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The first proposed algorithm provides a causal broadcast for Mobile Networks, composed of mobile hosts and support stations. Mobile hosts are connected to support stations through a wireless network, and support stations are connected with each other by wired channels. Mobile networks have specific features: limited capacities of mobile nodes (computation, storage, energy), unreliable communication channels, and the dynamics of connections due to the mobility of node, failures, and join/leave operations.

The second part of this thesis addresses causal broadcast implemented with clocks of M (M ≤ N ) entries, where N corresponds to the number of processes in the system. Such clocks tolerate process churn and scale since their size is independent to the number of processes in the system. However, they do not characterize causality and algorithms using them may deliver messages out of causal order. v vi We first propose an error detector, based on hashes, which analyzes the clock of messages before delivering them in order to detect those messages that are not causally ordered. We then propose an algorithm that ensures that messages tagged by the error detector as not causally ordered are delivered in causal order. Second, we propose Dynamic Clock Sets (DCS clocks), a new logical clock composed of a set of clocks with M ≤ N entries (where N is the number of process of the system), and whose size can be changed during execution.

All the proposed algorithms were implemented in C++ and executed on the OM-NeT++ simulator. The causal broadcast algorithm for Mobile Networks was implemented on the framework INET of OMNeT++ which provides a realistic network simulation such as interferences on the wireless network, network layers and node mobility among others. Results confirm that our broadcast algorithm for Mobile Networks outperforms existing ones while making realistic network assumptions. Concerning the hash-based error detector, results show that it detects all not causally ordered messages. Finally, experiments conducted with a causal broadcast implemented with DCS clocks demonstrate that DCS clocks adapt their size well and fast to the number of concurrent messages of the system. vii Résumé La diffusion causale est un élément fondamental de nombreux applications distribuées ou parallèles, telles que les bases de données distribuées, les publicationsabonnements, ou les réseaux sociaux, qui ont tous besoin de partager des informations entre tous les participants (par exemple, les processus, machines, etc. . . ), tout en respectant la causalité entre les messages échangés.

Les algorithmes de diffusion causale existants ne passent soit pas à l'échelle, soit ne tolèrent pas toute la dynamicité introduite par les processus qui rejoignent ou quittent le système, qui échouent pendant l'exécution, ou qui modifient leur ensemble de canaux de communication. Certains travaux ajoutent aux messages toutes les informations nécessaires pour les ordonner causalement à la réception. Cependant, il a été prouvé que caractériser la causalité de messages de diffusion nécessite une structure avec au minimum une entrée par processus dans le système. Par conséquent, les algorithmes qui utilisent une telle structure pour caractériser la causalité ne passent pas à l'échelle. D'autres travaux passent à l'échelle en faisant des hypothèses sur le système, comme la topologie du réseau ou la propriété FIFO des canaux de communication. En revanche, ils ne tolèrent pas toutes les dynamiques possibles des systèmes distribués.

Dans cette thèse, nous proposons des algorithmes de diffusion causale qui passent à l'échelle et tolèrent les dynamiques des systèmes distribués.

Le premier algorithme fournit une diffusion causale pour les réseaux mobiles, composés de noeuds mobiles connectés par un réseau sans fil et de stations de support connectées par des canaux filaires. Ces réseaux ont des caractéristiques spécifiques: des noeuds mobiles avec des capacités limitées (calcul, stockage, énergie), des canaux de communication non fiables, et de la dynamicité de connexions dues à la mobilité et aux pannes de noeuds, ainsi qu'à leur opérations d'entrée et sortie du système.

La deuxième partie de la thèse aborde la diffusion causale mise en oeuvre avec des horloges de M (M ≤ N ) entrées, où N correspond au nombre de processus. Ces horloges tolèrent la variation du nombre de processus dans le système car leur taille ne dépend pas du nombre de processus dans le système. Cependant, elles ne caractérisent pas la causalité et les algorithmes les utilisant ne peuvent assurer l'ordre causal qu'avec une forte probabilité. Nous proposons tout d'abord un détecteur d'erreurs, basé sur des hachages, qui analyse l'horloge des messages avant de les délivrer afin de détecter les messages qui ne sont pas causalement viii ordonnés. Nous proposons ensuite un algorithme qui garantit que les messages marqués par le détecteur d'erreurs sont livrés dans l'ordre causal. Ensuite, nous proposons les Dynamic Clock Sets (DCS clocks), une nouvelle horloge logique qui est composée d'un ensemble d'horloges avec M ≤ N entrées (avec N étant le nombre de processus du système), et dont la taille peut être adaptée au nombre de messages concurrents dans le système.

Tous les algorithmes ci-dessus ont été implémentés en C++ et exécutés sur le simulateur OMNeT++. L'algorithme de diffusion causale pour les réseaux mobiles a été implémenté sur le framework INET d'OMNeT++, qui fournit une simulation de réseau réaliste, telle que des interférences sur le réseau sans fil, des couches réseau et la mobilité des noeuds, entre autres. Les résultats confirment que notre algorithme de diffusion pour les réseaux mobiles est plus performant que les algorithmes existants tout en faisant des hypothèses moins forte et réalistes sur le réseau. Les résultats expérimentaux sur le détecteur d'erreurs basé sur les hachages montrent qu'il détecte tous les messages dont les dépendances causales n'ont pas encore été livrées. Enfin, les expériences menées avec une diffusion causale implémentée avec les DCS clocks montrent que les DCS clocks s'adaptent bien et rapidement au nombre de messages concurrents dans le système. Distributed systems are composed of many processes that cooperate to provide a service. To that end, they share information, either through message passing or by using shared memory. In the message passing model, processes exchange messages by using the send and receive primitives. Many distributed systems provide a group communication service by using these two primitives to implement the primitives broadcast and deliver, which respectively sends a message to all processes of the system and delivers a message that have been previously broadcasted.

Many distributed and parallel applications also require that messages are delivered following a given order to ensure the consistency of information. Hence, events -in this case the broadcast and delivery of messages -must be ordered even if taking place at different processes. Humans usually use physical time to order events. However, physical clocks usually cannot be used to order events in distributed systems, because they are subject to clock drift [START_REF] Kopetz | Clock Synchronization in Distributed Real-Time Systems[END_REF][PR94], meaning that physical clocks of different processes that are initially synchronized might eventually de-synchronize.

Lamport introduced in 1978 the concept of logical time [START_REF] Lamport | Time, Clocks, and the Ordering of Events in a Distributed System[END_REF], which has been since then used to timestamp events in distributed systems. Several ordering approaches (e.g. causal, FIFO, total order) have been proposed in the literature to order events following logical time. Among them, Causal Order is a partial order that allows to track causality among events. It is defined by Lamport's happened before relationship [START_REF] Lamport | Time, Clocks, and the Ordering of Events in a Distributed System[END_REF]: for any two operations e 1 and e 2 , e 1 is said to causally precede e 2 , which is denoted as e 1 → e 2 , if (1) e 1 and e 2 occur on the same process and e 1 occurs before e 2 , (2) e 1 = send(m) and e 2 = receive(m) or (3) ∃ e 3 such that e 1 → e 3 and e 3 → e 2 (transitivity). Two events e 1 and e 2 are said to be concurrent when no causal relation exists between them (e 1 → e 2 and e 2 → e 1 ).

Causal broadcast ensures that broadcast messages are causally ordered, i.e., for any two messages m 1 and m 2 if the broadcast of m 1 causally precedes the broadcast of m 2 , then all processes deliver m 1 before m 2 . Introduced by Birman et al. [START_REF] Kenneth | Replication and Fault-Tolerance in the ISIS System[END_REF] in 1985, causal broadcast has been extensively investigated. Innumerable applications use it, such as publish-subscriber systems [de +17][LSB06], multimedia applications [START_REF] Baldoni | Broadcast with Time and Causality Constraints for Multimedia Applications[END_REF][Ple+06], online games [START_REF] Gilmore | A Survey of State Persistency in Peer-to-Peer Massively Multiplayer Online Games[END_REF], systems that provide distributed replicated causal data consistency [START_REF] Ahamad | Implementing and Programming Causal Distributed Shared Memory[END_REF], distributed databases [START_REF] Terry | Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System[END_REF][Sha+11], social networks [START_REF] Borthakur | Petabyte Scale Databases and Storage Systems at Facebook[END_REF], distributed collaborative editing [START_REF] Heinrich | Exploiting Single-User Web Applications for Shared Editing: A Generic Transformation Approach[END_REF][NMM16], among others.

Many causal broadcast approaches have been proposed in the literature. They either piggyback information on messages in order to causally order them at reception

[SES89][BSS91][KKS18][PRS96][AN96][TA99][MW17b]
, or they make assumptions on the system topology and communication channels to implicitly order messages [START_REF] Friedman | Causal Ordering in Deterministic Overlay Networks[END_REF][NMM18a] [START_REF] Blessing | Tree Topologies for Causal Message Delivery[END_REF], thus ensuring that they are received by processes already causally ordered, and that they can therefore be causally delivered upon reception without any control. Charron-Bost proved in [START_REF] Charron-Bost | Concerning the Size of Logical Clocks in Distributed Systems[END_REF] that in a distributed system without assumptions on the network topology and communication channels, the causality of broadcast events can only be characterized by a structure with one entry per process in the system. Hence, in a system with N processes, causality of broadcasted messages can only be characterized with a structure whose size is in O(N ). Consequently, solutions that attach causal information on messages often do not scale with the number of processes. To circumvent this limitation, some works propose structures whose size is independent to the number of processes [START_REF] Francisco | Plausible Clocks: Constant Size Logical Clocks for Distributed Systems[END_REF][MW17b], but algorithms using them might deliver messages out of causal order.

Several distributed systems are also dynamic (e.g. wireless or P2P networks) and are subject to failures, either of processes or communication channels. Processes might join and leave the system during execution making it difficult to maintain a system view. Processes can also be subject to transient failures, whose duration is bounded in time, as well as permanent failures, also said crash-failures, which last forever. Finally, communication channels over which processes communicate can also fail, or be unreliable, i.e., messages can be lost, corrupted, created, or altered.

Approaches that append causal information of size O(N ), where N corresponds to the number of processes in the system, do not scale. Approaches that organize the network into an overlay usually make assumptions on the network topology, which are often incompatible with the dynamics that characterize many distributed systems. They are thus not suited to such systems, or require extra handling to adapt them to such dynamics.

Therefore, the conception of causal broadcast algorithms require a trade-off between network assumptions, the size of causal information required to causally order messages, as well as other metrics such as delivery delays. Existing algorithms often do not tolerate the dynamics of distributed systems or the failure of processes neither of communication channels, and they often make unrealistic assumptions about communication channels (e.g., FIFO, reliability).

Contributions

The aim of this thesis is to propose new causal broadcast algorithms for dynamic distributed systems. Nowadays, such systems are composed of an ever-growing number of processes. Hence, we look for algorithms that scale well with the number of processes of the system. Moreover, the algorithms should tolerate the dynamics of distributed systems, by allowing topology changes, mobility of processes, as well as processes that join and leave the system during execution.

The first contribution of the thesis focuses on causal broadcast for mobile networks. Such networks are highly dynamic: processes can move, leave or join the system, and fail. Moreover, the wireless network over which they communicate is subject to interferences and is therefore unreliable. Finally, processes present many constraints that must be taken into account, such as limited battery, computation, or memory capacities. The proposed algorithm tolerates the dynamics of mobile networks, takes into account the constraints of processes, and is scalable since it uses only a few causal information to track the causality of messages.

The second contribution of this thesis focuses on causal broadcast based on clocks with M ≤ N entries, where N corresponds to the number of processes of the system. Such clocks scale well and tolerate process churn, but algorithms using them might deliver messages out of causal order. The proposition consists of two proposals that aim to increase the probability that processes deliver messages in causal order. We first propose an error detector which analyzes the clock value appended on broadcast messages before delivering them, in order to detect out of causal order deliveries. We then present an algorithm, that used in conjunction with error detectors, ensures that messages tagged as not causally ordered are 1.1. Contributions delivered in causal order. The second proposal proposes the DCS clocks, a new clock based on clocks of M (M ≤ N ) entries, and whose size can be adapted dynamically, which is particularly interesting in systems with a varying number concurrent messages.

A causal broadcast algorithms that tolerates the dynamics of Mobile Networks

Mobile networks are mainly composed of Mobile Support Stations, connected between each other through wired channels, and Mobile hosts, connected to stations through the wireless network. A causal broadcast algorithm for Mobile Networks should tolerate the many constraints inherent to mobile hosts and the wireless network, and it should also scale to handle a high number of Mobile Hosts as well as Mobile Support Stations. This contribution proposes a causal broadcast algorithm for Mobile Networks that is based on FIFO dissemination, which, by forwarding messages in FIFO order, ensures that there exists no path between two machines where messages travel out of causal order.

The algorithm is scalable and is designed for mobile networks. Hosts can join/leave the network and fail, permanently or transiently, at any time. They move freely and can be temporarily disconnected from the network when out of range of any station. We assume no reliable connection protocol, and the algorithm handles multiple concurrent connections by the same host. Resource limitations of hosts (computational and memory power, battery life) are handled by keeping causal information at stations, while hosts only keep very little control information. Messages piggyback only a few integers as control information. Obsolete messages cached by stations are discarded following a decentralized approach: a station discards a message once all hosts connected to it acknowledged the message. Consequently, stations only cache necessary messages. Furthermore, a high message traffic within a wireless cell, which leads to delivery delays as well as storage and communication overheads, only has a local impact.

We also present a second causal broadcast algorithm which extends the first one to tolerate the failure of stations. The algorithm gathers stations into groups, and the causal information stored at a station is replicated at the other stations of the group.

Both algorithms have been implemented on a realistic simulator, the INET framework of the simulator OMNeT++. Our evaluations show that both algorithms are scalable in both the number of hosts and stations, have a low message traffic and storage overhead, while handling mobile network dynamics without the constraining assumptions of existing causal multicast approaches [CK04] [START_REF] Benzaid | BMobi Causal: A Causal Broadcast Protocol in Mobile Dynamic Groups[END_REF].

Enhancing the accuracy of clocks with M ≤ N entries

Clocks with M entries [TA99][MW17b][GP03] [START_REF] Misra | The Bloom Clock for Causality Testing[END_REF] are usually much smaller than N , the number of processes in the system. Algorithms using such clocks scale well with the number of processes of the system since their size is independent of the number of processes. However, they do not characterize causality. Hence, algorithms that use them to causally order messages might deliver messages out of causal order, even though messages are usually delivered in causal order with a high probability.

The second contribution of this thesis works on M-entry clocks in order to reduce the number of messages that processes deliver out of causal order when implementing causal broadcast using them. It is divided in two proposals:

Error detectors We first determine the conditions required to provide a reliable error detector which detects all out of causal order deliveries. We show that these conditions are not realistic and that such an error detector can thus not be implemented under realistic assumptions.

Second, we propose an error detector. Processes call it before delivering a message m. It analyzes the clock of m to determine if m can be delivered in causal order. The proposed error detector is based on hashes: a process hashes the causal dependencies of a message m it wants to broadcast and appends this hash on m when broadcasting m. Processes that receive m then try to determine whether they delivered all of m's causal dependencies by building dependency sets and computing their hash. A theoretical analysis shows that the hash-based error detector misses out of causal deliveries only in case of hash collisions, which has a low probability to occur. During experiments, the proposed error detector missed no out of causal order delivery.

The error detector tags messages as causally ordered or not, but it does not inform which are the causal dependencies that have not been delivered locally. Hence, we propose an algorithm to identify missing causal dependencies. It has to be used in conjunction with an error detector. Our algorithm ensures that messages tagged as not causally ordered by the error detector are delivered in causal order.

Logical clock composed of a set of clocks with M ≤ N entries We propose a new clock, denoted Dynamic Clock Set (DCS ), which consists of a set of probabilistic clocks. The conception of the DCS clock results from the observation that the size M of an M-entry clock should be chosen based on the number of concurrent messages inside the system, because this metric determines the efficiency of clocks of size M ≤ N to causally order messages. However, existing clocks of size 1.2. Publications M ≤ N require fixing M at initialization, and M cannot change during execution.

A wrong choice of M may imply an oversized clock or in many messages delivered out of causal order. The size of DCS clocks can dynamically vary during execution, by adding or removing clocks of size M . We provide the operations required to modify the size of the clock as well as to compare them. We also propose an implementation of a causal broadcast algorithm using DCS clocks. Experimental results show that it achieves a higher accuracy in delivering messages in causal order than those using existing clocks of size M ≤ N and depending on the message load, also present a lower message overhead.

Publications

The following articles were published during the thesis. 

Work on causal broadcast in Mobile

Organization of the Manuscript

The rest of the thesis is organized as follows.

Chapter 2 presents some concepts and definitions relevant to this thesis, in particular, those related to distributed systems, time and causal order in distributed systems, the broadcast delivery primitives, and Mobile Networks.

Chapter 3 gives a summary of the related work relevant to this thesis. It comprises existing causal broadcast algorithms for distributed systems as well as the causal multicast algorithms (which can easily be adapted to causal broadcast) for Mobile Networks.

Chapter 4 presents two causal broadcast algorithms for Mobile Networks, based on the FIFO-dissemination approach. Both algorithms scale well and are tailored to the features of Mobile Networks.

Chapter 5 gathers the two proposals related to clocks of size M ≤ N where N corresponds to the number of processes in the system. We first propose an error detector based on hashes and which aims to detect out of causal order deliveries. Then, we propose an algorithm that ensures the causal delivery of messages tagged by the error detector. The second proposal consists of DCS clocks, a new clock based on probabilistic clocks, and whose size can vary dynamically.

Chapter 6 concludes the thesis and proposes future research directions.

Chapter 2 

Introduction

This chapter presents the concepts relevant to this thesis. Distributed systems are composed of processes and communication channels, which can both fail. Processes cooperate in order to execute some common task. To that end, they often need a common time measure, which they achieve by using logical time, introduced by Lamport in 1978. Distributed events must also often be ordered. Causal order, defined by the happened-before relation, is one of such orders. To share information with all processes of the system, processes use the broadcast primitive. Causal broadcast consists of broadcast messages ordered following causal order. It is used in many systems, such as Mobile Networks, which are composed of mobile hosts and mobile support stations, and which have specific constraints.

The following of the chapter is organized as follows: Section 2.2 introduces the concept of distributed systems. Section 2.3 defines the concept of time and causal order in distributed systems. Section 2.4 explains the broadcast primitive, and Section 2.5 gives some background about Mobile Networks.

Distributed systems

The first section introduces the concept of distributed systems. These systems are mainly composed of processes that communicate with each other either over communication channels or shared memory. In the distributed systems considered in this thesis processes communicate through communication channels by message passing, and shared memory is therefore not further considered. Both processes and communication channels are prone to failures. This section first presents the characteristics of processes and communication channels, then it introduces the failures that can occur on them.

Processes

Distributed systems are composed of many types of machines such as personal computers, laptops, mobile devices, cars, servers, etc. . . Processes are an abstraction of the machines on which a distributed system runs. Processes can be seen as threads: a process executes on a machine, and a machine might run several processes.

Distributed systems usually contain many processes. The set of processes of the system is denoted Π = {p 1 , .., p N }. Processes usually know Π as well as the number of processes of the system. Processes are said to have a partial view of the system when they only partially know Π. For example, in very large systems, maintaining a view of Π might be too costly in terms of memory consumption. Moreover, when processes join and leave the system it might be difficult, or even impossible, to maintain an up-to-date view of Π.

In a distributed system, each process executes its local algorithm(s) independently of the other processes. Most works assume processes to be asynchronous: each process executes its local algorithm(s) without making assumptions on the relative speed of other processes. Assuming an asynchronous model allows to make no assumption on the devices on which processes execute (computational power) or on the network connecting the devices (transmission delays). On the other hand, some works assume a synchronous model: a bound exists on the relative speed of processes, as well as on the communication delays between processes.

A distributed algorithm is composed of a set of local algorithms distributed over the processes of the system. Processes might execute different sets of local algorithms, such as in a client / server approach. Each process executes its algorithm(s) sequentially, i.e., it executes algorithm instructions one by one [START_REF] Raynal | Distributed Algorithms for Message-Passing Systems[END_REF]. Hence, instructions occurring on the same process are totally ordered following their execution order. Each instruction is considered to be atomic, which means that it is executed completely and cannot be interrupted in the middle. An instruction either produces an internal or external event [START_REF] Raynal | Distributed Algorithms for Message-Passing Systems[END_REF]. An example of internal event is the update of a local variable, while an external event is the sending or receiving of a message. Internal events only affect the process itself, and are, therefore, often omitted in a distributed computation. Conversely, external events also involve other processes, and result in an information exchange between processes [START_REF] Raynal | Logical Time: Capturing Causality in Distributed Systems[END_REF], such as the sending or receiving of a message, or a read/write operation on a variable stored in shared memory.

Communication model

Processes often cooperate to work jointly. To this end, they must communicate with each other to exchange information. The two main communication models are shared memory and message passing. Shared memory consists of a segment of memory shared among processes, and processes communicate by reading and writing variables stored in the shared memory segment. This thesis and the related work consider a model based on message passing. Hence, the following describes only the message passing model.

In the message passing model, processes communicate exclusively through messages sent over communication channels [START_REF] Raynal | Distributed Algorithms for Message-Passing Systems[END_REF]. A communication channel connects two processes. A distributed system can be represented by the graph G = (V, E), where V and E respectively consist of the set of processes and communication . Communication channels can be either bidirectional or directed, i.e., messages travel in both or only one given direction. In the following of this thesis communication channels are considered to be bidirectional.

The graph G is usually assumed to be connected, meaning that any two processes of the system can communicate with each other. Some works in the literature consider G to be complete, i.e., that a communication channel connects each pair of processes, as in Figure 2.1. Other works assume that each pair of processes can communicate either directly or through intermediate processes. For example, in Figure 2.2 process p 1 can communicate with process p 4 through intermediate processes like p 3 or p 2 then p 4 . The sequence of communication channels a message takes to travel from its source process p to its destination process p is called a path.

For example, a message m sent by p 1 to p 5 can take the paths {p 1 , p 3 }, {p 3 , p 5 } or {p 1 , p 2 }, {p 2 , p 4 }, {p 4 , p 5 }.

Communication channels are usually assumed to be reliable. A reliable communication channel does not lose, alter or create messages. Therefore, messages sent over reliable channels are received by the destination exactly once without modification of the data they contain.

A communication channel might reorder messages sent over it, because the transmission delays on a communication channel can vary from one message to another. A communication channel can for example be a logical channel, and no physical channel might directly connect the channel's two endpoints, or several physical channels connect the two endpoints. Therefore, two messages sent over the same communication channel might take different physical paths, which leads to different communication delays. Moreover, messages sent over the same physical path might have different transmission delays because of messages losses and retransmissions. Usually, a communication channel is either considered to be FIFO ordered or no assumption is made on the arrival order of messages sent over it. On a FIFO (First In First Out) channel messages are received in the same order as they were sent. For example, if a bidirectional communication channel connecting two processes p and p is FIFO, then p (resp. p) receives messages in the same order as p (resp. p ) sent them to p (resp. p).

Distributed systems are considered to be connected (each pair of processes can communicate with each other), either at any given moment or over time. On the other hand, in a non-connected system processes would not be able to communicate with all the other processes, and the system would therefore be composed of several independent smaller connected groups of processes. In a system connected at any given moment there exists a path, at any given moment, which connects any pair of processes. In a system connected over time, such as Evolving graphs [START_REF] Bui Xuan | COMPUTING SHORTEST, FASTEST, AND FOREMOST JOURNEYS IN DYNAMIC NET-WORKS[END_REF] or some classes of Time Varying Graphs [START_REF] Casteigts | Time-Varying Graphs and Dynamic Networks[END_REF] (TVG), processes are connected infinitely often over time by a path of communication channels that allows them to exchange messages.

Failure Models

Distributed systems are prone to failures, either on processes or on communication channels. Works in the literature assume processes and communication channels to be reliable or not. This section presents the different type of failure models, as well as their effects.

Processes execute on devices which can fail. The following failure models are defined in the literature:

• Omission model [START_REF] Raynal | Distributed Algorithms for Message-Passing Systems[END_REF]: An omission fault occurs when a process does not send (or receive) a message it is supposed to send (or receive) according to its algorithm. Omission faults result in message losses. Thus, an omission fault results in a process deviating from its algorithm.

• Crash failure model/ fail-silent crash [START_REF] Borg | A Message System Supporting Fault Tolerance[END_REF][SS83a]: A process that fails stops executing instructions for the rest of the execution. A crashed process stops sending and receiving messages.

• Crash/recovery model [START_REF] Skeen | A Formal Model of Crash Recovery in a Distributed System[END_REF]: A process that fails stops executing instructions, but it potentially recovers afterwards and resumes taking instructions. A process that fails temporarily loses the information stored in volatile memory, and only recovers the information stored on a stable support.

• Byzantine failure model [START_REF] Lamport | The Byzantine Generals Problem[END_REF]: A process that fails has an arbitrary behavior. It might stop executing instructions then resumes afterwards, as in the crash/recovery model. Or it might never stop executing instructions but executes some arbitrary instructions. It can even execute instructions against the algorithm and try to provoke a wrong execution of the algorithm.

A process that fails during an execution is said to be faulty. A process can be considered faulty during its failure, or starting from its failure to the end of the execution. A process that is not faulty during the whole execution is said to be correct. During an execution a process can fail and recover several times.

Communication channels are also prone to failures, which are:

• Message loss: Messages might be lost. Usually communication channels are assumed as fair-lossy or with no message losses. Fair-lossy communication channels ensure that if a message is sent an infinite amount of time, then it will be received an infinite amount of times.

• Message corruption: Messages might be corrupted, i.e., the information they contain might be altered. Corrupted messages are usually detected and handled by network protocols.

• Message creation: Messages might be created or duplicated.

• Channel failure: A communication channel might fail. Messages currently transiting over a failing communication channel are lost. A failed communication channel might recover, but messages which were in transit over it prior to its failure are lost.

Communication channels can thus be classified as: reliable, fair-lossy, or unreliable. A communication channel that is subject to none of the above failures is said to be reliable. A fair-lossy communication channel assumes that messages might be lost, but that a message that is sent an infinite number of times will be received by its destination an infinite number of times. An unreliable communication channel does no assumption on the reception of messages sent over it.

Time and causality in distributed systems

This section presents the notion of time and causality in distributed system. Time is a fundamental notion of the human way of thinking: we use it to plan the execution of tasks by associating to them a given duration and starting time. Therefore, providing a time measure in distributed systems renders the elaboration of algorithms for them much easier.

Three types of events occur on a process: internal events, the sending of messages, and the reception of messages. Internal events are naturally ordered following the execution order of the program, and they only impact other processes through the sending and reception of messages [START_REF] Raynal | Logical Time: Capturing Causality in Distributed Systems[END_REF]. Hence, we omit internal events and only consider the sending and reception of messages.

Physical clocks usually cannot be used to timestamp events in a distributed system because of clock drift [START_REF] Kopetz | Clock Synchronization in Distributed Real-Time Systems[END_REF][PR94]: Except for atomic and GPS clocks, which are expensive and bulky, physical clocks may have some ticks which are slightly faster or slower than the ticks of other clocks. Hence, even physical clocks that are synchronized at initialization might de-synchronize at an arbitrary (even if slow) rate over time. Consequently, the timestamp of an event on a device d might not be valid for processes executing on other devices than d, and, thus, cannot be used to order events in distributed systems.

Events in distributed systems can, therefore, usually not be timestamped with physical clock values. Nevertheless, Lamport introduced in 1978 both the concept of logical time [START_REF] Lamport | Time, Clocks, and the Ordering of Events in a Distributed System[END_REF], which is since used to timestamp events in distributed systems, and the happened-before relation used to order events timestamped with logical clocks. The happened-before relation, denoted →, is defined as follows:

Definition 2.1. Happened-before relation: Considering two events e 1 and e 2 , e 1 → e 2 , if and only if one of the three following conditions holds [START_REF] Lamport | Time, Clocks, and the Ordering of Events in a Distributed System[END_REF]:

(a) e 1 and e 2 occur on the same process and e 1 precedes e 2 .

(b) for a message m e 1 =send(m) and e 2 =deliver(m).

(c) there exists an event e 3 such that e 1 → e 3 and e 3 → e 2 .

The happened-before relation is shown in Figure 2.3, which represents the timeline of two processes, p 1 and p 2 , as well as the three conditions of the relation. Indeed, even though e 3,1 happens before e 1,2 on the figure, e 1,2 might happen on p 1 before e 3,1 happens on p 3 . The arrows represent the sending and reception of messages. For example, following condition (a), e 1,1 → e 1,2 . Following condition (b), e 3,1 → e 2,1 . Finally, following condition (c), e 3,1 → e 2,2 , and by transitivity we also have e 1,1 → e 3,3 . Generally, an event e 1 causally precedes an event e 2 if there exists a path from e 1 to e 2 [START_REF] Mattern | Virtual Time and Global States of Distributed Systems[END_REF].

Causal order

Many distributed applications require ordering events to ensure that applications have a consistent view of the system. Causal order ensures that processes handle messages while respecting the causal relation between them, as defined by the happened-before relation [START_REF] Lamport | Time, Clocks, and the Ordering of Events in a Distributed System[END_REF]. Therefore, a message is only delivered once all messages that causally precede it are delivered. However, communications between processes might not be causally ordered. Hence, processes must distinguish between the reception of a message on the network layer and the delivery of that message to the application to ensure that messages are delivered in causal order [START_REF] Birman | Lightweight Causal and Atomic Group Multicast[END_REF]. For example, in Figure 2.5, p 2 receives and delivers m 1 , then it sends m 2 , thus m 1 → m 2 . p 3 receives m 1 and delivers it. Then it receives m 2 and delivers it. Thus, it delivered m 2 in causal order. In Figure 2.6, p 3 receives m 2 before m 1 . Hence, it delivers m 2 out of causal order. The formal definition of causal order is as follows:

Definition 2.2. Causal order. Consider two messages m and m sent to the same process p, and send(m) and deliver(m) the events that correspond to the sending and delivery events of m respectively. If the send event of m causally precedes the send event of m , then p must deliver m before m , or more formally [START_REF] Raynal | The Causal Ordering Abstraction and a Simple Way to Implement It[END_REF]:

send(m) → send(m ) ⇒ deliver(m) → deliver(m )

Logical clocks

Several works propose to use logical clocks to capture time in distributed systems

[Mat80] [Fid88] [SM94].
Logical clocks have first been introduced by Lamport in 1978 [START_REF] Lamport | Time, Clocks, and the Ordering of Events in a Distributed System[END_REF]. A logical clock is basically a timestamp, which is used to order events.

In a system using logical clocks, each event is timestamped with a logical clock value. A function C : e → T attributes a logical clock to each event e, and the set of logical clocks C(e) form a time domain T . The time domain is partially ordered by the happened-before relation. The function C timestamps events such that the following property holds: For each two distinct events e i and e j , e i → e j ⇒ C(e i ) < C(e j ).

p 1 p 2 p 3 s(m 1 ) d(m 1 ) m 1 d(m 1 ) m 1 s(m 2 ) d(m 2 )
The system is said to capture causality when it satisfies the above property. On the other hand, it is said to characterize causality [START_REF] Schwarz | Detecting Causal Relationships in Distributed Computations: In Search of the Holy Grail[END_REF] when it satisfies the following, stronger, property:

For each two distinct events e i and e j , e i → e j ⇐⇒ C(e i ) < C(e j ).

Systems using logical clocks differ in the function C they use, as well as the algorithm to update logical clocks. The function C determines the time domain T . The algorithm called by a process to update logical clocks consists of two rules: one to update the logical clock when producing an event (send event or internal event), and a second one to update the logical clock when receiving a message.

Scalar clocks

In 1978, Lamport proposed scalar clocks which consists of a scalar, initialized at 0. Algorithm 1 describes the algorithm executed by processes in a system using scalar clocks. Every process p i maintains a scalar value C i as logical clock, and updates it at each event (internal event, or the sending or reception of a message).

Scalar clocks capture causality. Indeed, for any two events e i and e j , if e i → e j , then C(e i ) < C(e j ). However, scalar clock do not characterize causality. Indeed, for any two events e i and e j , we can have C(e i ) < C(e j ) while no causal relation exists between e i and e j . Hence, scalar clocks might order events which do not have 

C i = C i + d, d > 0 2: send(m, C i ) Upon reception of (m, C m ) 3: C i = max(C i , C m ) 4: C i = C i + d, d > 0 5: deliver(m)
Upon execution of an internal event e 6: Figure 2.7 is a system composed of three processes. The figure shows the scalar clock value after the execution of each event, as well as the scalar clock piggybacked on each message. This example shows that scalar clocks do not characterize causality: C(e 3,2 ) < C(e 2,3 ), while e 3,2 and e 2,3 are concurrent.

C i = C i + d, d > 0 7: execute(e) p 1 p 2 p 3 e 1,1 1 e 1,2 2 
e 2,1 2 
e 2,2 3 
e 2,3 4 
e 3,1 1 e 3,2 2 
e 3,3 5 

Vector clocks

Vector clocks, proposed independently by Fidge [START_REF] Fidge | Timestamps in Message-Passing Systems That Preserve the Partial Ordering[END_REF] and Mattern [START_REF] Mattern | Virtual Time and Global States of Distributed Systems[END_REF], use a vector clock of N integers as time domain, where N is the number of processes inside the system. Each process p i maintains a vector V i of size N . V i [i] and V j [j] with i = j respectively represent p i 's local time and p i 's knowledge of p j 's local time. Thus, V i consists of p i 's view of the global logical time, and p i uses it to timestamp events. Initially, all entries of vector clocks are set to 0. Algorithm 2 describes the algorithm executed by processes in a system using vector clocks.

Broadcast

Algorithm 2: Vector clock algorithm executed by p i When sending a messge m 1:

V i [i] = V i [i] + d, d > 0 2: send(m, V i ) Upon reception of (m, V m ) 3: ∀j ∈ [0, N -1], V i [j] = max(V i [j], V m [j]) 4: V i [j] = V i [j] + d, d > 0 5: deliver(m) Upon execution of an internal event e 6: V i [j] = V i [j] + d, d > 0 7: execute(e)
Schwarz and Mattern [START_REF] Schwarz | Detecting Causal Relationships in Distributed Computations: In Search of the Holy Grail[END_REF] defined the following relations to compare two vector clock timestamps: Let V i and V j be the vector clocks associated to the events e i and e j . We have:

• V i ≤ V j ⇐⇒ ∀k ∈ [1..N -1], V i [k] ≤ V j [k] • V i < V j ⇐⇒ V i ≤ V j ∧ ∃k ∈ [1..N -1], V i [k] < V j [k] • V i ||V j ⇐⇒ ¬(V i < V j ) ∧ ¬(V j < V i )
Schwarz and Mattern [SM94] also proved that vector clocks characterize causality.

For two events e i and e j of vector clock V i and V j respectively, we have:

• e i → e j ⇐⇒ V i < V j • e i ||e j ⇐⇒ V i ||V j Figure 2
.8 shows the same execution as Figure 2.7 with processes using vector clocks. Contrarily to scalar clocks, the comparison of the vector clocks of e 3,3 and e 1,3 shows that both events are concurrent.

Charron-Bost [START_REF] Charron-Bost | Concerning the Size of Logical Clocks in Distributed Systems[END_REF] proved that a structure of size N , where N is the number of processes of the system, is the minimal structure required to characterize causality. Hence, is it not possible to characterize causality with less information than that contained in vector clocks.

Broadcast

This section presents some background on the broadcast primitive. Many distributed applications such as client-replicated servers [START_REF] Cachin | Secure and Efficient Asynchronous Broadcast Protocols[END_REF] or parallel applications [TKB92] require a group communication service which allows a process to

p 1 p 2 p 3 e 1,1 [1,0,0] e 1,2 [2,0,0] e 2,1 [1,1,0] e 2,2 [1,2,1] e 2,3 [1,3,1] e 3,1 [0,0,1] e 3,2
[0,0,2]

e 3,3 [1,3,2] [ 1 , 0 , 0 ] [ 1 , 3 , 1 ] [ 0 , 0 , 1 ] Figure 2
.8: Example of a system using vector clocks send a message to all (broadcast) processes of a group. The broadcast primitive can be provided at the network layer, or it can be implemented at the application layer. We present the broadcast specifications, as well as several message orderings of broadcast messages. We also describe the broadcast primitive in systems prone to failures, since the distributed system of the first work in this thesis contains processes that might fail.

Broadcast specification

Two primitives are offered to the processes:

• Broadcast(m): called by a process to broadcast a message to all processes of a group. The function returns directly and does not block, i.e., it does not wait till all processes acknowledged the delivery of m.

• Deliver(m): called by a process to deliver m to the application. A process calls it once the delivery conditions of m are satisfied.

In a system without failures and in which all channels are reliable, a broadcast primitive must ensure the following properties:

• Validity: If a process delivers a message m from a process p, then p previously broadcasted m (no creation).

• Integrity: A process delivers a message m at most once (no duplication).

• Termination: a message broadcasted by a process is eventually delivered by all processes.

Broadcast message ordering

Many applications require broadcast messages to be ordered. However, as seen in Figure 2.5, processes can receive messages in any order, due to network delays for example. Hence, a broadcast primitive that orders messages must implement a mechanism to store messages and delay their delivery to the application till their delivery conditions are satisfied. The literature gives mechanisms to ensure three orders of broadcast messages [KS08]:

• FIFO order: Messages broadcasted by the same process are delivered in their broadcast order by all processes [START_REF] Kshemkalyani | Distributed Computing: Principles, Algorithms, and Systems. First[END_REF]. Formally, if a process broadcasts m 1 then m 2 , then all processes will deliver m 1 before m 2 .

• Total order: Processes deliver messages in exactly the same order [START_REF] Lamport | Time, Clocks, and the Ordering of Events in a Distributed System[END_REF]. Formally, if a process delivers m 1 before m 2 , then no process delivers m 2 before m 1 . Note that Total order does not imply Causal order. For example, if m 1 → m 2 and if all processes deliver m 2 before m 1 , then they respect Total but not Causal order.

• Causal order: Processes deliver messages while respecting the causal relation between them [START_REF] Lamport | Time, Clocks, and the Ordering of Events in a Distributed System[END_REF]. Formally, if the broadcast of m 1 causally precedes the broadcast of m 2 , then processes deliver m 1 before m 2 .

In a system without failures and in which all channels are reliable, ordered broadcast primitives must ensure the properties of Validity, Integrity and Termination defined in Section 2.4.1, as well as one of the ordering properties given above.

Reliability of the broadcast primitive

In a distributed system prone to failures some processes might not receive all broadcast messages. For example, a process might fail while executing the broadcast primitive. Reliable broadcast requires the following properties to be satisfied:

• Validity: If a correct process broadcasts a message m, then it eventually delivers m.

