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RÉSUMÉ EN FRANÇAIS

Motivations

De nos jours, nous utilisons quotidiennement des algorithmes cryptographiques. Ces algo-
rithmes sont présents dans nos vies courantes et nous permettent de payer avec nos cartes
bancaires, aller sur internet ou envoyer un message de manière sécurisée. Les algorithmes cryp-
tographiques sont de plus en plus répandus dans les systèmes embarqués afin de garantir un
certain niveau de sécurité à leurs utilisateurs, ainsi nous pouvons par exemple payer sans contact
avec notre carte bancaire sans crainte qu’un attaquant nous dérobe notre code bancaire. Avec
l’émergence de "l’internet des objets", de plus en plus d’attention a été apportée aux attaques
peuvant possiblement affecter les systèmes embarqués. Parmi ces attaques sur les systèmes em-
barqués, les "attaques par canaux auxiliaires" sont particulièrement craintes car non détectables
par nature. Celles-ci ont été introduites en 1980 par Kocher [37]. Ce type d’attaque consiste à
utiliser une grandeur physique telle que le temps d’exécution du programme sur un système,
sa consommation électrique, les ondes électromagnétiques, le son ou la chaleur générés par le
système embarqué, afin de découvrir de l’information. Ce sont toutes ces grandeurs auxquelles
on fait référence quand on parle de "canaux auxiliaires".

Dans la plupart des cas, et c’est aussi le contexte retenu dans le cadre de cette thèse, les
attaques par canaux auxiliaires sont utilises contre des algorithmes cryptographiques embarqués.
Dans ce contexte, l’attaquant va cibler un algorithme cryptographique qui s’exécute sur un sys-
tème embarqué afin de découvrir la clé utilisée par celui-ci. Dans la vie de tous les jours, une telle
attaque pourrait permettre à un attaquant de découvrir le code bancaire d’une personne. La
vulnérabilité exploitée par les attaques par canaux auxiliaires ne provient pas de la conception de
l’algorithme en lui-même. En effet, même si l’algorithme est considéré comme inviolable du point
de vue mathématique, l’implantation de cet algorithme peut laisser fuire des informations sur ses
opérations internes et le secret utilisé via des canaux auxiliaires. Plus précisément, l’algorithme
cryptographique va prendre en entrée un texte clair et produire en sortie un texte chiffré. Durant
l’exécution de cet algorithme, le système va générer différentes valeurs intermédiaires qui vont
fuire via les canaux auxiliaires. En effet, ces canaux auxiliaires sont directement liés à l’état in-
terne du système embarqué et donc aux opérations effectuées. Un attaquant peut ainsi capturer
plusieurs mesures qui proviennent des différents canaux auxiliaires, et utiliser des outils statis-
tiques ou de l’intelligence artificielle afin de découvrir des informations sensibles utilisées par
l’algorithme. Ainsi dans le cadre d’un algorithme cryptographique, l’attaquant peut directement
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découvrir la clé ou, plus généralement, des valeurs intermédiaires utilisées par l’algorithme qui
le mèneront, au final, à la clé.

D’autres attaques visent à perturber l’algorithme cryptographique, c’est par exemple le cas
des attaques par injection de fautes dont le but est de contourner certaines opérations d’un
algorithme pendant son exécution. Ce type d’attaque ne fait pas partie du périmètre de cette
thèse. Nous nous concentrons uniquement sur des attaques ne modifiant pas le comportement
de l’algorithme et se basant donc sur l’écoute et l’observation de celui-ci.

Les premières attaques par canaux auxiliaires, auxquelles on fera référence par le terme "at-
taques non-profilées" consistent à capturer un nombre limité de mesures et a effectué des analyses
statistiques telles qu’un calcul de corrélation pour découvrir certaines informations. Ces attaques
ont l’avantage d’utiliser un modèle générique pour exploiter la fuite d’information. Cet avantage
fait que ces attaques sont toujours étudiées par la communauté scientifique, cependant elles sont
maintenant peu efficaces face aux contre-mesures qui sont déployées. Les autres attaques par
canaux auxiliaires, auxquelles on fera référence par le terme "attaques profilées" classiques con-
sistent à capturer un plus grand nombre de mesures et à estimer le modèle de fuite d’information
de différentes valeurs de clé à travers les traces. La plus connue des "attaques profilées" clas-
siques est la "template attack". Ces attaques sont plus efficaces que les attaques "non profilées".
Ces attaques nécessitent un ensemble de données étiquetées, c’est-à-dire que pour chaque trace
(électromagnétique ou de consommation de courant) acquise, nous devons avoir connaissance de
la clé utilisée par l’algorithme. Avec un ensemble de données étiquetées, un attaquant peut ainsi
estimer le modèle de fuite d’information de différentes valeurs de clé à travers les traces. Ce type
d’attaque par canaux auxiliaires permet également de contourner certaines des contre-mesures
actuelles. L’émergence de l’intelligence artificielle et notamment de l’apprentissage profond a
permis de développer de nouvelles attaques "profilées". Ces attaques sont considérées comme
plus efficaces que les "attaques profilées" classiques. Ainsi suivant le contexte de l’attaque et
la capacité de l’attaquant à acquérir des traces étiquetées ou non étiquetées, il peut monter
différentes attaques par canaux auxiliaires: attaques non-profilées, attaques profilées classiques
ou attaques profilées avec de l’intelligence artificielle.

Depuis l’émergence de l’intelligence artificielle, de nombreux chercheurs ont étudié les per-
formances de différentes architectures de réseaux de neurones pour les attaques par canaux
auxiliaires à travers divers contextes. Le contexte principal qui se retrouve dans la plupart des
travaux est celui dans lequel un réseau de neurones a été entraîné sur une source d’information,
cette source d’information est aussi celle utilisée pour la phase d’attaque du réseau. Ainsi la
variance entre les deux phases est inexistante. Cependant dans un contexte réaliste, l’attaquant
peut se retrouver avec plusieurs sources d’information qui contiennent chacune un certain niveau
de bruit et ainsi un certain niveau de variance entre elles. Ce niveau de variance peut être dû à la
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différence entre les systèmes embarqués, la différence entre la position de la sonde ou même une
différence au niveau de l’implémentation logicielle. Un nombre restreint de travaux ont étudié
ce contexte où la source d’information utilisée pour l’entrainement et la source d’information
utilisée pour l’attaque sont différentes, et peuvent donc impacter l’efficacité du réseaux pendant
l’attaque. Ainsi, nous allons voir dans cette thèse, comment un attaquant peut tirer profit de
différentes sources d’information.

Objectifs

Dans cette thèse, nous allons étudier les techniques d’apprentissage profond dans le contexte
où nous avons différentes sources d’information disponibles. Afin de montrer la pertinence de
nos recherches, nous appliquons les approches proposées aux trois architectures de réseaux de
neurones les plus en vue dans l’état de l’art actuel: ASCAD [54], Zaid [73], and NoConv [66].
Il n’existe pas de jeux de données publiques ayant la variabilité requise pour nos tests. Afin de
mener à bien ces travaux et donc d’avoir accès à différentes sources d’information, nous avons
donc décidé de générer nos propre jeux de données : "DATABASE_AVR" et "DATABASE_STM32".
Le jeu de données "DATABASE_AVR" est composé de 780,000 traces d’ondes électromagné-
tiques provenant d’une plateforme STK500. Le jeu de données "DATABASE_STM32" est com-
posé de 1,250,000 traces d’ondes électromagnétiques, ainsi que les mesures de consommation
électrique correspondant, provenant d’une plateforme ChipWhisperer.

Le code source et les données utilisés sont disponibles à l’URL suivante: https://github.

com/GeneveyC/Machine-learning-with-SCA.

Contributions

Dans un premier temps, nous avons cherché à savoir si la combinaison de plusieurs canaux
d’observation provenant d’un même système mais de sondes différentes peut aider un attaquant
à élaborer une attaque plus efficace qu’avec une source unique. Nous avons démontré que dans
le cas où on ajoute une source d’information plus bruitée à une source unique, le réseau de
neurones ne tirera aucun avantage de la nouvelle source d’information. Cependant, si l’on ajoute
une source d’information moins bruité à une source unique, alors les performances du réseau de
neurones seront améliorées.

Dans un deuxième temps, nous avons cherché à savoir si des sources d’information supplémen-
taires qui n’ont pas été mesurées à partir de la même plateforme/sonde/système peuvent aider
un attaquant à monter une attaque plus puissante ou bien à accélérer le temps d’une évaluation

7

https://github.com/GeneveyC/Machine-learning-with-SCA
https://github.com/GeneveyC/Machine-learning-with-SCA


en facilitant la convergence d’un réseau. Nous avons utilisé la technique appelée apprentissage
par transfert pour monter ce type d’attaque. Nous avons démontré que l’apprentissage par trans-
fert permet en général de faciliter la convergence du réseau et, dans certains cas, d’améliorer
son efficacité finale.

Enfin, nous avons cherché à savoir si deux sources d’information avec des efficacités différentes
du point de vue de l’attaque peuvent être utilisées pour monter une attaque plus puissante.
Dans ce contexte, nous avons étudié s’il était possible de traduire les traces d’un système qui
est plus difficile à attaquer en d’autres traces d’un système qui est plus facile à attaquer. Nous
avons démontré qu’il est possible de traduire des traces d’un système à un autre grâce à un
réseau GAN (Generative Adversarial Network). Ainsi, nous avons traduit des traces d’ondes
électromagnétiques en traces de consommation de courant et nous avons également traduit des
traces de plusieurs systèmes de la famille STM32. Nous avons également démontré comment un
réseau GAN peut être utilisé dans le cadre des attaques par canaux auxiliaires.

Contenu du manuscrit

Combining sources of side-channel information. Dans le chapitre 5, nous proposons
d’explorer une approche avec plusieurs canaux auxiliaires, appelé multicanaux, grâce à l’apprentissage
profond (DL). Nous étudions deux types de combinaisons multicanaux. Tout d’abord, nous étu-
dions la combinaison d’émissions électromagnétiques provenant de différentes localisations et
capturant des informations de fuite dépendantes des données sur le dispositif. Deuxièmement,
nous étudions la combinaison des signaux de fuite classiques et d’une mesure de bruit ambiant.
Nous décrivons également comment étendre une architecture de réseau de neurone convolutif
(CNN) pour prendre en entrée plusieurs canaux. Le chapitre 5 est principalement basé sur les
résultats publiés dans la conférence C&ESAR 2019 [19].

Train or Adapt a Deeply Learned Profile. Dans le chapitre 6, nous abordons le problème
de la quantité limitée de données pour l’entraînement (nombre limité de clés de chiffrement
connues, contraintes de temps lors de la phase d’acquisition). Nous étudions l’avantage d’utiliser
des poids déjà initialisés, qui peuvent provenir d’un entraînement précédent du réseau sur des
données acquises dans une configuration différente. Cette approche est connue sous le nom
d’apprentissage par transfert (TL). L’idée sous-jacente est que les différentes attaques par canaux
auxiliaires partagent des points communs dans le sens où une partie du réseau doit comprendre le
lien entre les signaux électriques/électromagnétiques et la variable intermédiaire correspondante.
Nous explorons l’impact de l’apprentissage par transfert sur différentes architectures de réseaux
de neurones convolutif (CNN): ASCAD [54], Zaid [73], and NoConv [66]. Le chapitre 6 est
principalement basé sur les résultats publiés dans la conférence LatinCrypt 2021 [20].
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Trace-to-trace translation for SCA. Dans leur travail [67], Wu et Picek utilisent des
auto-encodeurs comme prétraitement pour la réduction du bruit. L’idée principale est d’entraîner
les auto-encodeurs en utilisant comme entrées des traces qui contienne un bruit et des traces
moins bruyantes de sorte que l’auto-encodeur soit capable de supprimer une partie du bruit
dans l’ensemble des données d’attaque. Dans le chaptire 7, nous proposons d’étendre cette idée
d’utiliser les réseaux de neurones pour le prétraitement en utilisant le réseau GAN (Generative
Adversarial Network) pour la traduction de trace à trace. Nous avons étudié différents types de
traduction: traduction des traces d’ondes électromagnétiques vers des traces de consommation
de courant entre différents dispositifs. De plus, nous étudions l’impact des hyperparamètres sur
l’architecture du réseau GAN. Le chapitre 7 est principalement basé sur les résultats qui sont
publiés à la conférence CARDIS 2021.

Conclusion

Ainsi à travers ces trois chapitres, nous démontrons que l’utilisation de différentes sources
d’information peut être bénéfique dans certains contextes par rapport à l’utilisation d’une seule
source d’information. Dans chaque chapitre nous avons présenté nos méthodes et démontré
nos résultats avec différentes architectures de réseaux de neurones, qui ont été développées
précisément pour les attaques par canaux auxiliaires par la communauté scientifique. Nous
avons également étudié différents scénarios afin de montrer et comparer les différentes approches
qu’un attaquant peut suivre quand il a à disposition une ou plusieures sources d’information.
Ces travaux ont permis de montré de nouveaux vecteurs d’attaque possibles avec de l’intelligence
artificielle pour les attaques par canaux auxiliaires (notamment concernant nos travaux sur la
traduction de traces).
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Chapter 1

CONTEXT, OBJECTIVES AND

CONTRIBUTIONS

1.1 Introduction to Cryptography

Since the first conflict in the world, armies have been using Cryptology during the battle
for securing their communications or to intercept the information of the enemy. Cryptology is
divided into two branches (as shown in Fig 1.1), Cryptography and Cryptanalysis. Cryptography
is the art of creating secure communication between two entities, for example in the army when
the Major state wants to send an order to a special division. Cryptanalysis is the art of breaking
secure communication within the context of our previous example, it corresponds to a spy trying
to intercept and read the order sent by the Major state. To securely transmit information and to
be sure that the spy cannot read this information, the sender must use an encryption algorithm
and a secret (a.k.a. the key). The key is used for encrypting the message. The message before
being encrypted is called the plaintext, and the encrypted message is called the ciphertext.

Cryptology

Cryptography Cryptanalysis

Figure 1.1 – The branches of cryptology

With the development of Computer Science, cryptographers designed new encryption tech-
niques based on mathematical tools and more powerful calculations. These new encryption
techniques, belonging to what is called Modern Cryptography, are present in our daily lives, for
payments with our bank card, surfing on the internet, or sending a text message. The wide use of
these algorithms makes their design increasingly sensitive. Indeed, poorly designed encryption
schemes will have more and more impact as they are deployed. To provide a certain level of
security and to prevent the effect of an attacker, four aspects have been defined in information
security:
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1. confidentiality: guarantees that information is only readable by an authorized person.

2. data integrity: ensures that any modification by an unauthorized person will be detected.

3. authentication: allows a party to check the identity claimed by another.

4. non-repudiation: prevents any party to deny actions or commitments.

Two branches of algorithms for cryptography may be distinguished: symmetric-key cryptog-
raphy and public-key cryptography, also called asymmetric cryptography. Due to its advanced
mathematical foundations, asymmetric cryptography has been developed later at the end of the
20 century while symmetric-key cryptography is far older.

The concept of symmetric-key cryptography is to use a shared key between the sender and
the receiver, this key must be only known by these two parties. The sender and the receiver use
the same key to encrypt and decrypt their messages. Thus an attacker who knows the key can
decrypt the message of the sender and can spy on the conversation.

Figure 1.2 – Symmetric cryptography

The concept of asymmetric cryptography is to use a pair of keys, a public key (which may be
known by everyone) and a private key (which must be known only by the receiver). The sender
uses the public key of the receiver to encrypt the plaintext, and the receiver uses his private
key to decrypt the ciphertext. Thus an attacker who knows the private key can decrypt all the
messages received by this person.

In this thesis, we will only focus on symmetric encryption, and more precisely on the Ad-
vanced Encryption Standard (AES) algorithm.
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Figure 1.3 – Asymmetric cryptography

1.2 Advanced Encryption Standard

In 1998, Vincent Rijmen and Joan Daemen proposed a symmetric-key algorithm [16], origi-
nally named Rijndael for the AES competition organized by the National Institute of Standards
and Technology (NIST). Their algorithm has been selected by the NIST and adopted by the U.S.
government to replace the previously used Data Encryption Standard (DES). A new standard
was needed because the predecessor DES used a too-small key and so became vulnerable to
brute-force attacks. Three variants of AES exist, with different key lengths: 128, 192, and 256
bits.

As illustrated in Figure 1.4 illustrates all operations made by the AES algorithm. As with
most symmetric schemes, AES have an iterative structure that is, a sequence of operations is
repeated in what is referred to as a round. The number of rounds depends on the key length,
the encryption process uses respectively 10, 12 and 14 rounds for the key of sizes 128,192 and
256 bits.

The AES algorithm is composed of the basic following operations:

— Key Expansion: Key expansion derives from the initial master key, a list of subkeys that
will be used along the process (one subkey per round).

— AddRoundKey: A XOR operation is made between the bytes of the current state and
the bytes of the subkey.
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Figure 1.4 – Advanced Encryption Standard (AES)

— SubBytes: Each byte is substituted according to a predefined table (called Sbox).

— ShiftRows: A transposition step where the last three rows of the state are shifted cyclically
a certain number of steps.

— MixColummns: Each column of the state is multiplied by a matrix with algebraic oper-
ations in a finite field of size 256.
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1.3 Side-Channel Attack

Two criteria must be considered to have a safe cryptographic algorithm: the mathematical
point of view and the implementation point of view. The first point of view, the mathematical
aspect, refers to the situation where the attacker has only access to knowing a couple of plaintexts
and ciphertexts and tries to recover the key. The second point of view, the implementation aspect,
refers to the case where an attacker can take advantage of the particular implementation of the
algorithm. An Side-Channel Attack (SCA) is one among all the implementation attacks. More
precisely it belongs to the family of physical attacks since, in most situations, it requires having
physical access to the targeted device to perform the attack.

The SCA consists in using some physical measurement (e.g. the power consumption) to
discover some sensitive information used in an algorithm. Some physical attacks (e.g. fault
injection), directly attack the cryptographic algorithms by injecting faults to bypass some oper-
ations or change the value of a state during the process. However, most physical attacks do not
change the behaviour of the algorithm. They rely on the observation of the algorithm via the
side channel.

Figure 1.5 – The different source of side channel

As illustrated in Figure 1.5 illustrates the principle of SCA. A cryptographic algorithm is
running on a smartcard or any other embedded device with physical access granted to the
attacker. This cryptographic algorithm takes as input a plaintext and produces as output a
ciphertext. During the execution of this algorithm, the device produces different side channels
such as ElectroMagnetic (emission) (EM), timing, power consumption, sound, or heat. These

25



Introduction

side channels are directly related to the internal state and processing of the device, so directly
linked to the operations made by the cryptographic algorithm. An attacker may capture several
traces from these different side channels. Then he can use statistical tools or artificial intelligence
to discover sensitive information from these traces. In the case of a cryptographic algorithm, he
can try to guess the key or some intermediate target value used by the algorithm during the
encryption process. The attacker aims at finding the correct key or intermediate target value
with as few traces as possible.

Figure 1.6 – Unlabelled dataset

Figure 1.7 – Labelled dataset

Depending on the context and the capability of the attacker to acquire a certain amount of
traces, he can mount different SCAs. First, the attacker always has an unlabelled dataset (as
represented in Figure 1.6). An unlabelled dataset is a dataset composed of a set of traces but
without the knowledge of the corresponding key (or intermediate target value). This dataset is
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composed of the measurements obtained during the processing of an algorithm. These measure-
ments are acquired without knowledge of the key (in general these measurements correspond
to a fixed key that one seeks to find). Secondly, the attacker can have, in addition to the unla-
belled dataset, a labelled dataset (as represented in Figure 1.7). A labelled dataset is a dataset
composed of a set of traces with their corresponding key.

Sometimes the number of available observations for a given key is limited due to some
counter-measures or use cases (e.g. decryption of some software in a secure boot procedure).
Also, the interaction with some devices can be limited. In these cases, acquiring a certain amount
of labelled data is a difficult task. The easiest way for an attacker is to have a clone of the target
device. A clone means the same device with the same system and the same implementation.
Thus, he will have full control of this device and will be able to capture as many traces as
necessary, and he will know the corresponding key. The clone must be as close as possible to
the device to be attacked because if the attacker succeeds to attack the clone, he will succeed
to attack the targeted device. The issue of acquiring a certain amount of data, and a labelled
dataset is not specific to the side-channel community. We found the same problem in the machine
learning research area.

When an attacker has only access to an unlabelled dataset then he can perform a non-profiled
attack. Then if he additionally have a labelled dataset then he can perform a profiled attack.

— Non-profiled attack: The attacker directly uses the unlabelled dataset and some mathe-
matical tools (e.g. correlation metric) to find the secret key used by the algorithm.

— Profiled attack: The attacker first uses the labelled dataset, called profiling set, to estimate
the leakage model. Secondly, he uses the target unlabelled dataset, called attack set, to
recover the secret key used by the algorithm.

The first discovered side-channel attack is called Simple Power Analysis (SPA). SPA belongs
to the non-profiled side-channel attacks. This attack consists in a simple analysis of one trace
to find the correct key. Two other well-known non-profiled side-channel attacks are Differential
Power Analysis (DPA) and Correlation Power Analysis (CPA). DPA consists in analyzing the
difference between two sets of traces to guess the right key. For the CPA, the attacker creates a
power consumption model during the analysis phase. He makes a prediction of power consump-
tion using this model. Then, the correlation is calculated between the predicted power and the
real (measured) power consumption to discriminate the right key.

Profiled side-channel attacks are more efficient than non-profiled side-channel attacks. The
Profiled attack requires fewer traces since the knowledge of a better model allows for extracting
more information from the traces. However, it requires a labelled dataset which is not required
for a non-profiled attack.
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The two main profiled side-channel attacks are template attacks and deep learning-based
side-channel attacks. Template attacks consist in exploiting a Gaussian Modeling of the leakage
using a Bayesian approach. The maximum likelihood principle enables them to reveal some part
of the key for each set of traces.

Figure 1.8 – Regular deep learning-based attacks

As illustrated in Figure 1.8, the regular deep-learning-based attacks. The principle of these
attacks is quite similar to the one of template attacks. The only difference is the way the model
is learned (using a neural network training instead of being computed based on the Gaussian
assumption). The network was learned by using two datasets: a profiling set and an attack set.
As mentioned previously, the profiling set is a labelled dataset with many traces obtained from
different keys. Generally, the profiling set comes from a clone of the targeted device. The attack
set is an unlabelled dataset with a certain number of traces and a fixed unknown key. It comes
from the device to the target. An attacker uses the profiling set to train the network to classify
each trace with its corresponding key value. Once the training is over, he uses the attack set
to predict the key of the target device. The goal of the neural network is to guess the key (or
intermediate target value) using as few traces as possible.

In most of the work considering side-channel attacks with deep learning techniques, the
profiling set and the attack set come from similar measurement setups (using the same probe at
a similar position on the same device). This guarantees a small variation between the profiling
set and the attack set and thus ensures that the performance of the deep neural network will be
the same on the profiling set and the attack set.

On the contrary, if no constraint is given on the training set, variations may arise from
various sources:
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— The variation between probe type/position: The attacker cannot use the same kind
of probe or the same position to record the profiling set and the attack set.

— The variation between side-channels: The attacker cannot use the same side channel
for the profiling set and the attack set. This is the case, for instance, when the attacker can
have physical access to a clone device but not on the device to target. In this situation, he
can acquire a profiling set with power consumption and an attack set with electromagnetic
emission.

