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Abstract

? TITLE: Multiobjective optimization of natural gas transportation networks

The optimization of a natural gas transportation network (NGTN) is typi-

cally a multiobjective optimization problem, involving for instance energy

consumption minimization at the compressor stations and gas delivery ma-

ximization. However, very few works concerning multiobjective optimiza-

tion of gas pipelines networks are reported in the literature. Thereby, this

work aims at providing a general framework of formulation and resolution

of multiobjective optimization problems related to NGTN.

In the first part of the study, the NGTN model is described. Then, va-

rious multiobjective optimization techniques belonging to two main classes,

scalarization and evolutionary, commonly used for engineering purposes,

are presented. From a comparative study performed on two mathematical

examples and on five process engineering problems (including a NGTN), a

variant of the multiobjective genetic algorithm NSGA-II outmatches the clas-

sical scalararization methods, Weighted-sum and ε-Constraint. So NSGA-II

has been selected for performing the triobjective optimization of a NGTN.

First, the monobjective problem related to the minimization of the fuel con-

sumption in the compression stations is solved. Then a biojective problem,

where the fuel consumption has to be minimized, and the gas mass flow

delivery at end-points of the network maximized, is presented. The non

dominated solutions are displayed in the form of a Pareto front. Finally,

the study of the impact of hydrogen injection in the NGTN is carried out by

introducing a third criterion, i.e., the percentage of injected hydrogen to be

maximized. In the two multiobjective cases, generic Multiple Choice Deci-

sion Making tools are implemented to identify the best solution among the

ones displayed of the Pareto fronts.

? KEYWORDS: Multiobjective optimization, Natural gas transportation net-

work, Weighted-Sum, ε-Constraint, Genetic algorithm, Hydrogen
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Résumé

? TITRE : Optimisation multiobjectif de réseaux de transport de gaz naturel

L’optimisation de l’exploitation d’un réseau de transport de gaz naturel

(RTGN) est typiquement un problème d’optimisation multiobjectif, faisant

intervenir notamment la minimisation de la consommation énergétique

dans les stations de compression, la maximisation du rendement, etc.

Cependant, très peu de travaux concernant l’optimisation multiobjectif des

réseaux de gazoducs sont présentés dans la littérature. Ainsi, ce travail vise

à fournir un cadre général de formulation et de résolution de problèmes

d’optimisation multiobjectif liés aux RTGN.

Dans la première partie de l’étude, le modèle du RTGN est présenté. En-

suite, diverses techniques d’optimisation multiobjectif appartenant aux deux

grandes classes de méthodes par scalarisation, d’une part, et de procédures

évolutionnaires, d’autre part, communément utilisées dans de nombreux do-

maines de l’ingénierie, sont détaillées. Sur la base d’une étude comparative

menée sur deux exemples mathématiques et cinq problèmes de génie des

procédés (incluant en particulier un RTGN), un algorithme génétique basé

sur une variante de NSGA-II, qui surpasse les méthodes de scalarisation, de

somme pondérée et d’ε-Contrainte, a été retenu pour résoudre un problème

d’optimisation tricritère d’un RTGN. Tout d’abord un problème monocritère

relatif à la minimisation de la consommation de fuel dans les stations de

compression est résolu. Ensuite un problème bicritère, où la consommation

de fuel doit être minimisée et la livraison de gaz aux points terminaux du

réseau maximisée, est présenté ; l’ensemble des solutions non dominées est

répresenté sur un front de Pareto. Enfin l’impact d’injection d’hydrogène

dans le RTGN est analysé en introduisant un troisième critère : le pourcen-

tage d’hydrogène injecté dans le réseau que l’on doit maximiser. Dans les

deux cas multiobjectifs, des méthodes génériques d’aide à la décision multi-

critère sont mises en œuvre pour déterminer les meilleures solutions parmi

toutes celles déployées sur les fronts de Pareto.

? MOTS-CLÉS : Optimisation multiobjectif, Réseau de transport de gaz naturel,

Somme pondérée, ε-Contrainte, Algorithme génétique, Hydrogène
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1 Introduction

Natural gas (NG) systems are becoming more and more complex as the use

of this energy source increases. Many investigators have studied the problem

of compressible fluid flow through pipelines and compressors. Although much

effort has been and continues to be spent on unsteady mathematical models,

many design and operating problems can and will be solved by steady-state

modelling. Mathematical modelling is one of the most important tools used

to aid in design and operation studies. In this chapter, some guidelines are

presented concerning the typical features of the NG pipeline networks and of

their main components. Then, a review of the modelling background dedicated

to pipeline transmission systems is presented. The principles of the optimization

procedures that can be used to tackle the problem are recalled, with a special

focus on their applications. Later, the principle of extension for Natural gas-

Hydrogen (NG-H2) mixtures is presented. Finally, a general outline of this work

is proposed and introduces the structure of the following chapters.

2 Fossil energy sources: natural gas

Fossil fuel is the most important source of energy for the humanity. There are

three major fuels: coal, oil and natural gas. Coal is used primarily to produce

electricity. It therefore provides us with light, motive power from electric mo-

tors, and our many electronic devices. Oil gives us our mobility, our cars, planes,

trains, trucks and boats. NG is used primarily to produce heat, for our buildings,

hot water, and industrial processes. It is one of the principal sources of energy

for many of our day-to-day needs and activities (Figure 1.1). There is an abun-

dance of NG but it is a non-renewable resource, the formation of which takes

thousands and possibly millions of years. Therefore, understanding the avai-

lability of our supply of NG is important as we increase our use of this fossil

fuel.
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Figure 1.1: World natural gas consumption, 2007-2035 (EIA, 2010).

Unlike other fossil fuels, NG is clean burning and emits lower levels of po-

tentially harmful byproducts into the air. We require energy constantly, to heat

our homes, cook our food, and generate our electricity. It is this need for energy

that has elevated NG to such a level of importance in our society, and in our

lives (Figure 1.2).

Figure 1.2: Natural gas use by sector in 2010 (EIA, 2010).
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Gas name Symbol Value
Methane CH4 70-90%
Ethane C2H6

0-20%Propane C3H8

Butane C4H10

Carbon dioxide CO2 0-8%
Oxygen O2 0-0.2%
Nitrogen N2 0-5%
Hydrogen sulphide H2S 0-5%
Rare gases A, He, Ne, X e Trace

Table 1.1: Typical composition of natural gas.

The process of extracting NG out of the ground, and transport it to its final

destination, is a complicated one. There is a great deal of behind-the-scenes

activity that goes into delivering NG to your homes, even though it takes only

the flick of a switch to turn it on (Figure 1.3). There are six major technical

processes that allow the NG industry to get its product out of the ground, and

transform it into the NG that is used in your homes and in industry.

1. The Exploration section outlines how NG is found, and how companies

decide where to drill wells for it.

2. The Extraction section focuses on the drilling process, and how NG is

brought from its underground reservoirs to the surface.

3. The Production section discusses what happens once the well is drilled,

including the processing of NG once it is brought out from underground.

4. The Transport section outlines how the NG is transported from the well-

head and processing plant, using the extensive network of pipelines.

5. The Storage section describes the storage of NG, how it is accomplished,

and why it is necessary.

6. The Distribution section focuses on the delivery of NG from the major

pipelines to the end users, whoever they may be.

7. The Marketing section discusses the role that NG marketers play in getting

the gas from the wellhead to the end-user.
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Change in World natural gas production by region, 2007-2035
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Figure 1.3: World natural gas production by region, 2007-2035 (EIA, 2009).

The efficient and effective movement of NG from producing regions to con-

sumption regions requires an extensive and elaborate transportation system. In

many instances, NG produced from a particular well will have to travel a great

distance to reach its point of use. The transportation system for NG consists of a

complex network of pipelines, designed to quickly and efficiently transport NG

from its origin, to areas of high NG demand.

There are three major types of pipelines along the transportation route: the

gathering system, the interstate pipeline system, and the distribution system.

The gathering system consists of low pressure, small diameter pipelines that

transport raw NG from the wellhead to the processing plant. Pipelines can be

characterized as interstate or intrastate. Interstate pipelines are similar to an

interstate highway system: they carry NG across state boundaries, in some cases

clear across the country. Intrastate pipelines, on the other hand, transport NG

within a particular state. This work will cover only the fundamentals of inter-

state NG pipelines.

Finally, the preservation of our environment is a very important and pre-

ssing topic, particularly when dealing with energy issues. NG is an extremely

important source of energy for reducing pollution and maintaining a clean and
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healthy environment (Table 1.2). In addition to being a domestically abundant

and secure source of energy, the use of NG also offers a number of environmental

benefits over other sources of energy, particularly other fossil fuels.

NG, as the cleanest of the fossil fuels, can be used in many ways to help re-

duce the emissions of pollutants into the atmosphere. Burning NG in the place

of other fossil fuels emits fewer harmful pollutants, and an increased reliance

on NG can potentially reduce the emission of many of these most harmful pol-

lutants.

Pollutant Natural gas Oil Coal
Carbon Dioxide 117,000 164,000 208,000
Carbon Monoxide 40 33 208
Nitrogen Oxides 92 448 457
Sulfur Dioxide 1 1,122 2,591
Particulates 7 84 2,744
Mercury 0.000 0.007 0.016
*Pounds per Billon Btu of Energy input

Table 1.2: Fossil fuel emission levels (EIA, Natural gas issues and trends 1998).

3 The natural gas transportation system

The NG transmission pipeline infrastructure in Europe represents one of the

largest and most complex mechanical systems in the world. The European na-

tural gas system is very well developed and consists, inter alia, of 1.4 million

kilometers pipelines of which 145,000 kilometers concern high pressure trans-

mission pipelines. In addition, 93 storage facilities with a total working volume

of 60,000 million cubic meters are in operation.
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Figure 1.4: Schematic view of the different parts of a natural gas delivery sys-
tem.

The NG chain is generally constituted by various components as represen-

ted in Figures 1.4 & 1.5. The pressure regimes are just indicative and may

differ from country to country. The transport lying system between the NG

deposits and the consumers is quite complex. After the gas has been extracted,

so-called trunk lines are connected with pipeline compressor stations. The NG

is then pumped into long distance pipelines called transmission lines and sent

to the take-off stations for the consumers. Later, the gas is further transported

to the control station of the regional distribution system. It then finally goes

to industrial customers and households. A schematic view of a pipeline section

is displayed in Figure 1.6 with six compression stations, delivery and supply

points.
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Figure 1.5: Technical features of the different parts of a natural gas delivery
system [Tabkhi, 2007].

Figure 1.6: Schema showing a selected pipeline section with six compression
stations.

Pipeline pressures, diameters and materials used at the different stages of

transport vary considerably from country to country, with minor differences

also within national systems, depending on the supplier. Figure 1.7 shows some

typical ranges of pressures, diameters and materials involved in the different

stages of transport. According to the International Energy Agency (IEA), several

hundreds of thousands of both large-size transportation and mid/small-size dis-

tribution lines have been constructed over the last 30 years all over the world,

to match with the increase in NG consumption.
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Figure 1.7: Stages of pipeline transport [Castello et al., 2005].

The didactic example that will be treated in this work will fall into trans-

mission network domain although the approach may be extended easily to the

treatment of other distribution systems. Compressor stations in a pipeline sys-

tem can be sub-divided in two classes: the originating stations, which are posi-

tioned at the inlet to the pipeline and are usually the most complex ones, and

the booster stations, which are located along the pipeline to compensate for the

pressure decrease due to friction and elevation losses. In principle, the longer

the pipeline and the elevation of the terrain increased, the more compressor

horsepower is required to achieve the required delivery pressure at destination.

However, under a fixed route and flow capacity, the number and size of booster

stations can vary depending on circumstances and design.

Although systems with fewer stations can be easier to operate, they have the

disadvantage of introducing a need for high inlet pressures. Actual transmission

systems represent a compromise between very few powerful originating stations

and a large number of small booster points. The essential components of a

compressor station are the following:

1. The gas compressors and their drivers (gas turbines, electric motors, steam

turbines, internal combustion engines).

2. Measuring equipment and metering systems.

3. Inlet separators or gas scrubbers, to remove liquid and solid impurities

from the gas and protect the compressors.

4. Heat exchangers and inter-stage coolers, to remove the heat of compression

between subsequent compressor stages.

5. Piping manifolds, valves and controllers to direct and regulate the gas flow,

valves for vent and relief.
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Compressors used for gas transmission in pipelines can be divided in two

categories:

1. Positive displacement, or intermittent flow compressors. They can be fur-

ther sub-divided in reciprocating and rotary compressors. In the first type,

the gas is compressed within a cylinder by a moving piston; in the other

case the gas is displaced from inlet to outlet by the vanes or lobes of a

turning rotor.

2. Dynamic, or continuous flow compressors. They increase the pressure of

the gas by increasing its velocity and converting the energy into pressure

by slowing the gas flow up in a diffuser. These machines can be further

sub-divided in the centrifugal and axial types, which accelerate the gas

molecules respectively by subjecting them to centrifugal forces or by trans-

ferring them the energy of a spinning rotor: turbo-compressors [Gorla and

Khan, 2003].

In the present work, centrifugal compressors are used for gas transmission

in pipelines. They are assumed to be driven by turbines whose supply energy is

provided from a line of the gas derived from the pipeline passed through the sta-

tion in order to be compressed. The compressors within the compressor station

are modelled using centrifugal compressor map-based polynomial equations.

These equations are used to define the pipeline conditions across the compres-

sor: flow, discharge pressure, suction pressure and suction temperature. Then, if

the operating point is on the compressor-map, the fuel consumption of the driver

(gas turbine engined) is determined. The use of the so-called performance-map

will be explained in Chapter 2.

Finally, the volume of gas that a centrifugal compressor can handle depends

on the size and speed of the impeller and on the discharge pressure. For a given

compressor, performance curves can be drawn that define, for a given value

of the impeller rotational speed, the relationship between the inlet flow and the

compression work (or compressor’s head), which in turn increases with the ratio

between the suction and discharge pressures.
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4 Transmission pipeline representation: modelling, simulation

and optimization

As the gas industry has grown, gas pipeline networks have evolved over decades

into very large and complex systems. A typical network today might consist of

thousands of pipes, dozens of stations, and many other devices, such as valves

and regulators. Inside each station, there can be several groups of compres-

sor units of various vintages that were installed as the capacity of the system

expanded. Designing gas pipe distribution networks involves numerous varia-

bles, which include pipe diameter, pressure, temperature, line length, space

between pumping or compressor stations, required inlet and delivery pressures

and quantities. Each of these parameters influences the overall construction and

operating cost in some degree and the selection of one or more items will de-

termine the economics of the construction and operation of the system. Indeed,

the only real difference between the design and operation of gas pipeline net-

works is: the extent to which some of the variables are already fixed. Because of

the high number of variables involved, the task of establishing the optimum can

be quite difficult and in order to ensure a robust solution, many options may

have to be investigated.

In more detail, many investigators have studied the problem of compressi-

ble fluid flow through pipelines and compressors. Some of these efforts are

reported in what follows: Steady-state solutions and compressor stations. Stoner

[1969, 1972] presented a new method for obtaining a steady-state solution

of an integrated gas system model made up of pipelines, compressors, con-

trol valves and storage fields. Berard and Eliason [1978] developed a com-

puter program that simulated steady-state gas transmission networks using the

Newton-Raphson method for solving nonlinear equations. Hoeven [1992] des-

cribed some mathematical aspects of gas network simulation using a lineariza-

tion technique. Rhoads [1983]; Ouyang and Aziz [1996]; Schroeder [2001]
give a new description of the equations which govern the flow of compressi-

ble fluids through pipes. Tian and Adewumi [1994] used a one-dimensional

compressible fluid flow equation without neglecting the kinetic energy term

to determine the flow of natural gas through a pipeline system. Costa et al.

[1998] provided a steady-state gas pipeline simulation. Here, compressors are
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modelled by simply employing a functional relationship between the pressure

increase and the mass flow rate of gas through the compressor.

Since 30 years, there has been a successive great deal on the optimization ap-

proach of gas pipe networks. Foremost, Turner and Simonson [1984, 1985] de-

veloped a computer program for a compressor station that is added to SIROGAS,

which is a program for solving pipeline networks for steady-state and transient

mode.

Botros [1989]; Botros et al. [1991] and Botros [1994] presented a dynamic

simulation for a compressor station that consists of nonlinear partial differential

equations describing the pipe flow together with nonlinear algebraic equations

describing the quasi-steady flow through various valves, constrictions, and com-

pressors.

Botros [1990] presented a numerical study of gas recycling during surge

control, and furnished a basic understanding of the thermodynamic point of

view and showed the variation of gas pressure, temperature and flow.

Odom and Langenbacher [1990] reviewed the theory of centrifugal com-

pressor performance, and also presented a set of polynomial equations for the

centrifugal compressor map. By using different values for the coefficients in

these equations, it is possible to model different types of compressors.

Letniowski [1993] presented an overview of the design process for a com-

pressor station model that is part of a network model.

Greyvenstein and Laurie [1994] used the well-known SIMPLE algorithm of

the Patankar method [Patankar, 1980], which is well known in Computational

Fluid Dynamics to deal with pipe network problems.

Jenicek and Kralik [1995] developed optimized control of a generalized com-

pressor station. The work described an algorithm for optimizing the operation

of the compressor station with fixed configuration.

Carter [1996] presented a hybrid mixed-integer-nonlinear programming

method, which is capable of efficiently computing exact solutions to a restricted

class of compressor models and attempted to place station optimization in the

context with regard to simulation.

Bryant [1997] modelled compressor station control, which had some advan-

tages such as the ability to set individual unit swing priority, the ability to try

and meet multiple set-points, and the ability to automatically come on-line and

off-line.
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Doonan et al. [1998] used SimulinkT M to simulate a pipeline system.

Cameron [1999] presented the package TFlow using an Excel-based model

for steady-state and transient simulation. All information needed to model a

pipeline system is contained in an Excel workbook, which also displays the si-

mulation result.

Metcalf [2000] presented the effect of compressor valves to improve reci-

procating compressor performance, compressor efficiency and horsepower con-

sumption, by choosing the best types of valves.

Fauer [2002] suggested a general equation model and contributed each va-

riable to make accurate predictions.

The state-of-the-art shows that there is growing interest on the subject for

dealing on the existing technologies that are used to model the performance

and operation of the various components that collectively make up the natural

gas pipeline system. Furthermore, from an industrial point of view, the pro-

blem of minimizing fuel cost is of great importance, since the reduction of the

energy used in pipeline operations will have a significant economical and envi-

ronmental impact. Thus, efficient operation of compressor stations is of major

importance for enhancing the performance of the pipeline network. It is esti-

mated that the global optimization of operations can save considerably the fuel

consumed by the stations. Moreover, for a NG delivery company, the demand

may vary according to climatic conditions or industrial requirements. So, ano-

ther problem which arises is to determine, for a given supply at the network

entrance nodes, the minimal and maximal network capacities in terms of NG

mass flow delivery and fuel consumption in compressor stations. This problem

can be formulated as a biobjective optimization problem. A new industrial pers-

pective consists to take into account the amount of hydrogen that can be added

to the pipeline network traditionally devoted to the transportation of natural

gas, without any modification in the system. The transition towards the situa-

tion in which H2 will become an important energy carrier, will need decades but

worldwide great efforts are made nowadays in the field of H2 production, de-

livery, storage and utilization. In this view, an analysis of the potential of using

the actual NG pipeline systems for the delivery of H2 is a valid argument. So,

defining the conditions under which hydrogen can be added to natural gas cons-

titutes a key point of this investigation as well as how much hydrogen can be

injected into the existing pipeline network while minimizing fuel consumption
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and maximizing the pipeline throughput. Meeting together all these multiple-

criteria aspects, let us introduce to the multiobjective optimization area.

Actually, the two main approaches that are classically encountered in gas

networks representation are numerical simulation and optimization. The main

purpose of simulation is to determine the actual behaviour of a gas network un-

der given conditions. Simulation basically answers the question: what happens

if we run our grid with given control variables and known boundary flows? Typi-

cal questions like finding a control regime which achieves several target values,

usually require a series of simulation runs by expert users who are familiar with

the network. Two disadvantages of numerical simulation will be noted. First,

finding an adequate regime may even take a large number of runs, and second,

it cannot ensure that the solution achieved is optimal.

This explains mainly why the searching process must be substituted with

more sophisticated algorithms. Yet, optimization generally works with simpli-

fied models, but it yields optimum results where limits or certain target va-

lues will be achieved automatically if they are defined as optimization problem

constraints. If the effort has been focused on steady-state flow conditions, re-

searchers have identified the need for transient flow simulations for long. Ne-

vertheless, it has been proven that they require a sophistication level that may

be difficult to take into account as far as optimization of large systems is con-

cerned.

Hence, as abovementioned, the optimization of a NG transportation network

is typically a multiobjective optimization problem, where the practitioner has to

cope simultaneously with throughput maximization and fuel consumption mini-

mization. Insofar as the objective of this work is the multiobjective optimization

of gas transmission networks, only steady-state behaviour of the gas flow is

considered. The problem is to implement, for a given mathematical model of a

pipeline network, a numerical method that meets the multi-criteria aspect which

embeds both solution quality and reasonable resolution time.

5 Multiobjective optimization procedures

A great diversity of optimization methods were implemented to meet the indus-

trial stakes and provide competitive results. But if they prove to be well fitted to
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the particular case they consider, the numerical performances cannot be cons-

tant whatever the treated problem is. Actually, the efficiency of a given method

for a particular example is hardly predictable, and the only certainty we have is

expressed by the No Free Lunch Theory [Wolpert and Macready, 1997]: there is

no method that outdoes all the other ones for any considered problem. In the

19th century, Francis Y. Edgeworth and Vilfredo Pareto introduced the concept

of non-inferiority in the field of economics, giving birth to multiobjective opti-

mization. Since then, multiobjective optimization has permitted all engineering

areas and has developed at a rapidly increasing speed, particularly during the

last decade for chemical engineering and process design.

According to De Weck [2004] there is general consensus that multiobjec-

tive optimization methods can be broadly decomposed into two categories: first

scalarization approaches, second genetic and evolutionary methods. From a

popular classification, scalarization methods apply in well mathematically de-

fined problems with explicit formulations of objectives and constraints, while

genetic and evolutionary methods based on evolutionary strategies mainly ap-

ply in black-box problems, where objectives and/or constraints are returned by

a computer code for each value of optimization variables. Besides the black-

box problems, the possibility to mutate out of a local optimum and the ability

to compute the entire Pareto front in one run, make also this type of methods

attractive.

In the first group of methods the multiobjective problem is solved by trans-

lating it back to a single (or a series of) objective, scalar problem. Miettinen

[1999] gives an interesting review of various techniques and Engau and Wiecek

[2007] present seven types of scalarization methods, but the two most popular

ones are the Weighted-sum (WS) and the ε-constraint (ε-C) procedures. WS

methods are based on the formation of an overarching objective function con-

taining contributions from each sub-objective. The formulation of the aggregate

objective function requires that the preferences or weights between objectives

are assigned a priori, i.e. before the results of the optimization process are

known. The second important sub-group is constituted by ε-C methods; it is

also based on a scalarization, where one of the objective functions is minimized

while all the other objective functions are upper bounded in the form of addi-

tional constraints. In the second group (genetic and evolutionary methods), the

elements of the objective vector are kept separate throughout the optimization
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process; these approaches typically use the concept of dominance to distinguish

between dominated and non-dominated solutions.

Both classes of methods have their own inconveniences: scalarization me-

thods need to know the Nadir values which are the worst values of objective

functions over the efficient solutions, that may be very difficult. Furthermore,

for problems involving crisp equality constraints (like balance equations for ex-

ample), an external solver has to be used for each point generated by a genetic

and evolutionary method.

Since, the consideration of multiobjective problems is concerned in this study,

the stochastic way is adopted in what follows. This approach presents some ad-

vantages related to the treatment of the underlying combinatorial aspect linked

to industrial problems and to its easy extension to the treatment of multiobjec-

tive problems. Nevertheless, since the number of equality constraints associated

with the problem formulation may be important, the deterministic approach is

also presented in this study [Rodriguez et al., 2010]. The choice between de-

terministic and evolutionary approaches is carried out on the basis of classical

chemical engineering problems.

6 Towards a hydrogen economy

In a world where energy demand is growing at unprecedented rates, pipelines

will continue to play an important role in safely and efficiently transporting

oil and gas from often remote areas to their markets. Hydrogen is foreseen as

an important and reliable energy carrier in the future sustainable energy socie-

ty. This energy vector, which can be produced from different primary sources

among which the renewable energies, is exploitable in different stationary or

portable applications. Hydrogen deployment scenarios can be based on one

of two different fundamental assumptions concerning the level of decentraliza-

tion in production. Regardless of the primary energy sources and technologies

used, hydrogen can be produced by large scale facilities and then distributed

to individual customers over a range of few tens to some hundreds kilometers

(centralized production), or it can be produced in the immediate proximity of

dispensing facilities or end-use appliances (on-site generation). Consequently,

this yields principally to two separate families of production and distribution
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pathways made of neighboring stages allowing the adoption of different tech-

nologies.

Gaseous hydrogen can be transported using several modes like pipeline, rail-

road, tanker truck, and tanker ship. The chosen method depends on the distance

of transportation, the production method, the use, etc. Regarding transporta-

tion of hydrogen with conventional means, the solution via pipelines has been

employed to make hydrogen available to a specific range of mass consuming

users.

