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Résumé

Depuis la fin du scaling de Dennard, il s’est avéré que de futurs gains de performance
viendront du calcul parallèle, et plus particulièrement de l’utilisation d’architectures
multicœur. Aussi bien programmer qu’obtenir les performances optimales sur de telles
architectures s’est historiquement révélé difficile.

De nombreux outils ont été créés afin d’aider les programmeurs à écrire des programmes
corrects et performants. Les futurs en sont un exemple : une abstraction qui permet à une
tâche de se synchroniser avec la fin d’une autre tâche et de récupérer sa valeur calculée.
Les files sont un autre de ces outils : des canaux de communication qui permettent à des
tâches, appelées producteurs, de stocker des valeurs dans un espace mémoire partagé,
dans lequel d’autres tâches, appelées consommateurs, pourront récupérer ces valeurs, le
tout de façon sûre.

Dans ce manuscrit nous étudions et améliorons aussi bien les futurs que les files sous
trois aspects : sûreté, efficacité et simplicité. Nous fournissons les dataflow explicit futures
en tant que bibliothèque. Il s’agit d’une évolution des futurs qui offre aux programmeurs
une plus grande expressivité et leur permet d’écrire plus facilement des programmes qui
manipulent les futurs. Une seconde contribution, FifoPlus, améliore les files. FifoPlus
est une file qui embarque un modèle analytique afin de reconfigurer dynamiquement
sa granularité de synchronisation. Cette reconfiguration se base sur le calcul d’une
approximation du temps nécessaire pour effectuer un transfert de données selon une
granularité de synchronisation. Contrairement à plusieurs outils pré-existants, l’analyse
est simple et effectuée à l’exécution, ce qui rend l’outil simple d’utilisation.



Abstract

Since the end of Dennard scaling, it has become evident that performance gain will come
from parallel computing and more particularly, multicore architectures. Programming
and drawing maximum efficiency on such architectures has historically proven to be
notoriously difficult.

Countless tools have been provided to help programmers achieve both program
correctness and performance. Futures are such a tool, an abstraction that allows a task
to synchronize with the completion of another and retrieve its computed value. Another
tool is FIFO channels that allow tasks, known as producers, to store values in a shared
buffer from which other tasks, known as consumers, can retrieve and use them, in a safe
way.

In this thesis, we study and improve on both futures and FIFOs under three different
aspects: safety, efficiency, and simplicity. We provide an implementation of dataflow
explicit futures, an evolution of futures that grants programmers more expressivity and
allows them to write simpler programs that use futures. We also show that dataflow ex-
plicit futures make it possible to optimize their transmission, which improves performance.
A second contribution is an improvement on FIFOs, called FifoPlus. It is a FIFO that
integrates an analytical model that allows dynamic reconfiguration of the granularity
of synchronization of the FIFO. This reconfiguration is based on the computation of an
approximation of the time it would take to run the entire program based on a given
granularity. Contrarily to many existing related approaches, FifoPlus only requires an
online simple analysis which makes it easy to use.
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Chapter 1

Introduction – From Sequential to
Parallel: The Quest for
Performance and Safety

In order for the performance of applications not to be limited by the end of Dennard’s
scaling, programming has shifted towards multicore programming. Parallel programming
is a paradigm in which performance, i.e. writing fast applications, and safety, i.e. writing
correct applications, are difficult to bring together. This difficulty arises from the concept
of races: multiple threads have conflicting accesses to the same shared resource. One
solution to this problem is thread synchronization: constraining the possible orderings
between some operations of two different threads.

Synchronization resolves the problem of safety. However, this usually comes at the
price of performance: synchronization operations are costly. Achieving performance then
becomes a matter of slowly peeling away synchronization layers until only the absolutely
necessary core to ensure safety remains. This process is error-prone: removing the wrong
layer of synchronization will result in an incorrect program; keeping an unnecessary one
may drain performance.

Many synchronization tools have been created as time went on: atomic variables,
semaphores, mutexes, condition variables, the list goes on and on. These synchronization
primitives are “general” in a way, and are fitted to solve most, if not all synchronization
problems. Experience shows that they are not always suited to efficiently or elegantly
solve all synchronization problems, so synchronization abstractions were created. A
programming abstraction is a construct made with the intent of hiding technical details
so programmers can have a simple tool to achieve the desired result. More specifically,
synchronization abstractions are structures that hide away the details of the synchroniza-
tion and provide higher-level APIs that make writing synchronizations easier and less
error-prone.

Synchronizing on the end of a task and retrieving its result is a classic synchronization
problem. It can be solved using low-level synchronization primitives and a shared variable
to store the result, but this solution is tedious in addition to being error-prone. This
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CHAPTER 1. INTRODUCTION - PERFORMANCE AND SAFETY 2

solution needlessly adds complexity to the code. Futures are an abstraction that resolves
this specific problem in a very elegant way. When programmers launch a task and need
to access its result, they can bind a future to the task. The future acts as a transparent
memory location in which the result of the task will be written once available. The
transparency comes from the fact that the task itself is not aware of the existence of the
future: it is the runtime of the application that takes the responsibility of writing the
result to the future. In order to access the result of the task, the programmer can use an
operation called get on the future. This operation waits until a value has been written
in the future, and then returns it.

Another classic synchronization abstraction is the producer-consumer interaction: a
group of tasks, known as producers, create data that other tasks, called consumers, will
process. Thread-safe FIFO queues are an abstraction that provide this specific interaction.
They offer operations called push and pop. push stores a data in the FIFO queue, and
pop removes a data from the FIFO queue. If no data is available, pop blocks until one is
available. Both these operations are thread-safe, i.e. they can be called concurrently.

While abstractions can be used to successfully hide low-level details and push forward
a certain programming style, they do so at the expense of flexibility. Consider this
example: a task that returns an array of integers and we want to access its result in order
to perform some computation on it. The standard tool is to use a future holding the
whole array. However, depending on what the computation does with the array, we may
run into difficulties: if the consumer wants to perform an operation without dependencies
on all values of the array, then it will spend a lot of time waiting for the entire array to
be produced by the function. This is time lost: if the consumer had a partial result, it
could have worked in parallel. Another naive approach would be to change the result
type of the task to an array of futures: the task creates many different subtasks that will
each produce one of the elements of array. This allows us to work in parallel with the
creation of the array, but it also creates a lot of synchronization, which are costly. In
this scenario, a more flexible, though lower-level, abstraction would have allowed us to
synchronize on slices of the array, rather than on the entire array or on each element.

One of the foundations of our work is Godot[1]. This paper provides the theoretical
foundations for a new kind of futures, called dataflow explicit futures. These futures
are equipped with a synchronization operator called forward*, which is an optimized
resolution operator.

Objectives In this thesis we explore middle-level abstractions. They offer more
flexibility than high-level synchronization abstractions, yet provide more guarantees than
lower-level abstractions.

Contributions In this thesis, we focused on the creation of constructs and libraries
that offer easy-to-use, yet intuitive, efficient and safe APIs. Our contributions are as
follows:

• We provide an implementation of dataflow explicit futures. Their theoretical
foundations were provided in [1], with a partial implementation in Scala. Our
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implementation is done in the Encore language. [1] conjectured that using the
forward* operator on dataflow explicit futures was equivalent to using return. We
provide a proof of this equivalence. Furthermore, we provide a set of benchmarks
that showcase the efficiency of dataflow explicit futures.

• We provide two synchronization tools to work on arrays and streams. These
synchronization tools have a configurable granularity of synchronization. Their
objective is to allow a compromise between the cost of synchronization and the
time lost waiting for a process to synchronize.

– The first tool is PromisePlus. This tool is based on the existing promise [2]
construct. We specialize promises to work efficiently on arrays, by specifying
a granularity of synchronization. Our promises are able to perform synchro-
nization on chunks of an array, rather than on single elements or on the whole
array only. We provide a benchmark that shows this improves performance,
and that performance varies with the granularity of synchronization.

– The second tool is FifoPlus. This tool takes the idea of configurable granularity
of synchronization we developed in PromisePlus and applies it to FIFO queues.
Furthermore, we created an analytical performance model that can be used
to predict the time it would take to produce, transfer and consume a given
quantity of items using FifoPlus when configured with a given granularity of
synchronization. By measuring the time taken to perform various operations
at execution, this model can be used to automatically reconfigure a running
FifoPlus with the theoretical optimal granularity of synchronization. We
provide a microbenchmark that shows the accuracy of our model and the
performance gain brought by FifoPlus, and a benchmark inspired by a real-
world compression algorithm that shows our model still performs well in an
unfavorable scenario.

Both of these tools come with easy-to-use APIs, based on the APIs of the tools
they improve. Furthermore, the presentation of each of these tools is accompanied
by a discussion on performance and safety, and how they were designed with these
two concepts in mind.

Organisation of the Manuscript This thesis is structured as follows:

• Chapter 2 presents the concept of ordering, and how its misuse is the origin of many
bugs in parallel programming. The chapter then reviews some synchronization
primitives, libraries and frameworks that have been created in order to ease the
process of creating safe and efficient parallel programs. Finally, the chapter explores
futures and data streaming in depth.

• Chapter 3 presents our work on dataflow explicit futures, initialy published in [3].
We start with a formal presentation, the proof of equivalence between forward*
and return, before presenting the work required to implement these futures in a
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language. We finally provide benchmarks to experimentally show the efficiency of
the construct.

• Chapter 4 presents our work on the granularity of synchronization. It first presents
PromisePlus, its API and its implementation choices to achieve efficiency, initially
published in [4]. We then present FifoPlus and the analytical performance model
that comes with it, and, again, the API and implementation choices to achieve
efficiency. We provide benchmarks to experimentally show the efficiency of both
PromisePlus and FifoPlus.

• Chapter 5 compares our contributions with their closest competitors in the literature,
and Chapter 6 presents future works and concludes.



Chapter 2

Preventing Bugs and Being
Efficient in Parallel Programs

As we have discussed in the introduction, there is a need for abstractions that are
safe, efficient and intuitive to use in parallel programming. In this thesis, “safety” will
mean the absence of bugs specific to parallel programming. Section 2.1 presents the
concept of ordering, which is the source of bugs specific to parallel programming, as
well as primitive tools that can be used to avoid these bugs. Section 2.2 details multiple
languages and libraries that can be used to avoid these bugs. Section 2.3 details futures,
the synchronization tool we introduced in the previous chapter. Section 2.4 reviews the
concept of data streaming. Section 2.5 presents miscellaneous tools that can be used to
prevent bugs in parallel programs, that are too specific to fit into any of the previous
sections. Section 2.6 concludes this chapter, and contextualizes our contributions with
regards to the tools we presented.

2.1 Ordering - Origin of Bugs in Parallel Programs and
Crux of Efficiency

In sequential programming, programmers are used to a variety of bugs: accessing
unmapped memory, going out-of-bounds in an array, using uninitialized memory and so
on. Some bugs however are exclusive to parallel programming, for instance two thread
writing at the same memory location at the same time, or a thread reading from a
memory location at the same time another thread writes to it. This is the kind of bugs
we will be focusing on in this section. As a result, the usage of bug here, unless noted
otherwise, will implicitly refer to a bug exclusive to parallel programming. Since the
objective of this thesis is not to provide formal proofs of safety in programs, we will not
provide a formal specification of bugs, nor will we focus on verifying an absence of bugs.

5
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2.1.1 An Introduction to Ordering

Bugs in parallel programming originate from a lack of ordering, which is the source of
race conditions and data races. We define each of these terms below.

Ordering Informally, ordering refers to the order in which the accesses to multiple
variables in a multithreaded program are observed by the different threads. The classic
example in this situation can be found in the program written in the two listings of
Figure 2.1.

Figure 2.1: Motivating example for the concept of ordering

1 // Thread 1
2 /* 1.a) */ x = 32;
3 /* 1.b) */ y = 17;

1 // Thread 2
2 /* 2.a */ print(y);
3 /* 2.b */ print(x);

Assuming both x and y are initialized to zero before both threads start to run, there
are four possible outputs for this program: 0 0, 0 32, 17 32 and 17 0.

While the first four cases are rather intuitive, the last one can be trickier to understand.
What is happening here is a consequence of either the compiler or the processor reordering
operations. This is a kind of optimization that can happen at compile time (the compiler
reorders instructions) or at runtime (the Cpu reorders instructions). The objective of
these optimizations is to reduce pipeline stall, which happens whenever an instruction is
waiting the result of another, under process, instruction. These optimizations break the
assumption of sequential consistency: reads and writes at execution appear in the order
in which they were specified in the source program [5]. Table 2.1 presents the different
outputs depending on the ordering of operation. Red text indicates that a reordering
occured.

In a sequential program, a reordering of operations is allowed as long as the order
in which they are executed produces the same observable result as if no reordering
had happened; determining if a reordering is correct is “easy” to do, as long as the
dependencies between operations are respected. In a parallel program, determining if a
reordering is correct is much more complicated. The compiler or the Cpu may not be
aware that some data can be accessed by multiple threads at once, and will by default
perform reordering as if the program was sequential. This may result in an ordering
that is not what the programmer planned. A memory model is used to restrict which
operations are allowed to be reordered before or after other operations. The strength of
a memory model can informally be seen as how much it allows memory instructions to
be reordered. Weak memory models, like the ARM memory model, allow the kind of
reordering seen in the example above, where Thread 1 reverses the order of assignments
to x and y at runtime. Weak memory models can be arbitrarily complex and allow all
sorts of optimization [5]. This thesis is not focused on weak memory models, even though
their existence will motivate some of our choices.
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Table 2.1: Possible orders of execution and their results for the listings of Figure 2.1

1 2 3 4 Result

1.a 1.b 2.a 2.b 17 32
1.a 2.a 1.b 2.b 0 32
1.a 2.a 2.b 1.b 0 32
2.a 1.a 1.b 2.b 0 32
2.a 1.a 2.b 1.b 0 32
2.a 2.b 1.a 1.b 0 0
1.b 1.a 2.a 2.b 17 32
1.b 2.a 1.a 2.b 17 32
1.b 2.a 2.b 1.a 17 0
2.a 1.b 1.a 2.b 0 32
2.a 1.b 2.b 1.a 0 0
2.a 2.b 1.b 1.a 0 0

Listing 2.1 above is a good example of race condition.

Definition 1 (Race condition). A race condition occurs when different orderings of the
same set of events result in different behaviors.

Multiple executions of such a program would yield different results, since both threads
may interleave their instructions in multiple different ways. This results in different
execution order of the events, therefore race condition.

Listing 2.1 also showcases possible data races.

Definition 2 (Data race). A data race occurs at runtime in a program when one thread
reads or writes from a memory location at the same time as another thread writes to this
same memory location, and there is no constraint enforcing either operation to wait for
the other to be finished before starting.

Here, it is entirely possible for Thread 1 to start writing to x while Thread 2 fetches
its value in order to display it. While there are some architectures where this is not a
problem, for instance x861, this is not the case on all architectures. This is an example
of a data race: Thread 2 may read 0, 32 or complete garbage.

The necessity of ordering When many-core systems were designed, it was decided
that it would be easier to have all cores behave independently from each other. In practice
it means that cores do not naturally synchronize when they manipulate shared data. As
a result, all cores are allowed to perform aggressive optimization by behaving as-if they
were still alone, for instance by reordering instructions, at the expense of requiring the

1Reads and writes to scalars are naturally atomic in x86, although there are no natural ordering
constraints between them



CHAPTER 2. BUGS AND SAFETY IN PARALLEL PROGRAMS 8

programmer to properly perform synchronizations between cores. Synchronizing means
constraining ordering. Consider the following example, which is very common. Assume f
is initialized to false:

Listing 2.1: Flag problem in multithread
programming (Thread 1)

1 // Thread 1
2 x = 42;
3 f = true;

Listing 2.2: Flag problem in mul-
tithread programming (Thread 2)

1 // Thread 2
2 while (!f)
3 ;
4 assert (x == 42);

What the programmer expects from this program is that the second thread will block
until the value of x is 42, by virtue of using f as some kind of flag. In practice, there are
many reasons why this may not yield the proper result.

The assertion may fail, if, for some reason, the core on which Thread 1 is executing
decides to reorder f = true before x = 42. Or the assertion may fail if it gets reordered
before while (!f). These reordering are legal in a sequential program, as there are no
dependencies between the different instructions, therefore their order does not matter at
all2. However, in the context of multithreaded programs, as discussed before, the order
of the different instructions is actually critical, and the programmer may want to prevent
some orderings.

However, if compilers or processors ran under the assumption that every access to a
variable may actually be critical, then a whole set of optimizations would be discarded.
Therefore, in many languages like C or Java, it is up to the programmer to restrict what
can be done when it becomes necessary. In order to know when an ordering is legal and
how to constrain possible reorderings, the programmer needs to be aware of the memory
model and to have some synchronization tools at their disposal.

Oversimplification warning The above paragraph contains an oversimplification,
where one could understand that read and write events are instantaneous, that there is
a very specific moment where an event happens. This simplification allows for an easy,
albeit flawed, understanding of ordering, where it is possible to precisely define that
an event A happens before an event B. In reality, this is not the case, a write may be
protracted over several dozens Cpu cycles, either because it first went into a cache before
being written to memory, or because it went into a write buffer before being written to
memory. As a result, a read that started after a write started may complete before the
write becomes observable in main memory. However, we prefer to use a simplified model
of ordering as an expert-level understanding of it is not necessary nor relevant to the
content of this manuscript.

In this thesis our focus point is the communication of data between multiple threads,
either in the context of compute kernels composition or streaming application. There
will be a need for safety, which will come from ordering constraints in order to avoid

2A smart compiler may even detect that the code in Thread 2 performs an infinite loop and consider
this undefined behavior. The programmer may declare f as volatile to prevent this optimization.
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data races. This leads us to the presentation of some tools that can be used to constrain
ordering.

In a single-threaded context, all events are ordered as per the natural ordering of the
Cpu instructions in memory, since there cannot be an interleaving of instructions, and
therefore no interleaving of events.

2.1.2 Constraining Order: Synchronization Primitives

Synchronization primitives are basic building blocks that can be used to avoid data races
and prevent race conditions by constraining order across threads. We first present them
briefly before discussing their use.

Definition 3 (Atomic operations). An operation O on a memory location is said to be
atomic if no other operation that operates on the same memory location can have its
execution interleaved with the execution of O.

For instance, in the C++ language, the prefix increment of an integer is not atomic:
++i is syntactic sugar for three successive operations 1) Fetch the value of i, 2) Increment
said value and 3) Write this new value back in memory. Any other operation that involves
i may have its execution interleaved with these three steps.

Atomic variables Variables that are “atomic” expose atomic operations. A load
operation fetches the value of a variable in an atomic way, a store operation writes a new
value inside the variable in an atomic way. Other operations such as compare-exchange
or fetch-modify exist. The first one can be used to atomically compare the value of the
variable with a given value, and store another value inside the variable if the comparison
yields “equal”. The second can be used to atomically modify the value of the variable,
either by adding, subtracting, multiplying. . . another value to the value inside the
variable.

For instance, atomic_compare_exchange(x, false, true) will compare the value
of x with false, and if x is indeed false, then it will write true inside. All of this will
be done atomically: no other read or write to x can be interleaved with the compare nor
the write operation. The function returns a value that indicates whether the update was
successful or not.

Similarly, atomic_fetch_add(x, 1) will atomically add 1 to the value stored inside
x, with no other read or write to x possibly interleaved during the fetch-update-write
sequence.

The actual semantics of atomic operations depend on the language. Since we will be
working with C++, we detail a bit more the semantics in this language.

C++ atomics In C++, atomic operations can receive ordering constraints. An
ordering constraint defines how reads and writes that happen around an atomic operation
can be reordered with regard to this atomic operation. This allows the programmer to
specify the behavior of an operation at a very fine level.
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For instance, an atomic operation may be relaxed: the atomicity of the operation is
guaranteed, but the ordering of the surrounding operations is not constrained. Reads
and writes around a relaxed atomic operation may be reordered before or after that
operation. This is illustrated in Listings 2.3 and 2.4.

Listing 2.3: Relaxed memory ordering
for the flag problem (Thread 1)

1 x = 42
2 f.store(true , relaxed);

Listing 2.4: Relaxed memory ordering
for the flag problem (Thread 2)

1 while (!f.load(relaxed))
2 ;
3 assert (x == 42);

Because the load and store operations do not actually specify any ordering constraint,
this is almost the same as what we did in Listings 2.1 and 2.2. The only difference is
that now the accesses to f are atomic.

Other ordering constraints exist. When one thread reads from an atomic variable
and another thread writes to this same atomic variable, the threads may perform an
acquire-release synchronization. The read specifies an acquire constraint, and the write
specifies a release constraint. Reads and writes that appear (in source code) before the
write to the atomic are not allowed to be reordered after this write. Reads and writes
that appear (in source code) after the read to the atomic are not allowed to be reordered
before this read. In addition, all writes that happen before the write to the atomic
become visible to the thread that performs the load on the atomic variable as soon as
the load is completed. This is illustrated in Listings 2.5 and 2.6.

Listing 2.5: Acquire-release memory or-
dering for the flag problem (Thread 1)

1 x = 42
2 f.store(true , release);

Listing 2.6: Acquire-release memory or-
dering for the flag problem (Thread 2)

1 while (!f.load(acquire))
2 ;
3 assert (x == 42);

This time, the assertion cannot fail under any circumstances. By virtue of using
a release ordering in Thread 1, the write to x cannot be reordered after the write to
f. Similarly, since we are using an acquire ordering in Thread 2, the read to x in the
assertion cannot be reordered before the read to f.

The relaxed ordering does not impose ordering constraints, yet it can still be used in a
parallel program. A common usage in the C++ standard library is to increment reference
counters of objects that use automatic memory management, as such an operation does
not require ordering between threads, merely atomicity of the operation.

The acquire-release ordering is not sufficient to solve all ordering problems. There
are stronger ordering constraints, such as sequential consistency (which we will not detail
here) that are sometimes necessary. Also not all race-conditions can be prevented easily
only through the use of atomic variables. Worse, adding synchronizations might introduce
dead-locks in parallel programs, leading to the introduction of different bugs specific to
parallel programs.

Atomic variables are a rather low-level tool, more suited to be used by experts. Since
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Listing 2.7: Building a mutex from an atomic
1 class mutex {
2 atomic <bool > _locked;
3
4 public:
5 mutex () { _locked.store(false , memory_order_relaxed); }
6
7 void lock() {
8 while (! _locked.compare_exchange(false , true , memory_order_acq

ãÑ ))
9 ;

10 }
11
12 void unlock () {
13 _locked.store(false , memory_order_release);
14 }
15 };

they give programmers access to very low-level mechanisms, like the underlying memory
model, they can be used to improve performance in an extremely precise way. Misuse
however can greatly degrade performance, or, in C++ at least, induce bugs by inducing
ordering constraints that do not avoid race conditions or data races. Most programmers
will use higher-level constructs, like mutexes and condition variables.

Mutex A mutex, short for mutual exclusion, is one of the earliest synchronization
primitives, and a higher-level construct in parallel programming akin to a lock, still
widely used today. It begins in an unlocked state, and can be locked, albeit by a single
thread at a time, and then unlocked. In practice, mutexes are used to protect critical
sections. A critical section is an area of code such that there are never two threads inside
it at a time. This is quite common when implementing a queue from which multiple
threads can pull work: one thread should not be reading from the queue at the same
time as another thread.

A mutex is very similar to an atomic boolean, and can even be implemented using
one. In practice, a mutex acts like a wrapper, an abstraction above an atomic boolean,
that relieves the programmer from thinking about ordering constraints and allows them
to think in terms of sections of code. This comes at the cost of making them more opaque
and less flexible than atomic booleans themselves. Here “flexibility” refers to the control
the programmer has over how the synchronization between threads is performed: an
atomic variable can receive a memory order specification, a mutex only has the lock and
unlock operations it comes with.

Listing 2.7 shows how to build a mutex using an atomic boolean in C++.
When constructing the mutex on line 5, the _locked boolean can be initialized to

false with a relaxed ordering since there is no need to order operations here. In lock,
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Listing 2.8: Motivational example for the use of condition variables: unbounded commu-
nication channel between threads

1 mutex m;
2
3 char* read(channel_t* channel) {
4 char* result = nullptr
5 m.lock();
6 if (channel ->messages.size() == 0) {
7 DO SOMETHING
8 }
9

10 result = channel ->messages.pop();
11 m.unlock ();
12
13 return result;
14 }
15
16 void write(channel_t* channel , char* msg) {
17 m.lock();
18 channel ->messages.push(msg);
19 m.unlock ();
20 }

the compare-exchange operation atomically checks that the value of the boolean is false,
switches its value to true if so and returns true, otherwise the operation fails, changes
nothing, and returns false. lock performs this compare-exchange until it succeeds. The
unlock method atomically stores false inside the boolean, using a release ordering to
synchronize with the threads that may be looping inside lock.

Mutual exclusion in operating systems In modern operating systems, mutual
exclusion uses futexes rather than atomic booleans. A futex has the same property as a
mutex: the futex cannot be locked by a thread if it is already locked. The key difference
is in how the futex behaves when a thread attempts to lock but fails: the naive version
with atomics repeats the locking attempt until it succeeds; a futex will instead attempt
to lock a few times, and if no attempt succeeds, then the thread is put to sleep and the
OS scheduler is allowed to schedule a different thread. This is more efficient energy-wise,
and makes better use of Cpu time.

Condition variable In most programming languages, mutexes are paired with condi-
tion variables that are used to perform wait operations. Consider Listing 2.8 where we
try to implement an unbounded communication channel.

The read function reads a message from the channel, the write function writes a
message to the channel. Since the channel is unbounded, we can add as many messages as
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we want without limit. However, there is a corner case: what happens when the channel
is empty and we try to read from it?

There are several solutions: return a dummy value that indicates “No message” and
have the programmer try again at a later time; have the read method looping until there
is a message available; wait for a finite amount of time before trying again. However,
none of these solutions is both efficient and easy-to-use: all three revolve around the
thread monpolizing Cpu time until a data arrives. This is not efficient energy-wise, nor
performance-wise: while a Cpu core is monopolized by a thread, no other thread may be
scheduled on it, even if the currently-scheduled thread is doing nothing but waiting. A
more interesting approach would be to have the thread in read sleep until a message is
available, which would allow other threads to be scheduled in the meantime. However,
since read and write are critical sections, a thread cannot enter write while there is
one in read.

A condition variable is the appropriate tool to solve this problem. It acts as a
signalization point: a thread A in a critical section can decide to wait on a condition
variable, giving up its ownership of the mutex protecting the critical section, and the
thread will then go to sleep. The condition variable unlocks the mutex, allowing other
threads to enter the critical section. Once a thread B has resolved the problem that was
preventing A from progressing, it notifies the condition variable. Thread A wakes up,
and attempts to acquire the mutex until it succeeds3. Listing 2.9 shows how to use a
condition variable to solve our problem with the communication channel.

As we see on lines 6 and 18 through the locking of a shared mutex both functions form
a critical section, only one thread can be in either at any given time. This is necessary, as
they both manipulate the array messages of the channel through concurrent operations:
insertion (push) and retrieval-deletion (pop).

The read function cannot proceed if the channel is empty. As such, read relies on
write to help it out of this situation. The call to wait on line 8 in read has a matching
notification on line 20 in write.

A real scenario could be as follows: thread Tr reads from the channel, locking mutex
m, except the channel is empty. Tr must wait until thread Tw has added something in the
channel. This is done by waiting on condition variable cv_empty, which unlocks mutex
m. At some point in time, Tw sends a message in the channel. Mutex m is unlocked, Tw

locks it. Tw adds the message and then notifies all threads waiting on cv_empty that
there is data in the queue. Tw unlocks m as it leaves the critical section. Tr is awoken,
reacquires m, extracts its message from the queue, and unlocks m. All of this is safe,
as well as rather intuitive and far away from low-level considerations like ordering or
atomicity.

When confronted with the problem of waiting in a critical section, a condition
variable is the right tool. Depending on the context, programmers will not use the same
abstractions. Someone writing a HPC application will not use atomics, they would rather
use a higher-level abstraction that may use atomics for efficiency. Someone writing a

3Reacquiring the mutex is mandatory to ensure the correctness of the program, as the woken up
thread is going to return in a critical section
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Listing 2.9: Mutex and condition variable at work to implement a safe unbounded
communication channel between threads

1 mutex m;
2 condition_variable cv_empty;
3
4 char* read(channel_t* channel) {
5 char* result = nullptr
6 m.lock();
7 while (channel ->messages.size() == 0) {
8 cv_empty.wait(m);
9 }

10
11 result = channel ->messages.pop();
12 m.unlock ();
13
14 return result;
15 }
16
17 void write(channel_t* channel , char* msg) {
18 m.lock();
19 channel ->messages.push(msg);
20 cv_empty.notify_all ();
21 m.unlock ();
22 }

kernel-level scheduler will want to use low-level tools to ensure maximum efficiency and
retain full control over everything that happens.

Mutex and condition variable are abstractions over atomic variables, yet there are
some problems they are not the best suited to solve as-is. For instance, consider the
following problem: one thread must produce a value to be consumed by another thread.
A possible solution is illustrated in Listing 2.10.

While this solution is safe, it is a bit tedious to use repeatedly. The mutex, condition
variable, boolean and value are globals to keep the example simple; in a real-life example
they would need to be passed as parameters to the producer and consumer functions,
which would be impractical. An abstraction where the programmer could simply use a
set method to store a value in a shared-memory space and a get method to retrieve the
value of this shared-memory space once it has been set would be much better.

Promises A promise is an abstraction that does exactly that: it acts as a shared-
memory space that can be safely accessed by a writer thread and multiple reader threads,
with the guarantee that the readers will never read an undefined value. The interface
of a promise is rather intuitive: the set method is used by the writer thread to place a
value inside the promise, fulfilling the promise, the get method is used by the readers to
access the value inside the promise, waiting until there is one if necessary.
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Listing 2.10: Producer-consumer with a mutex and a condition variable
1 mutex m;
2 condition_variable cv;
3 bool ready;
4 int value;
5
6 void producer () {
7 int result;
8 // ... Code that computes result
9 m.lock();

10 ready = true;
11 value = result;
12 cv.notify_all ();
13 m.unlock ();
14 }
15
16 void consumer () {
17 int result;
18 m.lock();
19 while (! ready)
20 cv.wait(m);
21 m.unlock ();
22 result = value;
23 // ... Code that uses result
24 }

Listing 2.11 shows how a promise can be implemented in C++, and Listing 2.12
illustrates promises at work to compute the N -th Fibonnaci number in C++.

Note how the implementation proposed here uses a mutex and a condition variable
to protect the shared variables _ready and _value, and how the condition variable is
used to prevent a thread from reading _value until it has been properly set.

A rather common use for promises is to have two threads synchronize: one thread
produces a value, and the other thread wants to get this value and use it to perform
some computation.

Promises use safe and efficient synchronization primitives, their interface is elegant.
However they do not have a guarantee of fulfillment. A promise, as its name implies,
establishes a contract between two threads. One of these threads promises it will send a
value to the other. However, promises do not necessarily enforce this contract. Some
languages, for instance C++, have a runtime that is able to detect whether a promise
was fulfilled or not, and raise an exception if it was never fulfilled before being destroyed.
However it would be more interesting for the programmer if it could be statically possible
to detect whether a promise will get resolved or not.
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Listing 2.11: Typical implementation of a promise
1 template <typename T>
2 class Promise { // Generic
3 public:
4 void set(T const& value) {
5 _m.lock();
6 _value = value;
7 _ready = ready;
8 _cv.notify_all ();
9 _m.unlock ();

10 }
11
12 T get() {
13 _m.lock();
14 while (! _ready)
15 _cv.wait(_m);
16 _m.unlock ();
17 return _value;
18 }
19 private:
20 bool _ready = false;
21 condition_variable _cv;
22 mutex _m;
23 T _value;
24 };

Listing 2.12: Using promises to compute the N -th Fibonnaci number
1 void fibo(int n, promise <int >& result) {
2 if (n < 2) {
3 result.set(n);
4 return;
5 }
6
7 promise <int > f1, f2;
8 thread t1(fibo , n - 1, ref(f1));
9 thread t2(fibo , n - 2, ref(f2));

10
11 result.set(f1.get() + f2.get());
12 }

Futures Futures were conceptualized by Baker and Hewitt in [6], and later named
and implemented by Halstead in the Multilisp language [7]. A future is a handle to
a value that is being computed. The standard use-case is as follows: a programmer
asynchronously launches a task that computes some kind of value (generally through a
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Listing 2.13: Fibonacci with Futures
1 int fibonacci(int n) {
2 if (n < 2) {
3 return n;
4 }
5
6 future <int > f1 = async(fibonacci , n - 1);
7 future <int > f2 = async(fibonacci , n - 2);
8
9 return f1.get() + f2.get();

10 }

keyword/function called async), and later needs that value. Here asynchronous means
that the task will be executed at some point in the future, maybe by another thread or
by another process. This asynchronous launch produces a future that will hold the value
computed by the task, once the task is completed.

A future exposes a get operation that causes the calling thread to block until a value
is available inside the future, at which point the call to get returns this value. If the
value is already available when get is called, it is immediately returned without blocking.

A future is therefore a more “automated” promise: the programmer does not create
the future explicitly, but rather its creation is associated with the creation of a task.
The programmer does not resolve the future explicitly, it is automatically resolved upon
encountering the return statement of the task.

Listing 2.13 provides an example on how futures are used, here in the C++ language,
to compute the n-th Fibonacci.

The comparison with promises can be interesting. In Listing 2.12 we used promises
to compute the N-th fibonnaci number. There are a number of differences between the
two versions:

• Futures are created by the runtime, whereas promises are created manually. Futures
are more automated with more guarantees, but they are more rigid in their usage.

• Promises have to be passed as parameters to the function, meaning there was no
way to use fibonnaci without promises. Futures are more transparent: they are
used inside the function, but this is an implementation detail: how a function
does something is generally4 less important than what it does (programming to
interfaces);

• The promise version of fibonnaci explicitly used threads, whereas async can be
translated to anything, from a sequential call to the creation of another process.

4There are of course cases where internal knowledge can be useful, in particular to perform extremely
specific optimization
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• The return type of fibonnaci is explicit (int) in the future version, whereas it
was less informative (void) in the promise version.

We will discuss the differences between futures and promises in depth in Section 2.3.
The implementation of a future is similar to that of a promise, except the interface

does not expose a set method, and there is an external tool (a function, a keyword. . . )
that is used to asynchronously launch a function, which produces a future that will hold
the result of the function’s execution.

Futures are safe by design, and solve a problem that is quite common. As we will
see later, futures form the basis, among other building blocks, of a programming model
known as the active-object model.

Summary: futures and promises Futures may seem to be as expressive as
promises with strictly more guarantees. However, they are also more rigid in their usage:
a promise may not have a guarantee of fulfillment, but it can be resolved at any time; a
future has a guarantee of resolution, but at the cost of forcing the programmer to write
their code in a certain way, which we will discuss more in depth in Chapter 4. Moreover,
there are some problems tied to type systems that prevent futures from being used in
contexts such as terminal recursive functions. Promises are a good alternative in these
situations, and we will explore this topic more in-depth in Chapter 3.

We have presented basic synchronization tools, that we will use in this thesis to
constrain ordering in our tools, in order to make communication between threads safe.
However, communications should not only be safe, they should also be efficient, a
combination that has historically been difficult to achieve. We now discuss why there is
a tension between constraining ordering and reaching peak performance while preserving
correctness.

2.1.3 The Tension Between Ordering and Efficiency

While ordering is a problem that arises only when writing parallel programs, the question
of efficiency arises in both sequential and parallel programs. Sequential programs have no
need for explicit ordering, therefore the programmer can focus only on the algorithmic
aspects of the program. Most parallel programs need some ordering constraints in order
to be correct (i.e. no data races); however, operations that constrain order have a high
performance cost. On multicore machines, this cost comes from the interaction between
ordering constraints and the cache.

The cache and inconsistent view of memory Cpu caches are really fast to read
from / write to, since they are extremely close to cores themselves, compared to the
main memory. To further improve performance, Cpu cores usually have multiple levels
of cache. As the level rises, the time required to read or write to the cache increases.
However, higher-level caches are also cheaper to manufacture and have a higher memory
capacity. Level 1 (the fastest and smallest) is usually individual and each core has its
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own. Higher-levels are sometimes shared by multiple cores. While using caches allows
for efficient data access, it also gives each core a different view of memory. Two cores
may read the same memory location and get different values, for example because one
may fetch data from main memory and the other from a cache. If such behavior is not
desired, the programmer must enforce a consistent view of memory by imposing an order
by using one of the aforementioned synchronization tools.

The cost of synchronization We have stated synchronization is a cost-heavy opera-
tion. There are two reasons for this. The first is that synchronization usually involves
one thread waiting for another thread. The second is that synchronization operations
constrain ordering, which is detrimental to performance by nature.

Waiting Synchronization generally relies on one thread waiting for another thread
before doing something, e.g. because of a mutex. A wait can be necessary to ensure the
correctness of the algorithm, however if it waits longer than necessary, e.g. because the
synchronization is not well designed, then it incurs a loss of performance.

Cost of ordering Ordering constraints correspond to Cpu instructions called
fences that force a core A to commit some changes to memory. In addition, executing
the fence may invalidate some buffers and some parts of the cache. The exact behavior is
architecture-dependant and as such is not detailed in this manuscript. A result of cache
invalidation is that the next access to data that was flushed will trigger a cache miss, and
force this data to be reloaded from main memory. This reduces performance as memory
accesses are slower than cache accesses.

