
HAL Id: tel-04241619
https://theses.hal.science/tel-04241619

Submitted on 13 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous learning in a neuromorphic vision system :
an active efficient coding spiking model applied to vision

Thomas Barbier

To cite this version:
Thomas Barbier. Autonomous learning in a neuromorphic vision system : an active efficient coding
spiking model applied to vision. Electronics. Université Clermont Auvergne, 2023. English. �NNT :
2023UCFA0008�. �tel-04241619�

https://theses.hal.science/tel-04241619
https://hal.archives-ouvertes.fr

Autonomous learning in a
neuromorphic vision system.

An active efficient coding spiking model applied to
vision.

Thèse présentée par Thomas Barbier
Pour obtenir le grade de Docteur d’Université

Spécialité : Électronique et Systèmes ou Informatique

Soutenue publiquement le 19 Janvier 2023 devant le jury composé de

Alain Dutech Rapporteur Chargé de Recherche, HDR
LORIA.

Laurent Perrinet Rapporteur Directeur de Recherche
INT.

Yulia Sandamirskaya Examinatrice Ingénieur de Recherche
Intel Labs.

Benoit Cottereau Examinateur Directeur de Recherche
CerCo.

Fréderic Chausse Examinateur Professeur des Universités
Université Clermont Auvergne.

Vincent Barra Examinateur Professeur des Universités
Université Clermont Auvergne.

Jochen Triesch Directeur Professeur des Universités
Frankfurt Institute for Advanced Studies.

Céline Teulière Encadrante Maîtresse de Conférences
Université Clermont Auvergne.

ii

Remerciements

Ce manuscrit conclut 3 années de recherches intense mais passionnantes à l’Institut
Pascal au sein de l’équipe de vision par ordinateur ComSee. J’ai eu l’occasion pendant
cette thèse de découvrir de nombreux domaines qui ne m’étaient pas familier, tel
que la neuroscience ou l’ingénierie neuromorphique, qui s’avèrent être des domaines
passionnants.

Je tiens tout d’abord à remercier les rapporteurs et examinateurs qui ont pris
la peine de s’intéresser à ma recherche et de venir pour certain en présentiel à ma
soutenance de thèse.

Je remercie ensuite mes superviseurs, Céline et Jochen, sans qui cette thèse
n’aurait pas été possible. Merci pour tout ce que vous m’avez apporté, tant sur le plan
scientifique qu’humain. Vous avez toujours su me pousser dans mes raisonnements
et m’aider alors que je me confrontait parfois à des problèmes difficiles. Votre aide
précieuse m’as permis de mener à bout ma recherche et je vous en suit vraiment
reconnaissant.

Je remercie aussi mes collègues et amis . Merci pour toute ces discussions, rires
et autre moments de partage, parfois autour d’un café le midi, parfois autour d’une
bière le soir. Votre soutien moral direct ou indirect a été essentiel, et cette thèse
serait bien plus morose sans vous.

Enfin, merci à ma famille, tout particulièrement mes parents et ma sœur, qui
m’ont soutenu inconditionnellement durant ces trois ans. Merci pour leur soutien
moral qui m’as été essentiel pour mener à bien ma recherche tout en gardant le
sourire.

iv

Abstract

Biological systems continuously adapt their neural representations to the statistics of
their sensory input signals to operate efficiently. However, those statistics are shaped
directly by the organism’s behavior when sampling the environment. In the case
of vision, the organism must therefore solve a complex problem of jointly learning
visual encoding and eye control without external supervision. This autonomous
joint learning of visual representations and actions has been previously modeled in
the Active Efficient Coding (AEC) framework and implemented using traditional
frame-based cameras as visual sensory inputs. This type of sensor is very well studied
and used in many visual applications. Nevertheless, its performance in terms of
the acquisition rate, dynamic range, or power consumption remains far from the
capability of biological vision systems.

Event-based cameras are a new type of vision sensor. Based on the mammalian
eyes, they imitate the early visual pathways, such as the retina. Each pixel unit is
independent and emits a signal when it detects a high enough change in light intensity.
It operates at a very short timescale (the order of a few microseconds), allowing it to
capture swift movements with high precision. A static scene will not create visual
feedback, thus avoiding redundant information. Finally, the asynchronous nature of
the sensor allows it to drastically reduce the power consumption (a few milliwatts)
and increase the dynamic range (more than 120 dB). All those features come with a
challenge; the asynchronous output of event-based cameras is not well suited to be
used with conventional computer vision. Many popular algorithms, such as artificial
neural networks, depend on discrete operations, making them incompatible with
this new type of sensor. Spiking Neural Network (SNN)s are bio-inspired networks
that try to reproduce the computations of biological neuronal systems. They are
especially well suited to be used with event-based cameras.

Building on the AEC framework and using those novel event-based sensors as
sensory input, we want to create a system capable of learning smooth eye pursuit
and vergence based on efficient coding representations of its environment. Our model
is composed of 3 main blocks. The first stage comprises the sensory inputs, carried
out by a stereoscopic pair of event-based cameras mounted on a moving robotic
head. The second stage comprises a two-layer SNN, which encodes the sensory inputs
into an efficient visual representation. This visual representation is fed into the

vi

third stage, composed of a spiking reinforcement learner. This stage is responsible
for learning motor commands to maximize a reward signal. This reward signal is
computed directly from the activity levels of the efficient coding layer, which is
modulated by plastic inhibitory connections learned on specific visual patterns.

Our work on the second stage has been extensively described in [1] and [2]. The
spiking neural network is capable of learning orientation, disparity, and motion
representations and efficiently tuning to the statistics of the scene using a modified
Spike-Timing Dependent Plasticity (STDP) rule. It is composed of two layers, the
simple and complex cells, directly inspired by neurons found in the early mammalian
visual pathways.

We based the reinforcement framework on a reformulation of the traditional
TD-Learning framework for use in spiking continuous applications. It is, therefore,
well adapted to work with the efficient coding layer. It comprises a population of
critic cells, whose role is to estimate a value function, while the actor cells are directly
linked to motor cells. Both populations are directly wired to the first two layers of
the SNN, which acts as state representations for the visual inputs.

Taking inspiration from predictive coding ideas, we generate the intrinsic reward
directly from the efficient coding layer and modulate the cells’ activity using inhibition
connections between the cells. Using both a lateral and top-down inhibition scheme,
we learn to lower the activity of the network when presented with specific visual
patterns. If those patterns appear more often during training, they will naturally be
more suppressed. From there, we derive a reward signal inversely proportional to
the global activity of the simple cell layer.

Finally, we combine all the blocks to solve visual tasks such as tracking and
orientation stabilization. The process is performed in the spike domain, from visual
input to motor commands, without needing external supervision.

Keywords: Active Efficient Coding, Spiking Neural Networks, Reinforcement
Learning, Intrinsic Reward.

Résumé

Les systèmes biologiques adaptent continuellement leurs représentations neuronales
aux statistiques de leurs signaux d’entrée sensoriels pour fonctionner efficacement.
Cependant, ces statistiques sont façonnées directement par le comportement de
l’organisme lorsqu’il échantillonne l’environnement. Dans le cas de la vision, l’organisme
doit donc résoudre un problème complexe d’apprentissage conjoint du codage visuel
et du contrôle oculaire sans supervision externe. Cet apprentissage autonome con-
joint des représentations visuelles et des actions a été précédemment modélisé dans
le cadre Active Efficient Coding (AEC) et mis en œuvre en utilisant des caméras
traditionnelles basées sur les images comme entrées sensorielles visuelles. Ce type
de capteur est très bien étudié et utilisé dans de nombreuses applications visuelles.
Néanmoins, ses performances en termes de taux d’acquisition, de plage dynamique
ou de consommation d’énergie restent loin des capacités des systèmes de vision
biologiques.

Les caméras événementielles constituent un nouveau type de capteur de vision.
Basées sur les yeux des mammifères, elles imitent les premières voies visuelles, telles
que la rétine. Chaque pixel est indépendant et émet un signal lorsqu’elle détecte
une variation suffisamment importante de l’intensité lumineuse. Il fonctionne à une
échelle de temps très courte (de l’ordre de quelques microsecondes), ce qui lui permet
de capturer des mouvements rapides avec une grande précision. Une scène statique ne
créera pas de retour visuel, évitant ainsi les informations redondantes. Enfin, la nature
asynchrone du capteur permet de réduire drastiquement la consommation électrique
(quelques milliwatts) et d’augmenter la plage dynamique (plus de 120 dB). Toutes
ces caractéristiques s’accompagnent d’un défi : la sortie asynchrone des caméras
événementielles n’est pas bien adaptée à la vision par ordinateur conventionnelle.
De nombreux algorithmes populaires, tels que les réseaux neuronaux artificiels,
dépendent d’opérations discrètes, ce qui les rend incompatibles avec ce nouveau
type de capteur. Les réseaux neuronaux artificiels sont des réseaux bio-inspirés
qui tentent de reproduire les calculs des systèmes neuronaux biologiques. Ils sont
particulièrement bien adaptés pour être utilisés avec des caméras événementielles.

En se basant sur le cadre AEC et en utilisant ces nouveaux capteurs événementiels
comme entrée sensorielle, nous voulons créer un système capable d’apprendre la pour-
suite oculaire et la vergence en douceur en se basant sur des représentations codantes

viii

efficaces de son environnement. Notre modèle est composé de trois blocs principaux.
Le premier comprend l’entrée sensorielle, effectuées par une paire stéréoscopique
de caméras événementielles, montées sur une tête robotique mobile. La deuxième
étape comprend un SNN à deux couches, qui encode les entrées sensorielles en une
représentation visuelle efficace. Cette représentation visuelle est introduite dans le
troisième bloc, composée d’un apprentissage par renforcement impulsionel. Cet étage
est responsable de l’apprentissage des commandes motrices afin de maximiser un
signal de récompense. Ce signal de récompense est calculé directement à partir des
niveaux d’activité du deuxième bloc, qui est modulée par des connexions inhibitrices
plastiques apprises sur des motifs visuels bien spécifiques.

Nos travaux sur le deuxième bloc ont été largement décrits dans [1] et [2]. Le réseau
de neurones à impulsions est capable d’apprendre des représentations d’orientation,
de disparité et de mouvement et de s’accorder efficacement aux statistiques de la
scène en utilisant une règle Spike-Timing Dependent Plasticity (STDP) modifiée. Il
est composé de deux couches, les cellules simples et complexes, directement inspirées
des neurones présents dans les premières voies visuelles des mammifères.

Nous avons basé le cadre de renforcement sur une reformulation du cadre tra-
ditionnel de TD-Learning pour l’utiliser dans des applications à temps continu. Il
est donc bien adapté pour fonctionner avec la couche de codage. Il comprend une
population de cellules critiques, dont le rôle est d’estimer une fonction de valeur,
tandis que les cellules actrices sont directement liées aux cellules motrices. Les deux
populations sont directement reliées aux deux premières couches du SNN, qui agit
comme des représentations d’état pour les entrées visuelles.

En nous inspirant des idées de codage prédictif, nous générons la récompense
intrinsèque directement à partir de la couche de codage efficace et modulons l’activité
des cellules en utilisant des connexions d’inhibition entre les cellules. En utilisant
un schéma d’inhibition à la fois latéral et descendant, nous apprenons à réduire
l’activité du réseau lorsque des motifs visuels spécifiques sont présentés. Si ces
motifs apparaissent plus souvent au cours de la formation, ils seront naturellement
davantage supprimés. De là, nous dérivons un signal de récompense inversement
proportionnel à l’activité globale de la couche de cellules simples.

Enfin, nous combinons tous les blocs pour résoudre des tâches visuelles telles
que le suivi et la stabilisation de l’orientation. Le processus est réalisé dans le
domaine impulsionel, de l’entrée visuelle aux commandes motrices, sans nécessiter
de supervision externe.

Mots-Clés : Codage actif et efficace, réseau de neurones impulsionnels, apprentis-
sage par renforcement, récompense intrinsèque.

Contents

Remerciements iii

Abstract v

Résumé vii

List of Figures xv

List of Tables xxv

Glossary xxvii

Acronyms xxix

1 General introduction 3

1.1 Motivation . 3

1.2 Context . 4

1.3 Contributions . 7

1.4 Manuscript outline . 9

2 Background 11

Introduction . 12

2.1 Active Efficient Coding . 12

2.1.1 Background on Reinforcement Learning 12

2.1.2 Active Efficient Coding . 16

2.2 Event-based cameras . 18

2.2.1 Neuromorphic engineering . 18

2.2.2 Quick historical overview . 19

2.2.3 Event representation . 19

x

2.2.4 Mathematical model for event generation 20

2.2.5 Advantages compared to frame-based cameras 21

2.2.6 Challenges of a new sensing paradigm 22

2.2.7 Applications . 23

2.3 Spiking Neural Networks . 26

2.3.1 Biological vision pathway . 26

2.3.2 A model inspired by the early visual system 26

2.3.3 Biological neuron models . 27

2.3.4 Mathematical neuron models 29

2.3.5 Spiking neural networks . 30

2.3.6 SNN learning mechanisms . 31

2.3.7 Spike-Timing Dependent Plasticity 32

2.3.8 Reward-modulated STDP . 33

2.3.9 Hardware implementation of event-based algorithms 34

Conclusion . 35

3 Efficient visual encoding with a SNN 37

Introduction . 38

3.1 Related work . 39

3.1.1 Supervised learning with SNN 39

3.1.2 Unsupervised learning methods 40

3.1.3 Learning to capture motion 42

3.1.4 Learning binocular disparity 43

3.2 A dual-layered spiking neural network model 44

3.2.1 Neuronal model . 45

3.2.2 Homeostatic mechanisms . 45

3.2.3 Learning through Spike Timing Dependent Plasticity 47

3.2.4 Spiking neural network architecture 49

3.3 Network activity analysis and visualization 54

xi

3.3.1 Datasets of event-based recordings 54

3.3.2 Simulated sequences . 56

3.3.3 Network parameters . 57

3.3.4 Visualizing the network’s behavior 58

3.3.5 Sparsity as an efficient coding mechanism 65

3.3.6 Network activity variation . 66

3.3.7 Independent spike responses 66

3.4 Studying the receptive fields of simple and complex cells 69

3.4.1 Learning simple cell receptive fields 69

3.4.2 Weight evolution during training 75

3.4.3 Development of motion and disparity tuned receptive fields . . 76

3.4.4 Estimating disparity from stereo driving scenes 82

3.4.5 Learning complex cell receptive fields 86

Conclusion . 91

4 Reinforcement Learning with intrinsic reward 93

Introduction . 94

4.1 Related work . 95

4.1.1 Spiking reinforcement learning 96

4.1.2 Intrinsic reward . 97

4.2 A fully spiking reinforcement learning framework 99

4.2.1 Temporal difference error . 99

4.2.2 Critic neurons . 100

4.2.3 Actor neurons . 102

4.2.4 Three-factor learning rule . 102

4.2.5 Exploration and exploitation strategy 103

4.3 Intrinsic reward generation . 105

4.3.1 Top-down inhibition . 106

4.3.2 Lateral inhibition . 107

xii

4.3.3 Intrinsic reward from activity 108

4.4 Application to tracking and visual field stabilization 109

4.4.1 Simulation of visual environment 109

4.4.2 Tracking task . 109

4.4.3 Stabilization task . 117

4.5 Intrinsic reward through inhibition 121

4.5.1 Spatial inhibition . 121

4.5.2 Inhibition on oriented patterns 123

4.5.3 Tracking task with intrinsic reward 124

4.5.4 Stabilization task with intrinsic reward 125

Conclusion . 126

5 Discussions and Perspectives 129

5.1 Conclusions and discussions . 129

5.2 Perspectives on improvements . 131

5.3 Perspectives on future applications 131

5.3.1 Extension of our framework 131

5.3.2 Application to robotics . 132

A Supplementary material 137

B Publications and communications 143

C Source code 145

C.1 Neuvisys . 146

C.1.1 Requirements . 146

C.1.2 Neuvisys libraries . 147

C.1.3 Launch . 147

C.1.4 Configuration guide . 149

C.1.5 Graphical User Interface . 149

C.2 CoppeliaSim event-based simulation 150

xiii

C.2.1 ROS integration . 151

C.3 Neuvisys-analysis . 152

C.3.1 Requirements . 152

C.3.2 Jupyter-Notebooks . 153

Bibliography 155

xiv

List of Figures

1.1 AEC model composed of 3 main blocks, the sensory input, efficient
coding model, and reinforcement learner. The reward is intrinsically
generated from the efficient coding layer. 8

2.1 Reinforcement learning diagram of an agent environment interaction.
The agent receives a state and reward from the environment and can
act on the latter via actions. It is a cyclic process. 13

2.2 (a) Active efficient coding hypothesis (b) Active efficient coding general
architecture. 17

2.3 Cover of the Scientific American of May, Volume 264, Issue 5, featuring
the picture of a cat taken with the Silicon Eye. 19

2.4 (a) Metavision EVK4 – HD Event-based camera from Prophesee. (b)
From left to right, DVXplorer Mini, DVXplorer Lite, DVXplorer, and
Davis346 event-based cameras from Inivation. 20

2.5 Difference between a frame-based and event-based output from Gallego
et al. [28]. 21

2.6 Robotic goalie with super-human reaction time by Delbruck et al. [29] 23

2.7 Micromanipulator combining event-based and frame-based camera by
Ni et al. [39] . 24

2.8 Deep neural network for motion estimation with event-based cameras
by Zhu et al. [43] . 24

2.9 HOTS method for the Spatio-temporal processing of event streams by
Lagorce et al. [50] . 25

2.10 Simplified diagram of the retina. 27

2.11 Neuron and synapse diagram from Khanacademy.org. 27

2.12 Example of a Gabor function. 28

2.13 (a) Computation cost versus biological plausibility of different neuron
models from [72]. (b) Different generations of neural networks from [73]. 31

xvi

2.14 Exponential STDP interaction between a pre and post-synaptic neuron.
It displays here an exponential STDP window. Image is taken from
Scholarpedia.org. 32

2.15 (a) Example of an all-to-all (top) versus nearest neighbor (bottom)
STDP formulation. (b) Use of a synaptic trace to implement the
STDP learning rule. Images is taken from Scholarpedia.org. 33

2.16 R-STDP learning rule. The neuromodulatory signal act as a third-
factor rule on synapses. Illustration from [78]. 34

2.17 (a) Loihi Intel’s neuromorphic chip. (b) Spinnaker board. (c) Truenorth
IBM’s synapse board. 35

3.1 Convnet SNN architecture by Perez-Carrasco et al. [81] 39

3.2 Deep SNN architecture for object classification by Kheradpisheh et
al. [88] . 40

3.3 Example of receptive fields learned by Akolkar et al. [92] 40

3.4 GASSOM architecture for learning simple and complex cells like
representation by Chandrapala et al. [94] 41

3.5 Receptive field with synaptic delays for motion estimation by Orchard
et al. [102] . 42

3.6 Convolutional SNN for optical flow estimation by Paredes-Vallés et
al. [103] . 42

3.7 Example of a learned basis of receptive field from synaptic delays by
Grimaldi et al. [104] . 43

3.8 Triangular structure for disparity detection by Pozzi et al. [106] . . . 43

3.9 Learning binocular disparity selective representation by Chauhan et
al. [109] . 44

3.10 Groups of N = 4 neurons are connected to the same patch of input
pixels providing ON (green) and OFF (red) events. The neurons are
linked by inhibitory connections (blue). A neuron can be connected
to pixels of its receptive field by D synapses with different delays to
gain localized motion-sensing properties (not shown). 47

3.11 Diagram of the synaptic delays between a pixel to a simple cell 48

3.12 Proposed SNN architecture . 49

3.13 Flowchart of our SNN algorithm. 53

xvii

3.14 Screen capture of four event recordings, shapes on a paper, an office,
someone juggling, and a robotic platform in an urban environment.
Blue and red, respectively, represent ON and OFF events. 54

3.15 Frame representation of the input events from four of the driving
sequences in the DDD17 driving dataset. 55

3.16 Event representation displayed on top of actual frames from two of
the MVSEC’s dataset driving sequences, one during the day and one
during the night. 56

3.17 Robotic mobile driving platform with two stereoscopic event-based
cameras mounted on top. 57

3.18 Raster plot of the simple cells on an event-based recording of an office. 59

3.19 Raster plot of the complex cells on an event-based recording of an office. 60

3.20 Instantaneous rates plot with a Gaussian kernel window of 100ms for
the simple cell layer on an event-based recording of an office. 62

3.21 Instantaneous rates plot with a Gaussian kernel window of 100ms for
the complex cell layer on an event-based recording of an office. 63

3.22 Time histogram on an event-based recording of an office. (a) Simple
cell layer. (b) Complex cell layer. The scales are different for the two
layers. 64

3.23 Spike rate plots on an event-based recording of an office. (a) Simple
cell layer. (b) Complex cell layer. The scales are different for each layer. 64

3.24 Top: Difference in activity between the input (event rate in blue), the
simple cell layer (purple), and the complex cell layer (green). Bottom:
scatter plot and correlation trends of the input rate function of the
simple (purple) and complex cell (green) spike rates. We show the
results of the shape recording. (a) With learned weights representation.
(b) With random weights. 67

3.25 (a) MSE Loss function over 1000 iterations. (b) The predicted angle
is plotted against the true angle for the 200 test data points. 68

3.26 (a) Resulting receptive fields of simple cells learned with the moving
shapes video sequence. (b) Examples of learned simple cell receptive
fields with their matched Gabor function below it. 70

xviii

3.27 Examples of input events from the driving sequence. The blue squares
indicate the locations of the nine different visual regions. Each region
is then subdivided into 16 neurons’ receptive fields that are indicated
by a lighter shade of blue in the top left corner region. 71

3.28 (a) Receptive fields learned for the 9 visual regions. (b) Selected exam-
ples of learned receptive fields (rows 1, 3, and 5) and corresponding
Gabor fits (rows 2, 4, and 6) showing tuning to different orientations
and scales. (c) Histogram of the network’s receptive field orientations
obtained from fitting Gabor functions to each visual region. 72

3.29 Receptive fields of a network without weight sharing learned on the
entire visual field of the Davis346 event-based camera. The receptive
fields were learned on one of the driving sequences in the DDD17
driving dataset. 74

3.30 Lateral inhibition diversifies receptive fields. Examples of 16 neurons’
receptive fields learned without (a) and with (b) lateral inhibition. All
neurons in a column receive the same inputs from the event sensor but
start with a different random initialization of their synaptic weights. (c)
Boxplot of the squared Euclidean distances between synaptic weights
of neurons receiving similar inputs with and without lateral inhibition. 75

3.31 Evolution of the simple cell receptive fields during training on the
shapes recording. Each figure is a snapshot of the weights made every
2s while showing event-based input from the shape recording. The
last figure presents the weight at the end of training. 77

3.32 (a) Synthetic event video made of vertical bars moving from left to
right. Their speed varies from the top (fastest) to the bottom (slowest).
(b) Motion-sensitive cells (top) with three increasing synaptic delays
(represented as three squared receptive field stack on top of each other).
(c) Disparity-sensitive cells (bottom) are connected to a left and right
“synthetic” camera, represented as two squared receptive fields stacked
on top of each other. Two neurons are presented per moving bar, from
the fastest (left) to the slowest (right). 78

3.33 (a) Motion-tuned receptive fields learned across the entire field of view.
Each receptive field has three sub-fields (arranged vertically) corre-
sponding to different synaptic delays. Every second row of neurons
has been removed in the figure to limit display size. (b) Enlarged view
of marked groups of receptive fields in (a). See text for details. 79

xix

3.34 Basis of stereo simple cell receptive fields learned on a stereo recording
of drawn shapes with added disparity. The figure displays the left and
right receptive fields on top of each other. 81

3.35 Histogram of learned disparities for the simple cells learned on a
recording of the drawn shapes with added disparity. 82

3.36 (a) Example of an image (left camera) taken from one of the outdoor
sequences. The squares mark the different image regions. The colored
squares in the upper left mark regions for which disparities and re-
ceptive fields are shown in (b) and (c). (b) Histograms of estimated
disparities of the learned receptive fields (orange) and disparities esti-
mated from corresponding image frames with conventional computer
vision techniques (blue) for the three colored regions. (c) Learned left
(top) and right (bottom) receptive subfields for the 49 neuron layers
in the three colored regions. 83

3.37 Depth histogram ground truth obtained from lidar information from
the MVSEC dataset sequence for the first six visual regions (blue).
Histogram of estimated depths of the learned receptive fields for the
first six visual regions (grey). 85

3.38 Simple cell receptive fields learned on nine different image regions of
a driving sequence from the MVSEC dataset. We present the left and
right subfields (from the left and right event-based cameras) on top of
each other. 87

3.39 Examples of learned complex cell receptive fields. On top are the
weighted simple cell receptive fields with the strongest connection to
the complex cell. The bottom is the sum of all simple cells in the
image plane with the same receptive fields. 88

3.40 (a) Complex cell response in direction space, made from counting the
cell’s spikes for a rotating grating stimulus. The red line corresponds
to the normalized vector length and indicates the cell’s selectivity
strength and direction. (b) Complex cell response in orientation space,
made by pooling over opposite directions. 89

3.41 36 first (out of 144) complex cell response in direction space. Results
are obtained by measuring spike activity for gratings of multiple
orientations. 90

3.42 (a) Normalized vector length distribution of the network complex
cells in direction and orientation space. (b) Histogram of normalized
vector orientations in orientation space (0° corresponds to a horizontal
orientation). 91

xx

3.43 Orientation selectivity for 5 different complex cell STDP windows. . . 92

4.1 Icub robot performing vergence by Vasco et al. [129] 96

4.2 Actor-Critic spiking TD learning framework by Fremeaux et al. [140] 97

4.3 Actor-Critic spiking reinforcement learning for playing Pong by Anwar
et al. [142] . 98

4.4 AEC vision architecture for vergence control by Lelais et al. [9] 98

4.5 vergence control model from disparity-tuned neurons by Gibaldi et
al. [145] . 99

4.6 Proposed spiking AEC architecture. 100

4.7 Flowchart of our reinforcement learning algorithm. 105

4.8 Top down inhibition . 106

4.9 Lateral inhibition . 107

4.10 tracking environment, composed of one motorized agent (gray boxes)
and one ball (with white and red textured stripes). The goal is to
bring the ball to the center of the visual field, as seen in the top right
of the image. Simulation images are sampled at high frame rates
and then transformed into event streams, as seen under the visual
field representation. The agent can either turn right or left in the
horizontal plane. 110

4.11 (a) Evolution of the value function during training for different ball
positions. Evolution is represented from blue (early in the training)
to red (late in the training). The reward is the curve in purple. (b)
Evolution of agent policy during training for different ball positions.
The policy is shown as the actor cell spike rates. Evolution is repre-
sented by the color intensity, from light tones to heavy tones. The left
and right actions are respectively shown in blue and orange. 112

4.12 (a) Reward and value function (blue and orange respectively) evolution
during one training of around 100 seconds in simulation time. (b) TD
error evolution during training. 113

4.13 (a) Reward variation over time for the validation scenario on the
tracking task (b) Angular error variation over time for the validation
scenario on the tracking task with extrinsic reward. Red dashed bars
represent the time at which the ball is reset to a random location. . . 115

xxi

4.14 Validation scenario for the tracking task with extrinsic reward. Mean
and error bands of 1 standard deviation from 5 experiments with
different starting seeds. (a) Reward and value function. (b) Action
decision visualized from the activity of the actor neurons. 115

4.15 Euclidean distance between the center of the visual field and the
center of the ball for the 2D tracking reinforcement learning task after
learning on an exploitation test scenario. The ball is reset every 2
seconds to a random location in the visual field, represented by red
dashed vertical lines. 116

4.16 Stabilization environment, composed of one motorized agent (gray
boxes) and a grating stimulus consisting of white bars on a black
background. The goal is to bring the bars to a horizontal position by
rotating the camera around its optical axis. 118

4.17 (a) Evolution of the value function during training for different bar
orientations. Evolution is represented from blue (early in the training)
to red (late in the training). The reward is the purple curve. (b)
Evolution of agent policy during training for different bar orientations.
The policy is shown as the actor cell spike rates. Evolution is repre-
sented by the color intensity, from light tones to heavy tones. The
clockwise and counter-clockwise actions are shown respectively in blue
and orange. 118

4.18 Angular error variation over time for the validation scenario on the
stabilization task with extrinsic reward. Red dashed bars represent
the time at which the grating is reset to a random orientation. 119

4.19 Validation scenario for the stabilization task with extrinsic reward.
Mean and error bands of 1 standard deviation from 5 experiments
with different starting seeds. (a) Reward and value function. (b)
Action decision visualized from the activity of the actor neurons. . . . 120

4.20 Activity variation of the network when presented to oriented gratings
from 0 to 360◦. In purple, the experiment network after learning the
inhibition on a Gaussian distribution of oriented gratings centered
around 0◦. In blue, the control network is the experiment network with
shuffled inhibition weights. The bottom graph presents the Gaussian
distribution used for learning in red superimposed on the activity
difference between the control and the experiment. 122

xxii

4.21 Activity variation of the control and experiment network when pre-
sented to a moving ball from the left to the right of the visual field.
In purple, the experiment network after learning the inhibition on a
normal distribution of ball recording centered on the middle of the
visual field. In blue, the control network is the experiment network
without inhibition weights. The bottom graph presents the normal
distribution used for learning in red superimposed on the activity
difference between the control and the experiment. 123

4.22 Angular error variation over time on the validation scenario for the
tracking task with an intrinsic reward. Red dashed bars represent the
time at which the ball is reset to a random location. 124

4.23 Validation scenario for the tracking task with intrinsic reward. Mean
and error bands of 1 standard deviation from 5 experiments with
different starting seeds. (a) Reward and value function. (b) Action
decision visualized from the activity of the actor neurons. 125

4.24 Angular error variation over time on the validation scenario for the
stabilization task with an intrinsic reward. Red dashed bars represent
the time at which the grating is reset to a random orientation. 125

4.25 Validation scenario for the stabilization task with intrinsic reward.
Mean and error bands of 1 standard deviation from 5 experiments
with different starting seeds. (a) Reward and value function. (b)
Action decision visualized from the activity of the actor neurons. . . . 126

5.1 Pan-tilt robotic head unit. 132

A.1 Same on short recording of an office. (a) With learned weight. (b)
With random weights. 138

A.2 Same on a recording of someone juggling with 3 balls. (a) With learned
weight. (b) With random weights. 139

A.3 Same on an outside recording of an urban environment with a mobile
robotic platform. (a) With learned weight. (b) With random weights. 140

A.4 (a) Reward and value function at the start of training (b) Actor
neurons spike count evolution at the start of training for the 3 possible
actions (left in blue, stop in orange, and right in green). Every time
an action is selected, the 3 counts are reset to 0. The action with the
highest amount of spikes is not necessarily the one that is selected,
due to the exploration strategy. 141

xxiii

A.5 (a) Reward and value function at the end of training (b) Action decision
at the end of training . 141

C.1 Qt Graphical User Interface made for the Neuvisys spiking neural
network code. (a) Events and Network spike rate information. (b)
Cells’ potentials. (c) Cells’ receptive fields (d) Cells’ spike trains. . . . 150

xxiv

List of Tables

3.1 Simple and complex cell parameters. 50

3.2 Network architectural parameters . 57

3.3 Sparsity analysis on four different event recordings. We show the
result for two networks, one with learned representation and the other
with random ones. We present the activity reduction, the number
of events divided by the number of spikes in the cell layer. We also
present the correlation coefficient between the events and cell activity
variation. 65

3.4 Network architectural parameters in the driving scenario with nine
visual regions and weight sharing. 71

3.5 Network architectural parameters in the driving scenario without
weight sharing . 73

3.6 Network architectural parameters in the driving scenario with multi-
synaptic inputs. 79

3.7 Network architectural parameters in a stereoscopic robotic mobile
platform scenario. 82

3.8 Network architectural parameters . 88

4.1 Parameters configuration for the network’s cells in the reinforcement
learning tasks. 104

4.2 Reinforcement learning framework parameters. 104

4.3 Network architectural parameters for the tracking task. 110

4.4 Network architectural parameters for the 2D tracking task. 116

4.5 Network architectural parameters for the stabilization task. 117

4.6 Network architectural parameters for the tracking task with intrinsic
reward. 121

4.7 Network architectural parameters for the stabilization task with in-
trinsic reward. 123

xxvi

Glossary

binocular In biology, binocular vision is a type of vision in which an animal has
two eyes capable of facing the same direction to perceive a single three-
dimensional image of its surroundings x, xvi, 7, 17, 18, 37, 43, 44, 78, 84, 98,
131

depth perception Depth perception is the ability to perceive distance to objects in
the world using the visual system and visual perception. 56, 92

depth estimation Depth Estimation is the task of measuring the distance of each
pixel relative to the camera. 5, 6, 25, 26, 82, 85

dynamic range Dynamic range describes the ratio between the brightest and
darkest parts of an image, from pure black to brightest white. It is measured
either as a ratio or as a base-10 (decibel) or base-2 (doublings, bits or stops)
logarithmic value of the difference between the smallest and largest signal
values. 5, 22

extrinsic An extrinsic property is not essential or inherent to the subject that is
being characterized. xx, xxi, 21, 108, 109, 115, 119, 120, 121, 124, 125, 127

feature detection Feature detection includes methods for computing abstractions of
image information and making local decisions at every image point whether
there is an image feature of a given type at that point or not 23

Field-Programmable Gate Array A field-programmable gate array (FPGA) is
an integrated circuit designed to be configured by a customer or a designer
after manufacturing. xxix, 35

grating A grating is any regularly spaced collection of essentially identical, parallel,
elongated elements. xix, xxi, xxii, 28, 57, 88, 89, 90, 118, 119, 122, 124, 125

intrinsic In science and engineering, an intrinsic property is a property of a specified
subject that exists itself or within the subject. xi, xii, xv, xxii, xxv, 4, 6, 7,
8, 10, 19, 21, 29, 35, 85, 93, 95, 96, 97, 98, 99, 105, 108, 109, 121, 122, 123,
124, 125, 126, 127, 129, 130

latency A measure of the time delay experienced by a system. 4, 5, 21, 23, 24, 26

xxviii

Long-Term Potentiation In neuroscience, long-term potentiation (LTP) is a
persistent strengthening of synapses based on recent patterns of activity.
xxix, 32

Long-Term Depression In neursocience, long-term depression (LTD) is an activity-
dependent reduction in the efficacy of neuronal synapses lasting hours or
longer following a long patterned stimulus. xxix, 32

optical flow Optical flow or optic flow is the pattern of apparent motion of objects,
surfaces, and edges in a visual scene caused by the relative motion between
an observer and a scene xvi, 24, 25, 42, 43, 55, 73, 78, 92

pathway In neuroanatomy, a neural pathway is the connection formed by axons
that project from neurons to make synapses onto neurons in another location,
to enable neurotransmission (the sending of a signal from one region of the
nervous system to another). x, 5, 6, 7, 8, 11, 19, 26, 27, 38, 49

receptive field The receptive field, or sensory space, is a delimited medium where
some physiological stimuli can evoke a sensory neuronal response in specific
organisms. xi, xvi, xvii, xviii, xix, 10, 17, 28, 37, 38, 40, 41, 42, 43, 44, 46,
47, 48, 49, 50, 51, 52, 57, 58, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 92, 98, 111, 121

stereoscopic Stereoscopy (also called stereoscopics, or stereo imaging) is a technique
for creating or enhancing the illusion of depth in an image by means of
stereopsis for binocular vision. xvii, xxv, 43, 52, 56, 57, 78, 80, 82

tracking describes several different methods of extracting camera motion information
from a motion picture. xii, xx, xxi, xxii, xxv, 5, 6, 10, 13, 23, 24, 92, 93, 95,
96, 105, 109, 110, 111, 114, 115, 116, 117, 119, 120, 121, 124, 125, 127, 130,
132, 133, 151

vergence Vergence is the simultaneous movement of both eyes in opposite directions
to obtain or maintain single binocular vision. xx, 6, 7, 13, 96, 98, 99, 105,
131, 132, 133, 151

Very-Large-Scale Integration Very large-scale integration (VLSI) is the process
of creating an integrated circuit by combining millions or billions of MOS
transistors onto a single chip. xxx, 18

Acronyms

AEC Active Efficient Coding v, vii, xx, 6, 7, 8, 9, 12, 17, 18, 35, 92, 94, 95, 98, 99,
100, 121, 129, 131

AI Artificial Intelligence 94
ANN Artificial Neural Network 31, 35, 39, 70, 75

CNN Convolutional Neural Network 24
CPU central processing unit 34, 52, 53, 131, 132

ESN Echo State Network 41

FPGA Field-Programmable Gate Array 35, 96
FSV Frequency-normalized Spread Vector 43

GASSOM Generative Adaptive Subspace Self-Organising Map 41
GPU graphics processing unit 34, 35, 53, 95, 96, 132
GUI Graphical User Interface 146, 147, 149, 150

HOTS Hierarchy of event-based Time Surfaces xv, 25

LIF Leaky Integrate and Fire 30, 41, 45, 49, 51
LSTM Long Short-Term Memory 25
LTD Long-Term Depression 32, 48
LTP Long-Term Potentiation 32, 99

MDP Markov Decision Process 13, 14, 15
MSE Mean Squared Error 66, 68, 69, 82

POMDP Partially Observable Markov Decision Process 15

R-STDP Reward Modulated STDP xvi, 7, 10, 33, 34, 95, 96, 97, 102, 114
ROS Robot Operating System xiii, 145, 146, 147, 148, 151, 152

SDC Stochastic-Deterministic Coordinated 97
SNN Spiking Neural Network v, vi, viii, x, xvi, 5, 8, 10, 11, 12, 26, 30, 31, 32, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 49, 52, 53, 58, 65, 66, 75, 92, 95, 96, 100,
102, 105, 126, 129, 130, 132, 147, 152

STDP Spike-Timing Dependent Plasticity vi, viii, x, xvi, xx, 6, 10, 11, 32, 33, 34,
36, 40, 41, 42, 43, 44, 47, 48, 51, 73, 75, 91, 92, 95, 96, 99, 106, 121, 130

xxx

TD Temporal Difference xx, 8, 10, 15, 16, 95, 97, 99, 100, 102, 103, 114, 126, 150

VLSI Very-Large-Scale Integration 18

WTA Winner-Take-All 10, 40, 41, 102

1

Close your eyes.
Count to one.
That’s how long forever feels.

