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Matthieu Roy Chargé de recherche, HDR, CNRS, LAAS, France
Examinateurs:
Colette Johnen Professeur, Université de Bordeaux, LaBRI, France
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Abstract

Causal broadcast is a fundamental building block of many distributed or parallel

applications such as distributed databases, pub-sub, or social networks, which all

need to share information among all participants (e.g., processes, machines, etc. . . )

while respecting the causality among exchanged messages.

Existing causal broadcast algorithms for distributed systems either do not scale,

or they do not tolerate the system dynamics caused by processes which, during

execution, join and leave the system, fail, or change their set of communication

channels. Some works append to messages all the information required to causally

order them at destination. However, it has been proved that to track causality

when broadcasting messages, the minimal required structure has one entry per

process in the system. Hence, causal broadcast algorithms using such a structure

to track causality do not scale. Some other works scale by making assumptions

on the system, such as the network topology or the FIFO property of communi-

cation channels. On the other hand, they do not tolerate all possible dynamics of

distributed systems.

In this thesis, we propose causal broadcast algorithms that both scale and tolerate

the dynamics of distributed systems.

The first proposed algorithm provides a causal broadcast for Mobile Networks, com-

posed of mobile hosts and support stations. Mobile hosts are connected to support

stations through a wireless network, and support stations are connected with each

other by wired channels. Mobile networks have specific features: limited capacities

of mobile nodes (computation, storage, energy), unreliable communication chan-

nels, and the dynamics of connections due to the mobility of node, failures, and

join/leave operations.

The second part of this thesis addresses causal broadcast implemented with clocks

of M (M ≤ N) entries, where N corresponds to the number of processes in the

system. Such clocks tolerate process churn and scale since their size is independent

to the number of processes in the system. However, they do not characterize

causality and algorithms using them may deliver messages out of causal order.

v
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We first propose an error detector, based on hashes, which analyzes the clock

of messages before delivering them in order to detect those messages that are not

causally ordered. We then propose an algorithm that ensures that messages tagged

by the error detector as not causally ordered are delivered in causal order. Second,

we propose Dynamic Clock Sets (DCS clocks), a new logical clock composed of a

set of clocks with M ≤ N entries (where N is the number of process of the system),

and whose size can be changed during execution.

All the proposed algorithms were implemented in C++ and executed on the OM-

NeT++ simulator. The causal broadcast algorithm for Mobile Networks was imple-

mented on the framework INET of OMNeT++ which provides a realistic network

simulation such as interferences on the wireless network, network layers and node

mobility among others. Results confirm that our broadcast algorithm for Mo-

bile Networks outperforms existing ones while making realistic network assump-

tions. Concerning the hash-based error detector, results show that it detects all not

causally ordered messages. Finally, experiments conducted with a causal broadcast

implemented with DCS clocks demonstrate that DCS clocks adapt their size well

and fast to the number of concurrent messages of the system.
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Résumé
La diffusion causale est un élément fondamental de nombreux applications dis-

tribuées ou parallèles, telles que les bases de données distribuées, les publications-

abonnements, ou les réseaux sociaux, qui ont tous besoin de partager des infor-

mations entre tous les participants (par exemple, les processus, machines, etc. . . ),

tout en respectant la causalité entre les messages échangés.

Les algorithmes de diffusion causale existants ne passent soit pas à l’échelle, soit

ne tolèrent pas toute la dynamicité introduite par les processus qui rejoignent

ou quittent le système, qui échouent pendant l’exécution, ou qui modifient leur

ensemble de canaux de communication. Certains travaux ajoutent aux messages

toutes les informations nécessaires pour les ordonner causalement à la réception.

Cependant, il a été prouvé que caractériser la causalité de messages de diffusion

nécessite une structure avec au minimum une entrée par processus dans le système.

Par conséquent, les algorithmes qui utilisent une telle structure pour caractériser

la causalité ne passent pas à l’échelle. D’autres travaux passent à l’échelle en

faisant des hypothèses sur le système, comme la topologie du réseau ou la propriété

FIFO des canaux de communication. En revanche, ils ne tolèrent pas toutes les

dynamiques possibles des systèmes distribués.

Dans cette thèse, nous proposons des algorithmes de diffusion causale qui passent

à l’échelle et tolèrent les dynamiques des systèmes distribués.

Le premier algorithme fournit une diffusion causale pour les réseaux mobiles, com-

posés de nœuds mobiles connectés par un réseau sans fil et de stations de support

connectées par des canaux filaires. Ces réseaux ont des caractéristiques spécifiques:

des nœuds mobiles avec des capacités limitées (calcul, stockage, énergie), des

canaux de communication non fiables, et de la dynamicité de connexions dues

à la mobilité et aux pannes de nœuds, ainsi qu’à leur opérations d’entrée et sortie

du système.

La deuxième partie de la thèse aborde la diffusion causale mise en œuvre avec

des horloges de M (M ≤ N) entrées, où N correspond au nombre de processus.

Ces horloges tolèrent la variation du nombre de processus dans le système car

leur taille ne dépend pas du nombre de processus dans le système. Cependant,

elles ne caractérisent pas la causalité et les algorithmes les utilisant ne peuvent

assurer l’ordre causal qu’avec une forte probabilité. Nous proposons tout d’abord

un détecteur d’erreurs, basé sur des hachages, qui analyse l’horloge des messages

avant de les délivrer afin de détecter les messages qui ne sont pas causalement
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ordonnés. Nous proposons ensuite un algorithme qui garantit que les messages

marqués par le détecteur d’erreurs sont livrés dans l’ordre causal. Ensuite, nous

proposons les Dynamic Clock Sets (DCS clocks), une nouvelle horloge logique qui

est composée d’un ensemble d’horloges avec M ≤ N entrées (avec N étant le

nombre de processus du système), et dont la taille peut être adaptée au nombre de

messages concurrents dans le système.

Tous les algorithmes ci-dessus ont été implémentés en C++ et exécutés sur le simu-

lateur OMNeT++. L’algorithme de diffusion causale pour les réseaux mobiles a été

implémenté sur le framework INET d’OMNeT++, qui fournit une simulation de

réseau réaliste, telle que des interférences sur le réseau sans fil, des couches réseau

et la mobilité des nœuds, entre autres. Les résultats confirment que notre algo-

rithme de diffusion pour les réseaux mobiles est plus performant que les algorithmes

existants tout en faisant des hypothèses moins forte et réalistes sur le réseau. Les

résultats expérimentaux sur le détecteur d’erreurs basé sur les hachages montrent

qu’il détecte tous les messages dont les dépendances causales n’ont pas encore été

livrées. Enfin, les expériences menées avec une diffusion causale implémentée avec

les DCS clocks montrent que les DCS clocks s’adaptent bien et rapidement au

nombre de messages concurrents dans le système.
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Distributed systems are composed of many processes that cooperate to provide a

service. To that end, they share information, either through message passing or by

using shared memory. In the message passing model, processes exchange messages

by using the send and receive primitives. Many distributed systems provide a group

communication service by using these two primitives to implement the primitives

broadcast and deliver, which respectively sends a message to all processes of the

system and delivers a message that have been previously broadcasted.

Many distributed and parallel applications also require that messages are delivered

following a given order to ensure the consistency of information. Hence, events - in

this case the broadcast and delivery of messages - must be ordered even if taking

place at different processes. Humans usually use physical time to order events.

