgibbon 1999] were the first to propose a direct (non-iterative) ellipsespecific fitting. They show that the ellipticity constraint 4ac -b 2 > 0 can be conveniently incorporated into the constraint h(θ) in the quadratic form

h(θ) = θ Lθ -1,
where L is a 6×6 matrix, defined later in (3.27). Moreover, this constraint is covariant with affine transformations of the data points. All-in-one, the proposed estimator ensures ellipticity and invariance under Euclidean transformations. The same constraint was used in [ Ouellet 2008], but in the dual form, in order to estimate a dual ellipse. The drawback of Fitzgibbon et al.' approach is its tendency to underestimate the eccentricity of the ellipse when the estimation is done on incomplete data. More details on this will be given in section 3.5.

Comparison between Fitting Methods

The absence of an objective criterion to decide which estimate is better makes the direct comparison between geometric and algebraic methods somehow irrelevant. We can however, show the advantages and the drawbacks of each approach.

At first glance, the computational complexity is at stake. From this point of view, the classification into geometric and algebraic methods should be dropped. The estimators are to be divided rather into iterative (geometric or algebraic) and non-iterative (direct) methods. The conic fitting being naturally a non-linear problem, only iterative methods achieve the statistical optimum. But this comes with all the computational cost and the instability that an iterative procedure involves. On the other hand, the direct algebraic operators are computationally very efficient, but the reliability of the estimated parameters cannot be assessed, as the error distance does not coincide with measurement guidelines.

In the past, drawbacks of the direct algebraic methods were the lack of affine invariance, or the fact that the fitting procedure can end in an unintended geometric feature (e.g. an hyperbola instead of an ellipse) [START_REF] Ahn | [END_REF]]. These problems are solved through Fitzgibbon et al.' technique. Moreover, improving the conditioning of the equation system by means of data normalisation [Hartley 2004, p. 107] yields a less sensitive procedure to numerical error.

On these grounds, we conclude that the direct algebraic methods are a reasonable tradeoff between efficiency and accuracy. In the following section we enquire into the possibility of improving the performance of direct algebraic estimators on incomplete data, by using additional information available in images, namely the gradient orientation.

Direct Algebraic Fitting of Circles and Ellipses Using Gradient Orientation

Estimating a conic from pixel coordinates identified as local maxima (given by a Canny edge detector for example) through a direct algebraic operator is inaccurate if the data are not sampled all along the contour. An improved estimation is obtained if the positions are known with a subpixel precision. This can be achieved by a parabolic interpolation of the gradient maximum along the edge direction or by considering regions centred at the maximum gradient location, together with a correction term based on the local curvature [Heikkila 1998]. The former is simple, but noise-sensitive, whereas the latter lowers the noise sensitivity at the cost of computational complexity. It is obvious that a method directly exploiting the gradient orientations of the input data could greatly simplify the process. Moreover, this idea is in agreement with the a contrario approach -the mathematical ground of the proposed detector ELSD (chapter 4)which promotes the use of gradient orientations for alignment (line segment, ellipse) detection. Therefore, we will try to exploit the gradient orientation in order to improve the direct algebraic fitting on incomplete data.

A first step in this direction was made by Forstner's operator for circular feature fitting [Forstner 1987]. It computes the gradient field of the region encompassing the feature and then the centre of the circle is located as the intersection point (in a least-squares sense) of the support lines of the gradient vectors. The contribution of each line is weighted by the squared magnitude of the gradient. Forstner's operator is fast and simple. It yields though only the centre location, not the radius. The same idea, adapted for the 3D case, is used by Guennebaud et al. for spherical fitting in a computer graphics application [Guennebaud 2007]. Their procedure minimises separately two key constraints: positional and derivative. First, the derivative constraint is used to locate the centre, and subsequently, the positional constraint provides the radius information.

For ellipse fitting, the idea cannot be straightforwardly applied, as the support lines of the gradient vectors on the boundary of the ellipse do not converge towards its centre. To overcome this, Ouellet performs the ellipse fitting in the dual space, by exploiting the tangential constraints entailed by the gradient orientations of the given points [Ouellet 2008] (refer to chapter 2 for more details on the duality relation). Using the tangential information, the effect of the noise causing angular errors in the gradient orientation is reduced compared to Forstner's operator, which exploits directly the orientation information. When locating circle centres, the angular errors can have a leverage effect due to the distance between the edges and the intersection point. The effect is dimmed if the tangent lines are used instead.

Although these methods improve the direct algebraic fitting while preserving a low complexity, they do not exploit efficiently all the available information: Forstner and Guennebaud use successively the derivative and the positional constraints, while Ouellet uses only the tangential constraints. We suggest that the simultaneous usage of the positional and of the tangential information can further improve the results and we present a very simple direct algebraic operator, which takes into account simultaneously the positional and the tangential constraints.

Let us consider the one-to-one mapping between points p and lines l of the projective plane, given by the pole-polar duality w.r.t. a proper -i.e., non degenerate-conic C, whose matrix is Cp ∼ l, (3.21) where ∼ denotes the projective equality. We remind that the point p is said to be the pole of the line l w.r.t. the conic C, and conversely, the line l is said to be the polar (line) of p. As before, let p i = (x i , y i , 1) be a point given by its "embedded" Cartesian xy-coordinates. Denote by ḡi = ∂I ∂x (x i , y i ), ∂I ∂y (x i , y i the vector of the image gradient computed at (x i , y i ) in the x and y directions of the image (affine) plane respectively. If p i belongs to the conic C, then its polar line l i is the line tangent to C at p i , and corresponds in the affine plane to the line passing through p i , whose direction is orthogonal to the image gradient vector (see figure 3.2). In other words, projectively speaking, l i is the line through p i and the point at infinity associated with the direction orthogonal to the image gradient vector, whose vector of homogeneous coordinates is normalised as

g ⊥ ∞i =   0 -1 1 0 0 0   ḡi ḡi .
This means that g ⊥ ∞i clearly lies on l i i.e, l i g ⊥ ∞i = 0, from which, using the substitution given in (3.21), we obtain a new equation, linear in the elements of C (stacked in the vector θ):

p i Cg ⊥ ∞i = (g ⊥ ∞i ⊗ p i ) Jθ = 0. (3.22)
Together with the positional constraints (3.18), the linear equation system using the gradient information writes as:

(p i ⊗ p i ) (g ⊥ ∞i ⊗ p i ) 2×9 J 9×6 θ 6 = 0. (3.23)
If now we define a second term of algebraic error G(p i , ḡi , θ) (g ⊥ ∞i ⊗ p i ) Jθ, then the problem becomes:

min θ n i=1 F (p i , θ) 2 + G(p i , ḡi , θ) 2 = Qθ 2 (3.24) subject to h(θ) = 0, (3.25) 
where

Q =       . . . (p i ⊗ p i ) (g ⊥ ∞i ⊗ p i ) . . .       J (3.26) is a 2n × 6 matrix.
Using the unit constraint h(θ) = θ 2 -1, providing the rank of the design matrix D is at least five, the (unique) "total least-squares" solution of the problem is again given by the eigenvector corresponding to the smallest eigenvalue of the matrix Q Q.

This fitting technique can be applied seamlessly for both circle and ellipse fitting. To improve the numerical stability, the input data are first normalised as described in [Hartley 2004, p. 107]. It should be noted that with this constraint, each point p i , expressed in homogeneous coordinates as (x i , y i , 1) , enriched with the gradient information ḡi , contributes with two linearly independent equations. In the classic methods, using only the positional constraint yields one independent equation per point. Moreover, the norm of the gradient of p i could serve as weight for the constraints it entails. As the experiments showed no clear improvement, this weighting scheme was dropped.

Additionally, Fitzgibbon et al.'s constraint can be imposed to ensure the fitted curve is an ellipse. In matrix form, the proposed quadratic constraint h(θ) = b 2 -4ac -1 is written as h(θ) = θ Lθ -1, where L is:

L =         
0 0 2 0 0 0 0 -1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         . (3.27)
The problem can be solved by the method of Lagrange multipliers [Fitzgibbon 1999] and a closed-form solution exists. Section 3.6 will show to what extent and in which cases the proposed technique can improve the behaviour of the direct algebraic conic fitting operator.

3-Points (Exact) Ellipse Fitting

Some problems require fitting exactly an ellipse to a minimal set of points, e.g. in a RANSAC -like operator or in some methods based on variants of the Hough transform. In classic ellipse fitting methods, five independent equations are needed to determine completely the five parameters of an ellipse, thus five points is the minimum needed to exactly compute the ellipse. Nonetheless, using simultaneously the positional and the derivative constraints reduces the minimal number of points, as each point contributes with two independent equations. Within a RANSAC approach, using a reduced number of points diminishes significantly the number of trials needed to find with a high probability a sample free of outliers, that would provide a model explaining the input data2 . With the proposed approach, three points (or more precisely two and a half points) are enough to exactly compute the ellipse parameters. The improvement in the execution time is significant, as the proportion of outliers grows: the search space can be reduced by an order of magnitude. However, the idea of using both positional and derivative constraints to exactly fit an ellipse was already present in the literature, and used in Hough-like voting procedures, such as the randomised Hough transform (RHT ) [Xu 1990]. Figure 3.3 shows the technique used in RHT to compute the parameters of an ellipse using three points, endowed with Cartesian coordinates and with some information on the gradient orientation in the neighbourhood of the points. Although the two techniques use similar ideas, the proposed method has the advantage of being easily generalisable for a set of n input points, which can be put in a least-squares fitting formulation.

Figure 3.3: 3-points ellipse fitting used by RHT: Given three points P 1 , P 2 , and P 3 belonging to an ellipse, first the tangents to the ellipse are computed using a least-square technique on the gradient orientations of the neighbourhood of each point. Then the intersection points P 12 and P 23 of each pair of tangents are computed, as well as the midpoints M 12 and M 23 of the segments P 1 P 2 and P 2 P 3 . The intersection of the lines P 12 M 12 and P 23 M 23 gives the position of the centre O of the ellipse. The rest of the three parameters (axes and orientation) are found by solving the system obtained with the three equations showing that P 1 , P 2 , and P 3 belong to the ellipse.

Results

The behaviour of the proposed operator was compared first against direct algebraic circle estimators. Taubin's operator [Taubin 1991] mentioned in section 3. The images were divided into 10 classes, according to the radius value (first class: radius of 5 -10 pixels, second class: radius of 10 -20 pixels, third class: radius of 20 -30 pixels etc.).

In figure 3.5, each class is represented by the mean radius, and the corresponding mean relative error on the estimated radius is given. For radius values inferior to ∼ 30 pixels, the proposed method GradTan is the most efficient, while Taubin has significant errors. The results show that the tangential constraint is more suitable than the derivative constraint, thus GradDer is less accurate than GradTan.

When the circles are relatively big (> 35 pixels), the accuracy of Taubin improves significantly, and even overtakes slightly GradTan. This shows that when few points are available, it is vital to exploit all the information they possess, whereas when enough data are provided, the gradient orientation does not bring significant improvement.

The proposed ellipse fitting method was compared against Ouellet's method, using simulation images and the results are given in tables 3.1 and 3.2. As expected, the results of GradTan are better, especially on incomplete and/or noisy data.

The obtained results reflect the improvement brought by using the additional constraint given by the gradient orientation in the least-squares formulation of the fitting problem.

Conclusion

In the context of our work, the problem of fitting a circle/an ellipse on incomplete data arose. The conic fitting problem has been extensively studied in the last decades and can be considered as settled from a theoretical point of view, but there are still unsolved issues when the data are incomplete. After investigating different directions in the literature, we focused on direct 

Introduction

The identification process of a Bubble Tag TM requires a feature extraction step in which the perceptual entities contained in a Bubble Tag TM image are captured and used subsequently to compute a discriminant signature. More generally, the first questions that arise naturally in the context of feature detection are:

1. Which features are perceptually meaningful when analysing an image?

2. How to formalise the quality of a feature of being "perceptually meaningful"?

3. How to decide which features are "enough" perceptually meaningful to be detectable and, by extension, how to design automatic algorithms that detect them?

Thus, the problem comes to detecting meaningful features in images. In this work, we are actually dealing with circle/ellipse detection, assuming that the bubbles can be modeled by such regular shapes. This problem is not new, and it has been intensively studied over the last decades, resulting in numerous detection procedures. Still, there remain some unsettled issues, namely the parameter tuning and the control of false detections. These issues are closely related and, regarding the latter, two types of detection error are distinguished: false positives and false negatives (referred to as Type I and Type II errors respectively, in the statistics vocabulary, cf. section 4.4). A false positive appears when the detection procedure reports a feature that does not exist (e.g., due to artifacts in measures). On the opposite side, a false negative detection is the case where the detection procedure does not find a feature that exists, i.e., that should be considered as "enough" perceptually meaningful. The points mentioned above suggest that so far, the answer to the third question is flawed. The reason for this might be precisely the fact that classic detection methods focus only on this question, ignoring the first two. The meaningfulness of a feature is assessed by means of parameter tuning done empirically, relative to the specificity of an image. This results, obviously, in false detections when the algorithms are applied on a different (type of) image (as illustrated in figure 4.1).

An original and mathematically sound approach, which takes into account all the three questions above, was proposed by [START_REF] Desolneux | [END_REF], Desolneux 2007] and is now known as the a contrario approach. The answer to the first question was already given by the studies of the Gestalt school, which formulated the Gestalt theory [ Metzger 1975], as a scientific attempt to state the laws of visual reconstruction. The a contrario approach assumes the mission of translating the Gestalt theory into a mathematics and computer vision program. To address the second question, the a contrario group formalises the Helmholtz principle which says that visual perceptions are generated only by spatial arrangements that are geometrically too regular to have occurred in noise. The equivalent form, i.e. there is no perception in white noise, allows defining general detection thresholds; this tackles the third question.

Thus, the a contrario approach answers the three questions by stating a theory of perception, which draws its inspiration from the Gestalt laws to describe what is perceptible in images, and by formalising the Helmholtz principle to establish general detection thresholds. These are the steps to follow in order to obtain parameter-free computer vision procedures. Several algorithms grounded on this approach have been proposed to tackle different essential problems in computer vision: line segment detection [Grompone von Gioi 2010], segmentation [Burrus 2009], computation of the fundamental matrix [START_REF] Moisan | [END_REF]], image matching [Rabin 2009].

In our work, we use the a contrario approach to address the problem of bubble detection in images, by implementing a combined a contrario line segment and circle/ellipse detector. Being parameterless, the proposed algorithm is a general circle/ellipse detector that can be applied as is, on any kind of images, without the need of parameter tuning.

An initial version of the detector, which targeted only the detection of line segments and circular arcs, was published in [START_REF] Pătrăucean | [END_REF]].

Notations

• Random variables will be denoted by majuscules, whereas the common variables will be denoted by minuscules.

• A digital image x of size n×m pixels, is a function defined on a grid Γ = [1, n]×[1, m] ⊂ N 2 ,
with values in R.

• N t denotes the total number of possible candidates (tests) in an image x of size n × m. It depends on the geometrical structure we are interested in.

• The background model will be denoted by H 0 .

Chapter organisation . This chapter is organised as follows. In section 4.2 we glance through classic approaches used to address the primitive detection task. Section 4.3 introduces the core ideas of the a contrario approach, proposed by Desolneux et al. In section 4.4, we position this approach into a general statistical framework, namely the multiple hypothesis testing. In section 4.5 we detail the a contrario principles in the problem of line segment detection, as they apply seamlessly to the circle/ellipse detection. Section 4.6 presents the line segment detector proposed by Grompone von Gioi et al. [Grompone von Gioi 2010], which inspired our detector. The proposed circle/ellipse detector is introduced in section 4.7. In section 4.8, the main concept of the a contrario approach, namely the number of false alarms, is discussed within the model selection problem. Section 4.9 analyses the a contrario model proposed by Desolneux et al. Finally, experimental results and conclusion are given in sections 4.10 and 4.11 respectively.

A Glance on Primitive Detection Methods

A central problem in computer vision is the extraction (detection) of predefined geometric primitives from geometric data. A geometric primitive is a curve or surface that can be described by an equation with a number of free parameters; here, we are interested especially in ellipse detection. Geometric data are an unordered list of points in two-or three-dimensional Cartesian space. Such data are obtained through a variety of methods, either directly from images or by using an edge detector in the 2D case, or from stereovision in the 3D case. The detection of geometric primitives1 could be a prerequisite to solving other higher-level problems, like pose determination, object recognition, or 3D scene reconstruction.

Existing geometric primitive detection algorithms can be roughly classified into two categories: Hough-based and edge chaining methods. Most of them operate on edge maps, obtained using an edge detector [Canny 1986].

Hough-Based Ellipse Detection Methods

Probably the most popular method for primitive detection is the generalisation of the Hough transform (HT ) [START_REF] Duda | [END_REF]], proposed by Ballard2 (GHT ) [Ballard 1987], used together with some detection thresholds. GHT is not directly applicable to images, but it can be applied to their edge map, obtained by means of an edge detector, e.g. Canny detector [ Canny 1986]. Given a set of edge points, GHT computes the quantity of points on each presumed primitive. Then all primitives where an "excess" of points is observed, supposedly contain alignments. The basic idea of GHT is to quantise the transformation space into D-dimensional cells, obtaining the so-called (grid) accumulators. Each transformed image point T i is quantised, and then votes for one of these cells. Cells whose number of votes yields a local maximum ( spike) in the accumulator space and that is superior to some threshold, will be considered as valid detections.

A major advantage of GHT is its relative insensitivity to imperfect data, that is, noise and occlusions can be handled, up to a certain level. However, in practice, this approach is computationally inefficient, as the accumulators may become very large, and the execution time is important. E.g. in circle detection, one uses a 3D accumulator (a circle is determined by three parameters: centre coordinates and radius), whereas to detect ellipses, a 5D accumulator is needed (five parameters determine an ellipse: centre coordinates, axes and orientation). Another sensitive, yet crucial aspect of GHT is the choice of the quantisation precision. Most of the time, the cell size is fixed considering ad-hoc, problem specific arguments. The direct consequence of the quantisation choice is reflected in the number of false detections. Indeed, if quantisation is too fine, cells will not have enough votes, and correct instances will be missed (false negatives). On the other hand, a very coarse quantisation increases the likelihood of "excesses" occurring at random (false positives). This brings to light the importance of the validation phase, i.e. the importance of the detection thresholds used together with GHT in order to declare an "excess" of points as a valid detection.

Many methods have been proposed to overcome these drawbacks and two different reasonings can be identified: one-to-many and many-to-one Hough-based procedures. In a one-to-many approach, an edge point votes for several possible primitives, e.g. in a line detection problem, an edge point votes for all the 180 lines that could pass through that point, considering a precision of one degree for the line slope. GHT belongs to this class. In a many-to-one approach, several edge points vote for one primitive passing through those points. Either approach used, a few main improvement directions could be enunciated:

1. methods targeting exclusively the execution time and the memory consumption; 2. probabilistic methods addressing the problem of detection thresholds used to declare a detection as valid;

3. methods using additionally the gradient orientations to reduce the clutter in the voting space.

The exponent of the first category is the randomised HT (RHT ) [Xu 1990, McLaughlin 1998], which is different from GHT in that it combines voting with geometric properties of analytical curves. RHT takes advantage of the fact that some analytical curves can be fully determined by a certain number of points on the curve. For example, an ellipse (or a circle) can be determined by three points, as detailed in section 3.6. RHT uses an iterative stochastic process, with a fixed number of iterations, and, at each iteration, the algorithm randomly chooses three edge points, which will vote for the ellipse passing through the three points. The accumulator array in this case is not anymore a D-dimensional (grid) accumulator, but rather a variable-length list, where each entry contains the parameters of an already voted ellipse, and a score. With a newly estimated ellipse, if a similar3 ellipse is already present in the accumulator array, the corresponding entry is updated to the mean of the two ellipses and the score is incremented by one; otherwise, a new entry is added to the accumulator array, with the parameters of the new ellipse and score one. RHT is, thus, a many-to-one approach. Another approach in the same class is to decompose the parameter space into smaller subspaces, and the fast HT (FHT ) [Li 1986] goes in this direction. It gives considerable speed-up and reduces memory requirement. Instead of dividing the parameter space uniformly into blocks, the FHT "homes in" on the solution, ignoring areas in parameter space relatively devoid of votes. This is achieved by considering a tree-like accumulator, where only the voted blocks get to have descendants. FHT is a variant of the one-to-many approach.

The methods in the second class are one-to-many probabilistic HT (PHT ), that attempt to reduce the execution time and the memory requirements by cutting-down the amount of edge points used in the voting procedure [START_REF] Kiryati | [END_REF]]. Intuitively, this works because a random subset of the edge map will fairly represent all features and noise present in an image, provided the chosen points are distributed conveniently in the image. Suitable detection thresholds need to be used in order to take into account the reduction of votes. Obviously, choosing a low percentage of edge points will lead to a faster algorithm, but clearly, it risks to fail in detecting smaller features. In [START_REF] Kiryati | [END_REF]], the detection thresholds are fixed beforehand, requiring prior knowledge on the image content, e.g. number of primitives to be detected or their size. Therefore, each time the image changes, these thresholds need to be tuned. Matas et al. address this drawback, by proposing a progressive PHT (PPHT ) [START_REF] Matas | [END_REF]], where the authors model the edge map through a noise statistical model. Afterwards, a peak in the transformation space will be accepted as a valid detection only if it contains a number of votes that could not correspond to an accidental accumulation of votes. Although it improves PHT in that it does not require prior knowledge on the image content, the Achilles heel of this procedure is the lack of scalability: the detection thresholds are computed such as to guard against false detections in an image of 256 × 256, but the control of false detections is no longer ensured when the image size grows.

Finally, in the third class we could include all one-to-many methods mentioned above, with the specification that the voting procedure is done in a restricted manner. Assuming that the local gradient of the image intensity will necessarily be orthogonal to the edge, a point will vote only for the primitives orthogonal to its gradient direction, up to a certain precision. This idea was first proposed in [O' Gorman 1976]. It reduces the computation time and has the interesting effect of reducing the number of useless votes, thus enhancing the visibility of the spikes corresponding to real detections in the image.

Although many research works addressed the weaknesses of GHT, there remain some critical issues. First, GHT is applied on binary images, requiring the use of an edge detector to obtain them. The parameters of the edge detector need to be set systematically, when the image (type) changes. Second, the detection thresholds, closely related to the quantisation precision, are difficult to tune, and they provide no formal guarantee concerning the number of false detections. The proposed ellipse detector, based on the a contrario approach, is animated by the same idea as PPHT, namely it evaluates the probability that an event occurred by accident.

The major difference, however, is that the detection thresholds are computed automatically, as a function of the image size, guaranteeing scalability and formal control of the number of false positives.

Edge Chaining Ellipse Detection Methods

A second important direction in primitive detection focuses on various techniques of pixels chaining. Most often than not, these detectors operate on edge maps. These algorithms usually extract the geometric data by starting with a point or a group of points, and subsequently, other points are progressively added, provided they obey some geometric properties of the sought primitive. This type of methods appear especially in applications that require a real-time execution, where the Hough-based methods are rather unsuitable. Eventually, some detection thresholds are used to accept or reject a given candidate.

Within this class, a first target could be the determination of polygonal approximations of planar curves, by considering chained lists of edge points, which are subsequently segmented using different techniques, such as segmenting at points of high curvature (vertices) or at points which are at maximum distance from a fixed representation (e.g. a line passing through the ends of the curve) [Urs 1972, Lowe 1987]. Possessing a polygonal approximation, the neighbour linear segments can be joined in order to fit higher-order representations: circular arcs [Etemadi 1992], conic sections or splines [START_REF] West | Multi-Stage Combined Ellipse and Line Detection[END_REF], Kim 2002[START_REF] Nguyen | [END_REF]]. This two-stage chaining technique proves to be useful in algorithms targeting the image vectorisation, used for example in applications of symbol recognition [Elliman 2002]. Once in possession of a set of chained pixels, the sought primitive is fitted using either some deterministic operators (e.g. based on least-squares) [Kim 2002[START_REF] Chia | A Split and Merge Based Ellipse Detector with Self-Correcting Capability[END_REF], or some randomised robust RANSAC -like approaches [Mai 2008]. Section 4.10 presents comparative results between the proposed algorithm and Etemadi's work [Etemadi 1992] 4 .

Other algorithms use iterative chaining techniques that seek directly higher order representations (circular or elliptical primitives especially). An initial set of points is used to fit the sought curve, and subsequent iterations will add other points that respect the geometric properties of the curve, while updating systematically the fitted curve [START_REF] Kanatani | [END_REF]].

Although more efficient in execution time and memory consumption, the edge chaining detectors are very sensitive to the choice of the detection thresholds and of the edge detector parameters.

In conclusion, even if so many research works addressed the problem of primitive detection in images, it cannot be considered as closed until a sound mathematical background is settled.

In the spirit of this conclusion, the present chapter tackles to some extent the reliability of the detected primitives and the handling of conflicting interpretations. The proposed detector uses the statistical fundamentals of the a contrario approach, to continue the formalisation work of the primitive detection in images pioneered by [START_REF] Desolneux | [END_REF]]. We are interested namely in extending their work from line segment detection to circular/elliptical shapes, while attempting to handle the conflicts between different interpretations.

The A Contrario Approach

The goal of the a contrario approach, as intended by Desolneux et al. [Desolneux 2007], is to give a general framework that would allow designing computer vision algorithms free from parameter tuning and applicable per se to any kind of image, regardless of its source/content/size. Within this chapter, we will focus on the problem of structure detection in images, which can be stated as follows.

Problem 1 (A Contrario Structure Detection) Given a set of features in a digital image, automatically compute a family of detection thresholds that allows reporting the meaningful feature arrangements.

The parameter tuning is an essential feature of every computer vision algorithm, as the accuracy of the results is highly dependent on it. In particular, the detection thresholds have a direct influence on the number of false detections and their values need to be systematically adjusted each time the (type of the) image changes (see figure 4.1). With regard to problem 1, the a contrario approach seeks to give an automatic technique for defining what is "enough structured" to be "meaningful", and hence for tuning the detection thresholds, by formalising the so-called Helmholtz principle. According to it, perceptual entities are feature arrangements, with a certain "degree of structuredness", that could not occur in a (pure) noise image 5 . Lowe was the first to formalise this perception principle in computer vision purposes [Lowe 1985] 6 . Indeed, the equivalent form of this principle, i.e. no structure should be perceived in noise, gives a starting point in tackling the detection thresholds issue. In practice, it states that a computer vision algorithm applied on a noise image should report no detection, as such detections are false positives. Within such algorithms that control the number of false positives, two types of detection thresholds should be considered.

• First, the expected overall detection result on a noise image should be fixed: formally it controls the expected number of structure detections in a noise image. Its value should not be zero, as one must take into account that even in a noise image there exists the (small, but non-zero) probability of having accidental occurrences of structures.

• Second, if we call candidate a feature arrangement, the detection thresholds applied to each individual candidate must reject any candidate that is likely to occur in a noise image.

As proven by Desolneux et al. [START_REF] Desolneux | [END_REF]], in the a contrario approach, the detection thresholds are linked in a way that relates the "degree of structuredness" of a candidate to the global expected result, through the number of possible candidates. More precisely, let H 0 be the (pure) noise image model, also called the a contrario model. A function k x (s) is defined to measure the degree of structuredness of a candidate s in the image x. Eventually, this measure assigns a candidate score on which we assess the probability that the candidate s observed in the image x could appear accidentally in an image X (of the same size as x), drawn from the H 0 model. The smaller the probability, the less probable the candidate is to be due to chance; thus it is meaningful.

Number of False Alarms

Let us call candidate a set s of pixels. We associate to the candidate s a degree of structuredness k(s) which is defined as the number of pixels in s satisfying some given property, e.g. the number of pixels having the same gradient orientation. We will assume that the image geometry of a candidate can be modeled by a set of parameters which, once at least one parameter is fixed, defines a type (e.g., in the case of rectangles, we can identify as a type, all rectangles of a given length).

Let k X (s) be the random variable associated to the degree of structuredness of candidates in image X drawn from H 0 , which have the same type as some candidate s in image x. The probability that a candidate s in image x with quantity k x (s) as degree of structuredness is "due to chance" will be given by P

H 0 [k X (s) ≥ k x (s)] (4.1)
which is the probability of observing under H 0 a candidate (in X) at least with the same degree of structuredness as the observed candidate s.

The essential concept of the a contrario approach is the so-called number of false alarms . Let s be a candidate in image x with k x (s) as degree of structuredness. The number of false alarms (NFA), predicted from the candidate s, is estimated as the quantity

NFA(s) = N t P H 0 [k X (s) ≥ k x (s)], (4.2) 
which is the probability (4.1) multiplied by the number of possible candidates N t , of all types. Thus, NFA(s) is the estimated number of candidates of any type at least as structured as s in X under H 0 . By definition, one says that the candidate s is ε-meaningful if its NFA is less than ε:

NFA(s) = N t P H 0 [k X (s) ≥ k x (s)] ≤ ε, (4.3) 
that is if the probability (4.1) of s being due to chance is less than ε/N t . This equation presents the test to be performed in order to decide if the candidate s is valid or its occurrence is due to chance. The smaller the NFA, the more meaningful the candidate is. Now, we will give the important result in the a contrario approach. We warn the reader that the notations might get somehow confusing, as in the following we will use the same denomination "number of false alarms", to denote a different quantity. The distinction is to be made through the parameter involved in the two notations: s for NFA(s) defined in (4.2) and ε for NFA(ε), which will be defined in the sequel.

Result 1 Let 1 NFA(s i )≤ε (i ∈ {1, .., N t }) denote the indicator function of the event "the candidate s i is ε-meaningful". The expectation of the number of ε-meaningful candidates per image under the H 0 model, denoted by

NFA(ε) = E H 0 Nt i=1 1 NFA(s i )≤ε (4.4) satisfies NFA(ε) ≤ ε. (4.5)
This result reflects the setting up of the Helmholtz principle. The number of detections in a noise image is controlled by the threshold ε, which is the only parameter to tune and can be made as small as desired. The proof of the above result can be found in [Desolneux 2007, p. 71] or in [Grompone von [START_REF] Grompone Von | [END_REF]. We recall it below because of its importance. We give the latter version for its compactness.

Proof.

