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Résumé long en Francais

Les solides amorphes sont présents dans la vie de tous les jours. Cette dénomination est util-
isée pour définir les matériaux qui sont solides, c’est-a-dire, qui résistent a ’application d’une
force (parfois faible) sans s’écouler, mais dont les composants ne sont pas arrangés dans un
réseau régulier comme dans les cristaux. Au dela de 'absence d’ordre a longue portée qui est
la caractéristique principale des solides amorphes, les matériaux peuvent étre trés différents.
Un premier sous-groupe est celui des verres. Il est possible d’obtenir un verre en abaissant
la température d’un liquide en dessous du point de fusion tout en évitant la cristallisation
(cela peut se faire, par exemple, avec des vitesses de refroidissement élevées). Le liquide entre
d’abord dans I’état de surfusion, et si la température est encore abaissée, il finit par atteindre
I’état vitreux. Dans cet état, les particules ont une organisation spatiale irréguliere analogue
a celle des liquides. Cependant, les verres sont solides et, au niveau macroscopique, ils se
comportent d’'une maniere totalement différente des liquides. En raison de leur module élas-
tique élevé, cette premiere catégorie de matériaux est souvent qualifiée de solides amorphes
"durs", par opposition au sous-groupe "mou". Les colloides, les mousses et les émulsions sont
des exemples de ce deuxiéme groupe. Les suspensions colloidales [1] sont des fluides dans
lesquels sont dispersées des particules solides qui, sous 'effet d’une compression suffisamment
rapide, présentent une transition vitreuse [2]. Dans les mousses, un gaz est confiné dans un
liquide ou un solide, comme par exemple dans la mousse sur le dessus d'un cappuccino ou
dans les mousses métalliques. Enfin, les émulsions, comme la mayonnaise, sont obtenues en
mélangeant deux liquides normalement non miscibles. Ces matériaux présentent certaines
propriétés caractéristiques des solides, car ils sont capables de conserver leur forme si des
petites forces sont appliquées, et certaines caractéristiques des liquides, puisqu’ils s’écoulent
apres 'application d’une charge externe suffisamment importante.

Dans notre travail, nous avons étudié la réponse des solides amorphes, durs ou mous, a
une déformation imposée. Les protocoles de préparation, la taille des constituants, la na-
ture de la déformation et d’autres détails peuvent conduire a des résultats tres différents.
Nous nous intéressons plus particulierement au changement de la réponse lorsquun méme
matériau est préparé de manieres différentes, ce qui joue sur sa stabilité et son degré de
désordre. Les deux principales quantités dont on a besoin pour décrire la réponse du solide
sous une charge sont la contrainte et la déformation. Le champ de contrainte quantifie les
forces agissant en chaque point du matériau, tandis que le champ de déformation caractérise
la déformation qui en résulte. Afin d’étudier les propriétés mécaniques des matériaux, nous
nous sommes concentrés sur le cisaillement simple dans lequel le solide commence au repos
et est ensuite soumis a une déformation par cisaillement qui est progressivement augmen-
tée. Le résultat de ce protocole est une courbe contrainte-déformation qui caractérise les
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propriétés mécaniques du matériau. A faible déformation le solide se comporte de maniere
essentiellement élastique, c’est-a-dire que sa contrainte est linéairement proportionnelle a la
déformation appliquée. Lorsque la déformation augmente, la courbe s’écarte du comporte-
ment linéaire et devient saccadée, en raison de la présence d’une déformation plastique. Le
passage d’'un comportement élastique a un comportement plastique est appelé transition de
"vielding". A la différence des cristaux, l'origine de la plasticité dans les solides amorphes
vient de réarrangements non affines se produisant dans une région localisée de 'espace [3].
Ces événements localisés agissent sur le reste du systeme, y compris a grande distance,
générant un champ de déformation qui est décrit par le propagateur d’Eshelby, doté d’une
symétrie quadrupolaire. Le champ de déformation résultant d’un seul réarrangement permet
a d’autres zones de subir un événement plastique, créant un phénomene collectif d’avalanche.
En raison de la forme anisotrope du propagateur d’Eshelby, les événements plastiques peu-
vent se localiser dans une bande de cisaillement. Lorsque la déformation s’accroit, deux
scénarios sont possibles : alors que les mousses et autres solides amorphes mous peuvent
s’écouler indéfiniment sans se rompre (comportement ductile), les solides durs tels que les
verres de silicate se brisent brutalement (comportement fragile). L’existence de ces deux
types de réponse souleve la question des facteurs qui contrdlent la nature de la transition de
yielding. Des simulations de dynamique moléculaire [4] ont apporté une premiére réponse,
en montrant que le comportement d’'un méme matériau vitreux peut étre ductile (yielding
continu) ou fragile (yielding discontinu) en fonction de sa préparation. En outre, il a été
suggéré qu’il existe un point critique qui sépare les deux comportements.

Du point de vue de la physique statistique, un systéme au point critique possede une
propriété d’invariance d’échelle (la longueur de corrélation spatiale est infinie), ce qui se
traduit par l'existence de lois de puissance, caractérisées par des exposants critiques. Ces
exposants, ainsi que d’autres proprié¢tés du systeme au point critique, sont indépendants des
détails microscopiques. Deux systémes différents du point de vue microscopique peuvent
avoir un point critique avec les mémes propriétés, auquel cas on dit qu'’ils appartiennent a
la méme classe d’universalité. Le cas qui nous intéresse, la transition de yielding associée
a la déformation des solides amorphes, est cependant plus compliqué que les systemes purs
habituellement considérés en mécanique statistique, a cause du désordre gelé associé a la
nature amorphe des matériaux et du caractere hors équilibre du processus. Il est notamment
nécessaire d’introduire les concepts de susceptibilité déconnectée et connectée, qui permettent
de comprendre la contribution relative des différentes sources de désordre et d’identifier les
propriétés critiques du systeme. Ces idées ont été utilisées dans [4], ou il a été proposé que
le comportement des solides amorphes cisaillés a proximité de la transition de yielding est
analogue a celui d’un autre mode¢le bien connu en physique statistique : le modele d’Ising en
champ aléatoire (RFIM) forcé loin de ’équilibre par un champ appliqué a température nulle.
Cependant, le cotit de calcul des simulations de dynamique moléculaire et la limitation de
la taille des systémes et du nombre d’échantillons accessibles, est un obstacle majeur qui
empéche une étude approfondie par analyse d’échelle des effets de taille (finite-size scaling
analysis) des propriétés critiques des solides amorphes cisaillés. Notre travail repose sur
I'idée qu’il est alors nécessaire d’utiliser une modélisation mésoscopique du phénomeéne et de
chercher a développer une théorie effective reposant sur le RFIM.

Dans la premiere partie de notre travail, nous avons étudié le changement dans la tran-
sition de yielding des solides amorphes cisaillés, d’'un comportement de premier ordre (dis-



continu) a un comportement continu, au moyen d’un modele élasto-plastique (EPM) en 2 et
3 dimensions [5]. Dans ce modeéle phénoménologique, le solide est considéré au niveau méso-
scopique comme composé de nombreux blocs, chacun portant une valeur locale de contrainte.
Ces éléments se comportent selon des régles simples, mais donnent lieu & un comportement
macroscopique complexe capable de reproduire des résultats réalistes. Nous n’avons retenu
que les ingrédients minimaux du modele, qui devraient suffire a capturer la physique essen-
tielle en jeu dans la transition de yielding et le comportement a grande échelle. Les blocs
évoluent élastiquement au fur et a mesure que la déformation appliquée augmente, jusqu’a
ce qu’ils atteignent une valeur de limite d’élasticité au-dela de laquelle ils subissent un événe-
ment plastique et redistribuent une partie aléatoire de leur contrainte vers les autres sites
par le biais du propagateur quadrupolaire d’Eshelby. Nous avons constaté que, comme dans
les résultats des simulations de dynamique moléculaire, la courbe contrainte-déformation
obtenue change avec la préparation du matériau, qui, dans notre version de I'EPM, est
codée dans la distribution initiale des contraintes pour chaque bloc. Pour un désordre faible
(petite variance de la distribution initiale des contraintes), la courbe contrainte-déformation
obtenue présente un saut d’ordre 1 de la contrainte moyenne, accompagnée de la localisation
de lactivité plastique dans une bande de cisaillement. Au fur et a mesure que la variance
initiale augmente, le saut se réduit et disparait pour laisser place & une courbe continue avec
un maximum puis enfin, pour un désordre encore plus important, a une courbe monotone.
Nous avons étudié avec soin le régime fragile (discontinu), en examinant la phénoménologie
qui conduit & la formation de la bande de cisaillement pendant la plus grande avalanche.
Nous avons mesuré 1’évolution du profil de la bande de cisaillement en fonction de la taille du
systeme, ainsi que la contribution & la chute macroscopique de contrainte des sites situés a
Iintérieur et a I’extérieur de la bande. Notre analyse a également démontré que la caractéri-
sation des propriétés de la transition de premier ordre peut étre difficile en raison des effets
importants de taille finie, en particulier I'influence de régions statistiquement rares qui sont
présentes dans la limite thermodynamique mais pas dans des systemes de taille limitée. Nous
avons ensuite abordé le point principal de cette premiere partie, a savoir I’étude du passage
entre les comportements fragile et ductile. En étudiant la susceptibilité déconnectée, nous
avons confirmé numériquement que dans ce modele mésoscopique, comme dans les simula-
tions de dynamique moléculaire, ce passage correspond & un point critique hors équilibre. En
outre, grace a la nature mésoscopique du modele, il nous a été possible d’effectuer une anal-
yse d’échelle en taille finie afin d’obtenir une premiére estimation des exposants critiques en
jeu. Nous avons pu réaliser des simulations de tres grands systémes (jusqu’a environ 100 fois
plus grands que les quelques échantillons les plus grands étudiés par la dynamique molécu-
laire) avec un tres grand nombre d’échantillons et une grande précision dans la discrétisation
de amplitude du désordre. Nous avons mesuré les exposants critiques de la susceptibilité
déconnectée de différentes manieres, ce qui donne une estimation des barres d’erreur. 1l a
été récemment avancé [6] que ce point critique n’est dii qu'a des effets de taille finie, et qu’il
devrait disparaitre dans la limite thermodynamique. Pour vérifier la persistance du point
critique lorsque la taille du systéme augmente, nous avons réussi a borner sa position par
la valeur du désordre nécessaire pour observer un dépassement ("overshoot") dans la courbe
contrainte-déformation. Nous avons ainsi pu renforcer la conclusion que la valeur critique du
désordre est finie dans la limite thermodynamique a la fois en 2D et 3D. Nous avons conclu
I’étude de ’EPM en examinant deux variantes du modeéle. Tout d’abord, nous avons évalué
I'effet de rares régions peu stables sur ’évolution du matériau dans le régime fragile. Pour ce
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faire, nous avons inséré artificiellement une région de ce type a l'intérieur du matériau. Nous
avons vu que la présence d’une telle région induit la formation de la bande de cisaillement et
suffit & modifier non seulement la valeur moyenne de la déformation a laquelle le matériau
céde, mais également sa distribution. Nous avons discuté les conséquences sur le comporte-
ment de la susceptibilité connectée avec la taille du systeme. Nous avons enfin considéré la
version de I"'EPM proposée par [7]. Nous avons effectué la méme analyse et trouvé & nouveau
des preuves numériques de la présence d’un point critique entre les régimes fragile et ductile.

Nous avons ensuite testé I'idée que la transition de yielding est analogue a la transi-
tion hors équilibre d’un modele d’Ising en champ aléatoire forcé. La possibilité d’établir
un parallele entre les deux modeles serait essentielle pour développer une théorie effective
de la transition de yielding et pour appliquer alors a I’étude de la réponse mécanique en
cisaillement toutes les techniques analytiques et numériques développées pour le RFIM. Ceci
permettrait également de surmonter une limitation actuelle de 'EPM, a savoir ’absence de
description hamiltonienne, en autorisant 1'utilisation d’outils de la théorie des champs, y
compris le groupe de renormalisation. Cependant, en dehors de la similarité entre EPM et
RFIM dans l'existence de deux régimes de transition discontinue et continue avec un point
critique controlé par 'amplitude du désordre entre les deux, 'organisation des événements
est qualitativement différente. Nous avons considéré un RFIM hors équilibre a température
nulle dans lequel les interactions entre les spins sont régies par le propagateur d’Eshelby
et ont donc un caractere quadrupolaire. Nous avons étudié ce modele "Eshelby-RFIM" par
des simulations numériques a 2 et 3 dimensions afin de comprendre dans quelle mesure il
reproduit la phénoménologie de yielding. La dynamique commence avec une grande valeur
négative du champ externe, de sorte que tous les spins sont négatifs (—1) et le champ externe
est augmenté de manieére quasistatique jusqu’a ce que tous les spins soient positifs (+1). A
faible désordre les courbes d’aimantation montrent une transition discontinue, comme dans
le RFIM ferromagnétique standard. Cependant, ’avalanche associée au saut macroscopique
de I'aimantation n’a pas la forme isotrope observée dans le cas ferromagnétique, mais est
organisée sous la forme d’une bande, semblable a la bande de cisaillement observée dans les
solides amorphes. Nous avons alors étudié la fagon dont la plus grande avalanche se propage
dans le systeme et mesuré I’évolution de la largeur de la bande en fonction de la taille du
systeme. Bien que la phénoménologie soit qualitativement tres similaire a 'EPM, certaines
différences importantes doivent étre notées. En particulier, dans le cas de ’'EPM, on a ob-
servé que chaque site pouvait céder plusieurs fois au cours de I’évolution du systeme, alors
que ce mécanisme est clairement absent dans le Eshelby-RFIM, ou les spins ne peuvent se re-
tourner qu’une seule fois. De plus, dans ce dernier cas, la contribution au saut d’aimantation
provient des sites a 'intérieur de la bande, puisque la valeur de leur spin change, plutot que
des sites en volume, au contraire de ce qui se passe dans 'EPM. Ces différences peuvent af-
fecter ’analogie entre les deux modeles dans le régime de désordre faible, mais ne jouent pas
nécessairement un réle a proximité du point critique. Comme pour 'EPM, les effets de taille
finie sont tres importants dans le régime de désordre faible. Nous sommes ensuite passés a
la partie principale du chapitre, qui est I’étude du comportement critique observé lorsque
I’évolution de I'aimantation passe de discontinue a continue sous l'effet de 'amplitude du
champ aléatoire. Nous avons mesuré la susceptibilité déconnectée et nous avons effectué une
analyse d’échelle en taille finie afin d’estimer les exposants critiques. Comme pour la criti-
calité de ’'EPM, il reste difficile d’obtenir avec une bonne certitude la valeur des exposants.
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L’estimation faite a partir de 3 méthodes différentes indique que les exposants du RFIM
sont systématiquement plus grands que ceux de 'EPM a la fois en 2D et 3D, mais il est
peut-étre prématuré de conclure que les deux systemes sont dans des classes d’universalité
différentes. Pour le Eshelby-RFIM également, nous avons remarqué que, lorsque la taille du
systéeme augmente, le point critique se déplace lentement vers des valeurs plus grandes de
I'intensité du désordre. Comme pour 'EPM, nous avons utilisé ’apparition d’une bosse dans
la courbe d’aimantation pour borner le déplacement du point critique et nous avons conclu
qu’il semble avoir lieu a un désordre fini dans la limite thermodynamique. Pour conclure
I’étude du modele, nous avons envisagé deux variantes possibles. Tout d’abord, nous avons
ajouté artificiellement une région de spins positifs dans le systéme des le début du processus,
afin d’imiter la présence d’une région statistiquement rare qui pourrait altérer la dynamique
dans la limite thermodynamique. Nous avons observé que la présence de cette région affecte
la valeur moyenne du champ externe a laquelle le saut d’aimantation macroscopique a lieu,
mais nous n’avons pas pu conclure sur sa distribution générale. Nous nous sommes ensuite
concentrés sur l'effet du réseau sur le modele. Il a été montré précédemment que le RFIM
standard souffre de certains effets de facettage lorsqu’il est simulé dans un réseau carré [8].
Un effet similaire pourrait également modifier les résultats de notre modele, puisque le noyau
d’Eshelby considéré est orienté le long d’un axe particulier du réseau. Pour vérifier si nos
résultats sont robustes par rapport a une modification du réseau, nous avons simulé le mod-
ele en changeant 'orientation du noyau d’Eshelby, ce qui revient a incliner le réseau. Nous
avons montré que la méme phénoménologie est observée dans ce cas et que le point critique
est a nouveau présent.

Dans la derniere partie du projet, nous avons travaillé sur une approche analytique du
probleme en étudiant les deux modeles dans une limite de champ moyen. Nous avons com-
mencé par définir la version champ moyen de ’'EPM, en choisissant celle spécifiée dans [4].
Dans cette approximation, les blocs interagissent entre eux de maniere totalement connec-
tée et ferromagnétique. Une description plus précise de la limite du champ moyen devrait
prendre en compte la nature anisotrope du noyau d’Eshelby. Une solution a été proposé
dans [9], mais elle fait intervenir un désordre supplémentaire et ne se préte pas a ’étude
des fluctuations qui est le coeur de notre travail. Dans le modeéle que nous avons étudié,
le désordre est produit au niveau de la distribution initiale des contraintes et de la distri-
bution des sauts apres déformation, comme dans le cas & dimension finie que nous avons
considéré dans la premiere partie. Les courbes contrainte-déformation reproduisent la méme
phénomeénologie que le cas en dimension finie, avec deux régimes, fragile et ductile, selon
l'amplitude du désordre initial. Nous avons analysé en parallele la limite du champ moyen
du RFIM hors équilibre avec le protocole quasistatique athermique, basé sur [10]. Nous avons
pu caractériser analytiquement les fluctuations d’échantillon & échantillon des deux modéles.
Nous avons montré directement que, au voisinage de la transition de yielding, 'EPM peut
étre décrit comme un RFIM dans lequel le champ magnétique appliqué joue le role de la
déformation appliquée. Nous avons également montré que le champ aléatoire effectif qui se
couple linéairement & la stabilité locale (c’est-a-dire & la distance au seuil d’élasticité locale
jouant le role de parameétre d’ordre local semblable & ’aimantation locale dans le RFIM) est
une propriété émergente : il n’est pas présent au niveau "'nu" dans le systeme avant défor-
mation et survient a un stade ultérieur & partir d’'une combinaison des conditions initiales
et de I'histoire de la déformation impliquant une séquence d’événements plastiques locaux.
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Nous avons ensuite étudié I'influence des différents types de désordre introduits dans 'EPM
pour imiter effet de I'inhomogénéité structurelle locale d'un solide amorphe (contraintes lo-
cales initiales aléatoires, sauts de contrainte locaux aléatoires, ...) sur ’amplitude du champ
aléatoire effectif.

Dans une partie de conclusion, nous avons résumé les résultats marquants de notre
travail et envisagé plusieurs perspectives possibles pour aller au-dela.
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2 Introduction

1 A brief introduction to sheared amorphous materials

Amorphous solids are present in everyday life. They represent materials that are solid,
i.e. resisting to the application of a (sometimes small) force without flowing, but whose
components are not arranged in a precise lattice as in crystals. The lack of long-range order
is their defining characteristic, but they encompass a diverse range of materials with distinct
properties. For example, a first subgroup is glasses. When the temperature of a liquid
decreases below its freezing point, the irregular structure of the particles changes to the well-
defined organization of a crystal. The process for this transition involves the nucleation of a
crystal seed growing and spanning the whole system. It is however possible to maintain the
temperature of a liquid below its freezing point while avoiding nucleation of these seeds (this
can be done, for example, with large cooling rates). The liquid enters the supercooled state,
and if the temperature is lowered even more it ends up in a glassy state. In this state the
particles are not organized in a precise way on a lattice and they have an irregular structure
analogous to the one of liquids, so that no sharp distinction between the two states can be
found by simply looking at the arrangement of particles. However, glasses are solids, and
at the macroscopic level they behave in a completely different way from liquids. Silicate
glasses are the oldest manufactured and most common type of glasses. They are used to
make everyday items such as windows, bottles, and eyeglasses. Other examples of glasses are
metallic glasses [11]. In this case the elemental constituents of the material are at the atomic
scale (see Fig. I.1). Due to their large elastic moduli, this first category of materials is often
referred to as "hard" amorphous solids, as opposed to "soft" ones. Examples of this second
group are colloids, foams, and emulsions. Colloidal suspensions [1], are fluids in which solid
particles (of typical size between tens of nanometers and microns) are dispersed. It has been
shown that, under a sufficiently fast compression, these materials show a glass transition as
well [2]. Foams are formed by confining a gas in a liquid or solid medium, as seen in the foam
atop a cappuccino or in metal foams. Emulsions, on the other hand, are created by mixing
typically immiscible liquids, such as oil, vinegar, and egg yolks in the case of mayonnaise.
These materials show some properties characteristic of solids, in that they are able to retain
their shape if small forces are applied, and some characteristic of liquids, in that they can
flow upon the application of a sufficiently large external load. Because of this dual nature
the term of yield-stress fluids is also used [12].

The response of hard and soft amorphous solids to an imposed deformation is quite
diverse between these two subgroups, but also between elements of the same subgroup.
Preparation protocols, constituent size, driving, and other details can indeed lead to very
different results. However, as discussed in the following, amorphous solids also share common
features when subject to deformation.

1.1 DMaterials deformation

In this work we are interested in the properties of amorphous materials when they are subject
to a deformation. To obtain any kind of deformation some forces need to be applied. When
considering the resulting dynamics of an object under the effect of applied forces one often
makes the rigid body hypothesis, in which the material is considered undeformed. In this
way one can focus only on the evolution of its position. The study of deformations focuses
instead on the other face of the coin, i.e., on how forces change the shape of a material.
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Figure 1.1: General overview of different types of amorphous solids. From left to right,
top row: golf club made of metallic glass, toothpaste, mayonnaise, coffee foam, and soya
beans. Second row: fractured bulk metallic glass, nanoparticles obtained by miniemulsion
polymeritation, emulsion of water droplets, soap foam, thin nylon cylinders. Adapted from [5]
(see references therein).

Imagine the solid as composed by many infinitesimal elements defined by their position r
in some reference system (r is a vector in d-dimensions, with d = 2 or 3 usually). A local
stress tensor o;; can be defined at any point r as the force per unit area applied on the face
i in the direction j (in 3D ¢ and j are either x,y or z) of that infinitesimal block. When the
object is at rest, each point is stationary and the following conditions,

aO'ij
or;

=0 (I.1)

1=x,Y,2

Uz'j = (sz', (1'2)

need to be satisfied for every axis ¢ and j in order to impose force and momentum equilibrium.
Notice that the equations above do not imply that o;; = 0 everywhere in order to have a
stationary solid, so that residual stress can be present even in objects at rest [13]. As we
will discuss below, this has important consequences on the material’s properties (a known
example being Prince Rupert’s drops [14]). The stress field quantifies the forces acting at
each point of the material, and what is left is to quantify its deformation. When some forces
are applied to the solid, the position of each point in the system changes as r — r + u,
where the vector u is called displacement and contains information on both the rigid-body
motion and the shape’s change. In order to only focus on the deformation part and avoid
the rigid-body motion one considers the displacement gradient, or deformation tensor, Vu.
This tensor can be split into a symmetric and an antisymmetric part as Ou;/0r; = ;5 + R

with
cij = 2 <(97“j + (91%) and RU N 2 <8rj 67"@> ’ (13)




4 Introduction

Figure 1.2: Sketch of two possible deformation geometries in 2D: in (a) the solid is subject
to uniaxial tension along the z-axis. The applied strain tensor has diagonal entries €., =
AL,/L, and €y, = AL,/L,, while the non-diagonal entries are 0. In (b) a simple shear
deformation is applied instead. In this case we have 2e,, = 2ey, = v = AL, /L,, while the
diagonal entries are 0.

which are the Cauchy’s strain tensor and a rigid-body rotation, respectively. By focusing on
the strain tensor g;; one can eliminate all the rigid-body motion from the picture, as only
changes in the shape act on this quantity. To understand the physical interpretation of this
strain tensor let us look at its components. The elements in the diagonal part of ¢;;, called
normal strains, represent the change in length of the side of an infinitesimal block, while
the off-diagonal terms measure the change in angle between two axes that were orthogonal
before deformation, cf. Fig. 1.2. This strain tensor can then be divided in two tensors as
€ij = agj + embij, with ent = D25 €44 /3 the volumetric strain, related to volume change, and
5;7. = €;; —em0;; the deviatoric strain, related to all deformations that change the shape but
not the volume. One has to remember that the definition of strain we gave above is based on
the small displacement hypothesis |Vu| < 1, while different definitions are necessary when
this condition cannot be assumed. In the following we will not discuss this possibility and
we will define strain as in Eq. (1.3). The two fields 0;;(r) and €;;(r) describe the local forces
and deformations occurring at each point r in the material. The macroscopic strain and
stress tensors that the solid is subject to are obtained by integrating over the whole volume.
In the following we will use the same notation for microscopic and macroscopic stresses, but
the difference will be clear from the context.

Based on the definition of the strain and stress tensors, different choices on the deforma-
tion protocol of the material are possible. First of all, the orientation of the forces acting on
the system leads to many deformation geometries, as sketched in Fig. I.2. Common choices
include for example compression (tension), in which inward (outward) forces are applied to
sides of a material, with zero net sum and torque, trying to reduce (increase) its volume. In
a bending deformation the load is instead applied perpendicularly to the longitudinal axis of
the solid. This type of geometry is often chosen to study metals and hard amorphous solids
to be used as structural elements. Finally there are shear deformations, in which parallel
surfaces inside the material slip on each other while remaining parallel and at the same
distance. In this last case the volume of the solid does not change, so that epy = 0. This
type of deformation is often used in the study of yield stress fluids like foams and emulsions
and other soft amorphous solids. In general, many choices of the deformation geometry are
possible and relevant for applications in engineering, but they are out of the scope of this
work. In the following we will focus only on the simple shear case, defined in 2D by the



displacement gradient Vu = (8 78&)) . The important variable is the zy component of the

strain tensor € = 1/2('y?t) 785)

material, the value of v(¢), which is the only non-zero entry of the strain tensor, is the only
variable describing the shape change and the problem can be treated as a scalar one to a
good approximation. This situation is illustrated in Fig. I.2(b). Then ~(t) = AL(t)/L with
AL the displacement of the top plane and L the distance between planes.

) . When the deformation is applied uniformly to the whole

For a given geometry the loading can be applied in several ways. Deformations can be
controlled in two different manners: by imposing strain and measuring stress and viceversa.
Moreover, as the loading is applied the system adapts to the new conditions and tries to
relax to a mechanical equilibrium. The difference between the time rate at which the loading
increases and the one at which the system relaxes is then important when characterizing the
properties of the system. In a similar way, the operating temperature at which the experiment
is carried on plays a role in the response to loading. From these brief considerations it is
clear that the observations obtained from a deformation experiment depend not only on the
solid under study, but also on the conditions under which the experiment is being performed.
In the study of metals and hard amorphous materials the usual choice is to start with the
system at rest and apply the load by imposing the strain, while measuring the whole stress
response. This is also done in the case of soft amorphous materials. In the latter case another
possibility is to apply an external load and measure the resulting strain-rate once the system
reaches a flowing stationary state. Other protocols are also studied in the literature, such as
the oscillatory strain protocol, where the strain is applied by increasing from 0 to some value
1, then decreasing to —v; and then repeating the procedure periodically between these two
values. Finally, in creep experiments the transient behavior of the system at fixed applied
stress is studied. In our work we focus on the case of a system that is sheared under a
strain-controlled protocol, starting at rest, in what is called shear start-up experiment. We
will also refer to other choices and more general properties later on.

1.1.1 Start-up experiments

A start-up experiment is one in which the loading is applied by imposing a certain macro-
scopic strain to the material. The solid starts at rest with no strain applied to it, hence
with zero macroscopic stress. As the strain increases, at a fixed rate ¥ = 9v/0t, with t
representing time, the stress evolves. The result of this protocol is a stress-vs-strain curve
that characterizes the relation between forces and deformation and the material’s mechanical
properties, see Fig. I.3. In the first part of the evolution the solid behaves elastically and the
stress is linearly proportional to the applied strain. A solid body is said to be elastic when it
returns to its original shape after the forces acting on it are removed, which means that the
deformation is reversible and the solid behaves like a spring. Under the hypothesis of linear
elasticity the stress is linearly proportional to the strain so that, for a general deformation
geometry,

oij = Cijrient, (1.4)

where Cjjp; is called the stiffness tensor. In the case of an isotropic and homogeneous
system some symmetries can be exploited and the stiffness tensor can be reduced to Cjji,; =
K60k + p(0indji + 001055 — 2/30i50k1), with 045 the Kronecker delta, K the bulk modulus
and p the shear modulus. These two coefficients characterize the stiffness of the material:
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Figure 1.3: Stress-vs-strain curves for three different amorphous solids. In (a) the result for a
two-dimensional foam under shear deformation is shown. The experiment is performed with
fixed strain rate 4 = 3.1 x 1073s~!. Panel (b) is instead obtained for a colloidal glass under
shear deformation. The different curves correspond to different straining rates, increasing
from bottom to top. Notice that the x-axis is logarithmic. Finally, in panel (c) the stress-vs-
strain curves for the same metallic glass driven with different strain rates. The images are
adapted from [15], [16] and [17] respectively.

the larger the value of p the stiffer the material. The assumption of a purely homogeneous
material is clearly problematic in amorphous solids which may have local inhomogeinities, so
that this linear elasticity relation holds but with locally different shear and bulk moduli [18].
In the following we will neglect this type of elastic inhomogeneity.

As the load increases, the curve departs from the linear behavior and becomes jerky
(as we will show in Section 2.2 this is characteristic of out-of-equilibrium driven systems
with cooperative interactions). This is due to plastic deformation, which is an irreversible
phenomenon that occurs in most materials for large enough loads. As soon as the load is
removed, elastic deformations disappear completely, while plastic ones do not. The transition
from elastic to plastic behavior is called "yielding", and is the main topic of this work.
Plasticity has been studied from the macroscopic point of view [19] where the system is
considered homogeneous, but this hypothesis has to be lifted in order to understand how
plastic deformation emerges at the microscopic level. First of all, the mechanism behind
plasticity at small scales depends on the type of material. For example, in crystals, where
every atom occupies some site in a precise lattice, plasticity originates from dislocations, i.e.,
topological defects in the ordered lattice, that propagate through the system as the loading
is applied [20]. In amorphous solids, plastic deformation is also observed, but cannot be
described by topological defects anymore, due to the lack of periodic long-range order. A
first important result in this direction was obtained in the study of a bidisperse bubble raft
(that should be representative of metallic glasses) where the non-affine rearrangements occur
in a localized region of space [3]. Following this work, such confined rearrangements have
been observed in many other materials, such as colloidal glasses [22] and emulsions [23]. The
number of elements taking part in the plastic rearrangement can vary, from just a few tens
of particles in colloidal glasses [24] to hundreds of them in some metallic glasses [25]. In
foams, under slow driving, the simplest kind of rearrangement observed is in form of a T1
event in which bubbles switch neighbors [21], as depicted in Fig. I.4(a). The details of the
microscopic origin of plastic behavior in amorphous solids can change with the material, but
plastic events essentially always originate in localized rearrangements (unlike dislocations in
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Figure 1.4: (a) Form of a T1 event, the simplest plastic rearrangement observed in foams,
adapted from [21]. (b) Strain autocorrelation computed for a colloidal glass, adapted
from [22]. (c) Form of the Eshelby strain field in Eq. (I.5). Dark orange stands for a
positive value, while blue stands for a negative one.

Figure 1.5: Shear bands in a metallic glass (a) during a compression experiment from [26]
and in a suspension (b) sheared inside a rheometer from [27].

crystals). Yet such localized events affect space around them. Even if the rearrangement
is localized in a small region (infinitesimal in the thermodynamic limit) its effect may be
felt at long distances from its location. These rearrangements act as a deformation on the
rest of the solid that, as a first approximation, can be considered as reacting elastically.
The typical strain field resulting from this kind of events has both a volume-changing and a
shear component. The volumetric part is generally much smaller for the amorphous solids
described here, so that only the shearing part is usually considered (we will neglect dilatation
and contraction of the rearranging regions). This additional strain field, which is non-affine
with respect to the externally imposed deformation, is called plastic strain. The typical
form of the resulting strain at large distance from the plastic event can be computed by
considering the effect of an ellipsoidal inclusion in a purely elastic medium and has the form
(in 2D)

cos(40)
2 )

Eay(r,0) = (L.5)

r

where (r, ) are the polar coordinates with respect to the event in 7 = 0. The above expres-
sion was first obtained by Eshelby [28], who also computed near-field corrections (see Ap-
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pendix A). This propagator is long-ranged and has a quadrupolar nature that originates from
the symmetry of the shear deformation in r = 0, which consists of an elongation in a direc-
tion and a contraction in the perpendicular one. This quadrupolar form has been confirmed
by experiments and simulations on different materials [22, 23, 29], as shown in Fig. 1.4(b).
As discussed in Appendix A, the form of the far-field propagator has been obtained in the
hypothesis of a uniform, isotropic, and purely elastic medium, which is questionable for an
amorphous solid (see [30, 31]). Nonetheless, the overall picture seems to hold well. The
strain field resulting from a single rearrangement makes it possible for other zones to un-
dergo a plastic event, thereby creating a collective avalanche of plastic events. Avalanches
of large sizes can be seen as serration in the stress-vs-strain curves for finite size samples.
In amorphous solids, due to the cooperativity and the quadrupolar symmetry of the strain
field, large avalanches can in some cases lead to the formation of shear bands. Instead of
having a homogeneous distribution of the activity, the material accumulates the majority of
strain in these zones, which have the form of a band, and it has been shown that it is indeed
energetically favorable to do so [32]. This phenomenon is observed both in hard [33] and in
soft [34, 35] solids, as shown in Fig. L.5.

Two types of behavior under loading are observed, depending on the characteristics
of the material under consideration and its preparation. In hard solids as silicate glasses
the deformation is almost completely elastic and the solid may break even before plastic
deformation can take place. Metallic glasses show some plasticity before failure, which allows
to predict to a certain degree when the system will break. The plastic events are localized in
shear bands, where strain grows quickly and eventually drives the system to failure [33, 36].
After fracture occurs the stress drops to 0 since the material cannot sustain forces anymore,
see Fig. 1.3(c). On the other hand foams and other soft amorphous solids can flow without
failing. As the applied strain increases the material cannot increase its stress, which then
fluctuates around a constant value, the fluctuations being associated with avalanches given
by plastic rearrangements (see Fig. 1.3(a,b)). However, in some conditions, the flow of soft
solids is not homogeneous and shear bands appear [27, 34, 37]. Depending on the material
under consideration, these shear bands can then die out or characterize permanently the
flow, which is then divided into a solid-like phase that does not move and a liquid-like phase
inside the shear band.

We now briefly consider the role of testing conditions introduced before, such as the
operating temperature and the strain rate. To understand the effect of temperature one
can consider the local zone where the rearrangement takes place as a system sitting in one
of two possible states, described by the position of the particles, at zero temperature. (As
an example one can take the T1 event in Fig. I.4(a), where the first state is the one in
which particles 1 and 4 are neighbors, while in the second one 2 and 3 are.) Each of the
states has its own energy value, and the two values are separated by a barrier. As the
system is in one state, it can rearrange to go in the other one if it is more favorable, but
at zero temperature this can only happen if the initial state becomes unstable due to the
loading that tilts the landscape. However, if the solid is at finite temperature, it is easier to
jump over the barrier between the states thanks to the kicks given by thermal fluctuations.
Whether or not this thermal contribution is important for the plasticity of the solid depends
on many factors controlling the ratio of the thermal fluctuation kicks to the typical size of
the barriers, for example the size of constituents. In foams and suspensions the thermally



activated processes can be neglected, while in metallic and colloidal glasses they could have
important consequences [38, 39]. Similarly, the strain rate affects the mechanical properties
of the system. In particular, for smaller strain rates the maximum amount of stress reached
in the transient evolution is smaller [16, 40]. A driven system at zero temperature and
vanishing strain rate only visits local minima (at which mechanical equilibrium is satisfied)
that are made accessible by the applied force. Finally, material’s preparation also plays an
important role. This can be understood when thinking about glasses, that are disordered
systems with a huge number of local minima in the energy landscape. Due to this large
number of states, the system can be trapped in a given configuration even if this is not the
most stable one, and relaxation to the global minimum takes a very long time (experimentally
inaccessible). A glass is then out-of-equilibrium, and, as a consequence, its properties depend
on the process through which it was obtained. For example, cooling rate [41], preparation
temperature [42, 43] and aging [44] are important factors. In general, a well annealed glass,
obtained with a very small cooling rate, a low preparation temperature, or after waiting a
long time after its formation, will have a sharp transition from elastic to plastic response,
with the plastic strain localized in a shear band. On the other hand, a poorly annealed
glass, obtained with a large cooling rate, a high preparation temperature, or by deforming
just after its formation, shows a more gradual passage from elastic to plastic regime.

From these considerations we retain mainly three concepts that are at the core of this
work:

e When the loading is small, amorphous solids evolve apparently elastically, with the
stress growing linearly with the strain (this linear elasticity is only apparent, since
it has been proven that plastic activity is present for any minute strain [45]). As
the loading increases, plastic behavior becomes more prominent and takes place
in the form of localized rearrangements that affect the rest of the material via a
long-ranged anisotropic strain field.

e The material may reach a point of failure or may continue to flow plastically. Hard
solids such as glasses usually behave in the former way, and yield stress fluid in the
latter. The two cases have historically been studied as different fields: plasticity
mechanics and material science for hard solids and rheology and soft matter physics
for soft ones. However, some features, as for example the localized nature of the
plastic events and the nucleation of shear bands, are common to many amorphous
solids across the categories.

e For a given deformation setup the material’s preparation may have important effects
on the resulting mechanical response.

1.1.2 Other protocols

We have described the shear start-up setup, in which the loading (in our case the external
strain) is increased over time with a certain rate, and the reaction of the system (in our case
the stress) is measured at the same time. This means that the transient response of the
system is taken into consideration. However, in some cases (often for soft amorphous solids),
only the steady-state flow of the system is considered. This case is studied in a different
setup, in which some shear stress is usually imposed on the system and the resulting value
of the strain rate 4 is measured in the steady state. For a liquid the simple relation ¢ = n7
is observed, where 7 is the viscosity: since a liquid cannot sustain any force, any value of
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applied force induces a flow. In the soft amorphous solids the system instead does not flow
(% = 0) if the applied stress is below a certain threshold (called yield stress oy), just as a
solid would do. When o 2 oy, the solid starts to flow as a liquid, with the relation

i~ (0 —ay)”, (L.6)

where [ is called Herschel-Bulkley exponent. (In a thermal system, such as a glass close to
T, thermal fluctuations can obscure this sharp transition at o, and the solid can flow very
slowly also for smaller stresses.) As discussed in the next section, this relation is typical of
systems close to critical points. The passage from o < oy to o > oy is usually called yielding
transition. The critical behavior around this point has received a lot of attention in recent
years, and many results have been found regarding the avalanche distribution [15].

The strain rate form in Eq. (I.6) is however not representative of every material. In some
cases, the yield stress fluid under external stress abruptly changes from a solid-like behavior
to a liquid-like one with a jump from 4 = 0 for ¢ < oy to 4 = 4, for ¢ > oy. An experiment
in which the solid is driven by fixing the value of the strain rate is needed to access this
region in which 0 < 4 < 4, and one observes that in this case the solid shows a shear band,
in which the flow is localized, and a solid region, in which 4 = 0 [46, 47]. This separation is
permanent, since it is measured in the steady state.

Let us summarize the differences between the two testing protocols that we just pre-
sented: in the stress-vs-strain curve obtained from the shear start-up experiment the stress
is measured as the strain increases, while in the flow-curve the strain rate is measured at the
steady state for each value of the stress. In the former framework the transient behavior is
accessible and one can study all types of solids, while in the latter only stationary regimes
are observed, which can be measured only if the material flows instead of breaking. More-
over, two definitions of "yielding" also arise. In the strain driven case, the "static yielding"
is defined as the continuous or discontinuous passage of the stress-vs-strain curve from the
clastic regime to the plastic one, as discussed above. On the other hand, in the strain rate
flow curve experiment one defines the "dynamic yielding" as the value of the stress at which
the system starts to flow (this is analogous to what happens at the depinning transition of
an interface, as we will described below). We will briefly discuss this and other terminology
issues in the following. Finally, a bit of care is required when discussing the formation of a
shear band. The localization of plastic activity may be observed both in the study of amor-
phous solids during start-up experiments [34, 40] and in the rheology of yield stress fluids in
the steady state. Even if the phenomenon is qualitatively similar, the two appearances are
quite different in their duration. In the start-up case strain localization may occur at some
value of the applied strain but then disappears in some soft matter systems as the defor-
mation further increases. The resulting shear band is transient, as the plastic deformation
eventually invades the whole sample and strain is uniform in the final steady state. In the
imposed-stress case instead, the heterogeneous flow in the form of a shear band is permanent,
since one considers the steady state of the system. Recently, it has however been suggested
that in some cases the transient shear bands observed in the shear start-up experiments can
transform into permanent ones in the steady-state flow [46].
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1.1.3 Terminology conventions

The subject that we treat is often studied in the realm of mechanics and materials science.
However, our goal is to more specifically look at the yielding phenomenon through the lens
of statistical mechanics and critical phenomena, in order to understand what the minimal
ingredients to describe the yielding transition of amorphous solids are. This different per-
spective may lead to give a different meaning to same terms, so that some clarification is
needed. In materials science, a solid is said to be brittle if, when a load is applied, it deforms
elastically and then breaks, with little or no plastic deformation. This is the case of silicate
glasses and cast iron, for example. On the other hand, if a material is able to undergo a
significant plastic deformation before breaking, it is said to be ductile. According to this,
there is not a clear-cut definition of brittle or ductile solids, but just a degree of ductility
(or brittleness) for each material under some condition. Morevoer, this definition assumes
that the solid eventually breaks, which is not the case for the yield stress fluids, where the
systems can flow forever. In some computer simulations, one may define a brittle behav-
ior when the stress has a discontinuous jump of order 1 at a precise value of the applied
strain. This corresponds to the appearance of a macroscopic shear band, but without the
formation of vacuum regions (no "cracks') so that the solid does not really break. In this
work we define brittle and ductile along the latter lines. Ductile behavior refers to a (shear
start-up) stress-vs-strain curve that is continuous in the macroscopic limit whereas brittle
behavior is associated with the presence of a discontinuous stress jump that persists in the
thermodynamic limit and can be followed by the establishment of a steady state.

Another discussion is needed for the notion of yielding. We already mentioned how
dynamic yielding observed in the rheology of soft amorphous solids is different from the static
one, defined during start-up experiments. In this latter case however, yielding is only loosely
defined as the passage from the linear elastic behavior to the plastic one in which stress does
not increase anymore. This concept is somewhat vague, as the point of the stress-vs-strain
curve at which the behavior passes from elastic to plastic is not crisply defined. In addition,
recent works in the statistical physics community showed that the linear elastic regime is still
punctuated by plastic events, which makes the previous definition problematic [45, 48-50].
Another definition of yielding, used in the study of yield stress fluids, is the maximum value
of stress attained during a start-up deformation experiment. Even if this value could coincide
with the dynamic yield stress of the flow curve set-up, the two are actually different [46].
Here we will define yielding as a transition when there is an O(1) stress discontinuity in
the stress-vs-strain curve and a not precised crossover otherwise. This is reminiscent of the
definition of the paramagnetic to ferromagnetic transition from the magnetization versus
applied field curve.

Finally, we also note that some materials undergo a rather sharp increase in the amount
of plastic deformation they can sustain before breaking as the working temperature increases
above a certain value. This phenomenon is often called brittle-to-ductile transition. Its effects
can be quite drastic, as for example in the sinking of the RMS Titanic [51]. In any case,
the material breaks after some given loading. Our definition of brittle, ductile, and brittle-
to-ductile transition is different. First of all, in what we will discuss, it is the preparation
temperature that produces the observed change in the behavior from ductile to brittle. In
the standard context of materials science, the phenomenon is caused instead by a change
in the working temperature, so that the two concepts are quite different. Secondly, in our
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language passing from brittle to ductile means having a material that abruptly fails for some
preparation temperatures and plastically flows for others, while in the engineering field the
material always fractures eventually.

1.2 Simulations and Theoretical models

The experimental results just discussed show salient features that are common to many types
of amorphous solids. Since the non-affine motions that are at the origin of the plastic rear-
rangements are very localized in space, it is difficult to observe and track such displacement
in experiments with a precise spatio-temporal resolution (even if it is possible for solids with
large constituents, like colloids [52]).

The main advantage of Molecular Dynamics (MD) simulations method is that one can
follow the trajectory of each particle and compute both global and local quantities easily.
Since the goal is to mimic an amorphous solid, particles of different sizes are considered to
avoid crystallization. The particles interact through a pair potential, and a common choice
is the Lennard-Jones form,

o 12 o 6
v(i, ) = de;j (—3> —<ﬁ> + C(ry), (L.7)

rl—j Tij

with €;; and o0;; energy and size parameters that depend on the nature of particle 7 and j.
The function C(r;;) ensures a smooth behavior of the potential as it goes to 0 after some
Teutoff- Another possibility for the interaction potential is to consider the hard-sphere limit,
in which particles are simply forbidden to overlap. In simulations one can only study a
finite number of particles (thousands to sometimes millions) so that one should specify the
boundary conditions. At equilibrium, in order to avoid boundary effects one usually takes
periodic boundary conditions. In the case of sheared systems the natural generalization is
given by the Lees-Edwards boundary conditions [53]. In this case the copies of the original
simulation box move so that the conditions can be used also for large values of strain.
To produce a glass, one starts from equilibrating a liquid at high temperatures, and then
cools it down to the glass transition. This can be done by means of molecular dynamics
or Monte Carlo algorithms, but it is hard to approach the glass transition temperature as
the equilibration time increases very rapidly. New algorithms have been devised that allow
one to reach extremely stable glasses, such as the Swap Monte Carlo (SWAP), in which
the moves to be accepted with the Metropolis rule are not only displacements of a particle,
but also exchanges between two particle sizes (see [54] and references therein). A similar
problem arises when considering the strain rate in a deforming system. Small rates are hard
to simulate. This issue can be sidestepped by performing the simulations with the athermal
quasistatic protocol (AQS). The external strain is increased by a small quantity (chosen
in such a way that the parallel occurence of multiple non-affine displacements is avoided).
The system relaxes completely toward the closer energy minimum through a steepest descent
method before the strain is increased again. This means that the timescale for the relaxation
of an energy input to the whole system is much shorter than that given by the strain rate.
At the same time, the aging that occurs in the system as a consequence of the thermal
relaxation is assumed to have a much longer timescale. In the AQS one has then % — 0 and
T — 0 and the timescale of the driving is completely decoupled from those of plastic events
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Figure 1.6: Stress-vs-strain curves from MD simulations of amorphous solids. One can see
a first elastic regime following by a plastic one in which the stress is constant on average.
In (a) for a 2D system in the AQS limit, no overshoot is observed in the curve (from [55]).
In (b) the system is in 3D and the different curves represent different values of the strain
rate (decreasing from top to bottom, which is AQS). Adapted from [56]. Finally in (c) the
curves are for different cooling rates during glass preparation, increasing from top to bottom.
Adapted from [57].

