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Abbreviations Classical Unit 
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Psat Saturation Pressure bar 
Tc Critical Temperature oC 
Tsat Saturation Temperature oC 
Tg Glass transition temperature °C 
Tm Melting temperature  C 
tco Co-grinding time minute 
tsat Saturation time minute 
dP/dt Depressurization rate bar/s 
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c Crystallization enthalpy J.g-1 
 Degree of crystallinity   
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D Diffusivity m2s-1 
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rel Relative Viscosity  
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 Liquid-Solid Contact Angle  °  
γL Surface Tension of Liquid mJ/m2 
γS Surface Tension of Solid mJ/m2 
γSL Solid-liquid interfacial tension mJ/m2 
γSV Solid-vapour interfacial tension mJ/m2 
γS

p Polar component of surface energy mJ/m2 
γS

d Dispersive component of surface energy mJ/m2 
S

LW Lifshitz–van der Waals component of surface energy mJ/m2 
S

AB Acid–Base component of surface energy mJ/m2 
γS

− Basic Composnent of Surface mJ/m2  
γS

+ Acid Composnent of Surface mJ/m2  
δt Hildebrand’ solubility parameter  (M Pa)1/2 
δd Dispersive Hansen’ solubility parameter  (M Pa)1/2 
δH Hydrogen Hansen’ solubility parameter  (M Pa)1/2 
δp Polar Hansen’ solubility parameter  (M Pa)1/2 
Øf Foam thickness mm 
Øp Pellet thickness  mm 
df Foam diameter mm 
dp Pellet diameter  mm 
mf Foam mass mg 
mp Pellet mass  mg 
f Foam density  
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Subscripts 
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i Component i   
j Component j   
mix Mixture   
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Introduction 

Over the past decade, the use of polymeric materials for the administration of pharmaceuticals and 

as biomedical devices has increased exponentially. The most important biomedical applications of 

biodegradable polymers are in the areas of controlled drug delivery systems and in the form of implants and 

devices for fracture repairs, cartilage replacement, ligament reconstruction, tissue regeneration surgical 

dressings, dental repairs, artificial heart valves, contact lenses, cardiac pacemakers, vascular grafts, tracheal 

replacements, and organ regeneration [Dumitriu, 1994]. 

Indeed tissue engineering is an extremely important area. It generally involves the use of materials 

and cells with the goal of trying to understand tissue function and some day enabling virtually any tissue or 

organ on the body to be made de novo. To achieve this very important long-range objective requires research 

in many areas. For the last few years, tissue engineering is proving to be a great hope for regenerating or 

repairing damaged tissues. Recent technological advancement in 21st century has opened a new era for the 

production of artificial organs by means of tissue engineering and regenerative medicine to repair or replace 

damaged/diseased tissues and organs. An increase in the average age of the human beings as well as in the 

incidence of age-related “wear-and-tear” conditions and traumatic injuries/diseases, the shortage of healthy 

donor organs has led to the emergence of tissue engineering and regenerative medicine. To coop with this 

sensitive engineering materials are required that are biodegradable and compatible with the in vivo 

conditions [Khang et al., 2007]. 

To reconstruct a new tissue by tissue engineering, triad, (a) cells which are harvested and 

dissociated from the donor tissue; (b) biomaterials as scaffold substrates in which cells are attached and 

cultured, resulting in implantation at the desired site of the functioning tissue; and (c) growth factors which 

promote and/or prevent cell adhesion, proliferation, migration, and differentiation, are needed: 

(1) As cells adhere to the extracellular matrix material in the body, this matrix has an enormous 

effect on how the cells behave, 

(2) Scaffolds play a critical role in the reorganization of neo-tissues and neo-organs. However, to 

try to recreate extracellular matrix is a difficult task and therefore various biodegradable polymers have been 

explored to provide substrates for cell growth which can be tried in vivo. Scaffold matrices can be used to 

achieve cell delivery with high loading and efficiency to specific sites. 

There are numerous types of manufacturing protocols for tissue-engineered scaffolds that are 

adapted for various applications. Each manufacturing methods have its limitation [Khang et al., 2007]. 

Scaffold design and fabrication are discussed so that the reader may have a better understanding of how to 

develop and manufacture these systems [Blitterswijk and Thomsen, 2008]. Porous biodegradable scaffolds, 

filled with appropriate type of cells, proteins or drugs, are used as grafts of tissue engineering. These 

scaffolds can be implanted to the desired tissue of body (bone, cartilage, muscles, nerves, etc.) to provide a 

template for tissue regeneration by controlled releasing its content and by slowly resorbing or degrading, and 

finally leaving no foreign components in the body, hence decreasing the risk of inflammation [Mathieu,, 

2004; Hile et al., 2000; Mooney et al., 1996]. 

The scaffold for supporting 3D cell culture must meet various criteria to function appropriately 

and to promote cell growth. These criteria include both mechanical parameters as well as parameters of 



 

- 2 - 

biological performance. Biocompatibility of the scaffold is critical and must not damage cells and alter their 

functions or lead to significant scarring. 

A number of biodegradable scaffolds are described in the literature. Most of these scaffolds come 

from the family of polyesters. Poly(α-hydroxy acids) like poly(lactic acid) (PLA), poly(glycolic acid) 

(PGA), and the co-polymer, known as poly(lactic-co-glycolic acid) (PLGA) are a part of tissue engineering 

studies. The common use of these polymers is basically related to their degradation behaviour. Polymer 

degradation takes place mostly through scission of the main chains or side-chains of polymer molecules, 

induced by their thermal activation, oxidation, photolysis, radiolysis, or hydrolysis. Some polymers undergo 

degradation in biological environments when living cells or microorganisms are present around the 

polymers. PLA degrades into lactic acid, and PLGA degrades into lactic and glycolic acid. Also, for PLGA, 

the degradability rate can be controlled by changing the co-monomer composition. Furthermore, PLA and 

PLGA are approved by United States Food and Drug Administration for biomedical uses [Ikada and Tsuji, 

1999; Steinbüchel, 2003]. 

Supercritical CO2 (scCO2) foaming was first proposed by Mooney et al. [1996] to create porous 

PLGA and PLA scaffolds by the pressure quench method, which was first proposed by Goel and Beckman 

[1994] to manufacture microcellular PMMA foams. There have been a number of followers, which worked 

on foaming of biodegradable polymers to create porous scaffolds by this method [Reverchon and Cardea, 

2007a; Tsivintzelis et al., 2007a; Quirk et al., 2004a; Goel and Beckman, 1994a, 1995; Khang et al., 2007].  

Supercritical CO2 is a green solvent and this method consists in using CO2 as a blowing agent for 

the polymer to create porous material. CO2 is used because it is relatively non-toxic, relatively inert, and non 

combustible. Also, it has relatively reachable critical points (Tc = 31°C and Pc = 73.8 bars). Thus it can be 

used to prepare microcellular foams using supercritical fluids as foaming agents. It has many advantageous 

properties, which enable their use as foaming agents; these include a tuneable solvent power, the 

plasticization of glassy polymers (as a consequence of glass transition temperature depression) and enhanced 

diffusion rates. The low critical temperature of CO2 allows an easy and complete separation from the 

polymer, without a vapour-liquid transition during the expansion. General principle of foaming method is 

the following: saturation of pellets with CO2 at desired temperature and high pressure, followed by a rapid 

depressurization which causes the super saturation. As a result of the super saturation, the creation of the 

nuclei occurs and the depressurization induced desorption from the polymer matrix and the phase change of 

CO2 provides the pore growth. 

The solubility of CO2 increases with pressure, which leads to work at supercritical pressures. 

Moreover, since the critical temperature of CO2 is 31°C, it can be used to process thermally sensitive 

materials. Sorption of CO2 into the polymers depresses their glass transition temperature which results in a 

polymer/gas solution.  

On the other hand, in the tissue engineering field, as CO2 replaces the chemical solvents, it 

provides the complete disappearance of the residual amounts of undesired substances in the scaffolds of 

biomedical use. The manufacturing methods are very important for the specific organs because the 

physicochemical properties of scaffold matrices — such as porosity, equivalent pore diameter, and specific 

area — are determined by the manufacturing methods.  



 

- 3 - 

This research study has been carried out at the "Centre Interuniversitaire de Recherche et 

d’Ingénierie des Matériaux" (CIRIMAT) of the "Institut National Polytechnique de Toulouse" in 

collaboration with two other laboratories of Toulouse: the "Laboratoire de Génie Chimique de Toulouse" 

(LGC) and the "Laboratoire d'Analyse et d'Architecture des Systèmes" (LAAS). In the framework of this 

study, the production of porous biodegradable polymer scaffolds for connective and calcified tissues by 

supercritical CO2 foaming technique is investigated. Physical and mechanical properties of polymer used, 

glass transition temperature and crystallinity are important factors to define the final properties of the 

scaffolds. Therefore, the primary factor is to control the equivalent pore size and porosity of the scaffolds.  

In the thesis, different types of polylactides and poly (D, L-lactide-co-glycolide) with different 

Lactide/Glycolide ratio were used. Some of the (co)polymers are amorphous while others are semi-

crystalline. Polylactides have been blended with different adjuvants (wax, hyaluronic acid) and/or fillers 

(calcium phosphate doped strontium). Comparison between blends and composites obtained after co-

grinding biomaterials has been studied in detail. Insertion of hyaluronic acid has been performed with the 

aim of increasing the surface adhesion property, tricalcium phosphate (amorphous and ) to improve the 

mechanical properties and wax as porogen agent. Ratio of different components and time of co-grinding 

have been analyzed in function of the final porous structure (equivalent pore diameter and porosity) of the 

scaffold. Finally, a comparative study of foams processed either by the dry or wet pellet preparation method, 

was realized.  

The main objectives of the present study are: 

 Selection of appropriate polymer for connective tissue and bone regeneration. 

 Optimization of co-grinding process conditions (time, ratio) for fillers, hyaluronic acid and wax with 

polylactides. 

 Optimization of scCO2 foaming parameters (saturation pressure, saturation temperature, saturation 

time and depressurization rate). 

With the aim of attaining these objectives, the following studies have been realized: 

 Analysis of surface energy of the pellets. 

 Analysis of the pore morphology (equivalent pore size, pore size distribution and interconnectivity 

of micro, meso and macro pores, anisotropy of pores). 

 Analysis of mechanical properties of the foamed structure. 

Thus, in this work, the first three chapters correspond to a bibliographic synthesis on studied 

biomaterials, used processes and analytical methods. The five following chapters correspond to experimental 

results and analysis of the processed scaffolds for either connective tissue or calcified tissue substitution. In 

both cases, optimization of properties has been achieved. The structure of the thesis is defined as follows: 
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Bio-Materials

 

 

In this chapter, we present a bibliographic synthesis divided in three parts. The first one deals 
with generalities on bio-composites, their uses in tissue engineering and bone regeneration applications. 
The second one concerns polyester based biomaterials, and in particular those used in this study 
polylactides such as polylactic acid and poly (lactide-co-glycolide acid). Finally, the third part deals with 

adjuvant and fillers. We focus on hyaluronic acid, amorphous calcium phosphate and - calcium phosphate 

which are the fillers retained for the study. 

 

 

1 Introduction to Bio Composites 

A bio-composite is a material formed by a matrix (resin) and a reinforcement of natural fibres or 
particles (usually derived from plants or cellulose). Their application has wide-range uses from 
environment-friendly biodegradable composites to biomedical composites for drug/gene delivery, tissue 
engineering applications and cosmetic orthodontics. They often mimic the structures of the living materials 
involved in the process in addition to the strengthening properties of the matrix that was used but still 
providing biocompatibility, e.g. in creating scaffolds in bone and cartilage tissue engineering. Such markets 
are significantly rising, mainly because of the increase in oil price, and recycling and environment 

necessities. Bio-composites are characterised by the fact that: 

 the petrochemical resin is replaced by a vegetable or animal resin, and/or 

 the bolsters (fibreglass, carbon fibre or talc) are replaced by natural fibres (wood fibres, hemp, flax, 

sisal, jute etc.). 

In biomaterials, it is important that each constituent of the composite must be biocompatible and 
biodegradable. Moreover, the interface between constituents should not be degraded by the body 

environment. Normally, bio-composite materials can be classified into three groups: 

 Particulate composites, 

 Fibrous composites, 
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 Porous materials. 

1.1 Bio-composites for 3D Model of Connective Tissues 

1.1.1 Tissue Engineering and Concept of Scaffold 

The scaffold for supporting 3D cell culture must meet a number of criteria to function 
appropriately and to promote tumour growth. These criteria include both mechanical parameters as well as 
parameters of biological performance. Biocompatibility of the scaffold is critical and must not damage cells 
and alter their functions or lead to significant scarring. To minimize undesirable effects, it is better to use 
inert scaffolds such as silk or chitin for example. Furthermore cells or matrices from different species can be 
used. For example, the use of a murine matrix together with human cells will allow studying the production 
and deposition of matrix proteins produced by tumour cells. Furthermore, differences in tensional forces 
may impact the phenotype of cancer cells. Thus, it is critical to minimize these differences in specific 

experimental conditions. 

1.1.2 Different Types of Scaffolds 

Different types of three dimensional in vitro cancer models exist. 

1.1.2.1 Cells Grown in Pellets or in Spheroids 

Cells cultured as spheroids are formed by self-assembly. They mimic vascular tumours and micro-
metastases. Tedious procedures required for formation, maintenance, and culture conditions are still holding 
back the industry from using a validated spheroid model more widely. Spheroid preparations on a chip using 
micro-fluid devices have been reported [Hsiao et al., 2009]. However, these methods suffer from problems 
with regard to spheroid formation, long-term culture, control of spheroid size and uniform distribution of 

small numbers of co-culture cell types across all spheroids. 

1.1.2.2 Cells Embedded into Hydrogels Derived from Natural or Synthetic Polymers 

Naturally derived polymers (alginates, agarose or collagen) frequently demonstrate adequate 
biocompatibility, while synthetic polymers may be problematic. During gelling, ionic interference could 
occur with multivalent counter ions that exchange with other ionic molecules resulting in an uncontrolled 
deterioration of the hydrogel. Toxicity of cross-linking molecules must also be considered [Mooney and 
Silva, 2007]. Another approach to form hydrogel is the utilization of phase transition behaviour of certain 
polymers, which may help to overcome these problems [Castelló-Cros and Cukierman, 2009]. The 
interaction of cells with hydrogels significantly affects their adhesion as well as migration and 
differentiation. The adhesion is dependent on the interaction of specific cell surface receptors with ligands 
that may be integrated into the material. Inappropriate interactions in the hydrogel may cause non-adequate 
growth behaviour. Collagen that may be integrated in the gel has many of the biological properties of a 
natural environment. However, variations between collagen batches may be found. Its derivative, gelatine, 
easily forms gels by changes in the temperature of the solution. The chemical modification methods to 

improve the mechanical properties of gelatine gels may also interfere with cell behaviour. 

1.1.2.3 Cells Grown in a Biomaterial of Large–size on Different Polymers (PLGA, 

Agarose) 

Tumour cells cultured in porous PLGA (poly(lactide-co-glycolide)) scaffolds proliferate and form 
cohesive tumour cell aggregates in vitro. The final scaffold is about one cm in diameter and one mm in 
thickness. Cells in the scaffold must be cultured on an orbital shaker for up to 15 days. Comparison with 
standard 3D-Matrigel® culture show that tumour cells proliferate much more rapidly inside the scaffold and 
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that secretion of some specific growth factors is up-regulated. Other requirements are a good porosity and 
the need of bioreactors and gas exchanges during culture. Tumour cells may also be implanted in the 
scaffold subcutaneously in the back of mice. This method is limited because no up-scaling of this procedure 
is possible and no observation is possible during culture. These models seem to be restricted to research 

laboratories. 

1.1.2.4 Cells Grown in a Biomaterial at a Micrometer-Scale (Thickness ~200 µm) 

This material has its limitation because cells may behave differently depending on the batch of 
reconstituted basement membrane extract (BME) called Matrigel®, they are grown on. Because BME is a 
natural product made from extracts of mouse sarcomas, it is difficult to get uniform, consistent preparations, 
even from the same manufacturer. The solution is to test and to stock validated batches of BME. There are 
several other methods such as matrix production by fibroblasts or mixture of tumour cells and matrix. For 
the former, alkaline treatment removes cells that leave behind complex substrates of fibronectin, collagen, 
and other proteins. Progression of the tumours deriving from these matrices laid down normal fibroblasts 
[Fischbach et al., 2007]. For the latter, a gel mixture is prepared by mixing an extracellular matrix (ECM) 
with tumour cells and Matrigel® (volume to volume 1:1) that allows the solution to polymerize. The 

resulting 3D scaffold on which tumour cells are cultured is not the pure ECM, they would encounter in vivo. 

Another alternative is to use commercial 3D matrices. These are, for example, reconstituted 
basement membrane extract such as Matrigel® (Sigma). Matrigel® is used to support growth and 
differentiation of cells and tissues. It recapitulates the morphology and visco-elasticity of the extracellular 
matrix and can be remodelled by cells. The drawbacks are that it is expensive and the composition is 
variable. Alternatively, interstitial matrix components such as collagen, fibrin, etc may be used. They are 
frequently employed to study migration and invasion. These matrix proteins can be remodelled by cells, and 
are often used in combination. However, their use may be problematic because glycosylation and solubility 
may vary by source and the properties between native and denatured proteins may differ. There are other 

commercially available matrices such as (semi)-synthetic hydrogels proposed by BD (PuraMatrix peptide 

hydrogel). It often polymerizes in combination with bioactive peptides. The drawbacks are that it shows 
some bioactivity with certain cells and it cannot be remodelled or degraded by cells. Other ready-to-use 

systems are the algiMatrix3D® culture system (invitrogen) that comes as sponges in 96-well plates or 

InsertTM-PCL (3D Biotek®), a biodegradable polycaprolactone scaffold. These systems are quite 

expensive. Other authors Castelló-Cros and Cukierman [2009] have used 3D agarose colony formation and 

GelCount technology with GelCount scan and image acquisition for high-resolution scanner allowing 

the calculation of half maximal inhibitory concentration (IC50). This system provides quantitative data (log 
dose and time-dependent effects of drugs). However, no description of the gel (thickness) and of the quality 
of colonies formed is reported for this model (size of the colony, interactions between cells, and the 

distribution of the cells across the colony). 

1.2 Bio-Composites for Calcified Tissue Engineering 

1.2.1 Composition of Scaffolds 

The principal calcified tissue of vertebrates is bone. Other calcified tissues in vertebrates include 
calcified cartilage, which is present to some extent in most bones and the dental tissues - enamel, cementum, 
and dentin. Bone develops by the process of ossification, osteogenesis, as a specialized connective tissue. 
During ossification, osteoblasts secrete an amorphous material, gradually becoming densely fibrous - 
osteoid. Calcium phosphate crystals are deposited in the osteoid (i.e. mineralization), thereby becoming bone 
matrix. Osteoblasts become surrounded during the mineralization process, and the cells become osteocytes. 
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Osteoblast secretion does not become entirely fibrous. The secretion also forms an amorphous adhesion 

between the fibres [Lee and Chuong, 2009]. 

Many studies can be found in the literature pursuing the aim to produce biomimetic artificial 
bone-like tissue involving hydoxyapatite (HAp) and collagen as fibre, gel or gelatine [Kim et al., 2005; 
Kikuchi et al., 2004; Tampieri et al., 2003a; Itoh et al., 2001]. Testing two methods of preparation of 
apatite/collagen composite materials (dispersion of HAp in collagen gel or direct nucleation of HAp into 
collagen fibres), Tampieri et al .[2003b] have shown that the bio-inspired method based on the direct 
nucleation of apatite leads to composites analogous to calcified tissue and exhibiting strong interactions 

between HAp and collagen. 

The replacement and healing of damaged hard tissues have always been a concern for human 
beings as shown by the examination of mummies. It is however known that calcium phosphates have been 
used for bone substitution and repair [Jarcho et al., 1979]. The first to be used were stoichiometric 

hydroxyapatite and  tricalcium phosphate (TCP) which are stable calcium phosphates at high temperature 

and can be easily sintered into ceramics. They are still the major industrial calcium phosphates biomaterials. 

TCP was shown to be bio-absorbable and replaced by bone whereas HAp constituted non-degradable 

materials. TCP is mainly used as a bio-ceramic whereas HAp is also being processed for other biomaterials 

uses such as the coating of metallic prostheses where it was found to considerably improve bone repair as an 
"osteo-conductive" material or composite ceramic/polymer materials showing strong mechanical analogies 
with bone tissues and excellent bone bonding abilities [De Groot et al., 1987]. Biphasic calcium phosphates, 
associating these two high-temperature calcium phosphates allow a controlled resorption rate and have been 
reported to offer superior biological properties [Daculsi et al., 2003; LeGeros, 2002]. They are progressively 

replacing TCP ceramics in Europe. A new technological step was made with the development of calcium 

phosphates cements [Brown and Chow, 1987]. These materials are able to set and harden in a living body 
and most can be injected. Despite their poor mechanical properties they offer a number of advantages and 
are increasingly used for several applications. More recently biomimetic coatings involving low temperature 
nano-crystalline calcium phosphates have been proposed, some have been claimed to exhibit osteo-inductive 

properties [Habibovic et al., 2006]. 

1.2.2 Mechanical Properties of 3D Porous Scaffolds 

The scaffold for tissue engineering should have a 3D porous structure with a porosity of no less 
than 70% and a pore size ranging from 50 to 900 μm [Salgado et al., n.d.]. High scaffold porosity facilitates 
oxygen, nutrient and metabolic product exchange. The literature results showed that with the optimization 
design, the porosity of the scaffolds was 82.0 ± 3.8%. It was composed of the designed interconnectivity 
macro-pores and micro-pores. The interconnectivity macro-pores in 3D scaffold would help develop the 
skeletal network and facilitate the internal mineralized bone formation [Cerroni et al., 2002]. The micro-
pores less than 50 μm on the walls of the macro-pores would help in factors like fluid diffusion and cell 
attachment. Additionally, the scaffold for bone tissue engineering should also have high mechanical strength 
as close as possible to the strength of natural bone [Hutmacher, 2000]. In this study, the compressive 
strength and elastic modulus of the calcium phosphate/PLGA scaffolds were significantly higher than those 
of the pure PLGAs scaffolds. This result was consistent with some studies that improved the mechanical 
properties of biodegradable polymers by adding inorganic materials [Zhang and Zhang, 2001; Thomson et 
al., 1998]. However, co-grinding with calcium phosphate increased the mechanical properties and structural 

quality but the porosity and pore diameter of the scaffolds was decreased. 

Compressive modulus values of human trabecular bone range from 1 to 5000 MPa, with strength 
values ranging from 0.10 to 27.3 MPa reported by Langer and Tirrell [2004]; Porter et al. [2000]; Lang et 
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al. [1988] with mean values of approximately 194 and 3.55 MPa as reported by  Goulet et al. [1994]. 
Various parts of the bones in the human body have different mechnical properties. Compact bone is known 
to have a compressive strength of 150–250 MPa due to variability in bone density [Natali and Meroi, 1989; 
Carter, 1976]. Although the ideal mechanical strength of biomaterial scaffolds has not yet been determined, 
previously researched scaffold compressive strengths have fallen within a 2–45 MPa range [Ghosh et al., 
2008; Gomes et al., 2008; Xiong, 2002]. The compressive modulus for bone has been measured to be 5–20 
GPa while biomaterial scaffolds vary from 60 MPa to 15 GPa [Xiong, 2002]. Although polymeric scaffolds 
have lower compressive strength and modulus than other biobased scaffolds and natural compact bones, it is 
not fully understood to what extent scaffolds must mimic natural bone mechanical properties. They have, 
however, demonstrated to be a promising substrate for cell growth and bone regeneration as shown by the 
cellular studies and sponge-like characteristics of the scaffolds. The results from their experiments gave 

modulus at a low level (cf. Table 1.1). 

Table 1.1: Summary of mechanical properties of osteoporotic (OP) bone and normal bone. 

Material Property OP Bone Normal Bone 

E (MPa) 
247 

50 – 410 
310 

40 – 460 

Yield strength (MPa) 
2.5 

0.6 – 5. 
3.3 

8 0.4 – 9.0 

Energy absorbed to yield (kJ.m-3) 
16.3 

2 – 52 
21.8 

2 – 90 
[Li and Aspden, 1997] 

Median values and approximate ranges of the 5% – 95% confidence limits as given by Li and 
Aspden [1997] on the mechanical properties of human cancellous bone specimen (diameter: 9 mm, mean 

cylinder length: 7.7 mm) from OP femoral heads. 

1.3 Biodegradable Polymers 

During the last years, a large number of articles and publications have been published which cover 
biodegradable polymers of the different material groups (e.g., polysaccharides, polypeptides, polyesters, and 
polyisoprenoides), as well as their copolymers and blends. PLA (polylactic acid) and PLGA poly (lactide-
co-glycolide) are mainly used in medical engineering as biodegradable polymers, because these are naturally 
occurring polymers. Degradable/resorbable polymers have been well established in the field of medicine, for 
example, as surgical sutures, implants, and bone plates, since 1960s and 1970s [Schmack, 2009]. It is not 
easy to classify biodegradable polymers. They can be sorted according to their chemical composition, 
synthesis method, processing method, economic importance, application, etc. Each of these classifications 
provides different and useful information. In the present overview, we have chosen to classify biodegradable 
polymers (hereafter called biopolymers) according to their origin: natural polymers, polymers coming from 
natural resources and synthetic polymers, polymers synthesised from crude oil. Biopolymers from natural 

origins include, from a chemical point of view, six sub-groups:[Clarinval and Halleux, 2005] 

1. polysaccharides (e.g., starch, cellulose, lignin, chitin). 

2. proteins (e.g., gelatine, casein, wheat gluten, silk and wool). 

3. lipids (e.g., plant oils including castor oil and animal fats). 

4. polyesters produced by micro-organism or by plants (e.g., polyhydroxy-alcanoates, poly-3-
hydroxybutyrate). 

5. polyesters synthesised from bio-derived monomers (polylactic acid). 
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6. a final group of miscellaneous polymers (natural rubbers, composites). 

1.3.1 What is Biodegradable?  

Biodegradation is degradation caused by biological activity, particularly by enzyme action leading 
to significant changes in the material's chemical structure, or by UV radiations which are natural and 
participate also to biodegradation. In essence, biodegradable plastics should breakdown cleanly, in a defined 
time period, to simple molecules found in the environment such as carbon dioxide and water. The American 
Society of Testing and Materials (ASTM) defines 'biodegradability' as: "capable of undergoing 
decomposition into carbon dioxide, methane, water, inorganic compounds, or biomass in which the 
predominant mechanism is the enzymatic action of microorganisms, that can be measured by standardized 

tests in a specified period of time, reflecting available disposal conditions." 

During this process of biodegradation, the large molecules of the substance are transformed into 
smaller compounds by enzymes and acids that are naturally produced by microorganisms. Once the 
molecules are reduced to a suitable size, the substances can be absorbed through the organism cell walls 
where they are metabolized for energy. Most naturally occurring materials such as yard waste, food scraps, 

etc., contain these large molecules and biodegrade in this way. 

1.3.1.1 Aerobic Biodegradation 

Aerobic biodegradation is the breakdown of an organic substance by microorganisms in the 
presence of oxygen. Almost all organic materials can be metabolized in an oxidative environment by aerobic 
organisms. The organism has secreted enzymes that breakdown substances into smaller organic molecules 
which are then absorbed into the cells of the microbes and used for cellular respiration. During the 
respiration process, the organic molecules absorbed into the cells are broken down in steps, where a 
molecule known as adenosine-5-triphosphate (ATP) is used to store and transport energy for cells, for life 
processes such as motility and cell division. In biochemistry, this chemical reaction sequence is known as 
Electron Chain Transfer. In the case of aerobic metabolism, oxygen is used at the end of the chain as the 
final electron acceptor, producing the main by products of carbon dioxide and water. The chemistry of the 
key degradation process is represented by Equation 1.1, where CPolymer represents either a polymer or a 

fragment from any of the degradation processes defined earlier [Bastioli, 2005]: 

CPolymer + O2  CO2 + H2O + CResidue + CBiomass     (1.1) 

Composting is a well known and common use of aerobic biodegradation, during which the 
volume of organic material is typically reduced by about 50%, where the remaining, slow-decaying humus 
material left over can be used as a rich planting medium. The ASTM defines a compostable plastic material 
as being: “capable of biological decomposition in a compost site as part of an available program, such that 
the plastic is not visually distinguishable and breaks down to carbon dioxide, water inorganic compounds 
and biomass (humus) at a rate consistent with known compostable materials”. The bioactivity in active 
compost will generate heat that further enhances the rate of microbial growth and metabolism. However, for 
the purpose of the ASTM definition, the available program is an industrial compost facility where heat and 
moisture are artificially added to the mass to maximize the degradation rate. As we will see, this artificial 

environment becomes critical for degradation of some biodegradable plastic materials. 

1.3.1.2 Anaerobic Biodegradation 

Anaerobic biodegradation occurs in the absence of oxygen where anaerobic microbes are 
dominant. In the absence of oxygen, the organism must use some other atoms as the final electron acceptor. 
Hydrogen, methane, nitrogen and sulphur are common along with oxidizing minerals. Thus, the effluent 
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from anaerobic digestion is biogas, consisting of mostly methane and carbon dioxide, with trace gasses such 
as ammonia and hydrogen sulphide. Often, the complete digestion will require several different types of 
bacteria where one type partially processes the waste to a point where another bacterium strain takes over. 
Most biodegradation of solid waste in landfill occurs under anaerobic conditions by design because it is 
typically much slower than aerobic degradation. In the absence of oxygen, the reaction of degradation is 

given by equation 1.2: 

CPolymer → CO2 + CH4 + H2O + + CResidue + CBiomass    (1.2) 

Complete biodegradation occurs when no residue remains, and complete mineralisation is 
established when the original substrate (CPolymer in this example) is completely converted into gaseous 
products and salts. However, mineralisation is a very slow process under natural conditions because some of 
the polymer undergoing biodegradation will initially be turned into biomass [Bastioli, 2005]. Most 
biodegradable substances come from plant and animal matter, or from artificial materials that are very 
similar in molecular structure to these naturally occurring substances. As the naturally occurring substances 
evolved, micro-organisms also evolved to use the substances as a food source, carbon in particular, used as a 
building block for life-sustaining compounds. Simple sugars are readily absorbed into the cell to be 
metabolized. However, larger and more complex molecules such as starches, proteins and cellulose, require 
enzymes and acids to reduce their size enough to be absorbed. Living organisms have developed the ability 
to secrete specific digestive compounds so as to best utilize the available food supply. For example, the 
enzyme amylase, found in human saliva, is used to breakdown long-chain starch molecules into smaller 

simple sugars. 

1.3.2 Biodegradable Polymer Materials 

Currently available degradable polymer materials can be broken down into two main groups:  

 Polyester polymers,  

 Synergistic and hybrid polymers. 

1.3.2.1 Biodegradable Polyesters 

Biodegradable polyesters which do not contain six-carbon rings are known as aliphatic polyesters. 
They will typically react with moisture at elevated temperatures to breakdown the long polymer chains. This 
process, called chemical hydrolysis, reduces the higher molecular weight polymer to much smaller 
hydrocarbon compounds. The resulting molecules can then be absorbed by microorganisms and metabolized 
for energy. Since it is a chemical reaction, the hydrolysis occurs at a much higher rate than one would expect 

for a purely biological process, and as a result, relatively quick degradation is observed.  

Aliphatic polyesters have attracted interest as biodegradable plastic materials; however they 
typically have poor physical and mechanical properties like strength, flexibility, heat resistance, etc. [Chen 
et al., 2008]. Some common biodegradable polyester polymers in commercial use include 
poly(caprolactone), poly(glycolic acid) and poly(butylene succinate) (cf. chemical formula reported on 
Figure 1.1). Although expensive to make, these biodegradable polymers are ideal for use in specialized, high 
margin applications such as medical devices (e.g. dissolving, drug delivery systems, tissue engineering 

scaffolds and bone repair etc.) [Ikada and Tsuji, 1999]. 

Another well known aliphatic polyester is poly(lactic acid). PLA is a synthetic polymer made 
from fermented sugars extracted primarily from food crops such as corn, beets or sugarcane. The resulting 
lactic acid monomer is chemically processed and then polymerized, in the presence of a metal catalyst, to 
form the high molecular weight plastic material. Like petroleum-based biodegradable polyesters, PLA has 
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many of the same undesirable mechanical properties, such as low heat deflection temperature. The polymer 
is also very brittle and has a low-melt strength leading to difficulty in processing. Consequently, most 
commercial applications using PLA require a synthetic rubber and/or acrylic additive to compensate for 

these deficiencies. 

 
Figure 1.1: Structures of selected biodegradable polymers. 

[Gross and Kalra, 2002] 

Degradation of PLA occurs quickly through a multistep process of chemical depolymerization, 
followed by dissolution of the intermediate lactic acid in the presence of moisture, and the absorption into 
the cells of microorganisms with subsequent metabolization [Dunja Manal Abou Zeid, 2001]. Initiation of 
this chain of events typically occurs at elevated temperatures (above heat deflection temperatures), such as 
conditions existing in an industrial compost operation. The relatively fast chemical reaction at the beginning 
of the chain of events explains the surprisingly quick degradation of polymer in an industrial compost 
environment. This mechanism of chemical attack followed by cell metabolism does not meet the true 

definition of a biodegradable material. 

1.3.2.2 Synergistic or Hybrid Polymers 

Synergistic polymers are typically intimate mixtures of oil-based and naturally occurring polymers 
where the two have some chemical affinity for each other. When mixed, there is intimate contact between 
the two polymer chains so as to create a homogenous single phase. In other words, once mixed they could 
not be mechanically separated. A good example of a commercial, synergistic, biodegradable material is 
thermoplastic starch. The key to this blend of the two natural starch polymers, amylose and amylopectin, and 
the synthetic polymer, polyvinyl alcohol (PVOH), is their natural affinity to each other, due to the large 
number of hydroxyl (OH) groups present in the compounds (cf. Figure 1.1). This hybrid can be made into 

foamed articles, plastic films or moulded parts such as cutlery.  

The intimate mixing of the natural and synthetic polymers can be taken one step further: where the 
attraction of the synthetic and natural polymers is enhanced by grafting other chemically compatible groups 
along the chains of the natural and/or synthetic polymers. Initiation of the process begins with the formation 
of a bio-film on the surface of the polymer, which is facilitated by the inclusion of the compatible natural 
polymers. These films of microorganisms have been shown to efficiently biodegrade petroleum based 

polymers [Seneviratne et al., 2006]. 
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2 Polyesters Based Bio-materials  

2.1 Polylactides (PLA) 

2.1.1 Structure of Polylactic Acid 

The term "Bio-polyester" can be understood in several different ways. Bio-polyesters can be 
interpreted as polyesters of strictly biological origin. Poly(lactic acid) belongs to the family of aliphatic 
polyesters commonly made from acid, and are considered as biodegradable and compostable [Kaplan, 
1998]. One can also interpret bio-polyesters as polyesters that have been synthesized by biological means, 
for instance by enzyme-catalyzed polymerization reactions. Moreover, there are hybrids between these two 
strict definitions of bio-polyesters. For example, monomer synthesis for poly(lactic acid) came from a 
biological process in which lactic acid is produced microbially by the fermentation of a renewable 
polysaccharide-based resource, mostly corn. Lactic acid is subsequently polymerized chemically into 
poly(lactic acid) by a condensation reaction. It is one of the few polymers in which the stereo-chemical 
structure can easily be modified by polymerizing a controlled mixture of the L- or D-isomers to produce 
high molecular weight amorphous or semi-crystalline polymers that can be used for food contact and are 

generally recognized as safe [Conn et al., 1995]. 

The structural formulas of poly(lactic acid) are given in Figure 1.2. As PLA contains an 
asymmetrical carbon atom in its structural unit, iso-tactic PLLA and PDLA polymers are optically active. 
Consequently, the meso-lactide PD,,LLA is a syndio-tactically alternating D,L-copolymer or a copolymer 
having L-units and D-units and is non optically active [Van de Velde and Kiekens, 2002]. Latter findings 
have been gathered under ‘PLAs’ and are thought to be mostly non-syndio-tactic PD,LLA. All polyesters, of 

natural and synthetic origins, are characterized by the common formula presented in Figure 1.2. 

 
Figure 1.2: Stereo-forms of lactides. 
[Madhavan Nampoothiri et al., 2010] 

2.1.2 Synthesis of Polylactic Acid 

It can be easily produced in a high molecular weight form through ring-opening polymerization 

(cf. Figure 1.3) using most commonly a stannous octoate catalyst (sometimes tin (II) chloride). 
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Figure 1.3: Ring opening polymerization of lactide to polylactide. 

Lactic acid is obtained by the fermentation of engineered microbes of the genus Lactobacilli. 
These microorganisms are highly efficient sources of lactic acid. Lactobacilli can be subdivided into strains 
that produce either the L (+) or the D (-) isomer. A variety of different sugars is used as carbon sources in the 
fermentation process. These sugars are either specifically prepared enzymatically from starch for lactic acid 

production, or are by products from fruit processing.  

In addition, lactose, a by-product in the cheese industry, can also be used as a carbon source for 
lactic acid production. In all cases sugars from renewable resources are transformed into a value-added 
product by an enzymatic whole-cell catalysis process. The subsequent steps in the production of PLA are 
based on synthetic chemistry and involve the formation of the dimer by a self-condensation reaction that 
results in a low molecular weight prepolymer. Depolymerization of the prepolymer gives lactide, which is 
then polymerized through ring-opening polymerization. The prepolymer can also be polymerized into high 
molecular weight PLA by the action of chain coupling agents. In contrast to lactic acid, glycolic acid is 
produced in an industrial scale by a chemical process. The different ways of producing PLA are gathered in  

Figure 1.4. 

 
 

Figure 1.4: Different ways of producing PLA. 
[Garlotta, 2001] 
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2.1.3 Properties of Polylactic Acid 

Commercially available PLA grades are copolymers of poly(L-lactide) with meso-lactide or D-
lactide. The D/L ratio is known to affect the properties of PLA (melting temperature, degree of crystallinity 
and so on). PLA has a balance of mechanical properties, thermal plasticity, and biodegradability and is 
readily processed [Fang and Hanna, 1999]. Different properties of PLA are summarized in Tables 1.1. The 
homopolymer of L-lactide (PLLA) is a semi-crystalline polymer. These types of materials exhibit high 
tensile strength and low elongation and consequently have a high modulus that makes them more suitable 
for load-bearing applications such as in orthopaedic fixation and sutures [Van de Velde and Kiekens, 2002]. 
The racemic PD,LLA is an amorphous polymer exhibiting a random distribution of both isomeric forms of 
lactic acid, and accordingly is unable to arrange into an organized crystalline structure. This material has 
lower tensile strength, higher elongation, and a much more rapid degradation time, making it more attractive 
as a drug delivery system. Poly(L-lactide) is about 37% crystalline, with a melting point of 173−178°C and a 
glass-transition temperature of 60−65°C. The degradation time of PLLA is much slower than that of PD,LLA, 
requiring more than 2 years to be completely absorbed. Copolymers of L-lactide and D,L-lactide have been 
prepared to disrupt the crystallinity of L-lactide and accelerate the degradation process [Middleton and 

Tipton, 1998]. 

The densities of PLLA and PD,LLA are reported in Table 1.2. They are mostly based on standards 
such as ASTM D792. Density can be a very important design parameter since elevated density values imply 
high transportation costs. Density is often used for the calculation of ‘specific properties’, i.e. dividing 
mechanical properties by the appropriate density. All other properties can be compared among each other. 
Tensile properties are clearly best for the densest reported polymers. Varying the molecular weight from 50 
over 150 to 200 kDaltons will increase tensile strengths for PLLA of 15.5, 80 and 150 MPa, respectively 

[Van de Velde and Kiekens, 2002]. 

Table 1.2: Main physical properties of different PLAs. 

[Van de Velde and Kiekens, 2002] 
Properties Unit PLLA PD,LLA 

Molecular weight (Mw) Dalton 100–300 − 
Density ρ - 1.24−1.30 1.25−1.27 
Tensile strength σ MPa 15.5−150 27.6−50 
Specific tensile strength S* Nm/g 40−66.8 22.1−39.4 
Tensile modulus E GPa 2.7−4.1 1−3.5 
Specific tensile modulus E* kNm/g 2.2−3.8 0.8−2.4 
Strength at break MPa 44−66 − 
Flexural strength MPa 88−119 − 
Ultimate strain ε % 3−6 2−10 
Elongation at break % 100–180 − 
Glass transition temperature Tg °C 60−65 55−60 
Melting point Tm °C 173−178 amorphous 
Heat of melting Hm J/g 8.1–93.1 − 
Degree of crystallinity,  % 10–40 − 
Surface energy  J/m2 38 − 
Solubility parameter δH (J/ml)1/2 19–20.5 − 

Polylactic acid can be processed like most thermoplastics into fibre (for example by using 
conventional melt spinning processes) and film. The melting temperature of PLLA can be increased 40–50°C 
by physically blending the polymer with PDLA. PLLA and PDLA are known to form a highly regular stereo-
complex with increased crystallinity. The maximum effect in temperature stability is achieved when a 50-50 
blend is used, but even at lower concentrations of 3–10% of PDLA a substantial effect is achieved. In the 
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latter case PDLA is used as a nucleating agent, thereby increasing the crystallization rate. Due to the higher 
crystallinity of this stereo-complex, the biodegradability will become slower. The interesting feature is that 

the polymer blend remains transparent. 

Even when burned, PLA produces no nitrogen oxide gases and only one-third of the combustion 
heat generated by polyolefins; it does not damage the incinerator and provides significant energy savings. 
The increasing appreciation of the various intrinsic properties of PLA, coupled with knowledge of how such 
properties can be improved to achieve compatibility with thermoplastics processing, manufacturing, and 
end-use requirements, has fuelled technological and commercial interest in PLA. Over the last few years, a 
wealth of investigations have been undertaken to enhance the mechanical properties and the impact 
resistance of PLA. It can therefore compete with other low-cost biodegradable/biocompatible or commodity 

polymers. 

These efforts have made use of biodegradable and non-biodegradable fillers and plasticizers or 
blending of PLA with other polymers [Martin and Avérous, 2001]. In recent years the nano-scale has 
afforded unique opportunities to create revolutionary material combinations. Nano-structured materials or 
nano-composites based on polymers have been an area of intense industrial and academic research over the 
past one and a half decades [Sinha Ray and Okamoto, 2003; Biswas and Ray, 2001; Alexandre and Dubois, 
2000; Zanetti et al., 2000; LeBaron et al., 1999]. In principle, nano-composites are an extreme case of 
composite materials in which interfacial interactions between two phases are maximized. In the literature, 
the term nano-composite is generally used for polymers with submicrometer dispersions. In polymer-based 
nano-composites, nanometer-sized particles of inorganic or organic-materials are homogeneously dispersed 
as separate particles in a polymer matrix. This is one way of characterizing this type of material. There is, in 
fact, a wide variety of nano-particles and of ways to differentiate them and to classify them by the number of 

dimensions they possess. Their shape varies and includes:  

i. needlelike or tubelike structures regarded as one-dimensional particles (for example, 
inorganic nano-tubes, carbon nano-tubes, or sepiolites);  

ii. two-dimensional platelet structures (for example, layered silicates); and  

iii. spheroidal three-dimensional structures (for example, silica or zinc oxide). 

To date, various types of nano-reinforcements such as nano-clay, cellulose nano-whiskers, 
ultrafine layered titanate, nano-alumina, and carbon nano-tubes have been used for the preparation of nano-
composites with PLA [Yu, 2009; Mark, 2006; Kim et al., 2006; Nishida et al., 2005; Nazhat et al., 2001; 

Dumitriu, 1994]. 

2.2 Poly(lactide-co-glycolide acid) (PLGA) 

2.2.1 General Structures of PLGA Copolymers 

Glycolic acid is present in small amounts in a wide variety of fruits and vegetables. It accumulates 
during photosynthesis in a side path of the Krebs cycle. So far, economically viable methods to produce 
glycolic acid in photosynthetic biological systems do not exist. At an industrial scale, carbon monoxide, 
formaldehyde and water are reacted at elevated temperature and pressure to produce glycolic acid. PLGA is 
synthesized by means of random ring-opening co-polymerization of the two different monomers, the LA and 

the GA (cf. Figure 1.5). 

Common catalysts used in the preparation of this polymer include Tin (II) 2-Ethylhexanoate, Tin 
(II) Alkoxides or aluminum isopropoxide. During polymerization, successive monomeric units (of glycolic 
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or lactic acid) are linked together in PLGA by ester linkages, thus resulting in linear, aliphatic polyester as a 
product [Middleton and Tipton, 1998]. Using the polyglycolide and polylactide properties as a starting point, 
it is possible to copolymerize the two monomers to extend the range of homopolymer properties. 
Copolymers of glycolide with both L-lactide and D,L-lactide have been developed for both device and drug 

delivery applications. 

 
Figure 1.5: Schemaic synthesis of poly(lactide-co-glycolide). 

[Middleton and Tipton, 1998] 

To tailor the processability and to enhance biodegradation, these copolymers are further modified 
by copolymerizing with linear dicarboxylic acids (e.g. adipic acid) and glycol components with more than 
four methylene groups (e.g. hexanediol) [Sublett, 1983]. To enhance the environmentally benevolent aspect 
of these materials and to broaden the range of their use, aliphatic-aromatic co-polyesters blended with 
cellulose esters have been processed into useful fibres, films and moulded objects [Buchanan et al., 1994, 

1995]. 

2.2.2 Properties of PLGA Copolymers 

Physical properties of poly(glycolic acid), as well as different PLGAs, are gathered in Table 1.3. 

Table 1.3: Main physical properties of PGA and several PLGAs. 

Properties Unit PGA PD,LLGA50:50 PD,LLGA75:25 PD,LLGA85:15 

Density ρ  gm/cm3 1.5−1.7 1.3−1.4 1.3 1.25 

Tensile strength σ MPa 60−99.7 41.4−55.2 41.4−55.2 45−52 

Tensile modulus E GPa 6−7 1−4.3 1.4−4.1 2.0* 

Ultimate strain ε % 1.5−20 2−10 2.5−10 − 

Specific tensile strength S* Nm/g 40−45.1 30.9−41.2 31.8−42.5 − 

Specific tensile modulus E* kNm/g 4−4.5 8−2.1 1.1−2.1 − 

Glass transition temperature Tg °C 35−40 45−50 50−55 55−55 

Melting point Tm °C 225−230 amorphous amorphous amorphous 

[Van de Velde and Kiekens, 2002] 

Polyglycolide has a glass transition temperature between 35 and 45°C and its melting point is 
reported to be in the range of 225-230°C. PGA also exhibits a higher degree of crystallinity than PLA (~ 45-
55 %), thus resulting in better mechanical properties but insolubility in water [Middleton and Tipton, 1998]. 
The solubility of this polyester is somewhat unique, in that its high molecular weight form is insoluble in 
almost all common organic solvents (acetone, dichloromethane, chloroform, ethyl acetate, tetrahydrofuran). 
The exceptions are highly fluorinated organics such as HFIP (hexafluoroisopropanol) while low molecular 
weight oligomers sufficiently differ in their physical properties to be more soluble. Sutures of PGA lose 
about 50% of their strength after 2 weeks and 100% at 4 weeks, and are completely absorbed in 4~6 months. 
Glycolide has been copolymerized with other monomers to reduce the stiffness of the resulting fibres 

[Middleton and Tipton, 1998]. 
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It is important to note that there is not a linear relationship between the copolymer PLGA 
composition and the mechanical and degradation properties of the materials. For example, a copolymer of 
50% glycolide and 50% D,L-lactide degrades faster than either homopolymer (cf. Table 1.4). All PLGAs are 
rather amorphous than crystalline and show a glass transition temperature in the range of 40–60°C. Unlike 
the homo-polymers of polylactide and polyglycolide which show poor solubilities, PLGA can be dissolved 
by a wide range of common solvents, including chlorinated solvents, tetrahydrofuran, acetone or ethyl 

acetate. 

Table 1.4: Degradation times of common polylactides.  

Polymer Tg (°C) Degradation Time (Months) 
PGA 35 − 40 6 to 12 
PLLA 60 − 65 >24 

PD,LLA 55 − 60 12 to 16 
PD,LLGA85:15 50 − 55 5 to 6 
PD,LLGA75:25 50 − 55 4 to 5 
PD,LLGA50:50 45 − 50 1 to 2 

[Adhikari and Gunatillake, 2003] 

PLGAs are approved copolymers which are used in a host of therapeutic devices, owing to its 
biodegradability and biocompatibility as a major component in biodegradable sutures, bone fixation nails 
and screws [Moghimi et al., 2001; Gombotz and Pettit, 1995]. They are well-characterized copolymers, their 
degradation sub-products are non toxic and they provide controlled drug release profiles by changing the 
PLGA copolymer ratio [Ghosh, 2004; Bala et al., 2004; Moghimi et al., 2001; Anderson and Shive, 1997; 
Gombotz and Pettit, 1995]. PLGAs of different molecular weights (from 10 kDa to over 100 kDa) and 
different copolymer molar ratios (50:50, 75:25 and 85:15) are available on the market. Molecular weight and 
copolymer molar ratio influence the degradation process and release profile of the drug entrapped. In 
general, low molecular weight PLGA with higher amounts of glycolic acid offers faster degradation rates 

[Anderson and Shive, 1997]. 

3 Adjuvant and Fillers 

3.1 Adjuvant 

3.1.1 Structure of Hyaluronic Acid (HA) 

Hyaluronic acid was first biochemically purified in 1934 by Meyer and Palmer, who discovered 
this unique ‘polysaccharide acid of high molecular weight’ from the vitreous body of bovine eyes [Garg and 
Hales, 2004c]. Since it is believed that the molecule they isolated consisted of ‘an uronic acid, an amino 
sugar, and possible a pentose, they so named the substance ‘hyaluronic acid’ (HA) [Garg and Hales, 2004b]. 
They also reported that HA was not sulfonated; this meant that the molecule could be reproduced by a cell 

that synthesizes HA, including animals and bacteria [Varki et al., 1999]. 

Interestingly, HA also differs from other structurally related GlycosAminoGlycans (Chondroitin 4 
and 6 Sulfate, Heparan Sulfate, etc) in that it can be synthesized without attachment to proteins [Garg and 
Hales, 2004c]. Hyaluronic acid also labelled hyaluronan is a simple, linear glycosaminoglycan composed of 
repeating disaccharide units of β-1,4-glucuronic acid (GlcA) and β-1,3-N-acetylglucosamine (GlcNAc) 
[Garg and Hales, 2004c]. Figure 1.6 shows the alternating β-1,3 and β-1,4 glycosidic linkages between 
GlcA and GlcNAc. Polymers of hyaluronan can range in size from 5 to 20 000 kDa in vivo [Saari et al., 

1993]. 
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Figure 1.6: Electron micrograph and chemical HA structure. 

[Varki et al., 1999] 

3.1.2 Physicochemical and Biological Properties of HA 

The inherent physicochemical structure and properties of HA−high molecular weight, β-glycosidic 
linkages, internal hydrogen bonds, and interactions with the solvent - enable the molecule to behave in a 
highly non-newtonian, gel-like manner, even in dilute solutions of HA [Chong et al., 2004]. The result is a 
unique water-binding and high retention capacity – for example, one gram of HA is capable of holding up to 

6 litres of water. 

As a natural conjunction to its physicochemical properties, HA also has various roles at the 
biological level [Garg and Hales, 2004a]. As an essential structural component in the extracellular matrix of 
vertebrate tissues, HA regulates water balance and fills space, interacting with a variety of extracellular 
molecules [Garg and Hales, 2004b]. HA is also known to activate intracellular signalling pathways and to 

induce proliferative and migratory responses [Garg and Hales, 2004b]. 

Hyaluronic acid is fairly stable, partially because of the way that its disaccharide components are 
positioned. The bulkier parts of the molecule are spaced far apart. By lowering this crowding, which is also 

known as "steric hindrance," the molecule is able to be flexible, but also resistant to break down.  

Hyaluronan is found in many tissues of the body, such as skin, cartilage, and the vitreous humour. 
Therefore, it is well suited to biomedical applications targeting these tissues. The first hyaluronan 

biomedical product, Healon, was developed in the 1970s and 1980s and is approved for use in eye surgery 

(i.e., corneal transplantation, cataract surgery, glaucoma surgery, and surgery to repair retinal detachment). 

Hyaluronan is also used to treat osteoarthritis of the knee [Puhl and Scharf, 1997]. Such 
treatments, called viscosupplementation, are administered as a course of injections into the knee joint, and 
are believed to supplement the viscosity of the joint fluid, thereby lubricating the joint, cushioning the joint, 
and producing an analgesic effect. It has also been suggested that hyaluronan has positive biochemical 
effects on cartilage cells. However, some placebo-controlled studies have cast doubt on the efficacy of 
hyaluronan injections, and hyaluronan is recommended primarily as a last alternative before surgery 

[Karlsson et al., 2002; Holmes et al., 1988]. 

HA is an important component of skin, where it is involved in tissue repair. The skin needs an 
optimum proportion of water to retain its softness and suppleness. Hydro regulative ingredients incorporated 
into cosmetic emulsions provide the skin with moisture. Hyaluronic acid is a gel-like, water-holding 
molecule that is the space filler and cushioning agent for skin. The remarkable ability of hyaluronic acid to 
hold moisture ensures soft, smooth, hydrated and elastic skin with the desired sensory effect. Many cosmetic 
products contain HA as a moisturiser and claim to have anti-ageing and anti-wrinkle effect via topical 
applications. Due to the molecular size of the HA used in topical creams, it is unlikely and unproven that any 
penetration of the dermis occurs. HA acts as a free radical scavenger, absorbing and degrading them. When 
skin is excessively exposed to UV B (wavelength 290 to 320 nm) rays and becomes inflamed (sunburn), the 
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cells in the dermis stop producing as much HA and increase the rate of its degradation. HA degradation 

products also accumulate in the skin after UV exposure [Averbeck et al., 2006]. 

Due to its high biocompatibility and its natural presence in the extracellular matrix of tissues, HA 
is gaining popularity as a biomaterial scaffold in tissue engineering research. In some cancers, HA levels 
correlate well with malignancy and poor prognosis. HA is thus often used as a tumor marker for prostate and 

breast cancer. It may also be used to monitor the progression of the disease. 

3.2 Calcium Phosphates and Tricalcium Phosphates 

Seventy percent of bone is made up of hydroxyapatite [Ca10(PO4)6(OH)2], tooth enamel is also 
largely calcium phosphate. Like other apatites, it has a calcium and phosphate component in a ratio of 1.67 
(Ca/P ratio) but is associated with a hydroxyl group. There are several other non-apatitic calcium phosphates 
that are distinguished from one another by their molecular formulae, Ca/P ratios that differ from 1.67, crystal 

structures and solubilities, which have higher dissolution rates than stoichiometric hydroxyapatite.  

3.2.1 Structures of Calcium Phosphate  

Calcium phosphate Ca3(PO4)2 is the name given to a family of minerals containing calcium ions 
(Ca2+) together with orthophosphates (PO4

3-). Tricalcium phosphates (TCP) are among the most commonly-
used calcium phosphates compounds in implant materials. They are found in ceramic bone substitutes, 
metallic prosthesis coatings, cements and composite materials. From a strict chemical point of view, 
‘tricalcium phosphate’ refers to a composition, even though, in the minds of many users, this term is used to 
describe a structure, generally that of β tricalcium phosphate (βTCP). Tricalcium phosphates exist in four 

different forms:  

 ATCP will hereby designate amorphous tricalcium phosphate; 

 Ap TCP: apatitic tricalcium phosphate: Ca9(HPO4)(PO4)5(OH); 

 TCP: the most widely used member of the TCP family having a crystalline structure: -Ca3(PO4)2; 

 TCP: the metastable high-temperature crystalline structure: α-Ca3(PO4)2. 

Amorphous tricalcium phosphate (ATCP) and apatitic tricalcium phosphate (Ap TCP) are low 

temperature, unstable phases generally obtained by precipitation, whereas  and  tricalcium phosphates ( 

and TCP) are high-temperature crystalline phases. 

3.2.2 Synthesis of Different Calcium Phosphate Phases 

The production of tricalcium phosphate-based ceramics generally involves TCP powder 
preparation and, in a successive stage, powder processing in order to obtain cohesive biomaterials in the 
form of dense or macro-porous ceramics, coatings, cements or composites for bone filling, substitution 
and/or reconstruction applications. In several cases, however, calcium phosphate phases form during 
processing, as, for example, in the case of hydroxyapatite (HAp) plasma spraying. We will focus on the 

elaboration of the different tricalcium phosphate phases (amorphous,  and  polymorphic forms), their 

structure, and main physicochemical properties and their processing. 

3.2.2.1 Amorphous TriCalcium Phosphate (ATCP)  

One of the most convenient preparation methods is double decomposition between a calcium salt 
solution and a hydrogen phosphate salt solution in aqueous media, at ambient temperature and at a pH close 
to 10 [Somrani et al., 2005; Heughebaert and Montel, 1982]. It can also be obtained in hydroalcoholic 
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solution [Rodrigues and Lebugle, 1998; Lebugle et al., 1986]. The presence of ethanol in the precipitation 

medium influences the composition of the amorphous phase and especially its HPO4
2-content and Ca/P ratio. 

The main difficulties in the preparation of ATCP are related to its instability and reactivity. 
Generally, ATCP cannot be obtained at neutral or slightly acidic pH. However, it can be stabilised by 
various mineral ions or organic molecules which can be added to the precipitating and/or washing solutions. 
For example, ATCP can be prepared under more acidic conditions (around pH 6) and in the presence of 
magnesium or citrate ions, known as crystal growth inhibitors of apatite phase [Holt et al., 1989]. Owing to 
its reactivity and rather high water content, precipitated ATCP is generally freeze-dried and stored at ~ 18°C 
to prevent any further evolution. Dry, heated ATCP can, however, be stored at room temperature in dry 
atmosphere. In contrast with synthesis methods in solution, ATCP can also be obtained via a dry, high-
temperature route through rapid quenching of melted calcium phosphate. In the absence of ions other than 
Ca2+ and PO4

3-, the amorphous phase which is forming is analogous to anhydrous precipitated ATCP [Ranz, 
1996]. However, in practice, other anions such as O2-  are also observed in the high-temperature amorphous 

phase, increasing its Ca/P atomic ratio (1.5). Observed by transmission electron microscopy (TEM),  

ATCP morphology is mostly spherical, although these particles generally tend to agglomerate into larger, 
irregularly shaped, branched clusters [Chow and Eanes, 2001]. The size of the spheroid particles varies in a 
large range (20 to 200 nm). Amjad [1997] reported that spheroidal particles of 25 nm in size were the 

dominant and most stable morphology of ATCP. 

Eanes [1970] also investigated ATCP through thermo-chemical experiments and concluded that 
such amorphous tricalcium phosphate corresponds to a hydrated tri-calcium phosphate phase, suggesting a 
Ca3(PO4)2,n(H2O) chemical formula. The presence of water is an intrinsic feature of ATCP. Even freeze-
dried, amorphous calcium phosphate still contains around 15–20 wt. % of water. Sedlak and Beebe [1974] 
concludes from temperature-programmed dehydration of ATCP that two types of bound water exist in this 
compound: loosely held water, and tightly bound water held inside the amorphous particles. ATCP can also 
easily incorporate ‘foreign’ ions through ionic substitutions. Interestingly, ATCP can trap carbonate ions 
from the preparation solutions [Greenfield and Eanes, 1972], and the carbonate content tends to increase 
with the solution pH. Other substitutions have also been reported, including Mg2+ and PO4

3- pyrophosphate 
ions. More generally, ATCP can trap several mineral ions exhibiting biological activity (Sr2+, Zn2+, Mg2+, 
Mn+ Cu+, etc.). The incorporation of silver was recently shown to bring antimicrobial performances to 

ATCP [Aimanova et al., 2005]. 

3.2.2.2 Addition of Strontium  

Strontium has been subject of study in recent years due to its relation to the prevention and 
treatment of osteoporosis. It is a very widespread in nature with a chemical structure quite similar to that of 
calcium. Indeed, strontium is an element belongs to group IIA of the periodic table of elements and therefore 

it presents chemical properties very similar to calcium. 

In the human body strontium is accumulated mainly in the bone, so 99% of its content is in this 
tissue. The extraordinary similarity to the calcium to that strontium is metabolic routes are the same as those 
of calcium, that is to say, absorption takes place in the intestine, the accumulation in bone and excretion 

occur through urine [Cohen-Solal, 2002]. 

The major route of exposure is by ingestion of food or water. Compared to the amount of 
strontium ingested only 25−30% is absorbed by the intestine. Distribution strontium bone is proportional to 
plasma levels (between 0.11 − 0.31 mmol / l), duration of exposure and gender. The passage of strontium in 
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bone replacement is conditioned bone. Therefore, cortical bone has a smaller content in strontium that the 

trabecular bone. 

Although strontium at high doses can produce undesirable effects in the body as human bone 
alterations, rickets, mineralization defects and change profile of mineralization in low doses poses no health 
risk. Indeed, ATSDR (Agency of Toxic Substances and Disease Registry) said explicitly in his paper 

Toxicological strontium that exposure to low doses of stable strontium affects not the health of adult men. 

In addition to hand administration of the compounds of strontium (strontium ranelate) as 
therapeutic method for treatment of osteoporosis has been well studied in the past years and the results were 
positive in relation to bone regeneration. The in-vitro experiments showed that strontium produces an 

increase in training and decreased bone resorption. 

The influence of the addition of certain cations to materials based on the CPA to improve inter-
facial interaction of polymer composites has been studied for some number of cations (Ag+, Fe+2, Zn+2, Al+3, 
Fe+3) [O’Donnell et al., 2009]. Other studies have shown the role of divalent cations strontium and zinc as 

preventive agents of dental caries [Baig et al., 1999]. 

3.2.2.3 Effect of Isomorphous Substitution of Strontium in the βTCP 

The effect of isomorphous substitution of strontium in calcium-deficient apatite was already 
studied [Baig et al., 1999]. These studies confirm that the crystal structure of beta phosphate can 
accommodate up to 80% of strontium atoms, causing a widening of the unit cell. This fact agrees with the 

largest ionic radium strontium relative calcium. 

We can define these calcium-deficient apatite resulting from the substitution of formula non-

stoichiometric following: 

Ca9-x Srx (HPO4) (PO4)5 (OH) 

Furthermore, the incorporation of strontium causes the shift of the absorption bands of the 
phosphate group to minor frequencies. In addition, the presence of divalent ions which replace the calcium 
appears to play an important role in the competition between HA and βTCP just described in previous 
sections. When you submit substituted apatite strontium heat treatment acts as a stabilizer of the β phase 

agree with: 

Ca9-x Srx (HPO4) (PO4)5 (OH) → 3(Ca(3-x/3) Srx/3) (OP4) + H2O    (1.3) 

The presence of foreign ions can alter some structural and physicochemical properties of βTCP, 

such as lattice parameter and the crystallinity, solubility and thermal stability. 

Through the study of Baig et al. [1999] and the resulting relationship between lattice parameters 
as concentration of strontium added (equations 1.4 and 1.5), we can estimate the effect of addition of 
strontium in βTCP on our experiment. Since the structures of βTCP and α (Sr3 (PO4)2 are very similar. The 

lattice parameters follow the linear relationship:  

a = 10.434 + 0.00373xÅ   = 8.3×10-3 Å     (1.4)  

c = 37.211 + 0.00250xÅ   = 7×10-2 Å    (1.5) 

As in our case the atomic concentration of strontium is 10% atomic then the lattice parameters are: 

a = 10.4713Å    c = 37.236 Å 
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The cell volume changes with composition in agreement with the equation: 

V=3507 + 4.9xÅ3     = 13 Å3 

So, in our case the volume of the unit cell is: V = 3556 Å3 

3.2.2.4 Physicochemical Properties of TCP Phases 

The solubility in water of α and βTCP has been fully investigated and reported in the literature 
[Fowler and Kuroda, 1986; Gregory et al., 1974]. As a general trend, the solubility of these phases was 
found to decrease in the order α TCP > βTCP > Ca-deficient apatites > HAp [Ducheyne et al., 1993]. It may 
exhibit metastable solubility equilibrium, as recorded by Baig et al. [1999] in the case of bone mineral and 

non-stoichiometric apatites. Table 1.5 gathers the solubility products of the different components. 

Table 1.5: Solubility products of TCP phases in water at 25°C. 

Phase Chemical Formula PKsp (25 °C) References 
αTCP α-Ca3(PO4)2 25.5 [Fowler and Kuroda, 1986] 
βTCP 

Ca-deficient apatite 
β-Ca3(PO4)2 

Ca10−x(PO4)6−x(HPO4)x(OH)2−x 
28.9−85.1 

[Gregory et al., 1974] 
[Ratner, 2004] 

ATCP Ca3(PO4)2·n(H2O) 24.2 [Somrani et al., 2005] 
HAp Ca10(PO4)6(OH)2 117.2 [Ratner, 2004] 

3.2.2.5 Thermal Treatment in Air of the TCP Phases  

No variation of the Ca/P ratio of TCP phases can occur on heating in air. Among the tricalcium 
phosphate phases, α TCP is known as the high-temperature stable form. Its stability region ranges from  
1125 to 1430°C [Welch and Gutt, 1961]. Under 1125°C, βTCP is the stable tricalcium phosphate phase. 
Rapid quenching from temperatures higher than 1125°C, however, permits the preservation of the α-TCP 
phase at room temperature. The transition temperature between the β and α TCP phases may vary depending 
on ion impurities such as Mg, Zn and Fe which stabilise βTCP. Apatitic TCP can be considered as the low-
temperature crystalline form of ATCP (e.g. upon drying at 80°C). On heating at temperatures higher than 
800°C, this phase transforms into βTCP [Destainville et al., 2003]. Pure ATCP remains amorphous when 
heated up to 630°C [Eanes, 1970]. Above this temperature, it crystallises first into the metastable α TCP 
generally associated with small fractions of βTCP and, around 850°C, into pure βTCP. However, ATCP 
containing Mg ions (or containing other elements stabilising the βTCP phase such as Fe and Zn) transforms 
directly into the βTCP phase without the intermediary formation of α TCP. It has been suggested, based on 
thermodynamic and nuclear magnetic resonance studies, that α TCP formed by thermal crystallization of 
ATCP could be more stable and contains fewer defects than the α TCP phase obtained by quenching from 

temperatures above the β to α TCP transition [Somrani et al., 2003; Belgrand, 1993].  

Thermal treatment in air of the low-temperature phases, ATCP and Ap TCP, at 900°C, for several 
hours does indeed lead to the formation of βTCP, and this is a way to prepare this phase with high purity. 
When TCP’s Ca/P atomic ratio is not exactly 1.5, impurities appear. The main impurities, hydroxyapatite 
(corresponding to a Ca/P atomic ratio above 1.5) and β calcium pyrophosphate (corresponding to a Ca/P 
atomic ratio under 1.5), can be detected, respectively, by XRD and FTIR spectroscopy. α TCP is generally 
obtained by heating βTCP above 1125°C (the allotropic transition temperature for β → α), followed by rapid 
quenching. It is interesting to note that α TCP can also be obtained transitorily by heating ATCP at 
temperatures lower than 1125°C (between 630 and 850°C), but this method generally leads to a product 

containing traces of βTCP [Somrani et al., 2003; Eanes, 1970]. 

