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Abstract

A Generation IV Sodium cooled Fast Reactor (SFR) is being researched and developed
at CEA, Cadarache France under the project named ASTRID. Monitoring gas pres-
ence in SFR is important with respect to its safe operation. In accordance with the
principles of diversity, techniques based on different measurement principles have been
proposed. This thesis concerns the detection and characterization of void using magnetic
flux perturbation principle. An Eddy Current Flow Meter (ECFM) device is used for
this purpose. From the technological point of view, the objective is to evaluate the feasi-
bility of ECFM as a flow and/or void monitoring/characterizing device; and to determine
which parameters are of interest and what are the precision of these measurements; and
whether it is possible to measure the flow rate and void fraction simultaneously with
the same ECFM device. From the physics point of view, the ECFM system involves
the magnetic flux perturbation due to voids in the presence of Faraday induction and
Lorentz force effects. Therefore ECFM integrated signal contains informations about
the void, Faraday induction and Lorentz force effects based perturbation in magnetic
flux and their couplings. Our objective is to understand the nature and extent of these
couplings.

Specific experiments have been developed to study the effects of flow velocity, void
fraction and magnetic flux pulsations on the response of an ECFM. It consists in mod-
eling the two-phase flow by a moving aluminium rod (plug flow) with holes and grooves
to simulate voids. Flow velocity range of variation was 0 ≤ U ≤ 1 m/s, void fraction
0 ≤ α ≤ 6.9% and pulsation 1500 < ω < 12000 rad/s (for this range of pulsations the
electromagnetic skin depth is of order but smaller than the aluminium rod radius). An
ellipse fitting method was proposed to analyze the output signal of the secondary coils.
The results show that ECFM is sensitive to void fractions between 0.3 % and 6.9%.
Furthermore, the response to void fraction is insensitive to the mean velocity of the two-
phase medium. A second approach based on demodulation analyses of the secondary
coils output signal has been developed. We have proposed a theoretical model based on
a first order expansion of magnetic flux in U and α. With this model it was possible
to interpret the experimental results in terms of contributions of U and α. Despite the
strong coupling between Faraday induction and Lorentz force effects, the results show
that the contributions of U and α can be well separated at low magnetic Reynolds num-
ber (Rem < 0.12) and low α values (α < 6.9%). A very important result is that the
contribution of α on magnetic flux is insensitive to variations of velocity in this range
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of Rem. Moreover, different geometries of void have been studied: grooves and holes.
It was observed that the geometry of void do not change the variation of magnetic flux
with α. This second approach revealed to be more sensitive to void fraction variations
than ellipse fitting method. Finally, preliminary experiments with liquid metal galinstan
with glass beads were done, which showed sensitivity of ECFM signal with velocity and
void. In conclusion, this work has shown that ECFM can measure simultaneously void
and velocity in the range of parameters studied, in particular 0.06% < α < 6.9%.
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Résumé

Cette thèse se situe dans le cadre du projet ASTRID du CEA qui concerne l’étude et le
développement de la génération IV de réacteurs nucléaires à Neutrons Rapides refroidis
par Sodium liquide (RNR Na). La surveillance de la présence de gaz dans un RNR
est importante pour son fonctionnement en toute sécurité. Conformément au principe
de diversité, des techniques basées sur différents principes de mesure ont été proposés.
Cette thèse porte sur la détection et la caractérisation de présence de bulles de gaz en
utilisant le principe de perturbation du flux magnétique. Un débitmètre à distorsion de
flux (DDF) est utilisé à cet effet. Du point de vue technologique, l’objectif est d’évaluer
la faisabilité de l’utilisation d’un DDF en vue de la surveillance et la caractérisation du
taux de vide dans le Sodium liquide, ainsi que de déterminer quels sont les paramètres
d’intérêt et quelle est la précision de ces mesures; enfin, s’il est possible de mesurer le
débit et le taux de vide simultanément avec un DDF. Du point de vue de la physique,
le DDF mesure la pertubation du flux magnétique due aux courants de Foucault induits
par l’hydrodynamique d’un écoulement de liquide conducteur. En présence de vide dans
le conducteur, une nouvelle source de perturbation apparâıt du fait de la modification,
par le taux de vide, de la distribution du champ magnétique. En effet, la présence
de vide agit sur les distributions locales de courants électriques dues au couplage des
phénomènes d’induction et de forces de Lorentz. Notre objectif est de comprendre la
nature de ces couplages et de proposer une méthode qui permette de caractériser la
présence de vide à partir du signal de sortie du DDF, de mesurer le taux de vide et
d’étudier la sensibilité de cette mesure aux variations des paramètres de l’écoulement et
du champ électromagnétique (vitesse et pulsation, en particulier).

Dans ce travail, des expériences spécifiques ont été développées pour étudier les effets
de la vitesse, du taux de vide et de la pulsation du flux magnétique sur la réponse d’un
DDF. Ces expériences modélisent un écoulement diphasique idéal (écoulement piston)
consistant en une barre mobile d’aluminium (écoulement piston) contenant des trous et
des cannelures pour simuler le taux de vide. Dans ces expériences la vitesse, le taux
de vide et la pulsation sont parfaitement contrôlé et leur domaine de variations sont
les suivants : 0 ≤ U ≤ 1 m/s pour la vitesse, 0 ≤ α ≤ 6.9% pour le taux de vide et
1500 < ω < 12000 rad/s pour la pulsation (dans cette gamme de pulsations, on notera
que la profondeur de pénétration du champ électromagnétique est de l’ordre de, mais
plus petit que, le rayon du barreau d’aluminium). Une méthode d’ellipse-fitting appliqué
au signal de sortie du DDF a été utilisée pour caractériser l’effet du taux de vide. Les
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résultats montrent que le DDF est sensible pour des fractions volumique de vide entre
0.3 % and 6.9% . En outre, la réponse aux variations de taux de vide est insensible
à la vitesse du barreau. Cette technique est peu adaptée aux mesures des faibles taux
de vide (< 0.1%). Une deuxième approche a été développée, sur la base de l’analyse
du signal démodulé du DDF. Cette analyse s’appuie sur un modèle théorique du flux
magnétique obtenu par un développement au 1er ordre par rapport à U et α. Ce modèle
permet d’interpréter les résultats expérimentaux en termes de contributions de U et α
au flux magnétique. Malgré le couplage fort entre l’induction Faraday et les forces de
Lorentz, les résultats montrent que les contributions de U et alpha peuvent être séparées
correctement pour des petites valeurs du nombre de Reynolds magnétique (Rem < 0.12),
et de faible taux de vide (α < 6.9%). Un résultat très important est que la contribution
de α sur le flux magnétique est insensible aux variations de vitesse dans cette gamme
de Rem. De plus, l’effet de la géométrie du vide a été étudié pour deux configurations
: cannelures et trous. Il a été observé que la géométrie du vide n’a pas d’effet sur les
variations du flux magnétique avec α. Cette seconde approche est plus sensible aux
variations de fraction volumique du vide que la méthode de l’ellipse-fitting. Enfin, des
expériences préliminaires avec un liquide métallique (Galinstan) contenant des perles
de verre, ont été faites et ont montré une bonne sensibilité du signal du DDF avec la
vitesse et le taux de vide. En conclusion, ce travail a montré qu’il est possible de mesurer
simultanément un taux de vide et un débit pour la gamme de variations des paramètres
étudiés, en particulier 0.06% < α < 6.9%.
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Introduction

Sodium cooled Fast Reactors (SFR) are one of the promising reactor concepts among
other Generation IV nuclear reactor technologies. France is developing a prototype Gen-
eration IV SFR called ASTRID (Advanced Sodium Technological Reactor for Industrial
Demonstration). Generation IV nuclear reactors are characterized by their improved
safety among some other unique features. France has gained feedback of experience
from operation of three previous French SFRs, Rapsodie, Phénix and Superphénix. The
demonstration of safe operation in the presence of gas in sodium has been identified as
one of the requirements for ASTRID. Gases in sodium come from the Argon cover gas,
nuclear reactions etc. This gas presence in sodium modifies its acoustic celerity, thus
hindering acoustic/ultrasonic based under-sodium monitoring and control. Hypothetical
situation of gas pocket formation and a subsequent release of a large gas bubble, has
the potential of introducing neutronic and thermal hydraulic perturbations in reactor
core. To study these effects, we require reliable detection and characterization of gas
in sodium. But sodium being opaque, renders many commonly used techniques for gas
detection in two-phase flows unusable. Two physical principles have been proposed in
this regard: acoustic techniques and electromagnetic techniques. This thesis concerns
the later.

Techniques based on magnetic flux distortion, commonly known as Eddy Current
Flow Meter (ECFM) is known to SFR flow monitoring applications. In ECFM, ex-
ternal coil(s) creates AC magnetic flux in the medium. The motion of liquid metal
(through/over ECFM) creates distortion in this external flux owing to Lorentz force
effects. This distortion is sensed by secondary search coil(s). In two-phase liquid metal
flow, additional distortion in magnetic flux comes from the presence of voids/bubbles in
the medium.

From the physics point of view, our objective is to understand the Lorentz force effects
due to flow velocity U , Faraday induction effects due to pulsation of magnetic flux ω
and void effects due to void volume fraction α. This also includes an understanding of
coupling between these three and their subsequent effect on magnetic flux distortion in
two-phase liquid metal flow.

From technological point of view, our objective is to first determine whether ECFM
is sensitive to the presence of voids in two-phase liquid metal flows. Then we evaluate
whether it is possible to characterize α and U simultaneously with one ECFM. And
subsequently define limits of detection of α and U .
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This thesis is organized as follows: We begin by setting the context, define objectives
and scope of this thesis in chapter 1. Chapter 2 is concerned with the literature review
of ECFM in single-phase and two-phase flows. We notice a lack of literature on the-
oretical description of ECFM in two-phase flows. However, electromagnetic fields and
magnetic flux distortion due to voids, have been studied in very low and high pulsation
ranges in other fields. From the description of Maxwell nearly two centuries ago, to
electromagnetic flowmeters and change in impedance studies in electromagnetic evalu-
ation of materials, we find various models which have been subsequently divided into
two categories: models without induction effects and models at high pulsations. We
also find experiments and numerical simulations that describe the dynamics of bubbles
in two-phase MHD. However, this later was neglected in this study. In chapter 3, we
theoretically analyze an ECFM, which is subsequently fabricated for two-phase flow ex-
periments with ECFM. Next, three approaches are proposed to characterize U and α
effects in liquid metal two-phase flows. A model two-phase flow experimental setup is
developed in chapter 4. Here, liquid metal is replaced by aluminium rods. Grooves and
holes over these rods simulate voids. ECFM translates over the aluminium rod at a
given constant velocity. This is equivalent to a plug flow. This experimental setup is
ideal for characterizing U , ω and α effects using the proposed theoretical approaches.
Here, we can control well U , α and void distributions. Even if the Faraday induction,
Lorentz force and void effects are intimately coupled, we were able to separate U and
α effects. The results further demonstrate the feasibility of void and flow characteriza-
tion simultaneously for low magnetic Reynolds number and low void volume fractions.
The experimental results were explained with the help of simple scaling relations based
on Maxwell’s equations. Results with aluminium rods have been proposed to be vali-
dated in experiments with liquid Galinstan containing glass beads. Chapter 5, provides
some preliminary results for this later. Finally, we provide conclusions and review some
perspectives, both from scientific and industrial point of views.

The work presented in this thesis forms the basis of four journal papers: Thermo-
magnetic behavior of AFM-MFM cantilevers (published in Measurement science and
technology), Void effects on eddy current distortion in two-phase liquid metal (pub-
lished in Review of scientific instruments), Towards quantitative void fraction measure-
ment with an eddy current flowmeter for fourth generation sodium cooled fast reactors
(accepted for publication in Transactions on nuclear science), Magnetic flux distortion
in two-phase liquid metal flow (submitted to journal of applied physics). In addition
it contributes to one conference paper: Quantitative void fraction measurements with
an eddy current flowmeter for generation IV Sodium cooled Fast Reactor (in ANIMMA
2015 Conference record IEEE).

We reproduce the first two papers at the end of this manuscript in appendix A and
appendix B respectively. The first paper models the behavior of AFM cantilevers in
an external magnetic field. This is a first step. The ultimate objective is to study the
distribution of eddy currents at one bubble surface under Faraday induction and Lorentz
force effects. The second paper summarizes U and α effects on ECFM emf in two-phase
flows.
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Appendix C provides literature review of bubble dynamics in two-phase MHD flows.
Appendix D gives theoretical development for Lissajous curve fitting approach. In ap-
pendix E, we give time plot and FFT spectra analyzed for difference emf in ECFM.
Appendix E is considerably big and thus it is provided as a supplementary.
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Chapter 1

Context and objectives

The natural fossil fuel based resources are fast dwindling due to increasing population
and a rapid increase in per capita energy consumption related to rising standards of
living. Therefore, in view of the impending fossil fuel based energy crisis other avenues of
energy resources are being explored. Wind energy, solar energy and hydro-based energy
are some of the solutions being used in present. Nuclear fission based reactors are also
being considered as viable options for quasi-long term usage [1]. A nuclear reactor has
a high energy density compared to conventional fossil fuel based power plants. Fission
of one atom gives 100,000,000 times more energy than burning one atom of carbon in a
fossil fuel.

To evaluate the role of nuclear fission based reactors in the current energy mix, a
consortium called Generation IV International Forum (GIF) was formed in the year
2000. The objective was to evaluate the current status of nuclear reactor technology and
suggest future strategy for generation IV nuclear reactors. After reviewing about one
hundred different reactor concepts, GIF announced the selection of six reactor technolo-
gies that offer the potential for meeting Generation IV goals: Very High-Temperature
gas cooled Reactor (VHTR), Gas-cooled Fast Reactor (GFR), Sodium-cooled Fast Re-
actor (SFR), Lead-cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), and Super-
Critical Water-cooled Reactor (SCWR). Among these six reactor technologies Sodium
cooled Fast Reactor (SFR) is being led and developed at CEA, Cadarache France. This
project is named ASTRID which stands for Advanced Sodium Technological Reactor for
Industrial Demonstration.

1.1 Fourth generation Sodium cooled fast reactors

A fast nuclear reactor is based on fission reaction by high energy (fast) neutrons inside
its core (see figure 1.1). Fast neutrons unlike the thermal (low energy) neutrons have
the ability to burn higher actinides, and also convert non-fissile 238U to fissile 239Pu.
The use of fast neutron also eliminates the need for moderator used in thermal reactors,
decreasing substantially the volume of the reactor core. The smaller size of core is bene-
ficial for cost considerations because it requires less coolant and structural material. The
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Figure 1.1: Schematic of a pool type fast neutron reactor.

smaller core is also a requirement for efficient breeding in the 238U blanket surrounding
the core [2]. The use of a compact core increases energy densities generated in a fast
nuclear reactor core. One of the solutions in these situations is the use of liquid metals
as core coolants for their highly efficient heat transfer properties. Today, liquid sodium
is the best available liquid metal coolant for this purpose due to the following reasons:
1) relatively low melting temperature (98 ◦C), 2) low neutron capture cross-section, 3)
minimal activation under irradiation, 4) good flow and heat transfer properties and 5)
good compatibility with fuel and structural materials. Fast nuclear reactors which use
liquid sodium as core coolant are called Sodium-cooled Fast Reactors (SFR).

Figure 1.1 shows the working principle of a pool type SFR. Fuel pins containing
fissile, fertile and shielding materials are bundled together in sub-assemblies. These sub-
assemblies are arranged in a specified geometrical configuration and constitute the core.
The primary pumps force the ambient reactor coolant to pass through the core which
removes heat. The hot coolant is cooled in the intermediate heat exchanger which feeds
the secondary circuit. The secondary circuit in turn transfers the heat to the steam
generator (or Sodium-Nitrogen heat exchanger), which supplies steam (or Nitrogen) to
the turbine. The rotation of the turbine blades produces electricity.

1.2 Gas presence in sodium

Liquid sodium coolant is present in primary and secondary circuits of the SFR (see figure
1.1). In each of these circuits there are several possible mechanisms by which gas can
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enter the sodium. One of the main sources responsible for the continuous formation of
free gas in the primary sodium of SFRs is gas dissolution. This occurs in some areas
of the reactor having reached saturation equilibrium which is governed by Henry’s law.
This dissolution phenomenon, particularly at the sodium/cover gas interface, results in
a nucleation phenomenon in areas supersaturated in dissolved gas. This supersatura-
tion occurs in areas where the sodium cools (i.e. at the heat exchanger outlets) and/or
when the hydrostatic pressure decreases. Nucleation increases as a function of surface
roughness of in-pool components. Studies conducted in Superphénix demonstrate that
nucleation is responsible for most of the gas in primary sodium during nuclear reactor
operation at nominal power. The size of the gas bubbles due to nucleation is approxi-
mately 10 µm [3]. Gas entrainment is another source of bubble presence in sodium. The
upper free surface of the primary liquid sodium is in contact with argon cover gas in the
plenum. The purpose of the cover gas is to accommodate sodium thermal expansions
and its separation from oxygen present in atmospheric air. When the free surface of
sodium is agitated (vorticity, shear, etc.), vortexes and/or waves of differing strengths
are formed. These entrain the argon cover gas which in turn travels in form of bubbles via
primary pump through the core. Nuclear reactions with sodium, impurities in sodium,
with B4C in control rods and with fissile fuel in fuel pins also produce gaseous products.
The gases produced in fuel pins can enter sodium in case of cladding failure. A cladding
failure event occurred in Phénix plant in May 1979. It led to the release of fission gas
(xenon-135 among others). A cladding failure incident also occurred in Clementine fast
nuclear reactor in United States in 1952. A local sodium boiling accident may also result
in the presence of non conducting vapors in sodium. Auxiliary circuits (e.g. sodium pu-
rification system) involving any sources of gas would also contribute to the presence of
gas in the primary sodium. In case of a leak in the steam generator (or sodium-nitrogen
heat exchanger), hydrogen (or nitrogen) gas is expected to be present in the secondary
sodium loop. Indirect estimations made for Pénix and Superphénix reactors show that
the void fraction in the primary sodium is 10−4 to 10−6 while bubble radii is in the range
10 µm to 100 µm [4][5].

The presence of gas bubbles in liquid sodium significantly modifies its acoustic prop-
erties. Yet the opacity of sodium means that acoustic measuring methods must be used
to ensure continuous monitoring. The disruptions due to gas presence can disable the
time of flight measurement techniques, passive acoustic monitoring and all acoustic or ul-
trasonic systems. A substantial amount of gas void fraction in the primary pool (several
percentages) can lead to loss of core cooling capabilities of the heat exchangers. Smaller
bubbles may coalesce to make a bigger bubble, which while passing through the core
might introduce neutronic or thermo-hydraulic perturbations. The neutronic perturba-
tions then translates to reactivity fluctuations which leads to local power excursions.
The neutronic perturbations, above a certain threshold, can induce a reactor shutdown
through automated feed back mechanisms. This will incur significant costs on the op-
erator. The gas passing through the core ultimately ends up in the cover gas plenum.
An accumulation of these radioactive gases in the gas plenum overtime increases the
background noise in the radiation detectors situated in the gas plenum. This seriously
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degrades the signal to noise ratio of the detector measurements. It would be necessary to
monitor the gas presence in the primary sodium at all times in this regard. The presence
of hydrogen (or nitrogen) in secondary sodium will serve as an indicator of micro-leak in
the steam generator. An early and fast detection of this event can minimize the damages
to this heat exchanger. The direct measurements of the gas presence is also necessary to
validate the numerical codes (for example, VIBUL code) which predict the gas behavior
and its consequences. This is integral to safe operation of a nuclear reactor. Although
it had been overlooked during the Phénix and Superphénix design phases, recognition
of the continuous presence of primary sodium was the subject of specific requests from
the French nuclear safety authority in 1994 and 1995 to the operator of Superphénix.
In particular, the operator was asked to ” examine (...) the possibility of assessing more
precisely (...) the value (of the) en-gassing rate, either by improving the measurement
methods already used, or by defining other measurement methods” [6, 7]. Extensive test
campaigns thus started in the Superphénix reactor but the shutdown of Superphénix in
1998 prevented the operator from fully answering these requests. In view of this request,
it is imperative to develop methods for characterizing the presence of gas in sodium in
the context of designing the ASTRID experimental reactor.

For a more detailed discussion of causes and consequences of the bubble presence in
SFRs the reader is referred to other resources [4].

1.3 Industrial strategy

Finding a solution to the problem of gas presence in liquid sodium, as discussed in the
previous section, is essential to the ASTRID project. Studies on potential sources of
gas presence in SFR were launched which led to the suggestions for elimination of these
sources by design [5]. Some of these additional systems are shown in figure 1.2. Some
other sources of en-gassing, for example, entrainment and dissolution of gas at sodium-
Argon interface in cover gas plenum still remains a challenge. Therefore we conclude
that decreasing the gas content in sodium is possible, however its presence will remain
an unavoidable problem. In this case, it is necessary to continuously monitor and control
the gas presence in liquid sodium.

Most of the techniques that are generally used in two-phase void fraction measure-
ments are not usable in liquid sodium in SFR. For example, optical visualization tech-
niques cannot be used since liquid metals are opaque. Neutron, Gamma and X ray
densitometry techniques work on the basis of difference in macroscopic attenuation cross-
sections for liquid metal and gas phases. The application of these techniques requires
shielding from the background radiations which is not possible inside the nuclear reactor
vessel.

The high contrast in density between liquid metal and gas bubbles forms the ba-
sis for acoustic techniques for gas detection [4]. The speed of sound (celerity) (c) in a
medium depends upon its density (ρ) and its compressibility (χ) : c =

√
1
ρχ . ρ and χ of

liquid metal and gas phases are very different. Therefore the net effective c in two-phase
medium is a function of the gas void volume fraction. This is the working principle of
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Figure 1.2: The proposed design improvements to mimize gas presence in normal and
incident conditions in SFR [5].

low frequency acoustic velocity measurement technique. One transducer produces
sound waves which passes through the two-phase medium and is received by the sensing
transducer. The speed of this sound wave decreases as a function of void fraction. The
first corresponding model in this regard was proposed by Wood [8]. This technique is
highly sensitive and reliable to bubbles of sizes less than 100 µm. Indeed, the frequency
of the wave has to be lower than the resonance frequencies of the bubbles which are
inversely proportional to their sizes. Piezoelectric transducer technology used today
cannot produce waves below 10 kHz and hence the maximum bubble size that can be
measured reliably is 200 µm. Another acoustic technique which is under consideration
is non-linear acoustic mixing of frequencies. Imaging frequency ωi is mixed with
the pump frequency ωp (ωi � ωp) to produce a frequency modulated wave in acous-
tically non-linear medium (two-phase medium). The pump frequency is chosen in the
range of resonance frequencies for bubbles which is related to the radius of the bubbles.
Characteristic frequencies that appear in frequency spectrum give the information on
bubble sizes. The whole spectrum of bubbles sizes are scanned by changing ωp. There
are some issues concerning the determination of exact void fraction using this technique
[9]. Further R&D on this technique is in progress for its implementation in industrial
conditions of liquid sodium, with acoustic transducers compatible with this medium,
under the operating conditions of a nuclear reactor.

Electromagnetic techniques use high contrast in electrical conductivity between liquid
metal and gas to characterize the two phase flow. Electromagnetic techniques along
with the acoustic techniques provide redundancy and diversity in measuring techniques.
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There are several other reasons for the need to develop devices based on electromagnetic
techniques. The device output signal is naturally electrical, eliminating the need for
transducers to convert the signal to electrical. In addition to saving costs on additional
hardware it also decreases the response time of the device. This is very useful for alarm
based critical systems. Electromagnetic devices have firm mechanical construction and
do not involve any moving parts. According to Yada, this advantage prevents the flow
channel blockage which might happen in case a moving part breaks from the device
assembly and flows away with the ambient liquid sodium [10]. Unlike acoustic techniques,
they have (in principle) no upper limit regarding bubble sizes and void fractions. The
lower limit is still a subject of research. To introduce the working principles of these
techniques we feel the need to present some basic equations in Magneto-Hydro Dynamics
(MHD). This is presented in the next section. The discussion of the electromagnetic
techniques and devices appears in section 1.5.

1.4 Fundamental equations

The implementation of electromagnetic techniques in liquid metal flows requires the
understanding of the coupling between the electromagnetic fields and the motion of
the medium. This involves the mass and momentum conservation laws for the working
fluid under the influence of a net electromagnetic field and the Maxwell’s equations
which govern the behavior of electromagnetic fields. Along with these equations, we
need several constitutive relations to formulate a well defined problem for our system.
The choice of equations and terms in it, depends on physical properties of the medium.
Therefore, we begin this section by listing the physical properties of liquid sodium at
SFR core exit. We would then discuss flow and electromagnetic fields in subsequent
sub-sections.

1.4.1 Properties of liquid sodium

Liquid sodium is lighter and less viscous than water. Its density is ρ = 830 kg m−3 and its
dynamic viscosity is η = 0.0002 Pa s at 500 ◦C [11, 12]. The speed of sound in sodium is
2450 m s−1 compared to 340 m s−1 in air. Liquid sodium has excellent heat transfer prop-
erties. Its specific heat capacity is cp = 1.334 kJ kg−1 K−1 and cv = 1.170 kJ kg−1 K−1

and its thermal conductivity is 80 W m−1 K−1. The thermal conductivity of water at
room temperature is 0.6 W m−1 K−1. Liquid sodium melting temperature is 97.7 ◦C
while it boils at 883 ◦C. Surface tension of sodium is 187 mN m−1.

Liquid sodium being metallic has a very high electrical conductivity, σ = 3.7× 106 S m−1.
The same for the gases present in liquid sodium is σ ≈ 0. Sodium is weakly paramag-
netic. Its mass magnetic susceptibility is χg = 0.6× 10−6 g cm−3 which is χm = 5× 10−8

in dimensionless units [13, 14]. The magnetic permeability of sodium, therefore, can
be taken as that of vacuum, µ0 = 4π × 10−7 H m−1. Its electrical susceptibility is
also very low and the value of electrical permittivity can be taken as that of vacuum,
ε0 = 8.85× 10−12 F m−1.
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Liquid sodium ignites when in contact with air at 320 ◦C, it is therefore imperative to
protect sodium free surface by inert gas. It also undergoes highly exothermic reactions
with water and some other halogenated hydrocarbons. It is corrosive to many metals.
Although refractory materials are compatible with high temperature sodium they often
develop cracks. Pipes and ducts become coated with conducting condensate. Therefore,
to extract electrical signals the use of induction based techniques are preferred [15].

1.4.2 Basics of electromagnetic fields

Due to high electrical conductivity and zero polarizability of liquid sodium, accumulation
of charges inside its volume is not possible. A finite electric field ~E due to accumulation
of charges will quickly homogenize this charge distribution on time scale, τ = ε0/σ ≈
10−18 s. So the Gauss’s law which relates distribution of electric charges to the resulting
electric field inside liquid sodium will be

∇ · ~E = 0 (1.1)

The distribution of free charges on the interface separating electrically conducting and
non-conducting media may however be non-zero. The tangential component Et t̂ of
~E just outside the conducting medium is zero because any finite Et t̂ on the surface
will redistribute the charges to make Et t̂ = 0. But the normal En n̂ can be non-zero
depending on the net surface charge density, σc.

E1
t = E2

t and E1
n = E2

n + σc
ε0

Where, 1 and 2 denote electrically conducting and non-conducting media respectively.
These charges on the interface however do not appear on their own and need some
external source of free charge. Therefore in an actual liquid sodium-gas two-phase flow
both Et t̂ and En n̂ are continuous at the interface.

A circulating ~E is produced in response to time varying magnetic field ~B in the
electrically conducting medium. This is Faraday’s law.

∇× ~E = −∂
~B

∂t
(1.2)

The Faraday’s law in integral form has two alternative forms∮
C

~E · d~l = − d
dt

∫
S

~B · d~S and
∮
Cl

~E · d~l = −
∫
Sl

∂ ~B

∂t
· d~S

In the first equation, ~E and ~B fields are measured in the rest frame of current loop C
enclosing an area S. In the second form, ~E and ~B fields are measured in the laboratory
frame of reference.

The magnetic fields ~B differ from the electric fields ~E, here separate magnetic charges
(monopoles) do not exist. So there is no source and sink for magnetic lines of forces.
This gives us Gauss’s law for ~B.

∇ · ~B = 0 (1.3)
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The circulation of ~B along a closed path is equal to the amount of normal current
passing through it. The total current is equal to the sum of electric and dielectric
currents. This is Ampère-Maxwell’s law,

∇× ~B = µ0 ~J + µ0ε0
∂ ~E

∂t

The displacement current in the equation above (last term on r.h.s.) can be neglected if
the dielectric relaxation number, Kr = ωε/σ � 1 (ω is the angular frequency of variation
of ~E and ~B fields). This is known as quasi-static approximation. In liquid sodium, for
ω = 6280 rad s−1 corresponding to frequency ν = 1000 Hz, Kr ∼ 10−15. Therefore it is
safe to use the following form of Ampère-Maxwell’s law in our study,

∇× ~B = µ0 ~J (1.4)

As discussed above, from Faraday’s law the motion of electrically conducting medium
under time varying magnetic field induces two kinds of emf’s: 1) transformer emf as-
sociated exclusively to the variation of magnetic fields in time (−∂ ~B

∂t ), 2) motional emf
associated with the Lorentz force on free charges in the medium. These two emf’s will
induce eddy currents and are given by the generalized ohm’s law as

~J = σ( ~E + ~u× ~B) (1.5)

We define Jt = σ ~E as transformer induced eddy current and Jf = σ~u × ~B as the
flow induced eddy current. We can combine all the equations governing the behavior of
electromagnetic fields as described above. This gives us the magnetic induction equation,

∂ ~B

∂t
= λ∇2 ~B +∇×

(
~u× ~B

)
(1.6)

Here λ = 1/µ0σ is the diffusivity of magnetic fields in the medium. The magnetic
induction equation is analogous to the transport equation for vorticity ~ω = ∇ × ~u.
The extent to which diffusion of vorticity prevails over convection of vorticity in fluid is
governed by the Reynolds number Re (to be defined later). By analogy we have magnetic
Reynolds number Rem defined as the ratio of diffusive to the convective time scales.

Rem = τd
τc

= L2µσ

L/U
= ULµσ (1.7)

where, L is a characteristic length. For a perfect conductor (σ = ∞) Rem = ∞, the
diffusion is very slow with respect to convection (τd � τc). In this case changes in
~B is governed only by convection. Amount of magnetic flux linked to any conducting
loop in the fluid remains constant. This is the famous frozen in field concept (frozen flux
theorem of Alfven) where magnetic lines of forces move with the fluid and a perturbation
in ~u brings equivalent perturbation in ~B and vice versa. In real conductors, diffusion of
flux happens through ohmic dissipation.
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The normal electrical current on the fluid-gas interface is zero assuming gas does not
conduct electricity (σg = 0).

J1
n = 0 = J2

n

The net normal magnetic field on the gas bubble surface is again continuous because ~B
is divergence free.

B1
n = B2

n

The tangential components of the magnetic fields however are discontinuous if a surface
current Jst̂ exists on the interface

B1
t = B2

t + µ0Js

1.4.3 Basics of fluid motion

The fluid motion is governed by the familiar Navier’s stokes equation. The statement
for an incompressible Newtonian fluid motion is

ρ
D~u
Dt = −∇p+∇ · τ + ~f

where ρ is the fluid density. D/Dt is the material derivative defined as

D
Dt = ∂

∂t
+ ~u ·∇

τ is the viscous stress tensor term and ~f is other volumetric force terms.

τij = η

(
∂ui
∂xj

+ ∂uj
∂xi

)

where η is the dynamic viscosity of the fluid. The law of conservation of mass, also called
the continuity equation, is

∂ρ

∂t
+∇ · ρ~u = 0

For an incompressible fluid, we obtain

∇ · ~u = 0

The boundary condition on ~u is ~u = 0 at any solid surface. This is called no slip
condition. The equation for fluid motion in the presence of electromagnetic fields and
without other volumic forces is

ρ0
D~u
Dt = −∇p+ η∇2~u+ ~

J × ~B (1.8)

The last term on R.H.S. of equation (1.8), is the so called Lorentz force term. This term
opposes the relative movement of the fluid and the magnetic field.
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There are four most common dimensionless groups in MHD literature. Magnetic
Reynolds number Rem has already been defined. Reynolds number Re is the ratio of
viscous diffusion time scale to convection time scale of fluid momentum.

Re = ρ0L
2/η

L/U
= ρ0UL

η
(1.9)

The Hartman number is square root of the ratio of viscous diffusion time scale to the
time scale of Lorentz force effects.

Ha =
√
ρ0L2/η

ρ0/σB2 = BL

√
σ

η
(1.10)

The magnetic interaction number is the ratio of convection time scale to the time scale
of Lorentz force effects.

N = L/U

ρ0/σB2 = σB2L

ρ0U
(1.11)

Note that N = Ha2/Re.

1.4.4 The Hartmann problem

The nature of coupling between fluid motion and the applied external magnetic fields can
be better understood by studying the Hartman problem. It is a well known problem in
MHD. We present here the standard solutions. The explanation for the derivation can be
found in this reference [16]. Non-dimensional forms of equations (1.6) and (1.8) are used
in this problem. Consequently all the quantities in this section are non-dimensionalised.
The motion of electrically conducting fluid (uyŷ) happens between two infinite par-

Uy

x
y z

Bx

F=JXB
J=σ

(vX
B)

tw

b'

Figure 1.3: The geometry of the Hartmann Problem.

allel plates. A steady uniform external magnetic field B0x̂ is applied perpendicular
to fluid motion. This will induce eddy currents in the medium governed by the non-
dimensionalised form of the induction equation (1.6). The no slip condition at boundary
walls give u(±1) = 0. The tangential magnetic field at the boundary depends on the
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Figure 1.4: The boundary conditions used in the numerical simulation of Hartman Prob-
lem, (a) c→ 0 (b) c→∞ at parallel plates. Here ~A is magnetic vector potential defined
as ~B =∇× ~A. P0 is outlet pressure, U0 is inlet velocity, Br is an applied constant and
uniform magnetic flux density perpendicular to flow and H is the magnetic field.

wall conductance ratio defined as c = σwtw/σL; where, σw is electrical conductivity of
the wall and tw is the wall thickness (see ref. [17]). The tangential magnetic field is
continuous at the fluid-wall interface for c → ∞, while it vanishes when c → 0 at the
wall. This is because the normal current density Jn is continuous at the interface when
c→∞ and is zero when c→ 0. The solutions to the above defined system is

u(x) = uc

[
1− cosh(Hax)

cosh(Ha)

]
(1.12)

b(x) = − x

Ha + uc
sinh(Hax)
cosh(Ha) (1.13)

uc = 1
Ha

c+ 1
cHa + tanh(Ha) (1.14)

We anticipate the need to use a numerical solver as a tool to understand interac-
tions in more complicated geometries. So the Hartman problem was also studied using
COMSOLr. It is a finite element based solver which allows multi-physics coupling. For
our case, we use a 2D geometry. The magnetic induction equation is modeled by “AC
DC” physics while the Navier stokes equation was introduced using “Single Phase Flow
(spf)” module. The constant external magnetic field was modeled by the “Remnant
magnetic flux” (Br in figure 1.4). Magnetic potential corresponding to external mag-
netic field is applied at all four walls in c→ 0 case, while “perfect magnetic conductor”
condition was used at the two parallel plate walls in c→∞ case.

Figure 1.5 shows the coupled effect of motion and externally applied magnetic field.
We notice a decrease in fluid flow rate as the Hartman number is increased. If the flow
rate was kept constant, for example by a pump, one would expect a similar distortion in
~u profile while the area under this curve remains constant. This distortion in flow profile
comes from the interaction of the flow induced currents with the total magnetic field in
the medium. The flow induced eddy currents ~Jf are induced in response to the motion
of free charges in the medium across the magnetic field. ~Jf is maximum in the middle
of the two plates because the velocity in the core is maximum, ~Jf = ~u× ~B. Due to the
dense current densities in the core of the flow, the Lorentz force opposing fluid motion
across B0 is also maximum in the middle and therefore the net action of ~B through Ha
on ~U profile is to flatten it in the core. This effect is similar to turbulence where an
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Figure 1.5: The distortion in (a) velocity profile (c → 0), (b) the induced magnetic
field (c → 0), (c) velocity profile (c → ∞), (d) the induced magnetic field (c → ∞),
for Ha = 0 (◦ COMSOLTM, — Analytical); Ha = 1.5 (� COMSOLTM, −− Analytical);
Ha = 5 (4 COMSOLTM, − · − Analytical); Ha = 25 (♦ COMSOLTM, · · · Analytical).
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increase in Reynolds number Re tends to decrease the thickness of the boundary layer
and the flow profile tends to flatten in the core. The induced eddy currents ~Jf has its
own magnetic field b′, whose magnitude depends upon Rem. Notice a change in sign of
this induced magnetic flux in the core. This is because the circulation of b′ is equal to
Jf (see figure 1.3).

The distortion in ~u profile due to Lorentz force is more severe in c → ∞ case than
c → 0 case (compare figure 1.5a and 1.5c). If the volumetric flow rate is not fixed,
we expect a more rapid decrease in volumetric flow rate in response to increasing Ha.
The current density ~Jf in c → ∞ case is non-zero at the wall because of conducting
nature of the wall which provides electrically conducting path for current. Therefore,
the corresponding Lorentz forces extend till the wall thus increasing the net Lorentz
force on fluid. This is also evident in the plots for b′. For the later case, this tangential
magnetic field is non zero at the wall due to a non zero normal current density.

For the case of vanishing and diverging magnetic fields, Ha → 0 and Ha → ∞ re-
spectively, equation 1.12-1.14 can be approximated by expansion of hyperbolic functions.
For Ha→ 0, we obtain

u(x) = 1
2(1− x2)

This is the parabolic flow profile, characteristic of a Poiseuille flow. The core velocity in
this case is uc ∼ Ha−1. For Ha→∞, the hyperbolic functions are expanded in terms of
exponential functions. The final expression is

u(x) = uc {1− exp [Ha (|x| − 1)]}

In this case, exponential boundary layer is formed at the plate wall. This is called the
Hartman layer. The thickness of the Hartmann boundary layer is δHa ∼ O

(
Ha−1). The

corresponding core velocity is uc ∼ Ha−2.
Figures 1.5a-1.5d also show a good agreement between the results of numerical sim-

ulation and the analytical solution.
To see the effect of a time varying magnetic field, we will treat a simple case when

there is no fluid motion. Taking the case of insulating parallel plates (as in the Hartman
problem), let us assume ~u = 0 and B(t) = B0 exp(−iωt). The time varying magnetic
fields will induce transformer induced eddy currents ~Jt in the medium in accordance
with the Faraday’s law and Maxwell Ampère’s law. The magnetic induction equation in
this situation is,

d2B

dx2 = iµ0σωB

The solution to this equation is B(t) = B0 exp(−x/δ) exp(−iωt) exp(−ix/δ). The mag-
netic field propagates with exponentially diminishing amplitude inside the medium. The
x value at which B0 decreases by factor e (≈ 2.71828) is called the skin depth or the
penetration depth of magnetic fields. It is defined as

δ =
√

2
µ0σω

(1.15)
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In practical situation of interest, the motion of electrically conducting medium will take
place in the presence of time varying magnetic fields. In these situations, we would
expect both the ~Jf and ~Jt to contribute. Their relative strength would depend upon
flow velocity ~u and frequency of variation of magnetic fields ν. Our work concerns the
the perturbation in magnetic flux in two-phase medium. Therefore objective will be to
understand the behavior of these eddy currents around non-conducting heterogeneities.

For the conditions around ECFM at nuclear reactor core outlet, the characteristic
value of length scale is L = 2.6× 10−2 m, characteristic velocity is 1 m s−1 and fluid
electrical conductivity is σ = 3× 106 S m−1. The values of non-dimensional numbers are
Re = 105, Rem = 0.12 and Ha = 0 − 10. The high value of Re suggests that the flow
will be highly turbulent with very small boundary layer. In addition, Ha would have
the effect of further decreasing this boundary layer. It would be safe to assume a flat
uniform profile in this situation. Rem � 1, which means that the total magnetic flux
density, B ≈ B0. The penetration depth of magnetic fields in liquid sodium at magnetic
field variation frequency of ν = 1000 Hz is δ ≈ 9 mm.

1.5 Electromagnetic techniques

Electromagnetic techniques have seen a long journey since Faraday first tried to measure
the flow of river Thames in 1882. These techniques work on the distortion of externally
applied magnetic fields by moving electrically conducting medium in motion. This is
governed by the induction equation (equation (1.6)). These external ~B fields are gener-
ally weak so as to minimize the effect on fluid motion (see equation 1.8). On the basis of
the form of the applied external ~B and on the basis of method of detection of the per-
turbation on ~B, the electromagnetic techniques are divided into two broad disciplines:

1.5.1 Induced voltage technique

In the induced voltage technique , the electrically conducting liquid flows through the
flow channel in the presence of transverse magnetic field ~B. If ~B is produced using
permanent magnets it is called the permanent magnet flowmeter. If ~B is produced
using electromagnetic coils it is called the electromagnetic flowmeter. ~B fields are either
static or slowly varying. The interaction of flow velocity ~U with ~B induces a potential
difference across the electrodes (see figure 1.6) and drives current ~J in accordance with
the ohm’s law (equation (1.5)). Interaction of ~J and ~B will produce volumetric force ~F
as shown in the Navier Stokes equation (1.8). The influence of ~F on ~U is minimal at
low Ha.

The behavior of this type of device in two-phase liquid metal flows is known in
literature [18]. No other electromagnetic device can compete with it in terms of precision
for single phase flow measurement applications [19]. However there are certain drawbacks
regarding the implementation of this technique in SFR. This technique is inherently
invasive because electrodes need to be in contact with the flow. Contact with the liquid
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Figure 1.6: The schematic diagram of an induced voltage flowmeter.

metal creates a temperature dependent electrochemical potential at the interface of two
dissimilar metals which is a source of significant noise. If permanent magnets are to
be used to generate ~B, we need specially fabricated magnets such as ALNICO V or
ALNICO VIII to sustain high temperature and nuclear radiation environments. Also
the magnets will be activated due to the presence of Cobalt in the magnets, this creates
a problem of device handling. Saddle coil EM flowmeters have been used in prototype
fast reactors but they are long in length and their application is restrictive [19]. Indeed,
both permanent magnetic flowmeters and EM flowmeters are known to be bigger in size
and might not satisfy geometrical constraints of desired application. Since electrical
conductivity of liquid sodium is very high, significant amount of flow induced eddy
currents will be short-circuited in the flow, decreasing the sensitivity of these flowmeters
to U and void.

1.5.2 Induced field technique

Induced field techniques (Eddy Current Flow Meter (ECFM)) are based on the distortion
of externally imposed magnetic flux in electrically conducting medium by U and void.
An AC current through primary coil P creates magnetic flux in the medium and also
through the secondary coil/s S (see figure 1.7). The interaction of this imposed flux
with the two-phase medium induces eddy currents Jθ that creates an extra magnetic
field which changes emf in the secondary coil/s. This emf contains informations on flow
U . The flow of electrically conducting liquid may be through the core of the coils ( flow-
through type ECFM) or outside the coils (probe type ECFM). Any number of exciting
and sensing coils can be used depending on the application.

ECFM has many advantages over other electromagnetic techniques. An ECFM re-
quires weak magnetic fields, thereby saving magnet power [19]. It uses AC current to
excite the primary coil, so the response time of this device is faster than the electromag-
netic flowmeter. Therefore, it can report the transients fairly quickly to allow sufficient
reaction time for feed back loops. It is known to produce large AC signals which is an
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Figure 1.7: A flow-through type ECFM.

advantage in high noise environments. ECFM is non invasive, thus there is no need to
contact liquid sodium. It does not use magnets and the material for its construction are
relatively easily and cheaply available. It has been known to operate at high tempera-
tures and gives temperature independent signals [20]. It is light in weight and usually
very small in size. Diameters as small as 5 mm and length as small as 1 cm have been
reported in the literature [21]. It also offers relatively easy handling and can be placed
in very limited spaces such as at the exit of the primary pump.

1.6 Scope of the thesis

The presence of gas in primary as well as secondary sodium loops is an important safety
problem. We have found that its monitoring is necessary. Flux distortion technique is one
of the suitable candidates for gas bubble detection in liquid Sodium. It is non-intrusive
and can survive harsh conditions characteristic of a nuclear reactor primary loop. More-
over, its application is not only limited to the nuclear reactor, it can be used with any
electrically conducting liquid for flow monitoring. The potential of this kind of technique
for detection and characterization of electrically non-conducting heterogeneities in the
conducting medium needs to be studied.

On the technological side, our main concern is to determine the feasibility of ECFM
as a flow and/or void monitoring/characterizing device to address the issue of SFR safety.
This is to be achieved by understanding its output signal in single and two-phase flows.
We would like to know whether flow measurements and void characterization is possible
to achieve simultaneously with one ECFM. What is the precision of such measurements.
Which parameters should be recorded and how? What are the possible improvements
in method of signal acquisition that can be accomplished with ECFM system? These
questions will be answered through a theoretical model for ECFM in two-phase flows.
This model will be validated by experiments.

From the physics point of view, the ECFM system involves the two-phase fluid motion
in the presence of time varying electromagnetic fields. The ECFM signal, therefore,
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contains informations about the eddy currents, the flow rate and the void fraction. What
are the elementary mechanisms that are responsible for the flow and void fraction effects
on ECFM integral signal? Are these mechanisms coupled? Can we, on the basis of a
model and a measurement technique, decouple them? These questions are equivalent
to characterizing and understanding the eddy currents perturbations by flow and void
fraction effects.

The bibliography on this subject is given in chapter 2. The first part of this bibli-
ography concerns the evaluation of existing theoretical models and experimental results
on ECFM in single and two-phase flows. The mechanisms for the effects of void on the
externally applied magnetic flux is discussed in the second part.
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Chapter 2

Literature Review

Both the Navier Stokes equation (1.8) governing fluid motion and the induction equation
(1.6) describing electromagnetic fields are non-linear and coupled. In the presence of
the second phase (bubbles/slugs/inclusions/gas/void) this situation becomes even more
complicated. Even the dynamic effects on bubble motion under given electromagnetic
fields in itself is complicated to treat theoretically and to the author’s knowledge most
of the literature that exists on this topic is experimental and numerical simulations. A
review of these effects is given in the appendix to underscore the effects that were not
considered in this PhD.

In this chapter we will mostly limit ourselves to scaling relations and some approx-
imate expressions for the ECFM behavior in single and two-phase flows. Section 2.1
concerns the literature review of ECFM in single phase flows. In section 2.2, a literature
survey on ECFM in two-phase flows is given. It is to be expected that the presence of
bubbles in electrically conducting liquid changes the integrated magnetic flux via change
in electrical conductivity. In a homogeneous mixture of conducting and non-conducting
media, the change in this integrated flux is time independent. On the other hand, for
a heterogeneous medium, the perturbation in integrated magnetic flux is expected to
depend on the mean bubble separation and lengths of coils. This would manifest it-
self as fluctuations in integrated flux. A research on homogeneous models is given in
section 2.3 while the literature on the heterogeneous models is given in the section 2.4.
The last section 2.5 is reserved for conclusions and summary. A bibliographic study on
two-phase ECFM tells us that no analytical study and theoretical formulation exists for
ECFM system in two-phase flows. To fill this gap we use the results from other fields
of study, namely, electromagnetic flowmeters in two-phase flows and the non-destructive
techniques for flaw detection.

