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Abstract

This dissertation focuses on the study of decision theory, a discipline that
studies how choices are made and should be made and provides some valuable
tools for decision-making. This thesis can be divided into two parts.

In the first part, we study decision theory in the risk management field
and identify some instruments that can be helpful for risk managers. We
concentrate on the equivalence between two popular risk measures, VaR and
TCE. The Swiss Solvency Test is more risk-averse than Solvency II when losses
are modeled using a generalized Pareto distribution. Further, we introduce a
new indicator that extends TCE to consider high-order risks, and we compare
the quantiles of this indicator to the quantile of VaR and TCE. However, the
extended TCE does not respect the properties to be identified as a coherent risk
measure. For this reason, we introduce a new variation of the extended TCE
that is a coherent risk measure. Finally, we perform an empirical study over
seventeen equity indices and the 3-month T-bill rate to identify which annual
high-order moment is more stable over time. We discover that third-order
moments are less stable than fourth-order moments. However, partial third-
order moments are more stable than partial fourth-order moments. Moreover,
raw moments are more stable than standardized moments over time. This new
information can help a risk manager better identify which moments he or she
should rely on when making a new strategic decision.

In the second part of this thesis, we study the home bias in a dynamic con-
sumption and portfolio choice problem when the investor is ambiguous about
stock returns but learns about their distribution. The investor’s preference is
modeled with the generalized recursive smooth ambiguity model, and it can
separate among risk aversion, ambiguity aversion, and intertemporal substi-
tution. We implement a numerical approach that extends the existing ones
to tackle the specificities of our framework. Our results show that ambiguity-
averse investors participate less in financial markets and have a higher home
bias than an ambiguity-neutral decision maker. However, learning as well as a
dynamic model reduces the home bias. Finally, we provide comparative statics
for risk aversion, ambiguity aversion, and the learning process.

Keywords

Decision theory; Risk Management; Risk Measure; High-order risk; Ambi-
guity; Portfolio Choice; Home-bias Puzzle.
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Résumé

Cette thèse porte sur l’étude de la théorie de la décision, une discipline qui
étudie comment les choix sont faits ou devraient être faits, et qui fournit des
outils précieux pour la prise de décision. Cette thèse peut être divisée en deux
parties.

Dans la première partie, nous étudions la théorie de la décision dans le
domaine de la gestion des risques et identifions certains instruments qui peu-
vent être utiles aux gestionnaires de risques. Nous nous concentrons sur
l’équivalence entre deux mesures de risque populaires, la VaR et la TCE. Le
Swiss Solvency Test est plus averse au risque que Solvency II lorsque les pertes
sont modélisées à l’aide d’une distribution de Pareto généralisée. En outre,
nous introduisons un nouvel indicateur qui étend la TCE pour prendre en
compte les risques d’ordre élevé, et nous comparons les quantiles de cet in-
dicateur au quantile de la VaR et de la TCE. Cependant, le TCE étendu ne
respecte pas les propriétés nécessaires pour être identifiée comme une mesure
de risque cohérente. C’est pourquoi nous introduisons une nouvelle variante de
la TCE étendue qui est une mesure de risque cohérente. Enfin, nous réalisons
une étude empirique sur dix-sept indices boursiers et sur le taux des bons du
Trésor des États-Unis à trois mois afin d’identifier quel moment annuel d’ordre
élevé est le plus stable dans le temps. Nous découvrons que les moments d’ordre
trois sont moins stables que les moments d’ordre quatre. Cependant, les mo-
ments partiels de troisième ordre sont plus stables que les moments partiels de
quatrième ordre. En outre, les moments bruts sont plus stables que les mo-
ments standardisés dans le temps. Ces nouvelles informations peuvent aider
un gestionnaire des risques à mieux identifier les moments sur lesquels il doit
s’appuyer pour prendre une nouvelle décision stratégique.

Dans la deuxième partie de cette thèse, nous étudions le biais domestique
dans un problème dynamique de consommation et de choix de portefeuille
lorsque l’investisseur est ambigu au sujet des rentabilités boursièrse mais qu’il
connaît leur distribution. La préférence de l’investisseur est modélisée par
le modèle d’ambiguïté différentiable récursif généralisé qui peut distinguer
l’aversion au risque, l’aversion à l’ambiguïté et la substitution intertemporelle.
Nous mettons en œuvre une approche numérique qui étend les approches exis-
tantes afin de prendre en compte les spécificités de notre cadre. Nos résultats
montrent que les investisseurs ayant une aversion pour l’ambiguïté participent
moins aux marchés financiers et ont un biais domestique plus important qu’un
décideur neutre à l’égard de l’ambiguïté. Cependant, l’apprentissage ainsi
qu’un modèle dynamique réduisent le biais domestique. Enfin, nous fournissons
des statiques comparatives pour l’aversion au risque, l’aversion à l’ambiguïté
et le processus d’apprentissage.
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Introduction Générale

La vie quotidienne est remplie de décisions à prendre : que manger, com-
ment aller au travail, comment s’habiller, quoi acheter, que faire le soir, quelles
émissions regarder à la télévision, que faire pendant le week-end, et ainsi de
suite. Même si ces décisions font partie de la vie quotidienne et ne prennent
pas trop de place dans notre esprit, tout le monde est confronté à des ques-
tions difficiles qui peuvent nécessiter un long processus de décision avant d’être
résolues : changements de carrière, demandes en mariage ou décisions d’in-
vestissement importantes. Lorsque nous prenons une décision, nous essayons
généralement d’améliorer notre qualité de vie. Ensuite, une décision peut être
prise dans le cadre de notre rôle de gestionnaire, par exemple en tant qu’entre-
preneur ou manager. Dans ce cas, les décisions peuvent conduire l’entreprise à
la faillite ou au succès. Une seule mauvaise décision peut changer l’orientation
de l’entreprise. En outre, certaines personnes occupant une position particu-
lière prennent des décisions qui peuvent influencer un pays ou le monde entier.
Elles peuvent prendre des décisions seules, comme les dictateurs, ou en groupe,
comme les gouvernements, les banques centrales, les conseils, etc. Les gens ont
tendance à être indécis si la décision peut changer leur vie, ce qui peut égale-
ment conduire à un processus de décision plus long et à des remises en question
avant le choix final.

Un instrument couramment utilisé pour prendre des décisions est la “liste
des avantages et des inconvénients”, dans laquelle l’agent identifie tous les ré-
sultats positifs et négatifs de cette décision. Cependant, cette liste n’est pas
toujours utile, car il n’est pas toujours facile de comparer les avantages et
les inconvénients de différentes décisions. Lorsque les choix sont importants,
il est nécessaire d’identifier les instruments qui nous permettent de prendre la
meilleure décision compte tenu des informations disponibles et des convictions
du décideur. Ce type de décision est appelé choix rationnel ; toutefois, le dé-
cideur ne découvre si cette décision est la meilleure, c’est-à-dire le bon choix,
que lorsque les conséquences de cette décision se produisent.

L’étude du processus de prise de décision et de la manière de prendre des
décisions rationnelles relève d’une discipline appelée théorie du choix ou théorie
de la décision.

1



Introduction Générale

Théorie de la Décision

La théorie de la décision analyse le processus de prise de décision : com-
ment les choix sont faits ou devraient être faits sur la base de l’attribution de
probabilités et de valeurs, appelées utilité, à chaque résultat. Il s’agit d’un do-
maine interdisciplinaire auquel participent des psychologues, des économistes,
des philosophes, des statisticiens et des politologues. La théorie de la décision
peut être divisée en deux branches principales : la théorie descriptive de la
décision et la théorie normative de la décision.

La théorie descriptive de la décision tente d’expliquer comment les gens
prennent des décisions dans des situations réelles. Elle cherche à comprendre
les processus cognitifs et les biais qui affectent la prise de décision humaine et
comment les gens s’écartent du modèle idéal de prise de décision rationnelle.
Cette discipline repose sur des études empiriques.

La théorie de la décision normative guide la prise de décisions optimales.
L’objectif est de fournir un ensemble de lignes directrices ou de principes qui
peuvent aider l’agent à faire des choix optimaux en fonction de ses préférences,
de ses croyances et de ses valeurs. Il est possible de modéliser le comportement
des individus comme s’ils respectaient certains axiomes et suivaient un modèle
spécifique.

Il est essentiel de noter qu’un choix rationnel est une décision qui respecte
les convictions du décideur et qui est considérée comme optimale, compte tenu
de toutes les informations disponibles. En revanche, une bonne décision est une
décision qui donne les meilleurs résultats, et elle n’est connue qu’après la prise
de décision. La théorie de la décision se concentre sur les choix rationnels. En
outre, les théories normatives et descriptives de la décision partagent certains
éléments communs, car elles s’accordent sur le fait que les décisions sont prises
en fonction des croyances et des désirs du décideur.

Formalisation du problème des agents

Selon Peterson (2017), il existe trois niveaux d’abstraction lorsqu’il s’agit
de faire un choix :

• le problème de décision que l’agent doit résoudre exactement comme il
est proposé au décideur ;

• une formalisation du problème de décision où l’agent identifie toutes les
informations nécessaires pour prendre une décision ;

• Une visualisation de la formalisation est généralement effectuée dans une
matrice de décision ou un arbre de décision s’il s’agit de choix séquentiels.

2



Introduction Générale

L’étape délicate consiste à identifier toutes les informations utiles pour prendre
une décision éclairée. Ces informations peuvent être divisées en états, résultats
et actes.

Un état peut être défini comme l’un des scénarios possibles qui pourraient
se produire dans le futur, et l’état qui se produit dans le monde réel est révélé
une fois que le choix est fait. L’agent doit soigneusement choisir uniquement
les états qui sont causalement indépendants et pertinents pour son choix. Par
exemple, si le problème de décision est “Dois-je prendre un parapluie aujour-
d’hui ?”, les états pourraient être (i) Aujourd’hui, il pleuvra, et (ii) Aujourd’hui,
il ne pleuvra pas. Les états (iii) J’ai pris la bonne décision et (iv) J’ai pris la
mauvaise décision ne sont pas indépendants du choix, ce qui signifie qu’ils ne
peuvent pas être considérés comme des états du monde.

Le décideur prend sa décision en fonction des résultats qu’il recevra dans
chaque état du monde. Le décideur doit être en mesure de classer la probabilité
des différents résultats. Ce classement est entièrement subjectif et doit refléter
son attitude à l’égard des résultats. Afin de mesurer la valeur d’un résultat, il
doit attribuer une valeur à chaque résultat à l’aide d’une fonction d’utilité. Le
décideur peut utiliser sa fonction d’utilité pour ordonner ses préférences sur un
ensemble de choix. Toutefois, l’ordre des préférences n’est pas comparable d’un
agent à l’autre. Kreps (1988) indique qu’une fonction d’utilité doit avoir les
propriétés suivantes : (i) complétude, ce qui signifie que l’agent doit toujours
être en mesure de classer les différents résultats, (ii) transitivité si un agent
préfère A à B et B à C, il préférera A à C, et (iii) séparabilité qui est un concept
technique. Nous nous référons à Debreu (1954) pour définir les propriétés des
fonctions d’utilité continues. L’identification d’une fonction d’utilité spécifique
(et éventuellement de nouvelles propriétés à respecter) dépend des caractéris-
tiques de l’agent et du modèle adopté, comme nous le verrons dans les sections
suivantes.

Les actes sont toutes les actions que le décideur peut faire, et il doit décider
laquelle il va adopter. Une fois l’acte choisi et l’état révélé, il sait quel résultat
a été obtenu. Les actes sont considérés comme mutuellement exclusifs, ce qui
signifie qu’un décideur rationnel ne peut choisir qu’un seul acte.

Prenons l’exemple suivant. Laura paie un loyer à Paris et aimerait acheter
une maison l’année prochaine. Cependant, elle ne sait pas si son entreprise
la transférera dans les dix prochaines années. Supposons que, dans ce monde
simpliste, il ne peut y avoir que trois états :

• Laura n’est pas transférée,

• Laura est transférée dans une nouvelle ville proche de Paris,

• Laura est transférée dans une nouvelle ville éloignée de Paris.

3



Introduction Générale

Laura a deux possibilités ou actes : (a) continuer à louer une maison ou (b)
acheter une maison. Si elle achète la maison et reste à Paris, elle sera ravie.
Cependant, si elle achète la maison et qu’elle est transférée loin, elle devra
vendre la maison qu’elle vient d’acheter ou la louer à quelqu’un d’autre. En
revanche, si elle continue à louer un logement, il lui sera plus facile d’être
transférée ailleurs, mais si elle reste à Paris, elle continuera à payer un loyer sans
être propriétaire d’un logement. Le tableau 1 identifie la matrice de décision
qui met en évidence les états et les actes pour ce problème. En outre, le résultat
est le bonheur de Laura, identifié par un nombre de 0 à 10, l’utilité attribuée
à chaque résultat.

Actes
États Aucun transfert

Transfert vers Transfert vers
une ville proche une ville loin

Louer à Paris 1 5 8
Acheter à Paris 10 5 0

Table 1: Matrice de décision pour le problème de Laura

Nous avons vu comment un problème peut être réécrit pour identifier les
états, les actes, les résultats et les utilités associées. En utilisant la théorie de la
décision, nous pouvons donner un ordre à tous les actes que l’agent peut choisir.
Pour ce faire, l’agent doit identifier la probabilité à attribuer à chaque état. Si
la probabilité est identifiée comme objective ou si elle est donnée comme connue
du décideur, la décision est définie comme étant sous risque. En revanche, si la
probabilité n’est pas objectivement connue, la décision est dans l’incertitude.

Décision sous Risque

Les décisions sous risque définissent des situations dont les probabilités
objectives sont connues ou données au décideur. Il s’agit généralement de si-
tuations telles que la roulette dans les casinos, les paris à pile ou face, mais aussi
de situations où la probabilité est donnée, par exemple, décider de pratiquer
une opération en connaissant le pourcentage de personnes qui ont survécu ou
de pratiquer des sports extrêmes en connaissant le pourcentage de personnes
qui ont subi des blessures après avoir pratiqué le sport.

Von Neumann and Morgenstern (1944) identifient une théorie dans laquelle
le décideur rationnel devrait décider de l’acte qui maximise l’utilité attendue.
Il y a n états du monde, et chaque acte donne un résultat, xi, pour l’état i dont
la probabilité est connue, pxi

, la fonction d’utilité espérée est calculée comme
suit :

E [u (X)] =
n
∑

i=1

u (xi) · pxi
,

4



Introduction Générale

où u (·) est défini comme une fonction d’utilité de Von Neumann-Morgenstern
qui doit respecter certains axiomes spécifiques, mais qui n’identifient pas la
fonction d’utilité à utiliser. Cette théorie est appelée utilité espérée objective
et le décideur devant choisir l’acte X qui maximise son utilité espérée.

La partie la plus difficile des décisions sous risque est d’identifier la fonction
d’utilité qui décrit le mieux les préférences du décideur car la probabilité est
donnée. Un agent peut identifier sa fonction d’utilité en déterminant ses pré-
férences à l’aide de loteries simples et en dérivant point par point sa fonction
d’utilité. Nous renvoyons le lecteur à Gilboa (2010) pour suivre une procédure
étape par étape afin de dériver sa fonction d’utilité. Une liste de fonctions
d’utilité ayant différentes propriétés liées à l’assurance et à l’argent se trouve
dans Gerber and Pafumi (1998).

Il est généralement possible d’identifier que u (X) est une fonction crois-
sante de x car plus d’argent est toujours perçu comme meilleur que moins
d’argent. Cependant, la concavité de la fonction dépend de la préférence du
décideur, qui peut avoir une aversion pour le risque ou rechercher le risque.
Afin de mieux comprendre ce concept, nous donnons un exemple. Le décideur
doit choisir entre ces deux loteries :

Loterie A donne 1 000 euros avec une probabilité de 0,5 et 0 sinon ;

Loterie B donne 500 d’euros à coup sûr.

La valeur attendue de la loterie A est de 1, 000 · 0, 5 + 0 · 0, 5 = 500 e. On
dit qu’un décideur a une aversion au risque s’il préfère la loterie B à la loterie
A, car il préfère la valeur attendue de la loterie à la loterie elle-même. D’autre
part, un décideur est défini comme aimant le risque ou recherchant le risque
s’il préfère à coup sûr la loterie aux 500 euros. Un agent averse au risque a une
fonction d’utilité concave, tandis qu’un agent amateur de risque a une fonction
d’utilité convexe. En économie et en finance, on suppose que les agents ont
une aversion pour le risque, même si leur fonction d’utilité est généralement
concave lorsqu’il s’agit de faibles gains et convexe lorsqu’il s’agit de gains élevés
(Peterson, 2017).

Revenons au problème de décision de Laura, où nous supposons qu’elle a
demandé au service des ressources humaines de son entreprise quelle était la
probabilité qu’elle soit mutée. Le service lui répond qu’il y a 50% de chances
qu’elle soit mutée dans l’arrière-pays parisien, 30% de chances qu’elle soit mu-
tée loin de Paris et 20% de chances qu’elle reste dans le même bureau. Afin de
décider quelle action elle doit choisir, elle calcule son utilité espérée objective :

E[u(Louer)] = 1 · 0.2 + 5 · 0.5 + 8 · 0.3 = 5.1,

E[u(Acheter)] = 10 · 0.2 + 5 · 0.5 + 0 · 0.3 = 4.5.
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L’utilité de la location d’une maison à Paris est plus élevée que celle de l’achat
d’une maison, ce qui conduit Laura à continuer à louer la maison pour le
moment. Ce choix pourrait changer si le service des ressources humaines lui
donnait des probabilités différentes ou si son bonheur, c’est-à-dire la valeur
d’utilité, changeait.

Décision dans l’incertitude

L’incertitude, également appelée ambiguïté, est un terme technique qui
désigne les cas où le décideur connaît les actes et les résultats. Cependant, il
ne peut pas attribuer de probabilités aux états. Par exemple, il est impossible
d’estimer, de déduire en utilisant des données existantes ou de demander à
quelqu’un la probabilité d’une guerre dans un pays donné au cours des dix
prochaines années, la probabilité qu’un nouveau parcours professionnel soit
couronné de succès ou d’échec, etc.

Dans un premier temps, les économistes ont tenté de traiter ce type de
problèmes en essayant de ne pas utiliser des distributions de probabilité. Le
choix du décideur devrait être fait uniquement en considérant les meilleurs ou
les pires résultats de chaque acte sans impliquer la distribution de probabilité.
Nous suivons Peterson (2017) pour identifier certains des différents principes
utilisés.

Le principe de dominance stipule qu’un décideur ne doit jamais choisir un
acte dont les résultats sont les pires, quel que soit l’état réel du monde.
En d’autres termes, si un acte spécifique donne toujours un résultat pire
qu’un autre, le premier aurait dû être exclu du problème de décision.

Le principe Maxmin selon lequel le décideur doit choisir l’acte qui donne
les résultats les moins mauvais indépendamment de l’état dans lequel il
se trouve. Dans le cas du problème de décision de Laura, Laura devrait
décider de louer à Paris car le pire résultat donne une utilité égale à 1,
alors que le pire résultat dans le cas de l’achat d’une maison a une utilité
nulle.

La règle de Maximax selon laquelle le décideur doit choisir l’acte qui a les
meilleurs résultats possibles par rapport aux meilleurs résultats possibles
pour chaque acte. Dans le cas du problème décisionnel de Laura, celle-ci
devrait décider d’acheter une maison car le meilleur résultat donne une
utilité de 10, ce qui est plus élevé que le meilleur résultat de la location
d’une maison.

La règle de l’optimiste et du pessimiste qui considère les meilleurs et les
pires résultats possibles de chaque alternative et choisit une alternative
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en fonction de son degré d’optimisme ou de pessimisme, et il devrait
s’agir d’une moyenne pondérée de ces deux utilités où le poids dépend
du degré d’optimisme ou de pessimisme.

Toutes ces méthodes ne se concentrent que sur les meilleurs ou les pires résul-
tats, mais elles ne prennent pas en compte les résultats intermédiaires. Pour
prendre une décision éclairée, tous les résultats et toutes les utilités doivent
être pris en compte afin de faire un choix rationnel qui optimise la fonction
d’utilité de l’agent.

Selon Savage (1972), une personne devrait être en mesure d’identifier une
probabilité subjective qui garantit que ses croyances sont cohérentes au niveau
interne. Ces probabilités subjectives doivent respecter certains axiomes pour
pouvoir être utilisées dans les processus de prise de décision. Gilboa (2010)
fournit une procédure simple, étape par étape, pour dériver une probabilité
subjective en commençant par les loteries accessibles. Cette procédure est si-
milaire à celle qui permet de créer sa fonction d’utilité de manière ponctuelle.
Cependant, les décideurs ne peuvent pas toujours attribuer une probabilité
spécifique ; par exemple, à l’état “demain il pleuvra”, dois-je attribuer 39% ou
41% de chance ?

En contradiction avec cette théorie et parce queles gens ne peuvent pas
toujours avoir des probabilités subjectives cohérentes, de nombreux paradoxes
différents ont été proposés. L’un des paradoxes les plus populaires est le Para-
doxe d’Ellsberg (1961), présenté ci-dessous, dans lequel les gens préfèrent
les paris avec une probabilité connue aux paris avec une probabilité inconnue.
Ce comportement est qualifié d’aversion à l’incertitude, violant ainsi l’un des
axiomes de Savage.

Supposons que deux urnes contiennent 100 boules. L’agent sait que l’urne
A contient 50 boules noires et 50 boules blanches, alors qu’il ne connaît pas la
proportion de boules noires et blanches dans l’urne B. Le décideur a alors le
choix entre les paris suivants :

Loterie 1 Recevoir 100 euros si une boule noire est tirée de l’urne A.

Loterie 2 Recevez 100 euros si une boule noire est tirée de l’urne B.

À ce stade, le décideur peut raisonner de deux manières. Il peut préférer le pari
1 car il connaît la proportion de boules noires dans l’urne A, ou il peut préférer
le pari 2 car il pense que la probabilité pourrait être plus élevée. Comme le
raisonnement ne change pas, nous supposons que le décideur préfère l’urne
connue, c’est-à-dire la loterie 1. Il a été prouvé empiriquement que les gens ont
tendance à préférer la loterie 1.

Ensuite, une deuxième paire de paris leur est présentée.

Loterie 3 Recevez 100 euros si une boule blanche est tirée de l’urne A.
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Loterie 4 Recevez 100 euros si une boule blanche est tirée de l’urne B.

Lorsqu’elle est confrontée à une nouvelle paire de loteries, une personne qui
préfère le pari 1 au pari 2 préférera le pari 3 au pari 4.

Ceci est incompatible avec la théorie de l’utilité espérée car un décideur
qui préfère le pari 1 au pari 2 pense que la probabilité d’avoir des boules noires
dans l’urne A est plus élevée que la probabilité d’avoir des boules blanches dans
l’urne B, c’est-à-dire que P (noir dans l’urne A) = 0, 5 > P (noir dans l’urne B).
Cependant, comme la même personne préfère le pari 3 au pari 4, elle pense
que la probabilité d’avoir des boules blanches dans l’urne A est plus élevée
que la probabilité d’avoir des boules blanches dans l’urne B, soit P (blanc dans
l’urne A) = 0,5 > P (blanc dans l’urne B). Ces deux probabilités sont inco-
hérentes l’une par rapport à l’autre, car la somme de P (noir dans l’urne B) +
P (blanc dans l’urne B) ne serait pas égale à 1. Comme le décideur ne connaît
pas la probabilité de chaque boule dans l’urne B, l’agent a tendance à préférer
l’urne connue. C’est ce qu’on appelle l’aversion à l’ambiguïté, qui démontre
qu’il est impossible d’utiliser le modèle de Savage pour trouver la décision
optimale dans ce scénario.

Au cours des dernières décennies, les modèles de décision qui prennent en
compte l’ambiguïté et l’aversion pour l’ambiguïté afin de résoudre le paradoxe
d’Ellsberg ont suscité un grand intérêt théorique, comme Schmeidler (1989),
Gilboa and Schmeidler (1989), Klibanoff et al. (2005), parmi d’autres. Une
discussion plus détaillée est fournie ci-dessous.

Biais domestique et théorie de la décision

La théorie de la décision a été largement appliquée aux problèmes d’alloca-
tion optimale de portefeuille afin d’essayer d’expliquer certaines énigmes liées
à l’allocation d’actifs. La théorie financière standard prévoit que les investis-
seurs devraient détenir un portefeuille diversifié d’actions dans le monde entier,
en supposant que les capitaux sont totalement mobiles à travers les frontières.
Les actions étrangères offrant de grandes possibilités de diversification, l’abais-
sement des barrières au commerce international d’actifs financiers aurait dû
conduire les investisseurs du monde entier à rééquilibrer leur portefeuille des
actifs nationaux vers les actifs étrangers (Coeurdacier and Rey, 2013). Le fait
que les gens détiennent des portefeuilles sous-diversifiés peut être lié au biais
domestique. La préférence pour les actifs domestiques est un comportement
d’investissement dans lequel les investisseurs ont tendance à surpondérer le
marché de leur pays d’origine par rapport à sa part dans le portefeuille global
du marché.

Coeurdacier and Rey (2013) montrent que la préférence pour les actifs do-
mestiques a diminué au cours de la période 1988-2008 dans les pays développés
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à travers les régions du monde, mais qu’elle reste élevée dans la plupart des
pays. En outre, les marchés émergents ont des portefeuilles d’actions moins
diversifiés que les pays développés et n’affichent pas de tendance claire à la
baisse du biais domestique. Le tableau 2, extrait de Coeurdacier and Rey
(2013), montre le pourcentage d’actifs nationaux qu’un investisseur devrait
avoir dans son portefeuille et le pourcentage qu’il a, ce qui démontre que le
biais domestique existe toujours sur le marché.

Marché national en % Part de portefeuille en
Pays source de la capitalisation boursière mondiale dans le marché national en %

Australie 1.8 76.1
Zone Euro 13.5 56.7
Suède 0.7 43.6
Suisse 2.3 50.9
États-Unis 32.6 77.2

Table 2: Biais domestique pour les actions en 2008 pour une sélection de pays.
Source : Coeurdacier and Rey (2013)

Le biais domestique a été confirmé par différentes études empiriques telles
que Fidora et al. (2007), Lippi (2016), Lütje and Menkhoff (2007), Mishra
(2008), Lin and Viswanathan (2016), parmi d’autres.

De nombreux chercheurs ont tenté de déterminer les raisons pour lesquelles
les investisseurs ont une préférence pour le marché domestique, et ces raisons
peuvent être classées en trois catégories principales :

• Des raisons institutionnelles telles que les taxes, les coûts de transaction
et les barrières ;

• Les asymétries d’information entre les investisseurs ;

• Les raisons comportementales telles que la familiarité, le patriotisme,
l’optimisme, l’aversion à l’ambiguïté, etc.

Le lecteur est invité à consulter Gaar et al. (2020) pour une analyse plus
exhaustive de la littérature.

Différentes études ont examiné la répartition optimale des actifs du porte-
feuille afin d’étudier les éléments susceptibles de générer un biais domestique.

De nombreux modèles de théorie de la décision sont utilisés pour étudier
les biais cognitifs d’un investisseur lors de la répartition de son portefeuille.
Les modèles de théorie de la décision peuvent s’inscrire dans un cadre statique,
comme Von Neumann and Morgenstern (1944) qui utilisent des distributions de
probabilité objectives, Schmeidler (1989) dont la mesure de probabilité n’est
pas nécessairement additive, Gilboa and Schmeidler (1989) qui maximisent
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l’utilité attendue dans le pire des cas sur un ensemble de probabilités, Kliba-
noff et al. (2005) qui identifient un modèle de préférence pour l’ambiguïté lisse.
Ces modèles ont également été développés dans un cadre dynamique, comme
Epstein and Schneider (2003) qui ont étendu le modèle de Gilboa and Schmeid-
ler (1989), Klibanoff et al. (2005) et Hayashi and Miao (2011) qui ont étendu le
modèle de Klibanoff et al. (2005). Il ne s’agit là que de quelques exemples des
différents modèles de théorie de la décision développés pour étudier l’allocation
optimale des actifs.

Les chercheurs ont appliqué certains de ces modèles à l’étude du biais do-
mestique en analysant l’allocation optimale des actifs lorsque deux actions
risquées sont présentes sur le marché. Nous n’évoquerons ici que quelques-unes
des études récentes sur ce sujet. Guidolin and Liu (2016) étudient le biais do-
mestique à l’aide d’un modèle qui prend en compte les croyances incertaines
sur un modèle d’évaluation des actifs, l’incertitude des paramètres et l’aver-
sion à l’ambiguïté. Ces auteurs ont utilisé un modèle d’ambiguïté statique et
lisse proposé par Klibanoff et al. (2005) pour caractériser les attitudes d’am-
biguïté et inclure un cadre bayésien. En utilisant leur approche, ils constatent
que l’aversion à l’ambiguïté peut conduire à un biais domestique solide dans la
détention d’actions, indépendamment de la croyance d’un investisseur dans le
CAPM domestique. Peijnenburg (2018) étudie l’évolution du biais domestique
dans un cadre dynamique à l’aide d’un modèle d’utilité attendue max-min. Elle
constate également que l’ambiguïté contribue à expliquer la sous-diversification
et le biais domestique. Cependant, le modèle adopté ne sépare pas l’ambiguïté
et les attitudes ambiguës. Un modèle d’ambiguïté lisse dans un cadre dyna-
mique est également étudié dans Yu et al. (2022), où ils se concentrent uni-
quement sur l’analyse de sensibilité des paramètres de risque et d’ambiguïté.
Ils ont constaté que lorsqu’un individu devient plus averse à l’ambiguïté, il
consomme moins, achète plus d’assurance-vie et investit moins dans des actifs
risqués.

Gestion des risques et la théorie de la décision

Le risque et la prise de décision sont deux facteurs interdépendants de la
gestion organisationnelle, et ils sont tous deux liés à la présence d’incertitude
dans l’organisation (Lu et al., 2012). Un gestionnaire de risque doit utiliser
les instruments fournis par la théorie de la décision pour faire des choix qui
peuvent rendre l’organisation rentable et éviter la faillite.

La gestion des risques est définie comme une série d’activités visant à diriger
et à contrôler une organisation en tenant compte des risques. Il est nécessaire
d’identifier et d’évaluer les risques potentiels, puis de les gérer en prenant les
décisions appropriées. Le processus de gestion des risques peut être divisé en
quatre étapes différentes :
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1. Identification des risques à l’aide d’un brainstorming, d’une structure,
d’entretiens, de questionnaires et d’enquêtes, d’une analyse des données
relatives aux pertes, d’une analyse des hypothèses, etc ;

2. Évaluer la vulnérabilité des biens essentiels face à des menaces spéci-
fiques ;

3. Analyse et mesure du risque ;

4. La gestion des risques, qui peut consister à (i) éviter le risque, (ii) conser-
ver le risque par le biais d’un mécanisme tel que l’allocation de capital-
risque, (iii) atténuer le risque en réduisant l’exposition, la fréquence et
la gravité, ou (iv) transférer le risque à une tierce partie.