The current aggregated length of pipelines for hydrogen transport that are

known to be either in service, or under planning, reaches almost 2500 km com-

prising a total of some 1500 km in Europe as a whole, and at least 700 km

in North America. The oldest hydrogen pipeline is a 220 km started in 1938

in the German Ruhr Valley [Whaley and Long, 2001]. The longest hydrogen

pipeline in Europe runs more than 400 km between France and Belgium [Kruse

et al., 2002]. The most extensive hydrogen pipeline network in the U.S.A. is

about 720 km long and runs almost continuously along the Gulf Coast from

Corpus Christi, Texas to New Orleans, Louisiana [Mintz et al., 2002]. Other

shorter hydrogen pipelines include a 80 km pipeline in South Africa and two

short pipelines in Texas that supply hydrogen to industrial users. NASA has

piped hydrogen through short pipelines at their space centers for several years

[Whaley and Long, 2001].
Of course, the idea of adding hydrogen to gas via pipelines to satisfy the

increased demand for energy will require changes in the natural gas pipeline

infrastructure to enhance the reliability of the existing systems.

According to the analysis of the dedicated literature concerning hydrogen, it

is foreseeable that the hydrogen economy will have to rely on a combination of

different delivery options and the share of application of each option will change

and evolve with time. This study only considers Natural gas-Hydrogen mixture

transmission via pipeline networks. Thorough technical and economic studies

on the whole energy chain including production, storage, transport, distribution

and utilization are the basic steps to provide new industrial perspectives.
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7 Conclusions and general outline

In this introducing chapter, a review of the typical problems of NG transmis-

sion pipelines and different methodologies to deal with this problem have been

presented. Some guidelines can be mentioned concerning the main goal of this

study, being the multiobjective optimization of gas transmission networks.

First, the idea is to implement, for a given mathematical model of a pipeline

network [Tabkhi et al., 2009], a numerical method that meets the multi-criteria

aspect which embeds both solution quality and resolution time. For this pur-

pose, steady-state behaviour of the gas is considered and will be assumed in the

momentum and mass balances, that will be presented in details in the Chapter

2.

Second, although various optimization techniques can be used, the choice of

a stochastic one is performed, since it is generally recognized that this kind of

methods is particularly well-fitted to take into account the multi-criteria aspect

despite the important number of constraints that are likely to be involved in the

problem formulation. Adequate solvers within the MATLAB toolbox were used

(fmincon, fsolve) since this optimization tool is often considered as a standard

for the solution of Process Systems Engineering problems.

Third, the formulation is based on multiobjective optimization problems. Of

course, the variables and objective function may differ according to the pro-

blem which is considered; however, the nature of variables is continuous (for

instance, set points values of compression facilities).

Fourth, concerning to the pipeline optimization, it must be pointed out that

the goal of minimizing the energy consumption in compressor stations will

have not only economic benefits but also a positive environmental impact, since

pipelines emit CO2 mainly due to energy used at compressor stations.

Fifth, it must be pointed out that the majority of the works presented are

based on classical mathematical formulations for gas natural problems. Al-

though the problem may be highly combinatorial for industrial sized problems,

the literature review only mentions very few works devoted to stochastic algo-

rithms (for instance, Simulated Annealing or Genetic Algorithms). This is pro-

bably due to the important number of constraints (inequalities and equalities)

which condition the problem numerical solution. However very few works con-
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cerning multiobjective optimization of NG transportation networks are reported

in the literature.

In that context, this work illustrates their application in a series of case stu-

dies covering a range of significant chemical process engineering problems. The

work presented here attempts to provide a general methodology in a manner

useful to both the scientist/engineer engaged in process development or de-

sign, finding the most appropriate operating conditions. This manuscript is now

logically presented as follows:

• Chapter 1 starts with an introduction to gas pipelines, outlining their main

technical features. This chapter also highlights the importance of mode-

lling and optimization of such networks and presents the results of the

literature review. Finally, the guidelines of the work are presented.

• Chapter 2 details the modelling approach that serves as a methodology

framework.

• Chapter 3 is devoted to the multiobjective optimization. Typical methods

that can be broadly decomposed into two categories: first scalarization

approaches, second genetic and evolutionary methods are presented.

• Chapter 4 studies the efficiency of classical methods in treating 2 mathe-

matical problems and 4 multiobjective chemical engineering problems. On

the basis of both problems types, the choice of the best procedure, namely

the Genetic algorithm, will be performed in what follows.

• Chapter 5 considers a Natural gas transmission network (NGTN), involving

the simultaneous consideration of fuel consumption minimization and gas

mass flow delivery maximization. In a more prospective concern, NGTN

is dedicated to the transport of a mixture of natural gas-hydrogen mixture

in a transition period towards the so-called predicted hydrogen economy.

Later, some generic tools like the TOPSIS and FUCA procedures are used for

determining a good solution on the Pareto front or set of efficient solutions.

• Chapter 6 gives the conclusions and perspectives for future works.
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1 Introduction

The transportation of large quantities of Natural gas (NG) is carried out by

pipeline network systems across long distances. As the gas flows through the

network, pressure (and energy) is lost due to both friction between the gas and

the pipe inner wall, and heat transfer between the gas and its environment.

Typically, compressor stations are located at regular intervals along the pipeline

to boost the pressure lost through the friction of the NG moving through the

steel pipe. They consume a significant part of the transported gas (3% to 5%,

Suming et al. [2000]), thus resulting in an important fuel consumption cost on

the one hand, and in a significant contribution to CO2 emissions, on the other

hand. Nowadays, more than 50% of the total human-caused Greenhouse gas

(GHG) emissions result from the production and use of energy. About 70% of

GHG emissions from NG occur when it is burned to produce heat or energy.

Pipelines emit CO2 mainly due to energy used at compression stations. There-

fore, pipeline companies reduce GHG emissions mainly by improving the use of

energy by acquiring more efficient equipment and by adopting better operating

practices [Mora and Ulieru, 2005].
Thus, efficient operation of compressor stations is of major importance for

enhancing the performance of the pipeline network. This chapter first presents

a gas transportation model taking into account the elements of the network

under steady-state conditions. Then, different approaches for optimizing the

performance of natural gas networks are discussed in the last section.

2 Natural gas pipeline modelling

Due to operating problems, a gas transmission line is not usually designed to

handle two-phase flows. Exceptions lie for example in oil/gas wells, gathering

systems and separation units. The formulation presented here is only valid for

single phase gas flow.

The pressure drop in a gas pipeline, i.e., the essential parameter to deter-

mine the required compression power for the transmission, is derived from the

differential momentum balance. Friction between fluid boundary layer and in-

terior surface of the tube induces energy losses and, consequently, reduces the

gas pressure.
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The material balance and the equations of momentum conservation on the

basic elements of the network as well as the other governing equations con-

stitute the modelling core. The necessary equations in the system of the gas

transmission network in order to determine the dynamic conditions, such as

pressure and flow rate, are developed. First of all, the momentum balance for a

single pipeline is given.

2.1 One dimensional compressible gas flow

The application of one-dimensional flow model to gas pipeline pressure drop

calculation, in which the fluid conditions vary only along the pipe, is a good

approximation which is usually adopted in the dedicated literature [Osiadacz,

1987]. A reason for using it, is that the cross section area is assumed constant

and the curvature of the pipe centre-line is very large compared with the cross-

sectional dimensions.

In general, basic equations describing the flow of gas in pipes are derived

from a momentum balance that is named also equation of motion, equation of

continuity, energy balance and equation of state. In practice, the form of the

mathematical models varies with the assumptions made corresponding to the

conditions of the operation. Simplified models are based on neglecting some

terms in the basic model.

Parameter Value magnitude Unit
Gas molecular weight 18-25 g/mol
Gas critical pressure 45-50 bar
Gas critical temperature 200-250 K
Gas heat capacity at constant pressure 35-45 J/mol.K
Gas isentropic exponent 1.2-1.4 -
Specified minimum yield strength 2000-5000 bar
Design factor 0.4-0.7 -
Seam join factor 0.6-1 -
Temperature deration factor 0.85-1 -
Pipeline internal roughness 50-100 µm
Network temperature 260-315 K
Compressor mechanical efficiency 80-98 %
Compressor driver efficiency 25-45 %

Table 2.1: Some parameters and their order of magnitude.
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Nomenclature
Symbol Meaning
A Cross section area of the pipe (m2)
C p Heat capacity at constant pressure (J/kmol.K)
D Diameter (m)
f Darcy friction factor
h Compressor isentropic head (kJ/kg)
HHV High heating value (J/kg)
L Length (m)
LHV Low heating value (J/kg)
ṁ Mass flow rate (kg/s)
M Molecular mass (kg/mol)
MAOP Maximum allowable operating pressure (bar)
P Pressure (bar)
P̄ Average pressure (bar)
Q Volumetric flow rate (m3/s)
R Universal gas constant (J/mol.K)
Rg Roughness of the interior surface of pipes (m)
SMY S Specified minimum yield strength (bar)
Re Reynolds number
t Time (s)
T Temperature (K)
W Power (MW )
x Pipe centerline direction (m)
y Mole fraction (Decimal)
Z Compressibility factor
Greek letters
β Thickness (m)
η Efficiency
κ Average isentropic exponent
ν Velocity (m/s)
ρ Gas density (kg/m3)
ϕ Factor
ω̄ Rotational speed (rps)
Subscripts
c Critical
comp Compressor
d Discharge
dr Driver (Decimal)
e Erosional
E Seam joint
F Design
i Supply
IS Adiabatic or Isentropic (%)
j Delivery
k Natural gas component
m Mechanical (Decimal)
s Suction
t Total (Decimal)
T Temperature derating

Table 2.2: Nomenclature of the Natural gas transmission networks.
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2.2 Conservation of mass: continuity equation

Generally, the one-dimensional conservation of mass is expressed in the form

of following equation where ρ is the gas density, ν is the gas velocity, x is the

pipeline centerline direction and t is the time:

∂ (ρν)
∂ x

+
∂ ρ

∂ t
= 0 (2.1)

The relation between mass flow rate, ṁ, also called pipe throughput, the

density and the velocity of gas is expressed in Equation 2.2. Unlike a liquid

pipeline, due to compressibility, the gas velocity depends upon the pressure and,

hence, will vary along the pipeline even if the pipe diameter is constant.

ṁ=
π

4
D2ρν (2.2)

The cross section area of the pipe, A, remains constant over its entire length.

D is the pipe internal diameter. Gas density and pressure are represented in the

form of the following equation by introducing the compressibility factor, Z , in

the model.

ρ =
PM

ZRT
(2.3)

R is the universal gas constant and M is the molecular mass of the gas and

depends on its composition. Molecular mass of the gas is calculated using a

simple mixing rule expressed by the following equation in which yk and Mk are

the mole fractions and the molecular masses of species respectively.

M =
n
∑

k=1

Mk yk (2.4)

The compressibility factor, Z , is used to alter the ideal gas equation to account

for the real gas behaviour. Traditionally, the compressibility factor is calculated

using an equation of state. Yet, for natural gas, it may be estimated from the

empirical relationship proposed for simulation goals in the literature [Mohring

et al., 2004]. For example, this factor can be expressed as a function of the

critical properties of the gas mixture, average pressure of the pipe segment and
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the temperature that have been considered as constant:

Z = 1+
�

0.257− 0.533
Tc

T

� P̄i j

Pc
(2.5)

Tc =
n
∑

k=1

Tck yk (2.6)

Pc =
n
∑

k=1

Pck yk (2.7)

The pseudo-critical temperature of natural gas, Tc, and its pseudo-critical

pressure, Pc, can be calculated using an adequate mixing rule starting from the

critical properties of the natural gas components. The critical point of a material

is the point where the distinction between the liquid and vapour phases disap-

pears. In this work, average pseudo-critical properties of the gas are determined

from the given mole fractions of its components by Kay’s rule which is a simple

linear mixing rule shown in Equations 2.6 & 2.7. Average pressure, P̄i j, can be

calculated from two end pressures [Mohring et al., 2004]:

P̄i j =
2

3

�

Pi + Pj −
Pi Pj

Pi + Pj

�

(2.8)

Using Equation 2.3, the continuity equation can be rearranged in the basis of

mass flow rate and pressure expressed as:

1

A

∂ ṁ

∂ x

M

R

∂

∂ t

�

P

Z T

�

= 0 (2.9)

2.3 Equation of motion: momentum balance

The conservation law of momentum is applied to a cylindrical control volume

in steady-state to derive the pattern of the pressure changes along a pipe and

time. So the governing equation to calculate the pressure at each point of a pipe

can be derived as follows:

∂ P

∂ x
+

f

2D
ρν2± gρ sinα

∂ (ρν2)
∂ x

+
∂ (ρν)
∂ t

= 0 (2.10)



C
hapter

2

28 CHAPTER 2. REVIEW ON MODELLING AND OPTIMIZATION OF NATURAL GAS PIPELINE
NETWORKS

In this equation, P is the pressure in (Pa), g is the acceleration of gravity

in (m/s2) and α is the acute angle between the horizon and the pipe centerline

direction, x . The sign of gravity term in the Equation 2.10 is positive if the

gas flows upward and is negative when the gas flows downward. The Darcy

friction factor, f , is a dimensionless value that is a function of the Reynolds

number, Re, and relative roughness of the pipeline, (Rg/D). Darcy friction factor

is numerically equal to four times of the Fanning friction factor that is preferred

by some engineers. The Reynolds number quantifies the ratio of inertial forces

to viscous forces for given flow conditions and helps to identify different flow

regimes, such as laminar or turbulent flows:

Re =
ρνD

µ
(2.11)

Traditionally, to characterize roughness of pipelines the equivalent sand-

grain roughness is used. The sand-grain roughness refers to the rough pipe

experiments of Nikuradse and it is commonly used in practice; the hydraulic

properties of a pipeline are compared to Nikuradse’s work to arrive at an equi-

valent roughness [Sletfjerding and Gudmundsson, 2003]. In turbulent flow, the

wall roughness is often a limiting factor as compared with the Reynolds number

to find out the value of the friction factor. In offshore gas pipelines, for example,

where Re has an order of magnitude of 13000, the wall roughness will strongly

influence the pipeline pressure drop. In such pipelines, it is a common practice

to apply coating on pipe walls to reduce wall roughness and pressure drop [Slet-

fjerding and Gudmundsson, 2003]. Another example concerns the flow around

merchant ships where the viscous drag dominates the resistance, and the wall

roughness has a significant influence on drag [Grigson, 1992]. Since the flow

is considered fully developed here, which is the case concerning gas pipelines,

the friction factor is estimated through the equation deduced by Prandtl-von

Karman [Romeo et al., 2002] in which the friction factor depends only on the

relative roughness:

f =
�

−2 log
Rg/D

3.71

�−2

(2.12)
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The momentum balance in terms of pressure and throughput can be written

with the following equation:

∂ P

∂ x
+

f

2D

ZRT

PMA2 ṁ2± g
PM

ZRT
sinα+

2ṁR

A2M

Z T

P

∂ ṁ

∂ x
+

ṁ2R

A2M

∂

∂ x

�

Z T

P

�

+
1

A

∂ ṁ

∂ t
= 0

(2.13)

The derivation of this equation is presented in Tabkhi [2007]. In the case of

the steady-state, the flow properties do not change with time at each point of

the pipe. This clause can be presented mathematically as the Equations 2.14 &

2.15. Therefore, according Equation 2.9, the mass flow rate through the pipe

remains constant across it:
∂ ṁ

∂ t
= 0 (2.14)

∂

∂ t

�

P

Z T

�

= 0 (2.15)

1

A

∂ ṁ

∂ x
= 0→ ṁ= constant (2.16)

Consequently, Equation 2.13 which is a general equation can be written in

steady-state operating as follows:

∂ P

∂ x
+

f

2D

ZRT

PMA2 ṁ2±
PM

ZRT
sinα+

ṁ2R

A2M

∂

∂ x

�

Z T

P

�

= 0 (2.17)

In gas transmission lines, changes in elevation may seem to have a negligi-

ble contribution to the overall pressure drop, but it turns out that, particularly

in high pressure lines this contribution could be appreciable. The associated

equation for the pressure drop calculation in a pipe segment with the change

in elevation is shown in Equation 2.19 [Tabkhi, 2007]. For a horizontal pipe,

by assuming that the temperature and compressibility factor remain constant

between the points 1 and 2 of the pipe, the steady-state pressure drop can be

calculated using the following expression:

(P2
2 − P2

1 )−
32ṁ2ZRT

π2D4M
ln
�

P2

P1

�

+
16 f

π2D5

ZRT

M
ṁ2 L = 0 (2.18)

In general, when considering compressible flow, as pressure changes along

the line, so does the density. A rigorous calculation of pressure loss for long



C
hapter

2

30 CHAPTER 2. REVIEW ON MODELLING AND OPTIMIZATION OF NATURAL GAS PIPELINE
NETWORKS

pipelines involves dividing it into segments, performing the calculation for

each segment (considering variable parameters) and integrating over the entire

length. The relationship between pressure and flow exhibits a high degree of

nonlinearity. So, the Equation 2.19 evaluates the pressure drop corresponding

to a given flow magnitude and direction. This equation is used to estimate the

pressure profile of pipelines and can incorporate the pressure head that occurs

due to the location of the pipeline via the elevation changes as presented in

Equation 2.19 [Tabkhi, 2007], as well as for the other cases. Introducing flow

direction, pressure loss equation yields to the form below:

(P2
1 − P2

2 )−
32ṁ2ZRT

π2D4M
ln
�

P1

P2

�

=
16 f

π2D5

ZRT L

M
ṁ2si gn(ṁ) (2.19)

2.4 Maximum allowable operational pressure

The internal pressure in a pipe causes the pipe wall to be stressed, and if allowed

to reach the yield strength of the pipe material, it could cause permanent defor-

mation of the pipe and ultimate failure. In addition to the internal pressure due

to gas flowing through the pipe, the pipe might also be subjected to external

pressure which can result from the weight of the soil above the pipe in a buried

pipeline and also by the probable loads transmitted from vehicular traffic. The

pressure transmitted to the pipe due to vehicles above ground will diminish

with the depth of the pipe below the ground surface. In most cases involving

buried pipelines the effect of the internal pressure is more than that of external

loads. Therefore, the necessary minimum wall thickness will be dictated by the

internal pressure in a gas pipeline. The pressure at all points of the pipeline

should be less than the maximum allowable operating pressure (MAOP) which

is a design parameter in the pipeline engineering. This upper limit is calculated

using Equation 2.21:

P < MAOP (2.20)

MAOP = SMY S
2β

D− β
ϕFϕEϕT (2.21)

β = 52× 10−3D+ 989× 10−5 (2.22)



2 Natural gas pipeline modelling
2.5 Critical velocity

31

C
ha

pt
er

2

The derivation of this equation is given in Tabkhi [2007]. According to this

equation, to withstand the internal pressure in a gas pipeline, the required

minimum wall thickness depends upon the pipe diameter and pipe material

(Equation 2.22). This equation is obtained using the scheduled dimensions pro-

vided by ASME B36.19M standard that concerns stainless steel pipes. In addition

other factors such as population density of the region wherein the pipeline goes

through are introduced [Shashi Menon, 2005]. The yield stress used in Equation

2.21 is called the specified minimum yield strength (SMY S) of pipe material.

SMYS is a mechanical property of the construction material of the gas pipeline.

The factor ϕF has been named the design factor. This factor is usually 0.72 for

cross-country or offshore gas pipelines, but can be as low as 0.4, depending on

class location and type of construction. The class locations, in turn, depends on

the population density in the vicinity of the pipeline. The seam joint factor, ϕE,

varies with the type of pipe material and joint type. Seam joint factors are bet-

ween 1 and 0.6 for the most commonly used material types. The temperature

derating factor, ϕT , is equal to 1 for the gas temperature below 120◦C but it

arrives to 0.867 at 230◦C . These three factors are explained in more details in

Tabkhi [2007].

2.5 Critical velocity

The gas velocity is directly related to the flow rate. As flow rate increases due to

the augmentation in pressure drop, so does the gas velocity. An important factor

in the treatment of compressible fluid flow is the so-called critical flow. For a

compressible flow, the increase in flow owing to the pressure drop increase is

limited, to the velocity of sound in the fluid, i.e., the critical velocity. Sonic or

critical velocity is the maximum velocity which a compressible fluid can reach

in a pipe. For trouble-free operation, the velocities must be maintained under a

half of sonic velocity. Sonic velocity in a gas, νc, is calculated with a satisfactory

approximation using Equation 2.24. Here κ is the average isentropic exponent

of the gas. C p is the heat capacity at constant pressure.

ν <
νc

2
(2.23)
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νc =

Ç

κZRT

M
(2.24)

κ=

n
∑

k=1

(C pk yk)

n
∑

k=1

(C pk yk)− R

(2.25)

2.6 Erosional velocity

Increasing gas velocity in a pipeline can have a particular effect on the vibration

level and increase the noises too. Moreover, higher velocities in the course of

a long period of time will cause the erosion of the inside surface of the tubes,

elbows and other joints. The upper limit of the velocity range should be such

that erosion-corrosion cavitations or impingement attack will be minimal. The

upper limit of the gas velocity for the design purposes is usually computed em-

pirically with the following equation [Shashi Menon, 2005]. In pipeline design

domain, the erosional velocity, νe, falls always underneath the speed of sound

in the gas.

ν < νe (2.26)

νe = 122

Ç

ZRT

PM
(2.27)

Consideration should be given such that the flow velocity remains within

a range where corrosion is minimized. The lower limit of the flow velocity

range should be so that the impurities keep suspended in the pipeline, thereby

minimizing accumulation of corrosion matter within the pipeline.

2.7 Compressor characteristics

As shown in Figure 2.1, a centrifugal gas compressor is characterized by means

of its delivered flow rate and its pressure ratio, the ratio between suction side

pressure and its discharge pressure. The compression process in a centrifugal

compressor can be well formulated using isentropic process aiming for calcu-

lating horsepower for a compressor station. The pressure ratio of a centrifugal
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compressor is usually linked with a specific term named: Head. It is carried

over from pump design nomenclature and expressed in (kJ/kg) even for com-

pressors. The compressor isentropic head, h, developed by the compressor is

defined as the amount of energy supplied to the gas per unit mass of gas.

Figure 2.1: A typical centrifugal compressor map.

Therefore, by multiplying the mass flow rate of compressed gas, ṁcomp by the

compressor isentropic head, h, the total energy supplied to the gas is calculated.

Dividing this by compressor isentropic efficiency, ηIS, the required power, W , to

compress the gas is obtained. Thus, the equation for power calculation can be

expressed as follows:

W =
ṁcomp(h)

ηIS
(2.28)

This equation is obtained by considering compression adiabatic process that

is a reasonable assumption because the heat transfer between gas and the out-

side is very low. For adiabatic compressor firstly the adiabatic efficiency is de-

fined:

ηIS =
Wideal

W
(2.29)

As shown in the following equation, considering adiabatic compression, h

is an index of the pressure ratio across the compressor. In this equation, Pd is

the discharge pressure of the compressor and Ps is the suction pressure and κ

is isentropic exponent and will be calculated using Equation 2.25. The com-

pressibility factor and the temperature are considered here at suction side of
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the compressor [Smith and Van Ness, 1998].

h=
ZsRTs

M

κ

κ− 1





�

Pd

Ps

�
κ−1
κ

− 1



 (2.30)

Centrifugal compressors devices are commonly moved by electric motors,

steam turbine or internal combustion engines. Combustion turbines can also

supply the required energy for compression process. Turbine compressors gain

their energy by using up a small proportion of the natural gas that they com-

press. The turbine itself serves to operate a centrifugal compressor, which con-

tains a type of fan that compresses and pumps the natural gas through the

pipeline. Some compressor stations are operated by using an electric motor to

turn the same type of centrifugal compressor. This type of compression does

not require the use of any of the natural gas from the pipe; however it does

require a reliable source of electricity nearby. Reciprocating natural gas engines

are also used to power some compressor stations. These engines are similar to

a very large truck engine, and they are powered by natural gas provided from

the pipeline. The combustion of the gas powers pistons on the outside of the

engine, which serves to compress the natural gas.

Figure 2.2: Representation of a compressor and its incorporated turbine.
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In this work, centrifugal compressors in the stations are assumed to be driven

by turbines whose supply energy is provided from a line of the gas derived from

the pipeline passed through the station in order to be compressed as shown in

Figures 2.2 & 2.3. The flow rate of the consumed gas as fuel for the compres-

sion process in each compressor is obtained by dividing the required power for

compression (W ) by the mechanical efficiency (ηm), driver efficiency (ηdr) and

low heating value (LHV ):

ṁ f =
106ṁcomp(h)

ηISηmηdr LHV
(2.31)

Here LHV represents the quantity of energy released by mass unity of the gas

during complete combustion. It is considered at 25◦C and 1 bar and it is cal-

culated from the mass lower heating values, LHVk of the molecules composing

the gas:

LHV =

n
∑

k=1

ykMi LHVk

n
∑

k=1

ykMk

(2.32)

HHV is not introduced here as the released water after the combustion re-

actions. It is assumed to be in gaseous state. Feasible operating domain of a

single compressor is constituted using the inequalities shown in Equations 2.35

& 2.36.