2.1 ECFM in single phase flows

In an Eddy Current Flow Meter, the motion of liquid metal produces a distortion in the
external time varying magnetic field which is governed by the induction equation (1.6).
This distortion in external field is linear with the flow rate to first order in Rem (low

23



Rem). The detection of this distortion forms the working principle of an ECFM [19].
We take the case of flow in a cylindrical pipe. The external magnetic flux is imposed

by a co-axial coil enclosing this pipe and carrying AC current density of magnitude
J0(r, z) and pulsation ω (see figure 2.1). Due to axial symmetry, the problem is set up
in terms of magnetic vector potential ~A, where ~A is given by ~B = ∇× ~A. In this case,
we only need to solve for Aθ since all the induced eddy currents will be azimuthal. In
cylindrical coordinates, the magnetic induction equation (1.6) in terms of ~Aθ becomes,

(
∇2 + k2

0

)
Aθ(r, z) = −µ0J0(r, z) + µ0σv(r)∂Aθ(r, z)

∂z
(2.1)

where, k2
0 = iωµ0σ and v(r) is the velocity of flowing liquid. In general, this equation is

coupled with the Navier Stoke’s equation (equation (1.8)) through v(r). Usually, v(r) is
assumed to be known and of the form v(r) = U(1 − (r/R)n) [22]. Here, R is the flow
channel radius. This assumption is possible as the Hartman number Ha is usually small
because of weak magnetic flux and small characteristic length scale in ECFM. Under this
assumption, we do not have to solve for the Navier Stoke’s equation (equation (1.8)).
The analytical solution to equation (2.1), can be obtained by assuming v(r) = U (plug
flow) and the continuity of tangential electric and magnetic fields at the boundaries.
The final expression can be obtained in terms of eigenvalue expansion of modified Bessel
functions [23]. The analytical solution compares well with experimental results up to
ω = 4700 rad s−1. Approximate solutions have also been developed by Wiegand et al.
using electromagnetic reciprocity. The solutions are in terms of the Bessel functions [24].
Numerical computation has also been done using finite difference discretization [22, 25],
finite element discretization [20, 26] and innovative current ring theory of Baker [25]. In
the later case, due to axial symmetry of the ECFM system, the whole geometry is divided
into current rings. Their mutual interactions are modeled using lumped circuit element
theory and a system of linear equations is solved iteratively. The Green’s function
approach has also been used [27]. The solution A0(r, z) to equation 2.1 corresponds to
v(r) = 0. Then a finite velocity v(r) = U is added as a small perturbation assuming
small Rem. We obtain solution of the form: A(r, z) = A0(r, z) + Au(r, z). The extra
velocity dependent emf in any encircling coil due to the flow is given as

Vu = iωa2rr0µ
2
0IσU

∫ ∞
−∞

dkk sin(kd)K1(kr)K1(kr0)

× I1(k1R)2 − I0(k1R)I2(k1R)
[kaI1(k1R)K0(kR) + k1RI0(k1R)K1(kR)]2

(2.2)

where, k2
1 = k2 − k2

0, d is the distance between the primary and secondary coil, r0 and
r are the radii of primary and secondary coils respectively and R is the radius of the
flow channel. The behavior of ECFM system would now depend on its configuration:
number of coils and design of coils (length, radius, number of turns etc) among some
other parameters. And for this purpose, we will now analyze different kinds of ECFM
and their properties.
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The first ECFM device was patented by Lehde and Lang in 1948 [28]. It consisted of
one secondary coil S with two primary coils P1 and P2 placed coaxially at either ends of
this secondary coil as shown in figure 2.1a. The primary coils are identical in design and
carry equal and opposite currents. The net axial magnetic flux through the secondary coil
is therefore zero in the absence of motion in this well balanced configuration. The induced
emf in the secondary coil is expected to be zero in this case. The radial component of
magnetic field, however is in same direction from both the coils. These radial magnetic
fields interact with the flowing electrically conducting medium and produce eddy currents
(called flow induced eddy currents) inside the medium. This results in a net magnetic
flux through the secondary coil. Assuming that P1 creates Vu (given by equation (2.2))
in S and P2 creates Vu in S, the net flow induced potential in S will be 2Vu.
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Figure 2.1: (a) 3-coils ECFM system proposed by Lehde et al. [28], (b) better 3-coils
ECFM system suggested by Shercliff [19].

Shercliff has suggested an improved three coil ECFM assembly shown in figure 2.1b.
Taking analogy from a differential transformer, let us call this a differential configuration.
It has a primary coil in the middle and two secondary coils are placed coaxially with this
primary coil on either side. These two secondary coils are identical in design. The axial
magnetic field on either side of the primary coil are in the same direction. Therefore,
in the absence of motion equal emfs are induced in the two secondary coils and if we
take a difference of emf it is zero. The radial magnetic fields however are in the opposite
directions at either extremities of the primary coil. They interact with the medium to
produce equal and opposite flow induced eddy currents at the two secondary coils which
results in emf Vu in S1 and −Vu in S2 (or vice versa depending on current in P ). The
difference emf therefore is again 2Vu at small Rem.

The second configuration (figure 2.1b) is better than the first configuration (figure
2.1a). Let us assume that there is a source of electromagnetic noise (stray magnetic
field) at some distance from the ECFM, which induces a parasitic emf ε in the first
configuration. The total potential in S will be 2Vu + ε. In the second configuration, it
is Vu + ε in S1 and −Vu + ε in S2. The difference emf in the second configuration will be
Vu+ ε− (−Vu+ ε) = 2Vu. Therefore, the signal to noise ratio of the second configuration
is better than the first configuration. However, we note that the sensitivity of the two
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arrangements to flow are the same (2Vu). This was confirmed by the experimental results
of Brewer et al. [21].

Figure 2.2: Induced emf in the two secondary coils for 3-coils ECFM in differential
configuration placed at primary pump outlet in an SFR [29].

Figure 2.2 shows a typical output signal for a 3-coils ECFM in differential configu-
ration placed at primary pump outlet in an SFR. The pump outlet flow rate is given in
terms of rotations per minute : rpm. Notice that the voltage in coil S2 increases by the
same amount as it decreases by in S1 in response to a finite flow. The less evident effect
is however a non-zero potential between S1 and S2 at zero flowrate (not shown in figure
2.2). This is because in the practical situations the two secondary coils are not exactly
balanced. To increase the stability of the device the two secondary coils must be exactly
balanced because unbalanced secondary coils would have different coupling to the pri-
mary coil and would behave asymmetrically to the surrounding electrically conducting
structure, other materials and flowing liquid metal: 2Vu + ∆ε(σ(T ), µ(T ), . . .) [30]. Here
T is the ambient temperature. Since it is not practical to obtain exactly identical coils,
a series resistor is used to balance the emf in no flow condition. It has been suggested
to use the current from the primary coil to achieve this voltage balance [21].

An increase in sensitivity to flow has been observed for a 5-coils device (see figure
2.3) as compared to a 3-coils ECFM of figure 2.1b [22]. But the signal to noise ratio
remains the same because inherent noise rejection capability of 3-coils ECFM of figure
2.1b is lost in a 5-coils ECFM. A 5-coils ECFM consists of three primary coils: one at the
middle and two at the extreme ends along the coil axis. Two secondary coils are placed
in such a way as to separate adjacent primary coils from each other. The primary coils
at the extreme ends carry currents in opposite direction (180◦ out of phase) compared
to the current in the P1 coil. The axial magnetic fields at the secondary coil cancel out
in the absence of the flow. The dense radial magnetic fields interact with the electrically
conducting medium to produce same emf in the two secondary coils. The total sum of
the two emfs is theoretically 4Vu + 2ε at low magnetic Reynolds number Rem and in the
presence of the noise sources.

Other kinds of ECFM have also been reported. The description of a single coil
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Figure 2.3: A 5-coils ECFM.

ECFM [31], two coils ECFM [31] and four coil ECFM [28] can be found in literature.
Each of them have their own advantages and disadvantages. An innovative 3-coils ECFM
was proposed by Shercliff and is the topic of current research. As shown in figure 2.4,
external magnetic field is produced by a central coil. Since the magnetic field weakens
at the edges, eddy currents are set up in opposite directions in the two search coils.
The difference of induced emf at low Rem is proportional to the flow rate. A similar
configuration was also patented by Lehde et al., but it consisted of four coils and required
to split the flow channel [28].

(a)

P

S1 S2

Edge
Currents

(b)

Figure 2.4: A similar 3-coils ECFM system (a) Schematic [32], (b) it’s working principle
[19].

An ECFM can be placed outside (flow-through type ECFM) or inside (probe type
ECFM) the flow channel. Wiegand contends that a flow-through type flowmeter device
offers better fluid-coil coupling [24]. Furthermore, ECFM can be in contact with the
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liquid metal (wet type) or separated from it by the use of a thimble (dry type). Costello
et al. found the sensitivity to flow of wet configuration to be 62% larger than that of
dry configuration [33]. In addition to this a magnetic shield can also improve immunity
of ECFM system to external spurious signals. This should increase the signal to noise
ratio [20]. The symmetrical flow channel around ECFM assembly also maximizes the
signal to noise ratio [21, 25].

There are two ways to interpret the ECFM output signal : difference of rms mag-
nitudes and phases of induced emf in two secondary coils [34, 35]. Priede et al. have
found that ECFM device based on phase rather than on the rms voltage output is more
sensitive and robust. For a two secondary-one primary ECFM system, the difference of
phase in the two secondary coils can be written as [34]

Φu = arctan
[

ωπ−1RemKKσ

K2
σ + ω2 (1 + π−1RemK)

]
(2.3)

where, ω = ωτ is dimensionless pulsation of current in primary coil, τ = LR−1 is
the fluid-coils system time scale, Rem is magnetic Reynolds number and K and Kσ

are calibration constants. In this expression, we notice that Φu is linear in Rem when
Rem → 0. It was reported that non-linearity is severe after Rem = 0.3. The functional
dependence of Φu on pulsation is similar to f(x) = x/(1 + x2) for vanishing Rem, which
predicts an initial increase in Φu followed by a rapid decrease after attaining a maximum
value. So, the sensitivity of the phase detection based flow sensor to U changes with the
frequency and this sensitivity would decrease after a critical frequency νcp. Similarly,
the sensitivity based on Vu,rms signal also decreases with the device operating frequency
after a critical frequency νcr. But this critical frequency νcr is smaller than νcp. The
accuracy of the measure based on phase is ±1.5% while that on rms magnitude of the
difference signal is ±10% [34].

The effect of changing flow regime on Vu does not change the calibration with respect
to the mean velocity, although the effects of boundary layer is prominent at low skin
depths. The non-linearity increases with increasing U due to increase in Lorentz force.
Wiegand studied the effects of changing flow regimes on the ECFM flow signal and found
a power law kind of relationship.

Vu = KRenU (2.4)

Here, Re is in the range 4× 103 < Re < 4× 106. n (< 0.028) was found to be very
small for this range of Re, which means that the voltage output to flow velocity rela-
tionship is almost linear. The weak non linearity would increase with the flow velocity.
He also tested the in-phase (signal with 0 rad phase with current in primary coil) and
quadrature-phase (signal with ±π/2 rad phase with current in primary coil) components
of the flow signal and found that the in-phase component was order of magnitude larger
than the quadrature signal. Figure 2.5 shows the in-phase, quadrature and total flow
signals. Notice that after a certain frequency, the in-phase signal decreases while after
this frequency the quadrature signal first decreases and then increases. From the physics
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(a) (b)

(c)

Figure 2.5: The ECFM flow signal (a) In-phase, (b) Quadrature, (c) Total.[24]

point of view, initial increase comes from increasing strength and rate of oscillations of
induced eddy currents till the skin depth is equal to the flow channel radius (see equation
(15) in this reference [22]). Thereafter, a decrease in the flow signal with frequency comes
from the decrease in the penetration depth and less contribution from the flow. This
later can be better understood by plotting the expression in equation (2.2). The plot pa-
rameters in figure 2.6 are: radius of the primary coil r0 = 4.5 mm, radii of the secondary
coils r = 4.1 mm, radius of the flow channel a = 1.25 mm, flow velocity U = 3 m s−1,
conducting liquid resistivity ρ = 130 µΩ cm and current the primary coil I0 = 1 A. The
skin depth can be calculated as: δ = 0.57/

√
ν m. The skin depth at ν = 1 MHz is

δ = 0.57 mm. This is approximately half of the flow channel radius. Vu first increases
till δ ∼ r0, then thereafter it keeps decreasing. On the other hand, the phase of Vu keeps
on decreasing. After, the peak frequency the phase decreases very sharply initially till it
reaches an almost constant value. This means that the ratio of quadrature to in-phase
component amplitudes will saturate at some frequency. The tendency of amplitude of
Vu can be approximated as follows: : Let us assume that δ is the penetration depth, I0
is the current in the primary coil, C is some proportionality constant, R is flow channel
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Figure 2.6: A plot of equation (2.2) with ν.[27]

radius and dl is a current element for circular flow induced eddy currents close to the
surface of the rod. In this case if we assume that the radial magnetic fields decay expo-
nentially (Br = B0 exp(−(R−r)

δ ) = CI0 exp(−(R−r)
δ )) as we move from the surface to the

core of the conductor, we get an expression for emf induced due to fluid motion as,

Vu ∼
∮

(v×B) · dl = Uδ
CI0
δ

∫ R

R−δ
r exp

(−(R− r)
δ

)
dr

= UCI0δ(0.6R− 0.2δ) ∼ k
[(

δ

R

)
− 0.3

(
δ

R

)2]
(2.5)

In expression (2.5), we see a similar exponentially decreasing trend for the ECFM total
signal as is shown in figure 2.5c after dimensionless frequency 3. At small penetration
depths, the effects of the fluid momentum boundary layer will also be more pronounced
[36]. Baker has observed a 20% reduction in Vu by decreasing the mean velocity in the
boundary layer by 5%. Spurious signals such as flow reversal might be observed in this
case. Equation (2.5) also predicts a linear relation between current in primary coil and
the ECFM signal.

The increasing external temperature would decrease the sensitivity of the induced
emf to flow for two reasons: 1) it decreases the electrical conductivity of the ambient
liquid metal, 2) it increases the resistivity of the primary coil which limits the current
for a given externally applied voltage [30]. In this case, it has also been suggested to use
the ratio V2−V1/V2 +V1 rather than the difference voltage. Here, V1 and V2 are induced
voltages in secondary coils S1 and S2 respectively, of an ECFM in 3-coils differential
configuration. Ara et al. have found that there exists a critical frequency νc at which
this ratio becomes independent of temperature fluctuations. Dohi et al. have found the
value of this critical frequency to be 500 Hz in their experiments [37]. The existence of νc
was confirmed by Sharma et al. (see figure 2.7 and 2.8) [20]. The common practice is to
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Figure 2.7: (V2 − V1)× 100/(V2 + V1) vs ν (Hz) at different temperatures [20].

Figure 2.8: (a) V2 − V1 and (b) (V2 − V1)× 100/(V2 + V1), vs U at critical frequency νc
and at different temperatures [29].

chose the frequency slightly different from but very close to νc due to some other factors.
In general νc changes with the coil diameter and the size of the flow cross-section. The
physical mechanism responsible for νc is not known.

A typical use of ECFM is in a Sodium cooled Fast nuclear Reactor (SFR). The device
is expected to work within design specifications for up to 700 oC for safety reasons [25].
The velocities as high as 5 m s−1 may be encountered [21]. This means that the device
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Figure 2.9: ECFM possible locations in an SFR, marked in blue circles.[20]

must be linear within the range, U = 0− 5 m/s. Figure 2.9 shows the possible locations
where ECFM can be installed [20]. Since liquid sodium ignites spontaneously in contact
with air or water, it is not used in ordinary lab experiments with ECFM. Instead, plain
aluminium solid rod has been used in lab experiments to validate theoretical modeling
and to optimize the flow sensor [21, 23]. The aluminium is translated at a given velocity
back and forth using hydraulic power. In this case, the aluminium rod simulates a plug
flow which is a characteristic of high Reynolds number flows typical to the use of liquid
metals in fast nuclear reactors.

2.2 ECFM in two-phase flows

Only observations without clear explanations exist for ECFM response in two-phase
flows. The same is reported in this section. Experimental observations show that the
difference of emf induced between the two ECFM secondary coils is sensitive to the
passage of gas in gas-liquid metal two-phase flows [38, 39]. Figure 2.10 shows the os-
cilloscope trace of the modulations in ECFM signal corresponding to a gas injection in
core component test loop at Argonne national lab [39]. The argon gas was injected at a
rate of 100 cc/s for 5 s using a hand held syringe. The sodium velocities are 3.7 m s−1

and 2.5 m s−1 respectively. Excitation current in the primary coil was I = 500 mA at
frequency ν = 1000 Hz. Sodium temperature was T = 593 ◦C. Even for no-gas case, we
see very small but non-zero fluctuations on ECFM signal. This should be primarily due
to turbulent flow fluctuations. When gas is injected in the flow, we note an increase in
the amplitude of fluctuations. These fluctuations increase with increase in relative gas
flow rate. Unfortunately, since we do not know about the flow channel radius, it is not
possible to comment upon the volumic fraction of gas tested in these experiments.
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Figure 2.10: Oscilloscope trace of emf in ECFM for (A) no gas and (B) gas cases at
sodium velocities (1) 3.7 m s−1 and (2) 2.5 m s−1 [39].

Numerical simulations in a 2D axis-symmetric geometry with a ring type bubble
has also been reported [25]. Figure 2.11 shows the response of an ECFM probe to

Figure 2.11: The response of ECFM to the passage of a large single bubble [25].

the passage of a large single bubble. This bubble completely blocks the annular space
between probe-type ECFM and flow channel inner wall. Notice that this response is
similar to the passage of a current dipole through an electromagnetic probe [40].

Hess et al. have worked with ECFM for gas void fractions in the range of α =
0.3% − 10%. Based on their experimental results they divided the ECFM void signal
into two groups [41]:
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Figure 2.12: ECFM output vs α. The signal for continuous gas injection is smaller than
for single bubbles.[42]

• Noise amplitude mode (NAM): this mode corresponds to the response of the
ECFM signal to the passage of continuous gas (annular flow etc.) or the passage of
very small bubbles uniformly dispersed in continuous phase. A DC shift of ECFM
signal is observed.

• Noise frequency mode (NFM): this mode corresponds to the passage of larger
distinct bubbles. Modulations (signal peaks) are observed in the ECFM signal.

Sensitivity of the ECFM is greater for NFM mode than for the continuous passage of
gas [42]. For the NFM case the time between the subsequent pulses corresponded to the
bubble translation time through ECFM which is related to the bubble velocity. This
means that the void signal is the result of the disruption in geometrical and electromag-
netic symmetry along the length of ECFM. The sensitivity to α increased with increasing
frequency. Mochizuki et al. also found that the signal sensitivity to void decreased with
the flowrate (see figure 2.12) [42]. The inverse dependence with the flowrate might be
the result of void crushing and subsequent uniformity in bubble distribution at high
flowrate [43].

Ogino et al. have found that the ECFM device output signal increases by a maximum
of 500% in response to the passage of the second phase [44]. They did their experiments
for void fraction in the range α = 0%−6%. Furthermore, the signal to noise characteris-
tics changed significantly from gaussian with the passage of the gas. They have reported
that the void signal tends to saturate after α = 3.5% (see figure 2.13).

Nakamoto et al. have considered the effect of coupling between the flow signal and
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Figure 2.13: ECFM output signal saturates after α = 4.0% [44].

the void signal[43]. Their experimental set up consisted of a subassembly outlet mock
up in a test tank, 2.5 m in height and 1.1 m in internal diameter, as shown in figure
2.14. Liquid sodium was used as the coolant. An auxiliary gas injection circuit was
added to the test section. The gas was preheated to the same temperature as that of
the liquid sodium and subsequently injected in the sodium flow through a pin of 1 mm
in diameter. This pin was placed upside down in order to ensure zero gas velocity at the
time of injection. ECFM device was fixed at the top of the central sub-assembly. The
experiments were performed at flow velocity near U = 0.83 m/s and for void fractions
α = 0− 2%. The void fraction was defined as follows

α(%) = gas flow rate
sodium flow rate + gas flow rate × 100 (2.6)

This is the definition used for void fraction in other two-phase void measurement exper-
iments also. Here, we assume the bubbles to be extremely small and this definition will
not be valid if the slip ratio between gas voids and ambient liquid flow is significant.

Nakamoto et al. realized that the signal output based on rms value is sensitive to flow
disturbances and hence have a poor signal to noise ratio for void detection. They made
the hypothesis that the flow and flow fluctuations signal in ECFM should be in-phase
with the exciting current in the primary coil. Therefore, it is possible by the help of a
phase sensitive measurement to obtain void signal which is presumed to have a different
phase than that of flow fluctuations signal. This principle is depicted in figure 2.15.
In single phase flow, the difference of emf in two secondary coils of a 3-coils ECFM is
Ef . It is related to flow rate. The turbulent flow fluctuations induce parasitic signal ef .
This is mediated by the Lorentz force term in magnetic induction equation. Ef exhibits
the same characteristics as we saw in previous section. The flow signal amplitude tends
to increase initially with increasing frequency and starts decreasing after attaining a
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Figure 2.14: The experimental set up of Nakamoto et al. [43].

Figure 2.15: The schema of phase sensitive ECFM signal treatment [43].

36



α
α

Figure 2.16: Optimum phases for flow and void related fluctuations [43].
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Figure 2.17: (a) Quadrature-phase ECFM signal (ev) at different values of α(%), (b)
standard deviation of quadrature-phase (ev) fluctuations vs α(%) [43].

maximum. The passage of voids (bubbles) induce ev. The rms of ev is recorded as the
void signal.

To calibrate the sensitivity of difference emf to flow fluctuations and α an experiment
was performed at a constant frequency for α = 0% and α = 1% respectively. The phase
of the measured difference signal with respect to the phase of the AC current in the
primary coil is varied to determine the optimum phase at which the magnitudes of ef
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and ev are maximum respectively. For α = 0% case, the rms of fluctuations in difference
signal quantifies magnitude of turbulent flow fluctuations which (as shown in figure 2.16)
seems to be maximum at a phase difference 0◦. For α = 1% case, the rms of fluctuations
in difference signal quantifies both the magnitude of turbulent flow fluctuations and
fluctuations due to the passage of voids. It is maximum at a phase difference 70◦. This
justifies Nakamoto et al. hypothesis that the flow and void fluctuations are nearly in
quadrature to each other (90◦, but here it is 70◦). Fluctuations in ev increase with
increasing frequency of the primary coil excitation current. In figure 2.17(a), we see that
the magnitude of fluctuations in ev also keeps on increasing as a function of the void
fraction α(%). Sensitivity to void was found to decrease with the flowrate (see figure
2.17(b)). To explain this result Nakamoto et al. provided two possible reasons: (1)
the two-phase medium is completely homogeneous due to phenomenon of crushing of
void and subsequent uniformity in bubble distribution at high flowrate; (2) Nakamoto
et al. used a band pass filter of width 13 Hz which suppressed the void modulation
signal at high flowrate. The coupling between flowrate and the void fraction appears
to be superficial. Furthermore, these explanations are rather speculative in nature. It
is in this regard that some clarifications are required and further studies need to be
performed.

Flux distortion techniques are also used in some other similar systems. For example,
Mutual Inductance Tomography (MIT) [45] and Contactless Inductive Flow Tomography
(CIFT) [46] have been proposed to monitor flow profiles of melt in metallurgy applica-
tions. In both the techniques, the coils are excited by given current sequentially and
induced voltage is detected in respective opposite coils (see figure 2.18a). The frequency
of excitation is kept low to ensure proper coupling between opposing coils. Terzija et
al. have used the CIFT technique to monitor the effect of argon gas injection when
liquid metal eutectic alloy GaInSn (galinstan) is allowed to pass through a nozzle into
a reservoir. This system simulates the situation when melt is poured into die (cast) in
metallurgy. The experimental results are given for excitation of coil 3 and detection
using coil 7 (see figure 2.18a). The voltage in coil 7 is zero in the absence of flowing
melt through the sensor. When the melt-argon gas mixture flows through the sensor,
it changes the induced signal in coil 7. This distortion in magnetic flux comes from
induced eddy currents in the two-phase melt. For fixed volume of melt and higher gas
flow rates (high α), they have observed a shift of mean value of ‘established’ voltage
towards the value without melt-argon mixture (value in air). This comes from decrease
in average electrical conductivity of the melt-argon mixture at higher α. They also ob-
served large fluctuations over this mean signal. This fluctuating component of the signal
also increased in magnitude with α. For the case of low gas flow rates, they attribute
the existence of the peaks in the induced signal to the passage of bubbles (see figure
2.18c) [47]. These kind of studies are still nascent and demonstrate the feasibility of flux
distortion based techniques in two-phase flow applications. As conclusion the authors
have suggested future work to better understand the modulations of the signal.

In this section, we have have found that there are two effects observed for ECFM in
two-phase flows: (1) the mean DC shift in the signal amplitude corresponding to passage
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1 bubble close to 
flow channel wall
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Figure 2.18: (a) An 8 coil sensor for MIT or CIFT et al. [46], (b) Two phase results for
melt-argon flow (c) The zoom of oscillations at low gas flow rates [47].

of continuous gas or a homogeneous mixture of very small gas bubbles through ECFM,
(2) oscillations/modulations over this mean amplitude corresponding to the passage of
large single bubbles. The mechanisms behind these two effects are not known. The
literature survey in the next section will help us build tools for their understanding.

2.3 Single fluid with equivalent properties

If the gas bubbles were very small and homogeneously dispersed in liquid sodium, we
can treat the two-phase medium as a single continuous medium with equivalent values
of physical properties that characterizes this mixture. By ‘homogeneously’, we mean
that the mean separation between the bubbles is very small with respect to flow channel
diameter. Then, the average void effect comes from alteration of the average electri-
cal conductivity in two-phase flows. If we know the dependence of the ECFM signal
on the electrical conductivity and the dependence of the electrical conductivity on the
void fraction, we can correlate the effect of void fraction on the induced emf in ECFM
secondary coils.

39



2.3.1 Dependence of induced emf on electrical conductivity

For the no flow case, the induced emf in the ECFM secondary coils, depends upon
the electrical conductivity of the enclosed medium through the analytical expression
of Dodds et al. [48]. For the case of finite motion between the ECFM coils and the
medium (plug flow), the analytical expression of Hirayama et al. [23] can be used. These
expressions can also be used to determine the distribution of eddy currents in the medium
in the single phase flow. These integral expressions are eigenvalue expansions in terms of
modified Bessel functions and involve computers to evaluate the induced emf. Other than
this, there is no explicit expression or graph that shows effect of electrical conductivity
on the induced emf in ECFM secondary coils to the best of author’s knowledge. An
easier way to see the effect of electrical conductivity on the induced emf is a finite
element simulation that has been used recently for ECFM in single phase flows [20].
The detailed description of the same is given in the next chapter. Here, we show the
results only, for 3-coils ECFM in differential configuration.

< (S/m) #107
0 2 4 6 8 10

V
S

1 (
V

)

0

0.05

0.1

0.15

0.2

0.25

(a)

< (S/m) #107
0 2 4 6 8 10

|"
 V

| (
V

)

#10-3

0

0.5

1

1.5

2

(b)

Figure 2.19: (a) Induced emf in S1, (b) Difference of induced emf in S1 and S2 vs σ, for
U = 1 m/s at ω = 3142 rad s−1 (◦) and ω = 6284 rad s−1 (�).

As shown in figure 2.19a, the induced emf in secondary coil S1 follows a power law
in σ: V ∼ σ−0.35. The behavior of the induced emf in S2 is same. Also, this only
corresponds to the case of small penetration depth δ < R. Same trend is obtained for
the balance of emf in the two secondary coils at U = 1 m/s as shown in figure 2.19b.

2.3.2 Effective electrical conductivity of two-phase media

In this section, we discuss the mean effective electrical conductivity (σα) of a two-phase
medium as a function of volume fraction α of the dispersed phase. The electrical con-
ductivity of the continuous phase is σ, while the electrical conductivity of the dispersed
phase is taken as zero. Since the movement of electrical current is mathematically analo-
gous to the quantities related to other transport phenomena [49], the results obtained in
this section will also hold for quantities such as magnetic permeability, electrical permit-
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tivity, heat conductivity and viscosity. Although the contrast in the value of transport
parameters for two-phases might not be as large as for electrical conductivity (σ vs zero).
These results are obtained in the absence of any induction effects and involve expansion
of static electrical potential for two-phase media.

The simplest possible models are series and parallel models. Since the medium offers
resistance to the flux (for example, current density or heat flux), the media can be
modeled as some arrangement of resistors in an electrical circuit. In Parallel model, the
medium is assumed to consist of layers of medium 1 (continuous phase) and medium 2

(a)
(b)

Figure 2.20: Equivalent medium as a network of electrical resistors (a) Parallel model
(b) Series model.

(dispersed phase) arranged alternatively perpendicular to the flow of current flux (see
figure 2.20a). The equivalent model in terms of resistors is a combination of resistors
in series. In series model, the medium is assumed to consist of layers of medium 1 and
medium 2 parallel to the flow of current flux (see figure 2.20b). The equivalent model
in terms of resistors is a combination of resistors in parallel. If α is the void fraction
of medium 2 in medium 1, the equivalent electrical conductivity (σα) of the two-phase
medium for parallel model case is

σα = (1− α)σ1 + ασ2 = σ(1− α) (2.7)

For the case of series model, the same is given by

1
σα

= 1− α
σ1

+ α

σ2
= 0 (2.8)

As is evident from equations (2.7) and (2.8), the series and parallel models offer lower
and upper bounds respectively on the transport properties of equivalent medium. This
fact was also noticed by Wiener and some other researchers [50, 51]. Series and parallel
models are called Voigt and Reuss models in case of elastic modulus [52, 53]. The so
called Network models [54] represent the microstructure of the equivalent media as a
distribution of resistors linked to each other in series and parallel. To represent each
micro domain by a resistor and their complicated network involves calculations using
parallel and series laws of electrical network theory. This can be very expensive and
thus the Network model is only used in some specific cases [55]. Even though series
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and parallel models are very simple in nature, they have found applications in many
processes. For example, for air-water two-phase flows Lafferty & Hammitt found a
good agreement of experimental data with equation 2.7 [56]. The parallel model was
also used for the case of two-phase MHD power generators in a slightly modified way,
σα = σ(1− 1.1α) [57].

a1

a 2

Figure 2.21: Maxwell’s medium: spheres of radii a2 are dispersed in continuous medium
of radius a1.

Maxwell’s model : Maxwell’s model assumes a dilute suspension of very small
spheres inside a bigger sphere. As shown in figure 2.21, n spheres (medium 2), each of
radius a2, are distributed randomly inside a spherical medium of radius a1 (medium 1).
The mean separation between all these spheres is λ. We assume :

• a2 � λ� a1.

• No Faraday induction effects, ω → 0.

• No Lorentz force effects, U → 0.

• Very low void volume fraction, α = na3
2

a3
1
� 1.

Under these assumptions Laplace equation for electrical potential (V ) is solved to cal-
culate the distribution of electrical currents in the medium.

∇2V = 0 (2.9)

Following boundary conditions are used on the void surface:

• Potential is continuous: V1 = V2

• The normal component of electrical current density is constant: ~Jn,1 = ~Jn,2 =⇒
1/k1∂V1/∂n = 1/k2∂V2/∂n

where, k1 and k2 are specific resistances of medium 1 and medium 2 respectively. The
total electrostatic potential due to this mixture is obtained by linear superposition of the
potentials of each of these small spheres. The mutual interference between the spheres
is neglected. The separation between the spheres are so great that the alteration in the
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Figure 2.22: σα/σ vs α for Maxwell’s model.

path of electrical currents around one sphere does not influence the current around any
other sphere.

In this case, Maxwell has shown that, the equivalent specific resistance K of the
compound medium is given by [58],

K = 2k2 + k1 + α(k2 − k1)
2k1 + k1 − 2α(k2 − k1)k1 (2.10)

If the spheres of medium 2 were non-conducting (k2 →∞), equation (2.10) reduces
to

K = 1 + 0.5α
1− α k1

Therefore the electrical conductivity σα of the compound medium consisting of non
conducting spheres distributed inside a medium of electrical conductivity σ is related to
its the void fraction by the following expression,

σα = σ
1− α

1 + 0.5α (2.11)

Expanding the result of Maxwell (equation (2.11)) in Taylor series gives (α� 1)

σα = σ

[
(1− α)

(
1 + α

2

)−1
]

= σ

[
1− 3α

2 + 3
(
α

2

)2
− 3

(
α

2

)3
+ . . .

]
≈ σ

(
1− 3α

2

)
(2.12)

Note that these equations are valid for small α, since we have derived this expression on
the assumption that the separation between the spheres is large. Indeed, as shown in
figure 2.22, we see that the first two terms work well for α < 10%. Hamilton-Crosser
model [59] is a generalization of Maxwell’s model to account for non-spherical shape of
particles of the dispersed phase.

σα = σ1
σ2 + (n− 1)σ1 − α(n− 1)(σ1 − σ2)

σ2 + (n− 1)σ1 + α(σ1 − σ2) = σ

(
1− 3α

2

)
n=3

(2.13)
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Where n is the shape factor of the particles of the dispersed phase. n = 3 corresponds
to the case of spherical particles dispersed in continuous phase. Note that for n = 3,
the equation (2.13) gives the same result as that obtained with Maxwell’s model. n = 6
corresponds to the case when dispersed particles are cylindrical. Maxwell’s model has
also been used to calculate other transport properties in two-phase media [50, 60–66].

Maxwell’s theory of effective electrical conductivity is order O (α). A correction up
to O

(
α2) to equation (2.11) can be obtained by allowing for interactions between pairs

of spheres. The void fraction α is the fraction of volume of second medium present
in a unit volume of the first medium. Therefore, the probability of one sphere within
distance a (a is the radius of the non conducting sphere) is O (α) and the probability of
two spheres within distance a will be O

(
α2). This means to allow for an oder O

(
α2)

correction we only need to consider interaction between pairs of spheres. This problem
has been solved by taking analogy with the heat conduction. The electrical conductivity
in our case at O

(
α2) is [67]

σα = σ

[
1− 3

(
α

2

)
+ 3

(
α

2

)2 {
1− 1

23 + 1
24 −

1
28 + . . .

}]
(2.14)

Numerical evaluation of the series in equation (2.14) converges for over 100 terms. The
solution is

σα = σ

[
1− 3

(
α

2

)
+ 3

(
α

2

)2
× 0.784

]
(2.15)

The comparison of O (α) and O
(
α2) models are shown in figure 2.23. These two models
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Figure 2.23: σα/σ vs α: A Comparison of O (α) (—) and O
(
α2) (R) models and lower

and upper bounds of Hashin et al. shown as the shaded area.

give the same value of σα for α < 10%. Physically, it means that the electrical current
around one non-conducting sphere does not interact with electrical currents around any
other non-conducting spheres for α < 10%.
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Hashin and Shtrikman [49] have obtained upper and lower bounds on σα by con-
sidering a ‘composite spheres’ medium (Note: Voigt and Reuss bounds are wider and
can be found in an appropriate reference [68]. For the sake of brevity we show here the
theory which provides narrowest possible bounds).

0 ≤ σα
σ
≤ 1− α

1 + 0.5α (2.16)

The equivalent medium is assumed to be composed of composite spheres. A composite
sphere is a sphere of first medium (σ); inside this sphere we place spheres of varying
sizes of the other medium (σ = 0).

We notice that the expression for the upper bound in equation (2.16) is same as the
one obtained by Maxwell (equation (2.11)) for the case of electrical conductivity of a
medium containing non-interacting spheres. This means that the electrical conductivity
is highest for the case where the non-conducting spheres do not interact, while decreases
as they start interacting with more and more neighbors. For this interaction between
the spheres to increase, α must increase, which decreases σα at the same time.

Both the models, O (α) and O
(
α2) do not work at large α. The former gives negative

electrical conductivity while the later gives a non-zero intercept at α = 100%. At higher
α, we speculate the interaction of the electrical current around a given sphere with many
other spheres, even separated at large distances compared to the diameter of the sphere.
Analytical solutions in these situations are not possible. Even the numerical schemes
which treat the system as boundary value problem are only accurate to first order O(α)
[69, 70]. To extend the formulation to higher orders by allowing for the long range inter-
actions between spheres leads to coefficients in terms of divergent integrals. The spatial
correlation functions between these spheres are ambiguous and the resulting power se-
ries converges very slowly as α increases [67]. To tackle this situation researchers have
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Figure 2.24: σα/σ vs α: A Comparison of O (α) and O
(
α2) models with empirical

relations of Petrick and Lee [· · · : equation (2.17) and × : equation (2.18)] and Archie’s
power law (− · −). The shaded area shows the lower and upper bounds of Hashin et al.

used empirical relations or approximate theoretical models. For example, an empirical
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relation of the following form was proposed by Petrick and Lee [71],

σα = σ exp (−3.8α) (2.17)

The theoretical model was validated with the experimental results of NaK − N2 two-
phase flow and an excellent agreement was found for the full range of α (0 – 100 %).
Petrick and Lee have also suggested the following relation for Nak-N2 two-phase flow in
MHD generator [71].

σα = σ
(1− α)2

1 + α
, 0 ≤ α ≤ 0.70 (2.18)

Archie’s law models the effective transport properties of brine saturated rocks. Applied
to our case it predicts

σα = σ(1− α)2 (2.19)

To conclude, we see the effect of change in emf in ECFM secondary coils as a function
of void fraction. We restrict the argument to 0 < α < 10%. For this case the interaction
between the neighboring bubbles can be neglected and therefore we will use the Maxwell’s
model (2.11). We will also use the empirical relation of Petrick and Lee for NaK−N2
two-phase flows (2.18). In both the cases, we find that the increase in the induced
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Figure 2.25: VS1 vs α: Comparison of induced signal in S1 based on Maxwell’s model (◦
: equation (2.11)) with the one based on the empirical relation of Petrick and Lee (� :
equation (2.18)).

potential is linear with α. Maxwell’s model predicts a 5% increase in the induced signal,
while the model of Petrick and Lee predicts a 10% increase, corresponding to an increase
of void fraction from 0 to 10%.

2.4 General two-phase medium

This section presents the effects of large single bubbles/inclusions on the externally
imposed magnetic fields. This will help us understand the emf fluctuations (modulations)

46



in ECFM signal. In subsection 2.4.1, we analyze models for distortion in eddy currents
due to α and U at very low pulsations ω < 100 rad s−1. These models assume decoupling
between Faraday induction and Lorentz force effects. In subsection 2.4.2, we provide
literature survey of models describing distortion in eddy currents due to α at very high
pulsations (104 < ω < 107 radian/s). The Lorentz force effects are neglected in these
models.

2.4.1 Models without induction effects

Consider a system as shown in figure 1.6. Instead of permanent magnets, we use
electromagnets, which produce AC magnetic field of high intensity but low pulsation
(ω < 100 rad s−1). Two-phase medium flows in a circular cylinder, under this slowly
varying external magnetic field. The distortion due to U and α is measured with the
help of two electrodes.

The physical laws governing this problem are given in section 1.4.2. The influence of
flow on the potential difference at the electrodes in single phase flow can be calculated
as

∇2V = ~B ·∇× ~U (2.20)

where, ∆V is the induced potential difference at the electrodes and U is the mean flow
velocity. The direction of the electric field ( ~Ef ) and hence electrical current density
( ~Jf ) calculated from the Poisson’s equation 2.20 is towards the electrodes. Therefore
measuring this current serves as a flowmeter. We call this signal as flow induced emf.

The time varying nature of externally imposed magnetic field also induces rotational
electric fields ( ~Et), which orient perpendicular to the electrodes in single phase flow.
Hence, the corresponding current density ( ~Jt) does not flow towards electrodes and does
not contribute in single phase flow [72]. We call the corresponding emf as transformer
induced emf. In this case it is zero.

A pictorial depiction of the two types of eddy currents, ~Jf (given by ~Jf = σ(~U × ~B))
and ~Jt (given by ∇× ( ~Jt/σ) = −∂ ~B/∂t) is shown in figure 2.26.

Cha et al. have performed two-phase flow experiments with electromagnetic flowme-
ters, using water-nitrogen and later with sodium-nitrogen as two-phase medium [18, 73].
In the absence of bubbles or slugs, ~Et is essentially normal to the electrodes and hence
have no influence on the induced potential difference. In this case, the total potential
difference can be calculated from equation 2.20. Since, the pulsations are in the range:
20 < ω < 100 rad s−1, the flow induced emf is out of phase with the transformer induced
emf by π/2 (the two signals are mutually orthogonal) because the flow induced emf is
proportional to magnetic flux density but the transformer induced emf is proportional
to its first derivative [18].

Now, let us take the case of a large slug passing through the electromagnetic flowme-
ter in water-air two-phase flow [18, 73]. The reference voltage Vref is obtained on a 1 Ω
resistor in series with the coil excitation current in electromagnet. As shown in figure
2.27, at A, there is no air slug and rotational electric field is orthogonal to the normal
n̂ to electrode faces. Hence there is no component of transformer induced eddy currents
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Figure 2.26: The two types of eddy currents.
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Figure 2.27: Electromagnetic flowmeter signal response to a large slug in water-air flow
[18, 73].

going into electrodes. The potential difference at the electrodes comes from the flow
induced eddy currents. This component is in-phase with Vref . At B, there is a finite
component of ~Et going towards the electrode faces and hence finite transformer induced
electrical current goes into electrodes. In this case,transformer induced emf contributes
and we notice a phase difference of π/2 between this emf and Vref . Physically, the bubble
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changes the direction of ~Et lines towards electrodes. At C, ~Et is again parallel to the
electrode faces and hence no transformer emf contributes. However, the inverted liquid
mean velocity around the nose till the tail of the slug introduces a π phase difference
between induced emf and Vref . This was confirmed by the use of high speed CCD cam-
era. At D, the component of ~Et towards the wall is inverted as compared to the case B,
and hence it introduces a phase 3π/2. Case E is same as case A.

The two-phase potential in air-water and sodium-nitrogen two-phase flow is obtained
as follows: the single phase potential is

∆VSP = 2BUb = 2BQl
πb

(2.21)

where, where, SP denotes single-phase, b is the flow channel radius, Ql is liquid flowrate
and B is the magnetic flux orthogonal to mean flow velocity U . In two-phase flow
the liquid flowrate Ql and the gas flowrate Qg are related to the total flow rate as
Q = Ql + Qg. The void fraction is calculated as α = Qg/Q. The two-phase emf at
electrodes become

∆VTP = 2BQ
πb

= 2BQl
πb(1− α) = ∆VSP

(1− α) (2.22)

where, TP stands for two-phase. The increase in potential in two-phase comes from
acceleration of local fluid velocity if liquid flowrate is fixed. As shown in figure 2.28, the

Figure 2.28: Electromagnetic flowmeter two-phase potential vs α in sodium-nitrogen
flow [18].

two-phase potential normalized by the sodium superficial velocity is a linear function of
α up to α . 30 %. The information on the nitrogen bubbles can be obtained from shift
in phase of the two-phase potential. Which can be used to find out the liquid flowrate.

The sensitivity (calibration) of the potential at the electrodes to mean velocity U
depends on the distribution of velocity field u(r, θ) inside the flow-channel. The question
arises whether this sensitivity would change in the presence of second phase. To answer
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this question, Wyatt considered three cases: (1) isotropic-uniformly dispersed second
phase, (2) annular flow: gas in the core while the continuous phase in the annular
region, and (3) annular flow: gas in the annular region and continuous phase in the core
[74]. In all these cases he found the sensitivity to be independent of α. This confirmed
the results of an earlier investigation by Bernier et. al. [75]. Wyatt also found that these
results are not strictly true for non-uniform isotropic, uniform non-isotropic, non-uniform
non-isotropic suspensions of dispersed phase. This is because of different sensitivity of
the flowmeter to different points in the cross-section.

To correlate quantitatively the transformer induced signal with the bubble size, Krafft
et al. modeled the influence of bubble on rotational electric field ~Et. Here, the flow
induced potential was modeled similar to as shown above. The flow and transformer
induced potentials were separated using a trapezoidal excitation. The flow signal is
sensed in sync with the flat part of trapezoidal waveform, is corrected for the sign
change in magnetic field and then averaged over one cycle. This flow signal is linear
with the mean velocity of the conducting phase. The transformer signal was sensed in
sync with the rising and falling regions of trapezoidal waveform. Given a time varying
magnetic field, the electric field was calculated using the Faraday’s law. The induced
eddy currents were then determined from Ohm’s law. A current dipole replaced the
bubble and satisfied the boundary condition that the normal current on the bubble
surface is zero. The strength of this dipole was calculated from the strength of the eddy
currents at the location of the bubble in its absence. The bubbles were assumed to be
spherical and of very small size as compared to flow-channel diameter. The modulation
in the transformer signal due to bubble was given by ∆V ∼ (c/b)3 ∼ α, where c is
the bubble radius, b is the flow channel radius and α is the local void fraction. For

z

B

E

C

x

y

b

Schematic of the system Distribution of transformer 
eddy currents

Transformer emf perturbation 
due to passage of one bubble

Power Spectrum in water-air bubbly flow Peak frequency vs mixture velocity

Figure 2.29: Schematic of the system and results of Krafft et al [40].
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the passage of well separated bubbles in experiments with water-air two-phase flows, the
time difference between peak maximum and minimum in the modulated transformer emf
depended on the bubble velocity. For a dispersed bubbly flow, the dominant frequency
in the power spectrum of the transformer emf corresponded to the bubble velocity and
characteristic length scale of the system (see figure 2.29). The transformer signal due to
the bubbles randomly distributed in time is modeled by a Poisson process as,

V (t) =
∞∑

i=−∞
AiV

′(t− ti); V ′(t) = −Aite−λ|t| (2.23)

where, A is amplitude (function of bubble size and position) and 1/λ = L/2v is the time
period of oscillation in induced potential at electrodes due to one void, v is the bubble
velocity and L is wavelength of oscillation in induced potential. In the given system,
L = 50 mm. The power spectrum is obtained as,

W (ω) ≡ lim
T→∞

1
T
|
∫ T/2

−T/2
V (t)e−iωt dt|2 = µA2

rms

(2λω)2

(λ2 + ω2)4 (2.24)

This spectra peaks at

fp = ω

2π = λ

2π
√

3
= vm/L

2π
√

3
= 3.68vm (2.25)

Assuming no-slip between the two phases, the mixture velocity vm is same as the mean
velocity U of the conducting phase. This is plotted as a solid line in power spectra plot
in figure 2.29. Measured values of fp are all above this line. This indicates that a finite
slip does exist between the two phases.

Discussions and interpretations Poisson’s equation is solved to obtain static po-
tential measured by two electrodes in single-phase flow, which is related to induced
potential in two-phase flows as ∆VTP = ∆VSP /(1− α). Since the electromagnetic (em)
flowmeters work under low pulsations, it is possible to separate flow induced potential
from the bubble induced potential. There are two ways to do it: (1) by doing a phase
sensitive measurement, (2) Using trapezoidal excitation in electromagnets, the average
signal in sync with the flat portion of trapezoidal excitation is the flow signal while the
one obtained in sync with the rising and falling portions of the trapezoidal waveform
is transformer signal (bubble signal). The bubble passage time is related to the mean
bubble velocity and the length scale of em flowmeter. For randomly distributed bubbles,
their arrival at the electromagnetic flowmeter can be modeled as a Poisson process. The
peak in the power spectrum of transformer emf in bubbly flows seems to be a linear
function of U . The effect of slip ratio between the two phases seems to be significant.