However, physical clocks usually cannot be used to order events in distributed

systems, because they are subject to clock drift [KO87][PR94], meaning that phys-

ical clocks of different processes that are initially synchronized might eventually

de-synchronize.

Lamport introduced in 1978 the concept of logical time [Lam78], which has been

since then used to timestamp events in distributed systems. Several ordering ap-

proaches (e.g. causal, FIFO, total order) have been proposed in the literature to

1
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order events following logical time. Among them, Causal Order is a partial order

that allows to track causality among events. It is defined by Lamport’s happened

before relationship [Lam78]: for any two operations e1 and e2, e1 is said to causally

precede e2, which is denoted as e1 → e2, if (1) e1 and e2 occur on the same process

and e1 occurs before e2, (2) e1 = send(m) and e2 = receive(m) or (3) ∃ e3 such

that e1 → e3 and e3 → e2 (transitivity). Two events e1 and e2 are said to be

concurrent when no causal relation exists between them (e1 6→ e2 and e2 6→ e1).

Causal broadcast ensures that broadcast messages are causally ordered, i.e., for any

two messages m1 and m2 if the broadcast of m1 causally precedes the broadcast of

m2, then all processes deliver m1 before m2. Introduced by Birman et al. [Bir85]

in 1985, causal broadcast has been extensively investigated. Innumerable applica-

tions use it, such as publish-subscriber systems [de +17][LSB06], multimedia ap-

plications [Bal+96][Ple+06], online games [GE12], systems that provide distributed

replicated causal data consistency [AHJ91], distributed databases [Ter+95][Sha+11],

social networks [Bor13], distributed collaborative editing [Hei+12][NMM16], among

others.

Many causal broadcast approaches have been proposed in the literature. They

either piggyback information on messages in order to causally order them at re-

ception [SES89][BSS91][KKS18][PRS96][AN96][TA99][MW17b], or they make as-

sumptions on the system topology and communication channels to implicitly order

messages [FM04][NMM18a][BCD17], thus ensuring that they are received by pro-

cesses already causally ordered, and that they can therefore be causally delivered

upon reception without any control. Charron-Bost proved in [Cha91] that in a

distributed system without assumptions on the network topology and communi-

cation channels, the causality of broadcast events can only be characterized by a

structure with one entry per process in the system. Hence, in a system with N

processes, causality of broadcasted messages can only be characterized with a struc-

ture whose size is in O(N). Consequently, solutions that attach causal information

on messages often do not scale with the number of processes. To circumvent this

limitation, some works propose structures whose size is independent to the number

of processes [TA99][MW17b], but algorithms using them might deliver messages

out of causal order.

Several distributed systems are also dynamic (e.g. wireless or P2P networks) and

are subject to failures, either of processes or communication channels. Processes

might join and leave the system during execution making it difficult to maintain a

system view. Processes can also be subject to transient failures, whose duration is

bounded in time, as well as permanent failures, also said crash-failures, which last

forever. Finally, communication channels over which processes communicate can

also fail, or be unreliable, i.e., messages can be lost, corrupted, created, or altered.
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Approaches that append causal information of size O(N), where N corresponds

to the number of processes in the system, do not scale. Approaches that organize

the network into an overlay usually make assumptions on the network topology,

which are often incompatible with the dynamics that characterize many distributed

systems. They are thus not suited to such systems, or require extra handling to

adapt them to such dynamics.

Therefore, the conception of causal broadcast algorithms require a trade-off be-

tween network assumptions, the size of causal information required to causally

order messages, as well as other metrics such as delivery delays. Existing algo-

rithms often do not tolerate the dynamics of distributed systems or the failure

of processes neither of communication channels, and they often make unrealistic

assumptions about communication channels (e.g., FIFO, reliability).

1.1 Contributions

The aim of this thesis is to propose new causal broadcast algorithms for dynamic

distributed systems. Nowadays, such systems are composed of an ever-growing

number of processes. Hence, we look for algorithms that scale well with the number

of processes of the system. Moreover, the algorithms should tolerate the dynamics

of distributed systems, by allowing topology changes, mobility of processes, as well

as processes that join and leave the system during execution.

The first contribution of the thesis focuses on causal broadcast for mobile networks.

Such networks are highly dynamic: processes can move, leave or join the system,

and fail. Moreover, the wireless network over which they communicate is subject

to interferences and is therefore unreliable. Finally, processes present many con-

straints that must be taken into account, such as limited battery, computation,

or memory capacities. The proposed algorithm tolerates the dynamics of mobile

networks, takes into account the constraints of processes, and is scalable since it

uses only a few causal information to track the causality of messages.

The second contribution of this thesis focuses on causal broadcast based on clocks

with M ≤ N entries, where N corresponds to the number of processes of the

system. Such clocks scale well and tolerate process churn, but algorithms using

them might deliver messages out of causal order. The proposition consists of two

proposals that aim to increase the probability that processes deliver messages in

causal order. We first propose an error detector which analyzes the clock value

appended on broadcast messages before delivering them, in order to detect out of

causal order deliveries. We then present an algorithm, that used in conjunction

with error detectors, ensures that messages tagged as not causally ordered are



4 1.1. Contributions

delivered in causal order. The second proposal proposes the DCS clocks, a new

clock based on clocks of M (M ≤ N) entries, and whose size can be adapted

dynamically, which is particularly interesting in systems with a varying number

concurrent messages.

1.1.1 A causal broadcast algorithms that tolerates the dy-

namics of Mobile Networks

Mobile networks are mainly composed of Mobile Support Stations, connected be-

tween each other through wired channels, and Mobile hosts, connected to stations

through the wireless network. A causal broadcast algorithm for Mobile Networks

should tolerate the many constraints inherent to mobile hosts and the wireless net-

work, and it should also scale to handle a high number of Mobile Hosts as well as

Mobile Support Stations. This contribution proposes a causal broadcast algorithm

for Mobile Networks that is based on FIFO dissemination, which, by forwarding

messages in FIFO order, ensures that there exists no path between two machines

where messages travel out of causal order.

The algorithm is scalable and is designed for mobile networks. Hosts can join/leave

the network and fail, permanently or transiently, at any time. They move freely

and can be temporarily disconnected from the network when out of range of any

station. We assume no reliable connection protocol, and the algorithm handles

multiple concurrent connections by the same host. Resource limitations of hosts

(computational and memory power, battery life) are handled by keeping causal

information at stations, while hosts only keep very little control information. Mes-

sages piggyback only a few integers as control information. Obsolete messages

cached by stations are discarded following a decentralized approach: a station

discards a message once all hosts connected to it acknowledged the message. Con-

sequently, stations only cache necessary messages. Furthermore, a high message

traffic within a wireless cell, which leads to delivery delays as well as storage and

communication overheads, only has a local impact.

We also present a second causal broadcast algorithm which extends the first one

to tolerate the failure of stations. The algorithm gathers stations into groups, and

the causal information stored at a station is replicated at the other stations of the

group.