NFA(ε) = E H 0 N t i=1 1 NFA(s i )≤ε = N t i=1 P H 0 [NFA(s i ) ≤ ε]. (4.6)
To ease the writing, let us denote by Y (s) the quantity

P H 0 [k X (s) ≥ k x (s)] from (4.2). Thus NFA(s i ) = N t Y (s i ). (4.7)
As we are interested in the expected number of ε-meaningful detections, the candidates s i in (4.7) are ε-meaningful, thus (4.3) stands. We have:

Y (s i ) ≤ ε N t . (4.8)
With this notation and knowing that, for every α > 0,

P H 0 [Y (s i ) ≤ α] ≤ α, (4.9) 
we can rewrite (4.6) as:

NFA(ε) (4.7,4.8) = Nt i=1 P H 0 Y (s i ) ≤ ε N t (4.9) ≤ N t ε N t = ε.
Ergo, in the a contrario literature, two quantities are attached to the same concept of the number of false alarms, and care must be taken to distinguish them. On the one hand, the NFA is used at the individual candidate level -NFA(s) (4.2)-yielding a measure of meaningfulness of a candidate, and on the other hand, at the image level, it represents the overall detection result -NFA(ε) (4.4). Both quantities are linked to ε, which is the unique detection threshold of the a contrario approach. It is the cut-off value on which the meaningfulness of a candidate is assessed. Moreover, as proven in [Desolneux 2007, p. 77], the dependance of the results on ε is logarithmic, thus weak. So a convenient value can be chosen once and for all. Many a contrario algorithms use the simple value ε = 1, which is suitable in our problem as well. As the same threshold ε controls the expected number of false positives, with the choice ε = 1, we assume the risk of accepting in average one false positive per image. This is a major difference with respect to classic detection methods: the detection threshold imposed on each candidate says something about the overall detection result that one can expect, whereas when using classic methods, (e.g. the Hough transform [START_REF] Duda | [END_REF]]), no such information is available. In particular, here is the main difference between PPHT, mentioned in the previous section, and the a contrario approach: both methods are interested in the probability (expectation) that a candidate occurred by accident, but PPHT keeps this analysis only at the candidate level, missing the essence of the problem, by ignoring the link with the overall detection result.

In conclusion, the a contrario approach gives a (nearly) parameterless procedure, that formally guarantees the control of the number of false positives. [Desolneux 2007, p. 41]. It presents the Helmholtz principle applied to a problem of dot alignments, which can be stated as follows. Given a set of points in a digital image, automatically compute a family of detection thresholds that allows reporting the meaningful dot alignments. According to the Helmholtz principle, any candidate that is likely to occur in a noise image should be rejected.

A Toy Example: Dot Alignments

A dot alignment s will be considered as meaningful if it contains a sufficient number of dots that all fall into a strip of a given width d. The a contrario model H 0 in this case is that dot positions are uniform, independent random variables, namely a uniform spatial distribution. A candidate alignment will be accepted as valid when the test (4.3) stands. The average number of accepted false detections will be considered ε = 1. The quantities involved in the test, namely the number of possible candidates N t , and the probability of observing a candidate at least as structured as s in a noise image, must be computed. The number of candidates is given by the total number of stripes of all possible widths whose endpoints are observed dots. If M denotes the number of points, then

N t = α M (M -1)

2

, with α being the number of considered widths (we choose α = 10). The probability that a dot falls into a strip of width

d in a N × N image is estimated as p d = d √ 2
N , which is the ratio of a strip whose length is the image diagonal and width is d, over the image area. If an observed alignment s contains k dots, the probability of observing, in a noise image, a candidate that contains at least k dots is given by the binomial tail

B(M, k, p d ) = M i=k M i p i d (1 -p d ) M -i . (4.10)
In the given example, the left image of 100 × 100 pixels contains 20 randomly distributed dots to which an alignment of 7 dots was added, yielding M = 27 points. If strips of minimum 3 pixels width are considered, then N t 3 × 10 3 and B(27, 7, 3 √ 2/100) 10 -5 . According to (4.2), the NFA associated to this candidate is 3 × 10 -2 , which is smaller than 1, therefore the candidate is reported as valid (middle image). The same alignment is not meaningful anymore in the right image, which contains the same 7 dot alignment, along with a random configuration of 80 dots. In this case, the number of tests becomes N t 4 × 10 5 , thus N F A(s) 4, greater than 1.

This procedure is a mathematical formalisation of the Helmholtz principle, and it attempts to reproduce the human perception. Indeed, in the left image, the candidate is likely to attract attention, i.e. to generate a perception, whereas in the right image, it integrates seamlessly the background, thus no valid detection is reported.

A Contrario Methods and Multiple Hypothesis Testing

Several works on the a contrario approach make references to the well-known statistical framework of multiple hypothesis testing (MHT ) and compare it with their approach [Desolneux 2007, p. 253], [Grompone von [START_REF] Grompone Von | [END_REF], [Cao 2008, Preface]. It is the purpose of this section to further investigate this idea. We will briefly analyse the behaviour and the limitations of the procedures commonly used in MHT problems, when applied to problems similar with those targeted by the a contrario approach. Eventually, an analogy with the microarray data analysis (MDA) problem, a classic case of MHT practical application, will be established.

Definitions

We first define some basic notions used in the hypothesis testing domain, partially taken up from [Lehmann 2005]:

• statistical hypothesis = a statement about the parameters describing a population (not a sample).

• test statistic = a value calculated from a sample, often to summarise the sample for comparison purposes.

• null hypothesis = a simple hypothesis associated with a contradiction to a theory one would like to prove.

• statistical test = a decision function that takes its values in the set of hypotheses.

• significance level of a test (α) = the probability of incorrectly rejecting the null hypothesis. The false positive rate.

• p-value = the probability of observing a result at least as extreme as the test statistic, assuming the null hypothesis is true.

• E-value = the average number of times in multiple testing that one expects to obtain a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true. The E-value is the product of the number of tests and the p-value.

• Type I error (false positive) = it occurs when a statistical test rejects a true null hypothesis.

• Type II error (false negative) = it occurs when the test fails to reject a false null hypothesis.

P-values and Multiple Hypothesis Testing (MHT ) Problem

The a contrario approach proposes a new vision on the detection problem, based on the Helmholtz perception principle. Usually, existing (statistical) methods propose several statistical models for the objects to be detected and for the background. The a contrario approach simplifies this scheme, by proposing to use only a background model, and afterwards, the objects of interest are detected as unexpected deviations (outliers) from this model. Assessing the probability that a candidate belongs to the background model comes to deciding if its configuration is reasonably explained by this model, i.e. it is due to chance, or it is an outlier.

Statistically, the background model H 0 represents the null hypothesis. In an image x, there are N t statistical tests s i , i ∈ {1, .., N t }, that evaluate the validity of the null hypothesis H 0 , having the form:

reject H 0 if k x (s i ) ≥ κ s i , accept H 0 otherwise,
where k x (s i ) is a function applied to the candidate s i from image x to compute its test statistic, and κ s i is a detection threshold, whose value depends on s i .

Thus, the null hypothesis should be rejected whenever the probability of observing under H 0 a candidate as structured as s i (in the sense of k(•)

), P H 0 [k X (s i ) ≥ k x (s i )],
is very small, i.e., the p-value associated to the test s i is less than a chosen significance level α ∈ [0, 1]. The choice of α is crucial, as the overall control of the false positives relies on this threshold.

If there were only one test s, the threshold κ s should be chosen at the value

κ s = min κ {P [k X (s) ≥ κ] ≤ α}.
With this choice, the probability of accepting a false positive is less than α. As an example, let us consider the simple problem of coin flipping where one wants to decide if a coin is fair or not.

The null hypothesis in this case would be that the coin is fair. One might declare that the coin was biased if in 10 flips it landed heads at least 8 times, i.e., κ s = 8. It can be shown that this is a relevant choice since the probability that a fair coin would come up heads at least 8 out of 10 times is given by the tail of the binomial distribution B(10, 8, 0.5) = 0.0547. This value can be considered small enough to conclude that the null hypothesis should be rejected whenever a pattern at least as unusual as this one is observed. With this significance level, we have a probability less than 0.0547 to misclassify a given coin, i.e. to reject a true null hypothesis, thus to accept a false positive.

As we are dealing with multiple tests, the a contrario approach corresponds to a multiple hypothesis testing (MHT ) problem. In this context, the following quantities are of interest:

1. N t -the number of tests; 2. V -the number of times H 0 was rejected; 3. S -the number of times H 0 was erroneously rejected; When testing N t hypothesis on a set of data, the significance level attached to each test has to take into account the number of performed tests, in order to keep under control the false positives. Let us continue the coin flipping example from above to illustrate this idea. A multiple-comparisons problem arises if one wanted to use the aforementioned significance level (which is appropriate for testing the fairness of a single coin), to test the fairness of many coins. Suppose one was to test N = 100 fair coins by this method. Given that the probability of a fair coin coming up 8, 9, or 10 heads in 10 flips is 0.0547, the likelihood that all 100 fair coins are identified as fair by this criterion is p = (1 -0.0547) 100 ≈ 0.0036, and it tends to 0 as N grows. Therefore applying the single-test coin-fairness criterion to multiple comparisons would more likely falsely identify at least one fair coin as unfair, producing false positives. To guard against Type I errors (false positives), the significance level of each test must take into account the number of tests.

Usually, the MHT problems focus on controlling the FWER value, by computing its upper bound. According to the Šidác correction, if the significance level of each test is set to 1 -(1α) 1/N t , then it can be proven that the FWER is up-bounded by α [Abdi 2007]. This procedure cannot be applied in the a contrario context, as the Šidác correction makes an assumption on the independence of the N t tests, which does not necessarily hold in the problems targeted by the a contrario approach, e.g. for line segment detection, a candidate line segment can be contained in another larger candidate line segment. For the general case (the tests are independent or, by the contrary, a high correlation between tests is in evidence), the Bonferroni correction applies, and it states that choosing the significance level of each test at the value α/N t , leads to a FWER up-bounded7 by α.

Nevertheless, this usage of the Bonferroni correction can become unsuitable when N t is large and the tests are correlated. The significance level becomes weaker when N t grows. This can result in failing to reject the null hypothesis as often as it should, i.e. producing false negatives (Type II errors). The family wise error rate is up-bounded by α, but in reality, it can be much smaller. This issue appears for example in bioinformatics, namely in the gene expression analysis problem, which involves monitoring the expression levels of thousands of genes simultaneously under a particular condition. The microarray technology and the MHT statistical framework make possible handling the enormous amount of data, while guarding against Type I errors. In the following, we will briefly describe this technology and the underlying statistics in order to establish an analogy with the a contrario approach. For further details on this problem, we refer the reader to [Babu 2004, Yang 2003b].

Microarray data analysis (MDA) is a relatively recent domain (developed after 1996), that attracted quickly the interest of an important number of biologists and statisticians. A microarray experiment may have various goals, like the study of host genomic responses to bacterial infections [START_REF] Alizadeh | [END_REF]] or identifying tumor subclasses [START_REF] Golub | [END_REF]]. Regardless of the goal, a common question in the microarray experiments is the identification of differentially expressed genes, that is, genes whose expression levels are associated with a factor of interest, e.g. a certain treatment.

"A microarray is typically a glass slide on to which DNA molecules are fixed by a robot in an orderly manner at specific locations called spots (or features). A microarray may contain thousands of spots and each spot may contain a few million copies of identical DNA molecules that uniquely correspond to a gene (figure 4.3A). The most popular application is to compare the expression of a set of genes from a cell maintained in a particular condition (condition A) to the same set of genes from a reference cell maintained under normal conditions (condition B). Figure 4.3B gives a general picture of the experimental steps involved. First, RNA is extracted from the cells and reverse transcribed into cDNA, which is then labelled with different fluorescent dyes. For example, cDNA from cells grown in condition A may be labelled with a red dye and from cells grown in condition B with a green dye. Once the samples have been differentially labelled, they are allowed to hybridize onto the same glass slide. At this point, any cDNA sequence in the sample will hybridise to specific spots on the glass slide containing its complementary sequence. Following the hybridisation step, the spots in the hybridised microarray are excited by a laser and scanned at suitable wavelengths to detect the red and green dyes. The amount of fluorescence emitted upon excitation corresponds to the amount of bound nucleic acid. For instance, if cDNA from condition A for a particular gene was in greater abundance than that from condition B, one would find the spot to be red. If it was the other way, the spot would be green. If the gene was expressed to the same extent in both conditions, one would find the spot to be yellow, and if the gene was not expressed in both conditions, the spot would be black. Thus, what is seen at the end of the experimental stage is an image of the microarray, in which each spot that corresponds to a gene has an associated fluorescence value representing the relative expression level of that gene" [Babu 2004].

Once the experimental part is completed, the statistics tools come into play. Their role is to classify the genes associated to spots into two sets: non-differentially expressed genes and differentially expressed genes. This step is similar to the a contrario reasoning. To estimate the two sets, an MHT framework is settled. First, a set of null hypothesis H 0j is defined, where j = {1, .., N s }, N s being the number of spots. Usually, the null hypothesis is that a gene is non-differentially expressed. Rejection decisions of the null hypothesis are based on appropriate test statistics (mean intensity of the spot, variance, etc.). E.g. Reject H 0j , i.e., declare gene j differentially expressed, if T (j) > c j , where c = (c j ), j = {1, .., N s } denotes an N s -vector of cut-off values. Finally, a Type I error rate that corresponds to a suitable form of control of false positives for the particular application (e.g. FWER) is chosen.

The analogy between the MDA problem and the a contrario typical problems resides in the large number of tests [START_REF] Dudoit | [END_REF], Gordon 2007], that are potentially highly correlated. Indeed, in the MDA domain as in the a contrario case, no independence hypothesis on the tests can be made, as the spots can contain replicated genes or co-regulated genes [Yang 2003b, p. 64].

In the MDA domain, the Bonferroni correction was declared repeatedly as too conservative for practical purposes, because of the considerable gap between the value of α and the actual FWER [Yang 2003b, p. 64], [START_REF] Dudoit | [END_REF]]. Thus, its use has highly diminished. Several less conservative procedures that improve the Bonferroni correction were considered (see [Gordon 2007] for a survey) and even new concepts of error rate were studied, such as the FDR. These new procedures prove to bring the FWER value closer to its upper-bound, with the cost of an increased complexity.

The a contrario approach, pioneered by Desolneux, Moisan and Morel in 2000 [START_REF] Desolneux | [END_REF]], could be considered as a novel practical usage of the Bonferroni correction. Even if it was well known that the Bonferroni correction leads to controlling both FWER and PFER, this procedure had always been perceived only as a FWER-controlling scheme in practical applications. The a contrario approach focuses on controlling the expectation (PFER), and not the probability (FWER), as the upper-bound α in this case gains a direct practical significance and can be easily fixed8 . Namely, it represents the average number of false detections that one could expect (accept) when the a contrario framework is in use. Up-bounding an expectation and not a probability, lets to the user the possibility of choosing a convenient, simple value, which is no longer restricted to the interval [0, 1]. For example, a value like α = 2 means that we assume the risk of accepting in average two false positives per image. The α value equipped with this new significance will be denoted by ε, as in [START_REF] Desolneux | [END_REF]].

Later, in 2007, Gordon et al., analysing the MHT framework applied to the MDA problem, dedicate an article [Gordon 2007] to clear the Bonferroni correction from the accusation of exceeding conservatism: "the notorious conservatism of the Bonferroni procedure is a misconception stemming from the traditionally conservative choice of its parameter rather than from any solid evidence of its conservative nature per se". They show that the results obtained with a PFER-controlling Bonferroni correction are similar with those obtained by a more complex FDR-controlling procedure, called BH [START_REF] Benjamini | [END_REF]]. They stress though the fact that the two approaches serve different purposes: "If, for example, the practitioner decides that, on the average, he/she can afford two false positives per experiment, then it is natural to use the Bonferroni procedure with the nominal level of the PFER equaling 2. If, on the other hand, the practitioner wants, on the average, the proportion of false positives among all positives not to exceed 10%, he/she can use the BH procedure with the nominal level of the FDR equaling 0.1."

The former case corresponds to the a contrario approach, which can be seen as a precursor of Gordon et al.'s conclusion.

Indeed, Desolneux et al. built their decisional framework on the PFER control, which is a more appropriate approach for problems with a high number of correlated tests. The number of false alarms, defined as the average number of meaningful candidates that one can observe in an unstructured model (4.4) corresponds to the per family error rate, which is controlled at the ε level. The proof of this statement can be given either by using the a contrario reasoning, based on the Helmholtz principle, or by using the Bonferroni correction, based on the Boole's inequality.

According to the PFER-controlling Bonferroni correction, the control of the number of false positives at the ε level is ensured if each test s i , i ∈ {1, .., N t } rejects the H 0 hypothesis whenever the p-value of the test is less than ε/N t , i.e.

P H 0 [k X (s i ) ≥ k x (s i )] ≤ ε/N t . (4.11)
The number of false alarms of a given candidate defined in (4.2) results immediately from (4.11) and it represents the p-value of the test, multiplied by the number of tests. Thus, it corresponds to the E-value of the test; it was also called a corrected p-value in [Grompone von [START_REF] Grompone Von | [END_REF].

The parallel between the a contrario approach and the MHT framework stands when comparable target problems are addressed, namely problems that involve a large number of tests and interdependence between the p-values of the tests, like the MDA problem, which is a very active research domain. Currently, the interest of statisticians working in this domain concerns complete procedures, which allow guarding against Type I errors and Type II errors [ Rice 2010]. The parallel might be useful inasmuch as the advancements of one domain might represent future research leads for the other.

A contrario vs MINPRAN

In the same context of statistical hypothesis testing, is worth mentioning the link between the a contrario approach and the MINPRAN method, proposed by Stewart [Stewart 1995], which is discussed in more details in [Desolneux 2007, p. 87]. MINPRAN 's author introduced the method as a new paradigm, and he applied it to the 3D alignment problem. More precisely, Stewart tackled the problem of detecting 3D point alignments by considering the probability of the event: "at least k points among the N , randomly fall at a distance less than r from the plane P ". Essentially, the reasoning is the same as in the a contrario approach: we are interested in measuring how probable is an event to be due to chance. However, there are some technical differences which deserve attention. MINPRAN focuses on the probability that the aforementioned event occurs by chance, and makes a rather unrealistic hypothesis on the independence between the considered tests. Moreover, it requires a particular parameter setting, e.g. the estimated maximum fraction of outliers, the minimum number of points to be allowed in a fit and the estimated maximum number of correct fits. The a contrario approach overcomes these drawbacks, by using the expectation of the event instead of its probability, and by using the Shannon's principle in order to bypass the parameter tuning.

Line Segment Detection

The previous sections introduced the general a contrario framework. In this section, we will particularise it for the line segment detection problem, as the same principles stand for any kind of feature, including circular/elliptical arc detection, the object of our study.

Two main ingredients are required by the a contrario technique: a measure function giving a score to each candidate which enables assessing its degree of structuredness, and a background model. The former is used to decide if a candidate fits well the defined background model, or it is an outlier. To this end, Desolneux et al. decided to give importance to the orientation of the gradient, rather than to its magnitude, following Wertheimer's contrast invariance principle: "Image interpretation does not depend on actual values of the gray levels, but only on their relative values." [Desolneux 2007, p. 5].

Background model

The background model H 0 proposed by Desolneux et al. [START_REF] Desolneux | [END_REF]] for the problem of primitive detection (line segments, ellipses etc.) is a gradient field where the gradient orientations associated to each pixel are i.i.d. random variables. Thus, a random image X of n × m pixels,

X : Γ = [1, n] × [1, m] → R, drawn from H 0 , is a random image such that: 1. ∀p ∈ Γ, Angle( X(p)) is uniformly distributed over [0, 2π].
2. {Angle( X(p))} p∈Γ are independent random variables.

These two assertions hold in a Gaussian white noise image, i.e. X(i, j), i = {1, .., n}, j = {1, .., m} are Gaussian random variables with mean μ and variance σ 2 , under some condition on the sampling [Desolneux 2007, p. 67], discussed in section 4.9. Figure 4.4 presents an example of a Gaussian white noise image, together with its gradient field. We use the same background model in our work.

Meaningfulness assertion -NFA discrete formulation

A pixel p ∈ Γ is said to be δ-aligned, or simply aligned, with an oriented line segment s up to a precision δ if Angle( x(p), dir ⊥ (s)) ≤ δπ, (4.12) where x(p) is the gradient of the image x in p and dir ⊥ (s) is a vector orthogonal to s (see figure 4.5).

The equation (4.12) is necessary to introduce the function used to measure the degree of structuredness of a candidate. The probability that a candidate belongs to the background model is assessed by counting the number of aligned pixels that it contains, as shown in figure 4.5. This corresponds to the discrete formulation of the NFA attached to a candidate. A Formally, let s be a straight line segment of length l, containing l independent points x 1 , x 2 , . . . , x l . To each point x i , i = {1, .., l}, a random variable X i will be attached such as

X i = 1, if x i -aligned X i = 0, otherwise. (4.13)
The probability that a point x i is δ -aligned with the line segment s is 2δπ 2π = δ. Thus, the random variables X i have a Bernoulli distribution of parameter δ:

P[X i = 1] = δ and P[X i = 0] = 1 -δ.
Let S l be the random variable representing the number of aligned pixels that the candidate s of length l contains:

S l = X 1 + X 2 + . . . + X l .
If the independence hypothesis on x i holds, the law of S l is given by the binomial distribution

P[S l = k] = l k δ k (1 -δ) l-k .
As the number of false alarms attached to a line segment s counts for the average number of candidates at least as structured as s under the null hypothesis H 0 , the NFA computation comes to estimating P[S l ≥ k], which is given by the binomial tail of parameters l, k, δ:

B(l, k, δ) = l i=k l i δ i (1 -δ) l-i . (4.14)
Thus, the NFA of a candidate line segment s of length l, containing k δ-aligned pixels, belonging to an image x of size n × m pixels, is:

NFA(s) = N t B(l, k, δ). (4.15)
where N t ∼ O(nm) 2 , as each pair of pixels (p 1 , p 2 ) ∈ x can represent the ends of a line segment.

A candidate line segment s will be called ε-meaningful as soon as

NFA(s) ≤ ε. (4.16)
As mentioned in the previous section, a convenient value can be fixed once and for all for ε, as the results have a logarithmic ε-dependence. In practice, ε = 1 is satisfactory. Thus, a candidate line segment s will be accepted if

NFA(s) ≤ 1.
(4.17)

The LSD Algorithm

The problem of feature detection in images should be considered as a two-stage process: first some feature candidates are identified using different heuristics, and afterwards, each candidate has to pass a validation phase. Obviously, in the first phase it is important to avoid introducing false negatives (an object is present, but it is not detected). Afterwards, considering the application needs, the validation phase has to minimise either the number of false positives (no object is present, but the algorithm detects one), or the number of false negatives. Although for the former step there exist techniques widely accepted (e.g. Hough transform [START_REF] Duda | [END_REF]]), the validation step continues to represent a challenge for the computer vision community, as it usually depends on detection thresholds, which are no longer valid as soon as the (type of the) image changes.

For the line segment detection problem, the a contrario approach was originally proposed by Desolneux et al. as a complete detection procedure: the candidate selection was in fact an exhaustive step where each of the N t possible candidates were considered, and afterwards, the validation was carried out using the test (4.17) [START_REF] Desolneux | [END_REF]]. This ensured that no false negative is introduced by the candidate selection procedure, but in exchange, redundant detections (e.g. on a blurry edge, a bunch of line segments were detected instead of a single one) and misinterpretations (two collinear line segments were interpreted as a single longer line segment containing both) harmed the execution time and the precision of the method.

An efficient line segment detector, called LSD, was proposed by Grompone von Gioi et al. [Grompone von Gioi 2010]: it uses a greedy heuristic for candidate selection, followed by an a contrario validation. We will briefly describe their algorithm, as we will take up the core ideas in our detector.

Line Segment Candidate Selection

The candidate selection procedure of the LSD algorithm shares some ideas with the detection method proposed by Burns et al. [Burns 1986]. In opposition to classic methods, LSD makes use of the gradient orientations instead of the edge points computed based on gradient magnitude (e.g. Canny points). Candidate line segments are represented in fact by the so-called support regions, which cover zones of the image containing pixels whose gradient orientations are similar up to a given precision δ. The support regions are computed in a greedy-like manner: first a seed pixel is chosen, and afterwards, the algorithm searches recursively the neighbours that have the same gradient orientation up to a given precision. An 8-connected neighbourhood is considered. If a neighbour pixel is found as aligned in the sense of (4.12), it will be added to the current support region and marked as visited, in order to avoid visiting it again.

The main steps of the selection procedure are:

1. Compute the image gradient and keep both the magnitude and the orientation.

2. Create a pseudo-ordered9 list L of pixels, so that pixels with a higher magnitude, which are more probable to belong to edges, are considered first as seed pixels.

3. Create and systematically update a status image, indicating which pixels have already been visited.

4. Scan the list L and propose as pixel seed the subsequent non-visited pixel.

5. Launch a RegionGrow procedure (algorithm 1) with the chosen pixel seed.

6. Compute the rectangle that covers the obtained region.

In algorithm 1, the function isAligned (line 5) uses (4.12) to decide if a neighbour pixel is δ-aligned within the current rectangle candidate.

Each time a new pixel is added, the rectangle orientation is updated (line 8) to a pseudo-mean of the orientations of the pixels p i currently in the region R:

θ R = arctan i sin(Angle(p i )) i cos(Angle(p i )) . (4.18)
This expression is chosen for its efficiency in terms of computational complexity and precision, especially considering the fact that an incremental approach is required i.e., θ R must be updated at a very low computational cost for each newly accepted pixel.

When no more neighbour pixels can be added, the obtained region is approximated by a rectangle, described through its length, orientation, width and centre (figure 4.6), which will be proposed as candidate for validation.

The parameters that appear in the candidate selection phase, namely ρ and δ are to be considered as internal parameters [Grompone von Gioi 2010]: their values can be fixed empirically as they do not influence significantly the detection results. The parameter ρ is a threshold on the gradient magnitude, so that pixels with small gradient are not considered, in order to avoid the errors introduced by the quantisation noise. Desolneux et al. [Desolneux 2002] showed that gray-level quantisation produces errors in the gradient orientation angle. This error is negligible when gradient magnitude is large, but can be dominant for a small gradient magnitude. It can invent patterns, producing thus false detections. A positive side effect of this threshold is a speed improvement, by reducing the number of considered pixels. More details on the computation of ρ are given in [Grompone von Gioi 2010], where it is shown that ρ should be considered a function of δ, the precision used to declare a pixel as aligned. For example, if δ is set to the value 1/8, then ρ = 5.2. We consider this value in our algorithm.

As for the parameter δ, which appears also later in the NFA computation, its influence was addressed by Desolneux et al. [Desolneux 2007, p. 86], and they showed that fixing values too stringent for δ yields no significant improvement on the detection results. By the contrary, it can introduce spurious meaningful alignments, due to the quantisation of gradient orientations. The value δ = 1/8, which corresponds to 8 angle bins of 22.5 degrees each, gives satisfactory results. 

A contrario Candidate Validation

The a contrario validation has to consider the particularity of the candidate selection procedure, namely a greedy procedure which seeks for rectangular candidates, and not linear segment candidates. As explained in [Grompone von Gioi 2010], in practice, only the support regions found in the candidate selection phase of the algorithm are tested as candidates for a line segment detection. However, this does not imply that one can set N t equal to the number of support regions effectively tested. These support regions have complex statistics, different from white noise statistics, and we do not have a closed formula for it. Thus, we must be content with the estimate given by counting the number of potential rectangles in the image. Considering a one pixel precision, there are (nm) 2 potential oriented line segments in an n × m image (starting and ending on a point of the grid Γ. If we set to (nm) 1/2 the number of possible width values for the rectangle, the number of tests becomes N t = (nm) 5/2 . Similarly, it can be considered that the number of tests has O((nm) 5/2 ), as one rectangle has five degrees of freedom 10 (df), illustrated in figure 4.6: rectangle centre coordinates (2 df), rectangle length (1 df), rectangle orientation (1 df), and rectangle width (1 df). This estimation is rough, the exact number depending on the exact precision considered. What is important here is the order of magnitude, which enables NFA to adapt to different image sizes. Thus, the test from (4.17) that each candidate has to pass becomes:

NFA rectangle = (nm) 5/2 B(l, k, δ) ≤ 1, (4.19) 
where l represents the area of the rectangle and k is the number of δ-aligned pixels that the rectangle contains. Refer to section 4.9 for details on the distance between the considered points.

Ellipse Detection

Computer vision literature is rich in ellipse detectors 11 . More often than not, the detection is carried out on binary images, issued from an edge detector, e.g. the Canny detector [ Canny 1986].

10 Each df increases Nt by multiplying it with (nm) 1 2 . 11 As circles are particular ellipses, their detection can be carried out seamlessly by ellipse detectors. We will use the syntagm "ellipse detector" to refer to the general case (ellipse/circle), and when needed, we will make explicitly the distinction between circle and ellipse detectors.

The declared objectives of the existing procedures target the execution time (real-time execution is desired), and/or the precision of the detected features, especially in cases of partially occluded ellipses [Kim 2002[START_REF] Kanatani | [END_REF], Zhang 2005[START_REF] Nguyen | [END_REF]].

In general, the existing circle/ellipse detectors do not address explicitly the problem of the false detections (false positives and false negatives). Moreover, in order to obtain a reasonable detection result, in both time and precision terms, a prior parameter tuning is required, to set up some thresholds on the gradient magnitude for the edge detector, together with some limits on the parameters of the expected detections. E.g. the circle detection procedure based on the Hough transform available online in the opencv library12 requires as input parameters the range of the circle radii, the minimal distance between two circle centres and a minimal percentage of the detected circle arc length, used as validation threshold. Other, non-public ellipse detectors, as the ones cited above, impose by default some relatively permissive values for the parameters of the expected detections and for the detection thresholds, but to reach the desired performance, tighter values need to be considered. According to the tests and results published by their authors, the real-time execution is achieved for images of maximum 400 × 600 pixels, where only few ellipses are present. Obviously, the parameter tuning needs to be updated when the type of the image changes. This operation is to be carried out somehow blindly, as the chosen values give no clue on what one could expect in terms of final result.

In this section we will detail the proposed detector, called ELSD. Its goal is to carry out a parameterless feature detection, while formally guaranteeing a control of the number of false positives. ELSD can be seen as a generalisation of the LSD detector described in the previous section. We aim at simultaneously detecting line segments, circular and elliptical arcs, by implementing a greedy-like candidate selection step, which ensures a reasonable execution time, followed by an a contrario validation, which yields an efficient control of the false positives. As it targets several feature types (line segments, circular/elliptical arcs), ELSD requires an additional step, namely a model selection phase. Section 4.8 details this problem. The number of false alarms will be used as a model selection criterion to decide between possible interpretations: line segment, circular or elliptical arc.