However, the results of electromagnetic flowmeters might not be readily applicable
to the case of ECFM in two-phase liquid metal which is based on sensing the distortion
of flux through the distortion in induced eddy currents. Since, the frequencies used in
ECFM is relatively high, we would have to solve for the induced magnetic fields using
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the magnetic induction equation (1.6). The flow induced and bubble induced emf should
be decoupled at small ω, but at large pulsations, the flow and bubble induced emfs might
not be decoupled.

2.4.2 Models at high pulsations

Here, we discuss the impedance change of an air-coil, excited by high pulsation (ω) AC
currents, when it is brought closer to electrically conducting medium containing voids/
heterogeneities. The Lorentz force effects are neglected. The objective is to understand
ω and α effects on externally imposed magnetic flux.

The impedance of the exciting coil changes when it is brought close to the electrically
conducting medium [76]. The real part of this change is related to resistive losses in the
medium (power dissipation due to eddy currents in medium) while the imaginary part
comes from the opposing magnetic fields of the induced eddy currents (Faraday induction
effect).
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Figure 2.30: A classic normalized impedance plane curve.

Let us say that the reactance and resistance of the exciting coil in absence of elec-
trically conducting medium is X0 and R0 respectively (point P0 in figure 2.30) Its com-
plex impedance will be Z0 = R0 + jX0. This impedance becomes Zc = Rc + jXc in
the presence of the conducting medium. The normalized impedance changes will be
Rcn = (Rc−R0)/X0 and Xcn = Xc/X0. Point P0 changes to point P1 and P2 when coils
are close to conducting media characterized by electrical conductivity σ1 and σ2 respec-
tively; σ1 > σ2 [77]. The reason for this change is resistive dissipation in the medium
and the opposing magnetic flux of the induced eddy currents in the medium. Notice
that the resistive dissipation of the eddy currents first increases and then decreases with
increasing σ. The reactance on the other hand keeps on decreasing till all the eddy
currents are excluded from the volume of the conducting medium (super conductor). At
this σ value, the only resistive dissipation that occurs is in the exciting coil as if it was
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in the air. The total magnetic flux (external and induced) through the coil is minimal
at this σ and thus the relative reactance is also very small. This confirms the fact that
the influence of the two-phase media on in-phase and quadrature-phase signals in ECFM
will be governed via skin depth δ.

For the void effect calculations, the change in impedance ∆Z is calculated by the
difference in electromagnetic power given by the Poynting vector in the two cases: with
and without the void. The use of Lorentz reciprocity theorem then reduces this problem
to calculating a volume integral around the void/crack [78]. The theoretical analysis of
the void interaction with the external coil depends on whether it is located at the surface
or buried inside the medium.

Void inside the medium

For the case of small voids buried inside the conducting material, the results of theoretical
hydrodynamics can be used [79]. The small void is modeled as a dipole (barrier to
electrical current flow), whose strength is calculated from the condition that the normal
component of eddy current is zero at the void surface.

In large skin depth limit, the impedance change due to a small electrically non-
conducting sphere not close to the surface was calculated by Burrows as [80]

∆Z = 3
2σω

2v
(
~Adefect
I0

)2

(2.26)

where, σ is the electrical conductivity of the continuous medium, v is the volume of
the void, Adefect is the magnetic vector potential at the void and I0 is the current in
the exciting coil. Note that the vector potential is directly proportional to the induced
eddy currents as ~J = σ ~E = −iωσ ~A. The presence of a heterogeneity obstructs the path
of the eddy currents, thus changing the local reactance and the resistance. The eddy
current dissipation has been found to decrease while the inductive part increases with
the presence of the flaw. This means that both in-phase and quadrature-phase ECFM
signal will change in response to the bubbles in two-phase medium. The change in in-
phase signal being governed by a increase/decrease in resistive losses while an increase
in quadrature-phase signal being governed by a decrease in opposing magnetic fluxes.

Consider the case of an infinite conducting cylinder containing a flaw of arbitrary
shape and size placed inside a single turn coil as shown in figure 2.31 [81]. The problem
of determining the distributions of ~E and ~H fields is set in terms of a diffusion equation
for magnetic vector potential ~A: ∇2 ~A+ k2 ~A = −µJ0; where k2 = −iωµσ and J0 is the
amplitude of sinusoidal current density in the external exciting coil. k = 0 everywhere
except in region I, while J0 = 0 everywhere except at the external coil. The approximate
expression for the magnetic vector potential inside the conducting medium without the
void is

AIφ = µ0Ia

π

I1(
√
iκr)√

iκbI0(
√
iκb)

∫ ∞
0

K1(λa)
K1(λb) cos(λz) dλ (2.27)
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Figure 2.31: An infinite cylinder with flaw enclosed by a single turn coil [81].

where, I1 and K1 are the modified Bessel functions of order one and λ is the eigenvalue.
Using Burrows expression (equation (2.26)), the impedance change due to small flaw can
now be calculated as

∆Z ≈ σVfω
2µ2

0
π2

[√
iI1(
√
iκr)

κbI0(
√
iκr)

]2

×
[
a

∫ ∞
0

K1(λa)
K1(λb) cos(λz) dλ

]2∣∣∣∣∣
rc,zc

= σVfω
2µ2

0
π2 FdFa

(2.28)
The value of the terms in the first square bracket Fd depend on the depth of the flaw
and affect both the magnitude and phase of ∆Z. The value of the terms in the second
square bracket Fa depend on axial location of the flaw with respect to the excitation coil.
This term only contributes to the magnitude of ∆Z. For flaw depths of the same order
of the skin depth, the depth dependent portion of equation (2.28) (the depth factor) is
given in the simplified form as

Fd = 1
2

(
δ

b

)2 b

rc
e−2rd/δe−j2(rd/δ−π/4) (2.29)

The axial location dependent term is approximated as

Fa =
[

B

B2 + (βz′)2

]2
(2.30)

where, β = a/b, z′ = zc/a and B = 0.815β − 0.794. As shown in figure 2.32, the in-
phase component of the impedance change denoted as real(Fd), first increases and then
decreases as the void moves from the inner core to the outer surface (rd/δ → 0). This
means that the resistive losses due to void depends on the radial location of the void
in the medium. Furthermore, for larger radius (smaller δ/b) cylinders, the effect will
decrease. This is because the eddy current ”density” changes with the cylinder radius
for given external magnetic flux. The effect of the presence of void inside the cylinder is
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Figure 2.32: The results for the radial and axial movement of void positions: (a) In-
phase Fd with normalized distance from cylinder outer surface, (b) Quadrature-phase
Fd with normalized distance from cylinder outer surface and (c) Fa with normalized
distance from the coil center along the axial direction; δ = 2.6 mm.

to allow more and more external magnetic flux to penetrate and hence the void increases
the quadrature phase emf (denoted as imag(Fd)) of the exciting coil towards its value in
air (without conducting cylinder). This is true when the void is located near the surface
and as it moves towards the outer surface (rd/δ → 0) this effect further increases. The
presence of the void in the core on cylinder axis and near it is however opposite. In
this case, the void pushes the induced current densities in the core towards the outer
wall, thus decreasing the amount of external flux that penetrates the medium. The zero
crossing point in imag(Fd) can be used to find out the radial location of the void. One
can adjust the frequency in the exciting coil in such a way so as to make imag(Fd) = 0.
At this frequency the radial location of the void is given by rd = π/16σµν. Also worth
noticing is the fact that the imaginary component of ∆Z is much larger in magnitude
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than the real component. As mentioned earlier, the axial factor only influences the
real part of ∆Z. As the void approaches the coil along the coil axis, this axial factor
increases and is maximum when the void is inside the coil. This fact can be utilized to
determine the axial location of a void. Keeping the coil size as constant, as we decrease
the cylinder radius (increase β) the axial factor decreases. This is because the amount of
magnetic flux passing thorough the cylinder is less and therefore the amount of induced
eddy currents is less which results in weaker void effects.

In this sub-section, we saw the influence of small void buried inside the medium on
the exciting coil impedance. In the following sub-section we see the effects when this
void is located at the surface.

Void at the surface

Spal et. al. have studied theoretically, the effect of a thin crack of depth d and of infinite
extent in axial direction on an infinite electrically conducting rod of radius a as shown
in figure 2.33 [82]. This cylinder is placed inside an infinite solenoid which is excited by
harmonic current of type eiωt. The results can be summarized as follows: If skin depth is
large, the in-phase impedance decreases with d/a because the crack tends to inhibit the
current flow and reduce the dissipation. This is analogous to dissipation in laminated
cores of transformers. If skin depth is small, the in-phase signal increases with d/a
and the crack tends to enhance the dissipation. This is because the crack increases the
surface area thus increasing the loss. Also note that the solutions are same for a/δ = 0.5
and 0.2 which means that the effect of small skin depth starts at δ ∼ 2a. At δ = 0.5a,
the in-phase signal exhibits a non-monotonic behavior with d/a. The absolute value
of the in-phase signal shows saturation characteristic with d/a. The quadrature-phase
impedance increases monotonically with increasing d/a at all a/δ and exhibits same
saturation characteristics as the in-phase signal. The physical reason for this increase in
quadrature component is that the crack allows more magnetic flux to enter the core and
increases the inductance. Parallel argument can be made on the basis of figure 2.33 (b).
Notice that for a constant d/a, as the skin depth decreases (frequency increases), the
real part of the induced potential first increases and then decreases. On the other hand,
the imaginary part continuously decreases. In the small skin depth limit the quadrature
signal is found to increase as (d/a)2 with flaw dimensions. Therefore, if (d/a) ∼ O(1),
the void fraction is given by α ∼ d2/a2 and the quadrature signal will be Vα,⊥ ∼ α.

In general, for the open surface cracks, there are three cases depending upon the
ratio of the dimension of heterogeneity a and the skin depth δ.

Large skin depth compared to flaw dimensions (small a/δ) : Since the motion
dependent source for eddy currents is neglected in these cases, any field quantity ~F such
as current density, magnetic field or electric field (~F = ~J , ~B or ~E) will be governed by
the diffusion equation given by

∇2 ~F = iωµ0σ ~F (2.31)
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Figure 2.33: (a) An infinite conducting rod with an infinite crack placed inside a coaxial
infinite length solenoid, (b) Im(Z) vs Re(Z) for d/a = 0.4, (c) non-dimensional in-
phase potential, (d) non-dimensional quadrature-phase potential as a function of crack
dimension.

Note that we are only concerned with small frequencies so that the dielectric currents are
neglected. The term on the L.H.S. in the equation above is much larger than the term
on R.H.S. which is proportional to δ−2. Therefore we can assume the right hand side
to be zero (quasi-static approximation). The results from theoretical hydrodynamics for
incompressible fluids can be used in this case [83]. For the case of interaction with a
spherical void, solutions for flow past a rigid sphere can be used. The influence of this
spherical defect on the exciting coil emf via perturbations in the eddy currents is given
by the expression of Burrows (see equation 2.26).
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Figure 2.34: The distribution of magnetic fields and eddy currents for (a) Small a/δ, (b)
Large a/δ [83].

Small skin depth compared to flaw dimensions (large a/δ) : In this case the
unperturbed magnetic fields are limited to the surface within δ (see figure 2.34(b)). If
the heterogeneity is also at the surface as in figure 2.34(b), then it is known that the
eddy currents density is uniform at the two faces of the cone but non uniform at the tip
and the lips. This non-uniformity extends over a distance δ.

The thin skin theory has two extreme asymptotic limits: One described by Laplace
model and the other by Born model [84]. For the geometry shown in figure 2.35, thin skin

J0

(a) (b) (c)

Figure 2.35: (a) A 2D elliptical surface breaking crack and a uniform incident current,
(b) The electric potential in Laplace limit valid for ferromagnetic conductors, (c) The
electric potential in Born limit valid for non-ferromagnetic conductors. The equations
were written in non-dimensional form [84].

theory makes the hypothesis that the magnetic and electric fields at the heterogeneity
vary on scale O(l) in X and Y directions. In Z direction it varies on O(l) and O(δ)
outside and inside the conducting medium respectively. Note that for a semi-elliptical
crack shown in figure 2.35, a and b are of the same order l. For the case without crack,
the equations outside and inside the metal will differ. The electromagnetic fields in
X and Y directions have the same behavior but along Z direction inside the metal it
would follow an exponential law. Since the eddy current exists only inside the metal,
the equations outside differ from the inside only by the Faraday’s law. If magnetic field
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~H =∇ψ, then (k = iωµσ, and |kl| � 1)

∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2 = 0 outside metal (2.32)

∂2ψ

∂x2 + ∂2ψ

∂y2 + kµ0
µ

∂ψ

∂z
= 0 inside metal (2.33)

The eddy currents inside the metal are obtained using equation (2.33): Jx = σEx '
−k(∂ψ/∂y)z=0e

kz, Jy ' σEy = −k(∂ψ/∂x)z=0e
kz and Jz ' σEz = 0. Let m = kµ0

µ . For
m→ 0, equation (2.33) at z = 0 inside the metal becomes, ∂2ψ

∂x2 + ∂2ψ
∂y2 = 0. This case is

valid for ferromagnetic materials. This is called the Laplace model of thin skin theory.
For m → ∞, equation (2.33) at z = 0 inside the metal becomes, ∂ψ

∂z = 0. This case
is valid for non-magnetic materials. This is called the Born model of thin skin theory.
In effect the eddy currents tend to become denser at the crack tips and sparse at the
corners as shown in figure 2.36 [85].

Infinite 
crack

Right angled
crack

Eddy 
currents

Eddy currents 
are denser here

Eddy currents 
are sparse here

(a) (b)

Figure 2.36: The eddy current distribution at (a) A crack tip, (b) A right angled corner
[85].

Discussions and interpretations In this section, we assume high pulsations (104 <
ω < 106 rad s−1) and neglect the Lorentz force effects. We find that in the absence of
heterogeneities, the in-phase impedance of an external coil carrying AC current placed
in the vicinity of an electrically conducting medium, first increases and then decreases
as we increase the electrical conductivity of the conducting medium. This is explained
in terms of resistive dissipation in the medium as a function of the skin depth. The
quadrature-phase impedance keeps on decreasing till it reaches a very small value at
which point no-magnetic flux penetrates the medium.

For a very small void inside a conducting cylinder, the effect of the presence of void
on the exciting coil impedance depends upon the radial and axial position of the void.
While the radial position of the void influences both the real and imaginary parts of this
impedance change, the axial position only influence the in-phase part.

For the case of an infinite cylinder inside an infinite length solenoid, the effect of
an infinite crack on its surface along the axial direction, depends on the skin depth.
The effect of void size on the in-phase impedance is non-monotonic (resistive losses have

59



a non-monotonic behavior), while the effect on the quadrature-phase signal is always
monotonic (inductance keeps on decreasing with void fraction). In general, the calcu-
lation of impedance change, when void is located on the surface depends on the skin
depth. When skin depth δ is large with respect to the crack dimensions a (a/δ � 1),
the results of theoretical hydrodynamics can be used. The heterogeneity is modeled as a
small dipole. The strength of this dipole is calculated by the condition that the normal
eddy current at the surface of this heterogeneity is zero. For the limiting case of small
skin depths (a/δ � 1), thin skin theory exists. For the case of non-ferromagnetic metal,
Born approximation is valid.

For ECFM in two-phase case, if we neglect the effects of flow induced eddy currents,
the change in the in-phase signal in the two secondary coils should be expected to be
governed by the resistive dissipation in the two-phase media. Furthermore, the in-phase
signal might be expected to be non-monotonic with bubble size. The increase in void
fraction will increase the magnetic flux penetrating the medium and hence the quadrature
component of the induced ECFM secondary signal will increase monotonically with α
at any value of δ. If the skin depth is large with respect to flow channel radius, we can
use the results from theoretical hydrodynamics to model small bubbles. The results of
Burrows can be used directly 2.26. When the skin depth is small or O(a/δ ∼ 1), the
analysis more complicated.

2.5 Conclusions and unanswered questions

For an ECFM in single phase flows, there is one component of flow signal in-phase with
the current in the primary, while the other component is π/2 out of phase (quadrature
phase). The influence of the flow on in-phase signal is found to be more as compared to
the quadrature-phase. So, there are two quantities of interest in an ECFM signal: r.m.s.
difference voltage and the phase of this signal voltage. There exists a frequency νc at
which temperature induced errors in the signal V2 − V1/V2 + V1 vanishes. The physical
mechanism behind this phenomenon is not known. In lab experiments with ECFM, it is
common to use aluminium as a model of electrically conducting liquid. This simulates
a plug flow situation.

The two-phase experiments with the ECFM indicates two major features in ECFM
signal: the shift (relatively very small) in average signal and modulations/oscillations
over this mean. The amplitude of these oscillations increase with the void fraction.
The results also suggest coupling between the flow induced signals and the void induced
signals. But due to relatively small literature, it is difficult to arrive at definitive conclu-
sions. Some more studies are needed to better understand flow-void coupling. We did
not find any comprehensive theoretical model for ECFM in two-phase flows.

For very small bubbles dispersed homogeneously in conducting medium, Maxwell
model can be used to calculate equivalent electrical conductivity of the two-phase medium
at small α. This model assumes the absence of Faraday induction and Lorentz force ef-
fects. The emf in each secondary coil of ECFM and their difference depend on this
two-phase electrical conductivity as V ∼ σ−0.3

α . Using the Maxwell’s model for σα, we
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find a linear relation of V with α. This predicts a change of 5% in this emf, when α
changes by 10%.

The literature concerning electromagnetic flowmeters, suggest the possibility of de-
coupling of flow induced emf from the bubble induced emf by analyzing the in-phase
and quadrature phase potentials. The theoretical models for the same assume small
pulsation ω < 100 rad s−1.

If we neglect the contributions of motion induced eddy currents, the literature on
induction at high frequencies but no Lorentz force can be used. The results indicate
that the interaction of external coil with the medium happens via the modification in
the resistive losses and the magnetic flux of the induced eddy currents. The presence
of void influences the resistive losses in a non-monotonic manner while it always allows
more external magnetic flux to enter the medium. The influence of α on the ECFM emf
should be similar. The quadrature-signal is supposed to be influenced more than the
in-phase signal in the presence of bubbles for ECFM in two-phase flows.

In all these cases, the motion to void coupling in presence of AC electromagnetic
fields was not studied, which needs to be understood.
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Chapter 3

Theoretical analyses of ECFM

The objective of this chapter is to analyze theoretically the magnetic flux in ECFM in
single and two-phase flows. In single-phase flows, the distribution of magnetic fields and
eddy currents is studied as a function of coil lengths and radii. ECFM sensitivity to
mean flow velocity U is also studied as a function of coils radii, lengths and pulsation
ω of current in the primary coil using numerical simulation. This helps us to design
an ECFM for experiments. In two-phase flow, the objective is to propose theoretical
approaches which help us to interpret the experimental results, in terms of U , α (the
void volume fraction) and ω effects on ECFM signals.

The theoretical models that already exist in the literature, to analyze ECFM device
in single phase flows, were given in the previous chapter (chapter 2). On the other hand,
we found that only experimental observations exists for ECFM in two-phase flows. There
are theories that describe Faraday induction and Lorentz force effects in either very low
frequency range or very high frequency range. But these are not valid for the frequencies
of interest in concerned application (SFR).

For single phase flow described in section 3.1, we have taken a much simpler but
approximative approach. First, we consider a 5-coils ECFM in the absence of electrically
conducting medium. This allows us to calculate the distribution of externally imposed
magnetic field. Then, we consider an electrically conducting medium in motion at a
constant velocity U (plug flow) through the 5-coils ECFM. We calculate the first order
eddy currents from the externally imposed magnetic fields. Assumption here is to neglect
the magnetic fields of induced eddy currents. This is true for very small frequencies
and very small Rem � 1. This is similar to the theory of Baker [25]. Finally, on
the basis of a numerical simulation in COMSOLTMfor a 3-coils ECFM, we take into
account of magnetic fields of induced eddy currents. This model allows to study pulsation
dependence of flow signal in ECFM in addition to study of effects of coil parameters (coils
length, coils radii etc.) on ECFM signal.

Section 3.2 enlists three theoretical models for ECFM in two-phase flows. The first
model given in subsection 3.2.1, is the response of induced emf in ECFM secondary coils
when the pulsation of the primary coil current is small and Rem � 1. This means a
very weak Faraday induction and small Lorentz force effects. The next subsection 3.2.2
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presents a first order perturbation model for magnetic flux in the other regime, i.e.,
when frequency is high but Rem � 1. This means significant Faraday induction but
weak Lorentz force effects. Use of the Lissajous curves of secondary coil signals gives
us another method which allows us to characterize void fraction α. The last section
3.3 describes the mathematical basis for this approach. We find in this last case that
the parameter of interest which characterizes void fraction α, is complicated to analyze
mathematically, but easy to use experimentally. All the theoretical models have been
developed for Rem � 1. We do not consider the case Rem & 1. This is because for
ECFM in SFR Rem < 0.1 [25].

3.1 Single phase flow

The objective in this section is to calculate the distribution of magnetic fields and eddy
currents in the electrically conducting single-phase medium under ECFM, and to eval-
uate theoretically, the U sensitivity of ECFM as functions of coils length, radii and
pulsation of exciting current in primary coil(s). This section is organized as follows:

We begin by a simple theoretical model of ECFM and calculate distribution of mag-
netic fields in the absence of electrically conducting medium.

Next, in the presence of electrically conducting medium, the first order eddy currents
are calculated using Faraday’s law, Ampere’s law, Lorentz force law and Ohm’s law.
Here, the magnetic fields that result from induced eddy currents have been neglected.
This simple model gives us a qualitative idea of eddy currents distribution (at first order)
inside electrically conducting medium

Finally, we evaluate ECFM sensitivity to U using a numerical simulation in COMSOL R©.
This simulation takes into account the magnetic fields of induced eddy currents. This
kind of numerical simulation was briefly discussed in the previous chapter and was also
used in chapter 1 to study the Hartmann problem.

Magnetic fields distribution of primary coils We take an ECFM in 5-coils config-
uration and assume the absence of electrically conducting medium. A volumetric current
density element ~J0 produces magnetic field in accordance with the Biot-savart’s law,

~B0(~r) = µ0
4π

∫
C

~J0 × ~rdV
~r3 . (3.1)

This equation can be used to obtain fields generated by primary coils. Equation (3.1)
can be used to solve for the magnetic fields of a single turn current carrying coil of
infinitesimal thickness and infinitesimal length. The resulting relation can be found in
standard literature [86, 87]. The magnetic vector potential ~A0 is defined as ~B0 =∇× ~A0.
The analytical expression in terms of ~A0, for a current carrying coil of finite thickness and
finite length, can be obtained by integrating the corresponding relation for infinitesimal
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thickness and infinitesimal length coil. We obtain the following relation for the former:

A0,θ = µ0
4π

I

Lp

√
R

r

[
ζk

(
k2+h2 − h2k2

h2k2 K
(
k2
)
− 1
k2E

(
k2
)

+ h2 − 1
h2 Π

(
h2, k2

))]ζ+
ζ−

.

(3.2)
Magnetic vector potential orients itself along azimuthal direction since the current in
the primary coil is azimuthally oriented. Magnetic flux density can be obtained by
differentiating equation (3.2). The radial component of ~B0 is:

B0,r = µ0
4π

I

Lp

√
R

r

[(
k2 − 2
k

K
(
k2
)

+ 2
k
E
(
k2
))]ζ+

ζ−

. (3.3)

The axial component of B0 is:

B0,z = −µ0
4π

I

2Lp

√
1
Rr

[
ζk

(
K
(
k2
)

+ R− r
R+ r

Π
(
h2, k2

))]ζ+
ζ−

(3.4)

h2 = 4Rr
(R+ r)2 , k2 = 4Rr

(R+ r)2 + ζ2

ζ± = z ∓ Lp
2 ,

where, R and Lp are the radius and the length of the primary coil respectively, r and
z are the radial and axial coordinates respectively, I is the current magnitude in the
primary coil and E, K and Π are complete elliptic integral of first, second and third
kind respectively.

The ECFM assembly is a combination of coils placed axially on a common axis. As
an example, we show here the magnetic fields of a 5-coil ECFM (see figure 3.1). In
a 5-coils ECFM, there are three primary coils, where each alternative primary coil is
separated by a secondary coil (as shown in figure 2.3). The radii of all the coils (primary
and secondary) is R, while Lp and Ls are length of the primary and the secondary coils
respectively. The two primary coils on the extremity, create magnetic fields in opposition
to the central primary coil. The total magnetic field can be calculated by superposition
of magnetic fields created by each primary coil.

Figure 3.1 shows the contour plot for the distribution of radial magnetic flux density
B0,r inside secondary coil S1 of a 5-coils ECFM. We recall that the electrically conducting
single-phase medium is absent in this model. The interest in the radial magnetic field
arises from the need to understand the sensitivity distribution of flow signal inside flow
channel [19]. Due to low magnetic fields on axis as compared to the flow channel wall,
a small perturbation inside the core will produce very small effect on flow signal as
compared to the flow signal response to a perturbation near flow channel wall. This was
pointed out by Shercliff and other researchers for electromagnetic flowmeters [19]. For
electromagnetic flowmeters, concepts of weight function and weight vector have been
defined which map the sensitivity of electromagnetic flowmeter to various points inside
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Figure 3.1: Br(mT) within the secondary coil (isovalues) for (a) R = 3 cm, Lp = 2 cm,
Ls = 3 cm, (b) R = 3 cm, Lp = 3 cm, Ls = 2 cm, (c) R = 4 cm, Lp = 2 cm, Ls = 3 cm,
(d) R = 4 cm, Lp = 3 cm, Ls = 2 cm.
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the flow volume. In figure 3.1, the distribution of the magnetic fields changes as a
function of Ls, Lp and R. We observe that the radial fields are concentrated at either
ends of each primary coil. The use of two primary coils carrying equal and opposite
currents increases the density of radial fields inside a secondary coils. This is evidenced
when we decrease Ls from figures 3.1a and 3.1c compared to figures 3.1b and 3.1d. Since
the radial fields decrease in magnitude from periphery towards the flow channel core,
an increase in concentration of B0,r is observed when we decrease R. This is seen in
figures 3.1c and 3.1d compared to figures 3.1a and 3.1b. An increase in the length of
the primary coils decreases current density and thus the decreases the strength of the
magnetic fields. We observe relatively weaker magnetic field strength in figures 3.1b and
3.1d compared to figures 3.1a and 3.1c. Unfortunately, this effect is masked by increase
in field concentration due to decrease in Ls.

Eddy currents distribution in single-phase electrically conducting medium in
motion We introduce a single-phase electrically conducting medium in motion with
velocity U in the axial direction (plug flow) under combined AC field ~B0(t) = B0 cosωt
created by coils P1, P2 and P3. To obtain total radial and axial magnetic fields, we
superpose the fields created by P1, P2 and P3 using equations (3.3) and (3.4). We limit
our calculation to first order, i.e., we do not consider the effect of magnetic fields created
by induced eddy currents on externally imposed AC magnetic field. In the conducting
medium, under external AC magnetic field, eddy currents can be calculated using the
ohm’s law as,

~J = σ( ~E + ~U × ~B0), (3.5)

where, σ is the electrical conductivity of the medium.

(r,z)
r'

z'

B0

S=surface area

Figure 3.2: Geometry for calculation of eddy currents distribution at first order.

In equation (3.5), ~E comes from time varying nature of magnetic flux. Electric field
at point (r, z) (see figure 3.2) in the medium is equal to the time rate of change of axial
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magnetic field given by the Maxwell-Faraday law as:

∇× ~E = −∂
~B0
∂t

,∫
s
∇× ~E · dS = −jω

∫
s

~B0 · dS,

=⇒ Eθ(r, z) = −jω
∫ r

0 r
′B0,z(r′, z) dr′
r

. (3.6)

It is easy to verify that the electric fields and hence the eddy currents are oriented along
azimuthal (θ) direction. The transformer induced eddy currents density at first order
become,

Jt(r, z) = σEθ(r, z) = −jωσ
∫ r

0 r
′B0,z(r′, z) dr′
r

. (3.7)

The term ~U × ~B0 in equation (3.5) comes from the interaction of moving medium with
the applied external radial magnetic fields (B0,r) governed by the Lorentz force law. At
low Rem, flow induced eddy currents density can be obtained as:

Jf (r, z) = σUB0,r(r, z), (3.8)

where, U is given uniform velocity along axial direction. Notice that the total eddy
current ~J = ~Jf + ~Jt is complex (from equations (3.7) and (3.8)). The complex nota-
tion, as we recall, represents the fact that these quantities are out of phase in time by a
specified amount. For example, Jt lags behind Jf by t = π/2/ω = 0.25 ms at pulsation
ω = 6284 Hz. Figure 3.3 shows the distribution of the applied external fields and the
induced current densities in the medium to first order. The radii of the coils and the flow
cross-section were R = 2 cm each, the length of the primary coils is Lp = 3 cm and the
same for secondary coils is Ls = 2 cm. The electrical conductivity is 5× 105 S m−1, value
representative of sodium. The pulsation of current excitation is 3142 rad s−1. Number
of turns in the primary and secondary coils is respectively, Np = 150 and Ns = 100.
Even with this simple modeling we notice several features of an ECFM 5-coils system.
First of all the induced magnetic flux density decreases from the periphery of the flow
cross-section to the core of the flow. Its radial component is concentrated at the junc-
tion of primary and secondary coil (figure 3.3a). As a consequence, the flow induced
eddy currents are also localized close to each end of the primary coil (see figure 3.3d).
The direction of these eddy currents, however, is different at the two ends (clockwise
vs counter-clockwise around cylinder axis). For a 3-coils ECFM, these eddy currents
increase/decrease the magnetic flux through the two secondary coils and the difference
of induced emf in the two coils is proportional to flow rate at low Rem. As we infer from
the results, the advantage of a 5-coils system is that it increases the concentration of ra-
dial magnetic fields and thus increases sensitivity of ECFM to flow. On the other hand,
a 3-coils ECFM is smaller and relatively simpler to analyze. Another advantage, which
was not presented in the results, is that an ECFM in a 3-coils configuration operates in
difference mode (difference pf emf in two secondary coils). Thus if the two secondary
coils are exactly identical and placed symmetrically at either end of a primary coil, they
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automatically cancel out noise from external sources. In view of these advantages, we
chose to analyze ECFM in 3-coils configuration in the next section.

The axial magnetic flux Bz, is concentrated mostly inside the primary coils (see figure
3.3b). The corresponding effect on transformer induced eddy currents is shown in figure
3.3e. The distribution of rms current density, as shown in figure 3.3f, is inhomogeneous
in radial direction. The bubbles in the flow will perturb the eddy currents which is
sensed by the secondary coils. Since the strength of eddy currents close to the wall
is strongest, the same bubbles passing through the periphery of flow cross-section will
produce higher perturbation in ECFM secondary signal than the one passing through
the core. This will be even more severe in the presence of skin effect. Skin effect is the
phenomenon in which the magnetic flux of induced eddy currents in the medium will
tend to exclude from the medium the externally imposed time varying magnetic flux.
This effect tends to limit the penetration depth of the magnetic fields in the medium.
We did not consider this effect in our first order model.
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(a) The distribution of radial magnetic field (imposed) in the electrically conducting liquid (iso-
value). The color scale is in Tesla. The magnitude of radial magnetic field varies from 0.1 to 1
mT.

(b) The distribution of axial magnetic field (imposed) in the electrically conducting liquid (iso-
value). The color scale is in Tesla. The magnitude of axial magnetic field varies from 0.5 to 2.2
mT.

(c) The distribution of norm of magnetic field (imposed) in the electrically conducting liquid
(iso-value). The color scale is in Tesla. The magnitude of total magnetic field varies from 0.1 to
2.2 mT.

(d) The distribution of flow-induced current density ~Jf in the electrically conducting liquid (iso-
value). The color scale is in A/m2. The magnitude of flow-induced current density varies from
500 to 5000 A/m2.

(e) The distribution of current density induced in the electrically conducting liquid due to chang-
ing magnetic fields in the medium (iso-value). The color scale is in A/m2. The magnitude of
current density varies from 500 to 5000 A/m2.

(f) The distribution of total (RMS) current density in the electrically conducting liquid (iso-
value). The color scale is in A/m2. The magnitude of total current density varies from 1000 to
6000 A/m2.

Figure 3.3: The distribution of the magnetic fields and current densities for the selected
5-coils ECFM, Lp = 30 mm, Ls = 20 mm, R = 20 mm. Shown in red: Secondary coil,
in green: Primary coils.
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Numerical simulation in COMSOL R© To include skin effect one has to solve the
induction equation (1.6). A Finite Element Simulation of the problem was realized using
COMSOL R© simulation software with Magnetic Fields physics in Frequency domain. The
geometry is shown in figure 3.4. The equation solved is the advection - diffusion of the
magnetic vector potential A:

∇2A− µσ(U× (∇×A)) + jωσA = µ0Je. (3.9)

Je represents the externally applied current density and it is non-zero only in the
domain which represents the primary coil. Due to symmetry about the flow channel
axis, the applied current density Je is azimuthal, the problem is 2D axisymmetric and
we need to solve for only one component of the magnetic vector potential:

A = A(r, z) êθ. (3.10)

Magnetic insulation condition is used at the edges of the computational domain. It
consists in prescribing all the components of magnetic vector potential as zero on these
edges. Grid size independence was verified by using three different mesh size settings:
finer, extra fine and extremely fine respectively. Minimum mesh size varies at edges,
boundaries and interfaces (upto 10−2 mm). With the help of this numerical simulation,

Primary coil P
Secondary coil S1

Secondary coil S2

Flow channel

Calculation domain
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Figure 3.4: (a) The geometry of the numerical simulation. (b) Distribution of axial and
radial magnetic flux density inside the flow channel on logarithmic color scale at I = 250
mA, ω = 6284 rad s−1 and U = 0 m/s.

it is possible to study the effect of various coil parameters. In all the results shown
henceforth in this section, the AC current in the primary coil is I = 1 A. The elec-
trical conductivity of the medium is taken as σ = 3.77× 107 S m−1, representative of
Aluminium. Magnetic permeability is µ0 = 4π × 10−7 H m−1.

Figure 3.5 shows the effect of changing the radius of flow channel Rf at velocity
U = 1 m s−1, primary current pulsation ω = 3142, 12 566 rad s−1. It is assumed that
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Figure 3.5: |∆V | vs R at U = 1 m s−1, ω = 3142 (◦), 12 566 (�) rad s−1.

Rp = Rf + 0.75 mm = Rs; where Rp and Rs are the radii of primary and secondary
coils respectively. Length of the primary and secondary coils are coil Lp = 30 mm and
Ls = 20 mm respectively. The number of turns in primary coil (Np) and secondary coil
(Ns) are Np = 70 and Ns = 50 respectively. We denote the difference of induced emfs
in secondary coil S2 and S1 as |∆V |.

We notice an almost linearly increasing trend in difference voltage |∆V | with increas-
ing Rf . This is consistent with equation (2.5). Furthermore, we observe that the slope
of |∆V | vs Rf curve is steeper between Rf = δ and 2δ for both values of ω. δ = 3.7 and
2.6 mm respectively for ω = 3142 and 6248 rad s−1. |∆V | decreases with ω. We conclude
that increasing Rf will increase sensitivity to U .
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Figure 3.6: |∆V | vs L at U = 1 m s−1, ω = 3142 (◦), 12 566 (�) rad s−1.

Figure 3.6 shows the effect of changing the length of the three coils simultaneously,
keeping the number of turns of wires in each coils as constant: Np = 70, Ns = 50.
U = 1 m s−1, primary current pulsation ω = 3142, 12 566 rad s−1 and Rf = 19.25 mm,
Rp = Rs = 20 mm. We assume that L = Lp = Ls. We notice a power law |∆V | ∼ L−1
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with increasing L. This is consistent with the classic result for total magnetic flux inside
a solenoid, which is linear in number of turns per unit length. Again |∆V | decreases
with ω. We conclude that increasing L without increasing Np and Ns would result in a
decrease in sensitivity to U .
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Figure 3.7: |∆V | vs Ls at U = 1 m s−1, ω = 3142 (◦), 12 566 (�) rad s−1.

Figure 3.7 shows the effect of changing Ls, keeping Lp constant and Np = 70, Ns =
50. U = 1 m s−1, primary current pulsation ω = 3142, 12 566 rad s−1 andRf = 19.25 mm,
Rp = Rs = 20 mm. We notice again a power law |∆V | ∼ L−1 with increasing Ls. This
can be again explained in terms of number density of turns. We conclude that increasing
Ls without increasing Ns would result in a decrease in sensitivity to U .
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Figure 3.8: |∆V | vs U at ω = 3142 (◦), 6283 (�) and 9425 rad s−1 (4).

Figure 3.8 shows the effect of changing U at Lp = 30 mm, Ls = 20 mm, Np = 70,
Ns = 50. U = 1 m s−1, ω = 3142, 6283 and 9425 rad s−1 and Rf = 19.25 mm, Rp = Rs =
20 mm.
|∆V | ∼ U1 with increasing U . This linearity is consistent with the literature. We

also note that |∆V | sensitivity to U decreases with ω.
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Figure 3.9: |∆V | vs ω at U = 0.1 (◦), 0.5 (�) and 0.9 (4) m s−1.

Figure 3.9 shows the effect of changing ω at Lp = 30 mm, Ls = 20 mm, Np = 70,
Ns = 50. U = 0.1, 0.5 and 0.9 m s−1 and Rf = 19.25 mm, Rp = Rs = 20 mm.
|∆V | follows a power law in ω : |∆V | ∼ ω−0.5 ∼ δ. This is consistent with equation

(2.5). The increase in pulsation, decreases the penetration depth δ of the magnetic fields.
Less δ means a decrease in flow flux coupling.

3.2 Two-phase flow

In the previous section, we analyzed ECFM in single phase flows. We find that, the
external excitation current in the primary coil creates eddy currents in the medium.
These eddy currents are governed by Faraday induction and Lorentz force law. The
total magnetic flux in a 3-coils ECFM in the presence of current in the primary and the
eddy currents may now be written as,

φ =
∫
~B · d~s.

In two-phase flow, the eddy currents are affected by the presence of void. Therefore, we
expect distortion in the total magnetic flux φ, due to velocity U (governed by Lorentz
force law), pulsation ω (governed by Faraday induction law) and the voids (given by
void volume fraction, α). Their effect on φ and other electromagnetic field quantities
are coupled.

From the literature review presented in the previous chapter, we find different ap-
proaches to model the α and velocity effects on the magnetic flux. The model of Maxwell
is valid for a dilute suspension of small spheres in a continuous medium. Besides small
void fraction assumption, there are no Faraday induction and Lorentz force effects in
Maxwell’s model. The equivalent electrical conductivity of this static two-phase medium
at small α, is then calculated based on multipolar expansion of the electrical potential
of small spheres diluted in the continuous medium.
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Theoretical models at high frequencies are based on the Lorentz reciprocity theorem.
We obtain integral expressions for void effect in terms of magnetic vector potential.
These expressions are expanded to arrive at analytical relations for change in impedance
corresponding to the presence of void. We found in the previous chapter, the calculations
for the perturbation in impedance due to a single small defect in a conducting medium.
This was given by the expression of Burrows, equation (2.26). Using very small skin
depth assumption, it was possible to calculate the impedance change for the AC field
produced by a single turn coil in cylindrical conducting medium containing small spheri-
cal void. Calculations for some other geometries were also shown. These results are only
valid for small skin depths and do not allow to predict the perturbation in magnetic flux
due to distribution of voids in the core of a conducting flow.

Models without induction effects, generally come from works on electromagnetic
flowmeters. For single phase conducting flow in a circular cylinder at constant or very
slowly varying magnetic fields (i.e. ω ≤ 100 rad s−1), the electrical potential is given by
a Poisson equation: ∇2V = ∇ · (~U × ~B). For the two-phase flows, the solution of this
equation, for axisymmetric distribution of velocity and voids (homogeneous bubbly or
annular flow) can be solved. The expression for electrical potential difference, in two-
phase flows, between two electrodes is V ∼ 1/(1−α). We also found that α is generally
defined as the relative flow rate of gas and not as the real volumic fraction, which is
difficult to measure experimentally in liquid metal.

The objective of this section is to propose theoretical models which help to interpret
the distortion in φ due to velocity U , void fraction α and pulsation ω in experiments
with a 3-coils ECFM. In subsection 3.2.1, we present a model valid for large penetration
depths, δ � D and magnetic Reynolds number Rem � 1. D is the flow channel diameter,
and Rem is defined as, Rem = σµ0Uδ. In subsection 3.2.2, we propose a magnetic flux
perturbation model valid for δ � D.

3.2.1 Small Faraday and small Lorentz force effects

(δ � D, Rem � 1)
In this case it is possible to decouple the Faraday and the Lorentz term. The current in
the primary coil I = I0 cosωt produces magnetic field B0(t) = B0 cosωt in the medium
in accordance with the Biot-Savart’s law (see figure 3.10).

B0(t) = µ0
4π

∮
I0(t)~dl × ~r
|~r|3

.

We denote the corresponding direct flux as A, given by

A cosωt =
∫
S
B0dS cosωt. (3.11)
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Figure 3.10: Biot Savart’s law.

Only Faraday induction, no Lorentz force effects We assume U = 0. In this
case, the time varying direct magnetic field creates an electric field given by

∇× ~E1 = −∂
~B0(t)
∂t

. (3.12)

which in turn generates Faraday induction eddy currents,

~Jt = σ ~E1. (3.13)

These eddy currents produce their own magnetic fields given by,

∇× ~B1 = µ~Jt. (3.14)

Let us non-dimensionalise the first order fields in terms of zero-order fields.

~B∗ =
~B

B0
, ~r∗ = ~r

D
, t∗ = tω, ~E∗ =

~E

E0
, ~J∗ =

~D2

I0
~J, ~U∗ =

~U

U
,

where, I0 is the magnitude of current in the primary coil and is taken as the charac-
teristic current, τ = 1/ω is the pulsation of current in primary coil and is taken as the
characteristic time scale, D is the diameter of flow channel and is taken as the charac-
teristic length scale and ~U is the flow velocity. The characteristic velocity U is equal to
uniform flow velocity of two phase medium. It can now be readily deduced that

B1 ∼ µσωD2B0 ∼
(
D

δ

)2
B0.

In a similar way, B1 will again induce Faraday induction eddy which would create sec-
ond order magnetic field B′1, which would subsequently create B′′1 and so on. The net
magnetic field in the presence of only Faraday induction effects (absence of Lorentz force
effects) can be written as

B = B0 +B1 +B′1 +B′′1 + . . . = B0

[
1 +

(
D

δ

)2
+
(
D

δ

)4
+ . . .

]
. (3.15)
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If D � δ, we can truncate the series in above equation to the first perturbation term
(B1). Using B1(t) = B1 sinωt, the corresponding magnetic flux is obtained as

aω sinωt =
∫
S
B1dS sinωt,

where, aω is magnetic flux of Faraday induction induced eddy currents.

No Faraday induction, only Lorentz force effects Now let us assume that Fara-
day induction is absent and we calculate the effects of Lorentz force under externally
imposed magnetic field B0 cosωt. The contribution of the flow induced eddy current is

~Jf = σ~U × ~B0.

These flow induced eddy currents produce their own magnetic fields given by

∇× ~B2 = µ ~Jf .

It can again be deduced that

B2 ∼ µDσUB0 = RemB0.

As before, B2 will again induce flow induced eddy currents which would create second
order magnetic field B′2, which would subsequently create B′′2 and so on. The net mag-
netic field in the presence of only Lorentz force effects (absence of Faraday induction
effects) can be written as

B = B0 +B2 +B′2 +B′′2 + . . . = B0
[
1 + Rem + Re2

m + . . .
]
. (3.16)

If Rem � 1, we can truncate the series in above equation to the first perturbation term
(B2). Using B2(t) = B2 cosωt, the corresponding magnetic flux is obtained as

Ub cosωt =
∫
S
B2dS cosωt,

where, Ub is the magnetic flux of flow induced eddy currents.

Presence of both Faraday induction and Lorentz force effects In this case, we
combine the two cases treated above. The total difference flux through the two secondary
coils can be written as,

φ(t) = (A1 −A2) cosωt+ U(b1 + b2) cosωt− ω(a2 − a1) sinωt. (3.17)

77



In case of periodic distribution of the dispersed phase, the terms can be expanded in
Fourier series:

ai(t) = ai + δai cos(ωαt+ θ) + . . . ,

bi(t) = bi + δbi cos(ωαt+ θ) + . . . .

where, θ is an arbitrary phase. S1 encounters void before S2, and therefore θ is different
for the two secondary coils. The amplitudes δai and δbi depend on the void volume
fraction as : δai = δai(α) and δbi = δbi(α) respectively, and ωα is the void characteristic
pulsation which can be calculated from spatial periodicity of the voids λα as,

ωα = Ukα, kα = 2π/λα, (3.18)

where, kα is the characteristic wave number of the dispersed phase.
Assuming that the two secondary coils are identically coupled to the primary coil

and the media, the in-phase (cosωt) component, quadrature phase (sinωt) component
and the norm of the induced difference flux in the two secondary coils become,

Quadrature-phase flux, φ⊥ = 2ωδa sin(∆θ/2) sin(ωαt), (3.19)

In-phase flux, φ|| = 2Ub+ 2Uδb cos(∆θ/2) cos(ωαt). (3.20)

Norm of flux, ||φ||2 = C1 + C2 cos
(
ωαt−

πL

λα

)
+ C3 cos

(
2ωαt−

2πL
λα

)
+ ...,

(3.21)
where,

∆θ = Lkα,

C1 = 4U2b2 + . . . ,

C2 = 8U2bδb cos ∆θ
2 ,

C3 = −2ω2δa2 sin2(∆θ
2 ).

We find that the in-phase component of the difference flux is sensitive to the motion
(U), while the quadrature component comes from Faraday induced flux in the medium
and is insensitive to U . Both in-phase and quadrature components are sensitive to α.
The first harmonic C2 of the norm ||∆φ||2 is the coupled term and depends on both U
and α. The second harmonic C3 is independent of U and only depends upon α. The
constant term C1 in equation (3.21) depends linearly on U2 and is independent of α to
first order.