— The variation between implementations: The attacker cannot use the same imple-
mentation for on clone device compared to the one on the device to target.

— The variation between devices: The attacker cannot use a similar device as the the
device to target.

Another hypothesis that is often made is that a sufficient amount of data is available to train
the neural network.

A deep neural network is sensitive to these limitations. During the learning phase, the neural
network will learn a mapping function from data that follows a certain distribution. However, if
this distribution is different between the training phase and the attack phase (due to the varia-
tions mentioned above), the performance of the neural network may be degraded. Furthermore,
the neural network may never converge toward an optimal solution if the amount of data is
low. This drawback is not specific to side-channel attacks and can be found in other fields. In
this thesis, we focus on the profiled attack with deep learning technique with the motivation of
overcoming these limitations.

1.4 Contribution of the Thesis

The literature on side-channel attacks with deep learning techniques mostly considers situ-
ations where the variation between the profiling set and the attack set is small. This ensures
that the performance of deep learning will not be altered due to the variation between these
two sets. In some real-world scenarios, having a similar measurement setup for both profiling
and attacking is difficult. In this thesis, we will show how to make a successful attack even
with an attack set that contains a certain level of variation compared to the profiling set. As
previously mentioned, variations may arise from various sources, the difference between probe
types/positions, side channels, implementations, and devices. We use them with specific deep
learning techniques in order to take profit from them.

Combining sources of side-channel information. In Chapter 5, we propose to explore
a multi-channel approach thanks to Deep Learning (DL). We investigate two kinds of multi-
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channel combinations. First, we investigate the combination of EM emissions from different
locations capturing data-dependent leakage information on the device. Secondly, we investigate
the combination of the classical leakage signals and a measure of mostly ambient noise. We also
describe how to extend a Convolutional Neural Network (CNN) architecture (e.g. ASCAD, Zaid,
and NoConv) to take as input multiple channels. Chapter 5 is mainly based on results published
at the C&ESAR 2019 conference [19].

Train or Adapt a Deeply Learned Profile. In Chapter 6, we tackle the problem of the
limited amount of data for training (limited number of known key encryption, timing constraint
on the acquisition phase). We investigate the advantage of using already initialized weights.
These weights may come from previous training of the network on some data acquired on a
different setup. This approach is known as Transfer Learning (TL). The idea behind this is
that different side-channel attacks share common points in the sense that part of the network
has to understand the link between power/electromagnetic signals and the corresponding inter-
mediate variable. We explore the impact of TL on different CNN architectures: ASCAD [54],
Zaid [73], and NoConv [66]). Chapter 6 is mainly based on results published at the Latincrypt
2021 conference [20].

Trace-to-trace translation for SCA. In their work [67], Wu and Picek use auto-encoders
as preprocessing for noise reduction. The main idea is to train auto-encoders using as inputs
noisy traces and less noisy traces so that the auto-encoder is able to remove part of the noise in
the attack dataset. In Chapter 7 we propose to extend this idea of using NN for pre-processing
by using Generative Adversarial Network (GAN) for trace-to-trace translation. We investigate
different kinds of translation: translation from EM to power traces and translation between dif-
ferent devices. Additionally, we study the impact of hyper-parameters on the GAN architecture.
Chapter 7 is mainly based on results that have been published at the CARDIS 2021 conference.
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Chapter 2

MACHINE LEARNING AND DEEP

LEARNING

2.1 General Concept of Machine Learning

2.1.1 Introduction to Machine Learning

The term Artificial Intelligence (AI) is first introduced in the late 1950s and relates to the
ability of a computer program to think and learn. Before this period, many mathematicians,
and philosophers have been working on AI, among them Alan Turing and his famous Turing
test [61]. Alan Turing is a brilliant young British mathematician who created a machine to break
the Enigma encryption system. He is considered the father of AI. One important branch of AI
that carries a lot of interest is Machine Learning (ML). ML is the study of different algorithms
that automatically improve themselves as the experience progresses.

Before the machine learning algorithm can learn a task to reproduce it, we need to show
some examples. These examples can be found in two datasets: labelled dataset, or unlabelled
dataset. A labelled dataset is composed of raw data (e.g. pictures, audio files) and the corre-
sponding labels, whereas an unlabelled dataset is only composed of raw data. Depending on the
kind of datasets we have, we will use different kinds of algorithms.

Generally, the way datasets are used is very important because if they are not used properly,
the algorithm can have a "rote" experience and not a "general" experience. When the algorithm
has a "rote" experience, it is only able to reproduce the task on seen examples, and not able to
reproduce the task on unseen examples. The algorithms which have a "general" experience can
however reproduce the task on unseen examples.

To be sure that the acquired experience is general and not rote, we must divide the first
dataset into two subsets and have a second dataset, thus we have a training set and a valida-
tion set to come from the first dataset and a test set from the second dataset. The algorithm
accumulates experience with the training set during a phase called the training step, the
algorithm used the validation set to be sure that the experience acquired is not a "rote" expe-
rience. After the training step, we do another check that the algorithm has learned the general
and not "rote" experience with the test set during a phase called the test step. ML algorithms
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using a labelled dataset are more powerful than the ones only using an unlabelled dataset.
Interest in ML has led to the development of different learning methods for different types

of problems to be solved. These different learning methods also depend on the kind of dataset
we can acquire. There are three main learning methods, called machine learning paradigms:

— unsupervised learning,

— supervised learning,

— reinforcement learning.

In addition to these three paradigms, two other learning methods exist but are not consid-
ered as main machine learning paradigms: semi-supervised learning and transfer learning. As
illustraed in Figure 2.1 illustrates the hierarchy of these different methods (three paradigms and
two additional learning methods). The green colour represents the method we use/study in this
thesis.

Machine learning

Unsupervised learning Supervised learning Reinforcement learning

Artificial Intelligence

Semi-supervised learning Transfer learning

Figure 2.1 – The different methods of learning

Unsupervised learning: Unsupervised learning aims at learning patterns (or distribu-
tions) from an unlabelled dataset without any prior knowledge. Several unsupervised learning
algorithms are used for clustering applications. Clustering aims to learn how to group data ac-
cording to the difference between their distribution. Other unsupervised algorithms are used for
anomaly detection or dimensionality reduction, e.g, Principal Component Analysis (PCA) and
kernel-PCA.

Supervised learning: Supervised learning aims to learn from a labelled dataset. The labelled
dataset means that we give the ML algorithms the desired data and solutions, called labels.
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Two typical supervised algorithms are classification and regression algorithms. Classification
algorithms are used to predict and classify discrete values such as Cat or Dog, Spam or No
Spam, etc. Regression algorithms are used to predict continuous values such as the value of a
company’s stock, house prices, etc. Supervised learning is considered to be more powerful than
unsupervised learning.

Reinforcement learning: Reinforcement learning aims to accumulate experience by per-
forming actions in an environment to maximize a reward. In detail, an agent observes the
environment, performs an action, and receives a reward in return. The reward in return can be
positive (if the agent made the right decision) or negative (if the agent made the wrong deci-
sion). The agent must learn the best strategy, called policy, to get the best reward. Reinforcement
learning is generally applied to various problems, such as robot control, telecommunications, or
video games.

Semi-Supervised learning: Semi-supervised learning aims to combine unsupervised learn-
ing and supervised learning because it learns from a dataset that is partially labelled. Acquiring
labelled data can be a difficult task because it is time-consuming, and sometimes we cannot as-
sign a label to the data. However, we know that supervised learning leads to better performance
than unsupervised learning. This is the reason why we want to do semi-supervised learning. In
semi-supervised learning, we have two datasets, one labelled, and one unlabelled.

Transfer learning: Transfer learning aims to use the experience gained from solving one
problem and applying it to another problem which has a similar context. Transfer learning is
usually applied to computer vision, for example using the knowledge gained from recognizing
cars to recognize trucks.

2.2 Supervised Learning with Neural Networks

2.2.1 Artificial Neural Network

In this section, we present only the classical supervised learning methods based on neural
networks. Indeed, there exist other supervised learning methods which are not based on neural
networks such as Random Forest (RF), and Support Vector Machine (SVM) but they are out
of the scope of this document.

An artificial Neuron is a mathematical function inspired by our biological system. An
Artificial Neural Network (ANN) is composed of one or multiple layers, and each layer is com-
posed of one or more neurons. One of the first ANN architectures for supervised learning is the
Perceptron which was invented in 1958 by Frank Rosenblatt. The Perceptron is a linear classifier
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with one layer composed of one neuron. A Perceptron takes an input vector of size N , denoted
by x1, . . . , xN ∈ X, and returns a scalar value denoted by y. It is composed of a weight vector,
denoted by w1, . . . , wN ∈ W , and a bias θ. Each weight wi represents the connection between
the input value xi and the only neuron.

y = g(σ) (2.1)

σ = θ +
N∑

i=1
wi ∗ xi (2.2)

Heaviside(σ) = g(σ) =

1, if σ ≥ 0

0, if σ < 0.
(2.3)

The Perceptron learns the mapping function from the input X to the target label ŷ. It
computes a weighted sum between its input vector X and the weight vector W , then applies
an activation function, denoted by g in the equation 2.2, to that sum and outputs a scalar
value y. The most common activation function used in Perceptrons is the Heaviside function
(see equation 2.3), but several other activation functions exist. We detail activation functions in
Section 2.3.5.

w+
i = wi + η(y − ŷ) ∗ xi. (2.4)

The Perceptron updates its weights using a process named backpropagation. It consists in
acquiring some experience to converge to an optimal solution (prediction close to the target
label). Equation 2.4 describes the learning process and how the Perceptron updates its weights.
We update each weight wi by taking into account the error of the prediction made by the
Perceptron. The error represents the difference between the prediction yi and the target label
ŷi. We use a learning rate, denoted by η, to take into account the degree of error. The machine
learning process helps the reinforcement of the connection between the weight wi and the input
value xi.

During the training of the Perceptron (or another ANN architecture), two other parameters
must be taken into account: the number of epochs and the batch size. Epoch is a parameter that
defines the number of iterations of the algorithm over the data. The batch size is a parameter
that defines the maximum quantity of data the algorithm can see before updating its weights.
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MultiLayers Perceptron (MLP): The universal approximation theorem [29] tells us that
a single hidden layer forward propagation network containing a finite number of neurons can
approximate any continuous function. Thus, the Perceptron can generalize any linear problem,
but not non-linear problems. To solve the non-linear problems, researchers created another ANN
architecture called MLP. The MLP can be viewed as an extension of Perceptron because instead
of being composed of one layer like the Perceptron, it is composed of several layers. In the MLP
architecture, we can distinguish three main layers: the input layer, the hidden layer, and the
output layer. Each layer can be composed of one or multiple neurons. The input layer brings
the initial data to the neural network. Hidden layers are the intermediate layers between the
input layer and the output layer and is where all the computation takes place. The output
layer produces the prediction for the given input. When an ANN contains a deep stack of
hidden layers, it is called a Deep Neural Network (DNN).

yℓ
j = g(σℓ

j) (2.5)

σ0
j = θ0

j +
N∑

i=1
w0

i,j · xi (2.6)

σℓ
j = θℓ

j +
Nℓ−1∑
i=1

wℓ
i,j · yℓ−1

i (2.7)

The MLP learns the mapping function between input X and target label ŷ like the Percep-
tron. However, with multiple layers, each neuron does not perform the same calculation as the
single neuron in the Perceptron.

The input layer in the MLP architecture takes an input vector of size N , denoted by
x1, . . . , xN ∈ X, and returns a list of values (each neuron j returns a scalar value yj). Equation 2.6
described the computation made by each neuron, the weight w0

i,j represents the connection be-
tween the input value xi and the neuron j at the first layer. The activation function is denoted
by g, and the bias to apply to neuron j is denoted by θ0

j .
The hidden layer in the MLP architecture takes all outputs of the neurons of the previous layer
of size Nℓ−1, denoted by yℓ−1

1 , . . . , yℓ−1
N , and returns a new list of value (each neuron j return

a scalar value yℓ
j , the computation described in equation 2.7). In equation 2.7, the weight wℓ

i,j

represents the connection between the output of neuron i at the previous layer ℓ − 1 and the
neuron j at the layer ℓ, g represents the activation function, and θℓ

j represents the bias to apply
to neuron j at layer ℓ. The hidden layer and the output layer are also called dense layers.
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Convolutional Neural Network: Another ANN architecture arose from the scientific
community to perform computer vision tasks namely Convolutional Neural Network (CNN).
The CNN can be viewed as an improvement of MLP because it automatically extracts some
features from the input X before learning the mapping function from the input X to the target
label ŷ. The feature extraction is performed by two new types of layers: the convolutional layers
and the pooling layers. Learning the mapping function between these features and target label
ŷ is always performed by one or more dense layers.

The convolution layer allows extracting features from the input X by applying one or more
kernels to it. In the convolutional layer, we still have neurons, but we talk about kernels than
neurons.

Each kernel in the convolutional layer still calculates a dot product of its weight W with the
input X, followed by an activation function g, but their connectivity is limited to a local level.
The other difference between the convolutional layer and the dense layer is that the convolutional
layer uses a shared weight matrix. By sharing the weights, the network is able to detect a feature
at different parts of the image. This means that all the neurons in the layer detect exactly the
same feature, just at different locations in the input data. As illustrated in Figure 2.2 shows
an example of how a convolutional layer applies the kernel of size 5x5x3 on an input of size
32x32x3.

Figure 2.2 – Convolution kernel

The pooling layer permits the reduction of the size of the data by summarizing a window
into a single value based on the maximum value (Max pooling layer) or based on the average
value, (Average pooling layer) after applying the convolutional layer. These two methods of
pooling are helpful to extract features from data.
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2.2.2 Learning Process

To converge toward an optimal solution at each epoch, the MLP and CNN use a learning
process too. The learning process of the MLP and CNN is called the backpropagation algorithm.
The backpropagation algorithm uses a loss function, it is a function that computes the error
committed by the network, for the classification task we use a binary cross-entropy function,
and for the regression task, we mainly use mean squared error. Thus, the backpropagation
algorithm consists in calculating the gradient of the loss function with respect to the model
parameters. In detail, it can be determined how each connection weight and each bias term should
be adjusted to reduce the loss error. The loss function must be derivable and its gradient should
be efficiently computed. Once these gradients are calculated, we apply the Gradient Descent
algorithm or another Stochastic optimization algorithm, and we repeat this process until the
network converges toward a solution.

Stochastic optimization refers to the use of randomness in optimization algorithms. The
main challenge for the optimization algorithms is to find a global minimum, avoiding the pitfalls
of local minimums. Stochastic optimization algorithms reduce the probability of finding a local
minimum and getting stuck there, thus increasing the probability of finding the global minimum.
The space search to find the global minimum depends on the number of parameters used by the
network. Thus, it will take more time and more data to find the global minimum for a CNN
than for an MLP.

Figure 2.3 – Illustration of local minimum and global minimum

As illustrated in Figure 2.3 we shows the difference between the local minimum and the
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global minimum. The local minima are good solutions that have interesting properties to solve
our problem but do not correspond to the best optimal solution. The global minimum is the
optimal solution to solve our problem. The global minimum is defined over all data coming from
the training dataset. Then we assume that with enough data, the global minimum from the
training dataset corresponds to the real global minimum.

There is no difficulty for convex functions to find a global minimum because, for convex
functions, a local minimum is a global minimum, thus stochastic optimization algorithms trivially
go toward the global minimum. On the other hand, non-convex functions have the problem
of finding the global minimum and not getting stuck in the local minimum. There are many
Stochastic optimization algorithms, also called optimizers, such as Stochastic Gradient Descent
(SGD), Root Mean Square Propagation (RMSprop), or Adam that can be used to circumvent
this local minimum issue.

2.2.3 Training and Validation in Supervised Learning

Data is required to train, validate and test a machine-learning algorithm. In the case of a
supervised learning algorithm, the data is divided into three parts: a training set, a validation
set, and a test set. We usually take 80% of the dataset for the training and validation sets, and
the remaining 20% for the test set, as shown in Figure 2.4.

Dataset

Training & validation set Test set

80
%

20
%

Figure 2.4 – Ratio of training & validation set

Training phase: During this step, the supervised learning algorithms attempt to estimate
the mapping function based on the training dataset. The training dataset is composed of data,
denoted by Xtraining, and the corresponding labels, denoted by Ytraining. We provide several
couples of features and labels to the algorithm to estimate the mapping function. The backprop-
agation is applied once a certain amount of pairs (namely the batch size) have been seen by the
algorithm.

Validation phase: After each epoch, we estimate the committed error by the supervised
learning algorithms on the validation dataset. We perform a validation phase to ensure that the
network error continues to decrease and that it is not overfitting. If the loss is still decreasing it
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confirms that the network is still generalizing. During the validation phase, only the validation
dataset is used to estimate the error of the network. Notice that the weights of the network
are not updated at all during validation. The network parameters that correspond to the lowest
error on the validation dataset correspond to the parameters which are the closest to the global
minimum.

Test phase: During this step, we apply the mapping function with the test dataset. If the
network found the global minimum during the training phase, it must predict a value, denoted
by ypredict close or equal to the target value, denoted by ŷ. An important aspect is that the test
dataset should not be used during the training step because it introduces a bias in the training
of the neural network.

Cross-validation process: This process is useful to be sure that the supervised learning
algorithms perform well on different test datasets. Cross-validation consists in performing many
pieces of training on different datasets. These datasets are generated from the same data but by
partitioning in different ways. For each training, we have a different training dataset, validation
dataset, and test dataset. This process allows for validating that the obtained network has good
performances on several test datasets. The problem is if the network performs well on one test
dataset but not at all, it can be estimated that the network is overfitting.

2.2.4 Main Challenge in Supervised Learning

Several problems can occur in the learning of a neural network. These problems are common
to machine learning and can occur in different domains. In this section, we will detail each of
these problems.

The vanishing gradient problem: During the learning process, the gradient of the loss
function can get smaller and smaller up to the point where it finally vanishes. A gradient close
to zero means that the weights of the neural network will not be updated, so the neural network
will never converge toward a good solution. This problem can be either due to the weight
initialization or the activation function used in the neural network. For example, the sigmoid
function is bounded into 0 and 1, and its derivative goes from 0 to 0.25. During the learning
process, the gradient of the sigmoid at very high or low values is almost 0, which means no
weights of the neural network will be updated.

The exploding gradient problem: The exploding gradient problem is the inverse problem
of the vanishing gradient problem. During the learning process, the gradient of the loss function
is getting higher and higher. A high gradient means that the weight of the neural network will
be updated with an extreme value, so the neural network will diverge too much and become
unstable.
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The insufficient quantity of training data problem: DNN are particularly affected by
this problem because the parameter space (on which the global minimum is searched for) is
wider for a DNN than for an MLP. To have a good estimation of the mapping function and
to generalize well on test data, a DNN requires a certain amount of data. This amount of data
depends on the kind of problem to solve and the complexity of the neural network. A deeper
neural network such as a CNN requires more training data than an MLP .

The non-representative data problem means that the model performs well on the train-
ing dataset, but does not on the test dataset. This problem can occur when the distribution of
the data into the training and test dataset are not the same. It is important to have similar dis-
tributions of the data in both datasets because when the network has been trained, it expects to
see the same distribution. A typical example is Apple’s facial unlocking application. The model
was only trained to recognise Western faces and when asked to recognise Asian faces, the model
could not distinguish them.

The poor-quality data problem: The network may have difficulties performing well on
training and test datasets if one of these two datasets contains errors, or noise (e.g. due to poor-
quality measurements). Most of the time, scientists spend time cleaning their training and test
data to obtain better performances for their network. A typical example of poor-quality data is
an audio dataset containing a high level of noise.

The irrelevant features problem: To obtain good performances of the neural network,
we must feed it with relevant features. For Perceptron and MLP, the relevant features can be
obtained with the feature engineering process. The feature engineering process includes a human
expert who determines and selects the best features to give to the neural network. For CNN the
features are directly selected by the network as part of its training process.

The hyperparameter tuning problem: The hyperparameters of the network such as
activation functions, the number of nodes, and optimizers can affect the guessing performances
and the training time. To be sure to find the global minimum, we must define the correct
hyperparameters for the network, this step is called hyperparameter tuning. The hyperparameter
tuning aims to test a lot of hyperparameters (e.g. different activation functions with different
optimizers) to reduce the error committed by the network with the validation dataset. Due to
the large range of hyperparameter values, this step is time-consuming. The cross-validation step
is useful for the hyperparameter tuning problem because it allows us to check that the chosen
hyperparameters are optimal on different datasets.

The overfitting problem means that the model performs well on the training dataset but
cannot generalize well on the test data, we said that the model acquires a "rote" experience

40



Machine Learning and Deep Learning

during the learning part. A DNN which approximates a function must detect some patterns in
the training data and use it on the test dataset. However, if the training data is too small or the
detected patterns are noisy or biased, the DNN cannot generalize well on the test data, which
leads to the overfitting problem.

The underfitting problem is the inverse of the overfitting problem. The underfitting
problem means that the model cannot approximate a function on the training data and the
test data. A model cannot approximate the function if it is too simple or not complex enough.
The first idea to solve the underfitting problem is to select a deeper neural network with more
parameters/weights to update. The second idea to solve this problem is to give better features
to the neural network (if our neural network does not automatically extract the features).

Figure 2.5 – Overfitting vs underfitting

2.3 Advanced Methods of Supervised Learning

In this section, we describe several techniques that have been developed by the machine
learning community to solve the problem of insufficient data. This issue is described in Sec-
tion 2.2.4. In this thesis, we use some of these techniques and apply them to the side-channel
context.

2.3.1 Generative Adversarial Network

Generative Adversarial Network (GAN) is a special kind of ANN introduced by Ian Good-
fellow [24]. GAN is mainly used to solve the problem of insufficient data by learning how
to generate synthetic additional data presented in Section 2.2.4 and to make the neural network
more robust. A GAN is composed of two neural networks, called discriminator and genera-
tor. These two networks have specific roles and confront each other to improve themselves. The
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confrontation principle is based on the same principle as the min-max algorithms, each network
tries to maximize its score and beats its opponent.

The generator aims to generate new samples that are close to the distribution of the target
data. More precisely, the generator attempts to make a more realistic distribution to deceive
the discriminator. The generator outputs synthetic samples that are drawn from a distribution
that should be as close to the actual one as possible. During the training of the generator, the
synthetic distribution will get closer and closer to the target distribution. The generator tries to
minimize the min-max loss function, described in equation 2.8.

The discriminator aims to distinguish if the distribution comes from a real dataset or if it was
made by the generator. In detail, the discriminator attempts to identify the synthetic distribution
made by the generator. The discriminator takes as input one distribution and outputs the
probability that this distribution is real or fake. During the training, the discriminator will
improve and will be able to distinguish the two distributions. The discriminator tries to maximize
the min-max loss function, described in equation 2.8.

real image discriminator discriminator 
loss

random 
input generator discriminator 

loss

sample

fake sample

backpropagation

backpropagation

Figure 2.6 – General overview of GAN

As illustrated in Figure 2.6 we shows the general process of GAN with the discriminator and
generator part.

LGAN = Ex [log(D(x))] + Ez [log(1 − D(G(z)))] . (2.8)

In equation 2.8:

— D(x) is the discriminator estimate of the probability that real data instance x is real

— G(z) is the generator output for a given noise z.
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— D(G(z)) is the discriminator estimate of the probability that fake instance is real.

— Ex, Ez are respectively the expectation over real instances and over random inputs to the
generator.