Il est difficile de prendre des décisions appropriées dans des scénarios réels
en raison des risques et des incertitudes. Un gestionnaire de risques doit être
capable d’analyser les problèmes en utilisant des critères de décision pour iden-
tifier les résultats de chaque scénario, l’utilité de chaque résultat et attribuer
la probabilité de chaque résultat. Borgonovo et al. (2018) étudient le lien entre
l’analyse du risque et la théorie de la décision dans le but de permettre une
intégration étroite de la partie gestion du risque de l’analyse de la décision au
résultat de l’évaluation du risque. La plupart des chercheurs définissent l’ana-
lyse de risque comme la quantification du risque, l’identification des options de
gestion du risque et la communication des résultats au gestionnaire du risque,
c’est-à-dire les étapes 1 à 3 du processus de gestion du risque. Même si l’ana-
lyse de risque et l’analyse de décision présentent certaines similitudes et sont
souvent complémentaires, l’analyse de risque est souvent réalisée en l’absence
d’un décideur connu pour évaluer les probabilités et choisir les options de ges-
tion du risque sur la base de ses préférences et de son attitude face au risque
(Paté-Cornell and Dillon, 2006). Le résultat de l’analyse des risques est ensuite
communiqué au gestionnaire des risques, qui décide de la manière de gérer le
risque global (étape 4 du processus de gestion des risques). Le gestionnaire de
risque doit choisir l’option qui maximise sa fonction d’utilité en fonction de ses
préférences et de ses caractéristiques.

Borgonovo et al. (2018) relient la gestion du risque opérationnel aux fonde-
ments théoriques de la théorie de la décision. Ils montrent un lien direct entre
l’analyse des risques et la théorie de la décision lorsque l’on utilise des pro-
babilités objectives ou subjectives. Une reformulation différente est nécessaire
en cas d’incertitude. De manière générale, ils ont prouvé que les gestionnaires
de risques peuvent accéder à la boîte à outils de la théorie de la décision pour
définir leurs stratégies.
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Régulateurs et mesures des risques

La gestion des risques a été jugée nécessaire, de même que l’introduction
d’une réglementation sur le marche dans les années 1990 pour protéger un pays
ou un système économique des risques trop élevés pris par les institutions fi-
nancières pour obtenir des profits importants. Les régulateurs sont des comités
qui définissent les différentes règles qu’une institution financière doit respecter
pour entrer et rester sur le marché. Pour éviter la faillite, les régulateurs défi-
nissent généralement une mesure du risque, c’est-à-dire une exigence de capital
que l’entreprise doit conserver pour faire face à des pertes importantes.

En 1990, J.P. Morgan a mis au point la valeur à risque (VaR), un indicateur
de risque global qui mesure la pire perte attendue à un horizon donné dans des
conditions de marché normales et à un niveau de confiance donné. Supposons,
par exemple, que la VaR de 95% à un an soit égale à 2 millions d’euros. Cela
signifie que, dans des conditions de marché normales, il y a 5% de chances
que les pertes soient supérieures à 2 millions d’euros pendant l’année à venir.
Une analyse plus détaillée de la VaR peut être trouvée dans Klugman et al.
(2012), Jorion (2007), Linsmeier and Pearson (2000), parmi d’autres. Toutefois,
le principal problème de la VaR est qu’elle ne permet pas de quantifier la part
de risque dans les queues de la distribution.

Une autre mesure de risque célèbre est l’espérance conditionnelle de queue
(Tail Conditional Expectation - TCE), également appelée Expected Shortfall,
Conditional Tail Expectation ou Tail-VaR, définie comme la moyenne de toutes
les pertes supérieures à un seuil spécifique, généralement la VaR au quantile p.
Par construction, la TCE sera toujours au moins égal à la VaR calculée pour
le même quantile.

Même si tous les régulateurs ont le même objectif, ils ne sont pas d’accord
sur les mesures de risque qu’ils devraient utiliser, et tous n’utilisent pas les
deux mesures de risque mises en évidence précédemment. La réglementation
canadienne des assurances et les États-Unis préfèrent les modèles qui exigent
une plus grande implication des régulateurs dans la supervision. En revanche,
Solvency II adopte une VaR de 99,5% calculée sur un horizon d’un an, et le
Swiss Solvency Test utilise une TCE de 99% calculé sur le même horizon. On
trouvera une comparaison des différents régimes réglementaires d’assurance
dans Comité Européen des Assurances and Mercer Oliver Wyman Limited
(2005), ou une comparaison entre un régime d’assurance (Solvency II) et un
régime bancaire (Basel III) dans Gatzert and Wesker (2011). Il n’existe pas de
mesure générale du risque qui soit adoptée dans le monde entier ; les régulateurs
décident des mesures du risque à adopter en fonction de leur niveau d’aversion
pour le risque et en suivant un certain processus politique.

Les deux mesures de risque adoptées par Solvency II et le Swiss Solvency
Test sont basées sur la distribution des pertes. Elles utilisent des quanti-
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tés statistiques pour décrire la distribution conditionnelle ou inconditionnelle
des pertes du portefeuille sur un horizon prédéterminé T à un intervalle de
confiance spécifique p.

Dans cette thèse, nous supposons que les pertes suivent une distribution
de Pareto de type I ou une distribution de Pareto généralisée qui est une
distribution qui peut considérer un grand nombre de valeurs extrêmes et dont
la fonction de densité de probabilité présente des queues épaisses. Vilfredo
Pareto a introduit la distribution de Pareto pour la première fois en 1895 pour
étudier les revenus. Il a identifié le “principe de Pareto”, qui stipule qu’un plus
petit pourcentage de personnes dans la société possède une grande part de
la richesse de la société. La distribution de Pareto de type I est caractérisée
par α, qui identifie le risque sur le marché, et x0, qui est la valeur minimale
possible de la variable aléatoire étudiée. D’autre part, la distribution de Pareto
généralisée a trois paramètres : ξ, qui identifie le degré de risque sur le marché
et peut être interprété comme l’inverse de α, le paramètre de localisation µ
et le paramètre d’échelle σ. Nous modélisons les sinistres à l’aide de cette
distribution spécifique, car ils sont cohérents avec ce qui est observé pour les
sinistres dont les queues de distribution sont importants distribuées, et cela
nous permet d’obtenir des résultats lisibles.

Mesures cohérentes de risque

Artzner et al. (1999) identifient une série de propriétés qu’une mesure de
risque devrait avoir pour être définie comme cohérente. Ils précisent qu’une
mesure de risque cohérente doit satisfaire aux propriétés de monotonicité, de
sous-additivité, d’homogénéité positive et d’invariance de translation.

La propriété de monotonicité signifie que si les pertes d’une variable aléa-
toire sont toujours plus élevées que les pertes d’une autre variable aléatoire
dans chaque état du monde, il est logique que la mesure du risque de la pre-
mière soit supérieure à la mesure du risque de la seconde.

La sous-additivité reflète le fait que la combinaison des risques conduit à
une diversification et, par conséquent, à une réduction du risque global total.
Elle stipule que la mesure du risque liée à un portefeuille agrégé doit être égale
ou inférieure à la somme des mesures du risque calculées pour chaque élément.

La propriété d’homogénéité positive spécifie que la mesure du risque d’un
multiple constant de la perte inattendue doit être le multiple constant de la
mesure du risque, tandis que invariance de translation dit que la mesure du
risque de la combinaison d’une perte inattendue et d’une perte fixe doit être
la mesure du risque de la perte inattendue plus cette perte fixe.

Il a été prouvé par Artzner et al. (1999) que la Value-at-Risk n’est pas
une mesure de risque cohérente, alors que la TCE est une mesure de risque
cohérente. Cependant, il existe différentes critiques sur les mérites des quatre
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propriétés, voir par exemple Rau-Bredow (2019), Daníelsson et al. (2005), Cont
et al. (2010), parmi d’autres.

L’importance des moments d’ordre élevé

Un instrument utile que le gestionnaire de risque peut utiliser pour évaluer
le risque de marché est le calcul des moments d’ordre élevé de la distribution des
rendements qui peut capturer l’asymétrie et le caractère épais de la queue des
rendements. En outre, plus les moments sont connus, meilleure est l’estimation
de la distribution qui peut aider le décideur à identifier la stratégie optimale
pour éviter la faillite. Par exemple, selon Dai et al. (2021), la dynamique des
moments d’ordre supérieur est considérée comme une mesure du niveau de
risque partagé entre les classes d’actifs. En outre, De Clerk and Savel’ev (2022)
indique que nous pouvons utiliser l’analyse des moments d’ordre supérieur
comme outil pour indiquer les changements dans le risque d’un actif financier.

De nombreuses études soutiennent qu’en plus de la moyenne et de la vo-
latilité, les moments d’ordre supérieur peuvent être inclus comme facteurs de
risque dans l’évaluation des actifs, comme Sihem and Slaheddine (2014), Jurc-
zenko and Maillet (2006), Ahmed and Al Mafrachi (2021), Chen et al. (2021),
parmi d’autres.

Il existe également une vaste littérature qui révèle que les moments de
distribution d’ordre élevé sont utilisés pour prédire les rendements du marché,
comme Jondeau et al. (2019), Doan et al. (2010), Amaya et al. (2015), Mei
et al. (2017), parmi d’autres.

Cette série d’articles montre que les moments d’ordre élevé sont un outil
utile pour le gestionnaire de risque afin d’identifier la stratégie la plus efficace.

Structure de la thèse

Cette thèse se concentre sur l’étude du processus de prise de décision et
fournit quelques outils qui peuvent aider à la prise de décision dans le domaine
de la gestion du risque ainsi que l’étude du biais cognitif des investisseurs en
utilisant les modèles adoptés dans les décisions sous incertitude. Cette thèse
peut être divisée en deux parties : la première se concentre sur la gestion
du risque et la décision sous risque, et la seconde concerne les décisions sous
incertitude et les investisseurs.

La première partie est composée des chapitres 1, 2, et 3. Elle traite de la
théorie de la décision du point de vue de la gestion des risques.

Le chapitre 1 étudie l’équivalence entre différentes mesures de risque. De
nombreuses recherches se concentrent sur les mérites de la VaR et de la TCE,
les deux indicateurs de risque les plus classiques utilisés par les institutions

14



Introduction Générale

financières. Cependant, nous avons décidé d’axer notre recherche sur l’équiva-
lence entre ces indicateurs afin d’identifier une fonction d’utilité implicite qui
nous aide à comprendre comment les régulateurs choisissent tel ou tel indica-
teur de risque pour les calculs de solvabilité. Nous savons que les régulateurs
peuvent prendre une décision à l’issue d’un processus politique. Cependant,
rendre explicite le fonctionnement implicite des réglementations actuelles de-
vrait être une contribution précieuse pour garantir que les réglementations
fonctionnent de manière efficace et efficiente. En outre, la TCE n’est peut-être
pas l’indicateur le plus précis pour tenir compte de la nature des queues de dis-
tribution de probabilité. C’est pourquoi nous introduisons un nouvel indicateur
de risque qui étend la TCE, appelée TCE d’ordre supérieur ou TCE étendue,
qui peut prendre en compte des risques d’ordre supérieur. Notre étude part du
principe que les demandes d’indemnisation suivent un cadre de Pareto simple,
puis un cadre de Pareto généralisé. Nous examinons également les résultats
d’équivalence entre les quantiles des TCEs d’ordre supérieur. Ce chapitre est
basé sur l’article publié par Faroni et al. (2022).

Ensuite, nous identifions les quatre propriétés qu’une mesure de risque de-
vrait avoir pour être définie comme une mesure de risque cohérente dans le
chapitre 2. Ce concept a eu une grande influence sur l’évolution des mesures
de risque et sur la définition de nouveaux instruments de gestion du risque.
Nous expliquons que la VaR n’est pas une mesure de risque cohérente, alors
que la TCE l’est. Nous mettons également en évidence certaines critiques de
ce concept. En outre, nous expliquons que la TCE étendue présenté dans le
chapitre précédent n’est pas une mesure de risque cohérente. Nous présen-
tons également une variante de la TCE étendue qui peut respecter les quatre
propriétés identifiées par Artzner et al. (1999).

Dans le chapitre 3, nous réalisons une étude empirique sur la stabilité des
moments annuels d’ordre élevé des indices d’actions entre les marchés. Nous
étendons notre étude aux moments annuels partiels d’ordre élevé, c’est-à-dire
aux moments calculés en utilisant uniquement les valeurs supérieures ou infé-
rieures à un seuil spécifié. Nous utilisons dix-sept indices boursiers pour prendre
en compte les régions les plus représentatives du monde, ainsi que le taux des
bons du Trésor à trois mois, et nous collectons les prix de clôture quotidiens
de 2000 à 2022. Cette étude vise à aider les gestionnaires de risques à identifier
le moment le plus stable dans le temps, ce qui les conduira à une évaluation
plus fiable des risques futurs du marché.

La deuxième partie de cette thèse comprend le chapitre 4 dans lequel nous
utilisons des modèles de décision en situation d’incertitude. Nous étudions
l’allocation optimale dynamique des actifs et la consommation optimale que
l’agent devrait adopter lorsqu’il y a deux types d’actions sur le marché : les
actions locales et les actions étrangères. Nous supposons que les deux actions
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sont identiques sur le marché. Cependant, l’agent les perçoit différemment.
Il pense mieux connaître l’action locale et est plus incertain quant au rende-
ment réel de l’actif étranger. L’objectif est d’étudier le biais domestique et son
évolution dans le temps lorsque nous supposons que le décideur est à la fois
averse au risque et à l’ambiguïté. Nous utilisons le modèle d’ambiguïté diffé-
rentiable récursif généralisé axiomatisé par Hayashi and Miao (2011) qui peut
distinguer l’aversion au risque, l’aversion à l’ambiguïté et la substitution inter-
temporelle. Cette séparabilité nous permet de mieux comprendre quels sont les
paramètres qui déterminent le biais domestique de l’agent. Nous réalisons une
implémentation numérique qui inclut l’ambiguïté sur le marché et le fait que
le décideur apprend au fil du temps chaque année à réduire son incertitude.
Notre implémentation est explicitement calculée pour deux actions risquées et
ambiguës sur le marché. Cependant, elle peut être généralisée à n actifs risqués
et ambigus.
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Everyday life is packed with decisions: what to eat, how to go to work, what
to wear, what to buy, what to do in the evening, which shows to watch on TV,
what to do during the weekend, and so on. Even though these decisions are
part of daily life and do not take up too much space in our minds, everyone has
to face some difficult questions that can take a long decision-making process
before answering: career changes, wedding proposals, or significant investment
decisions. When we make a decision, we usually try to improve our quality
of life. Then, a decision can be made as part of our managerial role, such as
entrepreneurs and managers. In this case, decisions can lead the enterprise
to bankruptcy or success. Even only one wrong decision could change the
direction of the firm. Moreover, some people in a particular position make
decisions that can influence a country or the entire world. They can make
decisions by themselves, such as dictators, or as a group, such as governments,
central banks, councils, etc. People tend to be indecisive if the decision can
change their lives, which could also lead to a longer decision-making process
and second thoughts before the final choice.

A popular instrument used to make decisions is the “pro and cons list”
where the agent identifies all the positive and adverse outcomes of that deci-
sion. However, this list is only sometimes helpful as it is not always easy to
compare the pros and cons of different decisions. As choices are powerful, it is
necessary to identify instruments that allow us to make the best decision given
the available information and the decision maker’s beliefs. This type of deci-
sion is called a rational choice; however, the decision maker discovers whether
this decision is the best one, i.e., the right choice, only when the consequences
of that decision happen.

The study of the decision-making process and how to make rational deci-
sions is done by a discipline called the theory of choice or decision theory.

Decision Theory

Decision theory analyzes the decision-making process: how choices are
made and should be made based on assigning probabilities and values, called
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utility, to each outcome. It is an interdisciplinary field involving psychologists,
economists, philosophers, statisticians, and political scientists. Decision the-
ory can be divided into two main branches: descriptive decision theory and
normative decision theory.

Descriptive decision theory tries to explain how people make decisions in
real-world situations. It seeks to understand the cognitive processes and biases
that affect human decision-making and how people deviate from the ideal
rational decision-making model. This discipline is based on empirical studies.

Normative decision theory guides on making optimal decisions. The pur-
pose is to provide a set of guidelines or principles that can help the agent to
make optimal choices based on their preferences, beliefs, and values. It is pos-
sible to model individuals’ behavior as if they respect some axioms and follow
a specific model.

It is essential to notice that a rational choice is a decision that respects the
decision maker’s belief and is considered optimal, giving all the information
available. However, a right decision is a decision that gives the best outcomes,
and it is only known after the decision is made. Decision theory concentrates
on rational choices. Furthermore, normative and descriptive decision theo-
ries share some common elements, as they all agree that decisions are made
according to the decision maker’s beliefs and desires.

Formalization of the agent’s problem

Following Peterson (2017), there are three levels of abstractions when mak-
ing a choice:

• the decision problem that the agent needs to solve exactly how it is
proposed to the decision maker;

• a formalization of the decision problem where the agent identifies all the
information necessary to make a decision;

• A visualization of the formalization is usually done in a decision matrix
or a decision tree if it involves sequential choices.

The tricky step is identifying all the useful information to make an informed
decision. This information can be divided into states, outcomes, and acts.

A state can be defined as one of the possible scenarios that could happen
in the future, and the state that happens in the real world is revealed once
the choice is made. The agent should carefully choose only the states that are
causally independent and relevant to her choice. For example, if the decision
problem is “Should I take the umbrella today?”, the states could be (i) Today
it will be rainy, and (ii) Today it will not be rainy. The states (iii) I took the
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right decision and (iv) I took the wrong decision are not independent of the
choice, meaning they cannot be considered states of the world.

The decision maker decides based on the outcomes she will receive in each
state of the world. A decision maker should be able to rank the likelihood of
different outcomes. This ranking is entirely subjective and should reflect her
attitudes toward the outcomes. In order to measure the value of an outcome,
she should assign a value at each outcome using a utility function. The deci-
sion maker can use her utility function to order her preferences over a choice
set. However, the preference ordering is not comparable across agents. Kreps
(1988) states that a utility function should have the following properties: (i)
completeness, which means that the agent should always be able to rank the
different outcomes, (ii) transitivity if an agent prefers A to B and B to C, she
will prefers A to C, and (iii) separability which is a technical concept. We refer
to Debreu (1954) for defining properties of continuous utility functions. Iden-
tifying a specific utility function (and eventually new properties to respect)
depends on the agent’s characteristics, and the model adopted, as discussed in
the following sections.

Acts are all the actions the decision-maker can do, and she has to decide
which one she will adopt. Once chosen the act and revealed the state, she
knows which outcome she will receive. Acts are considered alternative, mean-
ing a rational decision-maker must choose only one act.

Let us consider the following example. Laura is paying rent in Paris and
would like to buy a house next year. However, she does not know if her
company will transfer her in the next ten years. Suppose that in this simplistic
world, there can only be three states:

• Laura is not transferred,

• Laura is transferred to a new city close to Paris,

• Laura is transferred to a new city far from Paris.

Laura can have two options, acts, (a) continue to rent a house or (b) buy a
house. If she buys the house and she stays in Paris, she will be delighted.
However, if she buys the house and gets transferred far away, she will have to
sell the house she just bought or rent it to someone else. On the other hand,
if she continues to rent a house, it will be easier to transfer somewhere else,
but if she stays in Paris, she will continue to pay rent without owning a house.
Table 3 identifies the decision matrix that highlights states and acts for this
problem. Moreover, the outcome is Laura’s happiness, identified by a number
from 0 to 10, the utility assigned at each outcome.

We have now discussed how a problem can be rewritten to identify states,
acts, outcomes, and the associated utilities. Using decision theory, we need
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Acts
States

No Transfer
Transfer to Transfer to
a close city a far city

Rent in Paris 1 5 8
Buy in Paris 10 5 0

Table 3: Decision Matrix of Laura’s decision problem

to give an order to all the acts the agent can choose. In order to do so, the
agent should identify the probability to assign at each state. If the probability
is identified as objective or it is given as known to the decision maker, the
decision is defined to be under risk. On the other hand, if the probability is
not objectively known, the decision is under uncertainty.

Decision under Risk

Decisions under risk delineate situations with known objective probabilities
or probabilities given to the decision maker. This is usually related to situation
such as roulette in casinos, bets on flipping a coin, but also situations where
the probability is given, for example, deciding whether to do an operation by
knowing the percentage of people that survived or to do extreme sports by
knowing the percentage of people that had injuries afterward.

Von Neumann and Morgenstern (1944) identify a theory where the ratio-
nal decision maker should decide the act that maximizes the expected utility.
There are n states of the world, and each act gives an outcome, xi, for the state
i whose probability is known, pxi

, the expected utility function is computed as
follows:

E [u (X)] =
n
∑

i=1

u (xi) · pxi
,

where u (·) is defined as a Von Neumann-Morgenstern utility function that has
to respect some specific axioms, but it does not identify which utility function
to use. This theory is called objective expected utility, where the decision
maker should choose the act X that maximizes her expected utility.

As the probability is given, the most challenging part of decisions under
risk is to identify the utility function that best describes the decision maker’s
preferences. An agent can identify her utility function by identifying her pref-
erences using simple lotteries and deriving point by point her utility function.
We refer the reader to Gilboa (2010) to follow a step-by-step procedure to de-
rive his or her utility function. A list of different utility functions with different
properties related to insurance and money can be found in Gerber and Pafumi
(1998).

It is generally possible to identify that u (X) is an increasing function of
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x as more money is always perceived better than less money. However, the
concavity of the function depends on the decision maker’s preference which can
be averse to risk or seeking risk. In order to better understand this concept,
we provide an example. The decision maker should choose between these two
lotteries:

Lottery A gives 1,000e with 0.5 probability and 0 otherwise;

Lottery B gives 500e for sure.

The expected value of lottery A is 1, 000 · 0.5 + 0 · 0.5 = 500e. A decision-
maker is said to be risk averse if she would prefer lottery B to lottery A as
she prefers the expected value of the lottery to the lottery itself. On the other
hand, a decision maker is defined risk lover or risk-seeking if she would prefer
the lottery over the 500e for sure. A risk-averse agent has a concave utility
function, whereas a risk-lover agent has a convex utility function. In economics
and finance, agents are assumed to be risk averse, even though their utility
function is usually concave regarding low payoffs and convex when it comes to
high ones (Peterson, 2017).

Let us go back to Laura’s decision problem, where we assume that she asked
the human resources department of her enterprise what is the probability that
she will be transferred. They say that there is a 50% probability that she will
be transferred to the hinterland of Paris, a 30% probability that she will be
transferred far from Paris, and a 20% chance that she will stay in the same
office. In order to decide which action she should choose, she computes her
objective expected utility:

E[u(Rent)] = 1 · 0.2 + 5 · 0.5 + 8 · 0.3 = 5.1,

E[u(Buy)] = 10 · 0.2 + 5 · 0.5 + 0 · 0.3 = 4.5.

The utility of renting a house in Paris is higher than that of buying a house,
leading Laura to continue to rent the house for the moment. This choice could
change if the human resources department gave her different probabilities or
her happiness, i.e., the utility value, changes.

Decision under Uncertainty

Uncertainty, also called ambiguity, is a technical term that refers to cases
in which the decision-maker knows acts and outcomes. However, she cannot
assign probabilities to the states corresponding to the outcomes. For example,
it is impossible to estimate, infer from existing data or ask someone the prob-
ability of war in a specific country in the next ten years, the probability that
a new career path will end up in success or failure, etc.
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At first, economists tried to deal with these kinds of problems by trying
not to use any probability distribution. The decision maker’s choice should
be made only considering each act’s best or worst outcomes without involving
any probability distribution. We follow Peterson (2017) to identify some of
the different principles used.

Dominance principle states that a decision maker should never choose an
act whose outcomes are worst, no matter which state is the true state
of the world. In other words, if the specific act always gives a worse
outcome than another, the former should have been excluded from the
decision problem.

Maxmin principle where the decision maker should choose the act that gives
the least bad outcomes independently of the state in this happens. In the
case of Laura’s decision problem, Laura should decide to rent in Paris as
the worst outcome gives a utility equal to 1, whereas the worst outcome
in the case of buying a house has a null utility.

Maximax rule where the decision maker should choose the act that has the
best possible outcomes compared to the best possible outcomes for each
act. In the case of Laura’s decision problem, Laura should decide to buy
a house as the best outcome gives a utility of 10 which is higher than the
best outcome of renting a house.

Optimist-Pessimist Rule that considers the best and the worst possible
outcomes of each alternative and chooses an alternative according to her
degree of optimism or pessimism, and it should be a weighted average of
these two utilities where the weight depends on the degree of optimism
or pessimism.

All this method only concentrates on the best or worst outcomes, but they
do not consider intermediate outcomes. To make an informed decision, all
outcomes and utilities should be considered to make a rational choice that
optimizes the agent’s utility function.

According to Savage (1972), a person should be able to identify a subjective
probability that guarantees that her beliefs are internally coherent. These
subjective probabilities have to follow some axioms to be used in decision-
making processes. Gilboa (2010) provides an easy step-by-step procedure for
deriving a subjective probability by starting from accessible lotteries. This
procedure is similar to the one to create its utility function pointwise. However,
decision-makers cannot always assign a specific probability; for example, to the
state “tomorrow it will rain," should I assign 39% or 41% of chance?

In contrast to this theory and the fact that people cannot always have co-
herent subjective probabilities, many different paradoxes have been proposed.
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One of the most popular paradoxes is the Ellsberg Paradox by Ellsberg
(1961), presented below, where he argues that people prefer bets with known
probability to bets with unknown probability. This behavior is classified as
uncertainty aversion, violating one of Savage’s axioms.

Suppose that two urns contain 100 balls. The agent knows that urn A has
50 black balls and 50 white balls, whereas she does not know the proportion
of black and white balls inside Urn B. The decision maker is then offered a
choice between the following gambles:

Lottery 1 Receive 100e if a black ball is drawn from Urn A.

Lottery 2 Receive 100e if a black ball is drawn from Urn B.

At this point, the decision-maker can reason in two ways. She could prefer
gamble 1 as she knows the proportion of black balls in Urn A, or she could
prefer gamble 2 as she thinks the probability could be higher. As the reasoning
does not change, we assume that the decision-maker prefers the known urn,
i.e., lottery 1. It has been empirically proven that people tend to prefer lottery
1.

Then, they are presented with a second pair of gambles.

Lottery 3 Receive 100e if a white ball is drawn from Urn A.

Lottery 4 Receive 100e if a white ball is drawn from Urn B.

When confronted with a new pair of lotteries, a person that prefers gamble 1
to gamble 2 would prefer gamble 3 to gamble 4.

This is inconsistent with the expected utility theory as a decision maker
that prefers gamble 1 to gamble 2 would believe that the probability of black
balls in urn A is higher than the probability of white balls in urn B, i.e.,
P (black in urn A) = 0.5 > P (black in urn B). However, as the same per-
son prefers gamble 3 to gamble 4, she would believe that the probability
of white balls in urn A is higher than the probability of white balls in urn
B, i.e., P (white in urn A) = 0.5 > P (white in urn B). These two probabil-
ities are inconsistent with each other, that is because P (black in urn B) +
P (white in urn B) would not sum to 1. As the decision maker does not know
the probability of each ball in urn B, the agent tends to prefer the known urn.
This is called ambiguity aversion, which demonstrates that it is impossible to
use Savage’s model to find the optimal decision in this scenario.

In recent decades, there has been much theoretical interest in decision
models that consider ambiguity and ambiguity aversion in order to resolve the
Ellsberg Paradox, such as Schmeidler (1989), Gilboa and Schmeidler (1989),
Klibanoff et al. (2005) among others. A more detailed discussion is provided
below.
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Home Bias and Decision Theory

Decision theory has been widely applied in optimal portfolio allocation
problems trying in order to explain some asset allocation puzzles. Standard
finance theory predicts that investors should hold a diversified portfolio of eq-
uities worldwide, assuming that capital is fully mobile across borders. Because
foreign equities provide great diversification opportunities, falling barriers to
international trade in financial assets should have led investors worldwide to re-
balance their portfolio away from national assets toward foreign assets (Coeur-
dacier and Rey, 2013). The fact that people hold underdiversified portfolios
can be linked to the home bias. Home bias is an investment behavior where in-
vestors tend to overweight their home country’s market compared to its share
in the overall market portfolio.

Coeurdacier and Rey (2013) show that home bias has decreased over the
1988-2008 period in developed countries across regions of the world but remains
high in most countries. Furthermore, emerging markets have less diversified
equity portfolios than developed countries and do not exhibit any clear down-
ward trend in home bias. Table 4, taken from Coeurdacier and Rey (2013),
shows the percentage of domestic assets that an investor should have in her
portfolio and the percentage she has, which demonstrates that home bias still
exists on the market.

Domestic market in % Share of portfolio in
Source country of world market capitalization domestic equity in %

Australia 1.8 76.1
Euro Area 13.5 56.7
Sweden 0.7 43.6
Switzerland 2.3 50.9
United States 32.6 77.2

Table 4: Home bias in equities in 2008 for selected countries. Source: Coeur-
dacier and Rey (2013)

The home bias has been confirmed by different empirical studies such as
Fidora et al. (2007), Lippi (2016), Lütje and Menkhoff (2007), Mishra (2008),
Lin and Viswanathan (2016), among others.

Many researchers tried to detect reasons why investors show a home bias,
and these reasons can be classified into three main categories:

• Institutional reasons such as taxes, transaction costs, and barriers

• Information asymmetries between investors
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• Behavioral reasons include familiarity, patriotism, optimism, ambiguity
aversion, etc.

The reader should refer to Gaar et al. (2020) for a more exhaustive literature
review.

There have been different studies that examine the optimal portfolio asset
allocation in order to study the elements that could generate home bias.

A lot of different decision theory models are used to study cognitive bias
that an investor has when making portfolio allocation. Decision theory models
can be in a static setting, such as Von Neumann and Morgenstern (1944) that
use objective probability distributions, Schmeidler (1989) whose probability
measure is not necessarily additive, Gilboa and Schmeidler (1989) where it
maximizes the worst-case expected utility over a set of probabilities, Klibanoff
et al. (2005) that identify a smooth ambiguity preference models. These models
were also developed in a dynamic setting, such as Epstein and Schneider (2003)
that extended the Gilboa and Schmeidler (1989), Klibanoff et al. (2005) and
Hayashi and Miao (2011) that extended the Klibanoff et al. (2005). These
are just a few examples of different decision theory models developed to study
optimal asset allocation.

Researchers applied some of these models to study home bias by analyzing
the optimal asset allocation when two risky stocks are in the market. We
only discuss some of the recent studies on this topic. Guidolin and Liu (2016)
studies the home bias using a model that considers uncertain beliefs over an
asset pricing model, parameter uncertainty, and ambiguity aversion. These
authors used a static smooth ambiguity model proposed by Klibanoff et al.
(2005) to characterize ambiguity attitudes and include a Bayesian framework.
Using their approach, they find that ambiguity aversion can lead to solid home
bias in equity holding, regardless of an investor’s belief in the domestic CAPM.
Peijnenburg (2018) studies the evolution of home bias in a dynamic setting
using a max-min expected utility model. She also finds that ambiguity helps
explain under diversification and home bias. However, the model adopted
does not separate ambiguity and ambiguity attitudes. A smooth ambiguity
model in a dynamic setting is also studied in Yu et al. (2022), where they only
concentrate on the sensitivity analysis of risk and ambiguity parameters. They
found that as an individual becomes more ambiguous averse, she will consume
less, buy more life insurance and invest less in risky assets.