– Kurzgesagt

2

Chapter 1
General introduction

1.1 Motivation . 3
1.2 Context . 4
1.3 Contributions . 7
1.4 Manuscript outline . 9

1.1 Motivation

In many computer vision applications, efficiency of results is the primary motivat-
ing factor for the choice of algorithms and architectures. More and more people turn
to deep learning frameworks as they often provide the best results on many classical
datasets. However, we often forget that those methods have many drawbacks that
make them impractical at best when implementing them in real-world scenarios.

One of the major flaws is simply energy consumption. For instance, training
a large natural language processing model such as GPT-3 consumes over 1000
megawatt-hours. That is enough energy to power a small town for a day [3]. In
contrast, the brain uses only about 20 watts to operate [4] while performing many
more cognitive functions than simply language processing. We still have many things
to learn from biological systems.

We are interested in getting closer to the impressive performances of the human
brain. The strong adaptation capacity, low energy use, and resilience of biological
models are some of the main arguments for trying to create bio-inspired frameworks.
The development of event-based cameras follows those principles. It is a sensor that
shares many of the advantages of the biological vision system. We think it is perfectly
adapted as the sensory organ for a complete spiking visual model.

4 Chapter 1. General introduction

Autonomous frameworks based on intrinsic motivation offer simple yet convincing
ways to learn control tasks without external supervision. Direct feedback from the
environment or other biological organisms is limited, even for very social animals.
It seems natural that vision can develop without the need for constant external
feedback. Curiosity and other attention mechanisms can be a way to induce emergent
behaviors. They propose a convincing way of learning effective control commands
in complex environments such as vision. Combined with spiking neural networks
for learning efficient representations in an unsupervised manner, those autonomous
models can provide concrete results on solving visual tasks and exciting insights into
how the brain and, more specifically, the visual system operates.

1.2 Context

Biological vision systems During millions of years of evolution, vision has become
an essential tool for biological survival in many species. Most rely heavily on vision
to search for food, escape predators, or bond with other individuals. Biological vision
systems have developed to become highly performant. An eagle can detect prey at
more than 3 kilometers in good weather conditions. Flying insects have impressively
fast escape response time when subjected to a looming threat, all based on visual
feedback.

Mammals and humans possess very versatile vision systems, especially suited for
working with others in a group. Humans have been able to thrive partly due to their
social capabilities, which are heavily tied to the ability to recognize individuals and
their emotions from facial structures.

It is undeniable that vision plays an essential role in the biological system.
Therefore, it is no surprise that vision is one of the significant research areas in
human history. We developed many ways to improve our visual capabilities with
complex optical tools. More recently, the invention of photography has durably
changed our society. Cameras are everywhere, with an estimated 4.7 billion images
posted online daily.

Computer vision systems Computer vision has progressed tremendously in the
last few decades. Applications have flourished in autonomous driving, manufacturing,
and surveillance. There is a heavy incentive to develop algorithms with good
performance, low latency, power consumption, and ability to work in varying lighting
conditions. In that regard, computer vision is still far behind the abilities of biological
vision systems.

5

The human visual system provides unparalleled versatility, the ability to perform
tracking, object recognition, depth estimation, and much more in a fraction of a
second. Even better, it only consumes a small proportion of the power cameras and
computers need to operate.

Standard frame-based cameras are an excellent tool for computer vision. They are
cheap, easy to manufacture, and easy to use, especially compared to other technical
vision sensors such as lidars or radars. Still, their limitation compared to biological
systems have pushed to create more performant alternatives.

Event-based cameras In the last decades, a new type of sensor called an event-
based camera has been introduced and promises powerful capabilities compared
to frame-based cameras. It offers interesting new approaches for models of vision.
Event-based cameras capture information as a continuous stream, excluding most
of the spatial redundancy in a scene. They have been designed to resemble the
mammalian retina, which makes them a natural choice for designing vision models
closer to biology. They have very low latency, high temporal resolution, low power
consumption, and high dynamic range. Therefore they are a promising tool for
creating a bio-inspired vision system.

Spiking neural networks Processing visual cues can be done in many different
ways. We are interested in developing a fully autonomous model that can learn to
adapt to visual statistics without needing external supervision. Neural networks
have been demonstrated to be practical tools for learning in various applications,
vision included. However, their dynamics are very different compared to the neuronal
interactions present in the brain. They do not match well with the asynchronous
nature of event-based camera output. Spiking Neural Network (SNN) can be designed
to mimic some of the intricate properties of neural circuits. They can be easily
connected to event-based cameras.

The literature shows two main ways of modeling spike-based neural networks.
One focuses on the rate at which neurons spike to encode information, the rate-based
approach. The other also considers the Spatio-temporal structure of spike patterns
as an essential vector of information. Guyonneau et al. [5] showed how the second
approach could effectively learn efficient visual representations and be more robust
to fast visual stimuli. They also note the importance of sparsity in neural codes.
We are particularly interested in this Spatio-temporal approach to learning visual
representation.

Humans learn both the neural representations and control of eye movements
without the requirement for external supervision. The visual pathways self-calibrate
using only the statistical properties of the input. That can be replicated in models

6 Chapter 1. General introduction

using self-supervised spiking learning rules such as the popular Spike-Timing Depen-
dent Plasticity (STDP) rule. Nevertheless, when learning motor behaviors, STDP
alone is not enough. The agent’s actions must be evaluated to tune the system
properly. In traditional reinforcement learning, this is done using a reward extracted
from the environment. However, this implies using outside supervision. Even though
humans use outside supervision, such as imitation or direct feedback, this is only
true for more abstract and complex behaviors requiring external judgment. Many
vision tasks such as tracking or quick depth estimation are fast processes that cannot
rely on external feedback alone.

Active Efficient Coding framework We know that the human visual system
changes tremendously in its early stages. As a child, developing vision is an essential
task that requires much time. It is an active process combining learning efficient
neural representations with accurate movements of the eyes. We are interested in
similar vision models that can learn autonomously to capture the visual statistics of
a scene and adapt their behaviors accordingly.

The Active Efficient Coding (AEC) hypothesis stipulates that biological systems
learn efficient neural representations and behaviors jointly. In the case of vision,
eye movements generate specific stimuli that are then learned and stored as an
efficient code in the early visual pathways of the brain. Those codes are then used to
generate eye motor commands, which may change the visual behavior and thus the
visual statistics, implying new stimuli to learn. This continuous and cyclic process
helps acquire a robust visual system. The AEC framework proposes a complete and
coherent hypothesis on how early vision develops in humans and mammals. It can
explain the adaptation of neural circuits to visual inputs by jointly tuning the neural
representation and eye behaviors.

The AEC model also proposes that some behaviors can emerge from rewarding
efficient representation. The model will naturally select behaviors that promote a
better encoding of the input. For that reason, the reward is generated intrinsically
from the efficient coding model and transmitted to the reinforcement learner. It is
directly tied to the encoding quality, so better encoding generates a higher reward
promoting the behavior that leads to improving the encoding.

Such models have been proposed in [6]–[8]. However, they focus on traditional
frame-based stimuli, using conventional neural networks to perform accurate vergence
control. However, the brain uses fundamentally different ways of processing infor-
mation. It comprises many groups of neurons arranged in densely inter-connected
networks. The transmission of information between neurons is a continuous stream of
spikes. In this work, we are interested in extending the AEC framework focusing on
a more biologically-plausible approach that mimics the transmission of information
in the brain.

7

Works such as [9]–[11] propose spiking AEC models of binocular vision for vergence
control. They extract coarse and fine-scale image patches from a binocular pair of
cameras. A correctly verged pair of eyes will create redundant stimuli from the left
and right fields, which the sparse coding model will efficiently encode. Therefore, the
agent that seeks to maximize coding efficiency will naturally verge his eyes on the
target stimulus. Those works are an important basis on which the efficient coding
hypothesis has been developed. Nevertheless, they lack some biological plausibility.
Most notably, they use rate coding approaches with traditional frame-based cameras,
discarding temporal cues that play an important role in biological vision.

For biological systems, being able to encode a signal using minimal activity is
primordial, as it means reducing the energy consumed in doing so. An efficient
encoding is an encoding that produces minimal cell activity while still extracting
meaningful information from the input. Generally, the activity reduction in neural
systems is made using specialized inhibitory cells. They can learn to inhibit excitatory
cells when presented with a specific stimulus, reducing overall activity. We based our
model on a similar assumption. An efficient encoding mechanism associates the most
frequent input with the smallest codes. In this work, we learn to strongly inhibit
frequent visual stimuli via inhibitory connections, lowering the network’s activity for
those stimuli. The intrinsic reward is then generated proportionally to the network
efficient layer activity; the lowest the activity, the highest the reward.

In the brain, reward signals are often associated with neurochemicals, such as
dopamine. They can be transmitted a while after an action has been selected, which
in turn affects the synaptic strength related to the selection of that action. We
propose a similar model, where the reward generated from the first encoding layers
is transmitted to the reinforcement learner as a neuromodulator. The agent learns
from a combination of the inputs from the efficient coding layer and the intrinsic
reward using a three-factor learning rule, often called Reward Modulated STDP
(R-STDP) [12].

1.3 Contributions

We propose a fully spiking neural network composed of 3 main components as
depicted in Fig. 1.1. The sensory block is made of event-based cameras that serve as
the visual inputs to the system. The second is an efficient coding block, composed of
a dual layer mimicking the cells in the early stage of the human visual pathways. It
learns effective representations of the visual inputs and transmits them to the next
component, the reinforcement learner. It uses a modified, fully spiking TD learning
framework to learn effective policies. Finally, the reward the reinforcement learner

8 Chapter 1. General introduction

Figure 1.1: AEC model composed of 3 main blocks, the sensory input, efficient coding
model, and reinforcement learner. The reward is intrinsically generated from the efficient
coding layer.

uses intrinsically generated rewards from the encoding layer through learning lateral
and recurrent inhibitory connections within and between the cell layers. The system
is built upon the AEC hypothesis. It jointly learns the neural representations as well
as effective visual behaviors without the need for any external supervision.

In this manuscript, we present our contribution in two parts, namely:

Efficient visual encoding with a SNN – partially published as [1] and [2]
We propose a novel dual-layer SNN based on event-based camera inputs that
learn efficient visual representation from the scene. We demonstrate the ability
of the network to learn Gabor-like representations that are very similar to the
ones found in simple cells in the human visual system. We also show that those
representations are well-tuned to the statistics of the scene. We validate that
hypothesis using a driving dataset recorded with an event-based camera.
Then, we focus on showing the properties of the second layer, akin to the com-
plex cells also found in the brain in the early stages of the visual pathways. We
compare our neuronal model orientation response and selectivity to biological
findings. We also demonstrate the ability of our cells to learn more complex
representations, such as motion and disparity. We test this hypothesis on event
sequences taken outside on a mobile robotic platform.

Spiking Reinforcement Learning with an Actor Critic framework – to be sub-
mitted to an international journal
We propose a fully spiking reinforcement learning network based on the previous
contribution. We use the capabilities of the dual layer SNN to learn an efficient
visual representation, which is the visual encoding basis for our second part,
the reinforcement learning model. This model is based on a continuous TD
framework combined with an actor-critic model. We learn an efficient value
and policy to tackle complex tasks in a simulated environment. We removed

9

supervision entirely by generating our reward from the activity of the simple
cell layer based on unsupervised learning of inhibitory connections between the
cells. It allows the network to be close to fully autonomous in solving the task.

Details on publications and communications are given in Appendix B. All our source
code and datasets have been made publicly available on the GitHub of Institut
Pascal, comsee-research, for reproducibility and broad accessibility, as:

Neuvisys is an open-source C++ spiking neural network library.
Available at https://github.com/comsee-research/Neuvisys.

Neuvisys-simulator is an open-source event-based simulator based on the Cop-
peliaSim framework.
Available at https://github.com/comsee-research/Neuvisys-simulator.

Neuvisys-analysis is an open-source python cluster of useful methods to create,
modify, process, and analyze raw events as well as the neuvisy spiking neural
network library.
Available at https://github.com/comsee-research/Neuvisys-analysis.

More details can be found in Appendix C.

1.4 Manuscript outline

The manuscript is organized as follows:

Chapter 2 provides background information and motivation for our contribution.
Following the 3 part architecture, we give detailed information on the AEC
reinforcement learning framework, event-based cameras, and spiking neural
networks. We first introduce the general reinforcement learning concept and
how the AEC model fits into it. Then, we present event-based cameras, a
novel sensor type. After a short historical overview, we describe in detail their
operating principles. We specifically focus on their differences from traditional
frame-based cameras, the dominant vision sensor in the market today. We
then describe the critical relationship between biological vision and event-
based cameras and how the latter can be used as an accurate human retina
model in bio-inspired computer models. Finally, we quickly review how they
are used in concrete applications and compare the main ways of processing
event streams. In the second part, we introduce the concept of neuromorphic
engineering and describe some of the leading models for creating bio-inspired

https://github.com/comsee-research
https://github.com/comsee-research/Neuvisys
https://github.com/comsee-research/Neuvisys-simulator
https://github.com/comsee-research/Neuvisys-analysis

10 Chapter 1. General introduction

neural networks. We detail the different architectures as well as learning
mechanisms and hardware implementations.

Chapter 3 covers the problem of how to efficiently encode visual information and
extract visual features such as orientation, motion, or depth from event-based
outputs in an unsupervised manner. We describe our work constructing a
two-layer SNN based on two biological cells found in the early human visual
system, the simple and complex cells. We insist on the vital role of those cells
as early feature detectors and show that our computer model can perform
similarly. We describe in detail the cell model that we built our SNN on, as
well as all the bio-inspired mechanisms that help regulate the activity and
learned representation. We also describe the modified STDP rule that we are
using to learn efficient representations in an unsupervised manner. Then, we
analyze the resulting learned receptive fields of both the simple and complex
cells and compare them to biological findings. Finally, we present applications
of the framework on a driving dataset or using our robotic platform to perform
depth analysis.

Chapter 4 covers the problem of solving closed-loop visual tasks involving robotics.
We present a fully spiking reinforcement learning framework based on a con-
tinuous formulation of the discrete TD learning model. We describe the two
main drivers of the reinforcement learning agent, the critic and actor neuron
population. The first try to estimate a value function based on the continuous
state described by the efficient coding layer in the form of simple and complex
cell activation. The actor neurons are cells connected to specific motor actions.
Through a Winner-Take-All (WTA) mechanism, the cells with the most activa-
tion will decide the following action to perform. Both populations learn using a
three-factor rule called R-STDP, a mix of a fully unsupervised STDP learning
rule and an external reward signal. The reward signal from the environment
can be replaced by an intrinsic reward signal, learned using a novel inhibition
scheme in the efficient coding layer. We describe in more detail how the network
can regulate its activity by learning those inhibitory connections to produce
an effective intrinsic reward signal for its reinforcement learning agent. Finally,
we test the reinforcement learning framework in simulated environments on a
tracking and stabilization task.

Chapter 5 provides a general conclusion with discussions about our contributions
and perspectives for improvements and future works.

Chapter 2
Background

Introduction . 12
2.1 Active Efficient Coding . 12

2.1.1 Background on Reinforcement Learning 12
2.1.2 Active Efficient Coding 16

2.2 Event-based cameras . 18
2.2.1 Neuromorphic engineering 18
2.2.2 Quick historical overview 19
2.2.3 Event representation . 19
2.2.4 Mathematical model for event generation 20
2.2.5 Advantages compared to frame-based cameras 21
2.2.6 Challenges of a new sensing paradigm 22
2.2.7 Applications . 23

2.3 Spiking Neural Networks 26
2.3.1 Biological vision pathway 26
2.3.2 A model inspired by the early visual system 26
2.3.3 Biological neuron models 27
2.3.4 Mathematical neuron models 29
2.3.5 Spiking neural networks 30
2.3.6 SNN learning mechanisms 31
2.3.7 Spike-Timing Dependent Plasticity 32
2.3.8 Reward-modulated STDP 33
2.3.9 Hardware implementation of event-based algorithms . . . 34

Conclusion . 35

12 Chapter 2. Background

Introduction

This Chapter provides the theoretical and mathematical background of our work.
It describes the fundamental knowledge required to understand our model and some
of its motivations.

We introduce the concept of neuromorphic engineering and how our work fits
in that domain. We explain the main arguments that motivated us to create a
fully spiking and autonomous vision system based on the AEC framework. We
detail the core principles of the AEC framework and how it evolved from traditional
reinforcement learning.

Then, this Chapter provides insight into the operating principles of event-based
cameras. Similarly to how the brain is adapted to work with the eyes, we constructed
the whole processing and application framework based on event-based cameras. They
are the sensing tool that allows the framework to get information on the scene. For
that reason, understanding their operation principle, as well as their advantages and
limitation, is primordial. We will focus on how they operate without getting into
technical details about the inner circuitry itself. We will compare them to its biggest
competitor, frame-based cameras, the dominant types of visual sensors in today’s
market. We will review a few traditional computer vision applications made with
event-based cameras.

Finally, we will explore some of the main biological concepts and models that
inspired the neuromorphic community and us. We will see how event-based cameras
have been designed to resemble the mammalian retina and produce similar outputs.
We will describe some biological visual systems components and their mathematical
model. We focus on the design of SNN and their learning mechanisms. We also
discuss the possible hardware implementation strategies for those algorithms.

2.1 Active Efficient Coding

Vision is an active process that can be framed as a reinforcement learning
problem. We will first provide some background on reinforcement learning in a
discrete environment and from there introduce the AEC framework.

2.1.1 Background on Reinforcement Learning

13

Reinforcement learning is a general framework that model sequential decision pro-
cesses. It is traditionally described as an agent acting in an environment. The
agent receives information from the environment through state and reward. Then,
depending on that information, the agent takes action on the environment. The
process usually repeats itself until the agent can solve a specific task. Figure 2.1
resumes that process.

Figure 2.1: Reinforcement learning
diagram of an agent environment in-
teraction. The agent receives a state
and reward from the environment
and can act on the latter via actions.
It is a cyclic process.

Vision fits well in that framework. The agent
is the eyes that perceive the environment as light
information. The actions would usually be the
movements of the eyes that allow the agent to
perceive new information. The reward can be
anything linked to visual tasks such as fixation,
tracking, and vergence.

2.1.1.1 Markov Decision Process

In classic reinforcement learning, the environment
is often described as a Markov Decision Process
(MDP). A MDP is defined by an environment
where the states s follow this property:

P(st+1|s0, s1, ..., st) = P(st+1|st) (2.1)

meaning that the knowledge of the previous state
is enough to determine the next state fully.

In a discrete formulation, the agent moves from state to state every time step t.
The framework is composed of the following:

• A set of environment and agent states S.

• A set of actions A.

• The transition T from one state s to another s′ under action a defined by the
stochastic probability:

P(s, a, s′) = Pr (st+1 = s′|st = s, at = a) . (2.2)

• The reward function R(s, a, s′) obtained when transitioning from one state s

to s′ under action a.

In a MDP, the goal of the agent is to find a policy π(a, s) that gives the probability
of taking action a when in state s:

π : A× S → [0, 1], π(a, s) = Pr(at = a|st = s). (2.3)

14 Chapter 2. Background

that maximizes the expected return.

For MDP in continuous space, the environment contains an infinity of states s

and actions a. The transition T become a stochastic probability density written
T ′ (s, a, s′) with

∫
S T (s, a, s′) ds′ = 1.

State and Action-Value function In order to compare policies, we use the
value function V π(s) as a criterion that associates a state with a value, indicating
how desirable it is to be in that state. It is defined as the expected sum of all the
discounted future rewards when following the policy π:

V π(s) = Eπ

[∞∑
k=0

γkrt+k+1|st = s

]
(2.4)

where rt is the reward at step t and γ is the discount factor (γ ∈ [0, 1)]). The discount
factor balances the importance of future rewards compared to immediate ones.

While the state value function estimates the quality of a state alone, the action-
value function estimates it for a state and action pair. It is defined as:

Qπ(s, a) = Eπ

[∞∑
k=0

γkrt+k+1|st = s, at = a

]
. (2.5)

The value function can be used to compare two policies. It is said that πa

dominates πb if:
V π

a (s) ≥ V π
b (s). (2.6)

In that framework, the agent’s purpose is to learn an optimal policy. The
optimal policy π∗ is achieved when selecting the best action in each state, leading to
maximum overall reward. There exist no other policies that dominate it. It respects
the following constraint:

π∗ ∈ arg max
π

V π. (2.7)

In the same way, the optimal state value and action-value functions can be defined
as:

V ∗(s) = V π∗(s) = max
π

V π(s), (2.8)

Q∗(s, a) = Qπ∗(s, a) = max
π

Qπ(s, a). (2.9)

Bellman equation The Bellman equation is a necessary optimality condition in
dynamic programming methods. It decomposes the value function in two parts, an
immediate payoff and the discounted value from successive states:

V π(s) = Es′|s [R(s, π(s), s′) + γV π(s′)] , (2.10)
Qπ(s, a) = Es′|s,a [R(s, a, s′) + γQπ(s′, a)] . (2.11)

15

While the Bellman optimality equations are written as:

V ∗(s) = max
a∈A

Es′|s,a [R(s, π(s), s′) + γV ∗(s′)] , (2.12)

Q∗(s, a) = Es′|s,a

[
R(s, a, s′) + γ max

b∈A
Q∗(s′, b)

]
. (2.13)

with a and b two separate actions that belong to the action space A.

The Bellman optimality equations help break the dynamic optimization problem
into a sequence of more straightforward problems.

2.1.1.2 Resolution methods

Fully and partially observable MDP In a fully observable MDP, the agent
possesses full knowledge of the states information. Otherwise, the environment is
said to be partially observable. Most environments in vision tasks are only partially
observable since the eyes rarely cover the entirety of the visual environment. In a
Partially Observable Markov Decision Process (POMDP), the Markov hypothesis
defined in equation (2.1) is not necessarily verified. However, it is still possible to
solve a POMDP by assuming that the environment follows the properties of a fully
observable MDP.

In a finite and discrete environment where the environment models T and R

are known, it is possible to use dynamic programming methods to solve the MDP.
Otherwise, the agent must learn effective representations of the environment while
interacting with the latter. Two main categories of algorithm exist, model-based
methods that use a model of the environment and model-free methods that do not.

There exist three classes of resolution methods, Critic-Only, Actor-Only, and
Actor-Critic. Critic-only learns value functions and then deduces policies from
them. Actor-only methods try to directly learn a better policy than the previous
one, sometimes by estimating value functions without learning them. Finally, the
actor-critic method learns both value functions and policies at the same time.

We will focus here on actor-critic methods since our reinforcement learner is
based on this class of methods.

Temporal difference method The Temporal Difference (TD) learning method
is based on the Bellman equations. It uses an estimated value function V̂ (st), a
parametric estimator of the true value function V π(st). In a MDP, considering the
transition (st, at, st+1), the Bellman equation can be written as follow:

V π(st) ≈ rt + γV π(st+1) (2.14)

16 Chapter 2. Background

An estimator r̂ of the reward rt will therefore be defined by:

r̂t ≈ V̂ π(st)− γV̂ π(st+1) (2.15)

From there, we can define the temporal difference error as the difference between
the observed reward and its estimation δt = rt − r̂t. The temporal difference error
can then be written:

δt = γV̂ π(st+1)− V̂ π(st) + rt. (2.16)

The estimation of the value function can be corrected using the following:

V̂ π(s)← V̂ π(s) + αtδt (2.17)

with αt a learning rate parameter.

The algorithm for the TD learning algorithm is the following:

Algorithm 1 TD algorithm
Initialize V̂

for t = 1, 2, 3, . . . do
Observe (st, st+1, rt)
δt = γV̂ π(st+1)− V̂ π(st) + rt

V̂ π(s)← V̂ π(s) + αtδt if s = st

end for

The presented algorithm allows the agent to obtain an efficient state estimation
in the form of the value function estimation. We then need to improve the policy
to learn to solve the task. We describe this process in Chapter 4. We based our
reinforcement learning framework on a TD actor-critic method. However, since our
framework operates in continuous time, we redefined the TD framework to work
with a fully spiking reinforcement learning formulation.

2.1.2 Active Efficient Coding

2.1.2.1 Efficient coding hypothesis

Information coding is an essential tool in the brain as the latter has limited resources.
The brain alone is responsible for about 20% of energy consumption [13]. Therefore,
tuning neural systems for energy efficiency presents a clear evolutionary advantage.
The efficient coding hypothesis states that the brain can save much energy by learning
sensory representation tuned to the statistics of sensory signals. It is a theoretical
model that describes how information is encoded by neural systems and was first
developed in 1961 by Horace Barlow [14].

17

(a) Active Efficient Coding hypothesis. (b)

Figure 2.2: (a) Active efficient coding hypothesis (b) Active efficient coding general
architecture.

Since then, numerous experiments have shown that neurons can learn efficient
representation directly correlated to the sensory inputs [15], [16]. In the visual
system, neuronal receptive fields can be explained using unsupervised models that
learn to encode natural images [17], [18] efficiently.

The efficient coding hypothesis implies that neural codes directly depend on the
statistics of the sensory signal. Those statistics are a function of the environment
and the organism’s behavior. However, the efficient coding hypothesis limits itself to
environmental information and does not necessarily consider the organism’s behavior.
The AEC framework is an addition to the efficient coding model. It extends efficient
coding to active perception by considering motor actions such as eye movements
for vision. It states that perception and behavior are closely intertwined in an
action-perception cycle, similar to reinforcement learning.

2.1.2.2 AEC extension

The AEC framework states that biological agents jointly optimize their neural coding
and behavior in a closed-loop system to create an efficient sensory representation of
the environment. Figure. 2.2 present in a concise manner both the AEC hypothesis
and its architecture. Models for the development of active binocular vision have
been proposed in [6]–[8], [19].

Biological systems can directly shape the statistics of their sensory inputs from
their behavior. The organism can maximize its coding efficiency by tuning neural
representations and behavior simultaneously. This additional degree of control gives
them an undeniable advantage.

Contrary to traditional reinforcement learning, the AEC framework does not
rely on external supervision to learn. We saw that reinforcement learning methods
use a reward to optimize their policy. In AEC, the goal is to optimize neural
representation to maximize coding efficiency. The latter can be estimated directly
from those neural representations without needing external feedback to judge the

18 Chapter 2. Background

learned representation’s quality. For instance, in active binocular vision systems, the
reward is generated from a reconstruction error between the left and right visual
encoding.

An organism’s ability to self-calibrate without external supervision is also a
clear evolutionary advantage. Even for mammals that heavily rely on mimicking or
teaching behaviors, those feedbacks are limited and cannot explain the efficiency of
control systems. The AEC ability to self-calibrate is a convincing argument.

Active Inference The development of sensory encoding and behaviors in biolog-
ical systems has been proposed in other coding hypotheses. Active inference is a
framework that encompasses encoding and behavior adaptation through a model
of minimizing sensory input surprise [20]. It is an approach to understanding the
brain framed as a single imperative to minimize free energy [21]. This hypothesis has
extended many models, such as [22], [23]. However, we will not focus on it in this
manuscript as we are primarily interested in developing a spiking AEC framework
instead.

2.2 Event-based cameras

In this section, we introduce event-based cameras and how they have redefined
the field of computer vision. In the first place, however, we will introduce the concept
of neuromorphic engineering. Then, we detail the operating principles of event-based
cameras. We compare their novel way of sensing light information to the more
traditional frame-based approaches [24]. A review of many of those sensors can be
found here [25].

2.2.1 Neuromorphic engineering

The word neuromorphic designates using analog or digital circuits in Very-Large-
Scale Integration (VLSI) systems to mimic neuro-biological architectures. It is a
field of science dedicated to studying the brain and finding ways of replicating some
of its underlying mechanisms. The term has been extended with time to work
using software to mimic biological architectures. The neural systems can have many
purposes, such as perception, motor control, or multisensory integration.

The neuromorphic community works actively to understand the morphology of
neural systems, their interactions, the representation of information, and how they
learn. They build systems for capturing and processing sensory information, such

19

as vision and auditory systems, as well as their robotic integration. It is an active
interdisciplinary field of research taking inspiration from domains such as biology,
physic, mathematics, computer science, and electrical engineering.

Neuromorphic vision Vision is of primary importance in neuromorphic engineer-
ing [26]. Many essential applications in society rely on the ability to perceive the
environment. The development of event-based cameras offers the perfect opportunity
for the neuromorphic community to develop bio-inspired algorithms that mimic the
visual pathways of mammals and humans. This novel sensor has redefined the field
of neuromorphic vision and sparked considerable interest even beyond it. Many
models have emerged recently using that sensor as the basis for visual sensing. We
will discuss some of them in the following two chapters.

2.2.2 Quick historical overview

Figure 2.3: Cover of the Sci-
entific American of May, Vol-
ume 264, Issue 5, featuring
the picture of a cat taken
with the Silicon Eye.

Event-based cameras are a recent development in com-
puter vision. The prototype was featured on the cover
of the journal Scientific American[27] in May 1991, pre-
sented in Fig. 2.3.

Developed by the graduate student Misha Mahowald
at Caltech University, this Silicon Retina, though still
very limited, was the first attempt at mimicking the eye’s
neural architecture from a joint biological and engineering
perspective. Since then, event-based camera designs have
changed a lot. With each iteration, we observe increasing
performances and resolutions. We present a few event-
based cameras in Fig. 2.13.

The development of event-based cameras is intrin-
sically tied to the one of neuromorphic engineering.

2.2.3 Event representation

Conventional camera capture visual information at specific rates depending on an
external clock. It works by letting light accumulate on a sensor, outputting a frame
reflecting the amount of light that exists in a scene. It means there is an extended
time when a frame-based camera will not output any information.

In contrast, event-based cameras respond to brightness changes in the scene.
Each pixel continuously records the amount of light change, and if the brightness log

20 Chapter 2. Background

(a) (b)

Figure 2.4: (a) Metavision EVK4 – HD Event-based camera from Prophesee. (b) From left
to right, DVXplorer Mini, DVXplorer Lite, DVXplorer, and Davis346 event-based cameras
from Inivation.

intensity exceeds a specified threshold, this pixel activates (spikes) and outputs an
event. Four variables represent an event: t, the time at which the change happened,
x and y pixel location, and p, the 1-bit polarity indicating the type of change ("ON"
means brightness increase, "OFF" means brightness decrease). The timestamps t are
precise in the order of a microsecond. One event can usually be stored with less than
two bytes.

Thus, event-based cameras have variable data-rate. A still scene without any
light change will not create any output, whereas high-density scenes with lots of
movements might create very high output rates.

2.2.4 Mathematical model for event generation

Event-based sensors consist of an array of independent pixels that react to light
intensity variation. Events generated from a specific pixel are written as the tuple
ek = (x, y, t, p), with x and y the pixel coordinates, t the timestamp, and p the
polarity. One pixel responds to its log photocurrent,

L = log(I) (2.18)

with L the photocurrent and I the light intensity. An event is generated if the
brightness change

∆L (x, y, t) = L (x, y, t)− L (x, y, t−∆t) (2.19)

exceeds a temporal contrast threshold C

∆L (x, y, t) = PC (2.20)

with C > 0 and p ∈ {+1,−1}. The contrast sensitivity C can be adapted depending
on brightness conditions, sensor noise... ON and OFF polarity each have its contrast
sensitivity C+ and C−.

21

Figure 2.5: Difference between a frame-based and event-based output from Gallego et
al. [28].

Event generation can measure the temporal derivative of brightness instead of
the absolute value in frame-based cameras. It is written as:

∆L (x, y, t) ≈ ∂L

∂t
(x, t) ∆t (2.21)

∂L

∂t
≈ pC

∆t
(2.22)

This model does not consider some extrinsic or intrinsic phenomena such as sensor
noise. However, it is an effective way of relating events to the physical illumination
of the scene. An example of event generation from a rotating dot is displayed in
Fig. 2.5.

2.2.5 Advantages compared to frame-based cameras

Event-based cameras, by their asynchronous nature and engineering specificity, offer
many advantages over traditional frame-based cameras:

High temporal resolution The monitoring brightness being independent for
each pixel, it is possible to create high-speed circuitry with fast readouts. Events are
detected with microseconds resolutions, much higher than most frame-based cameras,
and offer exact temporal information even for fast motions. It also almost eliminates
the motion blur limitation of traditional frame-based cameras.

Low latency By removing the global exposure time of a frame, event-based cameras
can send information as soon as they receive some, which could result in latency as
low as a few microseconds. In reality, due to limitations in information transmission,
most event-based cameras on the market have about sub-milliseconds performance.

22 Chapter 2. Background

High dynamic range The logarithmic scale used by the photoreceptors in the
pixel, as well as their independent nature, offers event-based cameras a very high
dynamic range, often above 120dB. It easily exceeds the performance of even a good-
quality frame-based camera, averaging around 60dB. It gives event-based cameras
remarkable performance in low-light applications or very contrasted scenes.

Low power Finally, removing redundant data in a scene allows event-based cameras
to function with low power consumption. Most market event-based camera use about
10mW, which makes them ideal for embedded applications that require strict power
limitations.