Both algorithms have been implemented on a realistic simulator, the INET frame-

work of the simulator OMNeT++. Our evaluations show that both algorithms

are scalable in both the number of hosts and stations, have a low message traf-

fic and storage overhead, while handling mobile network dynamics without the

constraining assumptions of existing causal multicast approaches [CK04][BB08].
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1.1.2 Enhancing the accuracy of clocks with M ≤ N entries

Clocks with M entries [TA99][MW17b][GP03][MK21] are usually much smaller

than N , the number of processes in the system. Algorithms using such clocks scale

well with the number of processes of the system since their size is independent

of the number of processes. However, they do not characterize causality. Hence,

algorithms that use them to causally order messages might deliver messages out

of causal order, even though messages are usually delivered in causal order with a

high probability.

The second contribution of this thesis works on M-entry clocks in order to reduce

the number of messages that processes deliver out of causal order when implement-

ing causal broadcast using them. It is divided in two proposals:

Error detectors We first determine the conditions required to provide a reli-

able error detector which detects all out of causal order deliveries. We show that

these conditions are not realistic and that such an error detector can thus not be

implemented under realistic assumptions.

Second, we propose an error detector. Processes call it before delivering a message

m. It analyzes the clock of m to determine if m can be delivered in causal order.

The proposed error detector is based on hashes: a process hashes the causal depen-

dencies of a message m it wants to broadcast and appends this hash on m when

broadcasting m. Processes that receive m then try to determine whether they de-

livered all of m’s causal dependencies by building dependency sets and computing

their hash. A theoretical analysis shows that the hash-based error detector misses

out of causal deliveries only in case of hash collisions, which has a low probability

to occur. During experiments, the proposed error detector missed no out of causal

order delivery.

The error detector tags messages as causally ordered or not, but it does not inform

which are the causal dependencies that have not been delivered locally. Hence, we

propose an algorithm to identify missing causal dependencies. It has to be used in

conjunction with an error detector. Our algorithm ensures that messages tagged

as not causally ordered by the error detector are delivered in causal order.

Logical clock composed of a set of clocks with M ≤ N entries We propose

a new clock, denoted Dynamic Clock Set (DCS ), which consists of a set of proba-

bilistic clocks. The conception of the DCS clock results from the observation that

the size M of an M-entry clock should be chosen based on the number of concur-

rent messages inside the system, because this metric determines the efficiency of

clocks of size M ≤ N to causally order messages. However, existing clocks of size
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M ≤ N require fixing M at initialization, and M cannot change during execution.

A wrong choice of M may imply an oversized clock or in many messages delivered

out of causal order. The size of DCS clocks can dynamically vary during execution,

by adding or removing clocks of size M . We provide the operations required to

modify the size of the clock as well as to compare them. We also propose an imple-

mentation of a causal broadcast algorithm using DCS clocks. Experimental results

show that it achieves a higher accuracy in delivering messages in causal order than

those using existing clocks of size M ≤ N and depending on the message load, also

present a lower message overhead.

1.2 Publications

The following articles were published during the thesis.

Work on causal broadcast in Mobile Networks:

A scalable causal broadcast that tolerates dynamics of mobile networks. ICDCN

2022: 9-18, Daniel Wilhelm, Luciana Arantes, Pierre Sens

Work on M-entry clocks:

Improving accuracy of probabilistic-based causal broadcast. COMPAS 2022, Daniel

Wilhelm, Luciana Arantes and Pierre Sens

A probabilistic Dynamic Clock Set to capture message causality. ALGOTEL 2023,

Daniel Wilhelm, Luciana Arantes and Pierre Sens

1.3 Organization of the Manuscript

The rest of the thesis is organized as follows.

Chapter 2 presents some concepts and definitions relevant to this thesis, in par-

ticular, those related to distributed systems, time and causal order in distributed

systems, the broadcast delivery primitives, and Mobile Networks.

Chapter 3 gives a summary of the related work relevant to this thesis. It comprises

existing causal broadcast algorithms for distributed systems as well as the causal

multicast algorithms (which can easily be adapted to causal broadcast) for Mobile

Networks.

Chapter 4 presents two causal broadcast algorithms for Mobile Networks, based on

the FIFO-dissemination approach. Both algorithms scale well and are tailored to

the features of Mobile Networks.
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Chapter 5 gathers the two proposals related to clocks of size M ≤ N where N

corresponds to the number of processes in the system. We first propose an error

detector based on hashes and which aims to detect out of causal order deliveries.

Then, we propose an algorithm that ensures the causal delivery of messages tagged

by the error detector. The second proposal consists of DCS clocks, a new clock

based on probabilistic clocks, and whose size can vary dynamically.

Chapter 6 concludes the thesis and proposes future research directions.
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2.1 Introduction

This chapter presents the concepts relevant to this thesis. Distributed systems are

composed of processes and communication channels, which can both fail. Processes

cooperate in order to execute some common task. To that end, they often need

a common time measure, which they achieve by using logical time, introduced by

Lamport in 1978. Distributed events must also often be ordered. Causal order,

defined by the happened-before relation, is one of such orders. To share information

with all processes of the system, processes use the broadcast primitive. Causal

broadcast consists of broadcast messages ordered following causal order. It is used

in many systems, such as Mobile Networks, which are composed of mobile hosts

and mobile support stations, and which have specific constraints.

The following of the chapter is organized as follows: Section 2.2 introduces the

concept of distributed systems. Section 2.3 defines the concept of time and causal

order in distributed systems. Section 2.4 explains the broadcast primitive, and

Section 2.5 gives some background about Mobile Networks.

2.2 Distributed systems

The first section introduces the concept of distributed systems. These systems

are mainly composed of processes that communicate with each other either over

communication channels or shared memory. In the distributed systems considered

in this thesis processes communicate through communication channels by message

passing, and shared memory is therefore not further considered. Both processes

and communication channels are prone to failures. This section first presents the

characteristics of processes and communication channels, then it introduces the

failures that can occur on them.

2.2.1 Processes

Distributed systems are composed of many types of machines such as personal com-

puters, laptops, mobile devices, cars, servers, etc. . . Processes are an abstraction of

the machines on which a distributed system runs. Processes can be seen as threads:

a process executes on a machine, and a machine might run several processes.

Distributed systems usually contain many processes. The set of processes of the

system is denoted Π = {p1, .., pN}. Processes usually know Π as well as the number

of processes of the system. Processes are said to have a partial view of the system

when they only partially know Π. For example, in very large systems, maintaining
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a view of Π might be too costly in terms of memory consumption. Moreover, when

processes join and leave the system it might be difficult, or even impossible, to

maintain an up-to-date view of Π.

In a distributed system, each process executes its local algorithm(s) independently

of the other processes. Most works assume processes to be asynchronous: each

process executes its local algorithm(s) without making assumptions on the relative

speed of other processes. Assuming an asynchronous model allows to make no

assumption on the devices on which processes execute (computational power) or

on the network connecting the devices (transmission delays). On the other hand,

some works assume a synchronous model: a bound exists on the relative speed of

processes, as well as on the communication delays between processes.

A distributed algorithm is composed of a set of local algorithms distributed over

the processes of the system. Processes might execute different sets of local algo-

rithms, such as in a client / server approach. Each process executes its algorithm(s)

sequentially, i.e., it executes algorithm instructions one by one [Ray13]. Hence,

instructions occurring on the same process are totally ordered following their ex-

ecution order. Each instruction is considered to be atomic, which means that it

is executed completely and cannot be interrupted in the middle. An instruction

either produces an internal or external event [Ray13]. An example of internal event

is the update of a local variable, while an external event is the sending or receiving

of a message. Internal events only affect the process itself, and are, therefore, of-

ten omitted in a distributed computation. Conversely, external events also involve

other processes, and result in an information exchange between processes [RS96],

such as the sending or receiving of a message, or a read/write operation on a

variable stored in shared memory.

