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Abstract

Nuclear magnetic resonance (NMR) is a powerful analytical technique with numerous applications.
Yet, NMR is limited by its intrinsic low sensitivity, which owes to the low polarization of nuclear
spins at thermal equilibrium. This limitation can be lifted by hyperpolarization methods, which
increase the polarization of nuclear spins transiently far above thermal equilibrium. Dissolution
dynamic nuclear polarization (dDNP) is one such method, which takes advantage of the higher
polarization of unpaired electron spins, yielding nuclear polarization approaching unity. The sam-
ple of interest is first hyperpolarized in the solid-state at low temperature and moderate magnetic
field and is then dissolved and transferred to the point of use in the liquid-state, reaching signal
enhancements of up to five orders of magnitude.

This work explores the spin dynamics at stake in dDNP experiments at various stages along the
process, with a particular focus on polarization transfers among spins and the methods to study
them. This includes polarization transfers between electron and nuclear spins (DNP mechanisms),
between homonuclear spins in the solid-state (spin diffusion), between nuclear spins and their
environment (relaxation), and between heteronuclear spins in the liquid-state at zero-field (level
anti-crossings). The main contribution of this work is the introduction of the hyperpolarization
resurgence experiment (HypRes), which monitors spin diffusion in the near vicinity of electron
spins, a mechanism that could previously only be studied indirectly. HypRes should enable a
better understanding of this fundamental mechanism of DNP.

Keywords: nuclear magnetic resonance, dissolution dynamic nuclear polarization, spin diffu-
sion, spin physics, zero- to ultra-low field nuclear magnetic resonance, nuclear hyperpolarization,
spin polarization transfers, electron paramagnetic resonance.
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Résumé

La résonance magnétique nucléaire (RMN) est une technique analytique puissante aux nombreuses
applications. Cependant, elle est limitée par sa faible sensibilité intrinsèque, due à la faible po-
larisation des spins nucléaires à l’équilibre. Cette limitation peut être repoussée par les méthodes
d’hyperpolarisation, qui augmentent temporairement la polarisation nucléaire loin de sa valeur
d’équilibre. Parmi ces méthodes, la polarisation nucléaire dynamique par dissolution (PNDd)
utilise la forte polarisation de spins électroniques non-appariés et atteint des polarisations nucléaires
proche de l’unité. L’échantillon est hyperpolarisé à l’état solide à basse température et champ
magnétique modéré et est ensuite dissout et transféré au point d’utilisation à l’état liquide, at-
teignant des augmentations de signal jusqu’à >10’000.

Ce travail est une exploration de la dynamique de spin à l’œuvre au long des expériences de
PNDd, avec un accent particulier sur les transferts de polarisation entre spins et les méthodes
pour les étudier. Ceci inclut les transferts de polarisation entre spins électroniques et nucléaires
(mécanismes PND), entre spins homonucléaires à l’état solide (diffusion de spin), entre les spins
nucléaires et leur environnement (relaxation) et entre spins hétéronucléaires à l’état liquide à
zéro champ (croisements évités). La contribution principale de ce travail est l’introduction de
la méthode de résurgence d’hyperpolarisation (HypRes), qui mesure la diffusion au voisinage des
spins électroniques, un mécanisme qui ne pouvait jusque-là être étudié qu’indirectement. Cette
méthode devrait permettre une meilleure compréhension de ce mécanisme fondamental de la PND.

Mots-clefs: résonance magnétique nucléaire, polarisation nucléaire dynamique par dissolution,
diffusion de spin, physique de spin, résonance magnétique nucléaire à zéro et très bas champ, hy-
perpolarisation nucléaire, transfert de polarisation de spin, résonance paramagnétique électronique.

xi



xii RÉSUMÉ



Résumé substantiel

La résonance magnétique nucléaire (RMN) est une technique analytique puissante aux nom-
breuses applications. Cependant, elle est limitée par sa faible sensibilité intrinsèque, due à la
faible polarisation des spins nucléaires à l’équilibre. Cette limitation peut être repoussée par les
méthodes d’hyperpolarisation, qui augmentent temporairement la polarisation nucléaire loin de
sa valeur d’équilibre. Parmi ces méthodes, la polarisation nucléaire dynamique par dissolution
(PNDd) utilise la forte polarisation de spins électroniques non-appariés et atteint des polarisations
nucléaires proche de l’unité. L’échantillon est hyperpolarisé à l’état solide à basse température
et champ magnétique modéré et est ensuite dissout et transféré au point d’utilisation à l’état
liquide, atteignant des augmentations de signal jusqu’à >10’000. Ce travail est une exploration
de la dynamique de spin à l’œuvre au long des expériences de PNDd, avec un accent particulier
sur les transferts de polarisation entre spins ainsi que les méthodes pour les étudier et les exploiter.

Le premier chapitre présente le contexte de la résonance magnétique et les deux raisons qui
poussent les spectroscopistes à utiliser les plus forts champs magnétiques possibles, la sensibilité et
la résolution. Les méthodes d’hyperpolarisation et en particulier la PNDd sont présentées comme
alternative pour pallier à la faible sensibilité de la RMN. La RMN à zéro et à très bas champs
magnétiques est ensuite présentée comme une méthode permettant l’acquisition de données RMN
à haute résolution mais limitée à des mélanges peu complexes. Ce type de RMN a l’avantage de
reposer sur une instrumentation bon marché et qui peut est rendue portative.

Dans le deuxième chapitre, les concepts théoriques qui sous-tendent la RMN sont présentés.
Ce chapitre ne présente pas de concepts nouveaux en soi mais a vocation de rendre le plus clair
possible les bases de la dynamique de spins, en particulier les aspects utiles pour la simulation
numérique. Suite à une introduction sur le concept de spin, la représentation quantique de la
dynamique de spin basée sur la matrice de densité est dérivée à partir des six postulats de la
mécanique quantique, en détaillant les étapes de calcul autant que possible. Ce formalisme est
ensuite utilisé pour prédire l’apparence de spectres RMN à haut champ et à zéro champ pour des
spins nucléaires couplés par interaction scalaire à l’état liquide, pour des spins nucléaires couplés
par interaction dipolaires à l’état solide (pattern de Pake) et pour un spin nucléaire en interaction
dipolaire avec un spin électronique. Ce formalisme est aussi utilisé pour expliquer les échanges
de polarisation entre spins nucléaires couplés par interaction dipolaire, le phénomène à la base de
la diffusion de spin. Finalement, la constante de vitesse de relaxation des spins nucléaires sous
l’effet d’un spin électronique dont l’état est fluctuant est dérivée pour des spins à position fixe dans
l’espace et couplé par interaction dipolaire.

Le troisième chapitre concerne la PND à l’état solide aux températures de l’hélium liquide (entre
1.2 et 4.2 K) et champ magnétique modéré (7.05 T). La première section détaille les composants
du polariseur PNDd utilisé dans ce travail (aimant, cryostat, système radiofréquence, système
microonde) et les méthodes pour mesurer la polarisation de spins nucléaires à haut et à bas rapport
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gyromagnétique à l’état solide. Une méthode innovante et simple pour mesurer l’angle d’une faible
impulsion radiofréquence est proposée et utilisée dans le cadre de la mesure de polarisation des
spins nucléaires à bas rapport gyromagnétique.

La deuxième section est consacrée à la théorie des quatre mécanismes de la PND à l’état solide
pour un échantillon statique. Ces mécanismes décrivent comment la polarisation est transférées des
spins électroniques vers les spins nucléaires sous l’effet d’irradiation microonde continue. L’accent
est principalement mis sur l’effet croisé et le mélange thermique, les deux mécanismes les plus
efficaces en conditions de PNDd et sur les méthodes développées durant ces quinze dernières
années pour les simuler.

Les deux sections suivantes présentes des spectres microondes (c’est-à-dire, des graphiques de
polarisation 1H sous PND en fonction de la fréquence d’irradiation microonde) pour deux types
d’échantillon. Le premier type est un mélange standard de radical TEMPOL (en concentration 50
et 75 mM) dans du “jus de PND” (1:3:6 H2O:D2O:glycerol-d8, v/v/v). Des spectres microondes
des deux échantillons enregistrés à quatre températures (1.6, 2.5, 3.0 et 3.8 K) changent de forme
avec la température et la quantité de radicaux. Ces résultats suggèrent que le mécanisme dominant
pourrait évoluer avec la température. Malgré la banalité de cet échantillon très répandu, il n’est
pas clair à ce jour si l’effet croisé ou le mélange thermique y domine la PND. Nos données devraient
permettre de tester différents modèles récents d’effet croisé et de mélange thermique et peut-être
de déterminer lequel domine dans quelles conditions.

Le deuxième type d’échantillon pour lequel les spectres microondes ont été enregistrés est la
polyaniline (PANI), un polymère organique conducteur. Une méthode est proposée pour contrôler
la teneur en spin électronique par la protonation partielle de la fonction imine du polymère. Les
spectres microondes en fonction de la teneur en radicaux présentent des signatures complexes qui
varient avec la teneur en radicaux et suggèrent que plusieurs mécanismes opèrent en même temps.
La polarisation 1H la plus haute observée pour les PANI n’est que de 3% tandis qu’elle peut at-
teindre 90% dans des échantillons standards. L’intérêt des PANI réside ailleurs. Il a en effet été
montré que les spins électroniques pouvaient être polarisé par l’application d’un courant électrique
dans des PANI chiraux indépendamment de la température. La PND depuis des électrons hyper-
polarisés des PANI pourraient donc permettre de polariser des spins nucléaires à des haut niveaux
sans avoir recours à la basse température de l’hélium liquide qui est plus en plus rare et coûteux
et de surcroit complexe à manipuler.

Les échanges de polarisations entre les spins nucléaires et leur environnement, autrement dit
la relaxation nucléaire, sont utilisés dans le quatrième chapitre comme sonde indirect de l’état des
spins électroniques. La mesure de propriétés des spins électroniques (temps de relaxation longi-
tudinale, temps d’équilibrage sous l’effet de l’irradiation microonde, polarisation électronique sous
l’effet de l’irradiation microonde, forme du spectre électronique) sont des paramètres expérimentaux
essentiels pour modéliser la PND. Or, ils sont difficiles à mesurer dans les conditions de PNDd.
Bornet et al. ont montré que le temps de la relaxation T1ρ des spins 1H pouvaient utilisé pour
mesurer indirectement la polarisation électroniques sous l’effet de l’irradiation microonde et la
constante de temps de relaxation longitudinal des électrons.

Dans ce chapitre, nous proposons l’utilisation du temps de relaxation transverse T ∗
2 des spins

13C pour mesurer les propriétés de spin électronique mentionnée plus haut. Des divergences sont
observées entre les propriétés électroniques mesurées par le T1ρ(

1H) et le T ∗
2 (

13C). Nous avançons
que les propriétés de relaxation 1H sont potentiellement biaisées par la diffusion de spin nucléaire,
tandis que les propriétés de relaxation 13C serait plus fiables, ce qui expliquerait les divergences.
Cependant, les données présentées ne permettent pas de vérifier ce biais avec certitude.

Les cinquième chapitre présente les contributions les plus innovantes de ce travail et concerne
la barrière de diffusion. Les spins nucléaires les plus proches de l’électron sont ceux les plus



xv

efficacement polarisés par la PND. Cependant, le gradient de champ magnétique ressenti par ces
spins dû à la présence de l’électron fait que leur fréquence de résonance diffère trop fortement de
celle de leur voisin pour qu’ils parviennent à échanger leur polarisation. La limite où les spins
nucléaires ne parviennent plus à échanger la polarisation est appelée barrière de diffusion. Si
l’implication de cette barrière pour la PND est importante, elle n’en reste pas moins difficile à
étudier expérimentalement.

Dans ce chapitre, nous introduisons la méthode de résurgence d’hyperpolarisation (HypRes)
pour mesurer les transferts de polarisation entre les spins nucléaires invisible proches de l’électrons
et ceux, visibles, plus éloignés de l’électron. L’applicabilité de la méthode est démontrée pour
la diffusion 1H dans le jus PND dopé au TEMPOL et pour la diffusion 13C dans le [1-13C]-
acide pyruvique dopé au radical trityl dans les conditions de PNDd ainsi que pour la diffusion
1H dans un mélange de 2:3 H2O:glycerol (v/v) dopé au radical ASYMPolPOK en conditions de
PND avec rotation à l’angle magique à 100 K et 14.0 T. Dans toutes les conditions étudiées, nos
résultats montrent que la diffusion entre spins invisibles et visibles est plus rapide que la relaxation
longitudinale des spins visibles.

Pour étudier la diffusion entre les spins les plus proches de l’électron, qui ne peuvent pas être
observés directement, une seconde variante de l’expérience HypRes est introduite où les spins
invisibles sont manipulés par des impulsions radiofréquence à large bande. Appliquée au jus PND
dopé avec 50 mM de TEMPOL, cette expérience démontre que les spins nucléaires jusqu’à 3 Å de
l’électron peuvent encore communiquer leur polarisation avec les spins visibles plus rapidement
qu’ils ne relaxent à 3.8 K. En d’autres termes, la barrière de diffusion, si elle existe dans cet
échantillon et ces conditions, doit être inférieure ou égales à 3 Å.

Dans une troisième variante de l’expérience HypRes, la diffusion de spin nucléaire est mesurée
tandis que la polarisation électronique est maintenue par irradiation microonde à une valeur plus
faible que la polarisation d’équilibre thermique. Appliquée au jus PND dopé avec 50 mM de
TEMPOL, cette expérience démontre que la polarisation électronique a un effet déterminant sur
la diffusion de spin nucléaire. Un modèle de diffusion de spin à deux noyaux et un électron où
la dynamique de l’électron est traitée de manière semi-classique confirme en théorie le rôle de la
polarisation électronique sur la diffusion de spin nucléaire.

La méthode HypRes est versatile et peut être appliquée dans des conditions variées. Elle de-
vrait permettre d’augmenter la compréhension des mécanismes permettant la diffusion de spin
nucléaire proche de l’électron pour ensuite optimiser la formulation d’échantillon et les méthodes
PND de manière à la rendre plus efficace.

Le dernier chapitre présente des expériences de PND suivies de l’étape où l’échantillon est
dissout, transféré vers un deuxième spectromètre et détecté à l’état liquide, c’est-à-dire, des
expériences de PNDd. La première section présente les méthodes instrumentales optimisées par
notre équipe pour dissoudre, transférer et injecter l’échantillon hyperpolarisé en moins de 2 s, tout
en contrôlant le volume de solution injecté. Ce système permet d’obtenir des largeurs de raie
13C inférieures à 1 Hz 2 secondes après injection et des polarisations 13C jusqu’à 50% à l’état
liquide. Les méthodes pour quantifiés la polarisation à l’état liquide sont détaillées. Les possibles
sources de pertes de polarisation pendant le transfert de l’échantillon hyperpolarisé sont passées
en revue et des stratégies pour y pallier en contrôlant le champ magnétique au long du transfert
sont proposées. Les performances de cette instrumentation de PNDd en font une plateforme de
choix pour les applications de suivi de réactions métaboliques ou de criblage de médicaments.

Dans les deux sections suivantes, la PNDd est combinée avec la RMN à zéro et très bas champs
magnétiques dans deux types d’expérience. Dans le premier cas, la dynamique de spin à zéro
et très bas champs magnétiques est utilisée pour effectuer un transfert de polarisation des spins
1H vers les spins 13C pendant que la solution hyperpolarisée passe du polariseur de PNDd vers le
spectromètre liquide sans l’immobiliser. Cette méthode utilise une inversion adiabatique du champ
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magnétique qui transfère la polarisation des spins 1H vers les spins 13C, grâce au croisement évité
induit par le couplage scalaire entre les hétéronoyaux.

Après avoir présenté la théorie de ces échanges de polarisation par la formule de Landau-Zener
et par des simulations numériques, nous appliquons cette méthode à un échantillon un mélange
de petites molécules marquées au 13C, dont les spins 1H sont hyperpolarisés par PNDd. Pendant
le transfert entre le polariseur et le spectromètre liquide, la solution hyperpolarisée traverse un
dispositif réalisant l’inversion de champ magnétique selon un profile maitrisé. La solution est
finalement injectée dans un spectromètre RMN de paillasse ou le signal 13C est détecté. Partant
d’une polarisation 1H dépassant 50% à l’état solide, des polarisations 13C de 9-12% pour des
molécules sont obtenues à l’état liquide. Ceci s’explique par la rapide relaxation 1H dès après la
dissolution de l’échantillon.

La faisabilité de la méthode a été démontrée ici pour des molécules à fort couplage-J . Des
solutions sont proposées pour étendre la méthode à des molécules à faible couplage-J comme
le [1-13C]-pyruvate. Elle pourrait alors permettre d’accélérer la production de métabolites au
13C hyperpolarisé par PNDd dans le contexte d’applications cliniques. En effet, la méthode la
plus courante consiste à polariser le 13C directement grâce au radical trityl, ce qui met 1-2 heures.
Notre méthode repose sur la PND du 1H qui peut atteindre des polarisations de > 70% en quelques
minutes.

La deuxième expérience couplant PNDd et RMN à zéro champ consiste à hyperpolariser un
échantillon par PNDd et le détecter à zéro champ. Les spins 1H ainsi que 13C sont hyperpolarisé
par PND avec le radical TEMPOL et l’utilisation de la polarisation croisée. L’échantillon est
dissout et transféré au spectromètre RMN à zéro champ où le signal du couplage-J entre les
spins 1H et 13C est détecté par magnétométrie optique. Une augmentation de signal de 11’000
par rapport à la méthode classique de prépolarisation dans un aimant de 2 T est obtenue, alors
qu’une augmentation de signal de l’ordre de 54’000 est attendue aux vues des polarisations 1H et
13C déterminées dans les mêmes conditions avec une spectromètre RMN de paillasse.

La différence entre l’augmentation de signal obtenue et celle attendue est expliquée par la
relaxation paramagnétique dû à l’agent polarisant utilisé pour la PND. Des méthodes utilisant des
agents polarisants filtrables sont proposées pour limiter la relaxation paramagnétique. La RMN
à zéro champ hyperpolarisée par PNDd est envisagée pour le suivi de réaction catalytique en
milieu hétérogène dans des conteneurs métalliques où la RMN standard ne permet pas une haute
résolution.
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de Genève (high school) for Chemistry classes

2013 Teaching assistant for the courses of General Chemistry for engineers at
EPFL

2012 Teacher in the private school of learning support (Guigoo). Preparation of courses
and exercises for groups of medicine students (Organic and General Chemistry)

Music

� Stage and studio musician as singer and bassist

� Singer, co-composer and co-producer of the vocal duet The I-Twins

� Bassist and chorist of the band Najavibes (also performing as backing band)

� Co-founder and co-producer of the label Fruits Records (responsible for logistics, accounts,
and contracts)
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Ceillier, Théo El-Daräı, and Olivier Cala. All of us were more or less newbies in the field of dDNP
but we came to a beautiful state of understanding of what we were doing, each of us with comple-
mentary skills and areas of expertise. Beyond science, we shared a lot more, including our taste
for good food and drinks! Over the years, frictions between team members were inevitable but we
overcame them, which made these years enriching on many levels.

I thank Stuart for the friendship we built during those years and which lasts despite the
distance. I also owe him a lot for his very frequent proofreading of texts I wrote. Stuart’s critical
eye on my manuscripts has been a constant source of improvement for my expression in English.
In particular, I thank him for reading several chapters of this manuscript.

As I transition from Ph.D. student to postdoc, all the team members that I mentioned above
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Chapter 1

Introduction

Nuclear magnetic resonance (NMR) spectroscopy is an analytical method that makes use of the
intrinsic magnetic moment of the nucleus of some atoms to gain information on matter. We call
this magnetic moment spin. Spin is a purely quantum mechanical property whose dynamics are
very well understood. This allows NMR spectroscopists to design sophisticated experiments to
“ask” equally sophisticated questions to matter, giving rise to a plethora of applications.

The most well-known application of NMR is magnetic resonance imaging (MRI). In the sim-
plest case, MRI is able to measure the density of a nuclear species in 3D, typically with sub-mm
resolution. Further than that, it can provide more detailed information such as 3D-resolved re-
laxation properties, diffusion tensors, and spectroscopic data. Because MRI is non-destructive,
non-invasive, and can give access to such rich information, it is used in hospitals as a unique diag-
nostic tool. But MRI is only the tip of the iceberg of NMR methods: NMR is used routinely by
synthetic chemists to analyze the structure of the compounds they produce or to monitor reaction
kinetics in real-time; it is used by biological chemists to determine the 3D structures and dynamics
of complex proteins containing thousands of atoms or to search for possible drug candidates by
detecting the interaction between small molecules and enzymes; it is used by materials scientists
to unravel the structure of active-sites of surface catalysts. As varied as it can be, this list is far
from exhaustive and every year new methods and applications of NMR are invented.

1.1 The paradigm of high magnetic fields

In typical NMR experiments, a sample containing a large number of spins is immersed in a strong
magnetic field. For example, the most common NMR spectrometers operate at a magnetic field
B0 = 9.4 T, which is about 200’000 times larger than the Earth’s magnetic field. Spins tend to
align parallel with the magnetic field (or in some other particular orientations)1. One can displace
the spins from their equilibrium position by applying radio frequency (rf) pulses perpendicular
to the magnetic field direction at the appropriate frequency. The same coil which produces the
rf pulse is then used to measure the signal emitted by the spins as they return towards their
equilibrium position. The resonance frequency (or precessing frequency) of the spins in a magnetic
field B0 is

ω0 = −γB0, (1.1)

which is called the Larmor frequency. The constant γ is the gyromagnetic ratio of the spin expressed
in rad.s−1.T−1or MHz.T−1. For example, a proton spin (which corresponds to the nucleus of a

1This simplified representation of spins corresponds to the vector model. A more accurate picture will be given
in Chapter 2.
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1H atom) has a gyromagnetic ratio of 267.5 · 106 rad.s−1.T−1or 42.58 MHz.T−1, while a 13C spin
has gyromagnetic ratio of 67.261 · 106 rad.s−1.T−1or 10.705 MHz.T−1. The Larmor frequencies of
1H or 13C spins at 9.4 T are therefore 400 and 100 MHz, respectively.

Generating a magnetic field as high as 9.4 T is not trivial. It requires the use of supercon-
ductivity and hence liquid helium, which implies high running costs. At the time of writing, the
high-resolution NMR spectrometer with the world’s highest available magnetic field operates at
28.2 T. This magnet is sold for more than 10 million euros, weighs 8 tons, and is more than 4 m
high. [1] One can wonder why spectroscopists would want to acquire instruments that are so bulky
and expensive. There are two main reasons: sensitivity and resolution. [2] We will now show in
detail how the magnetic field strength influences these parameters.

1.1.1 NMR sensitivity

As compared to other forms of spectroscopy, NMR is inherently insensitive. As we will see in more
detail in Section 2.2.2, the signal intensities S recorded in NMR experiments are proportional to
the nuclear spin polarization P , which corresponds to the degree of alignment of the spins with
the magnetic field

S ∝ P. (1.2)

At thermal equilibrium, the polarization of a spin 1/2 is given by Boltzmann’s distribution [3]

P = tanh

(
�γB0

2kbT

)
, (1.3)

where � = 1.05457182 × 10−34 m2.kg.s−1 is the reduced Planck constant, kB = 1.380649 × 10−23

m2.kg.s−2.K−1 is Boltzmann’s constant and T is the temperature of the sample. The numerator
of the fraction corresponds to the energy released by the spins as they align with the field and is
called the Zeeman energy while the denominator corresponds to the thermal energy of the system,
which tends to randomize the orientation of the spins. Even at the highest available magnetic
fields and temperatures as low as 1 K, the thermal energy greatly exceeds the Zeeman energy. The
fraction in the equation above is, therefore, close to 0 and the equation simplifies to

P ≈ �γB0

2kbT
, (1.4)

which implies that the nuclear polarization is proportional to the magnetic field and the nuclear
gyromagnetic ratio and inversely proportional to the temperature. At a field B0 = 28.2 T, i.e., the
highest available magnetic field for high-resolution NMR, the polarization of 1H and 13C spins yield
the deceiving values of ≈ 97 and ≈ 24 ppm, respectively. Figure 1.1 shows the nuclear polarization
for 1H, 13C and 15N spins as a function of the magnetic field at room temperature. The polarization
is on the order of 10−10 at Earth’s magnetic field, on the order of tens to hundreds of ppm at high
magnetic field, and only approaches unity, i.e. the theoretical maximum, at unrealistic values of
MT (mega Tesla).

The magnetic field strength also influences sensitivity because of Faraday’s law of induction.
Indeed, the electromotive force (EMF) that the oscillating spins exert on the coil is proportional to
their oscillation frequency, [4, 5] which is in turn proportional to the magnetic field strength (see
Eq. 1.1). However, at MHz frequency, the penetration of electromagnetic waves in conductors is
limited by the skin depth, [4, 5] which causes an attenuation of the induced current proportional
to

√
ω0. Taken together, the EMF dependence on frequency and the effect of the skin depth result

in a signal proportionality to the field strength
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Figure 1.1: Effect of the magnetic field strength on nuclear polarization for three commonly used
isotopes at a temperature of 298 K. The grey boxes indicate the span of the Earth’s magnetic field
and that of NMR magnets, from benchtop spectrometers using permanent magnets to the highest
available high-resolution magnet.

S ∝ ω0
1√
ω0

= ω
1/2
0 ∝ B

1/2
0 . (1.5)

The NMR signal is therefore proportional to the magnetic field strength because of Boltzmann
distribution and proportional to the square root of the magnetic field strength because of the law
of induction and the skin depth, yielding

S ∝ B0 ·B1/2
0 = B

3/2
0 , (1.6)

as illustrated in Fig. 1.2A. To overcome the poor sensitivity of NMR, it is common to repeat an
experiment many times and add up the resulting signals. As more scans are summed, the signal
remains constant while the noise decreases with

√
nS , where nS is the number of scans, and so the

signal-to-noise ratio (SNR) RS/N increases as

RS/N =
nSS0√
nSN0

=
√
nS

S0

N0
, (1.7)

where S0 and N0 are the signal and noise intensities of a single measurement, respectively. The
number of scans to reach an arbitrary SNR RS/N is thus

nS =

(
RS/NN0

S0

)2

(1.8)

The total experimental time texp is proportional to the number of scans and because of the
relation between the signal and the magnetic field (see Eq. 1.6), we have

taq ∝ nS ∝ B−3
0 . (1.9)

This shows that the time necessary to obtain an arbitrary SNR decreases with the third power
of the magnetic field. For example, if a signal is acquired in one time unit at 28.2 T, reaching the
same SNR on a benchtop spectrometer operating at 1.88 T will require more than 3000 time units,
as depicted in Fig. 1.2B. In other words, increasing the magnetic field strength tremendously
diminishes the time necessary to acquire NMR experiments.
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Figure 1.2: A. NMR signal intensity relative to that at 28.2 T as a function of the magnetic field
strength. B. Acquisition time to obtain an arbitrary SNR relative to that at 28.2 T as a function
of the magnetic field strength. The colored dots represent the fields of 1.88 and 28.2 T, that is, the
magnetic field used in a common benchtop NMR spectrometer and the highest available magnetic
field for high-resolution NMR, respectively.

1.1.2 NMR resolution

In addition to improving the sensitivity, increasing the magnetic field also improves the resolution
in NMR experiments. For example, let us take a liquid-state sample containing a large number of
different species. The spectral features are usually dominated by two factors: the chemical shift
of each group of magnetically equivalent spins and the J-coupling between them. Each group
of magnetically equivalent spins will have a multiplet centered at chemical shift δ0 with splitting
patterns depending on the J-couplings with the neighboring spins. The chemical shift difference
between the groups of equivalent spins gives rise to a frequency difference that is proportional to
the magnetic field strength

|Δω| = |γB0 (δ0,1 − δ0,2) |, (1.10)

where δ0,1 and δ0,2 are the chemical shifts of two groups of magnetically equivalent spins. On the
contrary, J-couplings give rise to splittings which are independent of the magnetic field strength.
This implies that increasing the magnetic field strength increases the separation between multiplets
and thus decreases potential overlaps between them (this is also true for dipolar and quadrupolar
couplings in solid-state NMR). In practice, this allows for better interpretation of the spectra. Fig.
1.3 is an attempt to illustrate this fact. The 1H spectra for the same mix of 12 molecules with
equal concentration, with random couplings between -15 and +15 Hz and with random chemical
shifts between 1 and 2 ppm were simulated2 for various magnetic fields (but the same distribution
of couplings and chemical shifts). The imaginary sample whose spectrum is simulated here could
correspond to a complex mixture of alkanes. As the magnetic field strength is increased, it is clear
that the spectral feature becomes sharper and that individual resonances can be identified more
easily.

The benefits of increasing the magnetic field strength for the resolution and sensitivity of NMR
experiments have motivated the construction of ever stronger magnets. In 2009, the world’s first
23.5 T spectrometer was installed at the Centre de Résonance Magnétique Nucléaire à Très Haut

2All simulations presented in this chapter were performed using home-written MATLAB scripts. This intro-
ductory chapter does not give many details on how simulations are performed. More details are given in Chapter
2.
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Figure 1.3: Effect of the magnetic field strength on the resolution of high-field NMR illustrated
by the simulation of 1H spectra at various magnetic fields for the same mix of 12 molecules, with
equal concentration with random couplings between -15 and +15 Hz and with random chemical
shifts between 1 and 2 ppm (with spin topology A3B2C, A3B3, A2B2, A4B, A3B2C, A2B2...) with
a line broadening of 2 Hz. Each spectrum is normalized to the maximum intensity. The spectra
on the right are a zoom of those on the left.

Champ (CRMN) at the Université Claude Bernard Lyon 1 in France. This field corresponds to
a 1H Larmor frequency of 1 GHz. It took 11 years until the world’s first 28.2 T spectrometer
was installed at the Centro Risonanze Magnetiche (CERM) at the University of Florence in Italy
[1]. This field corresponds to a 1H Larmor frequency of 1.2 GHz. If increasing the magnetic
field strength is a strategy that brings obvious benefits, improvements come slowly and result in
extraordinarily bulky and expensive instruments.

In the field of medical MRI, common scanners operate at 1.5 and 3 T. Scanners operating at 7
T and higher exist but they are not used routinely for humans. [6] Here, the limitation is not only
technical; there are medical risks associated with exposing a patient to extreme magnetic fields.
Furthermore, the stronger the magnetic field the higher the specific absorption rate experienced
by the patient (i.e. the deposited rf power on their body). Yet, higher magnetic field strengths
and hence higher sensitivity would help boost methods like magnetic resonance spectroscopy.

Progress in the sensitivity of NMR spectroscopy can only remain slow and incremental if the
approach consists only of increasing the magnetic field strength. For medical MRI, the limit is
already reached and so progress cannot be expected from this strategy. However, moving away
from the paradigm of high magnetic fields, we will see that the sensitivity of both NMR and
MRI can be improved by more than four orders of magnitude without increasing the magnetic
field. If one cannot increase the Larmor frequency of the spins without increasing the magnetic
field strength, one can transiently increase the nuclear polarization. The enhancement in nuclear
polarization translates linearly into an enhancement in signal intensity and hence in SNR and limit
of detection. This approach is called hyperpolarization. In particular, this work is focused on a
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hyperpolarization method called dynamic nuclear polarization (DNP).

1.2 Increased sensitivity using dynamic nuclear polarization

Hyperpolarization methods can be defined as methods to increase transiently the nuclear polariza-
tion usually far above Boltzmann equilibrium. There exists a variety of such methods, which make
use of very different physics: spin-exchange optical pumping (SEOP) uses direct optical pumping
of noble gas atoms; parahydrogen induced polarization (PHIP) uses the spontaneous population of
the singlet state of hydrogen gas at low temperature; methods based color-centers in diamonds (like
nitrogen-vacancy centers) use optical pumping of electron spins; while DNP uses the intrinsically
high polarization of the electron spin.

1.2.1 From the origins of DNP to magic angle spinning DNP

DNP is almost as old as NMR. It was imagined and described in theory by Albert Overhauser in
1953 [7] and confirmed experimentally the same year by Carver and Slichter. [8] DNP consists of
transferring the polarization of unpaired electron spins to surrounding nuclear spins via microwave
(μw) irradiation at (or near) the Larmor frequency of the electron spins. The electron has a large
gyromagnetic ratio compared to nuclear spins, corresponding to ≈ 658 times and ≈ 2618 times that
of 1H and 13C spins, respectively, and so the electron Boltzmann polarization is correspondingly
larger (see Eq. 1.4). Overhauser’s idea was to use the conductive electrons in metals to polarize
the nuclei. μw irradiation transiently diminishes the net electron polarization. As they return to
equilibrium, electron spins polarize nuclear spins by a phenomenon of cross-relaxation mediated by
electron mobility (this will be described in more detail in the dedicated Sec. 3.2). This mechanism
called the Overhauser effect (OE) after his inventor, can be described in terms of a 1 electron-1
nucleus model. Following Overhauser’s invention, DNP was shown to be possible in insulating
solids, in particular in crystals doped with paramagnetic transition metals [9] and in amorphous
materials [10]. More DNP mechanisms were discovered experimentally and described in theory:
[11] the solid effect (SE), [9, 12, 13] which can also be described in terms of 1 nucleus-1 electron
model; the cross effect (CE), which is described in terms of a 1-nucleus-2 electron model; [14] and
the thermal mixing (TM) which is described in terms of 1 nucleus and many electron spins. [15, 3]
Already in 1965, 1H polarizations up to 70% were reported. [13] Until the seventies, the main
application of DNP and the main driving force for its development was to create polarized targets
in the context of particle physics and high energy physics. [16, 17] Then, in the eighties, DNP
stopped receiving as much attention.

Already in 1983, it was shown that DNP was compatible with magic angle spinning (MAS), a
method that is necessary to ensure high resolution for solid-state NMR. [18] However, it is in the
nineties that the method knew an important revival, thanks to the work of Robert G. Griffin and
co-workers. The use of strong μw sources such as gyrotrons enabled to use of MAS-DNP at higher
magnetic fields. [19] Then, it was shown that MAS-DNP could be performed on frozen solutions
that were compatible with biological substrates. [20, 21]. MAS-DNP thus became a powerful tool
for the study of biological samples in the solid-state and this field of research continued continues
to expand today. [22]

1.2.2 Hyperpolarized liquid-state NMR using dissolution DNP

MAS-DNP established DNP as a method for enhancing the sensitivity of solid-state NMR. But
what about liquid-state NMR? In the early days of DNP, it was recognized that DNP was possible
in the liquid-state using the OE. In this case, it is the mobility of the molecules in solution which
mediates the electron-nucleus cross-relaxation, thus polarizing the nuclear spins. [23] Liquid-state
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OE-DNP has kept being developed since then. [24] However, a methodological breakthrough came
with the introduction of dissolution DNP (dDNP); in 2003, Jan-Henrik Ardenkjær-Larsen et al.
reported an experiment combining solid-state DNP and high-resolution liquid-state NMR. [25] In
the original experiment, 13C spins were first polarized in a frozen solution at 3.35 T and 1.2 K,
using a stable organic radical as a source of unpaired electron spins. Once 13C polarization on
the order of 26% was reached, the solution was dissolved and diluted by hot water directly within
the cryostat of the DNP polarizer and rapidly propelled by pressurized He gas into a 9.4 T NMR
spectrometer, where the hyperpolarized liquid-state 13C signal was detected. The first reported
experiment resulted in a liquid-state signal enhancement of more than 10’000 with respect to a
standard experiment at Boltzmann equilibrium as shown in Fig. 1.4. [25] Fig. 1.5 summarizes the
steps of a typical dDNP experiment.

Figure 1.4: Result of the first reported dDNP experiment reproduced with permission from Ref.
[25] (Copyright (2003) National Academy of Sciences, U.S.A.). A. Single scan detection of natural
abundance 13C in urea hyperpolarized by dDNP and detected in the liquid-state at 9.4 T. B.
Signal averaging of 232’128 scans on the same sample at thermal equilibrium (without DNP).

Figure 1.5: Steps of a dDNP experiment in typical operating conditions.

There are several key features to this experiment: first, DNP is performed in conditions where
the electron polarization is near unity, as shown in Fig. 1.6, which leads to high nuclear polar-
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ization; before the sample escapes the high magnetic field of the polarizer, it is dissolved to avoid
strong paramagnetic relaxation in the solid state at low magnetic fields; finally, the sample is
diluted by the dissolution solvent which mitigates liquid-state paramagnetic relaxation during the
transfer and during detection in the liquid state. These ingredients made dDNP a powerful method
for the preparation of hyperpolarized nuclei, in particular for low-γ nuclei, as their relaxation time
constants are more forgiving.

Figure 1.6: Electron spin polarization as a function of temperature at a magnetic field of 3.35 T (i.e.
that used for the first reported dDNP experiment), compared with the nuclear spin polarization
of 1H and 13C spins.

The great potential of dDNP was revealed when it was used to prepare hyperpolarized metabo-
lites in the context of medical imaging and tumor detection in rats [26, 27] and then in humans. [28]
Due to the low natural abundance of 13C and the contrast in polarization, only the hyperpolarized
species is visible on 13C MRI images and so the conversion of pyruvate into other metabolites of
the Krebs cycle can be monitored as a function of both time and space. The presence of tumor cells
is revealed by their rapid uptake of pyruvate and the subsequent conversion into lactate, because
of the so-called ”Warburg” effect.

The application of dDNP for medical imaging provided a driving force for the development of
the method. In parallel, the sensitivity gain offered by dDNP allowed for a number of spectroscopic
applications; it was used to push forward the detection limits in drug screening [29, 30, 31, 32] and
in metabolomics; [33, 34] it was used to study protein dynamics [35, 36, 37] and to monitor chemical
reactions in real-time. [38, 39, 40, 41] In most cases, these applications are based on already existing
methodologies of conventional (i.e. non-hyperpolarized) NMR. Yet, the sensitivity boost offered
by dDNP pushes the limits of these methods, enabling the observation of processes that would
otherwise take too long to be relevant and at lower solute concentrations.

The methodology of dDNP has also been improved in many ways since 2003. Ardenkjaer-
Larsen’s first experiments were performed at 3.35 T using the radical trityl, which has a narrow
electron paramagnetic resonance (EPR) line and is best suited for low-γ nuclei. [25] Higher mag-
netic fields were later used, typically around 7 T [42, 43] and 9.4 and 10.1 T are also reported
[44, 45]. The radical 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) was later used for
dDNP to polarize 1H spins [46] and combined with 1H→13C and 1H→15N cross-polarization (CP)
to polarize low-γ nuclei rapidly and efficiently. [47] μw frequency modulation was used to boost
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the performance of DNP [48] and μw gating was shown to drastically improve the performance of
CP. [49] The use of high-spin lanthanides was shown to boost DNP performance, in particular in
the case of DNP with trityl and other narrow EPR line radicals. [50, 51, 52] Magnetic tunnels were
developed to mitigate polarization losses at low magnetic fields. [53] Polarizing matrices where
the radical molecules are grafted on porous material were developed such that the radical could be
filtered out after dissolution. [54] Strategies were also proposed to extend the lifetime of hyperpo-
larization to several hours such that a hyperpolarized solution could be transported from a point
of production to a point of use. [55, 56, 57] Last but not least, the understanding of the processes
behind DNP experiments in dDNP conditions has been the subject of constant effort, whether re-
garding DNP mechanisms [58, 59, 60, 61, 62, 63], hyperpolarized NMR lineshapes [64, 65], electron
spin dynamics [66, 67] spin diffusion, i.e., the process of nuclear polarization transport across the
sample [68] or the simulation of the overall DNP process under dDNP conditions. [69, 70, 71, 72]

Two decades after its invention, dDNP is accepted as a powerful and versatile tool to hyper-
polarize a broad range of molecules to high levels. Yet, dDNP has been actively developed by few
groups and a large part of the dDNP playground remains unexplored; a lot of established NMR
methods could still benefit from dDNP hyperpolarization. Moreover, some fundamental questions
remain unanswered. What is the mechanism for 1H DNP with the TEMPOL, CE or TM? How
does nuclear polarization diffuse away from the electron spin? What are the consequences of
methyl rotation for DNP mechanisms and spin diffusion? To list only a few examples.

1.2.3 High resolution at zero- to ultra-low field regime

As we saw in the first section, the relation between the resolution of NMR spectra and the magnetic
field strength has motivated the construction of NMR magnets operating at ever-increasing fields.
However, the other extreme, i.e., the regime where the magnetic field can be considered as absent
or only a small perturbation, is also promising.

This regime called zero- to ultra low-field NMR (ZULF) was first investigated in the eighties by
A. Pines and co-workers. [73, 74, 75] Typical experiments consisted of shuttling amorphous solid
samples from a high-field spectrometer to a region above the NMR magnet where the magnetic field
could be switched on and off suddenly (i.e., sufficiently fast to be considered instantaneous). The
sample was first thermally prepolarized at high-field and then shuttled to the zero-field chamber.
The field was switched off during a variable time t1 and switched back on. Finally, the sample
was brought back into the NMR magnet for detection at high magnetic field. The experiment
was repeated varying t1 and the resulting signal was Fourier transformed with respect to t1, thus
revealing the spectrum of evolution at zero-field. Because the zero-field Hamiltonian only contains
the spin-spin interactions, this spectrum solely features spin-spin interactions. What is unique
to the zero-field regime, the eigenfrequencies remain the same regardless of the orientation of the
molecule. Fig. 1.7 shows the comparison of simulated high-field and zero-field spectra for a pair
of dipolar coupled 1H spins separated by 1.6 Å (which corresponds to water in a typical sample of
barium chlorate monohydrate) together with the experimental diagrams. The zero-field spectrum
of an amorphous sample features the same resolution as that of oriented monocrystals at high-
field, instead of a Pake pattern and so it yields more ”concise” spectral features than the high-field
equivalent for the same information. The same is true for quadrupolar interactions. [74]

Despite the appealing features of ZULF-NMR, the method did not arouse interest among solid-
state NMR experimentalists. This is probably due to the fact that spectra at zero-field get rapidly
more complicated, as more complex spin systems are considered. [74] In fact, they get equally
complicated as high-field spectra but without the possibility to perform MAS and recover a sim-
pler spectrum. [74] However, ZULF-NMR got more popular after direct detection at ZULF was
introduced. The common Faraday induction used at high-field is hopeless at ZULF because the
observed frequencies are too low but other detection methods have been proposed: first super-
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Figure 1.7: Difference between solid-state NMR spectra at high-field and at zero-field. Simulation
of spectra for an A2 pair of

1H spins with an internuclear distance of 1.6 Å, corresponding to a dipole
coupling constant of b = 29.3 kHz. The high-field experiment is a simple pulse-acquire experiment
while the zero-field is a field-cycling experiment with prepolarization and detection at high-field
and evolution at zero-field. High-field experiments were simulated for three cases: an amorphous
powder and two crystalline samples, with the internuclear vector, either orthogonal or colinear
with the magnetic field (θ = 0 or π/2, respectively). The zero-field experiment was simulated
for an amorphous powder. The grey squares on the pulse diagrams of the zero-field experiment
indicate the moments where the sample is shuttled up and down. The molecular orientations
were averaged over 1000 constant increments of the angle between the molecular vector and the
magnetic field, from 0 to π. A line broadening of 1 kHz was applied to the simulated FID prior to
Fourier transform.

conducting quantum interference devices (SQUIDs) [76] and then optical pumped magnetometers
(OPM) based on rubidium vapor (or other alkali atoms) using the spin exchange relaxation-free
(SERF) regime. [77] In particular, SERF-OPMs are well suited for low frequencies up to a few
hundreds of Hz. They are cheap (compared with high-field detection devices), sensitive, and can be
made portable. [78, 79, 80] Pioneered by D. Budker and coworkers, this detection method was used
to detect ZULF signals in the liquid-state. [77, 81, 82] Fig. 1.8A shows a typical modern setup for
liquid-state ZULF experiments, using thermal prepolarization in Halbach magnets and detection
at ZULF. [81] In the case of isotropic liquids, ZULF spectra are dominated by the J-interaction
and so liquid-state ZULF-NMR is often referred to as a J-spectroscopy method. A particularity
of liquid-state ZULF-NMR is that it can only detect heteronuclear couplings. In other words, for
a molecule to produce a detectable ZULF signal in the liquid-state, it must contain at least two
J-coupled spins of different nuclear species. In the simplest case, i.e. an XA spin system like 13C-
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formate, the spectrum consists of a single line at the J-coupling between the 1H and the 13C spins.
Fig. 1.8B shows simulated spectra at high-field, where the J-coupling is only a perturbation with
respect to the Zeeman interaction causing a splitting corresponding to the J-coupling; at zero-
field, where only the J-coupling is present and causes observable transitions at the J-coupling;
and at ultra low-field, where a small bias field of 500 nT perpendicular to the initial magnetization
vector splits the zero-field signals. In these simulated ZULF experiments, as was the case for the
solid-state experiments, coherences are induced by the sudden transition from the high-field states
to the zero-field states.

An important feature of the zero-field regime in the liquid-state is that small molecules exhibit
very long coherence time constants, often resulting in experimental signal linewidth on the order
of tens of mHz. [83] For a simple XA system as in Fig. 1.8, this can be explained by the fact that
the eigenstates at zero-field belong to the singlet-triplet basis even for pairs of heteronuclei and the
signal detected in the ZULF experiment is the coherence between the S0 and T0 states. [81] As
was exploited by M. H. Levitt and coworkers and many others after them, the imbalance between
the singlet state and the triplet manifold is immune to internal dipolar relaxation. [84] In simple
words, a pair of spins in singlet state do not make each other relax via the in-pair dipole-dipole
relaxation mechanism, which causes the state to be long-lived (i.e., exceeding T1). Moreover, the
narrow linewidth of ZULF signals is retained even in heterogeneous samples (e.g. solution in porous
media or solution containing bubbles). Indeed, the field lines cannot be distorted by changes in
magnetic susceptibility, simply because there are no field lines. [85, 86, 87]

If conventional NMR suffers from an inherent low sensitivity, it is even worse in the ZULF
regime, first because prepolarization is typically performed in permanent magnets, which are lim-
ited to ≈ 2 T; and second, because direct detection at ZULF remains less sensitive that inductive
detection at high-field, even for state-of-the-art ZULF detection methods. As a result, ZULF-NMR
with thermal prepolarization is commonly limited to neat labeled liquids (with a concentration
in the molar range). However, ZULF-NMR can be boosted by hyperpolarization techniques. [88]
In recent years, a number of experiments combining PHIP and ZULF-NMR have been reported.
[88, 86, 89, 90] The coupling of dDNP with ZULF NMR has been exploited in a single study yet.
[91]

So far, ZULF-NMR has mainly been used in fundamental research such as dark matter searches
[92] but has also been proposed as a new form of NMR spectroscopy for chemical analysis. [93, 79,
94] The ZULF regime has a strong potential for relaxometry studies of porous media as the low
frequencies of the spin states at ZULF make relaxation rates sensitive to slower dynamics, which
are typical of porous media. [85, 86, 87] In parallel to signal detection at ZULF, spin dynamics
at ZULF are used for the preparation of hyperpolarized metabolites for medical imaging. [89, 95]
The ZULF regime was found to be well-suited for the transfer of polarization from parahydrogen
to 13C-metabolites. This approach could compete with dDNP because it is much cheaper and
more portable. MRI images using ZULF-PHIP have been reported [96, 97] and clinical trials are
now close.

We ought to make it clear that ZULF-NMR is unlikely to compete with that of high-field
NMR for the study of complex samples containing thousands of atoms, as commonly encountered
in biological NMR. Indeed, the absence of chemical shift separation at ZULF causes spectral
components to overlap making their interpretation practically impossible. The advantages of ZULF
are the portability and low cost of the experimental setups as well as in more fundamental aspects
(long coherence time, insensitivity to sample heterogeneity, untruncated spin-spin Hamiltonian),
which make it complementary to high-field NMR. ZULF-NMR is a relatively new research field
and new applications are emerging.
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Figure 1.8: A. Typical setup for liquid-state ZULF NMR, reproduced with permission from Ref.
[80]. The sample is prepolarized in a permanent magnet in Halbach array, shuttled to the zero-field
chamber consisting of commercial magnetic shields, and detected using a commercial OPM. B.
Difference between liquid-state NMR spectra at high-field (HF), zero-field (ZF), and ultra low-field
(ULF). Simulation of spectra for an XA pair of 1H and 13C spins with a J-coupling J = 200 Hz.
The high-field experiment corresponds to 1H as well as 13C detection as it yields the exact same
spectrum. The zero-field experiments consist of a sudden transition from high-field to zero-field
with initial prepolarization at field Bp. The ultra low-field experiment is the same as that at zero-
field except that a small bias field of Bx = 500 nT is applied along the x-axis during detection.
The grey squares on the pulse diagrams of the ZULF experiments indicate the moments where the
sample is shuttled up and down (the simulation neglects the evolution of the system during the
shuttling period). A line broadening of 1 Hz was applied to the FID prior to Fourier transform.
Note that the axis convention of Panel A (reproduced with permission from Ref. [80]) is different
from that used in this work.



1.3. THIS WORK AND THE ORGANIZATION OF THE DISSERTATION 13

1.3 This work and the organization of the dissertation

This work is an exploration of the spin dynamics at stake in dDNP experiments and in hyperpolar-
ized liquid-state NMR at high-field and at ZULF, with a particular focus on polarization transfers
among spins and the methods used to study them. Fig. 1.9 gives a schematic representation of
the polarization transfers studied in this work.

Figure 1.9: Schematic representation of electron and nuclear spins and the polarization transfers
between them in dDNP experiments and in hyperpolarized liquid-state NMR at ZULF. The blue
circle represents an electron spin (with e− written in its center) interacting with surrounding
1H spins. The gray circle around the electron spin represents the area within the spin diffusion
barrier. Red circles represent 13C spins, which are polarized either by CP in the solid-state or by
adiabatic field inversion in the liquid-state.

Before experimental results are presented in Chapters 3-6, the basic concepts of quantum
mechanics and spin dynamics are exposed in Chapter 2. After introducing the concept of spin, the
postulates of quantum mechanics are presented and used to derive the density matrix formalism
for the description of interacting spin ensembles. Relevant interactions for dDNP and liquid-state
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NMR at ZULF are then presented and the spectral features they lead to are illustrated by numerical
simulations.

Chapter 3 is dedicated to solid-state DNP. The instrumentation and methods used in this work
are detailed in the first section. Then, the theory of electron-nucleus polarization transfers under
μw irradiation, i.e., DNP mechanisms, is briefly reviewed. The DNP mechanisms are illustrated
experimentally in the last two sections of the chapter by μw spectra, which consists of plots
of DNP polarization vs. μw irradiation frequency (see example in Fig. 1.9). In Chapter 4,
transfers of polarization between nuclear spins and their environment, i.e., relaxation, are used as
an indirect probe to measure EPR properties (see example in Fig. 1.9). Chapter 5 is concerned
with polarization transfers between homonuclear spins in the vicinity of the electron, i.e., spin
diffusion near or through the spin diffusion barrier. The first section reviews the literature on
the spin diffusion barrier. Then, the hyperpolarization resurgence (HypRes), a method to study
spin diffusion in the vicinity of the electron, is introduced and results recorded in a variety of
conditions are presented. Fig. 1.9 shows an example of a HypRes curve, where the polarization
of bulk nuclear spins rises due to spin diffusion from hyperpolarized nuclear spins in the vicinity
of the electron. The influence of the electron polarization on this process is demonstrated using
HypRes and confirmed by a three spin-model.

Chapter 6 presents the liquid-state side of dDNP experiments. The instrumentation and meth-
ods of the dissolution experiments performed in this work are detailed in the first section. The
sources of polarization losses during dissolution experiments are presented together with strategies
to mitigate them. Then, spin dynamics at ZULF are utilized to realize 1H→13C polarization trans-
fers during the transfer of a hyperpolarized solution from the dDNP polarizer to the liquid-state
spectrometer. The method uses an adiabatic magnetic field inversion, during which the J-coupling
between 1H and 13C spins creates avoided crossings. Numerical simulations of the transfer are used
to optimize the magnetic field inversion profile and the feasibility of the method is demonstrated
on model molecules. Fig. 1.9 shows an example of spectrum of 13C spins detected at high-field af-
ter hyperpolarization by this method. Finally, results of dDNP hyperpolarized solutions detected
using optical magnetometry are presented. Fig. 1.9 shows an example of such hyperpolarized
spectrum at ZULF.

Sections presenting experimental results are organized following the same structure as much as
possible: the relevant literature is reviewed (unless a preceding section was dedicated to it). The
results are presented with minimal interpretation. Finally, the results are discussed and strategies
are proposed to improve or understand more thoroughly the results. Each of the experimental
chapters (3-6) is concluded with a perspectives section that gives a summary of the results and
discusses possible further experiments and future applications of the methods presented in the
chapter.



Chapter 2

Quantum Mechanical Framework

As we have seen in the introduction, NMR uses the spin of the nuclei of atoms to gain information
on the world. The spin is a purely quantum mechanical object which has no equivalent in the
realm of classical physics. More precisely, its origin has no root in classical physics but it can
be described and understood to some extent using the theory of angular momentum from clas-
sical physics in the framework of quantum mechanics. This chapter aims to present the basis of
quantum mechanics and how it is used in the context of NMR. In the first part, we introduce the
postulates of quantum mechanics and the related mathematical objects in Hilbert space. We derive
the formalism of the density matrix from the postulates and use it to simulate numerically the
NMR spectra of simple spin systems at high-field and at ZULF. In the last section, we introduce
relevant interactions that the spins are subject to in our experiments and show how they affect
the outcome of our experiments.

The section on the postulates of quantum mechanics and the density operator formalism might
seem rather long to the expert. I took the opportunity of writing my dissertation to lay the foun-
dations for the next chapters in a way that is as rigorous as possible. The busy and knowledgeable
reader might simply jump to the next section.

2.1 Spins as vectors in Hilbert space

2.1.1 The spin

Spin is the name given to the property of angular momentum of some elementary particles such as
a proton or an electron. The origin of this property belongs to theoretical and nuclear physics and
is beyond the scope of this work. Here, we simply assume that this property is intrinsic to those
particles. Not only do we assume that these particles have a spin but we also assume that they
are nothing else: their spatial properties or their mass are of no consequence for the experiments
we will deal with. This will simplify our description in the next section.

Spin is associated with a quantum number I, which can take positive integer and half-integer
values 1/2, 1, 3/2, 2. . . etc. This work is only concerned with spins with I = 1/2. A spin I
has an angular momentum I, which gives rise to a magnetic moment denoted μ, where the bold
font indicates vector quantities. The spin angular momentum and the spin magnetic moment are
related to each other by [3, 98]

μ = γI, (2.1)

15
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where γ is the gyromagnetic ratio of the spin. The norm of the angular momentum of vector I,
also called total angular momentum, is given by

‖I‖ =
√
I(I + 1)�, (2.2)

where � is the reduced Planck constant. The vector quantities μ or I cannot be measured by any
physical device; only the projection along a particular axis can be measured at a time. The spin
angular momentum projected along a given axis, say the z-axis, may be expressed as a function
of integer and half-integer values of �.

Iz = mz�, (2.3)

where mz is an integer of half-integer, ranging from −I to +I, in integer steps. Because I = 1/2 for
all the spins considered in this work, the only allowed values of mz are +1/2 and −1/2. Therefore,
the possible values for the magnetic moment of a spin 1/2 are

μz = ±γ� (2.4)

Fig. 2.1 gives a visual representation of the magnetic moment projected along the z-axis.

Figure 2.1: Representation of the magnetic moment of a spin 1/2 and its projection along a
reference axis.

The potential of a spin interacting with a magnetic field B is given by the laws of electromag-
netism

E = −B · μ (2.5)

If the magnetic field points along the z-axis and has intensity B0, then the two possible energy
values associated with the angular momentum of the spin along the z-axis are

E = ∓1

2
γB0� (2.6)

The energy difference between these two states γB0� is called the Zeeman splitting.

2.1.2 States, measurements, and operators

Quantum mechanics is based on six postulates. We will review them one by one in this section and
this will allow us to define the basic mathematical tools that we need to describe NMR experiments.
We will use the example of an isolated spin subject to a magnetic field to illustrate the postulates.
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The following sections are inspired by and based on Ref [98, 99, 100] as well as on Ilya Kuprov’s
lecture notes, which are available online at www.spindynamics.org/. The only exception is the
relation between the description of spins as kets and as density matrices, which I wrote on my own
(see below). However, I suppose that similar proofs can probably be found in Mathematics books.

The first postulate can be expressed as:

Postulate I: A quantum mechanical system is fully described by a
wave function |ψ〉. The space of all possible states |ψ〉 of the system is
a complex Hilbert space denoted �. If the system is in state |ψ〉, the
probability to find it in state |χ〉 is given by

pψ→χ = | 〈χ|ψ〉 |2, (2.7)

where 〈χ|ψ〉 denotes the scalar product on �.

The object 〈ψ| is called a “bra” while |ψ〉 is called a “ket”; together they form a “braket”,
which corresponds to the scalar product on �. While the ket represents the state of the system,
the bra is the Hermitian conjugate of the ket

〈ψ| def= (|ψ〉)∗, (2.8)

a complementary mathematical object which allows us to compute information on the system.
Note that, to write Eq. 2.7, we have implicitly assumed that the states were normalized, i.e.,

‖ |ψ〉 ‖ = | 〈ψ|ψ〉 |2 = 1, (2.9)

which will be the case throughout this work.
In general, the wave function is the product of several properties

|ψ〉 = |ψ〉spin ⊗ |ψ〉spatial ⊗ ..., (2.10)

where ⊗ denotes the Kronecker product of the states. If |ψ〉 lives in the space �, |ψ〉spin and
|ψ〉spatial live in subspaces of � = �spin ⊗�spatial ⊗ ... As stated in the introduction of this chap-
ter, we only need to take into account the spin part of the wavefunction to describe all the NMR
experiments presented in this work. We will therefore describe all states assuming |ψ〉 = |ψ〉spin.

To describe an isolated spin 1/2 subject to an external magnetic field B0, it is convenient to
define two states |α〉 and |β〉, which correspond to the spin having its angular momentum parallel
or antiparallel with respect to B0, respectively. These states are referred to as at the Zeeman
states. Because of Eq. 2.3, Eq. 2.4 and Eq. 2.6, these two states have angular momenta +�/2 and
−�/2, magnetic moments +γ�/2 and −γ�/2 and energies −γB0�/2 and +γB0�/2, respectively.
As we will see in more detail in the next sections, the states |α〉 and |β〉 are sufficient to fully
describe an isolated spin 1/2, i.e., they form a basis of �, referred to as the Zeeman basis. It
implies that all states of an isolated spin can be written as linear combinations of the basis states

|ψ〉 = cα |α〉+ cβ |β〉 , (2.11)

where cα and cβ are complex coefficients satisfying the normalization condition |cα|2 + |cβ |2 = 1.
More generally, any state of a quantum mechanical system can be written as a linear combination
of the basis states
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|ψ〉 =
∑
n

cn |n〉 . (2.12)

The matrix representation of quantum mechanics consists of associating the basis states with
vectors. In this representation, a state |ψ〉 is identified with a column vector

|ψ〉 ≡

⎛
⎜⎜⎝cα

cβ

⎞
⎟⎟⎠ , (2.13)

containing the complex coefficients of Eq. 2.11. The basis states, therefore, take the simple form:

|α〉 ≡

⎛
⎜⎜⎝1

0

⎞
⎟⎟⎠

|β〉 ≡

⎛
⎜⎜⎝0

1

⎞
⎟⎟⎠ .

(2.14)

In the matrix representation, the Hermitian conjugate of the state is the complex transpose of
the vector representing the state. Using the first postulate, we find that there is a null probability
of finding the system in the |β〉 state if it is initially in |α〉 and vice versa

| 〈β|α〉 |2 = | 〈α|β〉 |2 = 0. (2.15)

Using the matrix notation, the normalization condition therefore reads

| 〈ψ|ψ〉 |2 =

(
c∗α c∗β

)⎛
⎜⎜⎝cα

cβ

⎞
⎟⎟⎠ = |α|2 + |β|2 = 1. (2.16)

The second postulate defines the mathematical form of measurable quantities or observables.

Postulate II: Every physical observable A is associated with a Hermi-
tian operator Â acting on �. The eigenvectors of Â form a basis � of
�.

Because Â is Hermitian, its eigenvalues are real. Furthermore, the spectral theorem states that
for any Hermitian operator Â, there exists an orthonormal basis of � formed by eigenvectors |n〉
of Â. The matrix representation of Â can therefore be written as

Â =
∑
n

an |n〉 〈n| , (2.17)

where the coefficients an are the eigenvalues of Â corresponding to the basis eigenvectors |n〉. The
orthonormality of the |n〉 states can be written as
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〈n|m〉 = δnm =

{
1 if n = m

0 otherwise,

(2.18)

where δnm is the Kronecker delta. Because the eigenvectors of Â form a basis of �, any state |ψ〉
can be written as a function of the basis states |n〉 of Â:

|ψ〉 =
∑
n

cn |n〉 , (2.19)

where ck are normalized complex coefficients, i.e., | 〈ψ|ψ〉 |2 = 1. The third postulate defines the
possible outcome of a measurement of A.