The compressors within the compressor stations are modelled using compres-

sor map-based polynomial equations. Normalized head, hi/ω̄2 and normalized

flow rate, Qs/ω̄, are used to describe the performance map of the compressors
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[Odom and Langenbacher, 1990]. Qs is volumetric flow rate at suction side

and ω̄ is rotational speed. The set of polynomial equations uses constant coef-

ficients. If the compressor driver allows, the compressor speed can be varied to

control the pressure ratio. Applying standard polynomial curve-fit procedures

for each compressor, the normalized head can thus be obtained under the form

of the following equation [Abbaspour et al., 2005].

hi

ω̄2 = b1+ b2

Qs

ω̄
+ b3

�

Qs

ω̄

�2

(2.33)

As well, contours of constant isentropic efficiency could be fitted in the poly-

nomial form of second degree shown in Equation 2.34:

ηIS = b4+ b5

Qs

ω̄
+ b6

�

Qs

ω̄

�2

(2.34)

The rotation speed of all compressors is comprised between lower and upper

bounds as represented below.

ω̄l ≤ ω̄≤ ω̄u (2.35)

The lower limit on flow is marked by surge or pumping phenomenon that is

an unsteady flow condition characterized by increased noise and flow reversal

through the machine. To prevent from surge phenomenon, by considering surge

margin, λsur ge, the following constraint is introduced [Odom and Langenbacher,

1990].

λsur ge ≤
Qs −Qsur ge

Qs
(2.36)

There is a surge flow rate, Qsur ge, corresponding to each compressor rota-

tional speed (Figure 2.1). The line joining the surge points at different speeds

gives the surge line. The surge line will be sketched using the following equation

[Pugnet, 1999]:

Qsur ge = b7





�

ZsRTs

M P2
s

κ− 1

κ
hsur ge +

�

ZsRTs

PsM

�2
�

κ
κ−1

−
�

ZsRTs

PsM

�2




1
2

(2.37)
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In this equation, hsur ge is the surge head at specified compressor speed and

can be calculated using following equation:

hsur ge

ω̄2 = b1+ b2

Qsur ge

ω̄
+ b3

�Qsur ge

ω̄

�2

(2.38)

A fixed value for the surge pseudo efficiency is considered, it will be intro-

duced like a parameter in the optimization procedure. The previous equation

represents a nonlinear correlation between surge flow rate and rotational speed

of the compressor. The right portions of the head-flow characteristics curves

drop because of choking. Choking phenomenon which occurs at high flow rates

also limits the compressor’s operating range. At a given speed, the upper limit on

flow is set by stall in the inlet, diffuser or impeller passages. To avoid chocking

occurrence at inlet, the inequality shown in Equation 2.39 should be considered.

In this inequality, As is the cross sectional area and νc is the gas sonic velocity at

the compressor inlet.

Qs ≤ Asνc

�

2

κ+ 1

�
κ+1

2(κ+1)

(2.39)

3 Previous works on natural gas network optimization

3.1 Monobjective optimization

One of the first works on natural gas network optimization is the Ph.D. thesis

of De Wolf [1992]. The objective to be minimized was the sum of investment

and operating costs. Osiadacz [1987] has presented a dynamic optimization of

high-pressure gas networks using hierarchical system theory. Mohitpour et al.

[1996] have used a dynamic simulation approach for the design and optimiza-

tion of pipeline transmission systems. Sung et al. [1998] have based their mo-

delling approach on a hybrid network using minimum cost spanning tree. Sun

et al. [2000] have used a software support system, called the Gas Pipeline O-

peration Advisor for minimizing the overall operating costs, subject to a set of

constraints such as the horsepower requirement, availability of individual com-

pressors, types of compressor and the cycling of each compressor. A reduction

technique for natural gas transmission network optimization problems was im-

plemented by Ríos-Mercado et al. [2002]. Nestor et al. [2002] have used the
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software package Gas Net. A Mixed Integer Non Linear Programming (MINLP)

model for the problem of minimizing the fuel consumption in a pipeline network

was implemented by Cobos-Zaleta and Ríos-Mercado [2002]. Mora and Ulieru

[2005] have determined the pipeline operation configurations requiring the

minimum amount of energy (e.g. fuel, power) needed to operate the equipment

at compressor stations for given transportation requirements. Chauvelier-Alario

et al. [2006] have developed CARPATHE, a simulation package (GdF-Suez) for

representing the behaviour of multi-pressure networks and including functiona-

lities for both network design and network operation. Optimization methods

for planning reinforcement on gas transportation networks and for minimizing

the investment cost of an existing gas transmission network were used by André

et al. [2006]; André [2010]. Recently, Tabkhi et al. [2009] have minimized the

fuel consumption in the compressor stations by using the GAMS package; they

carried out a post-optimal analysis based on Lagrange multipliers to identify the

most sensitive problem constraints on the optimal solution.

3.2 Multiobjective optimization

In the natural gas network optimization problems, the references on multiob-

jective optimization are rarer than in the monobjective case. Surry et al. [1995]
and Surry and Radcliffe [1997] have developed the COMOGA method for sol-

ving monobjective constrained optimization problem by means of a multiobjec-

tive genetic algorithm; the procedure is illustrated by a gas network pipe-sizing

problem. However this application is only related to monobjective case. Babon-

neau et al. [2009] solved the biobjective optimization of investment and energy

in a gas transmission network. As the problem was formulated in a convex form,

convex solvers presented by Abbaspour et al. [2005] were used.

4 Conclusion

The modelling equations presented in Section 2 will be used in Chapter 5 for

modelling a didactic network [Abbaspour et al., 2005]. These equations will be

also used to take into account hydrogen injection into natural gas transmission

network.
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Nowadays, most of optimization studies in process engineering have to be

performed within a multiobjective framework, where some objectives related to

environmental impacts, security, etc., must be simultaneously optimized with

classical economic or technical criteria. In natural gas network optimization

problems a lack of published works on multiobjective optimization can be ob-

served, and this thesis aims at filling this gap. So this topic will be the main pur-

pose of the present study. In the following chapter, the most commonly used ap-

proaches in multiobjective optimization (scalarization and evolutionary proce-

dures) are reviewed and three specific algorithms (Weighted-sum, ε-constraint

and Genetic algorithm) are detailed. On the basis of two mathematical pro-

blems and four multiobjective chemical engineering problems, the choice of the

best procedure, namely the Genetic algorithm, will be performed in Chapter 5.

Then in the first part of Chapter 5, the didactic network is optimized according

to two objectives: the fuel consumption in compression stations and the mass

load of gas delivery. In the second part, this didactic network is considered

again for hydrogen transportation, and three objectives are taken into account:

the fuel consumption in compression stations, the mass load of gas delivery and

the percentage of injected hydrogen into the network.
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1 Introduction

As shown in Chapter 2, the natural gas network system can be formulated as a

multiobjective optimization problem. In many other engineering fields, most of

process optimization problems became multiobjective optimization ones. When

dealing with process optimization, the current trend is to consider other ob-

jectives besides the traditional economic criterion, related to sustainability, en-

vironment and safety. So, this chapter deals with the most commonly used

multiobjective methods in chemical engineering. Two mathematical examples

are presented as comparison purposes. Then, from the basis of well-known

chemical engineering problems, the choice of the multiobjective optimization

algorithm is performed in Chapter 4.

Among the diversity of multiobjective optimization methods, two important

classes have to be distinguished: first scalarization approaches, second genetic

and evolutionary methods. Complete reviews are proposed in literature for both

classes [Hao et al., 1999; Grossmann, 2002; Biegler and Grossmann, 2004]. A

thorough analysis of both classes was previously studied by Ponsich [2005] with

the support of batch plant design problems.

The first class, namely deterministic methods, assumes the verification of

mathematical properties of the objective function and constraints, such as con-

tinuity, differentiability and convexity. In practice, these assumptions (parti-

cularly convexity) do not always hold, and the convergence towards a global

optimum is no longer guaranteed. This working mode enables only to ensure to

get a local optimum, what is a great advantage versus stochastic methods.

The second class, namely stochastic methods, is based on the evaluation

of the objective function at different points of the search space. These points

are chosen through a set of heuristics, combined with generations of random

numbers. Thus, stochastic procedures cannot guarantee to obtain an optimum.

However by allowing occasional objective function increases (for minimization

problems) they may go out of local optimum gaps. Even if stochastic methods

do not require any mathematical property for the objective function and cons-

traints, they may be difficult to implement for problems involving a significant

number of equality constraints.

Besides, the efficiency of a given method for a particular example is hardly

predictable, and the only certainty we have is expressed by the No Free Lunch
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(NFL) Theory [Wolpert and Macready, 1997]: there is no method that outdoes

all the other ones for any considered problem. This feature generates a common

lack of explanation concerning the use of a method for the solution of a parti-

cular example. Several works were carried out on the NFL: Droste et al. [2002]
show that each heuristic which is able to optimize some functions efficiently

follows some ideas about the structure of considered functions in black-box op-

timization; Griffiths and Orponen [2005] study the NFL in the framework of

Boolean functions; Service [2010] generalizes the NFL theorem to non totally

ordered objectives spaces. However, for any particular application, the resolu-

tion strategy has to be selected in one of the two classes of methods.

This chapter recalls three classical types of procedures used in multiobjective

optimization. The choice of the most adequate method will be performed in the

next chapter, where several chemical process optimization problems are studied.

The present chapter is organized as follows. First, the general properties of a

multiobjective problem are presented. Then, three classical solution procedures

(Weighted-sum, ε-constraint and Evolutionary procedures) are recalled. More

precisely, three algorithms (Adaptive Weighted-Sum, Augmented ε-Constraint

and NSGA-IIb) are described. Finally, two mathematical problems are solved for

performing a preliminary comparison of the three algorithms.

2 General properties of a multiobjective constrained

optimization problem

2.1 A general definition of optimality for multiobjective problems

Like many real world examples, the problem under consideration involves se-

veral competing measures of performance, or objectives [Collette and Siarry,

2002].
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General Abbreviations
Abbreviation Meaning
AUGMECON Augmented ε-Constraint
AWS Adaptive Weighted-Sum
GA Genetic Algorithm
GRG Generalized Reduced Gradient
MGA Multiobjective Genetic Algorithm
MINLP Mixed Integer Non Linear Programming
MOGA MultiObjective Genetic Algorithm
MOSA MultiObjective Simulated Annealing
MOOP MultiObjective Optimization Problem
NFL No Free Lunch
NLP Non Linear Programming
NPGA Niched Pareto Genetic Algorithm
NSGA Non dominated Sorting Genetic Algorithm
RHS Right-Hand-Side
SQP Successive Quadratic Programming
VBA Visual Basic for Applications
WS Weighted-Sum
ε-C ε-Constraint

Table 3.1: Nomenclature of the multiobjective optimization.

A MOOP can be formulated as shown in Equation 3.1. Each fi(x) may be

nonlinear, but also discontinuous with respect to some components of the gene-

ral decision variable x in an n-dimensional universe X .

Min F(x) =
�

f1(x), f2(x), ..., fp(x)
�T

(3.1)

x ∈ X ⊂ Rn′ × N n′′ (3.2)

n= n′+ n′′ (3.3)

This formulation (Equations 3.1 to 3.3) holds for general mixed problems,

involving continuous and integer variables (n is the total number of variables).

When integer variables are boolean ones, the set N is restricted to [0, 1].
The subspace X is defined by a set of equality-inequality constraints (linear

or nonlinear) and bounds on variables:

X = {x ∈ Rn′ × N n′′/gi(x)≤ 0, i = 1 to n1; r j(x)< 0, j = 1 to n2;
hk(x) = 0, k = 1 to n3; li ≤ x i ≤ ui}

(3.4)
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In a MOOP, the concept of optimality is replaced with that of efficiency or

Pareto optimality. The efficient (or Pareto optimal, non dominated, non-inferior)

solutions are the solutions that cannot be improved in one objective function

without deteriorating their performance in at least one of the rest. The mathe-

matical definition of an efficient solution (x∗) is the following:

fi(x)≤ fi(x
∗) ∀ i ∈ {1, ..., p} (3.5)

A feasible solution (x∗) of a MOOP is efficient (non dominated), if there is

no other feasible solution (x) such as shown in Equation 3.5 with at least one

strict inequality. If we replace the large inequality in Equation 3.5 by a strict

inequality, we obtain the weakly efficient solutions. Weakly efficient solutions

are not usually pursued in MOOP because they may be dominated by other

efficient solutions. The set of non dominated solutions constitute the Pareto

front. The Pareto front can be viewed as an equilibrium curve composed of

good solutions for the MOOP, i.e., the set of problem solutions among which the

decision maker has to perform his choice. Branke et al. [2004] and Taboada

and Coit [2006] suggest picking the knees in the Pareto front, that is to say,

solutions where a small improvement in one objective function would lead to a

large deterioration in at least one other objective. Several other methods can be

found in the literature; they are discussed in Chapter 5.

2.2 Constraint handling in evolutionary methods

Constrained multiobjective optimization is the most common kind of problem in

engineering applications. When implementing scalarization methods, the pro-

blem related to constraints does not arise. The constraints are directly treated

by the MINLP solver. In the case of continuous problems considered in this study

(no integer or binary variables, n′′ = 0) the solver is a NLP, generally based on

a SQP or a GRG strategy. However for evolutionary procedures, each solution

generated from an elementary move can be unfeasible with regard to a cons-

traint set. In general, three types of constraints are considered (Equation 3.6):
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simple inequality (≤), strict inequality (<), and equality (=).

g(x)≤ c1
r(x)< c2
h(x) = c3

«

⇔
¨ constr1(x) = c1− g(x)≥ 0

constr2(x) = c2− r(x)> 0
constr3(x) = c3− h(x) = 0

(3.6)

Where (g, r, h) are real-valued functions of a decision variable x =
(x1, . . . , xn) on the n-dimension decisional search space X , and (c1, c2, c3) are
constant values. In the more general case, these constraints are written as
vectors of the type :

~const r1(x) = ((c1− g(x))1, · · · , (c1− g(x))n1) = (cont r1(x)1, · · · , cont r1(x)n1)≥ 0
~const r2(x) = ((c2− r(x))1, · · · , (c2− r(x))n2) = (cont r2(x)1, · · · , cont r2(x)n2)> 0
~const r3(x) = ((−|c3− h(x)|)1, · · · , (−|c3− h(x)|)n3) = (cont r3(x)1, · · · , cont r3(x)n3) = 0

(3.7)

Where n1, n2, and n3 are respectively, the number or inequality, strict ine-

quality and equality constraints. This constraint formulation implies that each

constraint value will be negative if and only if this constraint is violated. The

conversion of Equation 3.6, that is a classical representation of constraint sets, to

Equation 3.7 constitutes the first step of an unified formulation of constrained-

optimization problems. In practice, due to round-off error on real numbers, the

equality constraint ~const r3 was modified as shown in Equations 3.8 & 3.9.

~const r3(x) = (−|c3− h(x)|1+ ε1, · · · ,−|c3− h(x)|n3+ εn3) = ~cont r3(x) + ~ε
(3.8)

~ε= (ε1, · · · ,εn3),∀i ∈ {1, · · · , n3} ,εi ∈ R (3.9)

~ε is called a precision vector of the equality vector, and takes low values

(less than 10−6 for example). This approximation is not necessary when equa-

lity constraint involves only integer or binary variables. From Equation 3.9,

the constraint satisfaction implies the maximization of violated constraints in

vectors ~const r1, ~const r2, and ~const r3. According to Fonseca and Fleming

[1998], the satisfaction of a number of violated constraints is, from Equation

3.7, a multiobjective minimization problem. From a theoretical point of view,

a constrained multiobjective optimization problem can be formulated as a two-

step optimization problem. The first step implies the comparison of constraint

satisfaction degrees between two solutions, using the Pareto’s domination de-

fined by Equation 3.5, but a more simple solution consists in comparing the
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sum of values of violated constraints only, as in NSGA-II algorithm of Deb et al.

[2002], which implies there are no priority rules between constraints. This step

is performed first, before the second one which concerns the comparison of the

objective function vectors.

3 General Multiobjective Optimization methods

3.1 Weighted-sum method (WS)

Historically, the first method for solving MOOPs is the WS method. The method

transforms multiple objectives into an aggregated single objective function by

multiplying each objective function by a weighting factor and summing up all

weighted objective functions. So, the minimization problem is transformed as

shown in Equations 3.10 to 3.12:

Min Fw =ω1 f1+ω2 f2+ ...+ωp fp (3.10)

0≤ωi ≤ 1 (3.11)

p
∑

i=1

ωi = 1 (3.12)

In Equation 3.10, ωi is a weighting factor for the (i) objective function ( fi).
Due to Equations 3.11 & 3.12, the WS is said to be convex. Each single objec-

tive optimization determines one particular optimal solution point on the Pareto

front. The WS method then changes weights systematically, and each different

single objective optimization determines a different optimal solution. The solu-

tions obtained approximate the Pareto front.

Initial works on WS method can be found in Zadeh [1963]. Oski [1988]
applied the WS method to structural optimization. Li and Guangwen [1990]
used the method to solve a river water quality management problem. Jin et al.

[2001] proposed a dynamic weighted aggregation for evolutionary multiobjec-

tive optimization. Kim and de Weck [2006] presented an Adaptive Weighted-

Sum method (AWS) and Ding et al. [2006] described a normalization procedure

for weighting factors.
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3.2 ε-constraint method (ε-C)

In the ε-C method, one of the objective functions is minimized while all the other

objective functions are upper bounded by introducing additional constraints. So

the problem defined by Equations 3.1 to 3.3 is transformed into the following

problem ( fk):
Min fk(x) (3.13)

x ∈ X ⊂ Rn′ × N n′′ (3.14)

fi(x)≤ εi i = 1 to p, i 6= k (3.15)

By parametric variation in the Right-Hand-Side (RHS) of the constrained ob-

jective functions (Equation 3.15), the efficient solutions of the problem can be

obtained. The method was first presented by Chankong and Haimes [1983].
In practical applications, it may be very difficult to select the initial design

values inside the feasible region. So in many works, the optimization is con-

ducted successively; the previous optimization results are used as initial values

for the current optimization. Hence, the solution time is increased linearly with

the increased number of Pareto solutions. Kim et al. [1997] proposed to de-

fine initial values independently, and each Pareto solution can be found inde-

pendently by using parallel processing. The initial vector (x0) is defined as a

convex combination of results of single optimization of each objective function

of the problem. By changing the coefficients of the convex combination, various

Pareto optimal solutions can be obtained.

In order to properly apply the ε-C method, the range of the (p-1) objective

functions that are used as constraints must be known. The calculation of the

range of the objective functions over the efficient set is not a trivial task [Is-
ermann et al., 1988; Reeves and Reid, 1988]. While the best value is easily

attainable as the optimum of the individual optimization, the worst value over

the efficient set (Nadir value) is not. The most common approach is to calculate

these ranges from the payoff table (the table with the results from the individual

optimization of the p objective functions). From Figueira et al. [2005], the op-

timal solution of Equations 3.13 to 3.15 is guaranteed to be an efficient solution

only if all the (p-1) objective function constraints are binding. To overcome this
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difficulty, Mavrotas [2009] proposes the transformation of the objective func-

tion constraints to equalities by explicitly incorporating appropriate slack (+Si)
or surplus (−Si) variables for minimization or maximization respectively. In

the same time, the sum of these slack or surplus variables is used as a second

term (with lower priority) in the objective function forcing the constraints on

objective functions to be binding, so as to produce only efficient solutions. This

proposed version of the ε-C method will be described in Section 4.2.1. A quite

similar approach based on slack variables is presented in Ehrgott and Ruzika

[2008].

3.3 Genetic and evolutionary methods

In this class of methods, the elements of the objective vector are kept separate

throughout the optimization process; these approaches typically use the concept

of dominance (Equation 3.5) to distinguish between dominated and non domi-

nated solutions for passing from the current solution to the next one. An evolu-

tionary procedure is a heuristic method for solving a large class of combinatorial

problems by combining user-given black-box procedures whose derivatives are

not available with heuristics, in order to obtain a good solution for the problem.

Some heuristics maintain at any time a single current state, and replace that

state by a new one (transition state or move). Heuristics often work on pool

of states containing several candidate states. The new states (evolution) are

generated by combination or crossover of two or more states of the pool. Since

1975, many evolutionary procedures have appeared. For example, one can cite

genetic algorithms [Holland, 1975; Chafekar et al., 2005], simulated annealing

[Kirkpatrick et al., 1983], artificial immune systems [Farmer et al., 1986], ant

colonies [Dorigo, 1992], particle swarms [Kennedy and Eberhart, 1995], artifi-

cial bee colonies [Nakrani and Tovey, 2004] and artificial neural networks [Ang

et al., 2007].
All these algorithms can be adapted to the multiobjective case, as it can be

observed in the list of references proposed by Coello Coello [2009]. Recently,

Coello and Becerra [2009] indicate the most representative evolutionary algo-

rithms in the fields of materials science and engineering, and give some poten-

tial areas for future research in these domains. They distinguish three main

classes of MGA: MOGA where the rank of an individual corresponds to the num-
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ber of individuals in the current population by which it is dominated [Fonseca

et al., 1993]; NSGA where several layers of classifications of the individuals are

established on the basis of non domination [Srinivas and Deb, 1994]; NPGA

where a binary tournament selection scheme based on Pareto domination is

used [Horn et al., 1994]. The book of Deb [2001] presents several performance

metrics for convergence, metrics for diversity, and metrics for both convergence

and diversity. Obayashi et al. [1999] published the Proceedings of the 4th In-

ternational Conference on Evolutionary Multi Criterion Optimization held in

Matsushima (Japan, March 2007) and gave a good review of the domain. An-

other recent evolution concerns the evolutionary neural networks that evolve

their architecture through multiobjective genetic algorithms as a Pareto trade-

off between the accuracy of training and the problem complexity [Pettersson

et al., 2007, 2009].
The two most popular methods in the chemical engineering field are MGA

[Konak et al., 2006], and MOSA [Shu et al., 2004; Smith et al., 2004; Bandy-

opadhyay et al., 2008]. None of these two methods is perfect and selecting one

depends on the requirements of the particular situation considered. From the

literature survey [Deb et al., 2002; Branke et al., 2004; Turinsky et al., 2005;

Mansouri et al., 2007], it appears that MGA is generally preferred to MOSA. One

of the most efficient genetic algorithm is NSGA-II [Deb et al., 2002], an upgrade

of NSGA which estimates the density of solutions surrounding a particular solu-

tion. From Coello and Becerra [2009], its performance is so good, that it has

gained a lot of popularity in the last few years.

4 Solution procedures

4.1 Adaptive Weighted-sum

4.1.1 A procedure for implementing the Weighted-sum method: AWS

algorithm

In this section, a classical Weighted-sum (WS) procedure with a convex com-

bination of objective functions is implemented. This procedure is an improve-

ment of the one proposed by Kim and de Weck [2005]. The so-called, Adaptive

Weighted-Sum (AWS) method, is briefly presented for a biobjective problem. For
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convex Pareto fronts, the AWS procedure allows to obtain a front with a given

density of multiobjective solutions. However, in the case of non-convexity, the

secant line between the points P1 and P2 does not over-estimate the Pareto front

(Figure 3.1(a)) and the method can fail. So, on a theoretical point of view,

the AWS procedure is restricted to convex Pareto fronts. All basic steps of the

procedure are recalled in what follows.

Nomenclature
Symbol Meaning
C Constant
J Objective function
J̄ Normalized objective function
l Length
l̄ Average length
n Number of divisions or refinements
x Solution vector
Greek letters
δ Offset distance
∆ Uniform step size
ε Prescribed distance
θ Angle
λ Weighting factor
Subscripts
s Segment
Superscripts
i∗ Optimal solution vector
N Nadir point
U Utopia point

Table 3.2: Nomenclature of the AWS method.

Step 1: Perform a multiobjective optimization using the classical WS ap-

proach with a small number of divisions. The uniform step size of the weighting

factor is determined by the number of divisions:

∆λ=
1

nini t ial
(3.16)

By using a large step size on the weighting factor, a small number of solutions

are obtained.

Step 2: Compute the lengths of the segments between all the neighboring so-

lutions. Delete nearly overlapping solutions. Overlapping occurs often whereas

several nearly identical solutions are obtained. The Euclidian distances between
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these solutions are nearly zero, and among these, only one solution is needed

to represent the Pareto front. In the computer implementation, if the distance

among solutions is less than a prescribed distance (ε), then all solutions except

one are deleted.

Step 3: Determine the number of further refinements (additional number of

divisions) in each of the regions. The longer the segment is, the more it needs

to be refined. The refinement is determined based on the relative length of the

segment:

ns = round

�

C
ls
l̄s

�

(3.17)

In Equation 3.17, ns is the number of further refinements for the segment,

ls is the length of the segment, l̄s is the average length of all the segments, and

C is a constant of the algorithm (C=1). The function (round) rounds off to the

nearest integer.

Step 4: If ns is zero or one, no further refinement is carried out in the seg-

ment. For other segments whose number of further refinements is greater than

one, go to the following step.

(a) (b) (c)

Figure 3.1: Determining the offset distances, δ1 and δ2, based on δ.

Step 5: Determine the offset distances from the two end points of each seg-

ment. First, a piecewise linearized secant line is built by connecting the end

points, P1 and P2, as shown in Figure 3.1(a). Then, the user selects the offset

distance (δ) along the piecewise linearized Pareto front. The offset distance,

δ, determines the final density of the Pareto solution distribution, because it

becomes the maximum segment length during the last phase of the algorithm.