Both α and βTCP can also be prepared from other starting powders and, more conveniently, from 
mixtures of Ca-P phases with the adequate global Ca/P ratio of 1.5. For example, they can be obtained by 
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heating an intimate mixture of CaHPO4 (di-calcium phosphate anhydrous) and CaCO3 (calcium carbonate) 

in the molar ratio 2/1, between 1150 – 1200°C, for at least one day. α TCP is then obtained by quenching in 
liquid nitrogen whereas prolonged heating at about 900°C (until complete disappearance of α TCP) leads to 
the production of βTCP. Several authors also reported the synthesis of pure βTCP by heating a di-calcium 
phosphate dihydrate, calcium carbonate mixture in the molar ratio 2/1 at 930°C, for 2 hours [Yang and 

Wang, 1998] or, at 900°C, for 14 hours [Vallet-Regí et al., 1997]. 

From a structural point of view, βTCP is a stable anhydrous tricalcium phosphate phase. It 
crystallises in the rhombohedral system with 21 formula units Ca3(PO4)2 per hexagonal unit cell [Dickens et 
al., 1974]. A thorough structural description of this phase is given in the literature based mainly on a 
comparison with the phase Ba3(VO4)2 and it will therefore not be reported here [Elliott, 1994]. An 
interesting structural feature of βTCP is, however, the presence of columns of ions (anions and cations) 

which can be distinguished parallel to the c-axis. 

3.2.2.6 Aqueous Evolution of TCP Phases 

In aqueous medium, it is worthwhile reminding that the first precipitates obtained under given 
conditions (pH, temperature and ion concentrations) from calcium phosphate solutions do not necessarily 
correspond to the thermodynamically most stable phase. For example, phases such as ATCP or 
Ca8H2(PO4)6,5H20 (octocalcium phosphate) may form transiently in solution, somewhat analogous to 
precursor phases prior to their progressive hydrolysis into apatite [Tung, 1998]. In particular, ATCP is 
generally the first solid phase that spontaneously precipitates upon mixing alkaline calcium and phosphate 

solutions [Chow and Eanes, 2001]. 

When immersed in solution, the most soluble TCP phases, α TCP and ATCP, show a strong 
tendency to evolve towards a more stable phase through a hydrolysis process. At alkaline and neutral pH, 
ATCP progressively transforms into non-stoichiometric hydroxylated apatites [Eanes and Meyer, 1977]. 
According to Heughebaert [1977], in this process ATCP is generally found to remain amorphous up to half 
hydrolysis corresponding to the composition Ca9(PO4)5(HPO4)(OH) and apatite structure crystallisation. The 
apatite obtained by hydrolytic conversion of ATCP may, however, evolve differently in the solution 
depending on pH, temperature, maturation time and ion content. Generally, an increase in the Ca/P ratio of 
the solid is noticed, associated with a decrease in HPO4

2− content and an increase in OH− content [Somrani 
et al., 2005]. It was found that an increase in the Ca/P ratio in the starting solutions led to faster 
crystallisation into hydroxyapatite [Kim et al., 2004]. Interestingly, the addition of some ionic species such 
as Mg2+, CO3

2−, and P2O7
4− which inhibit apatite crystal growth was shown to delay this hydrolysis process 

[LeGeros et al., 2005; Boskey and Posner, 1974]. Considering heated ATCP, the conversion rate into apatite 
has been shown to be related to the residual water content and rehydration of the powder appears as a 

determining stage [Somrani et al., 2005]. 

α TCP also hydrolyses rapidly in aqueous solution [Monma et al., 1981; Monma, 1980]. The 
hydrolysis products are generally Ca8H2(PO4)6,5H20 (octocalcium phosphate) and non-stoichiometric 
apatite, although CaHPO4 (di-calcium phosphate anhydrous or monetite) and CaHPO4,2H2O (di-calcium 
phosphate dihydrate or brushite) can also form. The transformation mechanism is generally identified with 
dissolution–reprecipitation reactions. Although less investigated than the hydrolysis of Am-CP, the 
hydrolysis of α-TCP is believed to depend on the same physicochemical factors (temperature, pH, hydrolysis 

time, solution composition and presence of ionic impurities). 

In contrast, βTCP does not show a tendency to hydrolyse rapidly in solution, at physiological 
temperatures. However, pure βTCP has been shown to hydrolyse completely into relatively well-crystallised 
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non-stoichiometric apatitic phases in boiling aqueous suspensions within 24 hours [Rey, 1984]. Faster 
hydrolysis of βTCP into apatite also occurs under hydrothermal conditions (e.g. 120°C, in the presence of 
water vapour). These reactions have been found to depend strongly on the purity of βTCP as they are 

strongly inhibited in the presence of traces of Mg2+ ions. 

3.2.2.7 Surface Properties 

Although the understanding of surface interactions between biomaterials and body fluids is of 
utmost importance for following bio-integration and bioactivity, few data are available to date on the surface 

properties of TCP phases, despite their high involvement in the biomaterials field. 

Among the indications reported in the literature concerning the surface properties or reactivity of 
tri-calcium phosphates, most deal either with adsorption or ion exchange processes. However, elucidation of 
the corresponding mechanisms and the relationship with intrinsic surface properties of the TCP phases 

involved, are only rarely addressed.  

Adsorption of recombinant human transforming growth factor-β1 on tricalcium phosphate-coated 
titanium-based implants has been investigated in dogs [Lind et al., 2001]. In this article, authors pointed out 
a clear increase in the bone volume formed around the implant coated with TCP with adsorbed recombinant 
human transforming growth factor-β1, thus showing the potential importance of adsorption phenomena on 
TCP phases. Adsorption of various proteins on βTCP and other calcium phosphates has been investigated by 
Ohta et al., [2001]. Two kinds of adsorption sites were distinguished: positively charged sites (Ca sites) 
capable of adsorbing acidic proteins (e.g. bovine serum albumin,) and negatively charged sites (P sites) 
which adsorb alkaline proteins. Also, the total number of calcium sites on βTCP was then found to be 

significantly lower than on the other calcium phosphates tested, including hydroxyapatite. 

3.2.3 Application of  and -tricalcium Phosphates in Biomaterials 

Macro-porous composite scaffolds can be processed using different methods: solvent 
casting/particulate leaching, emulsion freeze drying or thermally induced phase separation. Biodegradable 
composite including resorbable polymer such as polylactic acid (PLA) and/or polyglycolic acid (PGA) and a 
resorbable apatite can be prepared at ambient temperature [Chen et al., 2001a; Linhart et al., 2001]. 
Recently, Mathieu et al. [2006] reported the use of a supercritical CO2 foaming process to prepare porous 
PLA-HAp and/or PLA-TCP composites exhibiting mechanical behaviour analogous to bone (anisotropy in 

compressive and viscoelastic properties).  

Finally, the formation of a polymer-apatite composite can also correspond to a first step in the 
preparation of nano-crystalline apatite porous ceramic. For example, Tadic et al. [2004] reported the 
processing of nano-crystalline apatites-based biomaterials porous bio-ceramics using both sodium chloride 

salt and polyvinyl alcohol fibres as water-soluble pore agents and cold isostatic pressing without sintering.  

4 Conclusion 

In this chapter, we have discussed extensively different types of polymers to be used for 
composite materials with different industrial applications, then application of polymers with different types 
of fillers and surface modifiers for tissue and bone engineering. The physical, mechanical and thermal 
properties have been under consideration as they have great impact on the resulting product. Biodegradable 
polymers from renewable resources have been attracting ever-increasing attention over the past two decades, 
predominantly for two reasons: the first being environmental concerns and the second being the realization 
that our petroleum resources are finite. Biodegradable polymers and their products will play an important 
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role for transplantation in the coming era. Polylactides are currently used in a number of biomedical 
applications, such as sutures, stents, dialysis media and drug delivery devices. Also polylactides are used for 
tissue, cartilage and bone regeneration. Hyaluronic acid is hydrophilic in nature and using it with polylactide 
will enhance the surface adhesion property of the scaffold produced. As a result it will augment the 
adhesion, differentiation and proliferation of human cell on the scaffold to be transplanted. Tri-calcium 
phosphate is added as mineral in the polymer matrix to increase the mechanical properties of the scaffold. 
The percentage of TCP added depends upon the nature and mechanical property of scaffold required to be 

transplanted.  
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Manufacture Foams 
and to Functionalize 

the Surface

 

 

Tissue engineering offers an alternative technique to tissue transplantation for diseased or 
malfunctioned organs. Adequate porosity and equivalent pore size as well as interconnected pore structure 
are crucial to allow for easy dispersion of cells throughout the scaffold structure. Scaffold structure is 
directly related to fabrication methods, which are presented in this chapter one by one. We adopted the 
technique using supercritical CO2 in our experiments. This process is a green technology which provides 
adequate porosity and pore size with no loss of bioactive mass in the scaffold matrix. The surface and 
mechanical properties of the scaffold will be enhanceed by adapting the mixing and co-grinding of polymer 
matrix with surface modifier and filler. Hyaluronic acid (HA) has a number of potential biomedical 
applications in drug delivery and tissue engineering. By co-grinding, it coats the surface of polylactide and 
being hydrophilic in nature thus improves the adhesion energy of the polymer matrix. Similarly filler having 

higher mecahnical properties than polymer enhance the modulus and strength of matrix. 

 

 

1 Generalities on Polymer Foams 

The production of polymeric-foam materials can be carried out by either mechanical, chemical, or 

physical means. Some of the most commonly used methods are the following [Landrock, 1995]: 

 Thermal decomposition of chemical blowing agents generating either nitrogen or carbon dioxide, or 
both, by application of heat, or as the result of the exothermic heat of reaction during polymerization. 

 Mechanical whipping of gases (frothing) into a polymer system (melt, solution or suspension) which 
hardens, either by catalytic action or heat, or both, thus entrapping the gas bubbles in the polymer 

matrix. 

 Volatilization of low-boiling liquids such as fluorocarbons or methylene chloride within the polymer 
mass as the result of the exothermic heat of reaction, or by application of heat. 

 Volatilization of gases produced by the exothermic heat of reaction during polymerization such as 
occurs in the reaction of isocyanate with water to form carbon dioxide. 
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 Expansion of dissolved gas in a polymer mass on reduction of pressure in the system. 

 Incorporation of hollow microspheres into a polymer mass. The microspheres may consist of either 

hollow glass or hollow plastic beads or salts. 

 Expansion of gas-filled beads by application of heat or expansion of these beads in a polymer mass by 
the heat of reaction, e.g. expansion of polystyrene beads in a polyurethane or epoxy resin system. 

The production of foams can take place by many different techniques. These may include 

[Landrock, 1995]: 

 Continuous slab-stock production by pouring or impingement, using multi-component foam machines. 

 Compression molding of foams. 

 Reaction-injection molding (RIM), usually by impingement. 

 Foaming-in-place by pouring from a dual- or multi-component head. 

 Spraying of foams. 

 Extrusion of foams using expandable beads or pellets. 

 Injection molding of expandable beads or pellets. 

 Rotational casting of foams. 

 Frothing of foams, either by introduction of air or of a low-boiling volatile solvent (e.g. 

dichlorodifluoromethane, F-12). 

 Lamination of foams (foam-board production). 

 Production of foam composites. 

 Precipitation foam processes where a polymer phase is formed by polymerization or precipitation from a 
liquid which is later allowed to escape. 

2 Manufacturing of Porous Materials by Wet Methods 

An ideal scaffold should be biocompatible, biodegradable, and highly porous with interconnected 

pores with adequate mechanical properties depending upon the application. 

2.1 Solvent Casting/Particulate Leaching  

To prepare three-dimensional biodegradable porous scaffolds, a method that incorporates salt 
particles as the porogen material can be used [Ma and Choi, 2001; Mikos et al., 1994]. The porogen leaching 
method provides easy control of the pore structure. The pore structure, porosity, and pore size can be easily 
controlled by regulating the amount and size of salt. This method involves casting a mixture of polymer 
solution (polymer/chloroform or polymer/methylene chloride) and porogen in a mould, and then leaching 
out the porogen with water to generate the pores and freeze-drying the mixture. Water-soluble particulates, 
such as salts and carbohydrates, are used as the porogen materials. Solvent casting / particulate leaching 

(SC/PL) involves the use of water-soluble porogen, such as gelatine microspheres or sodium chloride. 

The procedure is shown in Figure 2.1 and is applied as follows [Devin et al., 1996; Mooney et al., 

1995; Mikos et al., 1994]: 
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(a) Salt particulates are prepared by sieving. The sizes of the salt particulates are controlled by the 

desirable sieving. 

(b) Polymer solutions are prepared by dissolving different amounts and types of polymers in solvent 

(e.g. methylene chloride or chloroform). 

(c) Sieved salt particulates are added to the polymer solution, and the dispersion is gently vortexed. 

(d) The solution is poured into the designed silicon mould. 

(e) Subsequently, the mould with dispersion is pressed (~ 6 MPa) by pressure apparatus. 

(f) The formed samples are taken out of the mould. 

(g) Samples are dissolved for a desirable time (48 h) in deionised water. 

(h) Salt-removed samples are freeze-dried for a desirable time (about 48 h) at low temperature and 

reduced pressure (around 8 Pa,−55°C). 

(i) The scaffolds are dried in a vacuum oven at 25°C for 1 week to remove the residual solvent. 

Scaffolds are kept under vacuum until use. 

 

Figure 2.1: Procedure of solvent casting/particulate leaching. 
[Khang et al., 2007] 

Porosity is independent of particle diameters, but increases with the quantity of salt. A minimum 
of 70% of salt particles is needed to create interconnected pores [Mikos et al., 1994]. When particle diameter 
increases, pore size increases. Mechanical properties, such as compressive strength or modulus, are 
independent of pore size but decrease when porosity increases. Porosity up to 90-95%, with varying pore 
size, and a compressive modulus of 0.15 to 150 MPa, depending on porosity can be achieved. This method 
is only applicable to the preparation of thin films since all the salt particles on the bulk must be leached out 
completely. To obtain thicker scaffolds of desired shape, an improved porogen salt-leaching technique has 
been proposed [Gross and Rodríguez-Lorenzo, 2004]. By adding small hydroxyapatite (HAp) fibres to a 
PLGA solution, it is possible to create composite foams with a controlled porosity [Hou et al., 2003; Chen et 

al., 2001b; Thomson et al., 1998; Widmer et al., 1998]. 

2.2 Ice Particle-Leaching 

Previous scaffold manufacturing usually involves (1) dissolving the polymer in organic solvent, 
(2) incorporating porogens, and (3) leaching porogens. Despite these advantages, the problem of residual 

(a) Salt (b) Preparing of polymer, 
solvent, salt 

(c) Mixing of polymer,  
solvent, salt 

(d) Moulding (e) Pressing 

(f) Removal from (g) Dissolution of salt (h) Freezing & freeze 
drying

(i) Removal of residual 
solvent and storage 
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porogen used to prepare 3D scaffolds remains. Therefore, the conventional method of porogen leaching by 
washing with water is replaced by freeze-drying, facilitating the removal of the porogen and making 
removal more complete. The method of porogen leaching by using ice particulates as the porogen material 
can be employed to fabricate porous 3D scaffolds for tissue engineering. Using ice particulates as the 
porogen material, scaffolds are prepared by mixing a polymer solution in a solvent with ice particulates, 
freezing the mixture in liquid nitrogen, and freeze-drying. This method can be applied to biodegradable 
polymers like polylactides that are soluble in a solvent such as chloroform or methylene chloride. Sieved ice 
particles are dispersed in a polymer/chloroform solution. The ice particles are eventually leached out by 

selective dissolution in water or by freeze-drying to produce a porous 3D scaffold as described in Figure 2.2: 

(a) Ice particulates are prepared by spraying deionised water into liquid nitrogen [Figure a]. 

(b) Polymer solutions of various concentrations are prepared by dissolving different amounts of 
polymer in solvent (e.g. methylene chloride or chloroform) and cooling. The sizes of the ice 
particulates are controlled by the desirable sieving of the solution to −20°C [Figures b and c]. Ice 

particulates are added to the precooled polymer solution. 

(c) The dispersion is gently vortexed [Figure d]. 

(d) It is then poured into a precooled designed mould [Figure e]. 

(e) Subsequently, the mould with dispersion is frozen by placing at low temperature [Figure f]. 

(f) The mould with dispersion is freeze-dried for a desirable time under low temperature [Figure g]. 
Often, further drying at elevated temperatures is required to completely remove the solvent after 

freeze-drying. 

 

Figure 2.2: Procedure of ice particle–leaching. 
[Kim et al., 2007b]  

2.3 Gas-Foaming/Salt-Leaching Technique 

The biodegradable scaffolds prepared by the particulate-leaching method often exhibit a dense 
surface skin layer, which hampers in vitro cell seeding into the scaffolds and tissue ingrowth after in vivo 
implantation. Additionally, poor interconnectivities between macropores lower cell viability and result in 
non-uniform distribution of seeded cells throughout the matrix. Sodium bicarbonate salt or ammonium 
bicarbonate salt with acidic excipients such as citric acid has been used for effervescent gas-evolving oral 
tablets, due to its carbon dioxide – evolving property upon contact in acidic aqueous solution. Thus, various 
alkalinising analgesic oral tablets are commercially available. In particular, ammonium bicarbonate salt – 
upon contact in an acidic aqueous solution and/or incubated at elevated temperature – evolves gaseous 

ammonia and carbon dioxide by itself. 

(a) Spraying (b) Sieving (c) Sieved Ice 
particles 

(d) Vortexing 

(e) Moulding (f) Freezing (g) Freeze-drying 
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The gas-foaming/salt-leaching method is based on the idea that sieved salt particles of ammonium 
bicarbonate dispersed within a polymer–solvent mixture can generate ammonia and carbon dioxide gases 
within solidifying matrices upon contact with hot water or aqueous acidic solution, thereby producing highly 
porous structures (cf. Figure 2.3). These scaffolds show macro-pore structures over 200 μm with no visible 
surface skin layers, thus permitting sufficient cell seeding within the scaffolds. In addition, porosities can be 
controlled by the amount of ammonium bicarbonate incorporated into the polymer solution. It is possible to 
make various scaffolds with different geometries and sizes by a hand-shaping or moulding process because 

the polymer–salt mixture becomes a gel paste after partial evaporation of the solvent. 

Polylactides must be completely dissolved in chloroform. An excess volume of cold ethanol is 
then added to the polymer solution. The whole is then mixed homogeneously. A gel-like slurry precipitates 
immediately in the solvent/non solvent mixture. The turbid solution is removed and the gel slurry is 
recovered. Ammonium bicarbonate is added to the solution which is mixed to make a homogeneous gel 
paste mixture of polymer/salt. A small volume of chloroform can be added to the slurry as a plasticizer. The 
paste mixture is then casted into a disc–shaped Teflon® mould or manipulated to the desired shape. The gel 
paste mixture is dried by partial evaporation of ethanol, under atmospheric pressure, to obtain the semi-
solidified mixture. A polymer/salt complex is removed from the mould and wetted with cold ethanol. The 
matrix is immersed into supersaturated citric acid solution to effervescence from embedded salt particles. 
After complete effervescence, the scaffolds are washed with H2O then freeze-dried and finally stored at 

−80°C with desiccant until use. 

 

Figure 2.3: Procedure of gas foaming/salt-leaching method. 
[Park, 2007b]  

2.4 Gel-Pressing Technique 

The particulate-leaching process dissolves the polylactide in chloroform, and then casts it onto a 
dish filled with the porogen. After evaporation of the solvent, the polymer/salt composite is leached in water 
to remove the porogen. The process is easy to carry out. The pore size can be controlled by the size of the 
salt crystals, and the porosity by the salt/polymer ratio. However, certain critical variables such as pore 
shape, limited membrane thickness (3 mm), plastic operation, and interpore openings are not controllable. 
To overcome these shortcomings, a method to fabricate porous, biodegradable scaffolds using a combined 

gel-pressing method and salt-leaching technique has been developed (cf. Figure 2.4): 

(a) A polymer/salt composite is firstly prepared by dissolution process in a solvent. 

(b) The polymer is dissolved in a solvent and then mixed with salts. 

(c) The solvent is evaporated under air condition to form gels. 

(d) Gels are put inside moulds. 

(e) Polymer gels are pressed. 
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(f) Scaffolds are processed to fabricate a tubular or sheet-types. 

(g) After evaporation of the solvent, the salt particles in the construct are leached out to make an open-

pore structure. 

(h) Scaffolds are freeze-dried for a desired time under low temperature. 

(i) Scaffolds are obtained by finally under the return to the room temperature. 

 

Figure 2.4: Procedure of scaffolds by gel-pressing method. 
[Kim, 2007]  

2.5 PLGA Microspheres for Tissue-Engineered Scaffold 

PLGA-based microspheres are biodegradable particulate delivery systems providing both drug 
protection, encapsulated inside a polymeric matrix, and its release at a slow and continuous rate. 
Microsphere manufacturing usually involves (1) the controlling of a disintegrated polymer, (2) cell toxicity, 
and (3) a suitable environment for cell culture. The size and degradable profile can be easily managed by 

controlling the molecular weight of the polymer and the process of fabrication.  

PLGA microspheres are particularly attractive for tissue regeneration approaches either as an 
injectable system or as the integral part of a replacement clinical construct. The small, spherical nature of 
these polymers enables the encapsulation of growth factors or other drugs, and their subsequent delivery to a 
specific and designated area. Controlled release of bioactive molecules, such as cytokines and growth 
factors, has become an important aspect of tissue engineering because it allows modulation of cellular 
function and tissue formation at the afflicted site. Cell cultures using microspheres have an advantage of 
passage abbreviation to improve cell activity. The PLGA microspheres regulate many aspects of cellular 
activity, including cell proliferation, cell differentiation, and extracellular matrix metabolism, in a time- and 
concentration-dependent fashion. The procedure to prepare PLGA microsphere scaffolds is presented in 

Figure 2.5. 

(a) The polymer is dissolved in a solvent, and is ready to add to a solution in surfactant. 

(b) The polymer solution is dropped into an aqueous solution in surfactant by a pipette. 

(c) This solution is stirred at 400 rpm for 7 h using a mechanical stirrer. 

(d) The fabricated microspheres are collected from the bottom by a centrifugal separator. 

(e) The hardened microspheres are centrifuged, washed with deionised water. 

Salt (NaCl) 

(a) Mixing (b) Polymer solution (c) Evaporation (d) Moulding (e) Gel pressing 

(f) Shaping (g) Salt leaching (h) Freeze-drying (i) Scaffolds 

Polymer solution 
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(f) And then put into a freezer. 

(g) The manufactured microspheres are freeze-dried under low temperature and pressure. 

 

Figure 2.5: Schematic procedure of the processing of PLGA microsphere scaffolds. 
[Ko et al., 2007]  

2.6 Particle-Aggregated Scaffolds Technique  

The particle aggregation method described herein allows one to obtain scaffolds with high 
mechanical properties (thus assuring scaffold stability) and full three-dimensional interconnectivity, which is 
assured in a 3D perspective by the contact points between the particles. The described technique is based on 
the random packing of prefabricated microspheres with further aggregation by physical or thermal means to 
create a three-dimensional porous structure. The polymer (at desired concentration) is dissolved in a good 
solvent. For the production of composite particles, hydroxyapatite (HAp) is added at an adequate 
concentration to the solution and dispersed homogeneously. The detailed procedure (cf. Figure 2.6) is the 

following: 

(a) The polymer or composite (polymer plus HAp) solution is left overnight to assure complete 

dissolution [Figure a]. The polymer/composite solution is filtered to eliminate any residual particles. 

(b) The polymer/composite solution is extruded through a syringe in a dispenser (syringe pump) at a 
controlled and constant rate in order to shape the particles into a NaOH solution [Figure b]. The 
particle size can be controlled by tailoring the polymer solution concentration, needle diameter, and 

dispensing rate. 

(c) The particles are then exhaustively washed to remove all exceeding reagents, namely from the 
precipitation bath [Figure c]. To produce composite particles, cross-linking can be used with 
appropriate polymer cross-linkers. The particles are immersed in the cross-linking solution for a 

determined short period and then washed again. 

(d) For production of scaffolds, appropriate particles are press-fitted into a specific mould [Figure d]. 

(e) And left in the oven for a necessary time for aggregation to take place [Figure e]. 

 
Figure 2.6: Schematic procedure for manufacturing of scaffolds with the particle-aggregated technique. 

[Malafaya and Reis, 2007]  

2.7 Freeze-Drying Method  

Porosity can be acquired in the first step of freeze-drying (lyophilising) the solution containing 
polymeric biomaterials, when the ice crystals of the solvents are formed within the solution. The ice crystals 
serve as a porogen whose size can be easily controlled by adjusting the freezing temperature and the 

(a) (b) (c) (d) (e) 

(a) Dissolving (b) Dropping (c) Stirring (d) Centrifuging (e) Washing (f) Freezing (g) Freeze-Drying 
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concentration of the solution. Structural integrity of the porous sponge-like structure should also be 
maintained, even after wetting in the interstitial fluid or culture medium. If the scaffold is made from water-
soluble materials without cross-linkage or if only the 3D frame is maintained by the ionic interaction, then 
the 3D sponge structure can be easily resolved or turned into a gel-like structure in the aqueous environment. 
This structural integrity in the aqueous environment is determined mainly by the degree of water 
accessibility within the frames of the scaffold and the presence of degradation enzymes, which is more 
importantly regulated by the ionic status, water solubility, and innate property of the biomaterial itself. 
Therefore, the concentration of solution, ionic status of biomaterials, solvents, and freezing temperature are 
important factors to be considered in the manufacturing of suitable tissue engineering scaffolds. The 

procedure for freezing-drying is (cf. Figure 2.7): 

(a) The polymer is solubilized in a good solvent. The insoluble materials are removed by filtration 
through sintered glass filter. The filtered solution is stored overnight at room temperature to remove 

entrapped air bubbles. The solution is neutralised. 

(b) The solution is poured into a Teflon-coated mould. The solution is freeze at – 70°C or – 196°C, for 

12 h. 

(c) The solution is freeze-dried by lowering the pressure below 7 mTorr, for 48 h. 

(d) The solution is neutralized by removing excess acid within the scaffold by washing with absolute 

ethanol for 1 h. and with water for 3 h. 

(e) The scaffold is soaked in the solution containing growth factors or matrix proteins. The scaffold is 

freeze at − 70°C and lyophilised in order to maintain the original form of the scaffold. 

 

Figure 2.7: Schematic preparation processing of scaffold by the freeze-drying method. 
[Kim et al., 2007a]  

2.8 Thermally Induced Phase Separation (TIPS) Technique 

Freeze-drying via TIPS has received much attention in industrial applications for the production of 
isotropic, highly interconnected, and porosity-designed membranes. Figure 2.8.a represents a schematic 
temperature–composition phase diagram for a binary polymer/solvent system. Above the binodal curve, a 
single polymer solution phase is formed; and if cooling below the curve, polymer-rich and polymer-poor 
phases are separated in a thermodynamic equilibrium state. The spinodal curve is defined as the line at 
which the second derivative Gibbs free energy of mixing is equal to zero, and it divides the two-phase region 
into unstable and metastable regions. If the system is quenched into the metastable region, phase separation 
occurs in a nucleation and growth mechanism, leading to a bead-like isolated cellular structure. On the other 
hand, if the system temperature is quenched into the unstable region, phase separation takes place in a 
spinodal decomposition mechanism (liquid–liquid phase separation), resulting in a micro-porous 
interconnected structure. The phase separation and freeze-drying method appears as a versatile technique to 
prepare highly porous three-dimensional polymer scaffolds that fulfil all of the requirements for cell 
transplantation. Porosity can be controlled in terms of pore size and morphology by a suitable choice of 
processing conditions and by a strict control of phase separation conditions such as quenching temperature, 

(a) (b) (c) (d) Introduc
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quenching depth, ageing time, polymer concentration, molecular weight, solvent/non solvent composition, 

and additives. 

The schematic procedure for thermally induced phase separation is given in Figure 2.8. 
Polylactide solution with a mixture of good and bad solvent is prepared [Figure a]. The sample is reheated to 
15°C above the measured cloud point temperature, and then placed in a water bath preheated to the 
quenching temperature. It is kept for 2, 10, 30, 60 or 120 min, at the quenching temperature. The annealed 
sample is directly immersed in liquid nitrogen to be fast-frozen for 1 h, and then a small hole is cut in the 

vial cap to release the solvent [Figure b]. 

Freeze-drying is performed in a freeze-dryer at −77°C and 7 mTorr for 3 days in order to remove 
the solvent and obtain the macroporous scaffolds [Figure c]. The dry scaffolds are cut into cubes with a 
surgical blade. Prior to cell seeding, 3D scaffolds are pre-wetted with 70% ethanol for 3 h to sterilise them 
and enhance their water uptake. The ethanol is removed by soaking with agitation for 1 h in six changes of 

PBS, and then the scaffolds are left overnight in the culture media. 

 

Figure 2.8: Schematic preparation processing of thermally induced phase separation method. 
[Kim and Doo, 2007a]  

2.9 Centrifugation Method 

Recently, a centrifugation method has been introduced as an effective method to fabricate 
scaffolds that have various shapes with a uniform surface and inside pore structures. The scaffolds can be 
fabricated in various shapes from many different natural and synthetic polymers by the centrifugation 

method (cf. Figure 2.9). 
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Figure 2.9: Schematic procedure showing the fabrication of scaffolds by centrifugation method and 
photographs of variously shaped scaffolds. 

[Oh and Lee, 2007b]  

1. The polymer solution is solubilized in a good solvent and poured into a syringe. A NaOH/CaCl2 
aqueous solution is prepared into a beaker. The polymer solution is slowly dropped into the NaOH 
solution with vigorous agitation using a homogenizer. The fibril-like polymer is obtained by 
precipitation (suspension in NaOH solution). The fibril-like polymer is washed in excess phosphate 
buffered saline solution (PBS, pH ~7.4) and the following distilled water to remove residual solvent 

and NaOH. A neutralized fibril-like polymer suspension [in distilled water (pH ~7.0)] is obtained. 

2. The fibril-like polymer-suspended solution is poured into a cylindrical (or various-shaped) mould. 

3. The fibril-like polymer is centrifuged for accumulation in the mould and the following fibril 

bonding. 

4. Supernatant is discarded from the mould. 

5. The fibril-like polymer accumulation is frozen in the mould at ~70oC for 12 h and then lyophilised. 

6. The cylindrical (or various-shaped) scaffold is obtained. 

2.10 Injectable Thermosensitive Gel Technique 

One of the simplest and most convenient approaches in tissue engineering applications is to inject 
the polymer–cell or polymer–drug entity into the body. Injectable systems offer specific advantages over 
preformed scaffolds, including easy application, site-specific delivery, and improved compliance and 
comfort for patients. Water-soluble, thermosensitive, or pH-sensitive polymers exhibiting reversible sol–gel 

transition and photopolymerisable hydrogels have been tailor-made as injectables. 

Thermosensitive hydrogels can be formed either by physical gelation without covalent bonding 
(e.g. ionic interaction, hydrophobic association, hydrogen bonding between polymer chains in an aqueous 
solution) or by chemical gelation caused by thermosensitive chemical cross-linkers. The former may go 
through sol–gel phase transitions in response to changes in temperature, but the latter may undergo 
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swelling/shrinking. Thermo-sensitive hydrogels made by physical cross-links between polymer chains are 

very useful for injectable tissue engineering because no toxic organic cross-linkers are usually employed. 

Polyphosphazenes are a new class of inorganic backbone polymers that are superior to many other 
organic systems in term of their molecular structural diversity and property variations. These polymers can 
be used as a reactive macromolecular intermediary by replacing chlorine atoms with organic side groups to 

give various hydrolytically stable polymers. 

The schematic reactions of injectable thermosensitive gel are presented in Figure 2.10. Before the 
reaction, L-isoleucine ethyl ester (IleOEt), glycolic or lactic acid ester and α-amino-ω-methoxy-polyethylene 
glycol (AMPEG) are respectively dried for 1 day, at 50°C in vacuum, for moisture removal. 
Tetrahydrofurane (THF) is dried by reflux over sodium/benzophenone under nitrogen atmosphere. 
Triethylamine (TEA) and acetonitrile are distilled over baryum oxide (BaO) under nitrogen atmosphere. L-
isoleucine ethyl ester hydrochloride suspended in dry THF containing triethylamine is slowly added to 
poly(dichloro-phosphazene) dissolved in dry THF. The reaction is performed for 4 hr at 4°C, and then for 20 
hr at room temperature. TEA and ethyl-2(O-glycol)lactate (GlyLacOEt) oxalic salt dissolved in acetonitrile 

are added to this mixture, and the reaction mixture is stirred for 19 h at room temperature. 

 

Figure 2.10: Reaction of injectable thermosensitive gel. 
[Song and Lee, 2007]  

After AMPEG dissolved in dry THF-containing TEA is added to the polymer solution, the 
reaction mixture is stirred for 2 days at 40°C–50°C. The above reaction mixture is filtered. After the filtrate 
is concentrated, it is poured into n-hexane to obtain precipitate, which is reprecipitated twice in the same 
solvent. The re-precipitated polymer is concentrated. The polymer product is further purified by dialysis in 
methanol for 4 days and then in distilled water for 4 days at 4°C. The final dialysed solution is freeze-dried 

to obtain the final polymer. 

2.11 Liquid-Liquid Phase Separation Technique 

A non solvent such as water is added to a polylactide solution in order to create an emulsion by 
homogenizing these two immiscible phases. A liquid-liquid phase separation occurs at a temperature higher 
than the solvent crystallization temperature. Quenching then locks in the emulsion liquid state structure. 
Solvent and water are then removed by freeze-drying to create porosity. Various factors, such as viscosity, 
interfacial energy, polymer microstructure and concentration, must be controlled to stabilize the emulsion 

with a continuous polymer-rich phase and a dispersed water phase [Schugens et al., 1996]. 
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Liquid-liquid phase separation gives rise to scaffolds with porosity up to 90% and an average pore 
size of 15 to 35 μm depending on the processing parameters and the thermodynamics of the polymer/solvent 
system. In comparison to the previous technique, this method leads to scaffolds with a much larger surface 
area. However, the overall pore size is smaller, and organic solvents are still required. Both limit the use of 

liquid-liquid phase separation in the field of bone tissue engineering [van de Witte et al., 1996]. 

2.12 Solid-Liquid Phase Separation Technique 

A polylactide-solvent solution is quenched below the melting point of the solvent and dried under 
vacuum to remove the solvent by sublimation. Solid–liquid phase separation, with solvent crystallization, 
leads to ladder or sheet-like anisotropic morphologies, which strongly depend on the quenching rate [Ma 
and Choi, 2001; Lo et al., 1995]. The ladder-like structure results from the forward progress of solvent 
crystallization front [Schugens et al., 1996]. When the polymer concentration increases, pore diameter and 
porosity tend to decrease. Porosity of 80−95%, with a pore size mainly between 20 and 100 μm and a 

compressive modulus up to 20 MPa in the longitudinal direction could be obtained. 

This technique was also used to manufacture composite scaffolds, either with hydroxyapatite 
[Zhang and Ma, 1999b]or Bioglass® particles [Maquet et al., 2004; Boccaccini and Maquet, 2003]. Fillers 
were added to the polymer solution before quenching and solvent removal. Similar ladder-like anisotropic 

morphology was obtained, becoming more heterogeneous as filler content was increased. 

2.13 Fibre Mesh/Fibre Bondong Technique 

Fibres, produced by textile technology, have been used to make non-woven scaffolds from PGA 
and PLLA [Cima et al., 1991]. The lack of structural stability of these nonwoven scaffolds, often resulted in 
significant deformation due to contractile forces of the cells that have been seeded on the scaffold. This led 
to the development of a fibre bonding technique to increase the mechanical properties of the scaffolds 
[Mikos et al., 1993]. This is achieved by dissolving polylactide in methylene chloride and casting over the 
polygycolide mesh. The solvent is allowed to evaporate and the construct is then heated above the melting 
point of PGA. Once the PGA-PLLA construct has cooled, the PLLA is removed by dissolving in methylene 
chloride again. This treatment results in a mesh of PGA fibres joined at the cross-points [Sachlos and 

Czernuszka, 2003]. 

Bonded PGA fibre structures with high and open porosity, a high area-to-volume ratio and pore 
diameters up to 500 μm were thus produced. These biocompatible matrices, with structural integrity, are 
suitable as scaffolds for organ regeneration. In addition, the technique does not lend itself to easy and 
independent control of porosity and pore size. Finally the combination of toxic chemicals and high 
temperature presents difficulties if cells or bioactive molecules, such as growth factors or proteins, are to be 

included in the scaffold during processing. 

2.14 Hydrocarbon Templating Technique 

By using a hydrocarbon particulate phase as a template it is also possible to form pore for a wide 
range of polymers. The use of hydrocarbon template allows for enhanced control over pore structure, 
porosity, and other structural and bulk characteristics of the polymer foam. Polymer foams have been 
produced with densities as low as 0.120, porosity as high as 87% and high surface areas (20 m2/g). Foams of 
polylactides produced by this process have been used to engineer a variety of different structures, including 
tissues with complex geometries such as in the likeness of a human nose [Gibson and Ashby, 1999; Yoda, 
1998; Szycher and Lee, 1992; Guidoin et al., 1988; Suh and Webb, 1988; Alsbjörn, 1984; Pruitt and Levine, 
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1984; Bruck, 1982; Lindenauer et al., 1976].A schematic representation of the steps involved in the 

preparation of polymeric foams is given in Figure 2.11. 

Step 1: The polymer is dissolved in a suitable solvent and then mixed with the hydrocarbon porogen 

(e.g. paraffin, beeswax, bonewax) to yield a mouldable mixture. 

Step 2: This mixture is then compacted in a Teflon® mould. 

Step 3: The polymer/porogen mixture in the mould is then immersed in an aliphatic hydrocarbon 
solvent (pentane, hexane), which is a nonsolvent for the polymer. During this step, the porogen and polymer 
solvent are extracted with concurrent precipitation of the polymer phase. To improve the efficiency of 
solvent penetration, the mould is equipped with small openings on all faces. Residual porogen is removed by 

repeating the last step. The foam obtained is then dried under vacuum to remove any trace of solvents. 

 

Figure 2.11: Schematic stepwise representation of the polymeric foaming using hydrocarbon porogen. 
[Shastri et al., 2000] 

2.15 Microspheres Bonding Technique 

PLGA has been also sintered with microspheres of varying sizes [Borden et al., 2003]. These 
authors manufactured foams with porosity ranging between 30 and 40%, and an elastic modulus ranging 
beween 135 and 300 MPa. They presented their scaffold as a reverse template of trabecular bone, since 

scaffold resorption would leave a porosity of about 70%, corresponding to bone void volume. 

2.16 Rapid Prototyping Techniques 

Rapid prototyping technologies aim at producing complex free-form parts directly from a 
computer aided design model. 2D printing or 3D prototyping and fused deposition modelling were tested to 
obtain porous structures in the biomedical field. 3D prototyping consists of printing a binder through a print 
head nozzle onto a powder bead [Cima et al., 1991]. Removing the excess powder leads to the porous 
structure. The part is built sequentially in layers, at room temperature. The main problem with bio-
resorbable polymers is the use of organic solvents.  

In the fused deposition modelling process, parts are also fabricated in layers, where a layer is built 
by extruding the material in a particular lay-down pattern, directly defined from a computer aided design 
(CAD) file [Hutmacher, 2000]. A drawback of these techniques is that they are cost-effective, and require 
the use of complex and specific equipment. Fused deposition modelling uses a moving nozzle to extrude a 
fibre of polymeric material (x- and y-axis control) from which the physical model is built layer-by-layer. 
The model is lowered (z-axis control) and the procedure repeated. Although the fibre must also produce 
external structures to support overhanging or unconnected features that need to be manually removed, the 
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pore sizes in tissue engineering scaffolds are sufficiently small enough for the fibre strand to bridge across 

without additional support structures. Figure 2.12 shows this system. 

 

Figure 2.12: Schematic diagram of the fused deposition modelling (FDM) system. 
[Sachlos and Czernuszka, 2003; Scott, 1992]  

2.16.1 Three Dimensional Printing (3 DP) 

This system, developed by researchers at the University of Freiburg, [Landers and Mülhaupt, 
2000] involves a moving extruder head (x-, y- and z-axis control) and uses compressed air to force out a 
liquid or paste-like plotting medium. The extruder head can be heated to the required temperature. The 
medium solidifies when it comes in contact with the substrate or previous layer. Figure 2.13-A shows the 

general principle of this system. 

 

Figure 2.13: Schematic diagram of the 3D BioplotterTM system. 
[Sachlos and Czernuszka, 2003] 

In Figure 2.13-B, 3DP incorporates conventional ink jet printing technology (x- and y-axis 
control) to eject a binder from a jet head, which moves in accordance to the CAD cross-sectional data, onto a 
polymer powder surface [Sachs et al., 1998]. The binder dissolves and joins adjacent powder particles. The 
piston chamber is lowered (z-axis control) and refilled with another layer of powder and the process is 
repeated. The unbound powder acts to support overhanging or unconnected features and needs to be 

removed after component completion.  

2.16.2 Stereolithography (SLA) 

The process involves selective polymerisation of a liquid photo-curable monomer by an ultraviolet 
laser beam [Hull, 1990]. The UV beam is guided (x- and y-axis control) onto the liquid monomer surface in 
accordance to the CAD cross-sectional data. After the first layer is built, the elevator holding the model is 
lowered into the vat (z-axis control) so as to allow the liquid photopolymer to cover the surface. A wiper 
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arm is then displaced over the liquid to flatten the surface. The procedure is repeated until the model is 
completed. This system requires support structures to be added to the model, to prevent any overhanging or 
unconnected features from falling to the bottom of the liquid-filled vat. After completion, the model is raised 

and any support structures are removed manually. Figure 2.14 shows the principle of this system. 

 

Figure 2.14: Schematic diagram of the Stereolithography (SLA) system. 
[Sachlos and Czernuszka, 2003] 

2.17 Other Derivated Techniques 

Each of the techniques presented has its advantages, but none can be considered as ideal 
processing method for a scaffold to be employed for all tissues [Murphy and Mikos, 2007]. Macro-porous 
polymeric foams have been produced by dispersion of a gaseous phase in a fluid polymer phase, leaching of 
water-soluble inorganic fugitive phase, phase separation, polymer precipitation, particle sintering, extrusion, 
and injection moulding [Gibson and Ashby, 1999; Suh and Webb, 1988; Frisch and Saunders, 1972]. Air 
drying phase inversion has been also tested [Park et al., 1997]. However, these processes do not generally 
offer optimal control over pore structure (cell diameter and pore interconnectivity) and bulk characteristics 
(density, void volume, mechanical and electrical properties). Since PLLA is partially crystalline, it is not 
possible to obtain uniform porous structures with the gas foaming technique at temperatures lower than the 

melting point [Quirk et al., 2004]. 

2.17.1 Combination of Leaching of a Fugitive Phase and Polymer Precipitation 

By combining two distinct foaming processes, (i) leaching of a fugitive phase with (ii) polymer 
precipitation, one could attain enhanced control over both porosity and bulk properties of polymer foam. 
This was achieved by using a non-water-soluble particulate hydrocarbon fugitive phase derived from waxes, 
which allowed for the formation of pores with concomitant precipitation of the polymer phase. The macro-
porosity of the polymer foam was determined by the hydrocarbon fugitive phase (porogen), which also 
functioned as a template for the rapid precipitation of the polymer. Bulk properties of the foam could be 
manipulated independently of the macro-porosity and pore size by incorporation of inorganic and organic 

fillers into the highly viscous polymer phase.  

The process is applicable to a wide range of polymer systems including water-soluble polymers, as 

long as the following conditions are satisfied [Shastri et al., 2000]:  

- The hydrocarbon porogen is extracted below the melting temperature of the polymer, to ensure 

isotropy in the properties of the resulting foam. 

- The polymer has good solubility (at least 100 mg/ml) in a solvent that is a poor solvent for the 

porogen, to obtain a viscous polymer solution wherein the porogen can be distributed uniformly. 
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- The polymer has a molecular weight of at least 40 kDa, to ensure structural stability of the resulting 

foam. 

2.17.2 Phase-Change Jet Printing 

This system comprises two ink-jet print heads; each delivering a different material, one material 
for building the actual model and the other acting as support for any unconnected or overhanging features 
[Sanders et al., 1996]. Molten micro-droplets are generated by the jet heads, which are heated above the 
melting temperature of the material, and deposited in a drop-on-demand fashion. The micro-droplets solidify 
on impact to form a bead. Overlapping of adjacent beads forms a line and overlapping of adjacent lines 
forms a layer. After layer formation, a horizontal rotary cutter arm can be used to flatten the top surface and 
control the layer thickness. The platform is lowered and the process is repeated to build the next layer, which 
adheres to the previous, until the shape of the model is complete. Once built, the model can then be 
immersed in a selective solvent for the support material, but a non-solvent for the build material, so as to 

leave the physical model in its desired shape. Figure 2.15 shows this system. 

 

Figure 2.15: Schematic diagram of the phase change jet printing system, the Model-Maker II. 
[Sachlos and Czernuszka, 2003] 

3 Polymer Processing by Supercritical Fluids  

Solvents that have interesting potential as environmentally benign alternatives to organic solvents 
include water, ionic liquids, fluorous phases, and supercritical or dense phase fluids [Anastas et al., 2002; 
DeSimone, 2002]. Obviously, each of these approaches exhibits specific advantages and potential 
drawbacks. Ionic liquids (room-temperature molten organic salts), for example, have a vapour pressure that 
is negligible. Because they are non-volatile, commercial application would significantly reduce the volatile 
organic component emission. Recently, various supercritical fluid processing methods have been developed 
for the production of polymer-based materials such as foams, micro-particles, and fibres. Microcellular 

polymers can be foamed with no use of organic solvents through the gas foaming technique. 

3.1 Bases on Supercritical Fluids 

In 1822, Baron Cagniard de la Tour discovered the critical point of a substance in his famous 
cannon barrel experiments [Kemmere and Meyer, 2005]. Listening to discontinuities in the sound of a rolling 
flint ball, in sealed cannon, he observed the critical temperature. Above this temperature, the distinction 
between the liquid phase and the gas phase disappears, resulting in a single supercritical fluid phase 
behaviour. In 1875, Andrews discovered the critical conditions of CO2 [Kemmere and Meyer, 2005]. The 
reported values were a critical temperature of 304.05 K and a critical pressure of 7.40 MPa, which are in 

close agreement with today’s accepted values of 304.1 K and 7.38 MPa. 
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A supercritical fluid is defined as a substance for which the temperature and pressure are above 
their critical values and which has a density close to or higher than its critical density [Darr and Poliakoff, 
1999; Span and Wagner, 1996; Angus et al., 1976]. Above the critical temperature, the vapour-liquid 
coexistence line no longer exists. Therefore, supercritical fluids can be regarded as “hybrid solvents” 
because the properties can be tuned from liquid-like to gas-like without crossing a phase boundary by simply 
changing the pressure or the temperature. Although this definition gives the boundary values of the 
supercritical state, it does not describe all the physical or thermodynamic properties. Baldyga et al. [2004] 
explain the supercritical state differently by stating that on a characteristic microscale of approximately 10–
100Å, statistical clusters of augmented density define the supercritical state, with a structure resembling that 
of liquids, surrounded by less dense and more chaotic regions of compressed gas. The number and 
dimensions of these clusters vary significantly with pressure and temperature, resulting in high 
compressibility near the critical point. To illustrate the “hybrid” properties of supercritical fluids, Table 2.1 
gives some characteristic values for density, viscosity, and diffusivity. The unique properties of supercritical 

fluids as compared to liquids and gases provide opportunities for a variety of industrial processes.  

Table 2.1: Typical values of physical properties of gas, supercritical fluid and liquid. 

[Poling et al., 2001] 
Properties Gas Supercritical Fluid Liquid 
Density  1 100 − 800 1000 

Viscosity  (Pa.s) 0.001 0.005 − 0.01 0.05−0.1 
Diffusivity D (m2s-1) 1.10-5 1.10-7 1.10-9 

In Figure 2.16, two projections of the phase behaviour of carbon dioxide are presented: the 
pressure-temperature (Figure A) and the density-pressure (Figure B) diagrams. The critical point at the Tc 
critical temperature and the Pc critical pressure marks the end of the vapour-liquid equilibrium line and the 
beginning of the supercritical fluid region. Density of CO2 as a function of pressure at different temperatures 
(solid lines) and at the vapor-liquid equilibrium line (dashed line). At the critical point, the densities of the 
equilibrium liquid phase and the saturated vapour phases become benefits. Supercritical carbon dioxide has 

also desirable physical and chemical properties. 

 

Figure 2.16: Phase diagrams P-T and -P for a pure CO2. 

[Span and Wagner, 1996; Angus et al., 1976] 
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In Table 2.2, the critical properties of some compounds which are commonly used as supercritical 
fluids are shown. Of these, carbon dioxide and water are the most frequently used in a wide range of 

applications. 

Table 2.2: Critical conditions of several substances. 
[Leitner and Jessop, 1999] 

 

Recently, various supercritical fluid processing methods have been developed for the production 
of polymer-based materials such as foams, micro-particles, and fibres. Microcellular polymers can be 
formed with no use of organic solvents through the gas foaming technique. In this process the polymer is 
saturated, first, with carbon dioxide (CO2) at high pressure. Then, the system is quenched in supersaturated 
state either by reducing pressure or by increasing temperature resulting in the nucleation and growth of 
pores—cells inside the polymer matrix [Goel and Beckman, 1994a]. This technique is adapted to PLGA 
because it is an amorphous polymer. In the case of semi-crystalline polymers, the final porous structure 
obtained by this technique is non-uniform, since the diffusion of the fluid is different in the crystallites and 
in the amorphous zones [Fages et al., 2003; Lucien and Foster, 2000; Doroudiani et al., 1996]. With respect 
to dense phase fluids, supercritical water has been shown to be a very effective reaction medium for 

oxidation reactions [Thomason and Modell, 1984; Modell, 1982]. 

3.2 Basic Techniques in Supercritical Fluids Technology 

Classification of SCFs based techniques can be proposed according to the role played by the SCFs 

in the process. Various SCFs processes include [Sekhon, 2010]:  

1. Rapid expansion of supercritical solutions, 

2. Supercritical anti-solvent precipitation technique, 

3. Particles from gas saturated solutions, 

4. Gas antisolvent system, 

5. Precipitation using compressed antisolvent, 

6. Aerosol solvent extraction system, 

7. Solution enhanced dispersion by supercritical fluids, 

8. Supercritical antisolvent system with enhanced mass transfer, 

9. Impregnation or infusion of polymers with bioactive materials. 
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Super critical fluid Technologies, although environmentally friendly and suitable for mass 
production, requires specially designed equipment and is more expensive. In the early days, supercritical 
fluids were mainly used in extraction and chromatography applications [Smith, 1999; Dean, 1998; 
Vandenburg et al., 1997; McNally, 1995; Brunner, 1994; Hedrick et al., 1992]. A well-known example of 
supercritical fluid extraction is caffeine extraction from tea and coffee [McHugh and Krukonis, 1994]. 
Supercritical chromatography was frequently used to separate polar compounds [Berger, 1997; Cantrell and 
Blackwell, 1997]. Nowadays, an increasing interest is being shown in supercritical fluid applications for 
reaction, catalysis, polymerization, polymer processing, and polymer modification [Eckert et al., 1996]. SCF 
technologies are now emerging as an alternative to conventional materials processing methods in the area of 
tissue engineering [Duarte et al., 2009a; Duarte et al., 2009b]. ScCO2 processing may be used to form 
foamed scaffolds in which the escape of CO2 from a plasticized polymer melt generates gas bubbles that 
shape the developing pores. 

3.3 Scaffolds Prepared by Phase Inversion using scCO2 as Anti-solvent 

Phase inversion using supercritical CO2 as antis-olvent is analogous to traditional phase inversion 
with immersion precipitation. This technique consists of immersing a thin film of the polymer solution in a 
bath containing a non-solvent (with respect to the polymer). The properties of the final porous structure are 
mainly controlled by the precipitation temperature, the strength of the non-solvent bath and the composition 
of the casting solution. The use of a supercritical fluid as an antisolvent allows for the tuning of the 
antisolvent strength simply by regulating the pressure. As a consequence, the pressure is an additional 

parameter for tailoring the final structure [Tsivintzelis et al., 2007a]. 

The use of CO2 as an antisolvent for the production of porous structures with polymers has not 
been thoroughly investigated. Since the majority of foaming methods applied in the semicrystalline 
polymers involve the use of organic solvents, there is an important advantage of using phase inversion in the 
presence of supercritical CO2. With this technique, it is possible to dry the final polymer structure simply by 
flashing the pressure vessel with fresh CO2. Thus, there is no need for additional post-treatment in order to 
remove the residual organic solvent [Tsivintzelis et al., 2007a]. Dichloromethane can be selected as solvent 
since it is completely miscible with CO2 at pressures higher than 95 bars and temperatures up to 55oC 
[Tsivintzelis et al., 2004]. Additionally, the solubility of PLLA in CO2 at these conditions is negligible, 
making the CO2 an appropriate antisolvent for this system. Figure 2.17 represents a schematic diagram of the 

system. 

 

Figure 2.17: ScCO2 experimental apparatus (A) CO2 tank, (B) syringe pump and (C) pressure vessel. 
[Tsivintzelis et al., 2007a] 
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3.4 Scaffolds Prepared by scCO2 Foaming 

Mooney and co workers [Harris et al., 1998; Mooney et al., 1996] were the first to describe the 
use of supercritical foaming for the preparation of macr-oporous scaffolds for tissue engineering 
applications. Interconnected porous structures of PD,LLGA were successfully produced [Tai et al., 2007a; 
Singh et al., 2004]. Bioresorbable ceramic–polymer composites were also prepared and are described by 
Mathieu et al., [2005] and Georgiou et al., [2007]. The ability to process composite matrixes of ceramics 
and polymers or blends of different polymers demonstrates the versatility of this technology and shows the 
potential to develop materials with the desired morphological and mechanical properties. The gas foaming 
process has also proven to be a very promising technique for the preparation of scaffolds loaded with growth 
factors and cells. Howdle et al., [2001] have encapsulated proteins in biocompatible and biodegradable 
polymers, such as PLA, PLGA, and Polycaprolactone (PCL), at relatively low temperatures and moderate 

pressures. 

CO2 exhibits unique features and benefits, such as appreciable solubility in polymer melt and fast 
diffusivity that ensures an efficient mixing process, as well as environmental advantages and low cost. On 
the other hand, the challenges of CO2 as a foaming agent are mainly associated with the higher-pressure 
operation, dimensional instability during the foam shaping process, and paradoxically the high diffusivity of 

CO2 out of the foam resulting in a quick loss of R-value (resistance to heat flow).  

The volumic variation between the pellets and the foams are illustrated in Figure 2.18. This 
technique has the potential to be used to prepare 3D materials having high porosity and interconnected pores 

with a wide range of applications in the field of tissue engineering and regenerative medicine. 

 

Figure 2.18: Schematic representation of the supercritical fluid foaming process. 
[Duarte et al., 2009b] 

A foaming process can be carried out in a batch system where the pre-shaped samples are placed 
in a pressurized autoclave to be saturated with CO2 [Kumar and Weller, 1994a, 1994b; Park et al., 1994]. 
Nucleation and cell growth are controlled by the pressure-release rate and foaming temperature. The 
introduction of nano-particles to foams provides a novel solution to further sharpen the operation window 
and the product performance in weight, mechanics, insulation and barrier. Because of the similarity of 
foamed porous structure to some human tissues, CO2 is also proposed to foam biodegradable or 
biocompatible polymers to produce porous scaffolds or other medical devices. Since CO2 can easily escape, 

the prepared products are always assured to be solvent-free and non-toxic. 

The principles of the scCO2 foaming by pressure quench method by supercritical carbon dioxide 
(scCO2) were first described by Goel and Beckman [1994a]. Schematically, the foaming effect can be 
separated in five stages (cf. Figure 2.19). The pellets  were exposed to carbon dioxide for few minutes 
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(tsat). An increase of temperature (Tsat) above Tc  enhances the free volume and the increase of the pressure 
(Psat) above Pc  causes the sorption of scCO2. The decrease of the temperature is  at the origin of the 
departure of CO2 molecules and the depressurization of the chamber  causes the pore formation inside the 

polymer.Evolution of this phenomenon can be further explained as under. 

 Period I: The CO2 is compressed to a pressure vessel where a polymer sample had already been 
placed (Part I of the Figure 2.20). Generally, the process is carried out until a value above the critical 
pressure (Pc). Pressure and temperature increase with the compression until desired values called 
saturation pressure (Psat) and saturation temperature (Tsat). The sorption-diffusion of CO2 begins but 

since the time of this period takes maximum 2 minutes, it can be neglected. 

 Period II: The sorption-diffusion of CO2 takes places. The solubility (phase equilibrium) is the 
limiting factor of the sorption-diffusion of CO2 into the polymer since the polymer is not soluble in 
CO2. Moreover, under high pressure, the sorption of CO2 into the polymer brings the structural 
phase transition of polymer. Polymer swells as the CO2 sorbed and the transition occurs from glassy 
to plasticized (rubbery) state, by lowering the glass transition temperature of the polymer. This 

period is called the saturation time (tsat) (Part II of the Figure 2.20). 

 

Figure 2.19: Schematic presentation for scaffold generation during scCO2 foaming. 
Modified from [Cooper, 2003] 

 Period III: Period II is followed by the depressurization of the pressure chamber (III). The rate of 
the depressurization (dP/dt) can be controlled. With the pressure drop of the pressure chamber 
comes the temperature drop (dT/dt). The temperature drop is proportional to the pressure drop. 
When the pressure is reduced from the equilibrium state, the formation of nuclei occurs as a result of 
supersaturation. These nuclei grow by the desorption-diffusion of the gas from the polymer matrix. 
We can state that the pressure difference between the two sides of the pore interface is the driving 
force of the pore growth. One must remember that, during the depressurization, the CO2 is not 
supercritical anymore, and its molecular volume is greater than that of the supercritical state. 

Actually, the pore growth is provided by the expansion of CO2 (Part III of the Figure 2.20). 
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 Period IV: The growth of the pores (the swelling of the polymer) continues until the vitrification 
(IV) where the amount of CO2 inside polymer is not sufficient to maintain the plasticized state. In 
the first moments, the pore growth is controlled by the diffusion and then the viscosity comes more 
significant and finally controls the end of the foaming process. Moreover, the growing pores can 

coalesce and reduce the global pore density (Part IV of the Figure 2.20). 

 

Figure 2.20: Evolution of process parameters and the occurring phenomena during the foaming with time. 
(Continuous and dotted lines correspond to P and T variations respectively). 

4 Theoretical Background of Gas Foaming 

The modelling of scCO2 foaming of polymers by pressure quench method requires the resolution 
of the diffusion equation as well as the degree of depression of the glass transition of polymer as a function 
of the amount of CO2 sorbed. Indeed, the isothermal sorption data and its modelling are required for such 

study. 

4.1 Diffusion 

The aim of studying the diffusion phenomenon is to calculate diffusion coefficients for the 
sorption-diffusion and the desorption-diffusion of CO2. These coefficients provide information of diffusion 
behaviour of CO2 into or from the polymer with different conditions. The diffusion is vital to understand 
CO2-polymer interactions. The diffusion of CO2 into polymers results in several changes in the polymer such 
as lowering the glass transition point, manipulating the chain mobility, swelling etc. Rubbery polymers 
(above Tg) obey simply the Fickian diffusion since they have a homogenous liquid-like behaviour. Non-
Fickian diffusion occurs in the glassy polymer and will be modelled by the rules of Fickian diffusion. For 

Fickian diffusion, unsteady state one dimensional equation is given by: 
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Where C is the concentration of the gas, x is the distance that the gas diffuses, D is the diffusion 
constant and t is the time. This equation has been solved by Crank [1975] for constant diffusion coefficient 

inside a plane sheet: 
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where a is the semi-thickness of the polymer pellet, Mt denotes the total amount of diffusing substance 
which has entered the polymer during time t, and M∞ the corresponding quantity after infinite time. On the 
other hand, in the case of the desorption-diffusion, M∞ denotes the amount of CO2 at zero time, Mt, the 

quantity of CO2 which remains in the polymer at time t and n is gas molecules per cm3. 

The reduced version of Equation (2.2) for short times is also given by [Crank, 1975]. 
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Literature and experimental work revealed that, during the sorption and desorption of CO2 into the 
polymer, the diffusion coefficient is not constant. It depends on the concentration of CO2 sorbed by polymer. 
One can say that the more CO2 absorbed, the more CO2 can diffuse easily into or from the polymer. The 
dependency of the diffusion coefficient on the concentration is due to the several effects caused by the 
sorption of the CO2 into the polymer matrix such as manipulation of the polymer matrix, swelling 
(decreasing the bulk polymer density), lowering the glass transition point, lowering the interfacial tension 
and the viscosity of the polymer. Also, by activated state theory the diffusion coefficient is also temperature 

dependent and it increases with the increasing temperature [Koros and Madden, 2004]. 

As proposed by Crank, the average diffusivity of CO2 in polymers can be measured in a 
desorption experiment. For early stages of diffusion (sorption or desorption), the amount of gas remaining in 
a plane sample at any time is related to the diffusion coefficient. This procedure has been applied to analyze 
the sorption of CO2 into the polymers [Kumar and Weller, 1994b; Berens and Huvard, 1989b], and it can be 

used when the sorption curve is plotted against 2/ lt , where l is the thickness of sample, if it is 

approximately linear as far as Mt/M∞ = 0.5. 

The Sanchez-Lacombe’s equation of state (SL-EOS) has been used to predict the behaviours of 
polymer-gas mixtures [Sanchez and Lacombe, 1976]. SL-EOS is a well defined statistical mechanical model 
which is not a physical model of sorption of a gas into a polymer but an equation of state which defines the 
capacity of sorption as well as the swelling of the polymer. The SL-EOS is known as a lattice-gas model 
since the P-V-T properties of a pure component are calculated assuming that the component is broken into 
parts or “mers” that are placed into a lattice and are allowed to interact with a mean-field-type 
intermolecular potential. To obtain the correct system density, an appropriate number of holes is also put 
into specific lattice sites, hence the name lattice-gas model [McHugh and Krukonis, 1994]. We have to 
underline that this equation can be used for rubbery and glassy states of the amorphous or liquid-like 

polymers. In its basic form, the SL-EOS is given by: 
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where TR, PR, ρR are reduced temperature, pressure and density respectively and r represents the number of 

lattice sites occupied by one molecule. 

The reduced parameters can be calculated by: 
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where T*, P*
, ρ

* et ν* are respectively characteristic temperature, pressure, density and volume which 

characterize the pure component; R is the gas constant and M is the molecular weight.  

Different mixing rules have been applied in the literature in order to evaluate the characteristic 
parameters of mixtures [Liu and Tomasko, 2007a; Kiszka et al., 1988]. We have used the following so-called 

van der Waals-1 mixing rules in order to calculate the characteristic parameters for binary mixture: 
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where the subscripts 1 and 2 denote the properties for components 1 and 2, respectively,   is the 

volume fraction of a component in the mixture, m is the weight fraction of the component in the mixture, 

and kij is the binary interaction parameter.  

As can be seen from the equation 2.7, the mixing rule for Pij
* carries the geometrical average of 

the characteristic pressure of the two component. The presence of the binary interaction parameter in this 
equation is providing a correction of the deviation of the mixture characteristic pressure from the geometric 

average. The value of (1- kij) typically diverges ± 20 % from the geometric average. 

Polymer-gas system has been solved by assuming that the polymer is non-volatile and insoluble in 
the gas phase and the sorption (w/w) CO2/polymer is computed through a non-linear Levenberg-Marquardt 
algorithm (the Minerr function of Mathcad) until the equilibrium is reached, which means in both phases, 

temperature, pressure and chemical potentials are to be equal: 
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In equation 2.11, G and P represent gas and polymer phases, respectively, subscripts 1 and 2 

represent the CO2 and the polymer respectively, and i  represents the volume fraction for the component i. 

According to SL-EOS, the chemical potential of component i in the polymer, is given by: 
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where X is given by: 
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For a pure component, where  = 1, the chemical potential can be reduced to: 
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Equations neglecting the solubility of polymer in CO2, have been solved for the chemical potential 
of CO2 in the fluid phase. As mentioned above, the values of three characteristic parameters for each pure 
component and of one binary interaction parameter for polymer-CO2 mixture are required in the SL model. 

The pure component parameter values were all found in the literature, as reported in Table 2.3.  

Table 2.3: SL-EOS characteristic parameters for CO2 and PLGA50:50. 

Component P* (bar) T* (K) ρ* (kg / m3) Reference 
CO2 5745.0 305 1.510 [Kiszka et al., 1988] 

PLGA50:50 5727.4 649.63 1.4516 [Liu and Tomasko, 2007a] 

Below the critical point, the behaviour predicted by SL equation of state is that typical of a cubic 
equation of state: at a given pressure, up to three roots, those are density values, and can be found from 
equation 2.4. The Mathcad program proposed by Kennedy [2003] has been used to solve the equation set 

2.4−13 and it is presented in Annex A-1.1 

4.2 Plasticization of Polymers by CO2 

With the exception of a few polymers, such as poly(dimethylsiloxane) and some specially 
synthesized fluoropolymers, most high molecular weight polymers show poor dissolution in supercritical 
CO2 [Adamsky and Beckman, 1994; Desimone et al., 1992]. In those circumstances, carbon dioxide acts as a 
diluent rather than a solvent. As the content of CO2 is increased in the polymer phase, the sorption and 
subsequent swelling of an amorphous polymer can cause the depression of glass-to-rubber transition 

temperature (Tg) of a polymer by 30°C or more [Tomasko et al., 2003; Condo et al., 1992; Wissinger and 

Paulaitis, 1987]. 

Gas foaming takes advantage of the plasticizing properties of carbon dioxide. It is qualitatively 
known for many years that the compression of solid materials with gases alter the phase equilibrium of pure 
component, in particular, the dissolution of carbon dioxide lowers the Tg of amorphous polymers, and in 
some cases, significantly. The reduction of glass transition temperature is a thermodynamic effect due to 
intermolecular interactions between carbon dioxide and the polymer. Stronger interactions enhance Tg 
depression, as does chain flexibility. The use of this technique is, however, limited to amorphous polymers 

or semi-crystalline polymers with low Tg. 

It was assumed that polymer segments remain completely immobile below Tg, while small 
plasticizers (e.g., gas molecules) are able to move and fill the holes within the polymer matrix. Tomasko et 
al. [2003] have shown that if a polymer is exposed to a pressurized gas, the glass transition temperature of 
this one decreases monotonically. This analysis is based on the assumption of Wissinger and Paulaitis [1991 

and Dimarzio and Gibbs [1963] that the conformation entropy is zero.  
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The basic approach developed by Chow in 1980, is very useful in order to estimate the depression of 

Tg of polymer as a function of the weight fraction of diluent sorbed: 
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where Tg0 is the glass transition temperature of the polymer without a diluent and the parameters β and θ are 

given by:  
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where, z is the number of coordination, R is the gas constant, Mm is the molecular weight of the monomer, 
Md is the molecular weight of the diluent, ΔCp(Tg) is the change in the heat capacity of polymer at glass 

transition and w is the mass fraction of the diluent.  

In Table 2.4, we have presented the parameters used for the predictions of the depression of glass 
transition point using Chow’s model. A basic Mathcad program is coded, and presented in Annex A.1.2, 

which calculates and plots the depressed Tg as a function of wCO2 sorbed. 

Table 2.4: Parameters used to calculate the depression of Tg according to Chow’s model. 