As we showed here, event-based cameras present several desirable properties.
Frame-based cameras can perform similarly to event-based cameras when explicitly
designed for performance. High-speed cameras achieve extreme frame rates of a few
thousand frames per second, or industrial high dynamic range cameras reach up to
140dB. However, those specific designs can be expensive, bulky, or energy-intensive,
while event-based cameras achieve well on all points while being small and cheap,
considering they are still prototypes.

2.2.6 Challenges of a new sensing paradigm

The asynchronous nature of event-based cameras poses a real challenge compared to
frame-based cameras. Most historic vision algorithms and processing methods are
based on frame-based images and matrix computations. Even other less common
visual sensors, such as lidars or radars, which also present sparse visual representations,
rely on gathering data at fixed intervals of time. On the other hand, event-based
cameras output a continuous flow of sparse events, making them incompatible
with traditional vision processing algorithms. Another significant difference is the
information encoded itself. Frame-based cameras encode the light intensity as a
grayscale value, whereas event-based cameras only record the change in light intensity
as binary information. Finally, noise is still a real handicap for event-based cameras.
The sensor’s high sensitivity combined with inherent transistor circuit noise means
some events will inevitably be generated even though there were no changes in the
scene. It is especially problematic in low light conditions, where noise increases
dramatically.

All those differences must be considered when designing a system with event-
based cameras. As it is still a novel sensor, we need more extensive research. It
benefits frame-based camera processing methods. However, the advantages that
confer event-based cameras are interesting enough that many people have already
started implementing novel vision algorithms specifically for the asynchronous nature
of events. As time passes, the performance gap between the two sensing paradigms

23

is closing for some of the most critical applications and datasets. It also paves the
way for algorithms that might be used with other types of asynchronous sensors. For
instance, brain interfaces for bio-medical settings might benefit significantly from
those approaches.

2.2.7 Applications

We will review applications related to the work done in this research manuscript,
namely feature detection and tracking, as well as depth and optimal flow estimation.
We, however, exclude bio-inspired methods that will be discussed in the next Chapter.
We will describe some traditional computer vision algorithms used with event-based
cameras. Those applications can give a good understanding of what it is possible to
do with the performances of event-based cameras and as a benchmark to compare
bio-inspired approaches. We selected a few exciting applications but did not intend
to be exhaustive. We focused on works that have laid the foundation for further
research and innovative approaches in the field. The reader can refer to [28] for a
more exhaustive list of applications.

2.2.7.1 Feature detection and tracking

Event-based cameras are handy in tracking applications. Their very low latency
allows them to output information on the scene more often than frame-based cameras.
It is a significant advantage when tracking an object as precisely as possible. However,
in the case of a non-static camera, events will be produced both by the object’s
movements in the scene and the camera’s movements. It is essential to distinguish
between both to perform efficient tracking.

Figure 2.6: Robotic goalie with
super-human reaction time by Del-
bruck et al. [29]

Simple tracking methods are designed around
the principle that events generated by an ob-
ject in motion will be close in time and space.
Therefore, clustering methods have been demon-
strated in [30]–[32]. Delbruck et al. [29] presented
a robotic goalie with 3ms reaction time, shown
in Fig. 2.6. Schraml et al. [33] showed a person-
tracking solution in real-time, and Conradt et
al. [34] demonstrated a pencil balancer using
two event-based cameras and an event-driven fit-
ting of the pencil model. Those applications use
straightforward algorithms but demonstrate that

the extremely low latency of event-based cameras can be used to solve challenging
real-time applications.

24 Chapter 2. Background

Later, more complex algorithms were developed that are more robust to sensor
noise and camera movement. Rea et al. [35] proposed a visual attention mechanism
using two event-based cameras mounted on an iCub robot. It shows a faster reaction
time than using frame-based cameras. Similarly, Glover et al. [36] also use an Icub
robot combined with a particle filter for a visual tracking algorithm. Lagorce et
al. [37] show high-speed tracking of multiple visual features simultaneously. Ni et
al. [38] performed an object-tracking algorithm based on the geometric transformation
between a model and the events from the object.

Figure 2.7: Micromanipulator com-
bining event-based and frame-based
camera by Ni et al. [39]

Some approaches use event- and frame-based
sensors to improve the tracking. It is possible
to combine the low latency of event-based cam-
eras with the temporal correspondence of frames
to create effective tracking algorithms, such as
in [40]. Li et al. [41] base their method on a
correlation filter on the event stream and event
integration over time to recreate frame-based rep-
resentations that are then used in a traditional
Convolutional Neural Network (CNN).

Ni et al. [39] present a visual shape-tracking
algorithm for micro-robotics using an iterative
closest-point approach 2.7. They combine the fast event-based output for direct
haptic feedback with the precise spatial output of a frame-based camera for retrieving
the object position.

Finally, Chin et al. [42] demonstrated that it is possible to use event-based
cameras mounted on space-related optics to track stars and other celestial bodies.

2.2.7.2 Visual motion and optical flow estimation

Figure 2.8: Deep neural network for mo-
tion estimation with event-based cameras
by Zhu et al. [43]

The fundamental principle of event-based
cameras is to detect dynamic changes in a
scene. That makes them especially suited to
estimate local and global motion and the op-
tical flow in a dynamic environment. Much
optical flow processing is based on using spa-
tial neighboring pixel information to deter-
mine the local optic flow. However, with
events, when one pixel is triggered, there is
no guarantee that its neighbor will be too in
a short temporal window.

25

First methods such as [44], [45] were
based on using surfaces of active events to compute the normal flow. However,
they are limited to that component only. Measuring the full optical flow on the
tangential and normal component is more challenging, but has been done in [43],
[46]–[48]. Many of those approaches adapt the event representation to work with
deep neural networks. For instance, Monforte et al. [49] transform the event input
flow in a target center of mass and then transmit it to a Long Short-Term Memory
(LSTM) for trajectory prediction. Figure 2.8 presents one of those models.

2.2.7.3 3D depth estimation and reconstruction

Figure 2.9: HOTS method for the Spatio-
temporal processing of event streams by
Lagorce et al. [50]

There are many different ways to estimate
depth from visual input. We will focus on
stereo setups here since we are interested in
comparing them to human vision, which uses
both eyes to estimate depth.

It is possible to use spatial and tempo-
ral information to try and recreate a 3D
scene. In 3D reconstruction, both cameras
are rigidly attached to a common axis, which
allows some simplification, such as assum-
ing that the left and right pixels sit on the
same epipolar line. Also, by synchronizing
the clocks of both cameras, the event should
share a similar timestamp between the two
cameras.

Earlier attempts at stereo vision used the classical computer vision solution,
solving the correspondence problem across both image planes and then triangulating
the 3D point location. Some work proceeded on aggregating the events into frame-
based representation to do so [33], [51], while others use event-by-event methods
such as [52]. Lagorce et al. [50] developed Hierarchy of event-based Time Surfaces
(HOTS), presented in Fig. 2.9, a general purpose event by event method for event-
based processing that can be used in many applications such as depth estimation.
Grimaldi et al. [53] have extended that framework recently.

By using additional information, like event polarity, epipolar constraints, or
local scene edge orientation, it is possible to improve event matching and get better
performances [54]–[56].

By using only global information instead of local ones, cooperative approaches
are pretty successful at reconstructing 3D information [57], [58]. Once again, the

26 Chapter 2. Background

low latency of event-based data makes it possible to perform 3D depth estimation at
very high rates. It can be critical in real-time applications that require fast depth
estimation for further processing. However, most techniques described here happen
on the visual scene with limited movements and often static cameras.

2.3 Spiking Neural Networks

SNNs are based on biological mechanisms and processes. We will therefore
describe how biological neurons operate, then study some of the mathematical
models used to describe them, and finally see their integration in larger systems such
as spiking neural networks.

2.3.1 Biological vision pathway

The human retinal system comprises three main parts: the photoreceptors, bipolar
cells, and ganglion cells [25], [59]–[62]. They are separated as the outer, middle, and
inner layers, as depicted in Fig. 2.10. Photoreceptors convert light into electrical
pulses transmitted to bipolar and ganglion cells before entering optical fibers and
the V1 area.

The retina is an essential part of the visual system, as it does an essential pre-
processing of visual information. At least 12 bipolar cells are thought to encode
different types of visual information and transmit them to specialized ganglion
cells [63]. Ganglion cells are divided into two subgroups, X and Y cells. X cells are
focused in the fovea and carry information such as color, patterns, and spatial details.
On the other hand, Y cells are found around the fovea and carry information on the
changes in the scene, such as object movement, speed, and distance.

These Y cells, part of the transient pathways, are dedicated to processing dynamic
visual cues. They represent about 30% of the visual system. The transient pathways
extend quite deep into the brain, from the retina up to the thalamus and V1 areas.

2.3.2 A model inspired by the early visual system

Event-based cameras mimic the properties of the biological retina [63]. Figure 2.10
present a simplified structure of the retina. Each pixel’s internal circuitry comprises
a photoreceptor part that captures the light intensity, a differencing circuit that acts
as a thresholding mechanism on the light intensity change, and a comparator to
determine the polarity of the change.

27

Figure 2.10: Simplified diagram of the retina.

Event-based camera work very similarly to the Y ganglion cells. They correspond
to the transient pathways up to the retinal ganglion cells. They can detect changes
in light intensity which relay information on scene changes.

2.3.3 Biological neuron models

Neurons are cells found in the nervous system of biological systems. They are
considered the central information-processing unit of the nervous system.

Neurons are usually represented with three main parts, dentrites, an axon, and
a cell body, the soma, as shown in Fig. 2.11. The dendrites are where the neuron
receives inputs from other neurons. Dendritic trees are believed to be responsible for
many early processing and non-linearities. Meanwhile, the axon acts as the output
towards other neurons, while the neuron’s nucleus lies in the soma, where the DNA
lies.

Figure 2.11: Neuron and synapse diagram
from Khanacademy.org.

Neurons use electrical signals and
chemical bindings to communicate with
each other. When a neuron receives ac-
tion potentials from other neurons, it
accumulates them in its membrane po-
tential inside the soma. When the input
action potential accumulation exceeds
a threshold, the neuron is excited. It
fires an action potential of its own that
is transmitted to other neurons via the
axon.

The end of the axon connects to other
neurons’ dendrites through synapses.

The transmission of information in this region is done via chemical neurotransmitters.

28 Chapter 2. Background

Therefore, neurons communicate through electrical impulses in the axon and dendrites
and via chemical bonding in the synapses.

We call pre-synaptic the neuron that sends the action potential, and post-
synaptic the one that receives that action potential relative to a synapse.

Figure 2.12: Example
of a Gabor function.

Simple cells Simple cells [64] are neurons found in the
primary visual cortex (V1). They are one of the earliest visual
detectors after the retina. Their main characteristic is that
they are selective to specific orientations. They only respond
to well-defined oriented edges and gratings.

We often define their receptive field as a Gabor func-
tion [40], [65], a popular filter for visual processing. Fig. 2.12
represents such a Gabor filter, with the blue region indicating
inhibition and the red facilitation.

Complex cells Complex cells [64] are neurons found in the primary visual cortex
(V1) and secondary visual cortex (V2). They also respond to oriented edges and
gratings with a degree of spatial invariance. They receive inputs from multiple simple
cells. Their receptive field cannot be mapped into fixed excitatory and inhibitory
zones.

2.3.3.1 Excitation and inhibition

Action potentials do not necessarily result in increasing the membrane potential.
Some neurons are specialized cells that send inhibitory signals that result in a decrease
of the membrane potential of the post-synaptic neuron.

Inhibition in biological systems is considered essential for the system’s stability.
Interneurons responsible for inhibition are only a fraction of the totality of neu-
rons in the brain, and yet they play an essential role in regulating the activity of
principal cells [66], [67]. Furthermore, it has been shown that neurons’ selectivity
to stimulus is also partly due to inhibition [68]. The ratio between the two is the
Excitation/Inhibition balance.

2.3.3.2 Homeostatis

Homeostasis refers to how living organisms regulate their internal physical and
chemical conditions to maintain optimal functions. In the case of neuronal systems,

29

homeostatic mechanisms refer to principles in the brain that help neurons regulate
their activity over time. [69], [70]

For instance, inhibition can be a homeostatic mechanism to keep neuronal activity
levels between certain bounds. Many homeostatic processes exist that act on the
intrinsic and synaptic properties of neurons to maintain target electrical activity.

2.3.3.3 Synaptic plasticity

Synaptic plasticity is a crucial element for neural systems. It is the core mechanism
through which neurons can learn and develop memory in the brain.

Synaptic plasticity controls the strength of communication between two neurons.
It happens at the synaptic connection between a pre-synaptic and post-synaptic cell.
By altering the number of neurotransmitter receptors on a synapse, a neuron can
tune the amount of potential that will be transmitted during an action potential.

There are two types of synaptic plasticity, long-term and short-term. Short-term
plasticity occurs on a sub-second timescale. It helps control the information a neuron
receives but reverts to pre-change levels a few moments later. Long-term plasticity,
however, can last for much longer, up to hours, days, or even years. It is the dominant
model of how neural systems store information.

Synaptic plasticity exists both for excitatory and inhibitory synapses.

2.3.4 Mathematical neuron models

Although relatively small, neurons are complicated biological machines with many
properties that are still poorly understood. Nevertheless, when abstracting some of
their more intricate functions, it is possible to create mathematical models of how
neurons operate that are precise enough to operate computer algorithms. We will
describe some of the most used ones.

Perfect Integrate and Fire The perfect integrate and fire neuron model is one
of the earliest and simplest models, dating back to Louis Lapicque in 1907. A neuron
is represented by its membrane voltage potential V which evolves following:

I(t) = Cm
dVm

dt
(2.23)

with C the membrane potential capacitance and I the flowing current. If the
membrane voltage exceeds a threshold Vθ, it is reset to its resting potential Vrest,
and a spike is produced. The firing frequency of these neurons increases, therefore,
linearly with the input voltage.

30 Chapter 2. Background

Leaky Integrate and Fire The Leaky Integrate and Fire (LIF) neuron model is
very similar to the perfect integrate and fire. It is one of the most popular neuron
models and offers great simplicity compared to more detailed bio-physical models [71]
while still providing an accurate depiction of biological principles. The main difference
with the perfect integrate and fire is that leakage is added to the model as:

Cm
dVm

dt
= I(t)− Vm(t)

Rm

. (2.24)

Vm is the voltage across the cell membrane, and Rm is the membrane resistance.
If no input current is fed into the neuron, the membrane potential will naturally
decrease to the resting potential.

Hodgkin–Huxley The Hodgkin–Huxley model was described in 1952 by Alan
Hodgkin and Andrew Huxley. It is a complete formulation for a neuron model that
includes the relationship between the flow of ionic currents. They earned a Nobel
prize in Physiology or Medicine in 1963 for their work on that model. It describes how
action potentials are initiated and propagated using a set of nonlinear differentiable
equations.

The voltage-current (Vm, Ii) relationship can be written as:

Cm
dVm

dt
= −

∑
i

Ii(t, V) (2.25)

with Cm the cell membrane capacity. Each current is given by:

Ii(t, V) = g(t, V).(V − Vi) (2.26)

where g(t, V) is the conductance of ion channels, and Vi is the reversal potential
of the specific ion channel. The typical ionic currents used are Calcium Ca2+ and
Sodium Na+ input currents, as well as varieties of Potassium K+ outward currents.

Many other more advanced biophysical models of neurons exist, but we will not
describe them here. Please refer to Fig. 2.13a or [64], [72] for a more exhaustive list.

2.3.5 Spiking neural networks

SNNs are interconnected networks of the previously defined neuronal models. When
a neuron spikes by exceeding its membrane potential threshold, it sends signals
to other connected neurons via synapses. A synapse transmits information from
one neuron to another. When a neuron receives an input from a synapse (called a
“pre-synaptic” input) at a time t, its membrane potential changes by the amount wi.
If this change excites the next neuron, then the process repeats itself. The strength

31

(a) (b)

Figure 2.13: (a) Computation cost versus biological plausibility of different neuron models
from [72]. (b) Different generations of neural networks from [73].

of a synapse wi is plastic, i.e., it can change with time. Modifying the synaptic
weights is the primary way to control the behavior of a SNN.

For a fixed input, the network dynamic will depend on many factors. The
network connection architecture, the type of neuron mathematical model, their
internal parameters, and the strength of their synaptic connections will all determine
the behavior of a SNN.

Contrary to Artificial Neural Network (ANN)s, SNN incorporate the concept of
time into their operating model. We observe those operating differences in Fig. 2.13b.
There is no fixed propagation cycle at which the information is transmitted. Instead,
they continuously transmit spikes in their internal neuronal layers. The output will,
therefore, also be a sparse temporal code.

2.3.6 SNN learning mechanisms

Learning in SNNs involves changing the weight in the synaptic connections between
the neurons. ANNs rely mainly on learning using the backpropagation method.
However, this rule is not easily transposable to SNNs. There exist three main ways
of training SNNs:

• Supervised learning with gradient descent and spike backpropagation.

• Unsupervised learning through local learning rules.

• Reinforcement learning with reward modulated plasticity.

We will focus here on the last two as they are most closely related to our work.

32 Chapter 2. Background

2.3.7 Spike-Timing Dependent Plasticity

Spike-Timing Dependent Plasticity (STDP) is a fundamental learning mechanism of
the nervous system. It is a temporally asymmetric form of Hebbian learning. M. M.
Taylor suggested it in 1973 [74] while the first experiments were carried out by W. B.
Levy and O. Steward [75] in 1983. However, the first demonstration of the classic
STDP rule is attributed to Markram and Sakmann [76] in 1997.

Figure 2.14: Exponential STDP inter-
action between a pre and post-synaptic
neuron. It displays here an exponen-
tial STDP window. Image is taken from
Scholarpedia.org.

The basic STDP model states that if a
neuron’s spike causes another neuron to spike,
the synaptic connection from the first neuron
to the second one will be strengthened. Con-
versely, if the post-synaptic neuron spikes
before the pre-synaptic one, this generally
leads to the weakening of the synaptic con-
nection. This simple mechanism has given
rise to one of the most popular techniques for
unsupervised learning in SNNs via so-called
STDP rules [77]. There are many different
formulations of STDP, but the main idea
stays the same. Synaptic weights evolve de-
pending on the relative timing between pre
and post-synaptic spikes. It is demonstrated
in Fig. 2.14.

The sign and magnitude of a synaptic
weight change depend on the relative timing of pre-and post-synaptic spikes. In
the most common form of STDP, pre-synaptic spikes arriving shortly before a post-
synaptic spike will lead to Long-Term Potentiation (LTP) of the synapse, while the
reverse timing leads to Long-Term Depression (LTD).

The weight changes δwj
of a synapse from a pre-synaptic neuron j is linked to

the relative timing between pre-synaptic spike arrivals tf
j and post-synaptic spikes

tn
i . f and n are a count of the pre and post-synaptic spikes, respectively. The total

weight change is written as:

δwj
=

N∑
f=1

N∑
n=1

W
(
tn
i − tf

j

)
(2.27)

where W (x) correspond to the STDP learning window. It is possible to use many
types of windows, such as exponential, Gaussian or even triangle and step functions.

The above mathematical formulation considers all the pre and post-synaptic
spikes when computing the weight change. It is called an all-to-all interaction and can
be challenging to implement as it has a high computation cost. The usual technique

33

(a) (b)

Figure 2.15: (a) Example of an all-to-all (top) versus nearest neighbor (bottom) STDP
formulation. (b) Use of a synaptic trace to implement the STDP learning rule. Images is
taken from Scholarpedia.org.

to solve that issue is the use of online update rules with the use of synaptic traces.
When a pre-synaptic (respectively post-synaptic) spike arrives, it leaves a trace xj(t)
(respectively xi(t)), which decays exponentially after that. When the post-synaptic
spike arrives, the weight is updated by the value of that trace. Fig. 2.15b presents
an example of synaptic traces.

Other methods restrict the interactions between spikes to only their nearest
neighbors. There are many ways of doing so. The most basic only considers the latest
pre and post-synaptic spikes, while more advanced variations consider an arbitrary
number of pre and post-synaptic spikes. Fig.2.15a shows an all-to-all interaction on
top and the nearest neighbor interaction with only the latest pre-synaptic spike at
the bottom.

2.3.8 Reward-modulated STDP

Reward Modulated STDP (R-STDP) is a learning rule based on two terms: an
unsupervised STDP term similar to the one detailed above and a third-factor term
that acts as the trigger and modulator for the synaptic changes.

In the R-STDP rule, the weight update is only performed when receiving infor-
mation about the states visited recently. In biological systems, this is equivalent to
neuromodulators, chemical substances that affect the synaptic transmission deployed
after performing specific actions. Neuromodulators are either positive or negative
depending on the type of reward the organism receives. Traditional positive and
negative rewards, respectively, include the delivery of food or the infliction of pain
when working with animals.

34 Chapter 2. Background

In order to keep track of all the usual changes that the STDP rule would create,
the R-STDP rule is based on synaptic eligibility traces. Each synapse is given a
small membrane potential that evolves every time the neuron spikes. We apply the
usual STDP potentiation and depression to it, in addition to a decay term written:

∆wei(t + ∆t) = wei(t)
e−∆t

τe

(2.28)

with wei the eligibility trace and τe the eligibility decay time constant. As the agent
moves in state space, the eligibility traces will keep track of the neuronal patterns
coming from the representations layers. The time constant τe determines how far
back in the past they will keep information. Then, once the reward is received, we
apply the changes to the real weights. For that, we multiply the weights with the
eligibility traces and the reward term:

∆wi(t) = ηwei(t)d(t) (2.29)

with η the learning rate and d(t) the third reward term that acts as the neuromod-
ulator. The reward term indicates the quality of the previous agent’s behavior. A
negative reward indicates that the actions taken by the agent led to a worse state,
while a positive one indicates an improvement in the agent’s state. Therefore, the
agent’s behavior, reflected by the information stored in the eligibility traces, is either
encouraged or punished.

Figure 2.16: R-STDP learning rule.
The neuromodulatory signal act as
a third-factor rule on synapses. Il-
lustration from [78].

With this rule, the neurons can learn even
with sparse rewards since the information is
stored in the eligibility traces. It is beneficial
for tasks in continuous time or for experiments
where the reward is distributed only at the end
or after meaningful actions.

2.3.9 Hardware implementation of
event-based algorithms

Traditionally, computer algorithms are developed
on modern computers with classical architectures
equipped with central processing unit (CPU)s
and graphics processing unit (GPU)s. CPUs are
computing units designed to process operation sequentially, while GPUs are made for
parallel computing. In that regard, CPUs are rarely a good option for event-based
processing inputs since they are by nature asynchronous. However, the reality is
that they remain the most accessible option when developing new methods since
most programming languages are only compatible with them by default. More effort

35

(a) (b) (c)

Figure 2.17: (a) Loihi Intel’s neuromorphic chip. (b) Spinnaker board. (c) Truenorth
IBM’s synapse board.

is required to make the code GPU compatible. However, the gain can be pretty
interesting depending on the algorithm.

Bio-inspired approaches are complex to code on a GPU, although some SNN
libraries offer the possibility to work with them. Nevertheless, even though GPUs
are highly parallel, they are designed to work with dense representation, especially
images. Therefore, converting the event stream into dense images and using ANNs
is often a more accessible option.

Specific hardware can be designed to work directly with SNNs and event-based
cameras for best performances. Extensive research has been done on jointly developing
and running an algorithm on dedicated hardware such as a Field-Programmable
Gate Array (FPGA) board. The advantage is that it is possible to create a board
that is ideally suited to the need of the algorithm. However, it is a time and
resource-intensive effort that cannot always be envisioned.

Neuromorphic hardware is the answer to that problem. Neuromorphic chips are
versatile hardware requiring less effort than implementing an FPGA solution while
significantly increasing running performances. They are well suited to work with
the asynchronous flow of events processed into a SNN. They exist in many different
configurations, either entirely analogous, numerical, or a mix of both. We present a
few neuromorphic chips in Fig. 2.17.

Conclusion

In this Chapter, we presented the theoretical and mathematical background
on which our framework has been developed. We based our framework on the
AEC model, derived from a traditional reinforcement learning framework with an
intrinsically generated reward. Motivated by using novel neuromorphic vision sensors

36 Chapter 2. Background

that are event-based cameras, we demonstrated that they possess exciting properties
and are an excellent tool for bio-inspired research. Their asynchronous output is
ideally suited to be used with SNNs and the STDP learning rule.

Event-based cameras offer an advantageous pre-processing mechanism that ex-
tracts objects’ contours while removing redundant uniform surfaces. However, their
asynchronous output varies depending on the observed scene, which makes them hard
to use with traditional computer vision models. We demonstrated a few applications
designed to process events showing promising results. In the next Chapter, we focus
on the neuromorphic community’s bio-inspired methods developed over time. Their
low energy consumption and high adaptivity directly inspired by biological systems
make them promising tools that fit our initial motivations. SNNs appear ideally
suited to efficiently and autonomously compute the fast stream of events. We will
show that it is possible to use SNNs with unsupervised learning techniques to extract
efficient visual representations from event streams.

Chapter 3
Efficient visual encoding with a

SNN

Introduction . 38
3.1 Related work . 39

3.1.1 Supervised learning with SNN 39
3.1.2 Unsupervised learning methods 40
3.1.3 Learning to capture motion 42
3.1.4 Learning binocular disparity 43

3.2 A dual-layered spiking neural network model 44
3.2.1 Neuronal model . 45
3.2.2 Homeostatic mechanisms 45
3.2.3 Learning through Spike Timing Dependent Plasticity . . . 47
3.2.4 Spiking neural network architecture 49

3.3 Network activity analysis and visualization 54
3.3.1 Datasets of event-based recordings 54
3.3.2 Simulated sequences . 56
3.3.3 Network parameters . 57
3.3.4 Visualizing the network’s behavior 58
3.3.5 Sparsity as an efficient coding mechanism 65
3.3.6 Network activity variation 66
3.3.7 Independent spike responses 66

3.4 Studying the receptive fields of simple and complex cells 69
3.4.1 Learning simple cell receptive fields 69
3.4.2 Weight evolution during training 75
3.4.3 Development of motion and disparity tuned receptive fields 76
3.4.4 Estimating disparity from stereo driving scenes 82
3.4.5 Learning complex cell receptive fields 86

Conclusion . 91

38 Chapter 3. Efficient visual encoding with a SNN

Introduction

We introduced in Chapter 2 how event-based cameras are an excellent tool for
sensing visual information in a bio-inspired fashion. To fully exploit the benefits
of these sensors, subsequent processing steps must take advantage of their low-
latency asynchronous output. There is growing evidence that the visual system
employs a sparse code to learn visual representations. Neuron’s model based on
efficient coding can be a biologically-plausible approach to learning visual codes [79].
Spiking Neural Network (SNN)s are ideally suited for this [80]–[82], since they
follow the same architectural principles as used by the brain, using an arrangement
of comparatively simple computational units (“neurons”) connected via weighted
connections (“synapses”) and communicating asynchronously via spikes. At present,
it is not yet fully understood how the connectivity of the visual cortex is set up
through developmental and learning processes [83]. However, learning in the brain
does not require direct supervision. Here, we attempt to mimic the unsupervised
learning abilities of the visual cortex in a neuromorphic vision system.

To this end, we present a novel spiking neural network inspired by the mammalian
visual cortex’s so-called simple and complex cells [64]. To the best of our knowledge,
it is the first SNN that learns complex cells via a timing-based rule from event-based
visual input. We demonstrate that it learns feature detectors for local orientation,
disparity, and motion from the asynchronous inputs of a pair of event-based vision
sensors without supervision. The network combines an unsupervised learning mech-
anism: spike-timing-dependent plasticity, with homeostatic regulation of neuronal
firing thresholds and multiplicative synaptic normalization to prevent unbounded
growth of synapses. A simple, fast inhibition scheme decorrelates neural responses
and effectively prevents multiple neurons from developing identical receptive fields.
We present a dual-layer network inspired by simple and complex cells, biological
neurons found in the brain’s early visual pathways. We show that our network
learns motion-sensitive receptive fields in an unsupervised fashion that qualitatively
resembles receptive fields observed in the visual cortex. We demonstrate that the
learned representations match biological findings and come to reflect the statistical
properties of the input signals in terms of their distribution of orientation, motion,
and disparity tuning. We validate our approach on simulated event sequences, an

39

event-based driving dataset in various road environments, and a mobile robotic
platform in a recreated urban scene.

3.1 Related work

We saw in Chapter 2 a short insight on event-based processing algorithms and
applications for event-based data. We first present a few SNN supervised learning
methods for reference then introduce state of the art for bio-inspired SNN methods
for vision. We focus on unsupervised learning for feature, motion, and disparity
detection.

3.1.1 Supervised learning with SNN

One easy way to work with event-based data is to transform the continuous stream
of information into a discrete one by integrating events into frame representation.
That way, it is possible to use traditional computer vision methods such as ANN.
We mentioned some of those methods in Chapter 2. However, we will focus here
on methods that rely on SNNs to encode the visual information. Various attempts
have been made at solving classification and recognition tasks using SNNs fed with
event data. Often, they use spiking convolutional neural networks inspired by their
frame-based counterparts.

Figure 3.1: Convnet SNN architecture by
Perez-Carrasco et al. [81]

There are two main ways of doing so. The
first consists of training a standard ANN
using backpropagation and then converting
the network to an SNN [84], [85]. Though
inferior to the ANN itself, this can lead to
good results but is not very versatile, scalable,
or biologically plausible. Fig. 3.1 presents
such an architecture.

The second involves learning directly in
the spike domain, using a spike-based backpropagation method. Though those rules
are still not fully biologically plausible, since they require extensive training data,
they benefit from learning directly in the spike domain. We detailed those methods
in Chapter 2.

Some research has pre-wired early visual feature detectors, sidestepping the
learning problem. Chicca et al. [86] present a hard-wired neuronal circuit for
orientation detection.

40 Chapter 3. Efficient visual encoding with a SNN

3.1.2 Unsupervised learning methods

The primary unsupervised learning approach to train SNN is to use a formulation of
STDP as seen in Chapter 2.

Masquelier et al. [87] demonstrated unsupervised learning of hierarchical visual
representations with STDP. They alternate simple cells layer for selectivity through
a sum operation and complex cell layers for shift and scale invariance through a max
operation. It allows them to learn increasingly complex visual features for adequate
classification.

Figure 3.2: Deep SNN architecture for object
classification by Kheradpisheh et al. [88]

Kheradpisheh et al. [88] Propose a
convolutional SNN architecture with up
to 7 layers, shown in Fig. 3.2, taking in-
spiration from traditional deep learning.
They learn to differentiate objects in im-
ages efficiently. Iakymchuk et al. [89] pro-
pose a simplified SNN which uses a spike
response model combined with STDP
architecture that learns on rate coded
images of handwritten numbers. Srini-
vasan et al. [90] introduced a novel STDP-based convolution-over-time learning
methodology in a convolutional network and applied it to handwritten digit recogni-
tion. Paulun et al. [91] used a bio-inspired down-sampling of the visual field fed to a
complex brain-like Neucube architecture. The learning was done with a combination
of STDP rules, and the last stage was comprised of a supervised SNN classifier.

Figure 3.3: Example of receptive
fields learned by Akolkar et al. [92]

In those approaches, the learned representa-
tions get increasingly complex the deeper the
layer, from Gabors in the first layers to parts of
the objects themselves in the last. Those deep
spiking architectures are very performant but
could be better suited to be used with vision con-
trol. They can be slow to learn, energy-intensive,
or introduce processing delays. We are inter-
ested in more bio-inspired lightweight architec-
tures that can be easily used in conjunction with

a reinforcement learning agent.

Diehl et al. [80] use a combination of an excitatory and inhibitory layer based on a
Winner-Take-All (WTA) mechanism for digit recognition. Their original architecture
could be more scalable to larger and more complex inputs. Tavanaei et al. [93]
demonstrated a one layer SNN which learns efficient visual representation on the
MNIST dataset. Akolkar et al. [92] demonstrate the possibility of learning visual

41

receptive fields, shown in Fig. 3.3, in an event-driven framework that outperforms
traditional Gabor filters.

Figure 3.4: GASSOM architecture for learn-
ing simple and complex cells like representa-
tion by Chandrapala et al. [94]

Chandrapala et al. [94] demonstrate
a 2-layered SNN that learns invariant
feature representations similar to simple
and complex cells in the brain. The learn-
ing uses Generative Adaptive Subspace
Self-Organising Map (GASSOM) instead
of STDP but gives somewhat similar re-
sults. Their architecture is shown in
Fig. 3.5. They learn to differentiate dig-
its from the MNIST-DVS dataset with
90% accuracy. Liu et al. [95] introduced
a new “Multiscale Spatio-Temporal Fea-
ture” representation and applied it to
recognition tasks such as gesture or digit recognition via STDP. Lagorce et al. [37]
presented engaging unsupervised learning of visual representations based on an Echo
State Network (ESN) with a WTA learning mechanism instead of the traditional
SNN.

Franciosini et al. [96] demonstrated a predictive SNN capable of learning simple
and complex cells, but lacks ties to event-based cameras.

While all the mentioned architectures are based on the same fundamental op-
erating principle, each has its design features. While most rely on LIF neurons,
the dynamics of such models can change a lot depending on the parameters used.
Similarly, there are many ways to formulate the STDP rule, which can give different
results. Finally, additional homeostatic mechanisms such as inhibition connections
or activity regulation features will also impact the behavior of a SNN.

Many of those works use the MNIST recognition task to compare their results.
The main drawback of this dataset is that it is not an event-based dataset. They
convert the frame representation to a spike code using a rate-coding approach. It
limits the interest of using SNNs with precise timing capabilities.

Our network model shares architectural features with several of the works above.
However, we focused on using actual event-based data for learning to fully exploit our
model’s precise temporal capabilities. Furthermore, we demonstrate the ability of
our network to learn not only a spatial representation but also motion and disparity
features.

42 Chapter 3. Efficient visual encoding with a SNN

3.1.3 Learning to capture motion

The primate visual system uses specific populations of neurons tuned to different
motion directions and velocities to estimate object motion. Some work has been done
on using event-driven data on bio-inspired ways of sensing motion. A survey of some
of those methods can be found in [97]. We focus here on bio-inspired approaches
using SNNs to estimate visual motion in the scene.

Figure 3.5: Receptive field with synaptic de-
lays for motion estimation by Orchard et
al. [102]

Tschechne et al. [98] estimate the op-
tical flow of a scene with the help of a set
of Spatio-temporal filters created by com-
bining Gabor functions. Variants of the
Barlow and Levick model, a direction-
sensitive neuronal triplet, have been em-
ployed to create a network capable of
estimating optic flow in [99] and [100].
The second proposes an implementation
of IBM’s TrueNorth neuro-synaptic sys-
tem.

Li et al. [47] used motion energy de-
tectors as a lateral geniculate model and Gabor kernels to estimate motion. Hopkins
et al. [101] created a biologically inspired STDP-based network on the SpiNNaker
neuromorphic chip. They detect motion using synaptic delays while successfully
solving a more traditional recognition task by learning spatial representation.

Figure 3.6: Convolutional SNN for optical
flow estimation by Paredes-Vallés et al. [103]

Orchard et al. [102] have created a
motion-sensing SNN using synaptic de-
lays. Each neuron is designed to detect a
specific motion direction and speed. The
main limitation is that the delays and ori-
entations for the whole population must
be set by hand.

All the mentioned works here do
not autonomously learn to tune to mo-
tion. They have predetermined motion-
sensitive filters instead. We use a similar
technique with synaptic delays but learn the receptive fields with STDP so that the
neurons are tuned to motion without external supervision.