Risk Management and Decision Theory

Risk and decision-making are two interrelated factors in organizational
management, and they are both related to the presence of uncertainties in
the organization (Lu et al., 2012). A risk manager should use the instruments
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provided by decision theory to conduct choices that can make the organization
profitable and avoid bankruptcy.

Risk management is defined as a series of activities aiming to direct and
control an organization taking into consideration risk. It is necessary to iden-
tify and assess potential risks and then manage them by making appropriate
decisions. The risk management process can be divided into four different
steps:

1. Identification of the risks by using brainstorming, structure, interviews,
questionnaire and surveys, loss data analysis, hypothetical what-if anal-
ysis, etc;

2. Assess the vulnerability of critical assets to specific threats;

3. Analysis and measure of the risk;

4. Management of the risks, which can be (i) avoid the risk, (ii) retain the
risk through a mechanism such as risk capital allocation, (iii) mitigate
the risk by reducing exposure, frequency, and severity, or (iv) transfer
the risk to a third party.

Making appropriate decisions in real-world scenarios is tricky due to risks
and uncertainties. A risk manager should be able to analyze problems using
decision-making criteria to identify the outcomes in each scenario, the utility
of each outcome, and to assign the probability of each outcome. Borgonovo
et al. (2018) study the link between risk analysis with decision theory with
the purpose of allowing a close integration of the risk management part of
decision analysis to the output of risk assessment. Most researchers define
risk analysis as quantifying the risk, identifying risk management options, and
communicating the results to the risk manager, i.e., steps 1 to 3 of the risk
management process. Even though risk analysis and decision analysis have
some similarities and are often complementary, risk analysis is often performed
without a known decision maker to assess probabilities and to choose risk
management options based on his or her preferences and risk attitudes (Paté-
Cornell and Dillon, 2006). Then, the outcome of risk analysis is communicated
to the risk manager, who decides how to manage the overall risk, i.e., step 4
of the risk management process. The risk manager should choose the option
that maximizes his or her utility function according to his or her preferences
and properties.

Borgonovo et al. (2018) connect operational risk management with the
theoretical foundations of decision theory. They show a direct link between risk
analysis and decision theory when using objective or subjective probabilities.
A different reformulation is necessary in case of uncertainty. In general, they
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proved that risk managers can access the decision theory toolbox to define
their strategies.

Regulators and Risk Measures

To protect a country or economic system from too high risks taken by
financial institutions to obtain high profits, in the 1990s, risk management was
considered necessary, as well as the introduction of regulation in the market.
Regulators are committees that define different rules that a financial institution
must respect to enter and stay in the market. To avoid bankruptcy, regulators
usually define a risk measure, i.e., a capital requirement the company should
retain to face significant losses.

In 1990 J.P. Morgan developed the Value-at-Risk (VaR), a global risk met-
ric that measures the worst expected loss over a given horizon under normal
market conditions at a given confidence level (Jorion, 2007). For instance, sup-
pose that the 95% VaR at one year equals 2e million. It means that, under
normal market conditions, there is a 5% possibility that losses will be higher
than 2e million in the following year. A more detailed analysis of VaR can be
found in Klugman et al. (2012), Jorion (2007), Linsmeier and Pearson (2000),
among others. However, the main problem of VaR is that it fails to quantify
how much risk is in the tails.

Another famous risk measure is the Tail Conditional Expectation (TCE),
also called Expected Shortfall, Conditional Tail Expectation, or Tail-VaR, de-
fined as the average of all losses higher than a specific threshold, usually the
VaR at quantile p. By construction, TCE will always be at least equal to the
VaR computed as the same quantile.

Even though all regulators have the same purpose, they disagree on which
risk measures they should use, and not everybody uses the two risk measures
highlighted before. The Canadian regulation of insurance and the United
States prefer models requiring higher regulatory involvement in the supervi-
sion. In contrast, Solvency II adopts a VaR at 99.5% computed on a horizon
of 1 year, and the Swiss Solvency Test uses a TCE at 99% computed on the
same horizon. A comparison of different insurance regulatory regimes can be
found in Comité Européen des Assurances and Mercer Oliver Wyman Lim-
ited (2005), or a comparison between an insurance regime (Solvency II) and a
banking one (Basel III) can be found in Gatzert and Wesker (2011). It does
not exist a general risk measure that is adopted worldwide; regulators decide
which risk measures to adopt according to their level of risk aversion and by
following some political process.

Both risk measures adopted by Solvency II and the Swiss Solvency Test are
based on loss distribution. They use statistical quantities to describe the port-
folio’s conditional or unconditional loss distribution over some predetermined
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horizon T at a specific confidence interval p.

In this thesis, we assume that losses follow a Pareto type I distribution or
a Generalized Pareto distribution which is a distribution that can consider a
lot of extreme values and whose probability density function presents fat tails.
Vilfredo Pareto first introduced Pareto distribution in 1895 to study revenues.
He identifies the so-called “Pareto principle”, which states that a smaller per-
centage of people in the society owns a large share of the society’s wealth. The
Pareto Type I distribution is characterized by α, which identifies the riskiness
in the market, and x0, which is the minimum possible value of the random
variable studied. On the other hand, the generalized Pareto distribution has
three parameters: ξ, which identifies the riskiness in the market and can be
interpreted as the inverse of α, the location parameter µ, and the scale pa-
rameter σ. We model loss claims using this specific distribution as they are
consistent with what is observed for claims with heavily distributed tails, and
it allows us to derive readable results.

Coherent risk measures

Artzner et al. (1999) identify a series of properties that a risk measure
should have in order to be defined coherent. They identify that a coherent
risk measure should satisfy properties of monotonicity, subadditivity, positive
homogeneity, and translation invariance.

The property of monotonicity stands that if the losses of one random vari-
able are always higher than the losses of another random variable in each state
of the world, then it makes sense for the risk measure of the former to be
greater than the risk measure of the latter.

Subadditivity reflects that combining risks leads to diversification and, thus,
a reduction of the total overall risk. It states that the risk measure related
to an aggregated portfolio should be equal or lower than the sum of the risk
measures computed for each item.

The property of positive homogeneity specifies that the risk measure of a
constant multiple of the unexpected loss should be the constant multiple of
the risk measure, whereas translation invariance says that the risk measure of
combining an unexpected loss and a fixed loss should be the risk measure of
the unexpected loss plus this fixed loss.

It has been proved by Artzner et al. (1999) that the Value-at-Risk is not a
coherent risk measure, whereas the TCE is a coherent risk measure. However,
there are different critics on the merit of the four properties, see for example
Rau-Bredow (2019), Daníelsson et al. (2005), Cont et al. (2010), among others.
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The importance of high-order moments

A useful instrument that the risk manager should use to assess the market
risk is the computation of high-order moments of the returns’ distribution
that can capture asymmetry and tail-fatness of returns. Moreover, the more
moments are known, the better the estimation of the distribution that can
help the decision maker to identify the optimal strategy to avoid bankruptcy.
For example, according to Dai et al. (2021), the dynamics of higher order
moments is considered a measure of the level of risk being shared among asset
classes. Furthermore, De Clerk and Savel’ev (2022) indicates that we can use
the higher-order moment analysis as a tool to indicate changes in a financial
asset’s risk.

Many studies argue that in addition to mean and volatility, high-order
moments can be included as risk factors in asset pricing, such as Sihem and
Slaheddine (2014), Jurczenko and Maillet (2006), Ahmed and Al Mafrachi
(2021), Chen et al. (2021), among others.

There is also a vast literature that reveals that high order distribution
moments are used to predict market returns, such as Jondeau et al. (2019),
Doan et al. (2010), Amaya et al. (2015), Mei et al. (2017), among others.

This different stream of papers identifies that high-order moments are a
helpful tool for the risk manager to identify the most efficient strategy.

Thesis structure

This thesis concentrates on the study of the decision-making process and
provides some tools that can help decision-making in the risk management
field as well as the study of investors’ cognitive bias by using models adopted
in decisions under uncertainty. This thesis can be divided into two parts:
one concentrates on risk management and decision under risk, and the second
involves decisions under uncertainty and investors.

The first part is composed of chapters 1, 2, and 3. It discusses decision
theory from a risk management viewpoint.

Chapter 1 studies the equivalence between different risk measures. Much
research concentrates on the merits of VaR and TCE, the two most classic risk
indicators financial institutions use. However, we decided to focus our research
on the equivalence between such indicators to identify an implicit utility func-
tion that helps us understand how regulators choose such or such risk indicators
for solvency computations. We know that regulators may make a decision fol-
lowing a political process. However, making the implicit functioning of actual
regulations explicit should be a valuable contribution to assuring that regula-
tions function in an effective and efficient manner. Further, TCE may not be
the most accurate indicator to consider the nature of probability distribution
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tails. For this reason, we introduce a new risk indicator that extends TCE,
called high-order TCE or extended TCE, that can consider higher-order risks.
Our study assumes that claims follow a simple Pareto framework and then
follow a generalized Pareto framework. We also examine equivalence results
between the quantiles of high-order TCEs. This chapter is based on the article
published by Faroni et al. (2022).

Then, we identify the four properties that a risk measure should have to
be defined as a coherent risk measure in chapter 2. This concept has been
very influential in the further development of risk measures and in defining
new instruments in risk management. We discuss that VaR is not a coherent
risk measure, whereas TCE is. We also highlight some critics of this con-
cept. Moreover, we discuss that the extended TCE introduced in the previous
chapter is not a coherent risk measure. We also introduce a variation of the
extended TCE that can respect the four properties identified by Artzner et al.
(1999).

In chapter 3, we perform an empirical study on the stability of annual
high-order moments in equity indexes among markets. We extend our study to
partial annual high-order moments, i.e., moments computed using only values
higher or lower than a specified threshold. We use seventeen equity indices
to consider the world’s most representative regions as well as the 3-month
Treasury Bill Rate, and we collect daily closing prices from 2000 to 2022. This
study aims to help risk managers identify which moment is more stable over
time, which will lead them to a more reliable assessment of future market risks.

The second part of this thesis comprises chapter 4 in which we use decision
models under uncertainty. We study the dynamic optimal asset allocation and
the optimal consumption that the agent should adopt when there are two kinds
of stocks in the market: local and foreign assets. We assume that the two stocks
are identical on the market. However, the agent perceives them differently. She
believes in knowing the local stock better and is more uncertain about the real
return of the foreign asset. The aim is to study the home bias and its evolution
over time when we assume that the decision maker is both risk-averse and
ambiguity averse. We use the generalized recursive smooth ambiguity model
axiomatized by Hayashi and Miao (2011) that can distinguish between risk
aversion, ambiguity aversion, and intertemporal substitution. This separability
allows us to understand better which parameters drive the home bias of the
agent. We create a numerical implementation that includes ambiguity in the
market and the fact that the decision-maker learns over time each year to
reduce her uncertainty. Our implementation is explicitly computed for two
risky and ambiguous stocks on the market. However, it can be generalized to
n risky and ambiguous assets.
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Chapter 1

Equivalent Risk Indicators:
VaR, TCE, and Beyond

Due to a period that started in the early 1980s of less regulation and high
volatility, regulators started to define risk-based capital requirements with the
purpose of making capital available for absorbing losses when extreme events
occur. Even though there is no consensus on the best risk measure to adopt,
they all share a common feature: they are all related to the behavior of tails
of the probability distribution of a firm’s financial results.

A risk measure is defined as a mapping from the random variable represent-
ing a risk exposure to a set of real numbers. In Section 1.2, we introduce two
classic risk measures, Value-at-Risk (VaR) and Tail Conditional Expectation
(TCE), as well as a new risk measure that considers high-order risks, which
we call high-order TCE or extended TCE. To give the reader a comprehensive
view of the topic, we also provide an overview of the world’s regulation system
and their differences and similarities in Section 1.3.

We do not focus on the merits of the risk measure. However, we study the
equivalence between the three risk measures presented here to understand how
regulators choose a specific risk measure and its parameters. In Section 1.4, we
study the equivalence between VaR, TCE, and the high-order TCE quantiles.

To obtain our results, we assume that claims follow the Pareto distribution
and the generalized Pareto distribution for two main reasons: they allow us
to derive readable results and are consistent with what is observed for claims
with heavily distributed tails. Section 1.1 gives a brief overview of the Pareto
distribution.

Finally, Section 1.5 concludes with a brief illustration based on real data
and the suggestion of theoretical extensions.

The results described in this chapter are published in Faroni et al. (2022).
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1.1 The Pareto distribution

In the XIX century, one of the most common ways to use statistics to
describe real-world phenomenons was to show that some variables are con-
centrated nearby a value (mean, mode, or median), and the big variables far
from this value were considered rare and, consequently, they were not studied.
However, this representation is not accurate for many situations where the big
values, called “extreme values”, are not negligible and need to be included in
the study.

In 1895, Vilfredo Pareto studied if revenues were distributed randomly
or if they followed a specific rule yet to be discovered. Pareto (1895) (cited
in Barbut (2003)) shows that there is a tendency to follow a specific curve
characterized by asymmetry and extremely positive values. He shows that a
smaller percentage of the people in that society (around 20%) own a larger
share of the wealth (around 80%) of the society. This is called the “Pareto
Principle”.

Pareto studies the cumulative function instead of the traditional density
function to find the mathematical formula of this curve. Given a revenue xi, he
identifies N(xi) as the number of revenues equal to or higher than xi. These co-
ordinates are then represented in a logarithmic paper, (Log(xi), Log (N(xi))).
Pareto discovers that all the different series observed follow

LogN(xi) = −α Log(xi) + C

where C is a positive constant value that depends on the distribution used.
The previous equation can be written as:

N(x) =
(

x0

x

)α

,

where α is the Pareto Index, and x0 is the minimum possible value of the
distribution. This is the expression for the tail function of the Pareto Type I
distribution, discussed in Section 1.1.1. A hierarchy of Pareto distributions is
known as Pareto Types I, II, III, and IV. The reader should refer to statistics
books such as Arnold (2008) for a more comprehensive understanding of this
topic.

In the context of extreme value theory that deals with extreme deviations
from the median of probability distributions, Pickands III (1975) shows that,
at a large threshold, the limiting distribution of values above this threshold
follows a generalized Pareto distribution (GPD). We discuss this probability
distribution in Section 1.1.2. The advantage of GPD is that it contains a lot
of different sub-cases that can be agglomerated into three groups:

1. Gumbel distribution, whose tails decrease exponentially, such as the
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Gaussian distribution;

2. Weibull distribution, whose tails are finite;

3. Fréchet distribution, which has heavy tails.

We will only concentrate on the last case as we are interested in the probability
loss distributions, and it has been empirically demonstrated that they have fat
tails.

The interested reader should refer to Coles et al. (2001), Arnold (2008),
and Embrechts et al. (2013), among others, for a detailed discussion of these
models.

We decide to model claims either as a Pareto distribution or a generalized
Pareto distribution, as they are consistent with what is observed for claims
with heavily distributed tails. We refer the reader to Le Courtois (2018), or
Le Courtois and Walter (2014), among others, to explore situations where
claims could be associated with semi-heavy tails.

1.1.1 Pareto Type I Distribution

Definition 1. Let X be a random variable that follows a Pareto Type I dis-
tribution, then the probability density function is

fX (x) =















αxα
0

xα+1
x ≥ x0

0 x < x0

, (1.1)

and the cumulative distribution function is

FX (x) =











1 −
(

x0

x

)α

x ≥ x0

0 x < x0

, (1.2)

where x0 is the necessairly positive minimum possible value of X, and α is a
positive parameter.

The Pareto type I distribution models only the values higher than a thresh-
old, x0, which is the starting point of the observations. The shape parameter
α, also called the “Pareto Index” or tail index, identifies the size of the tail
distribution.

To give an interpretation of α, we introduce the hierarchical relationships
in the random variable X. We classify each realization of X based on its size,
from the largest to the smallest. Given n realization of X, the ordered sample
is written as X(1) ≥ X(2) ≥ · · · ≥ X(n). For each value xk, the Nb(X ≥ xk) = k
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which is the inverse of the cumulative function, 1 − FX(xk). The hierarchical
relation of rang k is defined as1:

X(k)

X(k+1)

=





1 − FX

(

X(k+1)

)

1 − FX

(

X(k)

)





1
α

=

(

k + 1
k

)
1
α

a.s.

The hierarchical relation between the biggest value and second-biggest value
is equal to 2

1
α where α determines the size of the gap between the two. For

example, if α = 1.4, the ratio is equal to 2
1

1.4 ≈ 1.64 whereas when α = 4, the
ratio is equal to 2

1
4 ≈ 1.18 which means that the biggest value is 1.18 times the

second-biggest value. We show that when α increases, the ratio diminishes,
leading to having “less extreme” values. In other words, the inequality of the
distribution increases when the shape parameter decreases, and vice versa.

Graphically, we can see the effect of α in Figure 1.1. We show that when
α is big, a high probability is assigned to values close to x0, which leads the
distribution to have a slim tail (compared to the one with a more minor α).
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Figure 1.1: Probability density function (left panel) and cumulative distribution
function (right panel) of Pareto Type I distribution with x0 = 1 and α = [1, 2, 3].

Figure 1.2 shows that x0 shifts the distribution as it is the minimum value
of the distribution. This means that x0 can be seen as a location parameter
that does not influence the riskiness of the market, which is identified by the
parameter α.

The Pareto Type I distribution has two primary limits.
First of all, it is impossible to use this distribution to represent the dis-

tribution of all values but only of all the values in the tail function, i.e., that
are higher than a specific threshold. When using the Pareto distribution to
represent the empirical data, we need to divide the empirical data into two
sub-classes: (i) extreme values and (ii) all other values. Then, we should as-
sign a distribution to each sub-class and combine the two regimes. In our case,

1We consider that 1 − FX(xk) = F̄X(xk) =
(

x0

x

)α
that can be rewritten as xk =

x0

(F̄X (xk))
1
α

.
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Figure 1.2: Probability density function (left panel) and cumulative distribution
function (right panel) of Pareto Type I distribution with x0 = [1, 2, 3] and α = 1.

this is not a limit as we study only the tail behavior of the distribution, which
can be distributed as a Pareto Type I distribution.

The second problem is that it is not always possible to compute the mo-
ments of a distribution. Moments summarize the basic information of empiri-
cal data and allow us to understand the distribution better. From a statistical
point of view, it is always possible to compute empirical moments. However,
they are not always significant as they do not converge to the theoretical mo-
ments. From a mathematical viewpoint, it is possible to show that a Pareto
distribution of a variable X has moments of order k only if k is lower than α.
For example, if α is lower than 2, the empirical moment of order 2 will diverge,
and the theoretical variance will be equal to infinity. If moments exist, they
are as follows:

Mean =
αx0

α − 1
for α > 1,

Variance =
αx2

0

(α − 1)2 (α − 2)
for α > 2,

Skewness =
2 (1 + α)

α − 3

√

α − 2
α

for α > 3,

Kurtosis = 3 +
6 (α3 + α2 − 6α − 2)

α (α − 3) (α − 4)
for α > 4.

1.1.2 Generalized Pareto distribution

The generalized Pareto distribution (GPD) was introduced by Pickands III
(1975), and it is usually used to model extreme data in the sense that they
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exceed a particular designated high threshold.

Definition 2. Let X be a random variable that follows a generalized Pareto
distribution, then the probability density function admits the Jenkinson-von
Mises representation, which can be expressed as follows:

fX (x) =



















1
σ

(

1 + ξ
x − µ

σ

)− 1
ξ

−1

for ξ 6= 0

1
σ

exp
(

−x − µ

σ

)

for ξ = 0

(1.3)

and the cumulative distribution function is

FX (x) =



















1 −
(

1 + ξ
x − µ

σ

)− 1
ξ

for ξ 6= 0

1 − exp
(

−x − µ

σ

)

for ξ = 0
(1.4)

where µ identifies the location, σ the scale, and ξ the shape of the tail
function.

The GPD is generalized in the sense that the parametric form subsumes
three types of distributions according to the value of ξ:

• ξ > 0 is the Fréchet distribution,

• ξ = 0 is the Gumbel distribution,

• ξ < 0 is the Weibull distribution.

Figure 1.3 shows that the Weibull distribution is a short-tailed distribution
with a finite right endpoint. The Gumbel and Fréchet distributions have infi-
nite right tails, but the tail of the Fréchet distribution decreases slower than
that of the Gumbel distribution.
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Figure 1.3: Probability density function (left panel) and cumulative distribution
function (right panel) of GPD with x0 = [−0.5, 0, 0.5], µ = 0, and σ = 1.
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For our study, we use ξ > 0 as it allows us to consider a fat tail distribution
which means that it considers extreme events. Moreover, it is essential to
notice that when ξ > 0 and µ = σ

ξ
, the GPD is equivalent to the Pareto Type

I distribution with x0 = σ
ξ

and α = 1
ξ

which means that we can apply the same
interpretation to ξ as in Section 1.1.1. In this case, an increase of ξ (i.e., a
decrease of α) will lead to an increase in extreme values and an increase in the
inequality of the distribution.

The moment of rank m of a GPD only exists if ξ < 1
m

. Otherwise, the
moment is equal to infinity. If moments exist, they can be computed as follows:

Mean = µ +
σ

1 − ξ
for ξ < 1,

Variance =
σ2

(1 − 2ξ) (1 − ξ)2 for ξ <
1
2

,

Skewness =
2 (1 + ξ)

√
1 − 2ξ

1 − 3ξ
for ξ <

1
3

,

Kurtosis = 3 +
6 (1 + ξ − 6ξ2 − 2ξ3)

(1 − 3ξ) (1 − 4ξ)
for ξ <

1
4

.

We can see that the third and fourth moment (skewness and kurtosis)
only depends on ξ, i.e., the riskiness of the market. For information on the
estimation of tail parameters, see, for instance, Hill (1975), or Hosking and
Wallis (1987).

1.2 Risk Measures

The primary purpose of risk management is to identify the amount of
capital a financial institution needs to hold to avoid unexpected losses that
can lead to insolvency and bankruptcy. Following McNeil et al. (2015), we
identify four different categories to measure the risk of a financial position.

The notional-amount approach consists of the weighted sum of the notional
values of the individual securities in the portfolio, where the weight is a factor
that represents an assessment of the riskiness of the class. This method cannot
consider the benefits of diversification on the overall risk of the company and
does not deal well with portfolios of derivatives.

Factor-sensitivity measures use portfolio value changes for a predetermined
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change in one of the underlying risk factors. It is computed using mathematical
derivatives. However, it is impossible to aggregate sensitivities computed using
different risk factors, and it is not possible to aggregate this measure across
markets.

Risk measures based on loss distribution uses statistical quantities to de-
scribe the portfolio’s conditional or unconditional loss distribution over some
predetermined horizon T . In this thesis, we use measures that fall into this
category, such as Value-at-Risk, Tail Conditional Expectation, and high-order
Tail Conditional Expectation discussed in detail in Sections 1.2.1, 1.2.2, and
1.2.3, respectively. Furthermore, in Section 1.2.4, we provide some examples to
interpret the distribution parameters using the risk measures described here.
Regulators tend to use this kind of risk measure and have to choose two pa-
rameters: the time horizon and the confidence level. The time horizon depends
on the application of the company regulated. For example, it makes sense to
use T equal to one trading day if the positions are liquid and actively man-
aged, whereas to use T equals one month or year if the portfolio is traded less
actively and some instruments of the portfolio are less liquid. The choice of
the confidence level is tricky, and we leave this discussion for Section 1.4. The
disadvantages of using a loss distribution is that it relies on past data that
cannot be significant to predict the future.

Scenario-based risk measures rely on several possible future scenarios where
the risk measure is computed as the maximum portfolio loss under all scenarios,
where some extreme cases can be down-weighted to mitigate their effect. The
main problem, in this case, is how to determine an appropriate set of scenarios
and weighting factors. Furthermore, comparing scenario-based risk measures
across portfolios is challenging if they are affected by different risk factors.

1.2.1 Value-at-Risk

The most widely used risk measure in a financial institution is the Value-
at-Risk (VaR) (see, for instance, Klugman et al. (2012)), first introduced in
the late 1980s to measure the risk of their trading portfolio by J.P. Morgan.
VaR is a measure of the expected worst loss over a given horizon where losses
greater than the VaR are suffered with just a small probability under normal
market circumstances. Linsmeier and Pearson (2000) defines VaR as the loss
expected to be exceeded with a probability of only (1 − p) percent during the
next T−day holding period.

Definition 3. Let FXT
(x) be the distribution function of outcomes over a

fixed period T of a portfolio of risks where a loss is identified as a positive
value of the random variable XT . The VaR of the random variable XT is the
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p percentile of the distribution, denoted by:

VaRp (XT ) = F −1
XT

(p) .

From a probabilistic viewpoint, VaR is just a quantile of the loss distribu-
tion. We should note that the VaR does not give any information about the
severity of losses higher than the level of confidence chosen.

Following the approach of Denuit et al. (2006), we demonstrate that the
VaR is an optimal capital requirement for insurance companies. Consider a
portfolio where losses follow a distribution of XT and suppose that a regulator
wants a solvency capital requirement Q [XT ] to be large enough to ensure that
the shortfall risk, E [(XT − Q [XT ])], remains small. However, regulators need
to consider that retaining capital has a cost that diminishes the company’s
competitiveness. This cost can be expressed as a percentage ǫ of the capital
requirement. Finally, the solution to the following minimization problem gives
us the optimal capital requirement:

min
Q[XT ]

{η · E [(XT − Q[XT ])+] + (1 − η) Q[XT ]ǫ} , (1.5)

where η is the weight that identifies the importance given to one element or
the other by the regulator. For example, if the regulator wants to assign the
same importance to both elements, it sets η equal to 0.5. The capital Q[XT ]
that is able to solve Eq. 1.5 is:

Q[XT ] = VaR(1− 1−η

η
ǫ)(XT ).

Proof. See Appendix.

Note that the quantile p of the optimal VaR just computed is a function
of the weight η and the cost of capital parameter ξ, i.e., p = 1 − 1−η

η
ξ. As the

quantile is a number between 0 and 1, ǫ > p

1−p
is a condition that has to be

respected.
Figure 1.4 shows the relation between the quantile p, the weight η, and the

cost of capital ǫ. The quantile p strongly increases with η for fixed values of
ǫ. Similarly, an increase of η is traduced in an increase of p for fixed values of
ǫ. Indeed, η shows the importance that the regulator gives to minimizing the
residual risk, whereas (1 − η) is the weight given to the cost of capital. In this
case, if the regulator assigns a specific value to the VaR’s quantile (which is
usually close to 1), it gives much importance to minimizing the risk, and the
cost of capital becomes less important aspect.

The Value-at-Risk has its limits, mostly because it is not a coherent risk
measure. We leave this discussion for Chapter 2.
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Figure 1.4: VaR quantile w.r.t. optimization parameters.

Pareto Type I Losses

Let XT be a random variable that follows a Pareto Type I distribution with
parameters α and x0. Given the cumulative function in Eq. 1.2 and the fact
that FXT

(VaRp (XT )) = p, it is possible to obtain that:

VaRp (XT ) = x0 (1 − p)− 1
α (1.6)

Then, we can compute the hierarchical relation between two Value-at-Risks
at two different quantiles:

VaRp (XT )
VaRq (XT )

=
x0 (1 − p)− 1

α

x0 (1 − q)− 1
α

=

(

1 − p

1 − q

)− 1
α

.

If we assume p > q, we know that the Value-at-Risk at quantile p will be
(

1 − p

1 − q

)− 1
α

bigger than the Value-at-Risk at quantile q.

Example 1

Assume that the loss distribution has x0 = 20 and α = 2, compute the Value-
at-Risk at 99% and the hierarchical relation between this quantile and the
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quantile at 99.5%.

VaR0.99 (XT ) = 20 (1 − 0.99)− 1
2 = 200,

VaR0.995 (XT )
VaR0.99 (XT )

=
(1 − 0.995

1 − 0.99

)− 1
2

≈ 1.41.

The Value-at-Risk computed at quantile 99% is equal to 200 Euros, whereas
Value-at-Risk computed at 99.5% is approximately 1.41 times bigger than the
one computed at quantile 99%. �

Generalized Pareto distribution

Let XT be a random variable that follows a Generalized Pareto distribution
with three parameters: location µ, scale σ, and shape ξ. Given the cumulative
distribution function in Eq. 1.4 and the fact that FXT

(VaRp (XT )) = p, we
can obtain after few algebraic passages:

VaRp (XT ) = µ +
σ

ξ

(

(1 − p)−ξ − 1
)

. (1.7)

Example 2

Assume that the loss distribution has µ = 100, σ = 3, and ξ = 0.2, compute
the Value-at-Risk at 99%.

VaR0.99 (XT ) = 100 +
3

0.2

(

(1 − 0.99)−0.2 − 1
)

= 122.68.

The Value-at-Risk computed at the quantile 99% is equal to 122.68 Euros.
�

1.2.2 Tail Conditional Expectation

A risk measure that is more and more popular is the Tail Conditional
Expectation (TCE), also called Conditional Tail Expectation, Tail-VaR, or
Expected Shortfall, see for example Acerbi et al. (2001).

According to the report of the National Association of Insurance Com-
missioners (2007), TCE measures the amount of risk within the tail of a dis-
tribution of outcomes, expressed as the probability-weighted average of the
outcomes beyond a chosen point in the distribution. In other words, given a
threshold (usually the VaR at level p), the TCE measures the conditional mean
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Figure 1.5: Example of loss distribution with 95% VaR and Tail Conditional
Expectation.

value (Comité Européen des Assurances and Groupe Consultatif Actuariel Eu-
ropéen , 2007). A detailed description can be found in Society of Actuaries
(2000), and the axiomatic foundation can be found in Wang and Zitikis (2021).

Definition 4. Let FXT
(x) be the distribution function of losses over a fixed

period of time T , the TCE of the random variable XT is defined as the expected
value of all values higher than the threshold at percentile p of the distribution,
denoted by:

TCEp (XT ) = E [XT |XT ≥ VaRp (XT )] .

If the random variable is continuous, we can compute the TCE as follows:

TCEp (XT ) =
1

1 − p

∞
∫

VaRp(XT )

xfXT
(x)dx

=
1

1 − p

1
∫

p

VaRu (XT ) du. (1.8)

Figure 1.5 shows the notion of VaR and TCE together. Given a probability
density function of a loss, we show with a vertical line the value of VaR at
95%, equal to 7.39e. This indicates a 5% chance that we will lose at least this
amount. Moreover, it shows that the TCE computed at level p will always be
at least equal to the VaR computed at the same level. In this example, the
TCE is equal to 8.35e.
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Pareto Type I losses

Let XT be a random variable that follows a Pareto Type I distribution with
parameters α and x0. Using Eq. 1.6 and Eq. 1.8, we can write that:

TCEp (XT ) =
1

1 − p

1
∫

p

x0 (1 − u)− 1
α du.

=
x0

1 − p

[

α

1 − α
(1 − u)− 1

α
+1
]u=1

u=p

=
α

α − 1
VaRp (XT ) . (1.9)

We show that the TCE of a random variable that follows a Pareto Type
I distribution is a multiplier of the VaR, and the size is given by the shape
parameter α. We also notice that the hierarchical relation between two TCEs
at different orders is the same as the hierarchical relation between two VaR at
different orders.

