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Abstract 

The production of most red wines and certain white and sparkling wine styles requires two consecutive 

fermentation steps. The first one is the alcoholic fermentation (AF) and is carried out mainly by 

Saccharomyces cerevisiae. At the end of the AF, the wines undergo malolactic fermentation (MLF) 

carried out mainly by Oenococcus oeni. However, the MLF is often difficult to trigger and accomplish 

because of the individual or synergistic antibacterial activity of several physical chemical wine 

parameters and yeast inhibitory metabolites.  

In this context, the study of the interactions that may occur between specific strains of yeasts and bacteria 

is important for choosing the adequate strain combination and inoculation strategy.  

In the present work, S. cerevisiae strain D strongly inhibited O. oeni strain X during sequential 

fermentations performed in synthetic grape juice (SGJ) media whereas S. cerevisiae strain A stimulated it. 

Protease and heat treatments of the SGJ media fermented by strain D showed the protein nature of the 

yeast inhibitory metabolites. Fractionation by ultrafiltration of the same media revealed that an 

extracellular peptidic fraction of 5-10 kDa was responsible for the inhibition. It was gradually released 

during AF and reached its highest concentration at late stages of the stationary phase. The MLF inhibition 

was maintained in natural grape juices and grape musts (Cabernet-Sauvignon and Syrah) presenting low 

and high phenolic contents. Therefore, the activity of the inhibitory peptides was not affected by grape 

phenolic compounds. The 5-10 kDa fraction was tested in vitro on cell-free bacterial cytosolic extracts 

containing the malolactic enzyme in a pH range between 3.5 and 6.7. Results showed that it was able to 

directly inhibit the malolactic enzyme activity with an increasing inhibitory kinetic correlated to the AF 

time at which it was collected.    

The 5-10 kDa peptidic fraction of the 60-80 % ammonium sulfate precipitate was submitted to analyses 

by both anionic and cationic exchange chromatography (AEXC and CEXC). Eluates recuperated with 0.5 

M NaCl from both AEXC and CEXC contained inhibitory peptides and were further migrated by SDS-

PAGE. The bands of interest were excised and sequenced by LC1D-nanoESI-LTQ-Orbitrap. Results gave 

12 different peptidic fractions that may have worked synergistically. 2 GAPDH fragments of 0.9 and 

1.373 kDa having a pI of 9.074 and a Wtm2p fragment of 2.42 kDa having a pI of 3.35 were involved in 

the MLF inhibition.  

 

Keywords: Saccharomyces cerevisiae, Oenococcus oeni, malolactic fermentation, malolactic enzyme, 

antibacterial yeast peptides, microbial interactions 

 

 



 

 

Résumé 

La production de la majorité des vins rouges et de certains types de vins blancs et de vins pétillants 

requiert deux étapes fermentaires successives. La première est la fermentation alcoolique (FA) réalisée 

principalement par Saccharomyces cerevisiae. A la fin de la FA, les vins sont soumis à la fermentation 

malolactique (FML) réalisée principalement par Oenococcus oeni. Cependant, la FML est souvent 

difficile à déclencher et accomplir à cause de l’activité antibactérienne individuelle ou synergique de 

différents paramètres physico-chimiques du vin et de métabolites levuriens inhibiteurs.  

Dans ce contexte, l’étude des interactions qui peuvent avoir lieu entre les souches de levures et de 

bactéries est importante pour le choix adéquat des souches et de la stratégie d’inoculation.  

Dans le présent travail, S. cerevisiae souche D a fortement inhibé O. oeni souche X pendant les 

fermentations séquentielles réalisées dans des milieux synthétiques jus de raisin (MSJ) alors que la souche 

levurienne A s’est révélée stimulatrice. Des traitements protéasiques et thermiques des MSJ fermentés par 

la souche D ont démontré la nature protéique des métabolites levuriens inhibiteurs. Le fractionnement par 

ultrafiltration de ces mêmes milieux a montré qu’une fraction peptidique extracellulaire de 5-10 kDa était 

responsable de l’inhibition de la FML. Elle a été graduellement relarguée au cours de la FA et a atteint sa 

concentration maximale à un stade avancé de la phase stationnaire. L’inhibition de la FML a été 

maintenue dans les jus de raisin commerciaux et les moûts naturels (Cabernet-Sauvignon et Syrah) 

présentant des teneurs faibles et élevées en composés phénoliques. Ces derniers n’ont pas pu donc 

modifier l’activité biologique des peptides inhibiteurs. La fraction 5-10 kDa a été testée in vitro sur un 

extrait cellulaire contenant l’enzyme malolactique dans une gamme de pH comprise entre 3,5 et 6,7. Les 

résultats ont montré qu’elle a pu directement inhiber l’activité de l’enzyme malolactique avec une 

cinétique d’inhibition croissante corrélée à l’avancement de la fermentation alcoolique. 

La fraction 5-10 kDa du précipité au sulfate d’ammonium (60-80 %) a ensuite été analysée par 

chromatographie échangeuse d’ions. Les éluats récupérés avec 0,5 M NaCl par chromatographie 

anionique et cationique ont renfermé des peptides inhibiteurs et ont été migrés sur SDS-PAGE. Les 

bandes d’intérêt ont ensuite été coupées et séquencées par LC1D-nanoESI-LTQ-Orbitrap. Les résultats 

ont montré 12 peptides qui ont probablement travaillé en synergie. 2 fragments de GAPDH de 0,9 et 

1,373 kDa ayant un pI de 9,074 et un fragment de Wtm2p de 2,42 kDa ayant un pI de 3,35 sont impliqués 

dans l’inhibition de la FML. 

 

Mots-clés : Saccharomyces cerevisiae, Oenococcus oeni, fermentation malolactique, enzyme 

malolactique, peptides levuriens antibactériens, interactions microbiennes 
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According to OIV (International Organization of Vine and Wine), wine is the beverage resulting 

exclusively from the partial or complete alcoholic fermentation of fresh grapes, whether crushed 

or not, or of grape must. Its alcohol content shall not be less than 8.5 % (v/v). Nevertheless, 

taking into account the climate, soil, vine variety, special qualitative factors or traditions specific 

to certain vineyards, the minimum total alcohol content can be reduced to 7 % (v/v) by 

legislation particular to the region considered. There are five basic stages or steps to making 

wine: harvesting, crushing and pressing, fermentation, clarification, aging and then bottling. 

Undoubtedly, one can find endless deviations and variations along the way that make each wine 

unique and ultimately contribute to the greatness of any particular wine (white, red, rosé 

or sparkling wines).  

Wine composition and quality are functions of many different intrinsic and extrinsic variables, 

many of which are microbiologically mediated. Winemaking is usually conducted under non-

sterile conditions; therefore a huge variety of microorganisms is present and can influence the 

process. Microbial interactions during winemaking have long been studied and their weight on 

microbial succession during wine fermentations has been examined. Some of the studies 

evaluated yeast-yeast interactions mainly the impact of Saccharomyces on non-Saccharomyces 

(e.g., Hanseniaspora, Candida, Kluyveromyces and Torulaspora) behavior (Albergaria et al., 

2010; Branco et al., 2014), while some others examined yeast-lactic acid bacteria interactions 

mainly the impact of Saccharomyces cerevisiae on the growth and metabolism of 

Oenococcusoeni (Beelman et al., 1982; King and Beelman, 1986; Lemaresquier, 1987; Lonvaud-

Funel et al., 1988, Wibowo et al., 1988; Cannon and Pilone, 1993; Henick-Kling and Park, 1994; 

Taillandier et al., 2002; Larsen et al., 2003; Comitini et al., 2005; Osborne and Edwards, 2006; 

Comitini and Ciani, 2007; Nehme et al., 2008; Mendoza et al., 2010). Different strain 

combinations and inoculation strategies (sequential and mixed cultures) were tested by these 

authors and the results showed that the type of interaction (neutralism, inhibition or stimulation) 

and its extent were strongly dependent on the selected strains in a combination.  

In this context, it is usually known that after the accomplishment of alcoholic fermentation (AF) 

carried out mainly by S. cerevisiae, most of the red wines and certain acid white wines and 

sparkling wines are spontaneously, or purposely, taken through a malolactic fermentation (MLF) 

http://www.winemonthclub.com/blog/how-is-rose-wine-made/
http://www.winemonthclub.com/blog/how-is-rose-wine-made/
http://www.winemonthclub.com/blog/bursting-the-bubbles-champagne-and-sparkling-wine-facts/
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step, mostly by indigenous or inoculated lactic acid bacteria of the O. oeni species. Sometimes, 

some strains of Lactobacillus or Pediococcus can also participate to the MLF.  

The MLF, an enzymatic decarboxylation of L-malic acid (one of the harshest three acids 

naturally found in the grape, the other two being citric and tartaric) into L-lactic acid (the softer  

acid) and CO2, diminishes wine acidity and improves its sensorial characteristics and its 

microbial stability (Kunkee 1984, 1991; Lonvaud-Funel 1999, 2002; Bartowski et al., 2002). 

However, it is often difficult to trigger and accomplish because of the individual or synergistic 

antibacterial activity of several physical chemical wine parameters and yeast inhibitory 

metabolites. Of all the species of lactic acid bacteria, O. oeni is probably the best adapted to 

withstand the harsh environmental wine conditions and therefore represents the majority of 

commercial MLF starter cultures.  

Some of the MLF inhibitory factors have been intensively investigated such as low pH (Britz and 

Tracey, 1990; Vaillant et al., 1995), inadequate temperature (Britz and Tracey, 1990), nutrient 

depletion (Tracey and Britz 1989; Nygaard and Prahl, 1996; Patynowski et al., 2002; Saguir and 

Manca de Nadra 2002), endogenous and exogenous SO2 (Henick-Kling and Park, 1994; Carreté 

et al., 2002; Larsen et al. 2003; Osborne and Edwards 2006), phenolic compounds (Reguant et 

al., 2000), high ethanol content (Britz and Tracey, 1990; Vaillant et al., 1995) and medium chain 

fatty acids (Edwards and Beelman 1987; Lonvaud-Funel et al., 1988; Capucho and San 

Romaô1994).  

While the anti-MLF role of the previous compounds is already well established, there are 

gradually growing evidences suggesting the involvement of yeast peptides/proteins in the 

inhibition of O. oeni growth and malic acid consumption. Few authors such as Dick et al., 

(1992), Comitini et al., (2005), Osborne and Edwards (2007), Mendoza et al., (2010), Nehme et 

al., (2010) and Branco et al., (2014) demonstrated that some S. cerevisiae strains were able to 

produce extracellular proteinaceous compounds of different MW active against some O. oeni 

strains with no conclusive results on their mechanism of action.  

The current project is a continuation of the work already initiated by Nehme et al., (2008; 2010) 

who found that S. cerevisiae strain D strongly inhibited the growth of O. oeni strain X and its 

ability to consume L-malic acid during sequential fermentations performed in synthetic grape 

juice media. An extracellular yeast proteinaceous compound was involved in the MLF inhibition 

and was found to work synergistically with ethanol. The present project aimed at revalidating the 
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MLF inhibition with the same pair and further characterizing the yeast inhibitory proteinaceous 

compound. After interrupting the work for almost six years, the first concern was to demonstrate 

that neither the yeast strain D lost its ability to release the proteinaceous compound nor did the 

bacteria acquire resistance. After having shown that the anti-MLF activity for the couple chosen 

was still present, our objectives were first to better characterizing the peptidic compounds: are 

there one or many molecules? What is their apparent MW? Do they derive from an already 

known proteins or peptides? On the other hand we wanted to better understand the mechanisms 

of interaction: is there a constant activity during the different phases of the alcoholic 

fermentation? The effect is the same on whole cells of Oenococcus oeni during MLF or on the 

malolactic enzyme? 

 

In the first chapter, the biochemistry of alcoholic and malolactic fermentations and the ecology 

of the major microorganisms involved in winemaking are described.The importance of the 

malolactic fermentation, its impact on the overall wine composition and quality and its main 

inhibitors are presented. The stress resistance mechanisms in lactic acid bacteria and the different 

types of microbial interactions during winemaking are also detailed.  

In the second chapter, the materials and methods used for the accomplishment of the experiments 

are described in detail.  

The third chapter shows the results obtained in this work combined with the discussions. It is 

divided into four parts. The first part gives the kinetic and biochemical parameters of the 

alcoholic and malolactic fermentations during pure and sequential cultures. The second part 

deals with the characterization of the anti-MLF peptides produced by S. cerevisiae strain D. 

Their proteinaceous nature, apparent MW, timing of release during AF and the reproducibility of 

the results in synthetic and natural grape juices are evaluated and discussed. The third part 

focuses on their mechanism of action and describes their direct effect on the malolactic enzyme 

activity. The fourth part deals with their purification by SDS-PAGE and Ion Exchange 

Chromatography followed by sequencing in order to determine their nature and real MW.  

Finally, in the fourth chapter, the general conclusions and the perspectives for future works are 

given.  
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I.1 Ecology of winemaking yeasts 

Yeasts are widespread in nature and are found in soils, on the surface of vegetables and in the 

digestive tract of animals. Wind and insects disseminate them. They are distributed irregularly on 

the surface of a grape vine and are found in small quantities on leaves, stems and unripe grapes. 

They colonize the grape skin during maturation (Pretorius, 2000; Munõz et al., 2011). 

Saccharomyces cerevisiae (Figure I.1), is without a doubt, the most important species for 

humanity because of its multiple usage in different sectors, such as beverages (wine, beer), 

bakeries, milk and dairy products, pharmaceutics and biotechnology Rainieri and Pretorius, 

2000; Ribéreau-Gayon et al., 2006). 

 

 

 

 

 

 

 

 

 
Figure I.1. Exponentially growing Saccharomyces cerevisiae. Cells stained with DAPI (blue) showing the 
nuclei andphalloidin (green) showing actin structures. Photo by Mark Bisschops, TU Dleft Netherlands 

 

It has been known for a long time that freshly crushed grape juice harbors a diversity of yeast 

species, principally within the genera Hanseniaspora (anamorph Kloeckera apiculata), Pichia, 

Candida, Metschnikowia, Kluyveromyces and Saccharomyces. Occasionally, species in other 

genera such as: Zygosaccharomyces, Saccharomycodes, Torulaspora, Dekkera, Schizosaccharomyces 

and the strictly oxidative yeasts belonging to the genus Rhodotorula, may be present (Romano 

and Suzzi, 1993; Fleet and Heard, 1993; Fleet, 2008; Li et al., 2010). These yeasts originate from 

the microbial communities of the grape berries and the microbial communities of the winery 

environment. It is also well known that many of these non-Saccharomyces species (especially 
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species of Hanseniaspora, Candida, Pichia and Metschnikowia) initiate spontaneous alcoholic 

fermentation of the juice, tolerate 4 to 5% ethanol (v/v), but are very soon overtaken by the 

growth of S. cerevisiae that dominates the mid to final stages of the process, most often being the 

only species found in the fermenting juice at these times (Fleet and Heard, 1993; Fleet, 2008). 

Based on these early ecological studies, S. cerevisiae and the related species Saccharomyces 

bayanus and Saccharomyces uvarum were considered to be the yeasts of main relevance to the 

process. S. cerevisiae strains ferment grape juice vigorously, leave small amounts of 

unfermented sugars in the medium and produce wines with high ethanol concentrations 

(Masneuf, 1996; Rainieri and Pretorius, 2000). 

The non-Saccharomyces species usually achieve a maximum population of 107 CFU/ml or more 

in the early stages of fermentation before they die off. It is concluded that this amount of biomass 

is sufficient to impact the chemical composition of wine, such as in Chardonnay and Shiraz, and 

that the contribution of these yeasts to the overall wine character (aromas and flavors) is much 

more significant than thought previously (refer to TableI.1). Under certain circumstances, such 

as fermentation at lower temperatures, some non-Saccharomyces species do not die off and 

remain at high populations in conjunction with S. cerevisiae until the end of fermentation. 

Moreover, it was shown that these indigenous non-Saccharomyces yeasts also grow in grape 

juice fermentations inoculated with starter cultures of S. cerevisiae (Cocolin et al., 2002; 

Romano et al., 2003; Ribéreau-Gayon et al., 2006; Ciani et al., 2009; Zott et al., 2011; Medina et 

al., 2013; Holt et al., 2013; David et al., 2014). 

 
Table I.1. Contribution of non-Saccharomyces strains to wine aroma  
 

Schizosaccharomyces pombe Deacidification (Taillandier et al., 1995) 
Kluyveromyces thermotolerans Acidification (Mora et al., 1990; Ciani et al., 2006) 

Candida zemplinina (Starmerella bacillaris) 2 times more production of glycerol (Soden et al., 2000; 
Beltramo et al., 2002; Grangeteau et al., 2016) 

Pichia kluyverri Hydrolysis precursors (terpenes, thiols…)  
(Fleet and Heard, 1993) 

Hanseniaspora osmophila 10 times more production of phenyl-2-ethanol  
(Fleet and Heard, 1993; Ciani et al., 2006;  Oćon et al., 2010) 

Torulaspora delbrueckii 
Fruity esters  

(Ciani et al., 2006 ; Renouf et al., 2006 ; Taillandier et al., 2014) 

Metchnikowia pulcherrima Hydrolysis precursors (terpenes, thiols…)  
(Fleet and Heard, 1993; Oćon et al., 2010; Sadoudi et al., 2016) 

Candida zemplinina, Lachancea thermotolerans Different aromatic board (terpenes, lactones) 
(Fleet and Heard, 1993; Oćon et al., 2010, Sadoudi et al., 2016) 
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I.2 The alcoholic fermentation 

Winemaking is the biotransformation of must into wine performed principally by S. cerevisiae. 

The sugar concentration in the grape must is between 160 and 220 g/l. The biochemical steps of 

sugar degradation are described below: 

a- Glycolysis 
Glycolysis is carried out entirely in the cytosol of the cell. The different steps are described in 

Figure I.2. During glycolysis, each mole of oxidized glucose releases 2 moles of pyruvic acid 

and 2 moles of NADH, H+ with a net gain of 2 moles of ATP. The NADH, H+ should be re-

oxidized for the maintenance of the redox balance (Heux et al., 2006).  

Aerobically, the coenzyme re-oxidation is performed by the respiratory chain localized in the 

internal mitochondrial membrane if the sugar concentration enables it (Pasteur Effect). If the 

oxidative respiration is repressed under high sugar concentrations and in the presence of oxygen 

(Crabtree effect), the re-oxidation occurs by reducing pyruvate during alcoholic fermentation. 

Aerobically and during oxidative respiration, the pyruvic acid is oxidized to water and CO2 and 

gives the precursors of anabolic reactions through the Krebs cycle. Under anaerobic conditions 

or Crabtree effect, the pyruvate is decarboxylated to acetaldehyde which is then reduced to 

ethanol, thus re-oxidizing the NADH, H+ during alcoholic fermentation. 
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Figure I.2. Glycolysis and alcoholic fermentation pathway (Ribéreau-Gayon et al., 2006) 
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b- Alcoholic fermentation 

At the end of glycolysis, the pyruvate is decarboxylated via the pyruvate decarboxylase into 

acetaldehyde (ethanal) which is then reduced to ethanol by the alcohol deshydrogenase and 

NADH, H+ (Larue et al., 1984). The pyruvate is the origin of secondary products that play a 

major role in wine aroma (glycerol, acetaldehyde, higher alcohols, esters, organic acids…) which 

will be further described. 

An assimilable nitrogen (mineral and organic) concentration of 140-150mg/l is necessary to 

complete fermentation because it stimulates biomass production. Otherwise, it deprives glucose 

intake and can induce a sluggish fermentation (Wang et al., 2003; Palma et al., 2012). A small 

amount of pantothenic acid (10 µg/l) influences viability and fermentation rate (Wang et al., 

2003). Oxygen is required for membrane lipid synthesis. However, in high quantities, it may 

favor the oxidation of wine phenolic compounds (Salmon, 2006). 

 

2 CH3COCOOH                                        2 CH3CHO + CO2 

 

2 CH3CHO + 2 NADH, H+                                           2 CH3CH2OH + 2 NAD+ 

 

c- Glyceropyruvic fermentation 
Glycerol is the most important by-product of alcoholic fermentation after ethanol and carbon 

dioxide (Figure I.3). It is mainly produced in red wine at concentrations between 2 and 11 g/l, 

depending on the yeast strain, grape must composition, degree of ripeness (sugar content), mold 

infection and fermentation conditions such as pH, sulfite levels, aeration and temperature 

(Pretorius, 2000). 4 to 10% of the sugar’s carbons are converted to glycerol and its level 

increases with fermentation temperature (Torija et al., 2003c). Wine yeast strains overproducing 

glycerol would improve the organoleptic quality of wine. 

In the presence of sulfite, the fermentation of glucose by yeasts produces equivalent quantities of 

glycerol and acetaldehyde in its bisulfitic form. Since the acetaldehyde combined with sulfite 

Pyruvate 

Pyruvate decarboxylase  

Ethanal 

Alcohol deshydrogenase   

Ethanal    Ethanol 
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cannot be reduced into ethanol, dihydroxyacetone-1-phosphate becomes the final electron 

acceptor. It is reduced to glycerol 3-phosphate which is then dephosphorylated into glycerol 

(Ribéreau-Gayon et al., 2006). Glycerol 3-phosphate deshydrogenase is the key enzyme in the 

production of glycerol and is encoded by GPD1 and GPD2 genes that play an important role in 

osmoregulation and intracellular redox balance, respectively. HOG1 (High Osmotic Glycerol) 

encodes for a kinase that controls both genes and is involved in the cell response to hyperosmotic 

stress and glycerol production during wine fermentation (Remize et al., 2003). 

 

 

 

 

 

 

 

 

Figure I.3. Glyceropyruvic fermentation pathway (Ribéreau-Gayon et al., 2006) 

Glyceropyruvic fermentation does not produce ATP and does not provide biologically 

assimilable energy for yeasts. The glyceropyruvic fermentation occurs also when yeast starters 

are grown in the presence of oxygen. Their pyruvate decarboxylase and alcohol deshydrogenase 

are weakly expressed (Ribéreau-Gayon et al., 2006). 

d- Acetic acid formation 
Acetic acid is the principal volatile acid in wine. It is produced by yeasts during alcoholic 

fermentation by different pathways and has a detrimental organoleptic effect on wine quality. In 

healthy grape must with a moderate sugar concentration, S. cerevisiae produces relatively small 

quantities (100-300 mg/l), varying according to the strain (Ribéreau-Gayon et al., 2006). The 

biochemical pathway for the formation of acetic acid in wine yeasts is described in Figure I.4.  
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Figure I.4. Acetic acid formation pathways in yeasts (Ribéreau-Gayon et al., 2006) 

1-Pyruvate decarboxylase, 2-Alcohol deshydrogenase, 3- Pyruvate deshydrogenase, 4-Aldehyde 
deshydrogenase, 5- Acetyl-CoA hydrolase, 6- Acetyl-CoA synthase 

 
The higher the sugar content of the must, the more acetic acid the yeast produces during 

fermentation especially under aerobic conditions. Acetate formation plays an important role in 

the intracellular redox balance by regenerating reduced equivalents of NADH. 

I.3 Ecology of winemaking lactic acid bacteria 

Lactic acid bacteria are historically defined as a group of aerotolerant anaerobes, Gram-positive 

organisms that ferment hexose sugars to produce primarily lactic acid. Today, LAB play a 

prominent role in the world food supply, identified somehow by RAPD-PCR fingerprinting and 

16S-ARDRA (Rodas et al., 2003), performing the main bioconversions in fermented dairy 

products, meats and vegetables They are also critical for the production of wine, coffee, silage, 

coca, sourdough, and numerous indigenous food fermentations (Rossetti and Giraffa, 2005; 

Makarova et al., 2006).  

Lactic acid bacteria are present in all grape musts and wines. Depending on the stage of the 

winemaking process, environmental conditions determine their ability to multiply. When they 

develop, they metabolize numerous substrates. Therefore, lactic acid bacteria play an important 

role in the transformation of grape must into wine. In winemaking, LAB are doubly important as 

they can both enhance and diminish the quality of wine. Their impact on wine quality depends 

not only on environmental factors acting at the cellular level but also on the selection of the best 

adapted species and strains of bacteria. They are responsible for the malolactic fermentation but 
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they can also cause changes that adversely affect the organoleptic properties of the final product. 

Shortly after crushing and the start of AF, the LAB population in the grape must generally ranges 

from 103 to 104 CFU/ml. During the first days of AF, bacteria are mainly influenced by the 

original sanitary state of the grapes and the fermentation parameters like temperature. Their 

amount varies between 102 and 104 CFU/ml (Ribéreau-Gayon et al., 2006). The major species of 

LAB present at this stage include Lactobacillus plantarum, Lactobacillus casei, Leuconostoc 

mesenteroides and Pediococcus damnosus as well as Oenococcus oeni (O. oeni) but to a lesser 

extent (Wibowo et al., 1985; Lonvaud-Funel et al., 1991). In comparison to the microflora found 

in the vineyard, the species found in grape must are more diverse and include L. plantarum, L. 

hilgardii, L. brevis, P. damnosus, P. pentosaceus, Ln. mesenteroides and O. oeni (Ribéreau-

Gayon et al., 2006). Most of these LAB species generally do not multiply and decline towards 

the end of alcoholic fermentation, with the exception of O. oeni (Wibowo et al., 1985; Lonvaud-

Funel et al., 1991; van Vuuren and Dicks 1993; Fugelsang and Edwards 1997; Volschenk et al., 

2006).The bacterial population decreases to approximately 102-103 CFU/ml during the active 

stages of AF and towards its end (Ribéreau-Gayon et al., 2006). The decrease could be attributed 

to increased ethanol concentrations, high SO2 concentrations, low pH, low temperatures, the 

nutritional status and competitive interactions with the yeast culture (Fugelsang and Edwards 

1997; Volschenk et al., 2006). During the active stages of alcoholic fermentation, some bacterial 

species like O. oeni, as well as the yeast population multiply, but bacterial growth remains 

limited. This increase is influenced by the alcohol, the pH and the addition of SO2. A maximum 

population of approximately 104-105 CFU/ml is reached (Ribéreau-Gayon et al., 2006). After the 

completion of alcoholic fermentation, the surviving bacterial population enters a latent phase 

followed by the active growth phase. The active growth phase can last for several days, and 

during this time, the population increases to 106 CFU/ml. MLF begins when the total population 

exceeds 106 CFU/ml and a sufficient biomass is achieved (Ribéreau-Gayon et al., 2006; Muňoz 

et al., 2011).  

Besides their morphology in coccal or rod-like forms, the homofermentative or 

heterofermentative character is a decisive factor in the classification of LAB. Homofermentative 

bacteria produce more than 85% of lactic acid from glucose. Heterofermentative bacteria 

produce carbon dioxide, ethanol and/or acetic acid in addition to lactic acid. The main species of 
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LAB that can survive in grape must and wine despite the hostile conditions are shown in Table 

I.2. 

Table I.2. Main species of lactic acid bacteria in grape must and wine (Ribéreau-Gayon et 

al., 2006) 

Genus Metabolism of sugars Species 

Pediococcus Homofermentative P. damnosus 
P. pentosaceus 

   
Leuconostoc 

                 Oenococcus   
Heterofermentative Ln. Mesenteroïdes 

O. oeni 
   

   

Lactobacillus 

Homofermentative 
 

 Facultative  heterofermentative 
 

Strict Heterofermentative  

 
 

L. delbrueckii 
L. mali 

 
 

L. casei 
L. plantarum 

 
L. brevis 

L. fermentum 
L. hilgardii 

I.4 Characteristics of Oenococcus oeni  

Formerly Leuconostoc oenos, Oenococcus oeni forms now a distinct species that includes 

genotypically homogeneous Gram-positive cocci (Dicks et al., 1990). The cells of O. oeni are 

non-flagellated, non-sporulating, spherical or slightly elongated and assembled in pairs or small 

chains (Figure I.5). They are aerotolerant anaerobes and chemo-organotrophic that require a rich 

medium containing fermentable sugars and vitamins. Their optimum growth temperature is 22 ºC 

and they prefer an initial growth pH around 4.8.They are strict heterofermentative and the 

fermentation of D (-) glucose produces lactic acid, CO2 and ethanol or acetic acid. Some strains 

are able to catabolize arginine. Their growth is not completely inhibited in the presence of 10% 

ethanol (v/v). They prefer fructose to glucose; grow very well in the presence of glucose and 

malate or glucose and fructose, and usually ferment trehalose (Liu et al, 1995; Dicks et al., 1995; 

Ribéreau-Gayon et al., 2006; Terrade et al., 2009; Dicks and Endo, 2009; du Toit et al., 2011). O. 

oeni is remarkable in its ability to tolerate the nutritionally poor and challenging wine 
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environment such as acidic pH and the presence of 10% ethanol (v/v). The metabolic by-

products formed during the growth of O. oeni in wine have been shown to positively contribute 

to the flavor and mouth feel of wines (acetaldehyde, acetoin, acetic acid, diacetyl, 2,3-

butanediol) (Versari et al., 1999; Bartowsky, 2005). Ecologically, it has not been possible to find 

an environmental reservoir of O. oeni outside of wine and fermenting grape must. Due to the 

highly seasonal nature of wine production, it remains mystery as to how this organism is able to 

rapidly appear in significant numbers in finished wine to undertake the MLF (Wibowo et al., 

1985; Bartowsky, 2005). 

 

 

 

 

 

 

Figure I.5. A chain of O. oeni cells (G-Algeria et al., 2004) 

The species Ln. oenos was considered to form part of the Leuconostoc genus until recently, when 

analysis of the 16S-23S ribosomal rDNA sequence showed that it was different from the other 

members of the genus. This led to the creation of a new genus, Oenococcus, which includes just 

two species, sharing 96% 16S rRNA sequence homology, the malolactic O. oeni (Dicks et al., 

1995; Zavaleta et al., 1996) and the non-malolactic Oenococcus kitaharae (Endo and Okada, 

2006).The first genome sequence of O. oeni strain PSU-1, was published by Mills et al., (2005) 

and showed that the genome was only 1.8 Mb and encoded about 1800 ORFs (Open Reading 

Frames). This represents a streamlined genome, especially for a free-living bacterium, which is 

within the lower 10% of all bacterial genome sizes and at the bottom-end of what is observed in 

other species of LAB. Recently, Marquos et al., (2010) adopted a novel molecular technique to 

identify O. oeni in wine based on the amplification of the 16S rRNA gene with universal primers 

after restriction with the endonuclease FseI generating two fragments of 326 and 1233 bp. 
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Among wine bacteria, the FseI recognition sequence is only found in the 16S rRNA gene of O. 

oeni ensuring the specificity of the method. 

I.4.1 Sugar metabolism in O. oeni   
 

It has been shown that lactic acid bacteria from wine use sugars as a source of carbon and 

energy. Wine contains various monosaccharides, mainly pentoses and hexoses as well as 

disaccharides. The sugars left over by the yeasts after AF are available for fermentation by LAB. 

The major sugars in wine are represented by glucose and fructose which is the most abundant, 

then arabinose, ribose and trehalose (Liu et al., 1995; Lonvaud-Funel, 1999; Liu, 2002). 

O.oeni uses mainly the pentose phosphate pathway to ferment hexoses and to produce principally 

but not exclusively lactate. The other molecules produced are essentially CO2, acetate or ethanol 

(Figure I.6-B). After being transported into the cell, a glucokinase phosphorylates the glucose 

into glucose-6-phosphate. Then, two oxidation reactions occur successively: the first leads to the 

production of gluconate-6-P; the second, accompanied by a decarboxylation, forms the ribulose-

5-P. In each of these reactions, a molecule of the coenzyme NAD+ or NADP+ is reduced 

(production of 2 reduced coenzymes). The ribulose-5-P is then epimerized into xylulose-5-P. The 

xylulose-5-P phosphoketolase is the key enzyme of this pathway and the reaction requires 

phosphate. It catalyzes the cleaving of the xylulose-5-P molecule into acetyl-P and 

glyceraldehyde-3-P. This latter is metabolized into lactic acid, while the acetyl-P can be reduced 

to ethanol in a slightly aerated environment or leads to the formation of acetate in an aerated 

environment with the formation of an ATP molecule. Therefore, changes in conditions not only 

influence the nature of the products formed but also the energy yield and thus growth (Ribéreau-

Gayon et al., 2006; du Toit et al., 2011; Muňoz et al., 2011). 

Fructose can also serve as an electron acceptor and is reduced to mannitol to regenerate the 

NAD+ coenzymes necessary for further hexose oxidation (Pilone et al., 1991; Salou et al., 1994). 

Mannitol is considered a bacterial spoilage product if produced in high amounts and mannitol-

tainted wines are described as complex, usually accompanied by high levels of acetic acid, D-

lactic acid, n-propanol and 2-butanol. Mannitol wines can also have a slimy texture, vinegar-

estery aroma and a slightly sweet taste (Liu, 2002; Bartowsky, 2009).  
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Some researchers have also reported the production of glycerol, erythritol, and other 

polyalcohols by O. oeni (Liu et al., 1995). According to Veiga-da-Cunha et al., (1993), the 

pathway responsible for the production of erythritol from glucose under anaerobic conditions 

involves the isomerization of glucose-6-P followed by cleavage to produce erythrose-4-P and 

acetyl-P, reduction of erythrose-4-P to erythritol-4-P, and finally hydrolysis of erythritol-4-P to 

form erythritol. Coenzyme A deficiency appears to be responsible for the formation of erythritol, 

acetate and glycerol from glucose in the absence of pantothenic acid (Ritcher et al., 2001). In 

general, the formation of polyalcohols occurs mainly for the reoxidation of NAD (P) H, H+ 

coenzymes (Muňoz et al., 2011). 
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Figure I.6. The three possible carbohydrate fermentation pathways in wine LAB: (a) The EMP pathway 
(homofermentative) for the fermentation of hexoses, (b) the heterofermentative pentose-phosphate pathway 

for the fermentation of hexoses, and (c) the pentose-phosphate pathway for the fermentation of pentoses 
(Fugelsang and Edwards, 1997; Ribéreau-Gayon et al., 2006) 
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I.4.2 Nutritional requirements of Oenococcus oeni 
 

Wine LAB have fastidious nutritional requirements. Carbon essentially comes from sugars and 

sometimes organic acids. Glucose and fructose are the most represented and the sugar 

degradation depends on the bacterial species and on environmental factors. Oenococcus oeni 

degrades fructose more easily than glucose and its presence in a mixture with glucose is 

beneficial to growth. Less than 1 g/l of glucose covers the needs of the bacteria to form biomass 

necessary for malolactic fermentation. Lactic acid bacteria cannot grow with L-malic acid as a 

unique carbon source and the role of citric acid should also be taken into account (Hugenholtz, 

1993). Substrate co-fermentation by O. oeni largely depends on the strain used as well as on the 

environmental conditions (e.g., substrate, pH, temperature). In a study conducted on Cabernet-

Sauvignon, Pinot Noir and Chardonnay wines, using 11 commercial strains of O. oeni, malic 

acid and citric acid were co-metabolized. The rate of malate utilization was dependent on the 

type of wine (Martineau and Henick-Kling, 1996). When D-glucose, L-malic acid and citric acid 

were consumed simultaneously at pH 4.8, malic acid was metabolized at a higher rate than with 

glucose or citric acid alone (Arena et al., 1996; Viljakainen and Laakso, 2000). It appears that 

when O.oeni is allowed to catabolize malic acid before glucose, the consumption rate of sugar 

increases. In particular, O. oeni seems to prefer malate over glucose and citrate as an energy 

source at low pH (Arninck and Henick-Kling, 1993). Pimentel et al., (1994) reported that three 

strains of O. oeni, isolated from Portuguese wines, metabolized malate before glucose except at 

high pH (4 and 4.5). In this case, citric acid repressed the consumption of fructose and the 

consequent formation of mannitol, while stimulating the co-utilization of glucose and the 

production of acetate. It seems that sugars are not metabolized at low pH (Henick-Kling, 1995). 

However, the MLF is able to increase the pH to values compatible with sugar consumption and 

therefore cell’s growth (Fourcassie et al., 1992). Mixed-substrates fermentation stimulated cell’s 

growth of O. oeni in a model solution at pH 5. The specific growth rate (µmax) increased from 

0.05 to 0.087 and 0.14 h-1, using glucose, glucose-citrate and glucose-fructose substrates, 

respectively. These results were correlated with an increase in ATP production via the acetate 

kinase pathway. However, citrate alone did not stimulate microbial growth without the 

availability of fermentable carbohydrates (Salou et al., 1994). Saguir and Manca de Nadra, 

(2001) demonstrated that L-malic acid and citric acid favored O. oeni growth in nutritional stress 
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conditions. Citric acid was mainly involved in the biosynthesis of the aspartate-derived essential 

amino acids and glucose in the cysteine biosynthesis. 

 

Typically, wine contains between 100 and 600 mg/l of total nitrogen mainly in two forms: 

peptides and free amino acids. Amino acids are essential for protein synthesis and deficiencies in 

wine contribute to sluggish and stuck MLF even if starter bacteria are inoculated. The presence 

of several amino acids is essential for bacterial development because of numerous auxotrophies. 

Compounds found to be essential were valine, isoleucine, leucine, histidine, phenylalanine, 

tryptophan and arginine. Omission of all amino acids except for arginine, threonine, glycine and 

proline led to growth failure (Fernandez et al., 2003; Remize et al., 2006; Terrade et al., 2009; 

Terrade and de Orduňa, 2009). In some cases, the uptake of dipeptides like “Gly-Gly” instead of 

free amino acids, increased the bacterial growth rate of O. oeni strain X2L but not with “Leu-

Leu” that required energy (Fernandez et al., 2004). Some studies showed that glutamic acid was 

not essential for the growth of the MLB (Vasserot et al., 2003; Remize et al., 2006). Depending 

on the strain, arginine, histidine and tyrosine can be catabolized and serve as energy sources 

(Ribéreau-Gayon et al., 2006). Notably, O. oeni is able to break down arginine secreted by yeasts 

or released during autolysis, via the arginine deiminase pathway. It is a potential source of 

energy especially after glucose exhaustion and nutrient starvation and restores the bacterial 

ability to grow. The synthesis of three enzymes; arginine deiminase, ornithine transcarbamylase 

and carbamate kinase is induced by the presence of arginine. These enzymes transform 

stoichiometrically each mole of arginine into one mole of ornithine and two moles of ammonium 

(Liu et al., 1995; Liu and Pilone, 1998; Tonon and Lonvaud-Funel, 2000; Tonon et al., 2001; 

Ribérau-Gayon et al., 2006). Interestingly, arginine in combination with fructose protects 

bacteria against wine shock and stimulates pH-independent resistance mechanism in bacteria 

(Bourdineaud, 2006). Somehow, Terrade and de Orduňa, (2009), found that arginine and 

citrulline did not increase the growth of two oenological strains of O. oeni in comparison with L. 

buchneri under low pH, but arginine may play a role in microbiological stability. 

Among nitrogen compounds, puric and pyrimidic bases play an important role in activating 

growth but they are not essential. In fact, the needs for adenine, guanine, uracile, thymine, 

thymidine and xanthine are strain dependent (Ribéreau-Gayon et al., 2006). 
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Minerals such as Mg2+, Mn2+, K+ and Na+ are necessary. The first two are often used as key 

enzyme cofactors of the metabolism (kinases, malolactic enzyme). Among all metals, the lack of 

manganese (Mn2+) was found to prevent growth of O. oeni. Phosphorus is also required; it is a 

constituent of nucleic acids, phospholipids and ATP (Ribéreau-Gayon et al., 2006; Terrade and 

de Orduňa, 2009; Theobald et al., 2011). 