The expansion developed in this section is only valid for D/δ � 1 and Rem � 1. The
Faraday induction effects are assumed to be completely decoupled from the Lorentz force
effects. The Faraday induced fluxes are developed in (D/δ)2 and this series will diverge
for D/δ & 1, as we see in equation (3.15). The motion induced flux is developed in Rem
and as such it will diverge for Rem ≥ 1, as we given by equation (3.16) . Furthermore,
we have restricted the expansion for perturbation due to α to first harmonic. In the next
section, we derive expressions for perturbation in magnetic flux when Faraday induction
effects are significant and are coupled to Lorentz force effects.
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3.2.2 Significant Faraday induction and small Lorentz force effects

(δ . D, Rem � 1)
For D/δ & 1 it is no longer possible to decouple the induced fluxes from the applied
external flux. In this case we propose a flux perturbation model which takes into account
of the induced perturbation due to α and U . However it is no longer possible to dis-
tinguish between the applied external flux and the induced flux in the medium. At low
Rem (diffusion dominates advection in magnetic flux transport equation), the amplitude
of the net flux crossing coils S1 and S2 is given at first order by:

φ =
∫
~B · ~ds = φ0 + Remφu + φα(t), (3.22)

where φ0 is the average flux in the absence of motion due to Faraday effects, Remφu is
the average flux due to Lorentz force effects, and φα is the perturbation of the total flux
due to the dispersed phase and is related to the distortion of the induced eddy currents.
All the fluxes are spatially averaged over the length of the secondary coils. φ0 is defined
as the time average when U vanishes

φ0 = lim
U→0

[
U

L

∫ L/U

0
φdt

]
, (3.23)

where, L is a length large enough for the integral to be independent of L. In this
condition, the fluid properties become continuous. Ideally, φ0 = 0 for well balanced S1
and S2 without motion and without void.

In case of periodic distribution of the dispersed phase, this term can be expanded in
Fourier series:

φα(t) = ψα cos(ωαt+ θ) + · · · , (3.24)
where the amplitude ψα depends on the volume fraction α. In this analysis ωα � ω.
The in-phase and quadrature phase fluxes are given by,

φ|| = φ0,|| + Remφu,|| + ψα,|| cos(ωαt+ θ), (3.25)

φ⊥ = φ0,⊥ + Remφu,⊥ + ψα,⊥ cos(ωαt+ θ). (3.26)
∆V is obtained by time derivation of φ. The induced difference voltages are,

∆V⊥ = −ωφ|| = −ω[φ0,|| + Remφu,|| + ψα,|| cos(ωαt+ θ)], (3.27)

∆V|| = −ωφ⊥ = −ω[φ0,⊥ + Remφu,⊥ + ψα,⊥ cos(ωαt+ θ)]. (3.28)
The square of the modulus of induced difference voltage is ||∆V ||2 = ∆V 2

‖ + ∆V 2
⊥.

Considering the first terms in O(Rem) (Rem � 1),

||∆V ||2 ≈ ω2
{
〈φ0|φ0〉+ 〈ψα|ψα〉2 + 2〈φ0|ψα〉 cos(ωαt+ θ) + 〈ψα|ψα〉2 cos(2ωαt+ 2θ)

+ 2Rem [〈φ0|φu〉+ 〈φu|ψα〉 cos(ωαt+ θ)]
}
. (3.29)
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In this formula, φi is defined as a vector, φi =
[
φi,‖, φi,⊥

]
. 〈φi|φj〉 represents the scalar

product between the two vectors i and j.
In equation (3.25)-(3.28), φ0,|| and φ0,⊥ are the in-phase and quadrature components

of the mean flux through the secondary coils in the absence of motion. φ0,|| is primarily
composed of the axial magnetic field created by the primary coil P while φ0,⊥ primarily
comes from the Faraday induced eddy currents. However, in this case (δ < D) there
is no clear decoupling of the external fields from the induced flux; both in-phase and
quadrature components of total flux contain their contributions.

In equation (3.25)-(3.28), Remφu,|| and Remφu,⊥ represent the DC shift in mean flux
φ0,|| and φ0,⊥ respectively and are caused by the interaction of motion (U) with the radial
magnetic flux density Br. Again, the shape and magnitude of in-phase and quadrature
components of Br, depend on both externally applied magnetic fields and the induced
fields. It controls the magnitude of Remφu,|| and Remφu,⊥.

ψα,|| and ψα,⊥ are the amplitude of the void induced perturbations and will be studied
with the help of spectral density of total flux.

In equation (3.24), ||∆V ||2 is expressed as a function of the dominant term in Fourier
expansion. The last term in Rem corresponds to the magnetic flux component perturbed
by the motion. We note that 〈φ0|φ0〉 and 〈ψα|ψα〉 appear at zero order. The terms
〈φ0|ψα〉, 〈φ0|φu〉 and 〈φu|ψα〉 represent the coupling effects of Faraday induction, Lorentz
force and dispersed phase. The term 〈φu|φu〉, which appears at second order in Rem has
been neglected.

From the experiments and based on this model, the contributions of the dispersed
phase and of the velocity on the net magnetic flux can be measured by Fourier analysis
of the ||∆V ||2 signal. The amplitude of ωα term at zero velocity 〈φ0|ψα〉 gives the
perturbation due to α effects. The second ωα term, which depends on Rem 〈φu|ψα〉
exhibits the coupling effects between the velocity and the void fraction on the induced
eddy currents. At last, the amplitude of 2ωα term 〈ψα|ψα〉 characterizes the influence
of the dispersed phase and is independent of the Lorentz force effects.

3.3 Lissajous ellipse fitting approach

Ellipse fitting algorithms are popular in the fields of digital signal processing and image
analyses [88][89]. When two signals V1(t) and V2(t) are out of phase and satisfy certain
conditions, their Lissajous curve is an ellipse (Fig. 3.11). Let the induced voltages in
secondary coils S1 and S2 be V1 and V2 respectively:

V1(t) = |V1| cos(ωt+ θ1) + C1, (3.30)

V2(t) = |V2| cos(ωt+ θ2) + C2. (3.31)

The algebraic manipulation of these will give,( |V1| − C1
|V1|

)2
+
( |V2| − C2
|V2|

)2
−2(|V1| − C1)(|V2| − C2)

|V1||V2|
cos(∆θ)−sin2(∆θ) = 0. (3.32)
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Figure 3.11: Typical Lissajous curve of signals V1(t) and V2(t).

This can be written as,

F (V1, V2) = aV 2
1 + 2bV1V2 + cV 2

2 + 2dV1 + 2fV2 + g = 0. (3.33)

The values of various coefficients are

a = |V2|2,
b = −|V1||V2| cos(∆θ),
c = |V1|2,
d = −|V2|2C1 + |V1||V2|C2 cos(∆θ),
f = −|V1|2C2 + |V1||V2|C1 cos(∆θ).

(3.34)

Equation (3.33) yields an ellipse for condition, b2 − 4ac < 0. Using the values of coeffi-
cients, this would mean |V1|, |V2| 6= 0 and ∆θ 6= nπ, n = 0, 1, 2, · · · . The phase difference
is given by:

cos(∆θ) = −sgn(a)b√
ac

. (3.35)

The angle of inclination of this ellipse with respect to V1(t) is called the tilt angle and
it is given by

β =


0, for b = 0 and a < c,
1
2π, for b = 0 and a > c,
1
2 cot−1 a−c

2b , for b 6= 0 and a < c,
π
2 + 1

2 cot−1 a−c
2b , for b 6= 0 and a > c.

(3.36)

|V1|, |V2| and θ are functions of velocity U and void fraction α of the two phase medium
under study. The presence of voids will modify eddy currents, which subsequently affects
|V1|, |V2| and θ. This allows one to use ellipse fitting as a tool to analyze the impedance
of the medium under investigation. In this way, various ellipse parameters could be used
to characterize the two phase flows. In this thesis, we use tilt angle β to quantify α. An
equivalent formula for β is:

β =
∣∣∣∣12 arctan

(−2 cos(∆θ)|V1||V2|
|V1|2 − |V2|2

)∣∣∣∣ . (3.37)
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At low magnetic Reynolds number Rem, ∆θ is linear with U , but very close to 0 ◦ or
180 ◦ [32, 34]. The numerical simulation in COMSOL R©described earlier, shows that for
0 ≤ Rem ≤ 0.12, 0 ≤ ∆θ(rad) ≤ 0.025 and consequently 0.9997 ≤ cos ∆θ ≤ 1 (see figure
3.12). Therefore, in the absence of voids the ellipse approaches a straight line inclined
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Figure 3.12: ∆θ vs U at ω = 3142 (◦) and 6248 (�) rad s−1.

near 45 ◦. When a void is under S1, |V1| becomes much larger than |V2| and V1(t) has a
slightly different phase than V2(t). We get a prominent tilted ellipse. The tilt fluctuates
about 45 ◦ when voids pass through the flow cross-section. We can relate the fluctuation
in the tilt angle to characterize the void presence. From the time signal of β we calculate
the amplitude of oscillation ∆β by FFT algorithm.

Further decomposition of equation (3.36) in terms of expansion for induced voltages
as obtained in previous sections is possible. But this leads to intractably large expressions
which defeats the purpose of the decomposition: term by term understanding with
respect to Lorentz force and Faraday induction effects. Nevertheless, this decomposition
is provided in the appendix.

3.4 Conclusions

From theoretical point of view, there are various ways to model ECFM in single phase
flows. In literature, researchers choose not to solve the Navier stokes equation and the
magnetic induction equation is solved assuming a given velocity magnitude and profile.
In this chapter, we did Finite element simulations of the same problem. These simula-
tions show that the flow sensitive difference voltage |∆V |, increases with the primary
and secondary coil radii. This is attributed to increase in surface area for the flux to
penetrate. |∆V | decreases with the length of primary and secondary coils, when total
number of turns is kept constant. This is due to a decrease in number density of coil
turns. |∆V | is linear in U . |∆V | sensitivity to U decreases with increasing ω. The
difference of phase between the two secondary coils is also linear in U .
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To model U , α and ω effects in ECFM, three approaches were proposed. In all the
cases, Rem � 1.

The first model assumes no coupling between Faraday induction and Lorentz force
effects, which we find is possible under assumptions: D � δ and Rem � 1. Here we
obtain the magnetic fields by expansion in terms of (D/δ)2 and Rem. Based on the
assumption D � δ and Rem � 1, we calculated expression for total flux through the
ECFM for the special case of periodic distribution of dispersed phase. We find that
the in-phase component of magnetic flux is linearly proportional to U and α, while
the quadrature phase component only depends on α. The norm of the magnetic flux
perturbation is a sum of a constant term and first two harmonics. The constant term
is proportional to U2, the first harmonic is proportional to U2 and α and the second
harmonic is proportional to α. We conclude that this theoretical model, valid for D � δ
and Rem � 1, predicts U and α effects on different components of norm of magnetic
flux. Therefore, we require FFT spectral analyses in order to separate flow and void
signals. We also note that this model does not lead to an explicit expression in α.

The second model was proposed for the cases when δ � D and Rem � 1, i.e.,
Faraday induction effects are significant and cannot be separated from the Lorentz force
effects. We expand the net magnetic flux in terms of perturbation by U and α. This
expansion is valid at low Rem (Rem � 1). In the presence of periodic distribution of
dispersed phase, we find that both the in-phase and quadrature phase component of
magnetic flux depend on U and α through Remφu and ψα terms. The first harmonic of
norm of magnetic flux, is coupled term in U and α. On the other hand, this theoretical
model predicts that the second harmonic only depends on ψα to first order in Rem.
We conclude that FFT spectral analyses of the norm of magnetic flux will allow us to
characterize U and α effects in this regime with the help of the proposed theory. This
can also be achieved with phase sensitive analyses and direct measurement of amplitudes
of perturbations on in-phase and quadrature phase raw signals. In this model, we find
explicit expressions in U and α.

We have also proposed a purely experimental methodology called the Lissajous ellipse
fitting approach to characterize α. The basic idea is to make Lissajous curve with signals
in the two secondary coils. This makes an ellipse in the presence of voids. We fit an ellipse
and use the fluctuations in the orientation of this ellipse to measure α. The mathematical
basis for the same was given. The advantage of this method is its simplicity. No phase
sensitive measurements is required. In this method, we do not have explicit expressions
in U and α.

All these models would be confronted in chapter 4 with experiments.
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Chapter 4

Experiments in model two-phase
liquid metal flow

In this chapter, we present experimental results regarding two phase medium under AC
magnetic fields. The ultimate objective is to understand the void and velocity induced
perturbations in magnetic flux in the presence of Faraday induction and Lorentz force
effects.

This chapter is organized as follows: section 4.1 explains the experimental setup and
its construction. We use a model experimental set up in which a plug flow is simulated
by static aluminium rods over which we translate ECFM with a given velocity U m/s.
Grooves and holes have been machined on these rods to simulate voids. Their geometrical
void fraction is denoted as α.

Two approaches were tested in this thesis. The first approach is the difference
signal approach and is given in section 4.2. In this approach, the ECFM is used in
three-coils configuration. Primary coil is excited by an AC current. The difference of
emf between the two secondary coils is measured. The objective is to record U , α and ω
effects on this difference. This approach is more intuitive and allows easy interpretation
of Faraday induction and Lorentz force effects.

Thereafter, in section 4.3 we see the experiments and analyses for the Lissajous
ellipse fitting approach. ECFM has been used in both three-coils and five-coils con-
figurations. The signals from the two secondary coils make a Lissajous curve as recorded
by an oscilloscope. This is subsequently analyzed using ellipse fitting algorithms. We
measure U , α and ω effects on the orientation of fitted ellipse. This approach is relatively
simpler to implement experimentally.

In the last section 4.4, we summarize some important inferences from these experi-
ments.

4.1 Experimental set up

A general overview of the experimental setup is presented as a block diagram shown
in figure 4.1. Specific blocks in this diagram are explained in subsequent subsections.
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Figure 4.1: Block diagram of the experimental set up for three coils ECFM.

A frequency generator excites the primary coil P in the 3-coils ECFM assembly. The
resulting magnetic flux created by the primary coil is sensed by secondary coils S1 and
S2. The flow of two phase medium through ECFM assembly will perturb the magnetic
flux. The magnetic flux is monitored and analyzed with the help of oscilloscope and
Lockin amplifier.

These instruments record the emf in coils S1, S2 and the difference of the induced
emf between these two coils. The signals so recorded is post processed using MATLAB R©

in a PC.
There are several issues with a two-phase liquid metal loop. The fact that the

liquid metal is opaque hinders the use of common optical tools such as CCD camera.
Therefore it is difficult to know the real time size and distribution of bubbles. The
control of the flow profile is also difficult. In addition, turbulent flow fluctuations would
appear as unwanted noise in the perturbation flux being sensed by the secondary coils.
Temperature and pressure controls are also required. The most difficult part of a general
liquid metal two-phase flow loop is the controlled gas injection technique. Corrosion of
the materials is also an issue. Liquid metals, such as Sodium, also need precaution in
handling and maintenance and require shielding from air and moisture. Some other
liquid metals such as mercury are poisonous.

In view of several technical challenges associated with a liquid metal loop it seemed
prudent to avoid the same in the first attempt. An equivalent system was proposed
which mimics a two-phase liquid metal flow. This experimental setup is shown in figure
4.2 with ECFM in a three-coils configuration. Here the two-phase medium is simulated
by aluminium rods. Grooves and holes are machined on their outer surface to simulate
voids (bubbles). The aluminium rod is fixed at its two extreme ends on two poles. To
simulate the relative motion, the ECFM assembly is fixed to a uniaxial translator. This
device translates ECFM assembly over aluminium rod at a given constant velocity. This
simulates a plug flow. The role of frequency generator is to drive AC current through
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Figure 4.2: Schematic of the experimental set up for three coils ECFM.

the primary coil, while oscilloscope and Lockin amplifier record the emf in coils S1, S2
and the difference of the induced emf between these two coils, as well as the current in
the primary coil.

4.1.1 Two-phase medium

The two-phase medium is simulated by various aluminium rods. To simulate voids, we
machine holes and grooves on its outer surface.

The dimensions for “groove-type” rods are given in table 4.1. Seven types of groove-
type aluminium cylinders have been used. They are shown in figure 4.3. Lr and R
are length and radius respectively of each rod (refer to figure 4.4). lg and dg are the
length and depth of grooves. λα is the wavelength that indicates spatial periodicity of
the grooves. The geometrical void fraction α is calculated for each rod as follows.

Since the grooves are distributed periodically, it would be sufficient to calculate the
geometrical void fraction for one cell of axial length λα. In this case, we would divide
the volume occupied by one groove to the volume of a cylindrical rod of length λα and
radius R.

α =

[
πR2 − π (R− dg)2

]
lg

πR2λα
=

2Rdglg − d2
glg

R2λα
(4.1)

Table 4.1: Dimensions of groove-type rods in mm.

S/N Lr R dg lg λα α

a 300 19.25 — — — 0%
b 300 19.25 4.25 2.80 — 1 groove
c 300 19.25 0.38 1.40 18.00 0.3%
d 800 19.00 1.80 2.00 18.00 2.0%
e 800 19.00 3.20 2.60 18.00 4.5%
f 300 19.25 4.23 3.00 16.85 6.9%
g 300 19.25 4.25 3.00 — —
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.3: The Groove-type aluminium rods. (a) α = 0%, (b) one void, (c) α = 0.3%,
(d) α = 2.0%, (e) α = 4.5%, (f) α = 6.9%, (g) Variable separated.

Lr

λαlg

R
dg

Figure 4.4: Geometrical quantities arising in formula (4.1) for a groove type rod.
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(a) (b) (c) (d)

Figure 4.5: The hole-type aluminium rods. (a) α = 0.06%, (b) α = 0.22% (c) α = 0.54%,
(d) α = 1.62%.

lh

2λα

dhπD

lh

dh

Figure 4.6: Bore hole on cylinder outer surface and geometrical quantities appearing in
equation (4.2).

Table 4.2: Dimensions of hole-type rods in mm.

S/N Lr R dh lh λα α

a 800 19.25 2.00 2.00 17.45 0.06%
b 800 19.25 3.90 2.00 17.45 0.22
c 800 19.25 6.04 2.00 17.45 0.54%
d 800 19.25 10.23 2.00 17.45 1.62%

Different hole-type rods were used in the experiments and are shown in figure 4.5.
The holes are cylindrical bore-type dug on cylinder outer surface as shown in figure 4.6.
Therefore each hole is defined by its height lh and its diameter dh. Each cross-section
of aluminium cylinder contains two holes placed diametrically opposite on rod outer
surface. The next cross-section would also contain two holes but rotated azimuthally by
90◦. This pattern repeats itself. The dimensions of the four hole-type rods are given in
table 4.2.
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In this configuration, the geometrical void fraction can be calculated as

α = 2π(dh/2)2lh
λαπ(D/2)2 = 2d2

hlh
λαD2 (4.2)

4.1.2 Uniaxial displacement controller

Uniaxial displacement controller (UDC) is a device that translates a load in a given
direction at a given constant velocity. Two kinds of UDC were tested for stability in
velocity. The one chosen for the experiments is Movopart MV 100 shown in figure 4.7.

Load plate

Stop 1,2,3

Translation belt
Motor

a(1)

a(2)

b

Figure 4.7: Schematic of a uniaxial displacement controller. (a) side view, (b) top view.

It is a rod-less actuator. A belt connected to a Servostar MAC23 motor is used to create
uniaxial motion. A plate is connected to this belt. Load (. 10 kg) can be screwed to
this plate. It can attain a maximum velocity of 5 m s−1. Stop 1,2,3 are three markers
which can be used to fix start and stop positions. This can also be programmed. In the
later case Stop 1,2,3 can be used as emergency stoppages at two extreme ends. There
are two choices for acceleration/decceleration phases: trapezoidal and exponential. For
the trapezoidal case, the acceleration is constant and it takes significant amount of time
and distance to reach Um s−1 from 0 m s−1. For the exponential case, the accelaration
is exponential whose exponent can be adjusted using a set of parameters in Servostar
motor. There is a trade off between the rapid acceleration/decceleration phases and the
stability of U . Figure 4.8 compares stability vs acceleration time for two chosen set of
parameters in PID controller for UDC motor. The X-axis is arbitrary. The Y-axis shows
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Figure 4.8: Velocity profile (—) and Position coordinates (· · · ) when ECFM is in motion,
for two sets of parameter settings for UDC. Set 1: (a,b,c), Set 2: (d,e,f). Expected values:
(—,· · · ), Real values: (—,· · · ).

the expected (blue) vs real (red) velocity U(t) and positions P (t). U(t) rises rapidly and
attains a constant value Uc. The position P (t) follows the law: P (t) = Ut. For high
Uc, U(t) is very stable as expected. At low Uc, we observe oscillations in U(t). This can
introduce error in U upto a maximum of 5%.

4.1.3 Excitation and acquisition

The excitation in the primary coil should be achieved through a frequency generator.
We would like to fix the phase and magnitude of AC current in primary coil. In this
way, we fix the phase and magnitude of externally applied magnetic flux due to primary
coil. To achieve this, the ideal choice will be a stable AC current generator. A frequency
generator which produces an AC voltage was used. As shown in figure 4.1, the current
generated by the frequency generator is measured across an 1 Ω resistor by a Lockin
amplifier which samples the in-phase (cosωt) and quadrature phase (sinωt) components.
This is explained in detail later. In figure 4.9, we observe current in the circuit for a given
pulsation ω and a fixed current magnitude in frequency generator. ECFM is translated
back and forth 6 times (3 times each back and forth) with U = 1 m s−1 on aluminium rod
with α = 6.9%. We notice that the in-phase current I|| is stable and the maximum error
is 0.05%. The quadrature phase current I⊥ can be neglected in comparison to I||. The
norm of the current, I =

√
I2
|| + I2

⊥ also remains constant within 0.05%. We conclude
that the change in impedance of the medium does not affect the amplitude and phase
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Figure 4.9: Applied AC current, (a) I(A), (b) I||(A), (c) I⊥(A) for U = 1 m s−1 and
α = 6.9%.

of imposed current and the imposed external magnetic flux.

To observe the magnetic flux perturbation in two-phase flow, we sense the induced
potential in the two secondary coils using a digital oscilloscope and a Lockin amplifier.

The oscilloscope used was MDO3104 by Tektronix ( MDO stands for Mixed Domain
Oscilloscope). The advantage of this oscilloscope is that it comes with an in-built spec-
trum analyzer which helps to visualize signal spectrum in real time. The input low-pass
filter bandwidth can be adjusted so as to reject very high frequency noise. Sampling rate
Fs is chosen high enough to respect Nyquist-Shannon sampling theorem. Fs is calculated
by the following formula

Fs = Rl
T

(4.3)

where, Rl is the record length (total number of samples) and T is the total time of
record. The resolution in time may be as low as 2 ns (resolution in time is inverse of the
maximum sampling rate). The maximum amplitude resolution is 1× 10−4 V. We will
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Figure 4.10: Digital oscilloscope MDO 3104 from Tektronix.

see below that the time and amplitude resolution of a digital oscilloscope is inferior to
that of a Lockin amplifier.

To separate the effects of velocity and void fraction, the idea was to look at the
in-phase and quadrature components. This is achieved by using a Lockin Amplifier
which samples the in-phase and quadrature components of distorted flux with respect
to the imposed current in the primary coil. Lockin amplifiers are high performance
demodulators and are capable of operating under conditions of very low signal-to-noise
ratio. The principle of signal acquisition using Lockin amplifier is shown in figure 4.11
and 4.12. The phase sensitive detector of Lockin amplifier mixes the input signal with a

Figure 4.11: Principle of signal acquisition using a Lockin Amplifier.

reference signal before passing the mixture through a low pass filter. The output signal
has a very high signal to noise ratio and in some cases can measure signals in the nV
range. To sample in-phase and quadrature components of input signal, Lockin amplifier
uses two phase-sensitive detectors in parallel. One of the phase sensitive detectors uses
the reference signal while the other shifts the reference signal by 90◦ before the mixing
stage. Let us assume that VR is the reference signal given by, VR =

√
2 exp (−jωt),

where ω is the demodulation frequency. In our case ω is the pulsation of AC current in
the primary coil. At the demodulation stage, the acquired signal through the secondary
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Figure 4.12: Schematic of demodulation using a Lockin amplifier.

Figure 4.13: Lockin amplifier HF2LI MF by Zurich instruments used in the experiments.
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sensor coils VS = AS cos (ωst+ θs) is multiplied with VR and integrated (filtered) to
achieve a demodulation (conversion to DC).

VS ∗VR = Vs ∗
√

2 exp (−jωt) = As√
2

exp j [(ω − ωS) t+ θS ] + As√
2

exp−j [(ω + ωS) t+ θS ]

The subsequent low-pass filtering yields

X + jY = 〈VS ∗ VR〉 = F (ω − ωs)
As√

2
exp j [(ω − ωS) t+ θS ]

F (ω − ωs) is the filter response. Ideally, we would like to obtain F (ω − ωs) = 1 within
the allowed bandwidth ∆ω = ω− ωs and F (ω− ωs) = 0 outside the selected bandwidth
∆ω. Therefore filter bandwidth selection is of utmost importance. In our experiments,
the Lockin amplifier used 24 dB/oct low-pass filter. In the absence of perturbation in
magnetic flux due to void and external sources of noise, we would expect ωs = ω and
hence a DC output voltage X+jY = As√

2 exp jθS is to be expected. The Lockin amplifier
used in our experiments was HF2LI MF from Zurich instruments. It shares its advantages
with other Lockin amplifiers. In addition, its Multi-Frequency (MF) feature allows to
perform experiments at several pulsation values (ω) in one single run. However, this
functionality was not used in our experiments. Lockin amplifier shown in figure 4.13 is
interfaced with a PC with the help of a proprietary software.

4.1.4 ECFM assembly

After analyzing theoretically several possible configurations (varying lengths and radii
of coils) , ECFM assembly shown in figure 4.14 was fabricated at IMFT for liquid metal
two-phase flow studies. The wire material is copper and the hollow bobbin structure is
made of PVC. The ECFM is of flow-through type with 5 coils. The coils P1, P2 and
P3 are intended to be the primary coils. The coils S1 and S2 are intended to be the
secondary coils. The same ECFM assembly can be used in 3 coils configuration. In this
case the two ends of P2 and P3 are left open (open-circuited) and hence do not play any
role.

P1 S1 P2P3 S2

30 
mm

30 
mm

30 
mm

20 
mm

20 
mm

Figure 4.14: ECFM fabricated for experiments at IMFT.

The dimensions of the device are: length of primary coils Lp = 30 mm, length of
secondary coils Ls = 20 mm, inner diameter of plastic pipe Di = 40 mm, outer diameter
of plastic pipe Do = 44 mm, number of turns of copper wire, in primary coils Np = 70,
in secondary coils Ns = 50 mm, wire thickness dw = 0.4 mm.
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Figure 4.15 shows the experimental bench on which the two phase experiments were
performed. We notice that the primary coil is given an excitation through a preamplifier

Figure 4.15: Experimental setup which models two-phase flow for studies with ECFM.

which in turn is connected to an in-built frequency generator of a Lockin amplifier. The
output signals sensed by the secondary coils is fed to the digital oscilloscope and Lockin
amplifier via a connector box. The signals acquired by the Lockin amplifier is registered
in a PC. On the other hand, the signals of the secondary coils are registered on an
external USB in the oscilloscope. ECFM is screwed to UDC load plate. The motor
of the UDC is not in the picture. The regulation and control of UDC is again done
using PC. The aluminium rod is held in its place by two pole structures erected on each
extremity.

4.2 Difference signal approach

4.2.1 Methodology

The experimental set-up for this experiment was as described in the previous section.
All the rods were used in the experiments. Their specifications can be found in table
4.1 and 4.2. The ECFM was used in a 3 coil configuration: P , S1 and S2; where P
was used for excitation and S1 and S2 are used for sensing the integrated magnetic flux.
The excitation and acquisition was achieved using the Lockin amplifier to obtain phase-
sensitive measurements. The oscilloscope was not used except for some specific cases in
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order to validate the consistency of the measurements. The data was saved on a PC
during the course of experiments and later analyzed using Matlab.

The experiments were realized at room temperature for which the electrical conduc-
tivity of aluminium is σ = 3.77× 107 S m−1. The aluminium is slightly paramagnetic
with relative permeability of µr = 1.000 022. Therefore magnetic permeability in alu-
minium can be taken as µr = 4π × 10−7 H m−1. The range of pulsations used was
ω = 1571 to 12 566 rad s−1. The corresponding skin-depth of magnetic flux is between
δ = 5.2 mm and 1.8 mm. As mentioned previously the current in the circuit is deter-
mined indirectly with the help on 1 Ω resistor in series. The range of magnitude of AC
current used was between I = 200 and 400 mA. We verified that this magnitude remains
stable within 0.05% during the course of experiments (see figure 4.9). The phase of I
was taken as reference for each experiments. The secondary coils emf was measured in
the Lockin amplifier with respect to this phase. Therefore, it is possible to record either
magnitude ||∆V || and phase θ or in-phase ∆V|| and quadrature phase ∆V|| components
of the difference emf signals. We chose to record the later. In any case one can be
obtained from the other as follows: ||∆V || =

√
∆V 2
|| + ∆V 2

⊥ and θ = arctan(∆V⊥/∆V||).
All the experimental results are given for a normalized intensity amplitude of 1 A.

For each measurement, a specific rod was mounted and fixed on the two extreme
poles of experimental bench (see figure 4.15). ECFM was translated back and forth
over this rod several times. Experiments with this system is very reproducible because
the system is highly deterministic. Since ECFM is being used in a difference mode, the
contribution of external noises is also minimized. In any case the sources of external
noises were verified to be insignificant at these pulsation values.

For the range of pulsation used in these experiments, δ < D. Therefore, the magnetic
flux perturbation theory developed in section 3.2.2 was used to analyze and interpret
the acquired data.

Figure 4.16a shows a typical demodulated in-phase difference emf ∆V||. This kind
of plot is also obtained for ∆V⊥ and ||∆V || signals. For the specific case in figure 4.16,
α = 0.3% at ω = 4712 rad/s and U = 0.1 m/s for figure 4.16a and 4.16c; U = e− 3 m/s
for figure 4.16b. The average magnetic flux φ0,⊥ in the two-phase media is determined
by integrating magnetic flux for a sufficiently large time at U → 0. This was discussed in
the previous chapter. Experimentally, φ0 is measured as the average value of the signal
over several grooves when there is very slow motion, typically U = 10−3 m/s. This is
shown in figure 4.16b. In this case, the Lorentz force can be neglected. In motion at
constant U , the average value of the signal is shifted with a value proportional to Rem.
In presence of periodic voids (α 6= 0%), this signal oscillates around this value. The
amplitude of this oscillation gives ψα.

To determine ψα, the FFT spectrum density of the perturbations have to be obtained.
The FFT spectrum of the time signal shown in figure 4.16 is displayed in figure 4.16c. We
notice a prominent peak at ωα whose magnitude gives ψα. The subsequent harmonics
were neglected in the flux perturbation expansion theory (equations 3.24-3.29). In the
spectrum, the peak at 2ωα is negligible when compared to peak at ωα. This result justifies
the expansion till first harmonic in the Fourier series of the void fraction perturbation
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Figure 4.16: Typical demodulated voltage difference of the two secondary coils, ∆V|| mea-
sured vs time for α = 0.3% at ω = 4712 rad/s and (a) U = 0.1 m s−1, (b) U = 10−3 m s−1,
(c) Corresponding FFT spectral density of fluctuations of ∆V|| vs the modulating pul-
sation ωM (at U = 10−3 m s−1).
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(equations 3.25, 3.26).
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Figure 4.17: FFT spectral density of fluctuations of ||∆V ||2 vs the modulating pulsation
ωM for α = 6.9% and U = 0.001 m/s at 6283 rad/s.

The interpretation of ||∆V ||2 signal is slightly different according to the theory.
An example of the FFT spectrum of the fluctuations of ||∆V ||2 signal is displayed in
figure 4.17. This was obtained for α = 6.9% and U = 0.001 m/s at 6283 rad/s. We
notice two first prominent harmonic peaks in ωα. The amplitude of the peak at 3ωα
gives the first residue of equation (3.29). The amplitude of the first peak is ω2A1 =
ω2 [2〈φ0|ψα〉+ 2Rem〈φu|ψα〉] and the amplitude of the second peak is ω2A2 = ω2 〈ψα|ψα〉

2 .
So the second peak in FFT of ||∆V ||2 can be used to calculate

√
2A2 = 〈ψα|ψα〉. The

first peaks in FFT of ∆V|| and ∆V⊥ are used to calculate ψα,|| and ψα,⊥. Then we obtain,
〈ψα|ψα〉 = ψ2

α,|| + ψ2
α,⊥. We have verified that the value of 〈ψα|ψα〉 calculated from the

two methods is the same.
In summary, the experimental results were treated by two approaches: first, the in-

phase and quadrature phase components of φ0, φu and φα are directly measured from
∆V (t); second, A1, A2 and ωα were measured from the FFT of ||∆V ||2.

We have checked that the two approaches are still valid for non-periodic void dis-
tribution as long as ωα can be measured. This can be seen in figure 4.18 obtained for
ω = 6248 rad/s and U = 10−2 m s−1. The dimensions for this rod is given in table 4.1.
We observe in figure 4.18, that the intensity of the two first harmonic peaks decreases
and the width increases, when the spatial distribution of the grooves widens. The mean
separation 〈λα〉 between the grooves is 13 mm. However, considering that the first groove
cannot be sensed by secondary coil, due to ECFM making a transition from support rod
to the aluminium rod, the calculations using rest of the grooves gives 〈λα〉 = 11 mm. At
U = 10−2 m s−1, this gives ωα = 2.59 rad s−1. From the FFT spectrum density of ||∆V ||2
shown in figure 4.18c, we obtain ωα = 2.59± 0.35 rad s−1 and ωα = 5.17± 0.35 rad s−1.
This is the same as the theoretical ωα within precision of measurement.
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Figure 4.18: (a) ∆V||, (b) ∆V⊥ vs t(s) and ||∆V ||2 − 〈||∆V ||2〉 vs ωM for rod with
non-periodic void distribution at ω = 6248 rad/s and U = 10−2 m s−1.
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4.2.2 Results

Since δ < D, the results should be interpreted with the help of theory developed in
section 3.2.2. Nevertheless, we wanted to test whether the theory which assumes small
Faraday induction effects can still predict reasonably well some of the experimental
effects. Therefore, we begin this section by interpretations of the experimental results
in terms of the former theory.

Interpretation based on Small Faraday induction theory

In section 3.2.1, under the assumption of small Faraday induction effects, we were able
to split the terms which depend on α and U . More precisely we predict that the effect
of α is on both the in-phase and quadrature phase components of difference flux. On
the other hand, we predict that the effect of U is only on the in-phase flux. In our
experiments, we were able to confirm the former but the later was found to be wrong,
i.e., contrary to expectations, the effect of U is on both the in-phase and quadrature
phase signals. This is shown in figure 4.19. We see that both the components of the
demodulated difference emf between the two secondary coils are sensitive to U .
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Figure 4.19: ∆V|| (—) and ∆V⊥ (—) for α = 0% at U = 0.1 m s−1 and ω = 3124 rad s−1.

The coefficients obtained in equation (3.21) also give the U and α effects with the
help of FFT spectrum.

Since C1 = 4U2b2 + . . ., we expect C1 to be linear in U2 upto the first term. This
is shown in figure 4.20a. The other remarkable result is the validity of α independence
predicted by this expansion.

ω2C3 is plotted in figure 4.20b. Since C3 = −2ω2δa2 sin2(∆θ
2 ), we expect C3 to be

linear in α2 and independent of U . This later is also confirmed in figure 4.20b.
ω2C2 = 8U2bδb cos(∆θ/2) vs U is plotted in figure 4.20c. A linear fitting of ω2C2 vs

U suggests C2 ∼ m × U + constant. This is difficult to explain with this model. From
the result for C1 we find that b is independent of U and α. But the proposed model does
not give functional dependence of δb on U . This shows the limitation of the theoretical
model presented in section 3.2.1.
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Figure 4.20: (a) ω2C1(V2) vs U2(m2 s−2), (b) ω2C3(V2) vs U(m s−1) and (c) ω2C2(V2)
vs U(m s−1) for α = 0% (+), 0.3% (∗) and 6.9% (◦) at ω = 6248 rad s−1 and I = 400 mA.
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Failure of the small Faraday induction theory in predicting some experimental results,
show that the assumption of small Faraday induction is no more valid. The existence
of both in-phase and quadrature phase emf signals for α = 0% hints towards strong
Faraday induction effects. In the next section, we test the theory presented in section
3.2.2 which takes into account of significant Faraday induction effects.

Interpretation based on Significant Faraday induction theory

The failure of low induction based theory, in explaining the Lorentz force effects on
both phases of difference emf and the linearity of first harmonic of ||∆V ||2 with U
demonstrates its limitations. So we would now interpret the experimental results with
the help of theory developed in 3.2.2, which is based on the assumption of strong Faraday
induction effects.
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Figure 4.21: φ0 vs ω at U = 0.001 m s−1 for α = 0 %(◦, •), 0.3 % (�, �), 6.9 % (4, N);
where φ0,|| : unfilled symbols and φ0,⊥ : filled symbols. Lines represent the power law
in ω−1/2. Rod type: Grooves.

Figure 4.21 compares φ0,||(ω) and φ0⊥(ω) for α = 0%, α = 0.3% and α = 6.9%.
A similar plot for hole-type rods is shown in figure 4.22 for α = 0.06%, α = 0.22%,
α = 0.54% and α = 1.62%. We observe that φ0,|| and φ0,⊥ are weakly dependent on α.
Furthermore, the results show that φ0,|| > φ0,⊥, whatever ω. The frequency dependence
of φ0,⊥ obeys to an approximate power law, ω−1/2. We observe that the deviation to
this power law is larger at high pulsations. For φ0,||, if the power law ω−1/2 seems to be
valid at low pulsations, the deviations are very large at higher pulsations.

As an example, figure 4.23 shows the pulsation dependence of Remφu,|| and Remφu,⊥
at a constant velocity U = 1 m s−1 for groove-type rods. A similar plot is shown in
figure 4.24 for hole-type rods. We note that Remφu,|| < Remφu⊥. These two fluxes
exhibit two different power laws with pulsation, Remφu,|| ∼ ω−1 and Remφu,⊥ ∼ ω−3/2.
The effect of α on φu can be neglected. We also notice a difference in magnitude between
hole-type and groove-type rods. This suggests a geometrical dependence of φu to voids.
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Figure 4.22: φ0 vs ω at U = 0.001 m s−1 for α = 0.06 %(◦, •), 0.22 % (�, �), 0.54 % (O,
H), 1.62 % (4, N); where φ0,|| : unfilled symbols and φ0,⊥ : filled symbols. Lines represent
the power law in ω−1/2. Rod type: holes.
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Figure 4.23: Remφu vs ω at U = 0.1 and 1 m s−1 for α = 0 %(•), 0.3 % (�), 2.0 % (�),
4.5 % (H), 6.9 % (N); (a) Remφu,|| : unfilled symbols and (b) Remφu,⊥ : filled symbols.
(—) represents ω−1 and (−−) represents ω−3/2. Rod type: grooves.
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However, a more plausible reason is a possible difference in rod to coil alignment in the
two experimental set ups.
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Figure 4.24: Remφu vs ω at U = 0.1 and 1 m s−1 for α = 0.06 %(◦, •), 0.22 % (�, �),
0.54 % (O, H), 1.62 % (4, N); (a) Remφu,|| : unfilled symbols and (b) Remφu,⊥ : filled
symbols. (—) represents ω−1 and (−−) represents ω−3/2. Rod type: holes.
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Figure 4.25: Remφu vs U at ω = 3142 and 6284 rad s−1 for α = 0.0 %(•), 0.3 % (�),
2.0 % (�), 4.5 % (H), 6.9 % (N); (a) Remφu,|| : unfilled symbols and (b) Remφu,⊥ : filled
symbols. Rod type: grooves.

The linearity of the two components of Remφu with velocity at constant pulsations
ω = 3142 and 6284 rad s−1 is verified in figure 4.25 for groove-type rods. For the hole-
type rods, a similar plot is shown in figure 4.26 at constant pulsations ω = 4713 and
6284 rad s−1. This result has also been confirmed for other pulsations in the consid-
ered range of this study. We verified that the slope Remφu,||(U) and Remφu,⊥(U) are
independent of α.
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Figure 4.26: Remφu vs U at ω = 4713 and 6284 rad s−1 for α = 0.06 %(◦, •), 0.22 % (�,
�), 0.54 % (O, H), 1.62 % (4, N); (a) Remφu,|| : unfilled symbols and (b) Remφu,⊥ : filled
symbols. Rod type: holes.
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Figure 4.27: (a) ψα,|| and (b) ψα,⊥ vs ω at U = 1 m s−1 for α = 0.0 %(•), 0.3 % (�), 2.0 %
(�), 4.5 % (H), 6.9 % (N). Rod type: grooves.

The study of the pulsation dependence of ψα for different α values at constant veloc-
ity, have shown a non-power law behavior for the two components ψα,|| and ψα,⊥. Figure
4.27a and 4.27b display ψα vs ω at U = 1 m s−1 for groove type rods. A similar plot is
also shown for hole-type rods in figure 4.28a and 4.28b.

First, we observe that ψα(ω) curves are function of α. The variations with pulsation
of the two components at constant α are really different. All the curves for ψα,⊥(ω)
collapse to a vertical asymptote at about 12 600 rad s−1. Consequently, ψα,⊥ tends to zero
beyond this critical pulsation. On the other hand, ψα,||(ω) at a constant α increases with
the pulsation and reaches a plateau value at high pulsation. Hence for ω > 7000 rad s−1,
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Figure 4.28: (a) ψα,|| and (b) ψα,⊥ vs ω at U = 1 m s−1 for α = 0.06 %(◦, •), 0.22 % (�,
�), 0.54 % (O, H), 1.62 % (4, N). Rod type: holes.

ψα,|| is independent of ω. The two ψα components are on the same order of magnitude
at low pulsations and differ by more than one decade at high pulsation. This behavior
is really different than those of φ0 and Remφu.
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Figure 4.29: (a) ψα,|| and (b) ψα,⊥ vs U at ω = 6248 rad s−1 for α = 0.0 %(◦), 0.3 % (�),
2.0 % (♦), 4.5 % (O), 6.9 % (4). Rod type: grooves.

The velocity dependence of ψα are presented in figures 4.29a and 4.29b for groove-
type rods and in figures 4.30a and 4.30b for hole-type rods. For both components of ψα,
we observe the remarkable result that ψα is independent of U .

Combining the results obtained with holes and grooves geometries, the plot of ||ψα(α)||
at a constant U and ω is given in Fig 4.31. We observe that the results obtained with
both geometries are consistent. This is remarkable because it appears that 〈ψα|ψα〉 de-
pends only on α values and not on the geometry of the voids. The experiments show
that ψα ∼ α for α < 4% and saturates for higher values in the range of α studied. This
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Figure 4.30: (a) ψα,|| and (b) ψα,⊥ vs U at ω = 6248 rad s−1 for α = 0.06 %(◦, •), 0.22 %
(�, �), 0.54 % (O, H), 1.62 % (4, N). Rod type: holes.
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Figure 4.31: ||ψα|| = 〈ψα|ψα〉1/2 vs α at ω = 6280 rad s−1. • : grooves, � : holes.
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result is in agreement with literature where the authors obtained a similar curve for the
fluctuations of emf signal.[44]
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Figure 4.32: (a) ωα vs U at ω = 6280 rad s−1, (b) ωα vs ω at U = 3× 10−2 m s−1 for
α = 6.9%.

In order to study the coupling between the Lorentz force and the Faraday effects,
we analyze the Fourier transform of ||∆V ||2. For all cases, we measured ωα and we
verified that ωα = kαU at a constant pulsation, in agreement with our model (figure
4.32). Furthermore, we check that ωα is independent of ω at constant U .

In figure 4.33 for groove-type rod and figure 4.34 for hole-type rod, A1 is plotted with
different α at ω = 6283 rad s−1. As predicted, we observe that A1 is a linear function of
the velocity. The intercept with the vertical axis gives 〈φ0|ψα〉 which increases linearly
with α at low α. The slope is 〈φu|ψα〉. We note that the coupling between U and
α increases with α and saturates as observed previously for ψα. This last effect has
been confirmed by Fourier analysis and figures 4.35 and 4.36 show the independence of
〈ψα|ψα〉 with velocity. For all the experiments the values of fluxes obtained by direct
processing and by Fourier transform are similar.
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Figure 4.33: A1(Wb2 A−2) = 2〈φ0|ψα〉 + 2Rem〈φu|ψα〉 vs Rem for α = 0.0 %(•), 0.3 %
(�), 2.0 % (�), 4.5 % (H), 6.9 % (N), ω = 6280 rad s−1. Rod type: grooves.
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Figure 4.34: A1(Wb2 A−2) = 2〈φ0|ψα〉 + 2Rem〈φu|ψα〉 vs Rem for α = 0.06 %(◦, •),
0.22 % (�, �), 0.54 % (O, H), 1.62 % (4, N), ω = 6280 rad s−1. Rod type: holes.
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Figure 4.35: 2A2(Wb2 A−2) = 〈ψα|ψα〉 vs Rem for α = 0.0 %(•), 0.3 % (�), 2.0 % (�),
4.5 % (H), 6.9 % (N), ω = 6280 rad s−1. Rod type: grooves.
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Figure 4.36: 2A2(Wb2 A−2) = 〈ψα|ψα〉 vs Rem for α = 0.06 %(◦, •), 0.22 % (�, �), 0.54 %
(O, H), 1.62 % (4, N), ω = 6280 rad s−1. Rod type: holes.
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4.2.3 Discussions

The objective of this section is to discuss the experimental results presented in the
previous section, with the help of scaling laws based on Maxwell’s equations.

The analyses of all the results given in the previous section, show clearly the validity
of the magnetic flux perturbation approach presented in section 3.2.2. This approach
takes into account of the coupling between Faraday induction and the Lorentz force
effects when Faraday induction effects are significant. This model was used to charac-
terize U and α effects in all the experimental results given in the previous section. It is
remarkable that the theory which was developed on assumptions of Rem → 0 and α→ 0
is also valid for finite Rem and α. Also, the sensitivity is good enough to get α of order
0.06%. The experimental results were obtained for two void geometries: grooves and
holes. The property that the void induced perturbation in magnetic flux is independent
of the void geometry, confirms the validity and robustness of the model at first order.

All the experimental FFT spectra for in-phase and quadrature phase signals are
characterized by first harmonic peak which justifies the development till first harmonic
for ψα.

In the model, the choice of the characteristic length is determining. When δ < D, the
natural characteristic length is δ. For example, for the electric field E, the application
of the Stoke’s circulation theorem in flow cross-section inside ECFM, gives

∇× ~E = −∂
~B

∂t
,∫

S
∇× ~E · d~s = −

∫
S

∂ ~B · ~s
∂t

,∫
C
∇× ~E · d~l = −

∫
S

∂ ~B · ~s
∂t

,

EπD ∼ ωπDδB,
E

δ
∼ ωB. (4.4)

This relation suggests that the correct length scale is δ rather than D. The same char-
acteristic length also occurs in the diffusion equation for ~B. Indeed, considering the
magnetic induction equation (1.6), we obtain

∂B

∂t
= 1
µ0σ
∇2B

ωµ0σB = 1
L2B =⇒ L2 ∼ 1

ωµ0σ
=⇒ L ∼ δ
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Scaling relations for first order magnetic fields in absence of motion Assume
a static single-phase medium. The AC current I(t) in the ECFM primary coil produces
zero order magnetic field in this medium by Biot Savart’s law.

