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À Cindy
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Résumé

Le contexte général de cette thèse est la Simulation Numérique Directe des écoulements diphasiques
dilués anisothermes. Un accent particulier est mis sur la détermination précise de la dispersion
des particules et du transfert de chaleur entre la phase porteuse et dispersée. Cette dernière est
décrite à l’aide d’une approche Eulérienne aux moments: le Formalisme Eulérien Mésoscopique
(FEM) [41, 123], récemment étendu aux écoulements anisothermes [78]. Le principal objectif
de ce travail est de déterminer si ce formalisme est capable de prendre en compte de manière
précise l’inertie dynamique et thermique des particules dans un écoulement turbulent, et par-
ticulièrement dans une configuration avec un gradient moyen. Le code de calcul utilisé est
AVBP.

La simulation numérique d’un spray dilué avec une approche Eulerienne soulève des questions
supplémentaires sur les méthodes numériques et les modèles employés. Ainsi, les méthodes
numériques spécifiques aux écoulements diphasiques implémentées dans AVBP [69, 103, 109] ont
été testées et revisitées. L’objectif est de proposer une stratégie numérique précise et robuste
qui résiste aux forts gradients de fraction volumique de particule provoqués par la concentration
préférentielle [132], tout en limitant la diffusion numérique. Ces stratégies numériques sont
comparées sur une série de cas tests de complexité croissante et des diagnostics pertinents sont
proposés. Par exemple, les dissipations dues à la physique et au numérique sont extraites des
simulations et quantifiées. Le cas test du tourbillon en deux dimensions chargé en particules
est suggéré comme une configuration simple pour mettre en évidence l’impact de l’inertie des
particules sur leur champ de concentration et pour discriminer les stratégies numériques. Une
solution analytique est aussi proposée pour ce cas dans la limite des faibles nombres de Stokes.
Finalement, la stratégie numérique qui couple le schéma centré d’ordre élevé TTGC et une
technique de stabilisation, aussi appelée viscosité artificielle, est celle qui fournit les meilleurs
résultats en terme de précision et de robustesse. Les paramètres de viscosité artificielle (c’est-à-
dire les senseurs) doivent néanmoins être bien choisis.

Ensuite, la question des modèles nécessaires pour décrire correctement la dispersion des par-
ticules dans une configuration avec un gradient moyen est abordée. Pour ce faire, un des modèles
RUM (appelé AXISY-C), proposé par Masi [78] et implémenté dans AVBP par Sierra [120], est
validé avec succès dans deux configurations: un jet plan diphasique anisotherme 2D et 3D.
Contrairement aux anciens modèles RUM, les principales statistiques de la phase dispersée sont
désormais bien prédites au centre et aux bords du jet.

Finalement, l’impact de l’inertie thermique des particules sur leur température est étudié. Les
résultats montrent un effet important de cette inertie sur les statistiques mettant en évidence la
nécessité pour les approches numériques de prendre en compte ce phénomène. Ainsi, l’extension
du FEM aux écoulements anisothermes, c’est-à-dire les flux de chaleur RUM (notés RUM HF),
est implémentée dans AVBP. L’impact des RUM HF sur les statistiques de température des
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particules est ensuite évalué sur les configurations des jet 2D et 3D. Les champs Eulériens sont
comparés à des solutions Lagrangiennes de référence calculées par B. Leveugle au CORIA et par
E. Masi à l’IMFT pour les jets 2D et 3D, respectivement. Les résultats montrent que les RUM
HF améliorent la prédiction des fluctuations de température mésoscopique, et dans une moindre
mesure la température moyenne des particules en fonction de la configuration. Les statistiques
Lagrangiennes sont retrouvées lorsque les RUM HF sont pris en compte alors que les résultats
sont dégradés dans le cas contraire.

Mots clefs: Ecoulements diphasiques anisothermes, Formalisme Eulérien Mésoscopique,
Approche Euler/Euler, Transfert de chaleur, Simulation Numérique Directe
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Summary

This work addresses the Direct Numerical Simulation of non-isothermal turbulent flows laden
with solid particles in the dilute regime. The focus is set on the accurate prediction of heat trans-
fer between phases and of particles dispersion. The dispersed phase is described by an Eulerian
aproach: the Mesoscopic Eulerian Formalism [41, 123], recently extended to non-isothermal
flows [78]. The main objective of this work is to assess the ability of this formalism to accurately
account for both dynamic and thermal inertia of particles in turbulent sheared flows. The CFD
code used in this work is AVBP.

The numerical simulation of dilute sprays with an Eulerian approach calls for specific model-
ing and raises additional numerical issues. First, the numerical methods implemented in AVBP
for two-phase flows [69, 103, 109] were tested and revisited. The objective was to propose an
accurate and robust numerical strategy that withstands the steep gradients of particle volume
fraction due to preferential concentration [132] with a limited numerical diffusion. These numer-
ical strategies have been tested on a series of test cases of increasing complexity and relevant
diagnostics were proposed. In particular, the two-dimensional vortex laden with solid parti-
cles was suggested as a simple configuration to illustrate the effect of particle inertia on their
concentration profile and to test numerical strategies. An analytical solution was also derived
in the limit of small inertia. Moreover, dissipations due to numerics and to physical effects
were explicitly extracted and quantified. Eventually, the numerical strategy coupling the high-
order centered scheme TTGC with a stabilization technique –the so called artificial viscosity–
proved to be the most accurate and robust alternative in AVBP if an adequate set-up is used
(i.e. sensors). Then, the issue of the accurate prediction of particle dispersion in configurations
with a mean shear was adressed. One of the RUM model (denoted AXISY-C), proposed by
Masi [78] and implemented by Sierra [120], was successfully validated in a two-dimensional and
a three-dimensional non-isothermal jet laden with solid particles. Contrary to the former RUM
models [63, 103], the main statistics of the dispersed phase were recovered at both the center
and the edges of the jet. Finally, the impact of the thermal inertia of particles on their tempera-
ture statistics has been investigated. The results showed a strong dependency of these statistics
to thermal inertia, pinpointing the necessity of the numerical approaches to account for this
phenomenon. Therefore, the extension of the MEF to non isothermal conditions, i.e. the RUM
heat fluxes, has been implemented in AVBP. The impact of the RUM HF terms on the temper-
ature statistics was evaluated in both configurations of 2D and 3D jets. Eulerian solutions were
compared with Lagrangian reference computations carried out by B. Leveugle at CORIA and by
E. Masi at IMFT for the 2D and 3D jets, respectively. Results showed a strong positive impact
of the RUM HF on the fluctuations of mesoscopic temperature, and to a lesser extent on the
mean mesoscopic temperature depending of the configuration. Neglecting the RUM HF leads
to erroneous results whereas the Lagrangian statistics are recovered when they are accounted for.
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Nomenclature

Subscripts

f or ,f Fluid or carrier phase

p or ,p Particle or dispersed phase

ac Acoustic

ref Reference quantity

Shortcuts

2D two-dimensional

3D three-dimensional

AV Artificial Viscosity

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy

CM Colin Martinez (AV sensor)

DNS Direct Numerical Simulations

EE Euler/Euler

EE Eulerian/Eulerian

EL Euler/Lagrange

EL Eulerian/Lagrangian

FE Finite Element

FV Finite Volume

HF Heat Flux

HIT Homogeneous Isotropic Turbulence

LES Large Eddy Simulations

LHS Left Hand Side

LW Lax Wendroff

MEF Mesoscopic Eulerian Formalism

MKE Mesoscopic Kinetic Energy

MMEF Multi-fluid Mesoscopic Eulerian
Formalism

NDF Number Density Function

PDF Probability Density Function

PP Passot-Pouquet

PSI Positive Streamwise Invariant

PTC Particle Trajectory Crossing

QMOM Quadrature Method of Moments

RHS Right Hand Side

rms root mean square

RUE Random Uncorrelated Energy

RUM Random Uncorrelated Motion

S Sanjose (AV sensor)

T Total (AV sensor)

TKE Turbulent Kinetic Energy

TPF Two-Phase Flow

TTGC Two-step Taylor-Galerkin Colin

VKP von Kármán Pao

VOF Volume of Fluid
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NOMENCLATURE

Greek letters

αp Particle volume fraction

α particle-to-fluid heat capacity ratio

δFp,i ith component of the RUM heat flux

δΩp,i and δ∆p,j 3rd-order moment account-
ing for the correlations between the
RUM velocity and temperature

δθθ RUM temperature variance

δΘp,i ith component of the RUM heat flux

δθp RUM kinetic energy

δi,j Kronecker symbol

δqθ conditional-averaged RUM tempera-
ture variance

∆t Time step

ηk Kolmogorov scale

γ ratio of the specific heats of the gas at
constant pressure and constant vol-
ume

Γv vortex strength

λ
f
f

Longitudinal Taylor scale of the fluid

λ
g
f

Transversal Taylor scale of the fluid

λf Thermal conductivity of the fluid

µf dynamic viscosity of the fluid

νf kinematic viscosity of the fluid

ν CFL number

Ωj cell j

ρ density

τθ Thermal relaxation time of the fluid

τFθfp mean macroscopic thermal relaxation
time

τFfp mean macroscopic dynamic relax-
ation time

τf Dynamic relaxation time of the fluid

τp Dynamic relaxation time of the par-
ticles

θ width of the initial gradient

ε(2) 2nd-order AV coefficient

ε(4) 4th-order AV coefficient

εf Dissipation rate of the turbulent ki-
netic energy

ζextr AV sensor on the extrema

ζgrad AV sensor on the gradients

dp particle diameter

Non-dimensional numbers

Iturb Turbulence intensity

Re Reynolds number

ReK Reynolds number based on the Kol-
mogorov scale

Rep Particle Reynolds number

Ret Fluid turbulent Reynolds number

Reac acoustics Reynolds number

St Dynamic Stokes number

Stθ Themal Stokes number

We Weber number

M Mach number

Nu Nusselt number

Pr Prandtl number

Operators

⋅̃ mesoscopic quantity

Roman letters

D
(2)
j 2nd-order-AV residual at node j
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D
(4)
j 4nd-order-AV residual at node j

Nj Residual at node j

Re vector of the residual at cell Ke

S Vector of the source terms

U Vector of the conservative variables

u Velocity (vector)

x Position (vector)

Dj cells around node j

Hf Fluid realization

Hp Particle realization

q2θ particle temperature variance

c̃p particle sound speed

Dj,e Distribution matrix of Re at node j

F⃗C inviscid flux tensor

F⃗V viscous flux tensor

S⃗k normal at the vertex k

F̃p,i ith component of the mesoscopic heat
flux

Bmax maximal threshold (AV sensor)

Bmin minimal threshold (AV sensor)

CD Drag coefficient

c speed of sound

Cp,f Heat capacity at constant pressure of
the fluid

Cp,p Heat capacity at constant pressure of
the particles

gpp Particle concentration function

IIS Second invariant of Sp,ij

IIIS Third invariant of Sp,ij

L
f
f

Longitudinal integral length scale of
the fluid

L
g
f

Transverse integral length scale of the
fluid

le Most energetic length scale

L Length

np Particle number density

P Pressure

q2f Turbulent kinetic energy of the fluid

R
pp
θ

two-point spatial correlations of par-
ticle temperature

Rv Characteristic radius of a vortex

Sp,ij rate of strain tensor

S Square root of IIS

T Temperature

t Time

Ve Volume associated to the node e

Superscripts

⋆ or + normalized variable
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Introduction

The consumption of fossil fuel in transportation is a major issue for three main reasons: (1) in-
creasing cost of oil, (2) pollutant emissions and (3) impact on global climate through green-house
gases [74, 114, 139]. Many countries have adopted stringent regulations in order to reduce emis-
sion levels and that of the European commission –the Euro standards– is among the strictest in
the world. Consequently, the automotive industry is searching for novel ways to optimize com-
bustion and globally reduce fuel consumption. In most internal combustion engines, fuel is liquid.
Because the chemical reactions involved in the combustion process occur in the gaseous state, the
detailed understanding of atomization and evaporation processes is instrumental to the improve-
ment of the overall engine. Gaseous combustion is obviously a complex field (see [68, 94, 153]
and reference therein) but this complexity is further increased for two-phase flows because of
the gas/liquid interface and the coupling between evaporation, turbulent mixing and combus-
tion [100]. For example, combustion regimes (premixed and non-premixed) observed in gaseous
combustion become much more complex in two-phase flows where droplets can evaporate any-
where in the flow, leading to numerous combustion regimes [19, 68, 102]. Numerical simulations
have become standard tools to investigate these issues. Indeed, because of of the short time and
length scales associated with two-phase flow combustion, numerical simulations can complement
experimental investigations, even if it is still virtually impossible for a simulation to account for
all physical phenomena from the injection of the liquid into the engine to the flame. The present
work lies in this framework and focuses specifically on the accurate prediction of the droplet
dispersion and temperature –which are of paramount importance for their evaporation– using
Direct Numerical Simulations (DNS) of dilute sprays in non-isothermal conditions. This work
is part of a project granted by the French National Agency denoted SIGLE1 which aims at
improving the numerical methods to simulate sprays in internal combustion engines.

The injection of a liquid jet may be roughly separated in three steps that are function of the
liquid volume fraction [44], as shown in Fig. 1. First, close to the injector, the liquid volume
fraction is very high and because inertial forces are usually much larger than surface tension,
the liquid jet undergoes atomization. Large scale structures of pure liquid may be observed:
ligaments, clusters of large droplets, etc. This process is usually referred to as primary break-
up. Due to the interaction with the surrounding turbulent carrier phase, these structures may
further break up into smaller droplets. Downstream of the dense primary atomization zone, the
mass loading and volume fraction of the liquid become sufficiently small to consider that the
liquid phase is indeed composed by a large number of small droplets: it is the dilute regime.
Moreover, surface tension effects are usually larger than inertial effects in this region, so that

1from the original French name: SImulations aux Grandes échelles des jets de carburants LiquidEs dans les
moteurs à combustion interne.
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Figure 1: Phenomenology of the atomization of a spray. Excerpted from a presentation of M.
Herrmann during the Summer Program of the CTR 2008, Stanford.

droplets are often assumed to be spherical. Since the topology of the liquid phase is drastically
different between the dense and the dilute regimes, specific numerical methods are required.
First, methods that track the interface of the liquid phase are well adapted for the dense region,
such as surface-marker [141], Level-set [29, 49, 136] or Volume-of-Fluid (VOF) [47, 99] methods.
These methods can be used to describe the dilute regime, but tracking explicitly the interface of a
large number of small spherical droplets would lead to an extreme amount of computational time
and seems inadequate. Therefore, the dilute regime may be better described by a Lagrangian
description of the individual droplets or parcels [7, 42] or by an Eulerian description of the spray
as a continuum field. Because the characteristics of the dilute spray region depend on the details
of the atomization processes, the specification of the boundary condition is often crucial for the
accuracy of numerical simulations. They can be simply based on first principles, experimental
data [128] or numerical simulations [140]. Note that recent advances have been made to simulate
the intermediate zone, where a large number of scales are present. These multi-scale methods
rely on a coupling between interface tracking methods and Lagrangian description of particles
[50, 140]. Nevertheless, the computational cost of such numerical simulations, describing the
entire atomization of a jet from the largest to the smallest scale, is extreme, even relying on
massively parallel computing. Therefore, realistic industrial configurations of jet injections usu-
ally assume that the spray is already atomized and composed of spherical droplets. The present
work lies in this last framework and focuses on the numerical simulation of the dilute region.

Because of their inertia, the droplets may not exactly follow the fluid resulting in a phe-
nomenon called preferential concentration [82, 132]: a cloud of particle embedded in a turbulent
flow will preferentially collect in low vorticity and high shear regions. The relevant parameter
to describe this behavior is the Stokes number (St), defined as the ratio between the particle
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response time (τp) and a characteristic time of the fluid (τf ). When τf is based on the Kol-
mogorov scale, the preferential concentration is maximum for St ∼ 1 [148], pinpointing that this
process is controlled by the small-scale structures of the turbulence [9]. This phenomenon leads
to the creation of very steep gradients of particle volume fraction. In other words, a droplet may
be incompressible but a cloud of droplets behaves as a highly compressible phase. Moreover,
it may impact significantly other important processes such as inter-particle collisions [135, 149]
or evaporation [100]. An other consequence of the inertia is particle trajectory crossing (PTC).
At large St, droplets are weakly influenced by the surrounding carrier phase and have ballistic
trajectories that may cross. This process is enhanced by the polydisperse nature of many sprays
resulting in a wide range of particle inertia. PTC may result in collisions but the low particle
volume fraction of dilute spray usually allows to neglect them.

The Lagrangian tracking of particles naturally describes PTC and particle preferential con-
centration. Particles are usually assumed as pointwise and one of the main issues for Lagrangian
solvers is the correct integration of dispersed/carrier phase quantities at the position of parti-
cles. This method is very accurate and is considered as the reference to validate new models or
closure terms in other approaches. However, the Lagrangian approach may become cumbersome
because its computational cost is roughly proportional to the number of particles in the domain.
Though the increasing raw power of the computational clusters is a good point for this approach,
its parallelization is not trivial [42] and remains an issue. Contrary to the Lagrangian method,
the Eulerian approach [71, 123] treats the dispersed phase as a continuum and represents it
through a limited number of variables such as the particle volume fraction, velocity or tempera-
ture. The advantage of the Eulerian formulation is that its computational cost does not depend
of the number of particles and is also very easy to parallelize through domain decomposition.
As far as the computational cost is concerned, the Eulerian approach is thus a good candidate
to carry out numerical simulations of industrial configurations. Nevertheless, it usually requires
efforts in two fields:

• Modeling: models for Eulerian approaches are difficult to develop, especially for multi-size
sprays.

• Numerics: the equations for Eulerian models correspond roughly to the equations of highly
compressible gases. They exhibit sharp fronts, shocks and their resolution in a simulation
is a problem in itself.

As far as modeling is concerned, the first issue is to build a solid background on which the
equations for the liquid phase can be derived: Eulerian equations of the dispersed phase may
be obtained by several methods. One may spatially average the dispersed phase over a scale of
the order of the Kolmogorov scale [32, 33]. Another method, referred to as Eulerian equilibrium
approach, solves the particle volume fraction and derives the particle velocity and temperature
from the underlying fluid [37, 38]. Other methods use a probabilistic formulation of the dis-
persed phase by analogy with the kinetic theory of gases [98, 152]. A number density function
(NDF) of the spray is introduced, which satisfies the Williams-Botzmann equation. The explicit
resolution of this equation –referred to as “full spray equation method” in [90]– is impracticable
at a reasonable cost due to the large number of variables. An alternative solution –often referred
to as “moment approach”– is to write a set of governing equations for selected moments of the
spray NDF. In this framework, recent advances have tackled the two aspects of polydispersion
and PTC. For example, de Chaisemartin et al. [28] extended the multi-fluid method [46, 70],
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which consists in discretizing the spray NDF into droplet size intervals, to evaporating sprays.
In its simplest form, the multi-fluid approach assumes a mono-kinetic spray NDF conditioned
by the droplet size, so that it is unable to account for PTC: singularities arise when particle
trajectories cross. Nevertheless, these singularities can be controlled by using adequate numeri-
cal schemes [13] –often referred to as kinetic schemes– to preserve the positivity of the particle
volume fraction. The inability of the multi-fluid method to account for PTC and its high com-
putational cost when a large number of size intervals is used, motivated the use of high-order
moment methods. Following the Quadrature Method of Moments (QMOM) method [76], Kah
and collaborators [61, 62] proposed two approaches: the Eulerian Multi Size Moment (EMSM)
and the Eulerian Multi Velocity Moment (EMVM), which respectively and successfully address
the two issues of spray polydispersion and PTC.

One aspect of two-phase flows has been studied only in a limited way and has significant
effects for reacting two phase flows: the heat transfer between phases and the variance of particle
temperature. Indeed, the heat transfer between fuel droplets and the surrounding gas may have
a strong impact on the local evaporation rate as evaporation is a non-linear phenomenon. The
resulting fluctuations of local equivalence ratio are known to have an impact on ignition, flame
propagation or even combustion instabilities [66, 75, 88]. An accurate description of heat trans-
fer to the dispersed phase is therefore necessary. And yet, very few studies have directly tackled
the issue of particle temperature dispersion, which is mainly due to the lack of experimental
data of non-isothermal two-phase flows [155]. Recent experimental techniques –such as rainbow
thermometry– seem promising but further improvements are required [144]. An alternative path
is to use DNS: a few studies of non-isothermal academic configurations, coupled with lagrangian
tracking of particles, have been carried out. Berlemont et al. [10] studied the influence of tem-
perature fluctuations on droplet evaporation in isotropic and homogeneous turbulence. They
pointed out that temperature fluctuations must be taken into account when turbulent evapora-
tion is considered, since the PDF of particle diameter broadens significantly when temperature
fluctuations increase. The mechanism of two-phase heat and turbulent transport by particles was
investigated in academic configurations such as decaying isotropic turbulence or homogeneous
shear flow with an imposed mean temperature gradient [24, 57, 58, 113, 119, 151]. The impact
of various parameters such as the particle dynamical response time τp, the Prandtl number, Pr,
the Reynolds number, Re and mass-loading ratio, rml, on the statistics of particle temperature
was investigated but the thermal relaxation time that combines all these parameters was not
explicitly introduced. As a matter of fact, the notion of thermal inertia [23, 78] –the analog of
dynamic inertia for particle dispersion– is still a novel notion.

Consequently, we chose the Mesoscopic Eulerian Formalism (MEF) [41] for its ability to
reproduce local and instantaneous behavior of particles embedded in a turbulent flow. This
formalism belongs to the family of Eulerian moment approach. It is based on the idea that the
Lagrangian particle velocity may be divided into two contributions (cf. Fig. 2): (1) an Eulerian
particle velocity field which is spatially correlated and shared by all particles and (2) a spatially-
uncorrelated component proper to each particle which stems from inertial effects, referred to as
the Random Uncorrelated Motion (RUM). The fundamental difference between the MEF and
the other moment approaches lies in the statistical operator used to derive the equations for the
moments. It is defined as the ensemble average over a large number of particle realizations for
only one fluid realization. The ensemble-averaging of the spray NDF leads to additional terms
in the set of governing equations related to the RUM: the RUM velocity-stress tensor, which
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Figure 2: Sketch illustrating the splitting of the Lagrangian particle velocity (up(t)) into two
contributions: (1) an Eulerian particle velocity field (ũp(xp(t), t)) which is spatially correlated
and shared by all particles and (2) a spatially-uncorrelated component (δup(t)) proper to each
particle which stems from inertial effects, referred to as Random Uncorrelated Motion.

must be closed. The MEF has been implemented in the CFD code used in this work (AVBP2).
Several important advances on the MEF have been achieved in previous studies:

• Closure of the MEF set of equations. The closure of the RUM velocity stress tensor
is an important issue in the MEF. Simonin et al. [123] and Kaufmann [63] suggested
a “2+1-equation” approach in which the RUM velocity stress tensor is closed using a
viscosity assumption. This approach was a priori and a posteriori tested in homogeneous
and Isotropic turbulence (HIT) [63, 83, 103] and showed a good ability to capture the
main statistics of the dispersed phase. However, it failed in configurations with a mean
shear [55, 103]. Recently, Masi [78] proposed and a priori tested new models for the
RUM velocity stress tensor able to cope with mean velocity gradients. The a posteriori
validation of these models is carried out by Sierra [120].

• Spray polydispersion. Vié [145] coupled the Multi-fluid method and the MEF –resulting
in the Multi-fluid mesoscopic Eulerian Formalism (MMEF)– to treat evaporating polydis-
persed sprays. The MMEF inherits of the high computational cost related to the Multi-
fluid methods but efficiently tackles the spray polydispersion.

• Extension of the MEF to non-isothermal flows. Masi [78] extended the MEF to
non-isothermal flows, splitting the particle temperature into two contributions, similarly
to the particle velocity. Masi also proposed closure models for the resulting additional
term arising in the energy equation, referred to as RUM heat fluxes, and a priori tested
them with the NTMIX code [14].

However, several issues remain:

• Numerics. Because of inertia, particles tend to gather in high shear and low vortic-
ity regions [132], resulting in very steep gradients of particle volume fraction. Since this
quantity has to remain positive, specific numerics must be used. Two solutions have been
proposed in the context of AVBP: (1) the use of high-order schemes coupled with stabi-
lization techniques [103, 112, 145] and (2) the implementation of more adapted schemes
like the PSI scheme [69]. Nevertheless, additional work must be done to characterize and

2http://pantar.cerfacs.fr/4-26334-The-AVBP-code.php

8



INTRODUCTION

refine these numerical strategies. Indeed, they often induce significant numerical diffusion
that deteriorates the prediction of particle volume fraction.

• Modeling of the particle dispersion in mean-sheared configurations. Most spray
injection systems involve a mean gradient of the velocity field. It is thus of paramount
importance that the closure of the RUM velocity stress tensor [103, 78] –referred to as
“RUM model” in this work– be valid for such configurations. It should be pointed out
that heat transfer can not be accurately described if the dynamics of the spray is not
properly captured.

• Modeling of the heat transfer. The thermal inertia of particles yields an uncorrelated
contribution in the heat transfer analog to the RUM for the dynamics. Without proper
modeling, this may result in a strong bias in the prediction of mean and fluctuations of
particle temperature. This additional contribution is called the RUM heat flux.

The objective of the present work is then threefold. First, a robust and accurate numerical
strategy must be provided in the context of AVBP that withstands steep particle-volume frac-
tion gradients with a limited numerical diffusion. Then, the issue of the RUM modeling in a
configuration with a mean shear will be addressed. One of the new RUM models proposed
by Masi [78], and implemented by Sierra [120], will be tested. Once the particle dispersion is
sufficiently well described, the final objective of this thesis is the a posteriori study of the MEF
extended to non-isothermal flows with the implementation of the RUM heat fluxes in AVBP.
The objective is to assess the ability of the MEF to accurately account for both dynamic and
thermal inertia of particles in turbulent flows with a mean shear.

The manuscript is organized as follows:

• Part I presents the general equations, models and numerical strategies used in this work
for the numerical simulation of a spray of particles. Chapter 1 details the derivation
of the set of moments with the MEF extended to non isothermal flows. Since several
unclosed terms appear in the equations, a few models are proposed and their limitations
highlighted. The first chapter ends with a brief description of a priori tests carried out
by Masi [78]: the existence of an uncorrelated temperature of particles is shown and the
impact of the thermal inertia of particle over their temperature variance is studied. Along
with a brief presentation of the structure of AVBP, two numerical strategies are proposed
in Chapter 2 to deal with specificities of two-phase flow simulations with an Eulerian
approach. A procedure is also suggested to decrease the cost of such approaches. Finally,
the various sensors of the stabilization technique –the so-called artificial viscosity (AV)–
employed in AVBP are described.

• The numerical strategies proposed in the first part are tested in Part II over three aca-
demic configurations of increasing complexity (cf. Tab. 1). In Chapter 3, the one-
dimensional convection of a crenel of particle volume-fraction simply illustrates the two
issues of numerical instabilities and the transport of steep gradients. It allows a straightfor-
ward evaluation of the two numerical strategies. Then, the simulation of a two-dimensional
vortex laden with solid particles is performed in Chapter 4. This configuration allows to
simply illustrate the impact of the dynamic inertia of the particles on their concentration
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Chap. 3 1D convection of a crenel of
particle volume fraction

Chap. 4 2D vortex laden with solid
particles

Chap. 5 Homogeneous Isotropic Tur-
bulence laden with solid par-
ticles

Table 1: Non-isothermal academic test cases carried out in Part II, summarized by their number
of chapter, typical field of particle volume fraction and name

profile and assess the numerical strategies. Moreover, an analytical solution of the parti-
cle volume fraction at the center of the vortex is proposed in the limit of small St. The
issue of mesh resolution is also addressed with the discrete budget of the particle volume
fraction. Finally, the configuration of a particle-laden homogeneous isotropic turbulence
(HIT) is carried out in Chapter 5. The impact of the convective scheme and AV sensor
and the effect of the mesh resolution on the Eulerian simulations are evaluated using two
diagnostics: (1) a measurement of preferential concentration and a comparison with La-
grangian results and (2) a discrete balance of the kinetic energy of the dispersed phase.
This diagnostic allows to separate explicitly and quantify the dissipations due numerics
and due to physics. Part II finally discriminates one numerical strategy that provides both
accuracy and robustness.

• Part III consists in the a posteriori application of the MEF extended to non-isothermal
flows, conducted with the numerical strategy defined in the second part. First, the influ-
ence of the thermal inertia of the particles is investigated in Chapter 6 with the two-
dimensional configuration of a particle-laden non-isothermal jet (cf. Tab. 2). The impact
of the RUM model on the dynamics and temperature statistics of the dispersed phase and
the coupling with the RUM heat fluxes is investigated for several thermal inertia. Only
mesoscopic statistics are compared since uncorrelated variables were not available in this
configuration. Eulerian computations are compared to Lagrangian simulations performed
by B. Leveugle at CORIA. Finally, the configuration of a three-dimensional non-isothermal
jet laden with solid particles is carried out in Chapter 7. This last configuration allows
a thorough evaluation of the MEF since both mesoscopic and uncorrelated quantities are
available. Therefore, the effect of the RUM model and RUM heat fluxes can be investi-
gated with the comparison of high-order moments. In this last configuration, the reference
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Chap. 6 2D non-isothermal jet laden
with solid particles

Chap. 7 3D non-isothermal jet laden
with solid particles

Table 2: Non-isothermal application test cases carried out in Part III, summarized by their
number of chapter, typical field of particle volume fraction and name

Lagrangian database has been computed by Masi [78] at IMFT.

Note that Part II and Part III may be read independently.
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Chapter 1

A local Eulerian-Eulerian approach
for non-isothermal flows
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The numerical code used in this work is AVBP1 and has been jointly developed by CER-
FACS and IFP Energies Nouvelles. The main domain of application has long been the Large
Eddy Simulations (LES) of turbulent reacting gaseous flows in complex geometries [11, 116].
However, two-phase flow modeling has been recently considered in several consecutive stud-
ies [59, 63, 77, 103, 112, 117, 145]. The present work does not focus on the carrier phase. The
reader is referred to the AVBP handbook [15] and to the references cited therein. The governing
equations for the fluid are briefly summarized in App. A.

1http://pantar.cerfacs.fr/4-26334-The-AVBP-code.php
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CHAPTER 1. A LOCAL EULERIAN-EULERIAN APPROACH FOR NON-ISOTHERMAL FLOWS

This chapter focuses on the description of the dispersed phase. After a brief overview of
the existing numerical approaches devoted to the simulation of the dispersed phase in Sec. 1.1,
the Mesoscopic Eulerian Formalism [41] is chosen due to its ability to reproduce local and
instantaneous features of particles embedded in a turbulent flow. Lagrangian simulations are
used in this work as the reference to validate the MEF. The main governing equations are
described in Sec. 1.2. Then, the MEF is detailed in Sec. 1.3, with an emphasis on its recent
extension to non-isothermal flows [78]. As a first step toward LES, this work considers the
transport equations for Direct Numerical Simulations (DNS).

1.1 Choice of the approach for the dispersed phase

The presence of a dispersed phase increases dramatically the complexity of the flow description.
While the fluid is generally solved as a continuum with an Eulerian point of view, numerous
approaches exist to describe the dispersed phase. None are perfect and they must be considered
as complementary. All have their advantages and limitations, depending on the physical charac-
teristics of the configuration. By way of example, Fig. 1.1 presents the range of applicability of
these approaches, which is separated in terms of length-scale and timescale, following the work of
Elghobashi [34]. This regime map is non exhaustive but illustrates three major key parameters

Figure 1.1: Regime map for turbulent particle-laden turbulent flows. Their range of applicability
is separated in term of length-scale and timescale. Φ denotes the volume fraction occupied by
the dispersed phase, τp, τk and τξ are the characteristic time of the particles and of the smallest
scale of the fluid in DNS and LES, respectively. Excerpted from [8].

in multiphase flows: (1) the particle volume fraction, which determines the coupling between
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1.2. LAGRANGIAN APPROACH

the carrier and dispersed phase (2) the value of the particle diameters in comparison with the
smallest resolved scale and (3) the particle inertia, specified by the time scales of the carrier
and dispersed phase. The present work focuses specifically in the point (3), i.e. the effect of the
particle dynamic and thermal inertia on their statistics. First, the main assumptions relative to
the dispersed phase, made in the present work are summarized bellow:

H1 - The dispersed phase is diluted (the particle volume fraction αp < 0.1%) and the fluid
volume fraction is 1 − αp ≃ 1.

H2 - Particles are spherical, rigid and non-rotating.

H3 - Particles are smaller than the smallest turbulent fluid scale.

H4 - The density ratio between the fluid and the particles is large ρp/ρf ≫ 1.

H5 - There is neither evaporation nor radiative transfer. Only conductive heat transfer is con-
sidered.

H6 - The temperature is uniform inside the particles.

H7 - The spray is monodisperse.

H8 - Gravity is negligible.

These assumptions simplify considerably the study of the dispersed phase. For example, H1
implies that the dispersed phase has no effect on the carrier phase, neither on the momentum
nor on the energy equations (one-way coupling). Furthermore, we assume that particle-particle
interactions are negligible (no collisions). Then, Fig. 1.1 is a good starting point to choose the
numerical approach to simulate the dispersed phase.

The dusty gas approach, where particles follow perfectly the fluid, is rejected as it cannot
capture important phenomena of particle dispersion such as preferential concentration [132]. The
Eulerian Equilibrium approach [37, 39], recently extended to non-isothermal flows [38] would be a
good candidate. The major advantage is its low computational cost. Indeed, the particle velocity
is expressed as an expansion in terms of the fluid velocity and only the particle number density is
transported. The accuracy of this approach was evaluated in forced isotropic turbulence [96] and
showed satisfactorily results at small Stokes number regarding the preferential concentration.
However, this approach fails for Stokes number - based on the Kolmogorov length scale -close
or superior to unity. Then, this approach is not considered in the present work.

An other Eulerian approach, called the Mesoscopic Eulerian Formalism (MEF) extends some-
what the restriction on particle Stokes number [41]. Furthermore, Masi [78] a priori investigated
the issue of particle thermal inertia in turbulent flows. Thus, the MEF was retained for this
work, which can be considered as an a posteriori study of this formalism in the context of non-
isothermal flows. This formalism is detailed in Sec. 1.3. The Lagrangian approach is briefly
described in Sec. 1.2 since it is used as the reference to validate the MEF approach.

1.2 Lagrangian approach

In the Lagrangian framework, particles are tracked individually, integrating the Newton equa-
tions of motion and energy. This approach brought some insight on important aspects of tur-
bulent dispersed-phase flows, like the preferential concentration of particles [132, 36], the effect
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CHAPTER 1. A LOCAL EULERIAN-EULERIAN APPROACH FOR NON-ISOTHERMAL FLOWS

of turbulence on interphase coupling [148] or turbulence modulation due to the presence of
particles [12], among others. This approach is also used to propose closure models for Eule-
rian formulations [41, 83]. Eulerian quantities are obtained from the Lagrangian simulations by
projection on the Eulerian grid. A sufficiently large number of particles is required to provide
converged statistics. In their article, Kaufmann et al. [65] recommend at least 10 particles and a
well-chosen projector to circumvent the intrinsic filtering and statistical error of the projection
method. These “true” Eulerian quantities serve as a reference in this work to validate the FEM.