ELSD Candidate Selection

The intended goal of our work is to obtain a parameterless 13 feature detector that minimises the number of false detections. The a contrario validation guards effectively against false positives (Type I errors). Concerning the false negatives (Type II errors), if they appear, they are strictly due to an over-restrictive candidate selection procedure, i.e. there exist candidates which do not even get the chance to arrive to the validation phase. Any of the existing ellipse detectors could carry out the candidate selection, if, empirically, their behaviour proves to be not over-restrictive. But, nothing other than the fact that classic detectors operate on binary images (obtained applying an edge detector which needs a rather critical parameter tuning), where a significant part of the information contained in the original image is (potentially erroneously) discarded, indicates a constraining behaviour. Another issue, specific to Hough-based detectors, is linked to the quantisation precision, which can generate also false detections. In [Grompone von Gioi 2008], the authors showed that a detector using a Hough candidate selection, followed by an a contrario validation, can fail in reporting a satisfying result, due to the improperly set quantisation precision in the candidate selection phase. In this context, the main feature of the proposed candidate selection is to be free of critical parameters and as permissive as possible, in order to avoid introducing false negatives.

The candidate selection step in ELSD adds a second level of regroupment compared to the LSD approach, by simply alternating region growing and region chaining operations (algorithm 2).

1. Region growing: like in LSD, rectangular regions are first constructed by aligning pixels in the sense of the definition given in (4.12), cf. algorithm 1.

2. Region chaining: detected regions are chained whenever they obey some loose, elementary constraints, which characterise the elliptical shapes.

Regarding the region chaining, the ends of one detected region are used as seed pixels for subsequent region growing procedures. Thus, the region growing yields a polygonal approximation of a curve through a recursive scheme. Regions that satisfy elementary constraints on elliptical shapes are chained: namely, we impose that the contour described by the chained regions be convex and roughly smooth. Of course, other non-elliptical shapes fulfill these constraints and will be proposed thus as candidates for validation. It is the task of the a contrario validation or/and of the a contrario model selection to reject them as valid circle/ellipse detections.

We give now more details about the ELSD selection procedure. As it extends in a natural way the LSD candidate selection, we start with the steps of the LSD candidate selection and give subsequently the additional steps, specific to ELSD. 1. Compute the image gradient and keep both the magnitude and the orientation.

2. Create a pseudo-ordered list L of pixels, so that pixels with a higher magnitude, which are more probable to belong to edges, are considered first as seed pixels.

3. Create and systematically update a status image, indicating which pixels have already been visited.

4. Scan the list L and propose as pixel seed p s 0 the subsequent non-visited pixel.

5. Launch a RegionGrow procedure (algorithm 1) with the current pixel seed.

6. Compute the rectangle that covers the obtained region and keep it as line segment candidate for the subsequent validation and model selection phases.

6.1. Compute p sr , the pixel seed for the right side of the curve (figure 4.8) allowing the subsequent region growing:

Let the pixel p er represent the right end of the current rectangle14 . The pixel p sr is the pixel possessing the maximum gradient magnitude in the neighbourhood of p er and whose orientation differs with no more than π/2 with respect to θ ⊥ , the direction orthogonal to the current rectangle. The orientation of the pixel seed is constrained in this way to ensure a loose smoothness of the curve. The neighbourhood size is given by the width of the current rectangle, i.e. the pixel seed will be sought in the square centred at p er and of side equaling width (figure 4.8).

6.2. Compute the left pixel seed p s l in the same manner as above, using the other end of the rectangle.

7. Scan the right direction, by repeating the steps 5, 6 and 6.1., as long as the chained regions describe a convex shape. The convexity constraint is imposed by considering the sign of the variation Δθ r between the orientation of succeeding rectangles (figure 4.7). This variation is positive when moving in the right direction and negative for the left direction.

8. Scan the left direction, by repeating the steps 5, 6 and 6.2., as long as the chained regions fulfill the convexity constraint, i.e. the variation Δθ l between the orientation of succeeding rectangles is negative. 9. Compute the circle that fits the gathered pixels, using the variant for circle fitting of the algebraic technique proposed in section 3.5.

10. Compute the ellipse that fits the gathered pixels, using the variant for ellipse fitting of the same algebraic technique.

The steps enumerated above bring together pixels aligned with respect to a roughly smooth convex shape. Eventually, the curve growing procedure returns a list of pixels, together with the two extreme points p sr and p s l , and the parameters of the fitted curves. These data are used to delimit the support regions, which will be proposed as candidates in the validation phase. Now, a couple of technical remarks about the procedure described above. • To carry out steps 6.1. and 6.2. we need to define the right and the left directions for the chaining procedure (figure 4.7); it will also indicate the sign of the angle variation that one should get in case of convex shapes. Actually, it must be done only once at the beginning, when the curve is reduced to a simple (first) rectangle. We perform a rough initial estimation of the centre c 0 of the circle/ellipse, using Forstner's operator [Forstner 1987], described in section 3.5. We are not interested in obtaining a precise location of the centre as we need only the side on which the centre lays, with respect to the first rectangle. Forstner's operator proved to be very efficient in this matter, at a very low computational cost. Hence, the end of the rectangle for which the angular difference θ c is positive15 will serve to compute pixels at the right side of the curve, and conversely, the other end will serve to compute pixels at the left side of the curve.

• There are rare cases when the initial estimation of the centre (cf. previous item), fails to return the correct side where the centre lays. This may happen when the initial region is small and/or the orientations of the gradients are highly altered by noise. It is obvious that in this case, the curve growing will stop before succeeding to add any neighbour region.

To recover from this situation, we only need to launch again the curve growing procedure, by imposing that the centre is on the other side of the initial rectangle, which leads to interchanging the positions of p sr and p s l .

• It is worthy of note that in the case of closed shapes, there is a certain redundancy between steps 7 and 8. Normally, scanning the curve in the right direction should bring us to the initial left pixel seed (the final extreme points coincide), so the step 8 would not be mandatory. However, the pixels are not visited twice, as they are marked as used the first time they are visited. This redundancy is useful when a portion of the shape is occluded, thus the scanning cannot continue on one side. In this case, the scanning on the opposite side will try to continue, if possible, the curve growing.

• Eventually, an additional constraint is considered in order to avoid the spiral shaped contours. In the case of a spiral, the successive regions describe a smooth convex contour, but we choose to stop the curve growing after a complete tour. This is done by imposing that the angle Δϕ between the two extreme points p s r and p s l and the initial pixel seed p s 0 always lowers (figure 4.9).

Figure 4.9: The spiral shapes are avoided by imposing that the angle Δϕ between the extreme points (p s r , p s l ) and the initial pixel seed p s 0 lowers with each new region added to the curve. The initial value of Δϕ is set to π.

Considering that the circle is a particular ellipse, one may question the usefulness of the two distinct steps 9 and 10, i.e. why the two features (circle, ellipse) are not treated seamlessly at this stage, by fitting only an ellipse and defining its support region. Afterwards, the decision between circle and ellipse could be carried out by the model selection phase. The reason for making the distinction in this early stage resides in the poor performance of the ellipse fitting operators on incomplete data, i.e. when only small arcs16 (< π/2) are present. We choose to perform separately the ellipse and the circle fitting, in order to save these small arcs. When a small arc is present, it may be either a true circular arc, or an elliptical arc. Most often than not, only the circle fitting will yield a coherent result. This is not very disturbing though, if we accept that an ellipse may be reasonably approximated by circular arcs [Rosin 1998]. The choice of the fitting operator is based on performance and computational complexity reasons. We avoid the iterative (geometric) operators and we use the direct algebraic operator proposed in section 3.5, as it yields the best performance on incomplete data among the existing non-iterative circle/ellipse fitting operators.

A similar chaining procedure is used in Etemadi's work [Etemadi 1992], which targets the segmentation of planar curves into line segments and circular arcs. The main steps of Etemadi's algorithm are: 1) edge detection; 2) edge pixel chaining [START_REF] West | Multi-Stage Combined Ellipse and Line Detection[END_REF]] 3) segmentation of pixel chain into straight segments 4) circle fitting using a least-square technique (section 3.4); 5) model selection (line segment or circular arc) using a distance error as criterion [START_REF] West | Multi-Stage Combined Ellipse and Line Detection[END_REF]]. Thus, Etemadi's algorithm cannot be used as a detector per se. A validation step is required. Hence, the main differences between the proposed detector and Etemadi's work are:

• we carry out the pixel chaining directly on the original image, in order to avoid the critical parameters of the edge detector.

• ELSD targets also the elliptical shapes, which are of high interest in shape detection.

• ELSD uses a validation phase, formalising the control of the false positives (see next section).

• the model selection in ELSD case is carried out using a more appropriate criterion -the number of false alarms (section 4.8).

Input: List of pixels aligned with the initial rectangle R 0 , gradient orientations image Angle, status image indicating used pixels used. Output: List of connected pixels R, aligned up to a precision δ, on a roughly smooth, convex shape. x(p) has the same direction as the line passing through the centre of the circle O and the pixel p, up to a given precision δ. Right: A pixel p is aligned with an elliptical arc if the support line of its gradient vector x(p) has the same direction, up to a precision δ, with the bisector of the angle formed by the lines passing through the focus F and the pixel p, and respectively through the focus F and the pixel p.

R ← R 0 ; Compute p s r ; Compute p s l ; F lagConvex ← T rue; while F lagConvex do R r = RegionGrow(p s r ,Angle,used); if convex(R, R r ) then Add R r to R; Compute p s r ; end else F lagConvex ← F alse; end end F lagConvex ← T rue; while F lagConvex do R l = RegionGrow(p s l ,Angle,used); if convex(R, R l ) then Add R l to R; Compute p s l ;
The reasoning for the a contrario validation from LSD applies to circular/elliptical arcs, with some specific adjustments, namely the number of candidates and the definition of an aligned pixel. Desolneux et al. anticipated it in [Desolneux 2007, p. 245], but to the best of our knowledge, no efficient implementation of a circle or ellipse detector is reported in the a contrario literature.

The goal of this section is to provide a thorough investigation of the a contrario validation used in ELSD. Under the same background model as in section 4.5, a pixel p ∈ Γ is said to be aligned with a circular or an elliptical arc a up to a precision δ if

Angle( x(p), dir ⊥ (T a (p))) ≤ δπ, (4.20) 
where x(p) is the gradient of the image x in p and dir ⊥ (T a (p))) is a vector orthogonal to the tangent T a (p) of the circle/ellipse supporting a at p (see figure 4.10).

In fact, in our algorithm implementation, we will use a strictly equivalent definition, which distinguishes the case of a general ellipse and that of a circle, in order to prepare the circular and the elliptical candidates for the model selection phase.

• For a circular arc, a pixel is considered aligned if the support line of its gradient vector has the same direction as the line passing through the pixel and the centre of the circle, up to a given precision δ (figure 4.10 left).

• For an elliptical arc, the aligned quality of a pixel is assessed by using the focal property of an ellipse, i.e. a pixel is aligned if the support line of the gradient vector has the same direction, up to a given precision δ, as the bisector of the angle formed by the lines passing through the pixel and the foci respectively, as shown in figure 4.10 right.

ELSD candidate selection yields circular/elliptical arc candidates which correspond to regions containing aligned pixels (in the sense of figure 4.10) up to a given precision, that we will call circular support ring and elliptical support ring respectively. For circular arcs, the number of possible candidates N t has an order of O((nm) 3 ), for an image of n×m pixels, as for a circular arc we consider its circular support ring, which has 6 degrees of freedom, namely: centre coordinates (2 df), radius (1 df), delimiting angles (2 df) and width (1 df), as illustrated in figure 4.11 left. Similarly, for an elliptical arc, N t has O((nm) 4 ). An elliptical support ring has 8 degrees of freedom, being determined by its centre (2 df), axes (2 df), orientation (1 df), delimiting angles (2 df), and width (1 df) (figure 4.11 right). the candidate will be declared meaningful and accepted as a valid detection. In (A.15), l stands for the total number of pixels in the support ring, whereas k denotes the number of aligned pixels.

In the sequel we will give some technical details on the validation of the circular/elliptical arcs. ELSD candidate selection returns a list R of pixels which are aligned on a roughly smooth, convex shape, and the parameters of the fitted circle C and of the fitted ellipse E. In the validation phase, we are interested in the number k of pixels that are aligned on the fitted curves (in the sense of figure 4.10), among the total number l of pixels contained in the circular/elliptical support rings that cover the pixels in R. Eventually, the validation phase must return the NFA of each candidate, together with its parameters: centre coordinates, radius/axes, delimiting angles, orientation and width. The validation procedure of the circular candidate follows the same steps as the one for the elliptical candidate, but in practice, we have different validation procedures, imposed by the different techniques used to compute the distance point ↔ circle/point ↔ ellipse and the angle of a pixel on a circle/ellipse (figure 4.10). We will give the main steps of the validation procedure, and the differences that appear in each step between the circular and the elliptical validation (algorithms 3,4).

1. Sort pixels in R according to their angular (polar) coordinate, with respect to the centre of the fitted circle C/ellipse E, and compute their delimiting angles α start and α end .

2. Find the maximal distances (towards the exterior d ext and the interior d int of the circle/ellipse) between the pixels in R and the curve, in order to compute the width of the circular/elliptical ring: width = d ext + |d int |. For the circular ring, the distances are computed using the Euclidean distance. In the elliptical case, we use the approximation given by Rosin distance, introduced in chapter 2.

3. Perform a new region growing procedure similar with algorithm 1. The pixel seed is the first pixel in R. The goal here is to gather all pixels whose angular positions are in the range [α start , α end ], and which are at a distance d with respect to the curve, such that

d int ≤ d ≤ d ext .
l is incremented each time a pixel fulfilling the two conditions is found. If, moreover, the pixel is aligned with respect to the circle C/ellipse E (in the sense of figure 4.10), k is incremented as well.

4. Given l and k for each candidate, compute NFA circle and NFA ellipse using (A.15). .12 shows the minimum number k min of aligned pixels that a length 17 l circular/elliptical arc belonging to an image of n × m pixels must contain in order to be meaningful. Here, we assume that the circular/elliptical support rings have fixed width, width = 1, thus the number of tests becomes (nm) 5/2 for the circular candidate, and (nm) 7/2 for the elliptical candidate.

Input: List R of pixels, circle parameters C[c x , c y , r], gradient orientations image Angle, N tc . Output: NFA circle , c[c x , c y , r, α start c , α end c , wdth c ]. ang_coord c = angular_coordinates(R, C); 1 [α startc , α endc ] = delim_angles(ang_coord c ); 2 [d intc , d extc ] = Euclidean_distance(R, C); 3 pixel seed ← R[f irst];
Figure 4.12: The minimum number of aligned points that a line segment and a circular/elliptical arc must contain to be considered ε-meaningful. This result is obtained for an image of 512 × 512 pixels, with ε = 1 and δ = 1/8.

The proof that the number of meaningful circular/elliptical arcs in a noise image is controlled by ε = 1 is straightforward; only the number of candidates changed with respect to line segment validation, in order to take into account the increased complexity of the newly addressed feature types.

The three candidates supplied by ELSD candidate selection step (one rectangle, one circular and one elliptical ring) will be proposed to the validation phase, which consists in verifying the test (4.19) for the rectangular candidate and the tests (A.15) for the circular/elliptical candidates. The candidates declared meaningful at this stage will compete subsequently for the position of the most meaningful interpretation for the given data and the winner will be kept as final valid detection.

NFA -Model Selection Criterion

The usage of the main a contrario concept, the number of false alarms, evolved from its initial meaning. In the first a contrario works, the NFA of a candidate served as validation criterion, to identify meaningful candidates [START_REF] Desolneux | [END_REF], Grompone von Gioi 2010]. Soon thereafter, it became also a selection criterion, designed to choose the most meaningful candidate among several meaningful candidates belonging to the same family: Moisan and Stival [START_REF] Moisan | [END_REF]] use the NFA to select the fundamental matrix that justifies best a set of point correspondences extracted from a pair of images, among several possible models which yield meaningful interpre-tations, by using a RANSAC approach. In [Desolneux 2007] (Chapter 6, Maximal meaningfulness and the exclusion principle ), the authors choose the most meaningful line segment, when multiple meaningful line segments can be fitted on the same set of pixels. Later, NFA carried out the model selection between different types of candidates, belonging to the same family [Cao 2007, Grompone von Gioi 2007]. The former deals with a clustering problem, where the topic of merging two neighbour clusters C 1 and C 2 into a larger one C appears. The authors suggest that comparing the meaningfulness of C 1 (or of C 2 ) against the meaningfulness of C is not fair, and they proposed a solution to measure the meaningfulness of a new type of candidate, namely the pair of clusters (C 1 , C 2 ), by using a trinomial coefficient in the computation of the NFA. The procedure was generalised in [Grompone von Gioi 2007], where the authors search for the best interpretation between a large line segment and multiple (2 or more) collinear shorter line subsegments, by computing the NFA for a new candidate type, the so-called multisegment.

In the present work, we try to make a step forward and use the NFA as a model selection criterion to decide between interpretations belonging to different families: line segments or circular/elliptical arcs.

The model selection theory is a central subject in statistical learning [START_REF] Hastie | [END_REF], Duda 2001]. The proposed ellipse detector ELSD entails a model selection step within a linear regression problem and uses the NFA of a candidate as model selection criterion. Hence, a formal positioning of the NFA in the classic model selection framework deserves a deeper analysis. Because a thorough investigation of this issue falls beyond the scope of our work, we will give here only a sketch study, in order to assess the pertinence of using NFA as model selection criterion. A rigourous study is foreseen as perspective work.

Model Selection Setup

Consider the general regression model

Y i = f (x i ) + ν i , i = {1, .., l},
where x i = (x i1 , . . . , x id ) is the value of a d-dimensional variable at the i-th observation among l, Y i is the response, f is the true regression function, and the random errors ν i are assumed to be i.i.d. normally distributed with mean zero and variance σ 2 . For simplicity, we assume that the input values are fixed in advance (non-random), thus we denote them by minuscules, whilst the response is denoted by majuscule, being a random variable.

Usually, the true regression function f is unknown and only the prediction model f , estimated from a training sample, is available.

Definitions

We define a loss function to measure the errors between Y and f (x), that we denote by L(Y, f (x)). A typical choice for L is the squared error [Hastie 2001, p. 194]:

L(Y, f (x)) = (Y -f (x)) 2 .
The test error (also called the generalisation error ), is the expected prediction error over an independent test sample (which was not used in the training phase):

EPE = E[L(Y, f (x))].
The training error is the average loss over the training sample:

err = 1 l l i=1 L(Y i , f (x i )).

Model Selection -Tradeoff between Bias and Variance

Within the statistical model selection problem, a finite number of plausible linear models are considered:

Y = f j (x, θ j ) + ν,
where for each j, F j = {f j (x, θ j ), θ j ∈ Θ j } is a linear family of regression functions with θ j being the parameter of a finite dimension t j . Thus, t j accounts for the number of parameters of the model j, which reflects the model complexity. We suppose that t j grows with j.

For an input point x 0 , the EPE for a squared error loss associated to a candidate model fj can be decomposed as [Hastie 2001, p. 197]:

EPE j (x 0 ) = E[(Y -fj (x 0 )) 2 ] = Irreducible Error + Bias 2 + Variance.
This decomposition reflects that the model selection problem is grounded on a bias-variance tradeoff. Indeed, the first term -Irreducible Error -represents the variance of the new test target and is beyond our control, even if we knew the true f (x 0 ). The second and the third terms are under our control, and represent the mean squared error of fj (x 0 ) in approximating f (x 0 ). It sums up a squared bias component and a variance component. The bias term is the amount by which the average of our estimate differs from the true mean. The variance term is the expected squared deviation of fj (x 0 ) around its mean. In general, as the model complexity is increased, the variance tends to increase and the squared bias tends to decrease. The opposite behaviour occurs as the model complexity is decreased.

Figure 4.13 illustrates more intuitively this behaviour. The true model f is the curve in green. If the input data are highly non linear, a low-complexity model (a linear model in figure 4.13 left) will not have the flexibility needed to capture the global shape of the distribution. The line will be most of the time far from the data points, leading to large errors. The model is then said to have a large bias because the mean distance of its predictions for a given x 0 (blue dot) with respect to the true model is high. On the other hand, because of this rigidity, the predictions of the model will depend only little on the particular sample that was used for building the model, and will therefore have a low variance. We talk about underfitting in this case. But a too complex model (figure 4.13 right) will make the curve very sensitive to the details of the sample. Another sample would have lead to a completely different model, with completely different predictions. The model is then said to have a large variance because the variance of its predictions (for a given x 0 ) is large. The increased complexity confers flexibility, so the estimated curve can now get close to the points (low bias). This is an example of overfitting. The training error tends to decrease whenever the model complexity is increased, i.e. the data are fitted harder. However, with overfitting, the model adapts itself too closely to the training data, and will not generalise well, yielding an increased test error, because of the large variance. In contrast, if the model is not complex enough, it will underfit the input data, having an important bias. Again, the generalisation will be poor. The goal of the model selection would be to trade bias off with variance in such a way as to choose the model minimising the test error, and hence to estimate the optimal amount of model complexity. Given the candidate models, we need to select the one that captures best the underlying distribution of the data, while penalising the complexity. This statement is a formalisation of the Ockham's razor principle (law of parsimony ): "plurality should not be posited without necessity" 18 . Other researchers tackled to a certain extent the simplicity principle and concluded that "people seem to perceive the simplest possible interpretation for any given data" [Lowe 1985, p. 21].

Classification of Model Selection Criteria

Up to now, there is a rather large literature on model selection methods. A simple classification of the existing criteria is given in [Rust 1995], where the authors distinguish split sample, jackknife, and full sample criteria. Split sample criteria require that the empirical data be divided into two parts: an estimation sample and a validation sample. Model parameters are estimated on the estimation sample, and then model performance is tested on the validation sample. Jackknife criteria do a similar cross-validation, one observation at a time. Each data point is held out in turn, the model parameters are estimated on the rest of the points, and the likelihood of the holdout point is evaluated. A pseudo-likelihood, the product of the individual point likelihoods, is then computed and used to compare model performance. Full sample criteria calculate the maximum likelihood and then adjust for parsimony, by subtracting a penalty term, which is an increasing function of the number of estimated parameters. These criteria are the easiest computationally, and hence gained widespread popularity.

In order to assess the pertinence of using NFA as model selection criterion, we will compare its selection capabilities against a classic criterion. One of the most representative classic model selection criterion is Akaike's information criterion (AIC ) [Akaike 1973], which belongs to the full sample class. Our study will focus on the comparison between NFA and AIC.

Akaike's Information Criterion (AIC )

AIC was proposed within the field of Information Theory and it offers a relative measure of the information loss when a given model is used to describe reality. Thus, it reflects the Kullback-Leibler divergence 19 between the true distribution and its estimate [Yang 2003a]. AIC is astonishingly simple. This criterion uses a fine term to penalise the log maximum likelihood for lack of parsimony. For an input sample containing l points and an estimated model fj , having t j parameters,

AIC j = - 2 l • log L j + 2 • t j l , (4.22)
where L is the maximized value of the likelihood function for the estimated model j [START_REF] Hastie | [END_REF]].

18 Ockham's razor. Encyclopaedia Britannica. Encyclopaedia Britannica Online. 2010. 19 Kullback-Leibler divergence (KL) [Kullback 1951] is a non-symmetric measure of the difference between two probability distributions P and Q. KL measures the expected number of extra bits required to code samples from P when using a code based on Q, rather than using a code based on P . Typically P represents the "true" distribution of data and the measure Q represents an approximation (estimate) of P .

Given a data set and several candidate models, they are ranked according to their AIC values. AIC is, par excellence, a tool for model selection. It does not provide a test of a model in the usual sense of testing a null hypothesis, i.e. it does not measure how well a model fits the data in an absolute sense. Hence, if all the candidate models fit poorly, AIC will give no warning of that.

NFA Continuous Formulation

Thus far, we have introduced and used only the discrete formulation for the NFA of a feature candidate (4.15, A.15). With this formulation, the pixels of a candidate are considered as a sequence of Bernoulli variables, taking the value 1 when a pixel is aligned, and 0 otherwise (4.13). We suggest that, especially for model selection purposes, the continuous formulation of the NFA could be of interest. In this section we will denote the continuous NFA by NFA c and the discrete formulation by NFA d .

A continuous NFA was proposed by Igual et al. in [Igual 2007]. They use a continuous distribution in the NFA computation, which serves afterwards as merging criterion for two adjacent regions in a satellite segmentation application [Igual 2007]. Following their idea, Grompone von Gioi et al. proposed a continuous NFA formulation for the line segment detection [Grompone von Gioi 2009], that we will experiment in the model selection problem.

When using a continuous distribution, a feature candidate s of length l is not anymore a binary sequence of random variables (X 1 , X 2 , . . . , X l ), encoding the fact that the pixels are δaligned or not. Instead, the values of the gradient orientations are normalised between 0 and 1 and kept as is. Thus, let s = (x 1 , x 2 , . . . , x l ), where x i ∈ (0, 1]. A function t(s) needs to be defined to measure the degree of structuredness of the candidate s, similarly with the discrete case. The meaningfulness of s is then given by NFA c (s) = N t P[T (s) ≥ t s ], t s = t(s).

(4.23)

In [Grompone von Gioi 2009], Grompone von Gioi et al. proposed the function t(s) = -l i=1 log(x i ). In this case, T (s) follows a Γ distribution of parameters (l, 1), for which the cumulative function is given by:

P[T (s) ≥ t s ] = exp(-t s )e l-1 (t s ), where e l-1 (t s ) = 1 + t s + t 2 s 2 + . . . + t l-1 s (l-1)! . Eventually, it can be shown that if a candidate s is accepted as ε-meaningful when NFA c (s) = N t l i=1 x i e l-1 - l i=1 log(x i ) ≤ ε, (4.24)
then the number of expected ε-meaningful candidates in a noise image is up-bounded by ε [Grompone von Gioi 2009]. The continuous formulation has the major advantage of no longer needing the precision parameter δ, used in the discrete formulation.

We add the continuous formulation in our study on the suitability of the NFA as model selection criterion.

NFA vs AIC

Within the ELSD model selection problem, we have three competing models: line segment, circular arc, and elliptical arc, and we choose to keep the one possessing the smallest NFA. We are interested in comparing qualitatively and quantitatively NFA (both discrete and continuous formulations) and AIC in the context of model selection, to assess the pertinence of using NFA as model selection criterion.

Let us consider an image of n × n pixels. Given an alignment candidate containing l pixels, among which k are δ-aligned, the scores assigned by the three criteria -NFA d , NFA c , and AIC -to a candidate model j, are:

log NFA dj = log B(l, k, δ) + t j • log n log NFA cj = log P[T (s) ≥ t s ] + t j • log n AIC j = -2 l • log L j + 2 • t j l .
(4.25)

In a trivial sense, we could say that the three criteria manifest a somehow similar behaviour. The first right-hand terms in all expressions indicate the goodness (structuredness) of the alignment with respect to the considered model j, whereas the second term penalises for complexity. The differences however, e.g. the two NFA expressions incorporate the image size in the term penalising for complexity, come from the different purposes that the criteria serve: NFA d and NFA c serve as validation criteria as well, whereas AIC is only a model selection tool, focusing exclusively on the given candidate feature and ignoring the context in which the candidate occurred.

From a quantitative point of view, the analysis requires a different setup for ELSD, in order to yield the three criteria comparable. From the expression (4.22), it is obvious that AIC is suitable as selection criterion in problems where the competing candidate models are fitted using maximum likelihood (ML) estimators. But, for efficiency reasons, the candidate models compared in ELSD are obtained through direct algebraic estimators (estimators maximising the likelihood are iterative, thus we avoided them). For testing purposes, we choose to handle this conflict by replacing in ELSD the direct algebraic estimators through iterative estimators based on likelihood maximisation. In this way, the three criteria will have equal grounds in promoting their model selection capabilities. For ellipse fitting, we use Kanatani's "compact algorithm for strictly ML ellipse fitting"20 . The circle fitting is performed using Chernov's estimator21 .

The tests were carried out on computer-generated images, containing linear shapes or circular/elliptical shapes, affected by a small amount of Gaussian noise. For each image, a support region containing pixels with a strong gradient (which are possibly located on an edge) is selected, and the three competing models -line segment, circle, ellipse -are fitted using the aforementioned ML estimators. For the images containing circular/elliptical shapes, the support regions were chosen as to cover different portions of the circle/ellipse contour, e.g. only a quarter of the ellipse contour or a half, or the entire ellipse. Afterwards, for each fitted model, we compute its AIC, its NFA d and its NFA c . Possessing the ground truth, i.e. the real shape contained in the selected support region, we are interested to evaluate which criterion designates the correct model. The results are shown in tables 4. 1, 4.2, and 4.3 Images of elliptical shapes. The first line of the table 4.1 indicates a poor behaviour for all the three criteria. In the failure cases, all the three criteria designate the circular candidate as winner. The reason is that the ML ellipse estimator fails in proposing a coherent candidate. Most of the time, the proposed candidate is a general conic (hyperbole, parabola), but not an ellipse. Thus, the circular candidate is chosen instead. Nonetheless, AIC indicates a slightly better performance. The explanation comes from the different pixel features that the three criteria take into account to measure the goodness of a candidate model: AIC considers the distance between the input points and the fitted ellipse, whereas the two NFA criteria consider the gradient orientations. In general, the cases where AIC gives the correct result and the two NFA fail are those where the fitted conic is an ellipse, but the precision is very poor (the fitted ellipse is much bigger than the real one). The points are close to the fitted ellipse, thus AIC gives a good score, but the pixel directions are not aligned with the theoretical gradient directions that the points on the fitted ellipse should have, yielding an NFA selection failure. In these cases, AIC chooses the correct feature family (even if the fitted model is far from the true model), whilst the two NFA criteria are prevented from choosing the elliptical model, by the validation characteristic of the NFA: the proposed elliptical model is too far from the true model to be considered as meaningful or as more meaningful than the circular model candidate. Line 2 shows that the discrete NFA has the tendency to vote for simplicity, choosing the circular model. The continuous NFA is very close to AIC. Images of circular shapes. When only about 1/16 from the circle contour is covered by the support region, all the three criteria choose the simplest model, i.e. the linear model. For the case where 1/8 of the contour is available, the NFA c shows the best performance. Dealing with relatively small arcs, the positions of the pixels may indicate rather a linear structure, causing AIC and NFA d to fail. The continuous NFA, which captures faithfully the gradient directions indicating a circular structure, behaves slightly better. When a quart of the contour is given, the two NFA criteria yield some rather surprising failures, voting for the elliptical model, thus for overfitting. We hold responsible for these cases the approximations made in computing the areas of the circular/elliptical rings, involved in the NFA computation.

Circle

Line

AIC NFA d NFA c entire contour 100% 100% 100% Images of linear shapes. All the three criteria choose the correct model, i.e. the linear one. Most of the time, the candidate model proposed by the ellipse ML estimator is not a valid ellipse, thus it is successfully rejected. It worths mentioning though that the frontier between the linear model and the circular model is quite fragile in some cases for all the three criteria, as on the support region containing a line segment, a very large circle will also fit reasonably well the input data. In these cases, the term penalising for complexity has its word.