Polymer 
Mm 

(g/mol) 
Tg0 
(°C) 

ΔCpTg 
(J/g°C) 

References for Tg0 
and ΔCp 

PL,DLLA 72 60.1 0.347 Measured via DCS 
PLGA85:15 70 53.1 0.451 Measured via DCS 
PLGA50:50 65 49.2 0.499 Measured via DCS 

The Chow’s model provides a reasonable explanation for the reduction in Tg for polystyrene 
plasticized with high-pressure gases [Wang et al., 1982]. A similar approach was used by Barbari and 
Conforti [1992], who also reviewed recent theories of gas sorption in glassy polymers. The Flory–Huggins 
lattice fluid theory developed by Panayiotou and Vera [1982] and Sanchez and Lacombe [1978, 1977] 
appears to be particularly useful in applications to polymers plasticized with high pressure gases and 
supercritical fluids. A statistical thermodynamic approach was developed by Dong and Fried [1997] to take 
account for the mixing of polymers, small molecules, and holes, which are different in size. They conclude 
that plasticizing efficiency is largely determined by polymer–plasticizer interactions and plasticizer segment 
size. This approach shows that highly soluble CO2 is expected to be a highly efficient plasticizer due to its 

small size although its interactions with polymer are quite weak. 

The plasticization of polymers induced by scCO2 is characterized by increased segmental and 
chain mobility and by an increase in interchain distance. The plasticizing effect of CO2 is the result of the 
ability of CO2 molecules to interact with the basic sites in polymer molecules. It has also been shown 
experimentally that such interactions between CO2 and polymer functional groups reduce chain–chain 
interactions and increase the mobility of polymer segments [Kazarian et al., 1997]. High viscosity is a major 
obstacle in processing high molecular weight polymers. To overcome this obstacle, one option is processing 
at higher temperatures since viscosity decreases with increasing temperature. However, at elevated 
temperatures the degradation of polymers occurs. Thus, the use of CO2 which in turn results in a reduction in 
the viscosity, allows processing of polymers at low temperatures and polymer degradation is avoided [Flichy 

et al., 2001]. 
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4.3 Nucleation 

As we have explained earlier, when the pressure is reduced from the equilibrium state, the 
formation of nuclei occurs as a result of supersaturation. This number of nuclei can be calculated by using 
the classical nucleation theory of the physical chemistry. The number of pores generated can be modeled by 

calculating the number of nuclei generated.  

In the classical nucleation theory, the free energy of the formation of a cluster of radius r in a 
closed isothermal system in chemical equilibrium is given by Tsivintzelis et al. [2007a] and Adamson and 

Gast [1997]: 

 2
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4
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4
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G         (2.17) 

where r is the radius of the spherical cluster, γ is the interfacial tension and ΔP is the pressure between the 

two sides of the interface.  

When ΔG is plotted against cluster size, one obtains a curve that shows a maximum at a critical 
radius rc: 
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Equation 2.18 is the Young-Laplace equation. The maximum value of ΔG for homogenous 

nucleation is obtained by substituting equation 2.17 into equation 2.19): 
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The interfacial tension of the mixture is calculated by the following equation given by Goel and 

Beckman [1994a]: 
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where ρ are the densities and wCO2s is the weight fraction of CO2 absorbed by the polymer.  

The surface tension of PLGA50:50 can be taken as 35.3 N/m as reported by Vargha-Butler et al. 
[2001]. The interfacial tension of CO2 is essentially zero at supercritical state, thus it will not be introduced 
in the equation. A more complicated model which predicts the depression of interfacial tension of a polymer 
as a function of CO2 sorption is proposed by Harrison et al. [1996]. Unfortunately, this model requires 
experimental data for the depression of the interfacial tension as a function of CO2 and will not be 

considered here.  

Steady state rate of nucleation can be described by the following equation [Goel and Beckman, 

1994a]:  
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where C is the concentration of the dissolved fluid inside the polymer matrix (number of molecules per 
volume), k is the Boltzmann constant, T is the temperature and f0 the frequency factor for the gas molecules, 

which describes the rate at which nuclei with critical radius are transformed into stable bubbles.  

Frequency factor f0 can be expressed as a function of the critical radius [Goel and Beckman, 1994a]:  

 2
0 4 cimp rZRf          (2.22) 

where Z is the Zeldovich factor and Rimp is the impingement rate of the gas molecules per unit area. ZRimp 

can be used as a one time fitter parameter within the calculations.  

Since foaming is an unsteady state process, we have to take into consideration time as a variable 
and integrate the nucleation rate in order to calculate total number of nuclei generated within the nucleation 

time: 

 
vitrP

satP

vitrt

total dtdP

dP
NdtNN

,

,

0

,

0

0        (2.23) 

where sat and vitr denotes the saturation and vitrification respectively.  

It is in our knowledge that the foaming of polymers occurs while the CO2 is desorbs. Hence, one 
can say that the dissolved amount of fluid in the polymer matrix is not constant within the foaming time and 
it decreases. Also, while foaming occurs, polymer swells as the CO2 changes its state from supercritical to 
gas (the volume of CO2 increases). So, one can say that in the presence of these two effects the concentration 
of CO2 in the matrix decreases. This concentration dependency must be placed in the nucleation rate 
equation and nucleation rate must be integrated with time. One can model the decrease of mass within the 
foaming time by using equation 2.3 and fitting it to the desorption data. The change within the volume can 
be expressed with a linear relationship between initial and final volumes. One can assume that there is no 
volume change after vitrification. The variation of CO2 concentration is not considered in the existing 

model. 

4.4 Distribution of Pores 

Scaffolds must meet certain fundamental characteristics such as high porosity, appropriate pore 
size, biocompatibility, biodegradability and proper degradation rate [Ma and Choi, 2001]. Scaffolds for 
tissues require specific properties such as an interconnected porosity higher than 75% to provide a high void 
volume for nutrient diffusion [Temenoff et al., 2000]. Furthermore an optimal pore size necessary to promote 
cell adhesion must be in the range of 100−300 μm [Boyan et al., 1996]. Finally, mechanical properties 
should approximate those of native cartilage bone, in order to support body load and avoid excessive micro-

motions at the scaffold/bone interface [Büchler et al., 2003; Temenoff et al., 2000].  

Ideally a scaffold should possess the following characteristics containing the desired biologic 

response [Hutmacher, 2001]: 

 three-dimensional and highly porous with an interconnected pore network for cell/tissue growth and 
flow transport of nutrients and metabolic waste,  

 biodegradable or bioresorbable with a controllable degradation and resorption rate to match 
cell/tissue growth in vitro and/or in vivo,  

 suitable surface chemistry for cell attachment, proliferation and differentiation,  
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 mechanical properties matching those of tissues at the site of implantation, 

 easily processable to form a variety of shapes and sizes. 

In batch foaming, a polymer in disc or powder form is subjected to supercritical CO2 flow without 
mixing. After venting the CO2 by depressurization, thermodynamic instability causes supersaturation of the 
CO2 dissolved in the polymer matrix and hence, nucleation of cells occurs. The growth of the cells continues 
until the polymer vitrifies. The saturation pressure, the saturation temperature and the depressurization rate 
are the critical parameters in determining the number of cells and the cell size distribution. To predict the 
pore size of foams created, in the literature, there is several numbers of influential studies on diffusion-
induced pore growth. These models consider the polymer as a Maxwell fluid and solve systems of partial 

differential equations by numerical methods [Goel and Beckman, 1995; Arefmanesh and Advani, 1991]. 

The cell number density increased and the cell size decreased with increasing pressure and 
decreasing temperature. A high degree of super-saturation of dissolved CO2 at high pressure and low 
temperature are responsible for such results. Classical homogeneous nucleation theory is generally used to 
calculate the nucleation rate in foaming with supercritical CO2. The energy barrier for nucleation in the 
theory can be calculated as a function of the interfacial tension of the binary mixture and the magnitude of 
the pressure drop. The theory suggests that the energy barrier and the interfacial tension decrease as the 
pressure drop increases. Consequently, the nucleation rate increases and a large number of small cells is 
obtained. In fact, both the pressure drop rate and the magnitude of the pressure drop determine the cell 
density and cell size in microcellular foaming. The higher the pressure drop rate, the greater the nucleation 
rate due to the high supersaturation rate. This allows only a short time for existing cells to grow and, 
consequently, is in favour of formation of small cells. Classical nucleation theory fails to incorporate the 
effect of the pressure drop rate. Moreover, a noteworthy study on CO2-assisted microcellular foaming of 
PLGA is reported by Sparacio and Beckman [1998], in which a minimum in cell size with increasing 
pressure was found instead of the levelling off according to theory. A plausible explanation is low resistance 
to cell growth due to a large decrease in the melting point of the polymer and very low interfacial tension at 

high pressure. 

Detailed studies of the glassy polymer – CO2 system by Wessling et al. [1994] suggest that the 
nucleation mechanism underlying the foaming process is heterogeneous in nature. The significant advance 
made by [Wessling et al., 1994] was that they were able to detect and explained the appearance not only of 
the porous structure in the polymer film after saturation with CO2 but also of a dense layer next to the porous 
layer. They provided a physical explanation and a mathematical model to predict the thickness of this dense 
layer. The studies of McCarthy and coworkers [Stafford et al., 1999; Arora et al., 1998a] on the effect of the 
residual oligomer in polystyrene on its foaming with scCO2 have shown that its presence affects the cell size 
in these foams. This work also questioned the ability of classical nucleation theory to explain the foaming 
mechanism in these systems, and the authors suggest a spinodal mechanism as an alternative route of cell 
formation [Stafford et al., 1999]. Foaming of polypropylene has also been studied extensively by Park and 
Cheung [1997], with the most recent report by Liang and Wang [1999], who highlighted the effect of 
temperature drop during depressurization of the polymer in equilibrium with high-pressure CO2. Handa and 
Zhang [2000] used the existence of a rubbery state in the PMMA at low temperatures to generate foams by 

saturating the polymer with CO2 at 24C to 90C. They demonstrated that the solubility of CO2 in the 

polymer plays an important role in controlling cell density and cell size. Thus, the solubility of CO2 at 34 

bars and temperature of – 0.2C is 22.5% (w/w), while at the same pressure but at 24C, the solubility is just 

7.9% (w/w). 



Chapter 2.                                                  Processes to Manufacture Foams and to Functionalize the Surface  

- 56 - 

Another approach to create microcellular materials was demonstrated by Shi et al. [1999]. First, 
they synthesized a number of chemicals soluble in scCO2 or liquid CO2. These chemicals comprise a number 
of “monomers” containing one or two urea groups and fluorinated “tail” groups that enhance solubility of 
these compounds in CO2. When these compounds were dissolved in CO2, their self-association led to the 
formation of gels. The removal of CO2 via depressurization resulted in the formation of foams with cells 

with an average diameter of less than 1 m. Shi et al. [1999] reported that the bulk density reduction of these 

foams was 97% compared to the parent materials. Sheridan et al. [2000] studied the effects of several 
processing parameters (such as polymer composition, molecular mass, and gas type) on preparing three-
dimensional porous matrices from copolymers of lactide and glycolide and demonstrated that crystalline 
polymers did not produce foamed materials via this approach, while gas treatment of amorphous copolymers 
produced matrices with porosity up to 95%. This work also demonstrated that only CO2 among the other 
gases used (e.g., N2 and He) created highly porous polymer structures in these copolymers [Sheridan et al., 
2000] and explained this by the possible interactions between CO2 and carbonyl groups in PLGA [Kazarian 

et al., 1996a]. 

5 Manufacturing of the Composite Biomaterials 

5.1 Fundements of Co-grinding Process 

5.1.1 Mechanism of Size Reduction 

The properties of a material may be considerably influenced by the particle size and, for example, 
the chemical reactivity of fine particles is greater than that of coarse particles. In addition, far more intimate 
mixing of solids can be achieved if the particle size is small [Richardson et al., 2002]. Practically every solid 

material undergoes size reduction at some point in its processing cycle.  

Also reduction in size causes [Richardson et al., 2002]: 

 Both an increase in area and a reduction in the distance. 

 Separation of constituents, especially where one is dispersed in small isolated pockets. 

 Properties of a material may be considerably influenced by the particle size. 

 Chemical reactivity of fine particles is greater than that of coarse particles. 

 In addition, far more intimate mixing of solids can be achieved if the particle size is small. 

The mechanism of the process of fragmentation is extremely complex. If a single lump of material 
is subjected to a sudden impact, it will generally break so as to yield a few relatively large particles and a 
number of fine particles, with relatively few particles of intermediate size. If the energy in the blow is 
increased, the larger particles will be of a rather smaller size and more numerous and, whereas the number of 
fine particles will be appreciably increased, their size will not be much altered. It therefore appears that the 

size of the fine particles is closely connected with the internal structure of the material. 

During the course of the size reduction processes, much energy is expended in causing plastic 
deformation and this energy may be regarded as a waste as it does not result in fracture. Only part of it is 
retained in the system as a result of elastic recovery. It is not possible, however, to achieve the stress levels 
necessary for fracture to occur without first passing through the condition of plastic deformation and, in this 
sense, this must be regarded as a necessary state which must be achieved before fracture can possibly occur 

[Richardson et al., 2002]. 
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The method of application of the force to the particles may affect the breakage pattern. Four basic 
patterns may be identified, though it is sometimes difficult to identify the dominant mode in any given 

machine [Richardson et al., 2002]. 

 Impact: particle concussion by a single rigid force. 

 Compression: particle disintegration by two rigid forces. 

 Shear: produced by a fluid or by particle–particle interaction. 

 Attrition: arising from particles scraping against one another or against a rigid surface. 

5.1.2 Fragmentation Mechanisms 

The reduction of the material in small fragments or in powder is obtained by the operation of 
grinding. The mechanism of grinding can be explained by the theory of the fracture mechanics and finally 

the fracture of particles subjected to the mechanical forces.  

The resulting stress field generally depends on, as reported by Zapata-Massot [2004]: 

 Intrinsic parameters to the materials: they determine its behaviour at the time of the deformation. 
The field of constraints determines the dimension, the form of the fragments and the new created 

surfaces. 

 The required energy to break the material: the necessary energy to the rupture is additional energy 
for the propagation of a fissure is energy consumer. It is proportional to the section of the grain 

while the energy stored is proportional to the volume. 

 Rate of deformation: it conditions the behaviour of the material. 

 Reduction of the dimensions of the material: it is not limitless and necessitates most of the time of 

the successive phases implying typical different of devices working mass. 

The fragmentation process is a part of the size reduction process. Granular materials submitted to 
fine grinding may be subject to several modes of fragmentation (abrasion, chipping, cleavage, breakage) 
[Render, 1990]. The size evolution is not sufficient to clearly explain the grinding mechanisms. Thus other 
properties such as morphology have to be considered. Indeed, it is recognized that the end-use properties of 
a powder are influenced not only by the size but also by the shape of the particles. Qualitative SEM 
observations have been used to explain assumptions on phenomena appearing in the mills. However, the 
knowledge of particle fragmentation has been limited. Thus, a quantification of the morphology evolution 
during grinding is needed. Experimental studies, carried out using various materials, have shown that the 
size decrease occurs in steps, which suggests that the fragmentation mechanism is complex [Molina-

Boisseau et al., 2002]. 

5.1.3 Agglomeration Phenomena 

The agglomeration phenomena occur during the co-grinding of amorphous polymer material and 

powder filler. 

Size enlargement is any process whereby small particles are gathered into larger, relatively 

permanent masses in which the original particles can still be distinguished.  

Agglomeration is the formation of aggregates through the sticking together of feed and/or recycle 

material [Perry et al., 1997]. 
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The stability of the aggregates is due to the effects of mechanical interlocking that may occur, 
especially between particles in the form of long fibres. Wide size distributions generally lead to close 
packing requiring smaller amounts of binder and, as a result, the formation of strong aggregates. The size 
distribution of particles in an agglomeration process is essentially determined by a population balance that 
depends on the kinetics of the various processes taking place simultaneously, some of which result in 

particle growth and some in particle degradation. 

In general, starting with a mixture of particles of uniform size, the following stages may be 

identified: 

 Nucleation in which fresh particles are formed, generally by attrition. 

 Layering or coating as material is deposited on the surfaces of the nuclei, thus increasing both the 
size and total mass of the particles. 

 Coalescence of particles which results in an increase in particle size but not in the total mass of 

particles. 

 Attrition. results in degradation and the formation of small particles, thus generating nuclei that re-
enter the cycle again [Richardson et al., 2002]. 

5.2 Obtention of Composites by the Co-grinding Process 

Currently, there are two main methods of obtaining composite materials. The first and most 
common are to extrude various raw materials. The second is to chemically synthesize the desired composite. 

Currently a third method of synthesis of composite materials is under development: co-grinding. 

The products from Extrusion are preheated and introduced upstream of an extrusion screw. Within 
the extruder, the temperature gradually increases, leading to a change of state products. The use of screw 
extrusion of various morphologies can perform an intimate mixture between different compounds and 
disperse within one another seamlessly. This technique is widely used for many industrial applications by 

using materials in the form of powder, flakes and granules. 

A second method of obtaining composite is to synthesize chemically. In this case, the matrix is 
dissolved or suspended in a solvent and the load is activated in situ using an oxidizing agent often. The 
composite particles are then filtered and dried. This method is often used to obtain electrical conducting 
polymers [Cassignol et al., 1998; Pouzet et al., 1993]. In However, it is rarely used for composites widely 

because it requires facilities very expensive. 

Each of the two techniques for implementing composite materials cited earlier, has limitations 
which may be thermal, in the case of extrusion, or chemical, in the case of chemical synthesis. In addition, 
both techniques have one thing in common is the difficulty of dispersing the filler in the matrix. For the first, 
if the operating conditions are not well understood, there has appearance of agglomerates, whereas the 
second technique, agitation alone does not to obtain particle size small enough so as to have properties 
homogeneous. Therefore, we decided to explore a new synthetic pathway to obtain composite materials: co-

grinding.  

This technique consists of co-grinding two materials A (polymer) and B (adjuvant/filler) together. 
In the begining, there occurs a phenomenon of fragmentation of particles of different constituents (cf. Figure 
2.21) to a size limit. One of the two components is much more fragmented quickly, here component reaches 

its size limit before fragmentation of A. 



Chapter 2.                                                  Processes to Manufacture Foams and to Functionalize the Surface  

- 59 - 

 

Figure 2.21: Schematic of the phenomenon of fragmentation in the co-grinding. 

The fine particles of component B will have a tendency, because of interparticle forces to stick to 
larger particles. More continuous grinding, the more phenomenon is growing. Different stages of 
agglomeration will be encountered: the simple bonding between two or more particles, then the stage of 
coating particles and finally the agglomeration stage of particles together. The type of observed phenomenon 
will depend, among across the duration of the operation and products affinity. Figure 2.22 shows changes in 

the different stages of agglomeration during the co-grinding. 

 

Figure 2.22: Different stages of agglomeration during the co-grinding: (a) adhesion, (b) coating and (c) 
agglomeration. 

This technique was developed accidentally in 1968 to manufacture metal alloys. The metals were 
co-milled in a strongly energetic ball mill, producing a fine powder as an alternative mechanism of fractures 
and cold welds. Gilman and Benjamin [1983] were interested in the mechanisms of alloys formation and 
have applied the technique to a large number of metallic elements to create a data library. Currently in the 
process of mechanical alloying is no longer reserved solely for metals. Indeed, Yenikolopyan [1988] studied 
the system polypropylene / polyethylene low density in a ball mill. The co-grinding increases the surface 
specific powder consisting of small clusters whose size varies between 100 nm and few microns. An X-ray 
analysis showed that the crystallinity of the mixture increases with time of co-grinding. The use of milling 
for the formation of mixed polymer can thus produce very homogeneous powders. Other studies by Pan and 
Shaw [1994, 1995] showed that both polymers semi-crystalline and thermoplastic (polyamid 6,6 polymer 
and high density) can be co-ground as a fine powder using a vibrating ball mill operating in the dry process. 
The mechanical alloying to produce a material with one hand, a more homogeneous charge consisting of 
grains less than 1 micron and the other improved mechanical properties. Nevertheless, this study was 
conducted in a small mill (a few tens of millilitres) whose dimensions are difficult to extrapolate, by 
technological complexity resulting from the vibrating system. Few studies have examined the production of 
composite materials by co-grinding and even on co-grinding in general. Aspects of training methods and 
mechanisms of materials have mostly been obscured in favour of the characterization of the materials 
obtained. A similar study was done Zapata-Massot [2004] by Zapata for brittle polymer Poly vinyle acetate 

and a mineral filler calcium carbonate to improve the properties of the composite formed. 

In another study by Seyni [2009] shows the interest to implement vegetable biodegradable filler in 
composite materials. The incorporation of starch as filler in the polymeric matrix was carried out by co-
grinding, process supporting the dispersion of a component in the other as well as the homogeneity of the 
composite properties. Co-grinding makes it possible to improve the mechanical and the optical properties, as 
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well as the resistance to water of the material, not only from the improvement of the dispersion homogeneity 

of the filler in the matrix, but also thanks to a modification of the interface quality. 

6 Conclusion 

Different processes for manufacturing scaffolds were discussed in detail with advantages and 
disadvantages. Scaffolds obtained by each technique posses typical structure and morphology and can be 
used as per requirement. Scaffolds for tissue engineering should encourage the growth, migration, and 
organization of cells, providing support while the tissue is forming the scaffolds will be replaced with host 
cells and a new extracellular matrix which in turn should provide functional and mechanical properties, 
similar to native tissue. The material and the 3-D structure of scaffolds have a significant effect on cellular 
activity. Depending on the tissue of interest and the specific application, the required scaffold material and 
its properties will be quite different. Gas foaming technique to manufacture scaffolds discussed with 
reference to kinetics and thermodynamic approach. Diffusion, plasticization of polymer, nucleation and 
desorption phenomena theory play an important role during scaffold forming by gas foaming. The 

experimental results obtained by this technique will be discussed extensively in the later chapters. 
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Chapter 3 

 

Chapter 
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and Designs of 

Experiments

 

 

This chapter is primarily devoted to the theoretical description of experimental facilities and 
analytical techniques employed during the experimental work. Differential scanning Calorimetry (DSC) was 

used to measure the glass transition temperature and the melting temperature of the polymers and other 
thermal data. Viscosimetry and laser granulometry were used for the polymer viscosity and particle size 
characterization. Various microscopic techniques such as porosity analysis, X-ray microtomography and 
scanning electron micrography (SEM) were used. Macroscopic methods such as Brazilian test, surface 

energy analysis were applied.  

 

 

1 Differential Scanning Calorimetry (DSC) 

Phase transition analysis techniques are based on the ability to transfer heat to a material and 
monitor its effects. This class of techniques is known as thermal analysis. Several techniques can be used to 
determine the glass transition temperature (Tg), of bio-polymeric materials, including differential scanning 

calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA). 

1.1 Generalities on Thermal Transitions of Polymers 

Thermal analysis encompasses a wide variety of techniques such as:  

 the measurement of heating curves,  

 dynamic adiabatic calorimetry,  

 differential thermal analysis, DTA  

 differential scanning calorimetry, DSC  

 thermogravimetry, TG  

 thermal mechanical analysis, TMA  

 dynamic mechanical thermal analysis, DMTA  
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Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in 
the amount of heat required to increase the temperature of a sample and reference is measured as a function 
of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the 
experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder 

temperature increases linearly as a function of time. 

The technique was developed by Watson and O’neill [1962] and was introduced commercially at 
the 1963, Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy [ISO - International 
Organization for Standardization, 1963]. Heat-flux DSC and power-compensated DSC are the two types of 

DSC that have been widely used. 

One of the big advantages of DSC is that samples are very easily encapsulated, usually with little 
or no preparation, ready to be placed in the DSC cell, so that measurements can be quickly and easily made 
[Gabbott, 2008]. The specific heat of a material changes slowly with temperature in a particular physical 
state, but alters discontinuously at a change of state. As well as increasing the sample temperature, the 
supply of thermal energy may induce physical or chemical processes in the sample, e.g. melting or 

decomposition, accompanied by a change in enthalpy, the latent heat of fusion, heat of reaction etc. 

In a heat flux DSC, the sample material, enclosed in a pan and an empty reference pan are placed 
on a thermoelectric disk surrounded by a furnace. The furnace is heated at a linear heating rate and the heat 
is transferred to the sample and reference pan through thermoelectric disk (cf. Figure 3.1). The temperatures 
of the two thermometers are compared, and the electrical power supplied to each heater adjusted, so that the 
temperatures of both the sample and the reference remain equal to the programmed temperature, i.e. any 
temperature difference which would result from a thermal event in the sample is ‘zero’. The analogical 
signal, the rate of energy absorption by the sample (e.g. W/s), is proportional to the specific heat of the 
sample since the specific heat at any temperature determines the amount of thermal energy necessary to 
change the sample temperature by a given amount. In other words, the measuring principle is to compare the 
rate of heat flow to the sample and to an inert material which are heated or cooled at the same rate.  

  
(A)-Apparatus (B)-Principle 

Figure 3.1: Differential scanning calorimetry.  

1.2 First Order Transitions  

Changes in the sample, which are associated with absorption or evolution of heat, cause a change 
in the differential heat flow which is then recorded as a peak. The area under the peak is directly 
proportional to the enthalpy change and its direction indicates whether the thermal event is endothermic or 
exothermic. Analysis of a DSC thermogram enables the determination of two important parameters: the 
transition temperature peak (taken at the maximum Tm or at the onset Tonset), and the enthalpy of 

melting/crystallization (Hm/Hc). The extrapolated onset temperature (Tonset) corresponding to the transition 

temperature at zero heating rate can be obtained by plotting peak temperatures as a function of heating rate 

[Ruegg et al., 1977]. 
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The Tm value depends on the molecular weight of the polymer. So, lower grades will have lower 
melting points (cf. Figure 3.2). The crystallinity ratio of a polymer can also be found using DSC from the 

following equation: 

C = (Hm−Hc)/Hm
       (3.1) 

where Hm is the melting enthalpy, Hc is the crystallization enthalpy and Hm
 the melting 

enthalpy of the totally crystallised PLA sample.  

According to Fischer et al. [1973], Hm
 = 93 J.g-1 but according to Miyata and Masuko [1998] 

Hm
 = 135 J.g-1. It can be found from the crystallization peak from the DSC graph since the heat of melting 

can be calculated from the area under an absorption peak as shown on Figure 3.2. Ahmed et al. [2008] and 
Wunderlich [2005] observed that both PLLA exhibits an endothermic melting peak during thermal run. PLLA 
samples exhibit crystallinity. However, for low molecular mass (Mn < 1500) crystallization occurs during 

negative scan and for higher molecular mass, it is observed during positive run. 

(A) (B) 
Figure 3.2: Thermograms of two PLLAs of different Mw. 

[Ahmed et al., 2008]  

1.3 Second Order Transition  

The glass transition is a much more subtle transition than melting or evaporation: glass transition 
is athermic. In Figure 3.3, the change in heat capacity on going through the glass transition temperature is 
drawn for a typical semi-crystalline PLGA polymer. There is only a jump in the heat capacity in the range 

20 to 190 °C. 

The increase in heat capacity, Cp, generally occurs over a temperature range of 5 to 20 K, and 

the jump is often 11 J.K-1.mol-1 for mobile units in the liquid. This means that the decrease in heat capacity 

at the glass transition is 11 J.K-1.mol-1, for a monatomic liquid. 

 

Figure 3.3: Characteristic variation of glass transition in PLGA. 
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To describe the glass transition, the temperature of half-vitrification, Tg, should be specified, i.e., 
the temperature at which the heat capacity is midway between that of the liquid and glassy states (cf. Figure 
3.3). This temperature usually corresponds closely to the point of inflection in the heat capacity, and also to 
the breaks in the enthalpy or volume versus temperature curves at the glass transition. The onset 

temperature, Tonset, is often given.  

2 Intrinsic Viscosity 

2.1 Molecular Mass of Polymer and Viscosity 

The Mn number average molecular mass is the simple arithmetical average of each molecule as a 
summation, divided by the number of molecules. Another measurement of average is the Mw ‘weight’ 
average, and is an expression of the fact that the higher molecular mass fractions of a polymer play a greater 

role in determining the properties than do the fractions of lower molecular mass. 

Mathematically, this is given by: 

1

11
w

MwMw 
         (3.2) 

where, w1 represents the overall weight of molecules of molecular mass M1. The Mw weight 
average molecular mass is invariably greater than the Mn number average as its real effect is to square the 

weight. 

Several methods of measuring molecular weight are used and are summarized here: 

 Osmometry. This is a vapour pressure method, useful for polymers of molecular mass up to about 
25 000; membrane osmometry is used for molecular mass from 20 000 to 1 000 000. These are 

number average methods. 

 Light scattering. This is a weight average method. 

 Gel permeation chromatography. This is a direct fractionation method using molecular mass. It is 
relatively rapid and has proved to be one of the most valuable modern methods. 

 Viscometry. This is a relative method, but the simplest, and its application is widespread in industry. 
Viscometry is the technique to measure the viscosity of materials noting the flow rate/efflux time by 

using different kinds of viscosimeters [Warson and Finch, 2001]. 

The absolute value of Mw (molecular mass average) can only be determined by complex analytical 
methods such as light scattering. For linear and un-branched polymers, the viscosity average of molecular 
weight (Mvis) is approximately equal to the demi-sum of the Mw molecular mass average and the Mn number 

average molecular mass. 

2.2 General Principle of Viscosity Measurement 

Intrinsic viscosity, which is measured from the flow time of a solution through a simple glass 
capillary, has considerable historical importance for establishing the very existence of polymer molecules. 
The most useful kind of viscometer for determining intrinsic viscosity is the “suspended level” or Ubbelohde 

viscometer, sketched Figure 3.4. 
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Figure 3.4: Schematic representation of the Ubbelohde viscosimeter. 

The viscometer is called “suspended level” because the liquid initially drawn into the small upper 
bulb is not connected to the reservoir as it flows down the capillary during measurement. The capillary is 
suspended above the reservoir. In conjunction with the pressure-equalization tube, this ensures that the only 
pressure difference between the top of the bulb and the bottom of the capillary is that due to the hydrostatic 

pressure, i.e. the weight of the liquid.  

Capillary viscometry is conceptually simple: the time it takes a volume of polymer solution to 
flow through a thin capillary is compared to the time for a solvent flow. It turns out that the flow time is 
proportional to the viscosity, and inversely proportional to the density. The so called inherent viscosity or 

logarithmic viscosity number are defined by the following relationships: 

solvent

solvent
solventt




  and 
nsol
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nsolt

'

'
' 


       (3.3) 

The inherent viscosity is defined by the ratio:  

C
rel

inh
 ln

  with 
solvent

solution
rel t

t
      (3.4) 

where C =concentration of polymer in solution (in g/dL) and t =corrected flow time. 

For most polymer solutions at low concentrations, 1/ solventsolution  . Thus, to a very good 

approximation, the relative viscosity is a simple time ratio: solventsolutionrel tt / . 

"Specific viscosity" represents the fractional change in viscosity upon addition of polymer:  

solvent

solventsolution
sp 





  (Unitless)       (3.5) 

Both rel and sp depend on the polymer concentration, so to extract the “intrinsic” properties of 

the polymer chain itself, one must extrapolate to zero concentration. Measuring at zero concentration (C = 0) 
would be useless, but this concept of extrapolating to C = 0 is very important in polymer characterization 

and in thermodynamics generally. As shown on Figure 3.5, the [] intrinsic viscosity corresponds to the 

intercept to C = 0 of the two quantities: the reduced viscosity (sp/C) and the inherent viscosity (C-1.lnrel). 

The intrinsic viscosity is given by the relation [Russo et al., 1986]:  

  rel
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 .       (3.6) 
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Figure 3.5: Variation with concentration of reduced specific and inherent viscosities of PL,DLA (LR 704). 

The units of [] are inverse concentration. Intrinsic viscosity has “grown up” around some fairly 

unconventional units regarding concentration. The most commonly used concentration is g/dL, so [] is 

usually expressed as dL/g. As suggested by the units [] represents essentially the volume occupied by a 

polymer per unit mass: 

 
M

R3
          (3.7) 

where M is the polymer molecular mass and R is the hydrodynamic radius of the statistical 

Gaussian coil model. Thus, []-1 is approximately the concentration within the polymer, or the “overlap 

concentration”. At concentrations exceeding about []-1 polymer molecules will touch and interpenetrate. 

The “semi dilute” regime of polymers begins here. 

2.3 The Mark-Houwink Relationship (MHR) 

More importantly is the scaling relationship between [] and molecular weight known as the 

Mark-Houwink Relationship. For linear and un-branched polymers the viscosity of a diluted polymers 

solution is directly correlated to the viscosity average of the molecular mass Mvis by following MHR. 

a
visMK.][            (3.8) 

Thus, the log-log plots of [] against molecular mass have the intercept log(K) and slope a. The 

slope contains information about the shape of molecules: the values of the Mark–Houwink parameters, a and 
K, depend on the particular polymer-solvent system. Viscosity measurements are extremely sensitive to 

temperature. For a given couple solvent/polymer: 

 A value of a = 0.5 is indicative of a theta  solvent or limit condition between a single and two 

phases. 

 For most flexible polymers in "good" solvents i.e. solvents forming a single phase, 0.5 < a < 0.8. 

2.4 The Mark-Houwink Constants of Polylactides and Hyaluronic Acid 

Different Mark-Houwink parameters are avalaible from literature [Välimaa and Laaksovirta, 

2004; Rak et al., 1985; Schindler and Harper, 1979]. As for polylactides, one can find: 
.  
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 Poly(L lactide):   K = 5.45×10-4 dL/g and a = 0.73 in chloroform at 30°C. 

 Poly(D,L lactide):   K = 2.21×10-4 dL/g and a = 0.77 in chloroform at 30°C. 

 Poly(D,L lactide-co- L lactide):  K = 1.29×10-5 dL/g and a = 0.82 in chloroform at 25°C. 

 Poly(D,L lactide-co-glycolide):  K = 5.45×10-4 dL/g and a = 0.73 in chloroform at 25°C; 

For hyaluronic acid, the Mark-Houwink constants are K = 5.07510-5 dL/g and a = 0.716, in 200 

mM NaCl at 20°C [Gura et al., 1998] and K = 2.22610-5 dL/g and a = 0.796, in chloroform at 25°C 

[Source Javene].. 

3 Laser Granulometry Method  

3.1 Granulometry 

Laser granulometry dates back to the 1970s. It is a technique for measuring the size distribution of 
particles contained in a powder. If this one contains particles of different sizes, it permits to determine the 

proportion of each size class. 

The measure is based on the theory of single scattering and laser diffraction. Beam laser is 
obtained by collimating a beam from Helium – Neon gas tube. This beam is sent to a sensor in which the 
particles are kept in constant movement so that each particle passes at least once in front of the laser beam 

during the measurement time (cf. Figure 3.6).  

(A) (B) 
Figure 3.6: (A) Mastersizer 2000 (Malvern Instruments) (B) Schematic diagram showing the main 

components of a laser diffraction particle size analyzer. 
[Storti and Balsamo, 2009] 

 

3.2 Principle of Laser Analysis 

It uses the following hypotheses: spherical particles are considered to be non porous and non 
opaque at laser radiation and these particles have a diameter superior to their wave length, are in constant 

random motion and diffract light efficiently regardless of their size.  

When a laser beam sheds light on a particle, diffraction patterns can be observed. The intensity of 

the diffracted radiation and the deviation angle differ according to the size of the particles (cf. Figure 3.7). 

Thus, particles with large sizes diffract large light quantities on small angles, while small 
particles diffract small light quantities on large angles. The light angle and intensity permit to 
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obtain the particle size distribution. Three theories may be used for that: Rayleigh’ theory, Lorenz-
Mie’ theory and Fraunhofer’ theory; 

 

Figure 3.7: Scheme of laser diffraction of a spherical particle. 

3.2.1 Rayleigh’ Theory  

Rayleigh’ theory demands that the particle size is much smaller than the wavelength of incident 
light. In that case, the whole particle behaves similarly in a homogeneous electric field. The incident light 

penetrates the particle due to the polarizability  of the particle. The penetration time is short compared to 

the period of incident light. Induced dipole moment is formed when electric charges of non polar particle are 
forced apart by subjecting the particle to electromagnetic wave. Like so, the polarized particle is created. 
The electric field and the dipole moment oscillate synchronously and the axis of the dipole moment is 
downright to the incident light as in Figure 3.8, which also describes the intensity of scattering to different 

directions [Xu, 2000]. 

According to this theory, the laser beam is assumed to not only be diffracted by the particles, but 
is also reflected and diffused. The light will spread until there is a variation in the refraction index of the 
propagation environment. This index variation will create a refraction of the monochromatic beam; the laser 
will reach the detector having been subjected to several variations in its propagation direction. 

 

Figure 3.8: Three dimensional model of scattering from a dipole. 
[Xu, 2000] 

3.2.2 Lorenz-Mie’ Theory 

Lorenz-Mie’ theory (or Mie’ theory) is more detailed and wider theory of the light scattering than 
Rayleigh’ theory. It can be used for spherical particles which can be small, large, transparent or opaque. 
According to Lorenz-Mie theory, the intensity of scattering from the surface of the particle (primary 
scattering) can be predicted with the refractive indexes of the particle and the medium. Lorenz-Mie’ theory 
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also caters the light refraction with the particle (secondary scattering) which is very important when particle 
diameter is below 50 μm. This is also mentioned in the standard for laser diffraction measurements (ISO 
133201) [Kippax, 2005]. According to Lorenz-Mie’ theory the scattering patterns of spheres are symmetric 
with axis of the incident light. Scattering minima and maxima are in different angles, if the properties of the 
particles vary. Figure 3.9, shows the diffraction patterns of two particles with different sizes [Xu, 2000]. 
With large particle (solid line) the peak of intensity is stronger than with small particle (dashed line) and the 
minimum intensity is much closer to axis of the incident light. The intensity peaks are in the same locations 
in the both positive and negative angles because the symmetrical nature of scattering. Very illustrative way 
of displaying the intensity distribution is also a radial graph as in Figure 3.9. The bold trace describes the 

intensity of scattered light in different angles [Xu, 2000]. 

 

Figure 3.9: Scattering patterns of two particles of a different size. 
[Xu, 2000] 

3.2.3 Fraunhofer’ Theory 

Fraunhofer’ theory covers the light diffraction in the aperture which is described in Fresnel-
Kirchoff’ diffraction integral [Brittain, 2003]. In Fresnel diffraction (Figure 3.10-A), distances from the 
point source and the screen to the obstacle forming the diffraction pattern are relatively short. In Fraunhofer’ 
diffraction (Figure 3.10-B), the distances are much longer and all lines from the source to the obstacle and 
forward to the screen can be considered parallel. In Figure 3.10-C, the lens forms smaller image of the same 
diffraction pattern which would be formed on the screen extremely far without the lens [Young and 

Freedman, 2000]. 

(A) (B) (C) 
Figure 3.10: Principles of Fresnel’ diffraction (A) and Fraunhofer’ diffraction (B and C). 

[Young and Freedman, 2000]  
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Fraunhofer’ diffraction assumes that the measured particles are opaque and scatter light at narrow 
angles. Therefore it is applied only with the large particles and gives incorrect results with the fine particles 

[Kippax, 2005]. 

4 Sorption Analysis 

Sorption analyses have been carried out in order to study the amount of CO2 sorbed by the 
polymers at different pressures. The method used, which is proposed by Berens and Huvard [1989a] 
involves the sorption of CO2 into the polymer pellets, followed by very rapid venting of the chamber and 
transfer of the pellets to a precision balance for recording the weight variation during desorption. Recording 
with a video camera gives kinetic data of desorption, and since the early stages of desorption are linear (cf. 
Figure 3.11 for example for P = 125 bars), it allows to extrapolate to t = 0 sec (which is the end of the 
saturation period). This extrapolation gives the total amount of CO2 sorbed by the polymer in the end of the 

saturation period. Sorption of CO2 is then calculated by: 

w

ww
s 0
           (3.9) 

where s is the sorption (g CO2/g polymer), w is the extrapolated weight of polymer and w0 is the 

polymer weight before the experiment. 
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Figure 3.11: Desorption of CO2 from PLGA50:50 with time. 

By changing the saturation time, kinetics of diffusion of CO2 into the polymer samples can be 

calculated. 

5 Microscopic Methods to Analyze Porous Structures 

5.1 Methods to Determine Porosity 

5.1.1 Geometric Porosity 

The porosity of a porous medium describes the fraction of void space in the material, where the 

void may contain, for example, air or water. It is defined by the relationship: 

T

v

V

V
           (3.10) 

where Vv is the volume of void-space (such as fluids) and VT is the total or bulk volume of 

material, including the solid and void components.  
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In our analyses, the diameter and thickness of pellets and foams have been measured using a 
standard engineering caliber. The volume of the polymers is evaluated by v = πr2h, where r is the radius and 

h is the thickness of pellets and scaffolds. The P(%) porosity is calculated by: 

100)1((%) 
unfoamed

foamed
P




        (3.11) 

where unfoamed and foamed  are the density of pellets and foams respectively. 

5.1.2 Mercury Porosimetry 

The number of pores that exist in a typical porous sample is usually of the order of millions, 
billions or even trillions of them per unit mass of solid. These pores are generally interconnected to each 
other by way of a sinuous 3-D pathway. In lattice models Mayagoitia et al., [1994], the porous space is 

distributed between two types of elements: the sites (cavities) and the bonds (necks). 

The technique involves the intrusion of a non-wetting liquid (mercury) at high pressure into a 
material through the use of a porosimeter (cf. Figure 3.12-A). Hg porosimetry experiments comprise two 
stages. The first stage (intrusion) starts with the immersion of a porous sample in Hg. As the pressure of Hg 
is increased, the pore entities are penetrated sequentially, i.e. from the largest to the smaller ones according 
to the current value of the external pressure. The second stage (retraction) consists in the withdrawal of Hg 
from the pores. Since this last process involves the gradual decrease of the external pressure, the succession 

by which pores are emptied goes from the smallest to the largest ones.  

(A) (B) 
Figure 3.12: (A): Hg porosimeter apparatus and (B): Pore size distribution of PLLA samples. 

[Ho et al., 2004] 

The pore size can be determined based on the external pressure needed to force the liquid into a 
pore against the opposing force of the liquid’s surface tension. A force balance equation known as 

Washburn’s relationship (equation 3.12), for the above material having cylindrical pores is given as: 

PD

Cos ..4
P-P GL           (3.12) 

where PL = pressure of liquid, PG = pressure of gas, σ = surface tension of liquid, θ = contact angle 

of intrusion liquid (i.e. mercury) and DP = pore diameter. 

As pressure increases, so does the cummulative pore volume. From the cummulative pore volume, 
one can find the pressure and the pore diameter where 50% of the total volume has been added to give the 



Chapter 3.                                                                                Analytical Methods and Designs of Experiments 

- 72 - 

median pore diameter. As example for PLLA, a Hg typical distribution of pores is presented in Figure 3.12-B 

[Ho et al., 2004]. 

5.1.3 X-ray Microtomography 

Trater et al. [2005] have investigated the use of non-invasive 3-D X-ray microtomography (XMT) 
for microstructure characterization. Moreover, XMT generated images were more conducive to digital 
image processing than SEM images because of ‘razorthin’ depth of focus and sharp contrast between solid 
and void areas. This technique has been widely used for the in vivo imaging of plants, insects, animals and 
humans. X-ray microtomography is a non destructive technique that provides a reasonable level of 

resolution (~ 5 – 20 m). The X-ray microtomography approach is an extension of the computer aided 

tomography (CT) medical imaging technique. X-rays are directed from a high-power source toward a 

sample, and a detector on the opposite side of the sample measures the intensity of the transmitted X-rays 

(see Figure 3.13-A). 

 
(A)-Schematic reprensation of CT. (B)-Example of analysis with PLLA/Silica. 

Figure 3.13: CT principle and images of PLLA/Silica sample. 
[Collins et al., 2010; Hancock and Mullarney, 2005] 

A two-dimensional “shadow” image is produced by accurately rastering the X-ray beam across the 
sample. The sample then is carefully moved relative to the X-ray beam, and the process is repeated to 
produce additional two-dimensional images from various view points. Using a Fourier transform algorithm, 
the two-dimensional images then are combined to generate a complete three-dimensional map of the sample. 
The intensity of the X-rays reaching the detector is controlled by the sample path length and the X-ray 
attenuation coefficient of the material that it encounters on that path [Cao et al., 2003]. The varying levels of 
signal intensity provide a gray-scale in the images (see Figure 3.13-B) from which information about the 

thickness, and attenuation properties of the sample can be deduced.  

5.2 Scanning Electron Microscopy Observations 

Electron microscopy is a technique based on the principle of electron-matter interactions, capable 
of producing high-resolution images of the surface of a sample. A focused electron beam is deflected 
through electromagnetic lenses, scans the surface of the sample for analysis which, in response, re-emits 
different types of emissions (cf. Figure 3.14). The signals that derive from electron-sample interactions 
reveal information about the sample including external morphology (texture), chemical composition, and 
pore size, pore structure and orientation of materials making up the sample. In most applications, data are 
collected over a selected area of the surface of the sample, and a 2-dimensional image is generated that 

displays spatial variations in these properties. magnification ranging from 20× to approximately 30,000×. 
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Figure 3.14: Schematic representation of interactions beam on specimen surface. 

5.2.1 Bases of Image Analysis  

SCION® Image was originally developed for the National Institutes of Health, a federal 
government agency. Basic image properties like contrast, brightness and gamma can be optimized. For 
particle analysis the most important property is the grey level of the image which can be segmented to 

reduce different shades [Niemistö, 2006]. 

Segmentation means the separation of different parts of the image; a foreground objects like 
particles from a background of image. In the pore size and shape analysis segmentation has to be done with 
very high accuracy because the area of the particle is dependent of the accuracy of segmentation and the 
results of analysis have to be reliable [Niemistö, 2006]. Segmentation can base on either discontinuity or 
similarity of intensity values. Discontinuity methods find abrupt changes in the intensity and separate 
various regions on that way. Methods of similarity needs predefined criteria of the intensity value and 

separate regions based on that. 

Thresholding, clustering, region growing, region merging and region splitting are methods which 
are included in the category of similarity methods [Niemistö, 2006]. Thresholding is a central method of 
segmentation due to its simple and intuitive properties. It separates bright foreground objects on a dark 

background and can be defined as: 

        (3.13) 

where f(x) = grey level of the point x, fT(x) = the respective point in the thresholded image and T 

is the threshold. 

If a pixel in fT gets value 1, it is called a foreground (or object point) and if it gets value 0, it is 
called a background. Threshold T can be the same for the whole image (global threshold) or there can be 
different thresholds in different parts of the image (local threshold) [Niemistö, 2006]. The transition between 
the object point and the background may be so unsteady that a human can’t decide where the borders 

between the object and the background exactly go.  

Many papers are published on the automatic selection of the threshold since 1960’s. The most 
commonly used method is created by Otsu [1979]. That method maximizes the class variance of the grey 
levels between the objects and the background and minimizes the intra-class variance. Usually threshold is 
selected from a histogram of the image. If the histogram is bimodal threshold should be selected between the 
modes because supposedly a one mode represents the foreground and the other one represents the 
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background. Otsu’s method can be used if the histogram has even one or two modes. Figure 3.15 shows an 

example of thresholding [Niemistö, 2006]. 
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Figure 3.15: SCION® Image processing and pore data retrieval. 

5.2.2 Morphological Filtering 

The two fundamental morphological operations are erosion and dilation. Erosion is thus 
equivalent to the minimum filter having a sliding window that is equivalent to the structuring element. 
Dilation is thus equivalent to the maximum filter having a sliding window that is equivalent to the 
structuring element. In the case of binary images, the output of erosion is zero unless all the samples in the 
sliding window are ones, whereas the output of dilation is one unless all the samples are zeros. Erosion 
shrinks foreground objects and expands their background, whereas dilation expands the foreground objects 

and shrinks their background.  

Figure 3.16 (A) depicts a binary image and a square-shaped structuring element (top left corner). 
Figure 3.16 (B) and (C) show the erosion and dilation of this image by the square-shaped structuring 
element. The morphological opening and closing are morphological operations that are very useful in image 
processing. Erosion first removes all objects in the image that cannot contain the structuring element and 
shrinks all the other objects. When the obtained image is dilated by the reflected structuring element, the 
objects that have been removed are naturally not recovered. The objects that have not been removed by 
erosion are restored in such a way that protrusions that cannot contain the structuring element remain 
removed. The morphological opening can thus be used to remove small objects and to smoothen the 

contours of larger objects. An example is shown in Figure 3.16 (D). 

(A) (B) (C) (D) (E) 

Figure 3.16: (A): A binary image and a structuring element (top left corner).(B): Erosion (C): Dilation 

(D): Opening (E): Closing of the original image. 

The morphological closing of the structuring element is defined as the dilation followed by 
erosion by the reflected structuring element. Dilation first fills all background structures that cannot contain 
the structuring element and expands all objects. When the obtained image is eroded by the reflected 
structuring element, the filled background structures naturally remain filled. The expanded objects are 
restored in such a way that indentations that cannot contain the structuring element remain filled. The 
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morphological closing can thus be used to fill small holes in the objects and to smooth the object contours. 

An example is shown in Figure 3.16 (E) [Niemistö, 2006]. 

The morphological opening completes first erosion by the structural element and then dilation by 
the reflected structuring element. Erosion shrinks objects which can contain the structural element and 
removes other objects. If some object is removed in erosion, it is not recovered in dilation. Opening 
operation can be used to remove small foreground objects and to smooth the larger objects. The 
morphological closing completes first the dilation and then the erosion. Dilation expands all the foreground 
objects and fills the background structure, if it is smaller than the structural element. Therefore the closing 

operation can be used to fill small holes and to smooth the objects [Niemistö, 2006]. 

6 Macroscopic Methods 

6.1 Mechanical Brazilian Tests 

6.1.1 Principle of the Test 

The direct testing of the tensile strength of brittle materials is very complex. Their disadvantage is 
the low part of volume that is actually charged with the load and the strong dependency of the samples 
surface and their dimensions. Brazilian Test is an indirect measure of the tensile strength and the resistance 

to uniaxial tensile loads without yielding or fracture of brittle materials. The equipment comprises: 

 A loading frame, 25 kN capacity, having a base and a cross head joined together with two solid 
pillars with nuts. At the top, the pillars have long threads for height adjustment. On the base, a 25 
kN hydraulic jack is controlled by a computer. This jack has an integral pumping unit and oil 
reservoir. A 25 kN capacity pressure gauge is fixed to the jack for indicating the load on the 

specimen (cf. Figure 3.17). 

 

Figure 3.17: H25KS Brazilian testing equipment. 

 A Brazilian specimen, cylinder with approximately thickness half the diameter or at least 2 mm. 
The sample was clamped into two jaws of the machine.  

Fairhurst [1964] and Wijk [1978] looked at the validity of the method from a theoretical 
perspective and favoured this method to that of the point-load test. Clarke [1992] found that the crack 
initiates in the centre of the specimen and that stress concentrations built up around the loading plates 
effectively hindering crack propagation in that area. Yu et al. [2006] have investigated the method both 
practically and theoretically and have concluded that results given by the two methods are comparable. The 

method of breakage is well documented and has the term ‘hourglasses’ associated with it. 

This leads to the special advantages, summarized as follows:  

 Simple sample geometry low effort, cost reduction. 
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 Small influence of the surface quality: cost reduction, time reduction. 
 Small samples: more samples per volume; testing of fragments possible. 
 Large effectively loaded volume. 
 Low variation: higher precision of the single values, required number of samples is lower, higher 

reproducibility of the measured values. 

The relationship between applied forces and yield loads is given by:  

σt = - 2.F/.D.t         (3.14) 

where σt = splitting (brazilian) tensile strength (MPa), F = load at (splitting) failure (N),  

t = average specimen thickness (mm), and D = diameter (mm) [Yu et al., 2006]. 

Figure 3.18 shows the principle of Brazilian test (A) and the modelling by the finite elements 
method (B). Figure 3.22 (C) is representative of stress concentrations and (D) of a typical fracture pattern.  

 

 

Figure 3.18: (A): Principle, (B): Load geometry, (C): Simulation and (D): Cleavage of a Brazilian disk test. 

[Rasch et al., 2005] 

6.1.2 Compression of Porous Materials 

In bone and tissue engineering applications, porous scaffolds depending upon applications must 
have sufficient mechanical strength to restrain their initial structures after implantation in vivo. The ASTM 
terminology for porous materials is classified into three groups: interconnecting pores (open pores), non-
connecting pores (closed pores) or a combination of both, the scaffold falling in each group has specific 
properties [Hutmacher et al., 2008]. When pores are open, the foam material is usually drawn into struts 
forming the pore edges through open faces forming a low density solid. When the pores are closed, a 
network of interconnected plates produces a high density solid. The closed pores are sealed off from the 
neighbouring pores. The interconnecting pores are critical parameter in designing a tissue engineering 
scaffold. The interconnecting pores should be large enough to support cell migration and proliferation in the 
initial stages [Hutmacher et al., 2008]. A large interconnection means a low density solid, and therefore low 

mechanical structure.  
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There is often a compromise between porosity and scaffold mechanical characteristics. Therefore, 
the biomechanical challenge in designing a scaffold is to achieve sufficient stiffness and strength in a highly 
porous structure to provide mechanical integrity [Zhang and Ma, 1999a]. The biostability of many implants 
depends on factors such as strength, stiffness, absorption at the material interface and chemical degradation 
[Hutmacher et al., 2008]. The review by Gibson and Ashby [1999], concluded the mechanical characteristics 
of a porous solid depended mainly on its relative density, the properties of the material that made up the pore 

edges or walls and anisotropic nature cause of processing technique.  

The type of deformation and failure of foam depends on the structure and physical characteristics 
of the used materials and on the macrostructure behaviour under compression. The macrostructure of glassy 
foam consists of closed cells. The main part of its mass is concentrated at the nodes and junctions of the 
cells. The deformations and the failure of the material under compression occur according to the stress-strain 
diagram. Three mechanical states are marked by points A, B, C on the graph representing the compression of 
foam sample (cf. Figure 3.19). A

 
corresponds to the end point of the elastic region; B marked the end of the 

plastic region and C the failure of the foam. The compressive elastic (plastic) modulus can be deduced from 

the slope of the corresponding curve. 

Figure 3.19: Compression testing result output for foams  

[Gnip et al., 2004] 

Compression is one of the main stressed states of foam used in a number of medical applications. 

The yielding point A describes compressive strength. For the foams with a stress peak, A is 

defined as the peak value. In the case of no stress peak, at highly porous foams, A can be obtained from the 

intersection point of two tangent lines besides the flexure region. Two alternative parameters were also used 

to characterize compressive strength. For instance, S is defined as the intersection of the stress–strain curve 

with the modulus slope at an offset of 1% strain adopting the guidelines for compression testing of bone 

cement set in ASTM F451-99a, and 10 is defined as the stress at 10 % strain according to ISO 844-2004 for 

determination of compressive properties of rigid cellular foams. The compression stress B
 
corresponds to 

the attenuation of flexural deformations of cell walls when their stability is lost [Gnip et al., 2004]. It can 
also be denoted as stress corresponding to maximum possible compaction σcomp. of the damaged elements of 

foam macrostructure. 

6.2 Surface Energy Experiments 

Surface tension of a liquid is the force required per unit length to stretch a pre-existing surface 
(N/m) while the surface energy of a solid is the work required per unit area to create a new surface (J/m2). 
The surface tension is an intensely sensitive indicator that provides a lot of information about the 
characteristics (e.g. wetting, foaming, emulsification…) of a liquid. It is obvious that a high liquid surface 
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tension causes low wetting properties. A high solid surface energy (mostly hydrophilic), on the other hand, 
means that the interfaces between the solid material and the air are not favourable in a thermodynamic sense. 
Therefore, high surface energy solids are easily wetted by liquids (cf. Figure 3.20). Wetting of a solid 
eliminates the solid-air interface in favour of the solid-liquid interface. Interactions between the solid surface 
and the liquid are resulting in a lowering of energy state, which is a more favourable state [Lazghab et al., 

2005; Shaw, 1992].  

 

Figure 3.20: Wetting of hydrophilic and hydrophobic samples. 

6.2.1 Surface Tensions of Liquids 

Different liquids may be used in surface tension measurements but in general chosen liquids have 
relatively low viscosity and low volatility. Van der Waals forces result to the addition of different 

components: d dispersive and nd non dispersive or attractive forces (polar forces and hydrogen bonds). We 

can write:  = d + nd. 

In some apolar molecules, there exist important intermolecular forces but no permanent dipolar 
moment. When two molecules are in the proximity, instantaneous dipoles interact via London forces. In 
polar molecules, permanent attractive forces create special arrangement increasing stability of the couple 
(Debye and Keesom forces). Interactions between apolar molecules and polar surface are limited to these 

attractive interactions and L
nd polar forces are constituted by the sum of these two forces. A special attention 

must be paid when a hydrogen atom is linked to an electronegative atom. The electronegative atom exerts an 
important attractive force on the unique hydrogen atom and forms hydrogen bonds. Also, even if these types 
of relationships fit for the dispersion forces, and possibly also for some polar (Debye and Keesom forces), 

they are not so good for acid/base and hydrogen bonding.  

For this, Oss [2006, 1994] have proposed other combinations of surface energies. The argument is 
that often, the polar (Keesom and Debye) forces are weak, and can be included in the dispersive 
contribution. The "combined" contribution is denoted by LW (Lifschitz-van der Waals). In addition, there is 
a short-range interaction that is caused by acid-base interactions (hydrogen bonding is a type of Acid-Base). 

In that case, we write:  = LW + AB. 

There are several common methods described in the literature for measuring the surface tension of 
liquids. The surface tensions of liquids can be directly determined by measuring the surface force with a Du 
Noüy ring or a Wilhelmy plate for example. The determination of surface energy is necessary indirect In 
literature, there are several methods to measure their contact angle with a liquid [Petrie, 2000]. By using a 

given model, we only can estimate their surface energy. 
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6.2.1.1 Du Noüy Ring Method 

In this method, a clean platinum ring (cf. Figure 3.21) is placed under the surface of the test liquid, 
and the liquid is slowly moved downward until the ring or plate breaks through the liquid surface. The force 

is recorded, and by means of appropriate conversion factors, the surface tension of the liquid is calculated.  

 

Figure 3.21: The Du Noüy’ ring method. 

6.2.1.2 Wilhelmy Plate Method 

A second method to measure the liquid surface tension involves the use of a pre-weighed plate and 
the measurement of wetting forces. The level of the liquid is raised until contact between the liquid surface 
and the plate is registered. Contact between the liquid and the plate induces a change of working forces on 
the plate, which is measured by the tensiometer. There are 3 forces acting on the plate: the force due to (1) 
vertical gravity, (2) wetting and (3) buoyancy. By using a pre-weighed plate, the tensiometer can exclude the 
gravity force and by extrapolating the measured forces back to zero depth of immersion, the buoyancy force 
can also be excluded. The only force left, the wetting force (Fw), is then easily measured by the tensiometer 

[Mykhaylyk et al., 2003; Gaonkar and Neuman, 1984]. 

A high surface energy (platinum plate) is used in this approach, with the assumption that the 
contact angle (θ) liquid-platinum plate is 0° (Figure 3.22). As a consequence, the liquid-vapour surface 

tension can be calculated as follows: Fw = γLV L cos θ, where γLV is the liquid-vapour surface tension, L the 

wetted length of the plate (twice the width and length of the plate) and θ the plate-liquid contact angle 

[Mykhaylyk et al., 2003; Gaonkar and Neuman, 1984]. 

 

Figure 3.22: The Wilhelmy’ plate method with a platinum plate. 

Its biggest advantage is that the liquid surface tension is analyzed at a fixed point, resulting in a 
static determination method. After the plate is immersed in the liquid and equilibrium has settled, there is no 
movement of the plate or liquid which results in a higher accuracy. Furthermore the Wilhelmy’ plate method 
allows determining the surface tension of viscous liquids [Mykhaylyk et al., 2003; Gaonkar and Neuman, 

1984]. 
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6.2.1.3 Lucas-Washburn’ Method 

This approach is also known as the capillary rise method. It determines the contact angle by 
analyzing the capillary rise of liquids into a porous powder. It is a very simple and universally applicable 
method and is therefore commonly used. The set up of the experiment is done by adding a porous powder to 
a glass tube with a filter on the bottom. The glass tube with powder is densified and attached to the 

tensiometer. The liquid with known density (ρ), viscosity (η), and surface tension (γLV) is placed at the 

bottom of the tensiometer and its level is subsequently raised until contact with the filter of the glass tube is 
registered (cf. Figure 3.23). Via capillary forces, the liquid rises through the porous powder and the increase 
in weight is measured by the tensiometer, resulting in a graph of the square mass plotted against the time. 

The equation that fits this graph is [Dang-Vu and Hupka, 2005; Kiesvaara and Yliruusi, 1993]. 

ls/t = (r.Cos        (3.15) 

where ls is the front of the liquid; t is the time; l is the superficial tension of the liquid, r is the 

capillary radius; θ is the contact angle and η is the liquid viscosity. 

 

Figure 3.23: Principle of the absorption Wasburn’ method. 

6.2.1.4 Surface Tensions of Classical Liquids 

The liquids used must be characterized such that the polar and dispersive components of their 
surface tensions are known. Classical liquids chosen in experiments are either polar as pure water and 

ethylene glycol or apolar as -bromonaphtalene (cf. Table 3.1). 

Table 3.1: Surface tensions of various liquids. 

Liquids γL (mJ/m2) γL
d (mJ/m2) γL

nd (mJ/m2) γL
−(mJ/m2) γL

+
 (mJ/m2) 

Water 72.75 21.75 51.00 25.20 25.50 
Glycerol 64 34 30 3.92 57.4 

Formamide 58.00 39.00 19.00 2.28 39.60 
Ethylene Glycol 48.00 29.00 19.00 1.92 47.00 
Diiodomethane 50.80 50.80 0.00 0.00 0.00 

 bromonaphtalene 44.40 44.40 0.00 0.00 0.00 
[Oss, 2006, 1994] 

6.2.2 Surface Energy of Solids 

6.2.2.1 Young-Dupré’ Equation 

The determination of the surface energy of a solid sample (γSV) is difficult since there is no direct 

method to measure it. The result will remain an estimation of the actual value [Mykhaylyk et al., 2003]. In 
1805, Young described the relation between the contact angle and the different surface tensions (Figure 3.24 

and equation 3.19):  
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Figure 3.24: Vectorial equilibrium for a drop of a liquid resting on a solid surface to balance three forces. 

 CosLVSLSV          (3.16) 

LV

SLSV


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


cos         (3.17) 

where γLV denotes the interfacial tension due to the liquid-gas surface, γSL refers to the interfacial 

tension due to the solid-liquid surface and γSV indicates the interfacial tension of the solid-gas surface. 

In Young-Dupré equation, two parameters can be measured directly: the liquid surface tension 
(γLV) and the contact angle (θ). The two other parameters (γSV and γSL) have to be derived. The contact angle 

measurements give 3 informations: 

 The affinity of a liquid to a solid surface: if water is used to measure the contact angle, one can 

deduce the hydrophobic (great angle) or hydrophilic (small angle) character of the surface. 

 If several reference liquids are used, the surface energy of the solid can be calculated, discriminating 
between polar and dispersive components. The most common models used are the Good & Van Oss 

and the Owens & Wendt models. 

 The measure of the hysteresis between advancing angle and recessing angle give informations on 
non homogeneity of the surface (roughness , contamination, etc.). 

Theoretically, the Young-Dupré’ equation is correct, but as it is based on ideal surfaces 
(homogeneous, pure, smooth), it is experimentally difficult to obtain. Considering this, a range of contact 
angles is obtained, depending on the smoothness of the surface and with a maximum and minimum possible 
value. The difference between the maximum contact angle (θA) and the minimum or receding contact angle 

(θR) is referred as the contact angle hysteresis (Δθ= θA − θR) [Possart and Kamusewitz, 2003]. 

6.2.2.2 Model of Owens-Wendt : Two Components Theory 

Owens and Wendt [1969] considered that the surface energy is expressed in the form: 

S = γS
d + γS

p         (3.18) 

with γS
d dispersive (or apolar) and γS

p polar (or non-dispersive) components.  

Following the work that Fowkes pioneered in 1962, [Fowkes, 1962] the different surface energy of 

solid (γSV, γSL and γLV) can be split into two components: polar and dispersive fractions. Based on the 

assumption that only the same type of interaction (polar and/or dispersive) can occur between both phases. 

Owens and Wendt [1969] proposed the following equation: 

]).().[(2 2/1
21

2/1
212112

ppdd       (3.19) 
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where γ12 is the surface energy of contact region between phase 1 and 2, γ1 (γ2) is the surface 

energy of the phase 1 (phase 2) and the exponents γd (γp) correspond to the dispersive fraction and the polar 

fraction of the surface energy. 

The force needed to extend the contact region between two immiscible phases relies on the force 
needed to extend each phase separately minus the interaction that they have with each other. 
Thermodynamically this equation can be interpretated as follows: each substance is seeking for the lowest 
energy possible. Since a surface has a higher energy state, each phase tries to reduce its surface area. When 
two immiscible liquids are combined, a contact region is formed between both. To extend this region, energy 
is needed. This energy depends on the energy needed to break the bindings of each phase separately minus 
the interactions they have with each other. This negative sign is explained since, by creating two new 
surfaces, new interactions between the different phases will occur, causing a lower energy and therefore a 
more favourable state. Considering equation 3.19, the following equation can be set up in order to describe 

the interaction of a solid sample with a liquid:  

]).().[(2 2/12/1 p
LV

p
SV

d
LV

d
SVLVSVSL      (3.20) 

where γSL = solid-liquid surface energy, γSV = solid-vapour surface energy, γLV = liquid-vapour 

surface tension, γd = dispersive fraction and γP = polar fraction of the surface energy. 

This equation is, next to the Young-Dupré’ equation, the second equation needed for calculating 
the surface free energy of a solid sample [Rudawska and Jacniacka, 2008; Owens and Wendt, 1969; Fowkes, 
1962]. By combining equations 3.20 and 3.17, a final mathematical statement can be made in order to 
calculate the surface energy of a solid sample (γSV).[Rudawska and Jacniacka, 2008; Mykhaylyk et al., 

2003]: 

 CosLVSLSV   )1(   CosLVSLLVSV   (3.21) 

]).().[(2 2/12/1 p
LV

p
SV

d
LV

d
SVSLLVSV      (3.22) 

By substituting value from equation 3.21 into equation 3.22, we get: 

]).().[(2)1( 2/12/1 p
LV

p
SV

d
LV

d
SVLV Cos      (3.23) 

where γLV= liquid-vapour surface energy, θ = contact angle, γSV= solid-vapour surface energy, γd = 

dispersive fraction and γp = polar fraction of the surface energy. 

By using a liquid that only interacts on a dispersive level (diiodomethane or -bromonaphtalene) 

with other phases, equation 3.23 can be simplified by excluding the polar interactions. The liquid vapor 
surface energy and the contact angle can be directly measured. The dispersive tension of the liquid vapour 

surface energy (γd
LV) of the diiodomethane is equal to the total liquid vapour surface energy (γLV) since the 

polar interactions are null (cf. Table 3.1). Consequently, the only unknown parameter (γd
SV) can be 

calculated. 

Extrapolating the γd
SV value and using a second liquid having dispersive and polar interactions 

with the solid sample, the only unknown parameter (γp
SV) can be determined. The sum of both calculated 

fractions of the solid material (γp
SV and γd

SV) gives the total surface free energy of a solid sample [Wu, 2001; 
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Andrade, 1985]. The Liquid-Vapour tension and the Solid-Vapour energy are generally approximated by the 

liquid tension and the surface energy. 