In general, as a synchronization tool gets higher-level, it becomes safer yet more
costly to use. For instance, a mutex is easier to use correctly than an atomic: no ordering
constraint needs to be specified. On the other hand, a well-used atomic may be faster.

On wait-free and lock-free structures and algorithms Designing and using
synchronization tools is a difficult task, where the optimal solution is difficult to find.
Sometimes it is possible to write algorithms and structures that require ordering, without
using locking mechanisms, like mutexes, which may result in better performance. However
writing such algorithms is quite difficult. These algorithms that do not perform any kind
of locking operation are called lock-free. Related to that are wait-free algorithms, where
not only no thread performs a locking operation, but also every operation executed is
guaranteed to execute in finite (bounded) time. We will look at an example of wait-free
structure in Section 2.4.3.

In summary, because synchronization and ordering are complex topics, it is best if
the programmer naturally has access to abstractions that are both efficient and safe. In
this thesis, in particular in Chapter 4 we focus on low-level details that are relevant to
the problems we want to solve, while providing high-level abstractions. Low-level details
will bring performance; the higher levels of each abstraction will create an interface that
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hides these details from the programmer, and ensures they can only use the tool in a
way that preserves safety. Furthermore, we will make sure the low-level details benefit
from information provided either by the programmer or deduced at runtime in order to
improve performance even more.

2.1.4 Summary

We have seen multiple tools to perform synchronization between threads, and constrain
ordering to avoid bugs in parallel programs. There is a tension between the ease-of-use
of these tools and the performance and safety they bring. Atomic variables give access
to extremely fine-grained optimization, but misuse can have consequences ranging from
degraded performance to outright bugs. Moreover, they are ill-suited to solving some
problems. Higher-level tools like mutexes and futures are more suited to solve some other
problems. While higher-level tools usually have safety guarantees, performance is not
always assured. And, as seen with the futures, there is a trade-off between ease-of-use
and flexibility as well.

However, these tools are not the only ones that exist. There are frameworks and
programming languages dedicated to solving problems in parallel programming. Similarly
to synchronization primitives, they all have to walk the thin line between ease-of-use,
flexibility, performance and safety. We will present those that are the closest to what we
do, and study some of their design choices in order to inform our own.

2.2 Some High-Level Languages and Libraries for Writing
Safe and Efficient Parallel Programs

In the previous section we presented different synchronization constructs to synchronize
threads and constrain ordering inside parallel applications, and how bugs in parallel
programs often originate from a lack of synchronization between threads. We also
presented some tools that can be used to constrain ordering between threads and
potentially remove these bugs. While there are some low-level tools, it is also common for
programmers to use dedicated libraries or dedicated programming languages to write safe
and efficient parallel programs. In fact, one of our contribution is a language construct
(Chapter 3), while the other two are libraries (Chapter 4).

In this section we will first present what libraries and languages are and the pros and
cons of using a language or a library. We will then move on to present multiple languages
and libraries that offer programmers tools for parallel programming and what they have
to offer with regard to performance and safety.

2.2.1 How to Choose Between Languages and Libraries

When trying to solve a problem, programmers are exposed to languages (C++, Java,
Encore [8]), libraries (pthread, StarPU [9]), or intermediates (the GOMP implementation
of the OpenMP standard). We study below the different approaches to implement a new
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programming model or a new programming abstraction like the ones we will propose in
this thesis. We also study the advantages and drawbacks of library-based approaches
relatively to full-fledged languages.

The choice between a language, a library, or an intermediate solution to solve a given
problem is not exclusive to parallel programming. The examples in this section will
mostly focus on parallel programming, but the arguments made are not specific to a
paradigm.

Libraries A library is a set of functions and language entities5 that provide a set
of tools to the programmer. For instance, the pthread library allows programmers to
write multithreaded applications in C and C++. Libraries are interesting because they
are written in an existing language, meaning a programmer fluent in said language will
not have to learn new syntax in order to use the library. Additionally, maintenance
of a library is not too difficult, even when the host language evolves. On the flip side,
since libraries exist within a given language, they are inherently constrained by what
the language and its ecosystem offer. For example, a data-streaming library in C++
will not benefit from aggressive optimizations targeting stream computing because such
optimizations are too specific for a general-purpose language.

Languages Languages are created in order to provide a way to write programs. Some
languages are general purpose, others target a specific application domain or a specific
way to program. Each language has its own abstraction level and inherent properties.
For example, C++ is a rather low-level language which gives a lot of freedom to the
programmer, at the cost of letting them write unsafe programs. Rust is also a low-level
language, but it inherently constrains how programmers code in order to prevent the
appearance of some bugs, such as out-of-bounds accesses. Different languages may also
be more or less expressive, with dedicated constructs or keywords that act as syntactic
sugar to make writing programs easier.

Just like there are general-purpose languages, there are also languages dedicated to
solving a specific category of problems: StreamIt [10] for instance is dedicated to data
streaming.

Most languages come with a compiler or a runtime, or both, and in the case of a
language dedicated to solving a specific category of problems, compilers and runtimes can
be tailored to perform aggressive optimizations on the code, optimizations that would be
seen as too specific to fit in a more general language.

While libraries can let programmers stay in their comfort zone if they are already
familiar with the language in which the library is written, switching to a new programming
language can be more demanding: a possibly new syntax as well as a new programming
model may need to be learned before being able to write “good”, i.e. safe and efficient,
code with ease.

This possibility to have dedicated syntax and optimizations comes at a price. When
providing a new language, the language developer has to implement a new compiler

5For instance, classes in an object-oriented language, monads in a functional language. . .
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(or several of them), possibly generating code for an existing language, which is costly.
Maintaining such compilers is in general more difficult than maintaining a library.

Intermediates There are also intermediate approaches placed between the pure library
approach and the design of a new programming language, like OpenMP. It is both a C
library with C functions and an extension of the C language through the use of #pragma
directives. Such intermediate tools offer some kind of middle ground. They can keep
programmers close to their comfort zone, like libraries, while still requiring them to learn
a possibly new syntax, like languages.

Summary Libraries keep programmers in their comfort zone at the expense of per-
formance since they cannot perform as aggressive optimization as dedicated languages.
Their expressiveness is also limited by what the language offers: a library will usually not
introduce new keywords or language constructs. The safety guarantees in a library are
also more oriented towards runtime guarantees rather than static guarantees compared
to language approaches.

Languages can be more or less expressive with keywords or static constructs acting
as syntactic sugar, can offer aggressive optimizations, but this comes at the cost of a
steeper learning curve.

Intermediate approaches stand between both: they keep programmers close to their
comfort zone, but still require them to learn syntax extensions, and the possible opti-
mizations, while generally more aggressive, are still constrained.

The choice boils down to the amount of time needed by a team to get familiar with a
given tool and the kind of guarantees they are looking for. The cost of development of
each solution also depends on the approach, libraries being in general easier to maintain.

We now move on to present some libraries, languages and intermediates that target
parallel programming, through the lenses of efficiency, safety and ease-of-use.

2.2.2 Distributed Programming With MPI

MPI (Message Passing Interface) [11] is a specification that is implemented as libraries
in different languages, such as C, dedicated to performing distributed computing; it is,
alongside the OpenMP language-library, one of the historical tools in parallel computing.
All the examples in this section are written in C.

MPI exposes functions that allow programmers to run multiple instances of a same
program on multiple different machines, and have all these instances communicate with
each other. Communication is performed through the exchange of messages. Unlike in a
protocol like HTTP where a message (a request in HTTP) expects an answer (a response
in HTTP) and no further messages can be sent before receiving a response, an MPI
program may send a message without expecting a response. If a response is expected,
the program is still free to keep running until it actually needs to wait for the response,
which may be at any point in the future.
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Listing 2.14: Short MPI example
1 int main(int argc , char** argv) {
2 MPI_Init (&argc , &argv);
3 int rank;
4 MPI_Comm_rank(MPI_COMM_WORLD , &rank);
5
6 if (rank == 0) {
7 int value = rand();
8 MPI_Send (&value , 1, MPI_INT , 1, 0, MPI_COMM_WORLD);
9 printf("Sent␣%d␣to␣process␣1\n", value);

10 } else {
11 int value;
12 MPI_Recv (&value , 1, MPI_INT , 0, 0, MPI_COMM_WORLD , NULL);
13 printf("Received␣%d␣from␣process␣0\n", value);
14 }
15
16 MPI_Finalize ();
17 }

In this section, we will focus on the OpenMPI [12] implementation of the MPI
standard in the C language.

Let us go into more details. In order to run an MPI program, programmers use the
mpirun command-line tool. It takes the program name and arguments as parameters,
as well as the number of instances of the program that should be ran, e.g. mpirun -np
3 ./a.out will run 3 instances of the a.out program. These instances may run on the
current machine, or on multiple different machines.

Communication between instances of an MPI program are done through communica-
tors. All instances that share a common communicator can exchange message with each
other through this communicator. When an MPI program is launched through mpirun,
all instances share a global communicator, called MPI_COMM_WORLD; the programmer may
then proceed to create additional communicators in order to represent groups of processes
and refine which communications are allowed. In order to identify themselves, instances
are assigned a unique rank. This rank is used in the MPI messaging functions, MPI_Send
which is used to send a message, and MPI_Recv which is used to receive a message.
MPI_Send takes as parameter the rank of the receiver, MPI_Recv takes as parameter the
rank of the emitter.

Listing 2.14 gives a small example where one process sends a number to another.
Since the main objective of MPI is to exchange messages, let us see how the program-

mer expresses sending a message and receiving a message. Both MPI_Send and MPI_Recv
have verbose signatures. The first parameter of MPI_Send is the data to send, passed by
address. The programmer then specifies the number of elements in the data buffer, as
well as their type, and, finally, the identifier of the target process (its rank) as well as
which communicator to use.
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There are two categories of observations here: some that are tied to MPI itself, and
some that are tied to the choice of the C language. On the MPI-specific side, we can see
that processes are abstracted by a number and a communicator. Such an abstraction is
less informative and more error-prone than abstracting them as instances of a full-fledged
datatype that would expose dedicated operations for sending and receiving messages. On
the C specific side, there are some observations tied to the type system of the language.
MPI_Send and MPI_Recv need type information passed as parameters because the type
system of C does not offer genericity that is type-safe. This is an illustration of a
limitation of libraries: they are limited by what the host language offers.

However, MPI still offers great abstractions. For instance, the MPI_Send function
might be type unsafe but it is a really good abstraction over the standard POSIX send
function in the sockets library. To elaborate, we did not need to check the endianness
of the computer before sending an integer, possibly through the network, to another
computer. If we were using the socket library, we would need to convert the machine
representation of the integer to the network representation, and then convert the received
integer back to the representation of the receiver machine. Both MPI_Send and MPI_Recv
abstract this away. Additionally, even if the programmer needs to specify the amount
and the type of the data to send/receive when working with MPI, it is an improvement
over the socket library where the programmer would have to specify the number of bytes
to read/write. MPI can abstract away details like getting the exact size of an int, which
is machine dependent.

MPI is also massively used for its collective operations that allow the synchronization
of many processes.

Summary MPI is an historical tool, that serves as the main building block of many
abstractions that have been built over the years in an effort to make distributed computing
and message passing easier and more efficient. This paragraph does not intend to work
as positioning, but merely as a summary.

MPI is focused on distributed computing, which is not our focus point: we target
parallel computing on a single machine. However, our results may be extended to fit in
the distributed paradigm. Nonetheless, interesting observations can be made on some of
the design decisions in MPI and what they entail in terms of safety, ease of programming
and efficiency.

Since MPI is focused on distributed computing, it limits data races: memory is not
shared, each process has its own memory, similar to multiprocessus programming on a
local machine through forks. Nevertheless, it is still possible to encounter data races
when working with the asynchronous versions of MPI_Send and MPI_Recv that may work
in parallel with the main program, and read / write to their buffer in parallel with the
main program. Regardless of all of the above, MPI does not eliminate the problem of
race conditions.

Ease-of-use is not ideal, however libraries have been made to improve it. DSPARLIB
[13] is a C++ wrapper above MPI that exploits the tools of the language, namely
templates, in order to provide an easier to use API. The active-object model that we
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mentioned earlier completely abstracts away the idea of message sending by instead using
asynchronous method calls between objects.

If we consider the efficiency of MPI, the implementation of the functions in the MPI
standard are usually efficient. They do not specifically target data streaming or kernel
compositions, however having efficient implementations of the standard MPI functions
allows higher-level, or even lower-level tools, to achieve efficiency when it comes to
communication between machines.

Again, we do not target MPI nor distributed systems in this thesis, but we share some
objectives with MPI. MPI has brought some ease of use to programmers and high-level
abstractions.

2.2.3 OpenMP

OpenMP (Open Multi-Processing) [14] is a standard for multithreading that has been
implemented in many languages, such as the C language. It is, alongside the MPI library,
one of the historical tools in parallel computing. We will focus on C implementations of
OpenMP in this section.

An OpenMP program is a C program extended with OpenMP pragmas directives,
e.g. #pragma omp parallel. An OpenMP pragma defines the behavior of a part of the
application, and can be annotated to alter its behavior. Since these pragmas are not part
of the C standard, an OpenMP program needs to be compiled with a compiler that has
support for it built-in.

The most common use of OpenMP is to have multiple threads execute a block of
code in parallel, on the same machine, which can be achieved through the parallel
pragma. The second most common use of OpenMP is to share the execution of a for
loop between multiple threads of execution, through the for pragma. We now present
some common pragmas.

The parallel pragma When the flow of execution reaches the parallel pragma,
a number of threads is spawned and they all begin executing the content between
braces, and then wait for each other at closing brace, waiting on an implicit barrier6.
The number of threads can be left to the runtime, or explicitly stated through the
num_threads annotation. Listing 2.15 presents a simple use of the parallel directive.
The two calls to printf have been willingly split in order to show the interleaving of
instructions during execution.

6This barrier can be disabled using the nowait annotation
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Listing 2.15: Example use of the parallel pragma in OpenMP
1 int main() {
2 #pragma omp parallel num_threads (4)
3 {
4 printf("Thread␣");
5 printf("%d␣executing\n", omp_get_thread_num ());
6 }
7
8 return 0;
9 }

There are multiple possible outputs. Some can be of the following form if all threads
manage to execute both calls to printf before any other can interleave a call:

1 Thread A executing
2 Thread B executing
3 Thread C executing
4 Thread D executing

Some can be of the following form if multiple threads interleave their calls to printf:
1 Thread Thread B executing
2 A executing
3 Thread Thread C executing
4 D executing

The set of all possible outputs if not shown for brevity.
These outputs are with A, B, C and D taking the values of all possible permuations of
the set { 0, 1, 2, 3 }.

The for pragma The for directive is used to distribute the iterations of a loop
between multiple threads, in order to speed up its execution. The programmer can
specify how the iterations of the loop will be scheduled between the different threads
through the schedule annotation. Listing 2.16 presents a simple use of the for directive.
It should be noted that the for directive is only allowed to appear inside a parallel
region7, since it is a worksharing construct: it inherently requires multiple threads to
exist in parallel in the executing context.

OpenMP tasks A common use of parallel programming is the scheduling of work
between multiple cores. As a result, OpenMP provides multiple pragmas that can help
the programmer distribute work between multiple threads; these are called work-sharing
constructs. We have already seen the for pragma in the previous section; here we will
focus on the task pragma, as it will come back later when we talk about the OpenStream
library.

An OpenMP task is a block of code that begins with the task pragma, and is delimited
by braces. Like with the for pragma, tasks are only allowed to appear inside a parallel

7The pragma is sometimes abbreviated as #pragma omp parallel for for brevity sake
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Listing 2.16: Example use of the for pragma in OpenMP
1 int main() {
2 #pragma omp parallel num_threads (4)
3 {
4 #pragma omp for schedule(static)
5 {
6 for (int i = 0; i < 16; ++i) {
7 printf("Thread␣%d␣executing␣iteration␣%d\n",
8 omp_get_thread_num (), i);
9 }

10 }
11 }
12 }

region. At runtime, whenever a thread reaches an OpenMP task, the task is added to a
pool of tasks to be executed (note that if multiple threads reach the same OpenMP task,
then the task is put in the pool one time per thread). Then, when the runtime decides
that it is best, it selects one of the threads that were created, and assigns the task to
this thread for execution.

Synchronization Since OpenMP uses a shared-memory model, data races will happen
when multiple threads read and write to the same variable without performing synchro-
nization. Therefore, there are two relevant questions to ask: 1) What are the constructs
offered by OpenMP in order to synchronize threads? and 2) How can they safely and
efficiently interact with each other?

There are three different synchronization tools inherently offered by OpenMP: barriers,
critical sections, and atomic operations with specification of an ordering constraint.
Barriers synchronize all threads with each other. Critical sections prevent two threads
from executing the same section of code at the same time, similarly to mutexes. And
atomic operations can be used to constrain ordering, as we have already discussed in
Section 2.1.2.

Barriers and critical sections are rather easy to use. A barrier is a #pragma omp
barrier at the point in code where the programmer wants to put a barrier. A critical
section is defined by #pragma omp critical blocks of code. The efficiency of the
implementation of either is up to a given implementation of the OpenMP standard.
Atomic operations in OpenMP suffer from the save caveats as atomic operations in
modern C++, where specifying the wrong ordering can create incorrect code.

Positioning As we can see, OpenMP offers its own version of most of the primitive
synchronization tools that we have discussed in the previous section. However, it lacks
more evolved synchronization tools. For instance, we will talk about the LU Gauss-
Seidel algorithm in Chapter 4, and its implementation in a set of benchmarks. In this
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implementation, there was a need for a synchronization pattern based on an alternate
bit protocol, which had to be implemented manually by the programmers, using only
OpenMP basic building blocks. Rather than being abstracted away in a class or structure
or module, the pattern was implemented with an array and atomic operations, which
made it quite difficult to understand. Standard structures for communication between
threads like FIFO queues do not exist in OpenMP, and it is up to the programmer
to create them. This also means that efficiency of communication is irrelevant here:
OpenMP does not offer tools for communication, so their efficiency cannot be judged. In
Chapter 4 we will present PromisePlus, an abstraction to exchange arrays efficiently in
an OpenMP program.

2.2.4 The Actor Model & Active Objects

During our presentation of futures in Section 2.1.2, we mentioned that they form one of
the basic synchronization construct of the programming model known as “active objects”.
In this section we first present the actor model, which is another building block of the
active-objects model, before moving on to the active-objects model itself.

The actor model The actor model was developed by Agha [15] in the 1980’s, with the
intent of making distributed and parallel programming both easier and safer than what
existed then, i.e. synchronous communication models based on either process calculi like
CSP [16] and CCS [17], or on shared-variable models like C.

The actor model is a programming model that manipulates actors: single-threaded
entities that each have an associated message queue and data. Communication between
actors is not performed through shared data, but rather through asynchronous messages,
i.e. upon sending a message an actor does not wait for the answer and proceeds
immediately. Internally, an actor performs pattern matching over the different messages
in its message queue, and works depending on which messages it has received.

This approach, where each actor is a self-contained mono-threaded entity and all
communications are reduced to message passing, removes data races8. In the case of
parallel programming, it abstracts away the need for synchronization between threads
which allows programmers to focus on algorithmic aspects, unlike in OpenMP where
synchronization for communication is explicit. It also makes static analysis and model
checking much easier than in the shared-variable model of parallel programming, as it
ties together data and control: an actor only manipulates its own data, and never touches
data from another actor. However, it still leaves the possibility for race conditions: the
behaviour of the program depends of the order in which messages are processed, and a
race occurs if this order is not enforced. Additionally, actors still suffer from a kind of
starvation, where some messages may be ignored if the actor does not switch to a state
in which it can process these messages.

8The actor model does not specify whether the parallel programming model is based on shared memory
or on distributed memory. If the model is a shared-memory model, then communication between actors
is thread safe as long as the communication channels are thread safe
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In Agha’s model, an actor is a kind of black box: how a message is processed depends
entirely on the actor. You can see it as a class with a method work that loops over the
messages in its queue. The exact behavior of this method and what it does depending
on the messages it proceeds is opaque, and the model does not allow to specify the
behavior of an actor, e.g. by defining an interface. A consequence of this design is an
absence of separation of concerns: what a message does is not tied to a contract, but
to implementation. Similarly to how the object-oriented paradigm was developed over
the last decades and introduced modules and classes in order to structure programs and
loosen coupling, the active-objects model of computation was introduced to address some
of the flaws in the original actor model.

The active-objects model The active-object (AO) model [18] takes inspiration from
the object model: actors, now called active objects, are instances of classes, that may
support object features such as inheritance, encapsulation and methods; message calls
are now asynchronous method invocations9. A key feature of active-objects languages
is the use of futures (Section 2.3): every asynchronous method invocation produces a
future that will hold the result of the execution of this method. This future allows an
object to synchronize with the end of the execution of the corresponding method.10

The inspiration from the object model solves the lack of separation of concerns: each
method offers its own contract. An asynchronous call to a method has inherently more
meaning than sending a message to an actor. Another consequence is the removal of the
starvation that could occur in an actor if it never switched to the appropriate state to
process a message. In the AO model, each object has a FIFO queue of pending method
invocation, and processes them one after another. Provided every method call finishes,
the object will eventually process all method invocations in a bounded time.

Another interesting feature of the active-objects model is the ease of synchronization.
In the actor model, a programmer could not easily synchronize with the answer to
a message. However, in the active-objects paradigm, thanks to the use of futures,
synchronization is performed through a simple get statement on a future produced by
an asynchronous call.

By nature, active-object languages lend themselves to all kind of optimizations.

• Cooperative scheduling Some of the active-object models allow the programmer
to use cooperative scheduling, in general through the keyword await that can be
applied to a future. await checks whether the future is resolved. If it is, execution
continues; if it is not, then the active-object suspends the execution of the current
asynchronous call and tries to process another. A specific example can be found
in the ABS language [19], that offers a concept of Concurrent Objects Groups
(COGs), that partitions active objects into COGs, having only one active object in
each COG running; in this case, yielding control with await can transfer control
to another object in the COG.

9In this context, asynchronous means that the thread does not wait for the method to run before
resuming execution.

10Whenever an object calls an internal method, the call is synchronous, naturally
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• Speculative execution The Encore [8] language offers monadic combinators [20]
that can be used to perform speculative computations: multiple computations are
launched in parallel, each of them yielding a future, and the programmer can wait
on this group of futures until the first one is resolved, and then cancel all other
tasks in the group. This can be used, for example, to try multiple strategies to
solve a given problem in parallel and keep the result of the fastest one.

Thread safety is a common point of interest when working within the active-objects
model, since it is a model oriented towards working with thousands of parallel entities.
Many languages, like the Encore language [8] have a “no shared variables” policy, which
is enforced by the type system of the language. In Encore, the type system offers
“capabilities” [21], which are similar to ownership [22] in Rust: a capability restricts the
operations allowed on a value of a given type. The most prominent use of capabilities in
Encore can be found with the active-objects themselves: the internal state of an object
cannot be shared with any other object. This greatly limits data races.

As active-objects languages target HPC, they also focus on efficiency [23]. A more
detailed view of how active-objects languages achieve efficiency can be found in [18].

Summary The active object and actor models of computation are an extremely active
field of academic research, as well as the inspiration for some industrial success, like the
Akka [24] framework, which adds actors in the Scala and Java languages. Considering
the extremely wide scope of the models, we will not position ourselves relative to them.
However, since parts of our work are done in the active-object language Encore and
target efficiency and ease-of-use (see Chapter 3), and others are inspired by the usage of
futures for data streaming in the active-objects language ABS, we will position ourselves
relative to these two languages in Chapter 3 and Section 2.4.4 respectively.

2.2.5 StarPU: A Framework for Task Scheduling on Heterogeneous
Architectures

StarPU [9] is a library that focuses on scheduling tasks on heterogeneous multicore
architectures, with support for distributed computing. A heterogeneous architecture
is one that contains multiple kinds of processing units: Cpu, Gpu, Mic. . . . Working
on heterogeneous architectures is one way to improve the performance of applications:
nowadays, Gpus can be used for general-purpose computing, and are particularly well
suited for massively parallel ones since Gpus excel at parallelism11. Programming on
heterogeneous architectures with multiple different kinds of processing units is quite
recent, and StarPU was motivated by the need for efficient scheduling runtimes for these
kinds of architecture.

In StarPU, the basic unit of work is a task. A task is a set of functions that all
implement the same algorithm albeit on different architectures. For instance, a matrix
multiplication task may be implemented as a function that runs on a Cpu using standard

11Although this comes with a steep learning curve as programming on a Gpu is wildly different than
programming on a Cpu
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BLAS, and as a function written in CUDA to run on an Nvidia Gpu. A programmer
will conceive their program as a graph of tasks, and will either specify the dependencies
between task or let the runtime determine them automatically, and then gives this graph
of tasks to the scheduler. At runtime, the tasks will be scheduled on different computing
units, while respecting dependencies. The choice of the computing unit is up to the
runtime, without the need for an intervention of the programmer.

StarPU supports multiple scheduling algorithms. They can be guided by scheduling
hints provided by programmers, e.g. giving a priority to a task. StarPU also focuses on
performance models (for instance the ATLAS [25] model for the BLAS kernel) which
are used to get an estimate of how long a given task will take to complete on a given
computing unit, based on the current workload of this computing unit. Using such a
model can drive the scheduling by dynamically finding the best computing unit on which
to run a task. In addition to hints and performance models, StarPU can also drive its
scheduling by exploiting the results of previous executions of a task: the runtime records
the time it takes to run a given task on a given computing unit in order to have a baseline
with which it can inform future scheduling decisions.

This allows the runtime to perform smart scheduling decisions: if the best computing
unit for a task is available, then the task can be scheduled immediately. If the best
computing unit is not available, but the second best is, then the runtime can decide
whether it is worth immediately scheduling the task on the second best, or if it is more
interesting to wait until the best computing unit is available.

StarPU does not support communication between running tasks, except upon task
creation and termination. If A and B are two tasks and B specifies that it depends
upon A then the runtime will only schedule B once A has completed. StarPU aims
first and foremost to offer a unified execution model and a scheduling framework on
a heterogeneous architecture, communication between tasks is therefore not a priority
w.r.t. StarPU objectives. This can also be explained by the difficulty in communicating
between multiple different computing units.

Positioning StarPU strays quite far away from our objective, that is improving the
synchronization between computation kernels in order to improve efficiency, however
what it does with the recording of the execution time of tasks is interesting for us. One
of the idea we will explore in Chapter 4 is to slice the data into chunks, and finding the
best size for these chunks. Recording the chosen size for these chunks and the execution
time associated could give us heuristics to find the best granularity.

However, there is one pitfall with the StarPU approach for exploiting execution time:
the runtime cannot deduce on the fly on which computing unit it should schedule a
task when it receives this task for the first time, and because of the cost of moving data
between computing units the scheduling decision cannot be reconsidered once the task
has been scheduled. As a consequence the runtime needs multiple runs of a given task
in order to find out, experimentally, which computing unit is the best for this specific
task. In turn, this means that the task should lend itself to repeat executions whose
execution time is not highly dependent on the input. Algorithms that are dataflow or
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have an execution time highly dependent on the input are not the best target for StarPU.
In Chapter 4 we will present a tool that takes inspiration from StarPU’s measurements
and uses them to improve the efficiency of communication between multiple threads.

2.2.6 Skeleton Programming with SkePU

SkePU [26] is a library for algorithmic skeletons [27] programming. An algorithmic
skeleton is a higher-order function whose body is inherently/easily parallelizable, such as
many constructs inspired by functional programming, like map, reduce or scan. A SkePU
program can then be seen as a sequence of calls to skeletons with user-supplied functions,
that performs a series of transformations on some input.

Similarly to StarPU, SkePU works on heterogeneous architectures. In SkePU, pro-
cessing units other than “traditional” Cpus are called accelerators (e.g. Gpus). In order
to work with these accelerators, SkePU supports multiple backends. A backend is a
library used to communicate with an accelerator and work with it. For instance, if one
wants to work on an Nvidia Gpu outside of SkePU, they may use Nvidia’s proprietary
library CUDA, the high-level library Boost.Compute part of the Boost project, or the
low-level library OpenCL. When working with Nvidia Gpus, SkePU supports both the
OpenCL and CUDA backends. What this means in practice is that the programmer may
write a function to be run in a skeleton using either OpenCL or CUDA, and SkePU will
seamlessly work with either, which gives some freedom to the programmers as to which
tool they use.

The use of skeletons allows programmers to focus on the structure of the application
they are writing, the sequence of transformations they want to perform on a given input,
rather than focus on questions like “I have a Gpu here, and a Cpu here, would it be
better to execute on the Gpu? If so, how do I perform the transfer? How do I adapt it if
I change the library I use for communication with the Gpu?”. There are also multiple
internal features of SkePU that reduce the concerns of programmers:

• The containers in SkePU are “smart containers” [28, 29]. A smart container is akin
to an array / a matrix that is able to seamlessly offload parts of its content on
different computing units, while also keeping track of where each part is located.
One of the advantages of this technique is that it allows the SkePU runtime to
avoid needless transfer of data between multiple computing units: if two skeleton
calls that operate on the same smart container are executed on the same computing
unit with no other skeleton reading from this smart container, then there is no
need to transfer the container’s content back to main memory;

• Every time a skeleton is invoked, the runtime records the call site as well as the
arguments, but does not immediately run the skeleton. Internally, the runtime
will build a graph, called a lineage [29], which allows the runtime to perform lazy
evaluation, deferring the actual evaluation of a skeleton to the moment it is actually
needed. This allows the runtime to perform some optimization like loop fusion or
loop tiling by exploiting knowledge of the sequence of calls.
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• The two optimizations above improve locality of reference, which usually increases
performance.

• Lastly, SkePU is able to perform an auto tuning [30, 31] of the skeletons, where
the runtime will automatically deduce which backend is the best to run a given
skeleton / a given set of skeletons. This process exploits the lineage of skeleton
calls in order to follow the sequences of transformations performed on each smart
container. With this additional information, the runtime is able to better compute
the cost of executing a skeleton on a given computing unit.

All of these features alleviate the work of the programmers, who can focus entirely
on the sequence of transformations they want to perform. Writing a SkePU program is
therefore really close to sequential programming.

Positioning SkePU’s scope is extremely wide: it supports hybrid Cpu-Gpu program-
ming, with high-level abstractions that successfully hide away most of the underlying
technical details so that programmers may focus entirely on the structure of their program
while getting strong performance results. Our scope is much more narrow: we focus first
and foremost on providing safe and efficient communication tools between threads that,
for now, run on Cpu, rather than on a hybrid architecture.

Smart containers in SkePU take the form of arrays or matrices which are one of our
focus point. Our primary objective is to improve the composition of kernels that work on
such structures. One of our contributions that we will elaborate upon in Chapter 4 is a
tuning algorithm that finds a good granularity of synchronization when exchanging arrays
and matrices between two kernels. Such a tool could possibly be used inside SkePU in
order to improve the efficiency of the communication between skeleton calls by finding a
good granularity. In particular, this could be applied to the algorithm in SkePU that
performs loop tiling: finding a good size of tiles will improve performance. It could be
possible to exploit the capabilities of the SkePU runtime, such as the lineage of skeleton
calls, in order to defer some of the configuration of our tools to the runtime itself, which
would further improve ease-of-use. We will explain this in more details in Section 4.2.

The choice of the backend in SkePU is done through an offline machine-learning
algorithm [31]. In one of our contribution we propose an algorithm that finds a good
granularity of communication between kernels. While the approaches attempt to find
two different kind of values (SkePU attempts to find where to run a function, our tool
attempts to find a size), they both have in common a desire to increase performance and
improve ease-of-use by auto tuning a tool given to the programmer.

2.2.7 Cilk: A Multithreaded Runtime System

Cilk is an extension of the C language as well as a runtime system. It was first proposed
by Blumofe et al. in [32] and evolved until the Cilk 5 release in [33] by Frigo et al. A Cilk
program is a C program augmented with extra keywords, therefore requiring a dedicated
compiler in order to translate Cilk to C before invoking the C compiler.
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In Cilk, the basic unit of work is a procedure. A Cilk procedure is a C function
annotated with the keyword cilk. Unlike C functions, a Cilk procedure cannot be called
as-is, and instead requires the programmer to prefix the call to the procedure with the
keyword spawn. When a procedure is spawned, the runtime schedules its execution on
one of the processors of the machine. This is done through a system of double-ended
queues (deque): Cilk assigns each processor a deque that will hold the procedures this
processor will execute, one after the other. Note that the procedures spawned inside a
procedure may not necessarily be scheduled on the same processor as the one executing
the procedure that spawned others.

Listing 2.17 presents Cilk code to compute the nth Fibonacci number in parallel. It
is taken almost verbatim from the example provided by Frigo et al. [33].

Listing 2.17: Example of code in Cilk
1 cilk int fib(int n) {
2 if (n < 2) {
3 return n;
4 } else {
5 int x, y;
6 x = spawn fib(n - 1);
7 y = spawn fib(n - 2);
8 sync;
9 return x + y;

10 }
11 }

fib is a Cilk procedure as indicated by the presence of the cilk keyword before
the return type. The Fibonnaci algorithm is implemented in its naive form (without
memoization or any optimization) and computes the n-1 th and n-2 th numbers before
summing them. The computation of these numbers is done by spawning additional
procedures. Execution then reaches the sync keyword. This creates a barrier that waits
for the completion of the children procedures of the current procedure. This is the only
possible way of performing a synchronization in Cilk. This is in contrast to futures where
programs can only wait for the completion of one procedure.

Work-stealing The key feature of Cilk is its use of work-stealing [34]. Work-stealing
is a mechanism whereby computing resources are allowed to steal work from other
computing resources in order to automatically balance the workload. This is achieved in
Cilk by the dequeues mentioned earlier. If a processor runs out of procedures to run in
its dequeue, it attempts to steal a procedure from another processor as follows:

• Every time a processor spawns a new procedure, it begins executing this procedure,
suspending the current one and placing it at the bottom of its queue;

• Whenever a processor runs out of procedures, it attempts to steal one from another
processor;

• Whenever a processor stalls, because a synchronization is necessary, it suspends the
current procedure, and attempts to execute the next one available, stealing from
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Listing 2.18: Computing Fibonacci in the original release of Cilk
1 thread fib(cont ink k, int n) {
2 if (n < 2) {
3 send_argument(k, n);
4 } else {
5 cont int x, y;
6 spawn_next sum(k, ?x, ?y);
7 spawn fib(x, n - 1);
8 spawn fib(y, n - 2);
9 }

10 }
11
12 thread sum(cont ink k, int x, int y) {
13 send_argument(k, x + y);
14 }

other processors if necessary;
• Whenever a processor resolves a synchronization for a procedure ran by another

processor, it steals this procedure and places it at the bottom of its queue.
In [34], Blumofe et al. prove that this scheduling strategy and the implementation of the
Cilk work-stealer, is efficient and its performance can be predicted. Work-stealing has
since been used in other runtimes, like StarPU (Section 2.2.5) or XKaapi (Section 2.2.8).

The original release of Cilk

This section presents the original release of Cilk [32]. In [33], the authors point out that
one of their objectives since the initial release of Cilk had been to make the language more
user-friendly. The objective of this section is to provide an example of how languages
can evolve in a way that makes them easier to use.

Listing 2.18 presents the Cilk code used to compute the nth Fibonacci number in
parallel, in the original release of Cilk. If one compares this code to Listing 2.17, there is
a number of differences.

• The fib procedure does not have a return type and is instead tagged thread.
• There is an additional keyword called cont that can be applied to variables, and

designates them as continuation variables.
• The return statements are replaced with the send_argument in the terminal case,

and completely removed in the general case.
• A new unary operator ? is introduced and can be used on continuation variables.
• The sync keyword does not appear and all assignments have been removed.
These are due to two major changes: absence of return types and use of continuation

variables.
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Return type In the original release of Cilk, Cilk procedures did not have a return
type. In fact they could not even contain a return statement. Instead, the result of a
Cilk procedure had to be communicated through a continuation variable.

Continuation variables A continuation variable is akin to a promise. At its creation,
it does not hold a value. The send_argument function takes a continuation variable
and a value as parameters, and resolve the continuation variable with this value, similar
to a set on a promise. The ? operator behaves similarly to a get operation; however,
unlike get which can be called at any point, the ? can only be used when the value of a
continuation is required as a parameter to a Cilk procedure (in other words, one cannot
write int a = ?x;).

Observations The usage of continuation variables allowed Cilk to behave like a dataflow
language: procedures could be spawned but not necessarily scheduled immediately if
one of their effective parameters was an unresolved continuation variable. The scheduler
would keep track of the missing continuation values and only schedule the procedure
once all its parameters were known. Such a programming style is quite common in
synchronous languages like Lustre [35]. However, as Cilk aims to extend the C language,
both these choices made Cilk harder to use than necessary. The lack of return values
and the shift to a more dataflow oriented paradigm are both at odds with the existing
programming paradigm of C.

Evolution towards Cilk 5 Cilk 5 added return values in Cilk procedures, and replaced
continuation variables with barriers. It made the programming model of Cilk closer to
the imperative nature of C. On the other hand, it also made synchronization less refined:
it went from being able to synchronize on a single value to only being able to synchronize
on the completion of every single child task.

