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.1 Problem statement

The design of complex systems like aircrafts and space vehicles requires a very large amount of computational resources. The same remark can be made in the domain of services like meteorology and telecommunications. The most popular solutions use supercomputers that are composed of hundreds thousands of processors connected by a local high-speed computer bus. The system, called the K Computer, at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe, Japan presently keeps the top position of TOP500 list of world's supercomputers [top ].

However, supercomputers are very expensive and are only located in research laboratories and organizations funded by governments and big industrial enterprises.

With the presence of high speed backbone networks, cost-eective solutions that share common resources like supercomputers have been proposed; they correspond to the so-called Grid. Grid permit users of an organization to collect more resources from other organizations. However, resources on the grid are generally managed by administrators with hard system conguration and centralized management that limit the exibility and the availability. Conditions of authentication are also very restrictive for users who want to reserve resources and execute computations.

Recently, Peer-to-Peer (P2P) applications have known great developments.

These applications were originally designed for le sharing, e.g. Gnutella [gnu ] or FreeNet [fre ] and are now considered to a larger scope from video streaming to system update and distributed database. Recent advances in microprocessors architecture and networks permit one to consider new applications like High Performance Computing (HPC) applications. Therefore, there is a real stake at developing new protocols and environments for HPC since this can lead to economic and attractive solutions.

Chapter 1. Introduction

Along with the advances in system architectures, many parallel or distributed numerical methods have been proposed. Among them, parallel or distributed iterative algorithms take an important part [El Baz 1998]. Nevertheless, task parallel model and distributed iterative methods for large scale numerical simulation or optimization on new architectures raises to numerous challenges. This is particularly true in the case of P2P computing where questions related to communication management, resource management, scalability, peer volatility and heterogeneity have to be addressed. In particular, the underlying transport protocols must be suited to the prole of the application. However, existing transport protocols are not well suited to HPC applications. Indeed, transport protocols like TCP [TCP 1981] and UDP [UDP 1980] were originally designed to provide ordered and reliable transmission to the applications and are no longer adapted to both real-time and distributed computing applications. In particular, P2P applications require a message based transport protocol whereas TCP only oers a stream-based communication. Recently, new transport protocols have been standardized such as SCTP [SCT 2000] and DCCP [Kohler 1999]. Nevertheless, these protocols still do not oer the complete modularity needed to reach an optimum solution pace in the context of HPC and P2P.

To the best of our knowledge, most of existing environments for peer-to-peer high performance computing are based on a centralized architecture where the centralized server may become a bottleneck that leads to a single failure point of the system.

Moreover, they are only devoted to bag-of-tasks applications where the application is decomposed into independent tasks with no synchronization nor dependencies between tasks. Few systems consider connected problems where there are frequent communications between tasks like applications solved by parallel or distributed iterative algorithms. Most of them are developed in Java language that is not ecient for HPC applications. We note that the implementation of connected problem is more dicult than bag-of-tasks applications and believe that asynchronous iterative algorithms are well suited to the solution of HPC applications on peer-to-peer networks.

This thesis aims at designing an environment for the implementation of high performance computing on peer-to-peer networks. We are interested in applications in the domains of numerical simulation and optimization that rely on tasks parallel model and that are solved via parallel iterative algorithms. Our environment is built on a decentralized architecture whereby peers can communicate directly. Many aspects are considered like the scalability, resource collection, self-organization and robustness. We have followed a classical approach for the design of distributed computing environments, indeed, we have designed rst a self-adaptive communication protocol dedicated to peer-to-peer computing in order to allow rapid message exchanges between peers. Then, we have designed our decentralized environment. Our approach is developed in C language that is more ecient for HPC applications than Java language.
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Contribution

In this section, we shall enumerate our contributions. We note that this work was funded by ANR under project CIP (ANR-07-CIS7-011) [anr ].

Project ANR CIP

The project ANR CIP coordinated by Dr. Didier El Baz, LAAS-CNRS, started January 2008, it aims at proposing innovative tools and demonstrators for the implementation of high performance computing applications over peer-to-peer networks.

The project is composed of three sub-projects:

Sub-project P2PDC: Environment for peer-to-peer high performance computing.

The sub-project P2PDC, in charge of CDA team at LAAS-CNRS, aims at designing an environment for the implementation of high performance computing applications on peer-to-peer networks.

Sub-project P2PPerf: Simulation tool for peer-to-peer high performance computing.

P2PPerf developed by OMNI team at LIFC is a simulation tool for large scale peer-to-peer computing. P2PPerf permits one to simulate peer-to-peer computations involving thousands peers on several network architectures. The tool P2PPerf is constituted of two modules: the module CompPerf evaluates the computational time of sequential parts of a program; the module NetPerf allows to simulate the network part of a peer-to-peer application.

Sub-project P2PDem: Demonstrators and applicative challenges.

Sub-project P2PDem consists of two parts. P2PPro, developed by the team at MIS, aims at developing demonstrators for complex combinatorial applications that come from the domain of logistic. P2PSimul, developed by the team at ENSEEIHT-IRIT, aims at developing demonstrators for numerical simulation applications. Two problems related to domains of nancial mathematics and process engineering are considered.

Contribution of the thesis

Our contributions concern works done in the framework of the sub-project P2PDC.

They include the following points.

• The design and implementation of a self-adaptive communication protocol (P2PSAP) dedicated to P2P HPC applications. P2PSAP was developed by using the Cactus framework [START_REF] Hiltunen | [END_REF]] that makes use of micro-protocols.

P2PSAP protocol can recongure dynamically by choosing the most appropriate communication mode between any peers according to decisions made at 4

Chapter 1. Introduction the application level or elements of context like topology at transport level. In particular, we have designed a set of micro-protocols like Synchronous, Asynchronous, DCCP Ack, DCCPCongestionAvoidance, respectively that permit one to implement synchronous or asynchronous communications and DCCP congestion control function [Kohler 1999].

• The design and implementation of a decentralized and robust environment (P2PDC) for peer-to-peer high performance computing that makes use of P2PSAP protocol in order to allow direct communications between peers. This contribution is divided into three phases.

The rst phase aims at dening the global architecture of P2PDC with mains functionalities and proposing programming model that is suited to peer-topeer high performance computing applications. In this phase, we have developed a rst version of P2PDC with centralized and simple functionalities.

The goal of the implementation of the centralized version was to validate the programming model by a specic application. Moreover, this allowed us to provide to partners of the project CIP with a programming model and a rst version of P2PDC environment so that they can quickly develop applications for P2PDC.

In the second phase, we have developed a decentralized version of P2PDC that includes some features aimed at making P2PDC more scalable and ecient.

Indeed, a hybrid resource manager manages peers eciently and facilitates peers collection for computation; a hierarchical task allocation mechanism accelerates task allocation to peers and avoids connection bottleneck at submitter. Furthermore, a le transfer functionality was implemented that allows to transfer les between peers.

The last phase deals with fault-tolerance aspects of P2PDC.

We note that the main originalities of our approach are: a decentralized and robust environment that permits frequent direct communications between peers;

an environment developed in C language that is more ecient for HPC applications;

an environment that aims at facilitating programming and which relies on the use of a limited number of communication operations, basically:

send, receive and wait operations; moreover, the programmer does not need to specify the communication mode between any two peers, he rather chooses an iterative scheme of computation, i.e. a synchronous scheme or an asynchronous scheme or let the protocol choose according to elements of context like topology of the network.

the possibility to combine eciently parallel or distributed asynchronous iterative schemes of computation with a peer-to-peer computing environment.
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• The use of P2PDC environment for the solution of a numerical simulation problem, i.e. the obstacle problem [START_REF] Spitéri | Parallel Asynchronous Richardson Method for the Solution of Obstacle Problem[END_REF]] and the test of this application on several platforms like Nicta testbed and GRID'5000 with up to 256 machines. Along with the evolution of P2PDC environment and scaling up experimental platforms, the code for the solution of the obstacle problem has also been modied in order to adapt to these evolutions and to improve the eciency of parallel algorithms. In particular, we have consider several decomposition of the original problem.

Structure of the dissertation

This thesis is organized as follows:

• Chapter 2 presents a state of the art in domains that inspire the contribution of this thesis. We concentrate rst on peer-to-peer systems. Afterwards, we precise approaches related to distributed computing, i.e. grid computing, global computing and peer-to-peer high performance computing. An overview on existing environments for peer-to-peer high performance computing is also presented. Finally, we deal with HPC applications, xed-point problems and parallel iterative algorithms. In particular, asynchronous iterative algorithms are considered.

• Chapter 3 describes the Peer-To-Peer Self Adaptive communication Protocol, a self-adaptive communication protocol dedicated to peer-to-peer high performance computing. We display the architecture of P2PSAP and detail self-adaptive mechanisms of the protocol for peer-to-peer high performance computing. A rst series of computational experiments for a nonlinear optimization problem is presented and analyzed in order to illustrate the behavior of the proposed protocol for HPC applications.

• Chapter 4 presents the rst version of the P2PDC environment. In this chapter, we dene the global architecture of P2PDC with mains functionalities. Moreover, we propose a new programming model that is suited to peer-to-peer high performance computing applications and more particularly applications solved by iterative algorithms. A centralized implementation of P2PDC with simple functionalities is developed in order to validate the programming model. Computational results are displayed and analyzed for a numerical simulation problem solved on NICTA testbed.

• Chapter 5 details the decentralized version of P2PDC that includes some features aimed at making P2PDC more scalable and ecient. Indeed, a hybrid resource manager manages peers eciently and facilitates peers collection for computation; a hierarchical task allocation mechanism accelerates task allocation to peers and avoids connection bottleneck at submitter. Furthermore, a le transfer functionality is implemented in order to allow le Chapter 1. Introduction transfer between peers. Moreover, some modications to the communication operation set are introduced. Experimental results for the obstacle problem on GRID'5000 platform with up to 256 peers are displayed and analyzed.

• Chapter 6 deals with the fault-tolerance mechanisms in P2PDC to cope with peer volatility. The fault-tolerance mechanisms can adapt themselves according to peer role and computational scheme. Computational results are presented and analyzed for several cases with fault injection.

• Chapter 7 presents the rst ideas related to the use of OML [START_REF] White | [END_REF]],

OMF [START_REF] Rakotoarivelo | [END_REF]] and its Web portal [START_REF] Jourjon | [END_REF]] in order to facilitate the deployment of P2PDC applications on peer-to-peer networks. Some aspects related to measurements in P2P applications are also presented.

• Chapter 8 gives some conclusions on our work and deals also with future work.

Chapter 

Introduction

This chapter presents a state of the art in domains that inspire the contribution of this thesis. Section 2.2 concentrates on peer-to-peer systems: the denition and characteristics of peer-to-peer systems are presented. We describe also in this section dierent architectures of peer-to-peer systems. In the section 2.3, we present an overview on existing environments for distributed computing. Sections 2.4 deals with High Performance Computing (HPC) applications and parallel or distributed iterative methods. We present in this section the denition as well as a comparison between synchronous and asynchronous iterative schemes. We concentrate on asynchronous iterative schemes since these schemes seem more attractive than synchronous iterative schemes in the case of heterogeneous architectures like peer-topeer networks.

Peer-to-peer systems

Peer-to-Peer (P2P) systems have become well-known those last years thanks to le sharing systems on the Internet like Gnutella [gnu ] or FreeNet [fre ]. They are now

Introduction

In the literature, there are many denitions of peer-to-peer systems. Denition 2.1 [wik ] Peer-to-peer computing or networking is a distributed application architecture that partitions tasks or workloads between peers. Peers are equally privileged, equipotent participants in the application. Denition 2.2 [Oram 2001] P2P is a class of applications that take advantage of resources storage, cycles, content, human presence available at the edges of the Internet. Because accessing these decentralized resources means operating in an environment of unstable connectivity and unpredictable IP addresses, peer-to-peer nodes must operate outside the DNS and have signicant or total autonomy of central servers. Denition 2.3 [Dejan 2003] The term peer-to-peer refers to a class of systems and applications that use distributed resources to perform a function in a decentralized manner.

In principle, in peer-to-peer systems, all participants play a similar role. This diers from client/server architectures, in which some computers are dedicated to serving the others. For example in the case of le sharing on peer-to-peer networks, computers are taking part in turn to supply and demand, they can be client and server as well; they are peers.

Characteristics

We distinguish several characteristics of peer-to-peer systems.

Decentralization

A centralized entity may become a bottleneck and constitute a single failure point of the overall system. Peer-to-peer systems reduce less or more this drawback according to their architecture (see subsection 2.2.3). In Napster music sharing system [nap ], there is a centralized directory of les but peers download le directly from each others. In the Gnutella 0.4 [gnu ], there is no centralized entity. Nevertheless, the less the entities are centralized in the peer-to-peer systems, the more the implementation is dicult.
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Scalability

The scalability of a P2P network is often described as the main quality of such a system. Scaling is often dened in relationship with the size of the problem and not in relationship with the size of the system. However, in networked systems, the problem of scaling is set, most of the time, along with the size of the network, i.e. the number of nodes and arcs of the graph representing the network according to a topology point of view.

In [START_REF] Jourjon | Some solutions for Peer to Peer Global Computing[END_REF]] G. Jourjon and D. El Baz have proposed a denition of the principle of scalability for a computing system on a peer-to-peer network. Denition 2.4 [START_REF] Jourjon | Some solutions for Peer to Peer Global Computing[END_REF]] The scalability of a P2P network designed for global computing is its capacity to maintain its eciency when peers join or leave the system.

Aspects related to eciency of a global computing system over a P2P network are numerous, including the routing eciency, the search eectiveness, the algorithm's speed, etc.

Transparency

Denition 2.5 [START_REF] Jourjon | Some solutions for Peer to Peer Global Computing[END_REF]] The transparency can be dened as the property to make undistinguished local or remote access to all parts of the task and data set needed for computation.

The above denition means that, whatever happens to the network, each peer still online can have access to the entire set of components for the computation. This can be translated by the fact that we need to envision duplication and a good distribution of this set of data and tasks.

Robustness

Robustness, in a general point of view, is the system's ability to maintain stability when a fault occurs. Faults in a peer-to-peer network are the failures of peers or links. These failures may occur due to several reasons: attacks by viruses, machines turned o, congestion of the rst IP router, etc. If we want to model this event with the help of graph theory, then a fault can be represented by the expulsion of a node and all its incoming and outgoing edges or the removal of an edge.

The robustness of a peer-to-peer network can be dened as follows. Denition 2.6 [START_REF] Jourjon | Some solutions for Peer to Peer Global Computing[END_REF]] The robustness of a P2P network is its capacity to stabilize itself despite failure of some of its components (peers or links).

Chapter 2. State of the art

Performance

The performance is a signicant concern in peer-to-peer systems. These systems aim at improving their performance by aggregating new storage and computer cycles.

However, due to the decentralized nature of the models, the performance is conditioned by three types of resources: processing, storage and network management.

In particular, communication delays can be very signicant in large-scale networks. In this case, bandwidth is an important factor when it comes to spreading a large number of messages or share les between multiple peers. This also limits the scalability of the system.

Architectures

Since their emergence in the late 90s, peer-to-peer systems have evolved and diversied in their architecture. We can classify peer-to-peer networks into three major classes: centralized, decentralized and hybrid architectures [Bo 2003[START_REF] Lua | A survey and comparison of peer-to-peer overlay network schemes[END_REF]]. In the sequel, we will detail these classes of architectures as well as their advantages and drawbacks.

Centralized architecture

The rst class of peer-to-peer networks that corresponds to the rst generation is the centralized architecture that is very similar to the client/server architecture. In this model, a stable central server indexes all the peers of the system and stores information about the content. When receiving a request from a peer, the central server selects another peer in its directory that matches the request. Then, communications are carried out directly between two peers. Examples of this generation are Napster [nap ] and BitTorrent [bit ]. Figure 2.1 shows a diagram of a centralized peer-to-peer architecture.

By centralizing information, this type of architecture makes exhaustive search algorithms particularly eective, with minimal communications; in addition, it is easier to implement. However, the centralized server may become a bottleneck that leads to a single failure point in the system: when the number of peers and requests increases, the server must be a very powerful machine and needs very high bandwidth; moreover, if the server crashes or is attacked successfully by a virus or a malicious person, then the whole system collapses.

Decentralized architectures

The second class of peer-to-peer networks corresponds to decentralized architectures that does not rely on any server. This type of architecture corresponds to the socalled second generation of peer-to-peer networks. Each peer has exactly the same possibilities as other peers and can act as client or server indistinctly. This class can be divided into two subclasses: unstructured and structured. In the rst subclass, the logical topology is often random. Each peer indexes its own shared resources. A request from a peer is broadcasted directly to neighboring peers, which in turn broadcast the request to their neighbors. This is repeated until the application has received the answer or a maximum number of stages of ooding has been reached. One can nd Gnutella 0.4 in this class [gnu ]. The advantage of this class of architecture is to provide a robust system: since each peer turning into client/server indistinctly, the disappearance of one or more of them will not lead to system crash down. In contrary, the communication trac will be heavy and the search much longer. When scaling, the more peers in a network, Chapter 2. State of the art the more communication trac.

In the second subclass, the logical topology is structured like for example in a ring (Chord [START_REF] Stoica | [END_REF]]), d-dimension (CAN [Ratnasamy 2001]), etc. They are often structured topologies using Distributed Hash Tables (DHT). Each peer indexes some of the shared resources of the network and owns some of the hash table of the system. The request is transmitted according to the structured topology and is ensured of success after a specied number of steps has been reached under ideal conditions.

The second class is more robust than the rst class and guarantees the anonymity of peers. It provides self-organization when scaling and oers search time reduction through the hash table. However, this class requires a fairly heavy protocol for maintaining the topology structure.

Hybrid architecture

The third class of peer-to-peer networks corresponds to hybrid architecture that combine elements of both centralized and decentralized architectures. This architecture is the third generation of peer-to-peer networks. This architecture makes use of multiple peers, called super-peers or super-nodes, that index and monitor a set of peers connected to the system. A super-peer is connected to other super-peers following the model of the decentralized architecture. The number of super-peers should remain large enough to avoid system shutdown in case of loss or stop of a super-peer. Therefore, if a search for a peer is not indexed by the super-peer which is attached to it, then it sends the request to another super-peer. The system KaZaA [kaz ] is an example of peer-to-peer network of this generation. This class of architecture has advantages of both two previous classes, i.e. faulttolerance and query trac and search time reduction. However, it is more complex to implement.

Distributed computing

In this section, we precise some approaches related to distributed computing, i.e. grid computing, global computing and peer-to-peer high performance computing that share the goal of better utilizing computing resources connected to the network.

We present also an overview on existing middlewares and environments for each approach.

Grid computing

When the need for high performance computing has increased, grid computing has emerged as a solution for resources sharing between organizations. Grid computing [START_REF] Magoulès | [END_REF]] makes use of supercomputers, clusters and park of workstations owned by universities, research labs inter-connected by high bandwidth network links in order to form a super virtual computer. Resources inside an organization are generally turned on all the time and are connected by reliable high bandwidth network. Several middlewares have been proposed to facilitate the implementation of HPC applications on grid environments like Globus [START_REF] Foster | [END_REF]], Condor [START_REF] Litzkow | [END_REF]]. However, resources on the grid are generally managed by administrators of organizations with hard system conguration and centralized management. Users have to authenticate in order to use resources on the grid. Thus, grid computing middlewares provides only limited recongurability and scalability.

Global computing

A number of systems that attempt to use idle computing power of volunteer computers or institutional computers connected to the Internet in order to solve some large granularity applications have also been proposed. These systems are called global computing systems. Global computing systems are generally based on a centralized architecture where jobs are submitted to a centralized server and workers consult the server to get job. The central server in these systems may become a bottleneck that leads to a single point of failure.

Projects SETI@home [set ] and GENOME@home [gen ] are pioneers of global computing. These systems are often restricted to a specic application. SETI@home [set ] uses volunteer computers around the world to analyze radio signals from space, whose goal is to detect intelligent life outside Earth. In GENOME@home [gen ] and its successor Folding@home [fol ], volunteer computers are used to perform computationally intensive simulations of protein folding and other molecular dynamics Chapter 2. State of the art whose goal is to design new genes and proteins for the purpose of better understanding how genomes evolve, and how genes and proteins operate. The model of these systems has been used to create the general global computing platform BOINC [Anderson 2004] that is now used in many projects. Volunteer computers are general PCs and workstations connected to the Internet with low bandwidth. Moreover, they are turned o or disconnected frequently at unpredictable rate. In these systems, data are split into small work units which are stored in a database.

A central server then assigns work units to volunteer computers asking for work. We thus arranged for SETI@home to share SERENDIP's data source. However, unlike SERENDIP, we needed to distribute data via the Internet. At that time (1997) Arecibo's Internet connection was a 56Kbps modem, so we decided to record data on removable tapes (35GB digital linear tape drive cartridges, the largest available at the time), have them mailed from Arecibo to our lab in Berkeley, and distribute data from servers there.

We recorded data at 5Mbps, a rate low enough that the recording time per tape was a manageable 16 hours, making it feasible to distribute the data through our lab's 100Mbps Internet connection. The rate was also high enough to allow us to do significant science. With one-bit complex sampling, this rate yields a frequency band of 2.5MHz, enough to handle Doppler shifts for relative velocities up to 260km/sec, or about the rate of the Milky Way's galactic rotation; radio signals are Doppler shifted in proportion to the sender's velocity relative to the receiver. Like many other radio SETI projects, we centered our band at the Hydrogen line (1.42GHz), within a frequency range where man-made transmissions are prohibited by an international treaty.

SETI@home's computational model is simple. The signal data is divided into fixed-size work units distributed via the Internet to a client program running on numerous computers. The client program computes a result (a set of candidate signals), returns it to the server, then gets another work unit. There is no communication between clients. SETI@home does redundant computation; each work unit is processed multiple times, letting us detect and discard results from faulty processors and from malicious users. A redundancy level of two to three is adequate for this purpose. We generate work units at a bounded rate and never turn away a client asking for work, so the redundancy level increases with the number of clients and their average speed. These quantities have increased greatly during the life of the project. We have kept the redundancy level within the desired range by revising the client to do more computation per work unit.