2.2.2 Communication model

Processes often cooperate to work jointly. To this end, they must communicate

with each other to exchange information. The two main communication models

are shared memory and message passing. Shared memory consists of a segment

of memory shared among processes, and processes communicate by reading and

writing variables stored in the shared memory segment. This thesis and the related

work consider a model based on message passing. Hence, the following describes

only the message passing model.

In the message passing model, processes communicate exclusively through messages

sent over communication channels [Ray13]. A communication channel connects

two processes. A distributed system can be represented by the graph G = (V,E),

where V and E respectively consist of the set of processes and communication
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p1

p2

p3

p4

p5

p6

Figure 2.1: Example of complete graph
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Figure 2.2: Example of graph with paths

channels (links). Communication channels can be either bidirectional or directed,

i.e., messages travel in both or only one given direction. In the following of this

thesis communication channels are considered to be bidirectional.

The graph G is usually assumed to be connected, meaning that any two processes

of the system can communicate with each other. Some works in the literature

consider G to be complete, i.e., that a communication channel connects each pair

of processes, as in Figure 2.1. Other works assume that each pair of processes

can communicate either directly or through intermediate processes. For example,

in Figure 2.2 process p1 can communicate with process p4 through intermediate

processes like p3 or p2 then p4. The sequence of communication channels a message

takes to travel from its source process p to its destination process p′ is called a path.

For example, a message m sent by p1 to p5 can take the paths {p1, p3}, {p3, p5} or

{p1, p2}, {p2, p4}, {p4, p5}.

Communication channels are usually assumed to be reliable. A reliable communica-

tion channel does not lose, alter or create messages. Therefore, messages sent over

reliable channels are received by the destination exactly once without modification

of the data they contain.

A communication channel might reorder messages sent over it, because the trans-

mission delays on a communication channel can vary from one message to another.

A communication channel can for example be a logical channel, and no physical
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channel might directly connect the channel’s two endpoints, or several physical

channels connect the two endpoints. Therefore, two messages sent over the same

communication channel might take different physical paths, which leads to different

communication delays. Moreover, messages sent over the same physical path might

have different transmission delays because of messages losses and retransmissions.

Usually, a communication channel is either considered to be FIFO ordered or no

assumption is made on the arrival order of messages sent over it. On a FIFO (First

In First Out) channel messages are received in the same order as they were sent.

For example, if a bidirectional communication channel connecting two processes p

and p′ is FIFO, then p′ (resp. p) receives messages in the same order as p (resp.

p′) sent them to p′ (resp. p).

Distributed systems are considered to be connected (each pair of processes can

communicate with each other), either at any given moment or over time. On the

other hand, in a non-connected system processes would not be able to communicate

with all the other processes, and the system would therefore be composed of several

independent smaller connected groups of processes. In a system connected at any

given moment there exists a path, at any given moment, which connects any pair

of processes. In a system connected over time, such as Evolving graphs [XFJ03]

or some classes of Time Varying Graphs [Cas+12] (TVG), processes are connected

infinitely often over time by a path of communication channels that allows them

to exchange messages.

2.2.3 Failure Models

Distributed systems are prone to failures, either on processes or on communication

channels. Works in the literature assume processes and communication channels

to be reliable or not. This section presents the different type of failure models, as

well as their effects.

Processes execute on devices which can fail. The following failure models are

defined in the literature:

• Omission model [Ray13]: An omission fault occurs when a process does

not send (or receive) a message it is supposed to send (or receive) according

to its algorithm. Omission faults result in message losses. Thus, an omission

fault results in a process deviating from its algorithm.

• Crash failure model/ fail-silent crash [BBG83][SS83a]: A process that

fails stops executing instructions for the rest of the execution. A crashed

process stops sending and receiving messages.
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• Crash/recovery model [SS83b]: A process that fails stops executing in-

structions, but it potentially recovers afterwards and resumes taking instruc-

tions. A process that fails temporarily loses the information stored in volatile

memory, and only recovers the information stored on a stable support.

• Byzantine failure model [LSP82]: A process that fails has an arbitrary

behavior. It might stop executing instructions then resumes afterwards, as

in the crash/recovery model. Or it might never stop executing instructions

but executes some arbitrary instructions. It can even execute instructions

against the algorithm and try to provoke a wrong execution of the algorithm.

A process that fails during an execution is said to be faulty. A process can be

considered faulty during its failure, or starting from its failure to the end of the

execution. A process that is not faulty during the whole execution is said to be

correct. During an execution a process can fail and recover several times.

Communication channels are also prone to failures, which are:

• Message loss: Messages might be lost. Usually communication channels are

assumed as fair-lossy or with no message losses. Fair-lossy communication

channels ensure that if a message is sent an infinite amount of time, then it

will be received an infinite amount of times.

• Message corruption: Messages might be corrupted, i.e., the information

they contain might be altered. Corrupted messages are usually detected and

handled by network protocols.

• Message creation: Messages might be created or duplicated.

• Channel failure: A communication channel might fail. Messages currently

transiting over a failing communication channel are lost. A failed commu-

nication channel might recover, but messages which were in transit over it

prior to its failure are lost.

Communication channels can thus be classified as: reliable, fair-lossy, or unreliable.

A communication channel that is subject to none of the above failures is said to

be reliable. A fair-lossy communication channel assumes that messages might be

lost, but that a message that is sent an infinite number of times will be received by

its destination an infinite number of times. An unreliable communication channel

does no assumption on the reception of messages sent over it.
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2.3 Time and causality in distributed systems

This section presents the notion of time and causality in distributed system. Time

is a fundamental notion of the human way of thinking: we use it to plan the

execution of tasks by associating to them a given duration and starting time.

Therefore, providing a time measure in distributed systems renders the elaboration

of algorithms for them much easier.

Three types of events occur on a process: internal events, the sending of messages,

and the reception of messages. Internal events are naturally ordered following the

execution order of the program, and they only impact other processes through the

sending and reception of messages[RS96]. Hence, we omit internal events and only

consider the sending and reception of messages.

Physical clocks usually cannot be used to timestamp events in a distributed system

because of clock drift [KO87][PR94]: Except for atomic and GPS clocks, which are

expensive and bulky, physical clocks may have some ticks which are slightly faster

or slower than the ticks of other clocks. Hence, even physical clocks that are

synchronized at initialization might de-synchronize at an arbitrary (even if slow)

rate over time. Consequently, the timestamp of an event on a device d might not

be valid for processes executing on other devices than d, and, thus, cannot be used

to order events in distributed systems.

Events in distributed systems can, therefore, usually not be timestamped with

physical clock values. Nevertheless, Lamport introduced in 1978 both the concept

of logical time [Lam78], which is since used to timestamp events in distributed

systems, and the happened-before relation used to order events timestamped with

logical clocks. The happened-before relation, denoted →, is defined as follows:

Definition 2.1. Happened-before relation: Considering two events e1 and

e2, e1 → e2, if and only if one of the three following conditions holds [Lam78]:

(a) e1 and e2 occur on the same process and e1 precedes e2.