To conclude this section, we suggest that the performance of the number of false alarms as model selection criterion, and in particular the performance of the continuous NFA, is quite similar 22 with the performance of a classic representative criterion, the AIC. Moreover, the use of NFA is convenient because it carries out also the task of candidate validation, a quality which AIC does not possess. Nonetheless, a deeper and more accurate study is foreseen as perspective work.

Distance between Points

Within the a contrario approach, the meaningfulness of a candidate s, belonging to an image x of size n×m, is assessed by computing its NFA, which is the expected number of candidates at least as structured as the observed one s, under the null hypothesis H 0 (4.2). When using the discrete formulation for the NFA, this comes to evaluating the probability of having at least k successes among l, i.e. at least k δ-aligned pixels in a length l line segment. If the gradient orientations 22 One may argue that this comparison is not completely sound, as the three criteria use different pixel features in attributing scores to the candidate models: AIC considers the positional error with respect to the fitted model, whereas the two NFA consider the derivative error. A correct comparison would require either circle/ellipse estimators that maximise the likelihood considering the distribution of the gradient orientations, or an NFA computed considering a positional noise model. Because of time limitation, this study will be left as perspective work. Here we are interested in a grossly comparison between NFA and a classic criterion, that could reflect the pertinence of using NFA as model selection criterion.

are considered as Bernoulli independent variables, the p-value is given by the binomial tail of parameters (l, k, δ) (4.15). For the independence hypothesis to stand, Desolneux et al. compute the gradient using a discrete operator having the smallest support possible, i.e. 2 × 2 mask as given in (4.26), and then 1 pixel out of 2 is dropped [START_REF] Desolneux | [END_REF]]:

x(i, j) =

x(i+1,j)-x(i,j)+x(i+1,j+1)-x(i,j+1) 2 x(i,j+1)-x(i,j)+x(i+1,j+1)-x(i+1,j) 2

.

(4.26)

As experimented in [Grompone von [START_REF] Grompone Von | [END_REF], dropping pixels results in rejecting small, but valid candidates. To cope with this issue, Grompone von Gioi et al. tested the influence of the correlation on the overall detection result by considering all the points under a false hypothesis of independence. By running exhaustive detection tests on noise images, they showed that the number of false positives does not explode, i.e. the number of ε-meaningful line segments is still up-bounded by ε in noise images. They concluded thus that the correlation is too weak (a correlation coefficient of about 0.22 can be observed on noise images) to deteriorate significantly the results, and proposed to use all the points.

To join their idea, we seek to formalise the computation of the discrete NFA with dependent points. We show that the influence of the correlation on the binomial tail has a rather unexpected effect in this context: considering all the points under the false hypothesis of independence does not make the number of false positives to grow. By the contrary, it can introduce false negatives.

The problem can be formulated as follows.

Problem 2 If s is a length l line segment23 , containing l pixels p i , i ∈ {1, .., l}, which can be unambiguously classified as a success (p i is aligned with the line segment s at a precision δ) or a failure (p i is not aligned), compute the probability of observing k aligned pixels among l, i.e. the probability of having k successes in l trials, assuming the existence of correlation between trials, which prohibits the use of conventional techniques, like the binomial distribution.

This problem was tackled in the statistical literature, at first to test for the existence of correlation and to study its impact on the conventional techniques. Several authors [Walsh 1951, Anderson 1954] concluded that the tests may be highly misleading if the observations are even slightly correlated. Afterwards, different procedures to obtain the distributions of certain correlated random variables were proposed: Gringorten uses Monte Carlo techniques to compute approximate distributions for random variables of interest to meteorologists [Gringorten 1966], whereas Gabriel [Gabriel 1959] and Helgert [Helgert 1970] use Markov chain-based models to compute exact probability distributions involved in hypothesis testing problems. Using the same theoretical ground, i.e. Markov chain modelling, Ladd published an efficient algorithm for computing the probability of having k successes in l correlated (dependent) trials [Ladd 1975]. His goal was to estimate the impact of the one stage dependence (the outcome of one trial affects the outcome of the next, and no others) in problems like developing confidence intervals and hypothesis testing. His results show that for particular types of correlated samples, correlations with coefficients less than 0.4 do not deteriorate significantly the results. In the following, we detail Ladd's algorithm, based on a first-order Markov chain model, that we implemented in order to study the effect of the dependence between the gradient orientations in the a contrario line segment detection problem.

Markov Chain Modelling of Gradient Orientations

Let X i , i ∈ {1, .., l} be a sequence of random variables, associated to the length l line segment s. X i can take binary values: 1 (success, p i is aligned) or 0 (failure, p i is not aligned). Hence, they form a sequence of Bernoulli trials (4.13). Let P = P[X i = 1], for every i ∈ {1, .., l}.

In order to take into account the correlation between the gradient orientations of the neighbour pixels, we approximate the sequence of random variables by a first-order Markov chain. The dependence level is suggested by the 2 × 2 size of the gradient operator support.

The proposed first-order Markov chain representation involves the following conditional probabilities:

P 11 = P(X i = 1|X i-1 = 1), 1 -P 11 = P 01 = P(X i = 0|X i-1 = 1), P 10 = P(X i = 1|X i-1 = 0), 1 -P 10 = P 00 = P(X i = 0|X i-1 = 0). (4.27)
Thus, P 11 is the probability of the pixel i to be aligned, knowing that the preceding pixel p i-1 was aligned and so forth.

For a particular i = n, let P n = P(X n = 1). For the Markov model, one has P n = P n-1 P 11 + (1 -P n-1 )P 10 . Since P n-1 = P = P n , one also has P = P P 11 + (1 -P )P 10 ; hence

P 11 = 1 - 1 -P P P 10 . (4.28)
Thus, all four of the conditional probabilities defined in (4.27), can be directly determined as soon as P and either P 11 or P 10 are given.

Ladd's Algorithm

Ladd's algorithm [Ladd 1975] can be a useful tool in problems that require the distribution of the probability of observing k successes in l dependent trials, when the trials can be modelled through a first-order Markov chain. Let φ k,l (P, P 11 ) ≡ P[k successes in l trials |P, P 11 ]. For ease in writing, we denote this as φ k,l .

An intuitive representation of the various outcomes of a series of trials is given in figure 4.15. Each vertical line represents one trial. The nodes on the lines represent the possible number of successes among a certain number of trials, given by the depth of the node in the tree. A going-up is considered a miss, whereas a going-down is a hit. Thus, on each line, the nodes correspond to values of k, running from 0 (uppermost) to l (lowermost). Finally, φ k,l represents the probability of reaching the node (k, l). Because of the two-stage dependence, the probability of reaching the point (k, l) depends on whether the two preceding points (k-1, l-1) and (k, l-1) were reached by a success or by a failure. Let To implement the dependence tree from figure 4.15, the next recursive algorithm is used:

φ k,l = η k,l + ξ k,l ,
1. for the first trial:

η 0,1 = 1 -P, η 1,1 = 0; φ 0,1 = 1 -P ξ 0,1 = 0, ξ 1,1 = P ; φ 1,1 = P 2.
for succeeding trials:

η 0,l = η 0,l-1 P 00 = (1 -δ)P l-1 00 ξ 0,l = 0 η k,l = ξ k,l-1 P 01 + η k,l-1 P 00 ξ k,l = η k-1,l-1 P 10 + ξ k-1,l-1 P 11 k = {1, .., l -1} η l,l = 0 ξ l,l = ξ l-1,l-1 P 11 = P P l-1 11
Once the φ values are computed, it is easy to obtain the probability of having k or fewer successes in l trials, as:

S(l, k, P ) = k i=0 φ i,l ,
which will be used subsequently to compute the probability of having at least k successes in l trials, which we denote by M(l, k, P ):

M(l, k, P ) = 1 - k-1 i=0 φ i,l .
Finally, the expression of the NFA associated to a candidate s i , of length l, containing k dependent aligned pixels is:

N F A(s i ) = N t M(l, k, P ).
As said before, the computation of the conditional probabilities from (4.27), involved in the algorithm, require the values of P and P 11 (or P 01 ). For P we consider the probability of success used in the independent model, P = δ. The probability of having an aligned pixel, knowing that the preceding pixel was aligned P 11 , was learned on noise images. The obtained value is P 11 = 0.0267. As a sanity check, it should be observed that for P 11 = P , the output of the algorithm is similar with the binomial distribution.

The purpose of our study is to enforce (formalise) the proposition of Grompone von Gioi et al. to use all the points under the false hypothesis of independence. To this end, we have compared the probability distribution obtained using the algorithm presented above, with the binomial distribution used in the definition of the NFA (4.15). Figure 4.16 left shows the behaviour of the probability distribution with respect to the learnt probability P 11 . It can be observed that the probability distribution has the same aspect as the binomial one (in green); only the amplitude of the principal mode depends on the value of P 11 : for values P 11 < δ, the curve is above the binomial (in blue), whereas for P 11 > δ, the curve passes beneath (in red). The consequence of this behaviour is reflected in figure 4.16 right, which illustrates the minimum number of dependent aligned points that a line segment must contain in order to become meaningful, using the two methods: binomial with false independence hypothesis (that we call binomial NFA) and dependent points modelled by a Markov chain (Markov NFA). It can be observed that with the presented algorithm, fewer points are needed for a candidate to be meaningful. Thus, Grompone von Gioi et al.'s proposition will not introduce false positives; by the contrary, their method is too restrictive, as it requires more aligned points to accept a candidate as valid.

The difference is not, however, crucial. We have tested the LSD algorithm using the two procedures for the NFA computation. An example can be seen in figure 4.17, where one can observe that in the left image, where the Markov NFA is used, there are small line segments which were discarded by the binomial NFA (right image). The choice between the two procedures must be made considering the application needs, precision vs execution time: if one wishes a very precise detection, the Markov NFA should be used, whereas in applications where execution time is critical, the binomial NFA should be kept instead.

Experiments

ELSD targets the simultaneous detection of line segments, circular and elliptical arcs in digital images. Here, we will present some comparative results, in order to stress the advantages of ELSD in front of other detectors. There are very few detectors that address simultaneously the detection of several primitive types. We will test Etemadi's algorithm [Etemadi 1992], that targets line segments and circular arcs and some Hough-based algorithms that address only a primitive family at a time (lines, circles, ellipses).

More precisely, the algorithms involved in our study are:

• Etemadi's algorithm for curve segmentation into line segments and circular arcs (that we will call Etemadi );

• the Hough line detector (Hline) proposed by Barinova et al., which uses a parameterless non-maxima suppression [Barinova 2010];

• the Hough circle detector available in the opencv library (RHTcircle); it implements an improved variant of RHT, that uses also the gradient direction;

• the ellipse detector (RHTellipse) implemented by Andrew Schuler, based on RHT (Matlab implementation) 24 . The same approach is available online in the MIPAV library (Java implementation) 25 .

The detectors tested here, except the proposed one, operate on edge maps, and their results are highly influenced by the quality of the edge map. They exhibit an important number of false positives in presence of noise in the edge map, as it will be shown in the sequel. Equally, Houghbased methods do not handle well images containing several primitive families (line segments and arcs), producing false positives, even when the edge map is relatively noise free. Or, in other cases, no detection is reported (high number of false negatives), as the different primitives interfere in a destructive way. We stress the fact that ELSD is directly applied on gray level images; no prior edge detection is performed. Equally, the gradient is computed using a 2 × 2 window, and no classic denoising is applied, in order to avoid violating the independence hypothesis made on the gradient orientations. However, we use all the points, thus the independence hypothesis is not completely valid (see previous section). There are cases where the primitive detection is more satisfactory if a smoothing is performed beforehand. A Gaussian filtering can be applied, followed by subsampling. The most important aspect is that ELSD requires no parameter tuning, and the results are coherent, even when the image type/source/size/content changes. All detectors were tested with their default parameters. The edge maps were obtained using Canny's edge detector available in Matlab, with default parameters. a high number of false positives when higher noise levels are considered. RHTellipse is very sensitive to noisy edge maps and reports no detection, even for small noise levels. Etemadi's detector finds the correct features (it approximates the ellipses through a set of circular arcs), but it also reports a high number of false positives, being unable to handle noisy edge maps. The performance of ELSD is not affected by small noise levels. At higher noise levels, the features found by ELSD are oversegmented, but the detection is still accurate, and no false positive is found.

Figure 4.19 shows a slightly more complex image containing overlapping geometric features, at two different scales. All the three Hough-based methods report false negatives or false positives, at both scales. Etemadi made no false detection, but the precision of the result and of the geometric interpretation is affected by scale. Owing to the improved fitting technique, ELSD is very accurate even when the features are very small. Figure 4.20 presents a more complex combination of geometric features. ELSD is very accurate in detecting the linear and circular features. Nonetheless, the current version of ELSD has some difficulties in interpreting polygonal shapes. Figure 4.21 presents such an example. In case of polygonal shapes that can be fairly approximated by a circle/ellipse, ELSD will choose the latter. This indicates that a new candidate type must be considered in the model selection phase, namely a polygonal feature. Etemadi's algorithm returns the correct interpretation. Some other relevant results which point out to particular drawbacks of the compared detectors are given in the sequel (figures 4.22 -4.29).

Finally, figures 4.30 -4.33 show the result of ELSD on natural images. ELSD succeeds in providing a fair economic description of the image content, with no edge detector applied beforehand, nor tuned parameters. The behaviour of ELSD on natural images indicates leads for image vectorisation.

Conclusion

In this chapter we have approached some critical aspects of the primitive detection problem in digital images. Namely, we are interested in the control of the number of false detections. To this end, we proposed a parameterless primitive detector, which controls efficiently the number 

Introduction

The final application of our work concerns the Bubble Tag TM identification problem, which can be stated as follows. Given an image of a Bubble Tag TM , taken with a non-calibrated camera, the goal is to extract a signature which allows the identification of the Bubble Tag TM among a (large) database containing preregistered Bubble Tag TM images.

The previous chapter presented a parameterless ellipse detector, able to control the number of false positives. It serves as feature extractor in the image hashing process leading to Bubble Tag TM identification. In this chapter, we address the projective nature of the features extracted beforehand, namely the positions and sizes of the bubbles, encoded as ellipse parameters. Indeed, if we assume that bubbles are coplanar circular 2D objects1 which undergo a projective transformation when read using a pinhole camera, the capture will yield a photography containing the projections of the circles, i.e. ellipses.

The identification process of a Bubble Tag TM comes eventually to establishing the projective equivalence of two images of the same Bubble Tag TM , i.e., that the two images are related by a 2D projective transformation (homography) under the hypothesis that the images are taken with a pinhole camera. Such a projective equivalence indicates that the same bubble configuration is present in both images. More precisely, given the two images, the validity of the one-to-one correspondence will be carried out using convenient measures. It is important to mention that in a real-world scenario, this procedure would need to be repeated as many times as entries in the database containing the preregistered Bubble Tag TM images. Thus, time and memory consumption issues can occur in the process, in case of large databases.

The one-to-one correspondence (comparison) can be assessed based on Bubble Tag TM metric properties (e.g. position/size of the bubbles, relative distance between bubbles). Nonetheless, one must take into account the distortions induced in the Bubble Tag TM images by a projective transformation2 , which is known to be non-preserving with respect to metric properties, such as lengths, angles, parallelism. Thus, two images of the same Bubble Tag TM obtained under different conditions (different cameras or different camera positions with respect to the Bubble Tag TM ), are not directly comparable from a metric point of view. Two directions can be foreseen in this situation. On the one hand, the distortions may be corrected by means of rectification techniques which recover the 2D Euclidean structure of the imaged plane, yielding comparable images. The second possibility would be to study the one-to-one correspondence using properties which are not affected by the projective transformation, i.e. invariant-under-perspective properties.

The first approach is closely related to camera calibration [Chen 1993[START_REF] Wu | [END_REF], and is commonly used in domains like object detection/tracking or virtual reality [ Chen 2008], being justified by the need of having accurate knowledge about the objects of a scene (position, shape, size), relative to a chosen reference point, which are gained once the Euclidean structure is recovered. Numerous methods for Euclidean reconstruction have been proposed in the literature. Some approaches require the use of planar patterns [Zhang 2000] or they need several images of a rigid scene in order to accomplish this task; we speak about self-calibration in this case [Hartley 1994]. The use of projections of circular patterns is an open subject in the domain as it provides the possibility of reconstructing the scene using a single image [ Gurdjos 2006].

For our work, given the large number of entries in the database, we have chosen to follow the second direction, namely the use of invariant-under-perspective properties. We will point out that it is possible to extract relevant information for Bubble Tag TM identification while bypassing some Euclidean reconstruction or metric rectification step. The proposed signature extraction technique was published in [Pătrăucean 2010b].

Chapter organisation . This chapter is organised as follows. Section 5.2 justifies the proposed approach and states the problem of identifying a Bubble Tag TM in a digital image. Section 5.3 introduces the proposed solution, based on remarkable attributes of the projective plane. The signature extraction algorithm is detailed in section 5.4. The experimental results and the conclusion are presented in section 5.5, and 5.6 respectively.

Signature Extraction Problem Statement

The problem we are dealing with is similar to a biometric system working under a "1 to many" authentication protocol. The Bubble Tag TM can be seen as biometric data that we assign to an object, in order to authenticate it. Thus, we have at our disposal a database containing a large number of Bubble Tag TM images, taken using non-calibrated cameras, and from different viewpoints. Then, having a new image (query image), the goal is to find in the database the reference image, i.e. the image that contains the same Bubble Tag TM as the query image. The idea is to represent the Bubble Tags TM through convenient signatures, which would allow an efficient identification.

When designing such a signature, we must keep in mind the fact that we are dealing with a relatively large database (thousands, even millions of images). Moreover, the signatures extracted from two different images of the same Bubble Tag TM will not be necessarily identical because of the changes in the shooting conditions or noise. In this context, the identification problem becomes a problem of finding the nearest neighbour, in terms of a similarity measure, which is to be defined. The obvious solution in this case would be the linear search, i.e. the query signature is compared with all the records in the database and the candidate that resembles the most is chosen as a match. The size of the database makes this method unsuitable in practice, due to time and memory issues. Alternatives could be offered by hashing techniques or k-d trees. The use of an LSH (Locality S ensitive H ashing) approach turns out to be more efficient in order to defeat these aspects. This will be justified in chapter 6. In this context, we need to represent the database as a set P , which contains the image signatures in a vectorial form p i ∈ R d . This requirement justifies the use of our solution over the classic metric rectification method [Hartley 2004, p. 55]. Indeed, the idea of comparing a rectified image with a reference "metric" image would yield 2D queries to the database containing matrix signatures, which would not be suitable for the chosen hashing procedure.

The function used to compute the vectorial (1D) signature can be expressed as sig : f → P ⊂ R d , with f being a set of features extracted from the image. The problem of finding the nearest neighbour becomes an optimisation problem, having as objective function min(dist(sig(query), p i )), where dist is a distance to be adequately chosen [START_REF] Andoni | [END_REF]]. Chapter 6 gives more details on the LSH method used in our work.

To summarise, the goal of the signature extraction process is to compute a vectorial signature in order to identify a Bubble Tag TM among a (large) database. Our solution does not involve passing through the Euclidean reconstruction step: based exclusively on invariant attributes of the projective plane, it produces an invariant-under-perspective signature.

Extraction of a Quasi-Affine Invariant Signature

In order to obtain a vectorial signature, we propose a technique for computing a pair of invariantunder-perspective values for any pair of bubbles (circles) of the Bubble Tag TM , which will be applied recursively to the entire Bubble Tag TM , yielding a discriminant, global invariant-underperspective signature. The advantage of having an invariant-under-perspective signature (to which we will also refer as "quasi-affine invariant signature", or simply "invariant signature") is that it avoids the need of a metric rectification of the image.

In this section, we assume that the Bubble Tag TM can be represented as a coplanar configuration of circles in 3-space. In the sequel of this chapter, we use the syntagm "Bubble Tag TM " strictly to denote such a configuration. Additionally, we suppose that the Bubble Tag TM is read using a camera which obeys the pinhole camera model, with the Bubble Tag TM lying entirely in front of the camera. Geometrically speaking, this means that all circles are in the same half-space bounded by the plane which passes through the camera centre and is parallel to the sensor plane. This is a highly realistic hypothesis as it is obviously the case that happens in practice. The image of a Bubble Tag TM under such hypotheses is obtained by a perspective transformation which is said to be quasi-affine with respect to the Bubble Tag TM [Hartley 2004, p. 518].

The affine Euclidean 3D plane which supports the Bubble Tag TM is embedded into a projective plane, which will be referred to as the reference plane. The (pure) affine 3D plane supporting the sensor, and which supports also the image of the Bubble Tag TM , is embedded into another projective plane, which will be referred to as the image plane.

In the reference plane, the equation of any circle F centred at (x c , y c ) and whose radius is r, writes in matrix form as p C F p = 0, (

with p = (x, y, 1) being the vector of augmented Cartesian coordinates of a point and

C F =   1 0 -x c 0 1 -y c -x c -y c x 2 c + y 2 c -r 2   (5.2)
being the matrix of the circle with respect to the reference plane representation.

The equation of the perspective projection of a circle, under the hypothesis of a pinhole camera, writes as:

CF ∼ H -C F H -1 , (5.3) 
where CF is the matrix of the image of the circle with respect to the image plane representation, ∼ is the projective equality, and H is the 3 × 3 matrix of the quasi-affine homography mapping points on the reference plane to their images on the image plane. Throughout this chapter, when referring to vectors/matrices of entities with respect to the image plane representation, we will systematically add the symbol ˜, as in (5.3).

CF in (5.3) could represent the matrix of an ellipse, of a hyperbola or of a parabola with respect to the affine representation of the image plane. In our case, under the hypothesis of a quasi-affine homography H, we implicitly assume that H maps circles to ellipses [Hartley 2004, p. 515].

Since classic metric properties of one circle are not preserved under perspective projection, we focus our attention on relative properties of two circles and we will show that some of them (e.g. relative distance, relative radius) are preserved, thus they are invariant. To this end, studying the generalised eigenvalues of the matrices of the images of a pair of circles proves to be useful because they encode information regarding the (Euclidean) relative position of the two conics [Gurdjos 2006].

Generalised Eigenvalues and Absolute Signature

Let us consider a pair of circles (F 1 , F 2 ) as generators of a pencil of circles, that we denote by {F 1 , F 2 }. It represents the 1D linear family of circles with matrices of the form C(λ) = C 1 -λC 2 , where C 1 and C 2 are the Euclidean matrices of F 1 and F 2 respectively, and λ ∈ C ∪ {∞} is a parameter, with the convention C(∞) = C 2 . The three real solutions λ 1 , λ 2 , λ 3 for the unknown λ in the characteristic equation

det(C 1 -λC 2 ) = 0 (5.4)
represent the generalised eigenvalues of (C 1 , C 2 ) [Golub 1996, p. 375].

The pencil {F 1 , F 2 } contains three degenerate circles3 D k , k ∈ {1, 2, 3}, whose parameters λ are the generalised eigenvalues λ k , k = {1, 2, 3} of (C 1 , C 2 ). Let D k be the Euclidean matrix associated to D k . Thus,

D k = C 1 -λ k C 2 , k = {1, 2, 3} (5.5) 
.

The generalised eigenvalues allow the definition of the absolute signature Σ of a degenerate conic D k . This signature is given by

Σ(D k ) = |η -ν|, (5.6) 
where η and ν count the (strictly) positive and the negative (ordinary) eigenvalues μ of D k , i.e. the solutions of the equation det(D k -μI 3 ) = 0, where I 3 is the 3 × 3 identity matrix. When D k is a complex matrix, then we will use the convention

Σ(D k ) = ∞.
The same definitions apply seamlessly for the image of the pencil {F 1 , F 2 } under H, keeping in mind that the degenerate members of the image of the pencil are the images of the degenerate members of the pencil i.e.,

C1 -λk C2 ∼ H -D k H -1 ,
where λk , k = {1, 2, 3}, denote the generalised eigenvalues of ( C1 , C2 ).

Remarkable Invariant-under-Perspective Properties

Considering the notions previously defined, namely the generalised eigenvalues of a pair of matrices and the absolute signature of a degenerate conic, we enunciate two invariant attributes P 1 , P 2 of the reference plane, onto which the proposed technique is grounded:

P 1
The set of the generalised eigenvalues of the matrix pair (C 1 , C 2 ) associated with two general conics F 1 and F 2 is invariant under projective transformations, including perspectivities, up to a scale factor. In other words, if λ and λ denote the vectors whose components are the generalised eigenvalues of the matrix pairs (C 1 , C 2 ) and ( C1 , C2 ) respectively (C and C being linked by (5.3)), then λ ∼ Pλ where P is some permutation (order-3) matrix.

P 2
The absolute signature Σ of a degenerate conic D is invariant under perspective. In other words, the absolute signatures of a degenerate conic and of its images under projective transformations are the same.

A proof of P 1 can be found in [START_REF] Mundy | [END_REF]]. The proof of P 2 is a straightforward consequence of Sylvester's law of inertia [Golub 1996, p. 403], as it can be easily shown that the absolute signature

Σ(D k ) is invariant under congruence transformations of Σ(D k ) i.e., Σ(D k ) = Σ(T D k T),
for any non-singular T ∈ R 3×3 . Using the properties P 1 and P 2 , we will introduce a procedure for computing two invariant values for a pair of circles. Afterwards, we will apply it in a recursive manner for the entire configuration of circles, leading to an invariant signature.

Relative Position and Relative Radius of Two Circles

Let us consider a pair of coplanar circles (F 1 , F 2 ) represented by the matrix-pair (C 1 , C 2 ) in the reference plane. We start here with the symbolic computation of the generalised eigenvalues of (C 1 , C 2 ) according to (5.4). In order to simplify the computation and without loss of generality, let us attach some Euclidean affine representation to the reference plane, in whose bases F 1 and F 2 have matrices:

C 1 =   1 0 0 0 1 0 0 0 -r 2 1   , C 2 =   1 0 -δ 0 1 0 -δ 0 δ 2 -r 2 2   .
(5.7)

Thus, F 1 is a circle of radius r 1 > 0, centred at the origin O; F 2 is a circle of radius r 2 > 0, centred at Cartesian coordinates (0, δ), with δ ≥ 0.

Using Maple to solve (5.4), we give now the symbolic expression of λ ∈ C 3 , the vector whose components are the generalised eigenvalues of (C 1 , C 2 ) as functions of δ, r 1 and r 2 :

λ = 1 2 α + √ β r 2 2 , 1 2 α - √ β r 2 2 , 1 , (5.8) 
where

α ≡ r 2 1 + r 2 2 -δ 2 ∈ R, (5.9) 
β ≡ (δ + r 1 + r 2 )(δ + r 1 -r 2 )(δ -r 1 + r 2 )(δ -r 1 -r 2 ) ∈ R. (5.10) 
Note that λ 1 and λ 2 are complex conjugate in their most general form. They cannot be zero since some algebra yields λ 1 λ 2 = r 2 1 /r 2 2 > 0 and they are different from one if r 2 1 = r 2 2 . The fact that λ 1 and λ 2 are complex or not depends on the sign of β, so let us now investigate in which case this happens. When circles have zero, one or two real finite points in common, we will say that circles are disjoint, tangent or intersecting, respectively. The configurations of disjoint circles and tangent circles include the case where one circle encloses the other one. It can be shown that

F 1 and F 2 are    intersecting, tangent, disjoint, if and only if    β < 0, β = 0, β > 0.
As a consequence, it is now easy to establish that the first two generalized eigenvalues in ( 5.8) are complex if and only if the circles are intersecting (i.e., β < 0). The proof of it does not show any special difficulty and follows directly from the constraints on d, r 1 and r 2 corresponding to the relative positions of two circles as illustrated in figure 5.1. In particular,

• disjoint circles can be separate: δ > r 1 +r 2 (figure 5.1 left), or enclosing, but not concentric: δ < |r 2 -r 1 | (figure 5.1 middle);

• the condition for intersecting circles is -r 1 < δ -r 2 < r 1 and r 1 < δ + r 2 (figure 5.1 right) and this also yields the condition for β to be negative. Let us now introduce the following notations:

d = δ r 1 , r = r 2 r 1 .
(5.11)

Hence, d denotes the relative distance (w.r.t. the radius r 1 of the first circle) and r denotes the relative radius.

The key point here, following the work of Gurdjos et al. in [Gurdjos 2006], is that one can recover the pair (d, r) from the generalised eigenvalues of ( C1 , C2 ), where C1 and C2 are the matrices of the images of the circles F 1 and F 2 . For this reason, we will say that (d, r) is a double invariant of two circles.

(d, r) -a double invariant of two circles

Now let us compute the generalised eigenvalues and eigenvectors of ( C1 , C2 ). Considering (5.3), we do not need Maple anymore since we can make use of the property P 1 and write:

λ = sλ, (5.12) 
where s is a scale factor. Let λ = ( λ1 , λ2 , λ3 ) . By eliminating s in (5.12) we obtain: property P 3 , in order to apply the proposed procedure to the entire configuration of coplanar circles.

( λ1 + λ2 )/λ 3 = (r 2 -d 2 + 1)/r 2 ( λ1 -λ2 )/λ 3 = √ β/r 2 . ( 5 
P 3 The convex hull of a planar set of points is invariant under quasi-affine transformation [Hartley 2004, p. 515].

The proposed algorithm represents a Bubble Tag TM through its successive convex layers (whose structures are invariant under perspective, according to P 3 ), as shown in figure 5.2. Afterwards, it computes the values (d, r) given by (5.14) for every couple of neighbour circles in the convex layers. Eventually, the signature of a Bubble Tag TM is obtained as the concatenation of the pairs (d, r). Therefore, the proposed signature extraction technique is based exclusively on invariantunder-perspective properties P 1 , P 2 , P 3 . Thus, the signature itself will be invariant under perspective, yielding the metric rectification no longer necessary.

The algorithm aims to identify a Bubble Tag TM through progressive elimination of potential candidates. The signature will contain several subsignatures, one for each convex layer. The query of the database is to be done starting with the subsignature associated to the external convex layer. At the end of this step we keep as potential candidates only the n nearest neighbours. The process is repeated using as query the next inferior convex layers until we get a match that is at a distance d < d min .

The main steps of the identification procedure are given in algorithm 6. The identification algorithm starts with the ellipse detection in the query image. Then it computes the structures of the convex layers using the qhull algorithm [START_REF] Barber | [END_REF]]. The layers are processed successively and the algorithm stops as soon as the correct match has been found. The query of the database is done considering all the cyclic permutations of the subsignatures, in order to handle the rotation problem.