In order to find the offset distances parallel to the objective axes, the angle θ in
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Figure 3.1(b) is computed as:

θ = tan−1

�

−
P y

1 − P y
2

P x
1 − P x

2

�

(3.18)

Where P x
i and P y

i are the x (J1) and y (J2) positions of the end points, P1

and P2, respectively. Then, δ1 and δ2 are determined with δ and θ as follows:

δ1 = δcosθ (3.19)

δ2 = δsinθ (3.20)

Step 6: Impose additional inequality constraints and then conduct sub-

optimization with the WS method in each of the feasible regions. As shown in

Figure 3.1(b), the feasible region is offset from P1 and P2 by the distance of δ1

and δ2 in the direction of J1 and J2. Performing sub-optimization in this region,

the problem is stated as:

Min
�

λJ1(x) + (1−λ)J2(x)
�

(3.21)

J1(x)≤ P x
1 −δ1 (3.22)

J2(x)≤ P y
2 −δ2 (3.23)

h(0) = 0, g(x)≤ 0, λε[0,1] (3.24)

Where δ1 and δ2 are the offset distances obtained in Step 5, P x
i and P y

i are

the x and y position of the end points. The uniform step size of the weighting

factor for each feasible region is determined by the number of refinements, ns,

obtained in Step 3:

∆λs =
1

ns
(3.25)
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The segments in which no converged optimal solutions are obtained are re-

moved from the segment set for further refinement, because in this case these

regions are non-convex and do not contain Pareto optimal solutions.

Step 7: Compute the length of the segments between all the neighboring

solutions. Delete nearly overlapping solutions. If all the segment lengths are less

than a prescribed maximum length, δ, terminate the optimization procedure. If

there are segments whose lengths are greater than the maximum length, go to

Step 3 and iterate.

AWS ALGORITHM

As indicated above, the AWS procedure can fail on non-convex Pareto fronts.

This new method can effectively solve multiobjective optimization problems

whose Pareto front has: (i) convex regions with non-uniform curvature, (ii)

non-convex regions of non-dominated solutions, and (iii) non-convex regions

of dominated solutions. The so-called AWS algorithm is based on the work of

Kim and de Weck [2005]. The issue of controlling values of various parameters

of an algorithm is one of the most important and critical area of calculation: it

has the potential of adjusting the algorithm to solve a particular problem. Note

that the solver fmincon of MATLAB toolbox (version R2008a) was used in the

method implementation.

4.1.2 Parameters of the algorithm

The current description and values of the algorithm tuning parameters are indi-

cated in Tables 3.3 & 3.4. These values include the tuning parameters of all the

chemical engineering problems performed in Chapters 4 & 5.
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Tuning parameters description
Parameter Description
nInitial Initial number of solutions (solving by WS method)
loop Sub-optimization number (solving by AWS method)

c1,2 Optimization criterion for the objectives. All functions must
be cmin because of fmincon function always minimizes

exitflag1,2 Describe the exit condition (exitflag) of fmincon. It
means the convergence status described in MATLAB

Refinement Determine the algorithm ending by limiting the number of
further refinements in each of the regions.

C A constant value that determines the Refinements number
in each region

ED Delete nearly overlapping solutions according to this condition:
Euclidian Distance < ED

delta Determine the final density of the Pareto solution (Figure 3.1(b))
tolerance Nominal tolerance authorized in the algorithm

Table 3.3: Tuning parameters description of the AWS algorithm.

Parameter Range of values
nInitial 10 - 20
loop 10 - 50
c1,2 cmin
exitflag1,2 1 and 2
Refinement 1
C 1
ED 10−10 - 10
delta 0.01 - 104

tolerance 10−10

Table 3.4: Tuning parameters values of the AWS algorithm.

4.2 Augmented ε-constraint

4.2.1 A procedure for implementing the ε-constraint method: AUGMECON

algorithm

In this section, a classical ε-constraint (ε-C) procedure is implemented. This

classical procedure has been improved based on the work of Mavrotas [2006].
The so-called AUGMECON method is briefly presented for a biobjective problem.

All basic steps of the procedure are recalled in what follows.
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Nomenclature
Symbol Meaning
f Objective function
q Equal intervals
r Range of the objective function
+S Slack variable
−S Surplus variable
ε Parametrical variation

Table 3.5: Nomenclature of the AUGMECON method.

The AUGMECON method uses slack or surplus variable (±Si) as shown in

[Mavrotas, 2006]. The classical formulation given by Equations 3.13 to 3.15 is

replaced by:

Min



 fk(x) + εi ×
p(i 6=k)
∑

i=1

Si

ri



 (3.26)

n= n′+ n′′ (3.27)

gi(x) = fi(x) + Si = εi where i = 1 to p, i 6= k (3.28)

Si ∈ R+, ri ∈ R (3.29)

In order to avoid any scaling problems, it is recommended to replace the

slack or surplus variable (±Si) in the second term of the objective function by

Si/ri, where ri is the range of the ith objective function (calculated from the

payoff table). By parametrical variation in the RHS of the constrained objective

functions (εi), efficient solutions to the problem can be obtained.

Practically, this AUGMECON method is implemented as follows: from the

payoff table [Mavrotas, 2006], the range of each one of the (p-1) objective

functions that are going to be used as constraints can be determined. Then

the range of the ith objective function is divided into qi equal intervals using

intermediate equidistant grid points. Thus we have (qi + 1) grid points that are

used to vary parametrically the RHS (εi) of the ith objective function. If the first

objective is chosen (k=1) as the objective function and the other fi (i=2 to p)

considered as constraints, the total number of runs becomes (q2+1)× (q3+1)×
... × (qp+1). An interesting characteristic of this AUGMECON method is that the
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density of the Pareto front can be tuned by properly assigning the values to the

qi. The higher the number of grid points the more dense is the representation of

the efficient set, but the higher is the computational time. A trade-off between

the density of the efficient set and the computation time is always advisable.

AUGMECON ALGORITHM

The AUGMECON procedure can solve multiobjective optimization problems

that produces only efficient solutions (no weakly efficient solutions). The so-

called AUGMECON algorithm is based on the Mavrotas [2006]. Similar to the

AWS method, the issue of controlling values of various parameters of an algo-

rithm is one of the most important and critical area of calculation. Note that, as

in the previous case, the solver fmincon of MATLAB toolbox was used.

4.2.2 Parameters of the algorithm

The current description and values of the algorithm tuning parameters are indi-

cated in Tables 3.6 & 3.7. These values include the tuning parameters of all the

chemical engineering problems performed in Chapter 4 & 5.

Tuning parameters description
Parameter Description
nSolution Final number of solutions
NadirPoint The worst value (Range 1) of fi

UtopiaPoint The best value (Range 2) of fi

exitflag1,2 Describe the exit condition (exitflag) of fmincon.
It means the convergence status described in MATLAB

Table 3.6: Tuning parameters description of the AUGMECON algorithm.

Parameter Value
nSolution 100
NadirPoint Depending on problem
UtopiaPoint Depending on problem
exitflag1,2 1 and 2

Table 3.7: Tuning parameters values of the AUGMECON algorithm.
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4.3 Evolutionary procedure: NSGA-IIb

4.3.1 A procedure for implementing the genetic algorithm: NSGA-IIb

Concerning evolutionary procedures reviewed at Section 3.3, Multiobjective Ge-

netic Algorithms (MGA) are generally preferred in the chemical engineering

community, so genetic algorithms (GA) have been retained in this work for

solving the MOOP. These procedures belong to the genetic algorithm library

(MULTIGEN) recently developed in Gomez et al. [2010]. The MULTIGEN tools,

written in Visual Basic for Applications (VBA), use Excel sheets as interface. The

use of VBA was imposed by the industrial partner (CEA: Commissariat à l’Energie

Atomique, French agency of nuclear studies and applications) when the MULTIGEN

library was developed [Gomez et al., 2010]. The MULTIGEN library involves

several algorithms, distinguishing them by their structure and by their type of

variables (continuous, integer, binary); eight different algorithms are now avai-

lable. The aim was to treat multiobjective constrained optimization problems

involving mixed variables (boolean, integer, real), where some of these pro-

blems can be structural optimization ones [Gomez et al., 2010].
According to all the previous items mentioned in Section 3.3, NSGA-II [Deb

et al., 2002] was chosen as a basis of development of the MULTIGEN library.

The step-by-step procedure is illustrated in Figures 3.2 to 3.4 showing the use

of dominance concepts in the procedure implementation. Its principles are now

briefly summarized in what follows.

Initially, a random parent population P0 of size N is created. The population

is sorted based on the non domination principle. At each individual is assigned

a fitness (or rank) equal to its non domination level (1 is the best level, 2 is the

next-best level, and so on). Thus, maximization of fitness can be performed.

At first, the usual binary tournament selection, recombination and mutation

operators are used to create an offspring population Q t of size N (Figure 3.2).

Since elitism is introduced by comparing current population with the previously

best found non dominated solutions, the procedure is different after the initial

generation.
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Figure 3.2: Operating principle of the NSGA-II (Part 1) [Gomez, 2008].

First, a combined population Rt = Pt U Q t is formed (Figure 3.3). The

population Rt is of size 2N . Then, the population is sorted according to non

domination. If the size of F1 (set of individuals of rank 1) is smaller then N ,

we definitely choose all members of the set F1 for the new population Pt+1. The

remaining members of the population Pt+1 are chosen from subsequent non

dominated fronts in the order of their ranking. Thus, solutions from the set F2

are chosen next, followed by solutions from the set F3, and so on. This procedure

is continued until no more sets can be accommodated. Say that the set Fl is the

last non dominated set beyond which no other set can be accommodated. In

general, the number of solutions in all sets from F1 to Fl is greater than the

population size.
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Figure 3.3: Operating principle of the NSGA-II (Part 2) [Gomez, 2008].

In order to choose exactly population members, we sort the solutions of the

last front using the crowded-comparison operator in descending order and se-

lect the best solutions needed to fill all population slots. The new population

Pt+1 of size N is now used for selection, crossover and mutation to create a

new population Q t+1 of size N . It is important to note that we use a binary

tournament selection operator but the selection criterion is now based on the

crowded-comparison operator. Since this operator requires both the rank and

crowded distance of each solution in the population, these quantities are calcu-

lated while forming the population Pt+1, as shown in Figure 3.4.
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Figure 3.4: Operating principle of the NSGA-II (Part 3) [Gomez, 2008].

Because only continuous problems are considered in this work (n′′ of dis-

crete variables equals zero), the procedure NSGA-IIb of the MULTIGEN library

has been retained. Compared with the well-known NSGA-II [Deb et al., 2002],
new genetic operators are introduced for limiting clones creation. The classical

crossover operator SBX has been modified to produce children different from

parents. The objective is to prevent unnecessary calculations for clones of ex-

isting solutions: all the solutions generated by the reproduction and mutation

procedures are statistically different. The MULTIGEN library is described in de-

tail in Gomez et al. [2010].
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Figure 3.5: General algorithm coupling NSGA-IIb-MATLAB.

For a model (excluding the objective functions), involving n variables and

m equality (linear or nonlinear) constraints (m < n), the analysis of degrees of

freedom gives (n-m) independent variables. After scrutinizing the constraint set,

these (n-m) decision variables can be chosen. For each evaluation of an objective

function, the system of m equations must be solved. It is solved at each move

of NSGA-IIb by the Newton-Raphson procedure (fsolve) of the MATLAB toolbox,

and the squared accuracy is much lower than 10−6 (Figure 3.5). However the

Newton-Raphson procedure must be correctly initialized, this is the reason why

the time for finding the initial guess in the GA may be significant.

NSGA-IIb ALGORITHM

As already mentioned, the first algorithm coded in the MULTIGEN database

is NSGA-II by Deb et al. [2002]. This elitist algorithm is based on a ranking

procedure, where the rank of each solution is defined as the rank of the Pareto

front to which it belongs. The diversity of non dominated solutions is guaran-

teed by using a crowding distance measurement, which is an estimation of the

size of the largest cuboid enclosing a given solution without including any other.
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This crowding sorting avoids the use of the sharing parameter as in the previous

version of the NSGA algorithm.

Note that NSGA-IIb, which contains new genetic operators for clone creation

limiting, implements the same algorithm than NSGA-II, with corrections on the

crossover operator to avoid the creation of clones inherent of SBX original ver-

sion. When the generated random number used to perform the crossover is

greater than a given crossover probability, the crossover may produce two chil-

dren identical to the parents: SBX crossover coded in NSGA-IIb includes a forced

mutation of children when this event occurs.

4.3.2 Parameters of the algorithm

Concerning the interface developed, MULTIGEN uses a specific toolbar that is

added to Excel default bars. There are three main phases in the process of opti-

mizing a problem using MULTIGEN. The first step involves the generation of the

interface that will encode the mathematical problem (Figure 3.6). The first co-

lumn consists of the key arguments (green cells, Figure 3.6). These arguments

are identified during the reading of the mathematical problem and allow MULTI-

GEN to identify necessary information. The set of instructions of MULTIGEN and

their mode of use are detailed in Gomez [2008].
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Figure 3.6: User interface in MULTIGEN (Excel sheet) [Gomez, 2008].

Once optimization is complete, the results are generated as well as the time

calculation, the number of generations and individuals with the value of varia-

bles, criteria, constraints and data. The current values of the algorithm param-

eters are indicated in Table 3.8. These values include the tuning parameters of

all the chemical engineering problems performed in Chapters 4 & 5. The tuning

parameters description is performed in Gomez [2008].
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Parameter Value
NPOPULATION 100
NGENERATION 300
PRINTGENFREQ 10
PRINTGENPERIOD 300
ALGORITHM 3
PCROSS∗ 0.9
PMUT∗ 0.5
∗ Proposed values by Gomez [2008]

Table 3.8: Tuning parameters values of the genetic algorithm: NSGA-IIb.

5 Mathematical examples

In this section the three procedures AWS, AUGMECON and NSGA-IIb are com-

pared on two mathematical examples. All the computations were carried out

on a processor Intel Core Duo 2, 3 GHz, 2 GB of RAM. The tolerances of the

procedure fmincon of the MATLAB toolbox used in AWS and AUGMECON are

fixed at their values per default, and 100 solutions are generated. The GA is

implemented with 100 individuals per population, a crossover SBX with proba-

bility of 0.9, and a mutation probability of 0.5. As the GA is a random search

randomly initialized, it is run 10 times for each problem. Among the generated

Pareto fronts, that containing most points is retained.

5.1 Mavrotas problem

This linear problem was presented by Mavrotas [2009] for testing its implemen-

tation of the ε-C method.

Max f1 = x1 (3.30)

Max f2 = 3x1+ 4x2 (3.31)

x1 ≤ 20 (3.32)

x2 ≤ 40 (3.33)
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5x1+ 4x2 ≤ 200 (3.34)

In a first time, 60 generations were fixed in NSGA-IIb. As previously indi-

cated, 100 solutions were generated with the three methods; the results are

plotted in Figure 3.7, and the three fronts are plotted together in Figure 3.7(d).

The problem being linear, the Pareto fronts must be linear; this is the case for

AUGMECON, but not for the GA where only 12 solutions are found, nine of them

being dominated by solutions of AUGMECON. This is probably due to a prema

ture stopping of the search. The AWS method gives only the two extreme points

of the Pareto front, which coincide with the extreme points of AUGMECON, any

linear convex combination of these two points being a solution. This example

shows that the GA provides slightly dominated solutions compared with AUG-

MECON and the Pareto front density is much better for AUGMECON than AWS.

Furthermore, AUGMECON gives the same Pareto front as in Mavrotas [2009].
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Figure 3.7: Solution of the Mavrotas problem.
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Then the maximum number of generations in NSGA-IIb was increased up to

300, and the genetic algorithm gives the same Pareto front as AUGMECON. This

numerical experiment shows that the maximum number of generations is a key

parameter for the genetic algorithm. In the following example, as well as in

Chapter 4, the maximum number of generations will be equal to 300.

5.2 TNK problem

This biobjective problem (two continuous variables and two inequality cons-

traints) was first proposed in Tanaka et al. [1995], and involves discontinuities

in the Pareto front. The problem is expressed as follows:

Min [ f1, f2] (3.35)

f1(x1, x2) = x1 (3.36)

f2(x1, x2) = x2 (3.37)

g1(x1, x2) =−x2
1 − x2

2 + 0.1 cos
�

16× arctan
�

x1

x2

��

≤ 0 (3.38)

g2(x1, x2) = (x1− 0.5)2+ (x2− 0.5)2 ≤ 0.5 (3.39)

The Pareto fronts obtained from AWS and GA have similar shapes (Figure

3.8(a) and Figure 3.8(c)) than the one given in Tanaka et al. [1995], while the

one from AUGMECON (Figure 3.8(b)) presents a gap at f1 near 0.6 and f2 near

0.8. Furthermore it involves fewer points than the two other fronts on the upper

left side, but more points of the lower right side. AUGMECON method behaves

as if it favours objective f2 to the detriment of objective f1. The three fronts

are plotted together in Figure 3.8(d), where it can be observed that AUGMECON

provides more points than the two other procedures at the end of the portions

of curves.
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Figure 3.8: Solution of the TNK problem.

6 Conclusion

Three classical procedures for solving biobjective optimization problems were

presented in this chapter. Two methods (AWS and AUGMECON) belong to the

class of scalarization approach, and the third one (NSGA-IIb) is part of the evo-

lutionary methods. From a popular classification, scalarization methods apply

in well mathematically defined problems with explicit formulations of objec-

tives and constraints, while genetic and evolutionary methods based on evolu-

tionary strategies mainly apply in black-box problems, where objectives and/or

constraints are returned by a computer code for each value of optimization vari-

ables. Besides the black-box problems, the possibility to mutate out of a local

optimum and the ability to compute the entire Pareto front in one run, make

also this type of methods attractive. However, these considerations do not al-



C
hapter

3

70 CHAPTER 3. MULTIOBJECTIVE OPTIMIZATION METHODS

low choosing the most adequate method for solving the optimization problem

related to natural gas networks.

From two small mathematical examples, it seems that AUGMECON and

NSGA-IIb exhibit similar performances, while AWS is a little bit in the back-

ground. The only way for efficiently selecting the appropriate procedure is to

carry on the trials on chemical engineering problems; this is the purpose of the

following chapter.
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1 Introduction

This chapter aims at studying the efficiency of classical multiobjective optimiza-

tion methods in treating chemical engineering problems, in order to find the

best class of method to solve multiobjective chemical engineering problems,

often characterized by black-box formulations and/or large sets of nonlinear

constraints. On the basis of four classical chemical engineering problems, this

chapter gives a comparison of three methods: Weighed-sum (WS), ε-constraint

(ε-C) and an Evolutionary procedure implemented in a genetic algorithm (GA),

for solving multiobjective problems. The three methods were previously de-

scribed in Chapter 3, where a literature analysis was carried out. This review is

not intended to be comprehensive, but focuses on the most popular multiobjec-

tive methods. Let us note that, in the last years, a great attention was focused

on monobjective optimization of chemical processes [Acevedo and Pistikopou-

los, 1996; Kocis and Grossmann, 1987; Papalexandri and Dimkou, 1998], but

few works were dedicated to multiobjective optimization of such processes.

The first example problem of the chapter is related to the classical Haber-

Bosh process [Babu and Angira, 2005], where a nitrogen fixation reaction of

nitrogen and hydrogen gases occur in a tubular reactor to produce ammonia,

which is used for manufacturing fertilizers and explosives. The objectives to be

maximized are both the annualized profit and safety by optimizing the reactor

length and the inlet temperature of gases. The second one deals with the clas-

sical alkylation process [Rangaiah, 1985; Jones, 1995] wherein a light olefin

reacts with isobutene to produce the alkylate which is used for blending with

refinery products in order to increase their octane number. The problem consists

in maximizing the profit while minimizing the isobutene recycle. The third illus-

tration is the well-known Williams & Otto process [Williams and Otto, 1960],
where the goal product (P) is produced into a continuous stirred tank reactor

from two feeds in products A and B, followed by a separation step involving a

decanter and a distillation column. For a given production capacity of product

(P), the objectives are related to the minimization of the reactor volume and the

minimization of the waste flow rate. The fourth example, known as Gas turbine

cogeneration system (GTCS) problem, concerns the biobjective optimization of

a thermal cogeneration system (electricity, saturated steam) made up of a gas

turbine cycle with regeneration, and of a heat recovery steam generator for sa-
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turated steam production [Valero et al., 1994; Lazzaretto and Toffolo, 2004].
The objectives are economic and exergetic ones.

An interesting question that one should keep in mind when comparing diffe-

rent procedures is related to the time spent in implementing the different me-

thods before they are numerically compared. If a method is five percent faster

than another one, but takes three times as long to implement and parameterize,

it might not be worth the effort. Assuming that in all cases, the problem is

already formulated in terms of objectives and constraints and that adequate

solvers are available as well, the methods are compared in terms of both solution

quality and resolution time, which embeds the following contributions:

• Tuning of solver parameters: this phase is often carried out by experience

feedback gained by solver implementation and successive utilization,

• Searching for an adequate initial guess for the problem; as in the previous

case, this step may require several executions of the solver,

• Time needed for fulfilling the solver input file(s) requiring the problem

translation in the specific solver language (C, Fortran, Excel, MATLAB or

another particular language as the one for example of the GAMS interface)

• CPU time

Obviously, excepted for CPU time, the other times given are unrefined esti-

mations, they are there only to give general trends. In our knowledge, this type

of study had never been reported in the field of multiobjective optimization in

chemical engineering. The study of these times can seem of course debatable,

because it heavily depends on the experience of the developer. The ideal si-

tuation would be to perform the study using several developers with different

backgrounds, and to take the mean values, but it is out of the framework of

this thesis. The only goal of this study is to draw some general trends, and not

clear-cut conclusions.

In the following examples, all the computations were carried out on a pro-

cessor Intel Core Duo 2, 3 GHz, 2 GB of RAM. The processor performances are

about 15 Mflops either in MATLAB or in VBA, which can seem very low for such

a processor; this value is very under the theoretical performances announced

by Intel. However, our versions of VBA and MATLAB are interpreted languages,
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and compared with compiled and optimized languages like FORTRAN or C++,

the CPU times reported can seem to be excessively low.

In the scalarization methods, the tolerances of the procedure fmincon of the

MATLAB toolbox used in AWS and AUGMECON are fixed at their values per

default, and 100 solutions are generated for the Pareto fronts, so AWS and

AUGMECON were run 100 times. On the other hand, the evolutionary method

(NSGA-IIb) is implemented with 100 individuals per generation, 300 genera-

tions, a crossover SBX with probability of 0.9 and a mutation probability of 0.5.

As the GA is a randomly initialized search, each problem is run 10 times for

each problem. Among the Pareto fronts generated by the algorithm NSGA-IIb,

that containing most points is retained (case 1). Indeed, sometimes the choice

is quite difficult to perform. Another strategy would consist in merging the 10

fronts, and performing a Pareto sort on the final front (case 2). This strategy

was implemented on each numerical example, and the same fronts as in the

case 1 were found again.

Finally, some guidelines are given concerning the scalarization (AWS, AUG-

MECON) and evolutionary (NSGA-IIb) methods.

2 Ammonia synthesis reactor: Haber-Bosh process (HBP)

The synthesis reactor is treated as a separate unit with the aim of understanding

its behavior and obtaining the key variables that lead to its stable and sustained

optimum operation. We are interested mainly in predicting the reactor behavior

when changes are made in the controllable variables and specifically in studying

the variation of ammonia yield as a result of these changes. Thus, a mathema-

tical model which predicts the trends of the reactor output and stability with

reasonable accuracy, is required for the simulation.
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Nomenclature
Symbol Meaning
C p Heat capacity (kcal/kg.K)
f c Catalyst activity
N Flow rate (kmol/h.m2)
p Partial pressure
R Ideal gas constant (kcal/kmol.K)
S1 Surface area of cooling tubes per unit length of reactor (m)
S2 Cross-sectional area of catalyst zone (m2)
T Temperature (K)
U Overall heat transfer coefficient (kcal/h.m2.K)
W Total mass flow rate (kg/h)
x Reactor length (m)
Greek letters
κ Rate constant
Others
∆H Heat of reaction (kcal/kmol N2)
−∂ NN2

/∂ x Reaction rate (kmol N2/h.m3)
Subscripts
0 Reference
f Feed gas
g Reacting gas
H2 Hydrogen
N2 Nitrogen
NH3 Ammonia
Superscripts
0 Reference

Table 4.1: Nomenclature of the Ammonia synthesis reactor.

2.1 Ammonia synthesis reactor model

Ammonia is one of the most used chemical in industry for manufacturing a lot

of products such as fertilizers, chemicals, explosives, fibers, plastics and clea-

ning products. It is produced from the reaction of hydrogen and nitrogen at

high temperature and high pressures in a catalysed tubular reactor (Haber-Bosh

process), according to the reaction shown in Equation 4.1. This exothermic

reversible reaction is carried out in the ammonia synthesis tubular reactor.

N2+ 3H2⇔ 2NH3+∆H where : ∆H =−92 kJ/mol (4.1)

Any mathematical description of a chemical reactor basically relies on balan-

ce equations which express the general laws of conservation of mass and energy.
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The model below can be derived by writing the Equations 4.2 to 4.9; all symbols

used are listed in Table 4.1.

