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 Abstract 
Future antenna architectures especially for space applications are becoming more and 

more complex due to the need of reconfigurability. This reconfigurability is needed in terms 

of frequency, reliability, radiation pattern and power consumption. In this context, 

reflectarrays and frequency selective surfaces (FSSs) are particularly the hottest domains of 

RF design. The accurate analysis of electromagnetic (EM) scattering from such type of 

complex finite-sized reflectarray antenna structures is of great practical interest. However due 

to their large electrical size and complex cellular patterns specially when tuning elements 

such as RF-MEMS are also integrated within the array elements, conventional full-wave EM 

analysis of such multiscale structures either fail or require enormous amount of 

computational resources to resolve prohibitively large number of unknowns. Moreover the 

characterization of large structures would normally require a second step for optimization and 

fine-tuning of several design parameters, as the initial design procedure assumes several 

approximations. Therefore a full-wave analysis of the initial design of complete structure is 

necessary prior to fabrication to ensure that the performance conforms to the design 

requirements. A modular analysis technique which is capable of incorporating geometrical 

changes at individual cell-level without the need to rerun the entire simulation is extremely 

desirable at this stage. 

An indigenous technique called Scale Changing Technique (SCT) addresses this problem 

by partitioning the cellular reflectarray geometry in numerous nested domains and sub-

domains defined at different scale-levels in the array plane. Multi-modal networks, called 

Scale Changing Networks (SCNs), are then computed to model the electromagnetic 

interactions between any two successive partitions by method of moments (MoM) based 

integral equation approach. The cascade of these networks allows the computation of the 

equivalent surface impedance matrix of the complete array which in turn is utilized to 

compute far-field radiation patterns. Full-wave analysis of both passive and active 

(electronically tunable by RF-MEMS) reflectarrays has successfully been performed by the 

SCT while utilizing very small amount of computational resources as compared to 

conventional full wave methods. Moreover, to speed up the SCT modeling of the 

reflectarrays, equivalent electrical circuit models have been extracted and applied for 

individual design and optimization of the reflectarray phase shifter elements. 
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In the confrontation between the stream and the rock, the stream always wins,  
not through strength but by perseverance. H. Jackson Brown 

1 
 
Introduction 

 
 

 

 

1.1   Reflectarray Antennas 

In a great number of RF and microwave applications (both in the domains of terrestrial 

and satellite communications) a highly directive antenna with a main beam scanned to a 

certain angle is required. To achieve this, a certain aperture illumination with progressive 

phasing is used. The two primary ways to do this are reflectors and arrays as shown in Figure 

1.1 with advantages/disadvantages of each type. Although the conventional phased arrays 

provide high gain and directivity, yet at the same time they need very complex beam-forming 

networks and costly transmit/receive modules.  Also the reconfigurable antennas based on 

active antenna architectures are extremely handicapped by their large mass and high cost. 

They are therefore not well-suited especially to the telecommunication market. The reflector 

antenna uses its geometry to create the desired phase across the aperture, while the array 

employs distinct elements fed with progressive phasing. Reflector antennas are advantageous 

in the fact that they typically exhibit large bandwidth and low loss. The main disadvantage of 

the reflector is the geometrical constraint it imposes on the design. The most popular 

reflector, the parabolic reflector, also exhibits inherently high cross polarization levels. 

Obviously, it would be beneficial to combine some of the more attractive features of 

reflectors and arrays. This is accomplished by the reflectarray shown in Figure 1.1. 
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Figure 1.1:  Examples of reflector, microstrip array and reflectarray antennas  

Reflectarrays is a class of antennas that utilizes arrays of elementary antennas as 

reflecting surfaces and was first introduced in 1963 by Berry [1]. It has been found that the 

Reflectarray combines much of the simplicity of the reflector-type antenna with performance 

versatility of the array-type. A reflectarray is an array of antennas which is illuminated by a 

primary feed horn instead of high loss conventional transmission line feeds. The elements of 

the reflectarray receive and then reradiate the incident energy of the feed horn with a given 

phase determined by the phase-shifting device attached to the element. 

1.2   Microstrip Reflectarrays  

Reflectarrays in the past have used waveguides as the array elements. However 

waveguides or other conventional antennas are relatively bulky and expensive to 

manufacture. An appealing option is to use a microstrip antenna like a patch antenna as the 

array elements due to its compactness, simple packaging requirements, conformal abilities 

and low manufacturing cost. The microstrip reflectarrays can be easily mounted on roofs and 
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walls for wireless communications and broadcasting. Hence they are greatly being employed 

in spacecraft applications for their low profile and ease of deployment.  

   

 

Figure 1.2:  A standard microstrip reflectarray antenna 

A standard microstrip reflectarray as shown in Figure 1.2 consists of array of microstrip 

patches printed on a thin-grounded dielectric substrate whose role is to convert a spherical 

wave produced by a feed, such as horn antenna, into a plane wave using a suitable phasing 

mechanism. Each element of the reflectarray re-radiate the incident wave with a given phase 

shift, that is why each unit cell of the microstrip reflectarray is called "phase shifter". The 

purpose behind this type of antenna is to obtain a highly directive reflected beam scanned to a 

certain angle without changing the position of the feed horn. This angle is controlled by the 

different geometrical parameters of the phase shifting cell. 

1.3   Electronically Tunable Microstrip Reflectarrays 

Initially developed microstrip reflectarrays consisted of only passive1 cells, in this case 

the direction of the radiated beam is fixed and the desired fixed beam direction is obtained 

___________________________________________________________________________
1Passive in the sense that the cells do not have any incorporated electronic devices (e.g., PIN diodes, RF-

MEMS) for dynamic phase control to achieve radiation pattern reconfigurability. 
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for example by using patches of variable sizes or identical patches with stubs of variable 

lengths or by varying the height of the substrate. A more recent trend to design reconfigurable 

reflectarrays is by employing active phase shifting cells. Figure 1.3 presents a reflectarray 

antenna that can be electronically reconfigured to steer the radiated beam in the desired 

directions.  For such type of electronically tunable reflectarrays, the radiation pattern is not 

fixed and it is possible to achieve dynamic phase control by introducing electronic tuning 

elements as explained in the next section. 

 

Figure 1.3:   Depiction of an electronically reconfigurable reflectarray antenna [2] 

From the time the microstrip reflectarray was first demonstrated [3], many different 

phasing schemes for a microstrip reflectarray have been introduced. These include, as shown 

in Figure 1.4 (a), variable size microstrip patches [4], variable size dipoles [5], identical 

microstrip patch elements with variable length phase delay lines with or without angular 

rotations [6]–[7] and patches of variable size loaded with slots of different sizes [8]. 
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Figure 1.4: (a) Various approaches for phase tuning of the reflectarray. (b) Reflectarray 
implementation with RF-MEMS switches as phase tuning elements (all the reflectarray elements have 
similar physical structure and orientation) 

In all the above mentioned approaches, the steering of the reflected beam (in a particular 

fixed direction) is achieved by changing the physical size (geometry) of the structure and/or 

orientation, hence dynamic phase control is not possible by these techniques. This is where 

the concept of reconfigurability (dynamic beam steering) enhances the design of a microstrip 

reflectarray. Different electronic techniques have been recently investigated for microwave 

reconfigurability such as, using PIN diodes [9], varactor diodes [10], ferroelectric thin films 

[11], liquid-crystals [12], photonically controlled semiconductors [13] and RF-MEMS [14-

16]. Among the above techniques, the most promising technology is of RF-MEMS due to 

their excellent RF properties such as low power consumption, high linearity, low loss and 

high isolation. By having similar physical structure for all the reflectarray elements as shown 

in Figure 1.4(b), different reflection phases can be obtained by electronic manipulation of the 

MEMS switches. MEMS technology can be integrated into reflectarray design to achieve a 

higher degree of functionality in a very straight forward manner. The other advantage of such 

integration is that MEMS based reflectarrays can be processed at large scale with a low cost 

industrial process. 

There is an increasing need for such electronically tunable antennas especially in satellite 

telecommunications systems. The first need, identified for low earth orbit (LEO) satellite 

systems, has been intensively considered during the past decade. Scanning beams are needed 

for the production of fixed spot beams on the ground from an LEO satellite. For GEO 

(geosynchronous earth orbit) satellite systems associated to commercial missions, the 

required life duration in orbit is from 15 to 18 years. It means that the antennas coverage must 

be frozen around 20 years before the end of their mission. During such a long time, the 
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demand in data traffic (TV broadcast; phone, video or data transmission, multimedia direct-

to-home, etc….) are subject to significant change. An antenna able to change its coverage in-

flight is therefore very attractive for operators.  

The satellite antenna reconfigurability (beam scanning, adaptive radiation pattern) 

achieved by active phased arrays suffer from high complexity, high mass, high volume and 

high power consumption. Such drawbacks restrict their use to specific applications such as 

earth surveillance or military telecommunications, and make them not economically efficient 

for the telecommunication market. Novel reconfigurable antenna solutions with dramatic cost 

reduction may arise by integrating the MEMS technology in the radiating elements of the 

antenna. Thanks to the miniaturization of electronic modules provided by MEMS technology, 

it becomes possible to merge both electronic and radiating functions.  

1.4   Computational Electromagnetics and Microstrip  
        Reflectarrays    

The accurate prediction of electromagnetic (EM) scattering from large finite-sized 

microstrip reflectarrays is of great practical interest in the domain of design and optimization 

of modern reflectarrays, transmit arrays, and frequency selective surfaces (FSSs). However, 

due to their large electrical size and complex cellular patterns specially when tuning elements 

such as RF-MEMS are also integrated within the array elements, full-wave EM analysis of 

such multiscale structures requires enormous amount of computational resources to resolve 

prohibitively large number of unknowns. Moreover the characterization of large array 

structures would normally require a second step for optimization and fine-tuning of several 

design parameters as the initial design procedure assumes several approximations. Therefore 

a full-wave analysis of the initial design of complete structure is necessary prior to 

fabrication, to ensure that the performance conforms to the design requirements. A modular 

analysis technique which is capable of incorporating geometrical changes at individual cell-

level without the need to rerun the entire simulation is extremely desirable at this stage. 

Historically several approaches have been followed when analyzing large planar 

structures. In the case of uniform arrays where periodicity in the geometry exists, an infinite 

array approach is often applied [17], [18]. In this case, the entire computation domain is 

effectively equivalent to solving for a single unit-cell by using set of Floquet harmonics; thus 

significantly reducing the number of unknowns and hence the execution times and memory 
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resources. Although the periodic boundary conditions take the effect of mutual coupling into 

account in the periodic environment, the approximation may not hold for the arrays where 

individual cell geometries are quite different. In addition, this is a very poor approximation 

for the cells lying at the edges of the array [19]. Different conventional full-wave simulation 

techniques based either on spatial discretization (e.g., finite element method) or spectral 

discretization (e.g., mode matching technique) have been applied for complex multiscale and 

multilayered structures [20], [21]. But all of these methods would require prohibitive 

execution time and memory resources for the cases where the local periodicity assumption 

cannot be applied. Especially, in the case of doubly truncated arrays, both the transform 

variables become continuous and the evaluation of the matrix elements containing integrals 

instead of summations becomes a considerably time consuming process [21], [22]. Moreover, 

any geometrical change at individual cell-level, e.g., during the design and optimization 

process, requires to rerun the entire EM simulation and consequently these well-known 

numerical techniques imply prohibitive execution times and memory resources. Although the 

electromagnetic coupling between unit cells in arrays can accurately be taken into account, 

these conventional approaches seem not to be appropriate for rapid array-design and 

optimization purposes.  

To render large problems manageable, it is common to apply asymptotic techniques, such 

as the geometrical theory of diffraction (GTD) [23] or physical optics (PO) [24]. However, 

basic difficulties arise in using these techniques when one deals with the structures having 

fine details and, hence, the conditions of validity for the asymptotic methods are violated by 

their geometries. To overcome this limitation, hybridization of the method of moment (MoM) 

with asymptotic techniques, ray-based (like GTD), or current-based (like PO) methods have 

been proposed [25]. However, these approaches have only seen limited applications because 

of the difficulties in finding a systematic way to merge the two methods. Recently, promising 

improvements for MoM type scattering analysis of large-scale structures have been 

developed, e.g., the impedance matrix localization, the pre-corrected Fast Fourier Transform, 

the Fast Multipole Method and its extension, the Multilevel Fast Multipole algorithm [26]-

[29]. Although these techniques are able to address large body problems in a highly efficient 

way, the convergence of numerical results remain delicate to reach systematically and also 

the methodology is still limited by the discretization size ranging from 10 to 20 basis 

functions per wavelength [30].  
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The generalized sparse matrix reduction technique and the characteristic basis method of 

moment have also been proposed for solving numerical problems generated by the 

electromagnetic simulation of multi-scale objects [31]-[32] however, the construction of 

characteristic basis functions for expanding the unknown current on such objects may be very 

time consuming and may require in practice large memory storage capabilities. Finally, the 

electromagnetic simulation of multi-scale structures may also be performed by the 

combination or hybridization of various numerical techniques, each technique being the most 

appropriate for a particular scale level. However such coupling between heterogeneous 

formulations or the interconnection of various simulation tools is very delicate in practice. A 

spectral domain immittance approach has also been applied for the full-wave analysis of a 

small planar dipole array along with the Galerkin procedure using entire domain basis 

functions [33]. But still this approach is limited to full wave modeling of microwave 

integrated circuits and simple arrays. Moreover, the approach has limitations, such as, it 

requires infinitesimal thickness for the strip conductors, the structures having finite 

conductivity are difficult to treat by this technique and also there should be no substrate 

discontinuity in the sideward direction [34]. The technique also shares the same time 

consuming recalculation process of Green’s impedance functions when any geometrical 

change occurs at the unit cell level. 

1.5.   Scale Changing Technique (SCT) 

In order to overcome the above-mentioned theoretical and practical difficulties, an 

original monolithic formulation called Scale Changing Technique (SCT) has been recently 

proposed and developed for handling large multiscale 2.5D structures [35]. The SCT is a very 

efficient technique in terms of time and memory as compared to the above discussed 

conventional numerical electromagnetic methods. The power of this technique comes from 

the modular nature of its problem formulation. Instead of modeling the whole planar-surface 

as a single large discontinuity problem, it is split into a set of many small discontinuity 

problems each of which can be solved independently using modal method (see, e.g., [36] for 

detailed modal analysis of discontinuities in waveguides). Each of the sub-domain 

discontinuity solution can be expressed in the matrix form characterizing a multiport-network 

called Scale Changing Network (SCN). SCT models the whole structure by interconnecting 

all scale changing networks, where each network models the electromagnetic coupling 
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between adjacent scale levels. The cascade of the scale changing networks allows the global 

electromagnetic simulation of all sorts of multi-scale planar geometries.  

The global electromagnetic simulation of multiscale structures via the cascade of scale 

changing networks has been successfully applied to the design and electromagnetic modeling 

of structures having diverse geometries such as multi-frequency selective surfaces [37], 

discrete self-similar scatterers [38], [39], active patch antennas [40] and MEMS-

reconfigurable planar phase-shifters [41]. The SCT has also been recently applied by the 

author for the electromagnetic modeling of free-standing finite size planar structures under 

feed horn excitation [42], periodic microstrip reflectarrays [43], free-standing finite-sized 

reflectarrays without dielectric loading [44] and finite-sized thick frequency selective 

surfaces [45].  

Here, it is important to mention about another modular approach based on spectral-

domain Method of Moments that has been used in the case of multilayer periodic structures 

[46] which consists of characterizing each array layer by a generalized scattering matrix 

(GSM) and then analyzing the complete structure by a simple cascade of these GSMs. SCT 

differs from this approach because in case of SCT partitioning is applied to the same array-

plane and therefore SCT is applicable for single-layer array problems. For multilayer arrays, 

SCT can be used in hybrid with the fore-mentioned approach for the efficient modeling of 

more complex electromagnetic problems e.g. in the case of variable sized stacked patch-

arrays [47]-[49] and aperture-coupled arrays [50]-[51]. 

1.6.   Objectives and Contributions  

The objective of this research work is to benchmark Scale Changing Technique in cases 

of finite-sized uniform (with all cells identical) and non-uniform (having non-identical cells) 

microstrip reflectarrays. The non-uniform microstrip reflectarrays are designed to steer the 

beam into a specific direction. Analytical modeling of pyramidal horn has also been 

presented to incorporate the feed horn excitation into the electromagnetic (EM) formulation 

of Scale Changing Technique. The microstrip reflectarrays studied in this thesis are 

consisting of passive (i.e., having no built-in electronic devices for dynamic phase control) 

elements containing patches loaded with slots. A small reconfigurable reflectarray 

electronically tunable through RF-MEMS switches has also been modeled and simulated by 

the SCT. These RF-MEMS switches allow dynamic phase control of the re-radiated beam by 
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the microstrip reflectarray. The modeling and simulation of this 4-element active reflectarray 

will pave the way towards SCT modeling of larger 2D reflectarrays electronically 

reconfigurable by RF MEMS switches. The scattering parameters and far-field radiation 

pattern results obtained by the SCT for all the above mentioned active and passive 

reflectarrays are then validated using standard simulation tools based on finite element 

method and method of moments. 

The second very important research contribution but presented in the first Section of the 

thesis (Section I) is the extraction of the equivalent circuit models for two types of phase 

shifter elements of the microstrip reflectarrays, these are: 

 Passive phase shifter cells, i.e., unit cells containing only patch and slot. 

 Active phase shifter cells i.e., unit cells containing patch and slot loaded 
with RF-MEMS switches. 

These equivalent circuit models are then used as a time and memory efficient tools to 

design and optimize the reflectarray elements individually (Section I), and then in Section II 

the reflectarrays based on these optimized phase shifter elements are simulated by the Scale 

Changing Technique. The application of the circuit models allow rapid computation of the 

frequency response for the design and optimization of individual microstrip reflectarray unit 

cells. 

 In brief, this research work presents two efficient methods in the form of equivalent 

electrical circuit models for the design and optimization of the individual reflectarray 

elements (Section I) and then the Scale Changing Technique (SCT) for the electromagnetic 

modeling of the reflectarrays as a whole (Section II). 

1.7. Structure of the Thesis  

This thesis is divided into two main Sections, I and II. Section I consists of chapters 2 and 

3. Chapter 2 presents the geometry of the reflectarray phase shifter cell finally loaded with 

RF-MEMS switches, the methodology for the extraction of its equivalent electrical circuit 

and then how this circuit model can be applied as a design and optimization tool for 

determining specific unit cell configurations that allow synthesizing a uniform distribution of 

a given number of phases over 360° phase range. Chapter 3 will concentrate primarily on the 

MEMS switch losses with in the reflectarray unit cells. In this chapter, the main focus is on 

the strategy of reducing the power losses in the phase shifter cells and making the circuit 
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model more flexible and useful regarding capacitance ratio (CON/COFF) of capacitive RF-

MEMS switches. This chapter also discusses the effect of the switch position on the power 

losses and the advantage of the redundancy among the switch positions.  

In Section II, chapter 4 explains the theory behind the Scale Changing Technique (SCT) in 

a general context using an example of a generic discontinuity plane. Several concepts related 

to the technique are introduced and elaborated. How a multiscale discontinuity problem can 

be expressed in terms of equivalent electromagnetic circuit components has also been 

demonstrated. The problem is then formulated in terms of matrix equations and solved using 

MoM based technique. Chapter 5 demonstrates the application of the SCT to periodic 

reflectarrays. In chapter 6, the Scale Changing Technique is used to model finite uniform and 

non-uniform planar reflectarrays under plane wave incidence and horn antenna excitation. A 

small electronically reconfigurable reflectarray has also been simulated by the SCT. In this 

chapter it has been shown that the SCT can effectively models the electromagnetic coupling 

between the neighboring cells of an array. The simulation results as well as the simulation 

times are compared to the classical simulation tools. The scattering field plots in case of SCT 

are compared to the results obtained by the other techniques. 
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God has given you one face, and you make yourself another.   
William Shakespeare 
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He who trims himself to suit everyone will soon whittle himself away. 
 Raymond Hull 

2 

Extraction of Equivalent Electrical 
Circuit Model for Reflectarray Phase 
Shifters 

 

 

 
2.1.   State of the Art 

In recent years electronically tunable microstrip reflectarray antennas have become a 

potential candidate in the domain of antenna technology. As it has been discussed in chapter 

1 that the reconfigurable reflectarrays possess the advantages of both fixed beam reflectarrays 

(such as small size, less weight and low cost) and active phased arrays (e.g., beam scanning, 

adaptive radiation pattern and dynamic phase control). These attributes have made them in 

recent years a more significant and attractive antenna technology especially for satellite 

applications [2]. However, the above benefits are at the cost of high complexity in the 

reconfigurable microstrip reflectarray antenna structures. This complexity, in turn, becomes a 

severe handicap performing the electromagnetic (EM) modeling of reconfigurable 

reflectarrays by conventional numerical methods. 

      To offer an electromagnetic model for such structures that could be simple and useful for 

designers, equivalent circuit approaches are helpful. In the past, On the basis of basic circuit 

modeling equations, originally presented by Marcuvitz [52], many equivalent circuit models 

have been derived for different kinds of periodic non-reconfigurable frequency selective 
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surfaces (FFSs) and reflectarray antennas [53]-[56]. As for as the equivalent circuit approach 

for the design of reconfigurable reflectarrays is concerned, recently, an equivalent electrical 

circuit [10] based on the transmission line model [57] is presented to analyze the scattering 

behavior of an electronically tunable varactor-based phase shifter cell. This phase shifter cell 

consists of two rectangular patches separated by a slot loaded with two varactor diodes at the 

edges as shown in Figure 2.1.  

 

 

                              (a)                                                                     (b) 
 
Figure 2.1: Equivalent circuit for predicting reflectarray cell scattering (a) Standard microstrip patch 
(b) Microstrip patch with varactor diode and discontinuities [10] 

The working principle of this unit cell shown in Figure 2.1 (a) is simple; by varying the 

capacitance of the diodes, the resonance frequency of the unit cell is changed. In turn, this 

change in the resonance frequency directly controls the reflected phase of the radiating 

element. This principle is applied to all reflectarray elements to scan the overall reflectarray 

beam in the desired direction. 

  The equivalent circuit of Figure 2.1 (b) has its origins in the basic transmission line model 

of a microstrip antenna [8]. Using transmission line model a rectangular microstrip patch can 

be represented by two parallel radiating slots (i.e., two radiating edges of the patch) of 

admittance equal to the sum of the radiation resistance and the edge capacitances [57]. For 

the cell of Figure 2.1 (a), each patch is then represented by a line of length L/2, characteristic 

impedance Zc and effective dielectric constant εeff. The slot is then seen as a discontinuity 

between two lines and is modeled by an equivalent π network. In parallel to this circuit, the 

two series RLC circuits represent the varactor diodes. Finally, an inductance is added in 

series to reflect the effect of the current flowing in the diodes. The extraction of model 

parameters has been made directly from the results of full wave electromagnetic simulations 
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carried out using FDTD (Finite-Difference Time-Domain) method [10]. 

Although the proposed circuit is simple, and its constituting elements are justified, this 

model does not seem much convincing, as in fact, a rectangular microstrip patch can be fed in 

different ways: by microstrip line, coaxial cable, or by an incident wave as is the case of a 

reflectarray. The transmission line model can be best suited for the first two types of 

excitation as compared to the case of incident wave. In fact, the incident wave first sees the 

patch and then propagates in the dielectric to be reflected from the ground plane; so a model 

is needed that represents the scattering behavior (in respect of both transmission and 

reception) of the phase shifter cell in a more rigorous manner. Also in the circuit model 

representation of the slot, the electromagnetic interactions between the patches and the slot 

are not evident. The slot has been considered as a gap that simply puts the two variable 

capacitances (varactors diodes) in parallel, whereas for such structures, the most critical 

aspect is the electromagnetic coupling between the patch and the slot that has to be taken into 

account. Moreover, this circuit model cannot be used as a dynamic design tool as the number 

of command elements (varactor diodes) and their position is fixed.  

A detailed loss budget (as discussed in [10]) of a reflectarray surface reveals that a 

significant source of loss in the electronically tunable reflectarrays is the power absorption by 

the tuning elements (the varactor diodes in the case of this design); such losses can be 

reduced by utilizing tuning components with a higher Q. In this context, among different 

techniques (one that is used here i.e., the varactor diodes, and others like  PIN diodes, 

ferroelectric thin films, liquid-crystals, photonically controlled semiconductors and RF-

MEMS), the most promising technology is of RF-MEMS due to their excellent RF properties 

such as low power consumption, high linearity, low loss and high isolation [58].     

 2.2. MEMS-Controlled Reconfigurable Reflectarray 
Phase Shifter Cell 

 In this thesis, for the first time, an equivalent circuit model is presented to design a phase 

shifter cell electronically tunable by RF-MEMS switches. After a careful study and 

systematic evaluation of different designs of the reflectarray unit cells, it was decided that a 

unit cell containing a patch loaded with a slot is best suited keeping in mind the RF-MEMS 

implementation within the slot. The slot acts as a load on the patch and by electronically 

varying the length of the slot (i.e., by making MEMS switches ON/OFF) the reflection phase 

tuning is achieved. The phase shifters of this kind have recently been developed and used in 
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reconfigurable reflectarrays [16], [58]-[60]. This equivalent electrical circuit model is flexible 

with respect to the state (ON/OFF), position and number of the command elements (RF-

MRMS) and hence can be used as a dynamic design and optimization tool for reflectarray 

unit cells. The reflection phase obtained from this circuit model depends on the number, the 

ON/OFF state and the locations of the MEMS inside the phase-shifter cell. Moreover the 

circuit model has been used for determining, with a little computational effort, the locations 

and the minimum number of the MEMS that allow synthesizing a uniform distribution of a 

given number of phases at a single desired frequency within the operating frequency band of 

the reflectarray. 