Open problem. The use of convex layers yields the proposed procedure less robust to noise, as the structure of the convex layers may change due to small errors in ellipse detection. This may result eventually in considerable changes in the final signature. The literature does not reflect a high interest on this issue, as the convex hulls are used, for example, to measure the area/perimeter of the domain covering a given set of points, thus the exact composition of the convex hull is less important. In [START_REF] Takahashi | [END_REF]], Takahashi and Kudo address the separability of the convex hulls in a classification problem. The identified classes are delimited by their convex hulls. They introduce the concept of expanded convex hull, in order to widen the distance between the identified classes. We have explored this idea in our context, for the Euclidean representation of a Bubble Tag TM , but the results were rather modest. Moreover, this approach does not fit seamlessly to our problem, as the computation of the expanded convex hulls relies on metric properties (e.g. distances between convex hulls) which are not invariant under perspective. Figure 5.3: Left: Robustness against noise evaluated on computer-generated images. Red line -minimal distance between two stored subsignatures of external convex layers. Right: Mean distances between the external convex layers of a query "coin tag" and the ten nearest neighbours. In all cases, the nearest neighbour found was the correct match.

Experimental Results

The proposed signature extraction procedure is, for the time being, a proof of concept. We do not have the technological means needed to acquire readable projective views of the Bubble Tag TM . The results that we present were obtained using computer-generated images and images of "coin tags" (figure 5.4).

Tests carried out on computer-generated images. We have used a database containing 300 bubble tags, randomly generated. Each image (size 1200 × 800 pixels) contains a random number of circles (between 80 and 110), with radii of 10 to 20 pixels. The simulation conditions were chosen to imitate as well as possible the real bubble configurations. In order to obtain the perspective projection corresponding to the image shooting, we have generated random homographies, such that the circles would be transformed into ellipses. The tests seek to evaluate the robustness against noise. The results are shown in figure 5.3 left. For every noise level, we have considered 100 experiments and we have computed the mean error and the maximal error induced by noise. For every test we have retained the ten nearest neighbours found in the database, using as similarity measure the Euclidean distance. The results show that up to a noise level inferior to 2.5 pixels, the first convex layer is sufficient to correctly identify the Bubble Tag TM . For a noise level superior to this threshold, the correct match has been found using the first two convex layers. The threshold value depends on the minimal distance between two records from the database.

Tests carried out on "coin tags" . We have considered 50 different configurations of coins and we have taken two images for each of them (example figure 5.4). One image is used as reference to be stored in the database and the other one is used as query image.

Figure 5.3 right shows the mean distance to the 10 nearest neighbours (over 50 tests), found in the database. The correct match was returned in every case. The matching results given in this section were obtained using the family of hash functions detailed in chapter 6. 

Conclusion

We have presented a method for identifying configurations of circles in images taken from different viewpoints. The proposed signature is invariant under perspective and has a vectorial form, suitable for an LSH search approach. We use the fact that the convex hull of a planar set of points is (quasi-)invariant under perspective and that it is possible to obtain a double invariant for a pair of circles using the generalised eigenvalues of the matrices of their projections. Considering the pairs of circles that are neighbours in the convex layers and computing these invariant values for each pair, we can obtain an invariant-under-perspective signature by concatenating these values. Our approach reduces the complexity of the identification process and moreover, it provides a solution to handle the rotation problem between two images. The tests carried out on computer-generated images and on real images show the robustness against noise and the performance in computational time. Nonetheless, the stability of the convex layers remains an open problem.

Chapter 6

Target Application: Bubble Tag TM Identification

The work presented in this thesis targets the automatic Bubble Tag TM identification, within a "1 to many" authentication protocol, in wine authentication purposes. The Bubble Tag TM used in our work (figure 6) has a rectangular form, of about 1 cm × 1 cm × 1 mm, and may contain about 80 -100 bubbles. Additionally, a linear marker is inlaid "by hand" after the Bubble Tag TM formation, in order to ease the handling of similarity transformations (rotation, translation, scaling). A more complete description of the Bubble Tag TM is given in Appendix 1.

Proposed Pipeline for Bubble Tag TM "1 to Many" Retrieval A scheme of the complete process of a "1 to many" wine bottle authentication based on the Bubble Tag TM is given in figure 6.1.

Figure 6.1: Operation chain in wine bottle authentication, using the Bubble Tag TM .

The process starts with the Bubble Tag TM lecture, using an ordinary camera, i.e. a noncalibrated camera, whose position is non-rigid with respect to the Bubble Tag TM . At the lecture time, the system has to verify that the tag to be identified is valid, i.e. it is a 3D bubble configuration, and not a copy/photography of a Bubble Tag TM . To this end, we have designed a simple controlled coloured lighting system which induces coloured sheen on the edges of the bubbles. The simple presence of the sheen in an image taken under these lighting conditions confirms that the tag is a valid 3D Bubble Tag TM . Additionally, locating the sheen in the image could enable one to extract the positions of the bubbles, even in low-resolution images, by using simple operations of mathematical morphology. The lack of some formal results prevents us from describing in detail this work here.

Once in possession of a (gray-level) Bubble Tag TM image, the system carries out the feature extraction phase, i.e. bubbles (ellipses) detection and linear marker (line segments) detection using the algorithm proposed in chapter 4, which conveniently takes in charge the simultaneous detection of line segments and ellipses. The ellipse parameters are used subsequently as raw information for a signature extraction procedure, which yields an invariant-under-perspective signature (chapter 5). Note, however, that with the proposed signature, one can dispense with the linear marker, as the designed signature handles intrinsically all the quasi-affine distortions. Finally, in order to check the authenticity of the given object, the system queries a database to retrieve, if it exists, the database entry corresponding to the obtained query signature. For efficiency reasons, the search in the database should be performed using some locality hashing techniques, described in Appendix 2.

Appendix 1: Bubble Tag TM Description "The Bubble Tag TM is made of a translucent polymer inside which, as a result of a random phenomenon, self-generated bubbles appear. This constellation of bubbles forms the basis of the identity given to a product or document. Each Bubble Tag TM is unique and impossible to replicate, even by Prooftag." (Prooftag web site www.prooftag.com).

According to [START_REF] Prooftag | Code à bulles[END_REF]], a crude approximation for the probability of obtaining two identical Bubble Tags TM can be computed by considering the probability of observing two identical Bubble Tag TM images1 , i.e. the images of two bubble configurations containing the same number of bubbles, having the same positions and the same sizes. For a start, let us consider the toy example where one wants to compute the probability of observing two identical bubble configurations, each configuration containing one bubble, in images of m × n pixels. We assume that the bubbles have circular form in images. Formally, the position of each bubble can be represented by a random variable having a uniform distribution. The two bubbles are in the same position if their centres are at a distance of less than 1 pixel. Thus the probability that the two bubbles have the same position is p pos = 1 mn . Equally, we consider the radius as a Gaussian random variable, of mean μ and variance σ 2 , thus following a normal distribution N (μ, σ 2 ). Two bubbles have the same radius if the difference between the two radii is less than 1 pixel. After some computation, we find that the radius difference is again a random variable following a normal centred distribution, of variance 2σ 2 . Thus the probability of having a radius difference less than

1 is p rad = 1 0 1 σ √ 2π e -t 2
8σ 2 . The random variables representing the position and the radius difference being independent, the probability of having identical bubbles is:

p identic_1 = p pos p rad = 1 mn 1 0 1 σ √ 2π e -t 2 8σ 2 .
For the general case, when the bubble configurations consist of b independent bubbles, the probability that the two configurations are identical is:

p identic_b = b! 1 mn 1 0 1 σ √ 2π e -t 2 8σ 2 b .
As a numerical example, if we consider bubble configurations of 40 bubbles, with radii having a standard deviation σ = 2, in images of 400 × 300 pixels:

p identic_40 = 3.6 × 10 -184 .
The weak probability of obtaining two identical Bubble Tags TM allows qualifying them as unique, thus suitable for use in authentication purposes.

Appendix 2: "1 to Many" Bubble Tag TM Authentication Protocol Using LSH Functions

The "1 to many" Bubble Tag TM authentication protocol -given a query signature of a Bubble Tag TM , we need to find its corresponding reference signature in a database -can reveal itself a highly resource consuming process, in both query time and memory usage, as the goal is not to find an exact match, but the nearest match (neighbour). This is a common problem in various domains: information retrieval, pattern recognition, image and video databases. The solution would be to find the nearest neighbour in some metric space, by comparing the query signature with each signature in the database. Problems occur when the database is large and the objects to be compared are complex, which is the case in the Bubble Tag TM problem: the database may contain thousands of entries, each one obtained by concatenating the invariant values (d, r), as described in Chapter 5, having thus about 2 × 100 elements (for a Bubble Tag TM containing 100 bubbles). The query processing time grows linearly with the number of items in the database and the complexity of the objects.

Problem Statement

In the following, we will consider a Bubble Tag TM signature, extracted using the technique presented in Chapter 5, as a point belonging to some metric space X.

The nearest neighbour problem can be stated as an optimization problem [START_REF] Andoni | [END_REF]]: the goal is to find in a database the point p which minimises an objective function, namely the distance to the query point q.

Due to the aforementioned issues concerning the query time, the problem should be defined as: given a set (database) P of n points P = {p 1 , p 2 , . . . , p n } in some metric space X, preprocess P as to efficiently answer queries which require finding the point in P closest to a query point q ∈ X [ Indyk 1998]. Existing classic methods to accomplish this task rely on trees and hashes.

Trees and Hashes

A very popular data structure used when carrying out searching tasks in multidimensional spaces is the k-d tree [Bentley 1975]. By building a tree, the search operation begins by interrogating the top node to see in which branch the node that corresponds to the query should be looked for. The process is repeated recursively until the desired result is achieved. The problem with this type of multidimensional algorithms is that they do not provide a real solution when the dimensionality is large enough, as the required memory space and query time grow exponentially with the dimension. Thus they bring no (or insignificant) improvement comparing to a linear algorithm, when the dimensionality of the search space is greater than a few dimensions. This phenomenon is known as "the curse of dimensionality" [Clarkson 1994].

A second technique relies on building hash tables [Califano 1993]. By using hash functions, large (possibly variable-sized) amount of data is converted into a small datum, usually a single integer that serves as an index into the hash table. A collision appears when two points hash to the same value. The well designed hash functions ensure that symbols which are close together fall into different buckets. This makes a hash table a good means for finding exact matches.

To efficiently solve the nearest neighbour problem, the locality sensitive hashing techniques prove to be more appropriate [Indyk 1998[START_REF] Andoni | [END_REF], Slaney 2008].

Locality Sensitive Hashing (LSH )

The LSH approach is based on the idea of using hash functions that provide a much higher probability of collision for objects that are close to each other than for those that are far apart.

Given a set P of points in a d-dimensional space R d , let H be a family of hash functions h mapping R d to a subspace U.

Definition 1. The family H is called locality sensitive if it satisfies the following conditions [Slaney 2008]:

(a) for any points p and q from R d that are close to each other, there is a high probability that they fall into the same bucket, i.e. P[h(p) = h(q)] ≥ P 1 for p -q ≤ r 1 .

(b) for any points p and q in R d that are far apart, there is a low probability that they fall into the same bucket, i.e.

P[h(p) = h(q)] ≤ P 2 for p -q ≥ cr 1 = r 2 .
Here, • denotes the L 2 vector norm, and r 1 , r 2 , c are some real values, with c > 1.

In order for an LSH family to be useful, it has to satisfy P 1 > P 2 (probabilities of collision). If (a) and (b) stand, H is called (r 1 , cr 1 , P 1 , P 2 )-sensitive.

Equivalently, the LSH family can be defined as:

Definition 2.
A family H = {h : R d → U} is called locality-sensitive if, for any q, the function p(t) = P H [h(q) = h(p) : q -p = t] is strictly decreasing in t. That is, the probability of collision of points q and p is decreasing with the distance between them [START_REF] Andoni | [END_REF]].

We will briefly describe the approach used by Andoni et al. in E2LSH [Andoni 2005]. We thank Alexandr Andoni for providing the E2LSH library, which allowed us to test their proposed family of hash functions in our problem.

The E2LSH Algorithm [START_REF] Andoni | [END_REF] Informally, the LSH functions can be seen as projection operations that map data points from a high-dimensional space to a low-dimensional subspace. First, the neighbours of the query point are identified. Afterwards, the points are subject to a number of random projections of different directions, each time the nearby points being tracked. The points that appear close to each other in multiple projections are kept, as they are probably the true neighbours. To illustrate this idea, let us consider the simple case of some points on a sphere, which undergoes a number of projections 3D →2D [Slaney 2008]. Two points that are close on the sphere, will remain close in all projections, but in some particular cases, other (intrusive) points will equally appear as close, namely the points that are diametrically opposed on the sphere, when the projection is done in a direction parallel with the diameter relying the point of interest and the intrusive point.

The projection used in E2LSH [START_REF] Andoni | [END_REF]] is the dot product (scalar projection), given by h(q) = x • q, where q is a query point in a high-dimensional space, and x is a vector with components that are selected independently from a Gaussian distribution. The choice of the family of hashing functions and of x is justified by the properties of the stable distributions. Definition 3. A distribution D over R is called α-stable if there exists α ≥ 0, such that for any n real numbers p 1 , . . . , p n and i.i.d. random variables X 1 , . . . , X n , with distribution D, the random variable i p i X i has the same distribution as the variable ( i |p i | α ) 1/α X, where X is a random variable with distribution D [Zolotarev 1986].

In particular, a Gaussian (normal) distribution D G , defined by the density function g(x) = 1 √ 2π e -x 2 /2 , is a 2-stable distribution [Zolotarev 1986].

The intuition behind the hash functions is as follows. The dot product x • p projects each vector to the real line. From the definition of α-stable distributions (definition 3), it follows that for two vectors (p 1 , p 2 ), the distance between their projections (x • p 1 -x • p 2 ) is distributed as p 1 -p 2 α X, where X has an α-stable distribution. If one "chops" the real line into equi-width segments of appropriate size w and assigns hash values to vectors based on which segment they project onto, it is intuitively clear that this function will be locality-preserving in the sense described above.

Formally, the hash function will be given by h x,b (p) : R d → Z:

h x,b (p) = x • p + b w , (6.1) 
where • is the floor operation, x is a d dimensional vector with elements chosen independently from an α-stable distribution, and b is a real number chosen uniformly from the range [0, w]. b makes the quantisation ("chopping") error easier to analyse, with no loss in performance.

One can compute the probability of collision for two vectors p 1 , p 2 , under the hash function given in (6.1). Let f α (t) denote the density function of the absolute value of the α-stable distribution. If we consider c = p 1 -p 2 α and x a vector whose entries are drawn from an α-stable distribution, it results that x • p 1 -x • p 2 is distributed as cX, where X is drawn from an α-stable distribution. Thus:

p(c) = P[h x,b (p 1 ) = h x,b (p 2 )] = w 0 1 c f α t c 1 - t w dt.
For a fixed w, the probability of collision p(c) decreases monotonically with c = p 1 -p 2 α , satisfying the definition of the locality sensitive function (definition 2).

In order to obtain a satisfactory gap between P 1 and P 2 , introduced in definition 1, several functions like (6.1) are concatenated, the resulting family G containing l functions, each one with k subfunctions h: g j (q) = [h 1,j (q), . . . , h k,j (q)], where h t,j (1 ≤ t ≤ k, 1 ≤ j ≤ l) are chosen independently and uniformly at random from H. In practice this means that k dot products are performed in parallel and the k inner products are quantised such that similar points will fall in the same buckets in all dimensions.

This process of projection and quantisation places each data point p of P in a hash bucket. When a query q is processed, the buckets where q is hashed are scanned and the stored points are retrieved. In order to efficiently retrieve the stored points, a conventional (exact) hashing method is used. Finally, after retrieving the candidate points, the distances to the query point are computed and the nearest point to the query point is reported.

We have applied the E2LSH algorithm in our work with its default parameters, on computergenerated images of bubble configurations, and on "coin tags", as detailed in section 5.5. The obtained results were very encouraging. For databases of ∼ 300 entries, the mean query time was about 10 -4 s.

This study on the techniques used in problems that involve research in high-dimensional spaces, together with the recommended use of an LSH approach for Bubble Tag TM identification, was published in [Pătrăucean 2010a].

Chapter 7

Epilogue

The Geowine project, and implicitly the Bubble Tag TM identification, yielded a number of interesting problems that fall within the scope of computer vision field. The purpose of this thesis was to propose the theoretical fundamentals that could lead to an efficient "1 to many" Bubble Tag TM identification system.

The process of identifying a Bubble Tag TM sums up several steps: Bubble Tag TM lecture, feature extraction, signature computation, and database query for the corresponding entry. Our work focused on the second and the third parts, whereas for the last one we only recommended the use of a particular family of hashing functions, namely the locality sensitive hashing functions.

For the feature extraction step, the key contribution was to describe a geometric primitive detector, based on the a contrario approach, which is capable of simultaneously detecting line segments and circular/elliptical arcs. The major advantage of the proposed detector, compared to state-of-the-art algorithms, is the formal control of the number of false positives, achieved in a parameterless manner. Additionally, the precision of the ellipse detection was addressed and we introduced a direct algebraic circle/ellipse fitting method, which takes advantage of the whole information available in images: pixel coordinates and gradient orientations.

The signature computation had to take into account the projective nature of the extracted features (ellipse parameters). To this end, we proposed an efficient method that bypasses the Euclidean reconstruction. The proposed signature computation technique relies exclusively on invariant properties of the projective plane, being thus itself invariant under perspective.

The proposed solutions for the Bubble Tag TM identification process proved to be encouraging and a solid integration work should be considered. The a contrario reasoning could also be applied within a "1 to 1" authentication protocol, in order to assess the probability that two bubble configurations have a given number of identical bubbles by accident.

The pursuit of the work on primitive detection should include the use of the continuous formulation of NFA in both validation and model selection purposes. And finally, the story should go on with the inclusion of more complex candidate types in the primitive detection, in order to obtain reliable image vectorisation algorithms, leading to a fully automatic low-level image understanding. permettra aux clients de suivre le chemin de leur bouteille vers son producteur. Fournir les outils de vision par ordinateur nécessaires pour adresser l'identification automatique d'un Code à bulles TM est la motivation de cette thèse.

Un scénario classique d'authentification d'un objet en utilisant le Code à bulles TM est similaire à une identification de personnes fondée sur des données biométriques. Premièrement, le Code à bulles TM est lu, et une ou plusieurs images de celui-ci sont prises, en utilisant des caméras ordinaires ou des lecteurs dédiés. Les images servent comme matière première pour les outils de vision par ordinateur, qui extraient des traits distinctifs (repères), comme par exemple les positions des bulles et leurs tailles. Les données extraites servent à la création d'une signature discriminante, qui est enregistrée dans une base de données en tant que signature de référence. Cela représente la phase d'inscription. La procédure d'extraction de caractéristiques doit être reproductible, puisqu'elle sera appliquée à nouveau quand l'authentification stricto sensu a lieu. Dans cette phase, une autre image du Code à bulles TM attaché à l'objet que nous souhaitons authentifier, est prise, et sa signature est calculée. Cette signature requête est comparée avec la signature de référence, stockée dans la base de données, et une décision sur la similitude des deux est prise. Par ailleurs, deux protocoles sont possibles. Dans le cas 1 à 1, chaque Code à bulles TM est associé avec un identifiant (un code alphanumérique ou un code-barres), qui est utilisé comme clé de recherche dans la base de données afin de récupérer la signature de référence correspondante ; ensuite les deux signatures sont comparées. Dans un protocole 1 à N, aucun identifiant supplémentaire est fourni, et l'identification est effectuée exclusivement en utilisant les caractéristiques du Code à bulles TM ; la signature requête est comparée avec toutes les entrées de la base de données, et son correspondant, s'il existe, est retourné. La mise en oeuvre d'un protocole d'identification automatique 1 à N a défini les axes de recherche de notre travail.

Le difficultés particulières que ce travail relève sont liées à la taille des bulles, qui sont petites et de taille variable ; de plus, il peut exister des groupements de bulles collées. Ces particularités rendent la tâche de détection des bulles loin de trivial, ce qui demande une procedure capable de contrôler le nombre de fausses détections. Une deuxième difficulté vient de la variabilité intrinsèque qui existe entre la signature de référence et la signature requête, due aux changements des conditions de prise de vue (bruit, éclairage). De ce fait, la recherche du Code à bulles TM correspondant dans la base de données ne vise pas à établir une bijection exacte, mais elle cherche le plus proche voisin, au sens d'une métrique prédéfinie. Si N , le nombre de signatures enregistrées dans la base de données, est grand, la recherche du plus proche voisin devient coûteuse en termes de temps de calcul et mémoire utilisée. Par conséquent, des techniques spécifiques à la recherche dans des espaces de grandes dimensions doivent être considérées (arbres de recherche, techniques de hachage). Plus précisément, les fonctions de hachage qui préservent la localité se sont révélées adaptées pour mener la recherche dans la base de données. Ce contexte impose une contrainte sur la forme des signatures, notamment les signatures doivent avoir une forme vectorielle, la comparaison directe entre deux images du Code à bulles TM n'étant pas efficace. Finalement, nous devons prendre en compte le fait que la lecture du Code à bulles TM est réalisée avec des caméras non-calibrées, dont la position n'est pas fixe par rapport au Code à bulles TM , ce qui induit un effet de perspective qui doit être pris en compte dans la définition de la signature.

Afin de satisfaire les contraintes imposées par l'application finale, nous avons implémenté un détecteur combiné de segments de droites et d'arcs circulaires/elliptiques ( ELSD ), fondé sur l'approche a contrario, qui demande aucun réglage de paramètres et qui garantit le contrôle du nombre de faux positifs. De plus, pour améliorer la précision des arcs détectés, l'algorithme utilise un nouvel opérateur d'ajustement d'un cercle/ellipse, qui prend en compte les positions des points et les orientations des gradients associés. Pour gérer efficacement les distorsions géométriques induites par l'effet de perspective, la méthode d'extraction de signature proposée produit un identifiant invariable aux transformations projectives, qui a une forme vectorielle, afin d'être compatible avec l'usage des fonctions de hachage.

Organisation du chapitre. La section A.2 décrit la méthode d'ajustement utilisée par le détecteur d'ellipses. Section A.3 introduit les principes de l'approche a contrario et détaille le détecteur de primitives proposé. L'extraction de la signature est décrite dans la section A.4. La section A.5 présente un résumé des solutions proposées pour l'identification automatique du Code à bulles TM et la section A.6 conclut le chapitre. Nous identifions deux classes principales de techniques d'ajustement MC, à savoir méthodes algébriques et géométriques. Ces méthodes sont différenciées par la définition de la mesure d'erreur: la première classe inclut des méthodes qui cherchent à minimiser une distance d'erreur qui a une signification géométrique (par exemple la distance euclidienne) [Kasa 1962, Gander 1994[START_REF] Ahn | [END_REF], Sturm 2007], alors que la seconde inclut des techniques qui utilisent une expression algébrique comme distance d'erreur [Sampson 1982, Pratt 1987, Taubin 1991, Fitzgibbon 1999].

A.2 Ajustement de cercles et d'ellipses en images

Les méthodes algébriques utilisent une distance algébrique car la fonction de coût devient linéaire en θ, et -dans le cas où la contrainte h(θ) est quadratique-une solution analytique est disponible. Pour mettre en évidence la linéarité du problème par rapport à θ on peut réécrire (A.1) de la manière suivante :

(ν(p)) θ = 0, (A. 

J =             
1 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 1/2 0 0 0 1/2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1/2 0 0 0 0 1/2 0 0 0 0 0 0 1/2 0 0 0 0 0 0 1

             . L'erreur F (p, θ) (ν(p)) θ dans (A.
3) est la distance algébrique entre le point p et la conique F . Sous la formulation MC, on doit résoudre (A.2) en minimisant la somme des carrés des distances algébriques. La fonction objectif dans (A.2) devient : 

F = n i=1 (F (p i , θ)) 2 = n i=1 (ax 2 i + bx i y i + cy 2 i + dx i + ey i + f ) 2 ,
(p n ⊗ p n )    J. (A.5)
Pour l'ajustement des cercles, représenter un cercle par son équation standard (x -x c ) 2 + (y -y c ) 2 = r 2 peut rendre les méthodes géométriques instables lorsque les données d'entrée sont échantillonnées le long d'un arc de cercle qui peut être approché par un segment de droite [Chernov 2005]. Une manière élégante d'éviter cet inconvénient est de considérer la parametrisation homogène d'un cercle, utilisée dans [Pratt 1987, Gander 1994, Guennebaud 2007] : a(x 2 + y 2 ) + dx + ey + f = 0. 

  = 1 2 ll ∞ + l ∞ l , où
l ∞ = (0, 0, 1) est le vecteur de la droite à l'infini. Donc une droite affine peut être considérée comme un cercle à condition qu'il soit vu comme une conique dégénérée de rang 2, formée par le couple de droites (l, l ∞ ) [Semple 1952, p. 117]. Cela est dû au fait que par définition, une conique est un cercle si et seulement si elle contient le couple de points circulaires à l'infini [Semple 1952, p. 32], dont les vecteurs sont I ± = (1, ± √ -1, 0) . Il est simple de vérifier que les points circulaires vérifient l'équation de la droite à l'infini, donc ils appartient également à la conique dégénérée associée à la droite affine considérée.

Pour les méthodes algébriques, cette parametrisation est adaptée aussi puisqu'elle offre la possibilité d'obtenir un estimateur algébrique combiné pour des cercles et des droites, utile dans les applications où les deux types de contours (droites et cercles) présentent intérêt. Le problème d'optimisation algébrique s'écrit : Soit p i = (x i , y i , 1) un point en coordonnées homogènes et ḡi = ∂I ∂x (x i , y i ), ∂I ∂y (x i , y i le vecteur du gradient calculé en le point (x i , y i ). Si p i appartient à la conique C, alors sa droite polaire l i est la droite tangente à C en p i , et correspond à la droite passant par p i , dont la direction est orthogonale au gradient. En termes projectifs, l i est la droite passant par p i et le point à l'infini associé à la direction orthogonale au gradient donné par g

⊥ ∞i =   0 -1 1 0 0 0   ḡi ḡi .
On peut donc écrire l i g ⊥ ∞i = 0. Avec (A.9), on obtient une nouvelle équation, linéaire en les McLaughlin 1998[START_REF] Kiryati | [END_REF][START_REF] Matas | [END_REF], Barinova 2010]). Le premier inconvénient majeur de ces méthodes est la nécessité d'ajuster les paramètres des algorithmes (c.-à-d. les seuils de détection) chaque fois que le système ou les conditions d'acquisition (éclairage, résolution de la caméra) changent. Le second inconvénient majeur est qu'il n'y a aucun contrôle du nombre de fausses détections : « faux positifs » (alignements de pixels détectés à tort comme primitives géométriques) et « faux négatifs » (des primitives géométriques existantes dans l'image, mais pas détectées par l'algorithme de détection).

Le détecteur de primitives géométriques que nous proposons est libre de tout réglage de paramètres et minimise le nombre de fausses détections, étant fondé sur l'approche statistique a contrario [START_REF] Desolneux | [END_REF], Desolneux 2007]. Cette approche s'inspire des lois gestaltistes [Metzger 1975] et formalise le principe de perception de Helmholtz qui dit, de manière informelle, qu'il n'y a pas de perception dans du bruit. L'approche a contrario ne valide un candidat comme détection que s'il est peu susceptible d'apparaître (par hasard) dans une image de bruit de même taille que l'image analysée. Ce raisonnement permet d'obtenir des algorithmes de vision libres de tout réglage de paramètres. Des approches similaires sont utilisées dans le domaine statistique de Comparaisons Multiples [Abdi 2007, Gordon 2007].

Le concept principal de l'approche a contrario est le nombre de fausses alarmes (NFA), qui dénote deux quantités distinctes. D'une part, le NFA d'un candidat s, noté NFA(s), donne une mesure de la probabilité que ce candidat apparaisse dans une image (non-structurée) de bruit, en calculant le nombre moyen de candidats au moins aussi structurés que s dans une image de bruit X, de même taille que l'image à analyser x. Ainsi, plus le NFA est petit, plus le candidat est significatif (structuré). Un paramètre ε est utilisé comme seuil pour distinguer les candidats significatifs. Pour un ε donné, un candidat s est dit ε-significatif si NFA(s) ≤ ε. D'autre part, au niveau de l'image, NFA(ε) représente le nombre total de candidats ε-significatifs qu'on peut espérer d'observer dans une image de bruit. Il est prouvé que, si le calcul du NFA des candidats prend en compte le nombre total de candidats N t qui peuvent apparaître dans une image, alors N F A(ε) ≤ ε. Ainsi, ε est l'unique seuil de détection de l'approche a contrario, qui, de plus, contrôle le nombre de détections dans une image de bruit et peut être fixé aussi petit que souhaité. La précision du résultat a une dépendance faible par rapport à ε et une valeur simple comme ε = 1 se révèle satisfaisante pour les applications pratiques. Avec ce choix, nous assumons le risque d'accepter en moyenne un faux positif par image.

Pour mettre en place le cadre a contrario dans le problème de détection de primitives géométriques (segments de droites, arcs circulaires/elliptiques), deux éléments sont nécessaires : (1) une fonction pour évaluer si le candidat est structuré, et [START_REF] Pătrăucean | Bubble Tag"-based system for object authentication[END_REF] un modèle non-structuré. À cette fin, Desolneux et al. ont décidé de donner importance à l'orientation du gradient, plutôt qu'à la magnitude. Le modèle non-structuré H 0 , proposé par Desolneux et al. [START_REF] Desolneux | [END_REF]] pour le problème de détection des primitives géométriques (segments de droite, arcs de cercles etc.) est un champ de gradients, où les orientations des gradients associés aux pixels sont des variables aléatoires indépendantes, distribuées uniformément. Cette condition est remplie dans une image de bruit blanc gaussien, c.-à-d. X(i, j), i = {1, .., n}, j = {1, .., m} sont des variables aléatoires gaussiennes de moyenne μ et variance σ 2 [Desolneux 2007, p. 67]. Nous utilisons ce modèle non-structuré dans notre travail aussi.