The energy balance for the feed gas is:

∂ Tf

∂ x
=−

US1

W C p f

�

Tg − Tf

�

(4.2)

The energy balance for the reacting gas is:

∂ Tg

∂ x
=−

US1

W C pg

�

Tg − Tf

�

+
(−∆H)S2

W C pg

�

−∂ NN2

∂ x

�

(4.3)

The balance for N2 is:

∂ NN2

∂ x
=− f c



κ1

pN2
p1.5

H2

pNH3

−κ2

pNH3

p1.5
H2



 (4.4)

κ1 = 1.78954× 104e(−20800/RTg ) (4.5)

κ2 = 2.5714× 1016e(−47400/RTg ) (4.6)

The partial pressures expressed in NN2
are:

pH2
= 3× pN2

(4.7)

pN2
= 286





NN2

2.598N 0
N2
+ 2NN2



 (4.8)

pNH3
= 286





2.23N 0
N2
− 2NN2

2.598N 0
N2
+ 2NN2



 (4.9)

The boundary conditions are given by Equations 4.10 to 4.14:

Tf = T0 at x = 0 (4.10)

Tg = T0 at x = 0 (4.11)
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NN2
= 701.2 at x = 0 (4.12)

1≤ x ≤ 15 (4.13)

600≤ T0 ≤ 675 (4.14)

Symbol Value
f c 1
C p f 0.707
C pg 0.719
N0

N2
701.2

R 1.987
S1 10
S2 0.78
U 500
W 26,400
∆H -26,000

Table 4.2: Fixed parameters of the Ammonia synthesis reactor.

2.2 Problem formulation

In the monobjective case (Equation 4.15), the function f to be maximized is

based on the difference between the value of the produced gas (heating value

and economic value) and the amortization of reactor capital cost. In this equa-

tion, x represents the reactor length and constitutes the decision variable for a

given top temperature, T0.

f (x , NN2
, Tf , Tg) = 1.33563× 107− 1.70843× 104NN2

+ 704.09(Tg − T0)
−699.27(Tf − T0)− [3.45663× 107+ 1.98365× 109 x]

1
2

(4.15)

This problem was extensively studied in the literature [Murase et al., 1970;

Edgar and Himmelblau, 1970; Upreti and Deb, 1996; Babu and Angira, 2005],
but all these papers contained typos on formulae. In this work, the recent for-

mulation of Ksasy et al. [2010] is implemented. The three ordinary differential
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equations (Equations 4.2 to 4.4) resulting from heat and mass balances and,

giving Tf , Tg and NN2
are solved by the module ODE45 of the MATLAB toolbox.

By optimizing the reactor cost for four reactor top temperatures T0 (580 K ,

694 K , 706 K and 820 K), Ksasy et al. [2010] showed the existence of an opti-

mum versus T0. This study led us to consider the problem under a multiobjective

optimization one. So, the biobjective problem (Max f , Min T0) is studied in the

following section.

2.3 Problem solution

The results are plotted in Figure 4.1(a) to Figure 4.1(c), where it can be ob-

served that the three Pareto fronts given by AWS, AUGMECON and NSGA-IIb

have very similar shapes, and are perfectly superimposed in Figure 4.1(d). The

temperature (T0) lies in the range [600, 675] K and the ammonia profit is bet-

ween 2 M$/y and 5 M$/y . The results improve the ones of Ksasy et al. [2010];
namely, the ammonia maximum profit is 5.66 M$/y at the optimal temperature

(T0) equal to 695 K .
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Figure 4.1: Solution of the Ammonia synthesis reactor.

3 Alkylation process (AP)

An important process in petroleum refining is the alkylation process, wherein

a light olefin such as propene, butene or pentene reacts with isobutane in the

presence of a strong sulfuric acid catalyst to produce the alkylate product (e.g.,

2,2,4 tri-methyl pentane from butene and isobutane). The alkylate product is

used for blending with refinery products, such as gasoline and aviation fuel, in

order to increase their octane number. Jones [1995] provides a comprehensive

overview of the alkylation process, its chemistry, design and operational aspects.

Sauer et al. [1964] developed a nonlinear model for the alkylation process and

used it for optimization via linear programming methods. Since then, many

researchers (e.g., [Bracken et al., 1968; Luus and Jaakola, 1973; Rangaiah,

1985]) employed this model in their optimization studies. Also, the alkylation

process optimization is a classic example included in the text-book on optimiza-
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tion by Edgar et al. [2001]. In our knowledge, only Luus [1978] reported alky-

lation process optimization for multiple objectives by the ε-constraint method.

Nomenclature
Symbol Meaning
P Profit ($/da y)
x1 Olefin Feed (barrels/da y)
x2 Isobutane Recycle (barrels/da y)
x3 Acid Addition Rate (thousand pounds/da y)
x4 Alkylate Production Rate (barrels/da y)
x5 Isobutane Feed (barrels/da y)
x6 Spent Acid Strength (weight percent)
x7 Octane Number
x8 Isobutane to Olefin Ratio
x9 Acid Dilution Factor
x10 F-4 Performance Number
α Alkylate product value ($/octane-barrel)
β Olefin feed cost ($/barrel)
ϑ Isobutane recycle cost ($/barrel)
κ Fresh acid cost ($/thousand pounds)
ξ Isobutane feed cost ($/barrel)

Table 4.3: Nomenclature of the Alkylation process.

3.1 Alkylation process model

A simplified process flow diagram of the alkylation process is shown in Figure

4.2. The process involves a reactor with olefin feed, isobutane makeup and

isobutane recycle as the inlet streams. Fresh acid is added to catalyze the re-

action and spent acid is withdrawn. The exothermic reactions between olefins

and isobutane occur at around room temperature, and excess isobutane is used.

The hydrocarbon outlet stream from the reactor is fed into a fractionator from

where isobutane is recovered at the top and recycled back to the rector, and the

alkylate product is withdrawn from the bottom.
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Figure 4.2: Flowsheet of the Alkylation process.

Sauer et al. [1964] developed a model for this process based on a combi-

nation of the first principle, empirical equations and a number of simplifying

assumptions. The resulting model has 10 variables, x i, (Table 4.3) and seven

equality constraints (Equations 4.20 to 4.26). Bracken et al. [1968] have pre-

sented this model and the optimization problem in a different way. After noting

that the four equality constraints derived by regression analysis do not need to

be satisfied exactly, they converted them into eight inequality constraints. This

optimization problem and its solution are concisely described by Edgar et al.

[2001]. Rangaiah [1985] studied both problems: the original one with seven

equality constraints and the modified one with both equality and inequality

constraints. Variables involved in the alkylation process model of Sauer et al.

[1964] and their bounds are summarized in Table 4.5. The SOO (Single Ob-

jective Optimization) problem of this process is described by Equation 4.16 to

Equation 4.26. The cost coefficients used for computing the profit (α, β , ϑ, κ,

ξ) are listed in Table 4.4.

P = α1(x4 x7)− β2(x1)− ϑ3(x2)−κ4(x3)− ξ5(x5) (4.16)

0≤ x1 ≤ 2000 (4.17)

90≤ x7 ≤ 95 (4.18)
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3≤ x8 ≤ 12 (4.19)

0≤ [x4 ≡ x1(1.12+ 0.13167x8− 0.006667x2
8)]≤ 5000 (4.20)

0≤ [x5 ≡ 1.22x4− x1]≤ 2000 (4.21)

12000≤ [x2 ≡ x1 x8− x5]≤ 17500 (4.22)

85≤ [x6 ≡ 89+
x7− (86.35+ 1.098x8− 0.038x2

8)

0.325
]≤ 93 (4.23)

145≤ [x10 ≡−133+ 3x7]≤ 162 (4.24)

1.2≤ [x9 ≡ 35.82− 0.222x10]≤ 4 (4.25)

0≤ [x3 ≡ 0.001
x4 x6 x9

98− x6
]≤ 120 (4.26)

Symbol Value
α 0.063
β 5.04
ϑ 0.035
κ 10
ξ 3.36

Table 4.4: Cost coefficients of the Alkylation process.
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Symbol Lower Upper
bound bound

x1 0 2,000
x2 12,0000 17,500
x3 0 120
x4 0 5,000
x5 0 2,000
x6 85 93
x7 90 95
x8 3 12
x9 1.2 4
x10 145 162

Table 4.5: Variables and bound values in the Alkylation process.

3.2 Problem formulation

This biobjective optimization problem was already presented in the book of Ran-

gaiah [2009]. It consists in maximizing the profit (P) expressed as a nonlinear

function of the alkylate production rate, octane number, olefin feed, isobutene

recycle, acid addition rate, isobutene feed, and minimizing the isobutene recy-

cle. The set of decision variables is reduced to olefin feed, octane number and

isobutene to olefin ratio. Other variables such as spent acid strength, isobutene

to olefin ratio, acid dilution factor and F-4 performance number can be deduced

by using the seven constraints (three linear and four nonlinear) of the problem.

3.3 Problem solution

The results are plotted in Figures 4.3(a) to 4.3(c), where it can be observed

that the three procedures give similar Pareto fronts, perfectly superimposed in

Figure 4.3(d). The profit lies in the range [900, 1200] $/da y and the isobutene

recycle is between 12,000 barrels/da y and 17,500 barrels/da y . These results

are in the same order of magnitude that the ones of Rangaiah [2009]. Namely,

the optimal profit increases from about 900 to 1,200 $/da y as the isobutene

recycle (x2) increases from 12,000 to 17,500 barrels/da y .
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Figure 4.3: Solution of the Alkylation process.

4 Williams & Otto chemical plant (WOP)

This engineering problem was first proposed by Williams and Otto [1960] and

used by many workers as a benchmark for NLP studies. This fictitious process

contains many of the characteristics of a typical chemical plant while being rea-

listic enough. The plant is to manufacture 40 million pounds of chemical (P) per

year; it consists of a perfectly stirred reactor, a heat exchanger, a decanter and

a distillation column in series (Figure 4.4). There is a recycle from the column

reboiler to the reactor, where three second-order irreversible reactions occur.

Reactants A and B are fed separately to the reactor in pure form; components C

and E are intermediate products (with no sale values); component G is a heavy

oil considered as a waste material; the reaction coefficients are expressed in the

Arrhenius form as shown in the Equation 4.30.
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In addition, the rate of reaction is negligible below 120◦F (≈ 48.88◦C) and

undesirable decomposition occurs above 220◦F (≈ 104.44◦C). So, the reactor

temperature must be bounded.

Nomenclature
Symbol Meaning
A Component A
B Component B
C Component C
E Component E
F Flow rate (l b/hr)
G Waste
k Reaction coefficient
MB,C ,E,G,P Molecular weight of B, C , E, G, P (Molecular weight)
P Product
T Reactor temperature (◦R)
V Reactor volume (cu. f t)

αi
Pre-exponential factor in the Arrhenius rate equation
for the ith reaction (/hr., wt. f ract ion)

βi
Exponential factor in the Arrhenius rate equation
for the ith reaction (◦R)

ρ Density of reactor solution (l b/cu. f t)
Subscripts
A Of reactant A to reactor
B Of reactant B to reactor
D Of column bottoms returned as plant fuel
G Of G from decanter (to waste)
P Of Product P from column
R From reactor
RA Of A from reactor
RB Of B from reactor
RC Of C from reactor
RE Of E from reactor
RP Of Product P from reactor

Table 4.6: Nomenclature of the Williams & Otto chemical plant.

4.1 The Williams & Otto chemical plant model

As outlined in the earlier work of Ray and Szekely [1973], the production of P

is assumed to involve three second order irreversible chemical reactions:

A+ B
k1−→ C (4.27)
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C + B
k2−→ P + E (4.28)

P + C
k3−→ G (4.29)

In these chemical reactions, the rate constants change with temperature, fol-

lowing the Arrhenius relationship [Di Bella and Stevens, 1965]:

ki = αiex p(−
βi

T
) (4.30)

Figure 4.4: A schematic representation of the Williams & Otto chemical plant
[Williams and Otto, 1960].

The problem involves numerous constraints [Ray and Szekely, 1973], which

are listed below. These following constraint equations are derived by making

independent material balances across the system, with two supplementary cons-

traints related to the separation efficiency in the distillation column, and the

definition of FR:

Overall material balance:

FA+ FB − FG − FP − FD = 0 (4.31)
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Restriction related to separation efficiency of the distillation column and the

azeotrope formation gives:

FRP − 0.1FRE − FP = 0 (4.32)

Material balance on component E:

�

ME

MB

�

k2FRB FRC Vρ

F2
R

− FD

�

FRE

FR− FG − FP

�

= 0 (4.33)

Material balance on component P:

�

k2FRB FRC −
�

MP

MC

�

k3FRC FRP

�

Vρ

F2
R

− FD

FRP − FP

FR− FG − FP
− FP = 0 (4.34)

Material balance on component A:

(−k1FRAFRB)
Vρ

F2
R

− FD

�

FRA

FR− FG − FP

�

+ FA = 0 (4.35)

Material balance on component B:

(−k1FRAFRB − k2FRB FRC)
Vρ

F2
R

− FD

�

FRB

FR− FG − FP

�

+ FB = 0 (4.36)

Material balance on component C:

��

MC

MB

�

k1FRAFRB −
�

MC

MB

�

k2FRB FRC − k3FRC FRP

�

Vρ

F2
R

−
FDFRC

FR− FG − FP
= 0

(4.37)

Material balance on component G:

�

MG

MC

�

k3FRC FRP Vρ

F2
R

− FG = 0 (4.38)

And finally, by utilizing the definition of FR, the last constraint is obtained as:

FRA+ FRB + FRC + FRP + FG − FR+ FRE = 0 (4.39)
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4.2 Problem formulation

The problem data is displayed in Table 4.6, where the units of Williams and Otto

[1960] have been conserved. The objective is to minimize the reactor volume

(V ), while minimizing the waste flow rate (FG). The optimization variables are

the two flow rates FA, FB and T lying in the range [580, 680]◦R (≈ [49.07,

104.62]◦C). Due to mass balances, the problem is submitted to nine (linear,

nonlinear) equality constraints, some of them involving the molecular weights

and the solution density, given in Table 4.7. These values are provided by pre-

vious studies [Chakraborti et al., 2006; Di Bella and Stevens, 1965].

Symbol Value

αi

α1 = 5.9755× 109

α2 = 2.5962× 1012

α3 = 9.6283× 1015

βi

β1 = 12, 000 (based on A or B)
β2 = 15,000 (based on B)
β3 = 20,000 (based on C)

Mi

MB = 100
MC = 200
ME = 200
MG = 300
MP = 100

FP 4763
ρ 50

Table 4.7: Fixed parameters of the Williams & Otto chemical plant.

4.3 Problem solution

The results are plotted in Figures 4.5(a) to 4.5(c), where it can be observed

that the Pareto front given by AWS is much more restricted than the two other

ones, which have very similar shapes. In Figure 4.5(d), the three fronts are

perfectly superimposed. For example, for a reactor volume (V ) of 60 cu. f t (≈
1.69 m3), the waste flow rate (FG) is equal to 2,400 l b/hr (≈ 1 088.62 kg/h).

In Di Bella and Stevens [1965], where only the reactor volume was optimized,

the authors found a volume (V ) of 60 cu. f t (≈ 1.69 m3) and a flow rate (FG)
equal to 3,600 l b/hr (≈ 1 632.93 kg/h). In a more recent work [Chakraborti

et al., 2006], where a biobjective problem involving the return of investment

and the constraint squared sum is solved for a fixed reactor volume (V ) of 60

cu. f t (≈ 1.69 m3), a value of waste flow rate (FG) of 2,610 l b/hr (≈ 1 183.87
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kg/h) is found; the minimal value of the squared sum of constraints is in the

order of magnitude of 10−6. Let us recall that the nine linear-nonlinear equality

constraints due to the mass balance equations are solved at each move of NSGA-

IIb by the Newton-Raphson procedure (fsolve) of the MATLAB toolbox, and the

squared accuracy is much lower than 10−6.

The biobjective optimization of the Williams & Otto chemical plant was re-

cently carried out by Rangaiah [2009] under economic objectives: Max [NPV

or PBT] and Min [PBB], where NPV is the Net Present Value of the plant; PBT,

the Profit Before Taxes and PBP, the PayBack Period. They used the NSGA-II JG

algorithm [Agrawal et al., 2006], with the solver DNEGQBF of IMSL embedded

in the objective function evaluation to solve the system of nonlinear equality

constraints. The jumping gene adaptation of NSGA-II seems to be an attractive

approach for studying chemical processes [Ramteke and Gupta, 2009]. On a

Pentium M (123 Mflops for Fortran), 8 minutes CPU were required for perfor-

ming 1,000 generations with populations of 200 individuals. They assumed a

similar production of 2,160 kg/h of chemical (P), for the first problem a good

solution from the Pareto front is a reactor volume (V ) of 4.41 m3, and for the

second the volume (V ) is 3.1 m3. On the Pareto fronts displayed below a good

solution for the volume is V ε [100, 120] cu. f t, that is to say V ε [2.8, 3.5] m3;

a similar order of magnitude for the reactor volume is obtained.

Concerning the CPU time, 1.5 hours were needed for performing 10 × 300

= 3,000 generations, that is to say 30 minutes for 1,000 generations (with a

population of 100 individuals) with 15 Mflops. Note that 70% of the CPU time

is spent in MATLAB for solving the set on nonlinear constraints. If the time (8

minutes) of Rangaiah [2009] is multiplied by the ratios of Mflops (123/15) and

of population sizes (1/2), we obtain for their work an equivalent CPU time of

32.8 minutes. The two CPU times are in the same order of magnitude. Finally

from an engineering point of view, the biobjective optimization performed in

this work provides better results concerning both the reactor volume (directly

linked to the return on investment) and the waste flow rate, than previously

published works.
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Figure 4.5: Solution of the Williams & Otto chemical plant.

5 Gas turbine cogeneration system (GTCS)

In 1990, a group of concerned specialists in the field (C. Francopoulos, G. Tsat-

sanoris, A. Valero and M. von Spakovsky) decide to define the problem CGAM

(from the first initials of the participants) to compare methodologies for de-

signing efficient and cost-effective energy systems [Valero et al., 1994]. The

objective of the problem, also called Gas Turbine Co-generation System (GTCS),

is to show how the methodologies can be applied, what concepts are used and

what numbers are required and what numerical values are obtained in a simple

and specific problem. Indeed, the aim of the GTCS problem is the unification of

thermo-economic methodologies.

In the definition of the problem shown in the following sub-sections, the

equations that describe the behavior of the system (physical model), the equa-

tions for calculating the capital costs of the components (economic model) and
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the equations of state used to compute the thermodynamic properties (ther-

modynamic model) are considered. To simplify these models without loss of

methodological generality, some assumptions are made.
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Nomenclature
Symbol Meaning
c Cost per unit of energy
Ċ Cost rate ($/s)
C p Specific heat at constant pressure (kJ/kg.K)
CRF Annual capital recovery factor
e Specific exergy (kJ/kg)
h Enthalpy (kJ/kg)
LH Lattent heat (kJ/kg)
LHV Low Heat Value (kJ/kg)
ṁ Mass flow rate (kg/s)
N Plant operation per year (h/y)
Q̇ Heat transfer rate (kJ/s)
P Pressure (M Pa)
Pr Expansion ratio
R Universal constant (kJ/kg.K)
T Temperature (K)
U Heat transfer coefficient (kW/m2.K)
W Power (kW )
Z Capital cost ($)
Ż Cost rate ($/s)
γ Specific heat ratio
ζ Exergetic objective
η Efficiency
ϕ Maintenance factor
∆P Pressure variation (M Pa)
∆T Temperature variation (K)
∆T LM Log Mean Temperature (K)
Subscripts
a Air
AC Air compressor
APH Air Pre-Heater
CC Combustion chamber
EV Evaporator
f Fuel
g Combustion gases
GEN Electric generator
GT Gas turbine
HRSG Heat-Recovery Steam Generator
IS Isentropic
MST Steam turbine mechanical
PH Pre-Heater
N ET Net
REG Regenerator
ss Saturated steam
T Total
w Water

Table 4.8: Nomenclature of the Gas turbine cogeneration system.
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Figure 4.6: Gas turbine cogeneration system [Valero et al., 1994].

5.1 Gas turbine cogeneration system model

5.1.1 Physical model

The model is given by the mass and energy balances for each component of the

plant.

AIR COMPRESSOR:

P1 = P0 (4.40)

T1 = T0 (4.41)

T2 = T1



1+
1

ηISAC





�

P2

P1

�

γa−1
γa

− 1







 (4.42)

WAC = ṁa

∫ T2

T1

C pa{T}d t (4.43)

COMBUSTION CHAMBER:

P4 = P3(1−∆PCC) (4.44)
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ṁg = ṁa + ṁ f (4.45)

ṁ f =
ṁg(h4− h3)

LHV (ηCC)− h3
(4.46)

T4 =
T5

�

1−ηISGT

�

1−
�

P4

P5

�

1−γg
γg

�� (4.47)

AIR PRE-HEATER:

P3 = P2(1−∆Pa,APH) (4.48)

P6 = P5(1−∆Pg,APH) (4.49)

T3 = T2+ηREG(T5− T2) (4.50)

T6 =
ṁg C pg T5− ṁa(h3− h2)

ṁg C pg
(4.51)

GAS TURBINE:

Pr =
P4

P5
(4.52)

WGT = ṁg C pg(T4− T5) (4.53)

WN ET =WGT −WAC (4.54)

HEAT-RECOVERY STEAM GENERATOR:

T8P = T9−∆T (4.55)

T7 = T6−
ṁss(h9− h8)

ṁg C pg
(4.56)

ṁg C pg(T6− T7P) = ṁss(h9− h8P) (4.57)
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∆TPinch = T7P − T9 (4.58)

P0 = P6(1−∆PHRSG) (4.59)

P7 = P6(1−∆PHRSG) (4.60)

GENERAL EQUATIONS:

γa,g =
1

1− Ra,g

C pa,g

(4.61)

ha,g = C pa,g(T − T0) (4.62)

5.1.2 Thermodynamic model

The thermodynamic model proposed in Valero et al. [1994] is very straightfor-

ward, yet complex enough to highlight the role played by the most important

variables and to obtain significant results. The following assumptions are made

to simplify the problem:

1. The air and the combustion gases behave as ideal gases with constant spe-

cific heats;

2. For combustion calculations, the fuel is taken to be pure methane (CH4).
The real gas composition is displayed in Table 4.9;

3. All components, except the Combustion chamber are adiabatic;

4. Fixed values for all thermodynamic quantities on the steam side of the

Heat-Recovery Steam Generator are given in Table 4.10;

5. Environmental conditions of the air at the inlet are P0 = 1.013 bar and

T0 = 25◦C . These values are also used as the reference in enthalpy and

exergy calculations (Table 4.10)
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Component Mass (%) LHV
CH4 80.92 50,000
C2H6 13.64 47,525
C3H8 1.94 46,390
C4H10 0.23 45,775
C5H12 0.04 45,400
CO2 1.20 -
N2 2.03 -

Total 100.00 47,966

Table 4.9: Natural gas composition for the Gas turbine cogeneration system.

Symbol Value
c f 0.004

C pa 1.004
C pg 1.17
C pw 4.5541
CRF 0.182
(e9 − e8) 910

e f 51,850
(h9 − h8) 2,690
(h9 − h8P) 1,956

LH 1,888.65
LHV 50,000
ṁss,8,9 14

N 8,000
P0,1 0.101325
P8,9 2
Ra 0.287
Rg 0.290

T0,1,8 298.15
T9 485.52

WN ET 30,000
∆Pa,APH 0.05
∆Pg,APH 0.03
∆PCC 0.05
∆PHRSG 0.05
∆T 15
ηCC 0.98
ηISAC

0.8468
ηISGT

0.8786
ϕ 1.06

Table 4.10: Fixed parameters of the Gas turbine cogeneration system.
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5.1.3 Economic model

When evaluating the cost of a plant, it is necessary to consider the annual cost

of fuel and the annual cost associated with purchasing and operating each plant

component. The expressions for obtaining the purchase cost of the components,

Zi, are presented in this section. Based on these costs, the general equation for

the cost rate, Żi, associated with capital investment and the maintenance costs

for the ith component is:

Żi =
(Zi)(CRF)(ϕ)
(N)(3600)

(4.63)

The cost rate associated with fuel is obtained from:

Ċ f = (c f )(ṁ f )(LHV ) (4.64)

The total cost rate of operation for the installation is obtained as follows:

ĊT = (c f )(ṁ f )(LHV ) +
5
∑

i=1

Żi (4.65)

The expressions for obtaining the Capital cost of the components (Zi) are

given by:

AIR COMPRESSOR:

ZAC =

�

c11ṁa

c12−ηISAC

�

�

P2

P1

�

ln
�

P2

P1

�

(4.66)

COMBUSTION CHAMBER:

ZCC =







c21ṁa

c22−
P4

P3






[1+ ex p(c23T4−c24)] (4.67)

GAS TURBINE:

ZGT =
� c31ṁg

c32−ηGT

�

ln
�

P4

P5

�

[1+ ex p(c33T4−c34)] (4.68)
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AIR PRE-HEATER:

ZAPH = c41

�

ṁg(h5− h6)

(U)∆T LM

�0.6

(4.69)

(∆T LM)APH =
(T5− T3)− (T6− T2)

ln
�

T5−T3

T6−T2

� (4.70)

HEAT-RECOVERY STEAM GENERATOR:

ZHRSG = c51





�

Q̇PH

(∆T LM)PH

�0.8

+ (
Q̇EV

(∆T LM)EV
)0.8



+ c52ṁss + c53ṁ1.2
g (4.71)

Q̇PH = C pw(T8P − T8)ṁss (4.72)

(∆T LM)PH =
(T7− T8)− (T7P − T8P)

ln
�

T7−T8

T7P−T8P

� (4.73)

Q̇EV = (C pw(T9− T8P) + LH)ṁss (4.74)

(∆T LM)EV =
(T6− T9)− (T7P − T8P)

ln
�

T6−T9

T7P−T8P

� (4.75)

The values of constant cost (ci j) used in Equation 4.66 to 4.71 are indicated

in Table 4.11.