Vitamins are coenzymes or coenzyme precursors. LAB are incapable of synthesizing B-group 

vitamins, in particular nicotinic acid, thiamin, biotin and pantothenic acid and their limitations 

induce growth failure during MLF (Remize et al., 2006; Ribéreau-Gayon et al., 2006; Terrade 

and de Orduňa, 2009).  

Some winemakers use inactive dry yeasts that provide amino acids, monosaccharides and fatty 

acids favorable for the growth of wine lactic acid bacteria. Ageing on lees plays also a crucial 

role in the improvement of bacterial growth (Patynowski et al., 2002; Anduǰar-Ortiz et al., 2010). 

I.4.3 The malolactic fermentation 
 

Winemaking may involve two fermentation steps. The first one is the alcoholic fermentation 

(AF) and is conducted by yeasts belonging mainly to the S. cerevisiae species. The second one is 

the malolactic fermentation (MLF) and is performed by lactic acid bacteria belonging mainly to 

the O. oeni species. MLF plays an important role in the determination of the final quality of most 

red wines, but also certain white wines and classic sparkling wines. Apart from an increase in 

pH, additional sugars are fermented and aromatic compounds are produced which change the 

sensorial board of the wine (Liu, 2002; Bauer and Dicks, 2004; Volschenk et al., 2006; Lerm et 

al., 2010). The cells gain energy from the uniport of the monoanionic L-malate through the 

generation of a proton gradient across the cell membrane (Salema et al., 1994). Only strains of 

Lactobacillus, Leuconostoc, Oenococcus and Pediococcus resistant to low pH (pH < 3.5), high 

SO2 (50 ppm) and 10 % ethanol (v/v), survive in wine (Wibowo et al., 1985; van Vuuren and 

Dicks, 1993; Lonvaud-Funel, 1999). However, towards the end of the AF, spontaneous MLF is 

mainly driven by O. oeni (van Vuuren and Dicks, 1993; Ribéreau-Gayon et al., 2006). The malic 

acid concentration differs among grape cultivars and may also differ from year to year in the 

same cultivar. For this reason, along with other factors, the duration of MLF may differ from one 

year to the next (Ribéreau-Gayon et al., 2006). It is difficult to induce MLF in wines with malic 
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acid levels below 0.8 g/l. In this case, using ML starter cultures with a high malate permease 

activity is recommended (Lallemand reports 1999-2004). 

MLF reduces wine acidity by converting the dicarboxylic L-malic acid into the monocarboxylic 

L-lactic acid and CO2 by the malolactic enzyme (MW 138 kDa, encoded by mleA gene). This 

enzyme requires NAD+ and Mn2+ as co-factors (Labarre et al., 1996 b; Strasser de Saad, 1983). 

The monoanionic L-malate (HM-) enters the cell through a membrane malate permease encoded 

by mleP gene, whereas the membrane permeable malate (H2M) enters the cell by simple 

diffusion (Labarre et al., 1996a; Bony et al., 1997) (Figure I.7).  

 

 
Figure I.7. Malolactic fermentation reaction (Volschenk et al., 2006) 

 

I.4.4 Role of the membrane ATPase of O. oeni 

 

Apart from the degradation of carbon substrates in catabolic reactions, the metabolic energy 

available in bacterial cells can be generated by the ATPase proton pump located in the plasma 

membrane. Besides, there is a relationship between ATPase activity and adaptation of O. oeni to 

wine conditions (Garbay and Lonvaud-Funel, 1994). ATPase activity depends on the cell’s 

growth phase since it increases during the exponential growth phase reaching a maximum value 

at its end and decreases during the stationary phase (Carreté et al., 2002). Guzzo et al., (2000) 

and Carreté et al., (2002) proposed the existence of 2 types of membrane ATPase: H+-F0-F1 

ATPase, Mg2+ dependent, having a MW between 300 and 500 kDa, and K+-ATPase (P-type). 

They are distinguished by their susceptibility to inhibitors. H+-F0-F1 ATPase responsible for 80 

% of the ATPase activity in the cell membrane is inhibited by DCCD (N, N-
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Dicyclohexylcarbodiimide), while K+-ATPase responsible for the remaining 20 % of the ATPase 

activity is inhibited by vanadate (Guzzo et al., 2000). H+-ATPase plays an essential role in the 

regulation and maintenance of the internal pH. This protein is crucial for acidity tolerance (pH 

3.5 or lesser), since mutants of O. oeni deficient in H+-ATPase were unable to survive in acidic 

environments (Tourdot-Maréchal, 1993; Tourdot-Maréchal et al., 1999; Galland et al., 2003).  

MLF is carried out by some species of the genera Lactobacillus, Lactococcus, Oenococcus and 

Pediococcus (Kunkee, 1991). During MLF, the L-malic acid enters the cells and is subsequently 

decarboxylated by the malolactic enzyme to yield L-lactic acid and carbon dioxide. The reaction 

products are then released outside the cell (Figure I.8). The growth and malate consumption in O. 

oeni are not always correlated and the MLF can be successfully carried out without any 

noticeable growth (Capucho and San Romaô, 1994). The malolactic reaction which by itself is 

not energetic, leads to ATP synthesis via the membrane ATPase. In fact, it generates a proton 

motive force (PMF) that creates a proton efflux thus activating the ATPase/ATPsynthase (Cox 

and Henick-Kling, 1989; Poolman et al., 1991; Loubiere et al., 1992; Cox and Henick-Kling, 

1995; Salema et al., 1996). The PMF is the resultant of the membrane potential Δφ and the 

internal/external pH difference ΔpH.  

Several exchange systems in bacteria mediate the net translocation of charges across the 

cytoplasmic membrane which results in the generation of a membrane potential. If, in addition, 

the conversion of a substrate to a product consumes protons, the fermentation will lead to an 

increase of the internal pH and, consequently, to the formation of a ΔpH (Lolkema et al., 1995). 

Under acidic conditions, O. oeni maintains a constant internal pH of 5.8-6.3 and involves an 

electrogenic uniport step.  MLF in O. oeni proceeds through the uptake of the negatively charged 

mono-protonated HM-, which is the prevalent ionic species of malate under acidic conditions. In 

the cytoplasm, HM- is rapidly decarboxylated leading to the formation of a membrane permeable 

lactate (HL) in a proton consuming reaction, the alkalinization of the cytoplasm and the 

generation of a ΔpH (pHin-pHex) (Salema et al., 1994). Therefore, MLF results in the generation 

of both components of the PMF: the Δφ, inside negative, by the inflow of negative charges with 

Hmalate- and a ΔpH, inside alkaline, by the internal consumption of protons in the 

decarboxylation reaction (Ramos et al., 1994). During the growth of O. oeni, Δφ increases 

(negative charges inside the cell) when malate enters the cell (Loubière et al., 1992). According 
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to Salema et al., (1996), the malolactic enzyme cleaves malic acid, and lactic acid and CO2 are 

co-excreted with protons, which causes the pHin to increase. The ΔpH allows the entry of protons 

and the increase of ATP by the ATP synthase (Cox and Henick-Kling, 1989; 1995) (Figure I.8). 

It was recently shown by flow cytometry that the pHin of O. oeni during the early stages of MLF 

drops and becomes equal to the pHex. For example, it drops to 3.5 if the pHex is 3.5. Then, it 

increases to 6 during the exponential growth phase and decreases again to equilibrate with the 

pHex in the late stationary phase. The membrane potential increases in early MLF and then 

decreases. When malic acid is totally exhausted, the pHin along with the Δφ and the vitality 

decrease.  Finally, it was shown that the higher the ΔpH (pHin – pHext) in O. oeni cells is, the 

shorter the lag phase of the MLF is. The degradation of L-malic acid by non-growing or poorly 

growing cells of O. oeni can be even more rapid at low pHex values due to an increase in the ΔpH 

(pHin-pHex). To better manage the initiation of MLF in wines, the physiological state of O. oeni 

cells must be taken into account (Bouix and Ghorbal, 2015). 

 

 

 

 

 

 

 

 

Figure I.8. ATP generation during MLF (Henick-Kling et al., 1991) 
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I.5 Impact of MLF on the overall wine composition and quality 

I.5.1 Loss of acidity and increase in pH 
 

In general, the overall decrease in wine acidity resulting from MLF can vary from 0.1% to 0.3%, 

and the pH may rise by 0.1 to 0.3 units (Ribéreau-Gayon et al., 2006). Wines produced from 

grapes cultivated in cool climate viticultural areas naturally contain high concentrations of L-

malic acid (up to 8 g/l), and are considered to benefit from such deacidification (Henick-Kling, 

1995; Lonvaud-Funel, 1999). Subsequently the rise of pH after MLF, the alcoholic content, the 

temperature of wines and the interactions of various anions and cations, often promote the 

precipitation of potassium bitartrate (Beelman and Gallander, 1979; Carré, 1982). 

I.5.2 Microbial stability 
 

It is usually believed that a wine that has undergone MLF is more stable from a microbial point 

of view than the same wine without MLF. This is due to the consumption of nutrients by O. oeni 

that would otherwise be available for the growth of spoilage organisms. Such nutrients include 

L-malic acid, citric acid, amino acids, nitrogen bases, vitamins and fermentable sugars left after 

AF (Volschenk et al., 2006). Furthermore, LAB produces antimicrobial compounds such as 

lactic acid and bacteriocins (nisin, plantaricin) that inhibit the growth of other related bacterial 

species (Rammelsberg and Radler, 1990; Henick-Kling, 1993). Besides, if MLF occurs prior to 

bottling it prevents microbial growth in the bottle. There are several reasons why growth in the 

bottle is undesirable. 

I.5.3 Sensorial modifications 
 

Malolactic bacteria can influence the mouth feel of wine. Flavor attributes by MLF (Figure I.9) 

can be described as buttery, lactic, nutty, yeasty, oaky, sweaty, fruity and earthy (Henick-Kling, 

1993; Laurent et al, 1994, Costello et al., 2012). Mechanisms by which MLB can influence wine 

flavor may include: removal of existing flavor compounds by metabolism and adsorption to the 

cell wall; production of new bacterial-derived flavor compounds from the metabolism of sugars, 

amino acids and other substrates; and metabolism or modification of grape-and yeast-derived 

secondary metabolites to end products having a greater or lesser sensorial impact or masking 
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other aromatic compounds (Bartowsky and Henschke, 1995; Pozo-Bayon et al., 2005, Izquierdo-

Cañas et al., 2008, Bartowsky and Borneman, 2011; Lopez et al., 2011). The net impact of MLF 

on wine sensorial properties, depends on many factors such as the bacterial strain characteristics, 

the timing of inoculation (simultaneously or after AF), the varietal aroma intensity of wine and 

the vinification techniques employed (Henick-Kling, 1995; Semon et al., 2001). 

Figure I.9. A schematic representation of the production and modification of flavor-active compounds 
by LAB (Swiegers et al., 2005) 

 

I.5.4 Impact of MLF on red wine color 
 

MLF in red wine can reduce color intensity. The increase of pH that accompanies MLF can 

impact the pH-dependent equilibrium of anthocyanin pigments. The glycosidase activity of MLB 

may also be a potential source of color reduction in red wines (Bartowsky et al., 2002). 

Glycosylated anthocyanin pigments can be enzymatically attacked by the glycosidase of O. oeni 

and the glucose that is released by this reaction may provide a source of energy for the bacteria, 

resulting in enhanced growth and MLF. The occurrence of MLF can also affect the condensation 
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of anthocyanin and tannin, which in turn, has also been shown to have noticeable effect on red 

wine color and astringency. The metabolism of carbonyls, such as acetaldehyde, by LAB may 

also have some influence on the equilibrium and stability of red wine color components (Vivas et 

al., 1997; Osborne et al., 2000; Bartowsky et al., 2002; Bartowsky and Henschke, 2004).  

I.6 Biogenic amines 

Amines have an important metabolic role in living cells. Polyamines are essential for growth. 

Amines like histamine and tyramine are involved in the nervous system function and in the 

control of blood pressure. Biogenic amines (BA) are undesirable in all foods and beverages 

because if absorbed at high concentrations, they may induce headaches, respiratory distress, 

heart palpitation, hyper or hypotension, and several allergic disorders (Lonvaud-Funel, 2001). 

The BA most frequently identified in wine are 1-methylhistamine, putrescine, cadaverine, 

methylamine, tryptamine, 2-phenylethylamine and ethylamine (Figure I.10). Some of them like 

histamine and spermidine are normal constituents of the raw materials (Guerrini et al., 2002; 

Soufleros et al., 1998 and 2007). 
 

 

 

Figure I.10. Precursor amino acids of biogenic amines (Marquos et al., 2008) 
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The role of wine lactic acid bacteria in amine biogenesis has been studied. It varies according to 

the bacterial strain and the environmental conditions. When a bacterial cell is stressed, it can 

activate several metabolic processes for ATP production and survival, one of which is BA 

production through amino acid decarboxylation (Konings et al., 1995; Lonvaud-Funel, 2001).  

Nanneli et al., (2008) showed that the use of a selected bacterial strain for the induction of MLF 

led to the accumulation of putrescine. Therefore, the selected strain possessed the ornithine 

decarboxylation pathway. In an uncontrolled MLF, some strains of Lb. hilgardii, a common 

spoilage LAB, can grow in wine and increase the levels of histamine and putrescine detected 

through HPLC and LC-Ion Trap Mass Spectrometry and adversely affect the quality of wine. 

The pH, temperature, organic acids, amino acids, sugars and ethanol are parameters that 

influence the production of BA (Arena and Manca de Nadra, 2001; Arena et al., 2007; Pedro et 

al., 2010). Some studies investigated the ability of some strains of O. oeni to produce BA. 

Depending on the strain studied and the wine type, tyramine, cadaverine and histamine were 

produced at levels between 1 to 5.3 mg/l (Guerrini et al., 2002; Rosi et al., 2009). Grape varieties 

or high acidity wines produced in cool climate regions influence the wine amines content. In 

these regions, some strains of O. oeni were able to release phenylethylamine at concentrations up 

to 47 mg/l and tyramine up to 36 mg/l. These levels are considered to be noxious for consumer’s 

health (Vigentini et al., 2009).  Therefore, commercial malolactic starters, after careful selection 

(e.g., active lyophila), should be added to the vinification process in order to decrease the 

formation of biogenic amines. The wine storage on lees contributes also to the increase in the 

biogenic amines level (Lopez et al., 2008; Marquos et al., 2008). 

I.7 Inhibitors of malolactic fermentation 

Malolactic fermentation is a process influenced by various factors that can inhibit the growth of 

O. oeni and/or stop the malic acid consumption. The inhibitory metabolites released by yeasts 

during alcoholic fermentation, the grape composition, the physical chemical parameters and the 

winemaking practices influence the onset and accomplishment of MLF (Bauer and Dicks, 2004; 

Ciani and Comitini, 2007).The selection of the yeast and bacterial starter strains can be 

controlled by the winemaker. The interactions that may occur between the yeast and the bacterial 

strains during winemaking have a direct effect on the bacterial growth and malolactic activity. A 

yeast strain can be stimulatory, inhibitory or neutral towards a bacterial strain. Various studies 
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attempted to understand the different types of interactions between yeasts and bacteria and to 

identify the nature of the metabolites that mediate these interactions (Henick-kling and Park, 

1994; Alexandre et al., 2004; Osborne and Edwards, 2006). 

Some of the MLF inhibitory factors are discussed in this section.  

I.7.1Temperature 
 

The optimal temperature for growth of Oenococcus oeni is between 27 and 30 ºC. But this is not 

the case in a medium containing a high level of alcohol (13-14% v/v) such as wine. In this case, 

the optimum growth is between 20 and 23 ºC (Britz and Tracey, 1990; Henick-Kling, 1993; 

Bauer and Dicks, 2004; Ribéreau-Gayon et al., 2006). The optimal temperature for MLF in the 

presence of ethanol (10-14 % v/v) is between 20 and 25 °C. For a successful MLF, it is 

recommended to conduct it at a temperature between 18 and 20 °C in order to limit the risks of 

off-flavors mainly the production of a high volatile acidity (Coucheney et al., 2002).Therefore, 

the ideal temperature for both bacterial growth and malic acid consumption is around 20 ºC 

(Ribéreau-Gayon et al., 2006). A temperature lower than 18 ºC delays the initiation of MLF and 

its accomplishment, whereas temperatures below 16 ºC inhibit the growth of O. oeni and 

decrease the cellular activity (Henick-Kling, 1993; G-Alegria et al., 2004; Ribéreau-Gayon et al., 

2006). Chu-Ky et al., (2005) found that cold shocks between 8 and 14 ºC affect the plasma 

membrane but not the cell survival. Temperatures higher than 25 °C disturb the membrane 

permeability and denature proteins like the membrane ATPase. A heat chock at non-lethal 

temperatures induces the expression of resistance genes in bacteria like the hsp 18 gene that 

encodes the heat shock protein Lo 18. These proteins help maintain the cell’s integrity either by 

repairing the damages caused or by preventing them. Therefore, it could be useful to adapt 

bacteria to the harsh conditions of wine by heat shocks of the precultures (Chu-Ky et al., 2005).  

Tourdot-Maréchal et al., (2000) compared the kinetics of membrane fluidity variation of 

instantaneously stressed O. oeni cells with cells adapted to the stress factor by a pre-incubation in 

inhibitory growth conditions. Membrane fluidity of heat-adapted cells increased only slightly 

when exposed to 42 ºC and the rate of membrane fluidization was five-fold lower than that of 

non-adapted cells. Therefore, O. oeni was able to express a stress-tolerance mechanism such as 

the heat shock proteins.  
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I.7.2 pH  
 

The pH of wine is usually between 3 and 4 but may be lower than 3 in certain wines. The pH is a 

key factor for the success of MLF. It plays an important role in the determination of the LAB 

species that will survive and develop as well as their growth rate. At pH values higher than 3.5, a 

diverse bacterial population is present and Lactobacillus and Pediococcus are usually the most 

abundant LAB whereas the more acid wines favor the presence of O. oeni. The optimum pH for 

O. oeni growth is between 4.3 and 4.8 and the optimum pH for L-malic acid consumption is 4 

(Salou et al., 1991; Bauer and Dicks, 2004; Ribéreau-Gayon et al., 2006). The lower is the pH 

and the slower is the bacterial growth. The low extracellular pH decreases the intracellular pH of 

bacteria. Some acids in their dissociated or undissociated forms diffuse inside the cell and affect 

the proteins (mainly enzymes) and the DNA (Guzzo, 2000). The acidity also affects the selective 

permeability of the plasma membrane by targeting mainly the membrane proteins (enzymes and 

transporters). The bacteria can modify the composition of their plasma membrane in response to 

this stress (fatty acids and proteins).  

In wine, the lowest pH at which growth is possible is around 3. But this value depends on the 

other characteristics of the environment, such as the alcoholic content of wine. If other factors 

are favorable, then this value is lowered and vice versa. The lag phase is prolonged and the 

growth is slowed down when the pH is low. To the contrary, if the pH is favorable (pH close to 

4), the lag phase goes unnoticed. The growth arrest in an acidic environment happens when the 

intracellular pH (pHi) reaches a certain limit (McDonald et al., 1990). 

The H+-ATPase plays an important role in the maintenance of the intracellular pH in an acidic 

medium such as wine by extruding protons (refer to paragraph 1.4.4). Fortier et al., (2003) 

showed that its activity increases at low pH values. It is 1.6 times higher at pH 3.5 than at pH 

5.5. This is due to an increase in the expression of the atp gene that encodes this enzyme. The 

lower is the pH and the higher is the expression of the atp gene as well as the ATPase activity. 

Mutants of O. oeni lacking the ATPase cannot survive under acidic conditions.  

The ability of bacteria to obtain energy from the metabolism of glucose and fructose is inhibited 

at pH 3.2. The optimum pH for glucose catabolism in O. oeni and Lb. plantarum is between 4 
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and 6 (Henick-Kling, 1986; Pan et al., 2010).Finally, the MLF participates to the acid tolerance 

by increasing the intracellular pH and producing ATP (refer to paragraphs 1.4.3 and 1.4.4).  

I.7.3 Oxygen 
 

Malolactic bacteria have been shown to be sensitive to excessive amounts of oxygen. This is the 

case of O. oeni. This means that exposure of the bacteria to undue amounts of oxygen after the 

completion of alcoholic fermentation should be avoided. Although it has been noted that even 

low concentrations of oxygen may detrimentally influence MLF, micro-oxygenation may have a 

positive effect on MLF due to the gentle stirring action associated with the micro-oxygenation 

process itself. Besides, oxygen reacts with flavoproteins (proteins that contain a nucleic acid 

derivative of riboflavin such as FAD or Flavin Adenine Dinucleotide and FMN or Flavin 

Mononucleotide), to maintain a favorable redox equilibrium (Ribéreau-Gayon et al., 1998). 

I.7.4 Sulfur dioxide  
 

Sulfur dioxide is an important preservative commonly used in winemaking. Its antimicrobial 

(Carreté et al., 2002); antioxidant (Danilewicz, 2003) and antienzymatic (Wedzicha et al., 1991) 

functionalities at low concentrations make it an ideal and cost effective food stabilizer. Besides, 

SO2 promotes the extraction and stabilization of phenolic and aromatic compounds due to its 

effect on membrane permeability. Its effectiveness is directly linked to wine composition and pH 

and the total concentration found in wine is the sum of added SO2 (exogenous) and produced SO2 

by S. cerevisiae (endogenous). The harvested grapes must be sulfitized with levels between 30 to 

50 mg/l for red wines and 60 to 100 mg/l for white wines. The endogenous SO2 level strongly 

depends on the yeast strains. S. cerevisiae usually produces between 10 to 30mg/l, but some 

strains can produce more than 100mg/l (Rankine et al., 1970; Suzzi et al., 1985). The production 

of SO2 by yeasts depends on the availability of nutrients such as nitrogen (Gyllang et al., 1989; 

Osborne and Edwards, 2006), pH, temperature (Eschenbruch and Bonish, 1976) and the 

clarification degree (Liu and Gallander, 1982 and 1983). SO2 can bind to acetaldehyde and other 

carbonyl substances in wine.  

In wine, the dissociation equilibrium of sulfur dioxide comprises the molecular SO2, the bisulfite 

and the sulfite ions according to the following scheme (Figure I.11): 
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SO2 + H2O ↔H2SO3↔HSO3
- + H+ ↔ SO3

2- + 2H+ 

                                                                                                          R    C==O                            
 

                                                                        HSO3
 

Figure I.11. Different forms of SO2 in wines (Free form: SO2, H2SO3, HSO3
-, SO3

2- ; Active forms: SO2, H2SO3 

Combined form: RCOHSO3) 

SO2 is a major factor in MLF inhibition (Henick-kling and Park, 1994). At pH 3.5, a 

concentration of 15 mg/l or more of free SO2 is lethal for O. oeni. The malolactic activity is very 

sensitive to sulfur dioxide. 20 mg/l of combined SO2 reduce the malolactic activity by 13 %, 50 

mg/l by 50 % and 110 mg/l totally inhibit it (Lafon-lafourcade, 1970). 61 mg/l of total SO2 at pH 

between 3.5 and 3.8, and temperature between 15 and 20 ºC in Cinsault wine caused a loss of 

wine color (Van der Westhuizen and Loos, 1981). Lafon-Lafourcade and Peynaud (1974); Rose 

and Phil-Kington (1989); Fugelsang and Edwards (2007), showed that the bound form is 5 to 10 

times less effective or has much weaker antimicrobial properties than the free form. However 

numbers of researchers have suggested that bound SO2 may be more antimicrobial than 

previously believed (Larsen et al., 2003; Osborne and Edwards, 2006) particularly with regard to 

the more SO2 sensitive wine LAB. The major form of bound SO2 in wine is typically 

acetaldehyde–bound SO2 as acetaldehyde is produced by yeasts during AF (Romano et al., 

1994). The next most important SO2 binder found in wines is pyruvic acid, which is also a 

product of yeast metabolism. Wells and Osborne (2011) and Osborne et al., (2006) showed that 

SO2 bound to acetaldehyde and pyruvic acid was inhibitory to wine LAB growth (Lb. hilgardii 

WS-7, P. parvulus WW-1, P. damnosus ATCC 43013 and O. oeni Viniflora oenos) at 

concentrations as low as 5 mg/l. At concentrations higher than 50 mg/l, the growth was totally 

arrested (Wibow et al., 1985). Wine LAB can release the SO2 bound to acetaldehyde and pyruvic 

acid at pH 3.3 and 3.6. Bound SO2 has a bacteriostatic rather than a bactericidal action and 

causes a sluggish bacterial growth and MLF. 

The availability of the molecular SO2 which is the active form depends on the concentration of 

free SO2 and the pH. According to Romano and Suzzi (1992), SO2 penetrates in its molecular 

form within the cell by diffusion. At a high cytosolic pH nearly 6.5, it gives the HSO3
- followed 

by an accumulation of charged sulfite ions (SO3
2-) that react with biological molecules such as 
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essential vitamins, cofactors, proteins, nucleic acids and enzymes. These reactions lead to the 

bacterial growth inhibition and cell’s death (Gunnison et al., 1981). Delfini and Morsiani (1992) 

found that a concentration of molecular SO2 higher than 0.5 mg/l was able to completely inhibit 

10 strains of Leuconostoc and 4 strains of Lactobacillus. Moreover, a population of 2 x 106 

cells/ml of Leuconostoc was totally killed 22 h after exposure to 0.84 mg/l of molecular SO2. 

Carreté et al., (2002) showed that 40 mg/l of total SO2 at pH 5.5 and at 27 °C were able to reduce 

about 63% of the H+-ATPase specific activity and consequently reduced the bacterial viability 

and malolactic activity. They also showed that SO2 worked synergistically with decanoïc acid.  

At the end of MLF, the wine must be sulfitized again in order to reduce the risk of post-MLF 

spoilage by O. oeni responsible for the production of acetic acid and biogenic amines and to 

control the growth of spoilage bacteria such as Pediococcus and Lactobacillus (Jackowetz and de 

Ordňa, 2012). Finally, a low pH and a high ethanol level act synergistically with sulfur dioxide. 

I.7.5 Ethanol 
 

Ethanol is the main metabolite released by S. cerevisiae during the AF and exerts a direct effect 

on the growth and metabolic activities of MLB. It plays an essential role in their survival in wine 

and the fulfillment of the MLF. The ability of LAB to tolerate elevated concentrations of ethanol 

is dependent on a number of factors including the strain selected, the fermentation temperature 

and the shock duration and its severity (Bauer and Dicks, 2004; Lerm et al., 2010). Ingram et al., 

(1984) and Rosa and Sa-Correia, (1992) argued that the ethanol inhibition is due to the 

incorporation of this small amphiphilic molecule to the polar lipid-water interface of the plasma 

membrane. The barrier will be ruptured which will increase the membrane polarity and allow the 

passage of other polar molecules. Indeed, this can lead to an increase of the diffusion of H+ ions 

inside the cell and a simultaneous loss of certain intracellular compounds (Da Silveira et al., 

2002; 2003). Furthermore, ethanol will affect the hydrophobic interactions between the 

hydrocarbon chains of phospholipids and the intrinsic proteins of the membrane. The positioning 

and the configuration of membrane proteins will be also affected as well as their activity, notably 

the ATPase activity.  

A rate of 10-14% ethanol (v/v) combined with an acid shock, induces an instantaneous 

membrane fluidization which reduces bacterial viability (Chu-Ky et al., 2005). Capucho and San 
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Romaô, (1994) showed that the malolactic activity was not inhibited with an alcoholic degree of 

more than 12% (v/v). However, they demonstrated along with other authors an inverse 

correlation between growth and high levels of ethanol (Davis et al, 1988; Henick-Kling, 1993; 

Alexander et al., 2004; Bauer and Dicks, 2004). Generally, strains of O. oeni are able to survive 

and proliferate in 10% ethanol (v/v) at pH 4.7 (Tracey and Britz, 1990). Some strains of O. oeni 

and L. plantarum can even grow at 13% ethanol (v/v) (G-Algeria et al., 2004). Temperatures of 

25 ºC and above combined with ethanol levels of 10 to 14 % cause a total cessation of growth 

(Henick-Kling, 1993). Therefore, ethanol and temperature work synergistically. Zapparoli et al., 

(2009) investigated a possible strategy to conduct MLF in wines that generally do not support 

MLF due to high ethanol concentrations. The study was performed in Amerone wines with an 

alcohol content of up to 16% (v/v) and both co-inoculation and sequential inoculation strategies 

were investigated. Complete degradation of L-malic acid was observed with the use of a starter 

preparation consisting of bacterial cells that were treated in a wine/water mixture for 48 hours 

prior to inoculation in the wine. Despite the fact that complete MLF occurred under both 

inoculation scenarios, the sequential inoculated wine took 112 days to complete MLF, compared 

to 70 days for co-inoculation. Co-inoculation of high alcohol wines with acclimatized bacterial 

cells could be a valid strategy for conducting complete MLF in potential high alcohol wines, 

especially in warm regions like South Africa where grapes are harvested with a high sugar 

concentration. Ethanol in high levels (118.3 g/l) at pH 3.2, may affect the volatile aroma profile 

of some white Riesling and Chardonnay wines (Knoll et al., 2011).  

O. oeni cells adapted to ethanol are capable of responding to its fluidizing effect by increasing 

the rate of lipids at the lipid-water interface and decreasing permeability to keep cell integrity 

(Couto et al., 1996). It was demonstrated that adapted bacteria have an adjustment mechanism 

which allows compensating the accumulation effect of toxic substances in their membrane 

(Couto et al., 1996; Tourdot-Maréchal et al., 2000; Teixeira et al., 2002). Tourdot-Maréchal et 

al., (2000) showed that the rate of membrane fluidization was threefold lower in bacterial cells 

pre-incubated in ethanol than with non-adapted cells. Pre-incubation in ethanol induced a rapid 

increase in membrane rigidity. This response involved the synthesis of stress proteins called 

small heat shock proteins or smHsp like the Lo18 produced by O. oeni (Jobin et al., 1997; 

Coucheney et al., 2005). These chaperones-like proteins interact to stabilize the phospholipid 
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bilayer (Becker and Craig, 1994, Tsvetkova et al., 2002; Coucheney et al., 2005 and Maitre et al., 

2014). 

I.7.6 Medium chain fatty acids (MCFA) 
 

Medium chain fatty acids are part of the aroma compounds in fermented beverages and their 

production with other major volatiles during AF is dependent on must composition, grape 

cultivar, microbial strains, nitrogen availability, fermentation temperature, aeration, wine pH and 

winemaking practices (Houtmann, 1980; Kunkee, 1988; Lonvaud-Funel et al., 1988; Capucho 

and San Ramaô, 1994; Nygaar and Prahl, 1997; Bardi et al., 1999; Torjia et al., 2003a and b; 

Alexandre et al., 2004). 

Lonvaud-Funel et al., (1988) identified medium chain fatty acids (hexanoic, octanoic, decanoic 

and dodecanoic acids) as one of the metabolites produced by yeasts during AF and that exert an 

inhibitory effect on both yeasts and bacteria. They mainly found that the hexanoic, octanoic and 

decanoic acids together exert a stronger inhibition than each one alone. 4 mg/l of decanoic 

acidalone and 0.5 mg/l of dodecanoic acid alone were able to inhibit MLF. Curiously, Viegas et 

al., (1985; 1989) demonstrated that these by-products of AF, especially octanoic and decanoic 

acids in their undissociated forms act in synergy with ethanol decreasing the maximum specific 

growth rate and biomass yield of S. cerevisiae and Kluveyromyces marxianus and increasing the 

duration of the AF lag phase. Edwards et al., (1990) suggested that concentrations of decanoic 

acid between 5 and 10 mg/l inhibited O. oeni growth and MLF while 30 mg/l were lethal. 

Capucho and San Romaô (1994) found that concentrations of decanoic and dodecanoic acids 

lower than 12.5 and 2.5 mg/l respectively stimulated the growth of MLB and MLF while higher 

concentrations were inhibitory.  

The inhibition of the bacterial growth and the malolactic activity by these acids depends on their 

concentration and on the medium pH. For example, the inhibition of the malolactic activity of O. 

oeni by the decanoic acid is more important at pH 3 than at pH 6. In fact, the pKa of the decanoic 

acid is 4.9. Therefore, the major form of this acid at pH 3 is the undissociated form which is the 

toxic or active form of all MCFA. This form is able to passively diffuse inside the cell and at the 

pHi which is around 6.5, will deprotonate leading to a decrease of the pHi and a dissipation of the 

proton gradient, thus inhibiting the intracellular enzymes and the cell transport system (Capucho 
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et San Romaô, 1994). Carreté et al., (2002) demonstrated that the fatty acids mainly the decanoic 

and dodecanoic acids act in synergy with ethanol since all of them target the cell membrane. 

They also found that the decanoic acid works in synergy with low pH and/or ethanol to inhibit 

the membrane ATPase which activity is closely related to MLF. This can be explained by the 

capacity of these acids to solubilize in the hydrophobic part of the membrane modifying its 

composition and permeability, thus leading to protons diffusion inside the cell and to the loss of 

the intracellular amino acids (Stevens and Hofemye, 1993). The position, the structure and the 

function of membrane proteins is also affected by these acids (e.g., ATPase).  

Not all the yeast strains have the ability to produce these fatty acids. In a study conducted by 

Nehme et al., (2008), none of the four S. cerevisiae strains tested were able to produce significant 

levels of medium chain fatty acids. The highest concentrations produced were 0.7 mg/l of 

octanoic acid, 2.9 mg/l of decanoic acid and 0.2 mg/l of dodecanoic acid. These concentrations 

are far below the inhibitory concentrations reported by the previous studies. 

I.7.7 Antimicrobial peptides (AMP) 
       

The role of antimicrobial peptides in the inhibition of MLF is mentioned and described in 

paragraph I.9 of this chapter.  

I.7.8 Nutrient depletion 
 

Besides the physical chemical parameters and yeast metabolites, the nutritional status of wine is 

crucial for the survival and growth of LAB as well as their ability to carry out MLF. The 

availability of certain nutrients is therefore imperative (Fugelsang and Edwards, 1997). The lack 

of essential nutrients such as some free amino acids and vitamins due to their consumption by 

yeasts during AF can be detrimental (Nygaard and Prahl, 1996; Guilloux-Benatier et al., 2006). 

During winemaking, sugars are mainly consumed by yeasts. However, the remaining sugars (few 

g/l) after AF including hexoses and pentoses cover the bacterial needs. Beltran et al., (2008), 

demonstrated that the consumption of some amino acids like arginine by yeasts during AF 

reduces their concentration to levels that are insufficient for bacterial growth and MLF. Pinotage, 

a well-known South African variety, was inoculated with a commercial malolactic culture 
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following the completion of AF. 110 days later, only 40% of the initial concentration of malic 

acid was metabolized. The “health status” of the wine was examined by microscope analysis and 

the volatile acidity was determined. A good and healthy population of O. oeni was found and the 

volatile acidity levels were also reasonably low. On the basis of these analyses, a specific 

malolactic bacteria nutrient, OptiMalo Plus®, was added. Eleven days later, the MLF was 

completed (Lallemand report, 2005). OptiMalo Plus® is a natural nutrient developed by 

Lallemand Inc. specifically for MLF and is commercialized in international markets to overcome 

potentially difficult circumstances. It is a blend of inactive yeasts rich in amino acids, mineral 

cofactors, vitamins, cell wall polysaccharides and cellulose. The cellulose provides a surface area 

to help keep the bacteria in suspension and to help adsorb toxic compounds that may be present 

at the end of primary fermentation (e.g., medium chain fatty acids).  

I.7.9 Lees compaction and residual lysozyme activity 
 

As a result of the hydrostatic pressure, the lees found at the bottom of a tank can be compacted to 

such an extent that yeasts, bacteria and nutrients are “captured” and cannot function properly. It 

has recently been observed that larger tank sizes may correlate with increasing delays in the 

initiation of the MLF. The inhibition of the start of the MLF in larger tanks can be overcome by 

pumping over either on the day of inoculation or on the second day after inoculation with the 

bacteria. A general recommendation would be to stir the lees regularly (at least weekly) to ensure 

that bacteria and nutrients are kept in suspension (Lallemand, 2005). In most cases, racking the 

wine off the gross lees is recommended (Lallemand reports, 1999-2004). 

Lysozyme is an enzyme proposed to substitute SO2 for the control of spoilage LAB and acetic 

bacteria and to delay the MLF (Bartowsky 2003a, b). This bacteriolytic enzyme proved to be 

active against O. oeni in white must, red must and in synthetic media (Delfini et al., 2004). A 

dose of 200 mg/l has a similar effect to sulfiting at 50 mg/l. A 200-300 mg/l dose of lysozyme 

provides a useful complementary treatment, especially in white wines, where lysozyme is more 

stable than in red wines. The latter contain a high level of tannins that interact with lysozyme and 

precipitate it. An addition of 500 mg/l of lysozyme inhibited MLF and an addition of 250 mg/l 

promoted microbial stability in red wine after AF was complete (Lerm et al., 2010). If lysozyme 

is used during the production of wine, residual levels of this enzyme may impact the time 
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required for the onset of MLF. Lysozyme can react with phenolics and precipitate but in general, 

stability was shown in bottled wines of Riesling, Shiraz and Cabernet Sauvignon (Bartowsky, 

2003b). Care must be taken to follow the supplier’s recommendations with regard to the required 

time between the addition of lysozyme and the inoculation of the commercial MLF culture.  

I.7.10 Pesticides 
 

The occurrence and concentration of pesticides residues in grapes and consequently in wines 

depend on grapevine pests characteristics of each vine-growing region, type of grape growing, 

pesticide concentrations and climatic conditions from the last spraying until harvest (Čuš et al., 

2010). The use of pesticides to control pests and diseases is a common practice in vineyards to 

increase crop yield. Pesticides are usually detected by fast low pressure gas chromatography 

coupled with a mass spectrometry (Cuñha et al., 2009).  In the presence of pesticides, MLF 

sometimes progresses more slowly than desired (Rueidiger et al., 2005). Cabras et al., (1994) 

reported that the malolactic activity of O. oeni was affected by the presence of certain pesticides. 

Carreté et al., (2002) found that 20 mg/l of copper reduced the F0-F1 ATPase activity of approx. 

25 %. Copper, is a well-known competitor of Mg2+ cofactor. Vidal et al., (2001) examined the 

inhibitory effect of two commonly used pesticides, copper and dichlofluanid, on several strains 

of O. oeni and on MLF in wine. Sensitivity to these pesticides varied and was enhanced by the 

presence of ethanol. A decrease in cell number was detected and not a decrease in malolactic 

activity. 

I.7.11 Phenolic compounds 
 

The different concentrations of polyphenols in wines have an important impact on consumers 

with the increase of wine commercialization (Rodriguez Vaquero et al., 2007). The major 

phenolic compounds present in grapes and wine include the non-flavonoids and flavonoids. The 

non-flavonoids consist of stilbenes (e.g., resveratrol) and phenolic acids (hydroxycinnamic and 

hydroxybenzoic acids). The flavonoids include the anthocyanins, flavan-3-ols (tannins) and 

flavonols (Cheynier et al., 2006). 