The different forces acting on a single particle (drag, added-mass, history, lift, among others)
have been summarized in previous work [41, 63, 103]. As the particle density is much larger than
that of the fluid (H4), only the drag force acts on the particle motion. Following [81, 43, 4], the
governing equations of the motion and temperature of each particles read:

dxp

dt
= up (1.1)

dup

dt
= − 1

τp
(up − uf@p) (1.2)

dTp

dt
= − 1

τθ
(Tp − Tf@p), (1.3)

where xp, up and Tp denote the particle position, velocity and temperature, uf@p and Tf@p

the undisturbed fluid velocity and temperature at the particle centre location. The dynamic
and thermal particle response times, τp and τθ are defined in Sec. 1.2.1 (cf. Eqs. 1.4 and 1.5,
respectively).

1.2.1 Particle characteristic times

The general expressions of the microscopic dynamic and thermal relaxation times read:

τp = 4ρpdp

3ρfCD ∣∣up − uf@p∣∣ (1.4)

τθ =
Prρpd

2
pCp,p

6NuµfCp,f
, (1.5)

where dp and ρp stand for the particle diameter and density, ρf and µf the density and dynamic
viscosity of the fluid and Cp,p and Cp,f denote the particle and fluid heat capacities.

These definitions account for non-linearities of external forces and heat exchange where CD
and Nu are the corrected drag coefficient [115] and corrected Nusselt number [97],

CD = 24

Rep
(1 + 0.15Re2/3

p ) (1.6)

Nu = 2 + 0.55Re1/2
p Pr1/3. (1.7)

Both CD and Nu depend on the particle Reynolds number Rep, defined as:
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Rep = dp∣∣up − uf@p∣∣
νf

, (1.8)

where νf is the kinematic viscosity of the fluid.
In the Stokes’ regime (Rep ≪ 1), the two characteristic times can be simplified as:

τp =
ρpd

2
p

18µf
(1.9)

τθ =
Prρpd

2
pCp,p

12µfCp,f
= 3

2
Prατp, (1.10)

where α = Cp,p/Cp,f is the particle-to-fluid heat capacity ratio. Note that τθ depends linearly on
τp. In other words, the particle dynamic inertia directly impacts the thermal inertia. This issue
is tackled in Sec. 1.3.6.

Dynamic inertia of particles is characterized by the dynamic Stokes number2, defined as the
ratio of the particle and fluid characteristic time:

St = τp
τf
. (1.11)

The definition of a fluid characteristic time τf can be somewhat ambiguous depending on the
configuration [5]. In the present work, τf will be defined for each configuration. One may then
define the thermal Stokes number as

Stθ = τθ
τf
, (1.12)

Here, we assume that the fluid characteristic time of motion and heat exchange are the same [23].

1.3 The Mesoscopic Eulerian Formalism - extension to non-

isothermal flows

Large particle inertia is a major issue for Eulerian formalisms. Unity Stokes number defines a
threshold from where the Eulerian approaches based on the monokinetic assumption no longer
capture the accurate motion of particles. The MEF [41, 121] extends somewhat this limitation.
The cornerstone of this formalism is the splitting of the particle velocity in two components (cf.
Fig. 2): (1) a mesoscopic velocity, shared by all the particles and spatially correlated and (2) an
uncorrelated component, called the Random Uncorrelated Motion (RUM) velocity3.

up,i(t) = ũp,i(xp(t), t) + δup,i(t), (1.13)

where ũp,i stands for the mesoscopic velocity and δup,i the RUM velocity. From hereafter,
mesoscopic and RUM attributes will refer to the correlated and uncorrelated part, respectively

2In the literature, the Stokes number often refers to the dynamic Stokes number. The issue of particle thermal
inertia is recent. In this thesis, the “dynamic” attribute will sometimes be dropped when there is no ambiguity
with the thermal Stokes number.

3The RUM has been previously denoted the Quasi-Brownian motion [41], due to the random character of the
RUM. This denomination is not used in the present work.
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denoted by a ⋅̃ and a δ⋅. Note that the definition in Eq. 1.13 is Lagrangian since the particle is
followed along its trajectory xp(t).

1.3.1 Methodology to obtain the MEF set of equations

Fig. 1.2 presents the different steps to derive the equations for the MEF. It encapsulates the
work of Février [40] and Simonin [122] but also includes the recent extension of the MEF to
non-isothermal flows by Masi [78]. Actually, this methodology can be applied to any kind of
physics (evaporation, combustion, etc..) as it is an analogy of the kinetic theory of non-uniform
gases [17, 98]. This section summarizes previous works [69, 78, 103].

1. The first step is the choice of an appropriate refined-grid PDF W
(k)
p [98], which depends

on the physical properties (i.e. phase space) taken into account. In this work, W
(k)
p is

built from a combination of Dirac functions δ:

W (k)
p (x,cp, ξp, t) = δ(x − x(k)p )δ(cp −u(k)p )δ(ξp − T (k)p ). (1.14)

The function W
(k)
p equals unity if a particle k has its center of mass at position xp = x,

with a velocity up = cp and a temperature Tp = ξp, and zero otherwise. Conceptually,
there are no limitations of the particle properties of the refined-grid PDF. For example,
the particle-mass phase space must be considered when evaporation is dealt with [80].

2. The novelty of the MEF is the specific ensemble averaging of W
(k)
p . For a given fluid

realization Hf , the one-particle conditional PDF f̃
(1)
p is defined as the ensemble average

over a large number Np of particle realizations Hp, slightly differing in initial conditions:

f̃ (1)p (x,cp, ξp, t;Hf) = lim
Np→∞

[ 1

Np∑Np

Np∑
k=1

W (k)
p (x,cp, ξp, t;Hp∣Hf)], (1.15)

where Np is the (fixed) number of particles in any realization. This procedure requires
that Hf was not modified by the particle realizations, fulfilled by the assumption of diluted
dispersed phase (H1, Sec. 1.1).

3. By analogy with the kinetic theory of non-uniform gases [17, 98], the transport equation
of the one-point conditional PDF is obtained with a Boltzmann-like equation:

∂f̃
(1)
p

∂t
+ ∂

∂xj
[cp,j f̃ (1)p ] = − ∂

∂cp,j
[dup,j
dt

f̃ (1)p ] − ∂

∂ξp
[dTp
dt

f̃ (1)p ] + (∂f̃
(1)
p

∂t
)
coll

(1.16)

The first and second term of the RHS stand for the effect of external forces and heat
transfer acting on the particle, respectively. The last term accounts for particle interaction
(collisions, coalescence, break-up, etc...).

4. The Enskog equation is obtained by multiplying Eq. 1.16 by a test function ψ(cp, ξp) and
then applying a mesoscopic average operator.
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Appropriate refined-grid PDF (1.3.1 − 1)

Conditional PDF (1.3.1 − 2)

Transport equation of the PDF (1.3.1 − 3)

Enskog equation of ψ specific to the problem (1.3.1 − 4)

Unclosed mesoscopic set of equation (1.3.2)

Closed mesoscopic set of equations (1.3.3)

?

Specific ensemble-average

?

Boltzmann equation

?

∗ψ+statistical average + physical assumptions

?

replace ψ by the appropriate quantity + integrate over the phase space

?

MODELS and/or transport equation

Figure 1.2: General methodology to derive the moment approach using the MEF. Labels at the
right correspond to the section number where more details can be found.

The mesoscopic average of any function ψ(cp, ξp) yields the mesoscopic quantity g̃p(x, t)
by integration over the phase space:

g̃p(x, t) = 1

ñp(x, t) ∫ ψ(cp, ξp)f̃ (1)p (x,cp, ξp, t∣Hf)dcpdξp, (1.17)
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where ñp is the particle number density:

ñp = ∫ f̃ (1)p (x,cp, ξp, t∣Hf)dcpdξp. (1.18)

The ensemble average operator is hereafter denoted

⟨gp(t)⟩c = g̃p(x, t) = ⟨gp(t)∣xp(t) = x;Hf ⟩, (1.19)

and represents the ensemble average of gp(t) over a large number of particle realization
for a given fluid realization Hf .
The uncorrelated component of the quantity gp(x, t) is defined as

δgp(t) = gp(t) − g̃p(x(t), t) (1.20)

Applying this operator on Eq. 1.16 yields the Enskog equation for a quantity ψ:

∂

∂t
ñp⟨ψ⟩c + ∂

∂xj
ñp⟨up,jψ⟩c = ñp⟨dup,j

dt

∂ψ

∂cp,j
⟩
c

+ ñp⟨dTp
dt

∂ψ

∂ξp
⟩
c

+C(ñpψ) (1.21)

The term C(ñpψ) stands for the modification of ñpψ due to particle collisions. The first
two RHS terms are closed using the same hypothesis than with Lagrangian equations in
Sec. 1.2. In our work, only the drag force and heat transfer are taken into account. Finally,
the Enskog equation under the hypothesis of Sec.1.1 reduces to:

∂

∂t
ñp⟨ψ⟩c + ∂

∂xj
ñp⟨up,jψ⟩c = − ñp

τ̃p
⟨(up − uf@p) ∂ψ

∂cp,j
⟩
c

− ñp
τ̃θ
⟨(Tp − Tf@p) ∂ψ

∂ξp
⟩
c

, (1.22)

where τ̃p and τ̃θ are the mesoscopic thermal and dynamic relaxation times, accounting for
non linearities and external forces.

τ̃p = ⟨ 1

τp
⟩−1
c

(1.23)

τ̃θ = ⟨ 1

τθ
⟩−1
c
. (1.24)

In this study, most of the simulations are carried out in regime of Stokes where

τ̃p ≃ τp (1.25)

τ̃θ ≃ τθ. (1.26)

Consequently, the notation τp or τθ will be often used in the manuscript.

1.3.2 Moments of the mesoscopic variables and governing equation

Definitions

Simonin [122] and Février et al. [41] defined the first moments of the PDF, relative to the particle
motion:
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• The particle number density ñp, already defined in Eq. 1.18.

• The mesoscopic particle velocity:

ũp,j(x, t) = ⟨up,j(t)⟩c = 1

ñp
∫ cp,j f̃

(1)
p (x,cp, ξp, t∣Hf)dcpdξp (1.27)

• The RUM velocity stress tensor:

δRp,ij(x, t) = ⟨δup,i(t)δup,j(t)⟩c = 1

ñp
∫ [cp,i − ũp,i][cp,j − ũp,j]f̃ (1)p (x,cp, ξp, t∣Hf)dcpdξp

(1.28)

• The RUM kinetic energy4 is defined as half the trace of δRp,ij :

δθp(x, t) = 1

2
δRp,kk = 1

2
⟨δup,k(t)δup,k(t)⟩c (1.29)

• The RUM velocity third order moment:

δQp,ijk(x, t) = ⟨δup,i(t)δup,j(t)δup,k(t)⟩c (1.30)

Masi [78] wrote the moments of the PDF relative to the particle temperature:

• The mesoscopic particle temperature:

T̃p(x, t) = ⟨Tp(t)⟩c = 1

ñp
∫ ξpf̃

(1)
p (x,cp, ξp, t∣Hf)dcpdξp (1.31)

• The RUM heat flux:

δΘp,i(x, t) = ⟨δup,i(t)δTp(t)⟩c (1.32)

• The RUM temperature variance:

δθθ(x, t) = 1

2
⟨δTp(t)δTp(t)⟩c (1.33)

• The third order moments accounting for the correlations between the RUM velocity and
temperature:

δΩp,i(x, t) = ⟨δup,i(t)δTp(t)δTp(t)⟩c (1.34)

δ∆p,ij(x, t) = ⟨δup,i(t)δup,j(t)δTp(t)⟩c (1.35)

The transport equations of the mesoscopic moments are obtained by replacing ψ in Eq. 1.22 by
the appropriate function and integrating over the phase space. The details of the derivation are
not presented and can be found in [122].

4Also called Random Uncorrelated Energy (RUE) [63, 103]
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Transport equations

The transport equations of the particle number density, momentum, RUM stress tensor, particle
mesoscopic temperature and RUM heat fluxes read:

∂ñp

∂t
+ ∂

∂xj
ñpũp,i = 0 (1.36)

∂

∂t
ñpũp,i + ∂

∂xj
ñpũp,iũp,j = − ñp

τ̃p
(ũp,i − uf,i) − ∂

∂xj
ñpδRp,ij (1.37)

∂

∂t
ñpδRp,ij + ∂

∂xj
ñpδRp,ij ũp,j = −2 ñp

τ̃p
δRp,ij − ñpδRp,kj ∂ũp,i

∂xk
⋯

⋯ −ñpδRp,ik ∂ũp,j
∂xk

− ∂

∂xk
ñpδQp,ijk (1.38)

∂

∂t
ñpCp,pT̃p + ∂

∂xj
ñpCp,pũp,jT̃p = − ñpCp,p

τ̃θ
(T̃p − Tf) − ∂

∂xj
ñpCp,pδΘp,j (1.39)

∂

∂t
ñpCp,pδΘp,i + ∂

∂xj
ñpCp,pũp,jδΘp,i = −ñpCp,p( 1

τ̃p
+ 1

τ̃θ
)δΘp,i − ñpCp,pδΘp,j

∂ũp,i

∂xj

−ñpCp,pδRp,ij ∂T̃p
∂xj
− ∂

∂xj
ñpCp,pδ∆p,ij , (1.40)

The first terms of the RHS of Eq. 1.37 and Eq. 1.39 represent the inter-phase coupling by
drag and heat exchange, respectively. These terms are present in any Eulerian formalism of
non-isothermal two-phase flows. The originality of the MEF lies in the presence of second-order
terms in Eq. 1.37 and Eq. 1.39, highlighted by boxed frames. They represent the transport of the
mesoscopic velocity and temperature by the RUM velocity stress tensor and RUM heat fluxes
(RUM-HF), respectively (cf. Eqs. 1.38 and 1.40). The novelty of this work is the transport
of the particle temperature by the RUM-HF, and most of all its possible impact on particle
temperature statistics.

1.3.3 Closure of the equations

The system of equations Eq. 1.36-1.40 is not closed. Every moment of nth-order depends of the
n+1th order moment. Then, assumptions must be made to close this set of equations.

Momentum equations

The modeling of the RUM velocity stress tensor has been the center of attention of many consec-
utive studies since Février proposed the MEF [41]. It can be considered as the major bottleneck
of the MEF.

A “2+1-equations” approach was suggested [123, 65] in which the RUM velocity stress tensor
is splitted into a deviatoric and a spherical part, accounting for the RUM kinetic energy:

δRp,ij = δR⋆p,ij²
modeled

+2

3
δθp°

solved

δij , (1.41)
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where the deviatoric part δR⋆p,ij is modeled while a transport equation is solved for the RUM
kinetic energy. The evolution equation for δθp is obtained by taking half the trace of Eq. 1.38:

∂

∂t
ñpδθp + ∂

∂xj
ñpδθpũp,j = −2 ñp

τ̃p
δθp − ñpδRp,ij ∂ũp,i

∂xj
− 1

2

∂

∂xj
δQp,iij . (1.42)

The spherical and deviatoric parts of δRp,ij are analogous to the pressure and viscous contribu-
tion in the kinetic theory of gases, respectively.

The last term to model in Eq. 1.42 is the third-order RUM velocity correlation. Kauf-
mann [63] proposed to model δQp,iij by analogy with the Fick’s law for the fluid temperature:

1

2
δQp,iij = −κRUM

∂

∂xj
δθp, (1.43)

where κRUM is a diffusive coefficient [121] modeled in analogy with :

κRUM = 10

27
τ̃pδθp. (1.44)

The transport equation of the RUM kinetic energy is then closed. Therefore, the remaining
modeling effort are for the deviatoric part of the RUM velocity stress tensor δR⋆p,ij. Hereafter,
the closure equation of δR⋆p,ij will be referred as “RUM model”

In this work, two RUM models will be used, denoted VISCO and AXISY-C, proposed by
[63, 78] and implemented in AVBP by Sierra [120]. The VISCO model is one of those proposed
by Simonin et al. [123] and Kaufmann et al. [65], summarized by Riber [103]. It is a viscosity
model where δR⋆p,ij and the rate of strain tensor S⋆p,ij are linearly related by an eddy-viscosity:

δR⋆p,ij = −2νRUMS
⋆
p,ij (1.45)

S⋆p,ij = 1

2
[∂ũp,i
∂xj

+ ∂ũp,j
∂xi

− 2

3

∂ũp,k

∂xk
δij], (1.46)

where the particle uncorrelated viscosity νRUM uses the particle relaxation time as a typical
timescale:

νRUM = τ̃pδθp
3

. (1.47)

This model assumes the equilibrium and light anistropy of δRp,ij. It was a priori [83] and a
posteriori [63, 103] tested in a particle-laden HIT, providing satisfactory results at moderate
Stokes numbers (up to StK ∼ 2.2). However, it failed in mean-sheared turbulent particle-laden
configurations [55, 103]. Unfortunately, the majority of industrial applications involve mean-
sheared flows. In this form, the RUM model limits the MEF in this type of configuration.

The AXISY-C model has been proposed by Masi [78, 79]. In this model,

δR⋆p,ij = sign(IIIs)(2
3
)1/22δθpS⋆p,ij

S
, (1.48)

where S =√IIs and IIIs are the square root of the second invariant IIs and the third invariant of
S⋆p,ij, respectively. To put it in a nutshell, AXISY-C and VISCO are both viscosity models with a
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linear relationship between δR⋆p,ij and the rate-of-strain tensor. They differ by their characteristic
time scale, the assumption made on the structure of δR⋆p,ij and their ability to reproduce reverse
energy exchange between the RUM and mesoscopic motion. Their main characteristics are
recalled in Tab. 1.1. The next section summarizes some of the main observations done by Masi,

VISCO AXISY-C

Definition δR⋆p,ij = −2

3
τ̃pδθpS

⋆
p,ij δR⋆p,ij = sign(IIIs)(2

3
)1/22δθpS⋆p,ij

S
Time scale τ̃p S−1

Assumed structure of δR⋆p,ij
Light anisotropy Axisymmetry
Local equilibrium One-component state

Relation between δR⋆p,ij and S⋆p,ij Linear Linear

Reverse energy exchange No Yes

Table 1.1: Main characteristics of VISCO and AXISY-C RUM models

from an a priori study [78] of the RUM model in an academic configuration with a mean-
shear [143].

RUM models classification

Masi [78] raised three important issues:

1. The typical timescale used by the RUM models. One fundamental assumption
of VISCO is that the particle motion adjusts quickly to any change due to the local
strain. This assumption is broken when the ratio of the particle relaxation time and the
mesoscopic-shear timescale is large, τ̃pS ≫ 1. Then, the use of τ̃p as the typical timescale,
like in VISCO, is controversial. The magnitude of the rate-of-strain tensor, seems more
relevant and “inertial-free” than τ̃p for RUM models .

2. The type of relationship between δR⋆p,ij and the rate of strain tensor (linear/non-
linear). The study of the structure and alignment of δR⋆p,ij and S⋆p,ij in mean-sheared
configuration yields the following conclusions:

• the tensors δR⋆p,ij and S⋆p,ij behave in axisymmetric contraction and expansion, re-
spectively, independently of the particle inertia. In other words, the RUM agitation
develops in one preferred direction while it is damped in the other.

• δR⋆p,ij behaves as in one-component limit state.

• δR⋆p,ij and S⋆p,ij are not aligned.

Thus, the assumption of light anisotropy of δR⋆p,ij made for VISCO is questionable. Masi
proposed a new viscosity-like model based on these observations, which accounts for the
axisymmetry and preferred direction of δR⋆p,ij , denoted AXISY. The non-alignment of
δR⋆p,ij and S⋆p,ij makes the hypothesis of linear relationship questionable.
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3. The ability to reproduce reverse energy exchange. One key feature of the MEF
is the local exchange of kinetic energy between the mesoscopic and the RUM motion.
This exchange occurs in both ways, from mesoscopic to RUM and vice-versa, acting as a
dissipation/production term in the equations of mesoscopic and RUM kinetic energy [78].
The ability to reproduce the reverse energy exchange is thus of paramount importance to
have good levels of mean dissipation rate. The viscosity-like models VISCO and AXISY
showed their inability to reproduce the reverse energy exchange. Masi remarked that the
sign of the third invariant of the rate-of-strain tensor, sign(IIIS), could be used to account

for this reverse energy exchange. Thus, sign(IIIS) is used as a “correction” for AXISY,
denoted “AXISY-C”.

More complex models, like the non-linear models, may be better to account for the non-
alignement between δR⋆p,ij and S⋆p,ij. However, only VISCO and AXISY-C are used in this
work, the focus being on thermal dispersion of the particles. The idea is to have a sufficiently
good dynamics of the particles in order to study the impact of the RUM-HF term. Please refer
to [78] and [120] for the a priori and a posteriori study of the non-linerar RUM models, respec-
tively.

With this, Eq. 1.37 is closed so the last contribution to model is the RUM-heat fluxes δΘp,i

in Eq. 1.39.

Temperature equation

As a first approach, it was decided to use as little additional modeling as possible for δΘp,i. Con-
sequently, we opted for a resolution of the conservation equations for δΘp,i derived by Masi [78],
Eq. 1.40 is recalled here for the sake of clarity:

∂

∂t
ñpCp,pδΘp,i + ∂

∂xj
ñpCp,pũp,jδΘp,i = −ñpCp,p( 1

τ̃p
+ 1

τ̃θ
)δΘp,i − ñpCp,pδΘp,j

∂ũp,i

∂xj

−ñpCp,pδRp,ij ∂T̃p
∂xj
− ∂

∂xj
ñpCp,pδ∆p,ij. (1.49)

The first RHS term of Eq. 1.49 represents the dissipation of the RUM-HF by particle inertia.
The second and third RHS terms represent the production by the mesoscopic velocity and tem-
perature gradients. The fourth term accounts for the diffusion by third-order moments. In the
present work, δ∆p,ij is neglected. This last assumption is solely based on pragmatism as we do
not yet have models available for this term.

Note that the RUM velocity stress tensor appears in the third RHS term of Eq. 1.49. Thus,
the RUM model has an impact on the RUM-HF.

1.3.4 Final set of equations

Therefore, the final set of equations used in this work is:
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∂ñp

∂t
+ ∂

∂xj
ñpũp,i = 0 (1.50)

∂

∂t
ñpũp,i + ∂

∂xj
ñpũp,iũp,j = − ñp

τ̃p
(ũp,i − uf,i) − ∂

∂xj
ñpδR

⋆
p,ij

−2

3

∂

∂xi
ñpδθp (1.51)

∂

∂t
ñpδθp + ∂

∂xj
ñpδθpũp,j = −2 ñp

τ̃p
δθp − ñpδRp,ij ∂ũp,i

∂xj

−1

2

∂

∂xj
δQp,iij (1.52)

∂

∂t
ñpCp,pT̃p + ∂

∂xj
ñpCp,pũp,jT̃p = − ñpCp,p

τ̃θ
(T̃p − Tf) − ∂

∂xj
ñpCp,pδΘp,j (1.53)

∂

∂t
ñpCp,pδΘp,i + ∂

∂xj
ñpCp,pũp,jδΘp,i = −ñpCp,p( 1

τ̃p
+ 1

τ̃θ
)δΘp,i − ñpCp,pδΘp,j

∂ũp,i

∂xj

−ñpCp,pδRp,ij ∂T̃p
∂xj

(1.54)

As for the fluid (cf. App. A), this set of equations can be written in compact form

∂Up

∂t
+ ∇⃗ ⋅ F⃗(Up) = Sp, (1.55)

where Up = (ñp, ñpũp,i, ñpδθp, ñpCp,pT̃p, ñpCp,pδΘp,i)T is the vector of conservative variables of

the dispersed phase. F⃗ and Sp are the flux and source terms vector of the dispersed phase. The
flux vector can be decomposed into a convective and a viscous component:

F⃗(Up) = F⃗Cp (Up) + F⃗Cp (Up, ∇⃗Up), (1.56)

where F⃗Cp corresponds to the convective flux (only depends of Up) and F⃗Vp denotes the viscous
fluxes (depends also of ∇⃗Up).

These two flux vectors read

F⃗Cp =
⎛⎜⎜⎜⎜⎜⎜⎝

ñpũp,i
ñpũp,iũp,j + 2

3 ñpδθpδij
ñpδθpũp,j

ñpCp,pT̃pũp,j
ñpCp,pδΘp,iũp,j

⎞⎟⎟⎟⎟⎟⎟⎠
(1.57)

F⃗Vp =
⎛⎜⎜⎜⎜⎜⎜⎝

0
ñpδR

⋆
p,ij

1
2δQp,iij

ñpCp,pδΘp,j

0

⎞⎟⎟⎟⎟⎟⎟⎠
. (1.58)
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Moreover, the source terms vector reads

Sp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

− ñp

τ̃p
(ũp,i − uf,i)

−2 ñp

τ̃p
δθp − ñpδRp,ij ∂ũp,i

∂xj− ñpCp,p

τ̃θ
(T̃p − Tf)

−ñpCp,p[( 1
τ̃p
+ 1
τ̃θ
)δΘp,i + δΘp,j

∂ũp,i

∂xj
+ δRp,ij ∂T̃p

∂xj
]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.59)

The previous sections focused on the mathematical description and closure of the dispersed
phase governing equations. Sec. 1.3.5 gives some elements on the new concept of correlated and
uncorrelated particle temperature.

1.3.5 Existence of a correlated and uncorrelated particle temperature

Following the same methodology than Février [40] for particle velocity, Masi studied the Eulerian
two-point correlations of particle temperature in an academic configuration. The configuration
is a particle-laden Homogeneous Isotropic Turbulence (HIT) with a constant mean temperature
gradient in the normal y-direction [23]. For computational cost concern, the turbulence is frozen
after that the stationary state has been reached.

The two-point spatial correlation of particle temperature, obtained from projected meso-
scopic fields, reads:

R
pp
θ
= ⟨ñp(x, t)T̃ ′p(x, t)ñp(x + r, t)T̃ ′p(x + r, t)⟩⟨ñp(x, t)ñp(x + r, t)⟩ , (1.60)

where ñp and T̃ ′p are the mesoscopic number density and temperature fluctuations.

Fig. 1.3 shows the large variation of Rpp
θ

when the Stθ increases. For very small Stθ, this
correlation decreases exponentially and is very close to its fluid counterpart. When the Stθ
increases, the ratio R

pp
θ
/2q2θ departs from unity when r tends to zero. That means that two

neighboring particles have very different temperature, indicating an uncorrelated component of
Tp. Moreover, the continuous shape of Rpp

θ
, apart from this initial peculiarity, suggests that

particles share a common temperature.

That is the reason why Masi proposes to split the particle temperature into two contributions,
one in terms of the Eulerian mesoscopic field, spatially correlated and shared by all the particles
and a residual contribution, spatially uncorrelated:

Tp(t) = T̃p(xp(t), t) + δTp(t), (1.61)

where T̃p denotes the mesoscopic temperature and δTp the RUM temperature5. It is the analog
of the particle velocity decomposition in mesoscopic and RUM components, Eq. 1.13.

5It is called RUM temperature and not Random Uncorrelated Temperature (RUT) because any uncorrelated
variable is denoted by the “RUM” prefix.
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Figure 1.3: Influence of particle thermal inertia on the two-point particle temperature correla-
tions. The dash-dotted line represents the fluid. Symbols: Increasing particle thermal inertia,
from ○ : Stθ = 0.05 to ∗ : Stθ = 4.28. q2θ stands for the total particle temperature variance, r for
the radial distance between the particles and Lθ for the thermal integral length scale. Excerpted
from [78].

As mentioned in Sec. 1.3.1, these quantities are obtained by an ensemble average over a large
number of particle realizations for a single fluid realization Hf . The ensemble-average operator
complies with the following properties:

• The ensemble average of the RUM contribution is zero: ⟨δTp∣xp(t) = x;Hf ⟩ = 0.

• The RUM and the mesoscopic contributions are spatially uncorrelated: ⟨T̃pδTp∣xp(t) =
x;Hf ⟩ = 0.

• The RUM contribution and the fluid are spatially uncorrelated: ⟨Tf δTp∣xp(t) = x;Hf ⟩ = 0.

Using these properties, high-order quantities like the particle temperature variance split into the
sum of a mesoscopic and RUM part:

q2θ = q̃2θ + δq2θ , (1.62)

where q2θ , q̃
2
θ and δq2θ denote the total, mean mesoscopic and mean RUM particle temperature

variance, respectively. These quantities are defined as follows:
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q2θ(x, t) = 1

2
⟨T ′p(x, t)T ′p(x, t)∣xp(t) = x⟩ (1.63)

q̃2θ(x, t) = 1

2

< ñp(x, t)T̃ ′p(x, t)T̃ ′p(x, t) >
< ñp(x, t) > (1.64)

δq2θ(x, t) = < ñp(x, t)δθθ(x, t) >
< ñp(x, t) > . (1.65)

Spatial averages can be easily obtained in this academic configuration by a volume average over
the computational domain. Therefore, the impact of particle inertia is studied in Sec. 1.3.6 using
the mean temperature variances.

1.3.6 Effect of particle inertia on temperature variances

The computation of q2θ and δq2θ gives a macroscopic understanding of how particle inertia impacts
the particle temperature. This analysis done by Masi is similar to what has been done by Février
to understand the effect of dynamic inertia on particle motion. However, the effect of inertia on
temperature is more complex than on motion. Indeed, there are two relaxation times instead of
one, τp and τθ, and they are coupled (Eq. 1.10). The impact of these two degrees of freedom is

Figure 1.4: Effect of particle inertia on mean mesoscopic and RUM temperature variances as

a function of the inverse of the thermal and harmonic Stokes number, S̃t
−1 ∼ TLθ,f@p/τ̃ and

Stθ
−1 ∼ TLθ,f@p/τθ. Case A (●): (St = cst and Stθ varies), Case B (⋆): (St varies and Stθ = cst),
: simulation of reference (St ∼ Stθ). From [78].

separately characterized in Fig. 1.4(a):

• Case A: Effect of Stθ (St = cst). As expected, the mesoscopic contribution increases when
Stθ increases (up to 1/3 for St ∼ Stθ ∼ 1.5). In other words, two neighboring particles have
closer temperature when they are “thermaly lighter”.
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• Case B: Effect of St (Stθ = cst). Interestingly, the St has a strong impact on temperature
statistics. The mesoscopic contribution increases when St decreases.

Masi [78] concludes that “ [...] the thermal correlation between two particles may increase when
the correlation in motion increases. Indeed, a decrease of the dynamic inertia involves a decrease
of the separation velocity between two particles which is represented by the RUM velocity. So, two
separate particles will stay longer time together leading to an increase of the thermal correlation
between them with a maximum corresponding to the correlation between one particle and the
fluid.”

Moreover, Masi suggests that the relevant time scale is the harmonic mean between the dy-
namic and thermal response times τ̃ = 2(τpτθ)/(τp + τθ). Using τ̃ as the reference timescale, case
A and B results flock together, as shown in Fig. 1.4(b).

After a brief summary of the assumptions done in the present work about the dispersed
phase, the MEF has been chosen due to its ability to reproduce the local and instantaneous
properties of particles embedded in a fully non-homogeneous turbulent flow. The methodology
to derive the MEF has been briefly detailed, leading to a first unclosed set of equations. Then,
the different models used in the present work have been described, leading to the closed set of
equations used in this work. Finally, first a priori results performed by Masi [78] on an academic
configuration are recalled and point out the necessity to take into account the uncorrelated
part of the temperature when particles are thermally inertial. If not, the particle temperature
dispersion will be badly predicted as some part of the temperature variance will not be resolved.
This justifies the extension of the MEF to non-isothermal flows, where the particle uncorrelated
temperature is taken into account (i.e. the RUM heat fluxes). In other words, the last RHS
term of Eq. 1.39 is implemented in AVBP.
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Numerical strategies
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The objective of this chapter is to present the numerical backbone of AVBP and the numer-
ical methods used in this work. The idea is to understand the pros and cons of these methods
in the context of two-phase flow simulations within an Eulerian framework.

AVBP was initially created to simulate stationary external flows of aerodynamics type config-
urations. Since the mid-nineties, it has been intensively developed for the modeling of unsteady
turbulent gaseous flows (reactive and non-reactive) for mainly internal flow configurations in
complex geometries (combustion chambers). It is only years later that two-phase flow modeling
was tackled with the implementation of the MEF [63, 103] and more recently with a Lagrangian
solver [42]. As mentioned in Chap. 1, the dispersed phase is solved thanks to an Eulerian ap-
proach in the present work. The carrier and dispersed phase set of equations reduce to the same
compact form (Eq. A.4 for the fluid and Eq. 1.55 for the particles), so that the same numerical
methods can be used for both phases as a first step. It is what has been done in AVBP, where
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most of two-phase flow numerical strategies were adapted from those used for the fluid.

However, the physics of the dispersed and carrier phases is different. The specificities of
the dispersed-phase and their implications on the numerical strategies are presented in Sec. 2.1.
Then, the different numerical approaches used in AVBP are briefly described in Sec.2.2. For
mode details, the reader is referred to the AVBP handbook [15] or the work of Lamarque [69].
Finally, a special focus is made on the stabilization procedure of centered schemes in Sec. 2.3,
the so-called artificial viscosity (AV), which is the numerical bottleneck of this work.

2.1 Specificities of the dispersed phase

2.1.1 Compressibility effects

As mentioned in Chap. 1, particles in a turbulent flow tend to preferentially accumulate in low-
vorticity and high-shear regions [132]. This preferential concentration is maximal around unity
Stokes number when the characteristic time scale of the fluid is based on the smallest scale of
the turbulence. The Stokes number based on the Kolmogorov scale is denoted StK . Physical
features of the dispersed phase can be partially explained by the study of a simplified set of the
MEF equations. Kaufmann [63] considers a one-dimensional, monodisperse case without source
terms nor coupling (no drag force) and without uncorrelated temperature. In these conditions,
the MEF set of equations reads

∂ñp

∂t
+ ∂

∂x
ñpũp = 0 (2.1)

∂

∂t
ñpũp + ∂

∂x
ñpũpũp = −2

3

∂

∂x
ñpδθp (2.2)

∂

∂t
ñpδθp + ∂

∂x
ñpδθpũp = −2

3
ñpδθp

∂ũp

∂x
. (2.3)

By analogy with the equations of dilute gases, Kaufmann [63] interprets the RHS term of Eq. 2.2
and Eq. 2.3 as a pressure term, the so called RUM pressure p̃RUM = 2/3ñpδθp. Moreover, a
particle sound-speed is defined as

c̃p =
√

10

9
δθp. (2.4)

The eigenvalues of the system 2.1-2.3 are (ũp + c̃p, c̃p, ũp − c̃p)T . They are all different, so the
simplified system is hyperbolic like that of the fluid. Thus, similar convective schemes can be
used for both phases.

If the drag force is now accounted for, Kaufmann [63] proposes a physical explanation of the
particle clusters depending on the particle inertia and c̃p. In the case of small Stokes numbers,
particles follow closely the carrier and δθp is small, so that the mesoscopic velocity is much
larger than the particle sound speed ∣ũp∣ ≫ c̃p. The dispersed phase may be compared to a
supersonic flow where shock-like structures appear. At very small StK , the drag force prevents
the compressibility effects [63]. At large StK , the mesoscopic kinetic energy (MKE) is smaller
than the RUM kinetic energy. In this case, the RUM pressure counteracts the accumulation of
particles. Finally, maximal preferential concentration occurs when StK ∼ 1, when neither drag
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nor RUM pressure are sufficient to redistribute the clusters of particles.