• Integrity: A correct process delivers a message m at most once (no duplication).

• Termination: A message broadcasted by a correct process is eventually delivered by all correct processes.

• Agreement: If one correct process delivers a message m, then all correct processes eventually deliver m.

Reliable broadcast does not make any assumptions on behalf of faulty processes, contrarily to Uniform reliable broadcast which respectively replaces the Agreement and Integrity properties by the Uniform Agreement and Uniform Integrity properties:

• Uniform Agreement: If a process (including faulty processes) delivers a message m, then all correct processes eventually deliver m.

• Uniform Integrity: A process (including faulty processes) delivers a message m at most once (no duplication).

Mobile Networks

This section presents Mobile Networks. A chapter of this thesis focuses on Mobile networks with a core infrastructure, also called Cellular Networks [START_REF] Miao | Fundamentals of Mobile Data Networks[END_REF]. Completely decentralized networks such as Ad-hoc networks or WSN networks are out of the scope of this thesis. In recent years, there is a fast increasing number of small devices called hosts with the development of mobile devices and the Internet of Things (IoT). Hosts communicate with each other through a core network, composed of a set of servers called stations. Hosts communicate with stations through wireless channels. The network composed of stations and hosts is called a Mobile Network. The characteristics of Mobile Networks with a core infrastructure make most of the causal broadcast algorithms not suitable to them. This section first presents the characteristics of Mobile Networks, then it presents the specifications of causal broadcast in Mobile Networks.

Network characteristics

Processes communicate through two networks, namely a wired and a wireless network, whose characteristics are very different [START_REF] Forman | The Challenges of Mobile Computing[END_REF].

In the wireless network, processes communicate by using wireless antennas. Such antennas have a given range which defines the distance a message can travel. The characteristics of wireless network are:

• Unreliability: Messages might be lost due to interferences. Hence, a control mechanism must be implemented to re-transmit messages and acknowledge their reception.

• Low bandwidth: Wireless networks have a low bandwidth, especially when compared to the much higher bandwidth of wired networks. Hence, the number of messages sent over the wireless network, as well as the control information attached to them, should be reduced as much as possible.

• Shared medium: The wireless network is shared among all processes: a message m sent by process p 1 to a process p 2 might be lost due to a message m sent by a process p 3 to any other process. Contrarily, a wired communication channel is shared only by its two endpoints. Therefore, the collision of messages is handled much easier and is much lower on wired communication channels than on wireless ones.

• Broadcasting: Broadcasting a message to all processes over the wireless network is very easy: a message sent over a wireless antenna is inherently received by all processes which are in the antenna's communication range.

The wireless network is used for communication between hosts and stations. Hosts communicate with stations exclusively through the wireless network. A host only communicates with the station to which it is connected [START_REF] Imielinski | Mobile Wireless Computing: Solutions and Challenges in Data Management[END_REF]. The characteristics of wireless networks impose several constraints: the number of messages sent over it should be limited, as well as the size of the control information messages contain. Moreover, a mechanism should be implemented to handle message retransmission and message acknowledgment. Such characteristics are well suited to the UDP transport protocol, which provides a broadcast primitive, and which does not make any assumptions (such as reliability) on messages sent over the network.

The characteristics of wired networks are:

• High bandwidth: Wired networks are composed of high speed communication channels and have therefore a high bandwidth.

• Reliability: Wired networks are considered to be reliable. Hence, messages sent over them are eventually received (as long as the destination is a correct process).

• FIFO: Communication channels are considered to be FIFO ordered: if processes p 1 and p 2 that are connected through a direct communication channel and p 1 sends a message m 1 then a message m 2 to p 2 , then p 2 will receive m 1 before m 2 .

• Point-to-Point communication: Wired networks are inherently based on point-to-point communications: they are composed of wired channels whose two endpoints communicate through it point-to-point. The wired network is exclusively used by stations, which communicate with each other exclusively through it. The characteristics of wired networks make them much more suited to a high number of messages and control information attached on messages [START_REF] Imielinski | Mobile Wireless Computing: Solutions and Challenges in Data Management[END_REF]. The TCP protocol is well suited to wired networks since it provides the guarantees they give: reliability, FIFO order of messages, and pointto-point communications.

To conclude, the throughput of mobile networks is often limited by the wireless network which has lower capacities than the wired network. Hence, algorithms for mobile networks usually put as much of the message load and control information on the wired network in order to relieve the wireless network.

Mobile Support Station and Mobile Host characteristics

Hosts and stations have very different characteristics. Basically, hosts have much more constraints and limitations than stations [START_REF] Forman | The Challenges of Mobile Computing[END_REF][BAI94]. Figure 2.9 shows an example of a Mobile Network, with stations forming the core of the network and hosts the endpoints.

Mobile Support Stations

The core of Mobile Networks is composed of mobile support stations, called stations. Mobile Networks contain much more hosts than stations [START_REF] Imielinski | Mobile Wireless Computing: Solutions and Challenges in Data Management[END_REF]. Each station is equipped with an antenna. The area covered by the transmission range of a station's antenna is called the station's cell. A station is at the center of its cell, and communicates with the hosts inside its cell through the wireless network.

The characteristics of stations are as follows:

• Fixed location: A station has a fixed position and acts as a relay for hosts in its cell. Hence, the localization of stations is usually chosen to have a maximum area coverage.

• Reliability: Stations are usually considered to be reliable through hardware replication, because a failing station would disconnect the area covered by it. Ensuring area coverage could also be achieved with cell overlapping, but interferences on the wireless network should be avoided, and cell overlapping would increase interferences significantly.

• High energy capacity: Stations are connected to an energy source and have, therefore, no energy limitation.

• High computational and memory capacity: Stations have a large storage and computational capacity, or at least a much higher one than hosts, since they are not constrained by their size and energy consumption.

To conclude, stations are the backbone of Mobile Networks: they are usually reliable, do not move, and have large capacities. Hence, they can execute heavy algorithms.

Mobile Hosts

Mobile Networks usually contain many Mobile Hosts, denoted hosts. They are the active actors: they are the source and destinations of messages, while stations ensure that messages are delivered to the destination(s). Hosts can either be connected to a station at the beginning of the execution, or they can join, and also leave, the system during execution [START_REF] Imielinski | Mobile Wireless Computing: Solutions and Challenges in Data Management[END_REF].

The characteristics of hosts are as follows:

• Dynamics: A host might join and leave the network at any moment. Most models assume that a host leaves the network only after it successfully notified the station to which it is connected.

• Mobility: Hosts move freely. A host might leave the cell of the station to which it is connected, and moves to another cell. The host must then connect to the station of its new cell. It might also move temporarily to an area which is not covered by any station, and might lose, therefore, temporarily the connection with the rest of the system.

• Limited energy: Hosts are mobile devices and have, therefore, a limited energy capacity.

• Limited computational and memory capacity: Hosts have a limited computational and memory capacity. They are restricted by their size, as well as by their energy capacities.

• Low reliability: Hosts are subject to transient and permanent failures. For example, a host is temporarily faulty until its battery is recharged, or is permanently faulty if it has a hardware failure. A faulty host is fail-silent and stops sending, receiving, processing messages, and loses all variables stored in volatile memory. Hence, a host that recovers might first need to obtain its lost information.

Hosts are the active actors of Mobile Networks. They can execute the functions:

• Join(): Called by a host to join the system. The host connects itself to a station in range of its wireless antenna. A host is considered to have joined the system once the station receives its join request.

• Leave(): Called by a host to leave the system. A host is considered to have left the system once the station receives its leave request.

• Connect(): Called by a host when it moves into a new cell in order to connect itself to the new cell's station.

• Broadcast(m): Called by a host to broadcast a message m.

• Deliver(m): Called by a host to deliver a message m. A host is notified when it buffers such a message m, and calls Deliver(m) in the notification-handler.

To conclude, hosts are the active actors of Mobile Networks: they broadcast and deliver messages, and join or leave the system during execution, while stations ensure that hosts can communicate with each other. Their capacity limitations (energy, computational, storage) should be taken into account when conceiving algorithms for mobile networks. 

Ordering messages in Mobile Networks

Many distributed applications require to order application messages (FIFO, causal or total order) [START_REF] Kshemkalyani | Distributed Computing: Principles, Algorithms, and Systems. First[END_REF]. To this end, messages are usually buffered at reception till their respective delivery conditions are satisfied. A control mechanism then orders messages using control information attached on messages. Algorithms are divided in two parts: one executed by hosts and another executed by stations.

As previously discussed, stations have much higher capacities than hosts [START_REF] Kshemkalyani | Distributed Computing: Principles, Algorithms, and Systems. First[END_REF]. Moreover, they are usually reliable, while hosts might fail. Hence, most of the algorithm to order messages is usually put on stations. A station usually holds the ordering information on behalf of hosts connected to it. Hosts then only need to maintain a small set of information to ensure the causal delivery of messages.

A host is connected to at most one station at a given moment, which is the station that holds its ordering information. A host discards messages from stations other than the one to which it is connected. Hence, even though a host can receive messages from multiple stations through the wireless network, it discards those that do not come from the station to which it is connected. A Mobile Network, as the one on the left of Figure 2.10, can then be represented as the one on the right of Figure 2.10 where dashed lines represent the connections of hosts with stations, and the solid lines the wired connections between stations.

Keeping information on stations to order messages creates a new challenge: when a host moves to another cell, that information must be transferred to the station of the host's new cell. In this case, the station of the host's previous cell should exchange messages with the station of the host's new cell. This message exchange is called a Handoff [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF].

Hosts can also join the system during execution. A host which joins the system during execution might not deliver those application messages broadcasted prior to its arrival, because those messages might already be discarded (the alternative would be to never discard any message) by the stations. Hence, a host that joins the system during execution will not deliver those messages discarded prior to its arrival. The Termination property of causal broadcast is therefore modified as follows:

• Termination: A message m sent by a host is eventually delivered by all hosts that joined the system when m was sent and which did not leave the system.

To conclude, stations hold most of the information and execute the majority of the algorithm to order messages. This usually requires stations to exchange messages when a host moves from one cell to another, in order to pass that information from the host's previous cell's station to the host's new cell's station (Handoff). Moreover, the termination property of causal broadcast must be adapted to Mobile Networks.

Conclusion

This chapter presented the background required to understand the following of this thesis. The first section presented the model of distributed systems, on which the work of this thesis is based. The second section introduced the concept of time as well as causal order, while the third section presented the broadcast primitives.

The fourth section introduced the model of Mobile Networks, for which the first part of this thesis provides a causal broadcast primitive. 

Introduction

Introduction

This chapter presents the work of the literature relevant to this thesis.

Causal broadcast algorithms for distributed systems can be classified into six categories, based on the causal order structure they use and the assumptions they make. We present and compare the algorithms of each category. Finally, we compare the categories and give the advantages and disadvantages of each of them.

Most distributed algorithms are not adapted to the specific characteristics of Mobile Networks which are composed of Mobile Hosts and Mobile Support Stations. Most of the control and storage is done on stations, since hosts have much lower resources.

The first causal multicast algorithms for mobile networks were proposed in [START_REF] Sridhar Alagar | Causally Ordered Message Delivery in Mobile Systems[END_REF], and other causal multicast algorithms for mobile networks can be seen as variations of these algorithms. Some algorithms were also proposed to tolerate failures

[AB94][PKV96][ARV93][ABL04].
The first section describes existing causal broadcast algorithms for distributed systems in general. The second section describes existing causal order algorithms for Mobile Networks, for which most causal broadcast algorithms are not adapted due to the specific features of such networks.

Causal Broadcast

Birman et al. [START_REF] Kenneth | Replication and Fault-Tolerance in the ISIS System[END_REF] implemented the first causal broadcast algorithm in 1985 inside the ISIS system [START_REF] Kenneth | Replication and Fault-Tolerance in the ISIS System[END_REF][BJ87] [START_REF] Birman | Reliable Distributed Computing with the ISIS Toolkit[END_REF]. The algorithm causally orders messages by attaching to them the log of all messages that causally precede them. ISIS is fault-tolerant and ensures that a broadcasted message is either received by all or no correct process. However, attaching on messages the log of their causal precedences is not sustainable because the logs eventually become very large.

Many approaches have since been proposed to ensure causal broadcast with fewer causal information and/or assumptions on the system. Causal broadcast algorithms for distributed systems can be classified in six categories, based on the causal order structure they use and the assumptions they make:

1 -The algorithms of the first category attach to messages all the causal information required to causally order them.

-

The algorithms of the second category organize the network in an overlay and disseminate messages over that overlay more efficiently, i.e., by using less information than vector clocks.

3 -The algorithms of the third category causally order messages with a high probability by using vector clocks whose size is independent to the number of processes inside the system.

-

The algorithms of the fourth category disseminate messages through FIFO channels thus ensuring that messages are implicitly causally ordered upon reception. Therefore, no causal information is appended on messages.

-

The algorithms of the fifth category append physical clock value timestamps on messages, and use those timestamps to order messages. They require synchronized physical clocks.

6 -The algorithms of the sixth category define causal order on the application level. Those approaches can be combined with the algorithms of the other categories.

Tracking causal order with structures of size O(N )

Algorithms of the first category attach on messages all information required to causally order messages. We first describe the approach using vector clocks with one entry per process. Second, we present optimizations of vector clocks to reduce their size or enable processes joining and leaving the system during execution. Third, we describe prime clocks which encode vector clocks into one scalar number.

Vector clocks with one entry per process

Schiper et al. propose in [START_REF] Schiper | A New Algorithm to Implement Causal Ordering[END_REF] to heavily reduce the size of causal information attached on broadcast messages by using vector clocks [START_REF] Fidge | Timestamps in Message-Passing Systems That Preserve the Partial Ordering[END_REF][Mat80] instead of a log of causal precedences [START_REF] Kenneth | Replication and Fault-Tolerance in the ISIS System[END_REF]. Birman et al. [START_REF] Birman | Lightweight Causal and Atomic Group Multicast[END_REF] proposed in 1991 a causal broadcast algorithm using vector clocks (see Algorithm 3) which was also implemented in the ISIS system.

The algorithm uses a causal order structure composed of a vector clock with one entry per process inside the system. Each process p i maintains a local vector clock V i whose entries are initialized to 0. Before broadcasting a message m, p i increments V i [i] and attaches V i to m. When p i receives a message m of vector clock V m from a process p j , it caches m until the following condition is satisfied:

∀k ∈ [0, N -1]\{j}, V m [k] ≤ V [k]∧V m [j] = V i [j]-1
. This condition ensures that p i delivers all messages that causally precede m before delivering m. When p i delivers m, it also increments the entry V i [j] to register its delivery of m.

The advantage of vector clocks is that the size of causal information does not depend on the number of messages but on the number of processes, which is often much smaller. However, vector clocks thus do not scale with the number of processes, since one entry of the vector clock is associated to each process. Moreover, adding or removing processes during execution requires an additional algorithm to modify the size of the vector clock.

Charron-Bost [START_REF] Charron-Bost | Concerning the Size of Logical Clocks in Distributed Systems[END_REF] proved that the minimal data structure required to characterize causality when broadcasting in a system with N processes has a memory complexity of O(N ). Hence, vector clocks with one entry per process are the minimal data structure that characterize causality. Some algorithms presented in the following have an average memory complexity lower than O(N ), but still have a memory complexity of O(N ) in the worst case. Algorithms which have a lower memory complexity need to include assumptions about the system, such as FIFO channels or a given system topology.

Algorithm 3: Vector clock algorithm [START_REF] Schiper | A New Algorithm to Implement Causal Ordering[END_REF] executed by p i p i broadcasts a messge m 1:

V i [i] = V i [i] + 1 2: broadcast(m, V i ) Upon reception of (m, V m ) from p j at p i 3: ∀k ∈ [0, N -1]\{j}, waitU ntil(V m [k] ≤ V [k] ∧ V m [j] = V i [j] -1) 4: V i [j] = V i [j] + 1 5: deliver(m)
Golden et al. [RGI] proposes a vector clock whose size can vary during execution, thus tolerating process churn. It requires FIFO channels as well as some additional data structures to keep track of terminated processes. In order to handle process churn, Wang et al. [START_REF] Wang | An Efficient Implementation of Vector Clocks in Dynamic Systems[END_REF] proposes to organize processes in a logical ring topology where channels are FIFO.

Almeida et al. have proposed Interval Tree Clocks (ITC) [START_REF] Almeida | Interval Tree Clocks: A Logical Clock for Dynamic Systems[END_REF] in 2008, which are vector clocks that allow processes to join and leave the system. Therefore, they are adapted to dynamic systems. An ITC is a tree structure, whose size adapts dynamically to the number of nodes inside the tree. The set of messages as well as the set of processes are each represented by an ITC. Authors provide primitives to create, remove and reuse ITC entries (i.e., provide unique message and process IDs). Experiments show that in static systems the memory consumption of ITCs is lower than the one of vector clocks, and, in dynamic systems the memory consumption of ITCs is slightly higher than the one of an algorithm which does a mapping of IDs to counters. Hence, ITCs are an alternative to vector clocks in dynamic systems. Baldoni [START_REF] Baldoni | A Positive Acknowledgment Protocol for Causal Broadcasting[END_REF] pointed out that traditional vector clock algorithms do not reset vector clock entries, thus causing them to grow indefinitely. Authors propose to bound the values of vector clock entries by using the sequence number of message acknowledgments, which are commonly used by protocols such as TCP. The algorithm uses a vector clock with one entry per process, with each entry being bounded by k, i.e., ∀i, 0 ≤ V [i] < k. A process delays the broadcast of new messages such that it has at most k simultaneous broadcasted messages that are not acknowledged by other processes. A process that delivers a message m sends an acknowledgment to the sender p i of m, and increments the entry V [p i ] as follows:

V [p i ] = (V [p i ] + 1)%k.
Bounding the values of vector clock entries avoids their overflowing and reduces the number of bits on which they are encoded. However, those vectors still require one entry per process, thus making them not scalable with the number of processes.

Singhal and Kshemkalyani [START_REF] Singhal | An Efficient Implementation of Vector Clocks[END_REF] and Birman et al. [START_REF] Birman | Lightweight Causal and Atomic Group Multicast[END_REF] proposed an algorithm based on compressed vector clocks, where a process only attaches on messages the entries it modified since its last broadcast. Each process p i maintains a vector clock V i of N entries, as well as a data structure of size N to keep track of modified entries of V i since p i 's last broadcast. This approach can greatly reduce the size of causal information attached on messages when only a few processes broadcast most of the messages. However, in the worst case messages carry N tuples (entry, value), i.e., the causal information overhead is in O(2 * N ). Hence, the compression effectiveness depends on the locality and temporality closeness of message broadcasts, as shown by Lee et al. [START_REF] Lee | Performance Evaluation of Incremental Vector Clocks[END_REF]. Moreover, this approach is not adapted to dynamic systems. 

, ..v k ∈ N such that k = i n v i i .
For example, 10 = 2 1 * 5 1 or 1530 = 2 1 +3 2 +5 1 +17 1 , and there exists no other prime factorization of 10 and 1530.

Causal information is encoded in EVCs. Instead of associating to each process a unique vector clock entry, authors associate to each process p i a unique prime number n i . Process p i also maintains a number k i initialized to 1. When broadcasting a message m, p i multiplies k i by n i and attaches the result to m. When p i receives m with attached number k, it first computes the prime factorization of k. Let's consider the prime factorization of k = j n v j j . The vector clock corresponding to this prime factorization is V = [v 0 , v 1 , ..v n ], with n i being the prime number associated to process p i . Hence, p i must first deliver, ∀k, v k messages from process p k before delivering m. Authors provide the operations required to encode, compare, and merge EVCs.

The first advantage of EVCs is that they tolerate process churn, since each new process simply takes the next lowest unassigned prime number. However, a mechanism must ensure that two processes do not take the same prime number. On the other hand, encoded vector clocks have a high space and operation complexity [START_REF] Kshemkalyani | On the Growth of the Prime Numbers Based Encoded Vector Clock[END_REF]. In fact, the smallest prime number is 2. Hence, each broadcasted messages multiplies k by at least 2. Therefore, a message that causally depends on n messages has an attached number k > 2 n , i.e., k grows exponentially. Thus, the number of bits required to store k grows with each broadcasted message, as well as the operation complexity to factorize k. Simulation results [START_REF] Kshemkalyani | Prime Clock: Encoded Vector Clock to Characterize Causality in Distributed Systems[END_REF] show that EVCs grow very fast.

Pozzetti and Kshemkalyani [START_REF] Pozzetti | Resettable Encoded Vector Clock for Causality Analysis With an Application to Dynamic Race Detection[END_REF] propose the Resettable Encoded Vector Clock (REVC) to bound the size of EVCs. The growth of an EVC can be bounded by assigning to it a given number of bits, and resetting it whenever it overflows. Each process keeps an EVC history in which it stores previous EVCs and to which it adds its EVC before resetting it. A process appends its EVC on messages it broadcasts. Hence, RECV still have an unbounded linear growth with the number of messages in the system. To tackle this problem, the authors propose to remove obsolete EVCs by regularly cleaning the EVC history.

Direct dependencies (Causal barrier)

Prakesh et al. [START_REF] Prakash | An Efficient Causal Ordering Algorithm for Mobile Computing Environments[END_REF] showed that a message's direct dependencies are sufficient to ensure its causal delivery. The direct dependencies of a message m are the messages m such that m → m and no message m" exists such that m → m" → m. For example, Figure 3.1 shows the broadcast of three messages m 1 , m 2 and m 3 , with m 1 → m 2 → m 3 . In this example, m 2 is a direct dependency of m 3 , since no message m exists such that m 2 → m and m → m 3 . Conversely, m 1 is not a direct dependency of m 3 , and is said to be an indirect dependency, because m 1 → m 2 and m 2 → m 3 .

The algorithm presented in [START_REF] Prakash | An Efficient Causal Ordering Algorithm for Mobile Computing Environments[END_REF] uses direct dependencies to track causality. It mainly focuses on causal multicast but is easily adaptable to causal broadcast, as explained in the paper. Hence, only the broadcast case is detailed here. Each process p i keeps a counter seq i to uniquely identify messages it broadcasts with the id (p i , seq i ). Each process also keeps two vectors: one of N entries to track which messages have been delivered by other processes, and a dynamic one called CB, which stores the IDs (p k , seq k ) of direct dependencies of the next message to broadcast. The size of CB is upper bounded by N , the number of processes, but is often much smaller. When process p i broadcasts a message, it increments seq i then broadcasts (m, CB i , (p i , seq i )). Moreover, it resets CB i to {p i , seq i }. When p i delivers a message m = (CB k , (p k , seq k )), it removes from CB i the entries that are contained in CB k (CB i = CB i \CB k ), since they become indirect dependencies through m (∀m k ∈ CB k , m k → m → m", with m" being the next message that p i broadcasts). Therefore, p i reduces the size of CB i when broadcasting a message, or when delivering a message which has direct dependencies contained in CB i .

The size of causal information attached on messages depends on the number of messages broadcasted per second inside the system, and not the number of processes. Hence, it scales well with the number of processes. Moreover, it tolerates process churn and is therefore adapted to dynamic systems. Cai et al. [START_REF] Cai | Causal Order Delivery in a Multicast Environment: An Improved Algorithm[END_REF] further reduce the size of causal information attached on messages when using the algorithm for causal multicast. Chandra et al. [START_REF] Chandra | Performance of the Optimal Causal Multicast Algorithm: A Statistical Analysis[END_REF] analyze the performance of the algorithm under various network conditions and show that it scales well with the number of processes.

Organizing processes in hierarchical overlays

Organizing processes in a hierarchical overlay to provide causal broadcast was first proposed by Adly and Nagi [START_REF] Adly | Maintaining Causal Order in Large Scale Distributed Systems Using a Logical Hierarchy[END_REF]. Taguchi et al. present a similar approach in [START_REF] Taguchi | Causally Ordered Delivery for a Hierarchical Group[END_REF]. In [START_REF] Adly | Maintaining Causal Order in Large Scale Distributed Systems Using a Logical Hierarchy[END_REF] processes are organized in a logical multilevel hierarchy, called HARP [START_REF] Adly | A Hierarchical Asynchronous Replication Protocol for Large Scale Systems[END_REF], which allows processes to send and receive messages from only a few processes. Processes are organized into clusters, and clusters are organized into a tree. Each cluster is connected to its parent cluster through a father process in its parent cluster. A process uses a vector clock to causally order messages inside its cluster and with its parent/child processes in other clusters. Hence, a process keeps a vector clock to track causality in regard to only a (small) subset of processes inside the system. Therefore, a process maintains a vector clock whose size is only equal to the size of that subset of processes. The algorithm is implemented over an unreliable network and processes may fail, leading to temporary network partitions. Processes store causal information on stable support. A restructuring algorithm is provided to expand and reorganize the network. Processes can also join and leave the network. However, they cannot move from one cluster to another. Moreover, concurrent messages are reordered at processes which connect clusters.

Evropeytsev et al. [Evr+16][Evr+17] proposed an algorithm for Peer-to-Peer networks. Processes either belong to a cluster or not. Each cluster has a superpeer. Processes inside a cluster communicate with processes outside it through the cluster's super-peer. Super-peers and processes that do not belong any cluster form a cluster. Inside a cluster, processes store direct dependencies in bit vectors, which have a maximum size of g bits, where g corresponds to the number of processes inside the cluster. The advantage of this algorithm is that the causal information carried by messages depends on the number of peers inside the cluster, and not the total number of peers, which is usually much higher. Moreover, the algorithm uses direct dependencies and not a structure with one entry per process inside the system. However, no mechanism is provided to handle failures, and concurrent messages are reordered at the super-peer level. Taguchi and Takizawa [START_REF] Taguchi | Two-Layered Protocol for a Large-Scale Group of Processes[END_REF] and Hsiao and Liao [START_REF] Hsiao | Domain-Based Causal Ordering Group Communication in Wireless Hybrid Networks[END_REF] provide similar algorithms, which use vector clocks instead of direct dependencies to track causality.

De Araujo et al. presented VCube-PS, a causal multicast algorithm [START_REF] Paulo De Araujo | A Communication-Efficient Causal Broadcast Protocol[END_REF] built on top of a VCube [START_REF] Duarte | VCube: A Provably Scalable Distributed Diagnosis Algorithm[END_REF], which organizes processes in a hypercube-like topology. Authors extend the algorithm to causal broadcast in [de +18a][de +18b]. Authors observe that building a single tree to disseminate messages induces overheads in terms of tree maintenance in presence of process churn, as well as delays for message propagation. Moreover, the message load is not well-balanced in the case of multicast, since messages transit more over some processes, like the root. The algorithms use direct dependencies [START_REF] Prakash | An Efficient Causal Ordering Algorithm for Mobile Computing Environments[END_REF] to ensure causal order. Messages are propagated through multiple spanning trees, which are built dynamically and whose construction by processes only uses local information. A process that broadcasts a message becomes the root of the spanning-tree used to propagate that message. Therefore, no global tree is maintained. The VCube has logarithmic properties and ensures, for example, that a path of log(N ) hops exists between each pair of processes. Since messages are propagated over different paths, they might be received out of causal order. A process can infer the spanning trees built by other processes. It takes advantage of the path intersections of the different spanning trees, by delaying to its children in a message's propagation tree, the forwarding of the messages for which it knows that they did not deliver all causal dependencies yet. Hence, processes group messages without inducing any overhead. The advantage of VCube-PS is that the overlay structure is maintained dynamically, and the VCube properties ensures a log(N ) path between each pair of processes, thus keeping the delays introduced by the overlay low. However, the system must implement a VCube, and the algorithm does not tolerate process churn nor failures. Santos and Rodrigues [START_REF] Santos | Localized Reliable Causal Multicast[END_REF] introduced localized causal broadcast, where each process keeps information of only processes at up to 2f + 1 hops, where f is the maximum number of simultaneous tolerated failures. Processes track causal order with a vector clock with one entry for each process at up to 2f + 1 hops. Process failures, which cause multiple receptions of the same message, are handled by appending on messages the identifier of the communication channels they might follow. Communication channels are assumed to be FIFO. The algorithm organizes processes in a tree, and avoids partitioning by adding for each process a communication channel with f + 1 distinct other processes. When process j broadcasts a message m, it attributes to m an identifier (source, target, seq) for each of its communication channels. Each process that receives m also adds an identifier (source, target, seq) for each of its communication channels. Processes remove the tuples in a message's identifiers of processes at a distance higher than 2f + 1 hops. However, f + 1 tuples are added to the message's identifier at each hop, leading to a causal information overhead of O(f 2 ). Those identifiers are used in case of a process failure to handle multiple reception and avoid multiple deliveries. The path identifiers and causal information are attached on messages, leading to causal information of size O(f 2 ) attached on messages. The advantage of the algorithm is that it tolerates up to f + 1 simultaneous failures. However, processes must maintain causal information of processes at up to 2 * f + 1 hops.

Several hierarchical approaches [START_REF] Prakash | Dependency Sequences and Hierarchical Clocks: Efficient Alternatives to Vector Clocks for Mobile Computing Systems[END_REF] have been tailored for Mobile Networks, which have inherently a hierarchical two-layered composition: the core is composed of Mobile Support Stations, to which Mobile Hosts are connecting themselves (see Section 2.5). Since the first contribution of this thesis focuses on causal broadcast in mobile networks, the algorithms for such networks are described in a dedicated section (Section 3.3). 

Vector clocks of size M≤N

Torres-Rojas and Ahamad introduced in 1998 the concept of logical clocks of constant size [START_REF] Francisco | Plausible Clocks: Constant Size Logical Clocks for Distributed Systems[END_REF]. Instead of using a vector clock with one entry per process, constant size clocks are clocks whose number of entries M is smaller or equal to N , the number of processes inside the system. Usually M N . Charron-Bost proved that a vector clock with fewer than N entries cannot characterize causality of broadcast messages [START_REF] Charron-Bost | Concerning the Size of Logical Clocks in Distributed Systems[END_REF]. Hence, these clocks do not characterize causality and algorithms using them to causally order messages might deliver messages out of causal order.

Torres-Rojas and Ahamad proposed Plausible Clocks (PC) [START_REF] Francisco | Plausible Clocks: Constant Size Logical Clocks for Distributed Systems[END_REF], which associates each process to one vector clock entry. Since Plausible clocks have M ≤ N entries, each vector clock entry might be associated to several processes. The algorithm using PCs is otherwise similar to the one using vector clocks of N entries [START_REF] Schiper | A New Algorithm to Implement Causal Ordering[END_REF]. Processes which use PCs to causally order broadcast messages might deliver some of them out of causal order. For example, in the execution of Figure 5.1 the message m 3 is delivered out of causal order. In the example, PCs have one entry, and each process is associated to this unique entry. First, process p 1 increments its PC when broadcasting m 1 . We assume that other processes receive m 1 later in the execution. Process p 2 broadcasts m 2 and increments its PC. Process p 3 broadcasts m 3 after receiving m 2 , i.e., m 2 → m 3 . However, p 1 receives m 3 prior to receiving m 2 , and since P C 1 = 1, it delivers m 3 out of causal order. Although PCs do not characterize causality, the algorithm delivers messages in causal order with a high probability, as shown by a theoretical and experimental analysis [TA99] [START_REF] Francisco | Performance Evaluation of Plausible Clocks[END_REF].

Gidenstam and Papatriantafilou [START_REF] Gidenstam | Adaptive Plausible Clocks[END_REF] observed that PCs order some concurrent messages, and introduced Non-Uniformly Mapped R-Entries Vector (NUREV) clocks. The idea behind NUREV clocks is that the mapping of the vector clock entries to processes has an impact on the number of concurrent messages that are ordered. For example, if mostly two processes broadcast messages, then they should not be associated to the same vector clock entry. The purpose of NUREV clocks is therefore to dynamically adapt the mapping of clock entries to processes. The algorithm locally maintains a vector of N entries but still only attaches a PC on messages. Authors show that accuracy basically depends on the communication patterns and the value-differences of compared PCs. Two adaptive mapping strategies based on these observations are given and evaluated through simulations. NUREV clocks are particularly effective if only some processes broadcast messages, since those processes can dynamically be associated to an exclusive clock entry. NUREV clocks also reduce the probability that a message is delivered out of causal order.

Mostéfaoui and Weiss [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] proposed Probabilistic clocks (PrC). PrCs use a function f to associate one or several vector clock entries to each process. |f | is determined at initialization and is the same for each process, i.e., each process has the same number of vector clock entries associated to it. Authors provide the formulas to determine the best value of |f |, depending on the number of concurrent messages in the system. Authors also provide a formula to compute the probability that two processes concurrently increment the same clock entry (which leads to messages that are delivered out of causal order). They show that the effectiveness of PrCs depends on the number of concurrent messages, through experiments measuring the number of messages delivered out of causal order for different message loads. Experiments also show that PrCs ensure causal order with a higher probability than PCs. by Bloom, such filters are vectors of fixed size used in conjunction with hash function(s). Instead of using one hash function that associates 1 to M clock entries to each process, Bloom clocks use 1 to M hash functions that each associate one clock entry to each process. Hence, they have the same advantages and disadvantages than Probabilistic clocks.

The main advantage of vector clocks of size M ≤ N are their size which is independent of the number of processes, making them scalable in regard to the number of processes in the system. Moreover, they are well adapted to process churn, since vector entries are not associated to only one process and can therefore be shared and reused. However, they do not characterize causality and algorithms which use them might deliver messages out of causal order. Hence, they are adapted to systems where causal order only impacts performance and not correctness, such as, for example, the fairness of mutual exclusion algorithms. 

FIFO-based approaches

Friedman and Manor [START_REF] Friedman | Causal Ordering in Deterministic Overlay Networks[END_REF] first formalized and proposed an algorithm that ensures causal order through flooding in a static overlay network composed of FIFO communication channels. Flooding through FIFO channels ensures that no path exists over which messages travel out of causal order. For example, in Figure 3.3 A broadcasts m, which causally precedes m' broadcasted by B. All processes receive m before m' since upon reception all processes forward m on all their communication channels. Therefore, processes deliver messages upon reception, since they receive messages already causally ordered.

The algorithm in [START_REF] Friedman | Causal Ordering in Deterministic Overlay Networks[END_REF] is executed over a hypercube overlay topology [START_REF] Duarte | VCube: A Provably Scalable Distributed Diagnosis Algorithm[END_REF], which is well adapted to flooding, since it ensures that any two processes are at a maximal distance of O(log(n)) hops. Blessing et al. [START_REF] Blessing | Tree Topologies for Causal Message Delivery[END_REF] propose to implement causal broadcast based on flooding over a tree overlay, thus removing the message overhead introduced by cycles (which cause processes to receive messages several times).

Causal broadcast through flooding has two main advantages: (1) Processes receive messages in causal order and can thus deliver them at reception. (2) Messages carry no causal information. However, this approach also has disadvantages: [START_REF] Friedman | Causal Ordering in Deterministic Overlay Networks[END_REF] to some dynamic networks. Authors observe that messages can only travel out of causal order temporarily over a newly added communication channel, as in the example above. More precisely, adding a communication channel creates a shortcut that newly broadcasted messages can take. Thus, they can be received by processes while some of the messages that causally precede them are still transiting over the network. Authors provide a procedure to initialize communication channels before using them to broadcast messages. The procedure consists of a message exchange between the two endpoints of the added communication channel, ensuring that messages transiting over it have no causal dependencies that are still transiting, i.e., not received yet by the other endpoint. This message exchange is done using communication channels which have already been initialed through this procedure, or which are present since the beginning of the execution (and are considered to be initialized). Messages from added communication channels are discarded until they are initialized. Therefore, each pair of processes must always be connected by a path of initialized communication channels. One disadvantage of [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] is that messages must be buffered to be sent to the other endpoint at the end of the initialization procedure. The buffer containing these messages may grow infinitely. Authors provide a simple solution in [START_REF] Nédelec | Causal Broadcast: How to Forget?[END_REF] which consists of sending the messages contained in the buffer over the network when it exceeds a given size, thus clearing the buffer. The advantages and disadvantages of this approach are the same as [START_REF] Friedman | Causal Ordering in Deterministic Overlay Networks[END_REF][BCD17], while authors make this approach suited to dynamic networks in which there always exist a path of initialized channels between each pair of processes. Therefore, an endpoint such as a client cannot migrate from one server to another by disconnecting itself from the server in between. . Both approaches assume physical clocks to be synchronized with a maximum clock skew of . HLC and PWC are composed of a physical clock pc and a logical scalar clock lc. The logical clock is used to order events which have an identical value of pc (if m.lc = 3, then the process knows that there are two messages which causally precede m and which have the same pc value). Hence, for each event e and e , e → e ⇐⇒ pc(e) < pc(e ) ∨ (pc(e) = pc(e ) ∧ lc(e) < lc(e )). lc is reset each time a process receives a message or updates its physical clock, thus ensuring that lc is bounded. Authors of both clocks provide an analysis of the required size of lc to avoid its overflow. They argue that HLC and PWC can be stored in the lower bits of 64 bits integer, because applications do not need the precision provided by 64 bits integers. The two clocks scale very well, and they tolerate process churn, since neither the physical nor the logical clock entries are associated to particular processes. However, to ensure causal order, HLC and PWC require both the maximum clock skew and the interval between send(m) and receive(m) to be higher than . Thus, messages might be delivered out of causal order if one of the two conditions does not hold.

∆-causal order

The notion of ∆-causal order was introduced by Yavatkar in 1992 [START_REF] Yavatkar | MCP: A Protocol for Coordination and Temporal Synchronization in Multimedia Collaborative Applications[END_REF] and later formalized by Baldoni et al. [START_REF] Baldoni | Causal Delivery of Messages with Real-Time Data in Unreliable Networks[END_REF]. ∆-causal order is defined for systems in which messages have real-time constraints. In such systems, messages have a limited time validity after which they are obsolete. A message sent at time t becomes obsolete at t + ∆ and is therefore discarded if received after that delay. ∆-causal order delivers the maximum number of messages before their expiration, while ensuring that messages are delivered while respecting causal order. Such an approach is for example meaningful in multimedia real-time applications, such as teleconferencing [START_REF] Wakeman | Packetized Video-Options for Interaction between the User, the Network and the Codec[END_REF]. Processes synchronize their physical clocks with protocols like NTP [START_REF] Martin | Network Time Protocol Version 4: Protocol and Algorithms Specification[END_REF] and messages carry their sending time as causal information. Therefore, Two causally related messages are assumed to have timestamps t 1 and t 2 such that |t 1 -t 2 | > , where corresponds to the error bound of clock synchronization protocols. Higaki et al. [START_REF] Tachikawa | Group Communication Protocol for Realtime Applications[END_REF] observe that communication delays between processes might greatly vary. Hence, the authors modify ∆-causal order to also take into account the varying communication delays between processes. Rodrigues et al. [START_REF] Rodrigues | Deadline-Constrained Causal Order[END_REF] generalize ∆-causal order by allowing each message to have a given and distinct deadline.