Grimaldi et al. [104] presented a network with synaptic delays capable of learning
temporal receptive fields for fast motion detection, as depicted in Fig. 3.7. After
learning, their kernels become selective to different motion directions.

43

Figure 3.7: Example of a learned
basis of receptive field from synaptic
delays by Grimaldi et al. [104]

More recently, Paredes-Vallés et al. [103]
have proposed a framework for learning motion-
sensitive receptive fields from an event-based cam-
era via a form of STDP in an unsupervised fash-
ion. Their work is closely related to ours, but
there are several differences. First, the depres-
sion part of their STDP rule does not require
presynaptic input spikes to arrive shortly after a
postsynaptic spike, an important feature of bio-
logical STDP. Second, they use a convolutional

network architecture, which enforces the development of identical receptive fields in
all parts of the visual field. It prevents the receptive fields at different locations from
adapting to systematic differences in the statistics of optical flow signals across the
visual field as is typical, e.g., during ego-motion. We propose a similar weight-sharing
mechanism but with the ability to create visual regions to allow neurons to tune to
the statistics of the different parts of the visual scene.

3.1.4 Learning binocular disparity

In the field of stereo vision, there have been attempts at creating networks to estimate
binocular disparities between two event-based cameras. A survey of existing methods
can be found in [105].

Figure 3.8: Triangular structure for dis-
parity detection by Pozzi et al. [106]

Dikov et al. [107] present a SNN that ex-
tracts depth information from a stereoscopic
input stream. They implemented it on the
SpiNNaker platform. Osswald et al. [108]
demonstrate a two-stage architecture fea-
turing coincidence and disparity detectors.
Pozzi et al. [106] propose a clever arrange-
ment of excitatory and inhibitory connec-
tions, shown in Fig. 3.8, in a triangular fash-
ion to solve the correspondence problem.

These methods present interesting biological properties and cleverly designed
network structures, but they lack a decisive trait: the ability to learn.

Chauhan et al. [109] propose a SNN with an abstract rank-based STDP rule
for learning binocular disparity selective representations. Fig. 3.9 presents their
architecture. They show that they learn receptive fields that respond rather closely
to the ones of macaque when compared with a Frequency-normalized Spread Vector
(FSV) metric [110]. It is engaging since they use a somewhat similar model to ours.
The most significant difference is their STDP rule using only the first 10% spikes of

44 Chapter 3. Efficient visual encoding with a SNN

the most active cells for the potentiation window (rank-based) instead of our precise
spike-timing rule.

Figure 3.9: Learning binocular disparity se-
lective representation by Chauhan et al. [109]

With this model, Debat et al. [111]
designed a three-layer SNN combined
with homeostatic mechanisms for esti-
mating trajectories and outperformed hu-
man capabilities. Though they show how
their learned representation efficiently
captures the statistics of natural images,
they use frame-based image datasets for
that purpose, converting the grey scale
values to spikes using a difference of
Gaussian filters. A similar work applied
to event-based data would be of great
interest.

We are not aware of any other works
able to learn binocular disparity selective
receptive fields from event-based data via

STDP. Most rely on hard-wired neural systems for solving the epipolar geometry
constraint. We propose one of the first models for learning disparity from the natural
statistics of the scene.

3.2 A dual-layered spiking neural network model

The objective of the efficient coding model is to process and encode the input
stream as efficiently as possible. An efficient code is generally thought to compress
the input without losing too much helpful information. Event streams are considered
already not very redundant spatially but can contain much redundant temporal
information because of their high temporal resolution. However, an efficient model
can sparsify the data both spatially and temporally.

We based our coding model on a dual-layer network inspired by the early human
visual system. More precisely, we find two types of cells in the brain that are
considered to be the basic building bloc for visual information encoding, the simple
and complex cells. They receive information directly from the retina, which in our
case, can be approximated by the event-based camera. We tried to mimic some of
the behaviors of those cells in our model.

45

3.2.1 Neuronal model

We use the LIF neuron model as the basic building block of our model. We detailed
that model in Chapter 2. We reformulate here the membrane potential equation
while using exponential decay. An input event from a pixel i creates an excitatory
post-synaptic potential at time t, which increases the membrane potential according
to the strength of the corresponding synapse wi(t). Let ∆t be the time between
the current input and the previous input to the neuron. Then the new membrane
potential can be calculated directly upon arrival of the input as:

Ṽ (t + ∆t) = V (t) e
−∆t
τm + wi(t) (3.1)

where τm controls the exponential decay speed of the membrane potential.

If the membrane potential exceeds a threshold Vθ, the neuron is said to “spike”.
It generates an action potential, propagating to other neurons via synapses. Its
membrane potential is then reset to Vrest = 0:

V (t + ∆t) =
Ṽ (t + ∆t) : Ṽ (t + ∆t) < Vθ

Vrest : Ṽ (t + ∆t) ≥ Vθ .
(3.2)

3.2.2 Homeostatic mechanisms

The LIF neuron presented before is one of the simplest models. However, biological
neurons exhibit much more complex mechanisms to adapt their behavior to varying
situations. We replicate some of the most beneficial mechanisms to improve our
spiking neural network’s stability, adaptability, and robustness.

3.2.2.1 Refractory period

When a neuron spikes, it enters a period of low excitability called a refractory period.
It strongly limits the spike frequency of neurons in the case of frequent and significant
inputs. We model a refractory mechanism through a trace η RP generated after each
spike and then decaying exponentially back to zero at a rate defined by τRP . The
membrane potential update becomes:

Ṽ (t + ∆t) = V (t) e
−∆t
τm − η RP e

− t+∆t−ts
τRP , (3.3)

where ts is the time of the neuron’s last spike.

3.2.2.2 Threshold and spike rate adaptation

Event-based cameras present an inherent variability in the output frequency depend-
ing on factors such as lighting conditions, the number of textures, or the relative

46 Chapter 3. Efficient visual encoding with a SNN

speed of objects. It means that neurons will be subjected to variable data rates
during their operation, leading to high variability in their spike rates. Although this
is somewhat unavoidable, keeping the spike rate of neurons in a reasonable range
across different conditions is preferable. Biology handles that problem using a wide
range of homeostasis mechanisms, be it at the heart of the neuron, the soma, or at
the sites of its inputs, the synapses.

Homeostatic regulation of firing rates is a common feature of neural circuits
allowing stable activity levels [112]. To avoid the necessity to fine-tune the neuron’s
firing thresholds, we use a homeostatic regulation to enforce a specific target firing
rate S∗ = 0.75 spikes s−1. The threshold is adapted automatically every second from
the difference between an estimate of the current spike rate S(t) and the desired S∗

as:
∆Vθ = η TA (S(t)− S∗) , (3.4)

with η TA controlling the speed at which the threshold adapts. S(t) is computed by
counting the number of spikes in the previous 10 seconds. The threshold update
happens every second and is a somewhat slow process intended to handle global
illumination and speed conditions. We define a minimum threshold Vθ min to avoid
capturing camera noise in areas with very few inputs. This slow regulation process
acts in the order of multiple seconds.

For local variations, we use a faster process called spike rate adaptation. Just like
threshold adaptation, it relies on the neuron’s activity. When a neuron spikes, a trace
VSRA(t) is increased by a value η SRA. This trace is subtracted for each pre-synaptic
input and decays exponentially back to zero according to the parameter τSRA. The
membrane potential internal update becomes:

Ṽ (t + ∆t) = V (t) e
−∆t
τm − VSRA(t) e

−∆t
τSRA − η RP e

ts−t−∆t
τRP (3.5)

This regulation mechanism acts immediately after a spike has happened. By choosing
a relatively short time constant τSRA (in the order of a few hundred milliseconds),
the effects of the spike rate adaptation mechanism are only visible on short periods,
which complements the slower threshold update.

3.2.2.3 Static lateral inhibition

Inhibition is a crucial tool for biological systems. Inhibitory connections have been
proven to serve multiple purposes: activity regulation in recurrent populations,
suppression of entire brain areas, or prediction mechanisms.

We use a simple lateral inhibition mechanism to facilitate the learning of diverse
receptive fields tuned to different orientations, phases, and movement directions and

47

Figure 3.10: Groups of N = 4 neurons are connected to the same patch of input pixels
providing ON (green) and OFF (red) events. The neurons are linked by inhibitory
connections (blue). A neuron can be connected to pixels of its receptive field by D synapses
with different delays to gain localized motion-sensing properties (not shown).

speeds. In the network, N neurons are connected to the same input pixels as shown
in Fig. 3.10. Inhibitory connections link such neurons. We simplified the mechanism
of inhibition compared to biology. Rather than assigning specific neurons to the role
of inhibitory cells, we considered that some neurons could directly inhibit each other
reciprocally. Specifically, when a neuron spikes, it instantly inhibits its neighbors
by subtracting a fixed value η INH from its membrane potential. This mechanism
introduces intense competition between neighboring neurons. It prevents the ones
that receive input from the same region of the sensor from firing at roughly the same
time, implying similar synaptic weight updates and leading to similar receptive fields.

3.2.3 Learning through Spike Timing Dependent Plasticity

We presented the STDP learning rule in Chapter 2. In our implementation of STDP,
as soon as a neuron spikes, its synaptic input connections will change depending
on the timing of the last input they received. It is a symmetric interpretation,
where we keep track of the timing of every pre-synaptic spike ti and the two last
post-synaptic spikes ts and ts−1. Each synapse undergoes an instantaneous change
in weight depending on an exponential relationship between the time difference
between the timestamp ti of the last input arriving at synapse i and the time of the
post-synaptic spike ts > ti:

∆wLT P
i = η LT P e

ti−ts
τLT P (3.6)

with ηLT P and τLT P controlling, respectively, the height and duration of the potenti-
ation window. Any input spike arriving after a postsynaptic spike (ti > ts) leads to
depression of the synaptic weight:

∆wLT D
i = −η LT D e

ts−1−ti
τLT D (3.7)

48 Chapter 3. Efficient visual encoding with a SNN

where ηLT D and τLT D control, respectively, the height and duration of the depression
window. In this formulation, multiple pre-synaptic spikes can interact with the last
post-synaptic spike to induce depression. Synapses whose weight would become
negative due to LTD are set to zero. The STDP rule applies equally to all synapses
with different time delays. The relevant time difference |ts − ti| is always the one
between the arrival of the pre-synaptic spike (occasionally delayed) and the moment
of the post-synaptic spike.

3.2.3.1 Weight normalization

To avoid unbounded growth of synaptic weights, we use a simple weight normal-
ization mechanism, which normalizes the weights projecting to a single neuron in
a multiplicative fashion. After every spike of the neuron, all input synapses are
multiplicatively rescaled such that the L2 norms of the weights equal a parameter
λ, chosen empirically. Such multiplicative rescaling of the efficacies of groups of
synapses could result from local competition for synaptic building blocks such as
neurotransmitter receptors [113]. Without this mechanism, the weights grow indefi-
nitely, causing surges in neuron spike rates and unrealistic behaviors such as neurons
being activated by only one spike.

3.2.3.2 Parallel synapses with different delays

Figure 3.11: Diagram of the
synaptic delays between a pixel
to a simple cell

We have described all the mechanisms that define our
artificial neurons. Changing the values of the thresh-
olds, time constants, STDP functions, or homeostasis
gains affects (sometimes drastically) the network dy-
namics and learning results. Network connectivity
plays an equally important role. We refer to the re-
ceptive field of a neuron as the set of its pre-synaptic
connections. The size and “depth” of this receptive
field can significantly impact a cell’s behavior. We de-
fine the set of input synapses of a neuron as a weight
matrix W that will change as the network operates

and synaptic weights are updated by the plasticity mechanisms.

To allow for the learning of motion-sensitive receptive fields, each pixel of the
event-based camera can be coupled to a LIF neuron via D synapses with different
delays, as depicted in Fig. 3.11. Therefore, a neuron can receive, e.g., the same
on-event from the same pixel at D different times. Similarly, it can simultaneously
receive events having occurred at different pixels at different times and therefore
be sensitive to image motion. Signals with multiple delays from the same sensor

49

Figure 3.12: Proposed SNN architecture

are common in biological motion vision circuits. It is the classic idea behind the
Reichardt detector, also known as Hassenstein-Reichardt detector model [114].

3.2.4 Spiking neural network architecture

3.2.4.1 Event-based pixel array

The event-based camera pixel array serves as the input layer of the SNN. Event-based
cameras record the polarity of events, indicating the sign of the change in light
intensity. We, therefore, separate the events in 2 maps depending on their polarity
(ON and OFF) as depicted in Fig. 3.12.

3.2.4.2 Simple cell layer

Simple cells are neurons’ local orientation filters found in the human early visual
pathway. They typically form receptive fields in the shape of Gabor functions tuned
to a specific orientation and possibly motion direction (see Sec. 2.3.3).

Simple cells have the important task of transforming event streams into more
abstract information, such as orientations, motions, or depth while sparsifying the
input as much as possible. They are based on the Leaky Integrate and Fire (LIF)
neuron model described in Chapter 2.

The second layer comprises a set of simple cells connected to a specific region
of the event-based camera via weighted synapses. The latter defines the neuron’s

50 Chapter 3. Efficient visual encoding with a SNN

Parameters Unit Simple cells Complex cells
Vthresh mV 30 3
Vreset mV -20 -20
Vthresh(min) mV 4
η LTP mV 0.00077 0.2
η LTD mV 0.00021 0.2
η INH mV 25 25
η TA mV 1
η RP mV 1 1
η SRA mV 0.6
τm ms 18 20
τ LTP ms 7 20
τ LTD ms 14 20
τ RP ms 20 30
τ SRA ms 100
Synaptic Delay ms 0
S∗ sp.s−1 0.75
λ 4 10

Table 3.1: Simple and complex cell parameters.

receptive field. If one of the camera’s pixels records an event, the neurons connected
to it will receive an excitatory input depending on the synapse’s strength. To
differentiate ON and OFF events, neurons are connected with at least two synapses
to a pixel, one for each event polarity. Furthermore, we allow pixels to connect to
the spiking neurons with different synaptic delays (see section 3.2.3.2) to enable
the development of motion tuning. Table 3.1 presents the parameters used during
training. We chose parameters that are most plausible in biology.

We used a weight-sharing mechanism between simple cells to improve the diversity
of learned receptive fields. Neurons looking at different visual field locations jointly
learn the same set of synaptic weights. We define these neurons as belonging to the
same “neuronal map”. It is represented by the blue cross section in the simple cell
layer in Fig. 3.12.

We increase the number of neuronal maps to obtain simple cells tuned to different
orientations. We also connect neurons looking at similar locations of the visual field,
but from different neuronal maps, with inhibitory connections. It is represented by
the red inhibitory connections in Fig. 3.12.

51

3.2.4.3 Complex cell layer

Complex cells pool information from multiple simple cells and react to a more
significant part of the visual field. They learn high-level representation from combining
simple cells’ receptive fields.

Our complex cell layer receives inputs from simple cells. They are also based on
the LIF model, but with adapted parameters. They learn to represent oriented edges
independently of the precise location of the edge, which requires a strongly non-linear
behavior [115] [116]. Often, complex cell-like behavior is achieved via a max-pooling
operation, but here we are interested in learning the non-linear behavior of complex
cells with STDP. We adjust complex cell parameters to be more sensitive to inputs
by giving them a lower spiking threshold (cf. Tab. 3.1). In our case, we removed the
weight-sharing mechanism that would have a limited purpose since it would reduce
the basis of complex cells receptive field learned while it is already small by design.

We also chose a different and simpler STDP window for the complex cells.
Contrary to simple cells, the weight variation is always positive, following a step
function. Unbounded growth is avoided using weight normalization. The STDP rule
for complex cells is written as:

∆wLT P,c
i =

η LT P : |ti − ts| ≤ τ LT P

0 : |ti − ts| > τ LT P .

∆wLT D,c
i =

η LT D : |ts−1 − ti| ≤ τ LT D

0 : |ts−1 − ti| > τ LT D .

(3.8)

We have also experimented with the following additional STDP windows for the
complex cell learning rules:
Step left window:

∆wLT D
i =

η LT D : |ts−1 − ti| ≤ τ LT D

0 : |ts−1 − ti| > τ LT D .
(3.9)

Step right window:

∆wLT P
i =

η LT P : |ti − ts| ≤ τ LT P

0 : |ti − ts| > τ LT P .
(3.10)

Step symmetrical window:

∆wLT P
i =

η LT P : |ti − ts| ≤ τ LT P

0 : |ti − ts| > τ LT P .

∆wLT D
i =

η LT D : |ts−1 − ti| ≤ τ LT D

0 : |ts−1 − ti| > τ LT D .

(3.11)

52 Chapter 3. Efficient visual encoding with a SNN

Linear window:

∆wLT P
i =

η LT P (1− (ti − ts)) : |ti − ts| ≤ τ LT P

0 : |ti − ts| > τ LT P .

∆wLT D
i =

η LT D(1− (ts−1 − ti)) : |ts−1 − ti| ≤ τ LT D

0 : |ts−1 − ti| > τ LT D .

(3.12)

Exponential window (similar to the rule for simple cells):

∆wLT P
i = η LT P e

ti−ts
τLT P

∆wLT D
i = −η LT D e

ts−1−ti
τLT D .

(3.13)

3.2.4.4 Neuvisys, a SNN implementation

We decided early in this project to develop our implementation of a SNN and later
spiking reinforcement learner. The motivations behind that were as follow:

• At the time, SNN libraries already existed but were not necessarily complete
enough to provide all the neurons interactions we were interested in, such as
synaptic delays, stereoscopic receptive fields or homeostatic mechanisms.

• The interface between the SNN and event-based cameras was not consistently
implemented or would require additional efforts.

• We wanted to have total control of the software implementation to understand
precisely the interactions between the neurons and the event-based camera.

• Neurons models and learning rules can be limited and hard to extend.

• The use of reinforcement learning was usually not considered, making the
implementation of a spiking actor-critic framework difficult.

For that reason, we decided to implement our library. It is written in C++ and
uses a Qt graphical interface to interact in real-time with the network. Everything
runs on CPU. We present our code and how to run it in Appendix C.

Our implementation is fully asynchronous, contrary to some SNN libraries. Every
spike is propagated at the exact time it was created, except for the events from the
event-based camera. The latter are transmitted in packets (up to 10 000 events per
packet) due to the bandwidth restriction in the USB connection.

The propagation of spikes is based on a depth-first algorithm, meaning that if a
spike activates a neuron, we then process that neuron in priority and the subsequent
neurons connected to it in the case where it would activate other deeper neurons.

53

Figure 3.13: Flowchart of our SNN algorithm.

Figure 3.13 resumes the SNN algorithm along with some of the main equations.

Since our network runs on CPU, we cannot process multiple neurons simulta-
neously. Therefore we compute each event synchronously, which heavily limits our
implementation performances. While small network architecture with a limited event
rate runs near real-time, most of our experiments ran slower than real-time. The
most complex network architecture can quickly get 100 times slower than real-time.
It is one of the main limitations of our implementation. We considered a GPU
implementation using the CUDA programming language, but the effort and time
required were prohibitive. Neuromorphic hardware could be the best solution while
not necessitating much change in our implementation.

54 Chapter 3. Efficient visual encoding with a SNN

Figure 3.14: Screen capture of four event recordings, shapes on a paper, an office, someone
juggling, and a robotic platform in an urban environment. Blue and red, respectively,
represent ON and OFF events.

3.3 Network activity analysis and visualization

We study in this section the simple and complex cell activity variation, spike
patterns, and correlations in response to various types of event inputs. We are
interested in neuron behaviors and differences before and after training.

3.3.1 Datasets of event-based recordings

For our experiments, we worked with multiple recordings made with an event-based
camera.

3.3.1.1 Multi-purpose event-based recordings

For our experiments, we selected four event recordings in different environments.
Shapes are drawn on a sheet of paper, a recording of an office, someone juggling with
balls, and a mobile robotic platform in a small, recreated urban road environment.
Each recording is a few seconds up to a few minutes long. We present a frame
representation of the four of them in Fig. 3.14.

For those recordings, we used the default Davis346 [117], with the stock lens
and parameters of the camera. We chose these four scenes to diversify the types

55

Figure 3.15: Frame representation of the input events from four of the driving sequences in
the DDD17 driving dataset.

of visual inputs. The shape recording presents clearly defined edges with multiple
orientations and motion directions. It is well adapted to test the learning of oriented
filters. The recording is around 1 minute long. The office recording offers a more
typical man-made environment with many straight edges, most of them vertical or
horizontal. Similarly, the outside recording presents buildings with straight edges
and some more natural objects, such as trees and bushes. They are both suited for
learning in a typical urban environment. They are respectively 40 seconds and 7
minutes long. Finally, the juggling recording is the only one with a fixed camera
setting, where the movements only come from the juggler and the balls. It is 2
minutes long.

3.3.1.2 DDD17 driving dataset

The DDD17: DAVIS Driving Dataset [118] features many hours of driving recorded
on freeways, highways, and in cities with a DAVIS346B [117] event-based camera.
The data set features various visual inputs such as cars, traffic signs, poles, trees,
buildings, safety barriers, and road markings. Figure 3.27 shows four examples
of short-time slices of events. It is a good dataset for motion estimation, as the
car’s movement will create very different optical flow in the scene depending on the
position in the visual field. The speed of the car also varies greatly depending on the
road situation.

56 Chapter 3. Efficient visual encoding with a SNN

Figure 3.16: Event representation displayed on top of actual frames from two of the
MVSEC’s dataset driving sequences, one during the day and one during the night.

3.3.1.3 MVSEC driving dataset

The Multi Vehicle Stereo Event Camera dataset [43] is a collection of stereoscopic
event-based recordings mounted on three different platforms, namely a car, a mo-
torcycle, and a drone. We concentrated on the driving sequences somewhat similar
to the DDD17 dataset. However, some recordings were also made at night, and
the stereoscopic setup allows for different applications such as depth perception.
Figure 3.16 presents two examples of recordings, one during the day and one during
the night. All the event-based camera parameters and setup details are given in the
dataset. It also includes frame-based videos since the setup includes frame-based
cameras. It is advantageous for generating a ground truth for comparing event-based
methods with traditional computer vision.

3.3.1.4 Robotic mobile platform in a urban environment

This dataset regroups multiple recordings made on a robotic mobile plaform mounted
with a stereoscopic pair of event-based cameras. It can be used to test algorithms on
stereo-driving scenarios at slow speeds in man-made environments resembling road
systems.

We mounted two DAVIS346 event-based cameras on a stereoscopic rail. We
used the stock lens and parameters on the cameras. The distance between the
camera optical center is 50 cm. The recordings were made simultaneously with a
synchronization cable to synchronize the event timestamps between the two cameras.
The robot itself is a small 4-wheeled vehicle approximately 1 meter tall. Fig. 3.17
present the robotic vehicle we used with the cameras mounted on top. We used
two CCTV cameras to limit the number of solar flares affecting event-based sensors.
Despite that, there is still some present in the dataset.

3.3.2 Simulated sequences

57

Inhibition
types

Lateral
inhibition

range

Nb
synapses

Nb
visual
regions

Weight
sharing

Nb
cells
per

region

Size
rfs

(x, y) (x, y, z)
Simple
cells static none 1 1 yes 16,16,144 10,10,2

Complex
cells static none 1 1 no 4,4,16 4,4,144

Table 3.2: Network architectural parameters

Figure 3.17: Robotic
mobile driving platform
with two stereoscopic event-
based cameras mounted on
top.

In addition to actual recordings from event-based sensors,
we also created some simulated event sequences. The
artificial videos are made using stereoscopic frames and
are then converted to event-based streams using the ESIM
simulator [119]. The simulation is accurate when given a
high enough frame rate. However, the generated sequences
do not present sensor noise. It allows us to generate
specific stimuli that correspond to the exact need of an
experiment. We primarily generated gratings and moving
bars using that technique. We describe them in more
detail in the experiment themselves.

3.3.3 Network parameters

Table 3.2 presents the network architecture used for the
following experiments. It summarizes the main architec-
tural parameters. We detail the number of synapses per
neuron, the number of independent visual regions, the
use of the weight-sharing mechanism, as well as the number of neurons per region
and the size of their receptive fields. Finally, we give the type of inhibition used. We
will discuss new inhibition mechanisms in the next Chapter, including the lateral
inhibition range. For now, only static inhibition is used, described in section 3.2.2.3.

For simple cells, the receptive fields sizes are in pixels, with a depth of 2 for both
ON and OFF polarity. For complex cells, receptive fields sizes represent the number
of simple cells.

We created a network with 16× 16× 144 = 36864 simple cells looking at a visual
field of 160×160 pixels. The following layer comprises 4×4×16 = 256 complex cells
centered on the same visual field. We used the cell parameters detailed in Table 3.1.

58 Chapter 3. Efficient visual encoding with a SNN

3.3.4 Visualizing the network’s behavior

This section analyzes how our SNN works and reacts to event-based inputs. As
mentioned previously, SNN are computer models of biological brains. Over the years,
neuroscientists have developed practical tools and visualization methods to describe
how neuronal architectures react to various stimuli. We will use similar tools applied
to our computer model.

We first learned the simple and complex cell receptive fields with the office event-
based recording as input. We will describe in more detail the learned representation
in the next Chapter.

Membrane potential variation Analyzing a cell is often done by looking at its
membrane potential. The variation of potential indicates the cell’s reaction to various
inputs. Access to the membrane potential variation over time gives information on
most of the dynamics regarding that cell.

However, recording the membrane potential of cells is an expensive process.
Neurons can receive many events in short periods. It is possible to record the
membrane potential only during the reception of a new event while extrapolating
the decay. Nevertheless, even then, the very low latency of event-based cameras can
create millions of events per second with microsecond timestamp accuracy. Recording
all those changes requires expensive computation time and a lot of memory space.
We cannot afford to do that when training networks, sometimes for many minutes or
hours.

A simple solution to that problem is to record only when a neuron spikes.
Contrary to events, neurons spike much less often. The storage and computational
requirements for recording the neuron’s activation time are much lower. Since
spikes are the primary information medium in a SNN, looking at individual neurons’
membrane potential is not necessarily helpful when trying to understand more global
network dynamics.

Event and Raster plot An excellent way to represent spiking information is to
use an event plot. This plot displays spike times in the form of a small bar for a
specific neuron population. Looking at one neuron, we get information such as how
active this cell is or if the spikes are close together or spread out in time. When
looking at a group of neurons, we can see how correlated the spikes are from each
other. This might indicate if the neuron has an equal representation or not. A raster
plot is simply an event plot with added information, such as a histogram of cell
activity variation on top and a mean cell firing rate on the right.

59

Figure 3.18: Raster plot of the simple cells on an event-based recording of an office.

60 Chapter 3. Efficient visual encoding with a SNN

Figure 3.19: Raster plot of the complex cells on an event-based recording of an office.

61

Fig. 3.18 and Fig. 3.19 presents a raster plot of the network’s simple and complex
cells on the office recording presented in Sec. 3.3.1.1. As objects pass in front of
the visual field, simple and complex cell spike in groups. Each line of the y-axis
corresponds to a different cell with a unique firing pattern. This pattern depends
mostly on two factors, the position in the visual field and the learned representation.
The raster plot displays the cell in a flattened graph, even though they are arranged
on a 2D plane, making it somewhat difficult to interpret precisely. Objects traversing
the visual field generate similar firing patterns but with a delay.

We see that the cells in Fig. 3.18 display more precise firing patterns, while the
complex cells in Fig. 3.19 pools information and have coarser firing patterns.

Instantaneous rate An instantaneous rate plot is very similar to an event plot, the
main difference being that the spikes are first convoluted to a kernel before displaying
it. Kernel convolution is defined as the integral of the product of a function f with a
kernel g. It is a particular kind of integral transform where the kernel is reflected
about the y-axis and shifted as follow:

(f ∗ κ)(t) :=
∫ ∞

−∞
f(τ)κ(t− τ)dτ (3.14)

where ∗ represent the convolution operator, and τ is the axis of convolution.

Different kernel choices are possible. In this instance, we used a Gaussian
kernel of the form κ(t) = a exp

(
− (x−b)2

2c2

)
. By doing so, we transform a discrete

representation into a dense one. It is beneficial when applying traditional computer
vision techniques that require dense matrices. The size of the kernel is an essential
factor in the transformation process. Small kernels conserve more of the precise
timing information of the spikes. In contrast, larger kernels make processing easier
by reducing the representation size while losing more information. Fig. 3.20 and
Fig. 3.21 present such a plot made with an exponential kernel of size 100ms. For the
most part, we observe similar results to those in Fig. 3.18 and Fig. 3.19.

Time histogram A time histogram is similar to the instantaneous rates but
applied to all the neuron spikes summed together. It gives a single output vector that
gives the activity variation for the whole network layer. We lose local information at
the neuron level, but this can be useful when analyzing the whole layer’s behavior
in response to some inputs. As with the instantaneous rate, we use a convolution
window, which size determines the precision in time. Fig. 3.22 presents the network
activity variation in the simple cell layer with a window size of 100ms. We can see
that the activity varies quite a lot. We will see in Sec. 3.3.6 that this is primarily
dependent on the input variations and that the two are heavily correlated. Simple
and complex cells show similar variations in activity; however, the scales are different
since the complex cells spike more on average.

62 Chapter 3. Efficient visual encoding with a SNN

Figure 3.20: Instantaneous rates plot with a Gaussian kernel window of 100ms for the
simple cell layer on an event-based recording of an office.

63

Figure 3.21: Instantaneous rates plot with a Gaussian kernel window of 100ms for the
complex cell layer on an event-based recording of an office.

64 Chapter 3. Efficient visual encoding with a SNN

(a)

(b)

Figure 3.22: Time histogram on an event-based recording of an office. (a) Simple cell layer.
(b) Complex cell layer. The scales are different for the two layers.

(a) (b)

Figure 3.23: Spike rate plots on an event-based recording of an office. (a) Simple cell layer.
(b) Complex cell layer. The scales are different for each layer.

65

Scene urban office shapes juggling mean
Number of events 11,8M 3,6M 6,5M 27,9M
Random
Simple cell
activity reduction 257 189 125 137 177

Complex cell
activity reduction 1359 825 1111 364 665

Simple cell
correlation coefficient 0.74 0.87 0.97 0.90 0.87

Learned
Simple cell
activity reduction 173 112 67 112 116

Complex cell
activity reduction 983 610 623 410 657

Simple cell
correlation coefficient 0.84 0.90 0.98 0.92 0.91

Table 3.3: Sparsity analysis on four different event recordings. We show the result for two
networks, one with learned representation and the other with random ones. We present the
activity reduction, the number of events divided by the number of spikes in the cell layer.
We also present the correlation coefficient between the events and cell activity variation.

Spike rate histogram The neurons’ spike rates are an essential indicator of the
network dynamics. The difference in spike rate between neurons can give some
information about the learned representations. It depends on the input, but on
average, we should expect neurons to stay in an acceptable range and follow some
Gaussian distribution around a mean firing rate. Fig. 3.23 presents the simple cell
firing rate when presented with the office recording. In that case, the cells firing rate
is between 0 and 0.4 spikes s−1 for the simple cells and between 0 and 1.3 spikes s−1

for the complex cells. It is coherent with the previous time histogram. Complex cells
spike more since we chose a lower threshold than simple cells, receiving inputs from
many simple cells simultaneously.

3.3.5 Sparsity as an efficient coding mechanism

This section demonstrates that our SNN can sparsify event-based visual inputs. To
do so, we fed the four event recordings described in Sec. 3.3.1.1 to 2 networks: (i)
one that has not been trained and is initialized with uniformly sampled weights, (ii)
the other previously trained on the drawn shapes recording.

Event streams are already sparse but still contain millions of events per second.
The integrating process of simple cells reduces that number by an important factor.
To demonstrate that concept, we recorded the number of spikes for the simple and
complex cell layers and the difference between the normalized event activity and
normalized simple cell activity. We present those results in Table. 3.3.

The activity reduction is the number of input events divided by the total number
of spikes of the layer. It is a way of measuring the activity reduction induced by the

66 Chapter 3. Efficient visual encoding with a SNN

coding layers. Here, on average, the trained, efficient coding layer can reduce the
input activity by a factor of 116 for the simple cell layer and 657 for the complex
cell layer. This sparsity order is critical; it allows further layers to process the visual
inputs much more efficiently. If spikes are the main power-intensive elements of a
SNN, as suggested in [120], this would already represent a massive gain in total
energy consumed.

3.3.6 Network activity variation

We observe the activity variation in the simple and complex cell layers function of the
event-based inputs. Fig. 3.24 presents an example of the normalized activity variation
between the input events in blue and the simple and complex layers in purple and
green. It is for the shape recording described in Sec. 3.3.1.1 on the trained network.
The weights have been learned on this specific recording, so the representation is
especially well adapted to this visual input. It results in a high correlation between
the event and network rates. The bottom figure shows a substantial correlation of
0.84 (MSE of 0.7) for that specific case. Oppositely, random weights give a lower
correlation of 0.74 between the input and encoding signal (MSE of 3.37) for that
recording. We present the same plots for the three other event-based recordings in
the appendix as Fig. A.1, Fig. A.2, and Fig. A.3. Those figures demonstrate two
points: the network activity variation for both layers is highly correlated to the input
activity variation, even though the network activity is much more sparse. Moreover,
after learning, that correlation tends to increase, pointing to the fact that learning a
representation of the input is beneficial.

3.3.7 Independent spike responses

We demonstrated that the coding layer could significantly sparsify the input from
the event-based camera. However, we must ensure that the coding layer retains most
visual information during compression. We designed a simple experiment to prove
that the network can efficiently distinguish between different visual features.

We used the same network described in Sec. 3.3.5, with a learned basis of different
orientations. We want to submit that network to stimuli representing multiple
orientations and see if the network can differentiate efficiently between them. For
that, we used a simulated environment described in more detail in our reinforcement
learning experiment Sec. 4.4.1. All we need to know for this experiment is that
the environment is composed of a rotating camera looking at straight bars. As the
camera rotates, the perceived orientation of the bars changes.

We presented the network with the oriented filters to this rotating stimulus
and recorded the spike trains of the simple cells. We designed a simple supervised

67

(a)

(b)

Figure 3.24: Top: Difference in activity between the input (event rate in blue), the simple
cell layer (purple), and the complex cell layer (green). Bottom: scatter plot and correlation
trends of the input rate function of the simple (purple) and complex cell (green) spike
rates. We show the results of the shape recording. (a) With learned weights representation.
(b) With random weights.

68 Chapter 3. Efficient visual encoding with a SNN

(a) (b)

Figure 3.25: (a) MSE Loss function over 1000 iterations. (b) The predicted angle is plotted
against the true angle for the 200 test data points.

learning regression framework to associate the spike trains to a specific orientation
of the bars. A spike train is a sparse and continuous representation; using it with a
traditional supervised learning network is hard. Park et al. [121] showed that we
could use kernel convolution methods to convert spike trains to more traditional
feature vectors. We detailed the kernel convolution method earlier in Sec. 3.3.4. We
used here an exponential kernel of the form:

κ(t) = 1
σ

e
−t
σ (3.15)

with σ defining the width of the kernel. We convolute the spike trains with that
kernel, using a σ of 10 and a sampling rate of 10 ms. It gives us 36864 features, one
for each simple cell. We combined clockwise and counter-clockwise rotations of the
camera for 10 seconds each to obtain a total of 2000 data points (since the sampling
rate equals 10ms).

The final feature vector shape is (2000, 36864). We recorded the orientation of
the bars for each data point, which is stored in a label vector of size 2000. The
orientation is bounded between 0 and π.

Finally, we designed a simple all-to-one linear readout for solving the regression
task. We normalized, shuffled, and divided the data points into a train and test
dataset containing 1800 and 200 points, respectively. We chose a MSE loss and
Adam optimizer with a learning rate of 0.001. We trained for 1000 iterations.