Postulate III: Measuring the observable A can only result in one of
the eigenvalues of Â. Because Â is Hermitian, its eigenvalues are real.

Let us say we want to measure the angular momentum Iz along the z-axis of an isolated spin
1/2. We have seen that the two possible values are +�/2 and −�/2. By the third postulate, these
values are the eigenvalues of Îz. We, therefore, have the following relations:

Îz |α〉 = +�/2 |α〉

Îz |β〉 = −�/2 |β〉
(2.20)

The matrix representation for the operator Îz, which satisfies the above relation is

Îz =
1

2
�

⎛
⎜⎜⎝+1 0

0 −1

⎞
⎟⎟⎠ . (2.21)

The matrix representation of the angular momentum operators along two other orthogonal
axes are

Îx =
1

2
�

⎛
⎜⎜⎝0 1

1 0

⎞
⎟⎟⎠ (2.22)

and

Îy =
i

2
�

⎛
⎜⎜⎝ 0 −1

+1 0

⎞
⎟⎟⎠ , (2.23)

which we give without proof.
The fourth postulate gives the probability for measuring a particular eigenvalue.
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Postulate IV: For a system in state |ψ〉, the probability of measuring
the eigenvalue an of operator Â is given by

p(an) =

gn∑
k=1

| 〈k|ψ〉 |2, (2.24)

where gn is the degeneracy of an and the states |k〉 are the gn eigenstates
associated with an. If an is non-degenerate, that is, if gn = 1, we have

pan
= | 〈n|ψ〉 |2, (2.25)

where |n〉 is the single eigenstate associated with an.

Note that we restrict the formulation of the postulates to quantum systems with a discrete
spectrum and so we use a discrete summation in the formulation of the fourth postulate.

If a single spin is in state |ψ〉 = |α〉, then Eq. 2.25 predicts that we have probabilities pα = 1
and pβ = 0 to measure angular momenta +�/2 and −�/2, respectively. Conversely, if a single
spin is in state |ψ〉 = |β〉, then Eq. 2.25 predicts that we have probabilities pα = 0 and pβ = 1
to measure angular momenta +�/2 and −�/2, respectively. If the system is in a superposition of
states, for example

|ψ〉 = 1√
2
(|α〉+ |β〉) , (2.26)

then Eq. 2.25 predicts that there is an equal probability to measure both eigenvalues

pα = pβ =

(
1√
2

)2

=
1

2
. (2.27)

An important consequence of the fourth postulate is that, if we repeat the same measurement of
the observable A on many identical quantum systems (or many times on system prepared equally),
then the expectation value of the measurement is

〈Â〉 =
∑
n

an| 〈n|ψ〉 |2 =
∑
n

(〈n|ψ〉)∗ an 〈n|ψ〉 =
∑
n

〈ψ|n〉 an 〈n|ψ〉 = 〈ψ|Â|ψ〉 (2.28)

Note that the development we show here is only valid for non-degenerate operators. However,
it can be shown that the relation 〈Â〉 = 〈ψ|Â|ψ〉 holds for any Hermitian operator Â. Furthermore,
to obtain this relation, we assumed that |ψ〉 was expressed in the basis of Â but the relation holds
for any basis � of �. Indeed, for any �, there exists a unitary operator Û which takes Â and |ψ〉
into the basis �, with the relation

|ψ〉
�
= Û |ψ〉

�
(2.29)

Â� = Û Â�Û
−1 (2.30)

where the fact that Û is unitary implies that its inverse is equal to its complex transpose

Û−1 = Û∗. (2.31)

Therefore, because 〈ψ|
�
= 〈ψ|

�
Û−1, we have



2.1. SPINS AS VECTORS IN HILBERT SPACE 21

〈ψ|
�
Â� |ψ〉� = 〈ψ|

�
Û−1Û Â�Û

−1Û |ψ〉
�
= 〈ψ|

�
Â� |ψ〉� = 〈Â〉 (2.32)

For a spin in state |α〉, the expectation value of the quantity Iz is 〈Îz〉 = pα(+�/2)+pβ(−�/2) =
+�/2, or using the notation of Eq. 2.28,

〈Îz〉 = 〈α|Îz|α〉 =
(
1 0

)
�

⎛
⎜⎜⎝+1/2 0

0 −1/2

⎞
⎟⎟⎠
⎛
⎜⎜⎝1

0

⎞
⎟⎟⎠ = +�/2 (2.33)

Similarly, the angular momentum along the z-axis of the spin in the superposition state of Eq.
2.26 has an expectation value 〈Îz〉 = pα(+�/2) + pβ(−�/2) = 0 because both states are equally
probable. Using the notation of Eq. 2.28

〈Îz〉 = 〈ψ|Îz|ψ〉 = 1√
2

(
1 1

)
�

⎛
⎜⎜⎝+1/2 0

0 −1/2

⎞
⎟⎟⎠ 1√

2

⎛
⎜⎜⎝1

1

⎞
⎟⎟⎠ = 0 (2.34)

In NMR experiments, the recorded signal is the collective effect of many identical spin systems
(although we will take special care in Sec. 2.2.2 to describe what is similar and what is different
between those many copies). Therefore, the measurement always results in an expectation value
and does not give access to the state of an individual spin system.

As stated by the fifth postulate, the fact of measuring observable A affects the quantum system.

Postulate V: For a system in state |ψ〉, immediately after measuring
observable A, the system is in |n〉, where |n〉 is the state associated with
eigenvalue an, which resulted from the measurement.

In other words, the fact of measuring A ”projects” the system onto state |n〉. Mathematically,
the projection can be represented using the projector operator P̂n = |n〉 〈n|,

|χ〉 = P̂n |ψ〉
‖P̂n |ψ〉 ‖

(2.35)

Contrary to the field of optics, in modern NMR experiments, this postulate has few practical
implications, except for single spin detection. In addition to that, the implications it has are very
subtle and beyond my understanding.

2.1.3 Time evolution: the Schrödinger equation

This whole section describes the last of the postulates, which defines how the system evolves with
time according to the Schrödinger equation.
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Postulate VI: The evolution of the system is given by the time-
dependent Schrödinger equation:

d

dt
|ψ(t)〉 = − i

�
Ĥ(t) |ψ(t)〉 , (2.36)

where |ψ〉 (t) and Ĥ(t) are the state of the system and the Hamiltonian
operator at time t, respectively. The Hamiltonian is defined as the
operator representing the total energy of the system.

The time-dependent Schrödinger equation can be rewritten in a more convenient form using a
time propagation operator or propagator. To do so, we calculate the Taylor expansion of the state
|ψ(t)〉 around time t = 0

|ψ(t)〉 = |ψ(0)〉+ t
d

dt
|ψ(0)〉

∣∣∣
t=0

+
t2

2!

d2

dt2
|ψ(t)〉

∣∣∣
t=0

+ ... =
∞∑
k=0

tk

k!

dk

dtk
|ψ(t)〉

∣∣∣
t=0

, (2.37)

assuming that the Hamiltonian is constant around t = 0. From the time-dependent Schrödinger
equation, we have

tk

k!

dk

dtk
|ψ(t)〉 =

(
− i

�
Ĥ

)k

|ψ(t)〉 . (2.38)

Plugging Eq. 2.38 into Eq. 2.37, we obtain

|ψ(t)〉 =
∞∑
k=0

tk

k!

(
− i

�
Ĥ

)k

|ψ(0)〉 =
∞∑
k=0

1

k!

(
− it

�
Ĥ

)k

|ψ(0)〉 = exp

(
− it

�
Ĥ

)
|ψ(0)〉 , (2.39)

where exp ( · ) denotes the matrix exponentiation. We now define the time propagation operator
or propagator

Û(0 → t) = exp

(
− it

�
Ĥ

)
=

∞∑
k=0

1

k!

(
− it

�
Ĥ

)k

, (2.40)

and plug into Eq. 2.40 to get a convenient form for the Schrödinger equation

|ψ(t)〉 = Û(0 → t) |ψ(0)〉 , (2.41)

which describes the evolution of the system using the time derivative of the state only implicitly.
States which do not evolve under the effect of the Hamiltonian are of particular interest. They

are called stationary states. We now show that the set of stationary states corresponds to the
eigenstates of the Hamiltonian. In other words, we now show that a state is stationary if and only
if it satisfies the time-independent Schrödinger equation

Ĥ |ψ〉 = ε |ψ〉 , (2.42)

where we see from the third postulate that ε must be the energy associated with |ψ〉. We have
said that stationary states are states which do not evolve under the Hamiltonian. More precisely,
a stationary state does not evolve apart from a phase factor eiφ(t)
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|ψ(t)〉 = eiφ(t) |ψ(0)〉 . (2.43)

The phase factor will not bring any useful information in the description of our experiments
in the experiments we are concerned with. It is a common practice to define a projective Hilbert
space P�, where each subspace of states in � which differ only by a phase factor are identified to a
single point in P�. We introduce another formulation of the state of the system using the density
matrix, which does not depend on the phase factor

ρ̂ = |ψ〉 〈ψ| . (2.44)

Note that here we have defined the density matrix for a single spin. We will define it for an
ensemble average and we will show how the postulates apply to it in the next section. For now, we
only try to understand the consequence of this description of the system on the phase factor and
on stationary states. If |ψ〉 is stationary, there exists φ(t), such that |ψ(t)〉 = eiφ(t) |ψ(0)〉 which
implies that Eq. 2.44 is satisfied for all t because

ρ̂(t) = |ψ(t)〉 〈ψ(t)| = e+iφ(t) |ψ(0)〉 〈ψ(0)| e−iφ(t) = |ψ(0)〉 〈ψ(0)| = ρ̂(0), (2.45)

This shows that the density matrix does not evolve at all for a stationary state, contrary to the
case where the spin is described by a ket and time evolution brings a change in the phase factor
even for an eigenstate (see Eq. 2.43). The time derivative of the density matrix is obtained from
the time-dependent Schrödinger equation

d

dt
ρ̂ =

d

dt
(|ψ〉 〈ψ|) = d

dt
|ψ〉 〈ψ|+ |ψ〉 d

dt
〈ψ| = − i

�
Ĥ |ψ〉 〈ψ|+ |ψ〉 〈ψ| i

�
Ĥ∗ = − i

�

(
Ĥρ̂− ρ̂Ĥ

)
,

(2.46)
where we have made use of the fact that the Hamiltonian is Hermitian, i.e., Ĥ∗ = Ĥ. Note that
we dropped the time dependence of the states to simplify notation. Introducing the notation of
the propagator [Â, B̂] = ÂB̂ − B̂Â, we write Eq. 2.46 as

d

dt
ρ̂ = − i

�
[Ĥ, ρ̂], (2.47)

which is known as the Liouville-Von Neumann equation. Now if we assume that the state is
stationary, we have

[Ĥ, ρ̂] = 0 ⇐⇒ Ĥ |ψ〉 〈ψ| = |ψ〉 〈ψ| Ĥ
⇐⇒ Ĥ |ψ〉 〈ψ|ψ〉 = |ψ〉 〈ψ| Ĥ |ψ〉
⇐⇒ Ĥ |ψ〉 = ε |ψ〉 ,

(2.48)

where we have made use of the fact that 〈ψ| Ĥ |ψ〉 is the expectation value ε of Ĥ and the state is
normalized 〈ψ|ψ〉 = 1. We have proved that a state is stationary if and only if it is an eigenstate of
the Hamiltonian. A corollary of this result is that the set of stationary states of the system form
a basis of the state space �.

We conclude this section on the postulates of quantum mechanics by drawing consequences
for the evolution of a single spin subject to a static magnetic field pointing along the z-axis. The
Hamiltonian is the operator associated with the total energy of the system and, as we have stated
earlier, we only take into account the spin interactions in our description. Therefore, we can write
the Hamiltonian as
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Ĥ = −B · μ̂ = −B0μ̂z = −B0�γÎz = �ω0Îz = �

⎛
⎜⎜⎝+1/2 0

0 −1/2

⎞
⎟⎟⎠ , (2.49)

written in the Zeeman basis and where ω0 = −γB0 is the Larmor frequency of the spin in magnetic
field B0. Ĥ is proportional to Îz, which implies that they share their eigenvectors. Finding the
eigenvectors of a diagonal matrix is trivial: they are the basis vectors, |α〉 and |β〉 in this case and
so we have

Ĥ |α〉 = +�ω0/2 |α〉

Ĥ |β〉 = −�ω0/2 |β〉
(2.50)

Because of the sixth postulate, the fact that |α〉 and |β〉 are eigenstates of the Hamiltonian
means that they are stationary states of the system. In other words, if the system is in the |α〉
and |β〉 states at time t = 0, it will remain in this state (apart from the phase factor), unless the
Hamiltonian changes. This is confirmed by using the propagator

Û(0 → t) = exp

(
− it

�
Ĥ

)
= exp

⎛
⎜⎜⎝−it

⎛
⎜⎜⎝+ω0/2 0

0 −ω0/2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ =

⎛
⎜⎜⎝e−itω0/2 0

0 e+itω0/2

⎞
⎟⎟⎠ , (2.51)

where we used the fact that the matrix exponential of a diagonal matrix is simply obtained by
exponentiating the diagonal elements individually. Therefore,

Û(0 → t) |α〉 =

⎛
⎜⎜⎝e−itω0/2 0

0 e+itω0/2

⎞
⎟⎟⎠
⎛
⎜⎜⎝1

0

⎞
⎟⎟⎠ = e−itω0/2

⎛
⎜⎜⎝1

0

⎞
⎟⎟⎠ = e−itω0/2 |α〉 (2.52)

which shows that time propagation does not change |α〉 apart from the phase factor. The same
is true for |β〉. On the contrary, a mixed state |ψ〉 = (|α〉 + |β〉)/√2 is not an eigenstate of the
Hamiltonian and so it evolves under the effect of the Hamiltonian

Û(0 → t) |ψ〉 = 1√
2

⎛
⎜⎜⎝e−itω0/2 0

0 e+itω0/2

⎞
⎟⎟⎠
⎛
⎜⎜⎝1

1

⎞
⎟⎟⎠ =

1√
2

⎛
⎜⎜⎝e−itω0/2

e+itω0/2

⎞
⎟⎟⎠ �= e−itω0/2 |ψ〉 , (2.53)

where we see that the initial state and the state at t = 0 do not vary only by a phase factor.

2.2 Spins as density matrices

So far, we have represented the state of the spin system using a wavefunction (or a ket). This
approach is often not the most convenient in the context of NMR. As we are going to see in this
section, the density matrix that we defined in Eq. 2.44 is a powerful tool for NMR simulation.
We will first see show how to extract expectation values from the density matrix and how time
propagation is carried out on it. Then, we will show how a large ensemble of uncoupled spins can
be described using a density matrix that is nearly identical to that of a single spin. Finally, we
will see how coupled spins can be described using the density matrix formalism.
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2.2.1 Expectation values and time propagation

The expectation value of operator Â for density matrix ρ̂ is given by

〈Â〉 = Tr
{
Âρ̂

}
, (2.54)

where the trace operation Tr{·} corresponds to the sum of the diagonal elements. The definition
given by Eq. 2.54 is equivalent to that of Eq. 2.28, which we derived in the previous section for
the expectation value of the ket. Indeed,

Tr
{
Âρ̂

}
= Tr

⎧⎨
⎩
∑
njk

anc
∗
kcj |n〉 〈n|j〉 〈k|

⎫⎬
⎭

= Tr

⎧⎨
⎩
∑
njk

anc
∗
kcjδnj |n〉 〈k|

⎫⎬
⎭

= Tr

{∑
nk

anc
∗
kck |n〉 〈k|

}

=
∑
n

an|cn|2

= 〈Â〉 ,

(2.55)

where we assumed that the operator Â and the density matrix ρ̂ were expressed in terms of the
basis states of Â. However, as we did for Eq. 2.28 (see Eq. 2.32), we can show that the expectation
value can be computed with Eq. 2.54 as long as Â and ρ̂ are expressed in the same basis, whatever
the basis. Using the basis change introduced in Eq. 2.29 and Eq. 2.30, we can write the basis
change for the density matrix from basis � to � as

ρ̂� = Uρ̂�U
−1 (2.56)

and therefore we have

Tr
{
Â�ρ̂�

}
= Tr

{
UÂ�U

−1Uρ̂�U
−1
}

= Tr
{
UÂ�ρ̂�U

−1
}

= Tr
{
U−1UÂ�ρ̂�

}
= Tr

{
Â�ρ̂�

}
,

(2.57)

where we used the fact that Tr{ABC} = Tr{CAB} = Tr{BCA}. As an example, the expectation
value of Îz for ρ̂ = |α〉 〈α| is
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〈Îz〉 = Tr
{
Îz |α〉 〈α|

}

= Tr

⎧⎪⎪⎨
⎪⎪⎩Îz

⎛
⎜⎜⎝1

0

⎞
⎟⎟⎠
(
1 0

)⎫⎪⎪⎬
⎪⎪⎭

= �Tr

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝+1/2 0

0 −1/2

⎞
⎟⎟⎠
⎛
⎜⎜⎝1 0

0 0

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

= �Tr

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝+1/2 0

0 0

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

= +�/2.

(2.58)

We now use the expression for the expectation value of the density matrix given by Eq. 2.54 to
find an intuitive form of the density matrix, namely the vector model. We first express the general
state ket of Eq. 2.13 as a density matrix

ρ̂ = |ψ〉 〈ψ| =

⎛
⎜⎜⎝cα

cβ

⎞
⎟⎟⎠
(
c∗α c∗β

)
=

⎛
⎜⎜⎝|cα|2 cαc

∗
β

c∗αcβ |cβ |2

⎞
⎟⎟⎠ , (2.59)

where we see that the diagonal contains the population of the |α〉 and |β〉 states. The four matrix
elements of ρ̂ can be extracted as the expectation values of the four matrices

Tr

{(
�̂

2
+ Îz

)
ρ̂

}
= Tr

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝1 0

0 0

⎞
⎟⎟⎠ ρ̂

⎫⎪⎪⎬
⎪⎪⎭ = |cα|2, (2.60)

Tr
{(

Îx − iÎy

)
ρ̂
}
= Tr

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝0 0

1 0

⎞
⎟⎟⎠ ρ̂

⎫⎪⎪⎬
⎪⎪⎭ = c∗αcβ , (2.61)

Tr
{(

Îx + iÎy

)
ρ̂
}
= Tr

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝0 1

0 0

⎞
⎟⎟⎠ ρ̂

⎫⎪⎪⎬
⎪⎪⎭ = cαc

∗
β (2.62)

and

Tr

{(
�̂

2
− Îz

)
ρ̂

}
= Tr

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝0 0

0 1

⎞
⎟⎟⎠ ρ̂

⎫⎪⎪⎬
⎪⎪⎭ = |cβ |2. (2.63)

where �̂ is the identity. We can therefore rewrite the density matrix as
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ρ̂ = |cα|2
(
�̂

2
+ Îz

)
+ c∗αcβ

(
Îx − iÎy

)
+ cαc

∗
β

(
Îx + iÎy

)
+ |cβ |2

(
�̂

2
− Îz

)

= (|cα|2 + |cβ |2) �̂
2
+ (cαc

∗
β + c∗αcβ)Îx + i(cαc

∗
β − c∗αcβ)Îy + (|cα|2 − |cβ |2)Îz

=
�̂

2
+ PxÎx + Py Îy + Pz Îz

=
�̂

2
+ P · Î,

(2.64)

where we have defined

Px = 2Re{cαc∗β} = cαc
∗
β + c∗αcβ

Py = 2Im{cαc∗β} = i(cαc
∗
β − c∗αcβ)

Pz = |cα|2 − |cβ |2,
(2.65)

and P is a vector containing the individual polarizations. From their definition, we see that Px, Py

and Pz are real numbers between −1 and +1. Furthermore, we find the normalization condition

P 2
x + P 2

y + P 2
z = |cα|2 + |cβ |2 = 1. (2.66)

The numbers defined by Eq. 2.65 are called the spin polarization along the x, y, and z-axes;
they represent the normalized amount of angular momentum of the spin along the x, y, and z-axes,
respectively. The fact that the state of the spin can be described by three real numbers which
give its orientation in space allows one to represent the spin using the “vector model”. This model
identifies the state of the spin with the polarization vector P in 3D space, as depicted in Fig. 2.2.
Note that, because of Eq. 2.64, angular momentum operators can be used to describe the state of
the system as well as the observables, a fact that may be confusing at first sight.

Figure 2.2: Representation of the polarization vector of a spin 1/2 and its projections along the
Cartesian axes. The polarization and its projections are colinear with the angular momentum
operator and its projections.

The polarization numbers in Eq. 2.65 were introduced as real coefficients that replaced the
complex coefficients of the ket vector in the description of the spin. However, beyond this abstrac-
tion, polarization is a physical observable and as such, it can only be measured as an expectation
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value, and not as a single, deterministic value. The expectation value of the spin polarization along
axis k = x, y, z can in general be extracted from the density matrix as

〈Pk〉 = 1

|I|Tr
{
Îkρ̂

}
, (2.67)

where I is the spin number, which we accept without proof. [101] This result holds as well in
the case of multiple spin systems that we will treat later. In the following discussion, polarization
numbers are regarded as abstract coefficients and not as observables.

For a single spin 1/2, it turns out that the vector model is sufficient to describe completely the
state of the system. Mathematically, this is equivalent to saying that the Hilbert space in which
the ket representing the spin lives is isomorphic to the unit sphere in �3 in which the polarization
vector lives. Moreover, the transition probability defined by Eq. 2.7 in the first postulate must be
preserved by the isomorphism between the spaces. Let us call the Hilbert space of a single spin
and the unit sphere in �3, �1 and �2, respectively. We now prove that �1 and �2 are isomorphic
(note that I conceived this proof on my own and so it might not be the most direct). We construct
an isomorphism that maps each element of �1 with an element of �2, and vice versa

f : �1 → �2

⎛
⎜⎜⎝cα

cβ

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎜⎜⎝

Px = 2Re{cαc∗β}

Py = 2Im{cαc∗β}

Pz = |cα|2 − |cβ |2

⎞
⎟⎟⎟⎟⎟⎟⎠

,
(2.68)

with the inverse

f−1 : �2 → �1⎛
⎜⎜⎜⎜⎜⎜⎝
Px

Py

Pz

⎞
⎟⎟⎟⎟⎟⎟⎠

�→

⎛
⎜⎜⎝cα = cos (θ/2) exp (+iφ/2)

cβ = sin (θ/2) exp (−iφ/2)

⎞
⎟⎟⎠ ,

(2.69)

where θ and φ are the angle between z-axis and the polarization vector and the angle between
x-axis and the projection of the polarization in the xy-plane, respectively. A little bit of algebra
shows that we have f ◦ f−1 = f−1 ◦ f = � and so f is indeed an isomorphism. This also implies
that

� =
{
�̂, Îx, Îy, Îz

}
(2.70)

forms a basis of the Hilbert space in which the spin lives.
We now show that the transition probability is preserved by the isomorphism. In �2, we define

the transition probability from state ρ̂1 to state ρ̂2 as

p1→2 = Tr {ρ̂2ρ̂1} , (2.71)

which is closely related to the formula for the computation of expectation values from the density
matrix in Eq. 2.54. What we now need to show is that this formula using elements of �2 yields
the same result as Eq. 2.7 with elements of �1. To simplify notations, let us write the coefficients
of state |ψ1〉 as α1 and β1 and those of state |ψ2〉 as α2 and β2 in �1 and their image through
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isomorphism f as x1, y1 and z1 and x2, y2 and z2, respectively. Using Eq. 2.7, we find that the
transition probability is

p1→2 = | 〈ψ2|ψ1〉 |2
= |α1α

∗
2 + β1β

∗
2 |2

= (α1α
∗
2 + β1β

∗
2)(α

∗
1α2 + β∗

1β2)

= |α1|2|α2|2 + α1β
∗
1α

∗
2β2 + α∗

1β1α2β
∗
2 + |β1|2|β2|2.

(2.72)

Plugging in the relations of Eq. 2.69, we obtain

p1→2 =
1

2
(1 + sin (θ1) sin (θ2) cos (φ1 − φ2) + cos (θ1) cos (θ2))

=
1

2
(1 + x1x2 + y1y2 + z1z2) .

(2.73)

Now if we write the density matrices expressed in �2 corresponding to kets expressed in �1 as

ρ̂k =
1

2
�+ xk Îx + yk Îy + zk Îz, (2.74)

where k = 1, 2, we can calculate the transition probability using Eq. 2.71

p1→2 = Tr

{(
1

2
�+ x1Îx + y1Îy + z1Îz

)(
1

2
�+ x2Îx + y2Îy + z2Îz

)}

=
1

4
Tr

{
�
2
}
+ x1x2Tr

{
Î2x

}
+ y1y2Tr

{
Î2y

}
+ z1z2Tr

{
Î2z

}
=

1

4
2 + x1x2

1

2
+ y1y2

1

2
+ z1z2

1

2

=
1

2
(1 + x1x2 + y1y2 + z1z2) .

(2.75)

To go from the first line to the second, we used the fact that the trace is a linear operation and
the trace is 0 for products of orthogonal operators. With that, we have shown that the transition
probability between two states expressed in terms of polarization along the Cartesian axes yields
the same result as the braket notation. The formulation of the spin dynamics expressed in basis
�1 equipped with the operation defined in Eq. 2.7 is therefore equivalent to that expressed in basis
�2 equipped with the operation defined in Eq. 2.71 and so the representation of a single spin as
a vector in 3D space is an appropriate description.

We have translated the state of the system and the computation of the expectation value from
the formalism of kets to that of density matrices. What we still need in our toolbox is to translate
the time propagation operator into the formalism of the density matrix. This is easily obtained
by writing:

ρ̂(t) = |ψ(t)〉 〈ψ(t)|
= |ψ(t)〉 (|ψ(0)〉)∗

= Û |ψ(0)〉
(
Û |ψ(0)〉

)∗

= Û |ψ(0)〉 〈ψ(0)| Û−1

= Û ρ̂(0)Û−1,

(2.76)

where we simplified the notation of the propagator
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Û = Û(0 → t) = exp

(
− it

�
Ĥ

)
. (2.77)

Eq. 2.76 is known as the ”sandwich formula”. We will use it whenever we will describe the
time evolution of the system, in particular for numerical calculation.

To simplify the expressions, we can redefine the Hamiltonian as

�̂ =
Ĥ

�
(2.78)

�̂(0 → t) = exp
(
−it�̂

)
= Û(0 → t), (2.79)

where we see that the time propagator defined using the Hamiltonian of Eq. 2.78 is the same
as that of our previous definition; the constant � cancels out in the fraction. This change in the
definition of the Hamiltonian does not affect the eigenstates of the Hamiltonian. However, it does
affect the eigenvalues. So far, all eigenvalues of the Hamiltonian were proportional to � but di-
viding the Hamiltonian by � divides the eigenvalues as well. This change is simply a unit change
from J to rad.s−1. The eigenvalues of Îz are now +1/2 and −1/2 rather than +�/2 and −�/2.
The Hamiltonian and the energies of the states will be expressed in rad.s−1 throughout this work
from this point. For simplicity, we will use normal font symbols Ĥ and Û to express Hamiltonians
and propagators.

The sandwich formula of Eq. 2.76 will be of great use for numerical propagation. However,
in some cases, there is a more intuitive way to describe the time evolution of the density matrix,
using the commutation relation of the angular momentum operators. The operators Îx, Îy and Îz
are related by the following cyclic commutation relation

[Îx, Îy] = iÎz

[Îy, Îz] = iÎx

[Îz, Îx] = iÎy.

(2.80)

Recalling the Liouville-Von Neumann equation (see Eq. 2.47), we see that these commutators
define how operators act on each other. For example, if the density matrix at time t = 0 is
ρ̂(0) = Îz and the Hamiltonian can be written as Ĥ = ω1Îy, where ω1 is an angular frequency in
rad.s−1, then the Liouville-Von Neumann equation tells us that the variation of the density matrix
at time t = 0 is dρ̂/dt = ω1Îy. Altogether, the commutation relations form a set of differential
equations and the solution for the example that we have given here is

ρ̂(t) = Îz cosω1t+ Îx sinω1t. (2.81)

Therefore, Ĥ = ω1Îy rotates Îz towards Îx at frequency ω1. This example corresponds to the
situation where a spin is initially along the z-axis and is rotated around the y-axis by an rf field.
This will be treated in more detail in the next section. Note that writing ρ̂(0) = Îz does not match
the form of the density matrix in Eq. 2.64 because the identity operator �̂/2 is missing. It is a
common practice to drop the identity operator from the density matrix as it does not evolve under
the action of any operator (because the identity commutes with all operators).

Whenever a set of three operators features the cyclic commutation relation, this approach
will be useful to predict analytically the behavior of the system and hence the expected spectral
features both at high-field and at zero-field.
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2.2.2 Multiple spin system

We now have the tools to describe the evolution of a single spin under the effect of relevant oper-
ators to describe pulse sequence and spin interactions. Yet, NMR experiments do not consist of
detecting single spins but rather the collective effect of many spins. Furthermore, spins interact
together, which cannot be accounted for, using the tools that we have described so far. This
section will present two concepts that we need to describe a complete NMR experiment. First, we
will show how the ensemble average enables the description of many identical spin systems using
a density matrix with the dimension of a single spin. Then, we will show how interacting spins
can be described using Kronecker products of operators (whether as an ensemble average or not).

Let us assume that the system consists of a large number of spins that are immersed in a
homogeneous magnetic field and do not interact with each other. A brute force approach to the
description of such an ensemble would consist of constructing a Hilbert space which would be the
Kronecker product of the Hilbert spaces of all individual spins. As the size of the Hilbert space
grows with 2N , where N is the number of spins, the resulting space would be far too large to allow
for any calculation, even for the tiniest sample. What we will do instead is to construct the density
matrix of the whole system ρ̂tot as the average over an infinite ensemble of spins

ρ̂tot = lim
N→∞

1

N

N∑
n=1

ρ̂n

=
�̂

2
+ P̄xÎx + P̄y Îy + P̄z Îz,

(2.82)

where we have defined the average polarization

P̄k = lim
N→∞

1

N

N∑
n=1

Pk,n, (2.83)

where Pk,n is the polarization of spin n along axis k. The above equations can be seen as the
averaging of the vectors of the individual spins in 3D space. Many NMR experiments start with
the spins at thermal equilibrium in a magnetic field aligned with the z-axis. In this case, we know
that the average polarization along the z-axis is

P̄z = Peq, (2.84)

which is the Boltzmann equilibrium polarization, as defined in Section 1.1.1 (see Eq. 1.3). On the
contrary, there is no preferred orientation in the xy-plane and so we have

P̄x = P̄y = 0. (2.85)

In other words, spins can point anywhere in space but the average of all their orientations points
towards the z-axis. Fig. 2.3 gives a visual representation of the individual polarization vectors
of the spins and their averaged polarization. Plugging Eq. 2.84 and Eq. 2.85 into Eq. 2.82, we
obtain the thermal equilibrium density matrix for a single spin 1/2 immersed in a magnetic field
along the z-axis

ρ̂eq =
�̂

2
+ Peq Îz =

⎛
⎜⎜⎝

1+Peq

2 0

0
1−Peq

2

⎞
⎟⎟⎠ . (2.86)



32 CHAPTER 2. QUANTUM MECHANICAL FRAMEWORK

This density matrix represents a so-called mixed state of the system. The norm of the polar-
ization vector associated with this mixed state is Peq (it is obtained using Eq. 2.67), which is not
necessarily 1. From expression Eq. 2.69, it is clear that spin states expressed in �1 and �2 can
only have a polarization vector with unit norm and so mixed states cannot be represented in terms
of cα and cβ coefficients. This is one of the reasons why the density matrix formalism is often
more powerful for the description of our experiments.

Figure 2.3: Representation of the polarization vector of an ensemble of spins whose average polar-
ization points along the z-axis.

A result from statistical mechanics gives access to a more general expression of the density
matrix at thermal equilibrium [98]

ρ̂eq =
exp

(
− �Ĥ0

kBT

)
Tr

{
exp

(
− �Ĥ0

kBT

)} , (2.87)

where kB and T are Boltzmann’s constant and the system temperature, respectively, and the
Hamiltonian Ĥ0 is expressed in rad.s−1. For an ensemble of isolated spins in a magnetic field, the
Hamiltonian is Ĥ0 = −γB0Îz and so the equilibrium density matrix is

ρ̂eq =
exp

(
�γB0Îz
kBT

)
Tr

{
exp

(
�γB0Îz
kBT

)}

=
1

exp
(
+ �γB0

2kBT

)
+ exp

(
− �γB0

2kBT

)
⎛
⎜⎜⎝exp

(
+ �γB0

2kBT

)
0

0 exp
(
− �γB0

2kBT

)
⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1+Peq

2 0

0
1−Peq

2

⎞
⎟⎟⎠ ,

(2.88)

where we recovered the result of Eq. 2.86. These two approaches yield the same result but the
second is more general.

We now have the necessary tools to describe the most basic NMR experiment. Let us predict
the resonance of a 1H-NMR spectrum for a sample of an ensemble of non-interacting spins detected
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by a simple pulse-acquire experiment at B0 = 9.4 T. The Hamiltonian consists only of the Zeeman
term

Ĥ0 = −γB0Îz = ω0Îz (2.89)

where ω0 is the Larmor frequency of the spins. If the sample has spent enough time in the magnet
without being perturbed by any rf pulse, the system is at thermal equilibrium, meaning that it
can be represented by the density matrix of Eq. 2.88, with Peq = 33 ppm, according to Eq.
1.3. The NMR spectrometer is equipped with coils to act on the spins and detect their oscillating
magnetization in the xy-plane also called the transverse plane. The magnetization in the transverse
plane is proportional to the expectation value of operators Îx and Îy. Before we apply any pulse,
there is no net magnetization in the transverse plane because we have

Tr
{
Îxρ̂eq

}
= Tr

{
Îyρ̂eq

}
= 0, (2.90)

and there is nothing to be detected. By applying an rf pulse along the y-axis, we can move the
spins from the z-axis to the x-axis. If we neglect the evolution under the Zeeman Hamiltonian of
the main field B0 during the pulse for simplicity, the pulse Hamiltonian can be written as

Ĥ1 = ω1Îy, (2.91)

where ω1 is the nutation frequency of the pulse which corresponds to the frequency at which the
pulse rotates the spins. From the cyclic commutation relation that we have found earlier, we know
that the density matrix evolves under the pulse Hamiltonian as

ρ̂(τp) =
�̂

2
+ Peq

(
cos (ω1τp)Îz + sin (ω1τp)Îx

)
, (2.92)

where τp is the pulse length in seconds. If we choose τp = π/(2ω1), the density matrix at the end
of the pulse is

ρ̂1 =
�̂

2
+ Peq Îx, (2.93)

that is, we have chosen the pulse length so as to convert Îz completely into Îx. After the pulse, the
system is no longer in a stationary state and so it evolves under the Zeeman Hamiltonian. Again,
the cyclic commutation relation gives us the time evolution of the density matrix

ρ̂(t) =
�̂

2
+ Peq

(
cos (ω0t)Îx + sin (ω0t)Îy

)
, (2.94)

The expectation value of the angular momentum along the x- and y-axes along time is

〈Îx〉 = Tr
{
Îx ˆρ(t)

}
= Peq cos (ω0t)Tr

{
Î2x

}
=

Peq

2
cos (ω0t)

〈Îy〉 = Tr
{
Îy ˆρ(t)

}
= Peq sin (ω0t)Tr

{
Î2y

}
=

Peq

2
sin (ω0t).

(2.95)

Therefore, the signal recorded by the NMR coil along time in complex notation is

S(t) = 〈Îx〉+ i 〈Îy〉 = 1

2
Peqe

iω0t, (2.96)

where the phase of the detector was chosen to have a purely real signal at t = 0. This shows
that, following the rf pulse, the receiver will detect a signal oscillating at the Larmor frequency
of the nuclear spin, with an intensity proportional to the initial thermal equilibrium polarization.
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Note that we wrote the signal in terms of angular momentum from −1/2 to +1/2. To express
the signal as an oscillating magnetization vector, according to Eq. 2.1, the signal obtained here
must be multiplied by Nγ�, where N is the number of spins. Fig. 2.4 shows the evolution of the
magnetization vector along the pulse-acquire experiment that we have described here. For this
simplest example, we could derive analytically the resulting signal. We will see in the next section
how signals can be computed numerically.

Figure 2.4: Magnetization of an ensemble of spin 1/2 (represented by a black arrow) titled from
the thermal equilibrium position to the transverse plane by a π/2 pulse along the y-axis. The
magnetization vector then starts precessing about the z-axis under the Zeeman Hamiltonian.

Let us now turn to the case where the system consists of a large ensemble of a pair of interacting
spins. The ensemble average alone is still not able to describe this system. We need to construct
operators accounting for each spin separately. This is done by taking the Kronecker product of
the single spins with the identity
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Î1z = Î2×2
z ⊗ �̂

2×2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1/2 0 0 0

0 +1/2 0 0

0 0 −1/2 0

0 0 0 −1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Î2z = �̂
2×2 ⊗ Î2×2

z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1/2 0 0 0

0 −1/2 0 0

0 0 +1/2 0

0 0 0 −1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.97)

where Î1z and Î2z are the z-angular momentum operators of spin 1 and 2 in the 2-spin Hilbert
space, respectively, while Î2×2

z is the operator in the single spin Hilbert space. These operators
live in a Hilbert with basis

�
2×2 = {|αα〉 , |αβ〉 , |βα〉 , |ββ〉} (2.98)

The same procedure can be applied to compute the angular momentum along the x- and y-axes.
The Zeeman Hamiltonian for this pair of spin can be written as

ĤZ = Ĥ2×2
Z,1 ⊗ �̂

2×2 + �̂
2×2 ⊗ Ĥ2×2

Z,2 = ω0,1Î1z + ω0,2Î2z

=
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ω0,1 + ω0,2 0 0 0

0 +ω0,1 − ω0,2 0 0

0 0 −ω0,1 + ω0,2 0

0 0 0 −ω0,1 − ω0,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(2.99)

where ω0,1, ω0,2, Ĥ
2×2
Z,1 and Ĥ2×2

Z,2 are the Larmor frequencies of spin 1 and 2 and their Zeeman
Hamiltonians expressed in single spin Hilbert spaces, respectively. If spin 1 and 2 have polarization
P1 and P2 at thermal equilibrium, respectively, the density matrix is

ρ̂eq = ρ̂2×2
1 ⊗ ρ̂2×2

2

=

(
�̂

2
+ P1Î

2×2
z

)
⊗
(
�̂

2
+ P2Î

2×2
z

)

=
�̂

4
+

1

2

(
P1Î1z + P2Î2z + P1P22Î1z Î2z

)
(2.100)

A new term has appeared in the density matrix which is the product of spin 1 and 2: 2Î1z Î2z.
Terms associated with two different spins are referred to as ”2-spin order”. This term is usually ne-
glected in the thermal equilibrium density matrix of NMR experiments without hyperpolarization
because the product P1P2 is negligible compared to P1 and P2. Because the identity commutes
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with all operators and is responsible for no observable signal, it is often removed from the density
matrix. Furthermore, it is often not necessary to consider the exact polarization of the spins but
rather the ratio between them and so the thermal equilibrium density matrix is written in many
textbooks as

ρ̂eq = aÎ1z + bÎ2z, (2.101)

where a and b are real numbers. If spin 1 and 2 are homonuclear, a and b are usually chosen to
be a = b = 1, while if there are different isotopes, they are chosen to respect the ratio between the
gyromagnetic ratios so that the density matrix reflects the relative thermal equilibrium polariza-
tions. For example, if spin 1 and 2 are a 1H and a 13C spin, respectively, we may choose a = 4
and b = 1.

The terms associated with spins 1 and 2 in the Zeeman Hamiltonian (see Eq. 2.99) act on the
terms associated with spin 1 and 2 in the density matrix (see Eq. 2.101), respectively. It is easily
verified that the angular momentum operators of spin 1 commutes with those of spin 2. Therefore,
the cyclic commutation relation and its consequences that we found for Îx, Îy and Îz holds for

Î1x, Î1y and Î1z and for Î2x, Î2y and Î2z, separately. In other words, what we have understood for
the spin within a single-spin Hilbert space holds for each spin within a 2-spin Hilbert space indi-
vidually. Therefore, a π/2 pulse acting on spin 1 generates a measurable signal oscillating at ω0,1.
This transition is the sum of the two degenerate transitions between |βα〉 and |αα〉 and between
|ββ〉 and |αβ〉, which sums up into a signal resonance. These two transitions are proportional to
a/2 or P1/4. Because they are degenerate, their intensities sum up to a or P1/2. Similarly, a π/2
pulse acting on spin 2 generates a measurable signal oscillating at ω0,2 with intensity proportional
to b or P2/2.

These analytical results can be compared with numerical simulations, such as those shown as
examples in Chapter 1 (see Fig. 1.3, 1.7 and 1.8). We now show how spectra can be simulated for
a single spin with Larmor frequency ω1,0/2π = 10 Hz and a pair of homonuclear spins with Larmor
frequencies ω1,0/2π = 10 Hz and ω2,0/2π = −20 Hz. Note that these frequencies are defined in the
rotating frame, i.e., they represent the difference between the Larmor frequency and the carrier
frequency.

Following the discussion above, we use the initial density matrix

ρ̂0 = Îz, (2.102)

where Îk = Î1k + Î2k with k = x, y, z in the two-spin case. A non-stationary state is generated by
a π/2 pulse acting on the spins, which is computed using the sandwich formula (see Eq. 2.76) and
the propagator of the pulse Hamiltonian (see Eq. 2.91) during the appropriate delay

ρ̂1 = exp
(
−i

π

2
Îy

)
ρ̂0 exp

(
+i

π

2
Îy

)
. (2.103)

Free evolution is simulated by propagating the density matrix under Ĥ0 = ω1,0Î1 or Ĥ0 =

ω1,0Î1z + ω2,0Î2z iteratively during the FID and extracting the expectation value of the angular
momentum at each time increment. The density matrix for increment k + 1 is therefore

ρ̂k+1 = exp
(
−iĤ0dt

)
ρ̂k exp

(
+iĤ0dt

)
, (2.104)

where dt is the spectrometer dwell time, i.e., the time between temporal data points. The expec-
tation value of the recorded signal at increment k is
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Sk = 〈Îx〉+ i 〈Îy〉
= Tr

{
Îxρ̂k

}
+ iTr

{
Îyρ̂k

}
= Tr

{
(Îx + iÎy)ρ̂k

}
= Tr

{
Î+ρ̂k

}
,

(2.105)

where we have introduced the shift operator Î± = Îx ± iÎy. The resulting time domain signal does
not decay because our model does not include relaxation. We, therefore, apply an apodization
function

S′
k = Sk exp (−πδν1/2tk), (2.106)

where δν1/2 is the full width at half maximum (FWHM) of the Fourier transformed signal in Hz
and tk = (k − 1)dt is the time since the end of the pulse and a time point of the acquisition. In
addition, we apply a second apodization function

S′
k =

{
Sk/2 if k = 1

Sk otherwise,

(2.107)

which avoids baseline distortion of the discretized signal. [102, 103] Finally, the signal is Fourier
transformed. Fig. 2.5 shows the results of the numerical simulation, which was performed using a
home-written MATLAB script, as all the simulations throughout this work.

Figure 2.5: Numerical simulation of the spectra for pulse-acquire experiments for a single-spin
system and a homonuclear two-spin system (top and bottom, respectively). The plots on the right
are the Fourier transform of the plots on the left. Simulation with 256 time increments of 10 ms,
Fourier transform after applying δν1/2 = 1 Hz of line broadening and zero-filling to 1024 points.
For both the FIDs and the spectra, the real part of the signal is displayed.

As can be seen in Fig. 2.5, the numerical simulation features the resonances which we expected
from the analytical derivation above. Because the Hamiltonian does not contain any term coupling
spins 1 and 2, the spins behave as if the other did not exist (bearing in mind that we neglect
relaxation).
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2.3 Interactions in NMR and DNP

In this section, we will detail relevant interactions for this work and the related Hamiltonians.
We have already mentioned the Zeeman Hamiltonian and the pulse Hamiltonian, which describes
spin-field interactions; that of the spin with the static magnetic field B0 and with the magnetic field
component of rf pulses B1, respectively. We will show how the Zeeman interaction must be slightly
corrected to account for the chemical shift. Then we will present three spin-spin interactions:

� The J-coupling is an intramolecular nucleus-nucleus interaction mediated by the electron
cloud. It is often referred to as the scalar interaction. J-couplings are relatively weak
interactions for NMR, they typically do not exceed a few hundreds of Hz;

� The nucleus-nucleus dipolar interaction D is a through-space interaction between the nuclear
spins. It is the quantum mechanical equivalent of the classical dipole-dipole interaction. The
nuclear dipolar interaction typically takes values up to tens of kHz;

� The electron-nucleus dipolar interaction A, also referred to as the anisotropic hyperfine inter-
action, is the same as D but is usually expressed differently in the case of the electron-nucleus
interaction. It can take values as high as several MHz.

An important aspect of the interactions is their time dependence: spin-spin interactions have
completely different consequences on spectral features whether a molecule is freely tumbling in
the liquid-state or static in the solid-state. In particular, dipolar interactions are averaged out
by molecular tumbling in isotropic non-viscous liquids. As a consequence, they do not affect the
frequency of the nuclear transitions (they cause relaxation but this will not be treated here), which
enables the observation of the weak J-coupling interactions. In the solid-state, to the contrary,
dipolar interactions give rise to broad spectral features which usually largely exceed J-couplings.

In many situations, terms can be neglected in the Hamiltonians and so different forms can
be found in the literature. We will give the most general forms of the Hamiltonians which are
necessary for the purpose of this work.

Before we move on to spin-spin interactions, we need to introduce the chemical shift. We have
already defined the Zeeman Hamiltonian for a single spin (see Eq. 2.89) as well as for multiple
spin systems (see Eq. 2.99). In reality, nuclei are not in vacuum; they are held in molecules and
are therefore surrounded by electrons. The presence of these electrons and their movements tend
to screen the magnetic field experienced by the nuclei. This effect may be accounted for in the
Hamiltonian by including an adimensional shielding factor σ [98]

ĤZ = −γB0(1− σ)Îz, (2.108)

which can also be expressed in terms of the chemical shift δ = −106 · σ in ppm

ĤZ = −γB0(1 + 10−6δ)Îz = ω0Îz, (2.109)

where ω0 = −γB0(1 + 10−6δ) is the Larmor frequency of the spin taking the chemical shift into
account. The chemical shift is a convenient parameter that does not depend on the magnetic field.
Therefore, the resonance (or the multiplets) associated with a spin always appears at the same
location of an NMR spectrum expressed in terms of chemical shifts, no matter the magnetic field
used for a particular experiment. For 1H and 13C spins, typical values of δ span from 0 to 10 ppm
and from 0 to 200 ppm, respectively.

Note that this expression of the chemical shift is only valid for liquids. Indeed, the chemical
shift is a rank-1 interaction, which depends on the orientation of the molecule with respect to the
static magnetic field B0. The anisotropic part of the chemical shift is averaged out by molecular
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motion in liquids leaving only the isotropic part, which is characterized by the constant δiso. This
isotropic part of the interaction is appropriately described by the above equations with δ = δiso.

2.3.1 The J-interaction at high-field

The complete form of the tensor representing the J-interaction is given by a 3 by 3 matrix. [104]
However, in isotropic liquids, the interaction simplifies to the form [98]

ĤJ = 2πJ12Î1 · Î2

= 2πJ12

(
Î1xÎ2x + Î1y Î2y + Î1z Î2z

)

= πJ12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1/2 0 0 0

0 −1/2 +1 0

0 +1 −1/2 0

0 0 0 +1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.110)

where J12 is the J-coupling constant between spins 1 and 2, expressed in Hz (and hence the 2π
factor to ensure that the Hamiltonian is expressed in rad.s−1 which is the convention throughout
this work). The diagonal elements show that ĤJ shifts the |αα〉 and |ββ〉 states by +πJ12/2 while
it shifts the |βα〉 and |αβ〉 states by −πJ12/2. Furthermore, the |βα〉 and |αβ〉 states are mixed
by the off-diagonal terms +πJ12.

Let us assume that a pair of J-coupled spins are subject to a magnetic field B0. Their Hamil-
tonian thus consists of the Zeeman and J-interaction Ĥ0 = ĤZ + ĤJ , whose complete expression
in the |αβ〉 ⊗ |βα〉 subspace is

Ĥ
|αβ〉⊗|βα〉
0 =

⎛
⎜⎜⎝+Δ/2− πJ12/2 +πJ12

+πJ12 −Δ/2− πJ12/2

⎞
⎟⎟⎠ . (2.111)

where Δ = ω0,1 − ω0,2 is the Larmor frequency difference between spin 1 and 2. When the |βα〉
and |αβ〉 states are very far in energy, we have Δ � πJ12 and the J-Hamiltonian may be truncated
(or secularized) to yield

ĤJ ≈ πJ12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1/2 0 0 0

0 −1/2 0 0

0 0 −1/2 0

0 0 0 +1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 2πJ12Î1z Î2z. (2.112)

In this case, the spins are said to be in the weak coupling regime or far from equivalence, which
means that the J-coupling only shifts the energy levels but does not mix them. Hence, the Zeeman
states can still be considered to be the eigenstates of the system. This is typically the case for
heteronuclei at high-field: for a pair of 1H and 13C spins at 9.4 T, the Larmor frequency difference
is Δ/2π = 300 MHz while the J-coupling can never be larger than a few hundreds of Hz. Yet,
because of the J-coupling, none of the four observable transitions are degenerate. As shown in Fig.
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2.6, the two degenerate ω1,0 transitions are split into two transitions separated by 2πJ12 and idem
for the two ω2,0 transitions. The spectrum of spins 1 and 2, therefore, consists of doublets split
by 2πJ12 and centered at ω1,0 and ω2,0, respectively. Note that in Fig. 2.6 we used the truncated
form of the J-Hamiltonian although the frequency difference in Larmor frequency does not greatly
exceed the J-coupling. This unphysical situation was chosen as a simple visual argument.

Figure 2.6: A. Four-level energy diagrams of a system of two spins 1/2 in the case of non-interacting
and J-coupled spins for a positive J-coupling constant. Note that the J-coupling splitting has been
greatly exaggerated so that the difference between the non-coupled and coupled diagrams is visible.
B. Corresponding numerical spectrum simulation using the same parameters as in Fig. 2.5 with
J12 = 3 Hz and the truncated form of J in the coupled case (see Eq. 2.112).

The opposite case is often met in conventional high-field NMR for homonuclear J-coupled spins
as their difference in Larmor frequency is only due to the chemical shift and so Δ = 10−6(δ1−δ2)ω0,
where ω0 is the Larmor frequency of the spin in vacuum. For example, a pair of 1H spins at 1.88 T
with a J-coupling of 10 Hz and a chemical shift difference of 0.5 ppm have a frequency difference
Δ/2π ≈ 40 Hz, which is only ≈ 4 times larger than the J-coupling and so the Zeeman states
are no longer the exact eigenstates of the system. This gives rise to the so-called ”roof effect”
where the doublets are no longer symmetric in intensity, as shown in Fig. 2.7. As mentioned
above, the absence of roof-effect in the J-coupled spectrum simulated in Fig. 2.6 and Fig. 2.7A is
non-physical; it is the result of the secularization of the J-Hamiltonian.

More important for this work is the case of J-coupled heteronuclei at ZULF. The most typical
case is the 1H-13C pair of 13C-formate. Despite the large gyromagnetic ratio difference between
the two spins, in the absence of magnetic field, there is no Zeeman interaction to differentiate the
spins. The eigenstates, in this case, are those of the singlet-triplet basis [81]
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Figure 2.7: Numerical spectrum simulation using the same parameters as in Fig. 2.5 and Fig.
2.6 using the secularized form of J-Hamiltonian (see Eq. 2.112) and the complete form (see Eq.
2.110), respectively.

|T+〉 = |αα〉
|T0〉 = 1√

2
(|αβ〉+ |βα〉)

|S0〉 = 1√
2
(|αβ〉 − |βα〉)

|T−〉 = |ββ〉

(2.113)

The three triplet states |T+〉, |T0〉 and |T−〉 are degenerate with energy

ωT = 〈T±|ĤJ |T±〉 = 〈T0|ĤJ |T0〉 = +πJ12/2, (2.114)

while the singlet state |S0〉 has energy

ωS = 〈S0|ĤJ |S0〉 = −3πJ12/2 (2.115)

and so the energy splitting between the singlet state and three degenerate states of the triplet
manifold corresponds to the J-coupling, as shown in Fig. 2.8,

ωT − ωS = 2πJ12. (2.116)

2.3.2 The J-interaction at zero-field

While signals at high-field are proportional to nuclear polarization, liquid-state ZULF signals are
proportional to the polarization difference between J-coupled heteronuclei. We prove this for the
simplest case where a pair of heteronuclei 1 and 2, with J-coupling J12, have initial polarizations
P1 and P2, respectively, and are initially immersed in a strong magnetic field which is suddenly
switched off. We assume that the signal at zero-field is detected by a magnetometer sensitive to
fields along the axis of initial polarization of the spins, which we call z. In terms of spin dynamics,
this experiment consists of projecting the stationary spin states at high-field onto the zero-field
states, i.e., the Zeeman states onto the singlet-triplet states.
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Figure 2.8: Comparison of the energy diagrams for J-coupled heteronuclear spins at high- vs zero-
field for a positive J-coupling constant.

We first define a set of two-spin operators to describe the state of the spin pair at zero-field
[81, 105]

Ẑx = Î1xÎ2x + Î1y Î2y

Ẑy = Î1xÎ2y − Î1y Î2x

Ẑz =
1

2

(
Î1z − Î2z

)
D̂z =

1

2

(
Î1z + Î2z

)
.

(2.117)

The reason for choosing this set of operators will soon become evident, because of their com-
mutation relationships. We now rewrite the initial density matrix in terms of these operators. The
initial density matrix in the Zeeman basis can be decomposed as

ρ̂0 = pααρ̂αα + pαβ ρ̂αβ + pβαρ̂βα + pββ ρ̂ββ , (2.118)

where pαα, pαβ , pβα and pββ are the populations of the Zeeman states related to the nuclear
polarization PI and PS by

pαα =
(1 + P1)(1 + P2)

4

pαβ =
(1 + P1)(1− P2)

4

pβα =
(1− P1)(1 + P2)

4

pββ =
(1− P1)(1− P2)

4
,

(2.119)

Because Ẑz can be written as

Ẑz =
1

2
(|T0〉 〈S0|+ |S0〉 〈T0|) , (2.120)
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we can write the elements of the initial density matrix in terms of the operators of Eq. 2.117 as

ρ̂αα = T̂+

ρ̂αβ = |αβ〉 〈αβ| = 1

2
(|T0〉 〈T0|+ |S0〉 〈S0|+ |T0〉 〈S0|+ |S0〉 〈T0|)

=
1

2

(
T̂0 + Ŝ0 + 2Ẑz

)
ρ̂βα = |βα〉 〈βα| = 1

2
(|T0〉 〈T0|+ |S0〉 〈S0| − |T0〉 〈S0| − |S0〉 〈T0|)

=
1

2

(
T̂0 + Ŝ0 − 2Ẑz

)
ρ̂ββ = T̂−

(2.121)

and so, plugging Eq. 2.121 into Eq. 2.118, we can write the initial density matrix as

ρ̂0 = pααT̂+ + pαβ
1

2

(
T̂0 + Ŝ0 + 2Ẑz

)
+ pβα

1

2

(
T̂0 + Ŝ0 − 2Ẑz

)
+ pββT̂−

= pααT̂+ +
pαβ + pβα

2

(
T̂0 + Ŝ0

)
+ (pαβ − pβα) Ẑz + pββT̂−,

(2.122)

where we plug in the relation of Eq. 2.119 to get

ρ̂0 =
(1 + P1)(1 + P2)

4
T̂+ +

1− P1P2

4

(
T̂0 + Ŝ0

)
+

P1 − P2

2
Ẑz +

(1− P1)(1− P2)

4
T̂−. (2.123)

The Hamiltonian at zero-field only consists of the J-interaction

Ĥ0 = ĤJ = 2πJ12Î · Ŝ = 2πJ12

(
Ẑx + Î1z Î2z

)
, (2.124)

and so we have expressed both the density matrix and the Hamiltonian in terms of the operators of
Eq. 2.117. To find the terms which evolve at zero-field, we simplify the Hamiltonian by discarding
the terms which commute with the density matrix, yielding

Ĥ0 = 2πJ12Ẑx. (2.125)

The choice behind the definition of the set of operators that we have chosen becomes apparent
considering the commutation relation

[Ẑx, Ẑz] = iẐy

[Ẑy, Ẑx] = iẐz

[Ẑz, Ẑy] = iẐx,

(2.126)

where we recognize the cyclic commutation relation, meaning that Ĥ0 converts Ẑz into Ẑy and

Ẑy into −Ẑz at a frequency 2πJ12, while all other terms in the density matrix are stationary.
Therefore, the density matrix at time t is

ρ̂(t) =
(1 + P1)(1 + P2)

4
T̂+ +

(1− P1)(1− P2)

4
T̂−

+
P1 − P2

2

(
cos (2πJ12t)Ẑz + sin (2πJ12t)Ẑx

)
,

(2.127)

where we skipped T̂0 and Ŝ0 as they give rise to no observable signal. The observable measured by
the detector is the magnetization of the sample along the z-axis, which is given by the expectation
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value of M̂z = N�(γ1Î1z+γ2Î2z), where N is the number of molecules. We decompose the detected
magnetization into an oscillating part

Mosc
z (t) = Tr

{
M̂z ρ̂

osc(t)
}

= N�
P1 − P2

2

(
γ1Tr

{
Î1zẐz

}
+ γ2Tr

{
Î2zẐz

})
cos (2πJ12t)

= N�
P1 − P2

4
(γ1 − γ2) cos (2πJ12t),

(2.128)

and a stationary part

Mstat
z =Tr

{
M̂z ρ̂

stat
}

=N�
(1 + P1)(1 + P2)

4

(
γ1Tr

{
Î1zT̂+

}
+ γ2Tr

{
Î2zT̂+

})
+N�

(1− P1)(1− P2)

4

(
γ1Tr

{
Î1zT̂−

}
+ γ2Tr

{
Î2zT̂−

})
=N�

P1 + P2

4
(γ1 + γ2).

(2.129)

We have shown that the zero-field signal is the sum of stationary and non-stationary signals,
which are proportional to the sum and the difference between the spin polarizations, respectively,
and that the non-stationary signal oscillates at a frequency of 2πJ12. Fig. 2.9 shows the numerical
simulation for a pair of 1H and 13C spins with a J-coupling of 200 Hz. Because the detected
eigenvalue is real, the signal is real and the J-beating is split into positive and negative frequencies.

Figure 2.9: Spectrum simulation at zero-field for a pair of 1H and 13C spins with a J-coupling of
200 Hz. Simulation with 256 time increments of 10 ms and 1 Hz of line broadening and zero-filling
to 1024 points prior to Fourier transform. The horizontal dashed lines indicate the ratio of the
signals expected from the analytical solutions (see Eq. 2.130). The extra factor of 1/2 accounts
for the fact the oscillating signal is split into positive and negative components while not for the
stationary part.

The intensity of the lines matches the analytical solution. Indeed, since the polarizations are
proportional to gyromagnetic ratios (P1 ∝ γ1 and P2 ∝ γ2), we have

Mosc
z (0)

Mstat
z

=

(
γ1 − γ2
γ1 + γ2

)2

(2.130)
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Our analysis has shown that a large fraction of the available nuclear polarization is not con-
verted into a non-stationary state by the simple sudden field drop experiment (see Eq. 2.130),
which implies that the spectrum has a large component at zero-frequency. More sophisticated ex-
perimental schemes use magnetic field pulses at zero-field to convert the total available polarization
into an oscillating signal. [81]

Eq. 2.128 also shows an important point: because the intensity of the observable transition
is proportional to the difference between the gyromagnetic ratio of the spins, homonuclear spin
systems give rise to no signal. Another interesting consequence of this equation is that pairs of
heteronuclei with gyromagnetic ratios of opposite signs are convenient spin systems for liquid-
state ZULF. For example, 13C-15N pairs like in cyanide groups are interesting ZULF probes; their
gyromagnetic ratio difference is maximized and they exhibit very long coherence times due to the
low gyromagnetic ratios.