The task of creating and distributing work units is done by a server complex located in our lab (see Figure 1). The reasons for centralizing the server functions are largely pragmatic; for example, it minimizes tape handling.

Work units are formed by dividing the 2.5MHz signal into 256 frequency bands, each about 10KHz wide. Each band is then divided into 107-second segments, overlapping in time by 20 seconds. This overlap ensures that signals we seek (lasting up to 20 seconds) are contained entirely in at least one work unit. The resulting work units are 350KB, or enough data to keep a typical computer busy for about a day but small enough to download over even slow modems in a few minutes.

We use a relational database (Informix) to store information about tapes, work units, results, users, and other aspects of the project. We developed a multithreaded data/result server to distribute work units to clients (see Figure 2). It uses a HTTP-based protocol so clients inside firewalls are able to contact it.

A "garbage collector" program removes work units from disk, clearing an on-disk flag in their database records. We have experimented with two policies: XtremWeb [xtr ] provides a platform for global computing that collects not only volunteer computers but also institutional computers connected to LAN or to the Internet. Moreover, XtremWeb allows multi-users, multi-applications, i.e. some specic users can submit their applications to servers and workers can get jobs of dierent applications from servers. To the best of our knowledge, XtremWeb does not implement yet direct communication between workers.

Peer-to-peer high performance computing

In peer-to-peer high performance computing, all participants, i.e. peers, can carry out their application. Peers can be workstations at companies and organizations or even individual PCs at home connected to the Internet. Moreover, peer-to-peer computing systems try to eliminate centralized entities and allow the reconguration in the case of peer disconnection or failure.

Several middlewares and environments for peer-to-peer high performance computing have been proposed.

JNGI [START_REF] Verbeke | [END_REF]] is a decentralized framework for peer-to-peer distributed computing that makes use of JXTA [jxt ] in order to build a virtual network of peers on top of physical network. JNGI uses the concept of peer group in JXTA in order to divide peers into groups according to functionality. In JNGI, there are three group type: monitor groups, worker groups and task dispatcher groups. Monitor groups handle peers joining the framework and high-level aspects of the job submission process. Each worker group is composed of a task dispatcher group and workers. Task dispatcher group distributes tasks to workers and workers perform received tasks.

In [Ernst-Desmulier 2005], JNGI has been extended to permit one to constitute similarity worker groups that contain workers with similar characteristics like CPU speed or memory size in order to improve task dispatching eciency. In order to cope with the scalability problem, JNGI enables one to have a hierarchy of monitor groups (see Figure 2.5). Job code and job data are submitted to a code repository manager. Upon receiving a job submission, the task dispatcher groups consult the code repository manager for tasks to be performed and distribute tasks to workers.

JNGI considers only bag-of-tasks applications that does not need any synchronization and have no dependencies between tasks leading to no communication between tasks.

parent, grand-parent, etc. until it succeeds in contacting someone in the chain.

The last level of the hierarchy is the top level monitor group. Because all the new peers joining the computing grid have to go through the top level monitor group, the communication at that level might become a bottleneck in the model. Numerous solutions exist to this problem. An easy one to implement is the following. When a new peer contacts the top-level monitor group, all the monitors within this peer group receive the message. Each monitor in the monitor peer group has a subset of requests to which it replies. These subsets do not overlap and put together compose the entire possible set of requests that exist. Based on a request feature, a single monitor takes the request of the new peer and redirects it to a subgroup. One should comment on the way monitors decide whether they will reply to a given request. This decision is made based on the request itself coming from the new peer. There is no need for communication between monitors to decide who will reply. For example, if you had two monitors in the monitor group, one monitor could reply to requests from peers having odd peer IDs, while the other monitor would reply to requests from peers having even peer IDs. The decision does not require any communication between the monitors and is therefore beneficial for our model. It reduces the communication needs and increases the bandwidth for other messages. One could also base this decision on the geographical proximity of the requestor to the monitor.

Example of usage of Peer-to-peer distributing computing framework

This section illustrates how to submit a job to the framework. The example used is trivial but it illustrates the features required for the framework to work. Ourgrid [START_REF] Andrade | [END_REF]] is a peer-to-peer middleware for sharing computing cycles through dierent companies or organizations. The main motivation of the Ourgrid project is to develop a middleware that automatically gathers resources across multiple organizations and to provide easy access to resources. Ourgrid is devoted to bags-of-tasks application class.

ParCop [START_REF][END_REF]] is a decentralized peer-to-peer computing system. Par-

Cop is characterized by the integration of various features such as scalability, adaptive parallelism, fault tolerance, dynamic resource discovery, and ease of use. ParCop supports Master/Worker style of applications which can be decomposed into noncommunicating and independent tasks. A peer in ParCop can be a Master or a Worker, but not both at the same time (see Figure 2.6). A Master distributes tasks to workers, collects computed results and returns the results to the user. There are two kinds of communication pathways: permanent pathways that are used to Chapter 2. State of the art maintain the topology of P2P overlay; temporary pathways that are established between Master and Workers for sending tasks and results that will be closed when the computation nishes. Peers in ParCop are organized according to an unstructured topology that makes idle peer collection for a computation slow and that leads to high resources consumption.

results to the P master u

. Each peer maintains two different kinds of communication pathways -temporary and permanent (see figure 1):

• The permanent pathway: Each peer makes connections with its neighbours and through these connections or pathways, they exchange messages between themselves such as the 'I am alive' message. • The temporary pathway: When the P master u receives the tasks from the user, it opens the connections with the P workers and starts sending the tasks to them. These connections are temporary because they will be closed after the P master u finishes collecting the computed results from the P workers . MapReduce [START_REF] Dean | [END_REF]] is a programming model and an associated implementation for processing and generating large data sets on large clusters. It is extended in [START_REF] Lee | [END_REF]] to be used in peer-to-peer network. In MapReduce programming model, users specify a map function that processes a key/value pair to generate a set of intermediate key/value pair and a reduce function that merges all intermediate values associated with the same intermediate key. This programming model is not appropriate to parallel iterative algorithms (see Section 2.4).

Vishwa [START_REF] Reddy | [END_REF]] is a dynamically recongurable middleware that provides a reliable peer-to-peer environment for grid applications. Vishwa supports not only bag-of-tasks application class but also connected problem application class that involves inter-tasks communication. Vishwa is based on a two-layer architecture that includes a task management layer and reconguration layer. Task management layer organizes peers into zones based on the proximity in order to facilitate inter-task communication. Each peer can have neighbors in its zone and other zones that construct an unstructured topology. The reconguration layer handles nodes/network failures. Inter-tasks communication is built on the Distributed Pipes (DP) abstraction. However, Vishwa considers only connected problems solved by synchronous iterative schemes, asynchronous iterative (see Section 2.4) schemes are not taken in account.

P2P-MPI [START_REF] Genaud | [END_REF]] is a framework aimed at the development of messagepassing programs in large scale distributed networks of computers. P2P-MPI is developed in Java and makes use of Java TCP socket to implement the MPJ (Message Passing for Java) communication library. P2P-MPI uses a single super-node to manage peer registration and discovery; this node may become a bottleneck. P2P-MPI implements a fault tolerance approach using peer replication that may not be ecient and appropriate to P2P context and connected problems since the number of peers involved in the computation will multiply; furthermore, the coordination protocol insuring coherence between replicas has great overhead.

In summary, existing middewares and environments for grid computing and volunteer computing can not be used easily for peer-to-peer high performance computing. Most of existing environments for peer-to-peer high performance computing are devoted only to bag-of-tasks applications where the applications are decomposed into independent tasks with no synchronization nor dependencies between tasks. Few systems consider connected problem application class where there are frequent communications between tasks like applications solved by parallel iterative algorithms; however, asynchronous iterative algorithms are not taken in account.

We recall that we aim at designing a decentralized and fault-tolerant environment for peer-to-peer high performance computing that allow direct and frequent communications between peers. We are interested in applications in the domains of numerical simulation and optimization that can be solved via parallel or distributed iterative method. In particular, we think that the combination of asynchronous iterative algorithms with our environment on peer-to-peer networks are well suited to HPC applications. We note that the implementation of connected problem is more dicult than the bag-of-tasks applications.

High Performance Computing, parallel iterative methods

High Performance Computing

In this study, we concentrate on High Performance Computing (HPC) applications relevant to the domains of numerical simulation and optimization. These applications lead to complex or large scale problems that can often be solved eciently via parallel or distributed iterative methods. Thus, we are mainly interested in task parallel models. In the sequel, we shall present some of these problems, e.g.

nonlinear optimization problem, the so-called nonlinear network ow problems (see subsection 3.7.1) and a numerical simulation problem: the obstacle problem (see subsection 4.5.1).

Parallel iterative methods

Iterative methods play an important part in optimization and numerical simulation [Luenberger 1973, Bertsekas 1998, Ortega 1970]. The need for intensive computation has emphasized the interest for parallel and distributed iterative algorithms for solving systems of equations or xed-point problems (see [Bertsekas 1989]). In this thesis, we concentrate on the xed-point formulation. 

x * = F (x * ) (2.1)
where x * is a solution vector of R n and F is a given mapping from R n to R n .

The problem (2.1) can be solved by means of the following successive approximation method starting from x 0 :

x j+1 = F (x j ), j = 0, 1, 2, . . .

(2.
2)

The convergence of this type of algorithm has been studied in particular in [Ortega 1970].

Parallel iterative methods aim at solving problem (2.1) by means of iterative schemes carried out on several processors. The iterate vector x can be decomposed into p components x 1 , x 2 , . . . , x p where p is a given natural number related to the number of available machines. Similarly, the xed-point mapping is decomposed into p components F 1 , F 2 , . . . , F p . Let x j i denote the i th component of x j and let F i denote the i th component of the xed-point mapping F . Then, the mathematical formulation of a simple example of parallel synchronous iterative algorithm can be written as follows:

x j+1 i = F i (x j
1 , x j 2 , . . . , x j p ), i = 1, 2, . . . , p.

(2.3)

If p components of x are assigned to p processors, then each processor can update a dierent component of x according to (2.3) in parallel. The particular model (2.3) corresponds to Jacobi-type iterative scheme. The i th processor denoted by P i has to receive the value of all components of x j on which P i depends from others processors in order to start next iteration j + 1. Moreover it has to send the value x j i to processors that depend on x j i . Thus, in order to implement a Jacobi parallel iterative scheme, it is necessary to update components of iterate vector in a certain order with some synchronizations. Figure 2.7 illustrates an example of synchronous scheme of computation whereby two processors cooperate to solve a problem. In the Asynchronous parallel iterative algorithms have been proposed in order to generalize parallel iterative algorithms. In asynchronous iterative algorithms, components of iterate vector are updated in arbitrary order and without any synchronization. As a consequence, processors implementing parallel asynchronous iterative algorithms can go at their own pace according to their characteristics and computational load [El Baz 1998] Les algorithmes it eratifs asynchrones sont particuli erement adapt es aux architectures infomatiques parall eles repr esent ees par le mod ele de Dijkstra (cf. Bou88]), qui est un mod ele weak: no component of the iterate vector must be abandoned forever and old values of components of the iterate vector must be discarded as the computation progresses.

The Figure 2.8 displays an example of progress of an asynchronous iterative algorithm. The number in boxes corresponds here to iteration number and is increased at the start of each new update phase. It is noted that there is no idle time and updating phases are chained more rapidly. Un autre avantage des algorithmes it eratifs asynchrones r eside dans l'absence de temps d'inactivit e d ûs aux synchronisations ainsi que dans l'absence de temps de gestion des synchronisations entre processus it eratifs parall eles ou distribu es. En e et la synchronisation peut d et eriorer les performances des algorithmes parall eles. La d et erioration est essentiellement fonction du type de synchronisation retenu et de sa mise en uvre sur la machine ainsi que de la granularit e e t d e l ' equilibrage des tâches (cf. Kun76], BPF89], KW84], Gre89], et DLM88]).

PRINCIPE ET MOTIVATION

De plus dans le cas o u certaines valeurs des composantes du vecteur it er e c hangent t r es peu, il peut être int eressant de ne pas attendre syst ematiquement ces valeurs. De mani ere g en erale on peut esp erer une meilleure utilisation des ressources surtout lorsque le nombre de processeurs est elev e.

On notera aussi qu'une mise en uvre asynchrone permet un meilleur recouvrement des communications par les calculs.

Les algorithmes it eratifs asynchrones conviennent aussi particuli erement a la nature de certains probl emes temps r eel dans les grands syst emes, pour lesquels la synchronisation de nombreuses tâches de calcul distantes ne peut être envisag ee de mani ere r ealiste, en raison notamment de pannes fr equentes dans le syst eme, comme par exemple pour le probl eme du routage ou pour le contrôle de ot dans les r eseaux de donn ees.

Du fait de la suppression des phases de resynchronisation et de r einitialisation (cf. Ber82]), l'asynchronisme pr esente aussi l'avantage d'une meilleure adaptativit e aux modi cations intervenant dans le syst eme telles que les changements de donn ees ou de topologie. The concept of asynchronous iterative schemes has many advantages as compared with the one of synchronous iterative schemes. First, the lack of idle time due to synchronization as well as the lack of synchronization permits asynchronous iterative schemes to be more ecient, particularly when the loads are unbalanced or the system is heterogeneous which is a characteristic of peer-to-peer systems.

Secondly, asynchronous iterative schemes scale better than synchronous iterative schemes since the synchronization overhead increases when the number of processors increases. Finally, asynchronous iterative algorithms tolerate temporary failures and message loss. Thus, asynchronous iterations seem better suited to high performance computing on peer-to-peer networks than synchronous iterative schemes. However, programmers using asynchronous iterative algorithms have to face some challenges. The study of the convergence of parallel asynchronous iterations is generally more complicated than the one of synchronous iterations, particularly in the non-linear case. Moreover, non synchronization raises diculties in terms of convergence detection and termination of algorithms. We give some details on these 20 Chapter 2. State of the art topics in the sequel.

A general model of asynchronous iterations

In this subsection, we present briey classical parallel asynchronous iterative schemes.

The reader is referred to [El Baz 1996b, Miellou 1998, El Baz 2005, Chau 2007] for new extensions of the class of asynchronous iterative algorithms.

We consider the xed-point problem (2.1).

Denition 2.1. Let N be the set of natural numbers, n, α ∈ N, α ≤ n the decom-

position of R n into α i=1 R n i , α i=1 n i = n.
An asynchronous iteration associated to the mapping F from α i=1 R n i to α i=1 R n i and initial point x 0 ∈ α i=1 R n i is a sequence x j , j = 0, 1, . . . of vectors of α i=1 R n i dened recursively as follows for i = 1, . . . , α:

x j i = F i (x ρ 1 (j) 1 , . . . , x ρα(j) α ) if i ∈ s(j), x j i = x j-1 i if i / ∈ s(j), (2.4) 
where x i ∈ R n i represents the i th sub-vector of vector x and F i represents the i th block-component of mapping F , S = {s(j)|j = 1, 2, . . . } is a sequence of non-empty subsets of 1, . . . , α and ρ = {ρ(j) = (ρ 1 (j), . . . , ρ α (j))|j = 1, 2, . . . } is a sequence of elements of N α . Moreover, S and ρ satisfy following conditions for i = 1, . . . , α:

• 0 ≤ ρ i (j) ≤ j -1, j = 1, 2, . . .

• ρ i (j) tends to innity when j tends to innity.

• i appears an innite number of times in the set S.

The above conditions can be interpreted respectively as follows:

• The value of the components of the iterate vector used during the computations at iteration j comes at most from iteration j -1.

• Old values of the components of the iterate vector must be eliminated denitely as the computation progresses.

• No sub-vector of the iterate vector ceases to be updated during computations.

An asynchronous iteration associated with xed-point mapping F , initial point x 0 and sequences s and ρ is denoted (F, x 0 , S, ρ).

An asynchronous iterative algorithm (F, x 0 , S, ρ) can be interpreted as follows. Let {P 1 , . . . , P α } be a set of α processors. Let {t(j), j = 1, 2, . . . } be an increasing sequence of times. At the time t(j), processors P i , i ∈ s(j) that are inactive are assigned to an evaluation of x j that is dierent from x j-1 only by values of subvector x i (see Figure 2.8). A processor P i starts to update sub-vectors x l using values x ρ l (j) l , l = 1, . . . , α of sub-vectors x l that are available at the start of computations and that come from previous iterations; a natural strategy is to take the most recent value of components. At an ulterior instant denoted by t(j + k), with k ∈ N and k > 0, the processor P i will terminate the computations and will be assigned to the evaluation of x j+k i .

Convergence of asynchronous iterations

The study of the convergence of asynchronous iterations is a complex problem.

However, a large number of results have been established in various contexts.

In the linear case, a necessary and sucient condition of convergence for asynchronous iterative algorithms has been given in [START_REF] Chazan | [END_REF]].

In the nonlinear case, sucient condition under partial ordering have been established by [El Baz 1990] (see also [El Baz 1994]). These results can be applied to a large class of problems including systems issued from the discretization of partial dierential equations and optimization problems. In particular, results proposed in [El Baz 1994] generalize a rst result for asynchronous relaxation methods for the solution of convex network ow problems (see [Bertsekas 1987]).

Miellou and Spitéri have established results in the nonlinear case for H-accretive mappings (see [Miellou 1985b]). For nonlinear xed point problems, convergence results have been established by Miellou and his team at Scientic Computing Laboratory (LCS) of Besançon. In particular, a sucient condition of convergence has been given in [START_REF] Miellou | [END_REF]] in the case of contractant operators (see also [Baudet 1978], [El Tarazi 1981] and [El Tarazi 1982]). Reference is also made to [Venet 2010] for recent convergence results concerning asynchronous sub-structuring methods.

The asynchronous convergence theorem of Bertsekas [Bertsekas 1983] (see also [Bertsekas 1989]) is an original and general result of convergence. It is also a powerful tool to prove the convergence of asynchronous iterative algorithms for various applications. The asynchronous convergence theorem of Bertsekas gives a set of sufcient conditions that ensure the convergence of asynchronous algorithms for xed point problems. Unlike previous results which are based on the study of a sequence of vectors, this result is based on the study of a sequence of level sets. This approach has its origin in the theory of stability of Lyapunov; its advantage is to provide a more abstract framework for the analyzis of the convergence of asynchronous iterations. It encompasses also contractive and partial ordering aspects. The approach developed by Bertsekas is particularly interesting. However, this approach can not be applied in a direct manner. Obtaining a particular result of convergence for a given problem requires a detailed study of level sets [Bertsekas 1989].

Lubachevski et Mitra [Lubachevsky 1986] have also established a sucient result of convergence for asynchronous bounded delay iterations applied to the solution of singular systems of Markovian type. Their asynchronous iterative algorithm model is close to partial asynchronous iterations of Bertsekas with bounded delay [Bertsekas 1989].

Reference is made to [START_REF] Frommer | [END_REF]] and [Szyld 1998] for what concerns asynchronous multisplitting methods. The reader is also referred to [El Baz 1996b, Chapter 2. State of the art Miellou 1998, El Baz 1998] for new results related to a general class of asynchronous iterative algorithms with order intervals that generalize classical asynchronous iterations.

Finally, we note the analogy between iterative schemes and dynamic discrete systems, and more particularly between asynchronous iterative algorithms and discrete systems with delays which can vary over the time. In some cases, the convergence study of numerical schemes can learn from the study of the stability or from the asymptotic stability of corresponding dynamic discrete systems. Results based on the theorem of stability of Lyapunov have been presented in this scope in the following references: [Tsitsiklis 1987], [START_REF] Kaszkurewicz | [END_REF]] and [START_REF] Bhaya | [END_REF]].

Convergence detection and termination of asynchronous iterations

The convergence detection and termination of asynchronous iterative algorithms raises several problems related to applied mathematics since the termination of iterative algorithms must happen when the iterate vector is suciently close to a solution of the problem as well as problems related to computer science since a special procedure must be designed in order to detect convergence and to terminate the computation.

This problem has a strong connection with the termination of distributed processes, although the number of iterations of the algorithm can be innite and computing processes can never be inactive.

Convergence detection and termination presents several diculties particularly in the case of message passing architectures since processes have only local information, there is no global clock and the communication time may be arbitrarily long.

As a consequence, there are few ecient termination methods for asynchronous iterative algorithms.

In a general context, the global state related to the termination of an asynchronous iterative algorithm can be inferred from a motley set of local informations of type ||x j i -x j-1 i || i ≤ ε, if we consider the dierence between two successive values of the same sub-vector x i of the iterate vector or related to residual. It appears that local informations can not be assembled in an given order if we want to establish formally that the termination has well happened.

In the sequel, we present briey existing solutions for convergence detection and termination.

Empirical methods Termination methods for asynchronous iterations are usually designed according to an empirical manner. An usual method consists in observing with the help of a particular processor the local termination condition at each processor. The algorithm is arbitrarily terminated when all local conditions are satised. We can see easily that this type of method can give satisfying results only in the case where the asynchronism degree related to the value of delays in the mathematical model of asynchronous iterations is relatively small. When the delay due to communication or due to unbalanced task is important, this method may cause an early termination.

Another method [Bertsekas 1989] consists in sending termination messages and restart messages by each processor and using a special processor that collects and centralizes these messages.

In another approach [Miellou 1989], the termination scheme samples periodically the state of processors and associates to each processor a Boolean value according to the satisfaction of the local termination criteria. This local value is then communicated to other processors. The global state is inferred in computing the xed point of a Boolean operator via an asynchronous iterative algorithm. However, this approach needs for each processor to have an estimation of start time and end time of the asynchronous algorithm that nds the xed point of the Boolean operator.

Another termination method [START_REF] Chajakis | [END_REF]] uses termination messages and acknowledgments of termination messages. In this termination scheme, a processor terminates its computation if its local termination condition is satised and if it has received termination messages as well as acknowledgments of all termination messages from all processors.