Selected liquids need to have suitable properties in order to interact in the best possible way to 
determine the surface energy. Firstly, the liquids have to carry a wide range of intermolecular interactions 
from polar to apolar. In addition, the liquid surface tension has to be higher than the solid surface energy: the 
working forces on the surface of the solid sample are superior to the forces needed to create the drop, 
resulting in a high wettability. The latter makes it impossible to determine a contact angle [Mykhaylyk et al., 

2003]. By drawing L(1+ cos)/(L
d)1/2 versus (L

nd)1/2/(L
d)1/2

, the slope will be (S
nd)1/2

 and the origin intercept 

will be (S
d)1/2 (cf. Figure 3.25). 
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Figure 3.25: Example of determination of surface energy components of a blend PLGA + 5 % HA  
with the Owens-Wendt’ method. 

In this model, the measure of contact angle between two different liquids and the solid is 
necessary to calculate the surface energy. However, it is an approximation to consider that the solid surface 

energy is the simple geometrical mean of S
p

 and S
d

 (equation 3.15). This approximation can not predict the 

behaviour of polar polymer in aqueous environment. 

6.2.2.3 Model of Good-Van Oss : Three Components Theory 

In the model of Good-Van Oss [Owens and Wendt, 1969], surface energy is written:  

).(2  SS
d
SS         (3.24) 

where γS
d is the dispersive component and γS

+ and γS
- are the acid-base components respectively.  

Van Oss et al. [1988] proposed the so-called Lifshitz–Van der Waals approach in which the total 

surface tension is divided in Lifshitz–Van der Waals (LW) and acid-base (AB) components. The last one is 

decomposed in acid (+) and basic (-) components. Young-Dupré equation can be expressed as: 

AB
SL

LW
SLL GG   )cos1(        (3.25) 

where 2/1).(2 LW
L

LW
S

LW
SLG       (3.26) 

We may define the AcidBase free energy of interaction between two substances in the condensed 

state [van Oss et al., 1987]. 
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2/12/1 ).(2).(2   LSLS
AB
SLG        (3.27) 

The expression used in this model is thus: 

)(2.2)cos1(   LVSLVS
LW
L

LW
SL     (3.28) 

By drawing L.(1+cos)/2 - (S
LW.L

LW)](L
+)1/2 versus (L

−/L
+)1/2

 the slope will be (S
+)1/2

 and the 

origin intercept will be (S
-)1/2. An example of application of the model is presented in Figure 3.26. 
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Figure 3.26: Example of determining the surface energy components with Good-Van Oss’ method  
for pure PLLA. 

By depositing a drop of three different liquids, one can obtain the surface energy of the solid. This 

method thus requires the use of 3 liquids of reference with given L
LW (Lifshitz-van der Waals) and AB acid-

base components. The L
LW component is generally approximated with the L

nd component [Zenkiewicz, 

2007a, 2007b; Wu, 2001; Van Oss et al., 1988; van Oss et al., 1987; Owens and Wendt, 1969; Neumann et 

al., 1974]. 

7 Designs of Experiments 

The aim of the experimental designs is to investigate the possible cause-and-effect relationship by 
manipulating one independent variable to influence the other variable(s) in the experimental group, and by 
controlling the other relevant variables, and measuring the effects of the manipulation by some statistical 
means. By manipulating the independent variable, the researcher can see if the treatment makes a 

significative difference on the factors. 

7.1 Modelization Plans: Doehlert’s Design  

Doehlert’s designs are quadratic plans with some interesting properties, i.e., they can be built upon 
and extended to other factor intervals. These designs allow the estimation of all main effects, all first-order 

interactions and all quadratic effects without any confounding effects [Eriksson, 2008]. 

Geometrically, the Doehlert’ designs are polyhedrons based on hyper-triangles with a hexagonal 
structure, in the simplest case (cf. geometry of the two factors presented in Figure 3.27). This means they 
have uniform space-filling properties with an equally spaced distribution of points lying on concentric 
spherical shells. With the Doehlert’ plan of two variables; the model chosen a priori is the second degree. In 
the case of two variables, the Y response depends on the reduced variables X1 and X2 according to the 

equation: 
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Y =a0 + a1X1 + a2X2 + a12X1X2 + a11X1
2 + a22X2

2     (3.29) 

where a0 is the average value of the centre of the domain, a1 and a2 are the effects of the two 
factors, a12 represents the interaction between the two factors and a11 and a22 are the quadratic effects of both 

variables. The five levels of factor 1 correspond to lines 2 to 8 in Table 3.2. 

 

Figure 3.27: Distribution of experimental points for a Doehlert’s design of 2-variables. 

Table 3.2: Matrix of experiments X. 

I X1 X2 X1X2 X1
2 X2

2 
1 1.000 0.000 0.000 0.000 0.000 
1 0.500 0.866 0.433 0.250 0.750 
1 -0.500 0.866 -0.433 0.250 0.750 
1 -1.000 0.000 0.000 1.000 0.000 
1 -0.500 -0.866 0.433 0.250 0.750 
1 0.500 -0.866 -0.433 0.250 0.750 
1 0.000 0.000 0.000 0.000 0.000 

The multi-linear regression analysis of the experimental points controls these five coefficients 
minimizing the error adjustment of the mathematical model. The relationship matrix that correlates these 

factors together in the vector of coefficients â to the vector of response Y is given by  

â = (Xt. X)-1. Xt.Y         (3.30) 

where X is the matrix of experiments defined in Table 3.2. 

The numerical values of the coefficients of the vector â, determine what factors and interactions 
are the more influent. To clarify whether coefficients are significant or not, we calculated the experimental 

standard deviation S from three tests at the centre of the experimental domain. The standard deviation on 

the various coefficients can be determined from the relationship: 

â= S (diagonal of the dispersion matrix)1/2     (3.31) 

in which the dispersion matrix (Xt.X)-1 represents the inverse matrix of the product of the transposed matrix 
of X by X. Each coefficient ai can be considered significant, if it has a numeric value greater than three times 

its uncertainty ai. 

7.2 Screening Plans: Taguchi’ Design  

The method, created by Taguchi [Roy, 1990], aims to simplify the implementation of experimental 
designs. It offers a collection of tables and tools to help to choose the most appropriate table. Collection of 

Taguchi’ tables are actually three types of information related to each other: 

 Taguchi’ Tables: they specify the content of the matrix of experience, and were chosen based on the 
number of terms, factors, interactions. 
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 Linear Graph: they are used to verify that the selected table is equipped to represent the problem 
(can you represent all factors and all interactions) and specify how to assign the columns of the 

Taguchi’ table. 

 Interaction Table: it allows to precise in which columns are the influent interactions. 

When a non linearity of the response is assumed, there are tables of experiments configured 
according to a finite number of experiments. For example, the chosen table L9 (34) need to perform nine 
experiments to study 4 factors at 3 levels. In Taguchi’ notation, it is important to note that the three levels do 
not correspond to the American notation (-1, 0, 1) but an increasing variation (1, 2, 3). By consulting tables 
which respect the principle of orthogonallity, which means that all factors vary evenly on each level (cf. 

Table 3.3). 

Table 3.3: Table Taguchi L9. 
Experiment Nr 1 2 3 4 

1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 

To determine the effect of one factor, we calculate the average response of each factor in a given 
level (e.g. a1 corresponds to the demi-difference between the average responses when the A factor is at the 
up and down levels) and plot the evolution of this factor when it goes from low (1) to high (3). The variation 
factor between the extreme levels 1-3 will be aware of the influence factor (little variation for a neglectable 

factor) and to compare the effects of each factor.  

Similarly, interactions between factors are obtained by calculating the system response when the 
factors are in certain levels (for example a1b1 it counts only the values corresponding to low levels of two 
factors A and B). By convention, the interaction effects are taken equal to half the difference between the 

two effects. 

8 Conclusion 

The purpose of this chapter was to describe the analytical methods that are available for detecting, 
and/or measuring, and/or monitoring surface, physical and mechanical properties of the polymers and foams. 
The main intention was to identify well-established methods that are used as standard methods of analysis. 
The glass transition temperature of the materials used is determined by the DSC principle, which further 
gives results about the physical and chemical nature of the polymeric material. Granulometery gives particle 
morphology of polymer, fillers and modifier used. Brazilian test is a parameter to calculate the structural 
aspects of the raw material. Molecular weight of the polymer is determined by taking into account intrinsic 
viscosity. Scanning electron microscopy, image analysis, mercury porosimetry, microtomography, 
compression test provides information about the morphology and structural properties of the end product. 
Experimental designs were used with the aim of minimizing number of experiments when we are confronted 
to a great number of variables. The experiment, based on a statistic plan that was inferred from research, 

must be repeatable. 
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This chapter will be devoted to the description of various experimental procedures and techniques 
applied for the raw materials and products used in the entire thesis. Procedures such as mixing of materials, 
pre-grinding by knife mill, co-grinding by tumbling ball mill and preparation of pellets by wet and dry 
methods will be laid down step by step. The specific conditions of various analysis techniques used to 
characterize the properties of the raw materials, intermediate products and final products will be presented. 
Procedures for laser granulometry to verify particle size, scanning electron microscopy (SEM) for observing 
the pore morphology and SCION® Image analysis for pore structure and their distribution will be explained 

extensively. Finally, Brazilian test to identify the mechanical properties of the raw materials and 

compression test will be revealed with the help of schematic diagrams. 

 

 

1 Procedure for Size Reduction  

Reduction of size of polymers and composites was realized in the laboratory: "Laboratoire de 
Génie Chimique". Biopolymers, adjuvants and fillers mixtures were prepared by two different methods, 
called dry and wet method. Some initial steps were common for both methods, such as size reduction, co-

grinding and mixing. 

1.1 Size Reduction 

1.1.1 Size Reduction by Knife Mill 

Since some polylactides were supplied in the form of granules of one to several millimeters or in 
the form of long fibres, they were first fragmented and reduced to powders or small fibres with a laboratory 

knife mill (Janke and Kunkel IKA A-10 (115 Volts), Labortechnik, Staufen, Germany). 

The mill in Figure 4.1 was used for rapid, high-speed grinding of small samples from 10 to 25 

gms. This apparatus can grind samples down to few hundreds of μm in seconds depending upon the nature 
of material. Stainless steel or hard-faced blade rotates at speeds up to 20000 rpm. Temperature is maintained 
by means of built-in heat exchangers and the control panel has an overload protection reset button and a 

pilot light. Tubing connections 6.4 mm on the cover and housing accept tubes for circulating water.  
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Figure 4.1: Polylactide granulates size reduction by knife mill. 

Few tens of grams of the chosen polymers were introduced in the knife mill which was then 
closed. Cold water was allowed to circulate in the mill double jacket. Copolymers such as PLGA85:15 (PLG , 
PLG 8531, LG 857 S, … ) are granules, that must be initially pre-ground in batches, in the knife mill for a 
specified time that more than 95% of the ground material is recovered. Each material was ground in the 
knife mill for alternative time On/Off of 60 s to avoid melting or degradation. Times required to recover 
95% of the initial polymer depends on its inherent viscosity. Then, the pre-ground product was recovered 

and sieved according to the procedure presented. 

Waxes used were pre-ground in knife mill but only for 30 s. The wax obtained was very fine that 
100% of wax removed after pre-grinding passed through 500 mesh sieve. This wax will be utilized latter on 

as porogen for preparing a mixture with polymer to obtain better scaffolds. 

1.1.2 Tumbling Ball Mill Grinding 

The pre-ground and sieved product was ground in a tumbling ball mill Prolabo® (cf. Figure 4.2) to 
several tens of micrometers, value of the size that could not be reached with the knife mill. The tumbling 

ball mill has a grinding chamber with a capacity of 5 liters, a height of 32 cm and a diameter of 27 cm.  

 

Figure 4.2: Milling process in tumbling ball mill. 
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The chamber, a cylindrical shape, is closed with a ceramic lid fixed by a stainless steel bar having 
two screws. A rubber gasket, placed underneath the ceramic jar lid to ensure the tightness of the system. 
High purity Alumina (Al2O3) ceramic balls were used as grinding media. Three diameters (5.5, 9.3, and 17.5 
mm) were used to be suitable for all particle sizes. Their respective proportions were respectively set at ¾, 
⅛, and ⅛ and in volume. We used a ball filling rate of 20% of the volume of the chamber. The product 

filling rate was set at 10% of interstitial volume between the balls. 

The process of dry grinding begins when one places the filled jar on the rotating rolls of the mill. 
Speed rotation is set at 100 rpm-1 and represents 75% of the critical speed, to obtain a cataract movement of 
grinding media (cf. Figure 4.3). The critical velocity is the rotation speed of the grinding chamber from 

which the centrifugal force imposes a permanent veneer of balls against the wall.  

 

Figure 4.3: Cataract movement of grinding media. 

Different milling times were applied as per requirement of the material and experiments. After 
grinding the material is highly electrostatic so ethanol was sprayed in milling chamber to collect the fine 
particles stuck with the walls of chamber, then the whole product was removed from the chamber and kept at 

cool temperature for further analyses and uses. 

1.2 Sieving of Ground Material 

The product obtained from knife mill or ball mill is powder with particles having a wide range of 
diameter. To make pellets from the pre-ground fibres and ground powders, it is necessary to have 
homogeneous particles. Sieves with different mesh sizes were used (cf. Table 4.1and Figure 4.4). Manual 

vibration was done for 7 ~ 10 minutes to collect the sieved powder. 

Table 4.1: Sieving mesh for different powder particles. 
Mesh Size Sieve 

125 μm AFNOR NF ISO 3310 
250 μm ASTM E11# 
400 μm AFNOR NF ISO 3310 
500 μm AFNOR NF ISO 3310 
600 μm ASTM E11# 
800 μm AFNOR NF ISO 3310 

 
The material left on 600 and 800 mesh due to large particle size were knife mill again to reduce 

the paricle size.This material was again sieved by using appropriate sieve. The sieved powder was further 
used for making pellets by using the hydraulic press. 
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Figure 4.4: AFNOR and ASTM 3 ½ in diameter sieves. 

 

1.3 Mixing of Polymer Powder with Fillers 

1.3.1 Simple Mixing of Polymer Powder with Fillers 

After obtaining polymer powder of the desired particle size, it was mixed with the filler by using a 
magnetic stirrer. The polymer powder and filler were weighed and placed in a plastic jar along an 
appropriate size (1, 2, 3 cm) magnetic bar. The powder was mixed for 10 minutes for perfect mixing. 

Schematic flow sheet of the procedure is shown in Figure 4.5. 

 

Figure 4.5: Magnetic stirrer mixing for composite materials. 
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applied. The schematic representation of the preparation method is given in the Figure 4.6. Ethanol was used 

for reducing electrostatic charge at each grinding step during the process. 

 

Figure 4.6: Multistep size reduction of composite. 
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also used during the pellet forming process. Without using polyimide film some of the polylactides stick on 
the stainless steel plunger at elevated temperature. Moreover to make multiple pellets in one batch the pellets 

are separated by polyimide. 

 

(a) Evacuable pellet die accessories (b) Assembled pellet die (c) Schematic representation of assembled 
mould (d) Cross sectional view of multi-pellets/batch. 

 
Figure 4.7: Schematic diagram to produce pellets in semi-industrial quantities. 

1.4.2 Procedure to Prepare Pellets 

The procedure to process pellets is described stepwise as under shown in Figure 4.8. 

 

Figure 4.8: Schematic representation to process pellets by using hydraulic press. 
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1.4.2.1 Preparation of the Die  

 The base must be placed on the bench top. It must be carefully checked that the bottom O-Ring seal 
is properly positioned in its groove. The body is assembled on base. 

 One of the metallic pellets was carefully placed, polished face up and a polyimide circular film was 
placed in the bore of the body. The evacuation tube was connected to a vacuum pump capable of 
providing a pressure of less than two mm Hg. If vacuum setup is not available then manual 

CARVER  hydraulic press is used for compression. 

1.4.2.2 Loading the Die  

 Using a funnel, the powder mixture is poured into the bore of the body. The side of the die is tapped 
lightly to be sure that the powder is evenly distributed. Completely even powder distribution is 
accomplished by inserting the plunger into the bore and rotating it lightly a few times. The plunger 

is then withdrawn slowly. 

 A second metallic pellet is inserted, polished face down, into the upper half of the bore followed by 
the plunger. If more than one pellet is required, a polyimide film is put on the metallic pellet and 
then powder on it. The procedure is repeated till 3 sample pellets are required. One must be sure that 

the top O-Ring seal is in place around the plunger and properly seated in the chamber. 

1.4.2.3 Processing the Pellets 

 The die assembly must be placed in the hydraulic press. Without applying pressure, the die must be 
evacuated for 2 - 5 minutes (depending on the dryness of the sample). 

 With continued evacuation, 150 bars pressure is applied to the die for 20 minutes and the 
temperature (45−60oC) is maintained as per requirement. 

 The pressure is released slowly and the vacuum removed. 

1.4.2.4 Removing the Pellets 

 The base is removed from the body leaving the plunger in position. 

 The assembly is inverted on the plate of the hydraulic press and the polycarbonate ring is placed on 
the centre of the body opposite the plunger end. Using the hydraulic press, pressure is applied 

slowly until the plunger moves the lower pellet and disc clear of the bore. 

In the preliminary experiments polymer powders of ~ 0.150 g of weight have been moulded by 
compression at 150 bars and 60°C for 20 minutes. Our compression moulding setup has initially allowed 3 
pellets of polymer to be prepared simultaneously. Finally, pellets have a thickness of 0.9 − 1.1 mm. In order 
to prepare pellets in bulk quantity, a modified procedure is further adopted. We prepare 12, 15 or 18 pellets, 
by varying the weight of polymer powder taken into account, in one batch by using polyimide film as shown 

in Figure 4.9-d. 

1.5 Preparation of Pellets by Wet Method 

In the wet method, pellets have been prepared by dissolving composite powder in a good solvent 
(acetone or chloroform). Polymer and filler powder have been ground by knife mill, tumbling ball mill and 
then sieving as described earlier. The solution mixture is heated for minimum 10 minutes in a water bath at 
temperature 5oC above the polymer or composite Tg. When the solution mixture becomes homogenous, it is 
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poured into a petri dish. The petri dish is kept at room temperature for 48 hours, so that the solvent may 
evaporate completely. After complete drying, thick film of polymer matrix is pealed off from the petri dish. 
By using die cutter pellets of the polymer matrix of required diameter (8, 10, 12 and 14 mm) are processed 

(cf. Figure 4.9). 

 

Figure 4.9: Schematic representation of processing pellets by wet method. 

2 ScCO2 Foaming Process 

Foaming of polymers and composites was processed in two different laboratories: the 
"Laboratoire de Génie Chimique" and the "Laboratoire d’Automatisme et d’Analyse des Systèmes" of 

Toulouse. 

2.1 SEPAREXTM SF200 scCO2 Pilot Plant 

2.1.1 Experimental Device 
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separator, by depressurization valves. Sub-cooled liquid CO2 is pumped by a volumetric membrane pump 

(Milton Roy, maximum 5 kg/h), then heated until the desired temperature and continuously introduced 

into the mixing chamber. Experiments can be carried out in open-loop or closed-loop configuration, in 
which case, after condensation, CO2 is recycled to the pump. Temperatures and pressures are controlled in 
each unit of the pilot, pressure being limited to 300 bars and temperature around 333 K. Before starting an 

experiment, the pilot is filled with CO2 at bottle pressure (about 5.5 MPa) and air is flashed out. 
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Figure 4.10: SEPAREX Pilot SF200 process flow diagram. 

 

Figure 4.11: Details of equipment (SEPAREX Pilot SF200). 

Polymer/composite pellets are placed inside the autoclave chamber. Then, CO2 is pumped and 
heated into the contactor. Temperature of CO2 is adjusted by the heating fluid circulation in the jacket of the 
mixing chamber. At the outlet, the CO2 undergoes three successive depressurizations. Each depressurization 
stage is composed of a valve and a cyclonic separator with a heating jacket. Temperature and pressure 
sensors are placed at each vessel outlet and measured values are recorded by a digital recorder (Memo-
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depressurizing valves or by the combination of both types of valves. The dP/dt procedure is quite tricky and 

requires great skill. CO2 is supplied by Air Liquid and is 99.5% pure. 

2.1.2 Setup One: Filling the Chamber with Teflon® 

In this setup, three pellets are placed in the pressure chamber on perforated metal stages which are 
encircled by a Teflon® isolation material (cf. Figure 4.12-a). The pellets of upper, centre and bottom 
compression moulding position (A, B and C) are placed in the upper, centre and bottom position in the 
pressure chamber (A, B and C), respectively. Teflon® material is placed into the pressure chamber in order 

to decrease their volume which facilitates the depressurization rate. 

2.1.3 Setup Two: Filling the Chamber with Glass Beads  

The second procedure consists of filling the pressure chamber (until the ~ 1/3 or ~ 2/3 of the 
height of the pressure chamber) with small glass balls (diameter 3 mm) and then a perforated grill (hole 
diameter 2 mm) is placed above them. After that, the pellet is placed on the grill. This setting was adopted to 
study the pore size difference at the top of the chamber as compared to three different points in the chamber 

(cf. Figure 4.12-b). 

 

Figure 4.12: Schematic representation of the cross section of the supercritical CO2 chamber with two 
different configurations. 

For both procedures, after placement of the pellets, the temperature and pressure have been raised 
to the required value. Then, pellets have been saturated with supercritical CO2 during a desired time. After 

that, the chamber has been depressurized with a given depressurization rate. 

2.2 SEPAREX SFC6 scCO2 Laboratory Plant 

2.2.1 Experimental Device 

The bigger volume of the chamber (6 L) allows increasing the number of samples (up to 15) in 

one batch (cf. Figure 4.13). The process flow diagram is given in Figure 4.14. 

2.2.2 Experimental Procedure 

To begin experimentation the system is started four hours before the foaming process so that the 
entire system might attain an equilibrium temperature. Sub-cooled liquid CO2 is pumped by a volumetric 

membrane pump (Milton Roy, maximum 5 kg/h), then heated until the desired temperature and 

continuously introduced into the mixing chamber. Experiments can be carried out in open-loop or closed-
loop configuration, in which case, after condensation, CO2 is recycled to the pump. Normally open loop 
experimentation is carried out in this pilot plant. Temperatures and pressures are controlled, pressure being 
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limited to 300 bars and temperature around 60°C. Before starting an experiment, the pilot is filled with CO2 

at bottle pressure (about 5.5 MPa) and air is flashed out. 

 

Figure 4.13: Details of equipment (SEPAREX Pilot SFC-6). 

 

Figure 4.14: SEPAREX Pilot SFC-6 process flow diagram. 
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rate is raised to 3 bar/s till the required saturation pressure is attained. Once required pressure is attained CO2 

pump is switched off. 

2.2.2.2 Variations of Saturation Pressure and Temperature Holding For Time t 

When the desired pressure in chamber is attained, stop watch is started to begin the saturation 
time. During this time, fluctuations in pressure and temperature (cf. Figure 4.15) are observed. The 
fluctuation is adjusted by opening pressure regulating valve and varying temperature set point. Variation in 
temperature is calculated by noting temperature after each minute and considering the average value for the 

entire process. Normally after 5 minutes, the pressure and temperature approximately attains stable value. 
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Figure 4.15: Variation of chamber temperature during 20 minutes of scCO2 process for PLGA50:50 foam. 

As example, PLGA50:50 foam processing data collected in the first 5 minutes, temperature 

fluctuation was abrupt but after that it was quite normal and close to the process temperature. 

2.2.2.3 Depressurization of CO2 

At the end of saturation time, depressurization of CO2 is done. Pressure regulating valve is closed 
and the vent valve is opened gradually keeping in view the rate of depressurization. This step is manually 
handled with a great skill so that we get a linear line between time and pressure drop. During 
depressurization the temperature of the chamber decreases ~ 10oC. It takes 40 seconds to release the 

pressure, if the depressurization rate is 3 bar/s and the initial pressure is 120 bars (cf. Figure 4.16). 

 

Figure 4.16: Graph presenting the drop in pressure during 40 sec of depressurization step. 
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3 Protocols for Analysis 

3.1 Granulometry 

Experiments have been performed at the "Laboratoire de Génie Chimique de Toulouse" 

The software proposed by Malvern with the granulometer Mastersizer 2000 uses the Mie 

theory and permits to limit artefacts at small sizes of the size distributions. Experimentally, the particles pass 

through the Scirocco composed of a vibrating hopper where particles are placed. A compressed air supply 

is out of the hopper and creates depression causing the particles to the sensor. Vacuum allows the recovery 
of particles at the end of the circuit. The particles diffract light at an angle. A lens Fourier can be reduced 
into a single optical diffracting each source. Image result of diffraction of a light beam is a set of concentric 
rings. The value of the deflection angle and the amount of light can be accessed respectively to particle size 
and quantity. The deflection angle of all smaller particles is large. The light diffracted by the sample is 
recorded which can be traced back to the size distribution, and the percentage volume in each size class. The 

size range available is between 0.05 and 2000 microns.  

Approximately a mass of 200 to 300 mg of powder material is placed inside the inlet pan. It tracks 
the evolution of total grain size during milling. The parameters that affect the measure are the amplitude of 
vibration of the hopper that controls the flow of particles introduced into the measuring cell and the pressure 
of compressed air that plays on the velocity of passage of particles to the laser beam. After various trials for 
analysis, we found better reproducibility of measurements for 70% of the maximum amplitude of vibration 
of the hopper and a pressure of 2 bars. Its measure range in dry dispersion is 0.1 to 2 000 microns. Typical 

measurement time is 5 seconds.  

The size distributions of the polymer powders after pre-treatment (just sieving or grinding in the 
knife mill and sieving) are presented in Figure 4.17. Most of the particles of different materials used have 

mean diameter between 100 and 175m. The mean diameter (d50) of a grinded polymer is 89.54 m. 

The median diameter (d50) is a very important characteristic of this distribution because it 
represents a cummulative frequency of 50%, which divides the size distribution into two parts of equal area. 
This parameter permits to follow easily the evolution of particle size during a treatment of a powder. As an 
illustration, Figure 4.18 presents the variation of the median size of PL,DLA particles submitted to a grinding 

treatment in a tumbling ball mill. 
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Figure 4.17: Size distribution of PL,DLA particle 
after 30 minutes of grinding. 

Figure 4.18: Variation of particle diameter with 
grinding time for PL,DLA 
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3.2 Differential Scanning Calorimetry 

The transition temperature and change in specific heat capacity were measured by a NETZSCH 
DSC 204 Phoenix® Set Up under a N2 atmosphere. The DSC measuring cell consists of a cylindrical high-
conductivity silver block with an embedded heating coil for broad thermal symmetry (3D symmetry) in the 
sample chamber, the cooling ports for liquid nitrogen or compressed air cooling and a cooling ring for 

connection of the intra-cooler (also with simultaneous liquid nitrogen cooling). 

For all the experiments, 3 – 10 mg were accurately weighed by a digital microbalance and sealed 
into an aluminium sample pan (pans are crimped close with sample press). An empty aluminium pan was 
used as the reference sample. The DSC heating and cooling rates were controlled at 10°C/min, and all 

experiments were carried out under a nitrogen purge.  

Following steps are made during the analysis, 
 Calibrating the instrument with indium 
 Selecting the pan type and material and preparing the sample 
 Creating or choosing the test procedure and entering sample and instrument information through the 

TA instrument control software 
 Setting the purge gas flow rate, then loading the sample and closing the cell lid 
 Starting the experiment and then obtaining the data and thermograms. 

Schematic presentation of the thermal analysis is presented in Figure 4.19 

 

Figure 4.19: DSC analysis flow sheet of polymer material and foam. 
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3.3 Contact Angle Measurement 

The used apparatus Digidrop Contact Angle GBX (cf. Figure 4.20) makes it possible to carry out 
measurements of contact angle per drop posed on substrate by recording image per image of the sessile drop. 

The drop is allowed to flow and equilibrate with the surface. 

(A)- Apparatus 
(B)- Syringe with 
specific liquids 

(C)- Liquid deposition sequence 

Figure 4.20: Goniometer GBX used for contact angle measurement. 

This goniometer is constituted by: 

 A motorized movable plate on which a compressed powder pellet is deposited, 

 A light source and a digital CCD camera that can acquire photographs of the system drop / solid at 
equilibrium (24 frames/sec), 

 A motorized syringe to deposit a liquid drop, volume controlled from the surface of the solid sample 

to be analyzed, 

 An acquisition system to record wetting angle and process photographs using the software on digital 
images DIGIDROP. 

Two different fitting procedures have been used to determine the best shape of the drop and thus 
the correct contact angle (cf. Figure 4.21). The contour method together with the height-width approach, are 
appropriate for small contact angle measurements. The circle-method shapes the drop in the form of a 
circular arc, while the height-width-method determines the height and the width of a rectangle that surrounds 

the drop.  

A manual method, the tangent-method or the conic section method, fits a conic section equation 
on the drop shape where θ acts as the angle at the three-phase contact point. A benefit here is that the contact 
angle range is much wider (between 10 and 100°), and that the fitting procedure does not assume that 

contact angles on both sides are equal, resulting in two different contact angles (θleft and θrigth). 

(A)  (B) 

Figure 4.21: (A): Schematic diagram and (B): Two methods for determining the contact angle. 
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In the Sessile drop technique, the solid surface is wetted by single drops of the probe liquid. A 

high resolution camera captures the shape of the drop and processes this by image analyzing software. The  

contact angle is linked to the surface energy and so, one can estimate the surface energy and discriminate 
between polar and apolar interactions. Organic liquids have surface tensions that are in a similar range as 

solid polymer. 

Advantages of this optical approach are the precision and quickness. In addition, placing drops at 
different positions gives the opportunity to explore the diversity of the surface. The disadvantages of this 
method are solid sample preparation, camera resolution, together with the investigation of only two contact 
points. Especially the camera angle to obtain a perfect baseline image is important. Baseline inaccuracy is 
the primary contributor of a lower repeatability [Lander et al., 1993]. Contact angle was measured, by using 

a contact angle meter (GBX Digidrop) apparatus, by a liquid at six different points on the surface on both 

sides of polylactide or composite pellets. Contact angles were measured on the surface for 4 minutes as after 

3 minutes, it was observed that measured angle remained stable. 

Contact angle measurements are influenced by several factors. First, the shape of the drop is an 
important influence. Measurement should take place immediately after the drop is placed on the solid 
material. This should cover the errors made due to interaction with the material which must be chemically 
and physically homogeneous. It is assumed that the liquid does not react with the solid and that the solid 
surface is perfectly smooth and rigid. Secondly, surface roughness and surface impurities are influential 
parameters. As a result the drop can have various metastable states, which automatically influence the 
contact angle. Finally, relative humidity and temperature are factors that provide contact angle variance 

[Rudawska and Jacniacka, 2008]. 

4 Protocols for Porosity and Pore Size Measurement 

4.1 Average Geometric Porosity  

The thickness and diameter of pellets and scaffold dimensions were measured at eight different 
points with an electronic vernier caliper. Mass of the pellets and foams was measured on an electronic 
digital balance to four decimal points. The observed dimensional data values were used to calculate radius 
and volume and then utilize the mass obtained to calculate density of the pellet or foam. Then finally relative 
density and geometric porosity of the foam was calculated. As example, we present in Table 4.2 measured 

data of PLGA50:50 pellets and foam before and after sc CO2 foaming. 

Table 4.2: Dimensional data of PLGA50:50 pellets and foams for geometric porosity. 

S/N 
Pellet Foam Geometric 

Porosity  Diameter Thickness Mass Density Diameter Thickness Mass Density 
dp (mm) Øp (mm) (mg)  df (mm) Øf (mm) (mg)  P(%) 

1  12.9 0.6 85.0 1074.0 25.0 1.9 96.0 101.1 90.6 
2 13.0 0.6 91.6 1103.4 23.5 2.1 84.2 93.1 91.6 
3 12.9 0.6 96.0 1184.2 25.1 2.1 96.1 94.4 92.0 
4 12.9 0.6 94.0 1137.6 31.6 1.9 93.5 62.7 94.5 
5 12.9 0.6 83.8 1066.5 27.7 1.7 84.6 83.5 92.2 
6 12.9 0.7 100.0 1171.2 24.9 2.0 100.4 101.1 91.4 
7 12.9 0.6 95.8 1144.8 25.9 1.7 84.0 96.3 91.6 
8 12.9 0.6 101.0 1242.1 26.3 2.3 100.1 81.2 93.5 
9 13.0 0.6 84.2 1022.7 32.0 2.0 90.7 55.7 94.6 
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The foams obtained after process are mostly in circular shape, the diameter variations in not very 
high, however thick varies to some extent. Porosity obtained by geometric method compared with mercury 

intrusion porosimetry produced results 5 to 7% higher. 

4.2 2D Image Analysis  

The scanning electron microscope (SEM) used in our study was a, LEO 435 VP model. The 
sections of the foams were mounted on an aluminum stub with a carbon adhesive and then coated with 

silver/gold (120 sec, Argon atmosphere). The SEM micrographs were digitized on a matrix of 10241024 

pixels with 256 gray levels. In order to study the foams porosity, image analysis was performed using the 
SCION® image software. The first stage is to obtain conductive materials by using a device called a "sputter 

coater." 

4.2.1 Sputter Coater  

If powder particles were to be analyzed, they were dispersed on double-sided carbon conductive 
adhesive tape attached to the studs. Double sided adhesive tape permits quick mounting of samples without 

using liquid or colloidal adhesives. These studs are fixed on the sample holder. 

For foams after being frozen in liquid nitrogen for 2 min, the specimens were fractured using a 
razor blade and tweezers in the directions parallel and perpendicular to the surface, then placed on the holder 
with the help of isopropanol base graphite paint. The resulting transverse and longitudinal sections were 
sputter-coated with platinum/gold. The holder mounted with samples is placed in the chamber. Sputter 
coater uses an electric field and argon gas. The metalizing chamber is closed and placed under vacuum. A 
stream of argon eliminates the oxygen in the chamber. Gold or gold-palladium is preferred if the sample has 

a very irregular surface. 

 

Figure 4.22: Sputter coating and SEM processing flow diagram. 
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During the commissioning of the metalizing high voltage, low current passes through a gold foil, 
ionize the atoms and they are deposited on the surface of the sample. The thickness of the gold layer 
deposited depends on the time of filing but does not exceed 10 Å. The gas pressure was less than 50 mTorr 
and the current was about 40 mA. The coating time was 120 s. The metalizing chamber is then reduced to 
atmospheric pressure and then the samples are introduced into the microscope chamber. Complete schematic 
procedure is shown in Figure 4.22. A working distance between the bottom of the barrel and the sample 
between 30 and 37 mm is recommended. An acceleration voltage of electrons between 10 and 15 kV is 

generally accepted, and a probe current of between 50 and 150 Å. 

4.2.2 SCION Image Analysis  

Image analysis of SEM micrographs was used for the observation of the internal pore morphology 
of the freeze-dried foams. Polymeric and composite foams images are taken on the surface, at the cross 
section and inside the pores. Cross sectional images are taken at five different points (the centre, top left, 
bottom left, top right and bottom right) to verify homogeneity of pores and their distribution (cf. Figure 
4.23). Normally magnifications of image are (25, 40, 100, 200, 300, 400, 500) depending on the pore size. 
Higher magnification up to 1K, 2K and 3K is recorded, if internal surface of the pores walls is to be 

observed. 

The SEM micrographs were treated and statistically analyzed using the software SCION® Image 

analysis. The images were digitized on a matrix of 1024  1024 pixels with 256 gray levels. The foams were 

duplicated and five images of different areas of the same foam were analyzed. Effect of the successive 

image transformations can be seen in Figure 4.24. 

 

Figure 4.23: SEM Images of cross sectional foam. 

An example of the data obtained after SCION® image analysis is presented in Table 4.3. From the 
data, it is possible to define three pores categories (cf. Table 4.4): Micro, meso and macro pores are pores 

with dimension of equivalent diameter less than 25 m, 25−150 m and above 150 m respectively. The 

micro pores are necessary for movement of the liquids and nutrients in the scaffold. Meso pores are for the 

accommodation of the human mesenchymal stem cells, as their size varies from 100−150 m. Macro pores 
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are necessary for the movement of the mesenchymal cells. Data of pores was extracted from SCION® 
images software and calculation was done by using MS Excel calculation sheets. The retrieved data is 

presented in Table 4.3. 

 

Figure 4.24: Various steps of transformation of SEM image by SCION®. 

Table 4.3: Example of data obtained from SCION® image analysis. 

 

The frequency of pores and respective areas of the pores obtained (cf. Table 4.3) thus helps in 
calculating the pore equivalent circular diameter (de). Pore morphology and pore area ratios, pore volume 

ratios, minimum and maximum equivalent pore diameter. 
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A graphs obtained from the SCION® data is depicted in Figure 4.25-A. The average pore 
diameter, area and volume have been calculated by assuming that the pores are perfect circles. Average cell 

densities are investigated by the following equation: 

)1(
16

2 unfoamed

foamed
c

de
N






         (4.1) 

where foamed is the density of foams, unfoamed is the density of pellets, de is the pore equivalent 

circular diameter, obtained by SCION® image analysis. (cf. Figure 4.25-B).The types of pores in the 

foams are calculated by the following formula that gives the circularity. 

c = 4 A/P2        (4.2) 

where A is the area of the pores and P is the perimeter. 

Solving equation 4.2 if the results are in the range of [0.0−0.2], [0.2−0.5] and [0.5−1.0] the pores 

are elongated, irregular and regular in shape respectively. 

Table 4.4: Example of pore distribution data, pore morphology and final SCION® image. 

 

2D Graph 2

Pore Diameter (m)
0 20 40 60 80 100 120 140 160

P
or

e 
F

re
q

u
en

cy

0.1

1

10

100

C
u

m
u

la
ti

ve
 P

or
e 

A
re

a 
(%

)

0

20

40

60

80

100

d50

Pore Density : Taguchi Plan-I

Cogrinding Time (mins)

0 30 60 18
0

36
0

48
0

18
00

36
30

45
70

P
or

e 
D

en
si

ty
-(

 P
or

es
.c

m
-3

 )

100x103

1x106

10x106

100x106

1x109

  

(A)-Pore frequency and cummulative pore area as 
function of pore diameter. 

(B)-pore density as a function of polymer filler co-
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Figure 4.25: Graphs obtained from the initial data of SCION® image analysis. 

The pore numbers does not represent a realist image of the heterogenous pores in foam, so we 
calculate percentage of pore numbers, area and volume % of micro, meso and macro pores. Different types 
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of pores in the foams are present in function of the nature of polymers (PL,DLA) under the same scCO2 

conditions Tsat = 55°C, Psat = 80 bar, tsat = 30 min, dP/dt=4.5 bar/s (cf. Figure 4.26). 

Compairing all the graphs provide a clearer picture about the foam morphology SEM image is in 
2D and it is already supposed that the pore diameter obtained from SCION® image analysis is of a circular 
pore, so if we consider pore volume the calculation of equivalent pore diameter, there will be another 
hypothesis that the pores are sphere which is not possible. Hence to make the result more close to the real 
foam pore surface area is considered for calculations. SCION® image analysis also provide information 
about the nature of the pores either they are elongated, regular or irregular. Figure 4.26 (A) presents the 
percentage of micro, meso and macro pores in a scaffold while Figure 4.26 (B) presents the percentage of 
pore surface area. The number of macro pores are though in less percentage but the area of macro pores has 
highest value. Figure 4.26 (C) presents the volume of each poreand we can see that macro pores almost 
consist of 95% of total scaffold volume. The shape of pores is calculated by equation 4.2 and for PL,DLA 

regular, irregular and elongated pores are 68%, 23% and 9% as presented in Figure 4.26 (D). 
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Figure 4.26: Pore distribution comparison in a foam with different aspects. 

4.3 3D Hg Intrusion Porosity  

Porosity and pore diameter of randomly selected foams were determined by AutoPore IV 9500 

(cf. Figure 4.27) mercury porosimeter located at the CIRIMAT/UPS and analysis were performed by Sophie 
Cazalbou. Mercury intrusion porosimeter (Pascal 140, Thermo- Quest) was used to study the pore structure 
of the PLGA scaffolds. For each different pore diameter scaffolds, three measurements were performed. 
Dimensions of the porous scaffolds with mass approximately 0.1 g were first measured and placed in the 
ultramacropore dilatometer for out-gassing. The dilatometer was then filled with mercury up to 1800 mm3 
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for analysis. With increasing pressure up to 400 kPa, at a approximately rate of 0.07 kPa/s, the mercury 
penetrated through the open pores of the sample scaffolds. By measuring the quantity of the sample pores 
and the equilibrium pressure at which intrusion occurs, experimental data of the pore volume distribution as 
a function of their diameter were obtained using the Washburn equation as described in chapter 3. It should 
be noted that the pore diameters obtained are assumed to be in cylindrical shape. Porosimetry data were then 
corrected for compression by subtracting the blank analysis curve of mercury compression. The median pore 
diameter, the surface to volume ratio and the porosity of the PLGA/PLA scaffolds were available from the 
data. After 6 hrs of long experimental procedure, median pore diameter, median pore diameter (Area), 
average pore diameter (4V/A), bulk density at 0.0034 MPa, apparent (skeletal) density, porosity and 
interstitial porosity was obtained. The result obtained in the form of graph for incremental intrusion vs pore 

size is presented in Figure 4.28. 

 
  

Figure 4.27: Autopore analyzer for porosity. Figure 4.28: Incremental intrusion vs pore size. 
 

4.4 3D Micro Computer Tomography  

Experiments on Micro-Computer Tomography (CT) have been performed at the CIRIMAT/UPS 

laboratory. 

CT has two distinct properties that set it apart from conventional measurement techniques:  

1. As X-rays can “see through” material, computer tomography is able to reveal hidden features that 

touch probes can’t reach and laser and vision systems can’t see. 

2. The magnification capability of X-ray imaging makes it possible to inspect components that only 

measure a few millimetres with micrometer resolution. 

As shown on Figure 4.29, computer tomography is the process of imaging an object from many 
different directions using penetrating radiation and using a computer to calculate the interior structure of that 
object from these projected images. Computer tomography allows the complete structure of an object to be 
stored and examined to give all internal dimensions and the precise size, shape and location of any internal 

feature or defect. 
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Figure 4.29: Set up of CT and flow chart of CT measurement process. 

4.4.1 Acquisition 

The sample is rotated through 360 degrees on a precision turntable and a set of high resolution 
digital radiographs are acquired at regular (typically 0.5 degree) increments. The accuracy of this data set 

determines the ultimate quality of the final 3D data. 

4.4.2 Corrections  

Each projected image from the data set undergoes geometric and shading correction, to remove 

spatial and intensity non linearities introduced by the imaging device. 

4.4.3 Reconstruction  

By combining all of the individually corrected images and using a cone beam back projection 
technique, a geometrically correct, three dimensional data cloud is computed. The patented software has a 

real-time viewer that shows the reconstruction progressing in parallel with the x-ray images being captured. 

4.4.4 Viewing Results  

The CT data collection, reconstruction and display are presented to the operator via the X-Tek 
graphical user interface. This has been developed to provide ease of use with the highest performance for 
systems to fit users’ budgets without compromise. The data cloud can be sliced open in any direction to 
reveal internal detail, surface rendering software similar to that used in 3D CAD systems is used to visualise 

the exposed features. 

4.4.5 Wide Variety of Post Processing 

The data cloud can be output as a stereo lithography file, a format accepted by most CAD 
packages. Once imported into a CAD system, the radiographic information can be compared directly with 
the original design file to highlight differences when checking first off manufactured parts, or if the original 
design is not available, then the radiographic data is used to create a new CAD file for rapid prototyping and 

reverse engineering. 

Micro CT of different scaffolds was taken from different angles and views. Slices were taken to 
observe the interconnectivity and porosity of the scaffold structure. An example of a polymer skeletal 
structure along the top, front and right views are taken (cf. Figure 4.30). These images can be further used 

for porosity and pore size distribution analysis. CT can directly provide the porosity and interconnectivity 

in tested foam. The results obtained from CT are real results compared to the results obtained from 

calculations and other derived analysis such as images analysis.  
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(A)-Scaffold top slice view. (B)-Scaffold right slice view. 

 

(C)-Scaffold front slice view. (D)-Scaffold skeletal view. 

Scaffold 95%PLGA+2.5%ATCP+2.5%TCP processed at Psat=100 bars, Tsat=48oC, 
Tsat=20 min, dP/dt= 3 bar/s 

 

Figure 4.30: CT slice view from different direction for bone scaffold showing the 
interconnectivity of pores 

5 Mechanical Tests on Foams 

5.1 Experimental Conditions of Test 

Brazilian tests were conducted by Gerard Dechambre (CIRIMAT) on computerized universal 

testing machine (Hounsfield H25KS). The compressive modulus Ec and the compressive strength c are 

easy to measure for foams by uni-axial compression tests.  

A loading frame, 25kN capacity, having a base and a cross head joined together with two solid 
pillars with nuts. At the top, the pillars have long threads for height adjustment. On the base, a 25 kN 
hydraulic jack is centrally fixed between the pillars. This jack has an integral pumping unit and oil reservoir. 

A 25 kN capacity pressure gauge is fixed to the jack for indicating the load on the specimen.  

Samples used in this investigation were discs of 10 mm diameter and 3 mm thickness. Tests were 
performed at room temperature. Each sample was tested three times and the average value was incorporated. 

The composite foams were cut into circular flat-bottom disks (10 mm in diameter) for mechanical testing. 

The top layer of the disk was removed to achieve the desired thickness (3 mm) and ensure a flat surface. 

Once the system calibrated/tared and the crosshead was in the correct position, samples were loaded and 
were compressed in z – direction of scaffold fabrication process at cross speed of 0.5 mm/min between two 
steel platens up to a strain level of approximately 75%.  

5.2 Principle of Curve Analysis 

The data was converted to Microsoft Excel format then and the force-displacement data was 
converted to stress-strain curves. Strain was determined from the values for displacement and the original 
height of the scaffolds. Strain was determined from the values for displacement and the original height of the 
scaffolds. The slope of the initial linear portion, elastic region, of the stress-strain curve was then used to 
determine the modulus. The compressive strength was estimated by determining the stress at an offset of 1% 
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just after the initial linear portion, elastic region, of the stress-strain curve. (cf. Figure 4.31). The 

compressive modulus was defined as the initial linear modulus. The compressive strength () was 

estimated by determining the stress at 10% deformation. 

 
Figure 4.31: Stress strain graph of PLGA foam obtained showing the three regions. 

6 Conclusion 

In this chapter, all the experimental procedures and their limitations have been discussed in detail 
with respect to the equipment used for the experimentation. For size reduction of the polymeric granulates or 
fibres we introduced knife mill, tumbling ball mill and mortar used in our studies. The procedures to make 
pellets by dry method using the hydraullic press and wet method preparation has been described. Two 
different types of supercritical fluid equipment were under utilization to produce biopolymer foams. One of 
the equipment was bound for limited number of foams per batch due to low chamber volume while other 
was used to process foams in semi-industrial quantities. We then presented the various protocols of analysis 
techniques for characterizing the physicochemical and use properties of initial, ground and co-ground 

products such as granulometry for particle size and their distribution. 

Analytical techniques such as differential scanning calorimetry for glass transition temperature 
and other thermal properties, sieving for powder gradation, mixing of materials for homogenization, SEM 
for size morphology, geometric and Hg intrusion porosimetry for pore size and distribution and contact 
angle for surface properties were discussed. SCION® image analysis technique has been explained with an 
example to calculate the number or pores, pore distribution and types of pores. Then micro-CT protocol for 
the structural assessment of polymer foam and to elaborate the interconnectivity has been presented. Finally, 
mechanical properties of the polymer by using Brazilian testing and compression testing of the foamed 

product are elaborated. 
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In this chapter, we present characterization of different biopolymers such as PLLA, PL,DLLA, 
PLGA50:50 and PLGA85:15 for a comparative study. Particular attention has been focused on amorphous and 
semi-crystalline polymers. The modelling of scCO2 foaming of polymers by pressure quench method requires 
the resolution of the diffusion equation as well as the degree of depression of the glass transition of polymer 
as a function of the amount of CO2 sorbed. Indeed, certain isothermal sorption data and its modelling are 
required for such study. In this chapter, after explaining the principles of the foaming phenomenon 
precisely, we have focused on the resolution of diffusion equation, the thermodynamics of phase equilibrium, 
the depression of Tg as a function of the CO2 sorption. Finally, we have derived the nucleation equation, 

which is based on the use of the classical nucleation theory.  

Then characterization of the foams obtained by supercritical CO2 process by varying the ratios of 
LA/GA contents were taken into account to correlate solubility of the scCO2 of pellets and equivalent pore 
size and porosity in scaffolds. A focus on pore morphology, structure anisotropy and their characteristics 

will be emphasized as it plays an important role in cell seeding, differentiating and growth in the scaffold. 

 

 

1 Characterization of Biomaterials 

1.1 Characterization of Polylactide Powders 

All the polymers in powder form were used directly by sieving through 500 m mesh to avoid any 

foreign particles or agglomerate. Others in granules and pellet form were ground in knife mill as described 

in chapter 4. The physical appearance and composition of each polymer is stated as under: 

 PL,DLA (PABR L 68) is L,D polylactic acid containing approximately 12% of D-lactic acid. They 
are available in brownish yellow granules form. 

 PL,DLLA (LR 704) is a poly (L-lactide-co-D,L-lactide) with a L-lactide : D,L-lactide molar ratio of 

67:33 to 73:27. It is white to off-white granules. 
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 PLGA85:15 (RG 858 S) is a poly (D, L-lactide-co-glycolide) with a D,L-lactide : glycolide molar 

ratio of 83-87 : 13-17 and initially it was white to off-white solid fibres. 

 PLGA85:15 (DL-PLG) is a poly(D,L-lactide-co-glycolide) with a D,L-lactide : glycolide molar ratio 

of 85:15. It is white to off-white solid. 

 PLGA50:50 (PLG 8523) is a poly(L-lactide-co-glycolide) with a L-lactide : glycolide molar ratio of 

50:50. It is white to light tan granules. 

 PLGA85:15 (PLG 8531) is a poly (L-lactide-co-glycolide) with a L-lactide : glycolide molar ratio of 

84:16. It is white to light tan granules. 

 PLGA85:15 (RG 857 S) is a poly (L-lactide-co-glycolide) with a L-lactide: glycolide molar ratio of 
82-88 : 12-18 and initially it was white to off-white granules. L-lactide co glycolide were 
difficult to convert in powder form due to higher modulus of L-lactide contents, while 

copolymers containing D,L-Lactide were easily converted into powder. 

 PLGA50:50 (RG 504) is a poly (D,L-lactide-co-glycolide) with a D,L-lactide : glycolide molar ratio 

of 48:52 to 52:48 and initially it was white to off-white solid. 

 PLGA50:50 (PDLG 5010) is a poly(D,L-lactide-co-glycolide) with a D,L-lactide : glycolide molar 

ratio of 52:48, It is white to light tan granules. 

They have been purchased from BOEHRINGER Ingelheim (Germany), LACTEL (USA), 

GALACTIC (Belgium) and PURAC (Netherlands) (cf. Table 5.1). 

Table 5.1: Polylactide origin and physical state. 

Origin Biopolymer Physical state 

GALACTIC  PL,DLA (PABR L 68) Amorphous 

BOEHRINGER PL,DLLA (Resomer® LR 704) Semi Crystalline 

BOEHRINGER PLGA85:15 (Resomer® RG 858S) Amorphous 

LACTEL PLGA85:15 (DL-PLG) Amorphous 

PURAC PLGA50:50 (PLG 8523) Semi Crystalline 

PURAC PLGA85:15 (PLG 8531) Semi Crystalline 

BOEHRINGER PLGA85:15 (LG 857 S) Amorphous 

BOEHRINGER  PLGA50:50 (Resomer® RG 504) Amorphous 

PURAC PLGA50:50 (PDLG 5010) Amorphous 

Some of the polymers were initially in powder form while others were in granules by source. 

Amorphous polymers were easy to ground in the knife mill and they had mean size distribution ~150 m but 

those which were semi-crystalline took longer time and their mean particle size increased as the crystallinity 
increased (agglomeration). Granulometry of the polymer powder analysis after different time of grinding is 
presented in Figure 5.1. The mean size distribution of each polymer is presented in Table 5.2. To prevent 
degradation, polymers have been stored at 4°C in their powder-like form. 
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Table 5.2: Mean diameters of the polymers after knife mill grinding by granulometry. 

Polymer d(50) (m) Polymer d(50) (m) 

PL,DLA (PABR L 68) 161.5 PLGA85:15 (PLG 8531) 166.1 

PL,DL (LA LR 704) 389.5 PLGA85:15 (LG 857 S) 506.4 

PLGA85:15 (RG 858 S) 99.7 PLGA50:50 (RG 504) 89.5 

PLGA85:15 (DL-PLG) 167.7 PLGA50:50 (PDLG 5010) 178.2 

PLGA50:50 (PLG 8523) 207.7   
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Figure 5.1: Size distribution of various PLAs and PLGAs after knife mill grinding. 

1.1.1 Experiments on Polylactide Powders by Viscosimetry.  

As example, we present in detail results obtained with PLGA50:50 (RG 504) in solution in CCl4 at 
25°C. Variation of efflux times with the polymer concentration and corresponding viscosity values are 
reported on Table 5.3, where to is the flow time of pure chloroform and t is time for polymer solution in the 

Ubbelohde apparatus type 3C. 

Table 5.3: Viscosity values of PLGA50:50. 

C 
(g/dl) 

Average  
Time 
t (sec) 

Relative 
Viscosity  
rel= t/to 

Specific  
Viscosity 

sp=(t - to)/to 

Reduced  
Viscosity 
red=sp/C 

Inherent  
Viscosity 
ln rel/C 

0.00 129.65 1.00 0.00 − − 
0.50 172.78 1.33 0.33 0.67 0.57 
1.00 226.65 1.75 0.75 0.75 0.56 
1.50 295.23 2.28 1.28 0.85 0.55 
2.00 359.98 2.78 1.78 0.89 0.51 

Variations of efflux times with polymer concentration (C) and reduced specific viscosity (sp) and 

inherent viscosity (ln rel/C) were plotted and from the graph the point of intersection of reduced viscosity 

and inherent viscosity at the Y-axis gives the intrinsic viscosity [] = 0.60. By using the Mark-Houwink 

Relationship (MHR)   aKM with K = 5.43.10-4 dl/g and a = 0.73, we obtain: M = 14 756 g/mol. 

Commercial Sodium hyaluronate, or Hyaluronic acid (HA) is commonly its sodium salt form. It 

was purchased from Javene, France. Viscosity given by the supplier in the data sheet is 2.4- 3.2 m3/kg, 

molecular weight 2.0-3.0×106 Dalton and measured intrinsic viscosity as per procedure is [] = 2.92. By 
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using the Mark-Houwink Relationship (MHR) with K = 2.2610-5 dl/g and a = 0.796, the molecular weight 

we obtain: Mvis = 2 637 540 g/mol. 

1.1.2 Discussion on the Molecular Mass 

Experimental results have been compared with values given in data sheets with the different 
polylactides. All the values, reported on Table 5.4, are in the range of the specifications. Moreover, the 
separation between the two main medical applications of the polylactides seems to be governed by the 
intrinsic viscosity range of the polymers. Below a certain molecular mass (i.e. the critical mass), oligomers 
are used as controlled release and above this critical mass polymers can be used as medical device. As 
shown on Table 5.4, differences between polylactides of the same inherent viscosities range are not 

significant; they can be chosen whatever their origin (Lactel, Purac, Boehringer). 

Table 5.4: Comparison between molecular weight of various polylactides. 

Polylactides 
Data Sheet* 
inh(dL/g) 

Experiments 
inh(dL/g) 

Mw Deduced  
from MHR 

Applications 

PL,DLA (PABR L 68) 2.33 2.24 163 971 Packaging 

PL,DLLA (Resomer® LR 704) 2.0 − 2.8  2.68 201 169 Medical device 

PLGA85:15 (Resomer® RG 858S) 1.3 − 1.7 1.62 57 529 Controlled release 

PLGA85:15 (DL-PLG) 0.55 − 0.75 0.72 18 943 Controlled release 

PLGA50:50 (PLG 8523) 2.27 2.21 88 033 Medical device 

PLGA85:15 (PLG 8531) 3.11 2.96 131 366 Medical device 

PLGA85:15 (LG 857 S) 5.0 − 7.0 6.63 396 495 Medical device 

PLGA50:50 (Resomer® RG 504) 0.45 − 0.60  0.59 14 756 Controlled release 

PLGA50:50 (PDLG 5010) 1.03 0.97 28 494 Medical device 

1.1.3 Characterization of Polylactide Powders by DSC 

The thermograms of the different PLAs and PLGAs are presented in the Figure 5.2, Figure 5.3 and 

Figure 5.4. The thermograms are representative of the second scan run. 

 
Figure 5.2: Thermograms of various PLAs. 
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Figure 5.3: Thermograms of different PLGA50:50. 

 

 
Figure 5.4: Thermograms of different PLGA85:15. 
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1.1.4 Discussion on the Transitions 

The parameters of the observed glass transition measured by DSC are reported on Table 5.5, 

determined by the DSC technique. 

Table 5.5: Glass transitions parameters of the various polylactides. 

Polylactide 
TOnset  
(°C) 

T Midpoint  

(°C) 
Cp  

(J/g.K) 
g (°C) 

(supplier) 
PL,DLA (PABR L 68) 54.2 55.6 0.421 54.9 

PL,DLLA (Resomer® LR 704) 59.8 60.1 0.347 56−62 

PLGA85:15 (Resomer® RG 858S) 41.8 42.7 0.388 43 

PLGA85:15 (DL-PLG) 52.2 53.1 0.451 50−55 

PLGA50:50 (PLG 8523) 57.4 59.5 0.465 55−60 

PLGA85:15 (PLG 8531) 56.1 57.4 0.462 55−60 

PLGA85:15 (LG 857 S) 59.3 61.4 0.392 57−63 

PLGA50:50 (Resomer® RG 504) 47.1 49.2 0.499 46−50 

PLGA50:50 (PDLG 5010) 47.7 49.1 0.524 46−50 

Polymer molecules are often partially crystalline, with crystalline regions dispersed within 
amorphous material. Chain disorder or misalignment, which is common, leads to amorphous material since 
twisting, kinking and coiling prevent strict ordering required in the crystalline state. Thus, linear polymers 
with small side groups, which are not too long form crystalline regions easier than branched, network, 
atactic polymers, random copolymers, or polymers with bulky side groups. Crystalline polymers are denser 

than amorphous polymers, so the degree of crystallinity can be obtained from the measurement of density. 

Crystallinity is indicative of amount of crystalline region in polymer with respect to amorphous 
content. Crystallinity influences many of the polymer properties such as hardness, modulus, tensile, 
stiffness, and melting point. The ratio of glycolide to lactide at different compositions allows control of the 
degree of crystallinity of the polymers [Park et al., 1995; Cohn et al., 1987]. When the crystalline PGA is 
co-polymerized with PLA, the degree of crystallinity is reduced and, as a result, this leads to increase in 
rates of hydration and hydrolysis. It can therefore be concluded that the degradation time of the copolymer is 
related to the ratio of monomers used in synthesis. In general, the higher the glycolide content, the quicker 

the rate of degradation has been observed [Park, 1995]. 

1.1.4.1 Effect of L and DL Ratio on Thermal Property of Polylactide Acid 

For thermal properties, it can be observed that PL,DLLA copolymers showed Tg glass transition 
temperature ranging 55−60°C. However, only PL,DLA copolymers containing 10 mol % D,LLA showed Tg 
of 54°C; similarly the Tm melting point of these two polymers were also at 154 and 143°C, respectively. 
These copolymers had lower degree of crystallinity than that of PLLA homopolymer (~50%). Buchatip et al. 
[2008] also produced similar type of results explaining that Tg glass transition, Tm melting temperature as 
well as crystallinity of the copolymers decreased as mol% of D,LLA comonomer increased. Melting peak 
and crystallinity can not be observed in PD,LLA homopolymer and copolymers with more than 10 mol % of 

D,LLA suggesting the amorphous nature of these polymers. 

Apart from this discussion, it may be noted that the different processes used for the 
copolymerization (polycondensation/open ring polymerization/copolymerization) and the nature of catalyst 

used also plays an important role in the crystallinity and other properties of the final copolymer. 
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1.1.4.2 Effect of LA/GA Ratio on Tg of Polylactides 

The LA/GA ratio plays an important role on the properties of copolymer. GA content has a great 
effect on the molecular weight of the resulting PLGA copolymers. The Mw of the copolymer increases and 
the Mw/Mn decreases with an increased GA content. The PLA homopolymer has the lowest Mn and the 
largest polymolecularity. Every polymer exhibits only one Tg glass transition temperature which indicate 
that all these PLGA copolymers are amorphous. Literature survey revealed that the degree of crystallinity in 
cast polymer was controllable by the copolymerization of glycolide with lactide at different compositions, 
with those of 22 – 66 wt % glycolide being fully amorphous [Gilding and Reed, 1979]. PLGA85:15 and 
PLGA50:50 with different LA/GA copolymers ratio show glass transitions in the range of 52−60oC and ~ 
47.5oC, respectively. The decrease of Tg may result from the increase of the GA component in the PLGA 

copolymers. 

1.2 Characterization of Biomaterials Pellets 

1.2.1 Mechanical Experiments 

The mechanical properties of the polymer used were measured by performing the Brazilian test as 
per procedure described in chapter 4. The data obtained from the test is transformed into stress strain graph 

and from the graph we obtain the modulus, stress at break and elongation (cf. Figure 5.5). 
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Figure 5.5: Stress strain curve obtained from Brazilian test for PL,DLA (PAB RL 68). 

Three pellets were tested for each polymer for the Brazilian test and mean value for the results 

were taken into account. 

1.2.2 Discussion on Mechanical Modulus 

The results of the Brazilian test carried out on the polymers are tabulated in Table 5.6. 

Table 5.6: Mechanical Properties of the polymer used. 

Polylactide 
Degree of 

Crystallinity c 
Stress at  

Break (MPa) 
Elongation 

(%) 
Young  

Modulus (GPa) 
PL,DLA (PAB RL 68) Amorphhous 9.6 8.7 3.80 
PL,DLLA (Resomer® LR 704) 12.4% 4.3 2.8 2.93 
PLGA85:15 (Resomer® RG 858S) Amorphhous 4.1 1.67 2.10 
PLGA85:15 (DL-PLG) Amorphhous 3.7 14.8 1.96 
PLGA50:50 (PLG 8523) 18.4% 5.3 1.9 2.73 
PLGA85:15 (PLG 8531) 26.8% 8.7 1.5 3.12 
PLGA85:15 (LG 857 S) Amorphhous 6.8 2.7 3.91 
PLGA50:50 (Resomer® RG 504) Amorphhous 2.9 11. 2 1.41 
PLGA50:50 (PDLG 5010) Amorphhous 4.3 9.16 1.86 
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Crystallization, crystallinity degree, and thermal properties of PLLA depend on the polymer 
molecular weight, polymerization conditions, thermal history, purity, and so on. As reported by Ikada et al. 
[1987], blending of PLLA and PDLA results in the formation of a stereo-complex with a crystalline structure 
different from that of each homopolymer and melting temperatures that reach 230oC. Contradictory data are 
reported about PLLA melting enthalpy, ranging in the literature from 40 to 203 J/g. To calculate the degree 
of crystallinity, we have used the most common value adopted for the melting enthalpy of the totally 

crystallised PLLA, [Auras et al., 2010]. 

c % = 100 (ΔHm - ΔHc)/93.6 

Poly(lactic acid) (PLA) is a glassy, high modulus thermoplastic polymer with properties 
comparable to polystyrene (PS). The mechanical properties of the polylactides depends upon the 
manufacturing method, the crystalinity factor, the Tg and ratio of L-lactide, D-lactide or racemic D,L-lactide 
contents. In case of poly(lactic -co-glycolic) acid the properties are intermediate between those of poly lactic 
acid and polyglycolic acid. There is increase in the mechanical properties but a decrease in the Tg due to the 

addition of PGA structure. 

2 Kinematics and Thermodynamics Experiments 

The aim of the sorption-desorption studies was to be able to consider the foaming phenomenon 
more precisely. Thus, in this part, we have realized experiments to achieve the sorption kinetics by using the 
desorption data. As we have mentioned earlier, the sorption behaviour of CO2 into the polymer determines 
the number of nuclei generated and it deserves a proper investigation. We have also investigated the 

desorption phenomenon which has influence both on the pore growth and the final structure of the polymer. 

2.1 Sorption-Diffusion Kinetics 

The aim to plot kinetic curves was to determine the time of saturation of the polymer by CO2. To 
obtain kinetic curves, experiments of 10, 20, 60, 120 and 240 minutes have been performed. As shown in 
Figure 5.6-(A), the sorption curve is reaching to a plateau after 60 minutes of processing which means that 
the polymer can be considered to be quiet saturated by CO2 after 60 minutes at 125 bars and 36.5°C. In 
Figure 5.6-(B), Mt denotes the weight of CO2 inside the polymer at time t, and M∞ is the maximum sorbed 
amount of CO2. Here, all Mt values are the extrapolated data (to t = 0) of the initial linear parts of the 
desorption curves as presented in Chapter 3, section 4. Each Mt value is analyzed after different experiments. 

M∞ has been taken as the value of 240 minutes, where the equilibrium is supposed to be completely reached.  

The sorption behaviour is modelled using one dimensional diffusion equation from a plane sheet 
(Eq.2,2), chapter 2. The Minerr function of Mathcad has been used to optimize the modelling and to 
calculate the average sorption-diffusion coefficient. Thus, the sorption diffusion coefficient was found as 
3.64 × 10-10 m2s-1 for Psat = 125 bars, Tsat = 36.5°C and tsat = 120 min. Indeed, the capacity of sorption of 
CO2, thus the diffusion coefficient must increase with the increasing amount of CO2 solubilized in the 
polymer, but to simplify the calculations, we have considered an average sorption-diffusion coefficient all 
across the time interval. Mathcad programs for diffusion are presented in Annex A-2. The the model is in 

very good agreement with experimental data as show in Figure 5.6-(A). 
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Figure 5.6: (A)-Kinetics and modelling of the sorption of CO2 in PLGA50:50 at 125 bar and 36.5°C, (B) 

Desorption of CO2 from PLGA50:50 of CO2 in PLGA50:50 at 125 bars and 36.5°C. 

2.2 Desorption-Diffusion Kinetics  

Desorption kinetics of CO2 from PLGA50:50 have been studied in order to analyze the amount of 
CO2 sorbed, but also to provide diffusion data with different saturation times and pressures. We must 
remember that the Mt values used in desorption studies are different from the ones in sorption kinetics. In 
desorption kinetics, during the decrease of CO2 weight, Mt denotes the quantity of CO2 present in the 
polymer at time t, and it has been analyzed by the desorption method described previously. Only the M∞ 
value is found by the extrapolation of the initial parts of desorption curve. On the other hand, the desorption-

diffusion coefficients are calculated using Fickian diffusion from a plane sheet.  

Figure 5.7 presents desorption data as Mt/M∞ which is plotted against the √t/a2 after processed 
with different saturation pressures, 100 and 200 bars. Here, the factor “a” is corresponding to the semi-
thickness of the polymer pellet and t = 0 s is the end of the saturation period. It is obvious that the desorption 
shows a linear behaviour until approximately 65% of the total amount of CO2 sorbed. After that value, the 
experimental data diverges from the Fickian model. In the literature, this kind of behaviour is generally 
attributed to the vitrification of the polymer and the non-Fickian diffusion behaviour of the CO2 from glassy 
polymers. This divergence is greater for the values of 100 bars than for the values of 200 bars. Additionally, 
the Mt/M∞ value of the desorption curve from 200 bars is smaller than of the 100 bars all across the time 

scale.  