There exist a lot of variants based on the same principle as the classical GAN. A known
variant is Conditional Generative Adversarial Network (CGAN) which was introduced by Mirza
et al [49]. CGAN uses additional information to produce synthetic distribution. The generator
of the CGAN takes as input a random distribution and the conditional class to generate the
fake distribution. The CGAN is used for data augmentation to make samples for a specific class.
The min-max loss function was adjusted for CGAN architecture because it takes into account
the conditional class in addition, denoted by y in equation 2.9.

LcGAN = Ex[log(D(x))] + Ey,z[log(1 − D(G(y, z)))]. (2.9)

In the community of computer vision, the state-of-the-art concerning CGAN are Pix2Pix [31]
and CycleGAN [74]. The architecture of these two CGAN are different but both are used for
image-to-image translation. The image-to-image translation consists in transforming an image
into another, e.g. transforming a drawing into a real image, or transforming a horse into a
zebra. Another difference is the constraint on the input data, Pix2Pix network is trained on
paired datasets whereas CycleGAN uses unpaired datasets. We define both notions in the next
paragraphs.

Paired Datasets. Two datasets are paired when the following one-to-one relationship exists
between values in the two datasets.

1. Each dataset has the same number of entries.
2. Each entry in one dataset is related to one, and only one, entry in the other dataset.

Unpaired Datasets. Two datasets are unpaired when their entries do not satisfy the paired
datasets conditions.

2.3.2 Siamese Network

The Siamese neural network is used to mitigate the problem of insufficient data, presented
in section 2.2.4. The Siamese network is used to solve the problem of insufficient data by
learning the similarity between two data. The idea of the Siamese network is to have two or more
identical networks, however each network takes independent and different inputs. The Siamese
network is particularly useful in the multi-classification task where we have a large number of
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Figure 2.7 – General overview of Siamese network

classes with small samples per data. In such case, where we do have not enough data to train a
DNN, so we can train a Siamese network to determine if two data belong to the same class.

The term identical networks means that all networks have the same architecture with the
same parameters and the same weights. To update the weight of all networks during the learning
process, the backpropagation is mirrored across both networks. The advantage of the siamese
neural network compared to a classical network (MLP, CNN) is that it can obtain good perfor-
mance with fewer data, however, it needs more training time than a classical network.

The siamese neural network is illustrates in Figure 2.7. We provide a couple of differents
inputs to these networks and each network computes the features of one input. Then, the sim-
ilarity of features is computed using the Euclidean distance and a logistic function. For two
different inputs within the same class, the target output is 1 otherwise the target output is 0.
The siamese network is trained to minimize the distance between samples of the same class and
increase the inter-class distance. The loss function used for the siamese network is a similarity
function.

2.3.3 Transfer Learning

transfer learning is used to mitigate the problem of insufficient data, presented in
Section 2.2.4. The idea of transfer learning is the following. Instead of using a random weight
initialization, the network is initialized using weights from another network trained on a specific
task. We can use the weights of a neural network after the first training, and then fine-tune them
during a second training. There are different methods for applying transfer learning. Figures 2.8
and 2.9 illustrate two kinds of transfer learning. Layers are initialized with weights from previous
learning and, in green, are the layers whose weights will be updated during the new training. In
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Figure 2.8, we update all the weights of a pre-trained network while in Figure 2.9, we update
only the weights of the fully connected layer. In this later example, we keep the same feature
extraction, done by the convolutional layers during the first training, for the second training.
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Figure 2.8 – Transfer learning by updating all weights in network
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Figure 2.9 – Transfer learning by updating only the weights of fully-connected layer

2.3.4 Additional Layers

The Batch normalization layer contributes to solving the vanishing gradient issue,
presented in Section 2.2.4. Moreover the batch normalization layer allows a more stable and
faster convergence of a neural network. The batch normalization layer normalizes the output
of a layer by applying a transformation that maintains the mean equal to 0 and the output
deviation close to 1. As its name suggests, Batch Normalization is applied to all the data from
a batch, that is both the mean and the variance are computed on the full batch.

The Dropout layer permits to prevent of the overfitting issue, presented in Section 2.2.4.
The dropout layer randomly disables a certain amount of units at each new batch so that the
weights of these neurons are not adjusted during the learning phase. The proportion of discarded
units is known as the dropout rate.

2.3.5 Additional Activation Function

The ReLU Activation Function. Equation 2.10 describes the ReLU activation function.
The ReLU activation function is not perfect because, during the training, some neurons of the
network can die. We say that a neuron dies when it only outputs 0 and its weights cannot be
updated because the gradients fail to flow during the learning process. This problem is known
as the dying ReLUs [43].
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ReLU(z) = max(0, z) (2.10)

The Leaky ReLU Activation Function. Equation 2.11 describes the Leaky ReLU activa-
tion function. The Leaky ReLU activation function is a variant of the ReLU activation function
that helps to solve the dying ReLUs problem. The parameter λ is the slope of the function when
z < 0. This parameter ensures that the neuron which has leaky ReLU as an activation function
never dies.

LeakyReLU(z) = max(αz, z) (2.11)

The SeLU Activation Function. Equation 2.12 describes the SeLU (Scaled Exponential
Linear Units [35]) activation function. The SeLU activation function is also a variant of the
ReLU activation function that also helps to solve the dying ReLUs problem because the SELUs
activation cannot die.

SeLU(z) = λ ·
{

α(ez − 1) for z < 0
z for z ≥ 0

(2.12)

46



Chapter 3

SIDE-CHANNELS ATTACKS

In everyday life, cryptography is necessary to secure our exchanged messages and protect our
private life. Even if we develop more secure encryption algorithms, attackers will develop new
effective attacks. Cryptography is in perpetual evolution. On the one hand, defenders propose
new countermeasures to limit and avoid attacks. On the other hand, attackers develop new
attacks to defeat these countermeasures. As presented in Chapter 1, there are two main families of
algorithms in cryptography, namely symmetric-key cryptography and asymmetric cryptography.
An attacker can have access to an embedded system and in this case can carry out what we
call physical attacks. Some physical attacks use physical measurements (e.g. electromagnetic
emission) to discover some sensitive information used in an algorithm during these operations.
Other physical attacks directly attack the cryptographic algorithm by injecting faults to bypass
some operations of the cryptographic algorithms.

3.1 General Concept of Physical Attack

3.1.1 Introduction to Physical Attack

Physical attacks regroup different kinds of attacks. We can classify them into two groups with
two main axes into each group. Invasive attacks/non-invasive attacks, and active attacks/passive
attacks.

— Invasive attacks: The attacker gets direct access to the components inside the device to
target (e.g. the attacker can directly connect a probe on the data bus to see the transferred
data).

— Non-invasive attacks: The attacker exploits externally available information (typically
eavesdropping electromagnetic emission).

— Active attacks: The attacker tries to alter the targeted device by introducing some error
and affecting their operations. These attacks involve modifying the current state of the
device to bypass some operations and obtain some privileges.

— Passive attacks: The attacker tries to learn some information about the device to target
by recording physical measurements but does not affect it. Many physical quantities can be
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used for this kind of attack, such as power consumption, electromagnetic emission, time,
sound or heat.

3.1.2 Overview of Side-Channel Attack

In the thesis, we will mainly focus our research on non-invasive passive attacks. The non-
invasive passive attacks are a family of physical attacks that regroups different kinds of attacks
that exploit different side-channel to learn some information about the target device. The most
used side channels are electromagnetic emission, power consumption, timing, sound, and photon
emission.

These side channels lead to various attacks that are depicted in Figure 3.1:

— Cache attacks: The attacker monitors the cache accesses made by a victim in a shared
physical system (a virtualized environment or a cloud service) to learn information about
the victim (e.g. spy on a victim).

— Timing attacks: The attacker measures the execution time of various operations to learn
some information about the victim (e.g. discover the length of the password of the victim).

— Electromagnetic/Power attacks: The attacker measures the electromagnetic emis-
sion/power consumption of the hardware during some operation to learn some information
about the device (e.g. discover the key used by an encryption process on a device).

— Acoustic attacks: The attacker exploits the sound emitted by some device used by the
victim to learn some information about him (e.g. discover the password of the victim with
the sound emitted by his/her keyboard).

— Heat attacks: The attacker exploits the temperature variations of some devices to learn
some information about the victim (e.g. discover the password of the victim after he/she
typed it on his smartphone).

— Photon attacks: The attacker exploits the photon emission from the hardware to discover
some information about the victim (e.g. obtain information on the victim’s activity).

3.1.3 Attack Context

In this thesis, we will mainly focus our research on power and electromagnetic attacks.
Depending on the context and the capability of the attacker to acquire a certain amount of
traces, he can mount different Side-Channel Attacks (SCAs). First, we always consider that the
attacker have an unlabelled dataset. An attacker with an unlabelled dataset can mount a non-
profiled attack. Secondly, the attacker can have in addition to the unlabelled dataset, a labelled
dataset. An attacker with a labelled dataset can mount profiled attacks. Profiled attacks are more
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Figure 3.1 – The most use source of side channel attack

powerful because they require fewer traces than non-profiled attacks. However, profiled attacks
required a labelled dataset, and in some situations having a labelled dataset is not possible.

Non-profiled attacks: In the context where an attacker have no access to a clone of the
device, nor he can train by running the target device with some known keys, he only have an
unlabeled dataset. This is the situation where one have to use non-profiled attacks. The attacker
extracts electromagnetic or power traces from the target device, and directly analyzes these
traces with a statistical tools to discover some secret used during the encryption process. The
analysis made by the attacker requires to have some knowledge about the encryption process
running on the target device.

Profiled attacks: This attack appears when the attacker have access to a device similar to
the targeted one (also called a clone device), thus he can have a labelled dataset. The attacker
have the opportunity to train a model on a similar device (with access to one or more know
keys). Thus the attacker tries to model the leakage on a similar device, then he uses this model
to discover the sensitive value used by the target device during the encryption process.

In this thesis, we explore deep learning techniques (presented in Section 3.6) with electro-
magnetic and power traces. While deep learning training usually uses a labelled dataset from a
clone device (and thus is considered a profiled technique), some of our contributions are using
deep learning using labelled datasets from another experimental setup (different source, probe,
device ...). In these later cases, the use of deep learning may be considered non-profiled.
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3.2 Non-profiled Side-Channel Attacks

In non-profiled side-channel attacks, an attacker called A have only access to the device to
target denoted by Dtarget. We assume that an encryption process denoted by E runs on Dtarget.
The encryption process E takes a couple composed of a plaintext p and a key k as input and
returns a ciphertext c. The attacker knows the plaintext p used by the encryption process but
he does not know the key k. The encryption process outputs the ciphertext c = E(p, k).

The attacker extracts a list of Na measurements called attack set, denoted by x1,...,xNa ∈ Xattack.
The attack set is always an unlabelled dataset. All traces in Xattack are extracted from the de-
vice Dtarget. Once the attacker have collected enough data, he can use classical attacks such as
Differential Power Analysis or Correlation Power Analysis to reveal the potential value of the
secret key k.

Differential Power Analysis (DPA) is introduced by Kocher et al. in [38]. DPA is a
statistical method for analyzing sets of measurements to identify data-dependent similarity. This
method involves partitioning a set of traces into two subsets based on a key candidate and a
generic leakage model. Then, the difference between the averages of these subsets is computed.
If the partitioning is sound (i.e. the key candidate is correct and the used generic model makes
sense), then the average will approach a non-zero number. Otherwise, the average will approach
zero as the number of traces increases.

Figure 3.2 – Typical DPA results

Figure 3.2 illustrates a typical DPA result. The first two lines show two sets of traces. The
difference between these two sets is shown on the third line. The fourth line shows the difference
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between these two sets but is amplified by a factor of 15. We can observe that the partitioning
is sound because, for some time slots, the difference is clearly non-zero.

Correlation Power Analysis (CPA) is another statistical method that uses the Pearson
correlation coefficient for SCA. This method have been suggested in various paper [6, 11, 47].
In practice, the CPA is composed of four steps:

1. The attacker selects a generic model, denoted by M(p, k) for the power consumption of
the target device. This model will estimate how much power will be used for some part of
the encryption of a plaintext, denoted by p, with a specific key, denoted by k.

2. The attacker captures traces from the target device. The traces represent the power con-
sumption during the encryption process with different random plaintexts and an unknown
key.

3. Then, the attacker makes several guesses, one for each possible key value. He obtains the
corresponding estimations of the power consumption values, denoted by Ei returned by
the model M , for each guess i.

4. Finally, the attacker computes the correlation between each estimation Ei and the mea-
surement (captured from the target device). The highest correlation corresponds to the
correct key value hypothesis.

3.3 Profiled Side-Channel Attacks

In profiled side-channel attacks, an attacker called A have access to the device to target
denoted by Dtarget, and can have access to a clone of the device to target too, denoted by
Dclone. We assume that the same encryption process E runs on Dtarget and Dclone. The attacker
has full control of the device Dclone, so he can choose the plaintext p and the key k on this device.
However the attacker does not have full access to the device Dtarget, so he can only choose the
plaintext p (the key on the device Dtarget denoted by k∗). The key k used on the device Dclone is
variable, chosen by the attacker, whereas the key k∗ on the device Dtarget is fixed and unknown.
The goal of the attacker is to recover the secret key k∗ on the device Dtarget.

If the attacker have only access to Dtarget, he can mount profiled side-channel attack if he
knows some information about this device, for example, if the algorithm uses several keys and
the attacker knows one of these keys. In a classic way, the attacker have access to Dclone in
addition to Dtarget to mount the profiled side-channel attacks.

The profiled side-channel attacks are composed of two steps: the profiling step and the attack
step. The goal of the profiling step is to estimate the leakage model with known key measurements
and the attack step aims to use this model to guess key with unknown key measurements. But
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to lead a successful profiled side-channel attack, the difference between the two datasets needs
to be as minimal as possible because the leakage model needs to be the same for each device.

Before estimating the leakage model, the attacker must have a list of Np measurements called
a profiling set, denoted by x1,...,xNp ∈ Xprofiling. Each measurement xi into the profiling set
corresponds to the physical leakage occurring during the encryption process ci = E(pi, ki) on
the device Dclone. The profiling set is always a labelled dataset.

Once the attacker have enough measurements, he can perform a profiled side-channel tech-
nique (such as Template Attacks) or Machine Learning (ML) algorithms to estimate the leakage
model. The leakage model represents the dependency between each trace xi in the profiling set
Xprofilingset and the intermediate values Yi of the process. More specifically, the intermediate
variable is not directly the secret key k, but it depends on the secret key k and corresponds to
an intermediate state during the encryption process E.

Once the attacker determines the leakage model, he needs to have a list of Na measurements
called attack set, denoted by x1,...,xNa ∈ Xattack. An attack set is always an unlabelled dataset.
Each measurement xi into the attack set corresponds to the physical leakage that occurred during
the encryption process ci = E(pi, k∗) on the device Dtarget. The attacker uses the leakage model
and the attack set to predict/discover all intermediate value Yi used on the Dtarget.

Template Attack (TA) is first introduced by Chari et al. [9]. TA is considered as a pow-
erful profiled side-channel attack. The principle of TA is based on the same principle as the
generative model. From a statistical point of view, a generative model is a model of the con-
ditional probability of the observable X, given a target Y , symbolically, P (X|Y = y). In TA
the observable X represents the electromagnetic or power traces and the target Y represents all
possible key values. Thus, we observe a certain amount of couples (xi, yi)i, ..., Np. in order to
well establish the conditional probability between traces and each possible key value.

Deep Learning (DL)-based side channel attacks with convolutional neural network
is introduced by Prouff et al. [44]. The DL is considered to be the most powerful profiled
side-channel attack because DL is still efficient even in the presence of some countermeasures
(presented in Section 3.5). Different approaches of DL for side-channel attacks will be presented
with more details in Section 3.6.

3.4 Metrics on Side-Channel Attack

3.4.1 Leakage Quantification

A single trace can contain a certain amount of Points of Interest (PoI). A large number
of PoI plunges us into high-dimensional data. In the context of profiled attacks, it may cause
some troubles when estimating the model. Indeed, modelling the leakage gets harder with the

52



Side-channels attacks

dimension of the problem up to the point where it is untractable. Some techniques exist to
reduce the dimension of the data. The main used in a side-channel attack is the Signal-to-Noise
Ratio (SNR) metric. The SNR is the ratio between the deterministic data-dependent leakage
and the remaining noise:

SNR = Var(E(X|Y ))
E(Var(X|Y )) . (3.1)

In the equation 3.1:

— X represents the physical measurements, e.g. electromagnetic measurements
— Y represents the target intermediate variable.

3.4.2 Evaluation Metric

The attacker’s goal is to recover the secret key with the fewest number of traces possible.
To evaluate the efficiency of his attack, we use the Guessing Entropy (GE) metric. The GE
represents the ranking of the secret key k∗ in the list of possible key byte values. When the
attacker directly recovers the correct key the mean rank equal to 0 because the correct key is
at the first position in the list. Otherwise, if the mean rank is greater than 0, the attacker still
have to perform a small brute-force step to recover the correct key.
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Figure 3.3 – Guessing entropy metric

Figure 3.3 describes an example of profiled attacks where the GE equals 0. In detail, we
have:

— pk,j represents the probability that the key k is used in the trace j

— pk represents the average probability that the key k is used in all traces.
— k∗ represents the secret key.
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3.5 Countermeasure in Side-Channel Attacks

There are many ways to protect cryptographic implementations against SCA. The main idea
is to break the correlation between physical traces and sensitive data. The dependency between
the traces and the sensitive data can be reduced by adding some noise, this effect reinforces
the impact of countermeasure. Noisy traces are more difficult to attack than clear traces for
an attacker. Thus, the number of traces required by the attacker to guess the correct key will
increase. In the following section, we present the most common countermeasures from the state
of the art.

3.5.1 Masking Countermeasure

The aim of the masking countermeasure is to delete the statistical link between some
first moments of the measurements and the intermediate value. Masking countermeasure is the
main countermeasure used in SCA [8, 12, 48]. The masking countermeasure boils down to divide
the intermediate value into several parts by mixing it with random data. Those parts (called
shares) are then used to perform an equivalent computation. All these shares are statistically
independent from the intermediate value and are necessary to recover the final output of the
operation.

3.5.2 Hiding Countermeasure

Another known countermeasure is the hiding countermeasure. The goal of the hiding
countermeasure is to make the attacker’s measurements too noisy to be exploitable [10, 15, 14].
The hiding countermeasure is often implemented by randomizing the power, or ElectroMagnetic
(emission) (EM) traces. These countermeasures allow us to obtain a certain level of randomiza-
tion, desynchronization or misalignment into the traces and thus hide the dependency between
the intermediate value and the side channels. It is harder for an attacker to find the value of an
intermediate variable when using desynchronized or misaligned traces instead of synchronized
ones.

— Gaussian Noise is the most common type of noise that it found in SCA. The environment,
the condition of measurement can introduce noise into the traces. Some researchers [68]
implement Gaussian noise at the software level in order to simulate a noisy environment.
The noise in this simulation is intentionally introduced by adding a uniformly distributed
random value between a certain interval to each point of the trace.

— Desynchronization is different from the Gaussian Noise because it adds randomness into
the time domain. The three most used desynchronization countermeasures are Random-
delay interrupt, Clock jitter and Shuffling. Random-delay interrupt adds randomness
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to the time domain locally. This kind of countermeasure is implemented at the software
level. It inserts some fragments with no links to the computation and random duration.
Clock jitter is the hardware version of random-delay interrupt [7] but affects all the clock
cycles during the computation. Shuffling is a classical method to shuffle the traces by
shuffling order of operations when possible.
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3.6 Regular Deep Learning-based Attacks

The first work using ML techniques in SCA shows that Support Vector Machine (SVM)
and Random Forest (RF) are effective profiled SCA [41, 30]. Indeed, TA is optimal from an
information-theoretic point of view [28], however, when the set of measurements in the profiling
phase is limited SVM can be more efficient due to the underlying estimation problem [27]. More
recently, DL techniques are even more advantageous in several settings. Using the advantages
of DL in SCA is becoming a very "interesting" topic, with many published works over the last
few years.

The first work on SCA based on DL techniques is introduced by Maghrebi et al [44]. Like
the template attack, a DL technique is based on estimating a leakage model for each possible
value yi of the targeted sensitive variable Y during the training step. During the attack step,
these leakage models are involved to output the most likely key k∗ used during the acquisition
of the attack traces set. In SCA, an attacker is interested in the estimation of the probability of
each possible value ŷi deduced from a key hypothesis.

Maghrebi et al. [44] demonstrates that DL-based attacks are more efficient than template at-
tacks when targeting either unprotected or protected cryptographic implementations (with mask-
ing countermeasures). The authors make the first experiment on unprotected hardware(FPGA)
of the Advanced Encryption Standard (AES) implementation. They investigate four different
DL-based attacks (AutoEncoder (AE), Convolutional Neural Network (CNN), Long Short-Term
Memory (LSTM), MultiLayers Perceptron (MLP)). All DL-based attacks successfully recover
the correct key, but some DL-based attacks require more traces than others. CNN and AE obtain
the best performance and required half as many traces as the template attack to recover the
correct key. Finally, the LSTM does not perform better compared to the other DL-based attack
because the leakage of this device is not time-dependent.

MLP is investigated with and without Principal Component Analysis (PCA) as a prepro-
cessing. The authors show that using MLP without PCA leads to better performances than
with PCA. Authors assume that PCA probably removed some data components which are in-
formative for the MLP. This assumption shows the interest of using the DL technique compared
to a classical one that uses dimensionality reduction. In DL, during the learning process, the
network will improve itself on the task of extracting the relevant data and classifying the correct
key. A Deep Neural Network (DNN) will never remove data that is informative for the attack
performed afterwards. On the opposite, a classical approach will use a dimensionality reduction
technique to select some relevant features using some heuristic that will not perfectly fit the
following attack (for instance based on SNR which is a mono-variate metric).

The authors make a second experiment on a software implementation of an unprotected
AES implementation. They use the ChipWhispererCapture Rev2 board to acquire the traces.
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As in their first experimentation, the best performance is obtained by CNNs and AEs. The
AE requires only 20 traces on average to discover the correct key, whereas the template attack
requires between 80 and 100 traces on average.

Eventually, the authors make a last experiment on a first-order masked AES implementation
still using the ChipWhisperer-Capture Rev2 board. They show that DL-based attacks perform
well against masked implementation because AE,CNN,MLP require between 500 and 1,000
traces to recover the key. The template attack on the masked implementation needs more traces
to reach a mean rank equal to zero, the number of traces required by the template attack is
more than 1,000.

3.6.1 ASCAD Network

Benadjila et al. [54] propose the first in-depth study of DL algorithms when applied to the
context of SCA, and introduce a new database named ASCAD. The ASCAD database permits
checking the efficiency and accuracy of ML and DL algorithms applied to SCA with different
levels of countermeasure. The authors propose three variants of the ASCAD database:

— without jitter countermeasure,

— with a maximum jitter of 50 points 1,

— with a maximum jitter of 100 points.

For each variant of the ASCAD database, the authors give two datasets: a profiling set and
an attack set. Each dataset contains the traces corresponding to the profiling step or the attack
step, the labels, and some metadata (e.g. key, plaintext, ciphertext, mask, and desynch). The
number of profiling and attack traces is the same for the different variants. The authors acquire
60,000 labelled traces and chose 50,000 for the profiling set and the remaining 10,000 for the
attack set.