B0,|| =
µ0
4π

∫
Idl

|r|2
(4.5)

The corresponding zero order electric field in the medium is:

∇× E0 =
−∂B0,||
∂t

E0,⊥ ∼ −ωδB0,||

Note the phase change in E. This electric field drives eddy currents as

J0,⊥ = −σE0,⊥ ∼ −σωδB0,||

Which in turn would create the magnetic field at first order as

∇×B′0,⊥ = µ0J0,⊥ ∼ −µ0σωδB0,||

B′0,⊥ ∼ −µ0σωδ
2B0,|| =⇒ B′0,⊥ ∼ B0,|| (4.6)

This means that the total magnetic flux for no motion and no void case, where only
Faraday induction plays a role, is given at first order by

BTotal
0 ∼ B0,|| +B′0,⊥ (4.7)

Since B′0,⊥ ∼ B0,||, the order of magnitude of the first order magnetic fields created
by the zero order Faraday induction eddy currents is same. This also means that the
corresponding in-phase and quadrature phase fluxes will be of same order of magnitude.
These results were validated experimentally. φ0,|| is of the same order of magnitude as
φ0,⊥ in figures 4.21 and 4.22.

The total flux at first order for no motion case is given by

φTotal0 =
∫
BTotal

0 dS ∼ πδDBTotal
0 =⇒ φTotal0 ∼ δ = ω−1/2 (4.8)

Here, the effective surface for the integration of the flux at first order was taken as πDδ.
Equation (4.8) is valid on the assumption that the average magnetic field in δ is on a
same order at all frequencies. This was verified with the help of a numerical simulation
in COMSOL R©(see figure 4.37). Equation (4.8) explains the tendency found in figures
4.21 and 4.22 that φ0 ∼ ω−1/2. It also explains why we found φ0,||/φ0,⊥ ∼ O(1) in the
experiments.
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Figure 4.37: Numerical simulation for ~B0, for ω in the range ω = 1571 to 12 566 rad s−1,
α = 0% at U = 0 m/s. The radius of the flow cross-section is R = 19.25 mm.

Scaling relations for first order magnetic fields in presence of motion Assume
again a single-phase medium in motion with mean velocity U (plug flow). The direct
magnetic field and the magnetic field of Faraday induction induced eddy currents have
been analyzed. Now, we analyze the magnetic fields of eddy currents due to Lorentz
force effects. For the Lorentz force induced eddy currents, we follow a similar procedure.
In the presence of the external magnetic field given by equation (4.5), the Lorentz force
induced eddy currents are induced as,

Ju,|| ∼ σUB0,||

These eddy currents produce their own magnetic field as

∇×Bu,|| = µ0Ju,|| ∼ −µ0σUB0,||

Bu,|| ∼ −µ0σUδB0,|| =⇒ Bu,|| ∼ δ

The corresponding magnetic flux is

Remφu,|| =
∫
Bu,||dS ∼ πδDBu,|| ∼ −πδDµ0σUδB0,|| =⇒ Remφu,|| ∼ δ2 = ω−1 (4.9)

This explains the experimental trend found in figure 4.23a and 4.24a that Remφu,|| ∼ ω−1.
Equation (4.9) also confirms the linearity of Remφu,|| with U found in figures 4.25a and
4.26a. We also find that Bu,||/B0,|| ∼ Rem.

Since, B′0,⊥ and B0,|| in equation (4.7) are of the same order in magnitude, B′0,⊥ will
also produce Lorentz force induced eddy currents of comparable magnitude. In this case

114



we would have,
Ju,⊥ ∼ σUB′0,⊥

These eddy currents produce their own magnetic field as

∇×Bu,⊥ = µ0Ju,⊥ ∼ −µ0σUB0,⊥

Bu,⊥ ∼ −µ0σUδB
′
0,⊥ =⇒ Bu,⊥ ∼ δ

The corresponding magnetic flux is

Remφu,⊥ =
∫
Bu,⊥dS = πδDBu,⊥ ∼ −πδDµ0σUδB

′
0,⊥ =⇒ Remφu,⊥ ∼ δ2 = ω−1

(4.10)
Firstly, we confirm the linearity of Remφu with U as found in figures 4.25b and 4.26b.
But equation (4.10) fails to explain the experimental trend found in figure 4.23b and
4.24b that Remφu,|| ∼ ω−3/2. To this end we suspect the contribution of other terms
in series expansion for Lorentz force and Faraday induction induced magnetic fields.
The ratio of equation 4.9 and 4.10 is B0,||/B

′
0,⊥, which is O(1). Therefore, we find that

φu,||/φu,⊥ ∼ O(1), i.e., Remφu,|| and Remφu,⊥ are of same order of magnitudes. This
is confirmed by the experimental result presented in figures 4.23 – 4.26. These results
point out a strong coupling between Faraday induction and Lorentz force effects.

The analyses based on Maxwell’s equations at first order, predict well the ratio of
in-phase and quadrature-phase components in terms of orders of magnitudes. But this
analysis cannot predict the exact ratio of the two components.

Scaling relations for first order magnetic fields in presence of void Assume
a static two-phase medium containing voids. For small α values, the effective electrical
conductivity of the two-phase medium can be obtained by a Taylor’s expansion, σ =
σ0 +σ′α+σ′′α2 + . . . ≈ σ0 +σ′α. Since the two-phase medium is static, we use the results
derived for Faraday induction eddy currents. Taylor expansion for σ and equation (4.6)
gives, ψα ∼ α. This linearity was observed experimentally in figure 4.31, for α . 4%.
For groove depth smaller than δ and for small α values

α = πDdglg
πDδλα

∼ 1
δ

(4.11)

This means that α scales as 1/δ. From equation (4.8), we know that ψα ∼ δ. Combining
the two relations we obtain, ψα ∼ αδ ∼ (1/δ)δ = δ0 ∼ ω0. This relation yields to
a pulsation independence of ψα. This was derived on the assumption of δ > dg, i.e..
ψα ∼ ω0 relation is confirmed experimentally in figures 4.27 and 4.28 at small pulsations.
This does not explain the vertical asymptote for ψα,⊥ at high pulsations.
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Figure 4.38: Amplitude of the second (a) and first (b) peaks of the spectral density
of ||∆V ||2 vs velocity at 3142 rad/s (unfilled markers) and 6283 rad/s (filled markers):
α = 0.3% (�,�) and (♦,�) with low pass filter 24 dB/oct; α = 6.9% (4,N) and (O,H) with
low pass filter 24 dB/oct.

At last we verify, the consistency of ψα dynamics on A1 and A2. We used a low
pass filter at a cut off frequency ωc = 42.7 rad/s. This filter is characterized by an
attenuation of 24 dB/oct in signal intensity. Since ωα ∼ U , the corresponding critical
velocity is around Uc ∼ 10−1 m/s. After Uc, the A1 and A2 values are supposed to
decrease in 1/U2 and 1/U4, respectively. Figure 4.38 show that the experimental data
verify the expected dynamics.

The scaling laws presented so far do not explain some effects find in the experiments.
φ0,|| deviates from ω−1/2 trend at high pulsations. This is because of strong Faraday
induction and subsequent perturbation of imposed φ0,|| by higher order eddy currents.
φu,⊥ does not follow ω−1 law as derived here, instead it varies with pulsation as ω−3/2.
This would happen when the magnetic fields of both Faraday induction induced eddy
currents and Lorentz force induced eddy currents are significant. And clearly, the char-
acteristic length of the magnetic flux and that of the flow are not sufficiently separated
(δ . D). The coupling effects between α and U effects are strong as evidenced by A1
plots in figures 4.33 and 4.34. We recall that ω2A1 is the first harmonic in the FFT
spectrum of squared norm of the difference emf signal between S1 and S2. Even if the
coupling effects are strong, we were able to separate U and α effects because φu is inde-
pendent of α and ψα is independent of U at first order. This is valid only for small Rem
and α values. We find in figures 4.25 and 4.26, that the DC shift in the demodulated dif-
ference emf signal is linear in U and independent of α, providing the flowmeter aspect of
ECFM for two-phase liquid metal flow applications. On the other hand, in figures 4.29,
4.30, 4.35 and 4.36, we observe U independence of α modulation in the ECFM signal.
In addition, the linear trend of this signal with α in figure 4.31 ensures the void volume
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fraction measurement in two-phase liquid metal flow applications with flux distortion
techniques. Experimentally, we have verified these results in the range 0 < Rem < 0.12
and 0.06% < α ≤ 6.9%.

4.3 Lissajous ellipse fitting approach

4.3.1 Methodology

The experimental set-up for these experiments were slightly different than the one used
for the results in previous section. Only four aluminium rods were used, α = 0%,
0.3%, 6.9% and a rod with a single groove. All the rods were of groove-type. Their
specifications can be found in table 4.1. The ECFM was used in a 3 coil configuration:
P , S1 and S2; where P was used for excitation and S1 and S2 are used for sensing
the induced emf. The excitation was done using an external frequency generator, while
induced emf in secondary coil was measured in a digital oscilloscope. The data was saved
on a USB flash drive during the course of experiments and later analyzed using Matlab
on a PC.

The experiments were realized at room temperature. The range of pulsations used
was ω = 1571 to 30 159 rad s−1. The corresponding skin-depth of magnetic flux is be-
tween δ = 5.2 mm and δ = 1.2 mm. In variance with the previous approach, the current
in the circuit is determined using an ammeter in series. The magnitude of AC current
used was I = 250 mA. We verified that this magnitude remains stable during the course
of experiments.

For each measurement, a specific rod was mounted and fixed on the two extreme
poles of experimental bench (see figure 4.15). At either sides of these, PVC supports
were screwed in order to extend the ECFM translation length. ECFM was translated
back and forth over this rod several times with U in the range 0.001 m s−1 to 1 m s−1.

After acquisition, the data corresponding to induced emf in S1 and S2 is analyzed
in Matlab. The description of the algorithm is as follows: data of a specific small time
window is loaded and perform a least square fitting of equation (3.33). Thereafter,
relevant coefficients are obtained using set of equations (3.34). The angle of inclination
of this ellipse is calculated from set of equations (3.36). β(t) FFT spectrum density gives
us signature of α. This approach has an advantage that the Lissajous curves can also
be directly monitored on the oscilloscope. So it is relatively simpler approach.

We recall that if the induced voltages in the two secondary coils S1 and S2 are,
V1 = |V1| sin(ωt − θ1) and V2 = |V2| sin(ωt − θ2) respectively, then the tilt angle of the
fitted ellipse is given by:

β =
∣∣∣∣12 arctan

(−2 cos(∆θ)|V1||V2|
|V1|2 − |V2|2

)∣∣∣∣
where, ∆θ = θ1−θ2. ∆θ is the extra phase introduced by the void in one coil with respect
to the other. Physically, it is governed by perturbations of Faraday and motion induced
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eddy currents which have different phases. At low magnetic Reynolds number Rem,
∆θ is linear with U , but very close to 0 ◦ or 180 ◦ [32, 34]. The numerical simulation
described in the next section shows that for 0 ≤ Rem ≤ 0.12, 0 ≤ ∆θ(rad) ≤ 0.025
and consequently 0.9997 ≤ cos ∆θ ≤ 1. Therefore, in the absence of voids the ellipse
approaches a straight line inclined near 45 ◦. When a void is under S1, |V1| becomes
much larger than |V2| and V1(t) has a slightly different phase than V2(t). We get a
prominent tilted ellipse. The tilt fluctuates about 45 ◦ when voids pass through the flow
cross-section. We can relate the fluctuation in the tilt angle to characterize the void
presence. From the time signal of β, we calculate the amplitude of oscillation ∆β by
FFT algorithm. ∆β depends on void volume fraction α.

To simultaneously validate the results, Finite Element Simulations of the problem was
realized using COMSOL R© simulation software with Magnetic Fields physics in Frequency
domain. The equation solved is the advection - diffusion of A, the magnetic vector
potential (see equation (3.9)). Je represents the externally applied current density and
it is non-zero only in the domain which represents the primary coil. Since the grooves
do not break the path of eddy currents and the externally applied current density Je is
azimuthal, the problem is 2D axisymmetric and we need to solve for only one component
of the magnetic vector potential.

Magnetic insulation condition is used at the edges of the computational domain. It
consists in prescribing all the components of magnetic vector potential as zero on these
edges. Grid size independence was verified by using three different mesh size settings:
finer, extra fine and extremely fine respectively. Minimum mesh size varies at edges,
boundaries and interfaces (up to 10−2 mm).

4.3.2 Results
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Figure 4.39: Typical ∆V = V1 − V2 signal vs time for α = 0% at ω = 6284 rad s−1 and
U = 0.1 m s−1.
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Figure 4.40: FFT spectral density of ∆V (= V1 − V2) signal for α = 0% at ω =
6284 rad s−1 and U = 0.1 m s−1.

In figure 4.39, a typical difference signal ∆V = V1−V2 as recorded in the oscilloscope,
is shown vs time for α = 0% at ω = 6284 rad s−1 and U = 0.1 m s−1. This signal is
filtered using a digital Butterworth band-pass filter. Figure 4.40 shows FFT of ∆V
after filtering. The amplitude |∆V | of ∆V signal can be obtained from the peak at
corresponding pulsation of the current excitation. In case of figure 4.40, we notice a
peak at ω = 6284 rad s−1. Expected linearity of the amplitude of ∆V (V) with U (m/s)
is verified in figure 4.41 for the plain rod. Measured sensitivity is around 0.07 mV/
ms−1. The linear fitting shows a finite value equal to 0.074 mV at U = 0 m/s, which
corresponds to unbalanced secondary coils. This is also the order of magnitude of the
voltages induced in individual secondary coils. Notice that the contribution of flow
induced term is one order smaller even at highest U : 0.007/0.074 ∼ 0.1. This is because
Rem ∼ 0.1 in our experiments.

Figure 4.42 displays an example of a typical Liassajous curve obtained by V1(t) vs
V2(t) for α = 6.9% (figure 4.42a), α = 0.3% (figure 4.42b) and α = 0% (figure 4.42c) at
ω = 6284 rad s−1 and U = 0.1 m s−1. As explained earlier, this ellipse is fitted by ellipse
fitting algorithm based on equation (3.33). Thereafter, relevant coefficients are obtained
using set of equations (3.34). The angle of inclination of this ellipse is calculated from
set of equations (3.36). β(t) FFT spectrum density gives us signature of α.

Since the secondary signal voltages V1 and V2 are linear function of the primary coil
excitation current, I, it is to be expected from equation (3.37) that ∆β is independent
of I. This is confirmed by figure 4.43 which shows that the change in primary coil
excitation current magnitude, I has no effect on the amplitude of the β signal within
the range of experimental uncertainty.

Figures 4.44-4.47 show the response of the ECFM signal to the presence of grooves.
In all these cases, primary coil P is excited by current I = 250 mA at pulsation
ω = 6284 rad s−1. For the same control parameters (I, U , ω), the only difference between
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Figure 4.41: Amplitude of ∆V (V) vs U (m/s) (α = 0% and ω = 6284 rad s−1).

experiments and numerical simulation is the symmetry of ECFM assembly. While in
simulations we have a perfectly symmetric system, in practice we cannot manufacture
a perfectly balanced ECFM assembly which is also evident from figure 4.41. In the
case of perfectly symmetric system, the intercept at U = 0 m/s is expected to be 0 V
but figure 4.41 shows a value 0.074 mV. figure 4.48 shows the effect of asymmetry in
ECFM assembly on the β signal amplitude, ∆β. Keeping the number of turns in each
secondary coil S1 and S2 as constant, their lengths were altered as Ls−kLs and Ls+kLs
respectively in the numerical simulations. In such a case, factor of asymmetry, k can
refer to compactness of winding in secondary coils. We observe that ∆β is maximum for
a perfectly symmetrical system (k = 0) while it decreases as a function of asymmetry.
In practice, ECFM assembly is never perfectly symmetric. The ratio of ∆β obtained
from numerical simulation and experiments at same parameter values give us an idea
about the degree of asymmetry in the experimental ECFM assembly. There are many
reasons for asymmetry besides compactness. The profile of ∆β with asymmetry should
be expected to vary according to the type of asymmetry (for example: compactness, lift
off, distance from primary coil etc.). It is advisable to calibrate the device for this factor
after fabrication. Consequently, the numerical results have been rescaled by factor 0.6
and a small static β was removed from experimental data in Figs. 4.44-4.47 for compar-
ison with the numerical results. We also note that figure 4.48 does not explain such a
large rescaling factor (0.6).

In figure 4.44, we see the signal obtained for a one groove rod. We observe the
perturbation in both ∆V as ECFM assembly translates over the groove at U = 0.1 m/s,
and its corresponding signature on the tilt angle signal, β (t). We notice that β (t)
without groove is close to 45 ◦ and that the variation due to the grooves has a maximum
amplitude of 1.5 ◦ which is easily detectable. The first peak corresponds to the passage
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Figure 4.42: An example of a typical Liassajous curve obtained by V1(t) vs V2(t) fitted by
ellipse fitting algorithm, for (a) α = 6.9%, (b) α = 0.3% and α = 0% at ω = 6284 rad s−1

and U = 0.1 m s−1.

of the groove inside S1 and second peak to that inside S2. The distance between the
two peaks is 0.3 s, which at U = 0.1 m/s gives a length scale, L = 3 cm which is the
separation between the two secondary coils.

The effects of void fraction on β signal can be observed by comparing figure 4.45-4.47.
The standard deviations for the three β(t) curves are 0.044 for 0%, 0.062 for 0.3% and
0.276 for 6.9%. It shows that at 0.3% we are close to the limit of detection. FFT gives
the amplitude of oscillation of β signal, ∆β with a reasonable accuracy (figure 4.49).
Furthermore, peak to peak distance is equal to the spatial frequency of grooves. This
gives information on distribution of the dispersed phase through Fourier analysis.

Figure 4.44-4.47 also demonstrate an excellent agreement between the experimental
results and the numerical simulations for β signal.

Figure 4.50 shows the effect of pulsation on ∆β. When the pulsation increases, ∆β
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Figure 4.43: ∆β ( ◦) vs I (mA), U = 0.1 m/s, ω = 6284 rad s−1, α = 6.9%
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Figure 4.44: Rod with one groove U = 0.1 m/s and ω = 6284 rad s−1. a) ∆V vs time.
b) β vs t(s). (• : experimental data; — : numerical simulation)

tends towards saturation. This happens because at low pulsations the magnetic field
can penetrate upto the core of the rod. As we increase the pulsation, the magnetic flux
is excluded from the core leading to an exponential decrease in the skin depth.
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Figure 4.45: α = 6.9%, U = 0.1 m/s and ω = 6284 rad s−1. a) ∆V vs time. b) β vs t(s).
(• : experimental data; — : numerical simulation)

We have shown at the beginning of this section, that the contribution of flow induced
potential is one order smaller than average induced potentials in each secondary coils.
Theoretically, β(U) for Rem ≤ 0.12 is, β(U) ≤

∣∣∣12 arctan (−20)
∣∣∣ =⇒ ∆β(U) = β(0) −

β(1) ≤ 45.0 ◦ − 43.5 ◦ = 1.5 ◦. Flow fluctuations of the order of 1 m/s should change
∆β up to a maximum 1.5 ◦. But in our experiments, there are no flow fluctuations and
therefore ∆β should be independent of U . This is confirmed in figure 4.51, where ∆β
is independent of the velocity. This result suggests that in steady flows, ∆β depends
only on α, however the period of β oscillations depends on the velocity. Moreover, this
implies that the effects of void fraction are mainly through Faraday induction rather
than the Lorentz force.

The effect of homogenization defined by mean groove separation length λ = 0.5(d1 +
d2) has not been studied. The change in λα affects the groove frequency in FFT spectrum
of β(t). ∆β = 0 for continuous gas. It is expected that ∆β will start to decrease when
the axial length of the annular slugs approach the length of the primary coil in dimension.
This will typically happen around α ≥ 30% [18].
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Figure 4.46: α = 0.3%, U = 0.1 m/s and ω = 6284 rad s−1. a) ∆V vs time. b) β vs t(s).
(• : experimental data; — : numerical simulation)
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Figure 4.47: α = 0%, U = 0.1 m/s and ω = 6284 rad s−1. a) ∆V vs time. b) β vs t(s).
(• : experimental data; — : numerical simulation)

k
-0.2 -0.1 0 0.1 0.2

"
-

(k
)/
"
-

(0
)

0.94

0.95

0.96

0.97

0.98

0.99

1

Figure 4.48: ∆β(k) is maximum for a perfectly symmetric system (k = 0) and it de-
creases as a function of asymmetry (k 6= 0). COMSOL simulation for α = 6.9% at
U = 0.01 m/s, I = 200 mA and ω = 6284 rad s−1.
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Figure 4.50: Normalised amplitude ∆β as a function of pulsation for α = 6.9%, U = 0.1
m/s and I = 200 mA. (•: experimental data; — : numerical simulation; ∆βmax =
∆β(ω = 6284 rad s−1))
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Lissajous curve fitting with 5 coil ECFM Experiments with this approach were
also performed for ECFM in 5-coils configuration. We recall, that in 5-coils configuration,
there are three primary coils, the central primary coil is excited in series opposition to
the primary coils at extreme ends (see figure 5.8).

A

Frequency
Generator

~

+ - + -+-

Icosωt

Oscilloscope

P1

P3P2 S1S2

V1V2

Figure 4.52: Schematic of 5-coils ECFM experiments.

We define an ideal case as: when the three primary coils are exactly identical to each
other, the two secondary coils are exactly identical to each other and the placement of
these coils is symmetrical with respect to P1. In the ideal case, and when α = 0%, the
emf in S1 and S2 are 0 V and 0 V respectively when U = 0 m/s. But it is Vu and −Vu
when U 6= 0. In accordance with equation (5.8), when a void is under S1, V1 is large
compared to V2. Therefore, we observe larger oscillations as compared to the case of
3-coils ECFM.

In figure 4.53, we show β(t) time signal for α = 0% (see figure 4.53a), 1 groove
(see figure 4.53b), α = 0.3% (see figure 4.53c), α = 6.9% (see figure 4.53d), variable
separation of grooves (see figure 4.53e) at U = 0.1 m/s and ω = 6284 rad s−1 for ECFM
in 5-coils configuration. We notice that increasing the perturbations in β increases
with increasing α value. For the case of variable separations of groove, we see that the
amplitude of perturbation decreases as the separation between the grooves decrease.

In figure 4.54, we see a qualitative comparison of β(t) signal at two different velocities
for α = 0.3%. We conclude that ∆β is independent of the mean velocity.
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Figure 4.53: Typical β(t) time signal for (a) α = 0%, (b) 1 groove, (c) α = 0.3%, (d)
α = 6.9%, (e) Random separation of grooves at U = 0.1 m/s and ω = 6284 rad s−1 for
ECFM in 5-coils configuration.

129



- (°)
0 20 40 60 80 100

0

0.01

0.02

0.03

0.04

0.05

Figure 4.54: Comparison of histograms of β(t) at (a) U = 0.02 m s−1 (�)and (b) U =
0.1 m s−1 (�), and ω = 6284 rad s−1 for α = 0.3%.
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4.3.3 Discussions

An experimental method has been introduced to study potentiality of a flow-through
type ECFM to measure void fraction for liquid metal two-phase flows. Periodic grooves
on solid aluminium cylinder was used as a model of liquid metal two-phase flow. The
model experimental set up used in this paper allows us to control well the experimental
parameters such as void volume, location, velocity etc. We use the technique of ellipse
fit and correlate the fluctuations in tilt of this ellipse with the void fraction. The same
problem was also modeled numerically in COMSOL R© simulation software. The results
show a good agreement between the experiments and the numerical simulations. The
main results for 3-coils ECFM are :

• β signal for the single groove case demonstrate the detection capability of ECFM
for large grooves. By comparing the β signal for various rods, we find that it is
sensitive to α. ∆β ∝ αn n ≈ 0.7, is the trend of variation of ∆β with the void
fraction. β signal for α = 0.3% is noisy. This is approximately the lower limit of
void fraction that can reliably be detected using this method.

• ∆β increases with pulsation and reaches an asymptotic value. This is related to
its dependence on penetration depth of the magnetic fields in the medium. ∆β is
independent of the primary coil excitation current. The experiments conducted at
various velocity values show that for the normal reactor conditions (U ∼ 1 m/s),
∆β does not change with U assuming a steady flow. This is important for reliable
measurements of void fraction.

The results for 5-coils configuration are similar to that of 3-coils configuration. But
the perturbation amplitude response (∆β) to void is significantly larger than the 3-coils
configuration.

In this study we find that ECFM signals analyzed with the technique of ellipse fit
is simple and promising. Compared to acoustic methods, the upper limit on detectable
α is much larger. The signals are not only fast and large but are also decoupled from
the mean flow velocity. Further studies are needed to confirm these results for a general
liquid metal two-phase flow in an SFR [73]. In particular, the results presented here do
not account for possible randomness in α distribution and velocity fluctuations.

4.4 Conclusions

This chapter presents, experimental results for the magnetic flux distortion in two-phase
liquid metal flow excited by an AC magnetic field. We designed a specific experimental
setup with a moving ECFM. The two-phase liquid metal was modeled by aluminium
rods along which ECFM translates at constant velocity. Two methods were presented.
The difference signal method provides more intuitive understanding regarding Faraday
induction and Lorentz force effects. But relative complexity in signal acquisition and
treatment is higher as compared to the Lissajous ellipse fitting method. On the other
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hand, the perturbations in the β signal due to α is relatively difficult to interpret in
terms of physical processes such as induction.

The voids were simulated by machining holes and grooves on the rods. In all the
experiments, α varies between 0 and 6.9%. The coil lengths are larger but compa-
rable to λα. We have studied the effects of pulsation of exciting electrical current
(1.5× 103 ≤ ω ≤ 12.5× 103 rad s−1), of the flow velocity (0 ≤ U ≤ 1 m s−1) and of
the void volume fraction on the magnetic flux distortion. In this configuration, the rel-
ative motion of aluminium simulates a plug flow. In all the experiments, the magnetic
flux was demodulated with a Lockin amplifier in order to characterize its in-phase and
quadrature-phase components.

For the difference signal approach, two theoretical models were presented. The first
method assumes the penetration depth of magnetic fields to be much larger than the
flow cross-section diameter. It successfully predicts linearity of C1 (DC component of
||∆V ||2 signal) with U2 in addition to its α independence. Furthermore, it predicts C3
(second harmonic) to be linear in α2 which was validated by experimental results. We
found two shortcomings with this theory. It predicts the existence of only ∆V⊥ and not
∆V||, in absence of voids. But experimentally, we found that both ∆V⊥ and ∆V|| exist.
This theory also predicts that the first harmonic of ||∆V ||2 signal is quadratic in U :
C2 ∼ U2. Experimentally, we found that C2 ∼ U1. This could not be explained since
this theory does not give the functional dependence of δb on U .

The results show clearly that the distortion in magnetic flux results from a strong
coupling between Faraday induction and Lorentz force effects. To explain the discrepan-
cies in the previous theoretical model, we took into account of this coupling in our second
model. It was no longer possible to separate Faraday induction and Lorentz force effects.
The magnetic flux was rather decomposed into terms in Rem and α on the assumption
that Rem � 1 and α � 1. In this new perturbative model, the total magnetic flux is
given by : φ ≈ φ0 + Remφu + φα.

The study of the pulsation dependence of the magnetic flux points out that φ0,|| and
Remφu,⊥ are dependent of a strong coupling between Faraday induction and Lorentz
force effects. On the other side, φ0,⊥ and Remφu,|| seem to depend mainly on Faraday
induction for the first and on Lorentz force for the second. Indeed, the scaling laws
φ0,⊥ ∼ ω−1/2 and Remφu,|| ∼ ω−1 can be deduced directly from Maxwell-Faraday and
Maxwell-Ampere equations, respectively. An important result is that Remφu is linear
in U and independent of α. ψα is independent of U and linear in α. This experimental
result can be justified theoretically because Rem and α are small. It has been validated
for both the void geometries: grooves and holes.

For practical applications, the Fourier analysis of the demodulated voltage difference
between the two secondary coils ||∆V ||, allows to measure the velocity and the void
fraction. Indeed, the first peak of ||∆V ||2 FFT increases linearly with U . Hence, the
second peak is proportional to α2. This approach can be used after calibration. From
a practical point of view, the Fourier analysis of ||∆V ||2 is sufficient to measure simul-
taneously the velocity and the void fraction of a conducting liquid in large number of
applications. In these experiments, we found that amplitude of perturbation in magnetic
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flux due to voids is linear in ψα for α below 4%, and saturates thereafter. This result
already exists in literature and was metioned in figure 2.13 in chapter 3.

At this stage, the coupling between Faraday induction and the Lorentz force effects
is not well understood. A theoretical model should be developed to calculate the eddy
current distortions due to the flow and the void at the local scale and their contributions
on the magnetic flux at the flow scale.

For the Lissajous ellipse fitting approach, we conclude that amplitude of fluctuations
in orientation of fitted ellipse on Lissajous curve made by induced emfs in two secondary
coils, increases with α. Due to low magnetic Reynolds number in liquid metal applica-
tions, Lissajous ellipse fitting approach should give U independent β signal. The lower
limit of α at which this approach is still sensitive seems to be α = 0.3%. The agree-
ment between the experimental and the numerical results indicate that we can develop
a benchmark on which several other designs under various external conditions can be
tested numerically.

We presented three approaches: difference signal approach with small Faraday in-
duction effects, difference signal approach with significant Faraday induction effects and
the Lissajous ellipse fitting approach. The objective was to understand the α effect on
induced emf in ECFM. The results demonstrate that the last approach is simpler and
more practical. Two inconveniences being, it is difficult to develop a theoretical model
for this approach and poor signal quality at α = 0.3%. The use of 5-coils ECFM has
the potential of improving the sensitivity of ∆β on α. The difference signal theory at
small Faraday induction effects is only valid for large penetration depths. The theory
predicts that the perturbation in magnetic flux due to Lorentz Force effects is only on
∆V⊥. Hence with the help of a phase sensitive detector such as a Lockin amplifier, it
is possible to monitor flow and α simultaneously, using only one ECFM device. Com-
plimentary to this theory is magnetic flux perturbation model at small magnetic flux
penetrations. This model predicts that FFT spectral density of ||∆V ||2 is sufficient to
provide measure of U and α. Unlike the other two approaches, this last approach gives
expressions explicit in U and α.

These results show that ECFM is sensitive to voids in two-phase flows. It is also
possible to characterize U and α simultaneously, with a single ECFM device. In the
next chapter, we present development of liquid galinstan experimental set-up and some
preliminary results.
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Chapter 5

Experiments with liquid
Galinstan

The results in the previous chapter were obtained for model experimental set up, i.e.,
aluminium rods with grooves or holes with spatial periodicity. Before extending these
results to an actual liquid sodium flow, we first consider performing the same set of
experiments with the liquid Galinstan. Liquid Galinstan is a commercially available
liquid metal eutectic alloy of Gallium (Ga), Indium (In), and Tin (Sn). The composition
of Ga, In, and Sn differs depending on the vendor. A typical composition is 67 wt% Ga,
20.5 wt% In and 12.5 wt% Sn, though it varies between 62 wt% to 95 wt% Ga, 5 wt%
to 22 wt% In, 0 wt% to 16 wt% Sn [90]. Galinstan is liquid at room temperature [91].
It’s typical properties are listed in the table 5.1. Low toxicity of Galinstan as compared
to Mercury and its low reactivity as compared to sodium and sodium potassium alloys
makes it the preferred choice for liquid metal experiments in research facilities.

As seen in table 5.1, Galinstan is six times heavier than water. In our context,
this exerts a significant load on the structure of experimental bench. It’s electrical
conductivity is comparable to that of liquid sodium, but ten times smaller than the
Aluminium rods. Consequently, the magnetic Reynolds number calculated for Galinstan
as compared to Aluminium is also low. Liquid Galinstan is opaque and hence common
optical methods such as CCD camera can not be used. Therefore it is a difficult task to
know and control the size and spatial distribution of gas bubbles in a liquid Galinstan
loop.

The objective of this chapter is to perform preliminary experiments in order to valid
experiments with Aluminium rods. In these investigations, two phase-medium is modeled
by fixing small glass beads at fixed positions inside ceramic tubes filled with Galinstan.
We use the magnetic flux perturbation approach to analyze the results. This chapter
is organized as follows: section 5.1 presents the experimental setup. Section 5.2 details
the experimental results. Section 5.3, concludes and gives a short outlook for further
experiments (suggestions).
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Table 5.1: Table of comparison of physical properties of liquid metal.

Property Liquid
Sodium[11][12][14]

Aluminium Galinstan[90]

Composition Na Al Ga(67%),
In(20.5%),
Sn(12.5%)

Density 830 kg m−3 2700 kg m−3 6360 kg m−3

Melting point 97.2 ◦C — 10.5 ◦C
Electrical conduc-
tivity

3.6× 106 S m−1 at
500 ◦C

3.77× 107 S m−1 at
20 ◦C

3.1× 106 S m−1 at
20 ◦C

Viscosity 2.2× 10−4 Pa s at
500 ◦C

— 2.98× 10−7 Pa s at
20 ◦C

Surface tension 0.158 N m−1 at
500 ◦C

— 0.533 N m−1 at
20 ◦C

Skin depth, δ 12 mm
(3142 rad s−1),
8.4 mm
(6284 rad s−1)

3.7 mm
(3142 rad s−1),
2.6 mm
(6284 rad s−1)

13 mm
(3142 rad s−1),
9 mm
(6284 rad s−1)

Magnetic Reynolds
number, Rem(1
m/s, 3142 rad s−1)

0.05 0.17 0.05

Magnetic property Paramagnetic (χ ∼
10−7)

Paramagnetic (χ ∼
10−5)

Paramagnetic
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5.1 Experimental set up

The two-phase experiments with liquid Galinstan are similar to the ones with the Alu-
minium rods presented in the previous chapter. In the functional block diagram shown
in figure 4.1, the only part which changes is the two-phase medium. The excitation and
acquisition is achieved in the same way. An internal frequency generator of a Lockin
amplifier excites the primary coil and the difference emf between S1 and S2 is recorded
in the Lockin amplifier. The signal so recorded is post processed using MATLAB R©.

As shown in figures 5.4 and 5.1, the ECFM is fixed on a uniaxial translator which
displaces it at a given constant velocity U . Hollow ceramic cylindrical tubes (2 mm
thickness) made of Macor were bought from Final advanced solution R©. Macor is the
trademark for a machineable glass-ceramic. Macor has a density of 2520 kg m−3, a
Young’s modulus of 66.9 GPa at 25 ◦C. These ceramic tubes are filled with liquid Galin-
stan as shown in figures 5.1 and 5.2. The internal and external diameters of all the
ceramic tubes used were D = 34 mm and Do = 38 mm respectively. One end of this
cylinder is sealed with a plug made of PEEK (Polyether ether ketone) and the other end
is sealed with a cap made of same material. This is achieved with the help of a Silicon
glue: MS polymer (also called Modified Silane adhesive and Silyl Modified polymers).
The voids are simulated by glass beads of given diameters (refer to table 5.2). These
glass beads are pasted with the help of another glue on N threads as shown in figure 5.3.
N is the number of threads used in each configuration. The glue used for this purpose is
a cyanoacrylate adhesive bought from Whitec. The threads are uni-filament fishing line
from Pure fishingTMand are of diameter 35 µm. The threads are fixed at the two ends
with a tip of glue. Radially, these threads are 12 mm away from the axis (5 mm from
the ceramic valve) (figure 5.1).

Several configurations of void volume fraction (α), beads size (d) and spatial distri-
bution (λα) have been prepared. Here λα is the axial separation between beads on one
thread. Since beads are placed periodically along the axis, it is possible to calculate a
characteristic modulation pulsation at ECFM velocity U as ωα = 2πU/λα. For a uni-
form distribution, there exists a geometrical relation between α, d, λα and the number
N which writes:

α =
N πd3

6
πD2λα

4
= 2Nd3

3D2λα
(5.1)

Table 5.2, enlists the parameter values for several different configurations. Since max-
imum d is 5 mm and threads are 5 mm inside ceramic wall, the inner end of the glass
beads are on an average 7.5 mm inside the ceramic wall. This is approximately equal
to δ = 7.4 mm at pulsation ω = 9420 rad s−1. Even if the beads were 10 mm away from
ceramic wall, the beads will be approximately within one δ at pulsation ω = 6284 rad s−1

(δ = 9 mm).
Liquid Galinstan is stored in a stainless steel reservoir under nitrogen pressure. The

reservoir was cleaned with acetone and air was removed by vacuum pump. Several
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Figure 5.1: Experimental bench with view of the cearmic tube containing Galinstan,
Peek ends, and spatial distribution of beads and threads.
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(a) (b)

Figure 5.2: Galinstan reservoir. (a) Filling operation of Galinstan inside the ceramic
tube (vertical) under Nitrogen pressure, (b) Network of glass beads glued to threads.

Figure 5.3: View of individual threads with glass beads.

cycles of nitrogen injection and ejection were performed. Thereafter, a pressure below
1 atm is created inside this reservoir. Liquid Galinstan comes in plastic bottles and is
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Figure 5.4: Schematic of the experimental set up.

N=Number 
of threads

D

d

λα

Figure 5.5: Spatial distribution of beads and configuration parameters (here N = 2).

sucked in reservoir under this high negative pressure. After this the reservoir is sealed
and subsequently pressurized under nitrogen to prevent Galinstan oxidation. The high
nitrogen pressure is also used to push Galinstan inside the ceramic tubes against gravity
(again in bottom to top configuration) as shown in figure 5.2. The rate at which we
fill these ceramic tubes can be controlled by controlling the nitrogen pressure and valve
opening.
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Table 5.2: Values of parameters defining beads distribution in Galinstan for different
configurations – see equation (5.1) and figure 5.5. N is the number of threads, d is diam-
eter of the bead, λα is the separation between subsequent beads and α(%) is geometrical
void volume fraction.

S. no. N d(mm) λα(mm) α(%)
a 3 2 17.7 0.1%
b 8 5 7.4 10%
c 3 5 23.3 1.4%
d 3 5 — beads in 1 cross-

section plane
e 0 — — 0%

5.2 Method and Results

The experiments were realized at room temperature for which the physical properties of
Galinstan is given in table 5.1. The range of pulsations for AC current in primary coil was
ω = 1571 to 12 566 rad s−1. The corresponding skin-depth of magnetic flux is between
δ = 19 mm and δ = 7 mm. The current in the circuit is determined indirectly with the
help on 1 Ω resistor in series. The range of magnitude of AC current used was between
I = 200 and 400 mA. We verified that this magnitude remains stable during the course
of experiments. The phase of I was fixed for each experiments. The secondary coil emf
was measured in the Lockin amplifier with respect to this phase. All the experimental
results are given for a normalized intensity amplitude of 1 A.

For each measurement, a ceramic tube with liquid Galinstan and a specific beads
distribution, was mounted and fixed on the two extreme poles of experimental bench
(see figure 5.1). ECFM was translated back and forth over this tube several times. The
magnetic flux perturbation approach developed in section 3.2.2 was used to analyze and
interpret the acquired data.

This section starts with experiments on a ceramic tube containing no beads, i.e.,
α = 0%. The specifications for this configuration is given in table 5.2 under S. no. (e).
The objective here is to test U effect on magnetic flux distortion in Galinstan, with
the help of magnetic flux perturbation theory. This would confirm flowmeter function
and sensitivity of ECFM. Then to verify whether ECFM is sensitive to the presence
of voids inside (read: not only on surface) the medium, experiments are performed on
ceramic tube containing beads in one cross-section plane. The specifications for this
configuration is given in table 5.2 under S. no. (d). In this configuration, we would
expect one oscillation (modulation) in ECFM difference emf when it passes over this
cross-section plane. Next, we present experiments with ceramic tube with α = 0.1%.
The specifications for this configuration is given in table 5.2 under S. no. (a). The
objective here is to test α sensitivity of ECFM in the presence of a distribution of beads.
In the end, we test the influence of homogenization in distribution of beads. The ceramic
tube for this experiment is S. no. (c) in table 5.2, with α = 1.4%.
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Figure 5.6: Time signal for α = 0% at ω = 3142 rad s−1 and U = (a) 0 m s−1, (b)
0.1 m s−1, (c) 1 m s−1.

Figure 5.6 displays the raw time plots for ceramic tube with α = 0% for three
different values of velocities U = 0, U = 0.1 and U = 1 m s−1. We have observed for the
experiments with the Aluminium rods that the motion of ECFM will introduce a DC
shift in the time signal of ∆V . Since the acceleration (-deceleration) is a = 25 m s−2,
the time signal should increase instantaneously, thereafter should be constant, followed
by a sudden decrease to the level which corresponds to the electromagnetic conditions
on the other side of the ceramic tube.

The value of maximum on the time plot as compared to DC level for U = 0 m/s gives
Remφu. Figure 5.7 displays Remφu vs U at ω = 3142 and ω = 6284. As predicted by
the results with the Aluminium rod, we find Remφu,|| < Remφu,⊥. Also as we increase
the pulsation, the sensitivity of magnetic flux perturbation to U decreases. This is
demonstrated by decrease in slopes with increasing ω. The deviation from linearity is
an indication of finite motion of liquid Galinstan when ECFM is in motion. We suspect
that increase in U increases the the Lorentz force on liquid Galinstan, which induces
flow of Galinstan and subsequently decreases the relative velocity between ECFM and
Galinstan. We can estimate the maximum Hartmann number for this case with following
parameters: pulsation ω = 3142 rad s−1 (δ = 12.8 mm), dynamic viscosity and electrical
conductivity of Galinstan η = 2.98× 10−7 Pa s and σ = 3.1× 106 S m−1 respectively and
magnetic field B0 = µNI/L = 1.2 mT (µ = 4π × 10−7 H m−1 is magnetic permeability
of free space, N(= 70), I(= 0.4 A) and L(= 70 mm) are the number of turns, current
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Figure 5.7: (a) Remφu,|| (filled markers), (b) Remφu,⊥ (unfilled markers) vs U at ω = 3142
(◦, •) and 6284 rad s−1 (�, �) for α = 0%.

and length of primary coil).
Ha = B0δ

√
σ

η
= 50

As discussed in chapter 1, at this value of Ha, the Lorentz force is significant and tends
to flatten the radial velocity profile. An order of magnitude for induced velocity Ug
towards ECFM in Galinstan can be estimated as

ρU2
g

δ
= σUB2

0

Ug =
√
δUσB2

ρ
= 0.026 m s−1

where, U = 1 m s−1 is the velocity of ECFM and ρ = 6360 kg m−3 is the density of
Galinstan. Here, we have assumed U to be relative velocity between static Galinstan
and ECFM. The Lorentz force at two ends of the primary coil would add to create
Galinstan velocity of 2×Ug ≈ 0.05 m s−1. This is two orders of magnitude smaller than
U . The comparison of slopes in figure 4.25 and 5.7 also shows that ECFM sensitivity to
U is same for Aluminium and Galinstan.

Figure 5.8 shows the difference emf between the two secondary coils in ECFM, which
translates over ceramic tube with α = 0% (configuration S. no. (d) in table 5.2). In this
configuration, three threads are used. We glue one bead on each thread at the same axial
location (in one cross-section plane). The ECFM was translated at U = 10−2 m s−1. The
pulsation in the primary coil is ω = 3142 rad s−1. The beads are fixed 90 mm away from
the PEEK plug. In figure 5.8, the two oscillations, one in the beginning and the other
at the end, correspond to ECFM forward and backward motion respectively over the
axial location containing beads. The presence of prominent oscillation in time signal
demonstrates that the ECFM is sensitive to the presence of glass beads embedded inside
Galinstan. This proves that ECFM is not only sensitive to voids at the surface but also
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(d) in table 5.2) at U = 10−2 m s−1 and ω = 3142 rad s−1.

to the ones inside electrically conducting medium. We also notice that the quadrature
signal (∆V⊥) is larger than the in-phase signal (∆V||). This is consistent with the results
for Aluminium rods.

28 29 30 31

"
 V

|| (
V

)

#10-4

6.5

7

t (s)
28 29 30 31

"
 V

?
 (

V
) #10-3

1.1

1.15

Figure 5.9: ∆V (V ) vs t(s) for α = 0% (—) and α = 0.1% (—)at ω = 6248 rad s−1 and
U = 10−2 m s−1.

Figure 5.9 shows the time plot of ∆V at U = 10−2 m s−1 and ω = 6248 rad s−1 for
α = 0% (blue) and α = 0.1% (red) respectively. We notice an insignificant DC shift in
the time signal for α = 0.1% as compared to α = 0%. On the other hand, the expected
void induced oscillations are not obvious from these graphs. FFT spectral density of
these time signals are displayed in figure 5.10. It shows that difference emf signal is
noisier for α = 0.1% as compared to α = 0%. Extremely low values of ∆V fluctuations
amplitude and the absence of a distinguishable characteristic peak at ωα = 3.5 rad s−1

with α = 0.1% can be a result of low α value or the result of homogenization in the bead
distribution.
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Figure 5.10: FFT spectrum density of ∆V (V ) for α = 0% (—) and α = 0.1% (—) at
ω = 6248 rad s−1 and U = 10−2 m s−1.

To verify whether low α value plays a role, we conducted experiments with α = 10%,
but the results were similar. So, we conclude that the low sensitivity to voids is the result
of homogenization. Even though we maintain periodicity of beads on each thread, we
failed to control the position of the first bead, which was random. Subsequently position
of all the beads on one thread as compared to the beads on other threads is random.
This resulted in homogenization of beads.

To overcome this, a test configuration was designed with specifications as given in
table 5.2 (S. no. (c)). This time, the position of the first bead was same for all three
threads. Therefore, the glass beads were placed (approximately) periodically in axial
direction. Figure 5.11 shows the time plot obtained for this tube. The first oscillation
on extreme left and the last oscillation on extreme right in this figure , corresponds to the
transition of the ECFM from the PEEK plug on to the ceramic tube. The subsequent
oscillations contain signature of void induced perturbations. We see that the number
of oscillations are around 3 or 4. This is insufficient for statistically good FFT spectral
density.

We plot FFT spectral density of ∆V||, ∆V⊥ and ||∆V ||2 in figure 5.12. We take
the same raw time signal as shown in figure 5.11. The theoretical value of characteristic
modulation pulsation is ωα = 27 rad s−1. From figure 5.12, we obtain ωα = 28 ±4 rad s−1

for ∆V||, ωα = 22 ±4 rad s−1 for ∆V⊥ and ωα = 22 ±4 rad s−1 for ||∆V ||2. 0.5〈ψα|ψα〉
calculated from ∆V|| and ∆V⊥ is 2.4× 10−9 V compared to 6.8× 10−9 V as obtained
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U = 0.1 m s−1.

from the second peak for ||∆V ||2. So the values we obtain for ψα by two methods, are
comparable in order of magnitude but not identical. This indicates that the magnetic
flux perturbation theory might be applicable to experiments with liquid Galinstan.
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Figure 5.12: (a) ∆V|| − 〈∆V||〉, (b) ∆V⊥ − 〈∆V⊥〉 and (c) ||∆V ||2 − 〈||∆V ||2〉 vs ωM at
U = 0.1 m s−1 for α = 1.4%.

5.3 Conclusions

We have developed specific experiments: hollow ceramic tubes filled with liquid Galin-
stan containing a network of glass beads. This allows us to control well the size and
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position of the void.
In figure 5.6, we find that ECFM is sensitive to U . We analyze this signal with the

help of magnetic flux perturbation approach. As shown in figure 5.7, Remφu vs U plot
is linear. This confirms the velocimetry function of the ECFM in liquid Galinstan.