2.3.3 The nucleus-nucleus dipolar interactions

The nuclear dipole-dipole interaction originates from the classical dipole-dipole interaction. It can
be understood as the potential energy associated with the interactions of each magnetic dipole with
the magnetic field generated by the other one. This potential energy is given, for two classical
point magnetic dipoles μ1 and μ2 separated by vector r, by [81]

ED = −μ0

4π

1

r3

(
3

r2
(μ1 · r)(μ2 · r)− μ1 · μ2

)
, (2.131)

where r is the Euclidean norm of the vector r. The Hamiltonian representing the same interaction
between two spins with magnetic moments μ̂1 and μ̂2 separated by the vector r, derives from the
above equation

ĤD = −μ0

4π

�

r3

(
3

r2
(μ̂1 · r)(μ̂2 · r)− μ̂1 · μ̂2

)
, (2.132)

in rad.s−1, where we have assumed that the position of the dipole could be treated classically. It
can be expressed in terms of angular momentum operators of spins 1 and 2, using Eq. 2.1

ĤD = b12

(
3

r2
(Î1 · r)(Î2 · r)− Î1 · Î2

)
, (2.133)

where we have defined the dipole-dipole constant

b12 = −μ0

4π

�γ1γ2
r3

. (2.134)

This form of the dipolar Hamiltonian is rarely used in NMR. Instead, it is usually expressed
using the spherical tensor representation

ĤD = D̂0 + D̂+1 + D̂−1 + D̂+2 + D̂−2, (2.135)

where, choosing the z-axis as the reference axis, we have

D̂0 = D0

(
2Î1z Î2z − 1

2
(Î1+Î2− + Î1−Î2+)

)
D̂±1 = D±1(Î1z Î2± + Î1±Î2z)

D̂±2 = D±2Î1±Î2±,

(2.136)

with the constants
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D0 =
1− 3 cos2 θ

2
b12

D±1 =
3

2
sin θ cos θe∓iφb12

D±2 =
3

4
sin2 θe∓2iφb12,

(2.137)

where θ and φ are the polar and azimuthal angles, respectively, between the vector r and the
z-axis. The operators of the spherical tensor basis are related to the Cartesian operators by

Îk± = Îkx ± iÎky, (2.138)

where k = 1, 2. The spatial dependence of the three constants D0, D±1 and D±2 is represented in
Fig. 2.10.

Figure 2.10: Spacial dependence of dipolar interaction for a pair of 1H spins, with one spin located
at the origin, expressed in Hz and as absolute values decomposed into spherical harmonics. The
right plot shows the angular dependence of the dipolar coupling constants in relative intensity, for
φ = 0.

At ZULF, the full form of the dipolar Hamiltonian needs to be taken into account. For a pair
of dipolar coupled nuclei at ZULF, spins are in a stationary state when they are colinear. The
simulation shown in the Introduction (see Fig. 1.7) shows the case where spins initially polarized
along the z-axis are suddenly brought to zero-field, which projects the Zeeman states onto the zero-
field states (as was the case for liquid-state zero-field experiments). Therefore, the component of
the spin polarization which was initially aligned with the spin-spin vector remains stationary, while
the component of the spin polarization which was initially orthogonal with respect to the spin-
spin vector starts precessing about it. These two components give rise to the zero-frequency and
oscillating components in Fig. 1.7, respectively.

At high-field, some of the terms of the dipolar Hamiltonian can be neglected. To understand
which terms can be neglected, the matrix expressions of the terms are instructive. The term D̂0

has a similar structure to the J-coupling Hamiltonian (see Eq. 2.110)

D̂0 = D0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1/2 0 0 0

0 −1/2 0 0

0 0 −1/2 0

0 0 0 +1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+D0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 +1/2 0

0 +1/2 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.139)
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The first term shifts the Zemman states without mixing them while the second term mixes the
|αβ〉 and |βα〉 states. The terms D̂+1 and D̂−1 mix the |αα〉 and |ββ〉 states with the |αβ〉 and
|βα〉 states

D̂+1 = D+1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 +1/2 +1/2 0

0 0 0 −1/2

0 0 0 −1/2

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D̂−1 = D−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

+1/2 0 0 0

+1/2 0 0 0

0 −1/2 −1/2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.140)

Finally, D̂+2 and D̂−2 mix the |αα〉 and |ββ〉 states with each other

D̂+2 = D+2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D̂−2 = D−2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.141)

If we consider only coherent dynamics and not relaxation, only a few terms are relevant. Because
they mix states which are far in energy in the high-field limit, the terms D̂±1 and D̂±2 are usually
neglected. As for D̂0, in the heteronuclear case, the |αβ〉 and |βα〉 are far in energy and so the
dipolar Hamiltonian reduces to

Ĥhetero
D ≈ D02Î1z Î2z. (2.142)

In the homonuclear case, the |αβ〉 and |βα〉 states are degenerate or nearly degenerate and so
the full form of D̂0 has to be taken into account

Ĥhomo
D ≈ D̂0 (2.143)

This form of the dipolar Hamiltonian and its truncation in the heteronuclear case have a similar
effect to the J-Hamiltonian. However, there are two notable differences. First, the intensity of
the interaction is much stronger; second, the interaction is anisotropic, which results in spectra
featuring distinctive Pake patterns. Fig. 2.11 shows numerical simulations of spectra for heteronu-
clear and homonuclear for cases of 1H-13C and 1H-1H pairs, using the Eq. 2.142 and Eq. 2.143,
respectively. Due to the dependence of the dipolar coupling constant on the gyromagnetic ratio
of the interacting spins, the Pake pattern is broader in the homonuclear case. Furthermore, the
characteristic discontinuities of the spectra appear at different multiples of the dipolar coupling
constant.

In our DNP experiments, we usually do not observe resolved Pake patterns because common
samples are frozen liquids where the distance between the interacting spins is not unique but is
rather a distribution. This results in signals being featureless, with lineshape in between Gaussian
and Lorentzian.

The mixing of the |αβ〉 and |βα〉 states by the homonuclear dipolar Hamiltonian has another
important consequence for our experiments. It enables the so-called ”spin diffusion” process. This



48 CHAPTER 2. QUANTUM MECHANICAL FRAMEWORK

Figure 2.11: Numerical simulation of 1H NMR spectra at high-field for heteronuclear and homonu-
clear dipolar coupled spins, for 1H-13C and 1H-1H pairs, respectively, separated by 1.6 Å. The initial
polarization of the spins was assumed to be 0.001. A π/2 pulse was simulated on the 1H spins,
prior to propagation of the free evolution during 512 time steps of 4 μs. The simulated FID is the
expectation value of Î1+ and Î1+ + Î2+ for the hetero and homonuclear cases, respectively. It was
averaged over 1000 increments of the angle between the internuclear vector and the magnetic field
from 0 to π. A 500 Hz line broadening and zero filling to 2048 points were applied prior to Fourier
transform.

process is the spontaneous exchange of polarization between dipolar coupled nuclei with different
polarization. For example, let us imagine that two 1H spin with respective polarizations +1 and
-1 interact with a dipolar coupling D0/2π = −20 kHz. The ket corresponding to this state is the
|αβ〉 state, which is not an eigenstate of the total Hamiltonian Ĥ0 = ĤZ + Ĥhomo

D . Therefore,

the state evolves under Ĥ0. Fig. 2.12 shows a numerical simulation of the polarization of the two
spins along time. The spins exchange their polarization at a rate corresponding to their dipolar
coupling. The polarization of each spin was computed using Eq. 2.67.

Here, we have described the exchange of polarization for a pair of isolated spins which do not
interact with their surroundings. A real sample like DNP juice consists of a large network of spins
connected by dipolar interactions. Each pair of interacting spins exchange polarization in a similar
way to that represented by Fig. 2.12, leading to more complicated dynamics. In addition to that,
for each pair, the surrounding nuclear (and electronic) spins act as a source of relaxation which
damps the oscillation between the states. This will not be treated in detail here but we will come
back to this point in the next chapter.

2.3.4 The electron-nucleus dipolar interactions

We now turn to the electron-nucleus interaction, which is usually called the hyperfine interaction
or the super-hyperfine interaction when the electron and the nuclear spins are not on the same
molecule. When the two spins are on the same molecule, the hyperfine interaction may contain
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Figure 2.12: Numerical simulation of the polarization along the z-axis for a pair of dipolar coupled
spins with a coupling of 20 kHz along time initially in the |αβ〉 state. Propagation over 1000 time
increment of 0.2 ms.

a contribution of the isotropic hyperfine interaction (or pseudo-contact interaction), which is the
electron-nucleus analog of the J-coupling between nuclear spins. We restrict our analysis to the
super hyperfine case, which consists only of the anisotropic part or dipolar electron-nucleus inter-
action. This interaction could be written exactly as the nucleus-nucleus dipolar interaction, simply
replacing the gyromagnetic ratio of one nuclear spin with that of the electron spin. However, it
is written slightly differently by convention. Calling the electron spin S and the nuclear spin I, it
reads [106]

ĤHFI = AzzŜz Îz +Az+Ŝz Î− +Az−Ŝz Î+, (2.144)

where the hyperfine constants are defined as

Azz = A0(1− 3 cos2 θ) (2.145)

and

Az± = −3A0 cos θ sin θe
±iφ, (2.146)

with

A0 =
μ0

4π

γIγS
r3SI

, (2.147)

where rSI , θ, φ, γI , and γS are the distance between the spins, the azimuthal and polar angles
between the interspin vector and the magnetic field and the gyromagnetic ratios of the spins,
respectively. This definition of the hyperfine interaction only contains terms that correspond to
the D̂0 and D̂±1 terms of the nucleus-nucleus dipolar Hamiltonian. However, only the terms
corresponding to the electron spin being colinear with the magnetic field are taken into account,
i.e., all terms containing Ŝz. The component of the electron spin in the transverse plane precesses
too fast to affect nuclear spin dynamics. The term AzzŜz Îz is often called the secular part of the
dipolar hyperfine interaction because it commutes with the Zeeman Hamiltonian. The remaining
terms are often called the pseudo-secular part because they do not commute with the Zeeman
Hamiltonian but not “as much” as the other terms that we did not explicit.

The secular part shifts the nuclear levels just as the heteronuclear interaction did. However,
in many cases, the electron spin state evolves very rapidly, on a time scale that causes the nuclear
spin to experience only an averaged value of the hyperfine interaction. Let us call τc the time that
the electron spends in a particular state (|α〉 or |β〉) on average before changing to the other state.
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This time constant is called the correlation time constant and represents how long the electron
spin state remains correlated with its past state. The hyperfine interaction communicates the
state of the electron to the nuclear spin and affects it differently whether the electron spin is in
the |α〉 or |β〉 state (i.e. it shifts its resonance up or down). If τc is short compared to the inverse
of the hyperfine constant 1/Azz, the hyperfine interaction is ”too slow” to communicate the spin
state of the electron to the nucleus and so the nuclear spin experiences an averaged interaction,
as we stated above. [107] On the contrary, if the electron spin remains in the same state on a
timescale that is large compared to the inverse of the hyperfine constant 1/Azz, the nuclear spin
experiences all the details of the electron spin state. Furthermore, if the electron correlation is long
with respect to the NMR detection time scale (i.e., τc � T2, where T2 is the transverse relaxation
time constant of the nuclear spin), the state of the electron spin can be considered static all along
the NMR detection.

These two limiting cases result in very distinct spectral features of the NMR spectrum. Fig.
2.13 shows the simulated spectra for a 1H spin interacting with an electron spin via the secular
dipolar hyperfine interaction, for the cases of a static and rapidly fluctuating electron spin state.
The distance between the spins is assumed to be 1 nm and the vector connecting them is assumed
to be perpendicular to the magnetic field, resulting in Azz/2π ≈ 79 kHz. The simulation was
repeated varying the electron polarization from 0 to 1, without including powder averaging so
that the spectra are more easily interpreted. To simulate the spectrum in the case of a rapidly
fluctuating electron, a tweak was used: the two spin density matrix was computed for a fully
polarized electron and the hyperfine interaction was weighted by the actual electron polarization.
To avoid this tweak, several approaches are possible. The electron can be treated semi-classically,
that is, considering the nuclear spin in a single-spin Hilbert space while the electron acts as a
classical field on the nuclear spin. Other approaches belong to the field of paramagnetic NMR and
are not discussed here.

Figure 2.13: Numerical simulation of 1H NMR spectra for a 1H spin interacting with an electron
spin with a hyperfine interaction of 79 kHz for the case of an electron with static spin state and
with a rapidly fluctuating state. The simulated FID is the expectation value of Î1+ with 512 time
increments of 4 μs. A 5 kHz line broadening and zero filling to 2048 points were applied prior to
Fourier transform.

In the static case, the NMR signal is split into two. One signal originates from nuclei interacting
with an electron in the |α〉 state while the other originates from nuclei interacting with an electron
in the |β〉 state. When the electron polarization is significantly above 0, one state is more populated
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than the other causing an asymmetry in the doublet. When the electron is fully polarized, only one
peak remains and the other completely disappears. In the case where the electron state fluctuates
rapidly, the signal is not split but only shifted. This shift, which is proportional to the electron
polarization is known as the paramagnetic shift. Conduction electrons in metals cause similar
shifts. In this context, this shift is called a ”Knight” shift after its discoverer. [107, 98]

As we mentioned in the case of the nucleus-nucleus dipolar interaction, the sample encoun-
tered in DNP are frozen solutions where the distance between the spins and the angle between the
interspin vector and the magnetic field can take a distribution of values. As a consequence, the
hyperfine interaction does not shift or split the signals in our experiment but rather broadens them.

The fluctuation of the electron spin state has another important consequence for nuclear spins:
it induces relaxation. We will briefly show how the spin-lattice relaxation rate constant 1/T1 is
calculated for a nuclear spin interacting through space with an electron spin, in the case where
the position of the two spins can be considered fixed in space, using the random fluctuating field
model, i.e., assuming that the electron spin state fluctuates without being influenced by the nuclear
dynamics. Longitudinal relaxation occurs when the nuclear spin experiences a transverse magnetic
field oscillating at its Larmor frequency ω0. The behavior of the electron spin is stochastic and so
it cannot be known exactly. Instead, we describe its state using an autocorrelation function, that
we define as

g(τ) =
∑
mz

pmz
gmz

=
∑
mz

pmz
〈P (0)P (τ)〉mz

, (2.148)

where P is the polarization of the electron spin along the z-axis and pmz is the probability for
the electron spin to have magnetic quantum number mz at time τ = 0. The quantity gmz =
〈P (0)P (τ)〉mz

is the autocorrelation function for a given initial state of the electron spin (note
that mz determines P (0)). Eq. 2.148 is thus a weighted average over the different possible initial
states of the electron spin. In the case of a spin 1/2, there are two possible states |α〉 or |β〉 and
their probabilities are pα = (1 − P̄ )/2 and pβ = (1 + P̄ )/2, respectively, where P̄ is the average
polarization of the electron spin. Along time, the electron spin state will change and go to an
unknown state. We assume that stochastic processes (which we do not need to describe in detail
for now) will make the autocorrelation function of the electron state tend towards some value P∞
at rate 1/τc. It is common to assume that the autocorrelation function is monoexponential, leading
to [108]

gα(τ) = 〈P (0)P (τ)〉α = (−1)
(
P∞ + (−1− P∞)e−|τ/τc|

)
gβ(τ) = 〈P (0)P (τ)〉β = (+1)

(
P∞ + (+1− P∞)e−|τ/τc|

)
,

(2.149)

where τ is the time elapsed since the electron was in the |α〉 or |β〉 state, in the case of the
autocorrelation function gα(τ) or gβ(τ), respectively. In both cases, P (τ) tends towards a value
P∞. Following the definition of Eq. 2.148, the weighed average of the autocorrelation function is

g(τ) = pαgα(τ) + pβgβ(τ)

=
1− P̄

2
gα(τ) +

1 + P̄

2
gβ(τ)

= P 2
∞ + (1− P∞P̄ )e−|τ/τc|.

(2.150)

Note that to obtain Eq. 2.150, we have only assumed that the autocorrelation function was
monoexponential. We have made no assumptions regarding the type of processes causing the state
of the electron to fluctuate.



52 CHAPTER 2. QUANTUM MECHANICAL FRAMEWORK

In the absence of μw irradiation, the average polarization P̄ is the electron Boltzmann polar-
ization Peq (given by Eq. 1.3) and we assume that relaxation processes make the autocorrelation
functions tend towards this same value Peq. Therefore, we can write P̄ = P∞ = Peq leading to

g(τ) = P 2
eq + (1− P 2

eq)e
−|τ/τc|. (2.151)

Because we are only concerned with the oscillating component of the electron spin state, we
define an unbiased autocorrelation function

g̃(τ) = g(τ)− P 2
eq

= (1− P 2
eq)e

−|τ/τc|,
(2.152)

that tends towards 0. The probability of finding the electron oscillating at frequency ω is then
given by the Fourier transform of this autocorrelation function

J(ω) =

∫ +∞

−∞
e−iωdωg̃(τ)

= (1− P 2
eq)

2τc
1 + (τcω)2

.

(2.153)

Fig. 2.14 shows the polarization over time P (τ) used to calculate the autocorrelation function
(see Eq. 2.149) and the corresponding spectral densities for an electron spin with a correlation time
τc = 1 μs, for various equilibrium electron polarizations Peq. When Peq = 0, both autocorrelation
functions gα and gβ are equally probable. When the polarization of the electron spin approaches
1, the probability to find the electron out of equilibrium vanishes, leading to a flat spectral density,
i.e., the electron spin state no longer fluctuates. In most conditions of NMR experiments, the
electron polarization can be considered to be low and so the 1− P 2

eq term in the spectral density
tends to 1. In dDNP conditions, however, the electron polarization cannot be considered close to
0. In the absence of μw irradiation, we have Peq = 0.9993 at 1.2 K and 7.05 T. As we will see this
has important consequences for relaxation.

Figure 2.14: Polarization over time P (τ) used to calculate the autocorrelation function (see Eq.
2.149) and corresponding spectral density functions of the electron spin state for a correlation time
constant of 1 μs for various equilibrium polarizations Peq. The blue and gray curves represent the
polarization of the electron spin state when in |β〉 or |α〉 state at time t = 0, respectively. The
horizontal dashed lines represent the equilibrium polarizations.
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We accept without proof that the longitudinal relaxation rate constant according to the random
fluctuating field model is given by [98]

1/T1 = W+ +W−, (2.154)

where W+ and W− are the probabilities per unit of time for the nuclear spins to jump between
|α〉 and |β〉 states, given by [98]

W+ = W− =
1

2

(
〈dx〉2 + 〈dy〉2

)
J(ω0), (2.155)

where 〈dx〉 and 〈dy〉 are the root mean square of the perturbation along the x− and y−axes,
respectively, expressed in rad.s−1, and so

1/T1 =
(
〈dx〉2 + 〈dy〉2

)
J(ω0). (2.156)

In the case we are concerned with, the perturbation is the hyperfine interaction. Among the
different terms, only the pseudo-secular part gives rise to a magnetic field component experienced
by the nucleus along the x− and y−axes. We rewrite the pseudo-secular Hamiltonian to make
the perturbation along the x− and y−axes explicit. Because we assume that the electron spin
state is not affected by the dynamics of the nuclear spin (hypothesis of the random fluctuating
field), the electron can be seen as a classical particule generating a magnetic field at the location
of the nucleus and so the pseudo-secular Hamiltonian can be expressed in the Hilbert space of the
nucleus only

Ĥpert = Sz(t)
(
Az+Î− +Az−Î+

)
= Sz(t)

(
(Az− +Az+) Îx + (Az− −Az+) Îy

)
,

(2.157)

where Sz(t) is the angular momentum of the electron spin along the z-axis at time t which can take
values +1/2 and −1/2. If we define the system coordinate so that the electron and the nucleus are
in the Oxz-plan, we have that Az−+Az+ = 2Az+ while Az−−Az+ = 0 and so we can conveniently
write

Ĥpert = 2Sz(t)Az+Îx. (2.158)

The field experienced by the nucleus (expressed in rad.s−1) takes values +Az+ or −Az+ and
so the root mean square of the perturbation is Az+. We have chosen that both the nucleus
and the electron are in the Oxz plan; in the general case, the magnitude of the perturbation
is |Az+| = |Az−| =: |Az±|. Plugging this result into Eq. 2.156, we get that the paramagnetic
relaxation rate is thus [3, 109, 110]

1/T dir
1,para = |Az±|2J(ω0)

= 2|Az±|2
(
1− P 2

eq

) τc
1 + (τcω0)2

= 18 sin2 θ cos2 θ
(μ0

4π

)2 �
2γ2

Iγ
2
S

r6
(1− P 2

eq)
τc

1 + (τcω0)2
,

(2.159)

where we plugged in the expression of Eq. 2.146 to go from the second to the third line. Note that
the rate obtained in Eq. 2.159 is 4× larger than that found in the literature. [3, 109, 110] Despite
my efforts, I was not able to find the origin of this discrepancy.

Eq. 2.159 gives the paramagnetic relaxation rate for a nuclear spin interacting with a fluctuating
electron spin at fixed positions, taking into account the polarization of the electron spin. We derived
it from the autocorrelation function of Eq. 2.150, which implies that it is valid regardless of the
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mechanism causing the electron spin state to fluctuate, as long as the autocorrelation function
is monoexponential. Yet, understanding the mechanism at the origin of the electron spin state
fluctuations is necessary to estimate the value of the correlation time constant τc (unless it can
be determined experimentally). There are two main sources of decorrelation for the spin state
of the electron, the interaction of the electron spin with the lattice and with other spins, which
are associated with the spin-lattice time constant T1S and electron flip-flop time constant τff ,
respectively. Because relaxation rates are additive, we have [111]

1

τc
=

1

T1S
+

1

τff
, (2.160)

Note that the flip-flop time constant is closely related to the electron spin-spin relaxation time
constant; they are equal at low electron polarization but differ when the electron polarization
approches 1. [112, 113]

In our typical conditions between 1.2 and 4.2 K, at 7 T, and with high radical concentrations
between 10 and 50 mM, the time scales of the two processes summed in Eq. 2.160 are separated by
many orders of magnitude: the electron spin-lattice relaxation time constant T1S is in the range
10–100 ms [49] (see Chapter 4), while the electron flip-flop time constnat τff is in the range 1–10
μs. [113]) Hence, the contribution of electron spin-lattice relaxation to the decorrelation of the
electron spin state can safely be neglected. The flip-flop rate, i.e., the rate at which two spins
exchange polarization due to their dipolar interaction, is of the order of their dipolar coupling
constant (Fig. 2.12 gives a visual example of flip-flops in the case of nuclear spins). One can
therefore write

1

τc
≈ 1

τff
≈ DSS

2π
, (2.161)

where DSS is the dipolar coupling constant between the electron spin for which τc is calculated
and its nearest neighboring electron spin.

As pointed out by Abragam and Goldman, [3] the simple picture we are giving here is flawed.
Indeed, in the limit 1/τc ≈ 1/τff , Eq. 2.159 predicts a rate that if faster than that measured
experimentally. The reason for this discrepancy is that electron-electron interactions, if they are
indeed a source of decorrelation for the electron spin state, do not exchange polarization with
the lattice (as spin-lattice relaxation does). Eq. 2.159 therefore gives the rate of the exchange
of energy between the nuclear Zeeman reservoir and the electron-electron dipolar reservoir; the
acquired energy of the latter reservoir must then be transmitted to the lattice in a second step.
If the nuclear Zeeman energy is small (which is often not the case in dDNP conditions), the first
step may be limiting and so Eq. 2.159 is correct. On the contrary, if the second step is limiting,
the nuclear spin-lattice relaxation rate is not given by Eq. 2.159. A more precise description of
nuclear relaxation by coupled electron spins requires using thermal mixing theory, [3] which will
not be presented here.

With a radical concentration of 50 mM, the distance between electron spin neighbors is the nm
range and so the dipolar interactions between them is in the MHz range, leading to correlation
time on the μs timescale, which implies that (τcω0)

2 � 1. This simplifies the rate of Eq. 2.159 to

1/T dir
1,para ≈ 18 sin2 θ cos2 θ

(μ0

4π

)2 �
2γ2

Iγ
2
S

r6
1− P 2

eq

τcω2
0

= 18 sin2 θ cos2 θ
(μ0

4π

)2 �
2γ2

S

r6
1− P 2

eq

τcB2
0

.

(2.162)

There are several points to be noted in Eq. 2.162:

� First, the relaxation rate diminishes quadratically with the magnetic field;
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� It depends on the inverse sixth power of the distance between the nuclear and the electron
spins, meaning that it fades off very rapidly. As we will see in the next chapter, paramagnetic
relaxation can still affect remote nuclei indirectly via spin diffusion. This gives rise to an
observed bulk relaxation rate which differs from the individual direct paramagnetic relaxation
rate of the spins;

� The rate is proportional to 1 − P 2
eq and so it vanishes if the electron polarization goes to

unity. This holds for other relaxation rates such as the nuclear spin-spin relaxation rate in
the laboratory and in the rotating frame 1/T2,para and 1/T1ρ, respectively;

� It is inversely proportional to the correlation time. Increasing the electron concentration
decreases the correlation time and, in turn, it contributes to decreasing the nuclear relaxation
rate. However, increasing the electron concentration also decreases the distance between
nuclei and the average closest electron, which increases the nuclear relaxation to the sixth
power. Therefore, increasing the electron concentration strongly increases paramagnetic
relaxation;

� Finally, the rate we have derived is counter-intuitively independent of the nuclear gyromag-
netic ratio. Indeed, increasing the gyromagnetic ratio increases the Larmor frequency. As
the frequency increases, the spectral density of the electron oscillation at the nuclear Larmor
frequency decreases with γ2

I (in the limit (τcω0)
2 � 1), which cancels out with the same term

in the numerator. However, the observed bulk relaxation rate may still be limited by the
ability of the nuclear spins to share their polarization (spin diffusion), which would make the
observed relaxation rate dependent on the gyromagnetic ratio even if the direct paramagnetic
relaxation rate is independent of the nuclear gyromagnetic ratio.

The hyperfine interactions make the nuclear spins relax towards Boltzmann equilibrium but of
course, it also allows them to be polarized by DNP. This feature is central to this work and will
be treated in the next chapter.
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Chapter 3

Solid-state DNP

This chapter gives an overview of the methods used in solid-state DNP in dDNP conditions. We
start by presenting the hardware for low-temperature DNP and the methods to quantify accurately
the polarization of high- and low-γ nuclei. The theory of DNP mechanisms is reviewed focusing
mostly on the aspects which are relevant to our experimental conditions. We then show μw spectra
(i.e., plots of polarization under DNP vs μw irradiation frequency) for two types of samples; first,
for common samples of DNP juice (H2O:D2O:glycerol-d8 1:3:6 v/v/v) doped with TEMPOL radical
and second for conductive polymers of polyaniline (PANI). The results are analyzed in light of the
theory presented in the dedicated section.

3.1 Instrumentation and methods

This section presents the instrumentation for low-temperature that was used throughout this work.
First, the magnet and the cryostat are described and the processes to reach low temperatures are
presented. Then, the instrumentation for rf pulses and continuous wave (CW) μw irradiation is
described, and the performance of the system is discussed. Finally, we show how to quantify the
polarization of hyperpolarized signals in the solid-state in the case of high and low-gamma nuclei
(1H and 13C, respectively).

3.1.1 Low temperature and high magnetic field: the cryostat and the
magnet

All experiments presented in this work were performed on the AlphaPolarizer, a Bruker dDNP
polarizer functional model. Its design is based on an ultra-shielded wide-bore Bruker Ascend
magnet generating a magnetic field of 7.05 T, corresponding to 1H and 13C Larmor frequencies of
300 and 75 MHz, respectively. Like common NMR magnets, this magnet uses a superconducting
coil immersed in liquid helium at a temperature of 4.2 K. The insulation of the helium reservoir is
realized by high vacuum and an extra reservoir of liquid nitrogen at 77 K. Such a system requires
that the liquid nitrogen and the liquid helium are refilled every week and every two to three months,
respectively.

The bore of the magnet accommodates a cryostat, which we often referred to as the variable
temperature insert (VTI, see Fig. 3.1A). This piece of equipment is the core of the DNP apparatus.
It allows the operator to control the entry of liquid helium from an external transport Dewar and
to pump on the liquid helium bath inside the VTI so as to reach temperatures down to ≈ 1.15 K. It
is equipped with liquid helium sensors to monitor the height of the helium bath and temperatures,
and pressure sensors. It is connected to several pumps to control the entry of liquid helium and
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decrease its pressure as well as to ensure the insulation of the cryostat (Pumps 1, 2, and 3 on Fig.
3.1 respectively). It contains electronically-controlled valves to a helium gas line to set a positive
overpressure in the interior of the system with respect to the exterior when the system needs to be
opened (e.g., to insert a sample or to connect the system to the liquid helium transport Dewar) and
hence prevent any contamination of the VTI by air or moisture. Finally, the cryostat accommodates
a DNP probe, which is connected to rf and μw channels for NMR and DNP operations (which will
be detailed in Sec. 3.1.2).

Figure 3.1: A. Diagram of the polarizer detailing the components of the cryostat. B-C. Helium
flow path to bring helium inside the cryostat through the phase separator and to pump on the
sample space, respectively.
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In typical operations, a transport Dewar of 100 L of liquid helium is connected to the system
via a vacuum-insulated transfer line. The helium which flows through the transfer line enters the
system in the phase separator, a donut-shaped piece of porous copper near the top of the cryostat
(the donut shape is meant to allow the probe to go through). The phase separator is also connected
to a membrane pump via a flow controller and to the sample space (i.e., the interior of the cryostat)
via a pair of electronically-controlled needle valves. When the needle valves are closed, the phase
separator is not connected to the sample space and the helium which flows from the Dewar to the
membrane pump cools down the phase separator, and the radiation shields of the cryostat which
are thermally connected to the phase separator (Pump 1 in Fig. 3.1A). This flow path is shown
in Fig. 3.1B. When the needle valves are opened, the phase separator is connected to the sample
space and so liquid helium can flow from the Dewar to the sample space via the phase separator.
To ensure this flow, a powerful dry pump controlled with a butterfly valve maintains the pressure
of the sample space at a chosen value below atmospheric pressure (Pump 2 in Fig. 3.1A).

To cool down the cryostat from room temperature to liquid helium temperature, our typical
procedure consists of maintaining the pressure of the cryostat at 700 mbar (thanks to the Roots
pump and the butterfly valve) with the needle valves opened while pumping on the phase separator
with the membrane pump at maximal capacity (resulting in a gas flow through the membrane pump
between 3 and 10 liters of room temperature helium gas per minute). As cold helium goes through
the phase separator and the needle valves, the system slowly cools down within ≈ 6 hours. This
procedure consumes ≈ 10 L of liquid helium. Once the phase separator has reached ≈ 4.2 K, liquid
helium (instead of cold helium gas) starts flowing through the needle valves and accumulating in
the sample space. The fraction of liquid that has gone to the gas phase during the transfer from
the Dewar to the phase separator is evacuated by the membrane pump while the fraction which
evaporates within the sample space is evacuated by the Roots pump. Once the liquid helium
level has raised to a designated liquid helium sensor, the system automatically closes the needle
valves and keeps on maintaining the pressure of the sample space at 700 mbar. Refilling the whole
cryostat typically takes a few minutes once the system is cold. If the cryostat is filled with liquid
helium until the top (just below the phase separator), the system can be operated without liquid
helium refills for 6 to 8 hours, depending on the operating pressure. The connection between the
helium bath and the Roots pump is shown in Fig. 3.1C. The spaces depicted by the diagrams of
Fig. 3.1B and C are connected solely by the needle valves.

The temperature of the liquid helium bath depends on the equilibrium pressure of the sample
space imposed by the Roots pump and the butterfly valve. At equilibrium, the temperature of the
bath is given by the boiling point of liquid helium. At atmospheric pressure, the boiling point of
helium is ≈ 4.2 K. At 700 mbar, the boiling point is 3.85 K. The lowest pressure that the Roots
pump is able to reach in our system is 0.58 mbar, corresponding to a helium boiling point of 1.15
K. To reach this pressure and temperature, the system is first filled with liquid helium at 700 mbar
and 3.85 K and only then it is pumped down to < 1 mbar. As pressure decreases, liquid helium
evaporates and the bath temperature decreases from 3.85 K to < 1.2 K. During this process, helium
goes through the so-called “lambda point”, at ≈ 2.17 K. The lambda point is the temperature
below which liquid helium becomes superfluidic. As the liquid helium approaches the lambda point,
the heat capacity of helium increases, which implies that the decrease in temperature costs more
helium than at higher temperatures. Crossing the lambda point is thus a costly process. Once the
temperature is below the lambda point and as temperature decreases further, the heat capacity
of helium tends towards 0 and so evaporating more helium to further decrease the temperature
becomes less and less efficient. Other DNP setups with better insulations are able to decrease the
temperature to around 1.0 K but not much lower, because of the low heat capacity of liquid helium
at this temperature.

The cryostat of our dDNP setup consumes ≈ 100 L for a week of operation, including the
cool-down from room temperature on the first day of the week. When I started my Ph.D., the
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price of liquid helium was around 8 euros/L and so a week of operation cost 800 euros. The price of
helium has been steadily increasing since then. It has now reached ≈ 30 euros/L and continues to
increase. With a current operating cost of 3000 euros per week, dDNP experiments become more
and more expensive using this type of cryostat, referred to as a “wet cryostat”. [114, 115] However,
alternatives exist. In particular, some systems use helium recirculation and the same helium bath
for the superconducting coil and for the sample space. [44, 45] If the precise temperature control is
more difficult on such systems than on wet cryostat, they have the great advantage of much lower
running costs.

3.1.2 Electromagnetic fields: rf pulses and μw irradiation

High-field NMR systems use pickup coils to manipulate the spins and record the signals they
produce. The current design of our polarizer allows us to pulse on and detect two different nuclei
at a time using orthogonal Helmholtz coil pairs, which are inductively coupled to the circuitry
of the NMR console through external tuning and matching boxes. The coils produce an rf field
orthogonal to the static magnetic field B0. The magnetic component of the rf field is what interacts
with the spins. The maximum of this magnetic component, called B1, is used to characterize the
performance of the coil. The field B1 field is related to the nutation frequency of the pulses
produced by the coil by

ω1 = γB1, (3.1)

where γ is the gyromagnetic ratio of the nuclear spins for which the coil is tuned. The nutation
angle of a pulse with length τ and nutation frequency ω1 is

θ = ω1τ. (3.2)

If the coil has a nutation frequency of ω/2π = 25 kHz, the pulse length to perform a π/2 angle
is 10 μs. Our coils typically have nutation frequencies of 30-60 kHz for 1H spins and 20-30 kHz
for 13C spins. One of the key requirements of our coils is that they are able to sustain pulses of
such nutation frequencies during ms in order to perform efficient spin-lock pulses during cross-
polarization (CP i.e., polarization transfers from 1H to 13C spins in the solid-state). Performing
such pulses in liquid helium is challenging because of arcing due to the low striking voltage in
liquid helium. Repeated arcing may damage the capacitors of the probe and hence hamper the
performance of the coil. The design of our coils has proved to be efficient to perform CP. [47,
49, 116, 117, 118, 119, 120, 121] However, the coils tend to break down and need frequent repair.
[120, 121]

As will be detailed in Sec. 3.1.3 and 3.1.4, the quantification of nuclear polarization under
DNP requires comparing the NMR signal obtained under DNP with that at thermal equilibrium.
Depending on the probe design, support material might be required to hold the coils. The presence
of this material within the sensitive area of the coil may result in a strong background signal adding
up to the signal of interest. In addition to that, the sample cup may bring further background
signal. At the beginning of my Ph.D., we used to build coils with a KelF tube as support. The
intensity of the background signal was comparable to that of the signal of interest at thermal
equilibrium at 3.8 K (for 100 μl of DNP juice with 3 M of a 13C-labeled analyte) both for 1H and
13C NMR detection. As consequence, in order to record a thermal equilibrium signal, one had
to record the background signal (i.e., the signal in the absence of sample) and subtract it from
the signal recorded with the sample. During the course of my Ph.D., we introduced a design of
background free coil, which we presented in this Ref [120] (see Fig. 3.2). This design decreased the
background signal originating from the coil to 0 both for 1H and 13C NMR detection. However, the
sample cup still produces a 13C background corresponding to ≈ 8% of a sample of 100 μl of DNP
juice with 3 M of a 13C-labeled analyte. In the case of 1H detection, the overall background of
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the coil and sample cup was found to be negligible, a very convenient feature making experiments
more reliable and faster.

Figure 3.2: Design of the 1H-13C background free coil, reproduced with permission from Ref. [120].
A. 3D model of the coils. B. Photograph of the probe bottom (upside down), including the coils,
the inductive loops, and the μw guide.

The DNP probe contains rf channels to manipulate the nuclear spins as well as a waveguide to
channel μw until the sample and excite EPR transitions. Our polarizer uses a solid-state μw source
consisting of a synthesizer and an amplifier-multiplier chain (AMC), both by Virginia Diodes Inc.
(VDI). The synthesizer produces μw at a computed-controlled frequency around 12.3 GHz and
at a fixed power, which we measured to be ≈ 60 mW. The synthesizer output is attenuated to
≈ 6 mW before the μw are fed into the AMC, which multiplies the μw frequency by precisely 16
to a value around 198 GHz and amplifies the power to ≈ 118 mW. The connection between the
synthesizer and the AMC is made by an rf cable; once the frequency has been multiplied by the
AMC, the wavelength becomes too short for efficient transmission through an rf cable. Therefore,
a waveguide consisting of stainless steel is used instead (see Fig. 3.3).

Our setup enables to control five parameters related to μw:

� The irradiation central frequency, typically between 197.9 and 198.7 GHz after multiplication
stages

� The bandwidth of frequency modulation around the central frequency, typically on the order
of 100 to 200 MHz after multiplication stages

� The frequency of the modulation, typically 500 Hz

� The gating (i.e., the on/off state) of the irradiation

� The output power of the AMC from 0 to 118 to 130 mW after multiplication and amplification
(the maximum available power depends on the central frequency).

The polarizer is controlled by the computer through a JAVA interface called the AlphaCon-
troller. The three parameters related to μw frequency are controlled by the AlphaController and
communicated to the synthesizer by the JAC, a Linux-based processor in the DNP cabinet. The
AMC output power is also controlled by the AlphaController; it is communicated by the JAC
to the AMC via a MOXA digital-to-analog converter as a voltage from 0 to 5 V (corresponding
to maximum and 0 power, respectively). Finally, the gating is controlled by the pulse sequences
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Figure 3.3: Setup of the μw source from the synthesizer to the sample space. The values of the μw
power and frequency are given for several stages of transmission. Powers are approximate values,
which were measured using different means depending on the stage. The top part of the diagram
shows the communication between the control computer and the hardware components via two
different softwares, Topspin and AlphaController.

in Bruker’s software Topspin as a TTL voltage. The fact that the gating is controlled through
the pulse sequences allows one to synchronize μw with NMR pulses, a feature that was shown to
increase the performance of CP. [49]

In its original design, the setup was not equipped with the control of the μw power. We
modified the AlphareController software so that it could control the power by applying a voltage
to the dedicated port of the AMC (UCA line in Fig. 3.3). We further added a “task scheduler”
to the AlphaController. This feature allows the user to define a list of time-resolved tasks (with
≈ 1 s resolution), such as refilling liquid helium into the cryostat and setting the temperature and
the μw parameters. This feature was used in a number of experiments presented in this work, in
particular to program fine μw spectra overnight (see in Sec. 3.3.2).

The μw power can be measured at several stages of the transmission using different methods.
At stages where the frequency is of 12 GHz, the power may be measured using a simple hand-held
powermeter (in this case a commercial Agilent device). Once the frequency is in the hundreds of
GHz range, a more sophisticated device is used (in this case, a bolometer VDI Erickson PM5B).
At the final stage (i.e., in the sample space), it is impossible to connect a powermeter and so one
can only measure the deposited μw power indirectly by monitoring the change in pressure upon
switching on irradiation. The change in pressure is then compared with that under the effect of a
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resistive heater. Fig. 3.4 shows an example with four replicates, where the change in pressure in
the sample space was recorded upon switching on irradiation.

Figure 3.4: Example of measurement of the μw power deposited in the VTI realized by monitoring
the change of pressure upon switching on μw irradiation in the helium bath at ≈ 1.16 K. The green
and yellow horizontal lines represent the base pressure and the pressure under μw irradiation,
respectively, for the three consecutive measurements. In this case, the pressure difference was
found to be 0.027± 0.001 mbar, corresponding to a deposited power of 14.2± 0.5 mW.

One of the reasons why I learned to measure the μw power deposited onto the sample is that it
makes it possible to measure the transmission of the μw while operating the system. This happened
to be useful on several occasions where we believed that the AMC was damaged. Indeed, the AMC
is a very sensitive device and it broke down two times during the four years that I spent in the
team. Such events represent an important limiting factor since the repair of the AMC can take up
to several months, during which no DNP experiments can be performed.

3.1.3 Polarization quantification for high-γ nuclei

Fig. 3.5 shows a typical example of 1H polarization building up under DNP, together with the
diagram of the pulse sequence used to acquire it, i.e., a saturation recovery-type experiment. This
section shows how the NMR signal of hyperpolarized species is measured in the solid-state and
how it is used to compute the spin polarization under DNP to obtain results as in Fig. 3.5, in
the case of high-γ nuclei. We first show how the build-up of a hyperpolarized signal is monitored
using small angle pulses. Then, we show how thermal equilibrium reference signals are recorded
and how background signals are removed. Finally, we briefly explain how radiation damping (RD)
might bias polarization quantification.

Common high-field spectrometers yield signals which are not expressed in meaningful units.
In order to convert the signal intensity of a DNP-enhanced signal into a polarization value, one
has to record a signal in conditions where the polarization is known, i.e., at thermal equilibrium,
and compare the signal intensities. As we have seen in the previous chapter, NMR signals are
proportional to nuclear spin polarization (see Eq. 2.96). Therefore, the polarization under DNP
can be obtained as

PDNP =
IDNP

ITH
PTh (3.3)

where IDNP , ITH and PTh are the signal integrals under DNP and at thermal equilibrium and the
thermal equilibrium polarization given by Boltzmann’s equation (see Eq. 1.3), respectively. We
now describe how to measure IDNP and then ITH .
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Figure 3.5: Example of an experimental DNP build-up curve of 100 μL of DNP juice doped with
50 mM TEMPOL, recorded at 1.6 K in our polarizer using small angle pulses with θ = 0.1 for
detection where each point is the sum of NS = 64 transients with a repetition time tr = 5 s, after
a saturation with typically n = 30 π/2 pulses.

In our operating conditions, 1H DNP is so sensitive but at the same time so slow that we
record the experiment in a slightly unusual way, compared to common NMR techniques. Instead
of repeating a saturation-recovery experiment varying the delay between saturating the spins and
detecting their signal with a π/2 pulse, we perform a single experiment where we monitor the
signal building up along time using small angle pulses. We mentioned the concept of pulse angle
at the beginning of this chapter (see Eq. 3.2). Small angle pulses are pulses where the pulse
length τ and the nutation frequency ω1 are chosen so that the pulse converts only a fraction of the
longitudinal magnetization into transverse magnetization. In other words, it borrows a fraction
of the magnetization to get an “image” of the longitudinal magnetization, while leaving most of
it unaffected. If the state of the spin system can be represented as ρ̂(t) = P (t)Îz, where P (t) is
the polarization of the spins at time t (see Eq. 2.93 and 2.101), a pulse with angle θ converts the
system into

ρ̂1 = P (t) exp {+θÎy}Îz exp {−θÎy}
= P (t)

(
cos θÎz + sin θÎx

)
,

(3.4)

where we used the cyclic commutation relations defined in the previous chapter (see Eq. 2.80)
to go to the second line. The same commutation relations show that the term Îz will remain
stationary under the Zeeman Hamiltonian while Îx will start evolving giving rise to an observable
signal proportional to P (t) sin θ.

In practice, we choose the pulse angle so that the signal does not saturate the receiver when
the system is at maximum polarization. In the case of 1H detection, we usually choose the pulse
angle as small as θ = 0.1 , and, for each time point t, we sum the signal of NS = 64 transients. The
summed signal is then proportional to NSP (t) sin θ, while the polarization remaining along the
z-axis after the detection block is P (t) cosNS θ ≈ 0.99990, meaning that the perturbation caused
by the measurement is completely negligible. Note that assuming that the sum of the signal is
proportional to the number of pulses NS is only valid if cosNS θ ≈ 1, which is the case here. The
general case is important for the detection of low-γ nuclei and will be treated below.

The thermal equilibrium spectrum (needed to get the reference integral ITh) is usually recorded
keeping as many parameters constant as possible, with respect to the hyperpolarized experiment.
However, The SNR of the thermal equilibrium signal might be improved by increasing the receiver
gain RG. In some cases, one might as well modify the number of scans NS . To account for this
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difference in acquisition parameters, one needs to normalize the integrals before computing the
polarization using Eq. 3.3. The normalization may be written as

In =
I

NSRG
, (3.5)

where I is the non-normalized integral, both for the thermal equilibrium and the hyperpolarized
signals. We usually do not modify the pulse angle from one experiment to another to avoid
introducing a bias associated with the uncertainty of the pulse angle. On the contrary, we often
do not record the thermal equilibrium at the same temperature as that where we perform DNP
experiments. Indeed, we usually perform DNP experiments at the lowest available temperature
to maximize DNP performance, i.e., below 2 K. A this temperature, electron polarization is close
to 1 and so because of Eq. 2.159, paramagnetic relaxation becomes prohibitively slow. In such
conditions, recording a thermal equilibrium signal would take several hours, even for 1H spins.
Therefore, we rather record the thermal equilibrium signal at 3.8 K, where the 1H bulk T1 is on
the order of 1 min. Assuming that the quality factor (Q-factor) of the probe is not affected by
temperature, Eq. 3.3 remains valid even if IDNP and ITh are recorded at different temperatures.
The Boltzmann polarization of 1H spins at 3.8 K and 7.05 T is 0.19%.

Depending on the probe construction, a background signal may be present in addition to that
originating from the sample. While this signal is negligible for the hyperpolarized case, it might be
significant for the thermal equilibrium case. Fig. 3.6 shows the thermal equilibrium signal of 100
μl of DNP juice acquired at 3.8 K using θ = 0.1�, NS = 64 and RG = 16, in the case of a standard
coil and a background free coil (A and B, respectively). [120] In the case of the standard coil, the
signal originating from the coil support (i.e., the background) is nearly as intense as that of the
sample itself (which is obtained by taking the difference between the total thermal equilibrium
signal and the background signal). In the case of the background free coil, the 1H background
signal does not come out of the noise using the same acquisition parameters as for the thermal
equilibrium signal (not shown). [120] This convenient feature of the background free coil allows
one to record the 1H polarization more rapidly and removes a potential source of error.

To compute the thermal equilibrium reference integral, one can average the signal integrals
acquired once the signal has plateaued. The standard deviation of the values over which the signal
is averaged can be used as the error on the reference integral. If we average the integral of the
thermal signals over the last 50 detection blocks (corresponding to 250 s of detection), we get a
relative error of 0.4% for both Fig. 3.5A and 3.5B (despite the fact that the two measurements were
performed with different probes). The polarization under DNP shown in Fig. 3.5 was measured
during the same experimental run as the thermal equilibrium of Fig. 3.6B. Because the uncer-
tainty on the integral of the hyperpolarized signal is negligible compared to that of the thermal
equilibrium signal, the uncertainty on the polarization value can be considered to be dominated
by that on the thermal equilibrium. Under this assumption, the maximum polarization on Fig.
3.5 is 51.5%± 0.2%. This value has a rather low error. However, there is a strong systematic error
caused by radiation damping (RD). In reality, we expect polarization on the order of 70− 80% for
this sample in these conditions. [121]

RD is the result of the coupling of the nuclear spins with the detection coil. At low magneti-
zation, this coupling is negligible but at high magnetization the coupling act as a pulse. [122, 123]
This pseudo-pulse is in antiphase with respect to the transverse magnetization and its intensity
is proportional to the transverse magnetization. The consequences of RD on NMR experiments
are complex and numerous. [123] In the context of our solid-state DNP experiments with small
angle detection, the consequence of RD is only to effectively shorten or lengthen the nuclear T ∗

2 ,
under positive and negative DNP, respectively. Fig. 3.7A shows a visual representation of the
effect of RD on an FID. The FID in the absence of RD is assumed to have a Gaussian decay
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Figure 3.6: A-B. Signal processing for the thermal equilibrium of 100 μl of DNP juice at 3.8
K in the case of standard and background-free coils, respectively. The gray lines on the spectra
represent the signal integral.

envelope f(t). For positive DNP, the effect of RD is simulated by f(t) exp (−t/τRD), where τRD is
a constant related to the intensity of RD, while for negative DNP, the effect of RD is simulated by
f(t) exp (+t/τRD). Although this is a rough simulation, it is sufficient for our purpose of giving a
visual representation of RD.

Figure 3.7: A-B. Schematic representation of the effect of RD on the FID and the NMR spectrum,
respectively. The dots on the curves of Panel A represent the signal intensity at the end of the
dead time tDE , that is, the first recorded point of the FID.

The signal integral after Fourier transform is proportional to the first point of the FID. Since
there is a dead time τDE between the pulse and the start of the acquisition, the first point of
the FID and hence the signal integral are not conserved when RD is significant. As depicted in
Fig. 3.7A, in presence of significant RD, the intensity of the first point of the FID diminishes and
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increases, for positive and negative DNP, which leads to an underestimation and overestimation
of the signal integral, respectively. Fig. 3.7B shows the Fourier transform of the FIDs of Fig.
3.7A; the change in effective T ∗

2 due to RD broadens and sharpens the NMR signal, in the case of
positive and negative DNP, respectively.

If it is difficult to compensate for RD in the polarization quantification, the fact that it affects
the signal linewidth at least gives an indication that the effect is present. Since the RD time
constant τRD is proportional to the Q-factor of the coil, [123] the better the Q-factor and the more
biased the polarization quantification. As an example, Fig. 3.8A shows 1H DNP curves of 100 μl
of DNP juice doped with 50 mM TEMPOL under positive and negative DNP. The polarization
reaches unphysical values beyond unity in the case of negative DNP. Fig. 3.8B shows that the
FWHM nearly doubles for positive DNP and becomes nearly negligible compared to the initial
FWHM, in the case of positive and negative DNP, respectively.

Figure 3.8: A-B. Absolute polarization and FWHM, respectively, for 100 μl of DNP juice doped
with 50 mM TEMPOL under positive and negative DNP.

The intensity of RD can be diminished by diminishing artificially the Q-factor of the coil (by
increasing its resistance of the rf circuit) or by detuning the coil. If RD is entirely canceled, the
FWHM should be the same for positive and negative DNP. When such procedures are used, the
1H polarization in DNP juice doped with 50 mM TEMPOL is found to be typically above 70%.

3.1.4 Polarization quantification for low-γ nuclei

The quantification of the polarization in the solid-state requires some extra care in the case of
low-γ nuclei, such as 13C. Indeed, the sensitivity being much lower than for 1H, one has to use
pulses with a larger angle and so the depletion of magnetization caused by the pulses cannot be
considered negligible, as we did previously for 1H. Yet, one needs to average several scans in order
to obtain a thermal equilibrium reference signal with sufficient SNR. In our typical procedures,
we choose the pulse angle for 13C spins to be 5 . After a train of 64 pulses with angle, only
cos (5◦) ≈ 0.78 � 1 of the original magnetization is left. This implies that each of the 64 scans is
acquired with a slightly different initial state and that the summed signal is not linear with the
number of scans. We now derive a precise formula to account for this effect.

Let us assume that the system has longitudinal magnetization M0. After a single pulse with
angle θ, the magnetization left along the z-axis is cos (θ)M0, while that in the transverse plane is
sin (θ)M0 (see Eq. 3.4). Before the kth pulse, the magnetization left along the z-axis is

Mz
k = cos (θ)

k−1
M0 (3.6)

and so the kth pulse brings magnetization

Mxy
k = sin (θ) cos (θ)

k−1
M0, (3.7)
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into the transverse plane. For a train of NS pulses, the total magnetization recorded in the
transverse plane is

Mxy
tot = sin (θ)M0

NS∑
k=1

cos (θ)
k−1

. (3.8)

Because of the following identity

N∑
i=1

ai−1 =
aN − 1

a− 1
, (3.9)

we can conveniently rewrite Eq. 3.8 without the sum operation as

Mxy
tot = sin (θ)M0

cos (θ)
NS − 1

cos (θ)− 1
. (3.10)

For consistency, we can verify that the signal is proportional to the number of scans when the
pulse angle tends toward 0, by calculating the limit

lim
θ→0

cos (θ)
NS − 1

cos (θ)− 1
= lim

θ→0

(
1− 1

2θ
2 + o(θ4)

)NS − 1

1− 1
2θ

2 + o(θ4)− 1

= lim
θ→0

1− NS

2 θ2 + o(θ4)− 1

− 1
2θ

2 + o(θ4)

= lim
θ→0

NS + o(θ2)

1 + o(θ2)

= NS ,

(3.11)

and so we find that the signal is linear with the number of scans

lim
θ→0

Mxy
tot = NS sin (θ)M0, (3.12)

as expected.
Eq. 3.10 allows us to normalize a signal by the number of summed scans, even if the pulse

angle is not negligible, using

In =
I

RG

cos (θ)− 1

cos (θ)
NS − 1

. (3.13)

For example, if we detect a signal with 64 scans and a pulse angle of 5�, the normalization
factor for the number of scans given by Eq. 3.13 is ≈ 56.9 �= 64 (with RG = 1). As we will see
with an experimental case, using a large number of scans allows us to conveniently record ther-
mal equilibria of low-γ nuclei with high SNR. If we do use a high number of scans, this numerical
example shows the importance of taking the depletion of magnetization by the pulses into account.

The correction given by Eq. 3.10 requires that the pulse angle is precisely determined. The
usual approach to the determination of the pulse angle consists of performing a nutation experiment
at a given pulse power to get the pulse length for a π/2 pulse and then calculating the power
necessary to perform a small angle pulse. However, it is also possible to measure the pulse angle
with great precision by recording the magnetization depletion due to the pulses. We came up with
a simple experimental scheme to measure the pulse angle which consists of polarizing the spins
by DNP until they produce a decent SNR; then, their signal is detected with a series of detection
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blocks with NS scans. [120, 121] If the B1 field of the coil is homogeneous, the intensity of the
signal decays monoexponentially with the detection blocks. Indeed, the signal recorded in the ith
detection block is

Mxy
tot,i = cos (θ)

NS(i−1)
sin (θ)M0

cos (θ)
NS − 1

cos (θ)− 1
. (3.14)

Normalizing the signal with respect to the first detection block, we get

Mxy
tot,i

Mxy
tot,1

= cos (θ)
NS(i−1)

, (3.15)

which is a monoexponential decay. Fig. 3.9 shows examples of pulse angle measurements for a
typical DNP sample, where the decay is fitted with Eq. 3.15. The residuals of the fit are not
randomly dispersed around 0. This is probably the result of a slight inhomogeneity of the B1 field.
Nonetheless, the measured angles have relative fit errors below 0.2%.

Figure 3.9: Fit of the signal decay under the magnetization depletion by small angle pulses for
predicted angles of 1 and 5 on a sample of 3 M [1-13C]-acetate and 50 mM TEMPOL in DNP
juice at 1.2 K, using Eq. 3.15. Prior to detecting the decay, the 13C spins were hyperpolarized by
multi-contact CP to reach high SNR. Each point is the sum of NS = 256 and 64 transients in the
case of 1 and 5 pulses, respectively.

Fig. 3.10 presents a comparison of the angle predicted by Topspin’s built-in function with
that measured using our method. The predicted and measured angles are well correlated but the
measured angle is 13% smaller than the prediction. This tends to show that the π/2 reference pulse
used to predict the pulse angles had a significant bias. Fig. 3.10B shows the nutation experiments
which were used to determine the reference π/2 pulse length for a power of 60 W. The reference
pulse length was chosen to be 7.75 μs, by visual inspection of the maximum of the nutation curve.
With our method, we found a reference π/2 pulse of 7.75/a ≈ 8.87 μs, where a ≈ 0.87 is the slope
of the solid line on Fig. 3.10. As can be seen in Fig. 3.10B (dashed vertical line), this value seems
to be beyond the position of the maximum on the nutation curve.

The reason why we want to measure the pulse angle with high accuracy is to correct for the
signal depletion during a train of detection pulses. The predicted pulse angle is significantly differ-
ent from the measured angle. Choosing the direct measurement of the angle rather than Topspin’s
prediction seems more reliable because it is precisely based on the depletion of the signal, which is
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Figure 3.10: A. Correlation of measured and predicted pulse angles. Two examples of measure-
ments are shown in Fig. 3.9. B. Nutation experiments at 60 W on the same sample. The solid
and dashed vertical lines represent the pulse length that was chosen at reference for the π/2 pulse
and the length which is obtained by correcting the reference using the result of Panel A.

what we are trying to account for. We will therefore use it for the polarization quantification for
low-γ nuclei.

Having measured the pulse angle, we can record the thermal equilibrium signal of 13C spins.
Contrary to the case of 1H spins, the build-up towards thermal equilibrium cannot be monitored
with a high temporal resolution because the pulses would retrieve too much polarization. Our
strategy thus consists of monitoring the build-up very roughly, typically with trains of NS = 2− 4
pulses and a repetition rate tr = 20 min and, once the spins have reached thermal equilibrium,
record their signal with the best SNR possible, i.e., with a higher number of scans. Because the
build-up is only roughly monitored, one needs to have prior knowledge of the 13C relaxation time
constant. This can be obtained by polarizing the spins by multiple-contact CP and monitoring
the decay of polarization. At 3.8 K and 7.05 T, the T1 of 13C spins in DNP juice with 50 mM
TEMPOL is of the order of 20 min. Because we do not record the thermal equilibrium build-up
with a high temporal resolution, we use a relaxation delay of 2 h, which is chosen higher than the
usual 5T1 value as a precaution (for example if the radicals are partially degraded and the T1 is
longer than assumed). Fig. 3.11 shows an example of such a measurement.

3.2 Theory of DNP mechanisms

DNP mechanisms describe the first step of the DNP process, namely how the polarization of
electron spins is transferred to nuclear spins through the hyperfine interaction via μw irradiation.
There are four distinct DNP mechanisms that can mediate this transfer: solid effect (SE), cross
effect (CE), Overhauser effect (OE), and thermal mixing (TM). In this section, we briefly review
the theory behind DNP mechanisms.
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Figure 3.11: A-B. Signal monitoring and processing for the 13C thermal equilibrium signal of 100
μl of DNP juice with 50 mM TEMPOL and 3 M [1-13C]-sodium acetate at 3.8 K using a background
free coil (the residual background originates from the sample cup). The thermal equilibrium signal
is monitored with detection blocks with NS = 4 every 20 min in A. Once it has reached thermal
equilibrium, the signal is detected with SNR with a single acquisition block with NS = 64 in B.
The process is repeated with and without sample in the sample cup (signals labeled ‘Total’ and
‘Background’, respectively). The gray line on the spectrum represents the signal integral.

3.2.1 Solid effect and Overhauser effect

SE and OE can be explained in terms of a 1 electron-1 nucleus model, as depicted in Fig. 3.12,
for the case of a spin 1/2 with positive gyromagnetic ratio such as 1H and 13C spins, where ω0S

and ω0I are the Larmor frequency of electron spin S and nuclear spin I, respectively.

Figure 3.12: Schematic representation of the four levels of a 1 electron-1 nucleus spin system.
The gray dots represent the populations at thermal equilibrium (i.e., without DNP), in conditions
where the electron spin is fully polarized and the nucleus has polarization PI ≈ 0.

SE is the most straightforward mechanism. It consists of pumping mixed EPR-NMR transi-
tions, either zero-quantum (ZQ) or double-quantum (DQ), ωZQ and ωDQ, respectively, as depicted
in Fig. 3.13 A and B. μw pumping at ωμw = ωDQ tends to equilibrate the populations of the
|αα〉 and |ββ〉 states. After electronic relaxation from |αα〉 to |βα〉, a new cycle can take place.
This process accumulates population of |βα〉, which translates into positive nuclear polarization.
To the contrary, μw pumping at ωμw = ωZQ tends to equilibrate the populations of the |βα〉 and
|αβ〉 states, while electronic relaxation brings the population from |αβ〉 to |ββ〉. This process
accumulates population of |ββ〉, which translates into negative nuclear polarization.
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Figure 3.13: A-B. Steps of the SE-DNP mechanism for the DQ and ZQ transitions, respectively.
Γ1e is the rate of electron spin-lattice relaxation.