In other words, even if the droplets themselves are incompressible, a cloud of droplets acts
as a highly compressible phase. Therefore, two-phase flows may be harder to simulate than
subsonic gaseous flows and require specific numerical methods [54].

2.1.2 Crossing trajectories

The set of equations of the MEF has been derived assuming that the refined-grid PDF, defined
in Eq. 1.14, remains a delta function in the velocity phase centered at up. This hypothesis is
violated when two particles cross. That causes a singularity, called a δ-shock [27]. It corresponds
to a discontinuity in velocity and leads to Dirac delta function concentrations in density (all the
mass density concentrates in one cell). This phenomenon is emphasized in Fig. 2.1 with the

Figure 2.1: Mass density for the simulation of two crossing jets using the stantard multi-fluid
approach (excerpted from [27]). When the two jets cross, the assumption that the PDF remains
a delta function centered at a mean velocity is not fulfilled and a δ-shock occurs.

simulation of two crossing jets. When they cross, the assumed “Gaussian-shape” of the PDF is
not fulfilled and a δ-shock occurs. It results in a infinitely thin jet with a velocity equal to the
averaged velocity of the two jets. Note that recently, a high-order moment formalism has been
introduced for PTC [16] in the LES framework.

At the intersection of the jets, particle velocities are spatially uncorrelated. In the MEF, it
causes a large production of RUM kinetic energy at the crossing of two jets. Again, numerical
methods should be sufficiently robust to handle this high number density gradient and the stiff
source terms associated to the RUM stress tensor, Eq. 1.59.

2.2 Numerical structure of AVBP with the MEF

The precedent section underscored that numerical methods are a cornerstone in two-phase flow
simulations. This section exposes the numerical structure of AVBP and how each components
has been adapted to two-phase flow calculations.
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As mentioned in Sec 1.3.4, the final set of MEF equations (Eq. 1.50-1.54) can be written in
compact form

∂Up

∂t
+ ∇⃗ ⋅ F⃗(Up) = Sp, (2.5)

where the flux tensor is decomposed in two components F⃗ = F⃗Cp (Up)+ F⃗Vp (U, ∇⃗Up). Using this
decomposition and Eq. 1.55, the numerical backbone of AVBP may be represented as in Fig. 2.2.
Remind that all the numerical approaches in AVBP lie in the context of high fidelity unsteady

∂U
∂t°

Temporal advancement

+ ∇⃗ ⋅ F⃗C(U)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Convective scheme

+∇⃗ ⋅ F⃗V (U, ∇⃗U)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Diffusive terms

= S®
Source terms

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cell-vertex approach

Figure 2.2: Numerical backbone of AVBP. Each box represents an important piece of the code,
from the volume finite cell-vertex approach to the different terms of the transport equations in
compact form.

simulations (DNS or LES). Consequently, the smallest resolved scales of the turbulence should
not be dissipated nor deformed due to numerical errors. This is ensured by specific numerical
schemes, as it will be discussed later. Moreover, the issue of complex geometries means complex
meshes with a large number of nodes. Therefore, AVBP was built (1) as an unstructured solver
to handle any type of grid cells so that meshes can be refined locally and (2) to work on massively
parallel architectures. Each box of Fig. 2.2 represent an important piece of the code and is now
discussed in details.

2.2.1 Cell-vertex approach

AVBP uses a finite volume (FV) approach to solve the fluid transport equations and more
specifically the cell-vertex method [89, 110, 111]. The originality of this approach is to store the
discrete value of the conservative variables at the nodes while the transport equations are solved
in the control volume defined by the mesh cell. The cell-vertex approach shares “its roots”
with the family of the residual distribution schemes and has close relations with Galerkin finite
element (FE) methods (See [69] and reference therein.).

This method was shown to be more accurate than the cell-centered or vertex-centered FV
approaches and more robust to grid deformations [85, 107, 137]. Moreover, this method is well
adapted to the parallelism due to a compact stencil. The resolution of the transport equation
in the cell-vertex approach can be decomposed in two steps, depicted in Fig. 2.3.

• gather operation: The residual (or fluctuation) Re is computed at the center of each
element Ke [111].

Re = 1

Ve
∫
Ke

∇⃗ ⋅ F⃗hdV (2.6)

Applying the Green-Gauss theorem to Eq. 2.6, the residuals are defined as the integral of
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(a) Gather (b) Scatter

Figure 2.3: Diagram of the two steps of the cell-vertex approach (excerpted from [86]). Gather
(Fig. 2.3(a)): the residuals are solved at the center of the control volume. Scatter (Fig. 2.3(b)):
the residuals are scattered back to the nodes.

the fluxes through the surface of the element Ke

Re = 1

Ve
∮
∂Ke

F⃗h ⋅ n⃗dS, (2.7)

where F⃗h is the numerical approximation of the flux F⃗ and Ve is the volume of the cell
Ke.

Then, the integral of 2.7 is numerically calculated using a trapezoid method. After having
defined the normal associated with the vertex k [69], S⃗k, the residuals read

Re = − 1

dVe
∑
k∈Ke

F⃗k ⋅ S⃗k, (2.8)

where d is the number of space dimensions and F⃗k = F⃗h(x⃗k) = F⃗(Uk) is the the flux
approximation at vertex k.

• scatter operation: The residuals, defined for each element, are distributed to the nodes
using the matrix Dj,e. The residual at node j is then defined as

Nj = 1

Vj
∑
e∈Dj

Dj,eVeRe, (2.9)

where Vj = ∑e∈Dj
Ve/nev is the measure of Dj , defined as the set of cells adjacent to j.

The scatter operation is the most computationally consuming operation in AVBP, repre-
senting 10% to 20% of the total CPU time. This is due to the communication and transfer
at the interfaces between processors as well as between the cell groups.
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After the gather-scatter operation, the system of the dispersed phase equations, written in
compact form in Eq. 1.55, may be written in the semi-discrete form:

dUp

dt
= −Nj +Sj , (2.10)

where Sj is the source term value at the node j. How to compute Sj will be tackled in Sec. 2.2.2.

2.2.2 Source terms

As detailed by Lamarque [69], the source terms can be computed in two different ways in AVBP,
either using a finite volume vertex-centered or a finite element approach following the cell-vertex
method.

• vertex-centered source terms: Source terms are directly computed at the nodes

Sj = ∫
Cj

SdV = SjVj, (2.11)

where Vj is the volume at note j. This formulation is easy to implement as the source
terms are calculated with the variable already stored at the nodes. However, it may be
less accurate and source terms may vary strongly between neighboring nodes, triggering
spurious oscillations in the solution.

• cell-vertex source terms: Source terms can be computed in a finite element way, being
coherent with the cell-vertex approach. This operation is similar to the gather-scatter
method. The source terms are first computed at the center of the element Ke with gathered
variables from the vertices. Then, they are scattered back to the nodes. Then,

Sj = ∫
Ω
SφjdV = ∑

e∈Dj

SeVe
nev

, (2.12)

where Se denotes the source terms at the center of the element Ke. This formulation
is computationally more expensive as it uses the scatter operation. However, it is more
accurate.

In AVBP, gaseous-phase source terms are computed with the cell-vertex approach. However,
the source terms of the dispersed phase are still computed with the vertex-centered approach,
mainly due to historical and code structure. Indeed, the numerous source terms of the dispersed
phase (Eq. 1.59) are computed in different areas of the code1. Then, apply a cell-vertex approach
(i.e. gather-scatter operations) is less obvious than for the carrier phase.

2.2.3 Convective scheme

Transporting a dispersed phase with an Eulerian framework is a numerical challenge for the
convective scheme. On the one hand, small structures and steep gradients of particle volume
fraction are created by the preferential concentration phenomenon, as discussed in Sec. 2.1.
These small-scale structures should be convected without being dissipated by the convective

1This could be improved using the object-oriented genericity allowed by Fortran 90 but has not been done yet.
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scheme. On the other hand, the transport of these steep gradients causes numerical wiggles at
their vicinity, which must be dissipated to ensure stability. Zones of very small αp may become
negative, which is not physical. Thus, convective schemes should be sufficiently robust to with-
stand strong gradients, dissipate the least possible the smallest physical structures and limit the
apparition of wiggles at the same time.

With this idea in mind, the so-called kinetic schemes, first created to solve pressureless gas
dynamics equations [13], have been successfully applied in the context of academic two-phase
flow simulations [27]. These schemes proved to conserve the positiveness of particle volume frac-
tion, capture the δ-shocks and treat zone of vacuum. However, they were implemented using a
cell-centered finite-volume method in [27] and their implementation in the cell-vertex approach
is not straightforward.

Another possibility is the use of Taylor-Galerkin (TG) schemes such as TTGC [22], which has
been specifically constructed to yield low dissipation errors for gaseous LES simulations. It is
third-order accurate both in space and time. TTGC was successfully implemented in AVBP by
Cuenot and Riber [103] for the dispersed phase. Its application to a 3D homogeneous isotropic
turbulence (HIT) laden with solid particles showed a good ability to capture the main physical
properties, such as the total particle kinetic energy q2p and particle concentration level. It showed
better results than the Lax-Wendroff scheme [73]. This scheme should be coupled with artificial
dissipation terms, similar to an artificial viscosity (AV) to handle numerical wiggles and steep
gradients. The main challenge is then to localize accurately where to apply AV. This is the
objective of AV sensors, which are presented in Sec. 2.3. Since then, this strategy has been
successfully applied in complex configurations [112, 118] but the application of AV remains a
crucial point.

Lamarque [69] and Roux [108] implemented an upwind and positive scheme in AVBP for the
dispersed phase. This scheme, called Positive Streamwise Invariant (PSI) [134], belongs to the
family of the fluctuation-splitting or resitudiual distibution schemes [1]. Its formulation is close
to the cell-vertex approach and thus natural to implement in AVBP. It was first designed for
steady state problems [134]. As a first step towards unsteady problems, a simple Euler time-
integration has been tested in AVBP. Moreover, the current implementation of a lumped mass
matrix leads to an important numerical diffusion. As suggested in [69], the inversion of the ex-
act mass matrix would improve the results but has not been implemented yet. Nevertheless, its
capacity to handle steep gradients make this scheme very promising [112, 145]. The PSI scheme
for the dispersed phase was first coupled with the Lax-Wendroff (LW) scheme for the carrier
phase [73]. It was easier to implement as PSI and LW have both just one residual calculation
per time step 2. However, the dispersive properties of the LW scheme [69] impacts the accuracy
of two-phase flow simulations. That is the reason why the PSI scheme was plugged with the
TTGC scheme during the present thesis. The good properties of the TTGC scheme are kept
for the carrier phase whereas PSI provides a robust solution for the dispersed phase. Moreover,
using the same scheme for the carrier phase (here TTGC) allows us to discriminate the scheme
employed for the dispersed phase as the carrier phase are the same. In the present work, the
carrier phase is always resolved with the TTGC scheme.

2TTGC has two residual calculations per time step.
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To conclude, two numerical strategies will be used in this work for the resolution of the
dispersed phase: PSI and “TTGC+AV”. These strategies are evaluated on academic test cases
of increasing complexity in Part. II.

2.2.4 Temporal advancement

Three time integration methods are available in AVBP. All are explicit, which is favorable for
the parallelism. The time marching method used in the present work is a variation of the Lax
and Wendroff method [72] where temporal derivatives are function of spatial derivatives thanks
to a Taylor expansion. It follows the Taylor-Galerkin two-step method 3 specific to the TTG
schemes [22, 31, 69]. The important point is that the stability of the convective scheme is driven
by the Courant-Friedrichs-Lewy (CFL) number. In practice, the time step of the convective
scheme must be lower than the critical time step:

∆tcrit = ν∆x

ucharact
, (2.13)

where ν, ∆x and ucharact denote the CFL number, the local space step of the mesh and the
characteristic speed at which the considered physics is transported, respectively. In the present
work, the time step of the convective scheme is chosen so that the local CFL number never
exceeds 0.7, which is below the critical CFL number [69].

Characteristic time step of the carrier and dispersed phase

This section tackles the isssue of the reference time step of the carrier and dispersed phases.
As mentioned in Chap. 1, the fluid follows the compressible Navier-Stokes equations in AVBP.

The reference CFL number of the carrier fluid, and thus the reference time step, is triggered by
the acoustics:

∆tac = νac∆x∣uf + c∣ , (2.14)

where νac, uf and c are the acoustic CFL number, local fluid velocity and speed of sound, re-
spectively.

The characteristic velocity of the dispersed phase is ũp so that the CFL number of the
dispersed phase may be defined as4:

νp,conv = ũp∆t
∆x

(2.15)

Because in AVBP the carrier and dispersed phase are advanced with the same time step, as
illustrated in Fig. 2.5(a), one has the following relation between νac and νp,conv:

νp,conv = ũp∣uf + c∣νac. (2.16)

In most cases, ũp/∣uf + c∣≪ 1, so that the νp,conv is several order of magnitude smaller than νac,
which has two consequences:

3These two steps may be seen as a prediction-correction.
4Theoretically the velocity that appears in νp,conv should be ũp + c̃p but c̃p is often neglected
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• It is a dead loss of CPU time if the dispersed phase is computed at the acoustic time
step ∆tac. The dispersed phase is over computed. Moreover, the particle volume fractions
considered in this work implies that the dispersed phase has no impact on the carrier phase
(one-way coupling). In other words, there are no source terms in the fluid equations to be
computed every fluid time steps. Thus, there are no physical reasons to impose the same
time step between both phases. This is specific to compressible solvers where acoustics is
resolved (i.e. the smallest time scale is ∆tac).

• The convective scheme does not dissipate enough the smallest length-scale (wiggles) and
spurious oscillations appear. Indeed, the convective scheme properties depend on the CFL
number, as shown in Fig. 2.4. This figure shows that TTGC has very small dissipation
at low convective CFL numbers, whatever the wave number. When ν increases, the dissi-
pation of the highest frequencies by TTGC increases. The impact of the CFL number is
stronger for other convective schemes, like TTG4A.

Figure 2.4: Numerical diffusion of the TTGC scheme (modulus of the amplification coefficient)
as a function of the normalized wave number k∆x, for increasing convective CFL numbers ν.
Excerpted from [69].

To circumvent these problems, one possibility is to “over” cycle the computation of the dispersed
phase. This procedure, denoted Fast-TPF, is detailed in the next section.

Fast-TPF procedure

The idea is to increase the convective time step of the dispersed phase ∆tp,conv, computing
the dispersed phase every NFTPF time iteration of the carrier-phase, as illustrated Fig. 2.5. A
similar procedure may be used in Lagrangian solvers where discrete particles properties are not
computed every acoustic time steps.
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Dispersed phase residuals

t

Carrier phase residuals

(a) AVBP

Carrier phase residuals

t

Dispersed phase residuals

(b) AVBP Fast-TPF

Figure 2.5: Diagram of the Fast-TPF procedure. Instead of computing the dispersed phase
residuals every acoustic time steps (left), they are computed every NFTPF ∆tac (right).

Without the Fast-TPF procedure, the CPU time T ∗ of a two phase flow simulation can be
split as the sum of the CPU time of the carrier and of the dispersed phase, denoted t∗f and t∗p:

T ∗ = t∗f + t∗p, (2.17)

where the superscript “∗” means that the time step of the simulation is ∆tac (no Fast-TPF).
The consequence of the Fast-TPF procedure is to divide t∗p by NFTPF, so that the resulting total
CPU time of a two-phase flow simulation becomes

TFTPF = t∗f + t∗p

NFTPF
. (2.18)

Note that t∗f cannot be lowered since the carrier phase must be solved every acoustic time step.
The CPU time of the sole dispersed phase t∗p is a priori unknown and depends of the config-
uration (number of dispersed-phase variables, source terms, numerical scheme of the dispersed
phase, etc..). An interesting information is the additional cost of a two-phase flow simulation
in comparison with a single-phase simulation, i.e. the ratio between T ∗ and t∗f . Combining

Eq. 2.17 and Eq 2.18, the ratio of TFTPF and t∗f is:

TFTPF

t∗
f

= 1 − 1

NFTPF
+ 1

NFTPF

T ∗

t∗
f

. (2.19)

Fig. 2.6 illustrates the theoretical gain of CPU time provided by the Fast-TPF procedure. By
way of example, T ∗ has been arbitrarily chosen as twice larger than t∗f , which is roughly the
case for an EE simulation. It can be seen that the cost of a two-phase flow simulation quickly
decreases as a function of NFTPF. The maximum NFTPF is imposed by the stability condition:
νp,conv = νac. Therefore, the theoretical maximum number of iterations at which the dispersed
phase can be computed, denoted Nmax

FTPF, is

Nmax
FTPF =

max (∣uf + c∣)
max (ũp) (2.20)

As a matter of fact, just a few NFTPF is necessary if the Fast-TPF procedure is only used to
accelerate a two-phase flow simulation. Indeed, NFTPF = 4 already yields a gain of CPU time of
80% in the representative example where t∗p ≃ t∗f (Fig. 2.6). This procedure would be particularly
interesting when more than one set of dispersed-phase equations are solved, as for the Multi-fluid
MEF [145], in which a set of equation is solved for each class (diameter) of particles.
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Figure 2.6: Gain of CPU time of a two-phase flow simulation provided by the Fast-TPF proce-
dure.

2.2.5 Diffusive terms

Two methods are implemented in AVBP to compute the diffusive terms in Fig. 2.2. Their main
characteristics are summarized in Tab. 2.7.

4∆ 2∆

Method cell-vertex [26] FE-Galerkin [21]
Stencil width 4∆x 2∆x
Dissipation of the smallest length-scale No Yes

Figure 2.7: Main characteristics of the diffusion operators available in AVBP

The first diffusion operator stems from a cell-vertex formulation and is denoted 4∆ due to a
4∆x stencil in one dimension. That means that the diffusion operator at one node requires the
information of its neighbors and of the neighbors’ neighbors. The flaw of this operator is that it
does not diffuse the smallest length-scales, whether they are physical of wiggles. For example, a
typical kinetic energy spectrum obtained in a DNS of a homogeneous isotropic turbulence with
the 4∆ diffusion operator is shown in Fig. 2.8. Energy accumulates at smallest scales, which is
not physical and can lead to the crash of computation.

Therefore, Colin [21] implemented another diffusion operator, denoted 2∆, constructed from
a FE Galerkin method. This leads to a smaller stencil of 2∆x. This operator diffuses the
smallest scales, hence the wiggles. The 2∆ operator has been recently implemented [77] for the
dispersed phase and is the one used in the present work.
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Figure 2.8: Energy spectra of a HIT in DNS with the 4∆ diffusion operator. Excerpted from [15].

2.3 Artificial viscosity

This section details the various components of the stabilization technique used jointly with the
high-order scheme TTGC, the so-called artificial viscosity (AV). The computational simulation
of flows with discontinuities have required specific stabilization techniques to withdraw, or at
least limit, the apparition of wiggles close to strong gradients. The use of artificial viscosity stems
from the seminal work of Von Neumann and Richtmeyer [147], who introduced an additional
pressure term in Euler equations to withstand strong shocks. Further studies [60] improved this
technique, using a combination of a second and fourth-order viscosity operator. These operators
have been adapted to the cell-vertex approach [133] and are directly added to the nodal equation
(Eq. 1.55).

dUp

dt
= −(Nj +D

(2)
j +D

(4)
j ) + Sj, (2.21)

where D
(2)
j and D

(4)
j denote the 2ndand 4th-order AV operators. These two operators are

thoroughly detailed in [69] and briefly recalled below:

D
(2)
j =

1

Vj
∑
e∈Dj

−ǫ(2)ζeVe
nev∆t

(Ue −Uj) (2.22)
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D
(4)
j =

1

Vj
∑
e∈Dj

−ǫ(4⋆)Ve
nev∆t

[( 1

nev
∑
k∈Ke

∇⃗Uk) ⋅ (x⃗e − x⃗j) − (Ue −Uj)], (2.23)

where Ue = ∑kUk/nev is the average of Up at cell Ke, ζe denotes the AV sensor and nev is the
number of vertices in Ke. Moreover, ǫ(4⋆) =max(0, ǫ(4) − ζeǫ(2)) [60] where ǫ(2) and ǫ(4) are user
parameters.

The 2nd-order AV operator can be seen as a “shock-capturing” term (called 2nd-order AV)
which smoothes under-resolved gradients whereas the 4thorder AV operator acts as a “back-
ground dissipation” term (called 4thorder AV) which dissipates the wiggles. These two operators
depend on the two user-defined parameters ǫ(2) and ǫ(4) and one sensor ζe. Therefore, the AV
methodology is carried out in two steps:

• First, a sensor detects if AV must be applied, i.e. quantifies the local non-linearity of
well-chosen dispersed-phase variables.

• Then, a certain amount of 2ndand 4th-order AV is effectively applied, depending on the
choice of ǫ(2) and ǫ(4). The value of ǫ(2) and ǫ(4) must be a good balance between robustness
and accuracy, and depends of the configuration (user experience).

The results of a two-phase flow simulation mostly depends of these two steps. The sensors used
in this work are defined in Sec. 2.3.1.

2.3.1 Sensors

A sensor ζe is a scaled parameter defined in each cell Ke of the mesh that is normalized between
zero and one. A value of ζe close to zero means that the solution is smooth enough and that
no AV must be applied. On the contrary, the closer to one, the stiffer variations are detected
and AV must be applied. Then, AV sensors should be accurately computed to be as local as
possible, to minimize artificial diffusion of the solution.

It is more difficult to detect local strong variations in the dispersed phase than in the fluid.
Indeed, gaseous phase sensors are computed from the pressure, which is supposed to be very
sensitive to any perturbation. We already mentioned that there is no such variable in the
dispersed phase. The difficulty is thus to find a set of well chosen variables from which to
compute the sensors. All the sensors are, at least, computed as a function of the particle volume
fraction. Most of the two-phase flow simulations carried out with AVBP take into account the
evaporation of particles. In AVBP, the particle diameter is not transported but reconstructed
from the particle volume fraction and number density

dp = (6α̃p

ñpπ
)1/3. (2.24)

When the particle volume fraction and the number density are proportional, their numerical
error is also proportional and particle diameter is constant. However, when particles evaporate,
the relation linking α̃p and ñp becomes non-linear. These variables are transported differently
and their numerical errors have no more the same shape. Spurious oscillations of dp may appear
after its reconstruction with Eq. 2.24 because of dispersion errors. Particle diameter is thus a
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good variable to evaluate the sensors if droplets evaporate.

They are two families of sensors for the dispersed phase.

• A sensor based on the extrema, denoted ζextr. This sensor checks if the dispersed-phase
variables stays bounded in the physical domain (e.g. positiveness of the particle volume
fraction, diameter and number density).

• A sensor based on the gradients, denoted ζgrad. This sensor5 detects under-resolved gra-
dients.

The final AV sensor, which is used to effectively apply AV in the equations, is the maximum
between the two sub-family sensors:

ζe =max(ζextr,e, ζgrad,e). (2.25)

Both ζextr and ζgrad have specific models which are combined. The name of the resulting AV
sensor follows the convention: “acronym of ζgrad model”-“acronym of ζextr model”. For example,
the Colin-Martinez (CM) model for ζgrad used in combination with the Total sensor model (T)
for ζextr yields the name CM-T. The various sensors and operators are detailed in the handbook
of AVBP [15]. The parts concerning the sensors used in the present work are briefly presented
hereafter.

Sensors based on the extrema

● T sensor, denoted ζT
extr. This sensor has been developed by Kaufmann [63] and S. Pas-

caud [91]. The sensor ζT
extr is computed from the particle volume fraction and number

density in the cell Ωj as

ζT
extr,e =max [ζextr,e(α̃p), ζextr,e(ñp)] (2.26)

The sensor ζextr,e applied to any variable x is defined as

ζextr,e(x) = { 1 if x ∈] −∞,Bmin(x)]⋃[Bmax(x),∞[
max (ζ0

e (x), ζ1
e (x)) otherwise

(2.27)

where Bmin(x) and Bmax(x) are minimum and maximum thresholds of the variable x.
Bmax is a fixed parameter in the code and corresponds to an unrealistic value of particle
volume fraction or number density:

Bmax(α̃p) = 0.3, Bmax(ñp) = 1016.

However, Bmin(α̃p) andBmin(ñp) are user-defined parameters. Their value is of paramount
importance since they define a “hard limit” under which a maximum AV is applied
(ζextr,e = 1).

5It was denoted ζtpf in previous works [15, 103, 112, 145].
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The function ζ0
e is an estimation of the relative variation of x in the cell, and reads

ζ0
e (x) = 2∣xmin + xmax − 2xe

xmin + xmax + 2xe
∣, (2.28)

where xmin, xmax are the minimum and maximum values of x at the vertices i of the
current cell Ke.

The function ζ1
e estimates the distance to the minimum bound value Bmin:

ζ1
e (x) = 1

1 + ∣xe∣/(ǫ +Bmin) . (2.29)

● The S sensor, denoted ζS
extr. This sensor was designed by Sanjose [112] to tackle evapora-

tion cases. It is a simplification of the Total sensor and aims at being as small as possible
in the dense zones and being maximum in the zone of low α̃p and dp. Then, it is evaluated
from these two variables as

ζS
extr,e = 2

√
ζ1
e (α̃p) ⋅ ζ1

e (dp), (2.30)

where ζ1
e is defined in Eq. 2.29.

Here again, the minimal threshold of α̃p and dp are required for the evaluation of ζ1
e .

However, this sensor lacks of a hard limit similar to the total sensor in Eq. 2.27, depending
on Bmin(α̃p) or Bmin(dp). Therefore, it is less robust when the particle volume fraction
becomes very close to zero.

Sensors based on the gradients

Various sensors based on the gradients exist and are adapted from sensors designed for the fluid.
The basic idea is to compare two evaluations of the gradient at the cell

∆i
1 = xe − xi (2.31)

∆i
2 = (∇⃗x)

i
⋅ (x⃗e − x⃗i), (2.32)

where xi and xe are the value of the variable x at the node i and at the cell Ke, respectively.
∆i

1 represents the variation of x inside the cell whereas ∆i
2 stands for the variation of x with

a larger stencil. The objective is to find the best mathematical functions using ∆i
1 and ∆i

2 to
localize under-resolved gradients.

For example, Riber [103] adapted the Jameson sensor [60] to the dispersed phase, yielding
the Jameson-Riber (JR) sensor. This Jameson sensor was initially derived for steady-state aero-
dynamics computations. It proves to be too smooth and activated too often, resulting in an over
application of AV. For these reasons, the JR sensor was not used in this work. Evaluation of
the JR sensor on the academic test case of the convection of a particle-volume fraction gaussian
is available in [112, 145].

The Colin sensor was initially designed for unsteady turbulent gaseous simulations and is
sharper than the Jameson sensor. This sensor was adapted to the dispersed phase and slightly
modified by Martinez [77], using a cell value for normalization instead of a vertex value.
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● The CM sensor, denoted ζCM
grad. Its exact definition is

ζCM
grad,e =max [ζgrad,e(α̃p), ζgrad,e(dp)], (2.33)

where

ζgrad,e(x) = 1

2
(1 + tanh (ψ(x) −ψ0

δ
)) − 1

2
(1 + tanh(−ψ0

δ
)), (2.34)

x being either the particle volume fraction αp or particle diameter dp. In eq. 2.34,

ψ(x) = max
i∈Ke

(0, ∆i

∣∆i∣ +K(x)ǫ1xζJ
i (x)) (2.35)

ζJ
i (x) = ∣∆i

1 −∆i
2∣∣∆i

1∣ + ∣∆i
2∣ + x (2.36)

∆i = ∣∆i
1 −∆i

2∣ − ǫk max (∣∆i
1∣, ∣∆i

2∣) (2.37)

ǫk = ǫ2(1 − ǫ3 max (∣∆i
1∣, ∣∆i

2∣)∣∆i
1∣ + ∣∆i

2∣ + x ). (2.38)

The parameters have been fixed by Colin [20] and are recalled bellow.

ψ0 δ ǫ1 ǫ2 ǫ3 K

2.10−2 1.10−2 1.10−2 0.95 0.5 1

● The CM5 sensor6. The CM sensor can be modified using the user-defined parameter K in
Eq. 2.35 [77]. When the value of K is increased, the CM sensor activates slightly later but
stronger, so does the AV. As a result, local non-linearites develops more.

The influence of K(αp) has been studied in a particle-laden HIT [145]. With K(αp) =
10, Eulerian simulations was found to capture better the preferential concentration than
with the normal CM sensor (K(αp) = 1) in homogeneous isotropic turbulence laden with
particles. However, this value is case-dependant. If K is too high, the simulation is less
robust. The best set of parameters, providing both accuracy and robustness was found
to be K(αp) = 5 and K(dp) = 2. This set of parameters has been used in academic [145]
as well as industrial applications [77, 112]. The resulting sensor is denoted CM5 in the
present work, following the notation of [145].

6also referred to as CM-lite in [112, 145]
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Evaluation of the numerical
strategies
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This part evaluates the numerical strategies detailed in Chap. 2 on canonical test cases of
increasing complexity. The objective is to find one numerical strategy, defined as the best, and
use it to carry out a posteriori tests of the MEF in Part III. Parts II and III can be read
independently from each other.

The choice of the convective scheme and AV model used for a simulation will be referred to
as the “numerical strategy” in the rest of the manuscript. This numerical strategy drives the
quality of the numerical results of Eulerian/Eulerian two-phase flow simulations. It is important
to evaluate what is the most adequate strategy regarding robustness and accuracy.

Several methods exist to study separately the convective schemes and the AV. The best
known method to study the stability of convective schemes is the Von Neumann method, also
called Fourrier analysis [25]. Recently, Lamarque [69] applied the modified equation method
[150] to study the schemes implemented in AVBP (cf. Fig. 2.4). However, the issue of numerical
stabilization was not tackled in this study. Concerning that specific point, a one-dimensional
stability analysis of the AV applied in AVBP is proposed in [15]. This analysis brings insight
of the minimal and maximal bounds of the AV coefficients for a stable simulation but is inde-
pendent of the convective scheme and of the context of two-phase flows (positiveness of particle
volume fraction for example). To our knowledge, a general theoretical method that takes into
account the whole system: convective scheme + AV, has not been devised yet.

Therefore, academic test cases are often used to evaluate numerical strategies as a whole.
First, academic test cases may be classified as a function of their complexity (number of dimen-
sions, physical phenomena taken into account, etc ). Second, they can be separated whether an
analytical solution is available or not. Analytical solutions allow to quantify the intrinsic error
of the numerical strategies but only exist for few simple academic cases. For example, Chap. 3
considers the classical test case of the one-dimensional convection of a particle volume-fraction
crenel to illustrate the problem of the apparition of wiggles and transport of steep gradients. A
first comparison of the two numerical strategies identified in Chap. 2 is proposed. As a first step
toward more complex configurations, a new analytical solution of a two-dimensional particle-
laden vortex is proposed in Chap. 4. Contrary to the 1D configuration, the particle-laden vortex
takes into account the drag force, so that the influence of particle inertia can be investigated.
When there is no analytical solution, Lagrangian simulations are taken as the reference and
macroscopic quantities are directly used to discriminate the numerical strategies. Thus, Chap. 5
considers the simulation a three-dimensional decaying homogeneous isotropic turbulence (HIT)
laden with solid particles.
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Chapter 3

Convection of a 1D particle volume
fraction crenel
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Accuracy and robustness of the numerical scheme is a bottleneck of two-phase flow simu-
lations with an Eulerian approach. As mentioned in Sec. 2.1.1, the particle preferential con-
centration invariably leads to the creation of steep gradients and no pressure-like term exists
in the dispersed-phase equations to diffuse them if RUM is not to be modeled. Therefore, all
the robustness of the simulation lies on the convective scheme and on an possible stabilization
technique. The objective of this chapter is to illustrate two numerical issues we have to deal with
and to propose adapted solutions. The main numerical problems are (1) the apparition of high
wavenumber oscillations (a.k.a wiggles) when gradients are transported and (2) the transport
itself of these steep gradients when the mesh resolution is poor. These issues are illustrated on
the simple test case of a one-dimensional convection of a particle volume fraction profile at con-
stant speed. This test case has been widely used in the literature [69, 112, 145] to discriminate
numerical strategies. Indeed, it combines the advantages to be a purely convective test case and
that a straightforward analytical solution is available.

After a brief presentation of the configuration and methodology in Sec. 3.1, a few numerical
strategies presented in Ch. 2 are used to handle the two issues listed above. First, the issue of
the wiggles is dealt with in Sec. 3.2. Then, an artificial viscosity sensor is chosen in Sec. 3.3.1.
Finally, the problem of the transport of under-resolved gradients is tackled in Sec. 3.3. A first
comparison of the two numerical strategies considered in this work, namely the PSI scheme and
“TTGC + AV”, is carried out in this section.
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3.1 Presentation of the configuration

Let us suppose that the particle velocity is constant: ũp = 1 m.s−1, that there is no coupling
between the carrier and the dispersed phase (no drag force nor heat transfer) and that parti-
cle temperature is constant. The dispersed phase is then entirely governed by the continuity
equation

∂α̃p

∂t
+ ũp∂α̃p

∂x
= 0. (3.1)

In the rest of this chapter, the tilde of α̃p is dropped. This equation is solved on a one-dimensional
mesh of 1m long. Boundary conditions are periodic in the streamwise direction.

The initial particle volume-fraction profile is defined by the equation:

αt=0p (x) = αmin
p + f(x)(αmax

p − αmin
p ) (3.2)

f(x) = 1

2
(1 + tanh

Lref − 2∣x∣
θ/2 ) , (3.3)

where αmin
p and αmax

p stand for the minimum and maximum value of the particle volume-fraction
crenel. Lref denotes the crenel width and θ the width of the initial gradient, as illustrated in
Fig. 3.1. The two relevant parameters are the amplitude ratio of the profile, defined by

-0.4 -0.2 0.0 0.2 0.4
x [m]

αp
max

αp
min

Lref

θ

 1pt

 9 pts

 25 pts

Figure 3.1: Initial solution of the particle volume-fraction as a function of the number of points
in the gradient

Rαp =
αmax
p

αmin
p

, (3.4)

and the initial number of points inside the gradient

N0
grad = θ/∆x (3.5)
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where ∆x is the space step in the streamwise direction.