The experiments with Galinstan tubes containing glass beads in one tube cross-
section plane, demonstrates that ECFM signal is not only sensitive to voids at the
surface, which we saw in the previous chapter, but also to the voids inside the medium
within one skin depth. The same could not be replicated with α = 0.1%. Subsequently,
we proposed that the homogenization was responsible for the later. A test rod with
α = 1.4% was designed and tested. But this time we ensured the periodicity of α
distribution in axial direction. The raw time signal for this tube shows void induced
perturbations. The similarity of ψα value calculated from in-phase and quadrature phase
signal components of ∆V , and that calculated from ||∆V ||2, confirms the relevance of
magnetic flux perturbation theory even for liquid Galinstan.

Finally, we conclude that to obtain meaningful results from these kind of experiments
we need to increase the axial length of ceramic tubes. Subsequently, we should use
vertical set-up in place of presently used horizontal set-up. This is to ensure mechanical
integrity, i.e., avoid bending of tubes.
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Conclusions

Our objective was to analyze an electromagnetic technique to address the issue of gas
detection and characterization in two-phase liquid metal flows. Although the concerned
application is Sodium cooled Fast Reactor, the results can also be extended to other
industrial and natural processes involving two-phase liquid metal flows. On the techno-
logical side, our objective was to test the feasibility, limits, and procedures for U and α
detection and characterization in two-phase liquid metal flows with ECFM. Since, this
involves motion of liquid metal in presence of electromagnetic fields and voids, many
physical processes and their couplings play a role from physics point of view. Our role
was to investigate the effect of pulsation ω which affects through Faraday induction,
velocity U governed by Lorentz force effects and α which distorts local eddy currents at
local scales and magnetic flux at φ−integrated scale.

Literature review given in chapter 2, provides the direction for subsequent chapters
in this manuscript. The results in literature for ECFM in single phase flows suggest that
induced emfs in ECFM is linear in U at small Rem. The effect of U is more on in-phase
emf signal in ECFM than on the quadrature-phase emf. The experiments with ECFM
in two-phase liquid metal flows suggest that ECFM is sensitive to void presence in liquid
metal. Significant modulations/oscillations on ECFM emf are signatures of bubbles
passing through ECFM. The amplitude of these oscillations are found to be linear in α
for α . 4.5%. The effect of void induced modulations is more on the quadrature phase
emf compared to in-phase emf. We find lack of a comprehensive model to characterize
ECFM signals in two-phase liquid metal flow experiments. Maxwell’s model treats the
case of a homogeneously distributed spheres in electrically conducting medium in the
absence of Faraday induction and Lorentz force effects and for very small α. This model
predicts a linear relation between the equivalent electrical conductivity and α of this
kind of two-phase medium. There are models which take into account of Lorentz force
effects at low pulsations ω < 100 rad s−1. These model predict decoupling of U and
α effects on induced potentials. The models at high pulsations neglect Lorentz force
effects. They predict the change in both in-phase and quadrature phase emfs.

We analyzed theoretically, an ECFM in chapter 3. A finite element simulation in
COMSOL R©helps us to study the distribution in magnetic fields and subsequently design
an ECFM for experiments. We propose the theory for three approaches to characterize
ECFM signals in two-phase flows. In the first approach, we model the difference emf
between two secondary coils. We assume decoupling between Faraday induction and
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Lorentz force effects. This is possible when δ � D and Rem � 1. The theoretical
expression for in-phase emf depends on U and α, while the quadrature phase emf is
independent of U but dependent on α. In the special case of periodic distribution of
voids, the squared norm of difference flux can be expanded in terms of harmonics. The
constant term C1 is a function of α, the first harmonic C2 is linear in U2 and depend
on α, while the second harmonic C3 is depends on α but is independent of U . We
do not have an explicit expression in α in this approach. The second approach also
models the net difference flux between the two secondary coils. However, this time we
assume δ . D and Rem � 1. Here, Faraday induction effects are significant and cannot
be separated from the Lorentz force effects. Subsequently, we propose magnetic flux
decomposition in terms of Rem and α, assuming Rem � 1 and α � 1. The total flux
is written as φ0 + Remφu + φα. This model predicts that both in-phase and quadrature
phase difference fluxes depend on U and α. Moreover, Fourier decomposition of squared
norm of difference flux predicts that the first harmonic is a coupled term between U and
α. The second harmonic depends explicitly on α and independent of U . Mathematical
basis for a Lissajous ellipse fitting approach was also presented in this chapter. However,
this last does not give explicit expressions in U and α.

These theoretical models were confronted with experiments with ECFM in an exper-
imental setup which models two-phase liquid metal flow (chapter 4). Aluminium rods
represent electrically conducting medium while grooves and holes machined on its outer
surface simulate voids. The motion of ECFM over rod, simulates plug flow. This ex-
perimental setup easily allows to control the velocity, void size and void locations. The
pulsation in the range 1.5× 103 ≤ ω ≤ 12.5× 103 rad s−1, velocity in 0 ≤ U ≤ 1 m s−1

and void fractions in range 0.06% ≤ α ≤ 6.9% was studied. From the experimental
results, we were able to confirm that C1 ∼ U2 and is independent of α, and C3 ∼ α2

exactly as predicted by the first theory. But we also found that C2 ∼ α, instead of
C2 ∼ α2 as predicted by the theory. Also both the in-phase and quadrature phase emfs
were perturbed by U . This clearly comes from strong Faraday induction effects.

Then we analyzed the experimental results with magnetic flux perturbation theory.
As predicted by the theory we obtain each component of the flux: φ0, Remφu and ψα in
the time signal. We find that Remφu is linear in U and independent of α, while ψα is
independent of U and linear in α for α . 4.5%. These results are valid even though the
corresponding theory assumed α � 1 and Rem � 1. We also found that the in-phase
emf is more sensitive to U than the quadrature phase emf, while the quadrature-phase
emf is more sensitive to α than in-phase emf. This is in agreement with the literature.
The pulsation dependence studies show, φ0,⊥ ∼ ω−1/2 and φu,|| ∼ ω−1. These results
were explained with a simple analysis based on Maxwell’s equations. On the other hand,
we found that φ0,|| deviates strongly from ω−1/2 at large pulsations, and φu,⊥ ∼ ω−3/2.
This points towards strong Faraday induction effects. We also find a strong coupling
between α and U effects, as given by term A1 in FFT spectrum density of squared norm of
difference emf signal. In the Lissajous ellipse fitting approach, we find that the sensitivity
of 5-coils ECFM to void is more than the 3-coils ECFM. The amplitude of fluctuations
in the orientation of ellipse increases as a function of α, but it is independent of U . This
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was explained in terms of small Rem. We find that the lower limit of detection with this
approach is approximately 0.3% compared to 0.06% for the magnetic flux perturbation
approach. An advantage of this last approach is its simplicity.

To confirm the results obtained for the model two-phase flow, experimental setup
with liquid Galinstan has been developed and shown in chapter 5. The glass beads
inside ceramic cylinders filled with liquid Galinstan simulate voids. For α = 0%, the
experimental results are similar to the ones obtained for plain aluminium rod. Remφu
is linear in U , Remφu,|| < Remφu,⊥ and Remφu decreases with ω. The experiment with
bead confined to one cross-section plane, confirms the sensitivity of ECFM to void buried
inside electrically conducting medium (but within δ). We were also able to confirm that
ψα,|| > ψα,⊥. The results of experiments with α = 1.4% shows the sensitivity of ECFM
to a distribution of voids. However, same could not be replicated with α = 0.1%, due to
small size of beads and homogenization in their positioning.

As future perspectives, we suggest to increase the axial length of the ceramic tubes in
Galinstan experiments. And to repeat two-phase experiments with other void fractions.
Other than this, we find the necessity to develop numerical simulations to explain void
effects at local (void) scale. This helps to visualize electromagnetic fields at local scale
when void effects, Faraday induction effects and Lorentz force effects are coupled.
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1.  Introduction

The behaviour of AFM cantilevers under a magnetic field 
is primarily known through a well-established technique 
called magnetic force microscopy (MFM) [1, 2]. If the tip 
approaches the sample surface to within a distance of typi-
cally 10–500 nm, magnetic interaction of the tip with the stray 
field emanating from the sample becomes detectable. It is thus 
possible to explore magnetic domains with sub-micrometer 
spatial resolutions. MFM has been used to study the prop-
erties of materials for magnetic recording media [3–5], to 
optimize the recording modes of magnetic heads [6], to inves-
tigate the structure and properties of nanoparticles, alloys and 
nanocomposites [7] and thin films [8], and in the development 
of methods for magnetic recording with ultrahigh density [9]. 
MFM uses magnetized probes. In the dynamic mode, the reso-
nance frequency or phase shifts are proportional to magnetic 
force gradients [3]. In order to quantify the observed effects, 
it has been common to use monopole and dipole approxima-
tions to describe the MFM tip–sample interactions [10]. Metal 
rings carrying electrical current with inner diameters between 
1 and 5 µm were used to calibrate the MFM tip’s effective 
magnetic charge and effective magnetic moment along the 

tip axis [11–13]. Quantitative MFM has been strictly lim-
ited to magnetic interactions at very short range under a very 
low magnetic field. This standard approach is convenient for 
many applications but it is not adapted to study quantitatively 
the local magnetic properties of condensed phases under an 
external magnetic field. To this end, it is important to separate 
the influence of the external magnetic field from the influence 
of the sample on the MFM probe.

Such studies are important to understand, for example, 
the orientation of magnetic domains (in bulk or thin films) 
under a dc or ac external field, or the magnetic instability of 
ferrofluids (peak patterning) where local response is closely 
related to the global excitation [14]. These studies require 
one to characterize the response of AFM cantilevers under an 
external magnetic field in the absence of samples.

In this paper, we investigate the force experienced by dif-
ferent cantilevers due to the combined effects of a magnetic 
field and a temperature field, both produced by a dc current 
in a millimetric coil. This work shows that the cantilevers 
experience repulsion or attraction far from the coil and only 
attraction at short distance. The force depends mainly on the 
coating material as well as on the bulk material of the canti-
levers. We point out that effects of temperature dominate the 
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interaction force at large distance while magnetic effects dom-
inate at short distance. A phenomenological equivalent mag-
netic model that takes into account the thermal effects can be 
used to predict the behaviour of cantilevers at the two scales. 
The paper is organized as follows: in section 2 we describe the 
materials and methods. The experimental results are presented 
in section 3 and are discussed in section 4.

2.  Materials and methods

Different commercial AFM cantilevers were placed in the 
vicinity of a coil of NC turns ( =N 40C ), with a core of iron, 
carrying a dc current IC, as described in figure 1. z is the dis-
tance between the top surface of the iron core and the position 
of the fixed end of the cantilever. z is measured by the vertical 
piezo-transducer of the AFM.

The magnetic field produced by the coil as a function of the 
distance z is given by:

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟μ( ) =

+
− +

+ ( + )
B z

N I

h

z

R z

z h

R z h2
,0

C C

C C
2 2

C

C
2

C
2

� (1)

where hC and RC are respectively the height and the radius of 
the coil (hC  ≈  4.5 mm and RC  ≈  4 mm).

The relation between B and IC is linear as presented in 
figure 2. For typical values of IC ranging from 0 to 3 A, the 
field is constant in time and varies from 0 to 12 mT. The 
field calibration has been realized by means of a Hall effect 
Gaussmeter (GM07 from Hirst Magnetic Instruments Ltd) 
positioned in contact with the core at its centre. We have also 
measured a remanent magnetic field of 0.4 mT in the centre of 
the iron core when the current is switched off. In parallel, the 
temperature T of the iron core increases in IC2 by Joule heating 
(figure 2). Consequently, in our experiments, the production 
of a magnetic field is systematically associated to a thermal 
field.

AFM experiments were performed with the Agilent™ 5500 
in order to measure the force applied to cantilevers of different 
types when a dc current of various intensity is passing through 
the coil. For each cantilever, we determined the sensitivity 

(nm V−1) by measuring the curve of voltage deflection versus 
vertical displacement when the tip comes in contact with the 
iron core or aluminium plate (contact mode). No lateral deflec-
tion was observed in our experiments. Moreover, we checked 
that the stiffness calibrated by the thermal tuning method 
is in agreement with the value given by the manufacturers. 
Hence, it is straightforward to obtain the force applied to the 
cantilever in presence of a magnetic and thermal field from 
the stiffness and the sensitivity. The cantilevers are shown in 
figure 3. MFMR probes from Nanoworld™ are designed for 
MFM. They are made from highly doped monolithic silicon 
and their average stiffness k is equal to 2.8 N m−1. On the tip-
side of the cantilever, a coating of approximately 40 nm thick 
cobalt alloy is deposited. On the reflector side, a 30 nm thick 
aluminum coating enhances the reflectance and prevents light 
from interfering within the cantilever. MESP from Bruker™ 
are also MFM probes where both tip and reflector sides are 
coated with a 50 nm thick CoCr layer. The cantilever stiffness 
is ≈k 3 N m−1. Hydra 6 V from AppNano™ are V-shaped soft 
cantilevers (k  ≈ 0.08 N m−1) made of Si3N4. The tip is made 
of silicon and the reflector side is gold coated. Finally, we 
also used 3.7 N m−1 stiff, non-coated Si cantilevers (Fort from 
AppNano™). No further information was available on the 
composition and fabrication of coatings.

The experiments were realized with cantilevers taken 
from two or three different batches of the same type. Due 
to the fabrication process, cantilevers of the same batch 
have slightly different geometrical and material properties. 
For this reason, each measurement was repeated ten times 
with different cantilevers. The force values reported on 
the curves in this paper correspond to the average of these 
measurements given with a maximum standard deviation of 
15%. The accuracy of the distance controlled by the piezo-
transducer and of the magnetic field is ±1  µm and ±10–2 mT, 
respectively.

To separate the effects of the magnetic field with those 
of the thermal field, we designed a small aluminium plate 
(1   ×   1 cm2) heated by a straight Cu wire. No magnetic field 

Figure 1.  Schematic representation of the experimental set-up. 
An AFM probe is placed in an external magnetic field produced 
by a large coil with iron core. For a three-layer cantilever of total 
thickness h, e1 is the thickness of the coating on the tip side and e2 
on the reflector side. Figure 2.  Iron core temperature and magnetic field measured by a 

Hall effect Gaussmeter in contact with the iron core and comparison 
with the theoretical values for =z 100  µm.
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was produced and the temperature could be varied from room 
temperature up to ~40 °C.

3.  Experimental results

3.1.  Effects of the magnetic and thermal fields

We consider, as a first example, the response at long probe-
to-surface distance ( =z 100 µm) of an MFMR cantilever in a 
standard configuration, i.e. with the tip directed towards the 
surface. We refer this configuration as ‘tip side’. In the pres-
ence of a dc magnetic field ( =B 10 mT and =T 46 °C), the 
force versus time curve exhibits both short and long charac-
teristic times, τ1 and τ2 respectively (figure 4(a)). The force is 
positive, which means repulsion, and reaches relatively high 
values around 600 nN. After 1000 s, the current is switched off.

We observe a decay that is characterized by a slightly dif-
ferent rate of variation. When the MFMR cantilever is turned 
upside down (backside directed towards the surface, ‘reflector 
side’ configuration), the force becomes attractive and its time 
variation shows the same characteristic times (figure 4(b)). We 
point out that the same transient regimes occur for both con-
figurations, when the field is turned on and off. However, the 
magnitude of the force differs in the reflector side and tip side 
cases by a factor 2. The main result is that the force applied 
on the cantilever depends on the orientation of the cantilever. 
Applying a dc potential between the cantilever and the iron 
core, we also verified that the interaction force is not due to 
static electrical charges.

In terms of reproducibility, field-on or field-off repeated 
measurements showed a similar tendency with different 
MFMR cantilevers coming from the same batch. The values 
of τ1 and τ2 vary between 45–55 s and 400–500 s, respectively. 
These two times are larger by some orders of magnitude than 
characteristic spin relaxation times. In consequence, the tran-
sient effects do not seem to be linked to magnetism.

We have verified that τ1 does not match the time constant of 
the equivalent RL circuit. The inductance and the resistance of 

the coil are = μ π
L

N R

h
0 C

2
C
2

C
 and = ρ

R
L

S
w w

w
, where ρ =w   17   ×   10–9 

Ω m, Lw  = 0.1 m and S  w   ≈  10–9 m2 are the resistivity, the length 
and the section area of the wire, respectively. The electrical time 
constant τ = L R/  is equal to a few µs, which is much lower than 
τ1. This time seems to be related to the convective effects due to 

direct heating of ambient air by the coil (the magnitude of the 

air velocity is of the order of βΔg Tl ,  where β is the thermal 

expansion coefficient, ΔT the temperature difference between 
coil and ambient air and l is the height of the coil). Furthermore, 
the second time constant τ2 corresponds to the thermal diffusion 

characteristic time corresponding to temperature equilibrium of 

the system: τ = 
C

hS2 2
p , where h is the natural convection coeffi-

cient corresponding to heat transfer between the iron core and air 
(h  ≈  18 W K m2 estimated from [15]), S is the area of the iron core 
( = × −S 6. 3 10 5 m2) and Cp its heat capacity ( =C 1.1p  J K−1).

The variations of force with the magnetic field for the four 
cantilever types are presented in figure 5. For each value of 

Figure 3.  Commercial AFM cantilevers used in the experiments.

Figure 4.  Typical transient regimes observed at =z 100  µm for MFMR cantilevers when the magnetic field ( =B 10 mT) is turned on 
(curve 1) and then turned off (curve 2). (a) tip side configuration and (b) reflector side configuration.
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magnetic field, a delay of 10 min is observed before the force 
is measured at =z 100  µm. All the results show that the inter-
action force varies as a function of B2. In the case of MFMR 
(figure 5(a)), we clearly distinguish strong repulsive and 
attractive behaviours on tip and reflector side, respectively.

The dependence of the interaction force on the magnetic 
field is represented in figures  5(b)–(d) for MESP, HYDRA 
and FORT cantilevers, respectively. MESP cantilevers have 
the same coating on the tip and reflector sides and show the 
same attractive behaviour on both sides. HYDRA cantilevers 
are attracted on the tip side which is uncoated and repulsed 
on the reflector side which is gold coated. Finally, FORT can-
tilevers, which are uncoated, are attracted on both sides. We 
note however a deviation between the results for the two ori-
entations due to differences in the geometrical and material 
properties of the two sides. The forces are of the same order 
for MFMR, MESP and FORT cantilevers. On the other hand, 
the forces measured with HYDRA cantilevers are one order of 
magnitude lower. The attractive and repulsive behaviours are 
summarized in table 1.

3.2.  Cantilever–coil distance effects

In this section, we present the variation of force as a function 
of distance for different dc magnetic fields. The results for the 
MFMR cantilevers are presented in figure 6. For each value of 
the magnetic field, the force exhibits two different behaviours 
for short range and long range distances: at short distance, the 
force is attractive whatever the orientation of the cantilever 
and scales as − z  1/ 2. The dependence is not measurable below 

a few µm because the cantilever deflection is too large. At long 
distance, the force reaches an asymptotic value. It is repulsive 
for tip side cases and attractive for reflector side cases. The 
asymptotic value varies with the magnitude of B, as shown in 
figure 5(a).

The MESP probes display similar behaviour as MFMR, i.e. 
a − z1/ 2 force dependence at short distance and an asymptotic 
force at long distance, which is now attractive for both tip side 
and reflector side orientations. These results are in agreement 
with figure 5(b).

HYDRA cantilevers (figure 8) show the same short dis-
tance trend as the other cantilever types. The asymptotic force 
values are coherent with figure 5(c). It was difficult to measure 
forces above 5 mT in the tip side configuration because of the 
low cantilever stiffness, which implies very large deflections. 
For example, considering k ~ 0.08  N m−1 and a sensitivity 
factor χ ~ 100  nm V−1 between the signal of the photodetector 
and the deflection, the limit of 10 V of the photodetector is 
exceeded at forces above 80 nN. Experimental results with 
FORT cantilevers are represented in figure 9. Tip and reflector 
side responses present a similar attractive behaviour within 
the experimental uncertainties.

4.  Discussion

4.1.  Long range force model

In order to analyse the effects of large variations of temper-
ature, we studied the long range response of the cantilevers 
using the aluminium plate heated by the Joule effect without 

Figure 5.  Force versus magnetic field at =z 100  µm. Exprimental data: (⚪) tip side configuration; (◽) reflector side configuration. MFMR 
(a), MESP (b), HYDRA (c) and FORT (d). Solid lines: comparison with the model (equations (8) and (9)).
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Table 1.  Long distance (at =z 100  µm) attractive (A) or repulsive (R) response of the four cantilever types for tip side and reflector side 
configurations. Apparent magnetic coefficients were obtained by fitting the experimental data.

Probe reference Apparent magnetic coefficients

MFMR R A

 

Γ ≅ − ×
Γ ≅ ×
Γ ≅

2.93 10

3.91 10
186

1
8

2
8

bulk

MESP A A

 

Γ = Γ ≅ ×
Γ ≅

2.84 10
186

1 2
4

bulk

HYDRA A R

 

Γ =
Γ ≅ − ×
Γ ≅ ×

0

1.66 10

8.31 10

1

2
8

bulk
6

FORT A A

 

Γ =
Γ =
Γ ≅

0
0
186

1

2

bulk

Figure 6.  Magnetic force versus distance for MFMR probes, 
measured at different B values. (a) tip side configuration;  
(b) reflector side configuration. Solid lines: comparison with the 
model (equations (8)–(10)).

Figure 7.  Magnetic force versus distance for MESP probes, 
measured at different B values. (a) tip side configuration;  
(b) reflector side configuration. Solid lines: comparison with the 
model (equations (8)–(10)).
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a magnetic field. For all the cantilevers, we observed that the 
long range asymptotic forces (z  >  100 µm) are of the same 
order of magnitude than those measured with the electrical 
coil. In particular, we found exactly the same attractive and 
repulsive responses when the orientations of the cantilevers 
were reversed. Hence, in the magnetic experiments, the ther-
moelastic properties seem to control the long range behaviour 
by the temperature gradient effect and, for multilayer cantile-
vers, by the difference in the coefficients of thermal expansion.

In the framework of linear elasticity, the radius of curvature 
of the bent multilayer cantilever is given by:

∫
∫ ϵ

=
( )

( ) ( )
R

E z z z

E z z z z

d

d

,

2

� (2)

where ( )E z  is Young’s modulus at the position z in the canti-
lever and ϵ( )z  is the thermal deformation of the cantilever at 
z, which is proportional to the thermal expansion coefficients 
of the layers and their temperature variations [16]. When 
R  << L, where L is the length of the cantilever, the deflection 

is δ ≈ L

R2

2

 and the bending force is δ=F k .

Equation (2) also takes into account the effects of the tem-
perature gradient in the cantilever. In case of a uniform tem-
perature and a bimorph cantilever, equation  (2) is similar to 
equation (4) in [17]. Modelling the cantilever bending requires 
precise values of the thicknesses and the thermoelastic film 
properties of the layers, and the geometry of the cantilever. With 
values of these parameters given in the literature, we obtain a 
good qualitative agreement with the experimental response of 
the cantilever: first, the maximum deflection scales as IC2 and 
second, we find the same attractive and repulsive behaviour in 
tip and reflector side configurations (figure 5). However, the 
magnitudes of the forces are difficult to predict precisely due 
to the uncertainties in the physical data and the presence of the 
internal stresses.

We propose a simple phenomenological model based on 
the force balance of a multilayer cantilever that takes into 
account the main experimental observations at long range, i.e. 
the force is a square function of the electrical current and then 
of B2, and the specific behaviour of each cantilever in the tip 
and reflector side configurations. This model was also devel-
oped because it is easier to control the magnetic field via the 
electrical current (Biot–Savart law) than the temperature field 

Figure 8.  Magnetic force versus distance for HYDRA probes, 
measured at different B values. (a) tip side configuration; (b) 
reflector side configuration. Solid lines: comparison with the model 
(equations (8)–(10)).

Figure 9.  Magnetic force versus distance for FORT probes, 
measured at different B values. (a) tip side configuration; (b) 
reflector side configuration. Solid lines: comparison with the model 
(equations (8)–(10)).
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due to its highly non-linear behaviour. Moreover, the thermal 
properties of the multilayer cantilever are not always well 
established.

In the model, we consider that the cantilever is character-
ized by its length L, width w and thickness h, and is clamped 
at one extremity. e1 and e2 are the thickness of the coating 
layers on tip and reflectors sides, respectively ( ≪e e h,1 2 ). 
Considering a cantilever substrate with thin film layers, equa-
tion (2) can be approximated by the differential equation gov-
erning the cantilever deflection y along the x-axis:

= ( )y

x

M x

EI

d

d
,

2

2
� (3)

where E and I are Young’s modulus and the moment of inertia 
of the bulk substrate, and M the total bending moment. M and 

I are respectively given by ( )( ) = ( − )ρM x x L
2

2, where ρ is the 

force per unit length and =I wh

12

3

. In the case of V-shaped 

cantilevers (HYDRA), this last expression must be multi-
plied by 2. From the conditions at the clamped end, ( ) =y 0 0  
and ( ) =y xd 0 /d 0, we obtain the general expression of the 
deflection:

ρ( ) = ( − − )y x
x

EI
xL L x

24
4 .

2
2 2� (4)

The deflection is measured at the laser spot, =x L0.95 . We 
postulate that the effects of orientation are due to the multi-
layer structure of the cantilevers as shown in figure 1 and ρ is 
a function of B2. The force per unit length experienced by the 
cantilever is given by ρ ρ ρ ρ= + +1 bulk 2, where ρ1and ρ2 are 
the forces per unit length in the coating layers, and ρbulk is that 
experienced in the bulk substrate. By analogy with paramag-
netism, we assume that the forces on the cantilever are:

ρ
μ

= Γwe B

z2

d

d
,

z
1

1 1

0

2

1

� (5)

ρ
μ

= Γwe B

z2

d

d
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z
2

2 2

0

2

2

� (6)

∫ρ
μ

= Γw B

z
z

2

d

d
d ,

z

z

bulk
bulk

0

2

1

2

� (7)

where Γ1, Γ2 and Γbulk are ‘apparent magnetic coefficients’ of 
tip side, reflector side and bulk layers respectively, and μ0 is 
the vacuum magnetic permeability. z1 and z2 are the vertical 
positions of the coating layers defined as =z z1  and = +z z h2  
for the tip side configuration and = +z z h1  and =z z2  for the 
reflector side configuration (figure 1).

At a constant tip-to-surface distance z, we deduce from 

equation (1) that B

z

d

d

2

 and B

z

d

d

2 2

2  are proportional to I2and there-

fore to B2, in such a way that ρ = KB2. By fitting the experi-

mental curves presented in figure  5, it is then possible to 
estimate K for both tip and reflector side configurations. From 

the Taylor series expansions of ρ1 and ρ2 at +z h/2, we obtain 
for the tip side configuration:

ρ
μ

μ

= ( Γ + Γ + Γ )

+ ( Γ − Γ) + ( )

+

+

w B
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e e h

wh B
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e e O h
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(8)

In the same way, the force per unit length for the reflector 
side configuration is:

ρ
μ

μ

= ( Γ + Γ + Γ )

+ ( Γ − Γ ) + ( )

+

+

w B

z
e e h

wh B

z
e e O h
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d
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z h

z h
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2

2

1 1 2 2 bulk

0

2 2

2

2

1 1 2 2
2

�

(9)

The case of uncoated FORT cantilevers (see figure 5(d)), 
for which =e 01  and =e 02 , has been used to determine 
Γ ≅ 186bulk  in silicon based cantilevers (MFMR and MESP). 
From this value it is possible to determine Γ1 and Γ2 coefficients 
for MFMR and MESP by fitting the experimental data (figure 
5) with the linear system (8) and (9). In the case of HYDRA 
probes, =e 01  in equations (8) and (9). All the apparent mag-
netic Γ coefficients were calculated from the fit of the aver-
aged experimental data by standard linear regression and are 
reported in table 1.

We point out that the Γ coefficients obtained in this phe-
nomenological model have no link with the standard magnetic 
susceptibilities and show sensitivity to the total thermal field. 
For example, the magnetic properties of the silicon material 
found in the literature [18] give an interaction force much 
lower in magnitude than what we have observed.

In figure 5, the experimental data are fitted by the model 
(equations (8) and (9)). We find a good agreement for the B2 
dependence of the interaction force for all the cantilevers with 
a unique value of Γbulk for a Si substrate.

4.2.  Full range force model

The variation of the interaction force with the distance dis-
plays two regimes, at short and long distance. At long dis-
tance, the z dependence is derived from the applied magnetic 
field (equations (1) and (5)–(7)). At short distance, the inter-
action force curves for different applied field converge to a 
unique one. Without any current, the cantilever is submitted 
to the remanent magnetic field of the iron core. When there is 
no magnetic field and no magnetization but heating (experi-
ments with the aluminium plate), the force is of smaller 
magnitude and exhibits only capillary effects at short dis-
tance. In the limit of short distance and in the presence of 
a magnetic field, the force–distance relation scales as − z1/ 2 
for all the cantilevers (figures 6–9) and can be modelled by 
monopole–monopole interaction. In such an approximation, 
the force is expressed as:
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μ
π

= −F
g g

z4
,monopoles

0 m
probe

m
surface

2
� (10)

where gm
probe is the equivalent monopole associated with the 

probe and gm
surface that associated with the sample surface. The 

monopole model can be understood as an effect of local mag-
netic field that can be decomposed in a multipolar expansion, 
in which the first monopole–monopole term dominates. In 
our experiments, the local force characterizes the magnetiza-
tion of the iron surface. In other situations, this force could be 
measured to characterize the magnetization of a medium by 
an external field (such as, for instance, a ferrofluid).

From the experiments, we cannot determine the gm coef-
ficients in equation (10) separately. Only the product of mag-
netic monopole intensities g gm

probe
m
surface can be estimated. These 

values are obtained by fitting the raw data and are summarized 
in table 2. We note that the order of magnitude of all the mono-
pole products is ~10−10 A2 m2, which could be used to estimate 
the short distance interaction force for this iron core.

In order to determine the full range interaction force under-
gone by the cantilevers, equations (8)–(10) can be combined. 
Figures  6–9 show the comparison between this full range 
model and the experimental data, for which the Γ coefficients 
are identical to those calculated from figure 5. While the mul-
tilayer model predicts the correct behaviour of the cantilever, 
the question remains of how the chemical composition and the 
process of fabrication affect the thermal and magnetic proper-
ties of cantilevers. At long range, in addition to temperature, 
other physical effects can contribute to the bending of the can-
tilevers, such as magnetostriction [19–21].

Based on this study, we can propose a method to develop 
MFM experiments to investigate the magnetic response of a 
given sample to a dc or ac external magnetic field. In order to 
obtain a good lateral resolution, the MFM tip has to be close to 
the sample surface (less than 50 nm). In this case, the force on 
the cantilever is dominated by monopole–monopole interac-
tion. First, we have to find a cantilever characterized by a low 
gm
probe value and a repulsive behaviour in the tip side configura-

tion (as MFMR) in order to increase the range of the measured 
force by the photodiode. Second, the cantilever stiffness must 
be large to limit the cantilever deflection in the presence of a 
large interaction force.

5.  Conclusion

The study of the near-field behaviour of samples by AFM 
under an external magnetic field requires knowledge of the 
cantilever response in similar conditions. Therefore, we have 
characterized in this paper the response of the AFM cantile-
vers to an external dc magnetic field. A coil with an iron core 
was used to produce the external magnetic field. The force 
exerted on the cantilever was measured by its deflection. 
The results for four types of cantilevers have been presented 
and discussed. We have measured both the effects of B and 
temperature. At long distance, we observed that the tempera-
ture effects dominate while the magnetic effects dominate at 
short distance. We have proposed a phenomenological model 
based on two contributions: a monopole–monopole inter-
action at short distance and a multilayer interaction at long 
distance characterized by a generalized paramagnetic force 
proportional to ∇B2 modelling the temperature effects. Based 
on this work, it is possible to define the cantilever proper-
ties that are adapted for the study of the mechanisms at the 
nanoscale occurring in magnetic samples under external 
magnetic fields.
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A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid
metal flow has been developed for low magnetic Reynolds number Rem. This model takes into
account the distortion of the induced eddy currents due to the presence of void in the conducting
medium. Specific experiments with an eddy current flow meter have been realized for two periodic
void distributions. The results have shown, in agreement with the model, that the effects of velocity
and void on the emf modulation are decoupled. The magnitude of the void fraction and the void
spatial frequency can be determined from the spectral density of the demodulated emf. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4932990]

Characterization of void fraction in two-phase liquid
metal is a challenging issue in many applications. The
measurement of void fraction in liquid metal is a notoriously
difficult problem because these materials are opaque,
aggressive, often very hot, and inaccessible. For example,
the presence of bubbles in the primary loop of a sodium
cooled fast nuclear reactor modifies the neutronic and heat
transfer properties of flow, which is a cause of concern
from the safety point of view.1 In metallurgy, bubbles and
non metallic impurities decrease the efficiency of heating by
induction and change dramatically the mechanical properties
of the manufactured products.2 On the other hand, bubbles
manifest also in natural magnetohydrodynamics flows, as
observed in geophysics earth’s outer core or in interstellar
medium.3 In recent years, we have seen a renewed interest in
techniques based on Faraday induction4,5 and Lorentz force6

for flow measurements.7 From a theoretical point of view,
the distortion of the induced eddy currents by the presence
of void is an open problem.8 In this paper, we propose a
perturbative theory that allows us to develop a methodology
to characterize the void fraction using a standard sensor.9,10

We consider a moving two phase liquid metal with a
void fraction α and a characteristic velocity U. The medium
is assumed to flow through a primary coil P, which is
excited by an AC current I = I0 cosωt. The perturbation of
the induced magnetic flux due to the Faraday and Lorentz
force effects is measured by two secondary coils (S1 and S2)
placed coaxially on either sides of the primary coil. This
corresponds to a standard configuration in flow measurement
with the advantage to minimize external noise and, in our
case, to amplify the distortion due to void fraction. The model
consists to calculate the void fraction contribution to the
emf difference between the two secondary coils ∆V . In this
problem, the magnetic Reynolds number Rem is defined by
the penetration depth of the magnetic field in the medium as
the characteristic length (δ =


2

σµ0ω
): Rem = σµ0Uδ, where

σ is the electrical conductivity of the medium and µ0 is

a)Electronic mail: philippe.tordjeman@imft.fr

the magnetic permeability of vacuum. At low Rem (diffusion
dominates advection in magnetic flux transport equation), the
amplitude of the net flux crossing coils S1 and S2 is given at
first order by

φ =


B⃗ · d⃗s = φ0 + Remφu + φα(t), (1)

where φ0 is the average flux in the absence of motion due
to Faraday effects, φu is the average flux due to Lorentz
force effects, and φα is the perturbation of the total flux
due to the dispersed phase. This last term has its origin
in the perturbation of the eddy currents in presence of the
non-conducting dispersed phase and is related to the induction
effects to first order. In case of periodic distribution of the
dispersed phase, this term can be expanded in Fourier series,

φα(t) = ψα cos(ωαt + θ) + · · ·, (2)

where the amplitude ψα depends on the volume fraction α and
ωα characterizes the spatial distribution (ωα = Ukα, where kα
is the spatial frequency of dispersed phase). In this analysis,
ωα ≪ ω. One notes that φ0 = 0 for ideally well balanced
S1 and S2. Magnetic field in the medium results from the
coupling between the Maxwell-Faraday and the Maxwell-
Ampere equations, considering that the eddy currents in
the conducting media in motion are J⃗ = σ(E⃗ + U⃗ × B⃗).
Consequently, the magnetic field in the medium has two
contributions, one in phase and one in quadrature with I
(B⃗(t) = B⃗∥ cosωt + B⃗⊥ sinωt), which leads to a total flux
also with both components. ∆V is given by differentiating
with time the flux between S1 and S2: ∆V 2 = ∆V 2

∥ + ∆V 2
⊥.

Considering the first terms in O(Rem) (Rem ≪ 1),

∆V 2 ≈ ω2

⟨φ0|φ0⟩ + ⟨ψα |ψα⟩

2
+ 2⟨φ0|ψα⟩ cos(ωαt + θ)

+
⟨ψα |ψα⟩

2
cos(2ωαt + 2θ)

+ 2Rem [⟨φ0|φu⟩ + ⟨φu |ψα⟩ cos(ωαt + θ)]

. (3)

In this formula, φi is defined as a vector, φi =
�
φi, ∥, φi,⊥

�
.

⟨φi |φ j⟩ represents the scalar product between the two vectors
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FIG. 1. Design of the experimental set up. P, S1, and S2 are, respectively,
the primary and the two secondary coils.

i and j. In RHS of Equation (3), the four first terms correspond
to the dominant components in Fourier expansion of ∆V 2 and
the last terms are the perturbations induced by motion. In
Equation (3), only the amplitudes of φ0 and ψα appear at zero
order, and ⟨φu |φu⟩ being a second order term in Rem does
not appear. The terms ⟨φ0|ψα⟩, ⟨φ0|φu⟩, and ⟨φu |ψα⟩ represent
the coupling effects of Faraday induction, Lorentz force,
and dispersed phase. The Fourier analysis of the ∆V 2 signal
allows to determine these components and particularly the
term ⟨ψα |ψα⟩, which is expected to characterize the influence
of the dispersed phase.

We have developed specific experiments to validate this
theoretical approach. A moving Eddy Current Flow Meter
(ECFM)11 assembly was designed (Fig. 1). It consists of three
coils (P, S1, and S2) of diameter 40 mm each and length
30 mm for P and 20 mm for S1 and S2, with copper winding
of 70 turns for P and 50 for S1 and S2. ECFM is fixed on a
uniaxial displacement controller, which can move at velocity,
U = 10−3 − 1 m/s. The conducting fluid is modeled by an
aluminium rod along which the ECFM moves (see Fig. 1).
Three aluminium rods (of diameter 38.5 mm) were used in the
experiments: a plain rod which represents single phase liquid
metal (α = 0%) and two rods with grooves (α = 0.3% and
α = 6.9%), which represent two-phase liquids. The grooves
were machined at the rod surface with a period of 18.00 mm
and 16.85 mm, a depth 0.38 mm and 4.23 mm, and a
width 1.4 mm and 3.00 mm, respectively. The advantage
of this system is that the geometric void fraction α is
exactly known and there are no problems of liquid metal
circulation. The experiment was realized at room temperature
for which the electrical conductivity of the aluminium rod is
σ = 3.8 × 107 S/m. We use a lockin amplifier (HF2LI-MF,
Zurich Instruments) to excite the primary coil at 3142 rad/s
(δ ≈ 3.7 mm) and 6283 rad/s (δ ≈ 2.6 mm). The amplitude
of current intensity for all the experiments is in the range
of 200–400 mA. All the experimental results are given for a
normalized intensity amplitude of 1 A. Moreover, we have
checked that the current remains constant within 0.1% during
an experiment. The voltage induced in S1 and S2 is measured
by the lockin amplifier. In the experiments, the phase of the
primary current is taken as reference. ∆V is demodulated with
the lockin amplifier in order to determine the components in
phase and in quadrature. For each measurement, the ECFM

FIG. 2. Typical demodulated voltage difference of the two secondary coils,
∆V measured vs time for α = 0.3% atω = 3142 rad/s andU = 0.1 m/s (inlay:
U = 0.001 m/s).

was translated back and forth several times. Experiments
with this system are very reproducible because the system
is highly deterministic. Finally, we have verified that the
electromagnetic background noise is not significant at these
frequencies.

Fig. 2 displays a typical demodulated ∆V signal. This
kind of signal can be obtained for in phase and quadrature
components and also for the norm. φ0 is defined as the average
value of the signal when there is very slow motion, typically
U = 10−3 m/s (inlay of Fig. 2). In this case, the Lorentz
force can be neglected. In motion at constant U, the average
value of the signal is translated with a mean amplitude
proportional to Remφu. In presence of grooves (α , 0%),
this signal oscillates around this value. The amplitude of
this oscillation gives ψα. Fig. 3 shows an example of the FFT
spectrum of the difference between ∆V signal and its temporal
average value for α = 6.9% at U = 0.1 m/s and 6283 rad/s.
We observe the first three harmonic peaks in ωα. From the
FFT spectral density, we obtained ωα = 0.35 ± 0.05 rad/s.
This value is in agreement with that calculated from the
geometry of grooves: ωα = 0.37 rad/s. For α = 0.3%, we
measuredωα = 0.35 ± 0.04 for a theoretical valueωα = 0.35.
All the spectra obtained from the experiments validate the
expansion at first order in Rem of the magnetic flux and also
the Fourier series of the void fraction perturbation on eddy
current equations (1) and (2). The amplitude of the peak at
3ωα gives the first residue of Equation (3).

FIG. 3. FFT spectral density of ∥∆V 2∥ vs the modulating pulsation ωM for
α = 6.9% and U = 0.001 m/s at 6283 rad/s.
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FIG. 4. Amplitude of the second (a) and first (b) peaks of the spectral
density of ∥∆V ∥2 vs velocity at 3142 rad/s (unfilled markers) and 6283 rad/s
(filled markers): α = 0.3% (�, ■) and (�, �) with low pass filter 24 dB/oct;
α = 6.9% (△, N) and (▽, ▼) with low pass filter 24 dB/oct.

According to this equation, the amplitude of the first
peak is A1 = ω

2 [⟨φ0|ψα⟩ + 2Rem⟨φu |ψα⟩] and the amplitude
of the second peak is A2 = ω

2 ⟨ψα |ψα⟩
2 . We have checked that

the value of
√

2A2/ω is equal to the norm of ψα, which has
been obtained from the direct FFT of φα signal.

Fig. 4(a) compares 2A2 vs velocity for α = 0.3% and
α = 6.9% and for both frequencies, 3142 and 6283 rad/s.
These experiments showed that A2 is independent of the
velocity whatever the frequency and the void fraction. On
the other hand, the magnitude of A2 depends on the void
fraction and the frequency. The experimental data show that√

A2/ω is a constant (within 12% error). Furthermore the
experiments point out that the α dependence of A2 is given by
ψα ∼ αn,n < 1. In the limit of the accuracy, we found n ≈ 0.6
for both frequencies. Comparison with the plain rod shows
that A2 is very sensitive to the presence of void fraction even
at low value of α (α = 0.3%).

For groove depth smaller than δ, the effective void
fraction is αδ ∼ α/δ, and if α is small enough,ψα ∼ α (n = 1).
In this case, we found from the Maxwell’s equations that
ψα ∼ ω0, in agreement with experiments. The experimental
value n ≈ 0.6 corresponds to the case where groove depth is
larger than δ and αδ > α.

The amplitude of A1 vs velocity is shown in Fig. 4(b)
for α = 0.3% and α = 6.9% at both angular frequencies
3142 rad/s and 6283 rad/s. We recall that A1 characterizes
the coupling effects of the void fraction on Faraday induction
and on the Lorentz force. In our first order expansion model,
A1 is linear with ψα. Fig. 4(b) points out that the value of
A1 increases with α, following the same power law relation
ψα ∼ α0.6. For the two frequencies, we observe that A1 is linear
with velocity, coming from the coupling term 2ω2Rem⟨φu |ψα⟩.

Due to the order of magnitude of ⟨φ0|ψα⟩ compared to
2Rem⟨φu |ψα⟩, the velocity effects on A1 is more visible at
low values of A1 in log-log representation. Finally, the exact
concordance between A1 and A2 validates the perturbation
model given by Equation (3).

To further investigate the consistency of ψα dynamics on
A1 and A2, we used a low pass filter at a cutoff frequency
νc = 6.8 Hz. This filter is characterized by an attenuation of
24 dB/oct in signal intensity. Sinceωα ∼ U , the corresponding
critical velocity is around Uc ∼ 10−1 m/s. After Uc, the A1
and A2 values are supposed to decrease in 1/U2 and 1/U4,
respectively. Fig. 4 show that the experimental data verify the
expected dynamics.

In this work, we have calculated the effects of the void
fraction of a two-phase liquid metal flow on the induced
magnetic flux. We have shown that for a periodic void
distribution, the amplitude of the emf difference is modulated
at a frequency ωα characteristic of the distribution and with
an amplitude which is a function of α. We have shown
the interest to analyze the FFT signal of demodulated emf
difference in order to determine the void fraction. This
is possible because the effects of velocity and void are
decoupled. The experiments with a standard ECFM validates
the perturbation approach used in the model. For more realistic
non-periodic void distributions, this approach can still be used
to analyze the void effects on emf signal as long as ωα can be
measured.
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Appendix C

Review of two-phase MHD

The objective of this appendix is to present a literature review of two-phase MHD. This
review helped us to define the goals of this PhD and to understand the limits of our
study.

The presence of electromagnetic fields influence the motion of electrically conducting
fluid through Lorentz force. This motion of fluid under electromagnetic field induces
electrical currents which distort the applied electromagnetic fields. In this appendix, we
review the coupled dynamics of two-phase media and electromagnetic fields. There is a
considerable amount of literature in this field due to rising interest in the liquid metal-gas
two-phase flows over last few decades. This is mainly due to some specific requirements
in energy industry and metallurgy. A reliable knowledge of fluid flow-electromagnetic
fields coupling is required in this context. For the application in Sodium cooled Fast
nuclear reactor, we are concerned with bubble sizes of less than 0.2 mm. We define two
non-dimensional numbers,

Eo = g∆ρd2
b

σ
, Mo = gη4∆ρ

ρ2σ3

Where, Eotvos number Eo is the ratio of surface tension forces to the body forces in
bubble and Mo is the Morton number. db, ρ, σ, η and g are diameter of the bubble,
density, surface tension, dynamic viscosity of the fluid and acceleration due to gravity,
respectively. For sodium at 500 ◦C, Eo ≈ 0.05 and Mo ≈ 4× 10−14 for bubble of diameter
1 mm. The ratio of bubble horizontal to vertical diameter gives an estimate of bubbles
shape[92]

Ē = 1
1 + 0.163Eo0.757 ≈ 0.98, Eo < 40, Mo ≤ 10−6 (C.1)

Notice that the horizontal and vertical diameters are almost equal. Therefore, we con-
clude that the bubbles in our case are spherical and can be treated as spheres.

The discussions in the following subsections are arranged as follows: we start by dis-
cussing the MHD boundary conditions on rigid spherical bubble surface; then we take
the case of a 2D obstacle as an example to familiarize the reader with flow of current
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density around bubbles under some assumptions; and lastly we review the existing the-
ories and experimental results which explain the fluid-electromagnetic fields coupling in
their respective ranges of non-dimensional numbers.