(b) for a message m e1=send(m) and e2=deliver(m).

(c) there exists an event e3 such that e1 → e3 and e3 → e2.

The happened-before relation is shown in Figure 2.3, which represents the timeline

of two processes, p1 and p2, as well as the three conditions of the relation. Note

that condition (c) is transitive: e1 → en if there exists a sequence of events e1, ..en
such that ∀i ∈ [1, n − 1], ei → ei+1. Consider two events e1 and e2. If e1 →
e2, then e1 is said to causally precede e2. Likewise, if e1 6→ e2 and e2 6→ e1,

then none of both events causally precedes the other, and they are said to be
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p1

p2

p3

e1,1 e1,2

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3

Figure 2.4: Causal order of messages

concurrent (e1||e2) [Ray13]. Without global clock, it cannot be determined which of

two concurrent events happened first [SM94]. Hence, the happened-before relation

defines a partial order, since it does not order concurrent events.

Figure 2.4 illustrates the ordering of some messages following the happened-before

relation. The figure represents the timeline of three processes. Time increases from

left to right, but no hypothesis is made on the relative execution speed of processes.

Indeed, even though e3,1 happens before e1,2 on the figure, e1,2 might happen on

p1 before e3,1 happens on p3. The arrows represent the sending and reception of

messages. For example, following condition (a), e1,1 → e1,2. Following condition

(b), e3,1 → e2,1. Finally, following condition (c), e3,1 → e2,2, and by transitivity

we also have e1,1 → e3,3. Generally, an event e1 causally precedes an event e2 if

there exists a path from e1 to e2 [Mat80].

2.3.1 Causal order

Many distributed applications require ordering events to ensure that applications

have a consistent view of the system. Causal order ensures that processes handle

messages while respecting the causal relation between them, as defined by the

happened-before relation [Lam78]. Therefore, a message is only delivered once all

messages that causally precede it are delivered. However, communications between

processes might not be causally ordered. Hence, processes must distinguish between

the reception of a message on the network layer and the delivery of that message
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Figure 2.5: Example of message delivered in causal order

to the application to ensure that messages are delivered in causal order [BSS91].

For example, in Figure 2.5, p2 receives and delivers m1, then it sends m2, thus

m1 → m2. p3 receives m1 and delivers it. Then it receives m2 and delivers it.

Thus, it delivered m2 in causal order. In Figure 2.6, p3 receives m2 before m1.

Hence, it delivers m2 out of causal order. The formal definition of causal order is

as follows:

Definition 2.2. Causal order. Consider two messages m and m′ sent to the same

process p, and send(m) and deliver(m) the events that correspond to the sending

and delivery events of m respectively. If the send event of m causally precedes the

send event of m′, then p must deliver m before m′, or more formally [RST91]:

send(m)→ send(m′)⇒ deliver(m)→ deliver(m′)

2.3.2 Logical clocks

Several works propose to use logical clocks to capture time in distributed sys-

tems [Mat80] [Fid88] [SM94].

Logical clocks have first been introduced by Lamport in 1978 [Lam78]. A logical

clock is basically a timestamp, which is used to order events.

In a system using logical clocks, each event is timestamped with a logical clock

value. A function C : e→ T attributes a logical clock to each event e, and the set

of logical clocks C(e) form a time domain T . The time domain is partially ordered

by the happened-before relation. The function C timestamps events such that the

following property holds:
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Figure 2.6: Example of message delivered out of causal order

For each two distinct events ei and ej, ei → ej ⇒ C(ei) < C(ej).

The system is said to capture causality when it satisfies the above property. On

the other hand, it is said to characterize causality [SM94] when it satisfies the

following, stronger, property:

For each two distinct events ei and ej, ei → ej ⇐⇒ C(ei) < C(ej).

Systems using logical clocks differ in the function C they use, as well as the al-

gorithm to update logical clocks. The function C determines the time domain T .

The algorithm called by a process to update logical clocks consists of two rules:

one to update the logical clock when producing an event (send event or internal

event), and a second one to update the logical clock when receiving a message.

2.3.3 Scalar clocks

In 1978, Lamport proposed scalar clocks which consists of a scalar, initialized at 0.

Algorithm 1 describes the algorithm executed by processes in a system using scalar

clocks. Every process pi maintains a scalar value Ci as logical clock, and updates

it at each event (internal event, or the sending or reception of a message).

Scalar clocks capture causality. Indeed, for any two events ei and ej, if ei → ej,

then C(ei) < C(ej). However, scalar clock do not characterize causality. Indeed,

for any two events ei and ej, we can have C(ei) < C(ej) while no causal relation

exists between ei and ej. Hence, scalar clocks might order events which do not have
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Algorithm 1: Scalar clock algorithm executed by pi
When sending a messge m

1: Ci = Ci + d, d > 0
2: send(m,Ci)

Upon reception of (m,Cm)
3: Ci = max(Ci, Cm)
4: Ci = Ci + d, d > 0
5: deliver(m)

Upon execution of an internal event e
6: Ci = Ci + d, d > 0
7: execute(e)
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1

e1,2

2

e2,1

2

e2,2

3

e2,3

4

e3,1
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e3,3
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1

41

Figure 2.7: Example of a system using scalar clocks

any causal relation, and it is impossible to deduce whether ei causally precedes ej
when C(ei) < C(ej).

Figure 2.7 is a system composed of three processes. The figure shows the scalar

clock value after the execution of each event, as well as the scalar clock piggybacked

on each message. This example shows that scalar clocks do not characterize causal-

ity: C(e3,2) < C(e2,3), while e3,2 and e2,3 are concurrent.

2.3.4 Vector clocks

Vector clocks, proposed independently by Fidge [Fid88] and Mattern [Mat80], use

a vector clock of N integers as time domain, where N is the number of processes

inside the system. Each process pi maintains a vector Vi of size N . Vi[i] and Vj[j]

with i 6= j respectively represent pi’s local time and pi’s knowledge of pj’s local

time. Thus, Vi consists of pi’s view of the global logical time, and pi uses it to

timestamp events. Initially, all entries of vector clocks are set to 0. Algorithm 2

describes the algorithm executed by processes in a system using vector clocks.
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Algorithm 2: Vector clock algorithm executed by pi
When sending a messge m

1: Vi[i] = Vi[i] + d, d > 0
2: send(m,Vi)

Upon reception of (m,Vm)
3: ∀j ∈ [0, N − 1], Vi[j] = max(Vi[j], Vm[j])
4: Vi[j] = Vi[j] + d, d > 0
5: deliver(m)

Upon execution of an internal event e
6: Vi[j] = Vi[j] + d, d > 0
7: execute(e)

Schwarz and Mattern [SM94] defined the following relations to compare two vector

clock timestamps: Let Vi and Vj be the vector clocks associated to the events ei
and ej. We have:

• Vi ≤ Vj ⇐⇒ ∀k ∈ [1..N − 1], Vi[k] ≤ Vj[k]

• Vi < Vj ⇐⇒ Vi ≤ Vj ∧ ∃k ∈ [1..N − 1], Vi[k] < Vj[k]

• Vi||Vj ⇐⇒ ¬(Vi < Vj) ∧ ¬(Vj < Vi)

Schwarz and Mattern [SM94] also proved that vector clocks characterize causality.