For a fixed Rαp, Fig. 3.1 shows the wide range of particle volume-fraction shapes which
can be obtained as a function of N0

grad, from a top-hat to a smooth function. The less points
in the gradient and the higher amplitude of the crenel, the higher the numerical difficulties.
Therefore, this profile function allows to tune easily the level of numerical stiffness. Moreover,
the analytical solution is simply:

αp(x, t) = αp(x − ũpt, t = 0) (3.6)

3.1.1 Methodology

Two test cases are considered in this chapter, depending on the amplitude of the particle volume-
fraction crenel and number of points inside the gradient of the initial solution. Their main
characteristics are summarized in Tab. 3.1. A mesh of 1m long with 100 cells in the streamwise
direction is used for both test cases.

keyword αminp αmaxp Rαp N0
grad

C1 1.10−4 5.10−4 5 3
C2 1.10−4 1.10−2 100 7

Table 3.1: Characteristics of the 1D test cases

Case C1 consists in the convection of a low-amplitude αp crenel. This low-amplitude allows
the apparition of wiggles but their intensity remains limited (at least after one convective time)
so that no 2nd-order AV is necessary. Two solutions for this problem are presented: (1) the use
of 4th-order AV or (2) increasing the convective CFL number of the dispersed phase with the
Fast-TPF procedure (cf. Sec. 2.2.4) , defining two sub cases: C1-S0a and C1-S0b (cf. Tab. 3.2).
Next, the amplitude of the αp crenel is increased (case C2) so that specific numerical solutions
are compulsory to prevent the crash of the simulation. This test case is used to test the two
families of numerical strategies presented in Ch. 2, i.e. the PSI and TTGC scheme used with an
AV term. First, the choice of the AV sensor (used jointly with TTGC) is discussed, comparing
C2-S1a and C2-S1b cases. Then, the convective schemes PSI and TTGC are compared with
cases C2-S2, C2-S1b and C2-S1c, respectively.

keyword scheme ζextr ζgrad ǫ(2) ǫ(4) Bmin(αp) νCFL

C1-S0a TTGC T CM 0 5 ⋅ 10−3 1. ⋅ 10−8 2 ⋅ 10−3
C1-S0b TTGC T CM 0 0 1. ⋅ 10−8 0.7

C2-S1a TTGC T CM 0.5 0 1. ⋅ 10−8 2 ⋅ 10−3
C2-S1b TTGC T CM5 0.5 0 1. ⋅ 10−8 2 ⋅ 10−3
C2-S1c TTGC T CM5 0.5 5 ⋅ 10−3 1. ⋅ 10−8 2 ⋅ 10−3
C2-S2 PSI T CM5 5. ⋅ 10−3 0 1. ⋅ 10−8 2 ⋅ 10−3

Table 3.2: Parameters of the sub test cases
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3.2 How to get rid of spurious oscillations?

As mentioned in the previous section, spurious oscillations appear when a steep gradient is con-
vected by a centred scheme like TTGC. The amplitude of these wiggles depends of that of the
gradient and increases along time if not dissipated by a physical or numerical term. Since the
dispersed phase equations have no-pressure term (i.e. physical dissipation) in the momentum
equations, these non-physical oscillations must be eliminated by a numerical term. Two solu-
tions are presented in this section (1) the use of an hyper-viscosity operator, a.k.a 4th-order
viscosity or (2) use the Fast-TPF procedure to increase the convective CFL number of the dis-
persed phase. These two strategies have been detailed in Sec. 2.3 and Sec. 2.2.4, respectively.

The particle volume fraction profile after one convective time is shown in Fig. 3.2. Without
any artificial viscosity, the initial profile is scattered with node-to-node oscillations. Note that
their amplitude remains limited as the amplitude ratio of the crenel Rαp (Eq. 3.4) is low for this
configuration.

Adding a small amount of 4th-order AV is sufficient to eliminate these wiggles, as shown in
Fig. 3.2(a) for example. Different values of ǫ(4) have been tested iteratively and ǫ(4) = 5. ⋅ 10−3
was found to be the best balance between accuracy and dissipation. However, the minimum and
maximum of the volume fraction are not conserved and the profile is slightly diffused. These
results are consistent with Sanjose [112] where the impact of the 4th-order AV was studied on
the convection of a Gaussian.
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Figure 3.2: Particle volume-fraction crenel after one convective time (case C1). Comparison
between the exact solution ( ● ) and Eulerians simulation carried out with the TTGC scheme.
Without any AV ( ), with ǫ(4) at small CFL number (case C1-S0a, ) or without ǫ(4)

at high CFL number with the Fast-TPF procedure (case C1-S0b, ). The top and bottom
figures correspond to the zooms Z2 and Z1 of the wide figure (medium), respectively.
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Another solution is to use the Fast-TPF procedure to increase the convective CFL number
of the dispersed phase, νp,conv (Eq. 2.16). Indeed, νp,conv ≃ 2 ⋅10−3 in this configuration since the
acoustic CFL of the gaseous phase equals νac = 0.7 and ug = ũp = 1 m.s−1. At this convective CFL,
the TTGC scheme does not dissipate high frequencies very much. However, it dissipates more
high frequencies when νp,conv is high enough, around 0.5, according to theory (cf. Fig. 2.4 or [69]).
Then, case C1-S0b consists in setting νp,conv = 1 without any artificial viscosity (ǫ(2) = ǫ(4) = 0).
With that technique, all the wiggles are eliminated. However, it does not conserve either the
minimum or maximum of the particle volume fraction. As a matter of fact, particle volume
fraction profiles of cases C1-S0a and C1-S0b are similar and both agree satisfactorily with the
exact solution. Nevertheless, increasing νp,conv is interesting as it yields the same result of C1-
S1a without an insight of the value of ǫ(4) and the computational time of the simulation is highly
reduced (-60 %).

In order to study the gain of CPU given by the Fast-TPF procedure, several simulations
have been carried out with a wide range of NFTPF. Fig. 3.3 presents the total CPU time of
a two-phase flow simulation divided by the cost of a sole gaseous simulation with the same
configuration, as a function of NFTPF. The case C1-S0b corresponds to NFTPF = 346 and is
not represented in the figure since we wanted to highlight the quick gain of CPU time for small
values of NFTPF. Here, the distinction is made between the cost of the carrier-phase simulation,
which is incompressible, and the cost of the dispersed phase simulation, which is reduced by
the Fast-TPF procedure. By way of example, “over-cycling” only twice the dispersed phase
(NFTPF = 3) cuts the additional cost of its simulation by 60%. Note that in application, T ∗

does not exactly converge toward t∗f but has a slight offset of 5% with the theoretical CPU time
(Eq. 2.19). This offset corresponds to the time spent in the internal routines of the dispersed
phase for each iteration of the carrier phase1.

Cases C1 consisted in the transport of a low-amplitude crenel, with sufficient mesh resolution.
There was no problem of stability apart of the apparition of wiggles. In the next sections, the
amplitude of the crenel is increased and adequate numerical strategies are proposed. This second
case is more restrictive for the numerical scheme than case C1 so that the Fast-TPF procedure
cannot be used to dissipate the spurious oscillations by increasing the CFL number. Indeed, the
simulation can be “over-cycled” by only a few NFTPF (NFTPF = 3) before it becomes unstable,
much lower than its theoretical maximum value (Eq. 2.20). Therefore, spurious oscillations will
be dissipated thanks to the 4th-order AV as in Case C1-S0a (ǫ(4) = 5 ⋅ 10−3).

3.3 How to withstand stiff gradients?

In many two-phase flow simulations, the particle volume-fraction gradients are not sufficiently
resolved (not enough points). The configuration C2 is representative of the transport of an
under-resolved αp steep front created by the particle preferential concentration. It allows a
meaningful investigation of the two numerical strategies defined in Ch. 2: the PSI scheme and
the “TTGC + AV” strategy. Since it is one basic component of the “TTGC + AV” strategy,
the set up of the AV sensor is detailed in Sec. 3.3.1.

1Note that it is related to the actual implementation of Fast-TPF in AVBP and may be reduced with a more
appropriated structure of the code.

54



3.3. HOW TO WITHSTAND STIFF GRADIENTS?

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

5040302010
NFTPF

Figure 3.3: Impact of the Fast-TPF procedure on the CPU time. The ratio of CPU time of
the two-phase flow simulation to the sole carrier phase ( ) is compared with the theoretical
acceleration ( ) (Eq. 2.19).

3.3.1 Set up of the AV sensor

The artificial viscosity sensors and coefficients are the two fundamental components of the strat-
egy “TTGC+AV”. Since the value of ǫ(2) and ǫ(4) depends on the configuration, this section
only tackles the question of the choice of the sensor.

This issue has been already discussed in the context of AVBP [103, 112, 145] and almost
every author created a new sensor. For example, the CM-S and CM5-S sensors were tested on
the problematic case of 1D Burger’s equation [112], but the resulting AV was not sufficient to
prevent a negative αp. One reason for the AV method to fail in this non-linear situation is that
the S sensor is not sharp enough when αp has a strong overshoot. A numerical clipping was
applied on the particle volume-fraction and on the number density to circumvent this problem.
Although efficient, this technique is not optimal as it causes numerical errors on the particle
diameter and a loss of mass.

In the present work, no new sensor has been created. On the contrary, we looked for the
best combination of already existing sensors and define some guidelines to set their parameters
(Bmin(αp), ǫ(2)). The objective is to provide a suitable stabilization term when the TTGC
scheme is used, without any non-physical clipping. Consequently, the T sensor was preferred to
the S sensor (cf. Sec. 2.3.1) since it has a threshold under which ζextr is maximal. This sensor
on the extrema, used with a high ǫ(2) is sufficiently robust to prevent a negative αp. It must be
used with a very sharp sensor on the gradients. Then, sensors belonging to the CM family seem
good candidates. The following strategy is considered:

• Set a threshold value on αp and ñp four order of magnitude lower than their initial minimum

values, αmin,0p and ñmin,0p , respectively.
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• The value of ǫ(2) must be sufficiently high to diffuse any undershoot of particle-volume
fraction below Bmin(αmin,0p ).

• Use a sufficiently sharp sensor on the gradients.

Then, two sensors on the gradients of the CM’s family are evaluated on the case C2. No 4th-
order AV is applied, in order to quantify only the effect of the 2nd-order AV. Note that without
any stabilization technique (no AV), a simulation carried out with TTGC on C2 crashes after
a few iterations due to a negative αp. Fig. 3.4 presents the profile of αp after one convective
time, comparing the cases C2-S1a and C2-S1b with the exact solution. First, both simulations
are similar and in good agreement with the analytical solution. The particle volume fraction
profile seems mildly sensitive to the sensor on the gradient. Incidentally, the CM5-T sensor
dissipates slightly more the high frequency oscillations that CM-T, even though no 4th-order AV
is applied (Fig. 3.4(a)). The key area concerning the stability of the simulation is the uphill foot
of the crenel, indicated in Fig. 3.4(b) by Z1. In this zone, the TTGC scheme leads to a strong
undershoot of αp which is actually contained by the artificial viscosity, as shown in Fig. 3.4(c).
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Figure 3.4: Impact of the AV sensor on the transport of a particle volume-fraction crenel after
one convective time (case C2). Comparison between the exact solution ( ● ) and Eulerians
simulation carried out with different AV sensors (cf. Tab. 3.2). CM-T (case C2-S1a, ) and
CM5-T (case C2-S1b, ). The top and bottom figures correspond to the zooms Z2 and Z1
of the wide figure (medium), respectively.
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Fig. 3.5 indicates that both ζextr and ζgrad activate in this zone. As expected, the sensor
CM5 is sharper that CM, as it can be seen in Fig. 3.5(a). It activates only around the gradient
location (x ≃ −0.18) whereas CM activates even when the solution is smooth (x ∼ −0.28). The
sensor on the extrema is shown in Fig. 3.5(b). The threshold Bmin(αp) defines a background
dissipation of low amplitude in the tails of the crenel which wipe out the wiggles. Note that ζextr

is three order of magnitude lower than ζgrad. The sensor on the extrema behaves as expected,
increasing just before the gradient, where an undershoot occurs. Both CM-T and CM5-T sensors
work satisfactorily, but CM5 is definitely sharper than CM. Consequently, CM5-T is chosen to
be used with TTGC for the rest of this work.

0.4

0.3

0.2

0.1

0.0

ζ g
ra

d 
[-

]

-0.4 -0.2 0.0 0.2 0.4
x [m]

(a) ζgrad

0.8

0.6

0.4

0.2

0.0

ζ e
xt

r *
 1

0-3
 [

-]

-0.4 -0.2 0.0 0.2 0.4
x [m]

(b) ζextr

Figure 3.5: Effect of the AV sensor, comparison between CM-T ( ) and CM5-T ( ). Axial
profiles of ζgrad (left) and ζextr (right) at one convective time.

.

3.3.2 Comparison of the two numerical strategies: PSI scheme and “TTGC+AV”

Now that the AV sensor has been chosen, the two numerical strategies defined in Ch. 2 are
compared on case C2. First, case C2-S2 is carried out with the PSI scheme [134], an upwind and
positive scheme recently implemented in AVBP [108, 69] whereas case C2-S1b uses the TTGC
scheme with the AV sensor set up in Sec. 3.3.1: the CM5-T sensor. Note that the positiveness
of PSI is not entirely fulfilled on the dispersed phase system so that a very small amount of
2nd-order AV is applied in case of a strong undershoot of αp. Characteristics of C2-S2 and
C2-S1b are detailed in Tab 3.2.

The αp profiles of cases C2-S2 and C2-S1b are plotted in Fig. 3.6. First, the distinct char-
acteristics of PSI is to substantially dissipate the initial crenel but conserve the minimum of
αp. That confirms the robustness of PSI for a two-phase flow simulation and is consistent with
previous study on similar academic configurations [69, 112]. Of course, this dissipation decreases
progressively if the mesh is refined, as remarked by Sanjose [112]. On the contrary, the TTGC
scheme, used jointly with the CM5-T sensor is in satisfactory agreement with the exact solu-
tion. Moreover, adding a small amount of 4th-order AV further improves the results, as shown
in Fig. 3.6(a) with case C2-S1c.
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Note that PSI converges in space at the first order (cf. remarks in Sec. 2.2.3) whereas TTGC
converges in space at the third order. Therefore, the comparison of these two schemes at the
same mesh resolution is relatively unfair. As stressed by Lamarque [69], the performances of PSI
are understandable as the mass matrix is lumped in AVBP, which reduces the order in space.
One important remark is that PSI only dissipates in the streamwise direction, contrary to the
AV which dissipates in every direction. Nevertheless, the robustness of PSI is unquestionable,
which is valuable for industrial applications.

To conclude, the two main numerical problems encountered in two-phase flow simulations
with an Eulerian approach were illustrated on the one-dimensional convection of a crenel of αp,
i.e. the apparitions of spurious oscillations at the vicinity of steep gradients and the convection
of under-resolved gradients of αp. The simplicity of this test case allows us to separately dis-
criminate adapted numerical strategies. First, either the use of 4th-order AV or increasing the
convective CFL number with the Fast-TPF procedure, are efficient ways to dissipate non-physical
wiggles. Moreover, the Fast-TPF procedure reduces dramatically the cost of a two-phase flow
simulation by over-cycling the resolution of the dispersed-phase. However, it proves to be more
unstable when the configuration is more restrictive, so that only the 4th-order AV is retained to
deal with spurious oscillation in the rest of this work. Although it is an interesting way to fasten
an EE simulation, the Fast-TPF procedure needs further investigations regarding its robustness
so that it will not be used further in this work. Finally, the two numerical strategies defined
in Ch. 2 were compared on an under-resolved crenel of αp: the positive and robust scheme PSI
and the high order scheme TTGC used jointly with a stabilization technique. First, an artificial
viscosity strategy has been proposed combining existing AV sensors implemented in AVBP, with
a special attention to prevent negative αp. The resulting sensor (CM5-T) and set up were used
with the TTGC scheme and yield very reasonable robustness and accuracy. However, this test
case shows that in its current implementation (low order temporal accuracy and lumped mass
matrix), the PSI scheme diffuses more the solution than TTGC.

59



CHAPTER 3. CONVECTION OF A 1D PARTICLE VOLUME FRACTION CRENEL

1.06

1.04

1.02

1.00

0.98

0.96

0.94

α p
 *

10
-2

 [
-]

-0.10 0.00 0.10
x [m]

Z2

(a)

1.0

0.8

0.6

0.4

0.2

0.0

α p
 *

10
-2

 [
-]

-0.4 -0.2 0.0 0.2 0.4
x [m]

Z2

Z1

(b)

0.12

0.10

0.08

0.06

0.04

0.02

0.00

-0.02

α p
 *

10
-2

 [
-]

-0.24 -0.22 -0.20 -0.18 -0.16 -0.14
x [m]

Z1

(c)

Figure 3.6: Particle volume-fraction crenel after one convective time (case C2). Comparison
between the exact solution ( ● ) and Eulerians simulation carried out with different numerical
stategies (cf. Tab. 3.2). PSI scheme (case C2-S2, ), TTGC scheme without ǫ(4) (case C2-
S1b, ) and TTGC scheme with ǫ(4) (case C2-S1c, ). The top and bottom figures
correspond to the zooms Z2 and Z1 of the wide figure (medium), respectively.
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Particle-laden vortex
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As mentioned before, one key phenomenon in two-phase flows is the preferential concen-
tration of particles. Depending on their inertia, particles heavier than the fluid are ejected
from vortices and gather in high shear and weak vorticity areas. As a first step toward more
complex multi-dimensional configurations, the test case of a two-dimensional vortex laden with
solid particles is considered in this section. This test case gives some clues about how an initial
homogenous field of αp evolves in vortex characteristic of a turbulent flow. It can be considered
as complementary to other two-dimensional test cases, such as particle-laden Taylor-Green vor-
tices [27].

This test case allows us to investigate specifically the impact of particle inertia and to propose
adapted numerical strategies. The two numerical strategies defined in Ch. 2 –the positive and
robust scheme PSI and the high order scheme TTGC used jointly with a stabilization technique–
are compared in this context. These two numerical strategies will be compared with two refer-
ence solutions, depending on the particle inertia. Indeed, an analytical solution of the particle
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volume-fraction is proposed in the limit of small inertia. At moderate inertia, when the ana-
lytical solution is no longer valid, Lagrangian simulations are carried out from which Eulerian
fields are interpolated with an adequate strategy [65].

After a detailed description of the configuration and of the analytical solution in Sec. 4.3.2,
the methodology and test cases characteristics are summarized in Sec. 4.5. Then, the two
numerical strategies are evaluated in Sec. 4.5, first at low inertia in Sec. 4.5.1 and finally at
moderate inertia in Sec. 4.6. A specific attention is done on the mesh-resoltution sensitivity of
the results in Sec. 4.5.2.

4.1 Description of the configuration

A schematic representation of the test case is shown in Fig. 4.1. It consists in the simulation
of an isotropic vortex, fixed at the center of a square box of length Lx. At t = 0, the field
of αp is homogeneous and the particle velocity is set equal to that of the carrier phase. The
simulation is carried out on a mesh with Nx × Nx cells and all boundaries are periodic. The

XRv

Lx

Nx cells
N

x 
ce

lls

Y

Figure 4.1: Schematic representation of the two-dimensional particle-laden vortex.

main characteristics of the vortex are summarized in Tab. 4.1.

Hereafter, the equations are written in cylindrical coordinates (Ð→ex,Ð→er ,Ð→eθ). The subscripts “f’
and “p” will refer to the carrier and dispersed phase, respectively.
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Lx Nx Rv Γv µ

2 ⋅ 10−2 m 100 2 ⋅ 10−3 m 1.1472 ⋅ 10−2 m2.s−1 1 ⋅ 10−5 kg.m−1.s−1

Table 4.1: Main parameters of the particle-laden vortex.

4.2 Governing equations of the carrier phase

The definition of carrier-phase governing equations of an isolated vortex is a classical problem.
The stream function of an isotropic vortex is given by:

Ψ(r, θ) = Γve
− r2

2R2
v (4.1)

where Γv and Rv are respectively the vortex strength and its characteristic radius (Tab. 4.1).
The resulting velocity distribution is obtained through the velocity stream function relationship,

uf,r = ∂ψ
∂θ
, uf,θ = −∂ψ

∂r
. (4.2)

Then, the radial and tangential velocity fields are given by:

uf,r = 0 (4.3)

uf,θ = Γvr

R2
v

e
− r2

2R2
v . (4.4)

The maximum velocity induced by the vortex is Uf,max =
√

max(uf,r)2 +max(uf,θ)2 and is
obtained at r = Rv. Then,

Uf,max = Γv
Rv
√
e
. (4.5)

The vorticity distribution, defined as

ωg = ∂

∂r
uf,θ − 1

r

∂

∂θ
uf,r

= Γv
R2
v

e
− r2

2R2
v [1 − r2

R2
v

] (4.6)

is plotted in Fig. 4.2. According to [132], particles should concentrate in the region of low
vorticity, around its minimal value at r =√3Rv ≃ 3.46 ⋅10−3 m. To conclude on the set up of the
configuration, the gaseous field is simply frozen since we particularly address the evolution of
the dispersed phase and since we assume a one-way coupling from the carrier to the dispersed
phase. Consequently, the drag force induced by the carrier velocity is a constant source term.

4.3 Governing equations of the dispersed phase

The symmetric configuration of the test case ensures that the particle radial and tangential
velocities, up,r and up,θ, are only function of the radial coordinate. In order to obtain a simple
approximate solution, it is assumed that the tangential velocity of the particles remains equal
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Figure 4.2: Vorticity of the carrier phase

to that of the gas: up,θ = uf,θ. The problem is then reduced to find the volume fraction αp and
radial velocity up,r of the dispersed phase satisfying the conservation equations. The particle
velocity is defined as:

up = up,r(r)Ð→er + uf,θ(r)Ð→eθ . (4.7)

As a first step, the RUM is neglected and the particle temperature is assumed to be constant.
The general continuity equation (Eq. 1.36) yields:

∂

∂t
ρpαp + ∂

∂x
(ρpαpup,x) + 1

r

∂

∂r
(ρpαprup,r) + 1

r

∂

∂θ
(ρpαpup,θ) = 0. (4.8)

The general momentum conservation equations Eq. 1.37 written in non-conservative form and
in cylindrical coordinates is:

ρpαp[ ∂
∂t
up,r + up,x ∂

∂x
up,r + up,r ∂

∂r
up,r + up,θ 1

r

∂

∂θ
up,r − up,θup,θ

r
] = ρpαpuf,r − up,r

τp
(4.9)

ρpαp[ ∂
∂t
up,θ + up,x ∂

∂x
up,θ + up,r ∂

∂r
up,θ + up,θ 1

r

∂

∂θ
up,θ + up,θup,r

r
] = ρpαpuf,θ − up,θ

τp
(4.10)

Using Eq. 4.7 and the definition of the tangential gaseous velocity Eq. 4.4, Eqs. 4.8-4.9 reduce
to the two simplified equations:

∂

∂t
αp + 1

r

∂

∂r
(αprup,r) = 0 (4.11)

∂

∂t
up,r + up,r ∂

∂r
up,r + up,r

τp
= Γ2

vr

R4
v

e
− r2

R2
v . (4.12)
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Then, the radial velocity of particles (Eq. 4.12) is governed by a Burgers’ equation with a stiff
source term. This type of equation is typical of non-linear problems leading to shocks. That
means that up,r will inevitably lead to discontinuities, even if it is initialized with a smooth
function. That discontinuity will impact the particle volume fraction through Eq. 4.11. More-
over, the particle radial velocity depends on the particle response time (third LHS of Eq. 4.12).
That highlights the role of the particle inertia in the radial deviation of a particle, embedded in
a vortex. This equation can be normalized in order to exhibit the Stokes number.

4.3.1 Normalization procedure

The normalized variables are:

• The normalized particle radial velocity: u⋆ = up,r

Uf,max
where Uf,max is the maximum gaseous

velocity defined in Eq. 4.5.

• The normalized radius: r⋆ = r

Rv

• The normalized time: t⋆ = t

rv/Uf,max
• The normalized volume fraction: α⋆p =

αp

α0
, where α0 is the initial homogeneous particle

volume fraction.

Then, the normalized equations of continuity and momentum equations read:

∂

∂t⋆
α⋆p + 1

r

∂

∂r⋆
(α⋆pr⋆u⋆) = 0 (4.13)

∂

∂t⋆
u⋆´¹¹¹¹¹¸¹¹¹¹¹¶

(1)

+u⋆ ∂

∂r⋆
u⋆´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(2)

+ u⋆
St°
(3)

= r⋆e−(r
⋆)2+1. (4.14)

In Eq. 4.14, St denotes the Stokes number, defined as the ratio between the particle and the fluid
characteristic time τp and τf , respectively (Eq. 1.11). The definition of the particle relaxation
time in Stokesian regime is recalled:

τp =
ρpd

2
p

18µf
. (4.15)

In this configuration, the characteristic time of the fluid τf is taken as one eddy-turnover time:

τf = Rv

Uf,max
. (4.16)

Three limiting cases can be distinguished as a function of the Stokes number. In particular, an
analytical solution of α⋆p and u⋆ can be found in the limit case of small particle inertia (St≪ 1).
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4.3.2 Analytical solution when St≪ 1

When St ≪ 1, the unsteady (term (1)) and non-linear (term (2)) contributions in Eq. 4.14 are
negligible compared to the drag force (term (3)). Then, the radial velocity equation follows the
steady equation:

u⋆ = Str⋆e−(r
⋆)2+1, (4.17)

which intensity is only driven by the Stokes number. When injected in Eq. 4.13, the volume
fraction evolution follows the equation:

∂

∂t⋆
α⋆p + f(r⋆) ∂

∂r⋆
α⋆p + g(r⋆)α⋆p = 0, (4.18)

where

f(r⋆) = Str⋆e−(r
⋆)2+1 (4.19)

g(r⋆) = 2St(1 − (r⋆)2)e−(r⋆)2+1. (4.20)

It is reasonable to assume that α⋆p has a finite tangent at the center of the vortex. Then, when

r⋆ → 0, the product f(r⋆) ∂
∂r⋆

α⋆p → 0 and g(0) = 2eSt. Thus, the particle volume-fraction follows
the simple ODE at the center of the vortex:

∂

∂t⋆
α⋆p + 2eStα⋆p = 0, (4.21)

which analytical solution is straightforward

α⋆p(r⋆ = 0, t⋆) = e−2eStt⋆ . (4.22)

Then, the particle volume-fraction continuously decreases at the center of a vortex and the
higher the Stokes number, the faster it occurs. Moreover, Eq. 4.21 can be solved numerically
using a simple forward in time, centered in space (FTCS) scheme to have an estimation of the
solution in the whole domain. This solution is referred to as semi-anlytical hereafter.

4.4 Methodology

Two main configurations of the particle-laden vortex are carried out, denoted V1 and V2, de-
pending on the inertia of the particles (Tab. 4.2 and 4.3). Two sub cases, denoted V1a and V1b,
are set up from V1 as a function of the mesh resolution Nx. Fluid characteristics, particle initial
αp and diameter are fixed for all configurations so that only the density of the particles sets
the Stokes number via the particle relaxation time. The two numerical strategies presented in
Ch. 3 are used: an high order scheme (TTGC [22]) stabilized with AV dissipation and a robust
scheme (PSI [134]) with almost no AV. These two strategies are denoted S1 and S2 in this chap-
ter, respectively, and their parameters are summarized in Tab. 4.4. The AV sensor employed for
both strategies is CM5-T, with an αp threshold Bmin(αp) four order of magnitudes lower that
the initial particle-volume fraction α0

p (cf. Sec. 3.3.1).

In case V1, the particles inertia is sufficiently low (St = 10−2) for the analytical solution to be
valid. First, the resolution of the mesh is chosen relatively high so that the gradients of αp are
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4.5. PARTICLE-LADEN VORTEX SIMULATIONS AT LOW INERTIA

expected to be sufficiently resolved (sub case V1a). The objective of V1a is to compare Eule-
rian and Lagrangian simulations (denoted V1a-EE and V1a-EL, respectively) to the analytical
solution. Then, the mesh is coarsened to study the deviation of the Eulerian simulations from
the analytical solution and the impact of the mesh resolution in the budget of αp. This sub
test case is denoted V1b. Finally, the particle inertia is increased (St = 1) so that the vortex
empties faster and gradients of αp are stiffer. This text case, denoted V2, is more restrictive
for the numerical strategies and S1a is no longer sufficient to prevent a negative particle volume
fraction. Then, the coefficient ǫ(2) is slightly increased to prevent a negative αp. This numerical
set-up is denoted S1b. Thus, case V2 is a relevant test case to compare the two numerical
strategies presented in Ch. 3: S1b and S2. Since the analytical solution is no longer valid at
this mild inertia, Eulerian simulations will be compared with Lagrangian simulations (denoted
V2-EL) which will be considered as the reference.

Uf,max(m.s−1) τf(s) α0
p dp(m)

3.48 5.75 ⋅ 10−4 10−4 10−5

Table 4.2: Characteristics of the particle-laden vortex common for the three test cases.

Nx ρp (kg.m−3) τp (s) St Numerical strategy

V1a 100 10.348 5.75 ⋅ 10−6 10−2 S1a
V1b 50 10.348 5.75 ⋅ 10−6 10−2 S1a
V2 100 1034.8 5.75 ⋅ 10−4 1 S1b & S2

Table 4.3: Dispersed-phase parameters of the particle-laden vortex.

scheme AV sensor ǫ(2) ǫ(4) Bmin(αp)
S1a TTGC CM5-T 5.10−3 5. ⋅ 10−4 10−8

S1b TTGC CM5-T 1.10−2 5. ⋅ 10−4 10−8

S2 PSI CM5-T 5.10−4 0 10−8

Table 4.4: Numerical strategies used for the particle-laden vortex simulations.

4.5 Particle-laden vortex simulations at low inertia

4.5.1 Comparison of EE and EL results with the analytical solution

The evolution of αp along time is presented in Fig. 4.3. First, particles are progressively ejected
outside the vortex, positioned at the center of the box. While the vortex gets empty, particles
accumulate at the fringe of the vortex, in a region of low vorticity. The gradient of particle volume
fraction inside the vortex stiffens progressively. Then, particle accumulation reaches a steady
state around 70 τf , where there are no more particles in the vortex, and no forces to diffuse
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the particle accumulation. The qualitative agreement between the Eulerian and Lagrangian
simulations is quite good.

(a) EE t = 0 τf (b) EE t = 10 τf (c) EE t = 20 τf (d) EE t = 30 τf

(e) EE t = 40 τf (f) EE t = 50 τf (g) EE t = 60 τf (h) EE t = 70 τf

(i) EL t = 0 τf (j) EL t = 10 τf (k) EL t = 20 τf (l) EL t = 30 τf

(m) EL t = 40 τf (n) EL t = 50 τf (o) EL t = 60 τf (p) EL t = 70 τf

Figure 4.3: Comparison of Lagrangian (Bottom) and Eulerian (Top) particle volume-fraction
fields for test case V1. Particle volume-fraction is proportional to darkness.

For a quantitative comparison, the particle volume fraction of cases V1a-EE and V1a-EL are
plotted versus the analytical solution (Eq. 4.22) in Fig. 4.4. The particle volume fraction at the
center of the vortex decreases rather slowly due to the low inertia of particles. Both Lagrangian
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and Eulerian simulations agree satisfactorily with the analytical solution. As mentioned in

1.0

0.8

0.6

0.4

0.2

0.0

α p
/α

0

100806040200
t/τv

 Analytical
 Euler
 Lagrange

Figure 4.4: Particle volume fraction at the center of the vortex. Simulations V1a-EE and V1a-EL
are compared to the analytical solution (Eq. 4.22).

Sec. 4.3.2, it is possible to obtain the solution of αp in all the computational domain (not only
at the center), resolving Eq. 4.13 with a simple finite-difference scheme. Note that the mesh
must be sufficiently fine to ensure a good convergence and accuracy of this low-order scheme.
This semi-analytical solution is compared with radial-averaged αp of profiles at different times
in Fig. 4.5(a). Overall, AVBP compares very well with the semi-analytical solution. It predicts
the right position of the preferential accumulation of particles and its intensity. In particular,
the agreement between V1a-EE and the semi-analytical solution is very good inside the vortex,
where the particle volume fraction decreases as a function of time. Then, as the time increases,
we observe a slight discrepancy in the maximum of αp. For example, maximal αp of V1a-EE at
t = 90 is 15% smaller than the analytical solution. Accordingly with the literature [129], particles
accumulate in region of minimal vorticity, which corresponds in this case to r ≃ 3.46 ⋅10−3 m (cf.
Fig. 4.2). Radial averages of particle radial velocities agree also very well with the analytical
solution, Fig. 4.5(b). Small differences of maximal up,r are visible for later times.

Evaluation of the CM5-T sensor along time

The radial-averaged profiles of the two AV sensors, shown in Fig. 4.6(b) and Fig. 4.6(a) give some
hints of how V1a-EE is stabilized. For the one-dimensional pure convection of a crenel of αp,
presented in Sec. 3.2, ζgrad was several orders of magnitude larger than ζextr. That meant that
the low resolution of the gradient of αp was more problematic for the stability of the computa-
tion than the minimal αp. Here, the issue is somewhat different. At this low inertia, the particle
preferential concentration is limited, i.e. the gradient of αp stays relatively smooth. Moreover,
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Figure 4.5: Quantitative comparison between V1a-EE results and the semi-analytical solution
(symbols). Radial-averaged profiles of particle volume fraction (left) and radial velocity (right)
at different times: t = 30 τf ( ), 60 τf ( ) and 90 τf ( ).

the mesh resolution isrelatively high (seven points in the inner gradient of αp). Furthermore,
contrary to the 1D test case, the particle-volume fraction is driven by the drag force. As the
gas is frozen, αp constantly decreases inside the vortex. The main numerical matter is then to
prevent a negative αp inside the vortex, more than to withstand a strong gradient of αp. The
profiles of ζextr and ζgrad in Fig. 4.6(b) and Fig. 4.6(a) are coherent with this analysis. ζextr is one
order of magnitude larger than ζgrad, which shows that the numerical issue of close-to-zero αp
is more important than a possible under-resolved gradient. ζextr logically increases while times
advances (αp is decreasing, becoming closer to the threshold value Bmin(αp)). Even if ζgrad is
small, it detects satisfactorily the gradient of αp, around r = Rv = 2. ⋅ 10−3m. Thus, the CM5-T
sensor behaves adequately in this configuration, which may be explained by a good choice of its
parameters (ǫ(2),ǫ(4) and Bmin(αp)).

This section compared EE and EL results with the analytical solution. It would be interesting
to quantify the effect of the mesh resolution on the accuracy and stability of this sub-test case,
all parameters being unchanged. This is be done in Sec. 4.5.2.

4.5.2 Effect of the mesh resolution

The first mesh contains 1002 cells, which yields around twenty nodes for one vortex diameter.
This high resolution is unrealistic of most two-phase flow simulations of and was only chosen to
compare EE results with the analytical and EL solutions. For example, the case of homogeneous
isotropic turbulence of Ch. 5 has around three points along one diameter for the smallest vortex.
Then, it may be interesting to investigate the impact of a coarser mesh on the numerical strategy
S1a. Case V1b is then performed on a 502 cell mesh, all parameters being unchanged.
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Figure 4.6: Radial-averaged profiles of ζextr (Fig. 4.6(b) and ζgrad (Fig. 4.6(a)) at different times
for the V1a-EE simulation: 30τf ( ), 60τf ( ) and 90τf ( ).