Positioning Cilk, like StarPU, is a runtime system targetting efficiency, although
with different approaches: in StarPU the program is described as a graph of tasks with
explicit dependencies, whereas Cilk schedules procedures as they are created. Both
frameworks perform dynamic scheduling, and both approaches use a form of barrier
for synchronization. Barriers provide simple and safe synchronization, but sometimes a
finer-grain synchronization is more efficient. We believe these frameworks would benefit
from advanced synchronization tools with variable granularity of synchronization, like
the ones we design in this thesis.

2.2.8 XKaapi: Dataflow Task Programming on Heterogeneous Archi-
tectures

XKaapi [36] is both a runtime system and a library that allows dataflow task programming
on heterogeneous architectures. An XKaapi task is similar to OpenMP tasks, X10 [37]
asynchronous activities, or even Encore asynchronous functions: it is a block of code that
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is to be executed at a certain point in time, be it by a thread, by another process, or by
another machine.

An XKaapi task can be written for several different computing units, such as a Cpu or
a Gpu. It is possible to provide both a Cpu and a Gpu implementation of the same task;
in this case, the programmer may chose to spawn the task on a specific computing unit or
simply let the runtime decide which computing unit is the best through heuristics. This
is similar to what happens in StarPU, although both runtimes use different heuristics to
determine where to run the task.

XKaapi draws inspiration from Cilk by using a work-stealing scheduler: once a thread
becomes idle, it attempts to get work by stealing some from another thread, called the
victim. The work-stealing scheduler in XKaapi computes dataflow dependencies between
tasks in order to know which task to steal. Unlike some other approaches like StarPU
or OmpSS [38] that compute dependencies as tasks are created and build a graph of
dependent tasks, XKaapi computes dependencies when it attempts to steal a task. This
is done in order to reduce the overhead that happens if dependencies are computed at
the same time as task creation. This is inspired by the “work-first principle” of Cilk [33],
which states that the design of a runtime should minimize overheads during work and
transfer them onto the critical path of the application. The critical path [39] of a parallel
program is the longest chain of dependencies between tasks, which is the main bottleneck
of a parallel application.

As a result of this scheduling, non stolen tasks are executed in a FIFO order, with
the oldest created task being executed first. This FIFO order is a valid sequential order
of execution as was shown in XKaapi’s predecessors Athapascan [40] and Kaapi [41].

The library part of XKaapi exposes types that are useful when dealing with arrays,
called ranges. A range is basically a slice of an array, and this allows the programmer
to effectively slice an array into chunks that can be processed in parallel by multiple
different tasks, or multiple instances of the same task. The ranges can be tagged with
read, write or read-write annotations to help the runtime determine whether a task read
from, write to or read-from-and-write-to a specific range, which guides scheduling.

Positioning XKaapi appears as a mix of Cilk and of StarPU: it gives tools for dataflow
programming (original Cilk), uses a work-stealing scheduler (all versions of Cilk) and
targets heterogeneous architectures (StarPU). The focus on dataflow is interesting as
it removes the need for explicit synchronizations using synchronization tools. Instead,
the programmer can simply specify which parts of the memory are read / written /
read-and-written by a task and the runtime schedules the tasks with respect to these
specifications. This is, again, similar to what is possible in StarPU.

We believe that there are improvements that can be made when it comes to tasks that
manipulate arrays. The concept of ranges is interesting as slicing an array into chunks
can result in finer-grained synchronizations, which may improve parallelism compared to
a synchronization over the whole array, an idea we explore in Chapter 4 when applied
to the combination of arrays and promises. However, the slicing is static and explicitly
made by the programmer: a task is created for each slice, and there is no way of knowing
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the best slice size. Since we also explore this idea of finding a good slice size in Chapter
4, we believe our tools could be used in combination with XKaapi to further improve
performance.

We now move on to two sections that present some background as well some state of
the art on two concepts we use in this thesis: futures in Section 2.3 and data streaming
in Section 2.4.

2.3 A Study of Futures
In Section 2.1.2 we briefly introduced futures. A future is a synchronization tool that
can be used to synchronize a task A with the completion of a task B. In addition to
performing the synchronization, the future will contain the value returned by task B
upon completion. Listing 2.19 shows a toy example in C++.

Listing 2.19: Toy example of a future used to retrieve the value computed by a thread
1 int f() {
2 return 2;
3 }
4
5 int main() {
6 future <int > fut = async(f);
7 // ...
8 printf("%d\n", fut.get());
9 return 0;

10 }

The async keyword12 is used to launch function f asynchronously: the function
may start running immediately, or at some point in the future. The function may run
in another thread, in another process or even on a different machine. In addition to
launching the function, async produces a future that will hold the result of the execution
of f. Synchronization on the future is performed by using the get method on this future.
The call to get blocks until a value is available, at which point this value is returned.

Upon creation, a future does not hold any value: it is said to be unresolved. It is said
to be resolved once a value is stored inside it.

Futures are used in the active-objects programming paradigm, a presentation of
which can be found in Section 2.2.4. A quick recap is presented here. The active-object
paradigm is inspired by the object paradigm: programmers work with single-threaded
entities called actors, instantiated from classes equipped with methods and attributes,
that communicate with each other through asynchronous method calls. An asynchronous
method call produces a future that will hold the result of the call.

In this thesis, when dealing with futures we work in the active-object language Encore
[8]. From now on, examples using futures are written in this language. The incoming
section, Section 2.3.1 presents the Encore language. If the reader is already familiar

12In C++ async is a function, but we do not make this distinction here
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with its syntax and semantics, they may skip to Section 2.3.2 in which we present the
limitations of the future construct.

2.3.1 The Encore Programming Language

Listing 2.20 presents the Hello World of Encore.

Listing 2.20: Encore’s Hello World
1 active class Main
2 def main(): unit
3 println (" Hello World !")
4 end
5 end

In Encore the Main class acts as the entry point in a program. The class is qualified
as active: instanciating an active class creates an active object. Its main method behaves
like the main method of the main class of a Java application.

In Encore, a future that will be resolved with a value of type T is typed Fut[T].
Futures may be created through the async keyword, or through the ! operator. async
asynchronously runs a function call, and produces a future that will hold the result of
the execution of this function. The ! operator is the asynchronous variant of the dot (.)
operator in object-oriented languages and designates an asynchronous method call.

Futures expose two operations. The first, get, retrieves the value inside the future,
blocking the calling thread if no value is available. The second, await, checks if a value
is stored inside the future, and suspends the currently-executing thread if no value is
available. await implements a form of cooperative scheduling; it can be used for example
to synchronize on a future but release the current thread if the future is not resolved.

Listing 2.21 illustrates both the creation and manipulation of futures.

2.3.2 Limitations of Futures

As we have seen before, futures are a good abstraction when it comes to synchronizing
one thread with the completion of a task. However, they suffer from limitations, due to
how they are typed. Consider Listing 2.22.

In the main function, at line 15, an instance of Foo is created. Through the ! operator
on line 16, an asynchronous call is made to the method foo of this object, sending 12 as
its parameter. Since the method has return type Fut[int], the result of the asynchronous
call is typed Fut[Fut[int]]. This means the programmer is exposed to a future whose
resolving value is itself a future. This is called nesting. As we can see on line 17, this
requires the programmer to perform two calls to get in order to extract the integer
computed by the bar method of the C object instantiated by foo. Finally, on line 18,
a call is made to method foo_fut of the Foo object previously instanciated, sending a
future of integer as parameter.

There are two important observations here: 1) Futures can be nested, and such nesting
requires multiple explicit synchronizations to be performed in order to access a non future
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Listing 2.21: Active objects in the Encore language
1 -- Instanciating Foo will create an active object
2 active class Foo
3 def f(): int
4 return 2
5 end
6 end
7
8 -- Global function
9 fun factorial(n: int): int

10 if n < 1 then
11 return 1
12 else
13 return n * factorial(n - 1)
14 end
15 end
16
17 active class Main
18 -- Entry point
19 def main(): unit
20 -- Create an instance of Foo
21 -- Store the reference in ‘foo ‘
22 var foo: Foo = new Foo()
23 -- Async call to method ‘f‘ through the ‘!‘ operator
24 var fut: Fut[int] = foo!f()
25 println(get(fut))
26
27 -- Asynchronous call to function ‘factorial ‘
28 -- through the ‘async ‘ keyword
29 var fut2: Fut[int] = async(factorial (10))
30 println(get(fut2))
31 end
32 end

value, and 2) Non future values cannot be promoted to their future selves: one cannot
substitute an integer for a future of integer.

The requirement for multiple explicit synchronizations when dealing with nested
futures makes sense in a context where the programmer is interested in whether a
task is completed or not; in a context where the programmer cares more about the
computation of values, a single explicit synchronization that yields a non future value
would be preferable. If the programmer is only interested in the computation of values,
not even knowing the number of nested futures involved in the computation would be
preferable: the programmer should know the value will be available in the future, but
the exact number of synchronizations needed to get this value is irrelevant. Giachino
et al. in [42], as well as Henrio and Rochas in [43] highlighted these two different forms
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Listing 2.22: Some problems tied to the typing of futures
1 active class Foo
2 def foo(x: int): Fut[int]
3 val c: C = new C(x)
4 return c!bar()
5 end
6
7 def foo_fut(x: Fut[int]): Fut[int]
8 val c: C = new C(get(x))
9 return c!bar()

10 end
11 end
12
13 active class Main
14 def main(): unit
15 val foo: Foo = new Foo()
16 val fut: Fut[Fut[int]] = foo!foo (12)
17 val result: int = get(get(fut))
18 val result2: Fut[Fut[int]] = foo!foo_fut(get(fut))
19
20 -- ...
21 end
22 end

of synchronization. In [44], Henrio names the first synchronization pattern control-flow
synchronization: synchronization is driven by the execution of a return statement,
by the flow of control of the application. The second synchronization is called both
wait-by-necessity and dataflow synchronization: synchronization is driven by the necessity
of data, of a non future value. We discuss the pros and cons of these two patterns in
Section 2.3.3.

The second observation, the inability to promote non future values to their future
selves, originates from a lack of expressivity in the type system of the language. This
induces a need to write extra code if a function should work with both future and non
future parameters. Additionally, it makes writing functions that may return a future
value complicated. Consider the following example: a programmer is writing a Broker
whose purpose is to dispatch tasks to Workers. Each time a task is submitted to the
Broker, the Broker returns a future that will contain the result of the execution of the
task. This is shown in Listing 2.23.
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Listing 2.23: Excerpt of a task Broker
1 active class Broker
2 def submit(task: Task[T]): Fut[T]
3 return select_worker ()!submit(task)
4 end
5 end

An optimization on Brokers is to have the Broker cache results as they are produced,
so submitting the same task a second time may yield its cached result. Listing 2.24 shows
an attempt at implementing this pattern.

Listing 2.24: Task Broker using a cache
1 active class Broker
2 val cache: Map
3
4 def submit(task: Task[T]): Fut[T]
5 var cached: Maybe[T] = cache.lookup(task)
6 match cached with
7 case Just(value) => return value -- Typed T
8 case _ => return select_worker ()!submit(task) -- Typed Fut[T

ãÑ ]
9 end

10 end
11 end

We can observe a typing problem. If the value was already computed, then the submit
method needs to return a value of type T. If the value was not computed, then it will be
by a Worker, and the method returns a value of type Fut[T]. There is an inconsistency
in the return type, therefore the method cannot be written this way. A simple solution
would be to return the result of an asynchronous call to the identity function. Replace
return value with return async(id(value)). This is less than ideal: it creates an
additional asynchronous call, which means a future needs to be created, and an extra
synchronization needs to be performed. If a value of type T could be promoted to a
Fut[T], the problem would solve itself in an elegant way.

Multiple explicit synchronizations can be avoided by using implicit futures, which we
present in Section 2.3.3. They can also be avoided using the forward construct which
we present in Section 2.3.4. Lifting non future values to futures is somewhat mitigated
when using implicit futures as well. We will see that both solutions (implicit futures
and forward) suffer from some drawbacks. In Chapter 3 we build upon both in order
to solve these two problems (multiple synchronization and promotion of non future
values). Moreover, we achieve better expressivity when using futures, and allow further
optimizations of operations on futures.

Let us begin with a presentation of implicit futures and their synchronization.
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2.3.3 Typing and Synchronizing Futures - Explicit and Implicit. Control-
Flow and Dataflow

The futures we have discussed until now in Section 2.1.2 and Section 2.3 are called explicit
futures, in opposition to implicit futures. The classification of futures between implicit
and explicit comes from Flanagan and Felleisen in their work on formalizing futures
[45, 46]. Futures are said to be implicit if there is no need for a dedicated operation to
access their content, and explicit if such an operation is needed (i.e. get ).

For instance, in the MultiLisp language [7], futures are implicit. Listing 2.25 illustrates
this property. As a point of comparison, Listing 2.26 presents the same code in the
Encore language that uses explicit futures.

Listing 2.25: Usage of futures in the
MultiLisp language

1 (def foo
2 (lambda (x y z)
3 (+ (future
4 (bar y z))
5 x)
6 )
7 )

Listing 2.26: Listing 2.25 rewritten in
Encore

1 fun foo(x: float ,
2 y: float ,
3 z: float): float
4 val f: Fut[float] = async(

ãÑ bar(y, z))
5 return get(f) + x
6 end

Both listings define a function called foo that takes three parameters. foo computes
the sum of the first parameter x with the result of asynchronously calling a bar function
and passing it the remaining two parameters, y and z.

In MultiLisp, futures are created using the future construct. This constructs takes
an expression e as parameter, launches its evaluation in parallel to the current execution
context and returns a future that will hold a result of the evaluation of the expression
e. In the MultiLisp version, the + function is able to seamlessly use the future as if it
was an integer. Internally, this induces an implicit synchronization on the future in order
to get its value (this mechanism is called wait-by-necessity). This is in contrast to the
Encore version in which a call to get is necessary to extract the value from the future
before performing the addition. 13

As we can see from the MultiLisp example, both problems encountered with explicit
futures are resolved with implicit futures. The lack of a syntactic distinction between
a future and a non future value means the same piece code can work seamlessly with
future and non future values. Additionally, although the example does not highlight it, if
the future passed as parameter to the + function is nested, the runtime automatically
performs as many synchronizations as needed in order to get a non future value: syn-
chronization is driven by the availability of data rather than the end of a computation.
The synchronization is said to be dataflow.

Although implicit futures solve both problems, one can wonder whether an implicit
13Implicit futures are not exclusive to programming languages without a static type system. See the

ProActive library [47] where a value with static type T may be a handle to a future of T or value of type
T.
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synchronization is inherently preferable when compared to an explicit one. Consider
Listing 2.27 in MultiLisp.

Listing 2.27: Implicit future synchronization inducing a deadlock in MultiLisp
1 (define f1 #f) ; Define a global called f1 initialized to false
2 (define cycle
3 (lambda (x)
4 (set! f1 (future (+ x f1))) ; f1 refers to the resulting

ãÑ future
5 )
6 )
7
8 (cycle 12)
9 (display f1)

The cycle function evaluates the expression (+ x f1) in parallel. The parallel
evaluation is initiated through the future function, that returns a future, stored in f1,
that will be resolved with the result of the evaluation of (+ x f1). This piece of code
deadlocks because future f1 is resolved with itself on Line 4. While this problem is
by no means exclusive to implicit futures, it would be much easier to debug when the
synchronization is explicit. Here, the synchronization occurs during the execution of the
+ function. However, since we are in MultiLisp, future values are indistinguishable from
non future values. As a consequence, the interface of the + function, here simplified as
number Ñ number Ñ number, does not indicate that calling this function may induce
a synchronization. This gives an argument in favor of explicit futures.

Summary There are several features one may want when working with futures: explicit
synchronization for easy debugging, no nesting at the type level for code simplicity, lifting
of non future values to future values for code reusability, dataflow synchronization for code
simplicity, control-flow synchronization for control-flow awareness. However, these features
are split between explicit and implicit futures and there are incompatibilities between these
two ways of typing. Implicit futures cannot have an explicit synchronization by definition:
an implicit future cannot be distinguished from a non future value. Furthermore implicit
futures cannot have a control-flow synchronization, again by definition. All of this points
towards using explicit futures, but as we have seen they lack many desirable features.
Throughout litterature, explicit futures have been consistently paired with a control-flow
synchronization which requires nesting in order to properly type the synchronization
operation. However, in recent years there have been many efforts to bring features from
the implicit world into explicit futures:

• In Section 2.3.4 we present the forward construct, proposed by Fernandez-Reyes et
al. This construct offers a “delegation” operation on explicit futures which mimics
a dataflow synchronization with limitations.

• In [44], Henrio proposed a type system and operational semantics for explicit futures
with a dataflow synchronization.
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• These two works formed the basis of the Godot system [1], which we present in
Section 2.3.5. The Godot system proposes an implementation of the dataflow
explicit futures of Henrio.

We now present the forward construct that adds a form of dataflow synchronization
on explicit futures.

2.3.4 The forward Construct - Delegating Resolution

Let us consider the problem of the task broker we presented above in Listing 2.23. Listing
2.28 presents an extended version of the original excerpt with an effective call to the
broker in order to dispatch some work.

Listing 2.28: Broker in Encore, active objects edition
1 active class Worker
2 def work(task: Task[T]): T
3 -- ...
4 end
5 end
6
7 active class Broker
8 def dispatch(task: Task[T]) : Fut[T]
9 return select_worker ()!work(task)

10 end
11 end
12
13 active class Main
14 def main(): unit
15 var broker: Broker = new Broker ()
16 var result: Fut[Fut[int]] = broker!dispatch(
17 new Task(fun(x: int , y: int) return x + y end , 12, 13)
18 )
19 println(get(get(result)))
20 end
21 end

As we can see, there is a nesting of futures that occurs on Line 16. This is due
to the fact that the Broker.dispatch method has a return type of Fut[T]. As such,
asynchronously calling it produces a Fut[Fut[T]].

One may wonder if dispatch needs to be typed Fut[T], which is the source of nesting.
There are options to change this typing, although they suffer from drawbacks:

• Perform a get in dispatch to produce a value of type T. This prevents parallelism
because now dispatch must wait until the task has been executed.

• Use the await statement to yield the currently-executing thread until the task has
been executed. This is elegant, but it may lead to a lot of memory being consumed
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as more and more futures may be awaited. Moreover, the language used may not
offer this operation.

• Use a promise to store the result of work, which completely removes nesting and
allows parallelism. This is an interesting solution, although it suffers from the
drawbacks we presented in Section 2.1.2, namely a lack of guarantee of resolution
of the promise.

In [48], Fernandez-Reyes et al. present the forward construct. Listing 2.29 presents
the (shortened) resulting code when using forward in the Broker.

Listing 2.29: Asynchronous Broker in Encore using the forward construct
1 active class Broker
2 def dispatch(task: Task[T]): T
3 var fut: Fut[T] = select_worker ()!work(task)
4 forward(fut)
5 end
6 end

The forward construct works by delegating the resolution of the current future to
another task. The current future is a concept in the execution model of the Encore
language: every time an asynchronous call is made, be it through the async keyword or
the ! operator, the runtime creates a task. To this task is associated a current future,
which is the future the task will resolve upon completion of its execution.

The forward construct takes a single parameter: a future. forward(f) ties the
resolution of the current future with the resolution of f. In addition, it terminates the
calling task in a similar way to a return statement, without returning a value. The
task produces no value, and its future remains in an unresolved state until future f gets
resolved, at which point the task’s future gets resolved with the same value. Listing 2.30
shows a toy use of forward.

We can now look back at Listing 2.29. Function dispatch is now typed T, so an
asynchronous call is simply typed Fut[T]: no nesting appears. This version does not
limit parallelism (unlike the version in which dispatch immediately performs a get
on the resulting future), and memory is not saturated if multiple calls to work run in
parallel (unlike the version in which dispatch immediately awaits the resulting future).
Finally, since this version still uses futures rather than promises, there is a guarantee of
resolution.

Optimizing forward

There exists a compile-time optimization used to reduce the amount of futures created at
runtime. Consider Listing 2.31.
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Listing 2.30: forward example
1 fun f(): int
2 return 12
3 end
4
5 fun g(): int
6 var res: Fut[int] = async(f)
7 -- Once res is resolved (here with 12) , the current future of
8 -- this call to g will be resolved with 12 as well.
9 forward(res)

10 end
11
12 active class Main
13 def main(): unit
14 var res: Fut[int] = async(g)
15 println(get(res)) -- 12
16 end
17 end

Listing 2.31: Optimization of the forward statement in Encore
1 active class Broker
2 def dispatch(task: Task[T]): T
3 forward(select_worker ()!work(task))
4 end
5 end

The single difference with Listing 2.29 is that the future produced by the asynchronous
call to work is no longer stored in an intermediate variable. Instead, the entire asyn-
chronous call is given as parameter to forward. In this case, the compiler changes code
generation. Rather than chaining the resolution of the current future with the resolution
of the future given to forward, the runtime outright replaces the current future of the call
to dispatch with the future created by the asynchronous method call. This effectively
removes one creation of a future at runtime and removes a chaining.

In short, forward seems to be a good solution to the lack of dataflow synchronization
on explicit futures: it can be used to remove nesting, which leads to synchronizations
that yield non future values. However, it does not solve all problems: non future values
still cannot be promoted to future values, which means code that work indifferently on
future and non futures values is still not possible. It also does not solve the problem
of a function that may return a future or non future value depending on the context.
Programmers must also explicitly write forward every time they need to perform this
“collapsing” of type to prevent nesting: collapsing would be more interesting at the type
system level, as it would be automatic.
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2.3.5 The Godot System — Dataflow Explicit Futures

In [1], Fernandez-Reyes et al. build upon the work of Henrio in [44], as well as the
forward construct by Fernandez-Reyes et al. in [48] in order to create dataflow explicit
futures. Dataflow explicit futures, as their name suggests, are explicit futures that offer a
dataflow synchronization.

[1] observes three problems on traditional futures, be they explicit or implicit.

• The Type Proliferation Problem, which refers to the nesting of futures that appears
as the type system level. It also encompasses the lack of promotion from non future
values to their future selves. This is exclusive to explicit futures.

• The Future Proliferation Problem, which refers to the long chains of futures that
may need to be followed in order to reach a value. This problem appears on both
implicit and explicit futures. As we have seen before in Section 2.3.4, the forward
construct can help mitigate this problem when using explicit futures.

• The Fulfillment Observation Problem, which refers to the fact that control-flow
and dataflow futures do not observe the same events during synchronization. A
control-flow future observes the completion of a task, a dataflow future observes
the availability of a non future value.

The dataflow explicit futures proposed by the Godot system can be used to solve all
three problems.

Godot introduces a new type, called Flow, which denotes a dataflow explicit future.
Flow[T] therefore is a dataflow explicit future. Intuitively, it corresponds to a chain of
futures of an arbitrary length, eventually holding a value of type T. Synchronizing on
such a future produces a value of type T.

The Godot system proposes a type system that offers a collapsing rule as well as a
lifting rule. Collapsing, denoted by the Ó operator, prevents the appearance of nested
Flows. Informally, Flow[Flow[T]] is recursively collapsed into Flow[T]. For instance,
Flow[Flow[int]] collapses into Flow[int], and Array[Flow[Flow[int]]] collapses
into Array[Flow[int]]. Lifting, denoted by the subtyping rule T  : Flow[T] allows any
non-flow value of type T to be promoted to its dataflow explicit future self, Flow[T].

The syntactic and semantic parts of the Godot system introduce operations on
dataflow explicit futures that mirror the ones existing on classical control-flow explicit
futures:

• The get* keyword performs a dataflow synchronization on a dataflow explicit
future: if a value is available it returns this value, otherwise it blocks the calling
thread until a value is available, at which point that value is returned. Importantly,
this means that the result of get* will always be a non-flow value. In other words,
get* � get(get(get(...))).

• The await* keyword checks if a dataflow explicit future has been resolved with a
non-flow value. If it has been, execution continues. Otherwise, await* suspends
the currently-executing thread.
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• The forward* operator is the dataflow equivalent of the forward operator. The
authors of [1] assert that forwarding a dataflow explicit future is equivalent to
returning it, however no proof of this equivalence is provided.

Finally, Godot exposes how to encode control-flow futures from dataflow futures by
using a boxing operator that stops collapsing. It also exposes how to encode dataflow
futures from control-flow ones.

One can see that all three problems mentioned earlier are solved:

• The collapsing and lifting rules together solve the Type Proliferation Problem:
collapsing prevent nested futures from appearing at the type system level, and
lifting allows non future values to be lifted to their future selves.

• The Future Proliferation Problem is solved by the usage of forward and forward*.
In the case of dataflow explicit futures, since return is (stated to be) equivalent to
forward*, there is no longer a need for the programmer to write forward*: the
more natural return is enough.

• The Fulfillment Observation Problem is solved by the possibility to encode control-
flow futures from dataflow ones and vice-versa. Language designers can now offer
both forms of synchronization on explicit futures, and programmers can freely
choose the kind of synchronization they need.

Finally, an artifact associated with [1] implements dataflow futures as a Scala library
on top of Scala’s existing control-flow futures by following the rules established in the
paper.

Positioning Godot is the culmination of several works that study the relationship
between the explicit / implicit nature of futures and their synchronization. The dataflow
explicit futures of Godot are interesting when it comes to ease-of-use, as they allow
greater expressivity than traditional explicit futures. However, there are some aspects of
the formalism that could be improved. Notably, the calculus proposed in Godot does not
allow side-effects. Many languages that offer futures allow side-effects, and a calculus
that allows them could be used to better model programs in such languages. The authors
also claim that, with dataflow explicit futures, using forward* is observably equivalent
to using return, although no formal proof is provided. This claim is interesting as it
could allow interesting optimizations, for instance by having a compiler decide when it is
best to use one or the other. However, the first step would be to prove this statement.
The artifact in Scala also suffers from a limitation: the implementation of the collapsing
rule prevents the appearance of types like Flow[Flow[T]], however the limitations of the
language did not allow the authors to prevent nesting within parametric types. Listing
2.32 illustrates the problem.



CHAPTER 2. BUGS AND SAFETY IN PARALLEL PROGRAMS 50

Listing 2.32: Limitation of the Godot artifact in Scala
1 class Foo[T]:
2 private var fut: Flow[T] = Nil

If the generic class Foo is instanciated with T � Flow[T’], then the type of the
attribute fut will be Flow[Flow[T’]]: the collapsing will not occur. Finally, the question
of efficiency is not touched upon, and the paper lacks benchmarks.

In Chapter 3 we improve on all these points: we propose a full implementation of
dataflow explicit futures in the Encore language with complete support for collapsing in
parametric types; we offer a calculus that allows side-effects; we propose a proof of the
equivalence between forward* and return on dataflow explicit futures; and we produce
benchmarks that present the performance of dataflow explicit futures compared to the
native control-flow explicit ones of Encore, as well as control-flow futures encoded from
our dataflow ones.

2.4 Data Streaming
Introduction In [49, 50], data streaming is defined as “a programming model in which
a set of modules working in parallel communicate with each other through channels”.
In practice, one can see this approach as generating a directed graph of objects who
are allowed to communicate only with their neighbors. Modules are classified as either
sources, if they receive data from an external source; filters if they process data they
receive from another module and send it to another module; and sink if they receive data
from a module and send data to an external consumer. An important aspect of stream
processing is that the amount of data that circulates through the graph may be (and
generally is) infinite.

An early example of stream processing would be Kahn’s Process Networks (KPN)
[51], in which multiple deterministic processes communicate with each other through
first-in first-out channels. Reading from a channel is blocking, i.e. if no data is available
then the process waits until data arrives, and writing is non-blocking. An interesting
property of KPNs is that their behavior is entirely deterministic, and is not influenced
by either communication delays or when a computation occurs.

Nowadays stream processing is ubiquitous in programming, used in video or audio
processing, rendering, compression and so forth. The theoretical model of KPNs is now
used as the inspiration for modern streaming tools, which may or may not keep all the
original properties of KPNs. The very nature of stream processing lends itself quite well
to parallelism: all the modules in the system can safely run in parallel, as communication
between modules is done through channels, which can avoid data races14. This also
makes stream processing a programming model in which communications can create a
bottleneck if they are not optimized. A example of bad communication would be having
filters repeatedly request a single unit of work, rather than waiting until multiple units

14Assuming the same data does not appear in multiple modules at once, and assuming channels are safe
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of work are available before performing a single synchronization. We will explore this in
more details in later chapters, mainly Chapter 4.

Stream processing can be done in one of two flavors: push-based or pull-based. In pull-
based stream processing, a module requests data and waits until this request completes
without doing anything else. In push-based stream processing, a module registers a
continuation to be called when data is available, and can keep working while awaiting
data. The pull-based approach offers a linear control-flow that is easy to follow, at the
cost of forcing some threads to wait when there is nothing to do which induces costly
context switches. The push-based approach induces a non linear control-flow, which may
be harder to debug if an error occurs, but reduces the amount of context switches which
may improve performance.

In this section we present four different approaches to streaming: an extension of
OpenMP called OpenStream, a dedicated language StreamIt, a framework called FastFlow
and a future-based approach in ABS. We position ourselves on a surface level in this
section. Chapter 5 will present a more detailed positioning.

2.4.1 A Dataflow Streaming Extension for OpenMP: OpenStream

In Section 2.2.3 we presented the OpenMP framework. In particular we presented
the concept of OpenMP tasks. As a reminder, a task is a section of code inside an
OpenMP parallel region whose execution is assigned to one of the threads inside the
region. OpenStream [52, 53] is an extension of OpenMP that adds streaming capabilities
to OpenMP tasks.

In OpenStream, the OpenMP task directive can receive up to two new additional
clauses, named input and output. Each of these clauses takes a list of parameters,
known as streams. Intuitively, streams passed as parameters to the input clause denote
streams from which the task will read data, and streams passed as parameters to the
output clause denote streams to which the task will write data.

A stream is a C object (scalar, array or structure). When using a stream in an input
or output clause, the programmer may connect a window to the stream. A window is a
simple C array of the same type as the stream and of a given size. Connecting a window
to a stream allows the retrieval (from input streams) or insertion (in output streams) of
multiple data at once. If no window is connected then elements are consumed/produced
one at a time. There are two concepts tied to the window: the horizon and the burst.

The horizon of a window is its size. It is not possible for a task to read data beyond
the horizon of the window connected to a stream. The burst is a parameter that can
be specified when connecting a window to a stream in an output or input clause, and
defines how many elements will be produced (in output streams) or consumed (in input
streams).

OpenStream also offers some support for broadcast operations, that is multiple tasks
that all read the same value from the same stream (i.e. the data is not consumed until
all readers have read the data) through the special peek and tick clauses that replace
the input clause. peek is equivalent to reading with a burst of 0, i.e. not advancing
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the stream; tick is equivalent to a task that reads with a burst of 1 and immediately
discards the value.

OpenStream relies on a transformation pass, in order to turn OpenMP pragmas as well
as streams themselves into valid C code. An OpenStream stream is not presented to the
programmer as an object (i.e. there is no Stream class), but rather as a scalar, structure
or array annotated with a directive __attribute__((stream)). Insertion of data into
a stream is performed either through direct assignment (x = 12 with x a stream), or
through assignment into a window connected to a stream (win[0] = 12, win[1] = 13
with win an array of at least two elements connected to a stream). Insertion cannot be
implicit: it always occurs through an assignment. Conversely, removal of data from a
stream is performed either through direct assignment (result = x, with x a stream),
or through a connected window, (i1 = win[0], i2 = win[1] with win an array of at
least two elements connected to a stream). In a similar way to insertion, removal cannot
be implicit and always occurs through an assignment.

In order to support dynamic graphs of tasks, with tasks writing to or reading from
multiple streams at the same time, OpenStream allows the use of variadic windows and
streams, where whole arrays can be specified as streams and as windows, with their size
not known at compile-time.

Example We provide a small example of OpenStream in Listing 2.33, alongside a few
comments to explain it.

Positioning OpenStream extends the OpenMP specification, and therefore an Open-
Stream program must be compiled with a dedicated compiler. Our first contribution,
dataflow explicit futures in Chapter 3 also requires support in a compiler, whereas our
second and third contributions, PromisePlus and FifoPlus, in Chapter 4 are built as
libraries. The pros and cons presented in 2.2.1 apply.

OpenStream, as its name implies, is focused on adding streaming capabilities to the
OpenMP framework, whereas PromisePlus and FifoPlus are suited to be used in multiple
different environments. In fact, PromisePlus was used inside an OpenMP program in
order to add some form of streaming without having to rely on annotations, and used in
an OpenMP-free environment as well.

Streams in OpenStream are first-class objects whose interface is not explicitly exposed.
The OpenStream runtime abstracts away a lot of the underlying operations: synchro-
nization and task activation are not a concern of the programmer. This is a consequence
of OpenStream building itself on top of OpenMP and extending its syntax: OpenMP
pragmas are subjected to a transformation pass during compilation and the same applies
to the modified pragmas in OpenStream. Using pragmas hides most of the complexity of
the program, and allows the programmer to focus on expressing the flow of data between
tasks through streams. On the flip side it can make OpenStream programs non-intuitive
to newcomers. For instance, x = 2 usually stores the value 2 inside the variable x, and
reading from x immediately afterwards would yield 2. In OpenStream, if x is a stream, x
= 2 pushes 2 inside the stream, and reading from the same stream afterwards will retrieve
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Listing 2.33: MWE of OpenStream code
1 int x __attribute__ (( stream));
2 int win_out [3]; // Output window , 3 elements horizon
3 int win_in [2]; // Input window , 2 elements horizon
4
5 # pragma omp parallel
6 {
7 #pragma omp single
8 {
9 while (...) {

10 // Output three elements at a time (burst of three)
11 #pragma omp task output(x << win_out [3])
12 {
13 // Do stuff
14 win_out [0] = ...;
15 win_out [1] = ...;
16 win_out [2] = ...;
17 }
18
19 // Read one element at a time (one element burst)
20 #pragma omp task input(x >> win_in [1])
21 {
22 int a = win_in [0]; // Get first item
23 // ...
24 }
25 }
26 }
27 }

the next available value. Programmers that are used to OpenStream would probably
prefer x = 2 instead of a more explicit stream_push(x, 2) as it is shorter. We believe
that abstraction is a good thing, but one should remain mindful of the least surprise
principle when creating abstractions.

Finally, OpenStream lets programmers choose the values of the window and the
burst, whereas our final tool, FifoPlus, attempts to automate the deduction of a good
granularity of data transfer.

2.4.2 StreamIt: A Language for Streaming Applications

StreamIt [10] is a programming language, as well as a compiler [54], both designed
specifically to allow efficient stream-oriented programming. The language features
skeletons that allow programmers to express the structure of a stream.

Presentation We first begin with an in-depth presentation of StreamIt, with a focus
on the technical aspects, before performing a high-level comparison with our own con-
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tributions. We first present the execution context of StreamIt, and then present the
technical parts. A StreamIt program is usually executed on multiple different threads,
and also on multiple different machines (also called nodes) at the same time.

In terms of syntax, the StreamIt language is similar to the Java language, and is
equipped with classes. The central class in StreamIt is called Filter. A Filter is a class
that contains a method called work, which represents a transformation operated inside
a pipeline of transformations. Other classes in the StreamIt library define composition
skeletons to assemble processes that can run in parallel.

A Filter has an input and an output. Specifically, it can have at most one of each.
In order to split the work into subtasks the programmer would have to use one of the
filter composition tools offered by StreamIt: the Pipeline which corresponds to a linear
sequence of filters: there are no branches, you simply have a structure akin to a singly
linked list.

The SplitJoin which corresponds to the split-join pattern (sometimes called the
fork-join pattern), where one Filter may send data to two or more other different filters,
and at some point all branches join at a new common filter.

The last composition filter is the FeedbackLoop, which represents a backtrack in the
sequence of filters. The communication between the different filters is done through the
use of FIFOs.

A Filter must define its data rates, i.e. how much elements it will push from its
input FIFO or pop to its output FIFO during an execution of its work method. This is
done in the init method. These data rates are constant in the sense that they are not
allowed to change at runtime.

Finally, StreamIt is also a compiler, for programs written in the StreamIt language.
This compiler can perform aggressive optimization. Some of these optimizations involve
the partitioning of filters across machines, or fusing or splitting filters. Fusing filters can
be used to improve cache efficiency, by removing some transfers to and from the FIFOs
between filters. Splitting filters can be used to improve parallelism by redistributing the
filters across available nodes.

Listing 2.34 presents a typical StreamIt program. This program creates a producer-
consumer, in which the producer pushes elements by groups of 10, and the consumer
retrieves elements by groups of 10.

Positioning The abstractions we propose in Chapter 4 can be used in a streaming
context, they are both designed as libraries that can be integrated into existing languages.
As discussed earlier the approach of designing a library rather than a programming
language has different consequences. In particular StreamIt is able to perform much
more optimization than we do, while our solutions are easier to integrate into existing
applications and to use in conjunction with other constructs for parallel programming.

A final point of interest in StreamIt is the initial attempt at implementing a concept
of “reconfiguration” into their streams. This is tied to a concept of granularity of
synchronization in the streams: when a producer or consumer registers on a stream, it
must specify how much data it will add or remove at once, and this rate is not allowed
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Listing 2.34: Typical StreamIt program
1 class Producer extends Filter {
2 int n;
3
4 void init() {
5 n = 0;
6 setOutput(Integer.TYPE);
7 setPush (10);
8 }
9

10 void work() {
11 output.push(n);
12 ++n;
13 }
14 }
15
16 class Consumer extends Filter {
17 void init() {
18 setInput(Integer.TYPE);
19 setPop (10); setPeek (10);
20 }
21
22 void work() {
23 int data = input.pop();
24 // Do something with data
25 }
26 }
27
28 class Main extends Pipeline {
29 void init() {
30 add(new Producer ());
31 add(new Consumer ());
32 }
33 }

to change as time goes on. “Reconfiguring” a stream means allowing these rates to
change as time goes on. One may want to change this rate for instance in compression
algorithms where the flow of data is not constant in time. Despite the creators’ initial
wish to add this concept to StreamIt, it was never implemented. In contrast, one of our
abstractions, FifoPlus in Section 4.2, integrates this concept of reconfigurable rate of
data production/consumption in a stream.