Baldoni et al. [START_REF] Baldoni | Causal Delivery of Messages with Real-Time Data in Unreliable Networks[END_REF] ensure causal order with an algorithm similar to the traditional vector clock algorithm [START_REF] Mattern | Virtual Time and Global States of Distributed Systems[END_REF]. Each process has an associated vector clock entry, but instead of scalars, the vector clock contains physical time values.

A process delivers a message m once all undelivered messages that causally precede m are expired. Baldoni et al. [START_REF] Baldoni | Broadcast with Time and Causality Constraints for Multimedia Applications[END_REF][Bal+98] improve [START_REF] Baldoni | Causal Delivery of Messages with Real-Time Data in Unreliable Networks[END_REF] by replacing the vector clock with direct dependencies [START_REF] Prakash | An Efficient Causal Ordering Algorithm for Mobile Computing Environments[END_REF], thus heavily reducing the average (in the worst case O(N )) size of causal information maintained on processes and attached to messages.

Hernández et al. [START_REF] Hernandez | An Efficient Delta-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks[END_REF] ensure ∆-causal order without a physical global clock, by using application specific knowledge to estimate the lifetime of messages. Authors use direct dependencies [START_REF] Prakash | An Efficient Causal Ordering Algorithm for Mobile Computing Environments[END_REF] to track causality. However, they observe that direct dependencies are not sufficient to track causal order when messages are lost. For example, if m 1 → m 2 → m 3 and if m 2 is lost/expires, then it is impossible to know through direct dependencies that m 1 → m 3 . To circumvent this problem and maintain causal information, authors propose to append some indirect dependencies when the message loss rate increases.

∆-causal order is only adapted to systems where messages become obsolete after a given time duration. Moreover, algorithms either require clock synchronization for correctness or use vector clocks of N entries, and both conditions are neither scalable nor adapted to dynamic systems.

Application-based causal order

Causal order algorithms usually do not take into account application specific information. Considering such information allows to causally order messages more efficiently, i.e., with fewer data. For example, two messages m 1 and m 2 , related respectively to the variables v 1 and v 2 , might not be causally dependent, even if they are sent by the same process. The following describes two algorithms which respectively use application-specific knowledge and the partial replication of data to causally order messages more efficiently. Both approaches are orthogonal to causal order algorithms and can therefore be used in conjunction with them.

Bailis et al. [START_REF] Bailis | The Potential Dangers of Causal Consistency and an Explicit Solution[END_REF] observed that most algorithms reorder concurrent messages in real world applications. In fact, when a process p broadcasts a message m, most algorithms consider that all messages that p delivered prior to broadcasting m also causally precede m. More formally, for most algorithms:

p broadcasts m ⇒ ∀m delivered by p prior to broadcasting m, m → m.

However, this assumption is false for most real world applications. Consider for example databases that store values v k . A message sent by a client to update a value v i has no causal relation with messages related to other values v k = v i .

Reordering concurrent messages delays their delivery. In fact, consider two concurrent messages m and m , reordered such as m → m for the algorithm. The algorithm will then unnecessarily delay the delivery of m till m is delivered. Based on such behavior, the authors of [START_REF] Bailis | The Potential Dangers of Causal Consistency and an Explicit Solution[END_REF] proposed to explicitly define causality at the application level (which they call explicit causality), to track only relevant causal relations between messages. Authors argue that many applications already express semantic dependencies in their APIs, which can be used to explicitly define causality. They give as example Twitter conversations whose length average approximately 11 Tweets (a makes a tweet, to which b reacts with a tweet, to which c reacts with a tweet, etc. . . ) [START_REF] Ritter | Unsupervised Modeling of Twitter Conversations[END_REF][YW10], but whose potential causal chain is several orders of magnitude higher. In this example, explicit causality heavily decreases the number of message dependencies, which in its turn increases throughput, reduces causal information, and improves concurrency.

Bravo et al. introduced SATURN [BRV17]

, a distributed metadata service that takes into account the partial replication of data. Authors observe that in georeplicated databases data is often replicated at only a subset of datacenters. However, causal information about a data d is often sent to all datacenters, even to those which do not store d. The propagation of causal information to all databases introduces unnecessary message delivery latencies, as well as a decreased data throughput (because of unnecessary messages). The storage system is responsible for providing labels that are causally consistent and SATURN propagates them only to the databases holding a copy of those labels, while respecting their causal relationship. SATURN is therefore a mechanism complementary to existing databases. It allows them to take advantage of partial replication at a cost of a small message overhead. Hsu et Kshemkalyani. [START_REF] Hsu | Value the Recent Past: Approximate Causal Consistency for Partially Replicated Systems[END_REF][HKS18] and Crain et al. [START_REF] Crain | Designing a Causally Consistent Protocol for Geo-Distributed Partial Replication[END_REF] also provide algorithms to ensure causal order in partially replicated systems.

Summary

Table 3.6 summarizes the causal broadcast implementations presented in this section. We divided the implementations in six categories corresponding to the data structure they use to ensure causal broadcast.

Vector clock approaches are based on the traditional vector clock [START_REF] Fidge | Timestamps in Message-Passing Systems That Preserve the Partial Ordering[END_REF][SES89] proposed by Mattern and Fidge independently, as well as algorithms extending vector clocks in order to make their size dynamic, making them tolerant to processes which join and leave the system during execution. They attach on messages all the causal information required to causally order them. However, such approaches do not scale.

Compressed and bounded vector clock approaches aim to reduce the size of vector clocks on average, by either reducing the number of bits on which each entry is encoded, or by only piggybacking the vector clock entries that have been modified since the last broadcast. However, those approaches still have a space complexity in O(N ) and do therefore not scale.

Prime clocks encode vector clocks into a number, by using the fact that each number has a unique decomposition of prime factors. However, the numbers into which prime clocks are encoded grow exponentially, as do the number of bits required to store them. Therefore, authors of [START_REF] Pozzetti | Resettable Encoded Vector Clock for Causality Analysis With an Application to Dynamic Race Detection[END_REF] propose a procedure to reinitialize prime clocks to bound their size. Note that the prime clock approach is independent to the number of processes inside the system, but it depends on the number of messages that have been broadcasted. Prime clocks tolerate process churn, but they grow very fast with a space complexity in O(k) where k corresponds to the number of sent messages since the beginning or since the last resetting of the clock.

Direct dependencies only piggyback on a message m the causal information about messages that directly precede m. Therefore, this approach is also independent to the number of processes but depends on the pattern of message broadcasting. Nevertheless, it requires processes to locally store a vector with one entry per process inside the system.

Hierarchical structures divide processes into subgroups. They ensure causal order inside and between groups by using vector clocks or direct dependencies. Therefore, they require less causal information since a process only keeps causal information about the processes of its group and proxy processes of other groups. However, hierarchical structures require a specific network topology which often does not tolerate process churn.

Constant size clock approaches ensure causal order by using vector clocks whose size is constant, independently of the number of processes inside the system. Therefore, those approaches do scale and allow processes to join and leave the system. However, they do not characterize causality and processes therefore might deliver messages out of causal order, even though they usually deliver them in causal order with a very high probability.

FIFO-based approaches ensure causal order by forwarding messages through FIFO communication channels, thus ensuring that messages are causally ordered at reception. Therefore, they do not require any causal information to be appended on messages. However, they require FIFO communication channels as well as assumptions on the network topology.

Approaches using physical clocks require a bounded clock skew between processes, which is ensured by network protocols. However, those approaches require that the clock skew between processes is always below a given known value in order to ensure the causal delivery of messages.

∆-causal order approaches observe that in some applications the data has a limited time duration validity. They deliver messages once their validity is about to expire. These approaches are restricted to applications where data has a limited time duration validity.

Some works propose to use application specific knowledge to causally order messages. Application specific knowledge can for example be used to order separately independent messages sent by the same process. Often data is also only partially replicated in a distributed system, and propagating updates about a data d only to the processes that store d can significantly reduce the amount of sent information. 
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Mobile Networks

Most distributed algorithms are not suitable to the features of Mobile Networks composed of Mobile Hosts (MHs) and Mobile Support Stations (MSSs). MHs have a limited computational, memory, and battery capacity, and they communicate through the wireless network which is not reliable and has a low memory bandwidth compared to the wired network. On the other hand, MSSs have much higher capacities and communicate through the wired network. Therefore, causal order algorithms for mobile networks should concentrate information and execution on MSSs. They must also take into account the dynamics of MHs. In the literature, causal order algorithms for mobile networks have generally been proposed for multicast. Nevertheless, they are easily adapted to causal broadcast since the latter is a simplified case of multicast. Therefore, we present the broadcast versions of those algorithms.

First causal order algorithms for Mobile Networks

The first causal order algorithms for Mobile Networks were proposed by Alagar [START_REF] Sridhar Alagar | Causally Ordered Message Delivery in Mobile Systems[END_REF][AV97] who proposed three algorithms which use vector clocks to track causality. The algorithms ensure causal order of messages, but they are easily adapted to causal broadcast. The author copes with the limited capacities of hosts by managing the causal information at the station level: each station manages the causal information on behalf of the hosts connected to it by keeping a vector clock to track causal order for every host connected to it. Each station manages its cell which is defined by the hosts connected to it. Causal information is handled at two levels: the intra-cell level and the inter-cell level. The first is composed of a station plus the hosts connected to it and the second is composed of all stations.

By assumption, communication channels of the intra-cell level are FIFO. A station sends a message m to a host connected to it once the host delivered all messages that causally precede m. Thus, stations send messages to hosts in causal order, and hosts deliver them causally since intra-cell communication channels are FIFO.

On the inter-cell level, messages are causally ordered with vector clocks, as in the traditional vector clock algorithm [START_REF] Birman | Lightweight Causal and Atomic Group Multicast[END_REF]. A station maintains a vector clock for each host connected to it. The three algorithms presented in the paper differ in the vector clock used at the inter-cell level.

In the first algorithm (AV-1), stations use a vector clock of N entries to causally order messages, where N corresponds to the number of hosts in the system. This algorithm does not scale with the number of hosts.

In the second algorithm (AV-2), stations use a vector clock of M entries, where M corresponds to the number of stations in the system, which is much smaller than the number of hosts in the system (M N ). The algorithm is based on the observation that all messages broadcasted by a host pass through the station to which the host is connected. Thus, messages are timestamped at the station level. AV-2 scales much better than AV-1, since the number of stations is much lower than the number of hosts. However, messages are reordered at the station level. For example, two messages broadcasted by two hosts connected to the same station will be reordered by that station, even if the two messages are concurrent.

The third algorithm (AV-3) is a tradeoff between AV-1 and AV-2. Each station has S entries associated to it to order messages from hosts of its cell. Thus, in AV-3 stations use a vector clock of S * M entries, where S corresponds to the number of entries associated to each station, and M corresponds to the number of stations in the system. Associating S entries to each station reduces the number of concurrent messages that are reordered, but it increases the size of the vector clock.

AV-1 uses a vector clock whose size depends on the number of hosts, which is prohibitive. AV-2 and AV-3 use a vector clock whose size depends on the number of stations. Thus, they scale much better, since the number of stations is much lower than the number of hosts. However, the number of stations can still be high, and the vector clock size of both algorithms can therefore still be prohibitive.

The three algorithms maintain the causal information of a host at the station to which the host is connected. A mechanism, called Handoff, is therefore provided for moving the causal information related to a host when it connects to a new station. A Handoff basically consists of a message exchange between stations to transmit the causal information of a host. AV-1 requires two messages per handoff, while AV-2 and AV-3 require M messages per handoff, where M corresponds to the number of stations in the system. The handoffs require two assumptions to ensure correctness: (1) a host always succeeds to connect to a cell's station before leaving that cell, (2) it first sends a disconnect message to a station before leaving its cell. However, it is impossible to ensure these assumptions because of the unreliability of the wireless network.

Other causal order algorithms for Mobile Networks are variants of these three algorithms.

Algorithms with causal information of size O(N )

Like AV-1, some algorithms maintain causal information of size O(N ), where N corresponds to the number of hosts in the system. Prakash et al. [START_REF] Prakash | An Adaptive Causal Ordering Algorithm Suited to Mobile Computing Environments[END_REF] ensure causal order using direct dependencies [START_REF] Prakash | An Efficient Causal Ordering Algorithm for Mobile Computing Environments[END_REF] instead of vector clocks (See Section 3.2.1.4). Depending on the broadcast pattern, direct dependencies use much less space but have, in the worst case, a space complexity of O(2 * N ). A station mss i only sends a message m to a host mh i only after mh i delivered and acknowledged all messages that causally precede m, which increases the delivery delays of messages. Dominguez et al. [START_REF] Domínguez | MOCAVI: An Efficient Causal Protocol for Cellular Networks[END_REF] avoids such delays by attaching a bit vector of size N on messages sent over the wireless network, thus enabling hosts to causally order messages by themselves. However, attaching causal information of size O(N ) on messages sent over the wireless network is prohibitive.

Chi et al. [START_REF] Kh | A Causal Multicast Protocol for Mobile Distributed Systems[END_REF] proposed an algorithm that maintains causal information related to a host independently of the host's physical location, thus easily managing them, especially during handoffs. A host mh i is attached during the whole execution to the first station mss b to which it connected, regardless of mh i 's location. Messages from and for mh i are first forwarded to mss b , which disseminates and causally orders them for mh i . When changing cells, mh i only needs to forward its new location to mss b . Hence, handoffs are very easy and do not require the assumptions made by [START_REF] Sridhar Alagar | Causally Ordered Message Delivery in Mobile Systems[END_REF][AV97]. However, the algorithm has a high communication overhead since messages must all be routed through the initial stations instead of being handled locally. Moreover, the algorithm requires that a FIFO path exists through each pair of stations.

Skawratananond et al. [START_REF] Skawratananond | A Lightweight Algorithm for Causal Message Ordering in Mobile Computing Systems[END_REF] proposed an algorithm similar to [START_REF] Raynal | The Causal Ordering Abstraction and a Simple Way to Implement It[END_REF], but which implements handoffs more efficiently than [START_REF] Prakash | An Efficient Causal Ordering Algorithm for Mobile Computing Environments[END_REF][AV97] by not requiring that messages exchanged between stations are causally ordered.

Algorithms with causal information of size O(M)

Like AV-1 and AV-2, some algorithms use causal information of size O(M ), where M corresponds to the number of stations of the system.

Li and Huang [START_REF] Li | A Mobile-Support-Station-Based Causal Multicast Algorithm in Mobile Computing Environment[END_REF] proposed a causal multicast algorithm similar to AV-2, but which handles handoffs without requiring that a host always succeeds to connect to a station before leaving the station's cell. On the other hand, the algorithm still requires the assumption that a host notifies the station of a cell before leaving it.

Prakash and Singhal present in [START_REF] Prakash | Dependency Sequences and Hierarchical Clocks: Efficient Alternatives to Vector Clocks for Mobile Computing Systems[END_REF] an algorithm that uses vector clocks with one entry per station like AV-2, as well as the concept of dependency sequences in order to reduce the number of concurrent messages that are reordered when using vector clocks with one entry per station. A dependency sequence is a range of sequence numbers appended to a message m. Its purpose is to identify concurrent messages to m. The size of dependency sequences is not bounded, even though it is usually small, because they represent ranges. Moreover, they can be periodically discarded through check pointing. However, the algorithm requires the assumption that a host unregisters itself when leaving a cell, which might not always be possible. [START_REF] Yen | A Protocol for Causally Ordered Message Delivery in Mobile Computing Systems[END_REF] which is a tradeoff between AV-1 and AV-2. However, the algorithm is only applicable to causal multicast and is therefore not described here. Furthermore, Skawratananond [START_REF] Skawratananond | A Lightweight Algorithm for Causal Message Ordering in Mobile Computing Systems[END_REF] showed that the algorithm violates the liveness property.

Yen et al. proposed an algorithm

Anastasi et al. [ABS99][ABS01]

proposed a causal multicast algorithm that uses two additional components, coordinators, and one super-coordinator, both chosen among stations at initialization. The algorithm tracks causal order through vector clocks of C entries, where C corresponds to the number of coordinators, which is much smaller than the number of stations. Hosts order messages causally by themselves: they maintain a vector clock of C entries, which they use to causally order messages at reception and timestamp messages they broadcast. A host mh i is attached during the whole execution to its coordinator station mss c , regardless of mh i 's location. Stations forward to mss c the messages from and for mh i . mss c then disseminates messages from mh i in causal order. Moreover, it causally orders messages for mh i , and forwards them in FIFO order to mh i . When changing cells, mh i only needs to forward its new location to mss c . Therefore, handoffs are very easy and do not require the assumptions made by [START_REF] Sridhar Alagar | Causally Ordered Message Delivery in Mobile Systems[END_REF][AV97]. On the other hand, the algorithm has a high communication overhead since messages must all be routed through the initial stations instead of being handled locally. The algorithm also requires that a FIFO path exists through each pair of stations, and that the wireless network is FIFO. Moreover, concurrent messages are ordered with a vector clock of C entries, with C being even smaller than the number of stations. Consequently, messages are even more reordered than with AV-2. Finally, the coordinators and the super-coordinator are a performance and failure bottleneck.

Chandra and Kshemkalyani [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF] extended the algorithm in [START_REF] Kshemkalyani | An Optimal Algorithm for Generalized Causal Message Ordering[END_REF] to Mobile Networks. The core algorithm is similar to AV-2. Authors add to the core of the algorithm the deletion of obsolete messages. A message becomes obsolete once all hosts have delivered it. Each station mss i maintains a sequence counter seq i to timestamp with (mss i , seq i ) messages broadcasted by hosts in its cell. A host acknowledges its delivery of each message. A station forwards an acknowledgement from a host for message (mss i , seq i ) to mss i , which sends a Delete message for (mss i , seq i ) to all stations, after receiving an acknowledgement from each host. A station discards message (mss i , seq i ) upon reception of the corresponding Delete message. The advantage of the algorithm is that it handles the deletion of obsolete messages, contrarily to other algorithms. The two main disadvantages of the algorithm are: (1) Station mss i only sends a message m to a host mh i once mh i delivered all of m's causal dependencies. Therefore, m is delayed at mss i until the host acknowledged m's causal dependencies to mss i ; (2) A lot of acknowledgements must be forwarded on the wired network.

Benzaid and Badache proposed a causal broadcast protocol [START_REF] Benzaid | BMobi Causal: A Causal Broadcast Protocol in Mobile Dynamic Groups[END_REF] tailored to causal broadcast, while other presented algorithms were conceived for multicast. The algorithm tracks causal dependencies through direct dependencies, introduced by Prakash in [START_REF] Prakash | An Efficient Causal Ordering Algorithm for Mobile Computing Environments[END_REF]. Otherwise, the algorithm is similar to [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF].

Hierarchical approach

Hsiao and Liao [START_REF] Hsiao | Domain-Based Causal Ordering Group Communication in Wireless Hybrid Networks[END_REF] proposed an algorithm where hosts that belong to the same cell communicate directly without passing through their cell's station. On the other hand, messages from a host to hosts in other cells still pass through stations. The algorithm tracks causal order with two vector clocks, one for the intra-cell level, and one for the inter-cell level. The intra-cell vector has one entry for each host inside the cell (M ), while the inter-cell vector has one entry per station in the system. The handoff requires the assumption that a host succeeds to connect to a cell before leaving. Moreover, each host must know the identity of all the hosts inside its cell, and this cell-membership must be updated each time a host joins or leaves a cell. This algorithm enables hosts of the same cell to communicate with each other without passing through a station. The drawback of the algorithm is that messages sent over the wireless network must carry a vector of M entries, and hosts must know the identity of all the hosts inside their cell.

Mobile Network failures

Traditional algorithms to handle process failures cannot be applied to Mobile Networks, due to their specific constraints. Hosts have limited memory capacities and might not have stable memory capacities because of thefts or device losses. Therefore, checkpoints should be stored at stations. Moreover, hosts should send as few data and perform as few actions as possible to save battery. Hosts are also mobile and move between cells. Determining the station to which they are or were connected is not immediate. Finally, message losses on the wireless network requires additional control. This section presents algorithms to handle host and station failures.

Mobile Host failures

Acharya and Badrinath [START_REF] Acharya | Checkpointing Distributed Applications on Mobile Computers[END_REF] give rules to decide when hosts should do checkpoints when considering uncoordinated check pointing, i.e., each host does local checkpoints without aiming to compute global ones. Authors also give a set of rules to do local checkpoints that can be combined into a consistent global checkpoint. Krishna et al. [START_REF] Krishna | Recovery in Distributed Mobile Environments[END_REF] propose an algorithm to handle host failures. Stations are assumed to be fault-tolerant. A host mh i does checkpoints, and send them to the station mss i to which it is connected. Two strategies are presented: (1) mh i does a checkpoint at each write event, and sends it to mss i ; (2) mh i does a checkpoint regularly. mss i first logs messages before mh i processes them, thus ensuring that mh i will not process a message that mss i cannot recover. Upon recovery, mh i connects itself to a station to recover its last checkpoint, as well as its logs. It then restores the state stored in the last checkpoint, and delivers the message stored in its logs.

Pradhan et al. [PKV96] consider two checkpointing strategies similar to [KVP93],

for which they propose three handoff strategies. The memory of hosts is considered as not reliable, even the stable memory, because of thefts or device losses. Conversely, the memory of stations is considered to be reliable. In the pessimistic strategy a host that changes cell sends its checkpoint (and logs if used) to the station of its new cell. Such a strategy ensures that each station stores a checkpoint for hosts connected to it. However, transferring a checkpoint at each handoff consumes data. In the lazy strategy no checkpoint is transferred during handoffs. Instead, a host regularly creates and sends a checkpoint to the station to which it is connected. During a handoff, a host only sends to its new station a linked list containing the stations to which it was connected. When recovering, a host contacts its station, which will look up the most recent checkpoint by contacting the stations in the linked list. In the Trickle strategy, a host ensures that at least the previous station to which it was connected stores a checkpoint for it. This avoids a costly message exchange to find a host's checkpoint in the case where a host changes cells often. Authors conclude through experiments that there is no optimal strategy, and that the best recovery strategy depends on several parameters which are the bandwidth of the wireless network, mobility of hosts, and the failure rate of hosts.

Mobile Support failures

Alagar et al. [START_REF] Sridhar Alagar | Tolerating Mobile Support Station Failures[END_REF] propose an algorithm that tolerates station failures. Each station has k + 1 backup stations, where k corresponds to the maximum number of stations that can be simultaneously down. Consider a host h i which sends a message m to the station mss i to which it is connected. mss i first sends m to its backup stations Backup i before disseminating m, thus ensuring that if it fails, then stations of Backup i will take in charge the retransmission of m. The authors suggest to select backup stations for mh i either based on locality (stations that are close to mss i ) or stations to which mh i was connected before connecting to mss i .

Anastasi et al. [START_REF] Anastasi | Fault-Tolerant Support for Reliable Multicast in Mobile Wireless Systems: Design and Evaluation[END_REF] give a causal multicast algorithm tolerant to station failures. The authors keep the checkpoints at hosts, i.e., they assume that hosts have a reliable stable storage. Therefore, handoffs do not require exchanging information related to checkpoints. The algorithm tolerates the failure of hosts and stations. Stations are grouped as in the approach in [START_REF] Sridhar Alagar | Tolerating Mobile Support Station Failures[END_REF] and there is one coordinator per group. Stations forward received messages to the coordinator which will send them to all stations of the group. Coordinator failures can be tolerated by using several coordinators per group instead of one. Alagar et al. [START_REF] Sridhar Alagar | Causally Ordered Message Delivery in Mobile Systems[END_REF] proposed the first causal multicast algorithms for mobile networks. We denote those algorithms AV-1, AV-2 and AV-3. The other causal multicast algorithms for mobile networks are derived from these three algorithms. Only the algorithms proposed by Chi et al. [START_REF] Kh | A Causal Multicast Protocol for Mobile Distributed Systems[END_REF] and Anastasi et al. [START_REF] Anastasi | Group Multicast in Distributed Mobile Systems with Unreliable Wireless Network[END_REF] tolerate handoffs under realistic assumptions. Chandra and Kshemkalyani [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF] proposed the first algorithm that discards messages once they become obsolete, i.e., once all hosts have delivered them. Hsiao and Liao [START_REF] Hsiao | Domain-Based Causal Ordering Group Communication in Wireless Hybrid Networks[END_REF] proposed an algorithm where hosts of the same cell communicate directly with each other without passing through the cell's station.

Summary and discussion

-AV-1 [Ala95] VC O(N ) O(1) O(1) Alagar -AV-2 [Ala95] VC O(M ) O(1) O(M ) Alagar -AV-3 [Ala95] VC O(M * k) O(1) O(M ) Prakash et al. [PRS97] VC O(N ) O(1) Dominigez et al. [DPG10] VC O(N ) O(N ) Chi et al. [Chi+00] VC O(N ) O(N ) Skawratananond et al. [SMG98] VC O(N ) O(N ) Li and Huang [LH99] DD O(M ) O(1) O(1) Prakash and Singhal [PS97] DD O(M ) O(1) O(1) Anastasi et al. [ABS99] VC O(C) O (1) 
Overall, only some algorithms do realistic handoff assumptions. All algorithms use causal order structures on the wired network with a space complexity either in terms of the number of mobile hosts or the number of stations (or coordinators which can become a bottleneck) in the system. Only one algorithm [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF] discards the causal information of obsolete messages.

Finally, some works consider the failure of hosts or stations. Algorithms that do tolerate host failures do it through checkpoints that hosts send regularly to the station to which they are connected. Those that tolerate station failures do it by replicating the information stored at stations on backup stations.

Conclusion

This chapter presented the related work of the literature relevant to this thesis. First, we presented the causal broadcast algorithm approaches by grouping them in six categories. Second, we presented causal multicast algorithms for mobile networks, as well as algorithms that tolerate failures in mobile networks.

Causal broadcast approaches are classified in categories corresponding to the data structure they use to ensure causal order. Some approaches append on messages the causal information required to causally order them. Those approaches use vector clocks with one entry per process, bounded and compressed vector clocks, direct dependencies (causal barrier) or vector clocks of size M < N where N corresponds to the number of nodes in the system. The advantage of those approaches is that they require no or few assumptions on the system. Their main disadvantage is that the causal information attached to messages has in the worst case a space complexity of O(N ) where N corresponds to the number of processes in the system. Hence, they do not scale.

Other approaches append less or no causal information on messages by making assumptions on the network. These approaches are hierarchical structures and algorithms based on dissemination through FIFO communication channels. The main advantage of those algorithms is that they either append no causal information to messages, or they append causal information whose size is depending on a local subset of processes. Hence, they do scale. The main disadvantage is that they require assumptions on the network, which are complicated to maintain in presence of process churn or process failures. Hence, they mostly do not tolerate process churn or process failures, or they only do it under specific conditions. Some approaches use physical time to causally order messages. These approaches use physical clock timestamps and/or associate a given lifetime to messages. The main advantage of these approaches is that they append few causal information on messages and do therefore scale. Moreover, they tolerate process failures and process churn. However, they require the physical clocks of processes to be synchronized to at most an upper error bound, and this condition might not be ensured all the time even when using network protocols to synchronize physical clocks.

Finally, some works propose to use application specific knowledge to causally order messages. These approaches can be implemented above the presented causal broadcast algorithms.

The second part presented existing algorithms that ensure causal multicast in mobile networks. Alagar [START_REF] Sridhar Alagar | Causally Ordered Message Delivery in Mobile Systems[END_REF] proposed the first three causal multicast algorithms for mobile networks. They order messages either at the host level, thus requiring a vector with one entry per host, or at the stations level, thus requiring a vector with one entry per station, or in between the station and host level, thus requiring a vector with a number of entries between the number of hosts and stations. Other causal multicast algorithms for mobile networks of the literature derive from the three algorithms proposed by Alagar. Most of them propose a handoff procedure to allow a host to change the station to which it is connected. However, most of them require unrealistic network assumptions.

Finally, some works consider the failure of hosts or stations. Algorithms that tolerate host failures do it through checkpoints that hosts send regularly to the stations to which they are connected. Those that tolerate station failures replicate data on backup stations.

Introduction

The first part of this thesis addresses causal broadcast in Mobile Networks, which are mainly composed of Mobile Support Stations and many Mobile Hosts. A causal broadcast algorithm for Mobile Networks should tolerate the many constraints inherent to those networks (see Section 2.5), and it should also scale. This chapter presents two causal broadcast algorithms for Mobile Networks that are based on the FIFO-dissemination approach on an overlay network [START_REF] Friedman | Causal Ordering in Deterministic Overlay Networks[END_REF]. Both algorithms make realistic assumptions considering the characteristics of mobile networks.

Approaches that piggyback causal information on messages are not suitable to Mobile Networks because they do not scale. The causal information they piggyback on messages either grows with the number of nodes [START_REF] Fidge | Timestamps in Message-Passing Systems That Preserve the Partial Ordering[END_REF][Mat80], or with the message load [MW17b] [START_REF] Prakash | An Efficient Causal Ordering Algorithm for Mobile Computing Environments[END_REF]. On the other hand, approaches based on dissemination of messages over FIFO channels [START_REF] Friedman | Causal Ordering in Deterministic Overlay Networks[END_REF][NMM18a] append no causal information on messages and scale therefore well. They organize the network in an overlay over which messages are disseminated through FIFO channels, ensuring that messages are causally ordered upon reception. Such approaches ensure that messages are causally ordered upon reception, and processes can therefore deliver them directly after receiving them without using a mechanism to order messages at reception. However, existing FIFO-based approaches require assumptions on the overlay that cannot be provided in all systems, like in Mobile Networks. More particularly, FIFO-based approaches require that there exists no path over which messages can travel out of causal order. However, adding a communication channel between two processes temporarily creates a shortcut over which messages can be received by the two endpoints out of causal order. Let's consider for instance the example of Figure 4.1. At (a), A broadcast m. At (b), a communication channel is added between A and B. At (c), A broadcasts a second message m . We see that m can take the shortcut A → B over which m was not sent. Hence, at (d) we see that B receives m before m, i.e., it receives m out of causal order. Implementing a FIFO-based approach is challenging in Mobile Networks because of the dynamics in the network topology caused by Mobile Hosts that change locations, leading to communication channels that are removed and added regularly. The algorithm must also take into account the constraints of Mobile Networks. Mobile Hosts as well as Mobile Support Stations might fail. Moreover, Mobile Hosts have limitations such as limited memory, computational power, battery life or reliability issues [START_REF] Forman | The Challenges of Mobile Computing[END_REF]. For example, a mobile host is subject to a transient failure when its battery becomes flate and to a hardware failure when its battery dies or a hardware failure occurs. Finally, the wireless network that connects hosts and stations is unreliable because of interferences that cause message losses. . However, they usually make unrealistic assumptions such as reliable [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF][PRS96] and/or FIFO [START_REF] Benzaid | BMobi Causal: A Causal Broadcast Protocol in Mobile Dynamic Groups[END_REF][LH99] channels, or reliable host connection protocols. For example, they do not address the problem that hosts might fail to connect to a cell's station before moving to another cell. Furthermore, they usually consider that hosts are reliable, i.e., they never fail, and the proposed solutions do not scale. Note that causal multicast algorithms usually require additional information useless for causal broadcast.

We consider that hosts can join/leave the network and fail, permanently or transiently, at any time. They move freely and might be temporarily disconnected from the network when out of range of any station. We assume no reliable connection protocol, and the algorithm handles multiple concurrent connections by the same host. Resource limitations of hosts are handled by keeping causal information at stations, while hosts keep very little control information. Messages piggyback only a few integers as control information.

This work also proposes a decentralized deletion of obsolete messages. Stations handle interferences on the wireless network by caching messages for retransmission. Those messages become obsolete once hosts delivered them. Existing discarding solutions of obsolete information are centralized [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF][BB08], inducing a high overhead of message traffic (acknowledge messages) and memory storage (a message is cached at all stations even if only one station requires it). The presented algorithms discard obsolete messages cached at stations in a decentralized way: a station discards a message once all hosts connected to it acknowledged the message. Consequently, stations only cache necessary messages, and no extra messages are exchanged for message discarding. A high message traffic inside a cell, which might 

Model

The mobile networks considered in this work are composed of Mobile Hosts, denoted host(s), and Static Support Stations, denoted station(s). Hosts and stations exclusively communicate through message passing. Hosts are the sources and destinations of application messages, and stations ensure that hosts receive and deliver messages causally. Applications running on hosts use a group communication service to join and leave the network, as well as to broadcast messages to all hosts and deliver messages in causal order.

The features of stations, hosts, and network are the following:

• Stations:
-Each station is at the center of a cell, corresponding to the area covered by its antenna's transmission range.

-Each station holds the causal information hosts connected to it require to deliver application messages in causal order.

-Stations are supposed to be static. For the first algorithm, they are supposed to be reliable through hardware replication. For the second algorithm they can fail.

-Stations have no energy limitations and have a much higher storage and computational capacity than hosts.

• Hosts:

-A host is connected to at most one station (generally the closest one) at any given moment and communicates with the system through that station, by sending messages on the wireless network.

-A host can join and leave the network at any moment. A host that joins the system will not deliver those application messages that the station to which it connects the first time has discarded prior to its connection.

-Hosts move freely inside and outside cells.

-Hosts have computational, storage, and energy limitations.

-Hosts are subject to transient and permanent failures. For example, a host is temporarily faulty until its battery is recharged, or it is permanently faulty if it has a hardware failure. A faulty host stops sending, receiving, processing messages, and it loses all variables it stored in volatile memory.

Hosts have two states: up and down. Station control the state of hosts connected to them: A station considers a host connected to it as down after not receiving any messages from the host for a given interval of time. Otherwise, the station considers the host as up.

• Network:

-The wireless network is considered unreliable due to interferences. The bandwidth of the wireless network is much lower than the bandwidth of a wired network. Hosts communicate with stations exclusively through the wireless network.

-The wired network is composed of FIFO communication channels without message losses. Nevertheless, wired channels can fail. Moreover, stations communicate over the wired network by using the algorithm proposed by Mostéfaoui [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF]. Therefore, wired channels can be added and removed, as long as there exists a path of communication channels initialized by the algorithm [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF].

Every application message is uniquely identified by (h i , seq h ), where seq h is the sequence number that host h i attributes to the application message. Moreover, since cells may overlap, every message broadcasted over the wireless network piggybacks the ID of the cell in which it is broadcasted. Stations and hosts verify the cell ID of messages they receive over the wireless network, and only take into account those broadcasted inside their cell.

The termination condition of causal broadcast must be modified to adapt it to the dynamics of mobile networks. Consider s k to be the first station which acknowledges the join of host h i . The latter will not deliver the application messages that s k discarded prior to receiving the join message of h i . The termination condition of causal broadcast therefore becomes: Termination. Consider s j,h i to be the first station which acknowledges to host h i the system join of h i . A message m co-broadcasted by an up host is co-delivered by all up hosts h i for which s j,h i did not discard m prior to h i 's connection.

Causal broadcast with reliable stations

This section presents WAS, a causal broadcast algorithm which extends the FIFO dissemination approach [START_REF] Friedman | Causal Ordering in Deterministic Overlay Networks[END_REF] to mobile networks, where hosts move freely, are subject to failures, and communicate through unreliable wireless channels. Stations communicate with each other through reliable wired channels. WAS tolerates the failure of hosts and handles the move/join/leave operations of hosts.

The description of WAS is divided into three parts: (1) dissemination of application messages, (2) join/leave operations, and (3) handoff procedure to handle hosts moving between cells. The proof of the algorithm can be found in Section 4.6.

Dissemination of application messages

The FIFO dissemination approach achieves causal broadcast by ensuring that no path exists over which messages can travel out of causal order. Friedman and Manor [START_REF] Friedman | Causal Ordering in Deterministic Overlay Networks[END_REF] showed that ensuring that all communication channels are FIFO ordered is sufficient to ensure causal broadcast in static networks. However, in mobile networks new communication channels can be added. These communication channels create paths over which messages can temporarily take a shortcut and be received by processes out of causal order, as explained in Section 3.2.4. WAS provides a FIFO dissemination-based causal broadcast for mobile networks, by ensuring that those new paths are not used to disseminate messages as long as messages can take a shortcut and be received out of causal order by passing through them. This section explains how WAS ensures causal order in a static mobile network, while the following sections explain how WAS handles the dynamics of mobile networks.

In Mobile Networks, hosts are the source of application messages, and stations ensure that all hosts deliver application messages while respecting the causal relations between the application messages. We divide the network in two modules: the intra-cell module, composed of a station and hosts connected to it, and the inter-cell module, composed of all stations.

Intra-cell module

An intra-cell module, called a cell, is composed of a station s i and the hosts connected to s i . A Host of cell c i communicates with the system by sending messages to s i through the wireless network. The FIFO dissemination approach requires reliable FIFO channels. They are implemented on wireless communication channels by A host uses the sequence number seq h to order messages it sends, and its station keeps seq h to order application messages it receives from the host. A station uses seq C to order application messages it broadcasts, and hosts use seq N C to order application messages they receive from their station. Both stations and hosts maintain two local buffers: one buffer to FIFO-order messages at reception (Sbuf ), and another one to retransmit sent/broadcasted messages until they are acknowledged (Rbuf ).

MH MSS Sbuf Rbuf Rbuf Sbuf seq h seq h seq N C seq c

Inter-cell module

The inter-cell module is composed of all the stations and the wired communication channels connecting them. The FIFO dissemination of messages is ensured on the wired network with the algorithm proposed by Nédelec and all [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF], which tolerates dynamics under certain conditions. The authors define initialized communication channels, which are either communication channels initially present, or communication channels which were initialized through the algorithm. The algorithm notably requires that there always exists a path of initialized communication channels between each pair of nodes. Hence, we assume that each pair of stations is always connected by a path of initialized communication channels. The algorithm also requires reliable FIFO communication channels. Wired communication channels reliability can be easily achieved through protocols like TCP. The algorithm presented by Nédelec and all [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that messages travel in causal order over the wired network, i.e., between stations in our case.

Message acknowledgment

Hosts and stations keep messages in their SBuf for retransmission. A host keeps an application message in its Sbuf until its cell's station acknowledged the message. A station of group G keeps an application message m in its Sbuf until, ∀s k ∈ G, all hosts connected to s k acknowledged m, i.e., m is acknowledged by all hosts connected to stations of G. Stations should discard obsolete application messages from their SBuf. Existing discarding approaches are centralized, which induces a high message and memory overhead. WAS implements a decentralized discarding of obsolete messages, where each station deletes an application message m once all hosts connected to it have delivered m. Therefore, stations store fewer messages in SBuf when using the WAS algorithm.
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Hosts do not send acknowledgments during handoffs, since they would acknowledge application messages received from another station, which might order application messages differently.