Comparison with the analytical solution

First, the particle volume fraction and radial velocities of V1b are compared with their corre-
sponding semi-analytical solutions in Fig. 4.7 at t = 90 τf . Note that the semi-analytical solution
is computed on the 1002 cell mesh since the FTCS scheme is unstable on a 502 cell mesh.
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Figure 4.7: Influence of the mesh resolution on the particle volume fraction (left) and on the
radial velocity at t = 90 τf . The numerical strategy is the same for V1a-EE and V1b-EE.
Comparison between V1a-EE ( ), V1b-EE ( ) and the analytical solution (◯). The
profiles are radial averaged.
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As mentioned in Sec. 4.5.1, the profile of αp (Fig. 4.7(a)) agrees very well with the semi-
analytical solution for the fine mesh. Inner and outer gradients of αps are well captured. Only
the maximal concentration at r = 3.5 ⋅ 10−3 m is slightly under-estimated. When the mesh is
coarsened, the agreement between V1b-EE and the semi-analytical solution is still acceptable.
The zones of vacuum and preferential concentration are satisfactorily reproduced. However, the
inner and outer gradients of αp are diffused and the concentration peak is around half that of
the analytical solution. This is mainly due to the AV diffusion but is the price to pay for stability.

Particle radial velocities are similar between V1a-EE and V1b-EE. The agreement is satis-
factory between EE simulations and the analytical solution, with only a slight discrepancy in the
maximum up,r. V1b-EE over-estimates twice more up,r than V1a-EE, with a 10% discrepancy.
Now, the impact of the mesh resolution is quantified with the discrete budget of the transport
equation of the particle-volume fraction.

Discrete budget of the particle volume fraction

The analysis of AV sensor profiles (as in Sec. 4.5.1) is helpful to check if they behave as expected,
i.e. if their parameters are well chosen (ǫ(2),ǫ(4) and Bmin(αp)). However, this diagnostic is
not sufficient to quantify the real impact of the AV on the simulation. An estimation of the
effective viscosity that is added by the AV operator is possible for the one-dimensional pure-
convection test case [69]. This method was used by Sanjose [112] to discriminate numerical
strategies (mesh resolution, AV sensors). However, it provides few informations about the AV
weight in the transport of particle-volume fraction. Only the discrete budget of the αp equation
could do it, which has been done in the present work and is presented in this section.

The dispersed-phase governing equations are written in their nodal form in Eq. 2.21. Then,
the nodal equation of the particle volume fraction reads:

∂αp

∂t
= −(Nj(αp) +D

(AV )
j (αp)), (4.23)

where D
(AV )
j =D

(2)
j +D

(4)
j is the global AV residual at node j.

These different terms have been extracted from AVBP in order to quantify their effective
weight in the αp equation. The discrete budget of αp for the vortex at t = 90 τf is shown in
Fig. 4.8 for both mesh resolutions.

First, the temporal derivative term is coherent with the profiles of αp in Fig. 4.7(a). For
example, four zones can be delimited for V1a-EE (Fig. 4.8(a)):

• 0 < r < 0.1 ⋅ 10−2 m: ∂αp/dt ∼ 0 , meaning that αp no longer decreases.

• 0.1 < r < 0.32 ⋅ 10−2 m: ∂αp/dt < 0, αp is decreasing. That corresponds to the emptying
side of the vortex. ∂αp/dt has a minimum around r = 0.26 ⋅ 10−2 m, just before the inner
gradient of αp, meaning that the gradient is stiffening.

• 0.32 ⋅ 10−2m < r < 0.54 ⋅ 10−2 m: ∂αp/dt > 0. Particle volume fraction increases at the outer
fringe of the vortex.

• r > 0.54 ⋅ 10−2 m: ∂αp/dt = 0, αp is not perturbed by the rotation.
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Figure 4.8: Discrete budget of the particle volume fraction at 90 τf . Influence of the mesh
resolution. Comparison between V1a-EE (left) and V1b-EE (right) test cases. ∂αp/dt ( ),

Nj(αp) ( ), −D(AV )j (αp) ( ) and budget ( ).

If no AV was added, ∂αp/∂t would be exactly equal and of opposite sign to Nj, since there is
no other term in the αp transport equation in this case (no evaporation).

The AV residuals −D(AV )j seem to balance the convective residuals Nj. Our personal under-
standing is that the effective weight of the AV in the αp transport equation may be indicated by

the ratio between ∣D(AV )j (αp)∣ and ∣Nj(αp)∣. By way of example, ∣D(AV )j (αp)∣ reaches almost

one quarter of the nodal residual in V1a-EE. Moreover, the two peaks of D
(AV )
j (αp) locate at the

same abscissa than the two peaks of ∂αp/dt, meaning that a maximum AV is actually applied
where αp increases or decreases the most.

The budget of αp is also a powerful tool to quantify the impact of the mesh resolution. First,
∂αp/∂t extrema of V1b-EE (Fig. 4.8(b)) are half those of V1a-EE. Then, the conjugate empty-
ing/accumulation of αp at the inner and outer sides of the vortex will be lower for V1b-EE than
for V1a-EE, which is coherent with the analysis of the αp of profiles (Fig. 4.7). Note that ∂αp/∂t
is not null and negative at the center of the vortex for V1b-EE, meaning that it is still emptying.
Another difference between V1a and V1b is the quantity of AV applied in the simulation. For

V1b, D
(AV )
j (αp) has almost the same amplitude than the convective residuals while it is limited

for V1a, meaning that the AV yields as numerical dissipations as the convective scheme for the
coarse mesh.

Remark that the effective application of AV is not fully correlated with the sensor amplitude
(Fig. 4.6). That agrees with the theoretical definition of the AV operators in Sec. 2.3. The AV
operators are linear functions of the sensor but also depends of the gradient of the conservative
variables. AV is not applied if there are no gradients, even if the AV sensors are high.
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4.6 Vortex laden with inertial particles (St = 1)

At low inertia, the vortex empties smoothly and gradients of αp are then sufficiently well resolved
with a 1002 cell mesh. Then, particle density is increased to have a higher dynamic inertia, with
a Stokes number –based on one eddy-turnover time– close to unity1. This test case is denoted
V2 (Tab. 4.3). Lagrangian simulations are carried out to validate the Eulerian results, since the
analytical solution is no longer valid.

Fig. 4.9 presents the time evolution of αp of the Lagrangian simulation (V2-EL). At this
intermediate inertia, particle are ejected of the center of the vortex faster and further than at
low inertia. The vortex is emptied in only six eddy-turnover time, which is about ten times less
than at St = 10−2. The particle concentration peak has a very high amplitude and is narrower
than at low inertia. At t = 8 τf , it represents seven times the initial αp in amplitude. The
resulting gradient of αp is extreme, with several orders of magnitude between the maximal and
minimal αp at the inner part of the vortex and only one grid point (highlighted by solid circles at
t = 8 τf in Fig. 4.9). Interestingly, at a certain time, the concentration peak begins to decrease.
At t = 10 τf , it is lower and wider than at 8 τf . One has to mention that particle collisions
are not taken into account in this test case. With collisions, particle preferential concentration
increases and the size of the cluster decreases (Fede and Pastis [51]), so that the concentration
peak at t = 8 τf may have higher amplitude.

Now, Eulerian simulations of V2 are performed with the two strategies determined in Ch. 3.
Note that case V2-EE crashes with the S1a strategy (TTGC+AV) before one eddy-turnover time.
A negative αp occurs at the center of the vortex, where the vorticity is maximum (Fig. 4.2). The
AV sensor ζextr activates but ǫ(2) is not high enough to withstand the quick vortex emptying.
When ǫ(2) is twice higher, V2-EE does not fail, which defines the S1b strategy in Tab. 4.4. This
underscores one weakness of the S1 strategy.: the coefficient ǫ(2) is case sensitive. The same
simulation is performed with the S2 strategy (PSI scheme + a small amount of 2nd-order AV).
These two numerical strategies are compared with the reference solution in Fig. 4.10. At t = 2τf ,
the gradients of αp are mild and have enough grid resolution (Fig. 4.10(a)). Then, V2-EE with
the strategy S1b is in perfect agreement with Lagrangian results. Eulerian simulation with S2
are comparatively not as good as S1b. The particle concentration peak is underestimated by
50%2. As discussed previously, the particle concentration is maximum at t = 8 τf (Fig. 4.10(b)).
This situation is challenging for numerical strategies as the gradient of αp is high with only
one grid point inside. At t = 8τf , both numerical strategies S1b and S2 yield similar results,
and both under estimate αp by around 60% in comparison with the Lagrangian reference. The
disappointing performance of S1b is assumed to be due to the large amount of ǫ(2) necessary to
stabilize the computation.

In this chapter, the test case of a two-dimensional particle-laden vortex has been presented.
The originality of this test case is that an analytical solution of the particle volume fraction can

1This threshold value is somehow indicative in this chapter. We are not trying to be in a regime where
preferential concentration is maximal. This phenomenon is maximal for Stokes number around unity, but when
the fluid characteristic time is based on the Kolmogorov scale [148] and not on one eddy-turnover time.

2Note that the miscalculation of αp at the center of the vortex is due to an artefact of the PSI scheme. This
scheme cannot distribute the residuals if the velocity equals exactly zero at a node, which is the case at r = 0.
This situation seldom occurs in realistic situations.
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Figure 4.9: Lagrangian results (V2-EL). Radial-averaged profiles of particle volume fraction
along time.
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Figure 4.10: Particle volume fraction profiles at t = 2 τf and t = 8 τf . Comparison between
Lagrangian simulation ( ◯ ) and Eulerian simulations with two different numerical strategies
defined in Tab. 4.4. S1(TTGC scheme + AV): and S2 (PSI scheme): .
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be derived at low inertia. Eulerian simulations carried out with the “TTGC + AV” strategy
agree very well with this analytical solution. Moreover, a discrete budget of the equation of αp
allowed us to thoroughly quantify the impact of the AV and of the mesh resolution. Finally,
numerical strategies were evaluated at higher inertia, where gradients of αp are stiffer. The
conclusion is that the “TTGC+AV” strategy can be as robust as the PSI scheme if the user
parameter ǫ(2) is well chosen. Moreover, the “TTGC+AV” strategy yields better or similar
results than the PSI scheme, depending on how the gradient of αp is resolved. The agreement
between “TTGC+AV” strategy and the Lagrangian reference is remarkable for well resolved
gradients of αp, whereas it is alleviated for (very) stiff gradients.
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Particle-laden Homogeneous Isotropic Turbulence (HIT) is a canonical test case to study the
dynamics of two-phase flows. This configuration is academic, but contains a lot of the physics
that occurs in a wide range of industrial applications. Numerous theoretical, experimental and
numerical investigations have been carried out on this configuration. One can mention the fun-
damental work of Tchen [138] and Hinze [52] about the diffusion of passive scalars in stationary
HIT and the extension to inertial particles. Seminal experimental and numerical investigations
brought light on the particle dispersion in turbulent flows [106, 127]. Fundamental physical phe-
nomena have been studied and understanding has been gained such as the particle preferential
concentration [82, 131], the effect of particle collisions [149], the effect of the mass loading on the
carrier turbulence [35, 130] or more recently the effect of particle concentration on evaporating
sprays [100].
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The numerical setup of this particle-laden HIT test case is one of those used by Kaufmann [63]
to study the dispersion of particles as a function of their inertia. The Stokes number based the
Kolmogorov scale is sufficiently high (StK ∼ 2.5) to be in regime of preferential concentration.
Particle volume fraction gradients are very steep and the dispersed phase acts as a highly com-
pressible phase. This setup has been used afterwards by Riber and Vié [103, 145] to investigate
one step further the MEF and discriminate numerical strategies. It is now a validation test case
for AVBP. Eulerian results are compared with a Lagrangian simulation performed by Moreau [83]
(referred to as case A) with the NTMIX code [14]. Eulerian mesoscopic variables are extracted
from these simulations using an adequate gaussian projection procedure [64] and are considered
as the reference.

In this chapter, the test case of particle-laden decreasing HIT is used to discriminate the
numerical strategies one step further than the two previous academic test cases in Chap. 3 and
Chap. 4. First, the numerical setup of the gaseous field will be recalled in Sec. 5.2. Then,
numerical strategies will be investigated using two diagnostics: (1) the particle concentration
function gpp = ⟨ñ2

p⟩/⟨ñp⟩2 in Sec. 5.4 and (2) the discrete budget of αpρpũ
2
p in Sec. 5.5.

5.1 Brief theoretical background

The HIT configuration provides a theoretical framework where the scales of the turbulence
can be defined analytically. Indeed, the assumed homogeneity (invariance by translation) and
isotropy (invariance by rotation and reflexion) of the statistics greatly simplifies the definition of
two-points correlations which are a powerful tool to describe the turbulence [18, 95]. Hereafter,
the various scales of the turbulence are detailed to define the macroscopic quantities and dimen-
sionless numbers used in this chapter. This section is partly excerpted from the fundamental
book of Hinze [52].

The Eulerian spatial correlation tensor of fluid velocities defined at two points located at
distance r is defined as

R
E
f,ij =

⟨uf,i(x + r, t)uf,j(x, t)
2q2
f
(x, t) (5.1)

where ⟨⋅⟩ is the ensemble average operator and

q2f(x, t) = 1

2
⟨uf,i(x, t)uf,i(x, t)⟩ (5.2)

is the turbulent kinetic energy (TKE) of the fluctuating velocity uf,i. The characteristic velocity
of the turbulence is then defined as

u′f =
√

2

3
q2
f
. (5.3)

A consequence of homogeneity is that REf,ij is independent of the location x and only depends
of the radial distance r between the two points xi and xj. Moreover, in isotropic configuration,
R
E
f,ij can be written as a function of the Eulerian longitudinal and transverse autocorrelation
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functions f and g of the fluid:

f(r, t) = REf,11 (5.4)

g(r, t) = REf,22 (5.5)

R
E
f,ij = g(r, t)δi,j + f(r, t) − g(r, t)

r2
rirj , (5.6)

where r = ∣r∣ in an orthonormal basis ei. Then, longitudinal and transverse integral length scales
of the fluid, denoted Lf

f
and Lg

f
, respectively, are:

L
f
f
= ∫

∞

0
f(r, t)dr (5.7)

L
g
f
= ∫

∞

0
g(r, t)dr. (5.8)

These integral length scales represent the distance from where two velocities are not correlated
anymore. They are representative of large scales of the turbulence. On the contrary, Taylor
scales are representative of dissipative scales of the turbulence and are defined as

λ
f
f
(t) = ( − 1

2

∂2f

∂r2
∣
r=0,t
) (5.9)

λ
g
f
(t) = ( − 1

2

∂2g

∂r2
∣
r=0,t
). (5.10)

Finally, the longitudinal and transverse integral and Taylor scales can be related [56] in isotropic
incompressible flows by the relations:

L
f
f
= 2 Lg

f
(5.11)

λ
f
f
= √2 λg

f
. (5.12)

In HIT, the TKE decreases progressively due the viscous dissipation, following the equation:

dq2f

dt
= −εf . (5.13)

In Eq. 5.13, εf refers to the dissipation rate of the TKE, defined as

εf = νf
2
⟨∂uf,i
∂xj

+ ∂uf,j
∂xi
⟩, (5.14)

where νf is the kinematic viscosity of the fluid. In HIT, the dissipation rate can be computed
thanks to the transverse Taylor scale:

εf =
15νfu

′2
f(λg

f
)2 . (5.15)

Then, the Eulerian integral length scale Lf
f

may be approximated as a function of the macro-
scopic quantities

L
f
f
≈ (u′f)3

εf
. (5.16)
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Finally, the turbulent Reynolds number is defined as the ratio of the inertia over the viscous
effects:

Ret =
L
f
f
u′f

νf
. (5.17)

The turbulent Reynolds number is based on the integral scale Lf
f
, and consequently character-

izes the turbulence of large eddies. The energy contained at these large scales is progressively
transferred through the “energy cascade” to the smallest scales of the turbulence, characterized
by the Kolmogorov scale ηK , and is finally dissipated by the viscosity. If the separation of scales
between the largest and smallest scales of the turbulence is sufficient, the size, timescale τK and
velocity vK of the smallest eddies only depend on the kinematic viscosity and of the dissipation
rate as:

ηK = (ν3
f

εf
)1/4 (5.18)

τK = (νf
εf
)1/2 (5.19)

vK = (νfεf)(1/4). (5.20)

By definition, inertia is totally balanced by the viscous effect at the Kolmogovov scale, so that

ReK = ηKvK
νf

= 1 (5.21)

Combining Eq. 5.16, 5.17, 5.20 and 5.21, the ratio of the largest scale of the turbulence to the
Kolmogorov scale equals

L
f
f

ηK
= Re

3/4
t . (5.22)

Then, the separation of scales increases when the turbulent Reynolds number increases. Finally,
the Eulerian integral time scale can be defined as

TEf =
L
f
f

u′
f

, (5.23)

and represents one eddy turnover time of a large eddy of size L
f
f
. Moreover, a Lagrangian

characteristic time of the turbulence τ tf can be introduced as the time necessary for a fluid particle
to be entirely uncorrelated. Haworth and Pope [48] suggest to model the general equation of
the fluid particle velocity increment by a Langevin equation and proposes

τ tf =
q2f

β1εf
, (5.24)

where β1 = 2.075 in a forced HIT. In this chapter, the characteristic time scale of the fluid is τ tf .

80



5.2. DESCRIPTION OF THE TEST CASE

5.2 Description of the test case

All the simulations are performed on a cubic box of edge 2πLref where Lref = 10−3 m, with
periodic boundary conditions in all directions. The carrier phase is composed of a synthetic
gas similar to the air of density ρf and speed of sound Uref . The kinematic viscosity νf has
been chosen to yield the same acoustic Reynolds number Reac = UrefLref/νf than the reference
simulation (cf. Tab.5.1). Hereafter, all the physical parameters will be normalized by the

Reac νf (m2.s−1) ρf (kg.m−3) µf (kg.m−1.s−1)

200 1.735 ⋅ 10−3 1.164 2.02 ⋅ 10−3

Table 5.1: Characteristic variables of the carrier phase

variables summarized in Tab. 5.2. Normalized variables will be denoted by the superscript “+”.

Uref(m.s−1) Lref tref (s)

347 10−3 2.8818 ⋅ 10−6

Table 5.2: Normalization variables of the carrier phase

Decaying HIT is a statistically unsteady test case and depends entirely on the initial condi-
tions and parameters of the carrier and dispersed phases. First, the initialization procedure is
detailed in Sec. 5.2.1.

5.2.1 Initialization procedure

The initialization of the two-phase flow simulations is performed in two steps, depicted in Fig. 5.1.

Figure 5.1: Methodology to initialize the particle-laden HIT configuration.

Carrier phase

First, a synthetic turbulent kinetic energy spectrum is created in the spectral space. The velocity
field in the physical space is then computed from a reverse Fourier transform of the velocity field
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in the spectral space. Most of the models consist in the approximate solution of the TKE
equation in the Fourier space [18]:

∂

∂t
Ef(k, t) = Tf(k, t) − 2νfk

2Ef(k, t), (5.25)

where Ef(k, t) is the TKE as a function of the wave number k and time t. In Eq. 5.25, Tf refers
to the energy transfer from the largest scales to the smallest scales. Two models are widely
used to create the TKE spectrum in the spectral space, namely the Passot-Pouquet (PP) [92]
and the von Kármán Pao (VKP) [146] spectrum. As stressed by Riber [103], the VKP model
is only valid for Ret > 200, which is larger than the turbulent Reynolds number of the present
configuration (Ret = 13.6 at t+0 = 4.233). Therefore, the velocity field is initialized with the PP
spectrum defined by the following approximation of the TKE:

Ef(k, t) = 16u
′2
f,t

ke

√
2

π
( k
ke
)4e−2[k/ke]2 , (5.26)

where ke = 2π/le is the characteristic wave number based on the most energetic length scale le
and u′f,t is its associated velocity fluctuation. For this test case, these parameters have been
chosen as l+e = 2.2 and u′f,t = 0.1.

Contrary to the VKP model, the PP spectrum only takes into account the most energetic
eddies. Consequently, the TKE is gathered around ke, so that the resulting spectra lacks of
the most dissipative scales, as shown in Fig. 5.2. Moreover, this model yields a velocity field

Figure 5.2: Comparison of the turbulent kinetic energy spectra at time t+ = 0 ( ) and at
time t+ = t+0 ( ).

that satisfies the continuity equation but not the momentum equation. Therefore, a common
procedure is to carry out a gaseous simulation during a certain time to retrieve a solution
satisfying the Navier-Stokes equations. Then, the simulation is carried out during roughly one
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eddy turnover time of the large scales (t+0 = 4.233). Tab. 5.3 summarizes the main parameters
of the carrier phase at t+0 = 4.233. After this time interval, the TKE spectrum presents a wider

quantity # equation

Ret (5.17) 13.6

q2f (5.2) 9.37 ⋅ 10−3
εf (5.14) 1.08 ⋅ 10−3
u
′

f (5.3) 0.079

L
f
f

(5.4) or (5.16) 0.861 or 0.458

ηK (5.18) 0.104

TEf (5.23) 10.8

τ+K (5.19) 2.15

τ
t,+
f

(5.24) 4.19

Table 5.3: Main parameters of the carrier phase at t+0 = 4.233, when the particles are added.
Excerpted from [83].

range of scales (Fig. 5.2) than the initial condition. Part of the energy has been transfered from
the largest eddies to the smallest scales of the turbulence. However, the separation of scales is
moderate at this relatively low Ret, so that the TKE spectra lacks of the inertial subrange where
Ef(k) ∝ k−5/3. Nevertheless, the carrier phase is considered sufficiently relevant of a turbulent
flow at t = t+0 to add the particles.

Dispersed phase

The dispersed phase is sufficiently diluted to assume that it has no impact on the carrier phase
(one-way coupling). Moreover, the ratio of the density of the dispersed to the carrier phase is
sufficiently high to assume that only drag force acts upon the dispersed phase and that other
forces are negligible. With these assumptions, the dispersed phase dynamics only depends of
the particle inertia and of the initial condition.

The main particles properties are summarized in Tab. 5.4. The Stokes number used in this
chapter is based upon the particle relaxation time τp (Eq. 1.9) and the fluid Lagrangian time
scale τ tf (Eq. 5.24) evaluated when the particles are embedded in the gaseous flow (cf. Tab. 5.3).
It is roughly one half of the Stokes number based on the Kolmogorov time scale.

The initial distribution of particles is uniform with αp = 2.7 ⋅10−2. Since particles are injected
at the same velocity than the carrier phase. Then, there is no drag at t = t+0 . Note that this
particle volume fraction is larger than the previous one-dimensional and two-dimensional test
cases in this manuscript Chap. 3 and Chap. 4. This has no impact on the dynamics of the
particles as collisions are not taken into account. The initial RUE is arbitrarily fixed at a non-
null value of 0.1 so that it can increase during the computation. Indeed, the production and
destruction terms in the RUE equation (Eq. 1.52) are linearly related with the RUE. The RUE
would remain zero if it is initialized at zero.
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τ+p St = τ+p /τ t,+f StK = τ+p /τ+K ρp(kg.m−3)
5.47 1.3 2.54 1916

dp(m) ñp(m−3) ũp,i(m.s−1) δθp(m2.s−2)
17.3 ⋅ 10−6 1013 uf,i 0.1

Table 5.4: Dispersed phase properties when solid particles are embedded at t = t+0 .

5.3 Methodology

5.3.1 Previous work with the MEF with this test case

The simulations performed by Kaufmann [63] used the Lax-Wendroff (LW) scheme [73] for both
the carrier and the dispersed phase. At this time, it was the only scheme available for the
dispersed phase in AVBP and AV models had not been implemented for the dispersed phase.
The LW scheme is known to smooth the gradients and to be dispersive [69]. For the simulations
with the high compressible effect, the LW scheme was not sufficiently stable to handle the steep
gradients due to the particle concentration. To deal with this numerical difficulty, Kaufmann
introduced a subgrid bulk viscosity in the momentum equations to act on the compressible
part of the mesoscopic velocity. The mesoscopic and RUM particle kinetic energy were in good
agreement with the Lagrangian reference. However, the particle concentration, characterized by
the dispersion function [124]

gpp =
⟨ñ2
p⟩⟨ñp⟩2 (5.27)

was strongly under-estimated, as shown in Fig. 5.3.

Riber [103] showed the superiority of the TTGC scheme in comparison with the LW scheme,
if an adequate AV model (JR model) was used. The stability and accuracy of the simulation
were increased. In particular, the LW and TTGC dissipations of the gaseous TKE were com-
pared thanks to the discrete budget of the TKE equation, following [86]. A RUE flux limiter
was introduced to prevent non-physical negative value of RUE. With that strategy, the subgrid
bulk viscosity of Kaufmann was shown to be no longer necessary. The RUM model VISCO
(presented in Sec. 1.3.3) predicted accurately the RUE levels. Although better than with the
LW scheme, the maximum segregation of particles computed with the TTGC scheme was still
under-estimated (cf. Fig. 5.3).

Similarly to Riber [103], Vié [145] used the time evolution of gpp to discriminate Eulerian
simulations with different AV models in comparison with the Lagrangian reference. It was shown
that the modification of the CM AV sensor (cf. Sec. 2.3.1), coupled with the TTGC scheme,
improved significantly the Eulerian simulations. In particular, Eulerian simulations with the
CM10-S AV model captured very well the particle segregation (cf. Fig. 5.3). A numerical
clipping of αp was used to prevent negative values. The influence of the mesh resolution was
not studied.

84



5.3. METHODOLOGY

2.0

1.8

1.6

1.4

1.2

1.0

g p
p

30252015105

t
+

Figure 5.3: Time evolution of the particle concentration, characterized by the function gpp.
Comparison between Lagrangian results (●) and non-exaustive “best” results of Kaufmann [63]
( ), Riber [103] ( ) and Vié [145] ( ).

5.3.2 Present work: presentation of the test cases

As mentioned before, this test case already brought insights about the numerical strategies used
to perform two-phase flow simulations with AVBP. However, several points have not been stud-
ied yet.

For example, the PSI scheme performance has only been quantified on simple test cases by
Lamarque [69] and Sanjose [112] and in Chap. 3 and Chap. 4 of the present work. It could be
interesting to evaluate this scheme on a more realistic turbulent test case. Moreover, as men-
tioned in Sec. 2.2.3, the PSI scheme is now plugged with the TTGC scheme for the carrier phase.
Thus, two-phase flow simulations carried out with PSI and TTGC for the dispersed phase can
be directly compared as the carrier phase is the same. Then, two Eulerian simulations are per-
formed with the two numerical strategies outlined in Chap. 3 and Chap. 4, denoted T1 and T2
in Tab. 5.5. Cases T1 and T2 are performed on two different meshes1, denoted M1H and M1T,
respectively. The only difference between M1H and M1T is the type of elements, as it can be
seen in Tab. 5.6. Indeed, the PSI scheme has not been implemented yet for hexahedral elements
in AVBP. Note that the mean space step is the same between M1H and M1T. Furthermore, the
influence of the AV sensor is investigated (case T3), similarly to Vié [145]. All parameters are

1It has been verified that case T1 yields the same results on M1H and M1T. The TTGC scheme performances
are rather the same on hexahedral and tetrahedral meshes [15] if the space step is similar.
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unchanged between configurations T1 and T3 except the sensor on the gradients. Finally, the
mesh is refined to study its influence on Eulerian simulations (case T4).

keyword mesh scheme AV sensor ǫ(2) ǫ(4)

T1 M1H TTGC CM5-T 0.115 5 ⋅ 10−3
T2 M1T PSI CM5-T 1. ⋅ 10−2 0
T3 M1H TTGC CM10-T 0.115 5 ⋅ 10−3
T4 M2H TTGC CM5-T 0.115 5 ⋅ 10−3

Table 5.5: Characteristics of the particle-laden HIT test cases

keyword type resolution ∆xmin ∆xmax # of elements

M1H hexa 643 9.82 ⋅ 10−5 9.82 ⋅ 10−5 262144
M1T tetra 643 3.89 ⋅ 10−5 2.99 ⋅ 10−4 1479900
M2H hexa 1283 4.91 ⋅ 10−5 4.91 ⋅ 10−5 2097152

Table 5.6: Mesh characteristics

The four test cases are performed with the same initial condition, detailed in Sec. 5.2. The
RUM model is VISCO (presented in Sec. 1.3.3). Note that the AV parameter ǫ(2) has been
minimized to ensure both robustness and accuracy of the computations.

First, the particle concentration function gpp (Eq. 5.27) is used to compare the test cases.
The particle concentration function of the test case Tx, denoted gTxpp , will be compared with

that from a Lagrangian simulation, denoted gELpp , carried out by Moreau [83] with the NTMIX
code [14].

5.4 Macroscopic evaluation of numerical strategies

The time evolution of gTxpp and gELpp is shown in Fig. 5.4. First, gELpp exhibits two inflection points.
It increases quickly after that particles have been added, reaches a plateau around t+ = 10 and
increases again around t+ = 17. Unfortunately, no Lagrangian data are available after t+ = 25.
Then, the decline of αp after having reached a maximum, observed in the particle-laden vortex
(Sec. 4.6), cannot be confirmed in the HIT with the Lagrangian data. Nevertheless, Eulerian
simulations agree satisfactorily with the Lagrangian reference. However, none of the Eulerian
results capture the two inflections. The Eulerian results may be compared step by step:

• Impact of the convective scheme: TTGC (T1, ) vs PSI (T2, ). Eulerian

results are similar with the TTGC and PSI scheme when the value of ǫ(2) is tuned (ǫ
(2)
T1 ≪

ǫ
(2)
T2 ). At the beginning of the computation, preferential concentration is slightly lower

with PSI than with TTGC. This trend reverses around t⋆ = 13. This is coherent with
the results of the particle-laden vortex in Sec. 4.6, where PSI initially under-estimated the
maximal αp and then agreed satisfactorily with TTGC.

86



5.4. MACROSCOPIC EVALUATION OF NUMERICAL STRATEGIES

2.2

2.0

1.8

1.6

1.4

1.2

1.0

g p
p

302520151050

t
+

Figure 5.4: Time evolution of the particle concentration, characterized by the function gpp
(Eq. 5.27). Comparison between Lagrangian results (●) and Eulerian simulations: T1( ),
T2 ( ), T3 ( ) and T4 ( )

• Influence of the AV sensor: CM5-T (T1, ) vs CM10-T (T3, ). The tuning of
the CM family of AV sensors (Sec. 2.3.1) does have an impact on the particle preferential
concentration, as reported by Vié [145]. Eulerian results with the CM10-T sensor are in
better agreement with the Lagrangian reference than the T1 test case. The increase of gpp
at the early stage of the simulation is well captured by T3. That underscores again the
importance of the AV in the strategy “TTGC + AV”. Results can be very good with an
adapted sensor and a tuned ǫ(2). Note that case T2 (PSI) yields the same results with the
sensor CM5-T and CM10-T.

• Effect of the mesh resolution: coarse mesh M1H (T1, ) vs fine mesh M2H (T4, ).
First, the CM10-T sensor no longer provides enough stability when the mesh is refined.
The computation crashes after a few iterations. That is the reason why the CM5-T sensor
is used in T4. While the particle concentration is under-estimated for t⋆ < 9 with the coarse
mesh, it is in good agreement with the Lagrangian reference with a finer mesh. However,
the over-estimation of gT4

pp for t⋆ > 9 in comparison with gELpp (+20%) is disappointing.
Several reasons may explain this result.

On the one hand, Lagrangian simulations have been performed on M1H whereas T4 is
carried out on M2H. Comparing Eulerian results carried out on a 1283 cell mesh with
Lagrangian results performed on a 643 cell mesh may be questioned. Unfortunately, La-
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grangian data are not available on the finer mesh. The particle segregation is driven by
the intricate relationship between the particle inertia and the surrounding turbulent struc-
tures. Since the particle inertia is fixed between cases T1 and T4, an increase of preferential
concentration could be explained by different carrier phases. However, the carrier phase is
already converged on M1H, as shown in Fig. 5.5 where the mean and local TKE of the car-
rier phase obtained with T1 and T4 are compared. Discrepancies between the two meshes
are negligible. There is no physical reason that the Lagrangian particle field would not be
the same between M1H and M2H. Nevertheless, Lagrangian data are actually projections
of Lagrangian fields on a Eulerian mesh. If particle clusters are thinner than the mesh
space step, the interpolation on a coarse mesh would yield a lower projected particle field.
Thus, available Lagrangian data on M1H may be lower than the “true” field.
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Figure 5.5: Influence of the mesh resolution on the carrier phase. Left: Normalized mean
turbulent kinetic energy. (T1 (coarse mesh): , T4 (fine mesh): ◯ , EL: ). Right: PDF
of the turbulent kinetic energy at the center of the domain (T1 (coarse mesh): , T4 (fine
mesh): ).

On the other hand, assuming that the Lagrangian data are ok, the over-estimation of the
particle preferential concentration on the finer mesh may come from the Eulerian approach.
Contrary to the Lagrangian approach, where particles are tracked individually and only
depend on the carrier phase, Eulerian particle fields are conditioned by the resolution of
the mesh. Indeed, there is no equivalent of the Kolmogorov scale for the dispersed phase
at which smallest scales are dissipated by the viscosity. The dissipation of the smallest
structures is driven by the mesh step through the natural dissipation of the convective
scheme or through the stabilization strategies (AV). The discrete budget of particle volume
fraction in Sec. 4.5.2 showed that the AV decreases when the mesh gets finer. Then, the
dissipation due to numerics may be lower with M2H than with M1H.

An other reason could be the RUM model. On average, the VISCO model provides –in this
configuration– very good results of mesoscopic and uncorellated kinetic energy compared
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with Lagrangian data [103]. However, preferential concentration is a local phenomenon
and the VISCO model has not been validated with local comparison of RUE in this HIT.
Masi [78] showed recently that a good evaluation of the RUE by the RUM model in average
does not mean directly that the local transfer between mesoscopic and uncorrelated energy
is well captured. Moreover, it is now known that the AV strategy used in the former
Eulerian simulations of this configuration [103] were not adapted [145]. Then, AV may do
part of the RUM model’s job locally. These are only assumptions. One way to thoroughly
confirm them is to write the discrete budget of particle MKE, which is done in Sec. 5.5.

5.5 Discrete kinetic energy balance of the dispersed phase

The particle dispersion function gpp is undoubtedly useful to compare numerical setups. How-
ever, it hardly differentiates the impact of numerics (scheme, AV, mesh) from that of physics
(drag force, RUM). These terms can be isolated with the derivation of the discrete MKE balance
of the dispersed phase.

5.5.1 Analytical derivation

The discrete balance equation of the total kinetic energy of the carrier phase was proposed by
Moureau [86] to quantify the effect of the numerical scheme and artificial viscosity in the context
of LES. Following the same methodology, the discrete balance of the MKE of the dispersed phase
is derived2.

The starting point is the splitting of the temporal derivatives of ρpαpũ
2
p,i as a function of the

temporal derivatives of the particle volume fraction and momentum as:

1

2

∂ρpαpũ
2
p,i

∂t
= ũp,i∂ρpαpũp,i

∂t
− ũ2

p,i

2

∂ρpαp

∂t
. (5.28)

The time derivatives of the RHS of Eq. 5.28 are written in their nodal form, taking into account
the AV terms as presented in Eq. 2.21:

∂ρpαp

∂t
= −(Nj(ρpαp) +D

(AV )
j (ρpαp)) (5.29)

∂ρpαpũp,i

∂t
= −(Nj(ρpαpũp,i) +D

(AV )
j (ρpαpũp,i)) + Sj,drag +Sj,RUM , (5.30)

where Sj,drag and Sj,RUM are the nodal residuals of the drag force and RUM terms in the

momentum equation at node j. The AV operator D
(AV )
j is the sum of the 2nd and 4th-order AV

terms

D
(AV )
j =D

(2)
j +D

(4)
j . (5.31)

2It is actually the MKE multiplied by the particle volume fraction. The budget of this quantity is easier to
obtained in AVBP as it transports the conservative variables αp and αpũp,i. Their respective residuals are directly
available in the code.