The case of a rising bubble motion in the presence of magnetic fields is the simplest
configuration. Even in the absence of magnetic field Schwerdtfeger has showed that the
terminal velocity of argon gas bubbles in mercury is smaller than that in water[93]. The
presence of a magnetic field perpendicular to bubble motion decreases the bubble speed.
This suggests the action of Lorentz forces will affect the bubble motion in liquid metal-
gas flows under electromagnetic fields. Mori et al. investigated single bubble motion
in the presence of a horizontal DC magnetic field[94]. For small bubbles, the terminal
velocity ut increased with increasing B upto 1 mT. Beyond 1.5 mT, ut decreased with
increasing B. For larger bubbles, increase in B decreased ut. With this experiment
they confirmed two mechanisms governing bubble speeds in liquid metal subjected to B
fields[95]. Firstly, the drag on a moving bubble/sphere/ellipsoid/disc increases with the
increase in magnetic field. Secondly, the bubble wake structure is modified significantly
by a vertical magnetic field. The bubble zig zag motion or spiral motion then tends to-
wards a rectilinear ascent. When former effect dominates ut decreases, while it increases
when later effect dominates. Fröhlich et al. confirm the same with their experimental
study utilizing Ultrasound Transit Time (UTT) technique (see [96] for explanation of
UTT), for argon gas bubble motion in liquid Galinstan[95]. For small argon gas injection
flow rate, the bubbles are small. Therefore, the bubble rising velocity in case of B = 0
is larger than that in case of B 6= 0. On the other hand, for higher argon gas flow
rates (large bubbles) reverse trend is true. The consistency of results was also verified
by changing the diameter of nozzle used for argon gas injection, whereby an increase
in nozzle diameter resulted in a decrease in bubble rise velocity. For argon gas bubbles
in sodium chloride aqueous solution (σ ≈ 103 S m−1), a 3% drop in the bubble velocity
was observed corresponding to an increase in perpendicular magnetic field from 0 T to
7 T[97]. In the context of our study, the magnetic fields are of the order of 1 mT. Thus
any change in the bubble velocity for these values of magnetic fields will be insignificant.
Therefore the bubble velocities can be taken as that of the ambient fluid.

The rising bubbles also exhibit oscillatory motion which is attributed to the their
wake structure. This wake structure depends on shape and size of the bubble[98]. Two
unstable modes with same frequencies but shifted in phase by π/2 have been reported.
The first mode causes a planar zig zag trajectory of the bubble, while the second mode
gives a spiral trajectory to the ascending bubble[99]. A strong magnetic field parallel to
the bubble motion causes an enlargement of the eddies in the wake[100]. The application
of magnetic field diminishes the velocity components perpendicular to the magnetic field
via Lorentz force. This makes the bubble path more rectilinear. This interaction is more
easily seen with an intuitive depiction in figure ??. One can notice the modification
of the wake structure via interaction of the vortices with the applied external magnetic
field. This proposed mechanism was later validated by the numerical and experimental
results for argon gas bubble motion in liquid Galinstan[95]. Zhang et al.have studied
the motion of rising single argon gas bubble in a static column of Galinstan under DC
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(a) Wake behind the rising bubble in stagnant liquid column influences bubble motion,
(b) This wake is modified by B in such a way that the bubble motion becomes more
rectilinear[100].

magnetic field[100]. The bubble oscillation frequency changed non-monotonically with
the bubble size. The bubble terminal velocity ut was also found to depend on the bubble
diameter, however, it did not match the theoretical expression of Mendelson which is

ut =
√

2σ
ρlde

+ gde
2 (C.2)

where de is the bubble diameter, σ is the surface tension, g is the acceleration due to
gravity and ρl is the density of liquid. Oscillations in ut were similar in cases B = 0
and B 6= 0, but the mean ut increased with B. Also the amplitude of bubble oscillation
decreased with an increase in B. The drag coefficients on the bubble were found to
increase with the strength of this magnetic field for smaller bubbles (d < 4 mm) and
decrease with increasing magnetic field for larger bubbles (d < 5.4 mm). In earlier
studies on solid sphere motion in liquid metal, the drag coefficient was found to increase
monotonically with B[101, 102]. This means that the bubble deformation plays an
important role in determining drag on large bubbles. The horizontal and vertical velocity
components in the wake are also significantly damped by B. However its effect on
horizontal and vertical velocities is different.

Shin et al. have reported the elongation of single bubble along the direction of
externally applied uniform magnetic field in a uniaxial straining flow [103]. The shape
of a bubble was found to be a function of three parameters: the Reynolds number
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Re, the Weber number1 W and the magnetic interaction parameter2 N. For a given
Re, the critical Weber number Wc at which the bubble breaks into two decreases as N
increases. Below Wc, bubbles do not break no matter how large is N. However, the
bubble deformation increases monotonously with N. This is called the stable region.
Lower the value of Re, lower is Wc.

The dynamics of dispersed two-phase MHD flow is more complicated than the case
of a single bubble motion. The turbulent structure of continuous medium will influence
the distribution of the dispersed phase. The velocity fluctuations which contribute to
turbulent intensity have three contributions: the shear layers in the mean flow, the
irregular movement of the gas inclusions, and the turbulent wakes of the gas bubbles.
Therefore it is to be expected that the turbulence intensity will be more in the case of
two-phase flows than the single phase fluid motion. This turbulence intensity typically
increases as the square root of bubble void fraction for rising bubbles case and for
void fractions less than 6.5 % [104]. The turbulence velocity fluctuations increases with
increasing magnetic flux density[105]. Therefore, it is to be expected that the flow
induced fluctuations in ECFM will increase in turbulent two-phase flows. Furthermore,
the turbulence in two-phase flows is enhanced in the plane perpendicular to the magnetic
field. Therefore, the three dimensional turbulence structure is converted to quasi two
dimensional one[106] after some large value of Hartman number Ha.

With regards to the phase distribution, it has been found that the presence of mag-
netic field introduces significant amount of anisotropy in the direction perpendicular to it,
independent of the sign of the magnetic field. This result suggests a favorable movement
of bubbles along a specific axis. Indeed, bubble dispersion in a direction parallel to mag-
netic field has been reported to reduce as the magnetic field strength was increased[107],
the corresponding Hartman number is Ha ∼ 102 − 103. This anisotropy is the result
of a preferred direction of alignment of vortices. The bubble dispersion again becomes
isotropic at some critical high value of Ha. This is attributed to the pinch effect[108].
Here the MHD pressure in the cross-section(difference of magnetic pressure of externally
imposed and induced magnetic fields), which is maximum in the core of the flow, pushes
the bubbles towards the wall. If the magnetic fields are applied in the same direction as
fluid-gas motion, the isotropy in bubble dispersion is retained. This is again due to the
alignment of vorticity in a direction parallel to the magnetic field. To better understand
the coupling of electromagnetic field with two-phase flow, the problem of momentum
transfer from dispersed gas bubbles to the surrounding liquid metal flow has also been
studied[109]. The bubble slip ratio defined as S = vbubble/vliquid, was found to decrease
exponentially with the increasing strength of transverse magnetic field B. On the other
hand, S decreased exponentially initially, but started to increase after B = 0.2 T, for
the case of longitudinal magnetic field. The drag coefficients increase as a function of
B. These experiments were reported at Re ∼ 30 000. For the case of Re ∼ 105, the slip

1Weber number W is defined as the ratio of fluids inertial to its surface tension: W = ρU2L/σ; where
ρ and σ are the fluid density and surface tension and U and L are characteristic velocity and length
scales respectively.

2Interaction parameter N is defined as the ratio of intertial to electromagnetic forces: N = Ha2/Re
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ratio increased with increasing B. In our case we are interested in the later (Re ∼ 105).
At this Re, for B = 0 we have S = 5 − 7 depending on the void fraction. This means
the velocity of the bubbles cannot be taken same as that of the ambient liquid. Also the
imposition of magnetic field will slightly alter their speeds. However, B in our case is in
mT, so the influence of B on S can be neglected.

Serizawa et al. have reported experimental results of NaK-nitrogen two-phase flow in
the presence of strong magnetic fields. Phenomenon of bubble break up and coalescence
have been observed in the presence of magnetic fields [110]. For bubbly flows an increase
in magnetic field will increase bubble coalescence while long gas slugs tend to break up
at increasing rate as the strength of magnetic field is increased. In case of no magnetic
field, the distribution of the gas bubbles was symmetric about the cylinder axis. In the
presence of magnetic field anisotropy in bubble distribution was observed in the direction
perpendicular to B. For bubbly flows, an increase in B enhanced the bubble coalescence,
the elongated bubbles accumulated preferentially near the wall and ut decreased. For
slug flows, the slugs break up with increasing B, ut decreases and the reverse flow of
liquid during the passage of the slugs decreased with increasing B. For annular flow,
the increase in B increased the thickness of liquid film thickness on the wall. Regarding
the distribution of void in flow cross-section, Saito et al. have also found a general
behavior of bubbles to accumulate at the walls rather than at the center[57]. Their
experiments concerned with the NaK-N2 two-phase flows in MHD power generators.
They have explained the movement of void towards wall in terms of pinch effect. The
M.HD pressure drop did not change much with increasing B. They also found that the
gas-liquid slip ratio has a very weak dependence on B, while it changes primarily as a
function of the ratio of liquid to gas flow rates (i.e. α).

There have been some studies in the presence of time varying magnetic fields too.
Zhang et al. have used traveling magnetic field (TMF) on a bubble plume in a cylindri-
cal column of Galinstan[111]. The injection of argon gas bubbles through single orifice
at the center of the cylinder pushes the fluid upwards at the centerline of the cylin-
der. Upward/downward TMF sets up co-current/counter-current flows with respect to
original bubble plume driven flow. This can be utilized as a powerful tool to control
the global flow and to enhance the mixing. The mean velocity (upwards/downwards)
at a radial position close to cylinder periphery increased with increasing magnetic field
while the fluctuating component of velocity also grows continuously with the strength
of B. The horizontal liquid velocities at free surface depends upon bubble rise velocity,
concentration and distribution. This can also be used to improve surface properties of
final products in casting processes. Vogt et al. have recently used Rotating Magnetic
Field (RMF) for the same purpose[112]. An RMF, as opposed to a static magnetic field,
is a magnetic field which rotates its polarities in space in azimuthal direction around
the centerline of the cylinder or pipe containing the flow. Four characteristic zones were
observed, representing four different flow patterns[112]. Taylor number (Ta) is the ratio
of centrifugal or so-called inertial forces due to rotation of a fluid about an axis to viscous
forces. For extremely low Taylor number and high gas flow rates pure bubble driven flow
was observed. At very high Taylor numbers pure RMF driven flow was observed. Two
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intermediate flow regimes represented situations in which bubble plumes rise on one side
while convection sets up on the other side. Rakoczy et al. have done the same for a
Rotating Magnetic Field (RMF)[113]. Sauter mean diameter is defined as follows:

d32 = ΣN
i=1Nid

3
i

ΣN
i=1Nid2

i

(C.3)

Physically, the Sauter mean diameter, d32 is the diameter of an equivalent sphere that
has the same volume to surface area ratio as those of bubbles. The results of Rakoczy
et al. show that Ha has significant effect on d32. For 0.006 < Ha < 0.12, the ratio
D∗ = [d32]Ha 6=0/[d32]Ha=0 for air bubbles in NaCl brine decreased with increasing gas
flow rate and Ha. On the contrary, for the cases of air bubbles in tap water and air
bubbles in synthetic waste water, D∗ increased with Ha. The tendency with the gas flow
rate was same.

There are some other similar studies. In all these studies the bubble motion is
idealized: the details such as bubble wake structure and its modification in the presence
of B or the bubble slip ratio are neglected or assumed to be insignificant. The focus is
to obtain an average e.m.f. corresponding to a given α.

The discussions in this appendix helps us to conclude that MHD turbulent two-phase
flows are relatively difficult to analyze due to the existence of the several coupled physical
mechanisms and non-linearities in their mathematical descriptions. Therefore, it would
be instructive to use model experimental set-up in which different parameters could be
decoupled. For the first time, it would be advisable to assume a given flow velocity
and flow profile and absence of flow induced fluctuations. In addition, the experimental
set-up should be built in such a way that the void locations, and size are fixed. This is
done to avoid the coupled dynamics associated with bubbles in two-phase MHD flow.
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Appendix D

Theoretical expansion in
Lissajous ellipse fitting approach

The objective in this appendix is to develop a theory which helps us characterize the
experimental β signals in terms of U , α and ω. We assume small pulsation ω, such that,
δ � D and Rem � 1. In this case, it is possible to decouple the Faraday induction and
the Lorentz force effects. The theory developed in subsection 3.2.1 of chapter 3 will be
used here.

Given following two signals

V1(t) = D1 cos(ωt+ φ1) + C1 (D.1)

V2(t) = D2 cos(ωt+ φ2) + C2 (D.2)
The algebraic manipulation of these will give,(

V1 − C1
D1

)2
+
(
V2 − C2
D2

)2
− 2(V1 − C1)(V2 − C2)

D1D2
cos(∆φ)− sin2(∆φ) = 0 (D.3)

This can be written as,

F (V1, V2) = aV 2
1 + 2bV1V2 + cV 2

2 + 2dV1 + 2fV2 + g = 0 (D.4)

The values of various coefficients are

a = D2
2

b = −D1D2 cos(∆φ)
c = D2

1
d = −D2

2C1 +D1D2C2 cos(∆φ)
f = −D2

1C2 +D1D2C1 cos(∆φ)

(D.5)

The phase difference is given by

cos(∆φ) = −sgn(a)b√
ac

(D.6)
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The tilt angle is given by

β =


0, for b = 0 and a < c
1
2π, for b = 0 and a > c
1
2 cot−1 a−c

2b , for b 6= 0 and a < c
π
2 + 1

2 cot−1 a−c
2b , for b 6= 0 and a > c

(D.7)

Our signals are given by,

V1
Nsω

= V new
1 = (A1 + b1v) sin(ωt)− ωa1 cos(ωt)) (D.8)

V2
Nsω

= V new
2 = (A2 − b2v) sin(ωt)− ωa2 cos(ωt)) (D.9)

Notice from (D.5), (D.6) and (D.7), that the factor Nsω will cancel out in all the equa-
tions of interest. So from here on we would develop V new

1 and V new
2 . Also we would call

V new
1 and V new

2 as V1 and V2 respectively.
Let

sin(φ1) = −(A1 + b1v)
D1

, cos(φ1) = −ωa1
D1

(D.10)

sin(φ2) = −(A2 − b2v)
D1

, cos(φ2) = −ωa2
D1

(D.11)

Putting equation (D.10) and equation (D.11) in equation (D.8) and equation (D.9), we
get

V1 = −D1 sin(φ1) sin(ωt) +D1 cos(φ1) cos(ωt) (D.12)
V2 = −D2 sin(φ2) sin(ωt) +D2 cos(φ2) cos(ωt) (D.13)

This can be further simplified to,

V1 = D1 cos(ωt+ φ1) (D.14)

V2 = D2 cos(ωt+ φ2) (D.15)
These eqns are similar to equation (D.1) and equation (D.2). Using equation (D.7), we
can write the expression for the tilt angle as,

β = 1
2 cot−1 a− c

2b (D.16)

First we would like to simplify the factor, a−c
2b as follows (using set of eqns. D.5):

a− c
2b = D2

1 −D2
1

2D1D2 cos(∆φ) (D.17)

Using equation (D.10) and eqn. D.11, we get

D1 =
√

(A1 + b1v)2 + ω2a2
1 , tan(φ1) = (A1 + b1v)

ωa1
(D.18)
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D2 =
√

(A2 − b2v)2 + ω2a2
2 , tan(φ2) = (A2 − b2v)

ωa2
(D.19)

We have

D2
1 −D2

2 = (A1 + b1v)2 + ω2a2
1 − (A2 − b2v)2 − ω2a2

2 (D.20)
= (A1 + b1v)2 − (A2 − b2v)2 + ω2a2

1 − ω2a2
2 (D.21)

= [(A1 −A2) + (b1 + b2)v] [(A1 +A2) + (b1 − b2)v]− ω2(a1 − a2)(a1 + a2) (D.22)

In the presence of grooves, the coefficients of contribution from various factors change
as follows,

a1 = a0
1 + δa1 cos(ωgt+ θ1) (D.23)

a2 = a0
2 + δa2 cos(ωg(t−

Lp + Ls
v

) + θ1) (D.24)

where,
ωg = 2πfg = 2πv

d1 + d2
(D.25)

fg is the groove frequency, Lp is the length of the primary coil, Ls is the length of the
secondary coil, d1 is the width of the groove and d2 is the separation of the grooves.

a2 = a0
2 + δa2 cos(ωgt+ θ2) (D.26)

where,
θ2 = θ1 − 2πLp + Ls

d1 + d2
(D.27)

and,
θavg = θ1 + θ2

2 , ∆θ = θ2 − θ1 = −2πLp + Ls
d1 + d2

(D.28)

Similarly,
b1 = b01 + δb1 cos(ωgt+ θ1) (D.29)

b2 = b02 + δb2 cos(ωgt+ θ2) (D.30)

Assume that the two secondary coils are identical. This would make b01 ≈ b02, δb1 ≈ δb2,
a0

1 ≈ a0
2 and δa1 ≈ δa2. Also assume that A1 ≈ A2. Equation (D.22) becomes

D2
1 −D2

2 = 4v
[
b0 + δb cos

(∆θ
2

)
cos(ωgt+ θavg)

] [
A− vδb sin

(∆θ
2

)
sin(ωgt+ θavg)

]
+4ω2δa sin

(∆θ
2

)
sin(ωgt+ θavg)

[
a0 + δa sin

(∆θ
2

)
cos(ωgt+ θavg)

]
(D.31)

Now, we would like to evaluate D1D2. From equations (D.18) and (D.19), we have

D1D2 =
√[

(A1 + b1v)2 + ω2a2
1
] [

(A2 − b2v)2 + ω2a2
2
]

(D.32)
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D2
1 = (A1 + b1v)2 + ω2a2

1 = (A2 + 2Ab0v + (b02 − δb2)v2 + (a02 − δa2)ω2)+
2(δb2v2 + δa2ω2) cos(2ωgt+ 2θ1) + 2(Aδbv + b0δbv2 + a0δaω2) cos(ωgt+ θ1)

(D.33)

Similarly

D2
2 = (A2 − b2v)2 + ω2a2

2 = (A2 − 2Ab0v + (b02 − δb2)v2 + (a02 − δa2)ω2)+
2(δb2v2 + δa2ω2) cos(2ωgt+ 2θ2) + 2(−Aδbv + b0δbv2 + a0δaω2) cos(ωgt+ θ2)

(D.34)

Let
K1 = (A2 + 2Ab0v + (b02 − δb2)v2 + (a02 − δa2)ω2) (D.35)

K2 = 2(δb2v2 + δa2ω2) (D.36)

K3 = 2(Aδbv + b0δbv2 + a0δaω2) (D.37)

K4 = (A2 − 2Ab0v + (b02 − δb2)v2 + (a02 − δa2)ω2) (D.38)

K5 = 2(−Aδbv + b0δbv2 + a0δaω2) (D.39)

These equations give,

D1D2 =
√

[K1 +K2 cos(2ωgt+ 2θ1) +K3 cos(ωgt+ θ1)] [K4 +K2 cos(2ωgt+ 2θ2) +K5 cos(ωgt+ θ2)]
(D.40)

From equation (D.18) and (D.19) we can obtain the phase difference as follows,

∆φ = tan−1
(
A1 + b1v

ωa1

)
− tan−1

(
A2 − b2v
ωa2

)
(D.41)

=

(
A1+b1v
ωa1

)
−
(
A2−b2v
ωa2

)
1 +

(
A1+b1v
ωa1

) (
A2−b2v
ωa2

) (D.42)

∆φ
ω

= (a2 − a1)A+ (b1a2 + b2a1)v
a1a2ω2 + (A1a2 + b1a2v) (A2a1 − b2a1v) (D.43)

∆φ
ω

= (a2 − a1)A+ (b1a2 + b2a1)v
a1a2 [(A2 + ω2)−Av(b1 + b2)− b1b2v2] (D.44)

=

−2δaA sin( ∆θ
2 ) sin(2ωgt+ θavg) + (2a0b0 + δaδb cos(∆θ) + 2 cos( ∆θ

2 )
(a0δbb0δa) cos(2ωgt+ θavg) + δaδb cos(2ωgt+ 2θavg))v

(a2
0 + δa2

2 cos(∆θ) + 2a0δa cos( ∆θ
2 ) cos(2ωgt+ θavg) δa

2

2 cos(2ωgt+ 2θavg))[(A2 + ω2)−Av(2b0 + 2δb cos( ∆θ
2 )

cos(2ωgt+ θavg))− ((b20 + δb2

2 cos(∆θ) + 2b0δb cos( ∆θ
2 ) cos(2ωgt+ θavg) + δb2

2 cos(2ωgt+ 2θavg)))v2]
(D.45)

We can combine equation (D.16), equation (D.17), equation (D.31), equation (D.40)
and equation (D.45), to obtain the expression for tilt angle.

We find in the last equation that expansion in terms of U and ω leads to intractable
relation for β. Therefore, it is better to determine experimental correlations for β signal
for U , ω and α effects.
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génération. PhD thesis, Aix Marseille 2, 2010.

[5] M. Cavaro, “The gas presence in primary sodium of french sfrs,” tech. rep.,
CEA/DEN/CAD/DTN/STPA/LIET, 2013.

[6] ASN, “Lettre dsin 764/94 du 22/12/94,” tech. rep., ASN, 1994.

[7] ASN, “Lettre dsin 303/95 du 25/07/95,” tech. rep., ASN, 1995.

[8] A. B. Wood, A textbook of sound. G. Bell and sons, 1964.

[9] M. Cavaro, C. Payan, J. Moysan, and F. Baqué, “Microbubble cloud characteri-
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Introduction

This document is an appendix to the submitted manuscript titled: Magnetic flux distor-
tion in two-phase liquid metal flow. We have provided in this appendix, the difference
emf time signals recorded in the Lockin amplifier and corresponding FFT spectra, at
various values of U , ω and α. Even though each experiment was repeated six times, we
only show the first two measurements in each case. All the time plots and FFT spectrum
densities presented here, have been used in the submitted manuscript.

Notations

α Void volume fraction

ω Pulsation of AC current in primary coil of ECFM

U Velocity of ECFM

∆V Difference emf between secondary coils S1 and S2

I Current in primary coil

∆V|| Component of difference emf in-phase with I

∆V⊥ Component of difference emf quadrature (π/2 out of phase) with I

I|| Component of measured current in primary coil circuit, in-phase with I

||∆V ||2 Squared norm of difference emf

〈||∆V ||2〉 Mean of squared norm of difference emf
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For α = 0%
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Figure 1.12: FFT spectral density of ∆V vs ωM at U = 0 m s−1, ω = 9425 rad s−1 and
α = 0 %.

13



t (s)
0 1 2 3 4

"
 V

|| (
V

)

#10-4

-3

-2.9

-2.8

-2.7

t (s)
0 1 2 3 4

"
 V

?
 (

V
)

#10-4

-5.65

-5.6

-5.55

-5.5

-5.45

t (s)
0 1 2 3 4

||"
 V

||2
 (

V
2
)

#10-7

3.7

3.8

3.9

4

t (s)
0 1 2 3 4

I ||

0.3660

0.366

0.3660

0.3660

0.3661

Figure 1.13: ∆V and I vs t at U = 0 m s−1, ω = 10 996 rad s−1 and α = 0 %.
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Figure 1.14: FFT spectral density of ∆V vs ωM at U = 0 m s−1, ω = 10 996 rad s−1 and
α = 0 %.
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Figure 1.15: ∆V and I vs t at U = 0 m s−1, ω = 12 566 rad s−1 and α = 0 %.
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Figure 1.16: FFT spectral density of ∆V vs ωM at U = 0 m s−1, ω = 12 566 rad s−1 and
α = 0 %.
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Figure 1.17: ∆V and I vs t at U = 0.1 m s−1, ω = 1571 rad s−1 and α = 0 %.
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Figure 1.18: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 1571 rad s−1 and
α = 0 %.
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Figure 1.19: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 0 %.

!
M

 (rad/s)
0 20 40 60 80 100

"
 V

|| (
V

)

#10-6

0

0.5

1

1.5

!
M

 (rad/s)
0 20 40 60 80 100

"
 V

?
 (

V
)

#10-6

0

1

2

3

!
M

 (rad/s)
0 20 40 60 80 100

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-9

0

0.5

1

1.5

2

Figure 1.20: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and
α = 0 %.
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Figure 1.21: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 0 %.

!
M

 (rad/s)
0 20 40 60 80 100

"
 V

|| (
V

)

#10-6

0

0.5

1

1.5

!
M

 (rad/s)
0 20 40 60 80 100

"
 V

?
 (

V
)

#10-6

0

1

2

3

!
M

 (rad/s)
0 20 40 60 80 100

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-9

0

1

2

3

Figure 1.22: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 0 %.
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Figure 1.23: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0 %.
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Figure 1.24: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 0 %.
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Figure 1.25: ∆V and I vs t at U = 0.1 m s−1, ω = 7854 rad s−1 and α = 0 %.
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Figure 1.26: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 7854 rad s−1 and
α = 0 %.
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Figure 1.27: ∆V and I vs t at U = 0.1 m s−1, ω = 9425 rad s−1 and α = 0 %.
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Figure 1.28: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 9425 rad s−1 and
α = 0 %.
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Figure 1.29: ∆V and I vs t at U = 0.1 m s−1, ω = 10 996 rad s−1 and α = 0 %.

!
M

 (rad/s)
0 20 40 60 80 100

"
 V

|| (
V

)

#10-6

0

1

2

3

4

!
M

 (rad/s)
0 20 40 60 80 100

"
 V

?
 (

V
)

#10-6

0

1

2

3

!
M

 (rad/s)
0 20 40 60 80 100

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-9

0

2

4

6

Figure 1.30: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 10 996 rad s−1

and α = 0 %.

22



t (s)
4 6 8 10

"
 V

|| (
V

)

#10-4

-3.2

-3

-2.8

-2.6

t (s)
4 6 8 10

"
 V

?
 (

V
)

#10-4

-6

-5.8

-5.6

-5.4

t (s)
4 6 8 10

||"
 V

||2
 (

V
2
)

#10-7

3.8

4

4.2

4.4

t (s)
4 6 8 10

I ||

0.3520

0.3521

0.3521

0.3522

0.3522

Figure 1.31: ∆V and I vs t at U = 0.1 m s−1, ω = 12 566 rad s−1 and α = 0 %.
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Figure 1.32: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 12 566 rad s−1

and α = 0 %.
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Figure 1.33: ∆V and I vs t at U = 1 m s−1, ω = 1571 rad s−1 and α = 0 %.
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Figure 1.34: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 1571 rad s−1 and
α = 0 %.
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Figure 1.35: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 0 %.
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Figure 1.36: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and
α = 0 %.
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Figure 1.37: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 0 %.
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Figure 1.38: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 0 %.
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Figure 1.39: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0 %.
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Figure 1.40: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 0 %.
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Figure 1.41: ∆V and I vs t at U = 1 m s−1, ω = 7854 rad s−1 and α = 0 %.
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Figure 1.42: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 7854 rad s−1 and
α = 0 %.
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Figure 1.43: ∆V and I vs t at U = 1 m s−1, ω = 9425 rad s−1 and α = 0 %.
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Figure 1.44: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 9425 rad s−1 and
α = 0 %.

29



t (s)
3.5 4 4.5 5 5.5 6

"
 V

|| (
V

)

#10-4

-5

-4

-3

-2

-1

t (s)
3.5 4 4.5 5 5.5 6

"
 V

?
 (

V
)

#10-4

-7

-6

-5

-4

t (s)
3.5 4 4.5 5 5.5 6

||"
 V

||2
 (

V
2
)

#10-7

3

3.5

4

4.5

t (s)
3.5 4 4.5 5 5.5 6

I ||

0.3659

0.366

0.3661

0.3662

Figure 1.45: ∆V and I vs t at U = 1 m s−1, ω = 10 996 rad s−1 and α = 0 %.
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Figure 1.46: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 10 996 rad s−1 and
α = 0 %.
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Figure 1.47: ∆V and I vs t at U = 1 m s−1, ω = 12 566 rad s−1 and α = 0 %.
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Figure 1.48: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 12 566 rad s−1 and
α = 0 %.
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Figure 1.49: ∆V and I vs t at U = 10−3 m s−1, ω = 3142 rad s−1 and α = 0 %.
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Figure 1.50: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 3142 rad s−1

and α = 0 %.

32



t (s)
0 100 200 300 400

"
 V

|| (
V

)

#10-4

-2.8

-2.6

-2.4

-2.2

t (s)
0 100 200 300 400

"
 V

?
 (

V
)

#10-4

-4.4

-4.2

-4

-3.8

-3.6

t (s)
0 100 200 300 400

||"
 V

||2
 (

V
2
)

#10-7

1.8

2

2.2

2.4

2.6

t (s)
0 100 200 300 400

I ||

0.4093

0.4094

0.4095

0.4096

0.4097

Figure 1.51: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 0 %.
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Figure 1.52: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1

and α = 0 %.
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Figure 1.53: ∆V and I vs t at U = 3× 10−3 m s−1, ω = 3142 rad s−1 and α = 0 %.
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Figure 1.54: FFT spectral density of ∆V vs ωM at U = 3× 10−3 m s−1, ω = 3142 rad s−1

and α = 0 %.
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Figure 1.55: ∆V and I vs t at U = 3× 10−3 m s−1, ω = 6283 rad s−1 and α = 0 %.
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Figure 1.56: FFT spectral density of ∆V vs ωM at U = 3× 10−3 m s−1, ω = 6283 rad s−1

and α = 0 %.
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Figure 1.57: ∆V and I vs t at U = 10−2 m s−1, ω = 3142 rad s−1 and α = 0 %.
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Figure 1.58: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 3142 rad s−1

and α = 0 %.
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Figure 1.59: ∆V and I vs t at U = 10−2 m s−1, ω = 6283 rad s−1 and α = 0 %.
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Figure 1.60: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 6283 rad s−1

and α = 0 %.
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Figure 1.61: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 3142 rad s−1 and α = 0 %.

!
M

 (rad/s)
0 10 20 30

"
 V

|| (
V

)

#10-6

0

0.5

1

!
M

 (rad/s)
0 10 20 30

"
 V

?
 (

V
)

#10-6

0

0.5

1

!
M

 (rad/s)
0 10 20 30

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-10

0

2

4

6

8

Figure 1.62: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 3142 rad s−1

and α = 0 %.
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Figure 1.63: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 6283 rad s−1 and α = 0 %.
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Figure 1.64: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 6283 rad s−1

and α = 0 %.
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Figure 1.65: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 0 %.
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Figure 1.66: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and
α = 0 %.

40



t (s)
3 4 5 6 7 8

"
 V

|| (
V

)

#10-4

-3

-2.5

-2

t (s)
3 4 5 6 7 8

"
 V

?
 (

V
)

#10-4

-4.5

-4

-3.5

t (s)
3 4 5 6 7 8

||"
 V

||2
 (

V
2
)

#10-7

1.8

2

2.2

2.4

t (s)
3 4 5 6 7 8

I ||

0.4091

0.4092

0.4093

0.4094

Figure 1.67: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0 %.
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Figure 1.68: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 0 %.
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Figure 1.69: ∆V and I vs t at U = 0.25 m s−1, ω = 3142 rad s−1 and α = 0 %.
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Figure 1.70: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 3142 rad s−1

and α = 0 %.
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Figure 1.71: ∆V and I vs t at U = 0.25 m s−1, ω = 6283 rad s−1 and α = 0 %.
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Figure 1.72: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 6283 rad s−1

and α = 0 %.
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Figure 1.73: ∆V and I vs t at U = 0.5 m s−1, ω = 6283 rad s−1 and α = 0 %.
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Figure 1.74: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 6283 rad s−1 and
α = 0 %.
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Figure 1.75: ∆V and I vs t at U = 0.75 m s−1, ω = 3142 rad s−1 and α = 0 %.
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Figure 1.76: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 3142 rad s−1

and α = 0 %.
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Figure 1.77: ∆V and I vs t at U = 0.75 m s−1, ω = 6283 rad s−1 and α = 0 %.
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Figure 1.78: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 6283 rad s−1

and α = 0 %.
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Figure 1.79: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 0 %.
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Figure 1.80: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and
α = 0 %.
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Figure 1.81: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0 %.
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Figure 1.82: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 0 %.
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Figure 2.1: ∆V and I vs t at U = 10−3 m s−1, ω = 1571 rad s−1 and α = 0.3 %.
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Figure 2.2: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 1571 rad s−1 and
α = 0.3 %.
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Figure 2.3: ∆V and I vs t at U = 10−3 m s−1, ω = 3142 rad s−1 and α = 0.3 %.
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Figure 2.4: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 3142 rad s−1 and
α = 0.3 %.
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Figure 2.5: ∆V and I vs t at U = 10−3 m s−1, ω = 4712 rad s−1 and α = 0.3 %.
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Figure 2.6: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 4712 rad s−1 and
α = 0.3 %.
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Figure 2.7: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.8: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1 and
α = 0.3 %.
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Figure 2.9: ∆V and I vs t at U = 10−3 m s−1, ω = 7854 rad s−1 and α = 0.3 %.

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

"
 V

|| (
V

)

#10-5

0

1

2

3

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

"
 V

?
 (

V
)

#10-5

0

2

4

6

8

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

2

4

6

Figure 2.10: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 7854 rad s−1

and α = 0.3 %.
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Figure 2.11: ∆V and I vs t at U = 10−3 m s−1, ω = 9425 rad s−1 and α = 0.3 %.
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Figure 2.12: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 9425 rad s−1

and α = 0.3 %.
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Figure 2.13: ∆V and I vs t at U = 10−3 m s−1, ω = 10 996 rad s−1 and α = 0.3 %.
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Figure 2.14: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 10 996 rad s−1

and α = 0.3 %.
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Figure 2.15: ∆V and I vs t at U = 10−3 m s−1, ω = 12 566 rad s−1 and α = 0.3 %.
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Figure 2.16: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 12 566 rad s−1

and α = 0.3 %.
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Figure 2.17: ∆V and I vs t at U = 0.1 m s−1, ω = 1571 rad s−1 and α = 0.3 %.
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Figure 2.18: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 1571 rad s−1 and
α = 0.3 %.
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Figure 2.19: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 0.3 %.
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Figure 2.20: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and
α = 0.3 %.
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Figure 2.21: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 0.3 %.
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Figure 2.22: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 0.3 %.
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Figure 2.23: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.24: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 0.3 %.
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Figure 2.25: ∆V and I vs t at U = 0.1 m s−1, ω = 7854 rad s−1 and α = 0.3 %.
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Figure 2.26: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 7854 rad s−1 and
α = 0.3 %.
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Figure 2.27: ∆V and I vs t at U = 0.1 m s−1, ω = 9425 rad s−1 and α = 0.3 %.
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Figure 2.28: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 9425 rad s−1 and
α = 0.3 %.
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Figure 2.29: ∆V and I vs t at U = 0.1 m s−1, ω = 10 996 rad s−1 and α = 0.3 %.
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Figure 2.30: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 10 996 rad s−1

and α = 0.3 %.
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Figure 2.31: ∆V and I vs t at U = 0.1 m s−1, ω = 12 566 rad s−1 and α = 0.3 %.
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Figure 2.32: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 12 566 rad s−1

and α = 0.3 %.
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Figure 2.33: ∆V and I vs t at U = 1 m s−1, ω = 1571 rad s−1 and α = 0.3 %.
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Figure 2.34: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 1571 rad s−1 and
α = 0.3 %.
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Figure 2.35: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 0.3 %.
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Figure 2.36: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and
α = 0.3 %.
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Figure 2.37: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 0.3 %.
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Figure 2.38: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 0.3 %.
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Figure 2.39: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.40: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 0.3 %.
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Figure 2.41: ∆V and I vs t at U = 1 m s−1, ω = 7854 rad s−1 and α = 0.3 %.
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Figure 2.42: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 7854 rad s−1 and
α = 0.3 %.
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Figure 2.43: ∆V and I vs t at U = 1 m s−1, ω = 9425 rad s−1 and α = 0.3 %.
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Figure 2.44: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 9425 rad s−1 and
α = 0.3 %.
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Figure 2.45: ∆V and I vs t at U = 1 m s−1, ω = 10 996 rad s−1 and α = 0.3 %.

!
M

 (rad/s)
0 200 400 600 800 1000

"
 V

|| (
V

)

#10-5

0

1

2

3

!
M

 (rad/s)
0 200 400 600 800 1000

"
 V

?
 (

V
)

#10-4

0

0.5

1

!
M

 (rad/s)
0 200 400 600 800 1000

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

2

4

6

Figure 2.46: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 10 996 rad s−1 and
α = 0.3 %.
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Figure 2.47: ∆V and I vs t at U = 1 m s−1, ω = 12 566 rad s−1 and α = 0.3 %.
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Figure 2.48: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 12 566 rad s−1 and
α = 0.3 %.
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Figure 2.49: ∆V and I vs t at U = 10−3 m s−1, ω = 3142 rad s−1 and α = 0.3 %.
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Figure 2.50: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 3142 rad s−1

and α = 0.3 %.

74



t (s)
0 50 100 150

"
 V

|| (
V

)

#10-4

-3

-2.5

-2

t (s)
0 50 100 150

"
 V

?
 (

V
)

#10-4

-5

-4.5

-4

-3.5

-3

t (s)
0 50 100 150

||"
 V

||2
 (

V
2
)

#10-7

1.5

2

2.5

3

t (s)
0 50 100 150

I ||

0.4092

0.4093

0.4094

0.4095

Figure 2.51: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.52: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1

and α = 0.3 %.
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Figure 2.53: ∆V and I vs t at U = 3× 10−3 m s−1, ω = 3142 rad s−1 and α = 0.3 %.

!
M

 (rad/s)
0 1 2 3

"
 V

|| (
V

)

#10-5

0

0.5

1

1.5

2

!
M

 (rad/s)
0 1 2 3

"
 V

?
 (

V
)

#10-5

0

0.5

1

1.5

2

!
M

 (rad/s)
0 1 2 3

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-9

0

1

2

3

4

Figure 2.54: FFT spectral density of ∆V vs ωM at U = 3× 10−3 m s−1, ω = 3142 rad s−1

and α = 0.3 %.
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Figure 2.55: ∆V and I vs t at U = 3× 10−3 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.56: FFT spectral density of ∆V vs ωM at U = 3× 10−3 m s−1, ω = 6283 rad s−1

and α = 0.3 %.
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Figure 2.57: ∆V and I vs t at U = 10−2 m s−1, ω = 3142 rad s−1 and α = 0.3 %.
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Figure 2.58: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 3142 rad s−1

and α = 0.3 %.
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Figure 2.59: ∆V and I vs t at U = 10−2 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.60: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 6283 rad s−1

and α = 0.3 %.

79



t (s)
5 10 15 20

"
 V

|| (
V

)

#10-4

-4

-3

-2

-1

0

t (s)
5 10 15 20

"
 V

?
 (

V
)

#10-4

-6

-4

-2

0

t (s)
5 10 15 20

||"
 V

||2
 (

V
2
)

#10-7

0

1

2

3

t (s)
5 10 15 20

I ||

0.438

0.4385

0.439

0.4395

0.44

Figure 2.61: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 3142 rad s−1 and α = 0.3 %.
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Figure 2.62: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 3142 rad s−1

and α = 0.3 %.
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Figure 2.63: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.64: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 6283 rad s−1

and α = 0.3 %.

81



t (s)
2 3 4 5 6 7

"
 V

|| (
V

)

#10-4

-6

-4

-2

0

t (s)
2 3 4 5 6 7

"
 V

?
 (

V
)

#10-4

-6

-4

-2

0

t (s)
2 3 4 5 6 7

||"
 V

||2
 (

V
2
)

#10-7

0

1

2

3

t (s)
2 3 4 5 6 7

I ||

0.438

0.4385

0.439

0.4395

0.44

Figure 2.65: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 0.3 %.
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Figure 2.66: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and
α = 0.3 %.
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Figure 2.67: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.68: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 0.3 %.
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Figure 2.69: ∆V and I vs t at U = 0.25 m s−1, ω = 3142 rad s−1 and α = 0.3 %.
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Figure 2.70: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 3142 rad s−1

and α = 0.3 %.
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Figure 2.71: ∆V and I vs t at U = 0.25 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.72: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 6283 rad s−1

and α = 0.3 %.
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Figure 2.73: ∆V and I vs t at U = 0.5 m s−1, ω = 3142 rad s−1 and α = 0.3 %.
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Figure 2.74: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 3142 rad s−1 and
α = 0.3 %.
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Figure 2.75: ∆V and I vs t at U = 0.5 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.76: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 6283 rad s−1 and
α = 0.3 %.
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Figure 2.77: ∆V and I vs t at U = 0.75 m s−1, ω = 3142 rad s−1 and α = 0.3 %.
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Figure 2.78: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 3142 rad s−1

and α = 0.3 %.
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Figure 2.79: ∆V and I vs t at U = 0.75 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.80: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 6283 rad s−1

and α = 0.3 %.
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Figure 2.81: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 0.3 %.
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Figure 2.82: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and
α = 0.3 %.
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Figure 2.83: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0.3 %.
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Figure 2.84: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 0.3 %.
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Figure 3.1: ∆V and I vs t at U = 10−3 m s−1, ω = 1571 rad s−1 and α = 6.9 %.
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Figure 3.2: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 1571 rad s−1 and
α = 6.9 %.
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Figure 3.3: ∆V and I vs t at U = 10−3 m s−1, ω = 3142 rad s−1 and α = 6.9 %.
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Figure 3.4: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 3142 rad s−1 and
α = 6.9 %.
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Figure 3.5: ∆V and I vs t at U = 10−3 m s−1, ω = 4712 rad s−1 and α = 6.9 %.
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Figure 3.6: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 4712 rad s−1 and
α = 6.9 %.

96



t (s)
0 50 100 150 200

"
 V

|| (
V

)
#10-4

-4

-3

-2

-1

t (s)
0 50 100 150 200

"
 V

?
 (

V
)

#10-4

-10

-5

0

5

t (s)
0 50 100 150 200

||"
 V

||2
 (

V
2
)

#10-6

0

0.5

1

t (s)
0 50 100 150 200

I ||

0.4044

0.4045

0.4046

0.4047

0.4048

Figure 3.7: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 6.9 %.
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Figure 3.8: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1 and
α = 6.9 %.
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Figure 3.9: ∆V and I vs t at U = 10−3 m s−1, ω = 7854 rad s−1 and α = 6.9 %.
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Figure 3.10: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 7854 rad s−1

and α = 6.9 %.
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Figure 3.11: ∆V and I vs t at U = 10−3 m s−1, ω = 9425 rad s−1 and α = 6.9 %.
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Figure 3.12: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 9425 rad s−1

and α = 6.9 %.

99



t (s)
0 50 100 150 200

"
 V

|| (
V

)

#10-4

-4

-3.5

-3

-2.5

t (s)
0 50 100 150 200

"
 V

?
 (

V
)

#10-4

-15

-10

-5

0

5

t (s)
0 50 100 150 200

||"
 V

||2
 (

V
2
)

#10-6

0

1

2

3

t (s)
0 50 100 150 200

I ||

0.3595

0.36

0.3605

0.361

Figure 3.13: ∆V and I vs t at U = 10−3 m s−1, ω = 10 996 rad s−1 and α = 6.9 %.
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Figure 3.14: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 10 996 rad s−1

and α = 6.9 %.
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Figure 3.15: ∆V and I vs t at U = 10−3 m s−1, ω = 12 566 rad s−1 and α = 6.9 %.
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Figure 3.16: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 12 566 rad s−1

and α = 6.9 %.
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Figure 3.17: ∆V and I vs t at U = 0.1 m s−1, ω = 1571 rad s−1 and α = 6.9 %.
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Figure 3.18: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 1571 rad s−1 and
α = 6.9 %.
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Figure 3.19: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 6.9 %.
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Figure 3.20: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and
α = 6.9 %.
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Figure 3.21: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 6.9 %.
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Figure 3.22: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 6.9 %.
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Figure 3.23: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 6.9 %.

!
M

 (rad/s)
0 20 40 60 80 100

"
 V

|| (
V

)

#10-4

0

0.5

1

!
M

 (rad/s)
0 20 40 60 80 100

"
 V

?
 (

V
)

#10-4

0

1

2

3

4

!
M

 (rad/s)
0 20 40 60 80 100

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-7

0

1

2

3

Figure 3.24: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 6.9 %.

105



t (s)
2 4 6 8 10

"
 V

|| (
V

)

#10-4

-4

-3

-2

-1

t (s)
2 4 6 8 10

"
 V

?
 (

V
)

#10-4

-15

-10

-5

0

5

t (s)
2 4 6 8 10

||"
 V

||2
 (

V
2
)

#10-6

0

0.5

1

1.5

t (s)
2 4 6 8 10

I ||

0.389

0.3892

0.3894

0.3896

0.3898

Figure 3.25: ∆V and I vs t at U = 0.1 m s−1, ω = 7854 rad s−1 and α = 6.9 %.
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Figure 3.26: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 7854 rad s−1 and
α = 6.9 %.
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Figure 3.27: ∆V and I vs t at U = 0.1 m s−1, ω = 9425 rad s−1 and α = 6.9 %.
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Figure 3.28: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 9425 rad s−1 and
α = 6.9 %.
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Figure 3.29: ∆V and I vs t at U = 0.1 m s−1, ω = 10 996 rad s−1 and α = 6.9 %.
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Figure 3.30: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 10 996 rad s−1

and α = 6.9 %.

108



t (s)
3 4 5 6 7 8

"
 V

|| (
V

)

#10-4

-4

-3.5

-3

-2.5

t (s)
3 4 5 6 7 8

"
 V

?
 (

V
)

#10-4

-15

-10

-5

0

5

t (s)
3 4 5 6 7 8

||"
 V

||2
 (

V
2
)

#10-6

0

1

2

3

t (s)
3 4 5 6 7 8

I ||

0.345

0.3455

0.346

0.3465

0.347

Figure 3.31: ∆V and I vs t at U = 0.1 m s−1, ω = 12 566 rad s−1 and α = 6.9 %.
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Figure 3.32: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 12 566 rad s−1

and α = 6.9 %.
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Figure 3.33: ∆V and I vs t at U = 1 m s−1, ω = 1571 rad s−1 and α = 6.9 %.
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Figure 3.34: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 1571 rad s−1 and
α = 6.9 %.
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Figure 3.35: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 6.9 %.
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Figure 3.36: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and
α = 6.9 %.
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Figure 3.37: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 6.9 %.
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Figure 3.38: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 6.9 %.
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Figure 3.39: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 6.9 %.
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Figure 3.40: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 6.9 %.
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Figure 3.41: ∆V and I vs t at U = 1 m s−1, ω = 7854 rad s−1 and α = 6.9 %.
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Figure 3.42: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 7854 rad s−1 and
α = 6.9 %.
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Figure 3.43: ∆V and I vs t at U = 1 m s−1, ω = 9425 rad s−1 and α = 6.9 %.
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Figure 3.44: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 9425 rad s−1 and
α = 6.9 %.
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Figure 3.45: ∆V and I vs t at U = 1 m s−1, ω = 10 996 rad s−1 and α = 6.9 %.
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Figure 3.46: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 10 996 rad s−1 and
α = 6.9 %.
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Figure 3.47: ∆V and I vs t at U = 1 m s−1, ω = 12 566 rad s−1 and α = 6.9 %.
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Figure 3.48: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 12 566 rad s−1 and
α = 6.9 %.
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Figure 3.49: ∆V and I vs t at U = 10−3 m s−1, ω = 3142 rad s−1 and α = 6.9 %.
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Figure 3.50: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 3142 rad s−1

and α = 6.9 %.
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Figure 3.51: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 6.9 %.
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Figure 3.52: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1

and α = 6.9 %.
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Figure 3.53: ∆V and I vs t at U = 3× 10−3 m s−1, ω = 3142 rad s−1 and α = 6.9 %.
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Figure 3.54: FFT spectral density of ∆V vs ωM at U = 3× 10−3 m s−1, ω = 3142 rad s−1

and α = 6.9 %.
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Figure 3.55: ∆V and I vs t at U = 3× 10−3 m s−1, ω = 6283 rad s−1 and α = 6.9 %.
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Figure 3.56: FFT spectral density of ∆V vs ωM at U = 3× 10−3 m s−1, ω = 6283 rad s−1

and α = 6.9 %.
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Figure 3.57: ∆V and I vs t at U = 10−2 m s−1, ω = 3142 rad s−1 and α = 6.9 %.
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Figure 3.58: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 3142 rad s−1

and α = 6.9 %.
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Figure 3.59: ∆V and I vs t at U = 10−2 m s−1, ω = 6283 rad s−1 and α = 6.9 %.
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Figure 3.60: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 6283 rad s−1

and α = 6.9 %.
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Figure 3.61: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 3142 rad s−1 and α = 6.9 %.