The influence of phenolic compounds on lactic acid bacteria is not very clear. While some may 

stimulate the bacterial growth and metabolic activity, others can be inhibitory (Rodriguez et al., 
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2009).The amount of phenolics present in wine is cultivar specific and dependent upon the 

vinification procedures applied by the winemaker (Rozès et al., 2003). The interaction between 

LAB and phenolic compounds is influenced by various factors including the strain of LAB 

(Hernández et al., 2007; García-Ruiz et al., 2008) and the type and concentration of phenolic 

compounds present in wine (Stead, 1993; Reguant et al., 2000; García-Ruiz et al., 2008). 

Phenolic compounds can affect the occurrence and the rate of MLF (Vivas et al., 1997). They 

can be transformed by LAB and detectable differences in the phenolic content after MLF have 

been reported (Hernández et al., 2007). The main compounds that can be transformed by LAB 

include hydroxycinnamic acids and their derivatives, flavonols and their glycosides, flavan-3-ol 

monomers and oligomers, as well as trans-resveratrol and its glucoside (Hernández et al., 2007). 

Reguant et al., (2000) and Alberto et al., (2001), showed that catechin stimulates the growth of 

O. oeni and Lb. hilgardii as well as the MLF. Field and Latenga, (1992); Vivas et al., (2000); 

Campos et al., (2003a) showed that procyanidins formed by epicatechin and catechin and some 

phenolic acids negatively affect the growth and viability of LAB, including O.oeni. Phenolic 

aldehydes exert a toxic effect on microorganisms but there is little knowledge on their activity 

against wine bacteria (Gill and Holley, 2004). Garcia-Ruiz et al., (2011) compared the inhibitory 

potential of 18 phenolics to that of potassium metabisulfite and lysozyme, on three LAB isolated 

from wine: O. oeni, Lb. hilgardii and P. pentosaceus. Stilbenes and flavonols showed the 

greatest inhibitory effects on the growth, hydroxycinnamic and hydroxybenzoic acids showed a 

moderate effect, while flavan-3-ols and phenolic alcohols had a negligible effect. 

Figueiredo et al., (2007) tested various phenolic aldehydes (cinnamaldehydes: coniferaldehyde 

and sinapaldehyde and benzaldehydes: vanillin, syringaldehyde, p-hydroxybenzaldehyde, 3, 4-

dihydroxybenzaldehyde, and 3,4,5-trihydroxybenzaldehyde) and found that most of them had an 

inhibitory effect. The cinnamaldehydes, especially sinapaldehyde, were the most inhibitory for 

bacterial growth. The weak polar nature of cinnamaldehydes may give them a greater affinity to 

the lipid content of the cell membrane (O'Connor and Rubino, 1991). Concerning benzaldehydes, 

the inhibitory effect was less marked and the number of hydroxyl groups of the benzaldehyde 

derivatives was linked to their inhibitory power. Thus, 3,4-dihydroxybenzaldehyde and 3,4,5-

trihydroxybenzaldehyde had a greater inhibitory effect than the p-hydroxybenzaldehyde. These 

molecules act on the outer surface of cells by combining with SH groups of proteins (Ramos-

Nino et al., 1998). Vanillin showed no inhibitory effect. Finally, for these phenolic aldehydes, 
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the concentrations normally found in wine (1-2 mg/l) are not inhibitory and higher 

concentrations such as those used by Figueiredo et al., (2007) are needed to show inhibitory 

effects. 

García-Ruiz et al., (2008) reported the metabolism by LAB of 100 to 250 mg/l of phenolic 

compounds and inhibition by concentrations exceeding 500 mg/l. Reguant et al., (2000) found 

hydroxycinnamic acids to be inhibitory at high concentrations. MLF was delayed by ρ-coumaric 

acid at concentrations of more than 100 mg/l and by ferulic acid at concentrations of more than 

500 mg/l. Similarly, García-Ruiz et al., (2008) and Silva et al., (2011) reported the use of free 

hydroxycinnamic acids as a way of controlling Lb. plantarum growth and found ferulic acid to 

be more inhibitory than ρ-coumaric acid, while the esters of ferulic acid did not affect growth. 

Vivas et al., (1997) found a slight inhibitory effect of vanillic acid on O. oeni IOB-8413, while 

protocatechuic acid had no effect.  

Although the mechanisms by which phenolic compounds inhibit LAB are not entirely clear, 

some possible explanations can be given. Possible mechanisms are based on the interactions of 

phenolic compounds with cellular enzymes (Campos et al., 2003b; García- Ruiz et al., 2008) and 

the adsorption of phenols to cell walls (Campos et al., 2003b). Phenolic compounds could lead to 

a loss in potassium ions, glutamic acid and intracellular RNA, as well as causing a change in the 

composition of fatty acids (Rozès et al., 1988; García-Ruiz et al., 2008; 2011). Certain 

characteristics of wine LAB, like the production of volatile acids and the malolactic activity, are 

differently affected by the presence of phenolics, and this is dependent on the bacterial strain 

(Campos et al., 2009). Among the flavonols, kaempferol and quercetin strongly inhibited O. oeni 

Viniflora Oenos. Quercetin inhibits the replication of DNA and acts on the cell membrane 

(Cuhsnie and Lambert 2005). 

Flavanols (catechin and epicatechin) do not inhibit the growth of O. oeni at the concentrations 

normally found in wine (10-200 mg/l) (Goldberg et al., 1998). Furthermore, catechin, 

epigallocatechin gallate and quercitin stimulated the bacterial growth of O. oeni strain B2 and 

this stimulation increased with the concentration (Reguant et al., 2000; Theobald et al., 2008). 

Free anthocyanins and other phenolic compounds like gallic acid, are able to stimulate the cell 

growth and malic acid degradation of LAB. Phenol carboxylic acids and catechin stimulated the 
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growth of O. oeni strains ATCC23279 and IB8413, probably by enhancing the metabolism of 

citric acid and reducing the initial lag phase of LAB (Vivas et al., 1997; Rozès et al., 2003). 

Rozès et al., (2003) studied the effect of phenolic compounds (the phenolic acids: ρ-coumaric, 

ferulic, cafeic and gallic acids as well as catechin and the anthocyanin malvidin-3-diglucoside) in 

a synthetic medium on the growth of O. oeni. A concentration of 50 mg/l of phenolic compounds 

was stimulatory to O. oeni growth. This stimulatory effect could be attributed to the role that 

phenolic compounds play in protecting bacterial cells from ethanol as well as the fact that 

phenolic compounds reduce the redox potential of the wine which promotes cell growth.  

The presence of phenolic compounds has also the potential to influence certain quality 

parameters in wine. Cavin et al., (1993) reported the ability of LAB to metabolize 

hydroxycinnamic acids which results in the formation of volatile phenols with the potential to 

produce off-flavors. A strain of O. oeni studied by Campos et al., (2009) was able to produce 

higher concentrations of acetate in the presence of phenolic acids. This could be due to enhanced 

citric acid metabolism at the expense of sugar consumption as claimed by Rozès et al., (2003). It 

was also found that this phenomenon is strain dependent. In contrast, Reguant et al., (2000), 

found that gallic acid was able to delay or totally inhibit the formation of acetic acid from citric 

acid.  

I.7.12 Bacteriophages 
 

Bacteriophages are viruses capable of massively destroying cultures of sensitive bacterial strains. 

Inside the bacterial cell, it uses its own genome and the enzyme equipment of the cell to ensure 

the necessary synthesis. Phages can be moderate or virulent. The infection of O. oeni by phages 

was firstly reported by Sozzi et al., (1976; 1982). Abrupt stoppages of MLF were caused by 

phages that destroyed O. oeni population at low pH (Henick-Kling et al., 1986). A large number 

of strains of O. oeni isolated from wines were checked for lysogeny with mitomycin C as 

inducer. As a result of these tests, 45 to 90% of the strains proved to be lysogenic, suggesting 

that lysogeny is widespread among bacteria isolated from wines during malolactic fermentation. 

The sensitivity of bacteria to phages varied widely and was strain dependent. All the lysogenic 

strains were resistant to infection by the temperate phage they released. Some phages infected 

none of the strains (Poblet and Lonvaud-Funel, 1996; Poblet-Icart et al., 1998). 
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I.8 Stress resistance mechanisms of LAB during MLF 

Living in wine can be very stressful for a cell; it requires a great deal of resilience to tolerate, 

amongst other things, high levels of ethanol and a low pH. O. oeni is the best LAB adapted to the 

aggressive ecological medium of wine and involves sophisticated mechanisms that enable it to 

survive and grow (Bartowsky, 2009). The cytoplasmic membrane is the first sensitive target of 

damage in cells, as demonstrated by the leakage of intracellular substances and variation in 

membrane fluidity (Da Silveira et al., 2003). It is likely that there are at least four mechanisms 

adopted by O. oeni to survive and function in wine: stress protein synthesis (Guzzo et al., 2000), 

activation of a proton-extruding ATPase (Carreté et al., 2002), proton motive force generated by 

MLF (Drici-Cachon et al., 1996; Salema et al., 1996) and modifications in membrane fluidity 

(Tourdot-Maréchal et al., 2000; Da Silveira et al., 2003). Granvalet et al., (2008) showed a 

decrease in oleic acid and an increase in cyclopropane fatty acid in an-ethanol stressed cell 

adapted to acidity during stationary phase. Numerous proteins are produced when a cell first 

encounters a stress (Sico et al., 2009; Olguin et al., 2010). In this context, the FtsH protein is a 

universal molecular device belonging to the AAA protein family that protects MLB against wine 

toxicity when the bacteria are subjected to alcohol, sulfite and ethidium bromide. It is also over 

expressed with high fermentation temperatures and osmotic shocks (Bourdineaud et al., 2003). 

Besides, heat shock proteins or HSP (e.g., Lo 18 of O. oeni) are usually associated with cellular 

membrane fractions (Jobin et al., 1997). HSP are chaperone-like proteins that either prevent or 

repair damages in cells. The O. oeni small heat shock protein Lo18, has a MW of 18 kDa and is 

rich in alanine, serine and tyrosine (Weidmann et al., 2010) and is identical to the α-crystallin 

family (Becker and Craig, 1994). It is regulated by the stress gene repressor CtsR (Grandvalet et 

al., 2005) and induced by multiple stresses such as a low pH of 3, a heat shock at 42 ºC and the 

presence of 12% ethanol (v/v) as well as the presence of benzyl alcohol. It acts as a 

lipochaperone on phospholipids (increases the molecular order of phospholipids and regulates 

membrane fluidity) and as a molecular chaperone on damaged proteins (prevents aggregation of 

proteins during stress conditions) (Coucheney et al., 2005; Darsonval et al., 2016)). During the 

stationary growth phase, it also acts like chaperones by binding to partially unfolded proteins in 

an ATP-independent manner (Guzzo et al., 1997), and prevents their irreversible aggregation 

under heat shock (Craig et al., 1993). It also stabilizes some enzymes such as lactate 

deshydrogenase and citrate synthase even at 60 ºC (Delmas et al., 2001) and stabilizes the plasma 



State of the Art 

 

45 
 

membrane (Jobin et al., 1997; Guzzo et al., 1997; Tsetkova et al., 2002; Török et al., 2002; 

Coucheney et al., 2005). Other HSP are studied in O. oeni including clpL and clpP that enable 

microbial development under stress conditions by managing the life of regulatory proteins 

(Beltramo et al., 2006). In addition, clpX, a heat inducible protein, is preferentially expressed at 

the beginning of the exponential growth phase (Jobin et al., 1999b, Guzzo et al., 2000).  

Many other stress related proteins play a role in bacterial resistance under wine conditions, such 

as thioredoxin or trxA protein produced in response to oxidative stress and heat shock. Its 

expression is not related to growth (Jobin et al., 1999a). Another protein playing a key role in 

acid tolerance is the H+-ATPase which is overexpressed at low pH (e.g., pH 3.5). It is essential 

for malic acid metabolism and regulation of the intracellular pH in winemaking conditions 

(Fortier et al., 2003). OmrA, a bacterial homologue dependent multidrug resistance protein, 

enables bacterial growth in high salt media and procures resistance to ethanol and sodium 

laurate, a substance released by yeasts during AF (Bourdineaud et al., 2002; 2004). The ability of 

O. oeni to survive in wine is detailed in Figure I.12 below. 
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Figure I.12.Three mechanisms that are important in conferring, in O. oeni, the ability to survive in wine: (1) 
the proton motive force generated by malic acid metabolism, (2) the activation of proton-extruding ATPase, and (3) the 
stress protein induction and synthesis in response to shock. MLF is involved in proton motive force generation and the 
maintenance of internal pH by proton consumption during the L-malate decarboxylation step. The ATPase systems that 

function as proton extruding pumps are suggested to provide the means for acid tolerance by regulating the intracellular pH. 
Stress protein synthesis occurs typically in response to an environmental shock triggered by the wine medium. Many of 

these stress proteins function as molecular chaperones or proteases that may participate in there folding or degradation 
processes of denatured proteins in the cell (Bartowsky, 2005) 

 

Another challenge in wine for MLB is the starvation due to the lack of essential nutrients. 

However, O. oeni found a way to resist this fact; the exoprotease activity. O. oeni possesses an 

active EprA protease that is able to hydrolyze several proteins (Folio et al., 2008) including 

proteins in grape juice at a significantly high rate (Farias et al., 1996; Farias and Manca de 

Nadra, 2000). Moreover, the strain X2L showed the highest extracellular proteolytic activity in 

the presence of 60 mg/l SO2 and 10 to 12% ethanol (v/v) (Rollán et al., 1998). 
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I.9 Wine microbiome, a dynamic environment of microbial interactions 

Microbes coexist and interact in many environments, and this is of practical relevance in various 

fields. Indeed, microbial interactions occur in bioremediation of pollutants, agriculture, forestry, 

environmental protection, food processing, biotechnology and medicine (Liu et al., 2015).  

In winemaking, grape must and wine constitute a complex microbial ecosystem containing a 

mixture of different species and strains. Individual microorganisms interact, and the types of 

interaction found in mixed population of microorganisms are generally classified as direct or 

indirect.  

Neutralism, mutualism, symbiosis, competition, commensalism and amensalism (antagonism) 

are considered to be indirect interactions; direct interactions, such as parasitism, predation, 

quorum sensing, cell-to-cell contact and horizontal gene transfer, may also occur during 

fermentation (Alexandre et al., 2004; Strehaiano et al., 2010; Ivey et al., 2013). Classical 

methods (e.g. interactions on culture medium) and recently the omics approaches (genomics, 

proteomics, metabolomics) play a major role in clarifying the interaction modalities. 

A brief description of each type of interaction is given below:  

-Neutralism means that there is no change in the growth rate of either microorganism due to the 

presence of the other and thus, there is no observable interaction. 

-Mutualism is much more common than neutralism and involves several different mechanisms. 

The exchange of nutrients and growth factors (e.g. phenylalanine or folic acid) are one of these 

mechanisms. Microbiologically, the mixed culture grows well, while pure cultures exhibit almost 

no growth. 

-Very close mutualistic ties, such that the partnership is necessary for the survival of one or both 

species are often termed symbiosis. 

-Competition refers to the dependence of two species on a common factor such as food supply, 

light, space or some other limiting resource. Consumption of this common factor by each species 

limits its availability to the other, so that the growth rates of both organisms are affected 

negatively. 
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-In commensalism, the first microorganism gain benefits from the second with no significant 

effect on the latter. In this version, one species removes a toxin for the second species, but, in 

contrast to mutualism, the latter organism provides no special benefits for the detoxifier. The 

opposite occurs in amensalism or antagonism, were the second species exerts a negative effect 

during the interaction with the first species (Bailey and Ollis, 1986). 

-Quorum sensing is a term used to describe cell-to-cell communication. This sensing mechanism 

is based on the production, secretion, and detection of small signaling molecules, whose 

concentration correlates with the abundance of secreting microorganisms in the medium 

(Choudhary and Schmidt-Dannert, 2010). 

 

-Nissen et al., (2003) proposed that the early growth arrests of Hanseniaspora uvarum, 

Kluyveromyces thermotolerans and Torulaspora delbrueckii in co-culture with S. cerevisiae is 

not due to a quorum sensing effect or other yeast metabolites such as acetaldehyde (Cheirati et 

al., 2005) as well as the nutrient depletion (Taillandier et al., 2014), but rather to a cell-cell 

contact mechanism regulating their growth in mixed cultures. Evidence of a cell contact 

mechanism regulating Torulaspora delbrueckii cell density in co-culture with S. cerevisiae has 

been reported. Renault et al., (2013) observed a much higher viability of Torulaspora delbrueckii 

when physically separated from S. cerevisiae (co cultures of the two yeasts in double fermenters) 

than in standard mixed co-culture. Nissen and Arneborg (2003) and Arneborg et al., (2005 a, b) 

demonstrated through an interactive optical trapping that S. cerevisiae at high cell densities gave 

a lesser ability for others NS to compete for space. Kemsawasd et al., (2015a) showed a 

combined effect of cell-to-cell contact and AMP released by S. cerevisiae in the death of 

Lachencea thermotolerans (NS wine yeast) during mixed-cultures AF.  

-Predation and parasitism: In this type of relationship, one species lives totally dependent on the 

other. The victim becomes a substrate and is completely digested in the case of predation or a 

portion of its tissues is consumed as in the case of parasitism. Thus bacteria may be parasitized 

by viruses (bacteriophages) as the P58 phage in O. oeni (Arendt et al., 1991). 

 

-Horizontal gene transfer: the potential of microbes to exchange genetic information through 

gene transfer is a major factor in their genetic adaptation and evolution. Diverse bacteria and 
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yeast species are in close contact on grapes, during AF and MLF, and this might promote the 

horizontal gene transfer (Liu et al., 2015). The S. cerevisiae EC1118 genome sequence contains 

3 gene clusters resulting from horizontal transfers. Genes in these clusters encode key functions 

linked to the winemaking process, such as carbon and nitrogen metabolism, cellular transport 

and the stress response (Novo et al., 2009).  

 

Wine is a complex microbial ecosystem containing mixtures of diverse microorganisms favoring 

interactions: there are yeast-yeast interactions, bacteria-yeast interactions, bacteria-bacteria 

interactions and filamentous fungi-yeast interactions. 

1. Yeast-yeast interactions: 

Fermentations involving added or natural complex yeast consortia exhibit numerous kinds of 

interactions. These interactions entail negative or positive effects. 

a- Negative effect: Killer toxins produced by Saccharomyces and non-Saccharomyces 

with activity against sensitive yeasts 
 

Microbes competing for limited resources have established a broad arsenal of lethal compounds 

aiming at the inhibition or destruction of competitors. In addition to the low oxygen availability 

that can be detrimental for non-Saccharomyces, killer toxins (fungicidal proteins) also contribute 

to the removal of these yeasts (Hansen et al., 2001). They are released by different strains of S. 

cerevisiae and bind to the mannoproteins or glucan units of the cell wall of sensitive yeasts 

(Meinhardt and Klassen, 2009). Many types of these killer factors are well identified such as K1, 

K2 and K28 encoded by double stranded RNA (dsRNA) of virus-like cytoplasmic particles 

(VLPs), respectively M1, M2 and M28. Only one type named KHS (killer of heat sensitive) is a 

chromosomally-encoded killer. K1 and K2 disrupt cytoplasmic membrane functions, while K28 is 

a unique virus of S. cerevisiae strain 28 known to be unstable and disrupts DNA synthesis in 

sensitive cells (Schmitt and Tipper, 1990). Sensitive cells such as NS strains are most susceptible 

to the action of the killer factor when in log phase (Woods and Bevan, 1968; Carrau et al., 1993; 

Alexandre et al., 2004; Pérez-Nevado et al., 2006; Albergaria et al., 2010, Mostert and Divol, 

2014).  
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Many other NS yeast strains are extensively studied and used to prevent food and beverages 

spoilage as they also produce killer toxins. Kluyveromyces phaffii liberate a killer toxin used as a 

potential biopreservative agent to control apiculate wine yeasts, such as Hanseniaspora uvarum. 

It can be fungistatic or fungicidal depending on the concentration. Its inhibitory activity in grape 

juice is comparable to SO2 and is active in a pH range between 3 and 5 and at a temperature 

lower than 40 ºC (Ciani and Fatichenti, 2001). Kluyveromyces wickerhamii secretes another 

killer toxin (KwKt) active against Brettanomyces/Dekkera in grape must at a concentration 

between 40 and 80 mg/l. Antispoilage effects prevent “Bret” character of wines and so, ethyl 

phenols are not produced. It is a suitable biological strategy to control Dekkera yeasts during 

fermentation, wine ageing and storage (Comitini and Ciani, 2011). 

Schawnniomyces occidentalis produces a killer toxin lethal to sensitive strains of S. cerevisiae. 

The toxin has a protein composition sensitive to pepsin and papain and similar to the 

chromosomally encoded killer toxin and may reduce the risk of contamination by undesirable 

yeast strains during commercial fermentations (Chen et al., 2000). Interestingly, HMK mycocin 

produced by Williopsis mrakii, controls both silage and yoghurt spoilage by yeasts (Lowes et al., 

2000). Pichia anomala WC 65 produces a toxin effective against opportunistic Candida albicans 

at a pH value comparable to those of wine ferments such as pH 3.5 (Sawant et al., 1988; 1989 

and1990; Yap et al., 2000). 

b- Positive effect: Saccharomyces and non-Saccharomyces (NS) 
 

A good example of a synergetic interaction has been reported in a Kloeckera apiculata/S. 

cerevisiae co-culture. The apiculate cells remained viable for longer than in pure culture 

(Mendoza et al., 2007). Commensalism between Saccharomyces and NS has been also 

evidenced. For example, the high extracellular proteolytic activity of some NS yeasts 

(Charoenchai et al., 1997; Dizy and Bisson, 2000) causes the release of amino acids from 

proteins present in the medium, and these amino acids are then used by S. cerevisiae (Fleet, 

2003). The early death of non-Saccharomyces yeasts after the early stages of AF can also 

provide nutrients for S. cerevisiae thanks to their passive release during autolysis. Conversely, S. 

cerevisiae autolysis after AF may be a significant source of micronutrients for the growth of 

spoilage species, especially those of Dekkera/Brettanomyces (Guilloux-Benatier et al., 2001). 
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Among the non-Saccharomyces yeast species, Brettanomyces bruxellensis is better adapted than 

other wild yeasts to persist during AF thanks to its ethanol tolerance (Renouf et al., 2007). 

 

 

2.  Yeast-bacteria interactions: 
 

The interactions between bacteria and yeasts during AF and MLF have a direct effect on 

induction and completion of MLF, which is an important factor for wine quality. Liu et al., 

(2016) studied the exometabolomic profile of S. cerevisiae stains and related that these 

substances can have a negative (MLF-) or positive effect (MLF+) on the MLF.  

a- Negative effect: AMP produced by S. cerevisiae with activity against O. oeni 

The nature of the toxic compounds produced by wine yeasts and that inhibit the bacterial growth 

and MLF was investigated by many authors as an amensalism mechanism (Taillandier et al., 

2002; Strehaiano et al., 2010). It has been suspected that the reason why MLF cannot be started 

sometimes is due to antimicrobial peptides (AMP) produced by yeasts (Fornachon, 1968; Lafon-

Lafourcade, 1973; King and Beelman, 1986; Lemaresquier, 1987; Wibowo et al., 1988). It is 

known that Gram positive bacteria including LAB have specific ligand binding proteins or 

receptors to capture these AMP, identified to be an ATP binding cassette (ABC transporters) 

anchored to the cell membrane. The Opp system of Lc. lactis serves as a good example. They do 

not only play a role in cell’s nutrition, but besides, they participate in various signaling processes 

that allow them to monitor the local environment (Detmers et al., 2000).  

Large numbers of wine yeast strains have been screened for antibacterial activity. Parfentjev 

(1958) found that a strain of S. cerevisiae was able to produce an antibacterial protein with an 

isoelectric point of 2 whereas Motzel and Cook (1958) and Robinson et al., (1962) found two 

antibacterial cyclic peptides. 

Dick el al., (1992) identified two cationic proteinaceous substances with an antibacterial activity 

released by S. cerevisiae R107 presenting a MW ≤14 kDa; one with the characteristics of 

lysozyme and the other a small protein with a high isoelectric point.  
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Comitini et al., (2005) found that S. cerevisiae F63 was able to produce a proteinaceous 

compound with a MW greater than 10 kDa that strongly inhibited the growth of O. oeni CHR as 

well as its ability to consume L-malic acid. The proteinaceous compound was dose dependent 

and was able to reduce the bacterial growth with a typical saturation kinetic thus suggesting the 

presence of a receptor on the bacterial cell. Therefore its bacteriostatic or bactericidal effect 

depended on its concentration and the incomplete MLF was correlated to its bactericidal effect.  

Osborne and Edwards (2007) identified a 5.9 kDa peptide produced by S. cerevisiae RUBY. 

ferm and inhibiting O. oeni Viniflora oenos. They suggested that the peptide inhibited the 

bacteria along with SO2. The mechanism proposed was that of bacteriocins forming membrane 

pores and facilitating the entry of SO2 inside the cells thus leading to the bacterial death and 

arrest of MLF. They also showed that wine samples taken at different intervals of the AF (days 

9, 16 and 23) were able to inhibit O. oeni Viniflora oenos.  

Nehme et al., (2010) were able to identify a peptidic fraction with a MW between 5 and 10 kDa 

released by S. cerevisiae strain D and that strongly inhibited O. oeni strain X. The fraction 

exerted a bacteriostatic effect and strongly inhibited the malate consumption. 

Mendoza et al., (2010) showed that S. cerevisiae mc2 released a proteinaceous compound 

presenting a MW between 3 and 10 kDa that inhibited the growth of O. oeni X2L and 

Lactobacillus hilgardii 5W but not their ability to consume L-malic acid. The bacterial growth 

was inhibited with a typical saturation kinetic similar to that suggested by Comitini et al., (2005).  

Albergaria et al., (2010) showed that S. cerevisiae CCMI 885 started to secrete three antifungal 

peptides presenting an apparent MW of about 6, 4.5 and 4 kDa at the end of the AF exponential 

growth phase (day 2) with a gradual increase of their concentration during the stationary growth 

phase (days 4 and 7). Later on, Branco et al., (2014) demonstrated that these peptides were active 

against a wide variety of wine-related yeasts such as Hanseniaspora guilliermondii and Dekkera 

bruxellensis but also against the growth of O. oeni. The peptides corresponded to different 

fragments of the C-terminal amino acid sequence of the S. cerevisiae glyceraldehyde 3-

phosphate deshydrogenase (GAPDH) enzyme. Two main fragments of 1.638 and 1.622 kDa 

were involved in the inhibition. They suggested that the peptides were released by apoptotic 

yeast cells of S. cerevisiae during the stationary phase. Previously, Silva et al., (2011) showed 
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that GAPDH is presumably a substrate of metacaspases during apoptosis. Branco et al., (2014) 

evaluated only the effect of these peptides on the growth of O. oeni and no data concerning the 

malate consumption was shown. Interestingly, Branco et al., (2015), found that these AMP 

compromise the plasma membrane integrity of H. guilliermondii cells, disturbing the pHi 

homeostasis and inducing a loss of culturability. 

Beside its glycolytic role, GAPDH displays several other activities in different subcellular 

locations (membrane, cytosol, nucleus), including a primary role in apoptosis and in a variety of 

critical nuclear pathways (Silva et al., 2011). Regarding these findings, GAPDH plays an 

important role in the defense system of different microorganisms. In S. cerevisiae, three related 

but not identical GAPDH isoenzymes with different specific activities are encoded by unlinked 

genes noted TDH1, TDH2 and TDH3. Mutation of TDH2 and TDH3 affects negatively the 

growth (McAlister and Holland. 1985b). Delgado et al., (2001; 2003) found that each of the three 

encoded polypeptides by the TDH1-3 genes is associated with the cell wall of the wine yeast in 

response to starvation and temperature upshift. In humans, GAPDH aggregates, participate in 

oxidative stress and induce cell death (Nakajima et al., 2009). Branco et al., (2014) reported that 

the use of a S. cerevisiae strain with a deleted metacaspase (YCA1 gene) significantly prevented 

the death of H. guilliermondii during AF. Taken together, all these findings suggest that the 

presence of extracellular GAPDH-derived peptides at the end of the AF exponential growth 

phase is probably due to apoptotic cells of S. cerevisiae cleaving GAPDH with their 

metacaspases.  

b- Positive effect: stimulation of O. oeni by S. cerevisiae 

The stimulation of ML bacteria by yeasts has been studied in far less details. Guilloux-Benatier 

et al., (1985) showed that yeast autolysates prepared with different levels of proteolysis 

stimulated the growth and malolactic activity of different LAB. The same authors demonstrated 

that yeast mannoproteins, which constitute a major component of the macromolecules produced 

by yeasts, have also been associated with stimulation of bacterial growth in wine. In addition, 

nitrogen components, especially those with a MW<1 kDa, are the most effective for the 

stimulation of the bacterial growth. These components include important amino acids such as 

arginine, isoleucine, glutamic acid and tryptophan (Alexandre et al., 2004). 
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Some cellar practices participate in the activation of wine lactic acid bacteria. Maceration, 

carbon dioxide, ageing on lees and settling are among these positive factors (Ribéreau-Gayon et 

al., 2006). 

      3. Bacteria-bacteria interactions: 

The negative activity between wine related LAB is in most cases related to the presence of 

bacteriocins. Bacteriocins are peptides produced by Gram + bacteria that inhibit closely related 

species (Jack et al., 1995). Their size is normally lesser than 10 kDa and they form pores which 

destruct the cell membranes of sensitive bacteria. The study of bacteriocins, such as nisin, 

plantaricin and kappacin is widely developed in different food sectors especially in milk and 

dairy industries since they are active against a wide range of pathogenic and alteration 

microorganisms (Delves-Broughton et al., 1996; van Reenen et al., 1998; Verellen et al., 1998; 

Malkoski et al., 2001 and Nel et al., 2002). In addition, they are qualified as potential therapeutic 

agents like antibiotics (Matsuzaki, 2009). Search for bacteriocins is being launched in the wine 

sector as a control of MLF and spoilage microorganisms, but till now their use is prohibited. 

Green et al., (1997), Nel et al., (2001; 2002) and Diez et al., (2012), showed a bacteriostatic 

effect of pediocin PA-1and a bactericidal effect of pediocin PD-1 from P. acidilactici and P. 

damnosus NCFB 1832 against O. oeni and other Pediococcus in winemaking. Pediocin PA-1 

may be useful as a biopreservative against unwanted bacterial microflora that affect wine quality. 

Nel et al., (2002), have shown that pediocin PD-1, when compared with nisin and plantaricin 423 

is the most effective in the removal of an established biofilm of O. oeni on stainless steel 

surfaces in Chardonnay wines. Adherence of MLB to surfaces may have a pronounced effect on 

the ability of MLB to survive during AF and conduct spontaneous MLF. 

 

 

I.10 Aims of the study 

The current project is a continuation of the work already initiated by Nehme et al., (2008; 2010). 

They have already studied the interactions between different strains of S. cerevisiae and O. oeni. 

S. cerevisiae strain D strongly inhibited the growth of O. oeni strain X and its ability to consume 

L-malic acid during sequential fermentations performed in synthetic grape juice media. An 
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extracellular yeast proteinaceous compound was involved in the MLF inhibition and was found 

to work synergically with ethanol. The present project aimed at revalidating the MLF inhibition 

with the same pair and further characterizing the yeast inhibitory proteinaceous compound. After 

interrupting the work for almost six years, the first concern was to demonstrate that neither the 

yeast strain D lost its ability to release the proteinaceous compound nor did the bacteria acquire 

resistance. Then, the compound was further characterized by determining its MW, the timing of 

its release during AF and its mechanism of action with an attempt to purify it and sequence it. 

The interactions were also studied in natural grape musts in order to evaluate their 

reproducibility in real winemaking conditions.  
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II.1. Materials 

II.1.1 Microorganisms 
 

Three strains of Saccharomyces cerevisiae (A, D and R) and one strain of Oenococcus oeni (X) 

were used in this work and were kept anonymous as requested by the providers. The strains A 

and D were produced and marketed by Lallemand Inc. (Blagnac, France) whereas the strain R 

was provided by Laffort (Bordeaux, France).  

II.1.2 Chemicals   
 

All culture media components were supplied by Sigma-Aldrich (Taufkirchen, Germany) except 

for the yeast extract and the peptone that were supplied by Oxoïd (Hampshire, UK). The 

chemicals used for SDS-PAGE were purchased from Bio-Rad (California, USA). The enzymatic 

kits for the determination of the L-malic acid, L-lactic acid, D-lactic acid, acetic acid, citric acid 

and ethanol concentrations were all purchased from Boehringer Mannheim/R-Biopharm 

(Darmstadt, Germany). 

II.1.3 Culture media  

II.1.3.1 Conservation and reactivation media for yeasts 
 

Yeast strains were maintained at 4 °C on YEPD agar slants presenting the following composition 

(Table II.1): 

 
Table II.1. Composition of the YEPD medium  

 

 

 

 

 

The same medium composition without agar was used for the reactivation of the yeast stock 

culture in order to prepare the preculture. The media were autoclaved at 121 °C for 20 min 

before use. 

Components Amount (g/l) 

Yeast extract 10 

Peptone 20 

D-Glucose 20 

Agar 20 
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II.1.3.2 Conservation and reactivation media for bacteria 
 

The bacteria were stored at -20 °C in Nalgene cryogenic tubes (Thermo Fisher Scientific, 

Waltham, MA-USA) in MRS broth (De Man, Rogosa and Sharpe) containing 20 % glycerol 

(v/v). They were reactivated in the same MRS medium with 3 % ethanol (v/v) added to prepare 

the preculture. After autoclaving (121 °C, 15 min), the ethanol was added aseptically through 

sterile filter membranes of 0.22 µm cutoff (Elvetec services, Meyzieu, France). The MRS broth 

presented the following composition (Table II. 2): 

 

Table II.2. Composition of the MRS broth 

 

The MRS medium was supplemented with 1 ml of Tween 80 (Sigma P8074). The pH of this 

medium was 6.2 at 25 °C.   

 

II.1.3.3 Synthetic medium for the preparation of yeast and bacterial starter cultures 
 

The yeast and bacterial starter cultures (inocula) for alcoholic fermentations, malolactic 

fermentations and sequential fermentations were prepared in a synthetic medium presenting the 

following composition (Table II.3): 

 

Components Amount (g/l) 

Peptone 10 

Meat extract 8 

Yeast extract 4 

D (+) – Glucose 20 

Dipotassium hydrogen phosphate 2 

Sodium acetate trihydrate 5 

Triammonium citrate 2 

Magnesium sulfate heptahydrate 0.2 

Manganous sulfate heptahydrate 0.05 
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Table II.3. Composition of the synthetic medium used for yeast and bacterial starter 
cultures 

Components Amount (g/l) 

D-Glucose 50 

Yeast extract 1 

Ammonium sulfate 2 

Citric acid 0.3 

L-malic acid 5 

L-tartaric acid 5 

Magnesium sulfate 0.4 

Potassium dihydrogen phosphate 5 

 

The pH of this medium was adjusted to 3.5 using a 10 M NaOH solution. After autoclaving at 

121 ºC for 20 min, 6 % ethanol (v/v) were added aseptically only to the medium intended for the 

preparation of the bacterial starter culture. In this case, the pH was readjusted to 3.5 using an 85 

% orthophosphoric acid solution.   

II.1.3.4 Synthetic media used for yeast and bacterial cultures  

a. Synthetic grape juice medium (SGJ) 
The SGJ medium was used to perform yeast and bacterial pure cultures (alcoholic and malolactic 

fermentations respectively). The medium composition that simulated the natural grape juice 

consisted of (Table II.4): 

 

Table II.4. Composition of the synthetic grape juice medium  
 

Components Amount (g/l) 

D-Glucose 100 

D-Fructose 100 

Yeast extract 1 

Ammonium sulfate 2 

Citric acid 0.3 

L-malic acid 3 

L-tartaric acid 5 

Magnesium sulfate 0.4 

Potassium dihydrogen phosphate 5 
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The pH of this medium was adjusted to 3.5 with 10 M NaOH solution. The medium was 

autoclaved at 121 ºC for 20 min before use. 

b. Synthetic wine medium (SWM) 
The medium composition simulated wine, yet it was lacking yeast metabolites with the exception 

of ethanol. It was used to perform malolactic fermentations with the bacterial strain tested and 

served as a control for sequential fermentations. The medium composition consisted of (Table 

II.5):  

Table II.5. Composition of the synthetic wine medium 

 

The pH of this medium was adjusted to 3.5 using a 10 M NaOH solution before autoclaving at 

121 ºC for 20 min. After autoclaving, 10 % ethanol (v/v) corresponding to 80 g/l were added 

aseptically through sterile filter membranes of 0.22 µm cutoff (Elvetec services). The pH was 

readjusted to 3.5 using an 85 % orthophosphoric acid solution. 

c. Natural grape juice medium (NGJ medium) 
A marketed natural red grape juice obtained from a mix of cultivars was used for alcoholic 

fermentations. The sugar and the L-malic acid concentrations were respectively 200 g/l and 3 g/l. 

SO2 was absent and the pH was adjusted to 3.5 using an 85 % orthophosphoric acid solution.  

d. Cabernet Sauvignon and Syrah musts  
Two grape cultivars of Cabernet Sauvignon and Syrah provided by Clos Saint-Thomas (Kab 

Elias, Lebanon) were destemmed, crushed and macerated at 10, 60, 70 and 80 °C for 48 h before 

Components Amount (g/l) 

D-Glucose 0.5 

D-Fructose 0.5 

Yeast extract 0.5 

Ammonium sulfate 0.2 

Citric acid 0.3 

L-malic acid 3 

L-tartaric acid 5 

Magnesium sulfate 0.2 

Potassium dihydrogen phosphate 2 
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alcoholic fermentation. The sugar and the L-malic acid concentrations in the musts were adjusted 

to 200 g/l and 3 g/l respectively. The pH was adjusted to 3.5 using an 85 % orthophosphoric acid 

solution. The musts were sulfitized with 100 mg/l of sodium bisulfite.  

e. Modified MRS broth 
This medium was used to evaluate the inhibitory effect on bacterial growth and L-malic acid 

consumption of different proteinaceous fractions obtained by ultrafiltration and ammonium 

sulfate precipitation of the SGJ media fermented by S. cerevisiae strains A and D.  

3 g/l of L-malic acid were added to the MRS medium described in paragraph II.1.3.2. The 

medium was autoclaved at 121 ºC for 15 min. After autoclaving, 10 % ethanol (v/v) and the 

proteinaceous fraction to be tested were aseptically added to the medium. The pH was then 

adjusted to 3.5 using an 85 % orthophosphoric acid solution. The medium was finally filtered 

through sterile membranes of 0.22 µm cutoff (Elvetec services). The filtered media were 

collected in sterile Erlenmeyer flasks.   