Component Constant cost

Compressor c11 = 39.5 $/(kg/s) c12 = 0.9

Combustion Chamber c21 = 25.6 $/(kg/s) c22 = 0.995
c23 = 0.018 K−1 c24 = 26.4

Gas Turbine c31 = 266.3 $/(kg/s) c32 = 0.92
c33 = 0.036 K−1 c34 = 54.4

Air Pre-Heater c41 = 2,290 $/(m1.2) U = 0.018
Heat-Recovery Steam c51 = 4,745 $/(kW/K)0.8 c52 = 11,820 $/(kg/s)
Generator c53 = 658 $/(kg/s)1.2

Table 4.11: Constant costs used for the purchase cost of the components.
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5.2 Problem formulation

The GTCS problem refers to a cogeneration plant which delivers at least 30 MW

of electrical power and 14 kg/s of saturated steam at 20 bars. The fuel of the

plant is natural gas (considered as methane) with a low heating value equal to

50,000 kJ/kg.

5.2.1 Definition of the objectives

The two considered objectives are the exergetic efficiency of the cogeneration

plant (to be maximized) and the total cost rate of operation (to be minimized)

without pollution damage costs. The mathematical formulation of the two ob-

jectives is the following:

EXERGETIC:

ζ=
WN ET + ṁss(e9− e8)

(ṁ f )(e f )
(4.76)

ECONOMIC:

ĊT = Ċ f +
5
∑

i=1

Żi (4.77)

5.2.2 Choice of decision variables

The decision variables (design parameters) in this study are the compressor

pressure ratio (Pr = P4/P5), the mass flow rate of combustion gases (ṁg), the

gas turbine outlet temperature (T5) and the regenerator efficiency (ηREG). The

bounds on the four variables are listed in Table 4.12.

Symbol Value
Pr [1,20]
ṁg [20,100]
T5 [700,1550]
ηREG [0.001,0.95]

Table 4.12: Bounds on decision variables.

5.2.3 Physical constraints

The heat exchange between hot and cold streams in the Air Pre-Heater and in

the Heat-Recovery Steam Generator must satisfy the following feasibility cons-

traints:
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COMBUSTION CHAMBER:

T4 ≤ 1550 (4.78)

AIR PRE-HEATER:

T5 ≥ T3 (4.79)

T6 ≥ T2 (4.80)

HEAT-RECOVERY STEAM GENERATOR:

∆TPinch = T7P − T9 ≥ 0 (4.81)

T6 ≥ T9+∆TPinch (4.82)

T7 ≥ T8+∆TPinch (4.83)

An additional constraint with respect to the original CGAM problem [Valero

et al., 1994], is imposed on the exhaust gases temperature, which must not fall

below 400 K:

T7 ≥ 400◦K (4.84)

Finally, the electrical power delivery of the cogeneration plant is lower-

bounded as:

WN ET ≥ 30 MW (4.85)

5.3 Problem solution

As is it shown in Figure 4.7 the three methods give the same fronts.
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Figure 4.7: Solution of the Gas Turbine Cogeneration System.

6 Resolution time

Let us recall that the CPU times reported in Tables 4.13 to 4.15 correspond to

100 runs of AWS and AUGMECON, and 10 runs of the NSGA-IIb with 100 indi-

viduals per generation and 300 generations. As indicated in the Introduction of

this chapter, excepted for CPU time, the other times given are unrefined estima-

tions and they are reported only to give general trends. The times are expressed

in hours. Tables 4.13 to 4.15 contain the intermediate times (tuning parame-

ters, fulfilling files, initial guess, CPU). The total times (resolution times) are

gathered in Table 4.16. The dimensions of problems in terms of independent

variables and number of equality constraints are recalled in Table 4.17.

Concerning the resolution time, the NSGA-IIb is ranked first, followed by

AUGMECON and AWS. Except for the NSGA-IIb and for problems involving a

significant number of equality constraints (WOP and NGTN cases), the CPU time
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represents a very small proportion of the total time. It is necessary to point out

that, from an economic point of view, the CPU time is only a masked time little

expensive because it requires no human intervention.

Problem Tuning Fulfilling Finding the CPU
parameters input file initial guess time

HBP 4 5 3 0.1
AP 8 10 5 0.05

WOP 11 21 8 0.5
GTCS 18 32 12 0.14

Table 4.13: Various times (h) for AWS.

Problem Tuning Fulfilling Finding the CPU
parameters input file initial guess time

HBP 5 6 2 0.05
AP 7 9 4 0.01

WOP 10 18 5 0.1
GTCS 12 25 8 0.03

Table 4.14: Various times (h) for AUGMECON.

Problem Tuning Fulfilling Finding the CPU
parameters input file initial guess time

HBP 1 2 1 0.6
AP 3 5 2 0.2

WOP 7 11 4 1.5
GTCS 8 18 6 1.39

Table 4.15: Various times (h) for NSGA-IIb.

Problem AWS AUGMECON NSGA-IIb
HBP 12.1 23.05 4.6
AP 23.05 20.01 10.2

WOP 40.5 33.1 23.5
GTCS 62.14 45.03 33.39

Table 4.16: Resolution times (h) for the four problems.

Problem HBP AP WOP GTCS
Independent variables 2 3 3 4
Equality constraints 3 7 9 0

Table 4.17: Problem dimensions.
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7 Conclusion

7.1 Numerical efficiency

The numerical study carried in this chapter allows to reject the WS method

because, on the one hand, many process engineering problems are locally non-

convex and, on the other hand, WS gives restricted Pareto fronts.

From a strict numerical point of view, NSGA-IIb and AUGMECON give similar

results, while AWS may produce restricted Pareto fronts, due to non convexities

in problem formulations. Nevertheless, the solutions are well superimposed.

The main advantages of AUGMECON versus NSGA-IIb are listed below:

1. Convergence conditions are well established, contrary to NSGA-IIb where

the stopping criterion very commonly used is a maximum number of gene-

rations;

2. When an unfeasible path method is implemented, i.e. fmincon, the hand-

ling of crisp equality constraints is easier than in a NSGA-IIb, where an

external solver has to be run at each move of the algorithm.

The main features of a NSGA-IIb concern:

1. The ease of implementation;

2. The ability for solving black-box problems, where objectives and/or cons-

traints are returned by a computer code for each value of optimization

variables, which are frequently encountered in chemical engineering;

3. The possibility to mutate out of a local optimum and the ability to compute

the entire Pareto front in one run.

These conclusions can be often found in the literature which also applies to

process engineering problems. According to the numerical efficiency, let us note

that in many engineering fields, like chemical, electrical, mechanical, very pre-

cise solutions are not required, as the goal is often to improve some process cha-

racteristics. However, in some particular fields, very crisp solutions are needed

for avoiding serious troubles often in low CPU times; as for example aerospace

or ballistic areas. So, from this point of view, GAs are the best common en-

gineering solution. Nevertheless, many process engineering problems involve
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nonlinear equality constraints, due to mass balance equations, that have to be

solved with a lot of accuracy. From this point of view, efficient constrained NLP

solvers (GRG, SQP) used in the ε-constraint method can constitute an advantage

for this method.

7.2 Resolution time

Another point which pleads in favour of GAs is the resolution time, defined as

the time including all steps from data entry to tuning and final solution. Ob-

viously, except for CPU time, the other times are measurable with difficulty and

are only unrefined estimations. However the general trend remains the same for

all the treated examples: the GA is the most efficient procedure. Furthermore,

from Tables 4.16 & 4.17, it can be observed that the gap between ε-C and GA

is reduced when the problem complexity increases. Considering the resolution

time, for explicit problems with high numbers of nonlinear equality constraints,

we can think that both methods will have similar performances.

These conclusions are to be taken with care, because to have reasonable

evaluations of the resolution times, it would have been necessary that several

developers with different backgrounds solve the test problems.

7.3 Choice of the method

According to the above discussion, the ε-C and GA methods will be used in the

following chapter. A last test to decide between them will be carried out on

the biobjective optimization of a natural gas transportation network (NGTN).

Then, the selected procedure will be implemented for solving a triobjective op-

timization problem related to hydrogen injection in a natural gas transportation

network.





Optimization of a natural gas

transmission network 5
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1 Introduction

Natural Gas (NG) is an important source of energy for reducing pollution and

maintaining a clean and healthy environment. In addition to being a domesti-

cally abundant and secure source of energy, the use of NG also offers a number

of environmental benefits over other sources of energy, particularly other fossil

fuels.

The transport of large quantities of NG is carried out by pipeline network

systems across long distances. Pipeline network systems include one or several

compressor stations which compensate for pressure drops. A typical network

today might consist of thousands of pipes, dozens of stations, and many other

devices, such as valves and regulators. Inside each station, there can be several

groups of compressor units of various vintages that were installed as the capacity

of the system expanded. The compressor stations typically consume about 3 to

5% of the transported gas [Suming et al., 2000]. Thus, efficient operation of

compressor stations is of major importance for enhancing the performance of

the pipeline network. It is estimated that the global optimization of operations

can save considerably the fuel consumed by the stations. Hence, the problem of

minimizing fuel cost is of great importance.

This chapter performs the gas transportation model presented previously

(Chapter 2) on a particular example with the aim at optimizing the network

performances [Abbaspour et al., 2005]. Firstly, a monobjective case, where

a classical deterministic optimization procedure based either on the nonlinear

programming tool CONOPT3 of the GAMS, (General Algebraic Modelling Sys-

tem) library or on the code fmincon of the MATLAB toolbox, is implemented;

the goal is the fuel minimization problem in the compressor stations for fixed

gas mass flow delivery. In the second case, the genetic algorithm (NSGA-IIb)

[Gomez, 2008] coupled with a Newton-Raphson method and the ε-C procedure

(AUGMECON) are used to solve a biobjective problem, constituted by the simul-

taneous maximization of the gas mass flow delivery and the minimization of the

fuel consumption in the compression stations. At the conclusion of this exam-

ple, the choice of the best procedure (namely NSGA-IIb) is carried out. Finally,

considering hydrogen injection in the network, a triobjective problem related

to the maximization of the gas mass flow delivery, the minimization of the fuel



C
hapter

5

110 CHAPTER 5. OPTIMIZATION OF A NATURAL GAS TRANSMISSION NETWORK

consumption in the compression stations together with the maximization of the

percentage of injected hydrogen is performed.

In each case, the study of carbon dioxide CO2 emissions by the compression

stations is carried out [Rodriguez et al., 2010]. In the multiobjective problems,

the choice of the best solution is made by using MCDM (Multiple Choice Decision

Making) tools: TOPSIS [Ren et al., 2007] and FUCA [Moralez-Mendoza et al.,

2011].

2 Problem presentation and modelling equations

2.1 Problem presentation

This example is directly connected to the subject of the thesis which concerns

the natural gas transportation networks (NGTN). The modelling of gas pipeline

networks has already been presented in Chapter 2, which proposes a general

framework able to embed several formulations from design to operational pur-

poses for steady-state problems. So, in this section, only the network characte-

ristics are described.
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Figure 5.1: Schema of the considered pipeline network.

This didactic example is inspired from the work of Abbaspour et al. [2005].
The network consists of three long pipelines of 100 kilometers. There are

two compressor stations that operate to compensate for pressure drop in the

pipelines. Each compressor station includes three parallel centrifugal compres-

sors. In each station, there are six short pipe segments of about a hundred

meters linked to the entrances and outlets of the compressors (Figure 5.1). Al-

though the length and the diameter of these pipes are lower than those of the

three major pipelines, their role in the pressure change through the network

may not be negligible and may even sometimes become bottleneck of the sys-

tem. Therefore, these pipelines are also considered in the model. The technical

features (expressed in meters) of the pipeline system corresponding to Figure

5.1, considered as fixed parameters for the optimization problem, are proposed

in Table 5.1.



C
hapter

5

112 CHAPTER 5. OPTIMIZATION OF A NATURAL GAS TRANSMISSION NETWORK

Pipeline tag G-1 G-2 G-3 G-4 G-5
Diameter (m) 0.787 0.330 0.381 0.330 0.330
Length (m) 100000 200 300 100 200
Pipeline tag G-6 G-7 G-8 G-9 G-10
Diameter (m) 0.330 0.330 0.838 0.381 0.330
Length (m) 100 200 100000 100 100
Pipeline tag G-11 G-12 G-13 G-14 G-15
Diameter (m) 0.432 0.330 0.330 0.330 0.889
Length (m) 100 100 400 100 100000

Table 5.1: Technical features of the pipeline network.

2.2 Network modelling

The pressure is considered to be equal to 60 bar with a margin of ± 2% at the

entrance point of the network, P-0, as well as the delivery pressure, P-17. In

other words, the lower bound is 58.8 bar and the upper one is 61.2 bar. The

gas flows from P-0 towards P-17, and there is no input or output in the other

nodes. The network includes 18 nodes, 15 pipes-arcs and 6 compressor-arcs. As

for each compressor unit, there is a stream that carries fuel to it (Figure 2.2 of

Chapter 2); there are 6 fuel streams which have not been shown in Figure 5.1

to avoid complexity. For each compressor, this stream originates from suction

node (Figure 2.3 of Chapter 2). A flow direction is assigned to each pipe, so the

gas flows from P-0 to P-17. The nomenclature description is presented in Table

2.2 of Chapter 2.

The problem is modelled (gas pipeline equations, maximum allowable ope-

rational pressure, critical velocities, compressor characteristics) in Chapter 2.

Here, Equations 2.4 to 2.8, Equations 2.11 & 2.12, 2.18, Equations 2.20 to 2.39

constitute the modelling set.

Component Methane Ethane Propane
Mole fraction (Decimal) 0.70 0.25 0.05
Molecular mass (kg/mol) 0.01604 0.03007 0.0441
Critical temperature (K) 190.60 305.40 369.80
Critical pressure (bar) 46.00 48.80 42.50
Lower Heating Value (J/kg) 50,009×103 47,794×103 46,357×103

Heat capacity (J/kmol.K) 35.6635 52.848 74.916

Table 5.2: Thermodynamic properties of the components of gas flowing in the pipelines.

The typical composition of NG considered in the numerical runs is presented

in Table 5.2 together with the thermodynamic properties of gas components.
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Roughness of inner surface of the pipes is considered to be equal to 4.6 × 10−5

(traditional value reported for stainless steel). The temperature is assumed to be

isothermal and equal to 330 K all over the system. The adiabatic efficiency, ηIS,

is defined by Equation 2.34; the mechanical efficiency, ηm, and driver efficiency,

ηdr , for the compressors are assumed to be 0.90 and 0.35 respectively, according

to values proposed in the dedicated literature [Menon, 2005]. The compressors

within the compressor stations are modelled using compressor map-based poly-

nomial equations. The set of polynomial equations uses constant coefficients

(bi) shown in Table 5.3.

Coefficient Value Unit
b1 3.8113 × 10−4 m2

b2 3.849 × 10−6 m−1

b3 -6.3985 × 10−9 m−4

b4 17.269 -
b5 0.3237 m−3

b6 -4.1789 × 10−4 m−6

Table 5.3: Coefficients of the hi/ω̄
2 and ηIS compressor equations.

3 Degrees-of-freedom analysis

A Degree-of-freedom (DOF) analysis is a powerful tool for systematic analysis

of block flow diagrams. However, it is important to choose only the variables

for which the values can be directly controlled while operating the actual net-

work. At the same time, the set of optimization variables must be large enough

to perform a consistent optimization search. With these considerations in mind,

(n-1) compressor rotational speeds have been selected to be the independent

optimization variables. The selection of (n-1) compressor rotational speeds is

due to a DOF analysis, which (1) provides a rapid means for determining if the

information available is sufficient and, (2) provides a structured method for de-

termining the set of constraints that has to be solved, and in which order to solve

them. Concerning the criteria, there are several possible objective functions that

can be used as, fuel consumption minimization, amount of added hydrogen and

transmitted power maximization.

In both monobjective and multiobjective optimizations, the variables are: 16

pressure variables governing the nodes, 21 flow rate variables (including fuel
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streams) corresponding to pipes and compressors and 6 rotational speeds of the

compressors. Besides variables, the equality constraints consist of 11 mass ba-

lances around nodes, 15 equations of motion for the pipe-arcs (Equation 2.18),

6 relationships between rotational speed, suction volumetric flow rate and head

of each compressor (Equation 2.33) and 6 equations to calculate isentropic effi-

ciency according to Equation 2.34. Altogether, there are 43 continuous variables

and 38 equality constraints. So, the analysis of DOF gives five rotational speeds

as independent variables.

4 Monobjective optimization

4.1 Problem formulation

The considered objective function is the total fuel consumption in the compres-

sor stations. For each compressor, fuel consumption flow rate is obtained by

using Equation 2.31. The variables and equality constraints are the same as

described above. Obviously, some inequality constraints constitute the total for-

mulation problem (76 inequality constraints). The set of inequality constraints

is constituted by a lower bound for delivery flow rate (flow rate in arc G-15)

equal to 150 kg/s, an upper bound as well as a lower bound for the pressures

of the nodes (MAOP as an upper bound and atmosphere pressure as a lower

bound; the following values were chosen for computing the MAOP: ϕF=0.72,

ϕE=1, ϕT=1), sonic velocity and erosional velocity in the role of upper bounds

of the velocities through pipes, lower and upper bounds on the rotation speed

of all compressors (166.7 and 250 rps respectively), a lower bound on com-

pressor throughput in order to avoid pumping phenomenon, an upper bound

on compressor throughput to prevent from chocking phenomenon.

4.2 Problem solution

As indicated above, in this monobjective case, the solver CONOPT3 of the GAMS

package has been used for solving the problem. The initialization of the va-

riables is performed directly through the software CONOPT3 under the condi-

tion that the problem is well-scaled and that bounds are assigned adequately.

For bounded variables, CONOPT3 takes as the initial values the average of the
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bounds. Several other initial points were randomly selected (inside the bounds,

for bounded variables) and the same solution was obtained. Strictly considering

the non-convexity feature, the example is not so strongly non-convex.

The options used for implementing CONOPT3 are the following: optimal-

ity tolerance = 10−8, maximum feasibility tolerance = 10−5, number of itera-

tions=100. The resolution takes about 0.5 s CPU on a PC (processor Intel Core

2 Duo, 2.99 GHz, RAM 1.96 GB). With the same tolerances, fmincon of MAT-

LAB gives identical results, the CPU time is yet higher (a few seconds). Table 5.4

presents the results relative to pressure values at each node. It must be observed

that at P-0 (i.e., supply node), the algorithm found the maximum possible pres-

sure (61.2 bar) whereas the minimum possible value (58.8 bar) was obtained

at P-17 (i.e., delivery node).

Node Pressure (bar) Node Pressure (bar)
P-0 61.2 P-9 58.3
P-1 47.4 P-10 58.3
P-2 47.0 P-11 58.2
P-3 47.1 P-12 58.3
P-4 47.2 P-13 65.1
P-5 67.0 P-14 65.5
P-6 66.9 P-15 65.1
P-7 67.0 P-16 65.0
P-8 66.8 P-17 58.8

Table 5.4: Pressure at all nodes of the pipeline network.

The value of objective function, that is the total fuel consumption in the

compressor stations, is equal to 0.749 kg/s (sum of individual compressor con-

sumptions, see Table 5.5, bold line), it leads to a significant reduction of 13%

from the initial solution (0.863 kg/s for initial values between their bounds).

Other results are listed in Table 5.5. The optimum percentage of the input gas

that is consumed in the stations can thus be calculated and is found equal to

0.499%. For each compressor, consumption ratio is defined as the fuel con-

sumption divided by the input mass flow rate. Let us mention in this example

that the compressors involved in the second station work at their minimum ro-

tational speeds, whereas the compressors of the first station work close to their

maximum speeds. Finally, the transmitted power of the pipeline, that is the

product of the pipeline delivery throughput (150 kg/s) and the lower heating
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value (LHV) of the NG (48,830 kJ/kg) is found to be equal to 7,324 MW at this

optimal point.

Compressor C-1 C-2 C-3 C-4 C-5 C-6
Discharge flow rate (kg/s) 49.186 50.450 50.559 50.200 49.521 50.279
Rotational speed (rps) 244.3 246.5 246.6 166.7 166.7 166.7
Fuel consumption (kg/s) 0.182 0.186 0.187 0.064 0.066 0.064
Consumption ratio (%) 0.369 0.367 0.369 0.127 0.133 0.127
Isentropic head (kJ/kg) 42.592 42.188 42.201 12.664 13.367 12.607
Isentropic efficiency (%) 74.917 74.215 74.207 64.195 65.331 64.101

Table 5.5: Optimal values for the compressor units of the network.

4.3 Post-optimal analysis

The Lagrange multipliers obtained at the solver convergence can be used to

carry out a sensitivity analysis. All these parameters are null or quasi-null ex-

cept for the supply pressure at P-0 (value=-0.047) and the delivery pressure at

P-17 (value 0.017). This means for example that, if the supply pressure is in-

creased of 1 bar, the total fuel consumption will be decreased of 0.047 kg/s.

In the same way, if the delivery pressure is decreased of 1 bar, the total fuel

consumption will be decreased of 0.017 kg/s.

4.4 Carbon dioxide emissions

Chemically, when the reaction between methane (CH4) and oxygen O2 takes

place, the result is carbon dioxide (CO2), water (H2O), and a great deal of

energy. Chemists would write the following to represent the combustion of

methane:

CH4[g] + 202[g]→ C02[g] + 2H2O[l] + 891kJ (5.1)

The total fuel consumption in the compressor stations is found equal to 0.749

kg/s, that is to say 23 640 ton/year. Thereby, taking into account a complete

reaction of methane (Equation 5.1), an approximation of the carbon dioxide

emissions can be obtained for ethane and propane. The combustion reaction

of one molecule of methane (molar mass=16 g) produces one molecule of CO2

(molar mass=44 g). One molecule of ethane (molar mass=30 g) gives two

molecules of CO2, and for one molecule of propane (molar mass=44 g), three

molecules of CO2 are obtained.
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The results are summarized in Table 5.6. The carbon dioxide emissions are

66 332 ton/year. Let us recall that the NG delivery is 150 kg/s, that is to say

4 730 400 ton/year. The carbon dioxide emissions represent only 1.4% of the

delivery gas, which is very acceptable.

Component Fuel consumption CO2 emissions
(ton/year) (ton/year)

Methane (70%) 16,534 45,468
Ethane (25%) 5,905 17,321
Propane (5%) 1,181 3,543
Total 23,620 66,332

Table 5.6: Carbon dioxide emissions.

5 Biobjective optimization

5.1 Problem formulation

In the previous section, the fuel consumption in the compressor stations was

minimized for a given gas mass flow delivery. However, for a NG delivery com-

pany, the demand may vary according to climatic conditions or industrial re-

quirements. So the problem which arises is to determine, for a given supply at

the network entrance nodes, the minimal and maximal network capacities in

terms of NG mass flow delivery and fuel consumption in compressor stations.

This problem can be formulated as a biobjective optimization problem.

In fact, this does not refer to a problem of decision making strictly speaking,

as far as the practical problem formulates as follows. For a NG delivery company,

the total mass flow delivery is imposed on a given period, and the problem is to

operate the compressor stations so as to minimize the fuel consumption in the

stations. When performing the biobjective optimization, the largest Pareto front

(Figure 5.2(b)) provides an easy way for:

1. Identifying the minimum and maximum network capacities in terms of

mass flow delivery and fuel consumption;

2. For a given mass flow delivery between the above extreme values, the mi-

nimal fuel consumption, and thus the minimal carbon dioxide emission,

can be deduced.
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Concerning the optimization variables and constraints, the problem is iden-

tical to the previous one, but here the NG mass flow delivery is not fixed at

150 kg/s. The goal is to simultaneously minimize the total fuel consumption

(this objective is noted f1) in the compressor stations, while maximizing the NG

delivery mass flow at P-17 (objective denoted f2).

Moreover, the set of constraints involves mass and momentum balances on

the one hand and compressor equations on the other hand. The numerical so-

lution of this set of equations must be performed carefully, making sure that the

equality system of equations captures all the relevant aspects of the associated

network problem. To solve efficiently this set of nonlinear equations, adequate

variable bounds and initial values have to be applied at each node of the net-

work. These values are taken from Tabkhi [2007].

5.2 Problem solution

As abovementioned, the solver NSGA-IIb of the MULTIGEN library, coupled with

a Newton-Raphson procedure, was implemented for solving the multiobjec-

tive problem. The options used for implementing NSGA-IIb are: population

size=100, maximum number of generations=300. The GA was run 10 times

with different initial values for the rotational speeds (randomly generated); the

Pareto front reported on Figure 5.2(b) has been obtained five times. The res-

olution of one GA takes an average time of 4 hours CPU on the same PC as

above.