There are no formal proof of validity for termination methods cited above in the general case. Furthermore, as we have mentioned above, for message passing architectures, all processors have only local information, there is no global clock and some messages may be delayed or arrive out of order.

Method of Bertsekas and Tsitsiklis One of the most interesting methods for detecting convergence and terminating asynchronous iterative algorithm has been proposed by [START_REF] Bertsekas | Parallel and distributed computation: numerical methods[END_REF]] and [START_REF] Bertsekas | [END_REF]]. Assumption is made that each communicated data on a link is correctly received with a nite delay that is however non specied. This method is based on the decomposition of the problem into two parts. First, the asynchronous iterative algorithm is modied so that it terminates in nite time and converges to a xed point suciently close to the solution of the problem. Secondly, a procedure of convergence detection and termination is applied.

Bertsekas and Tsitsiklis have proposed to modify the asynchronous iterative algorithms as follows. If the update of a component of the iterate vector does not alter signicantly its value, then the value of the iterate vector is not modied nor communicated to other processors. The termination of the modied asynchronous iterative algorithm happens when an update does not modify the value of components of iterate vector at all processors (i.e. all local termination conditions are satised) and no message is in transit in the communication network.

Several procedure can be used in order to detect the termination of the modied asynchronous iterative algorithm. We can quote for instance the procedure of Dijkstra and Scholten (see [Dijkstra 1980] and [Bertsekas 1989]) which is based on acknowledgements of all messages and the generation of an activity graph.

The method of Bertsekas and Tsitsiklis is one of rare methods in the literature Chapter 2. State of the art for which we have a formal proof of validity. However, this method presents some weaknesses. It requires rst the use of a complex protocol as well as twice communications as the original asynchronous iterative algorithm. Moreover, conditions that are more restrictive than conditions of the asynchronous convergence theorem of Bertsekas must be satised in order to ensure the convergence of the modied asynchronous iterative algorithm.

In [START_REF] Bertsekas | [END_REF]], Bertsekas and Tsitsiklis suggest to use another termination procedure, namely the snapshot algorithm of Chandy and Lamport [Chandy 1985].

This method is based on a procedure of marked messages and records of states of links and processors when all marked messages are delivered. We note that recorded states in a snapshot do not necessarily correspond to a true global state of the system at a given instant. However, the information contained in the snapshot is sucient to detect certain properties of the global state of the system and in particular the termination.

In [El Baz 1998], El Baz has proposed a variant of the termination method of Bersekas and Tsitsiklis that reduces the number of exchanged messages by eliminating acknowledgments of messages.

Method of Savari and Bertsekas Another interesting termination method has

been proposed by [START_REF] Savari | Finite termination of asynchronous iterative algorithms[END_REF]]. In this method, asynchronous iterations are slightly modied: the result of each new update of a component of the iterate vector is taken into account and communicated to other processors if it is dierent from the latest value of the component. In addition, queries are sent to all processors of the system whenever a termination condition is not satised. A processor performs computations and sends messages and queries to other processors as long as its local termination condition is not satised or it receives queries from other processors. The termination happens when all processors have satised their local termination condition and no message related to a query or to the result of an update is in transit in the system. The termination is detected using a standard protocol (see [Dijkstra 1980] and [Chandy 1985]).

Savari and Bertsekas have given a formal proof of validity of this termination algorithm. The principal advantage of this method is that it can be applied successfully to a larger class of iterative algorithms than the method of Bertsekas and Tsitsiklis. Its principal weakness is the necessity of a large number of communication of query type.

Method of level sets

In [El Baz 1996a], El Baz has proposed an approach that relies on the use of the sequence of level set. The principle of this method consists in terminating asynchronous iterative algorithm when the iterate vector penetrates into level set X(q) where q is a natural integer xed a priori in function of the problem and no message is in transit in the network. The asynchronous iterative algorithm is slightly modied. A simple computing procedure related to level sets is added. Reference is made to [El Baz 1998] for more details about this method.
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Other termination methods Savari and Bertsekas have proposed in [Savari 1996] several schemes of supervised termination.

Miellou has proposed in [START_REF] Miellou | [END_REF]] and [Miellou 1990] a method based on the use of secondary algorithm or the error control which is derived from algorithm of F.Robert and G. Schroeder (see [Robert 1969[START_REF] Robert | [END_REF]). This secondary algorithm consumes less computational resources than the initial (or principal) asynchronous algorithm. However, sequences S and I must be necessarily identical for both main and secondary algorithms.

Conclusion

The raise of the parallelism concept in microprocessor architectures together with progress in high bandwidth network has made possible high performance computing applications on peer-to-peer networks. This solution seems economic and attractive.

Among the dierent problems that can be treated, HPC applications related to task parallel model that can be solved in particular via asynchronous iterative algorithms constitute an important eld with possible relevance to many engineering specialties and services like mechanics, telecommunications and nance. In the sequel, we present our contributions to this domain. 

Introduction

In this chapter, we present the Peer-To-Peer Self Adaptive communication Protocol (P2PSAP), a self-adaptive communication protocol dedicated to Peer-to-Peer (P2P) High Performance Computing (HPC) [El Baz 2010]. As explained in Chapter 1, the design of this protocol is the rst step of a classical approach used to design distributed computing environments. The P2PSAP protocol is designed to allow rapid update exchanges between peers in the case of the solution of numerical simulation Chapter 3. P2PSAP -A self-adaptive communication protocol problems and optimization problems via distributed iterative algorithms. The protocol can congure itself automatically and dynamically in function of application requirements like scheme of computation and elements of context like topology by choosing the most appropriate communication mode between peers. The protocol is an extension of CTP [START_REF] Wong | [END_REF]] and makes use of the Cactus framework [START_REF] Hiltunen | [END_REF]]. We note that our contribution diers from existing communication libraries for high performance computing like MPICH/Madeleine [START_REF] Aumage | [END_REF]] in allowing the modication of internal transport protocol mechanism in addition to switching between networks. A rst series of computational experiments for an optimization problem illustrate the behavior of the proposed protocol for HPC applications.

This chapter is organized as follows. Next section presents existing work in adaptive communication protocols. Section 3.3 describes the architecture of P2PSAP

protocol. An example of scenario that shows the automatic and dynamic conguration capability of P2PSAP is displayed in section 3.4. Section 3.5 describes some modications we have made to the Cactus framework in order to improve protocol performance and to facilitate the reconguration. In the section 3.6, we detail the choice of self-adaptive mechanisms for distributed peer-to-peer HPC applications.

A rst series of computational experiments for an optimization problem, i.e. a network ow problem is displayed and analyzed in the section 3.7. Finally, a summary of P2PSAP protocol concludes this chapter.

State of the art in adaptive communication protocols

Early communication protocols such as TCP [TCP 1981] and UDP [UDP 1980] has been designed to fulll simple requirements regarding the reliability and order of data. Nowadays, new applications over the Internet like VoIP, VoD and P2P HPC require communication protocols to adapt to context as well as to application prole.

In the literature, several solutions have been proposed. One can classify them into two classes: behavioral and structural adaptation [Van Wambeke 2008]:

• Behavioral adaptation relies on the capacity of the algorithm to change the behavior of the protocol without modifying its structure. One can nd this adaptation property in standard TCP protocol in the case of network congestion. Behavioral adaptation is easy to implement but limits the adaptability.

• Structural adaptation can change the internal structure of the protocol, thus changing the provided services. Structural adaptation is based on modular programming where software is composed of separate, interchangeable components. The implementation of this adaptation is complicated but it allows the exible adaptability. Structural adaptation is known as micro-protocol approach.

In the next subsection, we shall present in detail the micro-protocol approach.
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Micro-protocol approach

Micro-protocols are an interesting approach to design and implement self-adaptive communication protocols.

Micro-protocols were rst introduced in x-kernel [START_REF] Hutchison | [END_REF]]. They have been widely used since in several systems. A microprotocol is a primitive building block that implements merely a functionality of a given protocol such as error recovery, ordered delivery and so on. A protocol then results from the composition of a given set of micro-protocols. This approach permits one to reuse the code, facilitate the design of new protocols and give the possibility to congure the protocol dynamically.

Protocol composition frameworks provide the infrastructure that allows programmers to build communication protocols according to micro-protocol approach.

In the literature, several protocol composition frameworks have been proposed.

Based on the composition model, we can divide these frameworks into three models:

the hierarchical, non-hierarchical and hybrid models.

Hierarchical model

In the hierarchical model, a stack of micro-protocols composes a given protocol, similarly to the ISO model. This model can be found in the x-kernel [START_REF] Hutchison | [END_REF] and APPIA [Miranda 2001[START_REF] Mocito | [END_REF]] frameworks.

X-kernel. The x-kernel [START_REF] Hutchison | [END_REF]] is an operating system kernel that provides architecture for constructing and composing network protocols. In the x-kernel framework, a protocol is considered as an abstraction object with an uniform interface that allows protocols to invoke operations on one another (i.e., to send a message to and receive a message from an adjacent protocol). The suite of protocols in x-kernel is statically congured at initialization time onto a protocol graph (see Figure 3.1). Based on the protocol graph, users can plug protocols together in dierence ways.

APPIA. Appia [Miranda 2001[START_REF] Mocito | [END_REF]] is a protocol kernel that supports applications requiring multiple coordinated channels and oers a clean and elegant way for the application to express inter-channel constraints. In Appia, microprotocols are dened as layers that exchange informations using events. A session is an instance of a micro-protocol; it maintains state variables used to process events.

A Quality of Service (QoS) is dened as a stack of layers. The QoS species which protocols must act on the messages and the order they must be traversed thus dening a quality of service by enumerating the properties it will provide. A channel is an instantiation of a QoS and is characterized by a stack of sessions of the corresponding layers. Inter-channel coordination can be achieved by letting dierent channels share one or more common sessions. 

Non-hierarchical model

In the non-hierarchical model, there is no particular order between micro-protocols;

the SAMOA [START_REF] Paweª | [END_REF]] framework corresponds to this model.

SAMOA. SAMOA [START_REF] Paweª | [END_REF]] is a protocol framework that ensures the isolation property. It has been designed to allow concurrent protocols to be expressed without explicit low-level synchronization, thus making programming easier and less errorprone. In SAMOA, a micro-protocol is composed of a set of event handlers and a local state. A local state of a given micro-protocol can be modied only by event handlers of this micro-protocol. Each event handler has to be bound to a predened event type. When an event of a given event type is triggered, all event handlers that have been bound to this event type are executed. There are two kinds of events: internal and external. An internal event is generated during a handler's execution. External event are requests from the network layer (or application) to inject messages to the protocol.

Hybrid model

The hybrid model is a combination of the two previous models; micro-protocols are composed here hierarchically and non-hierarchically. One can nd this last model in the FPTP [START_REF] Exposito | [END_REF]] and Cactus [START_REF] Hiltunen | [END_REF]] frameworks.

FPTP. The composition and deployment of the FPTP services may be statically or dynamically done. XQoS service specifications provided by the XQoS repositories can be used compared with the XQoS correct FPTP service con section of this service mechanisms to be down deploy the FPTP service.

Next paragraphs prese how the FPTP conges deployed and configure architecture.

IV.

A. TFRC congestion con

The TCP-friendly rate congestion control mech send rate while minimi sender sends a stream of rate. The receiver sends roughly once every rou information contained in adjusts its sending ra throughput equation to m feedback is received from sender halves its send mechanism has been im figure 7). Cactus. The Cactus frameworks [START_REF] Hiltunen | [END_REF]] extends x-kernel in providing a ner granularity of composition. In addition to layered composition in x-kernel, intra-layer composition following non-hierarchical model is allowed.

We have concentrated on the Cactus framework since this approach is exible and ecient. In the next subsection, we shall detail the Cactus framework and one example, the CTP protocol.

Cactus framework and CTP protocol

Cactus [START_REF] Hiltunen | [END_REF]] is a system for constructing highly-congurable protocols for networked and distributed system. Cactus has two grain levels of composition. Individual protocols, termed composite protocols, are constructed from micro-protocols.

Composite protocols are then layered on top of each other to create a protocol stack using an interface similar to the standard x-kernel API [START_REF] Hutchison | [END_REF]].

Cactus is an event-based framework. Events are used to signify state changes, such as arrival of messages from the network. Each micro-protocol is structured as a collection of event handlers, which are procedure-like segments of code and are bound to events. When an event occurs, all handlers bound to that event are executed.

Events can be raised in dierent ways, explicitly by micro-protocols or implicitly by the runtime system, with either blocking or non-blocking semantics, with a specic delay and a priority execution number. Arguments can be passed to handlers in two ways, statically when a handler is bound to an event and dynamically when an event is raised. The runtime system also provides operations for unbinding handlers, creating and deleting events, halting event execution, and canceling a delayed event.
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Handler execution is atomic with respect to concurrency, i.e. a handler is executed till completion before another handler is started unless it voluntarily yields the CPU.

The Cactus framework provides a message abstraction named dynamic messages, which is a generalization of traditional message headers. A dynamic message consists of a message body and an arbitrary set of named message attributes. Micro-protocols can add, read, and delete message attributes. When a message is passed to a lowerlevel protocol, a pack routine combines message attributes with the message body; while an analogous unpack routine extracts message attributes when a message is passed to a higher-level protocol. Cactus also supports shared data that can be accessed by all micro-protocols congured in a composite protocol.

The CTP Congurable Transport Protocol [START_REF] Wong | [END_REF]] is designed and implemented using the Cactus framework. The Figure 3.3 shows the CTP implementation with events on the right side and micro-protocols on the left side. An arrow from a micro-protocol to a given event indicates that the micro-protocol binds a handler to this event.

. . . 

Events

A. Cactus

Cactus is a system and a framework for constructing configurable protocols and services, where each service property or functional component is implemented as a separate module [8]. A service in Cactus is implemented as a composite protocol, with each service property or other functional component implemented as a micro-protocol. A micro-protocol is, in turn, structured as a collection of event handlers, which are procedure-like segments of code that are executed when a specified event occurs. Once constructed, a composite protocol is composed hierarchically with other protocols to form the network subsystem. In the case of the Linux version of Cactus used to implement provided by Cactus me a coordination mechan composite protocol to when agreed to by all r ically created message tional message headers stack, and local. Peer a fields that are shared sender and receiver. Sta tocol layers in a protoco for example, to share m between protocol layer micro-protocols in one and can be used, for e information. A custom tributes with the messa an analogous unpack r ceiver. Messages are d nism similar to that use

B. Attributes and Algo

The first step in deve is to identify various q higher levels and the a other aspects of the se attributes is large [17], roughly into the follow £ Performance. Desc from sender to receiver put. The protocol may mance by reserving res We have extended the CTP protocol in order to build the self-adaptive commu-3.3. P2PSAP Protocol architecture 33 nication protocol dedicated to peer-to-peer high performance computing that will be presented in the sequel. 

P2PSAP Protocol architecture

Data channel

The Cactus built data channel transfers data packets between peers. The data channel has two levels: the physical layer and the transport layer; each layer corresponds Chapter 3. P2PSAP -A self-adaptive communication protocol to a Cactus composite protocol. We encompass the physical layer to support communications on dierent networks, i.e. Ethernet, InniBand and Myrinet. Each communication type is carried out via a composite protocol. The data channel can be triggered between the dierent types of networks; one composite protocol is then substituted to another. The transport layer is constituted by a composite protocol made of several micro-protocols, which is an extension of CTP. At this level, data channel reconguration is carried out by substituting or removing and adding micro-protocols. The behavior of the data channel is triggered by the control channel.

Control channel

The Control channel manages session opening and closure; it captures context information and (re)congures the data channel at opening or operation time; it adapts itself to these informations and their changes; it is also responsible for coordination between peers during reconguration process. Note that we use the TCP protocol to exchange control messages since these messages cannot be lost.

Before describing the main components of the control channel, we present rst a session life cycle (see Figure 3.5). Suppose process A wants to exchange data with process B, it opens a session through socket create and connect command. Then, a TCP connection is opened between 2 processes. Process B accepting connection must send its context information to process A. Process A chooses the most appropriate conguration for data channel and send conguration command to process B based on its context information and those of B. After that, the two processes carry out the conguration of data channel. When the conguration is done, each process has to inform the other process and waits for the notication of other process.

Data is exchanged only when both processes have nished data channel conguration. During the communication, a process can decide to change conguration of data channel due to context changes or user requirements, like process A in Figure 3.5. Then, a procedure similar as the one implemented for conguration at session opening will be realized. When session is closed, the data channel is closed rst; the control channel with TCP connection is closed later on.

We describe now the main components of the control channel. • Inter-peer coordination: the coordination component is responsible of context information exchanges and coordination of peers reconguration processes so as to ensure proper working of the protocol.

Example of scenario

We present now a simple scenario for the P2PSAP protocol so as to illustrate its behavior. We consider a high performance computing application, like for instance a large scale numerical simulation application or a complex optimization problem, solved on the network composed of two simple clusters shown in Figure 3.6. The rst cluster is composed of two similar machines: P 1 and P 2 that can be connected via Ethernet or InniBand. The second cluster is made of two similar machines: P 

Some modications to Cactus

In order to achieve the reconguration capability of P2PSAP presented in previous sections as well as to improve protocol performance, we have introduced some modications to the Cactus framework:

• Firstly, Cactus does not allow concurrent handler execution; this means that a handler must wait for current executed handler completion before being executed. But nowadays, almost all PCs have more than one core and concurrent handler execution is necessary in order to improve performance. So, we have modied Cactus to allow concurrent handler execution. Each thread has its own resources and its handler execution is independent of others.

• Secondly, we have eliminated unnecessary message copies between layers. In the Cactus framework, when a message is passed to upper or lower layers, Cactus runtime creates a new message that is sent to upper or lower layers. Hence, a signicant number of CPU cycles and memories are consumed in multiple-layers systems. In our protocol, message copies occur between Socket API layer and Data channel, and within the Data channel. In order to eliminate message copies, we have modied the pack and unpack functions so that only a pointer to message is passed between layers. Therefore, no message copy is made within the stack.

• Finally, Cactus provides operations for unbinding handlers but it has no explicit operation for removing a micro-protocol. In order to facilitate protocol reconguration, we have added to Cactus API an operation for micro-protocol removing. In addition to the micro-protocol initiating function, each microprotocol must have a remove function, which unbinds all its handlers and releases its own resources. This function will be executed when the microprotocol is removed.

Self-adaptive mechanisms

In this section, we shall present and explain our choices of P2PSAP's self-adaptive mechanisms for distributed peer-to-peer computing. We plan to support the com-munication on several networks. So far, we have concentrated on Ethernet network that is widely used. Thus, the self-adaptive of the protocol is only at transport level.

Similar machines connected via a local network with small latency, high bandwidth and reliable data transfer can be gathered into a cluster. The reader is referred to [Beaumont 2011] for recent study dealing with grouping peers on the Internet into clusters based on latency metric. During solution, the transport protocol is congured according to the following context data: schemes of computation (i.e.

synchronous, asynchronous or hybrid iterative schemes) and topology parameters like type of connection (i.e. intra or inter cluster). Firstly, we determine required protocol features in each considered context. A context corresponds to the combination of elements from network layer like topology and application layer like a given iterative scheme, e.g. synchronous or asynchronous.

Choice of protocol features

The choice of protocol features in each context is summarized in Table 3 Sometimes, communication mode must t a computational scheme requirement (e.g. a special requirement related to the convergence of the implemented numerical method) as in the case where synchronous computational schemes are imposed.

Then, synchronous communications are imposed in both intra-cluster and intercluster data exchanges. In this case, reliable transport and ordered delivery are required in order to ensure that the application is not going to be blocked by a message loss or unordered message delivery. Moreover, in synchronous communication, after sending a message, the sender is blocked until it receives an acknowledgement about the delivery of this message to application at receiver. Thus the receiver buer can not be overwhelmed and ow control is not necessary in both intra and inter-cluster communication. In intra-cluster with low latency, high bandwidth and reliable links, congestion control is not really necessary. Whereas, congestion control is required in inter-cluster with high latency, low bandwidth and unreliable link in order to behave fairly with others ows and to reduce retransmission overhead. In this case, we have chosen TCP New-Reno congestion avoidance algorithm [START_REF] Floyd | [END_REF]] which is the most commonly implemented RFC-based one.

Likely, in the case where asynchronous iterative schemes of computation are required by user, asynchronous communication must be preferably implemented in both intra-cluster and inter-cluster data exchanges. We note that asynchronous schemes of computation are fault tolerant in some sense since they allow messages losses. For this reason, reliable transport and ordered delivery as well as ow control are not needed in both intra-cluster and inter-cluster communication. While congestion control is not necessary in intra-cluster communication, it is required in inter-cluster communication in order to ensure a fair behavior with others ows. In our opinion, DCCP congestion mechanisms [Kohler 1999] are the most appropriate one for unreliable datagram ow.

There are also some situations where a given problem can be solved by using any combination of computational schemes. In this latter case, users can leave the system to freely choose communication mode. As a consequence, the most appropriate communication mode according to topology parameters ,i.e. inter-cluster or extra cluster connection should be chosen. This corresponds to the so-called Hybrid scheme of computation. In this case, if computational loads are well balanced on machines inside a cluster that are identical, then synchronous communication between peers are appropriate. The communication protocol in this context has the same features as in the case of synchronous iterative scheme and intra-cluster communication. On the other hand, synchronization may be an obstacle to eciency and robustness in inter-cluster data exchanges situations where there may be some heterogeneities in terms of processors, OS, bandwidth, and communications may be unreliable and have high latency. Thus, asynchronous communication seems more appropriate in this latter context. The communication protocol in this latter context has the same features as in the case of asynchronous scheme and inter-cluster communication.

According to the choices of protocol features for each context, there are some functionalities that are needed to achieve those features but are not implemented by any micro-protocol in CTP. Thus, we have designed and developed some new micro-protocols as we shall present in the next subsection. The asynchronous mode implemented by the asynchronous micro-protocol is presented in the Figure 3.9. Asynchronous micro-protocol consists of 2 handlers for 2 events: UserSend and UserReceive. Figure 3.10 displays the pseudo-code of asynchronous micro-protocol.