La fonction qui évalue si un candidat est structuré ou pas est représentée par le nombre de pixels alignés que le candidat contient. Un pixel p ∈ Γ est dit δ-aligné, ou simplement aligné, avec un segment de droite orienté s, à une précision δ si Angle( x(p), dir ⊥ (s)) ≤ δπ, où x(p) est le gradient de l'image x dans p et dir ⊥ (s) est un vecteur orthogonal à s. La probabilité qu'un point x i soit δ -aligné avec un segment de droite s est 2δπ 2π = δ. Ainsi, les variables aléatoires X i ont une distribution Bernoulli de paramètre δ: P[X i = 1] = δ and P[X i = 0] = 1 -δ. Si l'hypothèse d'indépendance est valide, la probabilité qu'un candidat de longueur l contienne au moins k pixels alignés suit une lois binomiale et son NFA est donné par NFA(s) = N t B(l, k, δ), où le nombre de candidats N t est d'ordre de (nm) 2 , puisque chaque couple de pixels (p 1 , p 2 ) ∈ x peut représenter les extrémités d'un segment. Si pour ε on choisit la valeur 1, un candidat sera dit significatif si

NFA(s) = (nm) 2 B(l, k, δ) ≤ 1. (A.14)
L'approche a contrario fournit une technique efficace de validation de candidats. Dans un algorithme de détection complet, une phase de sélection de candidats devrait précéder la validation. Grâce à l'utilisation d'une validation a contrario, le contrôle du nombre de faux positifs est formellement assuré. Quant à la sélection de candidats, elle doit éviter d'introduire de faux négatifs, tout en restant libre de paramètres critiques. À cette fin, le détecteur proposé, nommé ELSD, généralise le détecteur de segments de droites LSD proposé par Grompone von Gioi et al. [Grompone von Gioi 2010], qui implémente une sélection de candidats de type greedy, suivie par une validation a contrario. De plus, visant plusieurs familles de primitives (segments de droites, arcs de cercle/ellipse), ELSD demande une phase supplémentaire, notamment une phase de sélection de modèle.

ELSD -Sélection de candidats

La sélection de candidats de ELSD suit les mêmes principes que celle proposée pour LSD par Grompone von Gioi et al., notamment nous nous intéressons à des régions connexes de l'image qui contiennent des pixels alignés à une précision δ. Ces régions sont construites de manière recursive. La procédure, dénommée RegionGrow, démarre avec un pixel germe et ensuite les pixels voisins sont visités, et ceux qui sont alignés avec la région courante sont rajoutés et marqués pour ne plus être visités à nouveau. L'orientation de la région courante est mise à jour à une moyenne des orientations des pixels contenus dans la liste chaque fois qu'un nouveau pixel est rajouté. Quand il ne reste plus de pixels à rajouter, la région est approchée par un rectangle R 0 et proposée en tant que candidat de type segment linéaire. Pour obtenir les candidats de type arc de cercle/ellipse, les extrémités du rectangle initial R 0 sont utilisés comme pixels germe pour des procedures RegionGrow ultérieures. Cette procédure CurveGrow répète récursivement des procédures RegionGrow et enchaîne les rectangles obtenus tant qu'ils subissent certaines caractéristiques élémentaires des formes elliptiques, notamment les rectangles doivent suivre un contour convexe et relativement lisse. Quand aucun rectangle ne peut plus être rajouté, un cercle et une ellipse sont ajustés, et les couronnes circulaire et elliptique couvrant les pixels regroupés sont calculées ; elles représenteront les candidats de type arc de cercle et arc d'ellipse. Il est à noter que cette technique de sélection de candidats n'a pas de paramètres critiques et évite d'introduire des faux négatifs.

ELSD -Validation de candidats

Les candidats fournis par la procédure de sélection de candidats doivent passer la phase de validation afin d'être considérés des détections significatives. Pour valider un arc de cercle/ellipse, nous utilisons le même raisonnement que pour les segments de droite. Pour cela, le nombre de pixels alignés avec l'arc de cercle/ellipse est compté, afin d'évaluer la probabilité que la structure analysée puisse apparaître par hasard dans une image non-structurée de même taille. Pour un arc de cercle, un pixel est considéré comme aligné si la droite de support de son vecteur gradient a la même direction que la droite passant par le pixel et le centre du cercle ajusté, à une précision donnée δ. Pour un arc elliptique, un pixel est aligné si l'orientation de son gradient vérifie la propriété focale d'une ellipse, c'est-à-dire si la droite de support du vecteur gradient a la même direction, à une précision donnée δ, que la bissectrice de l'angle formé par les droites passant par le pixel et les foyers de l'ellipse ajustée. Le nombre potentiel de candidats de type rectangle dans une image de taille n × m est N c = (nm) 5/2 , puisque un rectangle a cinq degrés de liberté (centre, orientation, longueur et largeur), chacun rajoutant (nm) 1/2 candidats possibles. De façon similaire, le nombre potentiel de candidats arc de cercle a l'ordre (nm) 3 : une couronne circulaire a six degrés de liberté : centre, rayon, angles qui délimitent l'arc et largeur de la couronne. Pour l'arc d'ellipse, N c a l'ordre de (nm) 4 , correspondant aux huit degrés de liberté d'une couronne elliptique : centre, axes, orientation, angles qui délimitent l'arc et largeur de la couronne. Si un candidat contient l pixels, dont k sont alignés, en fonction de sont type, le test de validation est :

   NFA rectangle = (nm) A.4 Signature du Code à bulles TM Le processus d'identification d'un Code à bulles TM revient finalement à établir l'équivalence projective de deux images du même Code à bulles TM sous l'hypothèse que les images sont prises avec une caméra sténopé, c'est-à-dire établir que les deux images sont liées par une transformation projective 2D (une homographie). La correspondance de deux images peut être évaluée en utilisant des propriétés métriques du Code à bulles TM (par exemple la position/taille des bulles, la distance relative des bulles). Néanmoins, on doit tenir compte de distorsions induites dans les images du Code à bulles TM par la transformation projective1 correspondant à la prise d'image, qui ne préserve pas les propriétés métriques, telles que longueurs, angles, parallélisme. Ainsi, deux images du même Code à bulles TM obtenues dans des conditions différentes de prise de vue ne sont pas directement comparables d'un point de vue métrique. Deux directions peuvent être abordées dans cette situation. D'une part, les distorsions peuvent être corrigées à l'aide de techniques de rectification qui récupèrent la structure euclidienne 2D du plan, ce qui rend les images comparables. La deuxième possibilité serait d'étudier cette correspondance en utilisant des propriétés qui ne sont pas affectées par les transformations projectives, c'est-à-dire des propriétés projectivement invariantes. Pour des raisons d'efficacité et tenant compte des contraintes du problème -la signature doit avoir une forme vectorielle pour être compatible avec les fonctions de hachage utilisées pour mener la recherche du code correspondant dans la base de données -nous choisissons la deuxième approche et nous décrivons une procédure de calcul d'une signature projectivement invariante, assumant qu'un Code à bulles TM peut être approché par une configuration de cercles coplanaires dans le plan euclidien. Nous donnons d'abord une technique de calcul d'un couple de valeurs invariantes pour deux cercles, que nous allons appliquer ensuite de manière recursive sur toute la configuration de bulles (cercles).

Nous appelons plan de référence le plan euclidien 3D supportant le Code à bulles TM et plan image le plan du capteur supportant l'image du Code à bulles TM . Pour les entités appartenant au plan image, nous rajoutons systématiquement ˜dans les notations.

Dans le plan de référence, l'équation d'un cercle F centré dans (x c , y c ) et de rayon r, s'écrit en forme matricielle p C F p = 0, avec p = (x, y, 1) étant le vecteur de coordonnées homogènes [Golub 1996, p. 403].

d'un point et C F =   1 0 -x c 0 1 -y c -x c -y c x 2 c + y 2 c -
Nous donnons maintenant le calcul symbolique pour prouver l'invariance sous transformations projectives de la distance relative et du rayon relatif de deux cercles. Pour simplifier les calculs, les cercles F 1 et F 2 seront représentés dans le plan euclidien par des matrices canoniques

C 1 =   1 0 0 0 1 0 0 0 -r 2 1   , et C 2 =   1 0 -δ 0 1 0 -δ 0 δ 2 -r 2 2   . Donc, F 1 est un cercle de rayon r 1 > 0, centré en l'origine O et F 2 est un cercle de rayon r 2 > 0, centré en (0, δ), avec δ ≥ 0.
Avec Maple nous calculons les expressions symboliques des valeurs propres généralisées λ ∈ .20) Soit d = δ r 1 la distance relative et r = r 2 r 1 le rayon relatif de deux cercles. Nous montrerons qu'on peut récupérer les valeurs du couple (d, r) à partir de valeurs propres généralisées de L'algorithme vise l'identification d'un Code à bulles TM par élimination progressive des candidats potentiels. La signature sera représentée par plusieurs sous-signatures, une pour chaque couche convexe. L'interrogation de la base de données démarre avec la couche convexe externe. À la fin de cette étape, on ne garde comme potentiels candidats que le n plus proches voisins. Le processus est répété utilisant comme requête la couche convexe suivante jusqu'à ce qu'on obtient le code correspondant. L'interrogation de la base de données est faite en considérant toutes les permutations cycliques des sous-signatures, afin de traiter le problème de rotation.

C 3 , de (C 1 , C 2 ) : λ = 1 2 α + √ β r 2 2 , 1 2 α - √ β r 2 2 , 1 , (A.18) où α ≡ r 2 1 + r 2 2 -δ 2 ∈ R, (A.19) β ≡ (δ + r 1 + r 2 )(δ + r 1 -r 2 )(δ -r 1 + r 2 )(δ -r 1 -r 2 ) ∈ R. ( A 
L'utilisation de couches convexes rend la procédure proposée moins robuste au bruit, puisque la structure des couches convexes peut changer en raison de petites erreurs dans la détection d'ellipses. Cela peut entraîner à terme des changements considérables dans la signature finale.

La méthode d'extraction de signature décrite permet l'identification des configurations de cercles coplanaires dans des images prises sous différents angles de vue. La signature proposée est projectivement invariante et a une forme vectorielle, compatible avec l'utilisation des fonctions de hachage LSH. Notre approche réduit la complexité du processus d'identification et par ailleurs, elle fournit une solution pour traiter le problème de rotation entre deux images. Les experiments effectués sur des images de synthèse et sur des images réelles montrent la robustesse au bruit et les performances en temps de calcul. Néanmoins, la stabilité des couches convexes reste un problème ouvert.

A.5 Application finale : L'identification du Code à bulles TM Nous décrivons brièvement le processus complet d'authentification des bouteilles de vin en utilisant le Code à bulles TM dans le cadre d'un protocole «1 à N ». Le processus commence par la lecture du Code à bulles TM , en utilisant une caméra ordinaire, non-calibrée (par exemple, la caméra d'un téléphone portable), dont la position est non-rigide par rapport au Code à bulles TM . Lors de l'authentification, le système doit vérifier que l'étiquette à identifier est valide, c'est-àdire qu'il s'agit bien d'une configuration de bulles 3D, et pas d'une copie/photographie d'un Code à bulles TM . À cette fin, nous avons conçu un système simple d'éclairage couleur contrôlé, qui induit des reflets colorés sur les bords des bulles. La simple présence de ces reflets dans une image prise sous ces conditions d'éclairage confirme qu'il s'agit bien d'une etiquette 3D valide. De plus, la localisation de ces reflets dans l'image pourrait permettre l'extraction des positions des bulles, même dans des images de basse résolution, en utilisant de simples opérations de morphologie mathématique. Une fois en possession d'une image (en niveaux de gris) d'un Code à bulles TM , le système effectue la phase d'extraction de caractéristiques, à savoir la détection des bulles (ellipses) et du marqueur linéaire (segments de droite) en utilisant l'algorithme proposé dans section A.3 qui prend en charge convenablement la détection simultanée de segments de droites et d'ellipses. Les paramètres des ellipses sont utilisés par la suite comme matière première dans une procédure d'extraction de signature, qui renvoie une signature projectivement invariante (section A.4), fondée sur des propriétés invariantes du plan projectif. Enfin, afin de vérifier l'authenticité de l'objet donné, le système interroge une base de données pour récupérer, s'il existe, le Code à bulles TM correspondant à la signature requête obtenue. Pour des raisons d'efficacité, la recherche dans la base de données est effectuée en utilisant des techniques de hachage qui préservent la localité [Indyk 1998[START_REF] Andoni | [END_REF].

A.6 Epilogue

Le projet Geowine, et, implicitement, l'identification du Code à bulles TM , a généré un certain nombre de problématiques intéressantes pour la communauté scientifique de la vision par ordinateur. Le but de cette thèse est de proposer les fondements théoriques qui pourraient conduire à la mise un place d'une procédure automatique d'identification du Code à bulles TM dans un protocole « 1 à N ».

Le processus d'identification du Code à bulles TM enchaîne plusieurs étapes : lecture du Code à bulles TM , extraction des primitives géométriques, calcul de la signature, et interrogation de la base de données pour récupérer le code correspondant. Nos travaux ont porté sur la deuxième et la troisième partie, tandis que pour la dernière étape, nous recommandons l'utilisation d'une famille particulière de fonctions de hachage, à savoir des fonctions de hachage qui préservent la localité.

Pour l'étape d'extraction de primitives, la contribution principale décrit un détecteur de primitives géométrique, fondé sur l' approche a contrario, qui est capable de détecter simultanément des segments de droite et arcs de cercle/ellipse. L'avantage majeur du détecteur proposé, par rapport aux algorithmes existants, est le contrôle formel du nombre de faux positifs, atteint sans réglage de paramètres. En outre, la précision des arcs de cercle/ellipse détectés a été abordée et nous avons introduit une méthode d'ajustement de cercles/ellipses non-itérative, qui utilise toute l'information disponible dans l'image : coordonnées des pixels et orientations des gradients.

Le calcul de la signature doit tenir compte de la nature projective des primitives extraites. À cette fin, nous avons proposé une méthode efficace qui contourne la reconstruction euclidienne. La technique proposée s'appuie exclusivement sur des propriétés invariantes du plan projectif, étant donc elle-même projectivement invariante.

Les solutions proposées pour l'identification du Code à bulles TM se sont avérées encourageantes et un travail d'intégration solide devrait être envisagé. De plus, le raisonnement a contrario pourrait aussi être appliqué dans un protocole d'authentification « 1 à 1 », afin d'évaluer la probabilité que deux configurations de bulles aient un nombre donné de bulles identiques par accident.

La poursuite des travaux sur la détection de primitive devrait inclure l'utilisation de la formulation continue du NFA lors des étapes de validation et de sélection de modèle. Et enfin, l'histoire devrait continuer avec l'inclusion de types de candidats plus complexes dans la détection de primitives, afin d'obtenir des algorithmes fiables de vectorisation d'images, conduisant à une compréhension bas-niveau des images entièrement automatique.

În ultimul timp, sistemele de securitate bazate pe recunoaterea datelor biometrice (amprente digitale, faţă, iris), ce utilizează intens instrumente de computer vision, au devenit foarte populare în identificarea persoanelor. În general, identificarea este procesul prin care identitatea unui utilizator este determinată. Un concept diferit este autentificarea, care este procesul prin care un serviciu confirmă cererea unui utilizator de a utiliza o anumită identitate. Un sistem biometric exploatează legătura incontestabilă i indestructibilă dintre o persoană i datele sale biometrice. Identificarea, în acest caz, conţine o marcă intrinsecă de autenticitate.

Un sistem similar în lumea obiectelor ar fi extrem de necesar, deoarece falsificarea produselor (contrabanda) este o problemă întâlnită în viaţa de zi cu zi. Codurile de bare tradiţionale (1D sau 2D) sau RFID-urile (Radio Frequency Identification) sunt utilizate ca mijloace de identificare, dar nicio dovada de autenticitate nu este disponibilă, deoarece acestea pot fi uor produse i reproduse. Un pas important în această direcţie ar putea fi utilizarea Codului de bule TM , soluţie brevetată de societatea franceză Prooftag (www.prooftag.com), i propusă ca mijloc de autentificare a obiectelor.

Conform descrierii furnizate de Prooftag, Codul de bule TM este rezultatul unei auto-generări haotice de bule de aer în interiorul unui polimer transparent. Caracterul aleator al procesului de formare face aproape imposibilă anticiparea/planificarea distribuţiei bulelor. Probabilitatea de a obţine două configuraţii identice tinde la zero. Mai mult decât atât, nicio tehnologie existentă nu este capabilă să reproducă acest cod tri-dimensional, deoarece este quasi-imposibilă generarea de goluri cu forme, dimensiuni i poziţii identice într-un material solidificat. Faptul că acesta nu poate fi reprodus, nici măcar de către producător, permite calificarea Codului de bule TM ca unic i nereproductibil, fiind potrivit ca mijloc de autentificare. Prin ataarea unei etichete cu bule unui obiect, obiectul în sine devine unic.

Proiectul Geowine profită de calităţile Codului de bule TM i îi propune implementarea unui sistem inovator de urmărire i de autentificare a sticlelor de vin. Dezvoltat în cadrul Agrimip Innovation, proiectul reunete ase parteneri (Producătorii de vin Plaimont, Camera de comerţ din Gers, coala de ingineri Purpan, LEREPS, Prooftag i Irit), condui de o motivaţie dublă. Pe de o parte, se încearcă anticiparea unei directive anunţate de către Comisia Europeană cu privire la etichetarea sticlelor de vin, iar pe de altă parte se dorete o abordare mai eficientă a luptei împotriva contrafacerii vinului. Sistemul Geowine va permite clienţilor să urmărească traseul unei sticle de vin până la producătorul său. Fiecărei sticle de vin îi va fi ataat un unic Cod de bule TM în momentul îmbutelierii, devenind astfel unică i autentificabilă. Furnizarea instrumentelor de computer vision necesare în identificarea automată a unui Cod de bule TM reprezintă motivaţia acestei teze.

Un scenariu tipic de autentificare a unui obiect utilizând Codul de bule TM este similar identificării persoanelor pe baza datelor biometrice. Într-o primă fază, Codul de bule TM ataat unui obiect este fotografiat folosind camere ordinare sau dispozitive dedicate; una sau mai multe imagini sunt păstrate. Imaginile sunt utilizate ca informaţie brută pentru instrumentele de computer vision, care au menirea de a extrage caracteristici discriminante ale Codului de bule TM , cum ar fi poziţia bulelor i dimensiunea lor. Datele extrase sunt folosite pentru a produce o semnătură discriminantă, care este stocată într-o bază de date ca semnătură de referinţă. Aceasta este faza de înrolare/înregistrare. Procedura de extracţie a caracteristicilor trebuie să fie repetabilă, deoarece aceasta va fi aplicată din nou când autentificarea stricto sensu are loc. În această fază, o altă fotografie a Codului de bule TM ataat obiectului pe care dorim să-l autentificăm este obţinută i semnătura codului este calculată. Semnătura de interogare trebuie comparată cu semnătura de referinţă stocată în baza de date, i o decizie privind similitudinea dintre cele două trebuie luată. Mai mult, două protocoale sunt posibile. În cazul autentificării 1-la-1, fiecare Cod de bule TM este asociat în prealabil cu o cheie de identificare (de exemplu, un cod alfanumeric sau un cod de bare), care este folosită drept cheie de căutare în baza de date pentru a recupera semnătura de referinţă corespunzătoare; în cele din urmă, cele două semnături sunt comparate. Într-un protocol 1-la-N, nicio cheie de identificare suplimentară nu este folosită, identificarea realizându-se numai pe baza caracteristicilor Codului de bule TM : semnătura de interogare este comparată cu toate înregistrările bazei de date, i corespondentul acesteia, dacă există, este returnat. Punerea în practică a unui protocol automat de identificare 1-la-N a definit direcţiile de cercetare ale prezentei teze.

Dificultăţile deosebite pe care acest context le scoate la iveală sunt legate de dimensiunea bulelor (mici, dar de dimensiuni variabile); în plus, pot exista grupuri de bule lipite. Aceste particularităţi fac sarcina de detecţie a bulelor departe de a fi trivială i necesită o procedură capabilă de a controla numărul de detecţii false. O a doua dificultate provine din variabilitatea incontrolabilă dintre semnătura de referinţă i cea de interogare provocată de schimbarea condiţiilor de fotografiere (zgomot, iluminare). Astfel, căutarea codului corespondent din baza de date nu se traduce prin stabilirea unei bijecţii exacte între codul din imaginea de interogare i imaginile înregistrate în baza de date, ci devine o problemă de căutare a celui mai apropiat vecin, în sensul unei distanţe predefinite. Dacă N , numărul de semnături stocate în baza de date este mare, căutarea cel mai apropiat vecin este costisitoare ca timp de calcul i memorie utilizată. Prin urmare, tehnici specifice pentru căutarea în spaţii de mari dimensiuni trebuie luate în considerare (arbori de căutare, tehnici de hashing). Mai precis, funcţiile de hash ce prezervă localitatea s-au dovedit potrivite pentru problema dată. Acest context impune o constrângere cu privire la forma semnăturii, i anume semnătura trebuie să aibă o formă vectorială, o comparaţie directă între două imagini ale Codului de bule TM nefiind eficientă. În cele din urmă, trebuie ţinut cont că citirea Codului de bule TM se face cu aparate de fotografiat necalibrate, a căror poziţie nu este fixă în raport cu Codul de bule TM , ceea ce induce un efect de perspectivă ce trebuie luat în considerare în definiţia semnăturii.

Pentru a îndeplini constrângerile impuse de aplicaţia finală, a fost implementat un detector de segmente de dreaptă i de arcuri circulare/eliptice (ELSD ), bazat pe teoria statistică a contrario.

Datorită acestui cadru teoretic, ELSD nu necesită nicio ajustare de parametri, asigurând în acelai timp un control al detecţiilor false. În plus, pentru a îmbunătăţi precizia arcurilor circulare/eliptice detectate, algoritmul folosete un nou operator de estimare de cercuri/elipse, ce ia în considerare nu doar poziţiile punctelor date, ci i direcţia gradienţilor asociaţi. Pentru a gestiona eficient distorsiunile geometrice induse de efectul de perspectivă, metoda propusă pentru extracţia semnăturii produce un ID invariant la transformări proiective, în formă vectorială, compatibilă cu utilizarea funcţiilor hash menţionate mai sus.

Organizarea capitolului. Secţiunea B.2 descrie metoda de estimare utilizată de către detectorul de elipse. Secţiunea B.3 introduce principiile metodei a contrario i detaliază detectorul de primitive geometrice propus. Extracţia semnăturii este descrisă în secţiunea B.4. Secţiunea B.5 este un rezumat al soluţiilor propuse pentru identificarea automată a Codului de bule TM , iar secţiunea B.6 încheie capitolul. Fiind date n puncte {p i } 1≤i≤n , problema de estimare a conicei F la aceste date în sensul celor mai mici pătrate poate fi enunţată astfel:

B.2 Estimare de cercuri i elipse în imagini

min θ n i=1 (δ(p i , C F )) 2 , astfel încât h(θ) = 0, (B.2)
unde δ() este eroarea dintre punctele de intrare (x i , y i ) i curba estimată. În contextul problemei noastre, considerăm o constrângere suplimentară, i anume impunem o consistenţă fotometrică pentru a induce un comportament rezonabil procedurii de estimare atunci când datele de intrare sunt incomplete.

Printre metodele de estimare bazate pe metoda celor mai mici pătrate, identificăm două clase principale de metode: geometrice i algebrice. Aceste metode sunt diferenţiate prin definiţia erorii de estimare: prima categorie include metodele care caută să minimizeze o eroare ce are semnificaţie geometrică (cum ar fi distanţa euclidiană) [Kasa 1962, Gander 1994[START_REF] Ahn | [END_REF], Sturm 2007], pe când a doua clasă include tehnici ce utilizează o expresie algebrică drept eroare de estimare [Sampson 1982, Pratt 1987, Taubin 1991, Fitzgibbon 1999].

Metodele algebrice folosesc o eroare algebrică, deoarece problema de estimare devine liniară în θ, i -în cazul în care constrângerea h(θ) este quadratică-o solutţie analitică este cunoscută. Pentru a pune în evidenţă linearitatea problemei în θ, putem scrie (B.1) ca

(ν(p)) θ = 0, (B.3) unde ν(p) = (p ⊗ p) J = [x 2
, y 2 , xy, x, y, 1] reprezintă suprafaţa Veronese a unui punct p în spaţiul proiectiv 5-dimensional i J este matricea În problema de estimare a cercurilor, reprezentarea cercului prin ecuaţia standard (x -x c ) 2 + (y -y c ) 2 = r 2 poate introduce probleme de stabilitate procedurilor geometrice (iterative) în cazul în care datele de intrare sunt eantionate de-a lungul unui arc ce poate fi aproximat printr-un segment de dreaptă [Chernov 2005]. O manieră elegantă de a conturna acest inconvenient este folosirea parametrizării omogene a unui cerc, introdusă în [Pratt 1987, Gander 1994, Guennebaud 2007]: 2 ll ∞ + l ∞ l , unde l ∞ = (0, 0, 1) este vectorul dreptei de la infinit. Deci o dreaptă afină poate fi considerată ca un cerc dacă acesta din urmă este văzut ca o conică degenerată de rang 2, formată de perechea de drepte (l, l ∞ ) [Semple 1952, p. 117]. Aceasta se datorează faptului că, prin definiţie, o conică este un cerc dacă aceasta conţine perechea de puncte circulare de la infinit [Semple 1952, p. 32], ai căror vectori sunt I ± = (1, ± √ -1, 0) . Este simplu de verificat că punctele circulare de la infinit verifică ecuaţia dreptei de la infinit, deci aparţin conicei degenerate asociate dreptei afine considerate.

J =              1 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 1/2 0 0 0 1/2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1/2 0 0 0 0 1/2 0 0 0 0 0 0 1/2 0 0 0 0 0 0 1              . Eroarea F (p, θ) (ν(p)) θ din (B.
Pentru metodele algebrice, această parametrizare este adaptată de asemenea, deoarece ea oferă posibilitatea de a obţine un estimator algebric hibrid pentru drepte i cercuri, util în aplicaţiile unde ambele tipuri de primitive sunt de interes. Problema de optimizare algebrică se scrie: min 

Estimarea algebrică a conicelor folosind direcţia gradientului

Considerăm bijecţia dintre punctele p i dreptele l din plan proiectiv, dată de relaţia pol-dreaptă polară faţă de conica C, a cărei matrice este C:

Cp ∼ l. (B.9)

Fie p i = (x i , y i , 1) un punct în coordonate omogene i ḡi = ∂I ∂x (x i , y i ), ∂I ∂y (x i , y i vectorul gradientului calculat în punctul (x i , y i ). Dacă p i aparţine conicei C, atunci dreapta sa polară l i este dreapta tangentă la conica C în p i , i corespunde dreptei ce trece prin p i , a cărei direcţie este ortogonală gradientului. În termeni proiectivi, l i este dreapta ce trece prin p i i punctul de la infinit asociat direcţiei ortogonale gradientului, dat de expresia g ⊥ ∞i =   0 -1 1 0 0 0   ḡi ḡi . Putem, deci, scrie l i g ⊥ ∞i = 0. Cu (B.9), obţinem o nouă ecuaţie liniară în elementele lui C, stocate în vectorul θ: p i Cg ⊥ ∞i = (g ⊥ ∞i ⊗ p i ) Jθ = 0. (B.10) [Metzger 1975] i formalizează principiul de percepţie al lui Helmholtz care spune, informal, că zgomotul nu generează nicio percepţie. Conform teoriei a contrario, un candidat trebuie validat doar dacă nu este susceptibil de a apărea (accidental) într-o imagine de zgomot de aceeai dimensiune ca i imaginea analizată. Acest raţionament permite obţinerea de algoritmi de viziune artificială liberi de orice reglaj de parametri. Abordări similare sunt utilizate în domeniul statistic al comparaţiilor multiple [Abdi 2007, Gordon 2007].

Conceptul principal al teoriei a contrario este numărul de alarme false (NFA), care denotă două cantităţi distincte. Pe de o parte, NFA-ul unui candidat s, notat NFA(s), dă o măsură a probabilităţii ca acel candidat să apară într-o imagine (nestructurată) de zgomot, calculând numărul mediu de candidaţi cel puţin la fel de structuraţi ca i s într-o imagine de zgomot X, de aceeai dimensiune ca i imaginea analizată x. Astfel, cu cât NFA este mai mic, cu atât candidatul este mai semnificativ (structurat). Un parametru ε este folosit pentru a distinge candidaţii semnificativi. Pentru un ε dat, un candidat s este considerat ε-semnificativ dacă NFA(s) ≤ ε. Pe de altă parte, la nivelul imaginii, NFA(ε) reprezintă numărul total de candidaţi ε-semnificativi pe care putem spera să-i observăm într-o imagine de zgomot. Este demonstrat că dacă în calculul lui NFA(s) se ia în considerare numărul total de candidaţi ce pot să apară în imaginea dată, atunci NFA(ε) ≤ ε. În acest fel, ε este unicul prag de detecţie al teoriei a contrario, care, în plus, controlează numărul de detecţii într-o imagine de zgomot i poate fi fixat oricât de mic se dorete. Acurateţea rezultatului are o depndenţă logaritmică, deci slabă faţă de acest prag de detecţie i o valoare simplă ca ε = 1 poate fi aleasă o dată pentru totdeauna pentru aplicaţiile practice. Cu această alegere, ne asumăm riscul de a accepta în medie un fals pozitiv per imagine.

Pentru a pune în aplicare cadrul a contrario în problema de detecţie de primitive geometrice (segmente de dreaptă, arcuri circulare/eliptice), două elemente sunt necesare: (1) o funcţie ce evaluează în ce măsură candidatul dat este susceptibil de a apărea într-o imagine nestructurată i (2) un model nestructurat. În acest scop, Desolneux et al. au decis să dea importanţă orientării gradientului, i nu magnitudinii sale, cum se obinuiete în metodele clasice. Modelul nestructurat H 0 , propus de Desolneux et al. [START_REF] Desolneux | [END_REF]] pentru problema de detecţie de primitive geometrice este un câmp de gradienţi unde orientările gradienţilor asociaţi pixelilor sunt variabile aleatore independente, distribuite uniform. Această condiţie este îndeplinită într-o imagine de zgomot alb gaussian unde X(i, j), i = {1, .., n}, j = {1, .., m} sunt variabile aleatoare gaussiene de medie μ i varianţă σ 2 [Desolneux 2007, p. 67]. Vom utiliza acelai model pentru detectorul propus.

Funcţia care evaluează dacă un candidat este structurat este reprezentată de numărul de pixeli aliniaţi pe care un candidat îi conţine. Un pixel p ∈ Γ este numit δ-aliniat, sau simplu aliniat, cu un segment de dreaptă orientat s, cu o precizie δ dacă Angle( x(p), dir ⊥ (s)) ≤ δπ, unde x(p) este gradientul imaginii x în p i dir ⊥ (s) este un vector ortogonal cu s. Probabilitea ca un punct x i să fie δ -aliniat cu un segment de dreaptă s este 2δπ 2π = δ. Astfel, variabilele aleatoare X i au o distribuţie Bernoulli de parametru δ: P[X i = 1] = δ i P[X i = 0] = 1 -δ.

Dacă ipoteza de independenţă dintre orientările gradienţilor este validă, atunci probabilitatea de apariţie a unui candidat de lungime l ce conţine cel puţin k pixeli aliniaţi, urmează o lege binomială i NFA-ul său este dat de NFA(s) = N t B(l, k, δ), unde numărul de candidaţi N t este de ordin (nm) 2 , deoarece fiecare pereche de pixeli (p 1 , p 2 ) ∈ x poate reprezenta extremităţile unui segment. Dacă pentru ε alegem valoarea 1, atunci un candidat va fi declarat semnificativ dacă:

NFA(s) = (nm) 2 B(l, k, δ) ≤ 1.