Fig. 3.25a is the loss function over time. After only 50 iterations, the network
converged. The training MSE loss after 1000 iterations is 1.2 10−5. We present in
Fig. 3.25b the test dataset with the network’s prediction. The 200 predicted angles
are plotted against the actual angle. All the points reside on the diagonal, which
means that the angle is correctly predicted with great precision. The test MSE loss
is minimal, only 6.3 10−5.

69

To ensure that the learned representation has a real impact, we compare this
supervised learning regression task to a network with randomly initialized weights.
We kept the same data-gathering method and classifier parameters and trained for
1000 iterations. This time, the training MSE loss after training is equal to 9.1 10−3,
while the test MSE loss is 1.9 10−3. The classifier can still mostly distinguish between
different orientations but with less precision. It is not very surprising, considering
the very high number of dimensions. With almost 37 000 neurons, we can expect
a classifier to be able to solve such a simple classification task. Nevertheless, the
important information is how well we can distinguish between orientations. The
MSE is around two orders of magnitude higher than the loss from the network with
trained representation.

3.4 Studying the receptive fields of simple and
complex cells

In this section, we will analyze in detail the ability of our simple and complex
cells to learn various representations. We show that they respond to orientation,
motion, and disparity. We demonstrate the results on driving sequences from three
different datasets.

3.4.1 Learning simple cell receptive fields

This section demonstrates that our simple cell layer can capture different visual
properties depending on the parameters and synaptic connection, such as orientation,
motion, and disparity.

3.4.1.1 Learning on moving shapes

We first test the network on the shape inputs from Sec. 3.3.1.1. In that case, events
represent the moving edges of the shapes. An edge can have many properties, such
as orientation, speed, or disparity, in the case of stereo-vision. A good coding
representation can capture that information.

To increase variability, we perform data augmentation by presenting the same
video with artificial rotations and mirroring effects during training. It ensures that
the neurons are presented with edges of all possible orientations. We used the first
layer of simple cells without multi-synaptic connections and trained the network for

70 Chapter 3. Efficient visual encoding with a SNN

(a)

(b)

Figure 3.26: (a) Resulting receptive fields of simple cells learned with the moving shapes
video sequence. (b) Examples of learned simple cell receptive fields with their matched
Gabor function below it.

approximately 30 minutes. The network presents a similar architecture to the one
detailed in Table 3.2 and cell parameters detailed in Table 3.1.

Fig. 3.26a presents the resulting receptive fields of the simple cells, forming a
basis of oriented receptive fields. Green/red pixels represent synapses transmitting
ON/OFF events, respectively. The color intensity represents the weight strength.
Yellow areas indicate regions where the neuron is sensitive to both ON and OFF
events. The cells learn well-defined receptive fields composed of two polarity edges.
They show a wide range of orientation tuning. The learned representation is similar
to Gabor filters. We further illustrate this by fitting Gabor functions to the receptive
field as seen in Fig.3.26b. Those Gabors were then used and learned in many other
applications, including traditional Artificial Neural Networks. They have proven to
be effective early representations for solving complex visual tasks. We can observe
that the simple cell receptive fields we learned are very similar to those of Gabor
functions.

3.4.1.2 Evidence of visual statistical differences

To test the network’s ability to develop diverse orientation-tuned receptive fields
that match the statistics of the different parts of the visual scene, we used sequences
from the DDD17: DAVIS Driving Dataset, described in Sec. 3.3.1.2.

71

Figure 3.27: Examples of input events from the driving sequence. The blue squares indicate
the locations of the nine different visual regions. Each region is then subdivided into 16
neurons’ receptive fields that are indicated by a lighter shade of blue in the top left corner
region.

Inhibition
types

Lateral
inhibition

range

Nb
synapses

Nb
visual
regions

Weight
sharing

Nb
cells
per

region

Size
receptive

fields

Simple
cells static none 1 9 yes 4,4,144 10,10,2

Table 3.4: Network architectural parameters in the driving scenario with nine visual regions
and weight sharing.

72 Chapter 3. Efficient visual encoding with a SNN

(a)

(b)

0°

45°
90°

135°

180°
20

0°

45°
90°

135°

180°
2550

0°

45°
90°

135°

180°
1020

0°

45°
90°

135°

180°
2040

0°

45°
90°

135°

180°
20

0°

45°
90°

135°

180°
2550

0°

45°
90°

135°

180°
2040

0°

45°
90°

135°

180°
2040

0°

45°
90°

135°

180°
2550

(c)

Figure 3.28: (a) Receptive fields learned for the 9 visual regions. (b) Selected examples of
learned receptive fields (rows 1, 3, and 5) and corresponding Gabor fits (rows 2, 4, and
6) showing tuning to different orientations and scales. (c) Histogram of the network’s
receptive field orientations obtained from fitting Gabor functions to each visual region.

We changed a few architectural designs for that experiment. We show the network
architecture in Table 3.4. The difference resides in the use of 9 visual regions, with
fewer simple cells in them.

Inputs from different parts of the visual field have different statistical properties.
An optimal representation of the visual inputs must take into account such effects [122].
To further explore statistical differences in visual inputs, we divided the pixel array
into nine different regions (see Fig. 3.27). We offset the three bottom regions because
the car’s dashboard is visible in some driving sequences. Each region is subdivided
into 16 smaller input tiles of 10× 10 pixels, giving 9× 16 = 144 tiles. Each input tile
projects to N = 100 neurons connected by inhibitory synapses. The 16 neurons of
the same region and slice N share the same synaptic weights. It implies a network
size of 14, 400 neurons, but only 900 learned receptive fields.

In this experiment, we focused on the spatial structure of the learned receptive
fields, and we thus considered a network without multiple synaptic delays (i.e., D = 1).
The initial synaptic weights were drawn randomly from a uniform distribution. Figure
3.28 shows examples of learned receptive fields in the nine visual regions after 60
minutes of training on driving sequences alternating between highways, freeways,
and cities.

Similarly to Sec. 3.4.1.1, we fitted Gabor functions to the simple cell receptive
fields 93% of receptive fields obtained a good fit (sum of squared errors ≤ 5). Example
fits are shown in Fig. 3.28b. They exemplify that filters of different orientations and

73

Inhibition
types

Lateral
inhibition

range

Nb
synapses

Nb
visual
regions

Weight
sharing

Nb
cells
per

region

Size
receptive

fields

Simple
cells static none 1 1 no 34,26,1 10,10,2

Table 3.5: Network architectural parameters in the driving scenario without weight sharing

scales are learned. It demonstrates that simple cells develop Gabor-like receptive
fields for more natural and noisy environments such as driving scenes. Figure 3.28c
shows the histograms of fitted Gabor orientations for each of the nine visual regions.
Horizontal and vertical orientations are over-represented, resembling the oblique
effect in visual perception [123]. Each region exhibits very different receptive field
characteristics, including orientation preferences, as seen in Fig. 3.28c. The constant
flow of objects from the center to the edges of the sensor generated by the car’s
forward motion is reflected in the preferred orientations of each visual region. The
representation demonstrates that neurons will tune to the specific statistics of their
visual field.

Removing the weight sharing mechanism In this experiment, we study the
effect of the weight-sharing mechanism by deactivating it. We tested the STDP
learning rule on the simple cells for the whole visual field. Here, every simple cell
learns its representation independently of other surrounding cells. We created a
network with 34 by 26 simple cells. It gives us a practical visual field of 340× 260
pixels, close to the visual field of the DVS sensor of 346× 260 pixels. The network
architecture is detailed in Table 3.5.

Fig. 3.29 presents the learned receptive fields for all the simple cells. It was learned
with one of the driving recordings, made on a suburban freeway with many buildings
around, traffic signs, and tunnels. We can observe that the learned representation
matches the driving sequence’s statistics. Orientations are coherent with the optical
flow of the scene since we expect horizontal orientation on the sides of buildings
and lamp posts. On the top, horizontal orientation mostly comes from overhead
traffic signs. At the bottom, orientations depend on road markings, such as zebras
or demarcation lines. Zones without many visual inputs show no learning, such as in
the bottom right portion of the visual field.

The weight-sharing mechanism helps the neurons to learn precise receptive fields
by distributing the visual inputs on many different neurons. However, the mechanism
is optional to learn. Compared to the network that learned with weight sharing, we
can note that the receptive fields are, on average, noisier.

74 Chapter 3. Efficient visual encoding with a SNN

{'NEURON_WIDTH': 10, 'NEURON_HEIGHT': 10, 'NEURON_SYNAPSES': 1, 'SYNAPSE_DELAY': 0, 'X_ANCHOR_POINT': 0, 'Y_ANCHOR_POINT': 0, 'NETWORK_WIDTH': 34, 'NETWORK_HEIGHT': 26,
'NETWORK_DEPTH': 4, 'DELTA_VP': 0.077, 'DELTA_VD': 0.021, 'DELTA_SR': 4, 'TAU_LTP': 7000, 'TAU_LTD': 14000, 'VTHRESH': 30, 'VRESET': -20, 'TAU_M': 18000, 'TAU_INHIB': 8000, 'NORM_FACTOR': 3,
'NORM_THRESHOLD': 1, 'TARGET_SPIKE_RATE': 0.75}

Figure 3.29: Receptive fields of a network without weight sharing learned on the entire
visual field of the Davis346 event-based camera. The receptive fields were learned on one
of the driving sequences in the DDD17 driving dataset.

75

(a) (b)

No inhibition Inhibition
0

1

2

3

4

5

Sq
ua

re
d

Eu
cli

de
an

 d
ist

an
ce

(c)

Figure 3.30: Lateral inhibition diversifies receptive fields. Examples of 16 neurons’ receptive
fields learned without (a) and with (b) lateral inhibition. All neurons in a column receive
the same inputs from the event sensor but start with a different random initialization of
their synaptic weights. (c) Boxplot of the squared Euclidean distances between synaptic
weights of neurons receiving similar inputs with and without lateral inhibition.

3.4.1.3 Lateral inhibition as a diversity mechanism

To test the importance of the lateral inhibition mechanism, we studied the effect of
disabling it in Fig. 3.30. Each column in Fig. 3.30a represents the receptive fields of
4 neurons connected to the same input patch after learning without lateral inhibition.
Even though the receptive field initialization was different, all four neurons have
learned very similar receptive fields. In contrast, lateral inhibition leads to more
diverse receptive fields (Fig. 3.30b). Figure 3.30c quantifies this effect by showing
box plots of the distributions of all pairwise squared Euclidean distances between
the receptive fields learned at the exact location. Inhibition significantly improves
the diversity of receptive fields.

3.4.2 Weight evolution during training

Learning with SNNs is fundamentally different than with traditional ANNs. In a
synchronous neural network, all the weights are updated simultaneously using some
form of gradient descent optimization process. STDP is an unsupervised learning
rule that only applies when a neuron spikes. It means the adaptation of neuron
receptive fields depends on the cell dynamic rather than a continuous optimization
process.

We present the evolution of the simple cells of a network with similar parameters
presented in Sec. 3.4.1.1 while learning on the shapes recording detailed in Sec. 3.3.1.1.
We start with random weights and present the recording to the network. Every
2s, we saved the weights and displayed them. We observe the evolution of those
receptive fields in Fig. 3.31. We can see that with time, more and more receptive

76 Chapter 3. Efficient visual encoding with a SNN

fields learned a Gabor-like representation. However, only a fraction of the cells learn
at a time. Most receptive fields remain random for a long time.

The last figure presents the receptive fields at the end of training (after showing
the sequence 30 times, which corresponds to 450s). Interestingly, most receptive
fields learned in the first minute have mostly stayed the same at the end of training.
It shows that once a representation is learned, it remains relatively stable. We can
also note that a few receptive fields still need to learn a well-defined receptive field at
the end of the training. It is due to the amount of existing input pattern compared
to the size of the receptive field basis. Here, there needs to be more diversity in the
input, which implies that the learned basis is sufficient to encode the input well.

3.4.3 Development of motion and disparity tuned receptive
fields

We evaluate here the ability of our network’s simple cell layer to learn two more
essential environment properties: motion and disparity.

3.4.3.1 Learning motion and disparity on synthetic inputs

We created a synthetic event video where we precisely controlled those two variables.
The simplest type of stimuli consists of moving bars (from left to right) in front of a
static camera. We chose a bright bar moving on a dark background, as depicted in
Fig. 3.32a. It results in a leading positive event polarity edge, followed by a negative
polarity edge. Because of the synthetic nature of the stimulus, we can choose precise
bar orientations, motions, and disparities.

The learned simple receptive fields are shown in Figs. 3.32b and 3.32c. As already
seen in Sec. 3.4.1.1, we observe again that the simple cells receptive fields are tuned
to the orientation of the data sequence.

Specifically, simple cells are connected to the pixel array using three synaptic
connections with different delays per pixel. It is represented in Fig. 3.32b by showing
the corresponding three receptive subfields (one per delay) on top of one another. For
each bar, we show two examples of learned receptive fields (colored frames indicate
correspondence). The four bars move at speeds of (top to bottom) 420, 210, 140,
and 105 pixels/s relative to the camera. To accurately capture this motion, we
chose synaptic delays of 0, 10, and 20 ms for receptive fields of 10 by 10 pixels.
This amounts to a velocity tuning of up to 10

2.10−3 = 500 pixels/s. Above that speed,
the receptive fields would be too small (or the delays too big) to capture the bar
motion. In Fig. 3.32b, we see that faster speeds become reflected in bigger shifts
between the subfields corresponding to the different delays. For the fastest moving

77

Figure 3.31: Evolution of the simple cell receptive fields during training on the shapes
recording. Each figure is a snapshot of the weights made every 2s while showing event-based
input from the shape recording. The last figure presents the weight at the end of training.

78 Chapter 3. Efficient visual encoding with a SNN

(a)

(b)

(c)

Figure 3.32: (a) Synthetic event video made of vertical bars moving from left to right.
Their speed varies from the top (fastest) to the bottom (slowest). (b) Motion-sensitive
cells (top) with three increasing synaptic delays (represented as three squared receptive
field stack on top of each other). (c) Disparity-sensitive cells (bottom) are connected to a
left and right “synthetic” camera, represented as two squared receptive fields stacked on
top of each other. Two neurons are presented per moving bar, from the fastest (left) to the
slowest (right).

bar (close to the 500 pixels/s limits), the receptive fields start to “break” for the
20 ms delay (bottom row in (b)). The first subfield with delay zero does not start
completely to the right, pushing the shift for the 20 ms synaptic delay beyond the
size of the receptive field. Due to the polarity-independent weight normalization (see
Sec. 3.2.3.1), the weight to a random synaptic pixel becomes very strong (single red
pixel). When adding multi-synaptic connections with multiple delays between the
pixels and the simple cells, they learn a representation of the speeds of the bars.

We extend this experiment by adding a second set of moving bars to form a
stereoscopic setup. Each bar is slightly shifted in the second visual field to mimic
different binocular disparities. Specifically, the bars have disparities of (top to
bottom) 2, 4, 6, and 8 pixels. Here, single synaptic connections connect simple cells
to the two stereoscopic visual fields. Fig. 3.32c depicts the resulting left and right
receptive fields placed on top of each other. As expected, the shift between the left
and right receptive subfields matches the disparity of the bar.

3.4.3.2 Motion tuning in an actual driving sequence

We further test the network’s ability to develop motion-tuned receptive fields for
natural input by training it on the driving sequence of Sec. 3.3.1.2. We used
synapses with D = 3 different time delays of 0, 10, and 20 ms, respectively. We also
returned to a complete tiling of the DVS array instead of the nine visual regions and
disabled synaptic weight sharing. It allows neurons to tune to the optical flow that
varies significantly in the scene depending on the visual field location. It is shown
in Table 3.6. We were particularly interested in systematic differences in tuning

79

Inhibition
types

Lateral
inhibition

range

Nb
synapses

Nb
visual
regions

Weight
sharing

Nb
cells
per

region

Size
receptive

fields

Simple
cells static none 3 1 no 34,26,1 10,10,2

Table 3.6: Network architectural parameters in the driving scenario with multi-synaptic
inputs.

(a) (b)

Figure 3.33: (a) Motion-tuned receptive fields learned across the entire field of view. Each
receptive field has three sub-fields (arranged vertically) corresponding to different synaptic
delays. Every second row of neurons has been removed in the figure to limit display size.
(b) Enlarged view of marked groups of receptive fields in (a). See text for details.

80 Chapter 3. Efficient visual encoding with a SNN

properties across the visual field reflecting typical optic flow patterns occurring
during driving. We chose a higher starting membrane potential threshold of Vθ = 150
mV to compensate for the extra synapses as well as a lower target spiking rate of
S∗ = 0.15 spikes s−1, which is sufficient in this sequence of fewer events. All other
parameters were as in Table 3.1.

Learned Spatio-temporal receptive fields across the entire sensor array are shown
in Fig. 3.33. We show only one of four neurons per location (compare Fig. 3.30).
The receptive fields of some regions of the sensor are enlarged in Fig. 3.33b. Overall,
a large variety of receptive fields tuned to different orientations, motion directions,
and speeds have been learned. Importantly, we observe systematic differences in
tuning properties across different parts of the visual field. In particular, the left and
right regions of the network have mostly learned vertically tuned receptive fields.

In contrast, the top and bottom parts have developed horizontally tuned receptive
fields (compare pink, blue, and orange regions). It is consistent with the expected
statistics of the sensory input. The left and right regions of the data sequence contain
many poles, trees, and buildings, which will generate vertically aligned event patterns
moving horizontally due to the car’s motion. In contrast, the top and bottom parts
contain bridges, highway panels, and road markings, generating mostly horizontally
aligned event patterns moving vertically. Furthermore, the shifts between receptive
fields of different synaptic delays reflect the average speed of objects passing through
that region of the sensor. We find more significant shifts in outer regions, and minor
shifts in inner regions (comparing the top and bottom part of the orange region)
correspond to large optic flow in the periphery and small optic flow in the center. It
reflects the dominant optic flow pattern expected from forward ego-motion.

3.4.3.3 Learning disparity tuned simple cells on actual inputs

In this experiment, we extend the learning of disparity-tuned simple cell receptive
fields to real event-based recordings. We used the drawn shape recording shown in
Sec. 3.3.1.1 with a network architecture similar to Table 3.2, but with stereoscopic
inputs. We generate disparities by duplicating the recording and generating disparities
in various places of the visual field. We separated the visual field into nine different
regions, each artificially displaced by a fixed disparity. Displacement ranges from -4
pixels to +4 pixels, from the top left to the bottom right of the visual field. That
way, since we are using a weight-sharing mechanism, the simple cells receive visual
inputs with multiple disparities at all times.

Fig. 3.34 presents the learned stereoscopic receptive fields of the simple cells. The
left and right fields are displayed on top of each other for easier comparison. We can
observe that cells learn to be tuned to a specific orientation and disparity. Fig. 3.35
shows the distribution of learned disparity-tuned receptive fields for that network.

81

Figure 3.34: Basis of stereo simple cell receptive fields learned on a stereo recording of
drawn shapes with added disparity. The figure displays the left and right receptive fields
on top of each other.

82 Chapter 3. Efficient visual encoding with a SNN

Figure 3.35: Histogram of learned disparities for the simple cells learned on a recording of
the drawn shapes with added disparity.

Inhibition
types

Lateral
inhibition

range

Nb
synapses

Nb
visual
regions

Weight
sharing

Nb
cells
per

region

Size
receptive

fields

Simple
cells static none 1 20 yes 3,3,49 10,10,2

Table 3.7: Network architectural parameters in a stereoscopic robotic mobile platform
scenario.

We estimated the disparity using a simple matching scheme based on computing
the MSE error between the left and right subfield. We shift the left subfield and
select them according to disparity for the shift that produces the minimal MSE error.
That way, each simple cell is attributed to a specific disparity. We then show the
distribution for all the simple cells. The distribution is somewhat coherent with the
disparity present in the event recording. The distribution is not uniform since there
can be visual regions with more events and, therefore, more chance that a simple
cell would tune to that disparity.

3.4.4 Estimating disparity from stereo driving scenes

In this section, we estimate the disparity in the visual scene by learning stereoscopic
receptive field and comparing the left and right sub-field. We want to demonstrate
that simple cells’ basis should reflect the environment’s disparity.

3.4.4.1 Depth estimation with a robotic mobile platform

We feed our network stereoscopic input from a pair of event-based cameras mounted
on a mobile robotic platform operating in an urban outdoor environment (see
Fig. 3.17). The disparity statistics vary greatly depending on the location within the

83

(a)

(b) (c)

Figure 3.36: (a) Example of an image (left camera) taken from one of the outdoor sequences.
The squares mark the different image regions. The colored squares in the upper left mark
regions for which disparities and receptive fields are shown in (b) and (c). (b) Histograms
of estimated disparities of the learned receptive fields (orange) and disparities estimated
from corresponding image frames with conventional computer vision techniques (blue) for
the three colored regions. (c) Learned left (top) and right (bottom) receptive subfields for
the 49 neuron layers in the three colored regions.

84 Chapter 3. Efficient visual encoding with a SNN

visual field. We use a network of multiple patches of neurons looking at specific visual
field regions. Neurons in different locations within a single region share their weights
(similar to convolutional neural networks). Specifically, we consider 20 regions, each
composed of an array of 3 by 3 simple cells, with 49 neuronal maps connected by
inhibitory synapses. It is recapped in Table 3.7. Figure 3.36a shows a typical image
from the training sequence. Squares mark the 20 regions.

Neurons are connected to the inputs of both the left and right sensors and receive
events at slightly shifted pixel locations depending on the distance to the stimuli.
The horizontal distance between the two event-based sensors induces disparities
between the two images, which induces differences between the learned left and right
receptive subfields of binocular neurons. We trained the network on a small repeated
sequence of about 45 seconds to control the number of different disparities exposed
to the neurons.

We find the preferred disparity of the neuron’s learned receptive field by determin-
ing the smallest mean squared error (MSE) between the left and shifted versions of
the right receptive subfields of the neuron. It is important to note that the maximum
possible disparity is limited by the size of the receptive fields. That method is precise,
up to a minimum of one pixel. The learned receptive fields are shown in Fig. 3.36c.
We selected three regions most exposed to objects of similar distances so that a
different disparity dominated input to each region. Only vertical receptive fields were
learned for this input. It is likely due to the scene structure, which is dominated by
vertical orientations. More generally, it is well-known that vertical and horizontal
orientations are abundant in man-made environments [123]. Figure 3.36b presents
a histogram (orange) of the computed disparities. We observe that most receptive
fields in a region learned one specific disparity, up to a variation of 1 or 2 pixels.
Interestingly, there is a systematic relation across the regions.

The learned disparity increases roughly linearly as we move from the left side to
the center of the visual field. It is consistent with the scene’s structure, where objects
in the center present a smaller relative disparity. We compare the learned preferred
disparities to disparities estimated via conventional computer vision techniques from
image frames (that the sensor also produces) (blue histogram in Fig. 3.36b). The
results are in reasonable agreement with the receptive fields learned by our spiking
network. The inherent variability and noise in event-based data could explain the
differences. Furthermore, the frame-based analysis considers information that might
not appear in the event stream since uniform motifs tend not to create any events.

85

Figure 3.37: Depth histogram ground truth obtained from lidar information from the
MVSEC dataset sequence for the first six visual regions (blue). Histogram of estimated
depths of the learned receptive fields for the first six visual regions (grey).

3.4.4.2 Depth estimation from The Multi Vehicle Stereo Event Camera
dataset

Similarly to the previous section, we tried replicating those results on a different
dataset. We trained our network on the MVSEC dataset, detailed in Sec. 3.3.1.3.
We focus on the sequence “outdoorday1data”, a stereo urban driving scene. RFs are
learned for nine different visual field regions (see Table 3.4). The learned preferred
disparities for the different regions reflect the distribution of object distances across
these regions roughly corresponding to the ground truth data of object distances.

Using the information provided in the dataset, we can estimate the network’s
ability to learn disparities. We have detailed information on the setup, including the
baseline length B between the two event-based cameras (10 cm), the intrinsic focal
length f in pixels (given by the calibration file, 223 pixels), and the depth of the
scene D. According to this equation:

D = Bf

d
(3.16)

we can relate the disparity d in pixels of the learned simple cells’ receptive fields to
the scene’s depth. Considering a 10 by 10 pixel receptive field, we estimated the
disparity ranging from -5 to 5 pixels, depending on the relative shift between the left
and right subfield. We use the absolute values of the disparity measures as we are
only interested in depth computation. We can therefore detect depth ranging from
0.1×223

5 = 4.46 meters up to theoretically infinite depth.

To have a comparison point, we used the ground truth depth maps present along
the event-based sequence of the dataset obtained from lidar information. We present

86 Chapter 3. Efficient visual encoding with a SNN

those values for the six first regions in Fig. 3.37 in blue. We observe a wide depth
range, ranging from a few meters up to 100 meters. We removed the three bottom
regions, which are much more limited in depth since they are directed towards the
road and the car (ranging from 2 to 5 meters). The central region (2nd row 2nd

column in the figure) presents the most significant depths since it is oriented towards
the center of the scene.

We plotted the computed depth histogram in grey using the learned receptive
fields. To compare to the ground truth provided in the dataset, we used bins of
unequal length using equation (3.16). We limited the last bin to 70 meters since it can
theoretically represent any depth from 22.33 meters up to infinity. Comparing the
two figures, we observe a reasonable visual correlation between the two distributions.
Once again, frame-based and event-based information is not easily compared as they
do not represent the same information. Moreover, our method to estimate receptive
field disparity can be imprecise when the receptive field present some noise. It can
explain the differences between the two histograms. Despite that, the set of simple
cell receptive fields forms a coherent basis spanning a wide range of disparity tuning.

Figure 3.38 shows the simple cells’ receptive fields learned on the driving sequence
for the nine different regions. We observe a coherent tuning to orientation considering
the learning scene, i.e., most oblique orientations in the corners and vertical and
horizontal orientations for the sides and center. The set of receptive fields forms
a solid basis that responds to multiple orientations and disparities consistent with
the scene structure, making it an efficient processing stage for solving more complex
dynamic tasks.

3.4.5 Learning complex cell receptive fields

We study in this section the response of complex cells to oriented stimuli and measure
their selectivity in orientation and direction space. Complex cells learn somewhat
different representations than simple cells. They cover larger zones of the visual
fields and pool information from multiple simple cells without differentiating between
polarities. It gives us receptive fields that are not sensitive to one specific motion
direction but instead to more significant spatial features such as corners or edges
while invariant to motion direction. We trained the network described by Table 3.8
on the shape recording Sec. 3.3.1.1. Fig. 3.39 presents a few examples of complex
cells receptive fields. On top, we selected the maximum synaptic connection and
displayed the simple cell receptive field associated with it. We also weighted the
intensity of the receptive field display by the weight itself. It gives us the complex
cell preference for a simple cell orientation filter. The bottom part presents the sum
of all simple cells with the same receptive fields in the image plane. We observe that
the top and bottom figures present very similar structures, often presenting one or

87

Figure 3.38: Simple cell receptive fields learned on nine different image regions of a driving
sequence from the MVSEC dataset. We present the left and right subfields (from the left
and right event-based cameras) on top of each other.

88 Chapter 3. Efficient visual encoding with a SNN

Figure 3.39: Examples of learned complex cell receptive fields. On top are the weighted
simple cell receptive fields with the strongest connection to the complex cell. The bottom
is the sum of all simple cells in the image plane with the same receptive fields.

Inhibition
types

Lateral
inhibition

range

Nb
synapses

Nb
visual
regions

Weight
sharing

Nb
cells
per

region

Size
rfs

(x, y) (x, y, z)
Simple
cells static none 1 1 yes 12,12,100 10,10,2

Complex
cells static none 1 1 no 3,3,16 4,4,100

Table 3.8: Network architectural parameters

two (for corners) preferred orientations with substantial weights on a narrow portion
of the complex cell receptive field.

3.4.5.1 Orientation and direction selectivity

Neuroscientists usually analyze the behaviors of these types of cells by observing
their responses to oriented stimuli. A standard test is to show differently oriented
gratings and measure a cell’s response. We followed the same procedure by creating
artificial event sequences as produced by gratings moving in 16 different directions
(from 0 to 360 degrees by steps of 22.5 degrees). We measured the responses of our
artificial neurons by counting the number of spikes produced during the presentation
of the stimuli and averaging the numbers over 5 trials. We used the normalized
vector length L to quantify orientation and direction tuning [124]:

Ldir =
∣∣∣∣∣
∑

k R(θk) exp(iθk)∑
k R(θk)

∣∣∣∣∣
Lori =

∣∣∣∣∣
∑

k R(θk) exp(2iθk)∑
k R(θk)

∣∣∣∣∣ ,

(3.17)

where R(θk) is the average number of spikes for stimulus direction θk. We summed
together the number of spikes for the two opposite motion directions. The normalized

89

(a) (b)

Figure 3.40: (a) Complex cell response in direction space, made from counting the cell’s
spikes for a rotating grating stimulus. The red line corresponds to the normalized vector
length and indicates the cell’s selectivity strength and direction. (b) Complex cell response
in orientation space, made by pooling over opposite directions.

vector length gives the sensitivity of a cell to a particular direction. A cell that reacts
very strongly to only one direction is said to be highly direction selective. Whereas
a cell reacting strongly to many different directions is not selective. A particular
case emerges with cells being very selective in orientation space but not in direction
space. It is due to cells responding strongly to opposing motion directions.

We visualize a cell’s selectivity by plotting a circular histogram of its responses
to different oriented stimuli. Figure 3.40 shows the response of an example complex
cell in orientation and direction space. The red lines correspond to the normalized
vector length. We observe that this cell is orientation selective in Fig. 3.40b but
not direction selective in Fig. 3.40a. It exhibits two roughly symmetric lobes in
direction space, which cause a low selectivity value. The cell will strongly respond
to stimuli oriented at around 135° and 315° but not other orientations. Looking at
the complete set of the 144 learned complex cells in direction space, we observe that
most complex cells exhibit similar responses to the ones shown here, except for a few
that are also direction-selective (uni-lobe).

We present a more extensive set of complex cell selectivity responses in Fig. 3.41.
It shows the direction selectivity of 36 of the 144 trained complex cells. Most complex
cells are sensitive to opposite motion directions (dual lobe). Only 2 out of the 36
cells presented have a unilateral response in direction space (4th row, 3rd column and
6th row, 5th column). The sizes and shapes of the lobes vary slightly. The population
covers a wide range of orientations/directions, enabling it to represent various visual
inputs.

We compute the normalized vector length for the whole batch of trained complex
cells to quantify the results. The result is visualized in Fig. 3.42. It shows the overall
orientation and direction selectivity. On average, cells are highly orientation-selective
but not direction selective. Figure 3.42b represents the distribution of preferred
orientations of the complex cells. It exhibits a preference for oblique orientation. It is

90 Chapter 3. Efficient visual encoding with a SNN

Figure 3.41: 36 first (out of 144) complex cell response in direction space. Results are
obtained by measuring spike activity for gratings of multiple orientations.

91

(a) (b)

Figure 3.42: (a) Normalized vector length distribution of the network complex cells
in direction and orientation space. (b) Histogram of normalized vector orientations in
orientation space (0° corresponds to a horizontal orientation).

consistent with a slight overall preference for oblique orientations among simple cells
seen in Fig. 3.26a. Overall, the complex cells have learned to respond to a wide range
of orientations/motion directions. It is also coherent with biological complex cells
that are orientation-selective but not direction selective, as mentioned in Sec. 3.2.4.3.

3.4.5.2 Analysis of additional STDP windows

We present the results obtained with the other STDP windows in Sec. 3.2.4.3. These
windows lead to different degrees of orientation selectivity, as shown in Fig. 3.43. The
simple step window used in our main results gives the highest amount of orientation
selectivity.

Conclusion

We have presented a spiking neural network that learns orientation, motion, and
disparity representations in a fully unsupervised fashion via STDP from the input
of event-based cameras. Motion tuning arises from STDP with multiple synaptic
delays combined with homeostatic mechanisms and a lateral inhibition scheme to
diversify tuning properties.

92 Chapter 3. Efficient visual encoding with a SNN

Figure 3.43: Orientation selectivity for 5 different complex cell STDP windows.

The learned representation shares many similarities to that observed in the brain,
including simple and complex cells found in mammals’ primary visual cortex. Further-
more, as observed in biology, the learned representation adapts to the statistics of the
visual input. However, even though the mechanisms used are all biologically inspired,
they are not intended as accurate models of biological reality. The biggest ideal-
izations are the instantaneous lateral inhibition decorrelating responses of neurons
with overlapping receptive fields and the normalization of synaptic inputs. However,
the latter could be biologically plausible if the different groups of synapses were
considered to reside on separate dendritic branches [113]. It is plausible for synapse
groups with short vs. long delays, which correspond to inputs to more proximal vs.
more distal dendritic branches, respectively. Similarly, On and OFF inputs could
also be sorted into different dendritic branches or regions during development based
on their correlations. Nevertheless, our model, while not fully bio-plausible, gives
exciting insights into the processes of cells in the brain. It is one of the only complete
formulations of a complex cell model for event-based inputs.

Compared to similar work, our network is very versatile. It can learn many
different types of information, such as orientation, motion, and disparity, with
minimal changes. It makes it practical for solving very different visual applications,
such as tracking, optical flow estimation, or depth perception. We demonstrated that
our coding layer presents sparse but informative representations of the environment.
It can capture different visual properties of the scene, which makes our SNN well
adapted as the first stage of a more complete AEC framework. We showed that the
network significantly reduces the amount of input by compressing data without losing
too much information. Simple and complex cell patterns are adequate representations
of the input properties. They can be used as an efficient encoding layer for a second
stage, such as a classifier or a reinforcement learner.

Chapter 4
Reinforcement Learning with

intrinsic reward

Introduction . 94
4.1 Related work . 95

4.1.1 Spiking reinforcement learning 96
4.1.2 Intrinsic reward . 97

4.2 A fully spiking reinforcement learning framework 99
4.2.1 Temporal difference error 99
4.2.2 Critic neurons . 100
4.2.3 Actor neurons . 102
4.2.4 Three-factor learning rule 102
4.2.5 Exploration and exploitation strategy 103

4.3 Intrinsic reward generation 105
4.3.1 Top-down inhibition . 106
4.3.2 Lateral inhibition . 107
4.3.3 Intrinsic reward from activity 108

4.4 Application to tracking and visual field stabilization . . 109
4.4.1 Simulation of visual environment 109
4.4.2 Tracking task . 109
4.4.3 Stabilization task . 117

4.5 Intrinsic reward through inhibition 121
4.5.1 Spatial inhibition . 121
4.5.2 Inhibition on oriented patterns 123
4.5.3 Tracking task with intrinsic reward 124
4.5.4 Stabilization task with intrinsic reward 125

Conclusion . 126

94 Chapter 4. Reinforcement Learning with intrinsic reward

Introduction

Reinforcement learning is getting increasingly popular in the Artificial Intelligence
(AI) field. It has proven to be a compelling framework able to solve challenging tasks
with impressive capabilities, often much better than a human could do. Algorithms
such as Alphago or AlphaZero have revolutionized how chess and go are played, with
the top players regularly training based on AIs suggestions. Their most significant
limit, however, is how specialized they are. Reinforcement learning agents are
trained on specific tasks and cannot transfer that knowledge to other problems.
Reinforcement learning frameworks are beneficial when solving closed-loop motor
control problems such as vision. They offer effective training procedures based on
simple reward objectives without the need for extensive training data.

When it comes to biological systems, things get more complicated. There is clear
evidence that some form of reinforcement behaviors exist in nature. It is possible to
train animals to solve complex tasks, such as getting out of a maze, using some form
of external reward, often by food distributed when the animal performed well [125].
It proves that biological systems work by interpreting external feedback and changing
their neural architecture to maximize some reward. After enough repetition, visual
information will trigger specific motor responses that lead to successfully solving the
task.