We will provide a detailed positioning relatively to StreamIt in Section 5.3.
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2.4.3 FastFlow: High-Level and Efficient Streaming on Multi-Cores

FastFlow [55] is a C++ library that aims to provide programmers with high-level
abstractions that allow the creation of streaming applications. FastFlow has nodes that
are the programming entities performing the computations (similar to filters in StreamIt).

Like SkePU, FastFlow exposes skeletons modeling various kind of parallel programming
computations: the pipeline, the farm, and the loop. The pipeline is a sequence of successive
transformations performed on a stream of data. A farm is a set of workers all connected
to a single emitter and a single receiver, with the emitter creating a stream of independent
data that is distributed among the workers. Workers then process this data and transfer
it to the receiver. A loop models a cycle in a streaming graph, where one node A sends
data to a node B that appeared before on the path to A.

The communication between nodes in FastFlow is done through wait-free Single
Producer Single Consumer Queues [56, 57]. More complex communication patterns, such
as Multiple Producers Single Consumer Queues, or Single Producer Multiple Consumer
Queues are implemented using these wait-free SPSC Queues alongside arbiter threads.
This ensures efficiency in the communication. These efficient queues are also exposed to
the programmer if what they want to realize is not feasible with the existing FastFlow
skeletons.

FastFlow builds its efficiency on its avoidance of memory fences. The SPSC queues do
not use any atomic operations (so no fences) and are wait-free by design; when combined
with arbiter threads, it allows for the creation of MPSC / SPMC / MPMC queues that
do not use fences either and remain efficient. This is achieved by performing a copy of
the data when it is inserted into a queue: a copy is cheaper than a fence.

Listing 2.35 presents the pipeline pattern in FastFlow.
An ff_node is the equivalent of a StreamIt Filter, it is a stage in a pipeline. It

exposes an svc method, which performs work on an input. The ff_send_out method
is used to send data to the next stage of the pipeline. The use of skeletons allows
programmers to focus entirely on writing the stages of the pipeline without focusing on
communication, and the runtime automates everything: the svc method of a stage of
the pipeline is automatically invoked whenever an input is ready.

Positioning When it comes to ease-of-use and efficiency, FastFlow can rightfully claim
to be extremely good at what it does. The pipeline skeleton abstracts away everything a
programmer may have to do in order to properly spawn the threads and connect them
through FIFOs. However, FastFlow also comes with a rather natural drawback from
libraries that aim to automate everything: it is complex to do something that escapes the
scope of the framework. For instance, FastFlow’s pipelines do not come with replication,
unlike StreamIt’s. If a programmer wants to have replication in a pipeline, they either
use the Farm skeleton in conjunction with the Pipeline skeleton, or they outright write
their own PipelineWithReplication skeleton. Another example is the impossibility
of creating a branching pipeline using only the native skeletons of FastFlow, despite
some algorithms using such a pipeline (for instance the dedup algorithm in the PARSEC
Benchmark Suite).
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Listing 2.35: The Pipeline pattern in FastFlow
1 class InitStage : public ff_node {
2 public:
3 void* svc(void*) {
4 for (int i = 0; i < 10; ++i) {
5 ff_send_out(i);
6 }
7 }
8 };
9

10 class ProcessStage : public ff_node {
11 public:
12 void* svc(void* data) {
13 int value = (int)data;
14 ff_send_out(value * 2);
15 }
16 };
17
18 class Adder : public ff_node {
19 int sum = 0;
20 public:
21 void* svc(void* data) {
22 sum += (int)data;
23 }
24
25 int total () const { return sum; }
26 };
27
28 int main() {
29 ff_pipeline pipeline;
30 pipeline.add_stage(new InitStage ());
31 pipeline.add_stage(new ProcessStage ());
32 pipeline.add_state(new Adder ());
33 pipeline.run_and_wait_end ();
34 return 0;
35 }

2.4.4 Futures for Streaming Data in ABS

The Abstract Behavioral Specification language [19, 58] (ABS) is an active-object language
(Section 2.2.4). Recall that in these kinds of languages, objects are called actors, single-
threaded entities that communicate through asynchronous method calls. An asynchronous
method call produces a future that will hold the result of said call. Futures can be
handled through the standard get statement that blocks the calling object until the
future is resolved, or through the cooperative statement await that will release control
of the object if the future is not yet resolved.
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In [59, 60], the possibility of streaming was added to ABS. The idea is to use a
mechanism similar to futures. A streaming method with a return type T can be annotated
with the stream keyword in order to have it produce a stream of data, each data being
of type T. In such a method, the programmer may use the yield keyword in order to add
a value to the stream, similar to how one may produce a value from the execution of a
coroutine [61] in a functional language. Unlike coroutines however, execution of a yield
statement does not suspend the execution of the task. Streams in ABS are push-based
rather than pull-based.

Calling a streaming method produces a value of type Stream<T> with T denoting
the return type of the method. Programmers may then use either the get-finished or
await-finished statements to access the content of the stream. get-finished extracts
a value from the stream by waiting until one is available. await-finished peeks inside
the stream, releases control of the current object if no value is available and resumes
once one is, or continues execution immediately if a value is available. This is similar to
the get and await keywords when working with futures.

Streams in ABS may be destructive or non-destructive, with the difference being
decided at runtime, rather than statically. The destructiveness of a stream is one of its
properties, and is decided at stream creation. The difference between a destructive and
a non-destructive stream lies in how the internal cursor that indicates which value is
the next in the sequence moves after a read. In a destructive stream, all reader threads
share the same read cursor on the stream, and reading a value will advance this shared
cursor. In a non-destructive stream, every reader thread has its own cursor on the stream,
ensuring all threads have access to the entirety of the stream. Destructive streams may
suffer from race conditions if the order in which threads read the elements is not the
one that was expected, whereas non-destructive streams avoid races. On the other hand,
the memory management of non-destructive streams is much more complicated, since
ABS uses garbage collection, and streams cannot be freed even if no reader threads are
manipulating them since a new reader thread may appear at any time. Destructive
streams on the other hand are freed once they have been terminated and all data has
been read.

Termination of a stream is automatically done once the streaming method performs a
return statement, similar to how a return statement resolves the (possibly) associated
future of the method. This is manifested as a special token added to the stream that
denotes end-of-file.

Listing 2.36 provides an example of an ABS program with streams. A producer
(Producer) streams all values from 0 to 99 and a consumer (Consumer) reads them.
Recall that ! denotes an asynchronous function call, and the result must be acquired
through a call to get.

Positioning Streaming in ABS draws inspiration from futures, and as such is similar
to one of our tools, PromisePlus, that itself draws inspiration from promises (recall that
promises are manually handled futures). A consequence of the similarity with futures is
that ABS streaming provides the same guarantees and properties as futures: assuming a
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Listing 2.36: Example of streaming in ABS
1 interface IProducer {
2 Unit run ();
3 Stream <int > request ();
4 }
5
6 class Consumer {
7 void consume ( IProducer source ) {
8 Stream <int > s = get( source ! request ());
9 bool last = false ;

10 while (! last) {
11 // value stores the next value in the stream once
12 // await finished completes
13 int value = s. await finished {
14 // Block of code executed only upon
15 // getting last value from stream .
16 last = true;
17 };
18 // ...
19 }
20 }
21 }
22
23 class Producer implements IProducer {
24 Stream <int > stream ;
25
26 // Should be called first to initialize the stream
27 Unit run () {
28 if ( stream == null) {
29 stream = this! start ();
30 }
31 }
32
33 Stream <int > request () {
34 return stream ;
35 }
36
37 int stream start () {
38 int i = 0;
39 while (i < 100) {
40 yield i; // Add value to stream
41 i = i + 1;
42 }
43 return -1; // Terminate stream
44 }
45 }

well-formed program, all streams will eventually receive a completion token, avoiding
infinite wait; this can be enforced by making sure all paths in a streaming method contain
a return statement15. This is a stronger guarantee than what we get with PromisePlus.

The use of yield gives the streaming method more flexibility than what is possible
with futures, where resolution is tied to a return statement. Multiple yield statements

15Whether these returns can be reached is undecidable, however we are assuming the program is
well-formed so infinite loops are excluded
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may exist in the same method at different points in the control-flow graph of the
method, similar to what can be achieved when using promises rather than futures.
Unlike promises however, yield statements cannot escape a streaming method: the
ABS compiler makes sure yield statements only appear in a function tagged stream.
Promises, are allowed to be passed around, which gives more flexibility to the programmer,
but makes synchronization less clear.

Streaming in ABS does not have support for configurable or reconfigurable granularity:
data is available as soon as it is produced, and synchronization is performed on a per-item
basis rather than on chunks. This is in contrast to our tools that give the programmer
control over the granularity of synchronization, or attempt to automatically find one that
is suitable for the situation.

2.5 Miscellaneous Tools
In this section we present synchronization tools that are not frameworks, nor libraries,
and that are not specifically geared towards streaming, but still allow programmers to
write safe code.

2.5.1 Distributed Futures

Distributed futures [62] were proposed by Leca with the objective of allowing good
interactions between task parallelism and data parallelism. Task parallelism involves
multiple tasks running in parallel. These tasks can be functionally different, they may
work on completely unrelated data and perform unrelated computations. Data parallelism
allows parallelism by distributing data to multiple processes that perform a computation
on a part of the data. The actor model introduced before is a good example of task
parallelism, and the parallelization of some embarrassingly parallel problems, like the
functional map operation is a good example of data parallelism.

Task parallelism and data parallelism do not encounter the same problems: task
parallelism usually involves synchronization between tasks, and data parallelism involves
the communication of data. Task parallelism is quite flexible when it comes to task
synchronization and data communication: we have seen many tools in the previous
sections that are used in the context of task parallelism. Data parallelism on the other
hand is more restricted: synchronizations and data exchanges are not as prevalent as
they are in task parallelism. As a consequence there are fewer tools specifically geared
towards data parallelism.

Distributed futures target High Performance Computing, where task parallelism and
data parallelism are usually used together and very large amount of data are processed.
In such a context, futures become limited as synchronization and communication tools.
Consider the following context: a matrix of several million elements is distributed between
multiple processes in order for some computation to be performed in parallel over it.
Using a future to synchronize on the completion of this distributed computation suffers
from two major drawbacks:
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1. A future holds the result of a computation, and the entire result must be available
at once. In this context, the result of the computation is split between multiple
processes, so there would be a need for multiple futures.

2. Because futures must hold the result of a computation, the total memory footprint
of all the futures needed to synchronize on the end of the computation would be
that of the initial matrix itself. In a distributed context, communication bandwidth
can become a bottleneck, so transferring the entire matrix multiple times would be
disastrous.

Distributed futures are similar to futures in that they allow programmers to synchro-
nize on the completion of a task and retrieve the result of said task. Unlike traditional
futures that hold the actual result of a task, distributed futures hold descriptions of
fragments of the result of a distributed computation. For instance, a map operation on a
million elements array could be distributed to N processes, each one of them performing
a part of the computation. Process I would work on indices 1000000

N � I � 1 to 1000000
N � I.

Once process I is done, it would write a 4-tuple in the distributed future: its PID, a
unique identifier for this specific computation, the offset in the global array in bytes
(I � 1 � 1000000

N � size of data type) and the number of bytes produced (1000000
N ). The

synchronization completes once all processes have written a description of their result in
the distributed future.

This not only allows a single future to work as the synchronization entity over multiple
processes that perform a distributed computation, but it also reduces the communication
cost when synchronizing over the future. Unlike traditional futures, synchronization does
not produce a usable value. Rather, it produces the information needed to get a usable
value.

Positioning Distributed futures are used as a synchronization point on data that has
been sliced and distributed across multiple processes. In this regard, they go in the
same direction as us. However, distributed futures do not allow partial synchronization:
accessing a distributed future’s content blocks until the entirety of the data is available,
regardless of the availability of a slice. While they do have benefits, mainly in terms of
use of the communication bandwidth, distributed futures do not offer better control over
the granularity of synchronization.

2.5.2 Message Sets

Message sets are a programming abstraction proposed by Frolund and Agha in [63]. The
purpose of this abstraction is to make the coordination of distributed objects easier.
Frolund and Agha describe distributed objects as “reactive”: they emit requests that
get answered, and they react according to the answer. In the context of object-oriented
programming, a request, or message send, would correspond to a method call, and the
reaction would be the execution of said method. This is even more explicit in the active-
objects paradigm, where the objects react to messages sent to them in an asynchronous
way.
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The problem observed by Frolund and Agha is as follows: the request-response model
of the object paradigm is not suited to the construction of distributed systems. In
distributed systems it is not uncommon to have a many requests-many responses scheme,
for instance if a process needs to wait until multiple other processes have completed
a computation. In the object paradigm, such a scheme would be implemented using
multiple intermediate variables, each of them indicating if a given process has completed
the computation. This complicates the implementation of objects, as programmers need
to consider two orthogonal concepts: when to react and how to react. Message sets are
an abstraction that encapsulates both these concepts in a declarative way.

Message sets are composed of three concepts: activated commands, activators and
receptionists. A receptionist is a first-class entity that contains a mailbox. As first-class
entities, receptionists may be passed around through function parameters or return values.
Programmers can put messages in the mailbox of a receptionist at will, but there is
no dedicated operation to consult the messages or delete them. These operations are
performed by the activators. Depositing a message in a mailbox is asynchronous and
non-blocking. To give an example, recep<int> int_recep; declares a receptionist whose
mailbox will only contain integers. int_recep(12) asynchronously deposits the message
12 in this receptionist.

An activator watches one or more receptionists for the arrival of messages. Unlike
receptionists that are first-class entities in the code, activators are a purely syntactic
construct, and get translated into runtime objects. An activator defines when to react to
a message or a set of messages. When is extremely flexible: it can be reacting to any
message sent to a given receptionist, or to a specific message sent to a specific receptionist,
or to a specific set of messages each sent to a specific receptionist etc. For instance,
considering we still have our previously declared receptionist of integers int_recep, the
expression int_recep? 12 defines an activator that will react to the message 12 being
sent to the receptionist int_recep. The expression int_recep? x defines an activator
that will react to any message sent to the receptionist int_recap and will bind the value
of the message sent to the name x. Activators can be combined, using the && and ||
operators, the combination of which yields an activator that will behave as the logical
combination of all the underlying activators.16 int_recep? 12 && bool_recep? true is
an activator that gets triggered once the int_recep receptionist has received the message
12 and (logical and) once the boot_recep receptionist has received the message true.
Therefore, an activator can be seen as a receptionist combined with a boolean guard (see
Hoare’s input guards in CSP [16] and Dijkstra’s guarded commands [64]).

Finally, activated commands define how to react to the activation of one or more
activators. An activated command is of the form activator Ñ command. This translates
to the following: once activator gets triggered, execute the command (code) specified
by command. For instance, int_recep? x -> printf("%d\n", x) is an activated command
that will print the value received by the int_recep receptionist upon receiving any
message.

16In the original paper by Froslund and Agha, the && operator was called and, and the || operator was
called or
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We will not discuss the questions of fairness between activators when a message can
activate multiple at once, or when multiple messages can activate the same activator, as
this goes beyond the scope of this chapter.

Message sets effectively decouple the aspects of how and when to react to a set of
messages. Unlike the traditional request-response model of the object paradigm, they
allow messages to be emitted at any point of code, similarly to promises. However, there
are some differences with promises, the most prominent one being the inability to access
the content of the mailbox of a receptionist directly. Unlike promises which are still
wrapped in the request-response model (synchronization on a promise is resolved once it
gets a value, a single value), activators can be combined to react to the arrival of a set
of messages. An alternative form of synchronization similar to activators can be found
in the ParT [20] framework in the Encore language, where futures are given monadic
combinators that allow to react to the resolution of all the futures in a set, or to the
resolution of any future in a set. This is of course constrained by the lack of flexibility of
futures when it comes to the point of resolution.

Positioning Message sets make synchronization explicit, in the same way as promises.
Message sets are more expressive than promises, in that they allow to easily express
complex synchronization patterns that depend on the availability of a combination of
data. This data can be specific (e.g., a hardcoded value like 12) or more general (any
value of a given type). Furthermore, message sets encapsulate the operations performed
on the values provided by the synchronization, something which promises do not allow.

There is also a difference in the way the synchronization is resolved. With a promise,
a get unblocks as soon as the promise is resolved with a value, and this resolution occurs
exactly once. When using promises, programmers write code that looks sequential. With
message sets, the use of conjunctions, disjunctions and the ability for a receptionist to
receive multiple messages makes synchronization more difficult to follow. The flow of
execution becomes dependent on a number of factors.

2.5.3 Joins

Join patterns were proposed by Fournet and Gonthier in [65]. A join pattern is made
of two components: a body and a guard. The guard is made of a set of events that
must all be triggered in order for the body to be executed. Consider Listing 2.37, taken
verbatim from Haller and Cutsem paper “Implementing Joins using Extensible Pattern
Matching” [66].
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Listing 2.37: Join Patterns from [66]
1 public class Buffer {
2 public async Put(int x);
3 public int Get() & Put(int x) { return x; }
4 }

This code presents a traditional FIFO, written using joins in the Cω language (in
this language, joins are called “chords”). Unlike most traditional implementations of
such a FIFO, there is neither a dedicated data structure to store the data, nor a body
for the Put operation. In this code, Put and Get are both methods of the Buffer class,
and message sending operations, similar to the actor model. Like in the actor model,
an instance of the class keeps a list of the messages it has received. Unlike in the actor
model, a received message may not lead to a processing of the message. In this example,
receiving a Put message does not do anything, as the method does not have a body.
Instead, the Buffer merely stores the message.

The syntax Get() & Put(int x) defines a join pattern: in order to process a Get
message, a Put message must have been received before, and not have been processed. If
a Get message is received after a Put message, then the body of Get is executed and the
Put message is consumed, its value bound to x. A join pattern may contain any number
of messages in order to express different synchronization patterns. In [67], Turon and
Russo present how to use join patterns to implement reader-writer locks, semaphores
and barriers among others.

The key feature of join patterns is their ability to express the different pieces of
code involved in a synchronization in a declarative way, and which data dependencies
are involved. In the previous example, it is made evident by the signature of Get that
the synchronization is resolved by a call to Put. This can be contrasted against any
implementation of an unbounded FIFO queue that uses atomics or mutex and condition
variable to protect a data structure manipulated by both Put and Get: the programmer
knows there is a synchronization because synchronization tools are used, but they do not
know what the synchronization is used for.

In [66], Haller and Cutsem further refine the declarative aspect of join patterns by
improving on Turon and Russo previous work [67]. In particular, they add a pattern-
matching based approach to reacting on events, which allows to statically declare that
a reaction to a join pattern should be triggered if a given message is received multiple
times and not consumed. They give the example of a reader writer lock, where multiple
readers may have read access on a shared data as long as there is not a writer active, but
only a single writer can have write access on it at the same time.

Positioning Join patterns offer a declarative way of expressing synchronization, which
makes data dependencies and code explicit compared to approaches like promises. The
synchronization offered by promises is extremely flexible, as it can happen anywhere,
which also makes the purpose of the synchronization more obscure. When it comes to
granularity of synchronization, the join patterns augmented with pattern matching of
Haller and Cutsem are a step, although they suffer from a massive drawback: a join
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pattern is a static construct. While expressing a synchronization on a statically known
number of received messages would be easy with joins, expressing a dynamically chosen
number of received messages would require extra code that is no longer part of the join
pattern itself but part of the body of the pattern, which is one of the criticism Haller
and Cutsem leveled at the original join patterns.

Overall, join patterns share many similarities with message sets. In turn, their
strengths and weaknesses when compared to promises are the same as with message sets:
they are strictly more expressive, but they make synchronization more difficult to follow.

2.6 Summary
We have presented several languages, libraries, paradigms and tools that can be used by
programmer to write parallel applications that are efficient and safe. We now present
our different contributions. We begin with our work on the dataflow explicit futures of
Godot, with a formalization in a stateful calculus, a complete implementation in the
Encore language and a proof of the equivalence between return and forward*. We
next present PromisePlus, a library tool based on promises that is focused on efficient
communication of arrays between threads through a concept of configurable granularity
of synchronization, while also being easy-to-use and safe. Finally, we present FifoPlus,
a library tool that can be used to perform efficient streaming between threads, with a
concept of automatic configuration of granularity of synchronization through an analytical
model.



Chapter 3

Dataflow Explicit Futures

In the previous chapter, we presented the programming abstraction known as “futures”.
A future is an entity that represents the result of an ongoing computation. It is used
when launching a sub-task in parallel with the current task to later retrieve the result. A
future initially does not hold a value and is said to be unresolved. A future that holds a
value, a result of a parallel sub-task, is said to be resolved (“fulfilled” is also used).

Historically, futures were categorized as either explicit or implicit, depending on
whether there are dedicated operations to access a future’s content (explicit) or not
(implicit). [44] and [1] demonstrated that the way synchronization is performed is a more
distinctive feature. Synchronization can be either control-flow or dataflow; this difference
is observed when synchronizing on a chain of futures, that is a future resolved with another
future. Control-flow synchronization is driven by the flow of execution: synchronizing on a
future resolved with a future will yield a future. Dataflow synchronization is driven by the
availability of data: synchronizing on a future resolved with a future will follow the entire
chain of futures and yield a non future value. There is a link between synchronization,
explicitness and typing: control-flow futures are traditionally explicit and use parametric
types, such as Fut[T] for a future resolved with a value of type T. This is the case in
mainstream languages such as C++ or Java. Implicit futures are dataflow by nature;
[44] showed that explicit futures can be dataflow as well.

[1] proposed a formalization of dataflow explicit futures, using [44] as a foundation. It
also provided a type system as well as runtime semantics for these futures. There are two
key features in the type system of [1]: a collapse operation that prevents the appearance
of nested futures at the type system level; and an introspection operation that can tell
whether a future is resolved with another future or with a non future value.

In this chapter we build upon [1] and investigate the use of dataflow explicit futures
compared to usual ones. Our contributions are as follows:

• In Section 3.1 we propose a new core calculus, called DeF, that is dedicated to the
study of dataflow explicit futures. This calculus is not meant to be a new program-
ming language, but rather a minimalist formal language, expressive enough to be
representative of existing mainstream languages. Because we target mainstream
languages with imperative aspects, we define this calculus with a mutable state

66
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and some standard imperative constructs. It also features asynchronous calls that
take advantage of dataflow explicit futures. This provides a main improvement
over Godot: their calculus was based on λ-calculus, and as such did not support a
mutable state.

• In Section 3.2 we formally and experimentally study one of the most promising
optimization enabled by dataflow explicit futures: according to [1], return or
forwarding a dataflow explicit future is equivalent, although the authors did not
provide a proof. We prove this equivalence and investigate the benefits that it can
bring. We formalize also the forward* primitive of the dataflow explicit futures
in our calculus. Furthermore, we provide a novel typing rule for a function that
performs a forward*; this typing rule remains safe even when the function that
performs a forward* is invoked synchronously, something that was lacking from
Godot.

• Finally, in Section 3.3 we present both a concrete implementation of dataflow
explicit futures in the Encore language. In particular, we discuss implementation
choices regarding introspection and the typing of the forward* statement in the
context of a programming language. We illustrate the expressiveness and ease of
programming brought by dataflow explicit futures, with both illustrative examples
and by showing, in Section 3.3.4, that control-flow futures can be encoded from
dataflow explicit futures. As such we provide the first complete implementation of
an encoding of the Godot approach.

From now on, we use the word flow to designate a dataflow explicit future.

3.1 The DeF and DeF+F languages
This section presents two core languages called DeF (for data-flow explicit futures) and
DeF+F that extends DeF with a forward* operator. DeF features data-flow explicit futures
exclusively, functions that can be called synchronously or asynchronously, and a global
state that enables imperative programming. We designed DeF as a minimalistic calculus
but expressive enough so that our results on data-flow futures would still be relevant on
a wide range of more complex calculi.

Our languages are equipped with a type system. Compared to our implementation of
data-flow explicit futures in Encore we do not encode objects or actors and consequently
data-races exist in DeF but not in Encore.

3.1.1 Syntax of DeF

We use the following notations in our syntax. A bar over an expression, e.g. q denotes a
list. All lists are ordered, except the set of futures in a configuration. ∅ is the empty list,
and q#q is the ordered list q with q prepended to it. As for sets of futures, FF 1 simply
denotes the union of the sets F and F 1. ` denotes any usual integer or boolean binary
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Table 3.1: Static syntax of DeF.

P ::� T x M tT x su program
M ::� T mpT xq tT x su function

s ::� skip | x � z | if v t s u else t s u | s ; s | return v statements
z ::� e | mpvq | !mpvq | get� v right-hand-side of assignments
e ::� v | v ` v expressions
v ::� x | integer-and-boolean-values atoms

B ::� Int | Bool basic type
T ::� B | FlowrBs Type

Table 3.2: Runtime Syntax of DeF.

cn ::� a y F configuration
F ::� fpqq fpwq set of futures in configuration (unresolved / resolved)
q ::� tℓ|su stack frame
w ::� f | b runtime values: future identifiers and basic values
b ::� integer-and-boolean-values values of basic types

ℓ, a ::� rx ÞÑ ws local and global store
s ::� skip | x � z | if v t s u else t s u | s ; s | return v statements
v ::� x | w variable or runtime value
e ::� v | v ` v expressions with runtime values
z ::� e | mpvq | !mpvq | get� v right hand side of assignments

operator. Table 3.1 shows the static syntax of DeF. A program P is made of a list of
typed global variable declarations, a list of function definitions, and a main function (s
is the body of the main function). Each function M has a return type, a name, a list
of typed arguments, a list of typed local variables, and a statement that is the function
body. Asynchronous function calls are supported via the !mpvq syntax. If B is a basic
type, FlowrBs denotes the type of a data-flow explicit future that is to be resolved by a
value of type B.

Table 3.2 describes the runtime syntax of DeF. The configuration of a running DeF
program contains a global store a, a set of resolved futures fpwq and a set of unresolved
futures fpqq each associated with a running call stack q. Each frame q of a call stack
contains a local store ℓ and a statement to be executed s. Each store is defined as a
mapping from variable names to runtime values where runtime values w are basic values b
and future identifiers f . Note that we also allow expressions and future values to contain
future identifiers, this is useful for evaluating get� statements.

To evaluate a program P � T x M tT 1 x1 su one must place it in an initial
configuration. We first suppose that all variables have an initialization value denoted1 0.
The initial configuration for P is: a y f0ptℓ|suq where f0 is any future identifier, the global
store a � rx ÞÑ 0s maps all global variables to an initialization value, and ℓ � rx1 ÞÑ 0s

1Defining initial values for each existing type is not detailed here, note that 0 is a valid value for a
Flow[int], corresponding to an already-resolved future.
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maps all local variables of the main body to an initialization value.
The sequence s ; s is associative and skip is neutral as the statement has no effect;

thus we can rewrite any statement s under the form s1 ; s2 where s1 is not a sequence
(and s2 might be skip if s is a single statement). In the following we suppose that every
statement is rewritten under this form (this simplifies the operational semantics).

Configurations are identified modulo reordering of futures (hence Ff picks any f in
the set, not necessarily the last one) and future identifiers are unique; if fpwq P cn and
fpw1qPcn, necessarily w�w1. Thus a configuration can be considered as a mapping from
future identifiers to call stacks or values.

3.1.2 Semantics of DeF

Figure 3.1 details the small-step operational semantics of DeF that uses three notations:
• Similarly to other languages with binding of methods or functions, see e.g. [19], we

rely on a bind operator instantiates a new stack frame with the local environment
and the body of the function to be executed. Suppose the program that is evaluated
defines a function T mpT xq tT y su, we have: bindpm, wq � trx ÞÑ w, y ÞÑ 0s | su

• Given two stores a and ℓ, pa�ℓq is the union of the two stores with values taken in ℓ
in case of conflict: pa� ℓqpxq � ℓpxq if x P dompℓq and pa� ℓqpxq � apxq otherwise2.

• Given two stores a and ℓ, pa� ℓqrx ÞÑ ws is defined as pa, ℓrx ÞÑ wsq if x P dompℓq,
or parx ÞÑ ws, ℓq otherwise.

Our semantics features asynchronous calls. Invk-Async spawns an asynchronous
task by adding an unresolved future to the configuration. From this point, the callee
executes the spawned task in parallel with the caller. Once the spawned task is completed,
the callee fulfils the future through the rule Return-Async. The semantic rules for
synchronous calls are more standard. Invk-Sync pushes a new stack frame initialized in
accordance with the function called and the arguments provided, and Return-Sync
pops the current stack frame and resumes the execution of the caller with the return
value properly propagated.

The get* operator retrieves the value of a future f , defining the synchronization points
of a DeF program. Indeed, rules Get-Future and Get-Data are only enabled when
getting a future of the form fpwq, that is, a fulfilled future. Consequently, performing a
get* on an unresolved future blocks the process trying to access the future.

Once the relevant future is fulfilled, repeated applications of Get-Future will follow
a sequence of futures and, unless there is a loop of futures or a deadlock, Get-Data will
finally provide the result of the get* operation.

Concretely, if there is a sequence of futures f0pf1q . . . fn�1pfnq fnpwq in the config-
uration cn (with w not a future), a statement y � get� f0 will become a y � get� f1
statement thanks to the Get-Future semantic rule, then y � get� f2, and so on, until
yielding a y � get� w statement. At this point, the Get-Data rule can be applied,
reducing the statement to y � w. This resolution takes place at every get* statement:
another get� f0 will lead to the same series of Get-Future applications. In this example

2We suppose that the program is type-checked and every variable is declared.
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rrwssℓ � w

x P dompℓq

rrxssℓ � ℓpxq

rrvssℓ � k rrv1ssℓ � k1

rrv ` v1ssℓ � k ` k1

Skip

a y F fptℓ | skip ; su#qq
Ñ a y F fptℓ | su#qq

Assign
rressa�ℓ � w pa � ℓqrx ÞÑ ws � a1 � ℓ1

a y F fptℓ | x � e ; su#qq
Ñ a1 y F fptℓ1 | su#qq

Invk-Async
rrvssa�ℓ � w bindpm, wq � q1 f 1 fresh

a y F fptℓ | x�!mpvq ; su#qq
Ñ a y F fptℓ | x� f 1 ; su#qq f 1pq1q

Invk-Sync
rrvssa�ℓ � w bindpm, wq � q1

a y F fptℓ | x� mpvq ; su#qq
Ñ a y F fpq1#tℓ | x� mpvq ; su#qq

Return-Async
rrvssa�ℓ � w

a y F fptℓ | return v ; suq Ñ a y F fpwq

Return-Sync
rrvssa�ℓ1 � w

a y F fptℓ1 | return v ; su#tℓ | x� mpvq ; s1u#qq
Ñ a y F fptℓ | x� w ; s1u#qq

Get-Future
rrvssa�ℓ � f 1

a y F fptℓ | y � get� v ; su#qq f 1pw1q
Ñ a y F fptℓ | y � get� w1 ; su#qq f 1pw1q

Get-Data
rrvssa�ℓ � b

a y F fptℓ | y � get� v ; su#qq
Ñ a y F fptℓ | y � b ; su#qq

If-True
rrvssa�ℓ � true

a y F fptℓ | if v t s1 u else t s2 u ; su#qq
Ñ a y F fptℓ | s1 ; su#qq

If-False
rrvssa�ℓ � true

a y F fptℓ | if v t s1 u else t s2 u ; su#qq
Ñ a y F fptℓ | s2 ; su#qq

Figure 3.1: Semantics of DeF. The set of futures F in a configuration is not ordered.

DeF futures differ from control-flow explicit futures, as for the latter getting from f0 to w
would have needed n� 1 explicit get statements. When n cannot be defined statically
such a sequence is not expressible in the case of control-flow explicit futures. A sequence
of n� 1 futures is the result of n� 1 levels of asynchronous delegations. Control-flow
explicit futures follow the control-flow of the program contrarily to data-flow ones.

Example We show here a few examples of application of the semantics inspired by
the Encore program in Listing 3.1. The following step-by-step reduction illustrates the
progression of the runtime configurations, starting with the asynchronous invocation of
foo on Line 17 to the resolution of the get* on Line 18.
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Listing 3.1: Encore with DeF (our extension)
1 active class B
2 def bar(t: int): int
3 return t * 2
4 end
5
6 def foo(a: Flow[int]): Flow[int]
7 val t = get*(a) + 1
8 val beta = new B()
9 return beta!!bar(t)

10 end
11 end
12
13 active class Main
14 def main(): unit
15 val alpha = new B()
16 -- Asynchronous call using !!, returns a flow
17 val x: Flow[int] = alpha !!foo(1) -- this lifts 1 from int to

ãÑ Flow[int]
18 var y: int = get*(x) + 3
19 println(y) -- 5
20 end
21 end

∅ y f0pt∅ | x�!foop1q ; ...uq
Ñ pInvk-Asyncq∅ y f0pt∅ | x � f ; tmp � get� f ; ...uq fptra ÞÑ 1s | tmp � get� a ; ...uq

Ñ pGet-Dataq ∅ y f0ptunchangeduq fptra ÞÑ 1s | tmp � 1 ; t � tmp� 1 ; ...uq
Ñ pBin-Opq ∅ y f0ptunchangeduq fptra ÞÑ 1, tmp ÞÑ 1s ; t � 2 ; tmp2 �!barptq ; ...uq
Ñ pInvk-Asyncq∅ y f0ptunchangeduq fptra ÞÑ 1, tmp ÞÑ 2s ; tmp2 � f 1 ; return tmp2uq

f 1ptrt ÞÑ 2s ; tmp � t � 2 ; ...uq
Ñ pBin-Opq∅ y f0ptunchangeduq fptunchangeduq f 1ptrt ÞÑ 2s ; tmp1 � 4 ; return tmp1uq
Ñ pReturn-Asyncq∅ y f0ptunchangeduq fptra ÞÑ 1, tmp ÞÑ 1, tmp2 ÞÑ f 1s ; return f 1uq f 1p4q

Ñ pReturn-Asyncq ∅ y f0ptrx ÞÑ f s ; tmp � get� f ; ...uq fpf 1q f 1p4q
Ñ pGet-Futureq ∅ y f0ptrx ÞÑ f s ; tmp � get� f 1 ; ...uq fpf 1q f 1p4q
Ñ pGet-Futureq ∅ y f0ptrx ÞÑ f s ; tmp � get� 4 ; ...uq fpf 1q f 1p4q

Ñ pGet-Dataq ∅ y f0ptrx ÞÑ f s ; tmp � 4 ; ...uq fpf 1q f 1p4q

3.1.3 Syntax and Semantics of DeF+F

We now extend the language with a forward* statement. forward* takes a Flow as
parameter and can be used instead of return to terminate the execution of a function.
forward* f delegates the computation performed by the current task to the task that is
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computing f but only if forward* f is in the body of a function called asynchronously
(rule Forward-Async). If the function is called synchronously, forward* behaves like
return (rule Forward-Sync)3. This behavior in the synchronous case is a design
decision: in the case of a synchronous call, there is no future whose resolution needs to
be delegated. As a result, we chose to make forward* explicitly behave like return in
the synchronous case. Listing 3.2 illustrates the difference between the synchronous and
asynchronous use of forward*.

Listing 3.2: Difference between synchronous and asynchronous forward*
1 active class Forwarder
2 def forwarder(x: int): int
3 return x * 2
4 end
5 end
6
7 active class Example
8 def f(x: int): Flow[int]
9 forward *(new Forwarder ()!! forwarder(x))

10 end
11 end
12
13 active class Main
14 def main(): unit
15 var ex = new Example ()
16 var e1: Flow[int] = ex!!f(12)
17 var e2: Flow[int] = ex.f(12))
18 end
19 end

For the sake of simplicity, we will assume it is possible to perform a synchronous call
on an active object as seen on Line 17.

This code creates an instance of the Example class and calls its method f twice: first
in an asynchronous way on Line 16, and then in a synchronous way on Line 17.

Method f of class Example creates an instance of the Forwarder class, and applies
the forward* operator to an asynchronous call to the method forwarder of this class.

The asynchronous call The call ex!!f(12) asynchronously launches the computation
of f(12). It creates a flow, we call it f1, that will be resolved with the result of f(12).
When the execution of f reaches the forward* statement, two things happen: 1) A new
flow, f2, is created to be resolved with the value of forwarder(x); 2) Flow f1 is chained
to f2: when f2 is resolved with a value v, f1 is resolved with that same value v.

3Please note that this is not the entirety the equivalence between forward* and return we mentioned
in the introduction to this chapter. The equivalence also holds in the asynchronous case and will be
proven in Section 3.2
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Forward-Async
rrvssa�ℓ � f 1

a y F fptℓ | forward� v ; suq
Ñ a y F fpchain f 1q

Forward-Sync
rrvssa�ℓ � w

a y F fptℓ | forward� v ; su#q#qq
Ñ a y F fptℓ | return w ; su#q#qq

Forward-Data
rrvssa�ℓ � b

a y F fptℓ | forward� v ; suq Ñ a y F fpbq
Chain-Update

a y F fpchain f 1q f 1pwq
Ñ a y F fpwq f 1pwq

Figure 3.2: Additional rules for the semantics of DeF+F.