In a separate experiment, 0.1 g/l of L-arginine and/or 3 g/l of D-Fructose were added to the 

modified MRS media containing the inhibitory proteinaceous fractions to evaluate their impact 

on the bacterial growth and the malate consumption.  

f. SGJ medium with yeast nitrogen base instead of yeast extract  
The alcoholic fermentations (AF) were carried out by the different yeast strains in the SGJ 

media, the NGJ media and the Cabernet Sauvignon and Syrah musts described in paragraphs 

II.1.3.4 a, c and d. The AF with S. cerevisiae strain D was also conducted in the same SGJ 

medium once by replacing the yeast extract by a yeast nitrogen base without peptides but with 

amino acids (Fluka-Buchs, Switzerland) and another time by a yeast nitrogen base lacking both 

peptides and amino acids (Sigma-Aldrich). The composition of both types of yeast nitrogen base 

is presented in Table II.6: 
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Table II.6. Composition of both types of yeast nitrogen base  
 

Components 

Amount (l) 

Yeast nitrogen base without 

peptides but with 

amino acids 

Yeast nitrogen base 

lacking peptides and 

amino acids 

Ammonium sulfate 5 g 5 g 

L-Histidine HCl 10 mg - 

DL-Methionine 20 mg - 

DL-Tryptophan 20 mg - 

Biotin 2 µg 2 µg 

Calcium pantothenate 400 µg 400 µg 

Folic acid 2 µg 2 µg 

Niacin 400 µg 400 µg 

p-aminobenzoic acid 200 µg 200 µg 

Pyridoxine HCl 400 µg 400 µg 

Riboflavin 200 µg 200 µg 

Thiamine HCl 400 µg 400 µg 

Inositol 2 mg 2 mg 

Citric acid - 0.1 g 

Boric acid 500 µg 500 µg 

Copper sulfate 40 µg 40 µg 

Potassium iodide 100 µg 100 µg 

Ferric chloride 200 µg 200 µg 

Manganese sulfate 400 µg 400 µg 

Sodium molybdate 200 µg 200 µg 

Zinc sulfate 400 µg 400 µg 

Potassium phosphate monobasic 1 g 1 g 

Magnesium sulfate 0.5 g 0.5 g 

Sodium chloride 0.1 g 0.1 g 

Calcium chloride 0.1 g 0.1 g 

 

The amino acid’s composition of the yeast extract (Oxoïd) was as follows: valine (1 %), tyrosine 

(4.95 %), tryptophan (0.85 %), threonine (2.73 %), serine (3.42 %), proline (0.88 %), 

phenylalanine (3.78 %), methionine (0.8 %), lysine (5.4 %), leucine (6.04 %), isoleucine (4.81 
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%), glycine (5.95 %), glutamate (13.49 %), cystine (0.76 %), aspartate (7.07 %), arginine (3.31 

%), alanine (0.91 %). 

II.2 Methods 

II.2.1 Fermentations  

II.2.1.1 Alcoholic fermentation (AF) 
 

The synthetic grape juice (SGJ) and the natural grape juice (NGJ) media as well as the Cabernet 

Sauvignon and the Syrah musts were inoculated by the yeasts at an initial concentration of 3 x 

106 cells/ml (Thoma counting chamber) and the AF was carried out until total or cessation of 

sugar consumption (< 2 g/l). The yeast inoculum was beforehand prepared in two steps. First, a 

preculture of the yeast strain was obtained by reactivating the stock culture in YEPD broth for 24 

h. Second, 2 ml of the preculture were used to inoculate 50 ml of a low sugar concentration 

synthetic grape juice medium: D-Glucose 50 g/l and absence of D-Fructose (starter culture, 

paragraph II.1.3.3). This step was carried out for 24 h and provided the yeast inoculum. All the 

fermentation steps were carried out in a multi stack shaking incubator (Labtech, Italy) at 22 °C 

with stirring at 150 rpm in Erlenmeyer flasks. The yeast growth kinetic and metabolism were 

monitored by collecting two samples per day. After determination of kinetic parameters, samples 

were centrifuged before initiating the biochemical tests and filtered before HPLC analysis. 

All the AF steps were performed in three replicates.  

II.2.1.2 Malolactic fermentation (MLF)  
 

The synthetic grape juice (SGJ) and the synthetic wine medium (SWM) were inoculated by the 

bacteria at an initial concentration of 2 x 106 cells/ml (Petroff-Hausser counting chamber) and 

the MLF was carried out until total or cessation of L-malic acid consumption. The bacterial 

inoculum was beforehand prepared in two steps. First, a preculture of the bacterial strain was 

obtained by reactivating the stock culture in MRS broth for 24 h. Second, 2 ml of the preculture 

were used to inoculate 50 ml of a low sugar concentration synthetic grape juice medium: D-

Glucose 50 g/l and absence of D-Fructose (starter culture, paragraph II.1.3.3). This step was 
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carried out for 24 h and provided the bacterial inoculum. All the fermentation steps were carried 

out in a multi stack shaking incubator (Labtech, Italy) at 22 °C with stirring at 150 rpm in 

Erlenmeyer flasks. The bacterial growth kinetic and metabolism were monitored by collecting 

one sample per day. 3 % ethanol (v/v) and 6 % ethanol (v/v) were added respectively to the 

preculture and starter culture steps when the MLF was performed in the SWM.  

All the MLF steps were performed in three replicates.  

II.2.1.3 Sequential fermentations 

  
After completion of the AF, the yeast fermented media (SGJ, NGJ and Cabernet Sauvignon and 

Syrah musts) were subjected to different steps before inoculation of the lactic acid bacteria. First, 

yeast cells were removed by centrifugation (3500 rpm for 20 min at 4 °C) and the supernatant 

was recovered. Then, the L-malic acid concentration was measured and readjusted to 3 g/l. Next, 

the pH was adjusted to 3.5 using a 10 M NaOH solution. Finally, the yeast fermented media were 

filtered aseptically through 0.22 µm membranes (Elvetec services) and the sterile yeast-free 

fermented media were recuperated in autoclaved Erlenmeyer flasks.   

Afterward, the sterile yeast-free fermented media were inoculated by the malolactic bacteria at 

an initial concentration of 2 x 106 cells/ml and the MLF was followed by regular sampling until 

the cessation of L-malic acid consumption. All fermentation steps for both AF and MLF were 

carried out at 22 °C with stirring at 150 rpm in Erlenmeyer flasks. The sequential fermentations 

were performed in three replicates and three yeast/bacteria pairs were tested: 

S. cerevisiae strain A/O. oeni strain X 

S. cerevisiae strain D/O. oeni strain X 

S. cerevisiae strain R/O. oeni strain X  

II.2.2 Analytical methods 

II.2.2.1 Cell enumeration 
 

For the enumeration of the microbial cells, two different cell counting chambers were used: 

Thoma counting chamber for yeasts (0.1 mm depth) and Petroff-Hausser counting chamber for 

bacteria (0.02 mm depth). 
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The cell concentration was calculated by the following formulas:  

• For yeasts: 

X (cells/ml) = [(number of cells counted) / (number of large squares counted)] x D x 0.25 x 106 

• For bacteria:  

X (cells/ml) = [(number of cells counted) / (number of large squares counted)] x D x 125 x 104 

D = dilution factor 

II.2.2.2 Yeast viability 
 

The viability was evaluated by counting yeast cells using the Thoma counting chamber after 

staining the sample (v/v) with methylene blue for 10 min. The methylene blue dye was prepared 

by dissolving 0.1 g of methylene blue into one liter of 2 % sodium citrate solution. Blue cells 

were considered as dead while the colorless ones were living cells (Lange et al., 1993). 

The percentage of living cells was then calculated. 

II.2.2.3 Optical density (OD) or absorbance measurement 
 

The OD of the microbial samples (yeasts and bacteria) was measured with an UV/Vis 

Spectrophotometer (Shimadzu, Japan) at 620 nm in plastic cuvettes of 1 cm width. To maintain a 

linear correlation between the cell concentration and the OD, the absorbance should remain less 

than or equal to 0.8, otherwise the sample should be diluted. 

II.2.2.4 Biomass or dry weight measurement 
 

The dry weight measurement of yeasts and bacteria was performed using a moisture analyzer 

(Ohaus, UK). The sample was centrifuged in order to remove the supernatant. The pellet was 

recovered and washed twice with distilled water to remove any residual substrate. It was finally 

suspended in a small volume of distilled water and introduced into the analyzer. The sample was 

heated until total evaporation of water and stabilization of the dry weight. The results were 

expressed in g/l. 
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II.2.2.5 DNS method for the determination of the sugar concentration  
 

The sugar consumption during the alcoholic fermentation was followed using the dinitrosalicylic 

(DNS) colorimetric method (Miller, 1959) based on the presence of free carbonyl groups (C=O) 

and the results were expressed in g/l. The main reducing sugars in the synthetic and natural grape 

juices are D-Glucose and D-Fructose. This method involves mixing DNS reagent with a sample, 

heating to catalyze the reaction and measuring the visible absorbance of the products 

(particularly 3-amino-5-nitrosalicylic acid). 

 

3, 5-Dinitrosalicylic acid + reducing sugar                3-Amino-nitrosalicylic acid + oxidized sugar 

 

The DNS reagent was conserved in amber bottles at 4 ºC for 15 days and was prepared as 

following: 

- 3, 5-Dinitrosalicylic acid (2.5 g) 

- Sodium potassium tartrate (75 g) 

- NaOH (4 g) 

- Distilled Water (250 ml) 

 

A stock solution of 2 g/l of sugars composed of 50 % D-Glucose and 50 % D-Fructose was 

prepared and used to create a calibration curve covering a range of concentrations of: 0, 0.5, 1, 

1.5 and 2 g/l. Since the sugar concentration at the start of the alcoholic fermentation was 200 g/l, 

the samples taken should be diluted so as not to exceed the upper limit of the calibration curve (2 

g/l). After dilution, 1 ml of DNS was added to 1 ml of each sample and mixed thoroughly before 

incubating the tubes in a water bath for 10 minutes at 100 ºC. The tubes were then cooled on ice 

and 10 ml of distilled water was added. Next, the samples were mixed and kept in a dark place 

for 15 min. The OD was measured using a spectrophotometer at 540 nm and the unknown 

concentrations of the samples were determined from the calibration curve. 

II.2.2.6 Glycerol and ethanol measurement by HPLC 
 

Glycerol and ethanol produced by yeasts during the AF were measured using the HPLC method. 

The column used was an Aminex@ HPX-87H Bio-Rad (30 cm x 7.8 mm) presenting a cationic 
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H+ coverage, thermostated at 40 ºC, and coupled to a Biorad guard column (H+). The solvent 

used was a 5 x 10-3 M sulfuric acid solution eluted at a flow rate of 0.4 ml/min with a pump 

P1000XR Thermo Separation Products. The HPLC was coupled to an automate injector AS100 

with an injection clasp of 20 µl, a refractive index detector IV and a Borwin V 1, 2 software for 

data analysis. The results were calculated according to glycerol and ethanol standard scales and 

expressed in g/l.  

II.2.2.7 Fatty acids measurement by GC 
 

The medium chain fatty acids produced by yeasts during the AF were measured using the Gas 

Chromatography (Hewlett Packard HP 5890) with hydrogen as vector gas and a capillary column 

SGE FFAP. The detector was FID and the split less mode was used. Octan-3-ol was used as 

internal standard. Results were contracted out in the ISVV, University of Bordeaux and were 

expressed in mg/l.  

II.2.2.8 Determination of the SO2 concentration 
 

The concentration of SO2 produced by yeasts during the AF was evaluated using the Ripper 

iodometric method (Recueil des méthodes analytiques de l’OIV, 1974). The results were 

expressed in mg/l. 

 

Reagents: 

- Iodide iodate solution 0.1N (Fluka 3805) 

- Starch suspension (100 ml, 5 g of starch, 10 g of NaCl) 

- H2SO4 98 %, 1/3 diluted 

- KOH 1N 

- Determination of free SO2: 

First, 2 ml of sulfuric acid and 2 ml of the starch suspension were added to 50 ml of the 

fermented SGJ. Then, a volume V of iodide was added until the appearance of a blue-violet color 

at equivalence.  
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- Determination of total SO2: 

15 ml of KOH 1N were added to 50 ml of the fermented SGJ for 10 minutes. The KOH was used 

to release the sulfur dioxide combined to aldehydes. Then, 5 ml of sulfuric acid and 2 ml of 

starch suspension were added respectively. Then, a volume V’ of iodide was added until the 

appearance of a blue-violet color added at equivalence.    

 

Based on the following reaction: 

SO2 + I2 + 2H2O                   2HI + H2SO4 

 

At equivalence:  

    n (I2) = n (SO2) 

CV (I2) = CV (SO2) 

 

- Determination of the molecular toxic form of free SO2:  

The molecular toxic form of free SO2 was determined by the following formula (www.itv-

midipyrenees.com): 

Molecular SO2 (mg/l) = Free SO2 (mg/l)/ [10(pH-pKa) +1]  

The pH value was 3.5 and corresponded to the initial pH of all the culture media used in this 

study. The pKa of SO2 at 22 ºC and in the presence of ethanol between 9 and 11 % (v/v) is 2.  

II.2.2.9 Measurement of polysaccharides 
 

Principle  

The assay consists in precipitating the polysaccharides contained in the fermented medium by 

adding hydrochloric acid and ethanol. The supernatant is then filtered through filtration 

membranes and the retentate is weighed (Vinidea.net-Wine Internet Technical Journal, 2002).  

Reagents: 

-HCl 36 % 
 
-Ethanol 95 % 

 

Experimental procedure:  

- Centrifuge 20 ml of the medium at 12,000 x g for 10 minutes 

n= number of moles 

C= molarity (mol/l) 

V= volume (ml) 
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- Recover the supernatant in an Erlenmeyer flask of 100 ml 

- Precipitate the polysaccharides by adding 4 ml of HCl 36 % diluted 1:1 and 80 ml of ethanol 

95 % 

- Stir at 4 °C for 24-48 h 

- Dry acetate cellulose filters of 0.45 µm cut-off (Sartorius, Goettingen-Germany) in an oven at 

40 °C for 30 minutes and weigh (P1) 

- Use the membranes for vacuum filtration of the medium to be analyzed after polysaccharides 

precipitation 

- Dry again in an oven at 40 °C for 30 minutes and weigh the dried filters (P2) 

 

   [Total Polysaccharides (mg/l)] = (P2-P1)/Vmedium 

II.2.2.10 Determination of the protein concentration by the Lowry method 
 

Principle 

The Lowry method is based on the formation of a complex between the peptide bonds and the 

copper (II) sulfate under alkaline conditions. This complex reduces the phosphomolybdic and 

phosphotungstic acids of the Phenol Folin-Ciocalteu reagent to give a blue complex quantified 

by spectrophotometry (Frolund et al., 1995). 

 

Reagents 

Reagent A: Na2CO3 (20 g/l) + NaOH (0.1 N) + Potassium Sodium Tartrate (1 g/l) 

Reagent B: CuSO4.5H2O (5 g/l) 

Lowry reagent: 50 ml A + 5 ml B 

Phenol Folin-Ciocalteu reagent: ready to use, ½ diluted, freshly prepared 

The standard curve was prepared with a 500 mg/l BSA (bovine serum albumin) stock solution to 

cover the following range of concentrations: 0, 50, 125, 250, 375, 500 mg/l. 

 

Experimental procedure:  

Add to each tube: 

- 0.5 ml of each sample or standard solution (distilled water was used for the blank) 

- 2 ml of the Lowry reagent. Mix well and let stand at room temperature for 10 min 
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- 0.2 ml of the Phenol Folin-Ciocalteu reagent. Mix well and let stand away from light at room 

temperature for 30 min 

- Measure the OD at 691 nm 

 

The results were determined according to the standard curve and expressed in mg/l. 

II.2.2.11 Determination of the protein concentration at 280 nm 
 

The OD of the purified or the fractionated proteins solubilized in a phosphate buffer (0.1 M, pH 

6.7) was estimated by spectrophotometry at 280 nm (Thermo Scientific NanoDrop 2000/2000c 

TM-USA). A volume of 1 μl was poured on the pedestal. BSA standard solutions ranging from 

0.1 mg/ml to 10 mg/ml were prepared and used for calibration. The blank was read against the 

same buffer used to suspend the protein pellets.  

In order to obtain a linear correlation between the OD and the protein concentration, the 

absorbance should remain below 1. Otherwise the sample must be diluted. This rapid and 

sensitive method requires a protein amount of 100 µg or more in each sample.    

II.2.2.12 Determination of total polyphenols  
 

Principle 

The phenolic compounds in musts and wines are oxidized by the Folin-Ciocalteu reagent. The 

latter is composed of phosphotungstic (H3PW12O40) and phosphomolybdic (H3PW12O40) acids 

that are reduced during the oxidation of phenols into a blue complex of tungsten and 

molybdenum oxides quantified at 750 nm.   

 

Experimental procedure as described by Ribéreau-Gayon et al., (2006)  

1 ml of diluted must or wine (1:5) was first introduced into a volumetric flask of 100 ml. 50 ml 

of distilled water, 5 ml of the Folin-Ciocalteu reagent and 20 ml of a 20 % sodium carbonate 

solution were then added to the flask. Finally, the volume was completed to 100 ml with distilled 

water and well mixed. After an incubation period of 30 min at room temperature, the absorbance 

was measured at 750 nm using distilled water as blank. A reference sample was prepared by 

replacing must/wine with distilled water and the same procedure was followed. The OD 
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difference between the must/wine and the reference sample was calculated and used to determine 

the concentration of total polyphenols by referring to a calibration curve prepared with gallic 

acid. The result was multiplied by the dilution factor and expressed in mg/l.  

II.2.2.13 Enzymatic assays for the determination of the L-malic acid, L-lactic acid, D-lactic 
acid, acetic acid, citric acid and ethanol concentrations  
 

The enzymatic assays (Boehringer Mannheim/R-Biopharm, Darmstadt-Germany) of L-malic 

acid (Kit. No. 10139068035), L-lactic acid (Kit. No. 10139084035), D-lactic acid (Kit. No. 

11112821035), acetic acid (Kit. No. 10148261035), citric acid (Kit. No. 1013976035) and 

ethanol (Kit. No 10176290035) were performed at room temperature (20-25 °C). An UV/visible 

spectrophotometer (Thermoscientific, USA) was used for the determination of the OD at 340 nm 

except for ethanol at 334 nm. Cuvettes of 1 cm light path were used. The results were expressed 

in g/l. 

 

II.2.3 Characterization of the yeast anti-MLF proteinaceous compounds 

II.2.3.1 Heat and protease treatments of the SGJ media fermented by S. cerevisiae strain D  
 

At the completion of AF (120 h), the SGJ medium fermented by S. cerevisiae strain D, was first 

centrifuged (3000 rpm for 20 min at 4 °C) and the supernatant was recovered and submitted to 

the following treatments: 

- Heat treatments at 100 °C for 30 min and at 121 °C for 20 min.  

- Enzymatic treatments with 10 μg/μl of 3 different proteases for 1h at 37 °C after 

adjusting the medium pH to the optimum pH (pHopt) for activity of each enzyme: pHopt of pepsin 

(Sigma P7125) = 2, pHopt of trypsin (Sigma 93613) = 7.6, pHopt of papain (Sigma R3375) = 6.7. 

To increase the pH, a 10 M NaOH solution was used and to lower it an 85 % orthophosphoric 

acid solution was used.  

At the end of these treatments, the L-malic acid concentration was readjusted to 3 g/l and the pH 

was brought back to 3.5 before bacterial inoculation.  

Then, 250 ml of the untreated and treated yeast fermented media were inoculated with O. oeni 

strain X at an initial concentration of 2 x 106 cells/ml and the MLF was conducted in Erlenmeyer 
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flasks at 22 °C with stirring at 150 rpm. The same bacterial preculture steps described in 

paragraph II.2.1.2 were used for the preparation of the bacterial inoculum. The MLF was 

followed by regular sampling until the cessation of L-malic acid consumption.  

As a reference for bacterial growth and malic acid degradation kinetics during the sequential 

fermentations performed in the untreated and treated yeast fermented media, two control cultures 

of O. oeni strain X were carried out. The first one was performed in 250 ml of the SGJ medium 

and the second one in 250 ml of the SWM. These control cultures were grown at 22 °C with 

stirring at 150 rpm starting with an initial concentration of 2 x 106 cells/ml.  

All the treatments and the MLF steps were performed in three replicates.  

II.2.3.2 Fractionation of the yeast fermented media by ultrafiltration  
 

Principle 

The ultrafiltration of the yeast fermented media separates the different components according to 

their MW by using membranes presenting different cut-offs. It also leads to the concentration of 

the retentate. The concentration factor depends on the initial volume filtered and the final volume 

retained by the membrane. The diffusion of the components from one side of the membrane to 

another is the result of the pressure difference. Ultrafiltration is generally tangential and the fluid 

flows parallel to the membrane unlike the frontal conventional filtration. Cross flow filtration 

reduces membrane fouling problems. In the following experiment, several ultrafiltration modules 

containing membranes with different cut-offs were used. The separation of the components 

according to their MW was due to the tangential force created by centrifugation.  

 

Technique 

In order to determine the apparent molecular weight of the anti-MLF proteinaceous compounds, 

the yeast fermented medium was fractionated by ultrafiltration through centrifugal filter units 

(3,500 xg, 45 min, 4 °C) having cut-offs of 10 kDa (Amicon® Ultra-15 with ultracel-10 

membrane), 5 kDa (Corning® Spin-X UF 20 Sigma-Aldrich) and 3 kDa (Amicon® Ultra-15 with 

ultracel-3 membrane). First, a volume of 210 ml of the fermented SGJ medium was distributed in 

the ultrafiltration units presenting a cut-off of 10 kDa. Each unit can initially contain a volume of 

15 ml. 14 units were filled and at the end of the ultrafiltration a volume of 0.2 ml was retained by 

the membrane of each unit. A total retentate of 2.8 ml with a MW ≥ 10 kDa and 75 times 
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concentrated was obtained. The filtrate ≤ 10 kDa was ultrafiltered again using the units of 5 kDa 

cut-off. The principle was the same and 2.8 ml of a fraction with a MW between 5 and 10 kDa 

75 times concentrated was obtained. The filtrate lower than 5 kDa was ultrafiltered using the 

units of 3 kDa cut-off and a fraction of a MW between 3 and 5 kDa 75 times concentrated was 

obtained. This work yielded 3 retentates of 2.8 ml each, 75 times concentrated containing 

compounds ≥ 10 kDa, between 5 and 10 kDa and between 3 and 5 kDa and a non-concentrated 

filtrate ≤ 3 kDa.  

Each retentate (2.8 ml) was added to 20 ml of a modified MRS medium and was finally 10.5 

times concentrated whereas the non-concentrated filtrate ≤ 3 kDa replaced the distilled water for 

the preparation of the corresponding modified MRS medium (Figure II.1).  

O. oeni strain X was then inoculated into these four media at an initial concentration of 2 x 106 

cells/ml and the MLF was carried out at 22 °C with stirring at 150 rpm in Erlenmeyer flasks. The 

same modified MRS medium without the fractions of the yeast fermented medium was used as a 

control for this experiment. The MLF was followed by regular sampling until the cessation of L-

malic acid consumption.  

All the fractionation steps and the MLF steps in the modified MRS media with or without the 

proteinaceous fractions were performed in triplicate.  

 

 

 

 

 

 

 
Figure II.1. Ultrafiltration of the yeast fermented SGJ medium for harvesting different peptidic fractions 

 

II.2.3.3 Timing of the release of the 5-10 kDa inhibitory fractions by S. cerevisiae strain D 
 

The AF was carried out for 5 days (120 h) in 2 l of the SGJ medium. Each 24 h, a supernatant of 

210 ml was collected and fractionated by ultrafiltration in order to isolate the corresponding 5-10 

kDa peptidic fraction. Five fractions were finally collected and were referred to as D1 (24 h), D2 
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(48 h), D3 (72 h), D4 (96 h) and D5 (120 h).  The fraction from each day (2.8 ml, 75 times 

concentrated) was added to 20 ml of a modified MRS medium and was finally 10.5 times 

concentrated.  

O. oeni strain X was then inoculated into these media at an initial concentration of 2 x 106 

cells/ml and the MLF was carried out at 22 °C with stirring at 150 rpm in Erlenmeyer flasks. The 

same modified MRS medium without the 5-10 kDa fractions was used as a control for this 

experiment. The MLF was followed by regular sampling until the cessation of the L-malic acid 

consumption.  

All the fractionation steps and the MLF steps in the modified MRS media were performed in 

three replicates.  

II.2.3.4 Fractionation of the yeast fermented media by ammonium sulfate precipitation  
 

Principle 

Proteins have unique solubility profiles in neutral salt solutions. Low concentrations of neutral 

salts usually increase the solubility of proteins; however, proteins are precipitated from solution 

as ionic strength is increased, it’s the Salting Out phenomenon. This property can be used to 

precipitate a protein from a complex mixture. Ammonium sulfate [(NH4)2SO4] is commonly 

used because it is highly soluble and does not denature the proteins. An online web browser was 

used to determine the proper amount of ammonium sulfate to achieve a specific concentration: 

(www.encorbio.com/protocols/AM_SO4.htm) 

 

Technique 

The SGJ media fermented by yeasts were centrifuged to recuperate 500 ml of the supernatant 

(3500 rpm, 20 min, 4 ºC). The residual (NH4)2SO4 in the yeast fermented media was negligible. 

Therefore the starting percentage saturation of ammonium sulfate in these media was almost 0. 

The program on [www.encorbio.com/protocols/AM_SO4.htm] enables us to calculate how much 

solid ammonium sulfate we need to add to a specific volume of a solution to get specific 

percentage saturation at a specific temperature. The different amounts of (NH4)2SO4 added were 

therefore calculated to reach the following saturation degrees: A: 0-20 %, B: 20-40 %, C: 40-60 

%, D: 60-80 % and E: 80-100 %.  
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For example, in order to reach a saturation degree of 20 %, 55 g of (NH4)2SO4 should be added. 

The salt was added gradually for one hour while shaking at 4 ºC. Then, after 90 min, the medium 

was centrifuged at 5000 rpm for 30 min at 4 ºC. Next, the protein pellet was suspended in 10 ml 

of a phosphate buffer (0.1M, pH 6.7), thus our sample was finally 50 times concentrated. Finally, 

the sample was desalted using an ultrafiltration unit of 5 kDa cut-off. 0.2 ml of a protein retentate 

with a MW ≥ 5 kDa was obtained. The ultrafiltration added a new concentration factor of 50 X. 

The retentate which was then 2500 times concentrated (50 x 50) was added to 20 ml of a 

modified MRS medium in order to evaluate its inhibitory effect. It was 100 times diluted and 

was finally 25 times concentrated. The remaining supernatant was used again to reach a new 

saturation level and the same procedure was repeated.   

The inhibitory effect of the five precipitated fractions (A, B, C, D and E) was evaluated 

separately in modified MRS media inoculated by 2 x 106 cells/ml of O. oeni strain X. The MLF 

was followed by regular sampling until cessation of malate consumption and compared to that of 

a modified MRS control.  

All the experiments were performed in three replicates.  

II.2.3.5 Protein purification by Ion Exchange Chromatography  
 

Principle 

Adsorption chromatography is defined as the separation of compounds by adsorption to, or 

desorption from, the surface of a solid support by an eluting solvent. Separation is based on 

differential affinity of the protein for the adsorbent or eluting buffer. The most commonly used 

protein separation is Ion Exchange Chromatography (IEXC) defined as the reversible adsorption 

between charged molecules and ions in solution and a charged solid support matrix. A positively 

charged matrix is called an anionic exchanger (AEX) because it binds negatively charged ions or 

molecules in solution. A negatively charged matrix is called a cationic exchanger (CEX) because 

it binds positively charged ions or molecules. The protein of interest is first adsorbed to the 

IECX under buffer conditions (ionic strength and pH) that maximize the affinity of the protein 

for the matrix. Contaminating proteins of different charges pass through the exchanger 

unadsorbed. Proteins bound to the exchangers are selectively eluted from the column by 

gradually changing the ionic strength and/or pH of the eluting solution. As the composition of 
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the eluting buffer changes, the charges of the proteins change and/or their affinity for the ion-

exchange matrix is decreased. 

Besides, ion exchange chromatography is used to concentrate and purify proteins based on their 

ionic charge or isoelectric point (pI) at a given pH. At the isoelectric point of a protein, its net 

charge is zero. At a pH higher than the pI of the protein, the protein will be negatively charged 

and will bind to an AEX resin. At a pH lower than the pI, the protein will be positively charged 

and will bind to a CEX resin. When an ion is applied to an ion exchange of opposite charge, it is 

adsorbed to the resin, while neutral ions or ions of the same charge are eluted in the flow-through 

fraction. Binding of the ions is reversible, and adsorbed molecules are commonly eluted with salt 

or a change of pH. 

Technique 

The nature of the fractionated proteins/peptides obtained by ultrafiltration and ammonium sulfate 

precipitation was unknown. Therefore, they were further purified through cationic and anionic 

exchange chromatography.  

The columns used were Bio-ScaleTM Mini cartridges of 5 ml; UNO sphere Q [-N+(CH3)3] as 

strong anion exchanger and UNO sphere S [-SO3
-] as strong cation exchanger (Bio-Rad). First, 

the pump flow rate was set to 6 ml/min. The cartridge was washed for 2 min with a degassed 

low-salt buffer (corresponding binding buffer + NaCl 0.5 M) and for 5 min with a degassed high-

salt buffer (corresponding binding buffer + NaCl 1 M). The degassing was performed in an 

ultrasonic bath (Thermo scientific-USA).The cartridge was then equilibrated with the same low-

salt buffer for 5 min. Next, the flow rate was reduced to 1ml/min for the purification protocol. At 

the end of each run, the cartridge can be regenerated with 1 M NaCl followed by starting buffer.  

 

Sample preparation 

1 ml of the 5-10 kDa fraction of the 60-80 % ammonium sulfate precipitate was used for 

purification. The samples were degassed and sterile filtered through 0.45 µm filters (Sartorius, 

Goettingen- Germany) before use.   

First, 500 ml of the SGJ fermented by S. cerevisiae strain D were used to recuperate the 60-80 % 

precipitate. The precipitate was then suspended in 10 ml of the corresponding binding buffer (50 

X) and submitted to ultrafiltration in the 10 kDa unit. The filtrate lower than 10 kDa was 
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ultrafiltered again using the 5 kDa unit. The desalted retentate between 5 and 10 kDa was 

recuperated (0.2 ml, 2500 X). 1 ml of this retentate was collected for each analysis.   

 

Binding and elution buffers 

Binding buffers: 1 M Tris buffer pH 8.3 was used for the anionic exchanger. 10 mM phosphate 

buffer pH 6.7 or citric acid buffer pH 5.2 were used for the cationic exchanger. 

Elution buffers: For both anionic and cationic exchange chromatography, increasing salt 

gradients were adopted for elution. The elution buffers were therefore composed of binding 

buffers coupled to increasing concentrations of NaCl (0.1, 0.5 and 1 M). The eluted samples 

were concentrated by the speed-vacuum-concentrator (each 1 ml of eluate gave a final volume of 

0.5 ml) and used to test their inhibitory effect on the malolactic enzyme activity of the enzymatic 

extract in vitro (paragraph II.2.4).   

II.2.3.6 Protein purification by Aurum™ Ion Exchange Mini Kits and Columns 
 

Principle  

Aurum AEX and CEX columns allow rapid fractionation of complex protein mixtures in only a 

few steps using the common technique of ion exchange chromatography. Each Aurum AEX 

(732-6706) or CEX (732-6703) column contained 0.2 ml of UNO sphere™ Q [-N+(CH3)3] or S [-

SO3
-] support. The buffers selected were the following:  

- Binding buffers: 20 mM phosphate pH 6.7 for CEX and 20 mM Tris pH 8.3 for AEX 

- Elution buffers: binding buffer + 0.5 M NaCl, binding buffer + 1 M NaCl 

Table II.13 gives the common buffers used for ion exchange chromatography.  
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    Table II.7. Common buffers used for ion exchange chromatography 
 

 
 

Technique 

All samples should be filtered before application to Aurum ion exchange columns. This can be 

accomplished using a 0.45 μm syringe filter or by centrifuging the sample at 10,000 x g for 5 

min. The same 5-10 kDa peptidic fractions of the 60-80 % ammonium sulfate precipitates 

previously described in paragraph II.2.3.5, were used for further purification by the Aurum kit.  

1 ml of these fractions 2500 X were collected for each analysis.   

 

The following steps describe the procedure adopted (Figure II.2):  

1- Place an ion exchange column in a 12 x 75 mm test tube and allow the resin to settle for at 

least 5 min 

2- Remove the cap and break off the tip from the bottom of the ion exchange column. Return 

column to test tube 

3- Start gravity flow in the column and allow residual buffer to drain from the column 

(approximately 2 min). If the column does not begin to flow, push the cap back on the column 

and then remove it again to start the flow 

4- Once the residual buffer has drained, wash the column with 2 x 1 ml of the appropriate Aurum 

AEX or CEX binding buffer using gravity flow. Allow each wash to pass fully through the 

column and drain 

5- After the last wash, place the column in an empty 2 ml collection tube and centrifuge for 10 

sec at 1,000 x g in a microcentrifuge to dry resin bed and frit. Discard the collection tube 

6- Place the column in a clean 2 ml collection tube and label it “unbound” 
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7- Load 1 ml of the sample with its appropriate buffer onto the column and allow the sample to 

gravity filter through the column, collecting in the collection tube. If the column does not begin 

to flow, push the cap back on the column and remove it again to start the flow 

8- Place the column in another clean 2 ml collection tube 

9- Wash the column with 0.3 ml of Aurum AEX or CEX binding buffer. Unbound fractions can 

be combined for further analysis if desired. Otherwise, unbound fractions can be discarded 

10- Place the column in a 2 ml collection tube and wash with 0.6 ml of the appropriate Aurum 

AEX or CEX binding buffer. Centrifuge column for 20 sec at 1,000 x g in a microcentrifuge, 

collecting the eluate in the tube. This wash can be discarded 

11- Place the column in a new 2 ml collection tube and label it “bound #1” 

12- Add 0.3 ml of the appropriate Aurum AEX or CEX elution buffer that contains 0.5 M NaCl 

to the top of the column and centrifuge for 10 sec at 1,000 x g 

13- Wash with an additional 0.3 ml of the Aurum AEX or CEX elution buffer into the same 

“bound #1” tube. Centrifuge for 10 sec at 1,000 x g and recuperate the first eluate 

14- Place the column in a new 2 ml collection tube and label it “bound #2” 

15- Wash with 0.3 ml of the Aurum AEX or CEX elution buffer that contains 1 M NaCl. 

Centrifuge for 10 sec at 1,000 x g and recuperate the second eluate 

 

 

 

 

 

 

 

 

 

 
 

Figure II.2. Aurum ion exchange mini kit components 
 

 

AEX or CEX column 12 x 75 mm test tube 

2 ml collection tube AEX or CEX column 
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II.2.3.7 Protein purification by Tricine SDS-PAGE  
 

Sample preparation  

The proteinaceous fractions were analyzed by Tricine SDS-PAGE as described by Schägger and 

Jagow (1987) and Schägger (2006), to separate proteins on the basis of their sizes.  

500 ml of the SGJ fermented by S. cerevisiae strain A (reference strain) and S. cerevisiae strain 

D (inhibitory strain) were used for this experiment. The 60-80 % ammonium sulfate precipitate 

from each medium was suspended in 10 ml of phosphate buffer (0.1 M, pH 6.7). The proteins 

were therefore 50 times concentrated. Then, the 10 ml were ultrafiltered using a 10 kDa unit and 

the filtrate lower than 10 kDa was ultrafiltered again in the 5 kDa unit. 0.2 ml of a desalted 

retentate with a MW between 5 and 10 kDa was recuperated. An additional concentration factor 

of 50 X was added and the sample was finally 2500 times concentrated (2500 X).  

A protein precipitation solution or TCA solution (Table II.14) was used for further concentration 

of the samples which were then dried in a dry heat block (Major Science, USA) for 15 min 

(Sanchez, 2001). 1 volume (250 µl) of TCA is needed for each 4 volumes of concentrated 

proteins (1 ml, 2500 X). Proteins were pelleted (14,000 x g, 4 ºC, 15 min), washed twice in 200 

µl of ice-cold acetone (14,000 x g, 4 ºC, 5 min) and suspended in 100 µl Triton X-100 buffer (2 

% v/v Triton X-100, 1 % v/v dithiothreitol, Sigma-Aldrich). The proteins were finally 25 000 

times concentrated (25 000 X). 

Table II.8. Protein precipitation solution or TCA solution composition 
 

Components Amount 

TCA 20 g 

DTT                  0.2 g 

Acetone 80 ml 

diH2O 6 ml 

Acetone                 to 100 ml 
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Reagents and Technique  

 

Loading sample buffer: 2X Laemmli buffer (30 ml) 

The composition of the loading buffer (Table II.15) was the following: 62.5 mM Tris-HCl pH 

6.8, 2 % SDS, 25 % Glycerol, 0.01 % Bromophenol Blue, 5 % β-mercaptoethanol (added fresh). 

The peptidic samples were mixed with the buffer (1:1) and set at 75 ºC for 10 min in a dry heat 

block prior to electrophoresis. Therefore, the loading buffer was finally reduced to 1X before 

use.  

 

Table II.9. Laemmli sample buffer composition  
 

Components Volume (ml) 

0.5 M Tris-HCl pH 6.8 3.75  

50 % Glycerol 15 

1 % Bromophenol Blue 0.3 

10 % SDS 6 

diH2O                 to   30 

β-mercaptoethanol (50 µl to 950 µl sample buffer) added before use 
 
 
Running buffer: 10 X TrisTricine SDS (1 l) 

The composition of the running buffer (Table II.16) was the following: 1 M Tris, 1 M Tricine, 1 

% SDS, pH 8.3. The running buffer was reduced to 1X with distilled water before use. 

  

Table II.10. Running buffer composition  
 

Components Amount (g) 

Tris base 121.10 

Tricine 179.20 

SDS 10 

diH2O                 to 1 l 
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Electrophoresis was carried out using a ready-to-use [8-16 %] Mini-PROTEAN ®TGX ™ 

Precast gels composed of 12 wells in a Mini-PROTEAN® Tetracell (Bio-Rad Laboratories, 

Richmond-CA, USA). 20 µl of concentrated samples were run against 10 µl precision plus 

protein Dual-Xtra standard (2-250 kDa, criterion 10-20 % Tris-Tricine) composed of 12 

recombinant proteins (Bio-Rad) at 100 V for 15 min. Gels were stained using Bio-safe™ 

Coomassie G-250 stain or Silver stain kit (Bio-Rad). Imaging and documentation were done by 

using the Gel Doc XR+ System, controlled by Image Lab TM software (Bio-Rad). 

 

II.2.4 Peptides/Proteins sequencing by LC1D-nanoESI- LTQ-Velos Orbitrap 
 

The sequencing was contracted out in PAIB2 (Plate-forme d'Analyse Intégrative des 

Biomolécules Phénomiques des Animaux d’Intérêt Bio-agronomique), Laboratoire de 

Spectrométrie de Masse, Centre de Recherches INRA Val de Loire-Tours. 

The protein bands excised from SDS-PAGE were submitted to in-gel tryptic digestion. The 

peptidic extract was then dehydrated and analyzed by high resolution mass spectrometry. The 

peptides derived from the digestion of the bands were analyzed by a nanoUHPLC Ultimate 3000 

RSLC system (Thermo Electron, US) coupled to a high resolution mass spectrometer LTQ 

Orbitrap Velos ETD (Thermo Electron, US).  