The old literature often refers to ZQ and DQ as “forbidden transitions”. [124] However, later
authors prefer referring to them as “second order transitions”. [101] Whatever the name they
are given, these transitions have low probability because they do not respect the selection rule of
Δ(mS+mI) = ±1, where mS and mI are the spin quantum number of the electron and the nucleus,
respectively, if a second order perturbation is not taken into account. [124] As a consequence, SE-
DNP is often limited by the transition probability induced by the μw field which is given, for a
field of strength ω1S at frequency ωμw, by [101]

ΓSE =
π

8

|Az+|2ω2
1S

ω2
0I

h(ω0S − ωμw ± ω0I), (3.16)

where Az+ and h(ω) are the pseudosecular hyperfine interaction (see Eq. 2.146) and the homoge-
neous lineshape of the electron resonance, respectively, with the resonance condition

ωμw = ω0S ± ω0I. (3.17)

The sign in front of ω0I depends on whether Γ is calculated for the DQ or ZQ transitions. If the
width of lineshape h(ω) is small compared to the nuclear Larmor frequency, the matching conditions
for DQ and ZQ cannot be attained at the same time. This results into well-resolved positive and
negative peaks on the μw spectrum appearing at lower and higher frequencies, respectively, as
shown in Fig. 3.14. Eq. 3.17 implies that these two peaks on the μw spectrum as separated by
twice the Larmor frequency of the nucleus

|ωDQ − ωZQ| = 2ω0I, (3.18)

which gives a clear signature of SE on μw spectra.
Eq. 3.16 shows that SE transitions are proportional to the 6th power of the inverse of the

distance between the nucleus and the electron r, since |Az+| is proportional to r−3. As a con-
sequence, the efficiency of SE-DNP decays rapidly as the distance between the electron and the



3.2. THEORY OF DNP MECHANISMS 73

Figure 3.14: Simulated μw spectrum (in blue) for a 1H spin polarized under SE-DNP at 7.05 T,
corresponding to a nuclear Larmor frequency of 300 MHz. The EPR spectrum is shown in light
gray, assuming a Lorentzian lineshape h(ω) with an FWHM δ1/2 = 10 MHz. the dotted vertical
lines indicate the frequencies of the ZQ and DQ transitions. The frequency axis is shifted so that
ω0S = 0.

nucleus increases (as for all DNP mechanisms). Furthermore, SE-DNP decays quadratically when
the static magnetic field B0 increases as it is proportional to ω−2

0I , which makes SE-DNP more
efficient as lower magnetic fields.

The OE can also be rationalized in terms of a 1 electron-1 nucleus spin system, as depicted
in Fig. 3.12. In this case, the μw frequency is set on resonance with the single-quantum EPR
transition [125]

ωμw = ω0S. (3.19)

For nuclei to be polarized by OE-DNP, one of the cross-relaxation rates ΓZQ or ΓDQ has to
dominate over the other as well as over the electron spin-lattice relaxation rate R1e and the nuclear
spin-lattice relaxation rate R1n (or at least compete with these rates). [126, 125] Fig. 3.15 shows
a schematic representation of the process. μw first equilibrates all populations. If ΓDQ dominates
over ΓZQ, |αα〉 gets depleted while |ββ〉 gets more populated. Following electronic relaxation, a
net excess of |ββ〉 is created, resulting in negative nuclear polarization. To the contrary, if ΓZQ

dominates over ΓDQ, |αβ〉 gets depleted while |βα〉 gets more populated. Following electronic
relaxation, a net excess of |βα〉 is created, resulting in positive nuclear polarization.

OE is often limited by the efficiency of the DQ and ZQ cross-relaxation transitions. Owing to
the field dependence of the ΓZQ and ΓDQ rates, OE has a more complex field dependence than
SE. In the liquid-state, it can be independent of magnetic field strength for low field strength,
while it can decrease with B−2

0 at higher magnetic fields. [126] In the solid-state under MAS, it
was shown to increase with B0. [127] In all cases, ΓZQ and ΓDQ are only non-zero if the electron-
nucleus hyperfine interaction has non-zero probability to fluctuate at frequencies ω0S − ω0I and
ω0S + ω0I. Such fluctuations are often met in conductive metals due to the motion of electrons [7]
and in liquids due to translational and rotational diffusion. [126] However, OE-DNP was observed
in insulating solids both under MAS at 100 K [127, 128] and under dDNP conditions at 1.2 K.
[129] In the case of the radical BDPA, the necessary fluctuations of the hyperfine interactions
were proposed to be the result of electron motion within the π-conjugated system of the radical.
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Figure 3.15: Schematic representation of the steps of OE-DNP. Γ1e, ΓZQ and ΓDQ are the rate of
electron spin-lattice relaxation and of ZQ and DQ electron-nucleus cross-relaxation, respectively.

[130, 131] Methyl rotation has also recently been shown to provide the necessary fluctuations of
the hyperfine interaction. [128]

3.2.2 Cross effect and indirect cross effect

As for OE, the μw frequency ωμw for CE is not set on a mixed EPR-NMR transition but rather on
an allowed single quantum (SQ) EPR transition, and a cross-relaxation mechanism subsequently
polarizes the nucleus. However, contrary to the case of OE, ωμw is set slightly off-resonance with
respect to the center of the EPR transition. CE can be rationalized in terms of a 2 electron-1
nucleus model where the difference between the Larmor frequencies ω0S1 and ω0S2 of electrons
spins S1 and S2, respectively, is equal to the nuclear Larmor frequency ω0I

|ω0I| = |ω0S1 − ω0S2|, (3.20)

as depicted in Fig. 3.16A. If the μw frequency is set to the Larmor frequency of S1

ωμw = ω0S1, (3.21)

μw irradiation tends to equalize the populations of the SQ transition of S1 but not of S2.
As depicted in Fig. 3.16B, this results in a situation where an energy conservative triple spin flip

ΓSSI can take place, provided at least one electron interacts with the nucleus and the two electrons
interact with one another. [11, 58] Following electronic spin-lattice relaxation from |βαα〉 to |ββα〉,
a new cycle can start, accumulating population of nuclear |α〉 state and hence building up positive
nuclear polarization. If the μw frequency is set to ωμw = ω0S2, one finds that negative nuclear
polarization is created following the same logic as that of Fig. 3.16B. For this simple three-spin
model, positive and negative extrema are therefore expected at ω0S1 and ω0S2, respectively, on the
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Figure 3.16: A. Eight energy levels of a 2 electron-1 nucleus spin system used to describe the CE,
where the electrons are assumed to be fully polarized while the nucleus has polarization PI ≈ 0.
Because of the matching condition of Eq. 3.20, the |αββ〉 and |βαα〉 states are degenerate. B.
Schematic representation of the steps of CE-DNP. ΓSSI is the triple spin-flip rate connecting the
|αββ〉 and |βαα〉 states.

μw spectrum. Because of Eq. 3.20, these extrema are expected to be separated by the nuclear
Larmor frequency ωI.

In general, the polarization of the electron spins is not initially 1 and saturation may not lower
the polarization of the saturated spin down to 0. If PS1 and PS2 are the polarizations of S1 and S2 at
equilibrium under μw irradiation, the highest achievable nuclear polarization is [132, 58, 133, 134]

PI =
PS2 − PS1

1− PS1PS2
. (3.22)

as long nuclear spin-lattice relaxation may be neglected.

One may wonder how the very restrictive matching condition of Eq. 3.20 may be fulfilled.
We may distinguish two different approaches: that of MAS-DNP and that of static DNP. In the
former case, the picture is more complicated than that of Fig. 3.16 because the energy levels
evolve along the rotation of the sample. [135] Therefore, the three spins have a higher probability
to be found at the matching condition at some angle along the rotor rotation, than in a fixed
position. Without going into the details, we note that highly sophisticated strategies have been
devised to maximize the efficiency of the process, such as biradical polarizing agents, where two
radicals are chemically tethered together. Typical biradicals include pairs of nitroxides [136, 137]
or a nitroxide with a trityl derivative. [138, 139] A number of parameters have been identified
as key to improving MAS-DNP enhancement using biradicals: the distance and angle between
the electron spins, their respective T1e and their exchange and dipolar interactions, among others.
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The influence of these parameters has been studied in great detail using quantum mechanical
simulations [135, 136, 140, 141, 142, 143] and experimental data, which guides the design of ever
more efficient biradicals. [136]

We now describe how CE behaves under static DNP. In this case, biradicals would hardly be
efficient polarizing agents as only a small fraction of them would satisfy the matching condition
of Eq. 3.20 and so monoradicals are commonly used. To ensure sufficient e-e interactions and
hence a high triple spin-flip rate ΓSSI, relatively high radical concentrations of up to 25-50 mM are
typically used [121] (while typical MAS-DNP sample use typical radical concentrations of 10-20
mM). This results in a large network of interacting electrons. Using a radical with an EPR line that
is broader than the nuclear Larmor frequency, there are radicals with a distribution of frequencies
and a distribution of coupling with the neighboring electron and so the matching condition of Eq.
3.20 may be fulfilled, at least for some of the radicals. For this reason, nitroxide radicals such as
TEMPO and TEMPOL are typically used for DNP of 1H and 19F spins and 13C based radicals
such as trityl and BDPA for low-γ nuclei.

The situation we are trying to describe gets more complicated than a simple case such as
SE, because we now have to treat many electrons and nuclei at the same time. However, the
problem may be treated in fairly simple terms using Kundu et al.’s model of indirect cross effect
(iCE). [132, 133, 134] Fig. 3.17A shows a simulation of the EPR spectrum of TEMPOL at 7.05 T
performed using the EasySpin package. The spectral features are dominated by the inhomogeneous
broadening due to two anisotropic interactions, namely the hyperfine interaction with the 14N spin
and the electron g-tensor. In the CE picture, μw irradiation is assumed to “burn a hole” in
the EPR spectrum as represented in Fig. 3.17B. For simplicity, we assumed that the hole has a
Gaussian profile with an FWHM δ1/2 = 150 MHz

PS(ω) = PS,eq

(
1− exp

(
−
(
ω − ωμw

σ

)2
))

, (3.23)

where PS,eq and σ = δ1/2/(2
√
2 log 2) are the electron spin polarization at Boltzmann equilibrium

and the standard deviation of the Gaussian saturation envelope, respectively. In reality, hole
burning is the result of three competing processes: μw irradiation tends to lower the polarization
of the electron spins with a frequency close to ωμw; spectral diffusion tends to spread the effect
of saturation across the EPR spectrum via e-e dipolar interactions; spin-lattice relaxation tends
to bring the electron polarization back towards Boltzmann polarization. [133, 134] This model is
referred to as the electron spectral diffusion model (eSD) in Ref. [133, 134]. For simplicity and
for the sake of the argument, we may assume that the result of all these processes is a hole with a
Gaussian profile as that of Eq. 3.23.

The iCE model infers the nuclear polarization from the saturated EPR lineshape, by averaging
the nuclear polarization obtained by Eq. 3.22 overall electron pairs satisfying the CE matching
condition (see Eq. 3.20). If the EPR spectra is chopped into N bins with index k, such pairs of
electrons have frequencies ωSk and ωSk + ωI. The average nuclear polarization resulting from iCE
may be computed as [132]

PI =
1

f

N∑
k

h(ωSk + ωI)h(ωSk)
PS(ωSk + ωI)− PS(ωSk)

1− PS(ωSk + ωI)PS(ωSk)
, (3.24)

with a normalization factor

f =

N∑
k

h(ωSk + ωI)h(ωSk), (3.25)
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Figure 3.17: A. EasySpin simulation of the EPR spectrum of TEMPOL at 7.05 T with a Lorentzian
broadening of 25 MHz using hyperfine coupling parameters Axx = 19.8 MHz, Ayy = 22.1 MHz
and Azz = 108 MHz and g-tensor parameters gxx = 2.00908, gyy = 2.00554 and gzz = 2.00233
from Ref. [144]. B. Simulation of a hole burning by μw irradiation centered at -0.2 GHz and with
a Gaussian profile with a width of FWHM δ1/2 = 150 MHz MHz. The blue and light gray lines
represent the EPR spectrum before and after the hole burning, respectively. The dotted vertical
line indicates the μw frequency. C. Simulated μw spectrum obtained using the iCE model in blue,
assuming a Boltzmann electron polarization PS,eq = 0.99. The simulated EPR spectrum is shown
for comparison in light gray.

where h(ω) and PS(ω) are the number of electrons with frequency ω and their polarization, re-
spectively. This CE mechanism is indirect in the sense that it predicts that nuclei are polarized
even if they interact with electron pairs that were not directly affected by μw irradiation but indi-
rectly via spectral diffusion. Fig. 3.17C shows the expected DNP spectrum expressed in terms of
nuclear polarization as a function of the μw irradiation frequency ωμw, assuming that the electron
polarization is given by Eq. 3.23 with PS,eq = 0.99. Contrary to the case of SE (see Fig. 3.14), the
positive and negative lobes overlap. They are separated by ≈ 390 MHz, which is larger than the
value ωI = 300 MHz predicted by the simple three spin-model, owing to the complex and broad
EPR lineshape.

3.2.3 Spin temperature and thermal mixing

The picture of CE and iCE that we have presented here assumed that μw burnt a hole in the EPR
line, i.e., the electron polarization was lowered for electrons with a frequency sufficiently near ωμw.
However, in the case where electrons interact strongly, fast spectral diffusion allows electron spins
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to rearrange in the configuration with the highest entropy under μw irradiation. In this case, the
electron polarization along the EPR line is given by [145, 146]

PS(ω) = tanh
(
αωμw + β (ω − ωμw)

)
. (3.26)

where α and β are the inverse temperatures of the Zeeman electron reservoir and of the electron
non-Zeeman (NZ) reservoir, respectively, related to the spin temperatures Tα and Tβ by

α =
�

kbTα
and β =

�

kbTβ
. (3.27)

This situation corresponds to TM-DNP where, instead of burning a hole, μw irradiation es-
tablishes a homogeneous spin temperature within the NZ electron reservoir. In the absence of
μw irradiation, Tα = Tβ = TL, where TL is the lattice temperature. When μw irradiation is
switched on, a flow of energy from the NZ to the Zeeman reservoirs causes Tα to increase and
Tβ to decrease, ideally towards +∞ and 0, respectively. [145, 146] Fig. 3.18A shows the electron
polarization distribution along the EPR line according to Eq. 3.26 assuming ωμw = −0.2 GHz and
Tα = +∞ (or α = 0) for several values of Tβ . Fig. 3.18B shows the corresponding EPR spectra,
with characteristic negatively polarized electrons. Note that, in a given set of experimental con-
ditions, α = 0 would result in a unique value of β. Varying the intensity of μw irradiation, one
might obtain different values of β but for corresponding finite values of α. The curves in Fig. 3.18
could therefore not be realistically obtained simply by varying the μw power but they are shown
here to illustrate the effect of the NZ electron reservoir spin temperature on the EPR line.

Figure 3.18: A-B. Electron polarization along the EPR line for α = 0 and various values of β
shown next to curves as spin temperature Tβ in mK and corresponding EPR spectra, respectively.
The unperturbed simulated EPR spectrum is shown for comparison in light gray on Panel B.

Considering Eq. 3.22, the presence of both positively and negatively polarized electrons on
the spectra of Fig. 3.18B is advantageous compared to those under hole burning conditions (see
spectra in Fig. 3.17), as it increases the electron polarization difference P (ω + ωI)− P (ω), which
translates into higher nuclear polarization under DNP. This represents a major advantage of TM
over CE. In fact, the nuclear polarization under TM-DNP is trivially given by the spin temperature
of the NZ electron reservoir. Indeed, if PI(ω) is the polarization of the nuclear spins interacting
with an electron spin with frequency ω, writing κ = αωμw + β (ω − ωμw), we have
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PI(ω) =
PS(ω + ωI)− PS(ω)

1− PS(ω + ωI)PS(ω)

=
tanh (κ+ βωI)− tanh (κ)

1− tanh (κ+ βωI) tanh (κ)

= tanh (βωI),

(3.28)

where we used a common identity of the hyperbolic tangent to go from the second to the third
line. Therefore, PI does not depend on ω under TM-DNP and so averaging PI(ω) over the EPR
line using Eq. 3.24 results into averaging a constant value. The reason behind this fact is that
when the electron NZ reservoir has a homogeneous spin temperature, the polarization gradient
along the EPR line is constant. [146]

The shape of the μw spectrum under TM-DNP is therefore determined by the inverse spin
temperature of NZ reservoir β which is obtained under μw irradiation at frequency ωμw. We will
not go into the details of how this is calculated but we note that the spectral features of the μw
spectra in TM conditions are very similar to that under CE (see Fig. 3.17C), namely, overlapping
positive and negative lobes. [146] As a consequence, it is not straightforward to determine exper-
imentally which of the two mechanisms dominates in given conditions.

In summary, according to the description that we have given of CE and TM, the main difference
between these two mechanisms is that μw irradiation burns a hole in the EPR spectrum in the
former case, while it establishes a homogeneous spin temperature within the electron NZ reservoir
in the latter case. Furthermore, all electrons are positively polarized in the former case while there
might exist both positively and negatively polarized electron spins in the latter case. In both
cases, the nuclear polarization under DNP can be inferred from the steady state EPR spectrum
under partial saturation. Whether CE or TM is active depends on the strength of the e-e dipolar
interactions. [133].

Wenckebach recently showed analytically that CE and TM were two limits of a more general
mechanism. [58] He calculated the triple spin-flip rate ΓSSI for a 2 electron-1 nucleus system

ΓSSI =
π

8

|Az+|2D2
0

ω2
0I

δ(ω0I − ωJ), (3.29)

where D0, Az,±, ω0I and ωJ are the e-e dipolar interaction strength (see Eq. 2.137), the hyperfine
interaction strength between one electron and the nucleus (see Eq. 2.146), the nuclear Larmor
frequency and a quantity related to the relative strength of the e-e interaction and the difference
Larmor frequencies of the electrons, given by

ωJ =

√
(ω0S2 − ω0S1)

2
+D2

0, (3.30)

respectively. Whether the triple spin flip occurs under CE or TM depends on the dominating term
in ωJ . If (ω0S2 − ω0S1)

2
dominates, then ωJ ≈ |ω0S2 − ω0S1| and so ΓSSI is only non-zero for

|ω0S2 − ω0S1| = |ω0I|, (3.31)

which corresponds to the matching condition of CE. To the contrary, if D2
0 dominates, then ωJ ≈

|D0| and so ΓSSI is only non-zero for

|D0| = |ω0I|, (3.32)

which corresponds to the matching condition of TM. Using statistical thermodynamics tools,
Wenckebach then extended his results to an infinite number of spins. [59] In a random distri-
bution of molecules in a frozen solution, the minimum distance between two electron spins plays
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a particularly important role as it sets a maximum value to D0 and thus determines if TM-DNP
is probable. [60, 106]

It is interesting to compare the triple spin-flip rate of TM and CE ΓSSI (see Eq. 3.29) to the
flip-flop rate of SE ΓSE (see Eq. 3.16). Apart from the matching conditions, the only difference is
that the former is proportional to D2

0 while the latter is proportional to ω2
1S. D

2
0 can be controlled

by the sample design while ω2
1S is limited by the power of the μw source.

3.3 DNP on common samples

In this section, we present DNP results on common samples of DNP juice doped with TEMPOL
radical. We first demonstrate the effect of radical doping on 1H spins at thermal equilibrium at 3.8
K. Then, we present an experimental approach used to determine the DNP mechanisms at play in
given experimental conditions. This approach consists of recording the nuclear polarization under
DNP (or the DNP enhancement) as a function of the μw irradiation frequency ωμw, which results
in a “μw spectrum”, also called “DNP spectrum” or “μw sweep profile”. We present detailed μw
spectra for DNP juice doped with 50 and 75 mM at various temperatures.

3.3.1 DNP juice doping

Most experiments presented in this work were performed on samples based on DNP juice, i.e., a
mixture of water, heavy water, and deuterated glycerol in a ratio of 1:3:6 (v/v/v). In this section,
we show how the thermal equilibrium 1H signal of DNP juice is affected by the presence of TEM-
POL molecules at 7.05 T and at 3.8 K.

Fig. 3.19 shows thermal equilibrium signals recorded at 3.8 K in DNP juice doped with TEM-
POL with concentrations between 10 and 100 mM. Qualitatively, one can observe two effects of
the presence of radicals: the higher the radical concentration, the faster the relaxation towards
Boltzmann equilibrium, and the broader the NMR line.

To extract quantitative information out of the thermal equilibrium build-up curves, they were
fitted with a stretched exponential function

I(t) = I∞

(
1− exp

(
−
(

t

T1

)β
))

, (3.33)

where I∞, T1 and β are the signal intensity at infinite time, the relaxation time constant, and
the stretch coefficient between 0 and 1, respectively. When the stretch coefficient tends towards
1, Eq. 3.33 tends towards a monoexponential. We use a stretched exponential rather than a
monoexponential when the dynamics of the system are not dominated by a single mechanism,
resulting in a distribution of relaxation time constants. The average relaxation time constant is
given by

T1,av =
T1

β
Γ

(
1

β

)
(3.34)

where Γ is the gamma function. If σ(x) is the standard deviation of x, the error on T1,av is
calculated as



3.3. DNP ON COMMON SAMPLES 81

Figure 3.19: Evolution of the 1H thermal equilibrium signal of DNP juice at 3.8 K with increasing
TEMPOL concentration from 10 to 100 mM. The signal was recorded by summing 64 scans with
0.1 pulses. Colored and black lines correspond to experimental data and stretched exponential
fits (see Eq. 3.33), respectively. The spectra on the right correspond to the last spectrum of each
build-up. The concentration of TEMPOL radical is indicated next to the spectra.

σ(T1,av) = T1,av

√
σ(T/β)

(T/β)2
+

σ (Γ(1/β))

Γ(1/β)2

= T1,av

√√√√ β

T

√
σ(T )

T 2
+

σ(β)

β2
+

σ (Γ(1/β))

Γ(1/β)2

(3.35)

using common rules of propagation of uncertainty. For simplicity, the error on Γ(x) is calculated
as
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σ (Γ(x)) =
1

2

(∣∣Γ (x)− Γ (x− σ (x))
∣∣+ ∣∣Γ (x)− Γ (x+ σ (x))

∣∣) , (3.36)

yielding

σ (Γ(1/β)) =
1

2

(∣∣∣∣Γ (1/β)− Γ

(
β − σ(β)

β2

) ∣∣∣∣+
∣∣∣∣Γ (1/β)− Γ

(
β + σ(β)

β2

) ∣∣∣∣
)
. (3.37)

Figure 3.20: A. Average spin-lattice relaxation time constant of DNP juice as a function of radical
concentration at 3.8 K shown as colored dots, obtained by fitting Eq. 3.33 to the data of Fig. 3.19
(converted from T1 to T1,av using Eq. 3.34). The black and gray lines correspond to the model
of Eq. 3.42 and Eq. 3.42 with γ = 3 and with γ left as a free parameter, respectively. B-C. β
coefficient and intensity at t → ∞, respectively, obtained from the same fit as on Panel A. The
black line on Panel C is a linear regression of the first two points of the curve. D. FWMH of
the thermal equilibrium signal as a function of radical concentration, obtained using Topspin’s
build-in function hwcal. The colored dots and the black line are the experimental data points and
the linear regression, respectively.

The results of the fits are summarized in Fig. 3.20. The average relaxation time constant
spreads over orders of magnitude as the radical concentration is increased from 10 to 100 mM of
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TEMPOL (see Fig. 3.20A). A rough fit function can be obtained assuming that the relaxation
consists of a diamagnetic term T1,dia which does not depend on the radical concentration, and a
paramagnetic term T1,para which depends on the radical concentration C

1

T1
=

1

T1,dia
+

1

T1,para
. (3.38)

In the previous chapter, we have derived an expression for the paramagnetic relaxation rate
constant (see Eq. 2.159). Dropping all variables which do not depend on the radical concentration,
we get

1

T1,para
∝ 1

r6
1

τc
. (3.39)

This relaxation rate is valid for a nucleus interacting with an electron spin but does not take
spin diffusion into account. In reality, bulk relaxation is the sum of two processes: the direct
relaxation caused by the electron and spin diffusion which communicates the effect of the electron
spin to the bulk. Assuming in first approximation that nuclear spin diffusion is independent of
radical concentration and that the bulk relaxation is not limited by spin diffusion, we get that
the distance between a nucleus and the closest electron is simply ∝ 1/C1/3 and so 1/r6 ∝ C2.
This assumption corresponds to Jeffries’ model of “spheres-of-influence”, which will be described
in Chapter 5. [147, 13, 148] Furthermore, we assume that the inverse of the correlation time of the
electron spin state is proportional to the electron-electron dipolar interaction Dee. The dipolar
interaction is proportional to the inverse cube of the distance between the electron spins ree, which
is, in turn, proportional to the radical concentration (see Eq. 2.161)

1

τc
∝ Dee ∝ 1

r3ee
∝ C. (3.40)

Plugging these two assumptions into Eq. 3.39, we get

1

T1,para
∝ C2C = C3 (3.41)

and hence an expression for the total relaxation time constant

T1,av =
(
a+ bC3

)−1
(3.42)

This function was fitted to the data of Fig. 3.20A. This very simple model is in clear dis-
agreement at high radical concentration (note that if the function is fitted to the rate constant
instead of to the time constants, then the model is in disagreement with the rates at low radical
concentration). This is not surprising since the β coefficient is significantly different from 1 for
most radical concentrations and is not constant over the range of radical concentrations (see Fig.
3.20B). A possible explanation is that the observed relaxation is limited by the relaxing power of
the electron spins at low radical concentration (causing β ≈ 1) and, as the radical concentration
is increased, the electron spins are able to relax the nuclei more efficiently, on a time scale which
becomes comparable to that of spin diffusion (causing β � 1). In addition, a fit function where
the exponent γ is let free

T1,av = (a+ bCγ)
−1

(3.43)

is shown in light gray. Fitting this functions leads to γ = 2.5± 0.3.
The signal intensity extrapolated to t → ∞ as a function of the radical concentration is shown

on Fig. 3.20C. Increasing the radical concentration causes an important signal loss, an effect
known as bleaching. [149] The bleaching is the result of the decrease in the transverse relaxation
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time T2 of the nucleus under the influence of the electron spin fluctuations. When the nuclear T2

becomes comparable to the spectrometer dead time (delay between the pulse and the acquisition),
the nuclei stop contributing to the measured NMR signal. Increasing the radical concentration
decreases the distance between a nucleus and the closest electron spin and hence increases the
bleaching. Furthermore, paramagnetic interaction with the radical may cause the frequency of the
nuclei to be shifted outside the detection range of the NMR coil (see Sec. 5.2.3). Assuming that,
at low radical concentration, the signal is proportional to the concentration, the signal intensity
at the two lowest concentrations was fitted with a straight line, shown in black in Fig. 3.20C and
the curve was rescaled so that the linear regression intercepts the y-axis at 1.

Fig. 3.20 shows the FWMH of the 1H thermal equilibrium signal as a function of radical
concentration, obtained using Topspin’s build-in function hwcal. The data points are reasonably
well fitted by a straight line (in black). This suggests that the primary source of broadening is
the increased paramagnetic shift of the nuclei, which is proportional to the radical concentration.
Another possible source of broadening of the NMR signal would be a decrease in nuclear spin-
spin relaxation time constant T ∗

2 upon increasing radical concentration. However, this mechanism
would have a more complex dependence on radical concentration.

3.3.2 μw spectra of DNP juice

We now show μw spectra for DNP juice doped with 50 and 75 mM TEMPOL and 500 mM [1-13C]-
acetate at 7.05 T and at 1.6, 2.9, 3.0, and 3.8 K. By recording precise μw spectra as a function
of temperature and radical concentration, we aim at building a data set to test models such as
Kundu et al.’s iCE model [133] and Jannin et al.’s extended spin temperature model. [146] This
project was originally a collaboration with Prof. S. Vega, who sadly passed away in 2021. I would
like to dedicate this work on DNP mechanisms to his memory.

DNP in these conditions is known to be more efficient when the μw frequency is modulated
around the central frequency. [48] However, frequency modulation modifies the appearance of
the μw spectrum, acting as a moving average. Therefore, we chose to use a fixed μw frequency
for all experiments. For each μw frequency, the DNP build-up was recorded in a time-resolved
manner until the DNP plateau (see example in Fig. 3.21). Without frequency modulation, DNP
is slow if a TEMPOL concentration of 25 mM is used, [48] which motivated our choice to work
with radical concentrations of 50 and 75 mM. DNP build-ups were recorded for both samples,
at each temperature and at 29 μw frequencies between 197’160 and 198’660 MHz in steps of 50
MHz. Each build-up was launched as a single pseudo-2D experiment via Topspin’s spooler. The
list of μw frequencies was generated by a MATLAB script together with the associated start time
of the buildup experiments and fed to the task scheduler of the AlphaController (see Fig. 3.3), so
that it would change the μw frequency during the saturation block at the start of each build-up
experiment. This allowed us to run such experiments overnight.

Fig. 3.21 shows an example of raw results of the DNP spectrum for 50 mM TEMPOL at 1.6
K, consisting of a series of DNP build-up curves (shown as colored lines). This particular μw
spectrum was recorded in ≈ 8.5 hours and was the longest of the data set. Each DNP build-up is
fitted with a stretched exponential function of the form of Eq. 3.33 (shown as black lines in Fig.
3.21).

Fig. 3.22A-B show the polarization at the end of each build-up (i.e., the maximum recorded
polarization) for both samples and each temperature, as colored dots. The colored lines are spline
interpolations of the data points. The polarization at the end of the build-up corresponds to the
polarization at DNP equilibrium (i.e., when t → ∞) to a very good approximation, at least near
the center of the μw spectrum. However, on the edges (for offset frequencies above +300 and
below −300 MHz), the DNP build-up time gets exceedingly large and so the maximum measured
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Figure 3.21: Raw results of the μw spectrum for 50 mM TEMPOL in DNP juice at 1.6 K, consisting
of a series of DNP build-up curves for various μw frequencies. The measured polarization along
time is fitted with a stretched exponential curve (see Eq. 3.33), represented by colored and black
curves, respectively.

polarization might be slightly lower than the polarization at equilibrium. We chose to display the
maximum polarization rather than the extrapolated polarization at equilibrium because the latter
is noisier and introduces a bias, which complicates the interpretation.

Both for the sample with 50 and 75 mM TEMPOL, the maximum absolute DNP polarization
is higher for negative DNP than for positive DNP. This is at least partially due to RD, which leads
to an underestimation and an overestimation of positive and negative polarizations, respectively.
[121] In addition, it is possible that negative DNP is fundamentally more efficient than positive
DNP. [146] The best polarization values are obtained, as expected, for the lowest temperature. For
the sample with 50 mM, the best positive and negative polarization are Pmax+

DNP ≈ 38% and Pmax-
DNP ≈

−65%, respectively. For the sample with 75 mM, the best positive and negative polarization are
Pmax+
DNP ≈ 34% and Pmax-

DNP ≈ −58%, respectively. To verify whether negative DNP is indeed
more efficient than positive DNP in our conditions, the μw spectra were also recorded indirectly
through the 13C spins by performing a single CP detection at the end of the 1H DNP build-up.
The 13C signal under negative DNP is ≈ 20% larger than that under positive DNP, confirming
that negative DNP is more efficient.

The obtained polarization values are surprising since we commonly expect polarization on the
order of > 70% for a sample of 50 mM TEMPOL in these conditions. [121, 68] This is unfortunately
likely due to an improper thermal equilibrium quantification. This causes the absolute values of
polarization to be biased.

Fig. 3.22C-D and E-F show the fitted stretched coefficient β and the average relaxation rate
constants RDNP,av, respectively. The DNP rate increases with temperature and is faster near the
center of the μw spectrum. This is expected since, as the μw frequency gets further from the DNP
optimum, the build-up rate gets closer and closer to R1 � RDNP. Interestingly, in all cases, the
rates feature a dip near the center of the spectrum, which we cannot rationalize for the time being.

The stretched coefficient gets closer to 1 on the edges of the μw spectra, indicating that the
build-ups get closer to a monoexponential. A possible explanation is that two processes are com-
peting. The two competing processes could be triple spin flips and spin diffusion from nuclear spins
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Figure 3.22: A-B. μw spectra at 1.6, 2.9, 3.0, and 3.8 K for DNP juice doped with 50 and
75 mM TEMPOL, respectively. The maximum recorded polarization is shown as colored points
together with a spline interpolation (colored lines). The simulated spectrum of TEMPOL is shown
for comparison as a gray line, using the same simulation parameters as in Fig. 3.17. C-D.
Corresponding fitted values of β coefficient E-F. Corresponding values of RDNP,av obtained from
the fitted values using Eq. 3.34.

near the electron spin to those further away. It will be shown in Chapter 5 that spin diffusion
is quenched at high electron polarization and therefore at lower temperature and in the absence
of μw irradiation. Similarly, the triple spin-flip rate gets quenched at high electron polarization
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and therefore at lower temperature and in the absence of μw irradiation. [101, 67] The fact that
the β coefficient is nearly flat at 3.8 K could indicate that one of these mechanisms is dominating
and one is limiting. On the contrary, at 1.6 K, the lower β coefficient near the center of the μw
spectrum could indicate that the spin diffusion rate and the triple spin-flip rate are on the same
order of magnitude while one of them takes over on the edges.

3.3.3 The effect of temperature and radical concentration

Fig. 3.23A-B shows the optimum μw frequencies for positive and negative DNP (indicated by
ω+ and ω−, respectively) and the difference Δω between them, respectively, as a function of
temperature. The positions of the extrema were computed from the spline interpolation in Fig.
3.22A-B. Δω is larger for the sample with 75 mM TEMPOL than that with 50 mM (≈ 1.3 larger
at 1.6 K). Moreover, it increases with temperature and is larger than the nuclear Larmor frequency
(shown as a horizontal dashed line) in all cases.

Figure 3.23: A. Optimal frequency for negative and positive DNP as a function of temperature,
computed from the spline interpolation in Fig. 3.22A-B. B. Difference between the optima shown
in Panel A. The 1H Larmor frequency is shown as a horizontal dashed line.

The larger values of Δω for the sample with 75 mM (see Fig. 3.23B) are probably the result
of stronger spectral diffusion, which spreads the saturation from further on the edges of the EPR
line. If efficient spectral diffusion is a necessary condition for TM-DNP, CE-DNP is not insensitive
to spectral diffusion either, because the shape of the hole burnt by μw irradiation depends on the
interplay between the strength and frequency of the μw, the efficiency of spectral diffusion and
electron spin-lattice relaxation (see Sec. 3.2.2). Therefore, the fact that the DNP mechanism at
play in our sample is sensitive to the efficiency of spectral diffusion is not in itself a proof that this
mechanism is TM rather than CE (or iCE).

From Wenckebach’s Eq. 3.29, we know that CE takes place when there exist electron spins
whose difference in frequencies matches the nuclear Larmor frequency |ω0S2 − ω0S1| = |ωI|, while
TM takes place when there exist electron spins whose mutual dipolar interaction matches the
nuclear Larmor frequency |D0| = |ωI|. [60, 106] The change in radical concentration does not
affect the electron frequencies ω0Sk and so it does not affect the probability of finding electron
spins fulfilling the CE matching conditions. On the contrary, the change in radical concentration
changes the values of D0 between electron spins. In a sample of 50 mM, the distance between an
electron and its nearest neighbor is on average ≈ Γ(4/3)(4πNAC/3)−1/3 ≈ 1.8 nm, [150] where Γ,
NA and C are the gamma function, the Avogadro number, and the electron spin concentration,
respectively. At this distance, D0 is on the order of ≈ 9 MHz � ωI. Therefore, most electron spins
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do not have sufficient dipolar couplings with their neighbors to fulfill the TM matching conditions
and so increasing the electron concentration increases the probability to find electron spins fulfilling
the TM matching condition. [60]

Finally, we note that Δω is strongly affected by temperature, especially for the sample with 50
mM TEMPOL. If TM were indeed the mechanism operating at the lowest temperature, a tempting
explanation for increasing efficiency of TM at lower temperatures would be the following. The lower
the temperature, the longer T1e which allows spectral diffusion to spread the effect of μw across
the entire EPR line more efficiently hence establishing a homogeneous spin temperature in the NZ
electron reservoir. This in turn would give more favorable conditions for TM-DNP.

Kundu et al. found that iCE gave a satisfactory account of DNP on similar samples to ours
between 10 and 40 K at 3.34 T. [132] Jannin et al. found that the extended spin temperature
model gave a satisfactory account of DNP at 1.2 K and at magnetic fields of 3.35 and 5 T but
they did not study the temperature dependence of the DNP mechanisms. [146] Analyzing our data
at 7.05 T using both models might possibly reveal a cross-over from TM to CE as temperature
increases.

3.4 DNP on conductive polymers

The previous section presented DNP results on very common samples for DNP experiments, namely
DNP juice doped with TEMPOL. We now turn to a more unusual sample of PANI, an organic
conductive polymer that has been known for more than 150 years and has been extensively studied
since the seventies. [151] Following Overhauser’s original idea of performing DNP on conductive
metals, [7, 8] it seems natural to try DNP on conductive polymers. Our interest in PANI in
particular comes from recent discoveries that unpaired electrons in chiral PANI (cPANI) can be
polarized by flowing an electric current through the polymer, [152] an effect known as current
induced spin selectivity (CISS). [153] DNP on cPANI could potentially reach high nuclear polar-
ization relying on high electron polarization achieved by a preceding hyperpolarization step by
CISS rather than by Boltzmann equilibrium at high magnetic field and low temperature. This
would therefore alleviate the need for liquid helium. Furthermore, PANI can be prepared to be
highly porous, [154, 155] which would allow one to polarize arbitrary solutions within the pore of
the material, as has already been exploited for a number of polarizing matrices. [54, 57, 156]

In this section, we present a proof of principle that DNP is possible in PANI polymers at 1.6 K
and 7.05 T. We first show a method to control the unpaired electron spin concentration in PANI
starting from commercially available products, by immersion of PANI (as a powder) in an acid
solution followed by lyophilization. Then, we characterized in detail the temperature dependence
of the signal intensity and of the spin-lattice relaxation rate of 1H spins in one of the samples.
We found that the thermal equilibrium signal intensity does not follow the expected 1/T trend of
Boltzmann’s law, where T is the temperature. We also found very fast relaxation with T1 ≈ 40 s
at 1.6 K (while the T1 of 1H spins in DNP juice with 50 mM TEMPOL is on the order of an hour).
Both these facts can be attributed to the motion of conduction electrons. Finally, we present μw
spectra at various electron concentrations at 1.6 K. If we only found relatively low 1H polarization
of ≈ 3%, our results show a surprisingly complex behavior of PANI under DNP. At the lowest
radical concentration, the μw spectra exhibit a narrow absorption-like pattern in the center of
the spectrum, reminiscent of recently reported cases. [157, 158, 159] As the radical concentration
is increased, the negative lobe of the absorption-like pattern increases until it reaches a negative
desorption-like pattern. TM and OE are speculated to be responsible for this behavior, although
the details of their interplay remain unclear. In addition, a weak SE is observed at low radical
concentration.

The results presented in this section are unpublished.
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3.4.1 Tuning the radical concentration

There exist several forms of PANI. We will be concerned with two of them, the emeraldine base
and salt, (PANI-EB and PANI-ES, respectively), as shown in Fig. 3.24. Both are commercially
available at various molecular weights. In principle, PANI-EB contains no unpaired electrons,
while PANI-ES contains two unpaired electrons per repeat unit. PANI-EB can be converted into
PANI-ES by protonating the two imine groups present in each unit. The additions of the two
protons allow the unit to rearrange into a more favorable aromatic electronic configuration. As
can be seen from the structure in Fig. 3.24B, all four amine positions of PANI-ES are equivalent.
Furthermore, they are connected by π-conjugation through benzene rings and amine groups. The
unpaired electrons can therefore move from one position to the next by mesomery, which is at
the origin of the conductivity of PANI-ES. This is verified experimentally by the fact that the
conductivity of PANI increases upon conversion from EB to ES. [151, 160]

Figure 3.24: A-B. Chemical structures of the repeat units of the polymers PANI-EB and PANI-
ES, respectively.

We prepared eleven samples of PANI with various expected levels of conversion from PANI-EB
to PANI-ES. We used a protocol inspired by Ref. [160] which consisted of immersing mEB = 100
mg of commercial PANI-EB into V = 7 mL of a solution of HCl in D2O with a chosen pH. In
order to reach the desired level of conversion

χ =
nES

nEB + nES
, (3.44)

where nEB and nES are the number of moles of PANI-EB and PANI-ES, respectively, the solution
of HCl was prepared so as to contain

nHCl = 2χnEB = 2χ
mEB

MW
(3.45)

moles of HCl, where MW = 362.46 g.mol−1 is the molecular weight of a single unit of PANI-
EB. A stock solution of HCl in D2O with pH = 1 was prepared and mixed with pure D2O in
the appropriate ratio to reach the desired values of χ from 0 to 1. The calculated final pH of the
solution prior to adding the powder ranged between 2.10 and 1.11 for χ = 0.1 and 1.0, respectively.
For χ = 0, the solution was immersed in pure D2O.

The powders were left in the acidic solution for two days to allow the protons to migrate inside
the polymer and were subsequently lyophilized in liquid nitrogen under vacuum at 10−2 mbar.
Spin counting by X-band EPR was performed on the powders at room temperature by Guillaume
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Verhaeghe (a Master student in our group) and my colleague Théo El Daräı. The results are shown
in Fig. 3.25A. The radical concentration increases from ≈ 20 to ≈ 320 μmol.g−1 for χ = 0 to χ = 1,
respectively. The maximum concentration is about an order of magnitude lower than expected. On
the contrary, a null radical concentration was expected for χ = 0. The presence of electron spins
in the sample with χ = 0 observed by EPR was confirmed by DNP measurements (see below). It
can be attributed to the imperfect drying of the powder, which would cause moisture to protonate
the imine groups to a small extent.

Fig. 3.25B and C show the behavior of the 1H spins in PANI at 1.6 K and 7.05 T as a function of
the radical concentration determined by EPR. The average 1H relaxation rate of PANI increases
with χ as well as the FWHM of the signal, which is the result of increasing electron-nucleus
interactions.

Figure 3.25: A. Electron spin concentration of PANI samples as a function of the protonation ratio
χ, determined by X-band EPR at room temperature. B-C. Average relaxation rate obtained by
fitting a stretched exponential (see Eq. 3.33) to the 1H thermal equilibrium build-ups and FWHM
of the 1H signal of the same samples at thermal equilibrium at 1.6 K, respectively, as a function
of the electron spin concentration shown in Panel A.

3.4.2 Unusual behavior at thermal equilibrium

Working with PANI samples, we noticed that the probe resonance frequency was moving signif-
icantly from sample to sample, much more than we usually observe on common samples. This
made us suspect that conduction electrons in PANI could absorb rf waves and affect the Q-factor
of the coil and in turn the signal intensity. We asked ourselves whether this could be temperature-
dependent. One of our usual assumptions is that the signal intensity at thermal equilibrium is
proportional to 1/T , where T is the temperature. This assumption allows us to quantify polar-
ization by recording a thermal equilibrium signal at a higher temperature than that where we
perform DNP, i.e., 1.2-1.6 K (see Sec. 3.1.3 and 3.1.4). The reason for this choice is that thermal
relaxation in DNP juice is prohibitively slow below 2 K.

In order to verify whether this holds for PANI, we recorded the Q-factor of the coil and the
thermal equilibrium signal for the sample with χ = 0.2 at nineteen temperatures between 1.6 and
4.3 K. We did not find a significant change in the Q-factor (not shown). The signal build-ups are



3.4. DNP ON CONDUCTIVE POLYMERS 91

shown in Fig. 3.26A. They were fitted with a stretched exponential function (see Eq. 3.33). As
shown in Fig. 3.26B, the signal intensity increases monotonically but does not correlate with 1/T .

Figure 3.26: A. 1H thermal equilibrium build-ups for 28.3 mg of PANI with χ = 0.2 at 7.05
T between 1.6 and 4.3 K recorded with 1 pulses. The colored and black curves represent the
experimental signal intensity over time and stretched exponential fit (see Eq. 3.33), respectively.
B. Fitted thermal equilibrium signal intensity obtained from Panel A showed as colored dots as
a function of 1/T . The black line is a linear regression of the points (forced to go through 0).
C-D. Fitted β coefficient and average relaxation rate (obtained from the fit using Eq. 3.34) as a
function of temperature, respectively. The colored dots are the values obtained from Panel A and
black lines are linear regressions with free y-intercept.

The relaxation parameters β and R1,av show interesting correlations with temperature. We
found empirically that the β coefficient correlate linearly with temperature (see Fig. 3.26C) and
that the extrapolated value at T = 0 K is β ≈ 0.97 ± 0.02, very close to 1. A β coefficient
different from 1 is the sign of the coexistence of distinct mechanisms contributing to relaxation
with comparable rates or with a distribution of such rates. The fact that β → 1 when T → 0
indicates that relaxation tends to be limited by a single mechanism as temperature decreases, or
at least towards a single rate.

We also found a correlation between the average relaxation rate R1,av (obtained from the
stretched exponential fit using Eq. 3.34) with 1 − P 2

e , where Pe is the Boltzmann polarization of
the electron. As will be detailed in Sec. 4.1, this correlation is expected to hold if the relaxation
rate has the form

R1 = R1,a + (1− P 2
e )R

0
1,b, (3.46)
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where the first and second terms are relaxation rates that do not and do depend on the electron
polarization, respectively. The perfect fit of Eq. 3.46 to the measured relaxation rate shows
that R1,a does not depend on the polarization of the electron and on temperature. We found
R1,a ≈ 0.012 ± 0.003 s−1 and R0

1,b ≈ 0.87 ± 0.01 s−1, while in DNP juice doped with 50 mM

TEMPOL, we found R1,a < 10−4 s−1 and R0
1,b ≈ 0.0076 ± 0.0007 s−1. The PANI sample with

χ = 0.2 has a radical concentration on the order of ≈ 100 μmol.g−1, which is about twice the
concentration of a sample with 50 mM TEMPOL.

The fact that both R1,a and R0
1,b are two orders of magnitude higher in PANI with χ = 0.2

than in DNP juice with 50 mM TEMPOL gives a clear indication that the mobility of the electron
spins plays a role in nuclear relaxation in PANI. In DNP juice doped with TEMPOL, R1,a is a term
representing diamagnetic relaxation (i.e., it is electron-independent). Indeed, because TEMPOL
electron spins are fixed in space in DNP juice, they can only make nuclei relax by flip-flops [161]
and the corresponding term bears the 1 − P 2

e dependence. [48] The fact that R1,a in PANI is
two orders of magnitude higher than in DNP juice with 50 mM TEMPOL suggests that the
translational motion of the electron spins causes nuclear relaxation. [162, 163] In turn, the fact
that R1,a is found to be temperature-independent implies that temperature does not influence the
electron mobility and hence the conductivity in PANI, which is consistent with the Q-factor of the
probe being independent of temperature.

As for R0
1,b, it is also found to be two orders of magnitude higher in PANI. The difference in

electron concentration can hardly explain such a stark difference. Both in PANI and TEMPOL
doped DNP juice, electron flip-flops are expected to cause nuclear relaxation with a 1−P 2

e depen-
dence. However, an important difference in the case of PANI, is that the motion of the electron
potentially allows it to relax nuclear spins via flip-flops on a much wider spatial range than if they
were fixed as in insulating solids. The role of nuclear spin diffusion in relaying electron-induced
relaxation would therefore be weaker in PANI than in DNP juice.

3.4.3 μw spectra on PANI

We recorded μw spectra for all eleven samples at 1.6 K and 7.05 T with a separation of 25 MHz
between μw frequencies, using a procedure similar to that presented in Sec. 3.3.2. Again, we
did not use frequency modulation. However, we chose to record the full μw in a single pseudo-
2D experiment (which should perhaps be called a pseudo-pseudo-3D experiment). This ensures
easier synchronization of the μw frequency and the NMR experiment, controlled separately by the
AlphaController and TopSpin, respectively. Because of the fast relaxation in PANI, the longest μw
spectrum could be recorded in ≈ 3.3 hours for 40 μw frequencies as compared to ≈ 8.5 hours for
29 frequencies for DNP juice with 50 mM TEMPOL. Based on the observation that the 1H signal
of PANI is not linear with 1/T and that 1H relaxation is so fast, we chose to record thermal
equilibrium signals at the same temperature as that of DNP experiments, i.e., 1.6 K, in order
not to introduce a biais in the polarization quantification. Contrary to the case of DNP juice,
this is affordable since the relaxation of PANI are high even at low radical concentration and low
temperatures.

Fig. 3.27 shows the resulting μw spectra for 0 ≤ χ ≤ 0.8, expressed in terms of maximum
recorded polarization (and not in terms of extrapolated polarization for t → ∞) as a function of the
μw frequency offset with respect to 197’630 MHz. The spectra for χ > 0.8 are not shown because
they are flat (as that for χ = 0.8). The horizontal dashed line corresponds to the Boltzmann
equilibrium polarization of 1H spins at 1.6 K, Peq ≈ 0.45%.

For samples with 0.2 ≤ χ ≤ 0.3, peaks of ZQ-SE and DQ-SE are clearly visible at +300 and
−300 MHz, respectively, although weak. A stronger narrow pattern is present at the center of
the μw spectra for 0 ≤ χ ≤ 0.7. As χ increases and, hence, as the radical concentration and the
conductivity of the polymer increases, this spectral pattern evolves smoothly from an absorption-
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Figure 3.27: μw spectra for PANI with various values of expected conversion χ from EB to ES, for
≈ 30 mg of sample at 1.6 K. The horizontal dashed line corresponds to the Boltzmann equilibrium
polarization of 1H spins Peq ≈ 0.45%.

like signal with a lower frequency positive lobe and higher frequency negative lobe separated by
≈ 100 MHz to a negative dispersion-like peak with a width of ≈ 125 MHz. Along the transition
from one pattern to the other, the negative lobe increases while the positive lobe decreases until
the dispersion-like peak is reached.

The best performing sample, i.e., that with χ = 0.2, was investigated in further detail. A
broader μw spectrum was recorded to verify that it does decay towards the thermal equilibrium
polarization on the edges. Fig. 3.28A shows that the μw spectrum does reach the 1H Boltzmann
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polarization for offset frequencies larger than ±400 MHz. The build-ups for all frequencies were
fitted with a stretched exponential model (see Eq. 3.33). The average time and rate constants
obtained from the fitted parameters using Eq. 3.34 and the fitted β coefficient are shown in Fig.
3.28B-D, respectively.

Figure 3.28: A. μw spectrum of PANI with χ = 0.2 on a broad range of μw frequencies. B-C.
Average build-up time and rate constant Tav and Rav, respectively, obtained from the stretched
exponential fit of the build-ups using Eq. 3.34. D. Stretched coefficient obtained by fitting the
build-ups with a stretched exponential model. The build-up with μw frequency +100 MHz could
not be fitted with a stretched exponential (see Fig. 3.29) and was fitted with a biexponential
function instead (see Eq. 3.47 and Fig. 3.29). The fitted values of the biexponential model are
shown as black dots on Panel B and C.
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The build-up with a μw frequency of +100 MHz exhibits a very different behavior compared to
others. As can be seen in Fig. 3.29, in this case, the polarization goes first positive on a short time
scale and negative on a slower time scale. This particular curve could obviously not be fitted with
a single stretched exponential. Instead, it was fitted with a biexponential function of the form

P (t) = P∞ + (P+ − P∞) exp

(
− t

Tfast

)
− P+ exp

(
− t

Tslow

)
, (3.47)

where P∞, P+, Tfast and Tslow are the polarization when t → ∞, the polarization of the positive
maximum and a fast and a slow relaxation time constant, respectively. The model curve is shown
as a black line on Fig. 3.29 and the fitted time and rate constants are shown as black dots in Fig.
3.28B-C, respectively. The time and rate constant as a function of μw irradiation frequency feature
a discontinuity at +100 MHz. The slow time and rate constants obtained by the biexponential
fit seem to be in the continuity of the curve at increasing frequencies while the fast time and rate
constants seem to be in the continuity of the curve at decreasing frequencies.
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Figure 3.29: Polarization build-up of PANI with χ = 0.2 under DNP with μw irradiation at 167’730
MHz (corresponding to an offset frequency of +100 MHz with respect to the reference frequency).
The blue dots and the black line correspond to experimental data points and a biexponential model
(see Eq. 3.47), respectively.

One may notice that the polarization on the μw spectra for PANI with χ = 0.2 shown in Fig.
3.27 is higher than that in Fig. 3.28A. In the former case, the maximum absolute polarization is
at ≈ −2.8%, while it is of ≈ −4.7%. The experiments were performed on samples from the same
batch on different days. For the time being, it is unclear whether this difference is real or it is the
result of experimental mistakes.

3.4.4 DNP mechanisms in PANI

If the signal enhancement observed in PANI with μw irradiation at +300 MHz and −300 MHz
can be attributed to SE without doubt, the features at the center of the spectrum are much more
difficult to explain. TM and OE are two possible mechanisms that could explain these features.
[158, 157, 127, 128, 129]

The detailed analysis of the sample with χ = 0.2 gives a strong hint that two distinct mech-
anisms operate simultaneously in PANI. Indeed, Fig. 3.29 suggests that one mechanism brings
the polarization towards a positive value on a short timescale while a second mechanism pulls the
polarization towards a greater negative value on a slower timescale. Note that the experiment of
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Fig. 3.29 was recorded immediately after an experiment with negative DNP. The positive polar-
ization observed in the beginning of the curve of Fig. 3.29 can therefore not be attributed to spin
diffusion from negatively polarized hyperfine shifted spins (Chapter 5 is dedicated to the study of
this effect).

The results of thermal relaxation in Sec. 3.4.2 give evidence that the mobility of the electrons
plays a strong role in nuclear relaxation in PANI. This relaxation mechanism is related to OE;
after all, the difference between OE-DNP and spin-lattice relaxation by mobile electrons is that
the population of the electron-nuclear spin states under OE-DNP is modified by μw irradiation but
the relaxation pathways are the same. A notable difference between OE-DNP in conductive solids
and TM-DNP is that the former relies on electron mobility to modulate the hyperfine interaction,
while the latter relies on electron flip-flops. The two mechanisms can occur simultaneously, albeit
with different matching conditions and possibly different rates.

The efficiency of OE in PANI can be expected to depend on the protonation level χ. Indeed,
electron mobility in PANI is known to increase with χ [160] and electron mobility is the mechanism
at the origin of OE in conductive solids. OE-DNP usually gives rise to positive enhancement with a
dispersion-like pattern at the center of the μw spectrum. Here, the dispersion-like pattern appears
for high values of χ and hence for high electron mobility, which would be reasonable for OE but it
is negative, which would be unusual for OE.

Increasing radical concentration commonly increases the e-e interaction strength and hence
the efficiency of TM (see Sec. 3.2.3, in particular Eq. 3.29). In this regard, PANI represents a
special case. When χ is small, the polymer contains mainly imines and few amines (see Fig. 3.24).
Because the electrons can only freely move along amines, they are trapped as well-defined pairs
located in between imines. As χ increases, the number of amines increases while the number of
imines diminishes, allowing electrons to move more and more freely along the polymer, and they
are no longer located as well-defined pairs. Therefore, at increasing radical concentrations, a larger
number of electrons can interact but strong e-e interactions are already present even at the lowest
radical concentration, providing appropriate conditions for TM.

The spectral feature of the μw spectrum for χ = 0, namely an absorption-line peak, was
reported by several authors recently. [158, 159] In particular, Equbal et al. found that this feature
increases with e-e interactions for 1H static DNP at 7 T and 20 K using trityl radical and postulated
that TM was the mechanism at play. [158] Li et al. showed using numerical simulation in a model
system of three electrons and one nucleus that this pattern would occur for a specific distribution
of e-e couplings (5, 15, and 350 MHz) and T1e values (1 μs, 5 μs, and 8 ms). [157] As discussed
above, even in PANI with χ = 0, strong e-e coupling are expected, which could make TM-DNP
possible and explain the observed pattern. However, a distribution of T1e values such as that in
Li et al.’s simulation would be very surprising in the case of PANI and so the mechanism they
simulated, at least with these values, is unlikely to explain our observations.

The interpretation of the μw spectra alone does not allow us to draw definitive conclusions
regarding the DNP mechanisms operating in PANI. Simulating PANI chains by quantum chemical
methods could be of interest to calculate electron-electron interactions, electron-nucleus interac-
tions, and electron mobility. This could then be used to simulate DNP mechanisms and get deeper
insights into the DNP in PANI.

3.5 Perspectives

We have presented instrumentation for DNP experimentation where most steps of the process are
computer-controlled and can be automatized; refills of liquid He and the temperature of the He
bath are controlled by a dedicated user interface and can be programmed with a time resolution
of ≈ 2 s. μw parameters related to the frequency and relative power are controlled by the same
interface with the same time resolution. The on/off status of the μw source (i.e., μw gating) is
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controlled by the NMR pulse sequence via TTL pulses, with a time resolution of hundreds of μs.
The steps which require manual intervention and which still cannot be automatized are sample
insertion and probe tunning.

The automation of the process has several advantages. First, it allows the operator to perform
repeatable processes with known He consumption and duration. This helps minimizing the He
consumption, which becomes more and more important due to the increasing price of liquid He.
Second, it permits overnight operation for long experiments such as μw spectra where the μw
frequency needs to be changed experiment after experiment. The time of use of the instrument is
therefore increased. Furthermore, because the instrument needs to be kept cold from one day of
operation to the next, performing overnight experiments also represents a better use of liquid He.

The fact that the μw frequency and relative power can only be controlled with a time resolution
of ≈ 2 s makes it appropriate for recording μw spectra. However, it represents a limitation for
the experiments of NMR detected EPR that will be presented in the next chapter (see Chapter
4). The same time resolution at that of the μw gating (i.e., on the order of hundreds of μs) by
controlling the μw source with via a LabView interface receiving TTL pulses from the NMR pulse
sequence.

μw spectra for DNP juice doped with 50 and 75 mM TEMPOL were recorded at four tem-
peratures between 1.6 and 3.8 K. The DNP performance is found to increase when temperature
decreases as expected but the polarization extrema are below expectations probably due to an
improper quantification of the thermal equilibrium. However, this only brings a bias on the scal-
ing of the y-axis of the μw spectra. The frequency separation between the positive and negative
DNP optima was shown to increase with temperature and to be larger for the sample with 75 mM
TEMPOL, indicating a possible crossover of the DNP mechanism with temperature. These data
provide a promising basis for testing different DNP models such as TM and iCE. Yet, a crucial
piece of information to test the models is the spin-lattice relaxation time of the electron spins T1e

at the temperatures where the μw spectra are recorded.

Understanding the mechanisms at stake in our conditions of field and temperature is of great
interest to further improve DNP performance. When the radical concentration in DNP juice is
increased, the strength of the interactions between electrons increases which should affect DNP
mechanisms. However, this also increases the number of electrons per radical and possibly the
intensity of paramagnetic relaxation. If we can find a suitable model to explain our data, it should
be possible to predict the optimal electron-electron interaction strength and guide the design of
sample architectures to reach this optimum. An optimum was perhaps already reached in the case
of HYPSO 5 samples, [54] in which the 1H polarization at 1.2 K and 6.7 T approaches unity. In
these samples, the radicals are not homogeneously distributed since they are grafted on the surface
of the pores of a mesoporous solid.

PANI polymers were introduced as a new substrate for DNP. μw spectra were recorded 1.6 K
as a function of the radical content and a surprising richness of DNP mechanisms was found. The
spectra feature vanishingly small SE on the edges and a stronger pattern at the center of spectra.
This pattern evolves from absorption-like to dispersion-like as radical concentration increases. If
the absorption-like pattern is reminiscent of recently reported cases, [157, 158, 159] the crossover
from absorption to dispersion is more surprising. Finally, the analysis of the individual build-up
curves in the μw spectra revealed that, for some μw frequencies, two mechanisms were operating at
the same time pulling the 1H polarization towards different values near the center of the spectrum.

If only modest polarization of ≈ 3% were obtained, the interest of PANI polymers is that
electron spins can be polarized above Boltzmann equilibrium independently of temperature us-
ing CISS in cPANI. In the past years, a lot of effort has been put into nitrogen-vacancy (NV)
doped diamonds as a source of hyperpolarization at room temperature. Indeed, electron spins in
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negatively charged NV centers can be polarized by LASER illumination and the polarization can
be transferred to surrounding 13C spins by DNP at low-field. However, it remains challenging
to transfer the 13C polarization to target molecules outside the diamonds. In the case of PANI,
1H spins are polarized and so their polarization can be transferred more easily by spin diffusion to
a host solution (possibly frozen at liquid nitrogen temperatures). Furthermore, the architecture of
the polymer can be controlled to make PANI a solid porous powder.