In addition to their in-depth study of DL algorithms, the authors investigate the question of
hyper-parameters tuning for the class of MLP and CNN to design an optimal architecture of the
network for SCA. The authors start to investigate the choice of the following hyper-parameters
for MLP architecture: the number of layers, the number of units of each layer and the activation
functions. The best MLP, denoted MLPbest, is obtained by using a number of layers equal to
6, a number of units of each layer equal to 200, and "ReLU" as the activation function. The full
architecture of MLPbest is described in Figure 3.4.

For CNN architecture, the authors investigate a list of parameters and their choice. Table 3.1
describes the list of tested parameters and the best one. The best CNN, denoted CNNbest, is
obtained by using a number of blocks equal to 5, a number of convolutional layers per block

1. The jitter countermeasure is artificially added by inserting a random offset.
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Figure 3.4 – Best MLP network for ASCAD

equal to 1, a number of filters equal to 64, 128, 256, 512, 512), a kernel size equal to 11, a number
of fully connected layer equal to 2, "ReLU" as activation function, "Average" as pooling layer,
and "same" as padding. The full architecture of CNNbest is described in Figure 3.5.

Parameter Range Choice
Epochs {10,25,...,100,150} up to 100
Batch Size {50, 100, 200} 200
Blocks [2..5] 5
Conv layers [0..3] 1
Filters {2i; i ∈ [4..7]} 64
Kernel Size {3,6,11} 11
Dense layers [0..3] 2
Activation function ReLU, Sigmoid, Tanh ReLU
Pooling layer {Max, Average, Stride} Average
Padding {Same, Valid} Same

Table 3.1 – Benchmarks Summary in ASCAD
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Figure 3.5 – Best CNN network for ASCAD

Finally, the authors evaluate four models, the two best models MLPbest, CNNbest, VGG-16
and a Template attack (combined with PCA). On synchronized traces, the performance of the
models are similar, however, we notice that the template attack gives slightly better results
than the others. Template attacks need less than 200 traces to obtain a mean rank equal to
0 whereas the other models require a bit more than 200. On the desynchronized traces, the
model CNNbest outperforms all the other models. To reach optimal accuracy, only 75 epochs
were needed. The model VGG-16 can obtain good performances with a higher number of epochs
but it is somehow expected because it is designed for image classification and not for SCA.
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Template attack combined with PCA provides similar results to CNNbest as long as the level of
desynchronization remains low. MLPbest obtain good performances on synchronized traces but
is very sensitive to jitter countermeasures.

3.6.2 Zaid Network

Zaid et al. [73] propose a first study of DL techniques based on some visualization tech-
niques, such as Weight visualization, Gradient visualization, and Heatmaps introduced by Ma-
sure et al [45]. They propose a methodology for building efficient CNN architectures in terms
of attack efficiency and network complexity, for multiple implementations of the AES on em-
bedded devices. They evaluate their methodology by using public datasets with and without
countermeasures. They demonstrate that their model, which we will refer to as the Zaid net-
work, outperforms the best CNN model presented in the ASCAD paper [54], while significantly
reducing the network complexity.

Authors use Weight visualization to evaluate the impact of performance related to the convo-
lutional part. If the feature selection made by the convolutional layer is efficient, neurons of the
first dense layer where information leaks will be evaluated with high weight during the training
step. A weight with a large value means that the feature used by the network for its predic-
tions is important. Thus, by visualizing the weight, they can understand which neurons have a
positive impact on the classification. In addition to Weight visualization, they use Heatmap to
understand which feature is selected by each filter. The Heatmap permits us to understand the
role of each filter and determine which hyperparameter is the most suitable for feature selection.

The optimal architecture of CNN proposed by Zaid have one block composed of one convo-
lutional layer, one "BatchNormalization" layer, and one "Average" pooling layer, follow by one
"flatten" layer and three dense layers. The convolutional layer contains 4 filters, have a kernel
size equal to 1, uses "SeLU" as the activation function, and the padding called "same". The
padding known as "same" is a padding that distributes zeros uniformly to the input’s left and
right or up and down. Each dense layer is composed of 10 neurons, uses HE uniform [25] as the
kernel initializer, and "SeLU" as the activation function (described in equation 2.12), except for
the last dense layer which have a "softmax" activation function. The full architecture of the Zaid
network is described in Figure 3.6.
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Figure 3.6 – Zaid network
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First, to evaluate the performance of their model, the authors test it on synchronized traces
for both unprotected and first-order masked AES. By visualizing the weights, authors notice
that their network recognizes relevant information related to the mask and masked value. Their
network is 3930 times less complex than the original paper [54], and it successfully guesses the
correct key with 191 traces, whereas, in the original paper, 1146 traces were needed to obtain
the same performance.

Then, the authors test their model on desynchronized traces with a certain level of random
delay (50 and 100) and first-order masked AES. The heatmaps used by the authors permit to
demonstrate that their network recognizes some influential patterns to predict the correct key,
these patterns correspond to different leakages positions. For a random delay equal to 50, they
success to reduce the number of traces from 5000 to 244, and the complexity of CNN is divided
by 763, compared to the original paper [54]. For a random delay equal to 100, the Zaid network
needs a number of traces equal to 270, whereas, in the original paper, it converges using 5000
traces.

3.6.3 NoConv1 Network

Wouters et al. [66] proposes a critical review of the paper by Zaid et al. [73]. They propose
a new DNN architecture, called NoConv1, that has fewer parameters than the Zaid network
while maintaining a similar performance, thus the number of parameters is reduced on average
by 52%.

They demonstrate that the first convolutional layer from the Zaid network can be replaced
by preprocessing techniques. They evaluate their network (where the convolutional layer is re-
placed by some normalization technique) and compare it to the Zaid network on synchronized
and desynchronized traces. The normalization techniques used are feature standardization and
feature scaling. For the synchronized traces, both networks give quite similar results, thus they
prove that the convolutional layer can be replaced by a normalization technique. For the desyn-
chronized traces, the NoConv1 network performs slightly worse than the Zaid network but it is
faster to train.

The NoConv1 network is composed of one "Average" pooling, one "flatten" layer, and three
dense layers. All dense layers have 10 neurons and "SeLU" as the activation function, except
for the last dense layer which have a "softmax" activation function. The full architecture of the
NoConv1 network is described in Figure 3.7.

Authors also provide a different interpretation from the one of Zaid et al [73] based on weight
visualization. One conclusion make by Zaid et al. is that a model trained with a larger filter size
leads to worse performances, but the results present by Wouters et al. suggest the opposite. On
our side, we think that a low number of filters can lead to worse performances. The number of
filters will determine how much information (pattern) will be extracted and used by the network,
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and a network with little information will always have more difficulty to converge than a network
with more. However, we also believe that an excessive number of filters can lead to a reduction
in performance because in this case, the information extracted by the network could appear too
specialized.
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Figure 3.7 – NoConv1 network

Since the interest of DL [54, 73, 66] for the side-channel attack, the traditional attack has
been less studied. Lichao et al. [70] claims that TA can continue to be efficient and to outperform
DL-based side-channel attacks. They highlight the fact that the TA have a certain advantage
compared to DL techniques, e.g. if not dimension reduction technique is applied on the input,
TA does not have any hyperparameters to tune. They propose a new DL-assisted TA capable
of breaking protected implementation. Their model is a combination of DL and TA. The DL
part’s aim is to extract relevant features from traces. Deep learning uses a triplet network 2.
The features (extracted by the DL) are then fed into the TA to discover the key. They evaluate
their model on two publicly available datasets 3 and target two labels 4, and they compare the
performance of their model with many networks fine-tuned for SCA [73, 69, 55, 52]. Also, they
compare their model to TA with some dimensionality reduction techniques, such as PCA and
AE. Their results show that TA assisted with the DL technique can outperform some networks
fine-tuned for SCA. They also show that DL-assisted TA is better for feature engineering than
PCA and AE.

Lichao et al. [70] presents interesting work because they use the advantage of the DL network
to extract relevant features and improve the efficiency of TA. Their work demonstrates that the
DL network can be used not only to discover the correct key, as a direct SCA but also to increase
the efficiency of existing techniques.

2. The triplet network is evolved from the Siamese network, it is a stack of three networks that use shared
weights and a triplet loss.

3. The two used datasets are the two versions of ASCAD dataset: https://github.com/ANSSI-FR/ASCAD.
4. The two labels are the intermediate value of the AES cipher and the Hamming weight.

61

https://github.com/ANSSI-FR/ASCAD


Side-channels attacks

3.7 Motivation of the thesis

In the previous section, we have seen the advantages to mount profiled attacks rather than
non-profiled attacks because of the fewer attack trace requirements. Also, we have seen the
advantage of using DL techniques instead of classical profiled attacks such as TA. Mostly, DNN
is used with data that have been measured under ideal conditions, with traces coming from the
same system as the targeted one with as little noise as possible. This assumption guarantees a
small variation between the profiling set and the attack set and thus ensures that the performance
of the DNN will be the same on the profiling set and the attack set.

In some real-world situations, it is not practical to use the same measurement equipment for
both profiling and attacking. The assumption that profiling and attacking are carried out using
the same measurement setup is assumed in the majority of published publications. We think
that others sources of information from other devices or other probes can be beneficial for SCA
because the few papers that have investigated this approach have shown an improvement over
the traditional technique.

In this thesis, we investigate how deep learning can take profit from other sources of in-
formation through 3 contributions. Each contribution presents a new attacking method that is
based on using the original but also some other available source of information. We refer to
these three ways of attack as multi-channel attacks, transferred attacks, and translated attacks.
Considering that these attacks are different, we will present them in individual chapters namely
Chapter 5,6 and 7 and explain why our approach can be beneficial compared to the current
related work. In the following Chapter 5, 6 and 7 we describe different attacks that we used in
our contribution namely regular attacks, pre-trained attacks, multichannel attacks, transferred
attacks and translated attacks. In addition to these three ways of attack, we present preliminary
experiments using DL techniques to determine the optimal hyperparameters of our networks.
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Chapter 4

MOTIVATION AND IMPLEMENTATION

DETAILS

4.1 Implementation details

In Chapter 5, 6 and 7, we conduct our studies based on three existing networks from the state-
of-the-art of Deep Learning (DL)-based side-channel attacks namely ASCAD [54], Zaid [73], and
Noconv1 [66] presented in Chapter 3. We focus on the Advanced Encryption Standard (AES)-
128 encryption code as the one from ASCAD [54]. The learning curves of these three networks
are very different to have a generic working strategy for all our experiments. We cannot use an
early stopping method, which means stopping the training of the network once its loss will stop
decreasing because in Side-Channel Attack (SCA) we observe that even when the loss starts
to increase the network sometimes still learns relevant things: it can be due to the fact that
the loss is not perfectly suited to the SCA context. To determine the ideal number of epochs
for each network, we conducted a preliminary analysis, which we provide in Section 4.3. Three
criteria were used to determine the number of epochs: accuracy, loss value, and mean rank on
the validation set. The batch size for the three networks has been set at 128 because it is the
most adapted to the available computing hardware in the lab.

4.2 Measurement setup

4.2.1 AVR platform

The database called "DATABASE_AVR" was created in order to have a setup similar to the
one used for producing the ASCAD database. However, we used an STK500 board instead of a
smart card to earn time (the STK board already being part of the team platform). The target
we used for experiments is a raw AtMega8515 microcontroller on the AVR STK500 platform 1.
We used the AES-128 encryption code as the one from ASCAD which is protected using a
masking countermeasure [1], the compiler optimization flag was set to -O0 but we did not embed

1. For ASCAD a smart-card embedding this microcontroller has been used.
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the SOSSE operating system. The chip frequency was set to 3.686MHz. The measurements
were obtained using different Langer near-field EM probes (two RF-B 0,3-3 and one RF-K 7-4)
connected to 30dB amplifiers the overall having a bandwidth maximum frequency of 3GHz.
The signal was then digitized by an RTO2014 oscilloscope from Rohde & Schwarz having a
bandwidth of 1GHz (thus being the limiting element of the acquisition chain).

Figure 4.1 – First-Order masked AES [54]

We focused on the first AES round with a sampling frequency of 1Gs per second and obtained
traces containing 20K samples. Figure 4.1 describes, at the algorithmic level, the targeted AES

64



Motivation and Implementation details

Figure 4.2 – Experiment setup on STK500 board

implementation. In our contribution we recover an intermediate value called snr4 [54], this
operation corresponds to the masked sbox output (described in table 4.1).

Name target value Description Definition
snr1 unmasked sbox output sbox(p[3] ⊕ k[3])
snr2 masked sbox output sbox(p[3] ⊕ k[3]) ⊕ rout

snr3 common sbox output mask rout

snr4 masked sbox output in linear parts sbox(p[3] ⊕ k[3]) ⊕ r[3]
snr5 sbox output mask in linear parts r[3]

Table 4.1 – List of target value

The main two differences between our setup and the one from [54] are

1. the fact that we use a raw microcontroller on a development board instead of a smart-card,

2. the measured quantity is EM radiation instead of power consumption.

We observed that the leakages we obtained have different behaviour than the one reported
in [54], that is different time locations but also different signal amplitudes.

Figure 4.2 is a picture of the measurement setup on the STK500 board. We can see the three
probes that capture ElectroMagnetic (emission) (EM). These three probes capture the following
channels: EM2, EM3, and EM4. Channels EM2 and EM3 are close to the microcontroller while
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Figure 4.3 – SNR evaluation for each channel (from left to right: EM2, EM3, EM4) on AVR
platform

EM4 is further from the microcontroller. It is intentional to have a probe that is further away
from the microcontroller because it allows us to have noisier traces. We also add more variation
between EM3 and EM4 by selecting two different kinds of probes, this permits us to add the
variation between two probes in addition. Thus, we are able to treat in more detail how other
sources of information can be used.

Figure 4.3 describes the Signal-to-Noise Ratio (SNR) evaluation for the channels EM2, EM3,
and EM4. On the left, we have the SNR evaluation for EM2. In the middle, we have the SNR
evaluation for EM3. On the right, we have the SNR evaluation for EM4. We observed that
channel EM2 has the highest SNR value compared to channels EM3 and EM4. EM2 has a higher
SNR value than EM4 because the probe is closer to the microcontroller, and the difference of
SNR value between EM2 and EM3 may be due to the different type of probe used and/or the
distance to the die that is small and located in the center. We also observed that channel EM3
has a higher SNR value than EM4 because it is also closer to the microcontroller compared to
EM4.

4.2.2 ChipWhisperer platform

We decided to create another database called "DATABASE_STM32" to extend our experi-
ment on several devices coming from the STM32 family. The database "DATABASE_STM32"
contains several traces that come from different devices and different side-channels.

We used the chipwhisperer lite capture board combined with the CW308 UFO board on
STM32Fx target devices. Similarly to the previous setup, we measured the first round of an
AES-128 encryption, where we used the TINYAES implementation integrated in the chipwhisperer
software. The chip frequency was set to 7.37MHz and the measurements are sampled at 4×7.37
Ms/s. Power consumption is collected through the measurement shunt on the CW308 UFO
board. To capture EM signals, we used a Langer near-field EM probe (RF-U 5-2) connected to
a 20dB amplifier.
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Figure 4.4 – Experiment setup for ChipWhisperer platform

Figure 4.5 – SNR evaluation for each targeted device on STM32 platform

Figure 4.4 is a picture of the measurement setup on the ChipWhisperer (CW) platform. We
can see a probe that captures EM for the different devices (F0, F1, F2, and F4). We also have
a probe that captures the power consumption of these devices.

Figure 4.5 describes the SNR evaluation for the different devices (F0, F1, F2, F4) On the left,
we have the SNR evaluation of these devices with EM. On the right, we have the SNR evaluation
of these devices with power. We observed that for each device the leakage position is specific
and also that we obtained different SNR values. Overall, we observed that power channels lead
to larger SNR values than EM channels.
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4.3 Preliminary analysis

We made a preliminary analysis in order to determine the optimal number of epochs that
should be used for the three networks (ASCAD, Zaid, NoConv1) for our future contribution (in
the next chapters). This analysis focuses on three networks because we wanted to show that our
results can be applied to different networks. Concerning the choice of these networks, we chose
the three most recurrent networks in the state-of-the-art at the time of our contributions.

The preliminary analysis is focused on the hyperparameter called "epoch", it is the parameter
that define the number of iterations done by the network. The other hyperparameters are defined
with constant values. The selected values are the ones respectively defined in the ASCAD [54],
Zaid [73] and Noconv1 [66] seminal papers. Since "Epoch" was the most crucial hyperparameter
for ensuring our neural networks’ convergence, we made the choice to concentrate on it. The
learning of the network is also affected by additional hyperparameters like "batch size," "learning
rate," or "optimizer," however frequently their values are fixed. In order to be fair in our analysis,
we prefer not to touch these parameters and to train as long as necessary on the new data sets.
Table 4.2 describes the selected values of the other hyperparameters.

Hyperparameters ASCAD NoConv1 Zaid
Optimizers RMSprop Adam Adam
learning rate 0,00001 0,00001 0,00001
batch size 128 128 128
Activation function ReLU SeLU SeLU
Blocks 5 0 1
Filters [64,128,256,512,512] [2] [4,2]
kernel initializer Glorot uniform Glorot uniform He uniform
Kernel Size 11 0 1
Strides 2 2 2
Padding Same Valid Same
Conv layer 5 0 1
Pooling layer 5 1 1
Dense layer 3 3 3
Units 4096 10 10

Table 4.2 – Summary of hyperparameters common to all sources

The preliminary analysis was done with three different architectures of neural networks:
ASCAD [54], Zaid [73] and NoConv1 [66] (presented in Chapter 3). The number of epochs
depends on the amount of useful information linked to the targeted label, and also depends on
the architecture of the network. In a nutshell, a deeper architecture requires more data for the
training, and more epoch to converge. The preliminary analysis takes into account the number
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of epochs with three different metrics: the loss value (given by the loss function), the accuracy,
and the mean rank on the validation set. Usually in the machine learning community, one just
takes into account the loss value and the accuracy. However, for SCA we also consider the mean
rank metric because it is more relevant than the former according to the objective that our
neural network must reach.

We decided to choose these three metrics in order to have more information and more
accuracy regarding the convergence of our networks. The loss allows us to give information
about the summation of errors done by our model, and the accuracy provides information about
the correct prediction done by our model. The loss and accuracy give global information but not
enough information about the actual goal and in some situations, the learning of the network
can stagnate. Picek et al. [53] demonstrated that loss and accuracy may not coincide with the
SCA metric. The mean rank gives us specific information about the performance of the network
to find the correct sub-key. The mean rank concerns only one sub-key (the intermediate value
present in section 4.2.1) but in our case this is not a problem because we will target the same
sub-key in each contribution. In case we would like to target another sub-key, it would be
preferable to conduct another preliminary analysis, because another sub-key may require more
epochs depending on the amount of data leakage. Thus this study is conducted to determine
the ideal number of epochs for a given subkey. However, for a total attack on all the sub-keys
(16 sub-keys) we could also use transfer learning to avoid relearning for all possible subkeys.

The preliminary analysis was done with

i) a reduced profiling set composed of 10,000 traces (resp. 2,000 traces) for the training set
(resp. validation set),

ii) a complete profiling set composed of 80,000 traces (resp. 20,000 traces) for the training
set (resp. validation set),

In our contribution, we also wanted to study the performances of these networks with a
limited amount of data, because in a more real context an attacker may find himself learning
with a limited amount. So in addition to the 100% data acquired (which represents the complete
amount of data), we also wanted to study the performance of these networks with 12% of data
(which represents the limited amount of data). The interest is to see how in a concrete case the
networks and these hyperparameters are impacted by this amount of data and to see how we
can achieve/keep the same performance with this limited amount.

Finally, this preliminary analysis has been motivated by the need of ensuring that we selected
the correct number of epochs for both databases used in our contributions.
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4.3.1 ASCAD network

Train with 12% of the database

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.6 – Training over 200 epochs using EMx

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.7 – Training over 200 epochs using FxEM

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.8 – Training over 200 epochs using FxPW and 12% of the database

We first made an analysis with the reduced profiling step (composed of 10,000 traces for
training and 2,000 traces for validation). First, we define 200 epochs for all the sources of
training (including the channels from the AVR platform and the side channel, and devices
from the STM32 platform). Figure 4.6 shows the evolution of loss, accuracy, and mean rank on
the validation set with 200 epochs for the AVR platform. Figure 4.7 and Figure 4.8 show the
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evolution of loss, accuracy, and mean rank on the validation set with 200 epochs for the STM32
platform.

Figure 4.6a, Figure 4.7a, and Figure 4.8a show the evolution of loss on the validation set.
We observe that the value of the loss increases at different times depending on the source used
during the training. Generally, the value of the loss increases before 175 epochs which means
the model is overfitting (and learning too well on the training set but not on the validation
set). Figure 4.6b, Figure 4.7b, and Figure 4.8b show the evolution of accuracy on the validation
set. For all experiments the accuracy increases but the number of epochs before reaching the
best accuracy strongly depends on the source, e.g. for the source F1PW the best accuracy is
reached with 25 epochs whereas, for the source F2PW, the best accuracy is reached with 50
epochs. We can see that the highest accuracy is at 15% which can be considered as weak.
However, this accuracy is acceptable in side-channel attacks because our networks try to predict
a subkey value among 256 possible values. In this case a random decision represents an accuracy
of 1/256 = 0.0039. So a network which obtains an accuracy higher than 0.0039 is a network
which has acquired concepts and which will not give a random decision, in our case the 15% of
accuracy confirms well that our network has acquired knowledge and converge towards a solution
with a limited amount of traces. In other fields that use machine learning, we often end up with
an accuracy of 80% to 99%. In the context of side-channel attacks, an accuracy of 80 to 99%
would mean that our network can attack using only 1 or 2 traces. Currently, this accuracy is
difficult to reach and we find rather accuracy orders ranging from 0.5% to 20% (the accuracy
also depends on the target system and the countermeasures implemented on this system). Thus
reaching an accuracy of 15% is quite acceptable.

Figure 4.6c, Figure 4.7c, and Figure 4.8c show the evolution of the mean rank on the valida-
tion set. We observed that depending on the source of the training, the mean rank can decrease
or remain constant. Generally, we observe on the three metrics that the ASCAD network hardly
converges on EM sources while good performances are obtained on power sources. We observed
that 200 epochs are sufficient for the ASCAD network with most of the training sources and if
we increase the number of epochs we risk that the model will be overfitting. In Figure 4.6c, we
also distinguish two types of curve. Indeed the EM4 curve is different from EM2 and EM3, we
see that EM2 and EM3 converge quickly while EM4 only very slightly decreases. This difference
can be explained by the amount of information contained in each channel. Indeed the EM4
channel captures much more noise than EM2 and EM3 (because the probe is further from the
microcontroller) which may explain the difficulty of the network to converge with this channel.
Another difference is visible between the average ranks of FxEM in figure 4.7c and FxPW in
figure 4.8b. This difference is also explained by the fact that the FxEM channels contain less
information than the FxPW channels.

These figures are interesting because they confirm that the loss value is not the only metric
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to take into account in SCA. Indeed, we see cases where the loss value starts to increase whereas
the accuracy is still increasing and the mean rank is still decreasing.