The samples were desalted and concentrated in line by a precolumn Acclaim PepMap100 C18 

trap (3 µm, 100 µm x 2 cm) (Dionex), then separated on an analytical reverse phase column 

Acclaim PepMAp C18 (2 µm, 75μm x 50 cm) (Dionex) with a flow rate of 300 nl/min. 

The profile of the gradient was as follows: 

- Equilibration of the column with 96 % of solvent A (0.1 % formic acid/2 % acetonitrile) and 4 

% of solvent B (80 % acetonitrile/15.9 % H2O/0.1 % formic acid, v/v) 

- Gradient of 4 to 55 % B in 90 min 

- 99 % B for 10 min 

Data acquisition was done automatically between high resolution MS modes (R60 000) and 

MS/MS (low resolution fragmentation): an enhanced centroid full scan (m/z 400-1800) was 

followed by MS/MS centroid scans of the 20 most intense peaks detected (0.25 Qz, 10 ms 

activation time, collision energy 35). The dynamic exclusion was activated for 30 sec with a 

"repeat count" of 1. 
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The data was transformed into "mascot generic file" (.mgf) using the Proteome discoverer 1.3 

software. It was then confronted with the database via MASCOT and via PD Deamon (local 

server version 2.3) by considering the following criteria: 

- Indexed data bank: nr NCBI  

- Trypsin and no enzyme 

- 2 miss cleavages 

- 5 ppm mass accuracy for MS and 0.8 Da for MS/MS 

- Peptide load 2 and 3+ 

- Carbamidomethylation, N-terminal acetylation and oxidation of methionines in variable 

modifications  

- Data Format: mgf 

- Decoy database 

- Instrument: ESI-FTICR 

- Taxonomy: _saccharomyces cerevisiae_ 

The peptides and proteins identified by the Mascot search engine were then validated by the 

algorithms "Peptide Prophet" and "Protein Prophet" using Scaffold 4 software. 

From the GeLC-MS/MS analyzes, interrogations were conducted from the NCBI bank against 

the taxonomy_saccharomyces cerevisiae_. 

 

II.2.5 In vitro evaluation of the inhibitory effect of the yeast peptidic fractions on the 
malolactic enzyme activity 

II.2.5.1 Preparation of the cell-free bacterial enzymatic extract 
 

The modified MRS medium was inoculated with O. oeni strain X at an initial concentration of 2 

x 106 cells/ml and the bacterial culture was followed for 5 days at 22 °C with stirring at 150 rpm. 

After a centrifugation at 3500 rpm for 20 min at 4 °C, the supernatant was removed and 0.4 g of 

the bacterial pellet were weighed and suspended in 800 μl of a specific buffer (citrate buffer pH 

3.5 and 5.5, phosphate buffer pH 6 and 6.7, buffer concentration 0.1 M). The bacterial cells were 

then lysed by disrupting them with glass beads of 300 μm diameter (Sigma-Aldrich) in a 

FastPrep® FP120 bead-beater device (BIO 1010/Savant) at 6 m s-1 for 3 x 45 s (Mehmeti et al., 

2011). Between 2 consecutive runs, the cells were kept on ice for 1 min. Cell debris were 



Materials & Methods 

 

86 
 

removed by centrifugation at 14,000 x g for 10 min at 4 °C (Larsen et al., 2006). The supernatant 

containing the cell-free enzymatic extract was recovered and the volume completed to 2 ml using 

the same buffer.  

 

II.2.5.2 Monitoring of the L-malic acid consumption in vitro 

 

The 2 ml of the enzymatic extract were divided into 2 aliquots of 1 ml each. One was used as a 

control and the other as a test medium to which the peptidic fractions were added. The reaction 

mixture is given in Table II.17. The reagents were added to each aliquot in the order listed in the 

Table II.17. The enzymatic reaction was performed at 30 °C for 30 min at pH 5.5 and 6, 40 min 

at pH 6.7 and 70 min at pH 3.5.  

At the end of each assay, the concentrations of the L-malic acid consumed and the L-lactic acid 

produced were measured in both aliquots (control and test) and compared.  

The preparation of the enzymatic extract and the evaluation of the inhibitory effect of each 

peptidic fraction on the malolactic enzyme activity were performed in three replicates. 

  

Table II.11. Reaction mixture for the monitoring of the L-malic acid consumption in vitro 

 

Aliquot 1 (Control) Aliquot 2 (Test) Amounts 
Enzymatic extract Enzymatic extract 1 ml 

Mn2+ Mn2+ 0.1 mg 
NAD+ (35 g l-1) NAD+ (35 g l-1) 0.1 ml 

a buffer bABP 0.14 ml 
L-malic acid (1 g l-1) L-malic acid (1 g l-1) 1 mg 

 
a buffer: 0.1 M of either citrate or phosphate buffer depending on the chosen pH for the enzymatic reaction  
b ABP: antibacterial peptides. The ABP tested were those of the 5-10 kDa fractions isolated at different intervals of the AF, the 5-

10 kDa fractions taken from the ammonium sulfate precipitates of 60-80 % saturation level, the ammonium sulfate precipitates of 

0-60 % saturation level, the eluates from the IEXC and the bands of migrated peptides from Tricine SDS-PAGE.  
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II.2.6 Well plate test  

 

Principle 

This test aimed at evaluating on agar plates the inhibitory effect of the peptidic fractions obtained 

by ultrafiltration of the SGJ medium fermented by S. cerevisiae strain D. These fractions were 

introduced in wells dug inside the agar medium already containing the sensitive bacteria (O. oeni 

strain X). Inhibitory molecules diffuse radially around the wells and the inhibition appears as 

clear zones around them (the inhibition halo). The diameter of these zones is measured (cm) and 

used as the measurement unit for this test.  

 

Technique 

O. oeni strain X was grown overnight in MRS broth at 22 °C with stirring at 150 rpm. A 

modified MRS agar medium was prepared as follows: 

- MRS 55.3 g/l 

- Agar 12 g/l 

- L-malic acid 5 g/l 

- D-Fructose 3 g/l 

- L-arginine 0.1 g/l 

 

After autoclaving at 121 ºC for 15 min, the modified MRS agar medium was cooled in a water 

bath at 45 °C before adding the bacterial strain in question so as to have an initial concentration 

of 2 x 106 cells/ml. The medium was then poured into Petri dishes and wells of 5 mm diameter 

were subsequently cut into the agar (3 wells per plate).  

One of these wells was filled with the 5-10 kDa peptidic fractions obtained by ultrafiltration of 

the SGJ medium fermented by S. cerevisiae strain D (inhibitory fraction). Different volumes 

were tested: 10, 25, 50, 75, 100, 125, 150, 175 and 200 µl. The other wells served as controls and 

contained non inhibitory fractions (fraction < 3 kDa, between 3 and 5 kDa and ≥ 10 kDa released 

by yeast strain D or a 5-10 kDa peptidic fraction released by the reference yeast strain or strain 

A).  
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The same experiment was conducted by introducing fractions of 5-10 kDa taken from the 60-80 

% ammonium sulfate precipitates of the medium fermented by strain D. The control used in this 

experiment was precipitated fractions from the medium fermented by strain A.  

The plates were then incubated for approximately 12 h at 4 °C. This step slows down the 

bacterial growth and gives enough time for the proteins to diffuse into the agar prior to obtaining 

a high bacterial growth. Finally the plates were incubated at 30 °C for 72 h before measuring the 

diameter of the clear zones around the wells.  

II.2.7 Statistical analyses 

 

Means and standard deviations of the assays were calculated using conventional statistical 

methods. Each experiment was performed in three replicates. Statistical analysis (ANOVA) was 

applied to the data to determine differences (p < 0.05). Means differences were made by using 

Tukey’s HSD test. The statistical analysis was carried out using Stat graphics XV.I for windows.  
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PART A- Determination of the kinetic 
parameters and the biochemical profiles of the 

oenological strains used during the alcoholic and 
malolactic fermentations 
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I. Introduction 

 

In the first part of this study, pure cultures of two strains of S. cerevisiae (A and D) were carried 

out in synthetic grape juices to achieve alcoholic fermentations (AF). AF were followed until 

total or cessation of sugar consumption (≤ 2 g/l). Then, the yeast fermented media were used to 

carry out malolactic fermentations (MLF) after bacterial inoculation. MLF were followed until 

complete or cessation of malate consumption. This strategy was referred to as sequential 

fermentation. O. oeni strain X was the only bacterial strain used in this study. Pure cultures of 

this strain were performed in the synthetic grape juice (SGJ) and the synthetic wine (SW) media. 

These pure cultures or bacterial controls were used as a reference for bacterial growth and malate 

consumption kinetics during sequential fermentations.  

Sequential fermentations were also carried out in commercial natural red grape juices (NGJ) and 

in Syrah and Cabernet Sauvignon musts used for red winemaking. The latter simulated the 

natural winemaking conditions and were referred to as microvinifications. An additional yeast 

strain (strain R) was tested in NGJ. The kinetics of the AF performed with the strain R as well as 

the kinetics of the MLF performed in the NGJ fermented by strain R (sequential fermentations) 

are given in appendix A-IX. This strain was tested because it is one of the most strains used in 

Lebanon.       

In order to monitor the AF and MLF, kinetic and biochemical parameters were measured by 

regular sampling. The kinetic parameters evaluated were the OD, the cell concentration, the 

viability, and the biomass for both AF and MLF. The biochemical parameters measured during 

AF were the sugar, L-malic acid and citric acid consumed as well as the ethanol, glycerol, acetic 

acid, SO2 and proteins produced. For MLF, the L-malic acid, citric acid and sugars consumed 

and the L-lactic acid, D-lactic acid and acetic acid produced were measured.  

 

 

 

 



Results & Discussion 

 

94 
 

II. Alcoholic fermentations (AF) 

II.1. Kinetic parameters of the AF carried out by S. cerevisiae strains D and A in SGJ 
media  
 

The kinetic parameters of the AF carried out by S. cerevisiae strains D and A in SGJ media are 

given in tables III.1 and III.2 and in figures III.1, III.2 and III.3 and then discussed.  

 

Table III.1. Growth and sugar consumption kinetics of S. cerevisiae strain D during AF in 
SGJ media   

 
 

 

 

 

 

 

 

Figure III.1. Growth of S. cerevisiae strain D (●) and sugar consumption (■) during AF in SGJ 
media. Each value is the mean of triplicate experiments ± SD 

 

Time (h) Cell concentration 
^106 (cells/ml) 

Viability 
(%) OD Biomass 

(g/l) 
Sugar 
(g/l) 

0 2.88 (±0.32) - 0.031 0.062 (±0.01) 200.44 (±0.12) 
18 35 (±1.41) 96 0.3 0.66 (±0.52) 167.62 (±1) 
26 141 (±0.82) 87.45 1.27 2.61 (±0.005) 138.41 (±2.31) 
42 367 (±8.22) 89 3.3 6.75 (±0.089) 126.87 (±2.3) 
50 396 (±0.06) 93.21 3.37 7.15 (±0.009) 65.75 (±0.97) 
71 390 (±1.25) 91 4.2 7.06 (±0.005) 15.95 (±1.26) 
92 385 (±2.5) 92.64 4.4 7.09 (±0.02) 1.87 (±0.04) 

115 379 (±4.11) 92.5 3.8 7.04 (±0.03) 0.66 (±0.03) 

122 373 (±4.78) 92 3.76 6.99 (±0.009) 0.55 (±0.04) 
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Table III.2. Growth and sugar consumption kinetics of S. cerevisiae strain A during AF in 
SGJ media   

 

Figure III.2. Growth of S. cerevisiae strain A (●) and sugar consumption (■) during AF in SGJ 
media. Each value is the mean of triplicate experiments ± SD 

Time (h) Cell concentration 
^106 (cells/ml) 

Viability 
(%) OD Biomass  

(g/l) 
Sugar  
(g/l) 

0 3.02 (±0.21) - 0.091 0.06 (±0.01) 192.27 (±6.95) 
8 4 (±0.16) 95.17 0.113 0.83 (±0.52) 186.17 (±6.72) 
24 61 (±3.56) 87 0.124 3.03 (±0.33) 129.30 (±4.78) 
32 94 (±4.19) 85 0.184 3.64 (±0.37) 124.07 (±4.54) 
48 221 (±16.39) 83 0.230 4.43 (±0.21) 74.33 (±2.62) 
56 249 (±18.79) 81 0.283 4.93 (±0.29) 66.20 (±2.36) 
72 318 (±12.23) 79 0.344 5.62 (±0.31) 52.37 (±1.88) 
80 239 (±33.48) 78 0.255 5.27 (±0.29) 46.71 (±1.66) 
96 224 (±1.63) 82 0.239 4.84 (±0.39) 33.63 (±1.19) 

104 170 (±35.05) 80 0.204 4.4 (±0.50) 30.97 (±1.10) 
120 248 (±33.74) 87.6 0.154 4.94 (±0.49) 10.53 (±0.38) 
128 247 (±3.30) 85.40 0.134 4.91 (±0.13) 2.37 (±0.31) 
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Figure III.3. Comparison of the growth kinetics of S. cerevisiae strain D (♦) and strain A (■) and the 
sugar consumption kinetics during AF in SGJ media. Each value is the mean of triplicate experiments ± 

SD 
 
 
Figures III.1, III.2 and III.3 allow us to follow the growth kinetics of S. cerevisiae strains A and 

D during alcoholic fermentations as well as the kinetics of the sugar consumption. Both growth 

curves are characterized by the absence of a lag phase and the presence of an active growth 

phase followed by a stationary phase. The yeasts quickly adapted to the SGJ media because they 

were previously submitted to two preculture steps. With the strain D, an acceleration growth 

phase is observed from the beginning of the AF followed by the exponential growth phase (log 

phase) which is linear and short (t0 = 20 h and tf = 40 h). The specific growth rate during the log 

phase is constant and maximal and corresponds to μmax = 0.07 h-1. Then, the growth rate slows 

down leading to the stationary phase that starts at t= 50 h. The AF with the strain A starts 

directly with the log phase which lasts 72 h and presents a μmax = 0.03 h-1. Starting with identical 

inocula (around 3 x 106 cells/ml), the two yeast strains have reached different maximal 

populations (396 x 106 cells/ml for D and 318 x 106 cells/ml for A). Along with the growth, we 

note that the sugar consumption is rather continuous throughout the alcoholic fermentation. For 

both strains, the stationary phases are reached before total sugar consumption which is 

conventional in winemaking (66 g/l of remaining sugar with the strain D and 52 g/l with the 

strain A). During the stationary phase, the sugar consumption and the ethanol production are 

achieved. Both alcoholic fermentations were followed until cessation of sugar consumption (0.55 

g/l and 2.37 g/l of remaining sugars after 122 h and 128 h of AF for the strains D and A 
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respectively). No decline phase was detected and the yeasts kept a high percentage of viability 

between 85 and 92 % (Tables III.1 and III.2). 

It can be concluded that despite the kinetic differences already mentioned, the two strains have a 

similar overall behavior. 

The linear correlations between the biomass and the cell concentration, the biomass and the OD 

and the cell concentration and the OD for each yeast strain are given in appendices A-I and A-

IV. AF trials were performed with strain D in SGJ media by replacing the yeast extract by two 

types of yeast nitrogen base. The first one lacked both amino acids and peptides and the second 

contained amino acids but not peptides. In both cases, AF couldn’t be completed. Their kinetics 

are presented in appendices A-II and A-III.  

The standard curve used for sugar analysis by the DNS method is also given in the appendix.  

II.2. Biochemical parameters of the AF carried out by S. cerevisiae strains D and A in SGJ 
media    
 

Some biochemical parameters were evaluated during the AF carried out by S. cerevisiae strains 

D and A in SGJ media and are given in table III.3 and then discussed.  
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Table III.3. The biochemical profile of S. cerevisiae strains D and A during AF in SGJ 
media  

 

 

 

 

 

 

 

 

 

 

 

 

Tables III.1, III.2 and III.3 enable us to calculate the biomass yield (1) and the ethanol yield (2) 

for both yeast strains. 

(1) Y(X/S) (g/g) = (Xf – X0)/(S0 – Sf);  

Xf: final biomass (g/l), X0: initial biomass (g/l), S0: initial sugar concentration (g/l), Sf: final 

sugar concentration (g/l) 

(2) Y(P/S) (g/g) = (Pf – P0)/(S0 – Sf) 

Pf: final ethanol concentration (g/l), P0: initial ethanol concentration (g/l), S0: initial sugar 

concentration (g/l), Sf: final sugar concentration (g/l) 

 

The biomass yield is 0.035 g/g and 0.026 g/g for the strains D and A respectively. The ethanol 

yield is 0.44 g/g and 0.45 g/g for the strains D and A respectively.  

The biomass yield in fermentation conditions varies usually between 0.05 and 0.1 g/g indicating 

that the biomass yields obtained are rather weak. The ethanol yield varies usually between 0.45 

and 0.47 g/g which is close to the values obtained. The weak biomass yields are probably due to 

the production of secondary metabolites mainly glycerol and acetic acid (Table III.3).  

Biochemical parameters  S. cerevisiae strain D  S. cerevisiae strain A 
Ethanol (g/l) 88 (±0.35) 86 (±0.73) 
Glycerol (g/l) 8.7 (±0.141) 6.5 (±0.23) 
Acetate (g/l) 0.24 (±0.04) 0.15 (±0.23) 

Consumed citrate (g/l) 0 (±0) 0 (±0) 
Free SO2 (mg/l) 0.1 (±0.009) 2.6 (±0.6) 
Total SO2 (mg/l) 0.28 (±0.05) 7.61 (±2) 

Molecular SO2 (mg/l) 0.0032 (±0.0002) 0.08 (±0.008) 
Octanoic acid (mg/l) 0,7 16,7 
Decanoic acid (mg/l) <0,1 1,9 

Dodecanoic acid (mg/l) <0,1 0,2 
Initial proteins (mg/l) 483.6 (±0.44) 483.6 (±0.44) 
Final proteins (mg/l) 1453 (±12.67) 906 (±0.17) 

Initial L-malic acid (g/l) 3.06 (±0.029) 3.01 (± 0.26) 
Final L-malic acid (g/l) 2.21 (±0.069) 2.17 (±0.13) 

Consumed L-malic acid (g/l) 0.85 (±0.014) 0.84 (±0.018) 
Mannoproteins (mg/l) 200 (±0.061) 285 (± 0.26) 

Initial /Final pH 3.5/3.25 (±0.1) 3.5/3.04 (±0.13) 
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Glycerol is the most important by-product of alcoholic fermentation after ethanol and carbon 

dioxide. It is produced in wine at concentrations of 2–11 g/l, depending on yeast strain; grape 

must composition and fermentation conditions. In S. cerevisiae, this polyol plays two major roles 

in physiological processes: it controls intracellular redox balance and combats osmotic stress. 

Glycerol is a non-volatile compound which has no aromatic properties, but which significantly 

contributes to wine quality by providing sweetness and fullness (Pretorius 2000, Remize et al., 

2003, Ribéreau-Gayon et al., 2006).  

In opposite, the formation of acetic acid is undesirable since it increases the volatile acidity of 

wine. In healthy grape must with a moderate sugar concentration, S. cerevisiae produces 

relatively small quantities (100-300 mg/l), varying according to the strain (Ribéreau-Gayon et 

al., 2006). The concentrations obtained with both strains are low and acceptable from an 

organoleptic and oenological point of view since they are lower than 1.1 g/l (Table III.3).  

The final pH of the SGJ media fermented by S. cerevisiae strain A was remarkably low although 

this strain produced a lower amount of acetic acid than strain D and consumed the same amount 

of malate as strain D (Table III.3). The consumption of malate normally increases the pH. The 

low final pH value (3.04) could therefore be explained by the release of organic acids by strain A 

during AF that was not measured. One probable example could be succinic acid (Henick-Kling, 

1993; Liu et al., 2015).    

Both yeast strains consumed low amounts of L-malic acid which is common in S. cerevisiae 

strains (Taillandier and Strehaiano, 1991). Indeed, at the pH of the SGJ media (pH 3.5), only 43 

% of the malate present (pKa 3.4) are in their non-dissociated form and can passively diffuse 

across the cell membrane (Bony et al., 1997). This is the only way used by S. cerevisiae to 

transport malate because they lack the malate permease. However, only 0.28 % of the initial 

malate was consumed by both yeast strains (Table III.3). This can be explained by the inability 

of S. cerevisiae to degrade high amounts of L-malic acid. Indeed, malic acid is mainly 

catabolized in S. cerevisiae by oxidative decarboxylation catalyzed by the malic enzyme (Boles 

et al., 1998). This enzyme has a low affinity to the substrate (KM= 50 mM) and is localized in the 

mitochondria, which are few and dysfunctional during AF (Osothsilp, 1987).  

Some metabolites produced by yeasts during the AF can have a great influence on the occurrence 

and achievement of MLF conducted later on by lactic acid bacteria. Among these metabolites, 
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we have measured ethanol, SO2 and medium chain saturated fatty acids which are capable of 

acting synergistically to inhibit bacterial growth and/or malate consumption.  

The inhibitory role of ethanol was described in paragraph I.7.5 of chapter I and its contribution to 

the MLF inhibition will be described in paragraph III of this chapter. 

The endogenous SO2 level produced depends strongly on the yeast strain, the availability of 

nutrients such as nitrogen, the pH and the temperature (Eschenbruch and Bonish, 1976; Gyllang 

et al., 1989; Osborne and Edwards, 2006). S. cerevisiae strains usually produce between 10 and 

30 mg/l of SO2 (Dittrich, 1987) but in some cases more than 100 mg/l can be detected (Henick-

Kling et Park, 1994). SO2 can be found in its free or combined form (combination to carbonyl 

groups such as acetaldehyde). The free SO2 may be in its ionic form and/or in its molecular 

active form depending on the pH of the medium. The most active form against microorganisms 

is the molecular form as described in paragraph I.7.4 of chapter I. The amount of molecular SO2 

produced by strains A and D are far lower than the inhibitory concentrations found in the 

literature. Indeed, Delfini and Morsiani (1992) found that a concentration of molecular SO2 

greater than 0.5 mg/l was able to completely inhibit the cell growth of 10 strains of Leuconostoc 

oenos (currently named O. oeni) and 4 strains of Lactobacillus. In addition, a Leuconostoc 

population of 2 x 106 cells/ml died off 22 h after the addition of 0.84 mg/l of molecular SO2. 

Therefore, we can conclude that the molecular SO2 produced by the yeast strains A and D cannot 

be considered as an inhibiting factor of MLF during the sequential fermentations conducted later 

on in the media fermented by these yeast strains. 

The medium chain saturated fatty acids (C8 to C12) produced by yeasts may also have an 

influence on MLF. The inhibitory activity of these metabolites has been described in paragraph 

I.7.6 of chapter I of this manuscript. It is mainly due to the non-dissociated form of these acids 

which is the predominant form in our case because the pH of the media is below the pKa of these 

acids (pKaoct=4.89, pKadec=4.9, pKadod=4.8). Although strain A produced higher amounts of 

these acids (Table III.3), the amounts produced are still far below the inhibitory concentrations 

found in the literature and cannot significantly participate to the MLF inhibition observed during 

sequential fermentations. Indeed, Edwards and Beelman (1987) demonstrated that 5 to 10 mg/l 

of decanoic acid should be added to the grape juice in order to inhibit the bacterial growth and 

the MLF. Lonvaud-Funel et al., (1988) also showed that either 4 mg/l of decanoic acid or 0.5 

mg/l of dodecanoic acid were necessary to inhibit MLF in wine.  
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In a previous study, Nehme et al., (2008) showed that the yeast strains A and D completely 

consumed the ammonium nitrogen but partially consumed the alpha amino nitrogen during AF. 

The influence of the nutritional behavior of yeasts on the MLF during sequential fermentations 

will be discussed in paragraph III. 

Table III.3 shows a protein production by both yeast strains during the AF. These proteins may 

include peptidic fractions of low molecular weight stimulatory of the MLF and macromolecules 

including proteins and mannoproteins also stimulatory of the MLF (Guilloux-Benatier et al., 

1993; 1995). The amount of mannoproteins produced by both yeast strains is mentioned in table 

III.3. Besides these stimulatory molecules, the SGJ media fermented by yeasts may also contain 

proteinaceous compounds that inhibit MLF. The latter will be studied in part B of this chapter. 

III. Malolactic fermentations 

III.1. Pure cultures of O. oeni strain X in synthetic grape juice and synthetic wine media 
 

Pure cultures of O. oeni strain X were carried out in synthetic grape juice (SGJ) and synthetic 

wine (SW) media and were used later on as bacterial controls during sequential fermentations in 

order to quantify the inhibition or stimulation caused by S. cerevisiae strains D or A on the 

bacterial growth and the malate consumption kinetics. The composition of the SW medium 

simulated the natural wine, yet it was lacking the yeast metabolites to the exception of ethanol. In 

fact, the SO2 and medium chain fatty acids amounts produced by both yeast strains were 

negligible (paragraph II.2, Table III.3) and far below the inhibitory concentrations found in the 

literature to cease MLF. Therefore the only yeast metabolite tested was ethanol and the SW 

medium was designed to quantify the inhibitory effect of ethanol on the bacterial growth and the 

malate consumption. This helped us determine the contribution of other yeast metabolites 

(proteinaceous compounds) to the MLF inhibition observed during sequential fermentations. The 

nutrient content of the SW medium was reduced by 50 % in comparison to the SGJ medium.  

The average specific growth rate µ (h-1) and the average specific rate of malate consumption Qs 

(g g-1 h-1) were calculated by applying the following formulas: 

- µ (h-1) = (dX/dt1).1/X with dX= (Xf - X0) and X = (Xf + X0)/2 

Xf: final bacterial biomass; X0: initial bacterial biomass; dt1: growth duration (h) 
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- Qs (g g-1 h-1) = (dS/dt2).1/X with dS = (S0 - Sf) and X = (Xf + X0)/2 

S0: initial malate concentration; Sf: final malate concentration; dt2: duration of MLF (h) 

 

The kinetic and biochemical parameters of the pure cultures of O. oeni strain X in synthetic 

grape juice and synthetic wine media are presented in tables III.4 and III.5 and in figure III.4.  

 
Table III.4. Kinetic parameters of the pure cultures of O. oeni strain X in synthetic grape 
juice and synthetic wine media 
 

 

* The dashes in empty boxes correspond to samples where the L-malic acid concentration was not measured 

 

Time 
±(3h) 

Cell concentration 
^106(cells/ml) Biomass (g/l) OD L-malic acid (g/l) 

SGJ SWM SGJ SWM SGJ SWM SGJ SWM 

0 2  
(±0.25) 

2  
(±0.25) 

0.0016              
(± 0.0002) 

0.0016                
(± 0.0002) 0.02 0.02 3  

(± 0.06) 
3  

(± 0.06) 

48 3  
(±0.25) 

2.25  
(±0.25) 

0.0024              
(± 0.0002) 

0.0018               
(± 0.0002) 0.03 0.02 *- - 

96 4.25  
(±0.38) 

2.75  
(±0.25) 

0.0034              
(± 0.0003) 

0.0022                
(± 0.0002) 0.04 0.03 - - 

168 75  
(±7.5) 

5  
(±0.5) 

0.06                  
(± 0.006) 

0.004                 
(± 0.0004) 0.7 0.05 - - 

240 176.25 
(±8.8) 

10  
(±1) 

0.141                
(± 0.007) 

0.008                 
(± 0.0008) 1.6 0.09 1.98  

(± 0.04) 
2.6  

(± 0.05) 

336 180  
(±9.4) 

12.5  
(±1.25) 

0.144                
(± 0.0075) 

0.01                   
(± 0.001) 1.7 0.12 - - 

408 176.25 
(±8.8) 

10  
(±1) 

0.141                
(± 0.007) 

0.008                 
(± 0.0008) 1.6 0.12 0.26  

(± 0) 
2.4  

(± 0.05) 

446  10.75 
(±1.13)  0.0086               

(± 0.0009)  0.12 0 
(± 0) 

2.27  
(± 0.045) 

576  10.5  
(±1)  0.0084               

(± 0.0008)  0.12  - 

672  15.75 
(±1.63)  0.0126               

(± 0.0013)  0.15  - 

744  65  
(±6.25)  0.052  

(± 0.005)  0.6  - 

840  72.5  
(±7.5)  0.058  

(± 0.006)  0.7  1.08  
(± 0.022) 

912  66.25 
(±6.25)  0.053  

(± 0.005)  0.7  - 

1000  67.5  
(±6.25)  0.054  

(± 0.005)  0.7  0.5  
(± 0) 

1200  67.5  
(±6.25)  0.054  

(± 0.005)  0.7  0  
(± 0) 
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Figure III.4. Growth of O. oeni strain X in SGJ media (■) and in SW media (▲) and corresponding malate 
consumption. Each value is the mean of triplicate experiments ± SD 

 
Table III.5. Some biochemical parameters of O. oeni strain X during its pure cultures in the 
SGJ and the SW media  

 

 

 

 

 

In the SGJ media, the MLF lasted 446 h and the final bacterial biomass reached was 0.14 g/l. In 

the SW media, the MLF was 2.7 times longer (1200 h) and the final biomass was 2.6 times lesser 

(0.054 g/l) than in the SGJ media. Moreover a long lag phase of about 670 h was observed in this 

case. The specific growth rate in the SW media (0.006 h-1) was reduced by 25 % compared to the 

one obtained in the SGJ media (0.008 h-1). However, the specific rate of malate consumption 

remained the same (0.1 g g-1 h-1). The longer duration required for total malate consumption in 

the SW media was a consequence of the reduced bacterial biomass formed. Therefore, we can 

conclude that the 10 % ethanol (v/v) along with the reduced amount of certain nutrients in the 

SW media limited the bacterial growth rather than the ability of each cell to consume L-malic 

acid. Capucho and San Romaô (1994) also showed that the malolactic activity was not inhibited 

with an alcoholic degree of more than 12 % (v/v) unlike the bacterial growth which was strongly 

affected. In the SW medium, the malate consumption started before any noticeable bacterial 

growth. At the end of the lag phase which lasted 670 h, about half of the malate was already 

Biochemical parameters SGJ medium  SW medium  

Consumed L-malic acid (g/l) 3.00 (±0.06) 3.00 (±0.06) 

Produced L-lactic acid (g/l) 2.00 (±0.04) 2.00 (±0.04) 
Produced D-lactic acid (g/l) 0.160 (±0.007) 0.100 (±0.006) 
Produced acetic acid (g/l) 0.011 (±0.002) 0.006 (±0.002) 

Consumed sugar  (g/l) 1.080 (±0.002) 0.540 (±0.002) 
Consumed citric acid (g/l) 0.0036 (±0.0032) 0.005 (±0.001) 
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consumed. Thus, the malate consumption and the bacterial growth are not necessarily correlated 

(Capucho and San Romaô, 1994).  

The nutrient content of the SW medium was reduced by 50 % in comparison to the SGJ medium. 

However, Nehme et al., (2008) previously demonstrated that the nutritional requirements of O. 

oeni strain X, especially the alpha-amino nitrogen were still largely covered in the SW medium. 

They also demonstrated that O. oeni did not consume the ammoniacal nitrogen.  

Table III.5 shows that O. oeni strain X consumed very low amounts of sugars in order to ensure 

growth and malate consumption. O. oeni is a strict heterofermentative bacterium that usually 

ferments hexoses through the pentose phosphate pathway producing in addition to D-lactate, 

CO2, acetate and/or ethanol. Only 1.08 g/l of sugars were consumed in the SGJ media and 0.54 

g/l in the SW media. As a consequence, the D-lactic acid and acetic acid produced by this strain 

were also very low and no ethanol was detected. Besides, it did not consume a significant 

amount of citrate. The acetate produced may also derive from citrate metabolism.  

The linear correlations for O. oeni strain X between the biomass and the OD, the cell 

concentration and the OD and the biomass and the cell concentration are given in appendix A-

VI.  

III.2 Sequential fermentations with the pairs S. cerevisiae strain A/O. oeni strain X and S. 

cerevisiae strain D/O. oeni strain X in synthetic and natural grape juices  

 

At the end of the AF, yeasts were removed by centrifugation; the malate was readjusted to 3 g/l 

and the pH to 3.5. The yeast fermented media were then sterile filtered and recuperated in 

autoclaved Erlenmeyer flasks before inoculation with O. oeni strain X. The MLF were followed 

by regular sampling until total or cessation of malate consumption. The detailed kinetic 

parameters of the AF carried out in natural grape juices (NGJ) are given in appendix A-IX. 

Moreover, those of the MLF performed in NGJ and SGJ fermented by yeasts are given in 

appendices A-VII, A-VIII and A-IX.  

 

Figure III.5 and table III.6 describe the growth of O. oeni strain X and the malate consumption 

during the sequential fermentations.  
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Figure III.5. Growth of O. oeni strain X and malate consumption in the controls and in the SGJ and NGJ 
media fermented by S. cerevisiae strains A and D. (♦) Bacterial control culture in the SGJ medium, (■) 

Bacterial control culture in the SW medium, (▲) NGJ fermented by S. cerevisiae strain A, (●) SGJ fermented 
by S. cerevisiae strain A, (○) NGJ fermented by S. cerevisiae strain D, (x) SGJ fermented by S. cerevisiae 

strain D. Each value is the mean of triplicate experiments ± SD  
 

Table III.6. Determination of the average specific growth rates and the average specific 
rates of malate consumption during the MLF carried out by O. oeni strain X in the SGJ 
and NGJ fermented by S. cerevisiae strains A and D as well as in the controls 
 

 

aµ (h-1) = (dX/dt1).1/X with dX= (Xf - X0) and X = (Xf + X0)/2 
bQs (g g-1 h-1) = (dS/dt2).1/X with dS = (S0 - Sf) and X = (Xf + X0)/2 

 

Figure III.5 and table III.6 show that O. oeni strain X was strongly inhibited in the SGJ and NGJ 

media fermented by S. cerevisiae strain D. The bacterial biomass formed in these media was 13.5 

 

SGJ control  SW control  

SGJ medium 
fermented by  
S. cerevisiae 

strain D 

NGJ medium 
fermented by  
S. cerevisiae 

strain D 

SGJ medium 
fermented by  
S. cerevisiae 

strain A 

NGJ medium 
fermented by  
S. cerevisiae  

strain A 
X0: Initial biomass  

(g l-1) 
0.0016 

(±0.0002) 
0.0020 

(±0.0002) 
0.0016  

(±0.0002) 
0.0016  

(±0.0002) 
0.0016  

(±0.0002) 
0.0016  

(±0.0002) 
Xf: Final biomass  

(g l-1) 
0.140  

(±0.007) 
0.054 

(±0.004) 
0.0044  

(±0.0004) 
0.0040  

(±0.0002) 
0.12  

(±0.005) 
0.12  

(±0.006) 
dt1: Growth duration  

(h) 240  648 408 408 504 288 
aµ2: average specific growth rate  

(h-1) 
0.0080 

(±0.0004) 
0.0060 

(±0.0002) 
0.0023 

(±0.0002) 
0.0021  

(±0.0003) 
0.004 

(±0.0002) 0.007 

S0: Initial L-malic acid  
(g l-1) 

3.00  
(±0.06) 

3.00  
(±0.06) 

3.00  
(±0.07) 

3.10  
(±0.06) 

3.22  
(±0.06) 

3.33  
(±0.07) 

Sf: Final L-malic acid  
(g l-1) 

0  
(±0) 

0  
(±0) 

3.00  
(±0.07) 

3.10  
(±0.06) 

0  
(±0) 

0  
(±0) 

dt2: Duration of MLF (h) 446 1200 1000 1000 504 370 
bQs

3: average specific rate of 
malate consumption  

(g g-1 h-1) 

0.10  
(±0.01) 

0.100 
(±0.008) 

0  
(±0) 

0  
(±0) 

0.105  
(±0.01) 

0.15 
(±0.02) 
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times lower than in the SW control and no malate was consumed. However, in the media 

fermented by S. cerevisiae strain A, an active bacterial growth was observed and the malate was 

completely consumed. The final bacterial biomass (0.12 g/l) was twice better in these media than 

in the SW control (0.054 g/l) and no lag phase was observed. The specific rate of malate 

consumption in the NGJ fermented by strain A was 1.5 times faster than in the SW control. 

Close values were obtained in the SGJ fermented by strain A and the SW control. Besides, the 

MLF duration was respectively 2.4 and 3.24 times shorter in the SGJ (504 h) and NGJ (370 h) 

fermented by strain A in comparison to the SW control (1200 h) because of the higher biomass 

produced (0.12 g/l vs 0.054 g/l).  

To further comprehend the causes of growth and malate consumption inhibition observed during 

the sequential fermentations performed with the pair S. cerevisiae strain D/O. oeni strain X, the 

yeast fermented media were subjected to biochemical analyses in order to search for possible 

inhibitory molecules (Table III.3). Both strains A and D produced 11 % ethanol (v/v) and as 

already explained in paragraph III.1, ethanol can reduce the bacterial biomass produced and 

extend the MLF duration but do not stop it. The concentrations of SO2 and medium chain fatty 

acids produced by strain D were considerably lower than the ones reported in the literature to 

cease MLF (Wibowo et al., 1985, Lonvaud-Funel et al., 1988, Edwards et al., 1990, Capucho and 

San Romaô, 1994, Guzzo et al., 1998, Carreté et al., 2002). Besides, nutrient depletion was 

excluded from inhibitory factors as the addition of 55.3 g/l of MRS to the media fermented by S. 

cerevisiae strain D before bacterial inoculation did not remove the inhibition. The MRS was 

chosen because it is very favorable for the growth and metabolism of O. oeni. All these data 

encouraged us to search for other yeast antibacterial metabolites. More specifically, the 

production of proteinaceous metabolites by S. cerevisiae strain D was investigated (Part B of 

chapter III).   

The strong inhibition of the bacterial growth and malate consumption was reproducible in both 

SGJ and NGJ media fermented by strain D. Moreover, the MLF inhibition was maintained when 

sequential fermentations with the same pair were performed in grape musts of Syrah and 

Cabernet-Sauvignon presenting a high phenolic content. The importance of these results 

regarding the production of anti-MLF peptides by S. cerevisiae strain D will be discussed in part 

B of this chapter.  
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Unlike S. cerevisiae strain D, the strain A was rather stimulatory. The MLF was faster than in the 

SW control (1200 h, 0.1 g g-1h-1) and as rapid as in the SGJ control (446 h, 0.1 g g-1h-1) when 

carried out in the SGJ media fermented by strain A (504 h, 0.105 g g-1h-1). It was even faster 

when performed in the NGJ media fermented by strain A (370 h, 0.15 g g-1h-1). The MLF 

stimulation can be attributed to the release of some activating nutrients by strain A during AF 

such as amino acids (Fourcassier, 1992), vitamins, nitrogen bases, long chain fatty acids 

(Alexandre et al., 2004) and peptides of low MW (Guilloux-Benatier and Chassagne, 2003) in 

addition to mannoproteins (285 mg/l produced by this strain) (Guilloux-Benatier et al., 1993, 

1995). Although this strain produced higher amounts of SO2 and medium chain fatty acids than 

strain D, their concentrations were still not inhibitory. Besides, no inhibitory proteinaceous 

compounds were produced by strain A unlike strain D (confer part B of this chapter).  