Broadcast example

Figure 4.13 shows the broadcast and delivery of two causally related application messages. Host h 1 (resp. h 2 ) is connected to station s 1 (resp. s 2 ), and s 1 and s 2 are connected by a wired channel. Hosts (resp. stations) piggybacks seq h (resp. seq C ) on application messages broadcasted over the wireless network. The sending buffers SBuffers are represented in bold.

First, h 1 broadcasts m 1 . Upon reception, s 1 attributes the sequence number seq C = 1 to m 1 , broadcasts m 1 in its cell, which contains h 1 , and broadcasts m on the wired network to forward it to s 2 . Upon reception, s 2 attributes the sequence number seq C = 1 to m 1 , broadcasts m 1 in its cell, which contains h 2 , and also broadcasts m on the wired network. h 2 receives and delivers m 1 , then broadcasts m 2 (co-broadcast(m 1 ) → co-broadcast(m 2 )). s 2 receives m 2 , attributes seq C = 2 to it, then broadcasts m 2 on the wired network.h 2 (resp. s 2 ) stops transmitting m 1 (resp. m 1 and m 2 ) upon reception of the acknowledgment message regularly broadcasted by s 2 (resp. h 2 ). h 1 receives neither m 1 the first time s 1 broadcast it due to interferences, nor its acknowledgment. Hence, h 1 retransmits m 1 . s 1 ignores the second reception of m 1 since it already received m 1 . Upon reception of m 2 , s 1 broadcasts it. Then h 1 receives and buffers m 2 because the sequence number that s 1 attached to m 2 is equal to 2, and h 1 awaits a message with seq=1. Eventually, s 1 broadcasts m 1 again and, upon reception, h 1 delivers m 1 then m 2 . Finally, h 1 (resp. s 1 ) acknowledges m 1 and m 2 (resp. m 1 ). s 1 (resp. s 2 ) discards m 1 and m 2 from its sending buffer SBuf after h 1 (resp. h 2 ) acknowledged them. Hence, m 1 and m 2 are completely discarded from the network, i.e., removed from the buffers of all nodes.

Join/leave the network

WAS tolerates host churn during execution: a host can join and leave the network at any moment. Joining and leaving the network is not as immediate as it seems, because of the unreliability of the wireless network.

Joining the network.

A host h i joins the network by regularly sending a join k+1 message to station s i until s i replies with the corresponding connect ACK,k+1 message. The connect ACK,k+1 message contains seq C , the sequence number of the oldest message s j caches in SBuf. Upon reception of the connect ACK,k+1 message, h i completes the connection initialization by updating seq N C to seq C . h i can now begin to deliver application messages, based on seq N C . Moreover, due to the unreliability of the wireless network, s i must do some additional work to ensure that it is the only station that has an open connection with h i .

In fact, several stations might receive the join k+1 message of h i , and each of these stations will then open a connection with h i . When h i sends a join k+1 message to s i through the unreliable wireless network, one of the three following scenarios presented in Figure 4.4 occurs: (1) both the join k+1 and connect ACK,k+1 messages are received; or interferences cause the loss of either (2) the join k+1 message, or (3) the connect ACK,k+1 message. Due to scenarios (2) and (3), h i cannot decide if a station from which it receives no connect ACK,k+1 has received its join k+1 message or not. Moreover, h i might move between several cells before it succeeds to connect to a station and thus join the system. h i will then send join k+1 messages to several stations. Therefore, several stations might receive and open a connection with h i
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Figure 4.4: Host connection scenarios before h i receives its first connect ACK, message. However, h i should be connected to only one station, which is the one to which h i sent the last join k+1 message.

Stations handle such multiple connections by identifying each connection with a tuple (h i , k), with h i being the host that connects to the station and k being the k th connection of h i to a station. When s i receives a join k+1 message from h i , it broadcasts a Delete message on the wired network containing the tuple (h i , k + 1).

Stations that maintain a connection (h i , x) with x < k + 1 unregister it upon reception of the Delete message. This ensures that eventually only the connection between s i and h i remains.

Leaving the network. Host h i leaves the network by broadcasting a leave message, until a station, regardless of which one, acknowledges it. The station which receives the leave message broadcasts a Delete message, and stations that have a registered connection with h i remove it upon reception of the Delete message.

Handoff procedure

The algorithm described in Section 4.3 ensures causal broadcast in networks where hosts always stay connected to the same station, i.e., in which hosts do not change cells. This section provides a handoff which enables hosts to change cells while delivering broadcast messages in causal order. Basically, when a host h i changes the cell, by leaving the cell of station s k , entering the cell of station s k+1 and connecting itself to station s k+1 , then s k+1 executes the handoff with s k in order to ensure that h i delivers messages causally. The handoff has three objectives:

(1). A station maintains the causal information related to hosts connected to it. Hence, when h i changes cell, its causal information must be transferred from s k to s k+1 .

(2). The handoff ensures that the wireless channel that h i establishes with s k+1 when changing cell does not create a path over which h i receives or sends messages out of causal order. (3). The decentralized deletion of application messages by stations implies that s k+1 might already discarded some application messages that h i did not deliver yet, and vice versa. s k+1 compares its cached application messages with s k to ensure that h i delivers each application message exactly once.
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Note that the handoff of WAS makes no assumption on the movement of hosts, contrarily to some existing handoff procedures [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF][ABS99][BB08] which make several unrealistic assumptions: they assume that a moving host always succeeds to connect to station s k before connecting to station s k+1 , or/and that h i is able to send a disconnect message to s k . Both of these assumptions are not realistic because of the unreliability of the wireless network and the movement of hosts. WAS makes no assumptions on the movement of hosts, and tolerates simultaneous handoffs for the same host h i , which might occur when h i changes rapidly cells. The correctness of the handoff requires no assumption about the success of connection attempts. Moreover, failures of hosts and stations are tolerated, as well as the failure and addition of wired communication channels connecting stations.

We start the handoff section by discussing the challenges that the handoff procedure faces (handoff challenges), then we describe the handoff procedure algorithm itself, and finally, we give an example of handoff execution.

Handoff challenges

The three main challenges that handoff procedures faces are: host connections, the causal ordering of messages, and the discarding of obsolete application messages.

Host connections.

When h i sends a connect k+1 message to a station s i but receives no reply, then it cannot conclude whether s i did or did not receive that connect k+1 message, i.e., h i cannot distinguish between the cases (b) and (c) of Figure 4.4. Because of such situations, h i cannot always determine which station keeps its causal information. Furthermore, h i might connect to several stations in a short time interval, and several of those stations might receive h i 's connect message, i.e., several stations execute a handoff for h i simultaneously.

Therefore, a handoff for h i must locate h i 's causal information, while tolerating simultaneous handoffs for h i , and it must also ensure that the last station that started a handoff for h i eventually maintains h i 's causal information.

Message ordering. The sequence number seq N C that h i uses to deliver application messages is only valid in the connection identified by Ses LC , which stores the connection sequence number of the last connection in which h i received a connect ACK, message. In fact, a station assigns a sequence number seq C to application messages as it receives them. Hence, stations might order application messages differently, since they might receive application messages in a different order. For example, in Figure 4. 5 Discarding obsolete application messages. As seen above, s k+1 must compare the application messages it caches with s k , because it might order them differently. However, a station discards an application message once all hosts connected to it have acknowledged the application message. This can lead to different SBuf states between s k+1 and s k . For instance, in Figure 4.5, assume that h i connects to s k+1 before delivering m 2 , but that s k+1 already discarded m 2 when h i connects to it. s k+1 must then recover m 2 from s k , and h i should deliver m 2 before delivering messages currently broadcasted by s k+1 (m 1 ). Moreover, if h i already delivered m 1 when connected to s k , then s k+1 must identify it.

However, stations do not maintain any information about messages they discard. For example, s k cannot inform s k+1 that h i already delivered m 1 if h i delivers m 1 before connecting to s k+1 , because s k does not keep any information about m 1 .

Therefore, s k and s k+1 must compare their cached application messages, while considering that they do not necessarily assign the same sequence number to application messages, as well as that they might respectively have some application messages that the other station has not received yet or that the other station has already discarded. They must do that without keeping information about discarded application messages.

Task of h i : Connecting to station s i 1: broadcast(<connect k+1 ,id h ,seq N C ,k+1,Ses LC >) to s i 2: k = k+1 receive <connect ACK,k+1 ,seq h ,seq N C ,Ses>:

3: seq N C i =seq N C ;seq h i =seq h ;Ses LC i =Ses; Task of stations s i ∈ G s k+1 : receive <connect k+1 ,h i ,seq N C ,k+1,Ses LC > at s i : 1: if c ∈ Connections, c.id = (h i , k + 1)∧ c not in handoff then 2:
Register(h i ) 

Handoff description

The pseudo-code of the handoff procedure is given by the Tasks h i , s k , and s k+1 , which respectively give the pseudo-code executed by host h i and the stations s k and s k+1 . Figure 4.6 shows the handoff procedure, composed of four phases whose purpose are:

• Phase 1: h i connects itself to s k+1 by broadcasting connect k+1 .

• Phase 2: s k+1 determines the application messages it discarded that h i has not delivered. s k and s k+1 exchange the messages Req 1,k+1 and Rsp 1,k+1 during this phase.

• Phase 3: s k+1 determines which, among the application messages it caches, h i has not delivered. s k and s k+1 exchange the messages Req 2,k+1 and Rsp 2,k+1 during this phase.

• Phase 4: Initialization of the connection between s k+1 and h i .

The execution of handoff H i,k+1 is said to be valid if:

• H i,k+1 is aborted, which happens when before processing the handoff H i,k+1 , s k processes a handoff H i,k+n , with n > 1, until the end of Phase 3, i.e., handoff H i,k+1 is aborted by a more recent handoff H i,k+n .

• Exactly s k+1 and stations of G s k+1 eventually hold the causal information of h i , provided that s k+1 does not fail till the end of Phase 3. Phase 1. When h i moves to the cell of s k+1 , it sends a connect k+1 message to s k+1 that contains: the connection sequence number Ses, the connection sequence number of its last initialized connection Ses LC , and the sequence number seq N C of the last message it delivered.
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Upon the reception of the connect k+1 message from h i , s k+1 verifies if it has already registered a connection with h i (line s k+1 .1). s k+1 registers the connection with h i if none is registered (lines s k+1 .9 -s k+1 .10) and starts the handoff procedure. On the other hand, h i is already registered if either (1) (a) h i is connected to s k+1 (b) h i moves to another cell, but its connect k+1 message is lost ( 

c). In case (1) (if

Ses LC = c.Ses), seq N C is valid for s k+1 . Hence, s k+1 uses it to acknowledge application messages that h i might be delivered without acknowledging them. In both cases, due to the discarding mechanism of buffered application messages at stations, h i might have to deliver some application messages that s k+1 has already discarded (we see later in this section how s k+1 determines which are those application messages). If h i has no such application messages to deliver, then s k+1 sends a connect ACK,k+1 message to initialize the connection on h i 's side (s k+1 .6 ).

Phase 2. We denote M deleted the set of messages that s k+1 discarded but that h i has not delivered yet. The purpose of Phase 2 is to identify the messages of M deleted . 

s
M delivered = M cache \(m nd ∪ m rcv ).
Phase 4: The purpose of Phase 4 is to initialize the connection between s k+1 and h i .

First, s k+1 begins to send the application messages of M deleted to h i , thus ensuring that h i also delivers the application messages s k+1 has already discarded. Moreover, s k+1 will not discard application messages it currently caches unless h i delivered them, thus ensuring that h i delivers every application message at least once.

Second, s k+1 ensures that h i will not deliver twice any application message. To this end it tags the application messages that h i already delivered (messages of M delivered ), because seq N C is not sufficient. In fact, take the example of Figure 4.5.

If h i delivers m 1 but not m 2 before connecting to s k+1 , then s k+1 must give to h i the sequence number seq N C = 0, so that h i will deliver m 2 . However, without additional control, h i would then also deliver m 1 again. To prevent multiple delivery of application messages by h i , s k+1 adds h i 's ID to the application messages h i already delivered but which s k+1 still caches in SBuf (line s k+1 .14), and, upon receiving them, h i only increments seq N C and does not deliver them again. Therefore, h i does not deliver again an application message on which it is tagged, thus ensuring that h i does not delivery any application message twice.

Thirdly, application messages of M deleted causally precede the application messages currently broadcasted by s k+1 . Therefore, h i delivers no application message currently broadcasted by s k+1 unless receiving the connect ACK,k+1 message from s k+1 , and s k+1 sends that connect ACK,k+1 message to h i only after that h i acknowledged all messages of M deleted (or if it has no such messages to deliver) (line s k+1 .16). Moreover, s k+1 sends the application messages of M deleted in causal order as defined in msg of the Rsp 2,k+1 message, thus ensuring that h i delivers them in causal order. Other application messages are delivered by h i following the sequence number s k+1 attributes to them. Therefore, h i delivers application messages in causal order.

The connect ACK,k+1 message contains seq C i , the sequence number of the oldest application message that s k+1 buffers and that h i has not delivered (line s k+1 .18). At its side, h i ends the handoff by setting seq N C , seq h , and Ses LC (line h i .4).

Finally, s k+1 broadcasts a Delete message to end connections of h i that might result from h i 's previous unsuccessful connection attempts (Figure 4.4(b)), thus ensuring that eventually h i is only registered at s k+1 .

Simultaneous handoffs for h i are handled sequentially: During handoff Req 1,k+1 , s k discards all handoff messages that do not belong to handoff H i,k+1 . A station s k+n that starts a handoff H i,k+n regularly re-broadcasts its Req 1,k+n message. Therefore, if H i,k+n is more recent than handoff H i,k+1 , then station s k+1 will eventually process the Req 1,k+n once it receives it and that handoff H i,k+1 is finished.

Handoff example

Figure 4.6 describes the handoff between s k and s k+1 when h i connects itself to s k+1 . The system configuration is as in Figure 4.5. For better readability, we assume that no other handoff for h i executes simultaneously. At the beginning of the handoff, s k has discarded m 1 and s k+1 has discarded m 2 . h i has broadcasted m 1 and h j has broadcasted m 2 . h i has also delivered m 1 . Both stations receive m 3 broadcasted by h j during the handoff. 

h i connects

Failure resilience

The algorithm tolerates the failure of hosts. Hosts can fail temporarily or permanently. The failure of hosts is handled at the station level.

A temporary failure of a host that exceeds a given time limit leads its station to disconnect the host, in order to limit the impact of the faulty host on the cell's wireless network. In fact, a station broadcasts an application message until all hosts connected to it acknowledged the message. However, a host that is faulty obviously acknowledges no application message. Therefore, the station that registers the faulty host will eventually broadcast more and more application messages as it receives new ones to broadcast. However, the wireless network is a shared medium and has a maximal throughput because of interferences. Therefore, the duration of a temporary host failure should be bounded in time, because the application messages broadcasted due to the faulty host will eventually heavily impact the wireless network, to the point where it can even overload it. Thus, a station controls its cell's collision rate and unregisters a faulty host once the collision rate inside its cell exceeds a given limit. A station considers that a host is permanently faulty when it does not receive any message from the host during a given time interval, or if the message collision rate becomes too high due to the absence of acknowledgments from that host.

A host saves and restores few variables on persistent local storage to handle temporary failures: seq h , seq N C , Ses, and Ses LC , and unacknowledged application messages broadcasted by the host before its failure. A host saves seq h (resp., seq N C ) when broadcasting an application (resp., acknowledge) message, Ses when changing cell, and Ses LC when the host receives the confirmation that the station to which it connects registered it. A host saves application messages when broadcasting them until they are acknowledged. Upon recovering, the host restores these variables and broadcasts a recover message to the station of its cell.

The station receiving the recover message might not hold the host's causal information, either because the host's failure duration was too long and the station discarded the host's causal information, or because the host moved during its failure. If the station still registers the host, it replies to the host with a connect ACK, message. Otherwise, it broadcasts a recovery req message, to which each station replies either with the host's causal information, or a message that notifies that the station does not store the host's causal information. The host is reinitialized if no station maintains its causal information, and the end of the recovery procedure is then similar to the system join of a host. If a station maintains the host's causal information, then the recovery procedure is similar to a handoff.

Permanent failures are handled through timeouts. If a station does not receive any message from a host for a given duration, then the station considers that the host has a permanent failure and simply deletes its connection with the host.

Summing up, our algorithm tolerates permanent and transient failures of hosts, while requiring few persistent information.

Performance Evaluation

Experimental setup. Experiments were conducted on INET, a network simulator implemented on OMNeT++ [START_REF] Varga | The OMNET++ Discrete Event Simulation System[END_REF]. INET offers an implementation of communication layers (e.g., TCP/UDP/Ethernet/IPv4/MAC), node mobility, node failures, and network interferences in wired and wireless networks.

We compare our algorithm, denoted WAS, with the one proposed by Chandra and Kshemkalyani [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF], denoted CK and described in Chapter 3, which is the algorithm with the best performances among causal multicast algorithms in mobile networks [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF]. We adapted CK to causal broadcast, by removing the structure log i , since the structure RECD i is sufficient to track causal order in causal broad-castC. Second, [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF] uses point-to-point communication on the wireless network.

Nodes use the broadcast feature of UDP on the wireless network, i.e., they only send one broadcast message on the wireless network instead of doing point-to-point communications.

Stations are placed to ensure a complete area coverage with a minimum intersection of cells. Hosts are placed randomly in each cell at initialization. Antennas have a communication range of 120m and a bandwidth of 20Mb/s. Stations are connected by a wired network organized into a tree of degree 3. Wired links have a bandwidth of 100Mb/s and a delay of 10ms. Application messages have a size of 100 bytes and are encapsulated in IPv4/MAC packets, whose header has 8 (resp., 20) bytes for UDP (resp., TCP). Therefore, an UDP (resp., TCP) packet has an overhead of 20(IPv4)+20(MAC)+8(UDP)=48 (resp., 60) bytes. UDP is used for communication on the wireless network, while TCP on the wired network. Each host broadcasts application messages following a Poisson distribution. Hosts move in a straight line with a speed of 5km/h≈1.39m/s inside the area covered by stations, and change direction every 5 seconds.

The experiments aim to :

• Analyze the scalability of WAS and CK and compare them with each other.

• Compare the centralized and decentralized message discarding approaches.

• Analyze the behavior of WAS in a scenario with faulty hosts.

Scalability

Throughput and delivery delay. The first experiment, whose results are shown in Figure 4.7, evaluates the maximal throughput when the number of hosts per cell increases. The experiment contains 10 stations and a total number of hosts that varies from 100 to 400 (x-axis). Results, presented in a logarithmic scale, show that WAS has a much higher (x10-20) throughput than CK, and that the throughput of CK decreases faster than WAS. In a system containing 400 hosts, the maximal throughput of WAS is more than 20x higher than CK. The throughput of CK is bounded mostly by the fact that a station only sends an application message to a host once the latter has acknowledged all the message's dependencies. Consequently, hosts send acknowledge messages very frequently, which negatively impacts performance because of a higher message collision rate on the wireless network. Moreover, CK has a delivery delay -the delay between broadcast(m) and deliver(m) -2 times higher than WAS, because a station waits that a host acknowledges a message's dependencies before sending it to the host. The second experiment measures the size and number of messages, evaluated at the IPv4 level, when the number of hosts increases. Figure 4.9 and Figure 4.10 show the number of messages sent over the wireless and wired network respectively. Figure 4.8 shows the total amount of data sent in WAS and CK during experiments.

The number of stations is adapted to keep a ratio of 20 hosts/cell. 20 messages are broadcasted per second in the system.

Number of sent messages. Figure 4.9 and Figure 4.10 show that WAS sends much fewer messages on both the wired and wireless networks. Moreover, the number of messages sent by CK increases much faster than the number of messages sent by WAS. WAS sends fewer messages on the wireless network because (1) hosts acknowledge messages less often than CK (20x), (2) hosts buffer messages at reception following seq N C piggybacked on messages, contrarily to CK where hosts do not buffer messages since stations only send a message m to a host once the host can causally deliver m. Hence, stations must retransmit messages less often than with CK (x5). On the wired network, CK sends more messages due to its centralized approach to discard obsolete messages: Every application message m from a host has an associated MSS init station, and every acknowledgment related to m is forwarded by the host's cell's station to MSS init , which, in its turn, broadcasts a delete message to all stations once it has received an acknowledgment related to m from every host. Hence, CK sends a lot of acknowledge and delete messages over the wired network. Moreover, those messages must travel along the wired network, often through several stations, until reaching the corresponding MSS init station. WAS implements a decentralized mechanism which requires no message exchange to discard obsolete messages. We point out that CK sends much fewer messages on the wired network than theoretically expected, because acknowledge messages of CK are small, and TCP groups many of them in a single packet.

Amount of sent data. Figure 4.8 shows that WAS sends a lower amount of data than CK. On the wireless network, this is mostly due to acknowledge messages of CK. Even though these messages contain only a few integers, they have an additional size of 48 bytes because they are encapsulated in UDP/IPv4/Mac packets, and only a few acknowledge messages can be grouped into one single packet since the station will not send the next messages to deliver until the current ones are acknowledged. On the wired network, acknowledge and delete messages are grouped by TCP, which mostly removes the encapsulation overhead. However, those many acknowledge and delete messages scale up fast. Moreover, with CK stations piggyback a vector of size N (N=number of stations) on application messages sent over the wired network, and that vector rapidly takes much space when the number of stations increases. WAS only piggybacks a few integers on application messages.

To conclude, in terms of hosts per cell, total number of hosts (acknowledge and delete messages), and stations (size of vector clocks piggybacked on application messages), WAS scales much better than CK.

Decentralized discard mechanism

This section compares our decentralized discard approach, used by WAS, with the centralized discard approach [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF].

In the third experiment, 200 hosts are distributed over 10 cells, the wireless network has a bitrate of 1Mb/s, and 35 messages are broadcasted per second for 300s. Figure 4.11 shows the number of messages that stations store in their respective sending buffers SBuf. Curve Max shows the maximum number of messages cached in a stations' SBuf, i.e., approximately the number of messages each station would store with a centralized discard approach. Curve Avg shows the average number of messages a station stores in its sending buffer, and curve Deviation gives the standard deviation between the average and the number of messages each station caches. The curves Avg and Deviation do not take into account the SBuf of the station that stores the most messages, in order to compare both curves with the Max curve.

The comparison of curves Avg and Max of Figure 4.11 shows that the number of messages cached by stations can vary a lot. Such a variation depends on the message loss rate in the station's cell: the higher the message loss rate, the longer a station caches a message, since lost messages must be retransmitted. The message loss rate depends on the number of messages to broadcast as well as the position of hosts in the network. The probability of message collision is higher in areas where two cells overlap because the respective stations send messages over their cells that might collide. Similarly, areas with a high density of hosts have a higher message loss rate. The standard deviation is low, mostly around 10 messages, except for a short period around 70s where a heavily loaded cell degrades its adjacent cells.

Hence, the number of messages a station stores in SBuf is mostly close to the average for all stations, except for some stations whose local characteristics make their send buffer grow temporarily. In a decentralized message discard approach, message loss rate and failing hosts only have a local impact. The comparison of curves Avg and Max shows that with a decentralized message discard approach, stations store up to 4 times fewer messages than with a centralized one, and that, on average, stations store 40-50% fewer messages.

Finally, a host that fails stops acknowledging messages. Hence, the station to which the host is connected will stop discarding application messages. Figure 4.12 shows that, in presence of a host failure, the station to which the faulty host is connected caches many more messages than the other stations (8-10x more). In the decentralized discard approach, only the station to which the faulty host is connected will cache all those messages. Hence, the decentralized discard approach caches up to 8-10 times fewer messages on average on stations when a host fails.

Transient host failures

The last experiment, whose results are presented in Figure 4.12 measures the impact of transient host failures on WAS in a system containing 10 stations and 200 hosts (20 hosts per station), a wireless network bitrate of 1Mb/s, and where 15 messages are broadcasted per second. The first host fails at t=10s for 5 seconds, then each 30 seconds another host fails, and the fault duration increases by 2 seconds at each failure. In total, 9 hosts fail, the first failing at t=10s for 5s, the second at t=40s for 7s, and so on. A host that fails it stops acknowledging messages. The number of messages cached in the SBuf of the station to which the faulty host is Curve Max shows the maximum number of messages cached in a station's SBuf which is, during failures, the number of messages cached by the station at which the faulty host is registered. Curve Avg shows the average number of messages a station stores in its SBuf, and curve Deviation gives the standard deviation between the average and the number of messages each station caches. In order to evaluate the impact that a cell containing a faulty host has on the other cells, the former is not taken into account in the computation of Avg and Deviation. Vertical dashed lines represent a host crash.

During each failure, the number of application messages cached by the station to which the faulty host is connected linearly increases. Those application messages are also broadcasted by that station. Nevertheless, the number of cached application messages sharply decreases once the host recovers, showing that, very fast, the host receives the missing application messages and the cell rapidly reaches the same message load it had before the failure.

Curve Avg shows that, on average, a faulty host has a low impact in the number of messages stored by the other stations, except for the last failure occurring at t=255s.

Curve Deviation also shows that the increasing size of SBuf of the faulty host's station has no impact on other cells, as long as the SBuf does not become bigger than 150-200 messages. Once the SBuf exceeds that size, the faulty host's station begins to degrade adjacent cells that overlap with it. In fact, the station broadcasts application messages and retransmits messages not acknowledged by the faulty host, thus increasing the number of messages sent by the station. This leads to an increasing number of message collisions in the cell, including the areas where the cell overlaps with other cells. Hosts in those overlapping areas, connected to other stations, will receive fewer messages, because of this higher message collision rate. Hence, they will deliver messages more slowly, increasing the number of messages broadcasted by the neighboring stations of the faulty host's cell. During the last crash occurring between t=250s and t=273s, the 3 adjacent cells of the faulty host's cell are impacted, explaining why the average size of the SBuf increases. Moreover, contrarily to previous failures where the faulty host takes less than a second to acknowledge messages, the host takes 7 seconds to acknowledge all messages. Therefore, the failure of a host first and mostly has an impact in the cell in which it occurs and afterwards in adjacent cells when its cell's station stores more than 150-200 messages. Nevertheless, such an impact rapidly disappears once the host recovers.

To conclude, experiments confirm that WAS scales much better than CK in terms of the number of hosts per cell, as well as in terms of total hosts and/or stations. WAS sends much fewer messages than CK both on the wired and wireless network, the amount of sent data is also much lower, and WAS has half the delivery delay of CK. Second, the decentralized message discard mechanism of WAS caches much fewer messages than CK, particularly during host failures. Finally, in WAS, the impact of a transient host failure is sharply absorbed after the faulty host recovers.

Extension to tolerate station failures

This section presents WAS2, an algorithm that extends WAS to make it tolerant to station failures. Several mechanisms are added to WAS, but most of the algorithm remains the same. Therefore, the following describes the modifications of WAS but does not describe WAS2 completely. Each of the following subsections corresponds to the modifications added to the corresponding section of WAS in order to render it tolerant to station failures. For example, subsection Model corresponds to the modifications done in the section Model of WAS.

Model

Stations are subject to transient and permanent failures. A faulty station stops sending, receiving, and processing messages, and loses all data. To handle failures, stations are split into groups, and each station of a group G stores a replica of the causal information stored by the other stations of G. We define f=|G|-1 as the maximum number of stations of a group that can be down simultaneously.

WAS2 tolerates the failure of stations as long as the system satisfies the two following conditions :

• At most f stations of the same group fail simultaneously.

• Each pair of stations is connected by initialized links as defined in [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF].

Dissemination of application messages

WAS2 does not modify the intra-cell module. The inter-cell module must however be modified in order to ensure that stations that belong to the same group order application messages identically.

WAS2 totally orders application messages inside each group of stations. Algorithm 7 describes the broadcast algorithm of messages. The stations of each group G elect a responsible station s resp through a consensus algorithm. s resp assigns an increasing sequence number seq C to application messages as it receives them, and broadcasts their ID and seq C on the wired network. A station delays the broadcast of an application message on its wireless network until it receives the message's sequence number seq C through an App resp message from s resp .

In WAS2, station s i saves a copy of the causal information of hosts connected to any station of G s i . Thus, s i has a copy of the causal information of hosts connected to any station of G s i , and this causal information can therefore be recovered at s i when those other stations fail. s i must update the causal information it stores about hosts connected to stations of G s i to keep it consistent. More particularly, it must keep track of the application messages broadcasted by hosts connected to G s i .

To this end, whenever it receives an application message broadcasted by a host h i connected to a station of G s i , it updates the seq h associated to h i . The algorithm used for communications on the wired network [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that s i receives these application messages in causal order, i.e., it will receive the application message broadcasted by h i of sequence number i before it receives the application message broadcasted by h i of sequence number i + 1. Moreover, [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that s i eventually receives them and therefore updates the seq h associated to h i . Hence, s i keeps track of the application messages broadcasted by hosts connected to stations of G s i .

Algorithm waitUntil(receive<APP resp , seq C >) from s resp 12: broadcast(<APP,seq C >) on the wireless network 13: ∀c ∈ Connections, c.host = h i , c.seq = c.seq + 1

Message acknowledgement

In WAS2, a station s i continues to cache an application message m not only until all hosts of its cell delivered m, but until all hosts connected to any station of its group G s i have delivered m. Therefore, a station s i must acknowledge the delivery of application messages by host connected to it to the other stations of its group G s i . For this purpose, each station regularly sends acknowledge messages to the other stations of its group, to acknowledge application messages all hosts of its cell have delivered.
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This new acknowledge mechanism introduces a new overhead, which nevertheless remains small. In fact, a station stops broadcasting an application message m once all hosts inside its cell have delivered m, and it then only keeps m for backup. Hence, stations can broadcast acknowledge messages only on a regular interval. Moreover, stations are supposed to be relatively reliable, and groups of stations should therefore be relatively small and contain only a few stations.

Broadcast example

Figure 4.13 shows the broadcast and delivery of two causally related application messages. The example is identical to the one in Section 4.3.1.4, except that the system uses WAS2 instead of WAS.

Host h 1 (resp. h 2 ) is connected to station s 1 (resp. s 2 ), and s 1 and s 2 belong to the same group of stations G, and are connected by a wired channel. s 2 is the station responsible for the group G. Hosts (resp. stations) piggybacks seq h (resp. seq C ) on application messages broadcasted over the wireless network. The sending buffers SBufs are represented in bold.

First, h 1 broadcasts m 1 . Upon reception, s 1 forwards m 1 to s 2 , and buffers m 1 . Upon reception, s 2 attributes the sequence number seq C = 1 to m 1 , s 2 broadcasts m 1 in its cell, which contains h 2 , and sends an AP P resp message to s 1 containing the seq C = 1 it attributed to m 1 . h 2 receives and delivers m 1 , then broadcasts m 2 (co-broadcast(m 1 ) → co-broadcast(m 2 )). s 2 receives m 2 , attributes seq C = 2 to it, then broadcasts m 2 on the wired network with its attributed seq C to s 1 . h 2 (resp. s 2 ) stops transmitting m 1 (resp. m 1 and m 2 ) upon reception of the acknowledge message regularly broadcasted by s 2 (resp. h 2 ). h 1 does not receive neither m 1 the first time s 1 broadcast it due to interferences, nor its acknowledgment. Hence, h 1 retransmits m 1 . s 1 ignores the second reception of m 1 since it already received m 1 . Upon reception of m 2 , s 1 broadcasts it. Then h 1 receives and buffers m 2 because the sequence number that s 1 attached to m 2 is equal to 2, and h 1 awaits a message with seq=1. Eventually, s 1 broadcasts m 1 again and, upon reception, h 1 delivers m 1 then m 2 . Finally, h 1 (resp. s 1 ) acknowledges m 1 and m 2 (resp. m 1 ). s 1 (resp. s 2 ) discards m 1 and m 2 from its sending buffer SBuf after h 1 (resp. h 2 ) as well as s 2 (resp. s 1 ) acknowledged them. Hence, m 1 and m 2 are completely discarded from the network, i.e., removed from the buffers of all nodes.

Join/leave the network

Joining the network. Station s i forwards join k+1 messages it receives to other station of G s i , such that those stations also register the connection with h i . Therefore, s i broadcasts the join k+1 message on the wired network and stations of G s i register the connection with h i upon receiving the join k+1 message. Otherwise, The join procedure does not change.

Leaving the network. The leave procedure does not change in WAS2.

Handoff

WAS2 has the same core handoff module than WAS, with some additional steps required to handle the failure of stations. During handoff H i,k+1 between the stations s k and s k+1 for host h i , either s k or s k+1 might fail.

Handoff termination. WAS2 ensures that every handoff eventually terminates. If s k+1 fails, handoff H i,k+1 is eventually cancelled; if s k fails, s k+1 eventually reinitialize the handoff.

If s k+1 fails, then it obviously stops sending handoff messages to s k . Upon expiration of a timeout, s k then concludes that s k+1 failed and will therefore cancel the handoff. h i will eventually connect to another station or it will reconnect itself to s k+1 after that s k+1 recovered, and s k+1 will then begin a new handoff.

If s k fails, then it will obviously stop replying to handoff messages sent by s k+1 . Upon expiration of a timeout, s k+1 then concludes that s k failed. It does then reinitialize the handoff by broadcasting a Req 1,k+1 message. Other stations of G s k eventually also conclude that s k failed, and one of them will then take up the responsibility of h i . This station, denoted s b will eventually receive the Req 1,k+1 message re-broadcasted regularly by s k+1 , and will then execute the handoff with s k+1 . Note that we make the assumption that upon detecting the failure of s k , station s b received all messages broadcasted by s k before failing. Therefore, it will have received all application messages broadcasted by h i , and seq h associated to h i will thus be up-to-date. If s b fails, then another station will take up the responsibility of h i , and so one.

Replication of h i 's causal information At the end of Phase 3, i.e. after that s k+1 processed the Rsp 2,k+1 message, only s k+1 has the causal information of h i . Hence, it must propagate that information to the stations of G s k+1 . To this end, it sends a register k+1 message that contains all the causal information of h i to stations of G s k+1 . Stations of G s k+1 replicate the connection information between h i and s k+1 upon reception of that register k+1 message. The algorithm used for communication between stations [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that when a station s b receives the register k+1 message, this message contains all the causal information about h i that s k+1 collected prior to sending the register k+1 message. Therefore, the register k+1 message contains all the relevant causal information that s b received prior to the register k+1 message, and s b therefore handles messages containing causal information for h i as it receives them after receiving the register k+1 message.

No causal information is lost. Process s k+1 broadcasts a delete message only at the end of Phase 3 after having broadcasted a register k+1 message. Thus, s k+1 will not broadcast a delete message without broadcasting a register k+1 message, i.e. stations of G s k will not delete the connection with h i unless stations of G s k+1 will register it. Consequently, it is ensured that the causal information of h i is not lost.

Recovering. In order to recover, a station s i must:

1. Connect itself to the wired network while not creating a path over which messages can travel out of causal order.

2. Recover the causal information of hosts connected to a station of its group.

3.

Recover the application messages broadcasted by stations of its group.

Station s i satisfies condition (1) in two steps: first it initializes a communication channel with one up station s b of G s i , then in the second step it initializes its other communication channels through that first initialized communication channel. The former, denoted ch i , is a FIFO wired communication channel whose endpoints are s i and a station s b of G s i . Both stations s i and s b initialize ch i by exchanging a recovery k and a recovery ACK,k message through ch i . s i begins by sending the recovery k message to s b , which replies with a recovery ACK,k message containing the causal information locally stored at s b upon its reception of the recovery k message. s b considers ch i as initialized after sending the recovery ACK,k , and s i considers ch i as initialized after receiving the recovery ACK,k message. s i discards messages it receives prior to the recovery ACK,k message and handles normally messages it receives afterwards. After initializing ch i , s i is connected to every other station through a path of initialized communication channels, and does therefore initialize its other communication channels by using the algorithm proposed by Mostéfaoui [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF].

Conditions (2) and (3) are satisfied by s i by recovering the information in the recovery ACK,k message: s b appends to the recovery ACK,k message the causal information it stores about hosts connected to stations of G s i as well as the application messages (and their associated seq N C ) it stores locally. Moreover, s b forwards each message it receives after sending the recovery ACK,k message to s i . Upon reception of the recovery ACK,k message, s i caches in its sending buffer the application messages contained in the recovery ACK,k message with their associated seq N C number, and registers the causal information contained in the recovery ACK,k message. Therefore, s i receives the information stored by s b until the sending of the recovery ACK,k message as well as the messages s b receives after sending the recovery ACK,k message. Hence, it will receive both all application messages that stations of G s i store and the messages required to ensure the causal information of hosts connected to stations of G s i .

Finally, s i choses a new identifier when recovering, because some of the messages it sent before failing, or replies to some of those messages, might still be in transit over the network. By choosing a new identifier, s i ensures that it will not handle any of those messages. s i is in the up state after receiving the recovery ACK,k message.

Summary

This section presented WAS2, an extension of WAS that tolerates the failure of stations in mobile networks. WAS2 has an overhead in complexity and messages.

Stations are organized into groups to replicate the causal information they contain. Those of the same group exchange information to order both application messages identically, and to behave as backup for the causal information stored in other stations of the group. WAS2 adapts the handoff to tolerate the failure of stations, and especially the failure of the two stations that take part in the handoff. Finally, WAS2 provides a procedure that enables stations to recover from failures.

Proof

For the following proofs, we define the variables:

• h i : host

• s i : station that holds the causal information of h i .

• G ss i : group of stations to which s i belongs.

• G: set containing all groups of stations.

• S: set containing all stations.

• H: set containing all hosts.

• s resp i : station responsible for the ordering of application messages for stations of G S i

• s j : first station with which h i has an up-connection.

• M prev : set of messages discarded prior to the first up-connection of h i .

Proof when nodes do not move between cells

Lemma 4.1. WAS ensures that, ∀G k ∈ G, ∃s k ∈ G k , s k is up ⇒ ∀h i ∈ H, ∃s i ∈ S, s i holds the causal information of h i .