Example 3

Assume that the loss distribution has x0 = 20 and α = 2, as in example 1.
Compute the TCE at 99%.

TCE0.99 (XT ) =
2

2 − 1
· 200 = 400

The Value-at-Risk computed at the quantile 99% is equal to 200 Euros as
showed in example 1 and the TCE at the same level is 2 times the Value-at-
Risk, i.e. 400 Euros. �

Generalized Pareto losses

Let XT be a random variable that follows a Generalized Pareto distribution
with three parameters: location µ, scale σ, and shape ξ. Given Eq. 1.7 that
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computes the VaR and Eq. 1.8 that gives the definition of TCE, we can write:

TCEp (XT ) =
1

1 − p

1
∫

p

(

µ +
σ

ξ

(

(1 − u)−ξ − 1
)

)

du.

=
1

1 − p



µ (1 − p) +
σ

ξ

[

1
ξ − 1

(1 − u)−ξ+1

]u=1

u=p

− σ

ξ
(1 − p)





= µ +
σ

ξ

(

(1 − p)−ξ

1 − ξ
− 1

)

. (1.10)

Example 4

Assume that the loss distribution has µ = 100, σ = 3, and ξ = 0.2, compute
the TCE at 99%.

TCE0.99 (XT ) = 100 +
3

0.2

(

(1 − 0.99)−0.2

1 − 0.2
− 1

)

= 132.10

The Value-at-Risk computed at the quantile 99% equals 122.68 Euros, as shown
in example 2, and the TCE at the same level is equal to 132.10 Euros. �

1.2.3 High-order Tail Conditional Expectation

The high-order Tail Conditional Expectation Indicator TCE(m)
p (XT ), also

called extended TCE, is a conditional higher-order moment of the probability
distribution under study XT . This new indicator is introduced in Faroni et al.
(2022).

Definition 5. Let XT be the distribution of the outcomes over a fixed period
T where losses are positive, and gains are negative values. The TCE(m)

p (XT ),
also called TCE at order m, is defined as:

TCE(m)
p (XT ) = E [Xm

t |XT ≥ VaRp (XT )] . (1.11)

As an illustration, TCE(2)
p (XT ) is a conditional non-central second-order

moment, where the condition is that losses exceed the 1 − p quantile. The
TCE(3)

p (XT ) is a conditional non-central third-order moment, and so on. On
another hand, when m = 1, TCE(1)

p (XT ) is the standard tail conditional ex-
pectation indicator described in Section 1.2.2.
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Because

E [Xm
T |XT ≥ V aRc(XT )] =

E

[

Xm
T 1XT ≥V aRc(XT )

]

Pr (XT ≥ V aRc(XT ))
,

the extended TCE indicator can be rewritten as follows:

TCE(m)
c (XT ) =

1
1 − c

E

[

Xm
T 1XT ≥V aRc(XT )

]

,

so that

TCE(m)
c (XT ) =

1
1 − c

+∞
∫

V aRc(XT )

xm dF (x), (1.12)

where c = F (V aRc(XT )).

Let us change variables as follows: F (x) = s, x = F −1(s) = V aRs(XT ),
and ds = dF (x). We readily obtain a third equivalent representation of the
extended TCE indicator:

TCE(m)
c (XT ) =

1
1 − c

1
∫

c

(V aRs(XT ))m ds. (1.13)

Note that another extended TCE indicator Ξ(m) can be found in the risk
management literature (see for instance Barczy et al. (2022)). This indicator
is defined by:

Ξ(m) =
m

1 − c

1
∫

c

(

s − c

1 − c

)m−1

VaRs(XT ) ds =
m

1 − c

1
∫

c

(

s − c

1 − c

)m−1

F −1(s) ds.

If we again change variables as follows: F (x) = s, x = F −1(s) = V aRs(XT ),
and ds = dF (x), we obtain:

Ξ(m) =
m

1 − c

+∞
∫

V aRc(XT )

(

F (x) − c

1 − c

)m−1

x dF (x).

All of these expressions are distinct from equations 1.11 to 1.13 and confirm
that Ξ(m) cannot be interpreted as a partial higher order moment, contrary to
the indicator examined here.
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Pareto Type I losses

Let XT be the losses distribution that follows a Type I Pareto distribution
whose parameters are α and x0. To compute TCE(m)

p (XT ), we apply the
definition in Eq. 1.12 using the probability density function in Eq. 1.1 which
leads us to write:

TCE(m)
p (XT ) =

1
1 − p

+∞
∫

VaRp(XT )

xm αxα
0

xα+1
dx.

Theorem 1. When losses are Pareto Type I distributed, the extended TCE
indicator admits the following expression:

TCE(m)
p (XT ) =

α

α − m
(VaRp(XT ))m (1.14)

when α > m.

Proof. See Appendix.

The hierarchical ratio between two TCE(m)
p computed at two different

quantiles is equal to the hierarchical ratio between two Value-at-Risk at dif-
ferent quantiles at power m, i.e.,

TCE(m)
p (XT )

TCE(m)
q (XT )

=

(

(VaRp(XT ))m

(VaRq(XT ))m

)

=

(

1 − p

1 − q

)− m
α

.

Example 5

Assume that the loss distribution has x0 = 20 and α = 2, as in example 1,
compute the TCE at 99% at order 2, 3, and 4.

TCE(2)
0.99 (XT ) =

2
2 − 1

· 2002 = 80, 000

TCE(3)
0.99 (XT ) =

2
2 − 1

· 2003 = 16, 000, 000

TCE(4)
0.99 (XT ) =

2
2 − 1

· 2004 = 3, 200, 000, 000

The Value-at-Risk computed at the quantile 99% equals 200 Euros, as shown in
example 1, and the TCE at the same level is 400 Euros, computed in example
3. Here, we show that the second non-central high-order moment is 80,000
Euros2, the third non-central high-order moment is 16,000,000 Euros3 and then
the fourth non-central high-order moment is 3,200,000,000 Euros4. We cannot
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compare their different values as they are expressed in different units. �

Generalized Pareto Losses

Let XT follows a generalized Pareto distribution with parameters ξ, µ, and
σ, we can obtain a quasi-closed formula for the extended TCE indicator using
the definition of the extended TCE at order m in Eq. 1.12 and the probability
density function in Eq. 1.3.

Theorem 2. In the GPD case, the extended TCE indicator can be computed
as follows:

TCE(m)
p (XT ) =

1

1 − p
·

+∞
∫

VaRp(XT )

xm 1

σ

(

1 +
ξ (x − µ)

σ

)

(

− 1
ξ

−1
)

dx

=
1

1 − p



− (−1)
−
(

m− 1
ξ

+1
)

1

ξ

Γ
(

−m + 1
ξ

)

Γ (m + 1)

Γ
(

1 + 1
ξ

)

(

µξ − σ

σ

)− 1
ξ
(

µξ − σ

ξ

)m

− (1 − p)
(VaRp(XT ))m+1

(m + 1) · (σ − µξ)
2F1

(

1, m − 1

ξ
+ 1; m + 2;

VaRp(XT ) ξ

µξ − σ

)

]

,

(1.15)

where 2F1(·, ·; ·; ·) is the hypergeometric function, Γ(·) is the gamma function,

0 < ξ < 1
m

, and VaRp(XT ) = µ + σ
ξ

(

(1 − p)−ξ − 1
)

.

Proof. See Appendix.

To numerically solve Eq. 1.15, the following three conditions must be met:

• 0 < ξ < 1
m

, to ensure the convergence of the integral in Eq. 1.15 and to
avoid the appearance of complex numbers in Eq. 1.15.

• (−1)−m− 1
ξ

+1 ·
(

µξ−σ

σ

)− 1
ξ has to be a real number to avoid the appearance

of complex numbers in Eq. 1.15.

•

∣

∣

∣

∣

∣

VaRp ξ

µξ − σ

∣

∣

∣

∣

∣

< 1, which is a necessary property of the fourth parameter of

the hypergeometric function.

Example 6

Assume that the loss distribution has µ = 100, σ = 3 and ξ = 0.2, compute
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the TCE at order 2, 3, and 4 at a percentile of 99%.

TCE(2)
0.99 (XT ) = 17, 597

TCE(3)
0.99 (XT ) = 2, 372, 049

TCE(4)
0.99 (XT ) = 326, 010, 258

In this example, we see that the TCE at order 2 is equal to 17,597 Euros2, the
TCE at order 3 is equal to 2,372,049 Euros3 and the TCE at order 4 is equal
to 326,010,258 Euros4. We cannot compare their values as they are expressed
in different units. �

1.2.4 Examples

In this section, we compute Value-at-Risk, TCE, and high-order TCE using
the formulas obtained from the previous section in the case of Pareto Type I
distribution and Generalized Pareto distribution using different parameters
of either the Pareto Type I distribution or Generalized Pareto distribution.
This section aims to analyze the effect of distribution parameters on the risk
measures computation.

Pareto Type I Losses

Let XT be the losses distribution that follows a Pareto type I distribution.
Table 1.1 shows the computation of risk measures with different α (cases I
and II), different x0 (cases I and III), and different quantiles (cases I and IV).
This confrontation allows us to interpret the Pareto Type I parameters more
exhaustively.

We show in Section 1.1.1 that α is inversely proportional to extreme risks.
This is also confirmed here as an increase of α is translated into a decrease in
the risk measure. In this specific example, when the shape parameter halves,
the TCE is 4.74 times bigger, and the extended TCE at order 4 is 150 times
bigger.

Furthermore, an increase of the minimum possible value, x0, increases the
risk measure. When x0 is multiplied by 2, the VaR and TCE are multiplied
by 2, whereas the higher-order TCE is multiplied by 2m.

Finally, we notice that an increase in the percentile will increase the risk
measures because we are considering more extreme risks in our computation.
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Case α x0 p VaRp TCEp TCE(2)
p TCE(3)

p TCE(4)
p

I 2 20 0.99 200 400 80,000 16,000 3,200,000,000
II 4 20 0.99 63 84 5,333 337,309 21,333,333
III 2 10 0.99 100 200 20,000 2,000,000 200,000,000
IV 2 20 0.995 282 565.69 160,000 45,254,834 12,800,000,000

Table 1.1: Risk Measures computed with different parameters assuming that
losses follow a Pareto type I distribution. Numbers are truncated.

Case µ σ ξ p VaRp TCEp TCE(2)
p TCE(3)

p TCE(4)
p

I 100 3 0.2 0.99 122 132 17,597 2,372,049 326,010,258
II 100 3 0.1 0.99 117 122 15,122 1,866,586 231,086,590
III 100 6 0.2 0.99 145 164 27,551 4,784,955 892,276,963
IV 200 3 0.2 0.99 222 232 54,017 12,614,304 2,959,085,291
V 100 3 0.2 0.995 128 139 19,544 2,785,588 406,902,010

Table 1.2: Risk Measures computed with different parameters assuming that
losses follow a generalized Pareto distribution. Numbers are truncated.

Generalized Pareto Losses

Let XT follow a Generalized Pareto distribution with three parameters:
location µ, scale σ, and shape ξ. Table 1.2 shows the computation of risk
measures with different ξ (cases I and II), different σ (cases I and III), different
µ (cases I and IV), and different quantiles (cases I and V).

We demonstrate that when ξ increases, the risk measure increases as the
losses modeled are more unequal and there are more extreme losses. The
parameter ξ is used to model the shape parameter, i.e., the riskiness of the
market. This interpretation goes together with the parameter α of the Pareto
Type I distribution.

Next, an increase in the location parameter µ and the scale parameter σ
leads to an increase in the risk measures. The risk measures are more sensitive
to µ than σ.

Finally, when the percentile used increases, the risk measure increases as
we are more interested in extreme risks.

1.3 Risk Measures and Regulation

No unique risk measure is identified as the “best” risk measure, leading to
different opinions among regulators. Even though the regulatory purpose is
the same for each regulator, i.e., to make capital available for absorbing losses
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occurring in events of significant financial losses that could bring insolvency,
regulators only agree on using a risk measure related to the behavior of tails
of the probability distribution of a firm’s financial results.

Some regulators impose the use of quantiles of the distribution (Value-at-
Risk), while others impose the use of partial moments (TCE). Furthermore,
regulators also differ in their time horizon and confidence level choice.

A comparison of different regulatory regimes for insurance companies can
be found in Comité Européen des Assurances and Mercer Oliver Wyman Lim-
ited (2005) and Comité Européen des Assurances and Groupe Consultatif Ac-
tuariel Européen (2007). The European Union’s regulation is given by Sol-
vency II, which imposes risk-based capital requirements computed using the
VaR over a one-year period and with a confidence level of 99.5%. When Sol-
vency II was designed, the banking regulation Basel II decided to adopt VaR
as a risk measure for capital requirement purposes. However, the credit crisis
of 2008 exposed the weaknesses of VaR, and a new system of capital regulation
for banking has been developed, Basel III (see Basel Committee on Banking
Supervision (2019) and Basel Committee on Banking Supervision (2022)). We
refer the reader to Gatzert and Wesker (2011) for comparing Solvency II and
Basel regulations.

Solvency II has become a model for risk-based capital requirements world-
wide in the insurance world. However, the United States is one major exception
to this trend primarily because the U.S. model was developed before the intro-
duction of Solvency II. The U.S. model is designed around a formula provided
by the regulatory body, the National Association of Insurance Commissioners
(NAIC) (see also National Association of Insurance Commissioners (2007) on
ORSA perspectives).

The Canadian regulation of insurance capital differs from that of the Eu-
ropean Union, and it is based on the firm’s risk assessment in the context of
specific extreme events. Canada’s Office of Supervision of Financial Institu-
tions (OSFI) risk assessment process begins with an evaluation of the inherent
risk within each significant activity of an insurer, and the quality of risk man-
agement applied to mitigate these risks (see Canada Office of Supervision of
Financial Institutions (2022)). After considering this information, OSFI iden-
tifies the level of net risk and the rating trend for each significant activity to
see if it is increasing, stable, or decreasing. The combination of the net risk
of each significant activity will compute the overall net risk of the insurer.
Moreover, OSFI provides additional capital requirement guidelines that must
be included in the insurer’s risk and solvency assessment.

In the cases of both the United States and Canada, there is significant
regulatory involvement in the supervision of risk-based capital. In contrast,
in the case of the European Union and Switzerland, the regulation is more
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principle-based. The Swiss regulation includes the use of a capital standard
together with stress-testing of specific extreme scenarios. The capital standard
is based on the Tail Conditional Expectation at 99% over a period of 1 year.

Over the years, new alternatives to evaluate risks are arising due to the
weaknesses of VaR and its lack of coherence (discussed in Chapter 2). Rostek
(2010) defines a model of preferences in which, given beliefs about uncertain
outcomes, an individual evaluates an action by a quantile of the induced dis-
tribution. Fadina et al. (2021) designed a unified axiomatic framework for
risk evaluation principles that jointly quantify a random loss variable and a
set of plausible probabilities. Faroni et al. (2022) provides the extended TCE
described in Section 1.2.3.

Fuchs et al. (2017) show that a notion of a quantile risk measure is a natural
generalization of that of a spectral risk measure and provides another view of
the distortion risk measures generated by a distribution function on the unit
interval. They prove several results on quantile risk measures in this setting.
Finally, Denuit et al. (2006) provide a comprehensive review or modeling risk
in incomplete markets, emphasizing insurance risks, expanding on and com-
bining in a comprehensive review the existing literature on quantitative risk
management.

1.4 Relation between Risk Measures

As it does not exist a general risk measure adopted worldwide, we want
to understand how regulators choose such or such risk indicators for solvency
computations.

Li and Wang (2022) noted that the Basel Committee on Banking Super-
vision proposed the shift from the 99% VaR to the 97.5% TCE for internal
models in market risk assessment (see Basel Committee on Banking Super-
vision (2022)). Using this idea, Li and Wang introduce a new distributional
index, the Probability Equivalent Level of VaR and ES (PELVE), which iden-
tifies the balancing point for the equivalence between VaR and TCE. This
new indicator has interesting theoretical properties and can distinguish empir-
ically heavy-tailed distributions from light-tailed ones. A generalization of the
PELVE measure and the application of a high-order TCE is given by Barczy
et al. (2022). We show that the extended TCE introduced in Section 1.2.3
differs from the high-order TCE presented in Barczy et al. (2022). Another in-
dicator related to monotone risk measure is given in Fiori and Rosazza Gianin
(2021).

The results described in the following sections and presented in the paper
by Faroni et al. (2022) are developed independently from the previous stream
of papers. We did not introduce an intermediate indicator to compare the
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different risk measure quantiles.
The goal of this section is to study the relationship between different risk

measure confidence intervals in order to understand the implicit utility func-
tion of insurance regulators and to understand how equivalent risk valuation
systems can be put in place, but we do so without introducing any utility
function. We know that the regulations put in place are not full results of a
particular intent but rather of a political process, so what we determine may
not be the output of an actual utility function of a specific regulator. How-
ever, making the implicit functioning of existing regulations explicit should be
a valuable contribution to assuring that regulations function in an effective
and efficient manner.

First, we study the relation between VaR and TCE in Section 1.4.1. Then,
we study the relationship between the new high-order indicator and the VaR
in Section 1.4.2. Finally, Section 1.4.3 examines equivalence results between
the quantiles of extended TCE, with a specific analysis of equivalence between
TCE and extended TCE at order m.

1.4.1 Relation between VaR and TCE

In this subsection, we focus on the comparison between VaR and TCE.
This can be seen by comparing two regulation systems: Solvency II and the
Swiss Solvency Test (SST). The SST was implemented in 2004 and preceded
Solvency II, but in 2015 the European Union recognized the SST as the first
regime to be fully equivalent to Solvency II. From a risk measure point of
view, Solvency II imposes a capital requirement computed using VaR over a
1-year period and a confidence level of 99.5%. In contrast, SST uses TCE with
a confidence level of 99% over a 1-year period. As both risk measures use a
1-year period, we can concentrate our analysis on the confidence level adopted
for both risk measures.

If we compute VaR and TCE using the same quantile, TCE will always
be higher or equal than VaR by construction. However, the quantiles for VaR
and TCE are usually chosen to be different by regulators (see Solvency II and
SST, for example). We study which relation should exist between these two
quantiles. Specifically, we examine how it is possible to find c and q such that
VaRq = TCEc, where q > c.

Let XT be a random variable that follows a generalized Pareto distribution
with three parameters as described in Section 1.1.2. VaRq(XT ) and TCEc(XT )
can be rewritten as a function of parameters as shown in Eq. 1.7 and Eq. 1.10,
respectively. Thus, TCEc(XT ) = VaRq(XT ) is equivalent to

µ +
σ

ξ

(

(1 − c)−ξ

1 − ξ
− 1

)

= µ +
σ

ξ

(

(1 − q)−ξ − 1
)

.
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Figure 1.6: TCE quantile as a function of VaR quantile.

Using the above equality, we can relate the quantilies c and q as follows.

Theorem 3. In the generalized Pareto framework, the quantile of TCE and
the quantile of VaR obey the following relationship when the two risk indicators
are equal:

c = 1 − (1 − ξ)− 1
ξ · (1 − q) (1.16)

where 0 < ξ < 1.

Note that Eq. 1.16 depends on ξ, but not on µ or σ. Also note that if ξ = 1
α
,

the result obtained using the generalized Pareto distribution boils down to an
identical result in the subcase of Pareto Type I distribution2.

Next, Figure 1.6 illustrates Theorem 3 where we plot the TCE quantile c as
a function of its equivalent VaR quantile q. We plot this relation for different
values of the market risk parameter ξ where ξ takes values between 0.01 and
0.99. We recall that a higher value of ξ is equivalent to an increased presence of
extreme risks in the distribution used. We only concentrate on high values of
VaR and TCE quantiles as we study the equivalence from a risk management
point of view.

When there is more extreme risk in the market, i.e., when ξ tends to 1, the
VaR quantile has to be a number close to 1, whereas the TCE quantile can
take a broad range of values between 0.9 and 1.

This means that, in the presence of extreme risk, there is a large variability
in the choice of the TCE quantile, making it a difficult choice for the regulator.
Conversely, the VaR quantile is easy to set as the regulator only needs to choose
a sufficiently high value.

2Knowing that VaRq(XT ) and TCEc(XT ) can be rewritten as Eq. 1.6 and Eq. 1.9

respectively, we can rewrite the relation between the two quantiles as α
α−1 x0(1 − c)−

1
α =

x0(1 − q)−
1
α that can easily conduct to Eq. 1.16
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However, we do not observe this feature when ξ is small, where many
different values are considered admissible by both VaR and TCE quantiles,
and where these two quantiles vary linearly.

Figure 1.6 also illustrates that many of the solutions to Theorem 3 are
consistent with Solvency II and the Swiss Insurance regulations. However, the
two regulations are inconsistent. For example, given the VaR quantile equal
to 99.5% (Solvency II), the corresponding TCE quantile should be lower than
the quantile chosen by the Swiss regulation. This would lead us to say that
the implicit utility function of the Swiss regulator is more risk-averse than the
one of Solvency II.

1.4.2 Relation between VaR and high-order TCE

This subsection studies the equivalence relation of high-order TCE with
Value-at-Risk. This study is done using two different approaches. First, we
study the quantiles that allow us to have the two risk measures equal, and
then, we study the relation that allows us to have the risk measures equal, as-
suming that they are expressed in the same unit. This is called a homogeneous
comparison, as we compare two measures with the same unit, i.e., euro with
euro.

Using risk measure equivalence

We examine how it is possible to find a relation between c and q such that

VaRq(XT ) = TCE(m)
c (XT ).

Pareto Distributed Losses Suppose that XT follows a Type I Pareto dis-
tribution where VaR is given in Eq. 1.6 and the high-order TCE is given in
Eq. 1.14. We deduce that VaRq(XT ) = TCE(m)

c (XT ) is equivalent to

α

α − m
(VaRc(XT ))m − VaRq(XT ) = 0. (1.17)

This equation allows us to find the relation between the extended TCE and
the VaR quantile.

Theorem 4. In the Pareto framework, the extended TCE quantile (c) and the
VaR quantile (q) obey the following relationship when the two risk indicators
are equal:

c = 1 −
(

(α − m) x1−m
0

α

)− α
m

(1 − q)
1
m , (1.18)

where α > m.
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Proof. See Appendix.

For consistency with the generalized Pareto approach, we rewrite the pre-
vious equation as:

c = 1 −
(

(1 − mξ) x1−m
0

)− 1
mξ (1 − q)

1
m

where 0 < ξ < 1
m

and knowing that ξ = 1
α
.

It appears that Eq. 1.18 generalized the result of Theorem 3 in the case of
Pareto Type I distribution.
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Figure 1.7: Extended TCE quantile as a function of VaR quantile. Left panel:
m = 2 and x0 = 1. Right panel: m = 2 and x0 = 5.

Figure 1.7 shows the high-order TCE quantile as a function of the VaR
quantile for different values of the risk parameter ξ. In the left panel, the
minimum value of the distribution is equal to x0 = 1, while in the right panel,
the value is equal to x0 = 5. Both panels assume m = 2.

We see that a higher value of ξ leads to more complex situations as there
is more extreme risk in the market to be considered. In this case, the VaR
quantile takes a value closer to one, while the high-order TCE quantile can
take a broad range of values. Moreover, Figure 1.7 shows that a higher value of
x0 leads to an even more complex situation where the VaR quantile would lead
to the worst-case scenario. Thus, when the Value-at-Risk cannot distinguish
between extreme risk situations, a more sophisticated indicator, such as the
extended TCE indicator, can produce such a distinction.

Figure 1.8 is constructed similarly to Figure 1.7, but both panels are now
computed using m = 3. When we increase m, we are giving more importance
to extreme risks, and we show that the curves are pushed to the right for higher
values of m by comparing Figures 1.7 and 1.8. Thus, varying the value of m
allows us to construct risk indicators that are more or less sensitive to extreme
risks.

GPD Losses Suppose XT follows a generalized Pareto distribution with its
three parameters where the VaR equation is given in Eq. 1.7 and the extended
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Figure 1.8: Extended TCE quantile as a function of VaR quantile. Left panel:
m = 3 and x0 = 1. Right panel: m = 3 and x0 = 5.

TCE equation is given in Eq. 1.15.
Although Eq. 1.15 does not admit a closed-form solution, we numerically

solve the equation:
VaRq(XT ) = TCE(m)

c (XT ).

to show the relation between the TCE(m) quantile and the VaR quantile, as a
function of order m and of the three generalized Pareto distribution parameters
ξ, µ, and σ.

Figure 1.9 shows the relation between the extended TCE and the VaR
quantiles when m = 2 and σ = 0.1. The left panel of the figure presents the
situation where the location parameter is equal to µ = −0.05, while the right
panel presents µ = 0.05.
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Figure 1.9: Extended TCE quantile as a function of VaR quantile. Left panel:
m = 2, σ = 0.1, and µ = −0.05. Right panel: m = 2, σ = 0.1, and µ = +0.05.

Figure 1.9 shows that µ substantially impacts quantile dependences. When
µ is high, the relation between indicator quantiles becomes nearly linear, which
is an ideal situation from a risk management viewpoint.

Next, we plot in Figure 1.10 the relation between the high-order TCE and
the VaR quantiles when m = 2 and µ = 0. The left panel of the figure presents
the situation where σ = 0.1, while the right panel presents the situation where
σ = 0.4. We see that the relation is quasi-linear for small-scale parameter
values, which is the ideal situation.

Finally, we plot the relation between TCE(m) and the VaR quantiles when
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Figure 1.10: Extended TCE quantile as a function of VaR quantile. Left panel:
m = 2, σ = 0.1, and µ = 0. Right panel: m = 2, σ = 0.4, and µ = 0.

m = 3 and µ = 0 in Figure 1.11. We set σ = 0.1 in the left panel and
σ = 0.4 in the right panel. Figures 1.10 and 1.11 change only in the order of
the parameter m.
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Figure 1.11: Extended TCE quantile as a function of VaR quantile. Left panel:
m = 3, σ = 0.1, and µ = 0. Right panel: m = 3, σ = 0.4, and µ = 0.

From the comparison of Figures 1.10 and 1.11, we show that higher values
of the order parameter m lead to a more complex situation from a risk man-
ager point of view, that is mainly because we are giving more importance to
extreme events. Moreover, the presence of extreme risk in the system makes
risk management more complicated in the sense that choosing an indicator
quantile becomes a more critical and sensitive decision.

Using risk measure equivalence and homogeneous comparison

In the previous subsection, we studied the quantile equivalence between
two risk measures; however, VaR is expressed in a unit of money, whereas the
high-order TCE is expressed in unitm of money. We study the equivalence
between these two risk measures when both of them are expressed in the same
unit of money, i.e.

VaRq(XT ) =
(

TCE(m)
c (XT )

)
1
m .

Pareto Distributed Losses Let XT follow a Pareto Type I distribution
with parameter x0 and α. where VaR is given in Eq. 1.6 and the high-order
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TCE is given in Eq. 1.14. We can write the previous relation as

(

α

α − m
(VaRc(XT ))m

)
1
m − VaRq(XT ) = 0. (1.19)

Theorem 5. In the Pareto framework, the extended TCE quantile (c) and the
VaR quantile (q) obey the following relationship when the two risk indicators
are equal and expressed in the same unit of money:

c = 1 −
(

α

α − m

)
α
m

(1 − q) (1.20)

where α > m.

Proof. See Appendix.

For consistency with the generalized Pareto approach, we rewrite the pre-
vious equation as:

c = 1 −
(

1
1 − mξ

)
1

mξ

(1 − q)

where 0 < ξ < 1
m

and knowing that ξ = 1
α
.

Figure 1.12 shows the relation described in Eq. 1.20, which is the relation
between the high-order TCE scaled at the unit and the Value-at-Risk. The
relation between the two is linear, and we note that the parameter x0 does not
play a role in this relation. We see that a higher order of m tends to push the
line on the right, which means that the risk manager should consider a higher
VaR quantile given the same high-order TCE quantile. As before, an increase
of ξ will translate into a complex situation where the VaR quantile takes a
value close to one.
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Figure 1.12: Extended TCE quantile at power 1/m as a function of VaR
quantile. Left panel: m = 2. Right panel: m = 3.
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GPD Losses Suppose XT follows a generalized Pareto distribution with its
three parameters where the VaR equation is given in Eq. 1.7 and the extended
TCE equation is given in Eq. 1.15.

Although Eq. 1.15 does not admit closed-form solutions, we numerically
solve the equation:

VaRq(XT ) =
(

TCE(m)
c (XT )

)
1
m .

Figure 1.13 plot the relation between the extended TCE quantile at power
1/m as a function of the VaR quantile. The location parameter shifts the
curves to the right when it increases.
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Figure 1.13: Extended TCE quantile at power 1/m as a function of VaR
quantile. Left panel: m = 2, σ = 0.1, and µ = −0.05. Right panel: m = 2,
σ = 0.1, and µ = +0.05.

Next, we plot in Figure 1.14 the same relation when m = 2 and µ = 0.
The left panel of the figure presents the situation where σ = 0.1, while the
right panel presents the situation where σ = 0.4. The figure shows that, even
though it is not clear from the equation, the parameter σ does not influence
the relation between the extended TCE quantile at power 1/m and the VaR
quantile.
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Figure 1.14: Extended TCE quantile power 1/m as a function of VaR quantile.
Left panel: m = 2, σ = 0.1, and µ = 0. Right panel: m = 2, σ = 0.4, and µ = 0.

Finally, Figure 1.15 shows the relationship when m is bigger compared to
Figure 1.14. We show that when m increases, the VaR quantile is closer to 1,
and the decision of the quantile is tedious for the risk manager.

59



CHAPTER 1 EQUIVALENT RISK INDICATORS

0 0.2 0.4 0.6 0.8 1

VaR quantile (q)

0

0.5

1

(T
C

E
(m

) )(1
/m

)  q
u
a
n
ti
le

 (
c
)

0.10

0.20

Value of 

Figure 1.15: Extended TCE quantile power 1/m as a function of VaR quantile
with m = 3, σ = 0.1, and µ = 0.

1.4.3 Relation between high-order TCEs

In this subsection, we study the relation between the quantiles q(m) and
q(n) of distinct extended tail conditional expectation indicators, where each
indicator is associated with a different order m or n. This study is done using
two different approaches. First, we study the quantiles that allow us to have
the risk measures equal, and then we study the relation that allows us to have
the two risk measures equal and expressed with the same unit. This second
approach is identified as a homogeneous comparison.

For both situations we will study the sub-case where TCE is compared
with a high-order TCE.

Using risk measure equivalence

We study
TCE(m)

q(m)(XT ) = TCE(n)

q(n)(XT ).

Pareto Distributed Losses Suppose we model losses as a Type I Pareto
distribution, we can compute TCE(m)

q(m) using Eq. 1.14 where α > m. Then, we
can compare two different extended TCE as follows:

α

α − m

(

VaRq(m)(XT )
)m

=
α

α − n

(

VaRq(n)(XT )
)n

,

where
VaRq(m)(XT ) = x0

(

1 − q(m)
)− 1

α .