Train with 100% of the database

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.9 – Training over 200 epochs using EMx

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.10 – Training over 200 epochs using FxEM

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.11 – Training over 200 epochs using FxPW and 100% of the database

We analyzed the ASCAD network using 80,000 traces for the training and 20,000 traces
for the validation. As previously, we started by using 200 epochs for training all the sources.
Fig 4.9, Fig 4.10, and Fig 4.11 show the evolution of loss, accuracy, and the mean rank on the
validation set with 200 epochs using EM2, EM3, EM4, F0EM, F1EM, F2EM, F4EM, F0PW,
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F1PW, F2PW, and F4PW. Figure 4.9a, Figure 4.10a, and Figure 4.11a show the evolution of the
loss on the validation set. Figure 4.9b, Figure 4.10b, and Figure 4.11b show the evolution of the
accuracy on the validation set. Figure 4.9c, Figure 4.10c, and Figure 4.11c show the evolution
of the mean rank on the validation set.

We observe a similar behaviour as in the reduced dataset experiments namely the ASCAD
network converges well on power sources. We observe that the loss and accuracy increase at
different time periods depending on the power source used during the training. We observe that
the ASCAD network with a power source can reach a mean rank equal to 0 with less than
25 epochs. However, we observe that the loss increases quickly with EM source on F0, F1, F2
and F4. Generally, the value of the loss increases before 50 epochs which means the model
is overfitting. Compared to the reduced dataset, we observe that the network also overfitted
with a full dataset but it overfitted faster. We, therefore, believe that overfitting is not only
related to the quantity of data but also to the quality of the data provided. We observe that the
accuracy has difficulty increasing for EM4, and FxEM. For the channel EM4, we expected a low
accuracy as with the reduced dataset because even using more traces, these traces still contain
noise which makes learning still difficult. We observe that the mean rank hardly decreases for
EM4, and FxEM. The assumptions stated above can explain this phenomenon. Nevertheless, an
interesting point we noticed is that the mean rank of the FxEM channels decreases a little bit
between epoch 0 and 25, while the loss and accuracy do not necessarily indicate an improvement.
The mean rank allows us to see that the network has still acquired some knowledge at some
point thanks to this slight decrease.

When we compared these metrics between EM and power, we can conclude that using power
is more relevant than using EM.

4.3.2 NoConv1 network

We performed similar tests as the one from ASCAD but replacing the network by NoConv1.

Train with 12% of the database

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.12 – Training over 2,000 epochs using F0PW, F1PW, F2PW and 12% of the database
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We first used the reduced set (that is 10,000 traces for the training and 2,000 traces for the
validation). First, we define 2,000 epochs for all the sources of training (including the channels
from the AVR platform and the side channel, and devices from the STM32 platform). We defined
more epochs than the ASCAD network as a starting point because the NoConv1 network is a
more unstable network. Figure 4.12 shows the evolution of loss, accuracy, and mean rank on the
validation set with 2,000 epochs using F0PW, F1PW, and F2PW. As previously, Figure 4.12
illustrates only the sources converging within 2,000 epochs (at maximum). Figure 4.12a shows
that the loss value decreases since the beginning of the training. Figure 4.12b shows the same
observation, that the accuracy grows since the beginning of the training. However, Figure 4.12c
shows that the network quickly reaches a mean rank equal to 0 with at least 1,250 epochs. The
evaluation of the mean rank on the validation set permits us to know that 2,000 epochs are
sufficient for our network to converge to an optimal solution with F0PW, F1PW and F2PW.

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.13 – Training over 3,000 epochs using EMx, FxEM, FxPW and 12% of the database

Secondly, we extended the number of epochs to 3,000 for the other sources except for F2EM
and EM3. Figure 4.13 shows the evolution of loss, accuracy, and mean rank on the validation set
with 3,000 epochs using EM2, EM4, F0EM, F1EM, F4EM, and F4PW. Figure 4.13 illustrates
only the source that converges with 3,000 epochs (at maximum). Figure 4.13a shows that the
loss value decreases since the beginning of the training for source EM2 and F4PW, but hardly
decreases for EM4, F0EM, F1EM, and F4EM. Figure 4.13b shows that the accuracy of F4PW
is growing quickly, but for the other sources, the increase in accuracy is slower. For accuracy, we
observe the same results as the ASCAD network, which is that the accuracy may seem low, but
the network NoConv1 has acquired knowledge. These results are confirmed by the evolution of
the mean rank.

Figure 4.13c shows that the mean rank decreased since the beginning of the training for
source EM2 and F4PW, but decreases slower for EM4, F0EM, F1EM, and F4EM. The same
observation applies to the loss value and the mean rank, however, the loss for the source F4PW
is decreasing at 3,000 epochs but the mean rank remains constant and close to 0 at 3,000 epochs.
The evaluation of the mean rank on the validation set permits us to know that 3,000 epochs are

74



Motivation and Implementation details

sufficient for the noConv1 network to converge to an optimal solution with EM2 and F4PW.
Similar to the previous experiments on ASCAD, we observe two types of curves for the mean
rank. Like ASCAD, the NoConv1 network learns more easily with the data from FxPW than
with the data from FxEM (for the same reason as stated for ASCAD).

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.14 – Training over 4,000 epochs using F2EM and 12% of the database

Third, we extended the number of epochs to 5,000 for the source EM3 and F2EM. Figure 4.14
shows the evolution of loss, accuracy, and the mean rank on the validation set with 5,000 epochs
using EM3 and F2EM. Figures 4.14a and 4.14c show us some interesting things about source
F2EM. We observed that the network takes at least 2,500 epochs before converging and decreases
the loss value and the mean rank. In detail, we show that the loss value increases between
0 and 2,000 epochs, remains constant between 2,000 and 2,500 epochs, and finally decreases.
Figure 4.14c shows that the mean rank remains constant between 0 and 2,500 epochs, and finally
decreases. For EM3, Figure 4.14a shows that the loss value decreased between 0 and 4,000 epochs,
and finally remains constant since 4,000 epochs. It shows that the accuracy increased between 0
and 3,0000 epochs and the mean rank decreased between 0 and 2,000 epochs to finally remains
constant since 2,000 epochs.

Train with 100% of the database

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.15 – Training over 2,000 epochs using FxEM, FxPW and 100% of the database
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As in the previous analysis of the ASCAD network, we also analyzed the Noconv1 network
by using 80,000 traces for the training and 20,000 traces for the validation. As the first analysis,
we started our analysis with 2,000 epochs. Figure 4.15 shows the evolution of loss, accuracy,
and the mean rank on the validation set with 2,000 epochs using F0EM, F1EM, F4EM, F0PW,
F1PW, F2PW, and F4PW. Figure 4.15a shows that the loss value of the source F0PW, F1PW,
F2PW, and F4PW decreased and remains stable since the beginning of the training, however,
the loss value of the source F0EM, F1EM, and F4EM hardly decrease since the beginning. We
had the same observation in Figure 4.15b, the accuracy for the source F0PW, F1PW, F2PW,
and F4PW increases faster and is stronger than the accuracy for the source F0EM, F1EM, and
F4EM. Figure 4.15c shows that the mean rank for the source F0PW, F1PW, F2PW, and F4PW
converge to 0 with at least 250 epochs whereas the other sources (F0EM, F1EM, and F4EM)
decrease a bit but do not reach a mean rank equal to 0.

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.16 – Training over 3,000 epochs using EM2, EM4, F2EM and 100% of the database

Next, we extended the number of epochs to 3,000 for the source EM2, EM4, and F2EM.
Figure 4.16 shows the evolution of loss, accuracy, and the mean rank on the validation set with
3,000 epochs using EM3, EM4, and F2EM. Figure 4.16a shows a strange evolution of the loss
value. For the evolution of the source EM3, we observed that the loss value decreases between 0
and 500 epochs, and grows between 500 and 3,000 epochs. For the evolution of the source EM4,
we observed that the loss value decreases a bit between 0 and 200 epochs, growing between 200
and 1,500 epochs, then decreasing from 1,500 epochs. For the evolution of the source F2EM, we
observed that the loss value decreases between 0 and 3,000 epochs. Figure 4.16a shows us how
the variation between the channels and the devices can affect the loss during the training of the
Noconv1 network. We observed that the NoConv1 network is sensitive to the issue of overfitting
with the channels EM3 and EM4. Figure 4.16b shows that for all sources (EM3, EM4, and
F2EM) the accuracy grew between 0 and 3,000 epochs. Figure 4.16c shows that for all sources
the mean rank decrease between 50 and 500 epochs, and remains constant after 500 epochs.
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(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.17 – Training over 5,000 epochs using EM2 and 100% of the database

Finally, we extended the number of epochs to 5,000 for the source EM2. Figure 4.17 shows
the evolution of loss, accuracy, and the mean rank on the validation set with 5,000 epochs using
EM2. We observed that the loss for the source EM2 decreases between 0 and 100 epochs, and
then grows to 5,000. We see the importance of determining the correct number of epochs in these
results 4.17a because we can see that the network learns things before overfitting. We observed
that the accuracy for the source EM2 increases between 0 and 5,000 epochs. We observed that
the mean rank for the source EM2 decreases between 0 and 100, then increases a little bit, and
finally decreases and remains constant until 5,000 epochs.

4.3.3 Zaid network

Train with 12% of the database

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.18 – Training over 1,000 epochs using EMx and 12% of the database

As a previous analysis with the ASCAD network and Noconv1 network, we made another
analysis with the Zaid network by using 10,000 traces for the training and 2,000 traces for the
validation. We define 1,000 epochs at the beginning of our analysis for all sources of training
(including the channels from the AVR platform and the side channel, and devices from the
STM32 platform). We defined more epochs than the ASCAD network such as the Noconv1
network because the Zaid network is also a more unstable network than the ASCAD network,
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(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.19 – Training over 1,000 epochs using FxEM and 12% of the database

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.20 – Training over 1,000 epochs using FxPW and 12% of the database

and thus required more epochs to converge. Figure 4.18, Figure 4.19, and Figure 4.20 show the
evolution of loss, accuracy, and the mean rank on the validation set with 1,000 epochs using
EM4, F0EM, F1EM, F2EM, F4EM, F0PW, F1PW, F2PW, and F4PW. These figures illustrate
only the source that converges with 1,000 epochs (at maximum). In Figure 4.20a we observed
that the loss value of all power channels decreases between 0 and 1,000 epochs. However, in
Figure 4.18a the loss value of all EM channels remains constant.

Figure 4.20b shows that the accuracy of F0PW, F1PW, F2PW, and F4PW increases between
0 and 1,000. But in Figure 4.18b and Figure 4.19b the accuracy of EM4, F0EM, F1EM, F2EM,
and F4EM do not increase a lot and remains constant. Figure 4.20c shows that the mean rank
decreases and the Zaid network reach a mean rank equal to 0 for all source of power with 600
epochs. In Figure 4.18c we observed that the mean rank of the EM source decreases a little bit
less than the power. We still observe these two groups of mean rank curves. Similarly to ASCAD
and NoConv1, the Zaid network learns more easily on the FxPW data than on the FxEM data.
We also see that despite the fact that the accuracy is not high, the mean rank is reduced which
means that Zaid network has learned some concepts during the training.

Secondly, we have extended the number of epochs to 5,000 for the sources EM2 and EM3.
Figure 4.18 shows the evolution of loss, accuracy, and the mean rank on the validation set with
5,000 epochs using EM2 and EM3. In Figure 4.18a, we observed that the loss value decreases
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since the beginning of the training. The decrease in the loss value is correlated to the increase
of the accuracy in figure 4.18b. Finally, we observed that the mean rank for source EM2 and
EM3 decrease also since the beginning of the training. The mean rank did not reach a mean
rank equal to 0, however, it decreased from 140 to 20.

Train with 100% of the database

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.21 – Training over 1,000 epochs using FxEM and 12% of the database

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.22 – Training over 1,000 epochs using FxPW and 12% of the database

Like the two previous analyses with ASCAD and Noconv1 networks, we also analyzed the
Zaid network by using 80,000 traces for the training and 20,000 traces for the validation. We
started our analysis with 1,000 epochs. Figure 4.21 and Figure 4.22 show that the loss, accuracy,
and mean rank on the validation set with 1,000 epochs using F0EM, F1EM, F2EM, F4EM,
F0PW, F1PW, F2PW, and F4PW. In figure 4.21a and Figure 4.22a, we observed that the loss
value decreased since the beginning of the training. However, the loss value for the F0EM, F1EM,
F2EM, F4EM decrease more slowly than F0PW, F1PW, F2PW, and F4PW. In Figure 4.21b
and Figure 4.22b, we observed that accuracy increased since the beginning of the training. We
observed that the accuracy for the F0EM, F1EM, F2EM, and F4EM increase more slowly than
F0PW, F1PW, F2PW, and F4PW. In Figure 4.21c and Figure 4.22c, we observed also that the
mean rank for F0EM, F1EM, F2EM, and F4EM decreases more slowly than F0PW, F1PW,
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F2PW, and F4PW. Such as the ASCAD Network and NoConv1 network, we distinguish two
groups of mean rank. The first group concerns all channels with electromagnetic emission and
the second concerns all channels with power.

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.23 – Training over 3,000 epochs using EM4 and 100% of the database

Secondly, we extended the number of epochs to 3,000 for the source EM4. Figure 4.23 shows
the loss, accuracy, and mean rank on the validation set with 3,000 epochs using EM4. We
observed that the loss value reaches its minimal value at the beginning of the training between
0 and 100 epochs. We observed that the accuracy hardly increases. We observed that the mean
rank decreases to 100 at the beginning of the training.

(a) Loss metric (b) Accuracy metric (c) Rank metric

Figure 4.24 – Training over 5,000 epochs using EM2, EM3 and 100% of the database

Finally, we extended the number of epochs to 5,000 for the sources EM2 and EM3. Figure 4.24
shows the loss, accuracy, and mean rank on the validation set with 5,000 epochs using EM2 and
EM3. We observed that the loss value for source EM2 decreases a lot between 0 and 500 epochs
and then remains constant but the loss value for source EM3 decreases until 5,000 epochs. We
observed that the accuracy of the source EM2 and EM3 grow between 0 and 5,000 epochs. We
observed that the mean rank for the source EM2 and EM3 also decreased between 0 and 5,000
epochs.
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In Section 4.3, we made a preliminary analysis to determine the number of epochs that each
network will use depending on the source of information used. This analysis was made with
ASCAD, Zaid and NoConv1 networks because it’s the most known network used in state-of-the-
art of side channel attacks with deep learning techniques. We selected these networks in order
to make our experiments and several networks and demonstrated that our contribution covers
several deep learning techniques. As mentioned previously, we cannot use an early stopping
method because some networks can take a certain number of epochs before they converge 2. We
have seen that depending on the source of information and the amount of data available, the
number of epochs can vary. In all cases, using power as the source of information permitted the
three neural networks to converge more quickly than the EM source. However, the number of
epochs to converge until this mean rank depends on the network. The most important part of
this analysis is the following two tables that summarize all hyperparameters information used in
the following chapters. Table 4.3 summarises how many epochs have been defined for the training
of ASCAD, Zaid, and NoConv1 networks according to a source of information with 100% of the
database. Table 4.4 summarises how many epochs have been needed for the training of ASCAD,
Zaid, and NoConv1 networks according to a source of information with 12% of the database.
These epochs will be used in the following chapters 5, 6, 7. Table 4.2 summarizes all the other
hyperparameters that we have used whatever the source of information for all networks, these
hyperparameters are used in Chapters 5, 6, and 7.

Source of information ASCAD NoConv1 Zaid
EM2 200 5,000 5,000
EM3 200 3,000 5,000
EM4 200 3,000 3,000
F0EM 200 2,000 1,000
F1EM 200 2,000 1,000
F2EM 200 3,000 1,000
F4EM 200 2,000 1,000
F0PW 200 2,000 1,000
F1PW 200 2,000 1,000
F2PW 200 2,000 1,000
F4PW 200 2,000 1,000

Table 4.3 – Number of epochs defined for 100% database

2. for example the case of NoConv1 network with 12% of the dataset on F2EM
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Source of information ASCAD NoConv1 Zaid
EM2 200 3,000 5,000
EM3 200 5,000 5,000
EM4 200 3,000 1,000
F0EM 200 3,000 1,000
F1EM 200 3,000 1,000
F2EM 200 5,000 1,000
F4EM 200 3,000 1,000
F0PW 200 2,000 1,000
F1PW 200 2,000 1,000
F2PW 200 2,000 1,000
F4PW 200 3,000 1,000

Table 4.4 – Number of epochs defined for 12% database
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Chapter 5

COMBINING SOURCES OF

SIDE-CHANNEL INFORMATION

In most of the Side-Channel Attacks (SCAs), only a single source of the leakage is considered
to attack a device. In the particular case of EM attacks, this source comes from a probe that has
a supposed optimal position on the target. Few research papers investigate the combination of
multiple leakage sources from different probe positions. In this thesis, the term "Multi-channel
attacks" refers to an attack that combines several leakage sources from different probe positions
and different probe types. In the following section, we present all related works about "Multi-
channel attacks". These works are based on classical side channels and on Deep Learning (DL)
side channel attacks.

5.1 Related works & Motivations

Standaert et al. [58] conduct several investigations to determine the impact of using multiple
channels in SCA. These investigations allow answering three important questions.

1. Do electromagnetic leakages lead to more powerful attacks than power leakages 1?

2. Does the combination of electromagnetic leakage and power consumption lead to a more
powerful attack?

3. What is the effectiveness of data dimensionality reduction techniques for constructing
subspace-based template attacks using multiple channels?

The authors quantify the amount of information leaked by these two side channels using two
dimensionality reduction techniques namely Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA). An experimental comparison between both reduction methods
shows that LDA leads to better information extraction than PCA. However, it is not trivial
to chose the best dimensionality reduction technique because it does not take into account
the efficiency of a model during the attack step. Their results show that the ElectroMagnetic
(emission) (EM) channel is significantly more informative than the power channel when the

1. This point of interest is specific to the measurement setup used during the experimentation. The observations
and conclusions made can be different for another measurement setup.
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measurement probe is very close to the cryptographic chip. They also show that the combination
of both channels (EM + power) leads to a more powerful attack compared to using only EM or
power.

Agrawal et al. [2] proposes a formal adversarial model for multi-channel analysis using the
power and multiple EM channels. They investigate several questions specific to the multi-channel
attack, e.g. which side-channel signals should be collected? How should information from various
channels be combined? These questions refer to the problem of signal detection in their paper.
They present a formal adversarial model to overcome the problem of signal detection because it
finds the two best side channels from a set of possibilities that maximize the attack efficiency.
They provide experimental evidence that template attacks with EM + power outperform tem-
plate attacks with EM or power. They make one strong assumption about the knowledge of
the adversary. They take into account that the attacker has two crucial pieces of knowledge
about the characteristics of the target device, the attacker knows the clock cycle and the noise
distribution. Thus, he can perform attacks similar to template attacks on the device 2.

To avoid these pieces of knowledge about the characteristics of the device, they include
other experiments with Differential Power Analysis (DPA), because DPA is simple and can be
immediately applied to an unknown device. DPA does not require performing the attack on
a similar device (such as A template attack). They experiment DPA with multi-channel by
targeting different bit values. DPA with multi-channel is similar to a DPA with one channel
because instead of taking a collection of traces from one channel, they take a collection of traces
from several channels. However, for the multi-channel DPA to be effective, they select channels
that have similar leakage characteristics. All experiments show that the combination of power
and EM reduce the number of traces required to discover the correct key compared to using
only power or EM.

Yang et al. [71] introduces another way to use multi-channel attacks because they do at-
tacks but by merging in different ways multi-channel measurement. In their paper, they present
different methods to "fusion" leakage information from multiple channels. They classify them
into three groups depending on the level of the fusion: data-level, feature-level, and decision-
level fusion attack. They construct six multi-channel fusion attacks and verify their performance
in different scenarios. The data-level fusion attacks mean merging multi-channel measurements
into one new leakage. The feature-level fusion attacks mean merging multi-channel measure-
ments after applying dimension reduction techniques 3. The decision-level fusion attacks mean
combining the results of all mono-channel attacks. Their results show the efficiency of different

2. In a real-world scenario, the attacker often doesn’t have knowledge about the characteristics of the device
and can be difficult to mount.

3. The main dimension reduction techniques apply are: PCA and LDA
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multi-channel attacks with the different groups of fusion against MCU 4 and FPGA with unpro-
tected Advanced Encryption Standard (AES)-128 implementation. They show that data-level
and feature-level fusion attacks are more efficient when the leakage position exists in different
channels, whereas the feature-level and decision-level fusion attacks are better when we have
few details about the cryptographic algorithm implementation.

The work of Standaert et al. [58] and Agrawal et al. [2] demonstrates the interest of multi-
channel attacks with the combination of EM and power compared to the mono-channel attacks.
These works were done on two different measurement setups but led to the same conclusion. In
these two works, classical side-channel attacks with some dimensionality reduction techniques
were used. However, it can be a difficult task to choose the best dimensionality reduction tech-
nique because it does not take into account the efficiency of a model during the attack step. We
are motivated to use the DL technique with multi-channel attacks to be sure that the relevant
feature will be useful for the attack step.

Hettwer et al. [26] proposes a new DL-based side channel attack that combines the leakage
from different sources using a deep learning network to break protected hardware. The hardware
to break is a modern System-on-Chip with 16nm fabrication technology running an AES with
masking countermeasure. Authors present two techniques for fusion: early fusion and late fusion.
The early fusion consists in combining the different channel inputs within the first layer of the
Deep Neural Network (DNN). On the opposite, when performing a late fusion, the attacker ex-
tracts features from the input data of the individual channels and then combines and processes
them in the further layers of the DNN. Experiments presented by the authors show that the late
fusion always outperforms early fusion. During the experimental part, authors compare their
models with several template attacks enhanced with PCA. Their results show that Template
Attack (TA)-based attacks outperform the template attacks on decoupling capacitor measure-
ments. Hettwer et al. [26] demonstrates the interest and advantage to use DL-based side channel
attacks for multi-channel leakage. However, in their paper, they are limited to only two channels
of power consumption. An interesting aspect that could be explored would be to add one more
channel and see the efficiency of the attacks compared to only two channels. Also, in a real-world
scenario, acquiring traces coming from power channels can be a difficult task because it requires
that the attacker have direct access to the target device. To relax this assumption, it could be
interesting to investigate multi-channel attacks using only EM leakages.

These works provide pieces of evidence that the consideration of multi-channels can be
beneficial for side-channel analysis. Given the advantages of machine learning and deep learning
techniques in SCA (see chapter 3), our approach consists in deriving multi-channel deep learning

4. In more details, it is an 8051 microcontroller
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techniques. This allows us to make use of the information provided from multi-channels as well
as the advantages given by machine/deep learning techniques. In this work, we are extending
the approach of multi-channels to different EM locations, all approaches we used are described
in the following section.

5.2 Approaches

The idea proposes in this Chapter is to combine different sources of information to improve
the attack efficiency. This approach is enabled as soon as an attacker can measure several sources
of information on a device at the same time. Indeed, the different sources of information must
correspond to the same data used during the encryption process (same plaintext, key, and mask).

To smooth the description of the different training strategies let us introduce some notations:

— the original attack dataset contains the traces of one channel from which the attacker
wants to extract a secret key;

— the original training dataset contains traces of one channel;

— the combined attack dataset is the concatenation of two (or three) original attack
datasets from which the attacker wants to extract a secret key, and all original datasets
come from different source of information;

— the combined training dataset is the concatenation of two (or three) original training
datasets, and all original datasets come from different source of information.

The three training strategies are described in Fig 5.1, but some precision is given in the two
following paragraphs.

With these datasets in mind, the two attacks can be simply described in a very compact
form.