(a) (b) (c)

Figure 1.7: (a) Displacement field associated to a localized plastic event. Larger arrows
correspond to larger displacements. Adapted from [55]. (b) Instantaneous velocity field, in
which an event occurs, triggers another one and then dies out, from [58]. (c¢) Organization
of the events to form a shear band, from [59].

and aging processes. Time is therefore completely absent. As will also be seen for general
out-of-equilibrium systems, the advantage of looking at the evolution of the system in this
limit is that one is sure that the events that take place are associated with a mechanical
instability that changes a local minimum into a saddle point. The concepts of metastable
states, avalanches and discontinuous phase transitions are then crisply defined. In this sense
removing temperature and driving rate is very important. The AQS protocol is considered
for the rest of this work.

Let us now look at some results obtained with this approach in the shear start-up setup
with controlled strain. Stress-vs-strain curves compatible with experiments are reproduced,
see Fig. 1.6. One observes an elastic region for small values of the applied strain and an
increase in the plastic activity for larger values. Due to the latter the resulting curve shows
the same jerky behavior as in experiments associated with avalanches of plastic activity.
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Figure 1.8: (a) Stress-vs-strain curves obtained in the start-up shearing of a 3D polydisperse
solid with MD simulations in the AQS limit. Different curves correspond to different prepara-
tion temperatures that affect the stability of the glass. Snapshot of non-affine displacements
between v = 0 and v = 0.13 for Ti,; = 0.120 (b) and v = 0.119 for Tini = 0.062 (c). As the
preparation temperature decreases below a certain value the stress-vs-strain curve displays
an O(1) jump which is associated with the localization of the plastic activity in a shear band.
The fact that the stress is finite after the jump is a consequence of imposing a fixed volume
with Lees-Edwards periodic boundary conditions. The system is composed by N = 96000
particles. Figures are taken from [4].

Plastic events are localized and the strain field that is generated is compatible with the
Eshelby form in Eq. (I.5) [60, 61]. The correlation between plastic events has been shown
to hold also when 4 > 0 and gives rise to avalanches that are sensitive to the strain rate
value [58]. As in the start-up experiments, also in this case the organization of plastic events
into transient shear bands is observed [59, 62, 63]. The plastic activity accumulates in a
stripe, that slowly diffuses in the whole system until a steady-state independent of the initial
configuration is reached. The effect of initial preparation and testing conditions has also
been studied in MD simulations [4, 57, 64—67]. Another investigation made possible by
MD simulation is the study of precursors of plastic events. The rearrangements are at the
origin of plastic deformation, but predicting where one such event will take place is still
a difficult task. Recent progresses on this issue have been done in simulations and with
machine learning approaches [68, 69].

In [4], the simple shear of glass samples formed over a wide range of preparation tem-
perature, and as a consequence of stability, or annealing, is studied thanks to the SWAP
algorithm. The samples are then instantaneously quenched to T' = 0 before being deformed.
By varying the preparation temperature one can simulate the behavior of different amor-
phous solids, from wet foams to ultrastable glasses. Since the system is prepared at some
temperature and quenched instantaneously to T" = 0, aging cannot take place. Moreover,
the loading is imposed according to the AQS protocol, so that also the effects of the strain
rate and the operating temperature are disregarded. In this way it is possible to isolate the
role of only one control parameter, the fictive temperature Ti,;, at which the liquid fell out of
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equilibrium to form a glass. As shown in Fig. [.8(a) the stress-vs-strain curve changes quali-
tatively with Tiy;, going from a monotonic curve for large values (as in foam experiments [15])
to displaying an overshoot for smaller values (as in colloids experiments [16]). The real space
organization of the plastic strain is quite homogeneous during the whole evolution when the
preparation temperature is high. However, as the overshoot appears, the plastic activity
localizes in a shear band, as already observed previously [62]. When the external strain is
increased even more this band grows and eventually spans the whole system, so that the
strain is again homogeneous. For even smaller values of Tiy; the stress-vs-strain curve shows
a jump of order 1 that seems to survive after averaging over many samples and taking the
thermodynamic limit. This jump is also associated with the nucleation of a shear band, but
one which forms abruptly, during a single strain increment, and grows with the system size.
This picture corresponds to a nonequilibrium first-order transition [70, 71]. For large enough
values of Tj,; yielding instead appears to be a smooth crossover. The order parameter de-
fined in [4] (the maximum stress drop during the evolution) is 0 for large values of Tiy; and
it starts to grow to a finite value as Tj,; gets smaller than a certain value Ti,; .. Moreover,
the fluctuations of this order parameter show a clear peak at Ti; .. These properties are
indicative of the presence of a critical point that in this case separates brittle from ductile
behavior. The values of Tiy; for which the stress curve displays an overshoot are then larger
than Tiy; , since in this case the maximum stress drop is still 0 in the thermodynamic limit.

We now discuss analytical approaches. Due to the huge number of degrees of freedom,
a direct microscopic approach is impossible, and one needs to resort to approximate models
built on phenomenological observations. Many of the models that have been studied an-
alytically are furthermore considered in the mean-field limit. For the shear start-up case
an important theoretical approach is the Hébraud-Lequeux model [72], which is based on
a Fokker-Planck-like equation to study the distribution of stresses as the system evolves.
This model has been refined by considering the nature of the Eshelby kernel [9, 73]. Other
models have been proposed for soft amorphous solids. In the Soft Glassy Rheology (SGR)
model [74, 75] (based on the so-called trap model introduced to describe aging in glasses [76])
the material is divided into mesoscopic elastic blocks characterized by a local strain and a
maximal yield elastic energy. The contribution to each block from the plastic events occur-
ring elsewhere in the system is considered as a thermal noise, with an effective temperature
(see [77] for a discussion on the role of thermal and athermal sources of noise). In order to
capture the permanent heterogeneous flow observed in some yield stress fluids the thermal
fluidity model has also been proposed [78, 79].

The MD simulations can help understanding amorphous solids under deformation, but
their relevance is limited by the huge computational cost needed to simulate large systems.
Other complementary approaches that correspond to a mesoscopic rather than microscopic
description are necessary. One such approach is provided by Elasto-Plastic Models (EPMs).
The EPM has been first introduced in [80] (see [5] for a review). It is a phenomenological
model in which the solid is considered at the mesoscopic level as composed by many elasto-
plastic elements that interact between themselves. The blocks are taken as large enough
to have a local strain, but small enough to be considered as local. Such elements behave
following simple rules, but lead to a complex macroscopic dynamics. This kind of approach
is common in the context of statistical mechanics, where one trades the microscopic details,
specific of each particular case, in order to get a more general insight on the phenomenon
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at study. The simplicity of these models allows for analytical treatment in mean-field limit
and for computer simulations of large systems that would be otherwise impossible. A large
part of our work makes use of such models to investigate how the preparation conditions
affect the resulting mechanical properties of a sheared amorphous solid, and in particular its
yielding transition, which we now describe.

1.3 The yielding transition and the influence of the preparation conditions

The study of soft amorphous solids has been focused for a long time on the properties of
their steady state flow. On the other hand, in the start-up protocol, the stress of these
solids increases with the applied strain until yielding occurs, after which the stress does not
increase anymore. This yielding transition or crossover is generic in amorphous solids, which
we have seen encompass a wide variety of materials. A successful theory for this phenomenon
should then be as much as possible free of details of the specific solids and one may adopt a
statistical mechanics point of view and look for an effective coarse-grained picture.

An important step is to characterize yielding and try to devise a quantity, akin to an
order parameter, that distinguishes the state of the system before and after yielding takes
place. Mean-field calculations on glasses in infinite dimensions [81, 82] and numerical and
theoretical analyses [70, 71] have suggested that yielding corresponds to a spinodal point,
i.e., a limit of stability, and that the overlap or similarity among configurations is a good
order parameter. As shown in computer simulations studying a wide range of preparation
conditions [4], yielding does not seem to always be a spinodal and can instead be continuous,
in the form of a mere crossover, or even critical for a fine-tuned preparation condition (see
above).

The effect of the initial preparation on the yielding transition is the main focus of the
present work. We will in particular investigate the existence of a critical point for a fine-tuned
preparation temperature and the possibility to develop an effective theory for its description.
The existence of such a critical point and the occurrence of a continuous overshoot in the
stress-vs-strain curves have been recently challenged, both from the theoretical side through
arguments about a shear-banding instability [6] and from the numerical side by showing the
presence of very strong finite-size effects in MD simulations [83, 84]. We will address this
issue by studying mesoscopic models such as the EPM already introduced and models with
the explicit presence of quenched disorder. Before delving more into this we first briefly
introduce the field of critical phenomena and concepts that will be useful in the rest of this
work.

2 A brief introduction to critical phenomena

We now introduce basic concepts of critical phenomena for systems at equilibrium, first in
the "pure" case and then with the addition of some quenched disorder. We then consider
out-of-equilibrium systems, focusing on the case of athermal driving, which is the relevant
situation for sheared amorphous solids.
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2.1 Equilibrium
2.1.1 Pure case

Let us start by reviewing the general case of a system in equilibrium at a temperature T,
which is for instance defined on a discrete lattice of linear size L in d-dimensions. To each site
1 of the lattice a local variable s; is associated, and the model is described by a Hamiltonian
Ho({si}). For simplicity we only consider the case in which s; is a scalar. When 7' = 0 the
system occupies the configuration that minimizes the energy, also called the ground state
(if there is a degeneracy, it occupies one of these states) and s; = s; 4. In this case any
function of the local variables Q({s;}) simply takes the value Q({s;gs}). As the temperature
increases, more configurations become available for the system due to thermal fluctuations,
so that Q({s;}) is now a random variable that oscillates around a mean value Q = (Q({s;})).
The notation (-) stands for the average over thermal fluctuations which is computed as

Q= Q) = X Qs TR}, (18)
{ss}

with exp{—SHo({si})} the Boltzmann factor and g = 1/(kgT), with kp the Boltzmann
constant. Finally, Z is the normalization defined as

Z =) exp{—BHo({si})} (1.9)
{si}

and is called the partition function, which is a function of temperature and of the parameters
that enter the Hamiltonian Hy. From Z one defines the free energy of the system as F =
(=1/8)In(Z). The partition function turns out to be also extremely useful in computing
the average of thermodynamic quantities. An example of Q({s;}) is the system-averaged
quantity s = 1/N SN | s;, with N = L% the total number of sites, and (s) its thermal
average. The value of (s) can be found directly from Z by applying to the system under
consideration a uniform source field H directly coupled with the s;’s. The Hamiltonian now
becomes H({s;}) = Ho({si}) — H>; si- At this point one can see that the average of the
system-averaged quantity s can be computed as

0Zy

OH |y
and similar relations hold for higher moments of s (the subscript H is used here to specify
that the partition function is computed for the whole Hamiltonian H). With the addition of
appropriate applied fields or sources the partition function is the generating function of all
the thermodynamic quantities and correlation functions of the system.

At this point let us add the hypothesis that Ho({s;}) is translationally invariant (as
a consequence, (s) = (s;)) and favors cooperation between s;’s at different sites (in the
following we will say that such interactions are ferromagnetic, in analogy with what happens
in models for magnets). This means that at 7= 0, in the configuration that minimizes the
energy, one observes the same value s; = sgs at every site, and the system is said to be in the
ordered phase. On the other hand, when the temperature is very large, all the configurations
will be almost equally probable and the system is said to be in the disordered phase, with
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(s) = sqs. Qualitatively, at equilibrium and finite temperature 7', there is a competition
between order, required to minimize energy, and disorder, required to maximize entropy. At
small temperatures the order wins, while at large temperatures disorder does. If the quantity
(s) is able to distinguish between the two states of the system it can be used as an order
parameter: by looking at the value of (s) one can understand whether the system is in the
ordered or in the disordered state. The temperature acts as the control parameter, and a
phase transition occurs at a special value T' = T;.. The order parameter (s(7")) is a function
of temperature, and in going from 7' > T, to T' < T, it changes from (s(T — o0)) = sgs to
(s(T'=0)) = sg5. If (s(T)) is discontinuous at T" = T, the phase transition is of first order,
while if it is singular but continuous it is of second-order (or higher). We will mainly focus
on the latter case in the following.

Since thermal fluctuations are responsible for the destruction of the ordered phase, quan-
tifying their strength is fundamental to understand what happens at the phase transition.
This can be done by looking at the correlation function G;; = (s;s;) — (si)(s;) that measures
how much thermal fluctuations of the local order parameter ds; = s; — (s) at some point 7
are related to those at point j. One expects that for close-by sites this quantity is positive
and close to 1, while as the distance 7;; between the sites increases G;; is expected to go
to zero. The asymptotic behavior for large r;; is given by Gj; ~ exp(—r;;/§), where & is
the correlation length. In the vicinity of a critical point, inside the region of volume £¢ the
correlation function decreases as a power law with the distance between sites, so that

i(d_2+7})

Gyj ~ {r” e (L11)
exp(—ri;/§)  Tij > &,

where 7 is an exponent characterizing the model. When 7" # T, the value of ¢ is finite and
one can imagine dividing the system into many blocks of volume &% that can be considered
to be independent one from the other due to the exponential decay of correlations. However,
as the critical point is approached the correlation length diverges, so that the correlations
have a power law decay everywhere and fluctuations become scale free and therefore relevant
on all the system sizes. Another important quantity to characterize the state of the system
is its response to an external perturbation. To this end, let us add again a source field H
that is linearly coupled to the order parameter and acts uniformly on every site, favoring
some value of the s;’s. In the low-temperature phase this effect decides which value of the
order parameter the system chooses, breaking the symmetry (if present) between the possible
choices, while for some H = H, the field is not favoring any value. This allows one to define
the response function of the system with respect to an external source, which is called the
susceptibility and is defined as x (7, H) = 9(s)(T,H)/OH. As the system approaches the
critical point, i.e. when ¢t = (T'—T.)/T. — 0 at fixed H = H,, both the correlation length
and the susceptibility, £ and y, diverge. In the study of second-order phase transitions one
defines the usual scaling relations

(s(t, H = H.)) — 8as ~ (_t)57
x(t,H=H.) ~ [t|7,
§(t,H=H.) ~[t|™",

Cy(t,H = H.) ~ |t| %,

(L12)
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where C,(t, H = H.) = —T9?F /OT? is the specific heat and a, 3, v, and v are the exponents
that characterize the universality class of the critical behavior. These exponents are not
independent as one can find relations between them. For example, for systems at equilibrium
and finite temperature, the fluctuation-dissipation theorem gives a link between x and Gj;,

stating that
1 N

2

X T 2 G = (e () (113)
The response of the system to an external field is then proportional to the thermal fluctu-
ations of the system-averaged order parameter s. From Eq. (I.13) and Eq. (I.12) it follows
that both the response function and the correlations diverge in the same way when approach-
ing the critical point, which also gives the relation v = v(2 — 7). Other relations between
the critical exponents involve the physical dimension d, and take the name of hyperscaling
relations. For example let us imagine the system as composed of many blocks with linear
size of the order of the correlation length £. The free energy density inside this block of
volume £¢ is of the order of the temperature Fe¢ ~T. By expressing the singular part of the
free energy with the help of the specific heat exponent « (defined in Eq. (I.12)) one finds

2—a=dv. (I.14)

In the majority of cases, the critical behavior cannot be solved exactly and one then
resorts to approximate approaches. As a first step the system is usually considered in a
mean-field approximation. This method amounts to substituting the interaction between s;’s
with the interaction between each s; and the mean value s. The system is then homogeneous
and spatial fluctuations are neglected. The effect of such fluctuations is generally weaker at
large values of d, so that above an upper critical dimension d,. the mean-field predictions
of the exponents are correct. However, for small values of d, thermal fluctuations can be
so strong that the ordered phase is destroyed as soon as 71" > 0, which means 7T, = 0. The
value of d at which an ordered phase is no longer observed at finite temperature is called
the lower critical dimension di.. For dic < d < dy. the mean-field approximation fails and
more powerful methods need to be employed. One method that has proved particularly
successful and provides a powerful framework to study critical behavior and scale invariance
is the Renormalization Group approach [85, 86]. The main idea is to apply a sequence of
coarse-graining and parameter-rescaling operations to progressively average out the thermal
fluctuations at every scale. The fixed points of this series of operations will then be scale-
invariant. One particular nontrivial fixed point is then associated to the critical point.
Systems starting from different points in the parameter space can end up in the same fixed
point after the renormalization procedure, in which case they are said to be in the same
universality class and they share the same critical properties. Critical properties are thus
quite robust with respect to changes in the details of the model and can be shared by models
that have different microscopic descriptions. Due to this property, simplified effective models
may be able to describe the large-scale critical physics of real physical systems, provided they
fall in the same universality class.

To get a more concrete insight into these concepts we consider the archetypal example
of a system at equilibrium that shows a second-order phase transition: the ferromagnetic
Ising model. Here the s;’s are spins that take +1 or —1 values and that interact ferromag-
netically following the Hamiltonian Ho({s;}) = —J > (i,j) Si55» where the coupling constant
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J is positive and (-,-) denotes nearest neighbors sites. It can be shown [87] that in this
case a ferromagnetic (ordered) phase in which all spins are oriented in the same direction is
stable with respect to formation of a droplet with opposite sign in d > dic = 1. When the
temperature increases the system ends up in a paramagnetic (disordered) phase in which the
spins are randomly oriented, so that (s) = 0. Notice that the Hamiltonian function Ho({s;})
is symmetric with respect to the inversion of all spins, i.e. Ho({s;}) = Ho({—s;}). This
means that the Boltzmann weight associated to some configuration does not change if we
reverse all the spins in the configuration, so that if we compute (s;) we see that it is equal to
(—s;), which in consequence means that (s;) = 0. However, as the temperature goes below
T,, the spins conspire to align along a common direction. The system has a finite value of
(s;) (either positive or negative), and the inversion symmetry is spontaneously broken by the
phase transition. Notice that this is not the only way to break a symmetry: as soon as an
external field is applied to the system the term H ), s; is added to Ho({s;}). The alignment
of the spins along the field is now favored, which explicitly breaks the symmetry. The Ising
model can be exactly solved in d = 2 [88], and in d = 3 precise estimations of the critical
exponents have been found [89, 90]. Mean-field predictions are correct for d > dy. = 4 which
is the upper critical dimension in this case [91].

2.1.2 Adding quenched disorder

We now consider what happens when frozen-in (or quenched) disorder is added to the system.
Indeed, no material is perfect and no magnet is pure. The effect of impurities and more
generally quenched disorder on the otherwise pure system can be benign or modify the
behavior. The modification of the critical properties can be small as a slight change in the
exponents, or strong as completely changing the nature of the system’s phases. Depending on
the physical situation, disorder can be added to the system in many ways. For example, an
interesting phenomenon that can be described as a disordered system is percolation, where
disorder comes in at the geometrical level as the probability of having a certain number
of edges in a network [92]. In spin systems as the Ising model described above, impurities
are typically introduced in the Hamiltonian as lattice-site or bond dilution [93], random
interactions between spins [94] or random fields coupled to each spin [95]. Another example
of systems with disorder is the random manifold, where the elastic energy is minimized by
a flat surface, but pinning due to the disorder compete with this ordered phase [96-98].
There are also many disordered models outside physics, for example in neuroscience [99] and
computer science [100].

Let us go back to the general system described above by the Hamiltonian Hy, adding
disorder to the picture. The kind of disorder we will consider is quenched, which means that
the random variables that enter in the Hamiltonian are fixed at the beginning of the dynamics
and do not evolve (as opposed to annealed disorder in which they are allowed to change on
a certain timescale). Since an additional source of randomness (other than temperature)
is now present, it is important to consider an average over different realizations of this
quenched disorder in order to reach meaningful conclusions and obtain quantities that are
representative of the typical situation in the thermodynamic limit (so-called self-averaging
quantities). The generic quantity Q“({s;}) depends of both sources (the superscript a stands
for a particular realization « of the disorder) and its average over thermal fluctuations is still
a random variable. The average over all the disorder realizations is hereafter indicated by an
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overline, so that the fully averaged quantity is (Q*({s;})). In the pure case we described the
competition between order and (thermal) disorder, which gives rise to the phase transition. In
the present case the new source of noise at play also conspires to destroy the ordered phase.
Applying both averages, we define the correlation function as G;; = @ — (s_z)@ In
order to quantify the contribution of each source of fluctuations we can split this correlation

function in two terms, which read

| _ (L.15)

with G;; = Geij + Gayj. The function G ;j, called connected correlation function, is the
average over the frozen-in disorder of the correlation function defined for the pure system and
it quantifies the effect of thermal fluctuations as in the pure case. On the other hand, Gg,;,
called disconnected correlation function, is a measure of the sample-to-sample fluctuations
coming from the addition of quenched disorder. In this case the fluctuation-dissipation theo-
rem still holds, but the response function is proportional to the connected part of the correla-
tion G.;; alone, so that the connected susceptibility is Yconn = 0(s)/OH = NB{(s* — (5%))2).
Once again, the thermal fluctuations scale at the critical point as the response function, but
the critical exponents are in general different from the pure case. The disconnected correla-
tion function is a priori not related to any response function, but by symmetry one can define
the disconnected susceptibility as yaise = NB({s®) — (s2))2. The disconnected susceptibility
Xdisc can be defined in general for any kind of quenched disorder following the definition
in Eq. (I.15), but it is not always a relevant quantity. To see why, let us consider for example
the case of the Edwards-Anderson [94] model, with Hamiltonian given by

H({SJ) = — Z JijSiSj (116)
(i,3)

where J;; is a random variable of 0 mean and standard deviation J. In this case, as in the
pure Ising model, the Hamiltonian is still symmetric with respect to the inversion of the
spins. Once again one can then prove that (s;)* = (—s;)® = 0 for any realization a of the
disorder. From the definition in Eq. (I.15), the disconnected susceptibility is always 0. Let us
now consider a different kind of disorder, obtained by adding a local random field h; linearly
coupled to the s;’s. The Hamiltonian is no longer symmetric with respect to the inversion of
the spins, as the contribution coming from h;s; changes sign under this transformation. The
symmetry is only recovered after an average over the disorder realization, if the distribution
of the random fields is symmetric around 0. In this case there is one extra exponent to
describe the scaling of the correlations close to the critical point, since here there are two

functions which can both diverge. The scaling relations are
chij ~ r&(d*ZJr??)’ Xconn ~ 1

—(d-4+7) 5
ij ) Xdisc ™~ t 'Yv

—y
(L.17)
Ga,ij ~,r

where, v = (2 — ) as in the pure case, and 5 = v(4 — 7)) (with the exponent v defined as
in Eq. (I.12)).

In the following we will discuss the case in which the quenched disorder comes in the
form of random fields coupled to the order parameter. One can show that the disconnected
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Figure [.9: Schematic renormalization flow of the RFIM in the disorder strength-temperature
plane. The fixed point I at R = 0 is the one of the standard Ising model and is unstable
with respect to a small random-field perturbation. The other fixed point is found at R = R,
and T = 0. Adapted from [104].

susceptibility associated with fluctuations that originate from such a kind of disorder diverge
faster than the connected part near the critical point [101]. This can also be seen by con-
sidering again the hyperscaling relation that we discussed in Eq. (I.14). The difference in
the case with random fields is that inside a block of the system of size £¢, the variation of
the free-energy density is proportional to the random field fluctuations which dominate over
the thermal ones and grow as &7 [102] (using the central limit theorem one would argue for
6 = d/2, but we have to remember that the random field gets renormalized as one approaches
the critical point). From this consideration one finds the modified hyperscaling relation

2—a=(d-0), (I.18)

with 6 another critical exponent, which describes the (dangerous) irrelevance of tempera-
ture [103]. Such exponent is related to the ones introduced before by the equation 7 =
24+ n — 6. The inequality 77 < 21 has been further proven [101], which confirms that indeed
7 > ~ for systems with a random field.

Let us more specifically focus on the random-field Ising model (RFIM) [103], whose
Hamiltonian is given by

H({si}) = — Z Jsisj — Z(H + hi)s; (1.19)
(,9)

i

where h;’s are the local random fields. Here and in the following we assume that the random
fields are independent variables chosen from a Gaussian distribution of average zero and
standard deviation R. Changing the average value just amounts to shifting the homogeneous
external field H, while changing R controls the strength of the quenched disorder. Different
random field distributions have been studied [105] but, loosely invoking universality, we only
consider Gaussian random fields. It is easy to imagine that when R/J > 1 the interaction
with the local random field dominates over the interaction with the neighboring spins, making
the system evolve as a collection of independent entities. When instead R/J < 1, one can
show via the Imry-Ma argument [106] that an ordered phase in which (s) = %1 is destroyed



23

by a droplet of opposite sign of radius r for d < 2 (a more refined argument that takes into
account the roughness of the droplet’s surface shows that this is the case also for d = 2 [107]).
We can already see here a confirmation of the result 7 > ~ that we discussed above: disorder
fluctuations are more important than thermal ones. The Imry-Ma argument is indeed based
on the energetic advantage of creating a droplet with spins with opposite sign with respect
to the overall magnetization compared to the energetic cost of creating an interface, but
it neglects the entropic contribution given by the multiple possible contours. The lack of
this term is distinct from the Peierls argument used for the pure Ising model in which this is
precisely the term that destroys order [87]. Nonetheless, the Imry-Ma argument provides the
correct prediction, as it has been rigorously shown that the lower critical dimension of the
RFIM is indeed dj. = 2. The model was solved in the mean-field fully-connected limit [108]
by using the replica trick. In this case a critical point at (R.,T = 0) is observed, in addition
to the one of the pure case at (R = 0,7 = T.). Moreover, in the solution one observes
once again that the thermal fluctuations are less important with respect to the disorder-
related ones, as 7 = 7 = 0, so that Yqise X X2, Finally, results from renormalization
group approaches show that the addition of a random field is a relevant perturbation to
the fixed point associated with the pure system critical point, and the renormalization flow
brings the whole line of critical points when R > 0 to a new fixed point at zero renormalized
temperature [109]. At T' = 0 the disorder strength R is the control parameter and R = R,
is the critical point (see Fig. 1.9). When R > R, the system is in the paramagnetic phase,
while for R < R, a spontaneous magnetization appears. This is compatible with the absence
of an entropic term in the Imry and Ma argument on the stability of ordered phase. The
contribution of quenched disorder to the correlations is more important than the one from
thermal fluctuations, so that the system can be effectively considered at T = 0. Within the
Non-Perturbative Functional Renormalization Group (NPFRG) approach [110] one can also
compute the scaling of the two susceptibilities. In the RFIM the inequality 7 < 27 saturates
in d = 2, while for d > dpr ~ 5.1 we have 7 = 7. For 2 < d < dpg it is difficult to obtain
exact results, but analytical [111] and numerical [112, 113] methods show that the relation
7 = 2n does not hold anymore.

An important consequence of the link between the dominance of the disorder-related
fluctuations over the thermal ones and the presence of a random field is that one can use
this relation in the other direction. By measuring and comparing the two susceptibilities
(disconnected and connected) for a system in which there are no obvious random fields at
the microscopic level, one can detect whether there is the emergence of effective random
fields linearly coupled to the local order parameter. This idea of comparing the connected
and disconnected susceptibilities has been already used to study different systems in which
a random-field like disorder is not present a priori [114, 115].

2.2  Out of equilibrium

In the previous section we gave a basic introduction to the study of critical phenomena in
systems at equilibrium, starting with the case of a pure system and then taking disorder
into consideration, with a particular focus on the RFIM. However, this situation is not
representative of the case we study here, i.e., that of solids under deformation, where energy
is directly inserted into the system from the outside. We then consider the case of a system
that is driven by an external field H, without possibility to relax and hence out of equilibrium.
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(d) (e)

Figure 1.10: Energy landscape for a disordered system (a). As the external field increases the
system moves to the next minimum when the metastable state it occupies becomes unstable
(b-d). As the external field is decreased, the system stays in the last metastable state it
visited until it becomes unstable at a different value of the external field (e). Notice that
this picture is a crude approximation, as one should imagine the energy landscape in N¢
dimensions.

There is a huge amount of work on systems out of equilibrium, which correspond to a
very broad range of situations. A different way of bringing a system out of equilibrium
is for example encountered in active matter, when energy is injected in the system at the
microscopic level. In some other cases the disorder is so strong that the system cannot relax
to the minimum of its energy and keeps evolving out of equilibrium, as for example aging
in glasses. Here we will focus on the case in which the system is driven by an external field
and is moreover at zero temperature. We will comment on the role of temperature later on.

Consider a pure system at zero temperature which has two metastable states, namely
states 1 and 2, separated by an energy barrier. The system starts its evolution from state 1 for
the initial value of the applied external field H = Hy. As H increases, the energy landscape
tilts. However, due to the absence of temperature, the system remains in state 1, as jumping
over a barrier is not possible. Only when the barrier disappears, making state 1 unstable,
will the system jump to state 2 (at H = Hj_,2). However, if we now start to decrease the
field, the system does not jump back from 2 to 1 at the same value of H, for the same reason
as before. Only when state 2 becomes unstable at Hs_,; the system will jump back to the
original state 1. The evolution of the system then depends on the states it visited before.
This history dependence is called hysteresis. Notice that this reasoning is true in general for a
simple athermal driven system. When one adds disorder to the picture the energy landscape
becomes much more complex and many local minima appear, some of which will have an
energy value close to the one of the ground state, without necessarily being in the same
neighborhood in the configurational space. The system (schematized in Fig. 1.10) evolves
then through sequences of discontinuous jumps from one metastable state to the other, called
avalanches. Studying the distribution of such avalanches is important to characterize the
dynamical properties of the system. (The rapid increase in the number of metastable states
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following the addition of disorder has also important consequences in systems that are not
driven, but try to relax to the ground state from a metastable state; the needed relaxation
time increases very rapidly giving rise to glassy dynamics.) In some cases, such avalanches
can become so large that they span the whole system. The size distribution of avalanches
can change drastically depending on the disorder and/or the value of the driving field. The
divergence of the avalanche size implies strong correlations over all the system size and is
reminiscent of the power-law behavior of the correlation functions observed at critical point
in equilibrium. This scale invariance naturally leads one to use similar language and tools
as for equilibrium critical behavior to describe these systems which are far from equilibrium.
It is valuable to use ideas from the Renormalization Group (RG) also in this case. The RG
equations for the flow in the parameter space can be obtained with the help of the Martin-
Siggia-Rose-Janssen-de Dominicis (MSRJD) formalism [116—118], which allows one to build
a generating functional (in the same spirit as the partition function in equilibrium) based on
the dynamic Langevin equation [119]. The advantage of this approach is that the system can
be studied in a similar fashion to the equilibrium case, making the comparison between the
two cases more direct. (This is particularly important for the RFIM, since the equilibrium
and non-equilibrium critical exponents are very close and it is difficult to decide if the two
critical points are in the same universality class [120, 121].) This framework can be used
for any system in which a self-consistent equation of motion for the order parameter can
be derived. In the following we will show how this method can be used to find a relation
between the connected and disconnected susceptibilities in a general system with random-
field disorder. To this end, let us once again consider the system that we discussed in the
equilibrium case, described by a Hamiltonian such as H({s;}) = Ho({si}) — >; his;, where
random fields h; are linearly coupled to the local order parameters. The dynamics of spin s;
under a drive by an applied field H is described by

OHo({si})

Dsilt) = =55

+ hi + H(t), (1.20)
By using the Martin-Siggia-Rose-Janssen-de Dominicis formalism and introducing the aux-
iliary variables §; one can define a dynamical partition function as well as a dynamical
action [110] as

Zh[H7j‘I\] — eWh[H,ﬁ] _ /HDS HDA —Spls;s /]""Zift[ﬁi(t)si(t)"'Hi(t);'\i(t)]’ (1.21)

where we have used the Ito prescription [122], and where
L 9Ho(s())
o5, 3] Z/ Dksi(t) + =5 T~ hi = H (D) (1.22)

with [, = [ dt. We also added site-dependent sources H;(t) and H;,(t) in order to generate
the correlation functions that we are interested in. At the end of the process we will take
Hi(t) = Hy(t) = 0 and H(t) = H + Qt with @ — 0t. Brackets indicate that we are
now dealing with functionals of the variables considered at all times. Due to the presence
of the random fields, the action Sp and the free energy Wy both depend on the disorder
realization (in this case a = {h{'}) and can be characterized by their cumulants. With the
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choice of Gaussian random fields, the action is also a Gaussian random functional which is
characterized by its first two cumulants given by

Sils. 5] = Sils,5] = 3 /t 5i(6)[Brsi(£) + %‘ZX)) — "),

Salis. 5] = Sils, 32" = Ap Y /t /t 505 (1),

where the superscript "cum" indicates a cumulant average. For further use, we note that
the variance of the bare random field Ap (the B subscript is used to distinguish this from
the renormalized disorder that will be introduced later and Ap correspond to the square of
the standard deviation R considered above) is then obtained by differentiating the second
cumulant twice,

(1.23)

8252 [S, §]
03 (t)05,(t")’

or equivalently, since the second derivative is purely local,

AB(Sij = (124)

025,[s, 38
N _Z 05; 2(5—[93J i,) (1.25)

where the second cumulant is here independent of time: This expresses the property that
the disorder is purely static (quenched). The cumulants of the random free energy W, can
also be introduced, with Wi [H, H] the first cumulant, W5 [H, H] the second cumulant, etc.,
and one then has

W(H, H] =n Z,[H, H] = Wi[H, H] + ;Wa[H, H] + 5, Ws[H, H] + --- (1.26)

For a complete description of the functional dependence of the cumulants on their arguments
and a more transparent introduction of the expansion in cumulants one could introduce copies
or replicas of the system with the same random field but coupled to different sources [110, 119,
123]. However, this is not really needed here and we proceed without replicas to alleviate
the notations. As in the equilibrium case, one obtains all the correlation functions from
WI[H, H | by functional differentiation. For the connected susceptibility we have

1 /N /4.7 |cum 1 82W1[H ﬁ]
comn(H) = — FT,_os;(t)s; (t)] .. = — FT,—g—m— , 1.27
Koo (1) = 5 32 PTamo 503 i = 7 2 F om0 gl 027
while for the disconnected one,
isc(H) = — lim  s;(t)s; ()| ., = — lim —_— , 1.28
o) = 2 m SOsTl = 5 2, i S on e (29

where the subscript "unif' indicates uniform sources with, for all sites i, H; = 0 and H;(t) = H
(in the limit Q — 01), and F'T,, denotes a Fourier transform over the time difference t —¢'. If
one wishes to evaluate the strength of the renormalized random field once fluctuations on all
scales have been taken into account, one must substitute the bare action with the effective
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action or Gibbs free energy I'lm, m]. The latter is obtained from the free energy W[H, H ]
through a Legendre transform,

~

Pl m] = —W[H, H)+ 3" / (H (8 (t) + Hi(tyma(t)] (1.29)

where 7i;(t) = OW [H, H]/0H;(t) = 5;(t) and m;(t) = OW [H, H]/9H;(t) = s;(t). Just like
the free energy W[H, H] in Eq. (1.26)), the effective action can be expanded in cumulants
(again, a more precise connection is obtained by introducing replicas),

_ _ 1. - 1
I'm,m| =T1[m,m] — §F2 [m, m| + gFg[m,m] — (1.30)

with

Ty[, m] = WAL H] + 3 [[H(0)m(0) + 7m0
i Ut (1.31)

Ly [’I/’I’\I,, m] = W [H[mv m]v ﬁ[ma m]]a
etc., where H;;[m, m| = OI'1[m, m]/0m;(t) and I;Ti7t[r/ﬁ,m] = JI'1[m, m]/Om;(t) are non-
random sources. By analogy with Eq. (I.25), one can define the component of the variance
of the renormalized random field that is local in space and independent of time as

(1.32)

ﬁml t ) unif
where the subscript "unif' now indicates uniform variables with m; = 0 and m,(t) = m.
(Remember that we consider the quasi-static limit, for which it can be shown that the above
defined quantity for such uniform variables is indeed purely static [110].) By using the prop-
erties of the Legendre transform and Eq. (I1.31), it is straightforward to relate Aeg(mor H)
to the connected and disconnected susceptibilities introduced in Eqgs. (I1.27) and (I1.28):

Xdisc (H)

AeH(H) Xconn(H)2 '
This allows us to define the strength of the renormalized random field, i.e., the effective
random field obtained after having included all fluctuations. This effective random field of
course needs not be Gaussian nor purely local, and the renormalized disorder may include
other forms of randomness, but Eq. (I.33) provides us with an estimate of the dominant
contribution. This equation gives us the possibility to assess the presence and the strength
of the random field in systems in which this is not easy detectable. Notice that this holds
even if the random field is not present explicitly in the microscopic definition of the system.
In such cases one can imagine that the random field is emergent and arises as the system
evolves. In Chapter 3 we will use this formula to study the effective field strength in a
mean-field version of the Elasto-Plastic model.

(1.33)

2.2.1 Interface depinning

A first example of athermally driven systems is interface depinning. In this case an elastic
interface is forced to move through a disordered medium. The role of the external field is
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Figure 1.11: (a) Schematic representation of an interface in a disordered environment, with
both random bonds and random fields represented. Figure taken from [124]. (b) Average
velocity of the pinned interface as a function of the applied force. Depinning takes place at

f:fc-

played by the force pulling the interface, while the role of the disorder is played by some
pinning sites. It is the competition between disorder and elasticity that creates a complex
energy landscape with many metastable states. Let us consider for simplicity the case of a
one-dimensional (di = 1) interface moving in a two-dimensional space (dg = 2). We call =
the direction along which the interface is defined and u(z) its position (see Fig. I.11(a)). We
also make the hypothesis that u(x) does not differ too much from a flat surface in that there
are no overhangs and no bubbles in the interface, so that u(z) is a single-valued function.
The Hamiltonian of this model is

Hu] = Helu] + Hais[u] =
1 L ) L u(z) (134)
5 [ aslu@p + [Cdo [ avi. o)

where the first part is given by short-range elasticity and the second one describes a pinning
potential due to some random-field disorder. Here, the elastic constant is equal to 1. In the
equilibrium case, one can show [125] that below d = 4 and at large enough L, the disorder
dominates the elastic energy and the interface is therefore pinned and characterized by a
roughness exponent. The system can then be brought out of equilibrium by applying a force
to the interface. Its evolution is described by the overdamped Langevin equation

oz, t) = O*u(z,t) + F(z,u(z,t) + foxts (1.35)

where F'(z,u(z,t)) = —0,V (z,u) is a random force and fey is the external forcing. One can
imagine that if the force is small enough the interface will stay pinned. On the other hand,
for a very large applied force, all the energy landscape will be tilted and the interface will
move ballistically at some velocity v. These two regimes are separated by a critical value
of the force f. at which the depinning of the interface occurs. The behavior of the average
velocity close to the transition is very similar to what is observed in a second-order phase
transition, so that one can define a critical exponent § such that v ~ (fext — fc)ﬂ (sketched
in Fig. I.11(b)). Due to the presence of many metastable states the motion of the interface is
characterized by a succession of avalanches of characteristic size &, for which one can define
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the critical exponent v as £ ~ (fext — fc) 7. Moreover the system shows hysteretic behavior
as one changes the sign of the applied force, as one would expect. Once again an approach
based on the MSRJD formalism leads to flow equations of the Functional Renormalization
Group, that predict critical exponents and scaling functions [126]. Many variations of this
model are possible, for example: long-range elasticity, different types of disorder, different
dynamics, etc. [127, 128].

2.2.2 Athermally driven Random Field Ising model

Let us now go back to the example of the RFIM, introduced in the previous section, and let
us drive the system out of equilibrium at 7' = 0, by slowly applying an external field H(t).
The Hamiltonian for this model is the same one in Eq. (I.19) and the athermal quasistatic
evolution is described by

s; = sgn(hs) = sgn(JZ s;j + H + h;) (1.36)
ili

where sgn(-) is the sign function, the sum over j/i stands for the neighbors of 7 and we defined
the local effective field ST [10, 129-131]. Imagine to start the evolution of the system from
a situation in which the applied field H(t = 0) — —o0, so that all the spins will be pointing
down. As one increases H, one increment § H will in some cases change the sign of the effective
field somewhere in the lattice, inducing a new spin flip. This process, if repeated, can then
lead to an avalanche. Due to the presence of such avalanches the magnetization-versus-field
curve is not smooth, but is instead composed of discontinuous jumps of different amplitude
which however disappear in the thermodynamic limit (unless an extensive number of spins
flip, which correspond to a magnetization jump of O(1)). Such reorganizations of regions of
multiple spins can be very broadly distributed in size: very often there will be only few spins
flipping and more rarely a larger region will rearrange. In the quasistatic protocol, which
implies H(t) = Qt with Q — 07, after the external field is increased by dH the subsequent
avalanche takes place at fixed value of the external field and the field H is increased again
only once the avalanche has completely relaxed. Due to the hysteresis property, the value
of the external field at which the average magnetization jumps by O(1) changes sign is not
H = 0 as in the equilibrium case, but is in general H = H(R) > 0 (Hq(R) < 0) for
the ascending (descending) branch. The evolution finally stops once all spins are pointing
upwards and the total magnetization reaches s = 1. The distribution of the avalanche sizes
is then an important quantity to be studied. One can expect that for a very strong disorder
the spins evolve as if they were independent and they flip when the condition H = —h; is
realized. On the other hand if no disorder is present, the spins flip all together as in the pure
Ising model. In the limit of a quasistatic driving, a critical point is found for a specific value
of the disorder strength R. and separates a low-disorder phase in which the magnetization
curve has a discontinuous behavior and a high-disorder phase in which it is instead continuous
(in the thermodynamic limit) [10, 130, 131]. For R = R, the distribution of the avalanches
shows a power law with a critical exponent that characterizes the universality class of the
model. A convenient order parameter to capture this transition is the largest jump in the

magnetization curve, defined as Am%,, = maxy(m*(H + §H) — m*(H)). The average of
the order parameter, defined as Ampyax = Amg,,., shows a continuous decrease from a finite

value for R < R, to 0 as R > R, similarly to what one would observe in an equilibrium
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second-order phase transition (see Fig. 1.12(b)). As for the equilibrium case, one can then
write Ampax ~ (R — Rc)ﬁ with S a critical exponent. One can also define other critical
exponents to characterize scale invariance. For the susceptibilities one has for example

Xconn(ﬁ Hc) ~rT
_ 1.37
Xdisc("“a Hc) ~ T_’Ya ( )

with H, = Hco(R.) the critical field and r = (R— R.)/R. the reduced disorder strength. The
critical properties of the RFIM in and out of equilibrium are very similar, to the point that
for a long time it was believed that the two critical points belonged to the same universality
class. Only recently, by means of the MSRJD formalism and the NonPerturbative-Functional
Renormalization Group critical exponents and scaling functions have been shown to be dif-
ferent for the equilibrium and non-equilibrium critical points, except when d > dpgr =~ 5.1
(the value of d below which dimensional reduction breaks down) [110].

Before moving on we make use of this well known model to show the procedure that
we are going to use in the rest of this work to capture the critical properties of the other
AQS driven model under study. Since precise results on the RFIM under AQS driving
exist both from RG theoretical arguments and from numerical simulations, this is a good
playground to illustrate how the analysis of an out-of-equilibrium system close to the critical
point can be performed. The code we used to simulate the standard RFIM is detailed
in Appendix B and is based on [129]. The results for this model are shown in Fig. I.12. In
the simulations one cannot access the thermodynamic limit, and the available system sizes
are usually quite limited. Yet, a true phase transition cannot take place in a finite-size system
and only exists in the thermodynamic limit. As a consequence, the predicted scaling cannot
be observed arbitrarily close to the critical point since we only have access to a finite system.
The usual procedure in this case, which we will also apply, is to study these properties for
different system sizes and consider that, if we are sufficiently close to the critical point, the
correlation length & becomes very large. It follows that the characteristic spatial extent of
the fluctuations correlations will be limited by the system size L, so that we can substitute
¢ ~ L in the scaling relations. We can then measure the exponent v via Xconn,z ~ /v
and similarly the exponent 4 via Xdise,, ~ L7/" by a careful finite-size scaling analysis with
the hope that it properly captures the thermodynamic limit. With this in mind, we focus
on the computation of the disconnected susceptibility and on the related exponent. We
first compute the sample-to-sample fluctuations of the order parameter AmS, ., depicted
in Fig. 1.12(c). It is clear from the figure that the variance of the fluctuations grows very
large as one increases the system size, which is a signature of the critical point. We then
perform the finite-size scaling analysis by collapsing the curves for different system sizes onto
a single master curve, with the scaling ansatz

Xdisc,L(T) ~ Lﬁ/yqj(T’Ll/V), (138)

where 7 and v are the critical exponents introduced before and W(-) is a scaling function. This
procedure gives us an estimate of the critical exponents, which match with previous results
from NPFRG [110]. Note that this approach is not the only possible one. For example,
in [129, 131], a similar analysis has been carried on for the connected susceptibility. In
this case the order parameter that is used is the magnetization and the collapse is performed
directly for m(H,r) = M.+|r|?F((h+Br)/|r|?°), with 8 and § critical exponents, h = H—H,.
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Figure 1.12: Results from computer simulations of the 3D AQS driven random-field Ising
model. (a) Magnetization curves for 3 samples for different values of the disorder strength
R. When R is small the magnetization displays a jump of order 1, while for stronger disorder
the curve is smoother. Inset: zoom on the magnetization curve for R ~ R, showing the
jumps (avalanches) that occur at all sizes. Curves obtained with L = 120. (b) Average of
Ampayx as a function of R for two different system sizes. (c) Sample-to-sample fluctuations of
the order parameter, that show an unbound growth when approaching the critical point. (d)
Collapse of the variance of the sample-to-sample fluctuations on a single master curve. From
the collapse we extract the exponents 5/v =~ 2.95 and v ~ 1.3, compatible with analytical
results from NPFRG [110].

the reduced external field and F(-) another scaling function. Finally a similar approach has
also been used to discuss the criticality of the model in 2D [132]. (The results presented here
are only meant to illustrate the procedure and are not intended to give precise estimates of
the 3D-RFIM exponents.)