Thus, the Fickian model of diffusion has been applied for the regions of divergence. The model 
plotted (cf. Figure 5.7) is in a very good agreement with the experimental data. This behaviour can be 
explained by the double Fickian diffusion. When the polymer changes its state from rubbery to glassy, the 
diffusion coefficient changes but the behaviour of diffusion is assumed Fickian. As of this moment, we 
consider that the intersection of the extrapolation of the second curve with the initial curve gives the 
vitrification point of the polymer. This point reflects the glass transition temperature of the polymer as the 
drop of the temperature and the desorption curve of CO2. At 100 bars and 200 bars, we have 0.35 and 0.19 
for the Mt/M∞, respectively. These data correspond, to the weight fraction of CO2 in PLGA50:50 of 0.082 and 
0.057, respectively. Hence, the corresponding vitrification time is 2.72 s and 2.64 s for 100 bars and 200 
bars, respectively. So, we have used the data and the model shown in Figure 5.7, to calculate the diffusion 

coefficients. 
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Figure 5.7: Desorption of CO2 from PLGA50:50 after 100 and 
200 bars, at Tsat = 36.5°C and tsat = 120 min. 

Table 5.7 shows that the desorption-diffusion coefficient of CO2 is increasing, in the range 
between 10-11 and 10-9, with the increase of the saturation time. The desorption-diffusion coefficient, Ddp, has 
an increasing trend and finally reaches a plateau after 60 minutes for Psat = 125 bar and Tsat = 36.5°C with a 
value of 2.10-9 m2/s. These data proves the change in the diffusion coefficient with the variation of CO2 
sorption inside the polymer matrix. We can observe from Table 5.7 that the sorption of CO2 into the polymer 
increases with increasing time until it reaches a plateau after 60 minutes. One can say that the capacity of 

sorption increases with the sorption of CO2 into the polymer.  

Table 5.7: Desorption-diffusion coefficients and sorption of CO2 after different saturation times at saturation 
pressure 125 bars and saturation temperature 36.5°C. 

tsat (min) Ddp (m2 / s) 
Sorption of CO2 into the PLGA50:50 

(g CO2 / g Polymer) 
10 7.29 x 10-11 0.153 
20 1.62 x 10-10 0.195 
60 2.01 x 10-9 0.270 

120 2.05 x 10-9 0.281 
240 2.06 x 10-9 0.281 

Also, as shown in Table 5.8, the desorption-diffusion coefficient increases with increasing 

saturation pressure. Since the density of CO2 increases with the pressure, it is expected that the sorption 
capacity increases with the increasing pressure. On the other hand, the desorption-diffusion coefficients 

calculated for rubbery states, Ddp, are always greater than the diffusion coefficients after vitrification, Ddg. 

Table 5.8: Desorption-diffusion coefficients of CO2 from PLGA50:50 for plasticized and glassy states, after 
different saturation pressures at 36.5°C for 120 min of saturation time. 

Psat (bar) Ddp (m2 / s) Ddg (m
2 / s) 

55 1.437 x 10-10 - 
80 1.734 x 10-10 - 

100 2.140 x 10-9 2.321 x 10-11 
125 2.050 x 10-9 7.727 x 10-11 
150 2.606 x 10-9 1.753 x 10-10 
200 3.321 x 10-9 2.854 x 10-10 



Chapter 5.                                                     Characterization of Scaffolds for Connective Tissue Engineering 

- 123 - 

2.3 The Sorption Isotherm 

By using desorption kinetics, the initial points of desorption have been extrapolated to t = 0 s and 
the amount of CO2 sorbed by the polymer is analyzed. We underline that here, t = 0 s is the end of the 
saturation period. One can remember that the nucleation rate is related to the CO2 at the end of the saturation 
period. Thus, we must know how much CO2 is sorbed by the polymer to calculate the nucleation rate. All 
experiments have been carried out at 36.5°C during 120 minutes with different pressure conditions. The 
pressure conditions and the corresponding sorption data is presented in Table 5.9. It has been observed that 

the sorption increases monotonically with the pressure.  

Table 5.9: Sorption data for PLGA50:50 at 36.5°C. 

P (bar) 
Average Sorption Data 

(gCO2 /g Polymer) 
55 0.112 
80 0.207 

100 0.258 
125 0.281 
150 0.296 
200 0.333 

Experimental results and model predictions are presented with the literature data in Figure 5.8. A 
significant change in slope is appeared within the interval of 70-80 bars. The change in the slope can be 

explained by the transition of the CO2 rich phase from gas to the much denser supercritical state.  

 
 

Figure 5.8: Sorption isotherm of CO2 into PLGA50:50. 
[Pini et al., 2008] 

Our sorption isotherm and modelling with SL-EOS, is in agreement with those reported by Pini et 
al. [2008]. Our experimental points were always approximately 5% lower than the literature data which can 
be attributed to the small temperature difference. Indeed, the density of CO2, so the sorption decreases with 
the temperature. Additionally, under the critical point of CO2, SL-EOS diverges from the experimental data. 

But, it has good estimations above critical point for the sorption. 

Furthermore, since we have investigated the sorption kinetics earlier, we have also a sorption 

kinetic data. This evaluation was presented in Table 5.8 and found to increase with time until it reaches a 

plateau after 60 minutes. If we interpolate the isothermal sorption data for 120 minutes (Figure 5.8 and Table 
5.9) between 55 and 80 bars, a sorption value of 0.195 can be found for 76.2 bars. This value is equal to the 
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sorption value at 125 bars and 20 minutes (cf. Table 5.8). Thus, we can state that there is not any difference 

to process a PLGA50:50 at 125 bars for 20 minutes or at 76.2 bars for 120 minutes.  

One of the most important issues of the foaming phenomena is the depression of the glass 
transition of the polymer by the sorption of CO2. As presented in the Figure 5.9, as the weight fraction of 
CO2 is greater than 0.02 at ~36.5°C, the saturation process is happening in plasticized state. We have 
observed that, when the same depressurization rate is applied to the system (5 bar/s), the temperature at the 
gas output of the pressure chamber is dropping to approximately 17°C and ~26°C when 100 bars and 200 
bars of saturation pressure are applied respectively. According to the Tg-w diagram and the desorption data, 
the polymer saturated at 200 bars is closer to the vitrification point when the depressurization is finished. 
However, the polymer processed at 100 bars remains in plasticized state until the end of the 
depressurization. On the other hand, we have experimented that the swelling continues approximately 2-3 
minutes after finishing the depressurization of the chamber which correspond to the plasticized state of the 

polymer. 

 
 

Figure 5.9: The depression of PLGA50:50 Tg as a function of 
the weight fraction of sorbed CO2: (♦) 100 bars; (●) 200 bars.

3 Influence of the Process Parameters on the Microstructure of Scaffolds 

3.1 Effect of Polymer Blend Compositions 

3.1.1 Blends of PL,DLLA and PLGA50:50  

First experiments on polylactides were carried out to understand which polymer is more suitable 
to use in tissue engineering. Foaming experiments are performed on blends of PL,DLLA (LR-704) and 

PLGA50:50 (RG-504), with different ratios, as given in the Table 5.10. 

Table 5.10: Blends of PLGA50:50 and PL,DLLA. 
Blend w/w w/w w/w w/w w/w 
PLGA50:50 100% 75% 50% 25% 0% 
PL,DLLA 0% 25% 50% 75% 100% 

The following scCO2 parameters are kept constant: saturation pressure Psat = 150 bars, saturation 
time tsat = 60 minutes, saturation temperature Tsat = 36.5oC and depressurization rate dP/dt = 25 bar/sec and 
the SEM images of the corresponding scaffolds are presented in Figure 5.10. 
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Blend PLGA50:50/PL,DLLA: 100/0 Blend PLGA50:50/PL,DLLA: 75/25 Blend PLGA50:50/PL,DLLA: 50/50 

   

  
Blend PLGA50:50/PL,DLLA: 25/75 Blend PLGA50:50/PL,DLLA: 0/100 

  

Figure 5.10: Micrographs of the PL,DLLA and PLGA50:50 blend scaffolds. 
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Figure 5.11: Average pore diameter of polymer blends as a function of PL,DLLA ratio. 

3.1.2 Discussion on the Blends of PL,DLLA and PLGA50:50  

The results revealed that the pore diameter is increasing linearly with increasing amount of LA in 
the blend (cf. Figure 5.11). This behaviour is conforming to the literature [Liu and Tomasko, 2007b]. The 
first reason, for the decrease in pore size, can be explained by a better affinity to CO2 of LA than GA in the 
polymer blend. Secondly, low pores size can be due to high saturation pressure and low saturation 

temperature with comparison to the Tg of both polymers (cf Table 5.5). 

3.1.3 PL,DLLA and PLGA85:15 Blend 

In the previous experiments pore sizes obtained were not very large for medical application, so we 

replaced PLGA50:50 with PLGA 85:15 in order to increase the lactic acid contents in the blend (cf. Table 5.11).  

Table 5.11: Blends of PLGA85:15 and PL,DLLA. 

Blend w/w w/w w/w w/w w/w 
PLGA85:15 100% 75% 50% 25% 0% 
PL,DLLA 0% 25% 50% 75% 100%
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The processing parameters are: saturation pressure Psat = 150 bars, saturation time tsat = 20 
minutes, saturation temperature Tsat = 36.5oC and rapid depressurization rate dP/dt (dP/dt time less than 3 
sec). The saturation time for PLGA85:15 has been reduced from 60 minutes to 20 minutes because we have 
increased the LA/GA ratio. Pini et al. [2008] have proved that the concentration of CO2 inside PLGA85:15 is 

greater than inside PLGA50:50 during the foaming process. 

3.1.4 Discussion on the Blends of PL,DLLA and PLGA85:15 

Foaming experiments on blends of PL,DLLA and PLGA85:15 revealed that the pore diameter is first 
increased and then decreased with increasing amount of PLGA85:15 in the blend. As shown in Figure 5.12, 
there is one composition (50% PL,DLLA + 50% PLGA85:15), at which the average pore size is maximum. 

Moreover, the average pore size is lower than with the previous blends with the PLGA50:50. 
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Figure 5.12: Average pore diameter of polymer blends as a function of PL,DLLA ratio. 

These preliminary experiments on (PLGA50:50 + PL,DLLA) blends and (PLGA85:15 + PL,DLLA) 
blends confirm the literature works [Goel and Beckman, 1994b] concerning the influence of the scCO2 
parameters on the pore size. Various process parameters (i.e. the pressure, the temperature and the time of 
the saturation, but also the rate of depressurization) have an influence on the final pore size. The drop of the 
temperature acts differently on the polymers foaming behaviours. For these reasons, we have carried on 

different experimental designs. 

Our experimental study showed that the solubility of CO2 into the polymer increases while the LA 
content increases in a PLGA co-polymer. Also, the solubility of CO2 into PD,LLA is higher than in PLGA, 
whatever its composition. This behaviour has been explained by the existence of an extra apolar CH3 methyl 
group in LA than GA [Liu and Tomasko, 2007b], which, according to the authors, can drive to two opposites 
phenomena: firstly, it decreases the effect of the CO2’s interaction with the carbonyl group of the polymer 
and secondly, it creates more available free volume for CO2 to solubilise. Besides, Kazarian et al. [1996b] 
have found that the interaction of CO2 with polymers can also be explained by chemical interactions and 

CO2 can behave like a Lewis acid.  

3.2 Influence of the Parameters of the scCO2 Process  

3.2.1 Model with a 24 Complete Design 

We have started with the most basic experimental design, a complete plan with 4 parameters and 2 
levels. As listed in Table 5.12, PLGA 100/0 or 0/100 represents the pure PLGA50:50 or PLGA85:15 

respectively and on the Table 5.13. 25/75, 50/50 and 75/25 denominations are representative of the blends. 
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Table 5.12: Variation domain of the various factors. 

Level Tsat (°C) 
Psat 

(bars) 
dP/dt 
(bar/s) 

tsat (min) PLGA50:50/PLGA85:15

- 1 36.5 100 1 20 100/0 
+ 1 60 250 20 20 0/100 

 
Table 5.13: 24 design of experiments: levels of factors and average size of pores. 

Experiment X1 X2 X3 X4 
T 

(°C) 
P 

(bar) 
dP/dt 

(bar/s)
PLGA 

50:50/85:15 

Pore 
Diameter 

(μm) 
1 -1 -1 -1 -1 36.5 100 1 100/0 153 
2 -1 -1 -1 1 36.5 100 1 0/100 264 
3 1 -1 -1 -1 60 100 1 100/0 130 
4 1 -1 -1 1 60 100 1 0/100 187.5 
5 -1 1 -1 -1 36.5 250 1 100/0 30.3 
6 -1 1 -1 1 36.5 250 1 0/100 72.5 
7 1 1 -1 -1 60 250 1 100/0 27 
8 1 1 -1 1 60 250 1 0/100 59 
9 -1 -1 1 -1 36.5 100 20 100/0 367.5 

10 -1 -1 1 1 36.5 100 20 0/100 71 
11 1 -1 1 -1 60 100 20 100/0 151.5 
12 1 -1 1 1 60 100 20 0/100 108 
13 -1 1 1 -1 36.5 250 20 100/0 4 
14 -1 1 1 1 36.5 250 20 0/100 25 
15 1 1 -1 -1 60 250 1 100/0 23 
16 1 1 -1 1 60 250 1 0/100 36 
17 -1 1 -1 -1 36.5 250 1 100/0 47 
18 1 1 -1 1 60 250 1 0/100 61 
19 -1 -1 -1 0 36.5 100 1 50/50 258 
20 1 -1 -1 0 60 100 1 50/50 60 
21 -1 -1 1 0.5 36.5 100 20 25/75 93.5 
22 1 -1 1 0.5 60 100 20 25/75 110 
23 -1 1 1 -0.5 36.5 250 20 75/25 3 
24 1 1 -1 -0.5 60 250 1 75/25 23 
25 -1 1 -1 0.5 36.5 250 1 25/75 30 
26 -1 1 -1 0 36.5 250 1 50/50 36 
27 -1 1 -1 -0.5 36.5 250 1 75/25 22.5 
28 -1 -1 1 0 36.5 100 20 50/50 222 
29 -1 -1 1 -0.5 36.5 100 20 75/25 275 

The first 24 = 16 values allow us to calculate the coefficients of the two first order models reported 
on the Table 5.14, the other values play a role to valid the first order model: 

y = a0 + a1 X1 + a2 X2 + a3 X3 + a4X4 + a12 X1 X2 + a13 X1 X3 + a23 X2 X3 

For both blends, it is important to note that the most influent factor is the pressure (a2). For 
PLGA50:50 the saturation temperature (a1) is also an influent effect while it is non influent for the PLGA85:15. 

It is the contrary for factor 3, as the detail given in Table 5.14. 

The variation of average pore diameter as a function of PLGA50:50 fractions in the blends (cf. 
Figure 5.13), for experiments performed in the same operating conditions, shows that with increasing 
amount of PLGA50:50, the average pore size increases when high depressurization rate (20 bar/s) is applied. 
Analysis of the average diameter of pores presented in Table 5.13, showed us that to have a trend for bigger 
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pore size, PLGA50:50 must be used instead of PLGA85:15. These results are in conformation with the 
observations of Tai et al. [2007b]. These authors found that when greater depressurization times are applied 
(actually very low, approximately 1 to 2 hours), the pore size is increasing with increasing LA composition 

of the PLGA co-polymer. 

Table 5.14: Coefficients of the 24 model for the PLGA85:15 and the PLGA50:50.  

 â50-50 â85-15 
a0 83.4 111.1 
a1 -55.3 3.0 
a2 -117.1 -46.5 
a3 -1.2 -31.8 
a12 4.4 12.9 
a13 -48.3 28.4 
a23 -60.2 36.4 

 

PLGA50:50 + PLGA85:15 Blend 

PLGA50:50 Fraction (%) 
0 20 40 60 80 100

A
ve

ra
ge

 P
or

e 
D

ia
m

et
er

 (
m

)

0

100

200

300

400

500
Psat     = 100 bars

Tsat     = 36.5 °C

tsat      = 20 min

dP/dt   = 25 bar/s

 
Figure 5.13: Average pore diameter as a function of PLGA50:50 ratio in the PLGA50:50/PLGA85:15 blends. 

The comparison between the first order model theory and experimental data has been realized and 
the Fisher-Snedecor test has been applied. The critical value with the error probability alpha of 5% and one 
degree of liberty at both the numerator and the denominator variance give Fc = 161.4. The average pore 
value is equal, in the PLGA50:50 model to 222.4 and the PLGA85: 15 model to 1.1. This first order model is not 
statistically well suited in the PLGA50:50 model. As various process parameters are correlated, it is necessary 

to control their effects by using a multifactor design. 

3.2.2 Model with a Taguchi’ Design for PLGA50:50 Foaming  

Taguchi’ design is a screening plan which helps at the determination of the more influent 
parameters for the experimental plan. We have chosen a L9 table and decided to continue only with the 
PLGA50:50. Thus, it has left us 4 process parameters to optimize: the pressure, the temperature, the time of 
saturation and the rate of depressurization. The domain of definition of this Taguchi design is presented in 

Table 5.15. 

Table 5.15: Domain of definition for the Taguchi’ design. 

Factors Tsat (°C) Psat (bar) tsat (min) dP/dt (bar/s) 
Level 1 36.5 120 20 3 
Level 2 45 150 45 5 
Level 3 60 200 90 10 

Figure 5.15 represents the variation of the effects of the four process factors on the corresponding 
pore diameter. The pore diameter at a given level is estimated by taking the average of the average pore 
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diameters. Except for the experiment P9, all produced foams have porosity higher than 75%, the maximum 

being reached for conditions P4 and P6. (cf. Figure 5.14). 

On the Table 5.16, A, B and C represent the position of polymer pellet in the chamber, top, centre 
and bottom position respectively (cf. Figure 4.12-a, Filling the chamber with Teflon). The effects shown in 
Table 5.17 have global meanings in two ways. The effects of a level are calculated by taking the difference 
of pore diameter and the global average pore diameter of all experiments. Firstly, if the effect is negative 
(positive respectively), that means that this factor has a negative (positive) effect and resulting pore diameter 

will be smaller (bigger). Second, the value is indicative of the importance of the effect.  

Table 5.16: Experiments with the Taguchi design and the average diameter of pores for PLGA50:50. 

Experiment Tsat Psat tsat dP/dt Average Pore Diameter Average*
Nr. (°C) (bar) (min) (bar/s) A B C (μm) 
P1 36.5 120 20 3 549.88 535.02 268.32* 542.45 
P2 36.5 150 45 5 9.66 12.54* 9.19 9.42 
P3 36.5 200 90 10 4.31 3.66* 4.29 4.30 
P4 45 120 45 10 18.82 152.68* 18.25 18.53 
P5 45 150 90 3 19.08 11.96* 21.66 20.37 
P6 45 200 20 5 9.98 13.19 7.62 10.26 
P7 60 120 90 5 127.83 87.50* 101.56 114.70 
P8 60 150 20 10 113.23 105.81 80.66* 109.52 
P9 60 200 45 3 10.72* 14.15 13.94 14.05 

* values eliminated in the calculation of the average because varying more than 10% 

Table 5.17: Average diameter of pores for all factors and their effects. 

Factor Variation <Pore Diameter (m) Effect 

Tsat 
(°C) 

36.5 185.39 91.66 
45 16.39 -77.35 
60 79.42 -14.31 

Psat 
(bar) 

120 225.22 131.49 
150 46.84 -47.3 
200 9.54 -84.2 

tsat 
(min) 

20 220.74 127.01 
45 14.0 -79.73 
90 46.46 -47.28 

dP/dt 
(bar/s) 

3 192.29 98.55 
5 44.79 -48.94 

10 44.12 -49.62 

 

Figure 5.15 shows that different variations with process parameters are not linear. We can say that 
the decrease in the saturation pressure, results with an increase in the pore size. The same effect can be seen 
for the rate of depressurization. For the temperature of saturation, when the temperature is increased, the 
pore size is first decreased but after a minimum point begin to increase. These behaviours are also reported 
by Krause et al. [2001]. An identical behaviour is observed for the curve of the time of saturation: first a 

decrease but after 45 minutes, an increase of pore size with time. 
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PLGA50:50 Foam Porosity
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Figure 5.14: Variation of foam porosity. 
Figure 5.15: Average pore diameters of PLGA50:50 
scaffolds as a function of the process parameters. 

It is possible to obtain a distribution of large pores with PLGA50:50 either by decreasing the 
saturation temperature, or the saturation pressure, or the saturation time, or the depressurization rate. 
However, the interactions between factors are not considered in the Taguchi plan. The effects calculated can 
only give general ideas on the influences of these factors. Thus, we have decided to fix the process 

conditions Tsat = 36.5°C and tsat = 60 min for the following experiments. 

3.2.3 Model with a Doehlert’ Design for PLGA50:50 Foaming  

3.2.3.1 Experiments with a Doehlert’ Design  

We have decided to fix two parameters (Tsat at 36.5°C and tsat at 60 minutes) as the same 
conditions to be fixed for the thermodynamics experimentations and to continue experiments with a second 

order model and to use a Doehlert’ design: y = a0 + a1 X1 + a2 X2 + a12 X1 X2 + a11 X1
2 + a22 X2

2 

The values of X1 (depressurizing rate) and X2 (saturation pressure) are reported in Table 5.18. The 
pellets of PLGA have been placed in the pressure chamber on metal stages with holes which are encircled by 

a Teflon isolation material (cf. Figure 4.12-a: Filling the chamber with Teflon). 

Table 5.18: Doehlert’ design and the results for the average diameter of pores. 

Experiment   dP/dt Psat Average Pore Diameter Average* 
Nr X1 X2 (bar/s) (bars) A B C (μm) 
1 0 0 2.5 125 19.00* 27.03 20.88 23.96 
2 1 0 10 125 11.46 16.55 10.89* 13.85 
3 0.5 0.866 5 150 4.24* 11.75 12.25 12.00 
4 -0.5 0.866 1.25 150 - 13.13 16.91 15.02 
5 -1 0 0.625 125 25.71 30.44 498.45* 28.08 
6 -0.5 -0.866 1.25 100 120.04 304.77 31.13 151.98 
7 0.5 -0.866 5 100 128.14* 223.44 180.87 202.16 

*values eliminated in the calculation of the average because varying more than 10%  

We have observed that, after depressurization, the temperature at the bottom part of the pressure 
chamber is always colder than at the upper part. This behaviour is in agreement with the variation of the 
results for the scaffolds placed at different stages. As shown in Table 5.18, for the same experiment, there is 
always an important variation within the pore size of the scaffolds which were placed at different stages (A, 

B and C).  

It has been observed that when low dP/dt is applied, the pores which are close to the borders of the 
samples are bigger than the pores which are in the centre of the scaffold. An example to this phenomenon is 
shown in Figure 5.16. We believe that this phenomenon is due to the volume constraint of the pressure 
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chamber. Since the polymer swells during desorption of CO2, when the polymer has swelled approximately 
by 50%, the edges of the polymer contact the wall of the chamber. Since the polymer is very soft, due to the 
depression of the glass transition, the chamber walls block desorption of CO2 from the edges of polymer, 
which results in the expanding of the pores in that region. Indeed, this expansion corresponds to the increase 

of molecular volume of CO2 molecules which are no longer in supercritical state. 

 
(A) Sample 1-C (dP/dt = 2.5 bar/s). (B) Sample 5-B (dP/dt = 0.625 bar/s). 

  

Figure 5.16: Micrographs of the cross-section of the foams processed at P = 125 bars. 

One can say that there is a significant difference of pore size depending on where the pellet is 
positioned. In the same Doehlert’ experiment (Nr 7), we have obtained a pore diameter ranging between 128 
and 223 μm. If the pellet is positioned in the low position, the average pore diameter and the porosity are 
found smaller than in the upper position. It can be explained by the faster vitrification of the polymer in the 
low position which stops the growth of the pores. As explained earlier, the bottom part of the pressure 

chamber is always colder than the upper part after depressurization.  

Since, we have noticed that two supplementary factors affect the pore size (the constraint of 
volume of the experimental setup and the position of the pellet in the chamber), we have decided to remove 
the circle of Teflon which was placed in the pressure chamber. After that, we have filled the pressure 
chamber with small glass marbles as described in chaptet 4, Figure 4.12, setup-02. Then, a pellet of 
PLGA50:50 has been placed in the chamber. The carried out repetitions experiments and corresponding results 
are reported in Table 5.19. For the repetitions, we have obtained 52.4 and 26.5 μm, as the average diameter 
of pores. 

Table 5.19: Repetitions experiments of Doehlert’ design (Psat = 100 bars and dP/dt = 5 bar/s). 

Height of the Glass 
Balls in the Chamber 

Pore Diameter 
(µm) 

Average Diameter of Pores 
(µm) 

~ 1/3 
24.3 

26.5 
28.7 

~ 2/3 
50.7 

52.4 
54.0 

The variation of the pore diameter with dP/dt is reported in Table 5.20 and illustrated by the series of 
micrographs given in Figure 5.18. We have found that the pore size is decreasing with the increasing rate of 

depressurization. 

The variation to the pore size estimated by image analysis, is ranging from 18.9 µm, for dP/dt = 10 
bar/s to 255.7 µm, for dP/dt = 0.625 bar/s. These experiments were carried out at high depressurization rate 
(10 bar/s). Thus, we expect to find smaller pores. However, we have observed small (10−20 µm) and big 
pores [~ 150 − 200 µm] together. So that, we can state that there is a coalescence phenomenon occurring 

during the pore growth. 
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Table 5.20: Variation in the average size of pores with different dP/dt values at Psat = 100 bars. 

Height of the glass 
balls in the chamber 

dP/dt (bar/s) 
Pore Diameter  

(µm) 
Average Diameter 

Pore (µm) 

~2/3 10 
19.0 

18.9 
18.9 

~2/3 5 
50.7 

52.4 
54.0 

~2/3 1,25 
138.0 

133.0 
127.9 

~2/3 0,625 255.7 255.7 

3.2.3.2 Discussion on the Effect of the Various CO2 Process Parameters  

As shown in Figure 5.17, for dP/dt = 5 bar/s, the estimated geometrical porosity (equation 3.11) is 
decreasing when the dP/dt is increasing and it reaches a plateau at 92%, and 89.3% for saturation pressures 
of 100 and 125 bars. The very close porosity values at 5 bar/s and 10 bar/s can also be explained by the 
coalescence of the pores during CO2 desorption. Our observations on pore size and the porosity (the 
swelling) of the polymer has shown us that with great pore sizes comes great porosity and with small pore 
size comes small porosity. This behaviour is in agreement with the literature [Beckman, 2004]. To our 
knowledge, it is impossible to create big pores with small polymer volume or small pores with important 

polymer swelling. 
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Figure 5.17: Variation of the porosity of the foams as a function of depressurization rate. 

The physical shapes of the scaffolds prepared without volume constraint were perfectly circled 
and visually homogenous. On the other hand, the shape of the scaffolds processed with volume constraint 
was corrupted. We have also observed homogeneity on the SEM images. As shown in Figure 5.18, the pore 
size is smaller in high rates of depressurization and it increases with dP/dt increases. On the other hand, 
according to micrographs the interconnectivity and homogeneity are observed in the cross-section 
micrographs of the scaffolds. However, the SEM images are not sufficient to have a real characterization of 

interconnectivity. 

As mentioned previously, we have observed that both the volume of the pressure chamber and the 
position of the pellet are important factors, which affect the pore size. For this reason, the 5 remaining 
experiments are carried out in order to re-complete the Doehlert’ plan according to the new experimental 
setup with glass balls. The height of the glass balls was at ~2/3 of the height of the pressure chamber for all 
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of the new experiments of the Doehlert’ plan. All repeated results of the new Doehlert plan with the volume 

constraint are presented in Table 5.21. 

Table 5.21: Complementary Doehlert’ design experiments. 

Exp. X1 X2 dP/dt (bar/s) Psat (bar) Pore Diameter (μm) 
1 0 0 2.5 125 8.4 
2 1 0 10 125 3.6 
3 0.5 0.866 5 150 5.0 
4 -0.5 0.866 1.25 150 26.9 
5 -1 0 0.625 125 187.25 
6 -0.5 -0.866 1.25 100 133.0 ; 127.9 ; 135.0 
7 0.5 -0.866 5 100 52.35 ; 51.0 ; 54.0 

In all cases, we have observed significant changes from the results of the initial Doehlert 
experiments. These differences can be attributed to the change in the experimental setup. However, the 
general observed behaviour for Psat and dP/dt is the same for initial and repetition experiments. The 
maximum pore size is calculated according to the analysis of the Doehlert plan, and it has been found 
255.7μm. Psat = 100 bar and dP/dt = 0.625 bar/s have been taken as the parameters which give the maximum. 
This result is confirmed by the experiment that we had been carried out and presented in Table 5.20 for the 
last sample. As shown in Table 5.22, we have found that the effect of all factors is statically significant but 
the predominant factor is the factor 1 (dP/dt). The effect of the depressurization rate on the foams, reported 

in Figure 5.18, is an example. 

Table 5.22: Analysis of the Doehlert design: coefficients of the model. 

 â â  
a0 8.4 5.3  
a1 - 74.4 2.8 Significant 
a2 - 44.3 2.5 Significant 
a12 20.5 4.6 Significant 
a11 87.0 6.5 Significant 
a22 32.3 6.2 Significant 

The modelling study was also carried out and the homogenous nucleation theory presented in 
chapter 2 has been used.  As explained earlier, the total number of nuclei generated can be calculated as a 
function of the saturation pressure. Once we have calculated the number of nuclei, we can calculate the 
average pore diameter by using Equation (4.1). We have used the measured porosity data to convert the 
number of nuclei to the average pore diameter. 

These results are plotted in Figure 5.19-(A), together with the experimental results of average pore 
diameter. Figure 5.18 depicted as example for tsat = 60 min, Tsat = 36.5°C and dP/dt = 5 bar/s, the variations 
with saturation pressure together experimental results and model of average pore diameter. 

 
(a) 10 bar/s (b) 5 bar/s (c) 1.25 bar/s (d) 0.625 bar/s 

    

Figure 5.18: Influence of dP/dt on the pore size of the foams processed at scCO2 condition Psat = 100 bars, 
Tsat = 36.5°C and tsat = 60 min. 
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The primary approximation of this model is that the pressure difference between the two sides of 
the bubble interface is equal to the pressure initial and final pressures of the chamber before and after 

depressurization. On the other hand the energy barrier to create nuclei decreases with the increasing pressure 

difference and it is represented in Figure 5.19-B. The exponentially decrease of the energy barrier with the 
pressure means that more nuclei can be generated at high pressures. Since the interfacial tension is an 
affecting parameter of the ΔG, it has a great influence on the nuclei density of the polymer. The plateau after 

150 bars can be explained by the smaller pore size (great number of pore) at higher pressure. 

As shown in Figure 5.19, the model is in agreement with the experimental data for the pressures 
greater than 100 bars and diverges significantly for 80 bars where the number of nuclei is smaller than that 
of the greater pressures. One must remember that this model is considering the homogenous nucleation 
theory. Thus, this divergence for low pressures can be attributed to the heterogeneous nucleation and the 
coalescence of the growing pores at lower pressures. Indeed, at low pressures, the sorption of CO2 into the 

PLGA50:50 is also lower and CO2 is not completely distributed across the pellet by the sorption-diffusion.  

  

Figure 5.19: (A) Variation of pore diameter of the PLGA50:50 scaffolds as the function of Psat; 
(B) Variation of the energy barrier for PLGA50:50-CO2 system. 

By using the matrix formula: Xs = - 0.5 A-1 ak where ak is the vector of the first order coefficients and 
A the matrix of the second order coefficients, reported on the Table 5.23, we obtain the following values: As 
both coefficients a11 and a22 are positive, the stationary point is a minimum. The pressure Psat = 100 bars and 
the depressurization rate dP/dt = 0.625 bar/s have been chosen as the parameters which give the maximum. 

The diameter of pores, at this point, is equal to 250 m.  

Table 5.23: Analysis of the Doehlert design: research of the optimum of the pore dimension. 

        Reduced  natural  

ak = - 74.4  A = 87.0 10.25  X1 - 1 0.625 dP/dt 

 - 44.3   10.25 32.3  X2 - 0.87 100 Psat 

Results obtained from our experimentations has shown that when pore size is large higher porosity 
is observed while pores with small pore diameter reflects small porosity. Beckman, 2004 have also shown 
similar behaviours in his experimentations . As per our understanding , it is impossible to create pores of 

large diameter with small polymer volume or small pores with important polymer swelling. 

 

(A) (B) 
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4 Factors Affecting on Pores Size and Porosity 

4.1 Effect of the Polymer Composition 

The Hildebrand’s solubility parameters can be separated into three Hansen’ components by the 

relationship given in following equation 5.1. 

δt
2= δd

2+δp
2 +δH

2        (5. 1) 

where δt is the Hildebrand’s parameter (cf.Table 5.24), δd is the dispersive component, δp is the polar 

component and δH is the hydrogen bond component [Risanen, 2010; Schenderlein et al., 2004]. 

In the case of supercritical fluids the relationship linking the Hildebrand’ parameter to the Pc 

critical pressure is the following [Li. and Perrut, 1991]. 

 = 1,25 Pc /l        (5.2) 

where and l  are corresponding to the density to the fluid in their supercritical and liquid state 

respectively. ScCO2 is a apolar fluid (14,3 <  < 18,4). 

Table 5.24: Hidebrand’ and Hansen’ parameters of the PLA and the PGA in (MPa)1/2. 

 d p H t t*
PLA 18.5 9.7 6.0 21.7 20.2 

PGA 11.7 6.21 12.5 18.2 24.8 
*Calculations with the Small’ group contribution method. 

Normally both amorphous PLAs and PLGAs produce scaffolds of higher porosity and large pore 
diameters. Increase in the LA content in the PLGA co-polymer increases the solubility of CO2 in the 
polymers. The solubility of CO2 is always higher in all poly D,L-lactides than poly(lactides co-glycolide). 
The extra apolar group in polylactide acid is responsible for higher solubility in the polylactide which 
eventually generates highly porous foams depending upon the process conditions. According to Liu and 
Tomasko [2007b] the extra apolar group which is not present in glycolic acid, leades to two opposite and 
different phenomenon. The effect of CO2 interaction with the carbonyl group of the polymer is decreased 
due to the apolar group first  and secondly, more available free volume for CO2 to solubilise is created. 
Kazarian et al. [1996b] has also found that the interaction of CO2 with polymers can also be explained by 

the CO2 behaviour as a Lewis acid, an electron pair acceptor.  

LA/GA ratio of a PLGA co-polymer is an important parameter to control the pore diameter in a 
foaming process. Foaming of PLGA with different LA and GA contents, has given different results. In our 
study, with the same foaming conditions (Psat, Tsat, tsat, dT/dt), we have experienced different pore size 
behaviours when processed with rapid or slow depressurizations. Secondly, low pores size can be due to 
high saturation pressure and low saturation temperature with comparison to the Tg of both polymers (cf. 

Table 5.5). 

4.2 Effect of Depressurization Rates 

For low depressurization rates (0.625 to 1.25 bar/s), when the lactic acid content increases in 
PLGA, the pore size increases as well. This behaviour can be attributed to the greater capacity of solubilized 
CO2 inside the polymer with the increasing amount of LA. Actually, one can expect that since the CO2 
concentration is greater in a high lactic acid containing PLGA, the nucleation rate must be greater (which 
means lower pore size). However, even if the number of pores is determined by the saturation period and the 



Chapter 5.                                                     Characterization of Scaffolds for Connective Tissue Engineering 

- 136 - 

concentration of CO2 inside the polymer, the final pore size of the scaffold is mostly related to desorption 
period. During desorption, a number of phenomena occurs; the desorption-diffusion, the swelling of the 
polymer due to the growing of the pores, the coalescence of growing pores, the vitrification and the 
increasing of the glass transition temperature of the polymer which is related to the desorption of CO2. 
Furthermore, during the saturation period, when more CO2 is sorbed into the polymer, the more depression 
of Tg occurs. The more plasticized polymer, which carries more CO2, will take more time to desorb and will 
vitrify later than a polymer which sorbed less CO2. Indeed, one must consider that the Tg-w diagram of 
different polymers is different as shown in Figure 5.20. The Tg curve of the polymer with low LA content 
(PLGA50:50 in our case) is closer to the corresponding weight fraction of the CO2 in this polymer. On the 
other hand, since the weight fraction of CO2 in PD,LLA is higher, the distance between the weight fraction 
and the vitrification point (on Tg curve) at ambient temperature is supposed to be greater than that of the 

PLGA50:50. 

Consequently, the polymer which tends to sorb less CO2 will vitrify sooner, which will stop the 
growth of the pores. On the other hand, we must underline that, different co-polymers like PLGA50:50, 
PLGA85:15 or the PD,LLA have different glass transition temperatures and also different ΔCp at the glass 
transition, which affects the depression of Tg during the saturation, and the increase of Tg during the 
desorption. These values are presented in Table 2.4. These differences in Tg and ΔCp(Tg) must have been 
considered in order to achieve a proper analysis of the phenomena. Moreover, the diffusion coefficient of 
CO2 into polymers is concentration dependent and increases with the increasing concentration of CO2. 
During the saturation period, the weight of sorbed CO2 into a polymer and the more important effect 

(swelling of the polymer) is observed into the (co)polymer containing a higher LA proportion.  

The work of Pini et al. [2008] revealed that the swelling behaviour of PLGA is linear with the 
weight of sorbed CO2, and the concentration of CO2 inside PLGA85:15 must be greater than inside PLGA50:50. 
In this case, we expect that the desorption-diffusion coefficient increases with the increasing lactic acid 
content. However, when a slow depressurization occurs, the desorption-diffusion is limited due to the small 
driving force (ΔP), and the CO2 is blocked inside polymer. Thus, the vitrification is delayed, and one must 

point out that this is the primer effect which restricts the growth of the pores. 

 
  

Figure 5.20: Tg-w diagram of the PD,LLA (---) and PLGA50:50 (—); (●) and (♦), are the 
weight fraction of CO2 in PD,LLA and PLGA50:50 at 100 bars, respectively.  The value for the 

weight fraction of PD,LLA at 100 bars and 35°C is taken from Pini et al. [2008]. 

For rapid depressurization rates, the phenomenon is different. We have experienced that for 
higher depressurization rates, (5 – 20 bar/s), the final average pore size of the scaffolds is increasing with the 
increasing content of GA in the PLGA copolymers and it has the smallest value for PL,DLA. We have 
assumed that when a rapid depressurization occurs, the polymer is quickly vitrified due to a high desorption-
diffusion which is caused by a great driving force (ΔP). However, in the cross-sections presented in Figure 
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5.21, we have observed an opposite behaviour for a high saturation pressure value of 200 bars. This can be 
attributed to the high CO2 sorption of PLGA85:15 at high pressure, which leads to high glass transition 

depression. 

 
(A)- PLGA50:50 (B)- PLGA85:15 

  

Figure 5.21: Micrographs of scaffolds processed at Psat = 200 bars; 
Tsat = 36.5°C, tsat = 20 min. and dP/dt = 20 bar /s. 

4.3 Effect of Saturation Pressure (Psat)  

We have observed that the pressure of saturation is an important parameter to understand the 
foaming phenomena. Indeed, the saturation pressure determines the amount of CO2 sorbed into the polymer 
matrix. At low pressure range, the amount of CO2 sorbed by the polymer is inferior to that of the high 
pressure ranges. It must have been noticed that the plasticization effect of the CO2 for the polymer (and the 
depression of the glass transition point) increases with the amount of CO2 sorbed. As explained previously, 
the vitrification point is found to be earlier with a Psat of 200 bars than 100 bar (cf. Figure 5.9). Since the 
vitrification point determines the end of the pore growth, a polymer saturated at 100 bars has greater time for 
the pore growth during depressurization and desorption. This behaviour can be explained by the diffusion 
coefficient of CO2 which increases with the increasing concentration of CO2 (the sorption) in the polymer 
matrix. So, one can say that since the diffusion coefficient and the plasticization is greater at higher 
pressures, during depressurization and the following desorption, the CO2 will desorb faster than for the 
lower saturation pressures. At lower saturation pressures, the time for CO2 to provide the expansion of CO2 
and the desorption-diffusion induced growth of the pores is greater and yields to greater pores. The results 

presented in Table 5.8 and Figure 5.9, are confirming our hypothesis. 

On the other hand, nucleation theory that we have used to model the pore size as a function of the 
saturation pressure, must not have been forgotten. Nucleation theory includes the energy barrier for a 
generation of new nuclei. This energy barrier is given by Eq. 2.23 in Chapter 2 and according to that when 
the pressure increases, the energy barrier and consequently the number of pores that can be generated by unit 
volume, increases. We can look to the phenomena from the window of Gibbs free energy. According to 
which ΔG = ΔH - TΔS, ΔG decreases with the increase of change in entropy ΔS, which is true for all 
systems available in the universe. In our case, when we increase the pressure, we increase the entropy 
change of the system (we increase greater than that we could increase with lower pressures), and 
consequently decrease the ΔG greater than that we could decrease with lower pressures. Consequently, the 
energy barrier that determines the capacity to generate new nuclei decreases, which means that we can create 

more pores per unit volume at elevated pressures.  

On the other hand, the difference found between the vitrification times were not significantly 
different (2.64 and 2.72 s. for 100 and 200 bars, respectively). Thus, we can conclude that generation of 
nuclei is the dominant factor which affects the increase of the number of pores with the increasing saturation 
pressure and the coalescence phenomenon may be effective at lower saturation pressures. We finally have to 
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mention that when the number of pore increases with the increasing pressure, the pore size will absolutely 

decrease (cf. Figure 5.22). 

 
(A)-Psat = 100 bar/s (B)-Psat = 300 bar/s 

PLGA85:15, de = 264 μm PLGA85:15,. de = 89μm 
Scaffold Manufactured at, Tsat = 35°C ; tsat = 60 min ; dP/dt= 1 bar/s 
Figure 5.22: Micrographs revealing the effect of Psat on pore size.  

The number of the pores increases with the augmentation of the Psat as at higher pressure more 
scCO2 is saturated in the polymer thus size of the pores decreases. 

4.4 Effect of Saturation Temperature (Tsat)  

In first experiments concerning the complete 24 design, we observed a decrease of pore diameter 
as the temperature is increasing from 36.5 to 60°C. This trend was unexpected because of the decreasing 
density of CO2 at higher temperatures which must have lead to lower nucleation rates, consequently greater 
pore diameter. It is also not in agreement with experimental results of literature [Tsivintzelis et al., 2007b]. 
According to these authors, the pore sizes of the scaffolds increase with increasing saturation temperature. 
They relate it to the decrease of the energy barrier of nucleation. On the other hand, we have observed 
another behaviour in Taguchi design experiments. Pore diameter of the PLGA50:50 scaffolds decreased from 
36.5 to 45°C, where it reached a minimum and increased until 60°C. We believe that, since the diffusion 
coefficient is related to the temperature, there must be a competition between the decreasing solubility and 

increasing diffusion of CO2 with temperature to yield the nucleation rate. 

As mentioned by Krause et al. [2001], it exists an optimal foaming region which describes the 
number of nuclei which starts with a Tlower and exponentially increases with T, then, reaches a maximum in 
Tmax and shows a decreasing behaviour until Tupper. Between Tlower and Tmax the increasing effect of sorption-
diffusion is dominant on the decreasing solubility of CO2. Hence, the number of nuclei is increasing as the 
temperature increased. Once Tmax is reached, temperature is so high that the decreasing solubility effect is 
becoming high enough to decrease the nucleation rate and consequently the generated number of nuclei 

decreases which means that the pore size decreases. An experimental result is presented in Figure 5.23. 

 
(A)-Tsat = 35oC (B)-Tsat = 60oC 

PLGA85:15, de = 264μm PLGA85:15, de = 187 μm 
Scaffold processed at, Psat = 100 bar ; tsat = 60 min ; dP/dt = 1 bar/s 
Figure 5.23: Micrographs revealing the effect of Tsat on pore size. 
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The number of the pores increases with Tsat as at elevated temperature more scCO2 is saturated in 
the polymer and thus the pore size decreases. Since our experiments with different Tsat values were carried 
out with the volume constraint, the interpretation of these results is not easy. Further investigation is needed 

in order to present proper conclusions on the effect of saturation temperature. 

4.5 Effect of Saturation Time (tsat) 

The effect of saturation time on foaming is related by the amount of sorbed CO2 in the polymer 
during that time. When the saturation time increases, the concentration of CO2 inside the polymer is 
increased until the equilibrium is reached, this consequently increased the number of nuclei created. For 125 
bars and 36.5°C, the kinetics of sorption is investigated in order to know how much time is needed to reach 
the equilibrium. It has been found that after approximately one hour, the PLGA50:50 – CO2 system reaches 
the equilibrium and the capacity of sorption is determined (cf. Figure 5.6-A). On the other hand, our 
experiments show (cf. Figure 5.24) that smaller saturation time increases the heterogeneity within the pore 
size distribution across the scaffold, so it is important to work at equilibrium conditions to achieve 

homogeneity by providing a good diffusion and distribution of CO2 into the polymer matrix.  

 
(A)-tsat = 20 min (B)-tsat = 40 min (C)-tsat = 60 min 

de = 15μm, Heterogeneous pores. de = 30μm, Less heterogeneous pores. de = 50μm, Homogeneous pores. 
   

PLGA50:50 scaffold processed at, Psat = 250 bar ; Tsat = 60oC ; dP/dt = 1 bar/s 
   

Figure 5.24: Micrographs revealing the effect of tsat on pore size. 

The homogeneity of the pores increases with the augmentation of the tsat as by increasing the time, 
more scCO2 is diffused and distribution in the polymer, approaching the equilibrium and increasing thus 

homogeneity of the pores.   

4.6 Effect of the dP/dt and dT/dt 

As we have mentioned before the pore size of the scaffolds decreases with an increase of the 
depressurization rate when all other parameters are constant. This is in agreement with the literature [Arora 
et al., 1998b]. This behaviour can be explained by the increasing driving force change which leads the CO2 
to desorb from the polymer matrix. When a rapid depressurization occurs, it creates greater pressure 
difference between the inside of the pore and the environment which results in a rapid desorption-diffusion. 
When the amount of CO2 inside the polymer is smaller, there is not enough CO2 for the pore growth which 

results in smaller pores (cf. Figure 5.25). 

On the other hand, a rapid depressurization always causes a rapid temperature drop, dT/dt. For 
example, in our experimental setup, when a dP/dt of 5 bar/s is applied from Psat = 100 bars, the dT/dt is 
approximately 1°C/s, while dT/dt ≈ 0.01°C/s when a dP/dt of 0.056 bar/s is applied. Hence, a rapid 

temperature drop provides faster vitrification of the polymer which stops the pore growth.  
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(A)-dP/dt = 1 bar/s (B)-dP/dt = 20 bar/s 

de = 264μm de = 100μm 
  

PLGA85:15 scaffold manufactured at, Tsat = 35°C ; tsat = 60 min ; Psat = 100 bar 
 

Figure 5.25: Micrographs revealing the effect of dP/dt and dT/dt on pore size. 

Pore size decreases with increasing the dP/dt. A rapid drop in temperature implies faster 
vitrification of polymer that blocks the growth of pores and the average pore diameter decreases. It remains 
one important phenomenon which deserves a proper consideration. As mentioned previously in section 2.3, 
when the same dP/dt is applied from two different saturation pressures, a difference occurs between the final 
temperatures measured at the gas output. This can be explained by the increasing heating effect. Indeed, the 
same rate of depressurization from different saturation pressures, does not give the same depressurization 
time. Thus, the depressurization time from a high saturation pressure is greater and it causes an increase of 
the heating time of the pressure chamber. Hence, the vitrification of the scaffolds is encouraged by the 
sudden temperature drop from smaller saturation pressures. This can be the reason why the effect of the 
saturation pressure is found to be smaller than the effect of the depressurization rate in the analysis of the 
Doehlert’ design. On the other hand, since the desorption-diffusion coefficients are lower with lower 

saturation pressures than higher saturation pressures (cf. Table 5.8), the polymer processed with lower 

saturation pressures vitrifies later. 

4.7 Effect of the Geometry of the Pressure Chamber 

We have to remember that the PLGA50:50 exposed to high pressurized CO2, changes its state from 
glassy to rubbery. When the depressurization occurs from high pressurized saturation of the polymer, the 

polymer swells as the CO2 desorbs and expands as a result of the phase separation.  

 

Figure 5.26: Representation of the effect of the geometry of the pressure chamber on the porous structure. 
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Actually, this swelling is the result of the pore growth. When a slow depressurization happens, the 
polymer swells slowly and since the temperature drop is also slow, the vitrification happens later. Thus, 
when the polymer swells enough to touch the edges of the pressure chamber, the edges are behaving like a 
volume constraint and the pores which are closer to the edges is growing more than the pore which are in the 
centre of the scaffold, indeed, due to the blocking of desorption of the CO2 by the wall edges (cf. Figure 
5.26). The CO2 inside the pores expands as the pressure and the temperature decreases which results in the 

growth of these pores. This behaviour is mostly related to the much plasticized state of the polymer. 

For this reason, we have changed our experimental setup. We have removed the Teflon isolation 
which was restricting the diameter of the working area inside the chamber. We have replaced the volume by 
small glass balls with 3 mm of diameter, and we have placed a metal grill with holes on these glass balls. As 
a result, we have gained approximately 50% more area which was sufficiently enough to prevent the volume 

constraint.  

4.8 Interconnectivity and Coalescence Behaviour of the Scaffolds 

Our image analysis on micrographs and calculations shows the decrease of the average pore 
density per unit volume, with the increasing pore size. This trend is in agreement with the literature work 
[Barry et al., 2006]. The coalescence phenomenon is the master bone of the interconnectivity of the pores. 
During the growth, two pores join to create one, and reduce the pore density. This decrease in the pore 
density confirms the bubble coalescence theory proposed in the literature [Rodeheaver and Colton, 2001]. 
Since the pore density is decreasing with the increasing depressurization time (foaming time), longer 
foaming times results in more pores to coalesce. An example to this phenomenon is presented in Figure 
5.27-(A). A dP/dt of 0.056 bar/s has been applied to create this scaffold and it has been observed that there is 
only one giant pore. An other example in Figure 5.27-(B), dP/dt of 1 bar/s was applied to create scaffold but 
a collapse of large pores was observed in SEM micrograph. On the other hand, we must admit, it is not easy 
to interpret the interconnectivity behaviour only by SEM micrographs. Thus, further investigation is 
necessary in order to quantify the degree of interconnectivity. Procedures like mercury porosimetry or µ-

tomography can be considered for such analysis.  

(A)- PLGA50:50 (B)- PLGA85:15 
  

Psat = 100 bar, Tsat = 36.5°C,  
tsat = 60 min. and dP/dt = 0.056 bar /s. 

Psat = 200 bar, Tsat = 45°C, 
tsat = 20 min. and dP/dt = 1 bar /s. 

  

Figure 5.27: Micrographs depicting coalescence and collapse of pores. 
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4.9 Influence of Pellet Thickness on Foaming 

To study the effect of polymer mass and other parameters pellets of different thickness ranging 

between (0.2 − 1.8 mm) were made (cf. Table 5.25). 

Table 5.25: Pellets of variable thickness and their foam data. 

Pellet Dimensions Foam Dimensions Porosity 
Diameter 
dp (mm) 

Thickness 
øp(mm) 

Mass 
mp (mg) 

Diameter 
df (mm) 

Thickness 
øf(mm) 

Mass 
m (mg) 

(%) 

12.93 0.25 28.60 23.63 0.92 28.90 91.8 

12.85 0.43 63.30 25.05 1.49 63.10 92.4 

12.90 0.62 96.00 25.08 2.06 96.10 92.0 

12.94 0.83 126.70 32.13 2.12 126.10 93.7 

12.92 1.10 165.00 24.59 4.72 164.90 93.6 

13.00 1.23 203.00 23.00 5.52 202.80 92.9 

12.94 1.37 230.70 20.81 5.76 230.70 90.8 

12.90 1.62 273.10 20.23 6.14 272.20 89.3 

12.95 1.82 298.60 20.79 6.33 297.60 88.9 

The pellets were prepared at P = 150 bars, T = 60oC and t = 20 min as per procedure described in 
section 4.3 and illustrated in Figure 4.9-(B). Before and after scCO2 treatment, the pellets and foams 
diameter and thickness was measured by using a digital vernier caliper at eight different points (cf. Table 
5.25). The mean values were considered during the calculation and analysis. Pellets were treated at 
following supercritical CO2 conditions: Psat = 120 bars, tsat = 20 min, Tsat = 35°C and dP/dt = 3 bar/s. 
Experiments were carried out in the SEPAREX® SF200 pilot plant by adopting the setup-02 as described in 

(cf. chapter 4, Figure 4.12-B). 

4.9.1 Porosity and Cell Density  

By using the dimensions of pellets and foams, geometric porosity of the foam was calculated. It 
was above 88% for all the samples. Average porosity was calculated from the diameter, thickness and mass 
of pellets and foams, then data was considered for the calculation of cell density. (cf. Table 5.25 and Figure 
5.28). Cell densities of the foams are presented in Figure 5.29 and corresponding images of obtained foams 

are represented in Figure 5.30.  

Foams Porosity Variation
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Figure 5.28: Porosity of PLGA50:50 foams for 
pellets with different initial thickness. 

Figure 5.29: Pore density of PLGA50:50 foams with 
different initial pellet thickness. 
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Figure 5.30: PLGA50:50 foams obtained with different initial pellet thicknesses. 

Best foams have thickness ranging between 0.6 and 1.2 mm. They are characterized by: 

 Porosity of foam greater than 90%. 

 Cell density around 25 ×103 and 12 ×106 pores /cm3 for macro and micro pores. 

 Macro pores surface area ranging between 80 and 96%. 

Pellet of 0.6 mm thickness seems to be the best trade-off between quality and price of the foam. 

4.9.2 Pores Size Distribution 

We have used the measured porosity data to estimate the number of nuclei to the average pore 
diameter. Average pore diameter for the 9 samples was calculated by using the SCION® image analysis. 
Figure 5.31-(A) depicts the micro, meso and macro pores diameter for the 9 previous different pellets of 

PLGA50:50 foamed at Psat = 120 bars, tsat = 20 min, Tsat = 35°C and dP/dt = 3 bar/s.  
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Figure 5.31: Different distribution of pores in PLGA50:50 foams. 

As shown on Figure 5.31-(B), in these experimental foaming conditions, the relative ratio of pores 
surface area seems to be stable: around 0.2 to 0.3% for the micro-pores, between 4 and 20 % for the meso-

pores and the complement for the macro-pores. 

4.9.3 Correlation Between Effects of Pellet Thickness and Process Parameters 

Earlier, we concluded that pellets of thickness of 0.6 mm produced foams with porosity of 93% 
and maximum surface area of macro pores along micro and meso pores, thus a foam of better quality as it 
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fulfills the requirement for tissue engineering applications. A Taguchi’ plan will be applied to see the effect 

of process parameters on the foam. 

To study the effect of different parameters, we opted to make complementary pellets of 0.6 mm 
diameter by weighing ~100 mg of PLGA50:50. The pellets were prepared at P = 150 bars, T = 60oC and t = 20 
min as per procedure described in chapter 4. Before and after scCO2 treatment, the pellets and foams 
diameter and thickness was measured and mean dimensional values were considered during the calculation 

and analysis. 

Twelve pellets of same diameter were manufactured. Experiments were carried out in the 
SEPAREX SF200 pilot. Pressure chamber without Teflon isolation material was filled with small glass 
marbles to the ~2/3 of the height as described in setup-02 and presented in Figure 4.12-B. The four process 
parameters Psat, tsat,Tsat dP/dt were varied (cf. Table 5.26) and geometric porosity was determined. The ratio 
of the micro, meso and macro pores of the corresponding foams was obtained by SCION® image analysis. In 
this chapter, for the Taguchi plan for PLGA50:50 (RG 504) best process conditions was Psat = 120 bars, tsat = 
20 min, Tsat = 35°C and dP/dt = 3 bar/s. A special experimental plan was not applied; however values of the 
four parameters were changed slightly to see their effects further on the foam porosity and pore size.During 
the experimentation variation in temperature a,pressure and dP/dt was observed which can slightly affect the 

final results obtained.  

Table 5.26: ScCO2 process conditions for foaming of PLGA50:50. 

Parameters A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 
Psat (bar) 120 120 120 120 120 120 110 120 130 120 120 120 
tsat (min) 20 20 20 20 20 20 20 20 20 15 20 25 
Tsat (

oC) 35 35 35 32.5 35 37.5 35 35 35 35 35 35 
dP/dt (bar/s) 4 3 2 3 3 3 3 3 3 3 3 3 

4.10 Discussion on Foam Morphology 

Porosity of the foams obtained under the different conditions has been calculated and is presented. 
Three foams were made for each condition, average values were taken into account and is presented in 
Figure 5.32. Geometric porosity was above 90% except in one case where the Psat was 130 bar, it was 84%. 
We can see that as dP/dt decreases from A1-A3 the porosity increases gradually. While from A4-A6 the 
porosity increases gradually as saturation temperature increases. From A7-A9, by increasing saturation 
pressure, porosity drop trend is visible. In the last three samples there is again a slight increase in porosity 

due to an increase in saturation time. 
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Figure 5.32: Variation in PLGA50:50 foams geometric porosity for different process parameters. 
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SCION® image analysis of SEM micrograph was done for each condition. No macro pores were 
observed for sample A1 due to high dP/dt, A4 due to low Tsat. For the other samples in A2, A5, A6, A8, 

A10, A11 and A12 macro pores had average diameter above 275m. A13 had maximum macro pores of 

diameter 298 m along micro and meso pores. It was quite difficult to maintain 35oC of temperature during 

the experimentation. Because of temperature variations, we had to repeat the experiments thrice to attain Tsat, 

data of all the samples were recorded for calculations and analysis. 

Figure 5.33 and Figure 5.34 reveal that samples A3 and A9 produce pores of diameter ~200μm 
while samples with higher macro pore diameter produced cell density above 1×103, while cell densities for 

micro and meso pores are also satisfactory.  

Figure 5.35 compares the % of surface area of three types of pores. We can see that samples A2, 
A5, A6, A7, A8, A10, A11 and A12  consist of more than 80% of surface area of macro pores produced. In 
A2,A11 and A12  the percentage is above 95%. These three foams are quite close to each other. In others 
cases, there are variations in the three types of pore distribution. 

Figure 5.36 reveals the optimum values of process parameters at which pores of maximum 
diameters can be produced. In our finding with PLGA50:50, we have found that a combination of, Tsat = 
37.5°C, Psat = 120 bars, tsat = 25 min, and dP/dt = 3 bar/s, produce scaffold of optimum porosity, cell density 

and pore distribution.  
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Figure 5.33: Distribution of pores at different 
process condition. 

Figure 5.34: Cell densities of pores produced at 
different process condition. 
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Figure 5.35: Percentage of surface area for 
distribution of pores. 

Figure 5.36: Effective pore diameter for each 
process parameter. 
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One can see the effects of all the process parameters on the pore size. Increasing Tsat ultimately 
improves the pore diameter, and pore diameter is decreased by increment of Psat and dP/dt. There was a 
slight increase in the pore diameter of foam by increment of tsat. So the process parameters have been 
improvised by performing these experiments. A foam was then produced at this optimized condition and 

from analysis, the porosity obtained was 93% and diameters for micro, meso and macro pore was 14m, 

97m and 276 m respectively. 

5 Conclusion 

Different types of polylactides including polylactic acid and poly(lactic co-glycolic acid) have 
been characterized in details. The composition of each polymer was also discussed as it has a pivotal role on 
the properties of the final porous scaffolds produced. Foams were made with pure polylactic acid and with 
blends of polylactic acid and polylactic co-glycolic acid in order to analyze the effect of LA/GA 
composition during the foaming process and porosity of the foam. Different experimental designs were used 
to attain optimized porosity and pore size distribution. 

Firstly, we must admit that the consideration of the results of the 24, Taguchi and initial Doehlert 
plan is difficult. During these experiments, we have not noticed the important effect of the volume constraint 
and the position of the pellet. Indeed, these two parameters affect the pore size. We have encountered 
important heterogeneities within the cross-sections micrographs and very different pore sizes for the 
scaffolds which were processed in the same chamber. For this reason, we have decided to change the 
experimental setup. We have removed the Teflon isolation to gain volume and we have filled the chamber 
with small glass balls. After that, only one pellet has been placed on the holed grill which has been 
positioned above the glass balls. For the following experiments, we have found that the pore size increases 
with decreasing saturation pressure and depressurization rate. Best results have been achieved within the 

range of 128 and 138μm for Psat = 100 bar, Tsat = 36.5°C, tsat = 60 min. and dP/dt = 1.25 bar /s. 

Finally, detailed emphasis was laid down on the effect of process parameters such as saturation 
pressure, saturation temperature and saturation time and depressurization rate during foaming process. 

Optimum thickness of the pellet was finalized for the experimentation process. 
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Chapter 6 

 

Chapter 
6 

Optimization of Pore 
Morphology of 

Scaffolds for 
Connective Tissue 

Engineering 

 

 

This chapter consist of two parts, first two PLAs and two PLGAs were foamed by using the wet 
and dry method techniques in order to see the difference in pore morphology, structure and anisotropy. The 
influence of scCO2 foaming parameters was studied in detail with respect to each polymer and process. The 
effect of each process parameter was taken into account to analyze the scaffolds and optimize their  porosity 
and equivalent pore diameter. The mechanical properties of the optimized foams were also tested. Second 
we will present the optimized foaming results obtained by adding surface modifier to the polymer by co-
grinding to improve the surface adhesion of the blend foam. A focus on pore morphology and their 
characteristics will be emphasized as it plays an important role in cell seeding, differentiating and growth in 

the scaffold. 

 

 

1 Optimization of PLA’s Foams Processed by Wet and Dry Methods 

In this chapter, we have used PL,DLA (PABR L 68), PL,DLLA (Resomer® LR 704), PLGA85:15 (DL-

PLG), and PLGA50:50 (PDLG 5010). These polymers have been characterized in detail in chapter 5. 

First, pellets prepared by both methods were foamed with supercritical fluid to make scaffolds. 
Secondly, a comparative study was made to analyze the porosity and pore morphology created by wet and 
dry method. In the first part, we will discuss the two PLAs in which, one is amorphous while the other is 

semi-crystalline. 

1.1 Experimental Procedure 

1.1.1 Preparation of Pellets by Wet and Dry Methods 

A soluble solvent, acetone, was used to make a homogenous solution with polymer powders. 
Transparent solution was poured in petri dish of 7cm diameter. The solution was dried for 48 hrs and then 
pellets of 12mm diameter and ~1 − 1.2mm thickness was cut with die cutter. Further details of the wet 
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method pellet preparation are reported in chapter 4 section 1.5. In parallel pellets of 13 mm diameter and 

~1.2 mm thickness were also prepared by dry method as described earlier in section 1.4, chapter 4. 

1.1.2 Taguchi’ Design for Foaming 

Taguchi’ design was considered for these experimentations. We have chosen L9 table. As a result, 
4 process parameters were optimized: the pressure, the temperature, the time of saturation and the rate of 
depressurization. The domain of definition of this Taguchi design is presented in Table 6.1. A wide range of 

all the four parameters were kept in the initial plan. 

Table 6.1: Initial Taguchi plans for scCO2 foaming of pellets prepared by wet and dry method. 

Nr 1 2 3 4 5 6 7 8 9 

Tsat (
oC) 40 40 40 45 45 45 50 50 50 

Psat (bar) 100 200 300 100 200 300 100 200 300 
tsat (min) 30 40 20 40 20 30 20 30 40 

dP/dt (bar/s) 1 3 5 5 1 3 3 5 1 

SEPAREX® SFC6 scCO2 laboratory plant was used for foaming scaffold during this 
experimentation. As the pressure chamber capacity is 6 liters, multiple pellets were placed inside the 
chamber for one process condition. Single perforate plate was adopted for foaming process by placing 4 

pellets (2 wet plus 2 dry) for one process condition. 

1.2 PL,DLA Foams Processed by Wet and Dry Methods: Initial Taguchi Plan 

Foams of PL,DLA pellets, prepared by wet and dry methods, were produced by adapting initial 
Taguchi plan. After making the dimensional observations for geometric porosity calculations, SEM analysis 
for all the foams was done. Four to six micrographs were taken for each foam at different magnifications at 

different positions on the sample.  

The equivalent pore diameter obtained from SCION® Image analysis of the SEM micrographs and 
the geometric porosity calculated from the dimensional data of pellets and foams are reported on Table 6.2. 
The highlighted and underlined values in the table are the optimum values. SEM micrographs of PL,DLA 
foams are presented in Figure 6.1. The process conditions for foams in the micrograph are saturation 

temperature, saturation pressure, saturation time and depressurization rate. 

Table 6.2: PL,DLA foams pore data of wet and dry method by initial Taguchi’ plan. 

PL,DLA 

scCO2 Parameters Geometric 
Porosity  

P (%) 

Equivalent 
Pore Diameter  

de (m) Tsat Psat tsat dP/dt 

(°C) (bar) (min) (bar/s) Wet Dry Wet Dry 
P1 40 100 30 1 56.5 55.8 50 60 
P2 40 200 40 3 59.1 63.3 15 40 
P3 40 300 20 5 69.3 68.9 20 25 
P4 45 100 40 5 63.5 83.6 25 65 
P5 45 200 20 1 74.4 57.1 20 50 
P6 45 300 30 3 75.2 59.5 10 80 
P7 50 100 20 3 77.2 72.5 100 125 
P8 50 200 30 5 91.6 57.8 10 50 
P9 50 300 40 1 64.8 63.0 20 25 

The pore diameter was heterogeneous (small and large) in the foams obtained hence the 
maginification was different for some of the foams. Higher and low magnification was done for foam 
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micrographs with small and large pore diameters. Most of the images presented in Figure 6.1 are of 

magnification 100× and 250×. 

Wet Method Dry Method Wet Method Dry Method 

  
Condition:01--200× 

[40 oC - 100 bars - 30 min - 1 bar/s] 
Condition:01--100× 

[40 oC - 100 bars - 30 min - 1 bar/s] 
Condition:02--250× 

[40 oC - 200 bars - 40 min - 3 bar/s] 
Condition:02--100× 

[40 oC - 200 bars - 40 min - 3 bar/s] 

    

  
Condition:03--100× 

[40 oC - 300 bars - 20 min - 5 bar/s] 
Condition:03--100× 

[40 oC - 300 bars - 20 min - 5 bar/s] 
Condition:04--250× 

[45 oC - 100 bars - 40 min - 5 bar/s] 
Condition:04--100× 

[45 oC - 100 bars - 40 min - 5 bar/s] 

    

  
Condition:05--100× 

[45 oC - 200 bars - 20 min - 1 bar/s] 
Condition:05--50× 

[45 oC - 200 bars - 20 min - 1 bar/s] 
Condition:06--100× 

[45 oC - 300 bars - 30 min - 3 bar/s] 
Condition:06--100× 

[45 oC - 300 bars - 30 min - 3 bar/s] 

    

  
Condition:07--100× 

[50 oC - 100 bars - 20 min - 3 bar/s] 
Condition:07--50× 

[50 oC - 100 bars - 20 min - 3 bar/s] 
Condition:08--100× 

[50 oC - 200 bars - 30 min - 5 bar/s] 
Condition:08--100× 

[50 oC - 200 bars - 30 min - 5 bar/s] 

    
 Wet Method Dry Method  

 

 

 

 
Condition:09--100× 

[50 oC - 300 bars - 40 min - 1 bar/s] 
Condition:09--100× 

[50 oC - 300 bars - 40 min - 1 bar/s] 
 

    
Figure 6.1: Micrographs of PL,DLA foams processed by wet and dry methods. 
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1.2.1 Effect of Process Parameters on Equivalent Pore Diameter (de) 

The effect of each process parameter on equivalent pore diameter and porosity was calculated for 
both wet and dry methods. Figure 6.2 presents a comparison between average effect on the equivalent pore 

diameter for wet and dry methods.  
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(A)-Foam processed by wet method. (B)-Foam processed by dry method. 
  