Relevant information lies in the two extreme points of the front, insofar as

they represent the minimum (133 kg/s) and maximum capacities (157 kg/s) of

the network in terms of NG delivery and fuel consumption. These solutions were

verified by performing monobjective optimizations of the fuel consumption for

a NG mass flow delivery of 133 kg/s and then of 157 kg/s; the same solutions

for the fuel consumption were found again. Conversely, the NG mass flow deli-

very was computed with compressor rotational speeds given at the two extreme

points, the mass flow delivery of 133 kg/s and of 157 kg/s were obtained again.

It can be observed on the Pareto front, that for NG mass flow delivery of

150 kg/s, the same value (0.749 kg/s) of the total fuel consumption as in the

monobjective case is found again. The values of pressures, discharge flow rates,

rotational speeds, fuel consumptions, isentropic head and isentropic efficiency
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for the compressors are the same as the ones listed in Tables 5.4 & 5.5. The

carbon dioxide emissions for the two extreme points are given in Tables 5.7 &

5.8.

An additional verification was carried out by implementing the AUGMECON

method. The obtained front is given on Figure 5.2(a). The two fronts obtained

from genetic algorithm and AUGMECON are superimposed (Figure 5.2(c)), but

the front of AUGMECON is much more restricted than the one of genetic al-

gorithm, due to local non convexities in the problem formulation. From these

checks, we can assume that the Pareto front given by the NSGA-IIb is correct, and

brings more information since it is more extended than the one of AUGMECON.
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(c) Superimposed fronts

Figure 5.2: Solution of the Natural Gas transmission network.

5.3 Carbon dioxide emissions

For the pair ( f1=0.749 kg/s, f2=150 kg/s), the results are already reported in

Table 5.6. Two new studies for the extreme solutions (case 1: f1=0.540 kg/s,

f2=133 kg/s) and (case 2: f1=0.980 kg/s, f2=157 kg/s) are carried out, the

results are indicated in Tables 5.7 & 5.8.

CASE 1:
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The carbon dioxide emissions are 47,823 ton/year (Table 5.7). The NG

delivery is 133 kg/s, that is to say 4,194, 288 ton/year. The carbon dioxide

emissions represent 1.1% of the delivery gas.

Component Fuel consumption CO2 emissions
(ton/year) (ton/year)

Methane (70%) 11,920 32,780
Ethane (25%) 4,257 12,487
Propane (5%) 852 2,556
Total 17,029 47,823

Table 5.7: Carbon dioxide emissions (case 1).

CASE 2:

The carbon dioxide emissions are 86,794 ton/year (Table 5.8). The NG

delivery is 157 kg/s, that is to say 4,951, 152 ton/year. The carbon dioxide

emissions represent 1.8% of the delivery gas.

Component Fuel consumption CO2 emissions
(ton/year) (ton/year)

Methane (70%) 21,635 59,496
Ethane (25%) 7,726 22,663
Propane (5%) 1,545 4,635
Total 30,905 86,794

Table 5.8: Carbon dioxide emissions (case 2).

DISCUSSION:

Along the Pareto front, the carbon dioxide emissions vary from 1.1% to 1.8%

of the NG mass flow delivery. These values are lower than those usually ad-

mitted; indeed as mentioned in the Introduction section, it is estimated that

the compressor stations typically consume about 3 to 5% of the transported gas

[Suming et al., 2000]. So the optimization of compression operations yields

significant savings for the fuel consumed in the stations.

5.4 Resolution time

Let us recall that the CPU times reported in Table 5.9 correspond to 100 runs of

AUGMECON, and 10 runs of the NSGA-IIb with 100 individuals per generation

and 300 generations. Except for CPU times, the other values must be taken with

all the precautions expressed in Chapter 4. The times are expressed in hours.
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Concerning the CPU time, NSGA-IIb is not ranked first, since it involves a

significant number of equality constraints. However, the CPU time represents

a very small proportion of the total time. It is necessary to notice that, from

an economic point of view, the CPU time is only a masked time little expensive

because, it requires no human intervention.

Problem Tuning Fulfilling Finding the CPU Resolution
parameters input file initial guess time time

AUGMECON 55 60 40 1 156
NSGA-IIb 10 25 8 40 83

Table 5.9: Various times (h) for the NGTN (AUGMECON and NSGA-IIb).

5.5 Choice of the method

From a numerical point of view, the Pareto front given by the genetic algorithm

brings more information than the one of ε-C. Since it is more extended, the

computational time of NSGA-IIb represents half of that of AUGMECOM. These

are the reasons why only the genetic algorithm was used for performing the

triobjective optimization of the following section.

5.6 Choice of the best solutions

As already mentioned, although the biobjective problem is not strictly speaking

a MCDM one, the determination of a good solution for the biobjective optimiza-

tion problem, would provide relevant information for the practitioner. After the

complete set of solutions of the biobjective optimization problem (i.e. the Pareto

front or set of efficient solutions) is found, the next step consists in identifying

the best ones. This Multiple Choice Decision Making (MCDM) question is also a

complex problem, mainly because of its more subjective nature, more than the

multiobjective optimization problem itself. Some generic tools, like the knee

method [Branke et al., 2004] or the TOPSIS and FUCA procedures, can be used

for choosing a restricted set of good solutions on the Pareto front. However, for

industrial problems, the practitioner may make his final decision according to

some specific internal features of his company.
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5.6.1 MCDM methods: TOPSIS and FUCA

TOPSIS is one of the most commonly used method in Process Systems Engineer-

ing. The fundamental concept of this method [Opricovic and Tzeng, 2004;

Ren et al., 2007; Chen et al., 2009] is the comparison of Euclidian distances

to choose the best alternative. TOPSIS is a synthetic evaluation method, where

the distance between available solutions and the optimized ideal reference point

is calculated. The optimized ideal reference point is a theoretical point where

objectives are at their minimal values (in the case of minimization problems); it

may be the origin of the Euclidian space.

The method calculates the distance between the ideal reference at each point

of the Pareto curve and ranks them by increasing order of distances. The method

starts with a decision matrix that contains all the alternatives ordered by the cri-

teria and a weight vector is defined. The next step is to calculate the normalized

decision matrix, after the positive and negative ideal solutions are defined from

the standardized matrix. Then, the separation measures of each alternative are

calculated and, finally, a ratio for each alternative is estimated. The alternatives

are ranked according to their ratio.

On the other hand, FUCA is the French acronym for Faire Un Choix Adéquat:

Make An Adequate Choice. This simple method, developed in our research

group, is based on individual rankings of objectives; for a given criterion, the

rank one is assigned to its best value and the rank n (n being the number of

points of the Pareto front) to the worst one. Then, for each point of the front,

a weighted summation (the weights representing the preferences) of ranks is

performed, and the choice is carried out according to the lowest values of the

sum. In a recent paper [Moralez-Mendoza et al., 2011], the FUCA method was

compared with classical MCDM procedures on a tricriteria problem related to

the portfolio management in a pharmaceutical industry. For each solution found

by ELECTRE [Teixeiro de Almeida et al., 2004], PROMETHEE [Zhaoxu and Min,

2010] and TOPSIS [Chen et al., 2009], the FUCA ranking is also reported. A

very good agreement between the three classical MCDM methods and FUCA can

be observed, showing the efficiency of the FUCA procedure.

However, the FUCA procedure cannot be implemented on biobjective pro-

blems. Let us consider for example a biobjective minimization problem, with

a Pareto front involving n points. One of the extreme point corresponds to the
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best value of one objective (individual rank=1) and the worst value for the

second objective (individual rank=n); so the sum of ranks is (n+1). For the

other extreme point, the best value of one objective becomes the worst, and for

the second objective, the worst value becomes the best one; the sum of ranks is

also (n+1). Indeed, FUCA cannot distinguish the points of the Pareto front for

a biobjective optimization problem.

5.6.2 Choice of the best solution by using TOPSIS

The TOPSIS procedure was implemented for determining the three best solu-

tions of the biobjective optimization problem. They are indicated by: TS1, TS2

and TS3 in Figure 5.3 and Table 5.10. The goal is now to identify the best

solution among the three proposed ones. The chosen criterion selection is to

minimize the distances between criteria f1 and f2 of the monobjective and the

biobjective solutions.

The selected solution will be the one which degrades the least possible the

values obtained in the monobjective case. Let us note that TOPSIS is imple-

mented by using the same weight on both objectives. The euclidian norm of

distances between monobjective and biobjective solutions is given in Table 5.11,

where it can be noted that TS3 is the best solution. For solution TS3, the corres-

ponding values of pressures in the network are indicated in Table 5.12. Other

values are listed in Table 5.13.

Obviously, in the three best solutions provided by TOPSIS, the throughput

flow rate is decreased, compared to the imposed value of 150 kg/s of the

monobjective case, and consequently, the fuel consumption value decreases.

Like in many biobjective optimization cases, TOPSIS tends to identify solutions

near one extremity of the Pareto front, when the same weight is affected to the

objectives. We could correct it by assigning different weights to the objectives,

but the problem of the arbitrary choice of the weighting factors would raise

then. For this reason, we did not assign different weights to the two objectives.
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Figure 5.3: Graphical representation of the best solutions found by TOPSIS.

Objective Fuel consumption Throughput to the system
Solution f1 = 0.749 (kg/s) ∗ f2 = 150 (kg/s)

TS1 0.541 135.698
TS2 0.539 135.490
TS3 0.546 136.019

∗ Imposed by the monobjective case

Table 5.10: Best solutions found by using TOPSIS.

Solution Euclidian norm
TS1 14.30
TS2 14.51
TS3 13.98

Table 5.11: Selection of the best solution for the biobjective case.
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Node Pressure (bar) Node Pressure (bar)
P-0 61.200 P-9 56.029
P-1 50.144 P-10 55.977
P-2 49.860 P-11 55.921
P-3 50.016 P-12 56.002
P-4 49.994 P-13 64.102
P-5 63.574 P-14 64.377
P-6 63.427 P-15 64.103
P-7 63.587 P-16 64.007
P-8 63.359 P-17 58.800

Table 5.12: Pipeline network pressures (the best solution TS3 by using TOPSIS).

Compressor C-1 C-2 C-3 C-4 C-5 C-6
Discharge flow rate (kg/s) 48.196 38.373 49.652 45.372 44.979 45.669
Rotational speed (rps) 212.163 189.230 214.796 166.797 167.326 167.308
Fuel consumption (kg/s) 0.125 0.090 0.129 0.067 0.068 0.067
Consumption ratio (%) 0.258 0.235 0.259 0.147 0.151 0.147
Isentropic head (kJ/kg) 28.699 28.028 28.389 15.572 16.191 15.522
Isentropic efficiency (%) 72.002 77.286 71.100 68.772 69.560 68.549

Table 5.13: Optimal values for the compressor units (best solution TS3 by using TOPSIS).

6 Triobjective optimization for hydrogen injection

6.1 Why injecting hydrogen in existing natural gas transportation networks?

Hydrogen (H2) is foreseen as an important energy carrier in the future sus-

tainable energy society. The transition towards the situation in which H2 will

become little by little an important energy carrier will be lengthy (decades),

costly and needs a significant effort for R&D. Preliminary studies have shown

that the transport of a mixture of NG-H2 is possible through the existing NG net-

works without pipeline modification as long as the mass fraction of H2 remains

sufficiently low [Castello et al., 2005]. This problem is the aim of the present

section. Defining the conditions under which H2 can be added to NG constitutes

a key point of this investigation as well as how much H2 can be injected into the

existing pipeline network, while minimizing fuel consumption and maximizing

the pipeline throughput (mass flow rate). The main hydraulic limiting factor for

H2 introduction in an existing pipeline is that H2 specific volume is greater than

this corresponding to NG, which results in a strong decrease pipeline throughput

and consequently in the transmitted energy. However, a part of the reduction in
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transmitted energy is compensated by LHV of H2, that is higher than the value

corresponding to NG. Consequently, an examination of the potential of using

the existing NG pipeline system for the transmission and distribution of H2 is a

logical first step. Hence, this study presents in Chapter 2 a generalized mathe-

matical formulation for modelling and evaluating NG pipeline networks under

H2 injection.

As abovementioned, the transition towards the situation in which H2 will

become an important energy carrier, will need decades but worldwide great

efforts are made nowadays in the field of H2 production, delivery, storage and

utilization. In this view, an analysis of the potential of using the actual NG

pipeline systems for the delivery of H2 is a valid argument.

6.2 Differences between the properties of natural gas and hydrogen

The physical and chemical properties of H2 differ significantly from those of NG.

Table 5.14 shows some indicative values of relevant properties for the gas chain

from source to end-user. As a result of these contrasting properties, a system

designed for NG cannot be used without appropriate modifications for pure H2,

and vice versa. Even the addition of a certain percentage of H2 to NG will have a

direct impact on the combustion properties, on the diffusion into materials and

on the behaviour of the gas mixture in air. These aspects are considered further

below.

The addition of H2 to the NG modifies its transport and calorific properties

[Schouten et al., 2004]. Besides, a gas with higher H2 content can have an

impact on the safety of the transmission-distribution-utilization chain, the dura-

bility and the reliability of the gas pipeline and the utilization performances for

the end-user.

Component Hydrogen Methane Unit
Molecular mass 2.02 16.04 g/mol
Critical temperature 33.2 190.65 K
Critical pressure 13.15 45.4 bar
Heat capacity at constant pressure (25◦C) 28.8 35.5 J/mol.K
Lower Heating Value (weight basis) 120 48 MJ/kg
Higher Heating Value (weight basis) 142 53 MJ/kg

Table 5.14: Physical properties of hydrogen and methane as the principal constituent of NG.
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6.3 The impact of hydrogen on the natural gas system

In principle, H2 can be added to NG in the high-pressure grid, in the medium

pressure grid, or in the low pressure distribution grid; but it must be remem-

bered that the existing system was designed and constructed specifically for NG

and, as explained above, the physical and chemical properties of H2 differ sig-

nificantly from those of NG. In particular, the addition of H2 to NG may have an

impact on the following aspects:

• Safety related to the transmission, distribution and use of gas

Aspects of pipeline systems, such as location, materials, wall thickness,

safety devices, etc., are designed on the basis of risk assessments. For

instance, the design criteria for a pipeline in a populated area differ from

the criteria for a pipeline in the countryside. As H2 is added, it will change

the gas properties and, as a consequence, the related risks will change. An

additional safety risk of using a NG system for H2 may arise from the fact

that the potential leakage rate of H2 is much larger than that of NG through

the same sized leak.

• Integrity of pipelines

H2 may diffuse into materials and change their mechanical properties. For

example, H2 embrittlement of steel, leading to an accelerated growth of mi-

cro cracks, is a well recognized phenomenon. H2 may also diffuse through

polymers, thus resulting in a significant loss of H2. This may affect the

integrity of the system and could also have an impact on safety. A related

issue concerns condition monitoring and repair techniques of the delivery

system.

• Gas quality management

It should be ensured that end-users will remain supplied with gas that

meets the contractual specific cautions in order to guarantee their safety,

performance of end-user appliances and billing accuracy. Moreover, this

is an issue if H2 is extracted from the mixture, and the remaining gas is

supplied to end-users further downstream.

• The performance of end-user appliances

As the combustion properties change when H2 is added to NG, this may

also affect the performance of end-user appliances.
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• The energy capacity of the delivery system

The NG system is designed for the maximum capacity that may be required.

As energy demand shows a pattern over the day, over the seasons and over

the year, dynamic simulations are routinely used to optimize the layout

and the dimensions of the systems. The delivery system not only moves

gas from production to end-user, but it also adapts to the different patterns

of supply and demand, and it must be capable of coping with fluctuations

in composition of the gases entering the system. Capacity is the key issue

of a NG system to ensure a sufficiently high level of security of supply, both

volume and gas quality. If an existing pipeline system could be switched

from NG to H2 and still be operated at the same maximum pressure, its

maximum capacity (measured in energy terms) would be approximately

one third less with H2 than with NG (the calorific value of H2 in volume

basis is about 1/3 of the value for NG, but H2 can be transported with lesser

friction resistance than NG). For the same reason, it is anticipated that the

addition of H2 to NG will reduce the capacity of a pipeline. Pipelines are

usually not continuously loaded up to their full capacity and so, for most

of the time, there will be, in principle, room for the addition of H2, without

limiting the energy transmission and distribution capacity of the delivery

system.

• Gas and energy losses

During the transmission, storage and distribution, the permeability of the

walls of underground storages and of pipeline materials, etc., is higher for

H2 than for NG. In addition, leakage from small leaks will be increased.

Next to feasible safety aspects, these losses also have economic and envi-

ronmental aspects.

Some authors have examined H2 transport by pipeline and a few reports dis-

cuss the use of existing NG pipelines to transport H2 or NG-H2 blends. These

are also the main objectives of the NATURALHY project (supported by the Euro-

pean Commission within a Thematic Priority on Sustainable Energy Systems of

the Sixth Framework Program) which investigates the conditions under which

H2 can be added to NG with acceptable consequences for safety, life cycle and

socioeconomic aspects, durability of the system, gas quality management and

performance of end-user appliances [Florisson et al., 2006].
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Among the recent works, the influence of H2 on the pressure drop in the

pipelines has been calculated by [Schouten et al., 2004]. In Parker [2004], the

construction costs of NG transmission pipelines have been analyzed and the im-

pact of H2 in the global cost has been studied. From an economic viewpoint,

the cost of NG pipelines is a function of pipe diameter and the cost of a H2

pipeline can be 50%-80% higher than that of a NG pipeline of the same size

[Veziroglu and Barbir, 1998]. Regional transportation costs could be as much

as five times higher than NG, primarily because of the lower volumetric energy

density of H2 [Whaley and Long, 2001]. Besides, H2 embrittlement of the steel

under the high pressures environment of H2 constitutes a major concern: con-

sequently, the transportation of a H2-rich gas requires a great attention since H2

embrittlement is characterized by a loss of ductility of the steel [Sherif et al.,

2005].
Obviously, this section has not the ambition to give an answer to all ques-

tions that may arise, but may help to approach the potential challenges of the

exploitation of H2 as an energy carrier using current pipeline systems. The pos-

sibility of low amounts of H2 injection into NG pipelines will be analyzed from

a process engineering viewpoint in what follows.

6.4 Modelling extension to natural gas-hydrogen mixtures

A mathematical modelling of the gas transportation problem in networks was

presented in Chapter 2. The model is general enough to take into account va-

rious gases: methane, ethane, propane and hydrogen. Note that a constraint

concerning the fraction of hydrogen injected has been considered (Equation

5.2). Natural gas is composed by 70% methane, 25% ethane and 5% propane

(Table 5.2). The material balance and equations of momentum conservation on

the basic elements of the network, as well as the other governing equations pre-

sented in Chapter 2, constitute the modelling core of the gas pipeline hydraulics.

It is assumed that the compressor performances represented by classical charac-

teristic curves are compatible with the case of NG-H2 (Equations 2.33 & 2.34).

0< ΦH2
< 0.15 (5.2)

The influence of the presence of hydrogen on the pipeline hydraulic is re-

flected in molecular weight and compressibility factor in Equation 2.5. Note
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that the effect of the former is more significant than the latter. Since the pre-

sence of hydrogen reduces the molecular weight of the gas mixture (Equation

2.18), gas transportation by a fixed mass flow rate demands a higher pressure

difference. For this reason, the pipelines transporting hydrogen require higher

pressures.

Additional problems related to the optimization of the operating conditions

can be treated with the same formulation by only changing the objective func-

tion. For instance, delivery pressure optimization for different hydrogen frac-

tions in NG-H2 mixtures is another interesting problem. This point will not be

treated in this study.

6.5 Case study: Injecting hydrogen in a natural gas transportation network

6.5.1 Problem formulation

Hydrogen addition is examined in this section for the pipeline network showed

in Figure 5.1. This example, used as a test bench, is enough representative of

the elements that may take place in a real gas transportation network. Technical

features of the NG transmission network are shown in Table 5.1. The compo-

sition of the NG is the same as the reference problem presented above (Table

5.2).

The DOF analysis gives 44 variables: 16 pressure variables governing the

nodes, 21 flow rate variables (including fuel streams) corresponding to pipes

and compressors, 6 rotational speeds of the compressors and the percentage of

hydrogen injection), and 38 independent equations: 11 mass balances around

nodes, 15 equations of motion for the pipe-arcs (Equation 2.18), 6 relation-

ships between rotational speed, suction volumetric flow rate and head of each

compressor (Equation 2.33) and 6 equations to calculate isentropic efficiency

according to Equation 2.34. So the number of DOF is six, five rotational speeds

and the percentage of hydrogen injection have been chosen as independent va-

riables.

6.5.2 Problem solution

Three objectives have to be simultaneously optimized: minimizing the fuel con-

sumption in compressor stations, maximizing the network throughput and maxi-
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mizing the percentage of added hydrogen at the network entrance. The genetic

algorithm NSGA-IIb coupled with a Newton-Raphson procedure of the MATLAB

toolbox is implemented. As in the previous case, the genetic algorithm was

run 10 times, requiring a total CPU time of 45 hours. The 3-D Pareto front is

displayed in Figure 5.4.

Figure 5.4: Graphical representation of the best solutions found by TOPSIS and
FUCA.

6.6 Choice of the best solution

The TOPSIS and FUCA procedures were implemented for determining the three

best solutions of the triobjective optimization problem. As in the biobjective

case, the same weight has been assigned to the three objectives, either in TOPSIS

and FUCA. They are denoted respectively: TS4, TS5 and TS6 for TOPSIS and FS1,

FS2 and FS3 for FUCA in Figure 5.4. The goal is now to identify the best solution

among the three proposed ones of each procedure. The results are displayed in

Table 5.15. As in the biobjective optimization case, the chosen criterion is to

minimize the euclidian norm of the distances between criteria f1 = 0.749 kg/s
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and f2 = 150 kg/s of the monobjective and the triobjective solutions (Table

5.16). So the selected solution is FS1, for which the corresponding values of

pressures in the network are indicated in Table 5.17. Other values are listed in

Table 5.18.

Objective
Fuel Throughput to Percentage of

consumption the system hydrogen
∗ f1 = 0.749 kg/s ∗ f2 = 150 kg/s

TS4 0.783 131.619 0.087
TS5 0.745 131.984 0.083
TS6 0.763 133.748 0.079
FS1 0.844 146.096 0.033
FS2 0.737 144.165 0.019
FS3 0.811 143.245 0.041

∗ Imposed by the monobjective case

Table 5.15: Best solutions found by using TOPSIS and FUCA.

Solution Euclidian norm
TS4 18.38
TS5 18.01
TS6 16.25
FS1 3.905
FS2 5.835
FS3 6.755

Table 5.16: Selection of the best solution for the triobjective case.

Node Pressure (bar) Node Pressure (bar)
P-0 61.200 P-9 54.839
P-1 47.475 P-10 54.783
P-2 47.146 P-11 54.680
P-3 47.251 P-12 54.806
P-4 47.310 P-13 65.113
P-5 63.981 P-14 65.535
P-6 63.861 P-15 65.126
P-7 63.982 P-16 65.017
P-8 63.749 P-17 58.800

Table 5.17: Pipeline network pressures for the best solution FS1.
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Compressor C-1 C-2 C-3 C-4 C-5 C-6
Discharge flow rate (kg/s) 49.095 48.115 49.195 45.229 52.598 48.269
Rotational speed (rps) 245.059 241.375 244.068 185.180 204.805 192.100
Fuel consumption (kg/s) 0.181 0.174 0.180 0.091 0.118 0.100
Consumption ratio (%) 0.368 0.360 0.364 0.202 0.224 0.207
Isentropic head (kJ/kg) 40.195 39.601 39.686 21.496 22.593 21.467
Isentropic efficiency (%) 73.256 73.656 73.135 71.570 67.865 69.705

Table 5.18: Optimal values for the compressor units for the best solution FS1.

6.7 Discussion

When going from monobjective to the best solution of biobjective optimization,

the pressures in the network do not vary a lot, while the discharge flow rate, the

rotational speeds and consequently the fuel consumption decrease.

Contradictory when going now to triobjective case, since the pipeline

throughput has a similar value to the monobjective case, only a little injected

fraction of hydrogen causes an increase in the pressures of the network,

the discharge flow rate, the rotational speeds and consequently in the fuel

consumption. As abovementioned, the principal hydraulic limiting factor for H2

introduction in an existing pipeline is that H2 specific volume is higher than this

corresponding to NG which results in a strong decrease pipeline throughput

and consequently in the transmitted energy. However, a part of the reduction

in transmitted energy is compensated by the LHV of H2 that is higher than the

value corresponding to NG.

According to this study, an adaptation of the current networks of transmission

of natural gas to the transport of hydrogen seems yet possible until low values

that can be quantified with optimization tools, such as the network model pro-

posed. More precisely, the quantitative amount of hydrogen that can be added

to natural gas can be determined without neglecting the energy capability of the

natural gas system.

Typical quantitative results are presented, showing that the addition of hy-

drogen to natural gas decreases significantly the transmitted power: the maxi-

mum fraction of hydrogen that can be added to natural gas is around 3% for

this example. The observed reduction in the transmitted energy by the pipeline

(7%) can be mainly attributed to the low molecular weight of hydrogen, i.e.,

about 10% of the value of NG (Table 5.14 and the role of molecular weight
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in the equation of motion). Since the mass basis LHV of hydrogen is about

2.5 times of the corresponding value for NG, it reduces the impact of the low

molecular weight of hydrogen on the reduction of the transmitted energy by

the pipeline. Other parameters, such as compressibility factor, play a relatively

minor role. Yet, it must be also that the diameters of the pipelines existing in

the compressor stations are so small; so the gas average velocity tends to its

upper limits (erosional velocity), when the amount of hydrogen increases. Con-

sequently, the mass flow rate can not increase any more.

