
HAL Id: tel-04241121
https://theses.hal.science/tel-04241121v1
Submitted on 9 Jan 2012 (v1), last revised 13 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An environment for peer-to-peer high performance
computing

The Tung Nguyen

To cite this version:
The Tung Nguyen. An environment for peer-to-peer high performance computing. Embedded Sys-
tems. Institut National Polytechnique de Toulouse - INPT, 2011. English. �NNT : �. �tel-04241121v1�

https://theses.hal.science/tel-04241121v1
https://hal.archives-ouvertes.fr

 M :

Institut National Polytechnique de Toulouse (INP Toulouse)

Systèmes (EDSYS)

Un environnement pour le calcul intensif pair à pair

16 Novembre 2011
The Tung NGUYEN

Informatique

Olivier BEAUMONT
Frédéric MAGOULES

Didier EL BAZ

Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS)

Olivier BEAUMONT
Julien BOURGEOIS

Michel DIAZ
Didier EL BAZ

Frédéric MAGOULES
Toufik SAADI

UNIVERSITY OF TOULOUSE

DOCTORAL SCHOOL EDSYS

Ph.D. T H E S I S
to obtain the title of

Ph.D. of Science

of the University of Toulouse

Specialty : Computer Science

Defended by

The Tung Nguyen

An environment for peer-to-peer
high performance computing

Thesis Advisor: Didier El Baz

prepared at LAAS-CNRS, Toulouse, CDA Team

defended on November 16, 2011

Jury :

Advisor : Didier EL BAZ - LAAS-CNRS

Reviewers : Olivier BEAUMONT - LaBRI-INRIA

Frédéric MAGOULES - Ecole Centrale Paris

Examinators : Julien BOURGEOIS - University of Franche-Comté

Michel DIAZ - LAAS-CNRS

Tou�k SAADI - University of Picardie

Remerciement

Les travaux de thèse présentés dans ce mémoire ont été e�ectués au Labora-

toire d'Analyse et d'Architecture des Systèmes (LAAS) du Centre National de la

Recherche Scienti�que (CNRS). Je tiens à remercier Raja CHATILA, Jean-Louis

SANCHEZ, et Jean ARLAT, directeurs successifs du LAAS - CNRS, pour m'avoir

accueilli au sein de ce laboratoire.

Je souhaite témoigner ma plus sincère gratitude à mon encadrant, Monsieur

Didier EL BAZ, pour son écoute et ses conseils tout au long de ces trois années. Je

le remercie tout particulièrement pour les nombreuses ré�exions que nous avons pu

mener ensemble et au travers desquelles il a partagé une partie de son expérience

avec moi.

Je tiens également à remercier Messieurs Olivier BEAUMONT (LaBRI-INRIA),

Julien BOURGEOIS (Université Franche Comté), Michel DIAZ (LAAS-CNRS),

Frédéric MAGOULES (Ecole Centrale de Paris) et Tou�k SAADI (Université Pi-

cardie) pour leur participation à mon jury de thèse. Particulièrement, je souhaite

remercier Monsieur Olivier BEAUMONT et Monsieur Frédéric MAGOULES de

m'avoir fait l'honneur d'être rapporteur de mes travaux. Leurs remarques et conseils

avisés ayant permis d'améliorer la clarté de la présentation des idées véhiculées par

le présent manuscrit.

Les travaux de la thèse présenté dans ce mémoire est dans le cadre du projet

ARN-CIP. Je souhaite remercier les collaborateurs du projet pour les collaborations

fort enrichissantes.

Je tiens également à remercier Monsieur Guillaume JOURJON et Monsieur Max

OTT pour m'avoir invité et accueilli pour le séjour de quatre mois à NICTA, Sydney,

Australie.

Mes remerciements vont naturellement à l'ensemble des membres du groupe

CDA: Messieurs Jean-Michel ENJALBERT, Moussa ELKIHEL, Vincent BOYER

et Mohamed LALAMI avec lesquels j'ai partagé ces trois années.

Un grand merci à mes amis vietnamiens, à mes frères Nam, Thach, Thanh et Van

pour leur aide précieuse durant ces trois ans, y compris dans les moments di�ciles.

En�n, je souhaite remercier ma famille et Phuong Linh pour leur encouragement

et leur soutien moral.

iii

Abstract

The concept of peer-to-peer (P2P) has known great developments these years in the

domains of �le sharing, video streaming and distributed databases. Recent advances

in microprocessors architecture and networks permit one to consider new applica-

tions like distributed high performance computing. However, the implementation of

this new type of application on P2P networks gives raise to numerous challenges like

heterogeneity, scalability and robustness. In addition, existing transport protocols

like TCP and UDP are not well suited to this new type of application.

This thesis aims at designing a decentralized and robust environment for the

implementation of high performance computing applications on peer-to-peer net-

works. We are interested in applications in the domains of numerical simulation

and optimization that rely on tasks parallel models and that are solved via parallel

or distributed iterative algorithms. Unlike existing solutions, our environment al-

lows frequent direct communications between peers. The environment is based on

a self adaptive communication protocol that can recon�gure itself dynamically by

choosing the most appropriate communication mode between any peers according

to decisions concerning the scheme of computation that are made at the application

level or elements of context at transport level, like topology.

We present and analyze computational results obtained on several testeds like

GRID'5000 and PlanetLab for the obstacle problem and nonlinear network �ow

problems.

v

Résumé

Le concept de pair à pair (P2P) a connu récemment de grands développements dans

les domaines du partage de �chiers, du streaming vidéo et des bases de données

distribuées. Le développement du concept de parallélisme dans les architectures

de microprocesseurs et les avancées en matière de réseaux à haut débit permettent

d'envisager de nouvelles applications telles que le calcul intensif distribué. Cepen-

dant, la mise en oeuvre de ce nouveau type d'application sur des réseaux P2P pose

de nombreux dé�s comme l'hétérogénéité des machines, le passage à l'échelle et la

robustesse. Par ailleurs, les protocoles de transport existants comme TCP et UDP

ne sont pas bien adaptés à ce nouveau type d'application.

Ce mémoire de thèse a pour objectif de présenter un environnement décentralisé

pour la mise en oeuvre de calculs intensifs sur des réseaux pair à pair. Nous nous

intéressons à des applications dans les domaines de la simulation numérique et de

l'optimisation qui font appel à des modèles de type parallélisme de tâches et qui sont

résolues au moyen d'algorithmes itératifs distribués or parallèles. Contrairement

aux solutions existantes, notre environnement permet des communications directes

et fréquentes entre les pairs. L'environnement est conçu à partir d'un protocole

de communication auto-adaptatif qui peut se recon�gurer en adoptant le mode de

communication le plus approprié entre les pairs en fonction de choix algorithmiques

relevant de la couche application ou d'éléments de contexte comme la topologie au

niveau de la couche réseau.

Nous présentons et analysons des résultats expérimentaux obtenus sur diverses

plateformes comme GRID'5000 et PlanetLab pour le problème de l'obstacle et des

problèmes non linéaires de �ots dans les réseaux.

Contents

1 Introduction 1

1.1 Problem statement . 1

1.2 Contribution . 3

1.2.1 Project ANR CIP . 3

1.2.2 Contribution of the thesis . 3

1.3 Structure of the dissertation . 5

2 State of the art 7

2.1 Introduction . 7

2.2 Peer-to-peer systems . 7

2.2.1 Introduction . 8

2.2.2 Characteristics . 8

2.2.3 Architectures . 10

2.3 Distributed computing . 13

2.3.1 Grid computing . 13

2.3.2 Global computing . 13

2.3.3 Peer-to-peer high performance computing 14

2.4 High Performance Computing, parallel iterative methods 17

2.4.1 High Performance Computing 17

2.4.2 Parallel iterative methods . 17

2.5 Conclusion . 25

3 P2PSAP - A self-adaptive communication protocol 27

3.1 Introduction . 27

3.2 State of the art in adaptive communication protocols 28

3.2.1 Micro-protocol approach . 29

3.2.2 Cactus framework and CTP protocol 31

3.3 P2PSAP Protocol architecture . 33

3.3.1 Socket API . 33

3.3.2 Data channel . 33

3.3.3 Control channel . 34

3.4 Example of scenario . 36

3.5 Some modi�cations to Cactus . 37

3.6 Self-adaptive mechanisms . 37

3.6.1 Choice of protocol features 38

3.6.2 New micro-protocols . 39

3.6.3 (Re)Con�guration . 43

3.7 Computational experiments . 47

3.7.1 Network �ow problems . 47

3.7.2 Platform . 49

viii Contents

3.7.3 Computational results . 50

3.8 Chapter summary . 51

4 Centralized version of the environment for peer-to-peer high per-

formance computing 53

4.1 Introduction . 53

4.2 Global architecture . 54

4.3 Programming model . 55

4.3.1 Communication operations 55

4.3.2 Application programming model 56

4.4 Implementation . 58

4.4.1 User daemon . 58

4.4.2 Resource manager . 58

4.4.3 Application repository . 59

4.4.4 Task manager . 59

4.5 Computational results . 60

4.5.1 Obstacle problem . 60

4.5.2 Implementation . 62

4.5.3 NICTA testbed and OMF framework 65

4.5.4 Problems and computational results 65

4.6 Chapter summary . 68

5 Decentralized environment for peer-to-peer high performance com-

puting 71

5.1 Introduction . 71

5.2 Hybrid resource manager . 72

5.2.1 General topology architecture 73

5.2.2 IP-based proximity metric . 74

5.2.3 Topology initialization . 74

5.2.4 Tracker joins . 74

5.2.5 Peer joins . 75

5.2.6 Tracker leaves . 75

5.2.7 Peer leaves . 76

5.2.8 Peers collection . 76

5.3 Hierarchical task allocation . 77

5.4 Dynamic application repository . 78

5.5 File transfer . 78

5.6 New communication operations . 79

5.7 Computational experiments . 80

5.7.1 New approach to the distributed solution of the obstacle problem 80

5.7.2 Grid'5000 platform . 85

5.7.3 Experimental results . 87

5.8 Chapter summary . 89

Contents ix

6 Fault-tolerance in P2PDC 91

6.1 Introduction . 91

6.2 State of the art in fault-tolerance techniques 92

6.2.1 Replication techniques . 92

6.2.2 Rollback-recovery techniques 93

6.3 Choices of fault-tolerance mechanisms 96

6.4 Worker failure . 96

6.4.1 Coordinated checkpointing rollback-recovery for synchronous

iterative schemes . 97

6.4.2 Uncoordinated checkpointing rollback-recovery for asyn-

chronous iterative schemes . 99

6.5 Coordinator failure . 100

6.6 Computational experiments . 102

6.6.1 Coordinator replication overhead 102

6.6.2 Worker checkpointing and recovery overhead 102

6.6.3 In�uence of worker failures on computational time 103

6.7 Chapter summary . 104

7 Contribution to a web portal for P2PDC application deployment 107

7.1 Introduction . 107

7.2 Background . 107

7.2.1 OML . 107

7.2.2 OMF and its Portal . 109

7.3 Motivation . 110

7.4 A new measurement channel for P2PDC 112

7.4.1 Hierarchical measurements collection 112

7.4.2 Application to task deployment 114

7.5 Chapter summary . 117

8 Conclusions and perspectives 119

A OMF's Experiment Description Language 123

A.1 OMF's Experiment Description Language (OEDL) 123

A.2 Examples of experiment description 125

B How to write and run P2PDC applications 127

B.1 How to write a P2PDC application 127

B.2 Compile and run a P2PDC application 128

B.2.1 Compile a P2PDC application 128

B.2.2 Run a P2PDC application . 128

C List of publications 129

Bibliography 131

List of Figures

2.1 Centralized peer-to-peer architecture 11

2.2 Unstructured decentralized peer-to-peer architecture 11

2.3 Hybrid peer-to-peer architecture . 12

2.4 SETI@home architecture. 14

2.5 Peer groups hierarchy in JNGI framework. 15

2.6 Interactions between peers in ParCop. 16

2.7 Synchronous parallel iteration. 19

2.8 Asynchronous parallel iterations. 19

3.1 Example of x-kernel protocol graph con�guration 30

3.2 FPTP compositional architecture . 31

3.3 CTP - Con�gurable Transport Protocol 32

3.4 P2PSAP Protocol Architecture . 33

3.5 Protocol session life cycle . 35

3.6 Example of P2PSAP recon�guration scenario 36

3.7 Synchronous communication mode. 40

3.8 Synchronous micro-protocol. 40

3.9 Asynchronous communication mode 41

3.10 Asynchronous micro-protocol. 41

3.11 Micro-protocol TCP New-Reno congestion avoidance 42

3.12 Micro-protocol DCCPAck . 44

3.13 Micro-protocol DCCP Window Congestion Control 45

3.14 Network used for computational tests on the LAASNETEXP exper-

imental network . 49

4.1 General architecture of P2PDC . 54

4.2 Activity diagram of a parallel application 57

4.3 Centralized topology of resource manager. 59

4.4 Slice decomposition of the 3D obstacle problem. 63

4.5 Basic computational procedure at node Pk. 64

4.6 Termination detection in the case of slice decomposition. 64

4.7 Computational results in the case of the obstacle problem with size

96× 96× 96 . 66

4.8 Computational results in the case of the obstacle problem with size

144× 144× 144 . 67

5.1 General topology architecture. 73

5.2 Trackers topology. 74

5.3 Trackers topology after a new tracker has joined. 75

5.4 Trackers topology after a tracker has disconnected. 76

xii List of Figures

5.5 Allocation graph. 77

5.6 Pillar decomposition of the 3D obstacle problem. 81

5.7 Basic computational procedure at node Pr,c with pillar decomposition. 83

5.8 Termination detection in the case of pillar decomposition. 84

5.9 Behavior of workers implementing new termination method. 84

5.10 Evolution of the activity graph. 86

5.11 E�ciency of distributed algorithms in the cases 1 and 2. 88

5.12 Number of relaxations of asynchronous iterative algorithms in the

cases 1 and 2. 88

5.13 E�ciency of distributed algorithms in the case 3 89

6.1 Passive replication. 93

6.2 Active replication. 93

6.3 Semi-active replication. 94

6.4 Coordinated checkpointing process for synchronous iterative schemes. 97

6.5 Recovery process upon a worker failure for synchronous iterative

schemes. 98

6.6 Uncoordinated checkpointing process for asynchronous iterative

schemes. 100

6.7 Recovery process upon a worker failure for asynchronous iterative

schemes. 100

6.8 Replication of coordinators. 101

6.9 Computational time for number of worker failures from 0 up to 10. . 104

7.1 OML - the OMF Measurement Library 108

7.2 Overview of OMF architecture from the user's point of view 109

7.3 A web portal for P2PDC application deployment 111

7.4 Current measurement architecture 112

7.5 Maximum error measurement for the obstacle problem with 2 peers

at NICTA and 2 peers on PlanetLab 113

7.6 Hierarchical measurement architecture 113

7.7 Multi-level hierarchical measurement architecture 114

7.8 Task deployment via OML . 115

7.9 Computational results on PlanetLab 118

List of Tables

3.1 Choice of P2PSAP protocol features according to algorithmic and

communication context . 38

3.2 P2PSAP protocol composition according to algorithmic and commu-

nication context . 46

3.3 Computational results for network �ow problems on LAASNETEXP 50

5.1 Machine characteristics and sequential computational time 86

6.1 Worker checkpointing and recovery overhead 103

Chapter 1

Introduction

Contents

1.1 Problem statement . 1

1.2 Contribution . 3

1.2.1 Project ANR CIP . 3

1.2.2 Contribution of the thesis . 3

1.3 Structure of the dissertation 5

1.1 Problem statement

The design of complex systems like aircrafts and space vehicles requires a very large

amount of computational resources. The same remark can be made in the domain

of services like meteorology and telecommunications. The most popular solutions

use supercomputers that are composed of hundreds thousands of processors con-

nected by a local high-speed computer bus. The system, called the K Computer, at

the RIKEN Advanced Institute for Computational Science (AICS) in Kobe, Japan

presently keeps the top position of TOP500 list of world's supercomputers [top].

However, supercomputers are very expensive and are only located in research lab-

oratories and organizations funded by governments and big industrial enterprises.

With the presence of high speed backbone networks, cost-e�ective solutions that

share common resources like supercomputers have been proposed; they correspond

to the so-called Grid. Grid permit users of an organization to collect more resources

from other organizations. However, resources on the grid are generally managed

by administrators with hard system con�guration and centralized management that

limit the �exibility and the availability. Conditions of authentication are also very

restrictive for users who want to reserve resources and execute computations.

Recently, Peer-to-Peer (P2P) applications have known great developments.

These applications were originally designed for �le sharing, e.g. Gnutella [gnu]

or FreeNet [fre] and are now considered to a larger scope from video streaming to

system update and distributed database. Recent advances in microprocessors archi-

tecture and networks permit one to consider new applications like High Performance

Computing (HPC) applications. Therefore, there is a real stake at developing new

protocols and environments for HPC since this can lead to economic and attractive

solutions.

2 Chapter 1. Introduction

Along with the advances in system architectures, many parallel or distributed

numerical methods have been proposed. Among them, parallel or distributed iter-

ative algorithms take an important part [El Baz 1998]. Nevertheless, task parallel

model and distributed iterative methods for large scale numerical simulation or op-

timization on new architectures raises to numerous challenges. This is particularly

true in the case of P2P computing where questions related to communication man-

agement, resource management, scalability, peer volatility and heterogeneity have

to be addressed. In particular, the underlying transport protocols must be suited

to the pro�le of the application. However, existing transport protocols are not well

suited to HPC applications. Indeed, transport protocols like TCP [TCP 1981] and

UDP [UDP 1980] were originally designed to provide ordered and reliable transmis-

sion to the applications and are no longer adapted to both real-time and distributed

computing applications. In particular, P2P applications require a message based

transport protocol whereas TCP only o�ers a stream-based communication. Re-

cently, new transport protocols have been standardized such as SCTP [SCT 2000]

and DCCP [Kohler 1999]. Nevertheless, these protocols still do not o�er the com-

plete modularity needed to reach an optimum solution pace in the context of HPC

and P2P.

To the best of our knowledge, most of existing environments for peer-to-peer high

performance computing are based on a centralized architecture where the centralized

server may become a bottleneck that leads to a single failure point of the system.

Moreover, they are only devoted to bag-of-tasks applications where the application

is decomposed into independent tasks with no synchronization nor dependencies

between tasks. Few systems consider connected problems where there are frequent

communications between tasks like applications solved by parallel or distributed it-

erative algorithms. Most of them are developed in Java language that is not e�cient

for HPC applications. We note that the implementation of connected problem is

more di�cult than bag-of-tasks applications and believe that asynchronous itera-

tive algorithms are well suited to the solution of HPC applications on peer-to-peer

networks.

This thesis aims at designing an environment for the implementation of high

performance computing on peer-to-peer networks. We are interested in applications

in the domains of numerical simulation and optimization that rely on tasks paral-

lel model and that are solved via parallel iterative algorithms. Our environment is

built on a decentralized architecture whereby peers can communicate directly. Many

aspects are considered like the scalability, resource collection, self-organization and

robustness. We have followed a classical approach for the design of distributed com-

puting environments, indeed, we have designed �rst a self-adaptive communication

protocol dedicated to peer-to-peer computing in order to allow rapid message ex-

changes between peers. Then, we have designed our decentralized environment. Our

approach is developed in C language that is more e�cient for HPC applications than

Java language.

1.2. Contribution 3

1.2 Contribution

In this section, we shall enumerate our contributions. We note that this work was

funded by ANR under project CIP (ANR-07-CIS7-011) [anr].

1.2.1 Project ANR CIP

The project ANR CIP coordinated by Dr. Didier El Baz, LAAS-CNRS, started

January 2008, it aims at proposing innovative tools and demonstrators for the imple-

mentation of high performance computing applications over peer-to-peer networks.

The project is composed of three sub-projects:

Sub-project P2PDC: Environment for peer-to-peer high performance comput-

ing.

The sub-project P2PDC, in charge of CDA team at LAAS-CNRS, aims at de-

signing an environment for the implementation of high performance computing ap-

plications on peer-to-peer networks.

Sub-project P2PPerf: Simulation tool for peer-to-peer high performance com-

puting.

P2PPerf developed by OMNI team at LIFC is a simulation tool for large scale

peer-to-peer computing. P2PPerf permits one to simulate peer-to-peer computa-

tions involving thousands peers on several network architectures. The tool P2PPerf

is constituted of two modules: the module CompPerf evaluates the computational

time of sequential parts of a program; the module NetPerf allows to simulate the

network part of a peer-to-peer application.

Sub-project P2PDem: Demonstrators and applicative challenges.

Sub-project P2PDem consists of two parts. P2PPro, developed by the team at

MIS, aims at developing demonstrators for complex combinatorial applications that

come from the domain of logistic. P2PSimul, developed by the team at ENSEEIHT-

IRIT, aims at developing demonstrators for numerical simulation applications. Two

problems related to domains of �nancial mathematics and process engineering are

considered.

1.2.2 Contribution of the thesis

Our contributions concern works done in the framework of the sub-project P2PDC.

They include the following points.

• The design and implementation of a self-adaptive communication protocol

(P2PSAP) dedicated to P2P HPC applications. P2PSAP was developed by

using the Cactus framework [Hiltunen 2000] that makes use of micro-protocols.

P2PSAP protocol can recon�gure dynamically by choosing the most appro-

priate communication mode between any peers according to decisions made at

4 Chapter 1. Introduction

the application level or elements of context like topology at transport level. In

particular, we have designed a set of micro-protocols like Synchronous, Asyn-

chronous, DCCP Ack, DCCPCongestionAvoidance, respectively that permit

one to implement synchronous or asynchronous communications and DCCP

congestion control function [Kohler 1999].

• The design and implementation of a decentralized and robust environment

(P2PDC) for peer-to-peer high performance computing that makes use of

P2PSAP protocol in order to allow direct communications between peers. This

contribution is divided into three phases.

The �rst phase aims at de�ning the global architecture of P2PDC with mains

functionalities and proposing programming model that is suited to peer-to-

peer high performance computing applications. In this phase, we have de-

veloped a �rst version of P2PDC with centralized and simple functionalities.

The goal of the implementation of the centralized version was to validate the

programming model by a speci�c application. Moreover, this allowed us to

provide to partners of the project CIP with a programming model and a �rst

version of P2PDC environment so that they can quickly develop applications

for P2PDC.

In the second phase, we have developed a decentralized version of P2PDC that

includes some features aimed at making P2PDC more scalable and e�cient.

Indeed, a hybrid resource manager manages peers e�ciently and facilitates

peers collection for computation; a hierarchical task allocation mechanism

accelerates task allocation to peers and avoids connection bottleneck at sub-

mitter. Furthermore, a �le transfer functionality was implemented that allows

to transfer �les between peers.

The last phase deals with fault-tolerance aspects of P2PDC.

We note that the main originalities of our approach are:

� a decentralized and robust environment that permits frequent direct com-

munications between peers;

� an environment developed in C language that is more e�cient for HPC

applications;

� an environment that aims at facilitating programming and which relies

on the use of a limited number of communication operations, basically:

send, receive and wait operations; moreover, the programmer does not

need to specify the communication mode between any two peers, he rather

chooses an iterative scheme of computation, i.e. a synchronous scheme or

an asynchronous scheme or let the protocol choose according to elements

of context like topology of the network.

� the possibility to combine e�ciently parallel or distributed asynchronous

iterative schemes of computation with a peer-to-peer computing environ-

ment.

1.3. Structure of the dissertation 5

• The use of P2PDC environment for the solution of a numerical simulation

problem, i.e. the obstacle problem [Spitéri 2002] and the test of this applica-

tion on several platforms like Nicta testbed and GRID'5000 with up to 256

machines. Along with the evolution of P2PDC environment and scaling up

experimental platforms, the code for the solution of the obstacle problem has

also been modi�ed in order to adapt to these evolutions and to improve the

e�ciency of parallel algorithms. In particular, we have consider several de-

composition of the original problem.

1.3 Structure of the dissertation

This thesis is organized as follows:

• Chapter 2 presents a state of the art in domains that inspire the contribution

of this thesis. We concentrate �rst on peer-to-peer systems. Afterwards,

we precise approaches related to distributed computing, i.e. grid computing,

global computing and peer-to-peer high performance computing. An overview

on existing environments for peer-to-peer high performance computing is also

presented. Finally, we deal with HPC applications, �xed-point problems and

parallel iterative algorithms. In particular, asynchronous iterative algorithms

are considered.

• Chapter 3 describes the Peer-To-Peer Self Adaptive communication Proto-

col, a self-adaptive communication protocol dedicated to peer-to-peer high

performance computing. We display the architecture of P2PSAP and detail

self-adaptive mechanisms of the protocol for peer-to-peer high performance

computing. A �rst series of computational experiments for a nonlinear opti-

mization problem is presented and analyzed in order to illustrate the behavior

of the proposed protocol for HPC applications.

• Chapter 4 presents the �rst version of the P2PDC environment. In this

chapter, we de�ne the global architecture of P2PDC with mains function-

alities. Moreover, we propose a new programming model that is suited to

peer-to-peer high performance computing applications and more particularly

applications solved by iterative algorithms. A centralized implementation of

P2PDC with simple functionalities is developed in order to validate the pro-

gramming model. Computational results are displayed and analyzed for a

numerical simulation problem solved on NICTA testbed.

• Chapter 5 details the decentralized version of P2PDC that includes some

features aimed at making P2PDC more scalable and e�cient. Indeed, a hy-

brid resource manager manages peers e�ciently and facilitates peers collec-

tion for computation; a hierarchical task allocation mechanism accelerates

task allocation to peers and avoids connection bottleneck at submitter. Fur-

thermore, a �le transfer functionality is implemented in order to allow �le

6 Chapter 1. Introduction

transfer between peers. Moreover, some modi�cations to the communication

operation set are introduced. Experimental results for the obstacle problem

on GRID'5000 platform with up to 256 peers are displayed and analyzed.

• Chapter 6 deals with the fault-tolerance mechanisms in P2PDC to cope

with peer volatility. The fault-tolerance mechanisms can adapt themselves

according to peer role and computational scheme. Computational results are

presented and analyzed for several cases with fault injection.

• Chapter 7 presents the �rst ideas related to the use of OML [White 2010],

OMF [Rakotoarivelo 2010] and its Web portal [Jourjon 2011] in order to facil-

itate the deployment of P2PDC applications on peer-to-peer networks. Some

aspects related to measurements in P2P applications are also presented.

• Chapter 8 gives some conclusions on our work and deals also with future

work.

Chapter 2

State of the art

Contents

2.1 Introduction . 7

2.2 Peer-to-peer systems . 7

2.2.1 Introduction . 8

2.2.2 Characteristics . 8

2.2.3 Architectures . 10

2.3 Distributed computing . 13

2.3.1 Grid computing . 13

2.3.2 Global computing . 13

2.3.3 Peer-to-peer high performance computing 14

2.4 High Performance Computing, parallel iterative methods . 17

2.4.1 High Performance Computing 17

2.4.2 Parallel iterative methods . 17

2.5 Conclusion . 25

2.1 Introduction

This chapter presents a state of the art in domains that inspire the contribution

of this thesis. Section 2.2 concentrates on peer-to-peer systems: the de�nition and

characteristics of peer-to-peer systems are presented. We describe also in this sec-

tion di�erent architectures of peer-to-peer systems. In the section 2.3, we present

an overview on existing environments for distributed computing. Sections 2.4 deals

with High Performance Computing (HPC) applications and parallel or distributed

iterative methods. We present in this section the de�nition as well as a compari-

son between synchronous and asynchronous iterative schemes. We concentrate on

asynchronous iterative schemes since these schemes seem more attractive than syn-

chronous iterative schemes in the case of heterogeneous architectures like peer-to-

peer networks.

2.2 Peer-to-peer systems

Peer-to-Peer (P2P) systems have become well-known those last years thanks to �le

sharing systems on the Internet like Gnutella [gnu] or FreeNet [fre]. They are now

8 Chapter 2. State of the art

considered to a larger scope from video streaming to system update and distributed

database.

In this section, we shall de�ne peer-to-peer systems and present their essential

characteristics. Afterwards, we shall describe the di�erent architectures of peer-to-

peer systems that may be encountered.

2.2.1 Introduction

In the literature, there are many de�nitions of peer-to-peer systems.

De�nition 2.1 [wik] Peer-to-peer computing or networking is a distributed appli-

cation architecture that partitions tasks or workloads between peers. Peers are equally

privileged, equipotent participants in the application.

De�nition 2.2 [Oram 2001] P2P is a class of applications that take advantage of

resources storage, cycles, content, human presence available at the edges of the In-

ternet. Because accessing these decentralized resources means operating in an envi-

ronment of unstable connectivity and unpredictable IP addresses, peer-to-peer nodes

must operate outside the DNS and have signi�cant or total autonomy of central

servers.

De�nition 2.3 [Dejan 2003] The term peer-to-peer refers to a class of systems and

applications that use distributed resources to perform a function in a decentralized

manner.

In principle, in peer-to-peer systems, all participants play a similar role. This

di�ers from client/server architectures, in which some computers are dedicated to

serving the others. For example in the case of �le sharing on peer-to-peer networks,

computers are taking part in turn to supply and demand, they can be client and

server as well; they are peers.

2.2.2 Characteristics

We distinguish several characteristics of peer-to-peer systems.

2.2.2.1 Decentralization

A centralized entity may become a bottleneck and constitute a single failure point

of the overall system. Peer-to-peer systems reduce less or more this drawback ac-

cording to their architecture (see subsection 2.2.3). In Napster music sharing system

[nap], there is a centralized directory of �les but peers download �le directly from

each others. In the Gnutella 0.4 [gnu], there is no centralized entity. Neverthe-

less, the less the entities are centralized in the peer-to-peer systems, the more the

implementation is di�cult.

2.2. Peer-to-peer systems 9

2.2.2.2 Scalability

The scalability of a P2P network is often described as the main quality of such a

system. Scaling is often de�ned in relationship with the size of the problem and

not in relationship with the size of the system. However, in networked systems, the

problem of scaling is set, most of the time, along with the size of the network, i.e.

the number of nodes and arcs of the graph representing the network according to a

topology point of view.

In [Jourjon 2005] G. Jourjon and D. El Baz have proposed a de�nition of the

principle of scalability for a computing system on a peer-to-peer network.

De�nition 2.4 [Jourjon 2005] The scalability of a P2P network designed for global

computing is its capacity to maintain its e�ciency when peers join or leave the

system.

Aspects related to e�ciency of a global computing system over a P2P network are

numerous, including the routing e�ciency, the search e�ectiveness, the algorithm's

speed, etc.

2.2.2.3 Transparency

De�nition 2.5 [Jourjon 2005] The transparency can be de�ned as the property to

make undistinguished local or remote access to all parts of the task and data set

needed for computation.

The above de�nition means that, whatever happens to the network, each peer

still online can have access to the entire set of components for the computation.

This can be translated by the fact that we need to envision duplication and a good

distribution of this set of data and tasks.

2.2.2.4 Robustness

Robustness, in a general point of view, is the system's ability to maintain stability

when a fault occurs. Faults in a peer-to-peer network are the failures of peers or

links. These failures may occur due to several reasons: attacks by viruses, machines

turned o�, congestion of the �rst IP router, etc. If we want to model this event with

the help of graph theory, then a fault can be represented by the expulsion of a node

and all its incoming and outgoing edges or the removal of an edge.

The robustness of a peer-to-peer network can be de�ned as follows.

De�nition 2.6 [Jourjon 2005] The robustness of a P2P network is its capacity to

stabilize itself despite failure of some of its components (peers or links).

10 Chapter 2. State of the art

2.2.2.5 Performance

The performance is a signi�cant concern in peer-to-peer systems. These systems aim

at improving their performance by aggregating new storage and computer cycles.

However, due to the decentralized nature of the models, the performance is condi-

tioned by three types of resources: processing, storage and network management.

In particular, communication delays can be very signi�cant in large-scale net-

works. In this case, bandwidth is an important factor when it comes to spreading a

large number of messages or share �les between multiple peers. This also limits the

scalability of the system.

2.2.3 Architectures

Since their emergence in the late 90s, peer-to-peer systems have evolved and diver-

si�ed in their architecture. We can classify peer-to-peer networks into three major

classes: centralized, decentralized and hybrid architectures [Bo 2003, Lua 2005]. In

the sequel, we will detail these classes of architectures as well as their advantages

and drawbacks.

2.2.3.1 Centralized architecture

The �rst class of peer-to-peer networks that corresponds to the �rst generation is

the centralized architecture that is very similar to the client/server architecture. In

this model, a stable central server indexes all the peers of the system and stores

information about the content. When receiving a request from a peer, the central

server selects another peer in its directory that matches the request. Then, commu-

nications are carried out directly between two peers. Examples of this generation

are Napster [nap] and BitTorrent [bit]. Figure 2.1 shows a diagram of a centralized

peer-to-peer architecture.

By centralizing information, this type of architecture makes exhaustive search

algorithms particularly e�ective, with minimal communications; in addition, it is

easier to implement. However, the centralized server may become a bottleneck

that leads to a single failure point in the system: when the number of peers and

requests increases, the server must be a very powerful machine and needs very high

bandwidth; moreover, if the server crashes or is attacked successfully by a virus or

a malicious person, then the whole system collapses.

2.2.3.2 Decentralized architectures

The second class of peer-to-peer networks corresponds to decentralized architectures

that does not rely on any server. This type of architecture corresponds to the so-

called second generation of peer-to-peer networks. Each peer has exactly the same

possibilities as other peers and can act as client or server indistinctly. This class

can be divided into two subclasses: unstructured and structured.

2.2. Peer-to-peer systems 11

Peer

Peer

Peer

Peer

Peer

Server

Peer

Peer

Peer

Figure 2.1: Centralized peer-to-peer architecture

In the �rst subclass, the logical topology is often random. Each peer indexes its

own shared resources. A request from a peer is broadcasted directly to neighboring

peers, which in turn broadcast the request to their neighbors. This is repeated until

the application has received the answer or a maximum number of stages of �ooding

has been reached. One can �nd Gnutella 0.4 in this class [gnu]. Figure 2.2 shows

a diagram of a unstructured decentralized peer-to-peer architecture.

Peer

Peer

Peer

Peer

PeerPeer

Peer

Peer

Figure 2.2: Unstructured decentralized peer-to-peer architecture

The advantage of this class of architecture is to provide a robust system: since

each peer turning into client/server indistinctly, the disappearance of one or more of

them will not lead to system crash down. In contrary, the communication tra�c will

be heavy and the search much longer. When scaling, the more peers in a network,

12 Chapter 2. State of the art

the more communication tra�c.

In the second subclass, the logical topology is structured like for example in

a ring (Chord [Stoica 2003]), d-dimension (CAN [Ratnasamy 2001]), etc. They are

often structured topologies using Distributed Hash Tables (DHT). Each peer indexes

some of the shared resources of the network and owns some of the hash table of the

system. The request is transmitted according to the structured topology and is

ensured of success after a speci�ed number of steps has been reached under ideal

conditions.

The second class is more robust than the �rst class and guarantees the anonymity

of peers. It provides self-organization when scaling and o�ers search time reduction

through the hash table. However, this class requires a fairly heavy protocol for

maintaining the topology structure.

2.2.3.3 Hybrid architecture

The third class of peer-to-peer networks corresponds to hybrid architecture that

combine elements of both centralized and decentralized architectures. This archi-

tecture is the third generation of peer-to-peer networks. This architecture makes

use of multiple peers, called super-peers or super-nodes, that index and monitor a

set of peers connected to the system. A super-peer is connected to other super-peers

following the model of the decentralized architecture. The number of super-peers

should remain large enough to avoid system shutdown in case of loss or stop of a

super-peer. Therefore, if a search for a peer is not indexed by the super-peer which is

attached to it, then it sends the request to another super-peer. The system KaZaA

[kaz] is an example of peer-to-peer network of this generation. Figure 2.3 shows a

diagram of a hybrid peer-to-peer architecture.

Super peer

Peer

Peer

Peer

Super peer

Peer

Peer
Peer

Peer

Super peer

Peer

Peer

Peer

Peer

Figure 2.3: Hybrid peer-to-peer architecture

There are two types of hybrid architectures: the static and dynamic hybrid

architectures. In the �rst case, a machine can become a super-peer according to the

2.3. Distributed computing 13

choice of users. In the second case, a peer can automatically become a super-peer

under certain conditions.

This class of architecture has advantages of both two previous classes, i.e. fault-

tolerance and query tra�c and search time reduction. However, it is more complex

to implement.

2.3 Distributed computing

In this section, we precise some approaches related to distributed computing, i.e.

grid computing, global computing and peer-to-peer high performance computing

that share the goal of better utilizing computing resources connected to the network.

We present also an overview on existing middlewares and environments for each

approach.

2.3.1 Grid computing

When the need for high performance computing has increased, grid computing has

emerged as a solution for resources sharing between organizations. Grid computing

[Magoulès 2009] makes use of supercomputers, clusters and park of workstations

owned by universities, research labs inter-connected by high bandwidth network

links in order to form a super virtual computer. Resources inside an organization

are generally turned on all the time and are connected by reliable high bandwidth

network. Several middlewares have been proposed to facilitate the implementa-

tion of HPC applications on grid environments like Globus [Foster 1996], Condor

[Litzkow 1988]. However, resources on the grid are generally managed by admin-

istrators of organizations with hard system con�guration and centralized manage-

ment. Users have to authenticate in order to use resources on the grid. Thus, grid

computing middlewares provides only limited recon�gurability and scalability.