We obtain:

α

α − m
xm

0

(

1 − q(m)
)− m

α =
α

α − n
xn

0

(

1 − q(n)
)− n

α ,
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which leads us to:

q(n) = 1 −
(

α − n

α − m
xm−n

0

)− α
n
(

1 − q(m)
)− m

n (1.21)

where α > m, α > n, and x0 > 0.
Then, we denote ξ = 1

α
, we can rewrite the previous equation as in the

following theorem.

Theorem 6. When losses follow a classic Pareto distribution, the quantiles of
high order TCEs that solve Eq. 1.4.3 can be related as follows:

q(n) = 1 −




1
ξ

− m
1
ξ

− n





1
ξn

x
n−m

ξn

0

(

1 − q(m)
)− m

n , (1.22)

where 0 < ξ < 1
m

, 0 < ξ < 1
n
, and x0 > 0.

We now illustrate this theorem.
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Figure 1.16: Extended TCE quantile at order n = 2 as a function of extended
TCE quantile at order m = 5. Left panel: x0 = 1. Right panel: x0 = 2.

Figure 1.16 plots the relation between the quantiles q(m) and q(n) when
m = 5 and n = 2. The left panel of the figure shows the situation where
x0 = 1, while the right panel shows the situation where x0 = 2.

The left panel of Figure 1.16 can be interpreted as follows. For instance,
the relation between the high-order quantiles is countermonotonic, contrary
to the relation between the TCE and VaR quantiles. This means that a high
value of q(m) corresponds to a small value of q(n), and conversely.

This feature is a consequence of high-order TCEs concentrating on different
parts of probability tails. Thus, the figure shows us that a manager that
reduces high-order extreme risks at a given order, say m, is not simultaneously
reducing high-order extreme risks at another order, say n. The right panel of
the figure tells us that this aspect is even more pronounced for higher values
of x0.
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We now come to the specific case where n = 1, that is to the study of the
relation between TCE and a higher order TCE:

α

α − 1
(VaRq(XT ))1 =

α

α − m

(

VaRq(m)(XT )
)m

.

Eq. 1.21 becomes

q = 1 −
(

α − m

(α − 1) xm−1
0

)α
(

1 − q(m)
)−m

,

when α > m and x0 > 0. Similarly, Eq. 1.22 becomes

q = 1 −




1
ξ

− m
(

1
ξ

− 1
)

xm−1
0





1
ξ
(

1 − q(m)
)−m

when 0 < ξ < 1
m

and x0 > 0.

Figure 1.17 shows the relation between the TCE and high-order TCE quan-
tile when m = 2. The left panel of the figure shows the situation where x0 = 1,
while the right panel shows the situation where x0 = 2.
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Figure 1.17: TCE quantile as a function of extended TCE quantile at order 2.
Left panel: x0 = 1. Right panel: x0 = 2.

Figure 1.17 confirms the results of Figure 1.16. Reducing risks using TCE
does not necessarily reduce risks as measured by a high order TCE, and con-
versely. Again, this effect is more pronounced for higher values of x0.

GPD Losses Let us now consider to the more general situation where losses
are modeled using a generalized Pareto distribution. Our goal is to solve Eq.
1.4.3 when the extended TCE indicator TCE(m)

q(m) is given by Eq. 1.15. Thus,
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to derive the relation between q(m) and q(n), we numerically solve:

1
1 − q(m)



− (−1)−(m− 1
ξ

+1) 1
ξ

Γ
(

−m + 1
ξ

)

Γ (m + 1)

Γ
(

1 + 1
ξ

)

(

µξ − σ

σ

)− 1
ξ
(

µξ − σ

ξ

)m

−
(

1 − q(m)
)

(

VaRq(m)(XT )
)m+1

(m + 1) · (σ − µξ) 2F1

(

1, m − 1
ξ

+ 1; m + 2;
VaRq(m)(XT ) ξ

µξ − σ

)







=
1

1 − q(n)



− (−1)−(n− 1
ξ

+1) 1
ξ

Γ
(

−n + 1
ξ

)

Γ (n + 1)

Γ
(

1 + 1
ξ

)

(

µξ − σ

σ

)− 1
ξ
(

µξ − σ

ξ

)n

−
(

1 − q(n)
)

(

VaRq(n)(XT )
)n+1

(n + 1) · (σ − µξ) 2F1

(

1, n − 1
ξ

+ 1; n + 2;
VaRq(n)(XT ) ξ

µξ − σ

)







(1.23)

Figure 1.18 plots the relation between the quantiles q(m) and q(n) when
m = 5, n = 2 and σ = 0.1. The left panel of the figure shows the situation
where µ = −0.05, while the right panel of the figure shows the situation where
µ = 0.05.
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Figure 1.18: Extended TCE quantile at order n = 2 as a function of extended
TCE quantile at order m = 5 with σ = 0.1. Left panel: µ = −0.05. Right panel:
µ = +0.05.

From Figure 1.18, we deduce that the link between the high-order TCE
quantiles is linear when σ = 0.1 so that this parameter of the GPD distribution
is not problematic. By comparing the two panels of the figure, we see that
the parameter µ has little effect on the curves linking the high-order TCE
quantiles.

Figure 1.19 plots the relation between the quantiles q(m) and q(n) when
m = 5, n = 2, and µ = 0. The left panel of the figure shows the situation
where σ = 0.1, while the right panel shows the situation where σ = 0.4.

Figure 1.19 shows us that high values of σ can yield problematic links
between the high-order TCE quantiles, hinting at probability tails that are
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Figure 1.19: Extended TCE quantile at order n = 2 as a function of extended
TCE quantile at order m = 5 with µ = 0. Left panel: σ = 0.1. Right panel:
σ = 0.4.

quantified differently by different high-order TCE indicators.
We now come to the specific case where n = 1 is the study of the relation

between TCE and a higher-order TCE. In that case, the solutions are also
numerically obtained by solving Eq. 1.23.
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Figure 1.20: TCE quantile as a function of extended TCE quantile at order
m = 2 with σ = 0.1. Left panel: µ = −0.05. Right panel: µ = +0.05.

Figure 1.20 plots the relation between the quantiles q(m) and q when m = 2
and σ = 0.1. The left panel of the figure shows the situation where µ = −0.05,
while the right panel shows the situation where µ = 0.05.

Figure 1.20 tells us that the link between the second-order TCE quantile
and the TCE quantile is close-to-linear when σ = 0.1, so that, again, this
parameter of the GPD distribution is not problematic when it is not set to a
high value.

By comparing the two panels of Figure 1.20, we see, as in Figure 1.18,
that large variations of the parameter µ have a pretty limited impact on the
position of the curves relating a high order TCE quantile to the TCE quantile.

Figure 1.21 plots the relation between the quantiles q(m) and q when m = 2
and µ = 0. The left panel of the figure shows the situation where σ = 0.1,
while the right panel shows the situation where σ = 0.4.

Figure 1.21 confirms the conclusion of Figure 1.19. Specifically, high values
of σ can yield problematic links between a high-order TCE quantile and the
TCE quantile.
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Figure 1.21: TCE quantile as a function of extended TCE quantile at order
m = 2 with µ = 0. Left panel: σ = 0.1. Right panel: σ = 0.4.

Using risk measure equivalence and homogeneous comparison

We also study the situation where we compare the two risk measure using
the same unit, i.e.

(

TCE(m)

q(m)(XT ))
)

1
m =

(

TCE(n)

q(n)(XT )
)

1
n . (1.24)

Pareto Distributed Losses Suppose we model losses as a Type I Pareto
distribution, we can compute TCE(m)

q(m) using Eq. 1.14 where α > m. Then, we
can compute Eq. 1.24 as follows:

(

α

α − m

(

VaRq(m)(XT )
)m
)

1
m

=
(

α

α − n

(

VaRq(n)(XT )
)n
)

1
n

,

where
VaRq(m)(XT ) = x0

(

1 − q(m)
)− 1

α .

We obtain:

(

α

α − m

)
1
m
(

1 − q(m)
)− 1

α =
(

α

α − n

)
1
n
(

1 − q(n)
)− 1

α

which leads us to:

q(n) = 1 −
(

α

α − n

)
α
n
(

α

α − m

)− α
m

(1 − q(m)) (1.25)

where α > m and α > n and we note that the equation does not depends on
x0.

Then, we denote ξ = 1
α
, we can rewrite the previous equation as in the

following theorem.

Theorem 7. When losses follow a classic Pareto distribution, the quantiles of
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high order TCEs that solve Eq. 1.24 can be related as follows:

q(n) = 1 − 1
1 − nξ

1
nξ

(1 − mξ)
1

mξ

(

1 − q(m)
)

(1.26)

where 0 < ξ < 1
m

and 0 < ξ < 1
n
.

Figure 1.22 shows Eq. 1.26. In the left panel, we plot the extended TCE
quantile at order n = 2 as a function of extended TCE quantile at order m = 5,
while in the right panel, the TCE quantile as a function of extended TCE
quantile at order m = 2. In the Pareto Type I distribution case, the relation
is linear and does not depend on the minimum value of the distribution, x0.
This is an ideal situation for the regulator as the two quantiles are linearly
related, and they only depend on the riskiness of the market, i.e., ξ.
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Figure 1.22: Left panel: Extended TCE quantile at order n = 2 as a function
of extended TCE quantile at order m = 5. Right panel: TCE quantile as a
function of extended TCE quantile at order m = 2.

GPD Losses In a more general situation, we assume losses follow a gener-
alized Pareto distribution. The aim is to solve Eq. 1.24 when the extended
TCE indicator TCE(m)

q(m) is given by Eq. 1.15. For this reason, to derive the
relation between q(m) and q(n), we need to numerically solve:
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1
1 − q(m)



− (−1)−(m− 1
ξ

+1) 1
ξ

Γ
(

−m + 1
ξ

)

Γ (m + 1)

Γ
(

1 + 1
ξ

)

(

µξ − σ

σ

)− 1
ξ
(

µξ − σ

ξ

)m

−
(

1 − q(m)
)

(

VaRq(m)(XT )
)m+1

(m + 1) · (σ − µξ) 2F1

(

1, m − 1
ξ

+ 1; m + 2;
VaRq(m)(XT ) ξ

µξ − σ

)













1
m

=





1
1 − q(n)



− (−1)−(n− 1
ξ

+1) 1
ξ

Γ
(

−n + 1
ξ

)

Γ (n + 1)

Γ
(

1 + 1
ξ

)

(

µξ − σ

σ

)− 1
ξ
(

µξ − σ

ξ

)n

−
(

1 − q(n)
)

(

VaRq(n)(XT )
)n+1

(n + 1) · (σ − µξ) 2F1

(

1, n − 1
ξ

+ 1; n + 2;
VaRq(n)(XT ) ξ

µξ − σ

)













1
n

(1.27)
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Figure 1.23: Extended TCE quantile at power 1/n at order n = 2 as a function
of extended TCE quantile at power 1/m at order m = 5 with σ = 0.1. Left panel:
µ = −0.05. Right panel: µ = +0.05.

Figure 1.23 plots the relation between the quantiles when m = 5, n = 2,
and σ = 0.1. The left panel shows the situation where µ = −0.05, while the
right panel of the figure shows the situation where µ = 0.05. We can deduce
from this figure that the parameter µ has little effect on the relation linking
the high-order TCE quantiles.

Then, Figure 1.24 shows the relationship in Eq. 1.27 when m = 5, n = 2,
and µ = 0. In the left panel, σ = 0.1, while in the right panel, we plot the
situation where σ = 0.4. Even though it is not immediate to see from the
equation, the parameter σ has no effect on this relation.

Finally, Figure 1.25 shows the study of the relation between TCE and a
higher-order TCE at power 1/m when m = 2. The figure shows the situation
where σ = 0.1 and µ = −0.05 in the left panel, while the right panel shows
µ = 0.05. As noticed before, a variation of the parameter µ has a pretty limited
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Figure 1.24: Extended TCE quantile at power 1/n at order n = 2 as a function
of extended TCE quantile at power 1/m at order m = 5 with µ = 0. Left panel:
σ = 0.1. Right panel: σ = 0.4.

impact on the position of the curves relating a high-order TCE quantile to the
TCE quantile.
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Figure 1.25: TCE quantile as a function of extended TCE quantile at power
1/m at order m = 2 with σ = 0.1. Left panel: µ = −0.05. Right panel: µ = 0.05.

1.5 Conclusion

We end this chapter with a brief illustration based on actual data from a fire
insurance claim data set, labeled “beaonre” within the R package CASdatasets.
This dataset includes 1823 observations of fire insurance claims from the year
1997. We transform this dataset of claim costs into a dataset of reimbursements
from which we can compute VaR, TCE, and TCE(m). In order to compare the
extended TCE with the VaR, we need to adjust the former quantity in terms

of scale. For instance, we may want to solve VaRq (XT ) =
(

TCE(m)
c (XT )

)
1
m .

While exact solutions to this equation do not exist, we can still deduce a
relation between VaR and TCE(m).

We show in Figure 1.26 the link between VaR and the high-order TCE
indicator (computed with m = 2) in the case of fire data. This figure is
consistent with the theoretical results shown, for instance, in Figure 1.12.
Thus, Figure 1.26 confirms, in passing, the relevance of the GPD assumption.

68



1.5 Conclusion

Further illustration with actual data is out of the present chapter’s scope but
could be an interesting extension.
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Figure 1.26: Extended TCE quantile, with m = 2, as a function of VaR.

To conclude, after giving a significant overview of the distribution used in
this chapter and the definition of the classic risk measures, we introduce our
risk indicator called high order TCE risk measure. We compare the quantiles of
this indicator to the quantiles of VaR, TCE, and high-order TCEs to illustrate
the interplay between regulators’ implicit choices of risk measures and the
characteristics of probability distribution tails.

Among the possible extensions of the results described in this chapter is
the analysis of coherence of the high-order indicator presented here, which is
detailed in Chapter 2. Another possible extension could be examining the re-
lation between high-order TCEs when the probability distribution admits tails
that are not modeled using the generalized Pareto distribution but using, for
instance, the semi-heavy tails of infinitely divisible probability distributions.
Finally, it could be interesting to examine the stability of high-order TCE in-
dicators (see, for instance, the discussion in Le Courtois et al. (2020) on the
cross-stability of second and fourth-order moments).
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Appendix

Solution of Minimization Problem 1.5

To solve Eq. 1.5, we need to satisfy two conditions:

• First order condition:
∂f (Q[XT ])

∂Q[XT ]
= 0,

• Second order condition:

∂2f (Q[XT ])
∂Q[XT ]2

> 0,

where f (Q[XT ]) = η · E [(XT − Q[XT ])+] + (1 − η) Q[XT ] ǫ.
Thus, we solve the FOC as follows:

∂

∂Q[XT ]
{η · E [(XT − Q[XT ])+] + (1 − η) Q[XT ]ǫ} = 0,

η · ∂

∂Q[XT ]

{

∫ ∞

Q[XT ]
(1 − FXT

(x))

}

+ (1 − η) ǫ = 0.

We obtain:
η · (−1 + FXT

(Q[XT ])) + (1 − η)ǫ = 0

or, equivalently,

Q[XT ] = F −1
XT

(

1 − 1 − η

η
ǫ

)

.

Finally, we have:
Q[XT ] = VaR(1− 1−η

η
ǫ)(XT ),

which is our result.
To make sure that the result is a local minimum, the need to check the

second order condition. We compute the second derivative of the objective
function,

∂2f (Q[XT ])
∂Q[XT ]2

=
∂

∂Q[XT ]
η · (−1 + FXT

(Q[XT ])) + (1 − η)ǫ,

so that
∂2f (Q[XT ])

∂Q[XT ]2
= η

∂

∂Q[XT ]
(−1 + FXT

(Q[XT ])) ,



or
∂2f (Q[XT ])

∂Q[XT ]2
= η

[

∂

∂Q[XT ]

∫ Q[XT ]

−∞
fXT

(x)dx

]

.

Finally, we can check that

∂2f (Q[XT ])
∂Q[XT ]2

= η [fXT
(Q[XT ])] > 0,

where the second order condition is true because η > 0 and fXT
(x) > 0 for all

x ∈ R.

Proof of Theorem 1

Our goal is to solve

TCE(m)
p (XT ) =

1
1 − p

·
+∞
∫

VaRp(XT )

xmfXT
(x)dx,

where fXT
(x) = αxα

0

xα+1 .
We have:

TCE(m)
p (XT ) =

1
1 − p

·
+∞
∫

VaRp(XT )

xm αxα
0

xα+1
dx,

=
1

1 − p

[

− αxα
0

α − m
· xm−α

]+∞

VaRp(XT )
.

The quantity lim
x→+∞

(

− αxα
0

α−m
· xm−α

)

converges to zero only if m − α < 0.

Assuming that α > m, we obtain:

TCE(m)
p (XT ) =

1
1 − p

αxα
0

α − m
· (VaRp(XT ))m−α .

Next, we write:

TCE(m)
p (XT ) =

1
1 − p

αxα
0

α − m
(VaRp(XT ))−α · (VaRp(XT ))m ,

and we replace VaR with its expression:

VaRp(XT ) = x0 (1 − p)− 1
α ,
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to obtain:

TCE(m)
p (XT ) =

1
1 − p

αxα
0

α − m

(

x0 · (1 − p)− 1
α

)−α · (VaRp(XT ))m .

Finally, we have:

TCE(m)
p (XT ) =

α

α − m
· (VaRp(XT ))m ,

which is our result.

Proof of Theorem 2

The aim of this appendix is to demonstrate that the integral:

TCE(m)
p (XT ) =

1
1 − p

+∞
∫

VaRp(XT )

xm 1
σ

(

1 +
ξ(x − µ)

σ

)− 1
ξ

−1

dx

can be computed to provide the result in Eq. 1.15.

Using classic results on special functions (see for instance Lebedev (1972)),
we rewrite the integral as follows:

TCE(m)
p (XT ) =

1
1 − p





xm+1

(m + 1) · (σ − µξ)

(

σ + ξ(x − µ)
σ

)− 1
ξ

× 2F1

(

1, m − 1
ξ

+ 1; m + 2;
xξ

µξ − σ

)]+∞

VaRp(XT )

. (1.28)

To compute the limit when x tends to infinity of the quantity J defined by:

J =
xm+1

(m + 1) · (σ − µξ)

(

σ + ξ(x − µ)
σ

)− 1
ξ

2F1

(

1, m − 1
ξ

+ 1; m + 2;
xξ

µξ − σ

)

,
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we rewrite the hypergeometric function using a linear transformation:

2F1

(

1, m − 1

ξ
+ 1; m + 2;

xξ

µξ − σ

)

=
Γ
(

m − 1
ξ

)

Γ (m + 2)

Γ
(

m − 1
ξ

+ 1
)

Γ (m + 1)

(

− xξ

µξ − σ

)−1

2F1

(

1, −m; −m +
1

ξ
+ 1;

µξ − σ

xξ

)

+
Γ
(

−m + 1
ξ

)

Γ (m + 2)

Γ (1) Γ
(

1 + 1
ξ

)

(

− xξ

µξ − σ

)−
(

m− 1
ξ

+1
)

(1.29)

× 2F1

(

m − 1

ξ
+ 1, −1

ξ
; m − 1

ξ
+ 1;

µξ − σ

xξ

)

.

Thus, J can be rewritten as follows:

J = K xm

(

1 +
ξ(x − µ)

σ

)− 1
ξ

2F1

(

1, −m; −m +
1
ξ

+ 1;
µξ − σ

xξ

)

+ L x
1
ξ

(

1 +
ξ(x − µ)

σ

)− 1
ξ

2F1

(

m − 1
ξ

+ 1, −1
ξ

; m − 1
ξ

+ 1;
µξ − σ

xξ

)

,

where K and L are functions of the parameters that are independent of x.
Specifically,

K =
Γ(m − 1

ξ
)

Γ
(

m − 1
ξ

+ 1
)

ξ

and

L =
Γ
(

−m + 1
ξ

)

Γ (m + 1)

Γ
(

1 + 1
ξ

)

1
(σ − µξ)

(

ξ

σ − µξ

)−(m− 1
ξ

+1)
.

Then, we use the fact that

lim
x→+∞

2F1

(

1, −m; −m +
1
ξ

+ 1;
µξ − σ

xξ

)

=

lim
x→∞





(

µξ − σ

xξ

)0

+
−m

−m + 1
ξ

+ 1
µξ − σ

xξ
+ · · ·



 = 1
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and

lim
x→+∞

2F1

(

m − 1
ξ

+ 1, −1
ξ

; m − 1
ξ

+ 1;
µξ − σ

xξ

)

=

= lim
x→∞





(

µξ − σ

xξ

)0

+
−1

ξ

(

m − 1
ξ

+ 1
)

m − 1
ξ

+ 1
µξ − σ

xξ
+ · · ·



 = 1,

and also

lim
x→+∞

xm

(

1 +
ξ(x − µ)

σ

)− 1
ξ

= 0

and

lim
x→+∞

x
1
ξ

(

1 +
ξ(x − µ)

σ

)− 1
ξ

=

(

ξ

σ

)− 1
ξ

,

to show that

lim
x→∞

J = L

(

ξ

σ

)− 1
ξ

,

when ξ < 1
m

.

A few elementary operations allow us to write that

lim
x→+∞

xm+1

(m + 1) · (σ − µξ)

(

σ + ξ(x − µ)
σ

)− 1
ξ

2F1

(

1, m − 1
ξ

+ 1; m + 2;
xξ

µξ − σ

)

= − (−1)−(m− 1
ξ

+1) 1
ξ

Γ
(

−m + 1
ξ

)

Γ (m + 1)

Γ
(

1 + 1
ξ

)

(

µξ − σ

σ

)− 1
ξ
(

µξ − σ

ξ

)m

(1.30)

when ξ < 1
m

.

Finally, we compute the value of the primitive in Eq. 1.28 when x is equal
to VaRp(XT ). This quantity is equal to

− (VaRp(XT ))m+1

(m + 1) · (σ − µξ)

(

σ + ξ(VaRp(XT ) − µ)

σ

)− 1
ξ

2F1

(

1, m − 1

ξ
+ 1; m + 2;

VaRp(XT ) ξ

µξ − σ

)

.

(1.31)

We input Eq. 1.30 and 1.31 into Eq. 1.28 and we derive Eq. 1.15, which
is our result.
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Proof of Theorem 4

Our goal is to solve Eq. 1.17 when VaRc(XT ) = x0 (1 − c)− 1
α , so when XT

follows a Pareto Type I distribution. Replacing VaR with its expression, we
can rewrite Eq. 1.17 as follows:

α

α − m
·
(

x0 (1 − c)− 1
α

)m

−
(

x0 (1 − q)− 1
α

)

= 0.

Next, we write:

α

α − m
· xm

0 (1 − c)− m
α − x0 (1 − q)− 1

α = 0,

so that

c = 1 −
(

α − m

αxm
0

x0 (1 − q)− 1
α

)− α
m

,

which can readily be rewritten as Eq. 1.18.

Proof of Theorem 5

Our goal is to solve Eq. 1.19 when VaRc(XT ) = x0 (1 − c)− 1
α , so when XT

follows a Pareto Type I distribution. Replacing VaR with its expression, we
can rewrite Eq. 1.19 as follows:

(

α

α − m
·
(

x0 (1 − c)− 1
α

)m
)

1
m −

(

x0 (1 − q)− 1
α

)

= 0.

Next, we write:

(

α

α − m

)
1
m ·

(

x0 (1 − c)− 1
α

)

−
(

x0 (1 − q)− 1
α

)

= 0.

so that

c = 1 −
(

(

α

α − m

)− 1
m
(

(1 − q)− 1
α

)

)−α

which can readily be rewritten as Eq. 1.20.

76



Chapter 2

Coherent Extended TCE

In the previous chapter, we define a risk measure as an instrument that can
define the optimal capital the company should retain to avoid bankruptcy. In
this chapter, we introduce the concept of coherence of risk measures introduced
in the paper by Artzner et al. (1999). This concept has been very influential
in the further development of risk measures and in defining new instruments
in risk management.

A coherent risk measure is defined by the following four properties: sub-
additivity, monotonicity, positive homogeneity, and translation invariance. A
mathematical definition, as well as interpretation, can be found in Section 2.1.

Then, we study whether the most popular riks measures respect these prop-
erties. In Section 2.2, we show that the VaR is not subadditive, whereas in
Section 2.3, we show that the TCE can be defined as a coherent risk measure.
In both sections, we highlight that using a coherent risk measure is not always
the best possible scenario.

We study here that the high-order TCE introduced by Faroni et al. (2022)
is not a coherent risk measure as discussed in Section 2.4. However, a new
risk measure strictly related to the high-order TCE is introduced here, and we
study its coherence in Section 2.5.

Finally, Section 2.6 concludes.

2.1 Coherent Measures of Risk

Artzner et al. (1999) propose a list of properties that a good risk measure
should have. In their seminal paper, they identify a series of axioms that a
risk measure should satisfy to be called a coherent risk measure.

We use the approach of McNeil et al. (2015) where the financial risks are
interpreted as portfolio losses over some time horizon left unspecified and losses
expressed as positive values, instead of the approach of Artzner et al. (1999)
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that identifies the random variable as the future value of the position currently
held. This leads to some changes in the discussion of the axiom.

Definition 6. Given a probability space (Ω, F , P ), financial risks are rep-
resented by a set M of random variables. A risk measure is a real-valued
function Q(·) : M → R is called a coherent risk measure if it satisfies the
following axioms:

• Axiom 1: Translation Invariance. For all L ∈ M and every c ∈ R,
we have Q (L + c) = Q (L) + c.

• Axiom 2: Subadditivity. For all L1, L2 ∈ M we have Q (L1 + L2) ≤
Q (L1) + Q (L2).

• Axiom 3: Positive Homogeneity. For all L ∈ M and every λ > 0,
we have Q (λL) = λQ (L).

• Axiom 4: Monotonicity. For all L1, L2 ∈ M such that L1 ≥ L2

almost surely we have Q (L1) ≥ Q (L2).

Given L ∈ M , Q(L) can be interpreted as the amount of capital that should
be added to a position (or a portfolio) with a loss given by L so that the position
(or a portfolio) is acceptable to an external or internal risk controller. Position
with Q(L) ≤ 0 are acceptable without capital injection.

The translation invariance (axiom 1) property states that by adding or sub-
tracting a deterministic quantity c to a loss L, the capital requirements will be
changed by the same amount c. From a financial risk management viewpoint,
it implies that adding a certain amount of capital (negative c) reduces the
risk by the same amount. This axiom is necessary to add sense to the capi-
tal requirement definition. Consider a position L and its capital requirement
Q(L) > 0. Then, we add the amount equal to the capital requirement to our
position, i.e., L̂ = L − Q(L), and compute the new risk measure. If axiom one
is respected, Q(L̂) = Q(L) − Q(L) = 0, which means that now the position L̂
is acceptable to a risk controller viewpoint.

The subadditivity (axiom 2) principle can be explained by the fact that
the risk of two (or more) portfolios together cannot be higher than the sum
of the risks. This is the idea that risks can be reduced by using diversifica-
tion. Suppose a regulator uses a non-subadditive risk measure to determine a
financial institution’s regulatory capital. In that case, that institution is in-
centivized to legally break up into various subsidiaries to reduce its regulatory
capital requirements (McNeil et al., 2015). Moreover, subadditivity makes
decentralization of risk-management systems possible (McNeil et al., 2015).
Suppose that there are two trading desks with possible future losses equal to
L1 and L2 and that the risk manager wants to ensure that Q(L) = Q(L1 + L2)
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is lower than a threshold T . In order to achieve that, if the risk manager
uses a subadditive risk measure, he needs to choose bounds M1 and M2 such
that M1 + M2 ≤ M and he imposes on each of the desks the constraint that
Q(Li) = Mi. This allows the risk manager to manage the two different posi-
tions effectively, and subadditivity will ensure automatically that Q(L) ≤ M .
The principle of subadditivity is also seen as problematic. For example, Rau-
Bredow (2019) discussed that mergers of two banks can create additional risk
using two banks, A and B, where bank B has borrowed heavily in the inter-
bank market. Suppose that there is a significant loss for bank A. This vast
loss could trigger the default of the newly merged group and banks from which
bank B had taken loans before the merger. However, if the merger had not
occurred, only Bank A would default. Another example of the problematic na-
ture of the subadditivity principle is given by Dhaene et al. (2008), where they
study the fact that mergers can increase the probability of systemic failure.

Axiom 3, Positive Homogeneity, implies that the risk of a position is pro-
portional to its size, and it can be justified by using subadditivity that, if it
holds, it requires:

Q(λL) = Q(L + L + · · · + L) ≤ nQ(L).

Because there is no diversification between these losses, it is natural to require
that Q(L + L + · · · + L) = nQ(L), which is the positive homogeneity property.
For λ = 0, this axiom implies Q(0) = 0, the normalization principle that is
the risk of holding no position is equal to zero. The positive homogeneity
axiom has been highly criticized, and it has been suggested that for large
values of λ, we should have Q(λL) > λQ(L) to penalize the concentration of
risk and the ensuing liquidity problems. The alternative is to use a class of
convex risk measures (see Föllmer and Schied (2002) and Frittelli and Gianin
(2002)) where the conditions of subadditivity and positive homogeneity have
been relaxed. They only require a weaker property of convexity. However, this
chapter will consider positive homogeneity in its standard form. The reader
should note that subadditivity and positive homogeneity imply that the risk
measure Q is convex on M.

Finally, the monotonicity axiom can be interpreted as positions that lead
to higher losses in every state of the world requiring more risk capital.

In this chapter, we refer to a coherent risk measure as identified in definition
6. We study the coherence of Value-at-Risk in Section 2.2 and the coherence
of Tail Conditional Expectation in Section 2.3. Then, we check whether the
Extended TCE introduced in Section 1.2.3 is coherent in Section 2.4. Once
we found that this new risk measure is not coherent, we introduced a new
coherent risk extended TCE whose coherence is studied in Section 2.5. Table
2.1 summarizes the results obtained in the following sections.
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Axioms

Risk Measures
Translation
Invariance Subadditivity

Positive
Homogeneity Monotonicity

Value-at-Risk D D D
Tail Conditional
Expectation D D D D
Extended Tail
Conditional Expectation D
Weak Coherent Extended Tail
Conditional Expectation D D D (D)

Table 2.1: Summary of the coherent axiom is respected for each risk measure
studied to define a coherent risk measure. If the risk measure respects all 4
axiom, it is coherent. The monotonicity property of the weak coherent extended
TCE is demonstrated by adding an additional condition.

2.2 (Not) Coherent VaR

The Value-at-Risk (VaR) presented in Section 1.2.1 is not a coherent risk
measure as it is not able to respect the subadditivity property as argued by
Artzner et al. (1999). However, it is possible to demonstrate that VaR enjoys
the properties of monotonicity, translation invariance, and positive homogene-
ity, as shown in the appendix. Moreover, VaR is a coherent risk measure when
the losses are Normally distributed.

To demonstrate that VaR is not coherent, we provide a standard example
that shows that the VaR portfolio is higher than the sum of VaR computed for
both risks, i.e., the risk increases when diversification increases, which means
that VaR does not respect the subadditivity property.

Consider Project A and Project B, where each has a probability of 0.02 of
a loss of 10,000e and a probability of 0.98 of a loss of 1,000e during a one-year
period. The one-year VaR0.975 is equal to 1,000e for each project. Suppose the
two independent projects are put together in the same portfolio whose losses
and probability are schematized in the following table.