2.2.1.   Geometry of the Phase Shifter Cell  

A complete schematic diagram of the phase shifter cell loaded with MEMS switches is shown 

in Figure 2.2. All the geometric details of the unit cell are given in the caption. 

 
 

Figure 2.2: The phase-shifter cell in the TEM-mode waveguide: d=12mm, Lp=9mm, Wp=6mm, 
Ls=7mm, ws=0.75mm, S=0.1mm, h=1.5mm and εr=2.9. MEMS switch is modeled by its equivalent 
surface impedance. The number of switches in the slot is denoted by N while xn (n=1, 2… N) refers to 
the coordinate of the nth  switch in the slot. Metallic strips connect the switches to the patch. PEBC 
and PMBC stand for Perfect Electric and Perfect Magnetic Boundary Conditions respectively. 
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In the arrangement shown in Figure 2.2, the transverse electromagnetic mode (TEM) is 

the only one propagating mode within the frequency band from DC-14 GHz (this frequency 

band includes the frequencies from 11.7 GHz to 12.5 GHz which is the band at which the 

ultimate reflectarray has been designed under this research project). The number N and the 

locations x1, x2, x3… xN of the switches depend on the design requirements. The reflectarray 

phase shifter cell is placed at the end of a waveguiding structure of transverse dimensions d × 

d. The phase shift applied to the TEM mode when reflecting from the cell is assumed to be 

identical to that experienced by a plane wave electric field incident on a given cell [10]. The 

estimation of this phase shift or equivalently the phase of the reflection coefficient г through 

a simple equivalent circuit model is now presented. The dielectric and metallic losses within 

the unit cell are not taken into account in the present analysis. 

2.2.2.   Extraction Methodology of the Equivalent Circuit        
            Model 
The equivalent circuit is derived from step by step approach. First, in the set of Figure 2.2, 
replace the patch loaded with slot and MEMS by a simple metallic patch having the same 
dimensions Wp × Lp as shown in Figure 2.3.  

 

 

Figure 2.3: Simple Metallic Patch in d×d waveguide excited by TEM wave 
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(a)                                                                                             (b) 

Figure 2.4: Modes of patch resonances (a) Distribution of surface current at the patch surface at first 
resonance at 11.4 GHz (b) Distribution of surface current at second resonance at 22.8 GHz 

Full-wave EM simulations of this simple patch and the analysis of surface current density 

on its surface (as shown in Figure 2.4) indicate that the two first resonant modes, i.e., the 

TM01 and TM21 contribute significantly to the value of the phase of the reflection coefficient 

within the frequency range (0- 25GHz). 

The equivalent circuit of this simple patch is then given by two LC-series circuits (L1C1 and 

L2C2) connected in parallel and shunted by a short-circuited transmission line as shown in 

Figure 2.5.  

 

Figure 2.5: Equivalent electrical circuit model for microstrip patch 

One LC-series circuit is associated with one resonant mode and the short-circuited 

transmission line models the dielectric slab of thickness h metalized on one side. The 

characteristic impedance of this line is Zc =Z0/√εr, where Z0 denotes the free-space wave 

impedance and εr is the relative permittivity of the dielectric slab, the propagation constant β 

of the fundamental TEM-mode is k0√εr where k0 is the free-space wave-number.   From the 

above simulation results, the numerical values of the circuit elements L1, C1, L2 and C2 can be 

derived as follows: 

            (1)    At 11.4GHz and 22.8GHz, the phase of the reflection coefficient is found to be 

zero making the magnitude of the reflection coefficient equal to 1 (i.e., open circuit, the input 

impedance equal to infinity). In other words we can say that the equivalent circuit resonates1 

___________________________________________________________________________ 
1The word “resonates” is just used as the input admittance of the circuit model is reduced to zero; do not mix up 
this resonance with the conventional resonance which turns the input impedance to zero. 
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at these frequencies turning the equivalent input admittance ௜ܻ௡ to zero (these two points can 

be called Zeros) 

(2)   At 16GHz and 24.75GHz, this phase is found to be π making the magnitude of the 

reflection coefficient equal to 0 (i.e., short circuit, the equivalent input impedance becomes 

zero). In other words the equivalent input admittance ௜ܻ௡ at these points becomes infinity 

(these two points can be called Poles). 

 

From these two simulation results, a system of four independent equations combining the 

four unknowns (L1, C1, L2 and C2) is formulated as under: 

The first two equations at first resonance and at first pole are given by: 

At 1st resonance (f=11.4 GHz) 

 

Y୧୬ ൌ
ଵ

୨ω୐భା
భ

ౠωిభ

െ jY଴	 cot k଴√ε୰h ൌ 0                                                (2.1) 

 

At 1st pole (f=16 GHz)  

 

   Z୐େଵ ൌ jωLଵ ൅
ଵ

୨ωେభ
ൌ 0                                                                  (2.2) 

From the solution of these equations (2.1) and (2.2) , the values of two unknowns L1and C1 

can be easily determined. Once the values of L1and C1 are known, the conditions of second 

resonance and second pole can be used to determine the values of L2 and C2 by the solution 

of the following two equations (2.3) and (2.4). 
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Figure 2.6: Comparison between the phases of the reflection coefficient obtained by equivalent 
circuit and HFSS 

At 2nd resonance (f=22.8 GHz) 

 

Y୧୬ ൌ
ଵ

୨ω୐౦భା
భ

ౠωి౦భ

൅ ଵ

୨ω୐౦మା
భ

ౠωి౦మ

െ j	Y୰	cotg	k଴√ε୰h ൌ 0                            (2.3) 

 

At 2nd pole (f=24.7 GHz)  

 

Z୐େଶ ൌ jωL୮ଶ ൅
ଵ

୨ωେ౦మ
ൌ 0                                                      (2.4) 

 

The values of L1, C1, L2 and C2 are reported in Table 2.1. For comparison purposes, the 

equivalent circuit model of Figure 2.5 and the microstrip patch backed with grounded 

dielectric of height h are simulated by ADS and HFSS respectively, the graphical results are 

in good agreement as shown below in the Figure 2.6. 

Now the microstrip patch is loaded with slot. It was observed on the basis of full wave 

simulation results that the phase of the reflection coefficient can be accurately predicted 

within the frequency band of interest by connecting an LC-parallel circuit (LsCs) in series 

with the just derived simple patch circuit model of Figure 2.5. The equivalent circuit of the 
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patch loaded with a slot is given by the following Figure 2.7. From the simulations, it has 

come to know that the slot do not introduce any new resonance in phase results rather it 

translates the already present resonances of TM01 and TM21 modes towards lower 

frequencies.  

  

 

          (a)                                                                       (b) 

Figure 2.7: (a) Metallic Patch loaded with slot in d×d waveguide excited by TEM wave (b) Its 
equivalent electrical circuit model. 

The values of Ls and Cs can be deduced by following two conditions: 

 (1)  at 10.4GHz the phase of the reflection coefficient is found to be π (i.e., the equivalent 

circuit impedance is zero, a pole)  

(2)  at 18.45 GHz the phase is found to be zero (i.e., this frequency is the resonant 

frequency for the structure, a zero). 

 Applying these two conditions one can reach the values of Ls and Cs; these values are 

given Table 2.1.  

Table 2.1 
Values of the elements L1, C1, L2, Ls and Cs appearing in the equivalent circuit of Figure 2.7 
 

 

     For comparison purposes, the equivalent circuit model of Figure 2.7(b) and the microstrip 

patch loaded with slot backed with grounded dielectric of height h are simulated by ADS and 

HFSS respectively, the graphical results are in good agreement as shown in Figure 2.8. 
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Figure 2.8: Comparison between the phases of the reflection coefficient obtained by equivalent 
circuit model of Figure 2.7(b) and HFSS 

Next, load the slot at its centre by a single capacitive RF-MEMS switch. A capacitive 

MEMS switch generally has ON-state (CON) and OFF-state (COFF) capacitances in between 1-

4pF and 20-50fF [61- 62] respectively. Moreover the typical loss resistance of such MEMS is 

in between 0.1 Ω and 1Ω (if such resistance is connected in series with the MEMS 

capacitance in the equivalent circuit, we observed that the phase diagram of the reflectarray 

element remains same as obtained in the lossless case). To model the MEMS including its 

connections, consider the MEMS at the centre of the slot denoted by the domain DMEMS and 

the connections denoted by the domain DM as shown in Figure 2.9(a). 

 

                            (a)                                                             (b) 

Figure  2.9: (a) MEMS and its connections to the patch (b) equivalent circuit model when the MEMS 
switch is located at the center of the slot. 
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The MEMS and its connections can be modeled by purely reactive impedance ZMEMS as 

shown in Figure 3(b), where CMEMS (CON or COFF) designates the ON/OFF capacitance of the 

MEMS and L denotes the inductance of the domain  DMEMSDM. This inductance can be 

estimated by equation (2.5) with b and s denote respectively the width of the slot and the 

width of the strip.  

ܮ ൌ ଴ߤ
௕

௔
∑ ଵ

ටሺଶ௡
ഏ
ೌ
ሻమି௞బ

మ

ஶ
௡ୀଵ,ଶ,ଷ,… sincଶ ቀ݊

గ

௔
 ቁ                                (2.5)ݏ

 

This approximation is derived from the application of the Integral Equation Technique 

using entire domain trial functions (for a description of this technique see, e.g., [63]). For 

deriving equation (2.5), a uniform trial function has been used for expanding the current 

density in the domain DMEMSDM and a uniform trial function has been adopted for 

describing the tangential electric filed in DMEMS. In our application, s=100݉ߤ, a=7݉݉, 

b=750݉ߤ and central frequency is equal to 12.5GHz, where ‘a’ and ‘b’ are the dimensions of 

the entire domain where the trial functions are defined. 

     The inductance is then found to be close to 1nH. When the switch is OFF, this inductance 

can be neglected since			߱ܮ ≪  ைிி, where COFF = 0.04pF. So the equivalent impedanceܥ߱/1

ZMEMS in this case is close to	1/߱ܥைிி. Moreover, when the switch is ON, the impedance 

effect of the inductance L is not negligible and the equivalent impedance becomes equal to 

ܮ߱ ൅  ைே (see Figure 10(b)). Finally the equivalent circuit model for the phase-shifterܥ߱/1

cell when the slot is loaded at its center by single MEMS is then given in Figure 2.10. If the 

MEMS switch is located at the edges of the slot, it is shunted and consequently it does not 

participate in the phase-shift, i.e., the phase-shift in this case is provided only by the patch 

and slot. This situation can be modeled simply by removing the impedance ZMEMS from the 

equivalent model of Figure 2.10.  
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          (a)                                                                       (b) 

Figure 2.10:  (a) Metallic Patch loaded with slot with MEMS at its center (b) Its equivalent electrical 
circuit model. 

   Now in order to extract an equivalent circuit allowing the modeling of the cell having single 

MEMS at an arbitrary location between the edges and the center of the slot, we propose to 

connect a position-dependent impedance Z΄(x) in series with ZMEMS such that: (1) Z΄ = 0 

when the MEMS is at the center of the slot and (2) Z΄ is infinite when the MEMS is at the 

edges of the slot. For an arbitrary location x of the MEMS between the edges and the center 

of the slot, the value of Z΄ is extracted from full wave simulations. This impedance allows us 

to propose an electrical circuit that models a cell having single MEMS at an arbitrary location 

between the edges and the center of the slot. By full-wave simulations, we observe that when 

the MEMS is ON then, 

ܼ΄ሺݔሻ ൌ   ሻ                                                         (2.6)ݔሺ΄ܮ݆߱

and when the MEMS is OFF then,       

ܼ΄ሺݔሻ ൌ  ሻ                                                     (2.7)ݔሺ΄ܥ݆߱/1

 

The variations of L΄ and C΄ versus the position x of the MEMS are reported in Figure 2.11(a) 

and (b) respectively. The corresponding value of L΄ and C΄ to a specific position is derived 

such that the phase of the equivalent circuit is very close to one given by full wave EM 

simulations. So the overall changing behavior of L΄ and C΄ along the length of the slot is 
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obtained under HFSS by taking 70 different positions of single MEMS inside the slot with 

the step of 0.1mm. 

 

 

Figure  2.11: Variations of (a) inductance L΄ and (b) capacitance C΄ versus position of a 
single MEMS switch in the slot.    

     To generalize the one MEMS equivalent circuit model of the Figure 2.10(b) for the phase-

shifter cell of Figure 2.2 having N (more than one) number of MEMS with coordinates x1, x2, 

x3…xN, we simulated the equivalent circuit on ADS taking different number of MEMS from 

1 to 9 {with L1, C1, L2, C2, Ls, Cs and Z΄(obtained from Figure 2.11) are those derived in case 

of single MEMS, i.e., no HFSS simulation involves to find circuit model for a phase shifter 

cell having more than one MEMS, rather it is derived from already extracted single MEMS 

model}. The results given by the equivalent circuit model are then compared with HFSS and 

are found to be in a very good agreement. As an illustration, Figures 2.13(a) and (b) give the 

results in case of three MEMS and five MEMS respectively. 

Ultimately, the equivalent circuit of the phase-shifter cell having N number of MEMS is 

shown in Figure 2.12. The elements L1, C1, L2, C2, Ls, Cs and Z΄ are those derived in case of 

single MEMS. The reflection coefficient Γ	of the TEM mode when reflecting from the cell is 

then derived from the expression Γ = (ZL – Z0)/ (ZL + Z0), here Z0 represents the characteristic 

impedance of input transmission line, we take its value equal to 50 Ω  that is normally used as 

a standard and ZL denotes the impedance of the one-port network of Figure 2.12(a).  
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                                                         (a)                                                                 (b) 
 

Figure 2.12: (a) Equivalent electrical circuit for a phase-shifter cell comprising of N MEMS; (b) 
Equivalent circuit model of the nth MEMS within the slot (the total impedance ZMEMS+Z΄ depends on 
the ON/OFF state of the switch as well as its coordinate xn inside the slot). 

2.3.  Design and Optimization based on the Equivalent 
        Circuit Model          

The equivalent circuit model extracted above is used as a tool for designing and specifically for 

optimization of the phase shifter cell loaded with MEMS. By using this circuit model we find such 

phase-shifter configurations that have 360° phase range at a single desired frequency with linear 

distribution of the selected phases and depend on the number N, the positions x1, x2, x3… xN and the 

state (ON/OFF) of the switches. To search out such phase shifter configurations out of thousands of 

configurations is not possible by full wave simulations due to time and memory limitations. 

To find out the desired configurations, an algorithm based on the equivalent circuit model 

is developed, it selects the desired configurations from thousands of configurations (e.g., in 

case of three MEMS, the total configurations considered here are 70*69*68=328440, the 

switch scanning step within the 7mm slot is 0.1mm) which fulfill the criteria of the phase 

range and the linearity. The selected configurations then directly give the optimized values of 

the two important design parameters for the phase shifter cell, i.e., the number N and the 

locations x1, x2, x3… xN of the MEMS used.  

The algorithm was first applied in two switch case (N=2) and it was observed that in this 

case, 360° phase range cannot be achieved within the desired frequency band (DC-14GHz). 

Therefore a higher number (N=3, 4, 5 …) of switches was used and found that the required 

conditions are now easily fulfilled. By this algorithm, a lot of configurations consisting of 3 
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to 9 switches have been determined which satisfy the design requirements and proves the 

practicality of the equivalent circuit. However in a very few configurations the equivalent 

circuit results are not consistent with those of HFSS (perhaps because our circuit model has 

some limitations and assumptions regarding boundary conditions and power losses as 

discussed in the previous Section), such particular cases can be rejected a posteriori from the 

selection. 

Because of limited space, only the results for just four configurations selected by algorithm, 

two from 3-switch case (N=3) and two from 5-switch case, are presented here. The total 

number of phases or commands for 3 and 5 MEMS for one configuration is eight (2N=23= 

000 … 111, the symbols “1” and “0” represent ON and OFF state of the switch respectively) 

and thirty two (25) respectively. As per design requirement, we need such configurations at a 

single desired frequency within the operating frequency band which cover linearly 360° 

phase range with four selected phases, i.e., about a 90° phase shift should be between each 

state. By using the algorithm, we found many configurations that fulfill the above criteria; 

here the results of four configurations are given. Table 2.2 presents the phase results at 13 

GHz for 3 MEMS while Table 2.3 presents results for 5 MEMS at 11GHz. The results in both 

cases are in excellent agreement. Figures 2.13(a) and (b) show the response of two 

configurations (Table 2.2 (b) and Table 2.3 (b)) over the whole operating frequency range 

(DC-14 GHz).  

Table 2.2 
 

Phase-shifts at 13GHz, computed from the equivalent electrical circuit model and HFSS for 
phase-shifter cells loading by 3 RF-MEMS switches with (a) x1=2.25mm, x2=3.2mm,           
x3 =6.65mm (b) x1=0.45mm, x2=2.25mm, x3=6.45mm. 
  

Command 
law 

Phase EC by 
equivalent circuit 

model 

Phase 
HFSS by 

HFSS 

Linearity Check 
(The successive 

difference among four 

phases shifts) 
 

Phase 
difference 
ECHFSS 

100 -164° -175°  Reference  
Phase 

11° 

101 -77° -80° 88° 3° 
000 15° 19° 179° 4° 
010 107° 100° 271° 7° 

 
(a) 
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Command 
law 

Phase EC by 
equivalent circuit 

model 

Phase 
HFSS by 

HFSS 

Linearity 
Check 

(The successive 
difference among 

four phases shifts) 
 

Phase 
difference 
ECHFSS 

010 110° 104° Reference 
Phase 

6° 

000 19° 21° 91° 2° 
011 -76° -67° 185° 9° 
001 -164° -174° 269° 10° 

 

(b) 

Table 2.3 
Phase-shifts at 11GHz, computed from the equivalent electrical circuit model and HFSS for 
phase-shifter cells loading by 5 RF-MEMS switches with (a) x1=0.75mm, x2=3.45mm, 
x3=6.15mm, x1=6.45mm, x1=6.65mm  (b) x1=1.75mm, x2=0.25mm, x3 =6.15mm, 
x4=6.45mm, x5=6.9mm  
 

Command 
law 

Phase EC by 
equivalent 

circuit model 

Phase 
HFSS by 

HFSS 

Linearity 
Check 

(The successive 
difference among 

four phases shifts) 
 

Phase 
difference 
ECHFSS 

01100 166° 175° Reference 
Phase 

9° 

00001 76° 70° 90° 6° 
00010 -15° -18° 181° 3° 
00101 -105° -95° 271° 10° 

(a) 
 
 

Command 
law 

Phase EC by 
equivalent 

circuit  

Phase HFSS 
by HFSS 

Linearity 
Check 

(The successive 
difference among 

four phases 

shifts) 
 

Phase 
difference 
ECHFSS 

11100 153° 154°  Reference 
Phase 

1° 

01000 63° 71° 90° 8° 
11001 -27° -28° 180° 1° 
11010 -116° -125° 267° 9° 
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(b) 

 

  

                                    (a)                                                                        (b) 

Figure  2.13: (a)Comparison between equivalent circuit and HFSS results in three switch case under 
frequency range DC-14 GHz with x1=0.45mm, x2=2.25mm, x3=6.45mm.The symbols “1” and “0” 
represent ON and OFF state of the switch respectively. (b) Comparison between equivalent circuit and 
HFSS results in five switch case under frequency range DC-14 GHz with x1=1.75mm, x2=0.25mm, x3 
=6.15mm, x4=6.45mm, x5=6.9mm. The symbols “1” and “0” represent ON and OFF state of the 
switch respectively. 

2.4.   Conclusions 

This chapter presents a design and optimization tool in the form of an equivalent circuit 

for MEMS-controlled reflectarray phase shifter cells. The results given by the equivalent 

electrical circuit have excellent agreement with full-wave electromagnetic simulations. This 

circuit model takes three parameters as inputs that are the number, the ON/OFF state and the 

locations of the MEMS switches within the slot. Depending on these three parameters, it 

helps to search out such unit cell configurations that provide 360° phase range with linear 

distribution of the selected phases over this range.  
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If you want children to keep their feet on the ground,  
put some responsibility on their shoulders.   

Abigail Van Buren 

3 

Optimization of MEMS-Controlled 
Reflectarray Phase Shifters using 
Equivalent Electrical Circuit Model 

 

3.1.   Introduction 

In this chapter, we will concentrate primarily on the MEMS switch losses with in the 

reflectarray unit cell. Our main focus will be on the strategy of reducing the power losses in 

the phase shifter cell and making the circuit model more flexible regarding the MEMS 

ON/OFF capacitance values. The following section 3.2 presents the design strategy for the 

phase shifter cell; it shows how the losses can be greatly reduced by using MEMS switches in 

pair and highlights the effect of the position of the MEMS switch on the power losses. For 

validation purposes equivalent circuit results have been compared with HFSS. Section 3.3 

discusses the effect of ON/OFF MEMS capacitance ratios on the design of phase shifter cell 

and Section 3.4 explains how the electrical circuit model can be efficiently used to find the 

redundant positions of the MEMS switches within the slot. Conclusions are summarized in 

Section 3.5.  

3.2.   Electromagnetic Dissipated Power Control 
3.2.1. Equivalent Circuit Model including Loss Resistance of RF  

         MEMS Switch 
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As discussed in the previous chapter that the typical loss resistance of capacitive RF-

MEMS switches falls in between 0.1 Ω and 1Ω. If such resistance is connected in series with 

the MEMS reactance in the equivalent circuit of Figure 2.12, we observed that this loss 

resistance have no effect on the reflected phase distribution of the unit cell and the phase 

diagram of the reflectarray element remains same as obtained in the lossless case. The 

equivalent circuit of the phase-shifter cell having N number of MEMS switches with 

coordinates x1, x2, x3… xN including the MEMS resistance is given in Figure 3.1(a). The 

numerical values for the elements L1, C1, L2, C2, Ls, Cs, L΄(x), C΄(x) and their process of 

extraction have been fully explained in chapter 2. The effect of MEMS switch resistance 

when the switch is OFF is almost negligible. It is not the case when the switch is ON. 

 

Figure 3.1: (a) Equivalent electrical circuit for the MEMS-controlled phase-shifter cell; (b) 
Equivalent circuit model of the nth MEMS switch within the slot (the equivalent impedance Z depends 
on the ON/OFF state of the switch as well as its coordinate xn inside the slot). 

3.2.2.    Single MEMS Topology 

As it has been explained in chapter 2 that by using the equivalent circuit model we can 

find out such phase shifter configurations from thousands of raw configurations (containing 

at least three MEMS) that give required number of selected phases (two, four or more) 

covering 360° phase range and having linear phase distribution among them and this process 

can be done within much smaller time and memory resources as compared to the full wave 

simulations. Here first we present phase results of a unit cell configuration selected using the 

equivalent circuit model and then the power loss results for this configuration are presented. 

Here the MEMS switches are being treated on individual basis i.e., each command 1 or 0 will 

directly control one MEMS switch instead of two MEMS switches (as in the case of double 
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MEMS topology in next Section), hence this technique can be called as single MEMS 

topology. In the next Section, we will discuss the strategy of reducing these MEMS switches 

losses within the unit cell under double MEMS topology. 

3.2.2.1. Power Loss Analysis 

Table 3.1 shows the reflected phase results at 13GHz for a phase shifter configuration 

with 3-MEMS while Figure 3.2(a) presents the total power loss for the same configuration 

versus resistance (R) of the MEMS switch. The range of the MEMS resistance is taken from 

0-2Ω. Figure 3.2(b) shows what percentage of the total phase shifter dissipated power goes to 

each ON-MEMS individually. 

 

Table 3.1 
Phase-shifts at 13GHz, computed from the equivalent electrical circuit model and HFSS for 
phase-shifter cells loading by 3 RF-MEMS switches with (a) x1=0.45mm, x2=2.25mm,         
x3 =3.2mm  

 

Command 
law 

Phase EC by 
equivalent circuit 

model 

Phase HFSS 
by HFSS 

Linearity Check 
(The successive difference 

among four phase shifts) 
 

Phase 
difference 
ECHFSS

001 -164° -173° Reference Phase 9° 
111 -72° -70° 92° 2° 
000 15° 18° 179° 3° 
010 108° 113° 272° 5° 

 

 

 

                                     (a)                                                                             (b) 
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Figure 3.2: (a) Results obtained by equivalent circuit and HFSS under single MEMS case (a) 
Comparison between power loss results obtained by HFSS and the equivalent circuit for the unit cell 
as a whole (b) Power dissipated within the ON-MEMS individually (Pn represents the individual 
power of an ON-MEMS, n denotes the number of the ON-MEMS, Pt denotes the total power 
dissipated within the unit cell). 