Proof. Stations disseminate messages among each other by using the algorithm presented by Nédelec et al. in [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF], ensuring that messages are causally ordered upon their reception at stations. Station s resp i assigns an increasing sequence number to each message m following its arrival time, and all stations of G S i assign to m that sequence number, i.e. all stations of G S i assign the same sequence number to m. Moreover, all stations of G S i have a copy of the causal information relative to h i : s i sends them the connect message, and they update the number of messages h i broadcasted when receiving a message that h i broadcasts.

h i delivers messages from s i following their sequence number, and saves the sequence number of the last delivered message on persistent storage. Hence h i delivers messages from s i in causal order. If s i fails, then other up-stations of G S i still order the application messages as s i , and they also store the causal information relative to h i . When s i recovers it recuperates the causal information about h i by sending a recover message to s resp i , and h i can then continue to deliver messages in causal order. To handle host failures, h i saves the sequence number of the last message it delivered on persistent storage, so it can determine which message it has not delivered when recovering. If s i fails, then other up-stations of G S i still order the application messages as s i and, following Lemma 4.1, they also have a copy of the causal information relative to h i . When s i recovers, it will retrieve that information by sending a recover request to s resp i . Termination. A host h i that joins the system is not considered up until the station s i to which h i connects itself sends a connect ACK message to h i and h i receives it. Upon reception of the join message, s i attributes to h i the sequence number of the application message it buffers with the lowest sequence number, and forwards the join message to the other stations of G S i . Stations of G S i only delete a message m once it is acknowledged by all stations of G S i , i.e., once all hosts connected to a station of G S i have delivered m. Hence, even if s i has a temporary failure, other stations of G S i will keep m, and when s i recovers it will recover those messages and broadcast them until h i has acknowledged (and henceforth delivered) them. Moreover, s i retranmits the join acknowledgment as well as every buffered application message until h i acknowledged each of them (i.e., after having delivered it), or s i considers h i as down. Hence, all messages that s i did not discarded upon the reception of h i 's join message will be delivered by h i , given that h i remains an up process.

Proof when nodes move between cells

In this section we prove that WAS ensures causal order when hosts move between cells without simultaneous handoffs for the same host, i.e., a host does not move to a new cell c k+1 unless it succeeded to connect to the station of its current cell c k .

Lemma 4.2. During handoff H i,k+1 , station s k+1 recovers the messages it discarded that h i has not delivered and that are not in M prev h i .

Proof. We prove it by induction. H0: The first station s j to which h i connects itself successfully has no application message to recover. By definition, a host is up when joining the system once it received a connect ACK message from a station s j to which it connects. Station s j discards no application message after sending the connect ACK message to h i , unless h i acknowledges that message or connects to another station. Hence, s j deletes no application message after sending connect ACK to h i unless h i acknowledges that message or connects to another station, and has, therefore, no application message to recover.

Stations of G s j also delete no application messages unless s j acknowledges them. Hence, if s j temporarily fails, then it will recover those messages during its recovery.

Proof

H1: When an up-host h i connects itself to a station s k+1 , then s k+1 recovers those application messages it has already discarded, that h i has not delivered, and that are not in M prev h i .

Let's denote M recov the set containing the application messages that s k+1 must recover.

s k+1 receives messages of M recov prior to receiving the connect k+1 message, since it discards no application message after receiving the connect k+1 message unless that h i acknowledges it.

In its turn, s k receives the messages of M recov before receiving the Req 1,k+1 message, since s k+1 broadcasts the Req 1,k+1 message after receiving the connect k+1 message, and that the algorithm used for wired communication [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that communications on the wired network are FIFO ordered.

Upon reception of the Req 1,k+1 message, s k which holds h i 's causal information, determines which messages h i did not deliver among the messages s k received prior to the Req 1,k+1 message, and attaches the list l d of ids of those messages to Rsp 1,k+1 . Therefore, the id of messages of M recov are contained in l d .

Upon reception of the Rsp 1,k+1 message, s k+1 determines M recov by determining which messages whose id is in l d it does not buffer. s k+1 then requests the messages of M recov to s k in the Req 2,k+1 message, and s k sends them to s k+1 in the Rsp 2,k+1 message.

Hence, s k+1 recovered all messages of M recov upon the reception of the Rsp 2,k+1 message.

If s k+1 fails, then the handoff is simply aborted at s k 's side upon timeout expiration. If s k+1 recovers, it will get a new id, and if h i tries to reconnect to s k+1 after s k+1 's recovery, then s k+1 will simply start another handoff.

Hence, when an up-host connects itself to a station, that station recovers the application messages it has discarded prior to the connection of the host (H1). Since the first station to which the up-host connects successfully has no message to recover (H0), we conclude that when a up-host connects itself to a station, then that station recovers the messages it discarded but that the up-host has not delivered.

Lemma 4.3. Upon reception of the Req 1,k+1 message, s k received all application messages that h i has delivered prior to connecting to s k+1 .

Proof. We prove it by induction. H0: h i only delivers application messages it receives from stations to which it connected successfully.

This is true by definition.

H1: We assume that upon reception of the Req 1,k message, s k-1 received all application messages that h i delivered prior to connecting to s k . We show that upon reception of the Req 1,k+1 message, s k received all application messages delivered by h i prior to connecting to s k+1 .

s k received the application messages delivered by h i prior to connecting to it. By hypothesis, s k-1 received those application messages upon reception of the Req 1,k message. Moreover, the algorithm used for communication between stations ensures that s k received those application messages upon receiving the Rsp 1,k message. Since by definition handoff H i,k is finished, s k received the Rsp 1,k message and has therefore received those application messages.

s k received the application messages delivered by h i while connected to it upon reception of the Req 1,k+1 message. In fact, s k+1 only sends the Req 1,k+1 message after receiving the connect k+1 message, and h i stops delivering messages from s k after sending the connect k+1 message. Therefore, h i will not deliver any message from s k that s k receives after Req 1,k+1 . Moreover, s k obviously received the application messages that h i delivered while connected to it.

Therefore, upon reception of the Req 1,k+1 message, s k received all application messages that h i delivered prior to connecting to s k , as well as the application messages that h i delivered while connected to s k . Hence, upon reception of the Req 1,k+1 message, s k received all application messages that h i delivered prior to connecting to s k+1 .

Hence, upon reception of the Req 1,k+1 message, s k received all application messages that h i has delivered prior to connecting to s k+1 (H1). Since a host delivered no application message before connecting successfully to a station (H0), we conclude that upon reception of the Req 1,k+1 message, s k received all application messages that h i has delivered prior to connecting to s k+1 .

Lemma message.

Among the application messages that s k receives prior to the Req 1,k+1 message, the id of those not delivered by h i are contained in m nd .

Among the application messages that s k receives between the Req 1,k+1 and Req 2,k+1 message, none of them are delivered by h i . In fact, following the corollary of Lemma 4.3, h i delivered no application messages that s k receives after Req 1,k+1 . The list msg rcv contains the ids of application messages that s k receives between the Req 1,k+1 and Req 2,k+1 messages.

Therefore, the list m nd ∪ m recv contains the list of ids of application messages that h i did not deliver among the application messages that s k+1 received prior to the Rsp 1,k+1 message.

Lemma 4.6. Application messages that h i did not deliver prior to handoff H i,k+1 are those received by s k+1 prior to the Rsp 1,k+1 message and whose id is contained in m nd ∪ msg rcv (m nd ∈ Rsp 1,k+1 , msg rcv ∈ Rsp 2,k+1 ), or those that s k+1 receives after the Rsp 1,k+1 message.

Proof. Following Lemma 4.5, messages that h i has not delivered among those s k+1 receives prior to the Rsp 1,k+1 message are those contained in m nd ∪ msg rcv . Following the corollary of Lemma 4.4, h i did not deliver any message that s k+1 receives after the Rsp 1,k+1 message.

Lemma 4.7. h i must first deliver the application messages of msg ∈ Rsp 1,k+1 to ensure that it delivers application messages in causal order.

Proof. The algorithm used for the communication between stations [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that stations receive messages in causal order. Moreover, stations order application messages following their reception order, i.e. if a station receives m 1 before m 2 , then seq m 1 < seq m 2 .

Stations discard application messages in increasing sequence order, i.e. each application message that s k+1 buffers has a greater sequence number than application messages that s k+1 has discarded. Hence, h i must first deliver the application messages that s k+1 discarded prior to delivering application messages that s k+1 currently broadcasts. Since s k+1 discarded the application messages m ∈ msg, h i must first deliver them.

Theorem 4.2. WAS ensures causal broadcast in mobile networks where hosts move between cells.

Proof. Following Theorem 5.3 WAS ensures causal broadcast in mobile networks where hosts do not move between cells, i.e., where a host always stays connected to the same station. We show that the handoff procedure of WAS ensures that the causal information of a host h i that moves from cell c i to cell c k+1 is transferred to the station s k+1 in charge of cell c k+1 , and that s k+1 therefore continues to ensure causal broadcast for h i .

Validity. The validity of causal broadcast does not change when hosts move between cells. Hence, the validity proof of Theorem 5.3 holds.

Integrity. Following Theorem 5.3, hosts co-deliver no application message twice when not changing cell. We show that when host h i moves from cell c k to cell c k+1 and connects itself to station s k+1 , s k+1 identifies the application messages that h i already delivered, and that h i will not deliver them again.

Following the corollary of Lemma 4.6, application messages that s k+1 buffers or receive that h i has delivered are the application messages m that s k+1 receives prior to the Rsp 1,k+1 message such that m / ∈ m nd ∪ msg rcv . s k+1 and the other stations of G s k+1 piggyback h i 's id on those application messages when broadcasting them, and h i does not deliver them upon reception. Following Lemma 4.1, if s k+1 (resp. s k ) fails, the causal information of h i is maintained as long as a station of G s k+1 (resp. G s k ) is up. Hence, the application messages that h i already delivered are eventually identified, even if s k+1 or s k fail.

Therefore, h i will not deliver an application message again which it has already delivered, i.e., h i delivers no application message twice.

Proof

Causal order. Following Theorem 5.3, WAS ensures causal order when hosts do not change cell. We show that handoff H i,k+1 ensures that will deliver h i messages in causal order when connecting to station s k+1 .

First we show that messages broadcasted by h i are not disseminated out of causal order. The causal dependencies of application messages broadcasted by h i are the application messages delivered by h i . Following Lemma 4.4, s k+1 received those application message prior to the Rsp 2,k+1 message, i.e. before the end of handoff H i,k+1 . Since s k+1 broadcasts no application message from h i prior to the end of handoff H i,k+1 , no application message m of h i is disseminated by s k+1 before that s k+1 receives one of m's causal dependencies. Therefore, application messages of h i are disseminated in causal order.

Second, we show that s k+1 identifies the application messages that h i must deliver and sends them in causal order to h i .

To begin, we show that h i delivers in causal order application messages that s k+1 receives prior to the Rsp 1,k+1 message. Following Lemma 4.7, h i must first deliver the application messages it has not delivered and that s k+1 discarded prior to h i 's connection. Following Lemma 4.2, s k+1 recovers those application messages through s k which orders them in causal order. s k+1 sends them to in causal order to h i , and h i first delivers them before that s k+1 sends the connect ACK,k+1 message to it, i.e., before that h i can deliver application messages currently broadcasted by s k+1 . For the application messages received by s k+1 before the Rsp 1,k+1 message and that s k+1 did not discard, h i will deliver them following the sequence number that s k+1 assigned to them, i.e., in causal order. Therefore, h i delivers in causal order the application messages received by s k+1 before the Rsp 1,k+1 message.

To finish, application messages that s k+1 receives after the Rsp 1,k+1 message are not delivered by h i . s k+1 delivers them to h i following the sequence number associated to them. This sequence number is attributed following their reception order on the wired network, and the algorithm used for communications on the wired network [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that messages are disseminated in causal order. Therefore, those messages are delivered in causal order. Therefore, h i will deliver in causal order the application messages received by s k+1 before and after the Rsp 1,k+1 message, i.e., h i delivers application messages in causal order. If s k+1 (resp. s k ) fails, then following Lemma 4.1, as long as other stations of G s k+1 (resp. G s k ) are up, at least one of them will hold the causal information of h i , and the faulty station will recover that causal information when recovering.

Termination. Theorem 5.3 shows that WAS ensures the termination when hosts do not move between cells. We show that an up host that changes cell eventually co-delivers all application messages. Note that a host that delivers no message because it changes to often its cell would eventually be considered as down by the station registering it. Therefore, hosts are supposed to be periodically connected long enough to a station in order to deliver outstanding application messages. Following Lemma 4.2, s k+1 recovers the application messages that it discarded prior to the connection of h i and sends them to h i . Hence, h i eventually delivers all application messages that s k+1 receives prior to the Rsp 2,k+1 message and that s k+1 discarded prior to the connection of h i . For any other message m, s k+1 will not discard it unless s k+1 considers h i as down or unless h i acknowledged it, and s k+1 will retransmit m periodically until h i acknowledges it.

Hence, the handoff procedure ensures that s k+1 recovers and sends to h i all messages it discarded that h i has not delivered, and for all the other messages not delivered by h i , s k+1 buffers them and retransmits them until h i acknowledged them. If s k+1 (resp. s k ) fails, then following Lemma 4.1, as long as other stations of G s k+1 (resp. G s k ) are up, at least one of them will hold the causal information of h i , and the faulty station will recover that causal information when recovering.

Proof that WAS ensures causal order in presence of station failures Lemma 4.8. A handoff eventually executes in presence of station failures, and stations of G s k+1 eventually hold the causal information of h i if s k+1 does not fail until the end of Phase 3. Proof. Following Theorem 5.3, a handoff eventually executes in a system without station failures. We prove that a handoff also eventually executes in presence of station failures.

If s k fails, then a station s b of G s k eventually takes up the responsibility of h i . Moreover, s k will then also not reply to the handoff messages of s k+1 , which will eventually conclude that s k failed, and which will therefore begin again the handoff by broadcasting a Req 1,k+1 message. s b will then receive that Req 1,k+1 message and execute the handoff with s k+1 . If s b fails, then another station of G s k will eventually take up the responsibility of h i , and so on as long as a station of G s k remains up. Therefore, the handoff eventually ends even if s k or a station of G s k fail.

If s k+1 fails before it received the Rsp 2,k+1 message, i.e., before it broadcasted the register k+1 and delete messages, then it will stop sending handoff messages to s k , which will eventually cancel the handoff, thus ending it.

Proof

If s k+1 fails after it received the Rsp 2,k+1 message, i.e., after it broadcasted the register k+1 and delete messages, then stations of G s k+1 eventually receive the register k+1 message and register h i , and stations of G s k eventually receive the delete message and unregister h i , thus ending the handoff. Stations other than s k , s k+1 or in G s k do not participate in the handoff and their failure has therefore no impact on it. Lemma 4.9. No causal information about h i is lost during a handoff during which a station fails.

Proof. Theorem ?? proves that no causal information about h i is lost in during handoffs in a system without station failures. We prove this also holds in system where station failures occure during handoffs.

We prove that no causal information about h i is lost during a handoff for h i , i.e. that eventually either stations of G s k or G s k+1 hold the causal information of h i . We prove it by induction. H0: Assume that s 0 is the first station from which h i receives a connect ACK,k+1 message. Stations of G s 0 eventually hold the causal information of h i .

Station s 0 broadcasts a register k+1 message on the wired network when receiving a join k+1 message from h i . Stations of G s 0 eventually receive that register k+1 message and will then register h i . Moreover, the causal order property ensured by the algorithm used for communication on the wired network ensures that stations of G s 0 receive the causal information related to h i in causal order. Therefore, they will receive the causal information related to h i in causal order. H1: Assume that stations of G s k eventually hold the causal information related to h i . We show no causal information is lost when h i moves to the cell of station s k+1 .

Following Lemma 4.8, each handoff eventually ends. We show that at the end of handoff H i,k+1 the causal information related to h i is not lost. By definition, the stations of G s k eventually hold the causal information related to h i . They only delete that causal information upon receiving a delete message from s k+1 . s k+1 only sends that delete message after broadcasting to the stations of G s k+1 a register k+1 message containing the causal information related to h i . Moreover, the algorithm used for communications on the wired network ensures that the stations of G s k+1 receive the messages that s k+1 receives after broadcasting the register k+1 message in causal order, i.e., the stations of G s k+1 receive all the causal information related to h i and not contained in the register k+1 message in causal order. Therefore, stations of G s k do not receive that delete message and unregister h i unless stations of G s k+1 eventually receive the causal information related to h i . Therefore no causal information is lost during the handoff H i,k+1 .

Any handoff between two stations s k and s k+1 executes without the loss of causal information (H1). Since the initial connection from h i to a station executes without the loss of causal information (H0), we conclude that handoffs execute without the loss of causal information. Lemma 4.10. When several handoffs H i,k+1 , . . . , H i,k+n are executing simultaneously, then the stations of G s k+l eventually hold the causal information of h i , with s k+l being the station of the highest index k < k + l < k + n that didn't fail before the end of Phase 3.

Proof. Let's denote s k the station initially responsible for the causal information of h i , and that several stations s k+1 ,. . . ,s k+n , with n > 1, start a handoff for h i in a short time interval. Those stations all broadcast a Req 1 message. s k first executes the handoff H i,k+p corresponding to the first Req 1,k+l message it receives. Following Lemma 4.8, handoff H i,k+p eventually executes, and following Lemma 4.9 s k+p will then have the causal information of h i . Stations regularly re-broadcast the Req 1 message. Moreover, station s k+p only processes a Req 1,k+q message if k + p < k + q. Therefore, in the worst case l handoffs are executed before that handoff H i,k+l is executed, i.e., handoff H i,k+1 then H i,k+2 etc... are executed until handoff H i,k+l . Therefore, following Lemma 4.8 and Lemma 4.9 the stators of G s k+l will eventually hold the causal information of h i .

By definition, the stations s j , k + l < j < k + n do fail before they achieved the end of Phase 3 of handoff H i,j . Therefore, those handoffs are eventually aborted, and the causal information of h i is eventually maintained at stations of G s k+l . Lemma 4.11. For each broadcasted application message m, if ∃s i ∈ G such that s i assigns the sequence number seq to m, then ∀s k ∈ G we have s k that assigns the sequence number seq to m.

Proof. Each group G has a designated station, denoted s resp , that is responsible to assign a sequence number to application messages broadcasted by stations of G. Upon reception of an application message m, a station of G delays the broadcast of m on its wireless network until receiving the sequence number that s resp assigns to m. Hence, stations of G all assign the same sequence number to m given by s resp .

Proof

Only s resp assigns sequence numbers to application messages. Therefore, it is sufficient to prove that stations of G continue to give the same sequence number to application messages when s resp fails.

When s resp fails, stations of G eventually detect it since they stop receiving messages from s resp . They then elect a new responsible station s respn . Upon electing s respn , stations of G do not accept new messages of s resp , which might still be transiting over the wired network even though s resp already failed. This ensures that s respn does not assign a sequence number seq to an application message m to which s resp already assigned a sequence number seq and that some stations assign the sequence number seq to m and other assign seq to m. Therefore, upon being elected s respn simply assigns sequence numbers to application messages it stores as well as to those application messages it receives, and stations of G will order application messages following the sequence number provided by s respn , this ensuring that all stations of G assign the same sequence number to application messages than s respn . Theorem 4.3. WAS is resilient to station failures when hosts do not change cells.

Proof. Consider a host h i that joins the system. We show that the causal information related to h i is resilient to station failures as long as h i does not change cells.

Station s i broadcasts the join k+1 message that h i sends to it to join the system. The algorithm used for the communication between stations [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that stations of G s i will eventually receive that join k+1 message and therefore register the connection with h i . h i uses seq N C to deliver application messages, and stations of G s i use seq h they associate to the connection with h i to order application messages broadcasted by h i . Hence, we must show that seq N C and seq h are valid at the stations of G s i . Following Lemma 4.11, stations of G s i assign the same sequence number to application messages. If s i fails, it will recover the sequence number assigned to application message by a station of G s i upon recovery. Therefore, seq N C will remain valid in the case of a temporary failure of s i . The case of stop failure is not considered here since s i is assumed to not change cell. Therefore, seq N C always stays valid for h i . seq h that stations use to broadcast application messages of h i is also valid at stations of G s i . When s resp broadcasts an application message m of h i on the wired network, it attaches m's id (h i , seq h ) on m. Upon reception of m, the stations of G s i update the seq h associated with the connection with h i . The algorithm used for the communication between stations [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that each station of G s i eventually receives the application messages broadcasted by s k+1 . Moreover, when recovering s i broadcasts a recovery message, and the algorithm used for communication between stations [START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that stations of G s i receive the recovery k message after the messages of h i that s i broadcasted before failing. Therefore, upon reception of the recovery k message, stations of G s i will have received all application messages from h i that s i broadcasted, and will therefore return a valid seq h in the recovery ACK,k message. Therefore seq h that s i associates to h i will be valid upon recovery. Proof. Following Theorem 4.3, WAS is resilient to station failures when hosts do not change cells. We show that WAS is also resilient to station failures when hosts do change cells. When a host h i changes cells for the k th time, it executes a handoff denoted H i,k . It is sufficient to show that, in presence of station failures, handoff H i,k remains valid as described in the handoff description.

If s k receives a Req 1,k+n message before the Req 1,k+1 message, then it will start handoff H i,k+n . During handoff H i,k+n , s k does not process the Req 1,k+1 messages, and if s k+n does not fail up to the end of Phase 3 of handoff H i,k+n , then s k will unregister h i and broadcast a delete[k+n] message, thus aborting the handoff H i,k+1 . Following Lemma 4.9, no causal information is lost during handoffs when stations do fail. Moreover, following Lemma 4.8, a handoff eventually executes in presence of station failures and stations of G s k+1 do eventually hold the causal information related to h i if s k+1 does not fail until the end of Phase 3. Otherwise the handoff is aborted, i.e., stations of G s k eventually hold the causal information of h i .

Therefore, the three conditions of a valid are satisfied, and the handoff execution are therefore valid and WAS is resilient to station failures when hosts change cells. Proof. We proof it by induction. H0: Stations broadcast application messages from a host h i exactly once, as long as h i stays in its initial cell. Assume that h i joins the system by connecting itself to station s k . s k initializes the sequence number seq h attributed to h i to 1. h i gives a unique increasing sequence number to application messages it broadcasts, beginning with 1. s k increments seq h when broadcasting the application message of h i of sequence number seq h , 4.6. Proof and discards the application messages from h i whose sequence number is lower than seq h . h i retransmits its application messages until s k acknowledges them. Moreover, s k acknowledges an application message to h i only after broadcasting it on the wired network. Hence, s k broadcasts each application message of h i exactly once. The algorithm used on the wired network ensures that the other stations receive exactly once an application message broadcasted by s k . Hence, other stations broadcast each application message exactly once.

If s k fails, a station s b ∈ G s k eventually takes up the responsibility of h i . By hypothesis, no application message from h i is in transit when s b takes up responsibility of h i . Hence, s b received all messages from h i that s k broadcasted. Moreover, s b increments seq h associated to the connection with h i when receiving an application messages from h i over the wired network. Hence, when s b takes up the responsibility of h i , the seq h value it associates to h i correspond to the number of application messages from h i that s k has broadcasted. When s k recovers, it will recover seq h through s b .

H1: We assume that host h i is first connected to station s k and that during that connection no station broadcasted twice an application message from h i . We show that when h i connects itself to s k+1 , station broadcast exactly once application messages from h i .

Upon the reception of the connect k+1 message from h i , s k+1 starts handoff H i,k+1 . After sending the connect k+1 message, h i broadcasts no application message to another station than s k+1 , and s k+1 broadcasts no application message from h i until the end of the handoff.

During the handoff, s k+1 sends seq h to s k+1 , and s k+1 does not broadcast any application message from h i of sequence number lower than seq h , i.e. it will broadcast no application message from h i already broadcasted by s k . Second, s k+1 increments seq h when broadcasting a message of h i . Hence, it will broadcast exactly once any application message of sequence number higher than seq h . Hence, s k+1 broadcast application messages from h i exactly once. The algorithm used on the wired network ensures that the other stations receive exactly once an application message broadcasted by s k+1 . Hence, other stations broadcast application message of h i exactly once.

If s k fails during the handoff, then s k+1 eventually does the handoff with a station of G s k after the timeout expiration. If s k+1 fails, then s k cancels the handoff after the timeout expiration and s k+1 .

Stations broadcast application messages from h i exactly once when h i changes cell (H1). Since stations broadcast once application messages from h i as long as h i stays in its initial cell (H0), we conclude that stations broadcast exactly once application messages from h i .

Conclusion

This chapter presented a causal broadcast algorithm tailored to the features and dynamics of mobile networks. Such networks include host mobility, dynamic host membership, unreliable dynamic wireless channels, memory and computing constraints of mobile hosts, scalability issues due to the high number of mobile hosts and stations. Both algorithms tolerate temporary and permanent failures of mobile host. The second algorithm also handles the permanent and temporary failures of stations. Messages piggyback few causal information. The algorithms scale well with hosts which have a low memory footprint while stations have a memory footprint that grows linearly with the number of locally connected hosts. Stations discard obsolete messages with only local information, removing the message exchange between stations used by centralized approaches to discard obsolete messages.

Performance results from simulations done on OMNeT++/INET show that WAS has a much lower message overhead, delivery delay, and caches fewer messages than a representative causal multicast algorithm for Mobile Networks adapted to provide causal broadcast [START_REF] Chandra | Causal Multicast in Mobile Networks[END_REF]. Furthermore, the decentralized approach to discard obsolete messages of WAS induces much fewer messages cached by stations, as well as much fewer messages sent on the network, when compared to a centralized approach. Finally, hosts that temporarily fail rapidly catch up in delivering outstanding messages after recovering, and the decentralized discard approach of obsolete messages mostly limits the impact of host failures to the cells in which those failures occur.

WAS2 has an additional cost over WAS : the stations of a group need to communicate with each other to order messages and discard obsolete ones. This communication increases delivery delays as well as the causal information that is transmitted over the wired network. Future experiments will analyze the delivery delays and size of causal information depending on the size of the group of stations.

Introduction

Torres-Rojas and Ahamad [START_REF] Francisco | Plausible Clocks: Constant Size Logical Clocks for Distributed Systems[END_REF] introduced in 1998 M-entry clocks, which are clocks of M ≤ N entries, where N corresponds to the number of processes in the system. The second part of this thesis aims to enhance the accuracy in causally ordering messages when using such clocks to implement causal broadcast. M-entry clocks cannot characterize causality when doing causal broadcast, as shown by Charron-Bost who proved that at least vector clocks with one entry per process of the system are required [START_REF] Charron-Bost | Concerning the Size of Logical Clocks in Distributed Systems[END_REF]. Nevertheless, Torres-Rojas and Ahamad [TA99] [START_REF] Francisco | Performance Evaluation of Plausible Clocks[END_REF] showed through a theoretical and experimental analysis that an implementation of causal broadcast using M-entry clocks causally orders messages with a high probability. However, such algorithm might deliver messages out of causal order. Among M-entry clocks, Probabilistic clocks [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] and Bloom clocks [START_REF] Misra | The Bloom Clock for Causality Testing[END_REF] have the best performances (see Section 3.2.3).

M-entry clocks are adapted to applications where messages that are delivered out of causal order only impact performance but not correctness. For example, applications that measure concurrency by analyzing a history of events in order to inform how many pairs of events are concurrent. Such applications would still measure the concurrency with a high precision when using M-entry clocks, even if some causal relationships would be missing in the event history [START_REF] Francisco | Plausible Clocks: Constant Size Logical Clocks for Distributed Systems[END_REF]. Other examples are timestamped-based resource allocation or protocols that ensure the causal consistency of data through invalidation [START_REF] Francisco | Plausible Clocks: Constant Size Logical Clocks for Distributed Systems[END_REF]. Moreover, in many systems messages are implicitly causally ordered. For example, in systems where the time between the generation of two causally related messages is higher than the communication delay between processes.

M-entry clocks are also adapted to applications where some errors are acceptable. For example, in social networks such as instagram, most of the comments/replies correspond to the image poster. Hence, very few replies that do not appear in the correct order make the readers misunderstand the context of the comments [START_REF] Hsu | Value the Recent Past: Approximate Causal Consistency for Partially Replicated Systems[END_REF].

Mostefaoui and Weiss [START_REF] Mostefaoui | A Probabilistic Causal Message Ordering Mechanism[END_REF] proposed an error detector whose purpose is to detect out of causal order deliveries when implementing causal order with probabilistic clocks. To that end, the error detector analyzes the clock attached to a message before delivering it. The error detector yields some errors, which are either false positives or false negatives. A false positive corresponds to the error detector wrongly concluding that a message is delivered out of causal order. A false negative corresponds to the error detector not detecting an out of causal order delivery.

The first contributions presented in this chapter are about error detectors that aim to detect out of causal order deliveries. We first show that it is impossible to implement an error detector that detects all out of causal order deliveries. In the second contribution, we propose an error detector based on the hashing of messages' causal dependencies. The proposed error detector has a high accuracy of detecting out of causal order deliveries. Third, we propose an algorithm to recover the causal dependencies of messages. We propose to use it with error detectors analyzing messages before delivering them, and to retrieve the causal dependencies of tagged messages, in order to ensure that they are causally delivered. The third contribution is based on the observation that the accuracy of an M-entry clock of a given size M decreases when the number of concurrent messages increases. We therefore propose a new clock, denoted Dynamic Clock Set (DCS clocks), composed of Probabilistic Clocks [START_REF] Mostefaoui | A Probabilistic Causal Message Ordering Mechanism[END_REF]. The size of DCS clocks can dynamically vary during execution. In particular, the size of DCS clocks can be adapted to the number of concurrent messages in order to keep the number of messages delivered out of causal order below a tuneable threshold.

We conducted experiments on the OMNeT++ simulator. Results show that the proposed error detector detects most -experimentally all-messages delivered out of causal order, and that a causal broadcast implementation using DCS clocks adapts the size of the DCS clock well to the message load. Moreover, retrieving the causal dependencies of messages tagged as not causally ordered allows to heavily reduce the number of messages delivered out of causal order. Hence, experimental results confirm the effectiveness of the proposed contributions. This chapter is organized as follows: Section 5.2 gives some additional background on Probabilistic clocks [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF]. Section 5.3 presents the required conditions to implement a reliable error detector as well as the hash-based error detector. Section 5.4 presents the algorithm to retrieve the causal dependencies of messages and discusses its use in conjunction with the hash-based error detector. Finally, Section 5.5 presents the DCS clocks and an implementation of causal broadcast using them.

Background

The contributions presented in this chapter use Probabilistic clocks [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] which have, with Bloom clocks [START_REF] Misra | The Bloom Clock for Causality Testing[END_REF], the best performances among clocks with M ≤ N entries. Hence, this section gives some additional background about them.

Probabilistic clocks

In the implementation of causal broadcast using probabilistic clocks, each process p i keeps a local clock V i with M ≤ N entries initialized to 0, where N corresponds to the number of processes in the system. A hash function f (p i ) returns the set of k clock entries assigned to p i , with 1 ≤ k ≤ M , i.e., one to several probabilistic clock entries are respectively associated to each process at initialization. f (p i ) as well as k are fixed at initialization and do not change during execution. Process p i uses the following two rules R1 and R2 to update its local probabilistic clock: R1 -Before executing an event, p i updates its local clock:

∀x ∈ f (p i ), V i [x] = V i [x] + 1
R2 -Each message m carries with it the vector clock of its sender process at sending time. On the receipt of a message m, process p i :

-Updates its local clock as follows: ∀x,

V i [x] = max(V i [x], m.V [x]) -Executes R1, -Delivers m
The comparison operator of two probabilistic clocks V 1 and V 2 is defined as follows:

V 1 < V 2 , iff ∀x, 1 ≤ x ≤ M, V 1 [x] ≤ V 2 [x] ∧ ∃i, V 1 [i] < V 2 [x]
The following condition holds on probabilistic clocks:

send(m 1 ) → send(m 2 ) ⇒ m 1 .V < m 2 .V But the contrary is not true: m 1 .V < m 2 .V ⇒ send(m 1 ) → send(m 2 )

Causal broadcast using probabilistic clocks

Causal broadcast should ensure the properties of Validity, Integrity, and Termination defined in Section 2.4, plus the causal delivery of messages:

Causal broadcast: Consider two broadcast messages m and m , if m causally precedes m , then all processes should deliver m before m : broadcast(m) → broadcast(m ) ⇒ deliver(m) → deliver(m ) Algorithm 8 describes the causal broadcast algorithm using probabilistic clocks presented in [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF]. Before broadcasting a message m, process p i increments the entries f (p i ) of its local vector clock V i , then it broadcasts V i with m. Upon reception of a message m from a process p j , p i delays the delivery of m till the two following conditions are satisfied:

(1) ∀x ∈ f (p j ), V i [x] ≥ m.V [x] -1 and (2) ∀x / ∈ f (p j ), V i [x] ≥ m.V [x]
. p i delivers m and increments the entries k ∈ f (p j ) of V i after both conditions are satisfied.

Authors of [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] determine that the optimal number of clock entries that processes should increment when broadcasting a message is equal to

: |f | = ln(2) * |V | X , 5.2. Background 
Algorithm 8: Broadcast at process p i Broadcast of message m

1: ∀x ∈ f (i), V i [x] = V i [x] + 1 2: m.V = V i 3: broadcast(m)
Upon reception of message m from p j 3: waitUntil((∀x ∈ f (j), Figure 5.1 shows the broadcast of two messages m and m . M = 3. The clock entries assigned to p 1 , p 2 , and p 3 are f (p 1 ) = {0, 1}, f (p 2 ) = {0, 2}, and f (p 3 ) = {1, 2} respectively. p i broadcasts (m, V 1 ) after incrementing the entries f (p 1 ) of its local vector clock V 1 . Process p 2 receives and delivers m. Then, it broadcasts (m , V 2 ) after incrementing the entries f (p 2 ) of V 2 . Thus, m → m . When p 3 receives m , the delivery conditions of m are not yet satisfied since m .V [0] = 2 > V 3 [0] = 0. Consequently, p 3 buffers m . Upon the reception of m, p 3 delivers m and increments the entries f (p 1 ) of V 3 . It then also delivers m and increments the entries f (p 2 ), since the delivery conditions of m have been satisfied.

V i [x] ≥ m.V [x] -1)∧∀k / ∈ f (j), V i [k] ≥ m.V [k]) 4: ∀x ∈ f (j), V i [x] = V i [x] + 1 5: deliver(m) p 1 f (p 1 )={0,1} p 2 f (p 2 )={0,2} p 3 f (p 3 )={1,2} b(m) [1,1,0] [1 ,1 ,0 ] d(m) d(m') [ 1 , 1 , 0 ] b(m') [2,1,1] delay m' [ 2 , 1 , 1 ] b(m): broadcast(m) d(m): deliver(m)
A causal broadcast implementation using probabilistic clocks might deliver some messages out of causal order. For example, assume that in Figure 5.1 process p 3 delivers messages concurrent to m before receiving m , such that the delivery of those messages increment V 3 [0] and V 3 [2]. p 3 will then deliver m out of causal order, because the delivery conditions of m will be satisfied at p 3 upon reception.

Authors of [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] gave the following formula to determine the probability that a process delivers a message m out of causal order: (1

-(1 -1 M ) X * k ) k
, where M is the size of the clock attached on m, k the number of clock entries associated to each process, and X the number of messages concurrent to m. Two observations can be made out of that equation. First, increasing the size of the clock attached on m decreases the probability that a process delivers m out of causal order. Second, increasing the number of concurrent messages inside the system increases the probability that m is delivered out of causal order, because a concurrent message might increment the same clock entries as dependencies of m. Therefore, the higher the number of concurrent messages to m that p i delivers before delivering m, the higher the probability that such deliveries increment the same clock entries as dependencies of m, and p i will then wrongly satisfy m's delivery conditions, thus delivering m out of causal order.

Error detector

Authors of [START_REF] Mostefaoui | A Probabilistic Causal Message Ordering Mechanism[END_REF] also proposed an error detector (see Algorithm 9) to detect out of causal order deliveries. Basically, the detector analyzes the probabilistic clock attached to a message m once the delivery conditions of m are satisfied, and returns true if it detects an error, and false otherwise. An error handler function can then further handle messages on which the error detector returned true. The error detector can yield false positives and negatives, i.e., it can wrongly conclude that a message will be delivered out of causal order (false positive), and it can also wrongly conclude that a message can be delivered in causal order (false negative).

Algorithm 9: Error detector executed by p i before delivering m broadcasted by

p j if ∃x ∈ f (p j ), V p i [x] = m.V [x]
-1 then return false # No error detected return true # Error detected Figure 5.2 shows an execution in which the error detector of Algorithm 9 detects that m 2 is not causally ordered. M = 4. Each process initializes its probabilistic clock to [0, 0, 0, 0]. The following entries f (p i ) are assigning to p 1≤i≤4 :

f (p 1 ) = {0, 1}, f (p 2 ) = {1, 2}, f (p 3 ) = {0, 2}, f (p 4 ) = {1, 3}.
Messages are sent to all processes, but only the relevant ones are shown for better readability. In this case, we can consider that the other messages are received later. m 1 → m 2 , since p 2 broadcasts m 2 after delivering m 1 . However, p 3 receives m 2 before m 1 , and upon reception, its delivery conditions are satisfied due to the delivery and broadcast of other messages. Nevertheless, the error detector of p 3 concludes that m 2 is not causally ordered: f (p 2 ) = {1, 2}, and

V 3 [1] = m 2 .V [1] -1 ∧ V 3 [2] = m 2 .V [2] -1.
Hence, the error detector returns true. However, the error detector does not detect all out of causal order deliveries. For example, consider the example of Figure 5.3 , where m 1 → m 2 , but where p 2 receives m 2 before m 1 , and the delivery conditions of m 2 are satisfied upon its reception by p 2 . The error detector does not detect that p 2 cannot deliver m 2 in causal order because f (p 4 ) = {1, 3} and V 2 [3] = m 2 .V [3] -1. Hence, p 2 delivers m 2 at X without having previously delivered m 1 .

p 1 f (p 1 )={0,1} p 2 f (p 2 )={1,2} p 3 f (p 3 )={0,2} p 4 f (p 4 )={1,3} b(m 1 ) [1,1,0,0] d(m 1 ) [1 ,1 ,0 ,0 ] b(m 2 ) [1,2,1,0] detect(m 2 ) [ 1 , 2 , 1 , 0 ] [0,1,0,1] b(m 3 ) d(m 3 ) [0,1,0,1] [0 ,1 ,0 ,1 ] [0,2,0,2] b(m 4 ) d(m 4 ) [0,2,0,2] [0 ,2 ,0 ,2 ] b(m 5 ) [1,2,1,2] [1,2,1,2] d(m 5 ) [1 ,2 ,1 ,2 ]
p 1 f (p 1 ) = {0, 1} p 2 f (p 2 ) = {1, 2} p 3 f (p 3 ) = {0, 2} p 4 f (p 4 ) = {1, 3} b(m ) [1,1,0,0] [1 ,1 ,0 ,0 ] b(m") [1,2,1,0] [1,0,1,0] b(m 1 ) [1,0,1,0] m 1 [ 1 , 0 , 1 , 0 ] [ 1 , 0 , 1 , 0 ] m 1 b(m 2 ) [1,1,1,1] d(m 2 ) X m 2 [1 ,1 ,1 ,1 ]
Lemma 5.1. To ensure the causal delivery of a message m of M-entry clock m.V , process p i must have delivered, from each process p k , min({m.V [e], e ∈ f (p k )}) messages.