For two events ei and ej of vector clock Vi and Vj respectively, we have:

• ei → ej ⇐⇒ Vi < Vj

• ei||ej ⇐⇒ Vi||Vj

Figure 2.8 shows the same execution as Figure 2.7 with processes using vector

clocks. Contrarily to scalar clocks, the comparison of the vector clocks of e3,3 and

e1,3 shows that both events are concurrent.

Charron-Bost [Cha91] proved that a structure of size N , where N is the number of

processes of the system, is the minimal structure required to characterize causality.

Hence, is it not possible to characterize causality with less information than that

contained in vector clocks.

2.4 Broadcast

This section presents some background on the broadcast primitive. Many dis-

tributed applications such as client-replicated servers [Cac+01] or parallel appli-

cations [TKB92] require a group communication service which allows a process to
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Figure 2.8: Example of a system using vector clocks

send a message to all (broadcast) processes of a group. The broadcast primitive

can be provided at the network layer, or it can be implemented at the application

layer. We present the broadcast specifications, as well as several message orderings

of broadcast messages. We also describe the broadcast primitive in systems prone

to failures, since the distributed system of the first work in this thesis contains

processes that might fail.

2.4.1 Broadcast specification

Two primitives are offered to the processes:

• Broadcast(m): called by a process to broadcast a message to all processes

of a group. The function returns directly and does not block, i.e., it does not

wait till all processes acknowledged the delivery of m.

• Deliver(m): called by a process to deliver m to the application. A process

calls it once the delivery conditions of m are satisfied.

In a system without failures and in which all channels are reliable, a broadcast

primitive must ensure the following properties:

• Validity: If a process delivers a message m from a process p, then p previ-

ously broadcasted m (no creation).

• Integrity: A process delivers a message m at most once (no duplication).

• Termination: a message broadcasted by a process is eventually delivered

by all processes.
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2.4.2 Broadcast message ordering

Many applications require broadcast messages to be ordered. However, as seen in

Figure 2.5, processes can receive messages in any order, due to network delays for

example. Hence, a broadcast primitive that orders messages must implement a

mechanism to store messages and delay their delivery to the application till their

delivery conditions are satisfied. The literature gives mechanisms to ensure three

orders of broadcast messages [KS08]:

• FIFO order: Messages broadcasted by the same process are delivered in

their broadcast order by all processes [KS08]. Formally, if a process broad-

casts m1 then m2, then all processes will deliver m1 before m2.

• Total order: Processes deliver messages in exactly the same order [Lam78].

Formally, if a process delivers m1 before m2, then no process delivers m2

before m1. Note that Total order does not imply Causal order. For example,

if m1 → m2 and if all processes deliver m2 before m1, then they respect Total

but not Causal order.

• Causal order: Processes deliver messages while respecting the causal re-

lation between them [Lam78]. Formally, if the broadcast of m1 causally

precedes the broadcast of m2, then processes deliver m1 before m2.

In a system without failures and in which all channels are reliable, ordered broad-

cast primitives must ensure the properties of Validity, Integrity and Termi-

nation defined in Section 2.4.1, as well as one of the ordering properties given

above.

2.4.3 Reliability of the broadcast primitive

In a distributed system prone to failures some processes might not receive all broad-

cast messages. For example, a process might fail while executing the broadcast

primitive. Reliable broadcast requires the following properties to be satisfied:

• Validity: If a correct process broadcasts a message m, then it eventually

delivers m.

• Integrity: A correct process delivers a message m at most once (no dupli-

cation).

• Termination: A message broadcasted by a correct process is eventually

delivered by all correct processes.



Chapter 2. Background 23

• Agreement: If one correct process delivers a message m, then all correct

processes eventually deliver m.

Reliable broadcast does not make any assumptions on behalf of faulty processes,

contrarily to Uniform reliable broadcast which respectively replaces the Agree-

ment and Integrity properties by the Uniform Agreement and Uniform In-

tegrity properties:

• Uniform Agreement: If a process (including faulty processes) delivers a

message m, then all correct processes eventually deliver m.

• Uniform Integrity: A process (including faulty processes) delivers a mes-

sage m at most once (no duplication).

2.5 Mobile Networks

This section presents Mobile Networks. A chapter of this thesis focuses on Mobile

networks with a core infrastructure, also called Cellular Networks [Mia+16]. Com-

pletely decentralized networks such as Ad-hoc networks or WSN networks are out

of the scope of this thesis. In recent years, there is a fast increasing number of

small devices called hosts with the development of mobile devices and the Internet

of Things (IoT). Hosts communicate with each other through a core network, com-

posed of a set of servers called stations. Hosts communicate with stations through

wireless channels. The network composed of stations and hosts is called a Mobile

Network. The characteristics of Mobile Networks with a core infrastructure make

most of the causal broadcast algorithms not suitable to them. This section first

presents the characteristics of Mobile Networks, then it presents the specifications

of causal broadcast in Mobile Networks.

2.5.1 Network characteristics

Processes communicate through two networks, namely a wired and a wireless net-

work, whose characteristics are very different [FZ94].

In the wireless network, processes communicate by using wireless antennas. Such

antennas have a given range which defines the distance a message can travel. The

characteristics of wireless network are:

• Unreliability: Messages might be lost due to interferences. Hence, a control

mechanism must be implemented to re-transmit messages and acknowledge

their reception.



24 2.5. Mobile Networks

• Low bandwidth: Wireless networks have a low bandwidth, especially when

compared to the much higher bandwidth of wired networks. Hence, the

number of messages sent over the wireless network, as well as the control

information attached to them, should be reduced as much as possible.

• Shared medium: The wireless network is shared among all processes: a

message m sent by process p1 to a process p2 might be lost due to a message

m′ sent by a process p3 to any other process. Contrarily, a wired communi-

cation channel is shared only by its two endpoints. Therefore, the collision of

messages is handled much easier and is much lower on wired communication

channels than on wireless ones.

• Broadcasting: Broadcasting a message to all processes over the wireless

network is very easy: a message sent over a wireless antenna is inherently

received by all processes which are in the antenna’s communication range.

The wireless network is used for communication between hosts and stations. Hosts

communicate with stations exclusively through the wireless network. A host only

communicates with the station to which it is connected [IB93]. The characteristics

of wireless networks impose several constraints: the number of messages sent over

it should be limited, as well as the size of the control information messages contain.

Moreover, a mechanism should be implemented to handle message retransmission

and message acknowledgment. Such characteristics are well suited to the UDP

transport protocol, which provides a broadcast primitive, and which does not make

any assumptions (such as reliability) on messages sent over the network.

The characteristics of wired networks are:

• High bandwidth: Wired networks are composed of high speed communi-

cation channels and have therefore a high bandwidth.

• Reliability: Wired networks are considered to be reliable. Hence, messages

sent over them are eventually received (as long as the destination is a correct

process).

• FIFO: Communication channels are considered to be FIFO ordered: if pro-

cesses p1 and p2 that are connected through a direct communication channel

and p1 sends a message m1 then a message m2 to p2, then p2 will receive m1

before m2.

• Point-to-Point communication: Wired networks are inherently based on

point-to-point communications: they are composed of wired channels whose

two endpoints communicate through it point-to-point.
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Figure 2.9: Example of Mobile Network

The wired network is exclusively used by stations, which communicate with each

other exclusively through it. The characteristics of wired networks make them

much more suited to a high number of messages and control information attached

on messages [IB93]. The TCP protocol is well suited to wired networks since it

provides the guarantees they give: reliability, FIFO order of messages, and point-

to-point communications.