Finally, we note that, due to the extraordinarily high relaxation rate of 1H spins in PANI even
in conditions where the electron polarization approaches unity, porous PANI polymers could be
used as filterable relaxing agents for brute force hyperpolarization. [164, 165] The method consists
of bringing a sample to mK temperatures in a moderate magnetic field and letting it relax to
the high Boltzmann equilibrium polarization of nuclear spins in these conditions. However, the
main limitation of the method is the relaxation time of nuclear spins in these conditions which
can exceed days. [164] Adding paramagnetic dopants in the form of a standard polarizing agent
does not help as static electrons relax nuclear spins via electron spin flip-flops, which are quenched
in these conditions. If the electrons in PANI remain mobile even at mK temperatures, they
could provide the relaxation source necessary for efficient brute force hyperpolarization. We note
that Khutsishvili proposed this idea for the case of conductive metals as early as 1955 [166] but
mentioned that the method would be limited to nuclear spins in the metal. PANI polymers would
be ideal in this regard, as they can be made porous to host a solution to be polarized and 1H spins
can be used to relay polarization. [57, 154, 155]



Chapter 4

NMR detected EPR

The understanding of DNP mechanisms requires the knowledge of EPR properties such as the
electron spin-lattice relaxation time T1e, the spin-spin relaxation time T2,e, the EPR lineshape,
and the EPR lineshape under DNP. The most powerful approach for the measurement of such
properties is pulsed EPR. [167, 158, 157] However, pulsed EPR under dDNP conditions, i.e., at
fields 3.3 < B0 < 7 T and temperature T < 2 K, is challenging. To the best of my knowledge,
reported pulsed EPR instruments at fields 3.3 < B0 < 7 do not operate at temperatures below
T ≈ 4 K. [167, 168, 169, 70]

Alternatives exist which require simpler hardware but only provide information comparable
to that offered by CW-EPR. One such example is longitudinally detected electron saturation
resonance (LOD-ESR). [170, 48, 51, 114] Implementing LOD-ESR in a running dDNP polarizer
merely requires adding coils of wire sensitive to magnetic fields along the main magnetic field B0,
usually above and below the sample to allow μw to reach the sample, and some electronics to
gate the μw and record the electrical signal in the coil. LOD-ESR is typically used to measure
T1e and CW-type EPR spectra. Another approach is indirect EPR detection via NMR properties,
which uses μw gating but does not require any further hardware modification as compared to
standard dDNP instrumentation (at least in the simplest form of the experiment). An example
of this approach is the measurement of T1e by monitoring the displacement of an NMR signal
after switching off μw irradiation. [171, 172] The shift of the NMR signal is proportional to
the dipolar field generated by the electron spins, which is in turn proportional to the electron
polarization. The return of the electron polarization towards equilibrium after switching off μw
irradiation can therefore be monitored via the shift of the NMR line. Another approach consists of
measuring NMR relaxation properties which are sensitive to electron polarization. We have seen
that nuclear paramagnetic spin-lattice relaxation 1/T1,para was proportional to 1−P 2

e , where Pe is
the polarization of the electron (see Eq. 2.159). The same is true for relaxation in the transverse
plane. Bornet et al. have exploited the 1H relaxation rate in the rotating frame 1/T1ρ to measure
EPR properties in DNP juice doped with 50 mM TEMPOL at 1.2 K and 6.7 T. [49] They found
T1e ≈ 48 ± 1 ms and an electron polarization under μw irradiation of 48%. Recently, Guarin et
al. showed that the 1H spin-spin relaxation rate 1/T ∗

1 (
2H) was strongly affected by the change

in electron polarization upon switching on and off μw irradiation in various samples at 6.7 T and
between 1.2 and 4 K. [67]

In this chapter, we introduce the use of the spin-spin relaxation rate of 13C spins 1/T ∗
2 (

13C) to
measure EPR properties. We first discuss the theory behind the use of NMR relaxation properties
as indirect EPR probes. We then use 1/T ∗

2 (
13C) to measure the electron spin polarization as

a function of μw power as well as T1e and Te,sat time constants at 1.2 K (where Te,sat is the
time constant of the equilibration of the electron polarization upon switching on μw irradiation).
Furthermore, similarly to Bornet et al, we use 1/Tρ(

1H) to measure T1e. However, we base our

99
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analysis on a simpler approach that does not require the simulation of spin diffusion by finite
element methods. We measure T1e at various temperatures between 1.6 and 3.8 K and, surprisingly,
we find that it increases with temperature. We also present the use of 1/Tρ(

1H) to record a
rudimentary EPR spectrum of TEMPOL at 1.6 K. Finally, we discuss the difference between
13C and 1H relaxation properties as indirect probes for EPR properties.

4.1 The choice of the autocorrelation function

The idea that underlies NMR detected EPR is to use an NMR quantity that is sensitive to the
electron polarization as a reporter of the latter. The strategy introduced by Bornet et al. which
we were inspired by consists of measuring NMR relaxation rates in conditions where the electron
polarization is known, that is, in the absence of μw irradiation, where the electron polarization is
given by Boltzmann’s law (see Eq. 1.3). The relaxation rate is measured at various temperatures
and hence at various electron polarizations. Based on a suitable model relating the relaxation rate
to the electron polarization, a calibration curve is obtained, which can then be used to infer the
electron polarization in circumstances where it is perturbed by μw irradiation. EPR quantities
such as T1e and even a full EPR spectrum can be obtained in this way. An underlying assumption
of this approach is that the only parameter affecting signicantly the NMR relaxation rate in all
conditions of measurement is the electron polarization and that the relation between the electron
polarization and the NMR relaxation rate is known.

In this section, we discuss the relation between NMR relaxation rates and electron polarization,
as different expressions can be found in the literature. [49, 67] The basic assumption is that a
relaxation rate has the form

Rk = Rk,para +Rk,dia, (4.1)

where Rk,para and Rk,dia are paramagnetic and diamagnetic relaxation rates (i.e., due to electron
dependent and independent mechanisms, respectively), with

Rk,para = R0
k,para(1− P̄P∞), (4.2)

where R0
k,para is the relaxation rate constant at null electron polarization, which depends on the

type of relaxation (spin-lattice, spin-spin, etc). P̄ and P∞ are the average electron polarization and
the polarization towards which the autocorrelation of the electron spins state tends, respectively.
It is because paramagnetic relaxation rates Rk,para depend on the average electron polarization P̄
that NMR relaxation can be used to detect EPR properties indirectly.

We presented the construction of the autocorrelation of the electron spin state which leads to
this term 1 − P̄P∞ in Sec. 2.3.4 (see Eq. 2.150). In that section, we stated that, in the absence
of μw irradiation, we have P̄ = P∞ = Peq, where Peq is the Boltzmann equilibrium polarization
of the electron spin as defined in Eq. 1.3, leading to

Rk,para = R0
k,para(1− P 2

eq). (4.3)

But what happens once we switch on μw irradiation? Bornet et al. used the expression [49]

Rk,para = R0
k,para(1− PeqPμw), (4.4)

where Peq and Pμw are the electron polarization at Boltzmann equilibrium and the average electron
polarization under μw irradiation. To the contrary, Guarin et al. based their analysis on the
expression [67]

Rk,para = R0
k,para(1− P 2

μw). (4.5)
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However, none of them explained the choice behind one or the other autocorrelation function,
which in turn leads to one or the other expression of the relaxation rate. We now try to understand
the mechanisms which could rationalize these expressions. Let us first remember that P̄ = pβ −
pα was used in the construction of the autocorrelation function of Eq. 2.150 assuming that pβ
and pα were the probabilities to find the electron in the β and α states at any time τ = 0,
respectively. Therefore, there is no doubt that P̄ corresponds to the average polarization of the
electron spin under μw irradiation Pμw (or the electron Boltzmann polarization Peq in the absence
of μw irradiation).

The more subtle question is what is P∞. P∞ was used in the construction of Eq. 4.2 as
the polarization towards which the autocorrelation function tends. Therefore, the value of P∞
depends on the mechanism which makes the electron state leave its state (or decorrelate from its
state). Let us assume for the sake of the argument that electron spins are far apart and do not
interact significantly with each other. Let us assume in addition, that μw irradiation is weak and
so electron flips are primarily due to spin-lattice relaxation. In other words, before the electron
spin state is disturbed by electron-electron interactions or by μw irradiation, spin-lattice relaxation
takes the autocorrelation towards P∞. In this case, it is natural to assume that the autocorrelation
functions tends towards P∞ = Peq with correlation time constant τc = T1e. These assumptions
lead to Bornet et al.’s expression Eq. 4.4.

On the contrary, let us now know assume that electron flips are dominated by electron-electron
dipolar interactions and so T2,e � T1e. In this case, there is no reason to assume that electron-
electron flip-flops would make the autocorrelation tend towards Peq; it should rather tend towards
P∞ = Pμw with correlation time constant τc = T2,e, leading to Guarin et al.’s expression Eq. 4.5.

The second of these two mechanisms is of course more appropriate both in Bornet et al. and
Guarin et al.’s cases as well as in ours. Indeed, all three cases are concerned with TM-DNP where
electron-electron interactions are required to dominate over electron spin-lattice relaxation so that
a spin temperature can establish within the electron-electron non-Zeeman reservoir. It is possible
that another explanation that may justify Eq. 4.4 did not occur to us. Yet, in light of the above
argument, we will use Eq. 4.5 in the following analysis. Furthermore, because both in the absence
of and under μw irradiation, our argument leads us to the conclusion P̄ = P∞, for simplicity, we
will write the relaxation rate as

Rk,para = R0
k,para(1− P 2

e ), (4.6)

where Pe is the electron polarization, either in the absence of or under μw irradiation.

4.2 EPR properties via R∗
2(

13C)

In the present case, we use the 13C spin-spin relaxation rate R∗
2(

13C) to infer the electron po-
larization Pe under μw irradiation as a function of the μw power. We further use this approach
to measure T1e and Tsat,e (i.e., the time constant of the equilibration of the electron polarization
upon switching on μw irradiation). Assuming that the rate is given by

R∗
2 = R∗

2,dia +R0∗
2,para(1− P 2

e ), (4.7)

we first determine R∗
2,dia and R0∗

2,para experimentally by measuring R∗
2 in the absence of μw irra-

diation at various temperature between 1.2 and 4.2 K and therefore at various known Boltzmann
equilibrium electron polarizations Peq. This is done using the pulse sequence shown in Fig. 4.1A.
We assume that R∗

2,dia does not depend on temperature. Second, the electron polarization under
μw irradiation is determined by measuring R∗

2 with the pulse sequence shown on Fig. 4.1B and
using the previously determined values of R∗

2,dia and R0∗
2,para and the relation
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Pe =

√
1− R∗

2 −R∗
2,dia

R0∗
2,para

, (4.8)

which follows from Eq. 4.7. As a comparison, Bornet et al.’s expression (see Eq. 4.4) leads to

Pμw =
1

Peq

(
1− R∗

2 −R∗
2,dia

R0∗
2,para

)
. (4.9)

Figure 4.1: A-B. Pulse sequence diagrams for the measurement of the R∗
2(

13C) in the absence of
and under μw irradiation, respectively. After a train of saturation pulses, 1H spins are polarized
by DNP during tDNP; delay tg allows electron spins to return to Boltzmann equilibrium before
the 1H polarization is transferred to 13C spins by a CP block; In A, after resting delay tr, the
13C signal is measured by a solid echo with pulses of angle θ with a variable echo time te. In B,
μw irradiation is switched back on after the CP block. Delay ts allows the electron polarization to
reach dynamic equilibrium before the echo is performed. The FID represented in blue corresponds
to that recorded by the spectrometer and Fourier transformed.

4.2.1 Determination of R∗
2,dia and R0∗

2,para

We measured the R∗
2(

13C) of the ≈ 270 mM natural abundance 13C of a sample of DNP juice
doped with 50 mM TEMPOL at twelve temperatures between 1.18 and 4.26 K using μw gating,
using the pulse sequence of Fig. 4.1A. The echo times te were determined in a variable delay list
with exponentially increasing delays. The echos were measured using pulse angles θ = 40◦. The
results are shown in Fig. 4.2A. A monoexponential decay function

I(te) = I0 exp

(
− te
T ∗
2

)
(4.10)

was fitted to the signal intensity as a function of te. Note that the maximum delay for all mea-
surements was te = 10 ms but is not visible on the plots of Fig. 4.2A.
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Figure 4.2: A. R∗
2(

13C) measurement by solid echo after 1H DNP and 1H→13C CP, as described
in Fig. 4.1A, at various temperatures, fitted with Eq. 4.10, shown as colored dots and black
lines, respectively. The curves are normalized by the fitted value of I0. B. Linear regression
of the R∗

2(
13C) values displayed in Panel A against 1 − P 2

e , where Pe is the polarization of the
electron. The solid and dashed lines represent the linear regression and the 95% confidence interval,
respectively.

The obtained rates are plotted on Fig. 4.2B as a function of 1− P 2
e . Eq. 4.7 predicts a linear

dependence of the relaxation rate on 1− P 2
e , which is verified by the linear regression. The linear

regression gave the values for the diamagnetic relaxation rate constant R∗
2,dia = 0.89± 0.08 ms−1

and the paramagnetic relaxation rate constant at null electron polarization R0∗
2,para = 6.6 ± 0.4

ms−1.

4.2.2 Measurement of the electron polarization under μw irradiation

The relaxation rates R∗
2(

13C) under μw irradiation were measured at 1.2 K using the pulse sequence
of Fig. 4.1B as a function of the μw power for both positive and negative DNP. The echos were
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measured using pulse angles θ = 40◦. Each R∗
2 measurement took 10-20 min to record. The number

of scans was increased for the measurements at lower μw power, resulting in longer experimental
time, to compensate for the lower sensitivity. The results are shown in Fig. 4.3A-B, respectively.
As for Fig. 4.2A, the maximum delay for all measurements was te = 10 ms but is not visible on the
plots. The decays were fitted with Eq. 4.10 and the relaxation rates were converted into electron
polarization using Eq. 4.8. The error on the electron polarization Pe was calculated as

σ(Pe) =

∣∣∣∣1− P 2
e

Pe

∣∣∣∣
√√√√(

σ(R0∗
2,para)

R0∗
2,para

)2

+
σ(R∗

2)
2 + σ(R∗

2,dia)
2

R∗
2 −R∗

2,dia

(4.11)

σ(R0∗
2,para), σ(R

∗
2,dia) and σ(R∗

2) are the errors on the parameters of the linear regression shown in
Fig. 4.2B and the error on the fitted rates of Fig. 4.3A-B, respectively. The electron polarization
was also calculated according to Bornet et al.’s Eq. 4.9 for comparison. In this case, the error was
calculated as

σ(Pμw) =

∣∣∣∣1− PμwPeq

Peq

∣∣∣∣
√√√√(

σ(R0∗
2,para)

R0∗
2,para

)2

+
σ(R∗

2)
2 + σ(R∗

2,dia)
2

R∗
2 −R∗

2,dia

. (4.12)

The electron polarization under μw irradiation inferred using Eq. 4.8 and Bornet et al.’s Eq.
4.9 are showed as colored and gray symbols, respectively, on 4.3C-D.

The measurements at low μw are much noisier than those at higher powers. The reason is that
our hardware allows for the control of the μw gating from the pulse program with <ms resolution
but not of the μw power and frequency. Instead, the μw power and frequency are controlled with
a ≈ 2 s resolution via the AlphaController (see Fig. 3.3). Ideally, one would use the optimal
μw power to polarize the 1H spins during the first part of the pulse sequence of Fig. 4.1B and
then lower the power to measure the 13C relaxation rate at the desired value of μw power. This
would allow one to measure the electron polarization at any μw power with maximum sensitivity.
Because we could not switch the μw power fast enough, we had to keep it constant throughout
the pulse sequence. As a consequence, the lower the μw power, the poorer the sensitivity, as can
be seen in Fig. 4.3.

Using Eq. 4.8, we found electron polarizations Pe ≈ 69% ± 3% and Pe ≈ 66% ± 4% under
positive and negative DNP, at the maximum available powers corresponding to 125 and 118 mW,
respectively (see the colored symbols on Fig. 4.3C-D). Using Bornet et al.’s Eq. 4.9, we found
Pe ≈ 47%±6% and Pe ≈ 43%±7% (see the gray symbols on Fig. 4.3C-D). Eq. 4.8 infers a higher
electron polarization under μw irradiation than Eq. 4.9 but the experimental data that we present
here cannot distinguish which of the two expressions is more appropriate. Interestingly, Bornet
et al. found a polarization of 48% under μw irradiation (using Eq. 4.9) using an experimental
setup very similar to ours and R1ρ(

1H) as an indirect measure of electron properties. Even though
we used another relaxation parameter, namely 13C transverse relaxation, our measured value of
Pe ≈ 47%± 6% agrees with theirs (at least if we use the same equation to interpret the relaxation
values).

Our measurements verify that the stronger the μw irradiation the lower the electron polariza-
tion. At low μw power, the electron polarization tends towards ≈ 100% in the case of negative
DNP (see insert on Panel D). In the case of positive DNP, the value tends towards an unphysical
value of the electron polarization above 100% (see insert on Panel C). This could be due to the
poor sensitivity of the measurement at low power, as discussed above. However, there seems to be
a bias that is not dominated by the noise in the measurement. This could be the result of a more
fundamental limitation of our method, which remains to be explained.
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Figure 4.3: A-B.R2(
13C) measurement by solid echo under μw irradiation at the optimal frequency

for positive and negative DNP, respectively, after 1H DNP and 1H→13C CP, as described on
Fig. 4.1B, at various μw powers, fitted with Eq. 4.10, shown as colored dots and black lines,
respectively. The curves are normalized by the fitted value of I0. C-D. Polarization of the
electron under positive and negative DNP, respectively, as a function of μw power inferred from
the relaxation rates obtained from the data of Panels A and B. The colored and gray symbol
represents polarization values inferred using Eq. 4.8 and Bornet et al.’s Eq. 4.9, respectively.
Each R∗

2 measurement took 10-20 min to record.
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4.2.3 Measurement of T1e

The electron polarization can also be measured in a time-resolved manner using the above ap-
proach. We measured the electron spin-lattice relaxation time constant T1e and the electron
saturation time constant Te,sat at 1.2 K using the pulse sequences of Fig. 4.4A-B, respectively.

Figure 4.4: A-B. Pulse sequences for the measurement of the time constant of the electron spin-
lattice relaxation T1e and the electron saturation Te,sat, respectively. Gating delay tg is chosen
to be five times T1e and Te,sat. The measurement is repeated n1 × ne times and n1 × nsat times
for sequence A and B, respectively, where n1, ne and nsat are the numbers of increments of t1, te
and tsat, respectively. All other symbols have the same meaning as those in Fig. 4.1. A single R∗

2

measurement typically takes ≈ 2 min to record.

In the pulse sequence of Fig. 4.4A, the second delay tg allows the electron spins to reach
their dynamic equilibrium polarization (which we measured to be Pe ≈ 69% ± 3% and Pe ≈
66% ± 4% under positive and negative DNP, respectively). Then, μw irradiation is switched off
and the electron spins return to Boltzmann equilibrium polarization Peq ≈ 99.93% at 1.2 K, with
characteristic time constant T1e, during delay t1. The electron polarization of the electron is
measured using the procedure described above for a range of values of t1 between 0 and > 5T1e.
In the pulse sequence of Fig. 4.4B, the electron spin polarization is moved away from Boltzmann
equilibrium towards the dynamic equilibrium value under DNP during delay tsat. Pe is measured
for a range of values of tsat between 0 and > 5Te,sat, as the electron spins are being saturated, which
gives access to the time constant of the equilibration of the electron polarization. The transverse
relaxation of 13C spins is an order of magnitude faster than the measured EPR processes (see
below) and so the electron polarization can be considered stationary on the time scale of the
measurement.

The electron polarizations along t1 and tsat were measured on the same sample as that used
for Fig. 4.3. Each of the measurements took ≈ 0.5 h to record. The results are plotted on Fig.
4.5A-B for positive and negative DNP, respectively. The obtained polarization traces were fitted
with a monoexponential model

P (tk) = P∞ + (P0 − P∞) exp

(
− tk
Tk

)
, (4.13)
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where tk = t1, tsat, Tk = T1e, Tsat,e, P0 and P∞ are the variable relaxation delay, the fitted
relaxation time constant and the fitted initial and final polarizations, respectively. The fitted curves
are shown as black solid lines in Fig. 4.5C-D and the fitted relaxation time constants are given in
Table 4.1. In the case of the Te,sat measurement under negative DNP, the measurement had to be
stopped before completion because the cryostat ran out of helium. Therefore, the measurement
was not performed with tsat � Te,sat and so the fit performs poorly, yielding Te,sat ≈ 71 ± 52
ms. The fit was repeated fixing P∞ to the value of P0 obtained from the T1e measurement under
negative DNP, yielding Te,sat ≈ 27 ± 18 ms. The model curve is shown as a dotted line in Fig.
4.5B.

Figure 4.5: A-B. Measurement of the time constant of the electron spin-lattice relaxation time T1e

and the electron saturation time Te,sat using the pulse sequences in Fig. 4.4, under positive and
negative DNP, respectively. Colored dots and black solid lines correspond to measured electron
polarizations and model curves (see Eq. 4.13), respectively. The model shown as a dotted line on
Panel B was performed fixing P∞ to the value of P0 obtained from the T1e measurement under
negative DNP. Each curve was recorded in 30− 35 min.

T1e (ms) Te,sat (ms)

Negative DNP 58± 7 26± 7

Positive DNP 47± 10 27± 18∗

Table 4.1: Values of T1e and Te,sat obtained by fitting Eq. 4.13 to the data of Fig. 4.5C-D. The
value with a (∗) sign corresponds to the model shown as a dotted line on Fig. 4.5D, for which P∞
was fixed to the value of P0 obtained from the T1e measurement under negative DNP.

Table 4.1 shows that the measured T1e values are the same whether positive or negative DNP
is performed. The same is true for the saturation time constant Te,sat. It is interesting to notice,
again, that our results are in agreement with Bornet et al. who found T1 ≈ 48 ± 1 ms, although
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we should note that their measurement was performed at 6.7 T whilst ours at 7.05 T.

4.3 EPR properties via R∗
1ρ(

1H)

In addition to EPR measurements via R∗
2(

13C), we have also used R1ρ(
1H). We present the

measurement of T1e using R1ρ(
1H) as function of temperature between 1.6 and 3.8 K as a well

as a rudimentary EPR spectrum. We used a sample of 0.5 M [1-13C]-sodium acetate and 50 mM
TEMPOL in DNP juice. Note that the presence of [1-13C]-sodium acetate was meant for other
purposes than the present measurements.

4.3.1 Measurement of T1e

The procedure used here is very similar to that presented above for indirect EPR measurement via
13C relaxation: R1ρ was first measured while the electron spins were at Boltzmann equilibrium,
using the pulse sequence of Fig. 4.6A at eleven temperatures between 1.6 and 3.8 K.

Figure 4.6: A-B. Pulse sequence diagrams for the measurement of R1ρ(
1H) in the absence of

and under μw irradiation, respectively. In Panel A, if R1ρ is to be measured while the electron
polarization is at Boltzmann equilibrium, tg is set to 0.5 s, so that it is large compared to T1e

and so the electrons have time to relax between the instant where μw irradiation is gated and
the spinlock. The pulse sequence in Panel A is used here for the determination of the relaxation
parameters and T1e measurements, whilst that in Panel B is used for the measurement of the EPR
spectrum. A single R1ρ measurement typically takes ≈ 30 s to record.

After the 1H spins were polarized during tDNP, gating delay tg was set to 0.5 s to let the
electron spins relax towards Boltzmann equilibrium. An adiabatic half passage pulse of 175 μs put
the 1H magnetization into the transverse plane and a pulse of constant amplitude locked the spins
during variable spin lock delay tSL. A second adiabatic half passage pulse of 175 μs brought the
remaining magnetization along the z-axis. After a resting delay tr = 110 μs, the magnetization
along the z-axis was read out by a train of NS = 64 pulse and acquisition blocks using pulses
with angle θ = 0.1�. The measurement with 64 scans takes ≈ 17 ms. Note that at this point the
electron polarization has already been encoded in the 1H polarization. Therefore, the time it takes
to perform the 64 scans does not affect the measured electron polarization. The curves were fitted
with a stretched exponential decay model
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I(t) = I0 exp

(
−
(
tSL

T1ρ

)β
)
, (4.14)

where I0, T1ρ, and β are the signal intensity at tSL = 0, the relaxation rate in the rotating frame,
and the stretched coefficient, respectively. The resulting curves are shown in Fig. 4.7A.

Figure 4.7: A. R1ρ(
1H) measurements at various temperatures measured using the pulse sequence

shown in Fig. 4.6A. The measured signal integrals are fitted with Eq. 4.14 shown as dots and
lines, respectively. The curves are normalized by the fitted value of I0. B. Linear regression of the
average relaxation rate R1ρ,av (obtained from the fitted parameters of the curves in Panel A using
Eq. 3.34) against 1− P 2

e .

The diamagnetic rate constant R1ρ,dia ≈ 0.008±0.032 ms−1 the and paramagnetic rate constant
at null electron polarization R0

1ρ,para ≈ 0.40± 0.02 ms−1 were obtained by linear regression of the
measured rate against 1− P 2

e (shown in Fig. 4.7B), assuming that the rate has the form

R1ρ = R1ρ,dia +R0
1ρ,para(1− P 2

e ). (4.15)

We note that the residues in the linear regression in Fig. 4.7B are not randomly dispersed
around zero, indicating that the model of Eq. 4.15 might be too simplistic.

T1e was measured at seven temperatures between 1.6 and 3.8 K using the pulse sequence of
Fig. 4.6A. For each temperature, R1ρ(

1H) was measured using eighteen values of the gating delay
tg from 0 to 510 ms. The longer tg, the more the electron spins have relaxed and the less 1H spins
relax during the spinlock. Each curve was fitted with Eq. 4.14 as in Fig. 4.7A (not shown). The
polarization of the electron spin was inferred from the fitted R1ρ values using

Pe =

√
1− R1ρ −R1ρ,dia

R0
1ρ,para

, (4.16)

which follows from Eq. 4.15. The error on Pe was calculated using Eq. 4.11 (where R∗
2 is

substituted by R1ρ). The obtained polarizations as a function of the gating delay tg for the various
temperatures are shown in Fig. 4.8A as colored dots. They were fitted with the monoexponential
model of Eq. 4.13 (shown as black lines in Fig. 4.8A).
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Figure 4.8: A. T1e measurement via R1ρ(
1H). Colored dots represent individual R1ρ measurement

using the pulse sequence of Fig. 4.6A converted into electron polarization using Eq. 4.16 and the
rates obtained in Fig. 4.7B. The obtained electron polarizations as a function of the gating delay
tg are fitted with the monoexponential model of Eq. 4.13. B. Electron spin-lattice relaxation time
constant T1e obtained in Panel A plotted against temperature as colored dots. The black and gray
dots are the values that we measured using R∗

2(
13C) (see Sec. 4.2.3) and the value measured by

Bornet et al. at 6.7 T using R1ρ(
1H), [48] respectively. One T1e measurement typically takes ≈ 8

s.

The resulting T1e values are plotted as a function of temperature in Fig. 4.8B (represented by
colored dots). The T1e value for the same sample that we measured using R∗

2(
13C) in Sec. 4.2.3

and that measured by Bornet et al. at 6.7 T using R1ρ(
1H) are shown for comparison, as black

and gray dots, respectively. To our surprise, the measured values of T1e exhibits a slight increase
with temperature. However, due to the large error bar at increasing temperatures, the trend is
barely significant.

Using R1ρ(
1H), we found an electron polarization under μw irradiation at 1.6 K Pe ≈ 87%±3%

while we found Pe ≈ 69% ± 3% using R2(
13C) at 1.2 K. This discrepancy between the methods

tends to indicate that at least one of them is biased. A possible explanation will be given in Sec.
4.3.3.

4.3.2 Measurement of an EPR spectrum

We now show that R1ρ measurements of 1H spins can also be used to record a complete EPR
spectrum. To do so, we measured the electron polarization via R1ρ(

1H) under the effect of μw
irradiation using the pulse sequence of Fig 4.6B and we repeated this measurement, scanning
through the EPR line. The result of this measurement is shown in Fig. 4.9A. We then convert the
measured rates into polarization using Eq. 4.16, as shown in Fig. 4.9B.

To convert the electron polarization into an EPR signal, we assume that μw irradiation is weak
and hence the change in electron polarization is linear with the number of electron spins f(ω)
resonating at the μw frequency ω [48, 51, 114]

ΔP = Peq − Pe ∝ f(ω), (4.17)

where Peq are Pe are the polarization of the electron at Boltzmann equilibrium and the measured
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Figure 4.9: A-B. R1ρ,av(
1H) as a function of the μw irradiation frequency measured using the

pulse sequence in Fig. 4.6B and corresponding electron polarization calculated using Eq. 4.16,
respectively. C EPR signal calculated using Eq. 4.18 from the measured electron polarization
under μw irradiation of Panel B. A simulated spectrum of TEMPOL is shown for comparison as
a black line. The simulation was performed using the same parameters as in Fig. 3.17. Both the
simulated and measured spectra are normalized to 1.

electron polarization under irradiation at ω, respectively. It follows that the EPR signal is given
by

f(ω) ∝ Peq − Pe. (4.18)

The result is shown in Fig. 4.9C, after normalization to 1, as blue dots. A simulation of the
EPR spectrum is shown for comparison as a black line. The overall shape of the measured EPR
spectrum matches coarsely the simulation. In particular, the position of the maximum matches the
simulation. However, the measured lineshape is narrower than the simulated one. We note that
using Bornet et al.’s Eq. 4.4 rather than Eq. 4.6 only modifies the appearance of the spectrum
very slightly (not shown).
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The fact that we cannot change the μw parameters between the part where we prepolarize the
spins and that where we record relaxation inevitably hampers the sensitivity of the measurement,
as it did for the measurements presented in Sec. 4.2.2. In the latter case, it was the low μw power
that made the measurement insensitive while here it is the μw frequency that gets away from
the DNP optima as we scan through the EPR line. Furthermore, to ensure sufficient sensitivity,
we used the maximum available power and so the hypothesis of weak saturation is likely to be
violated. This could explain why the intensity of the spectrum is distorted. This should cause the
spectrum to be “saturated” and would therefore explain why the spectrum appears broader near
the maximum. However, this would hardly explain why the intensity of the spectrum is lower than
the simulation on the edges. A possible explanation is that spectral diffusion is not fast enough to
communicate the saturation from the edges of the EPR line to the whole, resulting in a distribution
of electron polarization values in the EPR and hence a distribution of R1ρ values. Since the nuclear
polarization decays during the spinlock already have a marked stretched character in the absence
of μw irradiation (β spreads from 0.65 to 1.0 between 3.8 and 1.8 K), it is not clear how the
heterogeneity of the R1ρ would affect the decay curves.

This measurement of an EPR spectrum using nuclear relaxation would highly benefit from the
implementation of programmable fast switching of the μw frequency and power. The nuclear spins
could therefore be polarized at high μw power and the optimal μw frequency to ensure maximum
sensitivity. The frequency would then be switched to the incremented frequency and the μw power
would be lowered to measure the EPR intensity at the incremented frequency ensuring that μw
irradiation can be considered as a linear perturbation.

4.3.3 Comparison of 1H and 13C relaxation as indirect probes

We have used both 1H and 13C relaxation properties as indirect probes of the electron polarization
and used them to measure T1e. The comparison of the measurement shown 4.8B shows that there
is a reasonable agreement between the two measurements, at least to the order of magnitude. The
reported value of Bornet et al. is higher than ours recorded with a very similar method (both
using R1ρ(

1H)) although recorded at a slightly lower magnetic field (6.7 compared to 7.05 T).

What motivated our choice to use 13C relaxation was the following. First, the values of
R1ρ,av(

1H) ranges from ≈ 10 to ≈ 100 ms. This is not negligible compared to the measured
electron T1e which is on the order of 40− 50 ms in our temperature range. Thus, the polarization
of the electron cannot be considered constant during the 1H spin lock and so the measurement
cannot be considered instantaneous, which is a clear disadvantage of this method. To circumvent
this issue, one could use R∗

2(
1H) as an indirect probe for EPR measurements, since the relaxation

time constants are typically on the order of tens of μs, [67] i.e., three orders of magnitude lower
than the electron relaxation time constant that we aim at measuring. In this case, the measure-
ment of the electron polarization would certainly be considered instantaneous on the timescale of
electron spin-lattice relaxation.

However, we believe that the T1e measurements by 1H relaxation properties are likely to be
polluted by another effect, namely nuclear spin diffusion in the vicinity of the electron spin. Indeed,
as will be shown in the next chapter, nuclear spin diffusion is hindered in the vicinity of the electron
and this effect is highly sensitive to the polarization of the electron; at 1.2 K, the polarization of the
electron at Boltzmann equilibrium is ≈ 99.93% and nuclear spin diffusion is strongly hindered. At
lower electron polarization (either under μw irradiation or at a higher temperature), the efficiency
of nuclear spin diffusion increases. In the pulse sequence of Fig. 4.6A, after the μw are gated, not
only the electron spins relax towards Boltzmann equilibrium but the gradient of polarization which
was induced by DNP during tDNP starts equilibrating. The nuclear spins closer to the electron
which do not participate in the NMR signal because they are shifted by the hyperfine interaction
start sharing their polarization with the visible bulk spins. Because this process depends on the



4.4. PERSPECTIVES 113

polarization of the electron, the nuclear magnetization along the z-axis before the spin lock is not
independent of tg and so the decay by R1ρ during the spin lock is not the only process affecting
the final magnetization along the z-axis after the spinlock.

In their data analysis, Bornet et al. accounted for spin diffusion using numerical simulation
by finite element methods. However, they only modeled the nuclear spin diffusion and relaxation
dynamics during the spin lock and not prior to it during tg. Taking this effect into account
would certainly be a very difficult task. To the best of our understanding, the data we have
acquired do not allow us to verify whether this effect is significant or not. We may only affirm
that this effect could potentially bias our analysis. It could explain the surprising increase of T1e

with temperature that we measured using R1ρ(
1H) as an indirect probe (see Fig. 4.8B) and the

higher electron polarization under μw irradiation obtained by R1ρ(
1H) measurements. It could

also possibly explain the deviation from linearity of the relation between R1ρ(
1H) and 1 − P 2

e in
Fig. 4.7B.

In the absence of certitude regarding the strength of this effect, using R∗
2(

13C) seems to be
a reasonable choice. In the pulse sequences of Fig. 4.4, the 1H polarization is transferred to
the 13C spins in a repeatable way which does not depend on the electron polarization during tg.
During the remaining of the pulse sequence (< 1 s), the electron polarization is manipulated by
μw irradiation until it is measured by via 13C spins. During this time, the 13C polarization does
not have time to evolve neither by spin-lattice relaxation nor by spin diffusion because of the low
γ of 13C spins. Furthermore, the longest value of T ∗

2 (
13C) that we measured was ≈ 1 ms, which

is short compared to T1e and so the measurement of the electron polarization can be considered
instantaneous on the timescale of T1e relaxation.

We believe that these arguments make 13C spin-spin relaxation a better-suited reporter for T1e

(as well as Te,sat) processes. However, we note that these limitations should only affect T1e and
Te,sat measurement but not measurements where relaxation (either 13C or 1H) is measured with
the electron polarization at steady state, such as the electron polarization measurements of Sec.
4.2.2 and the EPR spectrum measurement of Sec. 4.3.2.

4.4 Perspectives

We have introduced the use of the 13C spin-spin relaxation rate R2(
13C) as an indirect probe to

measure EPR properties and applied the method for measurements in DNP juice doped with 50
mM TEMPOL. The polarization of electron spins under μw irradiation was measured at 1.2 K as
a function of μw power using R2(

13C). The value under irradiation at the positive DNP optimum
was found to be Pe ≈ 69%± 3% at the maximum available μw power. Using R1ρ(

1H), we found a
higher electron polarization under μw irradiation Pe ≈ 87%±3% at 1.6 K. The electron spin-lattice
relaxation time constant T1e and the characteristic time constant of the electron saturation Te,sat

were measured at 1.2 K using irradiation at the maximum available μw power both at the positive
and negative DNP optima. The T1e using irradiation at the positive optimum was found to be
47± 10 ms, in reasonable agreement with Bornet et al.’s findings at a slightly lower magnetic field
(6.7 T compared with 7.05 T). We found that T1e was ≈ 2 larger than Te,sat both under irradiation
at positive and negative DNP optima. T1e was also measured as a function of temperature using
R1ρ(

1H) using positive DNP. An unexpected trend of T1e increases with temperature was observed
using this method. Finally, a rudimentary EPR spectrum of TEMPOL was recorded indirectly by
measuring R1ρ(

1H) as a function of the μw irradiation frequency.

Since the efficiency of 1H spin diffusion depends on the electron polarization, we speculated that
some indirect EPR measurements (in particular T1e measurements) based on 1H relaxation prop-
erties could be biased by the equilibration of nuclear polarization gradients during gating delays.
We further suggested that this effect possibly could explain the discrepancy between EPR mea-
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surements using 1H and 13C relaxation properties. To confirm this hypothesis, the measurements
should be repeated on the same sample in a single session of experiments. The measurements
should also be compared with the barycenter method, where the electron polarization is revealed
by the shift it causes on the NMR line. We note that measuring T1e using the barycenter method
is considerably faster. The interest of the methods presented here is not only to obtain EPR data
but also to gain insights into the interplay between the electron spin state and NMR properties.
Furthermore, if the barycenter method has been used to measure T1e, it is not obvious whether it
could be used to measure an indirect EPR spectrum.

The method that we have presented could be improved in several ways. First, regarding the
hardware, being able to switch the μw irradiation frequency and power would greatly improve the
sensitivity of the measurements and possibly provide a more repeatable initial state of the nuclear
polarization before probing the electron polarization at different μw irradiation frequencies and
powers. As pointed out in the Perspectives section of Chapter 3 (see Sec. 3.5), this would require
designing a dedicated LabView program receiving TTL pulses from the NMR console to control
the μw source. Second, the method would benefit from clarifying the autocorrelation function
of the electron spin state which should be used to calculate NMR relaxation rates, based on a
more complete theoretical argument. In Sec. 4.1, we only presented an intuitive description of the
mechanisms which could lead to the different prefactors (1 − P 2

μw and 1 − PeqPμw) found in the
literature. Last, the effect of spectral diffusion on the EPR lineshape could be simulated for the
different μw irradiation powers and frequencies. The predicted EPR lineshape could in turn be
used to predict the distribution of R∗

2 or R1ρ values, which would help understand the discrepancy
between the simulated and measured EPR spectrum.

We note that the measurements of Te,sat could be used to estimate the B1 field of the μw in
our experimental setup, which would be of value when simulating the DNP mechanisms operating
in our sample, as proposed in Sec. 3.5. Finally, NMR detected EPR could also be used to measure
the dependence of T1e across the EPR line, which was studied in similar conditions by Weber et
al. [144], provided lower radical concentrations are used (to limit spectral diffusion).



Chapter 5

The Spin Diffusion Barrier

DNP mechanisms describe how the electron spin polarization is transferred to the nuclear spins by
μw irradiation. These mechanisms have a strong 1/r6 dependence on the distance r between the
electron and the nuclear spins. It follows that nuclear spins that are far from an electron spin are
inefficiently polarized by direct DNP. Thanks to nuclear spin diffusion, these nuclear spins may still
be polarized indirectly. In this case, nuclear spins close to an electron spin are polarized by DNP,
and the accrued polarization transfers spontaneously to the rest of the nuclear spins across the
sample via nuclear dipolar interactions or nuclear flip-flops. However, spin diffusion becomes inef-
ficient close to the electron because the field gradient caused by the electron dipolar field strongly
shifts the nuclear spin frequencies. Neighboring nuclear spins with different Larmor frequencies
cannot share polarization by flip-flops because the latter are no longer energy-conservative. Fig.
5.1 gives a schematic representation of the interplay between the efficiency of DNP and spin dif-
fusion as a function of the distance to the closest electron. The radius within which spin diffusion
is quenched is referred to as the spin diffusion barrier. [161, 173, 174, 175, 176]

In this chapter, we first review the evolution of the concept since the introduction of spin
diffusion by Bloembergen in 1949. [161] We focus mainly on how the spin diffusion barrier was
defined by different authors and the methods used to study it, whether experimental or theoretical.
Then, we present the hyperpolarization resurgence experiment (HypRes) and its variants, which
we introduced in 2021 to study spin diffusion in the vicinity of the electron spin and represents
the main contribution of my Ph.D. [68, 177] An overview of the results is given in Sec. 5.1.6.

5.1 The spin diffusion barrier from its origins to today

5.1.1 Bloembergen’s diffusion model and its analytical solutions

The introduction of spin diffusion is older than DNP. It was first proposed in 1949 by Bloembergen
to account for nuclear relaxation in solids containing paramagnetic species, even dilute. [161] Prior
to Bloembergen’s foundational work, the only known mechanism for nuclear relaxation in solids
was through fluctuations of the local magnetic field experienced by nuclei due to lattice vibrations.
Whether the local magnetic field is that of neighboring nuclei or that of a paramagnetic impurity,
in this model, lattice vibrations modulate the distance r and angle θ of dipolar interactions and
hence cause nuclear relaxation. [178] Bloembergen proposed a two-step mechanism to explain
paramagnetic relaxation: first, the nuclei near paramagnetic impurities are relaxed by the fluctua-
tion of the spin state of the impurity (rather than by the fluctuations of the coordinates r and angle
θ); second, spin diffusion spreads the effect to remote nuclei. He introduced an approach where
the nuclear spin system is described as a continuum using a formalism similar to the diffusion of

115
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Figure 5.1: Schematic representation of the efficiency of DNP and spin diffusion as a function of
the distance to the electron r.

heat. In this formalism, the variation of nuclear polarization P along the static magnetic field at
position r and time t is

∂

∂t
P (r, t) = D∇2P (r, t)− C (P (r, t)− Peq)

∑
i

|r − ri|−6 − 2AP (r, t), (5.1)

where D, Peq, ri and A are the nuclear spin diffusion coefficient, the nuclear Boltzmann polariza-
tion, the position of the paramagnetic impurity, and a constant related to saturation of nuclear
spins by an rf field, respectively. C is a constant related to the dipole-dipole coupling between the
nuclei I and the paramagnetic impurities S. Neglecting the angular dependence of the hyperfine
interaction, C is given in the case of spin 1/2 nuclei by [109]

C =
3

10

μ0

4π
�
2γ2

Iγ
2
S

τc
1 + (τcωI)2

, (5.2)

where τc is the correlation time of the electron spin state along the static magnetic field (see Eq.
2.159 for more details). The spin diffusion coefficientD was estimated based on the linewidth of the
NMR signal assuming that the width of the signal was dominated by nuclear dipolar interactions,
yielding1

D ≈ r2a
50T2

(5.3)

where T2 and ra are the nuclear spin-spin relaxation time constant estimated from the width of
the NMR line and the internuclear distance, respectively. Importantly, Bloembergen recognized
that nuclear spins in the nearest vicinity of the electron (i.e., for small values of r) represented a
special case; he stated that when the field generated by the electron spin was larger than that of
the neighboring nuclear spins, spin diffusion was hindered. He called the radius within which this
criterion is met, the “critical radius” rb. The diffusion coefficient may therefore be written more
precisely as

1Note that authors following Bloembergen use a factor of 30 instead of 50 (e.g., Ref [174]). Surprisingly, the
authors quote Bloembergen’s calculation and use a different numeric value without explaining why.
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D(r) ≈
{ r2a

50T2
if r > rb

0 if r < rb,

(5.4)

In the simpler case where only a single paramagnetic impurity is considered and in the absence
of an rf field, the diffusion equation reduces to

∂

∂t
P (r, t) = D∇2P (r, t)− C

r6
(P (r, t)− P0) , (5.5)

where r is the distance to the electron. The first member of the equation represents the energy
conservative diffusion of nuclear polarization throughout the sample while the second term rep-
resents the relaxation of nuclear polarization towards Boltzmann equilibrium, mediated by the
fluctuation of the electron spin state, i.e., paramagnetic relaxation. Bloembergen used this equa-
tion to model saturation recovery at liquid helium temperature. At higher temperatures, it was
not possible to record the saturation recovery with sufficient time resolution and so he used an
opposite strategy based on the interplay between simultaneous saturation and relaxation. This is
why Eq. 5.1 contains a term related to saturation by rf irradiation.

To model experimental results, the polarization P (r, t) was numerically predicted by Eq. 5.1
or 5.5. Then, P (r, t) was integrated at each point of time t over a reasonable range of values r,
yielding a signal as a function of time

S(t) ∝
∫ rmax

rmin

P (r, t)4πr2dr (5.6)

Assuming a homogeneous distribution of electron spins in the sample, rmax may be chosen as
the radius of mean volume per electron spin

RMV =

(
3

4πNAC

)1/3

, (5.7)

where NA and C are Avogadro’s number and the concentration of electron spins in mol.m−3,
respectively. As for rmin, one might be tempted to simply set it to 0 (i.e., at the location of the
electron spin). However, nuclear spins near the electron are strongly shifted and so they do not
contribute to the NMR signal. Bloembergen chose rmin = rb, assuming in first approximation
that the radius of nucleus for which diffusion was hindered coincided with those which did not
contribute to the NMR signal.

Bloembergen applied this model to a range of different crystals with different orientations with
respect to the magnetic field, at different radical concentrations and from 1.2 K to room temper-
ature. He obtained an order of magnitude agreement between the model and the experiment over
these very broad experimental conditions. His paper [161] laid the foundations for decades of work
on spin diffusion and paramagnetic relaxation.

In 1958, De Gennes gave an explicit analytical solution to Bloembergen’s diffusion equation (see
Eq. 5.5) and studied in particular the behavior of the nuclear spins close to an electron spin. [179]
Based on his solution, he found that when the distribution of nuclear polarization is perturbed by
rf irradiation, nuclear polarization returns to equilibrium in two phases. First, it equilibrates along
the distance to the electron spin r. During this phase, the observed signal is non-exponential and
has a t1/2 dependence. This transient phase is followed by a slower return of the whole system to
equilibrium which follows an exponential law
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P (t) = P (∞)

(
1− exp

(
− t

T1

))
, (5.8)

where P (∞) and T1 are the polarization for t → ∞ and the bulk longitudinal relaxation time
constant, respectively. The weaker spin diffusion, the longer the first phase. In extreme cases of
no diffusion and free diffusion, the second and first phases are absent, respectively.

De Gennes found the relaxation time constant for the second phase [179]

1

T1
= 4πNρD ≈ 8.5NC1/4D3/4, (5.9)

where N and ρ are the concentration of electronic spins in m−3 and a characteristic length param-
eter

ρ ≈ 0.68

(
C

D

)1/4

, (5.10)

respectively.
To derive his solutions to the diffusion equation, De Gennes used the hypothesis rb � ρ �

RMV . Furthermore, he derived his analytical solution considering that the diffusion coefficient
was constant even for r < rb, contrary to Bloembergen’s approach (see Eq. 5.4, [161]). Note
that Blumberg [173] mentions that Khutsishvili [180] obtained a similar result as De Gennes’ [179]
independently. However, to the best of my knowledge, this paper [180] is not accessible online.

5.1.2 The definitions of the spin diffusion barrier

Based on Khustishvili’s solution [180], Blumberg then presented an extension of the solution to
the case rb > ρ, which corresponds to the situation where “nuclear Zeeman energy can diffuse to
the paramagnetic ion faster than the paramagnetic ion can transmit it to the lattice” [173] i.e.
rapid spin diffusion. On the contrary, De Gennes’ solution was only valid in the diffusion-limited
case. Fig. 5.2 shows a schematic representation of the two cases. He tested his model on a sample
with dense nuclear spins and found a good agreement between the model and the experimental
data. [173] In this paper, Blumberg introduced the term spin diffusion barrier for the length rb
and gave it a more precise definition than Bloembergen

rb =

{
ra

(
μS

μI

)1/3

if τc � T2

ra

(
μSB0

kBT
μS

μI

)1/3

if τc � T2,

(5.11)

where μS , μI , τc and T2 are the magnetic moments of the electron and nuclear spins, the correlation
time of the electron and the nuclear spin-spin relaxation time, respectively. In this definition, rb
corresponds to the radius at which the hyperfine interaction is equal to the dipolar interaction
between the nuclei. In the case where the correlation of the electron spin state τc is short compared
to the nuclear T2 (τc � T2), the nuclei experience an averaged hyperfine interaction, which reduces
the length of the diffusion barrier. As Bloembergen, Blumberg considered that the nuclei for which
spin diffusion was hindered matched those which did not contribute to the NMR signal.

In 1962, Khutsishvili improved his solution to the diffusion equation by taking into account the
restricted diffusion for r < rb with a diffusion coefficient of the form of Eq. 5.4. [174] Furthermore,
he proposed a new definition of the diffusion barrier; in his definition, the limit is set where the
nuclear dipolar interaction matches the difference in hyperfine interaction (and not the hyperfine
interaction itself), leading to
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Figure 5.2: Schematic representation of rapid spin diffusion (A) vs diffusion-limited (B)

rb =

{
ra

(
μS

μI

)1/4

if τc � T2

ra

(
μSB0

kBT
μS

μI

)1/4

if τc � T2,

(5.12)

which corresponds to a shorter length compared to Blumberg’s definition (see Eq. 5.11). Khut-
sishvili’s model proved to be in reasonable agreement with most of the reported data at the time. In
his paper, Khutsishvili mentions that the Heaviside-type function ofD(r) is a coarse approximation
(see Eq. 5.4) and suggests that a function of the type [174]

D(r) = D(∞) exp (−cr−8), (5.13)

where c is a constant, is to be expected. However, obtaining an analytical solution to the diffusion
equation with such a function is impossible, according to Khutsishvili.

Goldman used Khutsishvili’s model to study 1H relaxation in a single crystal of paradibro-
mobenzene between 2.7 and 4.2 K at low-field (between 0 and 14 mT) as well as at higher tem-
peratures (100 and 300 K). [181] The paramagnetic species present in the sample were unknown
impurities. Despite the absence of knowledge on the types of impurities and their concentration,
Goldman’s measurements confirmed the validity of Khutsishvili’s model, in particular the magnetic
field dependence at low temperature. Contrary to Khutsishvili’s conjecture of a smooth barrier
(see Eq. 5.13), Goldman concluded that the barrier must be steep, according to his measurements.

Leifson and Jeffries were the first to consider the role of spin diffusion in the context of DNP.
[147, 13, 148] Contrary to Khutsishvili’s complex model, they introduced in 1961 a much more
simplistic model of “spheres-of-influence”. [147] The latter consists of estimating the bulk nuclear
T1 as the weighted average of the direct T dir

1 rather than solving the diffusion equation. The au-
thors state that this approximation is valid in the case of rapid diffusion. In parallel, Khutsishvili
extended his model of Ref. [174] to include DNP under SE conditions. [182] Essentially, this
extension consists of including an additional term with a r−6 dependence into the diffusion equa-
tion. This term represents the DNP pumping and brings the polarization away from Boltzmann’s
equilibrium. However, this modification does not affect the description of spin diffusion. A notable
difference between the nuclear diffusion dynamics under DNP as compared with at thermal equi-
librium is the change in electron spin dynamics under μw irradiation. As pointed out by Leifson
and Jeffries, [147] this is likely to affect the radius of the spin diffusion barrier.

The calculation of the radius of diffusion barrier rb and hence of the bulk T1 was refined by
describing in more detail the dynamics of the electron spin. Rorschach proposed the following
definition of the spins diffusion barrier [175]
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rb = ra

(
3
〈μS〉
μI

)1/4

. (5.14)

Like in Khutsishvili’s definition (see Eq. 5.12), the limit is set where the difference in Larmor
frequency of the nuclei equalizes their mutual dipolar interaction. The factor 3 appears because
Rorschach explicitly calculated the derivative of the hyperfine interaction (which has a r−3 de-
pendence), while Khutsishvili expressed the radius more coarsely, dropping numeric factors. The
important difference with Khutsishvili’s definition is how the averaging of the electron magnetic
moment is calculated. Instead of simply assuming that the nuclei see an averaged field propor-
tional to the polarization of the electron, Rorschach calculated the field experienced by the nuclei
by integrating the spectral density of the electron spin state around 0

〈μS〉2 =
1

2π

∫ +2π/T2

−2π/T2

J(ω)dω, (5.15)

where T2 and J(ω) are the nuclear spin-spin relaxation time and the spectral density function of
the z-component of the electron magnetic moment, respectively, with

J(ω) = (μ̄S)
22πδ(ω) +

(
μ2
S − (μ̄S)

2
) 2τc
1 + ω2τ2c

, (5.16)

where δ(ω) is the Dirac delta-function. Rorschach then expressed (μ̄S)
2 and μ2

S − (μ̄S)
2 in terms

of Brillouin’s function. This spectral density function contains a static and a dynamic component
(first and second terms, respectively). Rorschach’s work mainly consisted of calculating the field
of the electron experienced by nuclei using the static component of Eq. 5.16. His definition of the
diffusion barrier has the advantage of covering the intermediate regime where τc is on the order
of T2. Furthermore, it treats the electron dynamics with more precision in the case where the
electron polarization goes to unity, i.e., for low temperatures and high magnetic fields.

Rorschach’s definition was later used by Lowe and Tse. [183] Contrary to preceding authors,
they made the distinction between nuclear spins for which diffusion is quenched and those that do
not contribute to the NMR signal. For the former, they used Rorschach’s definition of the spin
diffusion barrier (see Eq. 5.14) while for the latter, they used Blumberg’s definition (see Eq. 5.11).
They also treated the case where electron-electron couplings could not be neglected. [183, 184, 185]
This case became more important in the seventies, after TM-DNP became popular. [15] Several
authors then used the concept of electron NZ reservoir to describe electron dynamics with spin
temperatures and statistical tools. [186, 187, 188]

In recent years, Hovav et al.’s proposed a definition of the spin diffusion barrier which includes
the pseudo-secular contribution. [189, 190, 69] Furthermore, it includes an arbitrary parameter ζ
that determines to which extent diffusion has to be quenched, for nuclear spins to be considered
within the barrier. According to their definition, nuclear spins with Larmor frequency ωn are
within the barrier if they satisfy the following criterion

ζ|Di,j/2| < 1

2

(
|Azz,i −Azz,j |+ 1

8ωn

∣∣∣|A±,i|2 − |A±,j |2
∣∣∣) , (5.17)

where Azz,i, Azz,j , A±,i, A±j and Di,j are the secular and pseudo-secular hyperfine interaction
constants of nuclear spin i and j and their mutual dipolar coupling constant, respectively. Hovav
et al. proposed this definition mainly for visualization purposes rather than using it in simulation.
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5.1.3 “Leaks” in the barrier

Already during the sixties, it was found in several experimental studies that the diffusion barrier
radii predicted by Khutsishvili and Rorschach’s definitions were too large to account for experimen-
tal observations. Based on their 1H DNP experiments on the hydration water in neodymium-doped
lanthanum magnesium nitrate, Ramakrishna and Robinson estimated the diffusion barrier radius
to be rb ≈ 7− 8 Å while Khutsishvili’s definition predicted 9 Å. [191, 192] They based their anal-
ysis on an innovative approach consisting of creating a gradient of nuclear polarization along the
distance to the paramagnetic ion by performing negative and subsequently positive DNP. Tse and
Lowe also found a spin diffusion barrier radius twice as small as that predicted by Rorschach’s
definition (see Eq. 5.14) in their experiments on crystalline CaF2. [193]

In 1971, Horvitz proposed a mechanism that could explain spin diffusion in the vicinity of
the electron spin by considering the influence of the dynamic component of the electron spin in
Eq. 5.16. [108] If the static component hinders spin diffusion, Horvitz showed that the dynamic
component acts as a drive for spin diffusion even within the spin diffusion barrier. We have already
mentioned this dynamic component in Sec. 2.3.4 (see Eq. 2.150) and in Chapter 4. We showed
that it gave rise to a 1 − P 2

e dependence of paramagnetic relaxation rates (with Pe being the
electron polarization). In the example of T1 relaxation, the fluctuations of the electron spin state
drive the transition between the |α〉 and |β〉 states; in the context of spin diffusion, the fluctuations
of the electron spin state drive the transition between the non-degenerate |αβ〉 and |βα〉 states.
Because the amplitude of these fluctuations is proportional to 1−P 2

e , this spin diffusion mechanism
is quenched when the electron polarization goes to unity, which leads to slower spin diffusion at
lower temperatures and higher magnetic fields.

As Khutsishvili could not solve the diffusion equation for a non-constant diffusion coefficient,
[174] Horvitz mentioned that his findings should be taken into account in diffusion models but he
did not calculate the resulting T1. [108] However, he computed the diffusion coefficient obtained
with his model for several experimental cases reported by other authors and compared it with the
reported diffusion coefficient. He found that, in many cases, the diffusion coefficient was stronger
within the diffusion barrier than outside. This mechanism was later investigated in several studies
and compared with experimental results. [194, 195, 196] Surprisingly, Horvitz’s work received little
attention and the following theoretical studies received even less.

Experimental or theoretical, these studies tended to show more and more that the concept of
a rigid diffusion barrier was probably not a satisfactory picture.

So far, all the studies we have mentioned approached the spin diffusion barrier as a theoretical
concept used to construct a diffusion model, except for Ramakrishna and Robinson’s experiment
which used an extra experimental manipulation, namely the creation of a nuclear polarization
gradient [191, 192]. The main way this theoretical concept could be confronted with experiments
was by predicting bulk T1 values using the diffusion model and comparing it with measured values.
At best, the theoretical and experimental T1 were compared over a range of experimental conditions
(paramagnetic species concentration, nuclear spin density, temperature, magnetic field) so that
the trends predicted by theory could be confronted to experiment trends, rather than comparing
a single T1 value. However, diffusion models require a large number of input variables (τc, T2, rb,
ra, N), and their solutions are obtained at the cost of simplifications, which make the verification
of the models difficult.

A one-of-a-kind experiment was proposed by Wolfe in 1973, giving the first direct experimental
evidence of the spin diffusion barrier. [197] Wolfe’s experiments were performed on a single crystal
of ytterbium-doped yttrium ethyl sulfate at 1.62 T and between 1.4 and 4.0 K. He had previously
shown that the 1H resonances of the lattice positions nearest to the electron could be resolved
individually, owing to their strong hyperfine interaction of up to ≈ 2 MHz. [198] In his 1973
Letter, he showed with a very simple experiment that 1H spins located as close as 3 Å to the
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electron were still able to exchange polarization with bulk spins on a time scale much shorter than
the bulk T1. On the contrary, 1H spins at 5.2 and 6.2 Å from the electron had larger hyperfine
interactions than those at 3 Å (due to the anisotropy of the interaction) and were isolated from
bulk spins. This result was in stark contradiction with common definitions of the spin diffusion
barrier (see Eq. 5.11, 5.12 and 5.14), which predicted a radius of the diffusion barrier on the
order of rb ≈ 12 Å. Wolfe was also able to show that the rate at which 1H spins near the electron
spin exchanged polarization with the bulk spins exhibited a 1 − P 2

e dependence on the electron
polarization Pe. In that, Wolfe’s work gave strong evidence in favor of the mechanism proposed
by Horvitz.

Wolfe proposed an “operational definition [of the diffusion barrier] that a spin is inside the
barrier if it is in stronger thermal contact with the lattice phonons than with the bulk spins” and
he found that the only spins meeting this criterion were located at r = 5.2 and 6.2 Å from the
electron. [197] This definition of the diffusion barrier differs from all those mentioned previously
in that it is defined based on the output of an experiment rather than on theoretical arguments.

5.1.4 Experimental and theoretical approaches in modern DNP

In the past few years, several experimental pieces of evidence of efficient nuclear spin diffusion
in the vicinity of electron spins have been reported. In 2019, Tan et al. showed that 1H spins
at < 6 Å of a trityl radical in DNP juice were able to exchange polarization with bulk spins
using selective deuteration of the polarizing agent and the three-spin SE in DNP experiments
at 100 K and 0.3 T. [199] Pagliero et al. reported similar findings in the field of color centers in
diamonds used for 13C hyperpolarization. They showed that nuclear spin diffusion was possible for
13C spins with coupling constants to paramagnetic centers of no less than 100 MHz. Furthermore,
they proposed a mechanism to account for this peculiar diffusion process. [200] Jain et al. used
synthetic chemistry to precisely control the distance between the closest 1H spin to a V4+ center
acting as polarizing agent at 6.9 T and 4 K. They could show that spins at 4.0 Å could not share
polarization with bulk spins while those at 6.6 Å could. Using Wolfe’s terminology, this implies
that the spin diffusion barrier must be between 4.0 and 6.6 Å in their conditions. [201] In 2021
and 2022, we proposed the HypRes experiment, [68, 177] which will be presented in more detail in
Sec. 5.1.6. Similarly to Ramakrishna and Robinson’s, [191, 192] our approach consists of creating
a gradient of polarization between the nuclear spins near the electron and those further away and
monitoring the polarization flow from the former to the latter in a time-resolved fashion. We
applied our method to DNP on glassy matrices at 7.05 T between 1.2 and 4.2 K in static mode
and at 14.0 and 100 K under MAS. Our measurement showed that 1H spins as close as 3 Å to
the radicals were able to exchange polarization with bulk spins and gave experimental evidence
of a gradient of the diffusion rate along the distance to the electron. [68] In a second study, we
showed experimentally and in theory the strong influence of electron polarization on nuclear spin
diffusion, [177] in agreement with Wolfe [197] and Horvitz. [108] Finally, Wili et al. used short
steps of pulsed DNP to polarize 1H spins in DNP juice in the near vicinity of a trityl radical at 1.2
T and at 50 or 80 K, followed by reverse DNP to read out the remaining nuclear polarization by
EPR. [202] By varying the delay between the DNP and reverse DNP steps, they could monitor the
leakage of polarization from the spins near the electron to those further away. Their study showed
a minor increase in spin diffusion going from 50 to 80 K but a drastic increase upon changing
the solvent from deuterated to protonated. Their results also confirmed the influence of electron
dynamics on spin diffusion. [108, 197, 177]

In parallel to these experimental approaches, modern computational tools have been used
by several groups to simulate DNP dynamics including the effect of spin diffusion and the spin
diffusion barrier both in static mode and under DNP. Hovav et al. [189, 190, 69] and Karabanov
et al. [71, 203, 72] simulated DNP dynamics in static mode in many-spin systems using full-
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quantum simulation. In these studies, the slowdown of nuclear polarization transfer in the vicinity
of the electron is a direct consequence of how the interactions of the system are modeled; the spin
diffusion barrier does not enter the model as a hypothesis, as in Blumberg or Khustishvili’s early
works. [173, 174]

Full quantum mechanical descriptions were also used in a number of studies of MAS-DNP
by Perras et al. [141, 142, 143] and by Mentink-Vigier et al. [135, 140, 136] By including the
hyperfine interaction or not in the simulations, Perras et al studied to which extent hindered
spin diffusion in the vicinity of the electron limited to the DNP enhancement. [142] They also
found that polarizing agents with a high local 1H concentration around the electron spins (such
as TEKpol with its phenyl-cyclohexyl substituents around the nitroxide radical) provided a path
for nuclear spin diffusion from nuclear spins very near the electron to bulk spins. These studies
also highlighted a spin diffusion mechanism that is specific to MAS, where the modulation of the
hyperfine interactions by the MAS enables polarization transfers among nuclear spins near the
electron spin. [135] This mechanism can be explained in terms of so-called avoided crossings and
the transfer probability can be calculated conveniently using Landau-Zener formula [204] (avoided
crossings and Landau-Zener transitions will be treated in detail in Sec. 6.2)

In an alternative approach, two studies used rate equations to describe transfers and relaxation
within a large number of individual spins, in both static and MAS-DNP. [205, 206] Smith et al.
used this approach to understand the polarization pathways in static SE-DNP of 1H spins at 80 K
and 5 T and concluded that polarization transport from the electron directly to bulk nuclei is more
efficient than through the intermediate core nuclei. [205] In the second study, Wittmann et al.
used the same approach to simulate the build-up curves of 13C MAS-DNP on endohedral fullerene
N@C60. They gave a mechanistic account of how polarization could efficiently be transferred from
the core to bulk spins in this context, [206] based on the modulation of the hyperfine interaction
by MAS. [135] Last, a recent study used a model based on diffusion laws reminiscent of earlier
works but in the context of MAS-DNP. [207] This approach gave a phenomenological picture of the
dependence of polarization transfer in the vicinity of the electron on the concentration of nuclear
spins.