Finally, it can be concluded that the bacterial growth and the malate consumption during 

sequential fermentations varied widely from one pair to another and strongly depended on the 

yeast strain chosen. A previous study carried out by Nehme et al., (2008) showed various degrees 

of MLF inhibition when four strains of S. cerevisiae were tested with O. oeni strain X during 

sequential fermentations.  

 

In the part B of this chapter, the production of proteinaceous compounds by S. cerevisiae strain 

D responsible for the MLF inhibition with O. oeni strain X is investigated.  
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I. Introduction 

  

The ethanol, SO2 and medium chain fatty acids produced by S. cerevisiae strain D as well as the 

nutritional behavior of this strain could not explain the strong inhibition of the bacterial growth 

of O. oeni strain X and the malate consumption during sequential fermentations. Therefore, we 

aimed to identify the production of proteinaceous compounds by strain D involved in the MLF 

inhibition. Nehme et al., (2010) have previously shown that S. cerevisiae strain D was able to 

produce anti-MLF compounds of protein nature. However, the work was interrupted for almost 6 

years. Therefore, the objective of this thesis was first to demonstrate that the strain D has not lost 

its ability to produce the inhibitory proteinaceous compounds and second to further characterize 

these compounds. In this part of the study, protease and heat treatments were first performed on 

the SGJ media fermented by strain D in order to demonstrate the proteinaceous nature of the 

inhibitory compounds. Then the fermented SGJ media were fractionated by ultrafiltration and 

ammonium sulfate precipitation in order to identify the apparent MW of these compounds and to 

further purify them. The timing of the release of these compounds during AF was also assessed 

and the maintenance of the inhibition due to these compounds in natural winemaking conditions 

was investigated.   

II. Protease and heat treatments of the SGJ media fermented by S. cerevisiae strain D  

 

The supernatants obtained after centrifugation of the SGJ media fermented by S. cerevisiae strain 

D were subjected to different protease treatments (papain, pepsin and trypsin) and heat 

treatments (121 °C/20 min and 100 °C/30 min). The treated and untreated fermented media were 

then inoculated with O. oeni strain X and the MLF were followed by regular sampling until 

cessation of malate consumption. The kinetics of the bacterial growth and the malate 

consumption were compared to those of bacterial controls performed in SGJ and SW media. The 

results are given in figure III.6 and table III.7. The detailed values of bacterial biomass produced 

and malate consumed are given in appendix B-I.  
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Figure III.6. Growth and malic acid consumption kinetics of O. oeni strain X in the untreated and treated 
yeast fermented media and in the bacterial control cultures. (■) SGJ control, (▲) SW control, (♦) Untreated 
fermented SGJ medium, (○) Untreated fermented NGJ medium, Treated fermented SGJ media: (□) Papain 

treatment, (●) Pepsin treatment, (∆) Trypsin treatment, (x) Heat treatments (mean values of the treatments at 
100°C/30 min and 121°C/20 min). Each value is the mean of triplicate experiments ± SD  

 
 
Table III.7. Determination of the average specific growth rates and the average specific 
rates of malate consumption during the MLF carried out by O. oeni strain X in the treated 
and untreated fermented media as well as in the controls1 

 

1 Results are mean ±SD values of three replications. In comparison to the same control (SGJ or SW) or to the untreated fermented 
SGJ medium, values of average specific rates (growth or malate consumption) within the same row followed by the same letter 
but with different number of primes are significantly different (p < 0.05) according to Tukey’s HSD test  
 
2 µ (h-1) = (dX/dt1).1/X with dX= (Xf - X0) and X = (Xf + X0)/2 
 
3 Qs (g g-1 h-1) = (dS/dt2).1/X with dS = (S0 - Sf) and X = (Xf + X0)/2 
 

 

SGJ 
control  

SW 
control  

Untreated 
fermented 

SGJ 
medium 

Untreated 
fermented 

NGJ 
medium 

Papain treated 
fermented 
medium 

Pepsin treated 
fermented 
medium 

Trypsin treated 
fermented 
medium 

Heat treated 
fermented 
medium 

X0: Initial biomass  
(g/l) 

0.0016 
±0.0002 

0.0020 
±0.0002 

0.0016 
±0.0002 

0.0016 
±0.0002 

0.0016  
±0.0002 

0.0016  
±0.0002 

0.0016  
±0.0002 

0.0016  
±0.0002 

Xf: Final biomass  
(g/l) 

0.140 
±0.007 

0.054 
±0.004 

0.0044 
±0.0004 

0.0040 
±0.0002 

0.120  
±0.007 

0.030  
±0.002 

0.0090  
±0.0006 

0.030  
±0.002 

dt1: Growth duration  
(h) 240  648 408 408 240 576 576 576 

µ2: average specific 
growth rate (h-1) 

0.0080 
±0.0004a 

0.0060 
±0.0002b 

0.0023 
±0.0002c 

0.0021 
±0.0003 

0.0080 
±0.0004a b’ c’ 

0.0030 
±0.0002a’ b’’ c’’ 

0.0024  
±0.0003a’’ b’’’ c 

0.0030 
±0.0004a’ b’’ c’’ 

S0: Initial L-malic acid  
(g/l) 

3.00 
±0.06 

3.00 
±0.06 

3.00  
±0.07 

3.10  
±0.06 

3.00  
±0.05 

3.00  
±0.06 

3.00  
±0.05 

3.00  
±0.05 

Sf: Final L-malic acid  
(g/l) 

0  
±0 

0  
±0 

3.00  
±0.07 

3.10  
±0.06 

0  
±0 

0  
±0 

0  
±0 

0  
±0 

dt2: Duration of MLF (h) 446 1200 1000 1000 484 1110 1700 1180 
Qs

3: average specific rate 
of malate consumption  

(g g-1 h-1) 

0.10 
±0.01a 

0.100 
±0.008b 

0  
±0c 

0  
±0 

0.100  
±0.007a b c’ 

0.170  
±0.014a’ b’ c’’ 

0.33  
±0.02a’’ b’’ c’’’ 

0.160  
±0.005a’’’ b’’’ c’’’’ 
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Figure III.6 and Table III.7 compare the results of the MLF conducted by O. oeni strain X in the 

untreated yeast fermented media (SGJ and NGJ media) and in the yeast fermented SGJ media 

subjected to different protease and heat treatments as well as in the controls.  

In the SGJ control, the MLF was the fastest (446 h) and the final bacterial biomass reached was 

the highest (0.14 g/l). In the SW control, the MLF was 2.7 times longer (1200 h) and the final 

biomass was 2.6 times lesser (0.054 g/l) than in the SGJ control. Moreover a long lag phase of 

about 670 hours was observed in this case. The specific growth rate in the SW control (0.006 h-1) 

was reduced by 25 % compared to the one obtained in the SGJ control (0.008 h-1). However, the 

specific rate of malate consumption remained the same (0.1 g g-1 h-1). The longer duration 

required for total malate consumption in the SW control was a consequence of the reduced 

bacterial biomass formed. Therefore, we can conclude that the 10 % ethanol (v/v) along with the 

reduced amount of certain nutrients in the SW medium inhibited the bacterial growth rather than 

the ability of each cell to consume L-malic acid.  

The different heat and protease treatments applied to the yeast fermented SGJ media showed an 

improvement of the bacterial growth and a total consumption of the L-malic acid (Figure III.6). 

The most relevant result was the one obtained with the papain treatment. Papain is known to 

cleave peptide bonds by preferentially attacking the carbonyl carbon of basic amino acids, 

particularly arginine and lysine following phenylalanine or any hydrophobic residue (Amri and 

Mamboya, 2012). The final biomass reached in the papain treated medium (0.12 g/l) was twice 

higher than the one obtained in the SW control (0.054 g/l) with an average specific growth rate 

1.3 times greater (p < 0.05). The average specific rates of malate consumption were the same 

(0.1 g g-1 h-1). The bacterial growth and the malate consumption kinetics in the papain treated 

medium were similar to those obtained in the SGJ control (p > 0.05). These results suggest that 

the papain treatment had on one hand degraded the yeast inhibitory proteinaceous compounds 

and on the other hand enriched the medium with stimulatory factors of the malolactic activity 

and the bacterial growth (e.g., amino acids, oligopeptides) (Guilloux-Benatier et al., 2006).  

The mean values of both heat treatments (100 °C/30 min and 121 °C/20 min) were presented in 

figure III.6 since they gave similar results (p > 0.05). The pepsin and heat treatments also gave 

similar results for bacterial growth (p > 0.05). The specific growth rate was 0.003 h-1 with a 

maximum biomass of 0.03 g/l (Table III.7). Compared to the SW control, the specific growth rate 

and the final biomass reached were twice lower. Additionally, the specific rate of malate 
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consumption in the SW control (0.1 g g-1 h-1) was slower than in the pepsin and heat treated 

media (0.17 and 0.16 g g-1 h-1 respectively with p < 0.05). The improvement of the specific rate 

of malate consumption after pepsin treatment was probably due to the release of some activating 

agents of the MLF (e.g., amino acids released by proteolysis). The heat treatment altered the 

inhibitory proteinaceous compounds and totally evaporated ethanol.  

The treatment with trypsin gave the lowest final biomass and growth rate compared to the other 

treatments but the highest specific rate of malate consumption (Table III.7). The growth rate was 

similar to those obtained in the untreated fermented media (p > 0.05) but with a final biomass 

twice higher. These values suggest that the yeast proteinaceous compounds responsible for the 

inhibition of the malate consumption were successfully degraded by trypsin thus activating this 

pathway. However, the growth ability was still weak suggesting that some other proteinaceous 

compounds involved in the growth inhibition were not completely degraded. The growth and 

malate consumption with O. oeni are not always correlated and the MLF can be successfully 

carried out without any noticeable growth (Capucho and San Romaô, 1994). The degradation of 

L-malic acid by non-growing or poorly growing cells of O. oeni can be even more rapid at low 

extracellular pH values due to an increase in the ∆pH (pHin-pHex) (Bouix and Ghorbal, 2015).  

The previous results were indicative of the proteinaceous nature of the yeast metabolites 

involved in the MLF inhibition. The increased values of the malate consumption rates obtained 

with the pepsin, trypsin and heat treatments indicated that the inhibitory compounds degraded, 

targeted mainly the malate consumption rather than the bacterial growth. The conservation of the 

MLF inhibition by yeast proteinaceous compounds with the same pair in comparison to the study 

carried out by Nehme et al., (2010) indicated that the strains did not undergo genotypic or 

phenotypic modifications. Neither the yeasts lost their ability to produce the inhibitory 

proteinaceous compounds nor did the bacteria acquire resistance.    

The strong inhibition of the bacterial growth and the malate consumption was reproducible in 

both the SGJ and the NGJ media fermented by the yeasts and not subjected to any treatment. The 

bacterial biomass formed in these media was 13.5 times lower than in the SW control and no 

malate was consumed. The maintenance of the inhibitory effect in the fermented natural red 

grape juice despite the presence of phenolic compounds is an interesting finding and will be 

further discussed in paragraph V of this part along with the results obtained in Syrah and 

Cabernet Sauvignon musts.    



Results & Discussion 

 

113 
 

III. Fractionation of the SGJ media fermented by S. cerevisiae strain D by ultrafiltration  

 

The SGJ media fermented by S. cerevisiae strain D were fractionated by ultrafiltration and four 

different MW fractions were obtained and tested in a modified MRS medium. The fractions with 

a MW between 3 and 5 kDa, 5 and 10 kDa and ≥ 10 kDa were 10.5 times concentrated unlike the 

fraction ≤ 3 kDa which was not concentrated. The media were then inoculated with O. oeni strain 

X and the bacterial growth and malate consumption were followed by regular sampling. The 

results were compared to those obtained in a modified MRS control (Figure III.7). The detailed 

values of the biomass produced and the malate consumed are given in appendix B-II.  

 
Figure III.7. Growth and malic acid consumption kinetics of O. oeni strain X in the control and in the 

presence of four different MW fractions from the SGJ media fermented by S. cerevisiae strain D. (♦) Control: 
modified MRS medium, (■) MW ≤ 3 kDa, (▲) MW between 3 and 5 kDa, (x) MW between 5 and 10 kDa, (○) 

MW ≥ 10 kDa. Each value is the mean of triplicate experiments ± SD 
 

Figure III.7 shows that the kinetic profiles of the bacterial growth and the malate consumption in 

the presence of the fractions presenting a MW ≤ 3 kDa, between 3 and 5 kDa and ≥ 10 kDa were 

very similar to those obtained in the modified MRS control, thus showing no inhibition. 

However, both the bacterial growth and the malate consumption were totally inhibited in the 

presence of the fraction presenting a MW between 5 and 10 kDa.  

A 5-10 kDa fraction isolated at the end of the AF from the SGJ medium fermented by S. 

cerevisiae strain A (the non-inhibitory strain) was also tested in the modified MRS medium and 

showed no inhibition. The same conditions were applied and the results were identical to those of 

the control (data given in appendix B-III).   
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Therefore, we can conclude that S. cerevisiae strain D was able to produce an extracellular anti-

MLF peptidic compound having an apparent MW between 5 and 10 kDa. This result is in 

accordance with the results published in Nehme et al., (2010). In the latter, the ultrafiltration 

units used were different and only 3 fractions with different sizes and concentrations were tested. 

The first one had a MW between 3.5 and 5 kDa and was not concentrated. The second and the 

third ones had MW ≥ 5 kDa and ≥ 10 kDa respectively and were both 3.5 times concentrated. 

The only fraction that showed inhibition was the one with a MW ≥ 5 kDa.  

So far, few authors have demonstrated the ability of certain S. cerevisiae strains to produce anti-

MLF compounds of protein nature. Besides, the compounds found presented different MW and 

were strain dependent. Dick et al., (1992) were the first to isolate two antibacterial cationic 

proteins produced by the yeast strain R107. One of them had the characteristics of lysozyme and 

the other one was a small protein with a high pI. Later on, Comitini et al., (2005) found that S. 

cerevisiae F63 was able to produce a proteinaceous compound with a MW greater than 10 kDa 

that strongly inhibited the growth of O. oeni CHR as well as its MLF. Besides, Osborne and 

Edwards (2007) identified a 5.9 kDa peptide produced by S. cerevisiae RUBY. ferm and 

inhibiting O. oeni Viniflora oenos. Mendoza et al., (2010) showed that S. cerevisiae mc2 

released a proteinaceous compound presenting a MW between 3 and 10 kDa that inhibited the 

growth of O. oeni X2L but not its ability to consume L-malic acid. Finally, Branco et al., (2014) 

showed that S. cerevisiae CCMI 885 secreted antimicrobial peptides (AMP) that were active 

against a wide variety of wine-related yeasts in addition to O. oeni. However, only the microbial 

growth was evaluated. These AMP corresponded to two fragments of the C-terminal amino acid 

sequence of the S. cerevisiae glyceraldehyde 3-phosphate deshydrogenase (GAPDH) enzyme. 

They presented a MW of 1.638 and 1.622 kDa.  

All these data in addition to our findings show the wide variety of antibacterial peptides/proteins 

that could be released by different strains of S. cerevisiae. Additional tests are required to 

determine the exact MW of the putative antibacterial peptides of the 5-10 kDa fraction. These 

tests will be described in part D of this chapter.  
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IV. Timing of the release of the 5-10 kDa anti-MLF peptidic fraction produced by S. 

cerevisiae strain D during AF 

 

In order to assess the timing of the release of the 5-10 kDa peptidic fraction, the AF in the SGJ 

medium was followed until total sugar consumption. It lasted 120 h whereas the stationary phase 

started after 50 h. A peptidic fraction of 5-10 kDa was collected each 24 h of the AF. Five 

fractions were obtained and each one was tested in a modified MRS medium where it was finally 

10.5 times concentrated. The results were compared to those obtained in a modified MRS control 

(Figure III.8, Table III.8). The detailed values of the bacterial biomass produced and the malate 

consumed are given appendix B-IV.  

 

 
 

Figure III.8. Growth and malic acid consumption kinetics of O. oeni strain X in the control and in the 
presence of the 5-10 kDa inhibitory fractions collected at different intervals of the AF. (♦) Control: modified 
MRS medium, (■) 5-10 kDa collected after 24 h of the AF, (▲) 5-10 kDa collected after 48 h of the AF, (x) 5-
10 kDa collected after 72 h of the AF, (○) 5-10 kDa collected after 96 h of the AF, (●) 5-10 kDa collected after 

120 h of the AF. Each value is the mean of triplicate experiments ± SD 
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Table III.8. Determination of the average specific growth rates and the average specific 
rates of malate consumption during the MLF carried out by O. oeni strain X in the 
modified MRS media containing the 5-10 kDa fractions collected each 24 h of the AF as 
well as in the control1 

 

 

 

 

 

 

 

 

 

 

 

 
 

1 Results are mean ± SD values of three replications. In comparison to the control, values of average specific rates 
(growth or malate consumption) within the same row followed by different letters are significantly different (p < 
0.05) according to Tukey’s HSD test  
 
2 µ (h-1) = (dX/dt1).1/X with dX= (Xf - X0) and X = (Xf + X0)/2 
 
3 Qs (g g-1 h-1) = (dS/dt2).1/X with dS = (S0 - Sf) and X = (Xf + X0)/2 
 
4D1 (day 1): fraction collected 24 h after the beginning of the AF  
5D2 (day 2): fraction collected 48 h after the beginning of the AF 
6D3 (day 3): fraction collected 72 h after the beginning of the AF 
7D4 (day 4): fraction collected 96 h after the beginning of the AF 
8D5 (day 5): fraction collected 120 h after the beginning of the AF 
 
 

Figure III.8 shows that the growth kinetic profiles of O. oeni strain X in the presence of the 

fractions collected after 24, 48 and 72 h were very similar. Although the average specific growth 

rates were identical to that of the control (0.009 h-1), the final biomass reached (0.072 g/l) was 10 

% lesser than the one reached in the control (0.08 g/l) (Table III.8). When the fractions collected 

after 96 and 120 h were tested, the specific growth rates were slightly higher (0.013 h-1, p < 

0.05), but the maximum biomass reached (0.03 g/l) was reduced by 62.5 % compared to the 

 

Control: 
modified 

MRS 
medium 

modified 
MRS 

medium 
+ D14 

fraction 

modified 
MRS 

medium 
+ D25 

fraction 

modified 
MRS 

medium 
+ D36 

fraction 

modified 
MRS 

medium 
+ D47 

fraction 

modified 
MRS 

medium 
+ D58 

fraction 

X0: Initial biomass (g/l) 0.0016 
±0.0002 

0.0016 
±0.0002 

0.0016 
±0.0002 

0.0016 
±0.0002 

0.0016 
±0.0002 

0.0016 
±0.0002 

Xf: Final biomass (g/l) 0.080 
±0.006 

0.072 
±0.006 

0.073 
±0.005 

0.072 
±0.006 

0.031 
±0.002 

0.030 
±0.002 

dt1: Growth duration (h) 216 216 216 216 144 144 
µ2: average specific growth 

rate (h-1) 
0.009 

±0.001a 
0.009 

±0.001a 
0.009 

±0.001a 
0.009 

±0.001a 
0.013 

±0.002b 
0.013 

±0.001b 

S0: Initial L-malic acid (g/l) 3.25 
±0.16 

3.01 
±0.16 

3.03 
±0.20 

3.03 
±0.15 

3.04 
±0.15 

3.09 
±0.12 

Sf: Final L-malic acid (g/l) 0  
±0 

0.03  
±0 

0  
±0 

0  
±0 

2.67 
±0.12 

2.90 
±0.16 

dt2: Duration of MLF (h) 216 216 288 288 144 144 
Qs

3: average specific rate of 
malate consumption (g g-1 h-1) 

0.37 
±0.02a 

0.375 
±0.020a 

0.28 
±0.02b 

0.290 
±0.015b 

0.16 
±0.01c 

0.084 
±0.006d 
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control (Table III.8). Moreover, a decline phase was detected with these two fractions leading to 

the death of the whole population with the last fraction (120 h).  

The malate was totally consumed in the presence of the fractions collected after 24 h (D1), 48 h 

(D2) and 72 h (D3) but with a gradual decrease of the consumption kinetics (Figure III.8 and 

Table III.8). The average specific rate of malate consumption in the presence of the fraction D1 

was similar to that of the control (0.37 g g-1 h-1, p > 0.05). In the presence of the fractions D2 and 

D3, the specific rates were 23 % lower than in the control (p < 0.05). The fractions taken after 96 

h (D4) and 120 h (D5) of AF were the most inhibiting ones as only 0.37 and 0.19 g/l of L-malic 

acid were consumed reducing the control specific rate of 57 and 77 % respectively (p < 0.05).  

Therefore, we can conclude that the 5-10 kDa peptidic fraction was gradually released during the 

AF and reached its maximum inhibitory concentration at late stages of the stationary phase (96 

and 120 h). Its effect started to be detectable with the fraction D2 (48 h) reducing mainly the rate 

of malate consumption. The same was noticed with the fraction D3 (72 h). The strong inhibition 

of malate consumption with the fractions D4 (96 h) and D5 (120 h) can somewhat explain the 

weak final biomasses formed. It is known that the MLF produces ATP through a chemiosmotic 

mechanism thus enhancing the bacterial growth (Cox and Henick-Kling, 1995; Bouix and 

Ghorbal, 2015). The MLF is one of the main sources of energy for bacteria in winemaking 

conditions. Therefore, an inhibition of malate consumption can also affect the bacterial growth.  

Information about the timing of the release of antibacterial peptides/proteins is scarce and to our 

best knowledge no previous work has described simultaneously the kinetics of their production 

and the kinetics of their anti-MLF activity. Albergaria et al., (2010) showed that S. cerevisiae 

CCMI 885 started to secrete three antifungal peptides presenting an apparent MW of about 6, 4.5 

and 4 kDa at the end of the AF exponential growth phase (day 2) with a gradual increase of their 

concentration during the stationary growth phase (days 4 and 7). Later on, Branco et al., (2014) 

demonstrated that these peptides were also active against the growth of O. oeni and corresponded 

to GAPDH-derived peptides of 1.6 kDa. They suggested that the peptides were released by 

apoptotic yeast cells during the stationary phase. In fact, Silva et al., (2011) showed that GAPDH 

is presumably a substrate of metacaspases during apoptosis. Our findings present some 

similarities with these conclusions since the most important antibacterial effect was detected with 

the fractions obtained from late stationary phase. However, further investigation must be carried 

out to see if any of the 5-10 kDa peptides is possibly a GAPDH fragment.  
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Osborne and Edwards (2007) did not specify the timing of the release of the 5.9 kDa peptide 

secreted by S. cerevisiae RUBY.ferm. They only showed that samples taken at different intervals 

of the AF (days 9, 16 and 23) were able to inhibit O. oeni Viniflora oenos.  

The timing results are also in accordance with the co-culture results published by Nehme et al., 

(2010) who demonstrated that the co-culture strategy improved the MLF output with the same 

pair (S. cerevisiae strain D/O. oeni strain X). During co-cultures, AF and MLF were conducted 

simultaneously by inoculating yeasts and bacteria at the same time from the beginning in a 

membrane bioreactor using the same experimental conditions. The bacterial growth was twice 

better and 74 % of the initial malate were successfully consumed in three weeks without any risk 

of increased volatile acidity.  

The present study shows that the 5-10 kDa peptides gradually appeared during the AF, thus 

giving the bacteria enough time to grow better and especially to better consume L-malic acid.  

More recently, co-inoculation was suggested as a worthwhile alternative for winemaking both 

for better malate consumption and improved sensorial characteristics when compared to the 

traditional sequential inoculation (Cañas et al., 2015; Versari et al., 2015; Tristezza et al., 2016).    

Information about the timing of the release of the inhibitory peptides is very useful for the 

determination of the best moment for bacterial inoculation and for an optimum extraction of the 

targeted molecules.  

 

V. Maintenance of the anti-MLF effect of the 5-10 kDa peptidic fraction produced by S. 

cerevisiae strain D in natural winemaking conditions  

 

In part A of this chapter, we demonstrated that the MLF inhibition during sequential 

fermentations with the pair S. cerevisiae strain D/O. oeni strain X was reproducible in both 

synthetic and natural red grape juices without giving any further explanation. S. cerevisiae strain 

A which was rather stimulatory towards O. oeni strain X gave also similar results in both 

synthetic and natural grape juices. In the current part (part B), it was demonstrated that S. 

cerevisiae strain D was able to release a peptidic fraction presenting an apparent MW between 5 

and 10 kDa responsible for the MLF inhibition. It was gradually released during the AF and 

reached its highest concentration at late stages of the stationary phase. This fraction may have 
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worked synergistically with the 11 % ethanol (v/v) produced by S. cerevisiae strain D to strongly 

inhibit the bacterial growth and the malate consumption.  

Sequential fermentations with the same pairs were conducted in Syrah and Cabernet Sauvignon 

grape musts in order to evaluate the reproducibility of the previous results in natural winemaking 

conditions.  

Table III.9 gives the phenolic content of the Cabernet Sauvignon and the Syrah wines at the end 

of the AF carried out by S. cerevisiae strains A and D while table III.10 describes the growth of 

O. oeni strain X and the malate consumption during the MLF performed in these wines.  

 
Table III.9. Total phenolic content (mg/l equivalent gallic acid) in Cabernet Sauvignon and 
Syrah wines at the end of the AF carried out by S. cerevisiae strains A and D 
 
 

*Pre-fermentation maceration temperature: Cabernet Sauvignon and Syrah musts were macerated at 10, 60, 70 or 80 
°C for 48 h before AF 
 

 

 

 

 

 

 

 

 

 

 

 

Cabernet 
Sauvignon wine 

Syrah  
Wine 

Cabernet 
Sauvignon 

wine 
Syrah  
wine 

*Pre-fermentation maceration  
temperature (°C) 

Phenolic content at the end of the 
AF carried out by S. cerevisiae 

strain A  (mg/l) 

Phenolic content at the end of 
the AF carried out by S. 

cerevisiae strain D  (mg/l) 
10 513 (± 18) 365 (± 7) 868 (± 18) 378 (± 32) 
60 2635 (± 21) 2425 (± 106) 2925 (±7) 2718 (± 117) 
70 3725 (± 21) 3043 (± 88) 3978 (± 11) 3645 (± 170) 
80 2985 (± 21) 2295 (± 35) 3078 (± 11) 2585 (± 42) 



Results & Discussion 

 

120 
 

Table III.10. Growth of O. oeni strain X and malate consumption during MLF performed 
in the Syrah and Cabernet Sauvignon wines obtained after AF by S. cerevisiae strains A or 
D 
 

 

 

Table III.9 gives the total phenolic content at the end of the AF carried out by S. cerevisiae 

strains A and D in Cabernet Sauvignon and Syrah wines. The corresponding grape musts were 

previously macerated at 10, 60, 70 and 80 °C for 48 h before AF. High phenolic contents were 

reached at maceration temperatures of 60, 70 and 80 °C because of a better phenolic extraction 

from the grape skin and seeds. Sequential fermentations were carried out in these wines by 

inoculating O. oeni strain X at the end of the AF. MLF were followed for three months and were 

totally inhibited in wines fermented by S. cerevisiae strain D. Both the bacterial growth and the 

malate consumption were repressed regardless of the phenolic content (Tables III.9 and III.10). 

Despite high phenolic contents, MLF conducted by O. oeni strain X in wines produced by S. 

cerevisiae strain A were totally completed. In comparison to the pre-fermentation maceration at 

10 °C, the higher phenolic content obtained at 60, 70 and 80 °C reduced the final bacterial 

biomass reached and slowed down the MLF but malate was totally consumed (Table III.10).   

Therefore, MLF results were reproducible in both synthetic and natural grape juice media with 

both yeasts/bacteria pairs tested.  

The maintenance of the inhibitory effect due to the 5-10 kDa yeast peptidic fraction in natural 

winemaking conditions despite the presence of phenolic compounds is an interesting finding. It 

is usually known that phenolic compounds are able to interact with proteins leading either to 

 AF carried out  
by S. cerevisiae strain A 

 AF carried out  
by S. cerevisiae strain D 

 Cabernet Sauvignon  
wine 

Syrah  
wine 

Cabernet Sauvignon   
wine 

Syrah 
wine 

Pre-fermentation maceration 
temperature (°C) 

10 60, 70  
and 80 

10 60, 70  
and 80 

10 60, 70  
and 80 

10 60, 70  
and 80 

Initial bacterial biomass (g/l) 0.0016  
 (± 0.0002) 

0.0016  
(± 0.0002) 

0.0016  
(± 0.0002) 

0.0016  
(± 0.0002) 

0.0016  
(± 0.0002) 

0.0016  
(± 0.0002) 

0.0016  
(± 0.0002) 

0.0016  
(± 0.0002) 

Final bacterial biomass (g/l) 0.120  
(± 0.005) 

0.080 
(± 0.004) 

0.120  
(± 0.006) 

0.080 
(± 0.004) 

0.0040  
(± 0.0004) 

0.0020  
(± 0.0002) 

0.0060  
(± 0.001) 

0.0020  
(± 0.0002) 

Initial L-malic acid (g/l) 3.00  
(± 0.06) 

3.00  
(± 0.06) 

3.00  
(± 0.06) 

3.00  
(± 0.06) 

3.00  
(± 0.06) 

3.00  
(± 0.06) 

3.00  
(± 0.06) 

3.00  
(± 0.06) 

Final L-malic acid (g/l) 0 (± 0) 0 (± 0) 0 (± 0) 0 (± 0) 3 (± 0.06) 3 (± 0.06) 3 (± 0.06) 3 (± 0.06) 
Malolactic fermentation 

duration (days) 
30 45 30 45 90 90 90 90 
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their precipitation or to changes of their properties (Sims et al., 1995; Yokotsuka and Singleton 

1995). Wine proteins derive mostly from grapes but also from yeasts during AF. Both reversible 

(van der Waals forces, hydrogen bonding and hydrophobic binding) and irreversible (covalent 

bonds) interactions are involved. Proline rich proteins like collagen, gelatin and casein, which are 

commonly used as protein fining agents in wine, and some salivary proteins reported to be 

involved in astringency perception, are particularly prone to interact with phenolic compounds. 

The precipitation depends on the phenols and proteins type and concentration. Low MW 

phenolic compounds display moderate affinity for proteins (phenolic acids, flavonols and non-

galloylated flavan-3-ol monomers). Interaction and precipitation increase with the number of 

phenolic rings and thus with the degree of polymerization and the presence of galloyl 

substituents (Dangles, 2005; McRae and Kennedy, 2011).  

Few studies investigated the possible interactions between peptides of low MW and phenolic 

compounds in wine. Besides, no previous studies dealt with peptides from wine origin. 

Yokotsuka and Singleton (1995) demonstrated that gelatin peptides (2, 5 and 10 kDa) and 

synthetic peptides of low MW (between 1.3 and 2.5 kDa) were very effective for fining wines, at 

least at the same levels as whole gelatin (70 kDa) with high affinity for phenols. The affinity 

depended on the pH and temperature. Osborne and Edwards (2007) found that S. cerevisiae 

RUBY.ferm was able to produce a peptide of 5.9 kDa that inhibited O. oeni Viniflora oenos 

during sequential fermentations in synthetic grape juice media lacking phenols. However, Larsen 

et al., (2003) who previously used the same strains combination were able to successfully 

achieve MLF in Chardonnay wines. Therefore, it was suggested that the Chardonnay wine 

contained phenolic compounds that may have interacted with the 5.9 kDa peptide.  

The 5-10 kDa peptides of this study may have not presented binding sites for phenolic 

compounds and thus were not removed. Regardless of the different types and concentrations of 

phenolic compounds, the inhibition caused by the 5-10 kDa peptidic fraction released by S. 

cerevisiae strain D was preserved in natural winemaking conditions.  
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VI. Fractionation of the SGJ media fermented by S. cerevisiae strain D by ammonium 

sulfate precipitation 

 

The SGJ media fermented by S. cerevisiae strain D were centrifuged to recuperate the 

supernatant. Different amounts of (NH4)2SO4 were added to reach the following saturation 

degrees: A: 0-20 %, B: 20-40 %, C: 40-60 %, D: 60-80 % and E: 80-100 %. For each saturation 

degree, the medium was centrifuged and the protein pellet obtained was suspended in a 

phosphate buffer. The samples were then desalted using ultrafiltration units of 5 kDa cut-off, 

thus retaining compounds with a MW ≥ 5 kDa. This choice was made because the fractionation 

by ultrafiltration has previously shown that compounds with a MW ≤ 5 kDa were not inhibitory 

(paragraph III of part B). The inhibitory effect of the five proteinaceous precipitated fractions (A, 

B, C, D and E) was evaluated separately in modified MRS media inoculated with O. oeni strain 

X. The MLF was followed by regular sampling until cessation of malate consumption and 

compared to that of a modified MRS control (Figure III.9). The detailed values of the biomass 

produced and the malate consumed in the presence of each precipitate are given in appendix B-

V. 

This experiment was a further step towards purification and enabled us to select the protein 

fraction that will undergo additional purification and characterization (part D of this chapter).  
 

Figure III.9. Growth and malic acid consumption kinetics of O. oeni strain X in the control and in the 
presence of the proteinaceous fractions obtained by ammonium sulfate precipitation in the SGJ media 

fermented by S. cerevisiae strain D. (♦) Control: modified MRS medium; precipitated fractions at different 
saturation degrees: (■) 0-20 %, (▲) 20-40 %, (○) 40-60 %, (x) 60-80 %, (●) 80-100 %. Each value is the mean 

of triplicate experiments ± SD 
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The protein concentration of the different precipitates was measured before addition to the MRS 

media and is given in table III.11.   

 
Table III.11. Protein concentration (mg/l) of the different precipitates before addition to 
the MRS media*  

 

 

 

 

 

 

 

 

*The protein concentration was determined by the Lowry method. The standard curve is given in the 
appendix of part B 

 

Figure III.9 shows that the growth of O. oeni strain X in the presence of the precipitate 80-100 % 

was similar to that obtained in the control. However, with all the other precipitates, the growth 

was strongly inhibited. These results suggest the presence of different proteinaceous compounds 

responsible for the bacterial growth inhibition. These compounds presented different solubility 

levels since they were precipitated by increased amounts of ammonium sulfate. The results also 

show that the malate consumption kinetics were the same and similar to the control in the 

presence of all the precipitates to the exception of the 60-80 % one. The latter strongly inhibited 

the malate consumption.  

The 80-100 % precipitate affected neither the growth nor the malate consumption and was 

similar to the control. However, the precipitates of 0-20 %, 20-40 % and 40-60 % strongly 

inhibited the bacterial growth but not the malate consumption. The 60-80 % precipitate was the 

only one that strongly inhibited both the bacterial growth and the malate consumption. Table 

III.11 indicates that this precipitate presented the highest protein concentration.  

These results suggest the presence of 2 categories of inhibitory proteinaceous compounds. The 

first one only inhibited the bacterial growth while the second one only inhibited the malate 

consumption. The latter was solely recuperated in the 60-80 % precipitate. With this precipitate, 

Saturation degree (%) Protein concentration (mg/l) 

0-20 256.36 (± 0.0013) 

20-40 264.09 (± 0.0023) 

40-60 232.3 (± 0.0017) 

60-80 650.45 (± 0.0019) 

80-100 273 (± 0.006) 

Residual supernatant  332 (± 0.003) 
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the inhibition of the bacterial growth could be a consequence of the malate consumption 

inhibition or it could be due to the presence of both categories of protein compounds. In 

winemaking conditions, the MLF is one of the main sources of energy for bacterial survival and 

growth (Cox and Henick-Kling, 1995; Bouix and Ghorbal, 2015). Thus, an inhibition of the 

malate consumption can also cause an inhibition of the bacterial growth.  

The same work was carried out on the SGJ media fermented by S. cerevisiae strain A used as a 

reference strain in this study. The results with the different precipitates obtained were similar to 

the ones obtained in the modified MRS control, thus showing no inhibition, neither on the 

bacterial growth nor on the malate consumption. 

 

Finally, the combined results of the fractionation by ultrafiltration and ammonium sulfate 

precipitation enabled us to conclude that the most inhibiting proteinaceous fraction of both the 

bacterial growth and the malate consumption presented an apparent MW of 5-10 kDa and was 

recuperated with a saturation degree of 60-80 %. Therefore, the 5-10 kDa fraction of the 60-80 % 

ammonium sulfate precipitate was retained for further purification steps (part D of this chapter).  

 

Well plate tests were performed in order to qualitatively evaluate the inhibitory effect of the 

proteinaceous compounds isolated by ultrafiltration and ammonium sulfate precipitation of the 

SGJ media fermented by S. cerevisiae strain D on the bacterial growth of O. oeni strain X. The 

results are given in appendix B-VI.  

 

The following part (part C) of this chapter, will examine the mechanism of action of the 5-10 

kDa peptidic fractions and the 60-80 % precipitate. Their direct effect on the malolactic enzyme 

activity will be evaluated in order to better elucidate their involvement in MLF inhibition.  
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Part C- In vitro evaluation of the malolactic 

enzyme inhibition by the 5-10 kDa peptidic 

fractions and the 60-80 % precipitate 
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I. Introduction 

 

In an attempt to determine the mechanism of action of the 5-10 kDa fractions, an in vitro 

enzymatic reaction was designed and the fractions of 5-10 kDa collected each 24 h of the AF 

were tested as described in paragraph II.2.4 of chapter II. The proteinaceous fractions obtained 

by ammonium sulfate precipitation were also tested. The objective was to evaluate the direct 

impact of these fractions on the malolactic enzyme activity in order to evaluate their involvement 

in the MLF inhibition.  

The growth of O. oeni strain X was followed in modified MRS media and the bacterial pellets 

were recuperated and suspended in specific buffers (citrate buffer pH 3.5 and 5.5, phosphate 

buffer pH 6 and 6.7). Different buffers were chosen in order to conduct the reaction at different 

pH. Bacterial cell lysis was then performed and the cell free cytosolic content comprising the 

malolactic enzyme was recovered and divided into 2 aliquots. One was used as a control and the 

other as a test medium to which the proteinaceous fractions were added. The reaction mixture is 

given in table II.17 of chapter II. The enzymatic reaction was performed at 30°C for 30 min at 

pH 5.5 and 6, 40 min at pH 6.7 and 70 min at pH 3.5. At the end of each assay, the 

concentrations of the L-malic acid consumed and the L-lactic acid produced were measured in 

both aliquots (control and test) and compared (Tables III.12 and III.13). The experiment 

performed at pH 5.5 gave results similar to those obtained at pH 6 and thus the results 

corresponding to pH 5.5 are given in the appendix of part C.  
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II. In vitro evaluation of the malolactic enzyme inhibition by the 5-10 kDa peptidic fractions 

 

Table III.12. Amount of L-malic acid consumed (g/l) and L-lactic acid produced (g/l) 
during the enzymatic reaction in vitro performed at different pH in the presence of the 5-10 
kDa fractions (ABP) collected each 24 h of the AF1 

  

 
1 Results are mean ±SD values of three replications. In comparison to the control, values of malate consumed and 
lactate produced followed by different letters within the same column are significantly different (p < 0.05) according 
to Tukey’s HSD test  
 
2Inhibition % of malate consumption = (consumed L-malic acid in the control - consumed L-malic acid in the 
presence of ABP) x 100/ (consumed L-malic acid in the control) 
 
3Absence of ABP: absence of antibacterial peptides   
 
 

In this experiment, the malolactic enzyme of the cell-free bacterial enzymatic extract was 

directly exposed to the inhibitory peptides. The five fractions of 5-10 kDa collected each 24 h of 

the AF (D1 to D5) were tested as described in table II.17 of chapter II. Table III.12 shows the 

amounts of L-malic acid consumed and the corresponding L-lactic acid produced for each 5-10 

kDa fraction tested.  