The above procedure allows us to get an estimate of the critical behavior of the model.
Let us now move to the regime in which the magnetization (per spin) displays a jump
of order 1, i.e., for R < R.. The model then undergoes a non-equilibrium first-order (or
discontinuous) transition [134] as the external field reaches some value H = HS that depends
on the disorder realization. This corresponds to a well-defined zero-temperature spinodal.
During the evolution, each sample has a macroscopic jump, but the resulting magnetization
curve is always smooth after averaging over many samples. We can then define the disorder-
averaged coercive field H,, = H2 where the average magnetization has the largest slope.
From the results described above using the MSRJD formalism (in particular from Eq. (1.33)),
the simplest assumption is that the disconnected susceptibility should go as the squared
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Figure 1.13: Results from computer simulations of the 3D AQS driven random-field Ising
model in the R < R, regime. (a) Scaling of the peak (at H = H,) of the connected and
disconnected susceptibility with the system size, for R = 1.8. The disconnected one follows
the expected scaling xdisc,. ~ N, while the connected one increases much slower than the
expected v/N. (b) Value of the coercive field for a 3D RFIM with R < R, where a seed of
up-spins has been inserted at the beginning of the dynamics. Such seed would be present
in the thermodynamic limit, but is absent in finite-size simulations. Dashed lines are for a
cubic seed of linear size o. Stars are for a planar seed, which seems to give the correct limit
as R — 0. Adapted from [133].

connected one. Then, one would expect xqis.1.(R < Re, Heo) ~ N and Xconn, (R < Re, Heo) ~
VN, with N = L3 in the present case. This can be easily verified by computing the two
susceptibilities as
om(H)

OH (1.39)
Xdise.L (R < Re, H) = N(m2(H) — m?(H)).

Xconn,L(R < Rc> H) =

The outcome, however, is that while the expected scaling is observed for Ygjsc, the connected
susceptibility does not follow the v/N scaling, as displayed in Fig. 1.13(a). In order to
understand this issue one has to take into consideration the role of rare events. In the
thermodynamic limit it is possible to have regions of the system where the local random fields
are particularly large and positive. This is possible since when N gets larger and larger some
otherwise improbable realizations of the disorder occur somewhere in the system. These
regions flip before the rest and form a seed for the macroscopic avalanche that takes place at
HE . As discussed in [133], one loses the effect of such rare regions in computer simulations,
in particular when R is small, since the systems that can be simulated are not large enough
to contain them. As we will see, a similar issue is encountered in the study of amorphous
solids. In order to get an idea of the effect of such rare realizations, one can add a seed of
positive spins to the system before starting the dynamics and observe how this affects the
resulting evolution. In Fig. 1.13(b) we observe how the presence of such a seed dramatically
affects the value of H, which, without considering the rare regions, would go to the wrong
limit as R — 0. More generally, the absence of such regions not only changes the average
value H.,, but the whole the distribution pe,(HE)) of the sample-dependent coercive field,

co
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which in turn changes the scaling of the connected susceptibility. To see how pco(HE) and
Xcomn (R < R, H) are linked, we consider that the magnetization of the system simply evolves
as

m*(H)=—-1+4+20(H — HY), (1.40)

with 6(-) the Heaviside function. This is clearly a crude approximation but it works well for
small enough values of the disorder strength R. By averaging over the disorder realizations
we then get

H
m(H) = 8 (H) = —1 + 2/_ peo(H')AIT'. (141)

From this equation the relation Yconn(R < R, H) = 2pco(H) follows easily. The solution
proposed in [133] helps us getting an idea of how the rare regions affect the value of the aver-
age coercive field but it does not give us more insight about pco(H). In the thermodynamic
limit this distribution will depend more generally on the distribution of the rare regions in
the system, which is inaccessible via computer simulations.

From the above considerations we gathered some intuition on how to compute exponents
and scaling functions close to a critical point as well as on how to study some features of
first-order (discontinuous) transitions. Before concluding this part on the driven RFIM, we
briefly mention that the dynamical choice used to simulate the system is not unique. The
one we just described for this model is proposed in [129, 130]. Another possibility is for
example to consider the case in which an full (d — 1)-dimensional interface of +1 spins is
already formed in the system where all the other spins are negative at ¢ = 0. As the external
field increases the positive value of the spin are favored, so that the interface will propagate.
In this case however only spins in contact with the interface are allowed to flip [135]. This
dynamics correspond to interface depinning in a bulk RFIM system.

In what we said until this point, and in the two examples we presented, temperature was
not taken into consideration. The reason is that when we put these systems in contact with
a thermal bath, we need to add another source of noise to the Langevin equations Eq. (1.35).
This thermal noise then allows the system to jump to different metastable states overcoming
energy barriers with the help of thermal fluctuations. Allowing for this possibility blurs the
transition, which is no longer strictly defined, neither the discontinuous one and the associate
spinodal, nor the critical point. Although the influence of temperature would be interesting
per se [136], we focus on the transition and choose the athermal quasistatic dynamics in
order to have crisper conclusions on the presence and properties of the critical point.

3 Summary of the introduction and structure of this work

In the first part of this introduction we discussed amorphous solids and the physics that
arises when such materials are deformed. We then argued that even if the origin of plasticity
is qualitatively similar in all amorphous materials, different responses can occur when defor-
mation is applied. Mechanical properties, and in particular the yielding transition, depend
on the initial preparation of the sample. We discussed the results obtained in computer simu-
lations of an atomistic glass prepared over a wide range of stability [4], where the presence of
a critical point for a specific value of the preparation temperature separating a brittle regime
from a ductile one was proposed. We then described the statistical physics framework to
study systems close to a critical point, both in and out of equilibrium, with some examples.
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The main point of our work is to provide a theoretical description of the yielding tran-
sition of amorphous solids and to try to derive an appropriate effective theory of the phe-
nomenon. The purpose of an effective theory is not to reproduce the phenomenology of
the model in all its details but rather to focus on the main features that characterize the
behavior of the system at long length scales, which is adequate near a critical point. By
focusing on universal aspects, the effective theory is able to describe the system’s behav-
ior in a simpler and more general way. This is for example what the ¢* field theory does
for systems in the universality class of the Ising model. In principle, to obtain an effective
theory one starts from a microscopic description that captures the relevant physics at small
scales and integrates out the effect of small scales to obtain an effective description of the
system at large scales. The task of constructing such a theory for the yielding transition in
amorphous solids is complicated by the initial challenge of creating a microscopic theory that
accurately describes the relevant physics and by the intrinsically out-of-equilibrium nature
of the process. To bypass this issue we turn to phenomenological models, and in particular
to the Elasto-Plastic Model (EPM), that was shown to provide a surprisingly good descrip-
tion of solids under deformation even with few ingredients. The EPM is defined by a set
of rules in the spirit of cellular automata. It does not have a Hamiltonian description, so
that it is not easy to come up with an effective theory starting from it. Following earlier
suggestions, we will develop the analogy between the behavior of solids under deformation
and the athermally driven random-field Ising model. The possibility of building an effective
theory of the yielding transition starting from the RFIM is particularly appealing as this
model can be investigated in depth by means of simulations and theoretical methods such
as the Non-Perturbative Functional Renormalization Group [119].

The rest of the work is organized as follows:

In Chapter 1, we study a version of the elasto-plastic model. We start by describing
the choices made in devising the model and compare them with what has already been
done. We then look at the resulting stress-vs-strain curves and we compare them with
results from Molecular Dynamics simulations. We focus first on the brittle regime, where
a macroscopic stress drop is observed, concomitantly with the formation of a shear band.
We carefully discuss how such a band forms and how it affects the rest of the system. The
main part of the chapter is focused on the study of the putative critical point that separates
brittle and ductile regimes of yielding in amorphous solids. The existence of such a critical
point has already been presented in previous works [4, 137], but due to the limited system
sizes accessible to MD simulations, it was not possible to properly characterize the critical
properties. We then use our EPM and we study the role of the initial disorder, which is a
proxy for the preparation conditions in realistic amorphous solids, on the yielding transition.
The mesoscopic nature of this approach allows us to investigate much larger system sizes and
a much larger number of samples, thereby allowing a bona fide finite-size scaling analysis.
We give a first estimate of the critical exponents that characterize this transition. As the
presence of a critical point has been challenged [6, 83, 84], we take particular care to establish
its existence when going to the thermodynamic limit. We conclude by showing two variations
of the model. First, in the same spirit of what we showed above for the standard RFIM, we
look at how the first-order transition is affected by the presence of weak but rare regions.
We finally show the signature of the critical point in another (quite different) version of the
model, defined in [7].
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In Chapter 2, we push the analogy between the yielding transition and the AQS driven
random-field Ising model (RFIM) by numerically investigating a specially tailored version
of the latter, in which the nearest-neighbor ferromagnetic interactions are replaced by the
Eshelby kernel. This allows to mimic the symmetry of the avalanches of quadrupolar plastic
events and the appearance of a shear band. We follow the evolution of the model under an
athermal quasistatically applied external field. We first look at the magnetization-vs-field
curves and study the dependence of these curves on the variance of the local random fields.
We highlight the similarities with what we observed in the EPM. Here too we proceed with
a careful analysis of the weak-disorder phase, revealing and characterizing the formation of
a band of positively magnetized spins as the external field increases. We discuss similarities
and differences with the EPM. We then move to the analysis of the critical point, which is
controlled by the variance of the local random fields. We carefully confirm its existence and
study the properties of the system as it gets closer to criticality. We perform a similar finite-
size scaling analysis to determine the critical exponents of the model. While the transition
scenarios for the EPM and the Eshelby-RFIM are qualitatively the same we are unable to
safely decide whether the critical points of the two models are in the same universality class
or not despite the very large system sizes used in both cases. To conclude the study of this
model we also discuss two variations. First we look at the effect of seeds of positive spins
on the value of the coercive field at which the magnetization jumps in the weak-disorder
regime. We find that the effect of such seeds is similar to the one discussed in the standard
RFIM [133]. Lastly, we try to assess the effects of the lattice by studying a slightly different
model. In particular we consider the Eshelby kernels when aligned along a different axis
with respect to the standard one, and we check how this affects the critical point.

Chapter 3 presents an analytical study of the EPM and RFIM models that are obtained
in the mean-field approximation. Defining the mean-field version of the EPM is not an easy
task, due to the anisotropic nature of the Eshelby interactions. For simplicity, we use the
ferromagnetic version defined in [4] for the EPM, while we choose the one introduced in [10]
for the RFIM. We first compute the average evolution of the models and we discuss the
stress-vs-strain and the magnetization-vs-field curves, for the EPM and the RFIM respec-
tively. Changing the disorder strength changes the average evolution and in both cases a
well-defined critical point reached for a specific disorder strength separates a discontinuous
from a continuous regime. The core of the calculation is to obtain the disconnected sus-
ceptibility which quantifies the sample-to-sample fluctuations. We do this analytically and
from the comparison between the disconnected and the connected susceptibilities we provide
an estimate of the effective strength of the random field that emerges in the vicinity of the
yielding transition. We also study how the strength depends on the various sources of dis-
order present in the EPM. We conclude by proposing a direct mapping at the average level
between the EPM and the RFIM in the mean-field limit.

We conclude the main part by summarizing the salient results obtained in the present
work. We highlight the questions that are left open and we propose some future directions
to tackle these issues and to explore different problems.

In Appendix A we explain the procedure that leads to the definition of the Eshelby kernel
and we discuss its implementation. In Appendix B we give details on the code used to per-
form the numerical simulations of the EPM and of the Eshelby-RFIM, with their respective
variations. A pseudocode version of each algorithm is presented to clarify the procedure.
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Appendix C is dedicated to the calculation details that lead to the results in Chapter 3.
Finally, in Appendix D we discuss the avalanche-size distribution for the EPM and for the
Eshelby-RFIM.
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1 Introduction

In this chapter we introduce and numerically study an elasto-plastic model (EPM) that we
use as a mesoscopic approach to describe the yielding transition of amorphous solids and
how it changes with the preparation of the material. As mentioned in the Introduction, our
focus is on universal behavior and we choose an EPM to be able to access much larger system
sizes and to consider a much larger number of samples so that a proper finite-size scaling
analysis of the results can be performed. Part of the work described in this chapter resulted
in the publication of a paper, that can be found here [138].

1.1 The key ingredients of an Elasto-Plastic Model

The original idea of elasto-plastic models is to mix the linear elastic response of a solid
to an external shear deformation with the internal rearrangements associated with plastic
events [139, 140]. This arises from the observation that plastic activity in amorphous solids
is localized. Many versions of the EPM have been devised and in this introductory part we
briefly discuss the key common ingredients. (We follow the presentation of the comprehensive
review [5].) In the elasto-plastic model the solid is divided into mesoscopic blocks of size
similar to that of a typical plastic rearrangement. Each of these elements can then be found
in two states: elastic or plastic. To represent these states, a binary variable p; is introduced,
such that if p; = 0 the block at site ¢ is in the elastic state, whereas for p; = 1 it is in the
plastic one. When in the elastic state the block responds linearly to deformations, while as
soon as p; = 1 it releases part of its stress and redistributes it to the other blocks. The
passage from p; = 0 to p; = 1 and viceversa is dictated by some conditions C'1 and C2,
respectively, that we discuss below. In general, the evolution of a single element is then
composed of four steps:

1. Elastic response to external stimulus and plastic reorganization elsewhere in the system,
valid if a certain condition C1 is satisfied;

2. Passage to the plastic regime, when C'1 is not true anymore;
3. Redistribution of its stress, if a certain condition C2 is satisfied;
4. Return to the elastic regime when C?2 is not true anymore.

As often happens in statistical mechanics, even such a simple dynamics for an elementary
constituent gives a non-trivial behavior when a collection of interacting blocks is considered.
In this first part we discuss the possible choices to implement these rules as well as the
relative justifications and applications to different kinds of materials. First of all, in this
type of models a single component of the stress and of the strain tensors is often considered
when focusing on the shear deformation (if the loading is uniformly applied). In this way
the problem is reduced to a scalar one and is hence easier to treat. However, a more careful
treatment of the tensorial nature of these quantities can be introduced to take into account
the possibility that some other component of the stress and strain tensors comes into play
during the deformation procedure and in particular after a plastic event. The advantage of
this more realistic approach is that it also allows for the simulation of many types of deforma-
tion, giving rise to different forms of plasticity localization. In this way it becomes possible
to study the properties of amorphous solids under different deformation protocols [141].

In the majority of EPMs found in the literature, an additional simplification is often made
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where each elementary block is assumed to be fixed at some lattice site during the dynamics.
This approximation can be relaxed [142] to include the motion of the constituents. For our
purpose here, we nonetheless consider a scalar description for a simple shear deformation
with a local stress o; and a shear strain . As already mentioned we furthermore consider
the athermal and quasistatic limit with ¥ — 0: the system is allowed to reach the bottom
of the metastable state before the strain is increased again. The timescales of avalanches
and elastic propagation are completely separated from the timescale of the driving. It is in
this setting that the yielding transition can be crisply defined. Different protocol choices are
possible, as for example stress-controlled EPMs [7, 143]. Some other types of test described
in the Introduction, such as the study of the steady state flow curve, have also been carried
on in the EPM setting [144]. One looks in this case for the relation between strain rate
and stress, of the type 4(0) x (o — Jy)ﬁ. In this setup the analogy with the depinning
transition gives interesting insights [144]. Recently, oscillatory-strain deformation protocols
have also been studied in order to deal with stationary states properties instead of transient
behaviors [145, 146].

The first step of the algorithm is a linear response of each block to an increase of strain
from 7y to y46+: the local stress then increases from o; to o;+ pudy, with i the shear modulus
of the material.

Steps 2 and 4 of the list above describe the fact that each elementary component behaves
elastically until its local stress value is too large to sustain. Usually the conditions C'1 and
C2 discussed above are built such that the stress at each block has a threshold value o,
so that if o; > th the block at site i enters in the plastic state (p; = 0 — p; = 1) with a
certain rate 7y, (condition C1) and exits (p; = 1 — p; = 0) with a certain rate 7,y (condition
C2). Different choices for these values are possible, as well as different rules. Such local
yielding rates are usually taken as constants. However, recent studies have pointed out that
a dependence on the local stress value of such rates should be considered, as it may change
the dynamical exponents (even if the static ones seem unaffected) [147]. It has been shown
that this choice is related to the form of the random potential acting on the system [148]:
depending on the shape of the potential well that each block sits in, the form of the yielding
rates change. We do not dive into these issues as we are interested in universal features that
should be robust to detail changes.

Stress redistribution in the plastic state is a key factor as it is responsible for the or-
ganization of plastic events in the form of shear bands. Each block in the plastic state
releases an amount of stress proportional to its local value o; in a typical time 7, which is
then redistributed to the other sites of the system. While block ¢ relaxes it can still receive
the kicks coming from the other relaxing sites in the lattice. The standard choice for the
stress redistribution is the Eshelby kernel in the far-field approximation. This propagator
was first obtained by considering the strain field generated by a single ellipsoidal inclusion
in a completely elastic medium [28]. In the real space in 2D the propagator takes the form
introduced in Eq. (I.5), which we repeat here,

Gij = —605(4292]), (1.1)

ry;
with (74, 0;;) the polar coordinates of the vector between site i and j. This form is obtained
with the hypothesis of an infinite solid, while in general the boundary conditions play an
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important role [149]. It is easily generalized to higher dimensions. Notice that the propagator
is not defined in r; = 0, but since the block that relaxes loses stress the choice G; = —1 is
usually made. Due to the long-range character of the interaction, the implementation of such
a stress propagator on a lattice is not straightforward when periodic boundary conditions are
taken. The two main solutions to this issue are the Fourier-space discretization and the finite
element method [141, 150]. Another possibility is also to perform the sum over the periodic
interactions in some clever way, in order to have a convergence [151]. More details about the
Eshelby propagator and its implementation in the simulations are given in Appendix A.

We can finally summarize the evolution equations for the local stress o; and activity p;
at site ¢ in the strain-driven protocol as

. . gj
Gi = 1y + ) Giyp; (1.2)
j
h

(1.3)

1—0 atrate T;é,

i {O — 1 at rate TiHI if 0; > o}
Y2

for the most general case.

The last component that is missing is the disorder associated to the amorphous nature of
the material that one wants to describe, which enters the description in many ways. First, one
has to choose how to initialize the local stress variables, which are assumed to be randomly
chosen from a certain probability Py({o;}). As we previously discussed, the behavior of
glasses, both in experimental setups and molecular dynamics (MD) simulations, exhibits
variations based on the preparation protocol, which includes factors such as preparation
temperature, cooling rate, and aging. In order to mimic this dependence one may change
the characteristics of the distribution of the initial stress. The only constraint is that if the
solid is at mechanical equilibrium and no strain is applied, one has a macroscopic stress
o = 0. In addition, recent results showed that also the local stress thresholds follow a
certain distribution, which is itself influenced by the sample preparation [152] and may even
change during the dynamics [153]. In order to reproduce this in the EPM setting, each
site should have different stress thresholds, which can possibly change during the evolution,
with a threshold distribution of the type Py, ({ot"},7) (see also [77]). After the local stress
overcomes the threshold o! the block finds itself in the plastic state and redistributes its
stress. The time that the block spends in the plastic state depends on the rates 7, and Tout
and is also random. As a consequence, the amount of stress redistributed is another source of
disorder. One more source of randomness comes from the shear modulus p. Usually p is fixed
in the study of EPMs, but in reality its value is nonuniform inside the material [154] due to
the elastic heterogeneity. Therefore, in principle, it should also be chosen according to some
distribution to account for its variability. Finally, the orientation of the Eshelby kernels could
be considered as another source of noise. The solid obtained after the quenching procedure
is isotropic. However, as soon as an infinitesimal loading is applied in some direction, the
Eshelby propagators tend to align in this same direction. Still, they need not be perfectly
aligned [155], so that a disorder on their orientation should be taken into account.

This gives a brief overview of some of the possible variations of the EPM that can be
built. As it is clear from all the possible choices that we listed, there are many details that
could be taken into account when defining the model. In general, different EPMs have proved
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useful in different contexts: each ingredient has to be chosen depending on the scope of the
work. If one wants the most accurate version of the EPM this can be done by taking into
consideration all the possibilities listed above. Studies in this direction have been performed
by calibrating an EPM with results coming from the probing of MD simulations [156, 157],
which showed how well this model works when all the previous points are taken into account.
However, this multiplicity of choices is also a drawback of EPMs that may be criticized as
involving too much arbitrariness or too much fine-tuning. It has furthermore been argued
in recent years [30, 31, 158] that the Eshelby kernel and the linear elasticity description of
interacting quadrupoles may not be sufficient to capture the behavior of amorphous solids
in some situations.

In our work where we focus on the yielding transition and its universal features, we
neglect many of the details. As we discussed in the Introduction, the predictive power about
critical properties is due to their independence of the details of the model. If one can capture
the interesting large scale behavior with a model in which, for example, p is constant and
homogeneous, one can argue that the results will be also valid for a case in which a small
perturbation is added to this quantity. We focus on properties that are robust to detailed
changes of the model.

1.2 Our version of the model

We consider a system in both two-dimensional (2D) and three-dimensional (3D) cubic lattices
under a simple shear deformation protocol with periodic boundary conditions. The tensorial
nature of the mechanical quantities is neglected, so that the local stress o; = 0 «y and the
local strain ; = 2¢;xy are scalar quantities. The blocks are fixed at their position and
convection is neglected. These choices may already seem quite drastic, but it has been
shown previously that they do not affect the critical properties of the system [141, 142]. For
the reasons we already explained, we use the athermal quasistatic (AQS) protocol in our
simulations. Since the strain is imposed to the whole system uniformly, we have v; = «
for every site i. Notice that in this limit time does not enter, since the only two timescales
present (the one of the driving and the one of the avalanches) are completely separated. At
each step the macroscopic strain « applied to the system is increased by the smallest quantity
sufficient to drive the weakest site outside the stability condition, and make it yield. The
ensuing avalanche of plastic activity takes place at fixed v and only once the system has
completely relaxed the applied strain is increased again.

Regarding the passage from the elastic to the plastic state we choose it to be instan-
taneous, so that as soon as |o;| > o, the block at site i yields and redistribute a portion
of its stress, before going back in the elastic state. We also assume that the stress redis-
tribution is instantaneous. Consequently, the timescale between a single plastic event and
the propagation of its effect are decoupled, which means that within an avalanche there is
no concept of physical time and the evolution is only dictated by the avalanche step [. At
[ = 0 one site yields and (possibly) makes other sites unstable. At step [ = 1 all the unstable
sites yield at the same time (this choice, referred to as "parallel update', is the one that
gives a faster algorithm, see Appendix A) and they redistribute their stress, creating some
more instabilities in the system. This process goes on until some step [;,,.x at which no more
sites are unstable and the local stresses ; y1s, = 04 ...,y are stable. To take into account
the randomness given by the three rates that we are ignoring (namely 7iy, Tout, and 7) we
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choose the stress drop at each site to have a contribution from a random variable n chosen
independently for each site and for each rearrangement. The total stress drop do;; , at site
i, avalanche step [, and external strain ~ is given by

0041~ = 580(0i14) (|03 14| — Ufh + Mily)s (1.4)

where sgn(-) is the sign function. The local plastic strain %P% , increases accordingly by an
amount 5'72}7 v = 8051~/ cach time the block yields. The system is considered at T' = 0 so
that no thermal activation takes place.

Once the local stress at site ¢ drops, it is redistributed to the rest of the system via a
discrete version of the Eshelby propagator Gjj;, for ecach site j, such that 041, = 0, +
Gij60;1~. We choose G;; = —1 and we implement a discretization in the Fourier space to
compute the kernel (more details in Appendix A).

The general local evolution in our case is then

Tipytby = Tigy + 10y + D Gijdoj, (1.5)
J
lmax
dojy = Z 801 (1.6)
1=0

In our model we neglect the time needed for the local plastic event to propagate its influence
to the rest of the system, so that this perturbation affects instantaneously the whole system.
This approximation is in general not realistic, but should not affect our conclusions. (In the
energy landscape picture proposed by [147, 148] this amounts to consider the potential in
the deep well approximation [159].)

Let us come back to the issue of disorder. As we discussed in the Introduction, the main
interest in studying systems as it is done in [4] is that one can study the deformation of a
given material for different preparations characterized by a unique control parameter, in this
case the fictive temperature. We use a similar approach here. First of all, we consider the
initial stress values of the system to be independent and identically distributed (i.i.d.) so
that Po({o:}) = I, Po(0s), with

— o2
Py(o) = %exp{—ﬁ/(ZR%}, (1.7)

with A/ a normalization constant (notice that this i.i.d. hypothesis is also an approximation,
as stresses have been shown to be slightly correlated in glasses after quench [160, 161]). The
average initial value of the macroscopic stress o = 1/N Zf\il o; is then (o) = 0 and the
distribution is symmetric around this value (no direction is preferred at v = 0). As there are
no thermal fluctuations (as 7' = 0), the only average is performed with respect to disorder
realizations (i.e., different samples) and is denoted by (). (In this chapter we use brackets
(-) to denote an average over samples, contrary to the Introduction and Chapter 3 where one
has to be more specific and use an overline (-) to distinguish it from other types of averages.)
The parameter R of the distribution Py(o) controls the disorder strength. When R is small
the stress values will not deviate much from the typical value at 0, which mimics a stable
system. On the other hand larger values of R describe less stable samples. In this sense
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R plays the same role as the fictive temperature in [4] (representing the disorder related to
the fictive temperature as a distribution of the initial value of stress is reasonable in view of
the results in [157] and the fact the we use a fixed threshold, see below). This is the main
source of disorder. Note also that for small values of R, this distribution Py(o) is very similar
to a Gaussian, while it gets closer to a parabola as R increases. The factor (1 — o?) that
multiplies the Gaussian term is only present to ensure that at the beginning of the dynamics
all sites are stable. However, this also bounds the dispersion of the distribution, limiting
the maximum value of the variance. As a consequence, the model saturates to a maximum
strength of disorder as R — oo, as has also been argued in MD simulations of glasses [84].
To limit the number of different ingredients the values of the local stress thresholds and of
the local elastic moduli are chosen to be uniform and fixed for all sites, with o!® = 1 and
=1 during the whole dynamics. The value of 7 is chosen from an exponential distribution
(as observed in atomistic simulations [152]) of average 77 = 1. More details regarding the
implementation of the EPM as well as a pseudocode describing the simulation of our model
are presented in Appendix B. We stress that of the several possible sources of randomness,
only the initial disorder strength R will be varied and taken as a control parameter.

We conclude this part by discussing the issue of force balance. In the AQS limit the
system has to be stable before each increase of strain. The mechanical equilibrium condition
imposes that V - ¢ = 0. Going back to the continuum description of the stress tensor, this

condition reads in 2D
aaxx(x7 y) + 8O'Xy(xa y)

=0. 1.8
ox oy (18)
Integrating this relation over x, we obtain
/d 8axy x,y) /d Ooxx(x, y) (1.9)
Oz

Since the right-hand side of Eq. (1.9) vanishes due to periodic boundary conditions for any
Y, we obtain

B
B—y/da:axy(a:,y) —0, (1.10)

which implies that the total shear stress oyy(z,y) along x must be constant over all values of
1. A symmetric relation can be obtained by exchanging x and y. The mechanical equilibrium
condition imposes that the total stress along each row (or column) of the system is the same.
A similar derivation can be obtained in 3D. We can now go back to our model, which lives
in a discrete lattice. In the discrete 2D version, averaging the evolution of the local stress
(in our case we only have shear stress, so that o; = oy = oxy(xi,y;) at lattice site 7)
in Eq. (1.5) over x, we obtain

TiyYi)

1 1
T Z O (i,yi) v+ :Z Z O(@iyi)y T pory — 50_’7
“Z o (1.11)
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. éqx,qy is the Fourier transform of
is the average stress relaxed by plastic

where 66y, 4,),, 18 the Fourier transform of 00 (4, %)
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sites during the step v — v + d7. Since the Eshelby kernel in Fourier space vanishes when
¢, = 0 for all g, # 0 (see Appendix A) the second line vanishes and the average stress along
all rows changes by the same quantity ji0yexy — 0o [162]. The same result is obtained for
columns. This means that the difference between the average stress along a given row and
along a different row or column remains constant during the dynamics. Therefore, to impose
mechanical equilibrium, or force balance condition, it is sufficient to ensure that the sum of
the stresses along rows and columns is the same everywhere at v = 0. For 3D, a similar
argument holds for the average local shear stress over an x-z (or y-z) plane. In our version of
the model, we initialize the local stresses by a nearly Gaussian distribution with zero mean.
Thus, the force balance condition is satisfied only asymptotically at large L since the average
stress over a single row or column (at v = 0) goes to zero when L — oo. However, since
we are not dealing with systems in the thermodynamic limit, this condition does not hold
exactly. We therefore checked the results obtained with our code by strictly imposing the
mechanical equilibrium condition at the beginning of the dynamics as explained in [7] and
we observed that in the limit of large system sizes the difference between the two choices
disappears. The only approximate force balance condition in our version of the model does
not affect our conclusions on the critical point.

1.3 Stress-vs-strain curves

Before showing the results, it is useful to introduce a quantity that greatly characterizes the
yielding transition and how it changes with the initial disorder strength. In our study we
follow the evolution of the macroscopic stress o = 1/N 37, 0, .y (in 2D) as the system
is strain-driven. However, the stress alone is not sufficient to characterize the presence
of the transient shear band so we need another quantity that measures "how close' the
system is to form a complete shear band that spans the whole system. We then define a
quantity n(,, ,,)(v) which takes the value 1 if the site i already had a plastic event, and 0

otherwise. We then define the sum along rows, n3 (vy) = 1/L Zi:l N(w;,,)(7), and columns,

n} (y)=1/L Zéi:l (g5 (7), and choose the row or column that had the maximum number
of events as n(y) = maxy, 4 (nk,(7),n},(7)). One has n(y = 0) = 0 at the beginning, while
n(y) = 1 when every site in at least one row or column has yielded at least once. One
can generalize this quantity to 3D, now checking each plane with normal vector parallel to
x,y, and z and choosing the one with the larger number of yielded sites. The quantity n(y)
shows a discontinuous jump when o(7) shows a discontinuous jump, so that the two give
the same information in the characterization of the yielding transition, but n(vy) has some
advantages that will appear clear in the following. In Fig. 1.1 we show stress-vs-strain curves
for typical samples of the 2D and 3D EPM for different values of the disorder strength R.
As expected, when R is small one observes the O(1) stress drop characteristic of brittle
materials (brittle as defined in the Introduction) for an external strain -y, called yield strain
in the following. As R increases the stress-vs-strain curve becomes continuous but shows an
overshoot and for even larger values of the disorder strength the stress reaches the steady
state monotonically. In the insets we show the behavior of the quantity n(vy) as well as the
real space configuration of the plastic strain, which displays a clear organization in the form
of a shear band for small R. One can then clearly distinguish between the two types of
behavior, brittle and ductile, by only changing one parameter, similarly to what observed
in MD results [4]. After its formation, the shear band grows until it spans the whole space.
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Figure 1.1: Top row: stress-vs-strain curves for our version of the EPM in 2D (a) and 3D
(b), with respectively L = 4096 and L = 200, for three independent samples. One can see a
monotonic curve for large values of R, while as the disorder strength decreases an overshoot
and then a jump appear. In the inset we show the behavior of the order parameter n defined
in the text for the same samples. Bottom row: real space organization of the plastic strain,
which shows the shear band formation in the brittle case. The color map shows the plastic
strain at each site, with darker colors meaning more strain. (c),(d), and (e) correspond to
the configurations found in a 2D system at v = 0.55 for R = 0.22,0.33 and 0.4 respectively.
(f), (g), and (h) correspond to the configurations found in a 3D system at v = 0.7 for
R =0.3,0.45 and 0.8 respectively. For small value of R the majority of events occur around
the shear band, while for large values they are homogeneously distributed. For intermediate
values (corresponding to an overshoot without a jump) the plastic activity also organize in
a shear band, which however does not nucleate instantly.

At large values of =y the system reaches a steady state and the dependence on the initial
conditions disappears. Comparing the stress-vs-strain curve with the evolution of n(y) for
the brittle case, one can see that the macroscopic stress drop indeed occurs at the same time
as the jump in n, which indicates the formation of the system spanning shear band. For
the intermediate value of disorder one finds that the plastic strain still accumulates in one
particular region during the descending part of the stress curve. The last case, with a large
value of R, shows uniformly distributed events. The main goal of this first chapter is then to
determine whether a critical point separates the brittle from the ductile regime, as suggested
by MD results in [4]. However, before discussing this, we focus on the characteristics of the
yielding transition in the brittle regime in the next part.
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Figure 1.2: Evolution of the shear band inside the largest avalanche, measured via plastic
strain (left) and stress (right). It starts from a weak region and picks a direction (here,
horizontal) to propagate. One can see that it evolves starting from the end points of the
active region, where the local stress is higher on average. Avalanche steps are [/l =
0,0.16,0.32,0.41 and 1. The plot is from ysg — 100 to ysp + 100 with ysp the location of
the shear band. Obtained in 2D with L = 1024 and R = 0.10.

2 The brittle regime and the shear band formation

When the value of R is small enough the system is in the brittle regime, where in each sample
the stress-vs-strain curve shows an O(1) stress drop at -y, accompanied by the localization
of plastic activity in the form of a shear band. In this section we focus on how such a shear
band forms in the EPM, its properties, and the description of the associated discontinuous
yielding transition.

2.1 Inside the shear band formation

The organization of the plastic activity in a shear band is observed both in experiments and
in MD simulations and is a consequence of the anisotropic (here, quadrupolar) form of the
stress redistribution that follows plastic events. First let us get a qualitative understanding
of how this series of events proceeds. In Fig. 1.2 the evolution of the local plastic strain
(left) and of the local stress (right) of the sites in the vicinity of the shear band location
is shown for a system of linear size L. = 1024 at disorder strength R = 0.10 (deep inside
the brittle regime). The two top images show the sample at ~y at the beginning of the
largest stress avalanche, while those at the bottom correspond to the final result, just after
the O(1) stress drop. From these configurations we visualize the typical process that leads
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Figure 1.3: Evolution of the local stress of a site inside (a), on the boundary (b), and outside
(c) the shear band during its formation. In (d) the evolution of the system-averaged stress
(full line) and of the order parameter n (dashed line). We see that the main contribution to
the total stress occurs once the avalanche has already spanned the whole system length L.
The plot is obtained in 2D with L = 1024 and R = 0.10, with different colors corresponding
to 3 different samples.

to the formation of the shear band: the band starts propagating from a weak region in the
material, where some sites have usually already yielded, and selects a direction in which it
grows based on the stability of the nearby blocks (in our simulations of simple shear strain
with periodic boundary conditions, this direction can be either horizontal or vertical). The
growth then proceeds from the endpoints of the band, where we find that the stress is on
average larger than in the bulk and, as a result, sites are closer to instability. The reason
for this is that the aligned Eshelby kernels induce contributions to the local stress that add
up along the direction of the shear band embryo. Due to the decay of the propagator at
large distance, the stress is maximum close to the tips of the region, so that if the system is
sufficiently homogeneous (which is the case for small values of R), the sites close to the tips
yield before those in the bulk. This in turn makes the stress at the new tips even larger, and
so on [163]. When the avalanche finally spans the whole system, the band starts thickening.
It is in this second part of the avalanche that the majority of events take place and the
sites activity peaks. Similar results have been obtained both in MD simulations [163] and in
related elasto-plastic models [83].

We now focus on specific sites and look at the evolution of their stress. In Fig. 1.3 the
value of o; during the avalanche is shown for a site in the middle (a), at the boundary (b), and
outside the shear band (c). We see that sites inside the shear band undergo many events and
end up with a stress value that is almost uncorrelated with respect to the one they started
with, while sites in the bulk of the sample just display a small but steady decrease of their
stress value. Finally, in Fig. 1.3(d) we show how the average stress and the average order
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Figure 1.4: Distribution of the local stress for sites that are inside (red) and outside (black)
the shear band, before (full) and after (dashed) yielding. In blue the distribution of stress

at the steady state. Obtained in 2D with L = 1024, R = 0.10 and averaged over 30 samples.
The steady state distribution is instead obtained with R = 0.40 at v = 5.

parameter n(7y) evolve during the avalanche. One observes that the main contribution to the
stress drop comes when the avalanche has already spanned the whole system, i.e., when n(7)
is already very close to 1. This occurs roughly at | = ljyax/2, while for [ > l;,x/2 the shear
band thickens. The latter plot is very similar to what is observed in MD simulations, for
example in Fig. 3 of [163]. We stress that these curves are, as the snapshots in figure Fig. 1.2,
obtained at fixed external strain vy during the largest avalanche.

2.2 Before and after the macroscopic drop

We now turn to the consequences of the macroscopic (i.e., of O(1)) stress drop as well as
to the properties of the shear band that formed. We will show that the contribution to the
largest jump coming from sites inside the shear band is subextensive, while the one coming
from sites in the bulk is the significant one. Due to the scaling of the number of events
per site with the system size the total contribution is however finite in the thermodynamic
limit. To get more insight on the local stress during the macroscopic avalanche we focus on
its distribution, P(0;). In Fig. 1.4 we display P(o;) before and after the macroscopic stress
drop, for sites that are inside and outside the shear band in a system with L = 1024 and
R = 0.10. The first thing one notices by looking at Fig. 1.4 is that before yielding, there is
no difference between the distribution of stress at sites inside and outside the incipient shear
band. Indeed, the presence of the small weak region from which plastic activity will propagate
has not enough weight to change the whole distribution. As a consequence, it is not a trivial
task to predict where the band will form just from this measure (predicting the formation of
shear band is a very difficult task in general [69]). We then look at the consequences of the
macroscopic stress drop on the stress distribution of sites in the bulk, and we observe that its
form remains unchanged during yielding. The only effect is a homogeneous shift that affects
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the average value. This is in agreement with what we discussed before about Fig. 1.3(c),
where we saw that sites far away from the activity only see a steady decrease in their stress
value. Inside the shear band the distribution of stress changes radically. Before yielding
it resembles very much the initial distribution. However, after the macroscopic avalanche,
P(0;) is almost identical to the steady state distribution. The sites inside the band have
already fluidized and as a result their distribution is that of the fluidized state.

From these results we should be able to predict some properties of the maximum stress
drop that we observe. We define Aoyax = max,(|o(y+6v) —o(v)|) (notice that we left the
dependence on the disorder realization implicit, but clearly Aomax changes from sample to
sample). We split the average maximum stress drop (Aomax) as (Aomax) = (Acin)+ (Acout ),
with (Aoy,) the contribution coming from the sites inside the band and (Aogy) the one
coming from the sites in the bulk. From what we just discussed we know that just before
yielding, the average stress inside and outside the band are almost identical and equal to
(Omax) = (max,o(7y)). We also know that after yielding the sites inside the shear band
have an average stress equal to that of the steady state, ogt. As a consequence we expect
that, on average, (Acin) = ((0max — 0st)NsB/N), where Ngp is the number of sites inside
the shear band, such that Ngg = wggL?! with wgp the shear-band width. One then has
(Aoin) ~ (wsp)/L = LP~1, where we made the hypothesis that the width of the shear band
grows with the linear system size as (wsp) ~ L, with 3 < 1. The sites in the bulk receive
a kick that is on average proportional to the amount of plastic activity that took place in
the largest avalanche. The scaling of their contribution to the O(1) stress drop cannot be
inferred in a similar way to what we did for the sites inside the band. Notice that while
(Aojy,) is proportional to the number of sites in the shear band Np, the contribution (Acgyt)
depends instead on the number of events. The reason why the former is subextensive, while
the latter is not will be clear from our study of the shear band profile below.

In order to check this conclusion, we measured the different contributions to the stress
drop for R = 0.10 and R = 0.22 in 2D and for R = 0.15 and R = 0.28 in 3D, as we vary
the system size. The results are shown in Fig. 1.5. First, we confirm that the stress drop
contribution from the bulk is larger than that from the shear band. Second, for the larger
value of R we indeed observe a power law behavior of the stress drop inside the shear band,
that by fitting gives § = 0.610 £ 0.004 in 2D and 5 = 0.640 + 0.003 in 3D (the error bars
come from the error in the fit). However, we observe a different behavior from what we
expected for the smaller values of R. Both the bulk and the shear band contributions to the
stress drop vary substantially with the system size. To understand this we should imagine
what happens in our model in the limit R — 0%, when there is vanishing initial disorder. We
call this the very low-disorder regime. In this limit, the system evolves without any plastic
event until some value v = Ypax for which o(Ymax) = Omax = [ Ymax- The total stress drop
is then given by Aomax = MYmax — Ost- If we now assume that the stress value after the
drop does not depend on R and L (a reasonable assumption), then the dependence of Aopax
on the system size is only coming from ~pmax. In this low-disorder limit, the value of v at
which one attains the maximum stress (which coincides with the value of v at which yielding
occurs) is just given by the strain necessary to make the most unstable site at v = 0 yield.
The distribution Py of ymax is then related to that of the largest stress value among the

max = max;(o;(y = 0)). The probability density P;\T;I"nax of

blocks at v = 0, which we call o
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Figure 1.5: Contribution to the O(1) stress drop from sites inside (red) and outside (black)
the shear band, as a function of the system size. We see that the macroscopic stress drop is
dominated by sites in the bulk of the material, whose contribution is barely affected by the
system size. The stress variation coming from the sites inside the shear band is negligible
and decreases with a power law as a function of the system size, as explained in the main
text. Data for 2D (a) and 3D (b).

this quantity follows a Gumbel distribution,

P (ymax =7, R) = P (0™ =1—7,R) ~

1 1—7v)—10 1—v9)-0
_exp _w_exp(_w)
an an an

with ay = R/\/2log(N) and by = R[\/2log(N) — log(4nwN)/(2\/2log(N))], since in the
small R limit our initial distribution is almost identical to a Gaussian [164]. This means
that, in the hypothesis that Aomax(/N) is proportional to 1 — o["®*(NN), the average value
of the stress drop decreases with the system size, which explains the results in Fig. 1.5.
From the form of the probability distribution in Eq. (1.12) one can see that the average of
Aomax decreases with the system size, although very slowly. This effect is a consequence of
the absence of plastic activity in the elastic branch for small values of R and represents an
unphysical result of our model, since in MD and in real materials plastic events are observed
also in the elastic part. In Section 2.3 and in Section 3.1 we discuss other effects that originate
from this issue and that will affect our choice of the order parameter for the brittle-to-ductile
transition. We expect that, in a large enough system, the relation between Aoyax and o}**
does not hold anymore, and the value of the macroscopic stress drop saturates. In Section 4.1
we give an argument to support this view.

(1.12)

)

To conclude this part about the analysis of the shear band formation and its effects,
we study how the profile of the plastic activity during the macroscopic stress drop changes
when changing the system size. As we increase L we note that the width of the shear band
also increases, as does the accumulated plastic activity at each site. This means that during
the formation of the shear band, the sites that are involved tend to yield multiple times and,
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Figure 1.6: Distribution of plastic strain along the direction perpendicular to the shear band
as a function of the distance from its center, for 2D (a) and 3D (b) systems, with R = 0.22
and R = 0.25 respectively. The curves show a good collapse for the choice 8 = 0.61 in 2D
and 8 = 0.64 in 3D.

on average, they yield more and more times as the system size increases. The possibility of
yielding multiple times appears as an important factor in explaining the macroscopic stress
drop that we observe. In order to have a more quantitative measure of the variation of the
plastic activity with the system size we define the quantity pp1(L,y) as the average amount of
plastic activity along the direction perpendicular to the shear band. We assume for example
that the shear band is aligned along the x axis (one can define the same quantity for the other
cases by symmetry). For each value of y we compute the average plastic activity, centering
it for each sample around the value ysg where the maximum plastic activity occurs. This
gives

1
:Opl(La y) = E<Z’7£}y—ySB>' (113)

Since the stress drop is system-size independent in the low-disorder regime and is a direct
consequence of the plastic activity, we have the constraint that the integral over the whole
system length of ppi(L,y) does not depend on L. As a consequence, we expect ppi(L,0) ~
LP=1, since the width of the shear band grows as L? (see above). We plot this quantity with
rescaled axis in Fig. 1.6, for R = 0.22 in 2D and R = 0.25 in 3D and for different system
sizes. We observe a good collapse of the curves with exponents that are compatible with the
ones obtained by fitting Aoy,. Such a collapse is not very good when instead we consider

the very low disorder regime, again because of the relation between Aomax and oj"**.

2.3 Characterizing the brittle transition

The view of the yielding transition as an out-of-equilibrium first-order transition was already
proposed in [70, 71, 81]. As we did for the standard RFIM in the Introduction, we study
here how the susceptibilities evolve with the strain v when the system is prepared in the
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brittle regime. In this case we define the connected and disconnected susceptibility as

_ ()
XCOHH - 6*}/ 9

Xdise = N ((n%(7)%) = (n*(7))?),

for the order parameter n(y) (where we made the dependence on the disorder realization
explicit again). The definition can be generalized to a different order parameter, for example
o, but the results are very similar. In [70, 71] the overlap between configurations was used
as an order parameter in MD simulations, but such a quantity cannot be defined in the
EPM. The function n(7y) starts at 0 and then grows up to 1 when the shear band forms (if
in the brittle phase) or as soon as all the sites in one row or column of the system have
undergone a plastic event (if in the ductile phase). In this part we focus on the case where
a macroscopic stress drop occurs and we study the susceptibilities at the yielding strain .
Since we are now in the brittle case, the value of the order parameter n®(y) for a particular
realization « of the disorder will at some point undergo a jump of order 1 for some value of
the external strain 7y (itself depending on disorder) when the shear band forms. Obviously
this discontinuity disappears as we take the average over many realizations of the disorder,
but by a careful finite-size scaling analysis we can investigate the behavior of the resulting
average as the system size grows. We use the same idea as presented in Section 2.2.2 of the
Introduction for the RFIM: we consider that the order parameter n®(y) evolves by simply
following n(vy) = 0(y — 7y) with 6(x) the Heaviside function. By averaging over disorder
we obtain

(1.14)

~

n) = () = [ 5y (), (1.15)

0

with py(v) the probability density of having a yield strain 73 = - for a certain sample a.
The connected susceptibility is just equal in this case to the distribution of 7y and it scales
in the same way with the system size. We can then focus on the study of the distribution
of 7y instead. We assume that the value of the yielding strain fluctuates around a mean
value ~yy, = <’y§‘> that depends in general on the value of R but not on the system size. Since
there are many independent sources of disorder, we would expect the distribution py(7) to
follow the central limit theorem and as a result to be centered around some mean 7y with a
Gaussian form,

py(7) o LY exp(— (v = 1)/ (ALY?)), (1.16)

where A is a constant of order one that depends on the sources of randomness. It follows
that, if this is true, we expect to find yeonn ~ L2, which is also the result naively expected
in the RFIM (but not observed, recall Section 2.2.2) and in the mean-field approximation of
the EPM (see Chapter 3). In Fig. 1.7 we show some results for the connected susceptibility
of our EPM in 2D and 3D. In the panels (a) and (b) we plot Xconn and the distribution of the
yield strain py(y) for different values of the disorder strength R. As we expected, the crude
approximation on the evolution of n(y) works quite well for small values of R (R = 0.10
in 2D and R = 0.15 in 3D), while it deteriorates as we go toward the critical point. From
the distribution of vy in Eq. (1.16) we would expect the peak of the connected susceptibility
to grow as L%2. We plot the scaling of xPK = Y ouu(7y) and py(7y) for the same two

values of R in panels (c) and (d). We see that for both values of R and both in 2D and 3D
the susceptibility does not grow as N1/2 = L2 as expected. In particular for very small
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Figure 1.7: Connected susceptibility as a function of the external strain + and distribution of
the yield strain y. Plotted for L = 1024 in 2D (a) and L = 104 in 3D (b). When R is small
the connected susceptibility coincides with py almost perfectly, while as R gets closer to duc-
tile regime the analogy deteriorates a bit. Scaling of the susceptibility peak x2X =y onn ()
and py peaks in 2D(c) and 3D(d) for the same two values of R. The black dashed lines are
fits performed using the last 3 points and give YB2K ~ N035 in 2D and Y22k ~ N0-28 in 3D.
The curves are obtained after averaging over 8000, 6000, 5000, 1000 samples respectively the
sizes L = 256,512,1024, 2048 in 2D and 5000, 3000, 3000, 1500 samples respectively the sizes

L = 64,80,104, 128 in 3D.