2.3.2 Global computing

A number of systems that attempt to use idle computing power of volunteer comput-

ers or institutional computers connected to the Internet in order to solve some large

granularity applications have also been proposed. These systems are called global

computing systems. Global computing systems are generally based on a centralized

architecture where jobs are submitted to a centralized server and workers consult

the server to get job. The central server in these systems may become a bottleneck

that leads to a single point of failure.

Projects SETI@home [set] and GENOME@home [gen] are pioneers of global

computing. These systems are often restricted to a speci�c application. SETI@home

[set] uses volunteer computers around the world to analyze radio signals from space,

whose goal is to detect intelligent life outside Earth. In GENOME@home [gen] and

its successor Folding@home [fol], volunteer computers are used to perform com-

putationally intensive simulations of protein folding and other molecular dynamics

14 Chapter 2. State of the art

whose goal is to design new genes and proteins for the purpose of better under-

standing how genomes evolve, and how genes and proteins operate. The model

of these systems has been used to create the general global computing platform

BOINC [Anderson 2004] that is now used in many projects. Volunteer computers

are general PCs and workstations connected to the Internet with low bandwidth.

Moreover, they are turned o� or disconnected frequently at unpredictable rate. In

these systems, data are split into small work units which are stored in a database.

A central server then assigns work units to volunteer computers asking for work.

Figure 2.4 presents the architecture of SETI@home.

COMMUNICATIONS OF THE ACM November 2002/Vol. 45, No. 11 57

fixed point in the sky (under the
control of other researchers) the
secondary antenna traverses an arc
eventually covering the entire
band of sky visible to the tele-
scope. This data source can be
used for a sky survey covering bil-
lions of stars.

We thus arranged for
SETI@home to share
SERENDIP’s data
source. However, unlike
SERENDIP, we needed
to distribute data via the
Internet. At that time
(1997) Arecibo’s Internet
connection was a
56Kbps modem, so we
decided to record data
on removable tapes
(35GB digital linear tape
drive cartridges, the largest avail-
able at the time), have them
mailed from Arecibo to our lab in
Berkeley, and distribute data from
servers there.

We recorded data at 5Mbps, a
rate low enough that the record-
ing time per tape was a manage-
able 16 hours, making it feasible
to distribute the data through our
lab’s 100Mbps Internet connec-
tion. The rate was also high
enough to allow us to do signifi-
cant science. With one-bit com-
plex sampling, this rate yields a
frequency band of 2.5MHz,
enough to handle Doppler shifts
for relative velocities up to
260km/sec, or about the rate of
the Milky Way’s galactic rotation;
radio signals are Doppler shifted
in proportion to the sender’s
velocity relative to the receiver.
Like many other radio SETI pro-
jects, we centered our band at the
Hydrogen line (1.42GHz), within
a frequency range where man-

made transmissions are prohibited
by an international treaty.

SETI@home’s computational
model is simple. The signal data is
divided into fixed-size work units
distributed via the Internet to a
client program running on numer-

ous computers. The client pro-
gram computes a result (a set of
candidate signals), returns it to the
server, then gets another work
unit. There is no communication
between clients.

SETI@home does redundant
computation; each work unit is
processed multiple times, letting us
detect and discard results from
faulty processors and from mali-
cious users. A redundancy level of
two to three is adequate for this
purpose. We generate work units at
a bounded rate and never turn
away a client asking for work, so
the redundancy level increases with
the number of clients and their
average speed. These quantities
have increased greatly during the
life of the project. We have kept the
redundancy level within the desired
range by revising the client to do
more computation per work unit.

The task of creating and distrib-
uting work units is done by a
server complex located in our lab
(see Figure 1). The reasons for cen-
tralizing the server functions are
largely pragmatic; for example, it
minimizes tape handling.

Work units are formed
by dividing the 2.5MHz
signal into 256 frequency
bands, each about 10KHz
wide. Each band is then
divided into 107-second
segments, overlapping in
time by 20 seconds. This
overlap ensures that signals
we seek (lasting up to 20
seconds) are contained
entirely in at least one work
unit. The resulting work
units are 350KB, or enough

data to keep a typical computer
busy for about a day but small
enough to download over even
slow modems in a few minutes.

We use a relational database
(Informix) to store information
about tapes, work units, results,
users, and other aspects of the pro-
ject. We developed a multi-
threaded data/result server to
distribute work units to clients (see
Figure 2). It uses a HTTP-based
protocol so clients inside firewalls
are able to contact it.

A “garbage collector” program
removes work units from disk,
clearing an on-disk flag in their
database records. We have experi-
mented with two policies:

Delete work units for which N
results have been received,
where N is the target redun-
dancy level. If work-unit stor-
age fills up, work-unit
production is blocked and sys-
tem throughput declines.

garbage
collector

data/result
server

database
server

data recorder

DLT tapes

Arecibo
observatory

server complex
(U.C. Berkeley)

participants
(worldwide)

splitter

client

work-unit
storage

Figure 1. Distribution of radio data.

Figure 2.4: SETI@home architecture.

XtremWeb [xtr] provides a platform for global computing that collects not only

volunteer computers but also institutional computers connected to LAN or to the

Internet. Moreover, XtremWeb allows multi-users, multi-applications, i.e. some

speci�c users can submit their applications to servers and workers can get jobs of

di�erent applications from servers. To the best of our knowledge, XtremWeb does

not implement yet direct communication between workers.

2.3.3 Peer-to-peer high performance computing

In peer-to-peer high performance computing, all participants, i.e. peers, can carry

out their application. Peers can be workstations at companies and organizations

or even individual PCs at home connected to the Internet. Moreover, peer-to-peer

computing systems try to eliminate centralized entities and allow the recon�guration

in the case of peer disconnection or failure.

Several middlewares and environments for peer-to-peer high performance com-

puting have been proposed.

JNGI [Verbeke 2002] is a decentralized framework for peer-to-peer distributed

computing that makes use of JXTA [jxt] in order to build a virtual network of peers

on top of physical network. JNGI uses the concept of peer group in JXTA in order to

divide peers into groups according to functionality. In JNGI, there are three group

2.3. Distributed computing 15

type: monitor groups, worker groups and task dispatcher groups. Monitor groups

handle peers joining the framework and high-level aspects of the job submission pro-

cess. Each worker group is composed of a task dispatcher group and workers. Task

dispatcher group distributes tasks to workers and workers perform received tasks.

In [Ernst-Desmulier 2005], JNGI has been extended to permit one to constitute

similarity worker groups that contain workers with similar characteristics like CPU

speed or memory size in order to improve task dispatching e�ciency. In order to

cope with the scalability problem, JNGI enables one to have a hierarchy of monitor

groups (see Figure 2.5). Job code and job data are submitted to a code repository

manager. Upon receiving a job submission, the task dispatcher groups consult the

code repository manager for tasks to be performed and distribute tasks to workers.

JNGI considers only bag-of-tasks applications that does not need any synchroniza-

tion and have no dependencies between tasks leading to no communication between

tasks.

parent, grand-parent, etc. until it succeeds in contacting someone in the chain.
The last level of the hierarchy is the top level monitor group.

Because all the new peers joining the computing grid have to go through
the top level monitor group, the communication at that level might become a
bottleneck in the model. Numerous solutions exist to this problem. An easy one
to implement is the following. When a new peer contacts the top-level monitor
group, all the monitors within this peer group receive the message. Each monitor
in the monitor peer group has a subset of requests to which it replies. These sub-
sets do not overlap and put together compose the entire possible set of requests
that exist. Based on a request feature, a single monitor takes the request of the
new peer and redirects it to a subgroup.

Monitor Group 1

Monitor
Group 1.1

Work
Group 1.2

Monitor
Group 1.3

Work
Group 1.4

Monitor
 Group 1.5

Monitor
 Group 1.6

JobSubmitter

Work
Group
1.3.1

Monitor
Group
1.3.2

Work
Group
1.3.6

Work
Group
1.3.5

Work
Group
1.3.3

Work
Group
1.3.4

Fig. 4. Scalable network of work groups and associated monitor groups.

One should comment on the way monitors decide whether they will reply
to a given request. This decision is made based on the request itself coming
from the new peer. There is no need for communication between monitors to
decide who will reply. For example, if you had two monitors in the monitor
group, one monitor could reply to requests from peers having odd peer IDs,
while the other monitor would reply to requests from peers having even peer
IDs. The decision does not require any communication between the monitors
and is therefore beneficial for our model. It reduces the communication needs
and increases the bandwidth for other messages. One could also base this decision
on the geographical proximity of the requestor to the monitor.

5 Example of usage of Peer-to-peer distributing
computing framework

This section illustrates how to submit a job to the framework. The example used
is trivial but it illustrates the features required for the framework to work.

Figure 2.5: Peer groups hierarchy in JNGI framework.

Ourgrid [Andrade 2003] is a peer-to-peer middleware for sharing computing cy-

cles through di�erent companies or organizations. The main motivation of the Our-

grid project is to develop a middleware that automatically gathers resources across

multiple organizations and to provide easy access to resources. Ourgrid is devoted

to bags-of-tasks application class.

ParCop [Al-Dmour 2004] is a decentralized peer-to-peer computing system. Par-

Cop is characterized by the integration of various features such as scalability, adap-

tive parallelism, fault tolerance, dynamic resource discovery, and ease of use. ParCop

supports Master/Worker style of applications which can be decomposed into non-

communicating and independent tasks. A peer in ParCop can be a Master or a

Worker, but not both at the same time (see Figure 2.6). A Master distributes tasks

to workers, collects computed results and returns the results to the user. There

are two kinds of communication pathways: permanent pathways that are used to

16 Chapter 2. State of the art

maintain the topology of P2P overlay; temporary pathways that are established be-

tween Master and Workers for sending tasks and results that will be closed when the

computation �nishes. Peers in ParCop are organized according to an unstructured

topology that makes idle peer collection for a computation slow and that leads to

high resources consumption.

need no quality of service (QoS) guarantees. The purpose from
not using the QoS in ParCop and OurGrid is to simplify the
process. ParCop is distinguished from OurGrid by the ability to
maintain performance levels even when large numbers of peers
become suddenly unavailable. Additionally, OurGrid cannot
cope with a high rate of joining and leaving. ParCop can also
easily be further enhanced to support a parallel application
based on a tree computing model. OurGrid, on the other
hand, only supports Bag-of-Tasks applications whose tasks are
independent of each other.

III. PARCOP DESIGN

A P2P environment consists of a set of peers: P =
{P1, P2, P3,, Pn}. The peers can be modeled by a graph
G(P,E); the nodes of this graph are peers, and the edges
are the communication paths between each peer and its
neighbours. If Pu knows about Pv , it means there is an arc
(Pu, Pv) ∈ E. Pu considers its link with Pv as an outgoing
connection and Pv consider its link with Pu as an incoming
connection.

ParCop supports the master/worker style of application. A
peer in ParCop can become a Pmaster

u or a Pworker
u , but not

both at the same time. If the peer is a Pmaster
u , it distributes

the tasks, collects the computed results and returns the results
to the user. If the peer is a Pworker

v , it receives the task from
the Pmaster

u , and performs the computation and returns the
results to the Pmaster

u . Each peer maintains two different kinds
of communication pathways – temporary and permanent (see
figure 1):

• The permanent pathway: Each peer makes connections
with its neighbours and through these connections or
pathways, they exchange messages between themselves
such as the ‘I am alive’ message.

• The temporary pathway: When the Pmaster
u receives the

tasks from the user, it opens the connections with the
Pworkers and starts sending the tasks to them. These
connections are temporary because they will be closed
after the Pmaster

u finishes collecting the computed results
from the Pworkers.

master
P

P
worker

master
P

P
worker

master
P

P
worker

master
P

P
worker

master
P

P
worker

master
P

P
worker

temporary pathway

permanent pathway

Fig. 1. Interactions between peers in ParCop when they behave as a master
or a worker.

ParCop does not use the flooding mechanism to find an
idle peer, as this comes at the price of a very high bandwidth

consumption (when search requests are broadcast over the
network, the total number of messages originating from a
single peer is very high). The following steps explain how
the Pmaster

u finds idle peers:

• Each peer Pu is initially connected to a number of
peers. The peer finds its neighbours by contacting a log
server. Let L(Pu) be a list of peers known to Pu which
is obtained from the log server, and l(Pu) is a set of
peers that Pu connects to, where l(Pu) ∈ L(Pu). The
neighbours of each peer are stored in the routing table.
The incoming/outgoing labels are used in the routing
table to distinguish between the networked and connected
neighbours. The networked neighbours are those which
have incoming connections with Pu, and the connected
neighbours are those which have outgoing connections
with the Pu. For example, in figure 2, peers B and D in
the routing table of peer A are networked peers, while
peers C and E are connected peers.

Incoming connection for peer A
Outgoing connection for peer A

A

E
C

BD

Fig. 2. The two kinds of connections that a peer A has with its neighbours:
Incoming and Outgoing connections.

• The user develops an application which follows the
master/worker style. This application can be divided into
N tasks (where Ctask is a specific task). The user starts
the ParCop software daemon on his machine in order
to interface his application with the ParCop environment.
Each peer becomes active when it receives tasks from the
user, who develops application A and interfaces it with
Pu. Pu now is known as Pmaster

u .
• Once the Pmaster

u receives the tasks from the user, it
starts sending query messages to its neighbours. The
Pmaster

u sends a MasterQuery message to a neighbour
chosen randomly from the routing table l(Pu). The peer
Pv which receives the MasterQuery message will check
whether it has been allocated for another Pmaster

u or
not. If it has not, a WorkerReply message will be passed
back to the Pmaster

u through each peer that forwarded
the MasterQuery message, to inform the Pmaster

u of
the worker’s readiness to receive the task. The Pmaster

u

receives the message from the Pworker
v and saves its

address in the table of Pworkers. If the Pworker
v receives

another MasterQuery message from another Pmaster
w ,

the Pworker
v will forward this message to one of its

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

Figure 2.6: Interactions between peers in ParCop.

MapReduce [Dean 2004] is a programming model and an associated implementa-

tion for processing and generating large data sets on large clusters. It is extended in

[Lee 2011] to be used in peer-to-peer network. In MapReduce programming model,

users specify a map function that processes a key/value pair to generate a set of

intermediate key/value pair and a reduce function that merges all intermediate val-

ues associated with the same intermediate key. This programming model is not

appropriate to parallel iterative algorithms (see Section 2.4).

Vishwa [Reddy 2006] is a dynamically recon�gurable middleware that provides

a reliable peer-to-peer environment for grid applications. Vishwa supports not only

bag-of-tasks application class but also connected problem application class that in-

volves inter-tasks communication. Vishwa is based on a two-layer architecture that

includes a task management layer and recon�guration layer. Task management layer

organizes peers into zones based on the proximity in order to facilitate inter-task

communication. Each peer can have neighbors in its zone and other zones that con-

struct an unstructured topology. The recon�guration layer handles nodes/network

failures. Inter-tasks communication is built on the Distributed Pipes (DP) abstrac-

tion. However, Vishwa considers only connected problems solved by synchronous

iterative schemes, asynchronous iterative (see Section 2.4) schemes are not taken in

account.

P2P-MPI [Genaud 2009] is a framework aimed at the development of message-

passing programs in large scale distributed networks of computers. P2P-MPI is

developed in Java and makes use of Java TCP socket to implement the MPJ (Mes-

sage Passing for Java) communication library. P2P-MPI uses a single super-node to

2.4. High Performance Computing, parallel iterative methods 17

manage peer registration and discovery; this node may become a bottleneck. P2P-

MPI implements a fault tolerance approach using peer replication that may not be

e�cient and appropriate to P2P context and connected problems since the number

of peers involved in the computation will multiply; furthermore, the coordination

protocol insuring coherence between replicas has great overhead.

In summary, existing middewares and environments for grid computing and vol-

unteer computing can not be used easily for peer-to-peer high performance comput-

ing. Most of existing environments for peer-to-peer high performance computing

are devoted only to bag-of-tasks applications where the applications are decom-

posed into independent tasks with no synchronization nor dependencies between

tasks. Few systems consider connected problem application class where there are

frequent communications between tasks like applications solved by parallel iterative

algorithms; however, asynchronous iterative algorithms are not taken in account.

We recall that we aim at designing a decentralized and fault-tolerant environment

for peer-to-peer high performance computing that allow direct and frequent com-

munications between peers. We are interested in applications in the domains of

numerical simulation and optimization that can be solved via parallel or distributed

iterative method. In particular, we think that the combination of asynchronous it-

erative algorithms with our environment on peer-to-peer networks are well suited to

HPC applications. We note that the implementation of connected problem is more

di�cult than the bag-of-tasks applications.

2.4 High Performance Computing, parallel iterative

methods

2.4.1 High Performance Computing

In this study, we concentrate on High Performance Computing (HPC) applications

relevant to the domains of numerical simulation and optimization. These applica-

tions lead to complex or large scale problems that can often be solved e�ciently

via parallel or distributed iterative methods. Thus, we are mainly interested in

task parallel models. In the sequel, we shall present some of these problems, e.g.

nonlinear optimization problem, the so-called nonlinear network �ow problems (see

subsection 3.7.1) and a numerical simulation problem: the obstacle problem (see

subsection 4.5.1).

2.4.2 Parallel iterative methods

Iterative methods play an important part in optimization and numerical simulation

[Luenberger 1973, Bertsekas 1998, Ortega 1970]. The need for intensive computa-

tion has emphasized the interest for parallel and distributed iterative algorithms for

solving systems of equations or �xed-point problems (see [Bertsekas 1989]). In this

thesis, we concentrate on the �xed-point formulation.

18 Chapter 2. State of the art

2.4.2.1 Fixed-point problems and successive approximation methods

Consider the following �xed-point problem:

x∗ = F (x∗) (2.1)

where x∗ is a solution vector of Rn and F is a given mapping from Rn to Rn.

The problem (2.1) can be solved by means of the following successive approxi-

mation method starting from x0:

xj+1 = F (xj), j = 0, 1, 2, . . . (2.2)

The convergence of this type of algorithm has been studied in particular in

[Ortega 1970].

Parallel iterative methods aim at solving problem (2.1) by means of iterative

schemes carried out on several processors. The iterate vector x can be decomposed

into p components x1, x2, . . . , xp where p is a given natural number related to the

number of available machines. Similarly, the �xed-point mapping is decomposed

into p components F1, F2, . . . , Fp. Let x
j
i denote the i

th component of xj and let Fi
denote the ith component of the �xed-point mapping F . Then, the mathematical

formulation of a simple example of parallel synchronous iterative algorithm can be

written as follows:

xj+1
i = Fi(x

j
1, x

j
2, . . . , x

j
p), i = 1, 2, . . . , p. (2.3)

If p components of x are assigned to p processors, then each processor can update

a di�erent component of x according to (2.3) in parallel. The particular model

(2.3) corresponds to Jacobi-type iterative scheme. The ith processor denoted by Pi
has to receive the value of all components of xj on which Pi depends from others

processors in order to start next iteration j + 1. Moreover it has to send the value

xji to processors that depend on xji . Thus, in order to implement a Jacobi parallel

iterative scheme, it is necessary to update components of iterate vector in a certain

order with some synchronizations. Figure 2.7 illustrates an example of synchronous

scheme of computation whereby two processors cooperate to solve a problem. In the

Figure 2.7, numbered rectangles correspond to updating phases, hatched rectangles

correspond to communication and waiting phases, arrows delimit the beginning and

the end of communications and the number in boxes correspond to the number of

times the component has been updated. It is noted that the need to respect a strict

order of computation (steering) and to synchronize processors can cause signi�cant

loss of time and lead to ine�ciency.

Asynchronous parallel iterative algorithms have been proposed in order to gener-

alize parallel iterative algorithms. In asynchronous iterative algorithms, components

of iterate vector are updated in arbitrary order and without any synchronization. As

a consequence, processors implementing parallel asynchronous iterative algorithms

can go at their own pace according to their characteristics and computational load

[El Baz 1998]. Restrictions imposed to asynchronous iterative algorithms are very

2.4. High Performance Computing, parallel iterative methods 19

��CHAPITRE �� LES ALGORITHMES IT�ERATIFS ASYNCHRONES ET LEURS MOD�ELES

tionnement asynchrone sur un exemple simple� Consid�erons le probl�eme de point �xe suivant �

x� ! F �x��

o�u F est une application de R� dans R� et x� � R�� Un sch�ema it�eratif de type Jacobi se
prette bien �a une mise en �uvre parall�ele synchrone� L	algorithme it�eratif de type Jacobi est
d�e�ni de mani�ere recursive par �

xi�j # �� ! Fi�x��j�� x��j��� �i � f�� �g� j ! �� �� �� ���

o�u Fi est la i��eme composante de l	application F et xi la i��eme composante du vecteur x�
Les deux composantes du vecteur it�er�e peuvent �etre calcul�ees en parall�ele� Deux processeurs
not�es respectivement P� et P� collaborent �a la recherche du point �xe de l	application F� Les
processeurs P� et P� r�eactualisent respectivement la premi�ere et la deuxi�eme composante du
vecteur it�er�e� A�n de mettre en �uvre un sch�ema it�eratif Jacobi parall�ele� il est n�ecessaire de
r�eactualiser les composantes du vecteur it�er�e suivant un certain ordre et en e�ectuant certaines
synchronisations� Un exemple type de d�eroulement des calculs est donn�e par la �gure ��� o�u
les rectangles blancs num�erot�es repr�esentent les phases de r�eactualisation et les rectangles
hachur�es les phases de communication et d	attente� les
�eches d�elimitant le commencement
et la �n des communications� On constate que la n�ecessit�e de respecter un ordre de calcul
strict et de synchroniser les processeurs peut engendrer des pertes de temps importantes� Les
contraintes d	ordre de r�eactualisation et de synchronisation peuvent aller �a l	encontre de la
recherche de bonnes performances�

1

1 2

2 3

3P

P

1

2

Fig� ��� " It�eration synchrone

Pour illustrer les algorithmes it�eratifs asynchrones on peut reprendre l	exemple simple
pr�ec�edant� Un type de d�eroulement asynchrone des calculs est alors donn�e par la �gure ���
o�u les rectangles blancs num�erot�es repr�esentent les phases de r�eactualisation et les rectangles
hachur�es les phases de communication� Le num�ero d	it�eration est incr�ement�e au commence�
ment de chaque nouvelle phase de r�eactualisation� On note que les rectangles hachur�es ne
contiennent pas de p�eriode d	inactivit�e et que les phases de r�eactualisation s	encha��nent plus
rapidement�

Les algorithmes it�eratifs asynchrones sont particuli�erement adapt�es aux architectures in�
fomatiques parall�eles repr�esent�ees par le mod�ele de Dijkstra �cf� �Bou����� qui est un mod�ele

Figure 2.7: Synchronous parallel iteration.

weak: no component of the iterate vector must be abandoned forever and old values

of components of the iterate vector must be discarded as the computation progresses.

The Figure 2.8 displays an example of progress of an asynchronous iterative algo-

rithm. The number in boxes corresponds here to iteration number and is increased

at the start of each new update phase. It is noted that there is no idle time and

updating phases are chained more rapidly.
���� PRINCIPE ET MOTIVATION ��

P

P

1

2

1 2

1 3

4

5

6

Fig� ��� " It�eration asynchrone

essentiellement asynchrone de type processus interagissant avec une m�emoire commune� d	o�u
une grande simplicit�e de mise en �uvre�

Un autre avantage des algorithmes it�eratifs asynchrones r�eside dans l	absence de temps
d	inactivit�e d�us aux synchronisations ainsi que dans l	absence de temps de gestion des syn�
chronisations entre processus it�eratifs parall�eles ou distribu�es� En e�et la synchronisation
peut d�et�eriorer les performances des algorithmes parall�eles� La d�et�erioration est essentielle�
ment fonction du type de synchronisation retenu et de sa mise en �uvre sur la machine ainsi
que de la granularit�e et de l	�equilibrage des t�aches �cf� �Kun���� �BPF�
�� �KW���� �Gre�
�� et
�DLM�����

De plus dans le cas o�u certaines valeurs des composantes du vecteur it�er�e changent tr�es
peu� il peut �etre int�eressant de ne pas attendre syst�ematiquement ces valeurs� De mani�ere
g�en�erale on peut esp�erer une meilleure utilisation des ressources surtout lorsque le nombre de
processeurs est �elev�e�

On notera aussi qu	une mise en �uvre asynchrone permet un meilleur recouvrement des
communications par les calculs�

Les algorithmes it�eratifs asynchrones conviennent aussi particuli�erement �a la nature de
certains probl�emes temps r�eel dans les grands syst�emes� pour lesquels la synchronisation de
nombreuses t�aches de calcul distantes ne peut �etre envisag�ee de mani�ere r�ealiste� en raison
notamment de pannes fr�equentes dans le syst�eme� comme par exemple pour le probl�eme du
routage ou pour le contr�ole de
ot dans les r�eseaux de donn�ees�

Du fait de la suppression des phases de resynchronisation et de r�einitialisation �cf� �Ber�����
l	asynchronisme pr�esente aussi l	avantage d	une meilleure adaptativit�e aux modi�cations in�
tervenant dans le syst�eme telles que les changements de donn�ees ou de topologie�

En�n un dernier avantage de l	asynchronisme est d	augmenter la suret�e de fonctionnement�
En e�et les sch�emas de calcul asynchrones tol�erent les cas de pannes temporaires o�u certains
it�er�es parviennent en un temps in�ni �a leur destinataire� De plus dans le cas de l	allocation
dynamique des t�aches de calcul sur des architectures de type multiprocesseur �a m�emoire
partag�ee� l	algorithme it�eratif peut continuer tant qu	un processeur fonctionne�

Figure 2.8: Asynchronous parallel iterations.

The concept of asynchronous iterative schemes has many advantages as com-

pared with the one of synchronous iterative schemes. First, the lack of idle time

due to synchronization as well as the lack of synchronization permits asynchronous

iterative schemes to be more e�cient, particularly when the loads are unbalanced

or the system is heterogeneous which is a characteristic of peer-to-peer systems.

Secondly, asynchronous iterative schemes scale better than synchronous iterative

schemes since the synchronization overhead increases when the number of proces-

sors increases. Finally, asynchronous iterative algorithms tolerate temporary failures

and message loss. Thus, asynchronous iterations seem better suited to high perfor-

mance computing on peer-to-peer networks than synchronous iterative schemes.

However, programmers using asynchronous iterative algorithms have to face

some challenges. The study of the convergence of parallel asynchronous iterations

is generally more complicated than the one of synchronous iterations, particularly

in the non-linear case. Moreover, non synchronization raises di�culties in terms of

convergence detection and termination of algorithms. We give some details on these

20 Chapter 2. State of the art

topics in the sequel.

2.4.2.2 A general model of asynchronous iterations

In this subsection, we present brie�y classical parallel asynchronous iterative

schemes. The reader is referred to [El Baz 1996b, Miellou 1998, El Baz 2005,

Chau 2007] for new extensions of the class of asynchronous iterative algorithms.

We consider the �xed-point problem (2.1).

De�nition 2.1. Let N be the set of natural numbers, n, α ∈ N,α ≤ n the decom-

position of Rn into
∏α
i=1R

ni ,
∑α

i=1 ni = n. An asynchronous iteration associated

to the mapping F from
∏α
i=1R

ni to
∏α
i=1R

ni and initial point x0 ∈
∏α
i=1R

ni is

a sequence xj , j = 0, 1, . . . of vectors of
∏α
i=1R

ni de�ned recursively as follows for

i = 1, . . . , α: {
xji = Fi(x

ρ1(j)
1 , . . . , x

ρα(j)
α) if i ∈ s(j),

xji = xj−1i if i /∈ s(j),
(2.4)

where xi ∈ Rni represents the ith sub-vector of vector x and Fi represents the i
th

block-component of mapping F , S = {s(j)|j = 1, 2, . . . } is a sequence of non-empty

subsets of 1, . . . , α and ρ = {ρ(j) = (ρ1(j), . . . , ρα(j))|j = 1, 2, . . . } is a sequence of

elements of Nα. Moreover, S and ρ satisfy following conditions for i = 1, . . . , α:

• 0 ≤ ρi(j) ≤ j − 1, j = 1, 2, . . .

• ρi(j) tends to in�nity when j tends to in�nity.

• i appears an in�nite number of times in the set S.

The above conditions can be interpreted respectively as follows:

• The value of the components of the iterate vector used during the computa-

tions at iteration j comes at most from iteration j − 1.

• Old values of the components of the iterate vector must be eliminated de�-

nitely as the computation progresses.

• No sub-vector of the iterate vector ceases to be updated during computations.

An asynchronous iteration associated with �xed-point mapping F , initial point x0

and sequences s and ρ is denoted (F, x0, S, ρ).

An asynchronous iterative algorithm (F, x0, S, ρ) can be interpreted as follows.

Let {P1, . . . , Pα} be a set of α processors. Let {t(j), j = 1, 2, . . . } be an increasing

sequence of times. At the time t(j), processors Pi, i ∈ s(j) that are inactive are

assigned to an evaluation of xj that is di�erent from xj−1 only by values of sub-

vector xi (see Figure 2.8). A processor Pi starts to update sub-vectors xl using values

x
ρl(j)
l , l = 1, . . . , α of sub-vectors xl that are available at the start of computations

2.4. High Performance Computing, parallel iterative methods 21

and that come from previous iterations; a natural strategy is to take the most recent

value of components. At an ulterior instant denoted by t(j + k), with k ∈ N and

k > 0, the processor Pi will terminate the computations and will be assigned to the

evaluation of xj+ki .

2.4.2.3 Convergence of asynchronous iterations

The study of the convergence of asynchronous iterations is a complex problem.

However, a large number of results have been established in various contexts.

In the linear case, a necessary and su�cient condition of convergence for asyn-

chronous iterative algorithms has been given in [Chazan 1969].

In the nonlinear case, su�cient condition under partial ordering have been es-

tablished by [El Baz 1990] (see also [El Baz 1994]). These results can be applied to

a large class of problems including systems issued from the discretization of partial

di�erential equations and optimization problems. In particular, results proposed in

[El Baz 1994] generalize a �rst result for asynchronous relaxation methods for the

solution of convex network �ow problems (see [Bertsekas 1987]).

Miellou and Spitéri have established results in the nonlinear case for H-accretive

mappings (see [Miellou 1985b]). For nonlinear �xed point problems, convergence re-

sults have been established by Miellou and his team at Scienti�c Computing Labora-

tory (LCS) of Besançon. In particular, a su�cient condition of convergence has been

given in [Miellou 1975] in the case of contractant operators (see also [Baudet 1978],

[El Tarazi 1981] and [El Tarazi 1982]). Reference is also made to [Venet 2010] for

recent convergence results concerning asynchronous sub-structuring methods.

The asynchronous convergence theorem of Bertsekas [Bertsekas 1983] (see also

[Bertsekas 1989]) is an original and general result of convergence. It is also a pow-

erful tool to prove the convergence of asynchronous iterative algorithms for various

applications. The asynchronous convergence theorem of Bertsekas gives a set of suf-

�cient conditions that ensure the convergence of asynchronous algorithms for �xed

point problems. Unlike previous results which are based on the study of a sequence

of vectors, this result is based on the study of a sequence of level sets. This approach

has its origin in the theory of stability of Lyapunov; its advantage is to provide a

more abstract framework for the analyzis of the convergence of asynchronous itera-

tions. It encompasses also contractive and partial ordering aspects. The approach

developed by Bertsekas is particularly interesting. However, this approach can not

be applied in a direct manner. Obtaining a particular result of convergence for a

given problem requires a detailed study of level sets [Bertsekas 1989].

Lubachevski et Mitra [Lubachevsky 1986] have also established a su�cient re-

sult of convergence for asynchronous bounded delay iterations applied to the solu-

tion of singular systems of Markovian type. Their asynchronous iterative algorithm

model is close to partial asynchronous iterations of Bertsekas with bounded delay

[Bertsekas 1989].

Reference is made to [Frommer 1997] and [Szyld 1998] for what concerns asyn-

chronous multisplitting methods. The reader is also referred to [El Baz 1996b,

22 Chapter 2. State of the art

Miellou 1998, El Baz 1998] for new results related to a general class of asynchronous

iterative algorithms with order intervals that generalize classical asynchronous iter-

ations.

Finally, we note the analogy between iterative schemes and dynamic discrete sys-

tems, and more particularly between asynchronous iterative algorithms and discrete

systems with delays which can vary over the time. In some cases, the convergence

study of numerical schemes can learn from the study of the stability or from the

asymptotic stability of corresponding dynamic discrete systems. Results based on

the theorem of stability of Lyapunov have been presented in this scope in the fol-

lowing references: [Tsitsiklis 1987], [Kaszkurewicz 1990] and [Bhaya 1991].

2.4.2.4 Convergence detection and termination of asynchronous itera-

tions

The convergence detection and termination of asynchronous iterative algorithms

raises several problems related to applied mathematics since the termination of

iterative algorithms must happen when the iterate vector is su�ciently close to a

solution of the problem as well as problems related to computer science since a

special procedure must be designed in order to detect convergence and to terminate

the computation.

This problem has a strong connection with the termination of distributed pro-

cesses, although the number of iterations of the algorithm can be in�nite and com-

puting processes can never be inactive.

Convergence detection and termination presents several di�culties particularly

in the case of message passing architectures since processes have only local informa-

tion, there is no global clock and the communication time may be arbitrarily long.

As a consequence, there are few e�cient termination methods for asynchronous

iterative algorithms.

In a general context, the global state related to the termination of an asyn-

chronous iterative algorithm can be inferred from a motley set of local informations

of type ||xji −x
j−1
i ||i ≤ ε, if we consider the di�erence between two successive values

of the same sub-vector xi of the iterate vector or related to residual. It appears that

local informations can not be assembled in an given order if we want to establish

formally that the termination has well happened.

In the sequel, we present brie�y existing solutions for convergence detection and

termination.

Empirical methods Termination methods for asynchronous iterations are usu-

ally designed according to an empirical manner. An usual method consists in ob-

serving with the help of a particular processor the local termination condition at

each processor. The algorithm is arbitrarily terminated when all local conditions

are satis�ed. We can see easily that this type of method can give satisfying results

only in the case where the asynchronism degree related to the value of delays in the

mathematical model of asynchronous iterations is relatively small. When the delay

2.4. High Performance Computing, parallel iterative methods 23

due to communication or due to unbalanced task is important, this method may

cause an early termination.

Another method [Bertsekas 1989] consists in sending termination messages and

restart messages by each processor and using a special processor that collects and

centralizes these messages.

In another approach [Miellou 1989], the termination scheme samples periodically

the state of processors and associates to each processor a Boolean value according

to the satisfaction of the local termination criteria. This local value is then com-

municated to other processors. The global state is inferred in computing the �xed

point of a Boolean operator via an asynchronous iterative algorithm. However, this

approach needs for each processor to have an estimation of start time and end time

of the asynchronous algorithm that �nds the �xed point of the Boolean operator.

Another termination method [Chajakis 1991] uses termination messages and ac-

knowledgments of termination messages. In this termination scheme, a processor

terminates its computation if its local termination condition is satis�ed and if it

has received termination messages as well as acknowledgments of all termination

messages from all processors.

There are no formal proof of validity for termination methods cited above in

the general case. Furthermore, as we have mentioned above, for message passing

architectures, all processors have only local information, there is no global clock and

some messages may be delayed or arrive out of order.

Method of Bertsekas and Tsitsiklis One of the most interesting methods for

detecting convergence and terminating asynchronous iterative algorithm has been

proposed by Bertsekas and Tsitsiklis in [Bertsekas 1989] and [Bertsekas 1991]. As-

sumption is made that each communicated data on a link is correctly received with

a �nite delay that is however non speci�ed. This method is based on the decom-

position of the problem into two parts. First, the asynchronous iterative algorithm

is modi�ed so that it terminates in �nite time and converges to a �xed point su�-

ciently close to the solution of the problem. Secondly, a procedure of convergence

detection and termination is applied.

Bertsekas and Tsitsiklis have proposed to modify the asynchronous iterative al-

gorithms as follows. If the update of a component of the iterate vector does not

alter signi�cantly its value, then the value of the iterate vector is not modi�ed nor

communicated to other processors. The termination of the modi�ed asynchronous

iterative algorithm happens when an update does not modify the value of compo-

nents of iterate vector at all processors (i.e. all local termination conditions are

satis�ed) and no message is in transit in the communication network.

Several procedure can be used in order to detect the termination of the modi-

�ed asynchronous iterative algorithm. We can quote for instance the procedure of

Dijkstra and Scholten (see [Dijkstra 1980] and [Bertsekas 1989]) which is based on

acknowledgements of all messages and the generation of an activity graph.

The method of Bertsekas and Tsitsiklis is one of rare methods in the literature

24 Chapter 2. State of the art

for which we have a formal proof of validity. However, this method presents some

weaknesses. It requires �rst the use of a complex protocol as well as twice com-

munications as the original asynchronous iterative algorithm. Moreover, conditions

that are more restrictive than conditions of the asynchronous convergence theorem

of Bertsekas must be satis�ed in order to ensure the convergence of the modi�ed

asynchronous iterative algorithm.