89



CHAPTER 5. PARTICLE-LADEN DECAYING HOMOGENEOUS ISOTROPIC TURBULENCE

Then, the particle velocity ũp,i and square velocity ũ2
p,i in Eq. 5.28 are approximated by the

arithmetic and geometric means, denoted respectively v
(1)
i and v

(2)
i :

ũp,i ≃
ũn+1p,i + ũnp,i

2
= v(1)i (5.32)

ũ2
p,i ≃

ũn+1p,i ũ
n
p,i

2
= v(2)i . (5.33)

Finally, the discrete equation of the particle kinetic energy budget is obtained combining Eq. 5.28-
5.33:

∂ρpαpq̃
2
p

∂t
= −(v(1)i Nj(ρpαpũp,i) − v(2)i Nj(ρpαp))
⋯ −(v(1)i D

(AV )
j (ρpαpũp,i) − v(2)i D

(AV )
j (ρpαp))

⋯ +v(1)i Sj,RUM(ρpαpũp,i) (5.34)

⋯ +v(1)i Sj,drag

The budget equation of the mean particle kinetic energy is obtained by a spatial average
over the computational box of Eq. 5.35, yielding:

−⟨∂ρpαpq̃2p
∂t

⟩ = εscheme + εdrag + εRUM + εAV , (5.35)

where εscheme, εdrag, εRUM and εAV refer to the dissipation due to convection (numerical
scheme), drag force, RUM and artificial viscosity. These dissipation terms are defined as

εscheme = ⟨v(1)i Nj(ρpαpũp,i) − v(2)i Nj(ρpαp)⟩
εdrag = −⟨v(1)i Sj,drag⟩
εRUM = −⟨v(1)i Sj,RUM(ρpαpũp,i)⟩
εAV = ⟨v(1)i D

(AV )
j (ρpαpũp,i) − v(2)i D

(AV )
j (ρpαp)⟩.

(5.36)

The normalized dissipation ε+ is defined as

ε+● = ε●

−⟨∂ρpαpq̃2p
∂t

⟩
.

Then, the normalized budget equation of particle kinetic energy reads:

ε+scheme + ε+drag + ε+AV + ε+RUM = 1 (5.37)

Note that ∂ρpαpq̃
2
p/∂t is explicitly computed in the code using a simple centred method

∂ρpαpq̃
2
p

∂t
≃ 1

2

ρpα
n+1
p (ũn+1p,i )2 − ρpαnp (ũnp,i)2

∆t
(5.38)

to check that the budget is closed.
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5.5.2 Application of this diagnostic to the test cases

The terms of Eq. 5.37 have been extracted from AVBP for the four test cases (cf. Tab. 5.5).
The time evolution of these normalized dissipations is plotted in Fig. 5.6. A special attention
has been given to highlight numerical and physical dissipations. Similarly to Sec. 5.4, T1 will
be successively compared with the other test cases.

• Impact of the convective scheme: TTGC (T1, Fig. 5.6(a)) vs PSI (T2, Fig. 5.6(b)).
The major difference between TTGC and PSI is the numerical dissipation, highlighted by
continuous lines with symbols in Fig. 5.6. Dissipation due the convective scheme and that
due to the AV behave in opposite ways between T1 and T2. On the one hand, for TTGC,
it is ε+AV that dissipates the most the MKE. The dissipation of the scheme is almost null.
On the other hand, for PSI, the MKE is solely dissipated by the scheme at the beginning
of the computation, whereas ε+AV is negligible.

The shape of ε+RUM may be explained roughly as the following. The particles are injected
with the same velocity of the gas, so that RUE would be null at t+ = 0 if we have not
imposed δθp = 0.1 for numerical reasons (cf. Sec. 5.2.1). After a transient time corre-
sponding to one τp, preferential concentration becomes visible. The clusters of particles
are composed of particles coming from different areas of the domain with spatially decorre-
lated velocities. Thus, the augmentation of preferential concentration observed in Fig. 5.4
logically implies an increase of the RUE, and consequently of ε+RUM . Then, the turbulence
is progressively damped out by the viscosity so that RUE decreases.

One important remark is that the numerical dissipation (ε+AV for T1 or ε+scheme for T2)
is higher than the dissipation associated to the RUM model for both test cases. In these
conditions, the evaluation of the RUM models is questionable.

• Influence of the AV sensor: CM5-T (T1, Fig. 5.6(a)) vs CM10-T (T3, Fig. 5.6(c)). It
was shown in Sec. 3.3.1 that the increase of the K parameter (Eq. 2.35) sharpens the CM
sensor, so that the activation of the AV is delayed. Consequently, the mean dissipation
associated to the CM10-T sensor (in Fig. 5.6(c)) is lower than that associated to CM5-T
(in Fig. 5.6(a)). As ε+scheme is similar between T1 and T3, the decrease for ε+AV is favorable
to the physical dissipations ε+drag and ε+RUM . Consequently, the maximum dissipation
associated with the RUM model is slightly higher in T3 and than in T1.

• Effect of the mesh resolution: coarse mesh M1H (T1,Fig. 5.6(a)) vs fine mesh M2H
(T4,Fig. 5.6(d)). Comparing Fig. 5.6(a) and Fig. 5.6(d), the dissipation associated to the
AV drastically decreases when the mesh is refined, consistently with what suggested the
analysis of the discrete budget of αp equation in Sec. 4.5.2. For case T4, ε+AV quickly falls
to a constant value of 18% after a one τp. Interestingly, the physical dissipations are now
higher than those related to the numerics.
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Figure 5.6: Discrete kinetic energy balance of the dispersed phase for the different test cases.
The normalized dissipations of Eq. 5.37 are plotted. Numerical dissipations are represented by
symbol-continuous lines ( ε+scheme: and ε+AV : ▲ ) where physical dissipations are plotted
with dotted lines (ε+drag: △ and ε+RUM : ). Budget: 1 −∑ ε+● ( )
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5.6 Conclusions

The numerical aspects of the MEF used in this work have been studied on a particle-laden
HIT configuration in regime of preferential concentration. Following the consecutive studies
performed on the same configuration [63, 83, 103, 145], the two numerical strategies detailed in
Chap. 2 have been evaluated using the particle dispersion function [124]. The conclusions are
the following:

• The two numerical schemes used for the dispersed phases, TTGC and PSI, provide similar
results when ǫ(2) is tuned.

• At constant ǫ(2), TTGC results can be nonetheless improved when the AV sensor is mod-
ified, whereas this procedure has no effect on PSI.

• Preferential concentration is unexpectedly over-predicted with a finer mesh and the best
numerical strategy.

Then, the discrete budget of the MKE equation has been written to discriminate more quan-
titatively the numerical strategies, quantifying thoroughly the balance between numerical and
physical dissipations in the Eulerian simulations.

• For TTGC, the particle MKE is mainly dissipated by the AV at the onset of the simulation
and the dissipation due to the scheme is negligible.

• It is the contrary for PSI, where the dissipation of the scheme is larger than the dissipation
of drag and RUM at the beginning of the simulation.

• Increasing the mesh resolution has a big impact on the budget of the particle MKE, de-
creasing the weight of the numerical dissipations. With a sufficiently fine mesh, numerical
dissipations can be lower than the physical dissipations.

Therefore, these diagnostics highlighted one fundamental issue in EE simulations: the simulation
of a two-phase flow requires more mesh resolution than the turbulent flow. For a meaningful
study of physical models, one has to verify that the numerical dissipations are below the physical
ones and most of all when a stabilization technique is used. This is a crucial information to
study RUM models in more complex configurations like in Part. III.

93



Part III
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Influence of the thermal inertia in
dispersed-phase flows - 2D
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CHAPTER 6. INFLUENCE OF THE THERMAL INERTIA IN DISPERSED-PHASE FLOWS - 2D
NON-ISOTHERMAL PARTICLE-LADEN JET

This chapter is a first a posteriori validation of the MEF extended to non-isothermal flows [78].
It focuses on the influence of the thermal inertia of particles on their temperature statistics. DNS
using the MEF are compared to reference Lagrangian simulations for a two-dimensional non-
isothermal turbulent jet laden with solid particles. Note that Eulerian uncorrelated variables
(velocities, heat fluxes) are not presented as their Lagrangian counterpart were not available in
this configuration.

The numerical strategy used in this chapter is the one identified as the most promising
in Part. II: the TTGC scheme coupled with an adapted AV model, which characteristics are
summarized in Tab. 7.4.

scheme AV sensor ǫ(2) ǫ(4) Bmin(αp)
TTGC CM5-T 0.5 5 ⋅ 10−4 1 ⋅ 10−8

Table 6.1: Numerical parameters of the simulations in Chap 6.

The first sections of this chapter (Sec. 6.1 to 6.5) are the content of a paper submitted to
the International Journal of Heat and Mass Transfer [30]. The reader can skip Sec. 6.2 where
the main equations of the Lagrangian and the MEF are summarized. These are the same than
in Chap. 1. Additional results, not presented in the paper, are added in Sec. 6.6. In particular,
the influence of the RUM model on the dynamics and temperature statistics and the coupling
with the RUM heat fluxes are investigated.

6.1 Introduction

A variety of industrial devices involve two-phase flows and many of them are non-isothermal. In
combustion chambers, for example, fuel is injected in liquid state at a relatively low temperature
into a hot, turbulent flow. Due to hydrodynamic forces, the liquid is atomized into droplets. The
subsequent evaporation of the droplets’ cloud is driven by heat exchange between the carrier
and the dispersed phase. Moreover, temperature fluctuations may have a strong impact on the
local evaporated fuel mass fraction as evaporation is a non-linear phenomenon. The resulting
fluctuations of local equivalence ratio are known to have a negative impact on ignition, flame
propagation or even combustion instabilities [66, 75, 88]. An accurate description of heat transfer
to the dispersed phase is therefore necessary.

Very few studies have directly tackled the issue of particle temperature dispersion, which is
mainly due to the lack of experimental data of non-isothermal two-phase flows [155]. Recent
experimental techniques –such as rainbow thermometry– seem promising but further improve-
ments are required [144]. An alternative is to use Direct Numerical Simulations (DNS): a few
studies of non-isothermal academic configurations, coupled with lagrangian tracking of particles,
have been carried out. The mechanism of two-phase heat and turbulent transport by particles
was investigated in an decaying isotropic turbulence with an imposed temperature gradient in
the fluid [113]: it was found that the particle temperature fluctuation and velocity are well cor-
related in the direction of the imposed temperature gradient. Jaberi et al. [57] investigated the
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effects of the particle dynamical response time, τp, the Prandtl number, Pr, the Reynolds num-
ber, Re and mass-loading ratio, rml, on the statistics of particle temperature in a non-isothermal
isotropic turbulence with stationary velocity and temperature fluctuations. They showed that
particle temperature fluctuations decrease as τp, Pr, Re and rml increase. An extension of this
work [58] showed that the response of particle temperature is different when the fluid and parti-
cle temperature decay in isotropic turbulence. In this case, the variance of the fluid and particle
temperatures increase when the magnitude of rml × Pr increases. Shotorban et al. [119] stud-
ied the dispersed-phase temperature statistics in particle-ladden turbulent homogeneous shear
flow in the presence of mean temperature gradient. They found that the particle temperature
variance increases when the ratio of specific heat increases.

The Eulerian-Lagrangian (EL) approach is as a powerful tool to understand and simulate
two-phase flows in academic configurations. However, the lagrangian tracking of individual par-
ticles for the simulation of a realistic industrial configuration is still beyond reach because of
the large number of droplets. An alternative is to model the dispersed phase as a continuum,
like the carrier: this approach is called Eulerian-Eulerian (EE). The equilibrium Eulerian ap-
proach, recently extended to non-isothermal flows gives promising results [38] but is adapted
only to particles with sufficiently small dynamical and thermal inertia. The statistical approach
proposed by Février et al. [41], called the Mesoscopic Eulerian formalism (MEF), is able to re-
produce local and instantaneous properties of particles embedded in a turbulent fluid flow [104].
The cornerstone of the MEF is the partitioning of the particle velocity field into two contri-
butions: a continuous, self-coherent velocity shared by all particles called the mesoscopic field
and a spatially uncorrelated contribution referred to as Random Uncorrelated Motion (RUM).
This formalism showed its ability to simulate correctly turbulent two-phase flows in a complex
geometry [105] and was recently extended to non-isothermal conditions [78]. A priori tests in
a non-isothermal droplet-laden turbulent planar jet [80] show the ability of this approach to
describe an evaporating dispersed phase interacting with a turbulent flow. The objective of the
present work is twofold:

1. study the influence of the particles’ thermal inertia in a configuration representative of a
spray injection in a combustion chamber.

2. and propose an a posteriori validation of the MEF extended to non-isothermal flows.

The organization of the paper is as follows: the two solvers and modeling equations are
described in Sec. 6.2; the configuration and boundary conditions are then presented in Sec. 6.3;
finally the results are presented in Sec. 6.4 with detailed validation of the dynamics and tem-
perature of the dispersed phase.

6.2 Description of the solvers and modeling equations

These simulations are carried out by two different codes developed at CERFACS and CORIA:

• a dilatable low-Mach solver (Asphodele - CORIA) with lagrangian tracking of individual
particles.

• a compressible code (AVBP - CERFACS), where the MEF has been implemented.
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6.2.1 Carrier phase flow solvers

Numerical methods used for the carrier-phase flow solvers have been already described in the
litterature [87, 116, 101] and are only summarized here. Boundary conditions are treated in
Sec. 6.3.2. AVBP solves the compressible Navier-Stokes equations. A third-order in time and
space, finite-element scheme TTGC [22] is used for the carrier and dispersed phase. Asphodele
is a DNS structured low-Mach solver. It uses a fourth-order finite-difference scheme for the gas
and a third-order explicit Runge-Kutta scheme with a minimal data storage method [154] for
both carrier and dispersed phases. A third-order interpolation is employed for the determination
of gaseous phase properties at the location of a particle.

6.2.2 Eulerian/Lagrangian formulation

As described by Reeks [98], it is possible to take into account many forces to characterize
the particle dynamics. However, because of the high density ratio between dispersed and gas
phases, only the drag force, which is prevalent, has been retained. Additionally, several usual
assumptions have been made: some of them are given in the following, but details may be found
in a reference paper of Sirignano [125]. First, the spray is supposed dispersed and each particle
is unaware of the existence of the others. Any internal heterogeneity or particle rotation is
neglected and an infinite heat conduction coefficient is assumed in the particle. As a consequence,
the particle temperature remains uniform but evolves with time. As a first approach and because
of the dispersed nature of the flow, a one-way coupling has been considered. By denoting Vp

and Xp the velocity and position vectors of a particle, respectively, the following relations are
used to track particles throughout the computational domain:

dVp

dt
= 1

τp
(U (Xp, t) −Vp) (6.1)

dXp

dt
= Vp (6.2)

The vector U (Xp, t) represents the gas velocity at the particle Xp. The right hand side term
of Eq. (6.1) stands for a drag force applied to the particle and τp is the kinetic relaxation time:

τp =
ρpd

2
p

18µf
(6.3)

where dp is the particle diameter, ρp is the dispersed phase density and µf is the gas viscosity.
The heating of each particle is caracterized through

dTp

dt
= 1

τθ
(T (Xd) − Tp) (6.4)

where the characteristic relaxation time τθ is defined as:

τθ = Pr
12

Cp

Cf

ρpd
2
p

µ
= 3

2
Prατp (6.5)

where the gas and particle constant heat capacities are denoted Cf and Cp, respectively. Pr is
the Prandtl number. The particle-to-fluid heat capacity ratio is α = Cp/Cf .
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6.2.3 Eulerian/Eulerian formulation: the Mesoscopic Eulerian Formalism

General presentation

The MEF was originally presented by Février et al. [41]: using Direct Numerical Simulations,
they observed that two arbitrarily-close particles may have drastically different velocities. In
other words, the ratio of the two-point correlation between particle velocities and the particle
kinetic energy does not reach unity when the distance goes to zero (c.f. their Fig. 3). Based on
this observation, the cornerstone of the MEF is a statistical-average operator, ⟨●∣Hf ⟩ that corre-
sponds to the average over all particle realizations for a fixed carrier-fluid realization Hf . This
operator splits the particle velocity, up, in two contributions: a continuous, self-coherent veloc-
ity, ũp = ⟨up∣Hf ⟩, shared by all particles called the mesoscopic field and a spatially uncorrelated
contribution, δup, referred to as Random Uncorrelated Motion. One has

up (t) = ũp (xp(t), t) + δup (t) , (6.6)

where xp(t) is the position of the particle at time t. Similarly, one can decompose the particle
temperature Tp into its mesoscopic, T̃p, and uncorrelated, δTp, components:

Tp (t) = T̃p (xp(t), t) + δTp (t) . (6.7)

From the perspective of particle dynamics, it can be simply said that the mesoscopic velocity
and temperature are related to the coupling with the carrier phase, through drag and heat
transfer, and that the RUM is caused by the inertia of the particles. Indeed, because of inertial
effects, two particles may get to neighboring locations with different trajectories and therefore
different properties (velocity, temperature, etc.). Consequently, for particle dynamics, the ratio
of the inertial and viscous time scales acting on the particles is central for the evaluation of the
relative importance of the mesoscopic and uncorrelated contributions. This ratio is the Stokes
number, St, defined as

St = τp
τf

(6.8)

where τp is the particle relaxation time and τf a time scale typical of the carrier phase. Using
the particle thermal time scale τθ a thermal Stokes number, Stθ, may be also defined as

Stθ = τθ
τf
. (6.9)

The dynamical and thermal particle relaxation times, τp and τθ, have been defined in Eq. 6.3 and
Eq. 6.5, respectively. However, the choice of a characteristic time, τf , for the carrier fluid can be
ambiguous depending on the configuration [5]. For the present configuration (c.f. Sec. 6.3), the
momentum thickness at the inlet boundary condition, δθ, is chosen as the reference length and
the maximum of the rms of the inlet velocity, u

′max
f , is chosen as the reference velocity, leading

to:

τf = δθ

u
′max
f

. (6.10)
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Governing equations

The set of Eulerian equations for a non-isothermal dilute particle flow in the mesoscopic formal-
ism was derived by Masi [78]:

∂ñp

∂t
+ ∂ñpũp,j

∂xj
= 0, (6.11)

∂ñpũp,i

∂t
+ ∂ñpũp,iũp,j

∂xj
= − ñp

τp
(ũp,i − uf,i) − ∂ñpδRp,ij

∂xj
, (6.12)

∂ñpCpT̃p

∂t
+ ∂ñpCpũp,jT̃p

∂xj
= − ñpCp

τθ
(T̃p − Tf) − ∂ñpCpδΘp,j

∂xj
, (6.13)

where ñp is the mesoscopic particle number density and uf and Tf the fluid velocity and tem-
perature, respectively. There are two unclosed terms in these equations corresponding to the
RUM velocity stress tensor, δRp,ij , and the RUM heat flux, δΘp,j, defined as:

δRp,ij = ⟨δup,iδup,j ∣Hf ⟩ , (6.14)

δΘp,j = ⟨δTpδup,j ∣Hf ⟩ . (6.15)

Models for the RUM

The RUM velocity stress tensor is decomposed into its spherical and deviatoric parts as

δRp,ij = δR∗p,ij + 2

3
δθpδij , (6.16)

where δθp = 1/2 δRp,kk is the RUM kinetic energy.
Recently, Masi et al. [79] proposed a viscosity-like model for the deviatoric part δR∗p,ij,

assuming the axisymmetry of tensors, their alignment and a one-component limit state:

δR∗p,ij = sign(IIIs)(2
3
)1/22δθpS∗p,ij

S
, (6.17)

where S∗p,ij is the deviatoric part of the mesoscopic particle rate-of-strain tensor, S the square
root of its second invariant, and IIIs its third invariant. This RUM model, denoted AXISY-
C, was found to improve significantly the prediction of RUM stresses in comparison with the
previous model [63, 79, 105]. The main difference is that it now accounts for positive and
negative local viscosity and use a more appropriate timescale F(S−1), predicting a better mean
dissipation.

Then, a transport equation is solved for the RUM kinetic energy:

∂ñpδθp

∂t
+ ∂ñpũp,jδθp

∂xj
= −2 ñp

τp
δθp − ñpδRp,ij ∂ũp,i

∂xj
− 1

2

∂ñpδQp,iij

∂xj
. (6.18)

The third-order velocity correlation δQp,ijk = ⟨δup,iδup,jδup,k ∣Hf ⟩ in Eq. 6.18 is modeled as
suggested by Kaufmann et al. [65]:

δQp,iij = −2κp,RUM ∂δθp

∂xj
, (6.19)

κp,RUM = 5τp

3
δθp. (6.20)
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With this, Eq. 6.12 is closed so the last contribution to model is the RUM heat flux δΘp in
Eq. 6.13. The present work being an a posteriori evaluation of the influence of RUM heat fluxes
on an academic configuration, it was decided to use as little additional modeling as possible for
δΘp. Consequently, we opted for a resolution of the conservation equations for δΘp derived by
Masi [78]:

∂ñpCpδΘp,i

∂t
+ ∂ñpCpũp,jδΘp,i

∂xj
= −ñpCp ( 1

τp
+ 1

τθ
) δΘp,i − ñpCpδΘp,j

∂ũp,i

∂xj

−ñpCpδRp,ij ∂T̃p
∂xj
− ∂ñpδ∆p,ij

∂xj
, (6.21)

with the only assumption that the third-order contribution δ∆p,ij = ⟨δup,iδup,jδTp∣Hf ⟩ could be
neglected. This last assumption is solely based on pragmatism as we do not yet have models
available for this term.

6.3 Configuration and boundary conditions

6.3.1 Computational domain

The configuration (Fig. 6.1) is a two-dimensional cold jet, laden with solid particles and sur-
rounded by a hot co-flow. The jet width, Lref = 0.79 10−2 m, is used throughout the paper
for normalization. The streamwise (x-axis) extent of the computational domain is Lx = 12 Lref
and its cross-stream (y-direction) dimension is Ly = 6 Lref . The carrier gas is composed of pure
air (density ρf and kinematic viscosity µf ) at a mean pressure Pref . The parameters common
to all computations (velocity u, temperature T and mass loading α) are presented in Tab. 6.2,
where the superscript ‘j’ (respectively ‘c’) denotes jet (respectively co-flow) properties and the
subscript ‘f’ (respectively ‘p’) denotes carrier fluid (respectively particles) properties. With these
parameters, the Reynolds number based on the momentum thickness is Reθ = ρfδθ∆U/µf = 125,

where ∆U = uj
f
− ucf is the initial velocity difference between the two gaseous streams. Finally,

one defines a convective time tc = 12 Lref/∆U so that the results can be presented as a function
of the normalized variables: t⋆ = t/tc, x⋆ = x/Lref and y⋆ = y/Lref . It should be pointed out

Lref [m] Reθ ρf [kg.m−3] µf [kg.m−1.s−1]
0.79 ⋅ 10−2 125 1.177 1.86 ⋅ 10−5

δθ T
j
f
, T cf [K] u

j
f
, ucf [m.s−1] T

j
p [K],ujp [m.s−1],αjp

Lref/40 300, 600 20, 10 300, 20,10−2

Table 6.2: Parameters for the simulations.

that the two-dimensional character of the configuration is not limiting for the MEF: the RUM
formulation was tested successfully in a three-dimensional test case by Masi et. al [80]. Here, to
focus on the effects of heat transfer, using two-dimensional simulations is sufficient to investigate
the effects of the RHS terms in Eq. 6.13.
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Figure 6.1: Scheme of the two-dimensional non-isothermal jet. The cold jet at the center is
embedded with cold particles while the co-flow is a hot gas void of particles. The vertical
dashed lines represent the location of the transverse cuts for the analysis.

6.3.2 Mesh and boundary conditions

Both solvers use a cartesian mesh with 1024 cells in x direction and 512 cells in y direction.
Mesh independency was thoroughly checked with both solvers: the results presented here are the
same with half the current resolution in both directions. Because Asphodele is a low-Mach solver
while AVBP is fully compressible, the treatments of inlet and outlet boundary conditions differ:
Asphodele uses Dirichlet conditions while AVBP uses characteristic boundary conditions [93]
and their recent extension accounting for transverse terms at outlets [45]. Finally, the upper
and lower boundary conditions are treated as symmetries.

Axial velocity and temperature of the carrier and dispersed phase, as well as particle volume
fraction, are injected with the general hyperbolic profile

φ(y) = φc + f(y)(φj − φc) (6.22)

f(y) = 1

2
(1 + tanhLref/2 − ∣y∣

2δθ
) , (6.23)

where φj and φc denote the considered quantity in the jet and co-flow, respectively. All quantities
are injected with the same profile in both codes.

6.3.3 Turbulence injection

For a meaningful comparison of the dispersed-phase properties in the two solvers, it is mandatory
that they both compute the same carrier phase. It is necessary that the statistics of the carrier
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to be identical but we have chosen a more conservative approach by imposing exactly the same
inlet velocity signal, including the turbulent fluctuations. Mean inlet conditions are presented
in Sec. 6.3.2 and in order to favor the destabilization of the jet, a turbulent velocity fluctuation
was added to the mean flow following the procedure proposed by Celik and Kraichan [67, 126].
In this particular method, a number of random modes with an average spectrum corresponding
to the Passot-Pouquet spectrum are added to the mean velocity. The Passot-Pouquet spectrum
is defined by its most energetic length scale set at Lref/3 and a turbulent intensity of 2.5% of
the velocity profile. The equivalence of the velocity signals was ensure by imposing in Asphodele
the random modes from AVBP.

AVBP being a compressible code, it is only in the absence of acoustic perturbation that
the velocity signals can be expected to be identical. Fig. 6.2 compares the axial and transverse
velocities at x⋆ = 0 in the middle of the jet for both codes. The agreement is excellent with
minor discrepancies caused by the presence of acoustic waves in AVBP.
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Figure 6.2: Comparison of AVBP ( ) and Asphodele ( ◯ ) gaseous velocities as a function
of t⋆ at x⋆ = 0 in the middle of the jet. (a) Axial velocity, (b) Transverse velocity.

6.3.4 Dispersed phase characteristics

The dynamics of the dispersed phase is governed by the Stokes number, St, while its temperature
is driven by the thermal Stokes number Stθ. Following Eq. 6.3 one has to prescribe a particle
diameter dp and density ρp. For this particular flow, with our choice of fluid characteristic time
(Eq. 6.10), it was found that significant preferential concentration (c.f Fig. 6.4) was produced
for St=2, corresponding to dp = 11.5 ⋅10−6 m and ρp = 1999.2 kg.m−3. All simulations are carried
out for this Stokes number, meaning that the dynamics of the jet is fixed for all cases. Stθ is
modulated by changing the particle heat capacity (c.f Eq. 6.5) to explore its influence on the
temperature of the particles. Three values for Stθ are considered: from thermal tracers (Stθ = 0.2)
to ‘thermally ballistic’ particles (Stθ = 8) with an intermediate value (Stθ =2) maximizing the
effect of RUM heat fluxes. These parameters are summarized in Tab. 6.3.

Mesoscopic Eulerian quantities are obtained from the Lagrangian simulations by projection
on the Eulerian grid. It is possible to circumvent the intrinsic filtering and statistical error of
the projection method by using a sufficient number of particles and a well chosen projector [65].
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dp [m] ρp [kg.m−3] Pr
11.5 ⋅ 10−6 1999.2 0.7194

α = Cp/Cf St Stθ
0.093 2 0.2
0.93 - 2
3.7 - 8

Table 6.3: Characteristics of the three dispersed-phase simulation

Following these recommendations, ten particles per cell are injected. This procedure allows for
a direct validation of the Eulerian simulations conducted in AVBP.

Hereinafter, all the statistics of the dispersed-phase used for the validation procedure are
conditional averages. The conditional-average operator of a mesoscopic quantity, < φ̃ >p is
defined as

< φ̃ >p= {ñpφ̃}{ñp} , (6.24)

where {●} is the time-average operator and ñp the mesoscopic number density. For the sake of
simplicity, the brackets are dropped in the rest of the paper.

6.4 Results and analysis

6.4.1 Carrier phase

As described in Sec. 6.3.3, it is mandatory that the gaseous phase in both solvers be identical,
which is verified in this section. For the sake of compactness, only two statistics, most relevant
for the present study are presented: the kinetic energy and rms of the temperature. These
variables are important for the preferential concentration and temperature dispersion of the
particles but all other gaseous variables compare accordingly between the two solvers.

The kinetic energy of the gas along six transverse cuts of the domain is presented in Fig. 6.3(a).
Mixing layers at the edges of the jet spread with a slight preference into the low-speed streams,
which is consistent with theory [95]. The maximum of the kinetic energy increases with x⋆, first
rapidly from the inlet to x⋆ = 6 and then more slowly. At x⋆ = 6, the kinetic energy at the center
of the jet, begins to increase. The agreement between the two solvers (AVBP and Asphodele)
is excellent. Then, the rms of gas temperature is shown Fig. 6.3(b). As for the kinetic energy,
two regions can be distinguished: for x⋆ < 6 the level of rms increases in the outskirts of the jet
while for x⋆ > 6 the center of the jet is contaminated and the maximum of rms remains roughly
constant. Again, the agreement between the two solvers is excellent, which allows for meaningful
analysis of the dispersed phase.
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Figure 6.3: Comparison between AVBP ( ) and Asphodele ( ◯ ) at six transverse cuts.
(a) Kinetic energy and (b) rms of temperature for the carrier phase.
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6.4.2 Dynamics of the dispersed phase

Since the three runs of Tab. 6.3 differ only through the thermal Stokes number, the particle
positions and velocity fields are the same for the three runs. A qualitative comparison of the
particle field at t⋆ = 2 is shown in Fig. 6.4. As observed in other configurations [132], particles
concentrate in regions of high shear and low vorticity. The qualitative agreement between the
two codes is remarkable. In particular, thanks to the identical turbulent velocity at the inlet,
both fields show the same features at the same location.

(a)

(b)

Figure 6.4: Particle-laden jet at time t⋆ = 2. (a) Lagrangian field of particles. (b) Eulerian
particle volume fraction.

For a quantitative validation, the time average of the volume fraction over transverse cuts
is presented in Fig. 6.5(a). The agreement is excellent between the Eulerian and Lagrangian
simulations. For a validation of the dynamics of the dispersed phase in the Eulerian solver,
the time-averaged mesoscopic turbulent kinetic energy, q̃2p = 1/2 < ũ′p,iũ′p,i >p, is displayed in
Fig. 6.5(b). At the inlet boundary condition, there is no agitation in the dispersed phase so that
q̃2p = 0. The transfer of turbulent kinetic energy from the carrier yields an increase in q̃2p, first
on the edges, eventually spreading to the entire jet. The level of fluctuation in the dispersed
phase reaches third of the fluid kinetic energy, displayed in Fig. 6.3(a). Such levels, as well as
the strong preferential concentration observed in the jet, are consistent with the Stokes number
of the particles. The details of the mean and rms of the velocity components are not presented
here but the agreement between the two solvers is similar. The comparison of the dynamics of
the dispersed phase between the Eulerian solver and the Lagrangian reference is excellent, which
is a validation of the AXISY-C model (Eq. 6.17) and now allows for a detailed investigation of
heat transfer to the dispersed phase.
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Figure 6.5: Comparison between AVBP ( ) and Asphodele ( ◯ ) at six transverse cuts.
(a) particle volume fraction αp and (b) mesoscopic turbulent kinetic energy q̃2p.
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6.4.3 Influence of thermal inertia: analysis of Lagrangian simulations

As presented in Tab. 6.3, the dynamical Stokes number is kept constant while the thermal Stokes
number Stθ is varied. In this section, only the Lagrangian results are presented for an analysis
of the influence of Stθ, while Sec. 6.4.4 is devoted to the validation of the Eulerian simulations
and the study of the influence of the RUM heat transfer.

The time-averaged mesoscopic temperature, T̃p, and its rms, T̃ rmsp , are shown in Fig. 6.6 for
the three thermal inertia. The corresponding quantity for the gaseous phase is shown in order
to quantify the deviation between both phases. The thermal Stokes number Stθ has a strong
impact, both on the mean (Fig. 6.6(a)) and rms (Fig. 6.6(b)) of the particle temperature. As
expected, for low values of Stθ, the temperature of the particles follows that of the gas yielding
identical mean and rms. As the characteristic thermal time of the particles is increased, particles
keep the memory of their temperature at injection. The fluctuations are affected accordingly,
levels falling down to one fourth of the gas temperature rms for the higher thermal Stokes
number. In the early development of the jet, only the particles with the lowest thermal inertia
have the same statistics as the gas. However, as the jet evolves, the intermediate value of Stθ
gets closer to the gaseous phase while the most inertial particles keep the memory of their initial
state and show drastically different statistics. These observations are consistent with the study
of temporal evolution of particle temperature variance in decaying non-isothermal homogeneous
turbulent configuration [58].

6.4.4 Influence of thermal inertia: validation of the Eulerian simulations

The objective of this section is to validate the Eulerian simulations by comparing them to the
Lagrangian reference. The influence of the RUM heat flux on the statistics of the dispersed
phase is also analyzed.

Figure 6.7 presents the mean and rms of particle mesoscopic temperature at x⋆ = 6 for the
three values of Stθ. First, the Eulerian simulations are carried out without the RUM heat flux
term (second term in the r.h.s of Eq. 6.13). With this simplification, there is no direct coupling
between the RUM and the heat transfer to the particles. Then the simulations are conducted
with the RUM heat flux term and the resolution of its transport equation (Eq. 6.21). As shown
in Fig. 6.7(a), at the lowest thermal inertia (Stθ = 0.2), the Eulerian simulation recovers the
Lagrangian result for the time-averaged mesoscopic temperature. However, as Stθ is increased,
the Eulerian results depart from their Lagrangian counterpart at the edges of the jet. Accounting
for the RUM heat flux marginally reduces the discrepancy, but overall, it seems that the mean
mesoscopic temperature is mildly sensitive to the RUM heat flux term. It should be pointed
out that the differences occur in a region of very small mass loading (c.f. Fig. 6.5(a)). Particle
temperature fluctuations, T̃ rmsp , are presented in Fig. 6.7(b). For low and intermediate values of
Stθ, neglecting the RUM heat flux leads to a deviation of the order of 10 K in the temperature
fluctuations. It is important to note that while the fluctuations are underestimated at Stθ = 0.2,
they are overestimated at Stθ = 2. Accounting for RUM heat fluxes allows to recover the correct
fluctuation levels. For the case with a very large thermal inertia (Stθ = 8), the comparison
with the lagrangian reference is not favorable, especially at the edges of the jet. Accounting for
RUM heat fluxes unfortunately does not yield measurable improvement. For very large values
of the thermal inertia, it is likely that the particles are quite far from equilibrium, which is not
favorable to the present Eulerian description. This could explain the lack of precision of the
present results at Stθ = 8.
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Figure 6.6: Lagrangian simulation results: 6.6(a)time-averaged mesoscopic temperature of the
particles, and 6.6(b) rms ot temperature fluctuations, for different values of the thermal inertia.