 

Figure 3.2(a) presents the power loss within the unit cell for three commands 111,010 and 

001. The power loss for the fourth command 000 is not shown because it has no ON-MEMS 

so power loss will be nearly zero for this command. The maximum power loss within the unit 

cell goes up to 1 dB (as in the case of 001 command). In the Figure 3.2(b), it has been shown 

that the power dissipated within the unit cell in case of 111 is distributed on three MEMS as 

all the three MEMS are ON in this command. While individual percentages are not shown for 

the commands 001 and 010 as in this case all the power goes to one MEMS because only one 

MEMS is ON in these commands.  

From a technological point of view, the total dissipated power within the unit cell should 

be firstly, as small as possible and secondly quasi-equally distributed among all the ON-

MEMS to ensure an identical reliability of all the MEMS. Without optimization, as shown in 

the Figure 2(b), 72% of the total dissipated power goes to the 3rd switch, 25% to the 2nd and 

3% to the 1st one. In the next section, we see how the overall power losses can be reduced and 

more conveniently distributed over all the ON-MEMS by using double MEMS topology i.e., 

MEMS switches in pair-form. 

3.2.3.    Double MEMS Topology 

For a given distribution of the required phase-shifts (i.e., for a fixed number of phase-

shifts) at a given frequency, our main goal is to reach out to a design of the phase shifter cell 

having minimum number of MEMS and minimum power losses. In order to minimize the 

power losses and achieve the required distribution of the phase shifts by commanding the 

ON/OFF state of the MEMS (i.e., from 000 to 111 in three switch case) we have two 

strategies. First we could use those commands which consist of at least two ON-MEMS: for 

example, instead of using commands 001,100 or 010 (as done in the previous section) we 

should prefer the commands 011, 101 or 110.By using commands containing at least two 

ON-MEMS the overall dissipated power in the unit cell and within each MEMS switch is 

reduced. But this technique is not applicable as it may disturb the linearity among the 

reflected phases which is our primary goal. The second strategy for minimizing the dissipated 

power is to replace each single MEMS switch with a pair of MEMS switches.  For example, 
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each MEMS of the cell studied in the previous section is replaced by a pair of MEMS, the 

same command being applied simultaneously to the pair. The total number of the MEMS is 

then doubled whereas the number of commands stays constant. For example, the command 

110 corresponds to 11 11 00 (i.e., each 1 or 0 in the command 110 controls respectively two 

ON or OFF MEMS: Double MEMS Topology).  

3.2.3.1.   Power Loss Analysis 

Now again for the double MEMS topology the equivalent circuit model is used to find 

such phase shifter configurations that give equal distribution of the selected number of 

phases. Table 3.2 shows the phase results for one phase shifter configuration found out by the 

equivalent circuit applying double MEMS topology. For this double MEMS topology based 

phase shifter cell Figures 3.3(a) and (b) give respectively the dissipated power results within 

the whole cell and individually within the ON-MEMS of each command. 

Table 3.2 
Phase-shifts at 13GHz, computed from the equivalent electrical circuit model and HFSS for 
the phase-shifter cells loading by 6 RF-MEMS switches actuating them in pair-form having 
the locations: 1st pair → x1=0.45mm, x2=0.56mm, 2nd pair → x3 =5.45mm, x4 =6.34mm,      
3rd pair →  x5 =1.75mm, x6 =1.86mm 

 

Command 
law 

Phase EC  
by equivalent 
circuit model 

Phase 
HFSS by 

HFSS 

Linearity Check 
(The successive 

difference among four 

phases shifts) 
 

Phase 
difference 
ECHFSS

110 (111100) -164° -162° Reference Phase 2° 
011 (001111) -71° -65° 87° 6° 
100 (110000) 18° 18° 179° 0° 
010 (001100) 109° 107° 271° 2° 
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(a)                                                                             (b) 

Figure 3.3: (a) Results obtained by the equivalent circuit and HFSS under double MEMS case (a) 
Comparison between Power loss results obtained by HFSS and equivalent circuit for the unit cell as a 
whole (b) Power dissipated within the ON-MEMS individually. 

 

It is clear from the results of Figure 3.3(a) that if we replace single MEMS with double 

MEMS, then the overall power loss decreases to even less than half of the value comes in 

single MEMS case. In single MEMS case the highest loss goes up to 1dB (see Figure 3.2(a)) 

but in double MEMS case, it reduces to less than 0.4dB. Also as in Figure 3.3(b), the ratio of 

the dissipated power per MEMS switch decreases greatly.  

Now let see up to which extent the 2nd issue (power losses should be quasi-equally 

distributed among all the ON-MEMS to ensure an identical reliability of all the ON MEMS). 

As shown in Table 3.2, since only two MEMS are ON in both 3rd ሺ100 → 11	00	00ሻ and 4th 

ሺ010 → 00	11	00ሻ commands, so the dissipated power is divided equally in the two ON 

MEMS i.e., 50% each giving them more reliability as compared to single MEMS topology. 

Also in both of the 1st  ሺ110 → 11	11	00ሻ and 2nd ሺ011 → 00	11	11ሻ commands the 

dissipated power divided among four MEMS but the part of the dissipated power for each 

MEMS remains less than 50%. Hence the result is if we replace single MEMS with two 

MEMS then the power loss among the ON MEMS is almost equally distributed reducing the 

chances of their breakdown. The phase distribution results of Figure 3.3 also have excellent 

agreement with that of HFSS as shown in Table 3.2. 

Finally as expected we have found that if double MEMS technique is used, then power 

dissipated within the phase shifter cell and within each MEMS switch individually can be 
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greatly reduced. As it has been discussed in chapter 1 and 2 that the main source of the power 

absorption within the electronically tunable microstrip reflectarrays are the tuning elements 

themselves (RF-MEMS switches here) therefore by applying proposed double MEMS 

topology this power consumption can be effectively controlled approximately up to 60% as 

depicted in Figure 3.3(a). 

 3.2.4.    Effect of the Position of the RF-MEMS Switches on the  
              Power Losses 

Power dissipated in the phase shifter cell greatly depends on another very important 

design parameter i.e., location of the RF-MEMS switches inside the slot. We can control the 

overall power losses in the cell and also reduce the individual level of the dissipated power 

within the ON-MEMS by finding their most suitable locations within the phase shifter cell. 

But to search out such locations for multiple RF-MEMS switches within the slot among 

hundreds of thousands of their possible locations is impossible through full wave analysis 

tools like CST [71], FEKO [72], IE3D [73] and HFSS [75]. This is another critical situation 

where the equivalent electrical circuit proves very helpful in the form of memory and time 

efficiency.  

Figure 3.4 presents the power losses in the unit cell containing one MEMS switch versus 

its position inside the slot. Electric current passing through the switch versus its position 

inside the slot has also been shown. Power losses gradually increase as the switch moves 

from the edge towards the centre of the slot because the corresponding current value flowing 

through the switch increases as it moves from the edge towards the centre of the slot. 
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Figure   3.4: Power loss and current versus position (x) of the MEMS switch inside the slot. 

From the above power loss results versus the location of the switch, it is concluded that 

the power dissipated in the phase shifter cell can be controlled by preferring such phase 

shifter configurations in which MEMS switches are situated near the edges of the slot rather 

than near the center of the slot. On the basis of this analysis, we have used the equivalent 

electrical circuit model to find the optimized cell configurations with respect to the positions 

of the RF-MEMS switches within the slot. These cell configurations have then been used to 

design a steerable reflectarray. This reflectarray will be discussed in the Section II of the 

thesis.  

3.3.   Analysis of the MEMS Switch Capacitance Ratio 
         CON /COFF                       

MEMS-capacitance ratio (CON/COFF) is an important parameter and has a critical role in 

the design and optimization of a reflectarray unit cell incorporating RF-MEMS switches. RF-

MEMS do not have high capacitance ratios (CON/COFF) as high ratios are technologically 

difficult to attain. So an equivalent circuit will be more representative and close to what can 

be manufactured if it works for small ratios. In general, the capacitance ratio of a capacitive 

RF-MEMS switch lies between 25 and 75 with CON=1-4pF and COFF=20-50fF [62-63]. For 

the equivalent circuit model of Figure 2.2 the lowest limit of CON/COFF for which it gives a 
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linear distribution of the phase-shifts can be easily determined by testing different values of 

CON and COFF. It has been found that the equivalent circuit model of Figure 3.1 efficiently 

works with RF-MEMS capacitance ratios (CON/COFF) as low as14.3. Therefore by using this 

equivalent circuit model with RF-MEMS switches having any value of CON ≥ 1pF and COFF ≤ 

70fF, a successful phase shifter design holding the required linear distribution of selected 

phases can be easily found.  

As an example, Table 3.3 presents the phase results for a phase shifter configuration with 

RF-MEMS capacitance ratio CON/COFF = 14.3 (CON= 1pF and COFF= 70fF). All the four 

phases are almost linearly distributed with successive phase difference of 90° over 360° 

phase range. The comparison with HFSS results is also presented.  

Table 3.3 
Phase-shifts at 13GHz, computed from the equivalent electrical circuit model and HFSS for 
the phase-shifter cell loading with 3 RF-MEMS switches with x1=0.25mm, x2=2mm and      
x3 =2.95mm 
   

Command 
law 

Phase EC  
(by Equivalent Circuit 
Model) 

Phase HFSS 
(by HFSS) 

Linearity Check 
(The successive 

difference among four 

phases shifts) 
 

Phase 
difference 
ECHFSS 

001 -159 -155  Reference Phase 4° 
011 -71 -74 88° 3° 
100 19 19 178° 0° 
010 111 115 270° 4° 

 

Similarly we have found many phase shifter configurations using the equivalent circuit of 

Figure 1 varying the CON from 1pF to any higher value and COFF from any lower value to 

70fF. In all configurations the equivalent circuit results are in good agreement with that of 

HFSS. So this equivalent circuit is effectively applicable for the analysis and design of the 

phase shifter cell incorporating RF-MEMS having minimum CON equal to 1pF and maximum 

COFF equal to 0.07pF. Using the technological limits of CON and COFF and the limits set by the 

equivalent circuit model of Figure 3.1, we can define a design area for a phase shifter cell 

containing RF-MEMS switches (see Figure 3.5).  



Section I: Chapter 3: Optimization of MEMS-Controlled Reflectarray Phase Shifters using 
Equivalent Electrical Circuit Model   

39 
 

 

Figure 3.5:  Graph for the phase shifter cell showing the design limits on the basis of CON and COFF.  

3.4.   Redundancy Check 

Reliability is a major concern for RF MEMS switches due to which their deployment into 

many commercial and defense applications is still limited. As it is discussed in [64], the life 

time of Ohmic contact RF-MEMS switches decreases due to contact degradation and 

contamination while capacitive switches exhibit failures due to dielectric charging effects. 

The research is being done in different aspects to overcome this reliability problem by 

understanding specific failure mechanisms for different kind of RF MEMS switches. Here, it 

is worthy to mention that double MEMS topology can also play an important role to enhance 

the reliability and the lifetime of reflectarray antennas incorporating RF MEMS switches. If 

single MEMS are replaced with double MEMS without affecting linearity among the phase 

shifts then the 2nd MEMS switch might be used in case of first MEMS stops working without 

halting the whole operation of the reflectarray system.  

To do so, we have to find suitable extra locations to insert redundancy MEMS without 

disturbing the phase linearity. This is where the equivalent circuit can be of another great 

interest in terms of memory and time resources as compared to conventional full wave 

methods. The equivalent circuit model can give us such redundant locations (i.e., position (x) 

of the switch with in the slot) to adjust extra RF-MEMS switches within almost negligible 

computational efforts. By using the equivalent circuit of Figure 3.1, we can verify that 



Section I: Chapter 3: Optimization of MEMS-Controlled Reflectarray Phase Shifters using 
Equivalent Electrical Circuit Model   

40 
 

whether, for a specific configuration, the redundant locations for one or more switches with 

respect to the corresponding commands exist or not. We have applied the equivalent circuit to 

search out such extra locations at which additional MEMS can be embedded and then used at 

need without deteriorating the original phase results. As an example, in Table 3.4, phase 

results for one configuration are given, the redundant locations for all the three MEMS also 

given respectively in the caption. The MEMS switches incorporated at respective redundant 

locations can be put into function when any of the respective operating switch is damaged, 

more clearly we can say that if the MEMS switch at x1 breaks down  then its respective 

counterpart at redundant location xr1 can be put into functioning, where ‘r’ represents 

redundant position.   

Table 3.4 
Phase-shifts at 13GHz, Phase-shifter loaded with 3 RF-MEMS with x1=0.45mm, x2=2.25mm, 
x3 =3.2mm, alternate locations are xr1=6.45mm, xr2=4.65mm, xr3 =3.7mm    

Command law Phase EC 
by equivalent 
circuit model 

Phase HFSS 
by HFSS 

Linearity Check 
(The successive 

difference among four 

phases shifts) 
 

Phase 
difference 
ECHFSS

001 -164° -173° Reference Phase 9° 
111 -72° -70° 92° 2° 
000 15° 18° 179° 4° 
010 108° 113° 272° 5° 

3.5.   Conclusions 

This chapter presents a time and power efficient method in the form of an equivalent 

circuit model used to optimize the design of a reflectarray phase shifter cell. This design 

method deals especially with the power losses and the ON/OFF capacitance values of MEMS 

switches. To reduce the power losses while maintaining linear distribution among the 

selected phases, double MEMS technique has been proposed. This technique reduces power 

losses to a great extent approximately up to 65% losses are reduced. Also it has been reported 

that the equivalent circuit can work within a wide range of MEMS ON/OFF capacitances. 

Finally it has been discussed how the power losses depend on the locations of the switches 

and how the reliability of the design can be enhanced using redundancy MEMS. The results 

given by the equivalent circuit model are in excellent agreement with that of High Frequency 

Structure Simulator (HFSS).  

 



Section II 

41 
 

The willingness to accept responsibility for one's own  
life is the source from which self-respect springs.  

 Joan Didion 
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When others, a man begins to blame He'll soon  
find himself alone, The same. Nigel Bloomfield 

4 

Theory and Formulation of Scale 
Changing Technique 

 

 

4.1   Introduction 

Electrically large structures i.e., the structures having dimensions of many orders of the 

wavelength e.g. finite-sized reflectarrays having  identical or non-identical unit cells, 

reconfigurable reflectarrays, microstrip antennas containing active electronic devices and 

circuits, multiband devices and systems such as frequency selective surfaces, log-periodic 

and self-similar fractal structures are said to be complex when their geometrical dimensions 

vary over a large range of scale. In other words we have very fine and large collection of 

metallic patterns printed on the same dielectric surface. As in chapter 1 it has been explained 

in detail that linear meshing in these complex planar structures requires tremendous amount 

of computational resources and may lead to ill-conditioned matrices. Hence an original 

approach for solving such numerical problems linked to multiscale aspect of modern complex 

microstrip antennas has been proposed. 

Scale Changing Technique (SCT) gets its name from scaled partitioning of the planar 

structure and the modeling of the electromagnetic interactions between these scale-levels. 

The higher the number of scale-levels the higher is the complexity.  In this chapter SCT 

formulation in the perspective of a generic multi-scale structure consisting of metallic 
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patterns printed on a dielectric planar surface is presented. The procedure can be outlined in 

the following steps: 

1) The multi-scale planar surface is partitioned into smaller and smaller sub-domains, 

while doing so we actually define various scale levels inside the structure. 

2) The electromagnetic fields are expressed on orthogonal modal-basis defined for each 

of these sub-domains bounded by their respective boundary conditions. 

3) Modal contributions are treated separately for lower order modes and higher order 

modes. Higher order modes are considered to contribute only locally where as lower 

order modes define coupling with the domain at the higher scales. 

4) Electromagnetic coupling between two successive scales is modeled by a scale-

changing network (SCN) defined by the lower order modes of the two sub-domains. 

5) Electromagnetic modeling for the complete structure is obtained by a simple cascade 

of all these scale-changing networks. 

These concepts will be explained in further detail in the subsequent sections. 

4.2.   Discontinuity Plane 

To understand the concepts and workings of the Scale Changing Technique we will study 

a general case of an arbitrary discontinuity. Consider multiple metallic patterns with the 

dimension varying over a wide range of scale, printed on a planar dielectric surface as shown 

in Figure 4.1(a). Suppose that the largest patterns are several orders of magnitude bigger than 

the finest patterns. This discontinuity plane may be modeled by positioning it at a cross-

section of a waveguide or can simply be located in the free-space. The two half-regions i.e. 

the left-hand region and the right hand region are assumed to be composed of multilayered 

and loss-less dielectric media. 

4.2.1.  Partitioning of the Discontinuity Plane 

The starting point of the proposed approach involves the coarse partitioning of the 

discontinuity plane into smaller domains and sub-domains having comparable sizes (Step 1); 

in each sub-domain a second partitioning is performed by introducing smaller sub-domains of 

comparable sizes (Step 2); again, in each sub-domain introduced at the second step a third 

partitioning is performed by introducing smaller sub-domains (Step 3); and so on, as 

illustrated in Figure 4.1(b). 
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This procedure of partitioning the domains into smaller sub-domains is repeated until the 

finest dimension or smallest scale is reached. Such hierarchical domain-decomposition allows 

rapid focusing on increasing details of the planar geometry unlike a linear meshing approach.  

 

Figure 4.1: (a) An example of discontinuity plane presenting 3 scale-levels (black is metal and white 
is dielectric) (b) The scattered view of the various sub-domains at different scale levels generated by 
the partitioning process [35].  

To each sub-domain is associated a scale level S: generally the largest sub-domains 

corresponds conventionally to the scale level S=Smax while the smallest scale corresponds to 

the scale level S=1. It is important to note that the scattered representation of the domains is 

only for the sake of clarity, essentially all the domains and sub-domains lie in the same plane. 

This manner of partitioning the complex discontinuity plane (let say D) allows us to define 

separate scale-levels for the co-planar domains and sub-domains such that		ܦௌ ൐ ௌିଵܦ ൐

ௌିଶܦ ൐ ⋯ ൐		ܦଵ. In order to eliminate numerical problems due to ill-conditioned matrices, 

the partition can be chosen in order to avoid high aspect ratios: two successive scale levels 

may be taken such that, for instance, 	ܦௌ/ܦௌିଵ ൏100.  

4.2.2.   Choice of Boundary Conditions 

Let’s consider again the case of a general discontinuity plane of Figure 4.2. Assuming it 

to be the i୲୦ domain at a general scale level S, it can be denoted for convenience as	D୧
ሺୗሻ, 

where	i ൌ 1 െ N, N being the total number of domains at scale-level S and S ranging from 1 
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to Smax. Using the above described partitioning procedure the domain D୧
ሺୗሻ can be 

decomposed further into M sub-domains denoted by	D୨
ሺୱିଵሻ, where j ൌ 1 െ M defined at 

scale-level S-1.	In addition, the discontinuity plane may contain simple metallic and dielectric 

domains where further partitioning may not be needed [35]. 

 

Figure 4.2: The ith generic domain resulting from the partition process at scale level S (black is metal, 

white is dielectric and grey indicates the location of sub-domains 	D୨
ሺୱିଵሻ   (with j = 1, 2, … M) [35]. 

Artificial boundary conditions are introduced along the contours of all these domains and 

sub-domains. These boundary conditions are introduced only on the contours of the sub-

domains and not in the two half-regions on each side of this discontinuity. The boundary 

conditions are selected from  

1) Perfect Electric Boundary Conditions (PECs) 

2) Perfect Magnetic Boundary Conditions (PMCs) 

3) A succession of PECs and PMCs  

4) Periodic Boundary Conditions  (PBCs) 

The physics of the problem should be considered in the choice of the boundary conditions 

around any domain. In practice boundary conditions have to be tried on the contours of each 
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sub-domain and the quality of the numerical solution in terms of accuracy, execution time 

and numerical convergence has to be checked subsequently. 

The purpose of introducing the boundary conditions at the sub-domain level is essentially 

to define a new boundary value problem at a local level that can be solved independently by 

expressing the tangential fields in the region on the modal-basis respecting these boundary 

conditions. At sub-domain level each boundary value electromagnetic problem is resolved by 

writing the field equations in integral equation formulation and applying the Galerkin method 

to solve for the surface fields and currents.  

Since now we have many smaller independent problems, the number of unknowns in the 

matrix equations are reduced and therefore much less memory resources are required to deal 

individual problems. It is to be noted here that due to introduction of artificial boundary 

condition the scale-changing technique is not an exact technique but an approximate method. 

And these approximations need to be chosen carefully not to significantly perturb the 

accuracy of the solution [65]. 

4.2.3.   Field Expansion on Orthogonal Modes 

In the sub-domain D୧
ሺୗሻ enclosed by artificial boundary conditions the modal expansion of 

the tangential electromagnetic field can be performed. The ࢎ࢚࢔ mode of the modal basis 

࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ	is solution to the following Helmholtz equation [66]. 

ቂ்ߘ
ଶ		 ൅ 	݇௡

ሺ௜,௦ሻమቃ ࢔ሬሬԦࡲ	
ሺ࢙,࢏ሻ ൌ 0ሬԦ																																							                           (4.1) 

In equation (4.1) ்ߘ
ଶ		is the transverse Laplacian operator and  ݇௡

ሺ௜,௦ሻ is the cut-off wave-

number of the ࢎ࢚࢔ mode of the i୲୦ sub-domain at the scale-level S i.e. D୧
ሺୱሻ. The ࡲሬሬԦ࢔

ሺ࢙,࢏ሻ is the 

orthogonal modal-basis which satisfies the boundary conditions at the contours of the sub-

domain. The condition of orthognality dictates; 

࢓ሬሬԦࡲ〉
ሺ࢙,࢏ሻ, ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ〉 ൌ ∬ ቂࡲሬሬԦ࢓
ሺ࢙,࢏ሻቃ

∗	
஽೔
ሺೞሻ ࢔ሬሬԦࡲ		.	

ሺ࢙,࢏ሻ݀ݏ ൌ ൜
	݉	ݎ݋݂					0 ് 		݊
݉	ݎ݋݂					1 ൌ 		݊ ൠ                         (4.2) 
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The ∗ operator represents the complex conjugate. In the SCT formulation here, a normalized 

set of modes	ቄࡲሬሬԦ࢔
ሺ࢙,࢏ሻቅ

௡ୀଵ,ଶ,ଷ,…
is used, thus		〈ࡲሬሬԦ࢓

ሺ࢙,࢏ሻ, ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ〉 ൌ  designates the ࢔࢓ࢾ where ࢔࢓ࢾ

Kronecker delta function			ߜ௠௡ ൌ 1	݂݅	݉ ൌ ݊, 0	otherwise.  

 

4.2.4.   Active and Passive Modes  

The field contributions due to lower-order and higher-order modes can be treated 

separately. As the order of the modes increases, the energy diffracted from the metal interface 

for that harmonic becomes more and more localized within the vicinity [66]. Therefore it is 

pretty safe to assume that after a certain number of modes, the higher order modes will 

contribute only to very fine-scale variations of the electromagnetic field that are localized to 

that particular sub-domain. On the other hand the lower order modes describe the large-scale 

variations of the field that couples with the tangential fields of the sister sub-domains. 

In case of the generic sub-domain D୧
ሺୱሻ of Figure 4.2, it can be anticipated without any kind of 

calculations that the tangential electromagnetic field in  D୧
ሺୱሻ contains smooth (large-scale) 

variations and highly irregular (fine-scale) fluctuations. The fine-scale variations can be 

described as a linear combination of an infinite number of higher-order modes of ࡲሬሬԦ࢔
ሺ࢙,࢏ሻ	which 

are spatially localized in the vicinity of discontinuities, sharp edges and various contours of 

the domain and therefore does not significantly contribute to the electromagnetic coupling 

between the various sub-domains D୨
ሺୱିଵሻ. For this reason these higher-order modes are called 

passive modes in SCT formalism.  

The large-scale contribution to the field in the domain  D୧
ሺୱሻ is due to the electromagnetic 

coupling between the constitutive sub-domains	D୨
ሺୱିଵሻ. These couplings can be modeled as 

the combination of only a limited number of lower-order modes in the spectral domain. As 

these lower-order modes are involved in the description of electromagnetic coupling  between 

different domains and sub-domains so in SCT formalism they are called active modes. 

Finally, due to their largely different spatial frequencies, any active mode in D୧
ሺୱሻ weakly 

interacts with any passive mode in the constitutive  sub-domains 	D୨
ሺୱିଵሻ.  

It follows from the above-mentioned physical considerations that the electromagnetic 

coupling between two subsequent scale-levels, e.g. the scale-level S and the lower scale S-1, 
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can be modeled by describing that how any active mode in the domain 	D୧
ሺୱሻ	interacts with the 

active modes in the sub-domains	D୨
ሺୱିଵሻ. 

 

 

4.2.5.   Scale Changing Network (SCN) 

The mutual coupling of the active modes described in the previous section can be 

represented by a multiport of Figure 4.3. Each port in the network represents an active mode. 

The ports on the left hand side models the active modes in domain	D୧
ሺୱሻ whereas the M set of 

ports on the right hand side denote the active modes of M sub-domains 	D୨
ሺୱିଵሻ(wherej ൌ 1 െ

 at scale level S-1. As this multiport allows to relate the fields at scale S to the fields at the (ܯ

lower scale S-1, it is named the Scale-Changing Network (SCN). 