The first set of experiments was conducted at pH 6.7 which is around the cytoplasmic pH of the 

majority of lactic acid bacteria. The same experiment was repeated by changing the pH. pH 6 

was chosen because it is the optimum pH for activity of the malolactic enzyme of O. oeni 

(Schümann et al., 2013). pH 3.5 was also tested because it represents the pH of wine at the 

 pH=6.7 
t=40 min 

pH=6 
t=30 min 

pH=3.5 
t= 70min 

Sampling time of 
the 5-10 kDa 

fractions during the 
AF 

Consumed 
L-malic  

acid  
(g/l) 

Produced 
L-lactic 

acid  
(g/l) 

2Inhibition 
%  

of malate 
consumption 

Consumed 
L-malic 

acid  
(g/l) 

Produced 
L-lactic 

acid  
(g/l) 

Inhibition % 
of malate 

consumption 

Consumed 
L-malic 

acid  
(g/l) 

Produced 
L-lactic 

acid  
(g/l) 

Inhibition % 
of malate 

consumption 

Control  
3(absence of ABP) 

1.00  
± 0.02a 

0.670  
± 0.013a 

0  
± 0 

1 
± 0a 

0.670 
± 0.013a 

0  
± 0 

0.96 
± 0.02a 

0.65 
± 0.01a 

0  
± 0 

After 24 h of the 
AF (D1) 

0.720  
± 0.015b 

0.48 
 ± 0.01b 

28.0  
± 0.6 

0.92 
± 0.02b 

0.620 
± 0.012b 

8.00  
± 0.16 

0.89 
± 0.02b 

0.6 
± 0.01b 

7.30 
± 0.15 

After 48 h of the 
AF (D2) 

0.630  
± 0.013c 

0.420  
± 0.009c 

37.0  
± 0.8 

0.85 
± 0.02c 

0.570 
± 0.011c 

15.0  
± 0.3 

0.82 
± 0.02c 

0.55 
± 0.01c 

14.6 
 ± 0.3 

After 72 h of the 
AF (D3) 

0.560  
± 0.011d 

0.380  
± 0.008d 

44 
 ± 1 

0.70 
± 0.01d 

0.47 
± 0.01d 

30.0  
± 0.6 

0.65 
± 0.01d 

0.44 
± 0.01d 

32.30 
 ± 0.65 

After 96 h of the 
AF (D4) 

0.100  
± 0.002e 

0.070  
± 0.002e 

90 
 ± 2 

0.096 
± 0.002e 

0.065 
± 0.001e 

90.4 
 ± 2.0 

0.06 
± 0.001e 

0.040 
± 0.001e 

94 
 ± 2 

After 120 h of the 
AF (D5) 

0.090  
± 0.002f 

0.060  
± 0.002f 

91  
± 2 

0.060 
± 0.001f 

0.040 
± 0.001f 

94  
± 2 

0.001 
± 0f 

0.0007 
± 0f 

100  
± 2 
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beginning of the MLF in this study. The results obtained in the controls show that the malolactic 

enzyme was active in the pH range tested since the L-malic acid was completely decarboxylated 

into L-lactic acid and CO2 (Table III.12). The reaction was the fastest at pH 6 since it is the 

optimum pH and took only 30 min whereas it was the slowest at pH 3.5 and took 70 min. 40 min 

were required at pH 6.7 to completely decarboxylate the same amount of L-malic acid (1 g/l). 

Interestingly, Bouix and Ghorbal (2015) demonstrated that at low extracellular pH, O. oeni cells 

were able to drop their intracellular pH to values as low as 3.5 (equal to the extracellular pH). 

The MLF was then initiated indicating that the malolactic enzyme was active at this low pH. 

During MLF, the intracellular pH increased again due to the proton extrusion that accompanied 

the release of lactate and CO2. It reached 6 at the end of the MLF and dropped again to 3.5 when 

the malate was totally consumed. The results of the in vitro experiment performed at 3.5 showed 

that the enzyme was indeed active at this low pH value although the enzymatic reaction was 2.3 

times slower than at pH 6 which is the optimum pH (Table III.12).  

The results of the experiment performed at pH 6.7 clearly show that the 5-10 kDa fractions were 

able to reduce the amount of L-malic acid consumed of 28 % (D1) to 91 % (D5) when compared 

to the control, thus exhibiting a direct inhibitory effect on the malolactic enzyme activity (p < 

0.05). The ethanol concentration in the five fractions was evaluated and a residual amount of 

0.02 g/l was found in the 5-10 kDa fraction corresponding to D5. Therefore, all the fractions 

were ethanol free and the inhibition observed was only due to the presence of the peptides. 

Besides, the kinetic of the inhibition was in agreement with the results of the timing experiment 

(paragraph IV of Part B) proving once again that the 5-10 kDa peptidic fraction was gradually 

released during the AF with the highest concentration reached at the end of the stationary phase. 

Moreover, it is known that during the malolactic fermentation, each mole of L-malic acid 

decarboxylated by the malolactic enzyme releases one mole of L-lactic acid and one mole of 

CO2. Therefore, the measurement of the lactate produced was an additional indicator of the 

malolactic enzyme activity. The amounts of L-lactic acid produced were measured and found to 

be stoichiometrically equivalent to the amounts of L-malic acid consumed. As an example, in the 

presence of the fraction D1, 0.72 g/l of L-malic acid equivalent to 5.4 mmol/l were consumed 

and gave 0.48 g/l of L-lactic acid which corresponded to 5.3 mmol/l. Consequently, the gradual 

decrease in the amount of L-lactic acid produced proved that the 5-10 kDa peptidic fractions 
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targeted specifically the malolactic enzyme and not any other enzyme of the cytosolic extract. 

The same observations can be made with the experiments performed at pH 6 and pH 3.5. 

Additionally, 5-10 kDa fractions isolated from the SGJ media fermented by S. cerevisiae strain A 

(reference strain or non-inhibitory strain) were also tested and gave results identical to the 

control. Therefore, the inhibition of the malolactic enzyme by the 5-10 kDa peptides of S. 

cerevisiae strain D is highly specific.  

From the previous results, it can be concluded that the peptides were able to exert their inhibitory 

effect in a pH range between 3.5 and 6.7. We also suggest that in vivo, the peptides of the 5-10 

kDa fraction released by S. cerevisiae strain D would enter the bacterial cells by mechanisms yet 

to be identified and directly inhibit the malolactic enzyme.  

No previous works have shown the involvement of yeast proteinaceous metabolites in the direct 

inhibition of the malolactic enzyme activity. Few have attempted to explain the mechanism of 

action of the yeast antibacterial peptides/proteins and evaluated mainly their impact on the 

bacterial growth. The proteinaceous compound ≥ 10 kDa found by Comitini et al., (2005), was 

dose dependent and was able to reduce the bacterial growth with a typical saturation kinetic thus 

suggesting the presence of a receptor on the bacterial cell. Therefore its bacteriostatic or 

bactericidal effect depended on its concentration and the incomplete MLF was correlated to its 

bactericidal effect. Mendoza et al., (2010) found that their peptidic fraction having a MW 

between 3 and 10 kDa inhibited the bacterial growth but not the ability to consume L-malic acid 

with a typical saturation kinetic similar to that suggested by Comitini et al., (2005). Osborne and 

Edwards (2007) suggested that their antibacterial peptide presenting a MW of 5.9 kDa inhibited 

the bacteria along with SO2. The mechanism proposed was that of bacteriocins forming 

membrane pores and facilitating the entry of SO2 inside the cells thus leading to the bacterial 

death and arrest of MLF. The mechanism of action of the GAPDH-derived peptides identified by 

Branco et al., (2014) and that inhibited the growth of O. oeni was not elucidated. In addition no 

data concerning the malate consumption was shown.   
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III. In vitro evaluation of the malolactic enzyme inhibition by the proteinaceous fractions 

obtained by ammonium sulfate precipitation  

 

It was shown in part B of this chapter that the proteinaceous fraction obtained by ammonium 

sulfate precipitation at a saturation degree of 60-80 % strongly inhibited the MLF while all the 

other fractions did not (0-20 %; 20-40 %; 40-60 % and 80-100 %). The precipitates were 

desalted with ultrafiltration membranes of 5 kDa thus retaining compounds ≥ 5 kDa.  

In paragraph II of this part, we demonstrated that the 5-10 kDa peptidic fractions directly 

inhibited the malolactic enzyme activity. Therefore, we decided to recuperate the 5-10 kDa 

fraction of the 60-80 % precipitate for further studies (mechanism of action and purification).  

In the following, we will evaluate the effect of the 60-80 % precipitate on the malolactic enzyme 

activity. First the 60-80 % precipitate containing compounds ≥ 5 kDa will be tested. Then, the 5-

10 kDa fraction from this precipitate will be also tested. The 0-20 % precipitate was chosen 

amongst the precipitates that did not inhibit MLF to study its direct impact on the malolactic 

enzyme activity.  

 

Table III.13. Amount of L-malic acid consumed (g/l) and L-lactic acid produced (g/l) 
during the enzymatic reaction in vitro performed at different pH in the presence of 
different proteinaceous fractions obtained by ammonium sulfate precipitation at the end of 
the AF (120 h)                                                                                               

    

 

 

 

 

 

 

 

 

 

 pH=6.7 
t=40 min 

pH=6  
t=30 min  

pH=3.5  
t=70 min 

 Consumed 
L-malic 
acid (g/l) 

Produced 
L-lactic 

acid (g/l) 

Consumed 
L-malic 
acid (g/l) 

Produced 
L-lactic 

acid (g/l) 

Consumed 
L-malic 
acid (g/l) 

Produced 
L-lactic 

acid (g/l) 
Control  

(absence of ABP) 
1.00  

(± 0.02) 
0.670  

(± 0.013) 
0.933 

(± 0.020) 
0.062 

(± 0.001) 
0.974  

(± 0.002) 
0.65  

(± 0.01) 
60-80 % precipitate 

containing 
compounds ≥ 5 kDa   

0.120  
(± 0.002) 

0.080  
(± 0.002) 

0.120  
(± 0.002) 

0.080  
(± 0.002) 

0.120  
(± 0.003) 

0.080  
(± 0.002) 

5-10 kDa fraction of 
the 60-80 % 
precipitate  

0.0080 
(± 0.0002) 

0.0053 
(± 0.0001) 

0.0012 
(± 0) 

0.0080 
(± 0.0002) 

0.0090 
(± 0.0002) 

0.0060 
(± 0.0001) 

0-20 % precipitate 
containing 

compounds ≥ 5 kDa  

0.90  
(± 0.02) 

0.60  
(± 0.01) 

0.90  
(± 0.02) 

0.60  
(± 0.01) 

1.00  
(± 0.02) 

0.67  
(± 0.01) 
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Table III.13 shows that the 60-80 % precipitate containing compounds ≥ 5 kDa was able to 

inhibit the malate consumption by directly targeting the malolactic enzyme activity. The results 

were similar with all the pH tested and were in accordance with those obtained with the 5-10 

kDa fractions previously tested (paragraph II of part C). For example, at pH 6.7, the malate 

consumption was reduced by 88 % in comparison to the control. The inhibition was even greater 

when the 5-10 kDa fraction was isolated from the 60-80 % precipitate. In this case, it was 

reduced by 99 %. The 0-20 % precipitate showed no inhibition of the malolactic enzyme activity. 

This result was also in accordance with that previously obtained in the modified MRS broth 

(paragraph VI of part B).  

 

In the following part (part D), the 5-10 kDa fraction of the 60-80 % precipitate will be further 

analyzed by SDS-PAGE and ion exchange chromatography followed by SDS-PAGE and 

sequencing in order to purify the putative antimicrobial peptides responsible for the MLF 

inhibition.  
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Part D- Purification of the anti-MLF peptides of 
the 5-10 kDa peptidic fraction isolated from the 

60-80 % ammonium sulfate precipitate 
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I. Introduction 

 

The results of parts B and C encouraged us to retain the 5-10 kDa peptidic fraction of the 

ammonium sulfate precipitate obtained at a saturation degree of 60-80 % for further purification. 

In fact, this proteinaceous fraction isolated from the SGJ media fermented by S. cerevisiae strain 

D strongly inhibited the malate consumption in the in vitro experiment; thus directly inhibiting 

the malolactic enzyme activity. Since S. cerevisiae strain A was adopted as a reference strain in 

this study, the 5-10 kDa peptidic fraction of the 60-80 % precipitate isolated from the SGJ media 

fermented by this strain was used as a control in the SDS-PAGE and ion exchange 

chromatography (IEXC) experiments performed in this part.  

 

II. Comparison of the protein profiles of S. cerevisiae strains A and D by Tricine SDS-

PAGE  

 

The 5-10 kDa peptidic fractions isolated from the 60-80 % precipitates obtained from the SGJ 

media fermented by S. cerevisiae strains A and D were analyzed and compared by Tricine SDS-

PAGE. The results are given in figure III.10.  
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Figure III.10 Silver stained Tricine SDS-PAGE gel. Lane A corresponds to the dual-xtra MW standard 2-250 
kDa (Bio-Rad). Lane B corresponds to the 5-10 kDa fraction of the 60-80 % precipitate from S. cerevisiae 

strain D. Lane C corresponds to the 5-10 kDa fraction of the 60-80 % precipitate from S. cerevisiae strain A 
(reference strain) 

 

Tricine SDS-PAGE analysis of the inhibitory fraction released by S. cerevisiae strain D revealed 

three protein bands with an apparent MW of approximately 5.1 kDa (1), 7.2 kDa (2), and 8.4 

kDa (3) as shown in lane B. Two of these protein bands, (1) and (2), were not present in the SGJ 

media fermented by strain A (lane C). Besides, the band of approximately 8.4 kDa in size (3) 

was released by both strains, A and D, but was more concentrated in the SGJ media fermented 

by strain D. Therefore, it is likely that the peptides of these bands were involved in the inhibition 

of the MLF. However, further purification steps are required to answer the following questions: 

a- How many peptides are really involved in the MLF inhibition?  

b- Do they work synergistically?  

c- What is the exact MW and type of these peptides? 

The use of strain A as a reference or control was very helpful since the comparison of the protein 

profiles proved that strain D was able to produce additional peptides. This strategy was also 

adopted by Osborne and Edwards, (2007) who compared the protein profiles of S. c erevisiae 

250 kDa 

150 kDa 

2 kDa 
5.1 kDa (1) 
7.2 kDa (2) 

8.4 kDa (3) 

10 kDa 

     A       C      B 
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RUBY.ferm (inhibitory strain) and Saint-Georges S101 (non-inhibitory strain) by SDS-PAGE 

analysis of the peptidic fractions of 3-5 kDa isolated from the SGJ media fermented by both 

strains. The analysis revealed three protein bands of approximately 5.9, 5.1 and 3.4 kDa in size. 

The bands of 3.4 and 5.1 kDa were common for both strains, whereas the band of 5.9 kDa was 

present only in the lane corresponding to RUBY.ferm. Therefore, they concluded that the peptide 

responsible for the inhibition of the bacterial growth of O. oeni Viniflora oenos and its MLF had 

an apparent MW of 5.9 kDa.  

Besides, the ultrafiltration technique used in this study to isolate the peptidic fraction of 5-10 

kDa and the SDS-PAGE technique used to migrate and separate the different peptides of this 

fraction gave us an idea about the apparent MW of the putative antibacterial peptides. The values 

of the apparent MW were most probably higher than the real ones because interactions and 

aggregation of different peptides may have occurred during the fractionation by ultrafiltration 

thus retaining peptides with a MW lower than the membrane cut-off. Besides, interactions may 

have also occurred during electrophoresis.  

As an example, Albergaria et al., (2010), showed that S. cerevisiae CCMI 885 produced a 

peptidic fraction with an apparent MW between 2 and 10 kDa that inhibited the growth of 

several wine-related yeast species. The peptidic fraction was obtained by ultrafiltration of the 

SGJ media fermented by strain CCMI 885. The Tricine SDS-PAGE analysis of this fraction gave 

three protein bands with an apparent MW of 6, 4.5 and 4 kDa corresponding to one or more 

antimicrobial peptides. Later on, Branco et al., (2014) demonstrated that these peptides were also 

active against the growth of O. oeni and corresponded to GAPDH-derived peptides of 1.6 kDa.  

 

For further characterization and purification of the anti-MLF peptides of the 5-10 kDa fraction 

obtained from the 60-80 % precipitate, the latter was submitted to ion exchange chromatography. 

The inhibitory eluates were then submitted to SDS-PAGE in order to select the protein bands 

that must undergo sequencing.  
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III. Purification of the anti-MLF peptides of the 5-10 kDa fraction from the 60-80 % 

precipitate by Ion Exchange Chromatography (IEXC) followed by SDS-PAGE and 

sequencing 

 

The Biological Low Pressure Chromatography (Bio-Rad) was firstly used for protein purification 

by IEXC. The only result obtained is given in the appendix of part D. Due to technical problems, 

purification by IEXC was then pursued using the Aurum mini kit (Bio-Rad). Aurum AEX 

(anionic exchange) and CEX (cationic exchange) columns allow rapid fractionation of complex 

protein mixtures in only a few steps using the common technique of IEXC (refer to paragraph 

II.2.3.6 of chapter II). Each Aurum AEX or CEX column contains 0.2 ml of UNOsphere™ Q [-

N+(CH3)3] or S [-SO3
-] support respectively. The buffers used were: 

 

- Binding buffers: 20 mM phosphate pH 6.7 for CEX and 20 mM Tris pH 8.3 for AEX 

- Elution buffers: binding buffer + 0.5 M NaCl and binding buffer + 1 M NaCl (gradient elution) 

 

The 5-10 kDa peptidic fraction of the 60-80 % ammonium sulfate precipitate was used in this 

experiment for further purification. 500 ml of the SGJ media fermented by S. cerevisiae strain D 

were used to recuperate the 60-80 % precipitate. The precipitate was then suspended in 10 ml of 

the binding buffer (either phosphate or Tris buffer depending on the type of IEXC) and 

submitted to ultrafiltration in the 10 kDa unit. The filtrate lower than 10 kDa was ultrafiltered 

again using the 5 kDa unit. The desalted retentate between 5 and 10 kDa was recuperated (0.2 

ml). 1 ml of this retentate was collected for each analysis.  

The same procedure was performed with the strain A used as a reference strain.  

 

The eluted peptidic fractions from both AEXC and CEXC were tested in vitro in the presence of 

the malolactic enzyme of the cell-free enzymatic extract and the consumption of L-malic acid as 

well as the production of L-lactic acid were both monitored (refer to paragraph II.2.4 of chapter 

II). The results given in table III.14 correspond to those of the control aliquots and the test 

aliquots containing the different eluates. The reaction was run at 30 ºC, pH 6.7 for 40 min.  
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Table III.14. Consumed L-malic acid (g/l) and produced L-lactic acid (g/l) in the controls 
and in the presence of the eluates obtained by AEXC and CEXC  

 

 
aControl 1: 0.14 ml of phosphate buffer 0.1 M pH 6.7 were added instead of the peptidic eluate  
bControl 2: 0.14 ml of NaCl 0.5 M were added instead of the peptidic eluate 
cControl 3: 0.14 ml of NaCl 1 M were added instead of the peptidic eluate   
 

Table III.15. Protein concentration of the eluates obtained by AEXC and CEXC  

 

Control 1 in Table III.14 is the usual control used in all the in vitro experiments (refer to part C 

of this chapter and to paragraph II.2.4 of chapter II). It enables us to monitor the malolactic 

enzyme activity in vitro. Controls 2 and 3 were added to this experiment to evaluate the effect of 

NaCl on the malolactic enzyme activity. In fact, the elution of peptides in both AEXC and CEXC 

was performed using increasing concentrations of NaCl (0.5 M then 1 M of NaCl) in the elution 

buffers. We wanted to make sure that any inhibition observed in the presence of the protein 

eluates was only due to the peptides and not to NaCl. The results show that NaCl did not affect 

the malolactic enzyme activity since the 1 g/l of L-malic acid initially present in the control 

aliquots (controls 2 and 3) were totally consumed.  

Eluates obtained after elution with 0.5 M NaCl from both AEXC and CEXC (eluates 1 of table 

III.14) strongly inhibited the malolactic enzyme activity since only 0.2 % of the malate present 

were consumed. However, those eluted at 1 M NaCl did not affect the enzyme activity and the 

 Consumed L-malic acid 
(g/l) 

Produced L-lactic acid 
(g/l) 

 

aControl 1 0.98 (± 0.02) 0.66 (± 0.01) 

bControl 2 1.00 (± 0.02) 0.68 (± 0.01) 

cControl 3 1.00 (± 0.02) 0.68 (± 0.01) 

Eluate 1 from 
AEXC (0.5 M NaCl)  0.002 (± 0) 0.0013 (± 0) 

Eluate 1 from  
CEXC (0.5 M NaCl)  0.002 (± 0) 0.0013 (± 0) 

Eluate 2 from 
AEXC (1 M NaCl)  0.96 (± 0.02) 0.65 (± 0.01) 

Eluate 2 from  
CEXC (1 M NaCl)  0.97 (± 0.02) 0.67 (± 0.01) 

Protein concentration (mg/l) AEXC CEXC 
Eluate 1 with 0.5 M NaCl 251 (± 5) 303 (± 6) 
Eluate 2 with 1 M NaCl  246 (± 5) 269 (± 5) 
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malate was entirely consumed. Therefore the peptides of interest were recuperated in eluates 1 of 

both AEXC and CEXC. The same procedure was performed with strain A and none of the 

eluates showed inhibition (data not shown). The inhibitory eluates of strain D (eluates 1 of table 

III.14) were then migrated on a Tricine SDS-PAGE gel and the bands of interest were 

recuperated for sequencing.   

 

Table III.15 shows the protein concentration of the eluates. The inhibitory eluates (eluates 1 from 

both AEXC and CEXC) were initially present in a volume of 0.6 ml. Before analyzing them by 

Tricine SDS-PAGE, they were first precipitated with a TCA solution then suspended in 0.1 ml of 

a Triton X-100 buffer. Therefore, they were finally 6 times concentrated (0.6/0.1 = 6). The final 

concentration of the proteins loaded on the gel was: 

Eluate 1 from AEXC: 251 x 6 = 1506 mg/l or 1.506 g/l 

Eluate 1 from CEXC: 303 x 6 = 1818 mg/l or 1.818 g/l 

This information was important for sequencing purposes.  

Figure III.11 shows the results of the migration of the inhibitory eluates of strain D (eluates 1 

from both AEXC and CEXC) on the Tricine SDS-PAGE. 

 

 

Figure III.11 Coomassie G-250 stained Tricine SDS-PAGE gel. Lane A contains dual-xtra MW standard 2-
250 kDa (Bio-Rad). Lane B corresponds to eluate 1 from CEXC. Lane C corresponds to eluate 1 from AEXC  
 

The cationic eluate presented two protein bands of approximately 5.1 and 7.2 kDa whereas the 

anionic eluate presented one protein band of 5.1 kDa. We finally decided to cut the three protein 

bands from both eluates in order to sequence them and identify the nature of the putative 

C B A 

 5.1 kDa   
kDa 

 7.2 kDa 

10 kDa 

25 kDa 
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antimicrobial peptides responsible for the MLF inhibition with O. oeni strain X. Tables III.16 

and III.17 show the results of the peptides analyzed by LC1D-nanoESI-LTQ-Orbitrap. The 

identified peptides, their amino acid sequence, molecular weight and isoelectric point (pI) are 

presented.  

Table III.16. Sequence analysis by LC1D-nanoESI-LTQ-Orbitrap of the peptides 
corresponding to the 5.1 and 7.2 kDa bands of the cationic eluate  

 

Table III.17. Sequence analysis by LC1D-nanoESI-LTQ-Orbitrap of the peptides 
corresponding to the 5.1 kDa band of the anionic eluate 

 

 

Cationic peptides/ proteins 

Identified Proteins Accession 
Number 

Sequence of amino acids  Identification 
Probability 

Actual 
Mass (Da) 

Start Stop pI  

Wtm2p [S. cerevisiae 
Lalvin QA23] 

gi|323346419 (D)DDDDDNDDDDEEGNxKTKSAAT(P) 95% 2,420.89 89 110 3.352 

Putative short-chain 
deshydrogenase/reductase 

[S. cerevisiae S288c] 

gi|6322742 (+4) (K)DmAVSYLSR(Y) 100% 1,056.49 118 126 6.499 

Actin [S. cerevisiae 
S288c] 

gi|14318479 (+2) (K)AGFAGDDAPR(A) 100% 975.4408 19 28 3.94 

Conserved protein  
[S. cerevisiae YJM789] 

gi|151944993 (+1) (S)SAASAGVSR(I) 96% 804.4088 15 23 10.467 

Glyceraldehyde-3-
phosphate 

deshydrogenase  
[S. cerevisiae YJM789] 

gi|151943468 (+4) (K)KVVITAPSS(T) 99% 900.5276 116 124 9.074 

Glyceraldehyde-3-
phosphate 

deshydrogenase  
[S. cerevisiae YJM789] 

gi|151943468 (+4) (R)TASGNIIPSSTGAAK(A) 100% 1,373.71 199 213 9.074 

YNL092W-like protein 
[S. cerevisiae FostersB] 

gi|323303237 (D)LDxSKTcSLLT(Q) 95% 1,237.62 97 107 5.722 

K7_Ykr096wp  
[S. cerevisiae Kyokai 

no.7] 

gi|349579655 (N)DNNNNNNDDNNNNNNNSNSRD(N) 97% 2,404.88 227 247 3.498 

YDL025C-like protein [S. 
cerevisiae AWRI796] 

gi|323334240 (+1) (-)mEVVTNHTQR(Q) 97% 1,271.60 1 10 7.378 

Ltv1p  
[S. cerevisiae JAY291] 

gi|256271082 (+2) (K)NVEDLFIEPK(Y) 97% 1,202.61 114 123 3.962 

Petite colonies protein [S. 
cerevisiae YJM789] 

gi|151944772 (+1) (K)TNGAASLDPTKER(K) 95% 1,358.68 53 65 6.651 

Anionic peptides/proteins 

Identified Proteins Accession 
Number 

Sequence of amino acids  Identification 
Probability 

Actual 
Mass (Da) 

Start Stop pI 

Wtm2p  
[S. cerevisiae Lalvin 

QA23] 

gi|323346419 (D)DDDDDNDDDDEEGNxKTKSAAT(P) 98% 2,420.89 89 110 3.352 

Utr2p  
[S. cerevisiae EC1118] 

gi|259145860 
(+3) 

(F)CNATQACPEDKPCCSQYGEcGTG(Q) 97% 2,420.89 27 49 3.96 
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The cationic eluate revealed 11 different protein fragments corresponding to 10 different proteins 

of S. cerevisiae (Table III.16) whereas the anionic eluate revealed 2 protein fragments 

corresponding to 2 different yeast proteins (Table III.17). The identified proteins play diverse 

vital roles in S. cerevisiae cells. The short-chain deshydrogenase/reductase protein binds and 

stabilizes pre-tRNAs and RNA polymerase III transcripts (Schenk et al., 2012). Yeast actin is a 

structural protein involved in cell polarization, endocytosis, cytoskeleton functions and histone 

acetyltransferase activity (Greer and Schekman, 1982; Moseley and Good, 2006). YNL092W-

like protein is a methyltransferase (Borneman et al., 2011; Szczepinska et al., 2014), K7-

_Ykr096wp is an RNase (Akao et al., 2011) and YDL025C-like protein is a major protein kinase 

involved in protein phosphorylation (Ptacek et al., 2005). Ltv1p is a protein complex that 

contains GTPases located in the late endosomal membrane that functions in nuclear export of the 

ribosomal small subunits (Gao et al., 2006; Seiser et al., 2006), petite colonies protein or Pet127p 

is a membrane–associated protein involved in stability and processing of S. cerevisiae 

mitochondrial RNAs (Wiesenberger and Fox, 1997) and Utr2p has a hydrolase activity, 

hydrolyzing O-glycosyl compounds (Novo et al., 2009).  

No previous studies have described antimicrobial activities related to the previous proteins 

and/or their corresponding fragments, neither against bacteria nor against fungi. 

Interestingly, the Wtm2p fragment was found in both eluates and was mainly recuperated in the 

anionic eluate due to its negative charge (pI 3.352 lower than the pH of both eluting buffers; 

phosphate buffer pH 6.7 and Tris buffer pH 8.3).  

Wtm1p (WD repeat-containing transcriptional modulator) is a protein present in a large nuclear 

complex and presenting two homologs Wtm2p and Wtm3p, which probably arose by gene 

duplications. These proteins are transcriptional modulators with roles in meiotic regulation and 

silencing, RNR genes expression and are also involved in response to replication stress. They are 

relocalized in the cytosol in response to hypoxia (Pemberton and Blobel, 1997). The fragment of 

Wtm2p seems to play a main role in the inhibition since the corresponding anionic eluate 

strongly inhibited the malolactic enzyme activity in vitro as previously shown in Table III.14. 

There is no previous study on the antimicrobial role of the Wtm2p proteins. Giving its pI (3.352), 

the Wtm2p peptidic fragment is anionic at pH 6.7 which is the pH of the in vitro experiment. 

Therefore, it may deprive the malolactic enzyme from its Mn2+ cofactors by chelating them, thus 

inhibiting the malolactic enzyme activity and the malate consumption. 
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The sequencing also revealed two peptidic fractions of GAPDH in the cationic eluate, one 

having a MW of 0.9 kDa and the other of 1.373 kDa. They both presented the same pI (9.074) 

(Table III.16). Branco et al., (2014) previously demonstrated that GAPDH fragments were 

involved in the growth inhibition of O. oeni and some non-Saccharomyces yeast. However, the 

two GAPDH fragments identified by these authors were different and had a MW of 1.622 and 

1.638 kDa and a pI of 4.37. They corresponded to two fragments of the C-terminal amino acid 

sequence of the GAPDH enzyme. Their antibacterial activity was only tested against the growth 

and not against the malate consumption.  

In the present study, the cationic eluate strongly inhibited the malate consumption in vitro (Table 

III.14). Therefore, we suggest that the GAPDH fragments which are positively charged at pH 6.7 

(pH of the enzymatic reaction), may have inhibited the malolactic enzyme activity by competing 

for the binding site of the NAD+ coenzyme. In fact, NAD+ is also positively charged and has a 

MW of 0.662 kDa which is close to the MW of the GAPDH peptides. By depriving the 

malolactic enzyme from NAD+, it will become dysfunctional. 

Since there is no additional information about the possible antimicrobial role of the identified 

peptidic fractions, it is likely that one or more of them have worked synergistically to inhibit the 

malolactic enzyme activity. In real winemaking conditions, they are supposed to enter the 

bacterial cytoplasm by mechanisms yet to be identified in order to reach the malolactic enzyme. 

Therefore, the bacterial growth inhibition could be a consequence of the MLF inhibition which is 

one of the main energy sources during winemaking. Besides, it would be interesting to see if any 

of the peptides can directly inhibit the bacterial growth by targeting the membrane and/or the cell 

wall. Future work should also investigate their antimicrobial range of action, their biochemical 

and inhibitory properties and the possibility of using them as natural alternative biopreservatives 

in food products.  
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The completion of malolactic fermentation in winemaking is not always successful. The major 

causes of this failure are the high ethanol content at the end of AF in addition to other yeast 

metabolites such as endogenous SO2, medium chain fatty acids, and peptides/proteins. Besides, 

wine sulphitizing, the high acidity at the end of AF and the deficiency in some essential nutrients 

such as amino acids and vitamins contribute to the MLF inhibition. The failure of the MLF when 

it is desired leads to a depreciation of the quality of the end product and thus to a huge economic 

loss. 

For a better understanding of the possible reasons of failure or success of MLF, it is crucial to 

study the microbial interactions that may occur between specific strains of S. cerevisiae and O. 

oeni. These interactions are strain dependent and are either mediated by extracellular yeast 

metabolites or by cell-to-cell contact mechanisms. Therefore, it is important to identify and 

quantify the yeast metabolites responsible for the inhibition or stimulation of O. oeni growth and 

its ability to consume L-malic acid.  

The current study dealt with the MLF inhibition and the identification of the yeast inhibitory 

metabolites. More specifically, yeast metabolites of protein nature were investigated. The latter 

were studied by few authors who demonstrated that the peptides/proteins responsible for the 

inhibition of O. oeni were strain specific. They presented different apparent MW and their exact 

nature and MW were identified in only one study (Branco et al., 2014). Besides, the inhibition of 

the bacterial growth was usually the main parameter evaluated. Thus, the MLF inhibition was 

always considered as a consequence of the bacterial growth inhibition.  

In the present work, two strains of S. cerevisiae (A and D) were tested with one strain of O. oeni 

(X) in sequential fermentations. One was found inhibitory and the second stimulatory of the 

MLF. The inhibitory yeast strain (strain D) was subjected to different experiments in order to 

prove the protein nature of the metabolites responsible for the MLF inhibition. Their apparent 

MW, the timing of their release during AF and the reproducibility of the results in synthetic and 

natural grape juices were evaluated. An attempt to further purify these metabolites was also 

undertaken.  

The first part of the work was devoted to the study of the pure cultures of both yeast strains and 

the bacterial strain. Kinetic and biochemical parameters were evaluated. Then, sequential 
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fermentations were carried out by inoculating the bacteria in the SGJ media fermented by the 

yeasts. S. cerevisiae strain D strongly inhibited the growth of O. oeni strain X as well as its 

ability to consume L-malic acid whereas the yeast strain A stimulated them. The differences in 

the biochemical profiles of both yeast strains could not explain the opposite effects observed 

with the bacterial strain tested (ethanol, SO2, medium chain fatty acids, nutrients). This result 

encouraged us to search for metabolites of protein nature. Strain A was considered as a reference 

strain all over the study.  

Protease and heat treatments of the SGJ media fermented by strain D enabled us to demonstrate 

the protein nature of the yeast inhibitory metabolites. Fractionation by ultrafiltration of the same 

media showed that an extracellular peptidic fraction of 5-10 kDa was responsible for the 

inhibition. It was gradually released during AF and reached its highest concentration at late 

stages of the stationary phase. The MLF inhibition was maintained in natural grape juices 

presenting low and high phenolic contents. Therefore, the peptides were not inactivated by 

phenolic compounds, which is an interesting finding. 

Fractionation by ammonium sulfate precipitation of the SGJ media fermented by strain D and 

desalting with membranes of 5 kDa, showed that the fraction recuperated at a saturation degree 

of 60- 80 % containing compounds ≥ 5 kDa was the only fraction that inhibited both the bacterial 

growth and the malate consumption. The fractions between 0 and 60 % inhibited the bacterial 

growth only and the 80-100 % fraction was not inhibitory. Therefore, we decided to retain the 5-

10 kDa fraction of the 60-80 % precipitate for further purification steps. 

The five fractions of 5-10 kDa recuperated each 24 h of the AF (120 h) as well as the 60-80 % 

precipitates were able to directly inhibit the malolactic enzyme activity in a well-designed in 

vitro experiment. The malolactic enzyme of the cell-free cytosolic extract of O. oeni strain X was 

put in direct contact with the inhibitory proteinaceous compounds. The kinetic of the inhibition 

was in agreement with the timing result. The results also showed that the malolactic enzyme was 

active at pH 3.5, 6 (optimum pH) and 6.7. The inhibitory peptides also exerted their inhibitory 

effect in the same range of pH. 

Finally, the 5-10 kDa fraction of the 60-80 % precipitate was first analyzed by SDS-PAGE, then 

by ion exchange chromatography (IEXC) followed by SDS-PAGE and sequencing. The SDS-
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PAGE showed 2 protein bands of 5.1 and 7.2 kDa only produced by the yeast strain D in 

comparison to the strain A. A common band of 8.4 kDa but more concentrated with strain D was 

also detected. Eluates of both anionic and cationic IEXC obtained after elution with 0.5 M NaCl 

were the only eluates that strongly inhibited the malolactic enzyme activity in vitro. The 

migration of both eluates by SDS-PAGE showed a common band of 5.1 kDa and a second band 

of 7.2 kDa specific to the cationic eluate. The 3 bands were excised and sequenced by LC1D-

nanoESI-LTQ-Orbitrap. The results showed 12 different peptides originating from 12 different 

proteins of S. cerevisiae. The peptides may have worked synergistically. 2 GAPDH fragments of 

0.9 and 1.373 kDa having a pI of 9.074 and a Wtm2p fragment of 2.42 kDa having a pI of 3.35 

were involved in the MLF inhibition.  

 

Ultimately, this work has resulted in the following advances: 

- Demonstration of two types of yeast-bacteria interactions (inhibition/stimulation) by testing 

two strains of yeasts with one bacterial strain in sequential fermentations  

- Quantification of the MLF inhibition and stimulation  

- Demonstration of the involvement of a yeast peptidic fraction with an apparent MW between 5 

and 10 kDa in the MLF inhibition. It was gradually released during AF and reached its highest 

concentration at late stages of the stationary phase. In a previous study, it was shown that the co-

inoculation of the yeast strain D with the bacterial strain X improved the MLF output. Therefore, 

knowing the timing of the release helps decide the best moment for bacterial inoculation  

- Maintenance of the MLF inhibition in natural winemaking conditions, thus suggesting that the 

peptides of the 5-10 kDa fraction did not interact with the phenolic compounds  

- Determination of the mechanism of action of the 5-10 kDa inhibitory peptides. The latter were 

able to directly inhibit the malolactic enzyme activity in vitro. The inhibition increased with their 

concentration and was exerted in a pH range between 3.5 and 6.7 

- In vitro inhibition of the malolactic enzyme activity by the 5-10 kDa peptidic fraction from the 

60-80 % ammonium sulfate precipitate. Its migration by SDS-PAGE revealed 2 bands of 5.1 and 

7.2 kDa produced only by S. cerevisiae strain D and not by strain A and a common band of 8.4 
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kDa more concentrated with strain D. At least, one of the three bands contained the inhibitory 

peptides   

- The IEXC of the 5-10 kDa fraction from the 60-80 % precipitate revealed that anionic and 

cationic eluates obtained with 0.5 M NaCl were the only ones containing the inhibitory peptides. 

The cationic eluate revealed 2 bands of 5.1 and 7.2 kDa by SDS-PAGE whereas the anionic 

revealed one band of 5.1 kDa. The 3 bands were excised and sequenced by LC1D-nanoESI-

LTQ-Orbitrap. The results showed 12 different peptides originating from 12 different proteins of 

S. cerevisiae. The peptides may have worked synergistically. 2 GAPDH fragments of 0.9 and 

1.373 kDa having a pI of 9.074 and a Wtm2p fragment of 2.42 kDa having a pI of 3.35 were 

involved in the MLF inhibition.  