: Stθ = 8; :Stθ = 2 and : Stθ = 0.2. The corresponding quantity for the carrier fluid
is presented for reference: .
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Figure 6.7: Comparison of Eulerian and Lagrangian mesoscopic quantities at x⋆ = 6. (a) Mean
particle temperature T̃p, (b) rms T̃ rmsp . Influence of the RUM-HF on the Eulerian statistics:

: with RUM-HF, : without RUM-HF, Lagrangian reference ( ◯ ).
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6.5 Conclusions

The simulation of a two-dimensional turbulent non-isothermal jet laden with solid particles has
been carried out using Eulerian-Eulerian and Eulerian-Lagrangian approaches, in two different
solvers. A special care has been taken to implement the same injection of turbulence in the
two solvers so that time-wise comparison could be performed. The carrier-phase was compared
between both codes and a perfect agreement was found.

Cold solid particles were then injected at regime of Stokes number where significant pref-
erential concentration occurs. Again, a very good agreement was found between Eulerian and
Lagrangian approaches allowing for a detailed scrutiny of heat transfer.

The influence of the thermal inertia of particles on their temperature was then investigated.
The mean and rms of particle temperature showed a strong dependance on the thermal Stokes
number. At low, thermal inertia, both mean and rms of particle temperature follow that of the
fluid. At high thermal inertia, particles keep the memory of their injection temperature so that
their statistics differ from that of the surrounding fluid.

Finally, the influence of the RUM heat fluxes in the Mesoscopic Eulerian Formalism was
investigated. The mean temperature is satisfactorily predicted by the MEF, comparing to the
Lagrangian reference. Under the conditions of the present study, the RUM heat fluxes have a
marginal influence on the mean particle temperature. But a significant impact was observed on
the magnitude of particle temperature fluctuations. Neglecting the RUM heat fluxes leads to
erroneous results while the Lagrangian statistics are recovered when they are accounted for in
the regimes of low to moderate thermal Stokes number. However, for particles with a very large
thermal inertia (Stθ =8), the predictions of the temperature fluctuations deteriorate, even when
RUM heat fluxes are accounted for.
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6.6 Influence of the RUM model and coupling with the RUM

heat fluxes

The influence of the RUM model was not presented in the paper (Sec. 6.1 to 6.5) for the sake
of simplicity as it focused on the thermal dispersion of the particles. Actually, the AXISY-C
model was chosen as it yielded the best agreement with Lagrangian simulations. However, the
a posteriori evaluation of the RUM model in this mean-sheared configuration is valuable and is
presented in this section. Moreover, RUM models may impact the particle temperature through
the RUM heat fluxes if they are turned on as δRp,ij is a source term of the transport equation of
the RUM heat fluxes (Eq. 1.54). Therefore, this section is divided in two parts. First, the influ-
ence of the RUM model (VISCO vs AXISY-C) on the dynamics of the particles is investigated
in Sec. 6.6.1. Then, the joint effect of the RUM model and the RUM heat fluxes is studied in
Sec. 6.6.2.

Four test cases are carried out, their characteristics are summarized in Tab. 6.4. Cases J3 and
J4 correspond to the the two sets of parameters used in the paper. In this section, dynamic and

keyword RUM model RUM heat fluxes

J1 VISCO No
J2 VISCO Yes
J3 AXISY-C No
J4 AXISY-C Yes

Table 6.4: Numerical parameters for the simulations.

thermal Stokes numbers are respectively St = 1 and Stθ = 2, which corresponds to the medium
thermal inertia used in the paper (Tab. 6.3): the one with the most impact of the RUM HF
term.

6.6.1 Dynamics of the dispersed phase

Time-averaged particle volume fraction profiles are shown in Fig. 6.9(a). First, the agreement
between the Lagrangian reference and the Eulerian simulations is remarkable, for both RUM
models. Small discrepancies are nonetheless visible at the border of the jet (high shear) at x⋆ = 2
and x⋆ = 4. The VISCO model slightly over estimates the particle volume fraction in compar-
ison with the AXISY-C model. This problem is known and has been observed by Riber [103]
in a vertical particle-laden turbulent confined jet flow [55] where the VISCO model caused a
relaminarization of the dispersed phase flow. This is due to the light-anisotropy assumption
of the VISCO model (c.f. Sec. 1.3.3) that is not fulfilled in mean-sheared flow. In this con-
figuration, the RUM model has limited influence on the particle volume fraction fluctuation,
shown in Fig. 6.9(b). Both Eulerian simulations underestimate αrmsp by 50% in comparison with
the Lagrangian reference. This is disappointing, since the mesh resolution is particularly fine.
Numerical dissipation effects are expected to be lower than the dissipation due to the RUM
model (cf. the discussion in Sec. 5.5.2). Thus, the discrepancy of αrmsp between EE and EL
simulations is assumed to be solely due to the RUM model. That means that there is still room
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for improvement in the RUM model.

Moreover, Riber [103] pointed out that the VISCO model leads to a significant under-
estimation of the total agitation of particles in this type of configurations. Part of this statement
is confirmed by the analysis of the mesoscopic particle kinetic energy, shown in Fig. 6.8(a).
Whereas q̃2p is well captured by the AXISY-C model, it is underestimated by VISCO for
0 ≤ x⋆ ≤ 6. Both RUM models yield satisfactory agreement at x⋆ = 8 and x⋆ = 10 compared with
the exact solution. Despite the fact that Lagrangian data are not available, the comparison of
δq2p between Eulerian simulations sheds light on the RUM models. As expected, the RUE is

much larger with VISCO than with AXISY-C for 0 ≤ x⋆ ≤ 6. In particular, δq2p is abnormally

high at x⋆ = 2 compared to q̃2p (δq2p ≃ 7q̃2p!). There is no physical reason why particle velocities
would be so spatially uncorrelated after the injection of particles without RUM fluctuations.
This must be due to the viscosity assumption of VISCO. This model does not capture the fact
that the RUM agitation develops in one preferred direction while it is damped in the other, as
analyzed by Masi [78] in a similar configuration. On the contrary, with AXISY-C, the RUE
increases progressively from its (almost) null initial value to x⋆ = 8, proportionally to q̃2p, which
seems more physical.
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Figure 6.8: Impact of the RUM models on the dispersed phase statistics. (a) mesoscopic turbu-
lent kinetic energy q̃2p and (b) RUM particle kinetic energy δq2p. Comparison between AXISY-C
( ) and VISCO ( ) models vs the Lagrangian reference ( ◯ ).
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Finally, the PDFs of the streamwise and spanwise particle mesoscopic velocities are presented
in Fig. 6.11 and 6.12, comparing the two Eulerian simulations to the Lagrangian reference. The
position of the six probes, plotted in Fig. 6.10, has been chosen as a function of the jet ex-
pansion. First, the superiority of the AXISY-C over the VISCO model is clearly visible at P1,

Figure 6.10: Diagnostics used for the two-dimensional non-isothermal jet. The vertical dashed
lines represent the location of the transverse cuts for the analysis. The white bullets represent
the probes where velocity and temperature signals were recorded. Their positions have been
chosen as a function of the mean particle temperature shown in the background.

consistently with the previous statistics. With VISCO, the PDF of ũp and ṽp are too narrow,
with a mean slightly over-estimated whereas the agreement is very good between AXISY-C and
the EL simulation. For the other probes, both Eulerian simulations agree satisfactorily with
the Lagrangian reference. Note that the MEF is able to predict non gaussian PDF of velocities,
which means that higher moments are also well predicted.

The influence of the RUM model on the thermal dispersion is investigated in the next section.
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Figure 6.11: Impact of the RUM models on the PDF of the streamwise velocity ũp at the different
locations defined in Fig. 6.10. Comparison between AXISY-C ( ) and VISCO ( ) models
vs the Lagrangian reference ( ).
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Figure 6.12: Impact of the RUM models on the PDF of the spanwise velocity ṽp at the different
locations defined in Fig. 6.10. Comparison between AXISY-C ( ) and VISCO ( ) models
vs the Lagrangian reference ( ).
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6.6.2 Temperature statistics of the dispersed phase

The RUM models may impact the temperature statistics by two means: (1) through the particle
dynamics only and (2) through the RUM heat fluxes if they are turned on. First, it is intuitive
that thermal dispersion is altered when the dynamics of the dispersed phase is modified (for
the same carrier phase). Particles with different trajectories have a different heat transfer with
the gas. Secondly, particles have a thermal inertia which is not negligible in this configuration
(Stθ = 2). That means that their temperature does not adapt instantaneously to the surrounding
carrier phase. Then, two neighboring particles coming from two distinct zones of the jet may
have different temperature, spatially uncorrelated. This is taken into account in the MEF by
the RUM heat fluxes, which are function of the particle uncorrelated velocities and consequently
depend of the RUM model. Then, all parameters being unchanged, two different RUM models
yield two distinct uncorrelated temperatures. Mathematically, the RUM impacts the particle
temperature through the RUM heat fluxes since δRp,ij appear in their transport equations as a
source term (Eq. 1.54).

First, the impact of the RUM model without RUM heat fluxes is evaluated comparing the
test cases J1 ( ) and J3 ( ) in Fig. 6.13. Inside the jet, the mean particle temperature
(Fig. 6.13(a)) is similar for both RUM models and agree satisfactorily with the exact solution.
However, results between the two Eulerian simulations slightly differ at the border of the jet
for x⋆ ≥ 4, where T̃p is over-estimated by around 50 K with the VISCO model in comparison
with AXISY-C. These discrepancies between both RUM models are also visible on the particle
temperature rms statistics (Fig. 6.13(b)). T̃ rmsp is overestimated by both RUM models in com-
parison with EL results. The deviation is almost twice larger with VISCO than with AXISY-C.
Finally, the two RUM models are compared with the PDF of T̃p, plotted in Fig. 6.14. At P1,
the PDF of T̃p is slightly shifted toward the lower temperatures with VISCO, whereas the agree-
ment is very good between AXISY-C and the EL simulation. This could be explained by the
over-estimation of the jet expansion with VISCO at P1 (the spanwise velocity is overestimated
Fig. 6.12(a)). There are more particles coming from the cold center of the jet. At the other
probes, both models yield similar results. Incidentally, the tails of the PDF are better predicted
by VISCO than AXISY-C at P2, P3 and P4. That means that the particle dynamic dispersion
–driven by the RUM model– has a strong impact on the thermal statistics. This is another
motivation to develop advanced RUM models for the simulation of evaporating sprays, where
thermal dispersion of particles is of paramount importance [10].

Then, the influence of the RUM heat fluxes may be investigated for a given RUM model in
Fig. 6.13, comparing cases J1 ( ) vs J2 ( ) or J3 ( ) vs J4 ( ). The mean particle
temperature is almost not impacted by the RUM heat fluxes at this thermal inertia. Large
deviation of T̃p is visible at x⋆ = 2 with the VISCO model, probably due to the overestimation
of δq2p at this particular location (Fig. 6.8(b)). However, the RUM heat fluxes have a strong
influence on the particle temperature rms. Turning on the RUM heat fluxes improves the
agreement with the Lagrangian reference, for both RUM models. Note that the impact of the
RUM heat fluxes on the PDF of T̃p (Fig. 6.15) is minor. Only the tail of the PDF at P2, P3
and P4 is slightly better predicted when the RUM heat flux term is switched on.
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Figure 6.13: Comparison between Eulerian test cases defined in Tab. 6.4 (Stθ = 2) and the
Lagrangian reference ( ◯ ). VISCO model without and with RUM HF (J1: and J2: ,
respectively). AXISY-C model without and with RUM HF (J3: and J4: , respectively)
. (a) Mean particle temperature T̃p, (b) rms T̃ rmsp .
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Figure 6.14: Impact of the RUM model (no RUM HF term) on the PDF of the particle meso-
scopic temperature T̃p at the different probes (cf. Fig. 6.10 for their locations). Comparison
between AXISY-C ( ) and VISCO ( ) models vs the Lagrangian reference ( ).
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Figure 6.15: Impact of the RUM HF term when the AXISY-C model is used for the dynamics.
PDF of the particle temperature T̃p at the different probes (cf. Fig. 6.10 for their locations).
Eulerian simulation with ( ) and without RUM HF ( ) vs the Lagrangian reference ( ).
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6.6.3 Additional conclusions

This section presented additional results carried out on the two-dimensional non-isothermal
turbulent jet laden with solid particles.

• First, the two RUM models available in this work, namely the VISCO and AXISY-C
models (cf. Sec. 1.3.3), have been compared. The AXISY-C model clearly overcomes
VISCO in this configuration, capturing satisfactorily the dynamics of the particles.

• Furthermore, it was shown that the dynamics only of the particles (driven by the RUM
models) has a large impact on the thermal statistics at the edges of the jet. Both mean and
fluctuations of the particle mesoscopic temperature are better predicted with the AXISY-C
model in comparison with the exact solution.

• Finally, the influence of the RUM heat flux term was investigated with both RUM mod-
els. In this configuration, no impact is noticeable on the mean mesoscopic temperature.
However, accounting for the RUM heat fluxes clearly improves the prediction of T̃ rmsp , for
both RUM models.

Unfortunately, the Lagrangian database did not contain RUM variables, so that only Eulerian
and Lagrangian mesoscopic quantities were compared. The configuration of Chap. 7 overcomes
this issue and also allows to extend tests to a full three-dimensional configuration.
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The objective of this chapter is to a posteriori validate the MEF extended to non-isothermal
flows in a configuration more realistic of a fuel injection in a combustion engine. It consists in a
three-dimensional non-isothermal particle-laden turbulent planar jet [80, 142]. The specificity of
this configuration is the mean shear and the particle temperature gradient. Low particle volume
fraction allows us to assume that the dispersed phase has no impact on the carrier (one-way
coupling), neither on the momentum nor the energy equations. This enables an independent
investigation of the effects of the RUM model and RUM heat flux term on the dynamic and
thermal dispersion of the particles.

Eulerian simulations carried out with AVBP will be compared to Eulerian particle fields com-
puted from a DNS EL simulation performed by Masi [78] with the NTMIX code [14]. Contrary
to the configuration of Chap. 6, uncorrelated particle-velocity and particle-temperature moments
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are available in the Lagrangian database1. This is the most complete database available at IMFT
to thoroughly compare mesoscopic and uncorrelated variable statistics between Eulerian and the
exact solution. Moreover, this configuration is three dimensional, contrary to the one of Chap. 6.

First, the configuration is presented in Sec. 7.1, with specific attention on the normalization
procedure of the parameters in Sec. 7.1.2. Then, the carrier-phase statistics of both solvers are
analyzed in Sec. 7.2, along with their sensitivity to the grid resolution. After that mandatory
step, some Lagrangian fields of the dispersed phase are displayed in Sec. 7.3.1 to present the
physical features of the particle-laden jet. Finally, the effects of the two RUM models available in
this work and the impact of the RUM heat flux term are investigated in Sec. 7.3.3 and Sec. 7.3.4,
respectively.

7.1 Configuration

The configuration consists in a three-dimensional cold planar turbulent jet, embedded with solid
particles and surrounded by a hot decaying turbulent flow. The reference length Lref = 10−3 m
is used throughout this chapter for normalization. The computational domain is a cubic box
of size Lbox = 2π Lref with periodic conditions in all directions. The carrier phase is composed
of pure air (density ρf , kinematic viscosity µf and specific heat at constant pressure Cp,f ) at
constant mean pressure Pref and reference temperature Tref . This yields the reference speed of
sound

c =
¿ÁÁÀγ

Pref

ρf
, (7.1)

where γ = Cp,f/Cv,f is the ratio of the specific heats of the gas at constant pressure and constant
volume (γ = 1.4). The particle-laden jet is statistically unsteady and depends solely on the
initial conditions and parameters of the carrier and dispersed phase.

7.1.1 Initial conditions

The initial condition of the carrier phase is the same between NTMIX and AVBP. The initial
mean profile of the velocity and temperature of the carrier phase are imposed with the general
hyperbolic profile

φ(y) = φc + f(y)(φj − φc) (7.2)

f(y) = 1

2
(1 + tanh

Lslab/2 − ∣y∣
2δθ

), (7.3)

where φc and φj denote the considered quantity in the jet and in the coflow, respectively. Lslab
and δθ refer to the initial width and initial momentum thickness of the slab. The parameters of
the initial solution are summarized in Tab. 7.1. The mean velocity profile is added to an initial
statistical homogeneous isotropic turbulence initialized by a Passot-Pouquet spectrum [92]. It is
defined by the most energetic length scale le = 0.4 Lref and by the fluctuating velocity u′ defined
in Sec. 7.1.2. With that, the jet is already turbulent at the initial time. On the contrary, the

1In this chapter and for the sake of conciseness, the terms “Lagrangian database” or “Lagrangian reference”
refer to the Eulerian fields extrapolated from the Lagrangian simulation.
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temperature of the carrier phase has no fluctuation at t⋆ = 0. The initial velocity field of the
carrier phase is shown in Fig. 7.1. It can be seen that the choice of le yields initial turbulent
eddies which size are around one quarter of the initial slab width. As stressed by Masi [78],
that allows the jet to develop additional turbulent velocity fluctuations from the mean gradient.
With a too large value of le, the eddies of the initial turbulence would damp out the jet.

The initial conditions of the dispersed phase of the Eulerian solution (AVBP) were chosen

Figure 7.1: Initial velocity field of the carrier phase of the three-dimensional particle-laden slab.
Velocity is proportional to darkness.

as close as possible to that of the Lagrangian solution (NTMIX). They only slightly differ for
the initial particle volume-fraction profile shape. Whereas particles are randomly seeded with
a crenel profile in NTMIX, the dispersed phase of the Eulerian initial solution consists in an
homogeneous particle volume fraction following the hyperbolic profile of Eq. 7.2. That allows
AVBP to handle the initial transient time where the particle volume-fraction profile is very
steep (cf. Part. II). Note that AVBP crashes with the crenel-type profile of the Lagrangian
initial solution. Apart of that difference, the Eulerian and Lagrangian initial solutions of the
dispersed phase are rigorously identical. Particles are embedded with the same mean velocity
and temperature than the carrier phase

ũp = ug (7.4)

ṽp = v′g (7.5)

w̃p = w′g (7.6)

T̃p = Tg (7.7)

Incidentally, the particles have no velocity fluctuation in the streamwise direction at t⋆ = 0. The
parameters of the carrier and dispersed phase at t⋆ = 0 are summarized in Tab. 7.1 and are
written as a function of the normalized parameters detailed in Tab. 7.3.
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δθ Lslab u
j
f
, ucf [m.s −1] T

j
f
, T cf [K] α

j
p [-] u

j
p [m.s −1] T

j
p [K]

π

50
Lref

π

2
Lref U + u′, u′ Tref ,1.25 Tref 10−4 U Tref

Table 7.1: Characteristics of the initial condition. Variables are written as a function of the
normalized parameters detailed in Tab. 7.3.

The reference database has been computed with NTMIX, which uses normalized variable,
unlike AVBP. Common normalization numbers ensure the similarity of the solutions between
both codes. Their choice and definition are detailed in Sec. 7.1.2.

7.1.2 Definition of the normalization numbers

The four following normalization numbers characterize the carrier phase (Tab. 7.2):

• The acoustic Reynolds number

Reac = cLref
νf

, (7.8)

where νf = ρf/µf is the kinematic viscosity of the carrier phase.

• The Mach number

M = U
c
, (7.9)

where U is the mean velocity of the carrier phase.

• The turbulence intensity

Iturb = u
′

U
, (7.10)

where u′ is the fluctuating velocity.

• The Prandtl number

Pr = Cp,fµf
λf

, (7.11)

where λf is the thermal conductivity of the fluid.

The four free parameters νf , U , u′ and λf are computed from Eqs. 7.8-7.11. Moreover, the
dispersed phase is determined by the two following normalization numbers (Tab. 7.2):

• The dynamic Stokes number

St = τp
τf
, (7.12)

where τp is the particle dynamic relaxation time (Eq. 1.4). In this configuration, the
characteristic time scale of the fluid has been chosen based on the initial HIT as it was
thought to be the most relevant for the initial particle segregation inside the slab. It is
defined as the ratio of the integral length scale of the turbulence le = 0.4 Lref and the
fluctuating velocity u′:

τf = le
u′
. (7.13)
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• The thermal Stokes number
Stθ = τθ

τf
, (7.14)

where τθ is the particle thermal relaxation time (Eq. 1.5).

Carrier phase Dispersed phase

Reac M Iturb Pr St Stθ
5500 0.15 0.1 0.7 0.46 0.93

Table 7.2: Normalization parameters of the carrier and dispersed phase shared by the two
solvers.

The particle diameter is a degree of freedom of the configuration. It was chosen to be smaller
than the smallest turbulent fluid scale, triggered by the smallest grid size ∆x. It was arbitrarily
fixed at dp = 2. ⋅10−6 m, which corresponds to ∆x/25 or ∆x/12 for the two mesh resolutions used
in this chapter (cf. Tab. 7.6). Finally, the particle density ρp is obtained combining the particle
dynamic relaxation time in Stokesian regime (Eq. 1.4) and Eq. 7.12:

ρp = 18µfStτf

d2
p

. (7.15)

Similarly, the specific heat at constant pressure of the particles, Cp,p, is computed combining
the definition of τθ at small Re (Eq. 1.5) and Eq. 7.14:

Cp,p = 2

3

Cp,f

Pr

Stθ
St
. (7.16)

The characteristics of the carrier and dispersed phase are summarized in Tab. 7.3.

ρf [kg.m −3] c [m.s −1] Pref [Pa] Tref [K]

1.138 352.9 101325 300

Cp,f [J.kg −1.K −1] νf [m 2.s −1] U [m.s −1] u′ [m.s −1]

1041.3 6.4163 ⋅ 10−5 52.9 5.29

λf [W.m −1.K −1] dp [m] ρp [kg.m −3] Cp,p [J.kg −1.K −1]

1.09 ⋅ 10−1 2 ⋅ 10−6 11.45 ⋅ 103 2005

Table 7.3: Characteristics of the carrier and dispersed phases.

7.1.3 Numerical setup and methodology

The numerical strategy used in this chapter is the one identified as the most promising in Part. II.
It consists in the TTGC scheme [22] coupled with adapted AV sensors and coefficients ǫ(2) and
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ǫ(4), which characteristics are summarized in Tab. 7.4. This strategy has already been validated
in the configuration of Chap. 6 and provided sufficient robustness and accuracy. The minimum
threshold Bmin(αp) has been adapted to the minimum value of αp in the coflow of this config-
uration (αcp = 10−8).

scheme AV sensor ǫ(2) ǫ(4) Bmin(αp)
TTGC CM5-T 0.5 5 ⋅ 10−4 1 ⋅ 10−10

Table 7.4: Numerical parameters for the simulations.

Five runs have been carried out in this chapter, recapitulated in Tab. 7.5. First, the impact
of the mesh resolution on the carrier and dispersed phase will be investigated with M2H-V and
M3H-V cases. The only difference between these two cases is the mesh. In particular, the mesh
M3H is twice finer than M2H, as shown in Tab. 7.6. Note that the Lagrangian simulation has
been carried out on a mesh of similar resolution than M2H (1283). Then, we will study the
influence of the RUM model on the dynamic and thermal statistics of the dispersed phase (cases
M3H-V and M3H-AXI). The notation “-V” and “-AXI” refer to the VISCO and AXISY-C RUM
models, which are presented in Sec. 1.3.3. Finally, the impact of the RUM heat flux term in
Eq. 1.53 is investigated with the two cases M3H-AXI and M3H-AXI-HF.

keyword mesh RUM model RUM heat flux term

M2H-V M2H VISCO No
M3H-V M3H VISCO No
M3H-AXI M3H AXISY-C No
M3H-AXI-HF M3H AXISY-C Yes

Table 7.5: Characteristics of the runs carried out in this chapter

keyword type resolution ∆x

M2H hexa 1283 4.91 ⋅ 10−5
M3H hexa 2563 2.45 ⋅ 10−5

Table 7.6: Mesh characteristics

In this chapter, statistics of any dispersed phase variable φ is density-weighted averaged over
planes parallel to the streamwise direction (plane ZX)

{φ}p = ⟨ñpφ̃⟩ZX⟨ñp⟩ZX . (7.17)

The bracket notation {⋅}p is dropped in the rest of the chapter for the sake of clarity. Statistics
of the carrier phase are not density-weighted as the gas is considered as weakly compressible due
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to the low Mach number. As stressed out by Masi [78], the volume average over these planes
of homogeneity gives an estimation of the theoretical ensemble average computed over a large
number of particle-and-fluid flow realizations, i.e. mean quantities. In the rest of the chapter,
the time will be normalized by the initial particle dynamic relaxation time.

t⋆ = t

τp,t=0
(7.18)

Now that the configuration has been described, results of the carrier phase are presented in
Sec. 7.2.

7.2 Analysis of the carrier phase

The first requisite before studying the dispersed phase is to verify that the carrier phase is
identical between the two solvers NTMIX and AVBP. Moreover, it is important to check that
the results are independent of the mesh, i.e. that the statistics are converged for a given mesh
resolution. For the sake of compactness, only two statistics are shown in this section: the
turbulent kinetic energy the rms of the temperature. These variables are thought the most
relevant for the physical phenomena of the dispersed phase as the particle concentration and
the temperature dispersion. Note that the other variables, not shown here, compare accordingly
between both solvers. The analysis of q2g and T rmsg is very similar to that of the two-dimensional
jet configuration of Chap. 6.

First, the turbulent kinetic energy at five normalized times is presented in Fig. 7.2(a). The ini-
tial homogeneous turbulence created by the Passot-Pourquet spectrum is progressively damped
by the viscous effects so that q2g is null outside the mixing layers at t⋆ = 40. Accordingly to the-
ory [95], the mixing layers at the edges of the jet spread with a slight preference into the lighter
streams. The turbulent kinetic energy begins to increase at the center of the jet for t⋆ > 60. The
agreement is excellent between the simulations carried out with AVBP and NTMIX. Moreover,
the statistics of q2g are converged with the M2H mesh. Then, the rms of the gas temperature
is shown in Fig. 7.2(b). The maximum of T rmsg remains approximatively constant at the fringe
of the jet whereas it increases progressively at its center. At the end of the simulation, the
maximum rms of the temperature represents almost one fifth of the initial jet-to-coflow mean
temperature difference. Again, both solvers agree very well and no differences are visible be-
tween the fine and coarse meshes. The dispersed phase is now analyzed having verified that (1)
both solvers yield the same carrier phase and (2) the carrier phase statistics are converged on
the coarse mesh M2H.
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Figure 7.2: Comparison of Eulerian and Lagrangian quantities of the carrier phase. (a) Turbulent
kinetic energy q2g and (b) rms T rmsg . Simulations carried out with AVBP (fine mesh M3H ( )
and coarse mesh M2H ( )) are compared with NTMIX ( ● ).
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7.3 Analysis of the dispersed phase

7.3.1 Analysis of the Lagrangian database

The time evolution of the particle volume fraction, extracted from the Lagrangian database, is
presented in Fig. 7.3. At t⋆ = 0, particles are randomly embedded in the plane jet at the same
mean velocity and temperature than the carrier phase. In the early stages of the simulation, the
zone inside the particle-laden slab is similar to a particle-laden HIT (as presented in Chap. 5).
Particles quickly accumulate inside the slab in regions of weak vorticity and high shear, coher-
ently with the Stokes number value (St = 0.46). While the initial small eddies are damped by
viscosity (cf. Fig. 7.2(a)), the number of small clusters decreases. At the same time, the mean
velocity gradient creates large scale structures at the edges of the jet. Under the effect of these
large eddies, some part of the particles concentrates at the center of the jet whereas another
part is dispersed in large “finger-shapes” at the edges.

The time evolution of the RUM kinetic energy is presented in Fig. 7.3. It is null at the
beginning of the simulation as the particles are injected at the same mean velocity as the gas.
According to theory [78], the RUM kinetic energy is produced by the mean motion and by the
fluctuating contributions. This is verified in Fig. 7.3(j), where δq2p is very high at the edges of
the jet and presents some spots of mild intensity inside the slab similar to what is observed in
a particle-laden HIT. RUM kinetic energy quickly vanishes at the center of the jet since the
fluctuating contributions no longer exist to produce δq2p. However, the mean motion is strong

enough to produce δq2p at the edges of the jet until the end of the simulation.

As expected, the results show that the mean shear introduced here increases one step fur-
ther the complexity of a particle-laden HIT. A large range of scales appears, from the small
clusters of particles at the beginning of the simulation to the large structures at the end. Steep
fronts of particle-volume fraction develop at the edges of the jet. The previous chapters showed
that these steep gradients of particle volume fraction are difficult to handle with an Eulerian
approach. The numerical strategy designed and evaluated on simple test cases in Part. II is
expected to circumvent this issue. Moreover, the RUM kinetic energy is continuously created
by the mean motion, contrary to an “ordinary” particle-laden HIT. The RUM model will have
to be accurate enough to reproduce this unsteady and local phenomenon.

First of all, Sec. 7.3.2 investigates the impact of mesh resolution on the dispersed phase.

7.3.2 Mesh convergence of the Eulerian simulations

The discrete balance of particle MKE of a particle-laden HIT (Chap. 5) pinpointed the impor-
tance of the mesh resolution in two-phase flow simulations with an Eulerian approach. Even if
the carrier phase is converged for a given mesh, it might not be the case for the dispersed phase.
Numerical dissipation effects (convective scheme, stabilization techniques) could be higher than
physical dissipation terms (drag, RUM model). For quantitative results, it is then mandatory
to verify the mesh convergence of the dispersed phase in the present configuration before inves-
tigating the impact of the RUM models and/or RUM heat fluxes.

132



7.3. ANALYSIS OF THE DISPERSED PHASE

(a) α̃p at t⋆ = 0 (b) α̃p at t⋆ = 10 (c) α̃p at t⋆ = 20 (d) α̃p at t⋆ = 30

(e) α̃p at t⋆ = 40 (f) α̃p at t⋆ = 50 (g) α̃p at t⋆ = 60 (h) α̃p at t⋆ = 70

(i) δq2
p at t⋆ = 0 (j) δq2

p at t⋆ = 10 (k) δq2
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(m) δq2
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p at t⋆ = 50 (o) δq2
p at t⋆ = 60 (p) δq2

p at t⋆ = 70

Figure 7.3: Time evolution of the normalized particle volume fraction α̃p/α̃0
p (top) and RUM

particle kinetic energy δq2p (bottom) of the Lagrangian simulation. Cut at Z = 0.

Previous chapters of this work showed that the particle volume fraction is a good choice to
quantify the effect of the mesh and/or the effect of numerical strategies. Thus, Fig. 7.4 shows the
impact of the mesh resolution on the mean and rms of the normalized particle volume fraction
at t⋆ = 40. The two simulations M2H-V and M3H-V yield the same mean α̃p. Moreover, mean
α̃p agree reasonably well with the Lagrangian reference. For all the other variables (mean and
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rms) –not shown here for the sake of conciseness– statistics are the same for M2H and M3H at
any time. There is one exception: the particle volume fraction fluctuations α̃rmsp , displayed in
Fig. 7.4(b). Particle volume fraction fluctuations are under-estimated by roughly 50% at the
center of the jet with the coarser mesh. On the contrary, α̃rmsp is in better agreement with the
Lagrangian reference on the finer mesh. It is surprising that the particle volume fraction field
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Figure 7.4: Impact of the mesh resolution on the normalized particle volume fraction at t⋆ = 40.
(a) Mean α̃p/α̃0

p and (b) rms α̃rmsp /α̃0
p. Eulerian simulations performed on the fine mesh M3H

( ) and coarse mesh M2H ( ) are compared with the Lagrangian reference ( ● ).

differs between M2H-V and M3H-V whereas the particle mesoscopic velocities ũp,i, which drive
α̃p, are extremely similar between both meshes. To illustrate this point, the time signal of α̃p
and of the streamwise velocity is plotted in Fig. 7.5. Streamwise mesoscopic velocities are almost
super-imposed between M2H-V and M3H-V simulations whereas the particle volume fraction
signals differ significantly as a function of the mesh.

One cause of this paradox may be the artificial viscosity terms added in the dispersed-phase
equations to stabilize the simulations (Eq. 2.21), i.e. the numerical dissipation. Indeed, it
was shown in Part. II that the numerical dissipation is related to the mesh resolution. The
discrete budget of the equation of α̃p applied to the particle-laden vortex, showed that the
AV contribution diminishes when the mesh is refined (cf. Fig. 4.8). Similar conclusions were
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Figure 7.5: Comparison of particle volume fraction (a) and streamwise mesoscopic velocity (b)
between the coarse ( ) and the fine ( ) mesh as a function of t⋆ at the center of the
computational domain.

drawn with the discrete balance of the mean weighted MKE applied to the particle-laden HIT in
Chap. 5. Since this last diagnostic is an efficient mean to quantify the balance between numerical
and physical dissipations, it is applied to the present configuration. Note that Eq. 5.35 is
averaged in homogeneous planes, parallel to the streamwise direction rather than over the whole
computational domain, which would be meaningless in this configuration. The final budget
equation of the mean particle MKE is then

−⟨∆αpρpq̃2p
∆t

⟩
ZX
= εZXscheme + εZXAV´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

numerical dissipations

+ εZXdrag + εZXRUM´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
physical dissipations

, (7.19)

where εZXscheme, ε
ZX
AV , εZXdrag and εZXRUM refer to the plane-averaged dissipations due to the numerical

scheme, artificial viscosity, drag force and RUM, respectively (cf. Eq. 5.36). Fig. 7.6 shows the
impact of the mesh resolution on the MKE balance. Dissipation due to the artificial viscosity
εZXAV is compared with the physical dissipations due to drag εZXdrag and RUM εZXRUM . Residuals

of the MKE and of the convective scheme εZXscheme are not plotted for the sake of clarity but
it was checked that the balance was closed (fine dashed line in Fig. 7.6). First, the peaks of
the various dissipations do not have the same location. The position of the AV residual peaks
corresponds to the particle volume fraction gradient (cf. Fig. 7.4) whereas εZXdrag and εZXRUM are

substantial in the region of mean shear. εZXdrag and εZXRUM are rather similar between both meshes.
On the contrary, the mesh resolution has a significant impact on the AV contribution. Whereas
the amplitude of εZXAV is twice more important than the physical dissipations with M2H, it is
at worse of the same order with M3H. No simulations have been performed with a mesh finer
than 2563, but the AV contribution should lower again. Unfortunately, carrying out two-phase
flow simulations on more than 2563 cells was beyond the reach of the present work. Indeed,
the inner structure of the code should be modified to adapt the memory management. The
conclusion of this section is that numerical dissipations are at least of the same order than the
physical dissipations with M3H, which enables a meaningful investigation of the RUM models.
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Therefore, the Eulerian simulations presented in the rest of the chapter have been carried out
on the finer mesh, M3H.
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Figure 7.6: Discrete MKE balance of the dispersed phase at t⋆ = 40 of the Eulerian simulations
carried out on the coarse mesh M2H (a) and fine mesh M3H (b). Dissipation due to the artificial
viscosity εZXAV ( ) is compared with the physical dissipations due to drag εZXdrag ( ) and

RUM εZXRUM ( ). Residuals of the kinetic energy and of the convective scheme εZXscheme are not

plotted for the sake of clarity but the balance is closed ( ⟨∆αpρpq̃2p
∆t

⟩
ZX
−∑ ⟨ε●⟩ZX : ).
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7.3.3 Evaluation of the RUM models

Part. II and Sec. 7.3.2 showed that an adapted numerical strategy, coupled with a fine-enough
mesh (M3H in Tab. 7.6) minimizes the numerical dissipations in comparison with those related
to the physical models. Then, the effect of the RUM models on the particle dispersion can
now be investigated. Two Eulerian simulations performed with the VISCO and AXISY-C RUM
models are compared with the Lagrangian database.