For this behavior to appear, the animal must associate a positive reward with the
actions that led to it. We know that some neuromodulators have an essential role
in that case. Neuromodulators can influence synaptic plasticity, triggering changes
in neuronal connections and therefore affecting the associated behavior. Dopamine
levels rise sharply when the animal receives food, for instance. Even more interesting,
dopamine can appear before the reward is given, as the animal expects to receive
the reward after successfully performing the task.

In the AEC framework, the agent part is based on traditional reinforcement
learning theory. The agent evolves in an environment, receiving information from it
and acting on it via motor commands. In the case of vision, the main components
are the visual perception of what is around the agent, and the main interactions
are done by moving the eyes. From time to time, the agent receives a reward signal
indicating how well it performs. The visual stream of information is fed to the
efficient coding part, which role is to improve the data encoding to simplify the job
of the reinforcement learner. We discussed that in detail in Chapter 3.

We are interested in how we can take inspiration from biological systems and
design a reinforcement learning algorithm to process asynchronous visual data from
event-based vision sensors. Since event streams are continuous flows of information,

95

traditional reinforcement learning methods cannot be used directly. We need to
formulate algorithms adapted to processing neuronal spikes. The reward signal can
act as a neuromodulator, triggering changes in the synaptic weights when combined
with the STDP unsupervised learning rule.

However, the AEC framework does not require external feedback to optimize its
behavior. In the formulation, the reward is intrinsically generated from the efficient
coding layer. Basically, the better the encoding, the higher the reward will be. It
is also true in biological systems. Vision is a fast and reactive process that cannot
rely on external supervision alone. Efficient eye behaviors emerge from how well the
brain can process visual data. Inefficient eye movements are quickly eliminated as
they do not produce a suitable encoding.

To replicate this process, we derive the reward signal from the efficient coding
layer activity. We introduce plastic inhibition connections in the efficient layer to act
on cell activity. After learning, different visual inputs will trigger different amounts
of activation, which can be used as a baseline to generate an intrinsic reward.

We propose a modified TD reinforcement learning algorithm based on an actor-
critic formulation. The framework uses a three-factor learning rule called R-STDP to
learn an effective mapping between the efficient coding layer and population of actor
and critic neurons. We first describe the network using the environment’s external
reward. We demonstrate that the network can learn to solve complex visual tasks
such as tracking or stabilization problems. We propose a novel method to generate
an intrinsic reward from the activity of the simple cells based on the type of visual
inputs. Inhibition connections are introduced laterally between the simple cells and
recurrently from the complex cell to the simple cells. We show how to tune those
connections to specific visual inputs using an STDP learning rule. We demonstrate
that the average cell activity will be tightly correlated to the type of stimuli. We
then derive an intrinsic reward signal from that activity and learn to solve those
visual tasks again without needing external supervision.

4.1 Related work

Although SNNs are getting more and more popular, their use in reinforcement
learning is still pretty rare. Bing et al. [126] propose a survey of work involving
robotics control based on SNN.

Many applications involving motor control and SNNs are made with pre-wired
circuits on neuromorphic chips or GPUs.

96 Chapter 4. Reinforcement Learning with intrinsic reward

Jiang et al. [127] demonstrated a vision-based tracking for a snake robot with an
event-based sensor. They combine an SNN for pipe-like object detection based on the
Hough transform and integration of the snake body position. They demonstrate their
results in simulation on a GPU. Linares-Barranco et al. [128] modeled an approach
detection mechanism for obstacle avoidance. They mimick the approaching detection
functionality of the retinal ganglion cells. They implement the algorithm on a FPGA
connected to an event-based camera.

Figure 4.1: Icub robot performing
vergence by Vasco et al. [129]

Vasco et al. [129] use an ICub robot, as shown
in Fig. 4.1, to perform vergence control using
Gabor filters with a phase shift model. Their
work is inspired by the role of simple cells in
disparity detection. However, they use predefined
filters and do not learn any control behaviors.

While those work provide a complete frame-
work and implementation of closed loop motor
control, no learning is involved. It limits their
applicability and biological relevance.

Learning effective policies using traditional reinforcement learning algorithm is
difficult with an SNN due to their asynchronous and spiking nature. We can note
some hybrid strategies, using traditional reinforcement learning frameworks to train
the network, and then convert the weights to use with a SNN for fast and energy
efficient inference, such as in [130].

Others such as [131] combine fast and energy efficient SNN for inference while
learning with traditional deep reinforcement learning. However, we are interested in
fully spiking strategies capable of learning in the spiking domain.

4.1.1 Spiking reinforcement learning

The brain relies heavily on external or intrinsic rewards to learn efficient behaviors.
For instance, dopamine, a neuromodulator, has been studied extensively and is
often associated with beneficial actions. The Reward Modulated STDP (R-STDP)
learning rule tries to mimic that process by modulating the classic STDP rule with
a third-factor reward.

Fremaux et al. and Florian et al. [12], [132] describe in detail this learning rule and
its implementation. The reward can be introduced directly in the learning rule, or be
used via eligibility traces [133] to delay the transmission of the reward and therefore
associate it with past actions. R-STDP has been used in [134], [135] to tackle an
MNIST classification problem, but lacks a real reinforcement learning framework in
the traditional sense of having an agent perform actions in a controlled environment.

97

Yuan et al. [136] are combining stochastic and deterministic plasticity learning rules to
form neuronal agents. They designed a unique Stochastic-Deterministic Coordinated
(SDC) spiking reinforcement learning model capable of solving simple problems such
as a 19-state random walk.

Most models of spiking reinforcement learning techniques use a TD learning
actor-critic framework based on the R-STDP learning rule. Potjans et al. [137] was
one of the first to propose such a reinforcement learning framework able to solve a
simple grid-world task. Jitsev et al. [138] propose a model that mimics the basal
ganglia functions that learn from both positive and negative rewards. Similarly, they
demonstrate their results on a solving a grid-world environment. Nichols et al. [139]
use a similar framework implemented on a more ambitious robotic agent. The robot
learns to solve a wall-following task using laser and sonar proximity sensors.

Figure 4.2: Actor-Critic spiking TD learning
framework by Fremeaux et al. [140]

Similarly, Fremaux et al. [78], [140]
have extended a traditional discrete Tem-
poral Difference (TD) learning frame-
work into a continuous spiking one. They
use it with a fully spiking actor-critic
based agent to solve simple maze envi-
ronments, as presented in Fig. 4.2. Their
work shows promising learning capabil-
ities. However, they use fixed place cells
to describe the environment and do not
learn any efficient representations.

Weidel et al. [141] propose an actor-critic model with both a recurrent repre-
sentation layer and a reward-modulated output layer. They learn the feed-forward
connection to the representation layer using an unsupervised clustering method, and
the output connections to the critic and actor population with a three-factor learning
rule. They validate their model on the classic mountain car environment.

Recently, Anwar et al. [142] have created an impressive network for playing a
modified pong game, shown in Fig. 4.3. As far as we know, they are the only ones
solving 2D visual environments using a spiking reinforcement learning framework.
They separated their network into three main regions, the visual cortex that trans-
forms the frames into 8 motion directions and 1 spatial location, the association
cortex that learns visual representations, and the motor cortex that outputs motor
commands. The biggest limitation resides in the discretization in intervals of 20ms,
and the rate-base coding of the frames to spike trains.

4.1.2 Intrinsic reward

98 Chapter 4. Reinforcement Learning with intrinsic reward

One of the biggest limitations of reinforcement learning frameworks is the dependence
on external rewards. In certain cases, this can be biologically plausible, such as
animal experiments with humans delivering food as a reward when the action has
been performed successfully. But in the case of learning to associate visual inputs
with motor actions, this is not always clear how the brain creates such associations.
There is good evidence that those cannot be learned solely from external triggers.

Figure 4.3: Actor-Critic spiking reinforcement
learning for playing Pong by Anwar et al. [142]

Jaegle et al. [143] showed that pri-
mates rely heavily on novelty and cu-
riosity visual signals to generate inter-
est and develop specific motor behav-
iors. Though this is more geared toward
higher level behaviors such as food seek-
ing for instance. It is believed that the
human visual system is capable of gen-
erating intrinsic rewards based on how
efficiently visual stimuli are encoded dur-
ing eye gaze.

The AEC framework is based on the
efficient coding hypothesis. It stipulates
that behaviors leading to more efficient
coding of the information should be en-
couraged. In this framework, the reward is therefore generated directly from the
efficient coding layer. Figure 4.4 presents a typical AEC architecture for vergence
control. Work such as [6]–[8], [144] present a vergence control reinforcement learning
framework. It is based on an intrinsic reward computed as the difference between
visual patches from the left and right eye. However, their work uses traditional
computer vision based on frame-based cameras.

Figure 4.4: AEC vision architecture for ver-
gence control by Lelais et al. [9]

More bio-inspired approaches can
be found in [9]–[11]. They learn ac-
tive binocular vision model based on
sparse coding neurons on natural images.
They compare scene statistics with their
learned neurons receptive fields.

Similarly, Gibaldi et al. [145], [146]
were able to learn vergence control of the
eyes using an internal representation of
the visual input, as shown in Fig. 4.5.

They use disparity-tuned neurons close to the complex cells found in the brain to
estimate object depth and design reinforcement learning strategies that use those
cells to verge on the target object. Good gaze strategies are associated with efficient

99

visual encoding and are therefore reinforced over time. This is especially true for eye
vergence, which brings both the left and right visual fields to produce very similar
stimuli.

Figure 4.5: vergence control model from
disparity-tuned neurons by Gibaldi et
al. [145]

However, those methods do not work in
the spiking domain and are not applied to
event-based visual inputs. Furthermore, they
do not learn the efficient coding part, using
predefined filters found in the primate vi-
sual system. In a different domain, Chorley
et al. [147] did try to predict dopamine sig-
nals from a competitive excitation/inhibition
model, but do not link that to learning con-
crete visual strategies.

As far as we know, we are the first to
propose a fully spiking reinforcement learning
framework capable of solving control task
while intrinsically generating the reward from
its internal representation layers.

4.2 A fully spiking
reinforcement learning framework

We gave some background on reinforcement learning and the discrete TD frame-
work in Chapter 2. In this section, we present our reinforcement learning framework
based on a TD learning actor-critic model working in continuous time with spiking
inputs. Figure 4.6 presents our proposed AEC architecture.

4.2.1 Temporal difference error

Our reinforcement learning agent is based on a TD learning actor-critic framework
formulated by [140]. They propose three different learning rules, namely TD-LTP,
TD-STDP or r-max for the critic and actor population. We use the TD-STDP
formulation since it is the one closest to our learning rule used in the efficient coding
layer. We will note the differences in their framework as we explain it in more detail.

Contrary to the traditional discrete formulation, we use a fully spiking continuous
reinforcement learning formulation. In a fully spiking environment, there are no real
discrete steps of time t, or if there are (due to the limitation in temporal resolution

100 Chapter 4. Reinforcement Learning with intrinsic reward

Figure 4.6: Proposed spiking AEC architecture.

of event-based cameras), they are too small to be effectively used. Therefore, we
need to define a continuous TD error as follows:

δt = V̇ (st)−
1
τr

V (st) + r(st, at) (4.1)

where V̇ (st) is the derivative over time of the value function, and τr is the reward
discount time constant that plays a similar role to the reward discount factor.

The TD error gives us an indication of how the network is performing. If the
value function perfectly evaluates the expected result of a state action pair, the TD
error should be equal to zero. Otherwise, it indicates if we overestimated the state
action pair (negative δt) or underestimated it (positive δt).

4.2.2 Critic neurons

The value function estimation is essential for the agent to perform well. In SNNs,
we cannot evaluate functions as easily as in traditional neural networks. Inputs
are arriving continuously which forces us to look at the evolution of activity in a
population of neurons instead.

The first layers of the SNN will serve as a state representation, i.e. their activation
patterns represent the state in which the agent is. By connecting those cells to a
population of other neurons, we can learn to associate specific neural activity with a
state value function.

If we take one spiking neuron as a value estimator, we can define the value
function as:

V (st) = νρ(t) + V0 (4.2)

with ρt the firing rate of the neuron, V0 the baseline for when the neuron has no
activity, and ν a scaling factor.

101

With this equation, there is a linear relationship between neuron firing rate and
value estimation. Since the firing rate of a neuron is always positive, we can obtain
a negative value estimation by carefully selecting V0 to be negative. This neuron will
be called a critic neuron as it performs a similar task as the critic in the discrete
formulation.

To make the system more robust, we use a whole population of such neurons.
Therefore the equation (4.2) can be written as:

V (st) = ν

Ncritic

Ncritic∑
i=1

ρi(t) + V0 (4.3)

We usually select Ncritic = 100.

The firing rate of neurons evolves continuously over time. A simple option to
evaluate it is to use a kernel function. We use an exponentially decaying kernel
defined by:

κ(t) = e
−t
τk − e

−t
νk

τk − νk

(4.4)

with τk = 100 ms and νk = 5 ms.

Contrary to Fremeaux et al. [140] which were using the derivative of the critic
kernel, we simply use a second-order numerical differentiation on the value to get an
approximation of the value derivative V̇ (st). This is because, in our framework, we
had issues with instability in the derivative linked to the input natural variability of
events rates. It can be written as follow

V̇ (st) = η actor

N

t∑
i=N−t

V (si+1)− V (si−1)
2 (4.5)

with η actor a scaling factor and N the number of value points we take into account
(since the simulation has a minimal time step of 1ms).

One limitation of the framework is that the value function estimation is directly
proportional to the critic neuron spike rate. Neuronal spike rates are dependent on
two major factors, the synaptic weight value of inputs, but also the amount of input
itself. When submitted to many events, the network’s simple and complex cells will
inevitably spike more than when fewer events are present. This in turn will drive the
critic neurons more, which will impact the value estimation. This is an important
difference when compared to the work of Fremeaux et al. [140]. In their model, they
ensure that the amount of activity in the population of state representation spiking
neurons stays constant over time. But with event-based visual inputs, the amount of
activity can vary a lot. We designed a few activity regulation mechanisms in our
cells to limit those variations, but they were not sufficient when facing big variations
in input rates.

102 Chapter 4. Reinforcement Learning with intrinsic reward

We would want the value estimation to be dependent only on the values of the
weights rather than the event rate. So a simple solution we found is to normalize the
value function by the event rate itself. Cell rates in the network are highly correlated
to the input rate, which allows us to normalize the event rate without introducing
too much variation in the value function estimation.

4.2.3 Actor neurons

In a SNN, there are no regular time steps at which actions can be chosen from
the output of a readout layer. But similarly to the critic neurons, we can assign
spiking neurons to certain actions. In biology, neurons can trigger muscles they are
connected to elicit fine-tuned movements. Fremeaux et al. [140] were using only one
actor neuron per action, but to increase stability in the action selection, we assign
multiple actor neurons to specific motor actions in our framework. We usually use
50 neurons per action.

As with the critic neurons, actor neurons are connected to the representation
layers so that they can have access to the agent states’ information. Then, we select
actions at regular intervals by looking at the activity of those actor neurons. This
process is somewhat of a simplification that is not very biologically plausible. We
could envision selecting action only when a certain amount of activity has been
registered in the actor neurons, but that would introduce a lot of variability in the
control loop. The action selected is the one from the actor population that has the
strongest activity. This is a simple WTA mechanism that can be found regularly
in biological systems. For simplicity, we do not use a sliding window for computing
the firing rate of actor neurons, but instead, simply count the number of spikes that
happened since the last chosen action.

4.2.4 Three-factor learning rule

Learning associations between the representation layers and the critic and actor
neurons is done using the R-STDP learning rule detailed in Sec. 2.3.8. In our actor-
critic TD framework, the third factor term corresponds to the temporal difference
error δt. Therefore, the weight update can be written as:

∆wi(t) = ηwei(t)δt (4.6)

Actions are selected at regular intervals predefined beforehand. We update both
the critic and actor neurons weights every time an action is selected, using the last
few TD errors before the last selected action. Importantly, we only update the actor
neurons from which the previous action was selected since the TD error estimation
arises from that specific action.

103

If the action contributed to increasing the TD error, then it was a positive one
and we encourage the actor neurons association made with the representation layer.
In the opposite case, a negative TD error will decrease the weights accordingly.

4.2.5 Exploration and exploitation strategy

Learning both the value and policy at the same time can be difficult. It is a classic
problem in reinforcement learning. Biological systems face similar difficulties. A good
policy can only be learned after an effective value approximation has been computed.
Without any exploration, we risk getting stuck into invalid strategies or local minima
if the policy converges before the value had time to properly explore the state space.
To learn an effective policy, it is essential to make sure that a majority of states have
been observed and associated with a correct value. To do that, we force the agent
to first explore its environment, before slowly changing to an exploitation strategy.
Managing exploration and exploitation is a classic problem in reinforcement learning.
To allow the network to explore all the states at the beginning, the network selects
random actions with a certain probability. As the learning progresses, we decrease
that probability λ EXP, which will force the agent to enter an exploitation phase. In
that second phase, the agent has more time to fine-tune its policy to get closer to an
optimal one.

Decay intervals We handle the change from exploration to exploitation using
a simple decay mechanism. Every ∆decay time interval, we decrease some of the
learning parameters, including the exploration factor λ EXP, action rate and critic
and actor learning rate η following:

∆η =
(

1− ∆ decayη decay

100

)
(4.7)

with η decay the decay rate.

At the beginning of the learning, the value function has not yet learned properly.
For that reason, it is preferable to reduce the actor learning rate slower than the
critic learning rate, in order to give time to the critic neurons to learn a good value
estimation first. We therefore use a smaller η decay for the actor neurons.

Table 4.1 details all the cell parameters used in our framework. Table 4.2 presents
the reinforcement learning parameters. We chose a discount time constant of one so
that the value function update only depends on the previous state. We made this
choice since our visual task do not require to take actions based on expected future
rewards rather than the present one.

Figure 4.7 resumes our reinforcement algorithm along with some of the main
equations.

104 Chapter 4. Reinforcement Learning with intrinsic reward

Parameter Unit Simple cells Complex cells Critic cells Actor cells
Vthresh mV 30 3 2 2
Vreset mV -20 -20 -20 -20
Vthresh(min) mV 4
η LTP mV 0.00077 0.2 0.077 0.077
η LTD mV 0.00021 0.2 0.021 0.021
η INH mV 15 15
η TA mV 1
η RP mV 1 1
η SRA mV 0.6
η ILTP mV 0.77
η ILTD mV 0.21
τm ms 18 20
τ LTP ms 7 20 7 7
τ LTD ms 14 20 14 14
τ RP ms 20 30
τ SRA ms 100
S∗ sp.s−1 0.75
λ 4 10 4 4
λlateral 100
λtopdown 300
η mV 0.2 0.1
ηdecay 5 1.66
νk ms 5
τk ms 100
τe ms 250 250

Table 4.1: Parameters configuration for the network’s cells in the reinforcement learning
tasks.

Action
rate

Action
rate

(min)
λ EXP ∆ decay V0 τr η actor ν N

Unit ms ms % ms mV ms mV
Value 250 10 75 2000 -20 1 80 1000 100

Table 4.2: Reinforcement learning framework parameters.

105

Figure 4.7: Flowchart of our reinforcement learning algorithm.

4.3 Intrinsic reward generation

Biological systems must be able to extract and refine reward signals from their
environment to judge effectively the actions they undertake. In the case of visual
stimuli, biological vision systems have to extract visual feedback linked to the
most recent motor actions. This is not an easy task since it requires a profound
understanding of the environment.

In the case of simple eye movements like tracking or vergence, the feedback
does not require this high-level understanding. The changes in scene statistics are
sufficient to produce an effective reward signal. For instance, verging two eyes on an
object will highly correlate the left and right visual signals, which indicates that the
action has been performed successfully.

Previous AEC models have used generative models for learning the sensory
representation. This allows estimating the quality of the encoding via a reconstruction
error. In contrast, our SNN is not generative: it does not try to explicitly reconstruct
the input. Hence we cannot use a reconstruction error as the reward signal and need
an alternative.

To address this problem, we designed an inhibition scheme that associates the
quality of encoding with the relative amount of activity in the network. This is

106 Chapter 4. Reinforcement Learning with intrinsic reward

achieved by learning lateral and recurrent inhibitory connections between the simple
and complex cells. The rationale is that visual stimuli that are seen more often will
trigger more inhibition. Therefore, the activity in the network will be significantly
reduced when those stimuli are shown. We can then extract a reward that will
be proportional to the activity of the encoding layers. High activity means a poor
encoding of the visual stimuli, which is indicative of sub-optimal eye movements. On
the contrary, low activity means good encoding and effective eye movements.

We use two different types of inhibitory connections, top-down connections from
the complex cells to the simple cells, and lateral connections between the simple
cells.

4.3.1 Top-down inhibition

Figure 4.8: Top down inhibition

The first inhibition scheme consists
in connecting the complex cells back
to the simple cells using plastic in-
hibitory connections. There are as
many inhibitory connections as ex-
citatory ones. When a complex cell
spikes, it sends an inhibitory signal
back to all the simple cells it is con-
nected to, of which the strength is
determined by the weight of the in-
hibitory synapse. The signal acts
on the neurons by subtracting the
value of the weight from the current
membrane potential value. There is
no delay in those connections, so the
effects are immediate. To avoid ex-
treme activity suppression, we cap
the membrane potential of neurons to a minimum value, fixed at -80 mV. Biological
neurons show similar capping mechanisms when submitted to intense inhibitory
signals.

The learning is done similarly to the excitatory synapses. We use the STDP rule
applied to the inhibitory connections. Simple cells receive the inhibitory spikes from
the complex cells they are connected to and store them. Once a simple cell spikes, it
updates the inhibitory connections associated weights using a similar STDP window
as the one used for excitatory connections. We use the same value for τ LTP and τ LTD,
but different learning rates, which are written as η ILTP and η ILTD. There is also a
specific normalization factor for the inhibitory connections.

107

The primary effect of this inhibition mechanism is that cells that fire together on
a specific visual pattern will simultaneously inhibit each other, and therefore reduce
their cumulative spike rate. We illustrate this effect in Fig. 4.8. Take a moving edge,
cells that are locally close together will be submitted to this pattern at the same
time. This in turn drives their potential up and triggers the complex cells they are
associated with. Those complex cells transmit immediate inhibition signals to the
lower level of simple cells. Among those, the ones that continue spiking due to the
moving edge simultaneously reinforce the inhibitory connection with the complex
cells.

After presenting the same pattern enough times, the inhibitory connections
become strong enough that they prevent the set of simple cells from spiking entirely,
which reduces the average activity rate of the network.

4.3.2 Lateral inhibition

Figure 4.9: Lateral inhibition

The lateral inhibition scheme is sim-
ilar to the top-down one, except it
only acts from simple cells to other
simple cells. The connections are
designed so that one simple cell in-
hibits neighboring simple cells, con-
trary to static inhibition, which only
works on cells of different neuronal
maps sharing the same visual fields.
Otherwise, we use the same general
properties and learning rules as the
top-down scheme, while simply re-
ducing the learning rate and nor-
malization factor since there will be
many more spikes from simple cells
than complex cells.

Intuitively, we can interpret this lateral inhibition mechanism as some form of
predictive learning. When presented with a moving stimulus, like a moving edge,
adjacent simple cells will activate very closely in time, in a very specific pattern.
The moving edge first activates a set of simple cells, which in turn sends inhibitory
signals to adjacent simple cells. Then, the edge moves and activates locally close
simple cells, some of which just received the inhibitory signal from the previous
simple cells. The inhibitory connections between those two are therefore reinforced.
This phenomenon is illustrated in Fig. 4.9.

108 Chapter 4. Reinforcement Learning with intrinsic reward

Repeat these visual patterns enough times, and at some point, those inhibitory
connections will become very strong. Then, the simple cells become a predictor of
the visual pattern. For instance, the moving edge, once it triggers the first set of
simple cells, will strongly inhibit the simple cells associated with the next location
of the moving edge. The pattern used to activate the simple cells, but due to the
now strong inhibition, they remain silent. The total activity of the network for this
visual pattern drops significantly.

If you show a different pattern, like a moving edge going in another direction,
the network activity will be unchanged, since the first set of simple cells inhibits
other simple cells that would not be triggered by this specific visual pattern. We
effectively designed a prediction mechanism that can be used to learn to differentiate
visual patterns and extract a useful reward from them.

4.3.3 Intrinsic reward from activity

The reward itself is directly generated from the simple cells’ activity. To be precise,
we compute a rolling average of the simple cell population activity every 1 ms as
follows:

St = αSt + (1− α)St−1 (4.8)

with St the activity rolling average, St the averaged sum of all simple cell spikes in
that 1ms window, and α a discount factor that we set to 0.75.

Then, we compute the reward as:

R = γ
(β − St)

Et

(4.9)

with R the intrinsic reward and Et the average event rate, which is computed similarly
to the simple cell event rate. γ and β are simply scaling factors. We chose γ = 5
and β = 90 to obtain a reward close to the previously used extrinsic reward.

We divide the simple cell activity by the event rate to maintain a stable reward
even when submitted to variable event rates in the scene. This will be useful in
some of the reinforcement learning task since where events are generated by both
camera and object movements. In some case, the relative motion of the object in the
visual field will depend on the motor action compared to the object’s direction. The
speed of the camera is either added or subtracted from the object’s speed. Since the
number of events is heavily correlated to the speed of objects, each case will generate
a different amount of events. This in turn will impact the spike rate of simple cells.
By dividing by the event rate, we rectify this difference. We showed in Sec. 3.3.5
that the spike rate of cells is strongly correlated to the event rate. We can therefore
safely normalize the simple cell activity by the event rate without introducing too
much instability.

109

4.4 Application to tracking and visual field
stabilization

We present in this section the validation of our framework on two different visual
tasks. We tested the model with both an extrinsic and intrinsic reward and then
compare the results.

4.4.1 Simulation of visual environment

In this thesis, we focus our attention on agents learning to solve a task in a simulated
environment. We use CoppeliaSim to create diverse scenarios upon which the agent
evolves and acts. It is a robotic simulator coupled with an efficient physics engine.
In our case, we used Bullet 2.78 as the physics engine. We describe in more detail
the simulation framework in the appendix (see Sec. C.2).

By default, CoppeliaSim is not capable of generating event-based camera output.
to solve that issue, we capture frames at a very high rate using a small simulation
time step of 1ms. This gives us a frame rate of 1000 images per second, which we then
convert to event streams using an event-based camera emulator called PIX2NVS [148].
Even though this is not as precise as real event-based data, the emulator and frame
rates are enough to produce accurate models of event streams. Since images are
created every 1ms, we also jitter the events in time to more accurately simulate the
output of a real event camera and avoid a cluster of events around frame timestamp
generation.

We created 2 different environments to test our framework, each having specific
properties and challenges.

4.4.2 Tracking task

The tracking task consists of one motorized camera with one axis of rotation. Fig-
ure 4.10 presents a screenshot of the environment. A textured ball is moving in a
circle around the camera whose radius is 1.3 meters from the optical center of the
camera. It is either moving clockwise or counter-clockwise. The goal of the task is
simple, to be able to track the ball by keeping it in the center of the visual field. The
visual field

For this task, we designed the following network architecture. The simple cell
layer is composed of a thin strip of 30 neurons in width and 6 neurons in height. This
gives a practical visual field of 300× 60 pixels. We learn a common representation

110 Chapter 4. Reinforcement Learning with intrinsic reward

Figure 4.10: tracking environment, composed of one motorized agent (gray boxes) and one
ball (with white and red textured stripes). The goal is to bring the ball to the center of
the visual field, as seen in the top right of the image. Simulation images are sampled at
high frame rates and then transformed into event streams, as seen under the visual field
representation. The agent can either turn right or left in the horizontal plane.

Inhibition
types

Lateral
inhibition

range

Nb
synapses

Nb
visual
regions

Weight
sharing

Nb
cells
per

region

Size
receptive

fields

Simple
cells static none 1 1 yes 30,6,64 10,10,2

Complex
cells static none 1 1 no 10,2,16 3,3,64

Table 4.3: Network architectural parameters for the tracking task.

111

basis of 64 receptive fields. This corresponds to a total of 30× 6× 64 = 11520 simple
cells. Then, since each complex cell is connected to a 3 by 3 simple cell visual field,
we cover the entire simple cell layer with 10 by 2 complex cells, plus there is 16
complex cell for each separate visual field. This gives a total of 10× 2× 16 = 320
complex cells. This is detailed in Table 4.3.

4.4.2.1 Learning with two actions

First of all, we are interested in seeing how the value and policy are developing over
time. We focus on the simplest scenario, with only two possible actions, moving
the camera to the right or the left. We used 100 critic neurons as well as 100 actor
neurons, 50 for each action. Those cells are connected to both the simple and complex
cell layers. In a first time, the reward is externally generated from the environment.
When the ball is in the center, the reward is maximum and minimum when on the
edges of the visual field.

For this task, we first learned the efficient coding layer weights and fixed them to
focus on the reinforcement learning framework. We learned a diverse basis similar
to the one presented in Sec. 3.4.1.1. We start in full exploration mode, where every
action is selected randomly. During that phase, only the critic neurons’ weights are
updated. Every 2 seconds of simulation time, we decrease both the exploration rate,
critic and actor learning rate as well as the time between two action selections. We
described the decay process in Sec. 4.2.5. As we continue decreasing the exploration
rate, the actions selected are less and less random and the network focuses on
fine-tuning its policy.

We recorded the weights of the network every 2 seconds in the simulation. Then,
we observe the evolution of the network’s performance in a simple validation task.
The tracking environment consists in moving the ball back and forth once from the
left to the right part of the visual field. For each location, we accumulate the spikes
from both the critic and actor neurons to get a sense of the estimated value and
policy. We submit the network to this validation for every recorded weight during
training. We observe the variation of value and policy as the network learns the task
in Fig. 4.11.

Fig. 4.11a shows the evolution for one representative run of the value function
compared to the obtained reward over the course of the whole training. Evolution
over time is represented by a shift in color from blue to red. In the beginning, the
value function is flat and noisy, but very quickly, over a few simulation seconds, it
learns to reflect the reward somewhat precisely. As the learning rate declines, the
value stabilizes around the reward curve.

112 Chapter 4. Reinforcement Learning with intrinsic reward

(a)

(b)

Figure 4.11: (a) Evolution of the value function during training for different ball positions.
Evolution is represented from blue (early in the training) to red (late in the training). The
reward is the curve in purple. (b) Evolution of agent policy during training for different
ball positions. The policy is shown as the actor cell spike rates. Evolution is represented
by the color intensity, from light tones to heavy tones. The left and right actions are
respectively shown in blue and orange.

Fig. 4.11b shows the policy evolution during training. The blue and orange curves
correspond respectively to the left and right motor action. If the ball is in the left
part of the visual field, the agent must rotate the camera to the left to bring the ball
back to the center. The opposite is true if the ball is in the right part of the visual
field. The blue and orange curves show the actor’s spike rates for the different ball
positions in the visual field. As training progress, the network learns to select the
right action depending on the position of the ball. The evolution of the policy over
time during training is represented by the color intensity in the curves, from light to
deep tones.

In this environment, the network was able to learn an effective policy in a
very short time on this simple task. After only a minute of training, the network
easily differentiates the different states of the ball and can select the correct action
accordingly.

4.4.2.2 Adding a third action

To make the task a little more complicated, we added a third action, where the
camera stops moving. The problem with adding that action is that if nothing is
moving, we do not receive events anymore and the network stops working. It is not
necessarily the case here since the ball is always moving. But without the speed of

113

(a)

(b)

Figure 4.12: (a) Reward and value function (blue and orange respectively) evolution during
one training of around 100 seconds in simulation time. (b) TD error evolution during
training.

the camera, the ball generates many times fewer events, which would impact the
learning significantly. We solve that issue by adding constant jittering to the camera.
This is similar to the eye microsaccades and ocular drift, which has been proven to
increase visual acuity [149]. It moves left, right, up, and down in saccadic movements,
following an Orsnstein-Uhlenbeck stochastic process that can be written as:

dxt = θ (µ− xt) dt + σdWt (4.10)

where θ > 0 and σ > 0 are parameters that controls respectively the attraction and
drift component. µ is the central point to which the system goes back. Wt denotes a
Wiener process, a stochastic value generator. The idea behind this jitter is that the
camera will continuously drift from the central point µ due to the Wiener process
while being attracted back to it over time.

With this jitter, we generate many events at all times, even when the camera
stops rotating. The network can therefore work properly no matter the selected
action. We train the network similar to the previous case. The only difference is the
addition of the jitter and having 150 actor cells instead of 100 to take into account
the new action.

Fig. 4.12a shows how the value function evolves during training for one example
network over a span of 100 seconds in simulation time. We display the reward in
blue and the value in orange. The reward follows a Gaussian distribution and is
maximal when the ball is in the center. It is then equal to +80. When the ball is on

114 Chapter 4. Reinforcement Learning with intrinsic reward

the sides, it is close to 0. At the beginning of training, the value starts at -30 and
quickly rises as the critic neurons start receiving inputs from the simple and complex
cells. Since it is far below the reward, the TD error is positive. This can be seen in
Fig. 4.12b which displays the evolution of the TD error during training. This in turn
drives up the critic neuron activity by increasing the weights through the R-STDP
rule. In a few seconds, the critic neurons learn to associate a higher value for central
stimuli, i.e. when the ball is in the center.

Once the value gets closer to the reward, the TD error decreases significantly
and starts oscillating around 0. As the value efficiently predicts the reward, the
oscillations reflect more and more the derivative part of equation (4.1). That is when
the actor neurons start to learn to associate action with either a positive or negative
appreciation. For instance, going left when the ball is on the left part of the visual
field will bring it back to the center. This will drive the value function up and the
TD error will be positive. The actor neurons learn to associate positive feedback
between that specific ball state and action.

As training continues, the policy improves. Since the exploration rate decreases
over time, we start to select the right action more and more, which in turn results in
more effective behaviors. That is why the reward is closer and closer to the maximum
at the end of training. The interval between two actions also decreases with time.

Since Fig. 4.12 can be difficult to read in detail due to the long training, we
selected two smaller parts of the figure at both the very start and end of training.
We present them in the appendix as Fig. A.4 and Fig. A.5.

To estimate network performance, we tested the network’s final policy in the
simulated environment. The network selects actions every 10 ms, and every 1 second,
we reset the ball to either the left or right border of the visual field. Fig. 4.13a
presents the value and reward for this validation task during 15 seconds in simulation.
Here it is clear the network has learned an efficient policy since it can get back
quickly to the maximum reward every time the ball is reset.

The reward does not distinguish between the case where the ball is reset to the
left or the right. To extend the validation results, we keep track of the angular error
between the center of the visual field and the center of the ball. Fig. 4.13b shows the
resulting error during 1 test. We observe that the network successfully brings back
the ball to the center of the visual field every time the ball is reset, represented by a
red dashed line. Then, the network keeps the ball in the center. We can note that
the tracking is not perfectly stable, as there is some jittering around when trying to
keep the ball in the center. We also observe a slight shift towards the left part of the
visual field. But overall, the policy is effective.

We submitted the network to a similar validation scenario than when using two
actions. The ball is going back and forth from left to right then right to left. We kept

115

(a)

(b)

Figure 4.13: (a) Reward variation over time for the validation scenario on the tracking
task (b) Angular error variation over time for the validation scenario on the tracking task
with extrinsic reward. Red dashed bars represent the time at which the ball is reset to a
random location.

(a)

(b)

Figure 4.14: Validation scenario for the tracking task with extrinsic reward. Mean and
error bands of 1 standard deviation from 5 experiments with different starting seeds. (a)
Reward and value function. (b) Action decision visualized from the activity of the actor
neurons.