Losses Probability

20,000e 0.02 × 0.02 = 0.0004
11,000e 2 × 0.02 × 0.98 = 0.0392
2,000e 0.98 × 0.98 = 0.9604

This will lead to computing the VaR0.975 of the portfolio equals 11,000e,
whereas the sum of both VaR at the same quantile is 2,000e. This violates
the subadditivity condition.

Even though VaR does not respect subadditivity, it is used mainly for its
simplicity of implementing it operationally and its simplicity in understanding
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it. In order to justify this use, Daníelsson et al. (2005) argues that the non-
subadditivity of the VaR should not be considered a problem as they demon-
strate that VaR is subadditive in the tails for all fat-tailed distributed, provided
that tails are not super fat (i.e., assets whose first moment is not defined)
at probabilities that are most relevant for practical applications. However,
Daníelsson et al. (2013) note that VaR estimated from historical simulations
may lead to violations of subadditivity, and they showed that a reduction of
these violations happens when VaR is computed using semi-parametric ex-
treme value techniques.

2.3 Coherent TCE

As VaR has been proved to be a risk measure that is not coherent by
Artzner et al. (1999), they introduced a new risk measure called Tail Condi-
tional Expectation (TCE), presented in section 1.2.2, which is a coherent risk
measure.

We show in the appendix the demonstration that the TCE is able to respect
all four properties of a coherent risk measure. Inui and Kijima (2005) show that
a convex combination of Tail Conditional Expectation gives any coherent risk
measure. Moreover, Acerbi and Tasche (2002) compares different risk measure
definitions. They demonstrate that the definition proposed here is robust in
yielding a coherent risk measure regardless of the underlying distributions.

Even though the coherence principle has been widely accepted, Dhaene
et al. (2008) demonstrate that the subadditivity condition can lead to some
undesirable situation where the shortfall risk increases by a merger, moreover,
we should consider that merging or splitting portfolios may change manage-
ment, business strategy, cost structure, and so on, this could lead to changes
in the loss under consideration. In their paper, they also suggest additional
conditions to avoid these undesirable situations. Cont et al. (2010) shows that
using the TCE can lead to a less robust risk measurement procedure than
using historical Value-at-Risk as there is a conflict between the subadditivity
property and the robustness of risk measurement procedures.

2.4 (Not) Coherent Extended TCE

We discuss the non-coherence of the Extended TCE, or high-order TCE,
presented in Section 1.2.3.

As discussed above, to be a coherent risk measure, the extended high-order
TCE should have the following properties: translation invariance, subadditiv-
ity, positive homogeneity, and monotonicity. We show here that the high-order
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TCE violates three of the four properties.
We should note that if m = 1, the TCE(m) is reduced to the TCE formula,

which means that it respects the coherence properties.

Translation Invariance

Given a loss distribution X with two possible values: X1 = 1, 000e with
probability 0.4 and X2 = 500e with probability 0.6. The high-order TCE of
order 2 is equal to:

TCE(2)
0.99(X) = 1, 0002 = 1, 000, 000.

Let’s assume now that there is a loss, c, of 100e in both scenarios, the
high-order TCE of order 2 is equal to:

TCE(2)
0.99(X + c) = 1, 1002 = 1, 210, 000.

The risk measure of TCE(2)
0.99(X + c) is not equal to TCE(2)

0.99(X) + c. This
demonstrates that the high-order TCE does not respect the translation invari-
ance.

Subadditivity

Consider Project A and Project B, where each project has a probability
of 0.40 of a loss of 1,000e and a probability of 0.60 of a loss of 500e. The
high-order TCE for both projects at order 2 and a quantile of 0.99 is equal to
1,000,000e. Suppose that these two independent projects are put together in
the same portfolio whose losses and probability are schematized in the following
table:

Losses Probability
e 2,000 0.40 × 0.40 = 0.16
e 1,500 2 × 0.40 × 0.60 = 0.48
e 500 0.60 × 0.60 = 0.36

If we compute the extended TCE for the portfolio that includes both projects,
the result is TCE(2)

0.99(X) = 4, 000, 000e which is higher than the sum of the
risk measures computed for each stand-alone project. This violates the subad-
ditivity properties.

Positive Homogeneity

Let us consider the same loss distribution as in the translation invariance
example, and given a value λ = 2, the high-order TCE can be computed as
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follows:
ETCE(2)

0.99(λX) = (2 · 1, 000)2 = 4, 000, 000.

The TCE(2)
0.99(λX) is not equal to λTCE(2)

0.99(X) which leads us to show that
this risk measure does not respect positive homogeneity.

However, we should notice that this property is respected if we rewrite this

risk measure as
(

TCE(m)
α (X)

)
1
m .

Monotonicity

As m is a positive number, it is possible to demonstrate using the same
approach used for the TCE in the appendix that the high-order TCE respects
the monotonicity property.

2.5 Weakly Coherent Extended TCE

In the previous section, we show that the high-order TCE presented in
Section 1.2.3 and firstly introduced by Faroni et al. (2022) is not a coherent
risk measure. Here, we introduce a new extended TCE related to a high-order
moment (as the standard high-order TCE). It is a weakly coherent measure
of risk given an additional hypothesis used to demonstrate the monotonicity
property.

The weakly coherent extended TCE writes as follows:

ETCE(m)
p [X] = E [X] + (E [(X − E [X])m |X > VaRp [X]])

1
m .

The risk measure proposed here is different from the one proposed by Bar-
bosa and Ferreira (2004) as they propose a risk measure whose threshold is an
arbitrary t, whereas our measure is widely general, and the threshold depends
on the quantile of the loss distribution. Fischer (2003) presented a similar
coherent risk measure whose threshold is the expected value of the loss distri-
bution but is not linked to the risk considered. The same approach has been
studied by Krokhmal (2007), where the threshold is not defined in the same
way as ours.

In the following paragraph, we prove that this modified version of the
high-order TCE can respect translation invariance, subadditivity, positive ho-
mogeneity, and weak monotonicity.

As the high-order risk measure, when m = 1, this new risk measure reduces
to the standard TCE.
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Translation Invariance

Next, proving that ETCE respects translation invariance amounts to prov-
ing that

ETCEα [X + c] = ETCEα [X] + c.

We start by computing ETCEα [X + c] as follows:

ETCEα [X + c] = E[X+c]+(E[(X + c − E [X + c])m|X + c > VaRα[X + c]])
1
m .

Because VaR satisfies the translation invariance property, we can rewrite
the previous equation as follows:

ETCEα [X + c] = E[X+c]+(E[(X + c − E [X + c])m|X + c > VaRα[X] + c])
1
m .

We note that the event {X + c > VaRα[X] + c} is identical to the event
{X > VaRα[X]}. Thus, we can write:

ETCEα [X + c] = E[X + c] + (E[(X + c − E [X + c])m|X > VaRα[X]])
1
m ,

or, after elementary computations,

ETCEα [X + c] = E[X] + c + (E[(X − E [X])m|X > VaRα[X]])
1
m .

We recognize
ETCEα [X + c] = ETCEα [X] + c,

which is the translation invariance property applied to the ETCE indicator.

Subadditivity

To show that ETCE follows the subadditivity property, we need to prove
that

ETCEα [X + Y ] ≤ ETCEα [X] + ETCEα [Y ] .

First of all, we see that the inequality:

E[X + Y ] + (E [(X + Y − E[X + Y ])m| (X + Y ) > VaRα[X + Y ]])
1
m ≤

E[X] + (E [(X − E[X])m|X > VaRα[X]])
1
m + E[Y ] + (E [(Y − E[Y ])m|Y > VaRα[Y ]])

1
m

is equivalent to

(E [(X + Y − E[X + Y ])m| (X + Y ) > VaRα[X + Y ]])
1
m ≤

(E [(X − E[X])m|X > VaRα[X]])
1
m + (E [(Y − E[Y ])m|Y > VaRα[Y ]])

1
m ,
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which can in turn be rewritten as follows:







+∞
∫

V aRα[X+Y ]

(X + Y − E [X + Y ])mf(x + y)d(x + y)







1
m

≤







+∞
∫

V aRα[X]

(X − E [X])mf(x)dx







1
m

+







+∞
∫

V aRα[Y ]

(Y − E [Y ])mf(y)dy







1
m

. (2.1)

Recall that X[i,n] denotes the i-th largest value of a sequence of random
variables {X1, · · · , Xn}. We use the following result, originally proved by
Van Zwet (1980):

+∞
∫

VaRα[X]

x f(x) dx = lim
n→+∞

1
n(1 − α)

n
∑

i=⌈n(1−α)⌉

X[i,n],

where ⌈n(1 − α)⌉ is the smallest integer greater than or equal to n(1 − α).

First, we write that

+∞
∫

V aRα[X]

(x − E[X])m
f(x) dx = lim

n→+∞

1

n (1 − α)

n
∑

i=⌈n(1−α)⌉

(

X[i,n] − X1 + · · · + Xn

n

)m

.

Then, we define X̂i = Xi − X1+···+Xn

n
, which yields the following simplifica-

tion:

+∞
∫

V aRα[X]

(x − E[X])m f(x) dx = lim
n→+∞

1
n (1 − α)

n
∑

i=⌈n(1−α)⌉

(X̂[i,n])m,

We can now rewrite Eq. 2.1 as follows:



 lim
n→+∞

n
∑

i=⌈n(1−α)⌉

((X + Y
∧

)[i,n])m





1
m

≤



 lim
n→+∞

n
∑

i=⌈n(1−α)⌉

(X̂[i,n])m





1
m

+



 lim
n→+∞

n
∑

i=⌈n(1−α)⌉

(Ŷ[i,n])m





1
m

.
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Equivalently, we should prove that

lim
n→+∞





n
∑

i=⌈n(1−α)⌉

((X + Y
∧

)[i,n])m





1
m

≤

lim
n→+∞





n
∑

i=⌈n(1−α)⌉

(X̂[i,n])m





1
m

+ lim
n→+∞





n
∑

i=⌈n(1−α)⌉

(Ŷ[i,n])m





1
m

.

This inequality holds true provided that





n
∑

i=⌈n(1−α)⌉

((X + Y
∧

)[i,n])
m





1
m

≤




n
∑

i=⌈n(1−α)⌉

(X̂[i,n])
m





1
m

+





n
∑

i=⌈n(1−α)⌉

(Ŷ[i,n])
m





1
m

for all n beyond a certain range.
Because ((X + Y
∧

)[i,n])m = (X̂[i,n]+Ŷ[i,n])m, we can readily apply a Minkowski
inequality to prove the above result, which ultimately confirms the validity of
the subadditivity property.

Positive Homogeneity

To prove the positive homogeneity of the extended TCE indicator, we need
to prove that

ETCEα [λX] = λ ETCEα [X] .

We start by computing ETCEα [λX]:

ETCEα [λX] = E[λX] + (E[(λX − E [λX])m|λX > VaRα[λX]]) .

Because VaR respects the positive homogeneity property, we can rewrite
the previous equation as follows:

ETCEα [λX] = E[λX] + (E[(λX − E [λX])m|λX > λVaRα[X]])
1
m .

The event {λX > λVaRα[X]} is identical to the event {X > VaRα[X]}.
This feature allows us to rewrite the previous equation as follows:

ETCEα [λX] = E[λX] + (E[(λX − E [λX])m|X > VaRα[X]])
1
m .

Then, elementary computations allow us to confirm that

ETCEα [λX] = λE[X] + λ (E[(X − E [X])m|X > VaRα[X]])
1
m = λ ETCEα [X] .

86



We have thus shown that the ETCE respects the positive homogeneity
property.

(Weak) Monotonicity

To prove the monotonicity property, we slightly change the axiom and use
a weak definition.

Weak Monotonicity Axiom. A risk measure respect Q(·) the weak mono-
tonicity property if for all loss distributions, X and Y , such that X ≤ Y and
X − E [X] ≤ Y − E [Y ], the following inequality holds:

Q(X) ≤ Q(Y ).

As X ≤ Y , it is easily showed that E [X] ≤ E [Y ] which means that to
demonstrate that:

ETCEα [X] ≤ ETCEα [Y ] ,

we can just demonstrate that:

(E[(X − E [X])m|X > VaRα[X]])
1
m ≤ (E[(Y − E [Y ])m|Y > VaRα[Y ]])

1
m ,

or equivalently

E[(X − E [X])m|X > VaRα[X]] ≤ E[(Y − E [Y ])m|Y > VaRα[Y ]].

In order to demonstrate the last inequality, we use the same procedure
applied in the case of TCE:

E[(X − E [X])m|X > VaRα[X]] < E[(Y − E [Y ])m|X > VaRα[X]]

≤ E[(Y − E [Y ])m|Y > VaRα[Y ]].

The first inequality is obtained using the weak monotonicity axiom, whereas
the second inequality relates to the fact that VaR respects the monotonicity
property.

We have demonstrated that the ETCE respects the weak monotonicity
property.

2.6 Conclusion

In this chapter, we identify the different properties a risk measure should
have to be considered a coherent instrument. Moreover, we include some
standard results related to the no coherence of VaR and the coherence of
TCE.
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We study that the high-order tail conditional expectation presented in Fa-
roni et al. (2022) is not a coherent risk measure. Moreover, as demonstrated in
this chapter, we create a weak coherent risk measure based on the high-order
TCE that can respect the properties of positive homogeneity, translation in-
variance, subadditivity, and a weak version of the monotonicity property.
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Appendix

VaR Properties

This subsection demonstrates that VaR respects three out of four coherent
properties.

Translation Invariance Given a loss distribution, X, and c ∈ R, we define
Y = X + c, we can write the Value-at-Risk for Y as:

VaRp (Y ) = min {y : P (X + c ≤ y) ≥ p}
= min {y : P (X ≤ y − c) ≥ p}
= c + min {y − c : P (X ≤ y − c) ≥ p}
= c + VaRp (X) .

This demonstrates that the translation invariance holds.

Positive Homogeneity Given a loss distribution X and a positive quantity
λ > 0, we can compute the Value-at-Risk for Y = λX as:

VaRp (Y ) = min {y : P (λX ≤ y) ≥ p}

= min
{

y : P
(

X ≤ y

λ

)

≥ p
}

= λ min
{

y

λ
: P

(

X ≤ y

λ

)

≥ p
}

= λVaRp (X) ,

which demonstrates that VaR respects positive homogeneity.

Monotonicity Given two loss distribution, X and Y , such that X ≤ Y .
The fact that

p ≤ P (Y ≤ V aRp (Y )) ≥ P (X ≤ V aRp (Y ))

can lead to V aRp (X) ≤ V aRp (Y ).



Coherent TCE

We provide mathematical proof that TCE respects the four properties that
identify a coherent risk measure.

Translation Invariance Given a loss distribution, X, and c ∈ R, we define
Y = X + c, the TCE can be written as:

TCEp(Y ) = E [Y |y > VaRp(Y )]

= E [X + c|X + c > VaRp(X + c)]

As VaR satisfies the translation invariance property, it is possible to rewrite
the previous equation as:

E [X + c|X + c > VaRp(X) + c]

and we note that the event {X +c > VaRp(X)+c} is identical to the event
{X > VaRp(X)}. Thus, we can write:

TCEp(Y ) = E [X + c|X > VaRp(X)]

= E [X|X > VaRp(X)] + c,

where the last passage is possible as c is a quantity known. This proves
that TCE follows the translation invariance property.

Subadditivity To have complete proof of the subadditivity property for the
TCE, we refer the interested reader to consult Embrechts and Wang (2015),
where it is possible to find seven ways to prove this property by using different
approaches.

Positive Homogeneity Given a loss distribution X and a positive quantity
λ > 0, we can compute the TCE for Y = λX as:

TCEp(λX) = E [λX|λX > VaRp(λX)]

= E [λX|λX > λVaRp(X)]

by using the positive homogeneity property of the Value-at-Risk.
Then, as the event {λX > λVaRp(X)} is identical to the event {X >
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VaRp(X)}, we can rewrite the previous equation as

TCEp(λX) = E [λX|X > VaRp(X)]

= λE [λX|X > VaRp(X)] ,

which demonstrates that TCE respects the positive homogeneity property.

Monotonicity Given two loss distribution, X and Y , such that X ≤ Y . It
is possible to prove that TCE follows the monotonicity property as follows:

TCEp(X) =
1

1 − p

+∞
∫

VaRp(X)

xfX(x)dx

<
1

1 − p

+∞
∫

VaRp(X)

yfY (y)dy

≤ 1
1 − p

+∞
∫

VaRp(Y )

yfY (y)dy

= TCEp(Y ).

The first strict inequality above is related to the strict monotonicity property
of the integral and second inequality is related to the fact that VaR respects
the monotonicity property.
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Chapter 3

Stability of High Order
Moments: a Risk Management
Approach for Assessing the Risk
of Insurance Companies

Risk management wants to reduce financial risks in an uncertain future. In
order to avoid the normality assumption when assessing the market risk, a risk
manager should take into account the high-order moments of the returns’ dis-
tribution where the extant literature emphasizes the importance of heavy tail
(kurtosis) and left-tailed events (skewness) to explain the stock price behavior.
We give an overview of the literature related to the high-order moments and
their use in asset pricing and risk management in Section 3.1.

In this work, we study the stability of annual high-order moments in equity
indexes among markets. Section 3.2 describes the idea that we want to test, i.e.,
how we define the stability of moments. We extend our study to partial annual
high-order moments, i.e., those computed using only values higher (lower) than
a specified threshold.

The data used for this study are presented in Section 3.3, whereas compu-
tation and results are shown in Section 3.4. We demonstrate that raw non-
centered moments are more stable than standardized moments, and third-order
moments are more stable than fourth-order moments. However, that situation
is the opposite if we consider partial moments.

This empirical study aims to help risk managers identify which moment is
more stable over time, which will lead them to a more reliable assessment of
future market risks.

Finally, Section 3.5 concludes.
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3.1 The importance of high order moments

Following the traditional mean-variance CAPM of Sharpe (1964) and Lint-
ner (1965), returns follow a Gaussian distribution, which would lead asset
pricing models and investment strategies should only be based on the first
two moments of the return distribution, mean and standard deviation. Under
this assumption, probabilities of upside and downside outcomes are equal as
the distribution is assumed symmetrical. However, in reality, returns tend to
depart from normality, as shown in the seminal paper by Fama (1965). For
this reason, it is essential to model the asymmetry and tail-fatness of returns
captured by high-order moments. On this aspect, Robinson and Shaver (1973)
shows that investors care about high-order moments when constructing their
optimal asset allocation.

High-order moments are used to identify the shape of the stock returns’
distribution. A raw non-centered high-order moment of order m of the distri-
bution X is computed as:

+∞
∫

−∞

xmfX(x)dx,

where fX(x) is the probability density function of the random variable X.
The lack of symmetry around the mean can be verified by the third-order

moment. A zero value implies symmetry, as the right and left sides of the
distributions are mirror images of each other. Positive (negative) skewness is
rendered by a positive (negative) third-order moment, which suggests that the
right (left) side of the distribution contains more extreme values than the other
side. The fourth-order moment reflects a distribution’s degree of flatness or
peakedness around its mean. A distribution that has a fourth-order moment
higher (lower) than three is said to be leptokurtic (platykurtic), which means
that it has a thinner (flatter) peak and heavier (lighter) tails than the Normal
distribution. Moreover, a high value of the fourth-order moment indicates the
presence of extreme values and outliers in the data. We should remember that
raw moments reflect both the return distribution shape and the variance level.
In contrast, standardized moments are only tied to the shape of the return
distribution. In this chapter, we study both raw non-central1 and standardized
moments.

Many studies argue that high-order moments can be included as risk fac-
tors in asset pricing, in addition, to mean and volatility. Sihem and Slaheddine
(2014) test the reliability for the first four moments to describe the extreme
values distribution on the French financial market. They find this new risk

1Similar results could have been obtained using raw central moments instead of raw non-
central moments because the return of expected value is too small to show any differences
in the study.
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measure suitable for avoiding significant crisis losses. However, it is insuffi-
cient to accurately predict the probability of crisis occurrences. This study is
based on the multi-moment asset allocation and pricing models presented by
Jurczenko and Maillet (2006). Among others, Ahmed and Al Mafrachi (2021)
underscore the significance of considering higher-order realized moments of the
return distribution for asset pricing and the prediction in cryptocurrency re-
turns. Then, Chen et al. (2021) find that realized skewness positively relates
to U.S. industry returns. However, they did not find a significant relation-
ship between kurtosis and industry returns. Grigoletto and Lisi (2011) analyze
through empirical studies the practical effects of modeling high-order moments
on risk management. These authors find that models accounting for skewness
and kurtosis outperform symmetric models when making VaR predictions. In
general, vast literature reveals that high-order distributional moments are help-
ful in predicting market returns, such as Jondeau et al. (2019), which studies
the ability of the average asymmetry to predict returns in the U.S. stock mar-
kets. Doan et al. (2010) show that high-order moments are essential in pricing
stocks in the U.S. and Australian markets, but the degree of importance de-
pends on the stocks’ distribution. Amaya et al. (2015) demonstrate a reliable
and significant negative relation between realized skewness and future stock
returns, whereas Mei et al. (2017) show that realized skewness could help to
forecast stock volatility. In contrast, realized kurtosis does not improve the
models’ performance. Even though there are many papers on the importance
of high-order moments for stock market forecasting and optimal asset alloca-
tion, there is no study on the stability of such moments, which is the aim of
the empirical study presented here.

To conduct an exhaustive analysis, the chapter also focuses on partial mo-
ments, i.e., moments only computed from the values higher or lower than a
given threshold. This is because, from the investors’ viewpoint, the uncertainty
on the left-hand side of the return distribution represents risks. In contrast, the
uncertainty on the right-hand side means better investment possibilities (Deng
and Chen, 2022). Partial moment functions are proposed as a flexible way to
characterize and test asymmetric effects as deviations from a reference value.
Raw non-central lower (upper) partial moments, so LPMs (UPMs), measure
the moments for values that are lower (higher) than a specific threshold, K. In
the case of a continuous distribution and given x ∈ [−∞, +∞], these partial
moments can be computed as:

LPM(m)
K,t (x) = E [Xm|X < K] =

K
∫

−∞

xmfX(x)dx,
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and

UPM(m)
K,t (x) = E [Xm|X > K] =

+∞
∫

K

xmfX(x)dx,

where f(x) is the probability density distribution. These moments can also be
standardized as shown in Section 3.4. LPMs and UPMs can capture high-order
moments for values that are in the tails.

LPMs can be used as a measure of downside risk in financial decision-
making, asset pricing, and so on. For example, Ling et al. (2020) propose a
multi-period portfolio selection approach based on a variation of the LPMs
defined here. Moreover, Nesaz et al. (2020) show that the method using LPMs
is more efficient than the standard method in terms of portfolio performance.

In this chapter, we study the stability of high-order moments and high-
order partial moments over time. The aim is to find which moment is the most
stable over time and whether stability is affected by the market characteristics,
region, industry, etc. This research could be used by risk managers to identify
the main elements they should use to assess future market risk.

3.2 Key concept

A moment is considered stable over time if it does not change too much
between a given year and the next. To study how much a moment changes
from the previous year, we compute the quantity:

∣

∣

∣f
(m)
t − f

(m)
t−1

∣

∣

∣,

where f
(m)
t represents the moment at order m computed with the data available

in year t.

In our study, we are also interested in studying the partial high-order mo-
ments, i.e., high-order moments computed only for values higher or lower than
a threshold defined as a quantile α of the distribution Xt. We call f

(m)
α,t such

a partial high-order moment. Section 3.4 details the computation of partial
upper and lower high-order moments in different scenarios.

Furthermore, we apply a transformation to express high order moments in
the same unit and make them comparable with high order moments computed
at different orders:

∣

∣

∣

∣

∣

(

f
(m)
α,t

)
1
m −

(

f
(m)
α,t−1

)
1
m

∣

∣

∣

∣

∣

.
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Finally, to study the stability of a moment over time, we compute

T
∑

t=2

∣

∣

∣

∣

∣

(

f
(m)
α,t

)
1
m −

(

f
(m)
α,t−1

)
1
m

∣

∣

∣

∣

∣

, (3.1)

where the result is a non-negative number. When the result is equal to zero,
the moment does not vary over time. However, this is only a hypothetical
situation that never occurs in practice. When the result is close to zero, it
can be interpreted as a stable moment that does not vary too much. A higher
result can be interpreted as a moment that varies a lot over time, which means
that it cannot be trusted to use to predict the future.

We aim to study the stability over time among different areas of the world,
including developed and developing equity markets and the 3-month Treasury
Bill Rate. Our study concentrates on the last 20 years, from 1st January
2000 until 31st December 2022. Section 3.3 gives a detailed description of the
selected indices.

3.3 Data

In this chapter, we use seventeen equity indices to consider the world’s most
representative regions (including American, Asian, and European developed
and developing markets) as well as the 3-month Treasury Bill Rate.

The equity index values are downloaded from a Bloomberg terminal, whereas
the 3-month Treasury Bill is derived from the Federal Reserve Economic Data
database. We use daily closing prices from 2000 to 2022 to compute daily log
returns for each index i on each day for each year t. We have 23 years of
observation for all the seventeen equity indices except for the Shanghai Stock
Exchange, for which data are available only from 2005, which leads us to use
18 years of observation in the case of that index. We compute the standard
return for the 3-month T-bill because negative yields in the years 2015 and
2020 do not allow us to compute the log returns.

Table 3.1 lists the indices used in this study and the country of origin. By
looking at the country of origin, the reader should note that the study does
not concentrate on one market but covers different areas.

Figure 3.2 shows the daily skewness and kurtosis computed on the overall
period from 2000 to 2022, except for the Shanghai Stock Exchange, computed
from 2005 to 2022. We see that all log-returns of the equity indices have
negative skewness. We see that the Argentina Index has a higher kurtosis
than all the other indices and a lower skewness. This table shows that the
indices used in this study are pretty heterogeneous.
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Ticker Country

3 Month Treasury Bill Rate DTB3 U.S.
CAC 40 CAC40 France
DAX Performance Index DAX Germany
Dow Jones Industrial Average DJI U.S.
EURO STOXX 50 SX5E Eurozone
FTSE 100 Index UKX U.K.
FTSE MIB Index FTSEMIB Italy
FTSE/JSE Top 40 Index TOP40 South Africa
Indice Bovespa IBOV Brazil
KOSPI 50 Index KOSPI 50 South Corea
Merval Index Merval Argentina
NIKKEI 225 NKI225 Japan
RTS Index RTSI Russia
S&P 100 Index OEX U.S.
S&P BSE SENSEX SENSEX India
S&P/ASX 50 AS31 Australia
S&P/TSX 60 SPTSX60 Canada
Shanghai Stock Exchange 50 SSE50 China

Table 3.1: List of the indices used in the study together with their country of
origin. The ticker is the one displayed by Bloomberg.
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Skewness Kurtosis

3 Month Treasury Bill Rate 6.8415 178.5248
CAC 40 -0.1674 10.1406
DAX Performance Index -0.1745 8.8584
Dow Jones Industrial Average -0.3595 15.3770
EURO STOXX 50 -0.2011 8.9622
FTSE 100 Index -0.3314 13.3773
FTSE MIB Index -0.5101 11.7640
FTSE/JSE Top 40 Index -0.3721 8.1896
Indice Bovespa -0.4539 9.3357
KOSPI 50 Index -0.3035 12.6449
Merval Index -5.3056 124.9266
NIKKEI 225 -0.2614 7.2284
RTS Index -1.9815 47.4169
S&P 100 Index -0.2979 12.4403
S&P BSE SENSEX -0.2807 11.9711
S&P/ASX 50 -0.8034 12.6260
S&P/TSX 60 -0.7916 15.7892
Shanghai Stock Exchange 50 -0.2880 7.2216

Table 3.2: Daily skewness and kurtosis computed on daily log-returns from
2000 to 2022 with two exceptions: Shanghai Stock Exchange 50 is computed
from 2005 to 2022, and the 3-month T-Bill is computed in standard returns.
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3.4 Empirical Study

In this section, we perform an empirical study to check whether moments
are stable over time and whether some are always more stable than others.

This research aims to compute Eq. 3.1 for all the difference indices defined
in Section 3.3. Because the previous equation is defined for a general moment,
f

(m)
α,t computed in year t, we specify in Section 3.4.1 the computation that we

adopt for the different moments.
Then, Section 3.4.2 shows the results of our empirical study and comments

on the findings we obtain.

3.4.1 Computation

Given the daily log-return of day i at year t for an equity index or the
daily return of day i at year t of the 3-month T-bill, xi,t, and nt, the number
of observations present in the dataset for the index in year t, we compute the
m − th non-central moment for a year t as

E [Xm
t ] =

1
nt

nt
∑

i=1

xm
i,t,

whereas the m − th standardized central moment for year t is computed as

E

[

(Xt − E [Xt])
m

σm
t

]

=
1
nt

nt
∑

i=1

(xi,t − E [Xt])
m

σm
t

,

where E [Xt] is the daily return average computed in year t and σt is the daily
standard deviation of year t. When m = 3, this high-order moment is called
skewness; when m = 4, it is called kurtosis.

To compute the m − th partial non-central moment, we need to sort the
daily returns in ascending order for each year. We call x̂i,t the sorted daily
return where x̂1,t is the smallest daily return and x̂nt,t is the largest ones in year
t. Then, we can compute the partial m − th non-central moments as follows:

E

[

Xm
t |Xt ≤ x̂⌈αnt⌉,t

]

=
1

⌈αnt⌉
⌈αnt⌉
∑

i=1

x̂m
i,t,

and

E

[

Xm
t |Xt ≥ x̂⌊αnt⌋,t

]

=
1

⌊αnt⌋
Nt
∑

i=⌊αnt⌋

x̂m
i,t.

Where α ∈ (0, 1] defines the quantiles and ⌈αnt⌉ is the least integer greater
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than or equal to αnt, whereas ⌊αnt⌋ is the grates integer less than or equal to
αnt. The first equation computes the partial m− th non-central moment when
the returns are lower than a specific threshold defined by x̂⌈αnt⌉,t, whereas the
second equation computes the m − th non-central moment conditional on the
fact that returns are higher than the threshold, x̂⌊αnt⌋,t.

In the case of partial standardized central moments, we use the following
formulas:

E

[

(Xt − E [Xt])
m

σm
t

∣

∣

∣

∣

∣

Xt ≤ x̂⌈αnt⌉,t

]

=
1

⌈αnt⌉
⌈αnt⌉
∑

i=1

(x̂i,t − E [Xt])
m

σm
t

E

[

(Xt − E [Xt])
m

σm
t

∣

∣

∣

∣

∣

Xt ≥ x̂⌊αnt⌋,t

]

=
1

⌊αnt⌋
nt
∑

i=⌊αnt⌋

(x̂i,t − E [Xt])
m

σm
t

,

where E [Xt] and σt are the non-conditional daily average and daily standard
deviations in year t.

Each moment is computed using around 250 observations, i.e., the daily
returns available in one year. To be sure that the conditional moments are
computed using more than a single value, α cannot be lower than 0.01 when
the conditioning is expressed as Xt ≤ x̂⌈αnt⌉,t whereas it cannot be higher than
0.99 in case the moment is conditioned on Xt ≥ x̂⌊αnt⌋,t.