Micro-protocol TCP New-Reno congestion avoidance

CTP has micro-protocols implementing SCP and TCP-Tahoe congestion avoidance algorithm. However, to the best of our knowledge, TCP New-Reno [START_REF] Floyd | [END_REF] is the most commonly implemented RFC-based congestion avoidance algorithm. variant of TFRC, that is designed for applications that send small packets.

As remarked in subsection 3.6.1, in the context of asynchronous iterative scheme and inter-cluster connexion, the transport protocol is unreliable but needs a congestion control mechanism in order to ensure a fair behavior with others ows. Thus, we have developed micro-protocols implementing the congestion control mechanism of DCCP, i.e. CCID 2. Since the adjustment of the congestion window in DCCP is the same as the one in TCP, we can reuse TCP Congestion Avoidance microprotocol that is already available in CTP. Thus, we have developed only two news micro-protocols. Micro-protocol DCCP Ack implements acknowledgments of DCCP. Micro-protocol DCCP Window Congestion Control adjusts the pipe value (i.e. number of packets outstanding in the network) and sends queued packet if the pipe value is less than the congestion window (cwnd). Figure 3.12 and Figure 3.13 display the pseudo-code of DCCPACK and DCCP Window Congestion Control micro-protocols.

(Re)Conguration

Based on the choices of protocol features (see subsection 3.6.1) and with new developed micro-protocols (see subsection 3.6.2), we can determine the protocol composition, i.e. the set of micro-protocols for each considered context as in the Table 3.2 needed to be carried out in order to recongure the Data Channel from the old composition to obtain the new one. For example, in an evolution application of numerical simulation, the computation scheme can be changed during execution, e.g. from asynchronous iterative scheme to synchronous iterative scheme. In this case, 

Computational experiments

This section presents experiments with P2PSAP protocol. In order to show the dynamic conguration capability as well as the eciency of P2PSAP, we have applied P2PSAP protocol to the solution of an optimization problem, i.e. the network ow problem. P2PSAP protocol is used in the code of the network ow problem in order to exchange updates between machines. We have used the C implementation of Cactus 2.2 for micro-protocol composition over Linux UDP sockets.

Network ow problems

Network ow problems [El Baz 1996b] consist in distributing the ows in a network, from a source to a destination, in a way that minimizes the total trac cost. The problems occur in many domains: electrical networks, gas or water distribution, nancial models, communication and transportation networks. The solution of nonlinear network ow problems requires intensive computations, thus a distributed or parallel solution of these problems is very attractive.

Problem formulation

Let G = (N, A) be a connected directed graph. N is referred to as the set of nodes, A ⊆ N × N is referred to as the set of arcs, and the cardinal number of N is denoted by n. Let c ij : R → (-∞, +∞] be the cost function associated with each arc (i, j) ∈ A, c ij is a function of the ow of the arc (i, j) which is denoted by f i,j . Let b i be the supply of demand at node i ∈ N , we have i∈N b i = 0. The problem is to minimize total cost subject to a conservation of ow constraint at each node:

min (i,j)∈A c ij (f ij ), subject to (i,j)∈A f ij - (m,i)∈A f mi = b i , ∀i ∈ N (3.1)
We assume that problem (3.1) has a feasible solution. We consider the following standing assumptions on c ij . 

Assumption 3.1 c ij is strictly convex. Assumption 3.2 c ij is lower semicontinuous. Assumption 3.3 The conjugate convex function of c ij , dened by c * ij (t ij ) = sup{t ij .f ij -c ij (f ij )} is real valued, i.e., -∞ < c * ij (t ij ) < +∞, ∀t ij ∈ R.
min p∈R * q(p), (3.2) 
subject to no constraint on the vector p = {p i |i ∈ N }, where q is the dual functional given by

q(p) = (i,j)∈A c * ij (p i -p j ) - i∈N b i .p i
We refer to p as a price vector and its components as prices. The ith price p i is a Lagrange multiplier associated with the ith conservation of ow constraint. The necessary and sucient condition for optimality of a pair (f, p) is given as follows: a feasible ow vector f = {f ij |(ij) ∈ A} is optimal for (3.1) and a price vector p = {p i |i ∈ N } is optimal for (3.2) if and only if for all (i, j) 

∈ A, p i -p j is a sub-gradient of c ij at f ij . An equivalent condition is f * ij = ∇c * ij (p i -p j ) where ∇c * ij (x) denotes the gradient of c * ij (x).

The dual optimal solution set

The optimal solution of the dual problem is never unique since adding the same constant to all coordinates of a price vector leaves the dual cost unaected. We can remove this degree of freedom by constraining the price of one node, say the destination node d, to be zero. Consider the set P = {p ∈ R n |p d = 0}. We concentrate on the reduced dual problem:

min p∈P q(p) (3.3) 
The reduced optimal solution set is dened by: 3.4 The reduced dual optimal solution set P * is nonempty and compact.

P * = {p ∈ P |q(p ) = min p q(p)} Assumption 
We note that assumption 3.4 is not very restrictive (see [El Baz 1996b]). In the sequel, g(p) will denote the gradient of the dual functional, the components g i (p) of g(p) are given by:

g i (p) = ∂q(p) ∂p i = (i,j)∈A ∇c * ij (p i -p j ) - (m,i)∈A ∇c * mi (p m -p i ) -b i , i ∈ N 3.7.1.

Parallel iterative algorithms

One can implement several parallel iterative methods for the solution of the reduced dual problem. We present a gradient type method. The components F i of the gradient mapping F are dened by F i = p i -1 α g i (p) for all i ∈ N -{d} and p ∈ P , where α is a positive constant. Clearly F is continuous since g is continuous. We introduce the following assumption. Assumption 3.5 c ij is strongly convex with modulus 1 β .

Under Assumptions 3.1 to 3.5, there exists a constant α = β. max i∈N a i , where a i denotes the degree of node i ∈ N , such that for all p, p ∈ P satisfying p ≤ p, we have g(p) -g(p ) ≤ α.(pp ). Therefore, the gradient mapping F is monotone on P if α = β. max i∈N a i (see [El Baz 1996b]). The gradient type method consists in iterating on the ith component of the vector of prices as follows:

p q i = p q-1 i - 1 α g i (p q-1 i , p), i = 1, ..., n, q ∈ {1, 2, ..., q }
where p 0 i = p i and q is the number of iterations such that |g i (p q i )| ≤ ε where p 0 i = P i and ε is the research accuracy.

Platform

Experiments have been carried out on the LAASNETEXP experimental network [START_REF] Owezarski | [END_REF]]. The topology of the toy network used for this rst set of computational experiments is shown on the Figure 3.14 where peers are connected via a Gigabit Ethernet network. Machines P 1 , P 

Computational results

We have considered gas distribution problems solved via gradient type methods [El Baz 1996b]. The network topology corresponds to a grid-like network with 20 × 200 nodes. Computations have been carried out on 1, 2 and 4 machines.

In the distributed case, i.e. for several machines, the original network ow problem is decomposed into several equal sub-networks. In the particular case of 2 machines, computations are made within the same cluster. We have carried out experiments with dierent computational schemes and communication scenarios i.e.

synchronous, asynchronous and hybrid (synchronous / asynchronous). A set of computational results is displayed in When using asynchronous iterative schemes of computation, some processors may iterate faster than others; this is particularly the case when loads are unbalanced as for the application considered here. We note that the parallel gradient type algorithms led to nondeterministic load unbalancing although all machines receive a sub-network of the same size. Furthermore, in the synchronous case, the more 3.8. Chapter summary 51 unbalanced the machine loads are, the greater the idle times due to synchronization are. This is the reason why the eciency of the synchronous case is small (0.44) with a small number of machines (4 machines). The asynchronous iterative schemes are well suited to load unbalancing.

The use of hybrid iterative schemes, i.e. synchronous communication between peers in the same cluster and asynchronous communication between peers in different clusters gave in this case eciency in between pure synchronous and asynchronous cases.

Chapter summary

In this chapter, we have proposed P2PSAP, a self-adaptive communication protocol for peer-to-peer high performance computing. P2PSAP protocol is designed in order to allow rapid update exchange between peers in the solution of numerical simulation problems via distributed iterative algorithms. The protocol can congure itself automatically and dynamically in function of application requirements like scheme of computation and elements of context like topology by choosing the most appropriate communication mode between peers. We note that this approach is dierent from existing communication libraries for high performance computing like MPICH/Madeleine [START_REF] Aumage | [END_REF]] in allowing the modication of internal transport protocol mechanism in addition to switch between networks.

P2PSAP protocol has been implemented on a small network for the solution of nonlinear optimization problems, i.e. network ow problems. A set of computational experiments shows that the protocol permits one to obtain good eciency particularly when using asynchronous communications or a combination of synchronous and asynchronous communications.

In next chapter, we shall present the centralized version of environment for peerto-peer high performance computing that makes use of P2PSAP protocol in order to exchange updates between peers.

Introduction

In the previous chapter, we have proposed P2PSAP, a self-adaptive communication protocol for peer-to-peer high performance computing. The self-adaptability of P2PSAP allows programmers not to care about the choice of communication mode and leave it to communication protocol.

In this chapter, we shall present the rst version of P2PDC, an environment for peer-to-peer high performance computing that makes use of P2PSAP It allows users to submit their tasks and retrieve nal results.

Global architecture

• Resource manager organizes peers connected to overlay network with a topology that facilitates peer discovery for a computation.

• Task manager is responsible for subtasks distribution, subtasks execution and results collection and aggregation.

• Application repository contains the code of all applications that can be run with the environment.

• File transfer transfers les between peers.

• Fault-tolerance ensures the integrity of the computation in case of peer failures.

• Communication provides support for data exchange between peers. We note that P2PSAP is used for data exchange of a given application; control messages of environment like messages used by resource manager to maintain the topology of connected peers or messages used to send subtasks to workers are exchanged using UDP and TCP.

Programming model

Programming model is the way programmers develop their application. We have proposed a programming model that allows all programmers to develop their own application easily.

Communication operations

The set of communication operations is reduced. There are only a send and a receive operations (P2P_Send and P2P_Receive). The idea is to facilitate programming of large scale peer-to-peer applications and hide complexity of communication management as much as possible. Contrarily to MPI communication library where communication mode is xed by the semantics of communication operations, the communication mode of a given communication operation which is called repetitively can vary with P2PDC according to the context; e.g. the same P2P_Send from peer A to peer B, which is implemented repetitively, can be rst synchronous and then become asynchronous. As a consequence, the programmer does not x directly the communication mode; he rather selects the type of scheme of computation he wants to be implemented, e.g. synchronous or asynchronous iterative scheme or let the protocol free of choosing communication mode, this corresponds to a hybrid scheme. When the system is set free, the choice of communication mode depends only on elements of context like topology change and is thus dynamic.

Here are the prototype of two communication operations: high performance computing int P2P_Send(P2PSubtask *pSubtask, uint32_t dest, char *buer, size_t size) int P2P_Receive(P2PSubtask *pSubtask, uint32_t dest, char *buer, size_t size) where • pSubtask is the current subtask.

• dest is the rank of destination subtask.

• buer is the initial address of send buer.

• size is the size of data to be sent or received.

Application programming model

Figure 4.2 shows the activity diagram that a parallel application must follow in order to be deployed. The so-called submitter is the peer where the task is initiated and submitted to environment. Workers are peers that receive and execute subtasks.

• Task denition: rst, the task is dened at the submitter, i.e. setting task parameters such as computational scheme, number of peers necessary as well as the number of subtasks and subtask parameters.

• Collect peers: based on the task denition, the submitter collects free peers in the overlay network.

• Enough peers: the submitter veries if there are enough free peers to carry out the task. If there are not enough free peers, then the computation is terminated.

• Send subtask : if there are enough free peers, then the submitter sends subtask to those peers.

• Receive subtask : peers receive subtask from submitter, so they become workers.

• Calculate: all workers execute received subtask. Depending on the choice of the user, the submitter can also execute a subtask. We note that in the case of applications solved by iterative algorithms, a worker has to carry out many relaxations; after each relaxation, it has to exchange updates with others workers.

• Send results: when a worker has nished a subtask, it sends subtask's result to submitter.

• Receive results: the submitter receives subtask's results from workers.

• Results aggregation: subtask's results are aggregated into nal result and are written to an output such as a console or a le. We note that this programming model not only carries out automatically most of support activities to execute computations but also manages advance tasks such as fault tolerance, then reducing the work of programmers.

Start

Implementation

In this section, we present the implementation of a rst version of P2PDC with centralized resource manager and simplied functionalities.

User daemon

In the centralized version, the User daemon component constitutes the command line interface between user and environment. We outline here some principal commands:

• run: run an application. Parameters are application name and application owner parameters that will be passed to Task_Denition() function.

• stat: return actual state of node.

• exit: quit the environment.

Resource manager

The resource manager organizes connected peers in a centralized manner as in the Figure 4.3. A server is used in order to store information about all peers in the network. When a node joins the overlay network, it sends to the server a "join" 4.4. Implementation 59 message. Upon the reception of a "join" message from a peer, the server adds the new peer-to-peer list and sends to the peer an "accept" message. Peers must send ping messages periodically to server to inform it that they are alive. If the server does not receive any ping message from a peer after a time T , then the server considers that this peer is disconnected and removes it from the peer list.

Server Peer

Jo in & p in g ac ce p t Peer collections for a task execution is done as follows. When an user submits a task to environment, the task manager of the submitter sends a request message to the server with number of peers needed N P . The server checks if there are enough free peers in its peer list to meet this request. If there are not enough free peers, then the server sends an error message to the task manager of the submitter. In the contrary case, the server choose N P free peers from peer list and sends their address to the task manager of submitter.

When a peer is assigned to a task, the server marks that this peer is busy and not available to others tasks. A busy peer does not need to send ping message to server. When a peer has nished a task, it sends a ping message to server to inform that it is free and can receive another task.

Application repository

Application, in order to be run with P2PDC environment, needs to be developed according to the programming model presented in the section 4.3. Moreover, application needs to be added to the application repository. Each application is identied by a name that will be used to search and run application. In this version of P2PDC, application is added manually to application repository and are compiled at the same time with the environment.

Task manager

Task manager is the main component that calls functions of the application and carries out necessary actions to support execution of the application. When an user starts an application using the run command on a submitter, Task manager of the submitter nds the corresponding application in the application repository via application name and calls the Task_Denition() function. Afterward, it requests Chapter 4. Centralized version of the environment for peer-to-peer high performance computing peers from Resource manager on the basis of number of peers needed by application and sends subtasks along with their data to collected peers.

At peer side, when a peer receives a subtask, the Task manager nds the corresponding application on the application repository via application name and calls the Calculate() function. When the Calculate() has nished, the Task manager sends the result to submitter.

When the submitter has received results from all peers, Task manager of the submitter calls the Results_Aggregation() function.

File transfer and Fault-tolerance components are not developed in this version.

Computational results

We present now and analyze a set of computational experiments with the centralized version of P2PDC for the obstacle problem.

Obstacle problem

The application we consider, i.e. the obstacle problem, belongs to a large class of numerical simulation problems (see [START_REF] Spitéri | Parallel Asynchronous Richardson Method for the Solution of Obstacle Problem[END_REF]] and [Lions 2002]). The obstacle problem occurs in many domains like mechanics and nancial mathematics, e.g. options pricing.

Problem formulation

In the stationary case, the obstacle problem can be formulated as follows:

       F ind u * such that A.u * -f ≥ 0, u * ≥ φ everywhere in Ω, (A.u * -f )(φ -u * ) = 0 everywhere in Ω, B.C.,
where φ ∈ R 2 (or R 3 ) is an open set, A is an elliptic operator, φ a given function and B.C. denotes the boundary conditions on ∂Ω.

There are many equivalent formulations of the obstacle problem in the literature like complementary problem, variational inequality and constrained optimization problem. Reference is made to [Lions 2002], [START_REF] Spitéri | Parallel Asynchronous Richardson Method for the Solution of Obstacle Problem[END_REF]] and [Miellou 1985a] for more details. We concentrate here on the following variational inequality formulation:

F ind u * ∈ Ksuch that ∀v ∈ K, A.u * , v -u * ≥ f, v -u * ,
where K is a closed convex set dened by K = v|v ≥ φ everywhere in Ω, and ., . denotes the dot product u, v = uvdx. 

F ind u * ∈ V such that u * = F (u * ), (4.1) 
where V is an Hilbert space and the mapping F : v → F (v) is a xed point mapping from V into V . Let α be a positive integer, for all v ∈ V , we consider the following block-decomposition of v and the associated block-decomposition of the mapping F for distributed implementation purpose:

v = (v 1 , . . . , v α ) F (v) = (F 1 (v), . . . , F α (v)) .
We have V = Π a i=1 V i , where V i are Hilbert spaces; we denote by ., . i the scalar product on V i and |.| i the associated norm, i ∈ {1, . . . , α}; for all u, v ∈ V , we denote by u, v = α i=1 u i , v i i , the scalar product on V and |.| the associated norm on V . In the sequel, we shall denote by A a linear continuous operator from V onto V , such that A.v = (A 1 .v, . . . , A α .v) and which satises:

∀i ∈ {1, . . . , α}, ∀v ∈ V, A i .v, v i ≥ α j=1 n i,j |v i | i |v j | j , (4.2) where N = (n i,j ) i≤i,j≤α is an M -matrix of size α × α (4.3)
The reader is referred to [Varga 1962] for the denition of Mmatrix. Similarly, we denote by K i , a closed convex set such that K i ⊂ V i , ∀i ∈ {1, . . . , α}, we denote by K, the closed convex set such that K = Π a i=1 K i and b, a vector of V that can be written as: b = (b 1 , . . . , b α ). For all v ∈ V , let P K (v) be the projection of v on K such that P K (v) = (P K 1 (v 1 ), . . . , P Kα (v α )), where P K i denotes the mapping that projects elements of V i onto K i , ∀i ∈ {1, . . . , α}. For any δ ∈ R, δ > 0, we dene the xed point mapping F δ as follows (see [START_REF] Spitéri | Parallel Asynchronous Richardson Method for the Solution of Obstacle Problem[END_REF]).

∀v ∈ V, F δ (v) = P K (v -δ(A.v -b)), (4.4)
The mapping F d can also be written as follows.

F δ (v) = (F 1,δ (v), . . . , F α,δ (v)) with F i,δ (v) = P K i (v i -δ(A i .v -b i ))
, ∀v ∈ V, ∀i ∈ {1, . . . , α}. high performance computing

Parallel projected Richardson method

We consider the distributed solution of xed point problem 4.1 via projected Richardson method combined with several schemes of computation, e.g. a Jacobi like synchronous scheme: u p+1 = F δ (u p ), ∀p ∈ N or asynchronous schemes of computation that can be dened as follows (see [START_REF] Spitéri | Parallel Asynchronous Richardson Method for the Solution of Obstacle Problem[END_REF]). The above asynchronous iterative scheme can model computations that are carried out in parallel without order nor synchronization. In particular, it permits one to consider distributed computations whereby peers go at their own pace according to their intrinsic characteristics and computational load. Finally, we note that the use of delayed components in 4.5 and 4.7 permits one to model nondeterministic behavior and does not imply inneciency of the considered distributed schemes of computation. The convergence of asynchronous projected Richardson method has been established in [START_REF] Spitéri | Parallel Asynchronous Richardson Method for the Solution of Obstacle Problem[END_REF]] (see also [Miellou 1985a]), [START_REF][END_REF]] and [Miellou 1985b].

u p+1 i = F i,δ (u ρ 1 (p) 1 , . . . , u ρ j (p) j , . . . , u ρα(p) α ) if i ∈ s(p), u p+1 i = u p i if i / ∈ s(p),
The choice of scheme of computation, i.e. synchronous, asynchronous or any combination of both schemes will have important consequences on the eciency of distributed solution. The interest of asynchronous iterations for high performance computing in various contexts including optimization and boundary value problems have been shown in [START_REF] Spitéri | Parallel Asynchronous Richardson Method for the Solution of Obstacle Problem[END_REF]], [El Baz 1990], [Bertsekas 1987], [Bertsekas 1989], [El Baz 1994] and [El Baz 1998].

Implementation

We have considered 3D obstacle problems. Let n 3 denote the number of discretization points. In the Task_Denition() function, the iterate vector is decomposed into n sub-blocks of n 2 points. The sub-blocks are assigned to α subtasks with α ≤ n. Subtasks are then allocated to α nodes. This decomposition is called slice decomposition. 4.5 the basic computational procedure at node P k with k = 1, k = α. We note that in our experiments, the scheme of computation (synchronous, asynchronous or hybrid, i.e. combination of both schemes) is chosen at the beginning of the resolution;

whereas, the communication mode is decided at runtime by the P2PSAP protocol according to Table 3.1.

The node P k updates the components of the sub-blocks of the iterate vector denoted by U f (k) , U f (k)+1 , ..., U l(k) , where U f (k) stands for the rst sub-block assigned to the node P k and U l(k) stands for the last sub-block assigned to the node P k . We note that the transmission of U f (k) to node P k-1 is delayed so as to reduce the waiting time in the synchronous case.

The convergence test is based on the error between components of iterate vector of two consecutive relaxations (see [START_REF] Spitéri | Parallel Asynchronous Richardson Method for the Solution of Obstacle Problem[END_REF]).