Proof. p i increments the entries e ∈ f (p k ) of V i when delivering a message from p k . Hence, the maximum number of messages that p i delivered from p k prior to broadcasting a message m, on which it attaches V i , is m k = min({m.V i [e], e ∈ f (p k )}). A process p j receiving m cannot ensure that it can deliver m in causal order if it has delivered less than m k from p k . In fact, it cannot determine if p i incremented the entries f (p k ) of V i by delivering m k messages from p k or by delivering messages from other processes. Hence, p j must deliver m k messages from p k to ensure that it can deliver m in causal order.

One could deduce that to ensure the causal delivery of a message m, a process p i only needs to delay the delivery of m until p i has delivered, for each process p k , min({m.V [e], e ∈ f (p k )}) messages. Theorem 5.1 and Theorem 5.2 determine the conditions to avoid a resulting deadlock.

Theorem 5.1. A process p i that waits to satisfy the conditions of Lemma 5.1 before delivering a message m will wait forever, i.e., will be deadlocked, unless, for each process p k∈Π , p k broadcasts at least min m = min({m.V [e], e ∈ f (p k )}) messages prior to delivering m.

Proof. Assume that p k delivers m prior to broadcasting min m = min({m.V [e], e ∈ f (p k )}) messages, then broadcasts its x th message m , with x < min m . We show that processes cannot deliver m before m , and vice versa, i.e., processes are deadlocked.

Following Lemma 5.1, to ensure that process p i delivers a message m in causal order, it must deliver, from each process p k , at least min m messages before delivering m. Hence, p i must deliver m before m, since x < min m . However, following Lemma 5.1, p i must deliver m after m, because it broadcasts m after m and therefore min m < min m . Thus, p i cannot deliver m before m, but it also cannot deliver m before m , i.e., it is deadlocked. Theorem 5.2. Be (M k ) k∈N a sequence of sets of messages such that M k → M k+1 . ∃i 0 ∈ N, ∀i > i 0 , such that to ensure the causal delivery of messages of M i a process must broadcast at least ( |f | * N M ) i-i 0 messages prior to delivering messages of M i .

Proof. We prove it by induction.

|f | = 2, M = 100, N = 10000. Following the formula given in Theorem 5.2, each process must broadcast approximately one second after the condition min(V ) = 1 is true (very fast) 1 * ( 2 * 10000 100 ) 10 = 200 10 = 1.024 * 10 23 messages to avoid the deadlock of processes. Obviously, this does not correspond to a normal execution. Hence, implementing a reliable error detector is not possible under realistic assumptions.

The hash-based error detector

This section presents an error detector based on hashed causal dependencies. A process p i calls it before delivering a message m. Its purpose is to detect out of causal order deliveries.

The section is organized as follows. Section 5.3.2.1 presents the principle of the hash-based error detector. Section 5.3.2.2 describes how the error detector chooses the message ids to hash. Section 5.3.2.3 describes how the error detector builds dependency sets to hash with the message ids it chose to hash. Section 5.3.2.4 presents another mechanism to choose the message ids to hash. Section 5.3.2.5 presents a mechanism to make the error detector resilient to a high message load, and finally Section 5.3.2.6 gives an example of execution of the error detector.

Principle of the hash-based error detector

The hash-based error detector is based on hashing the causal dependencies of messages, and appending those hashes on messages when broadcasting them. A process p i executes the hash-based error detector on a message m once the delivery conditions of m's M-entry clock are satisfied. It builds dependency sets with the ids of messages that it has delivered, computes their hash, and compares it with the hash appended on m, in order to find the dependency set of m. Algorithm 10 describes the hash-based error detector.

Let's consider an execution from the broadcast of a message m by process p j till its delivery by process p i . Process p j broadcasts m by first computing m's hash H m , then broadcasting m with H m and its M-entry clock V j . p j builds H m with the ids of some causal dependencies of m, which it choses as described in Section 5.3.2.2.

Upon reception of m, process p i executes its error detector on m.V once its local clock V i satisfies the delivery conditions of m's clock. The error detector first builds setsToHash, the set of dependency sets it will hash (line 2). A dependency set is composed of ids of causal dependencies of m. The message ids the error detector takes into account when building setsToHash is described in Section 5.3.2.2. The error detector computes the hash of each set depSet of setsToHash (line 3) till it finds one whose hash hash(depSet) is equal to H m (line 4). The error detector returns false if it finds such a set. Otherwise, it did not succeed to find a dependency set for m with the messages p i delivered and returns therefore true, i.e., maybe m cannot be delivered in causal order.

A message m on which the error detector returns true can be handled in several ways. Either, p i requests m's causal dependencies Dep m to p j , and upon reception of m's causal dependencies, p i delivers m once it has delivered all messages whose id is contained in Dep m ; or p i delivers m to the application with the information that it might not be causally ordered.

Algorithm 10: Hash-based error detector executed by p i 1: Input: m: message to deliver 2: setsToHash = buildDependencySets() 3: for depSet ∈ setsToHash do 4:

if hash(depSet)==m.H m then 5:

return false # No error detected 6: return true # Error detected Collisions may occur when hashing dependency sets, i.e., two dependency sets may have the same hash value, which means that the error detector may find a set Dep m of hash H Dep m = H m , but Dep m = Dep m . Such a situation is very unlikely to happen since a hash of x bits corresponds to a hash space of 2 x values. Nevertheless, each new computed hash increases the probability of a collision, since at each hash computation we have a given collision probability and the hash computations are independent. Hence, the probability of a collision can be bounded by computing at most a given number of hashes. Moreover, it exponentially decreases when the number of bits on which the hash is stored increases.

Choosing the message ids to hash

Process p j computes the hash H m of a message m it broadcasts with some of the ids of m's causal dependencies. When delivering m, p i builds dependency sets to hash with the ids of the messages it delivered previously. This section describes how p j and p i choose the message ids they respectively take into account in their hash computation.

The operations described in this section require processes to keep the M-entry clock of messages after delivering them. Each process p i keeps messages it delivered as well as their clock in the set S deliv,i . Section 5.3.2.2.c describes how to clear S deliv,i .

5.3.2.2.a Clock difference

Processes use the difference between the clocks of messages to determine which message ids to hash. The difference between two clocks is defined as: Definition 5.1. Let's consider two messages m 1 and m 2 which respectively carry the clocks V 1 and V 2 . The difference between V 1 and V 2 is:

Diff

m 1 ,m 2 = x V 1 [x] -x V 2 [x]
M-entry clocks increase over time, due to the delivery of messages by processes. Hence, the average time interval between the sending of two messages m 1 and m 2 increases with their clock difference Diff m 1 ,m 2 . Moreover, the closer Diff m 1 ,m 2 is getting to 0, the smaller the interval between the sending of m 1 and m 2 . We do the following observations based on the value of Diff m 1 ,m 2 :

• Diff m 1 ,m 2 < 0: The probability that m 1 is a causal dependency of m 2 increases as Diff m 1 ,m 2 decreases.

• Diff m 1 ,m 2 → 0: The probability that m 1 and m 2 are concurrent increases as Diff m 1 ,m 2 is getting closer to 0.

• Diff m 1 ,m 2 > 0: The probability that m 2 is a causal dependency of m 1 increases as Diff m 1 ,m 2 increases.

5.3.2.2.b Message ids considered when computing a message's hash

Charron-Bost proved in [START_REF] Charron-Bost | Concerning the Size of Logical Clocks in Distributed Systems[END_REF] that a structure that characterizes the causality of an event in a system containing N processes has at least N entries when doing causal broadcast. Hashing such a structure would require O(N ) operations, and would therefore not scale. Instead, processes hash the causal dependencies of only a subset of message ids.

Consider a process p i that broadcasts a message m. p i computes the hash of m with only the ids of causal dependencies m of m whose clock difference with m is lower than a given value Diff. Formally, p i computes the hash H m of m as follows:

H m = hash( {m .id, Diff m,m < Diff ∧ m → m} )
The drawback of computing H m with only those messages m is that a process p j that receives m, but which has not delivered yet a message m" such that Diff m,m" > Diff, will not detect it through the hash computation. Therefore, Diff should be chosen such that messages that are not yet delivered by all processes are taken into account when computing the hash of messages. In addition, Section 5.3.2.4 describes a mechanism that ensures to take into account all relevant message ids, but which is more complex to implement.

Value of Diff

The formula to determine the value of Diff consists of two parts. It contains the following variables:

• m load : the system's message load.

• maxDelay: the maximum communication delay in the system.

• |f |: the number of entries incremented by processes when broadcasting/delivering a message.

• n conc : the average number of concurrent messages.

The first part is equal to maxDelay*m load *|f |. Process p i should include a message m's id when computing m's hash as long as some processes did not receive and deliver m, i.e., for at least maxDelay seconds. During that time, p i delivers on average m load messages, and it increments |f | values of its clock at each delivery.

The second part is equal to n conc * |f |. Between the sending of m and its reception by a process p j , p j will potentially deliver n conc concurrent messages to m, thus increasing its clock n conc * |f | times.

The formula to determine the value of Diff is:

Diff =maxDelay*m load *|f | + n conc * |f |

5.3.2.2.c Message ids considered when building dependency sets

This section describes how the error detector of process p i chooses the message ids to hash when analyzing the causal delivery of a message m sent by a process p j (Algorithm 10 line 2).

The error detector of process p i chooses the message ids to hash by analyzing S deliv,i . As described in Section 5.3.2.2.b, process p j , the sender of m, computed the hash of m with the causal dependencies m of m that verify Diff m,m < Diff.

Hence, the error detector of p i computes hashes with the message ids (id, seq) of messages contained in S deliv,i whose clock difference with m is lower than Diff.

Moreover, M-entry clocks capture causality: for any two messages m and m :

m → m ⇒ m.V < m .V Therefore, all messages m such that ∃x, m .V [x] > m.V [x]
are not dependencies of m. Hence, the error detector of p i does not include the ids of such messages when building dependency sets to hash.

To conclude, when analyzing a message m, the error detector of p i builds dependency sets to hash with the following message ids: M hash ={(m .id, ∀m ∈ S deliv,i , m .V < m.V ∧ Diff m,m < Diff } Process p i also uses Diff to clean S deliv,i . It keeps in S deliv,i the messages whose clock difference with V i is lower than 2*Diff : It considers that in the worst case, it did not receive yet a message m whose clock difference with V i is at most Diff, and the causal dependencies of m will have a clock difference with m of at most Diff. Hence, the messages with a clock difference with V i of more than 2*Diff will not be used anymore in any hash computation.

Building dependency sets

M-entry clocks do not characterize causality. Hence, the set M hash that process p i identified (see Section 5.3.2.2.c) might contain the id of messages that are concurrent to m. Therefore, p i also needs to build and hash subsets of M hash in order to find one which does not contain the ids of messages concurrent to m. The number of sets p i can build exponentially increases with the size of M hash . This section therefore describes how to choose the subsets in order to increase the probability for p i to find a dependency set whose hash is equal to the one appended to m, and by doing it with the fewest possible hashes.

Note that the probability that M hash contains a message m concurrent to a message to deliver m increases with the number of messages concurrent to m . In fact, the probability that m.V ≥ m .V increases with the number of concurrent messages to m that the sender process of m delivers prior to broadcasting m.

M hash : The set of message ids ordered following their probability to be concurrent to m. The error detector uses the clock difference between two messages to estimate their probability to be concurrent. As explained in Section 5.3.2.2.a, the probability that two messages m 1 and m 2 are concurrent increases as Diff m 1 ,m 2 is getting closer to 0. Hence, the error detector orders M hash by increasing clock difference with m, i.e., M hash [0] = (m'.id, Diff m,m = min({ Diff m,m , m ∈ M hash }). Note that M hash does not contain messages m such that Diff m,m < 0, because it only contains messages which verify m .V < m.V .

depSet: The set of message ids sets to hash. Process p i builds depSet, the dependency sets to hash, with the messages of M hash . It first adds to depSet the list of all ids of M hash . Then it builds the combinations of M hash by progressively removing the messages that have the highest probability to be concurrent to m. For example, it first adds to depSet the combinations of M hash without M hash [0] that contain the tuples M hash [j], j > 0, then it adds the combinations of M hash without M hash [1] that contain the tuples M hash [j], j > 1, etc. . .

MaxHashes: a bound on the number of computed dependency sets. The number of built dependency sets should be bounded. In fact, this number can be very high, while it can even be impossible to find a message m's dependency set if the process did not deliver one of m's causal dependencies. For example, even if process p i delivered all causal dependencies of a message m, it potentially needs to compute many dependency sets if it takes into account concurrent messages of m. Moreover, p i will not find such a set (except in case of a collision) if it did not deliver a causal dependency m of m.

The probability that the hash of a dependency set is equal to the hash H m of m also decreases during the hash computation, i.e., the probability that hash(depSet

[x]) = H m is higher than hash(depSet[x+100]) = H m , because depSet[x]
is built by removing messages that have a higher probability to be concurrent to m than the messages removed when building depSet[x+100].

Therefore, the error detector should not compute the hash of all the possible dependency sets of m. Instead, it only computes at most a given number of MaxHashes hashes before returning false, i.e., concluding that m might not be causally ordered.

Bounding the number of computed hashes also bounds the probability of a hash collision, since at each new computed dependency set we have a given probability of a collision.

To summarize, Algorithm 11 describes the function buildDependencySets of Algorithm 10. We illustrate it with the following example. Consider that process p i executes its error detector on a message m, and that it has delivered the messages m 1 , m 2 , m 3 , m 4 prior to receiving m. p i first builds M hash , which let's say contains the following ids ordered following their clock difference with m M hash ={m 2 , m 1 , m 3 }. p i builds possible dependency sets for m as follows:

(1) first it adds the set containing all the message ids to depSet (line 1), i.e., it considers that m 1 , m 2 , m 3 are causal dependencies of m (2) it builds dependency sets without the id of the message which has the highest probability to be concurrent to m, i.e. m 2 . Hence, it adds the dependency sets {m 1 , m 4 } to depSet. Then it continues by building dependency sets without the id of the second message that has the highest probability to be concurrent to m, i.e., {m 2 , m 4 }, {m 4 }. Finally, it builds dependency sets without m 4 : {m 2 , m 3 }, {m 2 }, {m 1 },{}. In total it builds 7 dependency sets and sorts them as follows:

{m 2 , m 1 , m 3 },{m 1 , m 3 }, {m 2 , m 3 }, {m 3 }, {m 2 , m 1 }, {m 1 }, {m 2 },{}.

Hash divided in a set of hashes

The hashing described in Section 5.3.2.2.b might result in a process computing a hash without a message's id that has not been delivered by all processes. The
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Algorithm 11: buildDependencySets

1 Input: M hash : ids of messages to hash

1: setsToHash = {{ m .id, m ∈ M hash }} 2: for i = 0; i ≤ |M hash | ∧ |setsT oHash| ≤ MaxHashes ; i++ do 3: setsToHash = setsToHashes ∪ all combinations of M hash without M hash [i]
that contain the tuples M hash [j], j > i 4: return setsToHash[0..MaxHashes] mechanism described in this section is more complex but it ensures that the ids of messages that have not been delivered yet by all processes are taken into account when computing the hash of messages.

The mechanism works in rounds. Each message m is associated to the round k in which it was broadcasted. A process aims to associate to each round at most lim round messages. The hash H m of m is composed of a set of hashes h m,k , with h m,k being the hash computed with the causal dependencies of m broadcasted in round k. Each process p i keeps a round counter h r,i initialized to 0. p i appends h r,i on messages it broadcasts, and updates it as follows:

(1) -Upon registering lim round messages m such that m .h r = h r,i . p i increments: h r,i : h r,i = h r,i + 1

(2) -Upon reception of a message m with m .h r > h r,i . p i updates: h r,i : h r,i = m .h r A process increments its round counter after registering lim round messages in the current round (1). Moreover, it updates its local round counter if it receives a message whose round counter is higher than the local one, since this means that another process registered lim round messages in lower rounds (2). Hence, the hash of a round is computed with on average lim round message ids.

Formally, p i builds the hash H m of a message m it broadcasts as follows:

H m = {h k≤h r,i ,m , where h k,m =hash({m , m → m ∧ m .h r,m = h k }) }
h k , the hash of round k, becomes obsolete once all processes delivered the messages that were broadcasted in round k. An obsolete hash should be removed from the system. Hence, processes exchange messages to verify that they all delivered the messages broadcasted in round k.

To acknowledge hash h k,i , process p i broadcasts the dependency set Dep k associated to h k,i . The other processes reply with a positive or negative acknowledgment. A process positively acknowledges Dep k if it has received and delivered exactly the same messages as described in Dep k . Otherwise, it replies with a negative acknowledgment. The acknowledgment round is successful provided that all processes positively acknowledge the dependency set associated to h k,i . Processes then remove the hash h k,i from the hashes they store, and they also remove from S deliv the messages associated to round k.

In the worst case, all processes broadcast a message at the same time, and associate those messages to round k. N messages are then associated to round k, where N corresponds to the number of processes in the system. Nevertheless, on average the number of message ids associated to a round should be close to lim round , since processes change the round as soon as they receive a message from a higher round or lim round messages of round k.

This mechanism ensures that all of a message m's dependencies that have not been delivered by all processes are taken into account when computing the hash of m. However, it is much more complex than the first mechanism which has, as experiments show, a very good efficiency in detecting the relevant causal dependencies of messages. Nevertheless, this mechanism is more adapted to systems where it is usual that the communication delays for some messages are much higher than the average, since the first mechanism might miss some causal dependencies in these cases.

Coping with a high number of concurrent messages

The size of the M-entry clock should be chosen following the number of concurrent messages in the system. However, that value might vary dynamically during execution, reaching high values only temporarily. Consequently, taking M based on the maximum number of concurrent messages would result in an oversized clock most of the time. Moreover, estimating the maximum number of concurrent messages might be difficult or even impossible.

On the other hand, M-entry clocks become less efficient in causally ordering messages when the number of concurrent messages increases. In fact, more concurrent messages means more concurrent messages considered when building dependency sets for a message m to deliver, thus increasing the number of dependency sets to hash to find one whose hash is equal to the hash appended to m.

The idea consists of appending on a broadcasted message m the list of ids Dep of the causal dependencies of m whose clock difference with m is lower than a given value Diff conc . A process that receives m will then consider that all messages m , m .id / ∈ Dep ∧ Diff m,m < Diff conc are concurrent to m. The corresponding modifications of the algorithm are as follows: Hash-based error detector: A process p j that receives m then consider that all messages m" whose clock difference with m is smaller than Diff conc , but whose ID is not appended to m, are concurrent to m: m" / ∈ dependencies∧ Diff m,m" < Diff conc ⇒ m||m". p i fixes the value of Diff conc following the average number of messages that are concurrent to each other at any given moment, since more concurrent messages means that the concurrent messages of m have a higher clock difference with m. Let's show how the error detector of p 2 computes dependency sets for m 4 . The hashbased error detector of p 2 builds dependencies sets with messages that p 2 already delivered (m 1 ,m 2 , and m 3 ). The possible dependency sets are: The error detector first tries to hash the dependency set {m 1 , m 2 , m 3 }. However, h({m 1 , m 2 , m 3 }) = H m 4 . Therefore, it removes the message with the highest probability of being concurrent to m 4 , which is m 3 , and computes the hash of {m 1 , m 2 } which is equal to H m 4 . Therefore, p 2 delivers m 4 since it found a dependency set whose hash is equal to H m 4 .

p 1 f (p 1 ) = {0} p 2 f (p 2 ) = {1} p 3 f (p 3 ) = {0} b(m 1 ) [ 1 , 0 ] [ 1 , 0 ] b(m 2 ) [1 ,1 ] [1 ,1 ] b(m 3 ) [2 ,1 ] [ 2 , 1 ] b(m 4 ) [2,1] [ 2 , 1 ] [ 2 , 1 ]

Example

{m 1 },{m 2 },{m 3 }, {m 1 , m 2 }, {m 1 , m 3 },{m 2 , m 3 },

Experimental results

Experiments were carried out on the OMNeT++ simulator. Processes generate messages on a regular interval depending on the system's message load, with a deviation following a normal distribution N(0,10)ms. Communication delays follow a normal distribution N(100,30)ms. The system contains 500 processes that use a probabilistic clock [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] of M=50 entries to causally order messages. The number of entries associated to each process |f | is computed for each experiment following the formula proposed by Mostéfaoui and Weiss [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] described in Section 5.2. We set MaxHashes=200 and compute Diff with the formula given in Section 5.3.2.2.a. The accuracy of probabilistic clocks to causally order messages is mostly impacted by the number of concurrent messages in the system, which in its turn is determined by the system's message load and the communication delays. Since the message load is easier to set than the number of concurrent messages, we fix the communication delays and vary the message load in the experiments.

Out of causal order deliveries are controlled by a controller module that verifies the causal delivery of each message. It associates a vector clock of size N to processes and messages, with which it verifies the causal delivery of messages by processes. Processes notify the controller when broadcasting and delivering a message, but they do not use its information. Some experiments compare the hash-based error detector with the error detector proposed by Mostéfaoui and Weiss [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF]. In the following we denote the first as HD and the second as MW.

Experimental results analyze the following characteristics:

(1) -Out of causal order deliveries detected by HD and MW.

(2) -Rate of false positives of HD and MW.

(3) -Cost of HD in terms of hash computation following Diff and MaxHashes.

(4) -Efficiency of HD's mechanism to handle high message loads.

Out of causal order deliveries detected by HD and MW

The first series of experiments measured the number of out of causal order deliveries detected by MW and HD for message loads going from 10 up to 150 messages broadcasted per second. Table 5.1 gives the results. It is organized in two parts. The first part gives the number and percentage of messages that are delivered out of causal order when delivering messages at reception without any control and when implementing causal broadcast with probabilistic clocks (M = 50) respectively. The second part gives the number of out of causal order deliveries detected by MW and HD respectively.

First, we observe that the number of messages delivered out of causal order increases with the message load for both when delivering without control and when implementing causal broadcast with probabilistic clocks. Increasing the message load increases the number of causal dependencies of each message m, which in its turn increases the probability that at least one of them is not received upon the reception of m. Thus, increasing the message load increases the number of messages delivered out of causal order when delivering them without control. Mostéfaoui and Weiss showed in [START_REF] Mostefaoui | A Probabilistic Causal Message Ordering Mechanism[END_REF] that the efficiency of probabilistic clocks to causal order messages decreases with the message load.

Second we observe that HD detects all out of causal order deliveries, while MW only detects a part of them. We observe that the higher the message load, the higher the percentage of out of causal order deliveries detected by MW. In fact, the higher the message load, the higher the probability that MW 's condition is false on a message m broadcasted by a process p i (∃x HD returns almost no false positive for a message load up to 50 messages broadcasted per second. For a message load of 75 messages broadcasted per second it returns almost as much false than true positives. When the message load increases further, HD returns 10 times more false positives than true positives. The false positive rate of HD increases because its efficiency to detect concurrent messages decreases when the message load increases. Hence, the number of concurrent messages taken into account during the hash computation increases. This in its turn increases the probability that the error detector does not find a dependency set whose hash is equal to the hash of a message in the given number of accepted hashes, even if the process has delivered all of the message's causal dependencies.

∈ f (p i )V [x] == V m [x] -1).
MW begins to return false positives with a message load of 25 messages broadcasted per second, with a rate comparable with the rate of false positives returned by HD for a message load of 75 messages broadcasted per second. The false positive rate of MW increases with the message load because the probability that its condition

(∃x ∈ f (p i )V [x] == V m [x] -1
) is true on a message m broadcasted by a process p i increases with the message load. In fact, the probability that all entries of f (p i ) are incremented by messages concurrent to m increases with the message load.

The value returned by error detectors could be used by further handling messages following that value. A process could for example delay the delivery of messages tagged as not causally ordered and retrieve their causal dependencies, in order to ensure their causal delivery, as does the next contribution. Hence, the number of false positives should be kept as low as possible. We observe that HD has a better ratio of true/false positives than MW, especially for message loads lower or equal to 75 messages broadcasted per second. This section measures the cost of the hash computations for a message m done by HD. It is divided in two parts: (1) the average number of hashes to find a dependency set whose hash is equal to the one appended on m and (2) the cost of computing a hash. We first analyze the cost of (1), then we analyze the cost of (1) and ( 2) when computing hashes with the technique presented in Section 5.3.2.2.a.

5.3.3.3.a Average number of hashes computed per message delivery

Figure 5.5 gives the average number of computed hashes per message delivery for a message load that goes from 10 up to 150 messages broadcasted per second. For message loads up to 75 messages broadcasted per second, HD succeeds to find the hash of messages with on average less than 5 hashes per message delivery. However, the number of required hashes begins to increase exponentially when further increasing the message load, because the number of concurrent messages taken into account in the hash computation increases.

As explained in Section 5.3.2.3, processes should compute at most an upper limit of hashes, denoted MaxHashes, when computing hashes for a message m of hash H m .

The following experiments aim to find the best value of MaxHashes. The higher the value of MaxHashes, the higher the probability of finding a dependency set whose hash is equal to H m . However, the higher MaxHashes, the higher is also the number of computed hashes. Hence, the value chosen for MaxHashes is a trade-off between finding a dependency set whose hash is equal to H m and the number of computed hashes to find such a set.

The first series of experiments aims to analyze, for several messages loads, the number of hashes HD requires to find a dependency set for messages. To that end, we set MaxHashes to a high value (MaxHashes=200 ). Figure 5.6 gives, for several message loads, the distribution of the number of hashes HD computes. For example, Figure 5.6a shows that with a message load of 10msg/s HD only computes 1 hash in 100% of the hash computations.

We observe that with a message load of up to 50 messages/second, HD computes few hashes. The higher the message load, the higher the maximal number of hashes HD computes, and the higher also the number of hash computations that require a higher number of hashes. This is because detecting concurrent messages becomes less efficient when the message load increases. Thus, the percentage of hash computations in which HD computes 50-200 hashes increases with the message load, because HD takes into account more and more concurrent messages in the hash computation. Hence, the value of MaxHashes should be chosen following the message load. The second series of experiments aims to analyze the effect of reducing MaxHashes when the message load is high. Reducing MaxHashes reduces the number of computed hashes per message delivery, but it also increases the false positive rate, i.e., messages m of hash H m for which the error detector does not find a dependency set whose hash is equal to H m while the process delivered all causal dependencies of m. Table 5.3 gives the results when varying MaxHashes from 10 up to 250 hashes for respectively a message load of 125 and 150 messages broadcasted per second.

We observe that increasing MaxHashes increases the average number of computed hashes per delivery, but it also decreases the rate of false positives. However, over a given limit increasing MaxHashes only slightly decreases the rate of false positives while it continues to increase the average number of hashes computed per message delivery. Further increasing MaxHashes increases the average number of computed hashes per message delivery without decreasing the rate of false positives at the same rate, mostly because it increases the number of hashes processes try in unsuccessful hash computations. In other words, increasing MaxHashes increases the number of messages for which processes find a dependency set, but many of the additional computed hashes are used in unsuccessful hash computations. For example, in Table 5.3 increasing MaxHashes from 200 to 250 for a message load of 150 msg/s results in computing on average 5.4 hashes more per message delivery, while the error detector only returns 0.1% less false positives.

The lower the value of MaxHashes the faster increases the rate of false positives. For example, with a message load of 150 messages per second, decreasing MaxHashes from 150 to 100 hashes results in a false positive rate that increases of 3.8%, while decreasing MaxHashes from 25 to 10 hashes results in a false positive rate that increases of 10.8%. A low value of MaxHashes results in a high false positive rate, like the false positive rate of 39% when MaxHashes is set to 10 hashes for a message load of 150 messages/s. This is consistent with the hash distribution observed in Figure 5.6.

The best value for MaxHashes for both experiments seems to be between 150 and 200 hashes. Over 200, the rate of false positive only decreases slightly. Under 150, the rate of false positives increases fast. In any case, it should not be set too low because this leads to a high rate of false positives. To conclude, MaxHashes should be set following the message load: with a low message load MaxHashes can be set very low, as for example MaxHashes=2 when 10 messages are broadcasted inside the system per second. On the other hand, MaxHashes should be set to a higher value when the message load increases and the detection of concurrent messages becomes less efficient, as for example MaxHashes should be set between 150 and 200 hashes in the examples of Table 5.3. The value of MaxHashes can also be set lower at the cost of a higher false positive rate, but it should not be set too low because the false positive rate will then be high, as for example 39% when MaxHashes=10 and the message load is of 150 messages broadcasted per second.

5.3.3.3.b Cost of computing a hash

As explained in Section 5.3.2.2.a, a process p i computes the hash of a message m it broadcasts/delivers with only the causal dependencies of m whose clock difference with m is lower than a given value Diff. This section analyzes the number of detected out of causal order deliveries following the chosen value of Diff. We also analyze the cost of computing a hash and the average number of hash computations per message delivery.

We determine the base value of Diff following the formula given in Section 5.3. Table 5.4 gives the results when varying Diff from a multiple of 1.25 (162) down to 0.1 (13). The table shows the percentage of detected out of causal order deliveries, as well as the average number of hashes computed per message delivery and the average number of operations done to compute a hash. It also gives the average cost of a hash computation, which corresponds to the average number of hashes per message delivery multiplied by the average number of operations done to compute a hash.

We observe that out of causal order deliveries are all detected for a Diff value down to 117. Decreasing Diff further results in out of causal order deliveries that are not detected. First, only a few of them are not detected, but their number rapidly increases when further reducing Diff. The reason is that most not received causal dependencies of an out of causal order delivered message m have a clock difference with m that is in a given window. In fact, the higher the value of Diff m,m the higher the probability that processes have delivered m . Thus, decreasing Diff first removes from the hash computation the ids of messages that are most probably delivered by processes.

The cost of computing the hash of a dependency set is equal to the number of message ids that the considered dependency set contains. Fore example, when Diff=130, processes take on average into account 16.7 message ids to compute a hash, and computing a hash therefore requires on average 16.7 operations. The cost per hash increases with Diff. As expected, the higher the value of Diff, the higher the number of message ids taken into account in the hash computation, thus increasing the cost of computing a hash. We note that with Diff=85, only 2.67 message ids are on average taken into account in the hash computation, while HD still detects 91% of out of causal order deliveries.

The average number of computed hashes per message delivery is stable (25.5 hashes/delivery) till Diff=117. It begins to decrease when Diff=98, and it accelerates when further decreasing Diff. The main reason is that decreasing Diff reduces the number of messages that are taken into account when computing the dependency set of messages. Hence, a process will compute the hash of fewer dependency sets, thus decreasing the number of hashes per message delivery. For example, processes consider on average only 5.5 message ids per hash computation when Diff=98, To conclude, the formula to compute Diff is accurate and HD detects 100% of out of causal order deliveries even when computing the hash of messages with only the ids of a subset of causal dependencies. The cost per hash is low or similar to the cost of comparing M-entry clocks, with only 16.7 operations required to compute a hash with a message load of 150 messages broadcasted per second. However, the parameters considered when computing Diff might change over time, such as the maximum communication delay, and a too low value for Diff rapidly results in many not detected out of causal order deliveries. Hence, Diff should be chosen sufficiently high to tolerate a variation of the communication delays and the number of concurrent messages in the system.

Handling a high message load

This section analyzes the mechanism presented in Section 5.3.2.5 to handle high message loads, which consists of appending to messages the ids of some of their causal dependencies. We analyze the rate of true and false positives as well as the number of computed hashes per message delivery when using this mechanism. Finally, we analyze the cost of this mechanism which is determined by the size of the set of message ids appended to messages. We first observe that the rate of true positives increases with the message load, which is explained in Section 5.3.3.1. The rate of false positives also increases with the message load. Nevertheless, it increases at the same rate as the number of true positives, as we can see in Figure 5.7 where the curves of true and false positives are almost parallel. Finally, with a message load of 500 messages per second true positives still represent more than 50% of the detected errors.

We conclude that the mechanism handles high message loads well. When using it, the error detector yields a low or acceptable rate of false positives. However, this mechanism also has its limits since it eventually yields a substantial amount of false positives, as for example when the message load is of 500 messages broadcasted per second, even though it stays lower than the yielded rate of true positives.

Computed hashes per delivery Figure 5.8 shows the average number of computed hashes per message delivery. We observe that it increases with the message load, going from ≈ 3.2 hashes/delivery for a message load of 200 messages/second up to 13.8 hashes/delivery for a message load of 500 messages/second. A more precise analysis shows that the increase comes from unsuccessful hash computations. In fact, for all the message loads, the successful hash computations are done ine 1 hash. However, Figure 5.7 shows that the rate of false positives increases with the message load. For each false positive, the error detector computes up to 200 hashes. Hence, the increase in terms of false positives explains the increase of the average number of computed hashes per message delivery. Nevertheless, it stays acceptable with 13.8 hashes per messages delivery for a message load of 500 messages broadcasted per second. We conclude that the number of computed hashes per message delivery is acceptable when using the mechanism to handle high message loads, with below 15 hashes per message delivery computed for a message load going up to 500 messages broadcasted per second. However, the number of computed hashes per message delivery increases linearly with the message load and would eventually become prohibitive.

Size of the message ids set appended to messages Figure 5.9 shows the number of message ids appended to messages following the message load. As expected, the number of ids appended to messages linearly increases with the message load. With a message load of 500 messages/second the set contains on average 34 message ids. A message id is composed of two integers, and the additional causal information appended to messages therefore has a size of 68 integers, which seems to be acceptable.

We conclude that the size of the set of message ids seems to be acceptable for up to 500 messages broadcasted per second. However, the size of the set grows linearly with the message load and will eventually become prohibitive.

Retrieve the causal dependencies of messages

This section presents a short algorithm to be executed in conjunction with an error detector, and which retrieves the causal dependencies of a message. The idea is that a process executes the error detector before delivering a message m, and if it returns true, i.e., m has some causal dependencies that are not delivered locally, then the process executes the algorithm to retrieve the causal dependencies of m, in order to ensure its delivery in causal order. Example Figure 5.10 shows a scenario where process p 2 requests the causal dependencies of m 4 . The system contains three processes using a probabilistic clock of two entries. Processes p 1 , p 2 , and p 3 are respectively associated with the vector entries f (p 1 ) = {0}, f (p 2 ) = {1}, and f (p 3 ) = {0}. Let's consider that the error 
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Domino effect

Requesting a message's causal dependencies can lead to a domino effect by inducing the request of the causal dependencies of messages in cascade. In fact, when process p i requests the causal dependencies of a message m, it sends a REQ message to the sender of m, then waits for the sender's reply message RSP. During that message exchange, p i might receive several messages m of which m is a causal precedence (m → m ). The delivery conditions of some of those m messages might be satisfied before the end of the REQ/RSP message exchange for m.

However, in the case of the hash-based error detector, p i 's error detector will not include m when building dependency sets of m , because p i has not delivered m yet. Since m → m , the error detector will only find a dependency set whose hash value is equal to the one attached to m in case of a collision. However, since the probability of collisions is very low, there is a high probability that p i will request the causal dependencies of m . Similarly, during the REQ/RSP message exchange related to m , p i might receive another message m of which m is a causal dependency, leading to another REQ/RSP message exchange, and so on.

To avoid such a domino effect, processes execute the request of causal dependencies sequentially, i.e., a process begins a dependency request provided that the previous one is finished. At the end of a REQ/RSP message exchange, the requesting process p i has most probably delivered all causal dependencies of m, and will therefore deliver m. Hence, m will be taken into account when computing dependency sets for m , henceforth avoiding the request of the causal dependencies of m . Processes should request causal dependencies rarely, and very few causal dependencies requests should occur simultaneously on the same process. Consequently, the overhead of sequential requests is negligible.

When using the hash-based error detector, a domino effect can occur when process p i broadcasts a message m during the REQ/RSP message exchange related to m.

In fact, during the message exchange p i will deliver fewer messages since it has a high probability not to deliver the messages of which m is a causal dependency. Therefore, the clock difference between m and newly broadcasted messages will be higher and m has therefore a higher probability to be considered as a causal dependency of messages to which it is concurrent. This in its turn will lead to a request of m causal dependencies, and so on... Hence, processes delay the broadcast of messages until the end of dependency requests.

Liveness proof

This section gives the liveness proof of the algorithm retrieving the causal dependencies of messages used in conjunction with the hash-based error detector when implementing causal broadcast with M-entry clocks.

Theorem 5.3. A well-formed message is eventually delivered by all processes.

Proof. We assume that a well-formed message eventually delivered when using constant size clocks to causally order messages. For example, Mostéfaoui et Weiss proved in [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] that the delivery conditions of probabilistic clocks attached to well-formed messages are always satisfied. Thus, we only need to prove that the liveness property holds when using an error detector and retrieving the causal dependencies of messages for which the error detector returns that they might not be causally ordered. The proof is done by induction.

H0: Any message m generated on the initial state is eventually delivered.

A process p i delivers m if its error detector returns false. Otherwise, p i requests m's causal dependencies to the sender of m, which replies by sending a RSP message containing an empty set, since m was generated on the initial state and has, therefore, no causal dependencies. Hence, p i delivers m upon reception of the RSP message. Hence, all processes eventually deliver m.

H1: We assume a set S of messages that are eventually delivered by all processes.

A message m generated after the delivery of messages of the set S will be eventually delivered by all processes.

A process p i delivers m if its error detector returns false. Otherwise, p i requests m's causal dependencies to p j , the sender of m, which replies by sending a RSP message containing the set S, since p j generated m after delivering the messages of the set S. Hence, p i delivers m upon reception of the RSP message, since p i delivered the messages of the set S by hypothesis. Hence, all processes eventually deliver m.

Thus, a message generated after a set of eventually delivered messages is eventually delivered by all processes (H1). As processes eventually deliver messages generated in the initial state (H0), we conclude that processes eventually deliver all messages.

Removing obsolete causal information

This section presents an acknowledgment mechanism to remove obsolete causal information about broadcasted messages. A process keeps the causal information of messages it broadcasts in order to send it to processes that request it. The causal information of a message m becomes obsolete once all processes delivered m.

A process p i can only remove the causal information about a message m it broadcasted once all processes acknowledged m's delivery. However, M-entry clocks do not characterize causal order and cannot, therefore, contain such information. Hence, the acknowledgment of the delivery of messages requires an additional mechanism.

A trivial acknowledgment mechanism consists of each process periodically broadcasting a vector of N entries to acknowledge the messages it delivered, where N corresponds to the number of processes in the system. However, this solution does not scale. The following two presented acknowledgment mechanisms work in rounds and scale much better. The first acknowledge mechanism requires only one process to send a message of size O(N ), while other processes send a small message containing a few integers. The second mechanism requires processes to send only one small messages containing a few integers, by computing the causal dependencies of messages locally with the hash-based error detector.

First acknowledge mechanism

Algorithm 12 describes the first acknowledge mechanism. Process p i starts the acknowledgment round by broadcasting a message ACK containing the id (p i , seq) of one of the messages m it broadcasted, as well as the vector V m containing the causal dependencies of m (line 1 ). The other processes reply to the ACK message with an ACK rep message to acknowledge or not the delivery of m, by using the function hasDelivered(p i , seq), which returns true provided that the process has delivered m and false otherwise.