Definition 1 (Regular attack) The regular attacks is defined when:
1. Train a profiled side-channel attack on the original training dataset.
2. Attack the original attack dataset to recover the key using a profiled attack.

Definition 2 (Multichannel attack) The multichannel attack is defined when:
1. Train a profiled side-channel attack on the combined training dataset.
2. Attack the combined attack dataset to recover the key using a profiled attack.
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(a) Regular approach (b) Combine two source ap-
proach

(c) Combine three source ap-
proach

Figure 5.1 – Training strategies for multichannel

5.3 Implementation details

We use the database called "DATABASE_AVR". This database is composed of two sets: the
profiling set and the attack set. The profiling set contains three datasets (one for each probe),
and each dataset is composed of 200,000 raw traces with a frame of 30,000 samples. The attack
set contains three datasets, and each dataset is composed of 60,000 raw traces with a frame of
30,000 samples. Table 5.1 describes the data used in the profiling set and attack set. In both
the profiling and the attack sets, we use the same randomness between each dataset so that
the data is common across datasets (that is, trace 47 of EM2 has the same data as trace 47
of EM3). We cannot exploit directly the raw traces because the frame of the data is too large
(with a frame equal to 30,000 samples). Thus, we reduce this frame by selecting the windows
with the highest Signal-to-Noise Ratio (SNR) (that means we select the windows where the
leakage is the most obvious). Table 5.2 describes the size of the original frame and the frame
selected for our experiments. We select only 100,000 raw traces to have the same number of
traces as the database "DATABASE_STM32" and thus allow the training of our network with
the same amount of data from both databases. We exploit 100,000 raw traces with a frame of
700 samples for the profiling set and we exploit 60,000 raw traces with a frame of 700 samples
for the attack set. We use 80% of the profiling set for the training of the DNN, and the last 20%
for the validation of the DNN. Finally, we use 100% of the attack set for testing the DNN.

Data Profiling set Attack set
plaintext random random
key random changed every 2,000 traces

Table 5.1 – Composition of data into database "DATABASE_AVR"
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Dataset Original frame Selected
Profiling set 30,000 samples 700 samples
Attack set 30,000 samples 700 samples

Table 5.2 – Composition of frame into database "DATABASE_AVR"

5.4 Contribution

5.4.1 Multi-channel with EM2

Figure 5.2 – Guessing entropy when targeting EM2

Figure 6.5 shows the Guessing Entropy (GE) when targeting EM2, which is the channel with
the highest SNR value. On the left side, we observe the performances of the ASCAD network,
Zaid network, and NoConv1 network when using a single channel called EM2 (described in
chapter 4). We observe that the ASCAD network quickly converges towards zero, and reaches
a mean rank equal to zero with 25 traces. The NoConv1 and Zaid networks require more traces
than the ASCAD network. For the NoConv1 network, it reaches a mean rank equal to 6 with
200 traces. For the Zaid network, it reaches a mean rank equal to 35 with 200 traces. On the
right side, we observe the performances of the ASCAD network, Zaid network, and NoConv1
network when using multiple channels. We observe that the ASCAD network with the channels
"EM2*EM3*EM4" reaches a mean rank equal to 3 with 200 traces, with the channel "EM2*EM3",
it reaches a mean rank equal to 0 with 200 traces, and with the channel "EM2*EM4" it con-
verges towards zero with 50 traces. We observe that the NoConv1 network with the channels
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"EM2*EM3" and the channel "EM2*EM3*EM4" converges towards zero with 30 traces, and with
the channel "EM2*EM4" it reaches a mean rank equal to 25 with 200 traces. We observe that
the Zaid network with the channels "EM2*EM3" and the channel "EM2*EM3*EM4" converges
towards zero with 25 traces, and with the channel "EM2*EM4" it reaches a mean rank equal to
18 with 200 traces.

We recall that we are in the context of multi-channel adding only noisier sources (EM2*EM3,
EM2*EM4, EM2*EM3*EM4) to EM2. We notice that all multi-channels (except for the combi-
nation of EM2*EM4 that give the same performance as the single-channel) decrease the perfor-
mance of the ASCAD network. This degradation of performance can be justified by the fact that
only noise is added to the network. Concerning the NoConv1 network, we notice that adding
a channel with a certain level of noise but also a certain level of leakage can improve the per-
formance of the network because we need fewer traces to converge until zero. Indeed, only 30
traces are required compared to more than 200 traces when using a single channel. However,
we also notice that adding a channel with too much noise can decrease the performance of the
network. Concerning the Zaid network, we notice the same thing as the NoConv1 network. We
observe that adding a channel with a certain level of noise can improve the efficiency of the
attack, however, a channel with too much noise can also decrease the efficiency of the attack.

5.4.2 Multi-channel with EM3

Figure 5.3 – Guessing entropy when targeting EM3

Figure 6.6 shows the GE when targeting EM3, which is the second channel with the highest
SNR value. On the left side, we observe the performances of the three studied networks when
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using the single channel EM3. We observe that the ASCAD network reaches a mean rank equal
to zero with 150 traces and the Zaid network reaches a mean rank equal to 0 with 200 traces.
However, the NoConv1 network reaches a mean rank equal to zero with 40 traces.

On the right side, we plot the performances of the ASCAD network, Zaid network, and
NoConv1 network when using multiple channels. We observe that the ASCAD network using
the combination of channels "EM3*EM2*EM4" or channels "EM3*EM2" reach a mean rank
equal to 2 with 200 traces, and with the channel "EM3*EM4" it converges towards zero with
175 traces. We observe that the NoConv1 network with the channels "EM3*EM2*EM4" and
channels "EM3*EM2" reaches a mean rank equal to zero with 25 traces, and with the channel
"EM3*EM4" it converges towards zero with 75 traces. Finally, we observe that the Zaid network
with the channels "EM3*EM2" reaches a mean rank equal to zero with 25 traces, with the
channel "EM3*EM2*EM4" the mean rank equal to 25 with 200 traces, and with the channel
"EM3*EM4" the mean rank equal to 100 with 200 traces.

We recall that we are in the context of multi-channel adding clearer sources (EM3*EM2),
noisier sources (EM3*EM4), and both (EM3*EM2*EM4) to EM3. For the ASCAD network, we
notice that any multi-channel approach, no matter if it adds noise or a clearer source, decreases
the performance of the network. At least worse, the mean rank increases from 150 to 175 for the
ASCAD network. Concerning the NoConv1 network, we notice that a multi-channel approach
adding a clearer source than the original leads to better performances since it converges towards
zero with 25 traces compared to 30 traces. However, if in the multi-channel attack, we have a
source that is noisier than the original, this leads to a decrease of the performance of the network
because it then requires 75 traces to converge toward a mean rank of 0. Concerning the Zaid
network, we notice that only multi-channel with the clearer source added to the original allows
increasing the performance of the network because the number of traces required to converge
towards zero is decreased from 200 to 25. Otherwise, all other multi-channel attacks decrease
the performance of the Zaid network, in one case the mean rank increases from 1 to 25 with 200
traces, and in other cases, the mean rank increases from 1 to 100 with 200 traces.

5.4.3 Multi-channel with EM4

Figure 6.7 shows the GE when targeting EM4, which is the channel with the lowest SNR
value. On the left side, we observe the performances of the ASCAD network, Zaid network,
and NoConv1 network when using the single channel EM4. We observe that both the ASCAD
network and the Zaid network reach a mean rank equal to zero with 200 traces while the NoConv1
network reaches a mean rank equal to 0 using the same amount of data.

We observe that the ASCAD network with the channels "EM4*EM2*EM3" reaches a mean
rank equal to 0 with 200 traces. However the ASCAD network with the channels "EM4*EM2"
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Figure 5.4 – Guessing entropy when targeting EM4

converges towards zero with as few as 100 traces. Using channels "EM4*EM3", it converges
towards zero with 150 traces. Concerning the NoConv1 network, we see that using the chan-
nels "EM4*EM3" or the channels "EM4*EM2*EM3" leads to a quick convergence towards zero
(only with 25 traces required). However, for the combination of channels "EM4*EM2" the mean
rank is greater than 1 with 200 traces. We observe that the Zaid network with the channels
"EM4*EM3" converges towards zero with 25 traces, and with the channels "EM4*EM2*EM3"
it converges towards zero with 50 traces. As for the ASCAD and NoConv1 networks, for the
channels "EM4*EM2" the mean rank is equal to 120 with 200 traces.

We recall that we are in the context of multi-channel adding only clearer sources (EM4*EM3,
EM4*EM2, EM4*EM2*EM3) to EM4. For the ASCAD network, we notice that multi-channel
with only one clearer source added allows increasing the performance of the ASCAD network
because the number of traces required to converge until zero is reduced from 200 to 100. Multi-
channel with more than one clearer does not affect the performance of the ASCAD network,
its mean rank just increased by one. Concerning the NoConv1 and Zaid networks, we notice
two things. First, adding EM3 to EM4 increases the performance of both networks. Indeed,
they converge towards mean rank zero with 25 traces compared to 200 traces if we use a single
channel. However, if we add EM2 to EM4 the performances of these two networks decrease
because NoConv1 reaches a mean rank equal to 0 with 200 traces and Zaid reaches a mean rank
equal to 120 with 200 traces. The hypothesis may be that the variation between EM2 and EM4
prevents the networks (Zaid and NoConv1) from converging.
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5.4.4 Conclusion

In this work, we investigate multi-channel attacks compared to regular attacks. We have seen
different contexts of multi-channel:

— Multi-channel adding only noisy sources compared to an original single channel.

— Multi-channel adding noisy and clean sources compared to an original single channel.

— Multi-channel adding only clean sources compared to an original single channel.

We investigate these three contexts with three state-of-the-art networks namely ASCAD,
Zaid and NoConv1 networks. Concerning the ASCAD network, we see that it is sensible to
the noisy channel. Indeed adding other channels which have a lower SNR value compared to
the original channel only decreases the performance of the network. However, adding other
channels which have a higher SNR value increases the performance of the ASCAD network. For
the NoConv1 network and Zaid network, we observe that they are sensitive to the variations
between the channels. Indeed, we observe that adding other channels that are too different
compared to the original channel (regarding SNR) decreases their performances. This difference
may be due to a sharper or noisier source. However, adding other channels that have an SNR
close to the original channel can increase the performance of these networks.

This work led us to a second idea. Since the weights of the networks are randomly initialized,
wouldn’t it be more interesting to take advantage of weights already adjusted with another data
set? Can this initialization improve the convergence of the neural network and its performance?
This is the question we study in chapter 6.
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Chapter 6

TRAIN OR ADAPT A DEEPLY LEARNED

PROFILE?

The work in the previous chapter has led to a question on the way other sources of information
may be used in Side-Channel Attack (SCA). We ask ourselves if, instead of combining several
sources of information, we can take the profit of other sources by using them to initialize the
weights of a network in a context where the number of traces in the profiling set is limited. We
assume that even if the sources of information are different from each other, with a certain level
of variation between them, this can be beneficial to the neural networks. The term "beneficial"
means that the network will not start from a random weight initialization, but from weights
that are adjusted during the training on another source of information, thus we hope that the
network already acquired some knowledge, understood some part of the problem, and will need
fewer traces to train. We investigate Transfer learning in this situation and see how it can be
beneficial for SCA. As mentioned in chapter 2, transfer learning is one of the methods used for
weight initialization based on another dataset. In most of the papers about Deep Learning (DL)
for SCA, the training of a Deep Neural Network (DNN) is directly performed on a device similar
to the target one. There is no work that takes into account some other source of information
that an attacker may have access to. In this thesis, we introduce a new attack called "transferred
attack". The term "transferred attack" refers to an attack consisting in using another source
of information to initialize the weight of a network. Then, once the network is pre-trained, its
weights are adjusted using the limited profiling set from the target device. In the following
section, we present all related works about the portability issue of profiled attacks and "transfer
learning" techniques.

6.1 Related works & Motivations

Bhasin et al. [5] treats the portability issue that can occur in a real-world scenario for SCA.
They evaluate the influence of portability on the efficiency of a machine learning-based attack.
They analyze portability by using the normalized inter-class variance metric to characterize the
difference in measurements between different devices/keys. They make an analysis and evaluate
the performances of several Machine Learning (ML) techniques with 4 different scenarios. These
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4 scenarios are:

1. same device and same key,

2. same device and different keys,

3. different devices and same key,

4. different devices and different keys.

The first scenario, where the attackers use the same device and the same key for the profiling
and attack phases, is the common scenario studied in the SCA literature but this is not a
realistic one. As mentioned in several works, all ML approaches are very good. The best model,
an MultiLayers Perceptron (MLP) with 600 features trained with 10k traces, requires only 10
attack traces to discover the key. In the second considered scenario, attackers use the same device
in the profiling phase and attack phase, but the keys between these two phases are different.
Authors observe that this scenario is more difficult for ML techniques. The performance of some
ML techniques that use 50 features (such as Naive Bayes, Random Forest, and MLP with 50
features) is decreased compared to the first scenario. However, some ML techniques keep the
same performances as the first scenario such as MLP with 600 features, and Convolutional Neural
Network (CNN). In the third scenario, attackers use the same key during the profiling phase and
the attack phase but on distinct devices. This scenario is more realistic than the former, but it is
also more difficult for an ML technique. All ML techniques using only 50 features require more
than 100 attack traces to reach a mean rank equal to zero. The MLP with 600 features and CNN
are the two best models because they require less than 20 attack traces to successfully discover
the key. The last scenario considers that both the device and the key used by the attacker during
the attack phase are different from the one used for profiling. This scenario can be considered
the most realistic one and raises the portability issue of SCA. For the random forest, a mean
rank equal to less than 90 is reached with 100 attack traces. For the Naive Bayes and MLP with
150 features, a mean rank less than 15 is obtained using 100 attack traces. For both the MLP
with 600 features and the CNN, using 60 attack traces, the attacker obtains a mean rank equal
to zero.

Wang et al. [64] deal with the problem of inter-chip variation and its impact on the perfor-
mance of DNN to correctly predict the correct key. The authors propose a solution by training
a DNN on multiple chips instead of one. This solution can overcome the problem of inter-chip
variation and improve the efficiency of DL-based attacks. Their first experiment was performed
on different chips while their second experience was done on two different devices namely the
XMEGA1 and the XMEGA2. The results of their first experience show that training a DNN
on nine chips rather than just one can increase its probability to recover the correct key. The
probability to recover the key from a single trace increases from 40% to 86%. Their results also
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show that training a DNN on two different types of boards rather than just one board can also
increase its probability of successfully discovering the correct key. In that case, the probability
to recover the key from a single trace indeed increases from 13% to 55%.

Thapar et al. [59] publishes an independent work but on a similar topic as our research.
In their works, they also propose a DL side-channel attack based on the Transfer Learning
(TL) to address the issue of insufficient data to train a model. They use the same approach as
us (presented in chapter 4) and having the same positive outcomes on the use of TL when few
training traces are available, but with a different measurement setup and a different architecture
of the neural network. The approach they used 1 is the following. First, the attacker acquires a
large number of profiled power traces from any device of his choice in order to make the first
training and create a base model. Secondly, using a clone of the target device, the attacker
acquires a limited set of profiled power traces in order to fine-tune the base model thanks
to a transfer learning method. Third, the attacker uses the fine-tuned model to attack the
target device. The architecture used by Thapar et al. [59] is described in Figure 6.1, the green
colour represents the layer that is updated during the fine-tuning step, and the white colour
represents the layer which is frozen (the weight of the layer is not updated) during the fine-
tuning step. The authors make several experiments with different FPGA families. First, they
investigate the efficiency of transfer learning with unprotected Advanced Encryption Standard
(AES) implementation. They show that the transfer learning strategy can successfully find the
correct key rank with 500 attack traces on average. They show that TL permits to attack a
new device from the knowledge of another device even if the number of traces from the new
device is limited. Secondly, they investigate the efficiency of transfer learning with a first-order
masked AES implementation. They show that the transfer learning strategy successfully finds
the correct key rank with 200 attack traces on average.
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Figure 6.1 – TranSCA network

These works provide pieces of evidence that DL has a certain capacity of portability even if
we have a certain variation between each source of information. Thapar et al. [59] have shown

1. and which we also used
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that TL can be used in SCA, and in the context where we have a limited profiling set. However, in
their studies, they just used TL between different FPGA families with only power as the source
of information. We proposed to use TL with DNN in several other scenarios. Thus we investigate
"transferred attack" between different channels, different side-channels, and also different devices
but from the STM32 family.

6.2 Approaches

The idea proposes in this Chapter is to use transfer learning to improve the attack efficiency
in the context of insufficient training data. The goal is to use transfer learning in the initialization
of the weights of the network from a network trained on another source of information rather
than using random initialization. This approach is of interest as soon as an attacker has only
a few traces to mount a profiled attack. The goal is to determine if weight initialization from
different sources can help to improve the attack efficiency. To smooth the description of the
different training strategies let us introduce some notation:

— the original attack dataset A contains the traces from which the attacker wants to
extract a secret key (thus from source A);

— the original training dataset A contains a small amount of traces from source A;

— the original training dataset B contains traces from source B 2.

The three training strategies are described in Fig 6.2, but we provide here two compact
definitions of the two newly introduced attacks.

Definition 3 (Pretrained attack) The pretrained attack is defined when:
1. Train a profiled side-channel attack on the original training dataset B.
2. Attack the original attack dataset A to recover the key using a profiled attack.

Definition 4 (Transferred attack) The transferred attack is defined when:
1. Train a profiled side-channel attack on the original training dataset B.
2. Fine-tune a profiled side-channel attack on the original training dataset A.
3. Attack the original attack dataset A to recover the key using a profiled attack.

2. We assume that the number of traces from source B is higher than source A
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(a) Regular attack (b) Pretrained attack (c) Transferred attack

Figure 6.2 – Training strategies for transfer learning

6.3 Implementation details

We include another database (in addition to the previous database called "DATABASE_AVR")
namely "DATABASE_STM32". This last one is also composed of two sets: a profiling set and
an attack set. The profiling set contains eight datasets (each device has a dataset for power and
a dataset for ElectroMagnetic (emission) (EM)), and each dataset contains 100,000 raw traces
with a frame of 5,000 samples. In the attack set, each of the eight datasets contains 32,000 raw
traces with a frame of 5,000 samples. The inputs (plaintext and key) used in the profiling set
are variable and uniformly distributed but remain the same over datasets. The data used in the
attack set are fixed 3 and remain the same between each dataset. Table 6.1 describes the data
used in the profiling and attack sets. As for the first database, we cannot directly exploit the
frame since it is too large. Thus, we reduced it from 5,000 to 700 points (with the same technique
as for the first database). Table 6.2 gives the sizes of the originally selected frames. Thus, we
exploited 100,000 raw traces with a frame of 700 samples for the profiling set and 32,000 raw
traces with a frame of 700 samples for the attack set. For the pre-trained approach, we used 80%
of the profiling set for the training of the DNN, and the last 20% for the validation of the DNN
(with both databases) to simulate the fact that we already had a pre-trained network. For the
transfer learning and regular approach, we used 10% of the profiling set for the transfer learning
of the DNN, 2.5% of the profiling set for the validation of the DNN to simulate the fact that
the attacker only gets a small profiling dataset. We used 100% of the attack set for the test of
the DNN (for both databases).

Data Profiling set Attack set
plaintext random random
key random changed every 1,000 traces

Table 6.1 – Composition of data into database "DATABASE_STM32"

3. The key has been changed every 1000 traces
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Dataset Original frame Selected
Profiling set 5,000 samples 700 samples
Attack set 5,000 samples 700 samples

Table 6.2 – Composition of frame into database "DATABASE_STM32"

6.4 Contribution

6.4.1 Details on Transfer Learning

For the transferred attack, we used transfer learning on ASCAD, Zaid, and NoConv1 network
architectures. Different strategies using transfer learning are possible.

For example, an attacker could have only trained dense layers (thus freezing convolutional
layers) or could have reset some specific layers while keeping previous parameters for other
layers.

Those strategies have three advantages:

— decrease the amount of data needed to train the neural network.

— faster convergence because the initialized weights from the first training may be better
suited than a random initialization.

— reduce the number of parameters to update in the neural network, which may increase the
training speed.

But those strategies are one drawback:

— potentially sub optimal solution however if frozen layers already have good parameters it
could be ok.

We applied two strategies during some initial experiments: re-training the complete network
during the second step and freezing the convolutional layers (if any). The choice of freezing
convolutional layers is based on the assumption that feature extraction should be similar from
one context to another (only decision changes). Since both gave similar results on our first runs,
we decided to focus on retraining the full network, since then we do not make any hypothesis
(that could end up being false in some cases). Investigating deeply different techniques is clearly
an interesting extension of this work.

Figure 6.3, 6.4a, and 6.4b describe the layers that will be fine-tuned during the transfer learn-
ing. We used the previously introduced databases "DATABASE_AVR" and "DATABASE_STM32".

We used a similar amount of data across experiments. The choices have been made so that
i) most of the direct approaches lead to working attacks ii) the data requirement drops is clearly
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Figure 6.3 – Transfer learning on ASCAD network
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(a) Zaid network
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(b) NoConv1 network

Figure 6.4 – Transfer learning on Zaid and NoConv1

visible when performing transfer learning and iii) the pre-trained models may be open-sourced
(that is coming from another party that may have higher available resources). The number of
traces used is hence:

— 100,000 traces for the first training (pre-trained attacks).
— 12,500 traces for regular attacks, and transferred attacks.

6.4.2 Transferring between EM probe positions and types

First, we compare the effectiveness of applying a "transferred attack" targeting EM measure-
ments and having available pre-trained models on different channels. For these experiments, we
used the "DATABASE_AVR" database presented in Chapter 4 with the three network archi-
tectures: ASCAD, Zaid and NoConv1.

Figure 6.5 shows the Guessing Entropy (GE) when targeting EM2, which is the channel
with the highest Signal-to-Noise Ratio (SNR) value. On the left side, we see that all pre-trained
models 4 and the pre-trained models of EM2 are converging quickly towards zero, with ASCAD
and NoConv1 being slightly more effective. Pre-trained models, on EM3 and EM4, do not succeed
to converge, even using a high amount of traces compared to the regular attack. On the right
side, we see that using transfer learning permits the improvement of the efficiency of all pre-
trained models with channels EM3 and EM4. We observe that the best performance between
all attacks (regular attack, pre-trained attack, and transferred attack) is obtained by applying
transfer learning on the NoConv1 network with EM4.

Next, Figure 6.6 shows the GE when targeting EM3, which has a medium SNR and is using
the same probe type as EM4. We observe that the performances of the regular attacks with

4. the pre-trained models of EM2 is the regular attacks, so it only used 12,500 traces compared to other that
used 100,000 traces
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Figure 6.5 – Guessing entropy when targeting EM2

Figure 6.6 – Guessing entropy when targeting EM3

EM3 and the pre-trained attacks with EM4 are close. However, the regular attack is still more
efficient than the pre-trained attack. Interestingly, a pre-trained model on EM4 is slightly more
effective than using a pre-trained model on EM2 because we observe that EM4 converge to a
mean rank equal to zero with 40 traces while EM2 does not converge at all. On the right, we
see that using transfer learning permits to increase the performance of the pre-trained model
with the channel EM2. We observe that the best performance between all attacks is obtained
by applying transfer learning on the NoConv1 network with EM4.