In [Bertsekas 1991], Bertsekas and Tsitsiklis suggest to use another termination

procedure, namely the snapshot algorithm of Chandy and Lamport [Chandy 1985].

This method is based on a procedure of marked messages and records of states of

links and processors when all marked messages are delivered. We note that recorded

states in a snapshot do not necessarily correspond to a true global state of the system

at a given instant. However, the information contained in the snapshot is su�cient

to detect certain properties of the global state of the system and in particular the

termination.

In [El Baz 1998], El Baz has proposed a variant of the termination method of

Bersekas and Tsitsiklis that reduces the number of exchanged messages by eliminat-

ing acknowledgments of messages.

Method of Savari and Bertsekas Another interesting termination method has

been proposed by Savari and Bertsekas in [Savari 1996]. In this method, asyn-

chronous iterations are slightly modi�ed: the result of each new update of a compo-

nent of the iterate vector is taken into account and communicated to other processors

if it is di�erent from the latest value of the component. In addition, queries are sent

to all processors of the system whenever a termination condition is not satis�ed. A

processor performs computations and sends messages and queries to other processors

as long as its local termination condition is not satis�ed or it receives queries from

other processors. The termination happens when all processors have satis�ed their

local termination condition and no message related to a query or to the result of

an update is in transit in the system. The termination is detected using a standard

protocol (see [Dijkstra 1980] and [Chandy 1985]).

Savari and Bertsekas have given a formal proof of validity of this termination

algorithm. The principal advantage of this method is that it can be applied suc-

cessfully to a larger class of iterative algorithms than the method of Bertsekas and

Tsitsiklis. Its principal weakness is the necessity of a large number of communication

of query type.

Method of level sets In [El Baz 1996a], El Baz has proposed an approach that

relies on the use of the sequence of level set. The principle of this method consists

in terminating asynchronous iterative algorithm when the iterate vector penetrates

into level set X(q̂) where q̂ is a natural integer �xed a priori in function of the

problem and no message is in transit in the network. The asynchronous iterative

algorithm is slightly modi�ed. A simple computing procedure related to level sets

is added. Reference is made to [El Baz 1998] for more details about this method.

2.5. Conclusion 25

Other termination methods Savari and Bertsekas have proposed in

[Savari 1996] several schemes of supervised termination.

Miellou has proposed in [Miellou 1975] and [Miellou 1990] a method based on

the use of secondary algorithm or the error control which is derived from algorithm

of F.Robert and G. Schroeder (see [Robert 1969] [Robert 1975]). This secondary al-

gorithm consumes less computational resources than the initial (or principal) asyn-

chronous algorithm. However, sequences S and I must be necessarily identical for

both main and secondary algorithms.

2.5 Conclusion

The raise of the parallelism concept in microprocessor architectures together with

progress in high bandwidth network has made possible high performance computing

applications on peer-to-peer networks. This solution seems economic and attractive.

Among the di�erent problems that can be treated, HPC applications related to task

parallel model that can be solved in particular via asynchronous iterative algorithms

constitute an important �eld with possible relevance to many engineering specialties

and services like mechanics, telecommunications and �nance. In the sequel, we

present our contributions to this domain.

Chapter 3

P2PSAP - A self-adaptive

communication protocol

Contents

3.1 Introduction . 27

3.2 State of the art in adaptive communication protocols 28

3.2.1 Micro-protocol approach . 29

3.2.2 Cactus framework and CTP protocol 31

3.3 P2PSAP Protocol architecture 33

3.3.1 Socket API . 33

3.3.2 Data channel . 33

3.3.3 Control channel . 34

3.4 Example of scenario . 36

3.5 Some modi�cations to Cactus 37

3.6 Self-adaptive mechanisms . 37

3.6.1 Choice of protocol features 38

3.6.2 New micro-protocols . 39

3.6.3 (Re)Con�guration . 43

3.7 Computational experiments 47

3.7.1 Network �ow problems . 47

3.7.2 Platform . 49

3.7.3 Computational results . 50

3.8 Chapter summary . 51

3.1 Introduction

In this chapter, we present the Peer-To-Peer Self Adaptive communication Protocol

(P2PSAP), a self-adaptive communication protocol dedicated to Peer-to-Peer (P2P)

High Performance Computing (HPC) [El Baz 2010]. As explained in Chapter 1, the

design of this protocol is the �rst step of a classical approach used to design dis-

tributed computing environments. The P2PSAP protocol is designed to allow rapid

update exchanges between peers in the case of the solution of numerical simulation

28 Chapter 3. P2PSAP - A self-adaptive communication protocol

problems and optimization problems via distributed iterative algorithms. The pro-

tocol can con�gure itself automatically and dynamically in function of application

requirements like scheme of computation and elements of context like topology by

choosing the most appropriate communication mode between peers. The proto-

col is an extension of CTP [Wong 2001] and makes use of the Cactus framework

[Hiltunen 2000]. We note that our contribution di�ers from existing communication

libraries for high performance computing like MPICH/Madeleine [Aumage 2001] in

allowing the modi�cation of internal transport protocol mechanism in addition to

switching between networks. A �rst series of computational experiments for an

optimization problem illustrate the behavior of the proposed protocol for HPC ap-

plications.

This chapter is organized as follows. Next section presents existing work in adap-

tive communication protocols. Section 3.3 describes the architecture of P2PSAP

protocol. An example of scenario that shows the automatic and dynamic con�gu-

ration capability of P2PSAP is displayed in section 3.4. Section 3.5 describes some

modi�cations we have made to the Cactus framework in order to improve protocol

performance and to facilitate the recon�guration. In the section 3.6, we detail the

choice of self-adaptive mechanisms for distributed peer-to-peer HPC applications.

A �rst series of computational experiments for an optimization problem, i.e. a net-

work �ow problem is displayed and analyzed in the section 3.7. Finally, a summary

of P2PSAP protocol concludes this chapter.

3.2 State of the art in adaptive communication protocols

Early communication protocols such as TCP [TCP 1981] and UDP [UDP 1980] has

been designed to ful�ll simple requirements regarding the reliability and order of

data. Nowadays, new applications over the Internet like VoIP, VoD and P2P HPC

require communication protocols to adapt to context as well as to application pro�le.

In the literature, several solutions have been proposed. One can classify them into

two classes: behavioral and structural adaptation [Van Wambeke 2008]:

• Behavioral adaptation relies on the capacity of the algorithm to change the

behavior of the protocol without modifying its structure. One can �nd this

adaptation property in standard TCP protocol in the case of network conges-

tion. Behavioral adaptation is easy to implement but limits the adaptability.

• Structural adaptation can change the internal structure of the protocol, thus

changing the provided services. Structural adaptation is based on modular

programming where software is composed of separate, interchangeable com-

ponents. The implementation of this adaptation is complicated but it allows

the �exible adaptability. Structural adaptation is known as micro-protocol

approach.

In the next subsection, we shall present in detail the micro-protocol approach.

3.2. State of the art in adaptive communication protocols 29

3.2.1 Micro-protocol approach

Micro-protocols are an interesting approach to design and implement self-adaptive

communication protocols. Micro-protocols were �rst introduced in x-kernel

[Hutchison 1991]. They have been widely used since in several systems. A micro-

protocol is a primitive building block that implements merely a functionality of a

given protocol such as error recovery, ordered delivery and so on. A protocol then re-

sults from the composition of a given set of micro-protocols. This approach permits

one to reuse the code, facilitate the design of new protocols and give the possibility

to con�gure the protocol dynamically.

Protocol composition frameworks provide the infrastructure that allows pro-

grammers to build communication protocols according to micro-protocol approach.

In the literature, several protocol composition frameworks have been proposed.

Based on the composition model, we can divide these frameworks into three models:

the hierarchical, non-hierarchical and hybrid models.

3.2.1.1 Hierarchical model

In the hierarchical model, a stack of micro-protocols composes a given protocol,

similarly to the ISO model. This model can be found in the x-kernel [Hutchison 1991]

and APPIA [Miranda 2001, Mocito 2005] frameworks.

X-kernel. The x-kernel [Hutchison 1991] is an operating system kernel that pro-

vides architecture for constructing and composing network protocols. In the x-kernel

framework, a protocol is considered as an abstraction object with an uniform in-

terface that allows protocols to invoke operations on one another (i.e., to send a

message to and receive a message from an adjacent protocol). The suite of proto-

cols in x-kernel is statically con�gured at initialization time onto a protocol graph

(see Figure 3.1). Based on the protocol graph, users can plug protocols together in

di�erence ways.

APPIA. Appia [Miranda 2001, Mocito 2005] is a protocol kernel that supports

applications requiring multiple coordinated channels and o�ers a clean and ele-

gant way for the application to express inter-channel constraints. In Appia, micro-

protocols are de�ned as layers that exchange informations using events. A session is

an instance of a micro-protocol; it maintains state variables used to process events.

A Quality of Service (QoS) is de�ned as a stack of layers. The QoS speci�es which

protocols must act on the messages and the order they must be traversed thus de�n-

ing a quality of service by enumerating the properties it will provide. A channel

is an instantiation of a QoS and is characterized by a stack of sessions of the cor-

responding layers. Inter-channel coordination can be achieved by letting di�erent

channels share one or more common sessions.

30 Chapter 3. P2PSAP - A self-adaptive communication protocol

TCP UDP PsyncTCP UDP Psync

IP

ETH

Figure 3.1: Example of x-kernel protocol graph con�guration

3.2.1.2 Non-hierarchical model

In the non-hierarchical model, there is no particular order between micro-protocols;

the SAMOA [Paweª 2004] framework corresponds to this model.

SAMOA. SAMOA [Paweª 2004] is a protocol framework that ensures the isolation

property. It has been designed to allow concurrent protocols to be expressed without

explicit low-level synchronization, thus making programming easier and less error-

prone. In SAMOA, a micro-protocol is composed of a set of event handlers and a

local state. A local state of a given micro-protocol can be modi�ed only by event

handlers of this micro-protocol. Each event handler has to be bound to a prede�ned

event type. When an event of a given event type is triggered, all event handlers

that have been bound to this event type are executed. There are two kinds of

events: internal and external. An internal event is generated during a handler's

execution. External event are requests from the network layer (or application) to

inject messages to the protocol.

3.2.1.3 Hybrid model

The hybrid model is a combination of the two previous models; micro-protocols are

composed here hierarchically and non-hierarchically. One can �nd this last model

in the FPTP [Exposito 2003] and Cactus [Hiltunen 2000] frameworks.

FPTP. FPTP (Full Programmable Transport Protocol) is a connection oriented

and message oriented transport protocol that has been designed to be statically

or dynamically con�gured according QoS requirements [Exposito 2003]. FPTP is

constructed by the composition of con�gurable mechanisms suited to control and

manage the QoS. FPTP architecture follows a hierarchical model for the composi-

tion of services related to QoS control mechanisms (i.e. rate control, �ow control,

3.2. State of the art in adaptive communication protocols 31

time control, loss detection) and a non-hierarchical model for the QoS management

mechanisms (i.e. congestion control, error recovery, inter-�ow synchronization) (see

Figure 3.2). FPTP has been implemented in Java for multimedia applications with

di�erent QoS requirements in terms of time constraints.

applications at run-time and executing these services on one
or more processes or threads.

FPTP architecture follows a hierarchical model for the
composition of services related to QoS control mechanisms
and a non-hierarchical model for the QoS management
mechanisms (see figure 5). Control operations are executed
in synchronization to every data packet being sent or
received. Received data packets compose the IN flow and
sent data packets the OUT flow. The QoS control
mechanisms operates on each individual data packet in order
to satisfy the QoS requirements (.i.e. rate control, flow
control, time control, loss detection, etc.). Management
mechanisms operates in longer periods of time reacting to
QoS measures or when specific events are triggered (.i.e.
congestion control, error recovery, inter-flow
synchronization, etc.).

FPTP compositional architecture

processing
module

processing
module

processing
module

processing
module

Management
operations

Control
operations

processing
module

hi
er

ar
ch

ic
al

m
od

el

hi
er

ar
ch

ic
al

m
od

el
IN flo

w

O
U

T
flo

w

Fig 5. FPTP architecture

C. XQoS Framework and FPTP

FPTP is XQoS-aware which means that:
• FPTP services are oriented to the user and

applications requirements specified by the XQoS
session specification.

• FPTP mechanisms operate over the application data
units (ADUs) taking advantage of the QoS
information specified by applications for every ADU
and conveyed by the XQoS media-type specification.

• XQoS service and resource specifications are used to
the selection, download, composition and
deployment of the FPTP mechanisms. XQoS service
specifications allow on one hand to describe the
characteristics of FPTP services and on the other
hand to specify the mechanisms to be composed and
deployed in order deliver such QoS oriented services.

XQoS service spec

High level:
XQoS attributes of
FPTP transport service

Low level:

XQoS repository

XQoS requirements
(session and media type)

XQoS
mechanisms

end systems

Management mechanisms

Control mechanisms
(OUT and IN flows)

Fig 6. Dynamic deployment of FPTP services

The composition and deployment of the FPTP services
may be statically or dynamically done. XQoS service
specifications provided by the XQoS repositories can be used

to dynamically select the FPTP services to be deployed in
accordance to the QoS requirements (see figure 6). The high
level section of the FPTP-XQoS service specification is
compared with the XQoS requirements in order to select the
correct FPTP service configuration to be used. The low level
section of this service specification describes the QoS
mechanisms to be downloaded in end systems in order to
deploy the FPTP service.

Next paragraphs present a study case intended to illustrate
how the FPTP congestion control mechanism can be
deployed and configured in the framework of the XQoS
architecture.

IV. STUDY CASE

A. TFRC congestion control mechanism

The TCP-friendly rate control (TFRC) is a receiver-based
congestion control mechanism that provides a TCP-friendly
send rate while minimizing abrupt rate changes [4]. The
sender sends a stream of data packets to the receiver at some
rate. The receiver sends a feedback packet to the sender
roughly once every round-trip time (RTT). Based on the
information contained in the feedback packets, the sender
adjusts its sending rate in accordance with the TCP
throughput equation to maintain TCP-friendliness [11]. If no
feedback is received from the receiver in several RTTs, the
sender halves its sending rate. This congestion control
mechanism has been implemented as a FPTP service (see
figure 7).

FPTP-TFRC service

RateControl ProcessIN
Management
operations

Control
operations

ProcessFeedbackhi
er

ar
ch

ic
al

m
od

el

hi
er

ar
ch

ic
al

m
od

el
IN flo

w

O
U

T
flo

w

NoFeedback

CreateFeedback

Fig 7. FPTP-TFRC service

This service is composed by five processing modules. The
RateControl and ProcessIn mechanisms have been deployed
as control mechanisms in synchronization to the OUT and IN
flow respectively. The RateControl mechanism limits the
data packets being sent according to the allowed sending rate
T. The ProcessIn mechanism processes each data packet
being received and sends a local management signal when a
loss is detected.
The CreateFeedback, ProcessFeedback and NoFeedback
mechanisms have been deployed as management
mechanisms. The CreateFeedback mechanism produces and
sends a feedback message once by RTT, when a loss is
detected (loss signal) or when one message is received if the
sender is sending at a rate of less than one packet per RTT.
The ProcessFeedback mechanism is triggered by a signal
coming from the ProcessIn mechanism when a feedback

Figure 3.2: FPTP compositional architecture

Cactus. The Cactus frameworks [Hiltunen 2000] extends x-kernel in providing a

�ner granularity of composition. In addition to layered composition in x-kernel,

intra-layer composition following non-hierarchical model is allowed.

We have concentrated on the Cactus framework since this approach is �exible

and e�cient. In the next subsection, we shall detail the Cactus framework and one

example, the CTP protocol.

3.2.2 Cactus framework and CTP protocol

Cactus [Hiltunen 2000] is a system for constructing highly-con�gurable protocols for

networked and distributed system. Cactus has two grain levels of composition. Indi-

vidual protocols, termed composite protocols, are constructed from micro-protocols.

Composite protocols are then layered on top of each other to create a protocol stack

using an interface similar to the standard x-kernel API [Hutchison 1991].

Cactus is an event-based framework. Events are used to signify state changes,

such as arrival of messages from the network. Each micro-protocol is structured as a

collection of event handlers, which are procedure-like segments of code and are bound

to events. When an event occurs, all handlers bound to that event are executed.

Events can be raised in di�erent ways, explicitly by micro-protocols or implicitly by

the runtime system, with either blocking or non-blocking semantics, with a speci�c

delay and a priority execution number. Arguments can be passed to handlers in

two ways, statically when a handler is bound to an event and dynamically when an

event is raised. The runtime system also provides operations for unbinding handlers,

creating and deleting events, halting event execution, and canceling a delayed event.

32 Chapter 3. P2PSAP - A self-adaptive communication protocol

Handler execution is atomic with respect to concurrency, i.e. a handler is executed

till completion before another handler is started unless it voluntarily yields the CPU.

The Cactus framework provides a message abstraction named dynamic messages,

which is a generalization of traditional message headers. A dynamic message consists

of a message body and an arbitrary set of named message attributes. Micro-protocols

can add, read, and delete message attributes. When a message is passed to a lower-

level protocol, a pack routine combines message attributes with the message body;

while an analogous unpack routine extracts message attributes when a message is

passed to a higher-level protocol. Cactus also supports shared data that can be

accessed by all micro-protocols con�gured in a composite protocol.

The CTP Con�gurable Transport Protocol [Wong 2001] is designed and imple-

mented using the Cactus framework. The Figure 3.3 shows the CTP implementation

with events on the right side and micro-protocols on the left side. An arrow from

a micro-protocol to a given event indicates that the micro-protocol binds a handler

to this event.

. . .

Events

. . .

Micro−protocols

API: Open, Close, Push

. . .

CTP

IP

Application

S
ha

re
d

D
at

a

SEGMENT FROM USER

Positive ACK

Reliable FIFO SEGMENT TO NET

CONGESTION DETECTED

Flow Control

Congestion Control

MSG FROM USER

Fig. 1. CTPCompositeProtocolin Cactus.

A. Cactus

Cactusis a systemanda framework for constructingconfig-
urableprotocolsandservices,whereeachservicepropertyor
functionalcomponentis implementedasa separatemodule[8].
A servicein Cactusis implementedas a compositeprotocol,
with eachservicepropertyor otherfunctionalcomponentimple-
mentedasa micro-protocol. A micro-protocolis, in turn,struc-
turedasacollectionof eventhandlers, whichareprocedure-like
segmentsof codethat areexecutedwhena specifiedevent oc-
curs.Onceconstructed,a compositeprotocolis composedhier-
archicallywith otherprotocolsto form thenetwork subsystem.
In the caseof the Linux versionof Cactususedto implement
CTP, supportfor hierarchicalcompositionis providedby thex-
kernel[9].

The Cactusruntimesystemprovidesa variety of operations
for managingeventsandevent handlers. In particular, opera-
tions are provided for binding an event handlerto a specified
event and for raising an event, which causesall the handlers
boundto thateventto beexecuted.An eventcanalsoberaised
with a specifieddelayto implementtime-drivenexecution,and
with either blocking or non-blockingsemanticson the thread
raisingtheevent.Theorderof eventhandlerexecutioncanalso
bespecifiedif desired.Argumentscanbepassedto handlersin
both the bind andraiseoperations.Otheroperationsareavail-
ablefor unbindinghandlers,creatinganddeletingevents,halt-
ing event execution,and cancelinga delayedevent. Handler
executionis atomicwith respectto concurrency, i.e., a handler
is executedto completionbeforeany otherhandleris startedun-
lessit voluntarily yields the CPU.Cactusalsosupportsshared
datathatcanbeaccessedby all micro-protocolsconfiguredinto
a compositeprotocol. Fig. 1 illustratesCTP implementedasa
Cactuscompositeprotocol,with exampleeventsto theright and
micro-protocolsto the left. An arrow from a micro-protocolto
aneventindicatesthatthemicro-protocolbindsa handlerto the
event.

Finally, Cactussupportsamessageabstractiondesignedto fa-
cilitatedevelopmentof configurableservices.Themainfeatures

providedby Cactusmessagesarenamedmessageattributesand
a coordinationmechanismthat releasesa messagefrom the
compositeprotocol to go up or down the protocolgraphonly
whenagreedto by all relevantmicro-protocols.Thesedynam-
ically createdmessageattributesare a generalizationof tradi-
tional messageheadersandhave threedifferentscopes:peer,
stack, andlocal. Peerattributescorrespondto traditionalheader
fields that are sharedby the peer compositeprotocolsat the
senderandreceiver. Stackattributesaresharedby differentpro-
tocol layersin aprotocolstackononemachineandcanbeused,
for example,to sharemessage-specificprocessinginstructions
betweenprotocollayers. Finally, local attributesaresharedby
micro-protocolsin onecompositeprotocolon a singlemachine
andcan be used,for example,to storemessage-specificlocal
information. A customizablepack routine combinespeerat-
tributeswith themessagebodyfor network transmission,while
an analogousunpackroutineextractspeerattributesat the re-
ceiver. Messagesaredeallocatedusinga coordinationmecha-
nismsimilar to thatusedfor sendingmessages.

B. AttributesandAlgorithms

Thefirst stepin developingacustomizabletransportprotocol
is to identify variousquality attributesthat canbe provided to
higher levels and the algorithmsusedto implementtheseand
otheraspectsof the service. While the list of possiblequality
attributesis large[17], theoneswe addressherecanbedivided
roughlyinto thefollowing categories:
� Performance. Describeshow quickly data are transported
from senderto receiver, typically specifiedasaveragethrough-
put. The protocol may attemptto provide guaranteedperfor-
manceby reservingresourcesor maydo it only on a best-effort
basis.� Timeliness. Describesthe timing characteristicsof the end-
to-endtransmissionwith respectto maximumlatency or jitter.
Latency guaranteesaretypically madethroughresourcealloca-
tion, while jitter canbecontrolledusingappropriatealgorithms.� Reliability. Addressesthe probability that the receiver re-
ceives all the datasentby the sender. Reliability can be in-
creasedby using different forms of redundancy rangingfrom
multihomingto redundanttransmissionof dataalongonecon-
nection. Sincemost techniquestransmitmultiple copies,the
transportprotocolmayberequiredto eliminateextracopies.� Ordering. Describesguaranteesconcerningthe orderingof
dataat thereceiverrelativeto theorderin which they weresent.
For stream-basedtransportservices,theonly reasonableorder-
ing optionis FIFO,but for message-basedservicesotheroptions
maybereasonable.� Security. Addressesconfidentiality, integrity, authenticity, and
datareplay. Thestrengthof theguaranteefor eachof theseat-
tributesdependson thetypesof attacksto betolerated.

In general,the chosenquality attributesapply to every mes-
sagewithin asession,but it mayalsobeusefulto allow individ-
ual messagesto begivenparticularattributes. For example,an
urgentmessagemight be marked “out-of-band” anddelivered
as soonas possible,even thougha messageorderingrequire-
mentappliesto othermessages.Applicationsthatrequiremulti-

Figure 3.3: CTP - Con�gurable Transport Protocol

The CTP protocol includes a wide range of micro-protocols including: a small set

of basic micro-protocols like Transport Driver, Fixed Size or Resize and Checksum

that are needed in every con�guration and a set of micro-protocols implementing

various transport properties like acknowledgments, i.e. PositiveAck, NegativeAck

and DuplicateAck, retransmissions, i.e. Retransmit, forward error correction, i.e.

ForwardErrorCorrection, and congestion control, i.e. WindowedCongestionControl

and TCPCongestionAvoidance.

We have extended the CTP protocol in order to build the self-adaptive commu-

3.3. P2PSAP Protocol architecture 33

nication protocol dedicated to peer-to-peer high performance computing that will

be presented in the sequel.

3.3 P2PSAP Protocol architecture

Figure 3.4 shows the architecture of the P2PSAP protocol; this protocol has a Socket

interface and two channels: a control channel and a data channel. We present now

in detail those components.

General Socket API

(listen, connect, close, send, receive)

Shared

Data

Restranmit

ReliableFifo

TCPNewRenoCongestionControl

Data channel

IP

Ethernet

FixeSize

Positive Ack

TCP

IP

Verbs

Infiniband

MG

Myrinet

Control channel

Context

Monitor

Inter-peer

Coordination

Controller

Reconfiguration

Reconfigure

.

.

.

.

Figure 3.4: P2PSAP Protocol Architecture

3.3.1 Socket API

A main lack of Cactus CTP [Wong 2001] is that it has no Application Programming

Interface (API). Application has to use an interface as though it was just another

composite protocol. So, we have placed on the top of our protocol a socket-like API.

Application can open and close connection, send and receive data. Furthermore,

application can get session state and change session behavior or architecture through

socket options, which are not available in Cactus. Session management commands

like listen, open, close, setsockoption and getsockoption are directed to Control

channel; while data exchanges commands, i.e. send and receive commands are

directed to Data channel.

3.3.2 Data channel

The Cactus built data channel transfers data packets between peers. The data chan-

nel has two levels: the physical layer and the transport layer; each layer corresponds

34 Chapter 3. P2PSAP - A self-adaptive communication protocol

to a Cactus composite protocol. We encompass the physical layer to support com-

munications on di�erent networks, i.e. Ethernet, In�niBand and Myrinet. Each

communication type is carried out via a composite protocol. The data channel

can be triggered between the di�erent types of networks; one composite protocol

is then substituted to another. The transport layer is constituted by a composite

protocol made of several micro-protocols, which is an extension of CTP. At this

level, data channel recon�guration is carried out by substituting or removing and

adding micro-protocols. The behavior of the data channel is triggered by the control

channel.

3.3.3 Control channel

The Control channel manages session opening and closure; it captures context infor-

mation and (re)con�gures the data channel at opening or operation time; it adapts

itself to these informations and their changes; it is also responsible for coordination

between peers during recon�guration process. Note that we use the TCP protocol

to exchange control messages since these messages cannot be lost.

Before describing the main components of the control channel, we present �rst

a session life cycle (see Figure 3.5). Suppose process A wants to exchange data with

process B, it opens a session through socket create and connect command. Then,

a TCP connection is opened between 2 processes. Process B accepting connection

must send its context information to process A. Process A chooses the most appro-

priate con�guration for data channel and send con�guration command to process B

based on its context information and those of B. After that, the two processes carry

out the con�guration of data channel. When the con�guration is done, each pro-

cess has to inform the other process and waits for the noti�cation of other process.

Data is exchanged only when both processes have �nished data channel con�gura-

tion. During the communication, a process can decide to change con�guration of

data channel due to context changes or user requirements, like process A in Figure

3.5. Then, a procedure similar as the one implemented for con�guration at session

opening will be realized. When session is closed, the data channel is closed �rst; the

control channel with TCP connection is closed later on.

We describe now the main components of the control channel.

• Context monitor: the context monitor collects context data and their

changes. Protocol adaptation is based on context acquisition, data aggre-

gation and data interpretation. Context data can be requirements imposed

by the user or the algorithm at the application level, i.e. asynchronous algo-

rithms, synchronous algorithms or hybrid methods. Context data can also be

related to peers location and machine loads. Context data are collected at

speci�c times or by means of triggers. Data collected by the context monitor

can be referenced by the controller.

• Controller: the controller is the most important component in the control

channel; it manages session opening and closure through TCP connection

3.3. P2PSAP Protocol architecture 35

A B
Open session

Context information

Configuration command

Configuration done

Configuration done

Configurate Configurate

Data exchange

Reconfigurate
decision

Reconfiguration command

Reconfiguration done

Reconfiguration done

Reconfigurate Reconfigurate

Data exchange

Close session

Figure 3.5: Protocol session life cycle

36 Chapter 3. P2PSAP - A self-adaptive communication protocol

opening and closure; it also combines and analyzes context information pro-

vided by the context monitor so as to choose the con�guration (at session

opening) or to take recon�guration decision (during session operation) for

data channel. The choice of the most appropriate con�guration is determined

by a set of rules (this point will be detailed in the sequel). These rules specify

new con�guration and actions needed to achieve it. The (re)con�guration

command along with necessary information is sent to component Recon�gu-

ration and to other communication end point.

• Recon�guration: recon�guration actions are made by the recon�guration

component via the dedicated Cactus functions. Recon�guration is done at the

physical layer by substituting a composite protocol supporting communication

on a network board to a composite protocol supporting communication on

another type of network board or at the transport layer by removing and

adding or substituting micro-protocols.

• Inter-peer coordination: the coordination component is responsible of con-

text information exchanges and coordination of peers recon�guration pro-

cesses so as to ensure proper working of the protocol.

3.4 Example of scenario

We present now a simple scenario for the P2PSAP protocol so as to illustrate its

behavior.

P1

P2 P4

P3

Synchronous

Resize

Verbs

Infiniband

Asynchronous

Checksum

IP

Ethernet

IP

Ethernet

Synchronous

Retransmit

PositiveAck

TCPNewRenoCong

estionControl

Resize

Checksum

FixedSize

ReliabeFifo

Figure 3.6: Example of P2PSAP recon�guration scenario

We consider a high performance computing application, like for instance a large

scale numerical simulation application or a complex optimization problem, solved on

the network composed of two simple clusters shown in Figure 3.6. The �rst cluster

is composed of two similar machines: P1 and P2 that can be connected via Ethernet

or In�niBand. The second cluster is made of two similar machines: P3 and P4 con-

nected only via Ethernet. The communication protocol between machines P3 and P4

is based on synchronous communication (since machines have similar characteristics

and loads) via micro-protocols ensuring e.g. reliability and order, i.e. ReliableFifo,

3.5. Some modi�cations to Cactus 37

and congestion control, i.e. TCPNewRenoCongestionControl. The communication

protocol between machines P1 and P2 is based on synchronous communication (for

the same reasons) via In�niband since In�niband is faster than Ethernet. Moreover,

In�niBand insures reliability and message order; as a consequence, the data chan-

nel needs only micro-protocols ensuring synchronous communication (Synchronous)

and segment size management (Resize). Communications between machines of the

di�erent clusters are asynchronous; as a consequence, in this case we need no order,

nor reliability micro-protocols.

3.5 Some modi�cations to Cactus

In order to achieve the recon�guration capability of P2PSAP presented in previ-

ous sections as well as to improve protocol performance, we have introduced some

modi�cations to the Cactus framework:

• Firstly, Cactus does not allow concurrent handler execution; this means that

a handler must wait for current executed handler completion before being

executed. But nowadays, almost all PCs have more than one core and con-

current handler execution is necessary in order to improve performance. So,

we have modi�ed Cactus to allow concurrent handler execution. Each thread

has its own resources and its handler execution is independent of others.

• Secondly, we have eliminated unnecessary message copies between layers. In

the Cactus framework, when a message is passed to upper or lower layers,

Cactus runtime creates a new message that is sent to upper or lower lay-

ers. Hence, a signi�cant number of CPU cycles and memories are consumed

in multiple-layers systems. In our protocol, message copies occur between

Socket API layer and Data channel, and within the Data channel. In order

to eliminate message copies, we have modi�ed the pack and unpack functions

so that only a pointer to message is passed between layers. Therefore, no

message copy is made within the stack.

• Finally, Cactus provides operations for unbinding handlers but it has no ex-

plicit operation for removing a micro-protocol. In order to facilitate protocol

recon�guration, we have added to Cactus API an operation for micro-protocol

removing. In addition to the micro-protocol initiating function, each micro-

protocol must have a remove function, which unbinds all its handlers and

releases its own resources. This function will be executed when the micro-

protocol is removed.

3.6 Self-adaptive mechanisms

In this section, we shall present and explain our choices of P2PSAP's self-adaptive

mechanisms for distributed peer-to-peer computing. We plan to support the com-

38 Chapter 3. P2PSAP - A self-adaptive communication protocol

munication on several networks. So far, we have concentrated on Ethernet network

that is widely used. Thus, the self-adaptive of the protocol is only at transport level.

Similar machines connected via a local network with small latency, high band-

width and reliable data transfer can be gathered into a cluster. The reader is

referred to [Beaumont 2011] for recent study dealing with grouping peers on the In-

ternet into clusters based on latency metric. During solution, the transport protocol

is con�gured according to the following context data: schemes of computation (i.e.

synchronous, asynchronous or hybrid iterative schemes) and topology parameters

like type of connection (i.e. intra or inter cluster). Firstly, we determine required

protocol features in each considered context. A context corresponds to the com-

bination of elements from network layer like topology and application layer like a

given iterative scheme, e.g. synchronous or asynchronous.

3.6.1 Choice of protocol features

The choice of protocol features in each context is summarized in Table 3.1. In the

sequel, we explain our choices.

Synchronous Asynchronous Hybrid

Intra Inter Intra Inter Intra Inter

Synchronous Yes Yes No No Yes No

Reliable transport Yes Yes No No Yes No

Ordered delivery Yes Yes No No Yes No

Congestion control No Yes No Yes No No

Table 3.1: Choice of P2PSAP protocol features according to algorithmic and com-

munication context

Sometimes, communication mode must �t a computational scheme requirement

(e.g. a special requirement related to the convergence of the implemented numeri-

cal method) as in the case where synchronous computational schemes are imposed.

Then, synchronous communications are imposed in both intra-cluster and inter-

cluster data exchanges. In this case, reliable transport and ordered delivery are

required in order to ensure that the application is not going to be blocked by a mes-

sage loss or unordered message delivery. Moreover, in synchronous communication,

after sending a message, the sender is blocked until it receives an acknowledgement

about the delivery of this message to application at receiver. Thus the receiver

bu�er can not be overwhelmed and �ow control is not necessary in both intra and

inter-cluster communication. In intra-cluster with low latency, high bandwidth and

reliable links, congestion control is not really necessary. Whereas, congestion con-

trol is required in inter-cluster with high latency, low bandwidth and unreliable

link in order to behave fairly with others �ows and to reduce retransmission over-

head. In this case, we have chosen TCP New-Reno congestion avoidance algorithm

[Floyd 1999] which is the most commonly implemented RFC-based one.

3.6. Self-adaptive mechanisms 39

Likely, in the case where asynchronous iterative schemes of computation are re-

quired by user, asynchronous communication must be preferably implemented in

both intra-cluster and inter-cluster data exchanges. We note that asynchronous

schemes of computation are fault tolerant in some sense since they allow messages

losses. For this reason, reliable transport and ordered delivery as well as �ow con-

trol are not needed in both intra-cluster and inter-cluster communication. While

congestion control is not necessary in intra-cluster communication, it is required in

inter-cluster communication in order to ensure a fair behavior with others �ows. In

our opinion, DCCP congestion mechanisms [Kohler 1999] are the most appropriate

one for unreliable datagram �ow.

There are also some situations where a given problem can be solved by using

any combination of computational schemes. In this latter case, users can leave the

system to freely choose communication mode. As a consequence, the most appro-

priate communication mode according to topology parameters ,i.e. inter-cluster or

extra cluster connection should be chosen. This corresponds to the so-called Hybrid

scheme of computation. In this case, if computational loads are well balanced on

machines inside a cluster that are identical, then synchronous communication be-

tween peers are appropriate. The communication protocol in this context has the

same features as in the case of synchronous iterative scheme and intra-cluster com-

munication. On the other hand, synchronization may be an obstacle to e�ciency

and robustness in inter-cluster data exchanges situations where there may be some

heterogeneities in terms of processors, OS, bandwidth, and communications may be

unreliable and have high latency. Thus, asynchronous communication seems more

appropriate in this latter context. The communication protocol in this latter con-

text has the same features as in the case of asynchronous scheme and inter-cluster

communication.

According to the choices of protocol features for each context, there are some

functionalities that are needed to achieve those features but are not implemented

by any micro-protocol in CTP. Thus, we have designed and developed some new

micro-protocols as we shall present in the next subsection.

3.6.2 New micro-protocols

3.6.2.1 Micro-protocols synchronization

CTP supports only asynchronous communication. Distributed applications may

nevertheless use plural communication modes. Hence, we have implemented two

micro-protocols corresponding to two communication modes: synchronous and asyn-

chronous. These micro-protocols introduce new events, UserSend and UserReceive,

that will be raised when send and receive socket commands are called by an appli-

cation.

The synchronous micro-protocol implements blocked synchronous communica-

tion mode as presented in the Figure 3.7. Synchronous micro-protocol consists of

3 handlers for 3 events: UserSend, SegmentToNet and UserReceive. Figure 3.8

40 Chapter 3. P2PSAP - A self-adaptive communication protocol

displays the pseudo-code of synchronous micro-protocol.

Application ApplicationP2PSAP P2PSAP

Send
Message

Message_Ack

Unblock

Receive

Message / Unblock

Blocked Blocked

Peer A Peer B

Figure 3.7: Synchronous communication mode.

1: procedure SynchronousUserSend

2: Push message into sender bu�er

3: Wait_1: Wait for acknowledgment

4: end procedure

5: procedure SynchronousUserReceive

6: if receiver bu�er is empty then

7: Wait_2: Wait for message

8: end if

9: Pop message from receiver bu�er

10: end procedure

11: procedure SynchronousSegmentToUser

12: if acknowledgment then

13: Unblock Wait_1

14: end if

15: end procedure

Figure 3.8: Synchronous micro-protocol.