116 Chapter 4. Reinforcement Learning with intrinsic reward

Inhibition
types

Lateral
inhibition

range

Nb
synapses

Nb
visual
regions

Weight
sharing

Nb
cells
per

region

Size
receptive

fields

Simple
cells static none 1 1 yes 30,24,64 10,10,2

Complex
cells static none 1 1 no 10,8,16 3,3,64

Table 4.4: Network architectural parameters for the 2D tracking task.

Figure 4.15: Euclidean distance between the center of the visual field and the center of
the ball for the 2D tracking reinforcement learning task after learning on an exploitation
test scenario. The ball is reset every 2 seconds to a random location in the visual field,
represented by red dashed vertical lines.

track of the spike train of both the critic and actor neurons and created a histogram
of activity based on the angular error from the ball to the center of the visual field.
Fig. 4.14a presents the critic histogram in blue compared to the reward in purple.
We can see that the activity of the critic neurons follows closely the external reward.
Fig. 4.14b shows the activity of the 3 subgroup of actor neurons, 1 for each action.
When the ball is on the left part of the visual field, the actor neurons associated
with the turning left action to spike the most. Oppositely, the actor neurons linked
to the turning right action spike more when the ball is on the right part of the visual
field. Finally, there is more uncertainty in the middle. On average, the stop action
is spiking more than the others, but not by much. This turned out to depends on
the learning, with some scenario favoring the stop action in the middle while not in
others. A solution to that could be to try different reward shapes in hope that it
incites the network to decrease the left and right action even more when the ball is
in the middle. Nevertheless, it shows that the learned policy is sensible and allows
the network to efficiently track the ball in any situation.

117

Inhibition
types

Lateral
inhibition

range

Nb
synapses

Nb
visual
regions

Weight
sharing

Nb
cells
per

region

Size
receptive

fields

Simple
cells static none 1 1 yes 16,16,144 10,10,2

Complex
cells static none 1 1 no 4,4,16 4,4,144

Table 4.5: Network architectural parameters for the stabilization task.

4.4.2.3 Tracking in 2D

We extend the tracking task by adding another dimension to the environment. The
ball can now move up and down in addition to the previous left and right movements.
Since the camera is fixed, the ball is tied to a sphere around the camera with a
1.3-meter radius. The ball is given a random 2D direction and speed that is changed
every 2 seconds. The speed is comprised between 0 and 23 degrees per second. If
the ball exits the visual field, it is reset on the other side of it. To solve that task,
more actions are therefore necessary. We added the up and down camera action,
as well as 100 more actor neurons (50 actor neurons per action for a total of 200).
We limited the actions to one of the 4 main directions, without any combination
between them. We also added some simple and complex cells to cover most of the
visual field, since the ball can now move freely in both dimensions. This adds up to
a total of 30× 24× 64 = 46080 simple cells and 10× 8× 16 = 1280 complex cells.
Table 4.4 recaps the network architecture.

With a similar training procedure, we trained our network and tested it on a full
exploitation scenario. Fig. 4.15 presents the Euclidean distance between the center
of the ball and the center of the visual field during one of these tests. We observe
that the network can bring the ball back to the center somewhat consistently, and
then keep it there. The ball is reset every 2 seconds in a random location in the
visual field. Only once the ball was not brought back in the center before the reset.
This shows that it is possible to extend our work to more complicated environments
with higher numbers of states and actions.

4.4.3 Stabilization task

The stabilization task also consists of one motorized camera. The environment is
shown in Fig. 4.16. This time, the rotation is performed around the camera’s optical
axis. This task tries to simulate in a simplified way the process of a flying insect
that would have to keep its flight horizontal using visual cues. We generate the

118 Chapter 4. Reinforcement Learning with intrinsic reward

Figure 4.16: Stabilization environment, composed of one motorized agent (gray boxes) and
a grating stimulus consisting of white bars on a black background. The goal is to bring the
bars to a horizontal position by rotating the camera around its optical axis.

(a)

(b)

Figure 4.17: (a) Evolution of the value function during training for different bar orientations.
Evolution is represented from blue (early in the training) to red (late in the training). The
reward is the purple curve. (b) Evolution of agent policy during training for different bar
orientations. The policy is shown as the actor cell spike rates. Evolution is represented by
the color intensity, from light tones to heavy tones. The clockwise and counter-clockwise
actions are shown respectively in blue and orange.

119

Figure 4.18: Angular error variation over time for the validation scenario on the stabilization
task with extrinsic reward. Red dashed bars represent the time at which the grating is
reset to a random orientation.

visual cues from a set of straight bars. A leveled flight corresponds to the bars being
horizontal. We derive the reward from that fact, with horizontal bars giving the
maximum reward, vertical bars a zero reward, and linear interpolation in between.

This task is harder than the previous one since the network must be able to process
the bar orientation to effectively distinguish between states. We demonstrated in
Sec. 3.3.7 that the network cells can efficiently differentiate between oriented stimuli,
which makes them effective state representation for such a task. The actions are
rotating clockwise or counter-clockwise to bring back the bars to the optimal state.

We changed the neurons’ disposition for that task to be able to fit the entire
visual stimulus in the visual field of the network. The stimulus is located in a square
in the center of the visual field. We use 16× 16× 144 = 36864 simple cells, which
gives a visual field coverage of 160 by 160 pixels. Complex cells are connected to
patches of 4 by 4 simple cells, corresponding to a layout of 4× 4× 16 = 256 complex
cells. There are 100 critic and actor neurons connected to both the simple and
complex layers. This is detailed in Table 4.5.

As for the tracking task, we learned the efficient coding layer independently
first. We also use a similar exploration and exploitation learning strategy. We saved
the weights at regular intervals during training and present the results in Fig. 4.17.
Fig. 4.17a demonstrates that we learn an efficient value function during training.
Very quickly, the value raises to reflect the reward in black. Similarly, Fig. 4.17b
shows that the actor neurons learn to separate the states as training progress.

We also recorded the angular error between the actual and optimal bar orientation
(horizontal) during an exploitation test scenario on the fully trained network. Actions
are selected every 10 ms. Fig. 4.18 presents those results. The bar orientation is
reset every second at a random orientation. We can observe that the network can
bring the bars to the right place no matter the initial orientation. Once in the right
orientation, the network can keep the bars horizontal most of the time, even though
it presents a small oscillating behavior.

120 Chapter 4. Reinforcement Learning with intrinsic reward

(a)

(b)

Figure 4.19: Validation scenario for the stabilization task with extrinsic reward. Mean and
error bands of 1 standard deviation from 5 experiments with different starting seeds. (a)
Reward and value function. (b) Action decision visualized from the activity of the actor
neurons.

Then, similarly to the tracking task, we designed another simple validation
scenario to observe the value and policy of the network when changing the bar
orientations. We start with bars at -90◦ orientation (vertical in our case), then rotate
them to +90◦ and back again to -90◦. That way, the network observes all possible
orientations in both rotating directions. During that test, we deactivated the actions
and recorded the spike trains of the critic and actor neurons.

Fig. 4.19a shows the activity histogram of the critic neurons compared to the
extrinsic reward. We averaged the clockwise and counterclockwise rotations together
for more accuracy. The graph demonstrates that the value function learned is very
close to the reward. Fig. 4.19b presents a similar representation but for the actor
neurons. We can see the switch in which actor neurons spike the most around the
horizontal orientation (0◦). We note that the decision boundary is slightly shifted
to the right, which can also be observed in Fig. 4.18. This shows that our spiking
reinforcement learning framework work well overall, but might lack resilience for
learning a precise policy on more complicated visual tasks.

One possible improvement would be to add a third action that stops the rotation,
similarly to the tracking task. But we run into some difficulties with the jittering and
the number of events generated in this specific stabilization task, which made the

121

Inhibition
types

Lateral
inhibition

range

Nb
synapses

Nb
visual
regions

Weight
sharing

Nb
cells
per

region

Size
receptive

fields

Simple
cells

static,
lateral 1,1 1 1 yes 30,6,64 10,10,2

Complex
cells

static,
topdown none 1 1 no 10,2,16 3,3,64

Table 4.6: Network architectural parameters for the tracking task with intrinsic reward.

learning difficult. We will focus instead on learning the same task while generating
the reward intrinsically.

4.5 Intrinsic reward through inhibition

We demonstrated that our network can learn to solve a task in a simulated
environment. However, we were using perfect extrinsic rewards until now to do
so. To generate the reward intrinsically, we rely on the ability to tune cell activity
variation with the use of inhibition. We will present a scheme that naturally reduces
network activity for frequently observed stimuli. To demonstrate that, we learn
with specific input statistics and the results show that the activity varies with the
frequency of observed patterns.

4.5.1 Spatial inhibition

In the first experiment, the goal is to inhibit visual patterns appearing at the center
of the visual field when using a diverse basis of oriented receptive fields similar to
the one used for the tracking task described in Table 4.6. We fixed the excitatory
weights and focused on learning the top-down and lateral inhibitory connections.

The AEC hypothesis implies it is possible to learn basic behaviors by shaping
the efficient coding component to the input stimulus. For that reason, we want
to reinforce efficient coding by encouraging reduced activity on frequently shown
stimuli. This simple effect can lead to efficient behaviors well adapted to solving
visual tasks, such as tracking. We are using the tracking simulation environment as
a way of generating stimuli. We showed the network a repetition of a short recording
that involves the ball moving back and forth around a specific part of the visual
field. STDP works by an exposition through repetition. It is also true for inhibitory

122 Chapter 4. Reinforcement Learning with intrinsic reward

Figure 4.20: Activity variation of the network when presented to oriented gratings from 0
to 360◦. In purple, the experiment network after learning the inhibition on a Gaussian
distribution of oriented gratings centered around 0◦. In blue, the control network is the
experiment network with shuffled inhibition weights. The bottom graph presents the
Gaussian distribution used for learning in red superimposed on the activity difference
between the control and the experiment.

connections. Therefore, to inhibit central visual stimuli, we need to expose the
network to a majority of visual patterns happening in the center of the visual field.
For that purpose, the position of the ball in the visual field is selected according to a
normal distribution whose mean is located at the visual center. That way, we make
sure the network is mostly exposed to visual inputs that will excite the center cells,
which in turn will drive up the inhibitory connections between those cells. With
enough recordings, the network starts to learn to strongly inhibit input at the center
of the visual field, while not so much on the borders of the visual field.

Fig. 4.20 presents the result of a single recording of the ball moving from the left
to the right of the entire visual field. We recorded the total cell activity and present
it as a histogram of activity variation over time. In blue, we have the control network,
which is the network with shuffled inhibitory weights. In purple, the experiment
network with inhibitory weights learned on the distribution mentioned above. The
distribution can be seen in red in the bottom graph. The latter also presents the
activity difference between the control and experiment network.

The activity of the experiment network drops significantly when the ball ap-
proaches the center of the visual field. More importantly, the drop is gradual. This
means we can use the activity of the network as an effective intrinsic reward signal.
Low activity means a high reward, whereas high activity means a low reward. The
activity of the networks drops when the ball exits the visual field on the right or

123

Figure 4.21: Activity variation of the control and experiment network when presented to a
moving ball from the left to the right of the visual field. In purple, the experiment network
after learning the inhibition on a normal distribution of ball recording centered on the
middle of the visual field. In blue, the control network is the experiment network without
inhibition weights. The bottom graph presents the normal distribution used for learning in
red superimposed on the activity difference between the control and the experiment.

left since there are much fewer cells to excite in those regions. This does not pose a
problem since we normalize the intrinsic reward by the number of events.

4.5.2 Inhibition on oriented patterns

For the second experiment, we focus on observing various ranges of oriented patterns
and learning inhibitory connections on them. We use the stabilization task environ-
ment to generate the stimuli from rotating bars. We use the same network as the
one for the stabilization task described in Table 4.7 while adding the lateral and
top-down inhibition.

Inhibition
types

Lateral
inhibition

range

Nb
synapses

Nb
visual
regions

Weight
sharing

Nb
cells
per

region

Size
receptive

fields

Simple
cells

static,
lateral 1,1 1 1 yes 16,16,144 10,10,2

Complex
cells

static,
topdown none 1 1 no 4,4,16 4,4,144

Table 4.7: Network architectural parameters for the stabilization task with intrinsic reward.

124 Chapter 4. Reinforcement Learning with intrinsic reward

Figure 4.22: Angular error variation over time on the validation scenario for the tracking
task with an intrinsic reward. Red dashed bars represent the time at which the ball is reset
to a random location.

We present the network to a normal distribution of oriented gratings, centered
around the horizontal orientation. The first graph in Fig. 4.21 shows the network
activity as a function of grating orientation. The distribution of orientation is shown
in red in the bottom graph, along with the activity difference between the experiment
and control conditions.

We observe that the activity of the network decreases significantly close to the
center of the distribution, that is for horizontal stimuli. This is represented as a
bigger activity difference between the control and experiment network. Furthermore,
the decrease in activity is gradual as we change the orientation. This means we
can extract a smooth reward directly from the network activity and use it in our
reinforcement learning. However, the control naturally presents less activity for
oblique orientations, while the input event rate is mostly constant. This makes it
difficult to generate a proper intrinsic reward, which is reflected by a almost flat
activity near the horizontal orientation in the experiment.

4.5.3 Tracking task with intrinsic reward

Now that we designed a network capable of generating an intrinsic reward, we train
it on the tracking reinforcement learning task. The procedure is similar to the one
in Sec. 4.4.2 with the two actions. We generate the intrinsic reward according to
equation (4.9).

After learning, we test the network performance similarly to the extrinsic reward
scenario. Fig. 4.23 presents the network after training. Compared to the task with
extrinsic reward, we present here only the results after training. Fig. 4.23a and
4.23b show that the network has successfully learned to extract an effective value
and differentiate between the two actions. Compared to the extrinsic reward, we can
observe larger error bands, meaning that some learning will lead to slight inaccuracy
when the ball is in the center. But on average, the network is still able to correctly
separate the actions decisions properly. In Fig. 4.22, we can see that the network is

125

(a)

(b)

Figure 4.23: Validation scenario for the tracking task with intrinsic reward. Mean and
error bands of 1 standard deviation from 5 experiments with different starting seeds. (a)
Reward and value function. (b) Action decision visualized from the activity of the actor
neurons.

still able to correctly keep the ball in the center, but this time with a small positive
angular bias and generally more oscillations compared to the extrinsic reward case.

4.5.4 Stabilization task with intrinsic reward

Similarly to the tracking task, we learned the network with an intrinsically generated
reward on the stabilization environment. Fig. 4.24 shows that the network can keep
the level horizontal, but with a bigger error and more pronounced oscillating behavior
than with the extrinsic reward case. This time, the value function flattens a bit when

Figure 4.24: Angular error variation over time on the validation scenario for the stabilization
task with an intrinsic reward. Red dashed bars represent the time at which the grating is
reset to a random orientation.

126 Chapter 4. Reinforcement Learning with intrinsic reward

(a)

(b)

Figure 4.25: Validation scenario for the stabilization task with intrinsic reward. Mean and
error bands of 1 standard deviation from 5 experiments with different starting seeds. (a)
Reward and value function. (b) Action decision visualized from the activity of the actor
neurons.

presented with horizontal orientations as can be seen in Fig. 4.25a. This is most
likely due to the intrinsic reward being also quite flat for horizontal orientations, as
discussed in Sec. 4.5.2. This causes in turn indecision on the optimal policy around
the horizontal orientation, which led to a shift in the action decision, as shown by
Fig. 4.25b.

Conclusion

We addressed in this chapter how we were able to solve simple visual tasks using
a fully spiking reinforcement framework derived from a more traditional discrete TD
formulation. Reinforcement learning with SNN is still for the most part in its infancy.
In traditional frame-based reinforcement learning, images are a dense representation
that arrives at discrete time steps. Event streams on the other hand make it difficult
to learn since they have a variable rate and are continuous in time.

We propose a framework that can overcome those challenges based on the activity
of a specialized population of neurons, the critic, and actor cells. It is a versatile
model that learns through the combination of unsupervised learning of representation

127

triggered by a third-factor reward signal. We presented the results on dense reward
functions, but the network can theoretically also work with sparse rewards. We
demonstrated that the framework can learn efficient policies when combined with our
efficient coding model. The critic and actor neurons adapt their neural representation
to associate visual states with both a value and policy.

We then addressed one of the main limitations of today’s work in artificial
intelligence, the reliance on some form of external supervision. Reinforcement
learning frameworks are already a great step in that regard compared to supervised
learning methods. But they still require a reward signal to operate, often based
on human assumptions, which limits their self-sufficiency. We propose a model
that self-generates a reward signal from the efficient coding layer. Based on a dual
inhibition scheme, it learns to associate sparser code to frequent stimuli, which in
turn drives the network’s activity down.

We first presented our work using an extrinsic reward on two visual tasks, namely,
object tracking and visual field stabilization. We demonstrated that the network can
learn to distinguish between the visual states and select the correct action accordingly.
Then, we swapped the extrinsic reward with the intrinsically generated one and
compared the results. We showed that the drop in performance is small.

Future work will focus on learning the actor-critic neurons and the inhibitory
connections for the intrinsic reward generation at the same time. This would offer
a more realistic model of how the visual system could develop behaviors based on
visual inputs fully autonomously.

128 Chapter 4. Reinforcement Learning with intrinsic reward

Chapter 5
Discussions and Perspectives

5.1 Conclusions and discussions 129
5.2 Perspectives on improvements 131
5.3 Perspectives on future applications 131

5.3.1 Extension of our framework 131
5.3.2 Application to robotics . 132

5.1 Conclusions and discussions

We have presented a fully spiking framework based on the AEC model. Everything
works in the spike domain, from visual sensing with event-based cameras to motor
commands, using a combination of a SNN for the efficient coding part and a spiking
reinforcement learner that is a continuous formulation of traditional discrete models.
The network is self-sufficient; it does not require external supervision. It learns
efficient visual representations in an unsupervised manner while tuning its behavior
from an intrinsically generated reward based on a frequently observed stimulus.

Once put together, all the parts of our model can sense visual information in a
scene, extract some of its essential components while sparsifying it simultaneously,
and learn efficient policies for solving complex visual tasks. We demonstrated the
ability of the network to track an object precisely or understand relative orientation
information and stabilize its visual field accordingly.

Efficient coding of event-based visual inputs Raw visual data contains much
information but is very unstructured and cannot be effortlessly processed by any

130 Chapter 5. Discussions and Perspectives

system without a pre-processing scheme. Event-based cameras remove much redun-
dant information contained in illuminated scenes. They filter static components
while extracting the edges of objects. They act similarly to the human retina by pre-
processing much information, focusing on the scene’s dynamic movements. However,
due to their high temporal precision, they still output a heavy stream of information
that needs further processing for optimal results.

We propose a simple dual layered SNN architecture inspired by simple and
complex cells in the human visual system that can efficiently encode event-based
data. It can extract features from the event stream, such as orientation, motion, or
even disparity. It also reduces the amount of information by sparse coding the input.
More importantly, this stage is capable of precisely tuning to the properties of the
scene and adapting in case those statistics change over time. We demonstrated that
on various test case scenarios, especially for driving sequences, presenting exciting
challenges and widely different visual statistics. The real learning is done in an
unsupervised manner using a modified STDP rule. Finally, the network is an effective
tool for encoding visual information. We showed that it is possible to distinguish
visual patterns by looking at the neuronal activation in the network. It is an ideal
first stage for more advanced blocks, such as a classifier or a reinforcement learner.

Solving closed-loop visual motor tasks Based on our first contribution, we tack-
led learning motor controls for visual applications. Solving closed-loop visual tasks
with a fully spiking environment is challenging. Most computer vision applications
rely on well-established discrete reinforcement learning algorithms. Nevertheless,
learning to control in the spiking domain is hard as time continuity challenges tradi-
tional frameworks. We demonstrated a spiking reinforcement learner able to tackle
simple but tangible visual applications such as tracking or stabilization. We do not
rely on substantial visual databases and minimize the need for external supervision.
We presented scenarios with an external reward and a way to control by intrinsically
generating the reward from the efficient coding layer.

It is a novel method that relies on learning to encode and sparsify frequent visual
patterns more than infrequent ones. With time, the network activity goes down
when exposed to those patterns as it has learned to inhibit them strongly. In turn, it
reinforces the agent to learn a policy that converges towards those frequent visual
patterns. The network consequently learns to solve the visual task by associating
the policy with the final objective, such as keeping a ball in the center of the visual
field or the horizon leveled.

5.2 Perspectives on improvements

131

Improving on the limits of biological inspiration Many parts of our model
take inspiration from the human visual system, such as the simple and complex cells
or the three-factor rule similar to dopamine reward signals. However, our model is
only partially biologically plausible. We can note limitations in many areas where
the need for simplicity exceeded the will to stay close to biological systems. For
instance, synaptic connections always present a delay due to chemical and physical
constraints in the brain. Instead, we use instantaneous synaptic transmission in most
scenarios. Also, inhibition in a biological system is always performed by specialized
cells, whereas we use inhibitory connections without complicated dynamics of their
own.

Concerning the reinforcement learning part, the framework could be more realistic
too. Neuronal systems for control are often much more complicated than our simple
actor-critic model. In our case, action decisions are based on an external clock
rather than a neural system. Moreover, many computations such as value estimation,
kernel convolution, or spike counting are done directly on CPU rather than using
neuronal models. We wanted to take inspiration from biological systems, especially
the human visual system, not to create a perfect replica of it. Biological limitations
are, therefore, to be expected due to computing and time constraints. Nevertheless,
it is possible to reuse our model and update it to make it more realistic and in
harmony with biology.

Joint learning of the different components Another limitation of our model
is how coupled the learning is. In order to work progressively and keep the tasks
manageable, we mostly separated the learning phases. We often learn the efficient
coding representation first, then the reinforcement learning actions. It helped us
correct errors in each component separately. However, the framework of the AEC
stipulates that the visual representation and control policy are optimized jointly.
While theoretically possible in our framework, it would require more work and testing
to ensure that the joint learning happens appropriately and can converge to an
effective solution.

5.3 Perspectives on future applications

5.3.1 Extension of our framework

Extension to stereo-vergence applications Future work will focus on au-
tonomously learning the self-calibration of spike-based active binocular vision sys-

132 Chapter 5. Discussions and Perspectives

tems. We want to extend our approach to the simultaneous learning of disparity
representations and vergence eye movements in a fully spiking implementation. For
that, we will have to extend our work on learning efficient disparity representation
in the efficient coding layer and use that as a basis for the reinforcement learner. By
distinguishing between different disparities, the agent could understand how far the
two eyes are from optimal vergence, producing zero disparity in the target visual
input. By showing frequent stimuli with zero disparity, the network would learn to
encode that pattern well and reduce its activity. In turn, the reward would increase
for zero disparity inputs and encourage the reinforcement learner to learn a vergence
policy.

Implementation on neuromorphic hardware At the moment, our framework
works on a standard CPU. It is not an optimal solution as traditional computing
hardware is not made for parallel computing, such as in a SNN. Each neuron is an
independent unit that can be processed on its own. GPUs could be more adapted,
as they possess many cores able to perform parallel operations. We thought about
implementing our network on GPU, but this would have required a lot of time
and effort. A better solution would be the use of neuromorphic hardware. They
are perfectly adapted to work with SNN and offer impressive computing time and
power performance. Implementing our model on a neuromorphic chip would speed
up computation by a huge factor and allow us to learn to solve a visual task in
real-time and extend it to real-world applications. It could also facilitate scaling up
our approach to much larger network sizes.

5.3.2 Application to robotics

Figure 5.1: Pan-tilt robotic head
unit.

We demonstrated the effective use of our model
either on recorded event-based data or on a sim-
ulator. The next logical step would be to demon-
strate our framework on real-world applications
using robotic equipment. Both of our simulated
visual tasks could be implemented on robotic
hardware.

Tracking, stabilization, and vergence con-
trol We built a pan-tilt platform capable of
holding two event-based cameras to apply our
model to a real-world scenario. Similarly to the
human eyes, it can move both cameras on two
axes at the same time. The motors are very re-

133

active, making them suitable for use with the fast response time of event-based
cameras. Fig. 5.1 is a picture of the system with both event-based cameras. Using
that platform, we intend to replicate the learning of the tracking task and extend
our framework on the vergence control. However, the pan-tilt platform cannot be
used for the stabilization task since it lacks a rotation on the yaw axis. We would
have to create a different robotic platform for that scenario.

Application to driving scenarios Finally, we were interested in using the fast
reaction time of the event-based camera to help in driving scenarios. Autonomous
driving has emerged as one of the most critical research applications in recent years.
There is a significant stake in creating efficient self-driving cars. Event-based cameras
could be a prime candidate as a sensing alternative to frame-based cameras. They
could detect static and dynamic obstacles much faster than traditional cameras. In
that regard, we thought about demonstrating our sensing architecture for driving
scenarios such as urgent braking. Fig. 3.17 shows a picture of our mobile robotic
platform in a recreated urban environment. This simple platform could be ideal for
demonstrating a proof of concept for that specific scenario.

134 Chapter 5. Discussions and Perspectives

Appendices

Appendix A
Supplementary material

138 Chapter A. Supplementary material

(a)

(b)

Figure A.1: Same on short recording of an office. (a) With learned weight. (b) With
random weights.

139

(a)

(b)

Figure A.2: Same on a recording of someone juggling with 3 balls. (a) With learned weight.
(b) With random weights.

140 Chapter A. Supplementary material

(a)

(b)

Figure A.3: Same on an outside recording of an urban environment with a mobile robotic
platform. (a) With learned weight. (b) With random weights.

141

(a)

(b)

Figure A.4: (a) Reward and value function at the start of training (b) Actor neurons spike
count evolution at the start of training for the 3 possible actions (left in blue, stop in
orange, and right in green). Every time an action is selected, the 3 counts are reset to 0.
The action with the highest amount of spikes is not necessarily the one that is selected,
due to the exploration strategy.

(a)

(b)

Figure A.5: (a) Reward and value function at the end of training (b) Action decision at
the end of training

142 Chapter A. Supplementary material

Appendix B
Publications and communications

The contributions of this thesis have been published in two international conferences,
and submitted to an international journals.

International Proceedings and Journals

Work related to the first contribution has been published as

[1] T. Barbier, C. Teulière, and J. Triesch, “Unsupervised learning of
spatio-temporal receptive fields from an event-based vision sensor,”
ICANN Artificial Neural Networks and Machine Learning, I. Farkaš,
P. Masulli, and S. Wermter, Eds., pp. 622–633, 2020

and has been extended in a second version as

[2] T. Barbier and J. Triesch, “Spike timing-based unsupervised learn-
ing of orientation, disparity, and motion representations in a spiking
neural network,” CVPR 2021 Workshops, vol. 25, pp. 1377–1386, 2021
(accepted for video presentation and a question session)

Work related to the second contribution will be submitted to a journal.

144 Chapter B. Publications and communications

Proceedings & Workshops without act

Other communications of this work include a poster presentation as

Thomas Barbier, “Autonomous learning in a neuromorphic vision system”,
Journée Scientifique des Doctorants (JSD ED-SPI), June, 2021.

Appendix C
Source code

C.1 Neuvisys . 146
C.1.1 Requirements . 146
C.1.2 Neuvisys libraries . 147
C.1.3 Launch . 147
C.1.4 Configuration guide . 149
C.1.5 Graphical User Interface 149

C.2 CoppeliaSim event-based simulation 150
C.2.1 ROS integration . 151

C.3 Neuvisys-analysis . 152
C.3.1 Requirements . 152
C.3.2 Jupyter-Notebooks . 153

All our code sources have been made publicly available on the lab’s GitHub page,
https://github.com/comsee-research, for reproducibility and broad accessibility
and licensed under the GNU General Public License v3.0. It includes:

Neuvisys available at https://github.com/comsee-research/Neuvisys.

Neuvisys-simulator available at https://github.com/comsee-research/Neuvisys-simulator.

Neuvisys-python available at https://github.com/comsee-research/Neuvisys-analysis.

https://github.com/comsee-research
https://github.com/comsee-research/Neuvisys
https://github.com/comsee-research/Neuvisys-simulator
https://github.com/comsee-research/Neuvisys-analysis

146 Chapter C. Source code

C.1 Neuvisys

The Neuvisys project stands for Neuromorphic Vision System. It is a library
offering access to a Spiking Neural Network (SNN) with different possible kinds of
neurons. The library is written in c++. It can be launched with command lines or
via a Qt Graphical User Interface (GUI). There is also a possible connection with
the Coppeliasim simulator, also known as V-REP, via a Robot Operating System
(ROS) interface.

C.1.1 Requirements

Neuvisys

• Python

• OpenCV

• HDF5

Neuvisys uses libraries such as Eigen, a JSON parser, cnpy, and caer, all linked
locally from src/dependencies.

OpenCV To install OpenCV:

sudo apt install libopencv-dev python3-OpenCV

HDF5 To install HDF5:

sudo apt-get install libhdf5-dev

The HDF5 format is used to store event files, that can then be used by the
network. The format should be as follows:

• a group named "events"

• 5 dataset in that group: "t" for timestamps, "x" for pixel width axis, "y" for
pixel height axis, "p" for polarities and "c" for camera (0 for left camera, 1 for
right camera).

147

Event Based Cameras To connect to event-based cameras, and use the SNN
live, you need to install caer: https://github.com/breznak/caer The libcaer can be
downloaded from https://gitlab.com/inivation/dv/libcaer

Qt install QT 5 with the Qt Charts module:

sudo apt install qt5-default
sudo apt install libqt5charts5-dev

Coppeliasim / ROS Download and install the Coppeliasim framework:

https://www.coppeliarobotics.com/

There are three available versions, **player**, **edu** and **pro**. The player
is enough to work with neuvisys, but the scene save function is disabled.

Install ROS Noetic (Other ROS distribution might work, but this is uncertain):

http://wiki.ros.org/noetic/Installation/Ubuntu

It is advised to use the **Desktop-Full Install**, though other lighter versions
may also work.

C.1.2 Neuvisys libraries

By default, only the neuvisys library core is compiled. Four more libraries add
functionality:

• Camera: allows the connection to event-based cameras thanks to caer. With it
activated, we can use event-based cameras and feed the events directly to the
SNN in real-time.

• Simulator: allows the connection to Coppeliasim. With it activated, we can
create complex environments, simulate event-based camera outputs, and feed
it to the SNN in real-time.

• Motor control: allows the connection with Faulhaber Brushless motors. With
it activated, you can pilot the motors in real-time.

• GUI: allows the use of a graphical user interface.

C.1.3 Launch

To compile the Neuvisys library in the root folder, run:

https://github.com/breznak/caer
https://gitlab.com/inivation/dv/libcaer
https://www.coppeliarobotics.com/
http://wiki.ros.org/noetic/Installation/Ubuntu

148 Chapter C. Source code

mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..

If we want to use some of the abovementioned functionalities, we can compile
them with the following:

cmake -DBUILD_CAMERA=ON -DBUILD_SIMULATOR=ON
-DBUILD_MOTOR_CONTROL=ON -DBUILD_GUI=ON -DCMAKE_BUILD_TYPE=Release ..

(put “OFF“ on the functionalities you do not want to use and compile).

The core neuvisys library does not need any installation requirements except
OPENCV. However, adding more functionalities means installing adequate libraries
(see Requirements section).

If there are some errors, we may have to install the following python packages:

pip install empy
pip install catkin-pkg

Run:

make -j

to compile all targets

Or run:

make [target-name]

To compile only one target. Possible targets are:

• neuvisys-exe is the command line executable.

• event-camera is a module to connect an event-based camera (Davis by default).

• neuvisys-simulator is an executable that connects to Coppeliasim via ROS.

• neuvisys-qt is similar to neuvisys but with an added Qt interface.

Compiled targets are found in the "build/src" folder.

An example of use with the neuvisys-exe target:

149

./neuvisys-exe [m_networkPath] [eventPath] [nbPass]

m_networkPath corresponds to the path of the network structure. It must link
to the network config file, such as: "./network/configs/network_config.json".

eventPath is the relative path to an event file in the .npz format.

nbPass is the number of times the events will be presented to the network.

Create empty Network We can generate an empty spiking network ready to use
from, run:

cd build
./neuvisys-exe [networkDirectory]

The parameters will be set to their default values, but you can change them
afterward using the GUI or directly via the JSON config files.

C.1.4 Configuration guide

The network parameters are saved in JSON configuration files:

• network_config.json : describes the network architecture, number of layers,
neurons, types of newStaticInhibitoryEvent...

• simple_cell_config.json : simple neuron parameters

• complex_cell_config.json : complex neuron parameters

• critic_cell_config.json : critic neuron parameters

• actor_cell_config.json : actor neuron parameters

C.1.5 Graphical User Interface

It is possible to observe the network’s behavior in real-time using the graphical user
interface developed specifically to work with it.

Fig. C.1 presents a few screenshots showing its use and features. The GUI can
serve multiple purposes.

150 Chapter C. Source code

(a) (b)

(c) (d)

Figure C.1: Qt Graphical User Interface made for the Neuvisys spiking neural network
code. (a) Events and Network spike rate information. (b) Cells’ potentials. (c) Cells’
receptive fields (d) Cells’ spike trains.

Network management The GUI offers features to manipulate the networks before
launching any training. It is possible to create new networks but also change the
parameters of existing ones, as well as select the input files and training parameters.

Training supervision During training, the GUI can display real-time network
information such as input and cells’ spike rates, potentials, and spike trains, but also
see the evolution of the cells’ receptive fields.

Reinforcement learning supervision When using the GUI combined with the
reinforcement learning framework (and possibly the CoppeliSim simulator), we can
display information about the reinforcement learning procedure. The reward, value
function, TD error, and action selection in simulation time are all available.

C.2 CoppeliaSim event-based simulation

151

CoppeliaSim is a robotic simulator made for creating test scenarios in which
robots can operate. They propose multiple physics engines as well as tools to create
various environments, as well as include different types of sensors.

Event-based cameras are not included by default. Instead, we use a frame-based
sensor and convert the frames into event streams. For that purpose, we use small
simulation timesteps to obtain high framerates to improve the event generation. We
based the generation of events on the event-based camera emulator PIX2NVS [148].

We propose four different scenarios, three of which we actively used in this
manuscript:

Tracking Environment based on a pan-tilt head. The goal is to track a ball moving
in a circle around the camera on the horizontal plane. The ball can move left or
right.

Tracking 2D Similar environment to the tracking one but with an added axis of
rotation, and the ball can now move freely in a sphere around the camera.

Stabilization In this environment, the goal is to maintain straight bars in the
desired orientation. The bars can also rotate to increase difficulty. There is one axis
of rotation for the camera.

Stereo vergence This environment is based on two pan-tilt head. The goal is to
verge the two eyes on objects at varying distances of the cameras.

For each scenario, a jittering mechanism based on an Ornstein-Uhlenbeck process
can be added to the camera. It can help create events even when the camera is still
and mimic the jittering and drift of the human eye.

C.2.1 ROS integration

To connect to the simulation, we use a ROS publisher and subscriber program written
in c++. It allows the recovery of frames from the simulator and other information,
such as the reward. Then, orders to the motors can be similarly sent from the
program to the simulator.

CoppeliaSim usage Before launching CoppeliaSim, we need to activate ROS:

roscore

152 Chapter C. Source code

Then launch CoppeliaSim. If ROS is working, the ”ROS interface was found.”
message should appear on the CoppeliaSim console at the bottom.

We can open the Neuvisys Coppelia scene with the following:

File/Open scene... Open src/Coppelia-scenes/Neuvisys.ttt

Then launch the neuvisys-simulator target with the following:

./build/src/neuvisys-simulator

C.3 Neuvisys-analysis

The Spiking Neural Network Analysis Library is a regrouping of python scripts,
jupyter-notebooks, and python classes to analyze and display information about the
neuvisys c++ SNN code.