In summary, in the early days of the theory of spin diffusion, the main approach to study
this process was by building models based on diffusion equations to predict bulk T1 values and
compare them with experimental values. The spin diffusion barrier was defined as the maximum
distance where the hyperfine interaction truncates the dipolar Hamiltonian and prevents efficient
spin diffusion. Several mathematical formulations were proposed (see Sec. 5.1.2). A first shift
came with Horvitz who showed that spin diffusion could be driven by the fluctuations of the
electron spin state, even within the spin diffusion barrier (as defined by the previous authors).
A second shift came with Wolfe’s experimental approach which showed that spin diffusion was
efficient much closer to the electron than predicted by preceding definitions of the spin diffusion
barrier. He proposed a new definition of the barrier as an experimental observable rather than as
a theoretical concept.

In modern DNP, new experimental approaches were devised to assess the size of the barrier
or more generally to study spin diffusion in the vicinity of the electron spin. In addition, modern
computational tools have enabled spin dynamical simulations of systems including thousands of
spins, whether in static mode or under MAS. These theoretical models have led to new insights
into the mechanisms enabling spin diffusion near the electron spin.

5.1.5 The spin diffusion barrier in modern samples

While most DNP experiments in the sixties were performed on oriented crystals, [147, 13, 148, 191],
modern DNP usually uses amorphous samples such as frozen solutions. [21, 25] This poses a
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problem for the estimation of the radius of the diffusion barrier using the definitions presented in
Sec. 5.1.2. Indeed, they are based on the internuclear distance ra. If this parameter is well-defined
in a crystal, it takes a distribution of values in a glassy matrix. Here, we try to estimate the
internuclear distance to deduce the size of the barrier according to the different definitions for a
sample of DNP juice doped with 50 mM TEMPOL. We propose to use the radius of mean volume
per spin rMV (see Eq. 5.7) to estimate the distance between neighboring spins as [68]

ra = 2 rMV. (5.18)

In Ref. [147, 13, 148], this distance is used to estimate the distance between neighbors among
randomly distributed electrons; here, we use it to estimate the distance between neighbors among
randomly distributed 1H in DNP juice (only in the solvent and not among the 1H of the radical
molecule itself).

It was suggested to us to use the average closest neighbor instead, which is given by [150]

rmin = Γ

(
4

3

)(
3

4πNAC

)1/3

≈ 0.89 rMV ≈ 0.45 ra, (5.19)

where Γ is the gamma-function. This distance is shorter than half ra. We believe that the average
closest neighbor is not the best-suited choice because the closest neighbor can be found in any
direction around a spin. Yet, only neighbors in specific directions are relevant to spin diffusion,
namely those which are further away from the electron. If the closest neighbor is found at rmin

from a spin on average, the closest neighbor in the relevant direction is certainly found at a longer
distance, on average. In an attempt to account for this, we use the double of the radius of mean
volume, as in the model of the spheres of influence. [147, 13, 148] Using this estimate, we find that
the distance between neighbors in DNP juice (C(1H) ≈ 11 mol.L−3) is ra ≈ 6.6 Å.

Based on this estimate of ra, Fig. 5.3 shows a visual representation of the diffusion barriers
according to Blumberg, Khutsishvili and Hovav et al.’s definitions (see Eq. 5.11, 5.12 and 5.17,
respectively) for DNP juice doped with 50 mM TEMPOL in red. They correspond to the case
of high electron polarization (for example when the electron spins are at thermal equilibrium at
1.2 K and 7.05 T). For Hovav et al.’s definition, the hyperfine and dipolar coupling constants are
orientation-dependent and so they had to be averaged over all orientations using

Qav =

√∫ π

0
dθ|Q(θ)|2 sin θ∫ π

0
dθ sin θ

, (5.20)

where |Q(θ)| is the norm of the quantity Q which depends on angle θ, to yield a diffusion barrier
expressed as a single radius.

The radii of the diffusion barrier in Fig. 5.3 are compared with the mean volume per electron
rMV(e

−), represented in blue, which can be seen as the limits of the system. For all three definitions,
the spin diffusion barrier is larger than the mean volume per electron. In other words, there should
be no spin diffusion among the solvent 1H spins. We ought to point out that these predictions are
only rough estimates, which assume that spins are statistically distributed in space. The resulting
radii of the diffusion barriers are representative of diffusion among solvent 1H and not among the
protons of the radical itself, where the local density of 1H spins is higher.

5.1.6 HypRes, a new tool to study the diffusion barrier

In the first year of my Ph.D., we once noticed that it was not easy to saturate the signal of
1H spins in DNP juice so as to obtain a spectrum of pure flat noise; a tiny signal would always
remain. My supervisor argued that this persistent signal could arise from polarization within the
diffusion barrier which was not affected by the saturation pulses, due to their limited bandwidth;
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Figure 5.3: Representation of the spin diffusion barrier rb for the solvent 1H spins in DNP juice
doped with 50 mM TEMPOL according to Blumberg, [173] Khutsishvili, [174] and Hovav et al.
[190, 69] (see Eq. 5.11, 5.12 and 5.17, respectively) represented as red spheres compared with the
mean volume per electron spin rMV(e

−) represented as a blue sphere. The black sphere represents
the electron. Adapted from Ref. [68] according to the terms of the Creative Commons Attribution-
NonCommercial 4.0 International Public License.

this hidden polarization was able to resurge out from inside the diffusion barrier to the bulk spins.
This observation gave me the idea to perform a simple experiment where we would polarize the
spins until they reached the DNP plateau and then, after a short train of saturation pulses, observe
the return of polarization to Boltzmann equilibrium without μw irradiation. What I expected to
see was an overshoot of polarization with the same sign as the polarization acquired under DNP
followed by the return from this transient state towards Boltzmann equilibrium. That is what
happened indeed and we dubbed this method the HypRes experiment.

Fig. 5.4 shows a typical measurement of HypRes curve on DNP juice doped with 50 mM TEM-
POL at 7.05 T and 3.8 K. The 1H spins are first polarized during a delay which is long compared
to the DNP build-up time constant TDNP. Then, μw irradiation is gated and, after delay τg, the
polarization of the visible spins is saturated with a train of m π/2 pulses. A standard saturation re-
covery experiment (i.e., with no DNP prior to recording the curve) is shown for comparison. In the
standard saturation recovery, the polarization starts at 0 and rises monotonically to Peq = 0.19%.
In the HypRes experiments, the polarization acquired during DNP resurges from the hidden spins,
i.e., those inaccessible to direct NMR detection, to the visible spins causing a strong polarization
overshoot. Importantly, when the maximum of the polarization overshoot is reached, the standard
saturation experiment has just started rising, indicating that the diffusion process monitored by
the HypRes experiment is faster than bulk relaxation towards Boltzmann equilibrium.

In the remainder of this chapter, we first present the results that were published in Ref. [68].
We show HypRes measurements on DNP juice doped with 50 mM TEMPOL as a function of
temperature fitted with a simple two-reservoir model, giving access to an estimate of the tem-
perature dependence of the polarization transfer between hidden and visible spins. We present
unpublished data of HypRes experiments on 13C DNP in [1-13C]-pyruvic acid doped with 25 mM
trityl, displaying a strong temperature dependence, as in the 1H case. We give an example of
HypRes experiment under MAS-DNP. Coming back to static DNP, we extend the possibilities of
the HypRes experiment by the introduction of broadband adiabatic inversion pulses; we use these
pulses to manipulate the spins within the hidden reservoir to get access to further information on
spin diffusion within the hidden reservoir (these results are also published in Ref. [68]). Finally,
we present the μw on-HypRes experiment where μw irradiation is turned back on during detec-
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Figure 5.4: HypRes pulse sequence and typical results at 3.8 K and 7.05 T in DNP juice with 50
mM TEMPOL. The two curves with positive and negative DNP prior to HypRes measurements
are compared with a standard saturation recovery experiment where no DNP was performed prior
to recording the curve. Adapted from Ref. [68] according to the terms of the Creative Commons
Attribution-NonCommercial 4.0 International Public License.

tion in order to monitor spin diffusion at a controlled electron polarization. The role of electron
polarization on spin diffusion is rationalized using a 2 nucleus-1 electron model similar to that of
Horvitz. We find that nuclear spin diffusion strongly depends on the level of electron polarization,
which explains the strong temperature dependence observed both for 1H and 13C μw off-HypRes
experiments. These results are presented in a preprint deposited on Arxiv [177].

Fig. 5.5 shows pulse sequence diagrams and typical results for the three experiments: HypRes,
HypRes with inversion, and μw on-HypRes.

5.2 μw off-HypRes without inversion

In the section, we present results of the μw off-HypRes experiment in DNP juice doped with 50
mM TEMPOL under static DNP between 1.2 and 4.2 K. [68] Rather than referring to bulk and
core spins, we refer to visible and hidden spins, corresponding to spins which are and are not
accessible to NMR detection, respectively, depending on the strength of their paramagnetic shift.
We choose this terminology to avoid ambiguity but we note that the core spins – if any – are a
subset of the hidden spins. The visible and hidden spin reservoirs have average polarization Pv

and Ph, respectively.

The detailed steps of the HypRes experiment are the following:

1. Full saturation. The polarization of the nuclear spins is wiped out so that the experiment
starts in known conditions by a series of hard rf pulses

2. Prepolarization. μw are turned on during a delay set to be at least five times the 1H DNP
build-up time constant so that, when the μw are gated, the sample is assumed to have reached
DNP equilibrium with a spatially homogeneous polarization Pmax

DNP.
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Figure 5.5: A-C. Pulse sequence diagrams of HypRes experiments. D-E. Typical results of ex-
periments of Panels B and C, respectively, on DNP juice doped with 50 mM TEMPOL. The faint
lines are the results of experiments of Panel A on the same sample and in the same conditions,
shown for comparison.

3. Visible spins saturation. The NMR signal is saturated using a train of hard rf pulses.
Since the saturation pulses have limited bandwidth, the spins that experience a strong hy-
perfine shift due to a nearby paramagnetic center are not affected. The saturation scheme
is optimized to be efficient for the visible nuclear spin with the polarization of the visible
spins Pv ≈ 0, while remaining as short as possible in order to leave the hidden nuclear spins
unaffected with Ph = (1–ηsat)P

max
DNP where ηsat is an attenuation factor ideally close to 0.
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The saturation block is terminated by a delay to accommodate acoustic ringing and allow
remaining transverse magnetization to dephase before detection. At this point, the proton
spin system has polarization values Pv ≈ 0 and Ph = (1–ηsat)P

max
DNP.

4. Resurgence monitoring. The hyperpolarization resurgence is monitored for the visible
spin reservoir by NMR acquisition blocks separated by time delays.

5. Decay monitoring. The return to thermal equilibrium is monitored.

5.2.1 Two-reservoir model

Amodel is used to interpret the data assuming that the visible and hidden spins behave as reservoirs
exchanging polarization at flow rate Rf and that each reservoir returns to thermal equilibrium with
respective intrinsic relaxation rates, R1,v and R1,h, which is reminiscent of typical spin temperature
models. [3] Fig. 5.6 shows a schematic representation of the model. The underlying assumption
is that diffusion within the reservoirs is fast with respect to the flow between them which allows
the polarization to be considered as “instantly” uniform inside each reservoir. This assumption is
reasonable within the bulk. But, of course, diffusion is expected to be hindered within the hidden
reservoir by the presence of the electron. This simplification is a tradeoff to describe the system
with a simple model in first approximation. It is also assumed that no other reservoirs significantly
influence the proton spin system. In particular, it is assumed and later verified, that the deuterium
nuclei present within the sample are not responsible for the observed effect.

Rf

R1,v  0

R1,h

Hidden spins

Visible spins

Figure 5.6: Schematic representation of the model used to analyze HypRes results. The relaxation
rate constant of the visible spins R1,v is assumed to be negligible. Polarization flows between the
visible and hidden reservoirs at flow rate Rf , while the hidden spins relax to thermal equilibrium
at rate R1,h. Adapted from Ref. [68] according to the terms of the Creative Commons Attribution-
NonCommercial 4.0 International Public License.

Under the assumptions above, the evolution of the polarizations in the visible and hidden
reservoir, Pv(t) and Ph(t), is given by the following differential equation

d

dt

⎛
⎜⎜⎝Pv

Ph

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝−χhRf −R1,v χhRf

(1− χh)Rf −(1− χh)Rf −R1,h

⎞
⎟⎟⎠
⎛
⎜⎜⎝Pv

Ph

⎞
⎟⎟⎠+ Peq

⎛
⎜⎜⎝R1,v

R1,h

⎞
⎟⎟⎠ , (5.21)

where χh is the fraction of the nuclear spins in the hidden reservoir and Peq is the nuclear polar-
ization at Boltzmann equilibrium. The derivation of the model is given in Supplementary Material
of Ref [68]. The solution to this differential equation is
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⎛
⎜⎜⎝Pv

Ph

⎞
⎟⎟⎠ = Peq − αV−e−λ−t − βV+e

−λ+t, (5.22)

with the eigenvalues λ+ and λ− and eigenvectors V+ and V− given by

λ± =
−Rf −R1,h −R1,v ±

√
(Rf +R1,h −R1,v)2 + 4χhRf (R1,v −R1,h)

2
(5.23)

and

V± =

⎛
⎜⎜⎝1 +

R1,h+λ±
Rf (1−χh)

1

⎞
⎟⎟⎠ , (5.24)

respectively. The coefficients α and β depend on the initial conditions and are given by

α =
(λ++R1,h)(Peq−P 0

h)+(1−χh)Rf (P
0
v−P 0

h)
λ+−λ−

β =
(λ−+R1,h)(Peq−P 0

h)+(1−χh)Rf (P
0
v−P 0

h)
λ−−λ+

,

where P 0
v and P 0

h are the polarizations of the visible and hidden reservoirs at t = 0, respectively,
which corresponds to the beginning of NMR signal detection. Since the visible reservoir is sat-
urated, we have P 0

v = 0. Since the polarization is assumed to be homogeneous throughout each
reservoir at t = 0, the polarization of the hidden reservoir is equal to the polarization at the
DNP equilibrium, that is, P 0

h = Pmax
DNP. The eigenvalues λ+ and λ− determine the two relevant

time scales predicted by the model. −λ− corresponds to the rate at which the two reservoirs
equilibrate with each other while −λ+ corresponds to the rate at which their polarizations return
toward Boltzmann equilibrium, after equilibration. This rate thus corresponds to the longitudinal
relaxation rate constant R1, and so we write

R1 = −λ+. (5.25)

In our conditions, we approximate that the intrinsic relaxation rate constant of the bulk spins
R1,v is 0, that is, the visible spins only reach Boltzmann equilibrium through spin diffusion towards
the hidden spins which are efficiently relaxed by the nearby electrons. In the data set presented
below, the curves obtained in the HypRes experiment are expressed in terms of polarization excess
with respect to thermal equilibrium, the thermal build-up must therefore be subtracted yielding

⎛
⎜⎜⎝Ev

Eh

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝Pv

Ph

⎞
⎟⎟⎠− Peq(1− eλ+t) = −αV−eλ−t − (βV+ − Peq)e

λ+t, (5.26)

where Ev and Eh are the polarization excess in the visible and hidden reservoirs, respectively.
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5.2.2 Temperature-dependent spin diffusion

The HypRes experiment was performed on DNP juice doped with 50 mM TEMPOL at 7.05
T between 1.2 and 4.2 K. For each temperature, a standard saturation recovery experiment was
recorded in addition and was subtracted from the HypRes curve to yield a polarization excess. The
obtained polarization excess along time is shown in Fig. 5.7a (grey crosses). During the preparation
step, the sample was polarized in positive mode, causing a positive polarization overshoot in the
HypRes experiment. Because of the prohibitively slow relaxation at the lowest temperatures, the
curves were not recorded until they had reached thermal equilibrium. In particular, at 1.2 K, the
polarization had reached its maximum but was only starting to decay when the monitoring was
stopped.

Figure 5.7: A. Results of the HypRes experiment at 7.05 T between 1.2 and 4.2 K for DNP juice
doped with 50 mM TEMPOL, monitored with small-angle pulses expressed in terms of polarization
excess with respect to thermal equilibrium. The gray crosses and the black lines represent the
experimental data and the fit of the two-reservoir model (see Eq. 5.26), respectively. B. Fitted
parameters of the two-reservoir model plotted against temperature. The size of the hidden reservoir
is given according to the two-reservoir model (χh) and according to Eq. 5.27 (χ̃h). The error bars
correspond to the error of the fit with 95% confidence. Adapted from Ref. [68] according to the
terms of the Creative Commons Attribution-NonCommercial 4.0 International Public License.

The two-reservoir model described above was applied to these HypRes curves (black curves in
Fig. 5.7a). As explained in the previous section, it was assumed that the polarization of the visible
and hidden reservoirs at the beginning of detection were 0 and Pmax

DNP, respectively, and that the
intrinsic relaxation rate of the visible reservoir was negligible R1,v ≈ 0. The three remaining free
parameters are R1,h, Rf and χh. Their fitted values are shown in Fig. 5.7b. The flow rate Rf

spreads over two orders of magnitude from 4.4 · 10−3 s−1 to 0.29 s−1. The relaxation rate of the
hidden reservoir Rh is not shown for 1.2 K because its fitted value is unrealistically small and out
of the trend (the fitted value is between 10−14 and 10−11 s−1 depending on the starting point of
the fit algorithm). However, neither the quality of the fit nor the fitted values of Rf and χh are
significantly affected by the value of R1,h (the fit was repeated fixing R1,h between 0 and 10−5 s−1

which did not affect Rf and χh significantly). For the available range, R1,h spreads from 9.4 ·10−4

to 6.9 · 10−2 s−1. The fitted size of the hidden reservoir χh is between 5 and 7%. We show in Fig.
5.8 that the HypRes effect occurs also in a fully protonated sample, that is, in the absence of a
deuterium spin reservoir.
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Figure 5.8: HypRes experiment in 2:3 H2O:glycerol (v/v), i.e., the fully protonated equivalent of
DNP juice, doped with 50 mM TEMPOL. Adapted from Ref. [68] according to the terms of the
Creative Commons Attribution-NonCommercial 4.0 International Public License.

The model fits the data appropriately during the decay of the curves, that is, once the strong
polarization gradient between hidden and visible spins has already disappeared. As expected, the
quality of fit is poorer at the beginning of the curve, during the equilibration. The simplicity of the
model that assumes two homogeneous reservoirs does not account for the complex dynamics of the
spin system when gradients are equilibrating among the hidden spins. Nonetheless, it allows for at
least an order of magnitude estimate of the flow between the reservoirs and shows its tremendous
temperature dependence.

The relaxation rate of the hidden reservoir R1,h is found to be slow compared with the flow
between the reservoirs Rf (the ratio R1,h/Rf goes from ≈ 1/4 to ≈ 1/27 at 4.2 and 1.8 K,
respectively). This implies that the two domains of the HypRes curve (the equilibration and
the decay) can be interpreted separately; the rise of the polarization excess informs on the flow
between the reservoirs Rf , while the decay informs on the relaxation rate R1,h. It also implies
that polarization is able to equilibrate throughout the spin system before relaxation becomes
substantial. In this limit, the size of the hidden reservoir is directly proportional to the intensity
of the overshoot PHypRes

χ̃h ≥ PHypRes

P 0
h

=
PHypRes

(1− ηsat)Pmax
DNP

≥ PHypRes

Pmax
DNP

, (5.27)

where ηsat and Pmax
DNP are the attenuation of the polarization in the hidden reservoir caused by the

saturation block at the end of preparation and the polarization measured at DNP equilibrium,
respectively. The size of the hidden reservoir can be obtained with this method (χ̃h) or with
the two-reservoir model (χh). While the latter is biased by the poor match of the two-reservoir
model, the former gives a more direct estimate of the size of the hidden reservoir by the HypRes
experiment. Fig. 5.7b shows that the size of the hidden reservoir, evaluated with Eq. 5.26, seems
to decrease when temperature increases. Two effects can explain this apparent dependence. First,
due to the increase of flow rate Rf with temperature, more polarization is able to leak out of the
hidden reservoir during saturation at higher temperatures. As the saturation scheme was identical
for all six HypRes curves, an increased saturation of the hidden reservoir ηsat with temperature
can be expected and thus a smaller “apparent” size. Second, the condition that the polarization
flow is much faster than relaxation is better satisfied at the lowest experimental temperatures.
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5.2.3 The size of the hidden reservoir

The size of the hidden reservoir was quantified in a separate experiment for comparison with the
values obtained above. The 1H thermal equilibrium signal build-up of DNP juice was recorded
as a function of TEMPOL concentration at 3.8 K and fitted with a stretched exponential model.
These results were already presented in Sec. 3.3.1 (see Fig. 3.20) and are reproduced in Fig. 5.9A.
They show how the thermal equilibrium signal decreases with increasing TEMPOL concentration.
The signal was not recorded without TEMPOL because of the very slow relaxation of 1H spins in
the absence of paramagnetic relaxation. Assuming that the signal loss is linear with the TEMPOL
concentration in the low range, we extrapolate the intensity at a concentration of 0 (here, we
simply used the slope between the first two points) to normalize the curve with a y-intercept of
100%. From this curve, we find that the presence of 50 mM of TEMPOL in DNP juice removes
≈ 30% of the 1H signal.

Figure 5.9: A. Relative 1H signal as a function of TEMPOL radical concentration in DNP juice
at 3.8 K (open circles) showing that the presence of the radical quenches ≈ 30% of the NMR
signal for a concentration of 50 mM. The dashed line represents a linear interpolation of the first
two points. B. Simulated fraction of the spins that are hidden because they are unaffected by rf
pulses as a function of the pulse bandwidth. Δω and ω1 are the paramagnetic shift and nutation
frequency of the pulses, respectively, used to discriminate between visible and hidden spins. C.
Simulated fraction of the spins that are hidden because of the reduction in transverse relaxation
time constant due to PRE. The light blue and pink areas represent the visible and hidden fraction
of the 1H spins, respectively.
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Two effects may account for the signal loss in the presence of a paramagnetic species. First,
the hyperfine interaction with electrons shifts the Larmor frequency of the close nuclei outside of
the detection limits. Second, the interaction with electrons shortens the transverse relaxation time
of the nuclei, an effect known as paramagnetic relaxation enhancement (PRE), which increases
the signal loss during the dead time between the pulse and the acquisition. [149] Fig. 5.9B and
5.9C show simulations of the two contributions, which were performed assuming a random distri-
bution of 1926 electrons in a cube of 40 nm (corresponding to the concentration of 50 mM). The
paramagnetic shifts and the PRE were averaged over 1000 random nuclear coordinates within the
cube (5 nm widths on the edges of the box were excluded) using the equation detailed below. The
values were averaged over 200 repetitions of this procedure. Fig. 5.10 shows the convergence of
the algorithm along the repetitions.

Figure 5.10: Convergence of the algorithm for the calculation of the hidden fraction of the 1H spins
χh due to paramagnetic shifts and PRE, obtained with Eq. 5.29 and Eq. 5.33, A and B, respec-
tively. These plots correspond to single points on the curves shown in Fig. 5.9, obtained for
ω1/2π = 42 kHz and τc(e

−) = 0.5 μs, respectively. The grey dots and the blue line correspond to
the values of individual iterations and of the mean value up to a given iteration, respectively. The
solid and dashed black lines correspond to the total average and the standard deviation, respec-
tively.

The 1H paramagnetic shift of the jth 1H spin due the ith electron is given by

Δωi(rj) =
1

4

μ0

4π

�γeγn
r3ij

(
1− 3 cos2 θij

)
, (5.28)

where rj , rij and θij are the position of the nucleus, the distance between the nucleus and the elec-
tron, and the angle between the vector connecting them and the main magnetic field, respectively.
The contributions of all electrons in the random distribution were summed as

Δω(rj) =
∑
i
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∑
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)
.

(5.29)

1H spins were considered undetectable when their paramagnetic shift was larger than the
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excitation bandwidth of the pulse, which we estimated to be equal to the nutation frequency (42
kHz).

|Δω| > ω1 (5.30)

We found that ≈ 5% of the spins are hidden according to this criterion (see Fig. 5.9).

The transverse relaxation rate of 1H spins was assumed to be dominated by paramagnetic
interactions and any other contribution was neglected

T2 ≈ T2,para. (5.31)

The paramagnetic transverse relaxation time of the jth nuclear spin under the fluctuating field
of the ith electron was calculated using the formula of PRE, neglecting the angular dependence
of the hyperfine interaction [149] but including the 1− P 2

e correction accounting for high electron
polarization (with Pe ≈ 0.85 at 3.8 K and 7.05 T)2

1
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(5.32)

where ωn is the 1H Larmor frequency. The contribution to PRE of all electrons was assumed to
be additive and so the total relaxation of the jth nuclear spin is

1
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Assuming that the signal integral is proportional to the first point of the FID, the contribution
of nuclear spin j to the signal integral was computed as

Ij = exp

(
−τDE

T j
2

)
, (5.34)

where τDE is the dead time between the pulse and the start of the acquisition. The contribution
to the signal integral obtained using Eq. 5.34 was averaged over all nuclear spins.

The correlation time of the electron spin state τc(e
−) was calculated using Eq. 2.161, that is,

as the inverse of the dipolar interaction with the neighboring electron spins. Because each electron
interacts with many others, the correlation time was calculated using the strongest dipolar inter-
actions of each electron. The resulting correlation time was averaged over all electrons in the box
and over 1000 repetitions of the algorithm. The correlation time was found to be τc(e

−) ≈ 0.5 μs.
Fig. 5.9B shows that 4% of the 1H spins are hidden by PRE for this value of τc(e

−).

Both paramagnetic shifts and PRE simulations lead to the conclusion that the fraction of
hidden spins χh is on the order of 4-5%. The contributions of the two effects simulated here may
have different angular dependencies but they do not add up together in such a way that could
explain the experimentally determined signal loss of ≈ 30% shown in Fig. 5.9A.

It should be noted that even if the PRE may contribute to the signal losses shown in Fig.
5.9A, it is not the effect that enables HypRes. On the contrary, the frequency shift causes the
1H spins near the electron spins to be immune to saturation pulses, which is the essential ingredient
allowing the creation of a polarization gradient near the electron and thus for the HypRes effect.
Interestingly, our simulation shows that ≈ 5% of the 1H spins in DNP juice with 50 mM TEMPOL

2Note that, in Ref [68], we improperly used an expression of the paramagnetic relaxation rate which is appropriate
for molecules in the liquid-state. Here, we repeated the simulation with the appropriate Eq. 5.33. Yet, the results
are not significantly affected.
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are beyond the bandwidth of the pulses, in reasonable agreement with the result of the HypRes
experiment shown in Fig. 5.7 (hidden reservoir size between 5 and ≈ 7%).

The HypRes experiment was repeated at 3.8 K with various saturation pulse nutation frequen-
cies with a constant pulse angle π/2 (see Fig. 5.11A). We found that the dependence of the hidden
fraction on the nutation frequency of the saturation pulses follows the same trend for experiment
and simulation (see Fig. 5.11B). The curve obtained after saturation by pulses with 50 kHz nu-
tation frequency does not follow the trend. This is probably because the amplifier is not able to
output the sufficient power to realize a pulse with a nutation frequency of 50 kHz and so the actual
nutation frequency is lower, resulting in an incomplete saturation of the visible spins. Note that
the curve obtained with 42 kHz nutation frequency saturation yielded a hidden fraction χh = 8%
while the results of Fig. 5.7 with the same nutation frequency and the same temperature. The
reason for this is that the experiments of Fig. 5.11 were performed later, with a better-optimized
but probably incomplete saturation scheme (the optimized parameters are the number of pulses
and the delay between the pulses).

Figure 5.11: A. HypRes at 3.8 K after DNP in positive mode using a range of nutation frequencies
for the π/2 saturation pulses (marked next to the curves in kHz). B. Size of the hidden reservoir
measured experimentally (colored dots) using the maximum of the HypRes curves of panel A
(see Eq. 5.27) and simulated using the procedure described above (black solid line). Adapted
from Ref. [68] according to the terms of the Creative Commons Attribution-NonCommercial 4.0
International Public License.

The relatively good match between the results of the HypRes experiment and the simulated
hidden fraction further confirms that the HypRes polarization overshoots are indeed due to po-
larization flowing from hidden to visible 1H spins and not due to cross-relaxation from another
reservoir such as 2H spins.

5.3 Other examples of HypRes data

5.3.1 13C-HypRes with trityl radical

So far, the HypRes experiment was only demonstrated for 1H spins. We now show that it is also
applicable to 13C-DNP in dDNP conditions. We chose the most typical sample in this context, i.e.,
25 mM trityl OX063 in neat [1-13C]-pyruvic acid. [45] HypRes experiments were performed on 100
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μL of this sample between 1.8 and 3.8 K. Experiments were not performed at lower temperatures
due to the prohibitively long time scale of 13C relaxation.

Fig. 5.12A and B show a hyperpolarized 13C spectrum and DNP build-ups under negative
DNP, respectively, which were fitted with a monoexponential function

P (t) = Pmax
DNP

(
1− exp

(
− t

TDNP

))
, (5.35)

where Pmax
DNP and TDNP are the maximum DNP polarization and the DNP build-up time constant,

respectively. The fit parameters are shown on Fig. 5.12C and D.

Figure 5.12: A. Hyperpolarized 13C spectrum at 1.8 K after 120 min of DNP in neat [1-13C]-
pyruvic acid doped with 25 mM trityl OX063. B. DNP build-up curves in the same sample
detected with 5 pulses at various temperatures (shown next to the curves in K). Colored circles
and black lines represent experimental data and monoexponential fits (see Eq. 5.35), respectively.
C-D. Fit results of the two free parameters of the monoexponential functions. The error bars
correspond to the error of the fit with 95% confidence.

Following DNP build-ups, after the μw had been gated, the visible spins were saturated by a
train of 20 π/2 pulses separated by 200 μs with a nutation frequency ω1/2π = 20 kHz (saturation
pulses were also applied on the 1H channel), shifting the phase of the pulse by π/2 after each
pulse. Then, the 13C-HypRes signal was detected using single 5 pulses. To maximize the time
resolution without allowing detection to retrieve too much 13C polarization, the delays between
detection blocks at the beginning of the HypRes detection were defined in a list of variable delays
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(chosen individually for each experiment). Following the end of the list, the signal was detected
with a constant delay between detection blocks (2, 4, 10, and 15 min for HypRes at 3.8, 3.0, 2.5,
and 1.8 K, respectively).

The resulting HypRes curves are shown in Fig. 5.13. Contrary to 1H HypRes experiments,
note that the curves are not displayed as polarization excess but rather as polarization. Therefore
the curves tend towards the 13C Bolzmann equilibrium polarization Peq rather than towards 0.
However, because the polarization retrieved by the detection pulses is non-negligible towards the
end of the experiment, the HypRes curves end up tending towards a lower value than Peq. Note
that during the experiment at 3.0 K, the cryostat had to be refilled. The procedure failed which
caused the temperature to raise momentarily up to 3.8 K. The temperature was then lowered back
down to 3.0 K. This certainly explains the discontinuity of the curve at ≈ 103 s.

Figure 5.13: 13C-HypRes experiment in neat [1-13C]-pyruvic acid doped with 25 mM trityl OX063
detected with 5 pulses at various temperatures (shown next to the curves in K) after DNP in
negative mode. Colored dots and black curves represent experimental data and stretched biexpo-
nential fits (see Eq. 5.36), respectively.

A peculiar feature of this set of experiments is that the first spectrum of each HypRes experi-
ment features an antiphase pattern with an integral near 0 (see Fig. 5.13), suggesting the presence
of multispin-order, despite prior intense saturation. Fig. 5.14A and B show the first spectrum and
the following spectra, respectively, in the case of the experiment at 1.8 K. However, already at the
second detection, i.e., less than a ms later, the spectrum is in-phase with a non-negligible polariza-
tion. All four experiments exhibit this same change from anti-phase to in-phase signal, from the
first to the second detection block. After that, the signal remains stable for several hundreds of
ms until the negative polarization of the hidden spins acquired during preparation starts reaching
the visible spins by spin diffusion, on a time scale of hundreds of seconds to hours (depending on
temperature). It is clear that the mechanism which causes the signal to go from anti-phase to
in-phase is much faster than spin diffusion. A possible explanation is that the saturation pulses,
which are separated by constant delays, lead to an echo in addition to the (incomplete) satura-
tion. However, this does not explain how the anti-phase pattern would spontaneously convert into
in-phase. In the following discussion, we assume that the saturation scheme is imperfect leaving
P 0
v > 0. Furthermore, we discard the first point of each HypRes curve in the fits that will be

detailed next.

The four HypRes experiments presented in Fig. 5.13 were fitted with a biexponential function
with a stretched coefficient β on the faster time component Tf
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Figure 5.14: A. First spectrum of the HypRes experiment at 1.8 K recorded short after saturation.
B. Selection of spectra following that shown in panel A.

P (t) = P∞ + (P0 − Pmax) exp

(
−
(

t

Tf

)β
)

+ (Pmax − P∞) exp

(
− t

Ts

)
, (5.36)

where P0, Pmax, P∞, Tf , Ts and β are free fit parameters (see the black lines on Fig. 5.13). P0

and Pmax are constants that depend on the initial polarization and the HypRes signal intensity.
Ideally, P∞ should be set to the Boltzmann polarization of 13C spins but the effect of the detection
pulses is non-negligible and prevents the signal to reach thermal equilibrium. Therefore, P∞ is let
free in the fit. Tf and Ts are fast and slow time constants, respectively. β is the stretch coefficient
of the fast time constant, between 0 and 1. The average value of the fast time constant is obtained
by

Tf,av =
Tf

β
Γ

(
1

β

)
, (5.37)

and the error on Tf,av is calculated using Eq. 3.35. The fitted rates (including both the fast
component Rf = 1/Tf and the average fast component Rf,av = 1/Tf,av) and the fitted β-coefficient
are shown on Fig. 5.15.

As we did for the 1H-HypRes measurement, we can use the HypRes curves to estimate the size
of the hidden reservoir. In this case, because the HypRes curves do not start at 0, Eq. 5.27 cannot
be used to estimate the size of the hidden reservoir. Instead, it must be corrected by subtracting
the initial polarization P0 to the HypRes polarization PHypRes, yielding

χ̃h ≥
∣∣∣∣PHypRes − P0

P 0
h

∣∣∣∣ =
∣∣∣∣ PHypRes − P0

(1− ηsat)Pmax
DNP

∣∣∣∣ ≥
∣∣∣∣PHypRes − P0

Pmax
DNP

∣∣∣∣. (5.38)

The results are shown on Fig. 5.15D. The obtained size of the hidden reservoir is on the order
of χ̃h ≈ 0.8% with a slight decrease with increasing temperature.

We now discuss the results of the 13C-HypRes experiments. We first note that the curves
do feature the expected polarization overshoot, which is negative in this case due to negative
prepolarization during preparation, although not starting with P (t = 0) = 0 due to the imperfect
saturation of the visible spins.

Model equation Eq. 5.36 fits the data particularly well (see Fig. 5.13), although we have to
concede it has an important number of free parameters (six in total). The reason for using this
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Figure 5.15: A-B. Rate constants and β-coefficient fitted with Eq. 5.36 to the data of Fig. 5.13
and plotted against temperature. C. Correlation of the slow rate constant Rs with 1− P 2

e , where
Pe is the polarization of the electron spin. The colored dots and the black line represent the fitted
rates and a linear regression, respectively. The error bars correspond to the error of the fit with
95% confidence. D. Size of the hidden reservoir estimated using Eq. 5.38.

equation rather than the two-reservoir model described earlier is that the fast time component
exhibits a strongly stretched behavior (β < 0.5, see Fig. 5.15B), which makes the fit of the two-
reservoir model very poor. We attempted to modify the two-reservoir model by including a stretch
coefficient to the fast time constant but this gave equally poor results (not shown). Nonetheless,
this phenomenological model allows us to draw several conclusions. First, we do find a faster and
a slower time component in the 13C-HypRes experiments (see Rf = 1/Tf and Rf,av = 1/Tf,av vs
Rs = 1/Ts on Fig. 5.15B), as in the 1H case. We, therefore, interpret Rf and Rs as the rate
of polarization flow between the hidden and visible spins and of relaxation towards Boltzmann
equilibrium, respectively.

The separation between Rf and Rs, suggests that relaxation is not limited by diffusion from
the hidden to visible spins in our experimental conditions. This is in line with a recent study by
Wenckebach and coworkers. [106] This is further supported by the fact that the slow rate constant
Rs exhibits the expected correlation with the term 1−P 2

e (see Eq. 2.159), where Pe is the electron
Boltzmann’s polarization, as can be seen on Fig. 5.15C.

On the contrary, neither the fast rate constant Rf nor its average Rf,av are correlated with
1− P 2

e (not shown) but they exhibit a marked and more complex dependence on temperature or
electron polarization. The strong stretched character of the polarization exchange rate suggests, as
in the 1H case, that diffusion becomes slower closer to the electron spin. Indeed, a stretched rate
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indicates a distribution of rates, which implies that the diffusion coefficient takes a distribution
of values as a function of the distance to the electron spin (further experimental evidence of a
gradient of the spin diffusion coefficient along the distance to the electron spin will be given in the
next section on μw off-HypRes with inversion for 1H spins, see Sec. 5.4).

Finally, the size of the hidden reservoir obtained here is in agreement with that found for
1H spins. Indeed, we found a hidden reservoir size χh ≈ 4 − 7% in the case of the 1H-HypRes
experiments on DNP juice doped with 50 mM TEMPOL (see Fig. 5.7). In first approximation, the
size of the hidden reservoir should be proportional to the intensity of the electron-nucleus hyperfine
interaction and in turn to the nuclear gyromagnetic ratio, which brings a factor γ(13C)/γ(1H) ≈
1/4. It should also be approximatively proportional to the concentration of radicals, bringing
a factor C(trityl)/C(TEMPOL) ≈ 1/2. Altogether, the size of the 13C-hidden reservoir should
therefore be on the order of 4/8% ≈ 0.25% to 7/8% ≈ 0.88%, while we found ≈ 0.8%. However, it
should be noted that trityl is a larger radical than TEMPOL and it does not bear any 13C spins,
which increases the minimum possible distance between 13C spins and the electron spin. This
should lead to a lower size of the 13C-hidden reservoir.

5.3.2 HypRes under MAS

In Ref. [68], we also demonstrated the applicability of the HypRes method in the context of
MAS-DNP at 100 K and 14.0 T. The method requires the use of time-resolved μw gating, which
is not common for MAS-DNP setups. The experiment was hence performed by our collaborator
Dr. Frédéric Mentink-Vigier, at the Maglab in Tallahassee, Florida.

The experiments were performed on a sample of 10 mM ASYMPolPOK in 2:3 H2O:glycerol
(v/v). We chose to use a fully protonated medium to avoid cross-relaxation from 2H to 1H spins
[208] and thus ensure that any overshoot is strictly due to the contribution of the hidden 1H spins.
The high proton concentration results in a strong dipolar broadening of the NMR line of ≈ 70
kHz (see Fig. 5.16A). The sample was polarized during 4 s prior to saturation. Fig. 5.16B shows
the μw on- and off-curves together with the excess. Contrary to all other HypRes experiments
presented in this dissertation, each point of the curve on Fig. 5.16B was acquired separately using
a π/2 rf pulse and repeating the acquisition with another delay. Although not as strong as at lower
temperatures, a HypRes overshoot is observed.

Figure 5.16: A. 1H spectrum of 10 mM ASYMPolPOK in 4:6 H2O:glycerol (v/v) at 14.0 T and
100 K under MAS at 8 kHz obtained by DNP. B. Corresponding HypRes curves. Contrary to
experiments in static mode at low temperatures, these measurements were obtained with π/2
pulses, each point being an individual measurement. Adapted from Ref. [68] according to the
terms of the Creative Commons Attribution-NonCommercial 4.0 International Public License.
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Due to the low number of data points at short delays (between 0 and 50 ms), the two-reservoir
model cannot be fitted to the data. However, visual inspection of the HypRes curve shows that the
maximum of the excess is reached ≈ 30 ms after saturation. The flow rate can thus be estimated
to be on the order of Rf ≈ 30 s−1. As a comparison, for 50 mM TEMPOL in DNP juice at
4.2 K in static mode, the maximum of the excess is reached ≈ 3 s after saturation, with a flow
rate of Rf = 0.29 s−1, indicating that the flow is two orders of magnitude slower. This may be
due to the combined effects of increased spin concentration, MAS, and higher temperature. The
low-temperature measurements were performed on DNP juice, with 11 M of 1H, while the MAS
measurements were performed on 2:3 H2O:glycerol (v/v), with 110 M. Increasing the 1H con-
centration decreases the average distance between neighbors and therefore increases the dipolar
couplings and the diffusion coefficient. MAS is known to influence the spin diffusion coefficient
and, in some cases, it may enhance spin diffusion. [209] We note that studying the dependence of
the flow rate on the MAS rate would be of great interest but is beyond the scope of the current
study.

The CE-DNP mechanism under MAS leads to a depolarized nuclear state with lower polariza-
tion compared to Boltzmann equilibrium. [141, 210] During the HypRes experiment, after μw are
turned off, the electrons rapidly return to Boltzmann equilibrium (within 5T1,e ≈ 1.5 ms) [141, 210]
and start depolarizing the nuclei, probably even before they relax with T1 . The observation of
the overshoot indicates that hidden spins exchange polarization with the visible spins faster than
they are depolarized.

The reason why the overshoot is so weak as compared to thermal equilibrium is likely to be
explained by the saturation scheme. The visible spins were saturated with a train of 100 pulses
separated by 5 ms, which yields a total of 500 ms. As the exchange between the reservoir is on the
order of 30 ms, a significant portion of polarization can escape from the hidden reservoir in between
pulses resulting in a non-ideal saturation factor of the hidden reservoir ηsat > 0. Furthermore, the
radical concentration in the MAS-DNP sample is 5 times lower than in the sample used for low-
temperature DNP, which hides a smaller fraction of the spins and hence causes a smaller overshoot.

5.4 μw off-HypRes with inversion

Further insights into the spin diffusion processes near the electron can be obtained by the use
of broadband inversion pulses in the HypRes experiment. In this section, we show how diffusion
among the hidden spin can be indirectly assessed using the HypRes experiment with inversion.
[68]

5.4.1 HypRes results with inversion

Fig. 5.5 shows the general scheme of 1H-HypRes experiment with inversion. A broadband inversion
pulse centered at the middle of the NMR line is applied before saturating the visible spins. The
HypRes experiment was repeated at 3.8 K on DNP juice doped with 50 mM TEMPOL using
inversion chirp pulses with maximum nutation frequency ω1/2π = 34 kHz and widths of 0.5, 1, 2,
3 and 4 MHz, intended to invert 1H spins over ±0.25, ±0.5, ±1, ±0.5 and ±2 MHz, respectively.
These pulses thus invert 1H spins far off-resonance (from the detectable NMR range). Because the
Q-factor of the 1H channel of our probe is typically on the order of 150-250, an inversion pulse
with 4 MHz width is broader than the probe resonance and is therefore inefficient at the edges.
To compensate for this, the Q-factor of the probe was diminished by adding a 50 Ω resistance
(Barry industries 50W BeO flanged resistor) in the NMR circuit. The resistance was located on
the coaxial line between the tunning & matching box and the coil (outside the probe).

After inversion, the 1H spins were saturated by a train of pulses, that acted only on a narrow
bandwidth, as in the pulse sequence presented in Fig. 5.4.
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At the end of the preparation, the 1H spins can be separated into three parts:

1. those far from the electron have a polarization of 0 due to the narrow saturation pulses;

2. those closer to the electron which have been inverted by the broadband pulse have polar-
ization with opposite sign compared to what they acquired under DNP (but reduced by the
inversion pulse imperfection);

3. finally, those that are close enough to the electron with Larmor frequencies outside of the
range of inversion of the pulse have kept the sign of polarization that they acquired under
DNP.

Following preparation, the signal resurgence was recorded by small angle pulses, varying the
delay between the detection blocks to capture processes occurring on all time scales. The results
are shown on Fig. 5.19. On a fast timescale of hundreds of milliseconds to seconds (depending on
the inversion width), the inverted hidden spins equilibrated their polarization with the visible spins,
causing a negative overshoot. Then, on a longer timescale of hundreds of seconds, the polarization
of the spins which had not been inverted and had therefore kept their positive polarization reached
the visible spins causing a positive polarization overshoot.

Figure 5.17: A-B. Results of the HypRes experiment with inversion pulses at 3.8 K recorded with
small angle pulses for DNP juice doped with 50 mM TEMPOL with inversion widths from 0.5
to 4 MHz, in logarithmic and linear scale, respectively. The numbers by the curves indicate the
theoretical widths of inversion chirp pulses in MHz. Adapted from Ref. [68] according to the terms
of the Creative Commons Attribution-NonCommercial 4.0 International Public License.

The width of the inversion pulses influences the curves in several regards. First, the wider
the inversion, the stronger the negative overshoot, and the weaker the positive overshoot, which is
consistent with the assumption that more spins are inverted with a larger pulse bandwidth and that
they do exchange polarization with the visible spins. Second, the wider the range of inversion, the
later the negative extremum is reached (after 0.4 and 1.4 s for the 0.5 and 4 MHz inversion pulses,
respectively) and the same is true for the positive extremum (after 150 and 300 s for the 0.5 and
4 MHz inversion pulses, respectively). A larger pulse inversion bandwidth implies that the non-
inverted spins are more coupled to the electron. Therefore, the fact that the overshoot occurs later
demonstrates that the stronger the protons are coupled with the electron, the more spin diffusion
is hindered. Finally, the slopes of the curves going from the negative to the positive extrema
are also affected by the inversion width which supports this argument. These measurements thus
provide experimental evidence that the Larmor frequency gradient caused by the electron spin is
responsible for a gradient of the nuclear spin diffusion coefficient.
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5.4.2 Characterization of broadband pulses

The quality of the inversion pulses was assessed in a separate experiment and further confirmed
by simulation. The measurement was performed for inversion widths of 0.5, 1, and 2 MHz and not
higher because the intensity of the reflected power could damage the amplifier. Fig. 5.18 shows
the result. The inversion is maximal up to ≈ 3/5 of the theoretical inversion width. The intensity
was manually fitted with a hyperbolic tangent function

I(ν) =
α+ 1

2
+

α− 1

2
tanh

(
γ

(
β

2
− ν

νmax

))
, (5.39)

where νmax is the theoretical inversion width and α = 0.72, β = 0.83 and γ = 20 are adimen-
sional fit parameters reflecting the maximum inversion efficiency, the effective width and the slope,
respectively.
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Figure 5.18: Relative inversion efficiency for chirp pulses of 0.5, 1, and 2 MHz inversion width,
recorded by moving the center of the pulse. The blue lines are the data points. The vertical black
dashed lines represent the theoretical inversion width. The black solid line is a manually fitted
hyperbolic tangent function. The gray faint line is the simulated profile. Adapted from Ref. [68]
according to the terms of the Creative Commons Attribution-NonCommercial 4.0 International
Public License.

The inversion profile of the pulse was simulated using a single-spin Hilbert space with the
time-dependent Hamiltonian 3

Ĥ(t) = ΔΩÎz + ω1A(t)
(
Îx cosφ(t) + Îy sinφ(t)

)
, (5.40)

where ΔΩ, ω1, A(t) and φ(t) are the offset between the Larmor frequency of the spin and the
carrier frequency of the pulse, the nutation frequency of the pulse and the time-dependent pulse
amplitude (between 0 and 1) and the phase of the pulse generated by Topspin. The initial state
of the density matrix was assumed to be ρ̂0 = Îz. It was propagated under the time-dependent

3Note that using Bloch equations to simulate the pulses would be easier than using a spin dynamical simulation.
It was in fact the opposite for me simply “by habit”.
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Hamiltonian during time steps of 0.1 μs (corresponding to the discretization of the pulse) using
the sandwich formula ρ̂(t + dt) = exp (−iĤ(t)dt)ρ̂(t) exp (+iĤ(t)dt). The polarization along the
z-axis after the inversion pulse was computed with the trace Pz = Tr(Îz ρ̂)/|I|. The simulation
was repeated for 300 offset frequencies ΔΩ over the displayed range of each spectrum. Plotting
the final polarization Pz(ΔΩ) against the offset frequency ΔΩ gives the profile of the inverted
polarization along the z-axis after the inversion pulses. The simulated inversion profiles are shown
as gray faint lines in Fig. 5.18.

The simulation predicts more efficient inversion than what is found experimentally (see Fig.
5.18). This is likely due to paramagnetic relaxation which was not taken into account in the sim-
ulation.

Those measurements were used to estimate the polarization of the 1H spins at the beginning
of detection as a function of their dipolar coupling constant to the electron (see Fig. 5.19A). The
polarization dip at the center corresponds to the saturated visible spins. Assuming that the offset
frequency of the nuclei is governed by the paramagnetic shift, we can translate the offset into a
distance. For a given shift Δω, the distance between the electron and the nucleus can take any
value between 0 and rmax

e−n, depending on the angle θ between the main magnetic field and the
vector connecting the electron and the nucleus. The maximal possible distance rmax

e−n corresponds
to θ = 0, π and is given by

rmax
e−n =

∣∣∣∣12 μ0

4π

�γeγn
Δω

∣∣∣∣
1/3

. (5.41)

The profiles in Fig. 5.19A are expressed as a function of the electron-nucleus coupling and
were converted into profiles as a function of the maximum electron-nucleus distance rmax

e−n using
Eq. 5.41, in Fig. 5.19B.

Figure 5.19: A. Estimated relative polarization profiles of the 1H spins at the end of the preparation
as a function of Larmor frequency shift taking into account the imperfection of the pulses. The dip
near zero is due to the narrow band saturation at the end of the preparation phase. B. Estimated
relative polarization profiles of the 1H spins at the end of the preparation as a function of the
distance to the electron spin, converted from panel A using Eq. 5.41. The numbers next to the
curves indicate the theoretical widths of the inversion pulses in MHz. Adapted from Ref. [68]
according to the terms of the Creative Commons Attribution-NonCommercial 4.0 International
Public License.
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5.4.3 Implications regarding the spin diffusion barrier

The HypRes experiment with inversion shows that spins as close as 0.3 nm to the electron can
exchange polarization with the visible spins, faster than they relax toward thermal equilibrium.
In other words, they are outside the diffusion barrier according to Wolfe’s terminology (see Sec.
5.1.3). [197] Indeed, the HypRes experiment with a 4 MHz inversion width resulted in a stronger
negative overshoot than with a 3 MHz inversion width. Therefore, there are spins that were not
inverted by the 3 MHz inversion pulse but were inverted by the 4 MHz inversion pulse and yet
could still share their polarization with the visible spins. According to Fig. 5.19B, such spins are
at a maximum distance of 0.3 nm to the electron. Tan et al. and coauthors have shown in 2019
that 1H spins within a radius of < 0.6 nm to a trityl radical were in contact with the bulk at 100
K and 0.3 T. [199] Our results confirm this observation at 3.8 K and 7.05 T.

This interpretation relies on the assumption that the inversion pulses are efficient even far away
from the center of the NMR line. However, the efficiency of the inversion pulses is diminished at
its edges due to the finite width of the resonance of the NMR probe. Furthermore, paramagnetic
relaxation in the transverse plane is expected to be intense for far-off-resonance nuclei as they
are nearer to the electron spin, causing them to relax during the inversion pulse. Yet, since we
observe a stronger effect of the inversion as we increase the chirp width, we conclude that the
broadest pulse must still be reasonably efficient at its edges. Indeed, if the 3 MHz inversion pulse
was inefficient at its edges, the 4 MHz inversion pulse would not be more efficient over the same
range and the same results would be observed for the two experiments.

It is interesting to remark that a sphere with a radius of 0.3 nm in a solution with 11 M of
1H contains less than a single 1H spin on average. Yet, the TEMPOL molecule itself contains
12 1H on the four methyl groups which surround the radical and a further four 1H on the next
positions of the ring. As a consequence, the 1H spin concentration is stronger in the vicinity of
the electron than in the bulk of the sample. This local heterogeneity could be part of the reason
why nuclear polarization appears to escape so easily, a feature that could be used for the rational
design of new polarizing agents.

5.5 μw on-HypRes

The HypRes experiments in static mode presented above showed that nuclear spin diffusion in the
vicinity of the electron spin had a strong dependence on temperature both in 1H and 13C cases. One
might be tempted to attribute this temperature dependence to a change in phonon density with
temperature. One theoretical study does indeed investigate the role of phonons in spin diffusion.
[211] Yet, a more likely explanation is to be found in an “electron-driven” process. Bloembergen
showed in 1949 that the modulation of dipolar interactions by lattice vibrations was not an efficient
mechanism for nuclear relaxation in the solid-state; instead, the fluctuations of the electron spin
state of (even dilute) paramagnetic impurities drive nuclear |α〉 ↔ |β〉 transitions, therefore allow-
ing for relaxation. [161] The same is possible for spin diffusion: if the presence of an electron spin
hinders nuclear |αβ〉 ↔ |βα〉 transitions and hence spin diffusion, the fluctuation of the electron
spin state can drive these very transitions. [108, 176] However, this mechanism vanishes when the
electron polarization tends towards unity, just as nuclear paramagnetic relaxation vanishes because
the term 1 − P 2

e (where Pe is the polarization of the electron) tends towards 0 (see Eq. 2.150 in
Sec. 2.3.4 and Chapter 4).

In our conditions, electron polarization goes from 85% at 3.8 K to 99.93% at 1.2 K and so
nuclear spin diffusion in the vicinity of electron spins can be expected to be much slower at 1.2 K.
In this section, we verify this hypothesis both experimentally and in theory. To do so, we introduce
the μw on-HypRes experiment, which allows us to monitor spin diffusion under controlled electron
polarization. We then rationalize our findings by constructing a 1 electron-2 nuclei model of spin
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diffusion accounting for the dependence of the electron dynamics on electron polarization.

5.5.1 Saturation with shaped pulses

In all HypRes experiments presented until now, the saturation of the visible spins was performed
using square pulses. However, because we aim at saturating the spins on a well-defined window,
it is more sensible to use shaped pulses. Furthermore, because we suspected that constant delays
between saturation pulses may lead to echoes (see Sec. 5.3.1), we used random delays between the
pulses.

In the following, we used a saturation scheme consisting of 19 sinc excitation pulses of 100 μs
with a nutation frequency ω1/2π = 51 kHz, discretized in 1000 points and separated by random de-
lays on the order of ≈ 10 ms (10.100, 100.105, 100.023, 100.157, 100.101, 100.011, 100.073, 100.054,
100.097, 100.047, 100.026, 100.084, 100.065, 100.105, 100.023, 100.157, 100.101 and 100.011 ms).
The sequence of the pulse phases was randomly chosen to be x,−x, y,−y,−x, x, y,−y,−y, y.
The sinc pulse shape was generated using Topspin’s built-in functions and chosen to excite over a
bandwidth of 200 kHz, with n = 10. The profile of the saturation scheme was measured experi-
mentally and confirmed by simulation (see Fig. 5.20).

Figure 5.20: A. Measured saturation profile of the train of sinc pulses. The black signals are the
measured signals as a function of the offset of the saturation pulses. The bold blue line is the
integral of the measured signals in black. B Simulated saturation profile of the train of sinc pulses.
The faint and bold blue lines are the simulated remaining polarization along the z-axis after a
single saturation pulse and after the train of 19 saturation pulses, respectively. The faint grey line
on both plots represents the experimental NMR signal before saturation.

Experimentally, we first recorded a reference spectrum without saturation (faint gray lines on
Fig. 5.20A) after 10 s of DNP at 1.2 K. Then, we repeated the measurement using the saturation
scheme described above varying the carrier frequency of the saturation pulses from −300 to +300
MHz and obtained the traces represented in black in Fig. 5.20A. The blue line is the integral which
shows that the saturation width has indeed a bandwidth of 200 kHz.

The excitation profile of the pulse was simulated using the exact same procedure as above
for the inversion pulses (see Fig. 5.18). The simulation was repeated for 300 offset frequencies
ΔΩ between −300 and +300 MHz. Plotting the remaining polarization along the z-axis Pz(ΔΩ)
against the offset frequency ΔΩ gives the saturation profile for a single pulse (see the faint blue
line in Fig. 5.20B). To take into account the fact that the saturation scheme consists of 19
pulses, we assumed that the magnetization in the transverse plane decays during the delay between
the saturation pulses and so the remaining polarization along the z-axis after the kth pulse is
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P final
z (ΔΩ) = Pz(ΔΩ)k. The resulting simulated saturation profile is shown as a bold blue line

in Fig. 5.20B. It confirms that the excitation scheme saturates the spins from −100 kHz to +100
kHz.

For comparison, the simulated saturation profile for a train of 19 square pulses with a nutation
frequency ω/2π = 42 kHz is shown in Fig. 5.21. Saturation is effective at frequencies beyond
those where a significant density of visible spins is found, causing an unnecessary saturation of the
hidden spins (ηsat > 0). The saturation scheme using sinc pulses yields a profile much closer to a
square and therefore provides a better starting point for the HypRes experiments.
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Figure 5.21: Simulated saturation profile of a train of π/2 square pulses of strength ω/2π = 42
kHz. The faint and bold blue lines are the simulated remaining polarization along the z-axis after
a single saturation pulse and after the train of 19 saturation pulses, respectively. The faint grey
line represents the experimental NMR signal before saturation.

5.5.2 μw on-HypRes results

We first performed the μw-off HypRes experiment as described above on the same sample of 50
mM TEMPOL in DNP juice at 1.2 K but this time using the saturation scheme consisting of sinc
pulses (the pulse sequence is shown on Fig. 5.22A). The experiment was performed setting the μw
frequency during preparation so as to reach either positive or negative nuclear polarization. The
positive (or negative) polarization acquired during preparation was wiped out by the saturation
pulses only for the visible spins, far from the electron (< 0.2% remaining polarization). The
spins closer to the electron retained their invisible polarization, which surged onto the visible spins
during the course of detection, causing an observable positive overshoot (or negative, respectively),
as expected. The two resulting curves are shown in Fig. 5.22B. The Boltzmann equilibrium
polarization of 1H spins is indicated by a dashed line for comparison (0.60% in these conditions).
The experimental traces feature two processes: the equilibration of the hidden and visible spins
polarization via spin diffusion far beyond Boltzmann equilibrium within ≈ 0.5 h, followed by their
slow relaxation towards it. The spin diffusion process monitored during the first part occurs while
the electron polarization is that of Boltzmann equilibrium, which is 99.93% in these conditions.
We obtained a higher polarization overshoot than what we did in the experiment presented in Fig.
5.7 (5.9% compared to 4.6%). This is likely due to the cleaner saturation scheme using sinc pulses
which is expected to affect the hidden spins less than the saturation scheme with square pulses
(ηsat closer to 0).