In Figure 6.7 we show the GE targeting EM4 that has the lowest SNR from all three EM
positions. Directly applying a pre-trained model from EM3 using NoConv1 works sufficiently
well, followed by a pre-trained model on EM4 using NoConv1, and a Zaid network from EM4.
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Figure 6.7 – Guessing entropy when targeting EM4

Interestingly, using directly the pre-trained model EM2, which is the channel containing the
highest amount of information, does not perform better than less informative channels. We
observe that using transfer learning improves the result for EM2+ASCAD, EM2+NoConv1,
EM2+Zaid, EM3+Zaid, and EM3+ASCAD. We observe that the best performance between all
attacks is obtained by applying transfer learning on the Zaid network with EM3.

6.4.3 Transferring between Power and EM

Secondly, we now compare the effectiveness of applying a "transferred attack" targeting EM
measurements and having available pre-trained models on power consumption. For these experi-
ments, we used the "DATABASE_STM32" database (refer to Chapter 4) and we considered the
four previously introduced devices (namely, F0, F1, F2, and F4). We used ASCAD, Zaid and
NoConv1 as neural network architectures.

In Figure 6.8 we plot the guessing entropy obtained when targeting device F0 with EM
(F0em). On the left, we observe all pre-trained attacks and regular attacks. We observe that
all pre-trained attacks do not converge within 1000 traces and only the regular attacks with
NoConv1 and Zaid network converge. On the right, we observe all transferred attacks. We show
that the efficiency of all pre-trained models (ASCAD, NoConv1, and Zaid with power) can be
improved. We observe that the best performance between all attacks is obtained by applying
transfer learning on the NoConv1 network with the power source.

Figure 6.9 presents the results when attacking F1 with an EM source. Similarly to previous
experiments, when applying pre-trained networks directly with the power source, none of the
networks seems to have a decreasing GE. But when applying pre-trained networks directly with
EM sources, Zaid and NoConv1 reach a GE close to 0. However, when updating the pre-trained
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Figure 6.8 – Guessing entropy when targeting F0em

Figure 6.9 – Guessing entropy when targeting F1em

model with transfer learning, we observe that ASCAD, Zaid, and NoConv1 with the power
channel can be improved and reach a mean rank close to 0. As previously, we observe that the
best performance between all attacks is obtained by applying transfer learning on the NoConv1
network with the power source.

Figure 6.10 presents the results when attacking F2 with an EM source. We show that using
a pre-trained model on power does not lead to convergence. We observe that only the Zaid
network and the NoConv1 network converge with the EM channel. Interestingly, we see that
in this scenario transfer learning is very effective on all three networks, while Zaid is the most
effective one, reaching a GE of 0 with less than 600 traces. We observe that the best performance
between all attacks is obtained by applying the transfer learning on the Zaid network with the
power source.
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Figure 6.10 – Guessing entropy when targeting F2em

Figure 6.11 – Guessing entropy when targeting F4em

Figure 6.11 presents the results when attacking F4 with an EM source. When applying pre-
trained networks directly with the power source, NoConv1 and Zaid are the only ones to obtain
a mean rank equal to 0 with at least 250 traces. We can see that using transfer learning on
all 3 neural networks pre-trained on power consumption permits us to obtain better perfor-
mances than directly applying them. We observe that the best performance between all attacks
is obtained by applying the transfer learning on the NoConv1 with the power source.

6.4.4 Transferring between different devices

Third, we investigate a "transferred attack" between different devices. For these experiments,
we also used the database called "DATABASE_STM32" as the previous experiment with the
three networks: ASCAD, Zaid, and NoConv1.
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Figure 6.12 – Guessing entropy when targeting F0

Figure 6.12 presents the results when targeting F0 and pre-trained models are built from
F0, F1, F2, and F4. We can see that when using directly pre-trained models, the model on F0 is
the most effective, but not all pretrained models converge towards 0, and NoConv1 is the best
among the three neural networks. When compared to transfer learning, all pre-trained models
are improved. We observe that the best performance between all attacks is obtained by applying
the transfer learning on the NoConv1 with the device F4.

Figure 6.13 – Guessing entropy when targeting F1

Figure 6.13 presents the results when targeting F1 and pre-trained models are built from
F1, F0, F2, and F4. The same conclusion can be seen in the figure above (when targeting F0).
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We observe that transfer learning allows us to improve the efficiency of the pre-trained models.
However, in this case, the best performance between all attacks is obtained by the regular attacks
on the Zaid network with an F1 device.

Figure 6.14 – Guessing entropy when targeting F2

Figure 6.15 – Guessing entropy when targeting F4

Figure 6.14 presents the results when targeting F2 and pre-trained models are built from F2,
F0, F1, and F4. Figure 6.15 presents the results when targeting F4 and pre-trained models are
built from F4, F0, F1, and F2. As previously, only the regular attack converges toward a mean
rank equal to zero. All pre-trained attacks not trained with the F2 device for Fig 6.14 and with
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F4 for Fig 6.15 do not converge. The transfer learning allows for increasing the efficiency of all
pre-trained attacks because all pre-trained attacks reach a mean rank equal to 0. For Fig 6.14
we observe that the best performance between all attacks is obtained by the regular attacks on
the Zaid network with the F2 device. However, the performance of transferred attacks is close to
the performance of the best regular attacks. For Fig 6.15 we observe that the best performance
between all attacks is obtained by applying the transfer learning on Zaid with the F1 device.

6.4.5 Conclusion

In this work, we investigate transferred attacks compared to regular attacks with a limited
profiling set. We have seen three different scenarios:

— Transferring between EM probe position and type

— Transferring between power and EM

— Transferring between different devices.

We compare the different attacks described in Chapter 4: regular attacks, pre-trained attacks,
and transferred attacks. To show that our experiments can be done with different networks, we
investigate the different scenarios with ASCAD, Zaid, and NoConv1 networks. In all scenarios, we
have an example that shows that a transferred attack can improve the efficiency of the attack
compared to a pre-trained attack or regular attack. For the scenarios about the transferring
between EM probe position and type, in all cases transferred attack show better performance
than regular attacks and pre-trained attacks. The same conclusion can be made for the transfer
between power and EM. For the transferring between different devices, we find some cases where
the regular attack gave better performance than transferred attacks but the difference was small.

As mentioned in section 6.1, Thapar et al. [59] published a similar topic as our research but
it is independent work. Even if their work is done in a different measurement setup, they apply
the same approach and they come to the same conclusion as us about the efficiency of TL in
SCA. In future work, we would like to study other TL techniques and compare them with each
other to determine what are the best TL techniques to use in SCA because in our work and the
work of Thapar et al [59] we studied one specific technique.

During this work, we have seen that some channels and devices are easier to attack than
others. This observation leads to our next contribution. In Chapter 7, we will investigate the
possibility of using a neural network to translate traces from one source to another which is
easier to attack.
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Chapter 7

TRACE-TO-TRACE TRANSLATION FOR

SCA

In the previous work, we note that some sources of information (channels, side channels,
and devices) are easier to attack than others. This observation leads us to wonder whether we
could translate one source of information into another that is easier to attack. We expect that
the translation will have some effect like reducing noise or representing information in a form
that seems easier to interpret for the network. Thus, in some cases, the network could produce
better performance than regular attacks.

We define Domain A as being the space of traces obtained from the traditional source
of information and Domain B as being the space of traces obtained from another source of
information (which is easier to attack and chosen by the attacker). To achieve the translation
of traces, we use specific architectures of neural networks. These architectures are Generative
Adversarial Networks (GANs) and were presented in Chapter 2. GANs are known for their
potential to generate data but also for image translation. Image translation consists in translating
an image into another one, for example, it allows to transfer of the style of an image to another
or to produce a high-resolution image from a low-resolution image. We want to reproduce the
same principle as image translation but with traces. In this thesis, we introduce a new attack
called "translated attack". The term “translated attack" refers to an attack using a GAN that
learns to translate traces from domain A to domain B. After the training of the GAN, we use a
pre-trained network (trained on domain B) and the synthetic attack set (traces translated using
the GAN) to attack the device. In the following section, we present all works related to the uses
of GAN in Side-Channel Attack (SCA). One of these works is of particular interest since the
authors investigated a similar concept to “translated attacks" but under different conditions. Our
contribution shows how we fine-tune two existing GAN to translate traces. We demonstrated that
GAN successfully translate traces in two scenarios: translation from ElectroMagnetic (emission)
(EM) to power sources and translation between different devices.
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7.1 Related works & Motivations

Wang et al. [65] proposes a new method to deal with the issue of insufficient data during
the profiling step. They introduce the Conditional Generative Adversarial Network (CGAN)
in the context of side-channel attacks to generate new artificial traces and thus increase the
size of the profiling set. Their method allows to increase the accuracy of the network during
the profiling step and to reduces by half the required number of traces during the attack step.
They evaluate their model on various profiling sets with different sizes and various types of
Advanced Encryption Standard (AES) implementation such as unprotected, first-order masked
and random delay protected.

Their generator is composed of N blocks, each block is composed of one dense layer with
leakly relu as activation function, followed by batch normalization layer. The output of their
generator is a dense layer with tanh as activation function. Their discriminator is composed of
N blocks, each block is composed of one dense layer with leakly relu as activation function. The
output of their discriminator is composed of dense layers with sigmoid as activation function.

In their first experiment, they selected 500 traces out of 10K to simulate the problem of
insufficient training data. With these 500 traces, they generated 400 additional traces. They
used two techniques, Correlation Power Analysis (CPA) and Differential Power Analysis (DPA),
to assess the quality of the generated traces. This first experiment shows that the location of
the leakage points and the amplitude of leakage peaks with CPA using the generated traces are
consistent with the one obtained on the original training set. They also evaluate the efficiency of
the best MultiLayers Perceptron (MLP) network from ASCAD [54] on original traces, generated
traces, and a combination of both original and generated traces. The best performance was
obtained with the combination of original traces and generated traces.

Further experiments were conducted with different sizes of training sets and different numbers
of generated traces to study how the amount of traces in the original training set affects the
quality of generated traces. The following sizes are selected to generate 400 additional traces: 50,
200, and 500. The same conclusions as in the first experiment are drawn namely the correlation
at the leakage points is similar between the original traces and the generated traces. They also
note that increasing the original training set reduces the noise at the leakless positions. The size
of the original traces affects the quality of generated traces, thus better generated traces are
obtained when the CGAN is trained using 500 original traces rather than using only 50 original
traces. The best performance is obtained for the ASCAD network using 500 original traces and
400 generated traces (using 500 original traces for GAN training).

Finally, they also evaluate the capability of their CGAN to generate traces from unprotected
and protected original traces. They use unprotected traces from DPAcontest v4 dataset and
ChipWhisperer platform. For the attack results on DPAcontest v4, the best performance is ob-
tained with 1000 original traces and 1000 generated traces, they reached a mean rank equal 0
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with 207 traces. Thus, by adding 1000 generated traces, they obtained a mean rank equal to 0
with around 350 fewer traces. For the attack results on ChipWhisperer unprotected implemen-
tation, the best performance was obtained with 100 original traces and 400 generated traces,
they reached a mean rank equal to 0 with 853 traces. Thus, by adding 400 generated traces,
they obtained a mean rank equal to 0 with around 1000 fewer traces. They also used protected
traces from the AES_RD dataset (desynchronized traces). For the attack results on AES_RD,
the best performance was obtained with 10K original traces and 10K generated traces, they
reached a mean rank equal to 0 with 1369 traces. Thus, by adding 10K generated traces, they
obtained a mean rank equal to 0 with around 2700 fewer traces.

Mukhtar et al. [50] proposes a novel method of data augmentation based on CGAN and the
Siamese network 1 to deal with the issue of imbalanced datasets. They lead analyses to compare
the raw traces (extracted from a dataset) and the synthetic traces (generated by their model). To
demonstrate the capability of their model to generalise any leakage, they use different datasets
containing both symmetric and public-key algorithm implementations. They also compare their
model (Siamese-CGAN) with the CGAN model proposed by Wang et al. [65]. Finally, they
evaluate the performance of the Siamese-CGAN data augmentation by applying the actual
Machine Learning (ML)-based side-channel attack: MLP and two Convolutional Neural Network
(CNN) for symmetric algorithm implementation and one CNN for public-key implementation.
Their results were conducted with the MLP network described by Benadjila et al. [4], the CNN
denoted as ASCAD-CNN1 and ASCAD-CNN2 described by Benadjila et al. [4]. The dataset
used during their experimentation is the ASCAD dataset and the ECC dataset.

First, they compared the convergence of their model with the existing CGAN model proposed
by Wang et al. [65]. They show that their model provides a better convergence in terms of the
loss function. Their model converges after around 100-150 epochs on the ASCAD datasets, and
700-1000 epochs on the ECC datasets whereas the CGAN did not converge well within 1000
epochs. Secondly, then conduct further experiments using a Siameses-CGAN network. They
compare different networks (MLP, ASCAD-CNN1, and ASCAD-CNN2) with two datasets: one
only composed of real traces and the other containing both real and fake traces. The fake traces
are previously generated by the Siamese network. They observe that ASCAD-CNN2 performs
better than MLP to recover the key with real and fake traces.

Wu et al. [68] proposes a pre-processing method based on a neural network to reduce the effect
of hiding countermeasures. They experiment with a Convolutional Auto-Encoder (CAE) network
on six different types of noise generated with a single countermeasure, or a combination of several
countermeasures. These noises are artificially added to the ASCAD database [54]: Gaussian noise,
shuffling, random delay, and clock jitter. To denoise or reduce the effect of countermeasures,

1. the principe of Siamese network is described into the chapter 2
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authors assume that the attacker can have access to the clean traces corresponding to the noisy
ones.

First, the authors investigate the performance of their model to denoise traces with Gaussian
noise countermeasure. Authors add normally-distributed random values with zero mean and
variance of eight to each Points of Interest (PoI) to artificially add the effect of Gaussian noise.
When the Gaussian noise countermeasure is applied to original traces, their results show that
CNN and template attack with Principal Component Analysis (PCA) converge to a mean rank
equal to zero, while template attack without PCA and MLP do not succeed to converge.

Secondly, the authors investigate the performance of their model to denoise desynchronized
traces. Authors add randomness to the time domain to artificially add the effect of desynchro-
nization. When the desynchronization is applied to original traces, their results show that CNN
converges to a mean rank equal to zero with 9630 traces, whereas the template attack with and
without PCA, and MLP does not converge to a mean rank equal to zero.

The authors compare two methods to re-synchronize traces: using static alignment or CAE.
They show that attacks work better on the output of the CAE than on statically aligned traces.
They observe that the number of traces required by the CNN to obtain a mean rank equal to
zero is reduced from 1180 to 822. The template attack and MLP required from 8,905 to 7,168,
and from 10,000 to 6,398, thus the performance of these two models with resynchronized traces
is improved.

Third, the authors investigate the performance of their model to denoise traces altered by
random delay interrupts. Authors simulate random delay interrupts based on the Floating Mean
method [13]. This method induces more variance compared to the uniform random delay inter-
rupts. When the random delay is applied to the original traces, their results show that CNN
is not powerful enough to discover the key even using 10,000 traces. All other attacks such as
template attacks (with and without PCA) and MLP also provide poor performances and do
not succeed to discover the key. We can observe that the random delay countermeasure dras-
tically increases the difficulty of the attack impacting both the classical and the deep learning
approaches. Authors compared two methods to denoise traces with random delay: frequency
analysis method and CAE. When they denoise traces with CAE, they observe that the perfor-
mance of CNN was improved because it required only 1322 traces to reach a mean rank equal
to 0. For the template attack, it required only 8952 traces and MLP required only 3398 traces
to converge until a mean rank equal to 0. They observe that the effect of random delay has been
reduced dramatically with the help of the CAE.

Fourth, the authors investigate the performance of their model to denoise traces with the
clock-jitter countermeasure. The clock-jitter countermeasure increases the randomness for each
point in the time domain. They simulate clock-jitter countermeasure by adding or removing
points with a pre-defined range. When the clock-jitter countermeasure is used, their results
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show that no approaches (CNN, template attack with PCA, template attack without PCA,
and MLP) succeed in retrieving the key using 10,000 attack traces. The approach with the
lowest guessing entropy is the approach with CNN. Similarly to the random delay case, the two
methods to denoise the jittered traces are frequency analysis and CAE. They observe that CAE
can successfully reduce the effect of clock-jitters countermeasures, thus the performance of all
approaches can be improved. For example, the CNN required only 8,045 traces to obtain the
correct key, and for the MLP, we can reach a mean rank close to zero with 10,000 attack traces.

Finally, the authors investigate the performance of their model to denoise traces with shuffling
countermeasures. Authors simulate the shuffling countermeasure by randomizing the access to
the S-box. When the shuffling is applied to the original traces, their results show that the best
performance is obtained by template attack with PCA because it required only 9,885 attack
traces to reach the correct key. All other approach (CNN, template attack without PCA, and
MLP) doesn’t reach any mean rank equal to zero with 10,000 attack traces. Authors successfully
improve the performance of template attack, CNN, and MLP by adding 10,000 more traces
denoised by the CAE. When they denoised with their CAE, they observed that the performance
of CNN was improved because it required 7,754 traces to discover the correct key. For the
template attack, the performance was improved and it reaches a mean rank equal to six after
10,000 attack traces. For the MLP, the performance was improved compared to the shuffling
traces but slightly worse compared to the augmented attack traces (augmented attack traces
contains 10,000 more traces than attack trace).

Authors also study the efficiency of CAE to denoise several countermeasure combinations.
They combined all previous countermeasures in the following order: shuffling, desynchronization,
random delay interrupt, clock-jitter, and Gaussian noise. When all countermeasures are applied,
no approach is able to discover the correct key with 10,000 attack traces. However, when they
apply their CAE, the performance of all approaches is improved. They show that their CAE is
able to reduce the combined effect of noise and countermeasures. Indeed, the CNN (resp. MLP)
reaches a mean rank equal to 27 (resp. 61) using 10,000 denoised attack traces.

In their work, Wu et al. shows the impact of different countermeasures on the performance
of classical models and deep learning models [68]. They also investigate the fact that CAE
can be used to reduce the effect of various individual countermeasures, and various combined
countermeasures. The main drawback of the described approach is that in a real-world situation,
the attacker might not be able to have access to those clean traces (i.e. traces without any
countermeasure present). We extend this work by presenting a method to translate traces from
one channel, side channel, and device to another channel, side channel and device with GAN.
Our method does not require this access to a clean dataset.
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Figure 7.1 – Autoencoder

7.2 Approaches & Implementation details

The idea proposed in this Chapter is to use domain translation as a preprocessing technique
to improve the quality of traces. This approach is enabled as soon as an attacker has access to
paired datasets (that is, sharing the same intermediate target values/labels) from two different
settings. Indeed, one of the settings must correspond to the attack dataset, and the other one
corresponds to some settings for which the chosen attack performs better.

An attacker following the proposed approach will thus handle four different datasets. The
goal is to improve the attack on domain A traces by translating them to domain B. To smooth
the description of the technique let us introduce some notation.

— the original attack dataset contains the traces from which the attacker wants to extract
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a secret key (thus from domain A);
— the original training dataset A contains traces from domain A;
— the original training dataset B contains traces from domain B that should be paired

with the translation training dataset A;
— the translated attack dataset containing the translation from domain A to domain B

of the original attack dataset.

Should this technique be used in a profiled setting, an additional fifth dataset would be
added, namely

— the training dataset that contains training traces from domain B used to train the
profiled attack.

We want to bring your attention to the fact that the only labelled dataset is the optional
fifth one since translation training datasets only need to be paired (depending on the context,
it may not necessarily imply being labelled).

The three training strategies are described in Fig 7.2, but we provide here a compact defini-
tion of the newly introduced attacks.

Definition 5 (Translated attack) The translated attack is defined when:
1. Train a translator to translate traces from domain A to domain B using original training

datasets A and B.
2. Use the trained translator to generate the translated attack dataset from the original attack

dataset on domain A.
3. (optional) Train a profiled side-channel attack on the training dataset from domain B.
4. Attack the translated attack dataset to recover the key using an independent (un-)profiled

attack.

(a) Regular attack (b) Pretrained attack (c) Translated attack

Figure 7.2 – Training strategies for translated

We used the previously described database "DATABASE_STM32" with the same frame
selection as in Chapter 6. For both the regular approach and the GAN approach, we used 80%
of the profiling set for the training and the last 20% for the validation. We used 100% of the
attack set for testing the Deep Neural Network (DNN) and the GAN.
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7.3 Contribution

7.3.1 GAN architecture

We investigate two architectures of GAN: Pix2Pix and Speech Enhancement GAN (SEGAN).
As mentioned in Chapter 2, Pix2Pix is well known for image translation, whereas SEGAN was
designed to denoise audio waveforms. We tuned these architectures over a set of hyperparameters
and selected the best-performing model.

SEGAN Pix2Pix

Hyperparameter Range Selected Selected
Optimizer { Adam, RMSProp, SGD } RMSProp RMSProp
Activation function { Tanh, LeakLy ReLU, PReLU } Tanh Tanh
Batch size { 64, 128, 256 } 128 64 2

Epochs { 25, 50, 100, 200 } 200 200

Table 7.1 – Hyperparameter tuning

For the hyperparameter tuning, we use a paired dataset composed of 2 x 100,000 traces
(100,000 for each domain). These traces were split into a training set composed of 80% of the
paired dataset and a validation set composed of 20% of the paired dataset. We saved the best
model over epochs based on the Signal-to-Noise Ratio (SNR) obtained on translated traces.
Thus SNR is directly computed on the validation set during the training. We cannot directly
compute the Guessing Entropy (GE) because of its computation time. Finally, we keep the model
providing the highest SNR peaks for each set of hyperparameters. Our first analysis allows us
to know that the best performance of Pix2Pix and SEGAN was obtained using Tanh as the
activation function of the layers and RMSprop as the optimizer. We made a second analysis to
confirm that the selected hyperparameters were also relevant from an attack perspective (and
not only to generate the highest peak of SNR). In this second analysis, we computed the GE of all
models with the translated attack set. As mentioned, the translate attack set is the translation
of the attack set from domain A to domain B. Thus, the translated attack set is composed of
25,000 traces generated using a few fixed keys. This second analysis permits us to confirm that
the best performance of Pix2Pix and SEGAN was obtained with the Tanh as activation function
and RMSprop as the optimizer.

The SEGAN architecture we selected for our experiments (after fine-tuning it) is close to
the architecture of the original SEGAN [51] that is used to a denoise audio waveform.

The generator takes as input a 700-point trace coming from the original domain and outputs
a 700-point synthetic trace, which is the translation to the target domain. The generator is an
auto-encoder that is composed of an encoding part and a decoding part. The output value of
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Figure 7.3 – Generator architecture (SEGAN)

the encoding part (or equivalently the input of the decoding part) lies in the so-called latent
space. The latent representation of the trace has a shape equal to (2, 256) and this is where the
random noise Z is added. The generator is illustrated in Figure 7.3. The encoder is composed
of four blocks with one convolutional layer per block, a number of filters equal to (32, 64, 128,
256) with kernel size 31 (same padding), followed by a Tanh activation function. The decoding
part is composed of four blocks and one transposed convolutional layer per block, a number of
filters equal to (128, 64, 32, 1) with kernel size 31 (same padding), followed by a Tanh activation
function. Each block of the decoding part is concatenated with the output of each encoding block,
represented by a dotted arrow in Figure 7.3, it is the principle of the U-Net architecture [56].