The synchronous call The call e.f(12) synchronously calls f(12). It does not create
a flow. When the execution of f reaches the forward* statement, it asynchronously
launches forwarder(x) on a new instance of the Forwarder class. This creates a new
flow f1, that is immediately returned. This ends the call to f(12).

We present the consequences of the addition of forward* on syntax and semantics.
The static syntax of DeF+F is the same as DeF plus a forward* statement:

s ::� skip | x � z | if v t s u else t s u | s ; s | return v | forward� v

The runtime configurations of DeF+F have one more kind of future: chained futures.

F ::� fpqq fpwq fpchain f 1q
fpchain f 1q expresses the idea that once f 1 is resolved with a value w, f gets resolved

with w as well.
Figure 3.2 defines the four semantic rules associated with forward*. Forward-Sync

is similar to Return-Sync and allows using forward* with the same semantics as
return in synchronous calls context. Forward-Data is similar to Return-Async but
limited to the trivial case of a forward* of a non-future value.

The rule Forward-Async complements them by handling the forwarding of future
values in an asynchronous context. In contrast to the behavior of Return-Async
that would have inserted an fpf 1q into the context, Forward-Async instead inserts a
fpchain f 1q. Then, an application of Chain-Update will replace the chained future
with a resolved future.

Concretely, if there is a sequence of futures f0pchain f1q . . . fn�1pchain fnq fnpwq
in the configuration cn, Chain-Update replaces fn�1pchain fnq with fn�1pwq, then
fn�2pchain fn�1q with fn�2pwq, and so on4. The n-th Chain-Update updates f0 to

4This semantic rule act as a kind of magical solution to the problem of observing resolution of chains.
In a real world runtime system, the observation of chain resolution would preferably be done when a
get* or return is performed.
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Listing 3.3: Listing 3.1 modified to use forward*
1 active class B
2 def bar(t: int): int
3 return t * 2
4 end
5
6 def foo(x: Flow[int]): Flow[int]
7 val t = get*(x) + 1
8 val beta = new B()
9 forward *(beta!!bar(t))

10 end
11 end

f0pwq. At this point, assuming w is not a future, a getf0 statement only needs a single
Get-Future to reach a Get-Data transition.

The forward* construct proposes similar behaviour to return in DeF, but with
operations occurring in a different order: in the case of forward*ed futures, future values
are propagated as soon as possible, from the inner future to the outer one, and the
resolution is performed only once per future, no matter how many delegated invocations
there are. If return is used instead, several successive future retrieval operations occur
until the inner future is reached.

Example We show here how a configuration evolves differently when forward* is used
instead of return. For that purpose, as in Section 3.1.2 we consider a configuration
resulting from the execution of the Encore program in Listing 3.1, slightly modified so that
foo uses a forward* to return its result. This modification is presented in Listing 3.3.

When the execution reaches line 9, if we are in a similar state as the example in the
previous section we can apply the Forward-Async rule:
∅ y f0ptrx ÞÑ f s | y � get� xuq fptrx ÞÑ 1, y ÞÑ f 1s | forward� yuq f 1p4q

Ñ ∅ y f0ptrx ÞÑ f s | y � get� xuq fpchain f 1q f 1p4q
Since f 1 is a resolved future, Chain-Update can be applied immediately:

∅ y f0ptrx ÞÑ f s | y � get� xuq fpchain f 1q f 1p4q
Ñ ∅ y f0ptrx ÞÑ f s | y � get� xuq fp4q f 1p4q

Then, the y � get� x statement can be reduced, fetching the future value with only
one Get-Future and one Get-Data.

∅ y f0ptrx ÞÑ f s | y � get� xuq fp4q f 1p4q Ñ ∅ y f0ptrx ÞÑ f s | y � get� 4uq fp4q f 1p4q
Ñ ∅ y f0ptrx ÞÑ f s | y � 4uq fp4q f 1p4q

Somehow, the Chain-Update transition replaces one of the Get-Future applica-
tions of the example in Section 3.1.2. Section 3.2 will show that despite this difference,
return and forward* have in fact equivalent semantics in DeF+F.
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3.1.4 The Type Systems of DeF and DeF+F

Figure 3.3 gives a type system for DeF, and Figure 3.4 introduces an additional typing
rule for DeF+F. There are four kinds of type judgements: Γ $ z : T types any expression z;
Γ $m s types a statement s that belongs to the function m; Γ $ T 2 m pT xqtT 1 x1 su
checks that a function definition is well-typed; and Γ $ T x M tT 1 x1 su checks the
correct typing of a program. Due to the fact that a flow already encodes an arbitrary
number of asynchronous delegations of a computation, flows of flows are forbidden at the
type system level. The notation Ó represents the collapsing of a flow type: ÓFlowrFlowrT ss
reduces to ÓFlowrT s. The interested reader should refer to [1] for a complete specification
of collapse in a type system that supports parametric types. In our simplified context,
the description can be summarised by the following rules:

ÓB � B ÓFlowrFlowrT ss �ÓFlowrT s ÓFlowrT s � FlowrÓT s if T � FlowrT 1s
In Figure 3.3, rule T-Subtype allows any basic type to be considered as a flow type.

T-Invk-Async states that the type resulting from an asynchronous function invocation
is a flow containing the type returned by the function; the collapse operator prevents
nested flow types. Symmetrically, T-Get states that the result of the synchronization on
a flow is necessarily a basic type. Indeed as flows on flows do not exist and basic types
can be lifted to flow types, a get� operation can always be typed and always returns a
basic type. Other type-checking rules are standard.

Concerning the rule T-Forward shown in Figure 3.4, it types the forward* statement.
It checks that the function’s return type is FlowrT 1s and that the returned type is
compatible with this signature. This ensures that a synchronous call to a function that
performs a forward* must consider the result of type FlowrT s. Because of the subtyping
rule, e could be of basic type B but T 1 cannot be of the form FlowrT 2s. Our solution
contrasts with what was adopted in Encore, where synchronously calling a function that
contains a forward performs an implicit synchronization on the future returned by the
function; see Section 3.3.3 for a discussion of the advantages and disadvantages of each
solution.

Properties of the Type System The type system is not particularly original com-
pared to the one of the Godot system [1] except the rule T-Forward that elegantly
solves the typing of synchronous calls with forward, as explained above. It shares the
classical properties: progress (typing ensures that a well-formed program blocks only
when a get* is performed on an unresolved future) and preservation (reduction does not
break typing). Both properties are expressed on DeF+F, and also valid on DeF which is a
subset of DeF+F.

For stating and proving preservation one needs to extend the type system in order
to type configurations. The extension raises no particular difficulty: each thread is
type-checked separately, we check that the type of values in the store fits with the type
of the declared variables, and that for each future f of type Flow[T], T is the type of
the value stored in the future f (or computed by the thread that computes f), and a
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Type judgements for expressions:

(T-Var)

Γ $ x : Γpxq

(T-Subtype)
Γ $ z : B

Γ $ z : FlowrBs

(T-Expression)
Γ $ v : T Γ $ v1 : T 1 ` : T � T 1 Ñ T 2

Γ $ v ` v1 : T 2

(T-Invk-Async)
Γpmq � T Ñ T 1 Γ $ v : T

Γ $!mpvq :ÓFlowrT 1s

(T-Get)
Γ $ v : FlowrBs

Γ $ get� v : B

(T-Invk-Sync)
Γpm1q � T Ñ T 1 Γ $ v : T

Γ $ m1pvq : T 1

(T-If)
Γ $ v : Bool Γ $ s1 Γ $ s2

Γ $ if v t s1 u else t s2 u

Type judgements for statements:

(T-Assign)
Γpxq�T Γ $ e :T

Γ $m x � e

(T-Seq)
Γ $m s Γ $m s1

Γ $m s ; s1

(T-Return)
Γ $ e :T 1 Γpmq�T ÑT 1

Γ $m return e

(T-Skip)

Γ $m skip

Type judgements for programs and functions:

(T-Method)
Γ1 � Γrx ÞÑ T srx1 ÞÑ T 1s Γ1 $m s

Γ $ T 2 m pT xqtT 1 x1 su

(T-Program)
Γ � rx ÞÑ T s Γrx1 ÞÑ T 1s $ s @M P M. Γ $ M

Γ $ T x M tT 1 x1 su

Figure 3.3: Type system; each operator ` has a predefined signature.

(T-Forward)
Γ $ e : FlowrT 1s Γpmq � T Ñ FlowrT 1s

Γ $m forward� e

Figure 3.4: Type system addition for DeF+F.

get f operation returns a value of type T . To type a runtime configuration, we need an
extended typing environment of the form:

Ω ::� Γ f ÞÑ Γ, m f ÞÑ T

The first Γ is the type of the global store, then for each not yet resolved future, the
future identifier is mapped to a stack of Γ, m where each Γ is the typing environment
that types the function body and m is the function name that provides the returned
type, and the type of the future for the last m of the stack; finally we have a second
mapping for resolved futures that maps each future identifier to the type of the future
value. The initial configuration of a well-typed program is well-typed. Then we can state
the preservation theorem:
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Theorem 1 (Preservation). A well-typed configuration remains well-typed during reduc-
tion.

Ω $ a y F ^ a y F Ñ a1 y F 1 ùñ DΩ1. Ω1 $ a1 y F 1

Ω and Ω1 are additionally constrained: the global Γ is the same in Ω and Ω1, and each
future defined in Ω is also defined in Ω1 with the same type.

Like Encore and most of the languages with futures, our language has imperative
features. Thus, contrarily to the Godot system, it is possible to create cycles of processes
where each process references the future that is to be resolved by the next process in
the cycle. In imperative languages with futures, and therefore in DeF and DeF+F, it is
possible to have deadlocks in such situations. We only ensure progress in the absence
of such deadlocks. This restriction of the progress property is in fact an advantage of
our model: it shows that DeF and DeF+F model faithfully the deadlocks that exist in
mainstream languages with futures.

We introduce the Unresolved predicate that checks whether a future is unresolved. It
is defined by: Unresolvedpf, F q � Ew. fpwq P F . We use it to state a progress property:

Theorem 2 (Progress). In a runtime configuration, each element that is an unresolved
future can progress except if it tries to perform a get on an unresolved future.

Ω $ a y fpqq F ùñ pDa1 F 1. a y fpqq F Ñ a1 y F 1 ^ fpqq R F 1q
_ pDv, ℓ, y, s, q1. q � tℓ | y � get� v ; su#q1 ^Unresolvedprrvssa�ℓ, F qq

This theorem ensures that any chosen task can progress unless it is trying to access
an unresolved future. Consequently, a configuration that cannot progress only consists
of tasks blocked on a future access, which implies that there is a cycle of futures. More
generally, any chosen task is able to terminate except if it depends (indirectly) on itself
or on a task that contains a non-terminating computation (e.g. an infinite recursive call).
Indirect dependency on oneself is the result of an actor asynchronously calling one of its
own methods and waiting on the future (or flow) returned by this call. As actors are
single threaded, the caller will block the actor in the synchronization operation, which
will prevent the asynchronous call from being processed.

3.2 The forward-return equivalence
The previous section showed the runtime semantics for return in DeF/DeF+F and
forward* in DeF+F. This section proves that these two constructs can be used interchange-
ably in DeF+F, by showing formally that the use of forward* instead of return does not
alter the semantics of a DeF+F program. This positions the choice between return and
forward* in DeF+F as an optimization matter rather than a semantics matter.

To prove this, we provide a translation from a DeF+F program to a DeF program that
replaces forward* by return statements. We then show, using a branching bisimulation,
that the translated program has the same observable behaviour as the original one.
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Note on Bisimulations. Bisimulations allow the comparison of the semantics of
asynchronous programs [68]. Given a binary relation R, two transition systems are said
to be strongly bisimilar if for two states related by R, a series of transitions on either side
can be associated with the same series of transitions on the other side, with each pair of
intermediate states linked by R. Most of the time a strong bisimulation is too strict to
compare programs and one needs to consider that some of the transitions do not need
to be simulated. A weak bisimulation relaxes the definition of strong bisimulation by
allowing a subset of transitions to take place at any time even without an equivalent in
the other transition system. These transitions are called non-observable, or τ -transitions.

This relaxation has a cost: two weakly similar programs might have some different
properties, e.g. concerning the presence of deadlocks. Branching bisimulation is a
compromise between strong and weak bisimulation that guarantees more properties
but allows the presence of non-observable transitions. With a branching bisimulation
a program that performs a τ -transition must remain in relation with the same states,
guaranteeing that τ -transitions have almost no effect on the program state. A divergence-
branching simulation is another compromise that further requires an infinite sequence of
τ -transitions on either side to correspond to an infinite sequence of τ -transitions on the
other side.

Below, we prove a branching bisimulation between a DeF+F program and its translation
to a DeF program with every forward* replaced by a return. Our semantics cannot
ensure divergence-branching simulation because of the different synchronization strategies
between return and forward*: getting the value of a future that is in a cycle will block
on the DeF+F side, but enter an infinite sequence of τ -transitions on the DeF side.

3.2.1 Translation from DeF+F to DeF and Program Equivalence

A DeF+F program can be translated into a plain DeF program using the semantics-
preserving transformation JKfwdElim defined as follows:

Jforward� vKfwdElim � return v

Terms other than forward* are unchanged. To prove that JKfwdElim actually preserves
the semantics of a DeF+F program, we define in Figure 3.5 a relation R . It relates a
DeF+F configuration cnf and a DeF configuration cnd that represents a similar state of
execution. We prove that two configurations related by R are bisimilar. More precisely,
the equivalence we prove is a branching bisimulation that does not observe the update of
intermediate futures in a sequence of chained futures (i.e. considers Get-Future and
Chain-Update as τ -transitions) as the precise resolution status of a future is an internal
state that does not matter for the observable state of a program.

The trivial rules R -Id-Store and R -Id-Resolved state that two identical configu-
rations are similar. R -ForwardElim deals with syntactic equality modulo forward*
elimination, simply replacing forward* by return.

These rules are not sufficient, as Chain-Updates can happen at any time on the
DeF+F side, making the executions of a DeF+F program and its DeF counterpart slightly
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R -Id-Store

a R a

R -Id-Resolved
cnf R cnd

cnf fpwq R cnd fpwq

R -Forward-Async
cnf R cnd

cnf fpchain f 1q R cnd fpf 1q

R -ForwardElim
cnf R cnd

cnf fptℓ | su#qqR cnd fptℓ | JsKfwdElimu#JqKfwdElimq

R -Chain-Update
cnf fpchainf 1q f 1pwq R cnd

cnf fpwq f 1pwqR cnd

R -Get-Future-F
cnf fpf 1q f2ptℓf | y�get� f ; sfu#qq R cnd

cnf fpf 1q f2ptℓf | y�get� f 1; sfu#qqR cnd

R -Get-Future-D
cnf R cnd fpf 1q f2ptℓd | y�get� f ; sdu#qq

cnf R cnd fpf 1q f2ptℓd | y�get� f 1; sdu#qq

Figure 3.5: Relation between DeF+F configurations and DeF configurations.

different. We still want these configurations to be related by R , which is required by
the first item of Theorem 3, as Chain-Update is a τ -transition.

R -Forward-Async and R -Chain-Update deal with the fact that some futures are
chained and others are not. The rule R -Forward-Async states that chaining a future
to another one, as the semantic rule Forward-Async does, is semantically equivalent
to fulfilling it with this same future, as Return-Async does. Rule R -Chain-Update
can be used to undo the future chaining operation.

As the resolution of futures is done in a different order, and possibly at a different
time, when forward* is used instead of return, the rule R -Chain-Update and both
R -Get-Future rules are needed to associate configurations in which some futures are
at different stages of resolution. This different ordering only occurs upon resolution of
the get* statement, and is handled by the two Get-Future rules.

This different ordering of future resolution also implies that there is not a one-to-one
mapping between Chain-Update transitions in a DeF+F execution and Get-Future
transitions in the context of that same program after forward* elimination. All these
facts are formalised by Theorem 3.

3.2.2 Branching Bisimulation between DeF+F and DeF

Theorem 3 (Correctness of the translation from DeF+F to DeF). R is a branching
bisimulation between the operational semantics of the DeF+F program P and the operational
semantics of the DeF program JP KfwdElim.

Let R range over observable transitions. If cnf R cnd then:
cnf

τÑ� cn1f ùñ cn1f R cnd cnd
τÑ� cn1d ùñ cnf R cn1d

cnf
RÑ cn1f ùñ Dcn1d. cnd

τÑ� RÑ cn1d ^ cn1f R cn1d
cnd

RÑ cn1d ùñ Dcn1f. cnf
τÑ� RÑ cn1f ^ cn1f R cn1d
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The transitions Get-Future and Chain-Update are non-observable, both of them
are labelled τ . The observable transitions Forward-Async and Forward-Data are
labelled Return-Async, and Forward-Sync is labelled Return-Sync. All the other
transitions are labelled with their original rule name.

As the use of forward* does not change the moment at which futures are created
but only how they are resolved, if cnf R cnd then the identifiers of the futures of cnf are
exactly those of cnd, e.g. we have f P cnf ðñ f P cnd. However, the value of f in
cnf and the value of f in cnd may differ. In the following, we denote that some futures
f P cnf and f 1 P cnd actually share the same identifier by f � f 1 or f � f 1.

First, we introduce the notion of sequence of futures, and define a few lemmas on
properties implied by cnf R cnd. This will help to prove the branching bisimulation.

Definition 4 (Sequence of futures). In a DeF or DeF+F configuration cn, pf0 . . . fnq such
that @i, fipfi�1q P cn_ fipchain fi�1q P cn is called a sequence of futures.

Given a future resolved or chained to another one in a DeF+F configuration, Lem-
mas 1 and 2 state the possible forms of the corresponding future in an associated DeF
configuration. Conversely, given a future resolved to another one in a DeF configuration,
Lemma 3 states the possible forms of the corresponding future in the associated DeF+F
configuration. Lemma 5 generalises Lemmas 1 and 2: given a sequence of futures in a
DeF+F configuration, it states the possible forms of the corresponding sequence in DeF,
while Lemma 6 generalises Lemma 3 in a similar manner. As for Lemma 4, it formalizes
that the local store and statements of a task are not altered by JKfwdElim, apart from
get* statements that can express a different stage of future resolution.

Lemma 1 (Matching a chained future). If cnf R cnd and fpchain f 1q P cnf, then
fpf 1q P cnd.

The case of a future resolved on the DeF+F side is more complicated, as such a future
can not only come from a return statement, but also from a Chain-Update. The
following lemma illustrates that the chain construct can flatten chains of futures.

Lemma 2 (Resolved future in DeF+F). If cnf R cnd and fpwq P cnf, then there exists
f0pf1q . . . fn�1pfnq P cnd such that f0 � f , fnpwq P cnd, and @i, fipwq P cnf.

The previous two lemmas dealt with futures resolved on the DeF+F side, the next one
deals with futures resolved on the DeF side.

Lemma 3 (Resolved future in DeF). If cnf R cnd and fpwq P cnd, then:

• Either w is a future and fpchain wq P cnf.

• Or there exists w1 such that fpw1q P cnf and there exists f0pf1q . . . fn�1pfnq P cnd
such that f � f0, fnpw1q P cnd, and @i, fipw1q P cnf.



CHAPTER 3. DATAFLOW EXPLICIT FUTURES 81

Given a resolved or chained future in a DeF or DeF+F configuration, the previous
lemmas gave the form of the corresponding future on the other side. The next lemma
deals with the last case: futures not yet resolved, that still have a task attached to them.
As the JKfwdElim transformation is fairly simple, the local store and most statements
will be identical on both sides, but get* statements may differ. Indeed, following a
sequence of futures by the rule Get-Future being non-observable, R has to relate
get� statements at different stages of update. In this case, walking back the chain of
Get-Future leads to the same initial future.

Lemma 4 (Matching tasks). If cnf R cnd, then Ds. fptl | su#qq P cnf if and only if
Ds1. fptl | s1u#JqKfwdElimq P cnd. In this case:

• Either s is of the form y � get� w; s1, and s1 of the form y � get� w1; Js1KfwdElim,
with

Dw0 . . . wn P cnf. Dw1
0 . . . w1

m P cnd

$''''''&
''''''%

@i   n wipwi�1q P cnf

@i   m w1
ipw1

i�1q P cnd

w0 � w1
0

wn � w

w1
m � w1

• Or s1 � JsKfwdElim.

The next, and final, two lemmas are generalizations of the three first ones. They
answer the question: given a sequence of futures, on the DeF side or on the DeF+F side,
what can we say about the other side? Lemma 5 is about the DeF to DeF+F case, while
Lemma 6 handles the other direction.

Lemma 5 (Sequence of futures: DeF to DeF+F).
If cnf R cnd and f0pf1q . . . fn�1pfnq fnpwq P cnd with Ef P cnd. w � f , then there exists
k0 ¤ � � � ¤ kl such that for all i   l either fki

pfki�1q P cnf or fki
pchain fki�1q P cnf

with k0 � 0 and kl � n.

Lemma 6 (Sequence of futures: DeF+F to DeF).
If cnf R cnd and f0pf1q . . . fn�1pfnq fnpwq P cnf,
then there exists f 10pf 11q . . . f 1l�1pf 1l q P cnd such that f 10 � f0 and f 1l pwq P cnd.

The proof of Theorem 3 is done by induction and a classical case analysis on the
reduction rule applied, proving that the bisimulation relation is maintained. Details
of the proof are not relevant to this manuscript and can be found in [69], courtesy of
co-author Nicolas Chappe. The most interesting cases are the Get-Data rules, where a
future is about to be resolved on one side, but there may still be multiple τ -transitions
needed to get to the resolution on the other side.

In this section we have shown that, with data-flow explicit futures, the behavior of the
forward* primitive is the same as the behaviour of a standard return. This highlights
the fact that forward provides a form of data-flow synchronization for control-flow
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explicit futures. More interestingly this shows that if necessary any return statement
that returns a data-flow future could be compiled similarly to a forward* statement,
which should in general improve performance.

3.3 Implementation in Encore and Benchmarks
In this section we present our implementation of dataflow explicit futures in the Encore
language. This implementation allowed us to explore some of the possibilities offered by
these new futures. In particular we built control-flow futures on top of our own dataflow
futures: we present our implementation as it can be used as a basis for other languages
to do the same. Recall that in Section 3.1.4 we provided a typing rule for forward* that
slightly differs from the one in [1], and is safer. We discuss the differences in practice
between these two choices, and why the typing rule we chose in this implementation
is the one of [1] rather than the safer one. Finally, we investigate the performance
of different implementations and synchronization strategies on programs that express
various communication patterns.

3.3.1 Prerequisites — The Encore Programming Language

Since our implementation was made in Encore, a basic understanding of how an Encore
program is executed is required. In this section we consider the original version of Encore,
without flows. Section 3.3 onward will present our implementation.

The Encore runtime Encore is a compiled language. The compiler, written in Haskell,
first translates an Encore program to C code that is compiled and linked with the Encore
runtime (libencore) and the Pony runtime together into a single executable. The Pony
runtime [70] is an actor runtime; Encore uses it to handle the active-objects parts of
the language, namely stack switching and message transmission. The Encore runtime
contains the definitions of built-in types and operators that are used by programmers.

The Encore runtime is written in C to achieve higher performance than with raw
Encore code. The translation from Encore to C will usually yield less efficient C code
than raw written C, as the translation process does not perform a lot of optimization.
Moreover, the most crucial primitives, like future_get are directly implemented in C,
with optimized and lower-level code. The runtime can also be used to allow Encore
programs to access system calls and other libraries functions.

Translation of Encore to C and handling of messages The Encore runtime is
linked against the Pony runtime, written in C, which handles the actor aspects. Given
a function definition f, the Encore compiler translates this function once, and write
multiple wrappers around it5. Each wrapper corresponds to a different call mechanism:

5To keep things simple, we limit ourselves to the translation of functions in this paragraph. The
process is similar for methods, but the presence of classes makes it slightly more complex.
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synchronous call, asynchronous call, asynchronous call that ignores the returned future
etc. When translating a call to f, the compiler emits a call to the appropriate wrapper.

Let us focus on the asynchronous C version, as it will be the source of problems.
When an Encore program executes the statement async(f), this is translated in the C
program as a call to the asynchronous version of f, let us call it f_async. The code
of f_async will use the Pony runtime in order to create a new message, which will be
processed at a later time. In addition, f_async creates the future that will contain the
result of the message, and returns it to the caller. Finally, f_async stores the future
inside the message itself, so the target of the message can fulfill it. Processing the message
consists in - invoking the synchronous C version of f, and storing the result inside the
future associated with the message.

A primer on genericity in Encore In Section 3.3.2.3 we will present a difficulty
in implementing the get* operation in Encore due to generic types. This paragraph
quickly introduces genericity and the common compilation schemes to deal with it, i.e.
type erasure and compile time expansion. Listing 3.4 shows an example of genericity in
Encore. It defines the identity function, called id, as a generic function over any type t.
In other words, the function will accept any value of any type as its sole parameter.

Listing 3.4: Example of genericity in Encore
1 fun id[t](x: t) : t
2 return x
3 end

Programming languages usually handle generic types in one of two ways: type
erasure or compile time expansion. Compile time expansion is the process used by C++
generic types, the templates. This process consists in compiling a different version of the
function for each value given to its generic types and replacing every call to the generic
function with a call to the appropriate version. For instance, if the identity function was
implemented in a C++ program, and used with twelve different types then the compiler
would generate twelve different versions of the function, one for each different type. The
main advantage of this process is that the compiler knows the exact types used in every
invocation of functions. Moreover, as expansion is performed early during the compilation
process, further typing operations, as well as optimization and code generation will be
performed on this new code where genericity has been completely removed.

Type erasure chooses to abstract away types under a generic name. This is the process
used in many languages such as Java or C#. In the previous example (Listing 3.4),
typechecking will behave as if t is an existing type, and the typechecking rules defined
in the language will be applied. In other words, the compiler has no knowledge of the
true type of the values given as parameters: the type is effectively erased. Encore uses
type erasure for its implementation of generic types. During the translation from Encore
to C, Encore generic types become generic C pointers void*. While this results in a
smaller sized executable, it also prevents the compiler from reasoning on types which
may impose constraints on optimization and expressivity. Moreover, it impacts code
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generation, as the compiler will emit code that must work on every possible type used to
instantiate the generic type.

Translation of Encore generics into C Depending on the programming language,
generics may be handled in different ways. In the case of Encore, since it translates to C,
the (limited) features of C that allow genericity must be used. In the Encore runtime,
the concept of any type is represented as an untagged union that contains the following
type: integers, booleans, floating point numbers and pointers. Compound C types, such
as structures or unions, are not typed as-is in the union, as their instances are stored by
address rather than by value. In the context of the Encore runtime, the union does not
need to be tagged due to how the compiler processes generics. Whenever the compiler
translates a generic type, it translates it to the type of the untagged union. In Encore,
the only operation available on values of a generic type is the assignment operation, and
assignment of values of a generic type are safe. In C, assignment of values of the same
union type to each other is safe, therefore the natural translation of operations on values
of a generic type from Encore to C are all type safe. Because operations on values of
generic type are limited to assignment, the question of accessing the content of the union
only arises when the concrete type of the value is known. For instance, the following code
does not type in Encore because the + operation is not defined on values of a generic
type: fun f[t](x: t, y: t): t return x + y end. However, this code types, because
the compiler is able to unify the generic type t with int: println(id(12)+ id(13)). In
practice, the compiler will translate the Encore id function to a C function whose return
type is the union of all possible types in Encore. The call id(12) will be translated to a
call to this C function and it will read the value inside the union as an integer, since the
compiler has unified t with the integer type.

3.3.2 Implementation of Flow

For the reasons evoked in the previous section, we implemented flows in the Encore
runtime and in the compiler, rather than as a library written in Encore.

The process required to implement dataflow explicit futures in this way is made of
three-steps: 1) A modification of the type system, in order to support the new built-in
Flow[T] type; 2) A modification of the runtime itself in order to add the runtime code
for Flow and 3) Modifying the syntax of the language and the compilation scheme in
order to support the new primitive operators on dataflow futures. The main difficulty
lies in the handling of the get* primitive for reasons we will detail in Section 3.3.2.3.

3.3.2.1 Typing

Compared to traditional control-flow futures, typing dataflow futures requires special
care. Recall both the collapsing and subtyping rules in the type system. The collapsing
rule, T-Invk-Async, that corresponds to the application of the Ó operator, is used to
prevent the appearance of nested flows at the static type level system. This typing rule
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allows the creation of chains of flows of a statically unknown length, most commonly
observed on recursive functions.

The subtyping rule is used for the process of lifting, which allows non-flow values to
be promoted to their future selves. This allows code reuse, as a function with a parameter
typed Flow[int] may now accept either an int or a flow as its parameter6.

Implementation in Encore The implementation of these two typing rules in Encore
is straightforward. The collapsing rule requires distinguishing two cases: written types,
and temporary types. Written types are those given by the programmer, where nesting
should be rejected as in var a: Flow[Flow[int]] = 12, and should be checked every time
a declaration is typechecked. The type of a temporary is the type of a value produced by
a function / method / operator call before its type gets checked against an expected type,
as in var res = f(): in this case, the type of the expression f() should be collapsed in
order to remove the nesting that may involuntarily arise. For instance, if we have fun f
ãÑ (): Flow[int], then the value produced by async*(f()) is not ill-typed, even though
the type of this expression is, before collapsing, Flow[Flow[int]].

About subtyping The typing rule T-Subtype in Figure 3.3 states that any type T is
a subtype of Flow[T]. In other words, any value of type T can be used in place of a value
of type Flow[T]. In the case of a language like Encore that first compiles to another
language, the subtyping rule needs to be implemented in both languages. In an Encore
program, the expression var a: Flow[int] = 12 is well-typed. The translation of this
expression in C must remain well-typed, however the C language has a type system that
does not allow subtyping and forceful conversion of values between types usually results
in undefined behavior. The information stored in an integer and a flow integer is not the
same, therefore their representations in memory do not have the same layout. In this
case, the AST is modified prior to code generation and an explicit conversion to flow is
inserted. This explicit conversion to flow will translate, during code generation, to a call
to a function in the runtime that will promote the non-flow value to a flow value.

3.3.2.2 Creation of Flow

In the context of DeF+F, flows are created through the use of the “!” operator, and only
through this one. The creation of a flow creates another stack frame, whose final value
will be used to resolve the associated flow. We now present how flows are created in
Encore.

Implementation in Encore In the context of Encore, flows are created in three
different contexts: 1) The usage of the !! operator, which is used to asynchronously
call a method on an active object; this mirrors the ! operator, which performs an
asynchronous call that returns a control-flow future; 2) When lifting non-flow values into
their flow selves; and 3) When using the async* operator: it launches the evaluation

6 With control-flow futures this would require the programmer to write two different functions.
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of an expression in another task, and returns a future that will hold the result of the
evaluation.

The creation of a Flow when lifting a non-flow value is a special case as it is the
only one that does not result from an asynchronous call. If we consider the following
declaration in Encore, var a: Flow[int] = 2, it is trivial that the flow a is resolved with
the value 2 of type int. Now, if we consider the function in Listing 3.5, it is impossible
to determine, locally7 and at compile time, whether t is instanciated with a flow during
a call or not.

Listing 3.5: Example of a generic value being lifted into a flow
1 fun f[t](x: t): int
2 var y: Flow[t] = x
3 -- ...
4 end

As a result, it is impossible to determine, at compile-time, whether flow y is resolved with
a flow or not. The necessity to keep track of which values are flows and which are not is
crucial in the implementation of the get* operator, and traces back to the Get-Future
and Get-Data rules in the semantics of DeF.

Section 3.3.2.3 presents the problem encountered, and the solution we provided.
Section 3.3.2.4 details a similar problem encountered when a value of a generic type
should be lifted to a flow, but statically the type Flow[T] never appears.

3.3.2.3 Flow synchronization with get*

In DeF Recall that in Figure 3.2 we introduced two rules, Get-Future and Get-Data
that are used to recursively traverse a chain of flows until a non-flow value is reached.
Get-Data can only be applied to a non-flow value. Get-Future can only be applied
to flow values. When we move outside of the theoretical world, this assumes there is a
way for the compiler / interpreter to detect whether a value is a flow or not, in order to
know which operation to perform.

In programming languages We need to distinguish three cases: languages without
parametric types, languages with parametric types with introspection and languages with
parametric types without introspection.

No parametric types In a language with no parametric types, static analysis
is enough to detect, at the time of creation of a flow, whether it will be resolved with
a flow or not. Indeed whether the flow is created by lifting of a non-flow value or by
asynchronous call, inspecting the static type of a term is enough to know whether the
dynamic type will be a flow or not. Consider the example in Listing 3.6, written in
Encore without parametric types. async* asynchronously calls a function and returns
a future that will hold the result. There are two flows created here, both on line 8 (by

7Due to type erasure, interprocedural analysis is not possible.
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Listing 3.6: Synchronization with get* in C
1 fun f(flow: Flow[int]): int
2 val a: int = get*(flow)
3 return a * 2
4 end
5
6 active class Main
7 def main(): unit
8 var a: Flow[int] = async *(f(2))
9 println(get*(a))

10 end
11 end

Listing 3.7: Synchronization with get* in Encore
1 fun id[t](x: t): t
2 return x
3 end
4
5 fun g[t](x: t): Flow[t]
6 var res: Flow[t] = async *(id(x))
7 return res
8 end
9

10 active class Main
11 def main(): unit
12 var a: Flow[int] = async *(id(2))
13 var b: Flow[int] = g(a)
14 println(get*(b))
15 end
16 end

asynchronous calls or by lifting). Static type is enough to know in the example which
types are flow or not.

With parametric types In a language with parametric types, static analysis
may no longer be enough. Consider the example in Listing 3.7, written in Encore with
parametric types. This code creates two generic functions: the identity function id
and a toy function g that asynchronously calls the identity function, forwarding it its
parameter.

In the main function flow a is created by asynchronously calling the identity function,
and flow b is created by passing flow a as parameter to g. Then, we get the value of b
and print it. a is resolved with a non-flow value, here 2. This resolution can occur at
any moment due to the asynchronous nature of the call to id(2). The resolution of b is
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more complex, we give a step-by-step execution:
1. Flow a is created.
2. The call g(a) is performed. Control-flow enters the g function, with its parameter

x bound to a.
3. In g, a flow res is created as the result of the asynchronous call to id(x). id(x)

is equivalent to id(a). res is therefore a flow that will be resolved with a flow (a),
that will be resolved with a value (2).

4. g returns res.
5. In main, b is now bound to res. This makes b a flow that will be resolved with a

flow (a) that will be resolved with a value (2).
It is important to note that there is no “moment” at which the resolution of each of these
flows can occur. The asynchronous model of computation of Encore offers no guarantee
on when a resolution will occur. It is possible for a to already be resolved with 2 when
the call to g is performed, and it is also possible for a to not even be resolved when the
call to get*(b) is performed in main.

From a static point of view, in function g, t is not Flow[T], it is a generic type.
We cannot statically determine whether or not asynchronously calling this function will
produce a flow resolved with a flow or with a value. Worse, the naive approach would be
to simply check whether the return type is Flow, observe it is not, and conclude that the
function will never produce a Flow. In this situation, the correct solution is to check the
actual runtime type of this value. This can be done using the introspection capabilities
of the language, or by adding runtime information about the type.

Listing 3.8 presents our implementation of get* in the Encore runtime as the get_star
function. The flow_t type represents a Flow in the runtime. This type has a field type
which represents the type of value stored in the Flow. This field is filled by the runtime.
ID_FLOW is a constant that indicates a value has a type of Flow.

Listing 3.8: get* in the Encore runtime with reflection added
1 encore_arg_t get_star(flow_t* flow) {
2 // Checks for fulfillment not shown
3
4 if (flow ->type ->id == ID_FLOW) {
5 return get_star (( flow_t *)flow ->value.p);
6 } else {
7 return flow ->value;
8 }
9 }

3.3.2.4 Lifting in the context of a generic function

Lifting consists in inserting conversion from non-flow values to flow resolved with the
value when needed. This conversion is typically needed in assignments like a = b with b
being a non-flow and a being a flow. In most cases, this can be decided statically in a
simple way: when the types of a and b are non-parametric, or when they both have the
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same type (in which case the compiler may not know whether the type is a flow, but
knows that no conversion is needed). However, the question of whether a conversion
must be inserted cannot be decided statically in the presence of parametric types and
get*. An example is given in Listing 3.9, where the assignment line 3 may or may not
require a conversion depending on the runtime type of t.

Listing 3.9: Lifting in parametric functions in Encore
1 fun f[t](x: t) : t
2 var flow: Flow[t] = async *(id(x))
3 var res: t = get*(flow)
4 return res
5 end

We focus on the statement var res: t = get*(flow). We know, by definition, that
the type of get*(flow) is not a flow. The naive translation of this statement would be
an assignment of the result of get* to a value of the generic type in the runtime library.
However, this raises an issue when the generic type t is instanciated with Flow[T]. At
runtime, the left part of the assignment has type Flow[T], but the right part has type T
that is not a flow. This means the result of get* needs to be lifted. As this cannot be
determined statically, we modified the compiler so it emits a check of the type used to
instantiate t, which will determine whether the result of get* needs to be lifted or not.