The asynchronous mode implemented by the asynchronous micro-protocol is

presented in the Figure 3.9. Asynchronous micro-protocol consists of 2 handlers

for 2 events: UserSend and UserReceive. Figure 3.10 displays the pseudo-code of

asynchronous micro-protocol.

3.6.2.2 Micro-protocol TCP New-Reno congestion avoidance

CTP has micro-protocols implementing SCP and TCP-Tahoe congestion avoidance

algorithm. However, to the best of our knowledge, TCP New-Reno [Floyd 1999]

is the most commonly implemented RFC-based congestion avoidance algorithm.

3.6. Self-adaptive mechanisms 41

Application ApplicationP2PSAP P2PSAP

Send

Message

Buffer

Receive

Buffer

Receive

Message

Message unavailable

Peer A Peer B

Figure 3.9: Asynchronous communication mode

1: procedure SynchronousUserSend

2: Push message into sender bu�er

3: end procedure

4: procedure SynchronousUserReceive

5: if receiver bu�er is not empty then

6: Pop message from receiver bu�er

7: end if

8: end procedure

Figure 3.10: Asynchronous micro-protocol.

42 Chapter 3. P2PSAP - A self-adaptive communication protocol

Thus, we have developed a new micro-protocol implementing the TCP New-Reno

congestion avoidance algorithm. This micro-protocol must be used in combination

with PositiveAck, Restransmit, DuplicateAck andWindowCongestionControl micro-

protocols that are already available in CTP. It consists of 4 handlers of events:

SegmentLost, SegmentTimeout, AddDupAck and SegmentAcked. SegmentLost event

is raised by DuplicateAck micro-protocol when a third duplicate ACK is received.

AddDupAck event is raised by DuplicateAck micro-protocol when a additional du-

plicate ACK is received. Figure 3.11 displays the pseudo-code of TCP New-Reno

congestion avoidance micro-protocol.

1: procedure TCPNewRenoCongestionAvoidanceSegmentLost

2: ssthresh← min(FlightSize/2, 2)

3: crwd← crwd+ 3

4: fast_recovery ← TRUE

5: end procedure

6: procedure TCPNewRenoCongestionAvoidanceSegmentTimeout

7: ssthresh← min(FlightSize/2, 2)

8: crwd← crwd+ 1

9: fast_recovery ← FALSE

10: end procedure

11: procedure TCPNewRenoCongestionAvoidanceAddDupAck

12: crwd← crwd+ 1

13: end procedure

14: procedure TCPNewRenoCongestionAvoidanceSegmentAcked

15: if fast_recovery = FALSE then

16: if cwnd < ssthresh then

17: crwd← crwd+ 1

18: else

19: cwnd← 1/cwnd

20: end if

21: else

22: if full acknowledgement then

23: ssthresh← min(FlightSize/2, 2)

24: fast_recovery ← FALSE

25: else . Partial acknowledgement

26: cwnd← cwnd− n_acked
27: end if

28: end if

29: end procedure

Figure 3.11: Micro-protocol TCP New-Reno congestion avoidance

3.6. Self-adaptive mechanisms 43

3.6.2.3 Micro-protocols DCCP congestion control

The Datagram Congestion Control Protocol (DCCP) [Kohler 1999] is an unreliable

datagram transport protocol that provides congestion control mechanisms in order

to behave fairly with others TCP �ows. DCCP has plural variants identi�ed by a

Congestion Control Identi�er (CCID). In CCID 2 [Floyd a], a window-based con-

gestion control is implemented that is similar to TCP Congestion Control. CCID 3

[Floyd c] implements a rate-based congestion control that is based on TCP-Friendly

Rate Control (TFRC). CCID 4 [Floyd b] propose TFRC-SP, a Small-Packet (SP)

variant of TFRC, that is designed for applications that send small packets.

As remarked in subsection 3.6.1, in the context of asynchronous iterative scheme

and inter-cluster connexion, the transport protocol is unreliable but needs a conges-

tion control mechanism in order to ensure a fair behavior with others �ows. Thus,

we have developed micro-protocols implementing the congestion control mechanism

of DCCP, i.e. CCID 2. Since the adjustment of the congestion window in DCCP

is the same as the one in TCP, we can reuse TCP Congestion Avoidance micro-

protocol that is already available in CTP. Thus, we have developed only two news

micro-protocols. Micro-protocol DCCP Ack implements acknowledgments of DCCP.

Micro-protocol DCCP Window Congestion Control adjusts the pipe value (i.e. num-

ber of packets outstanding in the network) and sends queued packet if the pipe value

is less than the congestion window (cwnd). Figure 3.12 and Figure 3.13 display the

pseudo-code of DCCPACK and DCCPWindow Congestion Control micro-protocols.

3.6.3 (Re)Con�guration

Based on the choices of protocol features (see subsection 3.6.1) and with new de-

veloped micro-protocols (see subsection 3.6.2), we can determine the protocol com-

position, i.e. the set of micro-protocols for each considered context as in the Table

3.2.

At session opening, based on the context data, the Control Channel con�gures

the composition of Data Channel as in the Table 3.2, i.e. it adds chosen micro-

protocols to Data Channel. For example, in the case of asynchronous iterative

scheme of computation, only minimum set of micro-protocols including Transport-

Driver and Resized are added to Data Channel for intra-cluster communication;

while for inter-cluster communication, in additional to minimum set, DCCPAck, DC-

CPWindowedCongestionControl and TCPCongestionAvoidance, that provide the

congestion control mechanism of DDCP, are added to Data Channel.

During execution, context data can be changed. Then the Control Channel can

determine new composition for Data Channel according to the Table 3.2. Comparing

new composition with the old one, the Control Channel can determine operation

needed to be carried out in order to recon�gure the Data Channel from the old

composition to obtain the new one. For example, in an evolution application of nu-

merical simulation, the computation scheme can be changed during execution, e.g.

from asynchronous iterative scheme to synchronous iterative scheme. In this case,

44 Chapter 3. P2PSAP - A self-adaptive communication protocol

1: procedure DCCPAckSegmentToNet

2: if need Ack then

3: Insert Ack option

4: end if

5: if need Ack-of-Ack then

6: Insert Ack-of-Ack option

7: end if

8: end procedure

9: procedure DCCPAckSegmentFromNet

10: if segment has Ack option then

11: Check remote Ack vector

12: if segments dropped or ECN-marked then

13: Raise SegmentLost event

14: end if

15: if segments acked then

16: Raise SegmentAcked event

17: end if

18: end if

19: if segment has Ack-of-Ack option then

20: Update local Ack vector

21: end if

22: if segment is new data then

23: Schedule AckTimeout event . Delayed raise

24: end if

25: end procedure

26: procedure DCCPAckAckTimeout

27: Create a segment

28: Raise SegmentToNet event

29: end procedure

Figure 3.12: Micro-protocol DCCPAck

3.6. Self-adaptive mechanisms 45

1: procedure DCCPWindowedCongestionControlSegmentToNet

2: while pipe > cwnd do

3: Wait

4: end while

5: end procedure

6: procedure DCCPWindowedCongestionControlSegmentAcked

7: pipe← pipe− n_segments_acked
8: Unblock Wait

9: end procedure

10: procedure DCCPWindowedCongestionControlSegmentLost

11: pipe← pipe− n_segments_lost
12: Unblock Wait

13: end procedure

14: procedure DCCPWindowedCongestionControlSegmentTimeout

15: pipe← 0

16: Unblock Wait

17: end procedure

Figure 3.13: Micro-protocol DCCP Window Congestion Control

for intra-cluster communication, Asynchronous micro-protocol will be removed and

Synchronous, SequencedSegment, PositiveAck, Retransmit, RTTEstimation micro-

protocols will be added; for inter-cluster communication, Asynchronous, DDCPAck,

DCCPWindowedCongestionControl, TCPCongestionAvoidance micro-protocols will

be removed and Synchronous, SequencedSegment, PositiveAck, Retransmit, RTTEs-

timation, DuplicateAck, WindowedCongestionControl, TCPNewRenoCongestion-

Avoidance micro-protocols will be added.

46 Chapter 3. P2PSAP - A self-adaptive communication protocol

S
y
n
ch
ro
n
o
u
s

A
sy
n
ch
ro
n
o
u
s

H
y
b
ri
d

In
tr
a

In
te
r

In
tr
a

In
te
r

In
tr
a

In
te
r

T
ra
n
sp
o
rt
D
ri
v
e
r

X
X

X
X

X
X

R
e
si
z
e

X
X

X
X

X
X

S
y
n
ch
ro
n
o
u
s

X
X

X

A
sy
n
ch
ro
n
o
u
s

X
X

X

S
e
q
u
e
n
c
e
d
S
e
g
m
e
n
t

X
X

X

R
e
tr
a
n
sm

it
X

X
X

P
o
si
ti
v
e
A
ck

X
X

X

R
T
T
E
st
im

a
ti
o
n

X
X

X

R
e
li
a
b
le
F
if
o

X
X

X

D
u
p
li
c
a
te
A
ck

X

W
in
d
o
w
e
d
C
o
n
g
e
st
io
n
C
o
n
tr
o
l

X

T
C
P
N
e
w
R
e
n
o
C
o
n
g
e
st
io
n
A
v
o
id
a
n
c
e

X

D
C
C
P
A
ck

X
X

D
C
C
P
W
in
d
o
w
e
d
C
o
n
g
e
st
io
n
C
o
n
tr
o
l

X
X

T
C
P
C
o
n
g
e
st
io
n
A
v
o
id
a
n
c
e

X
X

T
ab
le
3.
2:

P
2P

S
A
P
p
ro
to
co
l
co
m
p
os
it
io
n
ac
co
rd
in
g
to

al
go
ri
th
m
ic
an
d
co
m
m
u
n
ic
at
io
n
co
n
te
x
t

3.7. Computational experiments 47

3.7 Computational experiments

This section presents experiments with P2PSAP protocol. In order to show the dy-

namic con�guration capability as well as the e�ciency of P2PSAP, we have applied

P2PSAP protocol to the solution of an optimization problem, i.e. the network �ow

problem. P2PSAP protocol is used in the code of the network �ow problem in order

to exchange updates between machines. We have used the C implementation of

Cactus 2.2 for micro-protocol composition over Linux UDP sockets.

3.7.1 Network �ow problems

Network �ow problems [El Baz 1996b] consist in distributing the �ows in a network,

from a source to a destination, in a way that minimizes the total tra�c cost. The

problems occur in many domains: electrical networks, gas or water distribution,

�nancial models, communication and transportation networks. The solution of non-

linear network �ow problems requires intensive computations, thus a distributed or

parallel solution of these problems is very attractive.

3.7.1.1 Problem formulation

Let G = (N,A) be a connected directed graph. N is referred to as the set of nodes,

A ⊆ N × N is referred to as the set of arcs, and the cardinal number of N is

denoted by n. Let cij : R → (−∞,+∞] be the cost function associated with each

arc (i, j) ∈ A, cij is a function of the �ow of the arc (i, j) which is denoted by fi,j .

Let bi be the supply of demand at node i ∈ N , we have
∑

i∈N bi = 0. The problem

is to minimize total cost subject to a conservation of �ow constraint at each node:

min
∑

(i,j)∈A

cij(fij), subject to
∑

(i,j)∈A

fij −
∑

(m,i)∈A

fmi = bi, ∀i ∈ N (3.1)

We assume that problem (3.1) has a feasible solution. We consider the following

standing assumptions on cij .

Assumption 3.1 cij is strictly convex.

Assumption 3.2 cij is lower semicontinuous.

Assumption 3.3 The conjugate convex function of cij , de�ned by

c∗ij(tij) = sup{tij .fij − cij(fij)}

is real valued, i.e., −∞ < c∗ij(tij) < +∞,∀tij ∈ R.

48 Chapter 3. P2PSAP - A self-adaptive communication protocol

3.7.1.2 The dual problem

A dual problem for 3.1 is given by

min
p∈R∗

q(p), (3.2)

subject to no constraint on the vector p = {pi|i ∈ N}, where q is the dual functional
given by

q(p) =
∑

(i,j)∈A

c∗ij(pi − pj)−
∑
i∈N

bi.pi

We refer to p as a price vector and its components as prices. The i− th price pi
is a Lagrange multiplier associated with the i − th conservation of �ow constraint.

The necessary and su�cient condition for optimality of a pair (f, p) is given as

follows: a feasible �ow vector f = {fij |(ij) ∈ A} is optimal for (3.1) and a price

vector p = {pi|i ∈ N} is optimal for (3.2) if and only if for all (i, j) ∈ A, pi − pj
is a sub-gradient of cij at fij . An equivalent condition is f∗ij = ∇c∗ij(pi − pj) where
∇c∗ij(x) denotes the gradient of c∗ij(x).

3.7.1.3 The dual optimal solution set

The optimal solution of the dual problem is never unique since adding the same

constant to all coordinates of a price vector leaves the dual cost una�ected. We

can remove this degree of freedom by constraining the price of one node, say the

destination node d, to be zero. Consider the set P = {p ∈ Rn|pd = 0}. We

concentrate on the reduced dual problem:

min
p∈P

q(p) (3.3)

The reduced optimal solution set is de�ned by:

P ∗ = {p′ ∈ P |q(p′) = min
p
q(p)}

Assumption 3.4 The reduced dual optimal solution set P ∗ is nonempty and

compact.

We note that assumption 3.4 is not very restrictive (see [El Baz 1996b]). In the

sequel, g(p) will denote the gradient of the dual functional, the components gi(p) of

g(p) are given by:

gi(p) =
∂q(p)

∂pi
=

∑
(i,j)∈A

∇c∗ij(pi − pj)−
∑

(m,i)∈A

∇c∗mi(pm − pi)− bi, i ∈ N

3.7. Computational experiments 49

3.7.1.4 Parallel iterative algorithms

One can implement several parallel iterative methods for the solution of the reduced

dual problem. We present a gradient type method. The components F ′i of the

gradient mapping F ′ are de�ned by F ′i = pi− 1
αgi(p) for all i ∈ N −{d} and p ∈ P ,

where α is a positive constant. Clearly F ′ is continuous since g is continuous. We

introduce the following assumption.

Assumption 3.5 cij is strongly convex with modulus 1
β .

Under Assumptions 3.1 to 3.5, there exists a constant α = β.maxi∈N ai, where ai
denotes the degree of node i ∈ N , such that for all p, p′ ∈ P satisfying p′ ≤ p, we

have g(p)− g(p′) ≤ α.(p− p′). Therefore, the gradient mapping F ′ is monotone on

P if α = β.maxi∈N ai (see [El Baz 1996b]). The gradient type method consists in

iterating on the i− th component of the vector of prices as follows:

pqi = pq−1i − 1

α
gi(p

q−1
i , p), i = 1, ..., n, q ∈ {1, 2, ..., q′}

where p0i = pi and q
′ is the number of iterations such that |gi(pq

′

i)| ≤ ε where p0i = Pi
and ε is the research accuracy.

3.7.2 Platform

Experiments have been carried out on the LAASNETEXP experimental network

[Owezarski 2008]. The topology of the toy network used for this �rst set of compu-

tational experiments is shown on the Figure 3.14 where peers are connected via a

Gigabit Ethernet network. Machines P1, P2, P3 and P4 are similar, i.e. Dual Core

Xeon 3050, 2.13GHz with Linux Debian.

P1

P2
P4

P3

Figure 3.14: Network used for computational tests on the LAASNETEXP experi-

mental network

50 Chapter 3. P2PSAP - A self-adaptive communication protocol

3.7.3 Computational results

We have considered gas distribution problems solved via gradient type methods

[El Baz 1996b]. The network topology corresponds to a grid-like network with

20 × 200 nodes. Computations have been carried out on 1, 2 and 4 machines.

In the distributed case, i.e. for several machines, the original network �ow prob-

lem is decomposed into several equal sub-networks. In the particular case of 2

machines, computations are made within the same cluster. We have carried out

experiments with di�erent computational schemes and communication scenarios i.e.

synchronous, asynchronous and hybrid (synchronous / asynchronous). A set of

computational results is displayed in Table 3.3. Here, the speedup s is computed as

follows:

s =
ts
tp

where ts is the sequential computational time and tp is the parallel computational

time; the e�ciency e is computed as follows:

e =
s

α

where α is the number of machines.

PCs Scheme Number of relaxation Times s e

P1 P2 P3 P4 (s)

1 - 399813 - - - 2135 - -

2 Syn 400694 400694 - - 1481 1,44 0,72

2 Asyn 385780 583735 - - 1209 1,76 0,88

4 Syn 402056 402056 402056 402056 1241 1,72 0,43

4 Asyn 419175 389144 464128 743636 656 3,25 0,81

4 Hybrid 449372 449372 398421 398421 935 2,28 0,57

Table 3.3: Computational results for network �ow problems on LAASNETEXP

For the application and topology considered, we note that asynchronous iterative

schemes have performed better than the synchronous ones. Moreover, the e�ciency

of synchronous iterative schemes deteriorates greatly when the number of processors

increases, i.e. 0.72 with 2 machines and 0.44 with 4 machines. The e�ciency of

asynchronous iterative schemes decreases slowly with the number of processors, i.e.

0.88 with 2 machines and 0.81 with 4 machines. This is mainly due to waiting time

due to synchronization and synchronization overhead.

When using asynchronous iterative schemes of computation, some processors

may iterate faster than others; this is particularly the case when loads are unbalanced

as for the application considered here. We note that the parallel gradient type

algorithms led to nondeterministic load unbalancing although all machines receive

a sub-network of the same size. Furthermore, in the synchronous case, the more

3.8. Chapter summary 51

unbalanced the machine loads are, the greater the idle times due to synchronization

are. This is the reason why the e�ciency of the synchronous case is small (0.44)

with a small number of machines (4 machines). The asynchronous iterative schemes

are well suited to load unbalancing.

The use of hybrid iterative schemes, i.e. synchronous communication between

peers in the same cluster and asynchronous communication between peers in dif-

ferent clusters gave in this case e�ciency in between pure synchronous and asyn-

chronous cases.

3.8 Chapter summary

In this chapter, we have proposed P2PSAP, a self-adaptive communication proto-

col for peer-to-peer high performance computing. P2PSAP protocol is designed in

order to allow rapid update exchange between peers in the solution of numerical

simulation problems via distributed iterative algorithms. The protocol can con�g-

ure itself automatically and dynamically in function of application requirements like

scheme of computation and elements of context like topology by choosing the most

appropriate communication mode between peers. We note that this approach is

di�erent from existing communication libraries for high performance computing like

MPICH/Madeleine [Aumage 2001] in allowing the modi�cation of internal transport

protocol mechanism in addition to switch between networks.

P2PSAP protocol has been implemented on a small network for the solution of

nonlinear optimization problems, i.e. network �ow problems. A set of computational

experiments shows that the protocol permits one to obtain good e�ciency partic-

ularly when using asynchronous communications or a combination of synchronous

and asynchronous communications.

In next chapter, we shall present the centralized version of environment for peer-

to-peer high performance computing that makes use of P2PSAP protocol in order

to exchange updates between peers.

Chapter 4

Centralized version of the

environment for peer-to-peer high

performance computing

Contents

4.1 Introduction . 53

4.2 Global architecture . 54

4.3 Programming model . 55

4.3.1 Communication operations 55

4.3.2 Application programming model 56

4.4 Implementation . 58

4.4.1 User daemon . 58

4.4.2 Resource manager . 58

4.4.3 Application repository . 59

4.4.4 Task manager . 59

4.5 Computational results . 60

4.5.1 Obstacle problem . 60

4.5.2 Implementation . 62

4.5.3 NICTA testbed and OMF framework 65

4.5.4 Problems and computational results 65

4.6 Chapter summary . 68

4.1 Introduction

In the previous chapter, we have proposed P2PSAP, a self-adaptive communica-

tion protocol for peer-to-peer high performance computing. The self-adaptability of

P2PSAP allows programmers not to care about the choice of communication mode

and leave it to communication protocol.

In this chapter, we shall present the �rst version of P2PDC, an environment for

peer-to-peer high performance computing that makes use of P2PSAP to allow di-

rect communication between peers [Nguyen 2010]. We de�ne the global architecture

of P2PDC with mains functionalities. Moreover, we propose a new programming

54

Chapter 4. Centralized version of the environment for peer-to-peer

high performance computing

model that is suited to P2P High Performance Computing (HPC) applications and

more particularly applications solved by iterative algorithms. This programming

model facilitates the work of programmers and allows them to develop easily a P2P

HPC application. A centralized implementation of P2PDC with simple function-

alities is developed in order to validate the programming model. Computational

results are presented for a simulation problem at NICTA testbed. We note that the

goal of the implementation of the centralized version with simple functionalities is to

validate the programming model for a given application. Moreover, this allows us to

provide to our partners in the project ANR-CIP with the programming model and a

centralized version of the environment P2PDC so that they can develop applications

for P2PDC in parallel with new developments of our environment and test appli-

cations with the centralized version of P2PDC. The evolution of P2PDC toward

a decentralized, more complete (see Chapter 5) and fault-tolerant (see Chapter 6)

version requires small changes in the code of applications.

This chapter is structured as follows. Next section describes the global architec-

ture of P2PDC; the main functionalities of P2PDC are also presented. Section 4.3

presents the programming model with a reduced set of communication operations

and explains how it facilitates the work of programmers. The �rst implementation

of P2PDC with centralized and simpli�ed functions is detailed in section 4.4. Sec-

tion 4.5 displays and analyzes a set of computational experiments for a simulation

problem, i.e. the obstacle problem. Finally, a summary of the centralized version of

P2PDC is presented.

4.2 Global architecture

Figure 4.1 illustrates the architecture of our environment. We describe now its main

components.

User daemon

Communication

(P2PSAP, UDP and TCP)

Task

manager

Physical network

Users

Application

repository
File transfer

Fault

tolerance

Resources

manager

Figure 4.1: General architecture of P2PDC

4.3. Programming model 55

• User daemon is the interaction interface between users and the environment.

It allows users to submit their tasks and retrieve �nal results.

• Resource manager organizes peers connected to overlay network with a topol-

ogy that facilitates peer discovery for a computation.

• Task manager is responsible for subtasks distribution, subtasks execution and

results collection and aggregation.

• Application repository contains the code of all applications that can be run

with the environment.

• File transfer transfers �les between peers.

• Fault-tolerance ensures the integrity of the computation in case of peer fail-

ures.

• Communication provides support for data exchange between peers. We note

that P2PSAP is used for data exchange of a given application; control mes-

sages of environment like messages used by resource manager to maintain the

topology of connected peers or messages used to send subtasks to workers are

exchanged using UDP and TCP.

4.3 Programming model

Programming model is the way programmers develop their application. We have

proposed a programming model that allows all programmers to develop their own

application easily.

4.3.1 Communication operations

The set of communication operations is reduced. There are only a send and a receive

operations (P2P_Send and P2P_Receive). The idea is to facilitate programming

of large scale peer-to-peer applications and hide complexity of communication man-

agement as much as possible. Contrarily to MPI communication library where

communication mode is �xed by the semantics of communication operations, the

communication mode of a given communication operation which is called repeti-

tively can vary with P2PDC according to the context; e.g. the same P2P_Send

from peer A to peer B, which is implemented repetitively, can be �rst synchronous

and then become asynchronous. As a consequence, the programmer does not �x di-

rectly the communication mode; he rather selects the type of scheme of computation

he wants to be implemented, e.g. synchronous or asynchronous iterative scheme or

let the protocol free of choosing communication mode, this corresponds to a hybrid

scheme. When the system is set free, the choice of communication mode depends

only on elements of context like topology change and is thus dynamic.

Here are the prototype of two communication operations:

56

Chapter 4. Centralized version of the environment for peer-to-peer

high performance computing

int P2P_Send(P2PSubtask *pSubtask, uint32_t dest, char *bu�er, size_t size)

int P2P_Receive(P2PSubtask *pSubtask, uint32_t dest, char *bu�er, size_t

size)

where

• pSubtask is the current subtask.

• dest is the rank of destination subtask.

• bu�er is the initial address of send bu�er.

• size is the size of data to be sent or received.

4.3.2 Application programming model

Figure 4.2 shows the activity diagram that a parallel application must follow in order

to be deployed. The so-called submitter is the peer where the task is initiated and

submitted to environment. Workers are peers that receive and execute subtasks.

• Task de�nition: �rst, the task is de�ned at the submitter, i.e. setting task

parameters such as computational scheme, number of peers necessary as well

as the number of subtasks and subtask parameters.

• Collect peers: based on the task de�nition, the submitter collects free peers

in the overlay network.

• Enough peers: the submitter veri�es if there are enough free peers to carry

out the task. If there are not enough free peers, then the computation is

terminated.

• Send subtask : if there are enough free peers, then the submitter sends subtask

to those peers.

• Receive subtask : peers receive subtask from submitter, so they become work-

ers.

• Calculate: all workers execute received subtask. Depending on the choice of

the user, the submitter can also execute a subtask. We note that in the case

of applications solved by iterative algorithms, a worker has to carry out many

relaxations; after each relaxation, it has to exchange updates with others

workers.

• Send results: when a worker has �nished a subtask, it sends subtask's result

to submitter.

• Receive results: the submitter receives subtask's results from workers.

• Results aggregation: subtask's results are aggregated into �nal result and are

written to an output such as a console or a �le.

4.3. Programming model 57

Start

End

Task

definition

Collect

peers

Enough

peers?

Calculate Calculate

Receive

sub-task

Send

results

Receive

results

Results

aggregation

Send

sub-task

YES

NO

Submitter Worker

Figure 4.2: Activity diagram of a parallel application

58

Chapter 4. Centralized version of the environment for peer-to-peer

high performance computing

In order to facilitate the work of programmers, we want the environment to carry

out most of those activities automatically. Hence we propose a programming model

based on this diagram. Only activities with solid line boundary, i.e. Task de�ni-

tion, Calculate and Results aggregation, are taken into account by the programmers.

Activities with broken line boundary, i.e. Collect peer, Send subtask, Receive sub-

task, Send results, Receive results, are taken into account by the environment and

are transparent to programmers. Thus, in order to develop an application, pro-

grammers have to write code for only three functions corresponding to the following

three activities: Task_De�nition(), Calculate() and Results_Aggregation(). In the

Task_De�nition() function, programmers de�ne the task in indicating the number

of subtasks and subtask data. The computational scheme and number of peers nec-

essary can also be set in this function but they can be overridden at start time in

command line. On what concerns the Calculate() function, programmers write sub-

tasks code; they can use P2P_Send() and P2P_receive() to send or receive updates

at each relaxation. In the Results_Aggregation() function, programmers de�ne how

subtasks results are aggregated into �nal result and write the �nal result to an

output, i.e. a console or a �le. Task_De�nition() and Results_Aggregation() func-

tions are called on submitter. Depending on the choice of the user, the Calculate()

function is called only on workers or on both workers and submitter.

We note that this programming model not only carries out automatically most

of support activities to execute computations but also manages advance tasks such

as fault tolerance, then reducing the work of programmers.

4.4 Implementation

In this section, we present the implementation of a �rst version of P2PDC with

centralized resource manager and simpli�ed functionalities.

4.4.1 User daemon

In the centralized version, the User daemon component constitutes the command line

interface between user and environment. We outline here some principal commands:

• run: run an application. Parameters are application name and application

owner parameters that will be passed to Task_De�nition() function.

• stat : return actual state of node.

• exit : quit the environment.

4.4.2 Resource manager

The resource manager organizes connected peers in a centralized manner as in the

Figure 4.3. A server is used in order to store information about all peers in the

network. When a node joins the overlay network, it sends to the server a "join"

4.4. Implementation 59

message. Upon the reception of a "join" message from a peer, the server adds

the new peer-to-peer list and sends to the peer an "accept" message. Peers must

send ping messages periodically to server to inform it that they are alive. If the

server does not receive any ping message from a peer after a time T , then the server

considers that this peer is disconnected and removes it from the peer list.

Server

Peer

Join & ping

accept

Figure 4.3: Centralized topology of resource manager.

Peer collections for a task execution is done as follows. When an user submits a

task to environment, the task manager of the submitter sends a request message to

the server with number of peers needed NP . The server checks if there are enough

free peers in its peer list to meet this request. If there are not enough free peers,

then the server sends an error message to the task manager of the submitter. In

the contrary case, the server choose NP free peers from peer list and sends their

address to the task manager of submitter.

When a peer is assigned to a task, the server marks that this peer is busy and

not available to others tasks. A busy peer does not need to send ping message to

server. When a peer has �nished a task, it sends a ping message to server to inform

that it is free and can receive another task.

4.4.3 Application repository

Application, in order to be run with P2PDC environment, needs to be developed

according to the programming model presented in the section 4.3. Moreover, appli-

cation needs to be added to the application repository. Each application is identi�ed

by a name that will be used to search and run application. In this version of P2PDC,

application is added manually to application repository and are compiled at the same

time with the environment.

4.4.4 Task manager

Task manager is the main component that calls functions of the application and

carries out necessary actions to support execution of the application. When an

user starts an application using the run command on a submitter, Task manager of

the submitter �nds the corresponding application in the application repository via

application name and calls the Task_De�nition() function. Afterward, it requests

60

Chapter 4. Centralized version of the environment for peer-to-peer

high performance computing

peers from Resource manager on the basis of number of peers needed by application

and sends subtasks along with their data to collected peers.

At peer side, when a peer receives a subtask, the Task manager �nds the corre-

sponding application on the application repository via application name and calls

the Calculate() function. When the Calculate() has �nished, the Task manager

sends the result to submitter.

When the submitter has received results from all peers, Task manager of the

submitter calls the Results_Aggregation() function.

File transfer and Fault-tolerance components are not developed in this ver-

sion.

4.5 Computational results

We present now and analyze a set of computational experiments with the centralized

version of P2PDC for the obstacle problem.

4.5.1 Obstacle problem

The application we consider, i.e. the obstacle problem, belongs to a large class of

numerical simulation problems (see [Spitéri 2002] and [Lions 2002]). The obstacle

problem occurs in many domains like mechanics and �nancial mathematics, e.g.

options pricing.

4.5.1.1 Problem formulation

In the stationary case, the obstacle problem can be formulated as follows:
Find u∗ such that

A.u∗ − f ≥ 0, u∗ ≥ φ everywhere in Ω,

(A.u∗ − f)(φ− u∗) = 0 everywhere in Ω,

B.C.,

where φ ∈ R2(or R3) is an open set, A is an elliptic operator, φ a given function

and B.C. denotes the boundary conditions on ∂Ω.

There are many equivalent formulations of the obstacle problem in the literature

like complementary problem, variational inequality and constrained optimization

problem. Reference is made to [Lions 2002], [Spitéri 2002] and [Miellou 1985a] for

more details. We concentrate here on the following variational inequality formula-

tion: {
Find u∗ ∈ Ksuch that
∀v ∈ K, 〈A.u∗, v − u∗〉 ≥ 〈f, v − u∗〉,

where K is a closed convex set de�ned by

K = v|v ≥ φ everywhere in Ω,

and 〈., .〉 denotes the dot product 〈u, v〉 =
∫
uvdx.

4.5. Computational results 61

4.5.1.2 Fixed point problem and projected Richardson method

The discretization of the obstacle problem leads to the following large scale �xed

point problem whose solution via distributed iterative algorithms (i.e. successive

approximation methods) presents many interests.{
Find u∗ ∈ V such that

u∗ = F (u∗),
(4.1)

where V is an Hilbert space and the mapping F : v → F (v) is a �xed point mapping

from V into V . Let α be a positive integer, for all v ∈ V , we consider the following
block-decomposition of v and the associated block-decomposition of the mapping F

for distributed implementation purpose:

v = (v1, . . . , vα)

F (v) = (F1(v), . . . , Fα(v)) .

We have V = Πa
i=1Vi, where Vi are Hilbert spaces; we denote by 〈., .〉i the scalar

product on Vi and |.|i the associated norm, i ∈ {1, . . . , α}; for all u, v ∈ V , we denote
by 〈u, v〉 =

∑α
i=1〈ui, vi〉i, the scalar product on V and |.| the associated norm on

V . In the sequel, we shall denote by A a linear continuous operator from V onto V ,

such that A.v = (A1.v, . . . , Aα.v) and which satis�es:

∀i ∈ {1, . . . , α}, ∀v ∈ V, 〈Ai.v, vi〉 ≥
α∑
j=1

ni,j |vi|i|vj |j , (4.2)

where

N = (ni,j)i≤i,j≤α is an M −matrix of size α× α (4.3)

The reader is referred to [Varga 1962] for the de�nition of M −matrix. Similarly,

we denote by Ki, a closed convex set such that Ki ⊂ Vi,∀i ∈ {1, . . . , α}, we denote
by K, the closed convex set such that K = Πa

i=1Ki and b, a vector of V that can

be written as: b = (b1, . . . , bα). For all v ∈ V , let PK(v) be the projection of v on

K such that PK(v) = (PK1(v1), . . . , PKα(vα)), where PKidenotes the mapping that

projects elements of Vi onto Ki, ∀i ∈ {1, . . . , α}. For any δ ∈ R, δ > 0, we de�ne the

�xed point mapping Fδ as follows (see [Spitéri 2002]).

∀v ∈ V, Fδ(v) = PK(v − δ(A.v − b)), (4.4)

The mapping Fd can also be written as follows.

Fδ(v) = (F1,δ(v), . . . , Fα,δ(v)) with

Fi,δ(v) = PKi (vi − δ(Ai.v − bi)) ,∀v ∈ V,∀i ∈ {1, . . . , α}.

62

Chapter 4. Centralized version of the environment for peer-to-peer

high performance computing

4.5.1.3 Parallel projected Richardson method

We consider the distributed solution of �xed point problem 4.1 via projected

Richardson method combined with several schemes of computation, e.g. a Jacobi

like synchronous scheme: up+1 = Fδ(u
p), ∀p ∈ N or asynchronous schemes of com-

putation that can be de�ned as follows (see [Spitéri 2002]).{
up+1
i = Fi,δ(u

ρ1(p)
1 , . . . , u

ρj(p)
j , . . . , u

ρα(p)
α) if i ∈ s(p),

up+1
i = upi if i /∈ s(p),

(4.5)

where {
s(p) ⊂ {1, . . . , α}, s(p) 6= φ,∀p ∈ N,
{p ∈ N |i ∈ s(p)}, is infinite,∀i ∈ {1, . . . , α}, (4.6)

and {
j(p) ∈ N, 0 ≤ ρj(p) ≤ p,∀j ∈ {1, . . . , α},∀p ∈ N,
limp→∞ ρj(p) = +∞,∀j ∈ {1, . . . , α}. (4.7)

The above asynchronous iterative scheme can model computations that are carried

out in parallel without order nor synchronization. In particular, it permits one to

consider distributed computations whereby peers go at their own pace according

to their intrinsic characteristics and computational load. Finally, we note that the

use of delayed components in 4.5 and 4.7 permits one to model nondeterministic

behavior and does not imply inne�ciency of the considered distributed schemes

of computation. The convergence of asynchronous projected Richardson method

has been established in [Spitéri 2002] (see also [Miellou 1985a]), [Giraud 1991] and

[Miellou 1985b].

The choice of scheme of computation, i.e. synchronous, asynchronous or any

combination of both schemes will have important consequences on the e�ciency of

distributed solution. The interest of asynchronous iterations for high performance

computing in various contexts including optimization and boundary value problems

have been shown in [Spitéri 2002], [El Baz 1990], [Bertsekas 1987], [Bertsekas 1989],

[El Baz 1994] and [El Baz 1998].

4.5.2 Implementation

We have considered 3D obstacle problems. Let n3 denote the number of discretiza-

tion points. In the Task_De�nition() function, the iterate vector is decomposed

into n sub-blocks of n2 points. The sub-blocks are assigned to α subtasks with

α ≤ n. Subtasks are then allocated to α nodes. This decomposition is called slice

decomposition. Figure 4.4 illustrates the decomposition of the iterate vector in the

case where n = 32 and α = 8.

The sub-blocks are computed sequentially at each node. The code for sequential

computation of sub-blocks at each node is written in the Calculate() function. For

simplicity of presentation and without loss of generality, we have displayed in Figure

4.5. Computational results 63

P1 P2 P3 P4 P5 P6 P7 P8

Figure 4.4: Slice decomposition of the 3D obstacle problem.

4.5 the basic computational procedure at node Pk with k 6= 1, k 6= α. We note that in

our experiments, the scheme of computation (synchronous, asynchronous or hybrid,

i.e. combination of both schemes) is chosen at the beginning of the resolution;

whereas, the communication mode is decided at runtime by the P2PSAP protocol

according to Table 3.1.

The node Pk updates the components of the sub-blocks of the iterate vector de-

noted by Uf(k), Uf(k)+1, ..., Ul(k), where Uf(k) stands for the �rst sub-block assigned

to the node Pk and Ul(k) stands for the last sub-block assigned to the node Pk. We

note that the transmission of Uf (k) to node Pk−1 is delayed so as to reduce the

waiting time in the synchronous case.