R values, the peak is almost unchanged in 2D and increases slowly in 3D. For a slightly
larger R we instead have a clear growth with the system size, but the exponents obtained
from the fit (0.35 in 2D and 0.28 in 3D) are closer to 0.3 than to 0.5. A similar scaling is
also observed in 2D MD simulations [137], while in 3D the susceptibility scales as predicted
by Eq. (1.16) [4]. This issue can have two explanations. First of all it is possible that the
results we obtained are influenced by the rare regions that occur only in sufficiently large
samples. Because of the scarsity of plasticity before yielding in systems at low disorder and
small sizes, it is possible that the first-order transition that we observe is not the "correct"
one. As we discuss in Section 4.1 following the lines of [163], the addition of a weaker region
prone to yield indeed alters the value of the yielding strain. Not only the average value, but
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also the whole distribution of 7y may be affected by the presence of such regions. And, as
discussed, this distribution is intimately related to the connected susceptibility. To check this
we studied a variant of the EPM in which a seed is inserted at the beginning of the dynamics
(see Section 4.1). However, we cannot exclude the possibility that we are measuring the
correct exponent and that the emergent effective random field is not independent for every
site, but is instead correlated with correlations that decay with 7—(@=*) (see [137]). The
first hypothesis seems more plausible, also in view of the results obtained for the RFIM
in Section 2.2.2 of the Introduction.

In the low-disorder hypothesis n®(y) = 6(y — 7y'), the disconnected susceptibility is
simply
Xaise(7) = N((0(v = 75)) = (0(y = %))?), (1.17)

whose maximum at v, goes like N = L?. This scaling is confirmed by simulations, so that
the finite-size effects that influence the scaling of the connected susceptibility do not play a
role in the disconnected one. As we will see, this is due to the fact that finite-size effects act
mainly in the distribution of 7y, which does not affect much the disconnected susceptibility
which scales as IV for whatever (reasonable) py.

3 Ciritical point between brittle and ductile regime

In this part we describe the main result of this chapter, i.e., the numerical evidence for the
presence of a finite-disorder critical point that separates brittle and ductile behavior. First
we show how to characterize the properties of the critical point with two different order
parameters via the finite-size scaling procedure. We however observe that the value of the
critical point slowly shifts as we increase the system size, which makes one wonder whether
R, stays finite when we approach the thermodynamic limit. We then give an argument for
a finite-disorder critical point even as N — oo.

3.1 Characterizing the brittle-to-ductile transition

In order to capture the change in the stress-vs-strain curve we start by using the same order
parameter as in [1], the largest stress drop Ac§,,. This is equivalent to what we did in
the Introduction, where we described the critical point of the RFIM by means of the order
parameter AmS,,... As we discussed, we expect the order parameter to be of order 1 when
the disorder is weak and to become small when instead R grows. The quantity Aopax seems
to fit well: in systems with large disorder it goes to 0 as the system size increases, while in the
brittle phase it remains finite. The mean and variance of Aop,.x are presented in Fig. 1.8 for
both the 2D and 3D EPMs. As anticipated, the average value decreases to a very small value
(vanishing in the limit N — oo) for large R. Around the onset of the growth of (Aoax),
the (disconnected) susceptibility, N ((Ac2,.) — (Aomax)?), shows a peak that grows with
the system size. This is in accordance with the observations from molecular dynamics [4]
and is the signature of a critical point. However, as we decrease R further, the average
value decreases with the system size, as already observed in Fig. 1.5. Even more strikingly,
around the same values of R, the susceptibility seems to diverge again with the system size.
This unexpected behavior can be explained by considering the same simple argument from

extreme value statistics that we used to explain the decreasing of Aomax with IV observed
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Figure 1.8: Evidence for a critical point in the 2D and 3D EPM. Upper: Disorder-averaged
value of the order parameter (Aopmax) as a function of R for several system sizes in 2D (a) and
3D (b). Lower: Variance of Aoy multiplied by N = L%, i.e., disconnected susceptibility,
in 2D (c) and 3D (d). The susceptibility increases again when R goes to 0.

in Fig. 1.5 for very weak disorder R. From our argument we saw how the macroscopic stress
drop Aomax is related to 0" in this case. We used before this analogy to understand the
behavior of the average of Aomax and we now use the same idea to discuss its variance. We
then get that in the R — 07 limit

T2 R2

A 2 - A mx2%—
< Umax) < o a> 121Og(N)7

(1.18)

which explains the growth of the susceptibility at small values of R. As already pointed out,
this growth would not be observed in MD simulations or in experiments, as many plastic
events are present even in the elastic branch [158], destroying the relation between Acpax

and "%,

In order to avoid this problem we have used another order parameter, n(v), which we
introduced before. Since the presence of a macroscopic stress drop in the brittle regime
is accompanied by the abrupt formation of a shear band, one can think of characterizing
yielding by looking at the number of sites that yield in each horizontal or vertical line
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Figure 1.9: Evidence for a critical point in 2D and 3D EPMs. Upper: Average value of the
order parameter (Anpyax) as a function of R for several system sizes in 2D (a) and 3D (b).
Lower: Variance of Anyay multiplied by N = L, i.e. disconnected susceptibility, in 2D (c)
and 3D (d).

(in 2D) or plane (in 3D). This is exactly what n(y) does. As we saw in Fig. 1.1, the
discontinuous stress drop of o(7) in the brittle regime corresponds to the discontinuous jump
of n(y), whereas the mild continuous crossover of ¢(v) in the ductile regime corresponds to
a continuous increase of n(7y). Therefore, n(7y) essentially contains the same information as
o(7) for characterizing brittle and ductile yielding. As for the stress-drop order parameter,
we compute the largest jump in this quantity, which allows us to define a new order parameter
Anmax 88 Almax = max~ (n(y + dv) —n(y)) appropriate for studying the critical point. We
then proceed as before and compute the average value and the variance of this quantity. This
is what we show in Fig. 1.9. Again, the average value of Any.x over many samples is plotted
as a function of R in 2D (left) and 3D (right) systems. Essentially the same phenomenology
as with Aopax is observed, but now the jump happening at small disorder strength saturates
tolas R — 0" and N — oo, as expected. In the bottom panels of Fig. 1.9 we show the
disconnected susceptibility of the order parameter Any,ax, which shows a peak that becomes
sharper and higher as the system size increases, as we already saw for Aopax. This time
however, the fluctuations go to zero fairly quickly both on the right-hand side and on the
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left-hand side of R., and no increase is observed for the small values of R that we studied.
The choice of this new order parameter solves the problems we faced when computing both
the average and the fluctuations of Aopax. Note that contrary to the definition in Eq. (1.14),
the disconnected susceptibility that we use here is studied as a function of R and not ~ and
goes to vanishingly small values in the brittle regime.

We can then proceed by performing a finite-size scaling analysis in order to investigate
the existence of the critical point and its properties. Due to the similarities that the yielding
transition shows with the RFIM, we use the same scaling ansatz here, with xgisc(r, L) ~
LYW (rL'"), where r = (R — R.)/R is the relative distance to the critical point R.(L),
7 and v are critical exponents, and ¥(-) is a scaling function. Obtaining an estimate of
these quantities is not an easy task for systems out of equilibrium and with disorder and
is sometimes difficult even when one already knows the correct solution [10]. Here we start
by trying to evaluate the exponents. Following the scaling ansatz of the RFIM we expect
the peak of the disconnected susceptibility to diverge as L7V while its width should vanish
as L™Y/¥. We then plot the value of the peak as well as the full width at half-maximum
(FWHM) of the disconnected susceptibility in a log-scale and we fit to a line in order to
get a first estimate of the exponents. The results are shown in the top panels of Fig. 1.10.
We see that the fit is good for the scaling of max(xgisc), which gives 7/v = 1.86 4+ 0.02 in
2D and /v = 2.66 + 0.04 in 3D, with the error bars coming from the fitting procedure.
On the other hand, the fit of the FWHM depicted in Fig. 1.10(b) is less precise, as the
data points are more noisy. As a consequence, the error bars are larger, and the fit gives
v =3.0£0.3in 2D and v = 2.5 + 0.2 in 3D. Another possibility to perform the finite-size
scaling analysis is to collapse the curves obtained for different system sizes. From the relation
Xaise(, L) ~ LV/7U(rLY/7), it follows that

\If($) ~ L_;//I/Xdisc(:UL_l/U, L) (119)

does not depend on the system size, so that by plotting the right-hand side of the above
equation all the curves should collapse on a single master curve for the right values of 7/v
and v. In Fig. 1.10(c,d) we can see that the curves collapse quite well both in 2D and in
3D, and which also provides the shape of the scaling function. This figure is obtained by
adjusting the parameters 7, v, and R.(L) in order to get the best possible visual collapse.
The curves shown in Fig. 1.10(c,d) are obtained for 7/v ~ 1.82 and v ~ 2.9 in 2D, and
J/v =~ 2.61 and v ~ 2.2 in 3D, values that are consistent with those determined by the
fitting procedure considered above. While searching for the best values of the exponents
to collapse the disconnected susceptibility curves we noticed that such a collapse is quite
sensitive to a change in the value of 5/v, while a satisfying result is obtained for a large
spectrum of v values. This is also reflected in the fact that the main differences between
all the scaling procedures are in the value of v rather than in that of 7/v. This makes the
determination of the exponent v rather difficult. We also notice that in 2D the collapse is
slightly worse for R < R, and small system sizes, but in general we are not too interested in
what happens in the tails of the plot. Our main goal is to have a good collapse close to the
critical point, i.e. for r =~ 0. Finally, we compute the values of the exponents and we give
an expression for the scaling function ¥(x) in a third way, following the procedure of [165].
In order to fit the data to the scaling prediction we use the following functional form for the
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Figure 1.10: Finite size scaling analysis of the EPM close to the critical point. In (a) and
(b) we plot the scaling of the maximum and of the full width at half maximum of the
disconnected susceptibility, respectively. The dashed lines are obtained by fitting the points
and give 7/v = 1.86 £0.02 and » = 3.0 £ 0.3 in 2D and 7/v = 2.66 £ 0.04 and v = 2.5+ 0.2
in 3D. The error bars come from the fitting procedure. In (c,d) we collapse the disconnected
susceptibility curves by hand in 2D and 3D, respectively. A good collapse is obtained with
7/v = 1.82 and v = 2.9 in 2D and 7/v = 2.61 and v = 2.2 in 3D. In (e,f) the collapse is
obtained by fitting to a master curve the three largest system sizes for both 2D and 3D,
respectively. From this procedure we have 7/v = 1.85 and v = 1.92 in 2D and 7/v = 2.59
and v = 1.70 in 3D.

scaling function:
1=3
U(z) = Cexp [y(z) — exp(y(x))] > aiHi(y(z)), (1.20)
i=0

with y(z) = (x — z.)/a, H;(x) the i-th Hermite polynomial, and C, z., « and the a;’s are
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fitting parameters. With the scaling hypothesis in Eq. (1.19) and this functional form we
have fitted the curves for the three largest system sizes that we simulated. The results are
shown in Fig. 1.10(e,f) for 2D and 3D respectively. This last fitting procedure gives slightly
different values for the exponents, with /v ~ 1.85 and v ~ 1.92 in 2D and 7/v ~ 2.59 and
v ~ 1.70 in 3D. By plotting again the curves, one can see that even if the value of v seems to
change in a significant way, the collapse is still quite good. As we already stressed, finding the
precise value of v is hard, since our procedure is not very sensitive to its change. Probably
still more data would be needed to perform a more accurate finite-size scaling analysis.

3.2 Bounding the location of the critical point

The above results support the existence of a critical point that separates the brittle and
ductile regimes, as proposed in [4]. However, from the bottom panels of Fig. 1.9 it seems
that this critical point slowly shifts to larger values of R as L increases. A similar effect
on the critical temperature was observed in MD simulations of sheared solids in [4, 137] (as
well as in numerical simulations of the 2D RFIM [132]), where it was argued that the value
of the critical disorder stays finite as L — oco. As we discussed, a different point of view
has recently been proposed in [6, 83, 84], where it was argued that stress-vs-strain curves in
which an overshoot without a macroscopic jump is observed are just a result of the small
system sizes used in simulations. In this picture, the yielding transition should always be
brittle and, as a consequence, R:° — oo. This means that all systems are brittle when taken
in the thermodynamic limit and in the AQS setting. Understanding the fate of the critical
point as L diverges is therefore a key issue. It is actually different from the persistence of a
continuous overshoot in the ductile regime in the thermodynamic limit, which was the main
concern of [83]. As we showed in Fig. 1.1 a clear evolution between distinct yielding patterns
is observed as R is decreased, from a purely monotonic increase of the stress to a continuous
overshoot and then to a discontinuous drop. The critical point that we characterized in the
previous section marks the passage between the last two patterns. To try to understand
the fate of the overshoot and its relation with the critical point when N — oo, we measure
for different values of N the value of R at which the overshoot first appears (coming from
large R) in the average stress-vs-strain curve, and we denote it by R,(N). Clearly R,(N)
bounds R.(N) as in order to have a macroscopic stress drop one first needs an overshoot in
the stress-vs-strain curve. In order to determine this value we average the stress-vs-strain
curve over many independent samples. In Fig. 1.11(a) we show an example for the 2D EPM
with L = 2048. We plot three averaged stress-vs-strain curves for different values of R in
the vicinity of R,, and we can clearly observe in the insets where the non-monotonicity
first appears. We perform the same analysis for different values of L both in 2D and in
3D. In order to be sure that no overshoot appeared even at large values of v, we let the
code run up to v = 10 for small system sizes and up to v = 3 for larger ones. Due to the
computational cost of these simulations we could not reach the same system size values as
for R., but the ones we managed to study seem sufficient to conclude. In Fig. 1.11(b,c) we
display Ro(N), together with the critical disorder R.(N) for 2D and 3D. We plot the two
quantities in log-lin scale as a function of the system size N = L% From our results we
find that the value of R, stays essentially unchanged when N varies in both cases, while
R. shows a slow increase. The values of R,(IN) and R.(N) define three distinct yielding
regimes in the (N, R) plane, as schematically illustrated by the insets in Fig. 1.11(b,c).
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Figure 1.11: (a) Average stress-versus-strain curves for a 2D model with L = 2048 close to
R, = 0.36. Inset: zoom in on the region where the overshoot appears. The dashed horizontal
lines are a guide for the eye. (b,c) Value of the disorder at which the overshoot first appears,
R,, and at the apparent critical point, R., as a function of the system size, N = L¢, in 2D
(b) and in 3D (c). Blue lines are fits to R®® — a/N?, with R® = 0.35, a = 0.61, b = 0.14
in 2D and R® = 0.5, a = 1.29, b = 0.15 in 3D. The parameter b is related to the critical
exponent v through 1/v = db, so that the fits yield v ~ 3.57 in 2D and v ~ 2.22 in 3D.
Insets: The corresponding schematic stress-versus-strain curves.

The upper part, where R > R,(N) corresponds to a monotonic increase of the average
stress, with no overshoot (black curve in Fig. 1.1). The region R < R.(NN) corresponds to a
discontinuous stress drop at yielding (red curve in Fig. 1.1). Finally, the region between the
two values, R.(N) < R < Ro(N), corresponds to a continuous average stress curve with a
mild overshoot (blue curve in Fig. 1.1). As we discussed above, R.(/N) has to remain below
R,(N), which then gives an upper bound on the critical disorder. The fact that R,(N) is
essentially independent of N thus provides strong evidence that R.(N) converges to a finite
value for large N (bounded by R° = R,(N — o0)) and that a finite-disorder brittle-to-
ductile critical point persists in the thermodynamic limit. Moreover, this is also evidence for
the existence of a ductile phase over a finite range of disorder strength. The fate of the region
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where a continuous overshoot with a ductile behavior takes place as N — oo (which was the
main concern of [83]) is less clear and depends on whether R.(N) converges to RS° or to
R¥ =limy_ o R:(N) < RS® in the thermodynamic limit. In the former case the overshoot
disappears exactly at the critical point whereas a regime of ductile yielding with an overshoot
exists in the latter case. We show in Fig. 1.11(b,c) the best fits to R.(N) = R® — a/N?
with R, a, and b free parameters. We find that Rg° is finite in 2D and 3D. In the critical
scaling picture, the parameter b is related to the exponent v through 1/v = db. The fits
then yield v ~ 3.57 in 2D and v =~ 2.22 in 3D, values which, given the large uncertainties,
are consistent with the previous determinations given above. Strictly speaking, we cannot
exclude an alternative scenario in which R,(N) would start to increase with N above some
critical size N* which is out of reach of present-day simulations and would ultimately diverge
in the thermodynamic limit together with R.(/N). However, in view of the absence of any
observable N-dependence of R,(N) in the accessible range, which spans three decades in 2D,
and of the lack of any sound theoretical argument supporting the existence of a critical size
N*, this possibility seems unlikely.

4 Variations of the model

We now discuss some variations of the model to explain the observed behavior and to check
the robustness of our conclusions.

4.1 Effect of a seed

It has been shown that, as for the short-range RFIM [133], the discontinuous yielding tran-
sition of amorphous solids is controlled by rare weak regions [7, 163]. In the Introduction
we discussed how the plastic deformation is a consequence of localized rearrangements of
particles and how the formation of a shear band originates from the organization of multiple
events in a line (plane) in 2D (3D). The structural origin of the regions that undergo a plastic
rearrangement has been of interest in the last few years [69]. From these studies one can
see that plasticity emerges from "weak spots", i.e., regions in which the material is locally
more poorly annealed than the bulk. However, for very stable glasses, the occurrence of such
weak spots is improbable. If £ is the typical structural length in the amorphous solid, length
which is known to be rather small, one expects that the probability to find a weak region
of volume v is exponentially suppressed as exp(—cv/ §d), with ¢ some constant of order 1,
so that such regions are extremely rare [163]. The probability of finding a weak region of
volume v in a system of volume N = L is then proportional to (L%/v) exp(—cv / éd) and is
of order 1 only for L exponentially large in v. The idea here is similar to the one of Griffiths
phases [93], studied in the case of an Ising ferromagnet, with a certain probability of an
empty site p € [0,1]. At p = 0 the standard Ising model is recovered, while at p = 1 no
more sites are present. Between these values, as the value of p is decreased below p. the
first percolating clusters appear. The critical temperature T¢(p) of this model decreases as
p increases, from the pure Ising model one TY at p = 0 to T, = 0 at p = p.. Below this
temperature the system shows a ferromagnetic orientation, while above it is paramagnetic.
In [93] it is however argued that, for p > 0, the magnetization of the system is non-analytical
in H = 0 even at larger temperatures than the critical ones, for T, < T < T?. The rare large
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Figure 1.12: Evolution of the shear band inside the largest avalanche in an EPM with a seed.
The direction is forced by the symmetry of the ellipse (in green) which has the major axis
along z of semi-length D, = 30 and the minor one along y of semi-length D, = 5. Avalanche
steps are [/l = 0,0.1,0.2,0.3 and 1. Obtained in 2D with L = 1024 and R = 0.10. The
plot is for y € [452,572] and = € [256, 768] with the seed centered at (512,512).

clusters are responsible for this non analyticity. If a sufficiently large region of occupied sites
is found when T' < T2, this will have a magnetization different from 0 that cannot be altered
from thermal fluctuations. Such large regions are however exponentially rare in their size, so
that their contribution will only appear as an essential singularity in the behavior of m(H).
As we saw in the Introduction, a similar role is played by rare weak regions in the spinodal
transition of the AQS-driven RFIM in 3D [133]. In particular these rare regions alter the
whole distribution of the coercive field of the RFIM, which in turn has a consequence on the
scaling of the connected susceptibility.

To check the role of weak regions in the case of the EPM we use a similar method as
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that described in [133] and [163]. The idea is to mimic the effect of spontaneously present
weak regions in a very large sample (in the thermodynamic limit) by the introduction by
hand of a weak region in a finite-size sample. We initialize our EPM as before, but with the
addition of a weak region at the center of the sample. The shape of the seed can be chosen
at will, since in the thermodynamic limit all shapes will be present. The ones of interest
to us are those which favor the formation of a shear band and for simplicity we choose an
ellipsoidal form (see Fig. 1.12). In 2D the weak region is characterized by the semi length
of major and minor axes D, and Dy, which are parallel to the x and y axes respectively.
Due to the symmetry of the model the seed can be oriented with the major axis along y as
well, without changing the results. In 3D the situation is slightly different, since the kernel
has the quadrupolar long-range nature only in the x — y plane. We then take the seed to be
oriented with the short axis along y and we define the half length of the ellipse axis along z as
D. = D,. The resulting shear band plane will appear perpendicular to the y axis. We choose
a site-dependent stress threshold for sites inside the ellipse from a Gaussian distribution of
zero mean and standard deviation Re.eq = 0.2. The initial value of the stress for such sites is
taken from a probability distribution similar to the one in the standard version, but adapted
to consider the fact that each site has a different threshold (see Appendix B for more details).
The sites in the bulk of the material have the same stress threshold o!" = 1 as before, and
they start at v = 0 with a value chosen from the same distribution Eq. (1.7) as the standard
version of the model. A similar test was performed in [7], where a weak seed was inserted in
order to trigger the formation of a shear band in a very brittle system.

To start, we notice from Fig. 1.13(a) that, as in [163], the behavior of the stress inside
the seed is similar to the one of a poorly annealed sample, while the total stress shows the
characteristic drop of brittle materials. We point out that the seed insertion leaves the elastic
regime almost unchanged, as it is clear from the full and dashed lines. However, as strain
increases, all the samples with a seed yield systematically before the ones without. In order
to quantify the effect of this weak region we measure the average value of the yield strain
(7y) and we plot it for different values of R and D,. The value of Dy is kept fixed, with
Dy =5 in 2D and Dy = 3 in 3D. The results are displayed in Fig. 1.13(b) and (c) for 2D
and 3D respectively. This plot is very similar to that of [133] for the RFIM, which is shown
in Fig. 1.13(b). In the latter, the presence of a region prone to flip influenced the value of
the coercive field H., while in the present case it affects vy. In both cases the effect of the
seed vanishes as one approaches the critical value of the disorder strength R.. In Fig. 1.13(d)
we show how the seed size affects the stress-vs-strain curve in the brittle case. The larger
the seed the sooner the systems yields, as already observed [7, 163] and depicted in panel
(c). At the same time, we see that both the stress and the order-parameter curves are not
affected by the presence or the size of the seed. We checked that these results are robust
with respect to changes in D, up to D, ~ D,/2. We therefore conclude that one should
consider the effect of large weak regions in order to get an estimate of the value of vy in
the thermodynamic limit. How large should these weak regions be? In principle one should
consider the double limit 1 <« D, < L, in which the region is very large but does not scale
with the system size. Notice that in the case of the standard driven RFIM one can give an
argument on the correct form of the seed that one expects to nucleate the largest avalanche
at small values of R. As the system is isotropic, the limit of the depinning of a flat interface
is known, and one cannot find a more efficient destabilizing process. One can assume that
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Figure 1.13: (a) Stress-vs-strain curves for three different samples with (full line) and without
(dashed line) seed, obtained for a 3D EPM with L = 104, R = 0.15, and seed size D, =
D, =12, Dy, = 3. Red lines display the stress evolution inside the seed. The figure is very
similar to what was shown in [163]. (b,c) Effect of seeds for different sizes D, on the average
value of yield strain ~y for L = 1024 in 2D (b) and L = 104 in 3D (c). The vertical dashed
line marks the critical value R, for the relative system sizes. The results are obtained with
Dy = 5in 2D and Dy, = 3 in 3D. (d,e) Stress-vs-strain curves from three independent samples
obtained in 3D with L = 104 and different seed sizes. In (d) R = 0.15 < R.(L = 104), while
in (e) R=0.36 > R.(L = 104). Inset: the effect of the seed on the n-vs-strain curve.

a spherical seed of size of the order of the depinning correlation length drives the system to
the macroscopic jump in the thermodynamic limit. A similar reasoning is not possible here
in the EPM, since among others it is not a priori clear which precise shape should one give
to the seed. It is however clear that some seeds are unstable at a value of the external strain
’y;eed < W;IOSeed, which means that in the thermodynamic limit the yield strain is bounded
from above by ,Ybs,eed.

Seed insertion affects the average value of the yielding strain. It also more generally
affects the distribution of v, and consequently it can change the connected susceptibility
and its scaling at 7y. As we discussed before, in the case without seed and for very small
values of the disorder strength, the distribution of the least stable site controls the value of
the yielding strain. It follows that ~yy is drawn from a Gumbel distribution. This mechanism
hides the true scaling of the connected susceptibility, due to the lack of the weak regions that
are present in the thermodynamic limit. Contrary to the change of the average value of ~y,
for which we can give some tentative estimates through the addition of a seed, the effect of
rare regions on its distribution remains hard to evaluate. When the seed is added, the sites
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Figure 1.14: In (a) we report the same picture showing the stress drop contributions, as
in Fig. 1.5(c), with the addition of the empty square symbols that are obtained in a 2D
EPM with a seed of dimension D, = 45, Dy, = 4. In (b) and (c) we plot instead the average
macroscopic stress drop as a function of R for different system sizes in 2D and 3D. The
dashed curves are the ones of the system without seed, shown in the top panels of Fig. 1.8.

that flip first and trigger the spanning avalanche are those close to the weak region, so that
the distribution of v, depends mainly on the number of sites close to the seed, which has no
reason to lead to a Gaussian distribution as in Eq. (1.16). In the thermodynamic limit many
weak regions of different sizes are present, and their distribution affects that of vy, and in
turn the scaling of the connected susceptibility.

Before concluding we discuss how the insertion of a seed affects the macroscopic stress
drop Aomax. The presence of the seed introduces plastic activity that takes place in the
system prior the macroscopic jump, and as a result breaks the relation between Aomax and
o"®. The results are shown in Fig. 1.14. We first observe in panel (a) that the stress drop
coming from sites outside the shear band does not decrease with the system size as observed
in the case with no seed. Its value is almost constant with N. In panel (b) and (c) of the
figure we plot how (Aomax) changes with R. We see that for large enough values of the
disorder strength the macroscopic stress drop is unchanged after the addition of the seed,
while as R decreases we notice a stronger and stronger effect. The value of the largest stress
drop decreases to a smaller value at small R with respect to the case without seed, and its
value seems to saturate to a finite value in the limit R — 0.

To conclude, we have shown that the EPM captures the effect of a weak region on the
stress-vs-strain curve that was described in [163], both in 2D and in 3D. In particular, we
have measured the shift of the yielding strain, while understanding the consequences of such
regions on the scaling of the connected susceptibility remains a difficult task.

4.2 The Popovié-de Geus-Wyart version of the EPM

To test the degree of generality of our results we have considered a different way of tuning
the disorder in the EPM. We follow here the procedure described in [7] for the definition of
the model. The rules are the following: we fix the initial stress distribution to be a Gaussian
with zero mean and standard deviation R = 0.45. We let instead the stress threshold ot"
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Figure 1.15: Finite-size study of the critical point for the EPM defined in [7]. (a) Average
value of Anpax and (b) associated disconnected susceptibility.

be randomly distributed: in this model, the local stress threshold at each site when v = 0 is
chosen according to a Gaussian distribution of mean M and variance 0.01. After each plastic
event, o is updated from a Gaussian distribution of mean 1 and variance 0.01, while the
new local stress is drawn from a Gaussian distribution of mean 0 and variance 0.01. Note that
in this model the system shows brittle or ductile yielding depending on the average value M
of the initial th, which plays now the role that R played in our version. This is what mimics
the degree of stability and disorder of the amorphous solid. A large M corresponds to a
stable or weakly disordered sample, whereas a small M corresponds to a less stable or highly
disordered sample. We have first checked that our code reproduces the same results as that
in [7], in which again the stress curves show a macroscopic jump, a continuous overshoot, or
a monotonic behavior depending on M. We then proceed by studying the putative critical
point. Although this model contains some ingredients that are different than those of the
model we have studied before, such as the threshold distribution and its softening, the precise
way to enforce force balance, etc., it essentially displays the same phenomenology. This is
illustrated in Fig. 1.15 for the mean value of the order parameter Any,x and the associated
disconnected susceptibility. Contrary to the other studied model, we see here that xgisc does
not decrease to zero very fast as we move away from the critical point toward the brittle
phase. This relates to how the disorder is inserted in the model. The limit of low disorder
had some problems in our version, but it is also the case for the present variation. If M
is very large, at each ~ the system is going to be effectively decoupled between sites that
did not yield and sites that yielded at least once. A plastic event occurring at a site that
did not yield yet propagates in the system a contribution of order M, and can potentially
trigger a rearrangement of sites that already yielded as well as sites that did not. On the
other hand, when a site that already yielded fails again, its contribution is of order 1, and
as a consequence less important for a site with threshold M. Despite this caveat, a clear
peak is present in Fig. 1.15(b), which suggests that a critical value of the disorder can be
defined in this case too. These numerical observations suggest that the critical point that
we have identified in our version is quite robust with respect to changes in the details of the
simulated elasto-plastic models.
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5 Conclusion

In this chapter we have a version of elasto-plastic model in which only the minimal ingredients
are included. We have shown that, depending on the initial disorder controlled by the width
of the stress distribution R, the resulting stress-vs-strain curve can show different types of
behavior. When the disorder is weak, a macroscopic stress drop is observed, accompanied by
the localization of plastic activity in a shear band. When a stronger disorder is present, the
macroscopic jump is replaced by a smooth overshoot and, eventually, by a monotonic stress
curve. We have described the brittle phase by first studying qualitatively the properties of
the shear band formation and of the evolution of the sites during the largest avalanche. We
have then quantified the shear-band contribution to the stress drop. We have concluded this
first part by showing that finite-size effects are important in the brittle regime, similarly to
what is observed in the RFIM, in that they affect the value of the largest stress drop. We
have highlighted that the problem lies in the absence of plastic activity in the first part of
the dynamics for small enough R. This is a limitation of the EPM approach, as this regime
is not observed in MD where plastic avalanches are observed in the elastic branch as well.
However, we do not think that this drawback is relevant for the computation of the critical
point.

We have then confirmed by a careful finite-size scaling analysis the existence of a critical
point separating brittle and ductile regime in the EPM. This has been made possible by
the mesoscopic nature of the model, which allowed us to simulate very large systems and to
average over a large number of disorder realizations. In order to perform sample averages
of the various observables we have used 1000 — 2000, 400 — 600, 400 — 600, 200 — 400, and
100 — 200 samples for L = N1/2 = 256,512, 1024, 2048, and 4096, respectively, in 2D, and
800—2000, 800— 1000, 800—1000, 400—1000, 200— 500, and 100—200 samples for L = N/3 =
48,64,80,104, 128, and 164, respectively, in 3D. These numbers are much larger than those
used in molecular dynamics (MD) simulation studies. To make a comparison with previous
MD results, in [137] the quantities were averaged over 800, 700, 400, 200, 200, 200, 200, and
100 samples for N = 1000, 2000, 4000, 8000, 16000, 32000, 64000, and 128000, respectively, in
2D, and 800, 400, 200, 100, 100, 50, and 25 — 50 samples for N = 1500, 3000, 6000, 12000,
24000, 48000, and 96000, respectively, in 3D in [4]. As for comparing system size, in EPMs
and in MD simulations, one can follow two distinct approaches. The first one is measuring
the typical size of a shear transformation zone, which corresponds to the building block of the
EPM mesoscopic description, in an MD simulation: see, for example, [152]. The second one is
a quantitative calibration or mapping from MD to EPM, such that the statistical properties
and the macroscopic responses in both studies match: see, for example, [156, 157]. All of
this indicates that a single site in an EPM corresponds to of the order of magnitude of 100
particles (atoms) in an MD simulation. Although these studies focus on a rather ductile
yielding regime, we expect that this order of magnitude does not change significantly in the
brittle yielding regime. Using this conversion, 16 millions of particles in an MD simulation as
in [84] (but for only very few samples) correspond to 160000 sites in EPMs. Our largest EPM
in 2D (N = L? = 16777216) is thus about 100 times larger and in 3D (N = L3 = 4410944)
about 30 times larger than the MD counterpart in [84]. Therefore, in effect, our study
accesses much larger system sizes than previous MD studies.

We have found that there are strong finite-size effects. As seen in the study of the
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connected susceptibility in the brittle regime, the role of exponentially rare soft regions
cannot be neglected. The effect of such weak spots (prone to yield or flip) has already been
unveiled in determining the coercive field in the standard RFIM [133] and has been studied
in MD simulations of amorphous solids as well [163]. While some features may be robust
with respect to such finite-size effects (e.g., the process of formation of the shear band that
we have discussed, the exponent of the shear-band growth, etc.) others may be affected (e.g.,
the scaling exponent of the connected susceptibility). How much this influences the results
when R approaches the critical point is not fully understood, but it is expected that such
effects are then strongly reduced when R > R..

In [6, 83, 84] it was argued that the observation of a critical point between brittle
and ductile behavior could be a finite-size effect and that no stress overshoot associated
with a continuous stress-vs-strain curve should be present in the thermodynamic limit. This
conclusion was obtained in [6] by means of a linear stability analysis on an especially tailored
version of the EPM. In their version, the authors divide the solid in streamlines, inside
which the elasto-plastic elements evolve following a mean-field dynamics. They then proceed
to decouple the system’s state quantities into a homogeneous part plus a (initially) small
heterogeneous perturbation. By expanding the equations of the model to first order in the
amplitude of the perturbation they find that the amplitude goes as 1/0,0(7). They conclude
that the system is unstable as soon as the stress reaches its maximum value. This argument
is supported by numerical results obtained from MD simulations [84] and EPM models [83]
that show how the stress-vs-strain curve becomes steeper after the maximum stress value
for larger system sizes, suggesting that what is observed in [4] and in Fig. 1.1 is a finite-size
effect. This argument, however, is itself questionable for two reasons: first, it is not clear
that the putative instability is a long wavelength one that explains the trend of the stress-
vs-strain curve to become steeper as the system size increases. Second, being limited to the
consideration of the average behavior, it does not take into account the possible pinning
of the propagation of the linear instability by disorder. The numerical evidence that we
have provided firmly supports the persistence of a critical point when extrapolating to the
thermodynamic limit. As we have discussed it is however less conclusive concerning the
persistence of a smooth overshoot in the AQS protocol.

The robustness of the critical point and of the other results with respect to the specific
form of the propagator has yet to be tested. In particular, recent studies showed that the
quadrupole-quadrupole interaction kernel may be screened by emerging dipoles, as suggested
in [166]. Whether or not the same qualitative scenario as the one just described persists or
not is an important question that deserves further study.
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1 Introduction

From the beginning of this work we have been referring frequently to the phenomenology of
the athermally quasistatically driven random-field Ising model and we have underlined how
it shows similarities to what one observes in the EPM and in MD simulations of sheared
amorphous solids. These analogies suggest that the RFIM could be used as an effective model
for yielding, which could be useful in practice. As already discussed, many techniques, both
analytical and numerical, have been developed to study the random-field Ising model, which
could help getting insights into the yielding transition if such an analogy between the two
models holds. In particular this would overcome a fundamental limitation of the EPM,
which is the absence of a Hamiltonian, due to its cellular automaton nature. The EPM is a
phenomenological model, and the dynamical rules that govern its evolution are constructed
ad hoc. Having a Hamiltonian description would allow for the use of field theoretical tools,
including the renormalization group discussed in the Introduction.

However, apart from the apparent similarity in terms of discontinuous to continuous
transition with a critical point in between, the phenomenology of the EPM and the standard
ferromagnetic RFIM are quite different in finite dimensions (not so different, instead, in the
mean-field limit, see Chapter 3). In particular, the shape of the largest avalanche in the
low-disorder phase is rather isotropic in the standard driven RFIM with nearest neighbor
ferromagnetic interactions. This is not the case for the EPM that correctly reproduces
the spatial organization of plastic events in the form of shear bands as seen in sheared
amorphous solids. This difference clearly comes from the different interactions that are
present in the models: while in the standard RFIM they are short-ranged and ferromagnetic,
in the EPM one uses the Eshelby kernel which has instead a long-ranged and anisotropic
nature. Another important difference is the notion of plastic versus elastic site in the EPM
which does not easily translate in the language of the RFIM. After a site yields, it goes
back to the elastic state and will yield again if the strain keeps increasing. This cannot be
reproduced in the RFIM, where a single spin has only two possible values, either —1 or +1,
and essentially flips only once during the whole process. In order to devise a RFIM model
which incorporates some of the specific ingredients of sheared amorphous solids we study, via
computer simulations, a random-field Ising model in which the interactions between spins
are mediated by the Eshelby kernel. We call this model the Eshelby-RFIM. In this chapter
we show the results obtained from simulations of the model in two and three dimensions,
and we discuss its phenomenology as one changes the disorder strength. We then focus on
the low-disorder phase. We carry on the same careful study on the largest avalanche that
we did for the EPM and we highlight the analogies and differences between the two models
in this phase. We also study the properties of the first-order (discontinuous) transition.
We next perform a finite-size scaling analysis around the critical point that separates the
discontinuous regime from the continuous one, in the same spirit as we did in the first chapter.
We show once again that the critical point is well defined and we argue that it persists at
the thermodynamic limit. We extract the critical properties of the model and we compare
them with those of the EPM. We conclude by showing some variants of the model and by
discussing the role of rare regions.
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1.1 The Eshelby-like interactions
We define the Hamiltonian of this Eshelby-RFIM as

7

Hllsi)) = —5 D2 Gsisy — Y (hi + H)si (2.1)

with s; = £1 the local spins, H the external field, and h; the local random fields, which we
choose to be drawn from a Gaussian distribution of zero mean and standard deviation R.
The coupling Gj; is the Eshelby propagator defined in Appendix A. The effective field that
governs the stability of spin ¢ is then given by

Wt =" Gijs;+hi + H, (2.2)
J#i

so that the spin is stable when hfﬁsi > 0. If this is not the case the spin is considered
unstable and it flips as s; — —s;. We initialize the simulation of this model with all spins
pointing down and a large negative external field H = —50 (here and in the following we
only consider the ascending branch of the magnetization curve). This ensures that each spin
is stable in the —1 state as the external field dominates the sum inside the effective field for
every i. The model is then driven following the AQS protocol, similarly to what we did for
the EPM. At each time step ¢, the external field is increased by a quantity AH; large enough
to make the least stable spin flip, i.e., AH; = mini(—hfﬂhfg < 0). When the spin at site 4
flips, it influences the effective field at all the other sites as

st — ST + 2G5, (2.3)

Already at this point some differences with the EPM appear. First of all, by compar-
ing Eq. (2.3) with Eq. (1.5), we notice that in the EPM the stress contribution that a site
receives after a yielding event takes place somewhere in the system is in part random, due
to the random variable 7 inside do, and it changes at each event. This is not the case in the
Eshelby-RFIM. Each spin flip affects the effective field of the rest of the system by the same
quantity, given by 2|s;| = 2, appropriately scaled with the Eshelby propagator. Moreover,
in the EPM we have implemented the Eshelby propagator in such a way that the stress
redistributed by a site is removed from the site itself (i.e., G;; = —1). In the Eshelby-RFIM
we do not want the local effective field of the site to be influenced by the event. The relation
between h$T and s; is unidirectional: the first affects the second, but not the other way
around. In order to impose this relation we need to fix the value GG;; = 0. The details of
the implementation of the Eshelby propagator in the RFIM are discussed in Appendix A.
Following the spin flip triggered by the external field, more spins can reach the condition of
instability due to Eq. (2.3), and their flipping can in turn make other sites unstable and so
on. This process goes on until the stability condition h$fs; > 0 is realized for every site 1.
Once the system has completely relaxed the external field is increased again, so that once
again the timescale of the driving is decoupled from that of the avalanches. The evolution
of the local effective field for the Eshelby-RFIM can then be summarized as

h?ﬁ;_l = hiftf + AH; + Z Gij(8j$t+1 — Sjﬂg). (2.4)
J
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We then consider the time evolution of the average effective field, h$T = %ZZ hf’ff, by
averaging Eq. (2.4) over i:

h?—ﬁ&-l =T AH; + éq:OAmt’ 25)

where é‘qzo =3 Gij, 4= (qz,qy) in 2D and q = (¢z, gy, ¢-) in 3D denote the wave-vector,
and Amy is the magnetization jump at step ¢. In this study, we set Gg—o = 0.

Before discussing the results obtained with this RFIM we discuss the updating scheme
used in our algorithm. When the effect of a spin flip propagates during the avalanche, it is
possible that several spins become unstable at the same time. This is analogous to what we
described in the EPM, where multiple blocks can simultaneously have a stress larger than
the threshold during relaxation. In that case we made all the sites relax and propagate their
stress together at the same time, uploading all the unstable blocks in parallel (parallel update
scheme). A similar approach is also used in the simulation of the standard ferromagnetic
RFIM, where the order of flipping of the spins does not change the final configuration,
allowing them to be flipped all together. Unfortunately, this updating scheme cannot be
used in the present model, as the system may enter an infinite loop during an avalanche.
Consider for example that two spins s; and s;, with G;; < 0, are the only ones unstable at
the step { during an avalanche specified by the time ¢ (or the external field H;). In particular,
we consider hf’fgl > 0 and s;;; = —1 for site 7, and h;fgl >0 and s;;; = —1 for site j. When
|hfftfl] < 2|Gj| and \hj%l] < 2|Gjil, at the next step [ + 1 we get

hf,ftf,lﬂ = hf,ftf.,l +2G;; <0 and s;4041 =1, (2.6)
Wi =h5g+2G5 <0 and sjppp0 =1,

which means that both spins become unstable again at [ + 1. Therefore the process will
never stop, giving rise to an infinite loop. In the above example only a pair of spins were
considered for simplicity, but there are many other possible combinations that lead to a
similar situation in which the system is stuck in an infinite loop and cannot relax. In order
to avoid this problem, we consider instead a random updating scheme: once we have the list
of all the unstable sites, we choose one spin at random and flip it. If we now go back to the
previous example we see that with this new updating scheme the problem is solved. At step
I 4+ 1 of the avalanche we now get

ff {f
h?,t,l#»l = h?,t,l >0 and Sitl+1 = 1, (2 7)
ff ff :
hSii1 = RS540 +2G5 <0 and  sjp401 = —1,

which means that both spins are now stable. In practice, we have confirmed that the random
updating scheme always converges and we have never found an infinite loop in the simula-
tions. More details on the implementation of the Eshelby-RFIM algorithm can be found
in Appendix B, where also a pseudocode for the simulation of the model is given.

1.2 Magnetization curves

In the discussion of the EPM we have introduced the quantity n(v), which is the maxi-
mum fraction of sites in a line (or a plane in 3D) that has yielded at least once before
reaching the strain -, with the goal of capturing the formation of the shear band. We
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Figure 2.1: Top row: magnetization curves for the Eshelby-RFIM in 2D (a) and 3D (b), with
respectively L = 2048 and L = 128, for three independent samples. Similarly to the EPM,
one can see a smooth curve for large values of R, while as the disorder strength decreases a
jump appears. In the inset we show the behavior of the order parameter m? defined in the
text for the same samples. Bottom row: real space configurations of the spins in the system
(red for positive spins and blue for negative ones), which show how the positive magnetized
spins tend to organize in a band. (c),(d), and (e) correspond to the configurations found in
a 2D system for R = 0.60, 1.00 1.20 respectively. Taken at H = —1.5 for R = 0.60, 1.20 and
at H = —1.3 for R = 0.90. (f), (g), and (h) correspond to the configurations found in a 3D
system for R = 0.9,1.30 and 1.50 respectively. Taken at H = —1.2 for R = 0.90,1.50 and
H = -0.75 for R = 1.30.

proceed in a similar way for the Eshelby-RFIM. In addition to the evolution of the macro-
scopic magnetization m = 1/N 37, Sz, ., (in 2D), we introduce a quantity that mea-
sures "how close' the system is to form a system-spanning line (plane) in 2D (3D) of pos-
itively magnetized spins. We define the sum along rows mj, (H) = 1/L Zi:l 8(zy) (H)
and columns my (H) = 1/L 25:1 8(z:,9:) (H) of the local magnetization, and choose the
row or column that had the maximum number of events before reaching the field H as
mPB(H) = max,, 4, (my, (H),m3 (H)). By construction, mP(H = 0) = 0 at the beginning of
the process, while m”(H) = 1 when every spin in at least one row or column has flipped
to +1. One can generalize this quantity to 3D by checking each plane with normal vector
parallel to x, y, and z and choosing the one with the larger number of positive spins. This
quantity has the same role as n(7y) in the EPM. It shows a discontinuous jump when the
magnetization m(H) shows a discontinuous jump, so that both capture the presence of a
first-order (discontinuous) transition. However, for characterizing the critical point, mP (H)
presents some advantages that will be clear in Section 3.