3.4.2 Results

First of all, we remind the reader that 3-month T-Bill rate moments are
computed using arithmetic returns, whereas equity moments are computed
using log returns. Moreover, the Shanghai Stock Exchange 50 moments are
computed from 2005 to 2022, whereas the others are computed from 2000 to
2022.

Table 3.3 shows the sum of the variation of raw non-central moments from
2000 to 2022 for each index in our database, where the definition of each mo-
ment is defined at the top row of the table. By analyzing the first two columns,
we notice that in most of our indices (excluding 3-month T-Bill, DJIA, and
S&P 100 Index), the third-order raw moment is higher than the fourth-order
raw moment, which means that the manager should use the fourth-order mo-
ment to take decisions on the overall historical returns. This relation exists
even though our data are heterogeneous with different levels of skewness and
kurtosis, as shown in Table 3.2. The exceptions, highlighted in bold in the ta-
ble, are all related to the U.S. market. In the other columns, we compute the
lower raw moments when α = 0.05 and α = 0.01 and the upper raw moments
when α = 0.95 and α = 0.99. In both cases, we see that the third-order par-
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tial raw moment is lower than the fourth-order partial raw moment, without
exception. From table 3.3, we see that fourth-order raw moments are more
stable than third-order raw moments, whereas for partial moments the oppo-
site is true: third-order partial raw moments are more stable than fourth-order
partial raw moments. The risk manager is usually interested in the behavior of
tails and in the avoidance of risks, which will lead us to advise him or her to use
fourth-order partial raw moments. We also see that raw moments tend to be
stable over time in most markets. For example, the third-order raw moment
of CAC 40 moves in 23 years by only 0.2484 euros. Partial moments move
a bit more because we consider extreme events, which vary more over time.
Moreover, partial lower moments are less stable than partial upper moments,
which leads us to say that extreme adverse events’ distribution varies more
than extreme positive events, which justifies paying greater attention from a
risk management viewpoint.

Table 3.4 shows Eq. 3.1 computed using standardized moments, i.e., raw
moments adjusted by the mean and standard deviation of the returns distri-
bution. The previous table shows that skewness is less stable than kurtosis
when computed from the overall distributions. However, in terms of partial
standardized moments, the third-order moment is more stable than the fourth-
order moment, without exceptions. Moreover, lower partial moments are less
stable than upper partial moments. The table shows that the risk manager
should use the more stable indicator because the historical value is more able
to predict future values.

By comparing this table with Table 3.3 we notice that raw non-central
moments are more stable than standardized ones where this information should
be taken into consideration from the risk managers viewpoint 2.

2A similar result can be obtained if we compare raw central moments with standardized
ones.
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3.5 Conclusion

A risk manager should take into account the overall returns distribution
in order to reduce financial risks in the future. We discuss in this chapter
the stability of annual high-order moments in equity indexes among markets.
We discover skewness (third-order raw moments) is less stable than kurtosis
(fourth-order raw moments). In contrast, partial third-order raw (standard-
ized) moments are more stable than partial fourth-order raw (standardized)
moments. This leads the risk manager to rely on the third moment if he or
she is interested in the overall returns distribution or on the fourth moment if
he or she wants to define the tail return distribution.

Moreover, we show that partial upper moments are more stable than partial
lower moments, which means that extreme positive events are more stable than
extreme adverse events.

Finally, raw moments are more stable than standardized moments over
time.

The goal of this empirical study is to help the risk manager to identify
which moment is more stable over time, which leads him or her to a more
reliable assessment of future market risks according to his or her objectives.
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Chapter 4

Home Bias and Learning in a
Dynamic Portfolio Choice under
Smooth Ambiguity

In this chapter, we study the dynamic optimal asset allocation and the
optimal consumption level that the decision-maker should choose when there
are two kinds of stocks in the market: local and foreign. We want to study the
evolution of the home bias over time from the viewpoint of a single investor.
Home bias is the phenomenon where investors tend to invest more in their
home country’s market than its share in the overall market. This phenomenon
leads to underdiversified portfolios as agents invest more in domestic assets
rather than foreign ones.

We analyze the optimal investor’s portfolio through a specific period of
time, assuming that the investor re-balances her portfolio at the end of each
year where she aims to maximize her utility function modeled using the gen-
eralized recursive smooth ambiguity model axiomatized by Hayashi and Miao
(2011). We use this model as it is one of the most general models in dynamic
decision theory, and it includes different decision theory models as special
cases. Moreover, the generalized recursive smooth ambiguity model is able to
distinguish between risk aversion, ambiguity aversion, and intertemporal sub-
stitution, which will allow us to understand better which parameters drive the
home bias in this model.

Section 4.1 gives an overview of the existing literature on home bias and
model decision theory in order to understand the importance of our findings
better.

We model a financial market with one risk-free stock and two kinds of risky
and ambiguous stocks. Stock returns follow a geometric Brownian motion
where the investor ignores the real value of the drift. However, she has a
Normally distributed prior over it, and the decision maker learns over time
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and updates the prior at each time using the new information available on the
market. In order to model foreign and local stocks, we assume that the decision
maker has a short period of time where she does not invest but studies the
local stock, which will lead her to be more confident about this asset. Then,
when she starts to invest, she discovers that there is another type of asset
(foreign stocks) on the market, which will lead her to be more ambiguous
about the foreign asset at the start as she discovers them later. She has little
information about it compared to the information available for domestic stocks.
The market is described as ambiguous as the investor does not know the real
mean of the geometric Brownian motion that drives the stock returns. Then,
the decision maker will be considered risk averse and ambiguity averse. Section
4.2 describes the theoretical framework and preference model used.

In this framework, the investor needs to choose the optimal consumption
level and the optimal portfolio allocation at each time. Section 4.3 gives a de-
tailed description of this investor’s problem and highlights the Bellman equa-
tion and some theoretical results.

To solve the investor’s problem theoretically described in 4.3, we use a
numerical approach using a backward approach and solve the expected value
using a double Gauss-Hermite quadrature. This model is explicitly computed
for two risky and ambiguous stocks on the market. However, it can be general-
ized to n risky and ambiguous stocks. The numerical approach used is detailed
in Section 4.4, and the results are shown in Section 4.5.

Finally, Section 4.6 concludes, and we suggest possible expansions on our
findings.

4.1 Literature Review

In this section, we provide a short literature review on the home bias (Sec-
tion 4.1.1) and decision theory (Section 4.1.2). Moreover, Section 4.1.3 discuss
some articles that studied home bias and portfolio choice under ambiguity that
can be related to the results obtained in this chapter and how our findings are
different from the existing literature.

The literature presented here is meant to be partial, but we want to identify
where our topic can be placed in the literature. We advise the reader to refer
to the bibliography cited in this section to master the subject.

4.1.1 Home Bias

Home bias is defined as an investment behavior where investors tend to
overweight their home country’s market compared to its share in the overall
market portfolio. It was defined as one of the officially recognized six major
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puzzles in international macroeconomics by Obstfeld and Rogoff (2001). The
seminal paper of French and Poterba (1991) shows that most corporate equity
is held by domestic investors. For example, in 1989, U.S. residents held 92%
of the United States stock market, and the same pattern can be seen for
Japanese, U.K., Germany, and France investors. Fidora et al. (2007), among
others, confirmed the patterns of the home bias for these countries. Lippi
(2016) proves the existence of the home bias specifically for Italian professional
occupational pension fund managers, whereas Lütje and Menkhoff (2007) prove
it for German investors, Mishra (2008) shows the home bias in the Australian
investors’ portfolio. Additional evidence can be found worldwide and even in
the online market. See, for example, Lin and Viswanathan (2016) that study
home bias in a debt-based crowdfunding platform. We refer the interested
reader to Gaar et al. (2020) for a more exhaustive literature review.

Even though, the first empirical study was done in a market that was far
from being friction-less, we see that home bias is still alive nowadays even
though there has been an increase in cross-border asset trade thanks to elec-
tronic trading, exchanges of information across borders and falling transaction
costs (Lane and Milesi-Ferretti, 2003). Over the 1988-2008 period, Coeurdacier
and Rey (2013) shows that home bias has decreased in developed countries but
remains high. This means that the share of foreign equities in investors’ port-
folios is roughly a third of what it should be. Furthermore, emerging markets
have less diversified equity portfolios and do not exhibit any clear downward
trend in home bias. According to the International CAPM model, investors in
these countries hold one-tenth of the amount of foreign equities they should
be holding.

Similar to home bias, local bias describes the behavior where investors are
more inclined to invest in assets of firms located close to them, independent
from country borders. Baltzer et al. (2013) bridge the home and local biases
by studying the investment strategies from Germany and neighborhood coun-
tries. They discover that investors living close to a foreign country display less
home bias towards investment opportunities in that country. With the same
approach, they argue that the overweight of regionally close stocks extends
beyond domestic borders.

In this chapter, we use two kinds of assets: domestic stock and foreign
stock. However, domestic and foreign definitions are left to the decision maker.
For example, an investor in Geneva could define domestic stocks as an asset
issued by a company in France or Switzerland. In contrast, an investor living
in Zurich could define it as a stock issued by a firm located in Switzerland or
Germany.
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Why home bias exists?

The vast literature on home and local bias has not provided a generally
accepted explanation. However, researchers agree that the reason could be
that home bias is caused by a combination of factors that can be institutional,
information-related, or individual investor-related. We now discuss each one of
them. However, we refer the reader to Ardalan (2019) and Gaar et al. (2020)
for finding references used in this subsection.

Institutional reasons relates to the costs associated with international in-
vesting. These costs can induce the home bias because the net return on
domestic equities is higher than on foreign equities. A list of them follows.

• Capital controls where governments created barriers to international in-
vestment. This was true many years ago when governments imposed
taxes through the 1980s and 1990s. However, all developed markets and
many emerging ones are now open to foreign investors. For this, capital
control is considered an unrealistic reason to use to explain home bias.

• Transaction costs such as international taxes, informational costs, man-
agement fees, and other barriers to trade equity. However, it does not
provide a reasonable explanation as it has been shown that the capital
flows on foreign equity transactions tend to be higher than capital flows
on domestic equity transactions. Moreover, in recent years, transaction
costs have been declining over time, and it has become more challenging
to argue that they are a cause of under-diversification.

• Information costs, i.e., the cost of acquiring information about foreign
accounting practices, foreign corporate relationships, and legal environ-
ment.

Nowadays, information costs and government restrictions cannot be used as a
stand-alone reason to justify home bias in developed countries, mostly because
of the Internet and the fact that governments in developed countries do not
impose such restrictions.

Information asymmetries can also play a role in home bias and can be
placed into the following categories.

• Home advantage, i.e., the fact that domestic investors have better in-
formation about domestic stocks leads them to invest in them. This
can be modeled, for example, using Bayesian learning, where domestic
investors begin with less accurate prior beliefs about foreign countries’
fundamentals.
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• Distance. Empirical evidence shows that geographical distance between
two countries is a good proxy for information asymmetries.

• Cultural differences also play a role in international portfolio choices. For
example, Finnish investors whose native language is Swedish are more
likely to invest in stocks of Finnish companies that publish their re-
ports in Swedish than Finnish investors whose native language is Finnish
(Grinblatt and Keloharju, 2001).

• Accounting standard, in the sense that using different accounting stan-
dards would act as information barriers.

Behavioral biases Information asymmetries and institutional reasons rely
on the rationality of investors. However, psychologists and experimental eco-
nomics noted that individuals act with behavioral biases, which is the third
factor that can be used to explain home bias. A list of some behavioral factors
and how they affect home bias follows.

• Familiarity as people tend to root for their home team, eat local food,
and invest in a company’s stocks that are visible to them.

• Confidence, which leads home bias to occur when domestic investors
perceive that they have an information advantage relative to foreign
investors and overestimate their ability to forecast the performance of
familiar assets.

• Competence in terms that investors believe they are more competent in
investing in their home country than abroad, and investors treat foreign
stock differently for fear of showing incompetence.

• Optimism as investors tend to have higher expectations about the rates of
return on domestic stocks than their expectations on the rates of return
on foreign stocks.

• Cultural differences and patriotism can increase home bias. Patriotism
is also associated with investors’ loyalty toward a specific company.

• Investor characteristics such as the level of experience. Literature reports
that less experienced investors tend to be more home-biased than more
sophisticated ones.

• Loss aversion means that some investors experience losses asymmetri-
cally, i.e., more severely than equivalent gains. For this reason, they
tend to avoid losses. However, as in international stock markets returns
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correlation is higher in market downturns than in upturns. Investors will
avoid international stock markets, which will create a home bias.

• Beliefs as local investors consider more reliable information on local
stocks relative to signals on foreign stocks.

• Ambiguity Aversion where ambiguity refers to investment with unknown
probabilities of future outcomes. Empirical evidence, such as Dimmock
et al. (2016), shows that ambiguity aversion has a negative relation with
stock market participation and portfolio allocations to equity and helps
explain home bias.

In this chapter, we study the presence of home bias over time. We justify
the home bias using the investor’s ambiguity aversion and the fact that the
investor has (or perceives to have) better information about domestic stocks
at start. This last point will be corrected as the investor learns over time
about the foreign stocks, which will decrease the home bias in the investor’s
portfolio.

4.1.2 Decision Theory

Decision theory started as the study of the games of chance in the XVI and
XVII century and nowadays continues to study how to explain the decision-
maker process from a normative and descriptive viewpoint.

Classic theory

One of the first decision theory models considered a cornerstone of this
theory is the objective expected utility or expected utility. This theory
was first introduced by Bernoulli (1954) as the solution to the Saint Petersburg
Paradox that was created by his cousin Nicholas Bernoulli. The St. Petersburg
Paradox states as follows:

Given a game of chance in which a fair coin is tossed at each stage.
The initial stake begins at one ducat and is doubled every time a
head appears. The first time a tail appears, the game ends, and
the player wins whatever is the current stake. How much will the
player be willing to pay to enter the game?

Suppose the price of the game is computed using just the expected value.
In that case, the player should be willing to play at any price if offered the
opportunity (that is because the expected value of this game is infinite). How-
ever, Nicholas Bernoulli states that most players would not pay a price higher
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than twenty ducats, and the discrepancy between the price and the expected
value creates this paradox. Daniel Bernoulli suggested that the price of the
game should be computed not using the expected value but the expected util-
ity, which means that each ducat should be considered not as a ducat itself
but as the utility that the item will be given to the player if won:

E [U(x)] =
n
∑

i=1

U(xi)pi.

He described the concept of utility using the idea that one ducat has a differ-
ent meaning for a poor person or a rich one. The objective expected utility
has been axiomatized by Von Neumann and Morgenstern (1944) where one of
the essential axioms is the independence one that states that a decision maker
should not consider the states where the lotteries have the same outcomes.
The objective expected utility has different properties, such as the risk aver-
sion parameters studied by different researchers as Pratt (1964) and others.
However, literature shows violations of the independence axiom, creating dif-
ferent types of paradoxes such as those of Allais (1953). For this reason, new
non-expected utility models of preferences over objective lotteries have been
developed. To see a non-exhaustive discussion of them, we refer the reader to
Machina (1992).

The Objective Expected Utility described below is only limited to gambles
whose probability can be defined objectively, such as the toss of a fair coin,
the roll of a dice, and so on. However, in the real world, the major of decisions
are made under uncertainty where probabilities are not subjectively defined,
which led to the development of the Subjective Expected Utility (SEU) by
Savage (1972). This new axiomatization considers that the expected utility is
computed using the utility function and subjective probability measures that
change among decision-makers. This theory is based on two main principles:
(i) the sure-thing principle, similar to the independent principle, states that
if two acts yield the same outcome for each state in the event, it should not
matter what those states common outcomes are, and (ii) weak comparative
probability which states the decision maker has a well-defined comparative
likelihood ranking over events. However, the SEU has been highly criticized
primarily due to the difficulty of determining such subjective probabilities. For
a description and interpretation of Savage’s result, we refer the reader to Kreps
(1988), Gilboa (2009), Fishburn (1970), and others.

To create a link between subjective and objective probabilities, Anscombe
et al. (1963) defines a joint objective-subjective approach that allows for an ax-
iomatic derivative of subjective probability simpler than that of Savage (1972).
The horse-roulette theory is based on the fact that agents have expected
utility preferences over primitive objective lotteries. Put in different words,
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they assume that an agent has subjective probabilities over a horse race. How-
ever, instead of receiving the winnings on his bet in cash, the agent will receive
a ticket for a lottery with objective probabilities.

Ellsberg’s Paradox and ambiguity

These last two models were a significant improvement in the decision-
making theory. However, they do not capture the degree of confidence the
decision maker has when deciding the subjective probabilities to use. Ellsberg
(1961) shows that in a situation in which probabilities are not known, Savage’s
axioms can be violated. Specifically, one of Ellsberg’s experiment involves
two urns, A and B, that contain 100 balls each. Urn A has 50 red and 50 black
balls, whereas Urn B has 100 balls that can be either red or black, but the
decision maker does not have any information on the proportion of red and
black. Most decision-makers are indifferent between betting on either color
within each urn. However, they all prefer to bet on Urn A instead of Urn B.
No probability measure can justify this betting behavior, creating the Ellsberg
Paradox. This experiment revealed the phenomenon of ambiguity aversions,
i.e., agents prefer gambles with known probabilities to unknown ones.

On this note, we want to remember that in the literature, uncertainty, and
ambiguity are not always clearly defined and distinguished. We use these terms
equivalently, and we define an ambiguous event as a situation where the agent
does not know the probabilistic distribution of the outcomes as in Guidolin
and Rinaldi (2013). We refer the reader to Etner et al. (2012) for a discussion
on the definition of ambiguity attitudes in different decision theory models.

Alternative models

A series of alternative models that are all been axiomatized was developed
to answer the Ellsberg paradox. We will cite the most popular ones.

Schmeidler (1989) introduces the Choquet Expected Utility, CEU,
whose probability measure is not necessarily additive, i.e., given two events
A, B and the capacity v represents the measure of credence, we may have:

v(A) + v(B) < v(A ∪ B).

To resolve the problem of the computation of an expected utility using a non-
additive probability measure, he adopted the Choquet Integral, and we refer
the reader to Gilboa (2009) for a more detailed explanation of the Choquet
Integral. This new model allows us to relax the independence axiom and use
the definition of comotonic independence, which is able to distinguish between
mixing operations that reduce uncertainty (via hedging) and mixing operations
that do not.
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Gilboa and Schmeidler (1989) introduces the Max-Min preferences,
MEU, also called multiple prior preferences, where it maximizes the worst-
case expected utility over a set of probabilities. The idea is that the agent
has several probability measures as potential beliefs, and each belief creates
an expected utility index for each act. This will lead each act to have as many
expected utility values as the potential belief. The agent should use the worst-
case expected utility to define the act’s desirability. They should consider the
most unfavorable prior as the decision maker is ambiguity averse.

The smooth ambiguity preferences model (KMM) has been axioma-
tized by Klibanoff et al. (2005). Given an act f : S → X, the expected utility
is computed as:

∫

∆(S)
φ
(∫

U(f(·))dµ
)

dM(µ), (4.1)

where U(·) is the von Neumann-Morgenstern utility function, M is the individ-
ual’s second order prior over the set ∆(S) of measure µ on the state space S,
and φ(·) is the individual’s second order utility function. The idea is that the
individual is uncertain about which probability measure µ describes the likeli-
hood of state realizations, and the second-order uncertainty is modeled using
M . Using other words, the agent distorts the expected utilities computed as
∫

U(f(·))dµ using the function φ(·) whose concavity corresponds to the ambi-
guity aversion. The key feature of this model is that it achieves a separation
between ambiguity, identified as a characteristic of the decision maker’s sub-
jective beliefs, and ambiguity attitude, a characteristic of the decision maker’s
tastes. This model will be further discussed in Section 4.2.1.

There are many different alternative models, such as the α−MEU, which
is a generalization of the max-min preferences, the vector expected utility
by Siniscalchi (2009), and the variational preferences by Maccheroni et al.
(2006), among others. We refer the interested reader to Gilboa and Marinacci
(2016), and Machina and Siniscalchi (2014) for a more exhaustive overview of
alternative models on decision theory.

Dynamic theory

In the axiomatization described till now, time is not explicitly considered,
which leads to one-period decision problems: the individual chooses an act,
then the state is realized, and the prize is determined. It is possible to extend
the model decision theory studied till now to a dynamic decision problem in
which the individual may acquire partial information about the state of nature
over time and take action at several decision points. In order to pass from a
static setting to a dynamic one, we need to consider two key ingredients.

• Updating a prior probability measure µ to reflect new information ac-
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quired. We discuss the updating process in Section 4.2.3.

• Dynamic consistency or consequentialism links conditional and uncondi-
tional preferences. Dynamic consistency ensures that if a multi-period
choice problem is solved by backward induction, one should obtain an
optimal ex-ante solution. In contrast, consequentialism is the fact that
only the states whose outcomes are still possible can matter for updated
preferences. Both cannot coexist in a dynamic model, and one must be
relaxed. Even though there is no consensus on whether dynamic consis-
tency or consequentialism is the more plausible assumption. Dominiak
et al. (2012) shows that most subjects violate dynamic consistency rather
than consequentialism by using the 3-color experiment Ellsberg urn.

The seminal paper on dynamic decision modeling is by Kreps and Porteus
(1978). The decision maker uses a von Neumann-Morgenstern utility function
computed at each node of the decision tree that expresses all the actions the
decision-maker can take and the outcomes at each state. The application of
the Kreps-Porteus model to non-expected utility models is made by Epstein
and Zin (1989). The Epstein-Zin model develops a class of recursive prefer-
ences over intertemporal consumption lotteries that are empirically studied in
Epstein and Zin (1991). The agents’ preferences can be represented recursively
by:

∀t, Ut = W
(

ct, V −1
(

Et

[

V (Ũt+1)
]))

,

for some increasing aggregator function W , Ũt+1 is the future stochastic util-
ity, V is an increasing function, and Et is the mathematical expectation con-
ditional on information available at time t. The reader should note that
V −1

(

Et

[

V (Ũt+1)
])

represents the certainty equivalent of future utility where
V represents risk preferences and the aggregator W defines the intertemporal
substitution preferences between the consumption at time t and the future
utility. This was the first model to separate the role of risk aversion and
intertemporal substitution; however, Etner (2006) shows a relation between
these two concepts via the notion of the timing of resolution of uncertainty.

Following the same approach, different models have been proposed that
also include ambiguity, such as, for example, the recursive MEU by Epstein
and Schneider (2003) in the discrete-time version and by Chen and Epstein
(2002).

In this chapter, we study the generalized recursive smooth ambiguity
preferences model axiomatized by Hayashi and Miao (2011) that allows for a
three-way separation among risk aversion, ambiguity aversion, and intertempo-
ral substitution. This model is a dynamic model of the KMM model. It nests
some popular utility models as special cases, including Epstein-Zin model,
smooth ambiguity preferences (Klibanoff et al., 2009), and risk-sensitive pref-
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erences (Hansen and Sargent, 2001). We discuss this model in detail in Section
4.2.1.

4.1.3 Home Bias and Decision theory

The findings presented in this chapter are related to a series of papers that
studies portfolio choice and home bias using decision theory models under
ambiguity. We will comment here on why our findings differ from those in the
literature.

Epstein and Miao (2003) studies the international portfolio choice in a
two-agent equilibrium setting in which agents differ in their ambiguity about
returns and use a recursive MEU model. Uppal and Wang (2003) focuses on
asset allocation with multiple risky assets in an i.i.d. setting where different
levels of ambiguity are attached to the return distributions of domestic and
foreign assets. Garlappi et al. (2007) studies dynamic portfolio choice in the
multiple priors framework, and Peijnenburg (2018) uses a max-min expected
utility model over the life cycle in a dynamic setting. She finds that ambiguity
helps explain under diversification and home bias, but the model does not allow
a separation between ambiguity and ambiguity attitudes. It only concentrates
on the worst-case scenario.

Among the few papers applying the smooth ambiguity model, Chen et al.
(2014) consider an optimal consumption and portfolio choice problem where
the stock returns can be modeled as i.i.d. returns or using return predictabil-
ity. However, they focus on a simple application using one single risky asset.
Indeed, few articles apply the model with more than one risky or ambiguous
stock. Similar to our article, Yu et al. (2022) studies the portfolio management
problem under the smooth ambiguity model by deriving the Hamilton-Jacobi-
Bellman equation for the equilibrium value function. The analysis is done in
a life cycle setting, and they focus on the sensitivity analysis of risk and ambi-
guity parameters. They found that as an individual becomes more ambiguous
(or risk) averse, he will consume less, buy more life insurance and invest less
in risky assets. Another article related to ours, but in a static setting, is by
Guidolin and Liu (2016), where they study the asset allocation under smooth
ambiguity aversion where the investor relies on the conditional distribution of
them.

Our research differs from the previous papers as we use a smooth ambiguity
model and not the max-min model that considers only the worst-case scenario.
We use a dynamic model that can consider the future continuation value, and
we concentrate on the optimal asset allocation, assuming that there are two
kinds of stock on the market: domestic and foreign. Moreover, we provide
an in-depth analysis of the home bias and its evolution. To our knowledge,
it does not exist a numerical approach that is able to solve the optimal asset
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allocation for more than one stock using the generalized smooth ambiguity
model adopted here.

4.2 The model

This section describes the theoretical model used to study the investor’s
optimization problem.

Section 4.2.1 described the generalized smooth ambiguity modeled and its
properties in detail. Here, we discuss why it can be considered a generalized
model as well as its importance of it as it can distinguish between risk aversion,
ambiguity aversion, and intertemporal substitution.

The decision maker that follows the decision model in Section 4.2.1 has
to decide at each time t ∈ {0, · · · , T} the consumption level as well as the
allocation of her portfolio. The optimal decision problem will be discussed in
Section 4.3.

Before going further, Section 4.2.2 shows the composition of the financial
market and how it is perceived from the decision-maker’s viewpoint. Finally,
in Section 4.2.3, we discuss how the investor updates her beliefs when new
information is available in the financial market.

4.2.1 Generalized Recursive smooth ambiguity prefer-
ences

In this section, we introduce the generalized recursive smooth ambiguity
modeled axiomatized in Hayashi and Miao (2011) that has been built on the
static smooth ambiguity modeled developed by Klibanoff et al. (2005).

In the static setting, a decision maker’s ambiguity preferences over con-
sumption are represented by the utility function in terms of two certainties
equivalent as:

v−1
(∫

Π
v
(

u−1
(∫

S
u(C)dπ

))

dµ(π)
)

,

where u and v are increasing functions and µ represents a subjective prior
over set Π of probability measures on S that the decision maker thinks pos-
sible. When we define φ = v (u−1), the previous utility function is ordinally
equivalent to the one computed by Klibanoff et al. (2005):

∫

Π
φ
(∫

S
u(C)dπ

)

dµ(π). (4.2)

As explained in the previous section, this model separates ambiguity, char-
acterized by properties of the subjective set of measures Π, and ambiguity
attitudes, characterized by the shape of φ or v. Thanks to the separability of
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this concept, it is possible to create comparative statics of ambiguity attitudes
while holding ambiguity fixed. Moreover, the attitudes toward pure risk are
characterized by the shape of u. In particular, the decision maker displays risk
aversion if u is concave, while she displays ambiguity aversion if φ is concave
or, equivalently, if v is a concave transformation of u.In addition, this model
can include the multiple prior model of Gilboa and Schmeidler (1989) as a
special case when ambiguity aversion goes to infinity (Klibanoff et al., 2005).
On another note, if φ is linear, the decision maker is ambiguity neutral, re-
ducing this model to the standard expected model. This model can also be
re-interpreted as a model of robustness in which the decision maker is con-
cerned about model misspecification where each distribution π ∈ Π describes
an economic model. However, the decision maker is ambiguous regarding the
correct distribution, but she has a prior µ over alternative models. Moreover,
she is averse to model uncertainty, which is why the function φ is concave.
While the preference model just described achieves the task of separating am-
biguity and ambiguity attitudes, and it is able to obtain smooth indifference
curves (and not kinked ones), it is limited by the fact that it is a timeless
framework.

The first attempt to extend Klibanoff et al. (2005) to an intertemporal
framework was done by Klibanoff et al. (2009); however, this dynamic model
suffers from a limitation that intertemporal substitution and attitudes toward
risk or uncertainty are intertwined. This makes comparative statistics hard
to interpret. That is why we use the model proposed by Hayashi and Miao
(2011) that contains the model by Klibanoff et al. (2009) as a specific case.

We consider a dynamic setting with finite horizon T , time is denoted by
t = {0, 1, 2, · · · , T}, and the state space for each period is denoted by S. At
time t, the decision maker’s information consists of history st = {s0, s1, · · · , st}.
The investor has an initial wealth W0 and maximizes her lifetime utility by
controlling her consumption stream C = {Ct}0≤t≤T and investment decision,
that is her portfolio composition θ = {θt}0≤t<T where each Ct, θt is a func-
tion of the observed states up to time t. The decision maker is ambiguous
concerning the true distribution over the full state space. The uncertainty is
described by an unobservable random state z in the space Z, which drives a
probability distribution πz over the full state space. The investor has a start-
ing prior µ0 over the hidden state z, which can be interpreted as an unknown
parameter, and the posterior µt and the conditional likelihood πz,t can be ob-
tained by Bayes’ rule as described in Section 4.2.3. Finally, let u and v be
increasing functions with the same interpretation as the static model, let A
be a time aggregator, and Rt be a certainty equivalent functional that maps
an st+1−measurable random variable ξ to an st−measurable random function.
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The recursive smooth ambiguity function is given by:










Vt(C) = A (Ct, Rt (Vt+1(C)))

Rt(ξ) = v−1
(

Eµt

[

v ◦ u−1
Eπz,t

[u(ξ)]
])

(4.3)

where Vt+1 is the continuation value at date t. This equation can be rewritten
equivalently as:

Vt(C) = A
(

Ct, v−1
(∫

Z
v ◦ u−1

(∫

S
u(Vt+1(C)dπz,t)

)

dµt(z)
))

.

The generalized recursive smooth ambiguity model in Eq. 4.3 permits a
three-way separation among risk aversion, ambiguity aversion, and intertem-
poral substitution. This representation is based on the following axioms: (i)
weak order, continuity, and sensitivity, (ii) preference over acts for the future
is independent of current consumption, (iii) preference over risky consump-
tion is independent of history, (iv) independence for timeless lotteries à la von
Neumann and Morgenstern, (v) dynamic consistency, (vi) the preference over
second-order acts falls in the SEU theory of Savage (1972) and (vii) the pref-
erence over the subdomain of one step-ahead acts and the preference over the
subdomain of the corresponding second-order acts are consistent with each
other. We refer the reader to Hayashi and Miao (2011) for a more detailed
discussion on the axioms and more mathematical details on this model. When
v ◦ u−1 is linear, for example, v = u, this model reduces to the recursive utility
model of Epstein and Zin (1989) described in Section 4.1.2 as the decision
maker is ambiguity neutral.

Ju and Miao (2012) consider the following elasticity of intertemporal sub-
stitution aggregator and function of the CRRA family:

A(c, y) =
[

(1 − β)c1−ρ + βy1−ρ
]

1
1−ρ ρ > 0, ρ 6= 1

u(x) =
x1−γ

1 − γ
γ > 0, γ 6= 1

v(x) =
x1−η

1 − η
η > 0, η 6= 1.