 

It would be interesting for future studies to evaluate the antimicrobial spectrum of activity of the 

identified peptides against other O. oeni strains and against wine spoilage microorganisms such 

as Dekkera/Brettanomyces and other non-Saccharomyces as well as some lactic acid bacteria 

such as Pediococcus and Lactobacillus. It would be also interesting to see if they can inhibit or 

kill pathogenic bacteria such as Salmonella and Listeria. In that way, they could be used as 

biopreservatives in food products, thus reducing or removing the use of conventional chemical 

preservatives. In such case, it will be mandatory to perform toxicity testing in order to determine 

the doses allowed and to avoid harming the consumer’s health. Also, it provides a screening tool 

that helps to determine the best choice for the use of the oenological yeast/LAB pairs in 

winemaking. 

 
It would be interesting for future studies to evaluate the antimicrobial spectrum of activity of the 

identified peptides against other O. oeni strains and against wine spoilage microorganisms such 

as Dekkera/Brettanomyces and other non-Saccharomyces as well as some lactic acid bacteria 

such as Pediococcus and Lactobacillus. Testing different O. oeni strains provides a screening 

tool that will help determine the best choice of oenological S. cerevisiae/O. oeni pairs for 

winemaking. It would be also interesting to see if the peptides can inhibit or kill pathogenic 

bacteria such as Salmonella and Listeria. In that way, they could be used as biopreservatives in 
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food products, thus reducing or removing the use of conventional chemical preservatives. In such 

case, it will be mandatory to perform toxicity testing in order to determine the doses allowed and 

to avoid harming the consumer’s health.  

These findings will encourage future research to move to molecular arena, from proteomics to 

genomics to study the genes that encoded these peptides/proteins. This will permit to observe 

singularities (SNPs), in other terms, to search for modifications of bases (deletion, insertion) and 

also to search for the conservative domains with putative functions that may explain their effect. 

Moreover, it would be curious to completely purify and separate the peptides of the inhibitory 

protein mixture and to discover the mechanisms by which they enter inside the bacterial 

cytoplasm (use of receptors, translocation, endocytosis, etc…) and inhibit the malolactic enzyme 

activity. Besides, the determination of their spatial conformation and their binding sites will 

clarify their mechanism of action regarding the malolactic enzyme and eventually other cell 

components. It is possible that some of them may target the cell membrane or disrupt the DNA 

and/or protein synthesis. 

It would be also interesting to study the mechanisms of resistance against these peptides used by 

O. oeni strains that were not affected by S. cerevisiae strain D.  
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Appendix of part A: Alcoholic and malolactic fermentation Appendix  

A-I. Correlation curves between the biomass and the OD, the cell concentration and the 
OD and the biomass and the cell concentration of S. cerevisiae strain D  
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Appendix A-II. Pure culture of S. cerevisiae strain D in SGJ media containing yeast 

nitrogen base without amino acids and peptides 

 
Table 1. Kinetic parameters of S. cerevisiae strain D during AF in SGJ media containing 
yeast nitrogen base without amino acids and peptides 

Time (h) Cell concentration 
^106 (cells/ml) 

Viability 
(%) OD Biomass (g/l) Sugar (g/l) 

0 2.95 (±0.06) - 0.068 0.05 (±0) 202 (±1.41) 
8 18.25 (±0.91) 94.3 0.073 0.31 (±0.016) 190 (±0) 
24 38.45 (±0.68) 91.7 0.079 1.88 (±0.016) 175.6 (±0.56) 
32 52.27 (±0.89) 92 0.086 2.2 (±0) 161(±2.05) 
48 100 (±1.62) 88.23 0.184 2.88 (±0.037) 153 (±0.47) 
56 120 (±3.26) 85.11 0.23 3.18 (±0.032) 133 (±0.47) 
72 65 (±1.47) 80 0.095 2.4 (±0.014) 123.4 (±2.43) 
80 62.7 (±0.47) 76 0.093 2.2 (±0.094) 109.09 (±1.74) 
96 60.54 (±1.42) 75.12 0.093 2.08 (±0.012) 101.73 (±0.82) 

104 57.15 (±0.78) 72 0.087 2.01 (±0.057) 81.5 (±0.7) 
 

 

Table 2. Biochemical parameters of S. cerevisiae strain D during AF in SGJ media 
containing yeast nitrogen base without amino acids and peptides 

Biochemical parameters Values 

Initial sugar (g/l) 202 (±1.4) 
Final sugar (g/l) 81.5 (±0.7) 

Initial L-malic acid (g/l) 3.2 (± 0.26) 
Final L-malic acid (g/l) 2 (±0.13) 

Consumed L-malic acid (g/l) 1.2 
Initial pH/Final pH 3.5/3.35 

Ethanol (g/l) 33.65 (±0.007) 
Acetate (g/l) 0.097 (±0.009) 

Consumed citrate (g/l) 0.0023 
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Appendix A-III. Pure culture of S. cerevisiae strain D in SGJ media containing yeast 

nitrogen base with amino acids but without peptides 

 

Table 1. Kinetic parameters of S. cerevisiae strain D during AF in SGJ media containing 
yeast nitrogen base with amino acids but without peptides 

Time (h) Cell concentration 
^106 (cells/ml) 

Viability 
(%) OD Biomass (g/l) Sugar (g/l) 

0 3.01 (±0.008) - 0.027 0.012 200 
24 33.35 (±0.91) 95.3 0.3 0.4 167 
48 123.69 (±1.68) 93.7 0.6 2.4 134 
72 133 (±2.16) 90 0.67 3.6 108 
96 153.7 (±1.19) 86. 3 0.74 4.8 89 

120 220 (±1.41) 80.6 0.98 5.4 69 
144 153.4 (±21.51) 78 0.74 4.8 62 
168 93.4 (±1.65) 76 0.61 2.2 60 
192 86 (±1.4) 75.12 0.58 2.1 58.75 
216 78.4 (±2.8) 72 0.53 2 57.9 

 
 
Table 2. Biochemical parameters of S. cerevisiae strain D during AF in SGJ media 
containing yeast nitrogen base with amino acids but without peptides 

Biochemical parameters Values 

Initial sugar (g/l) 200 

Final sugar (g/l) 57.9 

Initial L-malic acid (g/l) 3.04 

Final L-malic acid (g/l) 1.88 

Consumed L-malic acid (g/l) 1.16 

Initial pH/Final pH 3.5/3.32 

Ethanol (g/l) 36.35 (±0.007) 
Acetate (g/l) 0.091(±0.009) 

Consumed citrate (g/l) 0.0027 
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Appendix A-IV. Correlation curves between the biomass and the OD, the cell concentration 

and the OD and the biomass and the cell concentration of S. cerevisiae strain A   
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Appendix A-V. Standard curve for the sugar analysis by DNS  

Table 1. Standard values (sugar concentrations g/l) and corresponding absorbance values  

Standard values (g/l) Absorbance (560 nm)  

0 0 

0.5 0.25 

1 0.519 

1.5 0.786 

2 1 

 

 

 

  

                  

 

 

 

Figure 1. Standard curve for the sugar analysis by DNS 
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Appendix A-VI. Correlation curves between the biomass and the OD, the cell concentration 

and the OD and the biomass and the cell concentration of O. oeni strain X  
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Appendix A-VII. Sequential fermentation with the pair S. cerevisiae strain A/O. oeni strain 

X  

 

Table 1. Kinetic parameters of O. oeni strain X during the MLF in the SGJ media 

fermented by S. cerevisiae strain A  

 

 

 

 

 

 

 

 

 

Table 2. Kinetic parameters of O. oeni strain X during the MLF in the NGJ media 

fermented by S. cerevisiae strain A  

 

 

 

 

 

 

 

 

 

 

 
Time  
±3 (h) 

 

Cell concentration 
^106 (cells/ml) 

Biomass  
(g/l) 

L-malic acid  
(g/l) 

0 1.96 (±0.25) 0.0016 (±0.0002) 3.22 (±0.06) 
72 24 (±2.5) 0.02 (±0.002) 2.95 (±0.06) 

144 36.26 (±3.75) 0.03 (±0.003) 2.5 (±0.05) 
216 51(±5) 0.041 (±0.004) 2.12 (±0.04) 
288 63 (±6.25) 0.05 (±0.005) 1.6 (±0.03) 
360 95 (±5) 0.076 (±0.004) 0.83 (±0.02) 
432 131 (±6.25) 0.105 (±0.005) 0.15 (±0.003) 
504 150 (±6) 0.12 (±0.005) 0 (±0) 
576 196 (±7.5) 0.12 (±0.006) - 
648 170 (±6) 0.12 (±0.005) - 

Time  
±3 (h)  

Cell concentration 
^106 (cells/ml) 

Biomass  
(g/l) 

L-malic acid  
(g/l) 

0 1.99 (±0.25) 0.0016 (±0.0002) 3.33 (±0.07) 

48 24 (±2.5) 0.019 (±0.002) 3.31 (±0.07) 

96 38.58 (±4) 0.031 (±0.003) 2.93 (±0.06) 

144 55.62 (±5) 0.045 (±0.004) 2.65 (±0.05) 

192 85.5 (±9) 0.068 (±0.007) 2.13 (±0.043) 

240 132.5 (±6) 0.11 (±0.005) 1.63 (±0.033) 

288 152 (±7.5) 0.12 (±0.006) 0.92 (±0.02) 

336 119.5 (±8) 0.12 (±0.006) 0.31 (±0.006) 

370 120 (±8) 0.12 (±0.006) 0 (±0) 
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Appendix A-VIII. Sequential fermentation with the pair S. cerevisiae strain D/O. oeni 

strain X 

 

Table 1. Kinetic parameters of O. oeni strain X during the MLF in the SGJ media 

fermented by S. cerevisiae strain D  

  

 

 

 

 

 

 

 

 

 

 

Table 2. Kinetic parameters of O. oeni strain X during the MLF in the NGJ media 

fermented by S. cerevisiae strain D  
 

 

 

 

 

 

 

 

Time  
±3 (h)  

Cell concentration  
x 10^6 (cells/ml) 

Biomass  
(g/l) 

L-malic acid 
(g/l)  

0 2 (±0.25) 0.0016 (±0.0002) 3 (±0.06) 

48 6.5 (±0.75) 0.0052 (±0.0006) 3 (±0.06) 

96 7.13 (±1.1) 0.0057 (±0.0009) 3 (±0.06) 

168 7 (±0.8) 0.0057 (±0.0006) 3 (±0.06) 

240 7 (±0.8) 0.0056 (±0.0006) 3 (±0.06) 

336 6 (±0.6) 0.0049 (±0.0005) 3 (±0.06) 

408 5.5 (±0.5) 0.0044 (±0.0004) 3 (±0.06) 

504 6.25 (±0.8) 0.005 (±0.0006) 3 (±0.06) 

576 6 (±0.8) 0.005 (±0.0006) 3 (±0.06) 

672 6 (±0.8) 0.005 (±0.0006) 3 (±0.06) 

744 6 (±0.8) 0.005 (±0.0006) 3 (±0.06) 

840 6 (±0.8) 0.005 (±0.0006) 3 (±0.06) 

912 6 (±0.8) 0.005 (±0.0006) 3 (±0.06) 

1000 6 (±0.8) 0.005 (±0.0006) 3 (±0.06) 

Time  
(h) 

Cell concentration 
^106 (cells/ml) 

Biomass  
(g/l) 

L-malic acid  
(g/l) 

 
0 2.04 (±0.25) 0.0016 (±0.0002) 3.15 (±0.063) 
48 3.16 (±0.4) 0.0025 (±0.0003) 3.15 (±0.063) 
96 6.23 (±0.6) 0.005 (±0.0005) 3.14 (±0.063) 

144 6.36 (±0.6) 0.005 (±0.0005) 3.14 (±0.063) 
192 7.29 (±0.8) 0.0063 (±0.0006) 3.13 (±0.063) 
240 7.91(±0.8) 0.0063 (±0.0006) 3.09 (±0.062) 
288 4.24 (±0.4) 0.0034 (±0.0003) 3.08 (±0.062) 
336 3.37 (±0.4) 0.003 (±0.0003) 3.08 (±0.062) 
384 5.06 (±0.5) 0.004 (±0.0004) 3.07 (±0.062) 
432 5 (±0.5) 0.004 (±0.0004) 3.07 (±0.062) 
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Appendix A-IX. Sequential fermentations in the natural red grape juices  

Table 1. Kinetic parameters of the AF performed by S. cerevisiae strains A, D and R in the 

natural red grape juices  

 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 1. Growth and sugar consumption during AF with the yeast strains A, D and R in the natural red 
grape juices 

 

 

 

 

 

 

 

 

Time ±3 (h) 

S. cerevisiae strain D S. cerevisiae strain A S. cerevisiae strain R 

Sugar (g/l) 
Cell 

concentration 
 ^106 (cells/ml) 

Sugar (g/l) 
Cell 

concentration 
^106 (cells/ml) 

Sugar (g/l) 
Cell 

concentration 
^106 (cells/ml) 

0 219 (±4.32) 3.09 (±0.05) 212 (±1.7) 2.98 (±0.02) 212.8 (±1.76) 2.98 (±0.005) 
24 182.77 (±4.83) 46.87 (±1.33) 188 (±1.88) 59.91 (±5.02) 184.3 (±0.78) 41.50 (±1.87) 

48 141.67 (±2.49) 162.74 (±3.29) 158 (±2.87) 228.2 (±3.53) 144.6 (±2.05) 157.47 (±1.2) 

72 94.43 (±2.06) 286.33 (±2.49) 105 (±6.15) 328 (±12.83) 90.9 (±3.58) 216.5 (±3.51) 

96 43.35 (±1.39) 341.04 (±0.82) 67 (±0.83) 256.67 (±3.77) 60.4 (±1.64) 286.37 (±2.44) 

120 9.27 (±0.68) 324.57 (±4.16) 21 (±1.55) 210 (±6.16) 25.1 (±3.24) 312.38 (±0.54) 

144 1.43 (±0.06) 305 (±2.94) 5 (±0.67) 176.76 (±6.6) 6.2 (±0.87) 293.37 (±2.1) 

168 0.01 (±0.001) 302 (±0.001) 1 (±0.28) 152.67 (±2.36) 1.3 (±0.53) 288.11 (±2.3) 
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Table 2. Kinetic parameters of the MLF performed by O. oeni strain X in the natural red 

grape juices fermented by S. cerevisiae strains A, D and R 

 

Figure 2. Bacterial growth and malate consumption during MLF carried out by O. oeni strain X in the 
natural red grape juices fermented by the yeast strains A, D and R  

 

 

 
 

Time ±3 (h) 

NGJ fermented by the strain D  NGJ fermented by the strain A NGJ fermented by the strain R 

Malate (g/l) 
Bacterial cell 
concentration 
^106 (cells/ml) 

Malate (g/l) 
Bacterial cell 
concentration 
^106 (cells/ml) 

Malate (g/l) 
Bacterial cell 
concentration 
^106 (cells/ml) 

0 3.15 (±0.063) 2.04 (±0.25) 3.33 (±0.07) 1.99 (±0.25) 3.28 (±0.04) 2.01 (±0.02) 

48 3.15 (±0.063) 3.16 (±0.4) 3.31(±0.07) 24 (±2.5) 3.2 (±0.0012) 36 (±0.22) 

96 3.14 (±0.063) 6.23 (±0.6) 2.93 (±0.06) 38.58 (±4) 2.4 (±0.091) 53.21 (±0.11) 

144 3.14 (±0.063) 6.36 (±0.6) 2.65 (±0.05) 55.62 (±5) 1.42 (±0.046) 87.14 (±0.12) 

192 3.13 (±0.063) 7.29 (±0.8) 2.13 (±0.043) 85.5 (±9) 1.05 (±0.041) 126.33 (±0.06) 

240 3.09 (±0.062) 7.91(±0.8) 1.63 (±0.033) 132.5 (±6) 0.76 (±0.042) 141 (±0.02) 

288 3.08 (±0.062) 4.24 (±0.4) 0.92 (±0.02) 152 (±7.5) 0.09 (±0.017) 134 (±0.05) 
336 3.08 (±0.062) 3.37 (±0.4) 0.31 (±0.006) 119.5 (±8) - - 

370 3.07 (±0.062) 5.06 (±0.5) 0 (±0) 120 (±8) - - 

432 3.07 (±0.062) 5 (±0.5) - - - - 

472 3.1 (±0.062)      

840 3.1 (±0.062)      

1000 3.1 (±0.062)       
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Appendix of part B: Production of anti-MLF peptides by S. cerevisiae strain D  

Appendix B-I. Protease and heat treatments of the SGJ media fermented by S. cerevisiae 

strain D  

 

Table 1. Evolution of the bacterial biomass of O. oeni strain X in the SGJ media fermented 
by strain D and subjected to different heat and protease treatments  
 

  

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 
 

Time 
(h) 

Heat treated 
media 

Papain treated 
media 

Pepsin treated 
media 

Trypsin treated 
media 

0 0.0016 (± 0.0002) 0.0016 (± 0.0002) 0.0016 (± 0.0002) 0.0016 (± 0.0002) 
48 0.003 (± 0.0003) 0.0024 (± 0.0002) 0.0029 (± 0.0003) 0.002 (± 0.0002) 
96 0.0087 (± 0.0009) 0.0034 (± 0.0003) 0.008 (± 0.0008) 0.0027 (± 0.0003) 

168 0.011 (± 0.001) 0.054 (± 0.005) 0.015 (± 0.002) 0.004 (± 0.0004) 
240 0.024 (± 0.002) 0.12 (± 0.01) 0.021 (± 0.002) 0.004 (± 0.0004) 
336 0.025 (± 0.003) 0.12 (± 0.01) 0.023 (± 0.002) 0.005 (± 0.0005) 
408 0.028 (± 0.003) 0.12 (± 0.01) 0.024 (± 0.002) 0.0078 (± 0.0008) 
504 0.029 (± 0.003) 0.12 (± 0.01) 0.025 (± 0.003) 0.0087 (± 0.0009) 
576 0.029 (± 0.003) 

 
0.03 (± 0.003) 0.0086 (± 0.0009) 

672 0.03 (± 0.003) 
 

0.031 (± 0.003) 0.0086 (± 0.0009) 
744 0.029 (± 0.003) 

 
0.028 (± 0.003) 0.008 (± 0.0008) 

840 0.029 (± 0.003) 
 

0.03 (± 0.003) 0.0066 (± 0.0007) 

912 0.029 (± 0.003) 
 

0.03 (± 0.003) 0.0068 (± 0.0007) 

1000 0.029 (± 0.003) 
 

0.03 (± 0.003) 0.0063 (± 0.0006) 

1100 
   

0.007 (± 0.0007) 

1200 
   

0.0075 (± 0.0007) 

1300 
   

0.0068 (± 0.0007) 

1400 
   

0.0073 (± 0.0007) 

1500 
   

0.0065 (± 0.0007) 

1600 
   

0.007 (± 0.0007) 

1700 
   

0.0072 (± 0.0007) 
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Table 2. Evolution of the malate consumption by O. oeni strain X in the SGJ media 
fermented by strain D and subjected to different heat and protease treatments  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (h) 
Heat treated 

media 
Papain treated 

media 
Pepsin treated 

media 
Trypsin treated 

media   
0 3 (± 0.06) 3 (± 0.06) 3 (± 0.06) 3 (± 0.06) 

48 2.8 (± 0.06) 2.73 (± 0.06) 2.75 (± 0.06) 2.9 (± 0.06) 
96 2.65 (± 0.05) 2.4 (± 0.05) 2.5 (± 0.05) 2.7 (± 0.05)         

168 2.5 (± 0.05) 2.1 (± 0.04) 2.4 (± 0.05) 2.4 (± 0.05) 
240 2.4 (± 0.05) 1.52 (± 0.03) 2.29 (± 0.05) 2.3 (± 0.045) 
336 2.23 (± 0.045) 0.87 (± 0.02) 2.1 (± 0.04) 2.3 (± 0.045) 
408 2.126 (± 0.04) 0.48 (± 0.01) 2.07 (± 0.04) 2.23 (±0.045) 
484 2.01 (± 0.04) 0 (± 0) 1.9 (± 0.04) 2.2 (± 0.045) 
576 1.94 (± 0.04)   1.75 (± 0.035) 2.15 (± 0.04) 
672 1.7 (± 0.04)   1.3 (± 0.03) 2.12 (± 0.04) 
744 1.3 (± 0.03)   1 (± 0.02) 1.8 (± 0.035) 
840 0.86 (± 0.02)   0.73 (± 0.02) 1.63 (± 0.03) 

1180 (heat) 
1110 (pepsin) 0 (± 0)   0 (± 0) 1.4 (± 0.025) 

1000    1.25 (± 0.025) 
1100    1.05 (± 0.02) 
1200    0.9 (± 0.02) 
1300    0.77 (± 0.015) 
1400    0.6 (± 0.01) 
1500    0.43 (± 0.09) 
1600    0.2 (± 0.004) 
1700    0 (± 0) 
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Appendix B-II. Fractionation of the SGJ media fermented by S. cerevisiae strain D by 

ultrafiltration  

 

Table 1. Evolution of the biomass of O. oeni strain X and the malate consumption during 
MLF performed in the modified MRS media in the presence of the different MW fractions 
obtained by ultrafiltration as well as in the control  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Modified MRS control 
  

Fraction ≤ 3 kDa 
  

Fraction between 3 
and 5 kDa 

  

Fraction between 5 
and 10 kDa 

  

 Fraction ≥ 10 kDa 
  

Time 
(h) 

Biomass 
(g/l) 

Malate 
(g/l) 

Biomass 
(g/l) 

Malate 
(g/l) 

Biomass 
(g/l) 

Malate 
(g/l) 

Biomass 
(g/l) 

Malate 
(g/l) 

Biomass 
(g/l) 

Malate 
(g/l) 

0 0.0016  
(± 0.0002) 

3.1  
(± 0.06) 

0.0016  
(± 0.0002) 

3.1  
(± 0.06) 

0.0016  
(± 0.0002) 

3.1  
(± 0.06) 

0.0016  
(± 0.0002) 

3.1  
(± 0.06) 

0.0016  
(± 0.0002) 

3.1  
(± 0.06) 

75 0.035  
(± 0.004) 

2.64  
(± 0.05) 

0.03  
(± 0.003) 

2.71  
(± 0.06) 

0.02  
(± 0.002) 

2.78  
(± 0.06) 

0.0023  
(± 0.0002) 

2.95  
(± 0.06) 

0.02  
(± 0.002) 

2.71  
(± 0.05) 

150 0.1  
(± 0.01) 

1.81  
(± 0.04) 

0.1  
(± 0.01) 

1.93  
(± 0.04) 

0.0904  
(± 0.01) 

1.67  
(± 0.02) 

0.0017  
(± 0.0002) 

2.91  
(± 0.06) 

0.1  
(± 0.01) 

1.8  
(± 0.04) 

225 0.11  
(± 0.01) 

0.62  
(± 0.01) 

0.1  
(± 0.01) 

1.11  
(± 0.02) 

0.1  
(± 0.01) 

0.84  
(± 0.02) 

0.0012  
(± 0.0001) 

2.9  
(± 0.06) 

0.1  
(± 0.01) 

0.86  
(± 0.01) 

275 0.11  
(± 0.01) 

0  
(± 0) 

0.1  
(± 0.01) 

0.4  
(± 0.01) 

0.1  
(± 0.01) 

0.3  
(± 0.01) 

0.0012  
(± 0.0001) 

2.9  
(± 0.06) 

0.1  
(± 0.01) 

0.3  
(± 0.01) 

315 0.11  
(± 0.01) 

  0.1  
(± 0.01) 

0  
(± 0) 

0.1  
(± 0.01) 

0  
(± 0) 

0.0012  
(± 0.0001) 

2.9  
(± 0.06) 

0.1  
(± 0.01) 

0  
(± 0) 
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Appendix B-III. Fractionation of the SGJ media fermented by S. cerevisiae strain A by 

ultrafiltration  

 

Table 1. Evolution of the biomass of O. oeni strain X and the malate consumption during 
MLF performed in the modified MRS media in the presence of the 5-10 kDa fraction 
obtained by ultrafiltration as well as in the control  
 

 

 

 

 

 

 

 

Appendix B-IV. Timing of the release of the 5-10 kDa anti-MLF peptidic fraction produced 

by S. cerevisiae strain D during AF  

 

Table 1. Evolution of the biomass of O. oeni strain X and the malate consumption in the 
modified MRS media containing the 5-10 kDa fractions collected each 24 h of the AF as 
well as in the control 
 

 Modified MRS 
control 

5-10 kDa fraction 
collected after 24h 

5-10 kDa fraction 
collected after 48h 

5-10 kDa fraction 
collected after 72h 

5-10 kDa fraction 
collected after 96h 

5-10 kDa fraction 
collected after 120h 

Time 
(h) 

Biomass 
(g/l) 

Malate 
(g/l) 

Biomass 
(g/l) 

Malate 
(g/l) 

Biomass 
(g/l) 

Malate 
(g/l) 

Biomass 
(g/l) 

Malate 
(g/l) 

Biomass 
(g/l) 

Malate 
(g/l) 

Biomass 
(g/l) 

Malate 
(g/l) 

0 0.0016 
(±0.0002) 

3.25 
(±0.07) 

0.0016 
(±0.0002) 

3.01 
(±0.06) 

0.0016 
(±0.0002) 

3.03 
(±0.06) 

0.0016 
(±0.0002) 

3.02 
(±0.06) 

0.0016 
(±0.0002) 

3.04 
(±0.06) 

0.0016 
(±0.0002) 

3.1 
(±0.06) 

72 0.031 
(±0.002) 

1.1 
(±0.02) 

0.021 
(±0.001) 

1.54 
(±0.03) 

0.011 
(±0.002) 

2.32 
(±0.05) 

0.015 
(±0.001) 

2.6 
(±0.05) 

0.009 
(±0.001) 

2.9 
(±0.06) 

0.011 
(±0.003) 

2.92 
(±0.06) 

144 0.07 
(±0.003) 

0.4 
(±0.01) 

0.048 
(±0.002) 

0.57 
(±0.01) 

0.04 
(±0.004) 

1.5 
(±0.03) 

0.046 
(±0.003) 

1.6 
(±0.03) 

0.031 
(±0.003) 

2.7 
(±0.05) 

0.03 
(±0.005) 

2.9 
(±0.06) 

216 0.08 
(±0.005) 

0  
(±0) 

0.072 
(±0.005) 

0.03 
(±0.001) 

0.073 
(±0.005) 

0.5 
(±0.01) 

0.072 
(±0.003) 

0.5 
(±0.01) 

0.026 
(±0.002) 

2.7 
(±0.05) 

0.024 
(±0.005) 

2.9 
(±0.06) 

288 0.08 
(±0.005) 

 0.07 
(±0.005) 

 0.073 
(±0.005) 

0  
(±0) 

0.072 
(±0.001) 

0  
(±0) 

0.011 
(±0.0001) 

2.7 
(±0.05) 

0.001 
(±0.005) 

2.9 
(±0.06) 

  Modified MRS control 
  

Fraction between 5 
and 10 kDa 

Time 
(h) 

Biomass 
(g/l) 

Malate 
(g/l) 

Biomass 
(g/l) 

Malate 
(g/l) 

0 0.0016  
(± 0.0002) 

3  
(± 0.06) 

0.0016  
(± 0.0002) 

3 
(± 0.06) 

75 0.035  
(± 0.004) 

2.64  
(± 0.05) 

0.03  
(± 0.004) 

2.5 
(± 0.06) 

150 0.1  
(± 0.01) 

1.81  
(± 0.04) 

0.009 
(± 0.01) 

1.6  
(± 0.04) 

225 0.11  
(± 0.01) 

0.62  
(± 0.01) 

0.12  
(± 0.01) 

0.4  
(± 0.01) 

275 0.11  
(± 0.01) 

0  
(± 0) 

0.12  
(± 0.01) 

0  
(± 0) 
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Appendix B-V. Fractionation of the SGJ media fermented by S. cerevisiae strain D by 

ammonium sulfate precipitation 

 
Table 1. Growth of O. oeni strain X and malate consumption in the modified MRS control 
and in the presence of the proteinaceous fractions obtained by ammonium sulfate 
precipitation at different saturation degrees  
 

 
                           

 

 

 

 

 

 

 

 

Figure 1. Standard curve used for the determination of protein concentrations by the Lowry method 

 

 

 

 

Modified MRS control 
  

Saturation degree:  
0-20 % 

  

Saturation degree:  
20-40 % 

  

Saturation degree:  
40-60 % 

  

Saturation degree:  
60-80 % 

  

Saturation degree:  
80-100 % 

  
Time ± 
3 (h) 

Biomass 
(g/l)  

Malate 
(g/l) 

Biomass 
(g/l) 

Malate 
(g/l) 

Biomass 
(g/l)  

Malate 
(g/l) 

Biomass 
(g/l)  

Malate 
(g/l) 

Biomass 
(g/l)  

Malate 
(g/l) 

Biomass 
(g/l)  

Malate 
(g/l) 

0 
0.0017 

(±0.0002) 
3.01 

(±0.06) 
0.0015 

(±0.0002) 
3.01 

(±0.06) 
0.0015 

(±0.0002) 
3.01 

(±0.06) 
0.0016 

(±0.0002) 
3.01 

(±0.06) 
0.0016 

(±0.0002) 
3.01 

(±0.06) 
0.0017 

(±0.0002) 
3.01 

(±0.06) 

72 
0.06 

(±0.006) 
1.12 

(±0.02) 
0.0025 

(±0.0003) 
1.12 

(±0.04) 
0.0028 

(±0.0003) 
1.05 

(±0.02) 
0.0032 

(±0.0003) 
1.2 

(±0.02) 
0.0024 

(±0.0002) 
2.93 

(±0.06) 
0.06 

(±0.006) 
1.04 

(±0.02) 

150 
0.12 

(±0.006) 
0.64 

(±0.01) 
0.0042 

(±0.0004) 
0.43 

(±0.09) 
0.004 

(±0.0004) 
0.41 

(±0.08) 
0.0037 

(±0.0004) 
0.77 

(±0.02) 
0.0038 

(±0.0004) 
2.81 

(±0.06) 
0.11 

(±0.006) 
0.47 

(±0.01) 

225 
0.13 

(±0.007) 
0.013 

(±0.003) 
0.0051 

(±0.0005) 
0.03 

(±0.01) 
0.006 

(±0.0006) 
0.09 

(±0.02) 
0.006 

(±0.0006) 
0.029 

(±0.01) 
0.006 

(±0.0006) 
2.78 

(±0.06) 
0.13 

(±0.007) 
0.019 
(±0) 

 

y = 0.001x
R² = 1

0
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Appendix B-VI. Screening of the antimicrobial activity of S. cerevisiae strain D during well 

plate tests  

The antimicrobial activity of the four peptidic fractions obtained by ultrafiltration of the SGJ 

media fermented by S. cerevisiae strain D (≤ 3 kDa, 3-5 kDa, 5-10 kDa and ≥ 10 kDa) as well as 

the five fractions obtained by ammonium sulfate precipitation (A: 0-20 %; B: 20-40 %; C: 40-60 

%; D: 60-80 % and E: 80-100 %) were tested against O. oeni strain X. All the fractions obtained 

by ultrafiltration were 75 times concentrated to the exception of the fraction ≤ 3 kDa. The 

fractions precipitated by ammonium sulfate were 2500 times concentrated. Different volumes of 

each peptidic fraction (10, 25, 50, 75, 100, 125, 150, 175 and 200 µl) were introduced in the 

wells and tested. The MRS agar plates inoculated with O. oeni strain X were incubated at 30°C 

for 72 h before measuring the diameter of the clear zones around the wells. The following figure 

shows one example of results obtained. In the corresponding MRS agar plate, the fractions tested 

were: 5-10 kDa and ≥ 10 kDa from the SGJ media fermented by the strain D. The third well was 

used as a control and contained the 5-10 kDa fraction from the SGJ media fermented by the 

strain A (reference strain).   

 

 

Figure 1. Screening of the antimicrobial activity of 2 peptidic fractions (5-10 kDa and ≥ 10 kDa) harvested 
from the SGJ media fermented by the yeast strain D against O. oeni strain X. Control: 5-10 kDa fraction 

from the SGJ media fermented by the strain A; AMP: antimicrobial peptides  
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The results show that the growth of O. oeni strain X was strongly inhibited only in the presence 

of the 5-10 kDa peptidic fraction isolated from the SGJ media fermented by S. cerevisiae strain 

D. 200 µl of this fraction were required to show inhibition. A clear zone around the well was 

detected in this case. No death or loss in culturability was detected with the other fractions 

obtained by ultrafiltration. We can conclude that the inhibitory effect exerted on the bacterial 

growth was limited to the 5-10 kDa fraction. The fraction obtained by ammonium sulfate 

precipitation at a saturation degree of 60-80 % showed exactly the same clear zone as the one 

observed with the 5-10 kDa peptidic fraction. The same was observed with the precipitates 0-20 

%, 20-40 % and 40-60 % to the exception of the 80-100 % precipitate (data not shown).  

The same test was performed with proteinaceous fractions extracted from the SGJ media 

fermented by the yeast strain A. No inhibition was detected with any of the fractions tested and 

the bacteria continued to grow for 96 h before final opacity.  

From the results above, we can conclude that the 5-10 kDa peptidic fraction and the precipitates 

obtained at a saturation degree between 0 and 80 % from the SGJ media fermented by S. 

cerevisiae strain D affected the bacterial growth and culturability of O. oeni strain X. 
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Appendix of part C: In vitro evaluation of the malolactic enzyme inhibition by the 5-10 

kDa peptidic fractions and the 60-80 % precipitate 

                     

Table 1. Amount of L-malic acid consumed (g/l) and L-lactic acid produced (g/l) during the 
enzymatic reaction in vitro performed at pH 5.5 in the presence of the 5-10 kDa fractions 
(ABP) collected each 24 h of the AF  

 

 

 

 

 

 

 

 

 

Table 2. Amount of L-malic acid consumed (g/l) and L-lactic acid produced (g/l) during the 
enzymatic reaction in vitro performed at pH 5.5 in the presence of the proteinaceous 
fractions obtained by ammonium sulfate precipitation at the end of the AF (120 h)  

 

 

 

 

 

 

 

 pH=5.5 
t=30 min 

Sampling time of the 
5-10 kDa fractions 

during the AF 

Consumed  
L-malic acid 

(g/l) 

Produced  
L-lactic acid 

(g/l) 
Control  

(absence of ABP) 
1.00 

(±0.02) 
0.670 

(±0.001) 
After 24 h of AF 0.87 

(±0.02) 
0.40 

(±0.01) 
After 48 h of AF 0.82 

(±0.02) 
0.55 

(±0.01) 
After 72 h of AF 0.60 

(±0.01) 
0.40 

(±0.01) 
After 96 h of AF 0.072 

(±0.001) 
0.050 

(±0.001) 
After 120 h of AF 0.080 

(±0.002) 
0.050 

(±0.001) 

 pH = 5.5  
 t = 30 min 

 Consumed  
L-malic acid (g/l) 

Produced  
L-lactic acid (g/l) 

Control  
(absence of ABP) 

1.00 
(±0.02) 

0.670 
(±0.001) 

 60-80 % precipitate containing 
compounds ≥ 5 kDa 

0.170 
(±0.003) 

0.110 
(±0.002) 

5-10 kDa fraction of the 60-80 % 
precipitate  

0.0090 
(±0.0002) 

0.0060 
(±0.0001) 

0-20 % precipitate containing 
compounds ≥ 5 kDa 

1.00 
(±0.02) 

0.670 
(±0.001) 
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Appendix of part D: Purification of the anti-MLF peptides of the 5-10 kDa peptidic 

fraction isolated from the 60-80 % ammonium sulfate precipitate 

Purification of the anti-MLF peptides of the 5-10 kDa fraction from the 60-80 % 
precipitate by Ion Exchange Chromatography (IEXC)  
 

The Biological Low Pressure Chromatography (Bio-Rad) was firstly used for protein 

purification. Only one result was obtained before technical problems occurred and obliged us to 

use the Aurum mini kit (Bio-Rad). The columns used were Bio-ScaleTM Mini cartridges of 5 ml; 

UNOsphere Q [-N+(CH3)3] as strong anion exchanger and UNOsphere S [-SO3
-] as strong cation 

exchanger (Bio-Rad). The flow rate was set to 1ml/min for the purification protocol.  

 

1 ml of the 5-10 kDa fraction from the 60-80 % ammonium sulfate precipitate was used for 

purification. First, 500 ml of the SGJ media fermented by S. cerevisiae strain D were used to 

recuperate the 60-80 % precipitate. The precipitate was then suspended in 10 ml of the 

corresponding binding buffer (50 X) and submitted to ultrafiltration in the 10 kDa unit. The 

filtrate lower than 10 kDa was ultrafiltered again using the 5 kDa unit. The desalted retentate 

between 5 and 10 kDa was recuperated (0.2 ml, 2500 X). 1 ml of this retentate was collected for 

each analysis.   

 

Binding buffers: 1 M Tris buffer pH 8.3 was used for the anionic exchanger (AEXC). 10 mM 

phosphate buffer pH 6.7 was used for the cationic exchanger (CEXC). 

Elution buffers: For both anionic and cationic exchange chromatography, increasing salt 

gradients were adopted for elution. The elution buffers were therefore composed of binding 

buffers coupled to increasing concentrations of NaCl (0.1, 0.5 and 1 M). The eluted samples 

were concentrated by the speed-vacuum-concentrator (each 1 ml of eluate gave a final volume of 

0.5 ml) and used to test their inhibitory effect in vitro on the malolactic enzyme activity of the 

enzymatic extract (refer to paragraph II.2.4 of chapter II).  
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Results  
 
(a) 

 
 

(b) 

 
Figure 1. Chromatograms obtained during elution with 0.5 M NaCl of the 5-10 kDa peptidic fraction from 

the 60-80 % precipitate. (a) AEXC (b) CEXC  
 

The eluates that correspond to the peaks shown on figure a.1 were tested in vitro on the 

enzymatic extract containing the malolactic enzyme as explained in paragraph II.2.4 of chapter 

The eluate tested 

corresponded to 

this peak 

The eluate tested 

corresponded to this peak 
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II. The enzymatic reaction was performed at 30 °C, at pH 6.7 for 40 min. The results are given in 

table a.1  

Table 1. Consumed L-malic acid (g/l) and produced L-lactic acid (g/l) in the control and in 
the presence of the eluates obtained by AEXC and CEXC  

 

 

 

 

 

 

 

 

a Control: 0.14 ml of phosphate buffer 0.1 M pH 6.7 were added instead of the peptidic eluate  

 

Discussion 
 

The eluates that correspond to the peaks shown on figure a.1 and obtained after elution with 0.5 

M NaCl were tested in vitro on the enzymatic extract comprising the malolactic enzyme. Results 

of table a.1 show that with both eluates obtained from AEXC and CEXC, the malate 

consumption was reduced by 66 % in comparison to the control. Thus, both eluates contained 

inhibitory peptides that directly inhibited the malolactic enzyme activity. The pI of these peptides 

is most probably between 6.7 and 8.3. The results were very encouraging but technical problems 

obliged us to further characterize and purify the inhibitory peptides by using the Aurum mini kit 

for IEXC (Bio-Rad).  

 Protein concentration of the 
eluates (mg/l) 

Malate consumed 
(g/l) 

Lactate produced 
(g/l) 

aControl  - 0.98 (± 0.02) 0.66 (± 0.01) 
Eluate from 

AEXC 612 (± 10) 0.33 (± 0.01) 0.220 (± 0.005) 

Eluate from 
CEXC 511 (± 10) 0.32 (± 0.01) 0.21 (± 0.005) 
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