In Fig. 2.1(a,b) we show the magnetization curves of the Eshelby-RFIM, for different
values of R. The magnetization starts at —1 when the external field is large and negative and
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increases as H increases. During the initial stage of the process, the curve appears relatively
smooth as the spin flips occur in a rather homogeneous and unorganized way. As H increases
further, m(H) enters a (transient) linear regime, characterized by m(H) = aH + b, until all
the spins become positive at large H. In this regime, the magnetization curve is clearly
serrated, which indicates that the dynamics proceeds by avalanches of various sizes. The
evolution from the initial stage to the linear regime can take place in different ways depending
on the disorder strength. For small values of R, the magnetization shows a jump of order
1 at a coercive field H = H., (here and in the following, we will use the term "coercive
field" to refer to the value of H at which the macroscopic jump occurs) and then keeps
increasing linearly with the external field until all spins point towards the positive direction.
As confirmed from the evolution of m?®(H) shown in the inset of Fig. 2.1(a,b) and from
the configuration snapshots in Fig. 2.1(c), the spin flips leading to the jump are collectively
organized in a band, analogously to what was observed in the EPM. The resulting band of
positively magnetized spins is less rough than the shear band of the EPM (see Fig. 1.1(c)).
(The origin of this observation could be spurious and come from faceting effects found when
the disorder strength is small for finite system sizes [135, 167, 168].) For larger disorder
strength R the macroscopic jump disappears. In this case m increases from its initial value
of —1 and then reaches continuously the linear regime. However, two potential patterns are
still possible as illustrated by the black and the blue curves in Fig. 2.1(a,b). For a very large
value of R (black curve), the magnetization m is always larger that the linear regime function
m"R () = al +b (with a and b some R dependent constants in general): m(H) > m"}(H),
with m(H) — mB(H) for sufficiently large external field. For intermediate values of R
instead (blue curve), the magnetization first passes below the linear regime function. To make
this difference clearer we have plotted the curves of Fig. 2.1 by now subtracting the linear
regime. The outcome in Fig. 2.2(a,b) shows ¢ = m(H) — aH as a function of the external
field H. The qualitative similarity with the results obtained with the EPM is obvious, as
seen by comparing for instance with Fig. 1.1. By plotting the curves in this way it becomes
clear that the regime of intermediate disorder strength R corresponds in the EPM to that
in which the stress-vs-strain curve displays a smooth overshoot. In the present case too, the
space organization of the up-pointing spins after the "overshoot" resembles a shear band,
which however does not occur in a single step as in the weak-disorder regime. The similarity
between the Eshelby-RFIM and the EPM is striking when plotting the magnetization curves
in this way, but we would like to be more quantitative and for this we focus on the "yielding"
transition. Note that it is obvious from its definition that the RFIM cannot reach a bona fide
steady state as observed in amorphous solids, as at some point the system will be completely
positively magnetized and the evolution stops (see Fig. 2.2(c)). For small values of R, the
linear regime of the Eshelby-RFIM corresponds to the band propagating into the rest of the
system. The reason why this regime is so universal across different samples (assuming that
R small enough for the band to arise in a single step) is that once the band is formed the
evolution of the system is controlled only by its propagation. This is confirmed by simulations
in which a band is inserted into the system from the beginning (see Section 4.1). This kind of
behavior is analogous to that found in the EPM after the macroscopic stress drop, when the
shear band propagates into the rest of the system. It is important to note that this portion
of the dynamics of the EPM, in which the stress is nonetheless approximately constant on
average, does not correspond to the true steady state, as the system retains a memory of its
initial condition. The Eshelby-RFIM does not reproduce the full behavior observed in the
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Figure 2.2: Plot of 6(H) = m(H) — aH for the same 2D (a) and 3D (b) Eshelby-RFIM
samples as in Fig. 2.1(a,b). The value of a is obtained by fitting the linear regime for
one sample. In the plot a = 0.39672 in 2D and a = 0.42372 in 3D. In (c) the complete
magnetization curve for a single disorder realization for different values of R with L = 104
in 3D.

sheared amorphous solids (as expected), but it qualitatively captures their behavior at and
around the yielding point.

We point out that a phenomenological model based on a Hamiltonian description was
proposed in [148] and was shown to be intimately related to the EPM. One can find a direct
mapping between this model and an Eshelby-RFIM in which the local spins are "soft" (i.e.,
s; € R as opposed to s; = 1) and subject to a given potential V(s;). In this analogy, the
local stress s; in the Eshelby-RFIM represents the local deformation in the model from [148]
and the subtraction of aH from the magnetization to obtain an analogous of the stress-
vs-strain curve (as in Fig. 2.2(a,b)) arises naturally. The main difference between the two
models is in the random potential V acting on the local variables, which has multiple minima
in [148] but only two, at s; = —1 and s; = 1, in the RFIM. The model proposed in [148]
could effectively work as an intermediate model between the EPM and the Eshelby-RFIM.

2 The "brittle" regime and the "shear band" formation

When the disorder strength R is small enough, the magnetization curve of the system displays
a macroscopic jump (as for the EPM, we use the term "macroscopic jump" to denote a
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Figure 2.3: Evolution of the local effective field (left) and the local magnetization (right)
during the largest event. The avalanche starts from a region in which spins are prone to
flipping and picks a direction (here, horizontal) to propagate. As for the stress in Fig. 1.2,
one can see that the local effective field is on average larger at the end points of the active
region. Avalanche times are [/lq, = 0,0.03,0.16,0.28 and 1. The plot is from yp — 100
to yg + 100 with yp the location of the shear band. Obtained in 2D with L = 1024 and
R =0.40.

collective flip of a macroscopic fraction of the spins which result in a jump of order 1 in
the magnetization per spin m) similar to the stress drop of brittle materials. This is also
observed in the standard RFIM with short-range and ferromagnetic interactions, but the
macroscopic avalanche is then rather isotropic. As shown in Fig. 2.1(c) the Eshelby-RFIM
instead reproduces the band-like shape of the avalanche observed in the EPM, which justifies
the introduction of Eshelby-like couplings between the spins to capture the anisotropic nature
of yielding in sheared amorphous solids.

2.1 Inside the "shear band"

To start, we show in Fig. 2.3 how the local effective field and the local magnetization evolve
to give rise to the positively magnetized band. The figure is obtained by taking snapshots
during the largest avalanche formation, at fixed H = H,, for L = 1024 and R = 0.40 in
2D. At the beginning, when [ = 0 (top panels), there is no clear hint on how the band will
nucleate and appear, and the few spins that are already up are scattered all over the sample.
The band starts forming around one of the positive islands and chooses a preferred direction
based on the effective field of the neighboring sites. The band embryo then propagates from
its endpoints, growing first in length. After the band has spanned the whole system, it grows
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Figure 2.4: Evolution of the local effective field inside (a), on the boundary (b), and outside
(c) the band during its formation. In (d) the evolution of the maximum magnetization in a
line m? is shown. We see that the main contribution to m®” comes from the first steps of
the avalanche and saturates before the band spans the whole system. The plot is obtained in
2D with L = 1024 and R = 0.40, with different colors corresponding to 3 different samples.

in width and the avalanche eventually dies out, as shown in the bottom panels of the figure.
As before, the growth takes place mostly at the edges of the band due to the geometry of the
interactions. This qualitative behavior is almost identical to what is observed in the EPM
(see Fig. 1.2 and [83]) and in MD simulations [163].

We now investigate what happens to sites inside and outside the band as the avalanche
progresses. In Fig. 2.4(a,b,c) we show the evolution of the effective field of sites inside (a), on
the border (b) and outside (c) the band. The local effective field h¢f starts from a negative
value (we are considering spins that were negative before the jump) and, in (a) and (b) ends
up in a positive value, meaning that the associated spins flipped. Spins inside the band
usually flip in the first half of the evolution process, while those on the boundary tend to flip
at the end, when the band thickens. The spins in the bulk of the material have their effective
field that decreases steadily as the band is formed. When comparing Fig. 2.4 and Fig. 1.3 one
has to be careful and remember that different update algorithms are used for the dynamics
during an avalanche in the two models, and that the avalanche time [ has different meanings.
In the EPM, due to the parallel update scheme, the number of yielding events increases in
bursts with the step [, which explains why the system-averaged stress decreases more for
some values of [ than for others. Here instead, to each value of [ there is an associated spin
flip, so that the magnetization increases essentially linearly with the value of I. With this
in mind, and by looking at Fig. 2.4(d), we notice that once again the main contribution to
the magnetization is not given by the first part of the dynamics in which the band extends
along its length, but instead by the second part in which it thickens, just as in the EPM.
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Figure 2.5: Distribution of the local effective field for sites that are inside (red) and outside
(black) the band, before (full) and after (dashed) the macroscopic jump. Obtained in 2D
with L = 512, R = 0.40 and averaged over 200 samples.

2.2 Before and after the macroscopic jump

We have found that the Eshelby-RFIM displays indeed a macroscopic jump for small values
of the disorder strength. Moreover, the macroscopic avalanche associated to this jump has
qualitatively the same band appearance than that encountered in the EPM. We continue by
exploring the analogy with the brittle regime, following the same lines as in the previous
chapter. In the EPM we have studied how the stress distribution inside and outside the shear
band changes from just before to just after the discontinuous transition (see Fig. 1.4). In
the Eshelby-RFIM it does not make sense to study the distribution of the spin values, since
they are fixed to be £1 and their sign before and after the avalanche is trivial. However,
we can perform a similar analysis by looking at the distribution of the local effective field
that characterizes the sign of the spins. In order to do this we save the configuration of local
effective fields along the line (in 2D) with the largest value of m®” to capture sites inside
the band as well as along a parallel line at a distance L/2 to get sites in the bulk. We
then compute the probability of having a certain value of hfﬂ by repeating the procedure
for independent samples. The results for the probability P(hST) are shown in Fig. 2.5. As
in the previous chapter, there is virtually no difference in the distribution of local effective
fields at sites that are inside or outside the band before its appearance. In this case P(h?ﬁ)
is very similar to the Gaussian we started with and lies in the negative part of the x-axis,
which is expected since the majority of spins are still pointing in the negative direction.
After the jump the distribution changes drastically between sites inside or outside. For the
former case, P(hfﬁ) is now larger than 0 in the positive half of the hfﬁ axis, since the spins
have all flipped to +1. The distribution is slightly wider than the initial one, but its form
is almost unchanged with respect to the starting Gaussian. This is quite different from the
EPM case, in which the distribution of sites inside the band was completely transformed by
the jump and ended up being essentially the same as the steady-state distribution. Since
in the Eshelby-RFIM there is no true steady state we cannot compare P(hfﬁ) for sites in
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the band after the jump with a steady-state distribution. For the spins in the bulk of the
material P(h®) is just slightly shifted to the negative side due to the formation of the band,
similarly to the EPM case.

In Section 2 of the previous chapter we have proposed an argument to predict the scaling
of the contributions to the stress drop. We found that the blocks that give the dominant
contribution to the O(1) stress jump are those in the bulk of the material, as opposed to
the ones inside the shear band that were in subextensive number. This was associated to
the property that sites in the shear band may yield many times and that the bulk can also
respond elastically. This is different in the RFIM: since the jump that we observe is in the
magnetization, only the spins that flip to a positive value, i.e., essentially those inside the
band, give a contribution. In a given sample the largest magnetization jump defined as
Ampmax = maxg(m(H + dH) — m(H)) is then given by Ammax =~ 2Npg/N, with Np the
number of sites inside the band. The relation is only approximate because there may for
instance be spins that were pointing in the positive direction before the jump and are flipped
to —1 by the band formation. Their contribution is however very small and is neglected in
the following. We can then write the average over samples of the largest magnetization jump
as (AMmmax) ~ (wp)/L = L™, where we have defined the band width wp = Np/L%! and
used the same hypothesis as in the previous chapter, (wg) ~ L? with 8 < 1. In order for
(Ammax) to remain finite in the thermodynamic limit we clearly need § = 1 in this case.
(Note that in this chapter, as in the previous one, we use brackets (-) to denote an average
over samples, contrary to the Introduction and Chapter 3 where one has to be more specific

and use an overline (-) to distinguish it from other types of averages.)

We conclude the study of the band formation process by looking at the band profile,
as we did in the EPM case, and comparing the outcome with the prediction 8 = 1. In
order to do so we define the quantity ppand(L,y) which measures the magnetization along
the direction perpendicular to the shear band at position y:

1
pband(L:y) - z<zsx,yfy3>a (2'8)

where we have centered each line around the value yp where the band takes place. Notice
that, differently from the previous chapter, the amplitude of this quantity is limited by 2,
since it is the maximum value of the variation of the magnetization along a line. In the EPM
there is instead a number of plastic events that grows with the system size, thereby increasing
the plastic strain: Then, one may have pp1(L,y) such that pp(L,y) ~ ppi(y/LP)LP~L, with
B < 1. In the Eshelby-RFIM we have instead ppand(L,y) ~ pband(y/L), equivalent to 5 = 1.
The results are shown in Fig. 2.6 for both the 2D and 3D Eshelby-RFIM. The curves show
a very good collapse in 3D, not as good in the 2D case. As we will see below, this is because
the largest magnetization jump in this case seems to slightly decrease with the system size.

2.3 Characterizing the discontinuous transition

We have found evidence that the Eshelby-RFIM displays a first-order (discontinuous) tran-
sition for some value H = H.,, analogously to the EPM and to the standard RFIM. In the
Introduction we discussed how, in athermally driven systems in which the disorder enters
in the form of random fields, the disconnected susceptibility diverges with system size more
strongly than the connected one. Under some generic assumption concerning the Gaussian
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Figure 2.6: Distribution of magnetization along the direction perpendicular to the band as a
function of the distance from the center of it, for 2D (a) and 3D (b) systems, with R = 0.60
and R = 0.90 respectively.

distribution of the sample-dependent coercive field, the former scales as the square of the
latter. We have therefore studied the behavior of

_ O(mPe(H))
Xeonn oH (2.9)
Xaise = N((mP(H)?) — (mP(H))?),

as a function of the external field H, when the disorder strength R is small enough to have
a macroscopic jump in the magnetization. One can also consider the equivalent quantities
for the magnetization m®(H), but the choice of m® more directly captures the anisotropic
nature of the phenomenon and leads to crisper results (see Section 3). The jump in mP is
observed in every sample for small values of R but is smeared out as one takes the average
over many samples, due to the fact that the value of H at which the jump occurs, Hco,
changes from one disorder realization to the other. In the thermodynamic limit, if the
transition is indeed discontinuous, one should recover a sharp jump. Due to the presence of
the jump, the evolution of the order parameter m? can be again schematized as m?(H )=

—1+20(H — H) with 6(x) the Heaviside function. Averaging over disorder, we then find
H

mB(H) = (mP*(H)) = —1 42 / peo(H')ET, (2.10)
—00

with peo(H) the distribution of coercive fields for different realizations of the disorder. To
compute the connected susceptibility it is sufficient to perform a derivative with respect to
H of the formula above, which gives the relation xconn(H) = 2pco(H) for small enough R.
We have checked this relation numerically by computing both quantities for different values
of R and for different system sizes. Results are shown in Fig. 2.7. In panels (a) and (b) we
display the evolution of the connected susceptibility with the external field H for 2D and
3D respectively, which has a peak centered around the average coercive field H.,. For the
smaller value of R the relation Xconn(H) = 2pc0o(H) is followed almost perfectly both in 2D
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Figure 2.7: Connected susceptibility (divided by 2) as a function of the external field H and
distribution of the coercive field He,. Plotted for L = 1024 in 2D (a) and L = 104 in 3D (b)
for two different values of R in the brittle regime. When R is small the connected suscepti-
bility coincides with pc, almost perfectly, while as R gets larger the analogy deteriorates a
bit. Scaling of the susceptibility peak 2% = Y conn(Heo) and peo(Heo) peaks in 2D(c) and
3D(d) for the same two values of R. The black dashed lines are fits performed using the last
3 points and give Y2 ~ NO-21 in 2D and xRk ~ N032 in 3D. The curves are obtained after

averaging over 8000, 6000, 5000, 2000 samples respectively the sizes L = 256,512, 1024, 2048
in 2D and 8000, 6000, 5000, 3000 samples respectively the sizes L = 48,64, 80,104 in 3D.

and in 3D. It is not as good for the larger value of R, which is closer to the critical point,
which will be discussed in the next section. With the argument based on the central limit
theorem that lead to Eq. (1.16) one would again expect the susceptibility peak to grow as
NO5 and fulfill the predicted relation Ygisc ~ XZonn- I panels (c¢) and (d) we plot the scaling
of the connected susceptibility peak as a function of the system size N both in 2D and in
3D, for the two values of R. We also show the variation of the peak of the distribution of
the coercive field. From the plot we see here too that the scaling exponent is different from
0.5, being closer to 0.3 or 0.2. At odd with the analogous plot in the EPM (see Fig. 1.7),
the scaling seems less affected by the value of R, but the data obtained with smaller values
of R is still following a power law with a smaller exponent. As in the EPM, we cannot say if
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this exponent really represents the system in the thermodynamic limit or if it is affected by
strong finite-size effects. We expect that, also in the present case, the absence of statistically
rare regions in which the random field is unusually large for some spins plays an important
role. We discuss this idea in more detail in Section 4.1. Finally, we have measured the
system-size dependence of the disconnected susceptibility at H., and found that it scales as
N = L? as in the EPM. Once again, this quantity seems to be immune to strong finite-size
effects.

3 Disorder-controlled critical point

We now focus on the characterization of the critical point that separates a regime in which
a macroscopic jump in the magnetization takes place and one in which the magnetization
increases smoothly (for large enough samples in which the effects of subextensive avalanches
are smeared out). In the previous section we showed that the Eshelby-RFIM is quite good at
reproducing some basic qualitative aspects of the dynamics of amorphous solids under shear.
Beyond the qualitative agreement found so far between the Eshelby-RFIM and the EPM,
we want to directly check if the former is a proper effective theory of the yielding transition
in the vicinity of the critical point. In particular, one should investigate whether or not
the critical behavior is compatible with the universality class of the yielding transition, as
studied in the previous chapter. We do so by means of the finite-size scaling analysis of the
disconnected susceptibility defined with the appropriate order parameter.

3.1 Characterizing the "brittle-to-ductile" transition

In order to characterize the properties of the critical point in this model it is necessary
to define an appropriate order parameter that distinguishes between the "ductile' regime
with a smooth magnetization curve (in the thermodynamic limit) and the "brittle" regime
with a jump of order 1 in the magnetization. As for the standard RFIM, we start with the
quantity Ampax = maxg(m(H + dH) — m(H)), which represents the largest jump in the
magnetization curve in a given sample. The idea is the same as for the short-range case,
where we found that for small values of the disorder strength R the average Ampyay is finite,
while as R increases it tends to zero. The results are plotted in Fig. 2.8. On the top two
panels we show how the average over disorder realizations of the order parameter Ampax
decreases with the increase of R. In 3D (panel (b)) the results display a clear line-crossing
around a common point, which gives a good estimate of the location of the critical point. In
2D (panel (a)) instead, the average maximum magnetization jump seems to decrease with
the system size for almost every value of R, except for a region of values in which it seems
more or less constant, in agreement with the results on the band profile described above. In
the bottom panels we see the associated disconnected susceptibility. As anticipated Ygisc is
very small for large values of R, and it increases reaching a peak as R approaches the critical
point. We notice that the peak value increases as we increase the system size, as we would
expect for a system at the critical point. However, as in the case of the EPM, xgisc increases
again at lower values of R. This may seem surprising at a first glance, as our explanation
for this behavior in the EPM was based on the presence of a steady state. However, no true
steady state exists for the Eshelby-RFIM. Consider nonetheless the limit R — 0, so that
the system does not undergo any spin flip before the macroscopic avalanche at the coercive
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Figure 2.8: Evidence for a critical point in the 2D and 3D Eshelby-RFIM. Upper: Disorder-
averaged value of the order parameter (Amp.x) as a function of R for several system sizes
in 2D (a) and 3D (b). Lower: Variance of Amya, multiplied by N = L4, i.e., disconnected
susceptibility, in 2D (c) and 3D (d). The susceptibility increases when R goes to 0, which in
2D obscures the peak associated with the critical point.

field. At HS, a single site ¢* with the largest random field initiates the macroscopic jump.
We thus define the maximum random field by A%, = hs = max;{h{'}. To find how this

value is related to the coercive field we should remember that the condition for spin ¢* to flip
is that its effective field changes sign. As in the initial condition all the spins are pointing
down, the effective field at the site ¢* with the maximum local random field is given by

hzeff = — Z Gi*j + hi« + H. (2.11)
JF*

Since the model is defined with éqzo = 0 and G; = 0, we then get the condition HS =
—h$ .« As we have seen in the preceding section, the magnetization in this regime increases
first, then undergoes a macroscopic jump, and finally follows a linear growth with H until
all spins are positive. In the low-disorder regime we schematically describe the evolution of

the magnetization (as we did for m?) as

m(H) = —1+ 0(H — H2)(aH +b). (2.12)
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From this expression it follows that
Amppax = m(H — HET) +1=aHS + b+ 1. (2.13)

Once again, the distribution of the maximum local random field affects the results of the
largest magnetization jump as

<Am2 ) — <AmmaX>2 = a2(<h’12nax> - <hmaX>2)a (2.14)

max

where hpax is distributed according to a Gumbel distribution. It follows that, in the limit
R — 07, the variance of Amypyay should be proportional to R?/log(N). This explains the
curves in Fig. 2.8(c,d). It follows that the same spurious behavior at small disorder which
was present in the EPM is also affecting the Eshelby-RFIM. From the figures we see in
particular that this effect is much stronger in 2D than in 3D, where some spin flips occur
before the jump even for small values of R.

We therefore turn to the other order parameter that we proposed, m?. As for the EPM,
using an order parameter that saturates to 1 when the system displays the instantaneous
nucleation of a full band eliminates the spurious effect and enables us to better access the
critical exponents of the system. The quantity m?(H) works as well as the magnetization
m(H) to signal the change from discontinuous to continuous regimes. In analogy to what was
done for m(H) we measure the largest jump of m? in a given sample, defined as AmB, =
maxy (mP(H + 6H) — mB(H)). We then study and plot the same quantities as in Fig. 2.8.
The results are shown in Fig. 2.9. In the top panels we observe the expected behavior,
with the average value of the order parameter that passes from a finite value very close to
2 for small values of R to almost 0 as R increases. The larger the system, the sharper the
transition. In the bottom panels we see that the disconnected susceptibility peaks at the
critical point, and that the peak becomes higher and sharper as the system size increases, as
expected for a critical point. The phenomenology is the same as that observed with Ampyax,
but with this new order parameter the disconnected susceptibility no longer increases again
when R — 0F. This is a consequence of the fact that m? saturates to 2 for every sample for
a sufficient small value of R, which corresponds to an instantaneous nucleation of a spanning

band or plane of positive spins.

We now proceed to a finite-size scaling analysis. We consider the scaling ansatz of the
standard RFIM, with xqise(r, L) ~ LYYW (rL'Y"), where r = (R — R.)/R is the relative
distance to the critical point R.(L), 7 and v are the critical exponents, ¥(-) is the scaling
function. We start by analyzing how the peak and the full width at half maximum (FWHM)
of the disconnected susceptibility scale with the system size. From the scaling ansatz above
we expect that the maximum diverges as L7/¥, while the width of the peak decreases as
L~Y/¥_ The results of this first analysis are shown in the top panels of Fig. 2.10 and give a
first estimate of the critical exponents. We find 7/v ~ 2.06 &+ 0.001 and v ~ 2.73 £ 0.08 in
2D, while /v &~ 2.90 £ 0.09 and v =~ 1.36 = 0.04 in 3D, with the error bars coming from the
fit. With respect to the EPM case, the fit appears more precise here, which leads to smaller
error bars, but note that the range of linear system sizes is somewhat smaller. We then try
to collapse the disconnected susceptibility curves onto a single master curve by adjusting
the critical exponents by hand. We choose the values of 5/v and v that give the best visual
collapse of the curves, and we obtain 7/v ~ 2.05 and v = 2.8 in 2D, while 7/v ~ 2.81 and
v = 2.51in 3D.
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Figure 2.9: Evidence for a critical point in 2D and 3D Eshelby-RFIMs. Upper: Average value
of the order parameter (AmZ_ ) as a function of R for several system sizes in 2D (a) and
3D (b). Lower: Variance of AmZ,__ multiplied by N = L%, i.e. disconnected susceptibility,

in 2D (c) and 3D (d).

During this procedure, we have tested several values of the exponents and we have
observed that the collapse is highly sensitive to the value of 7/v, while the choice of v has
little effect on the results for a rather large range of values. This is also reflected in the
comparison with the values of the exponents found with the fit of the maximum and the
FWHM, which are in good agreement for the prediction of /v, while a worse agreement
is observed for v. We conclude the finite-size scaling analysis of the model by fitting the
disconnected susceptibility with a precise analytical form for the scaling function. As for the
EPM, we define

1=3
U(x) = Cexp [y(z) — exp(y(2))] D aiHi(y(x)) ~ L™ xaise(x L, L), (2.15)
1=0

where y(z) = (x — z.)/a, H;(x) is the i-th Hermite polynomial, and C, z., a and a; are
adjustable parameters. The advantage of this method is that it provides not only an estimate
of the critical exponents, but also the form of the scaling function. We fit xgqisc for the two
largest system sizes both in 2D and 3D with this function and we obtain the results displayed
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Figure 2.10: Results from the finite-size scaling analysis of the Eshelby-RFIM close to the
critical point. Scaling of the peak (a) and of the full width at half maximum (b) of the
disconnected susceptibility with N. The fits in (a) give /v =~ 2.06 + 0.001 in 2D 7/v =~
2.90 £ 0.09 in 3D, while from the ones in (b) v ~ 2.73 £ 0.08 in 2D and v ~ 1.36 £+ 0.04 in
3D. In all cases the errorbars come from the fit. (c,d) collapse by hand of the disconnected
susceptibility data for the 2D and the 3D case respectively. In this case 7/v ~ 2.05 and
v = 2.8 in 2D, while 7/v ~ 2.81 and v = 2.5 in 3D. (e,f) fit with a master curve, which gives
/v = 2.07 and v = 2.68 in 2D, and /v &~ 2.97 and v = 1.03 in 3D.

in Fig. 2.10(e,f). We see that the scaling function based on the product between a Gumbel
distribution and a polynomial reproduces reasonably well the shape of the disconnected
susceptibility (with deviations for the smallest system sizes). The critical exponents obtained
in this way are 7/v &~ 2.07 and v = 2.68 in 2D, and 7/v ~ 2.97 and v = 1.03 in 3D, which are
compatible, even though slightly different, with the ones obtained with the other methods.

As our goal was to investigate whether the critical behavior of the EPM and the Eshelby-
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RFIM are in the same universality class, we need to compare the estimate for the critical
exponents. As already stressed, the breadth of values obtained for the correlation exponent
v is very large compared to that of 7/v. Considering the three methods that we have used,
we find in 2D

V= L82LES e EPM,
v =1.92-3.03
(2.16)
5/v = 2.05-2.
/v = 205207y e Bshelby-RFIM
v = 2.65-2.81
and in 3D
Vv =2592T e EPM,
v =1.7-2.52
(2.17)
/v = 2.8-2.99
/v for the Eshelby-RFIM.
v =1.03-2.5

Taken at face value, these results seem to indicate that the two systems are not in the same
universality class, the critical exponents of the EPM being systematically smaller than those
of the RFIM. However, the difference found for 5/v is not very large, of the order of 10 %,
and may not be sufficient to reach a definite conclusion, considering the difficulty to reliably
extract exponent values. (As mentioned before, this is already true for scaling analyses of
simpler random-field models [131].) Even larger system sizes with then more sophisticated
scaling analyses would be necessary to settle the issue. !

3.2 Bounding the location of the critical point

From the plots in Fig. 2.9 we observe that the peak of the disconnected susceptibility slowly
shifts as the system size increases. From the considerations in Chapter 1 we are now familiar
with this situation and we know how to face this issue. This case is a priori more complicate,
as a definition of the overshoot is not as obvious as in the EPM. However, we have proposed
in Section 1 a way to plot the magnetization curves that makes the analogy with the EPM
clearer. We then transform the magnetization curves from m(H) to 6(H) and we study
their average in 2D and 3D. Some of the results are plotted in Fig. 2.11(a) for a 2D system
with L = 2048. From these plots we can as before identify the value of the disorder strength
R at which an overshoot first appears, i.e. R,(N). By construction, the value of R,(N) is
always larger than the critical-point disorder R.(N), so that it bounds the critical point. We
thus study the size dependence of R,. In Fig. 2.11(b,c) we plot R, and R, as a function
of N = L% in 2D and 3D respectively. We notice that in both cases, R, saturates to what
appears to be a constant value as N increases, suggesting that R5° = limpy 0 Ro(N) has a
finite value. Whether the observed behavior changes after some very large threshold value
N* is of course possible but as for the EPM we see no reason why this should occur. The
fact that R, converges to a constant value for large /N provides an upper bound on the value
of the critical disorder, with R2° = limy_,~ R.(N) < R and ensures that this is finite. We

Tt is worth noting that the trend of the exponents with dimension d are as expected. Fluctuations are
larger in 2D than in 3D so that v is larger in 2D. On the other hand, 7/v is equal to 4 — 7, with 7} an
anomalous dimension (see Introduction) that increases as d decreases: 7/v is thus expected to be less in 2D
than in 3D.
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Figure 2.11: (a) Average (6(H)) = (m(H)) — aH curves for a 2D model with L = 2048
close to R, = 1.12. The curves are shifted in order to converge to the same value, so that
the comparison between them is easier. (b,c) The critical point R.(N) together with the
value of the disorder at which the overshoot first appears, R,, as a function of the system
size, N = L%, in 2D (b) and in 3D (c). Blue lines are fits to R®® — a/N?, with R = 0.95,
a = 1.65, b = 0.178 in 2D and R = 1.35, a = 3.97, b = 0.237 in 3D. Insets: The

corresponding schematic magnetization curves.

then fit the size dependence of R, to the relation R® — R.(N) = aN~°. The results of the
fit are given by the blue curves in Fig. 2.11(b,c), from which we obtain R° = 0.95, a = 1.65,
b=0.178in 2D and R2° = 1.35, a = 3.97, b = 0.237 in 3D. The fit supports the fact that R°
is finite. Moreover, it suggests that the region between the black and the red points (which
corresponds to the stress overshoot in the EPM) does not disappear in the thermodynamic
limit. The parameter b is related to the critical exponent v through 1/v = db. With the
fitted values of b this gives v &~ 2.80 in 2D and v ~ 1.41 in 3D, which are not far from the
values obtained by mean of the finite-size scaling analysis in Fig. 2.10.
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Figure 2.12: Evolution of the local effective field (left) and the local magnetization (right)
during the largest event in an Eshelby-RFIM with a seed. The direction is forced by the
symmetry of the ellipsoidal seed (in green) which has the major axis along x of semi-length
D, = 15 and the minor one along y of semi-length D, = 4. Avalanche steps are 1/lq: =
0,0.04,0.07,0.28 and 1. Obtained in 2D with L = 512 and R = 0.40. The plot is for
y € [196,316] and the full z-axis, with the seed centered at (256, 256).

4 Variations of the model

We now discuss some variations of the Eshelby-RFIM, as we did for the EPM in the previous
section.

4.1 Effect of a seed

As already done for the standard RFIM in the Introduction and for the EPM in Chapter 1,
we study the effect that a "seed' composed of positive spins has on the evolution of the
Eshelby-RFIM and in particular on the value of the coercive fiecld when R < R.. The idea
is to assess the role that rare regions, which are only present at the thermodynamic limit,
have on the system. The method used in this case is the same as the one described for the
standard RFIM: inside a given region of the sample we choose the spins to start with the
value +1 and we associate to them a very large positive local field h;, so that they cannot
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Figure 2.13: Effect of seeds for different sizes D, on the average value of the coercive field Hc,
for L =512 in 2D (a) and L = 80 in 3D (b). The vertical dashed line marks the critical value
R, for the relative system sizes. The results are obtained with Dy = 4 in 2D and Dy = 3 in
3D. (c,d) Magnetization curves from three independent samples obtained in 3D with L = 80
and different seed sizes. In (c¢) R = 0.60 < R.(L = 80), while in (e) R = 1.30 > R.(L = 80).
Inset: the effect of the seed on the mP-vs-H curve.

flip back. Since the interactions are the same as in the EPM, we also consider in this case
an ellipsoidal seed, which favors the formation of a band along its major axis (sce Fig. 2.12).
We define D, and D, as the half length of the major and minor axes of the ellipse, which is
aligned with the z-axis in 2D. In 3D we take the additional semi-axis D. = D, along z. More
details on the code to simulate such a situation are given in Appendix B. The evolution of
the spin configuration during the largest avalanche is displayed in Fig. 2.12. As the external
field increases from —oo, the first spins to flip are those close to the seed, and in particular
those aligned along the major axis. The system then develops a band, but the associated
transition takes place for a smaller value of H than in the case without seed. The results
for this setup are shown in Fig. 2.13. In the top panels we plot the average value of the
coercive field as a function of the disorder strength R for different sizes of the seed in 2D
and 3D. The general behavior is similar to that observed in Fig. 1.13: for small values of R
the effect of the seed is strong, while as R grows closer to R, it gets less and less important.
This effect is more pronounced for larger seeds, which seem to also have consequences on the
points obtained for R > R, in 3D (although much smaller ones). In the bottom panels of
the figure we show the magnetization curves obtained upon the insertion of the seed. While
in the EPM we saw that the seed did not affect the elastic branch, the situation is slightly
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Figure 2.14: (a) Magnetization curves for three independent samples obtained with the
Eshelby-RFIM for L = 2048 and two different values of R < R., compared with the curves
obtained in the same conditions but with the addition of a line of up spins at the beginning
of the dynamics. (b) Same comparison for the stress-vs-strain curves obtained from an EPM
with L = 2048 and two values of R < R.. The weak linear region is inserted as described in
the previous chapter.

different for the initial part of the dynamics in the Eshelby-RFIM. The presence of the seed
clearly changes the initial value of the magnetization and of m?, which are not exactly —1
anymore. Apart from this effect, which is negligible in the thermodynamic limit, the general
evolution remains unchanged in this first part. The last part of the evolution is also not
affected by the presence of the seed. The linear regime is indeed the same for all seed sizes
and for all samples. The passage from one regime to the other is however influenced by the
rare region. For R < R, the value of H at which a macroscopic jump occurs both in m and
in m®? decreases with the size of the seed, as already seen in the top panels. In panel (d)
we can also observe that, for large enough D,, the seed slightly changes the value of H at

which the curve m? is steepest, but without creating a macroscopic jump in the system.

Before concluding this part we comment on the linear regime observed in the magnetiza-
tion curve of the Eshelby-RFIM. This regime stems from the propagation of the band within
the system, until all the spins point in the positive direction. In order to understand the
wide generality of this linear regime across different samples, we consider an Eshelby-RFIM
in which a band is inserted from the beginning of the dynamics. This situation would not be
physical in an EPM, as it would correspond to a solid which has already yielded. However
we discuss this case here to show the origin of the linear regime and to explain the behavior
of Ammax. The only difference with what we just did is that the seed is not an ellipsoid
but a whole horizontal line (for simplicity we only consider the 2D case) of positive spins.
We choose the band to have some thickness in order to avoid perpendicular bands, which
amounts to fix s;, = 1 for all z and for L/2 —3 < y < L/2+ 3 at the beginning of the
dynamics. The results are shown in Fig. 2.14. We see that the values of R that we studied,
the presence of the planar seed completely eliminates the macroscopic jump in m(H), as
well as the bump. The magnetization curve starts from a negative value close to —1 and it
increases slightly with H as some spins flip independently. At some value of the external field
H = HP!*"¢ the curve enters continuously the linear regime. The behavior mygr (H) = aH +b
that is followed for H > HP!"¢ is the same as the system without seed follows for H > He,.
The value of a seems to be independent of the sample, of the insertion of the seed and also
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(a) (b) (c)

Figure 2.15: The rotated Eshelby kernels in the real space, with the angle v = 0 (a),
1 = 0.32175 (b), and ¥ = 0.46365 (c). Red stands for positive interactions, while purple for
negative ones (and green for 0).

of the chosen R, which instead affects b. We also show that the same behavior takes place
in an EPM in which the inserted weak region is a plane as described here. Not only the
macroscopic jump, but also the stress overshoot (which is still associated to the formation of
a band) disappears, as the stress curves pass from the elastic branch directly to the plastic
one. This is not surprising since, as already mentioned, this case would correspond to a solid
that has already yielded and cannot sustain more stress than its steady-state value. It is
however interesting that the Eshelby-RFIM reproduces the same behavior.

4.2 Rotated Eshelby-RFIM

It has been reported that the short-ranged ferromagnetic version of the RFIM in 2D is
sensitive to faceting effects associated with the choice of the lattice [8], which can alter the
properties of the system. In the model described, we have chosen the Eshelby propagators
that mediate the interactions to be aligned with the positive part along the x and y axes,
which represent special directions in the square lattice. In order to assess the effects of this
choice we consider here a different case, in which the Eshelby kernels are rotated by an angle
with respect to the horizontal one. This amounts to rotating the lattice by the same angle.
We are in particular interested in how this rotation affects the possibility for the system to
form a band and the presence of a critical point. Notice that by rotating the lattice one still
conserves all the symmetries therein, which can still not fully eliminate faceting. A more
drastic treatment would be to choose a random lattice, for example by diluting a square
lattice or by choosing the sites to be positioned in a Voronoi lattice as in [8]. (Unfortunately,
due to the long-range and anisotropic character of the interactions, this source of randomness
dominates over the one introduced by random fields and as a consequence one loses the ability
to change the behavior of the system by tuning R: the observed system is then always in the
continuous-magnetization phase, and the formation of a band does not occur as spins flip
almost independently.) Going back to our rotated-Eshelby model, we define the propagator

* cos(4(6 — 1))
2 '

G¥(r) = (2.18)

For the rotated Eshelby of this kind, we need more accuracy in the computation of the inverse
Fourier transform. To overcome this issue we have performed such computation in a lattice
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Figure 2.16: Evidence for a critical point in rotated Eshelby-RFIMs in 2D. Upper: Average
value of the order parameter (Amp,y) as a function of R for several system sizes and ¢ =
0.32175 (a) and @ = 0.46365 (b). Lower: Variance of Amp,., multiplied by N = L%,
i.e., disconnected susceptibility, for ¢ = 0.32175 (c¢) and ¢ = 0.46365 (d). Insets: spin
configurations after the macroscopic jump for L = 1024 and R = 0.18 in (a), while R = 0.24
in (b).

with a finer grid, as described in [169]. Due to the periodic boundary conditions, a system
spanning band must be able to close on itself, which restricts the choice to only some values
of ¥. In particular we consider here two possibilities, ¥ = 0.32175 and ¢ = 0.46365, which
correspond to the angles such that cos(¢) = 3sin(¢)) and cos(v) = 2sin(v), respectively
(see Fig. 2.15).

Our simulations show that the same phenomenology as in the case v = 0 is obtained:
when R is large the spin flips have a homogeneous character and occur almost independently,
whereas when R is small the magnetization curve displays a macroscopic jump and the system
shows the formation of a system-spanning band along the direction imposed by 1 (see insets
of Fig. 2.16). After the jump the system enters a linear regime in which the magnetization
increases proportionally to the external field, just as in the ¢ = 0 case. In Fig. 2.16 we
show the properties of these systems as they approach the critical point. In order to do so,
the order parameter m®”(H) has been modified accordingly to capture the formation of the
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tilted shear band, while considering periodic boundary conditions. We observe in the top
panels that the mean value of Am?,  increases from 0 to 2 as R decreases, and it does so
in a smaller region of R as the system size increases. This is associated with a peak in the
related disconnected susceptibility, which once again increases and gets sharper as the system
size increases. Due to the smaller system sizes and the few samples, the characterization
of the critical exponents is more difficult in the tilted Eshelby-RFIM. Preliminary results
give 5/v =~ 1.9 and v ~ 3.0 for both models, but the collapse from which these values are
obtained is not very clean. More samples and larger system sizes are needed to capture a

precise value for the critical exponents in this case.

5 Conclusion

In this chapter we have taken one more step to simplify the description of the yielding
transition of sheared amorphous solids and considered an athermal quasistatically driven
RFIM. In order to reproduce the anisotropic nature of shear bands we have replaced the
short-range ferromagnetic interactions of the standard RFIM by the Eshelby kernel, which
is long-ranged and has a quadrupolar symmetry. We have then studied the evolution of
the magnetization, starting from a negatively magnetized state and then increasing the
external field quasistatically and at T = 0. The magnetization curve depends strongly on
the variance R? of the local random fields. When R is small a macroscopic jump is observed
in its evolution, while for larger values the resulting curve is essentially smooth (barring the
presence of subextensive avalanches of spin flips). We then passed to the study of the weak-
disorder phase, in which the magnetization jumps at some value H,, of the external field, the
macroscopic avalanche is organized in a band, analogous to the shear band observed in the
EPM. We have studied how the band forms and how the spins in the system evolve during
its formation, highlighting similarities and differences with the EPM. We have then analyzed
the critical point that separates continuous and discontinuous regimes. We have studied the
system at and near criticality by looking at the disconnected susceptibility, computed with
two order parameters m and m®. From the results obtained with m®, which more directly
probes the appearance of a band, we have given evidence for the presence of a critical point
and we have provided an estimate of the critical exponents by means of a finite-size scaling
analysis. In order to perform sample averages of the various observables we have used
1000 — 3000, 500 — 1500, 240 — 1000, and 100 — 500 samples for L = N'/2 = 256, 512, 1024,
and 2048, respectively, in 2D, and 500 — 2000, 500 — 2000, 200 — 1000, and 200 — 500 samples
for L = NY3 = 48,64,80, and 104, respectively, in 3D. In addition we have investigated
the effect of a seed of positive spins, mimicking the presence of statistically rare regions in a
macroscopic sample, on the value of the coercive field and its distribution in the low-disorder
regime. Finally we have shown that the critical point is robust with respect to a change in the
lattice which we introduced by rotating the orientation of the Eshelby kernels. In this work
we have not focused on the properties of the avalanches. They have been studied in depth
by many others in the case of sheared amorphous solids, both in MD simulations and with
the help of the EPM [50, 117], and in the case of the RFIM [131, 170, 171]. At least in the
steady state, it has been shown unambiguously that the distribution of avalanche sizes P(.5)
follows a power law of the type P(S) ~ S™7 with a cutoff S. that depends on the system
size. The scale-free property of the avalanches makes the system "self-organized critical"
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or "marginal". The criticality arises with no need to tune any external parameter. This is
different with what is observed in the study of the driven ferromagnetic RFIM, for which the
integrated avalanche distribution rigorously shows a scale-free behavior only at the critical
point R = R.. One may then wonder what happens in the case of the Eshelby-RFIM. We
have studied the distribution of avalanches in the linear regime of the magnetization curve
(we stress once again that this regime does not correspond to a bona fide steady state). The
avalanche distribution seems indeed to follow a power-law scaling, with an exponent 7 which
is similar to that of the EPM (we get 7 ~ 1.25) in 2D and slightly different in 3D. It is
however difficult to assess if the large cutoff to the power law truly diverges with system size.
Avalanches are discussed in more detail in Appendix D.
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1 Introduction

In the previous parts of this work we saw how the EPM, a mesoscopic phenomenological
model, is able to reproduce the physics of amorphous solids under deformation. We showed
that a critical point separates brittle and ductile behavior and that, in the former case, a
macroscopic stress drop occurs with the formation of a shear band. Due to the qualitative
analogy between these results and those of the AQS driven RFIM, we came up with a modified
version of the random-field Ising model incorporating the anisotropic nature of the Eshelby
interactions used in the EPM with the goal of finding an effective theory for the yielding
transition. In this last chapter we try to get a detailed understanding of the similarities
and differences between EPM and driven RFIM, but we do it in a different framework. We
leave aside the finite dimensional approach, where analytical computations are too difficult,
to focus on the mean-field limit of EPM and RFIM. The positive side of this approximation
is that we are able to compute the sample-to-sample fluctuations analytically in the two
models. The effects of different sources of disorder, especially in the EPM, can then be
studied, as well as their role in the definition of an effective random field. The down side
of our mean-field approach is that the geometry of space is lost and we do not account for
the anisotropy of the interactions neither in the EPM nor in the RFIM. The content of this
chapter has been published in a paper [172].

1.1 Mean-field limit of the EPM

The EPM has the same general rules as that simulated in finite dimensions in Chapter 1. We
choose the local stress thresholds to be homogeneous and equal to 1, and we add disorder
to the system by choosing an initial configuration of stress from a probability distribution
Py=o({oi}) = Il; Py=o(0i). The stress drop do; after a site fails is also chosen from a
distribution G({éo;}) = I1; 9(do;). A mean-field approximation can be derived by replacing
the original d-dimensional lattice by a fully-connected one (equivalent to the d — oo limit).
In this limit each local variable (in this case the stress o;) interacts with all the others.
However, taking this limit is not trivial in the EPM due to the presence of anisotropic
interactions associated with the Eshelby kernel (sce Appendix A). To overcome this issue
one can take two possible directions. The simplest one is to assume that after an event each
site redistributes part of its stress uniformly to the rest of the system. The resulting kick
felt anywhere in the system is then of order 1/N. The drawback is that the anisotropic
nature of the Eshelby kernel is neglected, as the contributions coming from yielding sites are
always making the rest of the system a bit more unstable. A more refined description [9]
is to introduce another source of quenched disorder: each site receives a random kick due
to all the plastic events that occur in the system. Due to the 1/r% decay one finds that a
correct distribution of kicks should be broadly distributed and random in sign, so that each
site that receives a kick can be pushed either further or closer to its instability. In particular
one finds that it should decrease as g(6c) ~ |do|~2 [173]. This refined model is necessary if
one is interested in capturing some features of amorphous solids, such as marginal stability.
However, the yielding transition and its dependence on the initial disorder are very similar
in both mean-field models [9]. Since we want to analytically compute the sample-to-sample
fluctuations near yielding, which appears hardly tractable in the model with random kicks,
we restrict ourselves to the simpler model in which the redistribution is uniform and positive.
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Let us now describe the AQS evolution of this system under strain. To this end it
turns out to be more convenient to work with the local stability (distance to threshold)
r; = 1 — 0; > 0 rather than with the stress itself. As the external strain increases from
v to v + dv, the local stress grows linearly with dvy with a factor equal to twice the shear
modulus, so that z; — x; — 2updy (in this chapter we defined v = e, so we need a factor 2
in front of the shear modulus p2). Following this increase, plastic events occur at sites that
reached the threshold, where the stress drops. The distance to instability then goes from 0
(since they where unstable) to a random amount & chosen from the distribution g(Z). The
same amount & is then redistributed to all the other sites, which get closer to instability
by an amount [pa/(p1 + p2)]@/N, where po/(p1 + p2) (with gy > 0) is the strength of the
interaction kernel. As in the finite-dimensional case, also here this stress redistribution may
make some sites unstable, which in turn distribute their stress and repeat the process, until
the whole system is stable again (meaning that the condition x; > 0 is recovered for all sites
1). A key quantity needed to make progress is the total stress increment per site that did not
yield during the change from  to v+ d~y, which we denote by dy. Due to the fully connected
nature of the lattice, all sites can be considered as statistically equivalent. However, the
increment dy depends on both the sample, i.e., the initial configuration which is denoted
by a, and the sequence of stress drops, or equivalently, of random variables {#},---, 2}
with v = Md~y. Here, in contrast to what we did in Chapter 1, we split the dependence on
the initial disorder realization () form the one on the random jumps ({#},---,#M}). This
split does not make sense in a real system or in molecular dynamics simulations, since the
kicks observed in a single realization are obviously a consequence of the initial arrangement
of particles. However, as we will see, it is useful in this mean-field context as it allows to
investigate separately the role of the two sources of randomness. Note that, since the stress
drop on each site ¢ is independently drawn for each plastic event from the same distribution,
it is convenient to define a sequence of random drops for site ¢ that assigns a drop for each
infinitesimal step dv even if the site does not actually yield at this step: many random
variables in the sequence {:%ll, e ,J%ZM } then do not appear in the evolution equations and
will be averaged away in the final quantities.