The acknowledgment round ends at a process p j once p j received the ACK and all ACK rep messages. The round is successful if all processes sent a positive acknowledgment for m (line 6 ). Since V m resumes the causal dependencies of m, if (p j , seq j ) ∈ V m , then messages broadcasted by p j with a sequence number seq ≤ seq j are also causal dependencies of m, and are therefore also acknowledged by this round. Hence, process p j removes from S dep j the messages with a sequence number seq m < seq j . The acknowledgment round fails if one process does not acknowledge the delivery of m. No process can then clear its S dep .

Any process can start an acknowledgment round, provided that it broadcasted at least one message. A process should choose a message m to acknowledge such that the probability is high that all processes have delivered m. The acknowledgment round fails in a slightly modified execution of Figure 5.11, where p 3 receives m 4 after the ACK message. In this case, upon the reception of the ACK message, p 3 has not delivered m 4 yet. Hence, it does not acknowledge the delivery of m 4 . Thus, not all processes acknowledge the delivery of m 4 , and no causal information can be removed from processes' S dep during this round. Nevertheless, a new acknowledgment round can always be started right after the end of a failed one if necessary.

The size of the ACK message can be reduced by not appending on it the whole vector V m . The acknowledgment round will then only acknowledge messages from processes p j such there is an entry (p j , seq) in V m . For example, if only some processes p j broadcast messages, then only the tuples (p j , seq j ) should be included in V m . Another example would be to include in V m only the tuple (p j seq j ) once p j has k messages to acknowledge.

Second acknowledge round mechanism

Algorithm 13 describes the second acknowledgment mechanism. It uses the hashbased error detector. Process p i starts the acknowledgment round by broadcasting a message ACK containing the id (p i , seq) of one of the messages m it broadcasted, as well as the hash H m of m's causal dependencies (line 1 ). The other processes reply to the ACK message with an ACK rep message to acknowledge or not the delivery of m, by using the function hasDelivered(p i , seq), which returns true provided that the process has delivered m and false otherwise.

The acknowledgment round ends at a process p j once p j received the ACK and all ACK rep messages. The round is successful if all processes sent a positive acknowledgment for m (line 6 ). Process p j then uses H m to compute the causal dependencies set Dep m of m. These messages are also acknowledged by the acknowledgment of m. Hence, if a message m of id (p j , seq j ) ∈ Dep m , then p j removes from S dep j the messages with a sequence number seq m < seq j . The acknowledgment round fails if one process does not acknowledge the delivery of m.

No process can then clear its S dep .

Any process can start an acknowledgment round, provided that it broadcasted at least one message. A process should choose a message m to acknowledge such that the probability is high that all processes have delivered m. 

Experiments

This section evaluates the algorithm to retrieve causal dependencies used in conjunction with the hash-based error detector (see Section 5.3.2) in a system implementing causal broadcast with M-entry clocks.

Experiments were carried out on the OMNeT++ simulator. Processes generate messages on a regular interval depending on the system's message load, with a deviation following a normal distribution N(0,10)ms. The communication delays follow a normal distribution N(100,30)ms. The system contains 500 processes that use a probabilistic clock [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] of M=50 entries to causally order messages. The number of entries associated to each process |f | is computed for each experiment following the formula proposed by Mostéfaoui and Weiss [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] described in Section 5.2. We set MaxHashes=200 and compute Diff with the formula given in Section 5.3.2.2.a. The accuracy of probabilistic clocks to causally order messages is mostly impacted by the number of concurrent messages in the system, which in its turn is determined by the system's message load and the communication delays. Since the message load is easier to set than the number of concurrent messages, we fix the communication delays and vary the message load in the experiments.

Out of causal order deliveries are controlled by a controller module that verifies the causal delivery of each message. It associates a vector clock of size N to processes and messages, with which it verifies the causal delivery of messages by processes.

Processes notify the controller when broadcasting and delivering a message, but they do not use its information.

We evaluate the following characteristics of the algorithm to retrieve the causal dependencies of messages:

• Number of messages delivered out of causal order when retrieving the causal dependencies of tagged messages.

• Limits of the algorithm.

Messages delivered out of causal order

The first series of experiments measured the number of out of causal order deliveries when retrieving the causal dependencies for a message load going from 10 up to 150 messages broadcasted per second. We executed the same experiments as in Section 5.3.3.1. Table 5.5 gives the results.

We observe that the hash-based error detector detected all messages that are not causally ordered. The process requested the causal dependencies of the tagged messages m, and upon receiving them only delivered m after it had delivered all of m's causal dependencies. We observe in Table 5.5 that processes delivered no message out of causal order for a message load up to 75 messages broadcasted per second. For higher message loads, marked by an X, we observe that processes request the causal dependencies of many messages, thus continuously delaying the delivery of messages. Hence, messages will be delayed more and more, rendering the mechanism not effective. In fact, the algorithm does a message exchange in order to retrieve the causal dependencies of messages m tagged by the error detector. During that message exchange, the process will most probably not deliver messages of which m is a causal dependency. Hence, when the message load is too high, processes will be recovering the causal dependencies of messages all the time, delaying more and more the delivery of messages.

We conclude that the algorithm to retrieve causal dependencies can effectively be used with the hash-based error detector to deliver all messages in causal order when implementing causal broadcast with probabilistic clocks. However, it tolerates a maximum message load above which it requests all the time the causal dependencies of messages, thus delaying more and more the delivery of other messages, making it not usable for high message loads. This section analyzes, for several clocks, the maximum tolerated message load upon which processes are all the time recovering the causal dependencies of messages. Table 5.6 presents the maximum message load tolerated when retrieving the causal dependencies of messages tagged by the error detector in an implementation of causal broadcast using probabilistic clocks. Results show that the maximal message load increases with the size of the clock. In our implementation, a process jumps its scheduled broadcast if at the scheduled time it is in recovery of the causal dependencies of a message. This has an influence on the measured maximal tolerated message load.

Message load

Theoretically, the maximal tolerated message load should depend on the rate of positives the error detector returns, i.e., on the number of message recoveries processes need to perform. The rate of positives of the hash-based error detector decreases when increasing the clock size, which increases the maximal tolerated message load. Future experiments will compare the maximal tolerated message load with the positive rate of the error detector. To conclude, experiments showed that the mechanism to retrieve the causal dependencies of messages allows to deliver all messages in causal order. However, the mechanism only tolerates a limited message load, over which processes are retrieving all the time causal dependencies of messages, which in its turn delays more and more the delivery of messages.

Conclusion

This section proposed a new error detector to detect out of causal order deliveries.

First, we defined the required assumptions to implement an error detector that detects all out of causal order deliveries. We then showed that those assumptions are not realistic and that such an error detector can therefore not be implemented under realistic assumptions.

Second, we presented a hash-based error detector for M-entry clocks which experimentally detected all out of causal order deliveries of a causal broadcast implementation using probabilistic clocks. We keep the cost of the hash-based error detector small by using the clock difference between messages to only hash a subset of message ids.

Finally, we proposed an algorithm to retrieve the causal information of messages tagged as not causally ordered by error detectors, as well as a mechanism to remove this causal information once all processes have delivered them.

Experimental results and a theoretical analysis show that our error detector misses very few -experimentally none-out of causal order deliveries, that it adapts well to high message loads, and induces a low overhead. Moreover, using it with the algorithm to retrieve the causal dependencies of messages allowed to deliver all Active components Inactive components
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Figure 5.12: Representation of a DCS clock messages in causal order in an implementation of causal broadcast using probabilistic clocks up to a given message load depending on the size of the system's probabilistic clock.

Dynamic Constant Size clocks

Mostéfaoui and Weiss [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] showed that the efficiency of a probabilistic clock P C of size M to causally order a message m depends on the number of concurrent messages to m: the probability to causally order m with P C decreases when the number of concurrent messages to m inside the system increases. Moreover, the authors showed that increasing the size of P C also increases the probability that it causally orders m. The size of probabilistic clocks should, therefore, be chosen following the average number of concurrent messages inside the system. In other words, the size of probabilistic clocks should dynamically vary with the number of concurrent messages, increasing (resp. decreasing) whenever the number of concurrent messages is above (resp. below) a given value.

On the other hand, the size of Probabilistic clocks is fixed at initialization and cannot vary during execution. A wrong choice in the clock size either leads to an oversized clock or, if the size is too small, in many messages that are delivered out of causal order. Determining beforehand the number of concurrent messages in the system might be difficult and is often impossible.

This section presents a new logical clock, denoted Dynamic Clock Set (DCS ), composed of a set of probabilistic clocks and whose size can dynamically vary during execution. We also give the operations to compare DCS clocks and change their size during execution. A Dynamic Clock Set (DCS ) is composed of a set of Probabilistic clocks, denoted components, which all have the same number of entries (M ). Figure 5.12 gives the representation of a DCS clock. The size of a DCS clock changes by varying the number of its components. DCS clocks capture causality but do not characterize it, meaning that for two messages m

1 (resp. m 2 ) of DCS clocks D 1 (resp. D 2 ), m 1 → m 2 ⇒ D 1 < D 2 , but D 1 < D 2 ⇒ m 1 → m 2 .

Definition of DCS clock components

A component C k of a DCS clock is uniquely identified by its index k. C k is either active or inactive. As shown in Figure 5.12, a DCS clock D is composed of one or several active components -with C 0 always being active -followed by none or several inactive components. In other words, C 0 is always active, followed by none or several active components C i with 1 < i ≤ |D|, followed by none or several inactive components C j with i < j ≤ |D|.

A process increments one or several active components of its DCS clock to keep track of the causality of events, and only attaches the active components of its DCS clock on messages. The set S incr,i contains the set of indexes of the components that process p i increments when executing an event, and before each event p i increments the entries f (p i ) of the components whose index is contained in S incr,i .

Update of a DCS clock

Process p i uses the following two rules R1 and R2 to update its local DCS clock:

• R1: Before executing an event, it updates its local clock D:

∀x ∈ f (p i ), ∀k ∈ S incr , D i .C k [x] = D i .C k [x] + d (d > 0)
• R2: Each message m carries with it the vector clock D m of its sender process at sending time. On the receipt of a message (m, D m ), process p i :

-Updates its local clock as follows:

(1)

If |D i | < |D m |, p i calls Add(), defined below, till |D i | = |D m |.
(

) ∀k ∈ [1, |D m |], ∀x ∈ [1, M ], D i .C k [x] = max(D i .C k [x], D m .C k [x]) 2 
-Executes R1, Deliver(m)

Comparison of two DCS clocks

The components of DCS clocks are independent probabilistic clocks. Hence, the comparison operator "<" of DCS clocks is based on the comparison operator of probabilistic clocks. As a reminder, the comparison operator "<" of two probabilistic clocks C 1 and C 2 is defined as follows:

C 1 < C 2 iff ∀x, C 1 [x] ≤ C 2 [x] ∧ ∃k, C 1 [k] < C 2 [k]
The "<" operator of two DCS clocks D 1 and D 2 is defined as follows :

5.5. Dynamic Constant Size clocks (1) |D 1 | ≤ |D 2 | (2) Each component C k of D 1 is smaller or equal to the corresponding component C k of D 2 , and at least one component C j of D 1 is strictly smaller than the component C j of D 2 : ∀k ∈ [1, |D 1 |], D 1 .C k ≤ D 2 .C k ∧ ∃C j , D 1 .C j < D 2 .C j .
Two causally related messages m 1 and m 2 of respective DCS clocks m 1 .D and m 2 .D verify the following condition:

send(m 1 ) → send(m 2 ) ⇒ m 1 .D < m 2 .D.
Note that two messages m 1 and m 2 whose DCS clock comparison does not satisfy the above two conditions are said to be concurrent, denoted as m 1 ||m 2 . Formally: 

m 1 .D ≤ m 2 .D ∧ m 2 .D ≤ m 1 .D ⇒ m 1 ||m 2 Theorem 
m , ∃x ∈ [1, M ], ∃k ∈ [1, |D j |], m.D.C k [x] > m .D.C k [x].
Therefore, ∀m ∈ Dep m , m .D < m.D.

Operations to modify the size of DCS clocks

The size of a DCS clock can be dynamically adjusted during execution by adding and removing components to it. In particular, its size can be adapted to the number of concurrent messages in the system, since the efficiency of probabilistic clocks to causally order messages depend on that parameter (see Section 5.2). A DCS clock should increase its size when observing an increase in the number of concurrent messages and should decrease it in the opposite case. The size of DCS clocks can be chosen following the desired accuracy of causal message ordering.

Process p i modifies its local DCS clock D i through the following operations:

• Activate(): Activates the component of D i with the lowest index among D i 's inactive components.

• Deactivate(): Deactivates the component of D i with the highest index among D i 's active components.

• Add(): Creates a new component, sets its entries to 0, and adds the component at the end D i .

• 

Causal broadcast algorithm using DCS clocks

This section presents an implementation of causal broadcast using DCS clocks. We first present the causal broadcast algorithm, then we describe the implementation of the operations to modify the size of DCS clocks.

Model

The system contains a set Π = {p 1 , p 2 , . . . , p N } of N processes. Processes are reliable and communicate through message passing. Each pair of processes is connected by a reliable communication channel. Local events induce no interactions with other processes and are therefore omitted. Each application message is broadcasted to all processes of the system.

Definition of the algorithm

Algorithm 14 describes the DCS clock-based causal broadcast algorithm. Each process p i keeps:

• D i : its local DCS clock.

• S incr,i : a set containing the indexes of the components of D i that p i increments when broadcasting a message.

Broadcast of a message m Process p i first updates its DCS clock by executing the Rule R1 given in Section 5.5.2 with d = 1: • Third, if it has activated components, then it sets S incr,i to a new set of randomly chosen indexes of active components, to ensure that active components are on average incremented by the same number of processes.

∀x ∈ f (p i ), ∀k ∈ S incr,i , D i .C k [x] = D i .C k [x] +
After calling prepareComparison(), p i waits till D i satisfies the following delivery conditions of D m :

• For each component C k / ∈S incr,m : p j did not increment C k when broadcasting m. Hence, the entries of D i .C k should be equal or greater than those of 

D m .C k : waitUntil( ∀C k / ∈S incr,m , D m .C k [x] ≤ D i .C k [x])
, ∀x ∈ f (p j ), D m .C k [x] -1 ≤ D i .C k [x]) waitUntil(∀C k∈S incr,m , ∀x / ∈ f (p j ), D m .C k [x] ≤ D i .C k [x]) p 1 f (p 1 ) = {0} c incr = 0 p 2 f (p 2 ) = {0} c incr = 0 p 3 f (p 3 ) = {0} c incr = 0 b(m) (1) (3) 
(1 )

d(m) (1 ) b(m') (2) 
de(m')

d(m')

(1): 

[{[1],[0]},0] (2): [{[1],[1]},1] (3) 
m : ∀x ∈ f (p i ), ∀k ∈ S incr , D i .C k [x] = D i .C k [x] + 1 Finally, p i delivers m (line 7). Algorithm 14: Broadcast at process p i Broadcast of message m 1: ∀x ∈ f (p i ), ∀k ∈ S incr,i , D i .C k [x] = D i .C k [x] + 1 2: broadcast(m,D i ,S incr,i )
Upon reception of message (m, D m , S incr,m ) from p j 3: prepareComparison()

4: waitUntil( ∀C k / ∈S incr,m , D m .C k [x] ≤ D i .C k [x]) 5: waitUntil( ∀C k∈S incr,m , ∀x ∈ f (p j ), D m .C k [x] -1 ≤ D i .C k [x] ∧ ∀x / ∈ f (p j ), D m .C k [x] ≤ D i .C k [x]) 6: ∀x ∈ f (p j ), ∀k ∈ S incr,m , D i .C k [x] = D i .C k [x] + 1 7: deliver(m)
Figure 5.13 shows the broadcast of two messages. The system is composed of three processes p 1 , p 2 , and p 3 . Each process maintains two components with each component having one entry. Processes p 1 and p 2 have S incr = {0}, i.e., they increment component C 0 when broadcasting a message while p 3 increments component C 1 when broadcasting a message. In the scenario, p 1 first broadcasts m whose causal information is represented by (1). Upon reception of m, p 3 delivers it since its delivery conditions are satisfied. Then, p 3 broadcasts m , i.e., m → m . The causal information of m is represented in (2). Process p 2 receives m before m. Thus, it postpones the delivery of m since its delivery conditions are not satisfied, because p 2 .D 

1 f (p 1 ) = {0} c incr = 0 p 2 f (p 2 ) = {0} c incr = 0 p 3 f (p 3 ) = {0} c incr = 0 (1) (2) (5) 
( 2 )

(8) ( 2 ) 
b(m')

(3)

(3 )

d(m') ( 3 ) (6) (7) ( 6 ) d(m") ( 6 ) 
(1):

expand() (2): [{[0],[1]},1] (3): [{[1],[0]},1] (4): d(m') (5): expand(), d(m), D 2 =[{[1],[1]},0] (6): b(m"), m"=[{[2],[1]},0] (7): delay(m") (8): d(m),d(m"),D 3 =[{[2],[1]},1]} Figure 5
.14: Example of DCS clocks expansion

Expansion of the local DCS clock

The algorithm expands DCS clocks in order to reduce the number of processes that increment the same entries when broadcasting a message. Process p i decides to increment its local DCS clock D i without communicating with other processes. p i decides to expand D i spontaneously, when observing for example a high message load. To expand its DCS clock, p i :

• First, calls Activate() described in Section 5.5.3.1, which activates an inactive component of D i if one is available, and which returns false otherwise.

• Second, calls Add() described in Section 5. We add two additional conditions to ensure that p i will not activate C k again shortly after deactivating it:

(1) No process currently increments C k .

(2) No process currently delays the delivery of a message m with k ∈ m.S incr , because the delivery of m might violate the above condition.

5.6.2.2.a Deactivation round

Process p i verifies the satisfaction of the above conditions through a two phase exchange of messages with the other processes. In Phase 1, p i sends the component C k to deactivate to all processes, which reply with a positive or negative acknowledgement. In Phase 2, p i confirms or not the deactivation of C k to all processes.

Phase Any process can start a Deactivation round. The process can be chosen probabilistically or, for example, in a predefined way based on the process identifier. Several processes could start a Deactivation round for the same component or for different components simultaneously, but this should be avoided since acknowledging the deactivation of the same components several times is useless. We assume bounded integers encoded on 32 bits.

Removal of DCS clock components

This section describes an implementation to remove components from DCS clocks. Processes keep inactive components of their DCS clock locally, and should eventually remove them in order to free up memory space.

Processes must coordinate the removal of inactive components with each other, because if one process removes a component C k from its DCS clock, then all processes should remove C k from their DCS clock. In fact, assume that one process p i removes C k from its DCS clock, and that another process p j then broadcasts a message m without having removed C k from its DCS clock. The DCS clock appended on m will then contain C k . Upon reception of m, p i will have lost the causal information of C k since it deleted C k . Thus, a process should only delete a component C k once it is ensured that it will receive no other message containing this C k . Before removing C k , p i should therefore verify that :

(1): C k is inactive at all processes of the system.

(2): It will receive no message containing C k after removing C k from its DCS clock.

5.6.2.3.a Remove round

Process p i verifies the satisfaction of the above conditions through a two phase exchange of messages with the other processes. Phase 1 synchronizes processes to ensure that they all have delivered the messages containing the component C k to be removed and that they will broadcast no new message containing C k . Phase 2 propagates the deletion decision of C k , which depends on the satisfaction by all processes of the two above conditions.

Phase 1. Process p i broadcasts a Remove message containing a set with a tuple < p k , seq k > for each process p k that broadcasted a message since the last Remove round, with seq k corresponding to the number of messages p k broadcasted since the last Remove round.

Upon reception of the Remove message, process p j freezes the dynamics operations of its DCS clock. Moreover, it verifies that C k is locally inactive and that for each tuple < p k , seq k > it delivered seq k messages from p k since the last Remove round. Finally, p j replies with an AckRemove message containing k, the index of C k , as well as a boolean set to true if both conditions are satisfied, and false otherwise.

Phase 2. p i sends a DecisionRemove message after it received the AckRemove message from all processes. The DecisionRemove message contains C k 's index k and a boolean that confirms or not the success of the round, i.e., the removal or not of C k . p i sets this boolean to true if all processes positively acknowledged the removal of C k and false otherwise. Upon reception of the DecisionRemove message, a process unfreezes the dynamics operations of its DCS clock, and removes C k provided that the boolean is set to true. Remove rounds should not be executed often because of the memory complexity which is in O(N ) messages. Nevertheless, several components can be acknowledged at once. Moreover, a DCS clock is usually composed of a few components, and keeping them locally without sending them with messages only represents a small local memory overhead.

Termination proof of DCS clocks

This section gives the proof of termination of the causal broadcast algorithm using DCS clocks. The proof is divided in two parts. Theorem 5.5 proves the termination property for static DCS clocks. Theorem 5.6 proves that the termination property holds when adding and removing components to DCS clocks.

Theorem 5.5. A well-formed message broadcasted with an algorithm using a static DCS clock to causally order messages is eventually delivered by all processes.

Proof. We prove it by induction. We assume that each process p i has a DCS clock D i of l ≥ 1 components.

H 0 : Messages generated on the initial state are eventually delivered by all processes.

Processes initialize the entries of components to 0. Hence, a message m generated by p i in the initial state carries a DCS clock with ∀x ∈ f (p i ), ∀k ∈ S incr,i , m.C k [x] = 1 and for all the other component entries values equal to 0. Since all processes initialize the entries of components to 0, their DCS clock satisfies both delivery conditions upon reception of m. Thus, messages generated in the initial state are eventually delivered by all processes.

H 1 : We assume a set of messages M that are eventually delivered by all processes. We show that any message generated by a process after it delivered the messages of M will be eventually delivered by all processes.

Let's consider a message m of DCS clock D m generated by a process p i after it has delivered all messages of M .

By hypothesis, all processes eventually deliver the messages of M and increment their DCS clock accordingly. Moreover, p i only increments the entries x ∈ f (p i ) of the components C k , k ∈ S incr,i when broadcasting m. Hence, the entries of the DCS clock appended on m and the DCS clock of processes after they delivered m only differs by one ∀x ∈ f (p i ), ∀k ∈ S incr,i . Therefore, processes will satisfy the delivery conditions of m once they delivered the messages of M , which they do by definition. Therefore, processes eventually deliver m.

Any message generated after a set of eventually delivered messages will eventually be delivered by all processes (see H1 ). Since all messages generated on the initial state are eventually delivered by all processes (see H0 ), we conclude that any message is eventually delivered by all processes.

Lemma 5.2. The termination property of the causal broadcast algorithm using DCS clocks holds when processes add or activate components of their DCS clock.

Proof. Adding a new component to a DCS clock is equivalent to activate an inactive component not yet contained in the DCS clock of any other process. Therefore, it is sufficient to show that the termination property holds when a process p i activates an inactive component C k of its DCS clock D i . We consider that p i broadcasts a message m after activating C k .

p i reaffects itself to new components when activating C k , and stores the index of those components in S incr,i . Any process p j that receives m first adds and activates C k to its DCS clock D j if D j has no such component yet. Moreover, p j knows which components p i incremented when broadcasting m, since m carries S incr,i . Therefore, p j adds and activates C k to its DCS clock, and by using S incr it will also increment the entries of the right components when delivering m.

Lemma 5.3. The termination property of the causal broadcast algorithm using DCS clocks holds when processes remove components of their DCS clock.

Proof. The Remove round ensures that processes only remove a component C k provided that all processes have delivered all messages whose DCS clock contains C k . Moreover, the Remove round ensures that no new message containing C k will be broadcasted (even though a process might add a new component of index k after C k was removed). Therefore, after a successful Remove round, C k will not be used in any delivery of message, and its deletion will therefore impact no message delivery.

Lemma 5.4. The termination property of the causal broadcast algorithm using DCS clocks holds when processes deactivate components of their DCS clock.

Proof. Consider that process p i deactivates component C k . p i does not increment deactivated components, i.e., C k . Hence, C k will contain no new causal information. Moreover, deactivated components are not sent with messages, but are kept locally by processes. Therefore, deactivating components only removes delivery conditions of a message without loosing causal information. The deactivation of components does therefore impact no message delivery.

Theorem 5.6. A well-formed message is eventually delivered by all processes when broadcasting messages with the causal broadcast algorithm using DCS clocks.

Proof. Following Theorem 5.5, processes eventually deliver messages when using a causal broadcast algorithm using static DCS clocks to causally order messages. Following Lemma 5.2, Lemma 5.3 and Lemma 5.4, the termination property holds when the dynamics operations of DCS clocks are considered (Add(),Activate(), Remove(), Deactivate()). The termination property of DCS clocks holds therefore also when considering dynamic DCS clocks.

Experimental results

Experiments were carried out on the OMNeT++ simulator. Processes generate messages on a regular interval plus a deviation computed according to a normal distribution N (10, 0). The propagation delays of messages follows a normal distribution N (100, 20). An independent controller module detects out of causal order deliveries. The number of concurrent messages in the system depends on the system's message load and the distribution of propagation delays of messages. In the following we keep a propagation delay of messages that follows a normal distribution N (100, 20), and vary the message load instead of the number of concurrent messages, since the former is easier to set up.

The first experiments aim to determine the required DCS clock size to achieve a given accuracy of causal message ordering, depending on the system's message 

Clock size following the message load

The size of DCS clocks should be set following the message load and the accepted probability that a message is delivered out of causal order. Hence, the first experiment aims to determine the required DCS clock size following the message load and the accepted probability that a message is delivered out of causal order.

The system contains 2000 processes broadcasting messages at a frequency determined by the system's message load. The hash function returns two entries, i.e., processes increment two entries when broadcasting a message. Figure 5.15 presents the required probabilistic clock size, depending on the message load, to have 10 -2 %, 5.10 -3 %, 10 -3 %, 5.10 -4 % and 10 -4 % out of causal order deliveries.

Results show that the required size of the clock increases with the causal ordering accuracy, i.e., to have a probability to deliver a message out of causal order of 10 -3 % requires a bigger clock than a probability of only 10 -2 %.

The clock size required to causally order messages increases faster than linearly with the message load. We explain it by analyzing the formula presented in [START_REF] Mostéfaoui | Probabilistic Causal Message Ordering[END_REF] and described in Section 5.2 that gives the probability that a message is delivered out of causal order: (1 -(1 -1 M ) X * k ) k , where X corresponds to the number of concurrent messages, which is directly affected by message load, and M corresponds to the clock size. The formula confirms that an increase in message load (resp., clock size) has an exponential (resp., division) impact in the formula result, thus explaining why the clock size increases faster than linearly. This observation accentuates the importance of adjusting dynamically the clock size to the number of concurrent messages inside the system, instead of choosing a size following the highest expected number of concurrent messages, since the clock risks being much bigger than required.

Behavior following different message load patterns

The second set of experiments compares DCS clocks and probabilistic clocks for two different message load patterns. The first pattern consists of intervals in which the message load goes from 10 to 200 messages broadcasted per second following a normal distribution. The second pattern consists of random messages loads either in an interval between 10 and 30 messages broadcasted per second or an interval between 150 and 200 messages broadcasted per second. Figures 5.16 and Figure 5.17 show the message loads of the experiment using each pattern. The Figure 5.16b shows the size of the DCS clock attached to messages. The DCS clocks in this experiment have an average size of 304 entries. Hence, we conducted an experiment with the same message load using a probabilistic clock of 304 entries. Figure 5.16c gives the number of out of causal order deliveries that occurred when using DCS clock and probabilistic clocks.

We first observe in Figure 5.16b that DCS clocks rapidly adapt themselves to the message load pattern. Second, Figure 5.16c shows that the causal broadcast algorithm using DCS clocks delivers fever messages out of causal order than the causal broadcast algorithm using probabilistic clocks. In total, with the algorithm using DCS clocks, we observed 154 out of causal order deliveries, while we observed 854 out of causal order deliveries with the algorithm using probabilistic clocks. Hence, with the algorithm using probabilistic clocks we observe ≈ 5.5 more out of causal order deliveries. The out of causal order deliveries are for both algorithms concentrated around the message load peaks.

Following the theoretical analysis, we would have expected that the algorithm using DCS clocks delivers fewer messages out of causal order. By further analyzing we found that the out of causal order deliveries are coming from the DCS clock whose size is not increasing fast enough with the message load. The current metric a process uses to determine when to increase its DCS clock is the number of messages it received in the last second. Hence, a process might not adapt fast enough when the message load increases abruptly.

To conclude, the results of the first experiment shows that DCS clocks have better performances in causally ordering messages than probabilistic clocks in systems with a bell message load pattern as presented in Figure 5.16. Moreover, DCS clocks require a further analysis to determine which metric/mechanism to use to determine when to increase the size of the clock.

Random message load pattern

Figure 5.16 shows the results of the experiments conducted with the second message load pattern, represented in Figure 5.17a. It is divided in intervals of low message loads chosen every second and going from 10 to 30 messages broadcasted per second, followed by high message loads going from 150 to 200 messages broadcasted per second. Figure 5.16b shows the size of the DCS clock attached to messages. The DCS clocks in this experiment have an average size of 255 entries. Hence, we conducted an experiment with the same message load using a probabilistic clock of 255 entries. Figure 5.16c gives the number of out of causal order deliveries that occurred when using DCS clock and probabilistic clocks.

Results confirm that the size of DCS clocks is rapidly adapted to the message load: they remain small most of the time and grow fast during message load peaks. Second, Figure 5.16c shows that the causal broadcast algorithm using DCS clocks delivers fever messages out of causal order than the causal broadcast algorithm using probabilistic clocks. In total, the algorithm using DCS clocks delivered 187 messages out of causal order, while the one using probabilistic clocks delivered 1126 messages out of causal order (≈ 6x). The out of causal order deliveries are for both algorithms again concentrated around the message load peaks. To conclude, the results of the second experiment shows that DCS clocks have better performances in causally ordering messages than probabilistic clocks in systems with a message load pattern consisting of low message loads followed by peaks, as presented in Figure 5.17.

Load balancing

Clocks with M entries are the most accurate when their entries are incremented uniformly. Processes should therefore be affected to clock entries such that clock entries are incremented uniformly. However, a process might vary the number of messages it broadcasts during execution, thus rendering an initially uniformly incremented clock non uniformly incremented.

Algorithms using DCS clocks can dynamically change the clock entries associated to processes. The last experiment measures the ability of DCS clocks to affect processes to new clock entries in order to increment DCS clocks more uniformly.

The system consists of 1000 processes, which increment two entries when broadcasting a message (i.e., |f | = 2). The system's message load is of 100 messages broadcasted per second, and processes maintain a DCS clock of 200 entries. Till t=50s processes increment the DCS clock entries uniformly. At t=50s, we modify the clock entries associated to processes in order to have 75% of message broadcasts that increment component C 0 , i.e., component C 0 is incremented 3 times more after t=50s. Figure 5.18 shows the number of messages that are delivered out of causal order.

We observe that the number of messages delivered out of causal order increases a lot after t=50s. At t=70s, processes that increment component C 0 detect that component C 0 is much more incremented than other components. In order to balance, they assign themselves to other components with a probability of 50%. Consequently, the number of messages delivered out of causal order drops. Eventually, the remaining processes that increment component C 0 detect that C 0 is still more incremented than other components, and reassign themselves therefore to other components with a probability of 50% till the DCS clock is again incremented uniformly, which happens at t=90s. Therefore, processes eventually incremented their DCS clock again uniformly.

Summary

This section presented a causal broadcast implementation using Dynamic Clock Sets (DCS), a new logical type of clocks based on Probabilistic clocks. The main feature of DCS clocks over constant size ones is that their size can be dynamically adjusted during execution. This is particularly important since the optimal size of DCS and constant size clocks usually depend on the number of concurrent messages inside the system, which can drastically vary and whose knowledge beforehand is difficult or even impossible to determine.

Experimental results confirm that DCS clocks have a higher accuracy of causal message ordering when compared to probabilistic clocks. Moreover, depending on the system's message load pattern, DCS clocks also require less memory than probabilistic clocks. Finally, DCS clocks can efficiently be used to increment clock entries more uniformly.

Conclusion

This chapter presented the work of this thesis done on M-entry clocks. Such clocks scale well with the number of processes N , since their size M is independent and usually much smaller than N . However, algorithms using M-entry clocks might deliver some messages out of causal order. Therefore, the first contribution of this chapter aims to detect messages that are delivered out of causal order when causally ordering messages by using M-entry clocks. The second contribution aims to avoid the out of causal order delivery of messages tagged as having not delivered causal dependencies. The third contribution of this chapter defines a new clock, based on probabilistic clocks, and whose size is dynamically adjustable during execution.

First, we defined the assumptions required to implement an error detector for M-entry clocks that detects all messages that are delivered out of causal order. Moreover, we showed that these assumptions are not realistic and that such an error detector can therefore not be implemented under realistic assumptions. We then proposed an error detector for probabilistic clocks based on hashes. The proposed error detector detects most of the messages that are delivered out of causal order. We gave some mechanisms to increase its efficiency and decrease its costs. We implemented our error detector on the OMNeT++ simulator, tested its efficiency, and compared it to another error detector for M-entry clocks.

Second, we proposed an algorithm to retrieve the causal dependencies of messages, in order to ensure the causal delivery of messages tagged as not causally ordered by error detectors. We tested our algorithm on an implementation done on the OMNeT++ simulator.

Third, we proposed the Dynamic Clock Sets (DCS clocks), a new logical clock based on probabilistic clock. The main feature of DCS clocks over M-entry clocks is that their size can be dynamically adjusted during execution. This is particularly important since the optimal size of DCS and M-entry clocks depends on the number of concurrent messages in the system, which can drastically vary and whose knowledge beforehand is difficult or even impossible to determine. We provided an implementation of causal broadcast using DCS clocks and analyzed its behavior through experiments done on the OMNeT++ simulator. Causal broadcast has been extensively investigated, and innumerable applications use it. Causal broadcast algorithms either piggyback information on messages in order to causally order them at reception or they organize the system and make assumptions on the network topology to ensure that messages are implicitly ordered at reception, thus ensuring that they can be causally delivered upon reception without any control.

This thesis aimed to provide causal broadcast for large dynamic distributed systems. Hence, the algorithms, presented in two parts, scale and tolerate processes that join and leave the system during execution.

A causal broadcast algorithms that tolerates the dynamics of Mobile Networks

We proposed a causal broadcast algorithm tailored to the features and dynamics of mobile networks. These features are mobile host mobility, dynamic host membership, unreliable dynamic wireless channels, memory and computing constraints of mobile hosts, as well as scalability issues due to the high number of mobile hosts and stations. The algorithm tolerates the failure of mobile hosts. We also proposed an extension to the algorithm that tolerates the failure of stations.

Causally order messages using M-entry clocks

Messages piggyback few causal information. The algorithm scales well with both hosts and stations. Hosts have a low memory footprint while stations have a memory footprint that grows linearly with the number of locally connected hosts. Contrarily to existing centralized approaches, stations discard obsolete messages using only local information, thus requiring no message exchange.

Experimental results showed that both algorithms use much less causal information and messages than existing algorithms for mobile networks, while making fewer assumptions on the network and devices.

Causally order messages using M-entry clocks

We showed that an error detector that detects all out of causal order deliveries cannot be implemented under realistic conditions. Moreover, we proposed an error detector based on hashes. Basically, it consists of hashing the causal dependencies of messages, and use this hash to retrieve the causal dependencies of messages at destination. Experimental results confirmed that the error detector has a high accuracy in detecting out of causal order deliveries. We also gave optimizations to reduce the costs of the hash-based error detector and measured their efficiency experimentally.

Second, we proposed a short algorithm to retrieve the causal dependencies of messages and showed its limitations. Experiments confirmed that using this algorithm in conjunction with a causal broadcast implemented with probabilistic clocks heavily reduces the number of messages that are delivered out of causal order.

Finally, we proposed the Dynamic Clock Sets (DCS clocks), a new logical clock composed of a set of probabilistic clocks. The main feature of DCS clocks is that their size can be dynamically adjusted during execution. Such an elasticity is particularly interesting because the size of DCS and M-entry clocks depends on the number of concurrent messages in the system and to have knowledge about the latter beforehand is difficult or even impossible. We have defined DCS clocks as well as the operations required to change their size. We have also presented a causal broadcast implementation using them. Experimental results show that a causal broadcast algorithm implemented with DCS clocks delivers messages in causal order with a higher accuracy than one implemented with probabilistic clocks. Moreover, DCS clocks can adapt to increment themselves more efficiently, which increases their accuracy in causally ordering messages.

Future directions

This section discusses some future directions.

In the near future, we intend to conduct experiments to evaluate the extension of the causal broadcast algorithm for mobile networks that we proposed in Section 4 and that tolerates the failure of stations. To that end, stations are gathered in groups, and share causal information. We aim to evaluate the impact of the size of these groups in the number of messages exchanged between stations as well as the overhead due to the additional causal information and the delivery delays introduced by those message exchanges.

Another research direction will be how to detect concurrent messages when using causal broadcast implemented with M-entry clocks. For example, Torres-Rojas and Ahamad [START_REF] Francisco | Plausible Clocks: Constant Size Logical Clocks for Distributed Systems[END_REF] use a scalar to distinguish some concurrent messages when using plausible clocks. Concerning the error detector, we would like to propose a handling procedure for messages tagged as not causally ordered by error detectors.

With respect to DCS clocks, we will investigate some heuristics to decide when to increase or reduce the size of the clock. Such heuristics would be particularly useful in systems where the message load varies abruptly.
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 2 Figure 2.4 illustrates the ordering of some messages following the happened-before relation. The figure represents the timeline of three processes. Time increases from left to right, but no hypothesis is made on the relative execution speed of processes. Indeed, even though e 3,1 happens before e 1,2 on the figure, e 1,2 might happen on p 1 before e 3,1 happens on p 3 . The arrows represent the sending and reception of messages. For example, following condition (a), e 1,1 → e 1,2 . Following condition (b), e 3,1 → e 2,1 . Finally, following condition (c), e 3,1 → e 2,2 , and by transitivity we also have e 1,1 → e 3,3 . Generally, an event e 1 causally precedes an event e 2 if there exists a path from e 1 to e 2[START_REF] Mattern | Virtual Time and Global States of Distributed Systems[END_REF].
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 32 Figure 3.2: Message delivered out of causal order when using Plausible Clocks

  Misra and Kshemkalyani introduced Bloom clocks [Ram19][MK21][KM21]. Bloom clocks ensure causal order with Bloom filters [Blo70][TEL12]. Introduced in 1970
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 34 Figure 3.3: Causal broadcast through flooding [FM04]

  N ) Physical time N : Number of processes inside the system k : Constant number of bits to store an entry, fixed at initialization b : Number of messages locally delivered since last local broadcast c : Cluster size M : Size of M-entry clock. Fixed at initialization

  Number of hosts M: Number of stations k: Constant C: Number of coordinators VC: Vector Clocks DD: Direct Dependencies Table 3.7 summarizes the causal multicast approaches in mobile networks. The column C.O. represents the Causal Order structure. The algorithms either use vector clocks or direct dependencies. They make either realistic handoff assumptions, represented by a or unrealistic ones, represented by a . During a handoff, the new and previous station of a host exchange messages. The complexity in terms of number of messages exchanged during handoffs are shown in the Handoff messages column. Algorithms that do not handle handoffs are marked with a .