To conclude, the throughput of mobile networks is often limited by the wireless

network which has lower capacities than the wired network. Hence, algorithms for

mobile networks usually put as much of the message load and control information

on the wired network in order to relieve the wireless network.

2.5.2 Mobile Support Station and Mobile Host character-

istics

Hosts and stations have very different characteristics. Basically, hosts have much

more constraints and limitations than stations [FZ94][BAI94]. Figure 2.9 shows an

example of a Mobile Network, with stations forming the core of the network and

hosts the endpoints.
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2.5.2.1 Mobile Support Stations

The core of Mobile Networks is composed of mobile support stations, called sta-

tions. Mobile Networks contain much more hosts than stations [IB93]. Each station

is equipped with an antenna. The area covered by the transmission range of a sta-

tion’s antenna is called the station’s cell. A station is at the center of its cell, and

communicates with the hosts inside its cell through the wireless network.

The characteristics of stations are as follows:

• Fixed location: A station has a fixed position and acts as a relay for hosts

in its cell. Hence, the localization of stations is usually chosen to have a

maximum area coverage.

• Reliability: Stations are usually considered to be reliable through hardware

replication, because a failing station would disconnect the area covered by

it. Ensuring area coverage could also be achieved with cell overlapping, but

interferences on the wireless network should be avoided, and cell overlapping

would increase interferences significantly.

• High energy capacity: Stations are connected to an energy source and

have, therefore, no energy limitation.

• High computational and memory capacity: Stations have a large stor-

age and computational capacity, or at least a much higher one than hosts,

since they are not constrained by their size and energy consumption.

To conclude, stations are the backbone of Mobile Networks: they are usually re-

liable, do not move, and have large capacities. Hence, they can execute heavy

algorithms.

2.5.2.2 Mobile Hosts

Mobile Networks usually contain many Mobile Hosts, denoted hosts. They are

the active actors: they are the source and destinations of messages, while stations

ensure that messages are delivered to the destination(s). Hosts can either be con-

nected to a station at the beginning of the execution, or they can join, and also

leave, the system during execution [IB93].

The characteristics of hosts are as follows:
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• Dynamics: A host might join and leave the network at any moment. Most

models assume that a host leaves the network only after it successfully notified

the station to which it is connected.

• Mobility: Hosts move freely. A host might leave the cell of the station to

which it is connected, and moves to another cell. The host must then connect

to the station of its new cell. It might also move temporarily to an area

which is not covered by any station, and might lose, therefore, temporarily

the connection with the rest of the system.

• Limited energy: Hosts are mobile devices and have, therefore, a limited

energy capacity.

• Limited computational and memory capacity: Hosts have a limited

computational and memory capacity. They are restricted by their size, as

well as by their energy capacities.

• Low reliability: Hosts are subject to transient and permanent failures.

For example, a host is temporarily faulty until its battery is recharged, or is

permanently faulty if it has a hardware failure. A faulty host is fail-silent and

stops sending, receiving, processing messages, and loses all variables stored

in volatile memory. Hence, a host that recovers might first need to obtain its

lost information.

Hosts are the active actors of Mobile Networks. They can execute the functions:

• Join(): Called by a host to join the system. The host connects itself to a

station in range of its wireless antenna. A host is considered to have joined

the system once the station receives its join request.

• Leave(): Called by a host to leave the system. A host is considered to have

left the system once the station receives its leave request.

• Connect(): Called by a host when it moves into a new cell in order to

connect itself to the new cell’s station.

• Broadcast(m): Called by a host to broadcast a message m.

• Deliver(m): Called by a host to deliver a messagem. A host is notified when

it buffers such a message m, and calls Deliver(m) in the notification-handler.

To conclude, hosts are the active actors of Mobile Networks: they broadcast and

deliver messages, and join or leave the system during execution, while stations

ensure that hosts can communicate with each other. Their capacity limitations

(energy, computational, storage) should be taken into account when conceiving

algorithms for mobile networks.
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Figure 2.10: A Mobile Network and its graph representation

2.5.3 Ordering messages in Mobile Networks

Many distributed applications require to order application messages (FIFO, causal

or total order) [KS08]. To this end, messages are usually buffered at reception till

their respective delivery conditions are satisfied. A control mechanism then orders

messages using control information attached on messages. Algorithms are divided

in two parts: one executed by hosts and another executed by stations.

As previously discussed, stations have much higher capacities than hosts [KS08].

Moreover, they are usually reliable, while hosts might fail. Hence, most of the

algorithm to order messages is usually put on stations. A station usually holds the

ordering information on behalf of hosts connected to it. Hosts then only need to

maintain a small set of information to ensure the causal delivery of messages.

A host is connected to at most one station at a given moment, which is the station

that holds its ordering information. A host discards messages from stations other

than the one to which it is connected. Hence, even though a host can receive

messages from multiple stations through the wireless network, it discards those

that do not come from the station to which it is connected. A Mobile Network, as

the one on the left of Figure 2.10, can then be represented as the one on the right

of Figure 2.10 where dashed lines represent the connections of hosts with stations,

and the solid lines the wired connections between stations.

Keeping information on stations to order messages creates a new challenge: when

a host moves to another cell, that information must be transferred to the station

of the host’s new cell. In this case, the station of the host’s previous cell should

exchange messages with the station of the host’s new cell. This message exchange

is called a Handoff [CK04].
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Hosts can also join the system during execution. A host which joins the system

during execution might not deliver those application messages broadcasted prior

to its arrival, because those messages might already be discarded (the alternative

would be to never discard any message) by the stations. Hence, a host that joins

the system during execution will not deliver those messages discarded prior to its

arrival. The Termination property of causal broadcast is therefore modified as

follows:

• Termination: A message m sent by a host is eventually delivered by all

hosts that joined the system when m was sent and which did not leave the

system.

To conclude, stations hold most of the information and execute the majority of the

algorithm to order messages. This usually requires stations to exchange messages

when a host moves from one cell to another, in order to pass that information

from the host’s previous cell’s station to the host’s new cell’s station (Handoff).

Moreover, the termination property of causal broadcast must be adapted to Mobile

Networks.

2.6 Conclusion

This chapter presented the background required to understand the following of this

thesis. The first section presented the model of distributed systems, on which the

work of this thesis is based. The second section introduced the concept of time

as well as causal order, while the third section presented the broadcast primitives.

The fourth section introduced the model of Mobile Networks, for which the first

part of this thesis provides a causal broadcast primitive.
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3.1 Introduction

This chapter presents the work of the literature relevant to this thesis.

Causal broadcast algorithms for distributed systems can be classified into six cate-

gories, based on the causal order structure they use and the assumptions they make.

We present and compare the algorithms of each category. Finally, we compare the

categories and give the advantages and disadvantages of each of them.

Most distributed algorithms are not adapted to the specific characteristics of Mobile

Networks which are composed of Mobile Hosts and Mobile Support Stations. Most

of the control and storage is done on stations, since hosts have much lower resources.

The first causal multicast algorithms for mobile networks were proposed in [Ala95],

and other causal multicast algorithms for mobile networks can be seen as varia-

tions of these algorithms. Some algorithms were also proposed to tolerate fail-

ures [AB94][PKV96][ARV93][ABL04].