The convergence test is based on the error between components of iterate vec-

tor of two consecutive relaxations (see [Spitéri 2002]). The convergence is de-

tected if δ = max(|up+1 − up|) < ε where ε is a positive constant. In our ex-

periments, ε = 1e − 11(10−11). In the distributed cases of all three computa-

tional schemes, the termination is detected as follows. Two tokens are appended

to updates exchanged between nodes: token tok_convk,k+1 is appended to updates

sent from node Pk to Pk+1 in order to collect information about local termina-

tion test; token tok_termk,k−1 is appended to the updates sent from Pk to Pk−1
in order to propagate the termination (see Figure 4.6). Both tokens have type

boolean and their default value is FALSE. tok_convk,k+1 = TRUE if and only

if tok_convk−1,k = TRUE and the local termination test at node Pk is satis-

64

Chapter 4. Centralized version of the environment for peer-to-peer

high performance computing

1: send Ul(k) to node k + 1

2: repeat

3: i← f(k)

4: receive Ui−1 from node k − 1

5: Ui ← Fi,δ(Ui−1, Ui, Ui+1)

6: for i = f(k) + 1→ l(k)− 1 do

7: Ui ← Fi,δ(Ui−1, Ui, Ui+1)

8: end for

9: send Uf(k) to node k − 1

10: i← l(k)

11: receive Ui+1 from node k + 1

12: Ui ← Fi,δ(Ui−1, Ui, Ui+1)

13: send Ui to node k + 1

14: until convergence

Figure 4.5: Basic computational procedure at node Pk.

�ed. It means that if tok_convk,k+1 = TRUE, then the local termination test

at nodes 1, . . . , k is satis�ed. When tok_convα−1,α = TRUE and the local termi-

nation at node Pα is satis�ed, node Pα detects the termination. Then, node Pα
sets tok_termα,α−1 = TRUE, sends update to node Pα−1, sets values of com-

ponents of sub-blocks of the iterate vector as result of the subtask and termi-

nates the computation. When node Pk receives tok_termk+1,k = TRUE, it sets

tok_termk,k−1 = TRUE, sends update to node Pk−1, sets values of components of

sub-blocks of the iterate vector as result of the subtask and terminates the compu-

tation.

Tok_conv Tok_conv Tok_conv Tok_conv Tok_conv Tok_conv Tok_conv

P1 P2 P3 P4 P5 P6 P7 P8
Tok_term Tok_term Tok_term Tok_term Tok_term Tok_term Tok_term

Figure 4.6: Termination detection in the case of slice decomposition.

In the Results_Aggregation() function, the �nal result of the task, i.e. �nal

values of components of the iterate vector is built from �nal values of components

of sub-blocks extracted from result �eld of subtasks. The �nal result is then written

to a �le.

4.5. Computational results 65

4.5.3 NICTA testbed and OMF framework

Computational experiments have been carried out on the NICTA testbed [nic],

Sydney, Australia. This testbed is constituted of 38 machines having the same

con�guration, i.e. processor speed 1GHz, memory 1GB based on Voyage Linux

distribution. Those machines are connected via 100MBits Ethernet network.

NICTA testbed uses OMF (cOntrol and Management Framework) to facilitate

the control and management of the testbed (see [Rakotoarivelo 2009, omf]). OMF

provides a set of tools to describe and instrument an experiment, execute it and

collect its results; OMF provides also a set of services to e�ciently manage and

operate the testbed resources (e.g. resetting nodes, retrieving their status informa-

tion, installing new OS image). Furthermore, NICTA has developed OML (Orbit

Measurement Library), a stand-alone software which could be used to collect and

store any type of measurements from any type of application. More details about

OMF and OML will be presented in section 7.2.

In order to perform our experimentations, we have written plural experiment

descriptions �les, using OMF's Experiment Description Language (OEDL), corre-

sponding to di�erent scenarios. Each experiment description �le contains: con�gu-

ration of the network topology, i.e. peer's IP address assignment so that they are

in the desired cluster; network parameters, i.e. communication latency and path

to application with appropriate parameters. Further details about OEDL and our

descriptions �les will be presented in Appendix A.

4.5.4 Problems and computational results

In this chapter, we present a set of computational experiments obtained with n = 96

and n = 144. Experiments have been carried out on 1, 2, 4, 8, 16 and 24 machines

of the NICTA testbed. In the distributed context, i.e. for several machines, we

have considered the case where machines either belong to a single cluster or are

divided into 2 clusters connected via Internet. We used the Netem tool to simulate

the Internet context; the latency between 2 clusters is set to 100ms. We have

carried out experiments with di�erent schemes of computation, i.e. synchronous,

asynchronous and hybrid.

Figures 4.7 and 4.8, respectively, show the time, number of relaxations, speedup

and e�ciency of the di�erent parallel schemes of computation in the case where

n = 96 and n = 144, respectively. For the application and topologies considered,

we note that asynchronous schemes of computation have performed better than the

synchronous ones.

The e�ciency of asynchronous schemes of computation decreases slowly with the

number of processors; while the e�ciency of synchronous schemes of computation

deteriorates greatly when the number of processors increases (this is particularly

true in the case of 2 clusters); this is mainly due to synchronization overhead and

waiting time.

The speedup of synchronous schemes of computation is very small for 24 nodes.

66

Chapter 4. Centralized version of the environment for peer-to-peer

high performance computing

600

800

1000

1200

1400

1600

1800

2000

mputation time (seconds)

Syn
 ‐1

 cluster
Asyn

 ‐1
 cluster

Syn
 ‐2

 clusters
Asyn

 ‐2
 clusters

Hybrid
 ‐2

 cluster

0

200

400

0
5

10
15

20
25

Com

N
um

ber of peers

(a
)
T
im

es

8000

8200

8400

8600

8800

umber of relaxations

Syn
Asyn

 ‐1
 cluster

Asyn
 ‐2

 clusters
Hybrid

 ‐2
 cluster

7600

7800

0
5

10
15

20
25

Nu

N
um

ber of peers

(b
)
Itera

tio
n
s

4 6 8 10 12

Speedup

Syn
 ‐1

 cluster
Asyn

 ‐1
 cluster

Syn
 ‐2

 clusters
Asyn

 ‐2
 clusters

Hybrid
 ‐2

 cluster

0 2

0
5

10
15

20
25

N
um

ber of peers

(c)
S
p
eed

u
p

0
2

0,4

0,6

0,8 1

1,2

Efficiency

Syn
 ‐1

 cluster
Asyn

 ‐1
 cluster

Syn
 ‐2

 clusters
Asyn

 ‐2
 clusters

Hybrid
 ‐2

 cluster

0

0,2

0
5

10
15

20
25

N
um

ber of peers

(d
)
E
�
cien

cy

F
igu

re
4.7:

C
om

p
u
tation

al
resu

lts
in

th
e
case

of
th
e
ob
stacle

p
rob

lem
w
ith

size
96
×

96
×

96

4.5. Computational results 67

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

mputation time (seconds)

Sy
n
‐
1
cl
us
te
r

As
yn

 ‐
1
cl
us
te
r

Sy
n
‐
2
cl
us
te
rs

As
yn

 ‐
2
cl
us
te
rs

Hy
br
id
 ‐
2
cl
us
te
r

0

20
00

0
5

10
15

20
25

Com

N
um

be
r o

f p
ee
rs

(a
)
T
im

es

16
20

0

16
40

0

16
60

0

16
80

0

17
00

0

17
20

0

umber of relaxations

Sy
n

As
yn

 ‐
1
cl
us
te
r

As
yn
 ‐
2
cl
us
te
rs

Hy
br
id
 ‐
2
cl
us
te
r

15
80

0

16
00

0

0
5

10
15

20
25

Nu

N
um

be
r o

f p
ee
rs

(b
)
It
er
a
ti
o
n
s

46810121416

Speedup

Sy
n
‐
1
cl
us
te
r

As
yn

 ‐
1
cl
us
te
r

Sy
n
‐
2
cl
us
te
rs

As
yn

 ‐
2
cl
us
te
rs

Hy
br
id
 ‐
2
cl
us
te
r

02

0
5

10
15

20
25

N
um

be
r o

f p
ee

rs

(c
)
S
p
ee
d
u
p

0
2

0,
4

0,
6

0,
81

1,
2

Efficiency

Sy
n
‐
1
cl
us
te
r

As
yn

 ‐
1
cl
us
te
r

Sy
n
‐
2
cl
us
te
rs

As
yn

 ‐
2
cl
us
te
rs

H
yb
rid

 ‐
2
cl
us
te
r

0

0,
2

0
5

10
15

20
25

N
um

be
r o

f p
ee
rs

(d
)
E
�
ci
en
cy

F
ig
u
re

4.
8:

C
om

p
u
ta
ti
on
al

re
su
lt
s
in

th
e
ca
se

of
th
e
ob
st
ac
le
p
ro
b
le
m

w
it
h
si
ze

1
44
×

14
4
×

14
4

68

Chapter 4. Centralized version of the environment for peer-to-peer

high performance computing

This can be explained as follow: when 24 nodes are used, each node calculates only

a small number of sub-blocks; since exchanged messages and sub-blocks have the

same size, communication overhead and waiting time reach a signi�cant proportion.

When we compare the computational results with 1 and 2 clusters, we can see

that there is not much di�erence with regard to the asynchronous schemes; while

in the synchronous cases, 1 cluster results are better than 2 clusters results. This is

due to the fact that communication latency between 2 clusters (100ms) increases the

waiting time due to synchronization; this means that synchronous communication

is sensible to latency increase and not appropriate for the communication between

clusters.

When the problem size increases from n = 96 to n = 144, the e�ciency of

distributed methods increases since granularity increases.

The number of relaxations performed by synchronous schemes remains constant

although the sub-block processing order is changed by the distribution of computa-

tion.

In the case of asynchronous schemes of computation, some nodes may iterate

faster than others; this is particularly true when nodes have fewer neighbors than

others, like nodes 1 and α that have only one neighbor. Then, the average number

of relaxations increases with the numbers of machines, as depicted in Figure 4.7b

and 4.8b.

The e�ciency of hybrid schemes of computation is situated in between e�ciencies

of synchronous and asynchronous schemes.

It follows from the computational experiments that the choice of communication

mode has important consequences on the e�ciency of the distributed methods. The

ability for the protocol P2PSAP to choose the best communication mode in function

of network topology and context appears as a crucial property. We note also that

the choice of communication mode has important consequences on the reliability of

the distributed method and everlastingness of the high performance computing ap-

plication. With regards to these topics, we note that asynchronous communications

are more appropriate in the case of communications between clusters.

4.6 Chapter summary

In this chapter, we have described the general architecture of P2PDC with its main

functionalities. Afterward, we have proposed a programming model for P2PDC

that facilitates the work of programmer. Indeed, in order to develop an application,

programmers have to write code for only three functions; all others support activities

are carried out automatically by the environment. Moreover, the communication

operations set is reduced with only two operations, thus programmers do not have to

care about the choice of communication mode as well as communication operation

to achieve it. The development of an application with P2PDC takes less e�ort

of programmers than with MPI and PVM. The �rst implementation of P2PDC

with centralized and simpli�ed functionalities has been also presented. Finally, we

4.6. Chapter summary 69

have displayed and analyzed computational results on the NICTA platform with

up to 24 machines for numerical simulation problem, i.e. the obstacle problem.

Computational results show that the combination of P2PSAP and P2PDC allows

to solve e�ciently large scale numerical simulation problems via distributed iterative

methods, in particular when using asynchronous or hybrid schemes of computation.

In the next chapter, we shall present the decentralized version of P2PDC with

some new features that make P2PDC more scalable and e�cient.

Chapter 5

Decentralized environment for

peer-to-peer high performance

computing

Contents

5.1 Introduction . 71

5.2 Hybrid resource manager . 72

5.2.1 General topology architecture 73

5.2.2 IP-based proximity metric . 74

5.2.3 Topology initialization . 74

5.2.4 Tracker joins . 74

5.2.5 Peer joins . 75

5.2.6 Tracker leaves . 75

5.2.7 Peer leaves . 76

5.2.8 Peers collection . 76

5.3 Hierarchical task allocation 77

5.4 Dynamic application repository 78

5.5 File transfer . 78

5.6 New communication operations 79

5.7 Computational experiments 80

5.7.1 New approach to the distributed solution of the obstacle problem 80

5.7.2 Grid'5000 platform . 85

5.7.3 Experimental results . 87

5.8 Chapter summary . 89

5.1 Introduction

In the previous chapter, we have presented a �rst version of P2PDC which is cen-

tralized with simpli�ed functionalities. In this chapter, we present the decentralized

version of P2PDC that includes new features aimed at making P2PDC more scalable

and e�cient [Cornea 2011]. Indeed, a hybrid resource manager manages peers e�-

ciently and facilitates peers collection for computation; a hierarchical task allocation

72

Chapter 5. Decentralized environment for peer-to-peer high

performance computing

mechanism accelerates task allocation to peers and avoids connection bottleneck at

submitter. Furthermore, a �le transfer functionality is implemented that allows to

transfer �les between peers. Moreover, some modi�cations to the communication

operation set are introduced. Experiments for the obstacle problem are carried out

on GRID'5000 platform with up to 256 peers.

This chapter is organized as follows. In the next section, we describe the hybrid

resource manager and peer collection procedure for a computation. The section

5.3 deals with hierarchical task allocation. The section 5.4 presents the dynamic

application repository. The implementation of �le transfer functionality is detailed

in the section 5.5. The section 5.6 presents new communication operations. The

experiments for the obstacle problem on Grid'5000 are displayed and analyzed in

the section 5.7. Finally, a summary of the decentralized version of P2PDC concludes

this chapter.

5.2 Hybrid resource manager

In the centralized version of P2PDC (see Chapter 4), a server manages informations

regarding peers and allocates peers to a task. This centralized architecture is not

scalable since the topology server is overloaded when the number of peer increases.

Furthermore, when the server fails, no task can be carried out. Thus, topology

architecture of resource manager must be improved so that it becomes scalable,

fault tolerant and it facilitates peers collection for computation.

In the literature, peer-to-peer topologies are designed most of the time for con-

tent sharing systems like Chord [Stoica 2003], Pastry [Rowstron 2001] or CAN

[Ratnasamy 2001]. Thus, they are aimed at proposing an e�cient object search

algorithm with low cost in terms of query hop and messages. An object is usu-

ally identi�ed by a key and keys are replicated in the overlay network. A query

is matched when it reaches a peer having this key; the address of peer storing the

object is then returned. Computational resource discovery is quite di�erent. Com-

putational resources are speci�ed by peer characteristics such as CPU, memory,

network bandwidth and so on. Hence, search query in P2P HPC applications may

have some speci�c requirements about peer characteristics. The requirements may

be exact (e.g. CPU speed equals to 3.0 GHz) or in range (e.g. having more than

2Gb of memory). The query will then return the address of α peers required to

perform a given task. Moreover, we note that the latency is an important factor

that in�uences the e�ciency of a computation when using distributed iterative algo-

rithms with frequent communications between peers. Thus, it is better for returned

peers to be close to each others and to the submitter.

In the sequel, we propose a new resource manager for P2PDC that is based on

a hybrid architecture. This hybrid architecture is simple but ensures the scalability,

the fault tolerance and e�cient peers collection for computation.

5.2. Hybrid resource manager 73

5.2.1 General topology architecture

Figure 5.1 illustrates the general topology architecture. It consists of a Server,

Trackers and Peers.

Server

Zone

Tracker

Peer

Figure 5.1: General topology architecture.

• Server manages informations regarding trackers connection/disconnection; it is

the contact point of new nodes joining overlay network for the �rst time. When

trackers or peers have no contact to join overlay network, they contact the

server in order to receive a list of closest connected trackers, then they connect

to trackers in the received list. The server can also store statistic information

regarding connection/disconnection time, resources donated/consumed of all

nodes in the overlay network.

• A tracker manages informations regarding a set of peers, called a zone. It

collects statistical information regarding connection/disconnection time, re-

sources donated/consumed of peers in its zone and periodically sends these

data to server.

• Peers are donors of computational resources. Peers are grouped in zones and

managed by the tracker of zone.

Trackers topology is a line, see Figure 5.2. Each tracker Ti maintains a set of

closest trackers Ni. In order to get rid of the case where some trackers can be iso-

lated, there are, in the set Ni, |Ni|/2 closest trackers having IP address greater than

IP address of owner tracker and |Ni|/2 closest trackers having IP address smaller

than IP address of owner tracker. Moreover, each tracker maintains connection with

the closest tracker on right side and the closest tracker on left side.

In a zone, peers publish their information regarding processor, memory, hard

disk and current usage state to tracker of zone and wait for works. Peers have to

update periodically their usage state to tracker.

74

Chapter 5. Decentralized environment for peer-to-peer high

performance computing

T1 T2 T3 T4 T5 T6 T7

L R

T3 T5

T2 T6

T1 T7

L R

T2 T4

T1 T5

T6

L R

T4 T6

T3 T7

T2

L R

T5 T7

T4

T3

L R

T1 T3

T4

T5

L R

T2

T3

T4

L R

T6

T5

T4

Figure 5.2: Trackers topology.

5.2.2 IP-based proximity metric

In the literature, there are several proximity metrics that can be used in order to

calculate the proximity between peers in the network such as IP path length, AS

path length, geographic distance, and measures related to Round Trip time (RTT)

and so on (see [Hu�aker 2002]). Each metric has its own advantages and weakness.

We have chosen IP-based proximity metric because it makes use of local information

(IP address) to calculate the proximity, hence it does not consume network resource

and is faster than other metrics.

IP-based proximity metric [Zhao 2006] makes use of the longest common IP

pre�x length as the measure of proximity between peers. For example, in the case

of 3 peers: P1 having IP address 145.82.1.1, P2 having IP address 145.82.1.129 and

P3 having address 145.83.56.74. The longest common pre�x between P1 and P2 is 24

bits, while the longest common pre�x between P1 and P3 is 15 bits. So P1 considers

that P2 is closer than P3.

5.2.3 Topology initialization

Initially, we suppose that the system has a server and some trackers managed by

system administrator. These nodes are cores of the system and are on-line perma-

nently. When the number of peers increases, system administrator chooses some

trust volunteers peers to become trackers. Trackers are chosen based on on-line

time, i.e. volunteers peers with largest on-line time will be chosen; moreover, track-

ers are chosen spearing on the IP range in order to ensure that the number of peers

in a zone is balanced between zones. When P2PDC environment is downloaded and

installed at a node, IP address of server and a list of trackers are set and stored in

local memory. This tracker list will be updated when node joins to overlay network.

5.2.4 Tracker joins

When a new tracker connects to overlay network, it sends a join message to the

closest tracker in tracker list stored in local memory. If this tracker does not answer,

then it sends join message to next closest trackers in tracker list. In the case where

all trackers in the tracker list do not answer, new tracker will contact the server;

then the server sends to it a new tracker list. The tracker, when receiving a join

message, calculates and compares the proximity between itself and new tracker with

5.2. Hybrid resource manager 75

proximity between trackers in its closest tracker set N and new tracker. If contacted

tracker found in its set N a tracker that is closer to new tracker, then it transfers join

message to this tracker. This step repeats until the closest tracker to new tracker

is found in the overlay network. The closest tracker �rstly informs all trackers in

set N about new tracker. Secondly, it removes the farthest tracker along the same

side as new tracker in the set N and adds new tracker to the set N . Others trackers

in the set N of closest trackers must adjust their set N along the same way. The

closest tracker sends also its set N to new tracker so that new tracker can build its

own set N . Finally, new tracker establishes connections with two closest trackers

along the two sides in his set N . Figure 5.3 shows state of trackers topology after

new tracker T8 has joined overlay network.

T1 T2 T3 T4 T5 T6 T7

L R

T3 T8

T2 T5

T1 T6

L R

T2 T4

T1 T8

T5

L R

T8 T6

T4 T7

T3

L R

T5 T7

T8

T4

T8

L R

T4 T5

T3 T6

T2 T7

L R

T1 T3

T4

T8

L R

T2

T3

T4

L R

T6

T5

T8

Figure 5.3: Trackers topology after a new tracker has joined.

5.2.5 Peer joins

When a new peer joins overlay network, it sends a join message to the closest tracker

in tracker list stored in local memory; the message is transferred to the tracker which

is closest to the new peer. The closest tracker adds this peer to its peer list and sends

an accept message to new peer along with its neighbor set Ni. New peer updates

its tracker list and sends to tracker of zone information regarding resources such as

processor, memory, hard disk and current usage state. After joining a zone, peers

have to update periodically their resources usage state to tracker. When tracker

receives state update from a peer, it sends an answer message to this peer.

5.2.6 Tracker leaves

As a tracker maintains connection with the two closest trackers along the two sides

in the set Ni, a tracker disconnection can be detected by direct neighbors when

connection is broken. Suppose that tracker T4 in Figure 5.2 crashes, its direct

neighbors T3 and T5 detect disconnection of T4. T3 informs trackers along the left

side of its set N3 and the server about T4 disconnection. T3 sends also tracker list

on the right side of its set N so that trackers on the left side of T3 can rebuild their

set Ni. These trackers then replace T4 by the closest tracker that was received.

Similarly, T5 informs trackers on right side of its set N5 and the server about T4
disconnection and sends to them trackers on left side of its set N5. Afterwards, T3
establishes a connection with T5 and the two trackers send to each other the farthest

76

Chapter 5. Decentralized environment for peer-to-peer high

performance computing

trackers so that they can rebuild their set Ni. Figure 5.4 presents trackers topology

after tracker T4 has disconnected.

T1 T2 T3

T4

T5 T6 T7

L R

T2 T5

T1 T6

T7

L R

T3 T6

T2 T7

T1

L R

T5 T7

T3

T2

L R

T1 T3

T5

T6

L R

T2

T3

T5

L R

T6

T5

T3

Figure 5.4: Trackers topology after a tracker has disconnected.

On the other hand, when a tracker disconnects, peers of this zone do not receive

acknowledgment message in response to state update message. If peers do not

receive acknowledgment message from tracker after a time T , then peers consider

that this tracker is disconnected; then peers will send join message to closest tracker

in their tracker list, i.e. they will join to neighbor zone.

5.2.7 Peer leaves

When a peer disconnects, tracker does not receive resources usage state update from

this peer. If tracker does not receive state update of a peer after a time T , then

tracker considers that this peer is disconnected.

We note that when the server disconnects, the system continues working; topol-

ogy of trackers and peers are maintained; new trackers and new peers can join

overlay network through their tracker list in local memory; Trackers store statistical

information in local memory and send them to the server when the server comes

back.

5.2.8 Peers collection

When a node, the so-called submitter, wants to submit a task, it has to join the

overlay network �rstly; i.e. it �nds a closest tracker and joins this zone. Then the

submitter sends peer request message to its tracker; this message contains informa-

tion regarding computation like task description, number of peers needed initially,

peers requirements; the tracker �lters connected peers in its zone which satisfy re-

quirements of the request and sends the address of these peers back to submitter.

If number of peers collected by this tracker is not enough, then submitter requests

peer from trackers in its local tracker list. If number of collected peers is not enough

after having sent requests to all trackers in its local tracker list, then submitter

requests more trackers address from the two farthest trackers on the two sides in

its local tracker list. These two farthest trackers send to submitter trackers in their

tracker list in other side with submitter. Then, submitter requests peers from new

5.3. Hierarchical task allocation 77

received trackers. This step repeats until enough peers have been collected. Peers

reserved for a computation are considered busy and cannot be reserved for another

computation.

We note that with this peer collection algorithm, closest peers to the submitter

are always collected. This reduces the latency between submitter and peers and

between peers, ensuring an e�cient computation.

This hybrid topology architecture is simple as compared with existing structured

topology architectures like Chord [Stoica 2003] or Pastry [Rowstron 2001] but it

is scalable, fault tolerant and e�cient for both topology maintenance and peers

collection. Each node is aware of a few others nodes: trackers are aware of peers

in their zone and their neighbor set, peers are aware of their tracker and their

local trackers list. The server manages all trackers but in an indirected manner,

i.e. neighboring trackers monitor each others and only noti�cations about tracker

joining or leaving are sent to server. When a tracker or a peer joins the overlay

network, closest tracker �nding may take, in the worst case, |T |
|N |/2 steps where |T |

is the number of trackers and |N | is the size of neighbors set N . However, a node

stores a list of closest trackers in its local memory that is updated over the time.

Thus, a node joining the overlay network always contacts a tracker which is close.

Peer leaving in�uences only its tracker, while tracker leaving in�uences peers in its

zone and its neighbors. In particular, the cost of peers collection depends on the

number of peers needed rather than the number of peers in the overlay network.

5.3 Hierarchical task allocation

When submitter has collected enough peers, it divides peers into groups based on

proximity; in each group, a peer is chosen by submitter to become coordinator

which will manage others peers in the group. The number of peers in a group

cannot exceed Cmax in order to ensure e�cient management of coordinator. We

have chosen Cmax = 32. Submitter sends peers list of a group to coordinator. Then,

the coordinator connects to all peers in a group and sends a reverse message to

peers. When a peer is reserved for a computation, it sends a message to its tracker

to inform that it is not free any more. Figure 5.5 illustrates created peers graph.

Submitter

Coordinator
Coordinator

Group 1
Group 2

P1

P2

P3
P4

P5

Figure 5.5: Allocation graph.

78

Chapter 5. Decentralized environment for peer-to-peer high

performance computing

Submitter calls the Task_De�nition() function where a given task is decom-

posed into subtasks. Afterward, submitter sends subtasks to groups coordinators.

Subtasks are then sent by coordinators to peers. Subtasks results are sent in in-

verse direction, i.e. peers send their subtask result to coordinator, then coordinator

transfers results to submitter.

We note that hierarchical task allocation has many advantages as compared with

the case where there are not coordinator. Firstly, hierarchical task allocation is faster

because submitter does not have to connect in succession to all peers in order to

reserve peers and send subtasks; submitter has only to connect to coordinators and

peer reservation and subtask sending are carried out in parallel by coordinators;

moreover, peers grouping is based on proximity, hence communication between co-

ordinator and peers is faster than directed communication between submitter and

peers. Secondly, sending result to submitter via coordinators avoids bottleneck at

submitter because if all peers would send results directly to submitter, then there

could be a bottleneck at submitter.

5.4 Dynamic application repository

In the centralized version of P2PDC, applications are added manually to application

repository and compiled at the same time with P2PDC. When users want to add

a new application to P2PDC, they have to recompile P2PDC as well as redeploy

P2PDC on every machines. This takes time and e�orts of users. Thus, we have

implemented a dynamic application repository in order to overcome this weakness.

Then, applications of P2PDC are compiled independently with P2PDC as dynamic

libraries, i.e. �le .so in Linux or �le .dll in Windows with �le name being the

application name. The library �les are stored at a speci�c place.

When a task is submitted with an application name at a given submitter, the

application repository will check if there is a library �le having the same name as the

application name in the the speci�c place. If this library exists, then the application

repository will load this library, extract three principal functions and return pointers

of those functions to Task manager. If this library �le does not exist, then an error

message will be returned to user.

At peer side, when a peer receives a subtask with an application name, the

application manager �nds and loads the library �le from the application repository

in a way similar to what is done at the submitter. However, if this library �le does

not exist in the repository, then the application manager downloads the library �le

from the submitter or from the coordinator via �le transfer component (see section

5.5).

5.5 File transfer

File transfer system is responsible of application library �les transfer as well as

transfer of task input data �les and result �les between peers. Application library

5.6. New communication operations 79

�les are transfered automatically from submitter to workers. On what concerns

task input data, programmers can choose between two ways. In the �rst way,

programmers read input data from �le and set them as task parameters in the

Task_de�nition() function. Those parameters will be sent along with subtasks

to peers. In the second way, programmers set the input data �le path as a task

parameter in the Task_de�nition() function. Then, input data �le will be transfered

automatically to workers. Although programmers also have to read the data input

�le in Calculate() function, the second way has advantage as compared with the

�rst one to avoid memory leak in very large application. Similarly, sending results

via �le transfer component instead of setting results as subtask parameters is also

a solution to avoid memory leak.

Files transfered from submitter to workers are divided into two types. Common

�les like application library �les and input data �le need to be sent to all workers.

Private �les like private subtask input data �le need to be sent to only one subtask.

Private �les are transfered directly from submitter to workers. Whereas, common

�les are transfered via the hierarchical allocation architecture, i.e. common �les

are transfered �rst from submitter to coordinators and then from coordinators to

workers. The transfer of common �le following the hierarchical architecture avoids

the bottleneck at submitter and then is much faster than the direct transfer from

submitter to workers. For example, in the case of 120 workers divided into 4 groups(4

coordinators), transfer of common �le via the hierarchical architecture of common

�le is about 4 times faster than the direct transfer from submitter to workers.

5.6 New communication operations

In the centralized version of P2PDC, there are only 2 communication operations:

P2P_Send and P2P_Receive. The communication mode is decided by P2PSAP

protocol according to context, e.g. topology at the network layer or computational

scheme at application layer. But some special messages need to be exchanged in

a reliable mode like messages for termination detection, termination propagation,

etc. Therefore, we have divided messages into 2 types: data message and control

message. While data messages are used to exchange updates between peers after

each relaxation, control messages are used for computation state exchange like data

related to local termination criteria, termination command. Communication mode

for data message is chosen according to the context by P2PSAP; while communi-

cation mode for control message is always asynchronous and reliable using control

channel of P2PSAP. A �ags parameter is added to 2 communication operations

to distinguish 2 types of messages: CTRL_FLAG indicates control message and

DATA_FLAG indicates data message. The prototype of the two communication

operations now becomes:

int P2P_Send(P2PSubtask *pSubtask, uint32_t dest, char *bu�er, size_t size,

int �ag)

int P2P_Receive(P2PSubtask *pSubtask, uint32_t dest, char *bu�er, size_t

80

Chapter 5. Decentralized environment for peer-to-peer high

performance computing

size, int �ag)

Moreover, we have added a new operation P2P_Wait that waits for a message

from another peer. This new operation facilitates implementation of some asyn-

chronous schemes and termination algorithm.

int P2P_Wait(P2PSubtask* pSubtask, uint32_t *iSubtaskRank, int *�ags)

The use of control messages and operation P2P_Wait will be detailed in sub-

section 5.7.1.

5.7 Computational experiments

In this section, we concentrate on the decomposition of the obstacle problem. We

consider mainly a 3D obstacle problem with size 256 × 256 × 256. We propose a

decomposition that permits one to improve the e�ciency of distributed algorithms

when a large number of peers is used. Experimental results with P2PDC on the

Grid'5000 platform [gri] with up to 256 workers are displayed and analyzed.

5.7.1 New approach to the distributed solution of the obstacle
problem

The decentralized version of P2PDC aims at using hundreds of peers distributed

over several clusters. However, the distributed algorithm described in the previous

chapter may not scale well with large number of machines in peer-to-peer context.

Hence, we have introduced a new problem decomposition and use a di�erent termi-

nation method.

5.7.1.1 New decomposition of the obstacle problem

In the previous chapter, the iterate vector of the 3D obstacle problem n×n×n was

decomposed into n sub-blocks of size n×n; sub-blocks are then assigned to α workers.

This decomposition is called a slice decomposition. The worker Pk (excluding the

�rst and the last worker) has then to send a message of size n2 to worker Pk−1 and a

message of size n2 to worker Pk+1 after each relaxation. The workers P1 and Pα have

to send respectively only a message to workers P2 and Pα−1, respectively. When the

number of workers increases, the computational load of workers decreases; whereas

the total size of messages a typical worker has to send to other workers after each

relaxation remains unchanged:
∑
Sms = 2×n2. Therefore, the algorithm e�ciency

can deteriorate greatly.

In order to reduce the size of messages exchanged between workers after each

relaxation, we have proposed the following decomposition. The iterate vector of the

3D obstacle problem is decomposed into n× n sub-blocks of size n. The sub-blocks

are then assigned to α workers according to two axes, i.e. n × n sub-blocks are

assigned to p×q workers, each worker is assigned m×k sub-blocks, where p×q = α

and p ×m = q × k = n. This decomposition is called pillar decomposition. Figure

5.7. Computational experiments 81

5.6 illustrates the pillar decomposition of the iterate vector in the case where n = 32,

p = 2 and q = 4 (α = 8).

P1,1 P1,2 P1,3 P1,4

P2,1 P2,2 P2,3 P2,4

Figure 5.6: Pillar decomposition of the 3D obstacle problem.

Then, the message exchange topology is a grid where a typical worker (excluding

workers on the boundary of the grid) has to send 4 messages after each relaxation (4

workers at 4 corners of the grid send two messages, others workers on the boundary

of the grid send three messages). Thus, the total size of messages a typical worker

has to send after each relaxation is:∑
Sms = 2× (m+ k)× n = 2× (

n

p
+
n

q
)× n = (

1

p
+

1

q
)× 2× n2.

82

Chapter 5. Decentralized environment for peer-to-peer high

performance computing

Since 1
p + 1

q ≤ 1,∀p, q ≥ 2,
∑
Sms with pillar decomposition is smaller than with

slice decomposition. Moreover, when the number of peers increases, p and q will

increase, then 1
p + 1

q decreases. Thus,
∑
Sms decreases when the number of peers

increases. However, with pillar decomposition, a worker has to exchange messages

with more workers than with slice decomposition. This leads to the enlargement

of synchronization time in case of synchronous computational scheme. That is the

reason why we do not decompose the iterate vector into points and assign points to

workers according to all three axes.

For example, in the case where there are 64 workers and the problem size is 256×
256× 256, the total size of messages a worker has to send after each relaxation with

slice decomposition is
∑
Sms = 2 × 2562. If the problem is decomposed according

to pillar decomposition with p = 8 and q = 8, then each worker is assigned 32× 32

sub-blocks of size 256; the total size of messages a worker has to send after each

relaxation is
∑
Sms = (18 + 1

8)× 2× 2562 = 1
4 × 2× 2562. Thus,

∑
Sms with pillar

decomposition is four time smaller than with slice decomposition.

Figure 5.7 displays the basic computational procedure with pillar decomposition

at node Pr,c which is at row r and column c and which is not on the boundary of

the grid (the topology of update exchange between workers).

The node Pr,c updates the sub-blocks of components of the iterate vector denoted

by Ui,j , f(r) ≤ i ≤ l(r), f(c) ≤ j ≤ l(c), where f(r) and l(r) stands for the �rst and

the last sub-block row of the node Pr,c and f(c) and l(c) stands for the �rst and the

last sub-block column of the node Pr,c.

5.7.1.2 Termination

According to the change from slice decomposition to pillar decomposition, the ter-

mination detection is modi�ed as follows. Token tok_conv is appended to updates

from node Pr,c to two nodes Pr+1,c and Pr,c+1. Moreover, with the presence of

control message (see section 5.6), token tok_term is not appended to updates but

is sent as control messages from a given node Pr,c to nodes Pr−1,c and Pr,c−1 (see

Figure 5.8). The reliability of control messages avoids loss of token tok_term in

asynchronous and hybrid cases.

Furthermore, we have noticed that the termination described above is not e�-

cient for asynchronous iterative algorithms in the case where a large number of peers

is used and the architecture is heterogeneous. Thus, we have implemented a dif-

ferent termination method for the obstacle problem in asynchronous computational

scheme that detects exactly the termination and reduces unnecessary relaxations.

This termination method has been proposed in [El Baz 1998]; it is a variant of

the termination method of Bersekas and Tsitsiklis [Bertsekas 1989, Bertsekas 1991].

This method is based on activity graph and acknowledgement of messages.

The behavior of workers implementing asynchronous iterative algorithms is pre-

sented by the �nite state machine in Figure 5.9 where each worker can have three

states: active (A), inactive (I) and terminal (T).

Initially, only the worker P1,1 is active. This worker is call the root and is

5.7. Computational experiments 83

1: repeat

2: if r is even then

3: send Ul(r),[f(c),...,l(c)] to node Pr+1,c

4: receive Ul(r)+1,[f(c),...,l(c)] from node Pr+1,c

5: send Uf(r),[f(c),...,l(c)] to node Pr−1,c
6: receive Uf(r)−1,[f(c),...,l(c)] from node Pr−1,c
7: else

8: receive Uf(r)−1,[f(c),...,l(c)] from node Pr−1,c
9: send Uf(r),[f(c),...,l(c)] to node Pr−1,c
10: receive Ul(r)+1,[f(c),...,l(c)] from node Pr+1,c

11: send Ul(r),[f(c),...,l(c)] to node Pr+1,c

12: end if

13: if c is even then

14: send U[f(r),...,l(r)],l(c) to node Pr,c+1

15: receive U[f(r),...,l(r)],l(c)+1 to node Pr,c+1

16: send U[f(r),...,l(r)],f(c) to node Pr,c−1
17: receive U[f(r),...,l(r)],f(c)−1 to node Pr,c−1
18: else

19: receive U[f(r),...,l(r)],f(c)−1 to node Pr,c−1
20: send U[f(r),...,l(r)],f(c) to node Pr,c−1
21: receive U[f(r),...,l(r)],l(c)+1 to node Pr,c+1

22: send U[f(r),...,l(r)],l(c) to node Pr,c+1

23: end if

24: for i = f(r)→ l(r) do

25: for j = f(c)→ l(c) do

26: Ui,j ← Fi,j,δ(Ui−1,j , Ui,j−1, Ui, Ui+1,j , Ui,j+1)

27: end for

28: end for

29: until convergence

Figure 5.7: Basic computational procedure at node Pr,c with pillar decomposition.