The discriminator takes as input a combination of two 700-point traces: one trace coming
from the original domain and one trace coming from the target one. This last trace may directly
come from the target domain (real trace) or it could be a generated trace (fake trace). The
discriminator is trained to distinguish between real and fake. More precisely, the discriminator
outputs the probability that a trace from the target domain is a translation from the original
domain. The discriminator is illustrated in Figure 7.4. It is composed of four blocks, and one
convolutional layer per block, a number of filters equal to (32, 64, 128, 256) with a kernel size 31
(same padding), a Batch normalization layer, and a Tanh activation function. The discriminator
has two final dense layers of 256 and 128 units.
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Figure 7.4 – Discriminator architecture (SEGAN)
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As for SEGAN, we slightly adapted Pix2Pix to our datasets. The generator of the Pix2Pix
takes as input a 700-point trace coming from the original domain and outputs a 700-point
synthetic trace as for the SEGAN model. The generator is also an auto-encoder that is composed
of an encoder part and decoder part. The Pix2Pix network has no latent representation between
the encoder part and a decoder part, but just one convolutional layer composed of 512 filters.
The encoder part is composed of seven blocks with one convolutional layer per block, a number
of filters equal to (32, 64, 128, 256, 256, 256, 256) with a kernel size of 11 (same padding), followed
by a Batch Normalization layer and an activation function (see Table 7.1). The decoder part is
composed of seven blocks and one transposed convolutional layer per block, a number of filters
equal to (256, 256, 256, 256, 128, 64, 32) with a kernel size 11 (same padding), followed by a Batch
Normalization layer and an activation function. The discriminator of the Pix2Pix is composed of
five blocks with one convolutional layer per block, a number of filters equal to (32, 64, 128, 256, 1)
with a kernel size of 11 (same padding). In the original paper [32], the discriminator part of the
Pix2Pix is implemented as PatchGAN, which means that the discriminator will classify 70 × 70
patches of the input image as real or fake. In our case, we adapt the output of the discriminator
to output one single value.

During the tuning phase, Pix2Pix always provided lower performance (e.g., lower or fewer
SNR peaks). Hence, SEGAN has been selected for our experiments on translation in the next
sections.

7.3.2 Translation from EM to Power

In this scenario, we investigate the capability of GAN to translate traces from EM radiations
to power consumption on the same device. Depending on the device, we obtained various different
SNR levels. For each device, we observed that the SNR corresponding to its EM and power
traces have similar shapes while being of different magnitudes. From a quantitative point of
view, the SNR value obtained from power traces is higher than from EM traces: in our setup
EM measurements contain more noise.

For the experiments presented in this section, Domain A will correspond to EM traces (that
are harder to attack) and Domain B to power ones.

STM32F2

Figure 7.5 shows the mean trace of the attack dataset (EM measurements), the synthetic
dataset, and the power consumption, as well as their SNR levels. We observe that the SNR value
is low (close to 0.4) for the EM channel, whereas the SNR value is high (close to 50) for the power
channel, but their shapes are similar. The synthetic dataset corresponds to the set generated by
GAN, which was trained to translate traces from EM to the power channel. First, We observe
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(a) Mean EM dataset (b) Mean synthetic dataset (c) Mean power dataset

(d) SNR of EM traces (e) SNR of synthetic traces (f) SNR of power traces

Figure 7.5 – Evaluation of STM32F2: (a) - (c) illustrates the mean trace and (d)-(f) the SNR
of the attack dataset for the EM, power channel, and the translated synthetic trace dataset

that the shape of SNR is closer to the shape of EM and power and that the three main leakage
position has been retrieved by the GAN. The SNR value of the synthetic dataset is close to
3, so the translation increases the magnitude and thus the amount of available information.
Considering that the SNR value for the synthetic dataset is lower than for the power channel,
which means that some information could not be reproduced.

In Figure 7.6 (top) the GE in the profiled scenario when targeting the EM channel is plotted.
First, we see that the performance is not specific to one network (ASCAD, Zaid, or noConv1).
On the left side of the figure, one observes that when using directly the EM traces for attacking
(labelled as F2EM), the attack does not succeed for any network. Next, similar performances can
be observed when the network is trained on the power channel (labelled F2PW). The right plot
shows that using the model trained on the power channel (F2PW) while attacking the translated
synthetic traces, we observe that the attack rapidly converges towards a GE of 0 using less than
10 attack traces.

We further evaluate the outcome in the scenario of non-profiled attacks. Figure 7.6 (bottom)
illustrates CPA using directly the EM dataset and when using the translated synthetic traces.
Without translation, the correct key is found with approximately 30 traces, whereas with the
translated synthetic dataset the key can be found using less than 15 traces.

These results confirm that GAN is able to translate between the EM and power domain (i.e.
F2PW not working on the EM dataset, but on the translated dataset for the three networks),
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(a) GE for three networks; left: original EM dataset, right: translated synthetic dataset

(b) CPA on EM dataset (c) CPA on synthetic dataset

Figure 7.6 – Attack evaluation on STM32F2 EM (original and synthetic translated traces)

and further that the translation is increasing the exploitable side-channel information using a
profiled DL-based attack or even when considering a classical non-profiled univariate attack.

STM32F4

Figure 7.7 (top) shows the mean trace obtained from STM32F4 of the dataset for EM/power
measurements and the synthetic traces, where we visually observe a translation. At the bottom
of the figure, we plot the SNR obtained on different attack datasets. The maximum SNR peak
from the EM channel is close to 0.12, whereas it is close to 17.5 for the power channel, showing
that the power channel is containing less noise. The GAN has at least retrieved the two main
leakage positions. We observe that the SNR value of the synthetic attack set is improved by a
factor of 5.

Figure 7.8 (top) shows the GE obtained when targeting device STM32F4 with EM for all
three networks. As for STM32F2, we observe on the left that attacking the EM channel using
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(a) Mean EM dataset (b) Mean synthetic dataset (c) Mean power dataset

(d) SNR of EM traces (e) SNR of synthetic traces (f) SNR of power traces

Figure 7.7 – Evaluation of STM32F4: (a) - (c) illustrates the (mean) trace and (d)-(f) the SNR
of the attack dataset for the EM, power channel, and the translated synthetic trace dataset

a model trained on EM (F4EM) or trained on power consumption (F4PW) does not converge
within the given number of traces for any network. When using the translated synthetic traces
and a model trained on the power channel (F4PW) GE reaches a mean rank equal to zero with
only 20 traces for NoConv1 and around 30 traces for the other two networks. So, again by using
the GAN translation, we could turn an unsuccessful attack into a successful one.

Figure 7.8 (bottom) shows that again the performance of CPA is improved as well. Using
directly the EM dataset reveals the key using around 200 traces. On the other hand, when using
the translated synthetic traces succeeds using around 50 traces.

In this section, we demonstrated that a translation from EM to power consumption is possible
and that it reduces the number of traces needed for a successful attack. On both datasets, the
classical approach (attacking directly the noisy channel) with Deep Learning (DL) failed and we
observe that directly using a network trained on the power channel (but without translating the
attack dataset) leads to poor performances. Our results show that GANs can be used to translate
traces from EM to the power channel, and the synthetic traces combined with a network trained
on the power channel is successful. Additionally, our results show that the performance of CPA
is greatly improved when attacking translated instead of the original traces.
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(a) GE for three networks; left: original EM, right: translated synthetic dataset

(b) CPA on EM dataset (c) CPA on synthetic dataset

Figure 7.8 – Attack evaluation on STM32F4 EM (original and synthetic translated traces)

7.3.3 Cross-Device Translation

In this scenario, we investigate the capability of GAN to translate traces captured from one
device to another. For the experiments presented in this section, Domain A will thus correspond
to traces from one chip and Domain B to traces from another chip.

STM32F1 power to STM32F2 power

In Figure 7.9 (a)-(c), we plot the SNR evaluation obtained with different attack sets when
translating F1 to F2 with power. The SNR value is close to 50 for F2, the synthetic attack set
has an SNR value close to 200 (which is even larger than the target domain), and we can observe
that GAN retrieved all three leakage positions from F2 which are at different time locations than
F1.

In Figure 7.10 (top), we plot the GE obtained when we target F1 with power. Any of the DL-
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(a) Attack set from F1PW (b) Synthetic attack set (c) Attack set from F2PW

(d) Attack set from F0PW (e) Synthetic attack set (f) Attack set from F2PW

(g) Attack set from F2PW (h) Synthetic attack set (i) Attack set from F4PW

Figure 7.9 – SNR evaluation for each of scenarios considered: (a) - (c) F1PW translated to F2PW,
(d)-(f) F0PW translated to F2PW, (g)-(i) F2PW translated to F4PW; left column domain A,
middle column translated, right column domain B dataset.

based attacks on the target domain (labelled F1PW) reaches a mean rank equal to zero below
2 traces. Using a model trained on F2 directly does not succeed, however, when translating to
the domain F2, the ASCAD and Zaid networks succeed as well within 2 traces. Even though the
performance using directly F2PW cannot be improved because of its high SNR by nature, this
scenario shows that cross-device translation is possible. For CPA (given at the bottom of the
figure) we see that the performance can be improved due to translation. Attacking the original
traces is successful within 8 traces, whereas the correct key is found on the synthetic traces using
2 traces.
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(a) GE; left: original dataset, right: translated synthetic dataset

(b) CPA on EM dataset (c) CPA on synthetic dataset

Figure 7.10 – Attack evaluation on STM32F1 (original and synthetic translated traces)

STM32F0 power to STM32F2 power

In Figure 7.9 (d)-(f), we plot the SNR evaluation when we translate from F0 to F2 device
with power. The SNR value is close to 50 for the F2 device, and the synthetic attack set has
an SNR close to 12 (which is smaller than the target domain), but again we can observe that
GAN retrieved the leakage positions from F2, while being different in time and amount for F0
and F2.

In Figure 7.11 (top), we plot the GE obtained when we target F0 with power. As before,
all DL-based attacks on the target domain (labelled F0PW) are already efficient (as the SNR is
high enough), whereas the model trained on F2PW does not succeed on the original traces. Even
though with a tiny difference, we observe that the best performance was obtained by applying
GAN and the Zaid network.

As in the previous scenario, we see that the translation improves the attackability with CPA.
On the original dataset, the key can be found using around 12 traces, whereas on the translated
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(a) GE; left: original dataset, right: translated synthetic dataset

(b) CPA on STM32F0 (c) CPA on synthetic dataset

Figure 7.11 – Attack evaluation on STM32F0 (original and synthetic translated traces)

synthetic traces we see that the correct key can be found immediately using 2 traces.

STM32F2 power to STM32F4 power

Unlike the previous scenarios, we now consider translation from a device with higher SNR
to another one with lower SNR. In the situation where an attacker only has a dataset available
(and the corresponding tuned network) for a device with less SNR, does translation between
domains still successful? Could translation bring some improvement ?

In Figure 7.9 (g)-(i), we plot the SNR evaluation when we translate F2 to F4. The SNR
value is close to 17.5 for the F4 device, the synthetic attack set has an SNR value close to 40
(which is larger than the target domain), and we can observe that GAN has recovered all three
leakage positions at the same time positions as F4.

Figure 7.12 shows the GE obtained when targeting F2 with power. First, we see that indeed
a translation to a higher noise domain is possible, as all networks trained on F4PW succeed on
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(a) GE for three networks; left: original EM dataset, right: translated synthetic dataset

(b) CPA on STM32F2 (c) CPA on synthetic dataset

Figure 7.12 – Attack evaluation on STM32F2 (original and synthetic translated traces)

the translated dataset, but fail on the original dataset. Second, one can observe that the attack
performance of the three neural networks is not degraded, but rather slightly improved. The
increase may be explained by the fact, that even though F2 has a higher SNR peak, F4 contains
three SNR peaks that are of a similar magnitude. We can see similar behaviour in the translated
synthetic attack dataset, which shows three SNR peaks with comparable SNR levels. Indeed,
when summing up all SNR values, the synthetic dataset achieves a higher value than F2.

The performance of CPA shows a degraded performance, which is expected as its a univariate
attack, only considering one SNR peak at a time, where the magnitude of SNR is directly related
to the success of CPA [18].

7.3.4 Conclusion

In this chapter, we want to investigate if GAN can be used to translate traces from one domain
to another which is easier to attack. We see different scenarios of translation: translation from
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EM to power and translation between different devices. First, our experiments show that the
translation between EM and power is possible, and in all cases, it led to increased neural network
efficiency (ASCAD, Zaid, NoConv1). Secondly, our experiments show that translation between
different devices is also possible. We started to make the trace translation between devices from
lower to higher SNR. In this case, the GAN successfully retrieves all leakage points and increase
the SNR value. Then, we make the trace translation between devices from higher to lower SNR.
In this case, the GAN also succeed to retrieve all leakage positions. We also apply CPA to
validate that trace translation can be used with other attacks. For the translation between EM
and power, trace translation permit significantly improves the CPA. For the translation between
devices (from lower to higher SNR), trace translation permits also to increase in the efficiency
of CPA. However, in the context of translation between devices from higher to lower SNR, trace
translation has decreased the performance of CPA because CPA is a univariate attack, so it only
considers one SNR peak at a time.
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CONCLUSIONS AND PERSPECTIVES

The literature on SCA with DNN mostly considers a situation where the variation between
the profiling set and attack set is small. The variation can be due to the difference between the
probe position and type, the difference between side-channel, and the difference between devices.
In a real-world scenario, this type of variation can occur, so it is necessary to study them in
order to analyze their impact. In this thesis, we wanted to take into account these variations
and study how they impact the performance of the DNN. To conduct this study, we created our
own database to investigate different scenarios of variations in different settings.

Thus, we have investigated how other sources of information can be beneficial for a DNN
through 3 contributions:

In chapter 5, we investigated the combination of different sources of information by using
DL techniques. We defined "Multi-channel attacks" which refers to an attack that consists in
combining several sources of information coming from different probe positions and types. We
evaluate the efficiency of "Multi-channel attacks" with the ASCAD, Zaid, and the NoConv1
networks compared to the regular deep learning attacks. The evaluation was made in different
contexts:

— Only adding noisy source compared to an original single channel.

— Adding noisy and clean source compared to an original single channel.

— Only adding clean source compared to an original single channel.

We show that depending on the context and the networks, the network is affected differently.
The ASCAD network is more sensitive to noisy channels. We have seen that adding a channel
that contains more noise decreases the performance of the ASCAD network, but adding clear
channels allows for an increase in its performance. For the Zaid and NoConv1 network, we
have seen that these two networks are sensitive to the variation between the channels. Their
performance can be affected if we add other sources that have a high level of variations compared
to the original channel. However, adding other sources that are close to the original channel,
allows for an increase in the performance of these two networks.

In chapter 6, we investigate how other sources of information can be beneficial to initialize
the weight of a DNN rather than random initialization. We defined "Transferred attacks" that
refers to using another source of information to pre-trained a network before fine-tuning it with
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the original sources of information. We evaluate the efficiency of "Transferred attacks" with
ASCAD, Zaid, and the NoConv1 networks compared to the regular deep learning techniques
with a limited dataset. The evaluation was made on different scenarios:

— Transferring between EM probe position and type

— Transferring between power and EM

— Transferring between different devices

For the scenarios about transfer between EM probe position and type, we show that "transferred
attacks" outperform regular attacks and pre-trained attacks. The same conclusion is made con-
cerning the transfer between EM and power. For the scenarios about transfer between devices,
we show that sometimes the regular attacks are still better than transferred attacks, but the
difference is small.

In chapter 7, we investigate how GAN can be used to translate traces from one source to
another that is easier to attack. We defined "Translated attacks" which refers to using a GAN to
translate an original attack set to a synthetic attack set. We assume that the synthetic attack set
is easier to attack. Like the two first chapters 5 and 6, we evaluate the efficiency of "Translated
attack" with the ASCAD, Zaid, and NoConv1 networks compared to the regular deep learning
attacks. The evaluation was made in different contexts:

— Translation from EM to power.

— Translation between devices.

We show that GAN successfully translate traces from EM to power, and between devices. We
have seen that the performance of the ASCAD, Zaid, and NoConv1 networks can be improved
with a translation from EM to power. For the translation between devices, if the translation
goes from noisy to a clear source of information, this can increase the performance of the three
networks. However, if the translation goes from clear to noisy, the regular attack remains better.

We have shown that other sources of information can be beneficial for deep neural networks.
In this thesis, we have mainly studied three new attacks. However, other attacks can be thought
of with other information sources. This topic can open the door to other types of attacks,
consequently, it is important to study them. We have been thinking about several areas of
research. For future works about the combination of side-channel information. We thought of
extending the combination to other auxiliary channels. For example, we can try to combine
traces from power consumption with acoustic traces. We would be curious to know if the current
countermeasures also hide information in the acoustic traces, and if they do not, how beneficial
it would be to combine them for the neural network. For future work on the Transfer Learning
(TL), we would like to extend our approach with different techniques of TL to determine if it is
still suitable, and if they do, how much it can be beneficial for the neural network. Our work on
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GANs remains the most optimistic. We would like to see in future work what the limits of these
networks are. For example, regarding trace translation, what are the limits, can we translate all
types of auxiliary channels?

In the future, I intend to continue to study the problem of generalization that we can have
in Artificial Intelligence (AI), especially in the IT Security domain. I am convinced that we
can make more robust and more general approaches based on AI because new technologies are
appearing that make the algorithms of AI more efficient [62]. Another point I would like to study
in AI is explainability. I think that an Explainable Artificial Intelligence (xai) algorithm would
allow having more confidence in the decision-making and prediction made by the AI, and would
allow solving more quickly the generalization and robustness problem of AI.
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Titre : Apprentissage automatique pour les attaques par canaux auxiliaires

Mot clés : Apprentissage automatique, apprentissage profond, attaques par canaux auxiliaire, réseaux

GAN, apprentissage par transfert

Résumé : De nos jours, les systèmes embarqués
sont plus nombreux et répandus dans la nature.
Ces systèmes sont vulnérables aux attaques par
canaux auxiliaires. Ces attaques consistent à uti-
liser des mesures physiques pour observer des
fuites d’information sur des systèmes cryptogra-
phiques embarqués. Avec l’émergence de l’intel-
ligence artificielle, de nouvelles attaques par ca-
naux auxiliaires basées sur de l’apprentissage pro-
fond ont été développées. Dans un grand nombre
de cas, ces nouvelles techniques d’attaque sont
plus efficaces pour exploiter des fuites de données
que des attaques classiques. Dans cette thèse,
nous étudions les techniques d’apprentissage pro-
fond dans le contexte où nous avons plusieurs
sources d’information disponibles. Dans un pre-
mier temps, nous avons cherché à savoir si la com-
binaison de plusieurs canaux d’observation pro-
venant d’un même système mais de sondes dif-
férentes peut aider un attaquant à élaborer une

attaque plus efficace qu’avec une source unique.
Dans un deuxième temps, nous avons cherché à
savoir si des ensembles de données supplémen-
taires qui n’ont pas été mesurés à partir de la
même plateforme/sonde/système peuvent aider un
attaquant à monter une attaque plus puissante ou
bien à accélérer le temps d’une évaluation en faci-
litant la convergence d’un réseau. Nous avons uti-
lisé la technique appelée apprentissage par trans-
fert pour monter ce type d’attaque. Nous avons
démontré que l’apprentissage par transfert permet
en général de faciliter la convergence du réseau
et, dans certains cas, d’améliorer son efficacité fi-
nale. Enfin, dans le contexte où nous avons deux
ensembles de données avec des efficacités diffé-
rentes du point de vue de l’attaque, nous avons
étudié s’il était possible de traduire les traces d’un
système qui est plus difficile à attaquer en d’autres
traces d’un système qui est plus facile à attaquer.

Title: Machine learning for side-channel analysis

Keywords: Machine learning, deep learning, side channel attacks, GAN network, transfer learning

Abstract: Nowadays, embedded systems are
more numerous and widespread in the real world.
These systems are vulnerable to side channel at-
tacks. Such attacks consist in exploiting informa-
tion leaks from physical measures observed on
embedded cryptographic systems. With the emer-
gence of artificial intelligence, new side channel
attacks based on deep learning techniques arose
out. In many contexts, those techniques are more
efficient in exploiting data leakages than classical
ones. In this thesis, we study deep learning tech-
niques in the context of having multiple sources
of information available. In a first step, we inves-
tigated if the combination of multiple sources that
are measured from the same setup/device could
help an attacker to build a more effective attack
compared to a single-source one. We have shown

that it is not simple to combine sources to improve
the efficiency of a neural network. In a second step,
we investigated if the use of additional datasets
that are not measured from the same setup/device
could help an attacker to mount a stronger attack
(or could decrease the evaluation time by helping
the network convergence). We used a technique
called transfer learning to mount this kind of at-
tack. We have shown that transfer learning usu-
ally helps convergence and, in some cases, may
improve the final efficiency of the neural network.
Eventually, in the context where an attacker has
access to two datasets leading to different attack
efficiencies, we investigated whether it is possible
to translate traces from the actual target (dataset
that is harder to attack) into traces from the second
dataset (which is easier to attack).


	List of acronyms
	List of figures
	List of tables
	Context, Objectives and Contributions
	Introduction to Cryptography
	Advanced Encryption Standard
	Side-Channel Attack
	Contribution of the Thesis

	Machine Learning and Deep Learning
	General Concept of Machine Learning
	Introduction to Machine Learning

	Supervised Learning with Neural Networks
	Artificial Neural Network
	Learning Process
	Training and Validation in Supervised Learning
	Main Challenge in Supervised Learning

	Advanced Methods of Supervised Learning
	Generative Adversarial Network
	Paired Datasets.
	Unpaired Datasets.


	Siamese Network
	Transfer Learning
	Additional Layers
	Additional Activation Function
	The ReLU Activation Function.
	The Leaky ReLU Activation Function.
	The SeLU Activation Function.




	Side-channels attacks
	General Concept of Physical Attack
	Introduction to Physical Attack
	Overview of Side-Channel Attack
	Attack Context

	Non-profiled Side-Channel Attacks
	Profiled Side-Channel Attacks
	Metrics on Side-Channel Attack
	Leakage Quantification
	Evaluation Metric

	Countermeasure in Side-Channel Attacks
	Masking Countermeasure
	Hiding Countermeasure

	Regular Deep Learning-based Attacks
	ASCAD Network
	Zaid Network
	NoConv1 Network

	Motivation of the thesis

	Motivation and Implementation details
	Implementation details
	Measurement setup
	AVR platform
	ChipWhisperer platform

	Preliminary analysis
	ASCAD network
	Train with 12% of the database
	Train with 100% of the database

	NoConv1 network
	Train with 12% of the database
	Train with 100% of the database

	Zaid network
	Train with 12% of the database
	Train with 100% of the database



	Combining Sources of Side-channel Information
	Related works & Motivations
	Approaches
	Implementation details
	Contribution
	Multi-channel with EM2
	Multi-channel with EM3
	Multi-channel with EM4
	Conclusion


	Train or Adapt a Deeply Learned Profile?
	Related works & Motivations
	Approaches
	Implementation details
	Contribution
	Details on Transfer Learning
	Transferring between EM probe positions and types
	Transferring between Power and EM
	Transferring between different devices
	Conclusion


	Trace-to-trace translation for SCA
	Related works & Motivations
	Approaches & Implementation details
	Contribution
	GAN architecture
	Translation from EM to Power
	STM32F2
	STM32F4

	Cross-Device Translation
	STM32F1 power to STM32F2 power
	STM32F0 power to STM32F2 power
	STM32F2 power to STM32F4 power

	Conclusion


	Conclusion and perspectives
	List of publications