We use the ordinally equivalent aggregator A(c, y) = [c1−ρ + βy1−ρ]
1

1−ρ , so
that utility is given by:

Vt(C) =



C1−ρ
t + β

(

Eµt

[

(

Eπz,t

[

V 1−γ
t+1

])
1−η

1−γ

])
1−ρ

1−η





1
1−ρ

, (4.4)
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where β = (0, 1) is the subjective discount factor, 1/ρ represents the elasticity
of intertemporal substitution, i.e., the willingness on the part of the consumer
to substitute future consumption for present consumption. Also, γ is the risk
aversion parameter, and η is the ambiguity aversion parameter. The decision
maker displays ambiguity aversion when η > γ and ambiguity neutrality when
η = γ.

We demonstrate here, as in Ju and Miao (2012), that the generalized re-
cursive smooth ambiguity model nests other decision theory models as special
cases.

In the limiting case with ρ = 1 and Ut = ln Vt, Eq. 4.4 reduces to:

Ut = ln Ct +
β

1 − η
ln

{

Eµt

[

exp

(

1 − η

1 − γ
ln
(

Eπz,t
(exp ((1 − γ) Ut+1))

)

)]}

.

(4.5)
This specification reduces to the multiplier model with hidden states studied by
Hansen and Sargent (2010) as there are two risk-sensitive adjustments: for the
distribution πz,t that reflects the agent’s concerns about the misspecification in
the underlying Markov law given a hidden state z and for the distribution µt

that reflects the agent’s concerns about the misspecification of the probabilities
assigned to the hidden states. More generally, the recursive smooth model
presented in Eq. 4.3 nests the recursive multiplier model with hidden states
in Hansen and Sargent (2006) as shown by Hayashi and Miao (2011).

If we take the limit in Eq. 4.5 when γ → 1 and η → ∞, Eq. 4.5 becomes

Ut = ln Ct + β min
z

Eπz,t
[Ut+1] ,

which is a utility function that belongs to the class of the recursive multiple-
prior model of Epstein and Schneider (2003). In this case, the agent is ex-
tremely ambiguity averse by choosing the worst continuation value each pe-
riod.

Moreover, Hayashi and Miao (2011) shows that the general model in Eq.
4.3 nests the model of Klibanoff et al. (2009) as a special case, i.e.:

Vt(C) = u(Ct) + βφ−1
(

Eµt

[

φ
(

Eπz,t
[Vt+1(C)]

)])

,

where risk aversion and intertemporal substitution are confounded.

In this chapter, we use the representation in Eq. 4.4 to solve our optimal
dynamic portfolio choice problem.
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4.2.2 Financial Assets

We consider a universe where the decision maker can trade N risky assets
and a risk-free asset.

The gross risk free rate from time t to time t + 1 is defined by Rf,t+1 =
1 + rf,t+1.

The vector of log-returns of the risky assets from time t to time t + 1 is
denoted by rt+1 = (r1,t+1, · · · , rN,t+1)

′. The log-returns of the risky asset are as-
sumed to be jointly normally distributed with mean vector m = (m1, · · · , mN)′

and covariance matrix Σ = (σij)1≤i,j≤N
. While this covariance matrix is sup-

posed to be known, the investor does not know the real value of m. How-
ever, she has a normal probability distribution over m characterized by a
mean vector µt = (µ1,t, · · · , µN,t)

′ and a covariance matrix Λt = (λij,t)1≤i,j≤N
.

The decision maker has as starting prior at time t = 0 the mean vector
µ0 = (µ1, · · · , µN)′ and the diagonal covariance matrix Λ0 = diag (λ2

1, · · · , λ2
N).

At each time t, the investor chooses the level of consumption Ct, assuming
that there is only one consumption good, and the composition of her portfolio,
described by the weights θt = (θ1,t, · · · , θN,t)

′ so that the weight invested in

the risk-free asset is θ0,t = 1 −
N
∑

n=1
θn,t.

The gross return on her wealth between time t and t + 1, given a portfolio
θt, is

Rt+1 (θt, rt+1) = Rf,t+1 + θ′
t (ert+1 − Rf,t+11)

where 1 is the N-vector of ones and the exponential is computed pointwise.

4.2.3 Learning

In the above utility function specified in Eq. 4.4, the unknown parameter
z is the mean of the log-returns of the risky asset, i.e., m. Moreover, the
conditional likelihood p (r|m) of observing some returns r is independent of
time, which leads us to denote expectations concerning this likelihood by Em [·].

Even though the real value of m is unknown to the investor, she has a prior
over it. At t = 0, the decision maker has a starting prior, and then she will
use the observed returns rt to learn about the distribution of this mean vector.
After t observations of the asset returns {rs}t

s=1, let r̄ be the mean vector. The
resulting posterior has a Normal multivariate distribution 1 with mean

µt =
(

Λ−1
0 + tΣ−1

)−1 (

Λ−1
0 µ0 + tΣ−1r̄

)

1See section 3.5, multivariate normal models with known variance, in Gelman et al.
(2015).
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and covariance matrix
Λ−1

t = Λ−1
0 + tΣ−1.

The update rule at each time t is then

Λ−1
t+1 = Λ−1

t + Σ−1

µt+1 = Λt+1

(

Λ−1
t µt + Σ−1rt+1

)

. (4.6)

It is possible to see the update rule for the mean as a weighted average between
the previous mean µt and the real value on the market rt+1 where the ratio
between the covariance matrices gives the weights. When the uncertainty
becomes null, λt+1 → 0, the Bayesian update gives a higher weight to µt and
a quasi-null weight to rt+1 that is because the mean tends to its real value
(no uncertainty) which means that there is no need to use new information
on the market. On the other hand, when there is a high uncertainty, λt+1 is
significant, and the Bayesian update gives importance to both the previous
value and the new information on the market.

We denote the prior and posterior distributions by µt to avoid cumbersome
notations. Hence, to highlight the dependencies, we write

µt+1 = B (µt, rt+1) , (4.7)

where B is the belief updating function. In this case, we mean the updates
of the mean vector and the covariance matrix. Accordingly, expectations with
respect to these posteriors should be denoted by Eµt

[·].
Now, we show the evolution of Bayesian learning over time by using Eq.

4.6. We assume T = 100 and two risky and ambiguous assets on the market.
Both assets are equal on the financial market whose log returns follow a normal
distribution with mean m1 = m2 = 8% and standard deviation σ1 = σ2 = 20%
and correlation equals 0.5. However, we assume that the decision-maker does
not know the real value of the log returns’ mean, and the investor has a prior
over m with means equal to µ1 = µ2 = 11%. In order to distinguish between
these two stocks, we assume that the decision maker is less ambiguous over
asset 1, which means that the starting variance of her prior is lower in asset 1
than asset 2, i.e., Λ2

1 = 0.004 < Λ2
2 = 0.01.

Figure 4.1 shows the Bayesian learning evolution of the mean and variance
of the posterior probability distribution. The right panel shows that the vari-
ance of the belief distribution decreases unevenly over time. At the start, the
variance tends to decrease faster compared to the last years. We can justify
this behavior as the decision maker gives more weight to the first information
she receives as she does not know anything about the assets. In contrast, in
the last few years, she already knows a lot from the past, meaning new in-

123





this domestic stock with mean µ̂t and standard deviation λ̂t. The update of
the prior is done using just the information related to the domestic stock as
follows:

λ̂2
t+1 =

(

1

λ̂2
t

+
1

σ11

)−1

µ̂t+1 = λ̂2
t+1

(

µ̂t

λ̂2
t

+
r1,t+1

σ11

)

.

After the first study period, the decision maker decides to invest from
time t = 0 to T . When she starts to invest at time 0, the agent discovers
that another kind of asset exists on the market, i.e., the foreign asset and she
updates her posterior distribution using Eq. 4.6. We assume that whenever
the decision maker discovers a new stock, she always has the same starting
prior for each stock, however in the case of the domestic stock, this prior has
been updated for tstudy years which will lead to having a prior closer to the
real value and with less uncertainty. Kilka and Weber (2000) empirically show
that subjective probability distributions of stock returns are significantly less
dispersed for stocks associated with high competence levels than for stocks
associated with low competence levels.

Throughout this chapter, we use two examples to study the different results
obtained in the optimization problem. In both cases, we assume a five-year
study period without investing.

In the first example, we assume that the decision-maker overestimates
the stock returns. At time t = −5, the starting prior for the domestic asset
is
(

µ̂−5 = 11%, λ̂2
−5 = 0.01

)

that is updated using the previous rule. At the
time t = 0, the decision maker starts to invest, and the starting prior for both
assets are:

µ0 =

[

9.34%
11%

]

with variance:

Λ0 =

[

0.004444 0
0 0.01

]

,

where asset 1 is the domestic asset and asset 2 is the foreign one. We represent
the posterior in Figure 4.2. In this case, asset 1 is always closer to the true
value, and the variance is always lower compared to the posterior distribu-
tion of the foreign asset. However, we notice that after a few times, the two
distributions tend to converge, and we see that there is little or no difference
between them when t is higher than 50 years.

The second example is when the decision maker underestimates the stock
returns of both stocks. A time t = −5, the starting prior for the domestic asset
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4.3 The investor’s problem

We now describe the investor’s problem considering that she has a finite
horizon T at which it is optimal for her to consume all her remaining wealth.
She has an initial wealth called W0 and, at each date t, she decides to consume
an amount Ct of her available wealth Wt and to invest the remaining (Wt − Ct)
into the available financial assets. Her intertemporal budget constraint then
writes:

Wt+1 = (Wt − Ct) Rt+1(θt, rt+1). (4.8)

We additionally impose standard borrowing and short sales constraints.
Let W := {Wt}0≤t≤T be the wealth process, the consumption process C must
be in C(W ) := {C : 0 ≤ Ct ≤ Wt, ∀t} and the portfolio process θ := {θt}0≤t≤T

must be in ΘT where Θ :=
{

x ∈ R
N
+ : 1′x ≤ 1

}

. This rules out the possibility
that a leveraged investor faces bankruptcy before the horizon T .

The investor must define the consumption level and optimal asset allocation
at each time to maximize her utility function. Formally, she has to find the
optimal controls {C∗

t }T

t=0and {θ∗
t }T

t=0 which maximize V0:

max
C∈C,θ∈Θ

V0 (W, µ, C, θ)

where W := {Wt}0≤t≤T and µ := {µt}0≤t≤T are the state variables driven by
Eq. 4.8 and 4.7. We recall that µt denotes the whole posterior distribution
and not only its mean.

Due to the recursive structure of the preference, this problem is amenable
to dynamic programming methods. Define the value function

Jt (Wt, µt) = max
{Cs}T

t ∈C,{θs}T
t ∈
∏T

t
Θ

Vt

(

{Ws}T

t , {µs}T

t , {Cs}T

t , {θs}T

t

)

which satisfies the Bellman equation

Jt (Wt, µt) = max
Ct∈C(Wt),θt∈Θ



C1−ρ
t + β

(

Eµt

[

(

Em

[

J1−γ
t+1 (Wt+1, µt+1)

])
1−η

1−γ

])
1−ρ

1−η





1
1−ρ

(4.9)

with terminal value JT (WT , µT ) = WT as CT = WT .

Solving the Bellman equation

The homogeneity to the value function leads to the conjecture Jt (Wt, µt) =
WtGt (µt). Substituting into the Bellman equation in Equation 4.9 with the
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budget constraint, Eq. 4.8, leads to

Gt (µt) = max
Ct∈C(Wt),θt∈Θ

(

(

Ct

Wt

)1−ρ

+ β
(

1 − Ct

Wt

)1−ρ

H1−ρ
t (µt, θt)

)
1

1−ρ

(4.10)

where

Ht (µt, θt) :=

(

Eµt

[

(

Em

[

(Gt+1 (B (µt, r)) Rt+1 (θt, r))1−γ
])

1−η

1−γ

])
1

1−η

. (4.11)

Note that we used the belief updating rules µt+1 = B (µt, r) to list the relevant
variables for the function Ht and note that the inner expectation is over values
of r, see appendix for more information.

FOC with respect to consumption: Assuming the solution is an in-
terior point, the first-order condition for Ct leads to

(

C∗
t /Wt

1 − C∗
t /Wt

)−ρ

= βH1−ρ
t (µt, θt) .

As the r.h.s. is independent of Wt, the optimal consumption must be propor-
tional to wealth, that is Ct/Wt = ct (µt, θt) where

ct (µt, θt) =
(

1 + β
1
ρ H

1−ρ

ρ

t (µt, θt)
)−1

. (4.12)

Moreover, as GT (µT ) = 1 > 0 and Rt+1 > 0, we obtain by backward
recursion that Ht is always positive, hence that ct (µt, θt) < 1 for all t except
t = T at which we have equality. Hence the constraint Ct ∈ C (Wt) on the
consumption the process is not binding, given the prohibition of leverage in
the portfolio composition.

Inject this optimal consumption path into the Bellman Eq. 4.10 and use
Eq. 4.12 to obtain:

Gt (µt) = max
θt∈Θ

{

c
− ρ

1−ρ

t (µt, θt)
}

= max
θt∈Θ

{

(

1 + β
1
ρ H

1−ρ

ρ

t (µt, θt)
)

ρ

1−ρ

}

. (4.13)

As the maximand is a monotonically increasing function of Ht, we conclude
that the optimal portfolio is obtained by maximizing Ht:

θ∗
t (µt) = argmaxθt∈ΘHt (µt, θt) (4.14)

from which follows the optimal consumption path C∗
t = Wtct (µt, θ∗

t ) and the
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value function
Gt (µt) = c

− ρ

1−ρ

t (µt, θ∗
t ) . (4.15)

FOC with respect to the portfolio composition: The Lagrangian
for the optimal portfolio problem in Eq. 4.14 at time t is

L (θt, λ1, λ2) = Ht (µt, θt) + λ
′
1θt + λ2 (1 − 1′θt)

where λ1 ∈ R
N
+ and λ2 ∈ R+are the Lagrange multipliers.

For each asset 1 ≤ n ≤ N , the first-order conditions are,

∂Ht

∂θn,t

+ λ1,n − λ2 = 0,

where

∂Ht

∂θn,t

= Hη
t Eµt

[

(

Em

[

G1−γ
t+1 R1−γ

t+1

])
γ−η

1−γ
Em

[

G1−γ
t+1 R−γ

t+1e
rn,t+1

]

]

.

In the following numerical implementation, this problem is solved numeri-
cally and not through this system of equations.

4.4 Numerical Implementation

In this section, we discuss the numerical implementation of the Bellman
equation derived in the section before.

We implement the Bellman equation with two ambiguous stocks, i.e., N =
2. However, this approach can be extended to a generic N . Firstly, we solve
the Bellman equation without learning and then compute it with learning.

The Python code is available upon request.

4.4.1 Solving without learning

Without learning µt = µ0 and Λt = Λ0 for all t and Eq. 4.11 can be
rewritten as Ht (µt, θt) = Gt+1(µ0)H̃ (µ0, θt) where

H̃ (µ0, θt) :=

(

Eµ0

[

(

Em

[

(Rt+1(θt, r))1−γ
])

1−η

1−γ

])
1

1−η

. (4.16)

At each time step we have

θ∗ = arg max
θt∈Θ

H̃ (µ0, θt) (4.17)

from which we see that θ∗ is independent of t.
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The double expectations in H̃ are computed using Gauss-Hermite quadra-
ture (see appendix for details) and scipy.optimize.minimize() is applied to
obtain θ∗ with the constraints and the optimal value H̃∗ (µ0) := H̃ (µ0, θ∗).

Once identified the optimal consumption, θ∗, the optimal level of consump-
tion is obtained by using Eq. 4.12 and the value function using Eq. 4.15 using
a backward approach.

4.4.2 Approximating the value function

This subsection allows us to obtain some results helpful in solving the
optimization problem with learning.

From Eq. 4.15, we know that:

G
1−ρ

ρ

t (µt) = c∗−1
t (µt, θ∗

t ) .

We identify that it is possible to rewrite c−1
t (µt, θ∗

t ) as a polynomial function
of order 2 of the parameters that characterized the posterior belief distribution:

c−1
t (µt, θ∗

t ) = Poly (µt, Λt | αt) .

We estimate the parameter αt using all sample paths available at time t.
We obtain an adjusted R2 close to 1 and a mean squared error that tends to
0. Moreover, the value estimated using the polynomial approximation is close
to the real values.

This representation is helpful as we need to express G
1−ρ

ρ

t (µt) as a func-
tion of µt, Λt in order to compute the expected value in the case solving with
learning.

4.4.3 Solving with learning

1. Generate B samples paths
{

{

r
(b)
t

}T

t=1
: 1 ≤ b ≤ B

}

and compute the cor-

responding Bayesian updates
{

{

µ
(b)
t

}T

t=0
: 1 ≤ b ≤ B

}

and
{

{Λt}T

t=0

}

of

the prior.

2. At T : We have C∗
T = WT , equivalently, c∗

T = 1.

Therefore JT (WT , µT ) = WT and GT (µT ) = 1 is constant.

3. At T − 1

(a) For each 1 ≤ b ≤ B compute the optimal portfolios θ
∗(b)
T −1 : given

that GT is independent of the posterior µT , we solve for θ
∗(b)
T −1 =
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arg maxθ∈Θ H̃
(

µ
(b)
T −1, ΛT −1, θT −1

)

and we store the optimized value

H
(

µ
(b)
T −1, θ

∗(b)
T −1

)

= H̃
(

µ
(b)
T −1, θ

∗(b)
T −1

)

.

(b) Compute cT −1

(

µ
(b)
T −1, θ

∗(b)
T −1

)

with Eq. 4.12

(c) Compute GT −1

(

µ
(b)
T −1

)

with Eq. 4.15.

(d) Regress the inverse of c
(b)
T −1 on a polynomial basis of degree 2 of

(

µ
(b)
T −1, ΛT −1

)

, as described in Section 4.4.2, in order to find the
polynomial coefficients αT −1:

G
1−ρ

ρ

T −1

(

µ
(b)
T −1

)

= c−1
T −1

(

µ
(b)
T −1, θ

∗(b)
T −1

)

= Poly
(

µ
(b)
T −1, ΛT −1 | αT −1

)

.

.

4. For each t = T − 2 to t = 0

(a) For each 1 ≤ b ≤ B compute the optimal portfolios θ
∗(b)
t using Eq.

4.11:

θ
∗(b)
t

(

µ
(b)
t

)

= arg max
θt∈Θ

(

E
µ

(b)
t

[(

Em

[(

Poly
(

B
(

µ
(b)
t , r

(b)
t+1

)

, Λt+1 | αt+1

)
1−ρ

ρ

×Rt+1(θ
(b)
t , r

(b)
t+1)

)1−γ
])

1−η

1−γ

])

1
1−η

where Gt+1 is rewritten using the polynomial function described in
Section 4.4.2 and we remember that µt+1 = B (µt, rt+1) as in Eq.
4.7.

(b) Retrieve Ht

(

µ
(b)
t , θ

∗(b)
t

)

from the optimizer, then compute

ct

(

µ
(b)
t , θ

∗(b)
t

)

and Gt

(

µ
(b)
t

)

using Eq. 4.12 and Eq. 4.15 respectively.

(c) If t > 0, regress the inverse of ct

(

µ
(b)
t , θ

∗(b)
t

)

as a function of
(

µ
(b)
t , Λt

)

using a polynomial basis of order 2 as as described in Section 4.4.2
in order to obtain the polynomial coefficients αt:

G
1−ρ

ρ

t

(

µ
(b)
t

)

= c−1
t

(

µ
(b)
t , θ

∗(b)
t

)

= Poly
(

µ
(b)
t , Λt | αt

)

The double expectations in Ht are computed using Gauss-Hermite quadra-
ture (see appendix for details) and scipy.optimize.minimize() is applied to
obtain θ∗

t with the constraints. The Python code is available upon request.
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4.5 Results

In this section, we present some numerical examples obtained using 10,000
Monte Carlo simulations, allowing us to obtain smooth results.

In our standard scenario, we assume one risk-free asset and two risky stocks.
The risk-free rate is 2% whereas the two risky stocks are equal on the market
whose mean is m1 = m2 = 8%, and variance is σ11 = σ22 = 0.04, and they are
correlated with a coefficient equal to ρ = 0.5.

As described in our theoretical model, the decision maker is ambiguous
about the actual value of the mean of the return’s distribution. We assume
that for asset 1, considered the domestic stock, the decision maker believes
that the mean of the distribution is equal to m1 + c at time t−study and she
learns for the period {t−study, · · · , 0}. More specifically, we will assume two
cases: case I (overvalue of the mean of the distribution) where c = 3% which
will lead to having µ1 at time t = 0 equal to 9.38% and case II (undervalue of
the mean of the distribution) where c = −3% which will lead to having µ1 at
time t = 0 equal to 6.63%. For the second stock, the foreign asset, the decision
maker believes that the mean of the distribution at time 0 is equal to m2 + c,
i.e., µ2 = 11% in case I and µ2 = 5% in case II.

The variance of the decision maker’s prior belief for the domestic stock at
time t−study is equal to 1%. However, it arrives at Λ2

1 = 0.44% at time 0. For
the foreign asset, the variance equals 1% at time 0. The covariance matrix at
time t = 0 is then equal to

[

0.44% 0%
0% 1%

]

.

We refer the reader to Section 4.2.3 for a more comprehensive understanding
of the bayesian updating rule and the starting prior used.

We see that in this standard scenario, we create a financial market where
two stocks are entirely equal in distribution. However, the decision maker has
a different probability belief over them, allowing us to identify domestic and
foreign stocks.

We define the parameters of the generalized recursive smooth ambiguity
model as in Bansal and Yaron (2004): γ = 2, η = 8.864, β = 0.975, and
ρ = 1/1.5. Moreover, the decision maker starts to invest at time 0 till T = 75,
as in Peijnenburg (2018).

We perform a sensitivity analysis of the decision maker’s home bias when
the generalized recursive smooth ambiguity model parameter changes in Sec-
tion 4.5.1. In order to better comment on the sensitivity, we assume that the
decision-maker invests at t = 0 by using the prior distribution she has; how-
ever, she does not rebalance her portfolio each year, i.e., one-shot investing.
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Section 4.5.2 studies the optimal asset allocation and optimal consumption
in the case of a dynamic setting where the decision maker rebalances her
portfolio each year by using the new posterior belief distribution. We study
how the portfolio composition changes if the decision maker is not ambiguous-
averse. We also do a comparative analysis with the static model and one-shot
investing.

4.5.1 No Rebalancing portfolio

In this section, we assume that the decision-maker does not rebalance her
portfolio using the new information available on the market. She invests at
time t = 0 using the starting prior she has, but she does not adjust her portfolio
using the posterior belief distribution. We will use the results obtained in this
section as a benchmark for the case where the decision maker rebalances her
portfolio each time.

As she does not rebalance her portfolio, the percentage invested in each
stock does not change over time. For this reason, we use this scenario to
perform a sensitivity analysis of the model parameters.

Different results can be obtained using different priors and market config-
urations. However, the interpretation of the parameters should be the same.

Risk Parameter

We describe here how the risk parameter can affect the portfolio composi-
tion.

Figure 4.4 shows the percentage invested in each stock as a percentage of
the total invested (left panel) as well as the market participation (right panel)
in the risky market when the risk parameter γ changes. This figure shows
the case where the decision-maker overprices the stock returns. When the risk
parameter increases, market participation decreases as the investor will try as
much as possible to avoid risky situations. However, the quantity invested
in stock 2 (i.e., more ambiguous stock) increases compared to the quantity
invested in stock 1. This behavior can be justified because the decision-maker
believes that asset 2 has a higher return. Moreover, as the decision maker
becomes hugely risk averse, she cares less about the uncertainty in the market.
Finally, we should consider that the investor is considered ambiguity averse
only if η > γ and, in this case, η = 8.864.

The portfolio composition and the market participation are also shown
in Figure 4.5 in the case of undervaluation of the stock returns. As in the
previous Figure, an increase in the risk parameter will lead to a decrease in
market participation. In this case, the percentage invested in each stock is
constant over time. That is because the more ambiguous stock is believed to
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sults show that ambiguity-averse investors participate less in financial markets
and have a higher home bias compared to ambiguity-neutral decision-makers.
However, learning over time allows the investor to adjust her prior closer to
the real mean of stock return and adjust her optimal portfolio composition.

This study could be extended by using a different specification for the util-
ity function. We use a CRRA function that allows us to solve the optimal
asset allocation independently from the level of wealth. Using a different util-
ity function would allow computing the optimal portfolio composition in the
function of the wealth level. Another path for extension is to use a different
way to update the posterior belief of the decision-maker instead of Bayesian
learning. Bayesian learning assumes that an investor weights the new informa-
tion equally independently of the portfolio composition. However, an investor
may not learn about the asset if it is not in her portfolio, and, on the other
hand, she learns a lot about that asset if it is a significant share of her port-
folio. For example, Abreu et al. (2011) shows that investors tend to learn by
trading such as the more active they are in the domestic market, the earlier
they start to enter in new markets given the new knowledge they have.

The solution of a model that uses wealth as a parameter and a model that
includes the fact that learning depends on the previous portfolio composition
is more complex than the model we propose here. This is due to the fact that
our model solves the optimal portfolio composition backward, i.e., from T to
0. It could be possible to solve this problem using a grid search point, but it
would become more complex and time-consuming.
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Appendix

Numerical Implementation: Gauss-Hermite Quadrature

This procedure is used to find the optimal θt for each time t ∈ [0, T − 2]
and for each simulation b ∈ B.Gauss-Hermite (GH) quadrature

1. Create two 4th order NGauss-dimensional tensors which give the values of
r1,t+1 and r2,t+1 for the GH quadrature using the Cholesky decomposition

Ξ1,(b)
p1p2n1n2

(µt, Λt) = µ
(b)
1,t +

√

2 (λ11)tξp1 +
√

2σ11ξn1

Ξ2,(b)
p1p2n1n2

(µt, Λt) = µ
(b)
2,t + ̺

√

2 (λ22)tξp1 +
√

2 (λ22)t (1 − ̺2
t )ξp2

+ ρ
√

2σ22ξn1 +
√

2σ22 (1 − ρ2)ξn2

where

̺t =
(λ12)t

√

(λ11)t · (λ22)t

ρ =
σ12√

σ11 · σ22

(a) At each GH node (p1p2n1n2)

i. Compute the return of the portfolio

R(b)
p1p2n1n2

(θt)t+1 = Rf,t+1 + θ1,t

(

exp
(

Ξ1,(b)
p1p2n1n2

(µt, Λt)
)

− Rf,t+1

)

+ θ2,t

(

exp
(

Ξ2,(b)
p1p2n1n2

(µt, Λt)
)

− Rf,t+1

)

ii. Compute the Bayesian update of the prior

Λt+1 =
(

Λ−1
t + Σ−1

)−1

µ(b)
p1p2n1n2

(

µ
(b)
t , Λt

)

t+1
= Λt+1

(

Λ−1
t µ

(b)
t + Σ−1

(

Ξ1,(b)
p1p2n1n2

(µt, Λt)
Ξ2,(b)

p1p2n1n2
(µt, Λt)

))

iii. Compute the values of Gt+1 knowing the αt+1

G(b)
p1p2n1n2

(

µ(b)
p1p2n1n2

(

µ
(b)
t , Λt

)

t+1
, Λt+1 | at+1

)

t+1

= Poly
(

µ(b)
p1p2n1n2

(

µ
(b)
t , Λt

)

t+1
, Λt+1 | αt+1

)

T −(t+1)
1−ρ



(b) Evaluate the double integration with Gauss Hermite quadrature

i. In the case without learning:

H̃(µ0, Λ0, θ∗) ≈


π−1
NGauss
∑

p1,p2=1

ωp1ωp2



π−1
NGauss
∑

n1,n2=1

ωn1ωn2

(

Rp1p2n1n2 (θt)t+1

)1−γ





1−η

1−γ







1
1−η

ii. In case with learning:

Ht

(

µ
(b)
t , Λt, θ

∗(b)
t

)

≈
(

π−1
NGauss
∑

p1,p2=1

ωp1ωp2

[

π−1
NGauss
∑

n1,n2=1

ωn1ωn2

(

G(b)
p1p2n1n2

(· | at+1)t+1 R(b)
p1p2n1n2

(θt)t+1

)1−γ

]

1−η

1−γ







1
1−η

iii. scipy.optimize.minimize() is applied to −H
(b)
t to obtain

θ
∗(b)
t with the constraints.
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General Conclusion

This thesis is at the frontier of economics and finance as it studies decision
theory both from a risk management viewpoint and from an investor viewpoint.

Chapter 1 gives an overview of the two most classic risk measures adopted
by risk managers in order to avoid bankruptcy: Value-at-Risk (VaR) and Tail
Conditional Expectation (TCE). In order to study an implicit utility function
between regulators, we compare the quantiles of VaR and TCE. We discover
that the Swiss Solvency Test can be considered more risk-averse than Solvency
II regulation if we assume that claims follow a generalized Pareto distribution.
Moreover, we introduce a new risk measure, the high-order TCE, which can
consider high-order risk in the distribution’s tails. We compare the quantiles of
this new risk measure with more classic risk measures to illustrate the interplay
between implicit choices of risk measures by regulators and the characteristics
of probability distribution tails. The study assumes that claims follow the
Pareto type I distribution or the generalized Pareto distribution. However,
a possible extension could examine the relationship between risk measures
where semi-heavy tails are modeled using the infinitely divisible probability
distribution.

In chapter 2, we study the four properties that a risk measure should have
in order to be defined as coherent: subadditivity, monotonicity, positive ho-
mogeneity, and translation invariance. We discuss that VaR is not a coherent
risk measure, whereas TCE is defined as a coherent risk measure. However,
we see that it is not always possible to respect the four axioms. We highlight
that the extended TCE introduced in the previous chapter is not a coherent
risk measure. However, we introduce a variation of the extended TCE that is
able to respect the coherence axioms, if not fully, at least in a weak sense.

To help risk managers to identify which annual moment is more stable over
time, we perform an empirical study in chapter 3 by analyzing seventeen equity
indices and the 3-month T-Bill rate. We discover that skewness (or third-order
raw moment) is less stable than kurtosis (or fourth-order raw moment). In
contrast, partial third-order raw (standardized) moments are more stable than
partial fourth-order raw (standardized) moments. Moreover, we show that raw
moments are more stable than standardized moments over time. This empirical
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study aims to give risk managers enough information on which moments they
should rely on when constructing their strategy.

Then, we study decision theory under uncertainty in chapter 4, using the
generalized recursive smooth ambiguity model of Hayashi and Miao (2011) to
study the home bias in a dynamic setting. We develop a numerical approach
that extends the existing ones to tackle the specificity of our framework, and
we perform sensitivity analysis to see how the home bias varies when our model
parameters vary. Moreover, the fact that the decision-maker learns over time
allows the agent to adjust her prior closer to the real mean of stock return
and, therefore, to adjust her optimal portfolio composition. This study could
be extended by using a different utility specification that is not independent
of the level of wealth. However, this is a more complex situation where we
should use a grid point research that would increase the problem’s difficulty.
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