84

Chapter 5. Decentralized environment for peer-to-peer high

performance computing

P1 1 P1 2 P1 3 P1 4

Tok_conv Tok_conv Tok_conv

P1,1 P1,2 P1,3 P1,4
Tok_term Tok_term Tok_term

k_
co
nv

k_
te
rm

k_
co
nv

k_
te
rm

k_
co
nv

k_
te
rm

k_
co
nv

k_
te
rm

P2,1 P2,2 P2,3 P2,4

Tok_conv

Tok term

Tok_conv

Tok term

Tok_conv

Tok term

To
k

To
k

To
k

To
k

To
k

To
k

To
k

To
k

Tok_term Tok_term Tok_term

Figure 5.8: Termination detection in the case of pillar decomposition.

���� UNE VARIANTE DE LA M�ETHODE DE BERTSEKAS ET TSITSIKLIS ��

peut toujours �etre asynchrone puisque les deux sources d�asynchronisme dans le mod	ele ma�
th�ematiques �etudi�e sont les retards dus aux communications et la di��erence de charge entre
processeurs comme cela a �et�e pr�esent�e au chapitre ��

Le fonctionnement des processeurs mettant en �uvre l	algorithme it�eratif asynchrone modi��e
est repr�esent�e par la machine �a �etats �nis de la �gure ��� pour laquelle chaque processeur
peut avoir trois �etats � actif �A�� inactif �I�� et terminal �T��

A I T

Tai

Tia

Tit

Fig� ��� " Mod	ele d�un processeur mettant en �uvre la m�ethode de terminaison sans acquit�
tement

Initialement� un seul processeur est actif� Ce processeur est appel�e la racine et est not�e R�
Tous les autre processeurs sont inactifs�

On notera par la suite T� un arbre de racine R recouvrant l	ensemble des processeurs�

Quatre types de message peuvent �etre �emis par chaque processeur �

� les valeurs des composantes du vecteur it�er�e�

� les messages d	activit�e�

� les messages d	inactivit�e�

� les messages de terminaison�

Les donn�ees suivantes sont rang�ees dans chaque processeur P �

� les valeurs des it�er�es�

� l	identit�e du processeur qui a activ�e P �qui est aussi appel�e � le p�ere de P ��

� la liste des processeurs activ�es par P �qui sont aussi appel�es � les �ls de P ��

D�e�nition ��� � Etat A� Dans l��etat actif� un processeur P �evalue le test de terminaison
local sur la base des derni	eres valeurs des it�er�es qui sont disponibles dans sa m�emoire locale� Si
le test de terminaison local est satisfait� alors le processeur n�e�ectue pas de r�eactualisation �
sinon les composantes du vecteur it�er�e qui sont assign�ees 	a P sont r�eactualis�ees� les valeurs qui
r�esultent de ces calculs sont envoy�ees aux processeurs adjacents� et le processeur P attend des

Figure 5.9: Behavior of workers implementing new termination method.

denoted R. All others workers are inactive. We denote in the sequel T, a tree of

root R covering worker set.

Four types of messages may be issued by each worker:

• Updates of sub-blocks.

• Activate messages.

• Inactivate messages.

• Termination messages.

The �rst message type is data message. Three others message types are control

messages.

Each worker Pr,c has to store following additional data:

• The identity of the worker that has activated Pr,c (which is also called parent

of Pr,c).

5.7. Computational experiments 85

• The list of workers activated by Pr,c (which are also called children of Pr,c)

State A. In active state, a worker Pr,c evaluates the local termination test. If

the local termination test is satis�ed, then Pr,c does not execute update; otherwise,

Pr,c updates components of sub-blocks assigned to it and sends updates to adjacent

workers. If Pr,c receives an activate message from a worker Pr′,c′ , then Pr,c adds

Pr′,c′ to its list of children. If Pr,c receives an inactivate message from a worker

Pr′,c′ , then Pr,c removes Pr′,c′ from its list of children.

State I. In inactive state, a worker is waiting for messages (using P2P_Wait

operation).

State T. In terminal state, the computation has been terminated, workers do

nothing.

Transition Tia. An inactive worker Pr,c becomes active when it receives a new

update from an adjacent worker Pr′,c′ ; then the worker Pr,c sends an active message

to Pr′,c′ and Pr′,c′ becomes parent of Pr,c.

Transition Tai. An active worker becomes inactive if its list of children is empty

and its local termination test is satis�ed; then the worker sends an inactive message

to its parent.

Transition Tit. The root worker R changes immediately from inactive state to

terminal state. Termination messages then are sent to adjacent workers in the tree

T recovering workers. A worker Pr,c di�erent from R changes from inactive state to

terminal state when it receives a termination message from an adjacent lower level

node in the tree T . Pr,c then sends termination messages to adjacent upper level

nodes in the tree T .

The behavior of this method can be summarized as follows: initially, only the

root worker R (P1,1) is active and all other workers are inactive. All other workers

become progressively active upon the receipt of an update from another worker. An

activity graph is created; the topology of the graph changes progressively as the

various messages are received and the local termination tests are satis�ed. Figure

5.10 presents an example of the evolution of activity graph in the case of 8 workers.

5.7.2 Grid'5000 platform

Computational experiments have been carried out on the Grid'5000 platform [gri].

The French grid platform is composed presently of 2970 processors with a total of

6906 cores distributed over 9 sites in France. All of them have at least a Gigabyte

Ethernet network for local machines. Nodes between the di�erent sites range from

2.5 G�ops up to 10 G�ops. Sites of Grid'5000 have several clusters with di�erent

performances.

86

Chapter 5. Decentralized environment for peer-to-peer high

performance computing

P

P1,1

P1,2

P1,1

P2,1

P1,1

P1,2

P1,3

P

P1,1

P
P1,1

P1,3

P1,2 P2,1

P2,2
P1,2 P2,1

P2,3 P1,4
P1,3 P2,2

P2,3 P1,4
P2,4

Figure 5.10: Evolution of the activity graph.

We have used machines over 8 clusters of 5 sites of the Grid'5000 testbed. Ma-

chine characteristics on each cluster we have used and corresponding sequential

computational time are presented in Table 5.1 for the obstacle problem with size

256× 256× 256.

Table 5.1: Machine characteristics and sequential computational time

Site Cluster Processor Memory Seq time

Lyon Sagittaire AMD 2.4 GHz 2 Gb 32166 s

Capricorne AMD 2.0 GHz 2 Gb 33942 s

Sophia Helios AMD 2.2 GHz 4 Gb 33178 s

Sol AMD 2.6 GHz 4 Gb 29400 s

Toulouse Pastel AMD 2.6 GHz 8 Gb 27843 s

Nancy Grelon Intel Xeon 1.6 GHz 2 Gb 32476 s

Orsay Gdx AMD 2.0/2.4 GHz 2 Gb 34636 s

Netgdx AMD 2.0 2 Gb 34711 s

The topology server is placed at the site of Toulouse. At each site, a tracker is

launched in order to manage peers of the site. The submitter is a machine of the

5.7. Computational experiments 87

cluster Sagittaire at Lyon.

5.7.3 Experimental results

Experiments have been carried out in the following contexts.

• Case 1: The slice decomposition and termination method presented in sub-

section 4.5.2 are used, computations are carried out on the cluster Gdx at

Orsay with up to 128 workers.

• Case 2: The pillar decomposition and termination method presented in sub-

section 5.7.1.2 are used, computations are carried out on the cluster Gdx at

Orsay with up to 128 workers.

• Case 3: The pillar decomposition and termination method presented in sub-

section 5.7.1.2 are used, computations are carried out on several clusters with

up to 256 workers. In the cases where the number of nodes is less than 256

workers, computations are carried out on 4 clusters at 4 locations: cluster

Pastel at Toulouse, cluster Sagittaire at Lyon, cluster Grelon at Nancy and

cluster Gdx at Orsay. For each experiment, an equal number of nodes is used

on each site. For example in experiment with 8 nodes, 2 nodes at Toulouse,

2 nodes at Orsay, 2 nodes at Nancy and 2 nodes at Lyon, respectively, are

used. In the case where the number of nodes is 256, nodes of others clusters

are used.

The e�ciency of cases 1 and 2 are presented in Figure 5.11. We can see, in Figure

5.11, that the e�ciency deteriorates more rapidly in the case 1 than in the case 2

for both synchronous and asynchronous computational schemes. This is due to the

fact that, when the number of workers increases, the problem decomposition in the

case 2 reduces the total size of messages sent by a worker after each relaxation while

the total size of messages sent by a worker after each relaxation remains unchanged

in the case 1.

Figure 5.12 displays the number of relaxations in function of number of workers

for asynchronous algorithm. We note that the number of relaxations in the the case

2 is lower than the number of relaxations in the case 1. This is due to the fact that

with the termination method in the case 2, a worker does not execute update if the

local termination test is satis�ed; whereas, with the termination method in the case

1, a worker still executes update when the local termination is satis�ed.

Computational results are presented in the �gure 5.13 for the case 3. We note

that the results are computed by using sequential computational time on the most

performant cluster, i.e. cluster Pastel at Toulouse. As compared with Figure 5.11,

we note that the e�ciency of synchronous algorithms deteriorates more rapidly in the

case 3 than in the case 2. This is due to the fact that machines are distributed over 4

sites and the latency between clusters (from 11,5 ms to 18,9 ms) is greater than the

latency inside a cluster (about 0,1 ms) in the case 3,. Thus the synchronization time

is greater in the case 3 than in the case 2 for synchronous schemes. Moreover, the

88

Chapter 5. Decentralized environment for peer-to-peer high

performance computing

0,4

0,6

0,8

1

1,2

Ef
fic
ie
nc
y

Case 1 ‐ Syn Case 1 ‐ Asyn

Case 2 ‐ Syn Case 2 ‐ Asyn

0

0,2

0 20 40 60 80 100 120 140

Number of peers

Figure 5.11: E�ciency of distributed algorithms in the cases 1 and 2.

46000

48000

50000

52000

54000

56000

N
um

be
r o

f r
el
ax
at
io
ns

Case 1 ‐ Asyn Case 2 ‐ Asyn

44000

46000

0 20 40 60 80 100 120 140

Number of peers

Figure 5.12: Number of relaxations of asynchronous iterative algorithms in the cases

1 and 2.

architecture is heterogeneous. In the synchronous case, faster workers have to wait

for slower worker through messages exchanges; whereas, the results are computed

by using the sequential computational time on the most performant cluster. In the

asynchronous scheme, there is not much di�erence between the case 2 and 3. This

means that the asynchronous scheme is less sensitive to latency increase and more

appropriate for computations in interconnected clusters context than synchronous

schemes. The e�ciency of hybrid schemes of computation is situated in between

e�ciencies of synchronous and asynchronous schemes.

5.8. Chapter summary 89

0,2

0,4

0,6

0,8

1

1,2

Ef
fic
ie
nc
y

Syn Asyn Hybrid

0

0 50 100 150 200 250 300

Number of workers

Figure 5.13: E�ciency of distributed algorithms in the case 3

5.8 Chapter summary

In this chapter, we have presented the decentralized version of P2PDC that in-

cludes new features aimed at making P2PDC more scalable and e�cient. Indeed,

the resources manager is based on a hybrid topology that is simple but e�cient

and facilitates peers collection for computation. The hierarchical task allocation

mechanism accelerates task allocation to peers and avoids connection bottleneck at

submitter. Furthermore, a �le transfer functionality is implemented that allows to

transfer �les between peers. Moreover, the communication operation set has been

extended in order to facilitate the implementation of some asynchronous algorithms

and termination detection, in particular for evolution problems.

Experiments for the obstacle problem have been carried out on GRID'5000 plat-

form with up to 256 peers. A pillar decomposition has been proposed that reduces

the total size of messages sent by a worker after each relaxation as compared with

slice decomposition presented in previous chapter. A di�erent termination method

has been implemented for asynchronous iterative schemes that detects exactly the

termination and reduces unnecessary relaxations. Computational results show that

the pillar decomposition improves signi�cantly the e�ciency of computations, e.g.

in the case of 128 machines at Orsay, the e�ciency of distributed algorithm with

pillar decomposition is about twice as much as with slice decomposition in both

synchronous and asynchronous schemes. Moreover, we have obtained a good ef-

�ciency for asynchronous iterations (0.78) in the case where up to 256 machines

distributed over 8 clusters at 5 sites are used. This shows the interest of combining

asynchronous schemes of computation with the decentralized environment P2PDC.

90

Chapter 5. Decentralized environment for peer-to-peer high

performance computing

In the next chapter, we shall consider fault-tolerance functionalities of P2PDC that

ensure the robustness of the computation in the case of peer failures.

Chapter 6

Fault-tolerance in P2PDC

Contents

6.1 Introduction . 91

6.2 State of the art in fault-tolerance techniques 92

6.2.1 Replication techniques . 92

6.2.2 Rollback-recovery techniques 93

6.3 Choices of fault-tolerance mechanisms 96

6.4 Worker failure . 96

6.4.1 Coordinated checkpointing rollback-recovery for synchronous

iterative schemes . 97

6.4.2 Uncoordinated checkpointing rollback-recovery for asyn-

chronous iterative schemes . 99

6.5 Coordinator failure . 100

6.6 Computational experiments 102

6.6.1 Coordinator replication overhead 102

6.6.2 Worker checkpointing and recovery overhead 102

6.6.3 In�uence of worker failures on computational time 103

6.7 Chapter summary . 104

6.1 Introduction

Peer volatility is one of the great challenges of peer-to-peer applications and more

particular for peer-to-peer High Performance Computing (HPC) applications. In

peer-to-peer networks, peers may join and leave the network at unpredictable rate.

If a peer executing a subtask of a given task, e.g. the solution of a numerical

simulation problem leaves the network, then the task may not terminate or may

produce wrong results. Thus, an e�ective mechanism of fault-tolerance is vital for

ensuring the robustness of the application.

In previous chapter, we have presented the decentralized version of P2PDC that

includes features aimed at making P2PDC more scalable and robust. In this chapter,

we present the fault-tolerance mechanisms in P2PDC to cope with peer volatility in

peer-to-peer networks. The fault-tolerance mechanisms can adapt itself according to

peer role and computational scheme. Experiments on Grid'5000 platform show that

the fault-tolerance mechanisms in P2PDC have small overhead and fast recovery.

92 Chapter 6. Fault-tolerance in P2PDC

Moreover, the impact of procedures that ensure robustness on computational time

is small.

This chapter is organized as follows. Next section presents existing fault-

tolerance techniques for parallel and distributed systems. Section 6.3 deals with

the choice of fault-tolerance mechanisms in P2PDC. Section 6.4 aims at describing

precisely the fault-tolerance mechanisms for worker failure, while the one for coor-

dinator failure is detailed in the section 6.5. In section 6.6, experimental results

for the obstacle problem on Grid'5000 platform are displayed and analyzed in the

case of peer failure. Finally, a summary of fault-tolerance mechanisms in P2PDC is

presented.

6.2 State of the art in fault-tolerance techniques

In the literature, many fault-tolerance techniques have been proposed for parallel

and distributed systems. One can classify them into two main classes: replication

and rollback-recovery [Treaster 2005, Sathya 2010, Arlat 2006]. While replication

techniques use resource redundancy for masking the failure, rollback-recovery tech-

niques consist in restoring the process of a failed node on another node. In the

sequel, we shall detail these techniques and study their features and limitations.

6.2.1 Replication techniques

In replication techniques [Treaster 2005, Felber 1999, Arlat 2006], each process is

replicated on two or more processors. A replicated process is called a replica. Repli-

cas of a process must be coordinated in the way they give the illusion of a single

logical process. If some of replicas fail, then the others replicas continue to process

application. There are generally three replication strategies: passive, active and

semi-active replication.

In passive replication, only a primary replica processes application, i.e. handles

all incoming messages, updates its internal state and sends output messages. Others

replicas are backup of the primary replica (see Figure 6.1). The primary replica

regularly creates a checkpoint of its internal state. The checkpoint is either stored

on a stable memory accessible by backup replicas, which are in idle state as the the

primary replica is working (cold passive replication) or sent to backup replicas, which

update their internal state from received checkpoint (warm passive replication).

When the primary replica fails, a backup replica is elected to take its place. Since

state of new primary replica is created from a checkpoint of the failed primary

replica, the new primary replica may have to re-execute some operations that the

failed primary replica had already done.

In active replication, all replicas process application, i.e. each process handles

all incoming messages, updates its internal state independently, and generates out-

put messages (see Figure 6.2). The e�ective output messages are selected using

a decision function which depends on the assumption on the process failure. For

6.2. State of the art in fault-tolerance techniques 93

P11

P2.1
P2.2

processing

2.2
P2.3

update

update ack

Figure 6.1: Passive replication.

simple cases, the decision function may be to select the �rst message available. Ac-

tive replication can also overcome the arbitrary failures using a decision function

by majority vote. During fault-free execution, active replication has more overhead

than passive replication because active replication has to carry out a vote algorithm

between replicas each time a decision is needed, e.g. choosing the e�ective output

message. However, if some of replicas fail, then the recovery in active replication is

faster than in passive replication.

P11

P2.1
P2.2

processing vote

2.2
P2.3

Figure 6.2: Active replication.

Semi-active replication is proposed to take advantages of both passive replication

and active replication. Semi-active replication is similar to active replication in the

sense that all replicas receive input messages and can treat them. However, as

in passive replication, a privileged replica is responsible for certain decisions, e.g.

message acceptance or refusal. The privileged replica can impose its decisions on

other replicas without resorting to a vote. Optionally, the privileged replica can

have also the responsibility of sending the output messages (see Figure 6.3).

Replication techniques are used in many systems like SETI@HOME [set], Con-

dor [Litzkow 1988] or P2P-MPI [Genaud 2009].

6.2.2 Rollback-recovery techniques

Rollback-recovery techniques [Elnozahy 2002, Arlat 2006] assumes that application

processes have access to some kind of stable storage that always survives even if

some processes have failed. During the execution, application processes save to this

stable storage a snapshot of their state, called checkpoint. Upon a process failure, the

94 Chapter 6. Fault-tolerance in P2PDC

P11

P2.1
P2.2

processing

2.2
P2.3

Figure 6.3: Semi-active replication.

failed process uses the checkpoint on the stable storage to restart the computation

from an immediate state. Hence, the amount of lost computation is reduced. We

can classify rollback-recovery techniques into two categories: checkpoint-based and

log-based.

6.2.2.1 Checkpoint-based rollback-recovery

The checkpoint-based rollback-recovery consists in taking a snapshot of the en-

tire system state regularly. Upon a failure, the system is restored to the most

recent snapshot. The checkpoint-based rollback-recovery can be classi�ed into

three subcategories: uncoordinated checkpointing, coordinated checkpointing and

communication-induced checkpointing.

• Uncoordinated checkpointing allows processes to take checkpoints indepen-

dently. Each process may take a checkpoint when it is most convenient,

thereby avoiding the synchronization complexity. However, this approach

has several drawbacks in the cases where consistent global state is needed.

Firstly, a processes may take useless checkpoints that are not a part of a con-

sistent global state. Secondly, uncoordinated checkpointing may result in a

potentially signi�cant additional costs for seeking a consistent recovery line

in an eventual recovery. Thirdly, uncoordinated checkpointing may lead to

domino e�ect, where processes rollback inde�nitely through the computation

history in order to reach a consistent recovery line, resulting in the loss of

large amounts of computation.

• Coordinated checkpointing ensures that whenever processes take checkpoints,

a consistent global checkpoint is created. This requires the synchronization

between processes, thereby increasing the overhead of checkpointing. But in

exchange, the recovery is simpli�ed and is not susceptible to domino e�ect.

This is due to the fact that upon a failure, every processes rollback to their

most recent checkpoint, which is always a part of the most recent consistent

global checkpoint.

6.2. State of the art in fault-tolerance techniques 95

• Communication-induced checkpointing is a compromise between the two ap-

proaches. Each process can independently take checkpoints as in uncoordi-

nated checkpointing. However, in order to avoid the domino e�ect, processes

are forced to take checkpoints that generate a global checkpoint. Messages ex-

changed between processes contain extra information that allows the recipient

to determine whether it should take a forced checkpoint.

6.2.2.2 Log-based rollback-recovery

In log-based rollback-recovery, in addition to process checkpointing, all messages

received by processes are logged in a stable storage. Upon a failure, only failed

process restores to precedent checkpoint and uses messages logged in the stable

storage in order to perform the same computation as in initial execution. Thus,

the failed process can recover to the state before the failure occurred. An orphan

process is a process whose state depends on a message that was not logged to

stable storage; thus this process cannot be reproduced during recovery. Log-based

rollback-recovery protocols need to ensure that upon recovery of all failed processes,

the system does not contain any orphan process. There are three classes of log-based

rollback-recovery protocols:

• Pessimistic logging protocols log a given message received by a process to the

stable storage before it a�ects the computation. Pessimistic logging protocols

ensure that orphan processes are never created upon a failure. Thus the re-

covery upon a failure is simpli�ed, processes that do not fail do not need to

take any special actions. Moreover, garbage collection is simple, i.e. check-

points and messages that are older than the most recent checkpoint can be

discarded because they will never be used for recovery.

• Optimistic logging protocols log received messages to a volatile storage which

is periodically �ushed to stable storage. Optimistic logging protocols reduce

the overhead during fault-free execution because applications are not required

to be blocked while waiting for messages to be written to disk. However, since

messages logged in the volatile storage will be lost when a failure occurs, some

processes may become orphan processes. Thus, recovery upon a failure in

optimistic logging is more complicated than in pessimistic logging because

orphan processes have to rollback to state that does not depend on any lost

messages.

• Causal logging protocols combine the advantage of both optimistic and pes-

simistic approaches. Like optimistic logging, causal logging protocols avoid

synchronous access to stable storage except during output commit. Like pes-

simistic logging, causal logging protocols allow each process to commit output

independently and never creates orphans, thereby isolating each process from

the e�ects of failures that occur in other processes. However, these protocols

require more complex recovery protocol.

96 Chapter 6. Fault-tolerance in P2PDC

One can �nd rollback-recovery techniques in many systems like BOINC

[Anderson 2004], XtremWeb [xtr] or Vishwa [Reddy 2006].

6.3 Choices of fault-tolerance mechanisms

In P2PDC, peers can have di�erent roles: coordinator or worker. Moreover, com-

putations can be done via di�erent computational schemes: synchronous, asyn-

chronous. Therefore, fault-tolerance mechanism has to adapt to all peer roles and

computational schemes. In the sequel, we will detail our choices of fault-tolerance

strategies for each peer role and computational scheme.

In our opinion, replication strategy is not appropriate to workers for HPC ap-

plications because the number of peers involved in the computation enlarges but

the computational capacity does not increase; furthermore, when communication

between peers is frequent like with iterative methods, a protocol ensuring coher-

ence between replicas will have great overhead. Log-based rollback-recovery seems

also not appropriate for iterative algorithms with frequent communications between

peers since communication logging will use a great volume of storage. Thus, we

have chosen to deploy the checkpoint-based rollback-recovery mechanism in order

to cope with worker failure. This mechanism can self-adapt to di�erent computa-

tional schemes. A synchronous scheme needs the synchronization of all workers after

each iteration, i.e a global state of computation must be reached before computa-

tion can continue. Hence, coordinated checkpointing is appropriate to this case.

While in asynchronous schemes, each worker can work at its own pace. Moreover,

asynchronous schemes allow message lost. Thus, uncoordinated checkpointing is

appropriate to asynchronous schemes. So far, we have implemented the customized

checkpointing where programmers de�ne what data should be placed into check-

point and how to recover from a checkpoint. Since storing checkpoints in a reliable

storage may become a bottleneck, it is better that checkpoints are distributed on

several locations on the network. Thus, we have modi�ed the coordinator so that

when users choose to deploy fault tolerant functionality, the coordinator does not

calculate any subtask but stores checkpoints of peers in its group.

In order to cope with coordinator failure, we have chosen a replication strategy

because the number of coordinators is small as compared with the number of workers

and coordinators do not compute any subtask in our approach.

In the following sections, we shall present in detail our adaptive fault-tolerant

mechanism.

6.4 Worker failure

In a group, workers periodically send heartbeat messages to their coordinator to

inform that they are still alive. If a coordinator does not receive the heartbeat

message from a worker within a time T , then the coordinator considers that this

worker has failed.

6.4. Worker failure 97

In order to enable fault-tolerant functionality of workers, programmers have to

call P2P_checkpoint function in the code. All application data that need to be

placed into the checkpoint should be set as parameters of the function. For in-

stance, in the solution of a numerical simulation problem solved via distributed

iterative methods, values of the iterate vectors need to be placed into the check-

point. In addition, when the user starts the submitter, he has to add fault-tolerance

option to command line (see Appendix B); otherwise, P2P_checkpoint function will

take no e�ect. When fault-tolerance option is added, all peers participating to the

computation prepare speci�c data for checkpointing/recovery process. Coordinators

store a copy of each received subtask so that if a subtask crashes before the �rst

checkpoint is taken, then the coordinator will recover crashed subtask from the ini-

tial state. In the sequel, we will present in detail checkpoint-based rollback-recovery

process for di�erent computational schemes.

6.4.1 Coordinated checkpointing rollback-recovery for syn-
chronous iterative schemes

Figure 6.4 shows steps of coordinated checkpointing process for synchronous iterative

scheme.

Submitter

CoordinatorCoordinator

P1 P2 P4P3

(1)(1)(1)

(2) (2)

(3)

(1) Checkpoint

(2) Group Checkpointing done

(3) Global Checkpointing done

(4) Global Checkpointing done

(3)

(4) (4)

(1)
(4) (4)

Figure 6.4: Coordinated checkpointing process for synchronous iterative schemes.

• (1) When P2P_checkpoint function is called at a worker, the worker creates

a checkpoint and sends the checkpoint to its coordinator. We note that in the

case of iterative algorithms, all peers execute the same code. Moreover, in the

case of synchronous schemes, synchronization between peers is established via

blocking operations of communication; thus the P2P_checkpoint function is

called almost at the same time on all workers. After sending the checkpoint,

the worker does not continue the computation immediately; it has to wait for

the consistent global checkpoint of application to be generated.

• (2) When a coordinator receives a checkpoint from a worker, it veri�es if it

has received checkpoints of all workers in its group. When checkpoints of all

98 Chapter 6. Fault-tolerance in P2PDC

workers have been received, the coordinator noti�es the submitter that the

group checkpointing process is done (see Figure 6.4).

• (3) When the submitter receives noti�cations of all groups, then the consis-

tent global checkpoint of application is generated. The submitter noti�es all

coordinators about the global checkpoint.

• (4) Coordinators transfer the global checkpoint noti�cation to workers in its

group; then, the coordinator replaces old checkpoints in local memory by new

checkpoints. When a worker receives the global checkpoint noti�cation, it

replaces the old checkpoint in local memory by the new checkpoint; then it

continues the computation.

When a worker fails, its coordinator detects the failure. Since the communica-

tion between peer is synchronous, others workers must wait for updates from failed

worker; thus, others workers are blocked at communication operations. In the Fig-

ure 6.5, we have shown the case where worker P4 fails. The process of rollback and

recovery to last consistent global checkpoint is the following:

Submitter

CoordinatorCoordinator

P1 P2 P4P3

(3,8)(3,8)

(2,7) (1,6)

(6)

(1) Peer failure

(2) Rollback

(3) Rollback

(4) Checkpoint

(7)

(5) (5)

(3,8)
(5)

P5

(4, 8)

(5)

(5) Rollback done

(6) Group rollback done

(7) Restart

(8) Restart

Figure 6.5: Recovery process upon a worker failure for synchronous iterative

schemes.

• (1) The coordinator of failed worker P4 noti�es the submitter about peer

failure.

• (2) When the submitter receives a peer failure noti�cation, it sends the rollback

command to coordinators.

• (3) Coordinators transfer the rollback command to their workers.

• (4) The coordinator of failed peer �nds a free peer in the network, i.e peer

P5 in the Figure 6.5, and sends the last checkpoint of failed worker in local

memory to new peer. We note that the peer collection algorithm used to

�nd a free peer here is similar to the one used by the submitter at the begin-

ning of the computation (see Subsection 5.2.8). Moreover, requirements about

6.4. Worker failure 99

peer's characteristics are sent from submitter to coordinators at task alloca-

tion phase. Thus, the coordinator �nds a free peer for failure recovery that

also has to match these requirements. If there is no free peer in the network,

then the coordinator of failed peer sends cancellation messages to others peers

to terminate the computation.

• (5) Workers receiving rollback command stop their computation, load the state

from their last checkpoint in local memory; then they send rollback done

message to coordinators. On the other side, the new worker P5 loads the state

from received checkpoint and sends rollback done message to coordinator.

• (6) When a coordinator receives rollback done message from all peers in the

group, it sends group rollback done message to submitter. In particular, when

the coordinator of failed peer receives rollback done message from new peer,

e.g. peer P5, the coordinator sends the address of the new peer-to-peers that

have exchanged updates with failed peer so that these peers can exchange up-

dates with the new peer. Coordinators manages peers that exchange updates

with peers in their group according a subscribe-publish model as follows. For

each peer Pi in a group, the coordinator of Pi maintains a list Li containing

peers that exchange updates with this peer. If a peer Pj exchanges update

with peer Pi, then peer Pj sends a subscribe message to the coordinator of

peer Pi. Upon receiving subscribe message from peer Pj , the coordinator of

peer Pi adds peer Pj to the list Li. Hence, if the peer Pi fails and its state

is restored at a given peer Pk, then the coordinator of peer Pi publishes the

address of peer Pk to all peers in the list Li, including peer Pj . For instance,

in the Figure 6.5, if peers P2 and P3 have exchanged updates with peer P4,

then the coordinator of peer P4 publishes the address of peer P5 to peers P2

and P3.

• (7) When the submitter received group rollback done message from all coordi-

nators, it sends restart command to all coordinators.

• (8) Coordinators transfer restart message to workers; then workers restart the

computation from recovered state.

6.4.2 Uncoordinated checkpointing rollback-recovery for asyn-
chronous iterative schemes

Figure 6.6 shows the uncoordinated checkpointing process for asynchronous iterative

schemes. Since no coordination is needed in this case, the checkpoint process is very

simple. When P2P_checkpoint function is called at a worker, the worker creates a

checkpoint and sends the checkpoint to its coordinator. Then the worker continues

the computation immediately; moreover the worker does not store the checkpoint

in local memory. When coordinators receive checkpoints from workers, then they

replace old checkpoints in their local memory by new checkpoints.

100 Chapter 6. Fault-tolerance in P2PDC

Submitter

CoordinatorCoordinator

P1 P2 P4P3

(1)(1)(1)

(1) Checkpoint

(1)

Figure 6.6: Uncoordinated checkpointing process for asynchronous iterative

schemes.

Submitter

CoordinatorCoordinator

P1 P2 P4P3 P5

(1)

(1) Checkpoint

Figure 6.7: Recovery process upon a worker failure for asynchronous iterative

schemes.

Recovery process upon a worker failure for asynchronous iterative schemes is

also very simple, as shown in the Figure 6.7. When the worker P4 fails, others

workers continue the computation without the failed worker. The coordinator of

the failed worker �nds a free peer in the network, i.e the peer P5, and sends the

last checkpoint of the worker P4 to the peer P5. The peer P5 loads the state from

received checkpoint and starts the computation from this state. The coordinator of

peer P5 sends the address of the new peer P5 to peers that have exchanged updates

with failed peer in order that these peers can exchange updates with the new peer.

If there is no free peer in the network, then the coordinator of failed peer will send

cancellation messages to others peers to terminate the computation.

6.5 Coordinator failure

When the fault-tolerance properties are activated, coordinators do not execute any

subtask. Moreover, coordinator is replicated on several peers in order to achieve

fault-tolerance. Thus, at the beginning of a computation, the submitter has to

collect more thanW peers whereW is the number of peers executing subtasks. The

level of replication r, i.e. the number of replicas for each coordinator, can be set by

6.5. Coordinator failure 101

users via command line (see Appendix B); the default value of r is 3. If C is the

number of groups, then the submitter has to collect W + C × r peers.
We note that the implementation of active or semi-active replication would make

the fault-tolerance mechanism for worker failure more complicated; furthermore it

has more overhead on workers because workers have to send their checkpoint to

several replicated coordinators. Thus, in order to cope with coordinator failures,

we have implemented the passive replication for coordinator as shown in the Figure

6.8, i.e only the primary coordinator communicates with the submitter and workers,

others replicated coordinators are backup of the primary coordinator and store the

state of the primary coordinator.

Submitter

Primary

Coordinator

P1 P2 P3 P4

Primary

Coordinator

Backup

Coordinator

Backup

Coordinator

Update

State changes

Backup

Coordinator

Backup

Coordinator

Update

State changes

Figure 6.8: Replication of coordinators.

At task allocation phase (see Section 5.3), when the submitter divides collected

peers into groups, it chooses in each group a primary coordinator and r− 1 backup

coordinators. Afterwards, the submitter sends subtasks allocated to peers in a given

group to the primary coordinator of this group. After sending subtasks to peers in

the group, the primary coordinator creates a checkpoint of its state and sends the

checkpoint to its backup coordinators. The checkpoint of the primary coordinator

consists of: list of peers in the group, list of backup coordinators, subtasks allocated

to peers in the group, checkpoints of workers and so on. Backup coordinators

establish the state of the primary coordinator from received checkpoint. Upon a

state change on the primary coordinator, e.g. new worker checkpoint or worker

failure, the primary coordinator updates this state change to backup coordinators.

Backup coordinators periodically send heartbeat messages to the primary coor-

dinator to inform that they are still alive. When the primary coordinator receives

a heartbeat message from a backup coordinator, it sends an acknowledgement mes-

sage to this backup coordinator. If the primary coordinator does not receive the

heartbeat message from a backup coordinator within a time T , then it considers

that this backup coordinator has failed. The primary coordinator �nds a free peer

in the network and send a checkpoint of its state to this peer. The new peer es-

tablishes the state of the primary coordinator from received checkpoint and then

becomes a backup coordinator. On the other hand, if backup coordinators do not

receive acknowledgement message from primary coordinator within a time T , then

they consider that the primary coordinator has failed. Then, backup coordinators

102 Chapter 6. Fault-tolerance in P2PDC

communicate between them in order to �nd the least charged backup coordinator to

become new primary coordinator. After that, the new primary coordinator connects

to submitter and workers in the group and starts to manage the group; in addition,

it �nds a free peers in the network to become its backup coordinator.

6.6 Computational experiments

We consider the 3D obstacle problem with size 256×256×256 (see Chapter 5) in the

case where there are peer failures and the fault-tolerant functionality is implemented.

Peer failures are simulated by injecting faults on peers at some given time.

6.6.1 Coordinator replication overhead

We have run the 3D obstacle problem on 64 workers in the cases where the level of

coordinator replication r is set to 2, 3, 4 or 5. We have found that synchronization

between coordinator replicas and coordinator failure have negligible in�uence on

computation. This can be explained by the fact that coordinators does not execute

any subtask when the fault-tolerant functionality is chosen; moreover, state changes

on primary coordinator are sent to backup coordinators by an independent thread

in order to minimize the in�uence to group management process.

6.6.2 Worker checkpointing and recovery overhead

We have run the 3D obstacle problem on 4, 8, 16, 32 and 64 workers. The machines

of the cluster Sagittaire at Lyon have been used in the case of 4, 8, 16 and 32 workers.

In the case where the number of workers is 64, we have used 32 machines of the

cluster Sagittaire at Lyon and 32 machines of the cluster gdx at Orsay. In each

case, we have injected randomly some faults at given workers. Table 6.1 shows the

checkpointing time and recovery time for several cases. We note that a checkpoint

of a given worker contains only current values of components of sub-blocks assigned

to this workers. For instance, in the case of 4 workers, each worker is assigned a sub-

block of size 128×128×256 (see Subsections 5.7.1.1). Then size of a checkpoint of a

worker is 128×128×256×8 = 33554432 bytes = 32 Mbytes. Checkpoint time is time

to execute the P2P_Checkpoint function at a worker. Recovery time is the interval

from the failure of a given worker to the start of computation on a new worker where

the state of failed worker is restored from its latest checkpoint. Recovery time does

not include time to recover to the state before the failure occurred

The checkpointing time in synchronous case is greater than in asynchronous

case. This is due to the fact that in synchronous case, in checkpointing process,

after sending a checkpoint to coordinators, workers are blocked until the global

checkpoint is generated. Moreover, in synchronous case, all workers in a group send

their checkpoints to the coordinator nearly at the same time which may result in a

bottleneck at the coordinator; whereas in asynchronous case, workers in a group send

6.6. Computational experiments 103

Table 6.1: Worker checkpointing and recovery overhead

Workers Checkpoint Checkpointing time Recovery time

size Sync Async Sync Async

4 32 Mb 1307 ms 372 ms 1251 ms 1257 ms

8 16 Mb 1349 ms 201 ms 628 ms 654 ms

16 8 Mb 1494 ms 101 ms 320 ms 329 ms

32 4 Mb 1631 ms 51 ms 170 ms 174 ms

64 2 Mb 919 ms 27 ms 105 ms 97 ms

their checkpoints to the coordinator at their own pace; thus sending checkpoints to

coordinators in asynchronous case takes less time than in synchronous case.