(B.14) Abordarea a contrario furnizează o tehnică eficace de validare a candidaţilor. Într-un algoritm de detecţie complet, o fază de preselecţie a candidaţilor trebuie să preceadă validarea. Datorită folosirii validării de tip a contrario, controlul numărului de falsuri pozitive este asigurat de manieră formală. Cât despre selecţia de candidaţi, aceasta trebuie să evite să introducă falsuri negative, i în acelai timp, nu trebuie să introducă parametri critici. În acest scop, detectorul propus, numit ELSD, generalizează detectorul de segmente de dreaptă LSD propus de Grompone von Gioi et al. [Grompone von Gioi 2010], care implementează o selecţie de candidaţi de tip greedy, urmată de o validare a contrario. În plus, vizând mai multe familii de primitive geometrice, ELSD cere o etapă suplimentară, i anume, o etapă de selecţie de model.

ELSD -Selecţia candidaţilor

Metoda de selecţie a candidaţilor a detectorului ELSD urmează aceleai idei ca i detectorul LSD propus de Grompone von Gioi et al., i anume localizează în imagine regiuni conexe ce conţin pixeli aliniaţi cu o anumită precizie δ. Aceste regiuni sunt construite de manieră recursivă. Procedura, denumită RegionGrow, începe cu un pixel-sămânţă i apoi pixelii vecini sunt vizitaţi, i cei aliniaţi cu regiunea curentă sunt adăugaţi la regiune i marcaţi pentru a nu mai fi vizitaţi din nou. Orientarea regiunii curente este actualizată de fiecare dată când un pixel este adăugat, considerând media pixelilor din regiune. Când niciun pixel nu mai poate fi adăugat, regiunea este aproximată printr-un dreptunghi R 0 i este propusă spre validare în calitate de candidat de tip segment liniar. Pentru a obţine candidaţii de tip arc circular i arc eliptic, extremităţile dreptunghiului iniţial R 0 sunt utilizate ca pixeli sămânţă pentru proceduri RegionGrow ulterioare. Această procedură CurveGrow repetă recursiv proceduri de tip RegionGrow i înlanţuie dreptunghiurile obţinute atâta vreme cât acestea respectă anumite proprietăţi elementare ale formelor eliptice, i anume, conturul descris de dreptunghiuri trebuie să fie convex i relativ continuu. Când niciun dreptunghi nu mai poate fi adăugat, un cerc i o elipsă sunt estimate i coroana circulară, respectiv eliptică, ce acoperă pixelii daţi, sunt calculate; ele vor reprezenta candidaţii de tip arc circular i arc eliptic pentru etapa de validare. Se poate remarca faptul că selecţia de candidaţi descrisă nu are parametri critici i este foarte permisivă, evitând introducerea de falsuri negative.

ELSD -Validarea candidaţilor

Candidaţii furnizaţi de procedura de selecţie a candidaţilor trebuie să treacă de faza de validare pentru a fi consideraţi candidaţi semnificativi. Pentru a valida un arc circular/eliptic, vom utiliza acelai raţionament ca i pentru segmente de dreaptă din LSD. Pentru aceasta, numărul de pixeli aliniaţi cu arcul de cerc/elipsă sunt număraţi pentru a evalua probabilitatea ca structura analizată să apară accidental într-o imagine nestructurată de aceeai dimensiune. În cazul unui arc de cerc, un pixel este considerat aliniat dacă dreapta suport a vectorului gradientului său are aceeai direcţie, cu o precizie dată δ, ca i dreapta ce trece prin acel pixel i centrul cercului estimat. Pentru un arc eliptic, un pixel este aliniat dacă orientarea gradientului său verifică proprietatea focală a elipsei, adică dacă dreapta suport a vectorului gradientului său are aceeai direcţie, cu o precizie dată δ, ca i bisectoarea unghiului format de dreptele care trec prin pixel i prin focarele elipsei. Numărul de candidaţi potenţiali de tip dreptunghi într-o imagine de dimensiune n × m este N c = (nm) 5/2 , deoarece un dreptunghi are cinci grade de libertate (centru, orientare, lungime i lăţime), fiecare adăugând (nm) 1/2 candidaţi posibili. Similar, numărul de candidaţi potenţiali de tip arc circular este de ordinul (nm) 3 : o coroană circulară are ase grade de libertate: centru, rază, unghiuri ce delimitează arcul i laţimea coroanei. Pentru un arc eliptic, N c este de ordinul (nm) 4 , corespunzând celor opt grade de libertate ale unei coroane eliptice: centru, axe, orientare, unghiuri ce delimitează arcul i lăţimea coroanei. Dacă un candidat conţine l pixeli, dintre care k sunt aliniaţi, în funcţie de tipul său, testul de validare este:

   NFA dreptunghi = (nm) 

ELSD -Selecţia modelului

Candidaţii declaraţi semnificativi în etapa de validare a contrario trebuie să treacă printr-o etapă de selecţie a modelului, cu scopul de a câtiga poziţia de cea mai semnificativă interpretare a datelor de intrare. Alegem să folosim NFA-ul unui candidat ca i criteriu de selecţie a modelului: candidatul posesor al celui mai mic NFA este cel mai semnificativ i va fi reţinut ca interpretare validă a pixelilor daţi. Această alegere este în acord cu teoria statistică a selecţiei modelului [START_REF] Hastie | [END_REF], Duda 2001], ce impune stabilirea unui echilibru de către criteriul de selecţie între eroarea de estimare i complexitatea modelului. Pentru evaluarea cantitativă a acestei alegeri, o comparaţie între NFA i un criteriu de selecţie clasic a fost realizată. Studiul pune faţă în faţă două formulări ale NFA-ului (una discretă i una continuă [Grompone von Gioi 2009]) cu criteriul lui Akaike (AIC ) [Akaike 1973]. NFA, în special în forma sa continuă, a demonstrat performanţe comparabile cu AIC. În concluzie, detectorul implementat poate fi aplicat direct pe orice tip de imagine, fără a necesita o detecţie de contururi prealabilă i fără reglaj de parametri, minimizând în acelai timp numărul detecţiilor false. ELSD produce o interpretare a unei imagini în termeni de segmente de dreaptă, arcuri circulare i eliptice, de calitate satisfăcătoare pe orice tip de imagine, indicând piste pentru vectorizarea imaginilor. Totui, detectorul propus are dificultăţi în interpretarea formelor poligonale, indicând necesitatea considerării unei noi familii de primitive geometrice, i anume, formele poligonale.

B.4 Semnătura Codului de bule TM

Procesul de identificare a unui Cod de bule TM revine în final la stabilirea unei echivalenţe proiective între două imagini ale aceluiai Cod de bule TM , sub ipoteza că imaginile sunt obţinute cu ajutorul unor camere sténopé, adică la a stabili că cele două imagini sunt legate printr-o transformare proiectivă 2D (omografie). Corespondenţa dintre două imagini poate fi evaluată folosind proprietăţile metrice ale Codului de bule TM (de exemplu, poziţia sau dimensiunea bulelor). To-tui trebuie ţinut cont de distorsiunile geometrice introduse în imagini de către transformarea proiectivă ce stă la baza procesului de formare a imaginii, ce nu prezervă proprietăţile metrice (unghiuri, distanţe, paralelism). Astfel, două imagini ale aceluiai Cod de bule TM obţinute cu camere diferite nu sunt direct comparabile din punct de vedere metric. Două direcţii pot fi abordate în acest caz. Pe de o parte, distorsiunile geometrice pot fi corectate cu ajutorul tehnicilor de rectificare, ce recuperează structura euclidiană 2D a unui plan, ceea ce furnizează imagini comparabile. A doua posibilitate este să se studieze această corespondenţă folosind proprietăţi ce nu sunt afectate de transformarea proiectivă, adică proprietăţi invariante la perspectivă. Din motive de eficacitate i având în vedere constrângerile problemei -semnătura trebuie să aibă o formă vectorială pentru a fi compatibilă cu funcţiile de hash -alegem ce-a de-a doua posibilitate i vom descrie o procedură de calcul a unei semnături proiectiv invariante, presupunând că Codul de bule TM poate fi aproximat printr-o configuraţie de cercuri coplanare în planul euclidian. Vom introduce mai întâi o tehnică de calcul a unui cuplu de valori invariante pentru două cercuri, pe care o vom aplica apoi recursiv întregii configuraţii de bule (cercuri).

Vom numi plan de referinţă planul euclidian 3D, suport al Codului de bule TM i plan imagine planul captorului, ce susţine imaginea Codului de bule TM . Pentru entităţi aparţinând planului imagine vom adăuga sistematic ˜în notaţii.

În planul de referinţă, ecuaţia unui cerc F , centrat în (x c , y c ) i de rază r, se poate scrie în formă matricială ca p C F p = 0, cu p = (x, y, 1) fiind vectorul de coordonate omogene ale unde CF este matricea imaginii cercului, ∼ denotă egalitatea în sens proiectiv, i H este matricea 3 × 3 a unei omografii quasi-afine ce proiectează punctele planului de referinţă în imaginile lor aparţinând planului imagine. CF în (B.16) ar putea reprezenta matricea unei elipse, a unei hiperbole sau a unei parabole. În cazul nostru, asumând doar omografiile quasi-afine, H proiectează implicit cercurile în elipse [Hartley 2004, p. 515]. Fiindcă proprietăţile clasice ale unui cerc nu sunt prezervate prin transformări proiective, ne vom interesa de proprietăţile relative a două cercuri (distanţă relativă, rază relativă) i vom arăta că unele dintre ele sunt prezervate prin transformări proiective.

Poziţie relativă i rază relativă a două cercuri Enunţăm două proprietăţi P 1 , P 2 invariante ale planului proiectiv care suportă tehnica propusă: P 1 Setul de valori proprii generalizate ale perechii de matrici (C 1 , C 2 ), asociate la două conici generale F 1 i F 2 este invariant prin transformări proiective, la un factor de multiplicitate [START_REF] Mundy | [END_REF]].

P 2 Semnătura absolută Σ a unei conice degenerate D este invariantă prin transformări proiective [Golub 1996, p. 403].

Vom da acum calculul simbolic pentru a demonstra invarianţa prin transformări proiective a distanţei relative i a razei relative a două cercuri. Pentru simplificarea calculului, vom considera reprezentări canonice pentru cercurile 

F 1 i F 2 : C 1 =   1 0 0 0 1 0 0 0 -r 2 1   , i C 2 =   1 0 -δ 0 1 0 -δ 0 δ 2 -

Extragerea semnăturii

Secţiunea precedentă a introdus o tehnică ce permite calculul unei perechi de valori invariante pentru două cercuri coplanare. Acest rezultat va fi utilizat împreună cu o a treia proprietate invariantă P 3 a planului imagine cu scopul de a aplica procedura propusă asupra întregii configuraţii de cercuri coplanare.

P 3 Înfăurătoarea convexă a unui ansamblu de puncte coplanare este invariantă prin transformări quasi-afine [Hartley 2004, p. 515].

Algoritmul propus reprezintă Codul de bule TM prin înveliuri convexe succesive (ale căror structuri sunt invariante prin perspectivă în virtutea lui P 3 ). Apoi, se calculează perechile (d, r), date de (B.23), pentru fiecare pereche de cercuri vecine în înveliurile convexe. La final, semnătura Codului de bule TM este obţinută concatenând aceste perechi (d, r).

În concluzie, metoda de extracţie a semnăturii este bazată exclusiv pe proprietăţile invariante P 1 , P 2 , P 3 . În consecinţă, semnătura însăi va fi proiectiv invariantă, permiţându-ne să ne dispensăm de rectificarea metrică.

Algoritmul vizează identificarea unui Cod de bule TM prin eliminarea progresivă a potenţialilor candidaţi. Semnătura va fi reprezentată prin mai multe subsemnături, câte una pentru fiecare înveli convex. Interogarea bazei de date începe cu înveliul convex extern. La sfâritul acestei etape, vom păstra ca i potenţiali candidaţi doar cei mai apropiaţi n vecini. Procesul va fi repetat folosind următorul înveli convex până vom obţine codul căutat. Interogarea bazei de date se va face considerând toate permutările ciclice ale subsemnăturilor, pentru a gestiona eventualele rotaţii.

Folosirea înveliurilor convexe face ca procedura propusă să fie mai puţin robustă la zgomot, deoarece structura înveliurilor convexe poate suferi modificări din cauza unor mici erori în detecţia elipselor, ce poate antrena modificări radicale în semnătura finală.

Metoda de calcul propusă pentru calculul semnăturii permite identificarea de configuraţii de cercuri coplanare în imagini făcute sub diferite unghiuri de vedere. Semnătura propusă este invariantă proiectiv i are o formă vectorială compatibilă cu utilizarea funcţiilor de hash LSH. Abordarea propusă reduce complexitatea procesului de identificare i oferă o posibilitate de gestiune a rotaţiei dintre două imagini. Testele efectuate pe imagini reale i de sinteză arată robusteţea la zgomot i performanţele în timp de calcul. Totui, stabilitatea înveliurilor convexe rămâne o problemă deschisă.

B.5 Aplicaţie finală: Identificarea Codului de bule TM Descriem succint procesul complet de autentificare a sticlelor de vin folosind Codul de bule TM printr-un protocol "1-la-N". Procesul începe cu citirea Codului de bule TM , folosind o cameră ordinară, necalibrată (camera unui telefon mobil de exemplu) a cărei poziţie nu este fixă faţă de Codul de bule TM . La autentificare, sistemul trebuie să verifice că eticheta care trebuie identificată este validă, adică trebuie să verifice că este un adevărat cod 3D i nu o fotografie sau o copie a unui Cod de bule TM . În acest scop, am conceput un sistem simplu de iluminare controlată colorată, ce induce reflexii colorate pe bordul bulelor. Simpla prezenţă a acestor reflexii confirmă că ne aflăm în prezenţa unui cod 3D valid. În plus, localizarea acestor reflexii ar putea permite extragerea poziţiei bulelor chiar în imagini de rezoluţie redusă, folosind operaţii simple de morfologie matematică. O dată în posesia unei imagini a unui Cod de bule TM (în niveluri de gri), sistemul execută extracţia datelor caracteristice, i anume efectuează detecţia bulelor (elipse) i a reperului liniar (segmente de dreaptă), folosind detectorul descris în secţiunea B.3. Parametrii elipselor sunt folosiţi apoi de către procedura de calcul a semnăturii invariante descrisă în secţiunea B.4. În cele din urmă, autenticitatea obiectului dat este verificată interogând o bază de date pentru a recupera, dacă există, Codul de bule TM corespunzător. Pentru eficienţă, interogarea bazei de date este efectuată folosind tehnici de hash ce prezervă localitatea [Indyk 1998[START_REF] Andoni | [END_REF]].

B.6 Epilog

Proiectul Geowine i, implicit, identificarea Codului de bule TM , a generat o serie de aspecte interesante pentru comunitatea tiinţifică a viziunii artificiale. Scopul acestei teze este să furnizeze baza matematică teoretică ce ar putea conduce la crearea unui procedeu automat de identificare a unui Cod de bule TM într-un protocol "1-la-N".

Procesul de identificare a Codului de bule TM înseriază mai multe etape: citirea codului, extracţia de primitive geometrice, calculul semnăturii, i interogarea bazei de date pentru a recupera codul corespondent. Atenţia noastră s-a concentrat pe părţile a doua i a treia, în timp ce pentru ultima etapă, am recomandat doar utilizarea unei anumite familii de funcţii de hash, i anume funcţiile hash care păstrează localitatea.

Pentru etapa de extracţie de primitive, contribuţia principală a fost implementarea unui detector de primitive geometrice, bazat pe teoria a contrario, care este capabil să detecteze simultan segmente de dreaptă i arcuri de cerc/elipsă. Avantajul major al detectorului propus, comparativ cu algoritmii existenţi, este controlul formal al numărului de detecţii false, realizat fără ajustare de parametri. În plus, acurateţea arcelor de cerc/elipsă detectate a fost abordată i am introdus o metodă de estimare de cercuri/elipse neiterativă, ce folosete toată informaţia
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 11 Figure 1.1: Different versions of a Bubble Tag TM
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 12 Figure 1.2: A Bubble Tag TM and its DataMatrix identifier.
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 13 Figure 1.3: Block diagram of image hashing process
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 21 Figure 2.1: Left: point conic. Right: dual conic (defined on lines).

Figure 2 . 3 :

 23 Figure 2.3: Left: The power of a point to a circle h = s 2 -r 2 . Right: |h| for a point moving from the centre of a circle of radius 10 towards the exterior.
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 24 Figure 2.4: Left: The pole-polar distance. Right: Rosin distance.
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 2526 Figure 2.5: Up: A point moving counterclockwise (starting from the x-axis) along an ellipse of semi axes 60 and 40 respectively, on the interior side (black), and on the exterior side (red) at a distance of d = 5. Down left: The pole-polar error distance. Down right: the Rosin error distance. In both cases, the error is more important when the point lies on the interior side of the ellipse.
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 31 Figure 3.1: Classification of conic fitting methods.

  of the conic F . The different elements of C F , stacked in the 6-vector θ =(a, b, c, d, e, f ) 

Figure 3 . 2 :

 32 Figure 3.2: Constraint entailed by the gradient orientation: the polar of the point p i is orthogonal to the gradient orientation.

  4 and theGuennebaud et al.' method [Guennebaud 2007], described above, were considered. The former (called Taubin in figure3.5) stands for one of the most efficient direct algebraic estimator among the classic operators, i.e. that use only the positional constraint, whereas the latter (called GradDer ) uses the derivative and the positional constraints sequentially, not simultaneously as the proposed one (called GradTan).Tests were carried out on real images to assess the performance of the proposed method on incomplete data: only points distributed along arcs of ∼ 45 • are considered. A printed paper containing drawn circles of different radii (figure3.4) was photographed in different lighting conditions, yielding 250 small images, each containing one circle. The radii values vary between 5 and 90 pixels.
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 34 Figure 3.4: Test image
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 41 Figure 4.1: Circle detection on a noise image (512 × 512 pixels) using the Hough-based algorithm available in the opencv library (www. opencv. com ), with different parameter tuning: when the circle radii are limited to 20 -50 pixels, no detection is reported (left figure), whereas when this parameter is not set (the default range is between 1 and image_width), several false detections are reported (right figure).

Figure 4 .

 4 Figure 4.2 illustrates a toy example, taken up from[Desolneux 2007, p. 41]. It presents the Helmholtz principle applied to a problem of dot alignments, which can be stated as follows. Given a set of points in a digital image, automatically compute a family of detection thresholds that allows reporting the meaningful dot alignments. According to the Helmholtz principle, any candidate that is likely to occur in a noise image should be rejected.A dot alignment s will be considered as meaningful if it contains a sufficient number of dots that all fall into a strip of a given width d. The a contrario model H 0 in this case is that dot positions are uniform, independent random variables, namely a uniform spatial distribution. A candidate alignment will be accepted as valid when the test (4.3) stands. The average number

Figure 4 . 2 :

 42 Figure 4.2: Dot alignment example, illustrating the Helmholtz principle.

4 .

 4 FWER = P H 0 [V ≥ 1] (Family Wise Error Rate) -the probability of accepting at least one false positive; 5. PFER = E[V ] (Per-Family Error Rate) -the expectation of the number of false positives. 6. FDR = E[ V V +S ] (False Discovery Rate) -the proportion of false positives among the validated candidates.
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 43 Figure 4.3: The microarray technology (image reproduced by courtesy of M. Madan Babu).
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 44 Figure 4.4: Example of Gaussian noise image and its gradient orientations
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 45 Figure 4.5: A candidate line segment s of length 7, containing 4 aligned pixels, marked in green.

2 foreach 3 foreach 5 Add

 235 It was intensively tested by Grompone et al. and used also by Burns et al. Nevertheless, Grompone von Gioi et al. use multiple precision values in their algorithm, for refinement purposes. Input: Seed pixel p s , gradient orientations image Angle, status image indicating used pixels used. Output: List of connected pixels R sharing the same gradient orientation up to a precision δ. R ← p s ; 1 θ R ← Angle(p s ); Pixel p in R do Neighbour p of p not used and whose magnitude is ≥ ρ do 4 if isAligned(p,θ R ,δ) then
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 4 Figure 4.6: A support region is determined by its centre, length, orientation, and width.
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 47 Figure 4.7: Chaining procedure used by the ELSD candidate selection.
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 48 Figure 4.8: In the neighbourhood of the right rectangle end, represented here by p e r , the pixel possessing the maximal gradient magnitude and whose orientation differs with no more than π/2 with respect to θ ⊥ is chosen as new pixel seed p s r .

Figure 4 .

 4 Figure 4.10: Left: A pixel p is aligned with a circular arc if the support line of its gradient vectorx(p) has the same direction as the line passing through the centre of the circle O and the pixel p, up to a given precision δ. Right: A pixel p is aligned with an elliptical arc if the support line of its gradient vector x(p) has the same direction, up to a precision δ, with the bisector of the angle formed by the lines passing through the focus F and the pixel p, and respectively through the focus F and the pixel p.

Figure 4 .

 4 Figure 4.11: Left: A circular support ring is determined by its centre, radius, delimiting angles, and width. Right: An elliptical support ring is determined by its centre, axes, orientation, delimiting angles, and width.

4 [ 5 NFAAlgorithm 3 : 2 [ 4 [ 5 NFAAlgorithm 4 :

 4532454 l c , k c ] = region_grow(pixel seed , α startc , α endc , d intc , d extc , Angle); circle =nfa(l c , k c , N tc ) ; 6 Circular Ring Validation Input: List R of pixels, ellipse parameters E[e x , e y , a, b, θ], gradient orientations image Angle, N t e . Output: NFA ellipse , e[e x , e y , a, b, α starte , α ende , θ, wdth e ]. ang_coord e = angular_coordinates(R, E); 1 [α start e , α ende ] = delim_angles(ang_coord e ); d inte , d exte ] = Rosin_distance(R, E); 3 pixel seed ← R[f irst]; l e , k e ] = region_grow(pixel seed , α start e , α ende , d int e , d ext e , Angle); ellipse =nfa(l e , k e , N te ) ; 6 Elliptical Ring Validation

Figure 4

 4 Figure 4.12 shows the minimum number k min of aligned pixels that a length 17 l circular/elliptical arc belonging to an image of n × m pixels must contain in order to be meaningful. Here, we assume that the circular/elliptical support rings have fixed width, width = 1, thus

Figure 4 .

 4 Figure 4.13: The bias-variance tradeoff. In green: the true model. Left: example of data underfitting. Right: example of data overfitting.

Figure 4 .

 4 Figure 4.14 shows the behaviour of the test and training error, as the model complexity varies. The training error tends to decrease whenever the model complexity is increased, i.e.the data are fitted harder. However, with overfitting, the model adapts itself too closely to the training data, and will not generalise well, yielding an increased test error, because of the large variance. In contrast, if the model is not complex enough, it will underfit the input data, having an important bias. Again, the generalisation will be poor.

Figure 4 .

 4 Figure 4.14: Behaviour of test sample and training sample error as the model complexity is varied.

  where η k,l ≡ P[k successes in l trials, l th trial fails], and ξ k,l ≡ P[k successes in l trials, l th trial succeeds].

Figure 4 .

 4 Figure 4.15: A sequence of trial outcomes

Figure 4 .

 4 Figure 4.16: Left image: The probability distribution computed with Ladd's algorithm, for different values of P 11 . For P 11 = δ, the distribution computed with Ladd's algorithm is identical with the binomial distribution (green). Right image: The minimum number k min of aligned points, observed in a 1-meaningful line segment in an image of 512 × 512, for a precision δ = 1/8.
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 4 Figure 4.17: First row: original image. Second row: comparison between the detection results obtained with Markov NFA (left) and binomial NFA (right).

Figure 4 .

 4 Figure 4.18 evaluates the robustness to noise of these algorithms. Even for small Gaussian noise levels, Hlines reports false positives. RHTcircle is more robust, as it takes into account the gradient orientation in the voting procedure. Both detectors, Hlines and RHTcircle, report

Figure 4 .

 4 Figure 4.18: Detection results on a simple image of geometric shapes (square, circle, ellipse) for different noise levels. From left to right: original image, edge map, Hline, RHTcircle, RHTellipse, Etemadi (the ends of the correct detections are marked in green, the rest are false positives), ELSD.

Figure 4 .

 4 Figure 4.19: Detection results on an image of overlapping geometric shapes at different scales (521×457 pixels and 66×58 pixels). From left to right: original image, edge map, Hline, RHTcircle, RHTellipse, Etemadi, ELSD.

Figure 4 .

 4 Figure 4.20: More complex combination of geometrical features. From left to right: original image, edge map, Hline, RHTcircle, RHTellipse, Etemadi, ELSD.

Figure 4 .

 4 Figure 4.21: Example of a difficult shape. From left to right: original image, Etemadi, ELSD for two different scales.

Figure 4 .

 4 Figure 4.22: a), b) Original image of a circular ring and its edge map. c) RHTcircle detects only one circle, it cannot handle concentric circles. d) RHTellipse detects correctly the two circles. e)Etemadi: one circle, one circular arc and one short line segment. f ) ELSD: one complete circle and one circular arc.

Figure 4 .

 4 Figure 4.23: a), b) Original image of a set of 14 circles and its edge map. c) RHTcircle misses one circle (last row). d) RHTellipse detects correctly 11 circles, the others are imprecise. e)Etemadi: 10 complete circles, 4 circular arcs, and 12 line segments. f ) ELSD: 6 ellipses, 8 circles, and 2 line segments.

Figure 4 .

 4 Figure 4.24: First row: original image (1600 × 1200 pixels) of a set of 25 circles and its edge map. Second row: RHTcircle fails to detect circles of different radii and generates equally one false positive. RHTellipse detects correctly larger circles, the smaller are missed. e)Etemadi: 26 circular arcs, and 29 line segments. f ) ELSD: 8 ellipses, 24 circular arcs, and 20 line segments.The noise affects more the orientations of pixels with low gradient (right column), breaking the convexity of the shape. Some circles are seen as a set of line segments and circular arcs.

Figure 4 .

 4 Figure 4.25: Left: Same image (1600 × 1200 pixels) of a set of 25 circles. Right: ELSD: 21 ellipses, 9 circles, and 3 line segments. Before applying the detector, a Gaussian smoothing, followed by subsampling is performed, denoising the gradient orientations.

Figure 4 .

 4 Figure 4.26: Eight computer generated images of a marker containing concentric circles, together with their edge maps and the result of ELSD. The results of the RHTcircle/ellipse and Etemadi are not satisfactory, also (mostly) because the edge maps have poor quality.

Figure 4 .

 4 Figure 4.27: Example of a "difficult" combination of linear and circular/elliptical shapes. First row: original image and its edge map. Second row: ELSD result (4 circular arcs and 3 line segments -the upper circular part is oversegmented) and RHTellipse result (3 ellipses).

Figure 4 .

 4 Figure 4.28: Bubble Tag TM image (750×670 pixels), together with its edge map and the raw result of ELSD. RHTellipse reported no detection on this image. The results of ELSD are not completely satisfactory, and they require a post-processing step, as the bubbles are often represented by fragmented circular/elliptical arcs. This is due to the low quality of the image. ELSD execution time: ∼5s.
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 4 Figure 4.29: First row: Zoom on a Bubble Tag TM image, together with its edge map. Second row: the result of ELSD and of RHTellipse.

Figure 4 .

 4 Figure 4.30: a), b), c) Natural image and its edge maps, obtained with different thresholds for the edge detector. d) ELSD: 1 ellipse, 1 circular arc and 18 line segments. e) RHTellipse result obtained on the edge map from b), f ) RHTellipse result obtained on the edge map from c). The parameters of the edge detector are crucial in obtaining a reliable detection result, and they need to be conveniently tuned for each (type of ) image.
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 4 Figure 4.31: Natural image (1600 × 1200 pixels). ELSD reports 27 ellipses, 133 circular arcs, and 424 line segments. Execution time: ∼ 3s. RHTellipse reported no detection, even after 1000 iterations.

Figure 4 .

 4 Figure 4.32: More results of ELSD on natural images.

Figure 4 .

 4 Figure 4.33: More results of ELSD on natural images.
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 51 Figure 5.1: Relative position of two circles.

4 end 5 sort λk∈{1, 2 ,Algorithm 5 :

 4525 .13) Input: The two matrices C1 and C2 representing the images of two coplanar circles. Output: The pair (d, r) yielding the relative position and radius of the circles (see text). λk∈{1,2,3} = generalised_eigenvalues ( C1 , C2 ); 1 for k = 1..3 do 2 compute the (ordinary) eigenvalues of Dk = C1 -λk C2 ; 3 compute Σ( Dk ) = |η -ν|, where η and ν count the positive and negative eigenvalues; 3} such that the inequality (5.22) stands; 6 rename λ1 and λ2 as λ+ and λ-; 7 compute (d, r) according to (5.14); 8 Computation of the double invariant (d, r)

Figure 5 . 2 :

 52 Figure 5.2: Bubble Tag TM representation.

Input: 2 foreach c i do 3 foreach

 23 Bubble Tag TM image I Output: The corresponding match from the database Detect ellipses in I; 1 Compute the convex layers c i of the ellipse centres; pair of ellipses (F ij , F ij+1 ) do 4 compute (d j , r j ); Bubble Tag TM Identification
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 54 Figure 5.4: "Coin Tag". Left: Reference image. Right: Query image.
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 62 Figure 6.2: Bubble Tag TM image.

Formulation

  classique du problème.Soit p = (x, y) le vecteur de coordonnées cartésiennes d'un point dans le plan euclidien et F une conique affine (ellipse, hyperbole ou parabole), représentée par une équation polynomiale implicite du second ordre, écrite sous forme matricielle : p C F p = 0, de la conique F . Les éléments de C F , empilés dans le vecteur θ = (a, b, c, d, e, f ) sont liés par une contrainte notée h(θ) = 0.Étant donnés n points {p i } 1≤i≤n , le problème d'ajuster aux données la conique F dans le sens des moindres carrés (MC ) peut être énoncé comme:p i , C F )) 2 , tel que h(θ) = 0, (A.2)où δ() est une distance d'erreur entre les points d'entrée (x i , y i ) et la courbe estimée. Dans le contexte de notre travail, nous considérons une contrainte supplémentaire, à savoir une consistance photométrique de laquelle nous attendons un comportement raisonnable de la méthode d'ajustement lorsque les données d'entrée sont incomplètes.