 

Figure 4.3: The Scale Changing Network coupling the active modes in the domain 	D୧
ሺୱሻ (scale level 

s) and its constitutive sub-domains 	D୨
ሺୱିଵሻ (scale level s–1) [35]. 
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For relating the electromagnetic fields at scale S to that of another scale S-2, the 

interconnection of scale-changing networks may be performed as shown in Figure 4.4, each 

network being previously computed separately. Consequently, the modeling of interaction 

among the multiple scales of a complex discontinuity plane is reduced to simple cascade of 

appropriate scale-changing networks, where each network models the interaction between 

two scales. 

 

Figure 4.4: The cascade of Scale Changing Networks allows relating the transverse electromagnetic 
field at scale level S to that of at scale level S–2 [35].  

It is important to note that the computation of these scale-changing networks is mutually 

independent. Therefore each network can be computed by using a separate processing node. 

This modular nature of scale-changing technique can be exploited in multiprocessing 

environments to cut simulation times in case of very large and complex structures. Moreover 

any single change at any scale-level will only need the re-computation of two scale-changing 

networks and not the SCNs for all other scales. This means that small geometric changes will 

not require the entire simulation of the structure all over again. This feature is an essential 
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quality of a good parametric tool. Therefore SCT designs will have the capability of rapid 

simulations in the case where when the effects of certain modifications are studied on the 

design. 

The derivation of scale-changing network’s characterization matrix requires the definition 

of artificial electromagnetic sources named the scale-changing sources in various sub-

domains obtained from the partitioning process. The following Section defines these sources. 

4.3.  Scale Changing Sources 

The derivation of scale-changing network that couples the scale S to the adjacent scale   

S-1 requires the resolution of a boundary value problem in which active modes act as the 

actual sources called the modal Scale Changing Sources for the problem. When cascading the 

SCN for the global simulation of the multi-scale discontinuity plane, the two half regions on 

both sides of this plane has to be taken into account. In order to formulate a non redundant 

approach the SCN computation incorporates the two half-regions at larger scale S only (and 

not at the smaller scale S-1). It follows that the modal Scale Changing Sources at scale S 

differs from those at the smaller scale S-1. 
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Figure 4.5: The discontinuity plane ܦ௜
ሺ௦ሻ	along with two infinitely close parallel side-planes D஑

ሺ୧,ୱሻ  
with α ൌ 1,2 representing the two half-regions. 

 
To derive the mathematical expressions for scale changing sources lets once again 

consider the generic sub-domain D୧
ሺୱሻ as shown in Figure 4.5. At both sides of this general 

domain the two half regions 1 and 2 are composed of multilayered and lossless dielectric 

media. Let Dα
ሺ୧,ୱሻ with ߙ ൌ 1, 2 denote the two planes in the two half regions 1, 2. These 

planes are positioned infinitely close to the domain D୧
ሺୱሻ. The unit-vectors ሬ݊Ԧଵ and ሬ݊Ԧଶ	are the 

normal vectors to Dα
ሺ୧,ୱሻ. Finally, let ࡱሬሬԦࢻ

ሺ࢙,࢏ሻ and ࡴሬሬሬԦࢻ
ሺ࢙,࢏ሻ be respectively the tangential electric and 

magnetic fields on the two domains		Dα
ሺ୧,ୱሻ. The set of modes ቄࡲሬሬԦ࢔

ሺ࢙,࢏ሻቅ
…,ୀ૚,૛࢔

 introduces in 

Section 4.2.3 is now used for the expansion of the tangential electromagnetic fields on the domains  

Dଵ
ሺ୧,ୱሻ and Dଶ

ሺ୧,ୱሻ as follows: 

 

ࢻሬሬԦࡱ
ሺ࢙,࢏ሻ ൌ 	∑ ௡ܸ

ሺ௜,௦,ఈሻஶ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ																																																																										(4.3) 

ࢻԦࡶ
ሺ࢙,࢏ሻ ൌ ࢻሬሬሬԦࡴ

ሺ࢙,࢏ሻ ൈ હሬሬሬሬԦܖ	 	ൌ 	∑ ௡ܫ
ሺ௜,௦,ఈሻஶ

ୀ૚࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ                                              (4.4)                       

௡ܸ
ሺ௜,௦,ఈሻand ܫ௡

ሺ௜,௦,ఈሻ denote respectively, the voltage and current amplitudes of the ݊௧௛ mode in 

D஑
ሺ୧,ୱሻ. Following the considerations of Section 4.2.4, the tangential electric field ࡱሬሬԦࢻ

ሺ࢙,࢏ሻ	and the 

surface current density ࡶԦࢻ
ሺ࢙,࢏ሻon D஑

ሺ୧,ୱሻ can be expressed separately with active and passive 

modes defining the large scale and fine scale variation of these quantities respectively. 

ቐ
ࢻሬሬԦࡱ
ሺ࢙,࢏ሻ ൌ 	∑ ௡ܸ

ሺ௜,௦,ఈሻࢻࡺ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ ൅ ∑ ௡ܸ
ሺ௜,௦,ఈሻஶ

ା૚ࢻࡺୀ࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ

ࢻሬሬԦࡱ
ሺ࢙,࢏ሻ ൌ ࢻሬሬԦࡱ

ሺ࢙,࢏ሻቚ
ࢋࢍ࢘ࢇ࢒

൅ ࢻሬሬԦࡱ
ሺ࢙,࢏ሻቚ

ࢋ࢔࢏ࢌ

                                     (4.5)    

where	ࢻࡺ is the number of active modes D஑
ሺ୧,ୱሻ. Similarly for surface current density we can 

write. 

 

ቐ
ࢻԦࡶ
ሺ࢙,࢏ሻ ൌ 	∑ ௡ܫ

ሺ௜,௦,ఈሻࢻࡺ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ ൅ ∑ ௡ܫ
ሺ௜,௦,ఈሻஶ

ା૚ࢻࡺୀ࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ

ࢻԦࡶ
ሺ࢙,࢏ሻ ൌ ࢻԦࡶ

ሺ࢙,࢏ሻቚ
ࢋࢍ࢘ࢇ࢒

൅ ࢻԦࡶ
ሺ࢙,࢏ሻቚ

ࢋ࢔࢏ࢌ

                                       (4.6) 
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The passive modes being highly evanescent are shunted by their purely reactive modal 

admittances ( ௡ܻ
ሺ௜,௦,ఈሻ). Consequently, 

௡ܫ
ሺ௜,௦,ఈሻ ൎ 	 ௡ܻ

ሺ௜,௦,ఈሻ
௡ܸ
ሺ௜,௦,ఈሻ																							for		݊ ൐ ఈܰ

	                                                 (4.7)   

Using the formulation of equation (4.6) we obtain: 

ࢻԦࡶ
ሺ࢙,࢏ሻ ൎ 	 ࢻԦࡶ

ሺ࢙,࢏ሻቚ
ࢋࢍ࢘ࢇ࢒

൅ ∑ ௡ܻ
ሺ௜,௦,ఈሻ

௡ܸ
ሺ௜,௦,ఈሻஶ

ା૚ࢻࡺୀ࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ				                                                 (4.8) 

This can be formally written as in the operator form: 

ࢻԦࡶ
ሺ࢙,࢏ሻ ൌ 	 ࢻԦࡶ

ሺ࢙,࢏ሻቚ
ࢋࢍ࢘ࢇ࢒

൅ ෠ܻఈ
ሺ௜,௦ሻࡱሬሬԦࢻ

ሺ࢙,࢏ሻ                                                                 (4.9) 

with  ෠ܻఈ
ሺ௜,௦ሻ ൌ 	∑ ቚࡲሬሬԦ࢔

ሺ࢙,࢏ሻ〉 ௡ܻ
ሺ௜,௦,ఈሻ ࢔ሬሬԦࡲ〉

ሺ࢙,࢏ሻቚஶ
ା૚ࢻࡺୀ࢔     where  ෠ܻఈ

ሺ௜,௦ሻ is an admittance operator.  

Now the tangential electric field and surface current density on the discontinuity plane 

௜ܦ
ሺ௦ሻcan be determined from using the following boundary conditions.  

൝
࢏ሬሬԦࡱ
ሺ࢙ሻ ൌ ሬሬԦ૚ࡱ

ሺ࢙,࢏ሻ ൌ ሬሬԦ૛ࡱ
ሺ࢙,࢏ሻ

࢏Ԧࡶ
ሺ࢙ሻ ൌ Ԧ૚ࡶ

ሺ࢙,࢏ሻ ൅ Ԧ૛ࡶ
ሺ࢙,࢏ሻ                                                                       (4.10)      

Using the above equations we can solve for the field quantities on the discontinuity plane as 

follows: 

∑ ௡ܸ
ሺ௜,௦ሻஶ

ୀ૚࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ ൌ ∑ ௡ܸ

ሺ௜,௦,ଵሻஶ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ ൌ ∑ ௡ܸ
ሺ௜,௦,ଶሻஶ

ୀ૚࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ                                   (4.11) 

                                     
	
⇒ ௡ܸ

ሺ௜,௦ሻ ൌ 		 ௡ܸ
ሺ௜,௦,ଵሻ ൌ 	 ௡ܸ

ሺ௜,௦,ଶሻ   

Similarly ࡶԦ࢏
ሺ࢙ሻ can be written as  

࢏Ԧࡶ
ሺ࢙ሻ ൌ 	 ࢏Ԧࡶ

ሺ࢙ሻቚ
ࢋࢍ࢘ࢇ࢒

൅ ෠ܻ
௜
ሺ௦ሻࡱሬሬԦ࢏

ሺ࢙ሻ                                                                (4.12) 

where  
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ቐ
࢏Ԧࡶ
ሺ࢙ሻቚ

ࢋࢍ࢘ࢇ࢒
ൌ ∑ ࢻԦࡶ

ሺ࢙,࢏ሻቚ
ࢋࢍ࢘ࢇ࢒

ൌࢻୀ૚,૛	 ∑ ௡ܫ
ሺ௜,௦,ଵሻࡺ૚

ୀ૚࢔ ࢔ሬሬԦࡲ
ሺ࢙,࢏ሻ ൅ ∑ ௡ܫ

ሺ௜,௦,ଶሻࡺ૛
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ

෠ܻ
௜
ሺ௦ሻ ൌ ෠ܻ

ଵ
ሺ௜,௦ሻ ൅ ෠ܻ

ଶ
ሺ௜,௦ሻ ൌ 	∑ ∑ ቚࡲሬሬԦ࢔

ሺ࢙,࢏ሻ〉 ௡ܻ
ሺ௜,௦,ఈሻ ࢔ሬሬԦࡲ〉

ሺ࢙,࢏ሻቚஶ
ୀ૚,૛ࢻା૚ࢻࡺୀ࢔

													            (4.13)      

 

If the same number of active modes are taken in the domains Dଵ
ሺ୧,ୱሻ and Dଶ

ሺ୧,ୱሻ i.e.  ଵܰ ൌ

ଶܰ ൌ ௜ܰ,  the current scale changing sources at scale-level S and domain D୧
ሺୱሻcan be rewritten 

in the simplified form as under: 

ቐ
࢏Ԧࡶ
ሺ࢙ሻቚ

ࢋࢍ࢘ࢇ࢒
ൌ ∑ ௡ܫ

ሺ௜,௦ሻࡺ	࢏
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺ࢙,࢏ሻ

෠ܻ
௜
ሺ௦ሻ ൌ 	∑ ቚࡲሬሬԦ࢔

ሺ࢙,࢏ሻ〉 ௡ܻ
ሺ௜,௦ሻ〈ࡲሬሬԦ࢔

ሺ࢙,࢏ሻቚஶ
ା૚࢏ࡺୀ࢔

                                                       (4.14)                          

where ܫ௡
ሺ௜,௦ሻ ൌ ௡ܫ

ሺ௜,௦,ଵሻ ൅ ௡ܫ
ሺ௜,௦,ଶሻ is the amplitude of the ݊௧௛ active mode in D୧

ሺୱሻ and ௡ܻ
ሺ௜,௦ሻ ൌ

	 ௡ܻ
ሺ௜,௦,ଵሻ ൅ ௡ܻ

ሺ௜,௦,ଶሻ is the total modal admittance viewed by D୧
ሺୱሻ in case of passive modes. The 

electromagnetic expression given in equation  (4.12) can be symbolized by a Norton 

equivalent Network shown in Figure 4.6(a).  

 

Figure 4.6:  Symbolic representations of the current Scale Changing Sources: (a) In the domain ܦ௜
ሺ௦ሻ 

(scale level S); (b) In the sub-domain ܦ௝
ሺ௦ିଵሻ (Scale level S-1). These sources allow deriving 

impedance matrix characterizing the Scale-Changing Network that models the electromagnetic 
coupling between the scale S and the scale S-1. 
 

The current Scale-Changing source shown in Figure 4.6 (b) in the sub-domain ܦ௝
ሺ௦ିଵሻ (scale 

S-1) is defined as the linear combination of ௝ܰ
ሺ௦ିଵሻ	active modes as follows: 



Section II: Chapter 4: Theory and Formulation of Scale Changing Technique 

54 
 

 

࢐Ԧࡶ
ሺି࢙૚ሻ ൌ ࢐Ԧࡶ

ሺି࢙૚ሻ|ࢋࢍ࢘ࢇ࢒ ൌ ∑ ࢔ࡵ
ሺି࢙,࢐૚ሻࡲሬሬԦ࢔

ሺି࢙,࢐૚ሻ࢐ࡺ
ሺ࢙ష૚ሻ

ୀ૚࢔                              (4.15) 

 

where		࢔ࡵ
ሺ࢙,࢐െ૚ሻࡲሬሬԦ࢔

ሺ࢙,࢐െ૚ሻ
 denotes the current density of the ݊௧௛ active mode in the sub-domain 

௝ܦ
ሺ௦ିଵሻ. Modelling the coupling between the scale S and scale S-1, the contribution ܬԦ௝

ሺ௦ିଵሻ|௙௜௡௘ 

of passive modes to the total current density  ܬԦ௝
ሺ௦ିଵሻ	in ܦ௝

ሺ௦ିଵሻ		does not act as an actual source. 

The symbolic representation of the current Scale Changing Source at scale S-1 is shown in 

Figure 4.6 (b). At this smaller scale, the admittance operator that models the half-regions 

located on both sides of the discontinuity plane is not taken into consideration unlike at the 

higher scale level S: this choice allows eliminating redundancies in the theoretical 

formulation when cascading the Scale-Changing Networks. 
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Your religion is what you do when the sermon is over.   
Quoted in P.S. I Love You 

5 
Electromagnetic Modeling of Periodic 
Microstrip Reflectarrays using Scale 
Changing Technique (SCT) 
 

 

 

 

 

5.1.   Introduction 

In the previous chapter, we have developed the basic theoretical and mathematical 

concepts needed to understand the scale changing approach. Now we will apply these 

concepts for electromagnetic modeling of a periodic reflectarray. The radiation pattern and 

the phase shift introduced to a plane wave under any arbitrary incidence at the reflector plane 

obtained by the Scale-Changing Technique are then validated using a finite element method 

(FEM) and method of moments (MoM) based commercial simulation tool. By using the set 

of Floquet harmonics the entire computation domain of a periodic reflectarray is effectively 

equivalent to solving for a single unit cell of the array. 

5.2. Geometry of the Periodic Reflectarray  

An infinite planar reflectarray [67] consisting of periodic arrangement of microstrip 

patches loaded with slots along with its enlarged unit cell is shown in Figure 5.1(a) and (b) 

respectively. The enlarged unit-cell of the periodic array is depicting the plane wave 

incidence at the center of the unit cell with propagation vector k. The working frequency 

band for this analysis is 11.7-12.5 GHz. The unit-cell is of square dimensions and is 
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considered to be bounded by Floquet boundary conditions (i.e., periodic boundary conditions) 

to simulate an infinite array. All dimensions are assumed to be constant except the width of 

the metallic patch (Wp) and the length of the slot (LS) which vary and therefore result in five 

configurations having distinct geometries (Table 5.1). This planar periodic array unit cell is 

placed on a 2.17mm thick dielectric with a ground plane at the bottom. All the design 

parameters of this periodic array phase shifter cell have been selected on the basis of a very 

comprehensive scattering parameters study using the equivalent electrical circuit model fully 

explained in  chapter 2 and shown in Figure 2.12. This equivalent electrical circuit model is 

proved to be very practical and fast parametric design tool for the reflectarrays unit cells as 

compared to the full wave simulation tools.    

 

                    (a)                                                                     (b) 

Figure 5.1:  (a) A two dimensional periodic reflectarray (b) Enlarged unit-cell of the array with 
dimensions: L0=W0=15mm, Wp=12mm, Ls=1mm, Wp and Ls are variable. Substrate thickness 
h=2.17mm (εr=3.38), PBCs, MBCs and EBCs stand for periodic, magnetic and electric boundary 
conditions respectively. 

Table 5.1 

 Five distinct geometries by varying patch width (Wp) and slot length (Ls) 
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The computation of phase-shift introduced to an incident plane-wave by unit-cell 

reflectors when bounded by periodic boundary conditions is an essential step of a reflectarray 

design process. Characterization of each unit-cell under infinite array environment is 

considered as an approximation of the behavior of that cell in the real finite-sized array. 

Therefore we will consider here the problem of finding the scattering matrix of a planar 

reflector under infinite array conditions. 

5.3.   Application of Scale-Changing Technique 
5.3.1.   Partitioning of the Discontinuity Plane 

Application of the scale changing technique requires the partitioning of the 

discontinuity plane. In this case of modeling a single unit cell, simplicity of the cell geometry 

allows us to define three nested scales as shown in Figure 5.2. In this simple case we have 

only one domain at each scale-level. Domain Dଵ
ሺଷሻ of scale-level 3 encompasses the entire 

reflector plane. Domain Dଵ
ሺଶሻ at second scale-level consists of patch and slot whereas the 

domain Dଵ
ሺଵሻ on the bottom scale is comprised of slot only. 

 

Figure 5.2: Partitioning the discontinuity plane D of the planar reflector in its constituent domains 
and sub-domains at three scales, white portions represent dielectric, black represents metal and grey 
parts are mere projections of the immediate sub-domains. 
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This problem requires the computation of one scale-changing network i.e. between the 

scale-level 3 and scale-level 2  modeling the interaction between the active modes of Dଵ
ሺଷሻ 

and	Dଵ
ሺଶሻ and a multi-modal surface impedance network (or surface  impedance multipole) 

between Scale level 2 and 1. The SCN will be cascaded with the surface impedance multipole 

computed on the active modes of Dଵ
ሺଶሻ . This cascading is depicted  in Figure 5.3.  

 

Figure 5.3: Global simulation of the planar reflector involves the cascade of the scale-changing 
network multipole and the surface impedance multipole.  

The two multipoles can be computed separately by decomposing the original problem in 

two separate problems each modeling two successive scale-levels as shown in the Figure 5.4. 

The resolution of the structure in Figure 5.4 (a) will give the scale changing network 

multipole while the surface impedance network can be obtained from the structure of Figure 

5.4 (b).  
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                                (a)                                                                          (b) 

Figure  5.4: Decomposition of the problem in two sub-problems.  (a) SCN is computed from the 
structure shown above (b) Surface Impedance Multipole is computed from the problem involving 
patch and slot domain only. 

 

Figure  5.5: Equivalent circuit diagram to compute the surface impedance multi-modal network of 
Figure 5.4(b). 

5.3.2.   Surface Impedance Multipole Computation 

In the surface impedance multipole presented in Figure 5.4 (b), the ports on the LHS 

represent the active modes in domain Dଵ
ሺଶሻ of scale-level 2. The boundary value problem in 

this case is shown in the same figure above the surface impedance multipole. Here we have 
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the slot domain Dଵ
ሺଵሻ nested inside the patch domain Dଵ

ሺଶሻ, both resting on a dielectric slab of 
relative permittivity εr. This boundary value problem can be represented in terms of the 
equivalent circuit of Figure 5.5. 

 

The left part of the circuit i.e. the source Jଵ
ሺଶሻ along with the admittance operator ෠ܻெ

	  is the 

Norton equivalent excitation defined on the discrete orthogonal modal-basis of Dଵ
ሺଶሻ (ࡲሬሬԦ࢔

ሺଵ,ଶሻ).  

ቐ
Ԧଵࡶ
ሺଶሻ ൌ ሬሬሬԦଵࡴ

ሺଶሻ ൈ	ܖ	ሬሬሬԦ 	ൌ 	∑ ௡ܫ
ሺଵ,ଶሻࡺሺభ,మሻ

ୀ૚࢔ ࢔ሬሬԦࡲ
ሺଵ,ଶሻ

	
ሬሬԦଵࡱ
ሺଶሻ ൌ 	∑ ௡ܸ

ሺଵ,ଶሻஶ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺଵ,ଶሻ
                                                    (5.1) 

෠ܻெ
	 ൌ 	∑ ቚࡲሬሬԦ࢔

ሺଵ,ଶሻ〉 ௡ܻ
ሺଵ,ଶሻ〈ࡲሬሬԦ࢔

ሺଵ,ଶሻቚஶ
ሺభ,మሻା૚ࡺୀ࢔                                                           (5.2) 

Dଵ	ሺଵ,ଶሻ is the number of active modes of the domainࡺ
ሺଶሻ. ࡵሺଵ,ଶሻ and ࢂሺଵ,ଶሻ are the column 

vectors of size ࡺሺଵ,ଶሻ listing the coefficients in the matrix form. 

 

ሺଵ,ଶሻܫ																										 ൌ ൦
ଵܫ
ሺଵ,ଶሻ

⋮
ܫ
ேሺభ,మሻ
ሺଵ,ଶሻ

൪       ,       ܸሺଵ,ଶሻ ൌ ൦
ଵܸ
ሺଵ,ଶሻ

⋮

ேܸሺభ,మሻ
ሺଵ,ଶሻ

൪                                             (5.3) 

 

௡ܻ
ሺଵ,ଶሻ is the admittance of nth mode. The expressions for the modal admittances for TE and 

TM modes are as follows: 

௡ܻ
ሺ௜ሻ ൌ 	൞

ఊ೙
ሺ೔ሻ

௝ఠఓబ
	ݏ݁݀݋݉	ܧܶ																					

௝ఠఌ

ఊ೙
ሺ೔ሻ ݏ݁݀݋݉	ܯܶ																									

					                                                  (5.4) 

with ߛ௡
ሺ௜ሻ the propagation constant of nth mode in medium ݅, The expression of ߛ	

ሺ௜ሻ for a TE 

or TM mode is 

	ߛ 
ሺ௜ሻ ൌ 	ට݇௖ଶ െ ݇଴

ଶߝ௥
ሺ௜ሻ                                                              (5.5) 
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The dielectric side of the discontinuity plane is modeled as a shorted dielectric 

waveguide. Therefore the operator ෠ܻ௦௨௕
	  represents the modes of the domain 	Dଵ

ሺଶሻ short 

circuited by ground through the dielectric. If ݄ is the thickness of the dielectric and ߛ௡௦௨௕ the 

propagation constant of ݊th mode in the substrate then the admittance operator can be written 

as 

෠ܻ
௦௨௕
	 ൌ 	∑ ቚࡲሬሬԦ࢔

ሺଵ,ଶሻ〉 ௡ܻ௦௨௕
ሺଵ,ଶሻcoth	ሺߛ௡௦௨௕݄ሻ〈ࡲሬሬԦ࢔

ሺଵ,ଶሻቚஶ
ୀ૚࢔                                              (5.6) 

The electric field source Eଵ
ሺଵሻ is a virtual source defined in the slot domain Dଵ

ሺଵሻ (scale 1). 

The name virtual sources imply that unlike real sources they deliver no electromagnetic 

energy and are therefore represented with an arrow across the source. The virtual sources 

serve to represent two different boundary conditions at a time in one equivalent circuit. For 

example in this case the field source Eଵ
ሺଵሻ defined in Dଵ

ሺଵሻ models dielectric boundary 

conditions while the dual quantity Jଵ
ሺଵሻ models the perfect electric boundary conditions of the 

metallic surface.  

It is to be noted here that both quantities Eଵ
ሺଵሻ and Jଵ

ሺଵሻ cannot be non-zero at the same time 

and therefore the energy supplied by the source which is the product of the two quantities ۳ 

and ۸		 is zero everywhere [35]. Eଵ
ሺଵሻ serves to represent the tangential electric field in the slot 

domain on an orthogonal set of entire domain trial functions [63] defined in Dଵ
ሺଵሻ (ࡲሬሬԦ࢔

ሺଵ,ଵሻ	) as 

under.  

ቐ
ሬሬԦଵࡱ
ሺଵሻ ൌ 	∑ ௡ܸ

ሺଵ,ଵሻࡺሺభ,భሻ
ୀ૚࢔ ࢔ሬሬԦࡲ

ሺଵ,ଵሻ	

	
Ԧଵࡶ
ሺଵሻ 	ൌ 	૙ሬሬԦ							

Dଵ	࢔࢏		
ሺଵሻ				                                                 (5.7) 

ܰሺଵ,ଵሻ being the number of active modes in Dଵ
ሺଵሻ, The column-vector ܸሺଵ,ଵሻ of 

dimensions	ܰሺଵ,ଵሻ  lists the weights of the test functions. 