When the number of workers increases, the checkpoint size decreases; while the

checkpointing time in asynchronous case decreases and the checkpointing time in

synchronous case increases. This is due to the fact that in synchronous case, the co-

ordination overhead increases when the number of workers increases; moreover, the

total checkpoint size that a coordinator has to receive from workers in checkpointing

process does not change. However, in synchronous case, when the number of workers

increases from 32 to 64, the checkpointing time decreases. This can be explained

as follows: when 64 workers are used, workers are divided into two groups with two

coordinators; then workers send checkpoints to two coordinators, each coordinator

receives a half number of checkpoints.

The recovery time of a worker failure in asynchronous case is a bit greater than in

synchronous case though in the synchronous case, all workers have to rollback to last

checkpoint. This is due to the fact that in the synchronous case, all workers rollback

to last checkpoints in local memory in parallel. Moreover, in the asynchronous case,

the coordinator of the failed worker still has to receive checkpoints from others

workers and others workers still send updates to each others while the recovery of

worker failure is processing; whereas in synchronous case, only messages for recovery

are sent while the recovery of worker failure is processing. Thus, sending checkpoint

of failed workers from the coordinator to the new worker in asynchronous case takes

more time than in synchronous case. However, when the number of workers is 64,

the recovery time in synchronous case is greater than in asynchronous case. This is

mainly due to the enlargement of coordination overhead when machines of two sites

Lyon and Orsay are used.

When the number of workers increases, the recovery time in both synchronous

and asynchronous cases decrease since the checkpoint size decreases.

6.6.3 In�uence of worker failures on computational time

In order to study the in�uence of worker failure on computational time, we have

run the 3D obstacle problem on 64 workers using machines on two sites Lyon and

104 Chapter 6. Fault-tolerance in P2PDC

Orsay. Checkpoints are taken every 1000 relaxations and some worker failures are

generated randomly. The Figure 6.9 shows the computational time in several cases

where the number of worker failures varies from 0 up to 10.

600

700

800

900

1000

1100

1200

Co
m
pu

ta
tio

na
l t
im

e

Syn Asyn

500

600

0 2 4 6 8 10 12

Number of worker failures

Figure 6.9: Computational time for number of worker failures from 0 up to 10.

In the Figure 6.9, we can remark that when the number of worker failures in-

creases, the computation time increases faster for synchronous iterative algorithm

than for asynchronous iterative algorithm. This is mainly due to the fact that in

the synchronous case, when a worker fails, all workers have to rollback to the last

checkpoints. Whereas, in asynchronous case, only the state of the failed worker

is rollbacked to last checkpoint, others workers continue computing with current

state. In the case where the number of failures is equal to 10, the computational

time increases about 10% in synchronous case and about only 4% in asynchronous

case.

6.7 Chapter summary

In this chapter, we have presented the fault-tolerance mechanisms in P2PDC to

cope with peer volatility. The fault-tolerance mechanisms can adapt themselves

to peer roles and computational schemes. For worker failure, the rollback recov-

ery techniques have been chosen: while the coordinated checkpointing strategy is

implemented in synchronous case, the uncoordinated checkpointing strategy is im-

plemented in asynchronous case. For coordinator failure, the replication technique

has been chosen.

Experiments on Grid'5000 with fault injection for the obstacle problem showed

that the fault-tolerance mechanisms in P2PDC have small impact on the compu-

tation even with a great amount of failures. Synchronization between coordina-

6.7. Chapter summary 105

tor replicas and coordinator failure have negligible in�uence on computation. The

checkpointing and recovery processes are really fast. In the case of 64 workers and

10 worker failures, the computational time increases about 10% for synchronous

iterative algorithms and about only 4% for asynchronous iterative algorithms.

Chapter 7

Contribution to a web portal for

P2PDC application deployment

Contents

7.1 Introduction . 107

7.2 Background . 107

7.2.1 OML . 107

7.2.2 OMF and its Portal . 109

7.3 Motivation . 110

7.4 A new measurement channel for P2PDC 112

7.4.1 Hierarchical measurements collection 112

7.4.2 Application to task deployment 114

7.5 Chapter summary . 117

7.1 Introduction

In this chapter, we present the principle of an original solution related to a web portal

for P2PDC application deployment. Most of the ideas presented in this chapter

are developed in collaboration with NICTA, Sydney Australia. This Portal is the

combination of P2PDC with tools developed at NICTA, i.e. OML, OMF and OMF

Portal in order to facilitate the deployment, management of P2PDC applications as

well as the retrieval and analysis of results. The Portal is under development. Thus,

in this chapter, we present only the �rst ideas on the web portal and introduce a

new measurement channel for P2PDC on OML.

7.2 Background

In this section, we present brie�y tools developed at NICTA, i.e. OML, OMF and

OMF Portal.

7.2.1 OML

OML [White 2010] is a multithreaded instrumentation and measurement library,

which was �rst developed as the companion measurement library of the cOntrol and

108

Chapter 7. Contribution to a web portal for P2PDC application

deployment

Measurement Framework OMF [Rakotoarivelo 2010]. This library is now a stand-

alone open source software allowing the collection of any type of measurements

from any type of distributed applications and their storage in a uni�ed format. The

OML measurement reporting can be added alongside original reporting mechanisms

or as their replacement. One of the main bene�ts of OML reporting resides in an

e�ortless correlation of data from di�erent distributed sources to investigate network

anomalies, or test research hypotheses or developed prototypes.

OML is composed of three main components allowing an automatic generation

and collection of measurements. First, a user needs to de�ne Measurement Points

(MP) within their applications or services. An MP is an abstraction for a tuple of

related metrics which are reported (�injected�) by the application at the same instant

during the run-time of the application. This injection can be con�gured in order

to generate Measurement Stream (MS) composed of the entire set of tuples or just

a subset. If the user selects only a subset of tuples, then the unused ones are just

discarded. Furthermore, prior to sending of these streams to the locate or remote

repository, these MSs can be further processed. This processing is accomplished

through OML's �lters. An experimenter can indeed implement a function, called

hereafter �lter, within the OML API to be applied on some or all of the �elds

of an MS to format the data or compute more speci�c metrics based on either a

sole injection or a window of injection. For example, in the case of an application

reporting the size of each packet it receives inside an MP, a �lter may be con�gured

to sum up these samples over a 1 second period in order to provide an estimate of

the immediate throughput.

F4

F5

F1

F2

F3
OML

Server
SQL
Data
base

Control Node 1

OML
Server

SQL
Data
base

Control Node 2local
fileApplication liboml2

MP1

MP2

MP3

(x1,...,xN)

(y1,...,yM)

(z1,...,zP)

MS1

MS2

MS3

MS4

MS5

Figure 7.1: OML - the OMF Measurement Library

Figure 7.1 shows an example of OML data path. An application injects mea-

surements into three MPs. At run-time, the tuples generated by injections in the

MPs are combined in order to form �ve MSs. These newly created streams are then

�ltered, and the results are directed to one of two di�erent collection servers or a

local �le. The right part of Figure 7.1 represents the server side where the OML

server serves as a front-end to a database.

This library has been recently evaluated in term of its impact on the resources

and the measurements themselves in [Mehani 2011]. The authors of [Mehani 2011]

7.2. Background 109

have found that this library allows the experimenters to easily develop measurement

applications while improving the overall performance of the measurement process

when compared to the non-threaded version of an application. Furthermore, the

authors have shown that OML does not impact the footprint of any tool whether it

concerns the CPU or memory usage.

7.2.2 OMF and its Portal

In order to evaluate new networking technologies, researchers have developed and de-

ployed large facilities (testbeds) complementarily to preliminary simulated results.

These testbeds aim at providing real conditions for testing research works while

proposing repeatability in a semi-closed environment. Nevertheless, o�ering and

performing repeatability requires the development of management frameworks. Dur-

ing the last decade, the cOntrol and Management Framework [Rakotoarivelo 2010]

has been developed to tackle this di�cult challenge. This framework o�ers a suite

of management, control and measurement services for networking testbeds.

From an operator perspective, OMF provides several services to manage, allocate

and con�gure heterogeneous resources within a testbed. From an experimenter's

point of view, it provides a high level domain-speci�c language to systematically

describe an experiment (i.e. its used resources, required measurements and tasks

to perform) and a set of software tools to automatically deploy and orchestrate this

experiment on a given testbed.

Figure 7.2: Overview of OMF architecture from the user's point of view

Figure 7.2 represents a simple view of OMF architecture from a user's experience.

In this �gure, we can note that every experiment starts with the de�nition of an

110

Chapter 7. Contribution to a web portal for P2PDC application

deployment

Experiment Description (see Appendix A). This script is later passed to the OMF

system which in turn performs all the mandatory operations to deploy, con�gure

and execute the di�erent elements of the experiment. During the experiment, if the

user have con�gured their application with OML, then measurement streams are

created and automatically available.

This management framework is used widely around the world and it has been in-

tegrated within other research and educational tools. In particular, in [Jourjon 2011]

Jourjon et al. present a portal which allows researchers to closely follow the

hypothetico-deductive method. This work has been made possible thanks to the

development of a remotely accessible lab book and the enhancement of the wiki

aspect of a previously introduced e-learning platform called IREEL [Jourjon 2010]

in order to create the LabWiki.

Through the modularity of OMF, this LabWiki could be used in order to facili-

tate researchers collaboration and peer veri�cation of the �nals result. Indeed, this

portal o�ers the possibility to make public and migrate content to a public space

and it o�ers users the possibility to create numerous projects where they can add

collaborators. Furthermore, this portal integrates a graphical interface to analyze

the resulting collected data. This interface is the other major contribution of Lab-

Wiki. It allows the researchers to edit or load R scripts [r] describing statistical

computations to be performed on the collected data. LabWiki will run these scripts

into a R interpreter which has access to the experiment data, and will present the

resulting outputs (e.g. graphs, tables,...) to the researchers.

7.3 Motivation

A main advantage of peer-to-peer high performance computing is that any user can

submit its own application. However, it also leads to some drawbacks related to

the deployment of P2PDC applications on peer-to-peer networks. First, submitter

machine has to initiate the computation, i.e. decompose the dataset, send data

subset as well as application code to workers and receive results from workers either

directly or via coordinators. If the submitter machine is not performant with low

network bandwidth, then the submitter may become a bottleneck that leads to

parallel algorithm e�ciency reduction. Second, although tasks are distributed to be

computed at several peers, the duration of the computation may still be long. The

submitter has then to stay connected until the completion of the computation. If the

submitter disconnects, then the computation terminates immediately. Third, there

are more free peers during some intervals of time of the day than during others. For

example, there are more free peers during the night than during the day. But some

users can not connect and start their application during the night. The last drawback

of the current P2PDC system is that the received results are in raw format so that

users have to make further treatment to obtain more sophisticated representations

like graphs.

In order to overcome these drawbacks and to facilitate the deployment, man-

7.3. Motivation 111

agement of P2PDC applications as well as the retrieval and analysis of results, we

have proposed a solution that is based on the combination of P2PDC with tools

developed at NICTA, i.e. OML, OMF and OMF Portal. The �rst ideas is displayed

in Figure 7.3.

OMF Portal P2P network

OML
Server

Database

R Script
Measurement

Streams & results

Measurement points
Worker 1

File repositoryApplication codes
& Data files Subtask

allocation
Dataset

4Virtual Submitter
Scenarios

& schedulers
OMF

Controller
Application code
& start application

Database

Figure 7.3: A web portal for P2PDC application deployment

In Figure 7.3, users can upload their application codes as well as datasets in �le

format to the Portal via the web interface. With the help of the web interface, they

can also customize their application according to di�erent scenarios, e.g. change

the dataset and the number of workers. Moreover, users can schedule to start

the application at the desired moment. Based on the scheduling information on

the database, the OMF Controller on the Portal selects a given machine on the

network to start the application. This machine is called Virtual Submitter. Virtual

Submitters can be dedicated machines managed by Portal administrators or peers

with attractive characteristics in the network. Once the application is launched

on a given Virtual Submitter, dataset is sent directly from the Portal to workers.

Results can be sent as an OML measurement stream to the OML Server either

from Virtual Submitter or directly from workers. In the former case, results are

sent normally from workers to Virtual Submitter via P2PDC environment. Then,

Virtual Submitter makes the result aggregation and sends the �nal result to the

Portal. In the latter case, workers send directly results to the Portal. The OML

Server on the Portal stores results measurement streams into database or in a �le.

Users can retrieve results from the Portal. Furthermore, they can write some R script

so as the Portal can be able to create graphs or tables representation of the results.

We note that there may be several Portals on the network. Any organization or

even any individual user can install its own Portal. With the presence of the Portal,

users do not need to stay connected when the computation is running. They can

reconnect later on and retrieve the result from the Portal.

112

Chapter 7. Contribution to a web portal for P2PDC application

deployment

7.4 A new measurement channel for P2PDC

In this section, we introduce a new measurement channel for P2PDC on OML that

reduces the volume of collected measurements and thus limit the impact of the

measurements on the computation. Afterward, we present the application of this

measurement channel to task deployment. In particular, this part permits one to

give technical details related to task deployment in connection with the previous

section.

7.4.1 Hierarchical measurements collection

Current OML architecture provides users with �lters enabling to perform some pre-

processing on a speci�c measurement stream at the resource that produces it. How-

ever, in many experiments, users do not need measurements from every nodes but

integrated metrics over these measurements streams. For example, in the solution

of a numerical simulation problem on peer-to-peer network, users want to collect

periodically the computational error of overall computation which is the maximum

computational error on all nodes in order to trace the evolution of the solution.

The measurement architecture of this experiment with current OML is depicted in

Figure 7.4.

Control node

OML
Server

Database

Node 1
MP

Node 2
MP

Node n-1
MP

Node n
MP

…
…

Figure 7.4: Current measurement architecture

In Figure 7.4, users create a measurement point at each node that injects peri-

odically the computational error at this node to OML server. In turn, OML server

stores those measurement streams to a database. Once the experiment has �nished,

users can query the measurement database with basic SQL queries in order to extract

the maximum computational error on all nodes at each time steps from database.

We can note that not only unnecessary data are stored in the database but also

further manipulations need to be made in order to extract necessary information.

Figure 7.5 displays the maximum error in function of the time for the obstacle

problem with 2 peers at NICTA and 2 peers on PlanetLab [Ott 2010]. This results

have been obtained with OML and P2PDC.

Hence, we have proposed to provide users with a new type of �lter that allows

users to perform some preprocessing on several measurement streams from di�erent

resources. Such a preprocessing can dramatically reduce the volume of collected

7.4. A new measurement channel for P2PDC 113

Demonstration of the Federation of OMF Control Framework with PlanetLab
Peer-to-peer resolution of an obstacle problem using the P2Pdc framework

Scenario:

- Distributed Application for Problem Solving
- Obstacle Problem (Fixed Point Problem)
- Peer Application deployed on resources:
 - on an OMF-managed testbed
 - on machines on PlanetLab

- OMF Control deployed both type of resources
- OMF Measurement deployed both type of resources
- OMF Aggregate Manager deployed for each testbed

Measurement
Collection

Aggregate Manager

PubSub Server

Control Network

Experimental
Network

(the Internet)

Measurement
Collection

Aggregate
Manager

Experiment
Controller

Experiment
Description

PubSub
Server

Resource
Controller

Measurement
Library

P2P Problem
solving Client

Resource
Controller

Measurement
Library

P2P Problem
solving Client

Resource
Controller

Measurement
Library

P2P Problem
solving Client

Internet

Resource
Controller

Measurement
Library

Resource
Controller

Measurement
Library

Resource
Controller

Measurement
Library P2P

Problem
solving
Client

Aggregate A (OMF testbed)

Aggregate B (PlanetLab)

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03
3 5 7 9 11 13 15 17 19 21 23

 2 Peers

 4 Peers

Epsilon (precision of solution) vs Time (s)
for two runs with 2 and 4 peers, respectively

Partners:

Figure 7.5: Maximum error measurement for the obstacle problem with 2 peers at

NICTA and 2 peers on PlanetLab

measurements and thus limit the impact of the measurements on the computation.

In order to even more minimize impact to current architecture, the new type of

�lter is implemented on an OML proxy-server [White 2010]. The proxy-server can

be placed in the same machine as OML Server or in a separate machine. The

measurement architecture is displayed in Figure 7.6.

Control node

OML
Server

Database

Node 1
MP

Proxy-server
Node 2

MP

Node n-1
MP

Node n
MP

…
…

Figure 7.6: Hierarchical measurement architecture

In Figure 7.6, node does not inject measurement stream directly to OML Server

but to an OML proxy-server. A max(.) �lter is implemented on the proxy-server

that calculates the maximum computational error from n entering streams (where

n is the number of nodes) at each time step and forwards this value to OML Server.

Hence, the volume of collected measurements stored in database at OML Server is

reduced n times. Moreover, users do not need to make any further manipulation on

collected measurements.

In large scale experiments, where the number of nodes involved is large and nodes

spread over network, if only an OML server (or a proxy-server) collects all measure-

114

Chapter 7. Contribution to a web portal for P2PDC application

deployment

ment streams from all nodes, then the OML server (or the proxy-server) may become

a bottleneck that leads to e�ciency reduction of measurement collection. With the

presence of �lters on proxy-server, we can deploy a hierarchical measurement archi-

tecture that not only avoids the bottleneck at OML Server (or proxy-server) but

also reduces the volume of measurement data sent over long-distance link. The

measurement architecture can be summarized as in Figure 7.7.

Control node

OML
Server

Database

Node
MP

Proxy-server

Node
MP

Node
MP

Node
MP

Node
MP

Proxy-server

Node
MP

Node
MP

Node
MP

Proxy-server
…
…
…
...

Figure 7.7: Multi-level hierarchical measurement architecture

Then, we can put inside a group of nearby nodes a proxy-server implementing a

�lter that pre-processes measurement streams injected by peers in this group. After-

ward, a top-level proxy-server integrates measurement streams injected by group's

proxy-servers and forwards integrated metrics to OML Server. We can remark that

measurement streams of a group of nearby nodes are pre-processed locally inside

this group and only one measurement stream is sent from a given group to top-level

proxy-server.

7.4.2 Application to task deployment

At the beginning of the solution of a problem via a parallel iterative algorithm,

the initial dataset is decomposed into n parts and each part needs to be sent to

corresponding peers. In the P2PDC architecture, when a programmer de�nes a

task, he needs to read the dataset from a binary �le, he decomposes it into subsets

and integrates data subsets to subtasks as parameters; then, data subsets are sent

along with subtasks to peers. With the integration of P2PDC and OMF/OML, task

submission is done through OMF Portal. The data �le of a task is uploaded to a

File Repository on the OMF Portal and needs to be distributed to peers when the

computation begins. In this subsection, we present an e�cient method that makes

use of the measurement library OML in order to distribute the dataset to peers.

We recall that the measurement library OML allows researchers to de�ne mea-

surement points inside their program and then create automatically measurement

7.4. A new measurement channel for P2PDC 115

streams to store either locally or in a remote server. In our case, we want to use

this library in a reverse manner whereby we will inject data to distribute to several

clients instead of having several clients injecting measurements that would be col-

lected by a server. The �gure 7.8 gives the general idea on how to use OML for task

deployment.

OMF Portal

P2PDC
Submitter

File
repository

Peer list & file name

P1

P2

Pn

Pn-1

Proxy-server

P2PDC Worker

Proxy-server filter

Client filter

Measurement point

…
…

Figure 7.8: Task deployment via OML

In the case of a general problem that can be solved via parallel iterative al-

gorithms, the dataset is often in the form of a matrix with d dimensions with

d = 1, 2, 3, . . . and the data type can be int, �oat, double, etc. For example,

in a 3D obstacle problem of size 128, the dataset is a three dimension matrix

128× 128× 128. In the solution of this problem via 4 peers, the dataset is decom-

posed according to pillar decomposition into 4 sub-matrices: [0−63][0−63][0−127],

[0−63][64−127][0−127], [64−127][0−63][0−127], [64−127][64−127][0−127]; then,

each sub-matrix is sent to a peer. In our method, users need to write an xlm �le

that de�nes the dataset decomposition. The xml �le related to the above example

is displayed in the listing 7.1.

Listing 7.1: XML con�guration �le

1 <P2PDC_data dim=’3’ size=’128’>
2 <peer rank=’0’ segment=’[0-63][0-63][0-127]’/>
3 <peer rank=’1’ segment=’[0-63][64-127][0-127]’/>
4 <peer rank=’2’ segment=’[64-127][0-63][0-127]’/>
5 <peer rank=’3’ segment=’[64-127][64-127][0-127]’/>
6 </P2PDC_data>

The xml �le needs to be uploaded to the File Repository on the OMF Portal

along with data �les.

116

Chapter 7. Contribution to a web portal for P2PDC application

deployment

A proxy-server is placed on OMF Portal in order to distribute automatically

dataset to peers. When an experiment starts, the P2PDC Submitter injects a mea-

surement point that contains the list of peers and name of data �le as well as xml

�le to the proxy-server of OMF Portal. The proxy-server of OMF Portal transfers

this measurement to a speci�c �lter, the so-called Init_Portal_Proxy �lter. This

speci�c �lter does not write any data to output but creates n OML client �lters

of type Init_Portal_Client (n is the number of peers) and sets parameters to each

�lter based on information in the xml �le; it is done via the creation an xml �le for

OML Client. The created xml �le for OML Client in the above example is displayed

in the listing 7.2.

Listing 7.2: XML con�guration �le for �lters

1 <omlc id=’P2P_Initialiser’ exp_id=’1298606048’>
2 <collect url=’tcp:163.117.253.22:3003’>
3 <mp name=’mp_init_data’ samples=’2097152’>
4 <f fname=’Init_Portal_Client’ pname=’value’ sname=’P2PDC_init’>
5 <fp name=’dim’ type=’int’>3</fp>
6 <fp name=’size’ type=’int’>128</fp>
7 <fp name=’segment’ type=’string’>[0-63][0-63][0-127]</fp>
8 </f>
9 </mp>

10 </collect>
11 <collect url=’tcp:163.117.253.23:3003’>
12 <mp name=’mp_init_data’ samples=’2097152’>
13 <f fname=’Init_Portal_Client’ pname=’value’ sname=’P2PDC_init’>
14 <fp name=’dim’ type=’int’>3</fp>
15 <fp name=’size’ type=’int’>128</fp>
16 <fp name=’segment’ type=’string’>[0-63][64-127][0-127]</fp>
17 </f>
18 </mp>
19 </collect>
20 <collect url=’tcp:193.136.124.226:3003’>
21 <mp name=’mp_init_data’ samples=’2097152’>
22 <f fname=’Init_Portal_Client’ pname=’value’ sname=’P2PDC_init’>
23 <fp name=’dim’ type=’int’>3</fp>
24 <fp name=’size’ type=’int’>128</fp>
25 <fp name=’segment’ type=’string’>[64-127][0-63][0-127]</fp>
26 </f>
27 </mp>
28 </collect>
29 <collect url=’tcp:193.136.124.228:3003’>
30 <mp name=’mp_init_data’ samples=’2097152’>
31 <f fname=’Init_Portal_Client’ pname=’value’ sname=’P2PDC_init’>
32 <fp name=’dim’ type=’int’>3</fp>
33 <fp name=’size’ type=’int’>128</fp>
34 <fp name=’segment’ type=’string’>[64-127][64-127][0-127]</fp>
35 </f>
36 </mp>
37 </collect>
38 </omlc>

7.5. Chapter summary 117

Then the Init_Portal_Proxy �lter reads the data �le and injects sequentially

data values to all Init_Portal_Client �lters. When an Init_Portal_Client �lter

receives a data value, it knows if it must treat this data value based on �lter param-

eters. When data is injected, Init_Portal_Client �lters send data to peers. On each

peer, a proxy-server will receive measurement stream from Init_Portal_Client �lter

on the OMF Portal and transfers this measurement stream to a so-called Init_Peer

�lter. Like Init_Portal_Proxy �lter, Init_Peer �lter does not write any data to

output but sends data to P2PDC worker. The communication between Init_Peer

�lter and P2PDC Worker is made via local socket.

We present now a �rst series of computational results obtained with OMF and

P2PDC on the PlanetLab testbed. We note that in these experiments we have used

only the new measurement channel for task deployment; P2PDC is not yet combined

with OMF Portal.

PlanetLab is a global research network that supports the development of new

network services. Since the beginning of 2003, more than 1,000 researchers at top

academic institutions and industrial research labs have used PlanetLab to develop

new technologies for communication protocols, distributed storage, network map-

ping, peer-to-peer systems, distributed hash tables, and query processing. Planet-

Lab currently consists of 1109 nodes at 512 sites.

We have collected 24 machines from 12 sites (2 machines on each site): 4 sites

in US and 8 sites in Europe. Latency between machines at a same site is about 0.1

ms while latency between machines of di�erent sites varies from 30 ms to 330ms.

Machines are heterogeneous; processor's frequency varies from 2.4 to 3.0 GHz.

We have considered a 3-Dimensional obstacle problem with size 192 x 192 x 192.

Experiments have been carried out on 1, 2, 4, 8, 16 and 24 machines. Computational

time in the sequential case, i.e. with one machine, varies from 3158 s to 6555 s

according to the features of the machine. The synchronous schemes are not suited

to this type of networks, since latency is much greater than the duration of a single

relaxation. Hence, we have considered only the asynchronous scheme. Moreover,

PlanetLab limits the bandwidth used in 24 hours, thus we have reduced update's

frequency in order to respect PlanetLab user's charter: a node sends updates to its

neighbors every 10 relaxations. Through experiments, we found that the reduction

of update's frequency increases computational time from 5% to 10%.

Computational results are presented in Figure 7.9. We note that the sequential

computational time of the fastest machine is used in order to calculate speedup and

e�ciency.

7.5 Chapter summary

In this chapter, we have presented the contribution to a web portal for P2PDC

application deployment. This Portal is the combination of P2PDC with tools de-

veloped at NICTA, i.e. OML, OMF and OMF Portal. We have given the �rst ideas

related to the Portal architecture and explained how this Portal can facilitate the

118

Chapter 7. Contribution to a web portal for P2PDC application

deployment

Figure 7.9: Computational results on PlanetLab

deployment, management of P2PDC applications as well as the retrieval and anal-

ysis of results. We have also introduced a new measurement channel for P2PDC on

OML that reduces the volume of collected measurements and thus limit the impact

of the measurements on the computation.

Chapter 8

Conclusions and perspectives

In this manuscript, we have presented our contributions to peer-to-peer high per-

formance computing. In particular, we have shown how we have designed and

implemented P2PSAP, a self-adaptive communication protocol dedicated to P2P

HPC applications. P2PSAP protocol is designed in order to allow rapid update

exchange between peers in the solution of numerical simulation problems via dis-

tributed iterative algorithms. The protocol can con�gure itself automatically and

dynamically in function of application requirements like choice of scheme of com-

putation and elements of context like topology by choosing the most appropriate

communication mode between peers. We note that this approach is di�erent from

existing communication libraries for high performance computing like MPICH/-

Madeleine [Aumage 2001] in allowing the modi�cation of internal transport proto-

col mechanism in addition to switch between networks. P2PSAP protocol has been

implemented on a small network for the solution of nonlinear optimization prob-

lems, i.e. network �ow problems. A �rst set of computational experiments shows

that the protocol permits one to obtain good e�ciency particularly when using

asynchronous communications or a combination of synchronous and asynchronous

communications.

In chapter 4, we have presented the �rst version of P2PDC, an environment for

peer-to-peer high performance computing. We have described the general architec-

ture of P2PDC along with its main functionalities. We have proposed a program-

ming model for P2PDC that facilitates the work of programmer. Indeed, in order

to develop an application, programmers have to write code for only three functions;

all others support activities are carried out automatically by the environment. In

particular, the communication operation set is reduced, programmers do not have to

care about the choice of communication mode, they just care or not about the choice

of a given iterative scheme of computation, e.g. synchronous, asynchronous. The

development of an application with P2PDC takes less programmer e�ort than with

MPI and PVM. The �rst implementation of P2PDC with centralized and simpli�ed

functionalities has also been studied. Finally, we have displayed and analyzed com-

putational results on the NICTA platform with up to 24 machines for a numerical

simulation problem, i.e. the obstacle problem. Computational results have shown

that the combination of P2PSAP with P2PDC allows to solve e�ciently numeri-

cal simulation problems via distributed iterative methods, in particular when using

asynchronous or hybrid schemes of computation.

In chapter 5, we have presented the decentralized version of P2PDC that in-

cludes new features aimed at making P2PDC more scalable and e�cient. Indeed,

120 Chapter 8. Conclusions and perspectives

the resources manager is based on a hybrid topology that is simple but e�cient and

which facilitates peers collection for computation. The hierarchical task allocation

mechanism accelerates task allocation to peers and avoids connection bottleneck

at submitter. Furthermore, a �le transfer functionality has been implemented that

allows to transfer e�ciently �les between peers. Moreover, the communication op-

eration set has been extended in order to facilitate the implementation of some

asynchronous algorithms and their convergence detection and termination, with ap-

plication to evolution problems in particular [Garcia 2011]. Experiments for the ob-

stacle problem have been carried out on GRID'5000 platform with up to 256 peers.

A pillar decomposition has been proposed that reduces the total size of messages sent

by workers after each relaxation as compared with slice decomposition presented in

chapter 4. A convergence detection and termination method designed by Bertsekas

[Bertsekas 1991] has been implemented for asynchronous iterative schemes that de-

tects exactly the termination and reduces unnecessary relaxations. Computational

results show that the pillar decomposition improves signi�cantly the e�ciency of

computations. Moreover, we have obtained a good e�ciency (0.78) for asynchronous

iterations in the case where upto 256 machines distributed over 8 clusters at 5 sites

are used. This shows the interest of combining asynchronous schemes of computa-

tion with the decentralized environment P2PDC.

In chapter 6, we have presented the fault-tolerance mechanisms in P2PDC to

cope with peer volatility. The fault-tolerance mechanisms can adapt themselves

to peer roles and computational schemes. For worker failure, the rollback recov-

ery techniques have been chosen: while the coordinated checkpointing strategy is

implemented in synchronous case, the uncoordinated checkpointing strategy is im-

plemented in asynchronous case. For coordinator failure, the replication technique

has been chosen. Experiments on Grid'5000 with fault injection for the obstacle

problem showed that the fault-tolerance mechanisms in P2PDC have small impact

on the computation even with a great amount of failures. Synchronization between

coordinator replicas and coordinator failure appears to have negligible impact on

computation.

Finally, in chapter 7, we have presented the �rst ideas related to the use of

OML, OMF and its Web portal in order to facilitate the deployment of P2PDC

applications on peer-to-peer networks. Some aspects related to measurements in

P2P applications have also been presented.

It is noted that the P2PDC environment has been used with success by several

teams in France and Australia. The team MIS has implemented e�ciently several

parallel algorithms for 2D cutting stock problems [Hi� 2011]. The team at IRIT-

ENSEEIT has also implemented e�ciently electrophoresis problems and evolution

Black-Scholes equations [Chau 2011, Garcia 2011]. The team at NICTA Sydney

Australia has made some implementation of distributed iterative method for nu-

merical simulation problem on PlanetLab [Ott 2010]. Moreover, the team at LIFC

has integrated P2PDC into the simulation tool P2PPerf so as to make prediction of

performance for several scenarios [Cornea 2011].

In future work, we note that it is needed to improve the communication protocol,

121

the application code and in particular decomposition schemes as well as the decen-

tralized environment so as to obtain better e�ciencies in massively parallel context.

As a matter of fact, the need for scalable architectures is particularly important in

peer-to-peer computing.

Hybrid methods that combine synchronous and asynchronous iterative schemes

and that have been introduced in this thesis need further investigation, in particular

in the case of high bandwidth network like Myrinet and In�niband. We believe this

new type of parallel and distributed iterative algorithms to be very e�cient in this

context.

It is also important to design an e�cient way to deploy computations on peer-

to-peer networks. The approach combining the decentralized P2PDC environment

with OML, OMF and its Portal must be investigated further on in order to facilitate

the deployment and management of P2P HPC applications. The use of a web portal

will surely draw more P2PDC users. We note also that using OML measurements in

combination with P2PDC can permit one to carry out steering of iterative methods.

In particular, one can encompass to use OML measurements in the solution of some

nonlinear optimization problems so as to switch from a gradient method to Newton

method when the iterate vector is close to the solution. This will permit one to

improve the convergence rate of the implemented method.

Other applications have to be considered in order to validate our approach. In

particular, several logistic applications related to the solution of complex problems

like traveling salesman or multi-dimensional knapsack problems have to be consid-

ered as well as others numerical simulation applications.

The combination of peer-to-peer computing with a new approach like GPU com-

puting deserves also to be investigated.

Appendix A

OMF's Experiment Description

Language

A.1 OMF's Experiment Description Language (OEDL)

OMF [Rakotoarivelo 2009, omf] de�nes and uses a Domain-speci�c Language to de-

scribe an experiment. This language is named OEDL, standing for OMF Experiment

Description Language.

OEDL which is based on the Ruby language [rub] provides a set of speci�c

OMF commands and statements. A new user does not need to know Ruby to

write experiment description with OEDL. User can get started with only some basic

OEDL commands and syntax. However, user will need to have some general entry-

level programming knowledge.

An OMF Experiment Description (ED) is composed of two parts in the following

order:

• Resource Requirements and Con�guration: this part enumerates the

di�erent resources that are required by the experiment, and describes the

di�erent con�gurations that need to be applied to them.

• Task Description: this part is essentially a state-machine, which enumerates

the di�erent tasks to perform with the required resources in order to realize

the experiment.

The OEDL commands can be grouped into the following categories:

• Top-level commands: can be used anywhere within the ED, i.e. in any of

the two parts mentioned above. These commands allow to set experiment

properties and to manage logging messages. For example,

defProperty('rate', 300, 'Bits per second sent from sender')

de�nes the property rate with the initial value 300 in order to present the

number of bit par second sent from sender.

• Topology-speci�c commands: are used in the Resource Requirements and Con-

�guration section of the ED. They allow the de�nition of the topology involv-

ing speci�c resources, and some potential related constraints. For example,

defTopology('test:topo:origin', [1-4])

124 Appendix A. OMF's Experiment Description Language

de�nes a topology that contains four speci�c nodes.

• Group-speci�c commands: are used in the Resource Requirements and Con-

�guration section of the ED. They allow the de�nition of a given group of

resources, the description the speci�c resources that should be placed in that

group, and the con�guration to apply to them if needed. For example,

defGroup('receivers', [1-2])

de�nes the group receivers that includes two speci�c nodes

• Prototype-speci�c commands: are used in the Resource Requirements and

Con�guration section of the ED. These commands allow de�nition of an OMF

prototype. This group is composed of a main command defPrototype to de�ne

a new prototype and a list of sub-commands to specify the prototype like

proto.name, proto.description.

• Application-speci�c commands: are used in the Resource Requirements and

Con�guration section of the ED. They allow the de�nition of a OMF applica-

tion. This group is composed of a main command defApplication and a list of

sub-commands to specify the application like app.shortDescription, app.path.

• Execution-speci�c commands: are used in the Task Description section of

the ED. They allow the de�nition of the di�erent tasks to execute when the

experiment reaches a speci�c state. For example,

group('receivers').startApplications

starts application at all nodes of receivers group.

• Resource Paths: are used in any section of the ED. A resource path allows

the access and the value assignment of a speci�c con�guration parameter to

a resource. For example,

node.net.eth0.ip = '192.168.1.1'

assigns the IP address 192.168.1.1 to network card eth0 at a given node.

• Testbed-speci�c commands: are only available for speci�c testbed deploy-

ments, i.e. they act on particular types of resources that are only available

on some speci�c testbeds. For example, antenna command injects noise into

the testbed through the available antennas.

Some of these commands also provide a list of sub-commands. These sub-commands

will only be usable when associated with the parent command.

A.2. Examples of experiment description 125

A.2 Examples of experiment description

Listing A.1 presents the experiment description in the case where the size of the

obstacle problem is 96 × 96 × 96, the computational scheme is synchronous and 4

workers inside a same cluster are used.