3 )

 3 où ν(p) = (p ⊗ p) J = [x 2 , y 2 , xy, x, y, 1] représente la surface de Veronese d'un point p dans l'espace projectif à 5 dimensions et J est la matrice

F

  et le problème d'optimisation est: (p i , θ) 2 = Dθ 2 , tel que h(θ)

  les paramètres géométriques d'un cercle -centre (x c , y c ) et rayon r-et ceux algébriques est donnée par : x c = -d 2a , y c = -e 2a , r = d 2 +e 2 4a 2 -f a . Une propriété essentielle de (A.6) est qu'elle décrit un cercle C quand a = 0 et une droite quand a = 0. Nous donnons maintenant une interprétation projective de cette propriété, qui n'a pas été mentionnée par les auteurs précités, mais qui explique pourquoi elle est valide. L'équation (A.6) s'écrit sous forme matricielle comme p C C p = matrice du cercle C. Quand a = 0 la matrice C C dégénère en une matrice de rang 2. Si on considère l = (d, e, f ) comme le vecteur d'une droite affine l, alors il est simple de vérifier que si a = 0, on a

  β = (a, d, e, f ) contient les coefficients algébriques inconnus du cercle.Ajustement algébrique des coniques en utilisant l'orientation du gradientConsidérons la bijection entre les points p et les droites l du plan projectif, donnée par la relation pôle-droite polaire par rapport à la conique C, dont la matrice est C :Cp ∼ l.(A.9)

  Formularea clasică a problemei de estimareFie p = (x, y) vectorul de coordonate carteziene ale unui punct în plan euclidian i F o conică afină (elipsă, hiperbolă, parabolă), reprezentată printr-o ecuaţie polinomială de ordin doi, scrisă sub formă matricială ca: p C F p = 0, conicei F . Elementele lui C F , stocate în vectorul θ = (a, b, c, d, e, f ) sunt legate printr-o constrângere notată h(θ) = 0.

F

  3) este distanţa algebrică dintre punctul p i conica F . În sensul celor mai mici pătrate, trebuie să rezolvăm (B.2) minimizând suma pătratelor distanţelor algebrice. Funcţia obiectiv a problemei de optimizare din (B.2) devine :F = n i=1 (F (p i , θ)) 2 = n i=1 (ax 2 i + bx i y i + cy 2 i + dx i + ey i + f ) 2, i problema de optimizare se rescrie ca: (p i , θ) 2 = Dθ 2 , astfel încât h(θ)

a(x 2 +

 2 y 2 ) + dx + ey + f = 0. (B.6) Conversia dintre parametrii geometrici ai unui cerc -centru (x c , y c ) i rază r-i cei algebrici este dată de relaţiile : x c = -d 2a , y c = -e 2a , r = d 2 +e 2 4a 2 -f a . O proprietate esenţială a ecuaţiei (B.6) este că ea descrie un cerc C dacă a = 0 i o dreaptă când a = 0. Vom da în continuare o interpretare proiectivă a acestei proprietăţi, care nu a fost expusă de autorii mai sus-menţionaţi, dar care aduce o justificare a validităţii ei. Ecuaţia (B.6) se scrie sub formă matricială ca p C C p = 0, unde C C = C. Când a = 0 matricea C C degenerează într-o matrice de rang 2. Considerând l = (d, e, f ) ca fiind vectorul unei drepte afine l, atunci este simplu de verificat ca dacă a = 0, avem

  β = (a, d, e, f ) conţine coeficienţii algebrici necunoscuţi ai cercului.

2 

 2 fiind matricea cercului. Imaginea unui cerc ce suferă o transformare proiectivă este dată de:CF ∼ H -C F H -1 ,(B.16) 

Fie (F 1 ,

 1 F 2 ) o pereche de cercuri ce generează o familie liniară de cercuri notată {F 1 , F 2 }, conţinând cercurile ale căror matrici au formaC(λ) = C 1 -λC 2 , unde C 1 i C 2 sunt matricile euclidiene ale lui F 1 i F 2 , iar λ ∈ C ∪ {∞} este un parametru, cu convenţia C(∞) = C 2 . Cele trei soluţii reale λ 1 , λ 2 , λ 3 pentru necunoscuta λ în ecuaţia caracteristică det(C 1 -λC 2 ) = 0 (B.17)reprezintă valorile proprii generalizate ale perechii de matrici (C 1 , C 2 )[Golub 1996, p. 375].Familia {F 1 , F 2 } conţine trei cercuri degenerate D k , k ∈ {1, 2, 3}, ale căror parametri λ sunt valorile proprii generalizate λ k , k = {1, 2, 3} ale (C 1 , C 2 ). Fie D k matricea euclidiană a lui D k . Atunci D k = C 1 -λ k C 2 , k = {1,2, 3}. Semnătura absolută a unei conice degenerate este dată de Σ(D k ) = |η -ν|, unde η i ν reprezintă numărul de valori proprii strict pozitive i negative ale D k . Dacă D k este o matrice complexă, prin convenţie, Σ(D k ) = ∞. Aceleai definiţii se aplică pentru imaginea familiei {F 1 , F 2 } prin H.

r 2 2 

 2 . Deci, F 1 este un cerc de rază r 1 > 0, centrat în origine O i F 2 este un cerc de rază r 2 > 0, centrat în (0, δ), cu δ ≥ 0.Folosind Maple, calculăm expresiile simbolice ale valorilor proprii generalizate λ ∈ C 3 , ale (C 1 , C 2 ):β ≡ (δ + r 1 + r 2 )(δ + r 1 -r 2 )(δ -r 1 + r 2 )(δ -r 1 -r 2 ) ∈ R. (B.20) Fie d = δ r 1 distanţa relativă i r = r 2 r1 raza relativă a celor două cercuri. Ideea principală este că putem recupera valorile perechii (d, r) plecând de la valorile proprii generalizate ale ( C1 , C2 ), unde C1 i C2 sunt matricile imaginilor cercurilor F 1 i F 2 . Calculăm acum valorile proprii generalizate ale ( C1 , C2 ). Folosind (B.16) i P 1 putem scrie λ = sλ, (B.21) unde s este un factor de multiplicitate. Considerând λ = ( λ1 , λ2 , λ3 ) , i eliminând s din (B.21), obţinem sistemul:( λ1 + λ2 )/λ 3 = (r 2 -d 2 + 1)/r 2 ( λ1 -λ2 )/λ 3 = √ β/r 2 , (B.22)a cărui soluţie este:d = λ1 λ2 ( λ1 -λ3 )( λ2 -λ3 )/| λ1 λ2 | r = | λ3 |/ λ1 λ2 . (B.23)Ecuaţia (B.23) are o importanţă majoră deoarece dă perechea (d, r) (necunoscută dacă nu dispunem de o rectificare metrică a planului conţinând cele două cercuri) ca funcţie de valorile proprii generalizate λ, ce pot fi obţinute uor detectând elipsele în imagine i rezolvând ecuaţia (B.17). Un aspect crucial este separarea valorilor proprii generalizate λ1 , λ2 , λ3 . Prin calcul simbolic, putem enunţa următoarea inegalitate invariantă:Σ( C1 -λ± C2 ) ≥ 1 ≥ Σ( C1 -λ3 C2 ),(B.24) care permite distingerea celor trei valori proprii generalizate. Dacă valorile proprii generalizate λ1 , λ2 , λ3 sunt separate astfel încât (B.24) să fie validă, atunci valorile d i r, date de (B.23), sunt invariante prin transformări proiective în virtutea lui P 1 .

Table 3 . 1 :

 31 Estimation error on ellipse centre and axes.

Table 3 . 2 :

 32 Estimation error on ellipse centre and axes for incomplete data. algebraic estimators, for simplicity and efficiency reasons. To improve the accuracy of the direct algebraic fitting for circles and ellipses on incomplete data, we presented a simple technique that exploits simultaneously the positional and the tangential information of the given points.The tests carried out on simulated and real images show the efficiency of the proposed fitting operator, compared to similar works from the literature.

	Mean (maximum) error on the estimated centre for incomplete data (noise 2%)
	Method	75% of contour	50% of contour
	GradTan 0.1136(0.4465)	0.5972(4.8615)
	Ouellet	0.2018(1.0942)	3.4944(8.3421)
	Mean (maximum) error on the estimated axes for incomplete data (noise 2%)
	Method	75% of contour	50% of contour
	GradTan 0.5159(0.9927)	0.9068(5.1210)
	Ouellet	0.8299(1.5326)	4.6549(12.0225)

Table 4 . 1 :

 41 . The explanations following each table are important for their interpretation. The proportion of elliptical models correctly designated by the three model selection criteria: AIC, NFA d , and NFA c on 200 tests.

	Ellipse	AIC	NFA d NFA c
	1/4 of contour	23%	13%	18%
	1/2 of contour 100 % 84 %	99%
	entire contour 100% 100% 100%

Table 4 . 2 :

 42 The proportion of circular models correctly designated by the three model selection

		AIC	NFA d NFA c
	1/16 of contour	0%	0%	0%
	1/8 of contour	83%	77%	88%
	1/4 of contour	100%	85%	95%
	1/2 of contour 100 % 100 % 100%
	entire contour	100% 100% 100%

criteria: AIC, NFA d , and NFA c on 200 tests.

Table 4 . 3 :

 43 The proportion of linear models correctly designated by the three model selection criteria: AIC, NFA d , and NFA c on 200 tests.

  Les candidats déclarés significatifs dans l'étape de validation doivent passer par une phase de sélection de modèle, pour gagner la position du candidat le plus significatif. À cette fin, le NFA d'un candidat est considéré comme critère de sélection de modèle : le candidat possédant le NFA le plus petit est le plus significatif et retenu comme interpretation valide pour les pixels donnés. Ce choix est en accord avec la théorie de la sélection de modèle[START_REF] Hastie | [END_REF], Duda 2001], où le critère de sélection doit minimiser l'erreur d'ajustement, tout en pénalisant la complexité du modèle. Pour évaluer quantitativement ce choix, une comparaison du NFA avec un critère de sélection de modèle classique a été mise en place. L'étude confronte deux formulations du NFA (une discrète et une continue [Grompone von Gioi 2009] ) avec le critère de Akaike (AIC )[Akaike 1973]. NFA, surtout dans sa forme continue, a des performances comparables à AIC.Somme toute, le détecteur implémenté peut être appliqué directement sur toute type d'image, sans détection préalable de contours et sans réglage de seuils de détection, tout en minimisant le nombre de fausses détections. ELSD produit une interpretation de l'image en termes de segments de droites, arcs de cercle et arcs d'ellipse de qualité satisfaisante sur tout type d'image, indiquant des pistes pour la vectorisation d'images. Tout de même, le détecteur a des difficultés à interpreter correctement les polygons, indiquant la nécessité de considérer une nouvelle famille de primitives géométriques, notamment les formes polygonales.

	NFA cercle NFA ellipse	= (nm) 4 B(l, k, δ) ≤ 1, = (nm) 3 B(l, k, δ) ≤ 1,	pour arc d'ellipse. pour arc de cercle,	(A.15)
	ELSD -Sélection de modèle		

5/2 

B(l, k, δ) ≤ 1, pour rectangle,

  CF est la matrice de l'image du cercle, ∼ denote l'égalité au sens projectif, et H est la matrice 3 × 3 de l'homographie quasi-affine qui projette les points du plan de référence en leurs images dans le plan image. CF dans (A.16) pourrait représenter la matrice d'une ellipse, d'une parabole ou d'une hyperbole. Dans notre cas, n'assumant que les homographies quasi-affines, H projette implicitement les cercles en ellipses[Hartley 2004, p. 515]. Puisque les propriétés classiques d'un cercle ne sont pas préservées sous transformations projectives, nous nous intéresserons aux propriétés relatives de deux cercles (distance relative, rayon relatif) et nous montrons qu'elles sont préservées sous transformations projectives. Soit (F 1 , F 2 ) une paire de cercles, génératrice de la famille linéaire de cercles, notée {F 1 , F 2 }, dont les matrices ont la formeC(λ) = C 1 -λC 2 , où C 1 et C 2 sont les matrices euclidiennes de F 1 et de F 2 , et λ ∈ C ∪ {∞} est un paramètre, avec la convention C(∞) = C 2 .Les trois solutions réelles λ 1 , λ 2 , λ 3 pour l'inconnue λ dans l'équation caractéristique det(C 1 -λC 2 ) = 0 (A.17) représentent les valeurs propres généralisées du couple (C 1 , C 2 ) [Golub 1996, p. 375]. La famille {F 1 , F 2 } contient trois cercles dégénérés D k , k ∈ {1, 2, 3}, dont les paramètres λ sont les valeurs propres généralisées λ k, k = {1, 2, 3} de (C 1 , C 2 ). Soit D k la matrice euclidienne de D k . Alors D k = C 1 -λ k C 2 , k = {1,2, 3}. La signature absolue d'une conique dégénérée est donnée par Σ(D k ) = |η -ν|, où η et ν représentent le nombre de valeurs propres positives et négatives de D k . Si D k est une matrice complexe, par convention Σ(D k ) = ∞. Les mêmes définitions s'appliquent pour l'image de la famille {F 1 , F 2 } sous H. Nous énonçons deux propriétés P 1 , P 2 invariantes du plan de référence qui supportent la technique proposée : P 1 L'ensemble de valeurs propres généralisées du couple de matrices (C 1 , C 2 ), associé à deux coniques générales F 1 et F 2 est invariant sous transformations projectives à un facteur d'échelle près [Mundy 1992].

	r 2 qui subit une transformation projective est donnée par   étant la matrice du cercle. L'image d'un cercle CF ∼ H -C F H -1 , (A.16) où Position relative et rayon relatif de deux cercles

P 2 La signature absolue Σ d'une conique dégénérée D est invariante sous transformations projectives

  5/2 B(l, k, δ) ≤ 1, pentru dreptunghi, NFA cerc = (nm) 3 B(l, k, δ) ≤ 1, pentru arc de cerc, NFA elipsa = (nm) 4 B(l, k, δ) ≤ 1,pentru arc de elipsă.

(B.15) 
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A principal component analysis approach for example, is not suitable when the number of training samples is very large, as the extracted coefficients might become non discriminant.

The "Z" marker is inlaid after the Bubble Tag TM formation, in order to ease the handling of similarity transformations (rotation, translation, scaling).

In chapter 4, we will detail the tools needed to assess the goodness of a candidate.

We do not consider here the optical distortions that may occur in the image formation process, nor the small possible deformations induced by the curvature of the surface onto which the tag is stuck, the bottle in this case. We assume only the case where the tag has a planar surface and the images are taken using cameras that respect the (ideal) pinhole camera model.

Optimal methods for gradient computation are presented in[Fari 

2004].

For a model defined by s parameters, if the desired probability of reaching an outlier-free sample is p and the predicted proportion of outliers is ε, then at least N selections (each of s points) are required, where N = log(1-p) log(1-(1-ε) s )[START_REF] Hartley | [END_REF]].

Although it might seem futile, we stress here the difference between primitive detection and primitive fitting, as the frontier is not clear in some cases, creating confusion. The previous chapter addressed the problem of primitive fitting in digital images, which consists in constructing a curve that fits well to a series of data. Thus, in primitive fitting problems, one assumes that the input data are known and the only concern is to find the parameters of the curve[Sampson 1982, Fitzgibbon 1999, Chernov 

2005[START_REF] Kanatani | [END_REF]]. A primitive detection problem, on the other hand, must take in charge several tasks, from extracting the geometric data and finding the parameters of the curve, to validating the fitted curve as a detection. Actually, in our work, we consider that a primitive detector implies two important steps: primitive candidate selection and primitive candidate validation. Thus, for the detectors using a primitive fitting stage, the latter is comprised in the candidate selection step of the primitive detection problem.

GHT was mentioned in chapter

also as a fitting technique. Indeed, within a Hough-based approach, the extraction of the geometric data from an image and the computation of the primitive parameters are indistinguishable. Thus, GHT carries out the fitting task, but accomplishes also the geometric data extraction, specific to detection methods. Hence, it is common to encounter references to GHT in both problems.

The similarity is measured using convenient metrics, e.g. the Euclidean distance, together with a threshold.

The source code of Etemadi's algorithm[Etemadi 1992] can be found at http://hpux.connect.org.uk/ hppd/hpux/Physics/ORT-2.3/.

The term "noise" here refers to "unstructured" in a general sense. Each particular problem gives its own precise definition of noise, depending on its goal.

The Helmholtz principle, as described by Lowe: "In other words, it is the degree to which some relation is unlikely to have arisen by accident which is the most important contributor to its significance"[Lowe 1985, p. 27].

The proof is obtained by using the Boole's inequality P[A1 ∪ A2 . . . ∪ An] ≤ P[Ai].

If the tests have continuous distributions, the PFER equals α. Otherwise, for discrete distributions, the PFER is up-bounded by α [Grompone von Gioi 2009, Gordon 2007].

For efficiency reasons, the pixels are not effectively sorted, but rather classified, depending on the magnitude of their gradient, into a predefined number of bins [Grompone von Gioi 2010].

http://www.opencv.com

The parameterless quality refers to the absence of detection thresholds. The parameters that will appear are used only in the candidate selection phase, and their values are chosen as loose (non-constraining) as possible.

pe r belongs to the region which generated the current rectangle, i.e. is aligned with the current rectangle, and is the closest to the right side of the rectangle.

All angles used in this section are oriented angles with respect to the x-axis, measured in counterclockwise sense.

By "small arc" we refer either to arcs that belong to circles/ellipses with small radius/axes, or to arcs that belong to very large shapes, thus having a small curvature.

Here, the length l of a circular/elliptical arc is the number of points counted considering a Bresenham circle/ellipse representation.

Code available online at http://www.iim.ics.tut.ac.jp/~sugaya/public-e.html.

Code available online at http://www.math.uab.edu/~chernov/cl/LMA.m.

We are talking about discrete line segments here, i.e. a fine set of connected pixels.

Andrew Schuler's Matlab code http://lars.mec.ua.pt/public/LARProjects/Laser3D/2003_MiguelMatos/ TransformadasdeHough/Agorithm/TheRandomizedHoughTransformusedforellipsedetection.htm .

The bubbles are actually 3D entities, a quality which strengthens the difficulty of copying a Bubble Tag TM in forgery purposes (see Bubble Tag TM description in section 6). The 3rd dimension serves as means for guaranteeing the validity of a Bubble Tag TM , i.e. we are not in the presence of a photography, but it will not, however, be considered in the identification process, as the

2D information is sufficient.

We assume only the geometric distortions, not the optical ones.

A degenerate conic D consists of either two lines having m and n as vectors, thus D ∼ mn + nm , or a repeated line m, such that D ∼ mm .

Remind that λ1 and λ2 cannot be zero.

If we compute the eigenvalues of ε k D k using Maple, we get symbolic expressions for two of them and 0 for the other one. Non-zero eigenvalues here refer to the first two.

We are talking here about images taken with a fixed camera, having the optical axis orthogonal to the plane containing the Bubble Tag TM , thus the bubble configurations do not undergo significant geometric distortions (scaling, rotation, projection) between successive shootings.

Nous n'assumons que les distorsions géométriques, pas les distorsions optiques.
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Now if we solve the system (5.13) for d and r and choose the positive solutions, we get:

(5.14)

The equation (5.14) has a major importance, because it expresses the pair (d, r) (unknown if we do not have a metric reconstruction of the image plane) as a function of the generalised eigenvalues λ. The latter can be easily computed by using a method of ellipse detection in images and by solving the equation (5.4).

Nevertheless, a crucial aspect is the separation of the generalised eigenvalues λ1 , λ2 , λ3 . Using some symbolic computations, the following proposition is stated to solve this issue.

Proposition 1 There are three configurations to be considered regarding the signatures of degenerate circles.

• When δ = 0 (concentric circles), we have:

(5.15)

• When β < 0 (intersecting circles), we have:

(5.16)

• When β ≥ 0 (other configurations), we have:

Σ( C1 -λ1 C2 ) = Σ( C1 -λ2 C2 ) = 2 and Σ( C1 -λ3 C2 ) = 0.

(5.17)

Proof. To simplify the symbolic computations and since absolute signatures are projectively invariant (cf. P 2 ), we can investigate the absolute signatures of degenerate circles through their matrices

, in Euclidean representation, scaled by some adequate factor ε k . We will use 4 ε j ≡ 2/λ j , j ∈ {1, 2} and ε 3 ≡ 2.

The absolute signature of ε k D k , denoted by Σ k here, can be inferred from the sign of the product of its two non-zero 5 (ordinary) eigenvalues, denoted by

have the same sign, then Σ k = 2; otherwise Σ k = 0. Let us start with Σ 3 . Maple returns: (5.18) where

By expanding the product Θ λ 3 1 Θ λ 3 2 = -4d 2 ≤ 0, we conclude that Θ λ 3 1 and Θ λ 3 2 always have opposite signs i.e., Σ 3 = 0 except if circles are concentric, and in this case we have Σ 3 = 1. Now, let us carry on with Σ 1 and Σ 2 . Maple returns:

(5.21)

• Assume δ = 0 (concentric circles). Then (5.20) simplifies to Θ λ 1 1 = Θ λ 1 2 = 2(r 2 -1) = 0, while (5.21) simplifies to Θ λ 2 1 = 2(r 2 -1) = 0 and Θ λ 2 2 = 0. Hence Σ 1 = 2 and Σ 2 = 1, and since Σ 3 = 1 in this case as explained above, the proof is ended for (5.15).

• Assume β < 0. As shown above, Σ 3 = 0. All the above eigenvalues are complex, so the signatures Σ 1 and Σ 2 are undefined (Σ 1 = Σ 2 = ∞), which ends the proof for (5.16).

• Assume β ≥ 0. All eigenvalues are now real. It is worthy of note that they cannot be zero. Indeed, γ = 0 holds if and only if r = ± √ d 2 + 1. Substituting r in (5.10), we get β = -4d 2 < 0, whatever the sign, which is contrary to the assumption. We cannot have γ = ± √ β neither, as this would entail that γ 2 -β = 0. If we solve this equation for d, we obtain d = 0 which is also impossible since circles cannot be concentric. As a result, both Θ λ k 1 and Θ λ k 2 are non zero. We can claim that sign(Θ

since Maple simplifies it to 4d 2 > 0, keeping in mind that d cannot be zero. We can now prove that Σ j = 2 i.e., sign(Θ

in any case, this means that Σ 1 = Σ 2 = 2, which ends the proof for (5.17).

Denote by λand λ+ the two general eigenvalues that have symmetrical roles in (5.14), i.e. λ1 and λ2 , and by D -and D + the corresponding degenerate conics, represented through the projective matrices Dand D+ as defined in (5.5). The third degenerate conic will be represented by D3 . Considering both Proposition 1 and the invariance of the absolute signature (P 2 ), we eventually obtain the important inequality:

(5.22)

The inequality (5.22) is a projective invariant that allows establishing the distinction between the three generalised eigenvalues. If the generalised eigenvalues λ1 , λ2 , λ3 are separated so that (5.22) stands, then d and r, computed according to (5.14), are invariant under perspective, in virtue of P 1 . Therefore, having the projective representation of the circles (F 1 , F 2 ), we can obtain a double invariant (d, r), which encodes metric measures of the two circles (see algorithm 5).

Signature Extraction Algorithm

The previous section detailed a technique for computing a couple of invariant values for two coplanar circles. This result will be used jointly with an additional invariant-under-perspective 

Avec la nouvelle contrainte, le système d'équations linéaires s'écrit :

Si on considère un nouveau terme d'erreur algébrique G(p i , ḡi , θ) (g ⊥ ∞i ⊗ p i ) Jθ, alors le problème devient :

En utilisant la contrainte unité h(θ) = |θ| 2 -1, et à condition que le rang de la matrice D soit au moins cinq, la solution (unique) du problème est donnée par le vecteur propre correspondant à la plus petite valeur propre de la matrice Q Q. Afin d'améliorer la stabilité numérique, les données d'entrée sont d'abord normalisées comme décrit dans [Hartley 2004, p. 107]. Il est à noter que avec cette formulation du problème, chaque point contribue avec deux équations linéairement indépendantes. Dans les méthodes classiques, qui utilise uniquement la contrainte de position, on a une seule équation indépendante par point.

Les résultats expérimentaux obtenus sur des images de synthèse et sur des images réelles reflètent l'amélioration apportée par l'utilisation de la contrainte supplémentaire donnée par l'orientation du gradient dans la formulation du problème d'ajustement des coniques au sens de moindres carrés.

A.3 Détection a contrario d'ellipses en images

L'algorithme de détection mis en place assume l'hypothèse que les bulles peuvent être représentées par des formes régulières dans le plan euclidien, notamment par des cercles. De ce fait, dans une image du Code à bulles TM , les bulles sont modélisées par des ellipses (les projection des cercles), ou partiellement par des arcs elliptiques.

Les méthodes utilisées couramment pour la détection de primitives géométriques enchaînent généralement deux étapes : une détection des points contour (par exemple, en utilisant l'algorithme de Canny [Canny 1986]) et une classification de ces points contours en différentes instances des primitives géométriques considérées (en utilisant, par exemple, des procédures de vote comme les différentes versions de la transformée de Hough [START_REF] Duda | [END_REF], Xu 1990 

dont la solution est :

L'équation (A.23) a une importance majeure, parce qu'elle donne le couple (d, r) (inconnu si on n'a pas la rectification métrique du plan contenant les deux cercles) comme une fonction de valeurs propres généralisées λ, qui peuvent être obtenues facilement en détectant les ellipses dans l'image et en résolvant l'équation (A.17). Un aspect crucial est la séparation des valeurs propres généralisées λ1 , λ2 , λ3 . Avec des calculs symboliques, on peut énoncer l'inégalité invariante suivante

qui permet de distinguer les trois valeurs propres généralisées. Si les valeurs propres généralisées λ1 , λ2 , λ3 sont séparées tel que (A.24) soit valide, alors les valeurs d et r, données par (A.23), sont invariantes par perspective, en vertu de P 1 .

Extraction de la signature

La section précédente a introduit une technique qui permet de calculer un couple de valeurs invariantes pour deux cercles coplanaires. Ce résultat sera utilisé conjointement avec une troisième propriété invariante P 3 du plan image afin d'appliquer la procédure proposée sur l'intégralité de la configuration de cercles coplanaires.

P 3 L'enveloppe convexe d'un nuage de points coplanaires est invariante sous transformations quasi-affines [Hartley 2004, p. 515].

L'algorithme proposé représente le Code à bulles TM par des couches convexes successives (dont les structures sont invariantes par perspective en vertu de P 3 ). Ensuite, il calcule le couple de valeurs (d, r), données par (A.23), pour chaque couple de cercles voisins dans les couches convexes. Finalement, la signature d'un Code à bulles TM est obtenue en enchaînant ces couples (d, r).

En conclusion, la technique d'extraction de signature est fondée exclusivement sur les propriétés invariantes P 1 , P 2 , P 3 . Par conséquent, la signature elle même sera projectivement invariante, rendant le rectification métrique dispensable.

Romanian Summary

Detecţie i identificare de structuri eliptice în imagini : Teorie i algoritmi

B.1 Introducere

Cu această nouă contrângere, sistemul de ecuaţii liniare se scrie:

Considerând un nou termen de eroare algebrică G(p i , ḡi , θ) (g ⊥ ∞i ⊗ p i ) Jθ, atunci problema de optimizare devine:

Folosind constrângerea unitară h(θ) = |θ| 2 -1, i cu condiţia ca rangul matricei D să fie măcar cinci, soluţia (unică) a problemei este dactă de vectorul propriu corespunzând celei mai mici valori proprii a matricei Q Q. Pentru a îmbunătăţi stabilitatea numerică a sistemului de ecuaţii, datele de intrare sunt mai întâi normalizate după tehnica descrisă în [ Hartley 2004, p. 107]. Este de menţionat că folosind această tehnică de estimare, fiecare punct contribuie cu două ecuaţii liniar-independente. În metodele clasice, care folosesc exclusiv poziţia punctelor, obţinem o singură ecuaţie per punct.

Rezultatele experimentale obţinute pe imagini reale i de sinteză arată ameliorarea adusă de folosirea simultană a constrângerilor asupra poziţiei i asupra direcţiei gradientului în formularea problemei de estimare a conicelor prin metoda celor mai mici pătrate.

B.3 Detecţie a contrario de elipse în imagini

Algoritmul de detecţie implementat asumă ipoteza că bulele pot fi reprezentate prin forme regulate în plan euclidian, i anume prin cercuri. Datorită acestei ipoteze, într-o imagine a unui Cod de bule TM , bulele sunt reprezentate prin forme eliptice.

Metodele folosite uzual pentru detecţia de primitive geometrice înseriază în general două etape: detecţia de contururi (prin intermediul algoritmului Canny [Canny 1986] de exemplu), i o clasificare a acestor contururi în diverse instanţe de primitive geometrice (folosind, de exemplu, diverse variante de proceduri de vot ale transformatei Hough [START_REF] Duda | [END_REF], Xu 1990, McLaughlin 1998[START_REF] Kiryati | [END_REF][START_REF] Matas | [END_REF], Barinova 2010]). Un prim inconvenient al acestor metode este dependenţa lor de parametrii de detecţie, care trebuie ajustaţi de fiecare dată când condiţiile de iluminare sau sistemul de lectură se schimbă. Al doilea inconvenient este legat de lipsa unui control formal al numărului de detecţii false (falsuri pozitive, falsuri negative).

Detectorul de primitive geometrice pe care îl propunem nu necesită un reglaj de parametri i minimizează numărul de detecţii false, fiind bazat pe teoria statistică a contrario [START_REF] Desolneux | [END_REF], Desolneux 2007]. Această teorie se inspiră din legile colii gestaltiste disponibilă din imagine: coordonatele pixelilor i orientările gradienţilor.

Calculul semnăturii trebuie să ţină cont de natura proiectivă a primitivelor extrase. În acest scop, am propus o metodă eficientă de calcul care evită reconstrucţia euclidiană. Tehnica propusă se bazează exclusiv pe proprietăti invariante ale planului proiectiv, i, prin urmare, este ea însăi proiectiv invariantă.

Soluţiile propuse pentru identificarea Codului de bule TM sunt încurajatoare i o etapă solidă de integrare ar trebui să fie luată în considerare. În plus, teoria a contrario ar putea fi aplicată, de asemenea, într-un protocol de autentificare "1-la-1" pentru a evalua probabilitatea ca două configuraţii de bule să aibă accidental un anumit număr de bule identice.

Continuarea cercetării pe partea de detecţie de primitive ar trebui să includă utilizarea formulării continue a NFA-ului atât în etapa de validare, cât i în etapa de selecţie a modelului. În sfârit, povestea ar trebui să continue cu includerea unor tipuri mai complexe de candidaţi în algoritmul de detecţie de primitive, pentru a obţine algoritmi fiabili de vectorizare a imaginilor, ce ar putea oferi o interpretare complet automată a imaginilor.