ܸሺଵ,ଵሻ ൌ ൦
ଵܸ
ሺଵ,ଵሻ

⋮

ேܸሺభ,భሻ
ሺଵ,ଵሻ

൪	                                                                         (5.8) 

Following matrix equations can be written from the equivalent circuit of Figure 5.5 by using 

Kirchoff laws. 
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൥
Eଵ
ሺଶሻ

Jଵ
ሺଵሻ ൩ ൌ ൤

0 1
െ1 ෠ܻெ

	 ൅ ෠ܻ
௦௨௕
	 ൨ 	ൈ 	൥

Jଵ
ሺଶሻ

Eଵ
ሺଵሻ൩																																																			     (5.9) 

 

This boundary value problem may be solved by applying the Galerkin method. The above 

matrix equation can therefore be written in terms of coefficient matrices. 

൤ܸ
ሺଵ,ଶሻ

0
൨ ൌ ൤

0 ଵܲ
	

െ ଵܲ
்

ଵܲ
்

௦ܻ௨௕ ଵܲ
	 ൅ ଶܲ

்ሺ ெܻ ൅ ௦ܻ௨௕ሻ ଶܲ
	 ൨ 	ൈ 	 ൤

ሺଵ,ଶሻܫ

ܸሺଵ,ଵሻ
൨																														   (5.10) 

ܶ denotes the complex conjugate transpose of a matrix, ሾ ଵܲ
	 ሿ is the projection matrix of 

dimensions ܰሺଵ,ଶሻ ൈ 	ܰሺଵ,ଵሻ of active modes of modal-basis ࡲሬሬԦ࢔
ሺଵ,ଶሻon ࡲሬሬԦ࢔

ሺଵ,ଵሻ.  

ሾ ଵܲ
	 ሿ ൌ ൦

ଵܨ〉
ሺଵ,ଶሻ, ଵܨ

ሺଵ,ଵሻ〉 ⋯ ଵܨ〉
ሺଵ,ଶሻ, ܨ

ேሺభ,భሻ
ሺଵ,ଵሻ 〉

⋮ ⋱ ⋮
ܨ〉
ேሺభ,మሻ
ሺଵ,ଶሻ , ଵܨ

ሺଵ,ଵሻ〉 ⋯ ܨ〉
ேሺభ,మሻ
ሺଵ,ଶሻ , ܨ

ேሺభ,భሻ
ሺଵ,ଵሻ 〉

൪																																															      (5.11) 

Similarly ሾ ଶܲ
	 ሿ is the projection matrix of dimensions ൫ܯሺଵ,ଶሻ െ ܰሺଵ,ଶሻ൯ ൈ	ܰሺଵ,ଵሻ of passive 

modes of modal-basis ࡲሬሬԦ࢔
ሺଵ,ଶሻon ࡲሬሬԦ࢔

ሺଵ,ଵሻ. 

ሾ ଶܲ
	 ሿ ൌ ൦

ܨ〉
ேሺభ,మሻାଵ
ሺଵ,ଶሻ , ଵܨ

ሺଵ,ଵሻ〉 ⋯ ܨ〉
ேሺభ,మሻାଵ
ሺଵ,ଶሻ , ܨ

ேሺభ,భሻ
ሺଵ,ଵሻ 〉

⋮ ⋱ ⋮
ܨ〉
ெሺభ,మሻ
ሺଵ,ଶሻ , ଵܨ

ሺଵ,ଵሻ〉 ⋯ ܨ〉
ெሺభ,మሻ
ሺଵ,ଶሻ , ܨ

ேሺభ,భሻ
ሺଵ,ଵሻ 〉

൪																																							    (5.12) 

 

ሾ ெܻሿ is a diagonal matrix of passive modal admittances. Its dimensions are ൫ܯሺଵ,ଶሻ െ

ܰሺଵ,ଶሻሻ ൈ 	൫ܯሺଵ,ଶሻ െ ܰሺଵ,ଶሻ൯ 

ሾ ெܻሿ ൌ ൦
ேܻሺభ,మሻାଵ
ሺଵ,ଶሻ ⋯ 0
⋮ ⋱ ⋮
0 ⋯

ெܻሺభ,మሻ
ሺଵ,ଶሻ

൪                                                    (5.13) 

ሾ ெܻሿ is a diagonal matrix of dimensions ܯሺଵ,ଶሻ ൈ  ሺଵ,ଶሻܯ
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ሾ ௦ܻ௨௕ሿ ൌ ൦
ଵܻ௦௨௕
ሺଵ,ଶሻcoth	ሺߛଵ௦௨௕݄ሻ ⋯ 0

⋮ ⋱ ⋮
0 ⋯

ெܻሺభ,మሻ௦௨௕
ሺଵ,ଶሻ coth	ሺߛெ௦௨௕݄ሻ

൪																													 (5.14) 

 

From equation (5.10) surface impedance can be written as 

൧	ሺଵ,ଶሻ	ݏܼൣ ൌ 	 ଵܲ
	 ൈ 	 ሺ ଵܲ

்
௦ܻ௨௕ ଵܲ

	 ൅ ଶܲ
்ሺ ெܻ ൅ ௦ܻ௨௕ሻ ଶܲ

	 ሻ	ି૚ ൈ	 ଵܲ
்		                        (5.15) 

with 

ൣܸሺଵ,ଶሻ൧ ൌ ൧	ሺଵ,ଶሻ	ݏܼൣ ൈ  ሺଵ,ଶሻ൧                                                                   (5.16)ܫൣ

 

5.3.3.    Scale Changing Network Computation  

Equivalent circuit of Figure 5.6 represents the boundary value problem of Figure 5.4 (a). 

In this case the discontinuity plane represented by the middle branch is modeled with two 

sources. The current source j	ୣ
ሺଶሻis the virtual source defined in Dଵ

ሺଶሻ modeling perfect electric 

boundary conditions while the electric field source e		ሺଶሻ is the scale-changing source modeling 

the electromagnetic coupling with the sub-domain as explained in chapter 4.  

 

Figure   5.6: Equivalent circuit diagram to compute the scale-changing network multipole of Figure   
5.4(a). 
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Since both sources j	ୣ
ሺଶሻ and e		ሺଶሻ exist in the same domain and at same scale level, hence 

by assuming that both sources are defined by the same set of orthogonal modes the equivalent 

circuit can be simplified to that of Figure 5.7 [68].  

 

Figure  5.7: Simplified equivalent circuit of Figure 5.6. 

ሬሬԦଵࡱ
ሺଷሻ is the excitation source defined on ܰሺଵ,ଷሻ active modes of the orthogonal modal-basis of 

Dଵ
ሺଷሻ	ሺࡲሬሬԦ࢔

ሺଵ,ଷሻሻ. Floquet modal basis is chosen at this scale to model the periodicity of the 

infinite array. Floquet modes TE00 and TM00 are chosen to represent the two plane-wave 

polarizations. The expressions for the Floquet modal basis can be found in Appendix A. 

ቐ
ሬሬԦଵࡱ
ሺଷሻ ൌ 	∑ ௡ܸ

ሺଵ,ଷሻேሺభ,యሻ
௡ୀଵ ࢔ሬሬԦࡲ

ሺଵ,ଷሻ

	
Ԧଵࡶ
ሺଷሻ ൌ 	∑ ௡ܫ

ሺଵ,ଷሻஶ
௡ୀଵ ࢔ሬሬԦࡲ

ሺଵ,ଷሻ
																																																																										 (5.17) 

ܸሺଵ,ଷሻ and 		ܫሺଵ,ଷሻ are the column vectors of dimensions ܰሺଵ,ଷሻ, 

ሺଵ,ଷሻܫ	 ൌ ൦
ଵܫ
ሺଵ,ଷሻ

⋮
ܫ
ேሺభ,యሻ
ሺଵ,ଷሻ

൪								ܸሺଵ,ଷሻ ൌ ൦
ଵܸ
ሺଵ,ଷሻ

⋮

ேܸሺభ,యሻ
ሺଵ,ଷሻ

൪                                                       (5.18) 

Operators መܼெ
	  and መܼ௦௨௕

	  are defined as usual 

൞

መܼெ
	 ൌ 	∑ ቚࡲሬሬԦ࢔

ሺଵ,ଷሻ〉ܼ௡
ሺଵ,ଷሻ〈ࡲሬሬԦ࢔

ሺଵ,ଷሻቚஶ
௡ୀேሺభ,యሻାଵ

	
መܼ
௦௨௕
	 ൌ 	∑ ቚࡲሬሬԦ࢔

ሺଵ,ଷሻ〉ܼ௡௦௨௕
ሺଵ,ଷሻ tanh	ሺߛ௡௦௨௕݄ሻ〈ࡲሬሬԦ࢔

ሺଵ,ଷሻቚஶ
௡ୀ૚

                                     (5.19) 
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with modal impedances defined as 

ܼ௡
ሺ௜ሻ ൌ 	൞

௝ఠఓబ

ఊ೙
ሺ೔ሻ 	ݏ݁݀݋݉	ܧܶ																					

ఊ೙
ሺ೔ሻ

௝ఠఌ
ݏ݁݀݋݉	ܯܶ																									

																																																															 (5.20) 

Using Kirchoff circuit laws following matrix equation can be written from the equivalent 

circuit of Figure 5.7. 

൥
Jଵ
ሺଷሻ

Eଵ
ሺଶሻ൩ ൌ ൥

൫ መܼெ
	 ൅ መܼ

௦௨௕
	 ൯

ିଵ
െ መܼ

௦௨௕
	 ൫ መܼெ

	 ൅ መܼ
௦௨௕
	 ൯

ିଵ

መܼ
௦௨௕
	 ൫ መܼெ

	 ൅ መܼ
௦௨௕
	 ൯

ିଵ መܼெ
	 መܼ

௦௨௕
	 ൫ መܼெ

	 ൅ መܼ
௦௨௕
	 ൯

ିଵ൩ 	ൈ	 ൥
Eଵ
ሺଷሻ

Jଵ
ሺଶሻ ൩                      (5.21) 

Applying Galerkin method we get:  

൤ ܫ
ሺଵ,ଷሻ

ܸሺଵ,ଶሻ
൨ ൌ ቂ11ܪ 12ܪ

21ܪ 22ܪ
ቃ 	ൈ	൤ܸ

ሺଵ,ଷሻ

ሺଵ,ଶሻܫ
൨																																																											(5.22) 

with projection matrices defined as under:  

ሾܪଵଵሿ is a diagonal matrix of dimensions ܰሺଵ,ଷሻ ൈ ܰሺଵ,ଷሻ 

 

ሾܪଵଵሿ ൌ

ۏ
ێ
ێ
ێ
ቀܼଵ௦௨௕ۍ

ሺଵ,ଷሻtanh	ሺߛଵ௦௨௕݄ሻቁ
ିଵ

⋯ 0

⋮ ⋱ ⋮

0 ⋯ ቀܼ
ேሺభ,యሻ௦௨௕
ሺଵ,ଷሻ tanh	ሺߛேሺభ,యሻ௦௨௕݄ሻቁ

ିଵ

ے
ۑ
ۑ
ۑ
ې
               (5.23) 

 

ሾܪଵଶሿ is a unitary matrix of dimensions ܰሺଵ,ଷሻ ൈ ܰሺଵ,ଶሻ 

ሾܪଵଶሿ ൌ ൥
െ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ െ1

൩                                                                   (5.24) 

with ሾܪଶଵሿ ൌ െሾܪଵଶሿ் and ሾܪଶଶሿ 	ൌ ଶܲ
்ܼ ଶܲ

	   

ሾ ଶܲ
	 ሿ is the projection matrix of dimensions ൫ܯሺଵ,ଷሻ െ ܰሺଵ,ଷሻ൯ ൈ	ܰሺଵ,ଶሻ of passive modes of 

modal-basis ࡲሬሬԦ࢔
ሺଵ,ଷሻon ࡲሬሬԦ࢔

ሺଵ,ଶሻ. 
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ሾ ଶܲ
	 ሿ ൌ ൦

ܨ〉
ேሺభ,యሻାଵ
ሺଵ,ଷሻ , ଵܨ

ሺଵ,ଶሻ〉 ⋯ ܨ〉
ேሺభ,యሻାଵ
ሺଵ,ଷሻ , ܨ

ேሺభ,మሻ
ሺଵ,ଶሻ 〉

⋮ ⋱ ⋮
ܨ〉
ெሺభ,యሻ
ሺଵ,ଷሻ , ଵܨ

ሺଵ,ଶሻ〉 ⋯ ܨ〉
ெሺభ,యሻ
ሺଵ,ଷሻ , ܨ

ேሺభ,మሻ
ሺଵ,ଶሻ 〉

൪																																							      (5.25) 

and Z is a diagonal matrix of size ൫ܯሺଵ,ଷሻ െ ܰሺଵ,ଷሻ൯ ൈ	൫ܯሺଵ,ଷሻ െ ܰሺଵ,ଷሻ൯ 

 

ሾܼሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
௓
ಿሺభ,యሻశభ

ሺభ,యሻ ௓
ಿሺభ,యሻೞೠ್శభ

ሺభ,యሻ ୲ୟ୬୦	ሺఊ
ಿሺభ,యሻೞೠ್శభ

௛ሻ

௓
ಿሺభ,యሻశభ

ሺభ,యሻ ା௓
ಿሺభ,యሻೞೠ್శభ

ሺభ,యሻ ୲ୟ୬୦	ሺఊ
ಿሺభ,యሻೞೠ್శభ

௛ሻ
⋯ 0

⋮ ⋱ ⋮

0 ⋯
௓
ಾሺభ,యሻ
ሺభ,యሻ ௓

ಾሺభ,యሻೞೠ್

ሺభ,యሻ ୲ୟ୬୦	ሺఊ
ಾሺభ,యሻೞೠ್

௛ሻ

௓
ಾሺభ,యሻ
ሺభ,యሻ ା௓

ಾሺభ,యሻೞೠ್

ሺభ,యሻ ୲ୟ୬୦	ሺఊ
ಾሺభ,యሻೞೠ್

௛ሻے
ۑ
ۑ
ۑ
ۑ
ې

	 (5.26) 

 

5.3.4.   Network Cascade  

In this step cascade of both networks of Figure 5.4(a) and (b) is performed to obtain the 

overall surface impedance ൣܼௌ	൧of the complete structure as viewed by the excitation modes at the 

surface of the discontinuity plane (see Figure 3). Consider the final equations of  (5.16) and (5.22) 

as under:  

ൣܸሺଵ,ଶሻ൧ ൌ െൣܼݏ	ሺଵ,ଶሻ	൧ ൈ ܫൣ
ሺଵ,ଶሻ൧                                                        (5.27) 

൤ ܫ
ሺଵ,ଷሻ

ܸሺଵ,ଶሻ
൨ ൌ ቂ11ܪ 12ܪ

21ܪ 22ܪ
ቃ 	ൈ	൤ܸ

ሺଵ,ଷሻ

ሺଵ,ଶሻܫ
൨																																																													(5.28) 

Note the negative sign in the surface impedance multipole equation (5.27) comes to signify 

the reversal of the currents in the cascading procedure. From the above two equations (5.27) 

and (5.28) following equation for the overall multipole can be extracted:  

ሺଵ,ଷሻ൧ܫൣ ൌ ሾܻݏ	ሿ ൈ ൣܸሺଵ,ଷሻ൧                                                                 (5.29) 

With ሾܻݏ	ሿ is the overall admittance of the complete phase shifter cell and is given by: 

ሾܻݏ	ሿ ൌ 	 ሾܪଵଵሿ ൅ ሾܪଵଶሿ൫ൣܼݏ	ሺଵ,ଶሻ	൧ ൅ ሾܪଶଶሿ൯
ିଵ
ሾܪଵଶሿ்                               (5.30) 
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Scattering parameter matrix is calculated by using  

ሾ 	ܵሿ ൌ 	 ቀඥሾܼெሿቁ
ିଵ
൫ൣ ௌܼ	൧ െ ሾܼெሿ൯ ൈ ൫ൣ ௌܼ	൧ ൅ ሾܼெሿ൯

ିଵ
ඥሾܼெሿ                        (5.31) 

with ൣ ௌܼ	൧ ൌ 	 ሾܻݏ	ሿ
ିଵ and ሾܼெሿ is the modal impedance of excitation modes in air. 

5.4.    Results Discussion 

A planar unit-cell reflector depicted in Figure 5.1(b) has been modeled and simulated 

using the approach outlined in the previous Section. The discontinuity plane of the reflector 

cell is comprised of slotted patch centered on a grounded dielectric layer. All the dimensions 

and specifications are indicated in the figure caption. The simulations have been performed 

for 5 distinct unit-cell geometries obtained by varying metallic patch width (Wp) and slot 

length (Ls) as given in Table 5.1. Normal plane wave with electric field linearly polarized 

perpendicular to slot-length is considered as excitation source.  

5.4.1.    Convergence Study 

As described in the previous section, the tangential electromagnetic fields in different 

regions of the discontinuity plane is defined by the orthogonal set of modes of the domain. 

Precise description of field quantities would require adequate number of active and passive 

modes to be considered at each scale-level. Appropriate number of modes may be chosen by 

a systematic convergence study. This study involves plotting reflection coefficient phase 

results with respect to the number of modes at each domain to find out the appropriate 

number for which the results converge. 

 



Section II: Chapter 5: Electromagnetic Modeling of Periodic Microstrip Reflectarrays using  
Scale Changing Technique 

68 
 

 
 

Figure 5.8: Convergence study of the phase of reflection coefficient for configuration 3 (Lp, Ws) => 
(8, 8), frequency 12.1GHz: (a) Convergence with respect to the number of modes in the periodic 
waveguide (legend indicates number of patch modes); (b) Convergence with respect to number of 
modes in the slot (legend indicates number of patch modes). 

Convergence study results for the sixth reflector-cell configuration at the centre frequency 

of 12.1GHz are shown in Figure 5.8. Figure 5.8 (a) shows the convergence of the reflection 

coefficient phase with respect to the number of active modes ܰሺଵ,ଶሻ in the patch domain Dଵ
ሺଶሻ 

and the number of passive modes ܯሺଵ,ଷሻ taken inside the periodic waveguide (discontinuity 

domain		Dଵ
ሺଷሻ. It is apparent that there is no significant variation in phase results for 

waveguide modes greater than 2500. Similarly around 600 active modes in the patch domain 

are required for the phase convergence with in 3º margin.  

 Figure 5.8 (b) plots the convergence curves with respect to patch active modes and the 

number of active modes ܰሺଵ,ଵሻ taken in the slot domain	Dଵ
ሺଵሻ. Here, again the flat part of the 

curves demonstrates the convergence of reflected phase. It is evident from the curves that 

convergence is achieved if the number of patch active modes is taken between 600 and 1000 

and the number of slot active modes is taken between 80 and 120. However, if the number of 

slot active modes exceeds a certain limit, matrices become ill-conditioned leading to the loss 

of convergence as can be seen by the sudden drop in two lower curves. This numerical 

problem can be attributed to the use of entire domain trial functions and is analogous to the 

one observed classically in the Mode Matching Technique [69].  

For this reflector-cell configuration we have chosen 5000 waveguide modes, 1000 

antenna active modes and 120 slot active modes. For these numbers, the convergence 

achieved is within 1º margin. It should be noted here that the phase convergence is not very 
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sensitive to number of passive modes in a domain as long as a significant number is taken. 

1000 passive modes were taken in the patch domain ܯሺଵ,ଶሻfor the simulation results presented 

in this section. However a rigorous convergence study is required to determine the number of 

active modes which characterize the mutual coupling between different scales. 

5.4.2.    Scattering Parameters Results 

The five distinguished unit-cell configurations are simulated using Scale-Changing 

Technique over the frequency range of 11.7GHz to 12.5GHz using the convergence results at 

the centre frequency for each configuration. Same structures were simulated using FEM and 

MoM based commercial software (HFSS version 13) under periodic boundary conditions and 

Floquet port excitation. Figure 9(a) plots the phase curves for the fourth configuration under 

normal incidence; the maximum difference between SCT and HFSS results is in case of S22 

(y-polarization), that is of 4°. Figures 5.9(b) and (c) plot the phase results for all five 

configurations with respect to different incidence angles at centre frequency (12.1GHz). The 

angle theta (θ) varies from 0° to 40° while the angle phi (φ) is taken initially equal to 0° for 

simplicity. Table 5.2 lists the values of the reflected phase obtained by SCT and HFSS 

simulations for all five configurations under different pairs of wave incidence. Again both 

results are in good agreement with maximum difference of 3°. The results for cross 

polarization (S12 and S21) in dBs are shown in Table 5.3. The values of cross polarization 

under both SCT and HFSS remains below than -40dB, which is an excellent mark regarding 

design purposes. 

 

 

(a)                                                               (b) 
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(c) 

Figure  5.9:  Comparison of the reflected phase obtained by SCT and HFSS (a) over the whole 
frequency band  (11.7-12.5 GHz) under normal incidence, for 4th configuration and both polarizations: 
S11 (x-Polarization), S22 ( y-Polarization); (b) and (c): phase results at center frequency (12.1GHz) 
for all five configurations under oblique incidence (a) x-Polarization (b) y-Polarization 

Table 5.2 
Comparison of the reflected phase obtained by SCT and HFSS at middle frequency (12.5 
GHz) under different plane wave incidences for all five configurations. 

Table 5.3 

Comparison of the cross polarization (in decibels) obtained by SCT and HFSS at middle 
frequency (12.1 GHz) for all five configurations 
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5.4.3.    Radiation Pattern Results 

To determine the electric field scattered by the surface impedance ሾ ௌܼሿ of the whole structure 

when illuminated by plane wave, the equivalent surface current density is computed from the 

resolution of the following matrix equation derived from the Integral Equation Formulation 

of the boundary value problem by applying SCT:  

 

ൣܸ௜௡௖൧ െ ൫ൣܼ௦௣௔௖௘൧ ∗ ௘௤൧൯ܫൣ ൌ ሾܼ௦ሿ ∗                         (5.32)																					௘௤൧ܫൣ

௘௤൧ܫൣ ൌ ሺൣܼ௦௣௔௖௘൧ ൅ ሾܼ௦ሿሻିଵൣܸ௜௡௖൧                                                   (5.33) 

 

ൣܼ௦௣௔௖௘൧ is the matrix representation of the free space dyadic Green function, ൣܸ௜௡௖൧ designate 

the column vectors of entire-domain basis functions components of the incident plane wave 

and the vector column ൣܫ௘௤൧ represents the unknown coefficients of surface current density. 

Please see chapter 6 for detailed SCT Integral Equation Formulation for EM far-field 
Scattering. 

The far-field radiation patterns at 12.1 GHz frequency are presented in Figure 5.10. Again 

the results of SCT are in excellent agreement with that of HFSS. The SCT results have been 

obtained with a significant reduction in terms of computation time and memory resources. 

The simulation times for this specific periodic reflectarray problem (i.e., unit cell simulation 

problem) are 93 seconds and 766 seconds for the SCT and HFSS, respectively. The factor of 

time and memory becomes more critical when simulating finite structures and the SCT is also 

proving itself a very efficient technique for finite-sized large reflectarray problems, as will be 

discussed in the following Chapter. Finally, by keeping in view the close agreement between 

SCT and HFSS, we can conclude that the scale changing technique delivers its advantages 

without the loss of accuracy in results. 

 



Section II: Chapter 5: Electromagnetic Modeling of Periodic Microstrip Reflectarrays using  
Scale Changing Technique 

72 
 

 

              (a)                                                                           (b) 
Figure  5.10: Scattered Electric Field in the far-field zone obtained from the SCT and HFSS under 
oblique incidence (θ=20°, φ=0°) at 12.1 GHz (a) E-Plane (b) H-Plane 

5.5.    Conclusions 

In this chapter we have presented the underlying theory of the Scale-Changing Technique 

and explained certain concepts involved in the application of this technique to the planar 

structures. It has been shown that the Scale-Changing Technique is particularly suited for the 

applications that require large complex planar geometries with patterns varying over a wide 

range of scale. The concept of scale-changing network (SCN) to model electromagnetic 

coupling between adjacent scale-levels is introduced and it has been shown that the 

computation of these SCNs is mutually independent. This formulation, by its very nature is 

highly parallelizable, which gives SCT a huge advantage over other techniques that have to 

be adapted for distributed processing. 

In the second half of this chapter the Scale-Changing Technique is applied to the case of a 

typical reflector unit cell under infinite array conditions. Radiation pattern results and the 

results for the phase-shift introduced to a linearly polarized plane-wave under both normal 

and oblique incidence are calculated and compared to another simulation tool. The good 

agreement between the results demonstrates that SCT is a reliable design and simulation 

technique.
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He who angers you, conquers you. 
Elizabeth Kenny 

6 

Electromagnetic Modeling of Finite-Size 
Large Microstrip Reflectarrays by Scale 
Changing Technique 

 

 
6.1.  Introduction 

In the previous chapter we have detailed the underlying theory and working of scale-

changing technique with the example of a microstrip phase shifter cell under infinite array 

conditions. In this chapter we will see how this technique can be used to efficiently model 

large finite-sized reflectarrays of uniform and non-uniform geometry.  

First of all we will introduce the concept of bifurcation multipole which is essentially a 

scale-changing network (SCN) to model the electromagnetic coupling between neighboring 

unit cells at same scale level in a reflectarray. Mutual coupling between two planar dipoles 

will be characterized with the help of this scale-changing network and it will be demonstrated 

that in the case of a planar dipole array the mutual coupling effect is accurately taken into 

account when modeled using SCT. 