Listing A.1: Examples of experiment description �les

1 #
2 # Define the P2PDC application for submitter
3 #
4 defApplication(’P2PDCAppSubmitter’, ’P2PDCAppSubmitter’) do |app|
5 app.shortDescription = "P2PDC wrapper application for submitter"
6 app.path = "/P2PDC/Peer/P2PDC eth0 obstacle 96 1 4"
7 app.defMeasurement(’mp_submitter’) do |m|
8 m.defMetric(’NbrIters’, :long)
9 m.defMetric(’Time’, :float)

10 end
11 end
12

13 #
14 # Define submitter’s group
15 #
16 defGroup(’submitterGroup’, ’omf.nicta.node9’) do |node|
17 node.addApplication(’P2PDCAppSubmitter’) do |app|
18 app.measure(’mp_submitter’, :samples => 1)
19 end
20 end
21

22 #
23 # Define the P2PDC application for workers
24 #
25 defApplication(’P2PDCAppWorker’, ’P2PDCAppWorker’) do |app|
26 app.shortDescription = "P2PDC wrapper application for workers"
27 app.path = "/P2PDC/Peer/P2PDC eth0"
28 app.defMeasurement(’mp_worker_result’) do |m|
29 m.defMetric(’rank’, :int)
30 m.defMetric(’NbrIters’, :int)
31 end
32 app.defMeasurement(’mp_worker_diff’) do |m|
33 m.defMetric(’rank’, :int)
34 m.defMetric(’Iters’, :int)
35 m.defMetric(’diff’, :float)
36 end
37 end
38

39 #
40 # Define worker’s group
41 #
42 defGroup(’workerGroup’, ’omf.nicta.node10,omf.nicta.node12,omf.nicta.

node3,omf.nicta.node2’) do |node|
43 node.addApplication(’P2PDCAppWorker’) do |app|
44 app.measure(’mp_worker_result’, :samples => 1)
45 app.measure(’mp_worker_diff’, :samples => 1)

126 Appendix A. OMF's Experiment Description Language

46 end
47 end
48

49 onEvent(:ALL_UP_AND_INSTALLED) do |event|
50

51 group(’workerGroup’).startApplications
52 wait 5
53

54 group(’submitterGroup’).startApplications
55

56 # Wait for application execution
57 wait 800
58

59 # Stop the expiriment
60 Experiment.done
61 end

Appendix B

How to write and run P2PDC

applications

B.1 How to write a P2PDC application

A P2PDC application must include header �le P2PDC.h and implements the fol-

lowing functions:

• int TaskDe�nition(P2PTask* pTask)

• int Calculate(P2PSubtask* pSubtask)

• int ResultsAggregation(P2PTask* pTask)

In TaskDe�nition function, one can analyze parameters that user inputs at

startup and set task, subtasks parameters. For the Task, one must set:

• pTask->scheme: choice of computation scheme (SCHEME_SYN,

SCHEME_ASYN, SCHEME_HYBRID).

• pTask->cSubtasks (number of subtasks) and pTask->cPeers (number of

peers). For the moment, those two parameters must have same value, i.e.

one peer executes only one subtask.

• pTask->pSubtasks: pointer points to an array of subtasks.

For each subtask, one can set subtask owner parameters in params �eld and the

size of this params �eld in the params_size �eld.

Each subtask will be assigned automatically a rank that is equal to its index

in the subtask array (0, . . . , cSubtasks− 1). P2PDC environment will collect peers

and send subtasks to peers automatically.

In Calculate function, one writes the code to compute a subtask. One can

retrieve subtask rank (iRank �eld) and subtask parameters (in params �eld). One

can use communication operations described in section 5.6 to communicate between

peers. In the end of this function, one must set the result of subtask in result �eld

and size of result in result_size �eld. Subtask result will be sent automatically to

task submitter peer.

In ResultAggregation function, one obtains results of all subtasks. One can ma-

nipulate results, i.e. write to an output (console, �le).

128 Appendix B. How to write and run P2PDC applications

B.2 Compile and run a P2PDC application

B.2.1 Compile a P2PDC application

One must compile an application as a shared library (.so in linux) and place it in

Problems folder. Name of shared library is the name of the application.

B.2.2 Run a P2PDC application

Attention: One must add P2PComm and Problems folder path to

$LD_LIBRARY_PATH environment variable before running P2PDC environment.

• Run the resources manager server in the Server folder:

./Server

• Modify IP address (or domain name) of server in Tracker/db/Server and

P2PDC/data/Server �les.

• Run a Tracker in Traker folder:

./Tracker

• Start worker in P2PDC folder:

./P2PDC [netif_name]

where netif_name is the network interface used to communicating with others

workers, e.g. eth0 or eth1.

Remark: On NICTA and PlanetLab testbeds, workers are started automat-

ically by OMF framework. On Grid'5000 testbed, in order to avoid starting

manually a large number of workers, one can create a customized image of

environment where the worker program is con�gured as a startup program.

At the beginning of experiments, one deploys this image on machines so that

worker program is started automatically on machines.

• Start submitter in P2PDC folder:

./P2PDC [netif_name] [-ft] [problem_name] [parameters]

where

• netif_name is the network interface used to communicating with others

workers, e.g. eth0 or eth1;

• -ft is the fault-tolerance option.

• problem_name is the name of the problem.

• parameters are parameters of the application that will be passed to

TaskDe�nition function.

Appendix C

List of publications

Papers in international conferences and workshops

1. Didier El Baz, The Tung Nguyen, A self-adaptive communication pro-

tocol with application to high performance peer-to-peer distributed

computing, in Proceedings of the 2010 18th Euromicro Conference on Paral-

lel, Distributed and Network-based Processing , p.p 327�333, Pisa, Italy, Febru-

ary 2010.

2. The Tung Nguyen, Didier El Baz, Pierre Spiteri, Guillaume Jourjon, Ming

Chau , High Performance Peer-to-Peer Distributed Computing with

Application to Obstacle Problem, HOTP2P 2010 in conjunction with

IEEE IPDPS 2010, Atlanta, USA, April 2010.

3. Thierry Garcia, Ming Chau, The Tung Nguyen, Didier El-Baz, Pierre Spiteri,

Asynchronous peer-to-peer distributed computing for �nancial ap-

plications, PDSEC 2011 in conjunction with IEEE IPDPS 2011, Anchorage,

USA, May 2011.

4. Bogdan Florin Cornea, Julien Bourgeois, The Tung Nguyen, Didier El Baz,

Performance Prediction in a Decentralized Environment for Peer-

to-Peer Computing, HOTP2P 2011 in conjunction with IEEE IPDPS 2011,

Anchorage, USA, May 2011.

Posters

1. Didier El Baz, The Tung Nguyen, Julien Bourgeois, Bogdan Florin Cornea,

Pierre Spiteri, Mhand Hi�, Tou�k Saadi, Nawel Haddadou, Projet ANR-

CIP : Calcul intensif pair à pair, Poster Colloque Ter@tec 2009, Supélec,

July 2009.

2. The Tung Nguyen, Didier El Baz, Un protocole de communication auto-

adaptatif pour le calcul intensif pair à pair, Poster Rempar 19, Toulouse,

September 2009.

3. Didier El Baz, The Tung Nguyen, Julien Bourgeois, Bogdan Florin Cornea,

Pierre Spiteri, Thierry Garcia, Mhand Hi�, Tou�k Saadi, Nawel Haddadou,

ANR 07 CIS : Calcul Intensif Pair à Pair (CIP), Poster Grand Colloque

STIC, Paris, January 2010.

130 Appendix C. List of publications

4. Max Ott, Guillaume Jourjon, The Tung Nguyen, Didier El Baz, Demo of the

Federation of OMF Control Framework with PlanetLab: Peer-to-

peer resolution of an obstacle problem using the P2PDC framework,

Poster 7th GENI Engineering Conference, Durham, Georgia, USA, March

2010.

Bibliography

[Al-Dmour 2004] N.A. Al-Dmour and W.J. Teahan. ParCop: a decentralized peer-

to-peer computing system. In Parallel and Distributed Computing, 2004.

Third International Symposium on/Algorithms, Models and Tools for Paral-

lel Computing on Heterogeneous Networks, 2004. Third International Work-

shop on, pages 162 � 168, July 2004. (Cited on page 15.)

[Anderson 2004] David P. Anderson. Boinc: A system for public-resource computing

and storage. In 5th IEEE/ACM International Workshop on Grid Computing,

pages 4�10, 2004. (Cited on pages 14 and 96.)

[Andrade 2003] Nazareno Andrade, Walfredo Cirne, Francisco Brasileiro and Paulo

Roisenberg. OurGrid: An approach to easily assemble grids with equitable re-

source sharing. In Proceedings of the 9thWorkshop on Job Scheduling Strate-

gies for Parallel Processing, pages 61�68, June 2003. (Cited on page 15.)

[anr] ANR-07-CIS7-011 web site. http://spiderman-2.laas.fr/CIS-CIP/. (Cited on

page 3.)

[Arlat 2006] Jean Arlat, Yves Crouzet, Yves Deswarte, Jean-Charles Fabre, Jean-

Claude Laprie and David Powell. Tolérance aux fautes. In Encyclopédie de

l'informatique et des systèmes d'information. Vuibert, Paris, France, 2006.

(Cited on pages 92 and 93.)

[Aumage 2001] Oliver Aumage and Guillaume Mercier. MPICH/Madeleine: a True

Multi-Protocol MPI for High Performance Networks. In 15th International

Parallel and Distributed Processing Symposium (IPDPS'01), 2001. (Cited

on pages 28, 51 and 119.)

[Baudet 1978] G. M. Baudet. Asynchronous iterative methods for multiprocessors.

J. Assoc. Comput., no. 2, pages 226�244, 1978. (Cited on page 21.)

[Beaumont 2011] Olivier Beaumont, Nicolas Bonichon, Philippe Duchon and Hu-

bert Larchevêque. Use of Internet Embedding Tools for Heterogeneous Re-

sources Aggregation. In Heterogeneity in Computing Workshop (HCW) �

IPDPS 2011, Anchorage, Alaska, USA, 2011. (Cited on page 38.)

[Bertsekas 1983] Dimitri P. Bertsekas. Distributed asynchronous computation of

�xed points. Methematical Programming, pages 107�120, 1983. (Cited on

page 21.)

[Bertsekas 1987] Dimitri Bertsekas and Didier El Baz. Distributed Asynchronous

Relaxation Methods for Convex Network Flow Problems. SIAM Journal on

Control and Optimization, vol. 25, no. 1, pages 74�85, 1987. (Cited on

pages 21 and 62.)

132 Bibliography

[Bertsekas 1989] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and dis-

tributed computation: numerical methods. Prentice-Hall, Inc. (republished

in 1997 by Athena Scienti�c), Upper Saddle River, NJ, USA, 1989. (Cited

on pages 17, 21, 23, 62 and 82.)

[Bertsekas 1991] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and distributed

iterative algorithms: a selective survey. Automatica, vol. 25, pages 3�21,

1991. (Cited on pages 23, 24, 82 and 120.)

[Bertsekas 1998] Dimitri P. Bertsekas. Network optimization: Continuous and dis-

crete models. Athena Scienti�c, 1998. (Cited on page 17.)

[Bhaya 1991] Amit Bhaya and E. Kaszkurewicz. Asynchronous block iterative meth-

ods for almost linear equations. Linear algebra and its applications, vol. 154,

pages 478�508, 1991. (Cited on page 22.)

[bit] BitTorrent. http://bitconjurer.org/BitTorrent/. (Cited on page 10.)

[Bo 2003] Chonggang Wang Bo and Bo Li. Peer-to-Peer overlay networks: A survey.

Technical report, 2003. (Cited on page 10.)

[Chajakis 1991] Emmanuel D. Chajakis and Stavros A. Zenios. Synchronous and

asynchronous implementations of relaxation algorithms for nonlinear network

optimization. Parallel Comput., vol. 17, no. 8, page 873�894, October 1991.

(Cited on page 23.)

[Chandy 1985] K. Mani Chandy. Distributed Snapshots: Determining Global States

of Distributed Systems. ACM Transactions on Computer Systems, vol. 3,

page 63�75, 1985. (Cited on page 24.)

[Chau 2007] Ming Chau, Didier El Baz, Ronan Guivarch and Pierre Spiteri. MPI

implementation of parallel subdomain methods for linear and nonlinear con-

vection�di�usion problems. Journal of Parallel and Distributed Computing,

vol. 67, no. 5, page 581�591, May 2007. (Cited on page 20.)

[Chau 2011] Ming Chau, Thierry Garcia and Pierre Spiteri. Proteins separation in

distributed environment computation. In Proceedings of the 2011 interna-

tional conference on Computational science and its applications - Volume

Part II, ICCSA'11, page 648�663, Berlin, Heidelberg, 2011. Springer-Verlag.

(Cited on page 120.)

[Chazan 1969] D. Chazan and W. Miranker. Chaotic relaxation. Lenear Algebra

Appl., pages 199�222, 1969. (Cited on page 21.)

[Cornea 2011] Bogdan Florin Cornea, Julien Bourgeois, The Tung Nguyen and Di-

dier El Baz. Performance Prediction in a Decentralized Environment for

Peer-to-Peer Computing. In IPDPS Workshops - HotP2P'11: International

Workshop on Hot Topics in Peer-to-Peer Systems, Anchorage, Alaska, USA,

2011. IEEE Computer Society Press. (Cited on pages 71 and 120.)

Bibliography 133

[Dean 2004] Je�rey Dean and Sanjay Ghemawat. MapReduce: Simpli�ed Data Pro-

cessing on Large Clusters. OSDI, page 13, 2004. (Cited on page 16.)

[Dejan 2003] S. Milojicic Dejan, Kalogeraki Vana, Lukose Rajan, Nagaraja Kiran,

Pruyne Jim, Richard Bruno, Rollins Sami and Xu Zhichen. Peer-to-Peer

Computing. Rapport technique, 2003. (Cited on page 8.)

[Dijkstra 1980] E. Dijkstra. Termination detection for di�using computations. In-

formation Processing Letters, vol. 11, no. 1, page 1�4, August 1980. (Cited

on pages 23 and 24.)

[El Baz 1990] Didier El Baz. M-functions and Parallel Asynchronous Algorithms.

SIAM Journal on Numerical Analysis, vol. 27, no. 1, pages 136�140, 1990.

(Cited on pages 21 and 62.)

[El Baz 1994] Didier El Baz. Nonlinear systems of equations and parallel asyn-

chronous iterative algorithms. Advances in Parallel Computing, vol. 9, pages

89�96, 1994. (Cited on pages 21 and 62.)

[El Baz 1996a] Didier El Baz. A method of terminating asynchronous iterative al-

gorithms on message passing systems. Parallel Algorithms and Applications,

vol. 9, pages 153�159, 1996. (Cited on page 24.)

[El Baz 1996b] Didier El Baz, Pierre Spiteri, Jean Claude Miellou and Didier Gazen.

Asynchronous iterative algorithms with �exible communication for nonlin-

ear network �ow problems. Journal of Parallel and Distributed Computing,

vol. 38, pages 1�15, October 1996. (Cited on pages 20, 22, 47, 48, 49 and 50.)

[El Baz 1998] Didier El Baz. Contribution à l'algorithmique parallèle. Le concept

d'asynchronisme : étude théorique, mise en ÷uvre et application. Habilitation

à diriger des recherches, 1998. (Cited on pages 2, 18, 22, 24, 62 and 82.)

[El Baz 2005] Didier El Baz, Andreas Frommer and Pierre Spiteri. Asynchronous

iterations with �exible communication: contracting operators. Journal of

Computational and Applied Mathematics, vol. 176, no. 1, page 91�103, April

2005. (Cited on page 20.)

[El Baz 2010] Didier El Baz and The Tung Nguyen. A self-adaptive communication

protocol with application to high performance peer to peer distributed com-

puting. In Proc. of the 18th Euromicro conference on Parallel, Distributed

and Network-Base Processing, 2010. (Cited on page 27.)

[El Tarazi 1981] M.N. El Tarazi. Contraction et ordre partiel pour l'étude

d'algorithmes synchrones et asynchrones en analyse numérique. Thèse d'Etat

faculté des sciences et techniques de l'Université de Franche-Comté besançon,

1981. (Cited on page 21.)

[El Tarazi 1982] M.N. El Tarazi. Some convergence results for asynchronous algo-

rithms. Num. Math., pages 325�340, 1982. (Cited on page 21.)

134 Bibliography

[Elnozahy 2002] E. N. Mootaz Elnozahy, Lorenzo Alvisi, Yi-Min Wang and David B.

Johnson. A survey of rollback-recovery protocols in message-passing systems.

ACM Computing Surveys, vol. 34, pages 375�408, September 2002. (Cited

on page 93.)

[Ernst-Desmulier 2005] Jean-Baptiste Ernst-Desmulier, Julien Bourgeois, Francois

Spies and Jerome Verbeke. Adding New Features In A Peer-to-Peer Dis-

tributed Computing Framework. In Proceedings of the 13th Euromicro Con-

ference on Parallel, Distributed and Network-Based Processing, page 34�41,

Washington, DC, USA, 2005. IEEE Computer Society. (Cited on page 15.)

[Exposito 2003] Ernesto Exposito, Patrick Senac and Michel Diaz. FPTP: the XQoS

aware and fully programmable transport protocol. In 11th IEEE International

Conference on Networks (ICON'2003), Sydney, Australia, 2003. (Cited on

page 30.)

[Felber 1999] Pascal Felber, Xavier Defago, Patrick Th. Eugster and André Schiper.

Replicating Corba Objects: A Marriage Between Active And Passive Replica-

tion. In Proceedings of the IFIP WG 6.1 International Working Conference

on Distributed Applications and Interoperable Systems II, pages 375�388,

Deventer, The Netherlands, The Netherlands, 1999. (Cited on page 92.)

[Floyd a] Sally Floyd and E. Kohler. Pro�le for DCCP Congestion Control ID 2:

TCP-like Congestion Control. RFC 4341. (Cited on page 43.)

[Floyd b] Sally Floyd and E. Kohler. Pro�le for DCCP Congestion Control ID

4: TCP-Friendly Rate Control for Small Packets (TFRC-SP). FRC 4828.

(Cited on page 43.)

[Floyd c] Sally Floyd, E. Kohler and J Padhye. Pro�le for DCCP Congestion Con-

trol ID 3: TCP-Friendly Rate Control (TFRC). RFC 4342. (Cited on

page 43.)

[Floyd 1999] Sally Floyd and T. Henderson. The NewReno Modi�cation to TCP's

Fast Recovery Algorithm. RFC 2582, 1999. (Cited on pages 38 and 40.)

[fol] Folding@home. http://folding.stanford.edu/. (Cited on page 13.)

[Foster 1996] Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastruc-

ture Toolkit. International Journal of Supercomputer Applications, vol. 11,

page 115�128, 1996. (Cited on page 13.)

[fre] The FreeNet Network Project. http://freenet.sourceforge.net. (Cited on

pages 1 and 7.)

[Frommer 1997] Andreas Frommer and Hartmut Schwandt. A Uni�ed Representa-

tion and Theory of Algebraic Additive Schwarz and Multisplitting Methods.

SIAM J. Matrix Anal. Appl., vol. 18, no. 4, page 893�912, October 1997.

(Cited on page 21.)

Bibliography 135

[Garcia 2011] Thierry Garcia, Ming Chau, The Tung Nguyen, Didier El Baz and

Pierre Spiteri. Asynchronous peer-to-peer distributed computing for �nancial

applications. In The 12th IEEE International Workshop on Parallel and

Distributed Scienti�c and Engineering Computing (PDSEC'11), Anchorage,

Alaska, USA, 2011. (Cited on page 120.)

[gen] Genome@home. http://genomeathome.stanford.edu. (Cited on page 13.)

[Genaud 2009] Stephane Genaud and Choopan Rattanapoka. A Peer-to-Peer

Framework for Message Passing Parallel Programs. volume 17 of Advances

in Parallel Computing, pages 118�147. IOS Press, June 2009. (Cited on

pages 16 and 93.)

[Giraud 1991] Luc Giraud and Pierre Spitéri. Résolution parallèle de problèmes

aux limites non linéaires. Modélisation mathématique et analyse numérique,

vol. 25, no. 5, pages 579�606, 1991. (Cited on page 62.)

[gnu] Gnutella Protocol Development. http://rfc.gnutella.sourceforge.net. (Cited

on pages 1, 7, 8 and 11.)

[gri] Grid5000 platform. http://www.grid5000.fr. (Cited on pages 80 and 85.)

[Hi� 2011] Mhand Hi�, Tou�k Saadi and Nawel Haddadou. High Performance

Peer-to-Peer Distributed Computing with Application to Constrained Two-

Dimensional Guillotine Cutting Problem. In Proceedings of the 2011 19th

International Euromicro Conference on Parallel, Distributed and Network-

Based Processing, PDP '11, page 552�559, Washington, DC, USA, 2011.

IEEE Computer Society. (Cited on page 120.)

[Hiltunen 2000] Matti A. Hiltunen and Richard D. Schlichting. The Cactus Ap-

proach to Building Con�gurable Middleware Services. In Proceedings of the

Workshop on Dependable System Middleware and Group Communication,

Nuremberg, Germany, October 2000. (Cited on pages 3, 28, 30 and 31.)

[Hu�aker 2002] Bradley Hu�aker, Marina Fomenkov, Daniel J. Plummer, David

Moore and K Cla�y. Distance Metrics in the Internet. In in IEEE Inter-

national Telecommunications Symposium, pages 200�202, 2002. (Cited on

page 74.)

[Hutchison 1991] Norm Hutchison and Larry L. Peterson. The x-kernel: An ar-

chitecture for implementing network protocols. In IEEE Transactions on

Software Engineering, volume 17, pages 64�76, 1991. (Cited on pages 29

and 31.)

[Jourjon 2005] Guillaume Jourjon and Didier El Baz. Some solutions for Peer to

Peer Global Computing. In Proc. of the 13th Euromicro conference on Par-

allel, Distributed and Network-Base Processing, pages 49�58, 2005. (Cited

on page 9.)

136 Bibliography

[Jourjon 2010] G. Jourjon, T. Rakotoarivelo and M. Ott. From Learning to Re-

searching, Ease the Shift through Testbeds. In Proc. of TridentCom 2010, vol-

ume 46 of LNICST, pages 496�505, Berlin Heidelberg, May 2010. Springer-

Verlag. (Cited on page 110.)

[Jourjon 2011] Guillaume Jourjon, Thierry Rakotoarivelo and Max Ott. A Portal

to Support Rigorous Experimental Methodology in Networking Research. In

TridentCom 2011, April 2011. (Cited on pages 6 and 110.)

[jxt] JXTA project. http://java.net/projects/jxta. (Cited on page 14.)

[Kaszkurewicz 1990] E. Kaszkurewicz and A. Bhaya. On the convergence of parallel

asynchronous block-iterative computations. Linear Algebra and its Applica-

tion, vol. 131, pages 139�160, 1990. (Cited on page 22.)

[kaz] KaZaA. http://www.kazaa.com. (Cited on page 12.)

[Kohler 1999] E. Kohler, M. Handley and Sally Floyd. Datagram Congestion Control

Protocol (DCCP). RFC 2582, 1999. (Cited on pages 2, 4, 39 and 43.)

[Lee 2011] Kyungyong Lee, Tae Woong Choi, Arijit Ganguly, David I. Wolinsky,

P. Oscar Boykin and Renato Figueiredo. Parallel Processing Framework on

a P2P System Using Map and Reduce Primitives. In Parallel and Distributed

Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International

Symposium on, pages 1602 �1609, May 2011. (Cited on page 16.)

[Lions 2002] Jacques-Louis Lions. Quelques méthodes de résolution des problèmes

aux limites non linéaires. Dunod, 2002. (Cited on page 60.)

[Litzkow 1988] M. J Litzkow, M. Livny and M. W Mutka. Condor-a hunter of idle

workstations. In Distributed Computing Systems, 1988., 8th International

Conference on, pages 104 �111, June 1988. (Cited on pages 13 and 93.)

[Lua 2005] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma and Steven

Lim. A survey and comparison of peer-to-peer overlay network schemes.

IEEE Communications Surveys and Tutorials, vol. 7, no. 1-4, page 72�93,

2005. (Cited on page 10.)

[Lubachevsky 1986] Boris Lubachevsky and Debasis Mitra. A chaotic asynchronous

algorithm for computing the �xed point of a nonnegative matrix of unit spec-

tral radius. J. ACM, vol. 33, no. 1, page 130�150, January 1986. (Cited on

page 21.)

[Luenberger 1973] David G. Luenberger. Introduction to linear and nonlinear pro-

gramming. Addison Wesley Publishing Company, 1973. (Cited on page 17.)

[Magoulès 2009] Frédéric Magoulès, Jie Pan, Kiat-An Tan and Abhinit Kumar. In-

troduction to grid computing, volume 10. CRC Press, 2009. (Cited on

page 13.)

Bibliography 137

[Mehani 2011] Olivier Mehani, Guillaume Jourjon, Jolyon White, Thierry Rako-

toarivelo, Roksana Boreli and Thierry Ernst. Characterisation of the E�ect

of a Measurement Library on the Performance of Instrumented Tools. Rap-

port technique, NICTA, Sydney, Australia, May 2011. (Cited on page 108.)

[Miellou 1975] Jean Claude Miellou. Algorithmes de relaxation chaotique à retards.

R.A.I.R.O, no. 1, pages 55�82, 1975. (Cited on pages 21 and 25.)

[Miellou 1985a] Jean Claude Miellou and Pierre Spitéri. Two criteria for the con-

vergence of asynchronous iterations. In Computers and computing, pages

91�95, 1985. (Cited on pages 60 and 62.)

[Miellou 1985b] Jean Claude Miellou and Pierre Spitéri. Un critère de convergence

pour des methodes generales de point �xe. Modélisation mathématique et

analyse numérique, vol. 19, no. 4, pages 645�669, 1985. (Cited on pages 21

and 62.)

[Miellou 1989] Jean Claude Miellou and D. J. Evans. Stopping criteria for parallel

asynchronous algorithms. Computer Studies 503, Loughborough University

of Technology, 1989. (Cited on page 23.)

[Miellou 1990] Jean Claude Miellou, Ph. Cortey-Dumont and M. Boulbrachêne.

Perturbation of �xed-point iterative methods. Advances in Parallel Comput-

ing, vol. 1, pages 81�122, 1990. (Cited on page 25.)

[Miellou 1998] J. C. Miellou, D. El Baz and P. Spiteri. A new class of asyn-

chronous iterative algorithms with order intervals. Mathematics of Com-

putation, vol. 67, page 237�255, 1998. (Cited on pages 20 and 22.)

[Miranda 2001] Hugo Miranda, Alexandre Pinto and Luis Rodrigues. Appia, a Flex-

ible Protocol Kernel Supporting Multiple Coordinated Channels. In Proc. 21st

International conference on Distributed Computing Systems, pages 707�

710, 2001. (Cited on page 29.)

[Mocito 2005] Jose Mocito, Liliana Rosa, Nuno Almeida, Hugo Miranda, Luis Ro-

drigues and Antonia Lopes. Context Adaptation of the Communication Stack.

In Proceedings of the Third International Workshop on Mobile Distributed

Computing, 2005. (Cited on page 29.)

[nap] Napster. http://www.napster.com. (Cited on pages 8 and 10.)

[Nguyen 2010] The Tung Nguyen, Didier El Baz, Pierre Spiteri, Guillaume Jourjon

and Minh Chau. High Performance Peer-to-Peer Distributed Computing with

Application to Obstacle Problem. In Proceedings of HOTP2P/IPDPS2010,

2010. (Cited on page 53.)

[nic] NICTA testbed. http://www.nicta.com.au. (Cited on page 65.)

[omf] OMF Web Page. http://omf.mytestbed.net/. (Cited on pages 65 and 123.)

138 Bibliography

[Oram 2001] Andy Oram. Peer-to-Peer: harnessing the power of disruptive tech-

nologies. O'Reilly Media, February 2001. (Cited on page 8.)

[Ortega 1970] James M. Ortega and Werner C. Rheinboldt. Iterative solution of

nonlinear equations in several variables. SIAM, Philadelphia, PA, USA, 1970.

(Cited on pages 17 and 18.)

[Ott 2010] Max Ott, Guillaume Jourjon, The Tung Nguyen and Didier El Baz.

Demo of the Federation of OMF Control Framework with PlanetLab: Peer-

to-peer resolution of an obstacle problem using the P2PDC framework. In

Poster 7th GENI Engineering Conference, Durham, Georgia, USA, March

2010. (Cited on pages 112 and 120.)

[Owezarski 2008] Philippe Owezarski, Pascal Berthou, Yann Labit and David

Gauchard. LaasNetExp: a generic polymorphic platform for network em-

ulation and experiments. In Proceedings of the 4th International Conference

on Testbeds and research infrastructures for the development of networks &

communities, pages 24:1�24:9, Innsbruck, Austria, 2008. (Cited on page 49.)

[Paweª 2004] Wojciechowski Paweª, Rütti Olivier and Schiper André. SAMOA:

Framework for Synchronisation Augmented Microprotocol Approach. In Pro-

ceedings of the 18th International Parallel and Distributed Processing Sym-

posium, Santa Fe, New Mexico, 2004. (Cited on page 30.)

[r] The R Project for Statistical Computing. at: www.r-project.org/. (Cited on

page 110.)

[Rakotoarivelo 2009] Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon

and Ivan Seskar. OMF: a control and management framework for network-

ing testbeds. In SOSP Workshop on Real Overlays and Distributed Systems,

pages 54�59, New York, NY, USA, 2009. (Cited on pages 65 and 123.)

[Rakotoarivelo 2010] Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon

and Ivan Seskar. OMF: A Control and Management Framework for Network-

ing Nestbeds. SIGOPS Operating Systems Review, vol. 43, no. 4, January

2010. (Cited on pages 6, 108 and 109.)

[Ratnasamy 2001] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp

and Scott Shenker. A scalable content-addressable network. In Proceedings

of the 2001 conference on Applications, technologies, architectures, and pro-

tocols for computer communications, pages 161�172, New York, NY, USA,

2001. (Cited on pages 12 and 72.)

[Reddy 2006] M. Venkateswara Reddy, A. Vijay Srinivas, Tarun Gopinath and

D. Janakiram. Vishwa: A recon�gurable P2P middleware for Grid Com-

putations. In International Conference on Parallel Processing, page 381�390,

2006. (Cited on pages 16 and 96.)

Bibliography 139

[Robert 1969] François Robert. Blocs-H-matrices et convergence des methodes iter-

atives classiques par blocs. Linear Algebra and Application, pages 223�265,

1969. (Cited on page 25.)

[Robert 1975] François Robert, Michel Charnay and François Musy. Itérations chao-

tiques série-parallèle pour des équations non-linéaires de point �xe. Applica-

tions of Mathematics, vol. 20, no. 1, pages 1�38, 1975. (Cited on page 25.)

[Rowstron 2001] Antony I. T. Rowstron and Robert Druschel. Pastry: Scalable,

distributed object location and routing for large-scale peer-to-peer systems.

In Proceedings of the IFIP/ACM International Conference on Distributed

Systems Platforms Heidelberg, pages 329�350, 2001. (Cited on pages 72

and 77.)

[rub] Ruby o�cial site. http://www.ruby-lang.org. (Cited on page 123.)

[Sathya 2010] S. Siva Sathya and K. Syam Babu. Survey of fault tolerant techniques

for grid. Computer Science Review, vol. 4, pages 101�120, 2010. (Cited on

page 92.)

[Savari 1996] S. A. Savari and D. P. Bertsekas. Finite termination of asynchronous

iterative algorithms. Parallel Comput., vol. 22, no. 1, page 39�56, January

1996. (Cited on pages 24 and 25.)

[SCT 2000] Stream Control Transmission Protocol. RFC 2690, 2000. (Cited on

page 2.)

[set] Seti@home. http://setiathome.berkeley.edu/. (Cited on pages 13 and 93.)

[Spitéri 2002] Pierre Spitéri and Ming Chau. Parallel Asynchronous Richardson

Method for the Solution of Obstacle Problem. In Proc. of the 16th Annual

International Symposium on High Performance Computing Systems and Ap-

plications, pages 133�138, Moncton, Canada, 2002. (Cited on pages 5, 60,

61, 62 and 63.)

[Stoica 2003] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger,

M. Frans Kaashoek, Frank Dabek and Hari Balakrishnan. Chord: a scalable

peer-to-peer lookup protocol for internet applications. Journal IEEE/ACM

Transactions on Networking, vol. 11, no. 1, pages 17�32, February 2003.

(Cited on pages 12, 72 and 77.)

[Szyld 1998] Daniel B. Szyld. Di�erent Models Of Parallel Asynchronous Iterations

With Overlapping Blocks. Computational and applied mathematics, vol. 17,

page 101�115, 1998. (Cited on page 21.)

[TCP 1981] Transmission Control Protocol. RFC 793, 1981. (Cited on pages 2

and 28.)

[top] TOP500. http://www.top500.org/. (Cited on page 1.)

140 Bibliography

[Treaster 2005] Michael Treaster. A Survey of Fault-Tolerance and Fault-Recovery

Techniques in Parallel Systems. ACM Computing Research Repository,

vol. 501002, pages 1�11, 2005. (Cited on page 92.)

[Tsitsiklis 1987] J. N. Tsitsiklis. On the Stability of Asynchronous Iterative Pro-

cesses. Mathematical Systems Theory, vol. 20, page 137�153, 1987. (Cited

on page 22.)

[UDP 1980] User Datagram Protoco. RFC 768, 1980. (Cited on pages 2 and 28.)

[Van Wambeke 2008] Nicolas Van Wambeke, François Armando, Christophe Chas-

sot and Ernesto Expósito. A model-based approach for self-adaptive Trans-

port protocols. Journal Computer Communications, vol. 31, no. 11, page

2699�2705, July 2008. (Cited on page 28.)

[Varga 1962] Richard S Varga. Matrix iterative analysis. Prentice Hall, 1962. (Cited

on page 61.)

[Venet 2010] Cédric Venet. Numerical methods for acoustic simulation of large-scale

problems. PhD thesis, Ecole centrale de Paris, 2010. (Cited on page 21.)

[Verbeke 2002] Jerome Verbeke, Neelakanth Nadgir, Greg Ruetsch and Ilya Shara-

pov. Framework for Peer-to-Peer Distributed Computing in a Heterogeneous,

Decentralized Environment. In Proceedings of the 3rd International Work-

shop on Grid Computing, page 1�12. Springer-Verlag, 2002. (Cited on

page 14.)

[White 2010] Jolyon White, Guillaume Jourjon, Thierry Rakotoarivelo and Max

Ott. Measurement Architectures for Network Experiments with Disconnected

Mobile Nodes. In TridentCom 2010, May 2010. (Cited on pages 6, 107

and 113.)

[wik] Wikipedia. http://www.wikipedia.org/. (Cited on page 8.)

[Wong 2001] Gary T. Wong, Matti A. Hiltunen and Richard D. Schlichting. A

Con�gurable and Extensible Transport Protocol. In Proceedings of IEEE

INFOCOM, pages 319�328, 2001. (Cited on pages 28, 32 and 33.)

[xtr] XtremWeb. http://www.xtremweb.net. (Cited on pages 14 and 96.)

[Zhao 2006] Jia Zhao and Jian-De Lu. Solving Overlay Mismatching of Unstructured

P2P Networks using Physical Locality Information. In Proceedings of the

Sixth IEEE International Conference on Peer-to-Peer Computing, pages 75�

76, Washington, DC, USA, 2006. (Cited on page 74.)

	Introduction
	Problem statement
	Contribution
	Project ANR CIP
	Contribution of the thesis

	Structure of the dissertation

	State of the art
	Introduction
	Peer-to-peer systems
	Introduction
	Characteristics
	Architectures

	Distributed computing
	Grid computing
	Global computing
	Peer-to-peer high performance computing

	High Performance Computing, parallel iterative methods
	High Performance Computing
	Parallel iterative methods

	Conclusion

	P2PSAP - A self-adaptive communication protocol
	Introduction
	State of the art in adaptive communication protocols
	Micro-protocol approach
	Cactus framework and CTP protocol

	P2PSAP Protocol architecture
	Socket API
	Data channel
	Control channel

	Example of scenario
	Some modifications to Cactus
	Self-adaptive mechanisms
	Choice of protocol features
	New micro-protocols
	(Re)Configuration

	Computational experiments
	Network flow problems
	Platform
	Computational results

	Chapter summary

	Centralized version of the environment for peer-to-peer high performance computing
	Introduction
	Global architecture
	Programming model
	Communication operations
	Application programming model

	Implementation
	User daemon
	Resource manager
	Application repository
	Task manager

	Computational results
	Obstacle problem
	Implementation
	NICTA testbed and OMF framework
	Problems and computational results

	Chapter summary

	Decentralized environment for peer-to-peer high performance computing
	Introduction
	Hybrid resource manager
	General topology architecture
	IP-based proximity metric
	Topology initialization
	Tracker joins
	Peer joins
	Tracker leaves
	Peer leaves
	Peers collection

	Hierarchical task allocation
	Dynamic application repository
	File transfer
	New communication operations
	Computational experiments
	New approach to the distributed solution of the obstacle problem
	Grid'5000 platform
	Experimental results

	Chapter summary

	Fault-tolerance in P2PDC
	Introduction
	State of the art in fault-tolerance techniques
	Replication techniques
	Rollback-recovery techniques

	Choices of fault-tolerance mechanisms
	Worker failure
	Coordinated checkpointing rollback-recovery for synchronous iterative schemes
	Uncoordinated checkpointing rollback-recovery for asynchronous iterative schemes

	Coordinator failure
	Computational experiments
	Coordinator replication overhead
	Worker checkpointing and recovery overhead
	Influence of worker failures on computational time

	Chapter summary

	Contribution to a web portal for P2PDC application deployment
	Introduction
	Background
	OML
	OMF and its Portal

	Motivation
	A new measurement channel for P2PDC
	Hierarchical measurements collection
	Application to task deployment

	Chapter summary

	Conclusions and perspectives
	OMF's Experiment Description Language
	 OMF's Experiment Description Language (OEDL)
	Examples of experiment description

	How to write and run P2PDC applications
	How to write a P2PDC application
	Compile and run a P2PDC application
	Compile a P2PDC application
	Run a P2PDC application

	List of publications
	Bibliography