Figure 6.2: Average effect of each parameter on equivalent pore diameter of PL,DLA foams. 

From these graphs (cf. Figure 6.2-A and B), the optimized parameters on equivalent pore diameter 

for both methods are as follows. 

Wet method: Tsat = 50oC, Psat = 100 bars, tsat = 20 min and dP/dt = 3 bar/s 

Dry method: Tsat = 50oC, Psat = 100 bars, tsat = 20 min and dP/dt = 3 bar/s 

The equivalent pore diameter of scaffolds is comparable between both methods (125 m for wet 
method and 100 m for dry method). Optimal conditions are same for both wet and dry methods. 

1.2.2 Effect of Process Parameters on Geometric Porosity 

Taking into account the average effect of each process parameter on geometric porosity (cf. Figure 

6.3-A and B), the optimized parameters for both methods are as follows. 

Wet method: Tsat = 50oC, Psat = 200 bars, tsat = 30 min and dP/dt = 5 bar/s 

Dry method: Tsat = 45oC, Psat = 100 bars, tsat = 40 min and dP/dt = 5 bar/s 

Optimum Parameters : Taguchi Plan-I
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(A)-Foam processed by wet method. (B)-Foam processed by dry method. 
  

Figure 6.3: Average effect of each parameter on variation of porosity of PL,DLA foams. 
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For wet method foam maximum geometric porosity is 91.6%, while for dry method it is 83.6%. 
The optimized scCO2 foaming conditions for equivalent pore diameter and geometric porosity for both wet 

and dry methods are different. 

1.3 PL,DLA Foams Processed by Wet and Dry Methods: Complementary Taguchi’ 
Plan 

After analysis of the results of initial plan, it was decided to make a complementary plan with 
modified process parameters to obtain maximum pore size and porosity. Complementary plan with different 
process parameters is presented in Table 6.3. The saturation pressure range was narrowed and moved to 
lower values as high pressures generates small pore diameters, the saturation temperature was kept 
unchanged, the time of saturation range was also narrowed and moved to lower values. The rate of 
depressurization ranges was broaden to analyze the effect of high and low dP/dt rates on the equivalent pore 

diameter, porosity and pore morphology of PL,DLA foams. 

 

Table 6.3: Complementary Taguchi plans for scCO2 foaming of pellets prepared by wet and dry method. 

Nr 1 2 3 4 5 6 7 8 9 
Tsat (

oC) 40 40 40 45 45 45 50 50 50 
Psat (bar) 75 100 150 75 100 150 75 100 150 
tsat (min) 20 25 15 25 15 20 15 20 25 

dP/dt (bar/s) 6 2 4 4 6 2 2 4 6 

The equivalent pore diameter obtained from SCION® image analysis of the SEM micrographs and 
the geometric porosity calculated from the dimensional data of pellets and foams are reported on  

Table 6.4. 

 

Table 6.4: PL,DLA foams pore data of wet and dry method by complementary Taguchi plan. 

PL,DLA 

scCO2 Parameters Geometric 
Porosity 

P (%) 

Equivalent 
Pore Diameter 

de (m)
Tsat Psat tsat dP/dt 

(°C) (bar) (min) (bar/s) Wet Dry Wet Dry 
P1 40 75 20 6 51.4 84.3 5 40 
P2 40 100 25 2 47.6 84.5 15 50 
P3 40 150 15 4 41.0 72.1 5 30 
P4 45 75 25 4 51.4 78.0 5 40 
P5 45 100 15 6 43.2 74.0 30 30 
P6 45 150 20 2 55.1 65.6 60 65 
P7 50 75 15 2 67.3 82.8 40 50 
P8 50 100 20 4 74.9 88.3 25 100 
P9 50 150 25 6 84.1 75.3 25 40 

 

SEM micrographs of PL,DLA foams obtained for complementary plan are presented in Figure 6.4. 
Observing the micrographs of these foams and Compairing to the micrographs of initial Taguchi plan, we 
found that at low pressure and temperature ranges the pores generated are of very small diameter. At higher 
temperature ranges the pore diameter observed is higher. Comparaing the results of porosities of wet method 
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foams they are comparatively at lower side to the initial Taguchi plan values. Comparison of both plans will 
give a more comprehensive picture about the effect of each process parameter on the equivalent pore 

diameter and geometric porosity. 

Wet Method Dry Method Wet Method Dry Method 

 
Condition:01--250× 

[40 oC - 75 bars - 20 min - 6 bar/s] 
Condition:01--250× 

[40 oC - 75 bars - 20 min - 6 bar/s] 
Condition:02--250× 

[40 oC - 100 bars - 25 min - 2 bar/s] 
Condition:02--100× 

[40 oC - 100 bars - 25 min - 2 bar/s] 

    

 
Condition:03--250× 

[40 oC - 150 bars - 15 min - 4 bar/s] 
Condition:03--100× 

[40 oC - 150 bars - 15 min - 4 bar/s] 
Condition:04--100× 

[40 oC - 75 bars - 25 min - 4 bar/s] 
Condition:04--100× 

[40 oC - 75 bars - 25 min - 4 bar/s] 

    

 
Condition:05--250× 

[45 oC - 100 bars - 15 min - 6 bar/s] 
Condition:05--100× 

[45 oC - 100 bars - 15 min - 6 bar/s] 
Condition:06--100× 

[45 oC - 150 bars - 20 min - 2 bar/s] 
Condition:06--100× 

[45 oC -150 bars -20 min - 2 bar/s] 

    

 
Condition:07--100× 

[50 oC - 75 bars - 15 min - 2 bar/s] 
Condition:07--50× 

[50 oC - 75 bars - 15 min - 2 bar/s] 
Condition:08--250× 

[50 oC - 100 bars - 20 min - 4 bar/s] 
Condition:08--100× 

[50 oC - 100 bars - 20 min - 4 bar/s] 

 Wet Method Dry Method  

  

 
Condition:09--100× 

[50 oC - 150 bars - 20 min - 6 bar/s] 
Condition:09--100× 

[50 oC - 150 bars - 20 min - 6 bar/s] 
 

    
Figure 6.4: Micrographs of PL,DLA foams processed by wet and dry methods. 
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1.3.1 Effect of Process Parameters on Equivalent Pore Diameter (de) 

Figure 6.5 presents a comparison between the average effect on equivalent pore diameter for wet 

and dry methods.  
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(A)-Foam processed by wet method. (B)-Foam processed by dry method  
  

Figure 6.5: Average effect of each parameter on equivalent pore diameter of PL,DLA foams. 

The maximum and optimized value of average equivalent pore diameter is 60 m for wet method 

and 100 m for dry one. The value is higher in dry than in wet method. The conditions are stated as follows. 

Wet method: Tsat = 45oC, Psat = 150 bars, tsat = 20 min and dP/dt = 2 bar/s 

Dry method: Tsat = 50oC, Psat = 100 bars, tsat = 20 min and dP/dt = 4 bar/s 

1.3.2 Effect of Process Parameters on Geometric Porosity 

The average effect of each process parameter on porosity (cf. Figure 6.6-A and B), is obtained for 

the following scCO2 process conditions.  
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Optimum Parameters : Taguchi Plan-I
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(A)-Foam processed by wet method. (B)-Foam processed by dry method. 
  

Figure 6.6: Average effect of each parameter on variation of geometric porosity of PL,DLA foams. 

Wet method: Tsat = 50oC, Psat = 150 bars, tsat = 25 min and dP/dt = 6 bar/s 

Dry method: Tsat = 50oC, Psat = 100 bars, tsat = 20 min and dP/dt = 4 bar/s 
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The maximum values obtained are 84.1% and 88.3% for wet and dry method. The highest values 

of porosities for both methods are obtained at higher temperature and higher dP/dt values. 

1.4 PL,DLLA Foams Processed by Wet and Dry Methods: Initial Taguchi Plan 

SEM micrographs of foams processed by initial plan are presented in Figure 6.7. 

Wet Method Dry Method Wet Method Dry Method 

 
Condition:01--100× 

[40 oC - 100 bars - 30 min - 1 bar/s] 
Condition:01--250× 

[40 oC - 100 bars - 30 min - 1 bar/s] 
Condition:02--100× 

[40 oC - 200 bars - 40 min - 3 bar/s] 
Condition:02--500× 

[40 oC - 200 bars - 40 min - 3 bar/s] 

    

 
Condition:03--250× 

[40 oC - 300 bars - 20 min - 5 bar/s] 
Condition:03--250× 

[40 oC - 300 bars - 20 min - 5 bar/s] 
Condition:04--100× 

[45 oC - 100 bars - 40 min - 5 bar/s] 
Condition:04--100× 

[45 oC - 100 bars - 40 min - 5 bar/s] 

    

 
Condition:05--250× 

[45 oC - 200 bars - 20 min - 1 bar/s] 
Condition:05--250× 

[45 oC - 200 bars - 20 min - 1 bar/s] 
Condition:06--250× 

[45 oC - 300 bars - 30 min - 3 bar/s] 
Condition:06--250× 

[45 oC - 300 bars - 30 min - 3 bar/s] 

    

 
Condition:07--100× 

[50 oC - 100 bars - 20 min - 3 bar/s] 
Condition:07--100× 

[50 oC - 100 bars - 20 min - 3 bar/s] 
Condition:08--250× 

[50 oC - 200 bars - 30 min - 5 bar/s] 
Condition:08--250× 

[50 oC - 200 bars - 30 min - 5 bar/s] 

 Wet Method Dry Method  

  

 
Condition:09--250× 

[50 oC - 300 bars - 40 min - 1 bar/s] 
Condition:09--250× 

[50 oC - 300 bars - 40 min - 1 bar/s] 
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Figure 6.7: Micrographs of PL,DLLA foams processed by wet and dry methods. 

The equivalent pore diameter obtained from SCION® image analysis on the SEM micrographs, 
and porosity data by geometric method from the dimensional observations of the PL,DLLA pellets and foams 

are presented in Table 6.5. 

Table 6.5: PL,DLLA foams pore data of wet and dry method by initial Taguchi’ plan. 

PL,DLLA 

scCO2 Parameters Geometric 
Porosity 

P (%) 

Equivalent 
Pore Diameter 

de(m)
Tsat Psat tsat dP/dt 

(°C) (bar) (min) (bar/s) Wet Dry Wet Dry 
P1 40 100 30 1 80.0 63.8 15 30 
P2 40 200 40 3 82.8 68.7 20 25 
P3 40 300 20 5 83.1 65.4 5 15 
P4 45 100 40 5 78.9 94.3 15 50 
P5 45 200 20 1 85.8 66.9 20 35 
P6 45 300 30 3 83.9 97.8 5 20 
P7 50 100 20 3 82.7 85.4 30 75 
P8 50 200 30 5 88.9 85.1 10 15 
P9 50 300 40 1 82.3 83.0 5 20 

1.4.1 Effect of Process Parameters on Equivalent Pore Diameter (de) 

The effect of each process parameter on equivalent pore diameter and porosity was calculated for 

both wet and dry methods and the graph is presented below.  
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(A)-Foam processed by wet method. (B)-Foam processed by dry method. 
  

Figure 6.8: Average effect of each parameter on equivalent pore diameter of PL,DLLA foams. 

Figure 6.8 presents the comparison between the equivalent pore diameter effect for wet and dry 
methods. The optimized parameters obtained on the basis of equivalent pore diameter for both methods are 

stated as follows. 

Wet method: Tsat = 50oC, Psat = 100 bars, tsat = 20 min and dP/dt = 3 bar/s 

Dry method: Tsat = 50oC, Psat = 100 bars, tsat = 20 min and dP/dt = 3 bar/s 

The value of equivalent pore diameter at these optimum conditions is 30 m for wet method and 

75 m for dry method. For both the methods we can observe that optimum condition is same. However the 

pore diameter in wet method is even less than half of pore diameter in dry method. In wet method after being 
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saturated with scCO2 during the depressiurization step, desorption phenomenon is for a very short time in 

the polymer leading in low pore diameter as compared to dry method. 

1.4.2 Effect of Process Parameters on Geometric Porosity 

Taking into account the effect of each process parameter on geometric porosity (cf. Figure 6.9-A 

and B), the optimized parameters for both methods are as follows: 

Wet method: Tsat = 50oC, Psat = 200 bars, tsat = 30 min and dP/dt = 5 bar/s 

Dry method: Tsat = 45oC, Psat = 300 bars, tsat = 30 min and dP/dt = 3 bar/s 

There is a difference in the optimized parameter for wet and dry methods. We obtain maximum 

foam porosity value of 88.9% and 97.8% for wet and dry method. 

Optimum Parameters : Taguchi Plan-I
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(A)-Foam processed by wet method. (B)-Foam processed by dry method. 
  

Figure 6.9: Average effect of each parameter on variation of geometric porosity of PL,DLLA foams. 

1.5 PL,DLLA Foams Processed by Wet and Dry Methods: Complementary Taguchi’ 
Plan 

The equivalent pore diameter obtained from SCION® image analysis on the SEM micrographs and 

geometric porosity calculated from the dimensional data of pellets and foams are reported on Table 6.6.  

Table 6.6: PL,DLLA foams pore data of wet and dry method by complementary Taguchi plan. 

PL,DLLA 

scCO2 Parameters Geometric 
Porosity 

P (%) 

Equivalent 
Pore Diameter 

de(m) Tsat Psat tsat dP/dt 

(°C) (bar) (min) (bar/s) Wet Dry Wet Dry 
P1 40 75 20 6 70.8 55.7 5 50 
P2 40 100 25 2 76.2 73.1 15 75 
P3 40 150 15 4 83.2 65.4 25 30 
P4 45 75 25 4 90.8 72.8 55 20 
P5 45 100 15 6 58.2 56.1 10 5 
P6 45 150 20 2 85.5 79.5 15 55 
P7 50 75 15 2 83.8 63.2 80 40 
P8 50 100 20 4 72.0 67.5 20 125 
P9 50 150 25 6 78.2 53.3 40 75 

It can be observed from the data of gemetric porosity that in wet method porosities of 
foams obtained is higher than the porosities of foams in dry method. Where as the pore diameter 



Chapter 6.                          Optimization of Pore Morphology of Scaffolds for Connective Tissue Engineering 

- 157 - 

obtained is compareably higher in the dry method. In this plan the optimum conditions for both wet 
and dry methods are different for equivalent pore diameter and porosity. 

SEM micrographs of PL,DLLA foams processed by complementary plan are presented in Figure 

6.10. 

Wet Method Dry Method Wet Method Dry Method 

  
Condition:01--250× 

[40 oC - 75 bars - 20 min - 6 bar/s] 
Condition:01--250× 

[40 oC - 75 bars - 20 min - 6 bar/s] 
Condition:02--250× 

[40 oC - 100 bars - 25 min - 2 bar/s] 
Condition:02--250× 

[40 oC - 100 bars - 25 min - 2 bar/s] 

    

  
Condition:03--250× 

[40 oC - 150 bars - 15 min - 4 bar/s] 
Condition:03--250× 

[40 oC - 150 bars - 15 min - 4 bar/s] 
Condition:04--250× 

[40 oC - 75 bars - 25 min - 4 bar/s] 
Condition:04--250× 

[40 oC - 75 bars - 25 min - 4 bar/s] 

    

  
Condition:05--100× 

[45 oC - 100 bars - 15 min - 6 bar/s] 
Condition:05--100× 

[45 oC - 100 bars - 15 min - 6 bar/s] 
Condition:06--250× 

[45 oC - 150 bars - 20 min - 2 bar/s] 
Condition:06--250× 

[45 oC - 150 bars - 20 min - 2 bar/s] 

    

  
Condition:07--100× 

[50 oC - 75 bars - 15 min - 2 bar/s] 
Condition:07--100× 

[50 oC - 75 bars - 15 min - 2 bar/s] 
Condition:08--100× 

[50 oC - 100 bars - 20 min - 4 bar/s] 
Condition:08--50× 

[50 oC - 100 bars - 20 min - 4 bar/s] 

    

 

 

 

 
Condition:09--100× 

[50 oC - 150 bars - 20 min - 6 bar/s] 
Condition:09--100× 

[50 oC - 150 bars - 20 min - 6 bar/s] 
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Figure 6.10: Micrographs of PL,DLLA foams processed by wet and dry methods. 

 

1.5.1 Effect of Process Parameters on Equivalent pore diameter (de) 

Average effect of each process parameter on equivalent pore diameter and geometric porosity for 

both methods are presented in Figure 6.11 and Figure 6.12.  
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(A)-Foam processed by wet method. (B)-Foam processed by dry method. 
  

Figure 6.11: Average effect of each parameter on equivalent pore diameter of PL,DLLA foams. 

From Figure 6.11 we deduced the scCO2 parameters which permit to optimize the average 
equivalent pore diameter for both methods. 

Wet method: Tsat = 50 oC, Psat = 75 bars, tsat = 15 min and dP/dt = 2 bar/s 

Dry method: Tsat = 50oC, Psat = 100 bars, tsat = 20min and dP/dt = 4 bar/s 

From these values we obtain equivalent pore diameter of 80 m for wet method and 125 m for 

dry method.  

1.5.2 Effect of Process Parameters on Geometric Porosity 

Taking into account the effect of each process parameter on geometric porosity (cf. Figure 6.12-A 
and B), 90.8%, for wet method and 79.5% for dry method foam porosity obtained at the following 
conditions. 

Wet method: Tsat = 45oC, Psat = 75 bars, tsat = 25 min and dP/dt = 4 bar/s 

Dry method: Tsat = 45oC, Psat = 150 bars, tsat = 20 min and dP/dt = 2 bar/s  
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(A)-Foam processed by wet method. (B)-Foam processed by dry method. 
  

Figure 6.12: Average effect of each parameter on variation of porosity of PL,DLLA foams. 

1.6 Comparison Between Both PLAs  

The initial characterization gave the results that PL,DLA was amorphous and PL,DLLA was semi 
crystalline with 12.4% crystallinity. The molecular weight for both polylactides was approximately 
equivalent (163,971 and 201,169 respectively), and Tgs are of the same range (55.6oC and 60.1oC 
respectively). So, crystallinity ratio is the factor that plays a major role on the geometric porosity and 
equivalent pore diameter of the foams processed. By blocking the diffusion of scCO2 crystallites decreases 
the solubility of PLAs. The optimum results of both wet and dry methods for both polylactides are presented 

in Table 6.7 and Table 6.8 respectively. 

Table 6.7: PL,DLA equivalent pore diameter and geometric porosity results for both methods and plans. 

Wet Method Dry Method 
Initial Taguchi Plan Initial Taguchi Plan 

[50oC-100 bars-20 min-3 bar/s] de(m) 100 [50oC-100 bars-20 min-3 bar/s] de(m) 125 
[50oC-200 bars-30 min-5 bar/s] P(%) 91.6 [45oC-100 bars-40 min-5 bar/s] P(%) 83.6 

Complementary Taguchi Plan Complementary Taguchi Plan 
[45oC-150 bars-20 min-2 bar/s] de(m) 60 [50oC-100 bars-20 min-4 bar/s] de(m) 100 
[50oC-150 bars-25 min-6 bar/s] P(%) 84.1 [50oC-100 bars-20 min-4 bar/s] P(%) 88.3 

Table 6.8: PL,DLLA equivalent pore diameter and geometric porosity results for both methods and plans. 

Wet Method Dry Method 
Initial Taguchi Plan Initial Taguchi Plan 

[50oC-100 b rs-20 min-3 bar/s] de(m) 30 [50oC-100 b rs-20 min-3 bar/s] de(m) 75 
[50oC-200 bars-30 min-5 bar/s] P(%) 88.9 [45oC-300 bars-30 min-3 bar/s] P(%) 97.8 

Complementary Taguchi Plan Complementary Taguchi Plan 
[50oC-75 bars-15 min-2 bar/s] de(m) 80 [50oC-100 bars-20 min-4 bar/s] de(m) 125 
[45oC-75bars-25 min-4 bar/s] P(%) 90.8 [45oC-150 bars-20 min-2 bar/s] P(%) 79.5 

The comparison of effective equivalent pore diameter and porosity variation for PL,DLA and 
PL,DLLA for the initial Taguchi plan is presented in Figure 6.13. It is clear that foams of PL,DLA being 
amorphous produced pores of larger diameter than PL,DLLA in both wet and dry method.  
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(A)- Equivalent pore diameter of foams. (B)- Geometric porosity of foams. 
  

Figure 6.13: Average effect of each parameter on variation of equivalent pore diameter and 
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porosity of PL,DLA and PL,DLLA foams by wet and dry methods from initial Taguchi plan. 

Figure 6.14 presents the comparison of effective equivalent pore diameter and porosity variation 
for PL,DLA and PL,DLLA for the complementary Taguchi plan. Again we see the same trend that foams of 
PL,DLA being amorphous produced pores of larger diameter than PL,DLLA in both wet and dry pellet 
preparation method. Also if the initial and complementary Taguchi plan are compared, foams of larger 
diameter and higher porosity are produced in PL,DLA foams in initial plan as compared to the PL,DLLA foams. 
In complementary plan the phenomenon is unexpectedly reverse due to coalecence of pores. PL,DLA and 
PL,DLLA in dry method produced larger pore diameter than wet method indicating that proper nucleation and 

pore growth in dry method. 
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(A)- Equivalent pore diameter of foams. (B)- Geometric porosity of foams. 
  

Figure 6.14: Average effect of each parameter on variation of equivalent pore diameter and 
porosity of PL,DLA and PL,DLLA foams by wet and dry methods from complementary Taguchi plan. 

PL,DLLA though produced foam with high porosity but the equivalent pore diameter was very low. 
The effect of each process parameter on equivalent pore diameter and porosity was calculated for both wet 
and dry methods. PL,DLA is an amorphous polymer with 12% D-Lactide, while PL,DLLA is a semi crystalline 
with 12.4% crystallinity. Ma et al. [2010] concluded from the experiments that amorphous PLA was found 
to have a better CO2 absorption whereas the crystalline regions in L-PLA impede the penetration of CO2 
molecule. The solubility of carbon dioxide in both polymers shows the same trend, increasing with pressure 
and decreasing with temperature. The possible explanation for this behaviour is that the presence of 
crystallites in semicrystalline PLA can restrict the chain mobility in the amorphous phase, acting as virtual 
crosslinks, thus reducing the volume that can be used for the penetrant to make a diffusional jump and also 
avoiding the swelling. Oliveira et al. [2006] made a study showing that the apparent Langmuir capacity is 
very large for amorphous PLA while in semi-crystalline PLA, it is almost negligible. Also, the apparent 
Langmuir capacity diminishes as temperature approaches the glass transition temperature. This observation 
is consistent with the fact that the Langmuir capacity is directly related to the effective free volume that 
tends to zero at Tg. These results show that the different content of L:D isomers in PLA does influence not 

only the solubility but also the solubility mechanism. 

The possible reason for generation of high porosity and low pore diameter in wet method as 
compared to the dry method can be that in wet method more CO2 is sorbed as the polymer is more elastic 
due to the solvent. Then during the depressurization step CO2 is desorbed without resistance and there is not 

enough time for the pore to grow thus leading to highly porous but pores with small diameter. 
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Wet method can be applicable to the semi-crystalline polymers which are difficult at low 
tempeartures to be processed in dry state. The application of wet method process can be limited for medical 
application due to the presence of solvent traces in the final product, however it can be used for commercial 

purpose where foams of small diameters and high porosity is required. 

2 Optimization of PLGA’s Foams by Wet and Dry Method. 

2.1 PLGA50:50 Foams Processed by Wet and Dry Methods 

Two poly(lactic-co-glycolic acids) were used to produce foams by wet and dry methods. The 
initial Taguchi’ plan has been used for these studies. The SEM micrographs of PLGA50:50 foams are 
presented in Figure 6.15. 

Wet Method Dry Method Wet Method Dry Method 

  
Condition:01--200× 

[40 oC - 100 bars - 30 min - 1 bar/s] 
Condition:01--100× 

[40 oC - 100 bars - 30 min - 1 bar/s] 
Condition:02--500× 

[40 oC - 200 bars - 40 min - 3 bar/s] 
Condition:02--500× 

[40 oC - 200 bars - 40 min - 3 bar/s] 

    

  
Condition:03--500× 

[40 oC - 300 bars - 20 min - 5 bar/s] 
Condition:03--500× 

[40 oC - 300 bars - 20 min - 5 bar/s] 
Condition:04--100× 

[45 oC - 100 bars - 40 min - 5 bar/s] 
Condition:04--100× 

[45 oC - 100 bars - 40 min - 5 bar/s] 

    

  
Condition:05--250× 

[45 oC - 200 bars - 20 min - 1 bar/s] 
Condition:05--250× 

[45 oC - 200 bars - 20 min - 1 bar/s] 
Condition:06--250× 

[45 oC - 300 bars - 30 min - 3 bar/s] 
Condition:06--250× 

[45 oC - 300 bars - 30 min - 3 bar/s] 

    

  
Condition:07--150× 

[50 oC - 100 bars - 20 min - 3 bar/s] 
Condition:07--50× 

[50 oC - 100 bars - 20 min - 3 bar/s] 
Condition:08--500× 

[50 oC - 200 bars - 30 min - 5 bar/s] 
Condition:08--500× 

[50 oC - 200 bars - 30 min - 5 bar/s] 

 Wet Method Dry Method  
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Condition:09--500× 

[50 oC - 300 bar - 40 min - 1 bar/s] 
Condition:09--500× 

[50 oC - 300 bar - 40 min - 1 bar/s] 
 

    
Figure 6.15: Micrographs of PLGA50:50 foams processed by wet and dry methods. 

The equivalent pore diameter obtained from SCION® image analysis of SEM micrographs of 
PLGA50:50 foams and geometric porosity calculated from the pellet and foam dimensional data by geometric 

method are presented in Table 6.9. 

Table 6.9: PLGA50:50 foams pore data of wet and dry method by initial Taguchi plan. 

PLGA50:50 

scCO2 Parameters Geometric 
Porosity 

P (%) 

Equivalent 
Pore Diameter 

de (m) Tsat Psat tsat dP/dt 

(°C) (bar) (min) (bar/s) Wet Dry Wet Dry 
P1 40 100 30 1 87.6 73.6 40 50 
P2 40 200 40 3 78.8 86.2 5 40 
P3 40 300 20 5 81.8 81.6 10 15 
P4 45 100 40 5 97.5 93.7 120 100 
P5 45 200 20 1 84.4 72.4 15 20 
P6 45 300 30 3 83.0 82.8 5 20 
P7 50 100 20 3 86.1 98.3 150 200 
P8 50 200 30 5 80.3 81.2 25 20 
P9 50 300 40 1 78.2 71.5 15 10 

2.1.1 Effect of Process Parameters on Equivalent Pore Diameter (de) 

Effect of each process parameter on pore diameter for both methods is presented in Figure 6.16. 

PLGA50:50 is copolymer with LA/GA ratio of 50/50 and contains D,L lactide.  
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(A)-Foam processed by wet method. (B)-Foam processed by dry method. 
  

Figure 6.16: Average effect of each parameter on equivalent pore diameter of PLGA50:50 foams. 
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From Figure 6.16, we deduced the scCO2 parameters which permit to optimize the average 
equivalent pore diameter for both methods. 

Wet method: Tsat = 50 oC, Psat = 100 bars, tsat = 20 min and dP/dt =3 bar/s 

Dry method: Tsat = 50oC, Psat = 100 bars, tsat  = 20min and dP/dt = 3 bar/s 

From these values we obtain equivalent pore diameter of 150 m for wet method and 200 m for 

dry method. For PLGA50:50 the pore diameter for wet and dry method have the same optimum condition. For 
each condition the pore diameter for dry method is at higher values indicating that there was proper swelling 
and pore growth in saturated polymer in dry method, where as in wet method less resistance was offered by 

the saturated polymer during pore growth leading to low pore diameter. 

2.1.2 Effect of Process Parameters on Geometric Porosity 

The effect of each process parameter on geometric porosity is presented in Figure 6.17. The 
maximum value of geometric porosity for wet and dry methods is 97.5% and 98.3%. The optimized 

parameters for both methods are as follows. 

Wet method: Tsat = 45oC, Psat = 100 bars, tsat = 40 min and dP/dt = 5 bar/s 

Dry method: Tsat = 50oC, Psat = 100 bars, tsat = 20 min and dP/dt = 3 bar/s 
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(A)-Foam processed by wet method. (B)-Foam processed by dry method. 
  

Figure 6.17: Average effect of each parameter on variation of geometric porosity of PLGA50:50 foams. 

2.2 PLGA50:50 Foams by Wet and Dry Methods by Complementary Taguchi’ Plan 

The complementary Taguchi plan followed for the processing of foams is presented in Table 6.10. 
The equivalent pore diameter obtained from SCION® image analysis of the SEM micrographs and geometric 

porosity calculated from the dimensional data of pellets and foams are reported on Table 6.10.  

Table 6.10: PLGA50:50 foams pore data of wet and dry method by complementary Taguchi plan. 

PLGA50:50 

sc CO2 Parameters Geometric 
Porosity 

P (%) 

Equivalent 
Pore Diameter 

de (m)
Tsat Psat tsat dP/dt 

(°C) (bar) (min) (bar/s) Wet Dry Wet Dry 
P1 40 75 20 6 85.1 87.5 40 60 
P2 40 100 25 2 92.8 81.7 80 100 
P3 40 150 15 4 78.1 81.4 70 60 
P4 45 75 25 4 74.9 80.2 100 125 
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P5 45 100 15 6 95.2 94.3 50 75 
P6 45 150 20 2 88.0 77.6 30 40 
P7 50 75 15 2 83.4 71.4 125 200 
P8 50 100 20 4 82.3 79.4 60 250 
P9 50 150 25 6 87.8 82.6 175 60 

In the complementary Taguchi plan the porosities of the foams obtained in most of the conditions 
are above 80%. In the initial Taguchi plan porosities were at higher value while porosity was not too high. 
The results of pore diameter comparable to initial Taguchi plans are on higher. It can also be revealed from 

the data that at higher pressures, higher dP/dt and at low temperature the pore size obtained is small. 

 

SEM micrographs of PLGA50:50 wet and dry method foams processed by following complementary Taguchi 

plan are presented in Figure 6.18. 

Wet Method Dry Method Wet Method Dry Method 

    
Condition:01--200× 

[40 oC - 75 bars - 20 min - 6 bar/s] 
Condition:01--250× 

[40 oC - 75 bars - 20 min - 6 bar/s] 
Condition:02--250× 

[40 oC - 100 bars - 25 min - 2 bar/s] 
Condition:02--100× 

[40 oC - 100 bars - 25 min - 2 bar/s] 

    

  
Condition:03--250× 

[40 oC - 150 bars - 15 min - 4 bar/s] 
Condition:03--250× 

[40 oC - 150 bars - 15 min - 4 bar/s] 
Condition:04--125× 

[40 oC - 75 bars - 25 min - 4 bar/s] 
Condition:04--50× 

[40 oC - 75 bars - 25 min - 4 bar/s] 

    

    
Condition:05--250× 

[45 oC - 100 bars - 15 min - 6 bar/s] 
Condition:05--100× 

[45 oC - 100 bars - 15 min - 6 bar/s] 
Condition:06--100× 

[45 oC - 150 bars - 20 min - 2 bar/s] 
Condition:06--250× 

[45 oC - 150 bars - 20 min - 2 bar/s] 

    

    
Condition:07--100× 

[50 oC - 75 bars - 15 min - 2 bar/s] 
Condition:07--50× 

[50 oC - 75 bars - 15 min - 2 bar/s] 
Condition:08--100× 

[50 oC - 100 bars - 20 min - 4 bar/s] 
Condition:08--50× 

[50 oC - 100 bars - 20 min - 4 bar/s] 
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Wet Method Dry Method 

 

 

  

 

 
Condition:09--100× 

[50 oC - 150 bars - 20 min - 6 bar/s] 
Condition:09--250× 

[50 oC - 150 bars - 20 min - 6 bar/s] 
 

    
Figure 6.18: Micrographs of PLGA50:50 foams processed by wet and dry methods. 

2.2.1 Effect of Process Parameters on Equivalent Pore Diameter (de) 

The effect of each process parameter on pore diameter and porosity for both methods is presented 

in Figure 6.19.  
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(A)-Foam processed by wet method. (B)-Foam processed by dry method. 
  

Figure 6.19: Average effect of each parameter on equivalent pore diameter of PLGA50:50 foams. 

From Figure 6.19, we deduced the scCO2 parameters which permit to optimize the average 

equivalent pore diameter for both methods. 

Wet method: Tsat = 50 oC, Psat = 150 bars, tsat = 25 min and dP/dt = 6 bar/s 

Dry method: Tsat = 50oC, Psat = 100 bars, tsat = 20min and dP/dt = 4 bar/s 

At optimized conditions we obtain equivalent pore diameter of 175m for wet method and 250 

m for dry method. 

2.2.2 Effect of Process Parameters on Geometric Porosity 

Maximum value for wet and dry method is 95.2% and 94.3%. Taking into account the effect of 

each process parameter on geometric porosity (cf. Figure 6.20), we obtain optimized conditions as follows,  

Wet method: Tsat = 45oC, Psat = 100 bars, tsat = 15 min and dP/dt = 6 bar/s 

Dry method: Tsat = 45oC, Psat = 100bars, tsat = 15 min and dP/dt = 6 bar/s 
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Optimum Parameters : Taguchi Plan-I
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(A)-Foam processed by wet method. (B)-Foam processed by dry method. 
  

Figure 6.20: Average effect of each parameter on variation of porosity of PLGA50:50 foams. 

2.3 PLGA85:15 Foams Processed by Wet and Dry Methods: Initial Taguchi’ Plan 

The second poly(lactic-co-glycolide) used was PLGA85:15.The SEM micrographs of PLGA50:50 

foams are presented in Figure 6.21. 

Wet Method Dry Method Wet Method Dry Method 

    
Condition:01--100× 

[40 oC - 100 bars - 30 min - 1 bar/s] 
Condition:01--100× 

[40 oC - 100 bars - 30 min - 1 bar/s] 
Condition:02--100× 

[40 oC - 200 bars - 40 min - 3 bar/s] 
Condition:02--100× 

[40 oC - 200 bars - 40 min - 3 bar/s] 

    

    
Condition:03--100× 

[40 oC - 300 bars - 20 min - 5 bar/s] 
Condition:03--100× 

[40 oC - 300 bars - 20 min - 5 bar/s] 
Condition:04--100× 

[45 oC - 100 bars - 40 min - 5 bar/s] 
Condition:04--100× 

[45 oC - 100 bars - 40 min - 5 bar/s] 

    

    
Condition:05--250× 

[45 oC - 200 bars - 20 min - 1 bar/s] 
Condition:05--100× 

[45 oC - 200 bars - 20 min - 1 bar/s] 
Condition:06--250× 

[45 oC - 300 bars - 30 min - 3 bar/s] 
Condition:06--250× 

[45 oC - 300 bars - 30 min - 3 bar/s] 
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Condition:07--75× 

[50 oC - 100 bars - 20 min - 3 bar/s] 
Condition:07--50× 

[50 oC - 100 bars - 20 min - 3 bar/s] 
Condition:08--250× 

[50 oC - 200 bars - 30 min - 5 bar/s] 
Condition:08--250× 

[50 oC - 200 bars - 30 min - 5 bar/s] 

 Wet Method Dry Method  

 

  

 

 
Condition:09--250× 

[50 oC - 300 bars - 40 min - 1 bar/s] 
Condition:09--250× 

[50 oC - 300 bars - 40 min - 1 bar/s] 
 

    

Figure 6.21: Micrographs of PLGA85:15 foams processed by wet and dry methods. 

The equivalent pore diameter obtained from SCION® image analysis of the SEM micrographs, 
porosity data by geometric method for PLGA85:15 foams are presented in  

Table 6.11. 

 
Table 6.11: PLGA85:15 foams pore data of wet and dry method by initial Taguchi plan. 

PLGA50:50 

scCO2 Parameters Geometric 
Porosity 

P (%) 

Equivalent 
Pore Diameter 

de (m)
Tsat Psat tsat dP/dt 

(°C) (bar) (min) (bar/s) Wet Dry Wet Dry 
P1 40 100 30 1 94.5 82.4 50 100 
P2 40 200 40 3 69.6 82.0 10 125 
P3 40 300 20 5 72.0 81.9 10 50 
P4 45 100 40 5 93.7 84.9 125 150 
P5 45 200 20 1 71.0 88.4 20 125 
P6 45 300 30 3 84.0 80.2 20 10 
P7 50 100 20 3 96.2 94.2 250 225 
P8 50 200 30 5 72.9 86.3 15 60 
P9 50 300 40 1 81.8 83.1 25 10 

The corresponding SEM micrographs for PLGA85:15 foams are presented in Figure 6.21. 

 

2.3.1 Effect of Process Parameters on Equivalent Pore Diameter (de) 

Effect of each process parameter on pore diameter and porosity for both methods is presented in 

Figure 6.22.  
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Optimum Parameters : Taguchi Plan-I

Process Condition [Tsat-Psat-tsat-dP/dt]

Tsa
t (

°C
) 40 45 50

Psa
t (

ba
r)

10
0

20
0

30
0

tsa
t (

min
)

20
'

30
'

40
'

dP
/d

t (
ba

r/s
) 1 3 5

d
e 

( 
m

)

0

20

40

60

80

100

120

140

160
Optimum Parameters :Taguchi Plan-I

Process Condition [Tsat-Psat-tsat-dP/dt]

Tsa
t (

°C
) 40 45 50

Psa
t (

ba
r)

10
0

20
0

30
0

tsa
t (

min
)

20
'

30
'

40
'

dP
/dt

 (b
ar/

s) 1 3 5

d
e 

( 
m

)

0

50

100

150

200

  

(A)-Foams processed by wet method  (B)-Foams processed by dry method  
  

Figure 6.22: Average effect of each parameter on equivalent pore diameter of PLGA85:15 foams. 

 

From Figure 6.22, we deduced the scCO2 parameters which permit to optimize the average 

equivalent pore diameter for both methods. 

Wet method: Tsat = 50 oC, Psat = 100 bars, tsat = 20 min and dP/dt =3 bar/s 

Dry method: Tsat = 50oC, Psat = 100 bars, tsat = 20 min and dP/dt = 3 bar/s 

From these conditions, we obtain equivalent pore diameter of 250m for wet method and 225m 

for dry method. 

2.3.2 Effect of Process Parameters on Geometric Porosity 

Taking into account the effect of each process parameter on geometric porosity (cf. Figure 6.23), 

the wet and dry method foam porosity optimum are at the following conditions:  

Wet method: Tsat = 50oC, Psat = 100 bars, tsat = 20 min and dP/dt = 3 bar/s 

Dry method: Tsat = 50oC, Psat = 100bars, tsat = 20 min and dP/dt = 3 bar/s 

Optimum Parameters : Taguchi Plan-I
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(A)-Foams processed by wet method. (B)-Foams processed by dry method. 
  

Figure 6.23: Average effect of each parameter on variation of porosity of PLGA85:15 foams  
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From these conditions, we obtain optimum porosity 96.2% and 94.2% for wet and dry method. 
PLGA85:15 produced pores of maximum diameters and maximum porosity for both the method at 
the same comndition. The results of wet method are slightly at higher side than the dry method.  

2.4 PLGA85:15 Foams by Wet and Dry Methods by Complementary Taguchi Plan 

The equivalent pore diameter obtained from SCION® image analysis of the SEM micrographs, 

porosity data by geometric method using the pellet and PLGA50:50 foams dimensional data are presented in  

Table 6.12. 

 

Table 6.12: PLGA85:15 foams pore data of wet and dry method by complementary Taguchi plan. 

PLGA50:50 

sc CO2 Parameters Geometric 
Porosity 

P (%) 

Equivalent 
Pore Diameter 

de (m)
Tsat Psat tsat dP/dt 

(°C) (bar) (min) (bar/s) Wet Dry Wet Dry 
P1 40 75 20 6 95.8 88.2 50 250 
P2 40 100 25 2 95.0 86.4 100 200 
P3 40 150 15 4 86.8 81.6 15 175 
P4 45 75 25 4 94.2 88.2 100 350 
P5 45 100 15 6 73.8 93.5 20 20 
P6 45 150 20 2 88.9 96.1 25 500 
P7 50 75 15 2 74.8 84.8 400 60 
P8 50 100 20 4 89.3 85.1 75 225 
P9 50 150 25 6 83.6 90.7 50 80 

The corresponding SEM micrographs for PLGA85:15 foams are presented in Figure 6.24. 

 

Wet Method Dry Method Wet Method Dry Method 

    
Condition:01--100× 

[40 oC - 75 bars - 20 min - 6 bar/s] 
Condition:01--100× 

[40 oC - 75 bars - 20 min - 6 bar/s] 
Condition:02--100× 

[40 oC - 100 bars - 25 min - 2 bar/s] 
Condition:02--200× 

[40 oC - 100 bars - 25 min - 2 bar/s] 

    

    
Condition:03--250× 

[40 oC - 150 bars - 15 min - 4 bar/s] 
Condition:03--100× 

[40 oC - 150 bars - 15 min - 4 bar/s] 
Condition:04--100× 

[40 oC - 75 bars - 25 min - 4 bar/s] 
Condition:04--50× 

[40 oC - 75 bars - 25 min - 4 bar/s] 
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Condition:05--250× 

[45 oC - 100 bars - 15 min - 6 bar/s] 
Condition:05--250× 

[45 oC - 100 bars - 15 min - 6 bar/s] 
Condition:06--250× 

[45 oC - 150 bars - 20 min - 2 bar/s] 
Condition:06--50× 

[45 oC - 150 bars - 20 min - 2 bar/s] 

    

    
Condition:07--50× 

[50 oC - 75 bars - 15 min - 2 bar/s] 
Condition:07--100× 

[50 oC - 75 bars - 15 min - 2 bar/s] 
Condition:08--100× 

[50 oC - 100 bars - 20 min - 4 bar/s] 
Condition:08--50× 

[50 oC - 100 bars - 20 min - 4 bar/s] 

 
Dry Method Wet Method 

 

 

  

 

 
Condition:09--100× 

[50 oC - 150 bars - 20 min - 6 bar/s] 
Condition:09--100× 

[50 oC - 150 bars - 20 min - 6 bar/s] 
 

    
Figure 6.24: Micrographs of PLGA85:15 foams processed by wet and dry methods. 

 

2.4.1 Effect of Process Parameters on Equivalent Pore Diameter (de) 

Effect of each process parameter on pore diameter and porosity for both methods is presented in 

Figure 6.25.  
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(A)-Foams processed by wet method. (B)-Foams processed by dry method. 
  

Figure 6.25: Average effect of each parameter on equivalent pore diameter of PLGA85:15 foams. 
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From Figure 6.25, we deduced the scCO2 parameters which permit to optimize the average 
equivalent pore diameter for both methods. 

Wet method: Tsat = 50 oC, Psat = 75 bars, tsat = 15 min and dP/dt =2 bar/s 

Dry method: Tsat = 45oC, Psat = 150 bars, tsat = 20min and dP/dt = 2 bar/s 

From these values we obtain equivalent pore diameter of 400 and 500 m for wet and dry method. 

2.4.2 Effect of Process Parameters on Geometric Porosity 

The maximum porosity for wet and dry method obtained is 95.8 and 96.1%. Taking into account 
the effect of each process parameter on geometric porosity (cf. Figure 6.26-A and B), for wet and methods 

foam porosity have optimum values at the following conditions. 

Wet method: Tsat = 40oC, Psat = 75 bars, tsat = 20 min and dP/dt = 6 bar/s 

Dry method: Tsat = 45oC, Psat = 150 bars, tsat = 20 min and dP/dt = 2 bar/s 

Optimum Parameters : Taguchi Plan-I
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(A)-Foams processed by wet method. (B)-Foams processed by dry method. 
  

Figure 6.26: Average effect of each parameter on variation of porosity of PLGA85:15 foams. 

2.5 Comparison Between Both PLGAs  

Recalling the characteristics of PLGA50:50 and PLGA85:15, both contain D,L- Lactide and glycolic 
acid in the ratio 50:50 and 85:15 respectively. Both poly(lactic-co-glycolic) acids are amorphous. The 
molecular weight for both polymers is 28,494 and 18,848, while Tg is 49.1oC and 53.1oC respectively. Apart 
from the process parameters, molecular weight, Tg and LA/GA ratio of the polymer are major factors that 

affect on the porosity and pore diameter of the foams obtained. 

The optimum results of both wet and dry methods for both poly(lactic-co-glycolic) acids are 
presented in Table 6.13 and Table 6.14 respectively. 

Table 6.13: PLGA50:50 equivalent pore diameter and porosity results for both methods and plans. 

Wet Method Dry Method 
Initial Taguchi Plan Initial Taguchi Plan 

[50oC-100 bars-20 min-3 bar/s] de(m) 150 [50oC-100 bars-20 min-3 bar/s] de(m) 200 
[45oC-100 bars-40 min-5 bar/s] P(%) 97.5 [50oC-100 bars-20 min-3 bar/s] P(%) 98.3 

Complementary Taguchi Plan Complementary Taguchi Plan 
[50oC-150 bars-25 min-6 bar/s] de(m) 175 [50oC-100 bars-20 min-4 bar/s] de(m) 250 
[45oC-100 bars-15 min-6 bar/s] P(%) 95.2 [45oC-100 bars-15 min-6 bar/s] P(%) 94.3 
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In both the plans, we have seen that equivalent pore diameters of dry method were higher than the 
wet method although the porosity was in the same ranges. These process conditions can be further optimized 
by complementary experiments. Moreover the optimized results of equivalent pore diameters for this 
polymer are obtained at a temperature close to the Tg indicating that at this temperature there was complete 
sorption, swelling and then pore growth.  

Table 6.14 depicts that PLGA85:15 equivalent pore diameters are higher for dry pellet preparation 
in both the Taguchi plans. Moreover, in the complementary Taguchi plan, we have achieved optimized value 

for the equivalent pore diameter and porosity (de  = 500m and porosity = 96.1%) at the same process 

conditions. 

Table 6.14: PLGA85:15 equivalent pore diameter and porosity results for both methods and plans. 

Wet Method Dry Method 
Initial Taguchi Plan Initial Taguchi Plan 

[50oC-100 bars-20 min-3 bar/s] de(m) 250 [50oC-100 bars-20 min-3 bar/s] de(m) 225 
[50oC-100 bars-20 min-3 bar/s] P(%) 96.2 [50oC-100 bars-20 min-3 bar/s] P(%) 94.2 

Complementary Taguchi Plan Complementary Taguchi Plan 
[50oC-75 bars-15 min-2 bar/s] de(m) 400 [45oC-150 bars-20 min-2 bar/s] de(m) 500 
[40oC-75bars-20 min-6 bar/s] P(%) 95.8 [45oC-150 bars-20 min-2 bar/s] P(%) 96.1 

The comparison of effective equivalent pore diameter and porosity variation for PLGA50:50 and 
PLGA85:15 for the initial Taguchi plan are presented in Figure 6.27. It is clear that foams of PLGA85:15 

produced pores of larger diameter than PLGA50:50 in both wet and dry pellet preparation method. As LA/GA 
ratio is higher in PLGA85:15 comparable to PLGA50:50, due to this fact the earlier polymer produced pores of 
larger diameter. We can also see that increasing the saturation pressure decreases the pore diameter, while 
increasing the temperature and decreasing the dP/dt increases the pore diameter. However, the optimum 

dP/dt is mostly 2 or 3bar/s. 

From the point of view of posrosity for both the polymers, it is always at higher side in wet 

method. However, the morphology of the pores in the wet method is hetrogeneous, irregular and elongated.  
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(A)- Equivalent pore diameter of foams. (B)- Geometric porosity of foams. 
  

Figure 6.27: Average effect of each parameter on variation of equivalent pore diameter and 
porosity of PLGA50:50 and PLGA85:15 foams by wet and dry method for initial Taguchi plan.  

Figure 6.28 presents the comparison of effective equivalent pore diameter and porosity variation 
for PLGA50:50 and PLGA85:15 for the complementary Taguchi plan. One can observe that foams of PLGA85:15 
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produced pores of larger diameter than PLGA50:50 in both wet and dry method. Also if the two Taguchi plan 

are compared, foams of larger diameter and higher porosity (PLGA85:15 foams de~500m and porosity 

96.1%) were produced in the complementary Taguchi plan as compared to initial Taguchi plan (PLGA85:15 

foams de~250m and porosity 93.7%). 
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(A)-Equivalent pore diameter of foams. (B)-Geometric porosity of foams. 
  

Figure 6.28: Average effect of each parameter on variation of equivalent pore diameter and 
porosity of PLGA50:50 and PLGA85:15 foams for complementary Taguchi plan. 

LA/GA ratio of a PLGA co-polymer is an important parameter to control the pore diameter in a 
foaming process. Our previous experimental study depicts that the solubility of CO2 into the polymer 
increases while the LA content increases in a PLGA co-polymer. The presence of an extra apolar CH3 

methyl group in LA than GA explains this behaviour [Liu and Tomasko, 2007b]. Secondly the molecular 
weight of PLGA50:50 is higher than that of PLGA85:15, which is also a reason of low pore diameter for 
PLGA50:50 foams. Glass transition temperature of PLGA50:50 < PLGA85:15 as the Tg also effect the solubility 

of CO2 in polymer, ultimately affecting the porosity and pore diameter. 

2.6 Pore Morphology and Anisotropy of Foams by Both Methods 

The design and engineering of suitable biodegradable scaffolds are central to the field of tissue 
engineering and organ regeneration. Parallel fabrication strategies have also been improved and developed 

to improve and control biocompatibility, pore size, porosity, and pore connectivity [Murphy et al., 2002]. 

In tissue engineering, a wide range of pore size is required depending upon the application and 

organ such that a minimum pore size of 100 m was required to allow cell tissue ingrowth in scaffolds. 

Further investigations were carried out to understand the pore size requirement for bone tissue engineering. 
Although the optimal pore size varied with scaffold material and other parameters, such as tortuosity, the 

general consensus is that larger pore sizes (e.g., 100 m) may favor cell growth [Karageorgiou and 

Kaplan, 2005; Tsuruga et al., 1997]. 

Cell transport and vascularization as a result of scaffold pore size can also affect the tissue types 
and tissue formation process in scaffolds. In addition to pore size, cell transport within a scaffold such as 
diffusion, attachment, and migration are controlled by porosity (the fraction of pore volume), pore 
interconnectivity, and available surface area in scaffolds. While a high porosity is often desired, it is 
inversely related to the surface area available for cell attachment in 3D scaffolds. Achieving an optimal cell 
density in scaffolds therefore necessitates a high surface-area-to-volume ratio. In order to facilitate the 
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transport of cells and bioactive chemicals, scaffolds may also need to have pores at both macro and micro 
scales, features that may be difficult to obtain via traditional scaffold fabrication techniques, such as particle 
leaching and phase separation. Studies have been carried out to compare scaffolds processed by controlled 

processes with those containing irregular structures fabricated by conventional methods. 

In the experimentation of scaffold obtained by wet and dry method, we achieved all the possible 

minimum requirements of a good scaffold. As example PLGA50:50 scaffold is presented in Figure 6.29. 

 

Figure 6.29: PLGA50:50 scaffold pore morphology with detail inside view obtained by dry method and foams 
processed at 50oC-150 bars-25 min-6 bar/s. 

A global view of the cross sectional area is shown, it is quite evident that the entire scaffold 
skeletal structure was homogeneous. The external skin of the scaffold varies upon the process conditions, 

anyhow the range was 5-15 m and it has patches of pores on the entire surface. The internal surface of the 

pore are also rough, to enhance surface wettability and possibly the potential for increased cellular adhesion 
and proliferation. Reports in the literature have shown that cellular adhesion and proliferation are closely 
dependent on the topographical nature of the biomaterial surface [Brett et al., 2004]. Studies have shown 
that an increase in surface area or roughness of scaffold matrices enhance osteoblast response, which can 
lead to an improved osteoconductivity of the biomaterial. Osteogenetic process is enhanced on surfaces with 
larger surface roughness. This is due to the fact that higher cell density is reached on rougher surface and 
demonstrate “pile up” phenomenon at early stages of cell cultivation [Price et al., 2004; León y León, 1998]. 
The stem cells on the inter-rough surface can also been seen in the micrograph attached in Figure 6.29. 

Internal walls thickness of the pores observed was 3-7 m in most of the cases where porosity and average 

pore diameter was 86% and 205 m respectively.  

Scaffold  

SEM Cross Sectional View  

Skin of the Scaffold 3-5m  

Centre Cross Section 

Pore Internal Surface  

Fibrous Internal Surface  

Uneven Internal Surface  

Stem cells on Internal Surface  

Pore wall thickness 3-7m 
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Figure 6.30: Pore Morphology of different types of scaffold processed by wet and dry methods. 

In the wet method, the morphology of the pores observed was quite varied. There were regular 
homogeneous, heterogeneous, irregular pores depending on the material selected and the process condition 
(cf. Figure 6.30). The intersurface as shown in the micrograph is smooth and wall thickness of the pores was 

2-3m. 

A comparsion of pore morphology for selected foams from both PLAs and PLGAs processed at 
Tsat = 50oC, Psat = 100 bars, tsat = 20 min and dP/dt = 3 bar/s is presented in Figure 6.31. Compairining the 
wet and dry method, one can see that in wet method there is more percentage of elongated and irregular 
pores as compared to the dry method. Similar behaviour is also observed in case of both PLGAs. If we 
compare PL,DLA and PL,DLLA the regular pore are more in the latter polymer. In PLGA50:50 and PLGA85:15 the 
elongated and irregular pores are minimum. Regular pores are maximum in PLGA85:15. The possible reason 
for higher percentage of regular pores in both PLGAs is that there is maximum equilibrium between the pore 
walls and the CO2 sorbed and during the dP/dt step the pores do not rupture. While in the foams where 
elongated and irregular pores are at higher percentages during the dP/dt they are either ruptured or they do 
not attain spherical shape. 

Regular and homogeneous pores  
[Psat = 150 bars, Tsat=40oC,  
tsat=15 min, dP/dt=4 bar/s] 

Wet method-PL,DLA 

Pentagon or honeycomb like pores Heterogeneous pores 

Open and close pores  Heterogeneous irregular pores Smooth surface in wet method  
scaffold and wall thickness 2-3m 

 

[Psat = 100 bars, Tsat=50oC,  
tsat=20 min, dP/dt=3 bar/s] 

Wet method-PL,DLLA 

[Psat = 200 bars, Tsat=45oC,  
tsat=20 min, dP/dt=1 bar/s] 

Dry method-PLGA50:50 

[Psat=100 bars, Tsat=50oC,  
tsat=20 min, dP/dt=3 bar/s] 

Dry method-PLGA85:15

[Psat=300 bars, Tsat=40oC,  
tsat=20 min, dP/dt=5 bar/s] 

Wet method-PLGA85:15 

[Psat=200 bars, Tsat=45oC,  
tsat=20 min, dP/dt=1 bar/s] 

Wet method-PLGA85:15 
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Figure 6.31: Comparison of pore morphology for PLAs and PLGAs foams processed at Tsat = 50oC, Psat = 

100 bars, tsat = 20 min and dP/dt = 3 bar/s. 

2.7 Interconnectivity of Pores in Foams by Both Methods 

CT of one foam sample with maximum pore diameter or porosity was done for each polymer for 

wet and dry pellet preparation methods. Slices image of PL,DLA foams are presented in Figure 6.32. 

  
(A)-Foam processed by wet method at 

[50oC-100 bars-20 min-3 bar/s] 

de = 100m, Geometric porosity = 73% 

(B)-Foams processed by dry method  at  
[45oC-100 bars-40 min-5 bar/s] 

de = 65 m, Geometric porosity = 84% 
  

Figure 6.32: Slice images of PL,DLA foams structure by CT analysis. 

Slice images of PL,DLLA foams are presented in Figure 6.33. 

  
(A)-Foam processed by wet method at 

[45oC-75 bars-25 min-4 bar/s] 

de = 55m, Geometric porosity = 91% 

(B)-Foam processed by dry method at 
[50oC-100 bars-20 min-3 bar/s] 

de = 75m, Geometric porosity = 85% 
  

Figure 6.33: Slice images of PL,DLLA foams structure by CT analysis. 

Slice images of PLGA50:50 foam are presented in Figure 6.34. 
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(A)-Foam processed by wet method at 

[50oC-100bars-20 min-3 bar/s] 

de = 150m, Geometric porosity = 86% 

(B)-Foam processed by dry method at 
[50oC-100 bars-20 min-3 bar/s] 

de = 200m, Geometric porosity = 98% 
  

Figure 6.34: Slice images of PLGA50:50 foam structure by CT analysis. 

Slice images of PLGA85:15 foam are presented in Figure 6.35. 

  
(A)-Foam processed by wet method at 

[50oC-75bars-15 min-2 bar/s] 

de = 400m, Geometric porosity = 75% 

(B)-Foam processed by dry method at 
[45oC-150 bars-20min-2 bar/s] 

de = 500m, Geometric porosity = 96% 
  

Figure 6.35: Slice images of PLGA85:15 foam structure by CT analysis. 

All micrographs show pores interconnectivity. The porosities of selective foams with maximum 
pore diameter or porosity were compared. Comparison of porosity results between geometric method and Hg 
intrusion porosimetry is reported on Table 6.15. 

Table 6.15: Comparison of foam porosities obtained by two different methods. 

Polymer Foam 
Tsat 

(°C) 
Psat 

(bar) 
tsat 

(min) 
dP/dt 

(bar/s) 
Geometric 
Porosity  

Hg Intrusion 
Porosimetry 

Hg Intrusion 
Open 

Porosity 

Wet-PL,DLA 50 100 20 3 77% 72% 47% 

Dry-PL,DLA 50 100 20 4 88% 83% 69% 

Wet-PL,DLLA 50 200 30 5 89% 81% 62% 

Dry-PL,DLLA 45 150 20 2 80% 69% 58% 

Wet-PLGA50:50 50 100 20 3 93% 88% 61% 

Dry-PLGA50:50 50 100 20 3 98% 93% 73% 

Wet-PLGA85:15 50 100 20 3 94% 89% 64% 

Dry-PLGA85:15 50 100 20 3 96% 92% 76% 

 

The results obtained from the tables are: 
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 Porosity of wet foams is normally less than foams prepared by dry method. 

 PLGA85:15 foams produce maximum porosity. 

 The open porosity for the foams selected is above 50%. 

2.8 Mechanical Properties of the Foams by Wet and Dry Methods 

The mechanical properties of the porous material are related to its structure and to the properties 
of the material of which the cell walls are made. The salient structural feature of a porous material is its 
relative density (ρf / ρp), the degree to which the cells are open or closed and their structural anisotropy. The 
compression modulus and compressive strength at 10% deformation was tested for selected foams by 

compression test and results are reported on Table 6.16. 

Table 6.16: Compressive modulus and compressive strength of polymer foams by both methods. 

Polymer Foam 
Relative 
Density 

Pore 
Diameter 
de (m) 

Porosity 
Hg Intrusion 

Method 

Compression 
Modulus 
Ec (MPa) 

Compressive 
Strength 
 (KPa) 

Wet-PL,DLA 0.23 100 72% 0.243 193 

Dry-PL,DLA 0.12 100 83% 0.610 452 

Wet-PL,DLLA 0.20 10 81% 0.448 269 

Dry-PL,DLLA 0.27 15 69% 0.829 644 

Wet-PLGA50:50 0.07 150 88% 0.198 70 

Dry-PLGA50:50 0.02 200 93% 0.362 187 

Wet-PLGA85:15 0.06 250 89% 0.114 56 

Dry-PLGA85:15 0.12 225 92% 0.245 117 

The compression modulus of porous polylactide foams as compared to those of the polylactic co-
glycolide foams is significantly higher. The data in Table 6.16 demonstrates that the higher crystallinity 
produces less porosity and low pore diameter which eventually leads to high modulus. In less porous and 
low pore diameter scaffolds, the wall thickness is high thus more force is required to compress thick walls as 
compare to thin walls. Data reveals that compressive modulus for the foam prepared by wet pellet 

preparation method is quite low as compared to the foams prepared by dry pellet preparation method. 

In this work, a novel wet method pellet preparation technique was used to create highly porous 

biodegradable poly(-hydroxyl acids) scaffolds. It is demonstrated that the porosity, pore size, and pore 

morphology of these composite foams can be controlled by the polymer composition, chemical structure of 
the polymer, LA/GA ratio in the copolymer and the four process parameters (saturation 
temperature,saturation pressure ,saturation time and depressurization rate) for scCO2 foaming. The high 
porosity is expected to better satisfy the cell penetration and mass transport requirements (for nutrient, 
metabolites, and soluble signals) for scaffolding for tissue engineering [Ma and Langer, 1998; Ma et al., 
1995]. Wet method for producing porous foams can be applicable to the equipement where high temperature 
is a constraint. For future perspective polymers with higher molecular weight and semi-crystalline in nature 
can be focused for even more better results. Specially foams with higher porosities for various commercial 

applications can be generated by this method. 

 

2.9 General Discussion  
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Conducting the two pellet preparation methods and adapting the two Taguchi’ plans for two PLAs 
and two PLGAs with different LA/GA ratio, a number of conclusions can be drawn. 

 In case of wet method pellet preparation, saturation temperature close to the Tg produce favourable 
pore diameter and porosity,while in the case of dry method pellet preparation even temperature 
10oC less than Tg produced pore diameter and porosity of maximum values for both PLAs and 
PLGAs. 

 Depressurization rate of neither very high value nor very low value was favourable for both 
porosity and pore diameter. In most of the optimized conditions, the values for dP/dt was 1−4 
bar/s. 
Hence we can conclude that in wet and dry methods to achieve maximum geometric porosity of 

(>85% in both PLAs and PLGAs) and equivalent pore diameter (>150m for PLAs and >200m for 
PLGA50:50 and >400m for PLGA85:15), the process conditions can be as follows, 

Wet method--[Tsat  Tg ─ Psat=100 bars─ tsat = 20 min ─ dP/dt = 3 bar/s ] 

Dry method--[Tsat  Tg - 10oC ─ Psat=100 bars─ tsat = 20 min ─ dP/dt = 3 bar/s ] 

3 Modification of the Surface by Adding Hyaluronic Acid 

Two series of studies were realized: first a simple mixing between PLGA85:15 (DL PLG) with 

sodium hyaluronate salt, and. secondly by co-grinding the two products. Hyaluronate sodium salt is 

hydrophilic in nature as compared to PLGA, so the addition of HA either by co-grinding or simple mixing 

will increase the hydrophilicity of the HA/PLGA biomaterials. 

3.1 Granulometry Analysis of PLGA and HA Before and After Co-grinding 

Granulometry will help us to differentiate both PLGA85:15 and HA and the behaviour of particles 
after different intervals of time. Hyaluronate sodium salt, HA, was pre-ground in the knife mill, as described 
in chapter 4, for 30 minutes to obtain fine powder. PLGA and HA were then co-ground, for different time 
intervals and samples were collected after each specified time for analysis. The micrographs of PLGA and 

HA unground are presented in Figure 6.36.  

 
(A)- PLGA85:15 (B)- HA 

Figure 6.36: Micrographs of particle before grinding. 

For each series of co-grinding, we introduced 4 grams of blends of PLGA85:15- HA. The ratio of HA 

salt in the mixture was 10%, 5% and 2%.). 

With the aim to assist the comprehension of SEM images, granulometry analysis before and after 

co-grinding was also done. As for PLGA, we can say that it is a material with particles from 150m to 

1000m and the peak centered at 500m, while pre-ground HA during 30 minutes is a material with dual 
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distribution of particles. The first peak with a wide distribution is centered at 40 µm and second centered at 

400m with narrow distribution (cf. Figure 6.37-A). 

As for the blend PLGA/2% HA during the first 2 hours, the particles break up gradually. Before 
grinding, at time t = 0 minute the size distribution of poly(lactic-co-glycolide) and hyaluronic acid pre-

ground 30 minutes are represented by dual peaks the first having a range from 0.6 m to 10 m with a peak 

centered at 2 m, while the second distribution from 100 to 1050 m with a peak at 450 m. A pleatue of 

particle between 20 to 100 m is also visible (cf. Figure 6.37-B). After 30 minutes of co-grinding the first 

peak out of the two disappears and only one peak centred at 150 m can be seen. The peak has shifted from 

450 to 250 m indicating that co-grinding has reduced the particle size of polymer/HA matrix. The 

disappearance of small peak reveals that the HA particles are coated on the polymer particles or they have 
turned into agglomerates. After 1 hour of co-grinding almost a similar bebaviour to 30 minutes is 

observable. For 2 hours of extensive co-grinding the peak is shifted toward 200 m (cf. Figure 6.37-B). 
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Figure 6.37: Evolution of the particle size distribution for PLGA+HA co-grinding. 

From Figure 6.37-C, we can observe that for blend PLGA/5% HA at t = 0 minute dual peak is 

observed at 3 and 550 m. After 30 minutes of co-grinding due to the disparreance of initial smaller peak 

and size reduction the peak has shifted to the left centered at 210 m. After 1 hour it is further shifted to left 

with a peak centered at 190 m. Then at 2hours of co-grinding due to agglomeration phenomenon particle 

size is increased and can be seen by the curve centered at 250m reflecting that the particle size is 

increasing. 
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Granulometry of the third composition of blend PLGA+10% HA at different time intervals is 

presented in Figure 6.37-D. It was co-ground for 2.5 hours. At time t =0 a small peak at 100m and other at 

600m can be seen. After 30 minutes of co-grinding particles ranging from 10 to 400 m can be observed 

with a peak centered at 90 m. Another smaller distribution or particles can be seen from 400 to 1100 m. In 

the first 30 minutes the particles has reduced to a great extent but simultaneously agglomeratiion 
phenomenon occurred providing the second distribution. After 1 hr of co grinding only one peak is observed 

centered at 100m, while for 2.5 hrs of co grinding the peak remains almost unchanged with a slight 

difference in the peak shifted to the right indicating slight agglomeration of particles. 

Initially, we have two types of particles having different size ranges. Thus, the size distribution of 
the mixture is composed of two peaks. As co-grinding occurs, the peak of HA disappears, due to an 
agglomeration/coating of HA particles on PLGA. Moreover, the peak corresponding to PLGA shifts towards 
the smaller sizes due to a fragmentation of the composite particles. We can also observe that after co-
grinding, the peak of the mixture containing 2 % of HA has a mode which is higher than 5% and 10 % HA. 

It means that HA plays the role of fragmentation accelerator for PLGA. 

 
(A)- PLGA85:15 +5% HA 1 hr (B)- PLGA85:15 +10% HA 1 hr (C)- PLGA85:15 +10% HA 2 hr 

Figure 6.38: Micrographs of blend PLGA+ HA after different co-grinding time. 

For blend PLGA/10% HA after 1 hr of co-grinding, particles size is reduced to a great extent and 
PLGA is homogenized with HA hence, it was decided that to produce foams of PLGA/HA we opt for co-
grinding time of 1 hr. It can be seen that from Figure 6.38-A co-grinding of PLGA/HA not only reduces the 
particle size of both materials but also HA is blended with PLGA particle for which co-grinding was done. 
In Figure 6.38-B, we can see that after 1 hr of co-grinding PLGA and HA are completely homogenized. In 
Figure 6.38-C, by increasing the time to 2 hours the co-ground mixture is completely homogenized and 

agglomerates are formed. 

3.2 Contact Angle Measurement and Surface Energy on Pellets 

Powder PLGA/HA was thermo-pressed in a uniaxial press for pellets with the conditions: P = 150 
bars, T = 60oC and t = 20 min. We obtained pellets of smooth surface, diameter 13 mm and thickness 

approximately of 3 mm. 