The convergence is de-

tected if δ = max(|u p+1 -u p |) < ε
where ε is a positive constant. In our experiments, ε = 1e -11(10 -11 ). In the distributed cases of all three computational schemes, the termination is detected as follows. Two tokens are appended to updates exchanged between nodes: token tok_conv k,k+1 is appended to updates sent from node P k to P k+1 in order to collect information about local termination test; token tok_term k,k-1 is appended to the updates sent from P k to P k-1 in order to propagate the termination (see Figure 4 ed. It means that if tok_conv k,k+1 = T RU E, then the local termination test at nodes 1, . . . , k is satised. When tok_conv α-1,α = T RU E and the local termination at node P α is satised, node P α detects the termination. Then, node P α sets tok_term α,α-1 = T RU E, sends update to node P α-1 , sets values of components of sub-blocks of the iterate vector as result of the subtask and terminates the computation. When node P k receives tok_term k+1,k = T RU E, it sets tok_term k,k-1 = T RU E, sends update to node P k-1 , sets values of components of sub-blocks of the iterate vector as result of the subtask and terminates the computation. In the Results_Aggregation() function, the nal result of the task, i.e. nal values of components of the iterate vector is built from nal values of components of sub-blocks extracted from result eld of subtasks. The nal result is then written to a le.

3: i ← f (k) 4: receive U i-1 from node k -1 5: U i ← F i,δ (U i-1 , U i , U i+1 ) 6: for i = f (k) + 1 → l(k) -1 do 7: U i ← F i,δ (U i-1 , U i , U i+1 ) 8: end for 9: send U f (k) to node k -1 10: i ← l(k) 11: receive U i+1 from node k + 1 12: U i ← F i,δ (U i-1 , U i , U i+1 ) 13: send U i to node k + 1 14: until convergence

Tok_conv

NICTA testbed and OMF framework

Computational experiments have been carried out on the NICTA testbed [nic ],

Sydney, Australia. This testbed is constituted of 38 machines having the same conguration, i.e. processor speed 1GHz, memory 1GB based on Voyage Linux distribution. Those machines are connected via 100MBits Ethernet network.

NICTA testbed uses OMF (cOntrol and Management Framework) to facilitate the control and management of the testbed (see [Rakotoarivelo 2009, omf ]). OMF provides a set of tools to describe and instrument an experiment, execute it and collect its results; OMF provides also a set of services to eciently manage and operate the testbed resources (e.g. resetting nodes, retrieving their status information, installing new OS image). Furthermore, NICTA has developed OML (Orbit Measurement Library), a stand-alone software which could be used to collect and store any type of measurements from any type of application. More details about OMF and OML will be presented in section 7.2.

In order to perform our experimentations, we have written plural experiment descriptions les, using OMF's Experiment Description Language (OEDL), corresponding to dierent scenarios. Each experiment description le contains: conguration of the network topology, i.e. peer's IP address assignment so that they are in the desired cluster; network parameters, i.e. communication latency and path to application with appropriate parameters. Further details about OEDL and our descriptions les will be presented in Appendix A.

Problems and computational results

In this chapter, we present a set of computational experiments obtained with n = 96 and n = 144. The eciency of asynchronous schemes of computation decreases slowly with the number of processors; while the eciency of synchronous schemes of computation deteriorates greatly when the number of processors increases (this is particularly true in the case of 2 clusters); this is mainly due to synchronization overhead and waiting time.

The speedup of synchronous schemes of computation is very small for 24 nodes. This can be explained as follow: when 24 nodes are used, each node calculates only a small number of sub-blocks; since exchanged messages and sub-blocks have the same size, communication overhead and waiting time reach a signicant proportion.

When we compare the computational results with 1 and 2 clusters, we can see that there is not much dierence with regard to the asynchronous schemes; while in the synchronous cases, 1 cluster results are better than 2 clusters results. This is due to the fact that communication latency between 2 clusters (100ms) increases the waiting time due to synchronization; this means that synchronous communication is sensible to latency increase and not appropriate for the communication between clusters.

When the problem size increases from n = 96 to n = 144, the eciency of distributed methods increases since granularity increases.

The number of relaxations performed by synchronous schemes remains constant although the sub-block processing order is changed by the distribution of computation.

In the case of asynchronous schemes of computation, some nodes may iterate faster than others; this is particularly true when nodes have fewer neighbors than others, like nodes 1 and α that have only one neighbor. Then, the average number of relaxations increases with the numbers of machines, as depicted in Figure 4.7b and 4.8b.

The eciency of hybrid schemes of computation is situated in between eciencies of synchronous and asynchronous schemes.

It follows from the computational experiments that the choice of communication mode has important consequences on the eciency of the distributed methods. The ability for the protocol P2PSAP to choose the best communication mode in function of network topology and context appears as a crucial property. We note also that the choice of communication mode has important consequences on the reliability of the distributed method and everlastingness of the high performance computing application. With regards to these topics, we note that asynchronous communications are more appropriate in the case of communications between clusters.

Chapter summary

In this chapter, we have described the general architecture of P2PDC with its main functionalities. Afterward, we have proposed a programming model for P2PDC

that facilitates the work of programmer. Indeed, in order to develop an application, 

Hybrid resource manager

In the centralized version of P2PDC (see Chapter 4), a server manages informations regarding peers and allocates peers to a task. This centralized architecture is not scalable since the topology server is overloaded when the number of peer increases.

Furthermore, when the server fails, no task can be carried out. Thus, topology architecture of resource manager must be improved so that it becomes scalable, fault tolerant and it facilitates peers collection for computation.

In the literature, peer-to-peer topologies are designed most of the time for content sharing systems like Chord [START_REF] Stoica | [END_REF]], Pastry [Rowstron 2001] or CAN [Ratnasamy 2001]. Thus, they are aimed at proposing an ecient object search algorithm with low cost in terms of query hop and messages. An object is usually identied by a key and keys are replicated in the overlay network. A query is matched when it reaches a peer having this key; the address of peer storing the object is then returned. Computational resource discovery is quite dierent. Computational resources are specied by peer characteristics such as CPU, memory, network bandwidth and so on. Hence, search query in P2P HPC applications may have some specic requirements about peer characteristics. The requirements may be exact (e.g. CPU speed equals to 3.0 GHz) or in range (e.g. having more than 2Gb of memory). The query will then return the address of α peers required to perform a given task. Moreover, we note that the latency is an important factor that inuences the eciency of a computation when using distributed iterative algorithms with frequent communications between peers. Thus, it is better for returned peers to be close to each others and to the submitter.

In the sequel, we propose a new resource manager for P2PDC that is based on a hybrid architecture. This hybrid architecture is simple but ensures the scalability, the fault tolerance and ecient peers collection for computation. • Server manages informations regarding trackers connection/disconnection; it is the contact point of new nodes joining overlay network for the rst time. When trackers or peers have no contact to join overlay network, they contact the server in order to receive a list of closest connected trackers, then they connect to trackers in the received list. The server can also store statistic information regarding connection/disconnection time, resources donated/consumed of all nodes in the overlay network.

• A tracker manages informations regarding a set of peers, called a zone. It collects statistical information regarding connection/disconnection time, resources donated/consumed of peers in its zone and periodically sends these data to server.

• Peers are donors of computational resources. Peers are grouped in zones and managed by the tracker of zone.

Trackers topology is a line, see Figure 5.2. Each tracker T i maintains a set of closest trackers N i . In order to get rid of the case where some trackers can be isolated, there are, in the set 

IP-based proximity metric

In the literature, there are several proximity metrics that can be used in order to calculate the proximity between peers in the network such as IP path length, AS path length, geographic distance, and measures related to Round Trip time (RTT)

and so on (see [START_REF] Huaker | [END_REF]. Each metric has its own advantages and weakness.

We have chosen IP-based proximity metric because it makes use of local information (IP address) to calculate the proximity, hence it does not consume network resource and is faster than other metrics.

IP-based proximity metric [START_REF] Zhao | [END_REF]] makes use of the longest common IP prex length as the measure of proximity between peers. For example, in the case of 3 peers: P bits, while the longest common prex between P 1 and P 3 is 15 bits. So P 1 considers that P 2 is closer than P 3 .

Topology initialization

Initially, we suppose that the system has a server and some trackers managed by system administrator. These nodes are cores of the system and are on-line permanently. When the number of peers increases, system administrator chooses some trust volunteers peers to become trackers. Trackers are chosen based on on-line time, i.e. volunteers peers with largest on-line time will be chosen; moreover, trackers are chosen spearing on the IP range in order to ensure that the number of peers in a zone is balanced between zones. When P2PDC environment is downloaded and installed at a node, IP address of server and a list of trackers are set and stored in local memory. This tracker list will be updated when node joins to overlay network. 

Tracker joins

Peer joins

When a new peer joins overlay network, it sends a join message to the closest tracker in tracker list stored in local memory; the message is transferred to the tracker which is closest to the new peer. The closest tracker adds this peer to its peer list and sends an accept message to new peer along with its neighbor set N i . New peer updates its tracker list and sends to tracker of zone information regarding resources such as processor, memory, hard disk and current usage state. After joining a zone, peers have to update periodically their resources usage state to tracker. When tracker receives state update from a peer, it sends an answer message to this peer.

Tracker leaves

As a tracker maintains connection with the two closest trackers along the two sides in the set N i , a tracker disconnection can be detected by direct neighbors when connection is broken. Suppose that tracker T 4 in Figure 5.2 crashes, its direct neighbors T 3 and T 5 detect disconnection of T 4 . T 3 informs trackers along the left side of its set N 3 and the server about T 4 disconnection. T 3 sends also tracker list on the right side of its set N so that trackers on the left side of T 3 can rebuild their set N i . These trackers then replace T 4 by the closest tracker that was received. Similarly, T 5 informs trackers on right side of its set N 5 and the server about T 4 disconnection and sends to them trackers on left side of its set N 5 . Afterwards, T 3 establishes a connection with T 5 and the two trackers send to each other the farthest Chapter 5. Decentralized environment for peer-to-peer high performance computing trackers so that they can rebuild their set N i . On the other hand, when a tracker disconnects, peers of this zone do not receive acknowledgment message in response to state update message. If peers do not receive acknowledgment message from tracker after a time T , then peers consider that this tracker is disconnected; then peers will send join message to closest tracker in their tracker list, i.e. they will join to neighbor zone.

Peer leaves

When a peer disconnects, tracker does not receive resources usage state update from this peer. If tracker does not receive state update of a peer after a time T , then tracker considers that this peer is disconnected.

We note that when the server disconnects, the system continues working; topology of trackers and peers are maintained; new trackers and new peers can join overlay network through their tracker list in local memory; Trackers store statistical information in local memory and send them to the server when the server comes back.

Peers collection

When a node, the so-called submitter, wants to submit a task, it has to join the overlay network rstly; i.e. it nds a closest tracker and joins this zone. Then the submitter sends peer request message to its tracker; this message contains information regarding computation like task description, number of peers needed initially, peers requirements; the tracker lters connected peers in its zone which satisfy requirements of the request and sends the address of these peers back to submitter.

If number of peers collected by this tracker is not enough, then submitter requests peer from trackers in its local tracker list. If number of collected peers is not enough after having sent requests to all trackers in its local tracker list, then submitter requests more trackers address from the two farthest trackers on the two sides in its local tracker list. These two farthest trackers send to submitter trackers in their tracker list in other side with submitter. Then, submitter requests peers from new 5.3. Hierarchical task allocation 77 received trackers. This step repeats until enough peers have been collected. Peers reserved for a computation are considered busy and cannot be reserved for another computation.

We note that with this peer collection algorithm, closest peers to the submitter are always collected. This reduces the latency between submitter and peers and between peers, ensuring an ecient computation.

This hybrid topology architecture is simple as compared with existing structured topology architectures like Chord [START_REF] Stoica | [END_REF]] or Pastry [Rowstron 2001] but it is scalable, fault tolerant and ecient for both topology maintenance and peers collection. Each node is aware of a few others nodes: trackers are aware of peers in their zone and their neighbor set, peers are aware of their tracker and their local trackers list. The server manages all trackers but in an indirected manner, i.e. neighboring trackers monitor each others and only notications about tracker joining or leaving are sent to server. When a tracker or a peer joins the overlay network, closest tracker nding may take, in the worst case,

|T |

|N |/2 steps where |T | is the number of trackers and |N | is the size of neighbors set N . However, a node stores a list of closest trackers in its local memory that is updated over the time.

Thus, a node joining the overlay network always contacts a tracker which is close.

Peer leaving inuences only its tracker, while tracker leaving inuences peers in its zone and its neighbors. In particular, the cost of peers collection depends on the number of peers needed rather than the number of peers in the overlay network.

Hierarchical task allocation

When submitter has collected enough peers, it divides peers into groups based on proximity; in each group, a peer is chosen by submitter to become coordinator which will manage others peers in the group. The number of peers in a group cannot exceed C max in order to ensure ecient management of coordinator. We have chosen C max = 32. Submitter sends peers list of a group to coordinator. Then, the coordinator connects to all peers in a group and sends a reverse message to peers. When a peer is reserved for a computation, it sends a message to its tracker to inform that it is not free any more. Chapter 5. Decentralized environment for peer-to-peer high performance computing

Submitter calls the Task_Denition() function where a given task is decomposed into subtasks. Afterward, submitter sends subtasks to groups coordinators.

Subtasks are then sent by coordinators to peers. Subtasks results are sent in inverse direction, i.e. peers send their subtask result to coordinator, then coordinator transfers results to submitter.

We note that hierarchical task allocation has many advantages as compared with the case where there are not coordinator. Firstly, hierarchical task allocation is faster because submitter does not have to connect in succession to all peers in order to reserve peers and send subtasks; submitter has only to connect to coordinators and peer reservation and subtask sending are carried out in parallel by coordinators; moreover, peers grouping is based on proximity, hence communication between coordinator and peers is faster than directed communication between submitter and peers. Secondly, sending result to submitter via coordinators avoids bottleneck at submitter because if all peers would send results directly to submitter, then there could be a bottleneck at submitter.

Dynamic application repository

In the centralized version of P2PDC, applications are added manually to application repository and compiled at the same time with P2PDC. When users want to add a new application to P2PDC, they have to recompile P2PDC as well as redeploy P2PDC on every machines. This takes time and eorts of users. Thus, we have implemented a dynamic application repository in order to overcome this weakness.

Then, applications of P2PDC are compiled independently with P2PDC as dynamic libraries, i.e. le .so in Linux or le .dll in Windows with le name being the application name. The library les are stored at a specic place.

When a task is submitted with an application name at a given submitter, the application repository will check if there is a library le having the same name as the application name in the the specic place. If this library exists, then the application repository will load this library, extract three principal functions and return pointers of those functions to Task manager. If this library le does not exist, then an error message will be returned to user.

At peer side, when a peer receives a subtask with an application name, the application manager nds and loads the library le from the application repository in a way similar to what is done at the submitter. However, if this library le does not exist in the repository, then the application manager downloads the library le from the submitter or from the coordinator via le transfer component (see section 5.5).

File transfer

File transfer system is responsible of application library les transfer as well as transfer of task input data les and result les between peers. Application library 5.6. New communication operations 79 les are transfered automatically from submitter to workers. On what concerns task input data, programmers can choose between two ways. In the rst way, programmers read input data from le and set them as task parameters in the Task_denition() function. Those parameters will be sent along with subtasks to peers. In the second way, programmers set the input data le path as a task parameter in the Task_denition() function. Then, input data le will be transfered automatically to workers. Although programmers also have to read the data input le in Calculate() function, the second way has advantage as compared with the rst one to avoid memory leak in very large application. Similarly, sending results via le transfer component instead of setting results as subtask parameters is also a solution to avoid memory leak.

Files transfered from submitter to workers are divided into two types. Common les like application library les and input data le need to be sent to all workers.

Private les like private subtask input data le need to be sent to only one subtask.

Private les are transfered directly from submitter to workers. Whereas, common les are transfered via the hierarchical allocation architecture, i.e. common les are transfered rst from submitter to coordinators and then from coordinators to workers. The transfer of common le following the hierarchical architecture avoids the bottleneck at submitter and then is much faster than the direct transfer from submitter to workers. For example, in the case of 120 workers divided into 4 groups( 4coordinators), transfer of common le via the hierarchical architecture of common le is about 4 times faster than the direct transfer from submitter to workers.

New communication operations

In the centralized version of P2PDC, there are only 2 communication operations:

P2P_Send and P2P_Receive. The communication mode is decided by P2PSAP protocol according to context, e.g. topology at the network layer or computational scheme at application layer. But some special messages need to be exchanged in a reliable mode like messages for termination detection, termination propagation, etc. Therefore, we have divided messages into 2 types: data message and control message. While data messages are used to exchange updates between peers after each relaxation, control messages are used for computation state exchange like data related to local termination criteria, termination command. Communication mode for data message is chosen according to the context by P2PSAP; while communication mode for control message is always asynchronous and reliable using control channel of P2PSAP int P2P_Wait(P2PSubtask* pSubtask, uint32_t *iSubtaskRank, int *ags)

The use of control messages and operation P2P_Wait will be detailed in subsection 5.7.1.

Computational experiments

In this section, we concentrate on the decomposition of the obstacle problem. We consider mainly a 3D obstacle problem with size 256 × 256 × 256. We propose a decomposition that permits one to improve the eciency of distributed algorithms when a large number of peers is used. Experimental results with P2PDC on the Grid'5000 platform [gri ] with up to 256 workers are displayed and analyzed.

New approach to the distributed solution of the obstacle problem

The decentralized version of P2PDC aims at using hundreds of peers distributed over several clusters. However, the distributed algorithm described in the previous chapter may not scale well with large number of machines in peer-to-peer context.

Hence, we have introduced a new problem decomposition and use a dierent termination method.

New decomposition of the obstacle problem

In the previous chapter, the iterate vector of the 3D obstacle problem n × n × n was decomposed into n sub-blocks of size n×n; sub-blocks are then assigned to α workers. This decomposition is called a slice decomposition. The worker P k (excluding the rst and the last worker) has then to send a message of size n 2 to worker P k-1 and a message of size n 2 to worker P k+1 after each relaxation. The workers P 1 and P α have to send respectively only a message to workers P 2 and P α-1 , respectively. When the number of workers increases, the computational load of workers decreases; whereas the total size of messages a typical worker has to send to other workers after each relaxation remains unchanged:

S ms = 2 × n 2 . Therefore, the algorithm eciency can deteriorate greatly.

In order to reduce the size of messages exchanged between workers after each relaxation, we have proposed the following decomposition. The iterate vector of the 3D obstacle problem is decomposed into n × n sub-blocks of size n. The sub-blocks are then assigned to α workers according to two axes, i.e. n × n sub-blocks are assigned to p × q workers, each worker is assigned m × k sub-blocks, where p × q = α and p × m = q × k = n. This decomposition is called pillar decomposition. Figure 5.6 illustrates the pillar decomposition of the iterate vector in the case where n = 32, p = 2 and q = 4 (α = 8). Then, the message exchange topology is a grid where a typical worker (excluding workers on the boundary of the grid) has to send 4 messages after each relaxation ( 4workers at 4 corners of the grid send two messages, others workers on the boundary of the grid send three messages). Thus, the total size of messages a typical worker has to send after each relaxation is:

S ms = 2 × (m + k) × n = 2 × ( n p + n q ) × n = ( 1 p + 1 q ) × 2 × n 2 .
Chapter 5. Decentralized environment for peer-to-peer high performance computing Since 1 p + 1 q ≤ 1, ∀p, q ≥ 2, S ms with pillar decomposition is smaller than with slice decomposition. Moreover, when the number of peers increases, p and q will increase, then 1 p + 1 q decreases. Thus, S ms decreases when the number of peers increases. However, with pillar decomposition, a worker has to exchange messages with more workers than with slice decomposition. This leads to the enlargement of synchronization time in case of synchronous computational scheme. That is the reason why we do not decompose the iterate vector into points and assign points to workers according to all three axes. For example, in the case where there are 64 workers and the problem size is 256× 256 × 256, the total size of messages a worker has to send after each relaxation with slice decomposition is S ms = 2 × 256 2 . If the problem is decomposed according to pillar decomposition with p = 8 and q = 8, then each worker is assigned 32 × 32 sub-blocks of size 256; the total size of messages a worker has to send after each relaxation is

S ms = ( 1 8 + 1 8 ) × 2 × 256 2 = 1 4 × 2 × 256 2 .
Thus, S ms with pillar decomposition is four time smaller than with slice decomposition.

Figure 5.7 displays the basic computational procedure with pillar decomposition at node P r,c which is at row r and column c and which is not on the boundary of the grid (the topology of update exchange between workers).

The node P r,c updates the sub-blocks of components of the iterate vector denoted by U i,j , f (r) ≤ i ≤ l(r), f (c) ≤ j ≤ l(c), where f (r) and l(r) stands for the rst and the last sub-block row of the node P r,c and f (c) and l(c) stands for the rst and the last sub-block column of the node P r,c .

Termination

According to the change from slice decomposition to pillar decomposition, the termination detection is modied as follows. Token tok_conv is appended to updates from node P r,c to two nodes P r+1,c and P r,c+1 . Moreover, with the presence of control message (see section 5.6), token tok_term is not appended to updates but is sent as control messages from a given node P r,c to nodes P r-1,c and P r,c-1 (see Figure 5.8). The reliability of control messages avoids loss of token tok_term in asynchronous and hybrid cases. Furthermore, we have noticed that the termination described above is not ecient for asynchronous iterative algorithms in the case where a large number of peers is used and the architecture is heterogeneous. Thus, we have implemented a different termination method for the obstacle problem in asynchronous computational scheme that detects exactly the termination and reduces unnecessary relaxations. This termination method has been proposed in [El Baz 1998]; it is a variant of the termination method of Bersekas and Tsitsiklis [Bertsekas 1989[START_REF] Bertsekas | [END_REF]].

This method is based on activity graph and acknowledgement of messages.

The behavior of workers implementing asynchronous iterative algorithms is presented by the nite state machine in Figure 5.9 where each worker can have three states: active (A), inactive (I) and terminal (T).

Initially, only the worker P 1,1 is active. This worker is call the root and is Chapter 5. Decentralized environment for peer-to-peer high performance computing Le fonctionnement des processeurs mettant en uvre l'algorithme it eratif asynchrone modi e est repr esent e par la machine a etats nis de la gure 4.3 pour laquelle chaque processeur peut avoir trois etats: actif (A), inactif (I), et terminal (T). Initialement, un seul processeur est actif. Ce processeur est appel e la racine et est not e R:

P
Tous les autre processeurs sont inactifs.