C.3.1 Requirements

A python envrionment. Alternatively, the library is made to be used with poetry.

Installation with Poetry Install poetry:

curl -SSL https://install.python-poetry.org | python3 -

Install the dependencies from the library folder:

poetry install

We can either launch a script with poetry run python your_script.py or activate
the virtual environment with poetry shell.

Python Packages Here is the list of packages and what they do:

• driving_dataset: a package to work with the DDD17 driving dataset.

• events: a package to create, modify, and convert event files.

• frames: a package to analyze traditional frames.

• spiking_network: a package to modify, visualize and launch the SNN of the
neuvisys project.

153

C.3.2 Jupyter-Notebooks

Two jupyter-notebooks offer an interface to most of the packaged functions mentioned
before:

Neuvisys.ipynb: Used to visualize various information from a spiking network.
Utils.ipynb: Used to launch and modify spiking networks.

154 Chapter C. Source code

Bibliography

[1] T. Barbier, C. Teulière, and J. Triesch, “Unsupervised learning of spatio-
temporal receptive fields from an event-based vision sensor,” ICANN Artificial
Neural Networks and Machine Learning, I. Farkaš, P. Masulli, and S. Wermter,
Eds., pp. 622–633, 2020.

[2] T. Barbier and J. Triesch, “Spike timing-based unsupervised learning of
orientation, disparity, and motion representations in a spiking neural network,”
CVPR 2021 Workshops, vol. 25, pp. 1377–1386, 2021.

[3] D. A. Patterson, J. Gonzalez, Q. V. Le, et al., “Carbon emissions and large
neural network training,” ArXiv, 2021.

[4] D. Richter, Metabolism of the nervous system. Pergamon Press, 1957.
[5] R. Guyonneau, R. VanRullen, and S. J. Thorpe, “Temporal codes and sparse

representations: A key to understanding rapid processing in the visual system,”
Journal of Physiology-Paris, vol. 98, pp. 487–497, 4-6 Jul. 2004.

[6] Y. Zhao, C. A. Rothkopf, J. Triesch, and B. E. Shi, “A unified model of
the joint development of disparity selectivity and vergence control,” 2012
IEEE International Conference on Development and Learning and Epigenetic
Robotics (ICDL), pp. 1–6, Nov. 2012.

[7] L. Lonini, S. Forestier, C. Teulière, Y. Zhao, B. E. Shi, and J. Triesch, “Robust
active binocular vision through intrinsically motivated learning,” Frontiers in
Neurorobotics, vol. 7, Nov. 2013.

[8] C. Teulière, S. Forestier, L. Lonini, et al., “Self-calibrating smooth pursuit
through active efficient coding,” Robotics and Autonomous Systems, vol. 71,
pp. 3–12, 2015.

[9] A. Lelais, J. Mahn, V. Narayan, C. Zhang, B. E. Shi, and J. Triesch, “Au-
tonomous development of active binocular and motion vision through active
efficient coding,” Frontiers in Neurorobotics, vol. 13, 2019.

[10] S. Eckmann, L. Klimmasch, B. E. Shi, and J. Triesch, “Active efficient coding
explains the development of binocular vision and its failure in amblyopia,”
Proceedings of the National Academy of Sciences of the United States of
America, vol. 117, 11 2020.

156 Bibliography

[11] L. Klimmasch, J. Schneider, A. Lelais, M. Fronius, B. E. Shi, and J. Triesch,
“The development of active binocular vision under normal and alternate
rearing conditions,” eLife, vol. 10, 2021.

[12] R. V. Florian, “Reinforcement learning through modulation of spike-timing-
dependent synaptic plasticity,” Neural Computation, vol. 19, pp. 1468–1502,
6 2007.

[13] S. S. Kety, “The circulation and energy metabolism of the brain,” Clinical
neurosurgery, vol. 9, pp. 56–66, 1963.

[14] H. B. Barlow, “Possible principles underlying the transformations of sensory
messages,” Sensory Communication, pp. 216–234, Oct. 2013.

[15] M. Chalk, O. Marre, and G. Tkačik, “Toward a unified theory of efficient, pre-
dictive, and sparse coding,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 115, pp. 186–191, 1 Jan. 2018.

[16] P. Seenivasan and R. Narayanan, “Efficient information coding and degeneracy
in the nervous system,” Current Opinion in Neurobiology, vol. 76, p. 102 620,
Oct. 2022.

[17] J. J. Atick and A. N. Redlich, “What does the retina know about natural
scenes?” Neural Computation, vol. 4, pp. 196–210, 2 Mar. 1992.

[18] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis
set: A strategy employed by v1?” Vision Research, vol. 37, pp. 3311–3325, 23
Dec. 1997.

[19] C. Zhang, Y. Zhao, J. Triesch, and B. E. Shi, “Intrinsically motivated learn-
ing of visual motion perception and smooth pursuit,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 1902–1908, Sep.
2014.

[20] T. Parr and K. J. Friston, “Active inference, novelty and neglect,” Current
topics in behavioral neurosciences, vol. 41, pp. 115–128, 2019.

[21] K. Friston, T. FitzGerald, F. Rigoli, P. Schwartenbeck, J. O’Doherty, and
G. Pezzulo, “Active inference and learning,” Neuroscience and Biobehavioral
Reviews, vol. 68, pp. 862–879, Sep. 2016.

[22] M. Traub, M. V. Butz, R. Legenstein, and S. Otte, “Dynamic action inference
with recurrent spiking neural networks,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 12895 LNCS, pp. 233–244, 2021.

[23] T. Isomura, H. Shimazaki, and K. J. Friston, “Canonical neural networks
perform active inference,” Communications Biology 2022 5:1, vol. 5, pp. 1–15,
1 Jan. 2022.

157

[24] G. Gallego, T. Delbruck, G. Orchard, et al., “Event-based vision: A survey,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 1, pp. 154–180, Jan. 2022.

[25] T.-j. Lee, “A review of bioinspired vision sensors and their applications,”
Sensors and Materials, vol. 27, pp. 447–463, 6 2015.

[26] S. C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas, Event-based
neuromorphic systems. 2014.

[27] M. A. M. Carver Mead, Scientific American, vol. 264, May 1991.
[28] G. Gallego, T. Delbrück, G. Orchard, et al., “Event-based vision: A survey,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 1, pp. 154–180, 2022.

[29] T. Delbruck and M. Lang, “Robotic goalie with 3 ms reaction time at 4%
cpu load using event-based dynamic vision sensor,” Frontiers in Neuroscience,
Nov. 2013.

[30] T. Delbruck and P. Lichtsteiner, “Fast sensory motor control based on event-
based hybrid neuromorphic- procedural system,” Proceedings - IEEE Interna-
tional Symposium on Circuits and Systems, pp. 845–848, 2007.

[31] T. Delbruck, “Frame-free dynamic digital vision,” Intl. Symp. on Secure-Life
Electronics, Advanced Electronics for Quality Life and Society, pp. 21–26,
2008.

[32] A. Glover and C. Bartolozzi, “Event-driven ball detection and gaze fixation in
clutter,” IEEE International Conference on Intelligent Robots and Systems,
pp. 2203–2208, Nov. 2016.

[33] S. Schraml, A. N. Belbachir, N. Milosevic, and P. Schön, “Dynamic stereo
vision system for real-time tracking,” ISCAS 2010 - 2010 IEEE International
Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems,
pp. 1409–1412, 2010.

[34] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R. J. Douglas, and T.
Delbruck, “A pencil balancing robot using a pair of aer dynamic vision sen-
sors,” Proceedings - IEEE International Symposium on Circuits and Systems,
pp. 781–784, 2009.

[35] F. Rea, G. Metta, and C. Bartolozzi, “Event-driven visual attention for the
humanoid robot icub,” Frontiers in Neuroscience, 7 DEC 2013.

[36] A. Glover and C. Bartolozzi, “Robust visual tracking with a freely-moving
event camera,” IEEE International Conference on Intelligent Robots and
Systems, vol. 2017-September, pp. 3769–3776, Dec. 2017.

158 Bibliography

[37] X. Lagorce, C. Meyer, S. H. Ieng, D. Filliat, and R. Benosman, “Asyn-
chronous event-based multikernel algorithm for high-speed visual features
tracking,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 26, pp. 1710–1720, 8 Aug. 2015.

[38] Z. Ni, S. H. Ieng, C. Posch, S. Régnier, and R. Benosman, “Visual tracking
using neuromorphic asynchronous event-based cameras,” Neural computation,
vol. 27, pp. 925–953, 4 Apr. 2015.

[39] Z. Ni, A. Bolopion, J. Agnus, R. Benosman, and S. Régnier, “Asynchronous
event-based visual shape tracking for stable haptic feedback in microrobotics,”
IEEE Transactions on Robotics, vol. 28, pp. 1081–1089, 5 2012.

[40] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza, “Asynchronous, photo-
metric feature tracking using events and frames,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 11216 LNCS, pp. 766–781, 2018.

[41] H. Li and L. Shi, “Robust event-based object tracking combining correlation
filter and cnn representation,” Frontiers in Neurorobotics, vol. 13, p. 82, Oct.
2019.

[42] T.-J. Chin, S. Bagchi, A. Eriksson, and A. van Schaik, “Star tracking using
an event camera,” 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 1646–1655, 2019.

[43] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Ev-flownet: Self-supervised
optical flow estimation for event-based cameras,” Robotics: Science and Sys-
tems, Feb. 2018.

[44] R. Benosman, S. H. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan, “Asyn-
chronous frameless event-based optical flow,” Neural Networks, vol. 27, pp. 32–
37, Mar. 2012.

[45] R. Benosman, C. Clercq, X. Lagorce, S. H. Ieng, and C. Bartolozzi, “Event-
based visual flow,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 25, pp. 407–417, 2 Feb. 2014.

[46] G. Gallego, H. Rebecq, and D. Scaramuzza, “A unifying contrast maximization
framework for event cameras, with applications to motion, depth, and optical
flow estimation,” Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 3867–3876, Dec. 2018.

[47] Z. Li, P. Mazzoni, S. Song, and N. Qian, “Asynchronous event-based motion
processing: From visual events to probabilistic sensory representation,” Neural
Computation 31, 1114–1138, vol. 1138, pp. 1114–1138, 2018.

159

[48] P. Bardow, A. J. Davison, and S. Leutenegger, “Simultaneous optical flow
and intensity estimation from an event camera,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 2016-December, pp. 884–892, Dec. 2016.

[49] M. Monforte, A. Arriandiaga, A. Glover, and C. Bartolozzi, “Exploiting
event cameras for spatio-temporal prediction of fast-changing trajectories,”
Proceedings - 2020 IEEE International Conference on Artificial Intelligence
Circuits and Systems, AICAS 2020, pp. 108–112, 2020.

[50] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman, “Hots:
A hierarchy of event-based time-surfaces for pattern recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, pp. 1346–
1359, 7 Jul. 2017.

[51] J. Kogler, C. Sulzbachner, M. Humenberger, and F. Eibensteiner, “Address-
event based stereo vision with bio-inspired silicon retina imagers,” Advances
in Theory and Applications of Stereo Vision, Jan. 2011.

[52] J. Lee, T. Delbruck, P. K. Park, et al., “Live demonstration: Gesture-based
remote control using stereo pair of dynamic vision sensors,” ISCAS 2012 -
2012 IEEE International Symposium on Circuits and Systems, pp. 742–745,
2012.

[53] A. Grimaldi, V. Boutin, S.-H. Ieng, R. Benosman, and L. U. Perrinet, “A
robust event-driven approach to always-on object recognition,” TechRxiv
preprint, Jan. 13, 2022.

[54] R. Benosman, S. H. Ieng, P. Rogister, and C. Posch, “Asynchronous event-
based hebbian epipolar geometry,” IEEE Transactions on Neural Networks,
vol. 22, pp. 1723–1734, 11 2011.

[55] P. Rogister, R. Benosman, S. H. Ieng, P. Lichtsteiner, and T. Delbruck,
“Asynchronous event-based binocular stereo matching,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 23, pp. 347–353, 2 Feb. 2012.

[56] J. Carneiro, S. H. Ieng, C. Posch, and R. Benosman, “Event-based 3d recon-
struction from neuromorphic retinas,” Neural Networks, vol. 45, pp. 27–38,
2013.

[57] M. Firouzi and J. Conradt, “Asynchronous event-based cooperative stereo
matching using neuromorphic silicon retinas,” Neural Processing Letters,
vol. 43, pp. 311–326, 2 2016.

[58] E. Piatkowska, J. Kogler, N. Belbachir, and M. Gelautz, “Improved coopera-
tive stereo matching for dynamic vision sensors with ground truth evaluation,”
IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition Workshops, vol. 2017-July, pp. 370–377, 2017.

160 Bibliography

[59] Z. Deng, B. Zhou, Y. Xu, et al., “Recent progresses of organic photonic
synaptic transistors,” Flexible and Printed Electronics, vol. 7, no. 2, p. 024 002,
May 2022.

[60] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbruck,
“Retinomorphic event-based vision sensors: Bioinspired cameras with spiking
output,” Proceedings of the IEEE, vol. 102, pp. 1470–1484, 10 Oct. 2014.

[61] C. Posch, “Bioinspired vision sensing,” Biologically inspired Computer Vision:
Fundamentals and Applications, pp. 11–28, Oct. 2015.

[62] T. Delbrück, B. Linares-Barranco, E. Culurciello, and C. Posch, “Activity-
driven, event-based vision sensors,” ISCAS 2010 - 2010 IEEE International
Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems,
pp. 2426–2429, 2010.

[63] R. H. Masland, “The Neuronal Organization of the Retina,” Neuron, vol. 76,
no. 2, pp. 266–280, 2012.

[64] P. Dayan and L. F. Abbott, Theoretical neuroscience : computational and
mathematical modeling of neural systems. Massachusetts Institute of Technol-
ogy Press, 2001.

[65] S. Fischer, R. Redondo, L. U. Perrinet, and G. Cristóbal, “Sparse approxima-
tion of images inspired from the functional architecture of the primary visual
areas,” EURASIP Journal on Advances in Signal Processing, vol. 2007, no. 1,
pp. 090 727–122, 2007.

[66] M. A. Dichter and G. F. Ayala, “Cellular mechanisms of epilepsy: A status
report,” Science (New York, N.Y.), vol. 237, pp. 157–164, 4811 1987.

[67] S. Zhou and Y. Yu, “Synaptic e-i balance underlies efficient neural coding,”
Frontiers in Neuroscience, vol. 12, p. 46, FEB Feb. 2018.

[68] A. M. Sillito, “The contribution of inhibitory mechanisms to the receptive
field properties of neurones in the striate cortex of the cat.,” The Journal of
Physiology, vol. 250, p. 305, 2 Sep. 1975.

[69] L. U. Perrinet, “Role of homeostasis in learning sparse representations,” Neural
Computation, vol. 22, no. 7, pp. 1812–36, Jul. 17, 2010.

[70] L. U. Perrinet, “An adaptive homeostatic algorithm for the unsupervised
learning of visual features,” Vision, vol. 3, no. 3, p. 47, Sep. 1, 2019.

[71] L. N. Long and G. Fang, “A review of biologically plausible neuron models
for spiking neural networks,” AIAA Infotech at Aerospace 2010, 2010.

[72] K. Yamazaki, V. K. Vo-Ho, D. Bulsara, and N. Le, “Spiking neural networks
and their applications: A review,” Brain Sciences, vol. 12, 7 Jul. 2022.

[73] X. Wang, X. Lin, and X. Dang, “Supervised learning in spiking neural networks:
A review of algorithms and evaluations,” Neural Networks, vol. 125, pp. 258–
280, 2020.

161

[74] M. Taylor, “The problem of stimulus structure in the behavioural theory of
perception,” South African journal of psychology = Suid-Afrikaanse tydskrif
vir sielkunde, vol. 3, pp. 23–45, Jan. 1973.

[75] W. B. Levy and O. Steward, “Temporal contiguity requirements for long-term
associative potentiation/depression in the hippocampus,” Neuroscience, vol. 8,
pp. 791–797, 4 Apr. 1983.

[76] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation of synaptic
efficacy by coincidence of postsynaptic aps and epsps,” Science, vol. 275,
pp. 213–215, 5297 Jan. 1997.

[77] N. Caporale and Y. Dan, “Spike timing–dependent plasticity: A hebbian
learning rule,” Annual Review of Neuroscience, vol. 31, no. 1, pp. 25–46, 2008.

[78] W. G. Nicolas Frémeaux, “Neuromodulated spike-timing-dependent plasticity,
and theory of three-factor learning rules,” Frontiers in Neural Circuits, vol. 9,
p. 85, Jan. 2016.

[79] Y. Lian, D. B. Grayden, T. Kameneva, H. Meffin, and A. N. Burkitt, “Toward
a biologically plausible model of lgn-v1 pathways based on efficient coding,”
Frontiers in Neural Circuits, vol. 13, p. 13, 13 Jan. 2019.

[80] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using
spike-timing-dependent plasticity,” Frontiers in Computational Neuroscience,
vol. 9, Aug. 2015.

[81] J. A. Pérez-Carrasco, C. Serrano, B. Acha, T. Serrano-Gotarredona, and B.
Linares-Barranco, “Spike-based convolutional network for real-time process-
ing,” Proceedings - International Conference on Pattern Recognition, pp. 3085–
3088, 2010.

[82] M. Pfeiffer and T. Pfeil, “Deep Learning With Spiking Neurons: Opportunities
and Challenges,” Frontiers in Neuroscience, vol. 12, p. 774, 2018.

[83] K. Pozo and Y. Goda, “Unraveling mechanisms of homeostatic synaptic
plasticity,” Neuron, vol. 66, no. 3, pp. 337–351, May 2010.

[84] J.-A. Perez-Carrasco, C. Serrano, B. Acha, T. Serrano-Gotarredona, and B.
Linares-Barranco, “Spike-based convolutional network for real-time process-
ing,” ICPR, Aug. 2010.

[85] E. Stromatias, M. Soto, T. Serrano-Gotarredona, and B. Linares-Barranco,
“An event-driven classifier for spiking neural networks fed with synthetic or
dynamic vision sensor data,” Frontiers in Neuroscience, vol. 11, Jun. 2017.

[86] E. Chicca, P. Lichtsteiner, T. Delbruck, G. Indiveri, and R. Douglas, “Model-
ing orientation selectivity using a neuromorphic multi-chip system,” IEEE
International Symposium on Circuits and Systems, Jun. 2006.

162 Bibliography

[87] T. Masquelier and S. J. Thorpe, “Unsupervised Learning of Visual Features
through Spike Timing Dependent Plasticity,” PLoS Computational Biology,
vol. 3, no. 2, K. J. Friston, Ed., p. 31, 2007.

[88] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “Stdp-
based spiking deep convolutional neural networks for object recognition,”
Neural Networks, vol. 99, pp. 56–67, 2018.

[89] T. Iakymchuk, A. Rosado-Muñoz, J. F. Guerrero-Martínez, M. Bataller-
Mompeán, and J. V. Francés-Víllora, “Simplified spiking neural network
architecture and stdp learning algorithm applied to image classification,”
Eurasip Journal on Image and Video Processing, vol. 2015, pp. 1–11, 1 Feb.
2015.

[90] G. Srinivasan, P. Panda, and K. Roy, “STDP-based unsupervised feature
learning using convolution-over-time in spiking neural networks for energy-
efficient neuromorphic computing,” ACM Journal on Emerging Technologies
in Computing Systems, vol. 14, no. 4, pp. 1–12, 2018.

[91] L. Paulun, A. Wendt, and N. Kasabov, “A retinotopic spiking neural network
system for accurate recognition of moving objects using NeuCube and dynamic
vision sensors,” Frontiers in Computational Neuroscience, vol. 12, Jun. 2018.

[92] H. Akolkar, S. Panzeri, and C. Bartolozzi, “Spike time based unsupervised
learning of receptive fields for event-driven vision,” Proceedings - IEEE Inter-
national Conference on Robotics and Automation, pp. 4258–4264, 2015.

[93] A. Tavanaei, T. Masquelier, and A. Maida, “Representation learning using
event-based stdp,” Neural Networks, vol. 105, pp. 294–303, Sep. 2018.

[94] T. N. Chandrapala and B. E. Shi, “Invariant feature extraction from event
based stimuli,” Proceedings of the IEEE RAS and EMBS International Con-
ference on Biomedical Robotics and Biomechatronics, vol. 2016-July, pp. 1–6,
2016.

[95] Q. Liu, G. Pan, H. Ruan, D. Xing, Q. Xu, and H. Tang, “Unsupervised
AER Object Recognition Based on Multiscale Spatio-Temporal Features and
Spiking Neurons,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 31, no. 12, pp. 5300–5311, 2020.

[96] V. Boutin, A. Franciosini, F. Y. Chavane, and L. U. Perrinet, “Pooling in
a predictive model of v1 explains functional and structural diversity across
species,” PLoS Computational Biology, Jul. 18, 2022.

[97] G. Orchard and R. Etienne-Cummings, “Bioinspired visual motion estima-
tion,” Proceedings of the IEEE, vol. 102, pp. 1520–1536, 10 2014.

163

[98] H. N. Stephan Tschechne Roman Sailer, “Bio-inspired optic flow from event-
based neuromorphic sensor input,” Artificial Neural Networks in Pattern
Recognition, vol. 8774, N. El Gayar, F. Schwenker, and C. Suen, Eds., pp. 171–
182, 2014.

[99] G. D’Angelo, E. Janotte, T. Schoepe, et al., “Event-Based Eccentric Motion
Detection Exploiting Time Difference Encoding,” Frontiers in Neuroscience,
vol. 14, p. 451, 2020.

[100] G. Haessig, A. Cassidy, R. Alvarez, R. Benosman, and G. Orchard, “Spiking
optical flow for event-based sensors using IBM’s TrueNorth neurosynaptic
system,” IEEE Transactions on Biomedical Circuits and Systems, vol. 12,
no. 4, pp. 860–870, Aug. 2018.

[101] M. Hopkins, G. Pineda-Garcia, P. A. Bogdan, and S. B. Furber, “Spiking neural
networks for computer vision,” Interface Focus, vol. 8, no. 4, p. 20 180 007,
Jun. 2018.

[102] G. Orchard, R. Benosman, R. Etienne-Cummings, and N. V. Thakor, “A
spiking neural network architecture for visual motion estimation,” IEEE
Biomedical Circuits and Systems Conference (BioCAS), Oct. 2013.

[103] F. Paredes-Valles, K. Y. W. Scheper, and G. C. H. E. D. Croon, “Unsupervised
learning of a hierarchical spiking neural network for optical flow estimation:
From events to global motion perception,” PAMI, Aug. 2018.

[104] A. Grimaldi and L. U. Perrinet, “Learning heterogeneous delays in a layer of
spiking neurons for fast motion detection,” Submitted, 2022.

[105] L. Steffen, D. Reichard, J. Weinland, J. Kaiser, A. Roennau, and R. Dillmann,
“Neuromorphic stereo vision: A survey of bio-inspired sensors and algorithms,”
Frontiers in Neurorobotics, vol. 13, pp. 1–20, 2019.

[106] J. Kaiser, J. Weinland, P. Keller, et al., “Microsaccades for neuromorphic stereo
vision,” Artificial Neural Networks and Machine Learning – ICANN 2018,
V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and I. Maglogiannis,
Eds., pp. 244–252, 2018.

[107] G. Dikov, M. Firouzi, F. Rohrbein, J. Conradt, and C. Richter, “Spiking
cooperative stereo-matching at 2 ms latency with neuromorphic hardware,”
Biomimetic and Biohybrid Systems, pp. 119–137, 2017.

[108] M. Osswald, S. H. Ieng, R. Benosman, and G. Indiveri, “A spiking neural
network model of 3D perception for event-based neuromorphic stereo vision
systems,” Scientific Reports, vol. 7, 2017.

[109] T. Chauhan, T. Masquelier, A. Montlibert, and B. R. Cottereau, “Emer-
gence of binocular disparity selectivity through hebbian learning,” Journal of
Neuroscience, vol. 38, pp. 9563–9578, 44 Oct. 2018.

164 Bibliography

[110] T. Chauhan, T. Masquelier, and B. R. Cottereau, “Sub-optimality of the early
visual system explained through biologically plausible plasticity,” Frontiers
in Neuroscience, vol. 15, p. 1203, Sep. 2021.

[111] G. Debat, T. Chauhan, B. R. Cottereau, T. Masquelier, M. Paindavoine, and
R. Baures, “Event-based trajectory prediction using spiking neural networks,”
Frontiers in Computational Neuroscience, vol. 15, p. 47, May 2021.

[112] N.-W. Tien and D. Kerschensteiner, “Homeostatic plasticity in neural devel-
opment,” Neural Development, vol. 13, no. 1, Jun. 2018.

[113] J. Triesch, A. D. Vo, and A.-S. Hafner, “Competition for synaptic building
blocks shapes synaptic plasticity,” Elife, vol. 7, e37836, Sep. 2018.

[114] A. Borst, “Models of motion detection,” Nature Neuroscience, vol. 3, no. 1,
p. 1168, Jan. 2000.

[115] Y. Lian, A. Almasi, D. B. Grayden, T. Kameneva, A. N. Burkitt, and H.
Meffin, “Learning receptive field properties of complex cells in v1,” bioRxiv,
2020.

[116] K. P. Körding, C. Kayser, W. Einhäuser, and P. König, “How are complex
cell properties adapted to the statistics of natural stimuli?” Journal of Neuro-
physiology, vol. 91, no. 1, pp. 206–212, 2004.

[117] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240 × 180
130 dB 3 micros latency global shutter spatiotemporal vision sensor,” IEEE
Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341, Oct. 2014.

[118] J. Binas, D. Neil, S.-C. Liu, and T. Delbruck, “Ddd17: End-to-end davis
driving dataset,” Arxiv, Nov. 2017.

[119] H. Rebecq, D. Gehrig, and D. Scaramuzza, “Esim: An open event camera
simulator,” CoRL, Oct. 2018.

[120] D. Attwell and S. B. Laughlin, “An energy budget for signaling in the grey
matter of the brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 21,
pp. 1133–1145, 10 Aug. 2016.

[121] I. M. Park, S. Seth, A. R. Paiva, L. Li, and J. C. Principe, “Kernel methods
on spike train space for neuroscience: A tutorial,” IEEE Signal Processing
Magazine, vol. 30, no. 4, pp. 149–160, 2013.

[122] C. A. Rothkopf, T. H. Weisswange, and J. Triesch, “Learning independent
causes in natural images explains the spacevariant oblique effect,” ICDL 2009.
IEEE 8th International Conference on Development and Learning, pp. 1–6,
Jan. 2009.

[123] B. Li, M. R. Peterson, and R. D. Freeman, “Oblique effect: A neural basis
in the visual cortex,” Journal of neurophysiology, vol. 90, no. 1, pp. 204–217,
2003.

165

[124] M. Mazurek, M. Kager, and S. D. Van Hooser, “Robust quantification of
orientation selectivity and direction selectivity,” Frontiers in Neural Circuits,
vol. 8, p. 92, 2014.

[125] E. C. Tolman, “Cognitive maps in rats and men,” Psychological Review, vol. 55,
pp. 189–208, 4 Jul. 1948.

[126] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and A. C. Knoll, “A survey of
robotics control based on learning-inspired spiking neural networks,” Frontiers
in Neurorobotics, vol. 12, p. 35, 2019.

[127] Z. Jiang, Z. Bing, K. Huang, and A. Knoll, “Retina-based pipe-like object
tracking implemented through spiking neural network on a snake robot,”
Frontiers in Neurorobotics, vol. 13, 2019.

[128] A. Linares-Barranco, H. Liu, A. Rios-Navarro, F. Gomez-Rodriguez, D. P.
Moeys, and T. Delbruck, “Approaching retinal ganglion cell modeling and
fpga implementation for robotics,” Entropy, vol. 20, p. 475, 6 Jun. 2018.

[129] V. Vasco, A. Glover, Y. Tirupachuri, F. Solari, M. Chessa, and C. Bartolozzi,
“Vergence control with a neuromorphic icub,” IEEE-RAS International Con-
ference on Humanoid Robots, pp. 732–738, 2016.

[130] D. Patel, H. Hazan, D. J. Saunders, H. T. Siegelmann, and R. Kozma,
“Improved robustness of reinforcement learning policies upon conversion to
spiking neuronal network platforms applied to atari breakout game,” Neural
Networks, vol. 120, pp. 108–115, Dec. 2019.

[131] G. Tang, N. Kumar, R. Yoo, and K. P. Michmizos, “Deep reinforcement
learning with population-coded spiking neural network for continuous control,”
Oct. 2020.

[132] N. Frémaux, H. Sprekeler, and W. Gerstner, “Functional requirements for
reward-modulated spike-timing-dependent plasticity,” Journal of Neuroscience,
vol. 30, pp. 13 326–13 337, 40 Oct. 2010.

[133] G. W, L. M, L. V, C. D, and B. J, “Eligibility traces and plasticity on
behavioral time scales: Experimental support of neohebbian three-factor
learning rules,” Frontiers in neural circuits, vol. 12, Jul. 2018.

[134] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S. J. Thorpe, and T. Masque-
lier, “Bio-inspired digit recognition using reward-modulated spike-timing-
dependent plasticity in deep convolutional networks,” Pattern Recognition,
vol. 94, pp. 87–95, Oct. 2019.

[135] H. Ghaemi, E. Mirzaei, M. Nouri, and S. R. Kheradpisheh, “Biolcnet: Reward-
modulated locally connected spiking neural networks,” ArXiv, Sep. 2021.

[136] M. Yuan, X. Wu, R. Yan, and H. Tang, “Reinforcement learning in spiking neu-
ral networks with stochastic and deterministic synapses,” Neural Computation,
vol. 31, pp. 2368–2389, 12 Dec. 2019.

166 Bibliography

[137] W. Potjans, A. Morrison, and M. Diesmann, “A spiking neural network model
of an actor-critic learning agent,” Neural Computation, vol. 21, pp. 301–339,
2 Feb. 2009.

[138] J. Jitsev, A. Morrison, and M. Tittgemeyer, “Learning from positive and neg-
ative rewards in a spiking neural network model of basal ganglia,” Proceedings
of the International Joint Conference on Neural Networks, 2012.

[139] E. Nichols, L. J. McDaid, and N. Siddique, “Biologically inspired snn for
robot control,” IEEE Transactions on Cybernetics, vol. 43, pp. 115–128, 1
Feb. 2013.

[140] N. Frémaux, H. Sprekeler, and W. Gerstner, “Reinforcement learning us-
ing a continuous time actor-critic framework with spiking neurons,” PLoS
Computational Biology, vol. 9, p. 1 003 024, 4 Apr. 2013.

[141] P. Weidel, R. Duarte, and A. Morrison, “Unsupervised learning and clustered
connectivity enhance reinforcement learning in spiking neural networks,”
Frontiers in Computational Neuroscience, vol. 15, p. 18, Mar. 2021.

[142] H. Anwar, S. Caby, S. Dura-Bernal, et al., “Training a spiking neuronal
network model of visual-motor cortex to play a virtual racket-ball game using
reinforcement learning,” PLoS ONE, vol. 17, 5 May May 2022.

[143] A. Jaegle, V. Mehrpour, and N. Rust, “Visual novelty, curiosity, and intrinsic
reward in machine learning and the brain,” Current Opinion in Neurobiology,
vol. 58, pp. 167–174, 2019.

[144] Y. Wang and B. E. Shi, “Improved binocular vergence control via a neural
network that maximizes an internally defined reward,” IEEE Transactions on
Autonomous Mental Development, vol. 3, pp. 247–256, 3 Sep. 2011.

[145] A. Gibaldi, M. Chessa, A. Canessa, S. P. Sabatini, and F. Solari, “A cortical
model for binocular vergence control without explicit calculation of disparity,”
Neurocomputing, vol. 73, pp. 1065–1073, 7-9 2010.

[146] A. Gibaldi, A. Canessa, and S. P. Sabatini, “Vergence control learning through
real v1 disparity tuning curves,” International IEEE/EMBS Conference on
Neural Engineering, NER, vol. 2015-July, pp. 332–335, Jul. 2015.

[147] P. Chorley and A. K. Seth, “Dopamine-signaled reward predictions generated
by competitive excitation and inhibition in a spiking neural network model,”
Frontiers in Computational Neuroscience, vol. 5, p. 21, May 2011.

[148] Y. Bi and Y. Andreopoulos, “Pix2nvs: Parameterized conversion of pixel-
domain video frames to neuromorphic vision streams,” Proceedings - Interna-
tional Conference on Image Processing, ICIP, vol. 2017-September, pp. 1990–
1994, Feb. 2018.

[149] J. Intoy and M. Rucci, “Finely tuned eye movements enhance visual acuity,”
Nature Communications, vol. 11, pp. 1–11, 1 2020.

167

	Remerciements
	Abstract
	Résumé
	List of Figures
	List of Tables
	Glossary
	Acronyms
	General introduction
	Motivation
	Context
	Contributions
	Manuscript outline

	Background
	Introduction
	Active Efficient Coding
	Background on Reinforcement Learning
	Active Efficient Coding

	Event-based cameras
	Neuromorphic engineering
	Quick historical overview
	Event representation
	Mathematical model for event generation
	Advantages compared to frame-based cameras
	Challenges of a new sensing paradigm
	Applications

	Spiking Neural Networks
	Biological vision pathway
	A model inspired by the early visual system
	Biological neuron models
	Mathematical neuron models
	Spiking neural networks
	snn learning mechanisms
	Spike-Timing Dependent Plasticity
	Reward-modulated stdp
	Hardware implementation of event-based algorithms

	Conclusion

	Efficient visual encoding with a SNN
	Introduction
	Related work
	Supervised learning with snn
	Unsupervised learning methods
	Learning to capture motion
	Learning binocular disparity

	A dual-layered spiking neural network model
	Neuronal model
	Homeostatic mechanisms
	Learning through Spike Timing Dependent Plasticity
	Spiking neural network architecture

	Network activity analysis and visualization
	Datasets of event-based recordings
	Simulated sequences
	Network parameters
	Visualizing the network's behavior
	Sparsity as an efficient coding mechanism
	Network activity variation
	Independent spike responses

	Studying the receptive fields of simple and complex cells
	Learning simple cell receptive fields
	Weight evolution during training
	Development of motion and disparity tuned receptive fields
	Estimating disparity from stereo driving scenes
	Learning complex cell receptive fields

	Conclusion

	Reinforcement Learning with intrinsic reward
	Introduction
	Related work
	Spiking reinforcement learning
	intrinsic reward

	A fully spiking reinforcement learning framework
	Temporal difference error
	Critic neurons
	Actor neurons
	Three-factor learning rule
	Exploration and exploitation strategy

	intrinsic reward generation
	Top-down inhibition
	Lateral inhibition
	intrinsic reward from activity

	Application to tracking and visual field stabilization
	Simulation of visual environment
	tracking task
	Stabilization task

	intrinsic reward through inhibition
	Spatial inhibition
	Inhibition on oriented patterns
	tracking task with intrinsic reward
	Stabilization task with intrinsic reward

	Conclusion

	Discussions and Perspectives
	Conclusions and discussions
	Perspectives on improvements
	Perspectives on future applications
	Extension of our framework
	Application to robotics

	Supplementary material
	Publications and communications
	Source code
	Neuvisys
	Requirements
	Neuvisys libraries
	Launch
	Configuration guide
	Graphical User Interface

	CoppeliaSim event-based simulation
	ros integration

	Neuvisys-analysis
	Requirements
	Jupyter-Notebooks

	Bibliography