Listing 3.10 presents the code emitted after modifying the compiler to account for
the generic type. encore_arg_t is the C type that represents generic type (the union).
The array gen_types provides a limited form of introspection. Entry 0 is associated with
the Encore generic type t and indicates with what type it was instanciated during this
specific call. ID_FLOW is the identifier of the Flow type in the runtime.

Listing 3.10: Translation of a generic Encore function using reflection to properly lift
non-flow values to their flow selves if needed

1 encore_arg_t f_sync(encore_arg_t x, pony_type *[] gen_types) {
2 flow_t* f = id_async(x);
3
4 encore_arg_t result;
5 if (gen_types [0]->id == ID_FLOW) {
6 result.p = flow_mk_from_value(get_star(f));
7 } else {
8 result = get_star(f);
9 }

10
11 return result;
12 }

In both listings, identifier ID_FLOW (line 4 in Listing 3.8, line 5 in Listing 3.10) is
used in the runtime to identify a value of type flow. The C structure representing a flow,
flow_t, contains a field of type pony_type whose id is set to ID_FLOW if the value that
resolves the flow is another flow, something else otherwise. In the implementation of
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Figure 3.6: Typing rule for forward* in Godot

(T-Godot-Forward*)
Γ $ e : Flow[T’] Γpmq � T Ñ T 1

Γ $m forward� e

get*, if this field designates a flow, then get_star calls itself recursively on the resolving
flow. Otherwise it merely returns its resolving value.

On line 1 of Listing 3.10, the array of pony_type* identifies the runtime types of
every parametric type of the function during a given call. On line 5 we check if the
runtime type of the parameter x of the current invocation of f is flow, and if it is we lift
the result of get* into a flow. Otherwise we simply return the result of get*.

Summary The formal semantics proposed in Section 3.1.2 assumes the existence of
an introspection operator that allows the runtime of a language to detect whether a
value is a flow or not. In practice, languages without parametric types and without such
introspection features can rely on static typing instead. In the context of languages
with parametric types, it may be solved using built-in introspection facilities. If no such
facilities exist, then the language developer should implement them in order for get* to
work8.

3.3.3 forward* : Typing and consequences in implementation

The forward* primitive allows delegating the resolution of a flow to another task. It is
the dataflow equivalent of the forward primitive introduced in [48]. In Section 3.1.4 we
introduced a typing rule for functions that perform a forward* and we pointed out that
this typing rule slightly differs from the one presented in [1]. We argued that our typing
rule is safer.

Godot’s typing of forward*, and the original forward The typing rule in [1] for
forward* would be rule T-Godot-Forward* in Figure 3.6. This would let us write
Listing 3.11.

Listing 3.11: Using forward* in Encore with Godot’s typing
1 fun f(): int
2 val x: Flow[int] = async *(id(12))
3 forward *(x)
4 end

We call this typing of forward* the flexible way. The choice for this typing rule was
inspired by the typing of the forward primitive for control-flow futures in [48]. This

8Other solutions exist. Adding limited compile time expansion of generic functions is another one,
although it can be more costly in executable size



CHAPTER 3. DATAFLOW EXPLICIT FUTURES 91

Figure 3.7: Semantic rule for forward in a synchronous call, based on the behavior of
such a call in Encore

CeF-Forward-Sync
rrvssa�ℓ � w y fresh variable

a y F fptℓ1 | forward v ; su#q#qq
Ñ a y F fptℓ1 | y � get w ; return y ; su#q#qq

choice in [48] made sense when one considers the objectives of forward: mitigate the
future proliferation problem (the appearance of nested futures at the type system level).
However, when implementing forward in a language like Encore that supports both
synchronous and asynchronous call of functions, this raises the question: what is the
semantics of forward inside a method called synchronously? The solution adopted in
Encore is to add an implicit synchronization on the forwarded future. We translate this
behavior by the rule CeF-Forward-Sync in Figure 3.79.

In the context of DeF+F, if we used typing rule T-Godot-Forward* to type
forward*, we would have an identical rule to CeF-Forward-Sync to describe the
semantics of forward*, with forward becoming forward* and get becoming get*. In
other words, we would need to introduce an implicit synchronization.

This is in contrast to the way we type forward* in DeF+F. We force the return
type of a function performing a forward* to be a flow. In addition, because of the
forward*-return equivalence, we can give a semantics for a synchronous call to a
function performing a forward*: evaluate forward* like return statements. This safer
typing rule is called the strict way.

We now need to choose how to implement the typing of forward*, following one of
the two approaches presented above.

Comparison of the two approaches and argument of safety The main point of
discussion with the typing of forward* is the semantics given to its execution. As we have
seen, with the flexible typing of Godot, we need to perform an implicit synchronization.

This can lead to subtle deadlocks, as illustrated in Listing 3.12. This code will
deadlock on line 3. We present below the code executed step by step.

1. The program starts with a single active thread that runs an instance of Main class
and executes its main function.

2. In main, the call to new Foo() creates a new active object of type Foo that starts
executing in its own thread. It waits for messages to process.

3. In the main function, the asynchronous call foo!!foo() creates an unresolved flow,
we call it f1. It also sends a message to foo.

4. The main thread enters get* and is blocked until f1 is resolved with a value, i.e.
it can follow a chain of flows until it reaches a value that is not a flow. The foo

9This rule is not part of the original forward paper [48], nor a part of Godot. It is our translation in
DeF+F of the behavior of forward in a synchronous call in Encore.
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Listing 3.12: Deadlock in Encore when using the flexible typing of forward*
1 active class Foo
2 def foo(): int
3 return this.bar()
4 end
5
6 def bar(): int
7 -- In a synchronous call , translates to
8 -- var f: Flow[int] = this !! baz ()
9 -- return get *(f)

10 forward *(this!!baz())
11 end
12
13 def baz(): int
14 return 12
15 end
16 end
17
18 active class Main
19 def main(): unit
20 val foo: Foo = new Foo()
21 println(get*(foo!!foo()))
22 end
23 end

thread starts processing the call to foo.
5. In foo, a synchronous call is made to bar on the same object. Synchronous calls

on oneself are allowed in the active-object model and correspond to traditional
function calls in imperative programming. Thread foo enters bar.

6. In bar, a flow f2 is created by this!!baz(). The current object sends a message to
itself. Then, the current object performs get*(f2), as the currently active method
was called synchronously. Because the current object is already processing the
initial call to foo that created flow f1 in main, this call to get* blocks the actor as
said actor never enters a state in which it can process the call to baz.

This deadlock is especially difficult to spot for the programmer: the code does not
perform any explicit synchronization within the body of the class. This breaks the
property of explicit futures that ensures that all synchronizations are explicit.

On the other hand, the strict typing can be used to mitigate the problem. Listing 3.13
presents a modified version of Listing 3.12 that uses the strict way to type forward*.
There are two modifications here: method foo now performs a get* on the result of the
call to bar, and bar now returns a flow. Step-by-step execution, with step 6 changed
and step 7 new:

1. The program starts with a single active thread that runs an instance of Main class
and executes its main function.
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Listing 3.13: Behaviors in Encore when using the strict typing of forward*
1 active class Foo
2 def foo(): int
3 return get*(this.bar())
4 end
5
6 def bar(): Flow[int]
7 forward *(this!!baz())
8 end
9

10 def baz(): int
11 return 12
12 end
13 end
14
15 active class Main
16 def main(): unit
17 val foo: Foo = new Foo()
18 println(get*(foo!!foo()))
19 end
20 end

2. In main, the call to new Foo() creates a new active object of type Foo that starts
executing in its own thread. It waits for messages to process.

3. In the main function, the asynchronous call foo!!foo() creates an unresolved flow,
we call it f1. It also sends a message to foo.

4. The main thread enters get* and is blocked until f1 is resolved with a value, i.e.
it can follow a chain of flows until it reaches a value that is not a flow. The foo
thread starts processing the call to foo.

5. In foo, a synchronous call, this.bar(), is performed. The current thread starts
executing bar.

6. In bar, a new flow, f2, is created as a result of this!!baz(). The current object
sends a message to itself. The call to bar returns f2.

7. Back in foo, get* is used on f2. This effectively deadlocks the actor as the
asynchronous call to foo is still being processed, and can only progress once f2 is
resolved. However, as foo cannot progress, the actor never processes the message
that resolves f2.

Unlike in the previous scenario where we used the flexible typing rule, here the synchro-
nization is explicit: foo uses get* on a flow. We argue our typing rule is safer as it
makes the synchronization explicit, which makes deadlocks easier to investigate.

Our theoretical results of Section 3.2 are based on the rule of Figure 3.4 as it is the
safest solution. In our implementation we chose to use the flexible typing of Godot to
keep in line with what already existed in Encore. However, if language designers were to
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introduce flows in a language, we would recommend using the strict typing rule.

3.3.4 Encoding Futrs from Flowrs

In this section, we build control-flow explicit futures on top of the dataflow explicit
futures we implemented in Encore. As our dataflow explicit futures are based on DeF,
this asserts the backward compatibility of DeF with existing systems. We show that a
language implementing only Flowrs can build Futrs as a library. In Encore, a library
cannot extend the syntax of the language, or add introspection features, we are thus
limited to simple encodings.

We provide an implementation of Futrs that relies on our Flowrs construct of Encore
and on our implementation of get* and async*.

Definition Godot [1] suggests a construct for such control-flow explicit futures:

Futrsτ ::� l Flowrsτ
l is called the “box” operator. It encapsulates its argument in a structure of a different
type, whose only available operation is unbox, where unboxpl xq � x. Intuitively,
the l operator stops type collapsing: Ó FlowrFlowrT ss reduces to Ó FlowrT s, but Ó
FlowrlFlowrT ss is not collapsed (it reduces to FlowrlFlowrT ss).

The corresponding operation follows:

get e ::� get� punbox eq

Implementation We define the class Future[t] and the get_10 function as shown in
Listing 3.14.

Listing 3.14: Future[t] and get_ based on Flow and get*
1 read class Future[t]
2 val content: Flow[t]
3 def init(x: Flow[t]): unit
4 this.content = x
5 end
6 end
7
8 fun get_(y: Future[t]): t
9 return get*(y.content)

10 end

A restriction of our approach is that, in an Encore library, we cannot overload existing
operators or functions. As such, we provide functions with the right behavior, but not the
desired name: get_, call_, await_, or async_. However, even that is not sufficient. For
instance, the method call operator (!) cannot be implemented with a mere function as it
would require modifying the lexer of the language. Instead, we define the call_ function

10Underscore appended to avoid name collision with the get reserved keyword.
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that takes a Flow[t] as parameter and wraps it into a Future[t]. The expression a!f()
is translated as call_(a!!f()). Similarly we define forward_ to implement forward.

Using a simple preprocessor to generate the calls to our library from a syntax based
on standard operators on control-flow futures would also be possible as the problem is
only about syntactic sugar.

Summary With this implementation of control-flow explicit futures on top of data-flow
explicit ones, we showed that control-flow explicit futures can be provided as an extension
of DeF, and as a library. It is interesting to note that Godot provides an implementation
in Scala of data-flow synchronization on top of control-flow explicit futures (the opposite
of what we did here), but that implementation does not fully support parametric types,
and extending it to handle parametric types seems challenging. Consequently, we believe
that implementing DeF directly in the compiler is more flexible, and thus we advise, in
the design of future programming languages with explicit futures, to first implement a
data-flow synchronization, and then extend it with control-flow explicit futures.

3.3.5 Benchmarks

In this section, we provide a performance analysis of different implementations of futures11:
the builtin control-flow explicit futures Fut of Encore, the data-flow explicit futures DeF
that we introduced earlier, denoted as Flow, and the control-flow explicit futures that
were built in the previous subsection, denoted as Fut on Flow.

We analyze several programs, using chains of futures of different length, or different
memory management patterns. Our focus is to analyze the performance of futures, not
the efficiency of the parallelization in Encore or the number of actors that can be created
in the Encore system. This is why we do not compare ourselves with other frameworks,
and why our programs are mostly sequential or featuring little parallelism. Reducing
parallelism allows us to avoid the complex interactions that exist between additional
objects, concurrent garbage collection, and memory contention: we only study the direct
impact of different forms of futures.

All the benchmark results provided here are done on the same Dell XPS 13 9370,
with a 8-core Intel Core i7-8550U and 16GiB of memory, running Ubuntu 20.04 and clang
v10.0. Encore at version ea5736869d2ac34cfbeee2be4a2988c819a215af is run using
the release configuration and the -O3 flag.

3.3.5.1 Test Programs

We evaluate performance on four examples, the first uses non-nested futures, the next
two stress the implementation with long chains of futures, and the last one is closer to
real-world workloads.

Word Counter example. The Encore compiler is shipped with tests, including a
word counter, from which we adapted this example. This test dispatches asynchronous

11All the code for those benchmarks is available at: https://gitlab.inria.fr/datafut/fut-on-flow.

https://gitlab.inria.fr/datafut/fut-on-flow
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Table 3.3: Running time of WordCounter (100 runs). The OneWay line corresponds to
the version where futures are optimized out by the compiler.

Future used Average running time (ms) Std deviation

OneWay 103.4 ms 4.6 ms 4.4%
fun 119.3 ms 2.4 ms 2.0%
Flow 184.6 ms 6.7 ms 3.6%
Fut 185.5 ms 6.5 ms 3.5%
Fut on Flow 190.4 ms 7.6 ms 4.0%

Table 3.4: Running time of the Ackermann benchmark (arguments: 3, 4 – 100 iterations)

Future used Average running time Std deviation

Fut with forward 27.86 ms 1.2 ms 4.3%
Fut on Flow with forward 28.10 ms 1.0 ms 3.5%
Flow with forward* 31.49 ms 0.7 ms 2.2%
Flow 39.13 ms 1.0 ms 2.4%
Fut 44.63 ms 0.7 ms 1.7%
Fut on Flow 46.71 ms 0.8 ms 1.6%

hash table insertions to 32 actors. We re-implemented the standard library module
Big.HashTable.Supervisorh with Flow, with Fut on flow and with sequential exe-
cution (referred to as fun). We do not use any form of forward, because there is no
chain of futures. In the original version of the test shipped with the Encore compiler,
the program was written in such a way that the result of the asynchronous calls was
never needed. When the compiler identifies this, it removes the creation of the future
resulting from the asynchronous call, and the callee does not resolve any future, which
improves performance compared to keeping and resolving a useless future. In order
for our comparison to be relevant, we rewrote the test in such a way that the futures
resulting from the asynchronous calls are actually used. The results are displayed on the
Fut line of Table 3.3. Additionally, in the interest of comparison, we also ran the original
test that does not create futures in order to compare performance. The results for this
version are displayed on the OneWay line.

Recursive calls on a single actor: Ackermann. We implemented the Acker-
mann function with recursive calls on a single actor. This program performs successive
asynchronous invocations on the same entity (no parallelism, long delegation chains). In
this benchmark, the chains of futures are of various lengths, because each call makes two
recursive calls, one which is forwarded and one for which it waits. Because we only have
one actor, this wait cannot be a synchronization, otherwise it would block the execution.
We use here a cooperative yield (await) on the future before calling get. This problem
does not arise with forward. Results are presented in Table 3.4.

Recursive calls on many actors without actor creation: recursive list
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Table 3.5: Average running time of the recursive list summation (10000 actors, 100 iterations)

Future used Average running time Std deviation

Fut with forward 16.03 ms 1.0 ms 6.4%
Flow with forward* 16.14 ms 0.9 ms 5.8%
Fut on Flow with forward 16.30 ms 1.0 ms 6.3%
Flow 26.02 ms 1.3 ms 5.1%
Fut 46.87 ms 3.9 ms 8.4%
Fut on Flow 47.64 ms 3.8 ms 8.0%

Table 3.6: Running time of 10 k-means steps (100 clusters, 10000 observations, 100
iterations)

Future used Average running time Std deviation

Flow 468.8 ms 114.7 ms 24.5%
Fut on Flow 494.9 ms 125.8 ms 25.4%
Fut 500.7 ms 66.8 ms 13.3%

summation. We compute the sum of the numbers from 1 to n by creating a linked list
of actors, each of them holding one of these numbers, and then traversing the list with
successive asynchronous recursive invocations (one actor calls the sum function on the
next actor and so forth). The measured time does not take into account list creation.
There is here one long chain of futures of length n. When forward is used, as one future
is delegated along the chain of futures, this sum is done in constant space. Results are
presented in Table 3.5.

K-Means This benchmark runs a fixed number of iterations of the k-means clustering
algorithm. Every compute intensive step is delegated to a large number of actors, then
synchronized. This does not use forward since there are no chained futures. However,
the benchmark is interesting because it allows us to compare the performance of Encore’s
native control-flow explicit futures and our re-implementation of it on top of data-flow
explicit ones, on a realistic workload. Results are presented in Table 3.6.

3.3.5.2 Results and Discussion

The performance of each of the four benchmarks are shown in tables 3.3, 3.4, 3.5, and 3.6.
Additionally, Figure 3.8 presents these results as an histogram.

The Ackermann example has a lower standard deviation than the other benchmarks,
which might be caused by smaller future chains than the list summation example, or
the absence of parallelism, unlike the WordCounter example. More surprisingly, Fut on
Flow with forward seems faster than Flow with forward*, although Fut on Flow is
a layer over Flow and calls forward*. This might be explained by the additional box
objects that Fut on Flow introduces in the future chains, which might be beneficial to



CHAPTER 3. DATAFLOW EXPLICIT FUTURES 98

Figure 3.8: Results of the DeF and DeF+F benchmarks as histograms

the Encore scheduler or tied to optimization performed by the Encore or the C compiler.
The OneWay version of the WordCounter example is unsurprisingly far faster than

the others. It allows evaluating the overhead of the future synchronization over a plain
one-way message.

The Ackermann and recursive list summation examples show the performance benefit
of using forward or forward* over the plain Fut or Flow equivalent when there are
delegated computations.

On all examples, Fut and Fut on Flow perform similarly, showing that a library-
based implementation of Fut based on data-flow explicit futures reaches performance
similar to a dedicated implementation within the compiler. There is a small overhead
that can be explained by the additional “box” objects introduced by Fut on Flow.

Both Ackerman and the recursive list summation show the performance benefit of
using Flow over Fut, since less synchronization is needed (for Ackermann, using Flow
allowed us to directly return a Flow without the need for a costly await). This difference
disappears when using forward on both versions since no synchronization is needed
whatever the type of future.

The k-means benchmark models real-world workloads and has a larger standard
deviation than the others. However the observed performance still show that adding
data-flow explicit futures does not affect significantly the performance of futures.

In the Fut version of the benchmarks, forward explicitly changes the semantics to
relax synchronization. As shown in Section 3.2, in the Flow version, it becomes an
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optimization that does not change semantics. A clever compiler could have compiled the
Flow version to Flow with forward* with the same semantics, and these benchmarks
show that this is an interesting optimization. An implementation with DeF and implicit
optimization of return into forward� (for long chains) would ally both the performance
improvements of forward and the improved type handling of DeF.

3.4 Summary
This chapter presented our work on dataflow explicit futures, a safe and efficient synchro-
nization tool. Our work further refined the safety aspects of dataflow explicit futures
by providing a safer typing rule for the forward* operation. We also investigated more
optimization by providing a proof of equivalence between the return and forward*
operations on dataflow explicit futures, which opens the way for more optimization done
by compilers. Additionally, we provided the first complete implementation of dataflow
explicit futures in a production language, the Encore programming language.

In this chapter, we explored static, compilation driven, approaches to improve syn-
chronization’s efficiency and safety. In the next chapter, we explore library-driven
approaches.



Chapter 4

Flexible Synchronization in Data
Exchange – From Static to
Automated Configuration

Introduction In the previous chapter we focused on futures and on the way they
are synchronized. Our approach relies on static typing rules and a compilation-driven
approach. In this chapter we explore the exchange of arrays and/or streams of data
between tasks through the use of FIFOs and/or promises. In particular, we ask the
question: how to create safe and efficient synchronization tools to exchange arrays and/or
stream data?

Synchronization is a costly operation, as discussed in Chapter 2. Intuitively, too
many synchronization operations (fine-grained synchronization) will result in Cpu cores
spending extra time synchronizing; not enough synchronization (coarse-grained synchro-
nization) will result in Cpu cores spending extra time idle. Our intuition is as follows:
there exists an optimal, or at least “good”, granularity of synchronization. In this chapter,
we present two tools that allow programmers to specify / find a good granularity of
synchronization. The first, PromisePlus, is presented in Section 4.1: a promise that
abstracts the concept of array and allows programmers to synchronize on slices of a
configurable size of the array with an interface similar to promises and to arrays. The
second, FifoPlus, is presented in Section 4.2: a FIFO that performs synchronization on
a number of items rather than on a single one, and that embeds an online performance
analysis algorithm that is able to perform an automatic configuration of the amount of
items on which synchronization should be performed.

4.1 PromisePlus
We begin with a motivating example in Section 4.1.1 that illustrates the need for a
synchronization tool based on promises that works efficiently on arrays. Section 4.1.2
presents this tool, called PromisePlus, that abstracts both an array and a promise, and

100
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performs synchronization on slices of the array. Section 4.1.3 presents benchmarks results
that show the efficiency of PromisePlus.

4.1.1 Motivation

As shown in Chapter 2, HPC applications often perform heavy operations on huge
amounts of data stored in arrays, or matrices1. Many programming libraries based on
arrays can be found in the literature, for example algorithmic skeletons [27], or to perform
linear algebra operations like the BLAS library [71].

Data streaming allows multiple modules to work in parallel, with one module con-
suming data produced by another (or many others) modules. Data streaming comes with
an inherent synchronization mechanism that ensures that a module (or kernel) cannot
start working on data that has not been produced yet. However this synchronization is
a costly operation, therefore it needs to happen at the right moment in order to fully
exploit parallelism without wasting too much time.

A recurring observation across the tools presented in Chapter 2 is that programmers
tend to use a low-level framework/tool as a base building block to create a higher-level
API around this tool. The actor model can use MPI as its communication component
and abstract away most, if not all, of MPI. The active-objects model further refines the
actor model through its programming to interface discipline, and its usage of future
prevents the apparition of data races. As a general rule, the efficiency of an abstraction
is limited by the efficiency of its own building blocks. As a consequence, new building
blocks should be made as efficient as possible.

Programmers may also want an easy-to-use tool that does not come with an entire
framework: MPI is a great tool when it comes to communication, but the socket API
can sometimes be a more straightforward solution. We think the same holds true of
synchronization tools: they could be part of a framework to improve the efficiency of
synchronization, but they could also be used as-is in an application that needs efficient
synchronization.

To further motivate our approach, let us look at a toy program that composes a map
and a reduce operation. Listing 4.1 presents a sketch of what we would need in order
to implement a parallel version, here in C++. Note that splitting two map operations
between two different threads is not the most efficient in the general case, but in some
scenarios there is a need for different threads (e.g. different localisation or architecture,
internal state of the map and reduce operations, . . . ).

In this toy example, the map1 function multiplies its input by 2, and the array_sum
function sums the values in its input array. Both functions are called in parallel, and
run in two separate threads. Synchronizations are performed through an array of atomic
booleans that is shared by both threads, this avoids the cost of locking many different
mutexes, while also bringing safety.

In this example the synchronization is extremely fine grained: a synchronization is
performed for every value in the communication array. A coarse-grained variant of this

1For simplicity, unless noted otherwise, we will use “array“ to refer to both arrays and matrices
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Listing 4.1: Sketch of the parallel composition of two maps together
1 void map1(int arr [], int N, int out [], atomic <bool > out_ready []) {
2 for (int i = 0; i < N; ++i) {
3 out[i] = arr[i] * 2;
4 out_ready [i]. store (true , memory_order_release );
5 }
6 }
7
8 int array_sum (int arr [], int N, atomic <bool > in_ready []) {
9 int s = 0;

10 for (int i = 0; i < N; ++i) {
11 while (! in_ready [i]. load( memory_order_acquire ))
12 ;
13
14 s += arr[i];
15 }
16
17 return s;
18 }
19
20 int main () {
21 int N = 100;
22 int arr[N] = { ... };
23 atomic <bool > flags [N] = { false };
24 int tmp[N] = { 0 };
25 int res[N] = { 0 };
26
27 thread th1(map1 , arr , N, tmp , flags );
28 thread th2(array_sum , tmp , N, flags );
29
30 // ...
31
32 return 0;
33 }

solution would be to replace the array of booleans with a single boolean that indicates
to array_sum when the call to map1 has processed every value in its input array and
written all values in the output array. Our intuition is that, in general, none of these two
solutions yield good performance: the overhead of synchronization is too high in the first
version, and the second version is sequential. Instead, an intermediate solution, where
synchronization is performed on slices of the communication array, should yield better
performance than both naive solutions.

As discussed in Chapter 2, a synchronization tool should strive for simplicity, in
addition to efficiency and safety, in particular it should feature a well-designed API. If
we look at Listing 4.1, we recognize the communication pattern of promises: storing true
in out_ready[i] after storing a value in out[i] is equivalent to resolving a promise
with the value stored in out[i]. An array of promises would nicely abstract the array of
boolean and the communication array under a known tool. Our second alternative, where
we use a single boolean, would be equivalent to using a promise of array. Setting the
boolean to true after computing the entire output array would be equivalent to resolving
such a promise with said array. We believe promises are quite adapted to problems
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involving the communication of arrays between tasks: unlike futures they do not tie
their resolution to a specific instruction, which lets programmers write code extremely
similar to a version without promises; unlike FIFOs, multiple readers may access the
same promise at the same time as well as multiple times. Promises also have qualities of
their own, namely some safety: as we saw before, the get operation on a promise never
yields an undefined value, although unlike futures it may never yield a value at all, even
in a program without infinite loops.

We introduce PromisePlus, a synchronization tool that works as a trade-off between
an array of promises and a promise of array. It allows programmers to specify the
granularity of synchronization and to stream data between tasks. Unlike usual streaming
frameworks like OpenStream [52, 53], or the destructive streaming futures of ABS [59, 60],
a PromisePlus acts as a non-destructive stream, with support for out-of-order access of
its elements.

The core feature of PromisePlus is its configurable granularity of synchronization,
denoted S. When S � 1, PromisePlus behaves like an array of promises. Conversely, a
maximal granularity (S Ñ �8) makes PromisePlus behave like a promise of array.

In section 4.1.3 we show that specifying a fine-grained granularity of synchronization
yields the same performance as using an array of promises. Similarly, specifying a
coarse-grained granularity of synchronization yields the same performance as using a
promise of array. PromisePlus comes with two guarantees: 1) A request to an element of
the PromisePlus will unblock after at most S values have been produced and 2) Similarly
to “usual” promises, a request for an element will never produce an undefined value,
although it may never produce a value at all.

This motivates us to propose a new synchronization tool for streaming arrays between
tasks, PromisePlus, that meets the following criteria:

• It makes data dependencies explicit: the programmer explicitly writes which
data is shared between threads. PromisePlus embeds the data over which the
synchronization occurs, contrarily to most concurrency frameworks like MPI or
OpenMP where data dependencies are less explicit.

• It allows programmers to specify the granularity of the synchronization. This is
not original compared to MPI or streaming frameworks, merely a necessity;

• It is not tied to a specific problem or a specific setup, and so it is reusable.
PromisePlus can be used to synchronize processes that communicate through MPI,
or to synchronize threads handled by OpenMP, or as the underlying communication
channel between modules in a streaming framework, or even as-is in an application
that performs synchronization over the elements of an array;

• When the granularity is configured to the minimum (resp. maximum) value, it
behaves like an array of promises (resp. a promise of array), providing the same
guarantees and similar performance; moreover, every request for the i-th value of
an array unblocks after an amount of values equals to the granularity has been
produced;
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• Contrarily to classical streaming solutions it supports the existence of several
consumers for the same data, and the access to the produced data in any order.
This is similar to ABS non-destructive streaming futures [59];

• It provides a high-level API inspired by the promise API, and features low-level
optimizations to improve performance.

4.1.2 Flexible Synchronization for Arrays

Presentation To introduce the principles of PromisePlus, Figure 4.1 presents a sketch
of the tool at work. In the rest of this section, we will show the evolution of this Figure
as operations are performed on the PromisePlus.

A PromisePlus holds an array that is initially empty. This array is sliced into
contiguous chunks of a fixed width. In Figure 4.1 the elements of the array are represented
by the black squares, and chunks are as a group of connected cells. The numbers above
the cells are the index of each value. Each chunk has the same width (all chunks contain
the same amount of cells), which is referred to as the step. In this example, the step
is 2. Red bordered chunks are incomplete chunks, they hold at least one cell without a
value: performing a get on them will block. Green bordered chunks are complete chunks,
all their cells hold a value: performing a get on them will immediately return a value.
Cells in a green chunk are accessible, while cells in a red chunk are not accessible. In
particular, cell 6 was already assigned the value 13 by the producer, but this value was
purposely not yet made available to the consumer, it will only be available when enough
additional values will be produced.

In order to retrieve the value at the i-th cell of the array (0-based array), the
programmer can use the get operation. Unlike with the usual promises, the programmer
must give a parameter to get: the index of the cell. The behavior of get is as follows:
consider the chunk where the requested value is stored, if all the cells inside this chunk
hold a value, then get returns the value at the requested position. Otherwise, get waits
until all the cells in the chunk hold the value before returning the value at the requested
position. For instance, in Figure 4.1 a call to get(1) would immediately return the value
78. A call to get(6) would not return the value 13 because the chunk in which the value
is stored still has some empty cells. In particular, a call to get on an index with no
associated value will wait.

In order to store a value at a given index, the programmer use the set operation.
Unlike with the usual promises, the programmer must give an extra parameter to set:
the index at which the value must be written. Performing a call to set(i, value) will

Figure 4.1: Idea of PromisePlus at work
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not necessarily unblock a call to get(i). After a call to set(7, 12), the PromisePlus
shown in Figure 4.1 will look like the PromisePlus shown in Figure 4.2. The previously
red chunk holding values at indices 6 and 7 is now green as all its cells hold a value. A
call to get(6) that would have previously blocked will now return the value 13.

Figure 4.2: PromisePlus from Figure 4.1 after set(7, 12)

This behavior for set is not sufficient as it could lead to calls to get that never
return a value. For instance, if a PromisePlus holds an array of size 9, and uses a step
of 2 (chunks are composed of two cells), then the cell at the 8-th position will always
be in an incomplete chunk (the chunk will only hold one cell rather than two). For
optimization reasons detailed below, rather than having get check whether or not a chunk
is incomplete, we provide a set_immediate primitive. Just like set, set_immediate
writes a value at a given position in the array. Unlike set, it unblocks all the calls
to get that are waiting on a lower index, regardless of whether the associated chunks
are full. Furthermore, set_immediate changes the boundaries of all future chunks:
regardless of the original slicing, following a set_immediate(i, x) the next chunk
begins at index i + 1. Without this, a set_immediate would create a chunk that is
smaller than the configured step. Figure 4.3 illustrates this difference in behavior between
set and set_immediate. It shows the result of calling set(8, 14) (left arrow) and
set_immediate(8, 14) (right arrow) on the PromisePlus of Figure 4.2. The call to set
would result in an incomplete chunk, so calls to get(8) would never unblock. The call
to set_immediate solves this problem by creating a smaller, but complete, chunk.

Synchronization mechanism PromisePlus revolves around two integer values: the
step, which we denote S, and a value called last, which we denote L. As indicated in the
presentation of PromisePlus, the step refers to the width of the chunks, in other words
the granularity of the synchronization. last represents the highest index in the array that
can be passed as parameter to get and not induce a wait. For instance, in Figure 4.1,
S � 2 and L � 5. In Figure 4.2, S � 2 and L � 7.
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Figure 4.3: Comparison of the effects of set and set_immediate on a PromisePlus

S is configured by the programmer once, when the PromisePlus is created. It cannot
change as the program runs. This is a limitation by choice, and in Section 4.2 we
will investigate an analytical method that can be used to reconfigure the granularity of
synchronization of a synchronization tool inspired by PromisePlus. The value of L is purely
internal, the programmer cannot read it, nor change its value directly. It is initialized to
�12 when the PromisePlus is created, denoting an empty array. Modifications of the
value of L occur through the set and set_immediate methods. During a call to set(I,
value), if I � L ¥ S, then L Ð I. During a call to set_immediate(I, value), L Ð I
unconditionally.

API We present the PromisePlus API in a more formal way here. T denotes the type
of the elements stored in the array.

The API exposes four functions: a constructor, get, set, and set_immediate.
The constructor, with signature int Ñ int Ñ PromisePlus is used to create a

PromisePlus with a given size (denoted N) and a given granularity of synchronization,
its step (as usual, denoted S).

The get function, with signature int Ñ T gets the value at a given index. If the
value of L is less than the requested index, the call to get blocks until the value of L is
greater or equal to the requested index, at which point get returns the value associated
with the requested index. Otherwise, if the value of L is already greater or equal to the
requested index, the call immediately returns the value associated with this index.

The set function, with signature int Ñ T Ñ void writes a value at a given index.
If the difference between the specified index and L is greater or equal to S, then L is
updated to the specified index, and pending calls to get may now return if the value of
L allows them to.

The set_immediate function, with signature int Ñ T Ñ void writes a value at a
given index and forcibly resolves synchronizations on every lower index. The value of L
is updated to the specified index regardless of the distance between the specified index

2As we will see in the API paragraph, L can be initialized to other values than �1.
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and L. This function is useful when it comes to writing the very last value in the array,
as it may be located in an incomplete chunk. It can also be used to shift synchronization
windows if the programmer desires so.

Generalization It is possible to use other types than int to index the array. Let
Index denote the type used to index the array. In order for such a type to be used as
an index, the programmer must offer two operations called null and successor. null
must return a value of type Index that denotes the element before the first element of
the array. successor, given an Index, must return another Index that represents the
index of the next element in the array. There must be a total order on the values of
the Index type. Naturally, the signatures of get, set and set_immediate need to be
updated accordingly to use an Index as parameter rather than an int.

When using integers to index the array, the null operation returns �1, and the
successor(x) operation returns x� 1.

Constraints Calls to set and set_immediate must take consecutive indices as param-
eter. Given I the index of a call to either set or set_immediate, the next call to set or
set_immediate is correct if and only if its index I 1 � successor pIq. As a consequence
PromisePlus works at its best in a single producer environment. If multiple producers
were to share a PromisePlus, they would need to come up with an extra synchronization
tool that would properly order the calls to set and set_immediate. Naturally, these
extra synchronizations may reduce performance.

Behaviour Algorithms for get, set and set_immediate are provided in Algorithm 1,
Algorithm 2, and Algorithm 3 respectively. All these algorithms refer to a value W ,
called the local index, which we will present in the Optimization paragraph.

Algorithm 1 Algorithm for get
1: function get(index) � Get value associated with index
2: while index ¡ W do � The local index avoids a cost-heavy read of L if it is

greater than the requested index
3: W Ð L
4: end while
5: return value associated with index
6: end function
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Algorithm 2 Algorithm for set
1: procedure set(index, value) � Associate value with index. If enough calls have

been made, unblock calls to get with a lower index
Require: index is the next integer compared to the last call to set

2: Associate value with index
3: if (index - local_last) ¥ step then � Reading from a local copy of last in the

producer thread avoids cost-heavy accesses to L
4: local_last Ð index
5: L Ð index � Unblock get(i), i ¤ index
6: end if
7: end procedure

Algorithm 3 Algorithm for set_immediate
1: procedure set_immediate(index, value) � Associate value with index.

Unconditionally unblock all calls to get with a lower index
Require: index is the next integer compared to the last call to set

2: Associate value with index
3: L Ð index � Unblock get(i), i ¤ index
4: local_last Ð index
5: end procedure

Optimizations Since PromisePlus behaves as a promise, synchronization is inevitable
between read operations (get) and write operations (set, set_immediate). All these
operations manipulate the L variable, therefore its access must be protected to avoid
data races. A naive approach would be to use a mutex and a condition variable, however
as discussed extensively in Section 2.1.2 higher performance can be achieved by using
atomics, which sacrifices the energy efficiency of the passive wait on a condition variable
with a busy wait on an atomic. Due to the compute intensive nature of HPC kernels,
and the fact that these kernels usually run alone on a machine, busy waiting is, in our
opinion, preferable, as it improves the reactivity of the application. Therefore, we chose
to make L an atomic variable, with an acquire-release ordering. We were inspired by the
design of WeakRB in [72] that uses atomics in a similar way to implement a safe and
efficient SPSC FIFO.

Additionally, in order to alleviate the amount of access performed on this atomic
variable, each consumer thread manipulating the PromisePlus is given a thread-local
weak index W . W is a pessimistic view on L: it can be lower or equal to the actual
value of L, but it can never be higher than L. It represents the highest index this thread
knows will not cause get to block. W is read during calls to get(I): if I ¤ W , then the
thread will not read the value of L. If I ¡ W , then a synchronization is performed to
read the value of L, and subsequently update W , until the get can be unblocked.
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Figure 4.4: Effect of the different indices on the whether get will wait or not

Examples Figure 4.4 illustrates how the weak index W and the last index L work on
a PromisePlus. This figure present a view a consumer has of a PromisePlus, with a step
of 2. The value of L, common to all threads, is 3. For this consumer, its local W is 1.
Green cells can be accessed without waiting and without accessing L. Orange cells can
be accessed without waiting, but require an access to L. Red cells cannot be accessed
without waiting.