Later in the chapter, the concept of this bifurcation scale-changing network is enhanced to 

incorporate the mutual coupling in 2D microstrip reflectarrays. Large uniform and non-

uniform passive planar reflectarray structures  are analyzed for plane-wave scattering 

problem and a good agreement is obtained with the simulation results of conventional 

simulation tools. Later two types of free-standing planar structures are analyzed using 

pyramidal horn as an excitation source. Results are presented when the horn is placed at an 
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offset with an angle of incidence. Also at the end in Section 6.5 the SCT modeling and 

simulation of a small (containing four phase shifter elements) active reflectarray 

(electronically tunable with RF-MEMS switches) is  presented. The modeling of this small 

array is presented as an initial step towards large reconfigurable reflectarrays . At the end, the 

comparison of simulation times between SCT and other full-wave simulation techniques is 

given.  

6.2.   Modeling of Inter-Cellular Coupling 
6.2.1. Bifurcation Scale-Changing Network 

Consider a small array of two unit-cells placed side by side horizontally as shown in 

Figure 6.1(a). Each of the unit-cells can be characterized independently by its surface-

impedance matrix defined using an ortho-normal modal-basis of unit-cell’s domain. To 

model the overall behavior of this simple two-cell array, mutual electromagnetic interactions 

between the cells have to be taken into account. These mutual interactions are characterized 

by a scale-changing network which when cascaded with the surface impedance matrices of 

individual unit-cells will give the overall surface impedance or admittance that characterizes 

this 2-cell array.  

 

                       (a)                                                                  (b) 

Figure  6.1: (a) Electromagnetic coupling between two adjacent unit-cell domains DS
1 and DS

2 
modeled by a bifurcated waveguide. (b) Inter-modal coupling between parent domain DS+1 and 
daughter domains DS

1 and DS
2 can be represented by a bifurcation scale-changing network (SCN). 
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The parent-domain DS+1 at scale level S+1 along with the sub-domains DS
1 and DS

2 (unit-

cell domains) at lower scale level S can be visualized as the openings of a bifurcated 

waveguide as given in Figure 6.1 (a), the scale-changing network of this bifurcated 

waveguide (Figure 6.1(b)) is therefore dubbed as the bifurcation multipole. 

6.2.1.1.   Equivalent Electromagnetic Circuit Diagram 

Keeping in view the SCT theory of chapter 4, the equivalent circuit to compute the 

bifurcation scale-changing network between a generic scale S+1 and its subsequent scale S  is 

represented in Figure 6.2. In this equivalent circuit, the electromagnetic sources forming the 

two branches of the circuit model are the transverse fields in the two sub-domains lying at 

scale S. The source part of the circuit represents the excitation fields at scale level S+1 [44]. 

  

 

Figure 6.2: Equivalent circuit diagram of a bifurcation scale-changing network. The dual quantities 
are shown in red. 

The current sources ݆௘
ሺଵሻand ௘݆

ሺଶሻ are the virtual-sources defined in the aperture domains 

DS
1 and DS

2 to model the perfect dielectric boundary conditions where the electric field scale-

changing sources e(1) and e(2) on the other hand represent the tangential electromagnetic fields 

in the aperture domains. The tangential electromagnetic field in the parent domain DS+1  (at 

scale S+1) is represented by the source E. Virtual sources and the scale-changing sources 

when defined in the same domain and using the same modal-basis can be modeled by a single 

equivalent source [68]. This simplification reduces the analytical calculations of the circuit. A 

simplified version of the equivalent circuit is thus shown in Figure 6.3 with the new 

equivalent current sources j(1) and j(2).  
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Figure 6.3: Simplified Equivalent circuit. Virtual source and the scale-changing source of each 
branch (when defined in the same domain and using same orthogonal modal-basis) can be replaced by 
a single current source. 

Assuming N1 active modes in DS+1 and N2 in each of the daughter domains (DS
1, DS

2) we 

can express the electromagnetic field quantities in terms of mathematical equations written 

using the equivalent circuit of Figure 6.3.  

ቐ
		ሬԦܧ ൌ 	∑ ௡ܸ

	ேଵ
௡ୀଵ 	Ԧ௡ܨ

	
		Ԧܬ ൌ 	∑ ஶ	௡ܫ

௡ୀଵ 	Ԧ௡ܨ
																																																																					(6.1) 

	Ԧ௡ܨ  is the orthogonal modal-basis defined in DS+1.  

Similarly, 

መܼ		 ൌ 	∑ หܨԦ௡	 〉ܼ௡	 	Ԧ௡ܨ〉 หஶ
௡ୀேଵାଵ 													                                               (6.2) 

Where Zn is the equivalent parallel modal impedance in the two half-regions; for example, if 

we have two different substrates at the two sides of the discontinuity plane, assuming air on 

one side and a dielectric with relative permittivity ߝ௥	on the other, modal impedance of the nth 

passive mode Zn is the parallel equivalent of modal impedances of that mode in each of the 

dielectric domain and is written as: 
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ܼ௡	 ൌ
௓೙
ഄబ
	

	
௓೙
ഄೝ
	
	

௓೙
ഄబ
	

	
ା	௓೙

ഄೝ
	

																																																																									(6.3) 

 

The expressions ሾIୗାଵሿ	 and ሾVୗାଵሿ	 shown in Figure 6.1 are the column vectors of size N1 

containing the coefficients ܫ௡	  and ௡ܸ
	 of equation 6.1 as follows: 

																										ሾIୗାଵሿ	 ൌ ൥
Iଵ
	

⋮
I୒ଵ	
	
൩                               ሾVୗାଵሿ	 ൌ ൥

Vଵ
	

⋮
V୒ଵ	
	
൩                                (6.4) 

Considering the modal-basis ࢔ࢌ
ሺଵሻ and ࢔ࢌ

ሺଶሻin the two sub-domains DS
1 and DS

2, the tangential 

fields in them can be expressed on their respective modal-basis. For sub-domain DS
1: 

൞
ଚሺଵሻሬሬሬሬሬሬԦ

	

	
ൌ 	∑ ݅௡

ሺଵሻஶ
ୀ૚࢔ ࢔ࢌ

ሺଵሻሬሬሬሬሬሬሬԦ
	

	

	

ሺଵሻሬሬሬሬሬሬሬԦࢋ
	

	
ൌ 	∑ ௡ݒ

ሺଵሻஶ
ୀ૚࢔ ࢔ࢌ

ሺଵሻሬሬሬሬሬሬሬԦ
	

	
																                                          (6.5) 

similarly for sub-domain DS
2, 

൞
ଚሺଶሻሬሬሬሬሬሬԦ

	

	
ൌ 	∑ ݅௡

ሺଶሻஶ
ୀ૚࢔ ࢔ࢌ

ሺଶሻሬሬሬሬሬሬሬԦ
	

	

	

ሺଶሻሬሬሬሬሬሬሬԦࢋ
	

	
ൌ 	∑ ௡ݒ

ሺଶሻஶ
ୀ૚࢔ ࢔ࢌ

ሺଶሻሬሬሬሬሬሬሬԦ
	

	
							                                                   (6.6) 

The coefficient vectors ݅௡
ሺଵሻ, ௡ݒ

ሺଵሻ, ݅௡
ሺଶሻܽ݊݀	ݒ௡

ሺଶሻ of equations (6.5) and (6.6) are defined on the 
active-modes in each sub-domain. 

	ቂܫௌ
ሺ௞ሻቃ

	
ൌ ቎

݅ଵ
ሺ௞ሻ

⋮
݅ேଶ
ሺ௞ሻ
቏																			 ቂ ௌܸ

ሺ௞ሻቃ
	
ൌ ቎

ଵݒ
ሺ௞ሻ

⋮
ேଶݒ
ሺ௞ሻ
቏						∀			݇ ൌ 1,2		                    (6.7) 

6.2.1.2.   Matrix Notation 

In order to compute the multipole-matrix that characterizes the bifurcation multipole Figure 

6.1(b), we need to find a relation between the quantities defined in the parent domain DS+1 to 

that defined in the sub-domains DS
1 and DS

2. As these quantities are defined on the active-

modes of their respective modal-basis, they form the ports through which tangential fields at 

one scale can interact with the tangential fields of the other.  The relation between the fields 

at two scales can be written from the equivalent circuit of Figure 6.3 using Kirchoff laws. 
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ܬ
݁ሺଵሻ
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1 መܼ		 መܼ		
቏ 	ൈ 	቎

ܧ
݆ሺଵሻ

݆ሺଶሻ
቏                                                    (6.8) 

 

Solving the matrix equation of equation (6.8) by applying Galerkin method gives the 

following: 

ۏ
ێ
ێ
ێ
ۍ

	

	

ሾܫௌାଵሿ

ቂ ௌܸ
ሺଵሻቃ

ቂ ௌܸ
ሺଵሻቃے

ۑ
ۑ
ۑ
ې

ൌ ൦

0 െ ଵܲ
ሺଵሻ െ ଵܲ

ሺଶሻ

ଵܲ
ሺଵሻ∗

ଶܲ
ሺଵሻ∗ܼ ଶܲ

ሺଵሻ
ଶܲ
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ሺଶሻ

ଵܲ
ሺଶሻ∗	 ଶܲ

ሺଶሻ∗ܼ ଶܲ
ሺଵሻ

ଶܲ
ሺଶሻ∗ܼ ଶܲ

ሺଶሻ

൪ 	ൈ 	

ۏ
ێ
ێ
ۍ
ሾ ௌܸାଵሿ

ቂܫௌ
ሺଵሻቃ

ቂܫௌ
ሺଶሻቃ ے

ۑ
ۑ
ې
                       (6.9) 

Where the symbol ∗ denotes the complex conjugate transpose. If M denotes the multipole-

matrix that characterizes the bifurcation-multipole that relates the tangential fields at scale 

S+1 and S defined on the active modes, then equation (6.9) can be rewritten as under: 

ۏ
ێ
ێ
ێ
ۍ

	

	

ሾܫௌାଵሿ

ቂ ௌܸ
ሺଵሻቃ

ቂ ௌܸ
ሺଶሻቃے

ۑ
ۑ
ۑ
ې

ൌ ሾܯሿ	ൈ	

ۏ
ێ
ێ
ۍ
ሾ ௌܸାଵሿ

ቂܫௌ
ሺଵሻቃ

ቂܫௌ
ሺଶሻቃ ے

ۑ
ۑ
ې
                                                         (6.10) 

The constituent sub-matrices of M are defined here; ቂ ଵܲ
ሺ௞ሻቃ is the projection matrix of 

dimensions  N1×N2 of active modes of modal-basis ࡲሬሬԦ࢔	 	on  ࢌሬԦ࢔
ሺ௞ሻ; 

ቂ ଵܲ
ሺ௞ሻቃ ൌ ቎

ଵܨ〉
	 , ଵ݂

ሺ௞ሻ〉 ⋯ ଵܨ〉
	 , ே݂ଶ	

ሺ௞ሻ〉
⋮ ⋱ ⋮

	ேଵܨ〉
	 , ଵ݂

ሺ௞ሻ〉 ⋯ 	ேଵܨ〉
	 , ே݂ଶ	

ሺ௞ሻ〉
቏				∀	݇ ൌ 1,2                           (6.11) 

Similarly ቂ ଶܲ
ሺ௞ሻቃ is the projection matrix of dimensions ൫M	–N1	൯ ൈ	N2	 of passive modes of 

modal-basis ࡲሬሬԦ࢔	 	on ࢌሬԦ࢔
ሺ௞ሻ. 

ቂ ଶܲ
ሺ௞ሻቃ ൌ ቎

ேଵାଵܨ〉
	 , ଵ݂

ሺ௞ሻ〉 ⋯ ேଵାଵܨ〉
	 , ே݂ଶ	

ሺ௞ሻ〉
⋮ ⋱ ⋮

		ெܨ〉 , ଵ݂
ሺ௞ሻ〉 ⋯ 		ெܨ〉 , ே݂ଶ	

ሺ௞ሻ〉
቏			∀	݇ ൌ 1,2                              (6.12) 
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The bifurcation multipole defined by the matrix ሾMሿ characterizes the electromagnetic 

coupling between the two consecutive scale-levels and serves as a basic block to model the 

mutual coupling between the elements of an array structure. 

6.2.2. Single Mode Example 

To clarify the idea of EM coupling by active modes, let us apply a special case on Figure 

6.1, in this case we take only single transverse electromagnetic (TEM) mode used as an 

active mode in	ܦௌାଵ, ܦௌ
ଵ and ܦௌ

ଶ		while all the other modes are evanescent (i.e., their cut-off 

frequency in these three domains is higher than the operating frequency). Additionally 

consider that the domains ܦௌ
ଵ		 and	ܦௌ

ଶ	 are loaded with metallic strips printed on perfectly 

magnetic surface, all these domains are bounded by electric (along x-axis) and magnetic 

(along y-axis) walls as shown in Figure 6.4 (a) and (b).  

 

Figure  6.4: (a) a lossless discontinuity plane ܦௌାଵ (scale-level S+1) containing two metallic strips of 
width ݓௌ	printed on perfectly magnetic surface. (b) Two rectangular sub-domains ܦௌ

ଵ	and 	ܦௌ
ଶ	 (scale-

levelܵ) of width ܽௌ and height b are defined in the discontinuity plane 	ܦௌାଵ. (c) Its equivalent 
electrical circuit when only TEM mode is used as an active mode in	ܦௌାଵ, ܦௌ

ଵ and ܦௌ
ଶ		 while all the 

other modes are passive. In this special illustrative case it can be seen that a simple mutual inductance 
models the EM coupling between the scale-levels S and S+1. The TEM surface impedance ܼௌାଵ

	 ൌ
ௌܸାଵ/ܫௌାଵ in ܦ௦ାଵ is then derived from the calculation of the input impedance of the SCN loaded by 
ܼ௦ଵ and ܼ௦ଶ	. 

The SCN that models the EM coupling between the TEM-modes in	ܦௌାଵ, 	ܦௌ
ଵ	and ܦௌ

ଶ	 is 

shown in Figure 6.4(c) enclosed by a dashed rectangle. This SCN is characterized by a 

multipole matrix ܯ௦ାଵ,௦  as defined by the following matrix equation: 
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቎
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ௌܸାଵ

ௌܫ
ଵ

ௌܫ
ଶ
቏		                                                            (6.13) 

Where  

 

 

ሾܯ௦ାଵ,௦ሿ 	ൌ ൥
0 െ1 െ1	
1 ሻ߱ݏሺܮ݆ ሻ߱ݏሺܯ݆
1	 ሻ߱ݏሺܯ݆ ሻ߱ݏሺܮ݆

൩                                                    (6.14) 

The analytical expressions for the self inductance L(s) and mutual inductance M(s) are given 
by: 
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∑ ூ೘మ
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ഏ

ೌೞశభ
ቁ
మ
ି௞బ

మ

ஶ
௠ୀଵ,ଶ,ଷ,… 	                                                (6.15) 

and      
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where 
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	 (6.17) 

 

The TEM surface impedances Zୗ
ଵ ൌ െVୗ

ଵ/Iୗ
ଵ and Zୗ

ଶ	 ൌ െVୗ
ଶ/Iୗ

ଶሺൌ Zୗ
ଵ	 in this example) 

model the metallic strips in the sub-domains ܦௌ
ଵ and ܦௌ

ଶ	 respectively. The resulting TEM 

surface impedance ௌܼାଵ
	 ൌ ௌܸାଵ/ܫௌାଵ in ܦ௦ାଵ is then derived from the calculation of the input 

impedance of the SCN loaded by ܼௌ
ଵ and ௌܼ

ଶ	. The analytical expressions of ௌܼାଵ
	 ,  ௌܼ

ଵ and ௌܼ
ଶ	 

are given by [70]: 

ܼௌ
		 ൌ ௌܮ݆߱

		   with  	ܮௌ
		 ൌ ଴ߤ2

௕

௔ೞ
∑ ଵ

ටቀଶ௠
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ೌೞ
ቁ
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మ

ஶ
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ଶ

           (6.18) 
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Finally the surface impedance ܼௌାଵ	in ܦ௦ାଵ is then derived from the calculation of the input 

impedance of the SCN loaded by ܼ௦ଵ and ܼ௦ଶ	ሺൌ ܼ௦ଵ ൌ ܼ௦	 ሻ as follows: 

 

	ܼௌାଵ
		 ൌ ௌାଵܮ݆߱

		   with  	ܮௌାଵ
		 ൌ

ଵ

ଶ
ሾܮௌ ൅ ሺܵሻܮ ൅  ሺܵሻሿ                            (6.19)ܯ

In this illustrative example, the electromagnetic coupling between ܦௌ
ଵ and		ܦௌ

ଶ	 is clearly 

modeled by the mutual inductance M(s). In practice, a single active mode per scale-level is 

not sufficient for obtaining accurate results and describing precisely the EM coupling 

between the scales  rather, as previously mentioned, the number of active modes at each scale 

level is derived from the numerical convergence analysis of the solution. However this 

illustrative example allows providing a comprehensive model representing the EM coupling 

by a simple mutual inductance M(S) between two adjacent (successive) scale-levels S and 

S+1.  

6.2.3.   Full Wave Analysis for Coupling Validation  
6.2.3.1.  Coupling Analysis between two Dipoles  

Now to validate that the bifurcation multipole described in last Section accurately models 

the mutual coupling between the elements of the array, full wave simulation results are 

presented here. Two thin metallic strips of half-wavelength (12 mm) dimensions separated by 

a distance ݀ as shown in Figure 6.5 are simulated as a simple array of two unit-cells. Given a 

plane wave with normal incidence, an isolated half-wave dipole scatters uniformly around its 

axis.  
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Figure 6.5: Characterization of mutual coupling for two dipole strips at 12.5GHz: E-plane 
backscattered electric field in the normal direction by two coupled half-wave printed dipoles with 
respect to the normalized separation between the dipoles when illuminating by a normally incident 
plane wave (polarized along the dipoles axis) at 12.5GHz. 

 

In the absence of mutual coupling, the resulting re-radiated E-field in the normal direction 

is a simple summation of the individual fields radiated by each dipole as given by 

superposition principle. This value is indicated by the straight dotted line on the plot of 

Figure 6.5. However, due to the presence of mutual coupling between the two dipoles which 

may generate a constructive or destructive interference effect, the actual backscattered field 

in the normal direction depends on the distance d  between the two dipoles. A single scale-

changing network grouping the elements in one dimension is required to characterize the 

mutual coupling between the two strips.  

The strips were simulated multiple times by varying the distance between them. The 

maximum radiated E-field values are plotted against the distance d normalized to the free-

space wavelength λ. The results of the simulations performed by a conventional simulation 

tool HFSS (Ansoft high frequency structure simulator based on FEM and MoM) are also 

given for validation purposes. It is found that the results obtained by two techniques agree 

closely which validates the point that SCT accurately characterizes the effects of mutual 

coupling between the elements of an array. Here in this case, at lower level 25 active modes 
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are taken for each subdomain while at the top level 40 active modes and 2000 passive modes 

have been taken for ensuring the convergence of the numerical solution. 

6.2.3.2.  Coupling Analysis for a 4×4 Dipole-array. 

 For modeling the mutual coupling effect in case of a small two-dimensional array, a small 

4×4 array of dipole strips has been simulated under normal plane-wave incidence. The dipole 

elements are separated horizontally by a distance of half wavelength. In this case the scale-

changing network groups elements in two dimensions, i.e., mutual coupling between four 

elements is considered in the computation of a single scale-changing network. To account 

properly for all mutual EM coupling effects, a convergence study has to be done to ensure 

that enough active modes are considered in the calculation of scale-changing networks.  

The inter-cell interactions are not well defined by too few modes while too many can 

produce ill-conditioned matrices and other numerical errors. The plots of the radiation 

patterns in H-plane and E-plane of the array are represented in Figure 6.6(a) and (b) 

respectively, for the normal plane-wave incidence with the incident E-field polarized along 

the axis of the dipole strips. The radiation pattern of the array in the absence of mutual 

coupling as computed using the radiation pattern of a single element and the array factor of 

the 4×4-dipole array is also traced on the same plot for showing that mutual coupling occurs 

in the considered planar array. The same array was simulated by HFSS for comparison 

purposes. Here in this case, at the top level, 300 active modes and 3000 passive modes have 

been used. 
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Figure 6.6:  Far-field radiation pattern of a simple 4×4 dipole array in(a) H-plane and (b) E-plane 
when illuminating by a normally incident plane wave (polarized along the dipoles axis) at 12.5GHz.  

6.3. Modeling of large and more Complex Microstrip 
Reflectarrays 

Once it has been shown in previous Sections that SCT successfully characterizes mutual 

EM coupling between the elements of a small and simple finite array of dipoles, the next 

logical step is to apply the concept for the case of larger arrays and with relatively complex 

geometries that are traditionally used in modern reflectarray applications. In this Section, we 

will first present the theory behind the scattering problem and then the radiation pattern 

results for three types of reflectarrays are presented. 

6.3.1.   SCT Formulation of Electromagnetic Scattering Problem 

This section presents the theory of electromagnetic scattering from the planar reflectarray 

shown in Figure 6.7 (a). Let say it consists of N×N unit cells composed of metallic patterns 

printed on a grounded dielectric surface of thickness	݄ and relative permittivity	ߝ௥. Suppose 

that in the discontinuity plane		ܦ	many scale levels (with respect to small and large 

dimensions) separate the largest pattern to the smallest one. The discontinuity plane D is 

illuminated by a plane wave ܧሬԦ௜௡௖	 with an arbitrary angle of incidence	ሺߠ, ߮ሻ on one side, 
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while on the other side a finite-sized grounded dielectric surface is placed. The time-

harmonic regime is assumed for all fields. 

 

                         (a)                                                                        (b) 

Figure 6.7: (a) An N×N microstrip reflectarray of arbitrary cells under arbitrary plane wave 
incidence. (b) The surface impedance matrix ሾࡿࢆሿ modeling the domain ࡰ, this matrix is derived from 
the cascade of scale changing networks as shown in Figure 6.9. 

6.3.1.1. Derivation of the current density on the reflectarray domain D  

The integral equation formulation of the boundary value problem on the metal domain 
 :can be written as [33] (metallic parts on the Domain D) ࢒ࢇ࢚ࢋ࢓ࡰ

 

ሻݎሬԦ௘௫௖ሺܧ		 ൅	ܧሬԦ௦௖௔௧ሺݎሻ ൌ ሻݎሬԦ௧௢௧ሺܧ ൌ  ௠௘௧௔௟                                   (6.20)ܦ	߳	ݎ		ݎ݋݂		0

 

Where		ܧሬԦ௘௫௖ ൌ ሬԦ௜௡௖ሺ1ܧ ൅ Γሻ, ܧሬԦ௜௡௖ሺݎሻ and ܧሬԦ௦௖௔௧ሺݎሻ denote the incident and scattered fields 

respectively and		Γ		is the reflected coefficient computed by the SCT when the domain is 

replaced by a perfect electric conductor. The total tangential field is zero as dictated by the 

perfect electric boundary conditions at the metal surface ܦ௠௘௧௔௟. The scattered field from a 

planar surface can be written in terms of unknown surface current density ܬ	ሬሬԦ on the metal 

domain ܦ௠௘௧௔௟ of the planar scatterer and free space dyadic Green function ̿ܩሺݎ,  :ᇱሻݎ
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ሻݎሬԦ௦௖௔௧ሺܧ ൌ ׬ ,ݎሺܩ̿ ᇱሻݎ
	
஽೘೐೟ೌ೗

 ᇱ                                               (6.21)ݎᇱሻ݀ݎሬሬԦሺ	ܬ

In Scale Changing Technique, the current density ܬ	ሬሬԦ defined on the metal domain Dmetal is 

replaced by an equivalent current density ܬԦ௘௤ defined on the entire discontinuity plane ܦ 

incorporating Dmetal. This domain ܦ is characterized by surface impedance matrix ሾܼ௦ሿ		(the 

calculation details of ሾܼ௦ሿ is given in the following section) which allows formulating the new 

boundary conditions of the problem such as:  

 

Ԧ௘௤ܬ	ܩ̿	 െ ሻݎሬԦ௘௫௖ሺܧ 	ൌ ሬԦ௧௢௧ܧ ൌ െሾܼ௦ሿ	ܬԦ௘௤																																																			(6.22) 

Where ܧሬԦ௧௢௧ is the vector of total tangential field (superposition of scattered and incident 

field). The unknown surface current density ܬ௘௤ is given by:  

Ԧ௘௤ܬ ൌ ∑ Ԧ௘௤_௜ܫ Ԧ݃௜
ேವൈேವ
௜ୀଵ 																																						                           (6.23) 

where Ԧ݃௜ is the ith entire domain trial function, here these functions are the active modes in 

domain	D and ND represents the number of active modes deduced from comprehensive 

numerical convergence study of the EM scattering problem. In practice, same entire-domain 

orthogonal basis functions are also used for representing the equivalent surface impedance 

matrix ሾܼ௦ሿ that models the reflectarray. By applying Galerkin method equation (6.23) can be 

written as: 

ൣܼ௦௣௔௖௘൧ൣܫ௘௤൧ െ ሾ ௘ܸ௫௖ሿ ൌ ሾ ௧ܸ௢௧ሿ ൌ െሾ	ܼ௦ሿሾܫ௘௤ሿ                                    (6.24) 

Where ൣܼ௦௣௔௖௘൧			is the matrix representation of the free-space dyadic Green function and 

ሾܫ௘௤ሿ	 denotes the vector matrix containing the unknown expansion coefficients of the surface 

current density in domain  D. Following the formulation of [33] the vector ሾ ௘ܸ௫௖ሿ is given by: 

 

 

ሾ ௘ܸ௫௖ሿ 	ൌ ሼሾ1ሿ ൅ ሾΓ	ሿሽሾ ௜ܸ௡௖ሿ                                                            (6.25) 
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Where ሾ ௜ܸ௡௖ሿ	 contains known expansion coefficients of the incident electric field ܧሬԦ௜௡௖ on the 

active modes in D, the matrix ‘ሾ1ሿ’ is the unit matrix with dimension ܰ	஽ ൈ	 ஽ܰ and ሾΓ	ሿ 

denotes the reflection matrix representation in the set of active modes when the domain D is 

replaced by a perfect electric conductor (the calculation details of 	ሾ ௘ܸ௫௖ሿ, ൣܼ௦௣௔௖௘൧		and ሾΓ	ሿ is 

given in the following sections). To determine the electric field scattered by the reflectarray 

when illuminating by a plane wave, the unknown components ሾܫ௘௤ሿ	 of the equivalent surface 

current density in the domain ܦ	needs to be calculated. These components may be computed 

from equations (6.25) and (6.26) as follows: 

௘௤൧ܫൣ      ൌ ൛ൣܼ௦௣௔௖௘൧ ൅ ሾ	ܼ௦ሿൟ
ିଵ
ሼሾ1ሿ ൅ ሾΓ	ሿሽሾ ௜ܸ௡௖ሿ                               (6.26) 

              

From the computation of ൣܫ௘௤൧,	 the total electric field 	ሾ ௧ܸ௢௧ሿ ൌ െሾ	ܼ௦ሿሾܫ௘௤ሿ	 is then derived. 