3.2.1 Results 

3.2.1.1 Contact Angles with Water and Pellets of PLGA, HA and PLGA/HA Blends 

Evolution of contact angle with different percentages of HA and different co-grinding time can be 
observed in Table 6.17. It can be revealed from the Table 6.17 that the two materials (PLGA and HA) 
surfaces can be easily screened by measuring the contact angle of their surface by using water. The contact 
angle of water with pure PLGA pellets is high comparatively to the one of pure HA, so by co-grinding both 
PLGA and HA, contact angle of blend are comprised between those of the two separate products. A decrease 

of contact angle of blends shows that hydrophily of surface is improved. 

Table 6.17: Contact Angle between water and pellets constituted by HA, PLGA or HA-PLGA blends. 
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S/N 
HA 

fibres 

HA fibres 
tgrind = 30 

min 

PLGA 

Powder 

Blend-
PLGA 

+ 5 % HA 

Blend-
PLGA 

+ 10 % HA

HA tgrind = 30 
min + PLGA  
+ 5 % HA, 

tco = 1hr 

HA tgrind= 30 
min + PLGA  
+ 10 % HA, 

tco = 1hr 

 59.3 51.7 67.2 66.3 65.4 62.0 54.7 

Cos  0.510 0.620 0.387 0.402 0.416 0.469 0.578 

Max 0.557 0.691 0.408 0.455 0.475 0.522 0.620 

Min 0.458 0.566 0.362 0.344 0.337 0.428 0.537 

S.D. 0.047 0.071 0.021 0.053 0.060 0.033 0.042 

 

(a)- tcogrind = 7 min  (b)- tcogrind = 10 min  (c)- tcogrind = 30 min  (d)- tcogrind = 1 hr  
    

Figure 6.39: Surface evolution of blend PLGA85:15 + 10% HA pellets with co-grinding time. 

In Figure 6.39, we noticed that for low co-grinding time HA is not completely blend with PLGA. 
HA particles are found in patches on the surface of the blend. The patches can be seen in Figure (a), (b) and 
(c). After 30 minutes of co-grinding, the surface of the pellet is quite homogeneous and after 1 hr co-
grinding, more homogeneity can be observed. Localized HA on the pellet surface produces variation in 
contact angle measurements as when a water is dropped on the HA localized area, it will be more 

hydrophilic. Homogeneity in the pellet will decrease the error in measured contact angle 

Grinding of HA decreases the contact angle θ. We have observed that value of cos θ of PLGA is 
less than cos θ of HA which implies that adhesion energy of HA is higher than PLGA. After co-grinding 
polymer with HA the value of contact angle further decreases that gives a clue that PLGA particles are 
coated with HA particles. From our experimentation by changing the % of HA in simple mixing and in co-

grinding cos θ values increase and in case of co-grinding, it improved till 60 minutes of co-grinding 

3.2.1.2 Surface Energy of PLGA, HA and PLGA/HA blends 

Three different liquids (Water,-Bromonaphthalen, Ethylene Glycol) were used to measure the 

contact angle. Results are reported in table Table 6.18. 

Table 6.18: Angle measured by different liquids on PLGA pellet 

Water a-Bromonaphtalen Etylene Glycol 
 Cos  <cos  Cos  <cos  Cos  <cos 
67.2 0.38 0.03 35.9 0.81 0.005 64.5 0.43 0.01 

After drop deposition of Bromonaphthalen for calculation γs
LW, we used and pure water to 

determine γs
AB and to estimate the non-dispersive components γ+ and γ- (reflecting the polar interactions at 

the surface in accord with the Good-Van Oss theory). 

Surface energy for both co-ground blends was determined by using the Owens Wendt’ method at 
two components (cf. equation 3.18 and following). As example, we detailed calculations on pure HA: the 
solid dispersive and non dispersive components can be easily deduced from the slope and the origin of the 
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line of Owens Wendt S
d = 40.2 mJ/m2 and γS

nd = 17.0 mJ/m2. By the Owens Wendt method the surface solid 

tension  is: γS = γS
d + γS

nd = 57.2 mJ/m2.  

Solid dispersive components can also be estimated from the slope of the line of Good S
d = 45.4 

mJ/m2. As the solid non dispersive component, it is deduced from the difference between the experimental 
value for water and the corresponding Good’ value: γS

nd = (ISL
nd) 2/4 = 17.4 mJ/m2. So the surface solid 

tension can be approximated by the Good’ method to 62.8 mJ/m2 and an average of both methods gives 60 

mJ/m2 

As for the adhesion energy given by:Wa = 2(S
d.L

d)1/2 + 2(S
nd.L

nd)1/2 = 120.3 mJ/m2. Analogous 

calculations on pure PLGA and blends PLGA/HA 2, 5 and 10% are reported in Table 6.19 

As expected the coating of PLGA by HA increases the solid tension and the surface energy of 

PLGA/HA particles: the more HA ratio, the more surface energy of the blend PLGA/HA. 

Table 6.19: Comparison of energies by two different methods for PLGA and PLGA/HA blends 

Pellet Method PLGA HA PLGA/HA 2% PLGA/HA 5% PLGA/HA 10% 

S
d 

Owens-Wendt 35.6 40.2 38.1 38.4 39.8 
Good 40.6 45.4 43.8 44.3 43.9 

γS
nd 

Owens-Wendt 9.4 17.0 10.5 11.7 12.7 
Good 9.6 17.4 13.4 14 14.7 

<γS  47.6 60.0 52.9 54.2 55.6 
Wa  101.6 120.3 109.2 111.2 113.8 

3.2.2 Origin of the Increase of Surface Energy 

To precise the nature of interactions it is necessary to decompose into three components the 

surface energy; We used -bromonaphtalen for LW calculation and ethylene glycol and pure water to 

determine γs
AB and to estimate the non-dispersive components Acid-Base γ+ and γ- reflecting the polar 

interactions at the surface in accord with the Good-Van Oss theory. The variation of the dispersive 
component of the surface energy with co-grinding time is represented in Figure 6.40. It shows that this value 

is practically constant. 
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Figure 6.40: Influence of the co-grinding and the ratio of HA on the dispersive component of the blend 

surface energy.PLGA/HA. 

The following two graphs (cf. Figure 6.41) show us that these two parameters vary with increasing 

time of co-grinding. For γ base component, one passes through a maximum at about 60 minutes for the 

pellets containing 2%, 5% and 10% HA and then the energy decreases after 1 hour. This means that the 
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polarity of the surface has changed: it becomes donor driven electronic. The optimal time for this change is 
achieved in 1 hour. The γ+ component was lower for pellets containing 5% HA than for containing 2% HA 
This is logical because more of HA is coated around the PLGA and the hyaluronate sodium salt is in excess 

on the surface. At 1hr 10% HA composite mixture depict optimum value. 
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Figure 6.41: Influence of co-grinding time and the ratio of HA on the components Acid-Base of 
surface energy. 

For γ+ component is the opposite: the γ+ component is higher for the pellets containing 2% HA 

than for HA with 5% and 10%. We also note that we obtain a minimum for γ+ after 1 hour. The γ+ and γ 

parameters vary from one-way contrary which makes sense because surface can provide electrons, it draws 

and the γ component is always greater than γ+ parameter. The effect of co-grinding time on S
nd and total 

surface energy is presented on Figure 6.42 respectively.  
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Figure 6.42: Influence of co-grinding time and the ratio of HA on S
nd

  and S. 

By increasing the hydrophilic nature of PLGA surface, the surface energy will increase thus it can 
improve the adhesion energy. Adhesion of the cells on the scaffold require more hydrophilic surface so that 

cells can adhere to the surface and proliferate. 

Grinding of HA increases the contact angle θ which eventually increases the adhesion energy. We 
have observed that value of cos θ of PLGA is less than cos θ of HA which implies that adhesion energy of 
HA is higher than PLGA. After co-grinding polymer with HA the value of contact angle further decreases 
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that gives a clue that PLGA particles are coated with HA particles. From our experimentation by changing 
the % of HA in simple mixing and in co-grinding cos θ values increase and in case of co-grinding, it 

improved till 60 minutes of co-grinding. 

4 Foams of PLGA85:15/HA Blends 

4.1 Preparation of Pellets 

PLGA85:15 (DL-PLG) powder was taken to manufacture pellets. Nine pellets of pure PLGA and 
nine pellets of blends (PLGA + 10% HA 1 hr co-ground) were pressed in the thermo-hydraulic press at (P = 
150 bars, T = 50oC and t = 20 min). Pure PLGA foams were processed as reference to compare their 

morphology with blend foams. 

4.2 Effect of scCO2 Parameters on the Microstucture of Foams 

4.2.1 Effect of Depressurization Rate on the Microstucture of Foams 

Foaming of the pellets was processed in SEPAREX® SFC6 scCO2 6L laboratory plant. ScCO2 

process conditions were as follows: 

Tsat = 35oC,   Psat = 120 bars,  tsat = 20 min,   dP/dt = 1, 3 and 6 bar/s  

In these experiments, only depressurization rate was varied keeping other parameters constant. 3 

foams were made for each condition to see the reproducibility of results (cf. Table 6.20). 

Table 6.20: scCO2 process conditions for PLGA/HA foams. 

Psat (bar) 120 120 120 120 120 120 120 120 120 
tsat (min) 20 20 20 20 20 20 20 20 20 
Tsat (

oC) 35 35 35 35 35 35 35 35 35 
dP/dt (bar/s) 6 6 6 3 3 3 1 1 1 

During the thermodynamics experimentations the optimum parameters for poly(lactic co-
glycolide) was Tsat= 35oC, Psat = 120 bars, tsat = 20 min, dP/dt = 3 bar/s  and dP/dt was the most effective 

parameter so keeping other parameters same only dP/dt was manupulted. 

Micrographs for dP/dt 6, 3 and 1 bar of PLGA and blend PLGA/HA 10% foams are reported in 

Figure 6.43 and Figure 6.44. 

 
dP/dt = 6 bar/s dP/dt = 3 bar/s dP/dt = 1 bar/s 

   
Figure 6.43: Micrographs of PLGA85:15 foams at Psat = 120 bars, tsat = 20 min and Tsat = 35oC, [50×]. 
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dP/dt = 6 bar/s dP/dt = 3 bar/s dP/dt = 1 bar/s 

Figure 6.44: Micrographs of blends PLGA85:15/HA 10% foams processed at Psat = 120 bars, tsat = 20 min, 
Tsat = 35oC, [100×]. 

After successful foaming of both pure and composite mixture pellets, porosity calculation was 
completed then SEM analysis was done. Finally, SCION® image analysis was carried out to find out pore 
size and then compared the data. In Table 6.21, we can report analysis of all the PLGA foams and noted that 
all are above 89%. The comparison of geometric porosities of PLGA/HA composite foams (cf. Table 6.22) 
are ranging between 82 and 87%. At dP/dt of 6 bars/s and 1 bar/s, the produced pores were comparatively 

small. The surface area of macro pores was highest when dP/dt was 3 bar/s. 

Table 6.21: Pore analysis for PLGA85:15 foams processed at Psat = 120 bars, tsat = 20 min and Tsat = 35oC. 

dP/dt 
(bar/s) 

Pore Diameter Surface Area/(m)2 Porosity 
Micro Meso Macro Micro Meso Macro P 
de (μm) de (μm) de (μm) (%) (%) (%) (%) 

6 19.45 82.96 209.92 7.59 26.43 65.98 91.5 
6 17.17 78.79 216.88 6.87 27.13 66.00 89.8 
6 17.38 87.51 217.59 7.45 26.10 66.45 92.1 
3 19.42 91.64 271.78 4.65 24.30 71.05 90.4 
3 15.11 94.09 264.57 6.67 20.82 72.51 89.1 
3 18.68 97.77 260.45 3.56 24.21 72.23 93.4 
1 15.52 82.71 181.79 3.43 48.21 48.36 92.5 
1 19.32 77.16 185.85 4.98 43.57 51.45 93.6 
1 17.59 76.10 175.88 3.98 46.24 49.78 92.9 

However unfortunately there were no macro pores found in the scaffolds. As we have co-ground 
polymer with HA and after co-grinding polymer is coated with HA layer, which makes difficult for CO2 to 
sorb in a short saturation time of tsat=20 min. The pore diameter can also be increased by increasing the 

saturation time or saturation temperature. 

Table 6.22: Pore analysis data for blends PLGA85:15/HA 10% foams. 

dP/dt 
(bar/s) 

Pore Diameter Surface Area/(mm)2 Porosity 
Micro Meso Macro Micro Meso Macro P 
de (μm) de (μm) de (μm) (%) (%) (%) (%) 

6 22.5 51.9 0.0 17.4 82.6 0.0 83.5 
6 18.5 57.4 0.0 24.7 75.3 0.0 83.0 
6 20.0 54.8 0.0 18.4 81.6 0.0 83.0 
3 14.6 61.8 0.0 9.8 90.2 0.0 83.8 
3 13.9 63.8 0.0 11.6 88.4 0.0 82.8 
3 12.5 60.5 0.0 11.7 88.3 0.0 82.3 
1 13.1 52.0 0.0 26.3 73.7 0.0 86.1 
1 12.9 54.9 0.0 30.3 69.7 0.0 87.0 
1 14.4 53.6 0.0 28.3 71.7 0.0 85.3 
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4.2.2 Effect of Saturation Temperature on the Microstucture of Foams 

The results obtained from previous foams on blend PLGA/HA 10% did not produce high diameter 
pores and unfortunately there were no macro pores found. However pure PLGA produced an appreciable 
pore size in the scaffold. In order to increase the solubility of CO2 in the polymer blend, we have increased 
the saturation temperature to produce pores of larger diameter. Therefore, in the next experiments we will 
increase the Tsat while blocking other parameters. Five pellets were pressed and foaming of the pellets was 

performed in SEPAREX® SFC6 scCO2 6L Laboratory plant. ScCO2 process conditions were as follows. 

Tsat = 40, 45, 50, 55, 60oC,  Psat = 120 bars,   tsat = 20 min,   dP/dt = 3bar/s 

 
Tsat = 40oC Tsat = 45oC Tsat = 50oC 

   

Tsat = 55oC Tsat = 60oC 
  

Figure 6.45: Micrographs of blend PLGA/HA 10% foams processed at  Psat = 120 bars, tsat = 20 
min and dP/dt = 3 bar/s. 

The micrographs obtained are presented in Figure 6.45. Porosity of the foam was calculated, 
SCION® image analysis was done for the pore diameter and data is tabulated in Table 6.23 and Table 6.24. 

Geometric porosity of the foam was calculated, SCION® image analysis was done for the 
equivalent pore size and data is tabulated in Table 6.23. In all foams obtained geometric porosity is above 
90%, pores in the foams processed at 40, 50 and 60oC were heterogeneous in size and have irregular pore 
boundaries and walls while at 45oC and 55oC pores are homogeneous in size and walls are regular. At higher 
temperatures in comparison to 35oC there are macro pores also in the foam obtained. By increasing the 

saturation temperature more CO2 was absorbed thus leading to higher pore diameter and porosity. 

Pore diameter of PLGA/HA 10% foams can also be increased by increasing the saturation time. 
This practice will minimize the chances of hyaluronic acid structure damage. It can be seen that at 60oC 
though the porosity and pore diameter is high but pore morphology is elongated and heterogeneous because 
this is temperature quite above the Tg of polymer and above the glass transition temperature the polymer is 
cross the rubbery state and is like semi molten foam. In this form though more CO2 is absorbed but during 
the depressurization step very less time is available for the pore to grow because of less resistance of pore 

walls. 
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Table 6.23: Blend PLGA85:15/HA 10% foams processed at Psat=120 bars, tsat=20 min and dP/dt = 3 bar/s 

Tsat 
(°C) 

Pore Diameter Surface Area/(mm)2 Porosity 
Micro Meso Macro Micro Meso Macro P 
de (μm) de (μm) de (μm) (%) (%) (%) (%) 

40 19.85 77.43 151.76 6.84 31.04 62.12 92.1 
45 14.85 82.93 165.34 14.14 37.74 48.12 91.5 
50 15.47 91.33 171.65 11.65 29.04 59.31 93.3 
55 16.15 87.33 168.45 9.78 38.64 51.58 90.6 
60 16.55 78.33 231.78 13.25 21.84 64.91 91.7 

Table 6.24: PLGA85:15/10%HA composite foams pore data process at Psat=120 bars and tsat=20 min and 
dP/dt = 3 bar/s 

Saturation 
temperature 

(°C)  

Pore Geometry 

de (m) P (%) 

40 75 92.1 

45 92 91.5 

50 127 93.3 

55 153 90.6 

60 207 91.7 

5 General Discussion 

Polymers such as PLAs and PLGAs with various physical and mechanical properties were under 
study. Doehlert’ and Taguchi’ designs of experiments were applied to various process parameters. 
Controlled pore size and porosity enabled to use the foams for tissue engineering in cartilage regeneration. 

For PLGA50:50, we have obtained a macro pore diameter range of 228−270m, with porosity of 92% and 

macro pores surface area 96% for the conditions Psat = 120 bars, tsat = 20 min, Tsat = 35°C and dP/dt = 3 bar/s. 

A comparative study was performed by studying pellets processed by dry method (compression of 
polymer powder in a thermo-hydraulic press) and wet method (polymer dissolved in an good solvent before 
compression). This approach was adapted to have an in-depth sight of pore size and distribution, pore 
morphology and pore structure difference between both methods. Results revealed that in dry method 
amorphous polylactic acid produced pore of higher porosity and pore diameter than semi-crystalline poly 
lactic acid. Moreover dry pellet preparation method results are better than the wet pellet preparation method. 
In dry method the pore are homogeneous in size while wet method pore are heterogeneous. The internal 

surface of foams by dry method is rough while for wet method the surface is smooth. 

On the similar basis, foams with higher porosity and pore diameter were produced by poly(lactide-
co-glycolide) with higher LA/GA contents. The pore diameter in PLGA85:15 in dry method is almost 20% 
higher than wet method for PLGA85:15 and almost double than the value for PLGA50:50 in dry method. The 
pore morphology in the dry method was quite better than in the wet method. In dry method the pores were 
circular, homogeneous and had regular pore walls as compared to wet method where elongated and irregular 

pore boundaries were seen.  

Compressive modulus and compressive strength were determined and compared with the foams 
manufactured at different processing conditions and having different porosities. Compression modulus and 
compression strength at 10% deformation for PL,DLLA was at higher value than PL,DLA both in dry and wet 

method. PLGA85:15 foams had lower Ec and  as compared to PLGA50:50 because it is more porous 
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Characterization by CT analysis of the foams provided an idea of interconnectivity among the pores. Hg 

intrusion method also indicated that foams with higher porosity had comparatively higher percentage of 

open pores thus indicating more interconnectivity. 

The entire work was done by pressure quench method in which during the depressurizing step in 
the process chamber temperature drops gradually, that affects on the anisotropy and pore structure of the 
foam. Future work must be carried out in order to control the temperature drop during the depressurization. 
Indeed, the temperature drop is an important parameter which affects the vitrification of the polymer and the 
thermodynamics of CO2. A proper thermodynamic analyze of the venting process of the pressure chamber 
deserves further investigation. This kind of analyze can provide vital information in order to create scale-up 
rules. Comparative thermodynamics studies must be done for polymers with different Tg, molecular mass 

and degree of crystallinity. 

Hyaluronic acid was incorporated as surface modifier for the tissue regeneration applications. Co-
grinding phenomenon was advantageous to improve the surface adhesion of the desired scaffold for tissue 
regeneration. Different percentages (2, 5 and 10%) of hyaluronic acid were co-ground with PLGA85:15. 
Composite PLGA85:15/HA 10% produced foams with optimum porosity and pore diameter. After 1 hr of co-

grinding time foams of macro pore size 250  50 m and porosity 92% at  

Psat = 120 bars, tsat = 20 min, Tsat = 60°C and dP/dt = 3 bar/s were obtained. 

6 Conclusion 

Optimization of process parameters, different types of polymer compositions and nature leads us 
to understand, which polymer will be suitable for processing foams of low or high porosity, small or large 
pore diameter and mechanical properties. Two different methods, wet pellet preparation and dry pellet 
preparation method were used to process four different types of polylactides. Semi-crystalline polymers can 
be processed by wet method to produce foam of higher porosity and satisfactory pore diameter as compared 
to dry pellet. 

Surface modifier like HA eventually improves the adhesion energy of the foam by co-grinding the 
polymer with this adjuvant. However, for future perspective, saturation time of the process can be explored 
keeping the saturation temperature around the Tg temperature. 
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Chapter 7 

 

Chapter 
7 

Characterization of 
Scaffolds for Calcified 

Tissue Engineering
 

 

In this chapter, we discuss on different fillers and adjuvant to be used to produce scaffold for bone 
regeneration. The purpose of the fillers is to increase the mechnical properties of the scaffold, while 
adjuvant will be used to facilitate foaming process. We present the results obtained with systems consisting 
of different composite constituted by polylactides and Sr-tricalcium phosphates. The preparation and 
characterization of fillers and adjuvant is described in detail. The objectives of this chapter are to precise 
the influence of incorporating a mineral phase or/and wax as porogen agent by either simple mixing or co-
grinding, on the distribution of pores processed by scCO2, to characterize foaming properties. The 
percentage of mineral phase and co-grinding time influence on the scaffold will be elaborated step wise. The 

morphologies of the porous scaffold are also analyzed in detail. 

 

 

1 Characterization of Composites 

1.1 Fillers and Adjuvant 

In medical applications, bone graft substitutes include metals, ceramics, polymers and composites. 
Each of these has its own advantages and pitfalls. Ceramics are commonly used for specific application 
where minimum load bearing strength is needed while metals are used in load-bearing applications. Among 
ceramics, calcium phosphate is extensively used as bone fillers to heal small defects and these materials are 
also of prime choice as scaffold for bone tissue engineering for their known osteo-inductive capacity in 
ectopic sites and possess good cell adhesion properties [Yuan et al., 2001]. Normally the percentage of fillers 
in polymer matrix is limited depending upon the required properties of the end products and its applications 

in the body. In our study, we have used amorphous tri-calcium phosphate and -tricalcium phosphate as 

fillers. The purpose of using these fillers is to enhance the structural properties of the scaffold. Both 

amorphous tricalcium phosphate and -tricalcium phosphate will be used with variable percentages so that 

optimal properties of the composite scaffold can be achieved for bone regeneration. 
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1.1.1 Sr Calcium Phosphate  

1.1.1.1 Synthesis and Characterization of Calcium Phophates 

The synthesis of amorphous tri calcium phosphate(ATCP) results of a double decomposition 

reactionbetween calcium nitrate and ammonium phosphate: 

9 Ca(NO3)2.4H2O + 6 (NH4)2HPO4 + 6 NH4(OH) → 3Ca3(PO4)2 + 18 NH4NO3 + 42 H2O            (7.1) 

This reaction takes place in conditions of high basicity avoiding the presence of metal pollutants 
such as Mg+2 and Cl−. The steps taken to optimize the precipitation of amorphous calcium phosphate 

powders until finals are as follows. 

To prepare solution A, we have put Ca(NO3)2 calcium nitrate (41.3 grams) and Sr(NO3)2 
strontium nitrate (4.14 grams) into a one liter Erlenmeyer and added water (550 ml) to dissolve them. For 
solution B, we have weighted NH4(H2PO4) di-ammonium phosphate (27.3 grams) in a three liters 

Erlenmeyer and added water (1300 ml). 

For the filtration system, we have prepared three Büchner funnels connected to vacuum vials and 
vacuum system. Just before precipitating, we have added concentrated NH4(OH) ammonia solution (40 ml) 
in each vial. Rapidly we have poured solution A into solution B and agitated, filtered immediately and 
distributed the suspension evenly in the three filtration systems. We have washed the precipitate on each 
system with 2 liters of water containing 5 ml of concentrated ammonia solution per liter. At the end, we have 
added 250 ml of distilled water to remove the ammonia solution. The precipitate was immediately 

Lyophilized for 2 days at following conditions: T < − 50°C and P < 0.120 mbar. 

With this procedure, we prepared two samples because the tri-calcium phosphate (TCP) 
commercial sales were not pure enough for our application and did not contain any Sr+2 ions. So we decided 
to synthesize our own TCP from the ATCP. About 22 g were obtained for each product. For the sample of 
the ATCP, a small fraction (1 g) was calcined at 900°C in order to analyze the composition and crystallinity 
by FTIR. The second sample was completely burned at 900°C. In a first test, calcination was carried out 
overnight and the result was a powder composed of relatively large particles, which highlights the sintering 
of particles during calcination. To avoid sintering and obtain a finer powder easier to disperse in our 
polymer matrix, a second test was performed. This time, calcination was performed for 1 h and it was 
checked by FTIR that the conversion of amorphous calcium triphosphate to the beta phase was complete. 

The powder was stored in a freezer until use. 

1.1.1.2 Calcium Phosphate Characterization 

The samples have been checked by X-ray diffraction (for the Ca/P determination, and after 
heating the samples at 900°C for 2 hours) and by FTIR (for verifying the presence of P2O7

-4 pyrophosphate 
groups). In our case, all samples are  amorphous strontium tri-calcium phosphate (ATCP)Sr (cf. Figure 7.1 
and Figure 7.2).The peak positions obtained in the FTIR analysis of two samples of amorphous tricalcium 
phosphate are reported in Table 7.1. The broad lines at 1650 and around 3400 can be assigned to water 

molecules attached to the amorphous phase. 

Table 7.1: Position of resulting bands in the FTIR analysis. 

Position Peak Position Peak 
1 559.5 2 1039.3 
3 1652.8 4 3396.0 
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Figure 7.1: IR absorption spectrum of amorphous tricalcium phosphate (ATCP) doped with 10% Sr. 

In the literature [Elliott, 1994], we can find for the family of phosphates the characteristic 
wavelength or place where the peaks are as follows (cf. Table 7.2). 

Table 7.2: Position of bands in FTIR for amorphous calcium phosphate (ACP). 

Vibration modes of PO4 Group (cm-1) 
ν1 ν2 ν3 ν4 

966 475 1020-1120 609-574 

Thermal treatment of the low-temperature phases (ATCP)Sr in air at 900°C for several (24) hours 

does indeed lead to the formation of -(TCP)Sr and this is a way to prepare this phase with high purity. When 

TCP’s Ca/P atomic ratio is not exactly 1.5, impurities appear. The main impurities, hydroxyapatite (Ca/P 

atomic ratio above 1.5) and -calcium pyrophosphate (corresponding to a Ca/P atomic ratio under 1.5), can 

be detected, by XRD and FTIR spectroscopy respectively (cf. Figure 7.2). 

 

Figure 7.2: IR absorption spectrum of amorphous calcium phosphate (ACP) doped with 10% Sr after 
calcination 24 h. 
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In addition to the peaks of phosphate ions in, un-calcined samples’ peaks can be found resulting 
from carbonate and nitrate ions even in the case where the washing of the precipitate is inadequate. These 
peaks would appear at a wavelength between the values given in Table 7.3. The absence of the peaks,OH 

and water, in our spectra testifies for the purity of our sample. 

Table 7.3: Position of bands in FTIR for other groups. 

Position of bands in FTIR 
Carbonate 1660  

Nitrate  1320 1480 

 

Figure 7.3: IR absorption spectrum of tricalcium phosphate doped with 10% Sr after 2 hours of calcination. 

We have checked on X-ray diffraction patterns that no lines due to hydroxy apatite were found. 

The FTIR spectrum (cf. Figure 7.2 and Figure 7.3) is characteristic of -Tricalcium phosphate and no 

pyrophosphate impurities were detected. 

Table 7.4: Position of bands in FTIR for pyrophosphate. 

Pyrophosphates P2O7
-4 vibration modes (cm-1) 

Stretching (PO3) asymetric 1121−1141 
Stretching (POP) asymetric 725−728 

If we compare our experimental data with the literature [Combes and Rey, 2010], we can conclude 
the samples prepared, correspond to pure amorphous stroncium calcium phosphate with a (Ca+Sr)/P ratio of 

1.5 (cf. Table 7.4) 

1.1.1.3 Calcium Phosphate Granulometry 

Size distributions of amorphous (ATCP) tricalcium phosphate doped with 10% Sr before and after 

calcination (TCP) are presented in Figure 7.4. A very large distribution is observed for TCP(sr) ranging 

from 1 to 800 µm. Two peaks are visible for crystallized TCP(sr) depicting two types of particles ranging 

respectively from 1 to 10µm and from 100 to 500 µm. 
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Calcium Phosphate : Granulometry 
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Figure 7.4: Particles size of two different tricalcium phosphates analyzed by granulometry. 

1.2 Adjuvant: Porogen Agent 

Addition of calcium phosphate as filler in polymer matrix reduces the sorption of CO2 in the 
polymer during the foaming process. To try and increase the solubility of CO2 in the polymer matrix and 
making it more plasticize to facilitate pore generation wax has been added as foaming agents. It is expected 

that wax will be evacuated during the foaming process. 

1.2.1 Industrial Waxes 

Three samples have been used in the formulation as a pore foaming agent. The first wax (sample 
labeled A), was graciously given by Esprit composite® (reference TERHELL 907) and the two others 
furnished by Sasol Wax® (C8007 P606 and H106 1036 referenced in this work as C80 and H1). They have 
been first analyzed by DSC and Thermogravimetry. As example we present on Figure 7.5, the thermograms 
and the degradation curve corresponding to the sample TERHELL 907. Other DSC and thermogravimetric 

curves have been reported in Annex A-3 (cf. Figure A-3.1 and Figure A-3.2) 

 

Figure 7.5: Melting and crystallisation of the wax A (TERHELL-907). 
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The thermodynamic transitions and thermal properties of three waxes are reported on Table 7.5. 

Table 7.5: Thermodynamics transitions and thermal properties of the waxes. 

Wax 
Type 

1st Scan 2nd Scan
degradation

onset (°C)

Mass Loss  
(%) During  
Degradation 

Tonset 

(°C) 
TMax 

(°C) 
HM 

(J.g-1) 
Tonset 

(°C) 
TMax 

(°C) 
HM 

(J.g-1) 
A 

TERHELL 
(907) 

38.2 
42.0 

57.2 
57.6 

186.1 
192.1 

34.7 
49.2 

57.2 
54.5 

187.8 
146.3 

143 99.81 

B (C80) 93.0 96.7 242.8 72.2 87.6 235.4 208 99.41 

C (H1) 104.7 111.7 279.0 72.4 92.5 259.1 211 100 

1.2.2 Thermal Degradation 

As shown on the Figure 7.6, the degradation of the waxes is complex and curves present generally 
in two steps. Moreover, the melting transitions are always preceded by a departure of small molecules 

around 100°C.  

 

Figure 7.6: TGA curve of the wax-A (907). 

2 Experiments on Polylactides/Tri-calcium Phosphate Scaffolds 

2.2 Experiments on Polylactides/Tri-calcium Phosphate 

First foaming experiments have been performed on three different polylactides: PLGA85:15 (PLG 
8531), PLGA50:50 (PLG 8523), which are semi crystalline and PL,DLA (PABR-L 68) which is amorphous. 
The conditions for the Taguchi’ experimental design, are reported on the Table 7.6. It was developed 3 sets 
of 9 samples of 200 mg each. In this case, only the saturation pressure was changed and three levels of 
pressure were considered for each sample. As the Tg of PLGA85:15 and PL,DLA is ~55oC and that of, 

PLGA50:50 ~ 47oC, so it was decided to adopt a temperature of 50oC for foaming. 

PLGA85:15 was ground in the knife cutter grinder and final powder obtained passed through a 500 
µm mesh sieve. The pellets were made as per prescribed conditions. However, after making pellets, they 
were still erosive on handling. Pellets 1- 3 were again prepared by wet method using acetone. While samples 

4-9 were used as solid pellets. The ratio of ATCP(sr) and βTCP(sr) in the composite blend was 5 or 10 %. 
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Table 7.6: Levels selected for each parameter of the scaffold and foaming process with supercritical CO2 at 
(Tsat = 50°C, dP/dt = 3 bar/min and tsat  = 20 min). 

Polymer Type  Sample Polylactide βTCP(sr) ATCP(sr) Psat (bars) 

PLGA85:15 
(PDLG 8531) 

P1~3 90 0 10 100,200,300 
P4~6 90 5 5 100,200,300 
P7~9 90 10 0 100,200,300 

PLGA50:50 
(PLG 8523) 

P10~12 90 0 10 100,200,300 
P13~15 90 5 5 100,200,300 
P16~18 90 10 0 100,200,300 

PL,DLA  
(PABR L 68) 

P19~21 90 0 10 100,200,300 
P22~24 90 5 5 100,200,300 
P25~27 90 10 0 100,200,300 

The geometric porosity of the resulting foams was deduced from the procedure given in chapter 4. 
SEM micrographs were obtained for the foams of the three copolymers at each condition to analyze the pore 
size. Micrographs of PLGA50:50 and PL,DLA (PABR L 68) are presented in Figure 7.7 and Figure 7.8 
respectively. As PLGA85:15 (PLG 8531) is highly crystalline, we did not succeed in producing foams. After 
foaming process pellets of PLGA85:15 (PLG 8531) were turned into powder like material. Pellet was changed 
into tiny spherical balls and was difficult to handle for SEM micrograph analysis. 

PLGA50:50 +10% ATCP(sr) PLGA50:50 +5% ATCP(sr)+5% TCP(sr) PLGA50:50 + 10% TCP(sr) 

Psat = 100 bars (100×) Psat = 100 bars 250×) Psat = 100 bars (250×) 
   

Psat = 200 bars (250×) Psat = 200 bars (250×) Psat = 200 bars (250×) 
   

Psat = 300 bars (250×) Psat = 300 bars (250×) Psat = 300 bars (250) 
   

Figure 7.7: Micrographs of PLGA85:15 (8523) + tricalcium phosphate processed at scCO2 conditions- 
Tsat 50°C, tsat  20 min, dP/dt  3bar/s and varying Psat. 

The reason that PLGA85:15 (PLG 8531) did not produced foam is because if its high crystallinity 

which did not permit CO2 to absorb in the crystal lattice during the foaming phenomenon.  
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PL,DLA + 10% ATCP(sr) PL,DLA + 5% ATCP(sr)+ 5% TCP(sr) PL,DLA + 10% TCP(sr) 

 
Psat = 100 bars (100×) Psat = 100 bars 250×) Psat = 100 bars (250×) 

   

 
Psat = 200 bars (250×) Psat = 200 bars (250×) Psat = 200 bars (250×) 

   

 
Psat = 300 bars (250×) Psat = 300 bars (250×) Psat = 300 bars (250) 

   

Figure 7.8: Micrographs of PL,DLA + tricalcium phosphate processed at scCO2 conditions- 
Tsat 50°C, tsat  20 min, dP/dt   3bar/s and varying Psat. 

2.3 Analysis of Experiments on Polylactides/Tri-calcium Phosphate 

Experiments were done by changing the percentages of the tricalcium phosphate in the polymer 

matrix. ATCP and TCP were varied from 0 to 10 % to see the effect on the scaffold. Equivalent pore 

diameter obtained by SCION® image analysis and geometric porosities only for PLGA50:50 and PL,DLA 
polymer wax blend are reported on Table 7.7. 

Table 7.7: PLGA50:50 and PL,DLA Foams pore data with different % of tricalcium phosphate. 

Foam 
No. 

ScCO2Condition 
Polymer with  

Composite Composition 

PLGA50:50  PL,DLA  

[Tsat-Psat-tsat-dP/dt] 
Pore  

Diameter
de(m) 

Geometric 
Porosity 

(%)) 

Pore  
Diameter

de(m) 

Geometric
Porosity 

(%) 
1 [50-100-20-3] 10% ATCP(sr) 100 87.9 40 60.6 
2 [50-200-20-3] 10% ATCP(sr) 60 75.3 30 44.8 
3 [50-300-20-3] 10% ATCP(sr) 50 81.3 80 53.2 
4 [50-100-20-3] 5% ATCP(sr)+5% TCP(sr) 20 88.3 50 68.2 
5 [50-200-20-3] 5% ATCP(sr)+5% TCP(sr) 15 87.1 30 38.0 
6 [50-300-20-3] 5% ATCP(sr)+5% TCP(sr) 10 88.3 40 57.8 
7 [50-100-20-3] +5% TCP(sr) 100 87.8 60 77.3 
8 [50-200-20-3] +5% TCP(sr) 20 98.4 20 50.1 
9 [50-300-20-3] +5% TCP(sr) 10 90.3 10 56.7 

A comparison of pore diameter for each polymer shows that as the saturation pressure increases, 
micro pores gradually decrease. The results obtained show that the pore size decreases with increasing 
saturation pressure; macrospores were only obtained for a pressure of 100 bars. According to Tai et al. 
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[2007] the diffusion coefficients and equilibrium concentration of CO2 in PLGA increases with pressure in a 
nearly linear relationship. In addition, greater pressure can cause increment of the dissolution of CO2 and 
consequently the glass transition temperature decreases. For these reasons, at higher pressures, the amount of 
CO2 incorporated into the polymer increases and yet the material is supersaturated when depressurizing the 

system. The result is then a nucleation density of larger pore size is low. 

The crystallinity of PLGA85:15 (8531) and PLGA50:50 (8523) is respectively 26.8% and 18.4% while 
PL,DLA is amorphous. The porosity obtained for PLGA85:15 8531 is the lowest and apparently no pores were 
produced in the foams. As for PLGA50:50 8523 which is less crystalline the porosity is higher than for 
PLGA85:15 8531. The two poly(L-lactide-co-glycolide) which contains only L-lactide behaves like semi-
crystalline material, thus due to the presence of crystal lattice sorption of CO2 is less, leading to low 
solubility and swelling hence producing foams with less pore size. While in PL,DLA contain both L and D 
lactide with the ratio of 88:12. In PL,DLA polymer due to more D-lactide as compared to PLGA85:15, the 
sorption and swelling of CO2 in polymer is more so the porosity and pore diameter should be more than the 
two Poly(L-lactide-co-glycolide) as also investigated by Pini et al. [2008], Liu and Tomasko [2007], 
Oliveira et al. [2006]. The results obtained by these authors indicate that, CO2 is slightly more soluble in 
polylactide containing less percentage of L-lactide in the polymer. In our case PL,DLA possesses 88% of L-
Lactide ratio as compared to Poly(L-lactide-co-glycolide). In addition, if one compares the porosity as a 

function of the filler ratio 0-10% (ATCPsr / TCPsr), it is obvious that the highest porosities were obtained 

for the Sr-tricalcium phosphate. The behaviour of the filler composed by tricalcium phosphate and 

amorphous presents an intermediate behaviour. 

3 Foams of Polylactides/Calcium Phosphates Blends and Composites 

3.2 Experiments on PLA/Waxes Scaffolds 

3.2.1 Preliminary Experimentation with Wax as Porogen Agent 

The aim of these studies was to try and increase the pore diameter of PL,DLLA foams by adding a 
porogen agent in the formulation. Indeed, in previous studies, dry and wet methods were used to produce 
PL,DLLA foams with larger pore diameter and porosity but results were not still appropriate. A porogen agent 
(wax), being apolar in nature, has been added to the polymer to facilitate CO2 sorption thus trying to increase 
the possibility of pore generation. In that way, 36 pellets containing wax manually blended with polymer 
were manufactured with the manual press, as described by the procedure in chapter 4, at following process 
conditions: T = 60°C, P = 150 bars and t = 20 min. Blends of PLD,LLA polymer and different waxes (A, B or 

C) with the four mass ratios and were foamed with conditions as reported in Table 7.8. 

Table 7.8: Mass ratio of polymer and different waxes and Taguchi’ plan (L9) for polymer-wax blend foams. 

PLA (LR 704) (w/w) 100% 90% 80% 70% 
+ Wax A or B or C (w/w) 0 10% 20% 30% 

Conditions Tsat (°C) Psat (bar) tsat (min) dP/dt (bar/s) 
1 40 100 20 1 
2 40 200 40 3 
3 40 300 60 6 
4 50 100 40 6 
5 50 200 60 1 
6 50 300 20 3 
7 60 100 60 3 
8 60 200 20 6 
9 60 300 40 1 
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3.2.2 SEM Analysis of Foams 
Foams processed according to Taguchi’ plan (cf. Table 7.8) are presented in the micrographs of 

Figure 7.9 for pure PL,DLLA foams and of Figure 7.10 for PL,DLLA +10% Wax-A. 

 
Condition:01--250× 

[40oC - 100 bars - 20 min - 1 bar/s] 
Condition:02--250× 

[40oC - 200 bars - 40 min - 3 bar/s] 
Condition:03--250× 

[40oC - 300 bars - 60 min - 6 bar/s] 

 
Condition:04--250× 

[50oC - 100 bar s-40 min - 6 bar/s] 
Condition:05--250× 

[50oC - 200 bars - 60 min - 1 bar/s] 
Condition:06--250× 

[50oC - 300 bars - 20 min - 3 bar/s] 

 
Condition:07--250× 

[60oC - 100 bars - 60 min - 3 bar/s] 
Condition:08--250× 

[60oC - 200 bars - 20 min - 6 bar/s] 
Condition:09--250× 

[60oC - 300 bars - 40 min - 1 bar/s 

Figure 7.9: Micrographs of PL,DLLA foams at different process conditions. 
 

 
Condition:01--250× 

[40oC - 100 bars - 20 min - 1 bar/s] 
Condition:02--250× 

[40oC - 200 bars - 40 min - 3 bar/s] 
Condition:03--250× 

[40oC - 300 bars - 60 min - 6 bar/s] 

 
Condition:04--250× 

[50oC - 100 bars - 40 min - 6 bar/s] 
Condition:05--250× 

[50oC - 200 bars - 60 min - 1 bar/s] 
Condition:06--250× 

[50oC - 300 bars - 20 min - 3 bar/s] 

 
Condition:07--250× 

[60oC - 100 bars - 60 min - 3 bar/s] 
Condition:08--250× 

[60oC - 200 bars - 20 min - 6 bar/s] 
Condition:09--250× 

[60oC - 300 bars - 40 min - 1 bar/s 

Figure 7.10: Micrographs of PL,DLLA +(10%) wax-A foams at different process conditions.  
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Foams with 20% Wax-A are presented in Figure 7.11.  

  
   

Condition:01--500× 
[40oC - 100 bars - 20 min - 1 bar/s] 

Condition:02--500× 
[40oC - 200 bars - 40 min - 3 bar/s] 

Condition:03--500× 
[40oC - 300 bars- 60 min - 6 bar/s] 

  
 

 
  

Condition:04--500× 
[50oC - 100 bars - 40 min - 6 bar/s] 

Condition:05--500× 
[50oC - 200 bars - 60 min - 1 bar/s] 

Condition:06--250× 
[50oC - 300 bars - 20 min - 3 bar/s] 

  
Condition:07--500× 

[60oC - 100 bars - 60 min - 3 bar/s] 
Condition:08--250× 

[60oC - 200 bars - 20 min - 6 bar/s] 
Condition:09--250× 

[60oC - 300 bars - 40 min - 1 bar/s 
   

Figure 7.11: Micrographs of PL,DLLA +(20%) wax-A foams at different process conditions. 

Foams with 30% wax-A are presented in Figure 7.12. 

  
   

Condition:01--500× 
[40oC - 100 bars - 20 min - 1 bar/s] 

Condition:02--500× 
[40oC - 200 bars - 40 min - 3 bar/s] 

Condition:03--15× 
[40oC - 300 bars - 60 min - 6 bar/s] 

  
   

Condition:04--500× 
[50oC - 100 bars - 40 min - 6 bar/s] 

Condition:05--250× 
[50oC - 200 bars - 60 min - 1 bar/s] 

Condition:06--20× 
[50oC - 300 bars - 20 min - 3 bar/s] 

  
Condition:07--500× 

[60oC - 100 bars - 60 min -3 bar/s] 
Condition:08--200× 

[60oC - 200 bars - 20 min - 6 bar/s] 
Condition:09--15× 

[60oC - 300 bars - 40 min - 1 bar/s 
   

Figure 7.12: Micrographs of PL,DLLA +(30%) wax-A foams at different process conditions.  
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There was not an effective change in pore size by increasing the percentage of wax. All these foams 

were processed according to Taguchi’ plan. In Majority of the foams the pore size was 5 to 25m and were 

elongated, hetrogeneous and irregular in shape. Micrographs of foams PL,DLLA +30% wax-B and PL,DLLA 

+20% wax-C are presented in Annex-A-3, (cf. Figure A-3.3 and Figure A-3.4)  

3.2.3 Effect of Wax on the Equivalent Pore Size and Geometric Porosity 

The equivalent pore diameter and geometric porosity of the polymer and polymer blend foams are 
presented in Table 7.9 and Table 7.10 respectively. The values highlighted and underlined represent the 

maximum values for the respective foaming conditions. 

Table 7.9: Equivalent pore diameter of pure PL,DLLA and polymer-wax blend foams. 

Foam 
Nr. 

Pure 
PL,DLLA 

PL,DLLA + 10% Wax PL,DLLA + 20% Wax PL,DLLA + 30% Wax 
A B C A B C A B C 

m) m) m) m) m) m) m) m) m) m)
1 45 15 15 15 15 10 7 10 7 10 
2 35 25 7 10 10 7 10 25 20 15 
3 15 10 5 7 15 15 15 25 30 35 
4 35 10 7 3 20 15 10 15 5 7 
5 30 20 15 10 15 20 10 25 25 25 
6 15 15 10 15 15 25 25 30 30 20 
7 5 5 5 5 15 15 10 10 7 10 
8 20 15 20 10 5 5 7 5 35 20 
9 40 20 25 20 15 10 20 15 30 25 

Table 7.10: Geometric porosity of pure PL,DLLA and polymer-wax blend foams. 

Foam 
Nr. 

Pure 
PL,DLLA 

PL,DLLA + 10% Wax PL,DLLA + 20% Wax PL,DLLA + 30% Wax 
A B C A B C A B C 

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
1 28.1 14.8 22.4 14.1 19.0 11.3 14.3 18.1 12.0 15.2 
2 69.3 44.2 48.7 63.5 67.8 29.3 50.6 33.1 37.0 45.4 
3 47.7 32.0 33.5 19.8 29.2 27.9 35.6 21.4 27.1 33.9 
4 25.4 19.5 12.8 45.7 23.8 31.1 12.8 18.8 18.2 14.3 
5 51.1 34.2 37.5 54.8 31.3 31.5 43.3 27.3 34.5 37.2 
6 62.5 48.0 56.1 54.0 48.9 41.0 42.6 49.8 40.2 41.8 
7 44.0 46.5 51.1 46.1 49.6 49.6 41.9 47.2 50.1 30.0 
8 67.0 69.3 69.7 65.1 70.8 66.5 61.1 70.9 63.4 62.5 
9 68.6 67.0 72.8 72.4 69.5 71.0 68.0 64.2 69.0 64.0 

In all the polymer wax blend foams, equivalent pore diameter did not exceed 35m and maximum 

porosity was ~70%. Effect of each process parameter on equivalent pore diameter and porosity for polymer 
wax-A blend are presented in Figure 7.13 and Figure 7.14 respectively. Compairing the porosities of 
polymer/wax blend foams with pure PL,DLLA foams, in blend foam the values was always less. However in 
condition 8 and 9, the porosities for all percentages of polymer/wax blends and pure polymer were almost 
same. The equivalent pore diameter for these two conditions was not same for pure polymer and polymer 

wax blend foams. 

Examining Figure 7.13, one can observe that as the percentage of wax-A increases from 10% to 
30% there is slight increase in the pore diameter of the polymer wax blend. Similar trend is seen for wax-B 

and wax-C blend. The decrease in trend of pore diameter for three types of wax is as follows. 

Optimum pore dia in polymer/wax-A blend > polymer wax-B blend > polymer wax-C blend 
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The possible reason for this trend is due to the fact that melting point of wax-A < wax-B < wax-C. 

If the foam processing temperature is increased making it more closer to the melting point of the wax pore 

diameter can be increased. 
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Figure 7.13: Average effect of wax-A on the equivalent pore diameter for polymer wax blends. 
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Figure 7.14: Average effect of wax-A on the geometric porosity for polymer wax blends. 

Average effect of wax-B and wax-C on the equivalent pore diameter and porosity variation are 
presented in Annex A-3, Figure A-3.5 and Figure A-3.6. Optimum values of equivalent pore diameter and 

geometric porosity of the pure polymer and polymer-wax blend foams are summerized in Table 7.11. 

Table 7.11: Pure PL,DLLA and polymer-wax blend equivalent pore diameter and porosity results. 

Equivalent Pore Diameter  (m) Geometric Porosity  P(%)

Pure PL,DLLA  [40oC-100 bars-20 min-1 bar/s] 45 [40oC-200 bars-40 min-3 bar/s] 69.3 

10% wax-A [40oC-200 bars-40 min-3 bar/s] 25 [60oC-200 bars-20 min-6 bar/s] 69.3 

10% wax-B [60oC-300 bars-40 min-1 bar/s] 25 [60oC-300 bars-40 min-1 bar/s] 72.8 

10% wax-C [60oC-300 bars-40 min-1 bar/s] 20 [60oC-300 bars-40 min-1 bar/s] 72.4 

20% wax-A [50oC-100 bars-40 min-6 bar/s] 20 [60oC-200 bars-20 min-6 bar/s] 70.8 

20% wax-B [60oC-300 bars-20 min-3 bar/s] 25 [60oC-300 bars-40 min-1 bar/s] 71.0 

20% wax-C [60oC-300 bars-20 min-3 bar/s] 25 [60oC-300 bars-40 min-1 bar/s] 68.0 

30% wax-A [60oC-300 bars-20 min-3 bar/s] 30 [60oC-200 bars-20 min-6 bar/s] 70.9 

30% wax-B [60oC-200 bars-20 min-6 bar/s] 35 [60oC-300 bars-40 min-1 bar/s] 69.0 

30% wax-C [40oC-300 bars-60 min-6 bar/s] 35 [60oC-300 bars-40 min-1 bar/s] 64.0 
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For pure PL,DLLA, we can see that at lower pressure and saturation temperature, the pore size and 
porosity obtained is comparitively high. Results from PL,DLLA +10% wax-A, 20% wax-C and 30% wax-B 
produces foams of low porosity and pore diameter. Considering all the graphs in Figure 7.13 it can be 

deduced that the equivalent pore diameters for each polymer wax blend does not exceed ~35m. 

The maximum values for all the polymer wax blends are obtained at the highest process 
temperature, 60oC. Values encircled in each graph present the optimum process parameter condition. The 
three tpyes of wax produced foams of proisity ranging from ~ 10 % to 70%. It was expected that wax being 
apolar in nature and is more inclined for solubility of scCO2 will improve the pore structure and 
morphology. The three types of waxes used at low process temperatures produced pores with low diameter. 
However at higher temperatures, improvements in porosity and pore diameter were found. At higher 
temperature, the pore size was increased but not to a great extent. wax-A, wax-B and wax-C have melting 
temperature ~40, 93 and 104oC respectively. Forwax-A at higher temperature due to the melting of wax, the 
pore generation phenomenon was slightly increased hence pore diameter was slightly higher. Similarly at 

higher dP/dt, the pore diameter and porosity observed was also at minimum.  

The possible reason for low pore size in the polymer –wax blend can be due to certain reasons. 
First of all, the polymer used was semi crystalline which itself produces low porosity and pore diameters as 
experimented earlier. Then the wax-B and C used had melting point ~100oC, which was not converted into 
semi molten state at 60oC hence there is less possibility of CO2 absorption at this temperature, minimizing 
the chances of pore generation in the blend. Wax has affinity to absorb CO2 but as it does not have elastic 
property so there are less chances of pore generation. The pore structure and morphology in all the foams 

obtained were heterogeneous. The pores were irregular, heterogeneous in size and mostly elongated. 

3.3 Experiments on Polylactides/Tri-Calcium Phosphate/Wax Scaffolds 

3.3.1 Effect of the Ratio of Wax on the Geometric Porosity and Equivalent Pore Size  

Inspite of adding a porogen agent in PL,DLLA, there was not an appreciable increase in the pore 
diameter. As PL,DLLA is semi-crystalline so it was replaced with an amorphous polymer poly(DL-lactic co-
glycolide). In the experiments with PL,DLLA/wax blend foams were processed at higher temperature 50 and 

60oC. The melting point of wax is located between  40 and 100°C and as wax-A has lowest melting point 

so maximum pore diameter obtained was ~ 30 m. Hence to process foams with PLGA85:15/wax blends 

process temperature was kept 45oC close to the melting temnperature of wax-A, secondly the Tg of 

PLGA85:15, 43oC. 

PLGA85:15 (RG-858 S) fine fibres were obtained by using the knife mill. These fine fibres were 
then ground alone in the tumbling ball mill for 30 minutes. White flakes were obtained which were again 

ground in the knife mill to get powder. The filler rates (5% TCP and 5% amorphous ATCP dopped with 

Sr) have been maintained constant. As for wax, its ratio has been chosen as follows: 0, 1.5, 3, 5, 7 and 10%, 
the polymer serving as complement. However, two pressure values were implied. The two process 

conditions with their results are reported on Table 7.12. The conditions selected are Tsat  45°C, tsat  20 min, 

dP/dt   3bar/s while Psat 100 and 120 bars. In most of the experimentations the optimized conditions for a 

polymer in our system is Psat  120 bars, tsat  20 min, dP/dt   3bar/s and Tsat  close to the value of polymer 

Tg.  We varied only one parameter to see its effect on the pore morphology. 

The micrographs of PLGA85:15+ 5% ATCP(sr) + 5% TCP(sr) co-ground and with different ratios of 

wax are presented for the two process conditions in Figure 7.15 and Figure 7.16. 
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0% wax A-100× 1.5% wax A-100× 3% wax A-100× 

 
5% wax A-100× 7% wax A-100× 10% wax A-100× 

Figure 7.15: Micrographs of foams obtained by simple mixing of polymer and wax and processed - 
at [Tsat 45°C, Psat  120 bars, tsat  20 min, dP/dt  3bar/s]. 

 

 
0% wax A-100× 1.5% wax-100× 3% wax-100× 

 
5% wax-100× 7% wax-100× 10% wax-100× 

Figure 7.16: Micrographs of foams obtained by simple mixing of polymer and wax and processed 
at [Tsat 45°C, Psat  100 bars tsat  20 min, dP/dt  3bar/s]. 

Table 7.12: Equivalent pore diameter and geometric porosity of foams of composite plus wax by simple 

mixing processed at Tsat  45°C, tsat  20 min, and dP/dt  3bar/s. 

Foam 
No. 

5%ACP(sr) +5%TCP(sr) Psat  120 bars  Psat  100 bars  

+ Complement PLGA85:15 

+ % Wax A  

Pore  
Diameter 
de (m) 

Geometric 
Porosity (%) 

Pore  
Diameter 

de (m 

Geometric 
Porosity (%) 

1 Pure PLGA 95 71.4 135 72.1 
2 1.5% wax A 145 81.4 170 86.1 
3 3% wax A 65 75.3 90 83.1 
4 5% wax A 45 70.7 50 82.4 
5 7% wax A 20 67.2 20 80.3 
6 10% wax A 15 77.1 5 68.6 
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Changing the polymer from PL,DLLA to PLGA85:15 and reducing the percentage of porogen wax 
improved the pore diameter and porosity of the composite scaffold. Reducing the pressure from 120 bars to 
100 bars gives even better results. Pore diameter decreased as the percentage of wax increased. Maximum 
pore diameter was attained at 1.5% of wax with a porosity of 86%. From these results, it is obvious that 
increasing the amount of wax in the polymer blend decreases the pore growth thus forming foams of smaller 
diameter and less porosity. However only at 1.5% wax ratio in the blend produced higher pore diameter and 
higher porosity in comparison to polymer compsite blend without wax. Thus minor percentage of wax 
facilitates the pore generation phenomenon during foaming. With larger percentages of wax in the blend, no 
doubt the sorption of CO2 in the blend is increased but presence of wax in the blend do not faciliatate pore 

generation. 

3.3.2 Effect of Co-grinding Filler and PLGA on the Pore Morphology 

To achieve scaffold of higher mechanical properties, co-grinding is an effective phenomenon as it 
improves the properties of the product attained, discussed earlier in bibliography. Purpose of this study was 
to analyze the effect of co-grinding polymer with filler and see its effect on the processed foam. Wax was 

again added separately by simple mixing as a progen. PLGA85:15 + 5% ACP(sr) and 5% TCP(sr) were co-

ground in the tumbling ball mill for 30 minutes. Off white flakes were obtained which were further ground 
in knife mill for 30 sec to obtain powder of polymer matrix. This powder was passed through 800 mesh 
screen to separate larger particles and agglomerates. After adding additional amount of wax, 15 minutes of 
magnetic mixing was done. As for wax, its ratio has been chosen as follows: 0,1.5, 3, 5, 7 and 10%, the 

polymer serving as complement. The two process conditions with their results are reported on Table 7.13. 

The micrographs of PLGA85:15+ 5% ATCP(sr) + 5% TCP(sr) co-ground and with different ratios of 

wax for the two process conditions are presented in Figure 7.17 and Figure 7.18 respectively. 

 
0% wax A-100× 1.5% wax A-100× 3% wax A-100× 

 
5% wax A-100× 7% wax A-100× 10% wax A-100× 

Figure 7.17: Micrographs of foams obtained by co-grinding polylactide and fillers processed at Tsat 

45°C, Psat  120 bars, tsat  20 min and dP/dt  3 bar/s. 

Compairing the results of foams produced at 120 bras and 100 bars , it can be seen that with 
higher percentages of wax (above 5%) there were not appreciable pores. With 1.5% of wax there were pores 

but not in appreciable size and quantity as in pure polymer foam. 
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0% wax A-100× 1.5% wax A-100× 3% wax A-100× 

 
5% wax A-100× 7% wax A-100× 10% wax A-100× 

Figure 7.18: Micrographs of foams obtained by co-grinding polylactide and fillers processed at  
Tsat 45°C, Psat  100 bars, tsat  20 min and, dP/dt   3bar/s. 

Table 7.13: Equivalent pore diameter and geometric porosity of foams of composite plus wax by co-
grinding processed at two saturation presures. 

Foam 
No. 

5%ACP(sr) +5%TCP(sr) 
Tsat  45°C, Psat  120 bars  

tsat  20 min, dP/dt  3bar/s 
Tsat  45°C, Psat  100 bars  
tsat  20 min, dP/dt  3bar/s 

+ Complement PLGA85:15 

+ % wax A  
Pore Diameter 

de (m) 
Geometric 

Porosity (%) 
Pore Diameter 

de (m) 

Geometric 
Porosity 

(%) 
1 0% wax A 25 68.4 40 74.7 
2 1.5% wax A 40 72.2 50 77.2 
3 3% wax A 25 64.5 30 66.1 
4 5% wax A 20 56.4 10 62.7 
5 7% wax A 5 52.3 5 61.4 
6 10% wax A Nil  54.3 5 54.3 

Purpose of cogrinding the polymer and filler was to elevate the mechanical properties of 
composite. Comaparing the results reported on Table 7.13, one can find that again foam generated without 
porogen produced pores with small diameter and less porosity as compared to 1.5% of wax-A blend. By 
adding wax-A till 1.5%, it facilitates pore generation but increasing the amount in blend decreases pore 
generation leading to reduced pore diameter and less porosity. Also there was decrease in the pore diameter 
and porosity as compared to the foams with similar composition but with simple mixing. Maximum pore 
diameter and porosity was obtained at Psat = 100 bars. Thus higher percentage of wax and co-grinding 

phenomenon reduce the pore generation in a foam. 

3.4 Complementary Experiments on PLGA85:15/Tri-calcium Phosphate/Wax 
Scaffolds 

Previous results obtained from semi-crystalline poly(L-lactide-co-glycolide) composite produced 
foams with high porosity but low pore size compel us to use an amorphous poly(D,L-actides-co-glycolide) 
PLGA85:15 (LG 858 S). The objective was to generate scaffold of higher porosity and large pore diameter so 
an amorphous Poly(D,L-actides-co-glycolide) was replaced with semicrystalline one. PLGA85:15 is in fibrous 
foam and before using it for further processing, it is knife milled and turned into fine fibres and then these 
fine fibres are ground in ball mill. From the ball mill, we get flakes which are finally knife milled again to 



 Chapter 7.                                                        Characterization of Scaffolds for Calcified Tissue Engineering 

- 207 - 

transfoam them into powder. The powder obtained is passed though series of sieves 250,400,500 and 600 

mesh. Thus we get particles of polymers in 4 different ranges/category described as follows. 

[PLGA85:15 particles< 250m]   [250 < PLGA85:15 particles < 400m], 

[400 < PLGA85:15 particles < 600 m] and  [PLGA85:15 particles > 600 m] 

Polymer blend will be made from these four categories of particles with 5 % ATCP(sr) and 5 %  

TCP(sr). In our previous results co-grinding of the polymer and filler blend showed results wih lower values 
of porosity and pore diameter, hence now simple mixing of polymer filler blend will be done. Higher 
percentage of wax also hinders generation of pores during foaming, so wax-A will be added with different 

ratios (0, 0.5 and 1 %). Blends of all the components, polymer particles+5 % ATCP(sr) and 5 %  TCP(sr).+ 

wax were done for 15 minutes in a jar with a magnetic stirrer.  

The detailed compositions of pellets are given in Table 7.14. For category [PLGA85:15 < 250m] 

four pellets were processed to test them at different plates in the chamber. Similarly pellets were processed 

for category [250 < PLGA85:15 < 400m], [400 < PLGA85:15  < 600 m] and [PLGA85:15 > 600 m]. 

Table 7.14: Composition of pellets of different polymer particle size and with variable % of wax. 

Powder Category 5 % ATCP(sr)  + 5 % βTCP(sr)  + Complement % PLGA85:15
Type < 250 μm [250 – 400 μm] [400 – 600 μm]  600 μm  

1 90 90 90 90 

% wax A 0 0 0 0 

2 89.5 89.5 89.5 89.5 

% wax A 0.5 0.5 0.5 0.5 

3 89 89 89 89 

% wax A 1 1 1 1 

By using the hydraulic press with conditions P = 150 bars, T = 47oC, t = 20 min, 255 mg of 
powder was used to make each pellet and processed 15 pellets. The pore diameter and geometric porosity of 

the generated foams are tabulated in Table 7.15. 

Table 7.15: Pore diameter of foams with different particle size and with variable % of wax. 

Foam 
No. 

5%TCP(sr)+5%ATCP(sr) + % Wax A + 
Complement PLGA85:15 

Pore Diameter de 
(m) 

Porosity 
(%) 

1-4 

0% wax A 

[PLGA85:15 < 250μm] 125, 100, 107, 97 
84.2, 85.4, 
81.8, 82.7 

5 [250 < PLGA85:15 < 400μm] 125 83.2 
6 [400 < PLGA85:15< 600μm] 150 85.7 
7 [600 μm < PLGA85:15] 125 74.9 
8 

0.5% wax A 

[PLGA85:15 < 250 μm] 80 77.2 
9 [250 < PLGA85:15 < 400μm] 100 78.4 
10 [400 < PLGA85:15< 600 μm] 125 80.3 
11 [600 μm < PLGA85:15] 75 72.8 
12 

1% wax A 

[PLGA85:15 < 250 μm] 30 75.2 
13 [250 < PLGA85:15 < 400 μm] 150 77.1 
14 [400 < PLGA85:15< 600 μm] 200 77.0 
15 [600 μm < PLGA85:15] 125 71.4 

Their respective micrographs are presented in Figure 7.19. 
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1–PLGA85:15 < 250μm 2–PLGA85:15 < 250μm 3–PLGA85:15 < 250μm 4–PLGA85:15 < 250μm  

    

 
5–250 μm < PLGA85:15 < 

400μm 
6–400 μm < PLGA85:15< 

600μm 
7–600 μm <PLGA85:15 8–PLGA85:15 < 250μm 

    

 
9–250 μm < PLGA85:15 < 

400μm 
10–400 μm < PLGA85:15< 

600μm 
11–600 μm <PLGA85:15 12–PLGA85:15 < 250μm 

    

13–250 μm < PLGA85:15 < 400μm 
–50× 

14–400 μm < PLGA85:15< 600μm –
50× 

15– [600 μm < PLGA85:15] 

   

Figure 7.19: Micrographs of foams containing different percentages of wax A. 

 

From Figure 7.20 and the SEM micrographs (cf. Figure 7.19), one can find that by using polymer 

particles less than 250m the pore size generated in the foam is ~100m also for the particles>600m 

produced foam of low pore diameter. Particles between 400 and 600m generated comparatively larger 

pores. The porosity was ~ 84% except the last category fell to 75%. By adding 0.5% wax in the polymer 
matrix, there was apparently not much difference in the pore diameter however, the porosity was reduced for 
each category. By adding 1% wax increased the pore diameter in the category (250 < PLGA85:15 < 400μm) 
and (400 < PLGA85:15< 600 μm) with reduction in porosity. Further investigation is required to study the 

behaviour of particles and their effects on foaming. Thus, fine particles less than 250m and larger particles 

greater than 600m are not suitable for generating a scaffold of higher porosity and pore diameter neither 

with nor without wax. To study the effect of particle size of polymer on pore morphology further 

investigation can be done. 
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Figure 7.20: Effect of particle size of polymer and different % of wax on foam pore diameter and porosity. 

 

4 Conclusion 

After characterizing fillers and adjuvant, foams were made by PL,DLLA mixed with three different 
types of waxes. Due to higher percentages of waxes, results were not very appreciable. By altering the 

percentage of amorphous and TCP composites were made by using three different polymers. Then foams 

of PLGA85:15+ 5%ACP(sr) +5%TCP(sr) with variable percentages of wax (1 to 10%) by simple mixing and by 

co-grinding were produced. As the melting point of wax-A is very low and it creates hindrance in producing 
pores in the polymer blend so its percentage in composite was reduced to 1.0 %. Finally, it was concluded 

that adding wax in composite blend did not facilitate pore generation in scCO2 foaming technique. 
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Chapter 8 

 

Chapter 
8 

Optimization of Pore 
Morphology of 

Scaffolds for Calcified 
Tissue Engineering

 

 

The purpose is to produce industrially applicable scaffolds for bone replacement. To produce a 
scaffold with optimum porosity, equivalent pore diameter and mechanical properties, PLGA and Sr-calcium 
phosphates blends will be used. Semi-industrial fabrication of porous composite scaffolds involves scale up 
production and we have studied the capability of the process to produce foams. Therefore, a major 
challenge for scaffold fabrication is to maintain mechanical strength with vital porous structure in addition 
to a specified composition. The objectives of this chapter are to precise the influence of incorporating a 
mineral phase by either simple mixing or co-grinding, on the distribution of pores processed by scCO2, to 

characterize foaming properties and  the mechanical properties of the resulting scaffolds. 

 

 

1 Semi-industrial Production of Bone Scaffolds 

The purpose for the following experiments was to produce industrially scaffolds for application 
in bone regeneration. In bone engineering, earlier studies by Hulbert et al., [1970] showed that a minimum 

pore size of 100 m was required to allow bone tissue ingrowth in ceramic scaffolds. Further investigations 

were carried out to understand the pore size requirement for bone tissue engineering. Although the optimal 
pore size varied with scaffold material and other parameters, such as tortuosity, the general consensus is that 

pore sizes (e.g., 100 m) may favour higher alkaline phosphatase activity and more bone formation 

[Karageorgiou and Kaplan, 2005b; Tsuruga et al., 1997b]. 

Cell transport and vascularization because of scaffold pore size can also affect the tissue types and 
tissue formation process in scaffolds. When bone morphogenetic proteins were loaded into honeycomb-
shaped hydroxyapatite scaffolds to induce osteogenesis, it was found that smaller diameters (90–120 μm) 
induced cartilage formation followed by bone formation, whereas those with larger diameters (350 μm) 
induced bone formation directly [Kuboki et al., 2001]. The difference was likely caused by the different 

onset time of vascularization and cell differentiation.  
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1.1 Matrix: Polylactides 

1.1.1 Experiments with Different Polylactides  

The aim of this design of experiments was to compare the effect of the nature and composition of 

polylactide on the porosity, pore size and pores size distribution of foams manufactured by scCO2 process. 