The total stress increment (for sites that did not yield) dy®#m+1 then reads

N
d o, (2] 41 = 20d + H2 o(d o[ p1 Q»[!IA?]]\,I AM+1, 3.1
y Hedy + N ;:1 (dy z; ()% (3.1)

where [#]ys = {#},--+,#M} for all sites (but keep in mind that the random jumps on each
site are independent) and 0(x) is the Heaviside step function. The first term of the right-
hand side corresponds to the linear elastic change while the second is the contribution coming
from plastic events. (Note that dy®#M11 is infinitesimal for an infinitesimal dv except when
there is a macroscopic avalanche of unstable sites, which as we will see only occurs at the
spinodal point associated with brittle yielding; in the mean-field setting one can nonetheless
constrain the cumulative parameter y to be continuous, provided one carefully accounts for
the presence of a spinodal as a function of ~.)

Due to the positivity of the interaction, one may invert the above expression and relate
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a now sample- and history-dependent strain increase d~y to a fixed dy:

d7a7[2]M+1 -
200

N
_ A MA-1 )
(M2+M1 N1219 dy — & ()M (32)

With either control parameter, the initial condition is v = y = 0. Considering the evolution
of the system as a function of the control parameter y will prove much more convenient than
as a function of v because the evolution at each site is then independent of what happens at
the others and follows the simple rule

xiav[mhwﬂ(y_i_ dy) = {52\44-1 (y) dy if z; (y) > dy
X

7

) (3.3)
otherwise.

In the end, one will of course have to switch back to the physical control parameter v by
using the above expressions. The dynamics of the system when changing from y to y + dy
(where as an intermediate stage we discretize y in M steps dy) can be summarized by the
following equation that describes the evolution of the stability at site i:

Oz — o T (y + dy) =
bla — (@7 (y) — dy))B(a T (y) = dy) + 0z — &} T)o(dy — 27 ).
It expresses that the block i can either move elastically if it is far enough from its instability

threshold or jump by a random amount .CCM *1if it reaches its threshold. After rearranging
the Heaviside functions by using the fact that x > 0, one can recast the equation as

(3.4)

0(a — a1 (y 1 dy)) = 0(x + dy — 22 () — 0EVHY — 2)0(dy — 22T (). (3.5)

From the above equation, one can for instance derive the evolution with y of the fraction of
sites that have a stability less than z, F;’[E]M(IE) =1/N)SN 0(z - x?’MM(y)). It reads

o, [Z] 0 o,[& 1 ol T A
Fat (@) = Folhs (2 + dy) - sz )@ —2). (3.6)

We first consider the average evolution of the system. Fluctuations will be studied and
discussed later on. Since there are two (independent) sources of randomness in the present
model, one should distinguish two types of averages. For a generic quantity A% one
defines an average over samples « and an average over sequences of random stress drops

[j]M7

w /N
Al = / (H dxz; Po(xz)> Aa-,[i]M, (3.7)

0 \i=1
<Aa,[i‘]1u>[£]M — / (H H dzi g(z ) A% [:c]zu (3.8)

n=11i=1

as well as a full average,

A= <Aa7[i]M>[§C]M_ (3.9)
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In the above expressions, A%F1M may be either taken as a function of (then, v = Mdy) or
of y (and y = Mdy). Note that Py(xz) = Py—o(x) = Py—o(z). Fully averaging Eq. (3.6) and
using the fact that the random jumps are independent from site to site and from event to
event (see Eq. (3.8)) provide an equation for the cumulative probability Fy(x) for a site to
have a stability less than x. Deriving it with respect to x gives an equation for the probability

Py(x) = (1/N)< XN, 8 — 221 (y)) >,
8,P,(x) = 0, P, (x) + g(x) P, (0), (3.10)

which can be formally solved in the form

P,(x) = Pyl +y) + / 15 9(2)Prry_a(0). (3.11)

This result has already been given in [4], together with its solution for an exponential dis-
tribution of random jumps g(#). For a general distribution g(Z) it can be recast as

Py(z) = Py(z +y) + g(x)Foly) + /Oy dy' Fo(y' ) Ry—y (2), (3.12)

with Fy(z) = [ da’Po(2’) and

Ry(z) = g'(x +y) + g(y)g(zx) + /0 ’ dy'g(y" ) Ry—y (x), (3.13)

where a prime on a function indicates a derivative with respect to its explicit argument.
For a simple exponential distribution, R,(x) = 0 for every y and x, which gives back the
solution of [4], and for a more general distribution g(Z) the above equations can be solved
by a Laplace transform.

We define the volume-averaged local stability as

me@lar — %Zx?’mM = /0 dx :L‘P;’[j:]M (x), (3.14)

where P;"[j]M(a:) = 8Fya’mM (2)/0x = & SN, 5(z — x?’[Q]M(y)). Averaging over the samples
and the random jumps then leads to

m(y) = /Ooo dx xPy(x), (3.15)

where Py(x) is given by Egs. (3.12) and (3.13). The notation m anticipates the analogy with
the magnetization in the RFIM. To go back to the strain v as the control parameter, one
has to take the average of Eq. (3.2). This is done by first averaging dy Bl gyer :chw +1
which, by using the independence of the variables at each step, simply brings a factor < & >
Vi in the second term. Full averaging then further gives

1 d
2l - 2 py)<i>]=-—L1-—t2 _p0)<i>],  (3.16)

d pu—
7 (p2 + pe1) ) (p2 + pe1)

from which one directly obtains an expression for the derivative 7/(y) and, through an inte-
gration starting from v =0 at y = 0,

1

Y(y) = Q—qu

= | "y Py (0)] (3.17)
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Figure 3.1: Average stress o versus applied strain « for the mean-field EPM with a distri-
bution of random jumps chosen as an exponential and that of the initial local stress (or
stability) as a linear combination of two exponentials [4]. As the strength A of the disorder
increases (for fixed parameters of the random jump distribution), one passes from a regime
with a discontinuous stress jump to a continuous behavior with a stress overshoot to finally
a monotonically increasing regime. The discontinuous and continuous regimes are separated
by a critical point.

where we have defined /
N 2

Te=<32>—"".
‘ (p2 + )

The loading curve, i.e., the average stress versus applied strain o(y), is then obtained by
combining Egs. (3.12), (3.13), (3.15) and (3.17) with the relation

(3.18)

o(y) =1 —mly) = /O'OO de(1 - 2)P,(x). (3.19)

The resulting curve is illustrated in Fig. 3.1 when the distribution of random jumps ¢(Z)
is an exponential and the initial distribution Py(z) is the same linear combination of two
exponentials as in [4]. More details are given in Appendix C, where other distributions
are considered as well. The generic behavior is as follows: As the initial stability of the
amorphous solid, which goes inversely with the variance of the initial stress distribution
Ay = [°dzPy(x)x? — ([ doPy(x)z)?, decreases, yielding of the material changes from
brittle-like with a discontinuous jump of the average stress to ductile-like with a continuous
evolution, the two regimes being separated by a critical point for a specific value of the initial
disorder strength. In this sense the value of Ag plays in this case a similar role to the one
played by R in the finite-dimensional version that we studied in Chapter 1.

1.1.1 Relevance of the mean-field EPM for yielding of amorphous solids and
the depinning of an interface

As already stressed in the preceding subsection, the mean-field version that we study here
overlooks the anisotropic character of the interactions associated with stress redistribution
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after plastic events. Nonetheless, this shortcoming is not central for describing the yielding
transition at the mean-field level since the improved model in which sites receive small
random kicks of both signs from plastic events taking place in the whole sample yields the
same qualitative description of the yielding transition as a function of the material’s initial
degree of stability [7]. What may be more troublesome for applications to finite-dimensional
systems is the fact that the mean-field EPMs are predicted to encounter a linear instability
leading to a discontinuous stress drop whenever an overshoot (i.e., a local maximum) appears
in the average stress-strain curve [6]. As we stressed in Chapter 1, the outcome of this
instability in real materials is still debated [163] as it is not clear whether or not it can be
pinned (and the average stress still be a continuous function of the strain) by the disorder
associated with the nonuniform structure of amorphous solids.

The mean-field EPM with a uniform (ferromagnetic-like) redistribution of stress has a
more direct connection to the problem of the depinning of an elastic interface in a random
environment, which was briefly introduced in Section 2.2.1 of the Introduction. At the mean-
field (fully connected lattice) level, the evolution of the height h; of the interface at base site
i is given by [148, 159, 174]

OVi(h;)
Oh;

Ouha(t) = k(% Sy = hi) +mP(w = he) -
J

(3.20)

where the first term of the right-hand side corresponds to the elastic interaction, the second to
the drive and the last one to the pinning potential which is statistically translation-invariant
along each coordinate h;. When the potential V;(h;) is modeled as a collection of narrow
pinning wells separated by random intervals z taken from a given distribution g(z), the height
at site ¢ is pinned until the driving force exceeds a local threshold ffh associated with the well
depth. The evolution equation can then be reformulated in a way similar to that of the mean-
field EPM by introducing the stability of site i as z; = fI"—m?(w—h;)—k(+ > hi—hi) [159].
A local depinning event is like a plastic event, the jump z; to a new well controlled by
the distribution g(z) being analogous to the local stress jump Z; controlled by ¢(Z) and
each site # i getting a (negative) kick in its stability of kz;/N equivalent to the kick of
[n2/ (1 + p2)]2i/N in the EPM. The equivalence between depinning-like models and EPMs
has been stressed for instance in [139, 144, 148, 159, 174-176] and exploited mostly for
studying the properties of the stationary state in both models. However, one has to be
more careful when considering the transient behavior and the yielding transition that may
then take place. Indeed, one knows from Middleton’s theorem [177] that when starting from
w — —oo with a flat interface the approach to the steady state must be monotonic (in the
thermodynamic limit) and no overshoot in the average “stress”, o(w) = m?(w—h), is possible
when the disorder is (statistically) translationally invariant. To observe an overshoot and
the equivalent of a discontinuous or a critical yielding transition, one must therefore start,
say, at w = 0, with a very special initial condition {h;(0)}: the h;(0) must be such that
(1/N) Y-, hi(0) = 0 (implying that each sample starts with a volume-averaged stress equal
to 0) and such that ¢;(0) = —(k + m?)h;(0) < f (stability requirement on each site
when h = w = 0). In the case of the EPMs these conditions are easily satisfied with an
appropriate distribution Py(z). However, for an interface the h;(0)’s must correspond to
locations of pinning wells, which for each base site are randomly distributed from —oo to
400, leading to a statistical translational invariance. This puts strong constraints on the
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Figure 3.2: Quasi-statically driven mean-field RFIM (described by Eq. (3.22)) at zero tem-
perature: average magnetization m = mm versus applied field H for the ascending branch of
the hysteresis loop and for different values of the disorder strength Apg. For these curves,

k=2and J=1.

allowed initial configurations which then correspond to rare and not typical samples. Note
that, again because of Middleton’s theorem, the stress of an interface starting from w = —oo
is always larger than that of an interface starting at w = wy finite. Since the former is already
in its steady state, the presence of an overshoot when starting from wg just corresponds to
a particularly large avalanche in the stationary evolution, and, being untypical, it would
vanish after taking the average over samples. 2

1.2 Mean-field limit of the RFIM

We now consider the mean-field version of the random-field Ising model. In order to obtain
the mean-field limit of the Eshelby-RFIM defined in Chapter 2, one should consider the
anisotropic nature of the Eshelby-like interactions. As for the EPM, we focus for simplicity
on the case in which the interactions are uniform and ferromagnetic and the mean-field limit
corresponds to that of the standard RFIM defined in Section 2.2.2 of the Introduction. The
mean-field version of the short-range ferromagnetic RFIM has been already introduced and
studied in [10] and is described by the mean-field Hamiltonian

H({s:}) =D _(Jm(H) + H + hy)s;, (3.21)
7

where J > 0 is the ferromagnetic interaction constant, H is the external field, m(H) =
1/N Y, s; is the total magnetization of the system and h; are random fields which are in-
dependent from site to site and are drawn from the same distribution p(h) with A = 0 and
h2 = Ap. When the system is driven quasistatically at T = 0, one observes the expected
phenomenology also in the mean-field approximation: when the strength of the disorder as-
sociated to random fields is small, the magnetization curve shows a jump of order 1, while as

2A possible solution to observe an overshoot in the depinning problem is to take a disorder that breaks
the statistical translational invariance, for instance by modifying the distribution of the position of the wells
so that it varies as the interface progresses: Middleton’s theorem no longer applies in this case.
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Ap gets larger the jump disappears and m(H) is smooth. The two behaviors are separated
by a critical point A% that can be characterized at the mean-field level. In the model defined
by Eq. (3.21) the magnetization curve does not show an hysteresis loop for Ag > A% [10].
The m-vs-H curve follows the same pattern as the external field increases from —oo to oo
and back, passing from the point m(H = 0) = 0. This is only an artifact of this simple
mean-field version of the model, as in numerical simulations in finite dimensions the hystere-
sis loop is observed for every value of Ap [132, 170]. One can then define a coarse-grained
version of the standard RFIM in which the local variables are "soft" spins that take value
s; € R, as opposed to the "hard" spin version s; = 1. The athermal evolution of the RFIM
when quasistatically driven by an applied magnetic field in its soft-spin version is described
by the following Hamiltonian:

N N
'H[{Sl}] = —J Z SZ’Sj -+ Z V(SZ) — Z hiSi, (3.22)
i,j =1 =1

where the N spins are placed on the vertices of a d-dimensional lattice, < 4,5 > indicates
nearest-neighbor sites in the lattice, V'(s) is a generic symmetric double-well potential with
minima in s = £1, and the h;’s are local random fields that are independent from site to site
and are drawn from p(h) with h = 0 and 1?2 = Ap. (Here and below the overline denotes an
average over the quenched disorder.)

When quasi-statically driven at zero temperature by an applied magnetic field H, the sys-
tem evolves out of equilibrium by following a sequence of dynamically accessible metastable
states which is described by the following equation of evolution:

Osi(t) =J > 55— V'(s;) + hi + H(t), (3.23)
jli

where the magnetic field H(t) is infinitely slowly ramped up or down (so that the configura-
tion of spins has time to settle in a metastable state before the field is changed again) and
the sum denoted j/i is over the nearest neighbors of site 4 in the lattice.

In order to continue with the calculations one has to decide which potential to apply
to the soft spins. An easily tractable mean-field limit is obtained by considering a fully
connected lattice and a double-well potential in the form of two joining pieces of parabola,

V(S1) = {

with & > J > 0. This model was first introduced in [10] and further studied in [178-
180]. (A similar model, with an asymmetric potential, has been used to study fracture
in amorphous solids [181, 182].) It displays a rich phenomenology with history-dependent
hysteresis effects for all values of Ap, avalanches in the evolution of the magnetization, and a
sequence of qualitatively different behavior separated by an out-of-equilibrium critical point
as a function of the disorder strength. In what follows we consider the protocol in which
the magnetic field is ramped up, i.e., changes according to H(t) = H + Qt with Q — 0%;
this corresponds to the ascending branch of the hysteresis loop in the magnetization versus
applied field diagram.

(si +1)% s <0,

3.24
(82‘ — 1)2 S; > 0, ( )

N[ NI
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This mean-field model can be solved analytically [10]. On the ascending branch of
the hysteresis loop, starting for instance from a negatively polarized configuration at large
negative field, one finds that the solution of Eq. (3.23) when 2 — 07 is given by

(67
S

Athitm®™(H) 41 py > —Jm®(H) — H + k
(H)={ k o me(H) = I + k. (3.25)

HihotJm®(H) _y b < _ e (H) — H + k.

where, as in the previous chapters, the superscript « indicates that the quantities depend on
the sample «, i.e., on the realization of the random fields {h$'}, and m*(H) = (1/N) >, s¢(H)
is the volume-averaged magnetization which is given by the self-consistent equation

H+Jm*H) 1 {hi
“H=—-14+—-—""2+4 — — +20(h; + H+ Jm(H) — k)| . 3.26
m?(H) = —14+ —— +N;k+(z++m()) (3.26)

Details on the calculations are given in Appendix C. For illustration we display in Fig. 3.2
the disorder-averaged magnetization, which is obtained from

m(H) =m*(H) = (%) [—1+ % +2 /_O:H+Jm(H)_k) dhp(h)], (3.27)

as a function of the applied field H on the ascending branch of the hysteresis curve for
several values of the bare variance of the random field Ag. We have chosen a Gaussian for
the random-field distribution. As first shown in [10] the curve has a discontinuity, i.e., a
magnetization jump, at low disorder, is continuous at large disorder and for a specific value
Ap.=/2/mkJ/(k — J) goes through a critical point at which the slope is infinite.

1.3 Contrasting EPM and RFIM

As we will elaborate more, the comparison between the EPM and the RFIM is meaningful,
at least for the mean-field models, in the region of the average stress-strain curve between
the overshoot, if present, and the steady state. What has been shown [4] is that the yielding
transition which takes place in this region is in the same universality class as the transition
of the driven athermal RFIM.

It is instructive to make a direct comparison between the equations for the AQS evolution
of the EPM and of the RFIM. They are indeed rather similar when starting from an initial
condition at some intermediate strain -y or magnetic field Hy. Consider the mean-field
models introduced above. For simplicity we choose the EPM without randomness in the
thresholds and the jumps, so that disorder only comes from the initial condition, but this
does not affect the conclusions. The equations for the local stability in a given sample «
starting from z%(yp) can then be written

(3.28)

2

() = {fc?(vo) = 2p2(v = 70) — wen®(0.7)s I ¥ <L,
5 (0) = 2u2(y —Y0) — Ten(0,7)+ < & >, if v >,

where n®(vo,y) is the fraction of sites that have yielded between ~y and v, and 72 is defined
by z¢(v0) — 2pu2(7Y — 70) — zen*(Y0,7Y) = 0. We implicitly assume here that within the
chosen interval of strain the sites yield only once; this will be further discussed and checked
below.
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Figure 3.3: Sketch of the difference between the evolution of the local stability z; = 1 — o;
versus applied strain v in an EPM (left) and that of the local magnetization s; versus applied
magnetic field H in an RFIM (right). In both cases the evolution starts from some initial
value of the drive, 7o or Hg.

On the other hand, the equations for the driven RFIM starting from an initial spin value
$:(0) < 0 can be cast as

“(Hg) + (H — Hg) + J[m*(H) — m“(Hy)], if H<H2,

(2

ia(HO) + (H — Hy) + Jm“(H) — m“(Hp)| + 2, if H> H?, (3.29)

3 (H) = {

S
where m® is as before the volume-averaged magnetization in sample o and H is defined
by s¢(Ho) + (HY — Ho) + J[m*(H®) — m*(Hp)] = 0. Eq. (3.28) and Eq. (3.29) have a
similar form, except for the sign of the linear drive and for the fact that n®(vp,~) is not
quite the difference [m®(y) — m®(y0)]. The evolutions corresponding to the above equations
are sketched in Fig. 3.3. They both correspond to continuous (linear) segments as the
control parameter, either v or H, is increased which are interrupted by a discontinuous jump
associated with a local plastic event (jump of size < & >) or a local spin flip (of size 2). One
however notes that the relative sign of the jumps and the linear evolutions are opposite in
the EPM and the RFIM. In a sense, the RFIM has a negative elasticity and, as a result, the
spins can only flip once, whereas a site in an EPM will yield many times if one continues
to increase the strain (not shown in the sketch), allowing the system to reach a stationary
state controlled by the competition between linear elastic increases and plastic stress drops,
as discussed in previous Chapters.

The difference just outlined precludes a direct mapping between the EPM and the RFIM
at the level of individual dynamical realizations. Nonetheless, provided one stays in a re-
stricted region of strain where most sites yield only once, the mapping between the mean-field
EPM and the mean-field RFIM can be further pushed at the level of correlation functions:
see Appendix C. As we show, a direct mapping is possible at the averaged level, e.g., the
average stress-versus-strain curve, but is more demanding for sample-to-sample fluctuations.
We also show that the assumption of a single plastic event per site is very good up to yielding
but deteriorates beyond, although this somewhat depends on the random-jump distribution.

In the following we rather focus on the sample-to-sample fluctuations and investigate
the emergence and the properties of an effective random field in the vicinity of the yielding
transition.
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2 Sample-to-sample fluctuations and strength of the effective
random field

Now that the mean-field framework has been described for both models we can move to the
central point of this chapter. Our purpose is to derive a workable expression for estimating
the strength of the effective random field (if present) in an athermally driven disordered sys-
tem in terms of quantities that characterize the spatial fluctuations present in the system, i.e.,
susceptibilities. In order to obtain such an expression, we use the procedure described in Sec-
tion 2.2 of the Introduction, based on the MSRJD formalism. In particular, from Eq. (1.33),
we obtained an equation for the strength of the renormalized random field, which can be
used in the mean-field approximation we just introduced. Notice that this expression is more
general and can in principle used also in finite dimensions. In the two previous Chapters, we
did not compute the effective disorder in this way due to the strong finite-size effects that
cloud the computation of the connected susceptibility, as we saw in Section 2.3 of Chapter 1
and in Section 2.3 of Chapter 2. As we already stressed when we presented Eq. (1.33), this
result allows us to quantify the effective random field strength even in a system in which the
latter is not present explicitly. For example, in the simple EPM description, the quenched
disorder that is initially present as a result of the amorphous nature of the material does not
a priori take the form of a random field coupled, say, to the local stress. Besides Eq. (1.33)
and the ensuing necessary condition that there exists a nonzero disconnected susceptibility
on top of the usual connected one, there are additional requirements to be satisfied before
concluding to the presence of a random field:

o First, once a local order parameter is identified, the associated connected suscep-
tibility which quantifies the linear response of this order parameter to an applied
field must be strictly positive. The quantities appearing in the numerator and the
denominator of Eq. (I1.33) should indeed be describable as the variance of the local
order parameter and the response of the average order parameter to a uniform field.

e Second, as will be illustrated below in the case of the AQS driven RFIM, the
variation of Aeg(H) should be limited (at least away from the critical point) for the
random-field description to be of any use.

In this section we perform the calculations to obtain an expression of the connected
and disconnected susceptibilities. We start with the case of the RFIM, which is definitely
simpler, and we briefly discuss the evolution of the effective disorder in this case. We then
move to the EPM case, where more care is required. By changing the control parameter
from « to y and back we obtain an expression for the susceptibilities and, hence, for the
effective disorder for this model as well.

2.1 Tllustration for the RFIM

We first illustrate the outcome of Eq. (1.33) in the case of the AQS driven mean-field RFIM
introduced in Section 1.2. To do so we have to compute the connected and the disconnected
(magnetic) susceptibilities. The connected susceptibility can be simply expressed as the
derivative of the average magnetization m = m® with respect to the applied field H. With
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Figure 3.4: Variance of the renormalized random field A.g vs H for the mean-field AQS
RFIM for different values of the bare variance Ap. Inset: Aqg(H,) vs Ap, where H, is the
location of the transition (critical or spinodal point) or of the maximum of the susceptibilities.

the help of 3.27, this leads to

_dm(H) 14 2kp(H + Jm(H) — k)

conn(H) = - s 3.30
Xeonn(H) = = = e T ol T + Jm () — ) (3-30)

where we choose for the random-field distribution p(h) a Gaussian (centered on 0 and of
variance Apg). We next compute the disconnected susceptibility, which requires a description
of the sample-to-sample fluctuations and has not been calculated before. The disconnected
susceptibility is defined by

Xaise(H) = N[me(H)2 — me(H) '], (3.31)

which corresponds to Eq. (1.28) in the case of the mean-field RFIM. As standard for mean-
field models, the calculation of all averaged quantities such as the mean magnetization and
the connected susceptibility can be reduced to a saddle-point approximation in the thermo-
dynamic limit where N — oco. To access the fluctuations,

Sm®(H) = VN[m*(H) — m(H)], (3.32)

one needs to consider terms beyond the saddle-point approximation. As detailed in Ap-
pendix C, this is easily performed, and one ends up with the following result for the discon-
nected susceptibility,
XdiSC(H) = 5ma(H)2 =
Ap+ 4R [T e dhp() [ dhp(h) + 4k 25 5y dBRp(R)
[k —J —2kJp(H + Jm(H) — k)]?

(3.33)

From Egs. (1.33), (3.30) and (3.33) one then obtains the variance of the renormalized
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random field as

(Ap+ 482 [5 paryon dhp(R) [T dhp(h) 4k [5Gy i dhhp(h) |

Aot (H) = [1+ 2kp(H + Jm(H) — k)]

(3.34)

We plot the outcome of Eq. (3.34) in Fig. 3.4 for a range of values of Ap. The deter-

ministic AQS dynamics clearly renormalizes the random field, whose variance is equal to the

bare one only in the limits where H — +o00 and is otherwise larger than Ap. However, this

renormalization is quantitatively very limited. The relative difference between Acg(H) and
Ap is indeed always less than 30%.

2.2 Susceptibilities in the mean-field EPM

The connected susceptibility, which is equal to the derivative of the averaged local stability
(average distance to the local yield stress threshold) m(y) = (m®#lm (7)) (4, With respect

to the applied strain -, is easily obtained from the results of Section 1.1 and [4]. It reads

2ua[—14 < 2 > Py(,y) (0)]
[1 = zePy(z)(0)]

Xeon(7) = m' (y(7))y' (7) = (3.35)

where y() is obtained by inverting Eq. (3.17) and we recall that a prime denotes a derivative
with respect to the argument of the function. Note that we have defined the susceptibility
such that it is negative when the derivative of the average stress-strain curve o’(7) is positive
(because m = (1/N) >, xz; =1 — (1/N) >, 0;). We now need to compute the disconnected
susceptibility, which is associated with the sample-to-sample fluctuations,

2
Xdis(7) = N < [m“’[@]M (v) - m(v)} > ; (3.36)
(2]
and is the central focus of the present chapter.

As already discussed, it is more convenient to first consider the quantity m®E a5 g
function of the control parameter y. However, we are interested in the fluctuations at fixed
applied strain -, and we therefore need to properly switch from the situation at fixed y to
that at fixed . In the present mean-field model, we can introduce fluctuations as

D (3) = m(y) + =0 (5)

\/N

i () = nty) + —om " )

3.37)
a,[2] _ 1 5Aa,[5c]M( ) (
y (7) y(7)+m Y Y
y 1 ~a,[£]
P () = () + =071 (),

where we have momentarily added a tilde on the volume-averaged local stability m evaluated
at fixed y. From the identity m®(vy) = m*(y*(y)), where to alleviate the notation we have
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subsumed all of the disorder characterization «, [#]as in the single subscript «, we obtain the
following relation:

6 () = VN[m(y(y) + \/Lﬁaﬂaw» — (y()] + 0" (y(+) + Viﬁ(sw» -

i (y(7))65% (v) + 6m” (y(7)) + e(1/N),

where €(1/N) — 0 when N — co. By applying the same procedure to the identities y =
y*(v*(y)) and v = v*(y*()), we also find relations between the fluctuations of the two

control parameters,
7' ()67 (7) = —63%(y(v))
Yy (v@)07* (y) = =5 (v(»)),

in the limit where N — oo. We next consider the evolution with y of the volume-averaged
local stability m® v (y), where we reinstall the full explicit dependence on the disorder
(sample and history of random jumps). The infinitesimal variation between y and y + dy is
given by

(3.38)

(3.39)

~ o,|T 1 il a,[Z]; ~ a,|T a,[®
di v (y) = = 3 [ = dy 1= 0(dy a7 ()] + [} = )] 0(dy — T ) |,

i=1
(3.40)
where the first term in the parentheses is the elastic contribution which decreases the local
stabilities of the sites that do not yield by —dy and the second is the plastic contribution that
gives a jump :?:fw *1 to each site i that becomes unstable. At order dy, the above equation
gives

N
A ) = —dy 55 3 oty a7 ) =
2 (3.41)

%dlf —2(p1 + po)dy ™ Elr1 (),

where the second line is obtained with the help of Eq. (3.2). After integrating from y = 0,
this leads to A " A
M (y) = m®(0) + LY 2t p2)y I (y). (3.42)

where the initial condition, m®(0) = (1/N) >_,; 2%(0), only depends on the sample (and since
o(0) =0, m(0) = 1). By combining Egs. (3.37) and (3.38), and Eq. (3.42), one then obtains

e Bl () = 5 (0) + a5~ e ), (3.43)

so that the disconnected susceptibility can be cast as the sum of three terms,

Xais(7) = < oml ()2 > =

2
L T ﬂ 770, [2] A ~
Ao + (E) {6yl ('7)2>[£]M +2 (/Q) (gl () 5m (0)>[:%]M’

(3.44)

where

1

Ao = 6m(0)2 = [29(0) — 12 = /0 " de(z — 1) Po(x) = [0 (0)2 (3.45)
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is the variance of the initial sample-to-sample distribution of the local stability (and of the
local stress as well) and we have used the fact that initially there are no correlations from
site to site.

The calculations of the two nontrivial terms in Eq. (3.44) are rather unwieldy and are
detailed in Appendix C. The final expressions read

m\* e
<_> <5ya’[x]M(’Y)2>[;a]M =

M2

14 2 R v, R v 2
(i saay) (52> [ armo-<a> </0 dyPy%O))

(3.46)
A y(’Y) / y(')/) ! A " / ! /! /
v2<i> [Thayp 0 [ ay' [)< @ > T - ) =T~ )
Yy
y//_y/ R A R
+‘/0 dy[< €X > _T(y)]Ryﬂfylf‘;,/\(O)}>
where T'(z) = [° d2ig(Z), and
7 y(v)
2 S (7)o (0))y,y = —— ML= / dy [ — )Py
< >< g )8 (0 2+ 12)7 (7)) Jo V|6 - W)
(3.47)
+g / dy" PO // +/ dy”Ry y//( )/0 d@(ﬂ— l)PO(@)},

where Py(x) and R, (z) are solutions of Egs. (3.12) and (3.13). By putting all of the above
equations together we obtain the expression for the disconnected susceptibility that we were
looking for.

One can check that for v = 0, the terms in Eq. (3.46) and Eq. (3.47) goto 0 (as y(y = 0) =
0), so that, as expected, the disconnected susceptibility at the beginning of the deformation
reduces to the fluctuations associated with the initial distribution of local stresses, y4isc(0) =
Ag. Tt is also instructive to study the limiting form of the disconnected susceptibility when
v,y — 00, which corresponds to the stationary state. Then, from Egs. (3.12) and (3.13), one
finds that Roo(z) = 0 and Py (z) =1/ < 2 > [ g(2)dz’. After some lengthy algebra, the
disconnected susceptibility in the stationary state can be simply expressed as

Xdis(7 — 00) =< 22> — <z >§o
<3S <7252 (3.48)
<> 4<i>?

where we have defined < 2" >, = [;° dzPs(x)z”. As expected, this expression does not
depend on the initial condition. Both the connected and the disconnected susceptibilities
diverge at the yielding transition, corresponding either to a mean-field spinodal point or a
critical point (see below). For a range of continuous, ductile, behavior the susceptibilities
go through a local maximum at a finite, nonzero value of the strain . One can easily check
that the locations of the maxima are not exactly the same for the two susceptibilities but
asymptotically converge to the same value when the connected susceptibility becomes very
large.
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3 Results for the mean-field EPM

As we emphasized when introducing them, EPMs account for the disorder associated with
the structure of the amorphous solid at the beginning of the deformation process through a
distribution of initial local stresses (or stabilities), which we call Py(z), a distribution of local
thresholds, which we take here as a delta-function d(c*" — 1), and a distribution of stress
jumps after local yielding, which we have introduced here as ¢g(Z). Much more complicated
schemes can be envisaged in order to reproduce more realistic details of the deformation
of amorphous solids. For example, the distributions of local thresholds and of stress jumps
after a plastic event could evolve during the dynamics, mimicking the softening observed
in MD simulations [156]. We stress once again that, while in the EPM we describe these
sources of noise as different and unrelated, in the more realistic MD simulations they all
originate from the initial configuration of the glass. In this section we discuss what is the
role of these various types of disorder and how do they conspire to generate an emergent
random field. We start by showing how the different sources of disorder affect the resulting
average stress-vs-strain curve. We check that not only the initial disorder, but also the one
related to the stress jumps can change the behavior from brittle to ductile.

3.1 Stress-vs-strain curves and the role of various types of disorder

We first address the role of the various types of disorder (mainly, random initial stresses and
random stress jumps) on the averaged stress-strain curves for the mean-field EPM that we
have analyzed in the previous sections. We consider three different distributions of the local
random jumps,

(A) e <&>
X)) = s
g <z>
e~t — e TE> <Z> (3.49)
T) = itht € <T>
g<m) 2t— < S/E,' 7 Wl ] 7 x [7

all with the same average value < & >. In addition we consider two different distributions
of the initial local stresses or stabilities,

P P e . 1
Py(z) = A1 with A 6]5,1[,
P (3.50)
Py(z) = e 220 .

V21 Ag

They both satisfy < x >¢= 1, implying < ¢ >¢= 0, as well as the requirement of plastic
stability, Py(0) = 0. (In the case of the Gaussian the latter requirement is only approximately
satisfied but, since we use small values of Ay, Py(0) is then negligible; we also tried a
truncated Gaussian which exactly enforces the condition in = 0 but we found virtually no
difference with the results obtained with the full Gaussian.) The initial variance is given by
< a? >g — < 2 >%= Ag. For the combination of two exponentials, Ag = 1 —2A(1 — A) with
1/2 < A < 1. For all of the above cases deriving the analytical formulas for o(7) is quite
involved and the details are given in Appendix C.
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Figure 3.5: Average stress o versus strain « for the MF-EPM with different distributions of
the local random jumps g(Z) (see Eq. (3.49)) and different distributions of the initial local
stresses Pp(z) (see Eq. (3.50)). (a): Fo(x) is a 2-exponential combination and ¢(Z) is a
single exponential; curves are shown for several values of the initial disorder variance Ag.
(b-d): Py(x) is a Gaussian and g(&) is either a delta function (no randomness) in (b), a
2-exponential combination at fixed ¢ = 0.5 and several values of Ay in (¢), or a 2-exponential
combination at fixed Ay = 0.25 and several values of ¢ in (d). In all cases, 2us = 1 and
< & >=0.92. When Py(z) is the combination of 2 exponentials, ;11 = 0.022249, while in the
Gaussian case we chose 1 = 0.9u9 in order to see both ductile and brittle behavior.

In Fig. 3.5 we display the averaged stress-strain curve for several combinations of the
above cases and for several values of the initial variance Ag. As we did for the finite dimen-
sional case, we look at the curves by considering three different domains of deformation: (i)
small deformation, v < 1, (ii) stationary state, v > 1, which should physically correspond
to the “flowing state' of the sheared material when the average stress stays constant and
equal to the macroscopic yield stress, and (iii) the region of the overshoot and of the yielding
transition, when present. In region (i) at very small deformation, the response is purely elas-
tic and o () &~ 2ua7, irrespective of the disorder type and strength. Region (ii) is obviously
very different when there is randomness in the local jumps and where there is none (as in
panel (b)). In the former case, a bona fide steady state with an essentially constant stress is
reached, with

<x2>

oy —+o00)=1— 5 (3.51)

A

>
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This expression is independent of the initial distribution Py(x), as it should. Notice that
in this case we do not need to discuss force balance issues, which could affect the steady-
state value in the finite-dimensional case. For a single exponential, the asymptotic value
o(y — o0) is simply equal to 1— < # >, but for a combination of two exponentials, < 22 >
is in general different from 2 < # >2 and one can change the steady-state stress for a given
< & > by varying the parameter ¢, as illustrated in Fig. 3.5(d). On the other hand, in
the absence of randomness in the jumps, o(7) is a periodic function at large deformation
(of period Zp1/[(2u2)(11 + p2)] when y > 1, as shown in Appendix C) and it does not
reach a physically acceptable steady state (see Fig. 3.5(b)). Region (iii) is the one of most
interest for our present purpose of investigating an emergent potential random field. One
can see from Fig. 3.5 (and confirm by a direct analysis of the expressions in Appendix C)
that the same sequence of behavior is observed for all distributions. As Ag decreases the
behavior passes through a regime with an overshoot and a continuous evolution to finally
reach a "brittle" regime with a discontinuity in the stress. The brittle and the continuous
regimes are separated by a critical point [4]. Of course, the quantitative details vary from
one distribution to another but the pattern is the same.

We illustrate the quantitative differences in Fig. 3.6 by plotting the location at which the
stress is maximum, denoted by Ymax, and that at which the slope of the stress-strain curve
(i.e., the connected susceptibility) is negative and maximum, 7y, for several models. The
latter corresponds to either a spinodal point or the critical point when the slope is infinite.
(When the slope is not infinite but a local maximum still exists in the susceptibilities, we
keep the notation 7y for the maximum of the connected susceptibility; the maximum of the
disconnected susceptibility 'y}‘,hs slightly deviates from 7, as one moves away from the critical
point in the ductile region, as seen from the insets in Fig. 3.6.) Note that the maximum
stress (overshoot) and the maximum negative slope disappear for a large initial disorder Ag
when the stress-strain curve is monotonic.

We also display in Fig. 3.7 the variation of the critical value of the initial variance,
Ay, as a function of the parameter ¢ in the 2-exponential distribution of random jumps
(see Eq. (3.49)). Region (iii) is where the analogy with an AQS driven RFIM may hold.
It is clear however that the quantitative aspects and, as we will see below, the strength of
the effective random field depend on the details of the disorder distributions. Before delving
more into this issue, we consider the effect of the disorder distributions on the connected
and disconnected susceptibilities computed in Section 2.2.

3.2 Connected and disconnected susceptibilities

We now discuss the results for the connected and disconnected susceptibilities in the mean-
field EPM. Their expressions have been given above and are more explicitly derived in C. We
again illustrate the results for the three different distributions of the local random jumps and
the two distributions of initial local stresses considered above. The connected susceptibility
Xconn () is shown in Fig. 3.8 and the disconnected susceptibility in Fig. 3.9, both for several
values of the initial disorder variance Ag. Because it is defined as the opposite of the
derivative of the stress-strain curve o () (see above), the connected susceptibility is negative
and equal to —2u9 at small strain, goes through 0 when there is an overshoot, is maximum
in region (iii) previously defined, and goes to zero at large strain; it then approaches zero
either from above or, when there is a local minimum in the stress-strain curve, from below
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Figure 3.6: (a): Location of the overshoot ymax and of the yielding transition and/or the
local maximum of the connected susceptibility 7, versus the initial disorder variance Ag
for the mean-field EPM. (a) Gaussian initial distribution of the initial local stresses and
no random jumps. (b): Combination of two exponentials for the initial local stresses and
single-exponential distribution of random jumps. In both cases the vertical dashed line
marks the critical value of the bare disorder. (¢): Dependence on the parameter ¢t when the
distribution of random jumps is the 2-exponential combination and the initial distribution
Py(z) is a Gaussian; from top to bottom: ¢ = 0.5,0.7,0.85. Insets: Comparison of the
location of the maxima of the connected susceptibility ~y (full line) and the disconnected
susceptibility 74 (dashed line). In (c), t = 0.7. One can show that the divergence of Ymax

y
in (b) goes as Ymax ~ log(1l/(< & > —A)).

after passing first through 0 at a finite strain (see Fig. 3.8(c,d)). In the case where there is
no randomness in the jumps Fig. 3.8(b)), the curve is periodic and the steady state is not
physical.

The disconnected susceptibility is always positive. It starts from Ag at small strain, is
maximum in region (iii), and goes to a positive value equal to the variance of the random
jumps < #2 > — < & >2, either from above or from below. Again, in the case where there
is no randomness in the jumps Fig. 3.9(b)), the curve is periodic.

When there is a bona fide yielding transition, either discontinuous or critical, the two
susceptibilities diverge. The divergence at the spinodal, which is the onset of the discontin-
uous jump in the average stress, is a consequence of the mean-field character of the model
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Figure 3.7: Critical value of the initial variance of the local stresses, Ag ., as a function of
the parameter ¢ that appears in the distribution of random jumps (see Eq. (3.49)). The
initial distribution Py(x) is a Gaussian. The dashed line is the value Ag. = 0.273677
obtained for the case of a single-exponential distribution of random jumps: it is reached
when t =< & >= 0.92.

and can be expressed, e.g., as a function of the initial disorder variance Ag, as

1

nn {73 Ag) ~ - _E’

Xeonn (V; Do) ~ (Yy,c 7>_ (3.52)
Xdisc(’)/; AO) ~ (’YY:C - 7) ’

when v — v for Ag < Ag,. In the vicinity of the critical point at A¢g = Ag, the
susceptibilities can be described by scaling forms,

(85— h
Xconn('}/; AO) = ‘T| (85 6)fconn’i( r|ﬁ5)>
(3.53)

Xdisc(7; Ao) = ’7“|_2(65_6)fdisci(mﬁa)

where r = (Ag — Ag,)/Ao,c and b = (7 — Yy.c)/Vy,c, and the exponents have their classical
values, 8 = 1/2 and ¢ = 3, hence 5§ — f = 1. The scaling functions are different above and
below the critical strain «, and are simply given by the smallest real root of cubic equations,
just as in the mean-field RFIM [10]. These scaling forms are illustrated in Fig. 3.10. The
fact that the exponent of the divergence of the disconnected susceptibility is twice that of the
divergence of the connected susceptibility, either at the mean-field spinodal or at criticality,
is a property that is characteristic of the mean-field RFIM and indicates the presence of
an emerging random field at yicelding. An additional signature of RFIM physics, also found
in sample-to-sample fluctuations, is provided by the study of the size distribution of the
avalanches (i.e., stress drops) present in the mean-field EPM. As shown in [4, 159], the
distributions both at the critical and the spinodal points coincide with those of the mean-
field RFIM [10].
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Figure 3.8: Connected susceptibility Xconn(7) for the MF-EPM with different distributions
of the local random jumps g(Z) (see Eq. (3.49)) and different distributions of the initial
local stresses Py(x) (see Eq. (3.50)). (a): Py(x) is a 2-exponential combination and g¢(2) is
a single exponential; curves are shown for several values of the initial disorder variance Ay.
(b-d): Py(x) is a Gaussian and g(&) is either a delta function (no randomness) in (b), a
2-exponential combination at fixed ¢ = 0.5 and several values of Ay in (c), or a 2-exponential
combination at fixed Ay = 0.25 and several values of ¢ in (d). In all cases, 2us = 1 and
< & >=0.92. When Py(z) is the combination of 2 exponentials, ;11 = 0.0222419, while in the
Gaussian case we chose 1 = 0.9u9 in order to see both ductile and brittle behavior.

3.3 Strength of the effective random field

Having computed the connected and disconnected susceptibilities for the mean-field EPM
we can obtain the strength of the effective random field from 1.33, which here reads

Xdisc ('7)

Aeg () eom ()2 (3.54)
We have already stressed that for the mean-field EPM, it is the yielding transition which
is in the universality class of the (mean-field) RFIM. As a result, one expects the above
expression to be valid only in the region where yielding takes place, i.e., in a region where
the connected susceptibility is positive and is large. Actually, Eq. (3.54) predicts that Aeg
diverges at a local maximum (overshoot) or minimum of the stress-strain curve, which has no
physical meaning. The random field is an emergent property that results from the disorder
present in the system (random initial local stresses, random local thresholds, random local
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Figure 3.9: Disconnected susceptibility ygis(y) for the MF-EPM with different distributions
of the local random jumps ¢(&) (see Eq. (3.49)) and different distributions of the initial
local stresses Py(x) (see Eq. (3.50)). (a): Py(x) is a 2-exponential combination and ¢(Z) is
a single exponential; curves are shown for several values of the initial disorder variance Ay.
(b-d): Py(x) is a Gaussian and g(&) is either a delta function (no randomness) in (b), a
2-exponential combination at fixed ¢ = 0.5 and several values of Ay in (c), or a 2-exponential
combination at fixed Ay = 0.25 and several values of ¢ in (d). In all cases, 2us = 1 and
< & >=0.92. When Py(z) is the combination of 2 exponentials, ;11 = 0.022249, while in the
Gaussian case we chose 1 = 0.9u9 in order to see both ductile and brittle behavior.

jumps) but only appears in the region of deformation around yielding. From Egs. (3.35),
(3.44) and (3.46) we obtain that when Xconn(7), Xdisc(7) > 1,

2
~ M1 ‘
Aot (7) = <2u2(u1+u2)[1— <:%>Py(7)(o)}> (A1) + As(y(1) + As (), (3.55)

with
y y 2
Ai(y) =< 22 > / dy' Py (0)— < & >2 ( / dy’Py/(O)) ,
0 0
Y Y
Ao(y) =2<i> /0 dy' Py (0) / dy"g(0)(< 2> -TW" ) -T' (" —v),  (3.56)
Yy

Yy Yy v =y’
Asp) =2< > (P [Tay" [T dp< @ > ~T@IRy_y4(0)
0 y' 0
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Figure 3.10: Collapse of the rescaled connected susceptibility Xconn(7; Ao)r (a) and rescaled
disconnected susceptibility xaise(7; A0)7? (b) versus h/r3/2, with r = [(Ag — Agc)/Ao,] and
h = (v — 1) /"y, for the MF-EPM in the vicinity of the critical yielding transition at Ag..
(Here, vy is taken as the maximum of the connected (a) or disconnected (b) susceptibility,
but the two maxima are extremely close to 7y in the vicinity of the critical point.). The
insets show the scaling of the maxima of the susceptibilities with r as » — 0. The distribution
of the local random stresses is the linear combination of two exponentials and that of the
random jumps is the single-exponential one (then, Ag. = 0.78388). Note that the collapse
is not perfect but, as suggested in [131] for the mean-field RFIM, could likely be improved
by using a rotated scaling variable of the form A’ = h + br.

and where, as defined before, T'(z) = [° d2Zg(Z), and the functions P,(0) and R, (0) have
been introduced in Section 1.1.