On notera par la suite T un arbre de racine R recouvrant l'ensemble des processeurs.

Quatre types de message peuvent être emis par chaque processeur : -l e s v aleurs des composantes du vecteur it er e, -les messages d'activit e, -les messages d'inactivit e, -les messages de terminaison.

Les donn ees suivantes sont rang ees dans chaque processeur P :

-l e s v aleurs des it er es.

-l'identit e du processeur qui a activ e P (qui est aussi appel e : le p ere de P), -la liste des processeurs activ es par P (qui sont aussi appel es : les ls de P). D e nition 4.5 : Etat A. Dans l' etat actif, un processeur P evalue le test de terminaison local sur la base des derni eres valeurs des it er es qui sont disponibles dans sa m emoire l o cale. Si le test de terminaison local est satisfait, alors le processeur n'e ectue pas de r eactualisation sinon les composantes du vecteur it er e qui sont assign ees a P sont r eactualis ees, les valeurs qui r esultent de ces calculs sont envoy ees aux processeurs adjacents, et le processeur P attend des Figure 5.9: Behavior of workers implementing new termination method. denoted R. All others workers are inactive. We denote in the sequel T, a tree of root R covering worker set.

Four types of messages may be issued by each worker:

• Updates of sub-blocks.

• Activate messages.

• Inactivate messages.

• Termination messages.

The rst message type is data message. Three others message types are control messages.

Each worker P r,c has to store following additional data:

• The identity of the worker that has activated P r,c (which is also called parent of P r,c ).

• The list of workers activated by P r,c (which are also called children of P r,c ) State A. In active state, a worker P r,c evaluates the local termination test. If the local termination test is satised, then P r,c does not execute update; otherwise, P r,c updates components of sub-blocks assigned to it and sends updates to adjacent workers. If P r,c receives an activate message from a worker P r ,c , then P r,c adds P r ,c to its list of children. If P r,c receives an inactivate message from a worker P r ,c , then P r,c removes P r ,c from its list of children.

State I. In inactive state, a worker is waiting for messages (using P2P_Wait operation).

State T. In terminal state, the computation has been terminated, workers do nothing.

Transition Tia. An inactive worker P r,c becomes active when it receives a new update from an adjacent worker P r ,c ; then the worker P r,c sends an active message to P r ,c and P r ,c becomes parent of P r,c .

Transition Tai. An active worker becomes inactive if its list of children is empty and its local termination test is satised; then the worker sends an inactive message to its parent.

Transition Tit. The root worker R changes immediately from inactive state to terminal state. Termination messages then are sent to adjacent workers in the tree T recovering workers. A worker P r,c dierent from R changes from inactive state to terminal state when it receives a termination message from an adjacent lower level node in the tree T . P r,c then sends termination messages to adjacent upper level nodes in the tree T .

The behavior of this method can be summarized as follows: initially, only the root worker R (P 1,1 ) is active and all other workers are inactive. All other workers become progressively active upon the receipt of an update from another worker. An activity graph is created; the topology of the graph changes progressively as the various messages are received and the local termination tests are satised. Figure 5.10 presents an example of the evolution of activity graph in the case of 8 workers.

Grid'5000 platform

Computational experiments have been carried out on the Grid'5000 platform [gri ].

The French grid platform is composed presently of 2970 processors with a total of 6906 cores distributed over 9 sites in France. All of them have at least a Gigabyte Ethernet network for local machines. Nodes between the dierent sites range from 2.5 Gops up to 10 Gops. Sites of Grid'5000 have several clusters with dierent performances.

Chapter 5. Decentralized environment for peer-to-peer high performance computing P P We have used machines over 8 clusters of 5 sites of the Grid'5000 testbed. Machine characteristics on each cluster we have used and corresponding sequential computational time are presented in Table 5.1 for the obstacle problem with size 256 × 256 × 256. The topology server is placed at the site of Toulouse. At each site, a tracker is launched in order to manage peers of the site. The submitter is a machine of the 5.7. Computational experiments 87 cluster Sagittaire at Lyon.

Experimental results

Experiments have been carried out in the following contexts.

• Case 1: The slice decomposition and termination method presented in subsection 4.5.2 are used, computations are carried out on the cluster Gdx at

Orsay with up to 128 workers.

• Case 2: The pillar decomposition and termination method presented in subsection 5.7.1.2 are used, computations are carried out on the cluster Gdx at

Orsay with up to 128 workers.

• Case 3: The pillar decomposition and termination method presented in subsection 5. The eciency of cases 1 and 2 are presented in Figure 5.11. We can see, in Figure 5.11, that the eciency deteriorates more rapidly in the case 1 than in the case 2

for both synchronous and asynchronous computational schemes. This is due to the fact that, when the number of workers increases, the problem decomposition in the case 2 reduces the total size of messages sent by a worker after each relaxation while the total size of messages sent by a worker after each relaxation remains unchanged in the case 1.

Figure 5.12 displays the number of relaxations in function of number of workers for asynchronous algorithm. We note that the number of relaxations in the the case 2 is lower than the number of relaxations in the case 1. This is due to the fact that with the termination method in the case 2, a worker does not execute update if the local termination test is satised; whereas, with the termination method in the case 1, a worker still executes update when the local termination is satised.

Computational results are presented in the gure 5.13 for the case 3. We note that the results are computed by using sequential computational time on the most performant cluster, i.e. cluster Pastel at Toulouse. As compared with Figure 5.11, we note that the eciency of synchronous algorithms deteriorates more rapidly in the case 3 than in the case 2. This is due to the fact that machines are distributed over 4

sites and the latency between clusters (from 11,5 ms to 18,9 ms) is greater than the latency inside a cluster (about 0,1 ms) in the case 3,. Thus the synchronization time is greater in the case 3 than in the case 2 for synchronous schemes. Moreover, the architecture is heterogeneous. In the synchronous case, faster workers have to wait for slower worker through messages exchanges; whereas, the results are computed by using the sequential computational time on the most performant cluster. In the asynchronous scheme, there is not much dierence between the case 2 and 3. This means that the asynchronous scheme is less sensitive to latency increase and more appropriate for computations in interconnected clusters context than synchronous schemes. The eciency of hybrid schemes of computation is situated in between eciencies of synchronous and asynchronous schemes. 

Number of peers

Chapter summary

In this chapter, we have presented the decentralized version of P2PDC that includes new features aimed at making P2PDC more scalable and ecient. Indeed, the resources manager is based on a hybrid topology that is simple but ecient and facilitates peers collection for computation. The hierarchical task allocation mechanism accelerates task allocation to peers and avoids connection bottleneck at submitter. Furthermore, a le transfer functionality is implemented that allows to transfer les between peers. Moreover, the communication operation set has been extended in order to facilitate the implementation of some asynchronous algorithms and termination detection, in particular for evolution problems.

Experiments for the obstacle problem have been carried out on GRID'5000 platform with up to 256 peers. A pillar decomposition has been proposed that reduces the total size of messages sent by a worker after each relaxation as compared with slice decomposition presented in previous chapter. A dierent termination method has been implemented for asynchronous iterative schemes that detects exactly the termination and reduces unnecessary relaxations. Computational results show that the pillar decomposition improves signicantly the eciency of computations, e.g.

in the case of 128 machines at Orsay, the eciency of distributed algorithm with pillar decomposition is about twice as much as with slice decomposition in both synchronous and asynchronous schemes. Moreover, we have obtained a good efciency for asynchronous iterations (0.78) in the case where up to 256 machines distributed over 8 clusters at 5 sites are used. This shows the interest of combining asynchronous schemes of computation with the decentralized environment P2PDC.

Moreover, the impact of procedures that ensure robustness on computational time is small. This chapter is organized as follows.

Next section presents existing faulttolerance techniques for parallel and distributed systems. Section 6.3 deals with the choice of fault-tolerance mechanisms in P2PDC. Section 6.4 aims at describing precisely the fault-tolerance mechanisms for worker failure, while the one for coordinator failure is detailed in the section 6.5. In section 6.6, experimental results

for the obstacle problem on Grid'5000 platform are displayed and analyzed in the case of peer failure. Finally, a summary of fault-tolerance mechanisms in P2PDC is presented.

State of the art in fault-tolerance techniques

In the literature, many fault-tolerance techniques have been proposed for parallel and distributed systems. One can classify them into two main classes: replication and rollback-recovery [Treaster 2005[START_REF] Sathya | [END_REF][START_REF] Arlat | [END_REF]]. While replication techniques use resource redundancy for masking the failure, rollback-recovery techniques consist in restoring the process of a failed node on another node. In the sequel, we shall detail these techniques and study their features and limitations.

Replication techniques

In replication techniques [Treaster 2005[START_REF] Felber | [END_REF][START_REF] Arlat | [END_REF], each process is replicated on two or more processors. A replicated process is called a replica. Replicas of a process must be coordinated in the way they give the illusion of a single logical process. If some of replicas fail, then the others replicas continue to process application. There are generally three replication strategies: passive, active and semi-active replication.

In passive replication, only a primary replica processes application, i.e. handles all incoming messages, updates its internal state and sends output messages. Others replicas are backup of the primary replica (see Figure 6.1). The primary replica regularly creates a checkpoint of its internal state. The checkpoint is either stored on a stable memory accessible by backup replicas, which are in idle state as the the primary replica is working (cold passive replication) or sent to backup replicas, which update their internal state from received checkpoint (warm passive replication).

When the primary replica fails, a backup replica is elected to take its place. Since state of new primary replica is created from a checkpoint of the failed primary replica, the new primary replica may have to re-execute some operations that the failed primary replica had already done.

In active replication, all replicas process application, i.e. each process handles all incoming messages, updates its internal state independently, and generates output messages (see Figure 6.2). The eective output messages are selected using a decision function which depends on the assumption on the process failure. For failed process uses the checkpoint on the stable storage to restart the computation from an immediate state. Hence, the amount of lost computation is reduced. We can classify rollback-recovery techniques into two categories: checkpoint-based and log-based.

Checkpoint-based rollback-recovery

The checkpoint-based rollback-recovery consists in taking a snapshot of the entire system state regularly. Upon a failure, the system is restored to the most recent snapshot.

The checkpoint-based rollback-recovery can be classied into three subcategories: uncoordinated checkpointing, coordinated checkpointing and communication-induced checkpointing.

• Uncoordinated checkpointing allows processes to take checkpoints independently. Each process may take a checkpoint when it is most convenient, thereby avoiding the synchronization complexity. However, this approach has several drawbacks in the cases where consistent global state is needed.

Firstly, a processes may take useless checkpoints that are not a part of a consistent global state. Secondly, uncoordinated checkpointing may result in a potentially signicant additional costs for seeking a consistent recovery line in an eventual recovery. Thirdly, uncoordinated checkpointing may lead to domino eect, where processes rollback indenitely through the computation history in order to reach a consistent recovery line, resulting in the loss of large amounts of computation.

• Coordinated checkpointing ensures that whenever processes take checkpoints, a consistent global checkpoint is created. This requires the synchronization between processes, thereby increasing the overhead of checkpointing. But in exchange, the recovery is simplied and is not susceptible to domino eect. This is due to the fact that upon a failure, every processes rollback to their most recent checkpoint, which is always a part of the most recent consistent global checkpoint.

• Communication-induced checkpointing is a compromise between the two approaches. Each process can independently take checkpoints as in uncoordinated checkpointing. However, in order to avoid the domino eect, processes are forced to take checkpoints that generate a global checkpoint. Messages exchanged between processes contain extra information that allows the recipient to determine whether it should take a forced checkpoint.

Log-based rollback-recovery

In log-based rollback-recovery, in addition to process checkpointing, all messages received by processes are logged in a stable storage. Upon a failure, only failed process restores to precedent checkpoint and uses messages logged in the stable storage in order to perform the same computation as in initial execution. Thus, the failed process can recover to the state before the failure occurred. An orphan process is a process whose state depends on a message that was not logged to stable storage; thus this process cannot be reproduced during recovery. Log-based rollback-recovery protocols need to ensure that upon recovery of all failed processes, the system does not contain any orphan process. There are three classes of log-based rollback-recovery protocols:

• Pessimistic logging protocols log a given message received by a process to the stable storage before it aects the computation. Pessimistic logging protocols ensure that orphan processes are never created upon a failure. Thus the recovery upon a failure is simplied, processes that do not fail do not need to take any special actions. Moreover, garbage collection is simple, i.e. checkpoints and messages that are older than the most recent checkpoint can be discarded because they will never be used for recovery.

• Optimistic logging protocols log received messages to a volatile storage which is periodically ushed to stable storage. Optimistic logging protocols reduce the overhead during fault-free execution because applications are not required to be blocked while waiting for messages to be written to disk. However, since messages logged in the volatile storage will be lost when a failure occurs, some processes may become orphan processes. Thus, recovery upon a failure in optimistic logging is more complicated than in pessimistic logging because orphan processes have to rollback to state that does not depend on any lost messages.

• Causal logging protocols combine the advantage of both optimistic and pessimistic approaches. Like optimistic logging, causal logging protocols avoid synchronous access to stable storage except during output commit. Like pessimistic logging, causal logging protocols allow each process to commit output independently and never creates orphans, thereby isolating each process from the eects of failures that occur in other processes. However, these protocols require more complex recovery protocol.
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One can nd rollback-recovery techniques in many systems like BOINC [Anderson 2004], XtremWeb [xtr ] or Vishwa [START_REF] Reddy | [END_REF]].

Choices of fault-tolerance mechanisms

In P2PDC, peers can have dierent roles: coordinator or worker. Moreover, computations can be done via dierent computational schemes: synchronous, asynchronous. Therefore, fault-tolerance mechanism has to adapt to all peer roles and computational schemes. In the sequel, we will detail our choices of fault-tolerance strategies for each peer role and computational scheme.

In our opinion, replication strategy is not appropriate to workers for HPC applications because the number of peers involved in the computation enlarges but the computational capacity does not increase; furthermore, when communication between peers is frequent like with iterative methods, a protocol ensuring coherence between replicas will have great overhead. Log-based rollback-recovery seems also not appropriate for iterative algorithms with frequent communications between peers since communication logging will use a great volume of storage. Thus, we have chosen to deploy the checkpoint-based rollback-recovery mechanism in order to cope with worker failure. This mechanism can self-adapt to dierent computational schemes. A synchronous scheme needs the synchronization of all workers after each iteration, i.e a global state of computation must be reached before computation can continue. Hence, coordinated checkpointing is appropriate to this case.

While in asynchronous schemes, each worker can work at its own pace. Moreover, asynchronous schemes allow message lost. Thus, uncoordinated checkpointing is appropriate to asynchronous schemes. So far, we have implemented the customized checkpointing where programmers dene what data should be placed into checkpoint and how to recover from a checkpoint. Since storing checkpoints in a reliable storage may become a bottleneck, it is better that checkpoints are distributed on several locations on the network. Thus, we have modied the coordinator so that when users choose to deploy fault tolerant functionality, the coordinator does not calculate any subtask but stores checkpoints of peers in its group.

In order to cope with coordinator failure, we have chosen a replication strategy because the number of coordinators is small as compared with the number of workers and coordinators do not compute any subtask in our approach.

In the following sections, we shall present in detail our adaptive fault-tolerant mechanism.

Worker failure

In a group, workers periodically send heartbeat messages to their coordinator to inform that they are still alive. If a coordinator does not receive the heartbeat message from a worker within a time T , then the coordinator considers that this worker has failed.
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In order to enable fault-tolerant functionality of workers, programmers have to call P2P_checkpoint function in the code. All application data that need to be placed into the checkpoint should be set as parameters of the function. For instance, in the solution of a numerical simulation problem solved via distributed iterative methods, values of the iterate vectors need to be placed into the checkpoint. In addition, when the user starts the submitter, he has to add fault-tolerance option to command line (see Appendix B); otherwise, P2P_checkpoint function will take no eect. When fault-tolerance option is added, all peers participating to the computation prepare specic data for checkpointing/recovery process. Coordinators store a copy of each received subtask so that if a subtask crashes before the rst checkpoint is taken, then the coordinator will recover crashed subtask from the initial state. In the sequel, we will present in detail checkpoint-based rollback-recovery process for dierent computational schemes.

6.4.1 Coordinated checkpointing rollback-recovery for synchronous iterative schemes 

(1) (4) (4) • (1) When P2P_checkpoint function is called at a worker, the worker creates a checkpoint and sends the checkpoint to its coordinator. We note that in the case of iterative algorithms, all peers execute the same code. Moreover, in the case of synchronous schemes, synchronization between peers is established via blocking operations of communication; thus the P2P_checkpoint function is called almost at the same time on all workers. After sending the checkpoint, the worker does not continue the computation immediately; it has to wait for the consistent global checkpoint of application to be generated.

• (2) When a coordinator receives a checkpoint from a worker, it veries if it has received checkpoints of all workers in its group. When checkpoints of all peer's characteristics are sent from submitter to coordinators at task allocation phase. Thus, the coordinator nds a free peer for failure recovery that also has to match these requirements. If there is no free peer in the network, then the coordinator of failed peer sends cancellation messages to others peers to terminate the computation.

• (5) Workers receiving rollback command stop their computation, load the state from their last checkpoint in local memory; then they send rollback done message to coordinators. On the other side, the new worker P 5 loads the state from received checkpoint and sends rollback done message to coordinator.

• (6) When a coordinator receives rollback done message from all peers in the group, it sends group rollback done message to submitter. In particular, when the coordinator of failed peer receives rollback done message from new peer, e.g. peer P 5 , the coordinator sends the address of the new peer-to-peers that have exchanged updates with failed peer so that these peers can exchange updates with the new peer. Coordinators manages peers that exchange updates with peers in their group according a subscribe-publish model as follows. For each peer P i in a group, the coordinator of P i maintains a list L i containing peers that exchange updates with this peer. If a peer P j exchanges update with peer P i , then peer P j sends a subscribe message to the coordinator of peer P i . Upon receiving subscribe message from peer P j , the coordinator of peer P i adds peer P j to the list L i . Hence, if the peer P i fails and its state is restored at a given peer P k , then the coordinator of peer P i publishes the address of peer P k to all peers in the list L i , including peer P j . For instance, in the Figure 6.5, if peers P 2 and P 3 have exchanged updates with peer P 4 , then the coordinator of peer P 4 publishes the address of peer P 5 to peers P 2 and P 3 .

• (7) When the submitter received group rollback done message from all coordinators, it sends restart command to all coordinators.

• (8) Coordinators transfer restart message to workers; then workers restart the computation from recovered state.

6.4.2 Uncoordinated checkpointing rollback-recovery for asynchronous iterative schemes We note that the implementation of active or semi-active replication would make the fault-tolerance mechanism for worker failure more complicated; furthermore it has more overhead on workers because workers have to send their checkpoint to several replicated coordinators. Thus, in order to cope with coordinator failures, we have implemented the passive replication for coordinator as shown in the Figure 6.8, i.e only the primary coordinator communicates with the submitter and workers, others replicated coordinators are backup of the primary coordinator and store the state of the primary coordinator. At task allocation phase (see Section 5.3), when the submitter divides collected peers into groups, it chooses in each group a primary coordinator and r -1 backup coordinators. Afterwards, the submitter sends subtasks allocated to peers in a given group to the primary coordinator of this group. After sending subtasks to peers in the group, the primary coordinator creates a checkpoint of its state and sends the checkpoint to its backup coordinators. The checkpoint of the primary coordinator consists of: list of peers in the group, list of backup coordinators, subtasks allocated to peers in the group, checkpoints of workers and so on. Backup coordinators establish the state of the primary coordinator from received checkpoint. Upon a state change on the primary coordinator, e.g. new worker checkpoint or worker failure, the primary coordinator updates this state change to backup coordinators.

Submitter

Backup coordinators periodically send heartbeat messages to the primary coordinator to inform that they are still alive. When the primary coordinator receives a heartbeat message from a backup coordinator, it sends an acknowledgement message to this backup coordinator. If the primary coordinator does not receive the heartbeat message from a backup coordinator within a time T , then it considers that this backup coordinator has failed. The primary coordinator nds a free peer in the network and send a checkpoint of its state to this peer. The new peer establishes the state of the primary coordinator from received checkpoint and then becomes a backup coordinator. On the other hand, if backup coordinators do not receive acknowledgement message from primary coordinator within a time T , then they consider that the primary coordinator has failed. Then, backup coordinators 102 Chapter 6. Fault-tolerance in P2PDC communicate between them in order to nd the least charged backup coordinator to become new primary coordinator. After that, the new primary coordinator connects to submitter and workers in the group and starts to manage the group; in addition, it nds a free peers in the network to become its backup coordinator.

Computational experiments

We consider the 3D obstacle problem with size 256×256×256 (see Chapter 5) in the case where there are peer failures and the fault-tolerant functionality is implemented.

Peer failures are simulated by injecting faults on peers at some given time.

Coordinator replication overhead

We have run the 3D obstacle problem on 64 workers in the cases where the level of coordinator replication r is set to 2, 3, 4 or 5. We have found that synchronization between coordinator replicas and coordinator failure have negligible inuence on computation. This can be explained by the fact that coordinators does not execute any subtask when the fault-tolerant functionality is chosen; moreover, state changes on primary coordinator are sent to backup coordinators by an independent thread in order to minimize the inuence to group management process.

Worker checkpointing and recovery overhead

We have run the 3D obstacle problem on 4, 8, 16, 32 and 64 workers. The machines of the cluster Sagittaire at Lyon have been used in the case of 4, 8, 16 and 32 workers.