Figure 4.5 illustrates the evolution of the weak index as parallel calls to set are done
while get is waiting. The figure is divided into three areas: the top one represents the
actions of the producer, the bottom one the actions of the consumer, the middle one the
two values L and W as time moves forward. The PromisePlus is configured with a step
of 2.

P denotes the actions of the producer, C the actions of the consumer, W is the weak
(local) index of the consumer, and L the value of last, shared by the producer and the
consumer. Blue colored calls to set are calls that update the value of L. Orange colored
calls to get are calls that update the value of W .

There are three kinds of arrows on this figure:
• Arrows labeled “A” indicate that a set modifies the value of L;
• Arrows labeled “B” indicate that a set changed the value of L and the new value

of L has been used to resolve a synchronization and update W ;
• Arrows labeled “C” indicate that a get changed the value of W .

Intuitively, a “B” arrow is always paired with a “C” arrow.

We can observe the following on the figure:
• The call to get(0) waits until the call to set(1, 21) completes, even though there

has been a call to set(0, 12). This is normal: the step is 2, therefore indices 0
and 1 become available to get only once they are both filled.

• The call to set(0, 12) does not change the value of L, but the call to set(1, 21)
does. Similar observations can be made for other calls to set: the second in a
row updates L. This is, again, a consequence of the step. L indicates the highest
available index, and by definition of the step, it updates every S calls to set.

• The call to get(1) is shorter than the calls to get(0) and get(4). This is because
W is already set to 1, therefore no synchronization is needed.

• The call to get(1) does not update the value of W . This is because the requested
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Figure 4.5: Evolution of W and L on a PromisePlus

index was not greater than W , therefore no synchronization was performed, and
W is only updated when a synchronization occurs.

• Conversely, the calls to get(0) and get(4) update the value of W as they request
an index greater than W , and therefore synchronize.

Guarantees There are two main guarantees with PromisePlus. The first is that a call
to get will never produce an undefined value. This guarantee mirrors the behavior of
traditional promises: a call to get on a traditional promise never produces an undefined
value. The second guarantee is that a call to get(I) will be unblocked by a call to set(J,
V) or by a call to set_immediate(J, V) with J P rI; I � Sr.

Rationale of the index in set The necessity to explicitly pass an index parameter to
set and set_immediate can be seen as an argument against the simplicity we strive to
achieve. It requires the programmer to keep track of which index was last given to make
sure the program remains in a valid state. It would have been possible to write both
sets functions without specifying the index and simply writing in the next available cell
of the array inside the PromisePlus, but that is not what we wanted to do. PromisePlus
abstracts both a promise and an array, and the API reflects this. promise.get(I) is
similar to array[I], promise.set(I, V) is similar to array[I] = V. In fact, languages
with sophisticated type systems could implement get and set as operators that work
on arrays (like the [] operator of C) to have an API that completely hides away the
“promise” aspect of the tool.

4.1.3 Benchmarks

In this section we evaluate the performance of PromisePlus when it comes to synchronizing
two composed compute kernels. We challenge the efficiency of our implementation when
compared to an array of promises and a promise of array. First, a PromisePlus with a
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step of 1 should perform similarly to an array of promises, and a PromisePlus with a
maximal step should perform similarly to a promise of array. Second, there should be an
optimal granularity of synchronization at which PromisePlus yields better performance
than both an array of promises and a promise of array.

Chosen problem Our problem is inspired by the LU program in the NAS Parallel
Benchmarks (NPB) [73]. “Inspired” in that we did not port the Fortran version in the
NPB to a C++ version, but instead reproduced the data dependencies of the algorithm
to create our benchmark program. Our program operates on a 4D matrix: it iterates over
every element of this matrix, excluding boundary values. This program is parallelized at
a single level using OpenMP.

The 4D input matrix is split into multiple 3D matrices. Each of these 3D matrices is
given to a thread that performs some Cpu heavy computation on it. Due to the nature
of the computation, a data dependency will arise between threads, which will require a
synchronization. Figure 4.6 presents the data dependencies in question, as well as how
computations are distributed between threads.

Here, the 4D matrix is split in multiple 3D matrices, distributed between a number
of worker threads, represented side by side. Bidirectional arrows at the bottom indicate
which thread works on which part of the matrix. To keep the figure readable, these
arrows are only represented on the X axis. Thread 1 will compute all the values
that have their X coordinate as 1, Thread 2 will compute all values that have their X
coordinate as either 2 or 3, Thread 3 will compute all values that have their X coordinate
as either 4 or 5 etc.

The color of a point indicates which thread computes the value and is the same as
the color of “Thread X” at the bottom of the figure. For instance, point (1, 1, 1) is
computed by Thread 1, point (2, 1, 1) is computed by thread 2. Black points represent
values that are not written, only read.

Unidirectional arrows represent data dependencies. An arrow going from a point
A to a point B represents the idea that the computation of B involves the value of A
(the value of B depends on the value of A). Green arrows are dependencies on values
computed by the same thread. Red arrows are dependencies on values computed by a
different thread. For instance, on Figure 4.6, there is a red arrow between a point labeled
A and a point labeled B. A is a point computed by Thread 1, B is a point computed by
Thread 2, therefore Thread 2 cannot compute B until Thread 1 has computed A.

In practice, given a non-boundary point at coordinates pX, Y, Zq, its computation
will involve the value of pX � 1, Y, Zq, pX, Y � 1, Zq and pX, Y, Z � 1q.

Synchronization in NAS-LU In NAS-LU, the synchronization is performed using
an array of atomic booleans, all initialized to false. Thread N sets the N � th atomic
boolean to true once it had complete its work on its entire chunk of the matrix. Thread
N � 1 can not start working on its chunk of the matrix until the boolean of thread N is
set to true. Thread 1 does not perform any synchronization to start its work.

Listing 4.2 presents the skeleton of the code as it was adapted in our program. compute
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Figure 4.6: Representation of the data dependencies in NAS-LU (matrix chunk)

is the function performing the computation, it takes the work matrix, its dimensions,
and the array of atomic booleans for synchronization, as parameters. The booleans are
initialized to false3. sync_left and sync_right perform the synchronization. sync_left,
for any thread that is not the first thread, waits until the boolean of the “previous” thread
becomes true and then unblocks. sync_right simply sets the boolean of a given thread
to true, which unblocks the “next” thread. fn is the function used to compute the value
of a point at position pi, j, k, lq in the matrix. This computation involves the values of
the points at positions pi, j � 1, k, lq, pi, j, k � 1, lq and pi, j, k, l � 1q.

compute uses a traditional OpenMP work sharing pattern. For a primer on OpenMP,
refer to Section 2.2.3. The splitting of the second loop (over j) corresponds to the split
into multiple 3D matrices described before. This can be seen as each thread working on a
slice of a 3D matrix extracted from the 4D matrix. Synchronization is performed around
the loop over the second dimension of the 4D matrix, corresponding to the first dimension
of an extracted 3D matrix, which corresponds to what is shown on Figure 4.6. Intuitively,
since the second loop is split between multiple threads of execution, the execution of fn
must be delayed until a value is available at index j � 1 during the first iteration of any
thread (except the first one). This synchronization is rather coarse-grained: because the
dependency arises on the use of the second iteration variable, thread N must wait until
thread N � 1 has completed all its iterations on the same 3D matrix before starting.

Our synchronization We rewrote compute in the following way: synchronization is
now done using our PromisePlus. Listing 4.3 gives an overview of the code.

3Memory ordering is relaxed as the parallel region has not been entered yet, therefore there is no need
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Listing 4.2: Skeleton of the code of NAS-LU adapted in PromisePlus microbenchmark
1 void sync_left(atomic <bool > sync[N]);
2 void sync_right(atomic <bool > sync[N]);
3 void fn(int matrix [][][][] , int i, int j, int k, int l);
4
5 void compute(int matrix[W][X][Y][Z], int W, int X, int Y, int Z,

ãÑ atomic <bool > sync[N]) {
6 for (int i = 0; i < N; ++i)
7 sync[i]. store(false , std:: memory_order_relaxed);
8
9 #pragma omp parallel

10 for (int i = 0; i < W; ++i) {
11 sync_left(sync);
12 #pragma omp for schedule(static) nowait
13 for (int j = 1; j < X - 1; ++j) {
14 for (int k = 1; k < Y - 1; ++k) {
15 for (int l = 1; l < Z - 1; ++l) {
16 fn(matrix , i, j, k, l);
17 }
18 }
19 }
20 sync_right(sync);
21 }
22 }
23
24 void sync_left(atomic <bool > sync[N]) {
25 int num = omp_get_thread_num ();
26 if (num > 0) {
27 while (!sync[num - 1]. load(std:: memory_order_acquire))
28 ;
29 }
30 }
31
32 void sync_right(atomic <bool > sync[N]) {
33 int num = omp_get_thread_num ();
34 sync[num]. store(true , std:: memory_order_release);
35 }

Besides the use of PromisePlus, there are two structural changes: the OpenMP
for directive has been moved to the third loop, and the order of the second and third
loop has been flipped. This change comes from the fact that since the original version
synchronized around the second loop, the only way to refine the synchronization would
be to synchronize around the third or fourth loop. However, since the synchronization
comes from the positioning of the for directive, it was necessary to move it as well. We

for a strong ordering constraint. Other threads do not even exist yet.
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Listing 4.3: PromisePlus microbenchmark
1 void compute (int matrix [W][X][Y][Z], int W, int X, int Y, int Z, PromisePlus <void >

ãÑ promises [N], int N) {
2 # pragma omp parallel
3 int num = omp_get_thread_num ();
4 for (int i = 0; i < W; ++i) {
5 for (int k = 1; k < Y - 1; ++k) {
6 if (num != 0) {
7 promises [num ]. get(k);
8 }
9

10 # pragma omp for
11 for (int j = 1; j < X - 1; ++j) {
12 for (int l = 1; l < Z - 1; ++l) {
13 fn(matrix , i, j, k, l);
14 }
15 }
16
17 if (num != omp_get_total_threads () - 1) {
18 promises [num + 1]. set(k);
19 }
20 }
21
22 if (num != omp_get_total_threads () - 1) {
23 promises [num + 1]. set_immediate (Y - 1);
24 }
25 }
26 }

chose to move the synchronization around the third loop. The exchange of the second
and third loops comes from a desire to have the same amount of synchronization between
the PromisePlus version and the NAS-LU version when the PromisePlus is configured
with the maximum step.

If the step is 1, the synchronization will occur every time the second loop completes
an iteration. If the step is X � 2, the maximum possible, the synchronization will occur
once the second loop has completed all its iterations, similarly to the original version.

Protocol As our objective is to study the influence of the amount of synchronization,
we proceeded this way:

• We define three “shapes”, i.e. three sets of dimensions, for our work matrix. We
choose the shapes so that the amount of computation would be similar across the
different shapes (variation of less than 1%), but the amount of calls to set would
vary (up to 60% more calls to set). Table 4.1 presents the different shapes as
well as the variations in ratios between each of them. The choice of the second
dimension is the most important part, as it will dictate how much calls to set
occur. In a matrix of shape W �X � Y � Z, X is the size of the array stored inside
the PromisePlus, and the maximum index that can be passed to both get and set.
As we need to see the influence of the step, we chose values of X that are not too
high, as it makes extensive benchmarking easier.
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Table 4.1: Number of synchronizations and computations per synchronization in the
PromisePlus microbenchmark depending on the shape of the input matrix

Configuration Shape (X � Y ) Synchronizations Computations per synchronization

A 161 * 62501 62500 16261
B 126 * 80001 80000 12726
C 101 * 100001 100000 10201

• Next we run our benchmark program. For each matrix shape we generate a random
matrix, and compute the result of executing our computation function without
parallelism. Next, for every possible value of the step, we run the parallel compute
function a hundred times and measure the average execution time. The input
matrix is regenerated between every call to make sure Cpu caches are cold when
the parallel run begins.

• Finally, we wrote three additional versions of compute.
– The first one uses an array of C++ Standard Library promises for synchro-

nization. This will allow us to compare the performance of a PromisePlus
with a step 1 with the promises that are most straightforwardly available to
a C++ programmer. C++ promises use a passive wait, unlike PromisePlus.
In order to make the comparison fairer, we also compare PromisePlus with
home-made promises that use busy wait.

– The second one performs synchronization on an array of home-made promises.
These home-made promises use a busy wait to make the comparison with
PromisePlus more meaningful. This will allow us to compare the performance
of a PromisePlus with a step of 1 with an array of promises.

– The third one performs synchronization on a home-made promise of array,
that uses busy-wait. This will allow us to compare the performance of a
PromisePlus with the maximum possible step for the problem at hand.

Benchmarking environement These tests were performed on a machine equipped
with four Intel(R) Xeon(R) Cpu E5-4620 0 @ 2.20GHz, with 96 threads without hyper-
threading. Applications were built using GCC 8.3, C++17, and the �O2 flag in Release
mode.

Results and analysis Figure 4.7 presents, for each matrix shape, the average time for
running the computation function 100 times. The legend indicates which synchronization
tool was used. “P[Arr]” is a home-made promise of array, “Arr[P]” is an array of home-
made promises, “Arr[SP]” is an array of C++ Standard Library promises, “P+1” is
a PromisePlus with a step of 1, “P+max” is a PromisePlus with the highest possible
step, and “P+opt” is a PromisePlus with the best step we were able to find. Figure 4.8
presents, for each matrix shape, the average time for running the computation function
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100 times when synchronizing with a PromisePlus with different steps (minimal step
being 1 for all shapes, maximal step being the third dimension of each shape; using
a higher step would give the same result as the maximal step: set would trigger no
synchronization and all data would become available with the call to set_immediate).

We can observe that promises from the C++ Standard Library gives the worst
performance: the higher the amount of synchronization, the more their performance gets
degraded compared to any other implementation. This comes from the fact that while
C++ STL promises are written to work efficiently in many different situations, some of
their functionalities could be discarded to achieve better performance in some contexts.

When comparing PromisePlus with a step of 1 with an array of promises, and when
comparing PromisePlus with the highest possible step with a promise of array, we see
that they yield similar performance. The PromisePlus version performs slightly worse
(5%) than the non PromisePlus version; we assume this is due to the additional checks
performed inside get and set, compared to the straightforward implementation in
home-made promises. This validates that PromisePlus performs similarly to an array of
promises / a promise of array when configured with the extreme steps.

In all three cases, we can observe that there is a step that allows PromisePlus to
perform better than any other synchronization pattern. This is more observable on
Figure 4.8 where the performance curve has an inverted bell shape, with a minimum.
This validates our theory that a synchronization with an intermediate granularity can
yield better performance. The performance gain when compared to the second best
option, array of home-made promises, can go up to 12.63 %, observed on the second
shape, 101 � 126 � 80001 � 2pBq, with a step of 82.

Figure 4.7: Execution time for each pattern on different matrix shapes
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Figure 4.8: Execution time for different matrix shapes and different steps

4.1.4 Summary

In this section we presented PromisePlus, an abstraction over promises that allows
parallel computations to synchronize on slices of arrays with a granularity chosen by the
programmer. This allows them to express different synchronization patterns with a single
tool. Moreover, PromisePlus is not tied to a specific framework, and as such can be
used in multiple contexts. PromisePlus also features performance improvements without
requiring programmers to extensively refactor their code. Finally, PromisePlus offers the
same guarantee as classic promises: a call to get never produces an undefined value.

However, PromisePlus could benefit from some form of automation as programmers
must select the synchronization step, and their choice may not always be optimal. We
now propose FifoPlus, an abstraction over FIFO queues that reuses PromisePlus idea of
a configurable granularity of synchronization, and combines it with an online performance
analysis algorithm that leads to an automatic selection of the granularity.

4.2 FifoPlus – Automatic Deduction of the Granularity of
Synchronization

In the previous section, we showed that the granularity of synchronization can have an
impact on the performance of a parallel computation on an array. However, PromisePlus
suffers from a major drawback: the granularity of synchronization is configured once, at
the time of creation, and never changed after. As we have seen, the average performance
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as the step grows evolves according to a bell shape: there is a window of steps that will
yield optimal performance. Expecting the programmer to find this window themselves
is not acceptable: it would require careful profiling of the application, or multiple runs
with different steps to find out which step gives better performance. Indeed, not all
applications will need the same step to reach peak performance and some applications
are not run multiple times, either because the work they do does not need to be repeated,
or because they work on an infinite input stream. This brings the need for an automated
way of finding the step.

As we have seen in Chapter 2, the problem of finding the best configuration to
efficiently solve a problem is nothing new. SkePU [26] uses an offline machine-learning
algorithm [31] to configure its skeletons and get the best performance. The StarPU runtime
[9] records scheduling decisions on different tasks in order to better schedule them the
next time. Both these approaches have some drawbacks. Machine learning is notoriously
opaque and yields results that cannot be explained and we believe programmers often
need to understand scheduling and optimization decisions, e.g. to fine-tune the model to
better suit their needs. StarPU’s approach is a good source of inspiration, as it records
the result of a choice and then selects the choice that gave the best result. This approach
is easy to understand, and is adaptated to tasks that run multiple times in a single
execution of a program, tasks that are part of frequently ran programs or a combination
of both. It is however not as well adapted to tasks that run a single time inside a program
that runs once.

In this section, we present two things. First, FifoPlus, a communication buffer
used to exchange data between multiple threads with a configurable granularity of
synchronization. Second, a theoretical model for pipelined applications that can be
fed information gathered from an ongoing execution of such an application in order
to configure the granularity of synchronization of the FifoPlus involved in the data
exchanges in this pipeline.

Section 4.2.1 presents a case study of an algorithm that served as the driving motivation
behind the creation of FifoPlus. Section 4.2.2 presents a high-level overview of FifoPlus.
Section 4.2.3 presents our analytical performance model. Section 4.2.4 completes the
high-level overview of FifoPlus by showing how the analytical performance model is
integrated within FifoPlus, and how FifoPlus feeds measured data into the model.
Section 4.2.5 presents benchmarks that evaluate the performance of FifoPlus on a
microbenchmark and on the algorithm of our case study. Finally, Section 4.2.6 concludes.

4.2.1 Case Study – The PARSEC-Dedup Algorithm

In this section we present the dedup algorithm, a compression algorithm in the PARSEC
Benchmark Suite [74]. We identified this algorithm as interesting because it heavily relies
on communication between multiple threads, and initial investigation using a profiler
showed promising possibilities for optimization.

The dedup algorithm is made of a pipeline of five different stages:

1. The Fragment stage, which takes the input to compress and fragments into
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coarse-grained chunks; a chunk is basically a part of the file.

2. The Refine stage, which takes a coarse-grained chunk produced by Fragment and
refines it into smaller, fine-grained chunks. Each of these chunks is identified by a
pair of numbers.

3. The Deduplicate stage, which takes a fine-grained chunk produced by Refine
and hashes it to see if a chunk with an identical hash has already been encountered.
Effectively, this stage checks for duplicates. Depending on whether the received
chunk is a duplicate or not, it may be sent to one of two stages:

(a) If the chunk is a duplicate, it gets sent to the fifth stage, Reorder;
(b) If the chunk is not a duplicate, it gets sent to the fourth state, Compress.

4. The Compress stage, which takes a fine-grained chunk produced by Refine, that
has not already been encountered before, and compresses it using a configurable
compression algorithm. Once compressed, the resulting chunk is sent to the fifth
and final stage, Reorder.

5. The Reorder stage has two inputs: duplicated non-compressed fine-grained chunks
from Deduplicate, and compressed chunks from Compress. The purpose of this
stage is to store chunks until they can be ordered properly. The ordering of chunks
is based on their identification numbers computed in the Fragment and Refine
stage. Indeed, all the chunks corresponding to the first coarse-grain chunk must be
written to the disk before the second coarse-grained chunk can be written.

As the PARSEC Benchmark Suite aims to test the performance of parallel architec-
tures, the algorithm is parallelized as follows:

• Stages Refine, Deduplicate and Compress are replicated a number of times;

• The Fragment stage is not replicated, it distributes work to the Refines in a
round-robin fashion;

• The Reorder stage is not replicated either, and pulls from the different Compress
and Deduplicates in a round-robin fashion.

In both the sequential and the parallel version, the communication between the
different stages is done through FIFOs. Figure 4.9 gives a view of the entire pipeline in
the parallel version. Stages Refine and Deduplicate are replicated two times, stage
Compress is replicated four times per Deduplicate stage. A rectangle represents a FIFO.
A circle represents a thread of execution. Its text indicates which stage of the pipeline is
executed by the thread. Arrows ending on a FIFO represent a push from the thread to
the FIFO; arrows starting from a FIFO represent a pull initiated by the thread at the
end of the arrow. Rhombuses represent the beginning and end of the pipeline.
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Figure 4.9: Representation of the parallel version of the dedup algorithm

4.2.2 A First Glance at FifoPlus

In this section we give a quick overview of FifoPlus. The purpose of this section is to
give enough context so the reader may understand the next section, where we present
our theoretical model.

FifoPlus is an abstraction over a Multiple Producers Multiple Consumers (MPMC)
queue. It has two key features. The first is similar to PromisePlus: synchronization with
a configurable granularity. A request for an element in the FIFO may not be answered
immediately even if an element is present in the FIFO. Rather, the FIFO will wait until
a given amount of elements is present in the FIFO before answering. The second is the
possibility to reconfigure the granularity of synchronization during the execution, rather
than having it set once when the FIFO is created. This reconfiguration is coupled with a
theoretical model of performance that gives a good approximation of a good granularity
of synchronization.

PromisePlus was designed to work in a Single-Producer Multiple-Consumer environ-
ment, hence its reliance on busy waiting for reactivity. FifoPlus works in a Multiple-
Producer Multiple-Consumer environment, therefore it cannot realistically rely on busy
waiting. We chose to use a mutex to ensure safety, at the cost of passive waiting. We
considered wait-free and lock-free approaches, however at the time designing efficient
lock-free or wait-free MPMC queues was notoriously hard[75]. An example of wait-free
MPMC queue comes from FastFlow [55], although their queues require an additional
arbiter thread. This thread is used to send data to queues, even if they are not asking for
it. In our approach, we remove both the arbiter thread and unrequested data transfer:
clients get data upon request. Although we use a mutex, we alleviated contention as
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Figure 4.10: Local and shared buffers with FifoPlus

much as possible.
In practice, programmers do not interact directly with an instance of a FifoPlus to

store or retrieve elements. Rather, they work on views. A view is a local buffer that is tied
to a FifoPlus. This buffer has a size that is equal to the granularity of synchronization
specified on the FifoPlus. A push operation on a view copies data into this local buffer,
and only triggers a push into the associated FifoPlus if the view is full. In this case
the entire content of the view is pushed into the associated FifoPlus. Similarly, a pull
operation only triggers a pull from the associated FifoPlus, when the view is empty. In
this case items are pulled from the associated FifoPlus until either the view is full or
the FifoPlus is empty. These operations, push and pull on the FifoPlus, are the ones
that require mutual exclusion. Our choice here was to have critical sections that last
longer than the traditional “Lock the mutex, write a single value in the buffer, unlock
the mutex”, while reducing the amount of times a thread enters a critical section. The
transfer between the local buffer of a view and the shared buffer of the FifoPlus is done
using memcpy, which is generally implemented using vectorized operations that are more
efficient than element-by-element copies. Figure 4.10 illustrates the difference between
local and shared buffers on an example execution.

The scenario presented on Figure 4.10 is as follows: a single and a single consumer
work in parallel. Communication occurs through a FifoPlus. The producer and the
consumer each have a local buffer, and the shared buffer is used for data exchange. The
size of each local buffer is 4, so the granularity of synchronization is 4 for both producer
and consumer.

When the producer pushes the value 41 into the FifoPlus, it is added into the
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producer’s local buffer, as there is room in it. When 89 is pushed into the FifoPlus, it is
added into the producer’s local buffer as there is still room in it. This completely fills
the local buffer, so its content is transfered into the shared buffer.

Similarly, when the consumer pulls from the FifoPlus, it pulls from its local buffer
first as there is data available in it. The first pull yields 88, the second yields 12. The
second pull empties the consumer’s local buffer, so data is pulled from the shared buffer.

Unlike PromisePlus, the granularity of synchronization is not tied to the FifoPlus
itself. Rather, each view has its own granularity of synchronization, which allows
producers and consumers to select a granularity that is more adapted to each of them.

The lifecycle of a FifoPlus contains three stages: 1) A measurement phase, where
the views are configured with a step of 1, and measurements are performed 2) A
reconfiguration phase, in which the FifoPlus computes the theoretical optimal step and
reconfigures the views with the found steps and 3) The remainder of the execution, with
views reconfigured.

4.2.3 An Analytical Performance Model

In this section we present our analytical model for computing an approximation of the
time it would take for a producer-consumer scenario to run. We consider that we have Np

producers and Nc consumers. A total amount of I elements is produced and consumed.
Communication between the producers and the consumers is made through the use of a
FifoPlus.

Listing 4.4 presents a minimal working example illustrating the use of FifoPlus.
In the example we have Nc threads running the consume function in parallel, and Np

threads running the produce function in parallel.
The objective of our analytical model is to give us the theoretical optimal step that

would minimize the time taken to run programs that follow the skeleton above. To do so,
we find a function that takes the step as parameter and expresses the time taken to run
such a program when the FIFO is configured with this step. By minimizing this function,
using the roots of its derivative, we find the optimal step.

Assumptions and notations We make the following assumptions:

• All producers have the same step, denoted Sp, and all consumers have the same
step, denoted Sc. Producers and consumers may not have the same step.

• The total amount of data produced across all producers during a single synchro-
nization is equal to the amount of data consumed across all consumers during a
single synchronization.

Sp �Np � Sc �Nc (4.1)

• It takes the same time to push an element into a local buffer and to pull an element
from a local buffer, ignoring synchronization times. This time is denoted Ccopy.
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Listing 4.4: Skeleton of the use of FifoPlus in a producer-consumer context
1 void consume(FIFOPlus <Data >& fifo) {
2 for (int i = 0; i < work_limit (); ++i) {
3 optional <Data > data = fifo.pop();
4 // data will be null if there is no more data in the FIFO
5 // and all producers have notified they have nothing more
6 // to produce .
7 if (!data)
8 return;
9

10 // Process data
11 // ...
12 }
13 }
14
15 void produce(FIFOPlus <Data >& fifo) {
16 for (int i = 0; i < work_limit (); ++i) {
17 Data data;
18 // Produce the data
19 // ...
20 fifo.push(data);
21 }
22
23 fifo.producer_done ();
24 }

• Overall, we assume regularity. The time taken to produce an element is the same
for all elements. This assumption makes the model simpler to understand and
manipulate. Moreover, while perfectly regular computations are rare, computations
that feature slight, negligible variations are common. In fact, we suppose that the
granularity inferred when taking this assumption is a good approximation of the
optimal granularity.

Our notations are as follows:
• The amount of time required to produce an element is denoted Wp; it corresponds

to the time spent in line 16 in the example above.
• The amount of time required to consume an element is denoted Wc; it corresponds

to the time spent in line 8 in the example above.
• The time required to perform a synchronization, i.e. acquire the mutex and release

the mutex when performing a transfer from/to the shared buffer, is denoted Cs.
• The time required to transfer the content of a local buffer into the shared buffer

and vice-versa is denoted Cp
transfer for producers, and Cc

transfer for consumers. The
asymmetry arises from the fact producers may not have the same step as consumers,
which may cause them to spend more or less time transferring between buffers than
consumers.
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Figure 4.11: Producers as the limiting factor in a regular pipeline

Figure 4.12: Consumers as the limiting factor in a regular pipeline

• We assume that @x P rp, cs, Cx
transfer � 2 � Ccopy � Sx. This expresses the idea that

a transfer between a local buffer and the shared buffer requires two operations,
performed a number of times equal to the step. For instance, a consumer with a
step of 10 will pop 10 items from the shared buffer and push these 10 items into its
local buffer during a synchronization.

Formulas We now provide the formulas that give the total amount of time it would
take for Np producer threads and Nc consumer threads, configured with a step of Sp and
Sc respectively, to produce and consume I elements.

Figures 4.11 and 4.12 show two different scenarios.
In the first figure, the producers are globally slower than the consumers: it takes

more time for all the producers to produce n elements than for consumers to consume
them. The opposite can be observed on the second figure. Our analytical model yields
two different formulas corresponding to these two scenarios.

To determine what is the limiting factor, we compute two ratios: CP � Nc �Wp and
PC � Np �Wc. If CP ¡ PC then producers are the limiting factor (as in Figure 4.11).
Otherwise, consumers are the limiting factor (as in Figure 4.12). In both figures:

• Green rectangles represent the time when a producer is producing data, and storing
data in the local buffer.

• An Orange rectangle represents a synchronization. This includes the time required
to take the mutex, transfer content from the local buffer into the shared buffer /
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from the shared buffer into the local buffer, and release the mutex.
• A Red rectangle represents waiting time, when a thread attempts to acquire the

shared mutex, but another thread already holds it, or when a thread awaits some
data.

• Blue rectangles represent the time when a consumer is consuming data, and
retrieving data from the local buffer.

Case 1: Producers are the limiting factor The time taken in a producer-
consumer scenario in which producers are the limiting factor can be expressed as :

timep � WorkAndCopy + ProducerCriticalSection + OtherProducersLastSync +
LastConsumersSync + LastConsumerBatch.

We can explain each of these components by using Figure 4.11 as a reference:

1. WorkAndCopy corresponds to the green time of a single producer. Symbolically, it
takes Wp time to produce an element, and Ccopy time to add it to the local buffer.
Thus it takes I � pWp � Ccopyq time to produce all of them for a single producer.

2. ProducerCriticalSection represents the total orange time (transferring from local
to shared buffer) of a single producer. A single orange block lasts Cp

transfer � Cs

time. Taking the step into account, there are I
Sp

synchronizations performed, so
I

Sp
� pCp

transfer � Csq is spent synchronizing and transferring.

3. OtherProducersLastSync represents the time it takes for all producers, except the
first one, to perform their last synchronization (excluding wait time). Similarly to
the item above, Cs�Cp

transfer is the time taken to perform a single synchronization
and the associated transfer.

4. LastConsumersSync represents the time it takes for all consumers to perform their
last synchronization (excluding wait time). This is similar to the two points above
and can be expressed as Nc � pCs � Cc

transferq.
5. LastConsumerBatch represents the time it takes for the last consumer to perform

its last batch of work. Consuming an item first require extracting the item (Cp),
then actually consuming it (Wc). This is done Sc times, therefore the total can be
expressed as Sc � pWc � Ccopyq.

This gives us the symbolic expression of timep:

timep � I � pWp � Ccopyq � I

Sp
� pCp

transfer � Csq�
pNp � 1q � pCs � Cp

transferq �Nc � pCs � Cc
transferq � Sc � pWc � Ccopyq

Sc and Cc
transfer can be expressed, per assumptions, as Sc � Sp�Np

Nc
and Cc

transfer �
2 � Ccopy � Sp�Np

Nc
, which gives us the time as a function of Sp.
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timeppSpq � I � pWp � Ccopyq � I

Sp
� pCp

transfer � Csq�
pNp � 1q � pCs � Cp

transferq�
Nc � pCs � 2 � Ccopy � Sp �Np

Nc
q�

Sp �Np

Nc
� pWc � Ccopyq

Case 2: Consumers are the limiting factor The following formula expresses
the time taken to run a producer-consumer scenario in which consumers are the limiting
factor. We assume that I, Np, Nc, Wp, Wc, Ccopy, Cs, and Cc

transfer are constant.

timec � I � pWc � Ccopyq � I

Sc
� pCc

transfer � Csq�
pNc � 1q � pCs � Cc

transferq �Np � pCs � Cp
transferq � Sp � pWp � Ccopyq � Contention

Sp and Cp
transfer can be expressed, per assumptions, as Sp � Sc�Nc

Np
and Cp

transfer �
2 � Ccopy � Sc�Nc

Np
, which gives us the time as a function of Sc.

timecpScq � I � pWc � Ccopyq � I

Sc
� p2 � Ccopy � Sc � Csq�

pNc � 1q � pCs � 2 � Ccopy � Scq�
Np �

�
Cs � 2 � Ccopy � Nc � Sc

Np



�

Nc � Sc

Np
� pWp � Ccopyq � Contention

The explanation of these components is similar to the ones in the previous formula,
with the producers and consumers roles reversed. However, in this scenario there is an
additional component representing some contention on the mutex. This contention is due
to the fact that the consumers may be blocked by the producers pushing data into the
shared buffer. It is represented as the zig-zagged part of the bottom consumers timeline.

This contention is exclusive to the case in which consumers are the limiting factor of
the computation. Here, as consumers are slower than producers, contention may move
each consumer out of phase with the others, which may lead to a consumer being blocked
by a producer.

Finding the theoretical optimum We now find the value of Sp (resp. Sc) that
minimizes timep (resp. timec). To do so, we compute the derivative of timep (resp.
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timec) and find the value at which it equals 0. We recall the formulas.

timeppSpq � I � pWp � Ccopyq � I

Sp
� p2 � Ccopy � Sp � Csq�

pNp � 1q � pCs � 2 � Ccopy � Spq�
Nc �

�
Cs � 2 � Ccopy � Np � Sp

Nc



� Np � Sp

Nc
� pWc � Ccopyq

timecpScq � I � pWc � Ccopyq � I

Sc
� p2 � Ccopy � Sc � Csq�

pNc � 1q � pCs � 2 � Ccopy � Scq�
Np �

�
Cs � 2 � Ccopy � Nc � Sc

Np



� Nc � Sc

Np
� pWp � Ccopyq

We removed the contention from the expression of timec as experimental measures
show that it is negligible near the point at which the derivative gets canceled.

The derivatives are given below.

time1ppSpq � �I � Cs

Sp
2 � pNp � 1q � p2 � Ccopyq � 2 � Ccopy � Np � Np � pWc � Ccopyq

Nc

time1cpSCq � �I � Cs

Sc
2 � pNc � 1q � p2 � Ccopyq � 2 � Ccopy � Nc � Nc � pWp � Ccopyq

Np

We can now find the values for which both of these functions equal 0, which gives
us an estimate of the optimal step in each case: Spopt when producers are the limiting
factor, Scopt when consumers are the limiting factor. The derivation process, as well as
finding the root of the derivative is straightforward and left to the reader.

time1ppSpq � 0 ô Sp �
c

I�Cs

pNp�1q�p2�Ccopyq�2�Ccopy�Np�
Np�pWc�Ccopyq

Nc

� Spopt

time1cpScq � 0 ô Sc �
c

I�Cs

pNc�1q�p2�Ccopyq�2�Ccopy�Nc�
Nc�pWp�Ccopyq

Np

� Scopt

Once we have the step for the producers (resp. consumers), we use the relation
Np � Sp � Nc � Sc to find the step for the consumers (resp. producers).

Summary These two formulas provide a theoretical approximation of the optimal
step, under some assumptions. This model is rather simple but it provides a satisfactory
estimation and is easy to understand. We now present the API of FifoPlus, in particular
how the analytical model is calibrated using measured data in order to automatically
configure the granularity of synchronization.
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4.2.4 The FifoPlus Libraries

In this section, we present the API of the different libraries that compose FifoPlus as
well as how we achieve efficiency. This section is divided in three different parts: the
“FIFO” part of the API which allows the programmer to transfer data to and from a
FifoPlus; the reconfiguration API that allows the programmer to provide information to
a FifoPlus so it can find the theoretical optimal step; and a discussion on optimization.

4.2.4.1 Data exchange functions

The data exchange API features the standard push and pop operations. As presented
in the introductory section, these operations are performed on local views rather than
on the shared buffer directly. This API also features operations to feed data into the
analytical model in order to dynamically compute the optimal step. Additionally, it
features operations to improve performance in presence of a fork in a pipeline. These
were added after some observations on the dedup algorithm.

Let T denote the type of the elements inside the FIFO. The public API is as follows:
The class FIFOPlusMain represents the shared buffer. This class exposes a single

public function, view that creates a view on this buffer. The programmer first creates
an instance of FIFOPlusMain, then, for every producer and consumer, calls view.

The class FIFOPlus represents a view on the FifoPlus: a local buffer, with a step
S. This class exposes the following functions:

• pop: void Ñ Optional<T>. This function extracts and returns the next available
value in the local buffer. If the local buffer is empty, S elements are extracted from
the FIFO. If all producers are done and the shared buffer is empty, this function
returns an empty value.

• cross_pop: Timer Ñ FIFOPlus* Ñ (Optional<T>, bool). This function takes
as parameters a timer and a secondary FIFO. It works like pop, with a single change.
If the timer expires before an element can be extracted from the shared buffer, then
the function performs a force_push (see below) on the secondary FIFO. It returns
a set of values: the extracted value (if any) and whether the timer expired or not.

• push: T Ñ void. This function pushes a new element in the local buffer. If the
local buffer is full, it performs a transfer into the shared buffer.

• force_push: void Ñ void. This function forcibly triggers a transfer into the
shared buffer, regardless of the amount of data present in the local buffer. This
function does not add data into the local buffer. In effect, it is similar to the
set_immediate of PromisePlus, except it does not add data.

• terminate: void Ñ void. This function notifies the shared buffer that a producer
has completed the production of all its data. It is used to prevent consumers from
getting stuck in an endless loop if the shared buffer definitely runs out of data.

The push function has two alternative versions:
• timed_push: T Ñ void. This function behaves like push, while also performing

measurements in case a transfer from the local buffer to the shared buffer occurs. The
function measures the time spent acquiring the mutex, the time spent transfering
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and the time spent notifying consumers and releasing the mutex. This measurements
are then given to the analytical model for calibration.