We illustrate in Fig. 3.11 the behavior of Agg(y) in the yielding region (region (iii))
for the three choices of random-jump distribution and the two choices of initial local-stress
distribution, for several values of the initial disorder variance Ag. We see that the effective
variance increases very rapidly for a given value of the initial disorder Ay when one moves
away from -y, (which is either the location of the yielding transition when the susceptibilities
diverges or the location of the local maximum of the connected susceptibility when the
susceptibilities do not diverge). The region of interest where Aeg changes by less than a
factor of, say, 2 is very narrow around <. This results from the emergent character of the
random field near yielding, for which the underlying random-field strength that incorporates
the whole history of the system depends on the deformation. It is quite different than the
behavior of the RFIM shown in Fig. 3.4 in which the effective random-field strength does
not vary much.

We plot in Fig. 3.12(a-c) the effective random-field variance as a function of the initial
disorder variance Ag for both v = 7y, the maximum of the connected susceptibility, and
v = fyyA, the extremum (minimum) of Agg(7y). Note first that the two locations ’yyA and 7y
are identical when there is a bona fide yielding transition and are otherwise very close, as a
result of the proximity of the maxima of the connected and disconnected susceptibilities (in-
sets of Fig. 3.6): in consequence, there is virtually no difference in the values of the effective
random-field strength evaluated at the two locations. We observe that A.g(7y or 7\,A) mono-
tonically increases with Ag. As physically expected, it also increases as yieldiné changes
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Figure 3.11: Effective random-field strength Aeg(7y) for the MF-EPM in the region of the
yielding transition where the connected susceptibility Xcon(7y) > 1. As in previous figures,
different distributions of the local random jumps g(&) (see Eq. (3.49)) and different distri-
butions of the initial local stresses Py(z) (see Eq. (3.50)) are considered. (a): Py(z) is a
2-exponential combination and g(2) is a single exponential; curves are shown for several val-
ues of the initial disorder variance Ag. (b-d): Py(x) is a Gaussian and ¢(z) is either a delta
function (no randomness) in (b), a 2-exponential combination at fixed ¢ = 0.5 and several
values of Ag in (c), or a 2-exponential combination at fixed Ag = 0.25 and several values
of t in (d). In all cases, 2us = 1 and < & >= 0.92. When Py(x) is the combination of 2
exponentials, p1 = 0.0222u9, while in the Gaussian case we chose p; = 0.9u9 in order to see
both ductile and brittle behavior.

from discontinuous to continuous, a discontinuous transition requiring a smaller effective
random-field strength, just like in the RFIM. One can also see that Acg(7y or fyyA) is not a
unique function of Ay and is sensitive to the various kinds of disorder present in the EPM:
although qualitatively similar, the curves in (a), (b) and (c¢) are quantitatively different. In
addition, Fig. 3.12(d) illustrates the variation of Ag(y or ’yyA) with the parameter ¢ of the
random jump distribution for the same given value of Ag. The parameter ¢ has a small but
noticeable effect on the effective random-field strength. (At the same time, changing ¢ has a
strong influence on the steady state, as can be seen from Fig. 3.5(d).) Note that the variation
with ¢ is nonmonotonic but, in the immediate vicinity of the critical point t., one again finds
that the brittle side of yielding (¢ > t.) corresponds to smaller values of A.g(7y or y}é) than
the ductile side (¢t < t.).
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Figure 3.12: Variation of the effective random-field variance Aeg(7) for v = 7 (filled symbols
and full line), at which the connected susceptibility diverges or/and is maximum, and for
v = yyA (open symbols), the value at which Agg(7y) is minimum. We consider the same
distributions of the local random jumps ¢g(#) and of the initial local stresses Py(z) as in the
previous figures. (a): Py(z) is a 2-exponential combination and g(%) is a single exponential;
curves are shown for several values of the initial disorder variance Ag. (b-d): Py(x) is
a Gaussian and g¢(Z) is either a delta function (no randomness) in (b), a 2-exponential
combination at fixed ¢t = 0.5 and several values of Ag in (¢), or a 2-exponential combination
at fixed Ag = 0.25 and several values of ¢ in (d). In (b) the evolution is periodic and we
only consider the first yielding region. In this case vyA = 7y over the range shown in the plot
and the filled and open symbols exactly coincide. In (a-c) the vertical dashed line marks the
critical value of the bare disorder.

To further evince the fact that the emerging random field is not fixed once for all in
the initial distribution but also arises from the history of the deformation, e.g., through the
sequence of random jumps associated with local plastic events, we consider two different
ways of computing Agg(y): one in which the sample-to-sample fluctuations are calculated
via a "quenched" average over the random jumps (this is the calculation done up to now)
and one in which we perform an "annealed" average over the random jumps, i.e.,

P
Xaise (v) = N | (me-llar (N1 = (me Bl (1| - (3.57)

Note that by construction the connected susceptibility is not affected by the change of



Section 4. Conclusion 123

~ o Quenched :
30 L io_g;gg 2.5 eAnnealed Ao,c
) e Ap=0. !
e Ay=0.861
e o Ag=0.905 o~ 2.0
2.0 ™
g =15
=15 N X
S <40
10 iﬁ o i
63 05
17| S ... o (a’)
0.00 0.05 0.10 0.15 0.20 0.25 0.65 0.70 0.75 0.80 0.85

Figure 3.13: Comparison between the quenched and the annealed average over the random
jumps: (a) Disconnected susceptibility xqisc(7) for several values of the initial disorder vari-
ance Ag and (b) variation with Ay of the effective random-field variance at yielding Aeg(7y)
(note that -y is identical for the quenched and the annealed computations and so is the crit-
ical value of the bare disorder Ag . which is indicated by the vertical line). The distribution
Py(z) is a 2-exponential combination and ¢(Z) is a single exponential.

averaging. We illustrate the comparison between the quenched and annealed computations
over the random jumps for the disconnected susceptibility and for the effective random-field
variance at yielding, Acg(7y), in Fig. 3.13. One observes that the way the average over the
history of random jumps is done influences the sample-to-sample quantities and in particular
the strength of the effective random field. The latter is slightly smaller with the annealed
average.

4 Conclusion

In this chapter we have analytically characterized the sample-to-sample fluctuations in a
mean-field elasto-plastic model (EPM) describing the AQS evolution of a disordered system
under simple shear. We have shown that the vicinity of the yielding transition can be
described as an effective AQS driven (mean-field) RFIM in which the applied magnetic field
plays the role of the applied strain. We have emphasized that the effective random field
that linearly couples to the local stability (i.e., the distance to the local yield stress playing
the role of the local order parameter akin to the local magnetization in the RFIM) is an
emergent property: it is not present at the “bare" level in the system prior to deformation
and rather arises at a later stage from a combination of the initial conditions and the history
of deformation involving a sequence of local plastic events. We have then investigated the
influence of the various types of disorder introduced in the EPM to mimic the effect of the
local structural inhomogeneity of an amorphous solid (random initial local stresses, random
local stress jumps, ...) on the strength of the effective random field, showing that they all
contribute. As expected from the analogy with the RFIM, we find that for a decreasing
strength of the random field yielding passes from a continuous crossover to a discontinuous
transition, the two regimes being separated by a critical point.

Although the framework and some general considerations are valid for finite-dimensional
systems as well, our study of the effective random field is restricted to mean-field models.
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The advantage is that we are able to obtain an exact analytical solution but one may wonder
which of the conclusions hold beyond mean-field. The main issue which we have stressed
several times is the description of the stress redistribution after a local plastic event and
therefore the nature of the effective interactions between site variables in the EPM. A proper
description should account for the anisotropic, quadrupolar-like character of the Eshelby
kernel [5, 28, 143]. As seen in the previous chapter, this has a dramatic influence on the shape
of the large avalanches that take the form of bands. Improving the mean-field description to
capture at least part of this phenomenology would be an important step toward an effective
theory of yielding.



Conclusions and perspectives

We have focused on sheared amorphous solids and in particular on the yielding transition.
The response of these materials to deformation can vary greatly: hard amorphous solids
such as silicate glasses catastrophically fail at a given value of the applied strain -, while
soft ones such as mayonnaise can flow plastically for large values of . Due to the different
response of hard and soft amorphous solids to deformation, the two have been studied within
largely different frameworks for a long time. In spite of their differences, amorphous materials
display common behavior when subjected to an external load, such as the localized nature
of the elementary plastic events and their organization in shear bands. The preparation
protocol can modify the response of an amorphous solid, but it has so far been difficult to
experimentally observe a drastic change of behavior, from a brittle (discontinuous) regime
to a ductile (continuous) regime of deformation. Such a change on the other hand has
been observed in molecular dynamics simulations [4]: by only varying the so-called fictive
temperature at which the liquid falls out of equilibrium to form a glass, the same material
under simple shear can be brittle or ductile. It has been proposed that a critical point for
a specific value of the fictive temperature separates the two regimes. These results give a
new perspective on the long-standing problem of the yielding transition of amorphous solids,
which was previously argued to always correspond to a spinodal point. (Note that there are
amorphous solids such as glass made of nanocolloids [183] that can now be prepared over a
large range of annealing, i.e., of stability, and could allow an experimental investigation of
the proposed brittle-to-ductile critical point.)

In the present work we attempted to build an effective theory for the yielding transition
of amorphous solids, i.e., a theory able to capture the physics of the system at long length
scales while only retaining a few salient ingredients. One usually builds an effective theory
by starting from a microscopic description and integrating out the effect of the small scales.
Proceeding systematically along this line is not straightforward for the yielding transition,
due to the absence of a microscopic theory able to describe the relevant physics and because of
the out-of-equilibrium nature of the process. A first phenomenological step is the derivation
of elasto-plastic models (EPMs) which are cellular automata that are devised to mimic at
a mesoscopic level the response of amorphous solids under deformation. This comes at
the expense of debatable assumptions and some arbitrariness in the choice of the rules.
Furthermore, they do not correspond to a Hamiltonian description. Provided one keeps
only a few basic ingredients of the EPMs without putting much emphasis on their ability to
reproduce the microscopic details of realistic materials, these models nonetheless provide a
mesoscopic description that may allow one to capture the long-distance physics associated
with the yielding transition and the brittle-to-ductile critical point. A further step is to drop
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even more details in an attempt to simplify the description of this physics: as suggested
in [4] we therefore explore the possibility to describe the yielding transition by means of an
out-of-equilibrium, athermally driven random-field Ising model.

Our purpose in Chapter 1 was to assess the existence of the critical point that separates
the brittle from the ductile regime and to characterize its properties. This implies studying
large system sizes and a large number of samples, which is difficult in MD simulations due to
the computational cost. Moreover, the presence of the critical point has been challenged [6,
83, 84] and it has been suggested that strong finite-size effects are at play. To bypass these
issues we considered an EPM. Its mesoscopic nature allowed us to explore large system sizes
and to collect data for a large number of samples, from which a finite-size scaling analysis
was possible. To allow for a crisp definition of transitions, avalanches, spinodals, etc., we
studied the simple shear deformation at zero temperature under a quasistatic drive. We
showed that the model reproduces the pattern of brittle-to-ductile stress-vs-strain curves
when the amplitude of the initial disorder is changed, as observed in [4]. We first focused
on the brittle regime showing that the largest contribution to the O(1) stress drop comes
from the sites outside the shear band. We found that the width of the shear band grows
subextensively with system size, while the total number of plastic events in the largest
avalanche is proportional to N = L% due to the fact that sites within the shear band
yield a large number of times (a number of times that grows with L). We found the clear
signature of a critical point in the model by studying the sample-to-sample fluctuations of
an appropriate order parameter. We then gave a first estimate of the critical exponents via
a careful finite-size scaling analysis. In addition we gave strong arguments supporting the
view that the value of the disorder strength R at which the critical point takes place persists
at finite disorder in the thermodynamic limit. In [4] it was proposed that it is possible for
the average stress-vs-strain curve to display a continuous overshoot (with no discontinuous
jump) before converging to the steady state. This possibility has since been questioned by
theoretical arguments [6] and by numerical simulations [84]. This issue is different from the
presence of a critical point for a finite value of R when N — oo and, although we simulated
large systems with the EPM, we were unable to conclude on this. Progress is needed on the
theoretical side (see below). Finally, we assessed the role of statistically rare weak regions
on the yielding transition in the brittle regime of the EPM. This was done by artificially
introducing such a region in the system and studying its influence. These rare weak regions
not only change the average value of the sample-dependent yielding strain 7y, but modify
its distribution as well, which in turn affects the scaling of the connected susceptibility at
yielding.

In Chapter 2 we investigated the possibility of building an effective theory for the yielding
transition based on the random-field Ising model. To mimic the quadrupolar plastic events
and their interaction leading to the appearance of a shear band we replaced the nearest-
neighbor ferromagnetic interactions of the standard RFIM by the Eshelby propagator. We
then studied the dynamics of this new model under an AQS driving protocol. The resulting
magnetization-vs-field curves show some similarities with the stress-vs-strain curves in the
EPM, displaying a jump of order 1 for small values of the variance of random field R, jump
which is associated with the organization of spin flips in a band. For larger values of R
the magnetization increases smoothly (in the thermodynamic limit) with the external field
and the spins flip homogeneously in the whole sample. We found that a critical point at



127

R = R, separates these two types of behavior. This is qualitatively very similar to the
EPM, but by looking carefully at the evolution in the weak disorder case we noticed an
important difference: The possibility for a site in the EPM to yield multiple times is absent
in the Eshelby-RFIM and has consequences on the scaling of the resulting band width with
the system size. We then studied the critical point by computing the sample-to-sample
fluctuations of an order parameter able to capture the formation of a band of positively
magnetized spins, analogous to the one defined in the EPM. The large system sizes and
the large amount of samples allowed for a finite-size scaling analysis of the model around
the critical point situated at R.. Yet, the uncertainty on the critical exponents remains
large and corrections to scaling may be important. The values of the extracted exponents
are systematically smaller than those of the EPM, but it does not seem sufficient to safely
conclude that the two models are in different universality classes. Similarly to the EPM, the
critical disorder R, in the Eshelby-RFIM slowly shifts to larger values as the system size is
increased. By employing the same method we managed to give a convincing argument that
this shifting is again bounded. We finally investigated the effect of statistically rare regions
on the value of the coercive field and found a behavior similar to the one observed in the
EPM and in the standard ferromagnetic RFIM.

In Chapter 3 we presented the analytical study of the EPM and RFIM in a mean-field
limit. Defining a mean-field approximation for the EPM is not straightforward due to the
anisotropic nature of the Eshelby kernel. We focused for simplicity on the ferromagnetic
version proposed in [4] which allows us to characterize in detail the sample-to-sample fluc-
tuations. We studied the passage of the average evolution curves from a discontinuous to a
continuous regime in the two models when changing the strength of the initial disorder. We
were able to analytically compute the disconnected susceptibility and to compare it with the
connected one to give an estimate of the effective strength of the random field. While in the
RFIM the random field coupled to the local variable is explicitly present in the Hamiltonian,
in the EPM it emerges in the vicinity of the yielding transition. We characterized how the
different sources of disorder present in the EPM contribute to the effective random field by
changing the initial distribution of stresses and of stress jumps. We then discussed a direct
mapping between the average evolution of the two models. Interestingly, for this mapping
to work one has to impose the condition of a single yielding event per site in the EPM,
which, as we saw in the weak disorder regime of the finite-dimensional Eshelby-RFIM, is an
important difference between the two models. We tried to push forward the mapping by
working on a direct analogy between the evolution of the disconnected susceptibilities of the
two models, but concluded that this would require the possibility of an evolution-dependent
disorder strength in the RFIM.

To summarize, the present work has given arguments that there indeed exists a critical
point that separates the brittle and ductile regimes of the athermal quasistatic evolution of
sheared amorphous solids and is controlled by the initial degree of stability of the material.
Finite-size effects are strong in this problem and one way around them is to develop an
effective theory. Elasto-plastic models are a first step for a mesoscopic description of the
yielding transition. Besides some debatable weaknesses of this approach, it would be useful
to further simplify the problem. We have made progress in this direction by investigating
in detail the relevance of the athermally and quasistatically driven random-field Ising model
to the description of the yielding transition and more specifically of the disorder-controlled
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critical point. We list below some directions that could be fruitfully taken to make further
progress.

o To conclude on the persistence or not of an overshoot in the ductile regime of the
AQS protocol in the thermodynamic limit, progress is needed on the analytical side.
We are exploring this direction by studying a nonuniform Hébraud-Lequeux (HL)
model [72] following the derivation in [73]. The model is still mean-field, but its
heterogeneous nature allows for the linear shear-band instability proposed in [6]
to clearly emerge. Preliminary results suggest that this linear instability is indeed
present in the model but is not a long wavelength phenomenon as it is already found
in small systems. These results are still in the preliminary phase and they require
further examination. We also found the same type of instability in a random-field
Ising model with Eshelby interactions treated in a mean-field way analogous to the
HL model for elasto-plasticity. This instability appears as a general consequence of
the form of the Eshelby propagator.

e Among the approximations listed in Chapter 1 while defining the EPM, we are
studying the possibility of lifting the one on the perfect alignment of the Eshelby
kernels in the direction of the drive. In reality the strain field generated by a plastic
rearrangement can have its positive parts oriented along a slightly different direc-
tion each time, as observed in MD simulations (see Fig. 1.7 and [155]). It is then
interesting to see how the presence of a randomness in the orientation of Eshelby
propagators affects the yielding transition and the critical point that separates the
brittle and ductile regimes. Preliminary results on small system sizes showed that
the brittle regime is still present when the rotation angle of the Eshelby kernels is
kept between two small values, while it disappears for completely random orien-
tations. This approach is also relevant for building an EPM able to describe the
behavior of dense active matter [184].

e Another condition that would be interesting to relax is the one related to the T'= 0
dynamics. Real amorphous solids are at an effectively low but nonzero temperature.
We discussed how working at T" = 0 is important in order to get a crisp definition of
the avalanches in driven systems. Adding temperature makes the determination of
avalanches more complicated, as they are not sharply defined for 7" > 0. Nonetheless
one still expects to see large events in response to an increase of the external driving.
It has been shown that in the driven ferromagnetic RFIM in 3D the addition of
temperature does not preclude the possibility of observing a clear power-law regime
of the avalanche-size distribution [136]. One could repeat this study in the EPM and
in the Eshelby-RFIM, as it would allow to assess the effect of thermal fluctuations
on avalanches and yielding.

e As we saw in Chapter 2, the anisotropic nature of the Eshelby kernel seems an
important ingredient to obtain realistic results with the EPM. To get a simpler
model and access larger system sizes one could think of keeping this ingredient,
while giving up on the long-range nature. (This would also include the possibility
that the quadrupole-quadrupole interaction is screened by emerging dipoles [166].)
A model with short-range quadrupolar interactions has been studied [185, 186] and
it has been shown that this modification of the kernel alters the formation of the
band and the avalanche size distribution [185]. The effect of this approximation on
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the yielding transition and on its dependence on the initial disorder has not been
studied yet and is an interesting direction we would like to explore. Our working
hypothesis is that the range of the interaction is not important as far as the universal
aspects of the yielding transition are concerned.



Appendix A

The Eshelby kernel

In this appendix we discuss the Eshelby propagator. We start with the derivation of the
long-ranged quadrupolar form in Eq. (I.5) following [149] and we discuss the resulting field
for a point-like and a spherical inclusion. We then discuss the properties of the kernel and
the choice of the values in r = 0 in the real space and in q = 0 in the Fourier space.

1 Fourier transform convention

In the following we make use of the Fourier transforms in both the continuous and discrete
spaces. For the continuous case we define the Fourier transform and its inverse in a d-
dimensional space as

fla) = F{f(x)}a) = / f(x)eiar gy (A1)
f(r) = F Y (@)} r) = @ / fla)eiardiq, (A2)

where the subscripts r and q stand for the integral over the whole real and reciprocal space,
respectively. The standard properties of the Fourier transform follow. The derivative of a
function with respect to one component of r, say z, in the real space follows

af(r .
AU (@) = 0.0 M. (A3
The delta functions in both the real space and the Fourier space are defined as
1 .
(d) _ —iq-r 3d
5O) = v /q e~ g (A.4)
o 1 )
(d) — iqr yd ) A
$0a) = g [ @' (A5)
Finally, the convolution between two functions f and g is defined as
(f % 9)6) = [ gl =)' (A.6)
and its Fourier transform follows
F(f x 9)(r)}a) = f(a)i(a)- (A7)
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2 Derivation of the Eshelby propagator

We generalize the formula in Eq. (I.5) to d-dimensions for homogenous and isotropic materi-
als, following [149] and [162]. The solid is considered to be incompressible and to react only
elastically to a plastic perturbation. In the following we make use of the Einstein notation,
so that a sum is performed over repeated indices. The stress tensor o;; obeys the mechanical
equilibrium condition at every point in the material:

anj(r)

=0 (A.8)

We decompose the stress tensor into the volumetric and deviatoric terms
0ij = omdij + 0y, (A.9)

where

EO‘n’ and O’;j =045 — O'M(Sii- (A.lO)

We assume that a plastic event occurs somewhere in the system. The total strain pertur-
bation can be decomposed in two terms: the plastic one, coming from inside the localized
event, and the elastic one, coming from the reaction of the material to such a rearrangement
out of it. We can write this as Ag;; = Aesh + Aa%l. The stress receives a contribution from

oM =

i
the elastic strain given by Aagj = Q;uAg%l in a point outside the rearranging region. This
elastic strain is just a consequence of the plastic inclusion and it is more useful to rewrite
the stress as Aagj = 2u(Ag;j — AE%I). In the following, moving to the Fourier space will be
convenient. We define

Aﬁi = .F(A’lm), AEA/[',]’ = .F(AEU) = %(inﬁj + quﬁi), Aé'qjj = f(AJ@j), (A.ll)

where the conventions for the Fourier transform are specified above, and q is the vector in
the reciprocal space. We use the same hat notation also for the Fourier transform of the
other quantities. Our goal is to find a relation between the stress tensor at some point in
the material and the strain field generated by the plastic inclusion. This amounts to finding
a function Gji(r — r') such that

Acii(r) = 2u/dr’Gijkl(r - r’)Asg}(r/) (In real space), (A.12)
AGii(q) = Zuéijkl(q)Aéz}(q) (In Fourier space). (A.13)
We start with the mechanical equilibrium equation in Eq. (A.8). Assuming that the system

was at the mechanical equilibrium before the plastic event and will be at the mechanical
equilibrium afterward we can rewrite this condition as

0= 6jAO’Z’j = Gj(AaMéij + Q;LAEZI») (
= 0;Aon + 2M8j(A€ij — AEZI) (
= 0;Aon + ,uaj(aiAuj + ajAul) - ZMGjAgf; (A.16
= 0; Aoy + ,uaiajAUj + 8j6jAuZ‘ — 2u8jAE%l. (
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We define an internal force field f; as
fi= —ZMGjAef; (In real space), (A.18)
fi = —2i,quAé§; (In Fourier space). (A.19)
We can now make use of the hypothesis of incompressibility, that reads

0;Au; =0 (In real space), (A.20)
iq;At; =0 (In Fourier space). (A.21)

Putting this equation inside Eq. (A.14) we get
iq: A6 — pajgi Al + fi = 0 (A.22)

in the Fourier space. We proceed by multiplying by ¢; both sides of Eq. (A.22) (which
amounts to performing a derivative with respect to r; in the real space) and, using again the
incompressibility condition, we get

ig* Aoy = —q; fi, (A.23)

with ¢> = ¢;q; being the squared modulus of vector q. As a consequence for q # 0 we
have oy = iqifi/ ¢®>. From this we finally get an equation for the Fourier transform of the
displacement:

N (45 A pl 44549k .pl
Al = —2i (q—;AEfj — qu4 A5§k> . (A.24)

The resulting stress can be computed using the relation Aagj =2u(Ag;j — Aspl) and reads

ij

Y .y 200+
A = 2 <Qsz ]l;‘zq]ql ik q@cgfk% _ (5ik5jl> AP, (A.25)

from which we obtain

A 4iqko5 + G 2¢i9;9kq
Gijkl = 2 q2 A 1qj4 _5ik5jl- (A26)

We consider a plastic inclusion with the same symmetry as the externally applied deforma-

tion, which is simple shear on the z-y plane. We then neglect the diagonal components of
~pl

the plastic strain, namely Aé;; = 0, for every i. We only consider the deviatoric contribution
to the stress, so that we have
Abyy(q) = AGY,(q) = 2uG (@) A, (), (A.27)
with
R 4q3q;
Glq) = ——2% (1 2D), (A.28)
q
. 4022 + 2>
(q) = — =t =T 3p). (A.29)
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Figure A.1: Eshelby kernel for a homogeneous infinite material in 2D (a) and 3D in the z-y
plane (b) and in the z-z plane (c).

Note that in the last steps of the calculation we imposed the condition q # 0. The kernel
is not defined at the origin in the Fourier space. The value of the propagator in q = 0 is
chosen depending on the deformation protocol and is discussed in the next part. This result
holds for an infinite elastic medium, but we did not make any assumption on the nature
and shape of the plastic strain field Ae%(r), except for the hypothesis that it has the shear
symmetry. In Eq. (A.28) we found the propagator for the plastic strain, but to conclude
on the stress variation that a rearrangement generates on the rest of the material Aog,(r),
we need to choose a form for the plastic event. In [149] the shape of the localized event is
described as a delta function As% = g9a’§(r), with ¢ being a typical amplitude and a the
microscopic linear size (for dimensional reasons). This form is equivalent to a constant in the
Fourier space Aégb = gpa®. The stress resulting from such an inclusion can be computed,

for example in 2D, as

2

- ~ . d 4q;1:q2 q-r
Ay (x) = 207 (Gla) Aty () = ~2pepat’ | 8, el

The integral is however only conditionally convergent and its result changes depending on
how the limit to infinity is taken. In order to overcome this issue, we focus on the case of a
spherical inclusion, so that Akl (r) = oI (r), with an indicator function

(A.30)

I(r)y=0(a—r) (A.31)

where 6 is the Heaviside function, r the modulus of vector r, and a the linear size of the
plastic region. The Fourier transforms of the indicator function are

f@) = Z%(a) (n2D), (A.32)
Ha) = 55 bsin(ga) ~ (qa)cos(ga)]  (In 3D), (A.33)

where we used the definition of Bessel functions of the first kind J,,(z) = % O i cos 0+n0)
The next step in order to find the stress field generated by a spherical plastic event is to



134 Appendix A. The Eshelby kernel

compute the inverse Fourier transform which, in 2D, gives

4q2¢2 . dq 4242\ .
1|y _ iar (2400
r l ei(a) /(%)ze o) i@

2a % -rngz

This integral can be computed with the help of the Bessel function’s properties. After a

lengthy calculation we finally get
2 4
a 3 (a
= 2ueq cos(40) [(;) ~5 (;) ] (A.35)

in polar coordinates r = (r,6). This means that if we consider an inclusion with a finite
size, the integral can be solved. The indicator function I(r) plays the role of a regulator
and allows to compute the integral which was otherwise indeterminate. This form is also
confirmed by real-space calculations in [187]. In the far-field approximation the term in 1/r?
dominates and one finds the same formula in Eq. (I.5)

| 4didd .
Aoy(r) = 2ueoF [_q—zlyf (q)

cos(40)

G(r) (A.36)

Tr

multiplied by the size of the region a? and the uniform plastic strain &g inside it. The same
reasoning can be done for the 3D case, and leads to the form

Aoyy(r)

r7

3udna® | r?(x? +y?) — 1022%y?
= —_— 60
27 3

L2 (A.37)

15

r r7

2 (a>2 3rt — 1502 (22 + y?) + 105x2y2]
after assuming that the plastic strain has again the symmetry of the macroscopically applied
deformation, which is a shear in the z-y plane. In the far-field approximation with the
spherical coordinates (7,6, ¢) the formula above becomes
Sua’ 4
Aoyy(r) = % sin?(6) {sin2(9)(cos(4¢) —-1)+ 5} , (A.38)
r

which conserves a quadrupolar symmetry in the z-y plane and decays as 5.

2.1 Value at the origin and properties of the Eshelby strain field

The calculations in the reciprocal space performed in the previous section are valid only
for the case in which q # 0. To choose the value of the propagator at q = 0 we consider
the deformation protocol that we want to apply. In the case of a fixed-stress protocol, the
macroscopic amount of stress resulting from a plastic event should be 0, since the total stress
is imposed from the outside. The macroscopic stress is given by

Aoy = / Aoy (r)dr = 2uG(0)2D, (0). (A.39)
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One has to impose é’(q = 0) = 0 in this case. In our study we are interested in the strain-
controlled case. When the strain is controlled, the stress should decrease after each plastic
event by a quantity proportional to the total amount of plastic strain generated, so that
@(0) < 0. Different values can be chosen, and the choice thereof has consequences on the

dynamics [147]. In our case we simply choose G(0) = —1. From the expressions of the
propagator in the real space in Eq. (A.36) and in Eq. (A.38) we notice that also in this case
the value in r = 0 is not defined. We can choose to fix G(r = 0) = —1 to decrease the

stress at the site that yields. Notice that the choice of the value at the origin in the real
(reciprocal) space shifts by a constant the propagator in the reciprocal (real) space, so that
the constant term in Eq. (A.38) is not important since it will be changed by the imposition
of G(0) = —1.

From the form of the propagator in the Fourier space we note an important property. As
a plastic event occurs somewhere in the system the stress is modified in the whole sample,
but the total stress along each row and column in the z-y plane is conserved. We compute
the integral over y at a fixed value of x = zg in 2D, which, using the properties of the Fourier
transform, gives

Aoy, (7o) = /_OC Acy(xo,y)dy = 2ueg /_Oo G(qy, 0)e =0 g, (A.40)

in the case of a point-like plastic event with a = 1. From Eq. (A.28) we see that G(gz,0) = 0
everywhere except for ¢, = 0, which does not change the result of the integral. It follows
that Aoy, (z0) = 0 for every zo. This result can be generalized to the situation in which
y = yo and the integral is performed over z, in which case Aoy, (yo) = 0. This means that
no plastic event can change the total stress along a line at constant z or y, defined as

o (0) = [ w0 )dy. (A41)

J —00

Since the total strain is applied uniformly to the sample, it follows that the difference between
the value of this integral at xg and x1 # x¢ does not change from the one at rest, before
deformation is applied, so that

Ty (T0,7) = 0y (21,7) = 03y (20,7 = 0) = 03 (21,7 = 0) (A.42)

for any x¢ and z;. The same result also holds for the 3D case, where the integral should
be carried on over planes perpendicular to either z, y, or z. The resulting stress difference
along such regions is

00 o] SSEEN .
Aoy, (7o) = Lm Lw Aoy (x0,y, 2)dydz = 2peg LOO G(qz,0,0)e"=*0dg, (A.43)

which is again 0 due to the properties of the 3D Eshelby propagator.

3 Implementation of the kernel

The expressions of the kernel that we derived in the previous section is valid for a homoge-
neous and infinite medium. However, in our case, we deal with a discrete and finite lattice
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Figure A.2: Scaling of the Eshelby kernel with the distance along = (a) and y (b) in 2D
for the FFT with and without the Laplacian correction g — 2 — 2cos(g;). In this case the
correction adjusts some oscillations that were previously observed in [151]. In (c) and (d) we
plot the same thing for the 3D case. Notice that here the correction is even more important
since the kernel does not have the right scaling without it. In (e) the behavior of the kernel
along the z axis is shown, with the very fast decay observed when correcting the Laplacian.

of size L and lattice constant a. The form of the Eshelby kernel in this case is not known,
but as a first approximation one could think of taking the continuous solution and discretize
it in the real space as

GP =G% ), (A.44)

where r = (amg,amy) with mgz, = 0,...,L. In the present section we introduced the
superscripts D for the propagator defined on the lattice and C for the continuous one, in
order to make the discussion clear. The periodic boundary conditions need to be imposed.
This procedure requires particular care due to the long-range nature of the interactions. One
has to solve two issues: discretization and periodicity. In the real space it is easy to perform
the discretization as above, but imposing periodicity is harder. A possible solution to this
problem is to consider the kernel in the Fourier space and discretize there, so that

Gy = G%q). (A.45)

In the Fourier space the finite linear size L of the system with periodic boundary conditions is
translated to a discretization of the reciprocal vector. On the other hand the discretization of
the real space translates instead to a restriction of the Fourier space around the first Brillouin
zone, so that q = (7 ny/L,7n,/L) withn,, = —L/2,...,L/2—1 (in 2D with a = 1). From
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the expression of é'qD one can easily find the real space kernel in these conditions by means
of an inverse Fast Fourier Transform algorithm (FFT).

From the expression of the kernel in the Fourier space in Eq. (A.28) we notice that the
explicit dependence on the q vector comes in form of ¢? or ¢2. In the real space these terms
are related to a second derivative along a certain axis ¢ and a Laplacian, respectively. In the
discrete space the second derivative is not defined, but can be approximated via the finite

difference method as
%) | fPya+fP =267

522 2 , (A.46)
where « is the lattice constant. This translates to the Fourier space as
2—-2 ;
P M. (A.47)

a

In our work we use this kind of mesh with a = 1, as was previously done in [147]. The
real space propagator that results from this operation has a very similar behavior to the
expression in Eq. (A.36) and in Eq. (A.38) and it shows a better agreement with respect to
the one without the discrete Laplacian correction. A couple of issues still persist. First, in
both 2D and 3D the agreement with the 1/r? shape of the continuous real space kernel is lost
at small r, due to the cutoff of high-frequency modes [151]. When the kernel is tilted by a
certain amount (as in Section 4 of Chapter 3 or in [169]), more precision on the short-range
interactions is required. In this case we perform the discretization of the real space on a
finer grid. We then average the results in the neighboring sites to go back to the original
dimension of the lattice. The second problem is that in 3D one can see from Eq. (A.38) that
the kernel should be identically zero along the z-direction. This is not the case in the results
obtained from the FF'T algorithm, but the decrease is still fast enough compared to the other
terms and to the first order correction obtained by considering a spherical inclusion.

Other solutions have also been devised to face the summation problem that occurs when
imposing periodic boundary conditions. For example, in [151] the propagator is considered
in the continuous real space and summed analytically over copies of the system in the y
direction. The result depends only on the copies along . The summation along x cannot
be computed analytically, but a sum over the first 5 copies is sufficient.

3.1 The Eshelby kernel in the EPM

In our EPM the system is strain-driven, so we impose @(q = 0) = —1. Before applying
this kernel we also need to fix the value at the origin of the real space. To this end in the
simulations we use the kernel Gil defined as

GvD
G/ _ Wq (Q#O)a (A.48)
T -1 (@=0),
with 1
M=—7 > Gq > 0. (A.49)
q#0

With this choice we assure that GTDZO =-1-1/ L%, Note that all the properties described
in the section above still hold true in this discretized case.
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3.2 The Eshelby kernel in the Eshelby-RFIM

In the Eshelby-RFIM defined in Chapter 2 we have substituted the usual short-range inter-
actions of the standard RFIM with the Eshelby kernel. We obtain the real-space expression
of the Eshelby propagator by inverse Fourier transform of @(q), as described above. The
choice of G(q = 0) and G(r = 0) here is a bit different from the EPM case. As discussed in
the main text we choose now G(q = 0) =0 and G(r = 0) = 0, so that the spin flipping does
not affect its own effective field. This leads to define the kernel

G = Tt @ro, (A.50)
0 (a=0),

with ¢ = 1+1/(L% — 1) obtained by imposing that the spins do no interact with themselves.
As a consequence of this correction, the propagator is not negative in the whole Fourier
space, which could lead to instabilities. However, this was the only way we found to avoid
self-interaction, and the results are still stable thanks to the fact that each spin can only flip
once (no multiple yielding). During the simulations of this model we encountered an issue in
the 2D case. A single system spanning band does not form properly and instead many thin
(one or two lines thick) bands take place when the magnetization jumps. We checked that
the nearest neighbor interaction strength is to blame for this behavior. As we saw in Fig. A.2,
the kernel obtained from the IFFT does not display the 1/7¢ decay at short distance. In
the EPM this issue does not affect the resulting band, probably due to the multiple yielding
of many sites (even if some effects are observed in the shear band form [151]), while it here
causes serious problems. To overcome this issue we decided to manually correct the nearest-
neighbor term of the Eshelby kernel in order to restore the 1/r¢ behavior, which solved the
problem.
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Details on the code

In this appendix we discuss the details of the code. For all the simulations the code has been
written from scratch in C language and compiled with the gcc compiler. To generate random
numbers we employed the Mersenne Twister algorithm. We describe the code to simulate
the elasto-plastic model first, followed by both the standard random-field Ising model and
our version with Eshelby-like interactions.

1 Code for the EPM

As we discussed in Chapter 1 the basic ingredients for the EPM are elastic blocks that
redistribute part of their stress once they reach a stress threshold. The code for a 2D EPM
proceeds as follows. The input parameters for the code are the value of R, the disorder
strength, L, the system size, [, the limit value of the applied strain, and s, the seed of the
random number generator. We begin by defining the 2D array ¢ and assigning the starting
values at each site o; ;, following the distribution I in Eq. (1.77, by means of Monte Carlo
sampling. We continue by normalizing the kernel that we are going to use. As explained
in Appendix A we need to normalize the expression of Gq in the Fourier space to assure
G(r = 0) = —1. We compute M with the expression in Eq. (A.49) and define the 2D
array Ql as in Eq. (A.48). We enter the main while loop, which corresponds to the driving
procedure. The code iterates the instructions within this loop until the strain v reaches the
required limit /. Inside the loop we first search for the least stable site, i.e., the one with the
largest stress omax. Once this site is found, we increase the external strain v by the amount
necessary to destabilize such block, which is precisely 1 — opax (remember that we chose
U;-Eh = 1 for every 7). The stress at every site increases accordingly by the same quantity
(as p = 1). After this driving step we enter in the innermost while loop, where the system
relaxes to the new equilibrium and the avalanche takes place. We check the stability of each
site in the lattice. If there is at least an unstable block, the cycle repeats, otherwise it stops.
When an unstable site is found, we associate a stress drop to its position in the 2D array
da and we increase the local plastic strain 7_p1 of the same amount. Once we checked every
site and do has been filled with the stress drop of the unstable ones, we compute the Fourier
transform of this array, which gives d6. This step is performed by means of the Fast Fourier

Transform (FFT) algorithm [188, 189] using the FETW library [190]. The stress at each site

139
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is then increased by a quantity which is the Inverse Fast Fourier Transform (IFFT) of the
(element-by-element) product of §6 and Q . After this stress redistribution more sites may
be unstable and the cycle goes on until the system relaxes completely. The strain is then
increased again and the procedure is repeated.

1.1 Adding a seed

In order to understand the behavior of the system at small disorder strength, it is interesting
to see the effect that a seed of weak sites has on the rest of the system. Such regions
are always present in the thermodynamic limit, but due to the small probability associated
to their occurrence they may not be observed in finite-size systems. We add such seeds
artificially, as it has been done in the context of MD simulations in [163]. To reproduce the
setup in [163] we choose to act both on the thresholds and on the initial stress of the sites
inside the seed. Such sites are chosen to have a local threshold o* drawn from a Gaussian

distribution of mean afh =1 and standard deviation Ry, = 0.2. After they yield for the first
time, their threshold is set back to 1. The initial value of their stress is instead chosen from
a distribution which reads

(o — %)

N (o)

P50, o) = exp{~0?/(2R%) } (B.1)
which depends on the threshold value assigned to site i. We fix Rgeeq = 0.9. The sites outside
the seed are chosen as before. The procedure to find the least stable site is then modified to
account for the site-dependent threshold by searching xi, = mini(agh — 0;). The external
strain is increased accordingly. Similarly, the stress drops after a plastic event are chosen
based on the local threshold. The rest of the code stays unchanged. The pseudocode to

simulate a system with a weak region defined by length r, and r, is given below.
The code for the EPM with a seed is easily modified to obtain the model described in [7].
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Algorithm 1: Pseudocode for the simulation of the 2D EPM
Data: R, L,l,s

177+ 0;

2 ’y_pl «0;

3 g < 0;

104 0;

5 for i < L do

6 for j < L do

7 | 0i; < MCSampling(Py, R, s) ; /* Stress initialization */
8 end

9 end

10 M+ 0;

11 for —L/2 <n, < L/2 do

12 for —L/2 <n, < L/2do

13 | M~ M +C:’qz,qy ; /* Procedure to normalize the kernel */
14 end

15 end

16 while v <[ do

17 Omax < FindMaximum(o) ; /* Find least stable */
18 v v+ (1= omax) ; B /* Strain increment */
19 g < g+ (1 - O—max)i;

20 fa < 1

21 while f> do

22 fo < 0;

23 da + 0;

24 for i < L do

25 for j < L do

26 if o0;; > 1 then

27 do;j + 0, ; — sign(o; j)(1 — ExpSampling(s));

28 %% — 75;- +d0;; ; /* Unstable sites yield */
29 fo1;

30 end

31 end

32 end

33 if fo then

34 06 + FFT(do);

35 g <+ o+ IFFT(d& g) ; /* Stress redistribution */
36 end

37 end

38 end
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Algorithm 2: Pseudocode for the 2D EPM with seed insertion

[

© o N O WA W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Data: R,L,l,s,714,1y

70

el

do < §;

a+ 0;

o 0;

or i < L do

for j < L do

if (¢,7) € Seed(rx,ry) then

U;hj < GaussianSampling(Ryy, S) ;
0;.; + MCSampling(PsY, Reeed, o
else

Ofg —1;

0i; < MCSampling(Fy, R, s);
end

”Q Il

—h

end

end

M+ 0;

for -L/2 <n, < L/2 do
for —L/2 <n, < L/2do
| M HM+CA¥qzyqy ;

end

end

while v < [ do

Tinin FindMinimum(azth —a):
Y <Y+ Tmin ;
g < 0+ Tminl;
fae 1l
while f5 do
Ja < 0;
dg + 0;
for i < L do
for j < L do
if 055 > 1 then
50@‘7' <~ 045 — sign(oi7j)(afg
BB by
U}}lj —1;
foe 1
end
end
end
if fo then
96 + FFT(dg);
g < g +IFFT(65 &) ;
end
end

end

th
1,50

s) ;

/* Initialization */

/* Procedure to normalize the kernel */

/* Find least stable */
/* Strain increment */

— ExpSampling(s));

/* Unstable

/* Stress

sites yield =/

redistribution */
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2 Code for the standard RFIM

We discuss here the code to perform simulations of the standard Random-Field Ising Model
(RFIM) in 2D, following the same approach of [129]. As for the EPM, we consider the AQS
protocol, which amounts to increasing the external field, let the avalanche of spin flips relax,
and then increase H again. The stability condition at the lattice site i reads hfﬁsi > 0, so
that the spin has to take the sign of its local effective field, defined in Eq. (1.36) (we take
J = 1 in the following). As an input to the code we give the standard deviation of the
random fields R, the system size L, the limiting value for the magnetization [, and the seed
s for the random number generator. We start with H — —oo so that all the spins point
down. We then proceed by initializing the 2D array that contains the local random fields A
and the one containing spin values s. The local random fields are chosen from a Gaussian
distribution with zero mean and standard deviation R. Once these quantities have been
initialized we enter into the first while loop, which corresponds to external driving. The
effective field acting on each site is computed, and the one of the least stable spin is used
to increase the external field H. We then enter in the second while loop, corresponding to
avalanches. Here the value of each effective field is computed again (carefully considering the
periodic boundary conditions), and the location of the sites for which Si,jh?g < 0 is saved
in a 2D array C. If no unstable spins are found, we go back to increasing the external field,
while in the other case we flip the sign of one spin at random between the ones saved in
C. Since the interactions are ferromagnetic one can alternatively flip all the unstable spins
t_ogcthcr without altering the dynamics. This parallel update choice proves to be faster than
the one in which unstable spins are flipped at random one at a time. This process goes on
until the external field reaches the desired limit ! (or the magnetization hits 1).

Notice that this algorithm is not the state-of-the art for the simulation of the RFIM. For a
more careful study of the standard RFIM via computer simulations see for example [132, 170].
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Algorithm 3: Pseudocode for the simulation of the standard 2D RFIM
Data: R, L,l,s
1 H + —ox;

4
5
6 for j < L do

7 | hi j < GaussianSampling(R, s) ; /* Random field initialization */
8 end

9 end

10 while <[ do

11 for i < L do

12 for j < L do

13 hfg — Siy15 +Si—1j + Sij+1 + Sij—1+ hij + H;

14 end

15 end

16 hef FindMaximum(ﬁ\hfﬁ <0); /* Find least stable */
17 H<+ H+ e | /* External field increment */

18 f2 —1;
19 while f; do

20 fo < 0;

21 C 0

22 for i < L do

23 for j < L do

24 h;if]f — Sip1,; +sic1, + Sij41 +Sij-1 + hij + H;

25 if s;;h¢% < 0 then

26 Ci,j —1; /* Memorize unstable spins */
27 fg — 1;

28 end

29 end

30 end

31 if f, then

32 (4chosens Jechosen) <~ ChooseRandom(C|C; ; == 1);

33 Sichosensjchosen < Sichosensjchosen /* Flip random unstable spin */
34 end

35 end

36 end
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3 Code for the Eshelby-RFIM

We now discuss the code to implement the 2D Eshelby-RFIM. The interactions are given
by the Eshelby kernel. The input parameters are the same of the standard RFIM case (see
above). The initial field is again H — —oo. We start by defining the 2D spin array s, with all
spins pointing down, and the local random fields h chosen from a Gaussian distribution of 0
mean and standard deviation R. We then perforn: the operations to prepare the interaction
kernel ég defined in Eq. (A.50). We compute the Inverse Fourier transform of ég to get
its real space expression, and we store it in the 2D array G. Once the real space form of
the kernel is defined we correct the interactions between nearest neighbors in order to have
a proper 1/r2 decay. This is necessary to have a nice and sharp shear band, and should
not affect the conclusions on the critical point. The propagator is then normalized again to
assure éng = 0 after this correction. To simplify the notation, we pack all these operations
into the function "KernelDefinition" in the pseudocode below. The last step before launching
the dynamics is to initialize the effective fields. At the beginning all spins are pointing down
and, since éqzo = 0, we simply start with p*F « h + H. We then enter the first while
loop. We search for the largest effective field among the negative spins and we increase the
external field accordingly. We then proceed to flip the relative spin and we propagate the
effect of such a spin flip to the rest of the system by changing all the local effective fields.
At this point we enter the second while loop. We check if there are unstable sites and if
there are we flip one of them at random. Once the effective fields have been updated we
check again for unstable sites and we go on until the whole system relaxes. Notice that, as
discussed in the main text, in this case one cannot employ the parallel update algorithm
since the interactions are not purely ferromagnetic, hence the system could potentially end
up into an infinite loop in which two or more spins keep flipping at the same time without
possibility of stopping. We then resort to the random update scheme, which allows the
system to properly relax and does not enter any infinite loops. The drawback of this choice
is a larger computational time, as one has to compute the Fourier transform of the whole
system even if only one spin flips. To mitigate this effect, we compute the propagation of the
spin flip effect to the system directly in the real space. This approach is not convenient when
using the parallel update scheme, as many spins flip at the same time, while it is much faster
in the random update case. When the system completely relaxes we increase the external
field and start again, until we reach the desired limiting value of H.