!
M

 (rad/s)
0 10 20 30

"
 V

|| (
V

)

#10-4

0

0.5

1

!
M

 (rad/s)
0 10 20 30

"
 V

?
 (

V
)

#10-4

0

0.5

1

1.5

2

!
M

 (rad/s)
0 10 20 30

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

2

4

6

Figure 3.62: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 3142 rad s−1

and α = 6.9 %.
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Figure 3.63: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 6283 rad s−1 and α = 6.9 %.
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Figure 3.64: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 6283 rad s−1

and α = 6.9 %.
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Figure 3.65: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 6.9 %.
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Figure 3.66: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and
α = 6.9 %.

126



t (s)
2 3 4 5 6 7

"
 V

|| (
V

)
#10-4

-5

-4

-3

-2

-1

t (s)
2 3 4 5 6 7

"
 V

?
 (

V
)

#10-4

-10

-5

0

5

t (s)
2 3 4 5 6 7

||"
 V

||2
 (

V
2
)

#10-6

0

0.5

1

t (s)
2 3 4 5 6 7

I ||

0.4044

0.4046

0.4048

0.405

Figure 3.67: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 6.9 %.
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Figure 3.68: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 6.9 %.
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Figure 3.69: ∆V and I vs t at U = 0.25 m s−1, ω = 3142 rad s−1 and α = 6.9 %.
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Figure 3.70: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 3142 rad s−1

and α = 6.9 %.
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Figure 3.71: ∆V and I vs t at U = 0.25 m s−1, ω = 6283 rad s−1 and α = 6.9 %.
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Figure 3.72: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 6283 rad s−1

and α = 6.9 %.
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Figure 3.73: ∆V and I vs t at U = 0.5 m s−1, ω = 3142 rad s−1 and α = 6.9 %.
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Figure 3.74: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 3142 rad s−1 and
α = 6.9 %.
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Figure 3.75: ∆V and I vs t at U = 0.5 m s−1, ω = 6283 rad s−1 and α = 6.9 %.
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Figure 3.76: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 6283 rad s−1 and
α = 6.9 %.
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Figure 3.77: ∆V and I vs t at U = 0.75 m s−1, ω = 3142 rad s−1 and α = 6.9 %.
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Figure 3.78: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 3142 rad s−1

and α = 6.9 %.
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Figure 3.79: ∆V and I vs t at U = 0.75 m s−1, ω = 6283 rad s−1 and α = 6.9 %.

!
M

 (rad/s)
0 200 400 600 800

"
 V

|| (
V

)

#10-5

0

2

4

6

8

!
M

 (rad/s)
0 200 400 600 800

"
 V

?
 (

V
)

#10-4

0

1

2

3

4

!
M

 (rad/s)
0 200 400 600 800

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-7

0

0.5

1

1.5

2

Figure 3.80: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 6283 rad s−1

and α = 6.9 %.
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Figure 3.81: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 6.9 %.
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Figure 3.82: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and
α = 6.9 %.
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Figure 3.83: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 6.9 %.
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Figure 3.84: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 6.9 %.
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Chapter 4

For α = 2.0%
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Figure 4.1: ∆V and I vs t at U = 0.1 m s−1, ω = 1571 rad s−1 and α = 2.0 %.
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Figure 4.2: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 1571 rad s−1 and
α = 2.0 %.
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Figure 4.3: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 2.0 %.
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Figure 4.4: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and
α = 2.0 %.
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Figure 4.5: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 2.0 %.
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Figure 4.6: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 2.0 %.
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Figure 4.7: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 2.0 %.
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Figure 4.8: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 2.0 %.
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Figure 4.9: ∆V and I vs t at U = 0.1 m s−1, ω = 7854 rad s−1 and α = 2.0 %.
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Figure 4.10: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 7854 rad s−1 and
α = 2.0 %.
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Figure 4.11: ∆V and I vs t at U = 0.1 m s−1, ω = 9425 rad s−1 and α = 2.0 %.
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Figure 4.12: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 9425 rad s−1 and
α = 2.0 %.
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Figure 4.13: ∆V and I vs t at U = 0.1 m s−1, ω = 10 996 rad s−1 and α = 2.0 %.
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Figure 4.14: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 10 996 rad s−1

and α = 2.0 %.

144



t (s)
5 10 15 20

"
 V

|| (
V

)
#10-4

0

1

2

3

4

t (s)
5 10 15 20

"
 V

?
 (

V
)

#10-4

-5

0

5

10

15

t (s)
5 10 15 20

||"
 V

||2
 (

V
2
)

#10-6

0

0.5

1

1.5

t (s)
5 10 15 20

I ||

0.336

0.3365

0.337

0.3375

Figure 4.15: ∆V and I vs t at U = 0.1 m s−1, ω = 12 566 rad s−1 and α = 2.0 %.
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Figure 4.16: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 12 566 rad s−1

and α = 2.0 %.
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Figure 4.17: ∆V and I vs t at U = 1 m s−1, ω = 1571 rad s−1 and α = 2.0 %.
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Figure 4.18: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 1571 rad s−1 and
α = 2.0 %.
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Figure 4.19: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 2.0 %.
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Figure 4.20: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and
α = 2.0 %.
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Figure 4.21: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 2.0 %.

!
M

 (rad/s)
0 200 400 600 800 1000

"
 V

|| (
V

)

#10-5

0

2

4

6

8

!
M

 (rad/s)
0 200 400 600 800 1000

"
 V

?
 (

V
)

#10-4

0

0.5

1

1.5

!
M

 (rad/s)
0 200 400 600 800 1000

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

0.5

1

1.5

Figure 4.22: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 2.0 %.
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Figure 4.23: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 2.0 %.

!
M

 (rad/s)
0 200 400 600 800 1000

"
 V

|| (
V

)

#10-5

0

2

4

6

8

!
M

 (rad/s)
0 200 400 600 800 1000

"
 V

?
 (

V
)

#10-4

0

1

2

3

!
M

 (rad/s)
0 200 400 600 800 1000

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

2

4

6

Figure 4.24: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 2.0 %.
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Figure 4.25: ∆V and I vs t at U = 1 m s−1, ω = 7854 rad s−1 and α = 2.0 %.
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Figure 4.26: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 7854 rad s−1 and
α = 2.0 %.
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Figure 4.27: ∆V and I vs t at U = 1 m s−1, ω = 9425 rad s−1 and α = 2.0 %.
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Figure 4.28: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 9425 rad s−1 and
α = 2.0 %.
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Figure 4.29: ∆V and I vs t at U = 1 m s−1, ω = 10 996 rad s−1 and α = 2.0 %.
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Figure 4.30: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 10 996 rad s−1 and
α = 2.0 %.
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Figure 4.31: ∆V and I vs t at U = 1 m s−1, ω = 12 566 rad s−1 and α = 2.0 %.
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Figure 4.32: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 12 566 rad s−1 and
α = 2.0 %.
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Figure 4.33: ∆V and I vs t at U = 10−3 m s−1, ω = 3142 rad s−1 and α = 2.0 %.
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Figure 4.34: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 3142 rad s−1

and α = 2.0 %.
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Figure 4.35: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 2.0 %.
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Figure 4.36: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1

and α = 2.0 %.
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Figure 4.37: ∆V and I vs t at U = 10−2 m s−1, ω = 3142 rad s−1 and α = 2.0 %.
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Figure 4.38: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 3142 rad s−1

and α = 2.0 %.
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Figure 4.39: ∆V and I vs t at U = 10−2 m s−1, ω = 6283 rad s−1 and α = 2.0 %.
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Figure 4.40: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 6283 rad s−1

and α = 2.0 %.
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Figure 4.41: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 3142 rad s−1 and α = 2.0 %.
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Figure 4.42: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 3142 rad s−1

and α = 2.0 %.
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Figure 4.43: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 6283 rad s−1 and α = 2.0 %.
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Figure 4.44: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 6283 rad s−1

and α = 2.0 %.
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Figure 4.45: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 2.0 %.
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Figure 4.46: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and
α = 2.0 %.
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Figure 4.47: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 2.0 %.
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Figure 4.48: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 2.0 %.
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Figure 4.49: ∆V and I vs t at U = 0.25 m s−1, ω = 3142 rad s−1 and α = 2.0 %.
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Figure 4.50: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 3142 rad s−1

and α = 2.0 %.
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Figure 4.51: ∆V and I vs t at U = 0.25 m s−1, ω = 6283 rad s−1 and α = 2.0 %.
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Figure 4.52: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 6283 rad s−1

and α = 2.0 %.
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Figure 4.53: ∆V and I vs t at U = 0.5 m s−1, ω = 3142 rad s−1 and α = 2.0 %.
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Figure 4.54: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 3142 rad s−1 and
α = 2.0 %.
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Figure 4.55: ∆V and I vs t at U = 0.5 m s−1, ω = 6283 rad s−1 and α = 2.0 %.
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Figure 4.56: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 6283 rad s−1 and
α = 2.0 %.
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Figure 4.57: ∆V and I vs t at U = 0.75 m s−1, ω = 3142 rad s−1 and α = 2.0 %.
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Figure 4.58: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 3142 rad s−1

and α = 2.0 %.
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Figure 4.59: ∆V and I vs t at U = 0.75 m s−1, ω = 6283 rad s−1 and α = 2.0 %.
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Figure 4.60: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 6283 rad s−1

and α = 2.0 %.
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Figure 4.61: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 2.0 %.
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Figure 4.62: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and
α = 2.0 %.
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Figure 4.63: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 2.0 %.
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Figure 4.64: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 2.0 %.
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Chapter 5

For α = 4.5%
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Figure 5.1: ∆V and I vs t at U = 0.1 m s−1, ω = 1571 rad s−1 and α = 4.5 %.
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Figure 5.2: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 1571 rad s−1 and
α = 4.5 %.
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Figure 5.3: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 4.5 %.
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Figure 5.4: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and
α = 4.5 %.
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Figure 5.5: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 4.5 %.
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Figure 5.6: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 4.5 %.
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Figure 5.7: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 4.5 %.
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Figure 5.8: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 4.5 %.
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Figure 5.9: ∆V and I vs t at U = 0.1 m s−1, ω = 7854 rad s−1 and α = 4.5 %.
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Figure 5.10: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 7854 rad s−1 and
α = 4.5 %.
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Figure 5.11: ∆V and I vs t at U = 0.1 m s−1, ω = 9425 rad s−1 and α = 4.5 %.
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Figure 5.12: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 9425 rad s−1 and
α = 4.5 %.
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Figure 5.13: ∆V and I vs t at U = 0.1 m s−1, ω = 10 996 rad s−1 and α = 4.5 %.
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Figure 5.14: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 10 996 rad s−1

and α = 4.5 %.
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Figure 5.15: ∆V and I vs t at U = 0.1 m s−1, ω = 12 566 rad s−1 and α = 4.5 %.
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Figure 5.16: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 12 566 rad s−1

and α = 4.5 %.
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Figure 5.17: ∆V and I vs t at U = 1 m s−1, ω = 1571 rad s−1 and α = 4.5 %.
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Figure 5.18: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 1571 rad s−1 and
α = 4.5 %.
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Figure 5.19: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 4.5 %.
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Figure 5.20: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and
α = 4.5 %.
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Figure 5.21: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 4.5 %.

!
M

 (rad/s)
0 200 400 600 800 1000

"
 V

|| (
V

)

#10-4

0

0.5

1

!
M

 (rad/s)
0 200 400 600 800 1000

"
 V

?
 (

V
)

#10-4

0

1

2

3

!
M

 (rad/s)
0 200 400 600 800 1000

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

1

2

3

4

Figure 5.22: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 4.5 %.

182



t (s)
5 5.5 6 6.5 7 7.5

"
 V

|| (
V

)

#10-4

-5

0

5

10

t (s)
5 5.5 6 6.5 7 7.5

"
 V

?
 (

V
)

#10-4

-5

0

5

10

t (s)
5 5.5 6 6.5 7 7.5

||"
 V

||2
 (

V
2
)

#10-7

0

2

4

6

8

t (s)
5 5.5 6 6.5 7 7.5

I ||

0.3904

0.3906

0.3908

0.391

Figure 5.23: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 4.5 %.
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Figure 5.24: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 4.5 %.
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Figure 5.25: ∆V and I vs t at U = 1 m s−1, ω = 7854 rad s−1 and α = 4.5 %.
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Figure 5.26: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 7854 rad s−1 and
α = 4.5 %.
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Figure 5.27: ∆V and I vs t at U = 1 m s−1, ω = 9425 rad s−1 and α = 4.5 %.
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Figure 5.28: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 9425 rad s−1 and
α = 4.5 %.
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Figure 5.29: ∆V and I vs t at U = 1 m s−1, ω = 10 996 rad s−1 and α = 4.5 %.
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Figure 5.30: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 10 996 rad s−1 and
α = 4.5 %.
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Figure 5.31: ∆V and I vs t at U = 1 m s−1, ω = 12 566 rad s−1 and α = 4.5 %.

!
M

 (rad/s)
0 200 400 600 800 1000

"
 V

|| (
V

)

#10-5

0

1

2

3

!
M

 (rad/s)
0 200 400 600 800 1000

"
 V

?
 (

V
)

#10-4

0

2

4

6

8

!
M

 (rad/s)
0 200 400 600 800 1000

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-7

0

2

4

6

8

Figure 5.32: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 12 566 rad s−1 and
α = 4.5 %.
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Figure 5.33: ∆V and I vs t at U = 10−3 m s−1, ω = 3142 rad s−1 and α = 4.5 %.
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Figure 5.34: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 3142 rad s−1

and α = 4.5 %.
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Figure 5.35: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 4.5 %.
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Figure 5.36: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1

and α = 4.5 %.
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Figure 5.37: ∆V and I vs t at U = 10−2 m s−1, ω = 3142 rad s−1 and α = 4.5 %.
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Figure 5.38: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 3142 rad s−1

and α = 4.5 %.
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Figure 5.39: ∆V and I vs t at U = 10−2 m s−1, ω = 6283 rad s−1 and α = 4.5 %.
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Figure 5.40: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 6283 rad s−1

and α = 4.5 %.
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Figure 5.41: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 3142 rad s−1 and α = 4.5 %.
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Figure 5.42: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 3142 rad s−1

and α = 4.5 %.
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Figure 5.43: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 6283 rad s−1 and α = 4.5 %.
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Figure 5.44: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 6283 rad s−1

and α = 4.5 %.
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Figure 5.45: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 4.5 %.
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Figure 5.46: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and
α = 4.5 %.
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Figure 5.47: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 4.5 %.
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Figure 5.48: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 4.5 %.
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Figure 5.49: ∆V and I vs t at U = 0.25 m s−1, ω = 3142 rad s−1 and α = 4.5 %.
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Figure 5.50: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 3142 rad s−1

and α = 4.5 %.
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Figure 5.51: ∆V and I vs t at U = 0.25 m s−1, ω = 6283 rad s−1 and α = 4.5 %.
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Figure 5.52: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 6283 rad s−1

and α = 4.5 %.
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Figure 5.53: ∆V and I vs t at U = 0.5 m s−1, ω = 3142 rad s−1 and α = 4.5 %.
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Figure 5.54: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 3142 rad s−1 and
α = 4.5 %.
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Figure 5.55: ∆V and I vs t at U = 0.5 m s−1, ω = 6283 rad s−1 and α = 4.5 %.
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Figure 5.56: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 6283 rad s−1 and
α = 4.5 %.
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Figure 5.57: ∆V and I vs t at U = 0.75 m s−1, ω = 3142 rad s−1 and α = 4.5 %.
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Figure 5.58: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 3142 rad s−1

and α = 4.5 %.
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Figure 5.59: ∆V and I vs t at U = 0.75 m s−1, ω = 6283 rad s−1 and α = 4.5 %.
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Figure 5.60: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 6283 rad s−1

and α = 4.5 %.
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Figure 5.61: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 4.5 %.
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Figure 5.62: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and
α = 4.5 %.
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Figure 5.63: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 4.5 %.
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Figure 5.64: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 4.5 %.
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Chapter 6

For α = 0.06%

205



t (s)
0 100 200 300 400

"
 V

|| (
V

)

#10-4

2.1

2.2

2.3

2.4

t (s)
0 100 200 300 400

"
 V

?
 (

V
)

#10-4

2.5

3

3.5

t (s)
0 100 200 300 400

||"
 V

||2
 (

V
2
)

#10-7

1

1.2

1.4

1.6

t (s)
0 100 200 300 400

I ||

0.4065

0.4066

0.4067

0.4068

Figure 6.1: ∆V and I vs t at U = 10−3 m s−1, ω = 4712 rad s−1 and α = 0.06 %.
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Figure 6.2: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 4712 rad s−1 and
α = 0.06 %.
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Figure 6.3: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 0.06 %.
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Figure 6.4: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1 and
α = 0.06 %.
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Figure 6.5: ∆V and I vs t at U = 10−3 m s−1, ω = 7854 rad s−1 and α = 0.06 %.
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Figure 6.6: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 7854 rad s−1 and
α = 0.06 %.
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Figure 6.7: ∆V and I vs t at U = 10−3 m s−1, ω = 9425 rad s−1 and α = 0.06 %.
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Figure 6.8: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 9425 rad s−1 and
α = 0.06 %.
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Figure 6.9: ∆V and I vs t at U = 10−3 m s−1, ω = 10 996 rad s−1 and α = 0.06 %.
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Figure 6.10: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 10 996 rad s−1

and α = 0.06 %.
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Figure 6.11: ∆V and I vs t at U = 10−3 m s−1, ω = 12 566 rad s−1 and α = 0.06 %.
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Figure 6.12: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 12 566 rad s−1

and α = 0.06 %.
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Figure 6.13: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 0.06 %.
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Figure 6.14: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 0.06 %.
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Figure 6.15: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0.06 %.
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Figure 6.16: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 0.06 %.
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Figure 6.17: ∆V and I vs t at U = 0.1 m s−1, ω = 7854 rad s−1 and α = 0.06 %.
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Figure 6.18: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 7854 rad s−1 and
α = 0.06 %.
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Figure 6.19: ∆V and I vs t at U = 0.1 m s−1, ω = 9425 rad s−1 and α = 0.06 %.
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Figure 6.20: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 9425 rad s−1 and
α = 0.06 %.
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Figure 6.21: ∆V and I vs t at U = 0.1 m s−1, ω = 10 996 rad s−1 and α = 0.06 %.
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Figure 6.22: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 10 996 rad s−1

and α = 0.06 %.
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Figure 6.23: ∆V and I vs t at U = 0.1 m s−1, ω = 12 566 rad s−1 and α = 0.06 %.
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Figure 6.24: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 12 566 rad s−1

and α = 0.06 %.

217



t (s)
1 1.5 2 2.5 3 3.5

"
 V

|| (
V

)

#10-4

-6

-4

-2

0

2

t (s)
1 1.5 2 2.5 3 3.5

"
 V

?
 (

V
)

#10-4

-6

-4

-2

0

t (s)
1 1.5 2 2.5 3 3.5

||"
 V

||2
 (

V
2
)

#10-7

1

1.5

2

2.5

3

t (s)
1 1.5 2 2.5 3 3.5

I ||

0.414

0.4141

0.4141

0.4142

0.4142

Figure 6.25: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 0.06 %.
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Figure 6.26: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 0.06 %.
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Figure 6.27: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0.06 %.
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Figure 6.28: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 0.06 %.
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Figure 6.29: ∆V and I vs t at U = 1 m s−1, ω = 7854 rad s−1 and α = 0.06 %.
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Figure 6.30: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 7854 rad s−1 and
α = 0.06 %.
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Figure 6.31: ∆V and I vs t at U = 1 m s−1, ω = 9425 rad s−1 and α = 0.06 %.
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Figure 6.32: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 9425 rad s−1 and
α = 0.06 %.
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Figure 6.33: ∆V and I vs t at U = 1 m s−1, ω = 10 996 rad s−1 and α = 0.06 %.
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Figure 6.34: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 10 996 rad s−1 and
α = 0.06 %.
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Figure 6.35: ∆V and I vs t at U = 1 m s−1, ω = 12 566 rad s−1 and α = 0.06 %.
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Figure 6.36: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 12 566 rad s−1 and
α = 0.06 %.
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Figure 6.37: ∆V and I vs t at U = 10−3 m s−1, ω = 4712 rad s−1 and α = 0.06 %.
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Figure 6.38: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 4712 rad s−1

and α = 0.06 %.
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Figure 6.39: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 0.06 %.
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Figure 6.40: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1

and α = 0.06 %.
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Figure 6.41: ∆V and I vs t at U = 10−2 m s−1, ω = 4712 rad s−1 and α = 0.06 %.
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Figure 6.42: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 4712 rad s−1

and α = 0.06 %.
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Figure 6.43: ∆V and I vs t at U = 10−2 m s−1, ω = 6283 rad s−1 and α = 0.06 %.
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Figure 6.44: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 6283 rad s−1

and α = 0.06 %.
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Figure 6.45: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 4712 rad s−1 and α = 0.06 %.
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Figure 6.46: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 4712 rad s−1

and α = 0.06 %.

228



t (s)
0 10 20 30

"
 V

|| (
V

)

#10-4

2.2

2.3

2.4

2.5

2.6

t (s)
0 10 20 30

"
 V

?
 (

V
)

#10-4

2.5

3

3.5

4

t (s)
0 10 20 30

||"
 V

||2
 (

V
2
)

#10-7

1.4

1.6

1.8

2

2.2

t (s)
0 10 20 30

I ||

0.3929

0.393

0.3931

0.3932

Figure 6.47: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 6283 rad s−1 and α = 0.06 %.
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Figure 6.48: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 6283 rad s−1

and α = 0.06 %.
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Figure 6.49: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 0.06 %.
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Figure 6.50: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 0.06 %.
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Figure 6.51: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0.06 %.
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Figure 6.52: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 0.06 %.
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Figure 6.53: ∆V and I vs t at U = 0.25 m s−1, ω = 4712 rad s−1 and α = 0.06 %.
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Figure 6.54: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 4712 rad s−1

and α = 0.06 %.
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Figure 6.55: ∆V and I vs t at U = 0.25 m s−1, ω = 6283 rad s−1 and α = 0.06 %.
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Figure 6.56: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 6283 rad s−1

and α = 0.06 %.
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Figure 6.57: ∆V and I vs t at U = 0.5 m s−1, ω = 4712 rad s−1 and α = 0.06 %.
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Figure 6.58: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 4712 rad s−1 and
α = 0.06 %.
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Figure 6.59: ∆V and I vs t at U = 0.5 m s−1, ω = 6283 rad s−1 and α = 0.06 %.
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Figure 6.60: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 6283 rad s−1 and
α = 0.06 %.
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Figure 6.61: ∆V and I vs t at U = 0.75 m s−1, ω = 4712 rad s−1 and α = 0.06 %.
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Figure 6.62: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 4712 rad s−1

and α = 0.06 %.
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Figure 6.63: ∆V and I vs t at U = 0.75 m s−1, ω = 6283 rad s−1 and α = 0.06 %.
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Figure 6.64: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 6283 rad s−1

and α = 0.06 %.
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Figure 6.65: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 0.06 %.
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Figure 6.66: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 0.06 %.
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Figure 6.67: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0.06 %.
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Figure 6.68: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 0.06 %.
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Chapter 7

For α = 0.22%
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Figure 7.1: ∆V and I vs t at U = 10−3 m s−1, ω = 4712 rad s−1 and α = 0.22 %.
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Figure 7.2: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 4712 rad s−1 and
α = 0.22 %.
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Figure 7.3: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 0.22 %.

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

"
 V

|| (
V

)

#10-5

0

0.5

1

1.5

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

"
 V

?
 (

V
)

#10-5

0

1

2

3

4

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

1

2

3

Figure 7.4: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1 and
α = 0.22 %.
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Figure 7.5: ∆V and I vs t at U = 10−3 m s−1, ω = 7854 rad s−1 and α = 0.22 %.
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Figure 7.6: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 7854 rad s−1 and
α = 0.22 %.
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Figure 7.7: ∆V and I vs t at U = 10−3 m s−1, ω = 9425 rad s−1 and α = 0.22 %.
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Figure 7.8: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 9425 rad s−1 and
α = 0.22 %.
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Figure 7.9: ∆V and I vs t at U = 10−3 m s−1, ω = 10 996 rad s−1 and α = 0.22 %.
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Figure 7.10: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 10 996 rad s−1

and α = 0.22 %.
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Figure 7.11: ∆V and I vs t at U = 10−3 m s−1, ω = 12 566 rad s−1 and α = 0.22 %.

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

"
 V

|| (
V

)

#10-6

0

1

2

3

4

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

"
 V

?
 (

V
)

#10-5

0

2

4

6

8

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

2

4

6

8

Figure 7.12: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 12 566 rad s−1

and α = 0.22 %.
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Figure 7.13: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 0.22 %.
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Figure 7.14: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 0.22 %.
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Figure 7.15: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0.22 %.
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Figure 7.16: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 0.22 %.
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Figure 7.17: ∆V and I vs t at U = 0.1 m s−1, ω = 7854 rad s−1 and α = 0.22 %.
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Figure 7.18: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 7854 rad s−1 and
α = 0.22 %.
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Figure 7.19: ∆V and I vs t at U = 0.1 m s−1, ω = 9425 rad s−1 and α = 0.22 %.
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Figure 7.20: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 9425 rad s−1 and
α = 0.22 %.
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Figure 7.21: ∆V and I vs t at U = 0.1 m s−1, ω = 10 996 rad s−1 and α = 0.22 %.
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Figure 7.22: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 10 996 rad s−1

and α = 0.22 %.
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Figure 7.23: ∆V and I vs t at U = 0.1 m s−1, ω = 12 566 rad s−1 and α = 0.22 %.
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Figure 7.24: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 12 566 rad s−1

and α = 0.22 %.
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Figure 7.25: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 0.22 %.
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Figure 7.26: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 0.22 %.
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Figure 7.27: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0.22 %.
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Figure 7.28: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 0.22 %.
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Figure 7.29: ∆V and I vs t at U = 1 m s−1, ω = 7854 rad s−1 and α = 0.22 %.
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Figure 7.30: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 7854 rad s−1 and
α = 0.22 %.
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Figure 7.31: ∆V and I vs t at U = 1 m s−1, ω = 9425 rad s−1 and α = 0.22 %.
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Figure 7.32: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 9425 rad s−1 and
α = 0.22 %.
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Figure 7.33: ∆V and I vs t at U = 1 m s−1, ω = 10 996 rad s−1 and α = 0.22 %.
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Figure 7.34: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 10 996 rad s−1 and
α = 0.22 %.
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Figure 7.35: ∆V and I vs t at U = 1 m s−1, ω = 12 566 rad s−1 and α = 0.22 %.
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Figure 7.36: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 12 566 rad s−1 and
α = 0.22 %.
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Figure 7.37: ∆V and I vs t at U = 10−3 m s−1, ω = 4712 rad s−1 and α = 0.22 %.
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Figure 7.38: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 4712 rad s−1

and α = 0.22 %.
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Figure 7.39: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 0.22 %.
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Figure 7.40: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1

and α = 0.22 %.
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Figure 7.41: ∆V and I vs t at U = 10−2 m s−1, ω = 4712 rad s−1 and α = 0.22 %.
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Figure 7.42: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 4712 rad s−1

and α = 0.22 %.
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Figure 7.43: ∆V and I vs t at U = 10−2 m s−1, ω = 6283 rad s−1 and α = 0.22 %.
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Figure 7.44: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 6283 rad s−1

and α = 0.22 %.
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Figure 7.45: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 4712 rad s−1 and α = 0.22 %.

!
M

 (rad/s)
0 10 20 30

"
 V

|| (
V

)

#10-5

0

0.5

1

1.5

!
M

 (rad/s)
0 10 20 30

"
 V

?
 (

V
)

#10-5

0

1

2

3

!
M

 (rad/s)
0 10 20 30

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

0.5

1

Figure 7.46: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 4712 rad s−1

and α = 0.22 %.
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Figure 7.47: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 6283 rad s−1 and α = 0.22 %.
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Figure 7.48: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 6283 rad s−1

and α = 0.22 %.
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Figure 7.49: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 0.22 %.
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Figure 7.50: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 0.22 %.

266



t (s)
4 6 8 10 12 14

"
 V

|| (
V

)

#10-4

2

2.5

3

t (s)
4 6 8 10 12 14

"
 V

?
 (

V
)

#10-4

2.5

3

3.5

4

4.5

t (s)
4 6 8 10 12 14

||"
 V

||2
 (

V
2
)

#10-7

1

1.5

2

2.5

t (s)
4 6 8 10 12 14

I ||

0.398

0.3982

0.3984

0.3986

Figure 7.51: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0.22 %.
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Figure 7.52: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 0.22 %.
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Figure 7.53: ∆V and I vs t at U = 0.25 m s−1, ω = 4712 rad s−1 and α = 0.22 %.
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Figure 7.54: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 4712 rad s−1

and α = 0.22 %.
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Figure 7.55: ∆V and I vs t at U = 0.25 m s−1, ω = 6283 rad s−1 and α = 0.22 %.
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Figure 7.56: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 6283 rad s−1

and α = 0.22 %.
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Figure 7.57: ∆V and I vs t at U = 0.5 m s−1, ω = 4712 rad s−1 and α = 0.22 %.
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Figure 7.58: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 4712 rad s−1 and
α = 0.22 %.
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Figure 7.59: ∆V and I vs t at U = 0.5 m s−1, ω = 6283 rad s−1 and α = 0.22 %.
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Figure 7.60: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 6283 rad s−1 and
α = 0.22 %.
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Figure 7.61: ∆V and I vs t at U = 0.75 m s−1, ω = 4712 rad s−1 and α = 0.22 %.
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Figure 7.62: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 4712 rad s−1

and α = 0.22 %.
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Figure 7.63: ∆V and I vs t at U = 0.75 m s−1, ω = 6283 rad s−1 and α = 0.22 %.
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Figure 7.64: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 6283 rad s−1

and α = 0.22 %.
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Figure 7.65: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 0.22 %.
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Figure 7.66: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 0.22 %.
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Figure 7.67: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0.22 %.
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Figure 7.68: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 0.22 %.
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For α = 0.54%
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Figure 8.1: ∆V and I vs t at U = 10−3 m s−1, ω = 4712 rad s−1 and α = 0.54 %.
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Figure 8.2: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 4712 rad s−1 and
α = 0.54 %.
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Figure 8.3: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 0.54 %.
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Figure 8.4: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1 and
α = 0.54 %.
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Figure 8.5: ∆V and I vs t at U = 10−3 m s−1, ω = 7854 rad s−1 and α = 0.54 %.

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

"
 V

|| (
V

)

#10-5

0

1

2

3

4

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

"
 V

?
 (

V
)

#10-4

0

0.5

1

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

2

4

6

8

Figure 8.6: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 7854 rad s−1 and
α = 0.54 %.
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Figure 8.7: ∆V and I vs t at U = 10−3 m s−1, ω = 9425 rad s−1 and α = 0.54 %.

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

"
 V

|| (
V

)

#10-5

0

1

2

3

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

"
 V

?
 (

V
)

#10-4

0

0.5

1

1.5

!
M

 (rad/s)
0 0.2 0.4 0.6 0.8 1

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-7

0

0.5

1

Figure 8.8: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 9425 rad s−1 and
α = 0.54 %.
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Figure 8.9: ∆V and I vs t at U = 10−3 m s−1, ω = 10 996 rad s−1 and α = 0.54 %.
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Figure 8.10: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 10 996 rad s−1

and α = 0.54 %.
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Figure 8.11: ∆V and I vs t at U = 10−3 m s−1, ω = 12 566 rad s−1 and α = 0.54 %.
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Figure 8.12: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 12 566 rad s−1

and α = 0.54 %.
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Figure 8.13: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 0.54 %.
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Figure 8.14: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 0.54 %.
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Figure 8.15: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0.54 %.
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Figure 8.16: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 0.54 %.
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Figure 8.17: ∆V and I vs t at U = 0.1 m s−1, ω = 7854 rad s−1 and α = 0.54 %.
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Figure 8.18: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 7854 rad s−1 and
α = 0.54 %.
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Figure 8.19: ∆V and I vs t at U = 0.1 m s−1, ω = 9425 rad s−1 and α = 0.54 %.
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Figure 8.20: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 9425 rad s−1 and
α = 0.54 %.
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Figure 8.21: ∆V and I vs t at U = 0.1 m s−1, ω = 10 996 rad s−1 and α = 0.54 %.
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Figure 8.22: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 10 996 rad s−1

and α = 0.54 %.
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Figure 8.23: ∆V and I vs t at U = 0.1 m s−1, ω = 12 566 rad s−1 and α = 0.54 %.
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Figure 8.24: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 12 566 rad s−1

and α = 0.54 %.
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Figure 8.25: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 0.54 %.
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Figure 8.26: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 0.54 %.

290



t (s)
2 2.5 3 3.5 4 4.5

"
 V

|| (
V

)
#10-4

-6

-4

-2

0

t (s)
2 2.5 3 3.5 4 4.5

"
 V

?
 (

V
)

#10-4

-8

-6

-4

-2

0

t (s)
2 2.5 3 3.5 4 4.5

||"
 V

||2
 (

V
2
)

#10-7

0

2

4

6

t (s)
2 2.5 3 3.5 4 4.5

I ||

0.404

0.4041

0.4042

0.4043

0.4044

Figure 8.27: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0.54 %.
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Figure 8.28: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 0.54 %.
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Figure 8.29: ∆V and I vs t at U = 1 m s−1, ω = 7854 rad s−1 and α = 0.54 %.
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Figure 8.30: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 7854 rad s−1 and
α = 0.54 %.
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Figure 8.31: ∆V and I vs t at U = 1 m s−1, ω = 9425 rad s−1 and α = 0.54 %.
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Figure 8.32: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 9425 rad s−1 and
α = 0.54 %.
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Figure 8.33: ∆V and I vs t at U = 1 m s−1, ω = 10 996 rad s−1 and α = 0.54 %.
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Figure 8.34: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 10 996 rad s−1 and
α = 0.54 %.
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Figure 8.35: ∆V and I vs t at U = 1 m s−1, ω = 12 566 rad s−1 and α = 0.54 %.
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Figure 8.36: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 12 566 rad s−1 and
α = 0.54 %.
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Figure 8.37: ∆V and I vs t at U = 10−3 m s−1, ω = 4712 rad s−1 and α = 0.54 %.
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Figure 8.38: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 4712 rad s−1

and α = 0.54 %.
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Figure 8.39: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 0.54 %.
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Figure 8.40: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1

and α = 0.54 %.
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Figure 8.41: ∆V and I vs t at U = 10−2 m s−1, ω = 4712 rad s−1 and α = 0.54 %.
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Figure 8.42: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 4712 rad s−1

and α = 0.54 %.
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Figure 8.43: ∆V and I vs t at U = 10−2 m s−1, ω = 6283 rad s−1 and α = 0.54 %.
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Figure 8.44: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 6283 rad s−1

and α = 0.54 %.

299



t (s)
0 10 20 30 40

"
 V

|| (
V

)

#10-4

1.5

2

2.5

3

t (s)
0 10 20 30 40

"
 V

?
 (

V
)

#10-4

2

3

4

5

6

t (s)
0 10 20 30 40

||"
 V

||2
 (

V
2
)

#10-7

1

2

3

4

t (s)
0 10 20 30 40

I ||

0.4135

0.4136

0.4136

0.4137

0.4137

Figure 8.45: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 4712 rad s−1 and α = 0.54 %.
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Figure 8.46: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 4712 rad s−1

and α = 0.54 %.
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Figure 8.47: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 6283 rad s−1 and α = 0.54 %.
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Figure 8.48: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 6283 rad s−1

and α = 0.54 %.
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Figure 8.49: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 0.54 %.
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Figure 8.50: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 0.54 %.
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Figure 8.51: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0.54 %.
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Figure 8.52: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 0.54 %.

303



t (s)
2 3 4 5 6 7

"
 V

|| (
V

)

#10-4

1

2

3

4

t (s)
2 3 4 5 6 7

"
 V

?
 (

V
)

#10-4

0

2

4

6

8

t (s)
2 3 4 5 6 7

||"
 V

||2
 (

V
2
)

#10-7

0

1

2

3

4

t (s)
2 3 4 5 6 7

I ||

0.4132

0.4134

0.4136

0.4138

Figure 8.53: ∆V and I vs t at U = 0.25 m s−1, ω = 4712 rad s−1 and α = 0.54 %.
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Figure 8.54: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 4712 rad s−1

and α = 0.54 %.
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Figure 8.55: ∆V and I vs t at U = 0.25 m s−1, ω = 6283 rad s−1 and α = 0.54 %.
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Figure 8.56: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 6283 rad s−1

and α = 0.54 %.
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Figure 8.57: ∆V and I vs t at U = 0.5 m s−1, ω = 4712 rad s−1 and α = 0.54 %.
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Figure 8.58: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 4712 rad s−1 and
α = 0.54 %.
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Figure 8.59: ∆V and I vs t at U = 0.5 m s−1, ω = 6283 rad s−1 and α = 0.54 %.

!
M

 (rad/s)
0 100 200 300 400 500

"
 V

|| (
V

)

#10-5

0

1

2

3

!
M

 (rad/s)
0 100 200 300 400 500

"
 V

?
 (

V
)

#10-5

0

2

4

6

8

!
M

 (rad/s)
0 100 200 300 400 500

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

0.5

1

1.5

2

Figure 8.60: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 6283 rad s−1 and
α = 0.54 %.
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Figure 8.61: ∆V and I vs t at U = 0.75 m s−1, ω = 4712 rad s−1 and α = 0.54 %.

!
M

 (rad/s)
0 200 400 600 800

"
 V

|| (
V

)

#10-5

0

1

2

3

!
M

 (rad/s)
0 200 400 600 800

"
 V

?
 (

V
)

#10-5

0

2

4

6

!
M

 (rad/s)
0 200 400 600 800

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-9

0

2

4

6

8

Figure 8.62: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 4712 rad s−1

and α = 0.54 %.
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Figure 8.63: ∆V and I vs t at U = 0.75 m s−1, ω = 6283 rad s−1 and α = 0.54 %.
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Figure 8.64: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 6283 rad s−1

and α = 0.54 %.
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Figure 8.65: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 0.54 %.
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Figure 8.66: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 0.54 %.
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Figure 8.67: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0.54 %.
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Figure 8.68: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 0.54 %.
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Figure 9.1: ∆V and I vs t at U = 10−3 m s−1, ω = 4712 rad s−1 and α = 1.62 %.
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Figure 9.2: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 4712 rad s−1 and
α = 1.62 %.
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Figure 9.3: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 1.62 %.
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Figure 9.4: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1 and
α = 1.62 %.
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Figure 9.5: ∆V and I vs t at U = 10−3 m s−1, ω = 7854 rad s−1 and α = 1.62 %.
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Figure 9.6: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 7854 rad s−1 and
α = 1.62 %.
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Figure 9.7: ∆V and I vs t at U = 10−3 m s−1, ω = 9425 rad s−1 and α = 1.62 %.
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Figure 9.8: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 9425 rad s−1 and
α = 1.62 %.

317



t (s)
0 100 200 300 400

"
 V

|| (
V

)

#10-4

1

2

3

4

t (s)
0 100 200 300 400

"
 V

?
 (

V
)

#10-4

0

2

4

6

8

t (s)
0 100 200 300 400

||"
 V

||2
 (

V
2
)

#10-7

0

2

4

6

8

t (s)
0 100 200 300 400

I ||

0.3539

0.354

0.3541

0.3542

0.3543

Figure 9.9: ∆V and I vs t at U = 10−3 m s−1, ω = 10 996 rad s−1 and α = 1.62 %.
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Figure 9.10: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 10 996 rad s−1

and α = 1.62 %.
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Figure 9.11: ∆V and I vs t at U = 10−3 m s−1, ω = 12 566 rad s−1 and α = 1.62 %.
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Figure 9.12: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 12 566 rad s−1

and α = 1.62 %.
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Figure 9.13: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 1.62 %.
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Figure 9.14: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 1.62 %.
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Figure 9.15: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 1.62 %.
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Figure 9.16: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 1.62 %.
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Figure 9.17: ∆V and I vs t at U = 0.1 m s−1, ω = 7854 rad s−1 and α = 1.62 %.
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Figure 9.18: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 7854 rad s−1 and
α = 1.62 %.
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Figure 9.19: ∆V and I vs t at U = 0.1 m s−1, ω = 9425 rad s−1 and α = 1.62 %.
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Figure 9.20: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 9425 rad s−1 and
α = 1.62 %.
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Figure 9.21: ∆V and I vs t at U = 0.1 m s−1, ω = 10 996 rad s−1 and α = 1.62 %.
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Figure 9.22: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 10 996 rad s−1

and α = 1.62 %.
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Figure 9.23: ∆V and I vs t at U = 0.1 m s−1, ω = 12 566 rad s−1 and α = 1.62 %.
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Figure 9.24: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 12 566 rad s−1

and α = 1.62 %.
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Figure 9.25: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 1.62 %.
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Figure 9.26: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 1.62 %.

326



t (s)
1 2 3 4 5

"
 V

|| (
V

)
#10-4

-6

-4

-2

0

2

t (s)
1 2 3 4 5

"
 V

?
 (

V
)

#10-3

-1.5

-1

-0.5

0

t (s)
1 2 3 4 5

||"
 V

||2
 (

V
2
)

#10-6

0

0.5

1

1.5

2

t (s)
1 2 3 4 5

I ||

0.3974

0.3976

0.3978

0.398

0.3982

Figure 9.27: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 1.62 %.
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Figure 9.28: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 1.62 %.
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Figure 9.29: ∆V and I vs t at U = 1 m s−1, ω = 7854 rad s−1 and α = 1.62 %.
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Figure 9.30: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 7854 rad s−1 and
α = 1.62 %.
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Figure 9.31: ∆V and I vs t at U = 1 m s−1, ω = 9425 rad s−1 and α = 1.62 %.
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Figure 9.32: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 9425 rad s−1 and
α = 1.62 %.

329



t (s)
1.5 2 2.5 3 3.5

"
 V

|| (
V

)

#10-4

-8

-6

-4

-2

0

t (s)
1.5 2 2.5 3 3.5

"
 V

?
 (

V
)

#10-3

-2

-1.5

-1

-0.5

0

t (s)
1.5 2 2.5 3 3.5

||"
 V

||2
 (

V
2
)

#10-6

0

1

2

3

4

t (s)
1.5 2 2.5 3 3.5

I ||

0.3605

0.361

0.3615

0.362

Figure 9.33: ∆V and I vs t at U = 1 m s−1, ω = 10 996 rad s−1 and α = 1.62 %.
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Figure 9.34: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 10 996 rad s−1 and
α = 1.62 %.
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Figure 9.35: ∆V and I vs t at U = 1 m s−1, ω = 12 566 rad s−1 and α = 1.62 %.
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Figure 9.36: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 12 566 rad s−1 and
α = 1.62 %.
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Figure 9.37: ∆V and I vs t at U = 10−3 m s−1, ω = 4712 rad s−1 and α = 1.62 %.
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Figure 9.38: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 4712 rad s−1

and α = 1.62 %.
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Figure 9.39: ∆V and I vs t at U = 10−3 m s−1, ω = 6283 rad s−1 and α = 1.62 %.
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Figure 9.40: FFT spectral density of ∆V vs ωM at U = 10−3 m s−1, ω = 6283 rad s−1

and α = 1.62 %.
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Figure 9.41: ∆V and I vs t at U = 10−2 m s−1, ω = 4712 rad s−1 and α = 1.62 %.
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Figure 9.42: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 4712 rad s−1

and α = 1.62 %.
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Figure 9.43: ∆V and I vs t at U = 10−2 m s−1, ω = 6283 rad s−1 and α = 1.62 %.
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Figure 9.44: FFT spectral density of ∆V vs ωM at U = 10−2 m s−1, ω = 6283 rad s−1

and α = 1.62 %.
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Figure 9.45: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 4712 rad s−1 and α = 1.62 %.

!
M

 (rad/s)
0 10 20 30

"
 V

|| (
V

)

#10-5

0

2

4

6

!
M

 (rad/s)
0 10 20 30

"
 V

?
 (

V
)

#10-4

0

0.5

1

!
M

 (rad/s)
0 10 20 30

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-8

0

1

2

3

Figure 9.46: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 4712 rad s−1

and α = 1.62 %.
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Figure 9.47: ∆V and I vs t at U = 3× 10−2 m s−1, ω = 6283 rad s−1 and α = 1.62 %.
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Figure 9.48: FFT spectral density of ∆V vs ωM at U = 3× 10−2 m s−1, ω = 6283 rad s−1

and α = 1.62 %.
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Figure 9.49: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 1.62 %.
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Figure 9.50: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and
α = 1.62 %.
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Figure 9.51: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 1.62 %.
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Figure 9.52: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and
α = 1.62 %.
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Figure 9.53: ∆V and I vs t at U = 0.25 m s−1, ω = 4712 rad s−1 and α = 1.62 %.
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Figure 9.54: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 4712 rad s−1

and α = 1.62 %.
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Figure 9.55: ∆V and I vs t at U = 0.25 m s−1, ω = 6283 rad s−1 and α = 1.62 %.
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Figure 9.56: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 6283 rad s−1

and α = 1.62 %.
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Figure 9.57: ∆V and I vs t at U = 0.5 m s−1, ω = 4712 rad s−1 and α = 1.62 %.

!
M

 (rad/s)
0 100 200 300 400 500

"
 V

|| (
V

)

#10-5

0

2

4

6

!
M

 (rad/s)
0 100 200 300 400 500

"
 V

?
 (

V
)

#10-4

0

0.5

1

!
M

 (rad/s)
0 100 200 300 400 500

||"
 V

||2
-h

||"
 V

||2
i (

V
2
) #10-9

0

2

4

6

8

Figure 9.58: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 4712 rad s−1 and
α = 1.62 %.
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Figure 9.59: ∆V and I vs t at U = 0.5 m s−1, ω = 6283 rad s−1 and α = 1.62 %.
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Figure 9.60: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 6283 rad s−1 and
α = 1.62 %.
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Figure 9.61: ∆V and I vs t at U = 0.75 m s−1, ω = 4712 rad s−1 and α = 1.62 %.
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Figure 9.62: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 4712 rad s−1

and α = 1.62 %.
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Figure 9.63: ∆V and I vs t at U = 0.75 m s−1, ω = 6283 rad s−1 and α = 1.62 %.
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Figure 9.64: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 6283 rad s−1

and α = 1.62 %.
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Figure 9.65: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 1.62 %.
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Figure 9.66: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and
α = 1.62 %.
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Figure 9.67: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 1.62 %.
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Figure 9.68: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and
α = 1.62 %.
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