7 Conclusion

A mathematical modelling framework for gas pipeline networks was proposed in

this study showing that efficient operation of compressor stations is of major im-

portance for enhancing the performances of pipeline networks. In this chapter, a

pipeline network system including two compressor stations is optimized. Some

interesting results of the natural gas network under different operating condi-

tions are presented by implementing two strategies of optimization: monobjec-

tive and multiobjective. Both procedures are devoted to the consideration of gas

mass flow delivery maximization, fuel consumption minimization and amount

of hydrogen injected maximization. In the monobjective case, a deterministic

optimization procedure is used. In the biobjective case, a genetic algorithm and

a ε-constraint method are implemented. From a comparative study, the genetic

algorithm seems to be the most adequate method. So the genetic algorithm

is used for solving a triobjective problem concerning hydrogen injection in the

network.

In the monobjective study, the objective function is the total fuel consump-

tion in the compressor stations to be minimized for a fixed gas delivery mass

flow, since the reduction of the energy used in pipeline operations will have a

significant economical impact. Typical results are analyzed and the characteris-

tic values of some key parameters, like isentropic head and isentropic efficiency,

are computed. The numerical results show that numerical optimization is an

efficient tool for optimizing compressor rotational speeds, and can yield signi-

ficant reductions in fuel consumption. The carbon dioxide emissions evaluated
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at the optimal solution represent only 1.4% of the delivery gas, which is very

acceptable.

For the biobjective study, the goal consists in simultaneously minimizing the

total fuel consumption while maximizing the gas mass flow delivery. The pro-

blem is solved by means of a genetic algorithm and a ε-constraint procedure.

Both methods give superimposed Pareto fronts, but the one from genetic algo-

rithm is much larger than the one from ε-constraint. So the genetic algorithm

is used in the last part of the chapter related to hydrogen injection in the gas

transportation network. Along the Pareto front provided by the genetic algo-

rithm, the carbon dioxide emissions vary from 1.1% to 1.8% of the NG mass

flow delivery. So the optimization of compression operations yields significant

savings for the fuel consumed in the stations, and thus has a real environmental

impact. For instance, in the NGTN problem, the Pareto front supplies two signi-

ficant information. First, bounds on the network capacity in terms of mass flow

delivery and CO2 emissions can be directly obtained from the curve. Second, for

an imposed mass flow delivery that corresponds to practical case for a NG de-

livery company, the minimal fuel consumption directly linked to CO2 emissions

can be obtained by tuning compressor stations (particularly rotational speeds of

compressors) at values provided by the optimizer.

Finally, a major interest of this work is to take into account the amount of

hydrogen that can be added to the pipeline network traditionally devoted to the

transportation of natural gas, without any modification in the system. Defining

the conditions under which hydrogen can be added to natural gas constitutes

a key point of this investigation as well as how much hydrogen can be injected

into the existing pipeline network while minimizing fuel consumption and maxi-

mizing the pipeline throughput. The resolution of this triobjective optimization

problem shows that the maximum achievable fraction of hydrogen that can be

added to natural gas is around 3% mass for the studied example. However, ad-

dition of hydrogen to natural gas decreases the transmitted power significantly

(of about 7%). According to this study, an adaptation of the current network of

NG transmission to the transport of hydrogen seems yet possible.

In the multiobjective cases, some generic MCDM tools, like the TOPSIS and

FUCA procedures, are used for choosing the best solution among the ones pro-

vided by the Pareto fronts. For the biobjective optimization case, TOPSIS is

implemented for identifying the three best solutions of the Pareto front. Then,
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by computing the euclidian norm of distances between these solutions and the

one of the monobjective case, the best biobjective solution can be identified. A

similar strategy is implemented in the triobjective problem. TOPSIS and FUCA

are used for identifying the six best solutions on the 3-D Pareto front and the

distance between these six solutions and the monobjective one allows to find

the best solution of the triobjective case.

A perspective of this work is now to treat more complex systems, including

the conditions under which hydrogen can be added to natural gas with accept-

able consequences for safety, durability of the system, gas quality management

and performance of the end-user appliances, in the design and operation phase.

In that context, the use of multiobjective optimization techniques, as it was

strongly demonstrated in this work, still constitutes a natural way and stochas-

tic algorithms, such as genetic algorithms, appear as serious candidates.
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The optimization of a NG transportation network NGTN is typically a multi-

objective optimization problem, involving for instance energy consumption min-

imization at the compressor stations and gas delivery maximization. However,

very few works concerning multiobjective optimization of NGTN are reported in

the literature. The main goal of this study is to provide a general framework

of formulation and resolution of multiobjective optimization problems related

to NGTN. Moreover, this work attempts to provide a general methodology in a

manner useful to both the scientist/engineer engaged in process development

or design for finding the most appropriate operating conditions, while optimi-

zing some objective function(s). Various multiobjective optimization techniques

belonging to two main classes, scalarization and evolutionary techniques, can

be used for engineering purposes. In that context, this work illustrates their

application on a series of case studies covering a range of significant chemical

process engineering problems. The idea is to implement, for a given mathe-

matical model, a numerical method that meets the multi-criteria aspect which

embeds both solution quality and resolution time. Of course, the variables and

objective functions may differ, according to the problem which is considered;

however, the nature of variables is always continuous in all treated cases.

From this comparative study, the choice of a stochastic procedure, namely a

genetic algorithm, is performed since it is generally recognized that this kind of

methods is particularly well-fitted to take into account the multi-criteria aspect,

despite the important number of constraints that are likely to be involved in

an engineering problem formulation. Adequate solvers of the MATLAB toolbox

are used (fmincon, fsolve), since this optimization tool is often considered as a

standard for the solution of Process Systems Engineering problems.

Finally, a didactic natural gas transportation network is considered for mono,

bi and triobjective optimization studies. An interesting topic concerning multi-

objective optimization arises with the determination of a good solution on the

Pareto front or set of efficient solutions. So, after the optimization phase, the

next step consists in identifying the best one. It is a problem of Multiple Choice

Decision Making (MCDM), which is also a complex problem, mainly because of

its more subjective nature, than the multiobjective optimization problem itself.

Some generic tools are implemented for choosing the best solution on the Pareto

front. The selected solution will be the one which degrades the least possible

the values obtained in the monobjective optimization case. However, for indus-
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trial problems, the practitioner may make his final decision according to some

specific internal features of his company.

1 Modelling natural gas pipeline networks

A gas transportation modelling approach, that serves as a methodology frame-

work, takes into account the elements of the network under steady-state condi-

tions. This general framework contains some typical aspects:

• Mass and transportation equations;

• Compressor characteristics modelling through characteristic curves;

• Several constraints such as: maximum allowable operational pressure, cri-

tical velocity, erosional velocity, etc.

In this work, compressor stations, which consist of several identical centrifu-

gal compressor units in parallel, are considered, since this type of station is very

common in today’s gas industry, and having an understanding of this type of

station is fundamental for modelling more complex station configurations. Note

that the model can take into account various compositions of gas mixtures.

Complementing the modelling core, various objectives can be considered to

improve the operating conditions of a gas network system. Three types of objec-

tive functions are chosen for illustration purposes: fuel consumption minimiza-

tion, pipeline throughput maximization and injected hydrogen maximization.

The use of the proposed strategy can help the gas network manager to answer

these recurrent questions:

• Knowing that I need to deliver a certain volume of gas at certain key points,

how do I utilize the compressors at my disposal most efficiently to reduce

fuel gas consumption?

• How do I set the consequent pressures and flow rates?

Let us mention that characteristic values for compressor stations of some key

parameters that may be useful for the practitioner (isentropic head, isentropic

efficiency) are systematically computed. The results obtained show that nume-

rical optimization is an effective tool for optimizing compressor speeds, and can
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yield significant reductions in the fuel consumption. Finally, the global frame-

work can help decision making for optimizing the operating conditions of gas

networks, anticipating the changes that may occur (i.e. gas quality, variation in

supply sources availability and consequences in maintenance) and quantifying

CO2 emissions.

A natural extension of this methodology is now to treat more complex sys-

tems. For instance, multi-supply multi-delivery transmission grids, which may

be highly meshed. Hereby, a mixed integer nonlinear programming approach is

recommended with binary variables representing flow directions. In that con-

text, genetic algorithms appear as serious candidates.

1.1 Fuel consumption minimization

In the monobjective case, when the fuel consumption has to be minimized, natu-

ral gas transportation networks usually involves continuous variables, i.e., pres-

sures at nodes and flow rates through pipes. When the flow directions can be

easily predicted, the formulation is based on a nonlinear-programming proce-

dure. In this case, compressor modelling occurs through the use of characteristic

curves, as previously mentioned, and the search for their optimal operating con-

ditions is carried out in the feasible operating domain for the unit. Using this

objective function is particularly interesting, since reduction of the energy used

in pipeline operations will not only have a beneficial economical impact, but

also an environmental one: the more efficient the use of compressors stations

is, the less greenhouse emissions are dissipated in the atmosphere.

1.2 Pipeline throughput maximization

In the monobjective methodology, the fuel consumption in the compressor sta-

tions was minimized for a given gas mass flow delivery. However, for a NG

delivery company, the demand may vary, according to climatic conditions or

industrial requirements. So, an interesting study which arises is to determine,

for a given supply at the network entrance nodes, the minimal and maximal

network capacities, in terms of NG mass flow delivery and fuel consumption in

compressor stations.
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1.3 Injected hydrogen maximization

The general framework approach applied to natural gas was easily extended to

the case of Natural gas-Hydrogen mixture. The hydrogen properties are taken

into account in the model: for instance, the compressibility factor is calculated

from appropriate equations of state. Addition of hydrogen to natural gas de-

creases the pipeline throughput significantly. According to this study, an adap-

tation of the current networks of transmission of natural gas to the transport of

hydrogen seems to be possible, until an upper limit on the percentage of injected

hydrogen.

However, a major concern is now to include the conditions under which hy-

drogen can be added to natural gas with acceptable consequences for safety,

durability of the system, gas quality management and performance of the end-

user appliances, in the design and operation phase. In that context, the use of

multiobjective optimization techniques, as it was strongly demonstrated in this

work, still constitutes a natural way.

2 Optimization strategies: from monobjective to multiobjective

optimization

Nowadays, most of optimization studies in process engineering have to be per-

formed within a multiobjective framework, where some objectives related to

environmental impacts, security, etc, must be simultaneously optimized with

classical economic or technical criteria. In natural gas network optimization

problems, a lack of published works on multiobjective optimization can be ob-

served, and this thesis aims at filling this gap.

2.1 Monobjective methodology

In the monobjective case, where the fuel consumption at compression stations

has to be minimized, classical NLP solvers of the GAMS package and the MATLAB

toolbox are used. They give the same results, but GAMS is faster than MATLAB,

which is an interpreted language. The genetic algorithm was not implemented,

because it has been developed only for multiobjective optimization problems.
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2.2 Multiobjective methodology

Among the most commonly used approaches in multiobjective optimization -

scalarization and evolutionary procedures-, a deeply study was carried out.

Three specific algorithms: Weighted-sum, ε-constraint and Genetic algorithm

are detailed. For Weighted-sum and ε-constraint, some improvements concer-

ning the density of the Pareto fronts are carried out. Indeed, among the diversity

of optimization methods, the choice of the relevant technique for the treatment

of a given problem keeps being a delicate issue. A comparative study in the

biobjective case is on the basis of two mathematical problems, four process en-

gineering examples and the gas transportation network. So, due to the resolu-

tion time as well as the aspects related to the quantity and quality of results, a

genetic algorithm has been used.

Optimal solutions to one objective may contradict optimal solutions of the

other ones; therefore, a solution to the problem will entail mutual sacrifice

(trade-off) of objectives. The choice of the best solution among the ones dis-

played on the Pareto front is a typical Multiple Choice Decision Making problem.

In the biobjective case, the generic method TOPSIS is used, and in the triob-

jective study, TOPSIS on the one hand, and FUCA on the other hand, a new

procedure recently developed in the research group, are implemented.

3 Future works

3.1 Resolution time

Except for CPU time, the conclusions about resolution times are to be taken

carefully, because the only developer was the thesis author. To obtain reasonable

evaluations of the resolution times, it would have been necessary that several

developers with different backgrounds solve the test problems.

3.2 Flow directions in the network

A natural extension of the developed methodology is to treat more complex

systems. For instance, multi-supply multi-delivery transmission grids which may

be highly meshed. Hereby, a mixed integer nonlinear programming approach is

recommended with binary variables representing flow directions.
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3.3 Environmental impacts

Carbon dioxide emissions are studied a posteriori, after the problem solutions

are obtained. A better way would consist in introducing environmental impacts,

like for example GWP (Global Warming Potential), in the set of objectives of the

multiobjective optimization problem.

3.4 Uncertainty modelling

Another extension that could increase the realism of the model is to consider

uncertainty in the demand. The most common approaches treated in the dedi-

cated literature represent the demand uncertainty with a probabilistic frame by

means of Gaussian distributions. Yet, this assumption does not seem to be a

reliable representation of the reality, since in practice the parameters are inter-

dependent, leading to very hard computations of conditional probabilities.

Fuzzy concepts and arithmetic constitute an alternative to describe the im-

precise nature on product demands. This reinforces the interest of using ge-

netic algorithms, since similar problems were treated previously by extension of

a multiobjective genetic algorithm [Lasserre, 2006; Pérez Escobedo, 2010] to

fuzzy objectives.

3.5 Other evolutionary methods

Other evolutionary procedures, like particle swarms, colonies of social insects

(ants, bees) should be tested for solving multiobjective optimization problems

related to NGTN.
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L’optimisation de réseaux de transport de gaz naturel (RTGN) est typiquement

un problème multiobjectif où, par exemple, la consommation d’énergie dans

les stations de compression doit être minimisée et le débit de gaz livré max-

imisé. Toutefois, peu de travaux concernant l’optimisation multiobjectif de

RTGN sont décrits dans la littérature. L’objectif de cette étude est d’établir un

cadre général de formulation et de résolution des problèmes multiobjectif relat-

ifs aux RTGN. De plus, ce travail fournit des résultats utiles sur le plan scien-

tifique et de l’ingénierie, en déterminant les conditions optimales d’exploitation

d’un réseau de façon à optimiser certaines fonctions objectif. Plusieurs tech-

niques d’optimisation relevant des deux principales classes, scalarisation et évo-

lutionnaire, peuvent être mises en œuvre en ingénierie. Ce travail illustre leur

application sur plusieurs cas d’étude, couvrant un certain nombre de problèmes

de génie des procédés. L’objectif est de choisir, pour une modélisation donnée

d’un problème, la méthode numérique qui fournit une solution de qualité, en un

temps de résolution raisonnable. Bien sûr, les variables et les fonctions objectifs

diffèrent selon les problèmes mais, dans tous les cas, les variables sont continues

dans ce mémoire.

Cette étude comparative conduit à retenir une procédure stochastique,

plus précisément un algorithme génétique, dont l’adéquation au traitement de

problèmes multiobjectif est unanimement reconnue, bien que les problèmes

d’ingénierie puissent faire apparaître un nombre conséquent de contraintes, ce

qui peut pénaliser ce type de procédure. Des solveurs adéquats de la boîte à
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outils MATLAB (fmincon, fsolve), qui est reconnue comme un standard pour la

résolution de problèmes de Process Systems Engineering, sont utilisés.

Enfin, un exemple didactique de RTGN est considéré pour une optimisation

mono, bi et triobjectif. Un problème majeur soulevé par l’optimisation multi-

objectif est la détermination d’une bonne solution, parmi toutes celles figurant

sur un front de Pareto. Ainsi, après la phase d’optimisation, vient celle d’aide

à la décision, en présence de choix multiples. De par sa nature subjective, ce

problème peut être aussi complexe que l’optimisation multiobjectif elle-même.

Certains outils génériques d’aide à la décision sont mis en œuvre pour déter-

miner la meilleure solution sur un front de Pareto. La solution retenue sera celle

qui dégrade le moins possible les valeurs fournies par l’optimisation monobjec-

tif. Bien évidemment, le praticien industriel pourra prendre la décision finale,

en considérant de plus des aspects internes à sa compagnie.

1 Modélisation des réseaux de transport de gaz naturel

La modélisation des réseaux de transport de gaz naturel est effectuée en se

plaçant en régime stationnaire. Les principaux aspects intervenant dans cette

modélisation concernent :

• Les équations de bilan matière et de transport ;

• Les propriétés des compresseurs exprimées par des courbes caractéris-

tiques ;

• Des contraintes, telles que la pression opératoire maximale autorisée, la

vitesse critique, la vitesse d’érosion, etc.

Dans ce travail, on considère des stations de compression composées de

plusieurs compresseurs centrifuges en parallèle, dans la mesure où ce type de

station est très répandu actuellement dans l’industrie gazière. Définir un modèle

précis pour ce type de station est fondamental pour déterminer les modèles de

stations encore plus complexes. Il convient de remarquer que le modèle s’adapte

à différentes compositions du gaz naturel.

En complément de la modélisation mathématique, plusieurs fonctions objec-

tifs et problèmes d’optimisation peuvent être considérés, de façon à améliorer

les conditions opératoires du réseau. Trois types de problèmes ont été abordés :
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la minimisation de la consommation de fuel dans les stations de compression,

la maximisation du débit de gaz en sortie du réseau et la maximisation du pour-

centage d’hydrogène injecté dans le réseau.

La stratégie proposée peut aider l’exploitant du réseau de gaz à répondre aux

questions récurrentes suivantes :

• Connaissant la quantité de gaz à livrer à des points donnés du réseau,

comment dois-je utiliser les compresseurs dont je dispose pour réduire la

consommation d’énergie?

• En conséquent, comment dois-je fixer les pressions et les débits dans le

réseau?

Il convient de remarquer que les valeurs de certains paramètres clés utiles au

praticien (hauteur et efficacité isentropique) sont systématiquement reportées

après la phase d’optimisation. Les résultats obtenus montrent que l’optimisation

est un outil puissant pour déterminer les vitesses de rotation des compresseurs,

et conduit à des réductions significatives de la consommation de fuel. Enfin, ce

cadre de modélisation, qui conduit à l’optimisation des conditions opératoires

d’un réseau, peut également aider à anticiper des variations qui peuvent sur-

venir dans la composition du gaz, dans les débits de livraison et donc sur les

conditions de maintenance, et permet aussi de quantifier les émissions de CO2.

1.1 Minimisation de la consommation de fuel

Dans le cas monobjectif, où la consommation de fuel doit être minimisée,

lorsque les directions des flux sont spécifiées, les RTGN ne comportent que

des variables continues, associées aux pressions et aux débits dans les tuyaux.

Le problème est de type NLP (NonLinear Programming). L’utilisation des

courbes caractéristiques issues de la modélisation des compresseurs permet

de déterminer le domaine acceptable pour chaque compresseur, ce qui définit

l’espace de recherche dans lequel les conditions opératoires optimales seront

déterminées. Considérer la consommation de fuel est un point particulièrement

intéressant, car la réduction de la consommation d’énergie dans le réseau a

un impact non seulement économique, mais également environnemental :

une utilisation plus efficace des stations de compression s’accompagne d’une

diminution des rejets de gaz à effet de serre dans l’atmosphère.
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1.2 Maximisation du débit de livraison

Dans le cas monobjectif, la consommation de fuel dans les stations de compres-

sion est minimisée pour un débit de livraison de gaz naturel donné. Cependant,

pour une compagnie assurant la distribution de gaz, la demande peut varier

en fonction des conditions climatiques ou des besoins industriels. Ainsi, une

question intéressante est de déterminer, pour une capacité d’approvisionnement

donnée, les capacités minimale et maximale du réseau, en termes de livraison

de gaz et de consommation de fuel dans les stations de compression.

1.3 Maximisation du pourcentage d’hydrogène injecté dans le réseau

Le cadre général relatif au gaz naturel peut être étendu au cas de mélanges

de gaz naturel et d’hydrogène. Les propriétés de l’hydrogène peuvent aisément

être prises en compte par le modèle, par exemple le facteur de compressibilité

est calculé à partir d’équations d’état appropriées. L’addition d’hydrogène a pour

effet de réduire significativement le débit de sortie du réseau. Toutefois, cette

étude montre que l’adaptation de RTGN existants au transport d’hydrogène sem-

ble possible, jusqu’à une limite supérieure du pourcentage d’hydrogène injecté.

Cependant, la préoccupation majeure est de tenir compte des conditions sous

lesquelles l’hydrogène peut être ajouté au gaz naturel, avec des conséquences

acceptables pour la sécurité, la durabilité du réseau, la gestion de la qual-

ité du gaz, et les performances attendues par les utilisateurs. Dans ce con-

texte, les techniques d’optimisation multiobjectif constituent une voie naturelle

d’approche du problème.

2 Stratégies d’optimisation : du cas monobjectif à l’optimisation

multiobjectif

De nos jours, la plupart des études d’optimisation en génie des procédés doivent

être effectuées dans un cadre multiobjectif, où certains critères relatifs aux im-

pacts environnementaux, à la sécurité, etc., doivent être simultanément opti-

misés avec les critères techniques ou économiques classiques. Toutefois, en ce

qui concerne les RTGN, les travaux publiés en optimisation multiobjectif sont

rares, et cette thèse vise à combler cette déficience.
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2.1 Optimisation monobjectif

Dans le cas monobjectif, où la consommation de fuel dans les stations de com-

pression doit être minimisée, des solveurs NLP classiques de la bibliothèque

GAMS ou de la boîte à outils MATLAB sont utilisés. Les deux types de procé-

dures donnent les mêmes résultats, mais GAMS est plus rapide que MATLAB,

qui est un langage interprété. L’algorithme génétique n’a pas été mis en œuvre,

car il a été développé uniquement pour des applications multiobjectif.

2.2 Optimisation multiobjectif

Parmi les méthodes les plus couramment utilisées en optimisation multiobjec-

tif : scalarisation et techniques évolutionnaires, une étude a été menée en pro-

fondeur. Trois procédures spécifiques : somme pondérée, ε-contrainte et al-

gorithme génétique sont détaillées. Pour les méthodes de somme pondérée et

ε-contrainte, des améliorations concernant la densité du front de Pareto ont été

apportées. Toutefois, le choix de la procédure la plus appropriée au traitement

d’un problème particulier est une tâche délicate. Une étude comparative sur

des problèmes biobjectif a été menée sur la base de deux exemples mathéma-

tiques, quatre problèmes de génie des procédés et un RTGN. En raison du temps

de résolution, aussi bien que la qualité et la quantité des résultats fournis, un

algorithme génétique a été retenu.

Une bonne solution, selon l’un des critères, peut être très mauvaise vis-à-

vis des autres, donc le choix de la solution globale d’un problème multiobjectif

nécessite de faire des compromis. La sélection de la meilleure solution, parmi

toutes celles du front de Pareto, est typiquement un problème d’aide à la dé-

cision, en présence de choix multiples. Dans le cas de problèmes biobjectif, la

méthode générique TOPSIS est mise en œvre, et pour les problèmes triobjectif,

la méthode TOPSIS d’une part, et la procédure FUCA récemment développée

dans le groupe de recherche, sont implémentées.
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3 Perspectives

3.1 Temps de résolution

Mis à part les temps CPU, les conclusions au sujet des temps de résolution

doivent être prises avec beaucoup de précaution, parce que le seul développeur

a été l’auteur de la présente thèse. Pour avoir des estimations plus fiables des

temps de résolution, il faudrait faire intervenir plusieurs développeurs ayant des

formations différentes.

3.2 Directions des écoulements dans le réseau

Une extension naturelle de la méthodologie développée ici est de traiter des sys-

tèmes plus complexes, avec plusieurs points d’alimentation et plusieurs points

de livraison, et où la direction des écoulements n’est pas fixée a priori. Il s’agit

là d’un problème MINLP (Mixed-Integer NonLinear Programming) dans lequel les

variables binaires sont associées aux directions des flux.

3.3 Impacts environnementaux

Les émissions de dioxyde de carbone ont été étudiées a posteriori, après avoir

obtenu la solution du problème. Une procédure plus efficace pourrait consister à

introduire des impacts environnementaux, comme par exemple le GWP (Global

Warming Potential) dans l’ensemble des critères à optimiser.

3.4 Prise en compte des incertitudes

Une autre extension, qui pourrait conférer au modèle un caractère plus réa-

liste, est de considérer des incertitudes sur la demande. Une méthode que

l’on retrouve souvent dans la littérature est l’utilisation de lois de distribution

de probabilité, souvent gaussiennes, pour modéliser l’incertitude. Mais cette

approche est délicate à mettre en œvre dans la pratique, car de nombreux

paramètres sont interdépendants, conduisant à des calculs très complexes pour

les probabilités conditionnelles.

Les concepts et l’arithmétique flous constituent une alternative intéressante

pour aborder l’imprécision. Ce-ci renforce l’intérêt d’utiliser des algorithmes

génétiques, dans la mesure où des problèmes de ce type ont déjà été traités dans
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notre groupe de recherche, par extension d’algorithmes génétiques multiobjectif

au cas de critères flous [Lasserre, 2006; Pérez Escobedo, 2010].

3.5 Autres procédures évolutionnaires

Enfin, d’autres procédures évolutionnaires, telles que par exemple les essaims

de particules ou les colonies d’insectes sociaux, pourraient être testées, pour

traiter des problèmes relatifs aux RTGN.
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