3.1 Adding a seed

Also in the RFIM case we study what happens when a rare region is present inside the
system from the beginning of the dynamics. We insert a seed by forcing some spins to be
positive by means of a large random field that is imposed by hand. The pseudocode for
the initialization of the 2D-RFIM (both NN and Eshelby ones) with a region of +1 spins
characterized by sizes r, and r, can be found below. This code should be substituted to lines
2-9 of the pseudocode for the Eshelby-RFIM simulation, while the rest stays unchanged.
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Algorithm 4: Pseudocode for the simulation of the 2D Eshelby-RFIM

Data: R, L,l,s

1 H + —ox;
2 s+ —1;
3 h«0;
4 o 0;
5 for i < L do
6 for j < L do
7 hi j < GaussianSampling(R, s) ; /* Random field initialization */
8 end
9 end
10 b < h+ H;
11 G <+ KernelDefinition(L);
12 while H < [ do
13 Refl < FindMaximum(ﬁmfg <0); /* Find least stable */
14 H<+ H+ |henffax ; /* External field increment */
15 Simax,jmax < T Simax,jmax’
16 for : < L do
17 for j < L do
18 | BT BT 4 2G i e + [P
19 end
20 end
21 fo < 1;
22 while f; do
23 fo <0
24 C<+ 0
25 for i < L do
26 for j < L do
27 if Sijhfg < 0 then
28 Cij+1; /* Memorize unstable spins */
29 fo1;
30 end
31 end
32 end
33 if fo then
34 (Z.chosenajchosen) < ChOOSGR&Hdom(Q|Ci,j == 1);
35 Sichosensjchosen < — Sichosensjchosen 3 /* Flip random unstable spin */
36 for i < L do
37 for j < L do
38 | RS = BT 284 ehosen Gimichosen i —ehosen’
39 end
40 end
41 end
42 end

43 end
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Algorithm 5: Pseudocode for the seed insertion for the 2D-RFIM

1 s« —L;

2 h<0;

3 peff 05

4 for i < L do

5 for j < L do

6 if (i,7) € Seed(rx,1y) then
7 hi,j — 00

8 Sij 1;

9 else

10 | h;;j < GaussianSampling(R, s);
11 end
12 end

end

=
«w




Appendix C

Mean-field Calculations

In this appendix we describe more in detail the calculations that lead to the formulas and
results described in Chapter 3.

1 Details for the AQS driven mean-field soft-spin RFIM

We consider the mean-field soft-spin RFIM introduced in Section 1.2 of Chapter 3 with
Hamiltonian

N
H[{si}] = —% Z;A 8iSj + Z Vis;) — Z(hl + H)s;. (C.1)
i g2 i i=1

where V(s;) is the 2-parabola potential defined in Eq. (3.24). In the AQS evolution the
system goes through minima of the Hamiltonian, with

—% Z s; + V/(SZ‘) =h; + H. (CQ)
J#

On the ascending branch of the hysteresis curve in which the magnetic field H is adiabat-
ically ramped up when starting from a large negative H, this directly leads to the solu-
tion in Eqgs. (3.25) and (3.26). The average over the random-field distribution p(h), which
is equivalent to the average over samples «, then yields the average magnetization given
in Eq. (3.27).

More generally, if one wishes to compute the average of quantities that are functions
of the sample-dependent magnetization it is convenient to start from the identity f(m®) =
[ dmf(m)d(m — m®) and after using Eq. (3.26) and standard manipulations,

F(m®) o / " amf(m) / " o, (C.3)

—100

with

H —H—Jm+k +o0
Gim\) =\ |m+1- +T']m} +log / dhe™ %" p(h) + / dhe™ =2 p(n).
J —00 J—H—Jm+k
(C.4)

148
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In the thermodynamic limit N — oo, the integrals in Eq. (C.3) can be treated via Laplace’s
method by an expansion around the saddle point (m*, \*) satisfying

g1 (m*,\*) = G(1,0) (m*,\*) =0, (C.5)

where the superscript indicate partial derivatives with respect to the arguments. In practice,
to expand around the saddle-point, we introduce the fluctuations as

m=m"+ om
a VN
(C.6)
A=X+1i oA
a VN
where
A =0,
—H—Jm*(H)+k C.7
m*(H) = E+H 2 dhp(h). (C.7)

k—J k—-J ) -«

After some algebra, one easily finds that

e M) o) (G2
where
g£2,0) = g(2,0) (m*’ )\*) -0
G = gD (A7) = (1 - %) —2Jp(H + Jm* — k),
g£0,2) = g(072) (m*7 )\*) _ (09)
A2 +00 4 [Foo +oo 2
= / dhp(h) + = / dhhp(h) — 4 / dhp(h)|
k —H—Jm*+k kJ—g—gm+k —H—Jm*+k

and one can check that Q£0’2) > 0. Consider now the disconnected susceptibility, ydgisc(H) =

N|m*(H) — m®(H)]2. By applying the above formula in Eq. (C.8), one immediately obtains

(0,2)

Xdisc = g(l’l) —, (C].O)

which after using the explicit expressions in Eq. (C.9) and m* = m + O(1/v/N) leads
to Eq. (3.33) of the main text.

2 Details for the AQS driven mean-field EPM

In this part of the appendix we detail the calculations that lead to the expression of the
disconnected susceptibility, and hence of the effective disorder, for the EPM with different
disorder sources.
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2.1 Expression of the disconnected susceptibility

We first derive the expressions of the terms appearing in the disconnected susceptibility
as given by Eq. (3.44). We start by considering the average of the squared fluctuations,
(6glaln (7)2>MM. As already stressed, it is easier to study the evolution as a function of y
instead of v (see Eq. (3.37)). Then, after integrating Eq. (3.2), one has

VN % 29 dy — x§ ol@ ]"(ndy)) Pt < & > Fgy(dy)], (C.11)
=1

’\Oé,[i}]\,{ —
oY v) 2(M1+M2 —

where y = Mdy and we recall that Fy(z) = (1/N)>; < 6(x — x?"[ﬂM(y)) >3] SO that

4(p1 + NZ)Q 2o (3], 2 _
o (3 w)] >[@1M -

M
> [< Z 0(dy — = (ndy)) @ 10(dy — 25 (n ”dy))A”//+1> — (C12)

W=t (@l

< .% >2 Fn’dy(dy)Fn”dy(dy)} .

where 7 = max(n’,n”) + 1. An important property is that the x;’s evolve independently
when considering their evolution with y as the control parameter, so that when 7 # j in the
sum in the right-hand side of Eq. (C.12) one can factorize the average of the two 6 functions.
After some manipulations this leads to

A + o) ([578 ()] ) =

[£]nr
M [A] ’ [A] "
> [(0tdy — o Gray)ay oy — o8 (wray))ar ) oy, (©8)
n/ n'’=1 Tlmax(n/,n'")+1

= <@ >? Fyay(dy) Fray(dy) .

We need to compute the first term for the two different cases n’ = n” and n’ < n”. When
n’ = n" one simply has

M A
> (Bldy — " (dy)ay ey — S )iy ) =
n/=1 n'+1
M - (C.14)
S (0t =) (1)) = [T atataran [ p
n/=1 n/4+1
An '4+1

The case n’ < n” requires some care. First, the factor £ can be averaged alone, and

(O(dy — a1 (rdy))ay 1 0(dy — o (ndy) 3 +1> -

[i]n”ﬁ»l

— - (C.15)
<&> <9(dy — a0 (' dy)) 2 <9(dy o (n ”dy))>[A] >
' 2n!!

[‘il]n’-&-l
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where [£],,/12_,,» means the sequence of random jumps between Z,,/1 5 and Z,,». From Eq. (3.5),
when using the independence of the random jumps from one plastic event to another, one

obtains that Iy
(8(dy — 27" (n"dy)) ) =

[ }n I 25nl!

(ot2dy — a2 (0" = 1)) ) (C.16)

[i]n/+2—>n”—1

— G(dy) (0(dy — 1" (0" = 1)dy)) )

[x]n/+2—>n”—1

where G(z) =< 0(& —x) >= [° d2g(%), and, by repeating the procedure (n” —n'—1) times,

(0(dy — 2" (n"dy)) ) =

(#7427
O((n" —n')dy — 2 (0] + 1)dy)) — G(dy)O((n” — ' = Ddy — 2T (! + 1)dy))
n!'—n/—2
+ Y Swwaown (A0 dy — 2 (0 + D)),
n=1
(C.17)
with Sy (z) given by the self-consistent equation
Sp(x) = [g(x + ndy) — g(ndy)G(x) + Z g((k = 1)dy)Sy—i(z)|dy, (C.18)

or in the continuum limit with n — oo, dy — 0 with ndy = y and Sy(z) = Sy (z)/dy,

S)(@) = g(a +1) ~ 9)G() + [ 9/)S,-y (@) (€19

One easily checks that the function Ry (z) introduced in Eq. (3.13) is the derivative of Sy(x)
with respect to . With the above expressions, by using again Eq. (3.5) and then performing
the average over Z,’,1, one has
(&7 0(dy — a0 (" dy) )i WHH>H =< &> 0((n" —n' + Dy — 2T (n'dy))
]
—T((n" —n")dy)(dy — & (w'dy)) — G(dy)[ < & > 6((n" — n')dy x?“[““’“’ (n'dy))

n'’ —n'—2

—T((n" —n' —1)dy)0(dy — x; el (Mdy)] + D Spr—w—anr(dy)[ < &>
///71
x 0((n" + 1)dy — " (' dy)) — T(n"dy)8(dy — 277 (n'dy))]

(C.20)
with T'(x) = [ °d2ig(Z). The last step is to multiply the above expression by 0(dy —
xi ol "(n dy)) and to perform the average over the sequence of random jumps [£],, and over
the samples «. After some tedious algebra, we find

(0(dy — 2 (way))ay o(dy — 27 (n )ity =
X //+1

(<> =T~ 0 )dy)] Fay(dy) — [< &> ~T(0" ~ 0’ = Ddy)]Fway(dy) (01
n''—n/—2

+ F n'dy dy Z St —nt—9— n///(dy)[<$ > T( ’”dy)]

7711// 1
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Putting everything together and taking the continuum limit we finally obtain

(et @))®) = (mf (<#*> /Oy dy Py (0)— < & >? (/Oy dy'Py/(O)>2
v2<i> [Tapy o) [[ay o)< & > 16" ) - T )

y' =y
+ [T dil< 2 > ~T@)Ry-y-5(0)]).
(C.22)
By passing from the variable y to the variable ~, this then leads to Eq. (3.46). One checks
that the above expression is equal to 0 when y = 0 and by using the Laplace transform and
expanding one finds that when y — oo,

R <#2>?2  <#>
20 + ) P([558m (9)]*) = Ao — .

C.23
(] 4<:2>2+3<x> ( )

where T = 1 and Aozﬁfl.

We now consider the mixed term (5§ (v)5me(0))
we define

Changing again from ~ to y,

[£]n°

Qy) = <5§a,[92]M(y)(sma(()»[im (C.24)

From the equation for 69 (y) which we have already used above and some straightfor-
ward manipulations, we find

M N
= il o o
) = _2(u1 + p2)N nZu; (B(dy — """ (ndy))2 H>MM [25(0) — 1]
N 1\ (C.25)
S e 33 {00y — = () 2 (0) - 1)

where we have taken advantage of the independence of the site variables when y is the control

variable and we have used that by construction x§(0) = 1 — o§(0) = 1. As for deriving the

expression of <[(57 (2] (y )]2>[£]M, we can use the equation relating 0(z — x} o[@ ]"(ndy))

step n to the same function at earlier steps. After taking the continuum limit, one ecasily

finds that

o,[Z]n @ o v o
(0 @) =0ty —2f(0) ~ G)by — =5 (0) + / dy' Sy—y (2)0(y' — 25(0)),
(C.26)
with Sy(z) defined in Eq. (C.19). Inserting Eq. (C.26) in Eq. (C.25) and performing the

average over the samples, i.e., over the z$(0) leads to

Q) = 5 [y [t = DR +900) [ /'t~ DRl

2(p1 + p2) Jo (C.27)

1

Yy’ Y
+ [Ty Ry () [ dia - DR,
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from which one finally obtains Eq. (3.47). One finds that the above expression is 0 when

y = 0 and it goes to
1
- — A C.28
Q) = 5 (C.29)

when y — oo.

2.2 Solving different models

In this part we discuss the calculations in models with different sources of disorder.

2.2.1 One- and two-exponential distributions of random jumps

The results are most easily obtained by using a Laplace transform on the variable y. We
consider here the 1- and 2-exponential distributions of random jumps defined in Eq. (3.49).
Their Laplace transforms read

1
~lexp _
9(s) = =0
I+ <2 >s (C.29)
1
g2exp(s) — _ ]
[1+ts][1+ (<& > —t)s]
One easily finds from Eqgs. (3.12) and (3.13) that
A p _ [z dye—3Y
Rs(z) = —g(x) + s 9(5) 1f0_ }/(Z) g(y)]’
g (C.30)

et [g(s) — f(}r dye—Syg(y)]
1—4(s)
where a 'hat" indicates a Laplace transform with respect to y. It is easy to check that

for the single-exponential distribution, Rq(x) = 0. Furthermore, since from Eq. (C.30)
Py(0) = Po(s)/[L - §(s)], one has

Pufa) = e [Bo(o) — [ dyeRo(y)] + Po(o)

1
<z>

BP0 = Bo(0) + 5 [ B[~ e T ) (C.31)
v 0

which can be solved once an initial distribution Py(x) has been chosen. (The single-exponential

result is simply obtained by dropping the last term in the bracket inside the integral.) The

numerical solution for all the averaged quantities (average stress, connected susceptibility)

is then easily obtained. The contributions to the sample-to-sample fluctuations can be cast

in the form

20 + )P [F50he w))°) =

A

_ Py(s) co y 2
1 ~2 0 _ N 2 sy IP’ _9 A 0
L, {<m >—s[1—§(s)] <T> ./0 dye (/0 dy y(0)> <T>

and

(p1 + M2)<5’A7a’[i]’” (y)5ma(0)>[i,]M =
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where £ 1 denotes the inverse Laplace transform. Again, since P,(0) is expressed in terms
of Py(y), one can compute from the above expressions the disconnected susceptibility for the
2-exponential and single-exponential random-jump distributions once an initial distribution
Py(z) is specified.

2.2.2 Fixed-jump model
For the fixed-jump model (see Eq. (3.49)) the only randomness is in the initial condition.

Eq. (3.1) simplifies to

po < &> &
dy® = 2pu9dy + 0(dy® — 22
Yy = 2uadry M1+M2Z y )

= 2puody + z Fy (dy®),

(C.34)

and similar simplifications occur for the other equations.

Consider first the averaged quantities. We work with y as the control parameter and we
start with the equation for the (averaged) cumulative probability, Fy(z) = [; dz’Py(z'),

OyFy(x) = 0, Fy(x) — Py(0)0(< & > —x). (C.35)

In this subsection, to alleviate the notation, we replace < & > by & (there is anyhow no
randomness in the jumps). To solve the above equation we have to consider the two cases
z > & and x <  separately.

o >
Eq. (C.35) then reduces to

OyFy(x) = 0, Fy(z), (C.36)
which implies that F,(z) is a function of only x + y. Using the condition at y = 0 gives
Fy(z) = Fo(z +y), (C.37)

Note that the condition that Fy(xz) — 1 when y — oo is properly satisfied. The condition
comes from the fact that at large strain (or y), all the sites have undergone at least one
plastic event, so that their stability cannot be larger than # (whereas this could be possible
at small y if Py(z) extends over all values of z). As a result, F(z) being the cumulative
distribution, it must be equal to 1.

e <2
Then,
(Oy — 0z) Fy(x) = —Py(0), (C.38)
so that Fy(x) is a function of y and « + y. It can be written as F,(z) = P(x +vy) — H(y),
with ”
_ /0 dy Py (0) (C.39)

and P(x + y) yet to be determined. The condition that F,(0) = 0 then imposes that
Fy(z) = H(x +y) — H(y). One expects that the function H(y) is piecewise continuous and
one easily checks that it takes the form

H(y) +ZH0 —ni)f(y —ni), (C.40)
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with Ho(y) defined between 0 and Z. From the above results, one finds the solution for all
values of = as

Fy(x) Fo(y+x)+0(:c—x[ Z (Foly +z —n2)0(y + x — ni)
= (C.41)
— Fo(y —n@)0(y — nfv))} :
and by deriving with respect to x,
Py(z) = Po(y+x)+0(2 —x) Z Oy + 2z —ni)Po(y + x — ni). (C.42)

n=1

This solution is a periodic function of y for large values of y since the contribution from the
first term vanishes when y — oo. The periodicity of this function (of period ) is clearly
unphysical and disappears as soon as one introduces randomness in the jumps (or in the
thresholds).

The expressions of the average stress and of the connected susceptibility versus the
strain v are then derived by using the general formulas given in the main text. Note that
by combining Eq. (C.42) and Egs. (3.17) and (3.19) one finds

. 1 y+2
W+ ) = ly) = g-lo - [ 'R,
k2 0 (C.43)
oly+)—oly) = [ da'Pola)le+2(1+y—a")
y+2
so that when y > 1, v(y + &) = 1(y) = Zg; 5y and o(y +2) —o(y) = 0.
We next study the disconnected susceptibility,
R A _
xae(r) = Do+ (22 ) TG0 + 2 (A2) Srtome o), (C.44)
H2 H2

by considering as before the fluctuations with y as the control parameter.

We first calculate the squared-fluctuation term. One has

2

NSRRI Le

5*‘}/0&(y)2 = <2M2> N E E |:F 'dy dy ”dy(dy) ’dJ(dy) ,L//dJ(dy)} (045)
n'=0n''=0

where Mdy = y. The function Fy v (2',2") = F(2/)F (2") satisfles evolution equations
that generalize Eq. (C.35):

ay/ Fy",y” (.f/’ ;(,‘”) = a’J;’ Eu’,y” (1'/, {L‘”) — 8LL" Fy/7y// ($, 1,'/)

#'=0 (C.46)
ay// Fy/’y// ({L‘l7 :L'”) = 81'” Fy/’y// (.’L‘/, CL‘//) — aﬂc”Fy’,y” (.’,l’,'7 .I'/)
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Furthermore, one can introduce the function Hy (2, 2”) through

1 1
Fy (e o) = (1 _ N) Fy (@) Fy (&) + < Hy (a2, (C.A7)

where we have used the independence of the evolution with y of the variables on different
sites. The above equations for F,/ (2, z") translate into equations for Hy ,(z', 2"). They
can be solved by using the procedure followed above or F(z) and considering separately the
cases ', 2" < Z, 2’ <2 <2 or2” <& <2, and £ < 2/,2”. One can then show that

Hy’,y” (.I/, CE//) — U(y/ + I/, y// + LL‘//) _ U(y/ + I/, SL‘//) _ U(l'/, y// + LU//) + U(y’, yl/)’ (048)

with

U(Z,2") =Fy(min(2’, 2")) + Z Fo(min(2" — nZ, z”))Q(z’ - nﬁ)

n=1

+ i Fy (7', min(2" — n:%))ﬂ(z” — ni) (C.49)

n:ol .
+ Z Z (min(z" — n'2, 2" n":%))@(z/ - n'i)@(z — n”f)
n'=1n""=1

From Egs. (C.45) and (C.47), one can write the averaged squared fluctuations as

542 (y)? <2M2> Z Z { wyndy(t', &) — Foay(dy) F, ”dy(dy)] (C.50)

n/=0n""=0

which after expanding in dy and taking the continuum limit gives

0y (y)? = (;ﬁ;) [Uly,y) — H(y)"], (C.51)

where H(y) has been defined before. We now compute the cross term 69 (y)dm®(0) which
can be expressed as

M
33 ()3 (0) = w;f > [Faay(dy) = F2g, (dy) | m(0) = 1] (C.52)
n=1
with - 5
m®(0) = /0 do'a! S S (a). (C.53)

After some lengthy but straightforward manipulations, we find that

ymdyPo )1 —/). (C.54)

64 (y) S

2#2

Using the formulas to switch from fluctuations at constant y to fluctuations at constant ~ and
collecting all the terms, we finally obtain an expression for the disconnected susceptibility.
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2.3 Annealed average over the random jumps

We go back to the generic case where the local stress jumps are random and we consider an
annealed calculation in which one first averages all quantities over the random jumps, i.e.,

Al () = Aj (@) = (ApE () (C:55)

Clearly, this procedure does not change the result for the average stress nor for the connected
susceptibility. However, this modifies the sample-to-sample fluctuations and the disconnected
susceptibility, which is now written

2000000
X5 (4) = A + (%) (97 (M) gy +2 (ﬂ

M2

) 60 G, 60 (0), (C.56)

One can sece that the only term that is different from the quenched-average calculation is the
squared-fluctuation term (the second one in the right-hand side). We thus compute this term
by changing again from v to y for the control parameter. We introduce the random-jump
averaged fluctuation

63 (y) = <5ﬁyav[5c]M (y) > % ( ndy Fndy(dy)> , (C.57)

[#]nr

M2 o

with

F@) = (Fpiv@) = F@+9) - G@Fw) + [ &/ W)S, @), (C59)

[i] M

When computing the sample-averaged squared fluctuations we will have to consider the
average of products of functions F'(r). We therefore derive the general formula

PR - (1= ) e @Fr(@) + 5[5 (Fotminty'sof) + ) + G2e) Fofanin(y/, ")

—|—/ / dy' dg" Fo(min(§', § ))Sy/_g/(x)Syu_gu(a:)) — G(z)Fy(min(z + v/, y"))

+ /0 dj[Fo(min(y’ + z,9)) — G(x) Fo(min(y', )1 Syr () +y' < y'],
(C.59)
where 3’ <+ y” denotes the term obtained by exchanging 3’ and y”. To simplify the calcula-
tion, we restrict ourselves to the single-exponential random-jump distribution. Then,

Fo(x) = F§(x +y) — e Zi5 F§(y). (C.60)

and

@@ = (1 5 ) Fr@)Ep@) + 5 [Folo + minGy' ")

(C.61)
+ e =i Fy(min(y,y")) — e~ Z= (Fy(min(y/, @ + 1)) + Fo(min(y”, z +3))) .
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We can now compute the fluctuations as

B & 2 J
AP =N (g ) S (Frag @ (@) — Py () Foray ()

p2tpa)/
A 2 M
~(5) X |Faldy + dymin(e', ) + e Fy(dyming'ny)  (C62)
2(/“1’2 + /“Ll) n' n/'=1

dy

—e~ o5 (Fy(dymin(n/, 1+ n")) + Fy(dymin(n”, 1 + n'))) — Fn/dy(dy)Fnudy(dy)] .

Some care is needed to consider separately the cases n’ = n” and n’ < n” (or n” < n’), and
we finally arrive at the sought-for expression,

39°(7)% = (ﬁf [Foly) + - i = /Oy dy' Py (0)(y —y') — </0y dy'Py/(0)>2]
(C.63)

From this and previous results we can compute the annealed disconnected susceptibility as
a function of ~.

3 Direct mapping between correlation functions in MF-EPM
and MF-RFIM

In this section of the appendix we push further the idea of a direct mapping between corre-
lation functions in the mean-field EPM and a mean-field RFIM which was discussed in Sec-
tion 1.3 of Chapter 3. As already explained, this can only be done in a restricted range
of the driving parameter, in the vicinity of the yielding transition. In particular, the range
must be small enough that (i) the connected susceptibility of the mean-field EPM is positive
and large (region (iii) in the main text, i.e., between the overshoot and the steady state) and
that, moreover, (ii) the sites in the EPM yield only once. We define this range as [0, Ym],
which translates in an interval [Ho, Hy| for the RFIM. At ~p the state of the EPM is given
by the exact evolution starting from v = 0. However, we have more freedom for the RFIM.
The only requirement is that the system be in a metastable state at Hp, and we can relax
the condition used in the main text that this state is the one obtained by ramping up the
external field from —oo and by following the ascending (lower) branch of the hysteresis loop.
In the following we first express the evolution of the mean-field EPM and mean-field RFIM
in terms of the initial condition at vg or Hg only. Once the evolution equations for the two
models starting from an arbitrary value of the external field are obtained, we compare the
results in order to check the similarities between the two. By forcing some conditions we are
able to find an exact mapping between the average evolution of the two models.

3.1 Mean-field EPM starting from finite strain

For simplicity, as in Section 1.3 of Chapter 3, we consider a model in which randomness is
only in the initial condition, with g(%#) = 6(Z— < & >). This is not expected to alter the
qualitative behavior of the system in the close vicinity of the yielding transition (of course, as

shown in Fig. 3.5, it does for the steady state). We again switch the control parameter from
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v to y and then study the evolution between yo and yp,, with yo = y*(v0) and ym = y*(Vm)-
Due to the assumption of a single jump per site, the local stability evolves according to

z3 (y) = 2 (yo) — (¥ — %o), when (y — yo) < 27 (yo),

) ‘ C.64)
— 22(g0) — (y — yo)+ < & >, when (y — yo) > 22 (y0), (

which is the equivalent of Eq. (3.28) in main text, with the local stability as a function
of y instead of 4. One immediately derives for the volume-averaged quantity (compare
with Eq. (3.14))

7 (y) = () = (g~ )+ < &> [ daPy(a), (C.65)

where Py () = (1/N) 32, 6(z — o (yo)), and, after averaging over the samples,

Wly) = F(yo) — (y — yo)+ < & > /0 " daPy, (2), (C.66)

To go back from y to the original control parameter ~y, we use

22y () = 7o) =y w0 — ¢ 3 [ dy'S(—a2 ()
P (C.67)

Te Y o
=Yy —Yo— NZ dy'd(—z (o) + v — yo)
i YYo

where the second equation is obtained by taking into account the fact that only one jump
per site is allowed. This is true provided y — yo is small enough (in particular, one should
have y — yo << & >). After averaging, one has

2p2[v(y) — 70l = (¥ — v0) — T /Oy_y0 dy' Pyy(y'), (C.68)

which can be inverted to give

Ay(v)
Ay(y) = y(v) — yo = 2u2(y — 70) + ¢ /0 dy' Py, (y'), (C.69)

and by derivation,

0A 2
y(7) _ 2 ’ (C.70)
Oy 1= zc Py (Ay(7))
where one should keep in mind that Ay also depends on . The connected susceptibility
Xconn(77) = m/ () can then be expressed as

~ Om(Ay) 0Ay(y)  2p2( =1+ <3 > Py (Ay(y)))

conn - - C-71
Xeom (1) = =5~ 5, T 2P (A7) (G71)

One can notice by comparing with the exact expression in Eq. (3.35) that the single-jump
approximation leads to the substitution of Py i a,(0) with P, (Ay). This makes sense, since
if a site is unstable at y, with x;(y) = 0, it should be the first time since yy, meaning that
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it evolved only elastically with, as a consequence, x;(yo) = y — yo. The condition that the
connected susceptibility is positive in the relevant interval of + or y implies that

1
Py, (Ay) >

< &>’
and puts a bound on the possible values of yy and y,. We now proceed with the computation
of the sample-to-sample fluctuations. In what follows we set 2uo = 1 to simplify the notation.
Following the same procedure as in the main text, we introduce the reduced fluctuations

sme(y), om” (y), 69%(7), and 69*(y). One still has
o (v) = 6m” (y(7)) + ' (y(1))55% (%), (C.73)

(C.72)

and therefore,

O (v) = 6 (h0) = " (y(3)) = 5m" (yo) + ' (y(1))55 (v) = ' (40)39% (0)- ~ (C.74)
By combining Egs. (C.65) and (C.67), we derive

x x
a _ — (1~ c Ay — C Im%y) — m& C.75
) =10 = (1- 55 ) v - oW - AWl ()
which can be inverted to give
o o <I> B T Ol a
v —yo =2 _xc(v 70+ “ [m®(v) —m®(10)]. (C.76)
The fluctuations of y can then be rewritten as
N N L
09%(v) = 9% (h0) + ———— [6m"(v) — dm" ()], (C.77)

<ZT> -z,

from which we get

oin" (y(v)) — " (yo) + (7' (y(v)) — 7' (40))85* (v0)

1— —Z=—m/(y(7))

6 () = 0m™(70) + (C.78)

The disconnected susceptibility Xaqisc(7) = 0m®()? can then be expressed as

Xdisc(’7> :Xdisc<70) + 2Xconn(’7) <i> ~ (
o (y(7)
)

L [6m" (y(7)) = 6m” (o) + (M (y(7)) — ' (10))39% (30)]°
N 2
(2= ()

o (o) [6m” (y(7)) = 5" (yo) + (' (y(7)) — ' (40))39* (0)]
)

+ Xconn ('7)

)

(C.79)
where we have introduced the connected susceptibility given by Eq. (C.71). As already
stressed, we are interested in a range [0, Ym] such that Xconn(7y) > 1. Then the variance of
the effective random field Agg(Y) = Xdise(Y)/Xconn(7)? is obtained as

(o () — o () + (A (y(7)) — 7 (30))93° (20))°
N 2
(=== (y ()]

where all quantities can be calculated as done in the main text and in the previous sections
of this appendix.

Aeﬁ(’y) =~ s (CSO)
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3.2 Mean-field RFIM starting from a finite field

We consider a starting point Hy which is finite and between the two coercive fields, so that
the sites can be either on the upper or lower branch of their hysteresis loop, since they
both represent local minima of the Hamiltonian. The sites that have already flipped (upper
branch) can only contribute elastically to the magnetization curve (remember however that
the RFIM has a "negative elasticity" compared to the EPM), so that the plastic-like behavior
associated with changes of local minimum depends only on the fraction of sites that start
on the lower branch. (Notice that, as mentioned above, such an initial configuration is not
reachable by starting from a magnetic field that goes to —o0.)

We start by introducing a variable y, analogous to that used in the EPM,
o « J (e}
y*(H)=H + Jm (H):H+m2¢i (H). (C.81)
i
where we have defined for convenience ¢§ = ks{'. Inverting the above relation gives
J
H(y) =y — Nk > 62 (y). (C.82)
i

To describe the initial preparation of the system at H = Hy or y = yo we consider that all the
site variables are independently distributed according to the distribution Py, (¢), which plays
the same role as Py (x) in the EPM. The constraint that the site with local magnetization
¢ correspond to a local minimum of the Hamiltonian imposes the following form:

Py (¢) = 0(¢p — 2k) [p— (6 — k — yo) + p1 (& — k — w0)]
+0(—¢ —2k)[p— (¢ + k —wo) + p1 (¢ + k — y0)] (C.83)
+ 0(0)0(2k — @) p4 (¢ — k —yo) + 0(=0)0(2k + ¢)p— (¢ + k — o),

where we have defined the probability distributions p_(h) and p4(h) for having a random
field h and being in the lower and upper branch, respectively (which, again, means that the
local magnetization has or has not flipped from the left minimum of the 2-parabola potential
to the right one: see also Fig. 3.3). The situation considered in the main text corresponds
to taking y9 — —oo and p4(h) = 0. The two distributions p_ and p; satisfy

/ dhp—(h) = a, / dhpy(h) =1 - a,

[ anno iy = [ annp.m) =0, (C.84)

where the last two conditions come from the fact that a large negative (respectively, a large
positive) local random field forces the local magnetization to be in the lower (respectively,
the upper branch). Note that a € [0, 1] is a free parameter. In what follows we will consider
the case yp > 0, which we anticipate to be the relevant one. Taking Eq. (C.84) into account,
the expression of Py, (¢) then simplifies to

Pyy(6) = 0(¢ — 2k)[p— (& — k — yo) + p+(¢ — k — yo)]

+0(0)0(2k — ¢)py (¢ — k —yo) + 0(=p)p—(¢ + k — o). (C.85)
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The evolution of the local magnetization ¢§' as a function of y reads
o7 (y) = &7 (yo) +y — yo, when ¢ (yo) > 2k or ¢ (yo) < —(y — yo)
= &7 (y0) +y — yo + 2k, when 0> ¢f(y0) > —(y — yo)-

if 4 belongs to the sites on the lower branch between yg and y, and

o (y) = o7 (yo) +y — yo (C.87)

otherwise. As in the EPM, if one considers y as our control parameter, each site evolves
independent from the others. After averaging, one finds

(C.86)

o) = k() = FFo0) +y—w+ 26 [ o (a)

v (C.88)

o 0
=¢?(yo)+y—yo+2k/ dzp—(z + k — yo).
—(y—yo)
From this expression and the average of Eq. (C.81), y(H) = H + (J/k)¢(y(H)) one can
compute the connected susceptibility

Xeoun (H) = %d)’(y)y'(ﬂ) - %

We now consider the disconnected susceptibility xaisc(H) = [0*(H)]?. We again use the
same procedure of relating the fluctuations at constant H to the fluctuations at constant y.
If the bare disorder (random-field distribution) is independent of the applied magnetic field
H | the sample-to-sample fluctuations at a given H can be formally expressed in a way that
do not explicitly depend on the starting point Hp, and one has

(C.89)

«

- (y(H))]
2

[0

m'(y(H))?
Actually, the disconnected susceptibility xqisc(H) can be cast as the sum of three terms as
in Eq. (C.79) for the EPM, but in the present case 69“(Hy) is simply given by J(Sﬁ%a(yo)
and the sum of three terms simplifies to the above equation. Note however that om (y(H))
and m/(y(H)) do depend on the choice of initial condition in Hy, as we show below.

A (H) = (C.90)

The sample-to-sample fluctuations at fixed y can be calculated by using the evolution
equations given above and after some lengthy but straightforward manipulations we arrive
at

-2

— 2
i ()P = (1) BFOP - 5]

k
=1-(1-2a)+ % /_o; dhh?[p_(h) + p4(h)] (C.91)
4 [ oo o
+2 /k_y(H) dhhp—(h) — 4/}€_y(H) dhp_(h)[2a — 1+ /k_y(H) dhp_(h)]

which is valid for H > Hy. By combining this expression with Eq. (C.90) one obtains the
disconnected susceptibility. Note that when yo — —o0, p4(h) =0, p_(h) = p(h) (as a result,
a = 1), and one exactly recovers the expression in Eq. (3.33), after using y(H) = H+Jm(H)
and Ap = [°°_dhh?p(h).
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3.3 Tentative mapping between the two models

We first consider the mapping of the mean-field EPM to a mean-field RFIM at the average
level, i.e., for the stress-strain curve and the connected susceptibility. It is convenient to
look at the expressions parametrized by the control parameter y (which is then taken as the
identical in both models). For the EPM, one has

m'(y) = -1+ < & > P (y — o)

22l -2 iy , (C.92)
a7 _ N :
dy < ) | <z > —xcm W)l

and for the RFIM,

1
m'(y) =+ + 2P, ™M (—(y — o))

H'(y) =1—Jm(y).

To map the EPM on the RFIM we then define an interaction and a magnetic field in the
RFIM as

(C.93)

< E>—x. (C.90)
2 .
H=—_,
i
and we choose the initial distribution such that
) . 1
2P M (—(y — o)) =2p_(—y + k) =< &> Py —yo) — (1+ 7). (C.95)

k

The choice for py (h) is still free and will not affect the evolution of the average magnetization,
but the above equation puts a constraint on the maximum value of y: the right-hand side
should indeed always be larger than 0, since on the left there is a probability. This restricts
intervals [yo, ym| over which the analogy can hold.

To pursue the analogy one would like to describe the sample-to-sample fluctuations and
tune the mean-field RFIM such that x5E™M(y) ~ yEEM(y), in the limit where Xconn > 1.
Since p_(h) is already essentially fixed by the mapping at the level of the averaged quantities,
we have some freedom with p4(h). This turns out not to be sufficient to match the two
disconnected susceptibilities. A possible solution to this issue could be to consider an effective
RFIM in which the bare disorder evolves with the applied magnetic field, i.e., with a variance
Ap(H). This seems reasonable but we have not tried to implement this scenario. Note again
that this mapping at the level of correlation functions or susceptibilities does not imply a

direct mapping between individual dynamical trajectories.

3.4 Results and test of the hypothesis of a single plastic event per site

We illustrate the mapping of the mean-field EPM with the assumption of a single jump per
site in the vicinity of the yielding transition to the mean-field RFIM at the average level
in Fig. C.1. We display in panel (a) a weak-disorder case with a brittle (discontinuous)
yielding and and in panel (b) a value of the disorder close to the critical point. In both
cases we also show the exact solution for the EPM. One can see that the assumption of a
single jump per site is virtually exact from the initial condition at vy up to yielding and then
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Figure C.1: Average stability z(y) = 1 — o(y) for the mean-field EPM. We focus on the
elastic branch and the yielding region. Top row: Model with a 2-exponential distribution
of random jumps, in the weak-disorder (brittle) case (a) and in the continuous case with a
ductile yielding (b). Here, 2u2 = 1, 13 = 0.7 and < & >= 0.92. Bottom row (c): Model with
randomness only in the initial conditions (no random jumps). In all cases the exact solution
is displayed as a full black curve and the solution obtained under the assumption of a single
jump per site as a dashed blue curve (they coincide in (c¢)). The red curve represents the
equivalent RFIM which exactly coincides with the single-jump EPM curve between the two
vertical lines at 7o and 7y,. We also indicate the location vy of the (discontinuous) yielding
transition in (a) or the maximum of the connected susceptibility in (b) and (c).

starts to deteriorates, as expected. The direct mapping to the RFIM is found to hold in a
narrow region around yielding. The "negative elasticity" of the RFIM prevents a broader
application.

We also note that the single-jump hypothesis is correct for a wide range of values of y in

the case without random jumps (see Fig. C.1(c), where the full black curve and the dashed
blue one superimpose). A direct calculation shows that it is exact for y < Z.



Appendix D

Avalanches

In this appendix we discuss the avalanche-size distribution of the two models that we de-
scribed in Chapter 1 (an EPM) and Chapter 2 (the Eshelby-RFIM). In athermally and
quasistatically (AQS) driven systems the dynamics proceeds intermittently by discontinu-
ous jumps (see Figs. 1.1 and 2.1). Such bursts of activity arise from more or less collective
phenomena called avalanches and it is interesting to characterize their distribution. One
usually defines the probability distribution P(S) for having an avalanche of size S, defined
as S = N{s, with N the number of sites in the system and ds the jump in the (intensive)
quantity under study (stress for sheared solids and magnetization per spin for Ising models).
For finite systems close to criticality (either self-organized, as in the steady-state of sheared
amorphous solids, or conventional, as in the RFIM) P(S) typically takes a scaling form,

P(S) ~ STP(S/S.), (D.1)

where 7 is the power-law exponent and P is a scaling function that decreases very fast for
S > S.. In a finite system the cutoff size S. grows with the system size as S. ~ L%/,
with dy the fractal dimension of the largest avalanches, so that a collapse of the avalanche-
size distribution for different system sizes is obtained by plotting P(S)L™% vs S/L% . These
exponents have been extensively studied for various AQS driven systems, e.g., in the standard
RFIM [129, 132], in the depinning of an elastic manifold [127], and in the sheared amorphous
solids [144, 191]. We now discuss the avalanche statistics of the two models that we have
studied in the main text.

1 Avalanche size distribution for the EPM

The avalanche size distribution of the EPM has already been much studied in different
setups. This type of numerical studies were performed for example to determine whether
the "dynamical" yielding transition (i.e., that observed by imposing a certain amount of
stress and measuring the resulting strain rate) can be described by interface depinning [144].
Usually the determination of the exponents that characterize the avalanche distribution is
carried out in the steady state, which is independent of the initial conditions and of the value
of v. We have performed a similar measurement in our model. In order to compare the results
with the Eshelby-RFIM defined in Chapter 2, which does not have a proper steady state, we
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Figure D.1: Scaling of the avalanches for 2D (a,b) and 3D (c,d) EPM. In (a) and (c) the
model is in the brittle regime, while in (b) and (d) it is in the monotonic stress-vs-strain
curve regime. The black dashed lines are obtained by fitting the largest system size. They
give 7 = 1.309 and 7 = 1.308 in 2D for respectively R = 0.20 and R = 0.40, and 7 = 1.390
and 7 = 1.394 in 3D for respectively R = 0.28 and R = 0.80. The insets show the collapse
obtained with 7 = 1.3 and df = 1.1 in 2D, and 7 = 1.4 and dy = 1.6 in 3D.

have studied the avalanche size distribution while the system is still in the transient regime,
but still after yielding. (We define the steady state as the state that the system attains when
each site has experienced at least one event, resulting in the complete erasure of the initial
condition’s memory.) It follows that the distribution of avalanche sizes is actually dependent
(at least in principle) on v and R. We define P(S, R,~) as the probability distribution of
having an avalanche of size S at strain v with initial disorder strength R, and the avalanche
size is defined as S = NAg. In order to collect a large number of avalanches for estimating
their distribution we measure the integral between two values of =, namely Ymin and Ymax-
The resulting distribution that we measure is then

Ymax

- & [ P,
with A the appropriate normalization constant. This quantity still depends on the choice
of Ymin and Ymax and R, as we arc not at the steady state. In the following analysis we take
Ymin = 0.7 and ymax = 1. In this range of v, for a small value of R, the system has already
formed a shear band, but the band has not widened to invade the whole system yet. On
the other hand, for large values of R, the stress curve has not yet reached its plateau value
(see Fig. 1.1) and some sites have not yielded.

P(S,R) (D.2)

The results of our analysis are shown in Fig. D.1. The power-law scaling is observed
for both 2D and 3D EPM, for different values of R. For large values of S the distribution
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decreases to 0 very quickly, with a cutoff to the power-law behavior that increases with the
system size. From the fit we extract 7 ~ 1.31 in 2D and 7 ~ 1.40 in 3D, which are close
to the values found in the literature [144, 147, 192] despite the fact that the system is not
in the steady state. We have then performed the curve collapse, from which we obtain an
estimate of the value of the fractal dimension dy, which is found close to 1.1 in 2D and close
to 1.6 in 3D. As expected the avalanches are more compact in higher dimensions. We notice
that the collapse works well for both values of R, less so however for the strong disorder
case in 3D, meaning that the appropriate value of dy may be slightly smaller. The evolution
of the system for the two values of R is qualitatively different due to the presence for the
R < R, case and the absence for R > R, of a shear band. Nonetheless, the fit gives exponent
values that are similar in the two cases, and similar to the steady state values given in the
literature.

2 Avalanche size distribution for the Eshelby-RFIM

We now move to the case of the Eshelby-RFIM. As we pointed out in the main text, this
model does not reach a true steady-state, and its evolution ends once all the spins are pointing
in the upward direction. As before, we restrict our attention to a range of values between
Mmin = —0.5 and mpax = 0 (the range is unchanged when changing R). Analogously to
what is done in the study of the standard RFIM, we define the avalanche size S = NAm and
we study its distribution P(S, R,m) at total magnetization m and random field strength R.
We perform the same analysis as above, studying

1 Mmax .
P(S,R) = 5 P(S, R,m)dm, (D.3)

with N the normalization constant. We have then measured this quantity for different system
sizes and different values of the disorder strength. In this case there is a large number of
events in which the magnetization does not change. This type of events come from the
anisotropy of the Eshelby kernel, which makes it possible for a spin to flip to a positive
value and interact antiferromagnetically with another spin which is then forced to flip from
a positive to a negative value. As the number of such events changes with the system size,
it can blur the scaling behavior of the avalanche size distribution. In order to circumvent
this effect we only focus on avalanches in which at least 10 spins have flipped up, cutting
out the contribution of small avalanches. (Note that a similar issue is also found in random-
field Ising models with long-range antiferromagnetic interactions in [171], where the authors
employed a different definition of the avalanche size to address the problem.)

The outcome of our analysis is shown in Fig. D.2. The distribution of avalanche sizes
displays a power-law behavior for intermediate values of S and then sharply decreases after a
cutoff that increases with the system size. We have estimated the exponents 7 and dy in order
to compare them with those obtained in the EPM. In 2D we obtain 7 = 1.25, with a slightly
smaller value for R < R, not far from the value in the EPM case, while 7 =~ 1.58 in 3D, which
is quite different from the EPM counterpart. (In [147] a dependence of 7 on the value of
@qzo has been shown, which could partly explain the differences between EPM and Eshelby-
RFIM.) The value of the fractal dimension seems instead larger (df = 1.3) for R < R, than

for R > R.. This could be a consequence of the different treatment of the nearest-neighbor
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Figure D.2: Scaling of the avalanches for 2D (a,b) and 3D (c,d) Eshelby-RFIM. In (a) and
(c) the model displays a macroscopic jump in the magnetization curve, while in (b) and
(d) its magnetization increases continuously. The black dashed lines are obtained by fitting
the largest system size. They give 7 = 1.22 and 7 = 1.25 in 2D for respectively R = 0.60
and R = 1.12, and 7 = 1.57 and 7 = 1.58 in 3D for respectively R = 0.80 and R = 1.50.
The insets show the collapse obtained with 7 = 1.22 and dy = 1.3 in 2D for R = 0.60 and
7 =1.25 and df = 1.1 for R = 1.12. In 3D we plot the collapse with 7 = 1.58 and d;y = 1.9
in 3D for R = 0.80 while 7 = 1.58 and d; = 1.6 for R = 1.5.

correction to the Eshelby kernel. It has been shown that such modifications of the Eshelby
kernel have an effect on the avalanches shape [151], so that it would not be surprising to find
more compact avalanches here. For R > R, the value of the fractal dimension seems to be
smaller, which may indicate that the precise value of the nearest-neighbor interaction have
a smaller role in this case.

Up to this point we have assumed the avalanche-size distribution is scale free in the
thermodynamic limit, an hypothesis which is not at all obvious. From results on the driven
ferromagnetic RFIM [170] one observes several decades of scaling behavior of the integrated
avalanche-size distribution even quite far from the critical point. In that case however, the
avalanche-size distribution is scale-free only at the critical point, contrary to the EPM where
it is scale free for all the values of R. Concluding on whether or not the avalanches observed
in the Eshelby-RFIM are actually scale-free away from the critical point is not easy. In the
EPM the distribution of avalanche sizes is intimately related in the EPM to the probability
distribution Py (x) of the local stability z = 1 — o close to 2 = 0. For this distribution it
has been argued [193] that in systems in which the kernel is monotonic, as in the case of
an elastic interface, one has Py (z) ~ 2 with § = 0. On the other hand, for the long-range
and quadrupolar symmetry of the Eshelby kernel one observes a pseudogap with 6 > 0,
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which means that the system is marginally stable [50, 144, 193]. Determining the value of
f in the case of the Eshelby-RFIM woulc be an interesting approach to this problem. It
has been recently shown that in a 1D RFIM the addition of long-range antiferromagnetic
interactions make the system marginally stable [171]. Measuring the distribution Py(x) for
the Eshelby-RFIM is not straightforward and is left for future work.
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