Before further experimentations, we will test different polylactides of various glass transition 
temperature and LA/GA ratios. Also the effect of fillers will be taken into account. The polymers used for 

testing are stated as under in Table 8.1. 

Table 8.1: Polymers with different Tg’s and LA/GA ratios. 

S/N Polymer LA/GA Tg (
oC) Degree of Crystallinity c Mvis 

A 
PLGA85:15 (DL PLG) 

Poly (D,L-lactide-co-glycolide) 
85/15 50−55 Amorphous 18 943 

B 
PLGA50:50 (RG 504) 

Poly (D,L-lactide-co-glycolide) 
50/50 46−50 Amorphous  14 756 

C 
PLGA85:15 (LG 857 S) 

Poly (L-lactide-co-glycolide) 
85/15 57−63 Amorphous 396 495 

Fillers were mixed manually to make a homogeneous blend. Pellets of pure polymers blend with 

5% ATCP(sr) + 5% β TCP(sr) were processed by compression (P   150 bars,T   60°C, t   20 min,). Foams 

for the pure polylactide and composite biomaterial were manufactured at Psat   100 bars, Tsat   50°C, tsat  20 

min and dP/dt  3bar/s. The SEM images of foams obtained are presented in Figure 8.1. The micrographs 

are of different magnification because pore size varies largely. The equivalent pore size of pure Poly 
(lactide-co-glycolide) foams and composite foams are reported on Table 8.2. 

  
Pure Polymer A-PLGA85:15 (DL PLG) (50×) Polymer A + 5% ATCP(sr) + 5% βTCP(sr) (250×) 

  

  
Pure Polymer B-PLGA50:50 (RG 504) (25×) Polymer B + 5% ATCP(sr) + 5% βTCP(sr) (100×) 

  

  
Pure Polymer C-PLGA85:15 (LG 857 S) (30×) Polymer C + 5% ATCP(sr) +5% βTCP(sr) (25×) 

  

Figure 8.1: Micrographs of pure polymer and polymer with filler foams processed at scCO2 condition 
Tsat = 50oC, Psat = 100 bars, tsat = 20 min, dP/dt = 3 bar/s. 
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Table 8.2: Pore size of polymers and polymer plus filler. 

Polymer 
Pure Polymer Composite 

de P (%) de P (%) 
PLGA85:15 (DL PLG) 350 91% 60 81% 
PLGA50:50 (RG 504) 260 88% 150 and 20 84% 

PLGA85:15 (LG 857 S) No pore 44% No pore 32% 

The SEM images reveal that the equivalent pore size of PLGA85:15 (DL PLG) is higher than with 
PLGA50:50 (RG-504). No pore was observed in PLGA85:15 (LG 857S), It is probably linked to its higher value 
of molecular mass and higher glass transition temperature (cf. Table 8.1). The two other polymers at Tsat = 
50oC are in rubbery state while the third one is in a glassy state indicating that CO2 cannot penetrate and 
consequently pores cannot be formed. All these reasons created hindrance to make a scaffold of negligible 
porosity and pore diameter at possessing conditions of Tsat = 50oC and tsat = 20 min. Adding a mineral phase 
in each polymer, we observed a relative decrease in pore size and geometric porosity. By adding filler in the 
polymer, modification of polymer surface implies variation in the CO2 solubility. Addition of fillers also 
stiffens the polymer and blocks the penetration of CO2. PLGA85:15 (LG 857S) having the maximum 
molecular weight did not produce pores neither in pure state nor by adding mineral phase. It seems more 
easy to make foams with copolymers containing D,L-lactide than with copolymers containing only L-lactide 
as shown by Tai et al. [2007]. In the above two polymers where pores were formed, it was observed that in 
both cases they were open and closed and heterogeneous in size. Pores observed in the composite (PLGA50:50 

(RG-504) + 5% ATCP(sr) + 5% TCP(sr)) were quite heterogeneous as compared to composite (PLGA85:15 

(DL PLG) + 5% ATCP(sr) + 5% TCP(sr)). A decrease in the geometric porosity and equivalent pore size by 

adding fillers can be attributed to the hindrance of CO2 sorption in the composite. 

1.1.2 Polylactide with Higher D,L Contents 

As previous results of different poly(lactide-co-glycolide) foams showed heterogeneous pore size 
another type of polymer (PLGA85:15 RG 858 S) was tried. It is a poly(D, L-lactide-co-glycolide) with 85% of 
D,L lactide and low Tg. Initially it was in a fibrous form, so we changed its physical shape as the ultimate 
goal was to mix the fillers with polymer and that is only possible if polymer is in powder or fine fibres form. 

To study the effect on pore size and porosity, 4 pellets for each fibrous and fine-fibrous were manufactured. 

The grinding of fibres was done in the knife mill for 20 sec on/off mode and pellets were made as 
per procedure described earlier in chapter 4. The Tg of polymer PLGA85:15 (RG 858 S) is ~ 43oC so we 
manipulated the foaming process above and below the Tg. The aim of these experimentations was to prove 
that when a polymer is in a rubbery state, the solubility of supercritical CO2 increases and consequently so 
do the pore size and the porosity. Keeping the temperature 5oC above the Tg of polymer produces optimum 
porosity and pore diameter, inference draw from previous experimentations, four different saturation 
temperatures were selected. The optimized conditions obtained by previous experimentation for majority of 
poly (lactide-co-glycolides) were followed. The scCO2 conditions at which the foams were processed are Tsat 
= 40/43/46/49oC, Psat = 100 bars, tsat =20 min, dP/dt =3 bar/s. We changed only the temperature keeping 
other process parameters constant. Data of the pellets and foams obtained are presented in (c.f Table 8.3). 

Table 8.3: Effect of polymer and process temperature on equivalent pore diameter and geometric porosity. 

Tsat (°C) 
Fibre (few cm) Fine Fibres (2 − 4 mm) 

de (m) P (%) de (m) P (%) 
40 197 80.2 211 90.1 
43 202. 84.3 234 91.4 
46 216 88.9 249 92.7 
49 223 90.7 275 93.5 
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The micrographs of foams of non-ground fibres and ground fine fibres are presented in Figure 8.2. It 
is evident that in fine fibre polymer foams, there are more meso and macro pores compared to fibre polymer 
foam. It has been observed that there is gradual increase in the pore diameter and porosity in both cases, as 

the saturation temperature increases (cf. Table 8.3). 

Fibre Foams 

 
Tsat=40oC--(50×) Tsat=43oC--(50×) Tsat=46oC--(50×) Tsat=49oC--(50×) 

    

Fine Fibre Foam 

 
Tsat=40oC--(50×) Tsat=43oC--(50×) Tsat=46oC--(50×) Tsat=49oC--(50×) 

    

Figure 8.2: Micrographs of PLGA85:15 (RG 858 S) processed at Psat=100 bars, tsat =20 min and dP/dt =3 bar/s. 

The pore diameter of fibre and fine fibre foams increased gradually as the temperature was 
increased. The effect to grind fibres is not significant for the geometric porosity and sligthly influent on the 
equivalent pore size. Compairing equivalent pore diameter for fine fibre polymer, it has highest values at 
49oC operated temperature. The first three polymers used for the processing of foams had Tg ≥ 46oC, that is 
why at Tsat = 50oC PLGA85:15 (DL PLG) foam produced foam of maximum diameter and porosity. Adding 
fillers reduced the pore diameter and porosity in polymer A and B because filler stiffen the polymer. The 
results obtained with PLGA85:15 (RG 858 S) were also appreciable because this polymer has the lowest Tg 

value. So this polymer was preferred to be used for future experiments. 

1.2 Effect of Polymer Particle Size on Foaming 

After the fibres were ground in the ball mill, they turned into flakes, which were again ground in 
the knife mill to make fine powder with different particle size. The size distributions of all the samples are 

presented in Figure 8.3 and the mean particle diameter in each range is given in Table 8.4. 
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Figure 8.3: Size distributions of the ground and sieved particles of PLGA85:15. 
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A plan was made to do an extensive study to investigate the effect of the particle size of the 
ground polymer powder on the pore size of foams. The powder was passed through a set of six sieves (800, 

600, 500, 400, 250 and 125 m). These sieves were placed on a vibrating stand for 5 minutes for complete 

screening. Powder collected from each sieve was utilized to make foam by scCO2 foaming. It can be seen 
that the mean particle size increases gradually on each screen. The elongated particles in the mixture affect 

the mean particle size and the value is more than the larger sieve in a range. 

Table 8.4: Mean particles sizes of PLGA samples. 
Mean 

Particle Size 
PLGA85:15  Particle Ranges 

1 2 3 4 5 6 

Sieve Range < 125 μm 
[125-

250μm] 
[250-

400μm] 
[400-

500μm] 
[500 

600μm] 
[600-

800μm] 
d50 99.7 207.7 425.1 557.0 702.8 868.1 

1.2.1 Foaming of PLGA85:15 with Different Particle Size 

Foams of pure PLGA85:15 were made with different particle sizes at two different conditions. SEM 

images for both conditions [Tsat   48°C, Psat  100/120 bars, tsat  20 min, dP/dt  3bar/s] are presented in 

Figure 8.4. 

 
Foam--Psat=120 bars Foam--Psat=100 bars Foam--Psat=120 bars Foam--Psat=100 bars 

 
Foam--Psat=120 bars Foam--Psat=100 bars Foam--Psat=120 bars Foam--Psat=100 bars 

 
Foam--Psat=120 bars Foam--Psat=100 bars Foam--Psat=120 bars Foam--Psat=100 bars 

  

 Foam--Psat=120 bars Foam--Psat=100 bars  
Figure 8.4: Comparison of micrographs of foams with different polymer particle size range processed at 

scCO2 condition Tsat  48°C, tsat  20 min, dP/dt  3 bar/s, Psat  120 bars or Psat  100 bars. 
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From the previous experiment, Tsat was increased from 45o to 48oC, so the first process condition 

was Tsat 48°C, Psat  120 bars, tsat  20 min, dP/dt  3 bar/s and in the second condition, pressure was 

reduced to 100 bars while the other operating conditions were kept constant. 

Table 8.5: Pore size and porosity of PLGA foams with different particle size range for two scCO2-

conditions with different Psat  120 bars, or Psat  100 bars. 

Foam 
No. 

Polymer Particle Size Range 
Tsat 48°C, tsat  20 min, dP/dt  3 bar/s 
Psat  120 bars Psat  100 bars 

de (m) P (%) de (m) P (%) 
1 PLGA85:15< 125 μm 100 71.6 50 87.0 

2 125 μm < PLGA85:15 < 250μm 150 83.2 150 91.4 

3 250 μm < PLGA85:15 < 400μm 100 85.9 225 92.3 

4 400 μm < PLGA85:15 < 500μm 75 84.2 200 91.6 

5 500 μm < PLGA85:15 < 600μm 75 82.1 225 97.2 

6 600 μm < PLGA85:15 < 800μm 50 77.1 150 89.4 

7 800 μm < PLGA85:15 75 75.8 125 86.0 
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Figure 8.5: Effect of particle size on equivalent pore size and geometric porosity of PLGA85:15 foams 
processed at Tsat 48°C, tsat  20 min and dP/dt  3bar/s 

From Figure 8.5 A and B, it is evident that in the condition Psat = 120 bars the pore size is low 

(from 50 to 150 m) as compared to the second condition Psat = 100 bars. Moreover almost in all cases, most 

of the pores are closed. At this lower pressure, pores in foams No. 2, 3, 4, 5 are open and mostly in 
homogeneous shape and the pore diameter is maximum. On the contrary, in foams 1, 6 and 7 most of the 

pores are closed and the pore diameter range is also low. 

Compairing the porosities of the foams produced in both conditions, we can see that when 
pressure was 120 bars, the porosity varied between 72% and 86%. Especially for foams with minimum 
particle size and with maximum particle size porosity was almost at the lowest value. When the pressure was 
100 bars, all the foams had porosity above 86%. Thus it is concluded that for future experimentation 

polymer after grinding in the ball mill particle between 125 − 600 m will be utilized. 

2 Filler: Tri-calcium phosphate Doped by Sr 

2.1 Experimentation on Blends and Composite Foams 

Conclusions after first experiments are the following: from a point of view of the geometic 

porosity and the equivalent pore size, a blend containing the two fillers (ATCP(sr) and TCP(sr),) produced 

better results than using only one of them. So pellets were made with 90% PLGA85:15 (858-S) + 5% 
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ATCP(sr)+ 5% TCP(sr) and 95% PLGA85:15 (858-S) + 2.5% ATCP(sr) + 2.5% TCP(sr). The purpose was to 

analyze difference in porosity and pore size and the impact of the filler ratio on mechanical properties. 

2.1.1 Experimentation on Composite Foaming with Different Co-grinding Times 

The purpose was to produce different scaffolds with an objective of an industrial production. First, 
long PLGA85:15 (RG 858-S) fibres were reduced into small fibres using the knife mill. It was decided to test 

five different co-grinding times. Mixture of 90% PLGA85:15 + 5% ATCP(sr) + 5% TCP(sr) were co-ground in 

the ball mill for 15 to 135 minutes to obtain fine blends. A constant mass (255 mg) of blend powder was 
taken for each pellet. The granulometry after 15, 30, 45, 90 and 135 minutes co-grinding is shown in Figure 

8.6 and the mean particle size is tabulated in Table 8.6. The pellets were pressed at P  150 bars, T  50oC 

and t  20 min. Diameter of the pellets was 13 0.15 mm and thickness 1.5  0.05 mm. 
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Figure 8.6: Size distribution of composite formulation at different co-grinding time. 

Table 8.6: Mean particle size of composite matrix after different co-grinding time.  

Mean Particle Size 
Co-grinding Time (min) 

15  30  45  90  135  
d50 (m) 245.0 316.9 538.1 796.6 977.0 

As the co-grinding time increases, it is observed that the particle size increases which indicates 
that agglomeration phenomenon is taking place during co-grinding. Foams of polymer composite with  

5% ATCP(sr) and 5% TCP(sr) are presented in Figure 8.7 and their porosities and pore equivalent sizes are 

presented in Table 8.7. 

tco-grinding = 135 min tco grinding = 90 min tco grinding = 45 min 

  
tco grinding = 30 min tco grinding = 15 min 

Figure 8.7: Micrographs of PLGA85:15 composites foams processed at Tsat = 50oC, Psat = 100 bars, tsat = 20 min, 
and dP/dt = 3 bar/s with different co-grinding times. 
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An effort was made to produce pores with co-ground composite but we obtained foams with very 
low geometric porosities and equivalent pore size. The foams obtained were very hard, indicatiing that their 
mechanical properties are very high. However, as the co-grinding time decreased the geometric porosity and 
equivalent pore size increased gradually. Such foams can be used where low pore diameter and high 

mechanical properties are required. Our requirement was to obtain foams with pore diameter above 250 m. 

Hence for future experiments, co-grinding will not be preferred and composite blend will be made by simple 
mixing. 

 

Table 8.7: Equivalent pore diameter and porosity of foams processed at different co-grinding time at Tsat = 
50oC, Psat = 100 bars, tsat = 20 min, and dP/dt = 3 bar/s. 

Pore Data 
Co-grinding Time (min) 

15 30 45 90 135 
Equivalent pore size de 58 45 27 19 5 

Geometric porosity P (%) 75.8 65.7 56.4 49.3 42.5 

 

One can find that there is direct effect of co-grinding on the equivalent pore diameter and porosity 
of foams. As the co-grinding time was reduced, there was an increase in pore diameter and porosity. Co-
grinding of filler with polymer decreases the sorption of CO2 in the polymer matric thus leading to less 
swelling and low pore diameter and poristy. 

2.1.2 Foaming of Fine Powder and Filler Blend by Simple Mixing 

As co-grinding of polymer with filler compelled us to adapt simple mixing so we opted for two 
different filler ratios and different process temperatures. Foaming of the pellets was done in SEPAREX® 
SFC6 sc-CO2 6L laboratory plant. Perforated plates were used for foaming. Process conditions for scCO2 
and ratios of fillers in polymer matrix foam with equivalent pore diameter and porosity are stated in Table 

8.8. Foams micrographs are shown in Figure 8.8. 

 

Table 8.8: Pores diameter and porosity of selected [PLGA85:15+ATCP(sr)+ TCP(sr)] foams. 

N° 
Tsat 
(°C) 

Psat 
(Bar) 

tsa 

(min) 
dP/dt 

(bar/s) 

90%PLGA+5%ATCP(sr) 

+5% TCP(sr) 
95%PLGA+2.5%ATCP(sr) 

+2.5% TCP(sr) 

de (m)  P (%) de (m)  P (%) 

1 40 120 20 3 80 69.4 97 72.5 
2 45 120 20 3 95 71.4 123 74.4 
3 45 100 20 3 135 72.1 130 77.9 
4 50 120 20 3 147 76.3 164 80.1 
5 50 100 20 3 237 88.3 252 90.4 

 

The results obtained show that at higher temperature, we get maximum value of geometric 
porosity and equivalent pore size. From 40oC to 50oC, there was gradual increase in pore diameter. At Tsat = 
50oC and Psat = 120 bars, equivalent pore size and geometric porosity was less when the Tsat = 50oC and Psat = 
100 bars. There was not large difference between the equivalent pore diameter and porosity of foams with 
different filler ratios so 10% polymer filler composite will be preferred over 5% for higher modulus. The 
compression test comparison will be elaborated later on. Hence for future formulations, 10% fillers will be 
used to optimize the scCO2 process conditions for higher geometric porosity and, equivalent pore size. 
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 (90%+5%+5%) (95%+2.5%+2.5%)  
    

 1-Tsat 40°C, Psat  120 bars, tsat  20 min, dP/dt  3bar/s  

    

 
(90%+5%+5%) (95%+2.5%+2.5%) (90%+5%+5%) (95%+2.5%+2.5%) 

    

2-Tsat 45°C, Psat  120 bars, tsat  20 min, dP/dt  3bar/s 3-Tsat 45°C, Psat  100 bars, tsat  20 min, dP/dt  3bar/s 

    

 
(90%+5%+5%) (95%+2.5%+2.5%) (90%+5%+5%) (95%+2.5%+2.5%) 

    

4-Tsat 50°C, Psat  120 bars, tsat  20 min, dP/dt  3bar/s 5-Tsat 50°C, Psat  100 bars, tsat  20 min, dP/dt  3bar/s
    

Figure 8.8: Micrographs of foams with different filler ratio processed at five different scCO2 conditions. 

 

2.1.3 Mixing Experimentation on Composite Foaming with Different Polymer Particle Size 

Pure PLGA85:15 fibres after grinding in ball mill and then in knife milling collected from each 

sieve was mixed simply with 5% ATCP(sr) + 5% TCP(sr) and then pellets were made and further tested for 

foaming. The blend components were mixed by using magnetic stirrer for 15 minutes. Hydraulic press was 
used for pellets with conditions P = 150 bars, T = 47oC, t = 20 min. A constant mass (255 mg) of composite 
powder with 90% PLGA85:15, 5% ATCP (sr) and 5% βTCP (sr) was used to make each pellet. Foaming 

conditions Tsat  45°C, Psat  100 bars, tsat  20 min and dP/dt  3bar/s were selected. Indeed adapting the 

temperature close to Tg permits to have pores with larger diameter. The micrographs of the foams obtained 

are presented in Figure 8.9. 
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-<125 μm-(50×) -[125 -  250 μm]-(50×) -[250 -  400 μm]-(50×) -[400 -  500 μm]-(50×) 

    

 .  
-[500 -  600 μm]-(50×) -[600 -  800 μm]-(50×) -800 μm < PLGA85:15-(50×) 

  
Figure 8.9: Micrographs of foams of polymer with different particle size range +5% βTCP(sr) + 5% ATCP(sr) 

processed at. Tsat  45°C, Psat  100 bars, tsat  20 min and, dP/dt  3 bar/s. 

Table 8.9: Equivalent pore diameter and geometric porosity of PLGA + 5% βTCP(sr) + 5% ATCP(sr)  foams 
with different particle size range processed at Tsat 45°C, Psat  100 bars, tsat  20 min and dP/dt  3bar/s. 

Foam 
No. 

Polymer Particle Size Range 
Equivalent Pore  
Diameter de (m) 

Geometric Porosity 
P (%) 

1 PLGA85:15< 125 μm 50 81.9 

2 125 μm < PLGA85:15 < 250μm 150 83.2 

3 250 μm < PLGA85:15 < 400μm 175 82.5 

4 400 μm < PLGA85:15 < 500μm 190 85.4 

5 500 μm < PLGA85:15 < 600μm 210 85.8 

6 600 μm < PLGA85:15 < 800μm 150 79.9 

7 800 μm < PLGA85:15 150 80.4 

In experiments done with pure PLGA85:15, we observed that particles between 250m to 600m 

produced foams with equivalent pore size ranging from 150 to 210 m and geometric porosity above 90 % 

(cf. Table 8.5). Figure 8.10 and Table 8.9 reflect the equivalent pore size and geometric porosities in foams 
containing fillers. Again, we can observe that category 2, 3, 4 and 5 of powder and blend produce foams 

with equivalent pore size ranging from 150 to 210 m and geometric porosity was above ~82 %. The Tg of 

the polymer is 43oC and we have kept Tsat = 45oC. To improve the geometric porosity and equivalent pore 
diameter for future experiments, Tsat will be increased and dual dP/dt shall be applied which will increase the 
pore size to a great extent. In dual dP/dt, first a slower rate of dP/dt is applied then higher rate of dP/dt is 
applied for the same foam. Previous extensive experimentations imply that when using higher 
depressurization rates above 3 bar/s

 

 pores generated are small while small depressurization rates below 3 
bars cause larger pores because the nucleated pores have sufficient time to grow. Allowing CO2 in the 
swollen polymer to release slowly during dP/dt enhance the size of the pores. After certain time, the 
depressuraization rate can be increased to achieve pores of required diameter. Hence for future 
experimentation to obtain scaffolds with larger diameters, polymer powder after screening will be used in 

the above stated four particle size categories (250 m to 600m) and dual dP/dt will be applied. 
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PLGA85:15 of Different Particle Size Range

90%PLGA85:15 + 5%ATCP(sr) + 5%TCP(sr) Foam
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Figure 8.10: Effect of particle size on pore diameter and porosity of foams containing 90% 
PLGA85:15 +5%βTCP(sr) and 5%ATCP(sr) processed at--[45oC-100 bar-20 min-3 bar/s] 

3 Process Control for Composite Foaming 

3.1 Semi-Industrial Foaming 

3.1.1 Pellet Positions in scCO2 Chamber 

In this first test for scale up production of scaffolds, thirty pellets per batch were placed on each 
stage inside the scCO2 chamber. The stage was made of 3 perforated stainless steel (SS) plates as shown in 

Figure 8.11 and thickness of each plate was 2 mm. Pellets have average diameter dp = 12.9  0.15 mm, 

average thickness p = 1.50  0.05 mm and average weight mp = 247  0.4 mg. Foaming conditions are: Tsat 

 45°C, Psat  100 bars, tsat  20 min and dP/dt  3 bar/s. At the end of foaming experiments, a stabilization 

time of 2 minutes has been systematically observed before taking out of the chamber.  

  

Figure 8.11: ScCO2 Foaming installation with 3 perforated stailess steel plates stage. 

 
Figure 8.12: Foams of polymer composite blend on 3 stailess steel plates stage. 
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Foam volume and geometric porosity is reported on Table 8.10. 

Table 8.10: Dimmensions of foams placed onto 3 stailess steel plates stage 

Stage 
Average 

Diameter (mm) 
Average 

Thickness (mm) 
Average 

Weight (mg) 
Foam  

Volume (mm3) 
Porosity 

P(%) 
1 15.6  1.3 3.75  0.65 246.5  0.3 717.04  5.5 33.2  3.6 
2 16.19  2.3 3.13  0.40 248.4  0.3 644.62  7.8 37.7  4.1 
3 25.33  4.4 3.77  0.60 244.7  0.2 1900.54  18.5 63.4  5.7 

After completion of foaming process foams obtained are presented in Figure 8.12. Visually it can 
be observed that on  

Stage 1: Volume of foams was less as compared to stage 2 and 3 

Stage 2: Volume of foams was more than stage 1 but less than stage 3 

Stage 3: Volume of foams was maximum. 

Geometric porosity of foam was, Stage 1 Stage 2< Stage 3. The respective SEM micrographs of 

three stages are presented in Figure 8.13. 

 
01-[Bottom]--200× 02-[Centre]--200× 03-[Top] - -200× 

   

Figure 8.13: Micrographs of foams obtained from each plate processed at scCO2 process condition 
Tsat 45°C, Psat  100 bars, tsat  20 min and dP/dt  3bar/s. 

It was observed that at the top stage in the chamber, the volume of foams was maximum as 
compared to the lower stages. Some of the foams were of bowl shape and some had irregular surface when 
taken out of the chamber. While the other two stages on visual inspection and by SEM analysis show very 
poor foaming. Hence we decided not to use new stainless steel perforated plates. 

The pore diameter on the bottom plate was 155m, while in centre and top plate was 6040m 

and 8050m respectively, as shown in SEM images and in Figure 8.14. 

[ 90% PLGA85:15 + 5% TCP(sr)+5 % CP(sr) ]
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Figure 8.14: Equivalent pore size and geometric porosity of foams at different places in the chamber. 

The results of this experiment reveal that temperature inside the chamber was not homogeneous due 

to the following possible reasons: 
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i. The 2 mm thickness stainless steel perforated plates could not reach the desired temperature 
in 20 minutes. This short time did not allow the polymer pellets to reach a temperature close 
to the Tg temperature. When a polymer is at a temperature lower than its Tg, less CO2 is 
absorbed , resulting in less nucleation, pore growth and ultimately less porosity and lower 

pore. 

ii. The plate at the top of the chamber was comparatively at higher temperature and closer to Tg 

than the bottom and centre plates, as a result providing good porosity and pore diameter. 

iii. When a dP/dt step was done, the dT/dt of the bottom plate was faster than those of centre 
and bottom plates. Top plate in the dP/dt step was at higher temperature thus producing 

foams with higher porosity and pore diameter. 

3.2 Final Experiments 

3.2.1 Multi Pellet Formation in a Batch and Effect on Foaming  

Bulk production required pellets in large quantities. Normally three pellets can be pressed in the 
hydraulic press mould. One of the aim of this study was to see the effect of multiple pellets per batch (15−18 
pellets/batch), depending on the polymer/composite mass, was prepared in the mould. In the initial 
formulation, when some of the pellets did not produced foams of high porosity and pore diameter, it was 
assumed that may be the pellets made in one batch were not at the same physical state To verify this 
hypothesis, we prepared 15 pellets in one batch and made foams at the optimized condition. The pellets 

consist of 90% PLGA85:15 +5% βTCP(sr) and 5% ATCP(sr) and were processed at Tsat  48°C, Psat  100 bars, 

tsat  20 min and dP/dt  3 bar/s. The 4 ranges of polymer particles, as deduced earlier to be the best, were 

selected. Average diameter, thickness and weight of pellets obtained after compression were 12.9  0.15 

mm, 1.5  0.05 mm and 250  5.0 mg. The pellets were compressed in a hydraulic press at P = 150 bars, T = 

47oC, t = 20 min as per procedure described in chapter 4. Pellet P01 was the at the top and pellet P15 was the 

bottom pellet in the batch. 

 

Figure 8.15: Foams of pellets prepared in one batch. 

Visually diameter and thickness of the foams obtained from these 15 pellets were approximately 
the same and we have selected randomly 6 foams for SCION® analysis. On SEM analysis, the equivalent 

pore size is 230 m including the micro and meso pores and the range of pores in a foam was from 5 − 500 

m (cf. Figure 8.16). Geometric porosity obtained was between 91.2 and 94.4% in all foams. The percentage 

of micro, meso and macro pores and their respective surface area in foam are presented in Figure 8.17 and 
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Figure 8.18. The surface area of macro pores is ~ 90% in foam. Thus we can conclude that there is 

homogeneity in the foams produced by pellets in one batch.  
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Figure 8.16: Pore equivalent size and geometric 
porosity of composite foam in the same batch. 

Figure 8.17: Percentage of pores in composite foams in 
the same batch. 
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Figure 8.18: Surface area of pores in composite foams in the same batch. 

Then, the influence of the particle size was analyzed. We recovered 95.4 gm of polymer powder 
from 100 gm of polymer fine fibres after grinding process. The powder of different particle size obtained at 
different sieve ranges are presented in Table 8.11. About 5 gm of polymer was wasted during grinding 

process. 

Table 8.11: Weight and percentages of polymer grinding and sieving for different particle size ranges. 

PLGA85:15 Grinding Grinding 

S/N Powder Particle Size Amount (g) Amount (%) 
1 PLGA85:15< 125 μm 6.250 6.55 
2 125 < PLGA85:15 < 250 μm 18.310 19.19 
3 250 <  PLGA85:15 < 400 μm 23.660 24.80 
4 400 <  PLGA85:15 < 500 μm 18.350 19.23 
5 500 <  PLGA85:15 < 600 μm 19.537 20.48 
6 600 <  PLGA85:15 < 800μm 3.594 3.77 
7 800 μm <  PLGA85:15 5.700 5.97 

Polymers with a particle size between 125 and 600 µm were kept for further experiments since it 
was shown previously that this size range permits to produce foams with a pore mean size above 200 µm 
and in this range we recovered ~80% of polymer for use. The convenient powder was recovered for sets 
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with the following ranges: [125 – 250 µm]; [250 – 400 µm]; [400 – 500 µm] and, [500 – 600 µm]. Powder 

in the last two ranges can be also be used after further size reduction. 

The four ranges of powder was mixed and fillers (5 % βTCP(sr) and 5 % ATCP(sr)) were added for 
final polymer matrix blend. The powder was mixed by using magnetic stirrer for 15 minutes. Hydraulic 
press was used for pellets with conditions P = 150 bars, T = 47oC and, t = 20 minutes. A constant mass (255 
mg) of powder was used to make each pellet. Keeping in view preliminary results of different stages and 
plates used, it was decided to use only a single perforated composite material plate, for future foaming. 12 to 

15 pellets were placed in one batch for foaming. 

For making foams in bulk quantity, results obtained from the experimentation of controlled 
polymer particle, it was decided to use 4 ranges of particles size as they produced pores of maximum size, 

porosity above 85% and most of them are open. Nearly 84% of the polymer will be useable. 

3.2.2 Preparation of Foams 

3.2.2.1 Filling, Soaking and Depressurization Time of CO2 in Chamber 

For PLGA85:15 best results on geometric porosity and equivalent pore diameter of foams are 

obtained for the following conditions:,  

Tsat  482oC  Psat  100 bars  tsat  20 min 

First of all, pellets are placed in the autoclave. On closing the chamber the pressure inside is 1 bar 
whereas pressure in the lines till chamber can be 100 bars. CO2 inlet valve is opened to bring the chamber 
pressure and line pressure at same level. It takes 2 minutes 30 sec to bring the system to equilibrium. At that 
time, pressure in chamber is 58 − 60 bars. Then scCO2 pump is switched on keeping the flow rate at 3 kg/hr 
to fill the chamber till the required pressure. From 60 bars till 100 bars, it takes about 3 min 45 sec. Hence, 
total filling time of chamber is 6 min 15 sec. The flow rate of CO2 is kept below 5 kg/hr otherwise, pellets 

fly inside the chamber. The pump is switched and the soaking time 20 minutes starts from here. 

3.2.2.2 Temperature Variation During Soaking of CO2 

Initially when pellets were placed inside the chamber the temperature noted was 48oC. When CO2 
was filled a temperature decrease of 2oC was observed inside the chamber. Temperature rises during the 
soaking time. Observations of the temperature are presented in Figure 8.19. After the initial drop at 46°C, 
the temperature increases gradually in steps and the final temperature derives to 49°C, for a saturation time 

of 20 min. 
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Figure 8.19: Temperature variation of the chamber during 20 minutes of saturation time. 
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3.2.2.3 Dual Depressurization Rate 

In the initial experiments, we fixed dP/dt = 3 bars/s but later on it was evolved to get best porosity 
and morphology with dual dP/dt. When Psat is fixed to 100 bars, dP/dt is maintained to 1 bar/s, it takes 40 sec 
to pressure decrease from 100 to 60 bars. After that we increase the depressurization rate dP/dt from 1 to 
3bar/s and the time to return at the atmospheric pressure is 20 sec. First dP/dt of 1 bar/s initiates the 
nucleation and pore growth at a slower rate, this gives the polymer longer duration to reach the vitrification 

point. As a result the pore diameter increased from 250 m to 320 m and porosity from 87 % to 93 %. 

Ratio of open pores was more in the foams obtained by dual dP/dt. 

3.2.2.4 Temperature Variation During Depressurization of CO2 

In the depressurization step when CO2 is evacuated from the chamber, temperature of chamber 
falls depending upon the chamber pressure, temperature and dP/dt. In the case under discussion during dP/dt 
steps the temperature of chamber falls from 48 to 44oC. This decrease in temperature hinders the nucleation 
and growth of pores, which ultimately has an effect on the pore diameter, pore morphology and pore size 

distribution. 

3.2.2.5 Retention Time after the Depressurization Step 

It was also evolved that after dP/dt a retention time was necessary to control equivalent pore 
diameter and geometric porosity. A possible reason for this is a retention time of 60 sec inside the chamber 
after dP/dt, for the desorption of some CO2 molecules trapped inside the pores. In the 60 sec retention time, 
an increase of temperature of 2-3oC is observed. This rise in temperature improved the pore diameter, 

porosity and open pore morphology of scaffold. 

3.2.3 Final foam experiments 

Foaming was done with the optimized conditions Tsat  482°C, Psat  100 bars, tsat  20 min and 

dual dP/dt  1bar/s and 3 bar/s. Nearly 45 runs were made, each containing 15 foams. In the bulk production 

dual dP/dt was applied because dual dP/dt produced best foam with high porosity, pore diameter and good 
pore morphology. Randomly foams were selected from different batches of all the foams produced and are 
presented in Figure 8.20. Equivalent pore size was 320 µm and geometric porosity was 90% for all analyzed 

foams. 

 

Figure 8.20: 90% PLGA85:15 +5%ATCP(sr)+5%βTCP(sr) foams randomly selected from different batches 

processed at -  Tsat 48°C, Psat  100 bar tsat  20 min and dual dP/dt  1 and 3bar/s. 
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SEM images of the selected foams are presented in Figure 8.21. The inner surface of the pores is 
rough which is an effective condition for cell adhesion. SCION® image analysis was done as per described 
procedure and porosity of the foams was determined by geometric method. The equivalent pore size, 
porosity and morphology of pores (% of micro, meso and macro pores, surface area of these three types of 
pores) was homogeneous. 

 

3.2.4 Discussion on the Rugdness of the Process 

This slight variation in the equivalent pore size can be due to multiple reasons, such as differences 

in pellets weight, position of the pellets inside the chamber, variation of saturation temperature and 

saturation pressuring during the 20 minutes of foaming process, manually controlled dP/dt, and temperature 

drop in the chamber during the dP/dt step in each run. The geometric porosity varies from 91.6 to 95.2% for 

randomly selected foams from 42 batches. The equivalent pore diameter and porosities of the foams selected 

are presented in Figure 8.22. 

 
Run-01-30× Run-03-30× Run-07-30× Run-10-30× 

    

 
Run-13-30× Run-16-30× Run-18-30× Run-21-30× 

    

 
Run-24-30× Run-27-30× Run-30-30× Run-33-30× 

    

Run-35-30× Run-38-30× Run-42-30× 
Figure 8.21: SEM micrographs of 90 % PLGA85:15 + 5 % ATCP(sr) + 5 % βTCP(sr) foams selected from 

different batches and processed at: Tsat 48°C, Psat  100 bars, tsat  20 min and dual dP/dt  1 and 3bar/s 
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Figure 8.22: Equivalent pore size and geometric porosity of 90% PLGA85:15 + 5% ATCP(sr)+ 5% βTCP(sr) 
foams from different batches. 

A histogram of pore frequency and pore diameter along cummulative pore area is presented in 
Figure 8.23, although it can be seen that micro and meso pores are higher in frequency but for macro pores 
the cummulative pore area distribution shows that 85% of the pore area is comprised of pores with average 
diameters greater than 150 μm for the PLGA composite scaffold. Similar behaviour is almost observed in all 

foams produced.  
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Run-42 

Figure 8.23: Pore frequency and cummulative total pore area as a function of average pore diameter for 90% 
PLGA85:15 +5%ATCP(sr)+5%βTCP(sr) foams selected randomly from different runs. 

Figure 8.24 presents the equivalent pore size of foams from selected runs against the number of 
pores obtained from SCION® image analysis. It can be observed that similar trend of pore diameter is 
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followed. The mean equivalent pore diameter for the randomly selected foams was 320 m while for each 

foam the maximum pore diameter can vary as in our case 564, 478 and 504 m for run 10, 24 and 42. 
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Figure 8.24: Equivalent pore diameter vs pore numbers for selected  

PLGA85:15 + 5% ATCP(sr)+ 5% βTCP(sr) foams. 

The number percentages of micro, meso and macro-pores for 15 of the selected foams, as well as 
the pore area percentage for each type of pores are plotted in Figure 8.25. In SCION® analysis a SEM 
micrograph of a certain magnification is analyzed. An attempt is made to analyze all the micrographs for 
same magnification. However, in each micrograph the number of pore being under analysis can not be 
constant. On average 250 pores are analyzed. Total number of pores and their respective surface area is also 
calculated. It is evident from Figure 8.25 that there are micro, meso and macro pores in different 
percentages, but percentage average area of micro, meso and macro-pores is < 0.5%, ~ 15% and ~ 85%. The 

two types of pores are necessary because meso-pores (with a size < 150 m) are useful for the nutrition and 

adhesion of the stem cell and macro-pores (with a size > 150 m) are used for the movement and 

proliferation of stem cells on the scaffold. 

 

 

Figure 8.25: Pore diameter and porosity of composite foams from different batches. 

Pore morphology of selected polymer composite foams were processed at Tsat 48°C, Psat  100 

bars, tsat  20 min and dual dP/dt  1 and 3 bar/s. The percentage of elongated pores is ~ 15%, irregular pores 

are between 24 to 35% and regular pore are between 50 to 60% (cf. Figure 8.26). 
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Figure 8.26: Pore morphology of selected polymer composite foams. 

100m of pore size allow bone growth in ceramics scaffold. In addition to pore size, cell transport 

within a scaffold such as diffusion, attachment, and migration is controlled by porosity (the fraction of pore 
volume), pore interconnectivity, and available surface area in scaffolds. While a high porosity is often 
desired, it is inversely related to the surface area available for cell attachment in 3D scaffolds. Achieving an 
optimal cell density in scaffolds, therefore, necessitates a high surface-area-to-volume ratio. In order to 
facilitate the transport of cells and bioactive chemicals, scaffolds may also need to have pores at both macro 
and micro scales, features that may be difficult to obtain via traditional scaffold fabrication techniques, such 

as particle leaching, gas foaming, and phase separation. 

At higher magnification (200×), the wall thickness observed was less than 7 m and the internal 

surface of the pores was found irregular and uneven. The top layer of the foam was thick ranging from 30 to 

50 m. The particles of ATCP and TCP were also visible on the pore walls and internal surface. Such 

surface is necessary for the cell attachment and strong adhesion (cf. Figure 8.27). The inner surface of the 
pores was rough which is effective for cell adhesion. This phenomenon was observed in all the foams 

obtained during the bulk production.  

 
Pore wall thickness Pore internal surface 

  

Figure 8.27: Internal morphology of 90% PLGA85:15 +5%ATCP(sr)+5%βTCP(sr) foams. 

4 Mechanical Properties of Scaffolds 

4.1 Mechanical Characteristics of PLGA85:15 Foam 

Compressive tests were performed to evaluate the mechanical properties of the pure polymer and 
composite foams. Some typical stress–strain curves of foams prepared at different process conditions and 
their equivalent pore diameter and geometric porosity of the foams are reported on Table 8.12. PLGA is 
basically an elastic-plastic material and the yielding behaviour may happen in a compression experiment. 
The data generated by the scaffolds for stress –strain exhibited striking yielding behaviours at low porosities, 
in which a stress peak appeared after an elastic deformation and was followed by a stress plateau. On the 
contrary the yielding peak disappeared at relative high porosities above approximately 90%, and gave a way 
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to a flexure point. So, the deformation of these PLGA porous scaffolds has strong dependence upon 

porosity. 

Table 8.12: Pore diameter and porosity of PLGA85:15 foams. 

Types 
Psat 

(bars) 
tsat 

(min) 
dP/dt 

(bar/s) 
Tsat 

(oC)
Pre Diameter 

de (m) 
Geometric 

Porosity P (%) 

Fibre 100 20 3 40 197.02 80.2 

Fine fibre 100 20 3 40 210.71 90.1 
Fine fibre 100 20 3 43 233.58 91.4 
Fine fibre 100 20 3 46 248.85 92.7 
Fine fibre 100 20 3 49 275.41 93.5 
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Figure 8.28: Some typical stress–strain curves of PLGA85:15 porous scaffolds with internal macropores at 

different porosities produced at different process conditions. 

From viewpoint of tissue engineering, the yielding point should be avoided and suitable porosities 
are around 90% in most of cases. So, the disappearance of yielding peak at high porosities is not an 
unpleasant behaviour. The slope in the linear elastic region gives compressive modulus E, as discussed 
earlier in chapter 4. In our experiments with PLGA porous scaffolds, we found that the three parameters 
described similar trends, mainly due to the presence of yielding or flexure and also due to the fact that the 
yielding strain or flexure strain was not far away from 10 %. Since, the clinically allowed deformation for an 
orthopaedic implant is usually around 0.7 % of strain [Gibson and Ashby, 1999], PLGA scaffold with up to 
10% strain in the linear elastic region would be quite good in the future application, as avoidance of yielding 
or flexure deformation is concerned. Scaling behaviours between mechanical properties of a foam and its 
relative density have been revealed theoretically based upon simplified models and also confirmed 
experimentally in various foams [ Gibson and Ashby, 1999; Willett and Shogren, 2002; Thomson et al., 

1995]. Compressive properties of pure PLGA85:15 foams are tabulated in Table 8.13. 

Table 8.13: PLGA85:15 foam compressive test data obtained from stress strain curves. 

Geometric Porosity (%) 80.2 90.1 91.4 92.7 93.5 

Ec (MPa) 0.96 0.53 0.34 0.16 0.08 
 (Mpa) 0.170 0.038 0.034 0.0091 0.006 

It is difficult to achieve a high compressive strength for porous materials because of the highly 
porous structure. In this study, when the porosities of the PLGA scaffolds increased from 80 % to 93 %, the 
elastic/compressive modulus decreased from 0.96 to 0.08 MPa, and the compressive strength at 10% 
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deformation of the scaffolds decreased from 0.170 to 0.006 MPa. Therefore, it is reasonable in this case that 

the compressive strength and modulus decreased with an increase of the scaffold’s porosity (cf.Figure 8.29). 
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Figure 8.29: Compressive properties of pure PLGA85:15 foams with different porosities. 

4.2 Compressive Properties of Optimized PLGA85:15 Composite Foams 

These foams were manufactured at Tsat 482°C, Psat  100 bars, tsat  20 min and dual dP/dt  1 

and 3 bar/s. The composition was 90% PLGA85:15 + 5% ATCP(sr) + 5% TCP(sr). Approximately 500 

foams were produced in 44 runs. Randomly 8 foams were selected for compression tests. In all the foams 
tested, the compressive modulus was in range 15 – 19 MPa. Porosity of all the foams was above 90 %. 

Compared to the pure polymer, the blends had compressive modulus 15 times more.  
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Figure 8.30: Compressive properties of foams containing 90% PLGA85:15 + 5% TCP(sr) + 5% 

ATCP(sr) processed at Tsat 48°C, Psat  100 bars, tsat  20 min, and dual dP/dt  1 bar/s and 3 bar/s. 

The rise in compressive modulus was due to the larger filler percentage (10% as compared to pure 

PLGA). These results show that incorporation of TCP(sr) and ATCP significantly strengthens the composite 

as compared to PLGA alone. 

4.3 Co-grinding time Effect on Compressive Properties of Composite Foams 

During the entire experimentation before optimization of the process parameters polymer was co-
ground with fillers in the tumbling ball mill for different durations. The blend composition was the same 
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(90% PLGA85:15 + 5% ATCP(Sr) + 5% TCP(Sr)) and foams were made at Tsat 45°C , Psat  100 bars,, tsat  20 

min and dP/dt  3 bar/s. The results obtained of the foam compression test are presented in Figure 8.31. 
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Figure 8.31: Compressive properties of foams containing 90 % PLGA85:15 + 5 % TCP(sr) + 5 % ATCP(sr) 

obtained after co-grinding. 

Compressive test of five types of foams of mixtures coground in tumbling ball mill for 15, 30, 45, 
90 and 135 minutes, was done. It can be inferred from Figure 8.31 that as co-grinding time was reduced 
there was a decrease in compressive modulus. The modulus of the foam was inversely proportional to the 
pore diameter of the foam. Moreover it was observed that as the porosity of the foam decreased, the modulus 
increased. The mechanical properties of porous composite foams are compared to those of the corresponding 
PLGA foam (cf. Figure 8.30 and Figure 8.31). ). Both the compressive modulus and the compressive yield 
strength of the composite foam are significantly higher than those of the pure PLGA foam. The data reveals 
that by co-grinding the filler with polymer, there is an increase in the compressive properties. Increase in 
porosity and pore diameter decreases the mechanical properties. If the foaming processing parameters such 

as saturation time or saturation temperature are increased pore diameter and porosity can be increased. 

4.4 Effect of Different Fillers and Wax-A Ratio on Compressive Properties of 
PLGA85:15 Composite Foam 

Foams of co-ground composites containing PLGA85:15 + TCP(sr) + ATCP(sr) and with different 

ratios of wax-A  as tabulated in Table 8.14 were tested for their mechanical properties. 

Table 8.14: Polymer matrix with variation in fillers and wax A ratio  

S/N° Polymer Matrix Composition 
1 90% PLGA85:15 + 5% ATCP(sr) + 5% TCP(sr)  
2 95% PLGA85:15 + 2.5% ATCP(sr) + 2.5% TCP(sr)  
3 88.5%PLGA85:15 + 5% ATCP(sr) + 5% TCP(sr) + 1.5% Paraffin 
4 87% PLGA85:15 + 5% ATCP(sr) + 5% TCP(sr) + 3% Paraffin 
5 85% PLGA85:15 + 5% ATCP(sr) + 5% TCP(sr) + 5% Paraffin 
6 83% PLGA85:15 + 5% ATCP(sr) + 5% TCP(sr) + 7% Paraffin 
7 80% PLGA85:15 + 5% ATCP(sr) + 5% TCP(sr) + 10% Paraffin 

Pellets were made as per described procedure and foams were made at Tsat 45°C, Psat  100 bar 

tsat  20 min, dP/dt  3bar/s. The foams obtained were tested for compression test and results obtained are 

presented in Figure 8.32. 
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Figure 8.32: Compressive properties of 90%PLGA85:15+ 5%TCP(sr)+5%ATCP(sr) foams with different 

fillers ratios  

It can be inferred from Figure 8.32 that when filler percentage was reduced from 10 % to 5 % 
compressive modulus dropped from 29.5 to 22.5 MPa, while pore diameter and porosity increased inversely. 
Adding wax-A in the polymer/calcium phosphate composite reduced the modulus from 26 to 4.5 MPa 
(depending on the wax-A percentage). The equivalent pore diameter and geometric porosity were also 
reduced with addition of wax-A. Normally when the porosity and pore diameter is low compressive modulus 
is at higher values because the pore walls are stiffer. By the addition of wax A decreases the compressive 
modulus of the foam inspite of decrease in the porosity. The possible reason is wax do not possess high 

mechanical properties as a consequence the mechanical properties of the composite decrease. 

5 Interconnectivity of Pores by CT 

5.1 PLGA85:15 Scaffold 

Scaffold of PLGA85:15 processed at Tsat 48°C, Psat  100 bars, tsat  20 min and dP/dt  3bar/s was 

analysed by CT to visualize the interconnectivity .The structural image and front, right and top view of the 

internal structure is presented in Figure 8.33.  

 
 

Figure 8.33: Slice images of pure PLGA85:15 foams by CT analysis processed at 
Tsat  48°C, Psat  100 bars, tsat  20 min and dP/dt  3bar/s 

Slice images of the front, right, and top view of the scaffold after every 500 m were taken and it 

can be observed that there is interconnectivity between the pores as presented in Figure 8.34. 
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Front View Right View Top View 

Figure 8.34: CT Slice images at intervals of 500m of pure PLGA85:15 foams structure 
showing interconnectivity processed at Tsat 48°C, Psat  100 bars, tsat  20 min and 

dP/dt  3bar/s 
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5.2 PLGA85:15 Composite Scaffold 

Scaffold of PLGA85:15 composite processed at Tsat 48°C, Psat  100 bars, tsat  20 min, dP/dt  

3bar/s was tested by CT to analyze the interconnectivity. The structural image and front, right and top view 

of the internal structure is presented in Figure 8.35. 

 
 

Figure 8.35: Slice images of 90 % PLGA85:15 + 5 % ATCP(sr) + 5 % TCP(sr) foams structure by 
CT analysis processed at Tsat 48°C, Psat  100 bars, tsat  20 min and dP/dt  3bar/s. 

Slice images of the front, right, and top view of the scaffold after every 500m were taken and it 

can be observed that there is interconnectivity between the pores as presented in Figure 8.36. 
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Figure 8.36: CT Slice images at intervals of 500m of 90 % PLGA85:15 + 5 % 
ATCP(sr) + 5 % TCP(sr) foams processed at Tsat 48°C, Psat  100 bars, tsat  20 min, and 

dP/dt  3bar/s 

6 General Discussion 

Scaffolds required for bone regeneration required high modulus and compressive strength which 
can be obtained by foaming biopolymers of higher modulus/semi-crystalline polymer or higher molecular 
weight or by incorporating a mineral phase in a low modulus/low molecular weight polymer. Semi-
crystalline polymer shows similar nature of trend. The draw back of high modulus/semi-crystalline polymers 
is that they produce porous foams of low porosity and pore equivalent diameter at low temperature close to 
their Tg in scCO2 foaming process. If polymer of high modulus/semi-crystalline is processed at temperature 
close to the melting temperature then foams of larger pores can be produced. Different poly(lactides co-
glycolides) of high and low molecular weights were selected for foaming but as there was a compulsion of 
low temperature for processing in supercritical chamber, low intrinsic viscosity poly(lactide co-glycolides) 

of low modulus was finally selected for the thesis study. 

Scaffolds obtained with pure poly(lactides co-glycolide) PLGA85:15 (RG858 S) at optimum 

processing conditions (Tsat 49°C, Psat  120 bars, tsat  20 min and dP/dt  3bar/s.) generated porosity above 

95% and equivalent pore diameter ~275 m. On the other hand modulus of the scaffold generated was ~ 1.0 

MPa which is very low for calcified scaffolds. To enhance the mechanical properties strontium doped filler 

calcium phosphate (amorphous and ) were incorporated with variable percentages. 5 % ATCP and 5 % 

TCP were the optimum percentages evolved in our study. 
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Two types of incorporation methods were utilized, co-grinding of fillers with polymer and simple 
mixing of polymer withy filler. While adapting the technique of co-grinding polymer with filler there was an 
increase in the mechanical properties to a great extent but the porosity and pore diameter was too low than 
the desired values. A remedy to this problem was addition of a hydrophilic agent (wax) in the polymer filler 
composite. Adjuvant wax was used to enhance the solubility of CO2 in the polymer during the foaming 
process. Wax is hydrophilic but has a very low melting temperature. It did not improve the porosity and pore 
diameter. Finally it was decided to produce foams by simple mixing of polymer and calcium phosphate. 

With this combination scaffolds with porosity above 85% and pore equivalent diameter of 320 m with a 

compressive modulus ~18MPa were obtained at optimum process condition (Tsat 48°C, Psat  100 bar, tsat  

20 min and dP/dt  3bar/s )  

Effect of polymer particle size on the foaming phenomena was also under study. Ranges of 

particles after passing through a series of sieves (125, 250, 400, 500, 600, 800m) were obtained. From 

experimentation it was concluded that particles of neither less than 250 m nor larger than 600m produce 

scaffolds of appropriate porosity and pore diameter. So for our study particles between 250 and 600 m 

were used for making blends with filler and adjuvant. 

The porosity of the foams was calculated by geometric method and few selective foams were 

tested through Hg intrusion porosimetry method for actual results. CT of the scaffold with best morphology 

was tested for interconnectivity. Slice images from front, top and right views were taken at interval of 500 

m and it was obvious that there was interconnectivity through out the scaffold. 

7 Conclusion 

In this work, copolymer and fillers were used to create highly porous biodegradable poly(-

hydroxyl acids) composite scaffolds. It is demonstrated that the porosity, pore size, and pore morphology of 
these composite foams can be controlled by the polymer composition, chemical structure of the polymer, 
calcium phosphate contents, co-grinding time and process parameters used. The high porosity is expected to 
better satisfy the cell penetration and mass transport requirements (for nutrient, metabolites, and soluble 
signals) for scaffolding for tissue engineering. Improved mechanical properties of the composite scaffolds 
over the pure polymer foams were demonstrated. New highly porous composites composed of biodegradable 

poly(-hydroxyl acids) and calcium phosphate have been developed for bone-tissue engineering by scCO2 

foaming. A series of characteristic interconnected opened and closed pore microstructures with pore sizes 

ranging from 25 m to 550 m were created and porosity as high as 95 % was achieved. The compressive 

modulus and compressive strength at 10% deformation of the pure polymer foam and polymer/filler 
composite foam prepared from 90 % PLGA85:15 + 5 % ATCP(sr) + 5 % βTCP(sr) have been discussed 
extensively. The properties of the foams can be controlled by (a) polymer composition (b) polymer /filler 
ratio (c) co-grinding/blending phenomenon and (d) process parameters Psat, Tsat, tsat and dP/dt. Semi- 
industrial production of PLGA filler composites was done with controlled pore morphology and structural 
properties. Dual dP/dt was effective to enhance the pore diameter and porosity. The mechanical properties of 
the composite foams can be increased by using a PLGA with higher modulus. The composite foams showed 
enhanced mechanical properties over the pure polymer foams. In future the degradation behaviour, detailed 
structure–property relationships, cell adhesion, and growth onto the composite scaffolds can be investigated 

for bone and tissue engineering updates 
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General Conclusion and Perspective 

In the field of medical science, transplantation provides hope for many patients with tissue loss or 
organ failure, but have inherent limitations such as donor shortage and required immuno-suppression 
therapy seriously hinder the potential benefits that such an approach can provide for many patients. The 
problems of current transplantation therapy have stimulated research for alternative solutions. An emerging 
interdisciplinary and multidisciplinary field aims to recreate biologically functional tissues and organs by 
using different types of biocompatible and biodegradable materials including a number of polymers. The 
progress in the investigation of polyester polymers as scaffolds for tissue engineering has been reviewed. 
Polyesters are attractive biomaterials due to their biocompatibility, biodegradability, and targeted biological 
activity, and the research results indicate their potential to be used as scaffold transplants for tissue and bone 

substitution. 

Although solubility of scCO2 in polymers is very limited, many biodegradable polymers show a 
substantial sorption and swelling in carbon dioxide. We have carried out foaming experiments on different 
polylactides using supercritical CO2 and created porous polymer scaffolds for connective and calcified 
tissues,. The sorption of CO2 is the first and most influent parameter for the fabrication of foams and 
solubility increases is depending on the chemical affinity and/or CO2 process factors. All parameters having 
an increasing effect on sorption of CO2 have an influence on number of generated nuclei. The pore size 
mostly depends on the depressurization period. During pressure drop, the nuclei grow to create pores and the 
pores continue to grow as the CO2 expands and desorbs. The growth of pores continues until the vitrification 
of the polymer. We strongly believe that the coalescence phenomenon occur during depressurization time 
which decrease the pore density and increase the final average pore diameter. Modelling works have also 
been carried out. All theoretical models (for the diffusion, sorption and nucleation) were in a good 

agreement with the experimental data.  

Different commercial polylactides with various molecular mass, glass transition temperature, L/D 
configuration and LA/GA content ratio have been studied. Process parameters were applied by using 
modelling Doehlert’ plan and screening Taguchi’ design of experiments. We have achieved a control on 
pore size and finally optimize the pore diameter for the use of tissue engineering for cartilage and bone 

regeneration. Adjuvants such as hyaluronic acid and wax or fillers like amorphous and -tricalcium 

phosphate were incorporated for improve adhesion, porosity and mechanical properties of the scaffolds.  

Adjuvants waxes were added in the aim to enhance the solubility of CO2 in the polymer during the 
foaming process. Co-grinding phenomenon was used to modify surface of granulates for different co-
grinding times. Foams were processed from these pellets and analysis of pore morphology and mechanical 
properties was done. Higher co-grinding time increased mechanical properties of the porous scaffolds but 
decreased porosity and pore diameter. However by manufacturing foams by simple mixing of fillers and 

polymer matrix produced foams of higher porosity up to 90% and pore diameter ~ 320m. The compressive 

modulus of the foam was about 10 times higher than the pure polymer. 

In case of scaffolds for cartilage and composites foams for bone, co-grinding phenomenon played 
an adverse role. Mechanical and adhesion properties of scaffolds were increased to a huge extent but pore 
size and porosity was reduced to undesirable limits. Blends of PLGA85:15 and 10% HA after 1 hr of co-

grinding produced foams of (250  50 m) equivalent pore size and 92% of geometric porosity at Psat = 120 

bars, tsat = 20 min, Tsat = 60°C and dP/dt = 3 bar/s. In PLGA50:50, we have obtained a comparable macro 

porosity ranging from 228 to 270 m, and identical geometric porosity of 92% for the conditions Psat = 120 

bars, tsat = 20 min, Tsat = 35°C and dP/dt = 3 bar/s. 
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On the other side dry method (polymer plus filler/surface modifier mixed or co-ground) and wet 
method (polymer dissolved in a good solvent) approach were compared. Micrographs showed that they 
adapted to have an in-depth sight of pore morphology and structure difference. The results revealed that in 
dry method on amorphous poly lactic acid produced foams with higher porosity and equivalent pore 
diameter than semi-crystalline poly lactic acid. On the similar basis foams with higher porosity and pore 
diameter were produced by Poly (lactide-co-glycolide) with higher LA/GA contents. Moreover, in dry 
method the pores were circular, homogeneous and had regular pore walls as compared to wet one where 
elongated and irregular pore boundaries were seen. In spite of achieving high percentage of porosity and 

pore diameter above 150 m due to a plasticization effect in good solvents of polylactides in the final 

produced foams might be difficult for application in the tissue transplantation sector but can be used for 
some other industrial applications. Presence of even slight amount of these solvent can hinder the existence 

of seeded cells on the porous structure.  

The interconnectivity of the pores was confirmed with mercury porosimetry and CT technique 

both for PLGA50:50 and PLGA85:15 foams with optimized pore diameters and porosity. The results obtained 

on equivalent pore diameter by 2D visual deduced from SCION analysis were close to those measured by 

Hg porosimetry 3D technic., Finally, mechanical analysis of the foams was carried out by compression test. 
Compressive modulus and compressive strength were determined and compared with the foams 

manufactured at different processing conditions and having different porosities. 

In conclusion, pore size and porosity of scaffolds can be manipulated by controlling the processes 
parameters such as the supercritical CO2 conditions (saturation pressure, temperature and time, 
depressurization rate) and/or the co-grinding one (time, nature of materials, …). All foams described in this 
work have been processed by pressure quench method in which during the depressurizing step in the process 
chamber temperature drops gradually, that affects on the anisotropy and pore structure of the foam. Future 
work must be carried out in order to control the temperature drop during the depressurization. Indeed, the 
temperature drop is an important parameter which affects the vitrification of the polymer and the 
thermodynamics of CO2. A proper thermodynamic analyze of the venting process of the pressure chamber 
deserves further investigation. This kind of analyze can provide vital information in order to create scale-up 
rules. Comparative thermodynamics studies must be done for polymers with different Tg’s, intrinsic 

viscosities and raw polymer mechanical properties. 

The homogeneity of pores can be provided by a slow depressurization which is followed by a very 
sudden vitrification procedure. This kind of procedure can be difficult to realize, further process design can 
be proposed. On the other hand, further investigation can be considered in order to create bimodal pore 
structure by blending two different polymers in which the CO2 has different sorption behaviours. Bimodal 
pore size might be of interest for sorting cells and molecules. A depressurization period with two steps can 
also be considered for such result. A number of works is already present on fabricating biodegradable 

scaffolds and new ideas have being proposed (Reverchon et al., 2008).  

It seems that, in the future, the supercritical carbon dioxide foaming of polymers will continue to 

be a good trend to create porous polymers.  

 A detailed physical and mathematical description of mass and heat transport phenomena occurring 

during the foaming process. 

 Biopolymers with higher intrinsic viscosity may be investigated further to produces cellular 

structure of higher mechanical properties. 
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 In vivo testing of the produced porous structure might be applied to confirm the structural stability 

and application  

 Semi-crystalline polymers can be used to produce foams by adapting wet pellet preparation method. 
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Annex A-2 
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Annex A-3 
 

 
 

Figure A-3.1: Mergers and crystallization of wax - B (C80) during the 1st and 2nd scans 
 
 
 

 
Figure A-3.2:Fusion and crystallization of wax-C (H1) during the 1st and 2nd scans  

During cooling wax - B (H1) has a discontinuity at around 0°C characteristic of a phenomenon of 
supercooling (at transformation of ice water). The amount of water stored in the wax is very sensitive to 

storage conditions. 
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Annex A-3  

  
Condition:01--20× 

[40oC - 100 bars - 20 min - 1 bar/s] 
Condition:02--500× 

[40oC - 200 bars - 40 min - 3 bar/s] 
Condition:03--500× 

[40oC - 300 bars- 60 min - 6 bar/s] 
   

  
Condition:04--20× 

[50oC - 100 bars - 40 min -6 bar/s] 
Condition:05--500× 

[50oC -200 bars -60 min - 1 bar/s] 
Condition:06--500× 

[50oC - 300 bars- 20 min - 3 bar/s] 
   

  
Condition:07--20× 

[60oC - 100 bars - 60 min - 3 bar/s] 
Condition:08--500× 

[60oC - 200 bars - 20 min - 6 bar/s] 
Condition:09--500× 

[60oC - 300 bars - 40 min - 1 bar/s 

Figure A-3.3:Micrographs of PL,DLLA +(20%) Wax-C foams at different process conditions  
 

  
Condition:01--20× 

[40oC - 100 bars - 20 min - 1 bar/s] 
Condition:02--500× 

[40oC - 200 bars - 40 min -3 bar/s] 
Condition:03--500× 

[40oC -300 bars -60 min - 6 bar/s] 
   

  
Condition:04--20× 

[50oC - 100 bars - 40 min - 6 bar/s] 
Condition:05--500× 

[50oC - 200 bars - 60 min - 1 bar/s] 
Condition:06--500× 

[50oC - 300 bars - 20 min - 3 bar/s] 
   

  
Condition:07--10× 

[60oC - 100 bars - 60 min - 3 bar/s] 
Condition:08--500× 

[60oC - 200 bars - 20 min - 6 bar/s] 
Condition:09--500× 

[60oC - 300 bars - 40 min - 1 bar/s 

Figure A-3.4:Micrographs of PL,DLLA +(30%) Wax-B foams at different process conditions  
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Figure A-3.5: Average effect of waxB and Wax-C on the pore diameter variations for polymer wax blends 
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Figure A-3.6:Average effect of wax-B and Wax-C on the relative porosity variations for polymer wax blends 
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INFLUENCE DES PARAMETRES PROCEDES SUR LES PROPRIETES 
DES BIOMATERIAUX A BASE D’ACIDE POLYLACTIQUE  

 

RÉSUMÉ 
Le travail présenté dans ce manuscrit concerne la fabrication de biomatériaux poreux à base 

d’acide polylactique pour les tissus conjonctifs et calcifiés en utilisant des procédés de chimie verte. Le but 
de cette thèse est de corréler l’influence de certains paramètres de procédés à la structure  morphologique 
et les propriétés des mousses générées.  

Nous avons étudié, d’un côté, les effets de mélange d’acide hyaluronique et d’acides polylactiques 
afin d’améliorer les propriétés d’adhésion de ces biomatériaux. Nos résultats montrent bien une 
augmentation de l’énergie d’adhésion mais aussi une diminution de la taille équivalente des pores et de la 
porosité des biomatériaux poreux après moussage par les fluides supercritiques. 

D’un autre côté, nous avons étudié les effets de mélanges des triphosphates de calcium et d’acides 
polylactiques en tant que substitut osseux. L’influence d’un ajout de cires en tant qu’agent porogène a été 
discutée et les méthodes de préparation des pastilles (voie sèche ou humide) ont été analysées. 

Dans cette optique la fabrication semi-industrielle de biomatériaux poreux a été testée en fixant les 
paramètres du procédé de moussage par le CO2 supercritique (pression, température et temps de saturation, 
vitesse de dépressurisation) et nous avons contrôlé les mousses de formulations optimisées en termes de 
porosité et de distribution des pores. 

En conclusion, ce travail rend possible d’adapter les paramètres des procédés de CO2 supercritique 
et de co-broyage aux propriétés des biomatériaux poreux. En perspective, cette ouvre la voie à de nouvelles 
recherches à la fois dans les domaines des modèles 3D tumoraux et d’ingénierie tissulaire. 

 

Mots Clés: Polymères d’acide polylactique, Acide hyaluronique/Triphosphate de Calcium, Procédés CO2 
supercritique et co-broyage, Etudes par plans d’expérience, Biomatériaux poreux de substitution des tissus 
conjonctifs/calcifiés, Taille équivalente des pores et porosité. 
 

INFLUENCE OF THE PROCESS PARAMETERS ON THE PROPERTIES  
OF POLYLACTIDE BASED BIOMATERIALS 

 

ABSTRACT 
The work presented in this manuscript concerns the production of scaffolds based polylactides for 

connective tissues and bone regeneration by adapting green technology. The aim of this thesis was to 
correlate the influence of different process parameters on the morphological structures and properties of the 
scaffold generated. 

On one hand, we studied effect of the blending of hyaluronic acid and polylactides to enhance the 
surface adhesion properties of scaffolds. Our results relate to an increase in surface properties but a decrease 
of equivalent pore size and porosity after foaming scaffolds by supercritical process.  

Calcium Tri-Phosphate On other hand, we studied the effect of the blending of calcium tri-phosphates 
and polylactides as bone substitute. Influence of adding wax as porogen agent has been discussed and a 
comparison between wet and dry methods to generate scaffolds has been analyzed.  

For this purpose, semi-industrial fabrication of porous biomaterials has been tested by blocking 
supercritical CO2 parameters (saturation pressure, temperature and time, depressurization rate) and you have 
control the optimized formulation composite scaffold, in term of porosity and distribution of pores. 

In conclusion, this work made it possible to adapt the process parameters of supercritical CO2 and 
co-grinding at the properties of scaffolds. In perspective, this research opens new development ways in 
scaffolds, in both domains of 3D tumoral model and tissue engineering. 

 

Key Words: Polylactides, Hyaluronic acid/Calcium Tri-Phosphate, Super-critical CO2, and co-grinding 
processes, Studies by Designs of experiment, Scaffolds for connective/calcified tissues, Pore equivalent size 
and porosity 
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