To monitor spin diffusion in the same conditions but with a lower electron polarization, we
repeated the experiment using the pulse sequence presented in Fig. 5.22C. In this case, after μw
irradiation was switched off, the μw frequency was changed from the value yielding positive nuclear
spin polarization to that yielding negative polarization, a strategy which is reminiscent of the work
by Ramakrishna and Robinson. [191] μw irradiation was then switched back on during detection.
This experiment was repeated with different values of μw power during detection from 0 to 118
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Figure 5.22: A, C. Pulse sequence diagrams of the μw off- and -on HypRes experiments, respec-
tively. On the 1H channel, the black and gray rectangles represent square pulses, with nutation
angles of π/2 and 0.1 , respectively. B, D. Results of the μw off- and -on HypRes experiments,
respectively, at 1.2 K. The μw power applied during detection from 0 to 118 mW is indicated on
the curves of Panel D.

mW, yielding the curves shown in Fig. 5.22D. The μw power used during detection is indicated
on the curves. Like for the μw-off HypRes experiment, the nuclear polarization acquired by the
hidden spins during preparation first surged onto the visible spins causing a positive polarization
overshoot. Then, instead of decaying towards thermal equilibrium (only 0.60% polarization),
negative DNP started pulling the polarization towards the opposite direction at the negative
DNP equilibrium value. Most importantly, the stronger the μw power during the equilibration of
polarization between the visible and hidden spins, and hence the weaker the electron polarization,
the faster the flow of nuclear polarization from the hidden to the visible spins. μw irradiation does
not influence the nuclei other than through the electron spins (the helium bath heating by μw
irradiation is less than 10 mK). Therefore, only the electron dynamics can be responsible for the
observed rapid spin diffusion from hidden to visible spins.

5.5.3 Comparison of μw on- and μw off-HypRes

To further confirm that nuclear spin diffusion is controlled by the electron polarization, it is
interesting to compare the results obtained here with those obtained with the μw off-HypRes
experiments presented in Sec. 5.2.2 (see Fig. 5.7). Indeed, μw off-HypRes experiments as a
function of temperature give a measure of diffusion in the electron polarization is well known and
is simply given by Boltzmann’s equation (see Eq. 1.3).

To compare the data sets, Eq. 5.36 was fitted to both of them. In the case of the μw on-
HypRes experiments, the variables P0, Pmax and P∞ were all free parameters. Ideally, the initial
polarization should be set to P0 = 0 but it yields a poor fit. Furthermore, the first points of the
curve were not taken into account in the fit. One could argue that this procedure leaves a lot of
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parameters free and results in overfitting. However, our aim is only to use a phenomenological
model to appropriately fit the rise of the curve and extract a flow rate constant 1/Tf . In the case
of the μw off-HypRes experiment, the initial and final polarizations were set to P0 = P∞ = 0.
Only the maximum polarization Pmax was left free. Overall, this phenomenological model fits the
data well. The fit is notably poor for the μw off-HypRes curve at 2.5 K (R2 = 0.93, compared
with R2 > 0.98 for all other curves).

Figure 5.23: A-B. Fit of Eq. 5.36 to the μw on- and μw off-HypRes curves shown on Fig. 5.22
and 5.7, respectively. The μw powers in mW and the temperatures in K are shown next to the
μw on- and μw off-experiments, respectively. For the μw off-experiment, it was assumed that the
initial and final polarization excess were 0 while only the maximum polarization was left free in
the fit. The curves in Panel B are expressed in terms of polarization with respect to a standard
saturation recovery experiment (see Sec. 5.2.1).

We have now obtained average polarization flow rates Rf,av for both data sets using the phe-
nomenological model of Eq. 5.36. In Fig. 5.23, the rates are shown as a function of μw power for
the μw on-HypRes experiment and as a function of temperature for μw off-HypRes experiment.
Fig. 5.24 shows Rf,av as a function of the electron polarization Pe for both data sets. For the μw
off-HypRes experiments, the temperature was converted into electron polarization simply using
Boltzmann’s equation (see Eq. 1.3). For the μw on-HypRes experiments, μw power was converted
into electron polarization using the data presented in Sec. 4.2, where the electron polarization
was measured indirectly by monitoring the change of in transverse relaxation rate of 13C spins
R2(

13C) upon switching on μw irradiation (see Fig. 4.3). It should be noted that both the μw
on-HypRes experiment and the electron polarization (indirectly via R2(

13C)) were measured on
the same sample, just one after the other.

Despite very large error bars, Fig. 5.24 shows that the polarization exchange rates as a function
of electron polarization measured using the μw on- and off-HypRes experiments agree, at least
within an order of magnitude. A notable outlier is the data point corresponding to μw off-HypRes
at 2.5 K (marked with a * symbol), which is not surprising since the corresponding HypRes curve
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was particularly badly fitted by the model (see Fig. 5.23). The data points at Pe ≈ 100% are
in good agreement but this is not meaningful; indeed, the μw on-data point with Pe ≈ 100% is
that of a “μw on-HypRes” measurement with a μw power of 0 mW and therefore corresponds to a
μw-off measurement. The agreement between these data points merely shows that the repetition
of the same measurement on different sample replicates (using a different probe and a different
saturation scheme) yields the same measured rate Rf,av. On the contrary, the agreement between
the points for 75% < Pe < 85% is much more meaningful; indeed, the two μw off-data points were
acquired at temperatures of 3.8 and 4.2 K, and yet they are perfectly in the trend of the μw off-data
points, which were measured at 1.2 K. These results give further experimental confirmation of the
dominant role of electron polarization on nuclear spin diffusion, independently from temperature.

Figure 5.24: Average polarization flow rate Rf,av between the hidden and visible 1H spins as a
function of the electron polarization Pe obtained by fitting the phenomenological model of Eq.
5.36 to μw on- and off-HypRes curves. The data point indicted with a * symbol corresponds to
the μw off-HypRes at 2.5 K, for which the phenomenological model gave a poor fit (R2 = 0.93,
compared with R2 > 0.98 for all other curves, see Fig. 5.23). The values of Pe in the case of μw
off-HypRes experiments were obtained by conversion from temperature using Boltzmann law (see
Eq. 1.3). The values of Pe in the case of μw on-HypRes experiments were obtained by monitoring
the change in transverse relaxation rate of 13C spins R∗

2(
13C) upon switching on μw irradiation

(see Sec. 4.2 and Fig. 4.3) on the same sample.

5.5.4 Spin diffusion model

To understand how electron spin polarization influences nuclear spin diffusion, we attempted to
calculate the transition rate probability W between the states |αβ〉 and |βα〉 of a pair of coupled
nuclear spins, at an internuclear distance a, with dipolar coupling constant D12, both subject to
the dipolar field of an electron spin, at distances ri and with hyperfine coupling constants Azz,i,
as shown in Fig. 5.25. For this, I tasked a Master’s student, Alessandro Chessari, to perform this
calculation based on Horvitz’ model [108] but in a slightly more general way. Indeed, in Horvitz’
results, nuclear coordinates are expressed in terms of lattice positions in a crystal, while we are
concerned with frozen solutions and so we needed to calculate the rate in the case of a statistical
distribution of spins.

Alessandro Chessari realized this task with an unexpected level of sophistication. He performed
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Figure 5.25: Schematic representation of the hidden and visible nuclear spins interacting with the
electron spin through the hyperfine interaction with intensities Azz1 and Azz2. The two nuclei
interact together with the dipole-dipole coupling constant D12.

the calculation in a more general way than Horvitz’ resulting in an expression that is valid for a
broader range of distances to the electron (see below). Furthermore, he used Lindblad’s Master
equation to describe the influence of the surrounding nuclear spins on the two nuclear spins for
which the transition is computed. The derivation of the rate is presented in the Supplementary
Material of Ref. [177]. Because several steps are out of my reach, we only detail here the hypoth-
esis and the general steps of the calculation.

Following Horvitz [108] the electron is treated semi-classically, taking into account the stochastic
time dependence of its state. The nuclear dipole coupling D12 is also assumed to be weak compared
to the broadening of the nuclear levels |αβ〉 and |βα〉 due to the interactions with the surrounding
nuclei. Since the system is immersed in a strong magnetic field that shifts the spin paired levels
|αα〉 and |ββ〉 far from that of the unpaired subsystem, we can restrict the Hilbert space to the |αβ〉
and |βα〉 subspace. The total Hamiltonian in the rotating frame of the nuclei may be expressed as

Ĥ(t) = ĤD + ĤHF (t), (5.42)

where the nuclear dipolar Hamiltonian ĤD and the time-depend hyperfine Hamiltonian ĤHF (t)
are expressed in terms of the Pauli matrices σ̂± = Î1±Î2∓ and σ̂z = Î1z − Î2z as

ĤD = −1

2
D12(σ̂+ + σ̂−) (5.43)

ĤHF (t) =
1

2
Δ(P̄ + P ′(t))σ̂z, (5.44)

where Δ = Azz,1 −Azz,2 is the difference of the hyperfine interaction strength. For simplicity, we
ignore any diagonal terms giving rise to an overall shift of the two energy levels.

The dynamics of the electron polarization P (t) is decomposed into a static contribution given
by the average value P̄ and an unbiased signal P ′(t), with an autocorrelation function

〈P ′(0)P ′(τ)〉 = (1− P̄ 2)e−Γc|τ |, (5.45)

where 1/Γc = τc is the correlation time of the electron spin state. [108] In other words, the nuclear
spins experience two contributions of the hyperfine interaction. The static part causes a time-
independent nuclear frequency shift proportional to the average nuclear polarization P̄ (as depicted
in Fig. 2.13), while the dynamic part averages to 0 over time but enables transition between the
|αβ〉 and |βα〉 states. This dynamic part of the electron dynamics, which is proportional to 1− P̄ 2,
was exploited in Chapter 4 to measure EPR properties via nuclear R2 and R1ρ relaxation rates.
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Here, we investigate its contribution to spin diffusion. Note that this decomposition of the electron
state is only valid for nuclear spins with a hyperfine interaction constant weaker than the inverse
of the electron correlation time |Az| < 1/τc. [107]

The steps of the calculation are the following. First, the transition probability induced by the
nuclear dipolar interaction is calculated in the interaction frame of the hyperfine interaction given

by U0 = e−i
∫ t
0
Ĥ′

HF (τ)dτ . In this frame, the Hamiltonian reads

Ĥ =
1

2
ΔP̄ σ̂z − 1

2
D12 (σ̂+f(t) + σ̂−f∗(t)) , (5.46)

where f(t) = eiΔ
∫ t
0
P ′(s)ds. The transitions probability is calculated using first-order perturbation

theory and yields, after simplifications,

W|αβ〉→|βα〉 =
D2

12

4

∫ ∞

−∞
dτ〈σ̂−(τ)σ̂+(0)〉P ′ . (5.47)

Then, the influence of the surrounding bath of nuclei is taken into account in the correlator of
Eq. 5.47 for a particular realization of the stochastic trajectory of P ′(t) using Lindblad’s Master
equation, [212, 213, 214, 107] yielding

〈σ̂−(τ)σ̂+(0)〉P ′ = e−Γ2|τ |e−iΔP̄ τ−iΔ
∫ τ
0

P ′(s)ds, (5.48)

where Γ2 is the spin-spin relaxation rate of the nuclei, i.e., the broadening of the nuclear levels,
which is assumed to be governed by the interaction with the bath of surrounding nuclei. Finally,
the integral of Eq. 5.47 is calculated using Eq. 5.48 assuming the autocorrelation function of Eq.
5.45, yielding [215, 216, 217]

W|αβ〉→|βα〉 =
D2

12

4

∫ ∞

−∞
e−iΔP̄ τ−Γ2|τ |〈f(τ)〉P ′dτ

=
D2

12

4

1

2π

∫ ∞

−∞
SΓ2

(ω −ΔP̄ )F (ω)dω

=
D2

12

2

Γc(1− P̄ 2)Δ2 + Γ2(Γ̄
2 +Δ2)(

(1− 2P̄ 2)Δ2 + Γ2Γ̄
)2

+Δ2P̄ 2(Γ2 + Γ̄)2
,

(5.49)

where Γ = Γ2 + Γc, F (ω) is the spectrum of the modulation of 〈f(t)〉P ′ given by

F (ω) =
2Γc(1− P̄ 2)Δ2

(ω2 − (1− P̄ 2)Δ2)2 + ω2Γ2
c

, (5.50)

and SΓ2
is the spectrum of the difference between the nuclear levels given by

SΓ2(ω −ΔP̄ ) =
2Γ2

(ω +ΔP̄ )2 + Γ2
2

. (5.51)

The transition rate is only non-zero if the convolution product SΓ2
(ω −ΔP̄ )F (ω) is non-zero

for some frequency ω, which is realized when the difference between the Larmor frequency of the
nuclei (given by SΓ2

(ω −ΔP̄ )) matches the frequency of the fluctuation of the electron spin state
(given by F (ω)). In other words, the electron flip-flops induce spin diffusion by compensating for
the frequency mismatch between the |αβ〉 and |βα〉 nuclear levels.

When the electron polarization tends towards unity, the electron flip-flops get frozen out (i.e.,
Γc → ∞ and P̄ → 1) [3] and so they stop contributing to the transition rate given by Eq. 5.49,
leading to
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W|αβ〉→|βα〉 =
D2

12

2

Γ2

Γ2
2 +Δ2

. (5.52)

This corresponds to the transition rate between two non-degenerate nuclear levels commonly
found in the literature. [218, 219, 71, 72] In the limit of high electron polarization with P̄ �= 1 and
close to the electron, Eq. 5.49 simplifies to

W|αβ〉→|βα〉 =
D2

12

2

1− P̄ 2

P̄ 2

Γ̄

Δ2P̄ 2 + Γ̄2
, (5.53)

which is equivalent to the transition rate obtained by Horvitz’ perturbative approach in 1971. [108]

Based on the transition rate, we calculate the diffusion coefficient as D = Wr2a, with ra the
average internuclear distance, following Bloembergen. [161] Fig. 5.26A shows the diffusion co-
efficient as a function of the distance of the closest nucleus to the electron for various electron
polarizations. The dipolar interaction D12 and the hyperfine interaction constants Azz,1 and Azz,2

were averaged over all orientations so that the diffusion coefficient depends only on r (and not on
the angles between the vectors connecting the spins and the magnetic field). The black and gray
vertical lines indicate the radius of mean volume per electron rMV ≈ 2.0 nm and the radius of
the hidden spin reservoir rh ≈ 0.9 nm, respectively (which we define as the interface between the
hidden and visible spins, where the 1H spins have a coupling of 100 kHz with the electron). The
grayed area represents the distance to the electron where the assumption that the nuclear spins
experience an average value of the hyperfine interaction is no longer valid, i.e., Γc < |Azzi|. Fig.
5.26B shows the spin diffusion coefficient at the interface between the hidden and visible spins,
for an electron polarization from 0 to 100%. As depicted by the hollow circles in Fig. 5.26, our
model predicts that spin diffusion at the interface is ≈ 7 times faster when the electron polarization
is P̄ ≈ 50% (that is, under μw irradiation [49, 67]) compared to that at Boltzmann equilibrium
P̄ = 99.93%. As Fig. 5.26A shows, the contrast of spin diffuson between μw-on and -off is even
stronger closer to the electron.

The rate at which polarization rises in the HypRes curves (see Fig. 5.22) is sensitive to the spin
diffusion coefficient at the interface between the hidden and visible spins. As we have seen, when
the polarization of the electron approaches unity, diffusion is dramatically reduced. In that sense,
our theoretical model matches qualitatively with our experimental observations. Because DNP
occurs under μw irradiation, that is, at low electron polarization, both our experimental results
and our theoretical model lead to the conclusion that spin diffusion in the vicinity of the electron
is efficient in our conditions, precisely when DNP is active.

Our model is based on simplifying assumptions which could be improved in several ways.
First, we have assumed that the decorrelation rate of the electron spin Γc is large compared to
the hyperfine interaction but this assumption breaks down at r = 0.34 nm (see Fig. 5.26). A
more precise calculation would require the use of slow-motion theories. [220] Moreover, we have
only considered the anisotropic part of the hyperfine interaction. Improving these points would
be necessary if one intends to treat the important case of nuclei on the radical molecule; We have
only considered 2-spin order but considering coupled spin terms between more than two spins
would lead to predicting faster spin diffusion; [72] We have represented the electron spin state
using a spectral density function assuming a homogeneous positive electron polarization. Yet, the
predicted number of flip-flops could be higher if the non-Zeeman spin temperature of the electron
is considered as it leads to significant variation of electron spin polarization along the spectrum of
the electron spin, even though with an apparent constant average Zeemann polarization (see Fig.
3.18).

We found that, in this sample, spin diffusion in the vicinity of the electron is effectively quenched
when the electron polarization approaches unity. In other samples, other mechanisms that couple
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Figure 5.26: A. Calculated spin diffusion coefficient as a function of the distance to the electron
for the same spin system for different electron polarization P̄ between 0 and 1 in steps of 0.1 (see
Eq. 5.49). The vertical black and gray lines represent the radius of the mean volume per electron
and the limit between the visible and hidden spins, respectively. The gray area indicates the region
where the model hypothesis breaks down (1/τc < |Azzi|). B. Spin diffusion coefficient as a function
of the electron polarization at the interface between hidden and visible spins. The arrow between
the two hollow circles on both panels indicates the increase in diffusion coefficient upon switching
on μw irradiation. The nuclear interdistance ra, the nuclear broadening due to nucleus-nucleus
interactions, and the electron correlation time τc are assumed to be 0.66 nm, 18 kHz, and 0.5 μs,
respectively.

the nuclear spins to the lattice phonons could be at play. [211] In particular, methyl rotation which
is still active at temperatures as low as 1 K could contribute to enhancing spin diffusion. [221]

5.6 Perspectives

We presented a new method, HypRes, and its variants to study nuclear spin polarization transfers
between hidden and visible nuclear spins, i.e., those close to the electron and those further away,
respectively. While such transfers are most often studied in theory, the HypRes method gives
experimental access to them by creating a gradient of polarization between the hidden and visible
reservoirs and observing how their polarizations equilibrate with time. We applied the method
to several cases: 1H and 13C DNP using TEMPOL and trityl radicals, respectively, in dDNP
conditions between 1.2 and 4.2 K at 7.05 T and 1H DNP under MAS-DNP at 100 K and 14.0 T.
In all cases, we found that diffusion in the vicinity of the electron is faster than the return of the
bulk polarization towards Boltzmann equilibrium.

Spin diffusion of 1H spins was investigated in DNP juice doped with 50 TEMPOL using HypRes
as a function of temperature and revealed that the polarization flow rate between hidden and visible
spins spreads over two orders of magnitude between 1.2 and 4.2 K. The same data set was also used
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to estimate the size of the hidden reservoir, i.e., the fraction of nuclear spins which do not contribute
to the NMR signal, and we found that the hidden fraction was of the order of 4− 7%. The hidden
fraction was simulated numerically taking into account paramagnetic relaxation enhancement and
paramagnetic shifts and the simulated value was found to be in reasonable agreement with the
experimental one. On the contrary, a much larger fraction of ≈ 30% was obtained by recording the
1H thermal equilibrium signal of DNP juice as a function of TEMPOL concentration. For now,
this discrepancy remains unexplained. The fraction of hidden 1H spins in DNP juice with 50 mM
of 4 − 7% was found to be consistent with that of 13C spins in neat [1-13C]-pyruvic acid doped
with 25 mM trityl (≈ 0.8%), considering the ratio of the radical concentrations and the ratio of
gyromagnetic ratios of 1H and 13C spins.

The use of broadband inversion pulses in HypRes experiments was shown to enable the ma-
nipulation of 1H spins among the invisible spins. The HypRes experiment with inversion was
performed on DNP juice doped with 50 mM TEMPOL and showed that 1H spins as close as 3
Å to the electron were still able to exchange polarization with bulk 1H spins on a shorter time scale
than T1 relaxation at 3.8 K and 7.05 T. In Wolfe’s definition of the spin diffusion barrier, this result
implies that the barrier must be smaller or equal to 3 Å. The HypRes results with inversion pulses
also showed experimentally that the nuclear spin diffusion coefficient decreases gradually for spins
closer to the electron. If this is to be expected in theory, it had not been verified experimentally,
to the best of our knowledge.

The HypRes pulse sequence makes use of a train of saturation pulses to saturate selectively
the visible spins and not the hidden spins. In the most recent experiments, we replaced square
saturation pulses by sinc pulses and showed that the saturation profile is better defined with sinc
pulses, which facilitates the interpretation of the results.

We introduced a third variant of the method, namely, the μw on-HypRes experiment, where spin
diffusion between hidden and visible spins is recorded while the electron spin polarization is not at
Boltzmann equilibrium but a lower value controlled by the intensity of μw irradiation. We applied
this method to 1H spin diffusion in DNP juice doped with 50 mM TEMPOL at 1.2 K to investigate
the effect of electron polarization on nuclear spin diffusion. We found that the polarization flow
rate between the hidden and visible reservoirs spreads over two orders of magnitude depending
on the intensity of μw irradiation, as was the case for the measurements of μw off-HypRes as a
function of temperature. We showed that the polarization flow rates measured by μw on- and
off-HypRes experiments have the same dependence on the electron polarization. In the case of the
μw-off experiment, the electron polarization was simply calculated using Boltzmann’s equation,
while, in the case of the μw on-experiment, we used the measured values presented in Chapter 4
(see Sec. 4.2). μw off-HypRes experiments were recorded at temperatures between 1.2 and 4.2
K, while μw on-HypRes experiments were all measured at 1.2 K; the fact that the dependence of
the nuclear spin diffusion flow rate on electron polarization is the same in both cases is a strong
indication that nuclear spin diffusion in the vicinity of electron spins is mediated by electron spin
dynamics and not by lattice phonons.

Finally, we rationalized the dependence of nuclear spin diffusion on electron polarization by
constructing a model of spin diffusion based on a 2 nucleus-1 electron model inspired by the work
of Horvitz. [108] This model treats the dynamics of the electron spin semi-classically and assumes
that the field experienced by the nuclei due to the nearby electron averages to a value proportional
to the electron polarization due to rapid electron flip-flops. On one hand, the presence of the elec-
tron lifts the degeneracy between the |αβ〉 and |βα〉 nuclear levels which hinders spin diffusion; on
the other hand, the fluctuation of the electron spin state may compensate for the energy mismatch
and act as a drive for the |αβ〉 ↔ |βα〉 transition, enabling nuclear spin diffusion. The higher the
electron polarization, the stronger the energy mismatch and at the same time the weaker the drive
provided by the electron spin state fluctuations. Both effects act together to decrease the efficiency
of spin diffusion at increasing electron polarizations. In our DNP conditions, the electron polar-
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ization at 1.2 K is lowered from 99.93% to ≈ 60% by μw irradiation. Both our experimental and
theoretical results show the fact that μw irradiation lowers the electron polarization is determining
for the efficiency of spin diffusion and hence of DNP.

The HypRes experiments presented in this work were performed mostly on DNP juice doped
with 50 mM TEMPOL, but several other samples could be of interest. In dDNP conditions,
HypRes as a function of radical concentration could be used to confirm that stronger electron-
electron interactions increase electron flip-flops and hence spin diffusion. We have found evidence
that DNP is faster in samples containing methyl groups, which are known to rotate even at 1.2
K. [221] HypRes could be performed in a sample with various concentrations of methyl-containing
molecules (e.g., acetate or methanol) to verify if methyl rotation mediates spin diffusion in the
vicinity of the electron spin. All the HypRes measurements we have performed were on fixed
electrons. HypRes on PANI could be used to study the mobility of the electron spins in our
conditions. Indeed, if electrons in PANI move along the polymer chain, their tendency to hinder
nuclear spin diffusion should be much weaker. Finally, in the context of MAS-DNP, HypRes could
be used to study the efficiency of nuclear spin diffusion with different radicals. In particular, Perras
et al. have shown by simulation that the strong 1H density around the electron spin in TEKpol
acted like channels for nuclear spin diffusion. [141, 142, 143] HypRes could be used to assess this
effect experimentally.

The model for spin diffusion that was presented in this work was only compared qualita-
tively with experimental results. To test its validity quantitatively, two approaches could be used.
HypRes curves (as well as DNP and thermal equilibrium build-up curves) could be fitted with
temperature-like models, [207] where the input parameters are the initial distribution of nuclear
polarization, the nuclear T1 and the spin diffusion coefficient, all three as a function of the dis-
tance to the electron. The first can be determined experimentally, the second is given by the
paramagnetic relaxation rate and the last would be the result of our model. The other possible
approach is full quantum mechanical simulations as that performed by Hovav et al. [189, 190, 69]
or Karabanov et al. [71, 203, 72].

So far, we have mainly used HypRes as a tool to understand nuclear spin diffusion in the vicinity
of the electron on a fundamental level. In the future, it could be used for the design of optimal
sample architecture. As an example, clusters of electrons surrounded by a strong 1H density could
be constructed to reach optimal electron-electron interactions for TM while the high 1H density
would enable efficient spin diffusion from the electron spin clusters to the bulk nuclear spins. Since
the HypRes method allows one to disentangle the efficiency of DNP and spin diffusion, such a
sample architecture could be optimized by assessing the efficiency of spin diffusion independently
of that of the DNP mechanism.



Chapter 6

Hyperpolarized liquid-state NMR
at zero-field

In this final chapter, we move to the liquid-state side of dDNP experiments. As we did in the
chapter where we introduced the solid-state side of dDNP (see Chapter 3), we first introduce the
instrumentation and the methods for dissolution experiments. We start by detailing the hardware
for fast dissolution, transfer and, injection experiments that our team has developed. [222] Next,
we show how to quantify polarization in the liquid-state. [121] Finally, we discuss possible sources
of polarization losses during dissolution experiments and strategies to mitigate them. [121]

We then present two projects where we used ZULF methods in combination with dDNP. The
first project uses spin dynamics at ZULF to mediate a 1H →13 C polarization transfer in the
liquid-state. The method consists of polarizing 1H spins in the solid-state and, after dissolution,
propelling the hyperpolarized solution through a well-controlled magnetic field inversion. If the
magnetic field inversion is adiabatic, polarization transfers from 1H to 13C spins (provided they
are J-coupled) and the molecules reach the liquid-state spectrometer bearing hyperpolarization on
13C spins. We present experimental results as well as numerical simulations of the polarization
transfers.

The second project consists of coupling dDNP hyperpolarization with detection at ZULF. An
example of such experiment was already reported by Barskiy et al. using direct 13C-DNP from
trityl radicals. [91] Here, we use 1H-DNP with 1H →13 C to polarize 1H and 13C spins at the same
time, as they both contribute to the signal at zero-field. [223] We first detail the hardware for
ZULF detection. We show experimental results of ZULF detection of mixtures of compound hyper-
polarized by dDNP. Finally, we discuss the contribution of paramagnetic relaxation to polarization
losses during the transfer and strategies to overcome them.

6.1 dDNP instrumentation and methods

The dissolution step of common dDNP experiments consists of injecting a hot solvent, often D2O,
onto the hyperpolarized sample to dissolve it and push the mixture to the liquid-state spectrometer
(or MRI scanner) using a pressurized propeller fluid. [224, 121] The transfer and injection can
be realized in several ways. The first approach which was introduced in 2003 by Jan-Henrik
Ardenkjær-Larsen is to push the sample using pressurized helium gas. [25] This strategy has
been improved and optimized in several ways since then, as detailed in Ref. [121]. Depending on
the application, the dissolution process has different requirements. For rapidly relaxing species,
it should be fast. Transfer times down to 1.2 − 2.0 s are reported. [225, 226, 55] For in vivo
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applications, the injected solution should be sterile. [227] For applications such as drug screening
[30, 31] and protein dynamics monitoring, [36, 228] the injected volume needs to be well controlled.
For the analysis of complex mixtures such as in the case of metabolomics, the signal linewidth
should be narrow to enable signal assignment. [229, 34, 230]

Inspired by Bowen et al.’s work, [231] our team has developed an approach for sample dissolu-
tion transfer, and injection in less ≈ 1.8 s for a transfer over 2 m and in ≈ 3.5 s for a transfer over
10 m, with control of the injected volume. This method was tested on a mixture of [1-13C]-alanine,
[1-13C]-acetate, 13C-formate and 13C-urea. The hyperpolarized signals had 13C signal linewidth
below 0.8 Hz 5 s after injection (note that the signal was not measured between 0 and 5 s). How-
ever, the 13C polarization was only of the order of 4%. [222] Since then, we were able to improve
the magnetic field profile along the transfer which allowed us to minimize polarization losses and
reach a 13C polarization of 51% ± 13% over seven dissolution runs. The hyperpolarized signal of
[1-13C]-acetate had linewidth below 1 Hz and 0.4 Hz, 2 s, and 12 s after injection, respectively.
The injected volume had a standard deviation of 37 μl. These recent results are not published yet.

This work has been the struggle and combined effort of the whole HMRlab team but particularly
of my former colleague Morgan Ceillier who developed the instrumentation as part of his Ph.D. My
contributions to this effort were to understand the sources of polarization losses during dissolution
experiments whether by non-adiabatic variations of the magnetic field (intensity or orientation)
or through relaxation; to design strategies to control the magnetic field profile along the transfer
(in close collaboration with Morgan Ceillier); and to develop data analysis tools on MATLAB so
that non-experts of programming could quantify polarizations after dissolution, fit T1 constants to
polarization decays and extract linewidths as a function of time after injection. In this section, we
briefly present the instrumentation for fast dissolution, transfer, and injection. Then, we show how
polarization can be quantified in the liquid-state after dDNP. Finally, we list the possible sources
of polarization losses during dissolution experiments and present strategies to mitigate them.

6.1.1 Fast dissolution, transfer, and injection

The AlphaPolarizer, our Bruker functional model dDNP polarizer was initially equipped with a
simple dissolution system working according to the following procedure (see diagram in Fig. 6.1). A
pressure cooker heats the dissolution solvent prior to dissolution. At this point, the hyperpolarized
sample is held in liquid helium at the bottom end of the sample stick. To perform the dissolution
process, the operator lifts the sample stick to bring the sample above the level of liquid helium but
still inside the cryostat and at high magnetic field. Then, the operator introduces the dissolution
stick inside the sample stick and connects it to the sample cup. The dissolution stick consists of a
tube that contains two capillaries, the input capillary, which is connected to the pressure cooker,
and the output capillary, which is connected to the NMR tube in the liquid-state spectrometer via
the injector. Immediately after connecting the dissolution stick to the sample cup, the operator
triggers the dissolution process, which sends the dissolution solvent onto the hyperpolarized sample
and the mixture is propelled to the injector by pressurized He gas (which flows through the pressure
cooker) during a defined delay. The solution fills in the injector and flows down in the NMR tube
under the effect of gravity and capillarity. At the end of the sequence, a TTL trigger is sent to the
liquid-state spectrometer to launch acquisition.

This system has the advantage to be relatively simple to operate. Its main disadvantage is that,
after switching off the He gas flow, the pressure takes a few seconds to equilibrate with atmospheric
pressure, time during which turbulences and gas bubbles prevent high-resolution NMR acquisition.
During this time, the sample starts relaxing, which is an important limitation for hyperpolarized
species with T1 of a few seconds or below. Furthermore, even after the pressures have equilibrated,
the He gas, which has dissolved into the solution during the dissolution process, starts forming
microbubbles, causing linebroadening of the NMR signal. Nonetheless, this approach has been
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Figure 6.1: Diagram of the main components of the gas-driven dissolution setup from the polarizer
to the liquid-state spectrometer (from left to right), represented just before the sample stick is
connected to the sample cup when the sample has already been lifted up above the liquid helium
bath.

shown to yield high repeatability, in particular using methanol as dissolution solvent. [230]

In the approach that our team has developed (inspired by Bowen et al.’s work [231]), the
beginning of the sequence is the same and the solution still leaves the polarizer pushed by He gas,
which flows through the pressure cooker (referred to as “Dissolution box” in Fig. 6.2). However, in
this case, the solution does not go straight to the liquid-state spectrometer; it first goes through a
ten way-valve and fills a capillary loop. Once the capillary loop is filled, the front end of the sample
bolus reaches an optical sensor, which triggers a second sequence of events. The ten way-valve
turns and the volume of sample that was trapped in the capillary loop is now connected to a liquid
pump on one side and to the capillary going to the liquid-state spectrometer on the other side.
The liquid pump immediately starts pushing liquid isopropanol towards the capillary loop which
propels the hyperpolarized solution to the NMR tube. The pump is configured to make a precise
number of turns before stopping, which enables control of the volume injected into the NMR tube.
Once the pump has stopped turning, a second ten way-valve (the right one in Fig. 6.2) turns
so that a back pressure is applied onto the hyperpolarized solution. This back pressure prevents
the He gas which dissolved in the hyperpolarized solution during the first part of the dissolution
process to degas and cause line broadening of the NMR signal. Finally, a TTL trigger is sent to
the liquid-state spectrometer, which launches the NMR acquisition.

The time between the instant where the operator triggers the dissolution process and the instant
where the optical sensor detects liquid (i.e., the time for the dissolution solvent to go through the
sample cup to the end of the capillary loop) is 1.35 ± 0.01 s. From this point, the time of the
remainder of the sequence depends on the distance between the polarizer and the liquid-state
spectrometer. [222] With a capillary of 10 m, the transfer takes ≈ 2.1 s, resulting in a total
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Figure 6.2: Diagram of the setup for fast dissolution, transfer, and injection.

dissolution time of ≈ 3.5 s (including extra delays to turn the valves). With a capillary of < 2 m,
the transfer time is below 0.5 s, resulting in a total dissolution time of ≈ 1.8 s and so the longest
part of the process is, in this case, to fill the capillary loop.

This method combines the advantage of a rapid time of dissolution, even over long distances (10
m) with control of the injected volume (standard deviation of 37 μl) and excellent signal linewidth
below 1 Hz for 13C, 2 s after injection on a benchtop spectrometer. The contamination due to the
propeller liquid was found to be negligible, provided the tubing was thoroughly cleaned between
dissolution runs. However, all this is hardly useful if most of the polarization is lost during the
dissolution and transfer. Indeed, in Ref. [222], we reported polarization of only ≈ 4%, while our
typical solid-state 13C polarization after multiple contact 1H→13C-CP is > 50%. Understanding
where the polarization was lost during the transfer has been a tremendous effort for our whole
team. In Sec. 6.1.3, we will detail the mechanisms which we think used to make us lose so much
polarization during the transfer and how we have eventually tamed these losses.

6.1.2 Liquid-state detection and polarization quantification

In Ref. [121] (Sec. 8), I presented in detail how the liquid-state signal is acquired after a dDNP
experiment and how to quantify the polarization. Here, we will focus on the key aspects.

Virtually all conventional NMR experiments can be applied to samples hyperpolarized by
dDNP. However, since the polarization and signal decay with time, one has to adapt the rf pulse
sequences and experimental schemes. As an example, 2D experiments may be performed on a
dDNP hyperpolarized sample, provided one uses ultrafast versions of the rf pulse sequences. [232]
Here, we will be concerned with the simplest type of liquid-state detection, which consists of a
series of 1D acquisitions with small angle rf pulses separated by a constant delay. This type of
detection, referred to as pseudo-2D, is the only one I used during my Ph.D. Fig. 6.3A illustrates
the pulse sequence. After the sample was injected, a delay twait allows the solution to settle before
the detection starts. The repetition time between acquisitions tr is usually set to be long compared
to the nuclear transverse relaxation time constant T ∗

2 (typically tr > 5T ∗
2 ) to avoid that one FID

pollutes the following. Alternatively, one may use gradients to dephase remaining coherence from
the previous FID before the next.

As an example, Fig. 6.3B shows the decay of the 13C signal of hyperpolarized [1-13C]-acetate
after injection into a bencthop spectrometer operating at 1.88 T (Bruker Fourier 80), monitored by
5� pulses. To convert the signal integral into polarization, one needs to record a thermal equilibrium
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Figure 6.3: A. Pulse sequence for the detection of hyperpolarized species in liquids. The symbols
twait and tr stand for the waiting delay and repetition time, respectively. B. Typical decay of the
hyperpolarized quadruplet of [1-13C]-sodium acetate recorded at 1.88 T using rf pulses with a 5
nutation angle without 1H decoupling with a repetition time of 5 s and a waiting delay of 8 s.
C. Decay of the signal integral (blue circles) fitted with a monoexponential decay including the
correction for the effect of rf pulses. Reproduced with permission from Ref. [121]

reference signal, as we detailed for the case of solid-state polarization (see Sec. 3.1.3 and 3.1.3).
In the liquid-state detection, the signal enhancement is often so high that the hyperpolarized
signal cannot be recorded with the same parameters as the thermal equilibrium (unless with poor
sensitivity of the thermal equilibrium signal or with saturation of the receiver for the hyperpolarized
signal). The polarization is therefore computed as

PDNP =
InDNP

InTh

PTh, (6.1)

where InDNP , I
n
Th and PTh are the normalized signal integrals of the hyperpolarized and thermal

equilibrium signals and the thermal equilibrium Boltzmann polarization of the nuclear spins at
the magnetic field of the liquid-state spectrometer and the temperature at which the thermal
equilibrium signal was recorded (see Eq. 1.3), respectively. The integrals are normalized as
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Ink =
Ik

NSRG sin θ
, (6.2)

where Ik, RG, NS and θ are the raw signal integral of either the hyperpolarized or the thermal
equilibrium signal, the receiver gain, the number of scans, and the pulse angle used to acquire the
signal, respectively. For the thermal equilibrium, the pulse angle is usually π/2 and the number of
scans is set high enough to enable sufficient SNR. For the hyperpolarized signal, the pulse angle is
usually set to a lower value, e.g., 5�, and the number of scans to 1.

In the example shown in Fig. 6.3B, acquiring the thermal equilibrium signal of 13C spins after
dissolution is hopeless. Indeed, with a concentration of a few tens of mM, the sensitivity of 13C spins
at 1.88 T does not yield a signal with sufficient SNR, even after a full week of signal averaging.
To circumvent this limitation, if the concentration of the solute for which the polarization is to be
computed can be quantified in the solution after dissolution, one can compare the integral of the
hyperpolarized signal with that of a more concentrated reference sample, for which a decent SNR
can be obtained. In this case, the normalization of the signal must account for the concentration
of the solute C in addition to the other parameters

Ink =
Ik

NSRG sin θ

1

nC
, (6.3)

where n is the number of equivalent spins for which the integral is computed. A convenient way
to quantify the molecule is to use 1H NMR but this is of course limited to molecules bearing
quantifiable 1H spins. This approach assumes that the sensitivity of the probe is not affected by
increasing the solute concentration. While at high-field the Q-factor of the probe may be sensitive
to the sample composition, in particular to the ionic strength of the solution, it is not the case
at 1.88 T, where we have verified that the signal integral was linear with the concentration of
[1-13C]-sodium acetate up to 2.5 M, both for the 1H and 13C channels.

The 13C signal along time of Fig. 6.3B was converted into polarization using Eq. 6.3 and is
shown in Fig. 6.3C. In this case, the reference 13C sample contained 2.5 M of [1-13C]-acetate.
The concentration of [1-13C]-acetate was measured to be 8.4 mM by comparison of the thermal
equilibrium of the 1H signal of the sample resulting from the dDNP experiment with that of the
reference sample.

6.1.3 Polarization losses

As mentioned in the introduction of Sec. 6.1, our team has struggled for several years to maintain
the hyperpolarization accrued in the solid-state during the dissolution process, until detection in
the liquid-state. It is well-known that regions of low-field (or zero-field) can cause polarization
losses in dDNP experiments [53, 233] In Ref. [121] (Sec. 7), I presented a detailed account of
the possible mechanisms that can cause polarization losses during dissolution experiments, which
are separated into two types: the return towards Boltzmann equilibrium by relaxation (incoherent
losses) and the excitation of coherence by non-adiabatic variation of the magnetic field intensity or
direction (coherent losses). Here, we summarize these mechanisms, restricting to those occurring
in the liquid-state and paying particular attention to the magnetic field dependence of the mecha-
nisms (in the case of relaxation). We then present the strategies we came up with to mitigate them.

Hyperpolarized nuclear spins return to Boltzmann equilibrium because they are subject to
random fluctuations of their Hamiltonian. These fluctuations are stochastic and depend on the
physical parameters related to the experimental setup (temperature, magnetic field profile, etc.),
the sample formulation, dissolution solvent (presence of radicals, dissolved oxygen, protonation
level, etc.), and the properties of the hyperpolarized molecule (dipolar couplings, chemical shift



6.1. DDNP INSTRUMENTATION AND METHODS 163

anisotropy (CSA), J-couplings, chemical exchange, etc). By definition, these fluctuations average
to zero if we consider a single spin on a sufficiently long timescale or a sufficiently large number
of spins. Intuitively, one can say that a nuclear spin ensemble may relax to thermal equilibrium
whenever it experiences magnetic fields which oscillate near or at the Larmor frequency. In general,
relaxation rates are proportional to the probability to find the perturbating field oscillating at the
Larmor frequency (as well as at the difference and sum of the Larmor frequencies between coupled
spins in some cases); this probability as a function of frequency is called the spectral density. In
addition, relaxation rates are proportional to the square of the strength of the perturbating field
(see Eq. 2.155).

The dipolar interaction between nuclear spins within molecules gives rise to intermolecular
nuclear dipolar relaxation. In the case of rigid molecules, rotational diffusion modulates the in-
teractions, therefore causing relaxation. The molecules that we studied here (e.g., 13C-formate,
[1-13C]-acetate, [1-13C]-pyruvate, [2-13C]-pyruvate, and [3-13C]-pyruvate) are small and tumble
rapidly in solution, which makes the spectral density function of their rotational state flat on the
range of interest and so it does not depend significantly on the magnetic field (in the range of in-
terest, i.e., < 1 T). This makes the rate of intramolecular dipolar relaxation field-independent for
these small molecules. This rate is inversely proportional to the 6th power of the distance between
the spins, which makes this mechanism vanishingly weak as soon as the nuclear spins are more
than a few Å apart. This explains why the T1 of the 13C nucleus at 1.88 T and room temperature
in D2O goes from < 20 s in [3-13C]-pyruvate, where the 1H-13C distance corresponds to a single
bond length, to > 100 s in [1-13C]-pyruvate, where the 1H and 13C spins are three bonds apart.
In the case of CSA relaxation, the intensity of the CSA increases linearly with magnetic field and
so the CSA relaxation rate increases with the square of the magnetic field. This mechanism is
therefore inefficient at the low magnetic fields of dissolution experiments.

In addition to relaxation mediated by interactions within the molecules, intermolecular interac-
tions can also cause relaxation and are often the strongest source of relaxation in our experiments.
In the case of intermolecular dipolar relaxation, a spin on one molecule relaxes through the dipolar
interaction with a spin on another molecule, and the interaction is modulated by translational
diffusion. The spin acting as relaxing agent can either be borne by an electron (paramagnetic
relaxation1) or a nucleus (intermolecular nuclear dipolar relaxation). In contrast with rotational
diffusion, the spectral density of the interactions modulated by translational diffusion is usually not
flat. Therefore, intermolecular dipolar relaxation increases when magnetic field strength decreases.
[234, 235] Common sources of intermolecular dipolar relaxation are solvent 1H spins. Common
sources of paramagnetic relaxation in dDNP experiments are of course the polarizing agent but
also dissolved oxygen. As an example, the paramagnetic 13C-relaxation rate of [1-13C]-acetate in
D2O in the presence of 2.5 mM TEMPOL was measured by Mieville et al. as a function of mag-
netic field from 2 mT to high-field. [234] Their measurements showed that the relaxation rate was
below 0.2 s−1 (T1 of at least 5 s) on the whole field range and fell below 0.1 s−1 (T1 of at least 10 s)
above 0.1 T. 2.5 mM is a higher concentration than that in our experiments, where the solid-state
sample has an initial concentration of 50 mM TEMPOL and the dissolution process dilutes it by
≈ 50. However, it gives conservative lower bounds for T1(

13C) values in our conditions.

Other mechanisms exist (e.g., chemical exchange, scalar relaxation of the second kind, and spin
rotation) but they are not effective for the molecules of interest in our conditions.

Among the mechanisms mentioned above, all can be mitigated by increasing temperature, as
this reduces the correlation time of the interaction and flattens the spectral density. Intramolecular
dipolar relaxation can only be further acted upon by modifying the molecules of interest. For
example, the position of the 13C label in pyruvate plays an important role for the T1(

13C). As we
have mentioned, T1(

13C) in D2O is much shorter for [3-13C]-pyruvate than for [1-13C]-pyruvate.

1We implicitly refer to “intermolecular paramagnetic relaxation” as “paramagnetic relaxation” for simplicity
because we are not concerned by relaxation of electron spin bearing molecules in the liquid-state.
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Deuteration of the molecule can also be an efficient strategy in some cases. However, because the
spectral density of the interaction causing relaxation is flat, it is useless to increase the magnetic
field to mitigate this mechanism. To mitigate intermolecular nuclear dipolar relaxation, it is
common to use deuterated solvents as D2O instead of H2O.

To mitigate paramagnetic relaxation, many strategies have been proposed. Performing DNP
with a lower radical concentration may of course help but it might affect the DNP performance.
Alternatively, some radicals can be precipitated after dissolution so that they can be filtered out;
[227, 236] radicals can be grafted on porous materials and be filtered as well; [57, 54] in the case of
TEMPOL, radicals can be degraded chemically using ascorbic acid after dissolution, which has the
advantage to quench paramagnetic dissolved oxygen at the same time; [237] finally, non-persistent
radicals, such as UV-generated radicals, recombine as temperature increases leaving no radical
molecules in solution. [55, 56]

If the solution does contain radicals, paramagnetic relaxation can in some cases be efficiently
mitigated by increasing the magnetic field strength. Milani et al. have introduced the use of
magnetic tunnels made of permanent magnets producing a field of ≈ 0.9 T along the transfer of
the solution from the polarizer to the liquid-state spectrometer. [53] They found an increase in the
liquid-state polarization by up to a factor of 25 by using a magnetic tunnel. The field-dependence
of paramagnetic relaxation depends strongly on the molecule, the solvent, and the temperature;
and the field profile between the magnets depends strongly on the laboratory configuration. There-
fore, adding a magnetic tunnel might have a tremendous role or no role at all depending on the
situation, as shown by Milani et al.’s results. In particular, in laboratories equipped with shielded
magnets, spins will experience a much lower magnetic field along the transfer (down to Earth’s
magnetic field) than in laboratories with non-shielded magnets. In our laboratory, the magnetic
field goes down to about tens of μT between the polarizer and the liquid-state spectrometers.

The losses caused by relaxation become significant when spins spend a time that is compa-
rable with their T1 under the effect of the relaxation mechanism. There exists another source
of polarization losses that is capable of wiping out the polarization accrued under DNP almost
instantaneously. Imagine that fully polarized spins are moving through space in a homogeneous
magnetic field B0 along the z-axis and that, at some point in space the magnetic field rotates from
the z- to the x-axis, nearly instantaneously. As they reach the region where the magnetic field
points along the x-axis, the spins are no longer in an eigenstate of the Hamiltonian; instead they
are in a superposition of states or, in other words, a coherence is excited between the eigenstates
corresponding to this region in space. Unless this coherent state is converted back into popula-
tion by a second synchronized field rotation before the coherence has decayed with T2 (which has
little chance to occur unless on purpose), the polarization that has been converted to coherence
is no longer available for measurement. On the contrary, if the magnetic field rotates infinitely
slowly from z to x, the spins simply follow the magnetic field, constantly aligning with it. Such a
transformation is said to be adiabatic and we will come back to it in detail in Sec. 6.2. The field
rotation can be considered adiabatic with respect to the spins if its rate ωr is small compared to
the Larmor frequency of the spins ω0. [238, 53] The limit in which it is adiabatic can therefore be
expressed simply as

ω0

ωr
� 1. (6.4)

This criterion may be used to assess if the field profile experienced by the spins during a
particular experiment, provided the field profile is known. For example, we used it to estimate if
a solution of hyperpolarized 13C spins entering our benchtop spectrometer at a speed of 5 m.s−1,
which is typical of our experiments, would experience an adiabatic field trajectory. Fig. 6.4A-B
show the complex profile of the stray field as a function of the distance to the center of the magnet.
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Figure 6.4: A-B. Projections along Cartesian axes and norm of the stray field of the Bruker Fourier
80 benchtop spectrometer as a function of the distance to the center, respectively. C. Ratio of the
Larmor frequency of 13C spins moving at 5 m.s−1 along the z-axis and the rotation rate of the
magnetic field.

From the field profile, the rate of change of the angle of the magnetic field was computed for a
velocity v of the spins as

ωr =
dα

dt
= v

dα

dz
, (6.5)

where dα is the angle between B(z) and B(z + dz). The ratio ω0/ωr is shown for a 13C spin in
Fig. 6.4C. It reaches a minimum of ≈ 80 � 1, which indicates that, despite the complexity of the
field profile, 13C spins should be able to follow the field trajectory if traveling with a velocity v = 5
m.s−1.

A rapid variation of the intensity of the magnetic field (rather than its angle) may also induce
coherence in some spin systems but not for single spin-systems. Indeed, for single spin-systems, a
change in the intensity of the magnetic field influences the eigenvalues but not the eigenstates and
therefore does not induce mixing of the states. For J-coupled spins, coherence may be induced
by going rapidly to low-field, if the coupled spins have a non-zero polarization difference. [235]
The critical field where this phenomenon may occur is the field where the J-coupling matches
the Larmor frequency difference between the coupled spins (see Sec. 6.2). For heteronuclear spin
systems, it will occur at magnetic fields below tens of μT. If such low field values are reached
during a dissolution (at least not on purpose), chances are high that polarization will be lost
anyway by uncontrolled non-adiabatic magnetic field rotations, as described above. In the case of
homonuclear coupled spins, this mechanism can only be expected to be significant in rare cases
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because it requires a polarization difference between the spins, which is not frequent for molecules
polarized by dDNP. The mechanism of polarization losses by a rapid change in the magnetic field
intensity should therefore not be critical in our spin systems.

6.1.4 Magnetic field control

Because our dDNP polarizer is shielded and our liquid-state spectrometer is a benchtop spectrom-
eter, their stray fields are not significant during the transfer of the hyperpolarized solution. The
most critical point is right at the output of the dDNP polarizer where the stray field is partly
canceled by that of two other non-shielded magnets even though they are located ≈ 20 and 10
m away. At this point, the field reaches values below 10 μT and the orientation of the field is
not constant along the output capillary of the dissolution stick. Between the polarizer and the
bencthop spectrometer, the magnetic field is stable with a strength of ≈ 200 μT.

This configuration is rather dangerous in terms of polarization losses, especially at the output
of the polarizer, where the field is low and poorly defined. To minimize polarization losses, we
equipped the capillaries through which the hyperpolarized solution travels with a 0.5 mm copper
wire wound as shown in Fig. 6.5. A current of I = 2 A can be flowed through the wire without
noticeable heating, providing a current of B ≤ μ0nI ≈ 5 mT, where n ≤ 2000 m−1 is the number
of turns per meter. This value represents a maximum because the distance between the turn is in
practice slightly larger than the width of the wire. We use low-price laboratory supplies to feed the
solenoid. Stronger fields could be reached using more powerful current supplies such as that used
by Kouřil et al., which yield fields of ≈ 70 mT. [239] We chose to use weaker fields and current for
ease of use and safety.

Figure 6.5: Typical transfer line used in our dDNP experiments, consisting of a KelF capillary
(O.D. 3.2 mm) surrounded by a 0.5 mm copper wire wound around it.

The capillary output of the dissolution stick is surrounded by a solenoid as shown in Fig.
6.5 from a few cm after its beginning and until its end. Once it reaches the 10 way-valve, it
is impractical to sustain the magnetic field using a solenoid coil and so we surrounded the 10
way-valve and the capillary loop (see Fig. 6.2 for details on these components) with a pair of
magnetic plates consisting of a 3D-printed structure holding an array of N52 magnets arranged to
create a vertical magnetic field. In the center between the plates, the magnetic field is relatively
homogeneous and has a value of ≈ 6 mT (see Fig. 6.6A). The solenoid which leaves the 10 way-
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valve and goes to the liquid-state spectrometer is also surrounded by a solenoid coil with a field of
≈ 4 mT. The connection between this solenoid and the stray field of the benchtop spectrometer is
ensured by an insert that is also surrounded by a solenoid (see Fig. 6.6B).

Figure 6.6: A. 10 way-valve of the fast dissolution, transfer, and injection system surrounded by a
pair of magnetic plates. The capillary surrounded by a solenoid coil is the output capillary of the
dissolution stick. B. Insert of the benchtop spectrometer surrounded by a solenoid coil.

One may wonder whether the transition from the solenoid to the space in between the magnetic
plates is adiabatic. The criterion of Eq. 6.4 may be used to estimate it. The magnetic fields
produced by the solenoid and the magnetic plates are depicted in Fig. 6.7A. At the center of
the solenoid, the magnetic field is only along the x-axis. If we assume for simplicity that the
solenoid is equidistant from the plates, the magnetic generated by the plate is only along the
z-axis. There are two critical points as the spins travel in the capillary along the x-axis: as they
approach the plates, the field along the x-axis increases and as they leave the solenoid, the field
along the z-axis diminishes. Because the magnetic plates have larger dimensions than the solenoid,
the first transition is smoother than the second and so we focus on the second, which is limiting
the adiabaticity. The field produced by a solenoid decays on a distance on the order of four times
its radius R. The π/2 rotation from x to z therefore occurs over a distance ≈ 4R (see Fig. 6.7B).
For a solution velocity v = 5 m.s−1 and a solenoid radius R = 1.6 mm, we get using Eq. 6.5 that
the field rotation has frequency ωr/2π ≈ 200 Hz. The 13C Larmor frequency at 6 mT is ≈ 64 kHz
and the ratio between the Larmor frequency and the frequency of rotation of the magnetic field is
of the order ω0/ωr ≈ 320 � 1.

This rough estimation shows that the field rotation experienced by 13C spins as they move
out from inside the solenoid into the space between the magnetic plates should be adiabatic. Yet,
we obtained 13C polarizations of only ≈ 4% using this setup. [222] Because the field trajectory
is rather complex, we chose to perform experiments where the more “rudimentary” gas-driven
dissolution setup (see Fig. 6.1) and a single solenoid going from inside the polarizer to inside the
benchtop spectrometer. We obtained better preservation of the polarization along the transfer,
as reported in Ref. [119]; starting from ≈ 44% 13C polarization in the solid-state, we obtained
≈ 28% in the liquid-state. We then performed experiments where the output capillary of the
dissolution stick was connected directly to the capillary loop but bypassing the 10 way-valve
(again using the gas-driven dissolution system). From the capillary loop, the solution was going
to the benchtop spectrometer surrounded by a solenoid, as previously. We obtained polarization
up to 20% (the solid-state was not quantified). Let us recall that there is no solenoid around the
capillary loop, which is surrounded by magnetic plates. This experiment, therefore, showed that
the transition from the solenoid to the magnetic plates was not the culprit of our polarization losses.
We concluded that the stainless steel 10 way-valve through which the hyperpolarized solution was
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Figure 6.7: A. Schematic representation of a capillary surrounded by a solenoid coil on one side
and by two magnetic plates on the other. B. Magnetic field at the center of a solenoid (with
L � R, where L and R are the radius and the length of the solenoid, respectively), with respect
to its maximum field strength Bmax, as a function of position, calculated using Eq. 6.19 (more
details in Sec. 6.2.3). The origin is located at the edge of the solenoid.

flowing was screening the magnetic field of the permanent magnets around it and hence causing a
non-adiabatic field profile and subsequent polarization losses. We replaced the stainless steel valve
with a titanium equivalent and finally obtained liquid-state 13C polarizations of ≈ 50%.

6.2 1H→13C polarization transfer by adiabatic field inver-
sion

As we saw in the introduction of this work (see Sec. 1.2.2), the production of 13C-hyperpolarized
metabolites is the main driving force for the development of dDNP. The most common strategy
is by far to polarize 13C spins directly using the narrow EPR line radical trityl, which typically
reaches P (13C) > 50% in 1-2 hours. [45] Our usual approach at the HMRlab is to polarize 1H spins
using the broad EPR line radical TEMPOL and to transfer the polarization to 13C spins in the
solid-state by multiple contact CP. [47, 49, 116, 117, 118, 119, 120, 121] This method can reach
similar polarization levels but in only 10 − 20 min. However, CP requires high power pulses
which tend to cause coil arcing in superfluidic helium. The CP-based approach, therefore, requires
complex and sensitive instrumentation, which can break down and need fixing by highly skilled
technicians. An approach based on simpler instrumentation yet faster than direct 13C-DNP would
be an advantage for clinical applications.

In this section, building on the instrumentation presented in Sec. 6.1, we investigate the use of
an an in-line adiabatic magnetic field inversion to transfer the polarization of dDNP hyperpolarized
1H spins to 13C spins in the liquid-state via 1H-13C J-couplings. The magnetic field inversion is
produced by an inversion chamber consisting of a pair of co-linear solenoid coils placed in the
middle of μ-metal magnetic shields, and producing opposing magnetic fields which cancel in the
middle of the distance between the coils (see Fig. 6.8). As the solution flows through the inversion
chamber, the spins experience the magnetic field inversion through space. The variation of field in
space is therefore used to produce a variation of field in time, thanks to the velocity of the solution
during the dissolution experiment. This method makes use of so-called “avoided crossings” between
singlet and triplet nuclear spin states at zero-field which enable the polarization transfer between
the heteronuclei.



6.2. 1H→13C POLARIZATION TRANSFER BY ADIABATIC FIELD INVERSION 169

Figure 6.8: Experimetnal setup, where a 1H-dDNP hyperpolarized solution is transferred to a
liquid-state spectrometer via a magnetic field inversion chamber, consisting of μ-metal magnetic
shields and a pair of solenoids producing opposing magnetic fields which cancel in the middle.

We first briefly present the theory of avoided crossings and calculate the minimum field inversion
time for an adiabatic polarization transfer in a heteronuclear two spin-system using the Landau-
Zener formula. We find that the minimum inversion time is proportional to the inverse of the
J-coupling. Then, we use numerical simulations to predict precisely the polarizations after field
inversion for two spin- and four spin-systems with different J-couplings.

We present experimental results on model spin systems of 13C-formate, [3-13C]-pyruvate, [2-
13C]-pyruvate and [1-13C]-pyruvate, which have J-couplings in D2O of 195, 125, 6.2, and 1.3 Hz,
respectively. 1H spins in a sample containing these four molecules were hyperpolarized by dDNP
and the solution was pushed through the inversion chamber during the transfer before detection
in the liquid-state. We found hyperpolarized signals in the liquid-state for the two molecules
with the strongest J-coupling, while not for the two other molecules, in agreement with numerical
simulations.

We demonstrate that the method is capable of producing P (13C) ≈ 9 − 12% in the liquid-
state after ≈ 10 min of DNP in the solid-state. Considering the 1H polarization in the solid-
state, a perfect transfer should yield P (13C) > 50% in the liquid-state for two molecules with
strong J-couplings. The lower P (13C) polarization obtained experimentally is rationalized by
rapid 1H relaxation prior to the transfer.

Finally, we propose strategies to polarize 13C spins in molecules with lower J-couplings, like [2-
13C]-pyruvate and [1-13C]-pyruvate, which have higher clinical relevance. In particular, we present
an algorithm to compute field profiles with constant adiabaticity, which enables the fastest possi-
ble transfers. We also discuss the risks associated with uncontrolled residual fields, which would
prevent an efficient transfer.

This project was started as a collaboration with Prof. Konstantin L’vovich Ivanov, who passed
away on 5 March 2021 as a victim of COVID-19. [240] I would like to acknowledge his contribution
not only to this project but to my understanding of spin dynamics and NMR simulation. Kostya
helped me start the simulation presented in this section, which then put me on track for the
remainder of my Ph.D. This section is dedicated to his memory, his kindness, and his availability
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to help students.

6.2.1 Avoided crossings in a two spin-system

Coherent spin dynamics at ZULF have already been exploited extensively in the context of PHIP
to convert 1H singlet order from parahydrogen into 13C magnetization for the preparation of 13C-
hyperpolarized metabolites. Some techniques use a magnetic field jump to zero-field followed by
an adiabatic increase of the magnetic field [241, 89, 242, 243]. Others use pulses at ultra low-field
[90] or adiabatic field inversions. [95]

In the context of dDNP, hyperpolarized solutions may happen to go through regions of low-
field and even through field inversions, during the transfer from the polarizer to the liquid-state
spectrometer. If the consequences of such spin dynamics at ZULF have been reported, they have
not been actively made use of. [235, 233] Here, we use spin dynamics at ZULF to transfer the
polarization of 1H spins hyperpolarized by dDNP to 13C spins in a controlled way, building on
the well-understood theory developed by these many authors before us. We now introduce the
necessary basic theoretical concepts behind our method.

Consider a pair of heteronuclei ensemble S and I, with gyromagnetic ratio γS and γI, respec-
tively, where S initially has polarization PS = 1 along a strong magnetic field B0, while I has no
net polarization along any axis. Now, let us consider what happens if the magnetic field inverts
linearly along time from positive to negative values as

B(t) = B0

(
1− 2

t

τ

)
, (6.6)

where τ is the time that the field takes to invert from +B0 to −B0. We first assume that τ
is infinitely long and so the evolution of the system is adiabatic. The fact that the variation
is adiabatic can be defined as follows: if a parameter of a quantum mechanical system varies
with time, the variation is said to be adiabatic if it is slow enough for populations to remain in
eigenstates all along the process. [244] We will soon come back to what “slow” means but for now
we just assume it is slow enough. Fig. 6.9A shows the energy levels during the field inversion, for S
and I being a 1H and 13C spin, respectively, in the absence of coupling. Because the spins are not
coupled, they are only subject to the Zeeman Hamiltonian and the eigenfrequencies vary linearly
with magnetic field. At time t = 0, the populations are pαα = pαβ = 1/2 (represented by white
dots) while pβα = pββ = 0. As the magnetic field inverts, populations follow their eigenstates and
end up in the positions represented by black dots. Nothing interesting happened: the populations
remained exactly what they were before inversion and so the polarizations still are PS = 1 and
PI = 0.