In the case where the number of workers is 64, we have used 32 machines of the cluster Sagittaire at Lyon and 32 machines of the cluster gdx at Orsay. In each case, we have injected randomly some faults at given workers. Table 6.1 shows the checkpointing time and recovery time for several cases. We note that a checkpoint of a given worker contains only current values of components of sub-blocks assigned to this workers. For instance, in the case of 4 workers, each worker is assigned a subblock of size 128 × 128 × 256 (see Subsections 5.7.1.1). Then size of a checkpoint of a worker is 128×128×256×8 = 33554432 bytes = 32 M bytes. Checkpoint time is time to execute the P2P_Checkpoint function at a worker. Recovery time is the interval from the failure of a given worker to the start of computation on a new worker where the state of failed worker is restored from its latest checkpoint. Recovery time does not include time to recover to the state before the failure occurred The checkpointing time in synchronous case is greater than in asynchronous case. This is due to the fact that in synchronous case, in checkpointing process, after sending a checkpoint to coordinators, workers are blocked until the global checkpoint is generated. Moreover, in synchronous case, all workers in a group send their checkpoints to the coordinator nearly at the same time which may result in a bottleneck at the coordinator; whereas in asynchronous case, workers in a group send When the number of workers increases, the checkpoint size decreases; while the checkpointing time in asynchronous case decreases and the checkpointing time in synchronous case increases. This is due to the fact that in synchronous case, the coordination overhead increases when the number of workers increases; moreover, the total checkpoint size that a coordinator has to receive from workers in checkpointing process does not change. However, in synchronous case, when the number of workers increases from 32 to 64, the checkpointing time decreases. This can be explained as follows: when 64 workers are used, workers are divided into two groups with two coordinators; then workers send checkpoints to two coordinators, each coordinator receives a half number of checkpoints.

The recovery time of a worker failure in asynchronous case is a bit greater than in synchronous case though in the synchronous case, all workers have to rollback to last checkpoint. This is due to the fact that in the synchronous case, all workers rollback to last checkpoints in local memory in parallel. Moreover, in the asynchronous case, the coordinator of the failed worker still has to receive checkpoints from others workers and others workers still send updates to each others while the recovery of worker failure is processing; whereas in synchronous case, only messages for recovery are sent while the recovery of worker failure is processing. Thus, sending checkpoint of failed workers from the coordinator to the new worker in asynchronous case takes more time than in synchronous case. However, when the number of workers is 64, the recovery time in synchronous case is greater than in asynchronous case. This is mainly due to the enlargement of coordination overhead when machines of two sites Lyon and Orsay are used.

When the number of workers increases, the recovery time in both synchronous and asynchronous cases decrease since the checkpoint size decreases.

Inuence of worker failures on computational time

In order to study the inuence of worker failure on computational time, we have run the 3D obstacle problem on 64 workers using machines on two sites Lyon and 104 Chapter 6. Fault-tolerance in P2PDC

Orsay. Checkpoints are taken every 1000 relaxations and some worker failures are generated randomly. The Figure 6.9 shows the computational time in several cases where the number of worker failures varies from 0 up to 10. 

Number of worker failures

Figure 6.9: Computational time for number of worker failures from 0 up to 10.

In the Figure 6.9, we can remark that when the number of worker failures increases, the computation time increases faster for synchronous iterative algorithm than for asynchronous iterative algorithm. This is mainly due to the fact that in the synchronous case, when a worker fails, all workers have to rollback to the last checkpoints. Whereas, in asynchronous case, only the state of the failed worker is rollbacked to last checkpoint, others workers continue computing with current state. In the case where the number of failures is equal to 10, the computational time increases about 10% in synchronous case and about only 4% in asynchronous case.

Chapter summary

In this chapter, we have presented the fault-tolerance mechanisms in P2PDC to cope with peer volatility. The fault-tolerance mechanisms can adapt themselves to peer roles and computational schemes. For worker failure, the rollback recovery techniques have been chosen: while the coordinated checkpointing strategy is implemented in synchronous case, the uncoordinated checkpointing strategy is implemented in asynchronous case. For coordinator failure, the replication technique has been chosen.

Experiments on Grid'5000 with fault injection for the obstacle problem showed that the fault-tolerance mechanisms in P2PDC have small impact on the computation even with a great amount of failures. Synchronization between coordina-

Introduction

In this chapter, we present the principle of an original solution related to a web portal for P2PDC application deployment. Most of the ideas presented in this chapter are developed in collaboration with NICTA, Sydney Australia. This Portal is the combination of P2PDC with tools developed at NICTA, i.e. OML, OMF and OMF Portal in order to facilitate the deployment, management of P2PDC applications as well as the retrieval and analysis of results. The Portal is under development. Thus, in this chapter, we present only the rst ideas on the web portal and introduce a new measurement channel for P2PDC on OML.

Background

In this section, we present briey tools developed at NICTA, i.e. OML, OMF and OMF Portal. This library has been recently evaluated in term of its impact on the resources and the measurements themselves in [START_REF] Mehani | [END_REF]]. The authors of [START_REF] Mehani | [END_REF] 7.2. Background 109 have found that this library allows the experimenters to easily develop measurement applications while improving the overall performance of the measurement process when compared to the non-threaded version of an application. Furthermore, the authors have shown that OML does not impact the footprint of any tool whether it concerns the CPU or memory usage.

OMF and its Portal

In order to evaluate new networking technologies, researchers have developed and deployed large facilities (testbeds) complementarily to preliminary simulated results.

These testbeds aim at providing real conditions for testing research works while proposing repeatability in a semi-closed environment. Nevertheless, oering and performing repeatability requires the development of management frameworks. During the last decade, the cOntrol and Management Framework [START_REF] Rakotoarivelo | [END_REF] has been developed to tackle this dicult challenge. This framework oers a suite of management, control and measurement services for networking testbeds.

From an operator perspective, OMF provides several services to manage, allocate and congure heterogeneous resources within a testbed. From an experimenter's point of view, it provides a high level domain-specic language to systematically describe an experiment (i.e. its used resources, required measurements and tasks to perform) and a set of software tools to automatically deploy and orchestrate this experiment on a given testbed. in order to create the LabWiki.

Through the modularity of OMF, this LabWiki could be used in order to facilitate researchers collaboration and peer verication of the nals result. Indeed, this portal oers the possibility to make public and migrate content to a public space and it oers users the possibility to create numerous projects where they can add collaborators. Furthermore, this portal integrates a graphical interface to analyze the resulting collected data. This interface is the other major contribution of Lab-Wiki. It allows the researchers to edit or load R scripts [r ] describing statistical computations to be performed on the collected data. LabWiki will run these scripts into a R interpreter which has access to the experiment data, and will present the resulting outputs (e.g. graphs, tables,...) to the researchers.

Motivation

A main advantage of peer-to-peer high performance computing is that any user can submit its own application. However, it also leads to some drawbacks related to the deployment of P2PDC applications on peer-to-peer networks. First, submitter machine has to initiate the computation, i.e. decompose the dataset, send data subset as well as application code to workers and receive results from workers either directly or via coordinators. If the submitter machine is not performant with low network bandwidth, then the submitter may become a bottleneck that leads to parallel algorithm eciency reduction. Second, although tasks are distributed to be computed at several peers, the duration of the computation may still be long. The submitter has then to stay connected until the completion of the computation. If the submitter disconnects, then the computation terminates immediately. Third, there are more free peers during some intervals of time of the day than during others. For example, there are more free peers during the night than during the day. But some users can not connect and start their application during the night. The last drawback of the current P2PDC system is that the received results are in raw format so that users have to make further treatment to obtain more sophisticated representations like graphs.

In order to overcome these drawbacks and to facilitate the deployment, man-Chapter 7. Contribution to a web portal for P2PDC application deployment 7.4 A new measurement channel for P2PDC

In this section, we introduce a new measurement channel for P2PDC on OML that reduces the volume of collected measurements and thus limit the impact of the measurements on the computation. Afterward, we present the application of this measurement channel to task deployment. In particular, this part permits one to give technical details related to task deployment in connection with the previous section.

Hierarchical measurements collection

Current OML architecture provides users with lters enabling to perform some preprocessing on a specic measurement stream at the resource that produces it. However, in many experiments, users do not need measurements from every nodes but integrated metrics over these measurements streams. For example, in the solution of a numerical simulation problem on peer-to-peer network, users want to collect periodically the computational error of overall computation which is the maximum computational error on all nodes in order to trace the evolution of the solution.

The measurement architecture of this experiment with current OML is depicted in We can note that not only unnecessary data are stored in the database but also further manipulations need to be made in order to extract necessary information. Epsilon (precision of solution) vs Time (s) for two runs with 2 and 4 peers, respectively In Figure 7.6, node does not inject measurement stream directly to OML Server but to an OML proxy-server. A max(.) lter is implemented on the proxy-server that calculates the maximum computational error from n entering streams (where n is the number of nodes) at each time step and forwards this value to OML Server.

Hence, the volume of collected measurements stored in database at OML Server is reduced n times. Moreover, users do not need to make any further manipulation on collected measurements.

In large scale experiments, where the number of nodes involved is large and nodes spread over network, if only an OML server (or a proxy-server) collects all measure-Chapter 7. Contribution to a web portal for P2PDC application deployment

A proxy-server is placed on OMF Portal in order to distribute automatically dataset to peers. When an experiment starts, the P2PDC Submitter injects a measurement point that contains the list of peers and name of data le as well as xml 

</collect>

Then the Init_Portal_Proxy lter reads the data le and injects sequentially data values to all Init_Portal_Client lters. When an Init_Portal_Client lter receives a data value, it knows if it must treat this data value based on lter parameters. When data is injected, Init_Portal_Client lters send data to peers. On each peer, a proxy-server will receive measurement stream from Init_Portal_Client lter on the OMF Portal and transfers this measurement stream to a so-called Init_Peer lter. Like Init_Portal_Proxy lter, Init_Peer lter does not write any data to output but sends data to P2PDC worker. The communication between Init_Peer lter and P2PDC Worker is made via local socket.

We present now a rst series of computational results obtained with OMF and P2PDC on the PlanetLab testbed. We note that in these experiments we have used We have collected 24 machines from 12 sites (2 machines on each site): 4 sites in US and 8 sites in Europe. Latency between machines at a same site is about 0.1 ms while latency between machines of dierent sites varies from 30 ms to 330ms. Machines are heterogeneous; processor's frequency varies from 2.4 to 3.0 GHz.

We have considered a 3-Dimensional obstacle problem with size 192 x 192 x 192.

Experiments have been carried out on 1, 2, 4, 8, 16 and 24 machines. Computational time in the sequential case, i.e. with one machine, varies from 3158 s to 6555 s according to the features of the machine. The synchronous schemes are not suited to this type of networks, since latency is much greater than the duration of a single relaxation. Hence, we have considered only the asynchronous scheme. Moreover, PlanetLab limits the bandwidth used in 24 hours, thus we have reduced update's frequency in order to respect PlanetLab user's charter: a node sends updates to its neighbors every 10 relaxations. Through experiments, we found that the reduction of update's frequency increases computational time from 5% to 10%.

Computational results are presented in Figure 7.9. We note that the sequential computational time of the fastest machine is used in order to calculate speedup and eciency.

Chapter summary

In this chapter, we have presented the contribution to a web portal for P2PDC application deployment. This Portal is the combination of P2PDC with tools developed at NICTA, i.e. OML, OMF and OMF Portal. We have given the rst ideas related to the Portal architecture and explained how this Portal can facilitate the 118 Chapter 7. Contribution to a web portal for P2PDC application deployment Figure 7.9: Computational results on PlanetLab deployment, management of P2PDC applications as well as the retrieval and analysis of results. We have also introduced a new measurement channel for P2PDC on OML that reduces the volume of collected measurements and thus limit the impact of the measurements on the computation.

Chapter 8

Conclusions and perspectives

In this manuscript, we have presented our contributions to peer-to-peer high performance computing. In particular, we have shown how we have designed and implemented P2PSAP, a self-adaptive communication protocol dedicated to P2P HPC applications. P2PSAP protocol is designed in order to allow rapid update exchange between peers in the solution of numerical simulation problems via distributed iterative algorithms. The protocol can congure itself automatically and dynamically in function of application requirements like choice of scheme of computation and elements of context like topology by choosing the most appropriate communication mode between peers. We note that this approach is dierent from existing communication libraries for high performance computing like MPICH/-Madeleine [START_REF] Aumage | [END_REF]] in allowing the modication of internal transport protocol mechanism in addition to switch between networks. P2PSAP protocol has been implemented on a small network for the solution of nonlinear optimization problems, i.e. network ow problems. A rst set of computational experiments shows that the protocol permits one to obtain good eciency particularly when using asynchronous communications or a combination of synchronous and asynchronous communications.

In chapter 4, we have presented the rst version of P2PDC, an environment for peer-to-peer high performance computing. We have described the general architecture of P2PDC along with its main functionalities. We have proposed a programming model for P2PDC that facilitates the work of programmer. Indeed, in order to develop an application, programmers have to write code for only three functions;

all others support activities are carried out automatically by the environment. In particular, the communication operation set is reduced, programmers do not have to care about the choice of communication mode, they just care or not about the choice of a given iterative scheme of computation, e.g. synchronous, asynchronous. The development of an application with P2PDC takes less programmer eort than with MPI and PVM. The rst implementation of P2PDC with centralized and simplied functionalities has also been studied. Finally, we have displayed and analyzed computational results on the NICTA platform with up to 24 machines for a numerical simulation problem, i.e. the obstacle problem. Computational results have shown that the combination of P2PSAP with P2PDC allows to solve eciently numerical simulation problems via distributed iterative methods, in particular when using asynchronous or hybrid schemes of computation.

In chapter 5, we have presented the decentralized version of P2PDC that includes new features aimed at making P2PDC more scalable and ecient. Indeed, 120 Chapter 8. Conclusions and perspectives the resources manager is based on a hybrid topology that is simple but ecient and which facilitates peers collection for computation. The hierarchical task allocation mechanism accelerates task allocation to peers and avoids connection bottleneck at submitter. Furthermore, a le transfer functionality has been implemented that allows to transfer eciently les between peers. Moreover, the communication operation set has been extended in order to facilitate the implementation of some asynchronous algorithms and their convergence detection and termination, with application to evolution problems in particular [Garcia 2011]. Experiments for the obstacle problem have been carried out on GRID'5000 platform with up to 256 peers.

A pillar decomposition has been proposed that reduces the total size of messages sent by workers after each relaxation as compared with slice decomposition presented in chapter 4. A convergence detection and termination method designed by Bertsekas [START_REF] Bertsekas | [END_REF]] has been implemented for asynchronous iterative schemes that detects exactly the termination and reduces unnecessary relaxations. Computational results show that the pillar decomposition improves signicantly the eciency of computations. Moreover, we have obtained a good eciency (0.78) for asynchronous iterations in the case where upto 256 machines distributed over 8 clusters at 5 sites are used. This shows the interest of combining asynchronous schemes of computation with the decentralized environment P2PDC.

In chapter 6, we have presented the fault-tolerance mechanisms in P2PDC to cope with peer volatility. The fault-tolerance mechanisms can adapt themselves to peer roles and computational schemes. For worker failure, the rollback recovery techniques have been chosen: while the coordinated checkpointing strategy is implemented in synchronous case, the uncoordinated checkpointing strategy is implemented in asynchronous case. For coordinator failure, the replication technique has been chosen. Experiments on Grid'5000 with fault injection for the obstacle problem showed that the fault-tolerance mechanisms in P2PDC have small impact on the computation even with a great amount of failures. Synchronization between coordinator replicas and coordinator failure appears to have negligible impact on computation.

Finally, in chapter 7, we have presented the rst ideas related to the use of OML, OMF and its Web portal in order to facilitate the deployment of P2PDC applications on peer-to-peer networks. Some aspects related to measurements in P2P applications have also been presented.

It is noted that the P2PDC environment has been used with success by several teams in France and Australia. The team MIS has implemented eciently several parallel algorithms for 2D cutting stock problems [START_REF] Hi | [END_REF]]. The team at IRIT-ENSEEIT has also implemented eciently electrophoresis problems and evolution Black-Scholes equations [Chau 2011, Garcia 2011]. The team at NICTA Sydney Australia has made some implementation of distributed iterative method for numerical simulation problem on PlanetLab [START_REF] Ott | [END_REF]]. Moreover, the team at LIFC has integrated P2PDC into the simulation tool P2PPerf so as to make prediction of performance for several scenarios [Cornea 2011].

In future work, we note that it is needed to improve the communication protocol, the application code and in particular decomposition schemes as well as the decentralized environment so as to obtain better eciencies in massively parallel context.

As a matter of fact, the need for scalable architectures is particularly important in peer-to-peer computing.

Hybrid methods that combine synchronous and asynchronous iterative schemes and that have been introduced in this thesis need further investigation, in particular in the case of high bandwidth network like Myrinet and Inniband. We believe this new type of parallel and distributed iterative algorithms to be very ecient in this context.

It is also important to design an ecient way to deploy computations on peerto-peer networks. The approach combining the decentralized P2PDC environment with OML, OMF and its Portal must be investigated further on in order to facilitate the deployment and management of P2P HPC applications. The use of a web portal will surely draw more P2PDC users. We note also that using OML measurements in combination with P2PDC can permit one to carry out steering of iterative methods.

In particular, one can encompass to use OML measurements in the solution of some nonlinear optimization problems so as to switch from a gradient method to Newton method when the iterate vector is close to the solution. This will permit one to improve the convergence rate of the implemented method.

Other applications have to be considered in order to validate our approach. In particular, several logistic applications related to the solution of complex problems like traveling salesman or multi-dimensional knapsack problems have to be considered as well as others numerical simulation applications.

The combination of peer-to-peer computing with a new approach like GPU computing deserves also to be investigated.
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 2 Fixed point problem and projected Richardson methodThe discretization of the obstacle problem leads to the following large scale xed point problem whose solution via distributed iterative algorithms (i.e. successive approximation methods) presents many interests.

  ⊂ {1, . . . , α}, s(p) = φ, ∀p ∈ N, {p ∈ N |i ∈ s(p)}, is inf inite, ∀i ∈ {1, . . . , α}, ) ∈ N, 0 ≤ ρ j (p) ≤ p, ∀j ∈ {1, . . . , α}, ∀p ∈ N, lim p→∞ ρ j (p) = +∞, ∀j ∈ {1, . . . , α}.
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 4 Figures 4.7 and 4.8, respectively, show the time, number of relaxations, speedup and eciency of the dierent parallel schemes of computation in the case where n = 96 and n = 144, respectively. For the application and topologies considered, we note that asynchronous schemes of computation have performed better than the synchronous ones.
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 484 Figure 4.8: Computational results in the case of the obstacle problem with size 144 × 144 ×

  programmers have to write code for only three functions; all others support activities are carried out automatically by the environment. Moreover, the communication operations set is reduced with only two operations, thus programmers do not have to care about the choice of communication mode as well as communication operation to achieve it. The development of an application with P2PDC takes less eort of programmers than with MPI and PVM. The rst implementation of P2PDC with centralized and simplied functionalities has been also presented. Finally, we Chapter 5. Decentralized environment for peer-to-peer high performance computing mechanism accelerates task allocation to peers and avoids connection bottleneck at submitter. Furthermore, a le transfer functionality is implemented that allows to transfer les between peers. Moreover, some modications to the communication operation set are introduced. Experiments for the obstacle problem are carried out on GRID'5000 platform with up to 256 peers.This chapter is organized as follows. In the next section, we describe the hybrid resource manager and peer collection procedure for a computation. The section 5.3 deals with hierarchical task allocation. The section 5.4 presents the dynamic application repository. The implementation of le transfer functionality is detailed in the section 5.5. The section 5.6 presents new communication operations. The experiments for the obstacle problem on Grid'5000 are displayed and analyzed in the section 5.7. Finally, a summary of the decentralized version of P2PDC concludes this chapter.
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  only the new measurement channel for task deployment; P2PDC is not yet combined with OMF Portal. PlanetLab is a global research network that supports the development of new network services. Since the beginning of 2003, more than 1,000 researchers at top academic institutions and industrial research labs have used PlanetLab to develop new technologies for communication protocols, distributed storage, network mapping, peer-to-peer systems, distributed hash tables, and query processing. Planet-Lab currently consists of 1109 nodes at 512 sites.
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	Pour illustrer les algorithmes it eratifs asynchrones on peut reprendre l'exemple simple pr ec edant. Un ty p e d e d eroulement asynchrone des calculs est alors donn e par la gure 2.2 o u les rectangles blancs num erot es repr esentent les phases de r eactualisation et les rectangles hachur es les phases de communication. Le num ero d'it eration est incr ement e au commence-ment d e c haque nouvelle phase de r eactualisation. On note que les rectangles hachur es ne contiennent pas de p eriode d'inactivit e et que les phases de r eactualisation s'encha^ nent plus rapidement.

  of services related to QoS control mechanisms and a non-hierarchical model for the QoS management mechanisms (see figure5). Control operations are executed in synchronization to every data packet being sent or received. Received data packets compose the IN flow and sent data packets the OUT flow.The QoS control mechanisms operates on each individual data packet in order to satisfy the QoS requirements (.i.e. rate control, flow control, time control, loss detection, etc.). Management mechanisms operates in longer periods of time reacting to QoS measures or when specific events are triggered (.i.e.

	congestion	control,	error	recovery,	inter-flow
	synchronization, etc.).			