For a first validation of the dynamics between both solvers, the mesoscopic and uncorrelated
particle kinetic energy are displayed in Fig. 7.7. At the initial condition, q̃2p,t⋆=0 equals roughly

two third of q2g,t⋆=0 since the particles are added to the carrier phase without fluctuations in the
streamwise direction (ũ′p = 0). Next, the transfer of kinetic energy from the carrier-phase by

drag yields an increase in q̃2p, first at the edges of the jet and then at its center. q̃2p is about

one half of q2g , which is coherent with the range of the dynamic Stokes number (St = 0.46) [41].

The two Eulerian simulations yield similar q̃2p at the center of the jet, and agree rather well with
the Lagrangian reference for t⋆ ≤ 40. This is consistent with previous results in mean-shear free
turbulent flows [63, 83, 103], where the VISCO model produces very good results. However,
this model fails where the mean velocity gradient is important. In this configuration, VISCO
produces under-estimated q̃2p at the edges of the jet, whereas the AXISY-C model is in very
good agreement with the reference in this region.

The uncorrelated variables can be computed from the Lagrangian database, which allows
a comparison of the uncorrelated particle kinetic energy δq2p, shown in Fig. 7.7(b). The RUE,

almost null at t⋆ = 0 (δq2p,t⋆=0 = 0.1), quickly increases at the beginning of the simulation as the
particle velocities become uncorrelated under the effect of the velocity fluctuations and mean gra-
dient. At t⋆ = 20, δq2p has the same amplitude than q̃2p at the edges of the jet. Then, it decreases

progressively and the ratio δq2p/q̃2p converges to one third for t⋆ ≥ 60. Overall, the RUM particle
kinetic energy is over estimated by the VISCO model at the edges of the jet by approximately
50% for the whole simulation. On the contrary, δq2p is first underestimated by AXISY-C but the
gap between the Eulerian simulation and the Lagrangian reference progressively narrows. For
t⋆ ≥ 60, the agreement is excellent between M3H-AXI and the EL database.

The under-estimation of q̃2p, together with the over-estimation of δq2p by the VISCO model is
relevant of a miscomputation of the reverse energy exchange between the uncorrelated and the
mesoscopic contributions. Indeed, an a priori study showed that the VISCO model reproduces
the transfer of energy in one-way only from the mesoscopic to the RUM component, whereas
it occurs in both ways in reality [78]. On the contrary, the correction of the AXISY model
(cf. Sec. 1.3.3) takes into account the reverse energy exchange. Consequently, both particle
mesoscopic and uncorrelated kinetic energy are satisfactorily captured with the AXISY-C model.
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Figure 7.7: Influence of the RUM models on the Eulerian statistics at t⋆ = 40. (top) Mesoscopic
turbulent kinetic energy q̃2p and (bottom) RUE δq2p. Eulerian simulations performed with AXISY-
C ( ) and VISCO ( ) are compared with the Lagrangian reference ( ● ).
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The effect of the RUM model can also be evaluated directly through the particle dispersion.
A qualitative comparison of the particle volume fraction field at t⋆ = 40 is shown in Fig. 7.8.
The two Eulerian simulations M3H-V and M3H-AXI compare satisfactorily with the EL data

(a) EE VISCO (b) EL (c) EE AXISY-C

Figure 7.8: Influence of the RUM model on the mean particle volume fraction t⋆ = 40. Cut
at Z = 0. Comparison between the Lagrangian reference (center) and the Eulerian simulations
carried out with VISCO (left) and AXISY-C (right) RUM models.

at the center of the jet, with a slight preference for the AXISY-C model. The position of the
particle clusters and vacuum zones are well captured by the Eulerian simulations. This result
was expected at the center of the jet. Indeed, this region is similar to a particle-laden HIT,
in which the VISCO model has been previously validated [63, 83, 103]. However, the particle
volume fraction gradients at the edges of the jet are too smooth in M3H-V, due to the over-
estimation of the RUE by the VISCO model (Fig. 7.7(b)) in this region. On the contrary, the
agreement between M3H-AXI and the EL database is qualitatively very good.

For a quantitative comparison, mean and rms of the normalized particle volume fraction are
displayed in Fig. 7.9. Both Eulerian simulations yield mean α̃p in good agreement with the
Lagrangian reference. Some discrepancies are visible at the edges of the jet. The mean particle
volume fraction is slightly underestimated in the mean-shear region and overestimated at the
inner border of the jet with both RUM models. However, case M3H-AXI is in better agreement
with the exact solution than case M3H-V. Furthermore, the particle fluctuations are reasonably
captured at the center of the jet by both RUM models, with 10% fewer α̃rmsp with both Eulerian
simulations. None of the two RUM models considered in this work predicts the exact amount
of particle fluctuations in the mean shear region. By way of example, the VISCO model under-
estimates by 70% the particle fluctuations at y⋆ = 0.75, whereas AXISY-C reduces half the gap
towards the EL counterpart. Therefore, AXISY-C yields slightly better results than the VISCO
RUM model, even if the prediction of particle fluctuations may be improved. Now, the influence
of the RUM models on the thermal dispersion of the particles is evaluated.

The mean and rms of the particle mesoscopic temperature at t⋆ = 40 are shown in Fig. 7.10.
The RUM heat fluxes are turned off, so that the sole influence of the particle dynamic dispersion
is evaluated. In this configuration, T̃p seems midly sensitive to the RUM models, contrary to the
temperature fluctuations. Indeed, T̃ rmsp is satisfactorily predicted by the two Eulerian simula-
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Figure 7.9: Influence of the RUM model on the normalized particle volume fraction at t⋆ = 40.
(left) Mean α̃p/α̃0

p and (right) rms α̃rmsp /α̃0
p. Eulerian simulations performed with AXISY-C

( ) and VISCO ( ) are compared with the Lagrangian reference ( ● ).

tions inside the jet but large discrepancies are visible at its edges. In this region, the maximum
T̃ rmsp is over estimated by roughly 50% and 25% in case M3H-V and M3H-AXI, respectively.
Thus, a better prediction of the particle dynamic dispersion substantially improves the statis-
tics of T̃ rmsp , which explains the better results with AXISY-C than with the VISCO RUM model.

Mean mesoscopic heat fluxes, defined as

F̃p,i(x, t) = ⟨ñp(x, t)ũ′p,i(x, t)T̃ ′p(x, t)⟩⟨ñp(x, t)⟩ (7.20)

are plotted in Fig. 7.11 for the two RUM models. Spanwise F̃p,y and cross-stream F̃p,z mean
mesoscopic heat fluxes of cases M3H-V and M3H-AXI compare reasonably well with the ref-
erence. However, F̃p,x is in better agreement with the Lagrangian reference with the VISCO
RUM model than with AXISY-C. This could be explained by the fact that RUM HF are not
taken into account in M3H-V and M3H-AXI. Indeed, the last two terms in the RHS of the mean
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Figure 7.10: Influence of the RUM model on the mesoscopic particle temperature at t⋆ = 40.
(left) Mean T̃p and (right) rms T̃ rmsp . Eulerian simulations performed with AXISY-C ( )
and VISCO ( ) RUM models are compared with the Lagrangian reference ( ● ).

mesoscopic HF transport equation (Eq. B.4):

npCp,p < δRp,ij
∂T̃ ′p

∂xj
>p

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D1

+npCp,p < δΘp,j

∂ũ′p,i

∂xj
>p

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D2

(7.21)

are dissipative terms. Since the RUM HF are not taken into account, the mean mesoscopic HF
“lacks” of a dissipative term (D2 = 0). Moreover, Fig. 7.7 showed that the VISCO RUM model
over estimates δRp,ij whereas it is slightly under predicted by AXISY-C. Therefore, the VISCO
RUM model may incidentally balance the lack of D2 by a larger D1.

Now, the impact of the RUM HF term in Eq. 1.39 on the thermal statistics of the particles
is investigated.
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Figure 7.11: Influence of the RUM model on the mesoscopic heat fluxes of the dispersed phase
at t⋆ = 40 (no RUM HF). (left) streamwise F̃p,x, (center) spanwise F̃p,y and (right) cross-stream
F̃p,z heat fluxes. Eulerian simulations performed with AXISY-C ( ) and VISCO ( )
RUM models are compared with the Lagrangian reference ( ● ).
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7.3.4 Influence of the RUM heat fluxes

The objective of this section is to assess the impact of the RUM HF on the thermal statistics of
the dispersed phase. First of all, the AXISY-C RUM model is used for the dynamics, since it
was identified in Sec. 7.3.3 as the best of the two RUM models available in this work. The RUM
HF is in the second RHS term of the transport equation of the particle mesoscopic temperature
(Eq. 1.53). This term will be referred in this section as the “RUM HF term”. In order to evalu-
ate the impact of the RUM HF, two Eulerian simulations are carried out for a given dynamics of
the particles, denoted M3H-AXI and M3H-AXI-HF (cf. Tab. 7.5). That means that the particle
dynamic dispersion is the same for the two EE simulations and only the thermal dispersion
differs. In case M3H-AXI, the RUM HF term is not taken into account, so that there is no
direct coupling between the mesoscopic and RUM temperature of the particles. Nevertheless,
the transport equations of δΘp are solved to allow a sort of “one-way” evaluation of the RUM
HF. On the contrary, the RUM HF term is switched on in case M3H-AXI-HF and the transport
equations of the RUM HF are solved (Eq. 1.54).

First, a qualitative comparison of the particle mesoscopic temperature fields at t⋆ = 40 is
presented in Fig. 7.12. Inside the jet, the two Eulerian simulations lead to similar temperature

(a) M3H-AXI (b) EL (c) M3H-AXI-HF

Figure 7.12: Impact of the RUM HF term on the particle mesoscopic temperature. Cut at Z=0
at t⋆ = 40. Eulerian simulations without (left) and with (right) RUM HF are compared with the
Lagrangian reference (center).

fields and agree reasonably well with the Lagrangian reference. However, some discrepancies are
visible at the edges of the jet when the RUM HF term is switched on. In this region, the particle
temperature field of case M3H-AXI-HF has more fluctuations than that of case M3H-AXI, and
agree qualitatively better with the Lagrangian solution.

For a quantitative comparison, the mean particle temperature and fluctuations are displayed
at five normalized times in Fig. 7.13. The corresponding quantity of the carrier phase is presented
to underscore the deviation between both phases. The mean and rms of particle temperature
are lower than those of the carrier phase. This relatively large deviation is consistent with
the study of the thermal inertia influence performed on the two-dimensional non-isothermal
particle-laden jet in Sec. 6.4.3. At this thermal Stokes number (Stθ = 0.93), particles keep
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the memory of their initial temperature profile but do not follow exactly that of the carrier.
Comparing cases M3H-AXI and M3H-AXI-HF, both Eulerian simulations recover the correct
T̃p at the center of the jet. However, the RUM HF have a clear impact on T̃p at the edges of
the slab in this configuration2. Without RUM HF, the particle mesoscopic temperature of case
M3H-AXI departs from the Lagrangian counterpart, with a maximum deviation of 10 K. On
the contrary, mean T̃p is satisfactorily predicted when the RUM HF are taken into account (case
M3H-AXI-HF). Moreover, particle temperature fluctuations are plotted in Fig. 7.13(b). Again,
the RUM HF have a favorable impact at the edges of the jet. When they are neglected, T̃ rmsp is
over-estimated by roughly 25% in this region whereas it is adequately recovered when the RUM
HF are taken into account.

Moreover, the RUM HF participate to one fundamental phenomenon in the thermal disper-
sion of particles, i.e. the reverse exchange of mesoscopic temperature variance between the RUM
and the mesoscopic part3. Theoretically [78], the term responsible for the heat transfer between
the two contributions appears with a reverse sign in the RHS of the transport equations of the
mean mesoscopic and RUM temperature variance (Eq. B.2 and Eq. B.3, respectively):

± npCp,p < δΘp,j

∂T̃ ′p

∂xj
>p . (7.22)

The good prediction of δΘp,i is thus of paramount importance to have the correct fluctuations of
particle temperature. The mean mesoscopic HF are also important since they drive the produc-
tion term of the mean mesoscopic temperature variance (third term in the RHS of Eq. B.2). The
completeness of the Lagrangian database allows a comparison of the mesoscopic and RUM HF
with the Eulerian simulations. Then, the streamwise and spanwise mesoscopic and RUM heat
fluxes are displayed in Fig. 7.14 and Fig. 7.15, respectively. Cross-stream heat fluxes are shown
in Appendix in Fig. C.4. A common feature of the streamwise and spanwise HF is that the
amplitude of the mesoscopic HF increases along time while that of the RUM HF progressively
diminishes. This is consistent with the statistics of the mesoscopic and RUM kinetic energy
(Fig. 7.7) and T̃ rmsp (Fig. 7.13(b)). By way of example, particles are highly spatially uncorre-
lated at the edges of the jet (cf. Fig. 7.7(b)) at t⋆ = 20. In this region, two neighboring particles
could come from different sides of the jet and thus, have a very different temperature history,
implying high RUM heat fluxes. Along the simulation, the decrease of δq2p (cf. Sec. 7.3.3) at
the edges of the jet directly leads to a decrease of the RUM HF.

First, the two Eulerian simulations recover satisfactorily the streamwise and spanwise meso-
scopic HF when compared to the reference (Fig. 7.14(a) and Fig. 7.15(a), respectively). The
spanwise mesoscopic HF seems mildly sensitive to the RUM HF term whereas the streamwise
mesoscopic HF is slightly better predicted when the RUM HF are not taken into account (case
M3H-AXI). As mentioned in Sec. 7.3.3, this could be incidental since mean mesoscopic HF lacks
of a dissipative term when the RUM HF are neglected (Eq. 7.21). However, the RUM HF are
satisfactorily predicted in the case M3H-AXI-HF, when the RUM HF term is switched on. The
amplitude of δFp,x is in good agreement between M3H-AXI-HF and the exact solution. Only a
slight deviation of the peak location of δFp,x is visible outside the jet, which may be due to the
neglected diffusion term by the third-order moments in Eq. 1.54. Spanwise RUM heat fluxes are

2It was not the case in the two-dimensonal configuration of Chap. 6.
3This phenomenon is the analog of the reverse exchange of MKE between the RUM and the mesoscopic part,

discussed in Sec. 7.3.3.
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slightly over estimated but still agree satisfactorily with the Lagrangian data. Nevertheless, the
reverse exchange of mesoscopic temperature variance seems to be captured, since both meso-
scopic and RUM HF are in good agreement with the reference. That means that the chosen
approach to model the RUM HF in this work, i.e. transport δΘp,i and neglect the third order
moment δ∆p,ij, is adapted for non-isothermal EE simulations.

7.4 Conclusions

The simulation of a three-dimensional turbulent jet laden with cold solid particles surrounded
by a hot carrier gas has been carried out. The MEF extended to non-isothermal flows has been
a posteriori validated against a complete Lagrangian database computed by Masi [78] with
the NTMIX solver. This database contains both mesoscopic and RUM variables, allowing a
thorough validation of the MEF.

First, it was verified that the carrier phase in both solvers were identical. A mesh of 1283

cells was found to be sufficiently fine to yield converged carrier-phase statistics. However, a
mesh sensitivity study of the dispersed phase showed that a finer mesh was necessary to capture
the correct level of particle volume-fraction fluctuations. Having in mind the conclusions of
Chap. 5, the numerical and physical dissipations were explicitly extracted. It was shown that
the numerical dissipations due the artificial viscosity are not acceptable on the coarse mesh.
Therefore, a finer mesh (2563 cells) was used to conduct a meaningful study of the impact of
the RUM model and of the RUM heat flux term.

Then, the impact of the RUM model on the dispersed phase statistics was investigated. The
two RUM models available in this work, VISCO and AXISY-C, have been compared. It was
shown that the VISCO model yields correct results at the center of the jet but fails in the region
of mean-shear at its edges, consistently with previous studies [63, 83, 103]. Indeed, VISCO
model under-estimates the particle MKE at the edges of the jet whereas it over predicts the
RUM kinetic energy. On the contrary, the AXISY-C model4 recovers the correct level of these
two quantities. The discrepancy between the two RUM models was partly explained by their
ability to recover the reverse energy exchange from the RUM to the mesoscopic part. Whereas
the correction of the AXISY model (acronym “-C”) allows this reverse energy exchange, the
VISCO model cannot reproduce it.

Finally, the impact of the RUM HF term (appearing in the transport equation of the particle
mesoscopic temperature) on the thermal particle dispersion was analyzed, which finalizes the a
posteriori validation of the MEF extended to non-isothermal flows. It was shown that the RUM
HF have a large favorable impact on both the mean and rms of particle mesoscopic temperature.
Without the RUM heat flux term, the mean mesoscopic temperature and rms are over estimated
at the edges of the jet whereas the agreement is excellent when it is accounted for. Moreover,
it was shown that both mesoscopic and RUM HF are satisfactorily predicted when the RUM
HF term is taken into account, which validates the modeling of the RUM HF used in this work.
Thus, the fundamental phenomenon of reverse exchange of heat transfer between the mesoscopic
and RUM components is well captured, which may have a large impact on the evaporation of
particles.

4implemented in AVBP by Sierra [120]

145



CHAPTER 7. EVALUATION OF THE MEF EXTENDED TO NON-ISOTHERMAL FLOWS - 3D
NON-ISOTHERMAL PARTICLE-LADEN JET

360340320300

-2

-1

0

1

2

y
*

t*= 0 t*= 20 t*= 40 t*= 60 t*= 80

Tp [K]

(a)

1612840

-2

-1

0

1

2

y
*

t*= 0 t*= 20 t*= 40 t*= 60 t*= 80

Tp,rms [K]

(b)

Figure 7.13: Influence of the RUM HF term on the particle mesoscopic temperature with the
AXISY-C model. (Top) mean T̃p and (Bottom) T̃ rmsp . Eulerian simulations without ( )
and with ( ) the RUM HF term are compared with the Lagrangian reference ( ● ). The
corresponding quantity of the carrier phase is plotted for reference ( )
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Figure 7.14: Influence of the RUM heat flux term on the particle streamwise heat flux statistics
with the AXISY-C model. (Top) mesoscopic HF F̃p,x and (Bottom) RUM HFδFp,x. Eule-
rian simulations without ( ) and with ( ) the RUM HF term are compared with the
Lagrangian reference ( ● ).
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Figure 7.15: Influence of the RUM heat flux term on the particle spanwise heat flux statistics
with the AXISY-C model. (Top) mesoscopic HF F̃p,y and (Bottom) RUM HF δFp,y. Eule-
rian simulations without ( ) and with ( ) the RUM HF term are compared with the
Lagrangian reference ( ● ).
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Conclusion

The context of the present work is DNS of non-isothermal dilute sprays in configurations rel-
evant of fuel injection in a piston engine. The focus was set on the accurate prediction of the
droplet dispersion and heat transfer between droplets and surrounding gas. Among other Eule-
rian approaches using a statistical description of the dispersed phase, the Mesoscopic Eulerian
Formalism [41, 78] was chosen for its ability to capture the local and instantaneous behavior of
inertial particles embedded in non-isothermal turbulent flows. The main objective of this work
was to assess the ability of this formalism to accurately account for both dynamic and thermal
inertia of particles in turbulent flows with a mean shear. The CFD code used in this work is
AVBP5. Three main issues were addressed:

• Numerics. First, the numerical methods implemented in AVBP for two-phase flows [69,
103, 108] were tested and revisited to propose a robust and accurate numerical strategy,
which withstands the steep gradients of particle volume fraction produced by preferential
concentration [132] with limited numerical diffusion. The two numerical strategies avail-
able in AVBP: (1) the robust upwind scheme called PSI and (2) the high-order scheme
TTGC used jointly with an AV term, were compared on academic test cases of increasing
complexity. The configuration of a two-dimensional vortex laden with solid particles was
suggested to simply illustrate the impact of the dynamic inertia of the particles on their
concentration profile and compare the two numerical strategies. In particular, an analyti-
cal solution was derived in the limit of small St. Finally, it was shown that option (2) was
the best with an appropriate set-up (i.e. AV sensor).

In order to compare thoroughly the two numerical strategies, the discrete budget of the
kinetic energy of the dispersed phase was written and the dissipations due to numerics and
physical effects were explicitly extracted. This diagnostic also highlighted an important
issue in Eulerian approaches: the simulation of a two-phase flow may require more mesh
resolution than necessary for the carrier phase alone. For a meaningful study of physical
models, its is mandatory to ensure that the sources of numerical dissipations are below
those corresponding to the physics.

• Modeling of the particle dispersion in configurations with a mean-shear. The
issue of the closure model of the RUM stress tensor in the MEF, referred to as RUM
model, has been tackled. A new RUM model proposed by Masi [78] and implemented by
Sierra [120] in AVBP –denoted AXISY-C– has been validated in configurations with a mean
shear. Contrary to the previous RUM models [83, 103], AXISY-C captured accurately the
motion and concentration of particles both at the center and at the edges of a jet. Indeed,

5http://pantar.cerfacs.fr/4-26334-The-AVBP-code.php
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both mean mesoscopic and uncorrelated kinetic energy were remarkably predicted. This
was partly explained by the ability of AXISY-C to recover the reverse energy exchange
from the RUM to the mesoscopic part. It is a major achievement for the MEF and a
mandatory step before considering heat transfer between phases in configurations with a
mean shear.

• The modeling of the heat transfer between phases with the MEF has been investi-
gated in two configurations with a mean shear: a two-dimensional and a three-dimensional
non-isothermal jet laden with solid particles, denoted in this conclusion J-2D and J-3D,
respectively. For these two cases, AVBP was compared to a Lagrangian simulation per-
formed by B. Leveugle at CORIA for J-2D and by E. Masi at IMFT for J-3D.

First, the impact of the thermal inertia of particles on their temperature has been investi-
gated in J-2D. Lagrangian simulations6 showed that both mean and rms of the mesoscopic
temperature were strongly dependent of the thermal Stokes number. At low thermal in-
ertia, these two quantities follow that of the fluid. At high thermal inertia, the particles
keep the memory of their injection temperature so that their statistics differ from those
of the surrounding carrier phase. It is thus of paramount importance that the numerical
approach describes correctly the thermal inertia of particles.

To do so, the extension of the MEF to non-isothermal conditions [78], i.e. the RUM
heat fluxes, has been implemented in AVBP. Then, the influence of the RUM HF on the
temperature statistics has been studied in the configurations J-2D and J-3D, with the
following conclusions:

– At low to moderate thermal inertia, the RUM HF terms have a strong positive impact
on the fluctuations of mesoscopic temperature in both configurations J-2D and J-3D.
Neglecting the RUM HF leads to erroneous results while the Lagrangian statistics
are recovered when they are accounted for.

– However, the accuracy of the MEF may be reduced for particles with large thermal
inertia. In J-2D, the predictions of the temperature fluctuations are not satisfactory
at large thermal Stokes number, even when the RUM HF are accounted for.

– The necessity of accounting for the RUM-HF in order to predict the mean temperature
field turned out to be configuration dependent. In J-2D, the RUM HF have a marginal
influence of this statistic. However, for J-3D the RUM-HF must be accounted for in
order to recover the correct level for the mean mesoscopic temperature.

– The MEF has been thoroughly validated in J-3D where both mesoscopic and RUM
Lagrangian statistics7 were available. It was shown that both mesoscopic and RUM
HF are satisfactorily predicted when the RUM HF term is accounted for. This im-
portant achievement validates the modeling of the RUM HF used in this work.

The collaboration with CORIA on the modeling of the heat transfer in the J-2D configuration
led to an article submitted to the International Journal of Heat and Mass Transfer [30]. This
work has been supported by the ANR (National Research Agency) under the grant number
ANR-07-PDIT-002-01.

6Carried out by B. Leveugle at CORIA using the Asphodele code
7The Lagrangian database has been performed by E. Masi [78] at IMFT using the NTMIX code
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Concerning the continuation of this work, several issues remain critical:

• Impact of the RUM HF on the evaporation process. The a priori study of an
evaporating non-isothermal jet [80] showed that the MEF with the RUM HF is able to
describe the local behavior of the evaporating dispersed phase. Moreover, the complete
Lagrangian database of J-3D also contains evaporation terms (mass transfer, fuel vapor,
etc..). Then, a straightforward extension of the present work would be to a posteriori
investigate the impact of the RUM HF on the evaporation process.

• Modeling of the RUM stress tensor. The RUM AXISY-C used in this work was
one of the simplest models proposed by Masi [78]. Even if this RUM model captures
satisfactorily the main statistics of the dispersed phase, the fluctuations of the particle
volume fraction are still under-estimated in the regions of strong mean shear. Moreover,
cases with particles with very large dynamic inertia have not been carried out in this
thesis and AXISY-C may fail in such configurations. An ongoing thesis is carried out at
CERFACS [120] that tests higher-order non-linear RUM models.

• Modeling of the RUM heat fluxes. In this work, a simple modeling of the RUM HF
has been chosen: the transport equations have been explicitly solved and the third-order
moments neglected. Other models proposed in [78] could be implemented in AVBP.

• Large Eddy Simulation (LES). The extension of the MEF to non-isothermal flows has
been studied in this work in the framework of DNS. The next step towards simulations
of industrial configurations in complex geometries is the extension of this formalism to
Large Eddy Simulations (LES). Indeed, this issue has already been addressed with the
derivation of the MEF in the LES framework [63], closure models [84, 103] and application
to complex geometries [59, 105, 112, 145] but the RUM HF were not taken into account.
Masi [78] presented an a priori investigation of the MEF extended to non-isothermal flows
in the LES framework and proposed specific closure models that should be tested.

• Robust numerical schemes. For the resolution of the dispersed phase, the current
choice of combining centered schemes and artificial viscosity relies on user experience in
order to maintain the delicate balance between accuracy and positivity of the solution.
However, the implementation of kinetic schemes [13] in AVBP is not obvious due to the
cell-vertex formalism. Recent advances in the construction of high-order residual schemes
on hybrid unstructured meshes that can withstand very strong shocks [2, 3] may represent
an alternative path.
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Appendix A

Carrier phase

The numerical code used in this work is AVBP1. It has been jointly developed by CERFACS
and Institut Français du Pétrole to carry out numerical simulations of reactive gaseous flows,
with an emphasis on combustion instabilities. It is thus of importance that pressure waves were
taken into account. Then, AVBP solves the compressible Navier-Stokes equations, as found in
fundamental CFD text books as [6, 53]. This section briefly describes these equations and is a
close transposition of the AVBP handbook [15].

From now on, the index notation is adopted for the description of the governing equations.
The summation rule is subsequently implied over repeated indices. The set of conservation
equation describing the evolution of a compressible flow without chemical reactions reads,

∂ρf

∂t
+ ∂

∂xj
ρfuf,j = 0 (A.1)

∂

∂t
ρfuf,i + ∂

∂xj
ρfuf,iuf,j = − ∂

∂xj
[Pf δij − τf,ij] (A.2)

∂

∂t
ρfEf + ∂

∂xj
ρfEfuf,j = − ∂

∂xj
[uf,i(Pf δij − τf,ij) + qf,j]. (A.3)

Eq. A.1-A.3 correspond to the conservation laws for the fluid density, momentum and total
energy, where ρf , uf,i and Ef denote the fluid density, velocity vector and total energy, respec-
tively. The symbols Pf , τf,ij and qf,j denote the hydrostatic pressure of the fluid, stress tensor
and heat flux, respectively.

The conservative variable vector is introduced: U = (ρf , ρfuf,i, ρfEf)T so that Eq. A.1-A.3
can be written in compact form:

∂U

∂t
+ ∇⃗ ⋅ F⃗ = 0, (A.4)

where the flux vector F⃗ can be decomposed into a convective (inviscid) F⃗C
f

and a viscous

component F⃗V
f

. They are respectively noted for the three conservation equations:

1http://pantar.cerfacs.fr/4-26334-The-AVBP-code.php
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F⃗C
f
=
⎛⎜⎝

ρfuf,j
ρfuf,iuf,j +Pf δij
uf,i(ρfEf + Pf δij)

⎞⎟⎠ (A.5)

F⃗V
f
=
⎛⎜⎝

0−τf,ij−uf,iτf,ij + qf,j
⎞⎟⎠ (A.6)

The hydrostatic pressure Pf is determined by the equation of state for a perfect gas: Pf =
ρf
R
Wf
Tf , where R = 8.3143 ⋅ J.mol−1.K−1 is the universal gas constant and Wf is the molecular

weight of the fluid.

The fluid stress tensor τf,ij follows the relation:

τf,ij = 2µf(Sf,ij − 1

3
δijSf,kk), (A.7)

where µf is the fluid dynamic viscosity and

Sf,ij = 1

2
(∂uf,j
∂xi

+ ∂uf,i
∂xj
) (A.8)

is the strain tensor.
In AVBP, µf can be computed thanks to the Sutherland and Power law. These laws assume

µf to be independent of the gas composition and close to that of the air. They account for the
variation of µf as a function of the gas temperature. In the present work, only the Power law is
employed2:

µf = µref( T

Tref
)b. (A.9)

For the air at Tref = 273K, µref = 1.71 ⋅ 10−5kg.m−1.s and b = 0.76.

The heat flux vector qf,j is given by the classical Fourier law:

qf,j = −λf ∂Tf
∂xj

, (A.10)

where λf is the heat conductivity coefficient of the fluid and is computed by introducing the
molecular Prandtl number as:

λf = µfCp,f
Pr

. (A.11)

The quantity Cp,f is the fluid heat capacity at constant pressure. In AVBP, Cp,f and the fluid
heat capacity at constant volume Cv,f depend on the fluid temperature and are supposed con-
stant between Ti and Ti+1 = Ti + 100. They are defined as the slope of the sensible enthalpy(Cp,f = ∂hs/∂Tf) and sensible energy (Cv,f = ∂es/∂Tf), which are tabulated in AVBP.

2The range of temperature used in this work is narrow so the viscosity law has few importance.
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Appendix B

Additional transport equations of
high-order moments of the
dispersed-phase

The following tranport equations of higher moments of the dispersed phase have been excerpted
from Masi [78]

• transport equation of the mean temperature variance:

np
DQ2

θ

Dt
= − ∂

∂xj
[npT p(F̃p,j + δFp,j)] − np

τFθ
fp

(2Q2
θ − T pT f)

−npF̃p,j ∂T p
∂xj
− npδFp,j ∂T p

∂xj
(B.1)

• transport equation of the mean mesoscopic temperature variance:

npCp,p
Dq̃2θ
Dt

= − ∂

∂xj
[npCp,p < T̃ ′pδΘp,j >p +1

2
npCp,p < T̃ ′pT̃ ′pũ′p,j >p ]

−npCp,p
τFθ
fp

(2q̃2θ − qθfp)
−npCp,pF̃p,j ∂T p

∂xj

+npCp,p < δΘp,j

∂T̃ ′p

∂xj
>p (B.2)
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• transport equation of the mean RUM temperature variance:

npCp,p
Dδq2θ
Dt

= − ∂

∂xj
[npCp,p < δΩp,j >p +npCp,p < ũp,jδθθ >p ]

−npCp,p
τFθ
fp

2δq2θ

−npCp,pδFp,j ∂T p
∂xj

−npCp,p < δΘp,j

∂T̃ ′p

∂xj
>p (B.3)

• transport equation of the mean mesoscopic heat flux:

npCp,p
DF̃p,i

Dt
= − ∂

∂xj
[npCp,p < ũp,iũp,jT̃ ′p >p + < ũp,iδΘp,j >p + < T̃ ′pδRp,ij >p ]

−npCp,p( 1

τF
fp

+ 1

τFθ
fp

)F̃p,i + npCp,p[ 1

τF
fp

< v′f,iT̃ ′p >p + 1

τFθ
fp

< ũp,iT ′f >p ]
−npCp,pR̃p,ij

∂T p

∂xj
− npCp,pF̃p,j ∂V p,i

∂xj

+npCp,p < δRp,ij ∂T̃
′
p

∂xj
>p +npCp,p < δΘp,j

∂ũ′p,i

∂xj
>p (B.4)

• transport equation of the mean RUM heat flux:

npCp,p
DδFp,i

Dt
= − ∂

∂xj
[npCp,p < δ∆p,ij >p +npCp,p < ũp,jδΘp,i >p ]

−npCp,p( 1

τF
fp

+ 1

τFθ
fp

)δFp,i
−npCp,pδRp,ij

∂T p

∂xj
− npCp,pδFp,j ∂V p,i

∂xj

−npCp,p < δRp,ij ∂T̃
′
p

∂xj
>p −npCp,p < δΘp,j

∂ũ′p,i

∂xj
>p (B.5)

155



Appendix C

Additional results

-100 0

-3

-2

-1

0

1

2

3

y
*

Fg,x [m.s
-1

.K]

(a)

-40 0 40

-3

-2

-1

0

1

2

3

y
*

Fg,y [m.s
-1

.K]

(b)

-10 0 10

-3

-2

-1

0

1

2

3

y
*

Fg,z [m.s
-1

.K]

(c)

Figure C.1: Streamwise (left), spanwise (center) and cross-stream (right) heat fluxes of the
carrier phase at t⋆ = 40. Simulations carried out with AVBP (fine mesh M3H ( ) and coarse
mesh M2H ( )) are compared with NTMIX ( ● ).
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(a) T̃p at t⋆ = 0 (b) T̃p at t⋆ = 10 (c) T̃p at t⋆ = 20 (d) T̃p at t⋆ = 30

(e) T̃p at t⋆ = 40 (f) T̃p at t⋆ = 50 (g) T̃p at t⋆ = 60 (h) T̃p at t⋆ = 70

Figure C.2: Time evolution of particle temperature of the Lagrangian simulation. Cut at Z = 0.
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Figure C.3: Influence of the RUM model on the thermal variables of the dispersed phase at
t⋆ = 40 when the RUM-HF are turned on. Eulerian simulations performed with AXISY-C
( ) and VISCO ( ) RUM models are compared with the Lagrangian reference ( ● ).
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Figure C.4: Influence of the RUM HF model on the particle cross-stream heat flux statistics with
the AXISY-C model. (Top) mesoscopic F̃p,z and (Bottom) RUM δFp,z. Eulerian simulations
without ( ) and with ( ) RUM HF are compared with the Lagrangian reference ( ● ).
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[18] P. Chassaing. Turbulence en mécanique des fluides, analyse du phénomène en vue de sa
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Toulouse - Ecole doctorale MEGeP, CERFACS - CFD Team, Toulouse, July 2009.

[109] A. Roux, S. Reichstadt, N. Bertier, L. Y. M. Gicquel, F. Vuillot, and T. Poinsot. Compar-
ison of numerical methods and combustion models for les of a ramjet. Comptes rendus
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quel, H. Pitsch, and T. Poinsot. Evaluation of numerical strategies for two-phase reacting
flows. Comptes rendus de l’Académie des sciencesMécanique, 337(6-7):528–538, 2009.
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