On the contrary, if the two spins are J-coupled, the J-coupling Hamiltonian mixes the |αβ〉
and |βα〉 at zero-field, as represented in Fig. 6.9B, which results in an avoided crossing (see Sec.
2.3.2). After the field inversion, the population which was initially in the |αβ〉 state is converted
into |βα〉, while the population of the |αα〉 state remains on the same state. The final polarizations
are hence PS = 0 and PI = 1, which means that the polarization has been transferred from S to I.

This simple argument shows that if we can make a J-coupled 1H-13C spin pair experience an
adiabatic field inversion, the polarization of the 1H spins acquired during dDNP will be transferred
to the 13C spins. The question is now to determine how slow the inversion needs to be. We use
the Landau-Zener formula to get a first estimate, which we will refine in Sec. 6.2.2 using numerical
simulations. Landau-Zener formula gives the probability for a diabatic transition (i.e., what we do
not want) [245, 246, 204]

Pd = exp (−2πω12τ), (6.7)
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Figure 6.9: A-B. Comparison of the eigenfrequencies of the four levels of a 1H-13C pair as a
function of magnetic field without J-coupling and with J = 200 Hz, respectively. The white and
black dots represent the populations of the states before and after the adiabatic field inversion,
respectively, assuming initial polarization P (1H) = 1 and P (13C) = 0.

where ω12 is the frequency separation between the perturbed states at the crossing point of the
unperturbed states. τ is the time of interaction, i.e., the time during which the perturbation mixes
the states. This formula is valid in the specific case where the energies of the unperturbed state
vary linearly with time (as is the case with field trajectory of Eq. 6.6). It follows that the linear
transformation has to take place over time

τ =
1

2πω12
log

(
1

Pd

)

=
1

2πω12
log

(
1

1− Pa

)
,

(6.8)

to have probability Pa to be adiabatic. In our case, the separation between the unperturbed states
is ω12 = 2πJ (see Fig. 6.9) and so

τ =
1

4π2J
log

(
1

1− Pa

)
, (6.9)

which shows that the time during which the magnetic field must invert from +B0 to −B0 for an
arbitrary value of Pa is inversely proportional to the J-coupling between the spins. To determine
the value of B0, we recall that τ is the time during which the states interact (or are mixed by
the perturbation). In our case, this corresponds to the time during which the intensity of the J-
coupling Hamiltonian |ĤJ | is significant compared to that of the Zeeman Hamiltonian |ĤZ |. The
limit where |ĤJ | becomes insignificant may be expressed as a function of an arbitrary parameter
ζ

|ĤZ | = ζ|ĤJ | ⇐⇒ B0 = ζ
∣∣∣ 2πJ

γS − γI

∣∣∣, (6.10)

where the norms of the operators were calculated as the difference between the eigenvalues. The
pair of values of τ and B0 define the linear magnetic field profile as in Eq. 6.6 which results in a
polarization transfer with yield Pa. Fig. 6.10A-B shows predicted values of τ and B0, respectively,
as a function of the J-coupling between a 1H and a 13C spin. It shows that, for J = 200 Hz, the
magnetic field must invert from +60 μT to −60 μT within ≈ 0.6 ms in order to yield Pa = 0.99.
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Figure 6.10: A. Magnetic field inversion time to transfer the polarization from 1H to 13C spins
as a function of the J-coupling between them, with yield Pa = 0.99, computed using Eq. 6.9. B.
Absolute value of the initial and final magnetic field intensity of the field profile for a polarization
transfer from 1H to 13C spins as a function of J-coupling between them, with ζ = 10, computed
using Eq. 6.10.

As can be seen from Fig. 6.9B, ζ = 10 is a rather conservative (and maybe excessive) value, as
the B0 = ±60 μT is far outside the plot, where the energies are linear with the magnetic field, i.e.,
where ĤJ is not causing a significant mixing.

6.2.2 Numerical simulation of the transfer

Using the Landau-Zener formula, we calculated the minimum field inversion time for a two spin-
system experiencing a field inversion going linearly from a positive to a negative value B0. However,
a much shorter inversion time with the same transfer yield Pa can be afforded if a more optimized
field profile is used. [244] Furthermore, realizing a linear field inversion profile is not particularly
simple in practice. We now show how to compute the 1H and 13C polarizations of an XAn spin
system (where X and A are 13C and 1H spins, respectively) along the inversion coordinate for
arbitrary field profiles. In practice, we used these simulations to optimize the geometry of the
solenoid coils shown in Fig. 6.8 and the applied current. Here, we only show the simulations for
the field profile which was used in experiments, after manual optimization. This field profile is
shown as a black curve in Fig. 6.11. The way this field profile was generated and controlled is
detailed in the next section (see Sec. 6.2.3).

We assume that, before inversion, 1H spins have polarization PS = 1 and 13C spins have
polarization PI = 0. The initial density matrix is given by the Kronecker product of single spin
density matrices (see Eq. 2.86)

ρ̂0 = ⊗n
k=1

(
ˆ2×2

2
+ PSŜ

2×2
z

)
⊗
(
ˆ2×2

2
+ PIÎ

2×2
z

)
, (6.11)

where ˆ2×2, Ŝ2×2
z and Î2×2

z are the identity operator and the z-angular momentum operators of
the n spins S and spin I in single spin-space, respectively. If Bz(t) is the magnetic field along the
z-axis at time t, the total Hamiltonian is

Ĥtot(t) = ĤZ(t) + ĤJ , (6.12)

where the time-dependent Zeeman Hamiltonian is
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ĤZ(t) = −Bz(t)

(
γIÎz +

n∑
k=1

γSŜkz

)
, (6.13)

where Ŝkz and Îz are the z-angular momentum operators in the n + 1 spin-space of the kth spin
S and spin I, respectively, and the time-independent J-Hamiltonian is

ĤJ = JAA

∑
k>j

Ŝk · Ŝj + JXA

n∑
k=1

Ŝk · Î, (6.14)

where JAA and JXA are the homonuclear J-coupling constants between S spins (if n > 1) and the
heteronuclear J-coupling between S and I spins. The state of the system was propagated during
short time intervals dt from t to t+ dt using the sandwich formula (see Eq. 2.76)

ρ̂(t+ dt) = Û(t)ρ̂(t)Û∗(t), (6.15)

where the time propagator from t to t+ dt is

Û(t) = exp
(
−iĤtot(t)dt

)
. (6.16)

Finally, for each time point t, the expectation value of the polarization of I was computed as

PI(t) =
1

|I|Tr
{
ρ̂(t)Îz

}
, (6.17)

and that of S spins was computed as the average of the individual polarizations PS,k(t)

PS(t) =
1

n

n∑
k=1

PS,k(t) =
1

n|S|
n∑

k=1

Tr
{
ρ̂(t)Ŝkz

}
. (6.18)

This procedure was used to simulate the polarizations of 1H and 13C spins in 13C-formate
(with J = 195 Hz and n = 1) along the transfer through the inversion chamber assuming a
velocity of v = 4 m.s−1 of the solution through space (see Fig. 6.11). The field profile, which
starts at +4400 μT at −20 cm and terminates at −4400 μT at +20 cm, was discretized into 20’000
constant increments of 20 μm, corresponding to dt = 5 μs. The total transfer time through the
inversion chamber is τtrans = v/l = 100 ms, where l = 40 cm is the length of the inversion chamber.
Note that Fig. 6.11 only shows a central portion of the inversion chamber because the polarizations
are stationary outside this range. The simulation was performed using a home-written MATLAB
code and took < 1 s to run on a laptop computer.

Fig. 6.11 shows that pushing a solution of 13C-formate through this particular field profile with
a velocity of 4 m.s−1 fully transfers the 1H polarization to the 13C if relaxation can be neglected. It
also shows that polarization starts transferring when the field gets below ≈ +60 μT and stabilizes
once the field has passed ≈ −60 μT. The fact that polarizations evolve almost linearly along the
inversion coordinate (and hence along time) indicates that the field profile is nearly optimal (i.e.,
near constantly adiabaticity [244]).

The simulation was repeated for four molecules: 13C-formate, [3-13C]-pyruvate, [2-13C]-pyruvate
and [1-13C]-pyruvate, which have J-couplings in D2O of 195, 125, 6.2, and 1.3 Hz, respectively
(the chemical structure of the molecules are shown in Fig. 6.12). The same field profile was dis-
cretized again into 20’000 increments. This time, the expectation values of the polarizations were
not computed for all time increments but only for the final density matrix, and the simulation
was repeated for 200 values of the transfer time through the inversion chamber τtrans between
0 and 50 ms. The results are shown in Fig. 6.12. We ought to make it clear that these plots
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Figure 6.11: Simulated field profile inside the inversion chamber and 1H and 13C polarizations
along the transfer in black, assuming a J-coupling of 195 Hz and initial polarization P (1H) = 1
and P (13C) = 0, corresponding to 13C-formate in D2O. Details of the spin dynamical simulation
are given in the text. Details on the simulation of the field profile are given in Sec. 6.2.3

do not represent the polarizations of the spin along time but rather their polarization at the end
of individual experiments, as a function of the time over which the experiment is realized. The
simulation of each plot was realized in < 2 min on a laptop computer.

The first observation one can make on Fig. 6.12 is that for τtrans = 0, i.e., for an infinitely fast
field inversion, the polarization does not transfer; it stays fully on the 1H spins. As τtrans increases,
a significant amount of polarization transfers to 13C spins, but only for the molecules with strong
J-couplings. For 13C-formate, τtrans ≈ 40 ms is sufficient to transfer fully the 1H polarization to
the 13C, i.e., the transfer is adiabatic, while for [3-13C]-pyruvate, polarizations are not completely
stable with τtrans = 50 ms (see Fig. 6.12A-B, respectively). For longer values of τtrans (not
shown), the polarizations in [3-13C]-pyruvate tend towards P (1H) ≈ 66.7% and P (13C) ≈ 100%.
This can be seen as a result of the conservation of angular momentum in the case where three
1H spins interact with a single 13C spin. In the case [2-13C]-pyruvate and [1-13C]-pyruvate, owing
to the low J-coupling values, the transformation is almost completely diabatic using this field
profile and these transfer times, and results in almost null polarization transfer (see Fig. 6.12C-D,
respectively).

It is surprising to find such long transfer times of ≈ 40 ms for an adiabatic inversion with
13C-formate, considering that the Landau-Zener formula predicted values of below 1 ms. The
numerically simulated transfers correspond to a field trajectory from +4400 μT to −4400 μT over
40 cm. The transfer time corresponding to the portion +60 μT to −60 μT is of 40 μT×10/40 ≈ 10
ms, which is a fairer comparison with the transfer time of Landau-Zener formula for 13C-formate.
This is still more than an order of magnitude larger than the transfer time predicted by the
Landau-Zener formula. Moreover, we found numerically that the non-linear field profile that we
used allows the transfer to be much shorter than the linear trajectory with the same adiabaticity.
If Landau-Zener theory allowed us to find a useful trend to guide our experimental choices, i.e.,
an inverse dependence of the transfer time on the J-coupling, it is unclear whether the numerical
values we found are of interest.

6.2.3 Experimental setup and results

In the previous section, we predicted the efficiency of the polarization transfer for four molecules
using the field profile of Fig. 6.11 using numerical simulation. We now show how this field profile
was realized in practice. We then show the results of the hyperpolarized liquid-state results for
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Figure 6.12: Numerical simulations of the final polarizations of 1H and 13C spins as a function of
the time of transfer τtrans through the inversion chamber with the field profile of Fig. 6.11.

the four molecules with and without field inversion, the latter experiment serving as a control
experiment.

The components of the inversion chamber are detailed in Fig. 6.13. The main part is commercial
μ-metal magnetic shields (MS-1, Twinleaf LCC). The capillary which gets out of the dissolution
stick (see Sec. 6.1.1) is connected to the piercing capillary by a QuickConnect connector. This
capillary has O.D. 3.2 mm and 0.5 mm copper wire is wound around it. This wire is fed with a
current of I = 2 A, which generates a field of Bz = μ0nI, where μ0 = 4π · 10−7 H.m−1 and n is
the number of turn per meter, which is approximately 2000 at maximum. Because the distance
between turns is never as short as the diameter of the wire, n = 2000 m−1 is a maximum and
so the solenoid generates a magnetic field of maximum Bz ≤ 5 mT. As the capillary gets out of
the shields a similar solenoid coil is wound around it until the capillary reaches the fast injections
setup (see Sec 6.1.4). The internal solenoids are the ones responsible for the field inversion. They
consist of a 3D printed support with a groove that allows one to place a copper wire of 0.5 mm with
high precision. The distance between the turns of the groove is 0.65 mm which is made greater
than the wire diameter on purpose to make sure that the wire lies in the groove. These solenoid
coils have an O.D. of 12 mm and a length of 70 mm and they are separated by D = 101 mm.
They are fed with a current I = 50 mA in opposite direction. In order for the spins to experience
a controlled magnetic field as they leave the capillary solenoid coil at the input of the shields (or
enter the capillary solenoid coil at the output of the shields), the end of the capillary solenoid coils
and that of the internal solenoids are surrounded by larger solenoid coils (referred to as “external
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solenoids” in Fig. 6.13). These coils also consist of a 3D-printed structure with 0.5 mm copper
wire wound in a 0.65 mm groove. They are fed with a current I = 2 A.

Figure 6.13: Schematic representation of the inversion chamber. Dark gray elements represent
3D-printed structures. Filled yellow circles represent wires of solenoid coils. A photograph of the
internal coil is shown in Fig. 6.8.

The magnetic field in the direction of the velocity of the fluid, which we call z, with the origin at
the center of the shield (i.e., the point of inversion), can be calculated using the standard equation
of a perfect solenoid

Bz(z) =
μ0nI

2

(
L/2−Δz√

R2 + (L/2−Δz)2
+

L/2 + Δz√
R2 + (L/2 + Δz)2

)
, (6.19)

where L, R, and Δz = z − z0 are the length of the solenoid coil, its radius, and the distance
between the center of the shields (z = 0) and the center of the solenoid coil z0, respectively. The
field profile shown in Fig. 6.11 and used in the simulation was computed by summing the con-
tribution of the two internal solenoid coils and the two external solenoid coils. To verify that the
simulated magnetic field is correct, the field profile was measured using a teslameter (Lakeshore
multi-axis teslameter F71-240 with a three-axis hall probe FP-2X-250-ZS15-6). However, a higher
current was applied in the internal solenoid coils (I = 250 mA) so that the field could be measured
with higher resolution. The measured and simulated field profiles are compared in Fig. 6.8, in the
introduction of this section. The measurement and the simulation are in reasonable agreement,
although the decay of the stray field (at −5 and +5 cm) has a softer slope for the measured profile.
This discrepancy is likely due to the presence of the magnetic shields which distorts the field lines.

We now present four dDNP experiments which were performed to test the method. In all cases,
100 μl of a sample from the same batch containing the four molecules was hyperpolarized at 1.6
K. Fig. 6.14 shows the 1H DNP build-up, which reaches an apparent polarization P (1H) ≈ 50%
within a few minutes. However, it should be noted that the polarization is underestimated because
of intense RD. The actual value is expected to be of the order of ≈ 70%. [121, 68]
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Figure 6.14: 1H DNP build-up at 1.6 K and 7.05 T for 100 μl of 0.4 M 13C-formate, [3-13C]-
pyruvate, [2-13C]-pyruvate and [1-13C]-pyruvate in DNP juice doped with 50 mM TEMPOL.

Before performing the dissolution step, the potential weak 13C polarization resulting from
direct DNP was wiped out by a train of saturation pulses. This ensured that the observed liquid-
state 13C polarization only originated from dynamics in the liquid-state. The dissolution step
was performed using the fast dissolution, transfer, and injection system described in Sec. 6.1.1;
the hyperpolarized solution was injected into a benchtop spectrometer operating at 1.88 T and
the 13C signal was detected using a 5 pulse. The total time between the start of the dissolution
and the injection was 1.8 s. In the first two experiments, the solution was directed through the
inversion chamber which was placed as close as possible to the output of the polarizer to minimize
polarization losses by 1H relaxation. Fig. 6.15 shows the hyperpolarized spectrum acquired for
one of these two runs. The signals of 13C-formate and [3-13C]-pyruvate are visible but not that of
[2-13C]-pyruvate and [1-13C]-pyruvate.

Figure 6.15: Hyperpoalarized 13C signal spectrum detected at 1.88 T using a single 5 pulse
obtained after 1H-dDNP experiment by an adiabatic field inversion. The sample initially contained
≈ 0.4 M of 13C-formate, [3-13C]-pyruvate, [2-13C]-pyruvate and [1-13C]-pyruvate but only 13C-
formate and [3-13C]-pyruvate are visible on the spectrum.

The next two runs are control experiments. In one of them, the hyperpolarized solution was
directed through the inversion chamber but the current in the solenoids was set so that their
stray field added up instead of canceling. Therefore, as the solution went through the chamber,
the spins experienced a low magnetic field but no actual inversion. In the last experiment, the
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inversion chamber was bypassed and so the minimum field experienced by the spins was ≈ 4 mT
in the guiding solenoid from the polarizer to the liquid-state spectrometer. In this case, the flow
path from the dissolution stick to the rapid injection system was slightly shorter, which resulted
in a total time between the start of the dissolution and the injection of 1.6 s (compared with 1.8
s for the other experiments). In these two control experiments, the signals of 13C-formate and
[3-13C]-pyruvate are visible, albeit with lower intensity than in the experiments with inversion.
Again, the signals of [2-13C]-pyruvate and [1-13C]-pyruvate are not visible. The polarization of
13C-formate and [3-13C]-pyruvate was quantified as detailed in Sec. 6.1.2 for the four experiments.
The obtained values are presented in Table 6.1.

Inversion
run 1

Inversion
run 2

No inversion
run 1

No inversion
run 2

13C-formate 9.0% 12.3% 1.3% 1.1%

[3-13C]-pyruvate 11.2% 10.4% 3.6% 3.9%

[2-13C]-pyruvate 0 0 0 0

[1-13C]-pyruvate 0 0 0 0

Table 6.1: 13C-polarization of the four molecules in the liquid-state in four experiments. “Inversion
run 1” and “Inversion run 2” are two replicates of the same experiment where the solution was
pushed through the inversion chamber. “No inversion run 1” is a control experiment where the
solution was pushed through the inversion chamber but the polarity of one solenoid coil was
inverted so that the spins did not experience a field inversion. “No inversion run 2” is a second
control experiment where the inversion chamber was bypassed.

The results summarized in Table 6.1 show that our method is indeed capable of transferring
1H polarization obtained by dDNP to 13C spins. The liquid-state 13C polarization of 13C-formate
and [3-13C]-pyruvate compared to that of [2-13C]-pyruvate and [1-13C]-pyruvate follow the pre-
diction of the numerical simulations, i.e., the J-coupling of 13C-formate and [3-13C]-pyruvate is
sufficiently strong to enable an efficient transfer with the chosen field inversion profile, while that
of [2-13C]-pyruvate and [1-13C]-pyruvate is too weak to allow for any transfer. Considering the
starting 1H polarization of ≈ 70% in the solid-state, a perfect transfer should result in ≈ 70%
13C polarization is the liquid-state for 13C-formate and even more for [3-13C]-pyruvate due to the
3:1 1H:13C ratio. However, this does not take into account the rapid 1H relaxation, in particular
paramagnetic 1H relaxation. A dDNP experiment was performed on the same sample without in-
version and detecting the 1H polarization in the liquid-state. We found 1H polarization of ≈ 8.2%
both for 13C-formate and [3-13C]-pyruvate. Because the 1H→13C transfer occurs earlier in the pro-
cess than the stage where the 1H polarization can be measured, the polarization of the 1H spins at
the moment of the transfer must be 8.2% < P (1H) < 70%. Therefore, obtaining 13C polarization
of 9 − 12% is reasonable. Finally, the 13C polarization obtained in the control experiments can
easily be rationalized by nuclear Overhauser effect (NOE) in the liquid-state. It is not surprising
that the effect is significant for 13C-formate and [3-13C]-pyruvate and not for [2-13C]-pyruvate and
[1-13C]-pyruvate, considering the distance between 1H and 13C spins in these molecules and 1/r6

dependence of the NOE rate, where r is the 1H-13C distance.
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6.2.4 Strategies for molecules with low J-couplings

We have demonstrated that an adiabatic field inversion is capable of transferring 1H polarization
to 13C spins provided they interact through a strong J-coupling. However, such molecules are not
of great clinical relevance because they have short relaxation time due to the short intramolecular
1H-13C distance. Being able to apply the method to [2-13C]-pyruvate and even more so to [1-13C]-
pyruvate would be of greater interest for clinical applications. In this section, we discuss possible
strategies and associated risks to realize the transfer in such molecules.

To make the transfer as fast as possible and hence limit 1H relaxation, we propose to use the
strategy introduced by Rodin et al. of constant adiabaticity. [244] In principle, the field profile
which makes the spin system experience an evolution with constant adiabaticity should allow for
the shortest transfer time with complete polarization transfer. The adiabaticity parameter between
two eigenstates |i〉 and |j〉 of the Hamiltonian Ĥ at time t, with energies ωi and ωj , respectively,
is defined as

ξij(t) =
〈i| dĤ

dt |j〉
(ωi − ωj)2

, (6.20)

which is summed over all pairs of states as

〈ξ〉(t) =
√∑

i,j

ξ2i,j(t), (6.21)

to obtain the generalized adiabaticity parameter. [244] The closer is 〈ξ〉(t) to 0, the more adiabatic
is the transformation. A transformation has constant adiabaticity if 〈ξ〉(t) = ξ0 at all time. We
aim at finding the field profile from +B0 to −B0 with 〈ξ〉(t) = ξ0.

Because the J-Hamiltonian does not depend on time, the time-derivative of the Hamiltonian
yields

dĤ

dt
=

dBz

dt
Ô, (6.22)

where we defined the operator

Ô = γIÎz +
n∑

k=1

γSŜkz. (6.23)

Inserting Eq. 6.22 into Eq. 6.21 with 〈ξ〉(t) = ξ0, we get

ξ0 =
∣∣∣dBz

dt

∣∣∣
√√√√√∑

i,j

(
〈i| Ô |j〉

)2

(ωi − ωj)4
, (6.24)

and so the variation of the magnetic field during a positive time step dt with arbitrary adiabaticity
ξ0 must be

|dBz| = ξ0dt

⎛
⎜⎝∑

i,j

(
〈i| Ô |j〉

)2

(ωi − ωj)4

⎞
⎟⎠

−1/2

. (6.25)

We used Eq. 6.25 to compute the constant adiabatic field profile for several spin systems
according to the following algorithm: a value B0 is chosen as the first point of the profile and a
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value for the product ξ0dt is defined. Then, for each point along the profile B(t), the next point
is calculated using Eq. 6.25. To do so, the eigenstates |i〉 and the corresponding eigenfrequencies
ωi are computed by diagonalizing the Hamiltonian Ĥ(t). Before Eq. 6.25 can be used, some
precautions must be taken. Because there exist allowed crossings (e.g., between |αα〉 and |ββ〉 in
the case of a two spin-system), the fraction in Eq. 6.25 explodes if we compute it around allowed
crossings. This issue is solved by restricting the pairs of i and j states for which we compute ξij
to those with equal total angular momentum mi

F = mj
F . Indeed, as pointed out by Rodin et al.,

ĤJ only mixes states with equal total angular momentum. The total angular momentum of the
states |i〉 obtained from the numerical diagonalization of the Hamiltonian is computed as

mi
F = 〈i|

(
Îz +

n∑
k=1

Ŝkz

)
|i〉 . (6.26)

In practice, due to the limited machine precision, mi
F and mj

F are rounded before they are
compared. Furthermore, spin systems XAn with n > 1 have degenerate levels which also make the
fraction in Eq. 6.25 explode. This is circumvented by computing ξij only for states with ωi �= ωj .
In practice, due to the limited machine precision, the non-degeneracy is verified by the condition

∣∣∣ωi − ωi

ωi + ωi

∣∣∣ < δ, (6.27)

where δ is a tolerance parameter set to 10−2.
The algorithm is stopped when B(t) ≤ −B0. Depending on the chosen value of the product

dtξ0, the field profile may contain too few points to be smooth or too many points to be computed
in a reasonable time. In practice, one may run the algorithm with a lower value of dtξ0 if the curve
contains too few points or stop the algorithm and run it again with a larger value of dtξ0 if it takes
too long to complete. The number of points is then changed to a convenient value using a spline
interpolation of the points computed by the algorithm.

The constant adiabaticity field profiles were computed for XAn spin systems with A and X
being a 13C spin and 1H spins, respectively, with J = 200 Hz and n between 1 and 6. The starting
field value was chosen to be B0 = 100 μT and the steps were computed using ξ0dt = 5 · 10−7 s.
Fig. 6.16 shows the simulated profiles as a function of time along the transfer normalized by the
transfer time. The curves are arbitrarily normalized to their value at 40 μT. In addition to those
of Fig. 6.16, we computed the constant adiabaticity field profiles for values of J of 1, 10, 20, 50,
100, and 200 Hz in the case of XA and XA3 spins systems (not shown). We found that the only
effect of the intensity of the J-coupling on the curves was to rescale the y-axis. Therefore, apart
from the y-scale, the curves in Fig. 6.16 represent the general form of the constant adiabaticity
field profile for XAn spin systems.

We simulated the 1H and 13C polarizations along the transfer for XA with J = 195 Hz (corre-
sponding to 13C-formate) using a constant adiabaticity field profile with B0 = +385 μT discretized
into 20’000 points, for an exceedingly long transfer time of 100 ms (see Fig. 6.16A). We also sim-
ulated the final polarizations as a function of transfer time for the same spin system and field
profile (see Fig. 6.16B). Fig. 6.16A shows that, with a constant adiabaticity filed profile, polar-
ization starts exchanging immediately and changes almost linearly with time. The oscillations on
the curves are probably due to some non-zero level of coherence in the initial state. We tried to
increase the digitization of the propagation (up to 200’000), lower ξ0dt (down to 10−10 s), and
secularize the initial density matrix (by expressing it in the eigenbasis of Ĥtot(t = 0), setting off-
diagonal elements to zero and reexpressing the resulting density matrix in the Zeeman basis) but
the appearance of the curves did not change. The very steep slope of the field profile near +B0 may
make it difficult to satisfy the conditions that the Hamiltonian can be considered time-independent
during dt.
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Figure 6.16: Normalized constant adiabaticity field profiles for 13C-1H XAn spin systems for n
between 1 and 6.

Figure 6.17: A-B. 1H and 13C polarizations along time for a transfer time of 100 ms and as
a function of the transfer time, respectively, for 13C-formate for a field inversion with constant
adiabaticity (ξ0dt = 10−10 s, B0 = +385 μT with 200’000 propagation steps).

An interesting feature of Fig. 6.16B is that it gives the “most relevant” value of the minimum
transfer time for an adiabatic field inversion in a given spin system. Indeed, except with constant
adiabaticity field profiles, the transfer time must always be defined with respect to +B0. With
the constant adiabaticity, as long as B0 is defined so that |Ĥtot(t = 0)| � |ĤJ |, the curves in Fig.
6.16B are not affected by the choice of B0 because the field profile goes to infinity on the edges
of the curve. Furthermore, because the inverse transfer time is proportional to 1/J , the results of
Fig. 6.16B are also valid for different values of J , provided the x-axis is rescaled.

The field inversion under constant adiabaticity was also simulated for [1-13C]-pyruvate (J ≈ 1.3
Hz), as a function of time for a transfer time of 2 s and as a function of the transfer time. The
results are shown in Fig. 6.18 A and B, respectively. The trajectories of the polarizations as a
function of time are more complex than in the XA case. Importantly, Fig. 6.18B shows that the
transfer time for an adiabatic field inversion must be on the order of 1-2 s for [1-13C]-pyruvate.
This shows an inherent limit for our method: if the transfer time must be on the order of seconds
even with constant adiabaticity, it means that it can by no means be short compared to 1H relax-
ation.

Molecules with low J-couplings pose another difficulty. In all the simulations that we presented
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Figure 6.18: A-B. 1H and 13C polarizations along time for a transfer time of 2 s and as a function of
the transfer time, respectively, for [1-13C]-pyruvate for a field inversion with constant adiabaticity
(ξ0dt = 10−6 s, B0 = +4.1 μT with 20’000 propagation steps).

above, we always assumed that Bz(t) was strictly defined by the coil array. However, even in
magnetic shields, some residual fields are to be expected. For example, if in addition to the field
along z generated by the coils, the spins experience a constant field orthogonal to the z-axis, this
field will act as an extra perturbation (in addition to J). This additional Zeeman perturbation
Ĥ⊥

Z will limit the efficiency of the polarization transfer if it is too strong. In the worst case, if it is
larger than J , instead of a field inversion through 0, the spins will experience a field rotation and
no polarization transfer can take place. If B⊥ is the residual field orthogonal to Bz, the limit in
which Ĥ⊥

Z is weak in front ĤJ made be expressed as

|ĤJ | = ζ|Ĥ⊥
Z | = ⇐⇒ B⊥ ≈ 1

ζ

∣∣∣ 2πJ

max {γS , γI}
∣∣∣, (6.28)

where we took the highest of the gyromagnetic ratio to yield a conservative criterion. For 13C-
formate, this criterion yields B⊥ ≈ 460 nT with ζ = 10, which is easily achieved with well degaussed
magnetic shields. For [1-13C]-pyruvate, the criterion yields B⊥ ≈ 3 nT, which can be achieved
but is more challenging. In the experiment presented above, the cancellation of external magnetic
fields was realized by the use of magnetic shields. To reach the best performance, such shields
need to be “degaussed” after being placed at their point of use (i.e., applying an oscillating current
of decreasing intensity within 5-10 min [78]). In experiments with signal detection at ZULF, the
residual fields can be further decreased by the use of coils (the equivalent of “shimming” in high-
field NMR), reaching residual fields typically below 0.1 nT. [247, 78] This is typically done by
monitoring the change in Zeeman splittings of the J-lines of a sample like neat 13C-formic acid or
13C-methanol at ultra low-field, using field-cycling; the current in the coils is optimized to suppress
the splittings. In addition, the sensitivity vs. frequency response of the magnetometer to a test
signal can also be used as its spectral features are indicative of residual fields. [247, 78, 81] Both
these procedures require the setup to be equipped with a sensitive magnetometer. Such procedures
might be necessary to ensure sufficient field-zeroing for polarization transfer by field inversion in
[1-13C]-pyruvate.

These requirements of the 1H→13C polarization transfer by adiabatic field inversion for molecules
with weak J-couplings make the use of an in-line field inversion very challenging (by in-line, we
mean that the spins experience the field inversion by moving through space). It might turn out to
be more feasible to inject the sample into a vessel within the shields and apply the field inversion
on the static sample using a pair of Helmholtz coils controlled by an arbitrary waveform generator
(AWG) as represented in Fig. 6.19. First, if implementing a constant adiabaticity field profile
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is possible through space, it is much easier to feed the field profile to an AWG, which will then
generate the field profile with high fidelity. Furthermore, the in-line inversion requires the field to
be properly zeroed on a much more extended region in space, which would be difficult to realize if
magnetometry is to be used for field zeroing.

Figure 6.19: Schematic representation of an experimental setup for 1H→13C polarization transfer
by adiabatic field inversion on a static sample, where the field profile over time is generated by an
AWG controlled-Helmholtz coil.

The strategy of field inversion on a static sample may also be of benefit for clinical applications
because the sample needs to be degassed before it can be injected into a patient (in addition
to pH and salinity adjustments). The injection chamber represented in Fig. 6.19 may therefore
be used for this purpose. Because the field homogeneity and the residual fields are not affected
by turbulences and bubbles, the field inversion may be applied as the solution is settling down,
without requiring extra delays in the dissolution process.

6.3 dDNP-hyperpolarized ZULF-NMR

In the previous section, ZULF dynamics were used as a means to transfer polarization from 1H to
13C spins but the hyperpolarized liquid-state solutions were detected at high-field. In this final
section, we present the results of dDNP-hyperpolarized samples detected at ZULF. This project
was realized in collaboration with Dmitry Budker’s group from the Helmholtz Institute Mainz
(HIM), in particular with Román Picazo-Frutos and with the contribution of James Eills and John
Blanchard. Dmitry Budker’s team developed the ZULF spectrometer in Mainz and brought it to
Lyon in July 2019, where we coupled it to our dDNP polarizer. This collaboration resulted in the
publication of Ref. [223].

As pointed out in the introduction of this dissertation (see Sec. 1.2.3), the main limitation
of ZULF-NMR is low sensitivity but this can be circumvented by hyperpolarization. In partic-
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ular, PHIP [88, 248] and spin-exchange optical pumping [249, 250, 251, 252] have been used to
hyperpolarize samples for zero- and moderate-field NMR experiments, but PHIP relies on specific
chemical reactions with hydrogen gas, and spin-exchange optical pumping is limited to polarizing
noble gas atoms. In this context, dDNP could be of benefit, thanks to its wider applicability. The
first demonstration of dDNP coupled with ZULF-NMR detection was recently presented, where
[1-13C]-pyruvic acid was hyperpolarized and detected with a portable zero-field spectrometer. [91]

In this section, we first present the instrumentation that we developed for combined dDNP-
ZULF experiments. We then show hyperpolarized ZULF spectra of two mixtures of small organic
molecules, with an order of magnitude improvement in sensitivity compared to reported results.
[91] We obtained spin polarization of the order of tens of percent and therefore sensitivity en-
hancements of 11’000 with respect to a conventional ZULF-NMR experiment with sample prepo-
larization at 2 T. We evaluate paramagnetic relaxation induced by the DNP polarizing agent as a
possible reason for the obtained signal enhancement of 11’000 while up to >50k could be expected
theoretically.

6.3.1 Experimental setup and detection at ZULF

The experimental sequence consists of three steps: hyperpolarization by low-temperature DNP
with multiple contact-CP, sample dissolution and transfer from the polarizer to the ZULF spec-
trometer, and liquid-state detection at zero-field. The experimental sequence and setup are sum-
marized in Fig. 6.20. The hyperpolarization step is performed using the gas-driven approach
described in Sec 6.1.1 (and not the fast dissolution, transfer, and injection system). As we showed
in Sec. 2.3.2, the signal at zero-field is proportional to the difference in polarization between the
1H and 13C spins P (1H) − P (13C) and so the signal is maximal if the respective polarizations
have opposite signs. Therefore, once the polarization plateaued in the solid-state, the μw source
was turned off and the 13C polarization was inverted using an adiabatic frequency swept inversion
pulse (chirp pulse) of 1 ms duration and 80 kHz bandwidth. At this point, the 1H and 13C spins
had positive and negative polarization, respectively, which maximizes the signal at zero-field.

While polarization was building up in the solid-state, 5 ml of D2O with 30 mM ascorbic acid
was loaded into a heating module, pressurized to 6 bar with He gas, and subsequently heated to 180
�C corresponding to a pressure of 9 bar. The dissolution step consisted of a series of programmed
events triggered by the operator. The pressurized hot solvent was injected onto the sample and
pushed with He gas at 9 bar through a KelF capillary to the ZULF spectrometer. The capillary
was inside a solenoid maintaining a field of 4 mT along the transfer (similarly to that of Fig. 6.5),
from the polarizer to the magnet used for thermal-prepolarization experiments. The flow of He
gas was stopped after a transfer time ttrans = 2 s.

We used a home-built ZULF spectrometer for signal detection which is a modified version of
the setup described in reference [253]. Using a four-layer μ-metal shield (MS-1, Twinleaf LCC) and
additional shimming coils, the residual field at the sample location was brought down to sub-nT
levels. At the center of the detection region, a 3D-printed holder accommodated a standard NMR
tube and a Helmholtz-coil pair along the sensitive axis (z-axis). A solenoid coil is used to guide
the sample from the prepolarization magnet to the Helmholtz coils during experiments without
hyperpolarization. In the context of hyperpolarized experiments, the output of the dDNP polarizer
was connected to the NMR tube inside the ZULF spectrometer via the prepolarization magnet
and the guiding solenoid.

At the beginning of the dissolution sequence, the ZULF spectrometer received a trigger from
the dDNP system, which immediately switched on the guiding solenoid and the Helmholtz-coil
pair, both providing a 100 μT field. After the transfer, the hyperpolarized sample reached the
NMR tube awaiting in the detection region which had a PEEK assembly containing input and
output capillaries for injection and exhaust (see the inset in the black rectangle in Fig. 6.20A).
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Figure 6.20: A-B Schematic representation of the experimental setup and sequence for dDNP-
ZULF experiments, respectively. The inset in Panel A shows the NMR tube in the dDNP injector
and that used for pneumatic shuttling in field cycling experiments. Adapted with permission from
Ref. [223] (Copyright 2023 American Chemical Society).

4 s after receiving the trigger, the guiding solenoid was switched off. After an additional delay
of 100 ms allowing the solenoid field to decay, the Helmholtz coil was switched off within 10 μs,
bringing the spins non-adiabatically to zero-field to generate an observable signal (see Sec 2.3.2
for more details). As mentioned above, a flow of He gas pushed the solution from the polarizer
during ttrans = 2 s. The detection was performed 4.1 s after the ZULF spectrometer received the
trigger from the dDNP system, meaning that the solution was left at 100 μT during a settling
time tsettle = 2.1 s. This delay allowed the pressure of the He propeller gas to equilibrate with
atmospheric pressure for the sample to settle.

Signals at ZULF are usually not detected using inductive methods; this would be highly in-
sensitive due to the low frequencies of coherences at ZULF. The most widespread approach for J-
spectroscopy at ZULF is currently to use atomic magnetometers. [254, 77, 80, 81, 78, 253, 80, 79, 93]
The ZULF spectrometer developed by our collaborators uses a home-built magnetometer. The
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main components are two diode lasers (Cateye External Cavity DFB), an Rb vapor cell (with 500
Torr N2 buffer gas) with outer dimensions of 8× 8× 10mm3 and 1 mm-thickness walls (Twinleaf
LCC), a photoelastic modulator (PEM) and a photodiode (PD) detector. The Rb vapor cell is
placed below the sample tube and is heated to 180 �C (so that the Rb atoms are in the gas phase).
The pump laser produces circularly polarized light along the y-axis tuned to the D1 transition of
87Rb. [255, 254] This laser polarizes the single unpaired electron of 87Rb along the y-axis. The
nuclear magnetization of the sample along the z-axis causes the electron spin magnetization of
87Rb to precess in the xy-plane. The probe laser, which produces linearly polarized light along the
x-axis, tuned to the D2 transition of 87Rb, is sensitive to rotating magnetization of the electron
spins due to Faraday rotation: if the sample produces no magnetic field, the magnetization of the
electron is along the y-axis and the angle of the linearly polarized light is not affected as it travels
through the vapor cell. When the sample produces a magnetic field along the z-axis, the stronger
the magnetic field, the more the angle of the plane of linearly polarized light is tilted.

A simple approach to measuring the angle of the plane of linearly polarized light after traveling
through the vapor cell is to use of photobeam splitter and two detectors to measure the relative
intensity of the orthogonal components of linearly polarized light. Here, a more sophisticated
approach was used where the angle of the plane is modulated at 50 kHz by the PEM before
it is detected by the PD and the signal is demodulated using a lock-in amplifier. This method
lowers the low-frequency noise. In all experiments, the atomic magnetometer had a sensitivity
of 40-80 fTrms/

√
Hz in the frequency range 1-300 Hz (which was characterized by Román Picazo-

Frutos). It is worth noting that the PEEK assembly of the sample allows the user to keep the
guiding solenoid and prepolarizing magnet used in the thermal experiment, which improves the
duty cycle and polarization maintenance, respectively.

6.3.2 Experimental results

Two samples were hyperpolarized by dDNP and detected at ZULF: a sample containing 1.5 M
13C-sodium formate and 1.5 M [2-13C]-sodium acetate and a sample containing 0.76 M [1-13C]-
pyruvate, 0.85 M [1-13C]-glycine and 0.80 M 13C-sodium formate (see the chemical structures in
Fig. 6.21A). They are referred to as HP1 and HP2, respectively. Both samples contained 50 mM
TEMPOL as the polarizing agent and DNP juice as the solvent. They were placed in the sample
holder as 10 beads of 10 μL. In addition, 10 beads of 10 μL of 3 M ascorbic acid in D2O were added
to the sample holder. Their purpose is to quench paramagnetic relaxation when they mix with
the hyperpolarized solution during dissolution. [237] The ZULF spectra of hyperpolarized samples
HP1 and HP2 are shown in Fig. 6.21B-C. A thermal-reference spectrum with prepolarization at
2 T of a sample of 5.2 M 13C-sodium formate in D2O is shown for comparison in Fig. 6.21D (the
signal is the sum of 16 transients and is further magnified by a factor ×4 for better visualization).
The noise peaks arising from the power line at 50 Hz and overtones (commonly found in ZULF
NMR [253]) and that of the probe-laser noise are marked with hash and asterisks, respectively, in
Fig. 6.21D. They are also present (but not marked) in the spectra of Fig. 6.21B-C, albeit at a
lower intensity relative to the peaks of interest.

To understand the peaks in the ZULF spectrum it is useful to consider the Pople notation. [256]
The molecules of interest can be modeled as an XAn system, where magnetically equivalent spins
An are equally coupled to a heteronuclear spin X. The J-coupling interaction causes observable
transitions at integer and half-integer multiples of the J-coupling constant. 13C-sodium formate,
[1-13C]-glycine, and [2-13C]- acetate correspond to XA, XA2, and XA3, spin systems, respectively.
These systems have observable transitions at JXA, 3/2 · JXA, and {JXA; 2 · JXA}, respectively
[257, 247].

The ZULF spectrum of the hyperpolarized sample HP1 features peaks at JCH = 194.7 Hz for
formate and two peaks at JCH = 127.3 Hz and 2·JCH for acetate (see Fig. 6.21), as expected. In the
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Figure 6.21: A. Chemical structures of the molecules whose signals appear in Panel B-C. B-C.
Hyperpolarized ZULF spectra of sample HP1 and HP2, respectively. The concentration of 13C-
formate shown in the title was quantified by 1H-NMR at 1.88 T. D. Reference signal of 5.2 M
13C-sodium formate in D2O with thermal prepolarization at 2 T. The signal is the sum of 16 scans
and is magnified by a factor ×4. The hash and asterisk symbols indicate noise peaks arising from
the power line at 50 Hz and overtones and that of the probe-laser noise, respectively. The insets
in Panel B-D show zooms of the 13C-formate signal. Adapted with permission from Ref. [223]
(Copyright 2023 American Chemical Society).

ZULF spectrum of the hyperpolarized sample HP2, peaks can be clearly identified at JCH = 194.7
Hz for 13C-formate and there is one peak at 3/2 × JCH = 8.0 Hz for [1-13C]-glycine (see Fig.
6.21C). The peak of [1-13C]-glycine is significantly broader than the other peaks. It is well known
that quadrupolar relaxation [258, 259] is significant in spin systems where nuclei with spins > 1/2
are involved. The broadening is possibly due to quadrupole relaxation caused by the spin-1 14N
nucleus. Surprisingly, the expected signals of [1-13C]-pyruvate at JCH = 1.3 Hz and 2× JCH = 2.6
Hz are not visible in the spectrum.

The formate peak of Fig. 6.21C has SNR > 500, over an order of magnitude higher as compared
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with previously published work. [91]. Yet, as we shall see, the signal enhancement is lower than
what it could be considering the performance of our dDNP apparatus. We define the signal
enhancement as the ratio between the signal integral of the hyperpolarized experiment and that
of thermal reference with prepolarization at 2 T SDNP and STh, respectively,

ε =
SDNP

STh
, (6.29)

where it is assumed that the signals are recorded on the same sample (normalized by the number
of scans). Because the thermal reference signal is recorded on a more concentrated sample, the
enhancement ε is obtained by compensating for the concentration ratio between the two samples

ε = ε̃
CTh

CDNP
, (6.30)

where ε̃ is the signal enhancement obtained by comparing the signal integrals of the hyperpolarized
sample with that of the highly concentrated sample prepolarized at 2 T. Compared to prepolariza-
tion at 2 T, the 13C-formate signal enhancement translates into a spin polarization enhancement
of ε = 5000. Indeed, the peak shows a signal enhancement ε̃ = 44 with a concentration of formate
in the dissolved sample of HP1 determined to be 45 mM by high-field NMR, while the reference
sample was at a higher concentration of 5.2 M. As for sample HP2, the 13C-formate concentration
in the dissolved sample was determined to be 38 mM. Compared to prepolarization at 2 T, the
sodium formate peak shows a spin-polarization enhancement of ε =11’000 (concentration ratio of
137 and signal enhancement of ε̃ = 83).

As we showed in Sec. 2.3.2, the signal at zero-field is proportional to the polarization difference
between the 1H and 13C spins. Therefore, the expected enhancement is

ε =
PDNP (

1H)− PDNP (
13C)

PTh(1H)− PTh(13C)
, (6.31)

where PDNP (
1H), PDNP (

13C), PTh(
1H) and PTh(

13C) are the 1H and 13C polarizations in the
hyperpolarization experiment and those of the thermal-reference experiment, respectively. To
estimate the 1H and 13C polarizations of the analyte that could be expected from our dDNP
experiments, we performed a similar dDNP experiment on [1-13C]-acetate but injected into our
benchtop spectrometer at 1.88 T. We found 1H and 13C polarizations of 6% and 20%, respec-
tively (see Fig. 6.22A). In ZULF experiments, these polarization levels would translate into an
enhancement of ε = 51’000 with respect to prepolarization at 2 T according to Eq. 6.31 (provided
the 13C spins are efficiently inverted prior to dissolution to yield P (13C) = −20%). However,
our best-performing experiment yielded an enhancement of ε = 11’000, less than a quarter of the
expected 51’000.

Fig. 6.22B shows the signal enhancement of dDNP-ZULF experiments with respect to pre-
polarization at 2 T, calculated with Eq. 6.31. The result of our best-performing experiment is
represented by the white bar. As both 1H and 13C polarization contribute to the enhancement,
the value of ε = 11’000 cannot be represented as a point on the plane but rather as a linear
combination of 1H and 13C polarization. For example, if the 1H polarization was P (1H) = 0%,
the 13C polarization of the 11’000-enhanced signal would be P (13C) = −6.7%. Since we per-
formed these experiments, we have improved our dDNP setup (see Sec. 6.1.4) and we obtained
1H and 13C polarizations up to 30% and 50%, respectively. If such polarizations were obtained at
zero-field, they would translate into a signal enhancement of 156’000, which is represented as our
“long-term goal” in Fig. 6.22B.
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Figure 6.22: A. Typical results of dDNP experiments where a hyperpolarized sample of [1-13C]-
sodium acetate is detected at 1.88 T for both 1H and 13C channels. B. Map of the dDNP-
ZULF enhancement with respect to thermal polarization at 2 T as a function of the 1H and
13C polarizations calculated using Eq. 6.31. Adapted with permission from Ref. [223] (Copyright
2023 American Chemical Society).

6.3.3 Paramagnetic relaxation

In an attempt to understand why we obtained such weak signal enhancements compared to ex-
pectations, our collaborators at HIM performed relaxation measurements on 5.2 M 13C-sodium
formate as a function of TEMPOL concentration between 0 and 7 mM in D2O at 100 μT i.e.,
at low-field, and at zero-field, using thermal prepolarization of the sample at 2 T. Assuming that
paramagnetic relaxation rates are linear with the concentration C of TEMPOL, measured rates
1/Tk can be expressed as

1

Tk
= akC + bk, (6.32)
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where ak and bk are the relaxivity of TEMPOL in s−1mM−1 and the sum of all relaxation rates
which are assumed to be independent of TEMPOL concentration, respectively. Under this assump-
tion, they found that the relaxivity at 100 μT of TEMPOL on 13C-formate was aLF = 0.27(3)
s−1mM−1. At zero-field, they found a relaxivity of aZF = 0.19(4) s−1mM−1. The lineshape of
the signal at zero-field was also studied as a function of C. The broadening of the signal by the
presence of TEMPOL was found to be ≈ 100 mHz.mM−1. These results are in agreement with
recently reported data by Bodenstedt et al. [87]

The dissolution step of our dDNP experiments currently dilutes the sample by a factor of 30,
bringing the TEMPOL concentration down to 1 − 2 mM. The concentration is further reduced
by the presence of sodium ascorbate in the beads placed in the DNP sample holder and in the
dissolution solvent, which acts as a scavenger for TEMPOL radicals. [237] However, the reaction
between ascorbate and TEMPOL is not instantaneous. Due to the complex temperature and
concentration dynamics of the dissolution step, it is not possible to know the concentration of
TEMPOL precisely at the moment of injection. Considering that the TEMPOL concentration
after injection is at most on the order of 1 mM, the relaxation data show that the broadening due
to paramagnetic relaxation is expected to be within a few hundreds of mHz, acceptable for our
hyperpolarized experiment. The spectra of hyperpolarized samples in Fig.6.21B-C have linewidths
of approximately ≈ 200 mHz: was this due only to TEMPOL, it would mean that 1 − 2 mM of
radical was present at the sample at the moment of detection, consistent with expectations based
on our relaxation data. This broadening does not decrease the SNR sufficiently to prevent us from
observing hyperpolarized peaks but leads to a non-negligible signal loss during the settling time
tsettle = 2.1 s. The remaining signal after 2.1 s at 100 μT for a TEMPOL concentration of 2 mM
should be exp (−(aLFC + bLF )tsettle) ≈ 0.3 of the initial value (assuming that TEMPOL has not
significantly been quenched by ascorbic acid at this point). Paramagnetic relaxation during the
transfer and settling of the solution could therefore explain why the recorded enhancement is lower
than expected. This shows that increasing the speed of the transfer, shortening settling time, and
suppressing paramagnetic relaxation is of paramount importance to improving the sensitivity of
dDNP-ZULF experiments.

Future efforts should focus on reducing polarization losses during the transfer and the settling
of the solution to reach polarization enhancements of or > 150′000 (see Fig. 6.22). First, using
the system for fast dissolution, transfer, and injection that we have recently introduced, [222]
dDNP-ZULF experiments could be performed without any settling time. The only necessary
delay following injection would be for the discharge of the guiding solenoid (≈ 0.1 instead of 2.1 s).
In this case, the polarization losses after injection would only be of a few percents (the remaining
polarization would be exp (−(aLFC + bLF )tsettle) ≈ 0.97). It is worth noting that, contrary to
detection at high-field, the resolution of ZULF-NMR is insensitive to microbubbles or turbulences
caused by the dDNP process and so there is no necessity to let the solution settle down as long as
it remains in the sensitive volume (i.e., the bottom of the tube).

Second, using polarization matrices such as HYPSOs [54] or HYPOPs [57], high DNP perfor-
mance could be reached while the polarizing agent could be filtered out during the dissolution
process leaving the solution free from paramagnetic relaxation. This would enable the detection
of dDNP hyperpolarized solutions at ZULF with optimal linewidths, down to typically 50 mHz,
and would increase the sensitivity by another factor ≈ 4.

6.4 Perspectives

We have presented hardware for fast dissolution, transfer, and injection experiments, where the
total time for the sequence takes less than 2 s and enables injecting of a controlled volume, with
13C linewidth 2 s after injection below 1 Hz. We showed how to control the magnetic field along
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the transfer to mitigate polarization losses and obtained 13C polarizations up to ≈ 50%.

Fast dissolution with a controlled injected volume will be useful for applications of dDNP to
spectroscopy. For now, dDNP is mainly used for nuclear spins with long T1 such as 13C spins in
small molecules. A fast transfer is advantageous because it offers the possibility to study rapidly
relaxing nuclear spins like 1H spins or spins in larger molecules. In addition, the controlled injected
volume is crucial for metabolomic reaction monitoring or drug screening applications.

Until recently, dDNP was mainly performed using non-shielded magnets (both for hyperpolar-
ization in the solid-state and for detection in the liquid-state). With the development of dDNP in
shielded magnets and the increasing use of benchtop spectrometers for the detection of hyperpo-
larized solutions, situations, where the hyperpolarized solution has to travel through regions where
the stray field of the magnets is negligible, should become more and more frequent. Therefore,
polarization losses by relaxation at low-field and by zero-field crossings should become more and
more common. The strategies we have presented using arrays of permanent magnets and low-
power solenoids will help minimize such losses with reasonably simple hardware.

We used this hardware for a proof-of-principle experiment where we polarized 1H spins in
small molecules by dDNP and transferred the polarization to 13C spins using an in line adiabatic
magnetic field inversion. This method makes use of spin dynamics at ZULF to perform a 1H →13 C
polarization transfer via the 1H-13C J-coupling. We obtained experimental 13C polarizations of
9− 12% in the liquid-state for molecules with strong J-couplings. We then proposed strategies to
reach higher polarizations and to extend the method to molecules with weaker J-couplings, which
are of higher relevance for applications to in vivo imaging.

If the method can be successfully adapted to molecules with lower J-coupling, in particular to
[1-13C]-pyruvate, it could be used to increase the throughput of dDNP experiments in laboratories
which usually use trityl radicals to polarize 13C spins directly.

We finally presented experiments where a sample is hyperpolarized by dDNP and detected in
the liquid-state at zero-field. An example of such experiment was already reported by Barskiy
et al. using direct 13C DNP from trityl radicals. [91] Here, we used 1H DNP with 1H →13 C
multiple contact CP to polarize both 1H and 13C spins, which both contribute to the signal at
zero-field. We obtained signal enhancement up to 11’000 with respect to standard prepolarization
in a 2 T permanent magnet (the common ZULF equivalent of high-field NMR without hyperpolar-
ization), while 51’000 could be expected from the 1H and 13C polarization levels. We rationalized
this discrepancy by paramagnetic relaxation during the stabilization delay between injection and
detection.

These experiments of ZULF detection of dDNP hyperpolarized molecules were not performed
using our fast dissolution, transfer, and injection system. The signal enhancement would be much
higher with the faster and better-controlled transfer that our hardware now permits. In addition,
the method could be greatly improved by the use of polarizing materials like HYPSO or HYPOP,
[260, 54, 57] which can be filtered out after dissolution. With a stronger signal enhancement and
longer relaxation times due to the absence of paramagnetic relaxation, signals at ZULF could be
observed over a longer time window.

A promising application of ZULF-NMR is the monitoring of catalytic chemical reactions in
conditions that are relevant to the industry. Burueva et al. [86] have already shown an example
where ZULF-NMR was combined with PHIP hyperpolarization in order to monitor a chemical
reaction with high-resolution within a metal container and in presence of a heterogeneous catalyst.
However, because this approach relies on PHIP hyperpolarization, it is limited to reactions where
hydrogen gas is used as a reagent. Due to its low chemical specificity, dDNP-ZULF-NMR could be
used for the monitoring of a wider range of chemical reactions. ZULF is a regime where chemical
reactions may be monitored with high resolution for both homogeneous and heterogeneous cata-
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lysts, due to the insensitivity of ZULF to inhomogeneities induced by the magnetic susceptibility
of the sample [261, 85]. The high sensitivity and chemical versatility offered by dDNP-ZULF-NMR
may enable the study of the catalytic hydrogenation of unsaturated compounds or oligomerization
and polymerization processes by high-resolution NMR. [262]



Conclusion

This work has explored spin dynamics at various stages of the dDNP process and in dDNP exper-
iments coupled with ZULF methods in the liquid-state.

PANI polymers were proposed as a new polarizing substrate for DNP. Here, modest 1H polar-
izations under DNP at 1.2 K of ≈ 3% were obtained. However, the interest of these polymers is
that electron spins can be polarized near unity at room temperature by flowing an electric current
through chiral PANI polymers. This proof-of-principle of DNP in PANI opens the perspective
of performing DNP from hyperpolarized electrons, which would not rely on liquid helium and
high magnetic fields. This approach is similar to that of 13C hyperpolarization using color centers
in diamonds but with the advantage of relying on 1H hyperpolarization. 1H polarization could
therefore spontaneously spin diffuse out from the polarizing material to a host solution and be
transferred to 13C spin by CP.

The understanding and the modeling of DNP dynamics require the knowledge of EPR pa-
rameters but common dDNP polarizers are not equipped with EPR detection capabilities. The
1H relaxation rate in the rotating frame R1ρ can be used as an indirect probe to measure EPR
properties. Here, we introduced the use of the 13C spin-spin relaxation rate R∗

2 as an alternative
probe, which is free of possible biases due to spin diffusion during measurement. Indirect mea-
surements of equilibrium electron polarizations under DNP, electron spin-lattice relaxation time
constants, equilibration time constants of the electron polarization upon switching on μw irradia-
tion, and a rudimentary EPR spectrum were presented.

The HypRes experiment was proposed as a method to study nuclear polarization transfers
in the vicinity of the unpaired electron spin of a polarizing agent, i.e., near or through the spin
diffusion barrier. While studying such transfers is usually only done in theory, the HypRes method
enables monitoring these transfers in real-time. The applicability of the method was demonstrated
for 1H and 13C DNP in dDNP conditions and for 1H DNP under MAS at 100 K.

Our results showed that in all studied cases, polarization was able to escape from nuclear spins
near the electron to those in the bulk faster than the bulk spin relaxation. It was also shown that
1H spins as close as 3 Å from an electron spin could exchange polarization with bulk spins on
a faster time scale than their spin-lattice relaxation, which means that the spin diffusion barrier
must be ≤ 3 Å. Finally, it was shown experimentally and in theory that the level of electron
polarization is a crucial parameter for nuclear spin diffusion in the vicinity of the electron; at high
electron polarization, spin diffusion is quenched while, once the electron polarization is lowered by
μw irradiation, spin diffusion becomes significant (on the time scale of a typical 1H DNP build-up,
i.e., 10− 20 min).

HypRes is a versatile method amenable to a variety of situations and can be used as a tool to
understand nuclear spin dynamics in the vicinity of the electron spin. Such understanding could
then be used for the rational design of new sample formulations or spin clusters with optimal DNP
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performance.

A new method was proposed for 1H→13C polarization transfers in the liquid-state between
J-coupled 1H-13C ensembles by adiabatic magnetic field inversion. 1H spins are hyperpolarized
by dDNP and transferred to a liquid-state spectrometer. During the transfer, the solution travels
through an inversion chamber, a device creating an in-line well-controlled magnetic field inversion.
Numerical simulations of the polarization transfers were used to optimize the magnetic field in-
version profile. Starting from a 1H polarization above 50% in the solid-state, 13C polarization of
9− 12% were obtained in the liquid-state after transfer, for molecules with large J-couplings.

The low final 13C polarizations in the liquid-state are probably due to rapid 1H relaxation be-
tween the dissolution and the polarization transfer. Envisioned solutions to mitigate 1H relaxation
before the polarization transfer and adapt the method to molecules with small J-couplings were
described. If these two objectives were reached, the method could be used to prepare 13C hyper-
polarized metabolites with weak J-couplings like [1-13C]-pyruvate. Since it relies on 1H DNP, the
method would be faster than the more commonly used direct 13C hyperpolarization with narrow
line-radicals (10−20 min compared with 1−2 hours). Furthermore, this method relies on relatively
simple and cheap hardware.

Finally, experiments, where dDNP was coupled with signal detection at zero-field by optical
magnetometry, were presented. Both 1H and 13C spins were hyperpolarized at the same time
by 1H DNP and multiple contact CP. Signal enhancements up to 11’000 with respect to standard
prepolarization at 2 T were obtained, while 51’000 was expected based on liquid-state polarizations
determined using high-field NMR in the same conditions. Strategies to mitigate paramagnetic
relaxation and improve the performance of the method were discussed.

A promising application of the combination of dDNP with ZULF-NMR detection is the mon-
itoring of catalytic reactions in porous media within metal containers with high-resolution. Such
reactions are relevant for the industry but are challenging to study with high-field NMR, which
suffers from signal broadening due to the heterogeneity of porous media and signal quenching by
the skin effect in metals. ZULF is the regime of choice for NMR in these media.
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[217] K. Wódkiewicz, B. W. Shore, and J. H. Eberly, “Noise in strong laser-atom interactions:
Frequency fluctuations and nonexponential correlations,” Phys. Rev. A, vol. 30, pp. 2390–
2398, Nov 1984. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.30.2390

[218] D. Suter and R. Ernst, “Spin diffusion in resolved solid-state nmr spectra,” Physical Review
B, vol. 32, no. 9, p. 5608, 1985.

[219] M. Ernst and B. H. Meier, “Spin diffusion in solids,” Studies in Physical and Theoretical
Chemistry, vol. 84, pp. 83–122, 1998.

[220] N. Benetis, J. Kowalewski, L. Nordenskiöld, H. Wennerström, and P.-O. Westlund, “Nu-
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