  B receives and delivers m' before m

Figure 4 .

 4 Figure 4.1: Path over which a message can travel out of causal order
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 2 Modellead to delivery delays, as well as storage and communication overheads, only has a local impact.Summing up, the proposed causal broadcast algorithm is scalable in both the number of hosts and stations, has a low message traffic and storage overhead, while handling mobile network dynamics without the constraining assumptions of FIFObased[START_REF] Friedman | Causal Ordering in Deterministic Overlay Networks[END_REF][NMM18a][NMM18a] or causal multicast approaches [CK04][BB08]. Section 4.2 presents the system model, Section 4.3 presents the first causal broadcast algorithm where stations are assumed to be reliable, and Section 4.4 gives the experimental results for this algorithm collected through experiments conducted over the OMNeT++/INET [Var01] simulator. Section 4.5 presents the second algorithm which extends the first algorithm to tolerate station failures.
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 54 Figure 5.4: Exemple of execution of the hash-based error detector

Figure 5 .

 5 Figure 5.4 shows an execution that uses the hash-based error detector. The Figure represents 3 processes which use a constant size clock of 2 entries. Processes p 1 , p 2 , and p 3 are respectively associated with the vector entries f (p 1 ) = {0}, f (p 2 ) = {1}, and f (p 3 ) = {0}. We consider that the error detector returns false for the messages m 1 , m 2 , and m 3 . Consequently, processes deliver the three messages at reception (not shown in the Figure for readability's sake). The delivery conditions of m 4 are satisfied upon its reception by p 2 , since m 4 .V = [2, 1] and V 2 = [2, 1].

  and {m 1 , m 2 , m 3 }. The error detector sorts m 1 , m 2 and m 3 following their clock difference with m 4 . We have: Diff m 4 ,m 1 = 3 -1 = 2, Diff m 4 ,m 2 = 3 -2 = 1 and Diff m 4 ,m 3 = 3 -3 = 0. Therefore, the error detector sorts them from the lowest probability of being concurrent to m 4 to the highest probability: {m 1 , m 2 , m 3 }. The actual dependencies of m 4 are Dep m 4 = {m 1 , m 2 } and h(Dep m 4 ) = H m 4 .
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 56 Figure 5.6: Distribution of computed hashes following the message load

  2.2.a, consider a message load m load of 150 messages broadcasted per second and |f | = 4 following the formula proposed in [MW17b]. The maximal network delay is assumed to be of 150ms and n conc = 10. Those parameters give the following value of Diff : Diff =maxDelay*m load *|f | + n conc * |f |=0.15*150*4 + 10*4 = 130
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 54 For any two messages m and m of respective DCS clocks m.D and m .D, if m → m then we have : send(m) → send(m ) ⇒ m.D < m .D Proof. Consider that process p i of DCS clock D i sends a message m of causal dependencies Dep m . We prove that ∀m ∈ Dep m , m .D < m.D, by showing that when p i sends m, we have ∀m ∈ Dep m , m .D < D i .A process p j updates its DCS clock D j when delivering a message m: p j adds components to D j in order to ensure that D j has at least as many components than m.D. Therefore, we have|D j | ≥ |m.D|. Second p j updates D j : ∀x ∈ [1, M ], ∀k ∈ [1, |D j |], D j .C k [x] = max(D j .C k [x], m.D.C k [x]). Therefore, we have ∀x ∈ [1, M ], ∀k ∈ [1, |D j |], D j .C k [x] ≥ m.D.C k [x].Hence, m.D ≤ D j after p j delivered m. For all messages m ∈ Dep m , either p i delivered m , or another process p j delivered m and broadcasted a message m" such that m → m" → m and p i delivered m". If p i delivered m , then m .D ≤ D i as showed above. Otherwise, (1) a process p j has delivered m and therefore m .D ≤ m".D (2) p i has delivered m" and therefore m".D ≤ D i . Therefore, m .D ≤ D i . Hence, we have ∀m ∈ Dep m , m .D ≤ D i . When p i sends m, it first updates its DCS clock by incrementing at least one entry x of at least one component C k before appending D i on m. Thus, ∀m ∈ Dep

  1. Then, p i broadcasts m with S incr,i and the active components of D i . Reception of a message m Process p i calls the function prepareComparison() upon receiving a message m of DCS clock D m and of set of incremented component indexes S incr,m . prepareComparison() prepares D i to the comparison with D m in three steps: • First, it calls Add() till |D i | = |D m |, since D i must satisfy the delivery conditions of each component of D m . Note that D i might have more components than D m . It is then sufficient to ensure that D i satisfies the delivery conditions of the components of D m . • Second, it activates the inactive components C d of D i for which ∃x, D i .C d [x] < D m .C d [x], since those components contain new causal information. The components D k<d are then also activated to maintain the DCS clock property that active components always have lower indexes than inactive ones.

Figure 5 .

 5 Figure 5.13: Causal broadcast using DCS clocks

  Figure 5.13 shows the broadcast of two messages. The system is composed of three processes p 1 , p 2 , and p 3 . Each process maintains two components with each component having one entry. Processes p 1 and p 2 have S incr = {0}, i.e., they increment component C 0 when broadcasting a message while p 3 increments component C 1 when broadcasting a message. In the scenario, p 1 first broadcasts m whose causal information is represented by (1). Upon reception of m, p 3 delivers it since its delivery conditions are satisfied. Then, p 3 broadcasts m , i.e., m → m . The causal information of m is represented in(2). Process p 2 receives m before m. Thus, it postpones the delivery of m since its delivery conditions are not satisfied, because p 2 .D 2 .C 0 [0] < m .D m .C 0 [0]. When it eventually receives m at (3), it delivers m and then m .

  p

5. 6

 6 .2.2.b Complexity analysis of Deactivation rounds A Deactivation round has a message complexity in O(N ): N Deactivate messages, N AckDeactivate messages and N DecisionDeactivate messages. A Deactivation round has a message memory complexity in O(M ): Deactivate messages contain one integer and a component of M integers, while AckDeactivate and DecisionDeactivate messages contain some integer and boolean values and have therefore a space complexity in O(1).

A

  Remove round has a message complexity in O(N ): N Remove messages, N AckRemove messages and N DecisionRemove messages. A Remove round has a message memory complexity in O(N ): Remove messages contain a vector with up to N integers, while RepRemove and Remove messages contain some integer and boolean values. We assume bounded integers encoded on 32 bits.

Figure 5 .

 5 Figure 5.15: Clock size following the message load to achieve a given causal ordering accuracy

Figure 5 .

 5 Figure 5.16: Size of DCS clocks and out of causal order deliveries of the first message load pattern

Figure 5 .Figure 5 .

 55 Figure 5.17: Size of DCS clocks and out of causal order deliveries of the second message load pattern

Figure 5 .

 5 Figure 5.18: Out of causal order deliveries with load balancing
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  Algorithm 1: Scalar clock algorithm executed by p i When sending a messge m 1:

Table 3

 3 

	.1 summarizes the vector-based causal broadcast approaches. Some ap-
	proaches do assumptions on the network topology, Wang et al. [Wan+06] and

Table 3

 3 

	.2: Summary of compressed vector-based causal broadcast	
		approaches			
	Paper	Channels	Dynamics	Message memory	Local memory
	Baldoni [Bal98]	FIFO Reliable		O(N/k)	O(N/k)
	Birman et al. [BSS91], Singhal [SK92] FIFO Reliable		O(b)	O(N )
	N : Number of processes inside the system			
	k : Constant number of bits to store an entry, constant fixed at initialization	
	b : Number of messages locally delivered since last local broadcast	
	3.2.1.3 Prime numbers				
	Kshemkalyani et al. introduced the Encoded Vector Clocks (EVC), which are
	vector clocks encoded in one scalar number by using primes [KKS18]. EVCs use
	the property that each number has a unique prime factorization [CP06]: ∀k ∈
	N, ∃!n 1 , .., n k prime numbers and v 1			

Table 3

 3 

	.3: Summary of hierarchical-based causal broadcast approaches
	Paper	C.O.	Channels	Dynamics	Memory overhead	Overlay
	Adly and Nagi [AN96]	V.C.	Unreliable		O(c)	Tree
	Taguchi and al. [TET04]	V.C.	Unreliable		O(c)	Tree
	Evropeystev et al. [Evr+16]	D.D.	Reliable		O(c)	Tree
	Hsiao and Liao [HL11]	V.C.	Reliable		O(c)	Tree
	De Arajo et al. [de +17]	D.D.	Reliable		O(N )	Hypercube
	Santos and Rodrigues [SR19]	V.C. FIFO Reliable		O(f 2 )	each process has f+1 outgoing links
	V.C. : Vector Clocks				
	D.D. : Direct Dependencies			
	N : Number of processes inside the system		
	c : Number of processes inside a cluster			
	f : Number of tolerated simultaneous failures		

Table 3 .

 3 

	4: Summary of constant clock-based causal broadcast approaches	
	Paper	Entries Function	Channels Dynamics	Message memory	Local memory
	Torres-Rojas and Ahamad [TA99]	|f | = 1	Reliable	O(M )	O(M )
	Gidenstam and Papatriantafilou [GP03]	f dynamic	Reliable	O(M )	O(N )
	Mostéfaoui and Weiss [MW17b]	1 ≤ |f | ≤ M	Reliable	O(M )	O(M )
	Misra and Kshemkalyani [MK21]	several f with |f | = 1	Reliable	O(M )	O(M )
	N : Number of processes inside the system		
	M : Constant clock size, constant fixed at initialization		
	f : Function that returns the entrie(s) associated to a process		

Table 3 .

 3 In distributed systems, physical clocks cannot be simply used to timestamp messages because clocks are drifting apart[START_REF] Kopetz | Clock Synchronization in Distributed Real-Time Systems[END_REF][PR94]: even if clocks are perfectly synchronized at initialization, they might slowly de-synchronize over time because they might tick slightly slower or faster than the other clocks. Nevertheless, protocols exist to synchronize physical clocks, such as the Network Time Protocol (NTP)[START_REF]Request for Comments RFC 958[END_REF][Mar+10] or the Precision Time Protocol (PTP)[START_REF]IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems[END_REF]. These protocols have a precision going on average from 10 to 100ms. The literature contains several algorithms that use those protocols to causally order messages, by assuming physical clocks synchronized with a maximum bounded clock skew: they assume that for each pair of processes p and p of physical clocks pc(p) and pc(p ), |pc(p)-pc(p )| < .

	Paper	Network Topology	Channels	Dynamics	Message memory	Local memory
	Friedman and Manor [FM04]	hypercube overlay	FIFO Reliable		O(1)	O(1)
	Blessing and al. [BCD17]	tree overlay	FIFO Reliable		O(1)	O(1)
	Nédelec and al. [NMM18a]	network always initialized links connected with	FIFO Reliable		O(1)	O(1)

5: Summary of FIFO-based causal broadcast approaches Nishimura et al.

[START_REF] Nishimura | Causally Ordered Delivery with Global Clock in Hierarchical Group[END_REF] 

combined a hierarchical one-level structure with synchronized clocks. Processes are logically divided into clusters, and each cluster has a gateway process responsible for the communication with other clusters. Each pair of gateway processes is connected by a logical communication channel (i.e., one-level structure). Authors assume that clusters are synchronous, i.e., the physical clocks of processes in the same cluster are synchronized with an upper bound c . Moreover, authors assume an upper bound delay d on the communications between gateway processes. Messages carry a physical clock timestamp and are ordered by taking into account c and d . The algorithm has the advantage that it requires only one integer representing physical time to order messages causally. However, messages might be delivered out of causal order if one bound, c or d , is not respected. Moreover, no mechanism is provided to handle failures, and particularly failures of gateway processes.

Hybrid Logical Clocks (HLC) [Kul+14][Kul+][Roo+19][FJ19] and Physical clocks

With Causality (PWC)

[START_REF] Sandeep | Achieving Causality with Physical Clocks[END_REF] 

ensure causal order by combining physical clocks and logical clocks. HLC clocks are used in systems such as MongoDB

[START_REF] Tyulenev | Implementation of Cluster-wide Logical Clock and Causal Consistency in MongoDB[END_REF]

, CausalSpartan

[START_REF] Roohitavaf | CausalSpartan: Causal Consistency for Distributed Data Stores Using Hybrid Logical Clocks[END_REF] 

or GentleRain

[Du+14][RK16]

Table 3

 3 

		.6: Summary of causal broadcast approaches	
	Data structure	Channels	Dynamics	Message memory	Local memory	Causality guarantees
	Vector clocks	FIFO Reliable		O		

Table 3 .

 3 7: Summary of Causal order approaches in mobile networks

	Paper	C.O.	Wired message overhead	Wireless message overhead	Realistic handoff assumptions	Handoff messages
	Alagar					

  the stations s k and s k+1 order application messages differently: 1 h i (resp. h 2 ) broadcasts m 1 (resp. m 2 ). 2 s k (resp. s k+1 ) receives m 1 (resp. m 2 ) and forwards it to s k+1 (resp.s k ). 3 s k (resp. s k+1 ) orders m 1 , m 2 as [m 1 ,m 2 ] (resp. [m 2 ,m 1 ]). Consequently, if h i delivers m 1 while connected to s k and then connects itself to s k+1 , then s k+1 cannot assign to h i the sequence number seq N C =1, because h i would then never deliver m 2 and deliver m 1 twice, i.e., seq N C is valid at s k but not at s k+1 . Hence, s k+1 must exchange messages with s k to compare the ordering of application messages in their respective SBuf.

  ACK ,h i ,seq C i ,Ses>) to h i 12: broadcast(<Delete, h i , Ses>) on the wired network receive <Rsp 1 ,id h ,seq h ,m nd ,Ses> for connection c at s i : 13: if c.s = s i then 14: msg req =message of m nd that s i has discarded 15: broadcast(<Req 2,k+1 ,id h ,msg req ,Ses>) receive <Rsp 2 ,id h ,msg,msg rcv ,Ses> for connection c at s i : 16: ∀m ∈ SBuf s i , h i delivered m, m.Md = m.Md∪{h i } 17: if msg = ∅ then 18: seq S = min(m.seq, ∀m stored by s i that h i did not deliver) Task of s k : receive<Req 1,k+1 ,id h ,seq N C ,Ses LC ,Ses> for connection c at s i : 1: if c.Ses < Ses∧ c in handoff then nd ={(id h ,seq h ) of messages h i has not delivered} ,id h ,seq h i ,m nd ,Ses>) receive <Req 2,k+1 ,id h ,msg req ,Ses> for connection c at s i : 8: msg= messages requested in msg req 9: m rcv = messages s k received since receive(Req 1,k+1 ) 10: broadcast(<Rsp 2 ,id h ,msg,m rcv ,Ses>) 11: unregister(h i )

			4.3. Causal broadcast with reliable stations
	2:	if Ses LC == c.Ses then
	3:	c.seq S = seq N C
	4:	
	5:	c.Ses=Ses
	6:	if c.s = s i then
	7:	broadcast(<Rsp 1
		6: else
		7:	if Ses LC =c.Ses then
		8:	c.seq C = seq C
		9:	c.Ses = Ses
		10:	if c.Md = ∅∧ c.s = s i then
		11: broadcast(<connect 19: broadcast(<connect ACK ,id h ,seq S ,Ses>)
		20: else
		21:	∀m ∈ msg, broadcast(m) on the wireless network
		22: if c.s = s i then
		23:	broadcast(<Delete,h i ,Ses>)

3: if c.s=id then 4: broadcast(<connect,h i ,seq N C ,Ses,Ses LC >) 5: broadcast(<Req 1,k+1 ,id h ,seq N C ,Ses LC ,Ses>) m

  k+1 starts Phase 2 upon reception of the connect k+1 message, by broadcasting a Req 1,k+1 message (line s k+1 .12).Messages of M deleted are received by s k prior to the Req 1,k+1 message. s k uses seq N C attached on the Req 1,k+1 message to build M ndel , the set of application messages not delivered by h i among the application messages it received prior to the Req 1,k+1 message, and sends M ndel to s k+1 in Rsp 1,k+1 .Upon reception of the Rsp 1,k+1 message, the network FIFO property ensured by the algorithm used for communication between stations[START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that s k+1 received all messages contained in M ndel . Therefore, the messages whose ID is contained in M ndel but that s k+1 does not buffer are the messages of M deleted . s k+1 requests the message of M deleted in the Req 2,k+1 message. s k piggybacks these messages onto the Rsp 2,k+1 message, by ordering them as in its SBuf (line s k .10), i.e., by ordering them causally. Hence, s k+1 will recover those messages at the end of Phase 3. We denote M delivered the set of messages that s k+1 caches but that h i has already delivered. The purpose of Phase 3 is to identify at s k+1 the messages of M delivered . s k+1 starts Phase 3 upon reception of Rsp 1,k+1 , by broadcasting Req 2,k+1 (line s k+1 .15). The application messages that h i delivered prior to connecting to s k+1 , i.e., the application messages in M delivered , are received by s k+1 prior to Rsp 1,k+1 . We denote M cache the set of application messages that s k+1 received prior to Rsp 1,k+1 and that it still caches. We also denote M ndel the set of application messages m ∈ M cache , h i did not deliver m. We have M cache = M ndel ∪ M delivered . s k+1 determines M delivered by first determining M ndel then deducing M delivered = M cache \M ndel .The algorithm used for the communication between stations[START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that application messages s k+1 receives before sending Req 1,k+1 that h i has not delivered, are identified by s k in the list m nd ∈Rsp 1,k+1 (line s k .6). The algorithm used for the communication between stations[START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that application messages s k+1 receives between send(Req 1,k+1 ) and receive(Rsp 1,k+1 ) are received by s k between receive(Req 1,k+1 ) and receive(Req 2,k+1 ). s k stores the list of ids of the application messages it receives between receive(Req 1,k+1 ) and receive(Req 2,k+1 ) in m rcv and attaches m rcv on Rsp 2,k+1 (line s k .11). Therefore, the application messages that h i did not deliver among those s k+1 received before Rsp 1,k+1 are the application messages m ∈ m nd ∪ m rcv , i.e., M ndel = m nd ∪ m rcv . Therefore, we have

	Phase 3:

  itself to s k+1 by sending a connect k+1 message to s k+1 containing seq N C = 2, since h i has delivered m 1 .Upon reception of the connect k+1 message, s k+1 broadcasts Req 1,k+1 containing seq N C =2.Upon reception of the Req 1,k+1 message, s k determines that h i has not delivered m 2 . s k broadcasts Rsp 1,k+1 containing the ID of m 2 , as well as seq h = 2 since h i broadcasted m 1 .Upon reception of the Rsp 1,k+1 message, s k+1 requests m 2 in Req 2,k+1 , because it has already discarded m 2 .Upon reception of the Req 2,k+1 message, s k replies with Rsp 2,k+1 containing the application message m 2 that s k+1 requested in Req 2,k+1 , as well as the ID of the message m 3 that s k received between Rsp 1,k+1 and Rsp 2,k+1 . Finally, s k unregisters h i .Upon reception of the Rsp 2,k+1 message, s k+1 identifies which application messages of its SBuf ={m 1 , m 3 } h i has delivered. s k+1 received m 1 before Rsp 1,k+1 , and s k did not identify m 1 as not delivered by h i . Hence, h i already delivered m 1 and s k+1 attaches h i 's ID on m 1 . In addition, h i must first deliver m 2 before delivering m 3 . Thus, s k+1 broadcasts m 2 received from s k with seq C =1 to h i . Finally, s k+1 discards m 2 once h i acknowledged it, assigns seq C i =3 to h i , since h i delivered m 1 and m 2 , and broadcasts connect ACK,k+1 . Upon reception of connect ACK,k+1 , h i sets seq N C =3. h i can now deliver m 3 as well as following application messages that s k+1 will broadcast.

  First, hosts assign an increasing sequence number to each message they broadcast. A station keeps track of that sequence number for each host connected to it, and discards a message m broadcasted by h i of sequence number seq, if the stored sequence number seq h i for h i is seq h i > seq, thus avoiding that it broadcasts m twice. Following Lemma 4.1, that information is maintained as long as, for each group G S ∈ G, ∃s k such that s k is up. Stations disseminate messages among each other by using the algorithm presented by Nédelec et al. in[START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF], ensuring that messages are causally ordered upon their reception at stations. Station s resp i assigns an increasing sequence number to each message m following its arrival time, and all stations of G S i assign to m that sequence number, i.e. all stations of G S i assign the same sequence number to m. Hence, if m → m , then s resp i receives m before m', and, therefore, m.seq < m .seq. h i only delivers messages broadcasted by s i , and it delivers them in increasing sequence number. Hence, h i delivers messages in causal order.

	4.6. Proof
	Theorem 4.1. WAS ensures causal broadcast in mobile networks when hosts do
	not move between cells.
	Proof. Validity. A station disseminates messages either co-broadcasted by hosts
	from its cell, or received from other stations. Stations do not generate broadcast
	messages. Hence, stations only disseminate messages co-broadcasted by hosts.
	Moreover, a host only co-delivers messages that the station to which it is connected
	broadcasts. Hence, hosts only co-deliver messages co-broadcasted by hosts.
	Integrity.

Second, stations disseminate messages among each other by using the algorithm presented by Nédelec et al. in

[START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF]

, ensuring that each station disseminates each message exactly once. Station s resp i assigns an increasing sequence number to each message m following its arrival time, and all stations of G S i assign to m that sequence number, i.e. all stations of G S i assign the same sequence number to m. h i delivers messages from s i in increasing sequence number. Thus, h i will not deliver a message m again, since its local sequence number will always be greater than the one attached to m. To handle failures, h i saves the sequence number of the last message it delivered on persistent storage. If s i fails, then following Lemma 4.1, at least another up-station of G S I has the causal information relative to h i , and up-stations of G S i order the application messages as s i . When s i recovers it will retrieve that information by sending a recover request to s resp i . Causal order.

  4.4. Upon receiving the Rsp 1,k+1 message, s k+1 received all application messages that h i delivered before connecting to it. Rsp 1,k+1 message, s k+1 received all application messages that s k received before broadcasting the Rsp 1,k+1 message. Therefore, upon receiving the Rsp 1,k+1 message, s k+1 received all messages delivered by h i prior to connecting to it. Application messages that h i did not deliver among those s k+1 receives prior to the Rsp 1,k+1 message are either identified by s k as not delivered by h i (m nd ∈ Rsp 1,k+1 ) or received by s k between the Req 1,k+1 and Req 2,k+1 messages (msg rcv ∈ Rsp 2,k+1 ).Proof. The application messages received by s k+1 before the Rsp 1,k+1 message are received by s k before the Req 2,k+1 message. In fact, s k+1 broadcasts the Req 2,k+1 message after receiving the Rsp 1,k+1 message, and the algorithm used for communication between stations[START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] ensures that s k receives the Req 2,k+1 message after receiving the messages that s k+1 received before broadcasting the Req 2,k+1

	Lemma 4.5.

Proof. Following Lemma 4.3, s k received all those messages upon receiving the Req 1,k+1 message. Moreover, s k replies to the Req 1,k+1 message with the Rsp 1,k+1 message, and the algorithm used for the communication between stations

[START_REF] Nedelec | Breaking the Scalability Barrier of Causal Broadcast for Large and Dynamic Systems[END_REF] 

4.6. Proof ensures that, upon receiving the

Table 5 .

 5 Rate of returned false positives of HD and MWAn error detector returns a false positive when it wrongly concludes that the process delivered a message out of causal order. This section measures the rate of false positives for HD and MW for message loads going from 10 up to 150 messages per second. 2 gives the percentage of true and false negatives of HD and MW for the experiments of Section 5.3.3.1. Results show that HD returns much less false positives than MW. Moreover, as expected the percentage of messages on which both error detectors return a false positive increases with the message load.

	Message load	Out of causal order deliveries	Detected
	msg/sec	No control	PC	MW	HD
	10	4552 (0.45 %)	0	0	0
	25	33010 (1.3 %)	0	0	0
	50	116094 (2.3 %) 211 (4.2*10 -3 %)	0	211
	75	250187 (3.3 %) 2856 (3.8*10 -2 %)	10	2856
	100	410802 (4.1 %)	13630 (0.14 %)	401 13630
	125	603532 (4.8 %)	31472 (0.25 %)	2500 31472
	150	824012 (5.5 %)	68829 (0.45 %)	7256 68829
	Table 5.1: Detected out of causal order deliveries	
		following the system's message load		

Table 5 .

 5 3: Average computed hashes per delivery and false positive rate for different values of MaxHashes for a message load of 125 and 150 msg/s

	MaxHashes Average computed hashes per delivery	False positives
		125 msg/s	150 msg/s	125 msg/s 150 msg/s
	10	4.7	6.9	17.4%	39%
	25	6.7	11.7	11.4%	28.2%
	50	9.1	17.9	7.3%	20%
	100	12.1	26.4	4.7%	14.1%
	150	14.2	33.0	2.9%	10.3%
	200	15.8	38.2	2.75%	9.5%
	250	17.3	43.6	2.7%	9.4%

Table 5 .

 5 while they consider on average 12.7 message IDs when Diff=117. Processes consider almost no message ids when Diff=65 or lower, thus giving a very low number of computed hashes per message delivery. 4: Effect of varying Diff on the percentage of detected out of causal order deliveries and cost of hash computations

	Diff	Detected out of causal order deliveries	Hashes per delivery	Operations per hash	Cost per hash in operations
	162(*1.25)	100%	25.5	24.7	629
	130	100%	25.6	16.7	427
	117(*0.9)	100%	25.4	12.7	322
	98(*0.75)	99.9% (-4)	24.2	8.9	215
	85(*0.65)	99.7%(-187)	16.6	5.5	91
	65(*0.5)	91%(-5613)	4	2.67	10.5
	26(*0.2)	11.9%(-60953)	1	1.03	1
	13(*0.1)	0.2%(-69028)	1	1.005	1

  Size of the set of dependency IDs appended to messages following the message load Process p i either keeps the causal dependencies of a message m it broadcasts whose clock difference with m is smaller than Diff, i.e., similar to Section 5.3.2.2.b, or based on the hash round in which they were sent, i.e., similar to Section 5.3.2.4. p i maintains two lists to store the causal dependencies of its broadcasted messages:• Dep next : contains the ids of the causal dependencies of its next broadcasted message. • S dep i : list containing, for each of its unacknowledged broadcasted messages, the tuple (seq, Dep), where seq is the sequence number p i associated to the message m and Dep contains the ids of the causal dependencies of m.Broadcast When broadcasting a message m, p i stores in S dep i the list Dep next containing the ids of m's causal dependencies, in order to send them to processes that request them later. Moreover, p i sets Dep next = {m.id}, since m can resume them as a direct dependency [PRS96] of the next message p i will broadcast.Request of causal dependencies A process p j requests the causal dependencies of m if its error detector returns true on m. p j then sends a REQ message to p i containing the id of m, to which p i replies with a RSP message containing the ids of the causal dependencies Dep m of m. Upon reception of the RSP message, p j delivers m after it has delivered all messages whose id is contained in Dep m .
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	Figure 5.9:		

  ). Therefore, when p 2 receives m 4 , the value of its clock is V 2 = [2, 1] and the value of m 4 's clock is m 4 .V = [2, 1]. Let's assume that p 2 executes the error detector described in Algorithm 9 on m 4 , which returns true,since i ∈ f (p 1 ), V 2 [i] = m 4 .V [i] -1.Consequently, p 2 requests the causal dependencies of m 4 by sending a REQ message to p 1 , which replies with a RSP message that contains m 4 's causal dependencies, i.e., {m 1 , m 2 }. Process p 2 delivers m 4 at reception of RSP , since it has already delivered {m 1 , m 2 }.

  Figure 5.11 shows a successful acknowledgment round. Process p 1 starts the round by broadcasting an ACK message containing the id of m 4 (p 1 , 2) and m 4 's causal dependencies {(p 1 , 1), (p 2 , 1)} which correspond to m 1 and m 2 . Processes p 2 and p 3 reply to the ACK message with an ACK rep message containing (p 1 , 2, true), since both delivered m 4 . After receiving the ACK dep messages from all other processes confirming the delivery of m 4 , p 1 deletes the causal information about m 1 and m 4 from S dep 1 . In its turn, upon reception of all ACK dep messages, p 2 deletes from

Algorithm 12: Acknowledge round for message m = (p i , seq) of causal dependencies V m p i starts the acknowledge round 1: broadcast(ACK,(p i , seq),V m ) 2: recvAck((p i , seq),V m ) Upon reception of (ACK,(p j , seq),V m ) 3: broadcast(ACK rep ,p j , hasDelivered(p j ,seq)) 4: recvAck((p i , seq),V m ) recvAck((p, seq),V m ) 5: waitUntil(received ACK rep from all p k = p) 6: if allProcDelivered (p, seq) then 7: S dep i =S dep i \{(seq , dep ), seq ≤ seq : (p i , seq ) ∈ V m }

  Algorithm 13: Acknowledge round for message m = (p i , seq) of hash H m p i starts the acknowledge round of m 1: broadcast(ACK,(p i , seq),H m )

2: recvAck((p i , seq),H m ) Upon reception of (ACK,(p j , seq),H m ) 3: broadcast(ACK rep ,p j , hasDelivered(p j ,seq)) 4: recvAck((p i , seq),H m ) recvAck((p, seq),H m ) 5: waitUntil(received ACK rep from all p k = p) 6: if allProcDelivered (p, seq) then 7: Compute Dep m with H m 8: S dep i =S dep i \{(seq , dep ), seq ≤ seq : (p i , seq ) ∈ Dep m }

  Process p i calls the operation Deactivate() to deactivate the active component of D i with the highest index. A DCS clock has at least one active component. Thus, the call to Deactivate() immediately returns false if D i has only one active component. Otherwise, the active component of D i with the highest index is deactivated.To illustrate the Activate() and Deactivate() operations, let's consider a process p i whose DCS clock D i has four components:D i = {C 0 , C 1 , C 2 , C 3 }. If p iwants to deactivate components, then it will deactive them in decreasing order, i.e, first C 3 , then C 2 , and finally C 1 . On the other hand, if p i wants to re-activate them, then it will first activate C 1 , then C 2 , and finally C 3 .A process keeps each deactivated component C d locally, because it might receive a message whose DCS clock contains C d , and it will then require the local C d to ensure that the delivery conditions of the message's component C d are satisfied.Add() A process decides locally to add a new component to its DCS clock, i.e., without communicating with other processes. When p i calls the Add() operation, it first creates a new component C k in active state, sets its entries to 0, and appends C k to the end of D i . Therefore, C k will be the component of D i with the highest index.After adding a component to D i , p i also activates all components of D i , since the inactive components of a DCS clock have a strictly higher index than the active components. Therefore, adding a component at the end of D i implicates that all components of D i must be active.

Remove(): Removes the component of D i with the highest index. Activate() Process p i calls the operation Activate() to activate the inactive component of D i with the lowest index, provided that D i has at least one inactive component. The call to Activate() immediately returns false if D i has no inactive component. Otherwise, the inactive component of D i with the lowest index is activated. Deactivate() Remove() Process p i calls Remove() to remove the component of D i with the highest index. It returns false if D i has only one component, since by definition a DCS clock has at least one component.

•

  For each component C k∈S incr,m : p j incremented the entries f (p j ) of C k when broadcasting m. Hence, the entries x ∈ f (p j ) of D i .C k should be equal or greater than those of D m .C k minus one, and the entries x / ∈ f (p j ) of D i .C k should be equal or greater than those of D m .C

k : waitUntil(∀C k∈S incr,m

  5.3.1 if Activate() returns false, i.e., p i adds a new component to D i if D i has no inactive component.• Third, p i sets S incr,i to a new set of randomly chosen indexes of active components, to ensure that active components are on average incremented by the same number of processes. Figure 5.14 shows a scenario where processes expand their DCS clock. The system is composed of three processes. Initially, each process maintains a DCS clock of one component, namely C 0 , and each process increments C 0 when broadcasting a message. The notation of causal information is as follows: [ DCS clock, S incr, ], i.At (2) and (3) p 1 and p 3 broadcast a message m of DCS clock {{[0], [1]}} and m of DCS clock {{[1]}} respectively. Process p 2 first receives m at (4) and delivers it. At (5), p 2 receives m, adds a component to its DCS clock, since D 2 < |m.D|, and sets S incr,2 = {random()%2} = {0}, then it delivers m. At (6), p 2 broadcasts message m" with DCS clock [{[2],[1]},0]. p 3 receives m" at (7), expands its DCS clock by adding a new component since |D 3 | < |m".D| and sets S incr,3 = {random()%2} = {1}. It postpones the delivery of m" since m".D.C 0 [0] = 1 and D 3 .C 0 [0] = 0. At (8), p 3 receives m, and delivers both m then m .This section describes an implementation to deactivate DCS clock components without loss of causal information. A process should only deactivate the components of its DCS clock that do not contain causal information that is still useful to some other processes.Processes should deactivate components whenever possible, as for example when the message load decreases, because deactivated components are not sent with messages and are only kept locally. Consequently, deactivating components reduces the causal information carried by messages.Process p i deactivates the component of D i with the highest index among the active ones, i.e., if k components of D i are active, then p i first deactivates C k-1 , then C k-2 , etc. up to C 1 . C 0 cannot be deactivated. Component C k of D i provides causal information to at least one other process as long as C k 's delivery conditions are not satisfied by all processes, i.e., as long as ∃p j , ∃x, p j .D j .C k [x] < D i .C k [x].

	5.6.2.2 Deactivate DCS clock components
	e.,
	[{[0],[1]},1] means the DCS clock {[0],[1]} with S incr, ={1}.

At (1), p 1 decides to expand its DCS clock D 1 (e.g., detection of high message load) by adding a new component to D 1 , since D 1 has no deactivated component. Moreover, it re-assigns itself to a random component of D 1 which gives S incr,1 = {random()%2} = {1}.

  1. Process p i starts Phase 1 by broadcasting a Deactivate message containing C k and C k 's index k. The other processes reply with an AckDeactivate message containing a positive or negative acknowledgement of C k , depending on whether they locally satisfy the deactivation conditions of C k or not. Moreover, they freeze the dynamics operations of their DCS clock till the end of the Deactivation round, i.e., till they receive the DecisionDeactivate message from p i . Phase 2. p i broadcasts a DecisionDeactivate message once it received the Ack-Deactivate message from all processes. The DecisionDeactivate message contains C k 's index k and a boolean that confirms or not the success of the round, i.e., the deactivation or not of C k . p i sets this boolean to true if all processes positively acknowledged the deactivation of C k and false otherwise. Upon reception of the DecisionDeactivate message, a process unfreezes the dynamics operations of its DCS clock, and deactivates C k provided that the boolean is set to true.
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Error detectors for M-entry clocks

This section presents the contributions related to error detectors. Firstly, we define the conditions an error detector for M-entry clocks would require to detect all out of causal order deliveries. We then show that those conditions are unrealistic and that it is therefore impossible to implement such an error detector under realistic assumptions.

Secondly, we propose a new error detector based on hashed causal dependencies. It is based on hashing the causal dependencies of messages at sending, and determines if all the causal dependencies have been delivered at destination through the hash appended on messages. The proposed error detector has a much higher accuracy than the error detector proposed in [START_REF] Mostefaoui | A Probabilistic Causal Message Ordering Mechanism[END_REF] in detecting out of causal order deliveries.

Thirdly, we present a short algorithm to retrieve the causal dependencies of messages. This algorithm can be used in conjunction with error detectors, by retrieving the causal dependencies of messages on which an error detector returns true, in order to ensure that the message is delivered in causal order.

Conditions required by a reliable error detector

This section first determines the conditions required to implement an error detector that detects all out of causal order deliveries. Second, we show that those conditions are unrealistic, and that it is therefore impossible to implement such an error detector under realistic assumptions.

In the following, and without loss of generality, we consider that the function f which returns the entries incremented by processes is chosen such that processes increment the entries of the M-entry clock V uniformly.

Lemma 5.1 determines the minimum set of messages a process must have delivered to ensure that it can causally deliver a message m. Theorem 5.1 determines the conditions a process must satisfy to avoid being eventually deadlocked while waiting for the conditions of Lemma 5.1 to be satisfied.

Finally, Theorem 5.2 gives the number of messages each process must have broadcasted to avoid processes to be eventually deadlocked while waiting for the conditions of Theorem 5.1 to be satisfied. First, ∃i o ∈ N, min({min(m.V ), m ∈ M i 0 }) ≥ 1. In fact, a process increments the entries of its vector clock when broadcasting or delivering a message, following the entries that f returns. Since f is uniform, the entries of V are eventually all incremented, i.e. eventually ∀p, min(p.V ) > 1.

Before delivering a message of M i 0 +1 , a process must deliver all messages of M i 0 as well as the messages broadcasted prior to the messages of M i 0 . Following Theorem 5.1, each process must broadcast at least one message prior to delivering a message of M i 0 , because ∀m ∈ M i 0 , min(m.V ) ≥ 1. Hence, a process must deliver at least N messages prior to delivering a message of M H1: We assume that processes must broadcast at least ( |f | * N M ) i-i 0 messages prior to delivering messages of M i . We show that processes must broadcast at least

Before delivering a message of M i+1 , a process must deliver all messages of M i as well as the messages broadcasted prior to the messages of M i .

Following Theorem 5.1, each process must broadcast at least ( |f | * N M ) i-i 0 message prior to delivering a message of M i . Hence, a process must deliver at least x = ( |f | * N M ) i-i 0 * N messages prior to delivering a message of M i+1 . Each message delivery increments |f | entries of the vector clock. Hence the delivery of N messages increments the vector clock |f | * x times. Since |f | is uniform, each entry of the vector clock is incremented x M times. Following Theorem 5.1, each process must broadcast at least

Thus, ∀i > i 0 , processes must broadcast at least ( |f | * N M ) i-i 0 +1 messages prior to delivering messages of M i+1 (H 1 ). Since ∃i 0 (H 0 ), we conclude that ∃i 0 ∈ N, ∀i > i 0 , each process must broadcast at least ( |f | * N M ) i-i 0 messages prior to delivering messages of M i . Theorem 5.2 shows that the number of messages that processes must broadcast to avoid a deadlock increases exponentially. Hence, it is impossible to implement, under realistic assumptions, an error detector that detects all out of causal order deliveries. For example, consider a system with an average network delay of 100ms,