FPTP (Full Programmable Transport Protocol) 

is a connection oriented and message oriented transport protocol that has been designed to be statically or dynamically congured according QoS requirements

[START_REF] Exposito | [END_REF]

]. FPTP is constructed by the composition of congurable mechanisms suited to control and manage the QoS. FPTP architecture follows a hierarchical model for the composition of services related to QoS control mechanisms (i.e. rate control, ow control, time control, loss detection) and a non-hierarchical model for the QoS management mechanisms (i.e. congestion control, error recovery, inter-ow synchronization) (see

Figure 3.2)

. FPTP has been implemented in Java for multimedia applications with dierent QoS requirements in terms of time constraints. composition

  3 and P 4 connected only via Ethernet. The communication protocol between machines P 3 and P 4 Some modications to Cactus and congestion control, i.e. TCPNewRenoCongestionControl. The communication protocol between machines P 1 and P 2 is based on synchronous communication (for the same reasons) via Inniband since Inniband is faster than Ethernet. Moreover,

	InniBand insures reliability and message order; as a consequence, the data chan-
	nel needs only micro-protocols ensuring synchronous communication (Synchronous)
	and segment size management (Resize). Communications between machines of the
	dierent clusters are asynchronous; as a consequence, in this case we need no order,
	nor reliability micro-protocols.

is based on synchronous communication (since machines have similar characteristics and loads) via micro-protocols ensuring e.g. reliability and order, i.e. ReliableFifo,
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	.1. In the

1: Choice of P2PSAP protocol features according to algorithmic and communication context

  , we have developed a new micro-protocol implementing the TCP New-Reno congestion avoidance algorithm. This micro-protocol must be used in combination with PositiveAck, Restransmit, DuplicateAck and WindowCongestionControl microprotocols that are already available in CTP. It consists of 4 handlers of events:SegmentLost, SegmentTimeout, AddDupAck and SegmentAcked. SegmentLost event is raised by DuplicateAck micro-protocol when a third duplicate ACK is received. AddDupAck event is raised by DuplicateAck micro-protocol when a additional duplicate ACK is received. Figure3.11 displays the pseudo-code of TCP New-Reno

	Chapter 3. P2PSAP -A self-adaptive communication protocol
	Peer A		Peer B	
	Application	P2PSAP	P2PSAP	Application
	Send congestion avoidance micro-protocol.	Receive	
	Buffer	Message unavailable
	Message 1: procedure TCPNewRenoCongestionAvoidanceSegmentLost Buffer Receive 2: ssthresh ← min(F lightSize/2, 2) 3: crwd ← crwd + 3 4: f ast_recovery ← T RU E 5: end procedure	
	Message 6: procedure TCPNewRenoCongestionAvoidanceSegmentTimeout
	Figure 3.9: Asynchronous communication mode 10: end procedure	
	11: procedure TCPNewRenoCongestionAvoidanceAddDupAck 12: crwd ← crwd + 1 13: end procedure	
	1: procedure SynchronousUserSend 2: Push message into sender buer 3: end procedure 4: procedure SynchronousUserReceive 5: if receiver buer is not empty then 6: Pop message from receiver buer 7: end if 8: end procedure Figure 3.10: Asynchronous micro-protocol. 14: procedure TCPNewRenoCongestionAvoidanceSegmentAcked 15: if f ast_recovery = F ALSE then 16: if cwnd < ssthresh then 17: crwd ← crwd + 1 18: else 19: cwnd ← 1/cwnd 20: end if 21: else 22: if full acknowledgement then 23: ssthresh ← min(F lightSize/2, 2) 24: f ast_recovery ← F ALSE 25: else Partial acknowledgement 26: cwnd ← cwnd -n_acked 27: end if 28: end if 29: end procedure

Thus7: ssthresh ← min(F lightSize/2, 2) 8: crwd ← crwd + 1 9: f ast_recovery ← F ALSE

  2 , P 3 and P 4 are similar, i.e. Dual Core Xeon 3050, 2.13GHz with Linux Debian.

Table 3

 3 .3. Here, the speedup s is computed as where t s is the sequential computational time and t p is the parallel computational time; the eciency e is computed as follows:

	follows:				s =	t s t p			
					e =	s α			
	PCs	Scheme		Number of relaxation		Times	s	e
			P 1	P 2		P 3	P 4	(s)	
	1	-	399813	-		-	-	2135	-	-
	2	Syn	400694	400694		-	-	1481	1,44	0,72
	2	Asyn	385780	583735		-	-	1209	1,76	0,88
	4	Syn	402056	402056	402056	402056	1241	1,72	0,43
	4	Asyn	419175	389144	464128	743636	656	3,25	0,81
	4	Hybrid	449372	449372	398421	398421	935	2,28	0,57

where α is the number of machines.

Table 3 .

 3 3: Computational results for network ow problems on LAASNETEXP For the application and topology considered, we note that asynchronous iterative schemes have performed better than the synchronous ones. Moreover, the eciency of synchronous iterative schemes deteriorates greatly when the number of processors increases, i.e. 0.72 with 2 machines and 0.44 with 4 machines. The eciency of asynchronous iterative schemes decreases slowly with the number of processors, i.e.

	0.88 with 2 machines and 0.81 with 4 machines. This is mainly due to waiting time
	due to synchronization and synchronization overhead.

  In order to facilitate the work of programmers, we want the environment to carry out most of those activities automatically. Hence we propose a programming model based on this diagram. Only activities with solid line boundary, i.e. Task denition, Calculate and Results aggregation, are taken into account by the programmers.

			high performance computing
	Activities with broken line boundary, i.e. Collect peer, Send subtask, Receive sub-
	Submitter task, Send results, Receive results, are taken into account by the environment and Worker
	are transparent to programmers. Thus, in order to develop an application, pro-
	grammers have to write code for only three functions corresponding to the following
	three activities: Task_Denition(), Calculate() and Results_Aggregation(). In the
	Task_Denition() function, programmers dene the task in indicating the number
	of subtasks and subtask data. The computational scheme and number of peers nec-Task essary can also be set in this function but they can be overridden at start time in definition command line. On what concerns the Calculate() function, programmers write sub-
	tasks code; they can use P2P_Send()
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	Figure 4.2: Activity diagram of a parallel application

and P2P_receive() to send or receive updates at each relaxation. In the Results_Aggregation() function, programmers dene how subtasks results are aggregated into nal result and write the nal result to an output, i.e. a console or a le. Task_Denition() and Results_Aggregation() functions are called on submitter. Depending on the choice of the user, the Calculate() function is called only on workers or on both workers and submitter.

Table 5 . 1 :

 51 Machine characteristics and sequential computational time

	Site	Cluster	Processor	Memory Seq time
	Lyon	Sagittaire	AMD 2.4 GHz	2 Gb	32166 s
		Capricorne	AMD 2.0 GHz	2 Gb	33942 s
	Sophia	Helios	AMD 2.2 GHz	4 Gb	33178 s
		Sol	AMD 2.6 GHz	4 Gb	29400 s
	Toulouse	Pastel	AMD 2.6 GHz	8 Gb	27843 s
	Nancy	Grelon	Intel Xeon 1.6 GHz	2 Gb	32476 s
	Orsay	Gdx	AMD 2.0/2.4 GHz	2 Gb	34636 s
		Netgdx	AMD 2.0	2 Gb	34711 s

  7.1.2 are used, computations are carried out on several clusters with up to 256 workers. In the cases where the number of nodes is less than 256 workers, computations are carried out on 4 clusters at 4 locations: cluster Pastel at Toulouse, cluster Sagittaire at Lyon, cluster Grelon at Nancy and cluster Gdx at Orsay. For each experiment, an equal number of nodes is used on each site. For example in experiment with 8 nodes, 2 nodes at Toulouse, 2 nodes at Orsay, 2 nodes at Nancy and 2 nodes at Lyon, respectively, are used. In the case where the number of nodes is 256, nodes of others clusters are used.

Table 6 .

 6 1: Worker checkpointing and recovery overhead

	Workers	Checkpoint	Checkpointing time	Recovery time
		size	Sync	Async	Sync	Async
	4	32 Mb	1307 ms	372 ms	1251 ms	1257 ms
	8	16 Mb	1349 ms	201 ms	628 ms	654 ms
	16	8 Mb	1494 ms	101 ms	320 ms	329 ms
	32	4 Mb	1631 ms	51 ms	170 ms	174 ms
	64	2 Mb	919 ms	27 ms	105 ms	97 ms
	their checkpoints to the coordinator at their own pace; thus sending checkpoints to
	coordinators in asynchronous case takes less time than in synchronous case.

  le to the proxy-server of OMF Portal. The proxy-server of OMF Portal transfers this measurement to a specic lter, the so-called Init_Portal_Proxy lter. This specic lter does not write any data to output but creates n OML client lters of type Init_Portal_Client (n is the number of peers) and sets parameters to each lter based on information in the xml le; it is done via the creation an xml le for OML Client. The created xml le for OML Client in the above example is displayed in the listing 7.2.

		Listing 7.2: XML conguration le for lters
	1 <omlc id='P2P_Initialiser' exp_id='1298606048'>
	14	<fp name='dim' type='int'>3</fp>
	15	<fp name='size' type='int'>128</fp>
	16	<fp name='segment' type='string'>[0-63][64-127][0-127]</fp>
	17	</f>
	18	</mp>
	19	</collect>
	20	<collect url='tcp:193.136.124.226:3003'>
	21	<mp name='mp_init_data' samples='2097152'>
	22	<f fname='Init_Portal_Client' pname='value' sname='P2PDC_init'>
	23	<fp name='dim' type='int'>3</fp>
	24	<fp name='size' type='int'>128</fp>
	25	<fp name='segment' type='string'>[64-127][0-63][0-127]</fp>
	26	</f>
	27	</mp>
	28	</collect>
	29	<collect url='tcp:193.136.124.228:3003'>
	30	<mp name='mp_init_data' samples='2097152'>
	31	<f fname='Init_Portal_Client' pname='value' sname='P2PDC_init'>
	32	<fp name='dim' type='int'>3</fp>
	33	<fp name='size' type='int'>128</fp>
	34	<fp name='segment' type='string'>[64-127][64-127][0-127]</fp>
	35	</f>
	36	</mp>
	37	

2 <collect url='tcp:163.117.253.22:3003'> 3 <mp name='mp_init_data' samples='2097152'> 4 <f fname='Init_Portal_Client' pname='value' sname='P2PDC_init'> 5 <fp name='dim' type='int'>3</fp> 6 <fp name='size' type='int'>128</fp> 7 <fp name='segment' type='string'>[0-63][0-63][0-127]</fp> 8 </f> 9 </mp> 10 </collect> 11 <collect url='tcp:163.117.253.23:3003'> 12 <mp name='mp_init_data' samples='2097152'> 13 <f fname='Init_Portal_Client' pname='value' sname='P2PDC_init'>

  2. Examples of experiment description125A.2 Examples of experiment descriptionListing A.1 presents the experiment description in the case where the size of the obstacle problem is 96 × 96 × 96, the computational scheme is synchronous and 4 workers inside a same cluster are used.

	Listing A.1: Examples of experiment description les
	1 #	
	2 # Define the P2PDC application for submitter
	3 #	
	4 defApplication('P2PDCAppSubmitter', 'P2PDCAppSubmitter') do |app|
	5	app.shortDescription = "P2PDC wrapper application for submitter"
	6	app.path = "/P2PDC/Peer/P2PDC eth0 obstacle 96 1 4"
	10	end
	11 end
	12	
	13 #	
	14 # Define submitter's group
	15 #	
	16 defGroup('submitterGroup', 'omf.nicta.node9') do |node|
	17	node.addApplication('P2PDCAppSubmitter') do |app|
	18	app.measure('mp_submitter', :samples => 1)
	19	end
	20 end
	21	
	22 #	
	23 # Define the P2PDC application for workers
	24 #	
	25 defApplication('P2PDCAppWorker', 'P2PDCAppWorker') do |app|
	26	app.shortDescription = "P2PDC wrapper application for workers"
	27	app.path = "/P2PDC/Peer/P2PDC eth0"
	28	app.defMeasurement('mp_worker_result') do |m|
	29	m.defMetric('rank', :int)
	30	m.defMetric('NbrIters', :int)
	31	end
	32	app.defMeasurement('mp_worker_diff') do |m|
	33	m.defMetric('rank', :int)
	34	m.defMetric('Iters', :int)
	35	m.defMetric('diff', :float)
	36	end
	37 end
	38	
	39 #	
	40 # Define worker's group
	41 #	
	42 defGroup('workerGroup',

7 app.defMeasurement('mp_submitter') do |m| 8 m.defMetric('NbrIters', :long) 9 m.defMetric('Time', :float)

  do |node|

43

node.addApplication('P2PDCAppWorker') do |app| 44 app.measure('mp_worker_result', :samples => 1)

app.measure('mp_worker_diff', :samples => 1)

Max Ott, Guillaume Jourjon, The Tung Nguyen, Didier El Baz, Demo of the

Les travaux de thèse présentés dans ce mémoire ont été eectués au Labora-

Chapter 3. P2PSAP -A self-adaptive communication protocol

Synchronous Asynchronous

Hybrid 3.2: P2PSAP protocol composition according to algorithmic and communication context Chapter 4 Centralized version of the environment for peer-to-peer high performance computing Contents have displayed and analyzed computational results on the NICTA platform with up to 24 machines for numerical simulation problem, i.e. the obstacle problem.

Computational results show that the combination of P2PSAP and P2PDC allows to solve eciently large scale numerical simulation problems via distributed iterative methods, in particular when using asynchronous or hybrid schemes of computation.

In the next chapter, we shall present the decentralized version of P2PDC with some new features that make P2PDC more scalable and ecient. Semi-active replication is proposed to take advantages of both passive replication and active replication. Semi-active replication is similar to active replication in the sense that all replicas receive input messages and can treat them. However, as in passive replication, a privileged replica is responsible for certain decisions, e.g.

message acceptance or refusal. The privileged replica can impose its decisions on other replicas without resorting to a vote. Optionally, the privileged replica can have also the responsibility of sending the output messages (see Figure 6.3).

Replication techniques are used in many systems like SETI@HOME [set ], Condor [START_REF] Litzkow | [END_REF]] or P2P-MPI [START_REF] Genaud | [END_REF]].

Rollback-recovery techniques

Rollback-recovery techniques [Elnozahy 2002[START_REF] Arlat | [END_REF]] assumes that application processes have access to some kind of stable storage that always survives even if some processes have failed. During the execution, application processes save to this stable storage a snapshot of their state, called checkpoint. Upon a process failure, the Chapter 6. Fault-tolerance in P2PDC

workers have been received, the coordinator noties the submitter that the group checkpointing process is done (see Figure 6.4).

• (3) When the submitter receives notications of all groups, then the consistent global checkpoint of application is generated. The submitter noties all coordinators about the global checkpoint.

• • (1) The coordinator of failed worker P 4 noties the submitter about peer failure.

• (2) When the submitter receives a peer failure notication, it sends the rollback command to coordinators.

• (3) Coordinators transfer the rollback command to their workers.

• (4) The coordinator of failed peer nds a free peer in the network, i.e peer P 5 in the Figure 6.5, and sends the last checkpoint of failed worker in local memory to new peer. We note that the peer collection algorithm used to nd a free peer here is similar to the one used by the submitter at the beginning of the computation (see Subsection 5.2.8). Moreover, requirements about Chapter 6. Fault-tolerance in P2PDC

(1) Checkpoint ( 1) 

Submitter

Coordinator Coordinator

(1) Checkpoint Recovery process upon a worker failure for asynchronous iterative schemes is also very simple, as shown in the Figure 6.7. When the worker P 4 fails, others workers continue the computation without the failed worker. The coordinator of the failed worker nds a free peer in the network, i.e the peer P 5 , and sends the last checkpoint of the worker P 4 to the peer P 5 . The peer P 5 loads the state from received checkpoint and starts the computation from this state. The coordinator of peer P 5 sends the address of the new peer P 5 to peers that have exchanged updates with failed peer in order that these peers can exchange updates with the new peer.

If there is no free peer in the network, then the coordinator of failed peer will send cancellation messages to others peers to terminate the computation.

Coordinator failure

When the fault-tolerance properties are activated, coordinators do not execute any subtask. Moreover, coordinator is replicated on several peers in order to achieve fault-tolerance. Thus, at the beginning of a computation, the submitter has to collect more than W peers where W is the number of peers executing subtasks. The level of replication r, i.e. the number of replicas for each coordinator, can be set by Users can retrieve results from the Portal. Furthermore, they can write some R script so as the Portal can be able to create graphs or tables representation of the results.

We note that there may be several Portals on the network. Any organization or even any individual user can install its own Portal. With the presence of the Portal, users do not need to stay connected when the computation is running. They can reconnect later on and retrieve the result from the Portal. Then, we can put inside a group of nearby nodes a proxy-server implementing a lter that pre-processes measurement streams injected by peers in this group. Afterward, a top-level proxy-server integrates measurement streams injected by group's proxy-servers and forwards integrated metrics to OML Server. We can remark that measurement streams of a group of nearby nodes are pre-processed locally inside this group and only one measurement stream is sent from a given group to top-level proxy-server.

Application to task deployment

At the beginning of the solution of a problem via a parallel iterative algorithm, the initial dataset is decomposed into n parts and each part needs to be sent to corresponding peers. In the P2PDC architecture, when a programmer denes a task, he needs to read the dataset from a binary le, he decomposes it into subsets and integrates data subsets to subtasks as parameters; then, data subsets are sent along with subtasks to peers. With the integration of P2PDC and OMF/OML, task submission is done through OMF Portal. The data le of a task is uploaded to a File Repository on the OMF Portal and needs to be distributed to peers when the computation begins. In this subsection, we present an ecient method that makes use of the measurement library OML in order to distribute the dataset to peers.

We recall that the measurement library OML allows researchers to dene measurement points inside their program and then create automatically measurement 7.4. A new measurement channel for P2PDC 115 streams to store either locally or in a remote server. In our case, we want to use this library in a reverse manner whereby we will inject data to distribute to several clients instead of having several clients injecting measurements that would be collected by a server. The gure 7.8 gives the general idea on how to use OML for task deployment. OMF [Rakotoarivelo 2009, omf ] denes and uses a Domain-specic Language to describe an experiment. This language is named OEDL, standing for OMF Experiment Description Language.

OMF Portal P2PDC Submitter

OEDL which is based on the Ruby language [rub ] provides a set of specic OMF commands and statements. A new user does not need to know Ruby to write experiment description with OEDL. User can get started with only some basic OEDL commands and syntax. However, user will need to have some general entrylevel programming knowledge.

An OMF Experiment Description (ED) is composed of two parts in the following order:

• Resource Requirements and Conguration: this part enumerates the dierent resources that are required by the experiment, and describes the dierent congurations that need to be applied to them.

• Task Description: this part is essentially a state-machine, which enumerates the dierent tasks to perform with the required resources in order to realize the experiment.

The OEDL commands can be grouped into the following categories:

• Top-level commands: can be used anywhere within the ED, i.e. in any of the two parts mentioned above. These commands allow to set experiment properties and to manage logging messages. For example, defProperty('rate', 300, 'Bits per second sent from sender') denes the property rate with the initial value 300 in order to present the number of bit par second sent from sender.

• Topology-specic commands: are used in the Resource Requirements and Conguration section of the ED. They allow the denition of the topology involving specic resources, and some potential related constraints. For example, defTopology('test:topo:origin', [1][2][3][4]) denes a topology that contains four specic nodes.

• Group-specic commands: are used in the Resource Requirements and Conguration section of the ED. They allow the denition of a given group of resources, the description the specic resources that should be placed in that group, and the conguration to apply to them if needed. For example, defGroup('receivers', [1][2]) denes the group receivers that includes two specic nodes

• Prototype-specic commands: are used in the Resource Requirements and Conguration section of the ED. These commands allow denition of an OMF prototype. This group is composed of a main command defPrototype to dene a new prototype and a list of sub-commands to specify the prototype like proto.name, proto.description.

• Application-specic commands: are used in the Resource Requirements and Conguration section of the ED. They allow the denition of a OMF application. This group is composed of a main command defApplication and a list of sub-commands to specify the application like app.shortDescription, app.path.

• Execution-specic commands: are used in the Task Description section of the ED. They allow the denition of the dierent tasks to execute when the experiment reaches a specic state. For example, group('receivers').startApplications starts application at all nodes of receivers group.

• Resource Paths: are used in any section of the ED. A resource path allows the access and the value assignment of a specic conguration parameter to a resource. For example, node.net.eth0.ip = '192.168.1.1' assigns the IP address 192.168.1.1 to network card eth0 at a given node.

• Testbed-specic commands: are only available for specic testbed deployments, i.e. they act on particular types of resources that are only available on some specic testbeds. For example, antenna command injects noise into the testbed through the available antennas. Some of these commands also provide a list of sub-commands. These sub-commands will only be usable when associated with the parent command. • int TaskDenition(P2PTask* pTask)

• int Calculate(P2PSubtask* pSubtask)

• int ResultsAggregation(P2PTask* pTask)

In TaskDenition function, one can analyze parameters that user inputs at startup and set task, subtasks parameters. For the Task, one must set:

• pTask->scheme: choice of computation scheme (SCHEME_SYN, SCHEME_ASYN, SCHEME_HYBRID).

• pTask->cSubtasks (number of subtasks) and pTask->cPeers (number of peers). For the moment, those two parameters must have same value, i.e.

one peer executes only one subtask.

• pTask->pSubtasks: pointer points to an array of subtasks.

For each subtask, one can set subtask owner parameters in params eld and the size of this params eld in the params_size eld. Each subtask will be assigned automatically a rank that is equal to its index in the subtask array (0, . . . , cSubtasks -1). P2PDC environment will collect peers and send subtasks to peers automatically.

In Calculate function, one writes the code to compute a subtask. One can retrieve subtask rank (iRank eld) and subtask parameters (in params eld). One can use communication operations described in section 5.6 to communicate between peers. In the end of this function, one must set the result of subtask in result eld and size of result in result_size eld. Subtask result will be sent automatically to task submitter peer.

In ResultAggregation • Run the resources manager server in the Server folder:

./Server ./Tracker ./P2PDC [netif_name] where netif_name is the network interface used to communicating with others workers, e.g. eth0 or eth1.

Remark: On NICTA and PlanetLab testbeds, workers are started automatically by OMF framework. On Grid'5000 testbed, in order to avoid starting manually a large number of workers, one can create a customized image of environment where the worker program is congured as a startup program.

At the beginning of experiments, one deploys this image on machines so that worker program is started automatically on machines.

• Start submitter in P2PDC folder:

.

/P2PDC [netif_name] [-ft] [problem_name] [parameters]

where

• netif_name is the network interface used to communicating with others workers, e.g. eth0 or eth1;

• -ft is the fault-tolerance option.

• problem_name is the name of the problem.

• parameters are parameters of the application that will be passed to TaskDenition function.
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