• generic_push: T Ñ bool. This function acts as a wrapper around timed_push
and push. If the analytical model requires more data to be calibrated, generic_push
will call timed_push. Otherwise it will call push. The function returns a boolean
indicating if the analytical model requires more data. The main purpose of this
return value is to indicate to the programmer when they can stop calling the
add_work_time function (see 4.2.4.2).

force_push is to be used when data produced by a thread may go into two or more
shared buffers. This is the case in the Deduplicate stage of dedup, where data may
either go to the Reorder stage, or to the Compress stage, depending on whether data is a
duplicate or not. The problem solved by force_push is that, due to local buffers not
transferring into the shared buffer with every push, either branch of the pipeline may
stall despite data being ready to be sent. As a result, a programmer may forcibly push
to prevent that one branch of the pipeline is getting a lot of work and not the other.

cross_pop solves a different problem. In cases where it is possible for a thread
to occasionally wait a long time for some data, forcibly transferring towards the next
stage of the pipeline can be relevant. Since the step may prevent data from being sent
immediately, it is possible for multiple levels of the pipeline to stall simultaneously, due
to data remaining in local buffers. cross_pop solves this problem by pushing the content
of a local buffer into a shared buffer if the pop operation takes too much time.

These two operations are not taken into account in our analytical model, due to their
unpredictable nature. Their existence comes from the need to adapt synchronization in
cases that are irregular either along one pipeline or between two branches of a pipeline.

4.2.4.2 Reconfiguration Library

The reconfiguration API exposes the Observer class. This class is used to trigger the
reconfiguration of the step of instances of FIFOPlus.

An Observer is in charge of multiple FIFOPlus that are registered by the programmer.
To each FIFOPlus, the Observer associates a set of time measurements. These time
measurements correspond to the data required by our analytical model: time taken to
produce or consume an element, time taken to perform a synchronization etc. Once
the total amount of data provided by all FIFOs reaches a user defined threshold, the
Observer triggers a reconfiguration of the step of each FIFOPlus.

An Observer exposes the following methods:
• add_producer: FIFOPlus*Ñ void. This function is used to register a FIFOPlus

that acts as a producer.
• add_consumer: FIFOPlus*Ñ void. This function is used to register a FIFOPlus

that acts as a consumer.
• add_work_time: FIFOPlus* Ñ uint64_t Ñ void. This function is used to

add the time taken to produce or consume an item. The Observer automatically
deduces whether a FIFOPlus is a producer or consumer.
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Both add_producer and add_consumer must be called before time measurements
start. This is a choice that allows us to avoid the termination problem: if producers or
consumers can get registered at any point in time, then we cannot decide when a FIFO
is done, which makes it impossible to properly terminate consumers.

The definition of “time taken to produce/consume an item” is the time spent between
the end of pull and the beginning of the next push. In our current prototype we ask
the programmer to measure this manually, both for flexibility and engineering reasons.
In particular, our own experience shows that it is sometimes necessary to tweak the
definition depending on the problem, therefore an automated measurement would result
in incorrect measures. As a future work, we may provide an option to automate these
measures.

As an example, in our study case, for the dedup algorithm:
• On the Refine, Deduplicate and Compress stages, the time taken to produce an

item is evaluated as the time elapsed between the last successful pull from an input
FIFO and the beginning of the next push to an output FIFO.

• On the Fragment stage, the time taken to produce an item is evaluated as the time
taken to read a chunk of the input file and process it all the way up to, but not
including, pushing it into an output FIFO.

• On the Reorder stage, the time taken to consume an item is evaluated as the time
elapsed between the end of a pull and the beginning of the very next pull from one
of the input FIFOs.

The time taken to perform a transfer from/to a local buffer to/from the shared
buffer is measured internally by the instance of FIFOPlus and automatically added to
its Observers, which automates part of the programmer’s work.

4.2.4.3 Efficiency and Implementation Details

Efficient reconfiguration The reconfiguration API allows a reconfiguration of the
step of the different local buffers which is the main way to achieve efficiency. The
reconfiguration process needs to be written carefully, so it does not become a source of
contention.

Observers The Observer keeps track of how much data has been produced by all
producers and all consumers separately. We use atomic variables and atomic fetch-add
operations to increase counters without having to lock an expensive mutex.

Every time a FIFO produces a data item, it checks whether the overall amount of
data produced by producers and data consumed by consumers separately is enough
to trigger a reconfiguration, according to a threshold defined by the user. Due to the
multithreaded nature of applications that use FIFOPlus and the Observers, it is possible
to have multiple FIFO operations that trigger a reconfiguration simultaneously on the
same Observer. To prevent multiple reconfiguration from happening simultaneously,
the Observer contains two atomic booleans that state whether the first (resp. second)
reconfiguration has been performed. This is illustrated in Listings 4.5 and 4.6 that
show the skeleton of the data registration function and of the reconfiguration function.
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Listing 4.5: Function used to register a production/consumption time in an Observer
1 // Add time for the first reconfiguration . src is the FIFO that is
2 // adding time. Returns a boolean indicating if the source FIFO
3 // should keep measuring time.
4 bool Observer <T>:: add_time_first_reconfiguration(FIFOPlus <T>* src ,
5 uint64_t time) {
6 uint32_t operations , max_operations ,
7 other_operations , max_other_operations;
8 if (src ->_producer) {
9 operations = _prod_operations.fetch_add (1,

10 std:: memory_order_acq_rel);
11 other_operations = _cons_operations.load(
12 std:: memory_order_acquire);
13 // User defined threshold , never written again
14 max_operations = _max_prod_operations;
15 // User defined threshold , never written again
16 max_other_operations = _max_cons_operations;
17 } else {
18 // ... Similar , flip prod and cons
19 }
20
21 // ... Skip some micro performance checks and time registration
22
23 if (operations == max_operations &&
24 other_operations >= other_max) {
25 trigger_reconfiguration(true);
26 return false;
27 }
28
29 return true;
30 }

Listings 4.5 and 4.6 present the skeleton of the data registration function and of the
reconfiguration function, respectively, to better illustrate the points.

The atomic_compare_exchange_strong (cmp_xchg_str for short) on booleans
has the following prototype: bool compare_exchange_strong(bool& expected, bool
new, memory_order succ, memory_order fail). It atomically:

1. Checks if the value inside the atomic is the same as expected;

2. If it is, then it replaces this value with new. This read-modify-write operation has
the memory order specified by succ.

3. If it is not, then it loads the value stored in the atomic into expected. This
read-write operation has the memory order specified by fail.

4. The function returns whether the exchange was successful or not.
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Listing 4.6: Function used to trigger a reconfiguration from an Observer
1 // First is a boolean indicating if this reconfiguration is the
2 // first or second .
3 void Observer <T>:: trigger_reconfiguration(bool first) {
4 bool expected = false;
5 if (first) {
6 if (_first_reconfiguration_done.compare_exchange_strong(
7 expected ,
8 true ,
9 std:: memory_order_acquire ,

10 std:: memory_order_relaxed)) {
11 // Proceed with reconfiguration . Exactly one thread will
12 // execute this on this instance of Observer .
13 }
14 } else {
15 // Same as above
16 if (_second_reconfiguration_done.compare_exchange_strong (...))

ãÑ {
17 // Same observations
18 }
19 }
20 }

Once the best step has been computed, it needs to be propagated to the different
views. Each operation checks for the value of an atomic boolean that indicates whether
a reconfiguration is needed. When the Observer computes the best step, it writes this
step in a dedicated attribute of the view and sets the atomic boolean to true. This allows
us to maximize the time spent working, ensuring the view remains available most of the
time and the right step is adopted.

4.2.5 Benchmarks

In this section we evaluate the performance of FifoPlus in two different scenarios. In
the first, presented in Section 4.2.5.1, we run a hand-written producer consumer program
that is regular. This is a favorable case for our analytical model. This allows us to study
the influence of the step on execution time and the accuracy of our analytical model.
In the second scenario, presented in Section 4.2.5.2, we run the dedup kernel from the
PARSEC Benchmark Suite. This scenario tests the limits of our tool in a real world
application that does not feature regularity, and consists in a multi-stage pipeline rather
than a traditional producer-consumer scenario around a monitor.
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Listing 4.7: Microbenchmark used to evaluate performance of FIFOPlus
1 void produce (int iterations , int work , FIFOPlus <int >* fifo , Observer <int >* obs) {
2 bool need_obs = true ;
3 for (int i = 0; i < iterations ; ++i) {
4 time_point begin = now ();
5 for ( volatile int j = 0; j < work; ++j)
6 ;
7
8 time_point end = now ();
9 if (fifo -> generic_push (obs , i) && need_obs )

10 need_obs = obs -> add_work_time (fifo , end - begin );
11 }
12 }
13
14 void consume (int work , FIFOPlus <int >* fifo , Observer <int >* obs) {
15 bool need_obs = true ;
16 while (optional <int > res = fifo ->pop ()) {
17 time_point begin = now ();
18 for ( volatile int j = 0; j < work; ++j)
19 ;
20
21 time_point end = now ();
22 if ( need_obs ) {
23 need_obs = obs -> add_work_time (fifo , end - begin )
24 }
25 }
26 }

4.2.5.1 Microbenchmark

In this section, we study the influence of the step on a simple producer-consumer program,
where one producer and one consumer communicate with each other using a FifoPlus.
Both the producer and the consumer exhibit a regular behavior, i.e. it takes the same
amount of time to produce any element, and the same amount of time to consume any
element. Listing 4.7 presents the (simplified) code of both the consumer, in function
consume, and the producer, in function producer.

This benchmark is parameterized by six things: the amount of items produced (I),
the amount of work needed to produce an item (Wp), the amount of work needed to
consume an item (Wc), whether the FIFOs should actually perform a reconfiguration,
the original step of the producer and the original step of the consumer.

Figure 4.13 presents the results of our benchmark on a graph. It shows the evolution
of the time needed to run the microbenchmark (circles and squares represent measured
values, dotted lines represent the analytical model) as the step takes the values 1, 2, 4, 5
. . . (t

?
2i
u@i P r0; 34sq with the following parameters:

• There is no reconfiguration. The algorithm that measures the time taken to perform
synchronizations, and to produce / consume items is disabled.

• A total of 6,000,000 items is produced.
• The amount of work needed to produce an item and to consume an item is set to

1000.
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Figure 4.13: Evolution of the run time of the microbenchmark as the step grows

• Both the producer and the consumer have the same step.
This is our baseline, which will allow us to validate our analytical model;

Accuracy of the analytical model The red circles represent the average runtime in
function of the step when the synchronization in FifoPlus is performed using a mutex
and a condition variable (the default). We plot this against our analytical model, the
orange dash-round-dotted line. We can see that our model does not perfectly match
against reality: the points between steps 1 to 100 are slightly off, and the points between
steps 100 and 500 suffer from a performance degradation that was not predicted by
the analytical model. Overall, our model is 1% pessimistic, but the shape of the curve
matches reality which is the crucial part.

The discrepancy between 1 and 100 can be explained by our assumption that the cost
of synchronization is a linear function of the step. In reality, caching mechanisms allow a
Cpu to lock a mutex faster on repeated lock operations.

We suspect the performance degradation between steps 100 and 500 may come from
the passive wait triggering extra system calls, and the way the Linux kernel implements
POSIX mutexes. To test this hypothesis, we reimplemented the mutex and condition
variables used for the synchronization in FifoPlus with atomic variables and busy-waiting
and ran the benchmark again. The result is represented by the blue squares on the figure.
We can see that the points between steps 100 and 500 are no longer completely off. This
seems to confirm our intuition that the passive wait of mutexes has an unintended side
effect that causes performance to degrade for steps between 100 and 500.

For completeness, we plotted this new batch of runs against our analytical model, this
time configured with the data extracted from the new runs. The blue dash-dotted lines
represent this. Similarly to the mutex version, the first points, between steps 1 and 10,
are slightly off, although the difference is less pronounced. While the busy-waiting based
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reimplementation is faster when synchronization is fine-grained, the potential performance
gain for the optimal step is negligible. Moreover, the higher energy consumption of
busy-waiting is, in this case, not acceptable, as the gain is, as stated, negligible. For
these reasons, we kept the standard library’s mutex and condition variable in the final
implementation.

This shows that our analytical model is quite precise when it comes to finding the low
point of the curve. The fact that it is less accurate for low steps is not an issue because
the curve is a flattened reversed bell, meaning that even if the first steps do not match
perfectly against reality, there is a wide-enough interval of “reasonnable” steps that will
also give a good performance.

Note. To create the two “Model” curves, the analytical model was configured using
data from a run where both the producer and the consumer were configured with a step
of 1 and measurements were done for the entire duration of the execution, rather than
only on the first few operations. We obtain more precise values for the parameters of
the model than measuring only on the first few operations as done in actual runs. In
particular, we have observed that the measures performed during the first half second of
execution are less precise. For instance, the average time required to produce an element
measured over the first 100 elements (Wp in the model) was 5 µs. The average time
required to produce an element measured over all 6000000 elements was 2 µs. Similar
results were observed on the time required to acquire and release the mutex protecting
the shared buffer (Cs).

Accuracy of reconfiguration and cost of the analysis Table 4.2 presents the time
taken to run the microbenchmark with five different configurations.

Configuration “Balanced” acts as a baseline where the producer and the consumer
have a balanced amount of work. Configurations “Slow Prod” and “Slow Cons” allow us to
evaluate the impact of an unbalanced amount of work between producers and consumers,
in one direction and the other. Configurations “Balanced+” and “Balanced++” act as
variations on configuration “Balanced” by increasing the amount of work and reducing
the amount of synchronization, keeping the total amount of computation constant. They
allow us to check that the analytical model gives us adequate steps.

Each configuration was run in three different modes: with a step of 1 and no
reconfiguration (column “S = 1”), with a step of 1 and reconfiguration (column “Reconf”),
and with the step found by the reconfiguration and no reconfiguration (column “S =
“best”). Table 4.3 gives the speedup of the reconfiguration, the speedup of the best step,
and the cost of reconfiguration.

On Figure 4.13, the red square dotted line represents the average time it took to run
the microbenchmark in the “Balanced’ case with reconfiguration enabled when using a
mutex to perform the synchronization. The blue dotted line represents the average time
when reimplementing mutex and condition variable with an atomic. The two lines are
close to each other while atomics are slightly faster, which is also expected.

If we look at the runs of the microbenchmark without measurements nor reconfigu-
ration, the optimal step was located in the interval [512; 1024]. On average, the views
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Table 4.2: Runtime in seconds of the microbenchmark with a step of 1 and no reconfigu-
ration, with reconfiguration, and with the step found during reconfiguration

Configuration Items Producer Consumer S = 1 Reconf S = “best”

Balanced 6000000 1000 1000 12.14s 11.84s 11.41s (792)
Slow Prod 6000000 4000 1000 58.95s 44.80s 44.46s (2051)
Slow Cons 6000000 1000 4000 44.67s 44.38s 44.27s (462)
Balanced+ 600000 10000 10000 11.36s 11.23s 11.17s (79)
Balanced++ 60000 100000 100000 11.18s 11.17s 11.30s (5)

Table 4.3: Speedup and cost of the reconfiguration for the measurements of Table 4.2

Configuration Speedup 1 Ñ Reconf Speedup 1 Ñ Best Reconfiguration cost

Balanced 1.025 1.064 0.43s
Slow Prod 1.31 1.32 0.34s
Slow Cons 1.006 1.009 0.11s
Balanced+ 1.011 1.017 0.06s
Balanced++ 1.001 0.989 -0.13s

were reconfigured with a step of 792, which falls in the correct interval. This seems to
indicate that the implementation of our model works properly when calibrated with
runtime measurements.

The cost of the analysis is higher than what we expected. Longer runs, as well as
runs with more computation than synchronization, seem able to limit the impact of this
overhead, but shorter, balanced runs, with a high quantity of synchronization are more
impacted. Further experimentations did not allow us to conclude on the origins of this
overhead, as the time before the reconfiguration is negligible. Our current hypothesis is
that the reconfiguration itself has an adverse effect on cache, but this would need further
study.

Summary Through this benchmark, we have seen that our analytical model is quite
close to reality, that changing the step improves performance, that the deduced step is
not far off from reality, and that the cost of measurement is acceptable.

4.2.5.2 Running the dedup algorithm with FifoPlus

In this section, we check how well our analytical model holds in a scenario that should
be more unfavorable: the dedup algorithm. Dedup has two features that we do not take
into account in our model:

• dedup is a pipeline. Our analytical model works on a single FIFO. Our strategy
is to configure each FIFO independently and assume that the pipeline will get
optimized.
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• dedup is not regular. The time required to compress a chunk of data or to detect
whether it is a duplicate or not may vary wildly. Experimental results show that
this time may take any amount of time between one microsecond and several
milliseconds. We apply the same strategy as for regular programs, and observe how
well our model handles this situation.

Because of our new synchronization pattern, we adapted the algorithm with the
following optimization: at the Deduplicate stage, every time either the FifoPlus towards
the Compress stage or the FifoPlus towards the Reorder stage receive 100 consecutive
items, a force_push is performed on the other FifoPlus. This modification prevents
Reorder from stalling if the next chunk it expects is blocked in a view that does not have
enough items in it to trigger a transfer into the shared buffer.

We run the dedup algorithm on two different files: the “native” input, provided with
the PARSEC benchmark suite, that is a 700 MB file which features duplication of data
in such a way that the algorithm will detect that roughly half the chunks of data are
duplicates; and a second input, “OnlyCompress” that contains (almost) no duplicates
(a 1.5 GB MP4 file). The objective of the second file is to have an input such that the
algorithm never branches in the pipeline. In practice, this should be a more favorable
case as it will make the algorithm behave in a more regular way, and therefore in a more
predictable way, which will benefit our algorithm.

For each of these files we provide a graph that displays the results. On each of these
graphs, there are three different series of points, labelled “Original” (blue �), “Analytical”
(red +) and “Reconfiguration” (dotted line).

• The “Original” points (blue crosses) represent the execution time of the algorithm
where the buffers used to exchange data are the buffers provided in the original
version of the algorithm. Each buffer is dimensioned in such a way that our
constraint Np � Sp � Nc � Sc holds.

• The “FifoPlus” points (red pluses) represent the execution time of the algorithm
where the buffers used to exchange data are FifoPlus configured with the given
step. We do not perform any reconfiguration nor any time measurements. This
merely evaluates that using FifoPlus as a monitor will not incur a time penalty.

• The “FIFO (no optims)” (lime dots) points represent the execution time of the
algorithm where the buffers used to exchange data are FifoPlus configured with
the given step. We do not perform any reconfiguration nor any time measurements.
In addition, the optimization that prevents Reorder from stalling is disabled. This
allows us to evaluate the impact of this optimization.

• The “Reconfiguration” line (purple) represents the time it took to run the dedup
algorithm when using FifoPlus with an initial step of 1 and reconfiguration enabled.

Table 4.4 presents the total number of chunks processed in each configuration, as well
as the percent of duplicates. Figure 4.14 presents the result of running the dedup algorithm
on the native input and Figure 4.15 presents the result of running the dedup algorithm
on a file containing almost no duplicates. In these two versions, no measurements other
than the total runtime were performed, and no reconfiguration happened.

The purpose of the Original and FifoPlus versions is to compare the efficiency of our
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Table 4.4: Amount of duplicates in each of the dedup input files

File Chunks Duplicates %

Native 369950 54%
OnlyCompress 384363 0.4%

Figure 4.14: Runtime of the dedup algorithm depending on the step (native input)

implementation of the FIFO compared to the original one. In the Original and FifoPlus
versions, communication channels were configured according to the step and according to
the assumptions of our analytical model. For instance, if the step is 1, then all the steps
are 1 except the producer before compress and deduplicate; this one is 5 because there
are five consumers for the FIFO; similarly, the reorder stage consumes data with a step
of four because there are four producers before reorder. A reminder of the structure of
the pipeline can be found in Figure 4.9.

We obtain different results depending on the input.

FIFO efficiency In the “Native” case (Figure 4.14), our FIFO performs similarly to
the ringbuffer of the original version for steps lower than 2048. After this point the
original version performs better. In the “OnlyCompress” case (Figure 4.15), our FIFO
outperforms the ringbuffer by 25% at most (on step 256), and underperforms by 67% at
most (on step 32768).

This improved performance in “OnlyCompress” appears due to the optimizations
we added to prevent Reorder from stalling. Because the “OnlyCompress” file features
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Figure 4.15: Runtime of dedup depending on the step (only compress chunks)

an extremely low, but non-null, amount of duplicated data, if the next chunk expected
by Reorder is a duplicate that remains stuck in the FifoPlus between Deduplicate and
Reorder because there is not enough data produced to actually trigger a synchronization,
time will be lost. Since FifoPlus features the force_push that forcibly triggers a
synchronization, we worked around the problem of stuck chunks by inserting calls to
force_push if the Deduplicate stage starts favoring one branch of the pipeline over the
other. On the other hand, there is no gain obtained from the optimization in the “Native”
case. Close inspection of the input file shows that there is not much to be gained by
preventing stall, as its structure never causes chunks to remain stuck in a view for a long
time.

On both figures, the red + points of “FifoPlus” are higher than the blue x points
of “Original” from step 11585 onwards. We were not able to find an explanation as
to why FifoPlus underperforms when configured with high steps. This result calls for
investigation, however in the context of this benchmark it does not have consequences as
these steps are far from the optimum.

Performance of the reconfiguration In both cases, the reconfiguration algorithm
is able to find a set of steps for the different FIFOs that gives performance similar to
the performance of FifoPlus without reconfiguration in the best case scenario. There is
a 5% increase in performance in the “Native” scenario when compared to the original
version of dedup configured with a step of 1 and a 25% increase in performance in the
“OnlyCompress” when compared to the original version configured with a step of 1.

On the first file, the average time in the reconfiguration scenario is only 1.3% slower
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than the best average time without reconfiguration. This is quite positive as this optimum
would have to be found by heavy benchmarks and manual configuration. On the second
file the reconfiguration scenario is only 3% slower than the best average time without
reconfiguration, which is also quite positive.

Finally we should note that we performed additional experiments with a scenario less
favourable for us, a larger file with 58% of duplicates. In this case the reconfiguration
scenario is slower by 3.1% when compared to the original version with the optimal
step. The reconfiguration does not slow down execution either. We believe this is still
acceptable.

Overall, we consider the results on the dedup algorithm to be encouraging: even when
our model is not perfectly adapted, it can provide satisfactory performance.

4.2.6 Summary

Both these benchmarks show that our analytical model is able to find steps that improve
performance. On computations that are regular the deduced step is quite accurate and
yields performance close to optimal. In situations that are less favorable, the analytical
model is able to compute steps that give local improvements to performance that add
up to a global gain. In all cases, the analytical model never found a step that reduced
the performance. This points towards more work regarding FifoPlus, in particular a
refinement of the analytical model to handle pipelines and eventually support for less
regular computations.

4.3 Conclusion – Granularity of Synchronization
In this chapter we presented two new constructs, PromisePlus and FifoPlus that are
synchronization abstractions aiming at improving performance of parallel applications
that exchange many data. Our focus was the granularity of synchronization and how this
granularity needs to be adapted depending on the program in order to improve efficiency
of the application.

PromisePlus relies on a static configuration of the granularity: a promise that abstracts
the concept of an array and synchronizes on slices of this array. The size of these slices is
configured once at runtime, and is specified by the programmer. Our first results are
promising even if finding the optimal granularity for synchronization might be difficult.

FifoPlus improves upon the static granularity of synchronization of PromisePlus by
embarking an analytical performance model that is able to determine an approximation
of the ideal granularity of configuration. This analytical model, while still in its early
stages, is able to find a granularity of synchronization that improves performance on
applications that are not to far from the conditions of applicability of the approach that
we have described. These results are encouraging, and push towards more work on this
analytical model to further improve performance on a wider range of applications.
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Positioning

This chapter complements the early positioning of Chapter 2. We compare our contribu-
tions with OpenStream, SkePU, StreamIt, the streaming futures of ABS, and distributed
futures.

5.1 OpenStream
As previously discussed, OpenStream is an OpenMP extension and thus targets OpenMP
programs. On the other hand, PromisePlus and FifoPlus are not tied to a specific
framework. One of our examples, using PromisePlus in the NAS-LU algorithm shows
that it can be used in the context of OpenMP, although it could also be used in a different
context. This can be seen with FifoPlus, which, while different from PromisePlus, is
similar enough in its construction, and was successfully used in the dedup algorithm.

There are some additional similarities between both approaches. In [53], Pop points
out a problem with the termination of OpenStream tasks. OpenStream tasks terminate
after executing their last activation. As we have seen before, in order to be activated, an
OpenStream task needs to have a certain amount of data available (its burst). If the
amount of data given as input for the last activation is less than the burst, then the
task will never activate. The solution to this problem is to have other tasks insert fake
data into the input stream before terminating. We encountered a similar problem that
is solved through the set_immediate (resp. terminate) methods of PromisePlus (resp.
FifoPlus), which, while still leaving the burden on the programmer’s shoulders, do not
require fake values.

Our work on finding the best step could be reused inside OpenStream, as the
framework allows for dynamic horizons and burst. The OpenMP task pragma could
allow for automation of some measurements, in particular the work time. In FifoPlus, the
programmer needs to measure some of these values manually and the lack of annotations
to disambiguate which parts of the code belong to production, consumption or simply
control makes this much more complicated.

OpenStream also exposes the communications between tasks in a more natural way
than what we do with FifoPlus. This is tied to the use of OpenMP tasks. OpenStream
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allows OpenMP tasks to have an input or output tag, which directly provides the
information as to whether a task is a producer, a consumer or both. A view on FifoPlus
is either a producer or a consumer, but there is no distinction at the type level. Such a
distinction could be added to prevent accidental calls to terminate on consumer views
at compile-time for instance.

5.2 SkePU
SkePU is a library with a focus on algorithmic aspects, while PromisePlus and FifoPlus
are focused on synchronization. However, there are two mechanics in SkePU that are
closer to our interests: the auto tuning of skeletons and the slicing of tiled computations.

Auto tuning The auto tuning in SkePU is used to determine the best accelerator
on which to run a given skeleton. This is performed using an offline machine-learning
algorithm, that uses pre-recorded estimates in order to predict the time required to run
a skeleton call on a given accelerator. As SkePU is able to record invocation of skeletons
and build a graph of calls (the lineage), the tuning algorithm can determine where to
run each call to achieve maximum efficiency.

The analytical model in FifoPlus does not yield the optimal accelerator, it yields the
optimal granularity of synchronization. Furthermore, the formulas used by our model
are hand-written rather than computed by a machine-learning algorithm. As pointed
out in Section 4.2.3, not using a machine-learning algorithm makes us less precise, but
allows us to understand its output. Our model also does not require pre-calculated
results, and instead computes an approximation on-the-fly, using only data measured
during execution. While this allows us to have unique runs that perform well, repeated
runs suffer from the overhead of the measurements, instead of immediately using the
previously computed step.

Slicing SkePU can slice the input of skeletons into tiles, in order to increase parallelism.
Tiling is generally used on arrays or matrices to have multiple threads work on different
tiles in parallel, assuming there are no dependencies between tiles. This is similar to
what motivated PromisePlus, although different. In PromisePlus, we had a fixed number
of threads that worked on slices of a matrix, and the step determined the granularity
of synchronization. In SkePU, the slicing must ideally result in the highest amount of
parallelism possible. The analytical model of FifoPlus could be adapted to be used in
SkePU in order to find the optimal tile size.

5.3 StreamIt
StreamIt shares some strong similarities with our work: some of our usecases would be
easy to adapt in the context of StreamIt. For instance, each layer in the dedup algorithm
could be seen as a StreamIt Filter: one that fragments an input into big chunks, one
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that refines the big chunks into other chunks, one that performs duplicates detection,
one that performs the compression and one that performs the reordering of chunks.

To represent something like the fork at the deduplicate layer of dedup, the SplitJoin
composition filter can be used. Additionally, it could be possible to abstract away the
explicit calls to push and pop by representing the whole sequence of Filters as the
composition filter Pipeline of StreamIt.

Comparison A first point of comparison between StreamIt and our solutions is the
difference discussed in Section 2.2.1 between languages and libraries. Indeed, StreamIt,
being entirely dedicated to streaming, requires the programmer to learn a specific
programming paradigm which makes streaming more easy, mainly through the use of
language constructs. Additionally, many of the optimization performed by the compiler
are geared towards the execution context of StreamIt: slicing, fusing or partitioning
filters are operations that would be considered too specific in a general-purpose language
like C or C++.

On the other hand, our tools PromisePlus and FifoPlus are designed to fit into
existing programming models: programmers do not need to learn anything new, besides
an API. Additionally, code rewrite is brought down to a minimum, as we have seen with
some of the examples in the respective sections of PromisePlus and FifoPlus, mainly
because programmers remain in the same programming model. However, not having a
dedicated compiler limits the optimizations on PromisePlus and FifoPlus to what exists
within the compilers of the language in which they are used. When using PromisePlus,
what constitutes the code of the “filter” is not as clear-cut when compared to a dedicated
work method inside a class.

However, FifoPlus and StreamIt are not mutually exclusive. Communication between
filters in StreamIt is performed through FIFOs, and as we pointed out in the initial
presentation of StreamIt, the creators of StreamIt originally wanted to remove the static
nature of data rates. FifoPlus could be used to solve this problem while also abstracting
away the need for an initial configuration of the data rates. Adding the FifoPlus
reconfiguration algorithm to StreamIt seems to be more interesting than adding StreamIt
optimization to other languages: changing a compiler is difficult, even more-so when
it is a compiler for a general-purpose language, and besides, these optimization would
be too specific and bloat the compiler. Moreover, having the FifoPlus reconfiguration
algorithm in StreamIt could allow the language to benefit from optimization performed
by the compiler that could lead to a better deduction of a good data rate.

Intuitively, we think our solution based on an approximation of the execution in order
to reconfigure the data rate of a FIFO could be implemented in StreamIt without too
much difficulty, however we did not investigate this point further.

5.4 Futures for Streaming Data in ABS
There is not much that we did not say in our first presentation of ABS. The concept of
granularity of synchronization could be added to streams in ABS, as it would probably
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lead to performance improvement. However, as we do not have knowledge of the inner
workings of the ABS language, it is impossible for us to estimate the difficulty in adding
this feature.

As is expected from the previous comparisons, our analytical model could fit nicely
in ABS. The use of a dedicated keyword to add data into a stream, and the use of a
dedicated construct to pull data from the stream is, like in OpenStream, a good way to
have clear indications of when to start and stop clocks.

In [53], the creators of streaming futures in ABS provided operational semantics for
their new construct1, which is not the case on our part, although it can be considered
future work.

5.5 Distributed futures
The defining idea of Chapter 4 is to slice data into chunks of a given size that work
as synchronization entities inside an array (PromisePlus) or an infinite stream of data
(FifoPlus). This idea is similar to what happens with distributed futures (see Section
2.5.1). Unlike distributed futures, PromisePlus and FifoPlus allow synchronization on
a chunk of the array rather than having to wait for the entire computation to be done.
However, there are considerations from distributed futures that could be investigated
in the future, in particular on PromisePlus. While PromisePlus allows synchronization
on chunks of arrays, it suffers from the same problem as traditional futures: it needs to
store the entire array. This problem was identified by Leca as a limitation of futures and
resolved in distributed futures by replacing the array with a description of the location
of every chunk. In the future, PromisePlus could maybe exploit the same strategy when
it is used in a distributed context.

1Some criticism could be leveled at the semantics of non-destructive streams with regards to the way
they interact with the garbage collector
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Future Work and Conclusion

6.1 Perspectives
Dataflow explicit futures At the end of this thesis, dataflow explicit futures have
reached a mature state: their API is intuitive, easy to use, and their performance matches
that of control-flow futures . However, there is still work to do in order for them to
reach a more mainstream audience: as it stands right now, dataflow explicit futures
exist only as a prototype in Encore, an academic language. On the theoretical side, the
equivalence between forward* and return when applied to dataflow explicit futures
offers the possibility of new optimization. A future work here could be to design static
analyses that could determine whether it would improve performance to compile a return
as a forward*.

Algorithmic skeletons Both PromisePlus and FifoPlus could benefit from higher-
level of abstraction, such as algorithmic skeletons. Algorithmic skeletons abstract away
the structure of a computation, and let the programmer separate the programming of
basic blocks from their composition. As it stands right now, we would need to add checks
to the set and set_immediate functions of PromisePlus to ensure there are not multiple
producers. PromisePlus could be transformed into a skeleton that is parameterized
by two functions, one for the producer and one for the consumers, and the number of
consumers (or, alternatively, a function for each consumer). This way, it would prevent
end users from accidentally having multiple producers work on a single PromisePlus: the
skeleton would launch a single producer thread that would run the producer function,
and the requested number of consumer threads that would each execute the consumer
function.

Safer API for FifoPlus There are some improvements that can be made on the
FifoPlus to improve safety. As stated in the API of FifoPlus, the terminate method
should only be called by producers, never by consumers. This is difficult to enforce
statically without changing the API. It could be possible to split the views between
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consumer views, that do not have access to terminate nor to push operations, and
producer views, that have access to push and terminate, but not to pop.

Better analytical model and measurement performance for FifoPlus Bench-
marks provided in Section 4.2.5.2 show room for performance improvement on two
aspects.

Measurement performance First, we believe there is a need to understand
why enabling measurements and the reconfiguration process induces a degradation of
performance of 0.4 s, despite the fact that reconfiguration occurs less than 1 µs after
launch of the application. While we suspect it comes from the regularity of the application
being broken by the reconfiguration itself, we have not confirmed it using a profiler or
some low-level tool. We have also observed that measurements performed at the very
beginning of execution are less precise, and it could be beneficial to have FifoPlus
automatically discard early measurements in order for the reconfiguration to be more
accurate.

Pipelines The benchmarks we provided in Section 4.2.5.2 show that the analytical
model we created is able to find steps that optimize a pipeline. We also noted that
this depends on the structure of the pipeline: when the flow of data is straightforward,
without branching, performance almost reaches a theoretical optimum. On the other
hand when the flow of data goes through a split-join structure, performance does not
increase as much, and we have experimentally observed an input for the dedup algorithm
on which the reconfiguration does not improve performance (without reducing it either).
The split-join structure makes the prediction of runtime difficult due to its non statically
deterministic nature. For instance, in dedup it is impossible to know before slicing the file
into chunks whether there will be a high or low amount of duplicates and where in the file
they will be located. This does not allow us to properly configure the FifoPlus shared
by the Deduplicate and Compress stages towards the Reorder stage, as the different
producers perform computations of different duration, which makes the estimation of Wp

difficult. A potential solution to this problem would be to create a different analytical
model that is parameterized by the different Wp of each branch, and a user-provided
heuristic function that gives an approximation of how much data will flow through each
branch. Instances of FifoPlus that are the join of multiple different branches of a split
pipeline would need to use this analytical model instead of the one we designed here.
Having different analytical models for different data flow scenarios also points towards
using higher-level abstractions. Having FastFlow- or StreamIt-like constructions to
represent the stages of the pipeline could abstract away most of the configuration of the
different models depending on the situation.
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6.2 Conclusion
Throughout this thesis, we investigated several approaches to create safe, simple and
efficient abstractions. Dataflow explicit futures are a type-driven approach that leverages
typing in order to offer more expressive futures, equipped with a data-driven synchro-
nization. This allows dataflow explicit futures to have all the advantages of explicit and
implicit futures. Furthermore, we have proven the Godot conjecture that forward* is
equivalent to return, which paves the way for further optimization. PromisePlus and
FifoPlus are library-driven approaches. They aim to improve performance by letting
the programmer configure the granularity of synchronization of a data exchange or
automatically reconfiguring the granularity based on observations. With FifoPlus we
created a simple analytical performance model that can be used to model the performance
of regular applications that communicate through a FIFO queue.

On the level of abstraction These three abstraction tools focus on synchronization,
but on different levels. Dataflow explicit futures are a high-level construct, where most of
their strength comes from the type system. The subtyping rule and the collapsing rule,
both of which cannot be expressed solely through libraries, are keys here. The subtyping
rule brings more flexibility and expressivity to the language, while the collapsing rule
encapsulates the dataflow aspects.

PromisePlus and FifoPlus on the other hand are low-level constructs, and as such
enable low-level optimizations. The thread-local pessimistic index of PromisePlus, and
the use of atomics to scrap every bit of performance are optimizations that fit nicely
with the level of abstraction we targeted. The analytical model of FifoPlus also reflects
this lower-level approach, as it directly uses the granularity of synchronization in its
estimation of the time taken to run a given program.

Despite the fact that our contributions fall neatly into either “high-level” or “low-
level” abstractions, it would be wrong to assume high-level and low-level to be mutually
exclusive, or that focus should be only on one or the other. Abstractions are built on top
of each other and efficient low-level building blocks are key to build efficient high-level
abstractions.

On theory and practice All the contributions we presented mix theoretical founda-
tions and practical implementations. We showed how crucial is the interplay between
theory and practice, for example the theoretical background laid down by “Godot” paved
the way for our implementation of a safe and efficient dataflow future library. Indeed,
“Godot” brought the simplicity of the API and an elegant and intuitive type system
that makes working with flows easy. On the other side, only practical considerations
led us to an efficient implementation of PromisePlus that relies on efficient low-level
synchronizations (and not, e.g. mutexes). In general, the theoretical contribution pro-
vides well-thought bases, with safety and potential performance in mind. The practical
contribution adapt the theory based on the context in which the implementation is done,
with efficiency concerns in mind.
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