Finally, the scattered electric relevant to the far field distribution is only  ሾ ௦ܸ௖௔௧ሿ	 and is given 

by the following equation: 

ሾ ௦ܸ௖௔௧ሿ ൌ ሾ ௧ܸ௢௧ሿ െ ሾ	 ௜ܸ௡௖ሿ					ݎ݋					ܧሬԦ௦௖௔௧ ൌ ሬԦ௧௢௧ܧ െ  ሬԦ௘௫௖                              (6.27)ܧ		

	   

The process of computing the  values of  V୧୬ୡ, Zୱ and Zୱ୮ୟୡୣ in equation (6.26) is detailed 

below.  

 

6.3.1.2.  Calculation of ሾࢉ࢔࢏ࢂሿ  

The vector ሾ ௜ܸ௡௖ሿ	 contains the expansion coefficients of the incident electric-field in the 

set of ND active modes ൫ܨԦ௠	 	൯௠ୀଵ,ଶ,…,ேವ
	 in the domain D of the array. The mth coefficient 

ሾ ௜ܸ௡௖ሿ௠	 is computed as follows:  

 

ሾ ௜ܸ௡௖ሿ௠ ൌ 	௠ܨ〉 , 〈௜௡௖ܧ ൌ ∬ ஽	Ԧ௠∗ܨ ሺݔ, .ሻݕ ,ݔሬԦ௜௡௖ሺܧ  (6.28)                            ݕ݀ݔሻ݀ݕ

 

where ܧሬԦ௜௡௖ሺݔ,  In .ܦ ሻ is the tangential component of the incident field on the planar domainݕ

the case of plane-wave incidence it can be written as: 
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,ݔሬԦ௜௡௖ሺܧ ሻݕ ൌ Ԧݔ଴௫ܧൣ ൅ Ԧ൧݁ି௝ݕ଴௬ܧ
ሺ௞బ	௦௜௡ఏ௖௢௦ఝ	௫ା௞బ	௦௜௡ఏ௦௜௡ఝ	௬ሻ                         (6.29) 

 

with θ and φ the angles of incidence (see Figure 6.7).  

Instead of plane wave excitation for antenna sources such as feed horn, ܧሬԦ௜௡௖ is also the 

tangential component of the radiated electric-field incident on the planar surface D and can be 

calculated from the radiation pattern characteristics and the position of the source with 

respect to the reflectarray. This process is outlined in Appendix B for a case of pyramidal 

horn. In addition ܧሬԦ௜௡௖ can be found numerically by simulating the source antenna with any 

3D EM simulation tool (e.g. GRASP) and using the tangential component of the field 

projected on the reflectarray-plane in equation to find	 ௜ܸ௡௖. Alternatively the projection of 

antenna measurement data expressed on spherical modes can be used in place of ܧሬԦ௜௡௖. 

6.3.1.3.   Calculation of ൣࢋࢉࢇ࢖࢙ࢆ൧ 

The matrix ൣܼ௦௣௔௖௘൧			 in equation (6.26) is represented as the set of ND active modes 

൫ܨԦ௠	 	൯௠ୀଵ,ଶ,…,ேವ
	 in the domain D of the array. The element ൣܼ௦௣௔௖௘൧௠௡

 ∀			݉, ݊ ൌ 1,2, … , ஽ܰ  

is given as follows. 

	
ൣܼ௦௣௔௖௘൧௠௡

ൌ 

∬ ,ݔሺ	Ԧ௠∗ܨ ሻݕ
ାஶ
ିஶ .

௝

ఠఌబ
቎
݇଴
ଶ
	 ൅

డమ

డ௫మ
డమ

డ௫డ௬

డమ

డ௬డ௫
݇଴
ଶ ൅ డమ

డ௬మ

቏ ,ݔሺܩ̿ ;	ݕ ,ᇱݔ .ᇱሻݕ 	Ԧ௡ܨ ሺݔᇱ,                    ݕ݀ݔᇱሻ݀ݕ

(6.30)                                                                                                                                     

       

where ̿ܩሺݔ, ;ᇱݕ ,ݔ  ᇱሻ is the dyadic Green function in the spatial domain and theݕ

convolution product in the integrand is given by.  

,ݔሺܩ̿   ;	ݕ ,′ݔ .ሻ′ݕ 	Ԧ௡ܨ ሺݔ′, ሻ′ݕ ൌ ∬
௘షೕೖൣሺೣషೣ

ᇲሻమశሺ೤ష೤ᇲሻమ൧
భ మ⁄

ସగሾሺ௫ି௫ᇲሻమାሺ௬ି௬ᇲሻమሿభ మ⁄ 	
ାஶ
ିஶ 	Ԧ௡ܨ ሺݔ′,          ′ݕ݀′ݔሻ݀′ݕ

(6.31) 

 

 In the spectral domain the equation (6.30) reduces to the following expression:  
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ଵ
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൥
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෨	൫݇௫, ݇௬൯ܨ෨Ԧ௡∗൫݇௫, ݇௬൯݀݇௫݀݇௬(6.32)    

       

where ܨ෨Ԧ௡∗൫݇௫, ݇௬൯ denotes the Fourier transform of 	ܨԦ௡	 ሺݔ′, ,൫݇௫	෨ܩ̿	 ሻ and′ݕ ݇௬൯	is given by: 
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                                    (6.33) 

 

By using spectral domain the computation of ൣܼ௦௣௔௖௘൧ has been reduced to the computation of 

a single double integral in the spectral domain. Moreover since the test functions ܨԦሺݔ′,  ሻ are′ݕ

defined in the rectangular domain their Fourier transform can be calculated analytically.  

 

 

Figure 6.8: Wave-vector transformation from Cartesian to polar co-ordinates. 

In the computation of the integral of equation (6.32) a singularity appears at	݇௫ଶ	 ൅ ݇௬ଶ ൌ ݇଴
ଶ. 

While the continuous integral is computed numerically as a discrete sum, the discontinuity 

can easily be avoided. Using polar co-ordinates ݇ఝ	  and ݇௥	 , singular values of ݇௫	  and ݇௬	  

translates into a circle of ݇௥	 ൌ ݇଴
	  as shown in the Figure 6.8. The numerical computation of 

the integral in equation 6.32 is performed in polar coordinates avoiding the singularity circle 

[44]. 
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6.3.1.4. Calculation of ሾࢣ	ሿ  

        In equation (6.25) the matrix ሾΓ	ሿ denotes the reflection matrix representation in the set of 

ND active modes in D of the array when D is replaced by a perfect electric conductor. In this 

case the current density ሾܫ௘௤௖௖ሿ	 on D is given by ሾܫ௘௤௖௖ሿ ൌ ൣܼ௦௣௔௖௘൧
ିଵ
ሾ ௜ܸ௡௖ሿ. Consequently ሾΓ	ሿ	 is 

such that ሾܧ௥ሿ ൌ ሾΓ	ሿሾܧ௜௡௖ሿ where ሾܧ௥ሿ=ൣܼ௦௣௔௖௘൧ሾܫ௘௤௖௖ሿ. Finally ሾ ௘ܸ௫௖ሿ is derived from equation 

(6.25). 

6.3.2.  Derivation of the Surface Impedance Matrix ሾ࢙ࢆሿ  

Here we will explain the SCT process to model the reflectarray of Figure 6.7(a) 

represented by domain D by its equivalent surface impedance ሾZୱሿ or admittance ሾYୱሿ as 

depicted in Figure 6.7(b). In a complex discontinuity surface the metallic patterns can be 

viewed as a set of several domains and embedded sub-domains. In order to demonstrate the 

partitioning process of the discontinuity plane in case of relatively large reflectarrays, 

consider the array of Figure 6.7(a) with individual cells of arbitrary geometry arranged on a 

uniform rectangular lattice. 

As explained in the previous chapters, the starting point of the SCT approach consists of 

the coarse partitioning of the complex discontinuity plane into planar sub-domains of 

comparable sizes and arbitrary shapes; in each sub-domain a second partitioning is performed 

by introducing smaller sub-domains; again, in each sub-domain introduced at the previous 

step a third partitioning is performed by introducing smaller sub-domains; and so on. Such 

hierarchical domain-decomposition allows focusing rapidly on increasing fine details in the 

discontinuity plane. It is stopped when the finest dimension –the smallest scale– is reached. 

To each sub-domain, a scale-level is associated. The largest domain corresponds 

conventionally to the scale level ܵ ൌ ܵ௠௔௫  while; the scale level ܵ ൌ 1 corresponds to the 

smallest domains.  

For the sake of clarity, consider that the reflectarray of Figure 6.7(a) consists of 64 

arbitrary unit cells (N=8). As shown in Figure 6.9, at scale level S, the plane of the array is 

partitioned into squared sub-domains ܦௌ
௜,௝	of comparable sizes, where i, j denote the position 

indices of cell in the array. All the individual cells lie on the scale-level 1; at this scale, 

surface impedance ሾ ௌܼሿ	or admittance ሾ ௌܻሿ	matrix of each unit-cell is calculated individually. 

 Individual cells (or equivalently we can call them individual impedances or admittances) 

are then grouped into 4-cell blocks taking into account the mutual electromagnetic (EM) 
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coupling between the elements comprising the block. These 4-cell blocks make up the scale-

level S=2.  

 

 

Figure 6.9: Partitioning of 64-cell array (8×8); such hierarchical domain-decomposition allows 
defining the constitutive scale-levels and focusing rapidly on increasing fine details in the array. 

This process of grouping the block elements of the lower scale continues until the mutual 

EM coupling of the entire array has been modeled by reaching the highest scale level. The 

individual unit-cell at scale level S=1 representing by the sub-domain ܦଵ
௜,௝ can be 

decomposed further into constitutive scale levels depending on the number of metallic 

patterns and fine details present in it. For illustration purpose, if we consider that the unit cell 

consists of a patch loaded with a slot then it can be decomposed into two or three scales as 

sketched in Figure 5.2 (Chapter 5). It should be noted that the effect of dielectric and ground 

plane is taken into account at each scale level. 

 This process of partitioning the array plane is applicable for the array of any size. 

Generally, in case of cells arranged on rectangular lattice, an array containing N number of 

cells can be partitioned in ݈݃݋ଶܰ scale-levels. For other cell-arrangements the partitioning 
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technique is still valid, only the sub-domains may not be regular-shaped which would affect 

the choice of modal basis for the analysis of these domains. 

By the partitioning process, the overall EM problem is divided into many sub-problems. To 

solve each problem separately, artificial boundary conditions are imposed at the contour of 

each sub-domain. These boundary conditions are applied only at the contours and are chosen 

such that they do not greatly perturb the electromagnetic fields in the domains. In each 

domain the tangential EM-fields are expanded on orthogonal modal-basis. Physical nature of 

the problem can be considered in the choice of boundary conditions. Or alternatively several 

boundary conditions can be tried and the one with the best convergence results are chosen. 

However, we have observed in practice that the choice between magnetic and electric 

boundary conditions at the contour of each sub-domain does not seem to be very critical for 

reaching the numerical convergence of the solutions. 

 

Figure 6.10: Computation of the surface impedance matrix of the reflectarray of Figure 6.9 obtained 
by the cascade of the scale changing networks derived at lower scale levels. 
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The last step in Scale Changing Technique is the cascading of all the scale changing 

networks to reach the global surface impedance or admittance of the whole reflectarray. The 

computation of all scale-changing networks is mutually independent therefore each multipole 

(SCN) can be computed separately on different machines and it is only the final step at which 

the resulting matrices are cascaded to obtain the global simulation of the entire structure. This 

cascading consequently, models the interactions among the multiple scales of a complex 

discontinuity plane where each network models the electromagnetic coupling between two 

adjacent (successive) scale levels S and S+1. 

Now, referring to the partition process shown in Figure 6.10 of multiscale reflectarray of 

size 8×8, the equivalent surface impedance matrix of this reflectarray can be achieved by 

cascading all the scale changing networks derived at individual scale levels from S=1 to S=4 

as shown in Figure 6.10. The term ௌܼ
௜,௝ (where ܵ denotes the respective scale level of each 

sub-domain, ݅ and ݆ are position indices of the sub-domains inside the 8×8 rectangular 

reflectarray) represents the surface impedances of respective domains and sub-domains at 

their respective scale levels. The global surface impedance matrix ሾ ௌܼሿ at the largest scale 

S=4 represents the equivalent multi-modal surface impedance of the whole reflectarray. Its 

dimension is the number of active modes required at largest scale S=4 for reaching the 

convergence of the numerical solution. 

6.4.  Numerical Results and Discussion 

In this section the radiation pattern results for three types of reflectarrays are presented. 

 6.4.1.  Microstrip Reflectarrays with Identical Unit Cells 

Here, two types of uniform reflectarrays consisting of 256 and 64 identical elements arranged in 

16×16 and 8×8 rectangular grids are considered. The geometries of the reflectarrays with all details of 

the unit cell are shown in Figure 6.11 (a)-(c). Each unit cell of 256-cell array consists of a simple 

metallic patch while in case of 64-cell array each cell contains a metallic patch loaded with a slot.  
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Figure 6.11: (a) A 256-cell (16 ×16) reflectarray geometry, unit cell and patch dimensions are the 
same as given in (c). (b) A 64-cell (8×8) reflectarray geometry with h=3.175mm, ઽ2.17=ܚ. (c) An 
enlarged unit cell with d=16.8mm, a1=13.5mm, b1=13mm, a2=9mm and b2=6mm. 

With an array of 256-cells, we need to compute eight scale-changing networks while in 

case of 64-cell array, 4 scale-changing networks are required. Also convergence study has to 

be done to find out a suitable number of coupling modes at each scale level, these steps have 

already been explained in detail in the light of scale changing technique. The radiation pattern 

results of the scattered E-field in E-plane and H-plane for normal incidence in case of 256-

cell array are given in Figure 6.12.  

 

Figure 6.12:  (a) E- plane and (b) H-plane radiation patterns of a 16×16 uniform patch-slot 
reflectarray (see caption of Figure 6.10(c) for the dimensions of the structure) 
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For the 64-cell array, both normal and oblique plane wave incidences are considered with 

the E-field polarized in the vertical direction. For this case, the radiation pattern results of the 

scattered E-field in E-plane and H-plane for normal and oblique (θ=10°) incidence cases are 

given in Figure 6.13. An excellent agreement is observed between the results obtained from 

scale changing technique and HFSS. 

 

 

Figure 6.13: (a) E- plane radiation patterns of a 8×8 uniform reflectarray of identical patches under 
normal plane wave incidence, both patterns are symmetrical (b) H-plane pattern of the same 
reflectarray under oblique incidence (θ=10°), E-plane pattern is similar as shown in (a). 

6.4.2.   Microstrip Reflectarray with Non-identical Unit Cells 
            (Steer Beam Case)  

As a third case a non-uniform reflectarray of 64 elements shown in Figure 6.14 is analyzed. 

The array is constructed by varying cell-geometries along horizontal axis whereas the array is 

kept symmetric along vertical axis. This means that a maximum energy shift is expected in 

H-plane (i.e., non-uniform pattern) when the incident field is polarized in the vertical 

direction. The field magnitude in the E-plane will be negligible. 
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Figure 6.14: Geometry of non-uniform reflectarray, patch width (b1) and slot length (a2) are different 
for each array element as given in Table 6.1. 

The variations in the dimensions of the patch and slot introduce a non-uniform mutual 

coupling between the array elements. The individual unit-cell of the array is the same as 

shown in Figure 11(c) except with different values of a2 and b1 for each unit cell along x-axis. 

These eight different configurations of unit cells are given Table I. 

Table 6.1 

Different 8 Unit Cell Configurations  

 

 

This reflectarray is designed to steer the beam with maximum energy in θ=10° direction. 

The array geometry is assumed under normal plane-wave excitation with the E-field 

polarized in the vertical direction. The radiation pattern results of the scattered E-field in H-

plane are given in Figure 6.15. The magnitude of the E-plane pattern is quite negligible and 
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hence not shown here. Again in this case, the radiation pattern results obtained by the scale 

changing technique fully agrees with the results obtained by a simulation tool based on FEM 

and MoM. 

 

Figure 6.15: H-plane radiation pattern of an 8×8 non-uniform array containing non-identical metallic 
patches and slots  

6.4.3.   Scattering Results under Feed Horn Excitation 

In the above sub-section both uniform and non-uniform planar structures were simulated 

under plane-wave incidence. The plane-wave excitation condition is valid for the applications 

where the planar structure is used at a far receiving end or when the excitation source is 

placed very far from the surface of the array.  In most practical applications an antenna 

illumination source is placed in close proximity to the planar array therefore it needs to be 

simulated along with the planar structure. 

As SCT is a 2.5D simulation technique it cannot be directly applied to simulate 3D 

antenna sources. To incorporate the source in the simulations, SCT can be used in hybrid 

with other 3D modeling tools. For example, a source antenna can be modeled using tools like 

GRASP, FEKO or HFSS and the projection of the radiation fields in the array domain can be 

used in SCT as an excitation source. Alternatively, some antennas can be modeled 

analytically e.g. analytical modeling of a pyramidal horn is detailed in Appendix B. 
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6.4.3.1.   Radiation Characteristics of Pyramidal Horn 

The scattering behavior of a pyramidal horn antenna shown in Figure 6.16 has been 

modeled analytically by the scattering behavior of a radiating aperture mounted on an infinite 

ground plane. Taking aperture dimensions equal to that of horn’s aperture and a similar 

aperture field distribution, the far-field radiation patterns of the aperture can approximate the 

horn’s radiation pattern over certain range of the elevation angle in the main-beam direction. 

The details of the analytical modeling of pyramidal horn antenna is given in Appendix B. 

  

 

Figure 6.16: Dimension of the pyramidal horn along with its aperture field distribution (TE10 mode) 

Within the simulation frequency band (10-12.5 GHz), the feed waveguide has only TE10 

as propagation mode. Therefore the field distribution at the aperture of the horn can be 

approximated by TE10 mode distribution. Analytical expressions of electric fields radiated 

from an aperture mounted on an infinite ground plane with TE10-mode distribution can easily 

be found in the literature [57]. The far-field radiation patterns from the aperture have been 

compared to that of the pyramidal horn radiation patterns in Figure 6.17 to confirm the 

validity of the approximation.  
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                                            (a)                                                     (b) 

Figure 6.17:  Directivity pattern of the pyramidal horn (blue) compared to that of aperture antenna 
(red) at 12.5 GHz  (a) E-plane (b) H-plane 

It is clear from both H-plane and E-plane radiation pattern results that for the elevation 

angles between -30º and 30º, the two results overlap precisely. Therefore as long as the planar 

array is placed within this source elevation range, the behavior of the horn can be modeled 

accurately by a radiating aperture of comparable dimensions. This approximation holds only 

if the source horn is placed at a distance greater than 2D2/λ (where D is the largest horn 

dimension) which may not always be the case in practical applications. Nonetheless, this 

approach is presented here as an example to demonstrate how the excitation sources can be 

incorporated with SCT simulations. 

6.4.3.2.   Radiation Pattern Results 

For practical applications the source antenna is not usually placed directly at the top of 

centre of the planar structure to avoid the masking effect of the source on the backscattered 

field. Conventionally it is placed at an offset with respect to the center of the planar structure 

with a certain angle of inclination to center the main lobe of the antenna in the middle of the 

array (see Figure 6.18).  
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Figure  6.18: Basic configuration of free-standing planar structures with feed horn (a) metallic patch 
structure: patch dims 13.5x13, unit-cell dims 16.8x16.8 (b) metal grid structure: aperture dims 13.5 x 
13, unit- cell dims 16.8 x 16.8 (all dimensions are in mm). 

The two planar structures consisting of microstrip patches and of grid with size            

134.4mm × 134.4mm are shown in Figure 6.18 respectively. They are simulated by Scale 

Changing Technique and MoM based technique (FEKO) at 12.5GHz and 10GHz 

respectively. FEKO was chosen due to its surface meshing capability contrary to HFSS which 

performs meshing in the whole volume and therefore cannot be used with the memory 

resources available on a common PC. The feed horn is placed at 660mm with offset distance 

‘d’ equal to 134.4 mm from the centre of the structures. The inclination angle ‘α’ is taken 

equal to 7° to centre the main beam of the feed horn on the planar structures. The simulated 

radiation pattern results for both types of the structures are shown in Figure 6.19 and Figure 

6.20 respectively. 
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(a)                                                                            (b) 

Figure 6.19: Radiation pattern diagrams for an 8x8 uniform metallic patch structure at 12.5GHz (a) 
E-Plane pattern (b) H-Plane pattern 

Since an inclination of 7° is given to the feed horn to orient its main beam to the plane of 

the structures, this effect is observed by 7º displacement of  main backscattered lobe in the E-

plane. In the H-plane the pattern is symmetric around 0º as expected. 

 

                                             (a)                                                                            (b) 

Figure 6.20: Radiation pattern diagrams for an 8x8 uniform metallic grid structure at 10GHz (a) E-
Plane pattern (b) H-Plane pattern 

The non-normalized comparison shows good agreement in the magnitude as well as main-

lobe position of the reflected field components. For all FEKO results, rapid jittery variations 
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may be due to the convergence errors as the meshing step is not fine enough. For all FEKO 

results presented here, λ/10 is taken as mesh-step. A smaller step cannot be used due to the 

limitations of memory resources. Nevertheless the FEKO results validate the general form 

and amplitude of the SCT scattered field patterns. 

6.5.  Comparative Study of Execution Times 

The execution times for SCT simulations depend on a number of factors. The scattering 

patterns are calculated from the equivalent surface current defined by the equation (6.26). 

The solution of the fore-mentioned equation requires the computation of three matrices 

i.e.,	ሾܼ௦௣௔௖௘ሿ (the matrix representation of the free-space dyadic Green function), ሾ ௜ܸ௡௖ሿ (the 

vector containing the known expansion coefficients of the incident electric-field) and 

ሾ	ܼ௦ሿ	(surface impedance matrix modeling the whole reflectarray structure). All these matrix 

representations are given in the set of active modes in the domain D of the array. The 

computation of both ሾܼ௦௣௔௖௘ሿ and ሾ ௜ܸ௡௖ሿ does not involve the application of SCT and they are 

not required to be recomputed if any change is made to an individual cell-geometry at lower 

scales (their re-computation is required only if the number ND of active modes at the top-scale 

is modified for analyzing the numerical convergence of the solution). Therefore in parametric 

studies and optimization loops, the computation time of ሾ	ܼ௦ሿ	 is the most important. 

The computation of ሾ	ܼ௦ሿ depends on the size of the array as well as the unit-cell 

geometries. Size of the array will determine the number of scale-changing networks to be 

computed where as the unit-cell geometry will principally determine the number of active 

and passive modes required to compute the surface-impedance matrices. Also if two or more 

cells have the same geometry, the surface impedance matrix for each of them needs to be 

calculated only once. 
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Table 6.2  

Computation time for 8×8 uniform patch slot array 

 

In the case of a 64-elements (8×8) uniform patch-slot array, only one surface-impedance 

matrix needs to be computed along with three scale-changing networks to compute the 

multimodal surface impedance for the entire array. The whole process takes around 55 

seconds with a 3.2 GHz Intel ×86 family processor with 2GB RAM (see Table 6.2). At scale-

level S=1, single-unit cell requires 8 seconds to compute; at scale S=2 one scale-changing 

network along with a single cascade (scale-changing network with 4 surface impedance 

matrices) requires 11.9 seconds and so on. For a uniform array case, at each scale-level only a 

single scale-changing network and a single cascade computation need to be performed.  

Table 6.3 
Computation time for 8×8 non-uniform patch slot array 
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The execution times in the case of an 8×8 non-uniform patch-slot array with 8 different 

unit-cell configurations are given in Table 6.3. In this case at the scale-level S=1, eight 

surface impedance matrices have to be computed, each corresponding to one geometric 

configuration. At scale-level S=2, one scale-changing network has to be computed but 4 

cascades need to be performed. The process continues likewise at higher scales. It is clear 

from these results that SCT make use of redundant nature of the geometry to efficiently 

characterize the whole structure. It can be deduced from the results of Table 6.3, that in the 

case of an array where all unit-cells differ from one another, the CPU time required to 

compute ሾ	ܼ௦ሿ	 of the complete array would be around 1130 seconds. Figure 6.21 plots the 

simulation time against the array-size in case of two simulation techniques. If the array-size is 

represented in the number of unit-cells N then for each iteration n the size of the array is 

given as N=2n. In other words, for each size-iteration the unit-cells in the array double from 

the previous value.  

 

Figure 6.21: Evolution of the normalized computation time with respect to bifurcation iterations used. 
For an iteration n the array consists of 2n cells. 

In the Figure 6.21 , for each technique the execution time results are normalized with 

respect to the time required to simulate an array of two unit-cells (n=1). In case of SCT, the 

execution time for simulating uniform reflectarray increases linearly with increase in the 

number of iterations (i.e., ݊ ൌ ݈݊ሺܰሻ/݈݊ሺ2ሻሻ. However this is not the case for HFSS and 
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other techniques that uses linear mesh-refinement procedure. The behavior is similar to that 

observed in the metallic strip array case as expected. The linear behavior of SCT comes from 

the fact that for all similar unit-cells only one scale-changing network needs to be calculated 

to represent all of them. This allows faster and better convergence for SCT results as 

compared to Finite Element Method using spatial meshing. In case of non-uniform arrays the 

linear behavior can be achieved by executing individual scale-changing networks in parallel 

on multiple processors. It should be noted that the same reflectarrays have also been 

simulated with CST (using both frequency and time domain solvers) [71], FEKO (using 

MLFMM) [72] and IE3D [73], but all of these simulation tools approximately share the same 

requirements regarding execution times and memory resources and the SCT proved to be 

much more efficient than all of these techniques. 

6.6.   Microstrip Reflectarray Electronically Tunable with   
         RF-MEMS Switches (Reconfigurable Case) 
 

In this Section a brief description of SCT modeling for a small 1D reconfigurable 

reflectarray electronically tunable with RF-MEMS switches is presented. The detailed 

introduction and benefits of RF MEMS-based reflectarray has already been given in chapter 

1.  

6.6.1.   Application of Electrical Circuit Model to find out 
            appropriate Cell Configurations  

The design and optimization of the MEMS-controlled phase shifters for such active 

reflectarray antennas has also been presented in detail in chapters 2 and 3 respectively. This 

small active reflectarray is basically an intermediate step towards the simulation by SCT of 

 

Figure 6.22: Application of the circuit model to find out individual phase shifter configurations for a 
reconfigurable reflectarray containing RF-MEMS switches. 
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large 2D reflectarrays containing RF-MEMS as tunable electronic devices. As shown in 

Figure 6.22, the electrical circuit model is applied to find out such phase shifter 

configurations that give us the desired progressive phase shift in the radiated beam. For this 

purpose, by using the equivalent circuit model and applying the design equation (6.33), we 

determined four different phase shifter configurations that collectively provide 10o  beam 

shift in the horizontal direction (as only ߚ௫ is taken) i.e., left and in the right by varying the 

states of the RF-MEMS switches. 

௫ߚ ൌ െ݇଴݀ sin ߠ , ߠ	݃݊݅݇ܽݐ ൌ േ10°, ௫ߚ ൌ ∓43.72°                                (6.34) 

     

This four cell reconfigurable reflectarray containing four phase shifter cells controlled by 

RF-MEMS switches designed by equivalent circuit model is shown in Figure 6.23. 

 

Figure 6.23: A 4-cell (4x1) reconfigurable reflectarray, all the dimensions are the same as given in 
Figure 1 of Chapter 2. 

6.6.1.   SCT Modeling of Reconfigurable Reflectarray 

  Each RF-MEMS switch is modeled by its surface impedance and then this surface 

impedance is used in the SCT modeling of the whole phase shifter cell. The following 

Figures 6.24 and 6.25 present the SCT partitioning process of the active phase shifter cell 

controlled by three MEMS switches and the respective Scale Changing Network diagram 

respectively. 
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Figure 6.24: Partitioning of the discontinuity plane D of the active phase shifter cell in its constituent 
domains and sub-domains in four scales, white portions represent dielectric, black represents metal, 
grey parts represent un-partitioned sub-domains and red represents the    RF- MEMS switch. 

 

Figure 6.25: Global simulation of the planar reflector involves the cascade of the scale-changing 
networks and the surface impedances of RF-MEMS switches. 

6.6.2.   Radiation Pattern Results 

The active array shown in Figure 6.22 is simulated by the SCT and HFSS. First, the 

configuration (i.e., the ON/OFF states) of the RF-MEMS for all four phase shifter cells are 

kept identical, here, the pattern of the states of MEMS switches for all four unit cells is as 
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follows: [001, 001, 001, 001] where 1 and 0 represent the ON and OFF states of the switches 

respectively. By keeping the configuration same for all four phase shifter, the symmetrical 

radiation patterns has been obtained in E and H planes as shown in Figure 6.25.  

 

               (a)                                                               (b) 
Figure 6.25: Radiation patterns of 4×1 uniform reflectarray of Figure 18 keeping the electronic 
configuration (i.e., the switching states (ON/OFF) for the twelve RF-MEMS switches of four phase 
shifter cells) of the four phase shifter cells identical and hence obtaining both E and H plane patterns 
symmetrical (a) E- plane pattern (b) H-plane pattern  

Second, the configuration of the RF-MEMS of each phase shifter cell is made different 

from each other to obtain a desired beam shift in a specific direction. Here in this case, the 

RF-MEMS states of each cell are selected such that they provide 10° beam shift in right and 

10° beam shift in left as shown in Figure 6.26. The configuration pattern of the RF-MEMS 

states for each beam steering case is given in the caption of the Figure 6.26. 
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               (a)                                                          (b) 
Figure 6.26: Radiation patterns of 4×1 uniform reflectarray of Figure 18, the electronic configuration 
(i.e., the switching states (ON/OFF) for the twelve RF-MEMS switches of four phase shifter cells) of 
the four phase shifter cells are non-identical and hence obtaining H plane patterns asymmetrical (a) H- 
plane pattern with electronic configuration of the four elements as [111 001 110 100] (b) H-plane 
pattern with electronic configuration as [100 110 001 111]. 
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Figure 6.27: Normalized SCT results of 4×1 uniform reflectarray of Figure 18, the electronic 
configurations (i.e., the switching states (ON/OFF) for all the three types are shown in the Figure. 

Figure 6.27 puts the SCT results together for the above three cases to make it prominent 

that how reconfigurability works. The array geometry remains same and we are achieving the 

dynamic phase control by only varying the ON/OFF states of the RF-MEMS switches. The 

main center beam is achieved by maintaining the identical ON/OFF state pattern for all the 

four phase shifter elements, while to steer the beam in the desired direction (here +10° and -

10°), the ON/OFF states must be designed accordingly as shown in Figure 6.27.     

6.7.  Conclusions 

In this chapter the scale changing technique (SCT) has been successfully applied to 

characterize several planar structures. In the first part of the chapter, the concept of a scale-

changing network to model the mutual coupling between array elements was introduced. It 

has been shown that SCT can effectively be used to characterize the mutual coupling in the 

planar reflectarrays. This was demonstrated both in the case of mutual coupling between two 

half-wave dipole elements as well as between the elements in a planar dipole array.  

Later in this chapter, the SCT has been applied to the problem of electromagnetic 

scattering from two dimensional uniform and non-uniform reflectarray structures. The 

scattered field patterns are calculated under plane-wave and horn-antenna excitation. These 

results are compared to the simulation results from other 3D full-wave analysis tools.  Next, 

the comparison between the  execution times to compute the surface impedances in the case 

of both uniform and non-uniform arrays are given. It has been shown that SCT effectively 

reuses the redundancy in a design. Moreover, the highly parallelizable execution capability of 

scale-changing network makes SCT a promising tool to design, analyze and optimize large 

complex planar structures, which is not usually convenient to do with the existing techniques. 

At the end, a small case of an active reflectarray is discussed. The modeling of large 2D 

active reflectarray tunable by RF-MEMS switches is underway. 
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The greatest discovery of all time is that a person can  
change his future by merely changing his attitude. 

Oprah Winfrey 
 

7 
Conclusions and Perspectives 

 

The aim of this chapter is to sum up all the work presented in this thesis, and then obtain a 

constructive conclusion that would help in the future development based on this research 

work.  

The primary motive  of this thesis was to develop a methodology through which the 

electromagnetic (EM) scattering analysis of the modern complex multi-scale antenna 

structures could be carried out more efficiently in terms of computational resources. To 

achieve this objective, a new modeling technique called Scale-Changing Technique (SCT) 

has been implemented and applied for EM  modeling of the large finite-sized microstrip 

reflectarrays. Although, this technique is itself very fast in terms of execution times and 

memory resources, however to accelerate the design, analysis and optimization process of the 

reflectarrays, an equivalent circuit model of passive and active phase shifter elements has also 

been introduced. This equivalent circuit model is quite helpful for rapid designing of 

reflectarray phase shifter cells containing patches, slots and RF-MEMS switches.   

After a careful study and systematic evaluation of different reflectarray element designs, 

it had been decided that the element – patch loaded with slot is best suited keeping in mind 

the future RF-MEMS implementation. In chapters 2 and 3 the extraction and working of the 

equivalent circuit models for a passive reflectarray phase shifter cells (a cell loaded with 

microstrip patch and slot) and active reflectarray phase shifter cells (a cell loaded with 
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microstrip patch, slot and RF-MEMS) have been fully explained. These equivalent circuits 

are then used for the rapid design and optimization of the individual unit cells of the passive 

and reconfigurable reflectarrays. These equivalent circuits present a very fast method to find 

a more power efficient design of MEMS-controlled  phase shifter cells having 360° phase 

range. This circuit model takes three parameters as design inputs i.e., the number, the 

ON/OFF state and the locations of the MEMS switches within the slot. Depending on these 

three parameters, it helps to search out such unit cell configurations that provide 360° phase 

range with linear distribution of the selected phases over this range.  Very good agreement in 

comparison with contemporary computational electromagnetics (CEM) softwares has been 

obtained. Moreover, this equivalent electrical circuit provides a better understanding of how a 

particular phase shifter cell operates and it potentially allows fast synthesis of reflectarray 

cells by optimization of circuit parameters to achieve the desired frequency response and 

angular behavior.  

In the Section II of the thesis, the SCT technique based on interconnecting Scale-

Changing Networks has been applied for the electromagnetic modeling of planar reflectarray 

structures. The problem of electromagnetic scattering from these arrays was addressed and it 

has been shown that the Scale-Changing Technique can effectively be used to calculate the 

field scattering patterns and surface currents. In the course of this thesis SCT has been 

applied to the scattering problem of several planar reflectarrays and it has been demonstrated 

that the technique effectively models the mutual interactions between the array elements. 

The unique formulation of the Scale-Changing Technique avoids the direct computation 

of structures with high aspect ratios. Thanks to hierarchical domain-decomposition provided 

by the partitioning process, the complex geometries are broken down into finite number of 

simpler geometries at distinct scale-levels. Moreover, the scale-changing networks which 

relate the electromagnetic fields at adjacent scales are computed separately, therefore 

providing an inherent parallelization capability. Typically, if N orders of magnitude separate 

the largest to the smallest dimensions in the structure, the Scale-Changing Technique requires 

the computation of N Scale-Changing Networks, while tremendous execution time and 

memory resources are required by other numerical techniques for handling the corresponding 

aspect ratio of 10N.  

The SCT is a generic approach and can be advantageously applied to the modeling of 

microwave and millimeter wave circuits with high aspect ratios, MEMS-controlled coupled 
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microstrip reflectarrays and multiscale pre-fractal structures. The modular nature of the 

technique can be exploited by distributed processing algorithms (Grid Computing Methods) 

to reduce the simulation time many fold. Similarly the convergence study (finding the 

appropriate number of active and passive modes at each domain) can be parallelized by 

running convergence passes as separate processes. It has been demonstrated that for certain 

planar structures the simulation times can be reduced by 90% by implementing both of above 

stated approaches [74]. 

Domain decomposition not only allows the rapid processing of the overall simulation, it 

also helps solving the memory problems for simulating large structures. As the complex 

problem is now partitioned into much smaller problems, the new equations are made up of 

fewer unknowns and thus can be represented by smaller matrices requiring much less 

memory resources. In addition this gradual change of dimensions from one scale-level to the 

next helps to avoid the numerical conditioning errors linked to critical aspect ratios in a 

structure. 

In design and optimization processes small modifications in the structure geometry is 

often required. For example, if modifications in the structure geometry occur at a given scale 

S, only the SCNs between scale S and S-1 and between S and S+1 need to be recalculated. 

This gives SCT a huge advantage on classical meshing based techniques which require the 

recalculation of the overall structure. This built-in modularity makes the scale-changing 

technique a very powerful optimization and parameterization tool. 

Although as a stand-alone method, SCT is applicable only to 2D or 2.5D planar 

structures, but it can be used in hybrid with other classical methods for 3D applications. The 

idea is to use the SCT for the planar sub-domains and one of the classical methods e.g. 

FDTD, FEM or TLM for the volume sub-domains. The interlinking between the methods can 

be performed using integral equation (IE) formulation by relating tangential electromagnetic 

fields at the exterior surfaces of the volume sub-domains to the active modes of the planar 

sub-domains. 

Apart from all the positive features SCT has its own limitations. First of all, there is no 

simple and automatic convergence criterion for determining the number of coupling (active) 

modes in the sub-domains. For the moment the appropriate number of active modes has to be 

manually determined from the convergence curves. Moreover in certain cases the matrix ill-
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conditioning problems may lead to numerical convergence issues requiring additional 

processing e.g. iterative solver methods to resolve them.  

Presently, planar structures comprised of simple canonical domains have been treated 

only. The rectangular domains and sub-domains allow the field description in terms of purely 

analytical entire-domain trail functions and therefore save the complex numerical treatment 

necessary in the case of non-analytical trial functions required to describe the electromagnetic 

field in non-canonical shaped domains. 

 Another limitation concerns the introduction of artificial boundary conditions at the 

boundaries of domains formed by the partitioning process. Normally these boundary 

conditions are selected taking into account physical nature of the problem that is the behavior 

of electromagnetic fields in their vicinity. But even a different set of boundary conditions 

does not seem to affect the accuracy of the solution significantly, only in this case the 

solution would need a larger number of modes to converge.  

Concerning the perspectives of this research work, it will be highly interesting to design a 

real-life planar array application e.g. a Cassegrain FSS or a reflectarray using Scale-Changing 

Technique and a possible optimization using Grid-computing. The experimental validation of 

such a case would help to demonstrate the potential of the SCT in the design and analysis of 

real-life applications. Also the application of the SCT to the electromagnetic modeling of 

reconfigurable reflectarrays composed of coupled MEMS-controlled planar phase shifters 

under both plane wave and feed horn excitation is a task of future work.  
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Don’t handicap your children by making their lives easy. 
Robert A. Heinlein 
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Success is never final. Failure is never fatal. It’s courage that counts.  
John Wooden 
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A.1.  INTRODUCTION 

This annex gives the expressions of the orthogonal modal-basis for the various kinds of 

boundary conditions described in chapter 4 of this thesis. Assuming a rectangular domain of 

dimensions ܣ (along x-axis) and ܤ (along y-axis) with the lower left corner placed at the 

origin as shown in Figure A.1 

 

Figure A.1: A rectangular domain based at origin. 

If this rectangular domain is bounded by any of the following boundary conditions, the 

transverse electromagnetic field in the domain can be expressed on the orthogonal modes as 

under.  

A.2.  ELECTRIC BOUNDARY CONDITIONS 

The rectangular domain is bounded by perfect electric boundary conditions on all sides. 
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A.3.  MAGNETIC BOUNDARY CONDITIONS 

The rectangular domain is bounded by perfect magnetic boundary conditions on all sides. 
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A.4.  PARALLEL PLATE WAWE-GUIDE BOUNDARY 

         CONDITIONS  

 

The rectangular domain is bounded by perfect electric boundary conditions at the top and 

bottom but perfect magnetic boundary conditions at side walls. 
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For m=n=0, we have a TEM mode, so in this case, 
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A.5.   PERIODIC BOUNDARY CONDITIONS 

A.5.1. Normal Incidence Case 

The rectangular domain is bounded by periodic boundary conditions (Floquet conditions) 

at all sides. 
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For m=n=0, we have two TEM modes, (or modes TE00 and TM00) 

fԦ୘୉୑ଵሺݔ, ሻݕ ൌ
ଵ

√୅୆
,ݔԦ                              fԦ୘୉୑ଶሺݔ ሻݕ ൌ

ଵ

√୅୆
 Ԧݕ

A.5.2. Oblique Incidence Case 

We redefine the modal basis for oblique incidence as follows: 
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For m=n=0, we have two TEM modes, (or modes TE00 and TM00) 
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்ாబబ ൌ Ԧݔ௝ఈ௫݁௝ఉ௫݁ܥ

௬݂
்ாబబ ൌ െ݁ܦ௝ఈ௫݁௝ఉ௫ݕԦ

											 Ԧ்݂ாெଶ ൌ ቊ ௫݂
்ெబబ ൌ Ԧݔ௝ఈ௫݁௝ఉ௫݁ܦ

௫݂
்ெబబ ൌ Ԧݕ௝ఈ௫݁௝ఉ௫݁ܥ

                  (A.12) 

Where, 

ܥ ൌ
ߚ݆

ඥܽ଴ܾ଴
.

1

ඥߙଶ ൅ ଶߚ
		 , ܦ ൌ

ߙ݆

ඥܽ଴ܾ଴
.

1

ඥߙଶ ൅ ଶߚ
 

With, 

ߙ ൌ െ݇௢ߠݏ݋ܿߠ݊݅ݏ			,						ߚ ൌ െ݇௢ߠ݊݅ݏߠ݊݅ݏ
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Family isn’t about whose blood you have. It’s about who you care about. 

Trey Parker  
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MODELING OF SOURCE HORN BY 
RECTANGULAR APERTURE 
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B.1.  INTRODUCTION 

This annex details the mathematical modeling of a pyramidal horn antenna of the 

dimensions shown in the Figure B.1. At the simulation frequency (12.5GHz), the feed-

waveguide has only TE10 as the propagation mode. Therefore at the aperture of the horn the 

field distribution can be approximated to that of TE10 mode distribution.  

 

Figure   B.1: Dimension of the pyramidal horn along with its aperture field distribution. 

B.2.   APPROXIMATION BY RADIATING APERTURE 

The horn can be treated as an aperture antenna. To find its radiation characteristics, the 

equivalent principle techniques can be utilized [57]. The fields at the aperture of the horn can 

be found by treating the horn as a radial waveguide and it can be shown that if the fields of 

the feed waveguide are those of its dominant TE10 mode and horn length is large compared to 

the aperture dimensions, the field at the aperture of the horn can be approximated as follows: 

௔ܧ ൌ ොܽ௬ܧ଴ cos ቀ
ߨ
ܽ
൞					ᇱቁݔ

െ
ܽ
2
൑ ᇱݔ ൑ ൅

ܽ
2

െ
ܾ
2
൑ ᇱݕ ൑ ൅

ܾ
2

ൢ 

The graphical representation of Ea at the aperture of the horn is shown in the following Figure 

B.1. Now the three-dimensional distributions of the far-zone fields radiated by the horn 

aperture are obtained by applying the equivalent principle techniques. In spherical 

components these fields are given by [57], 
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௥ܧ ൌ ௥ܪ ൌ 0 
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ߟ
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where  

  ܺ ൌ
௞௔

ଶ
sin ߠ cos߶ 			,			ܻ ൌ

௞௕

ଶ
sin ߠ sin߶ ܥ			,	 ൌ 	݆

௔௕௞ாబ௘షೕೖೝ

ଶగ௥
	 , ݇ ൌ ,	଴ߝ଴ߤඥݓ ߟ ൌ ට

ఓబ
ఌబ

   

 

B.3. TANGENTIAL COMPONENT OF FAR-FIELD  

B.3.1. Horn Centered on the Planar Surface 

Figure B.2 shows the tangential component Etg of the radiated field on an incident planar 

surface located in the x-y plane at a distance z=660mm from the feed horn (in the far-field 

region).  
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Figure   B.2: Computation of the tangential component of the incident field of a horn centered 
on a planar domain 

 

The incident field can be written in the planar-domain co-ordinate systems as 

 

ሬԦ௜௡௖ܧ	 ൌ ොݔ௫ܧ ൅ ොݕ௬ܧ ൅  ݖ௭̂ܧ

Where, 

௫ܧ ൌ ௥ܧ sin ߠ cos ߶ ൅ ఏܧ cos ߠ cos ߶ െ థܧ sin߶ 

 

Using far-field expressions from section C.2 in the above equation: 
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Similarly Ey and Ez can be written as under 
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ܻ
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Now ܧሬԦ௜௡௖ and ܧሬԦ௧௚ can be computed from the following equations. 

ሬԦ௜௡௖ܧ ൌ ොݔ௫ܧ ൅ ොݕ௬ܧ ൅ ݖ௭̂ܧ ൌ ොݕ௬ܧ ൅  ݖ௭̂ܧ

 

ሬԦ௧௚ܧ ൌ ൫ܧ௬ݕො ൅ .൯ݖ௭̂ܧ ሺݔො ൅  ොሻݕ

Since planar surface is normal to the plane of the horn’s aperture-plane, the tangential field 

has only the y-component.  

ሬԦ௧௚ܧ ൌ  ොݕ௬ܧ

B.3.2.   Horn with an OFF set and Inclination Angle       

In most practical cases the horn antenna is not centered on the reflecting structure but 

placed at an offset to avoid the masking effect. The horn antenna is inclined at a certain angle 

to position its main beam at the centre of the planar structure. In the figure below the horn 

antenna is displaced a distance ‘d’ along the y-axis. Angle α represents the orientation of the 

feed horn with respect to the co-ordinate system of the incident plane. In this case the 

tangential electric field ܧሬԦ௧௚ on the planar surface can be found as follows. 
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Figure    B.3: Computation of the tangential component of the incident field of a horn with an 
offset and an inclination angle 

 

The new observation point coordinates on the incident plane with respect to the new 

position and orientation of the feed horn are, 

x ൌ xᇱ 

y ൌ y′ cos α ൅ z′ sin α 

z ൌ z′ cos α െ y′ sin α 

 

So the tangential component EሬሬԦ୲୥ of the field in this case is given by, 

E୲୥ ൌ ൫E୶x′෡ ൅ E୷yᇱ෡ ൅ E୸zᇱ෡൯. ሺxො ൅ yොሻ 

E୲୥ ൌ E୶ሺxᇱ෡ . xොሻ ൅ E୷ሺyᇱ෡ . yොሻ ൅ E୸ሺzᇱ෡ . yොሻ 

E୲୥ ൌ 0 ൅ E୷ cos α ൅ E୸ sin α 

E୲୥ ൌ E୷ cos α ൅ E୸ sin α 

B.4.   CALCULATION OF ሾࢉ࢔࢏ࢂሿ 

With parallel-plate boundary conditions as the orthogonal modal basis of the rectangular 

incident plane, we have 
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Where  α ൌ TE, TM 

By using the analytical expression of	E୷ in the above equation, we get the following 

integral. This integral is too complex to resolve analytically and therefore has been solved 

using numerical integration. 
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B.5.   RADIATION PATTERN PLOT  

Now we plot the magnitude of the tangential component on the planar surface. There are 

two cases in this respect, first is, in which feed horn is placed normal to incident plane and 

the second is in which it is placed with some offset and inclination angle, both of these cases 

are described below. 
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B.5.1. Horn Centered  

 

Figure B.4: Tangential field pattern of a horn antenna placed at the center of the planar surface at a 
distance (d) from it. d=660mm 

 

B.5.2. Horn with an OFF set and Inclination Angle       

If the Horn Antenna is at oblique angle α with an offset of d, then we have to simply 

replace the coordinates   x, y and z in the above equation with x΄, y΄ and z΄ as follows: 

 

xᇱ ൌ െz sin α ൅ ሺx ൅ dሻ cos α 

y΄ ൌ y 

zᇱ ൌ z cos α ൅ ሺx ൅ dሻ sin α 
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Figure   B.5: Tangential field pattern of a horn antenna placed at an offset of 200mm from 
the center of the surface with an angle of inclination equal to 30º. d=660mm 
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It is the mark of an educated mind to be able to  
entertain a thought without accepting it. 

Aristotle 
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