The first section describes existing causal broadcast algorithms for distributed sys-

tems in general. The second section describes existing causal order algorithms for

Mobile Networks, for which most causal broadcast algorithms are not adapted due

to the specific features of such networks.

3.2 Causal Broadcast

Birman et al. [Bir85] implemented the first causal broadcast algorithm in 1985 in-

side the ISIS system [Bir85][BJ87][BV93]. The algorithm causally orders messages

by attaching to them the log of all messages that causally precede them. ISIS is

fault-tolerant and ensures that a broadcasted message is either received by all or no

correct process. However, attaching on messages the log of their causal precedences

is not sustainable because the logs eventually become very large.

Many approaches have since been proposed to ensure causal broadcast with fewer

causal information and/or assumptions on the system. Causal broadcast algorithms

for distributed systems can be classified in six categories, based on the causal order

structure they use and the assumptions they make:

1 - The algorithms of the first category attach to messages all the causal infor-

mation required to causally order them.

2 - The algorithms of the second category organize the network in an overlay

and disseminate messages over that overlay more efficiently, i.e., by using

less information than vector clocks.
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3 - The algorithms of the third category causally order messages with a high

probability by using vector clocks whose size is independent to the number

of processes inside the system.

4 - The algorithms of the fourth category disseminate messages through FIFO

channels thus ensuring that messages are implicitly causally ordered upon

reception. Therefore, no causal information is appended on messages.

5 - The algorithms of the fifth category append physical clock value timestamps

on messages, and use those timestamps to order messages. They require

synchronized physical clocks.

6 - The algorithms of the sixth category define causal order on the application

level. Those approaches can be combined with the algorithms of the other

categories.

3.2.1 Tracking causal order with structures of size O(N)

Algorithms of the first category attach on messages all information required to

causally order messages. We first describe the approach using vector clocks with

one entry per process. Second, we present optimizations of vector clocks to reduce

their size or enable processes joining and leaving the system during execution.

Third, we describe prime clocks which encode vector clocks into one scalar number.

3.2.1.1 Vector clocks with one entry per process

Schiper et al. propose in [SES89] to heavily reduce the size of causal information

attached on broadcast messages by using vector clocks [Fid88][Mat80] instead of

a log of causal precedences [Bir85]. Birman et al. [BSS91] proposed in 1991 a

causal broadcast algorithm using vector clocks (see Algorithm 3) which was also

implemented in the ISIS system.

The algorithm uses a causal order structure composed of a vector clock with one

entry per process inside the system. Each process pi maintains a local vector

clock Vi whose entries are initialized to 0. Before broadcasting a message m, pi
increments Vi[i] and attaches Vi to m. When pi receives a message m of vector

clock Vm from a process pj, it caches m until the following condition is satisfied:

∀k ∈ [0, N−1]\{j}, Vm[k] ≤ V [k]∧Vm[j] = Vi[j]−1. This condition ensures that pi
delivers all messages that causally precede m before delivering m. When pi delivers

m, it also increments the entry Vi[j] to register its delivery of m.
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The advantage of vector clocks is that the size of causal information does not de-

pend on the number of messages but on the number of processes, which is often

much smaller. However, vector clocks thus do not scale with the number of pro-

cesses, since one entry of the vector clock is associated to each process. Moreover,

adding or removing processes during execution requires an additional algorithm to

modify the size of the vector clock.

Charron-Bost [Cha91] proved that the minimal data structure required to charac-

terize causality when broadcasting in a system with N processes has a memory

complexity of O(N). Hence, vector clocks with one entry per process are the min-

imal data structure that characterize causality. Some algorithms presented in the

following have an average memory complexity lower than O(N), but still have a

memory complexity of O(N) in the worst case. Algorithms which have a lower

memory complexity need to include assumptions about the system, such as FIFO

channels or a given system topology.

Algorithm 3: Vector clock algorithm [SES89] executed by pi
pi broadcasts a messge m

1: Vi[i] = Vi[i] + 1
2: broadcast(m,Vi)

Upon reception of (m,Vm) from pj at pi
3: ∀k ∈ [0, N − 1]\{j}, waitUntil(Vm[k] ≤ V [k] ∧ Vm[j] = Vi[j]− 1)
4: Vi[j] = Vi[j] + 1
5: deliver(m)

Golden et al. [RGI] proposes a vector clock whose size can vary during execution,

thus tolerating process churn. It requires FIFO channels as well as some additional

data structures to keep track of terminated processes. In order to handle process

churn, Wang et al. [Wan+06] proposes to organize processes in a logical ring

topology where channels are FIFO.

Almeida et al. have proposed Interval Tree Clocks (ITC) [ABF08] in 2008, which

are vector clocks that allow processes to join and leave the system. Therefore, they

are adapted to dynamic systems. An ITC is a tree structure, whose size adapts

dynamically to the number of nodes inside the tree. The set of messages as well as

the set of processes are each represented by an ITC. Authors provide primitives to

create, remove and reuse ITC entries (i.e., provide unique message and process IDs).

Experiments show that in static systems the memory consumption of ITCs is lower

than the one of vector clocks, and, in dynamic systems the memory consumption of

ITCs is slightly higher than the one of an algorithm which does a mapping of IDs

to counters. Hence, ITCs are an alternative to vector clocks in dynamic systems.

Table 3.1 summarizes the vector-based causal broadcast approaches. Some ap-

proaches do assumptions on the network topology, Wang et al. [Wan+06] and
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Almeida and al [ABF08]. All approaches require reliable communication channels

and two of them additionally require them to be FIFO. All vector-based approaches

have a message and local memory complexity in O(N). Three of the vector based

approaches tolerate processes to join and leave the system during execution.

Table 3.1: Summary of vector-based causal broadcast approaches

Paper
Network

Topology
Channels Dynamics

Message

memory

Local

memory

Schiper et al. [SES89] Reliable 7 O(N) O(N)

Golden et al. [RGI] FIFO Reliable X O(N) O(N)

Wang et al. [Wan+06] Ring-overlay FIFO Reliable X O(N) O(N)

Almeida et al. [ABF08] Tree-overlay Reliable X O(N) O(N)

N : Number of processes inside the system

3.2.1.2 Compressed and bounded vector clocks

Most vector clock based algorithms do not scale because they use vector clocks

whose size grows with the number of processes. Several algorithms have been

proposed to reduce the size of vector clocks.

Baldoni [Bal98] pointed out that traditional vector clock algorithms do not reset

vector clock entries, thus causing them to grow indefinitely. Authors propose to

bound the values of vector clock entries by using the sequence number of mes-

sage acknowledgments, which are commonly used by protocols such as TCP. The

algorithm uses a vector clock with one entry per process, with each entry being

bounded by k, i.e., ∀i, 0 ≤ V [i] < k. A process delays the broadcast of new mes-

sages such that it has at most k simultaneous broadcasted messages that are not

acknowledged by other processes. A process that delivers a message m sends an

acknowledgment to the sender pi of m, and increments the entry V [pi] as follows:

V [pi] = (V [pi] + 1)%k. Bounding the values of vector clock entries avoids their

overflowing and reduces the number of bits on which they are encoded. However,

those vectors still require one entry per process, thus making them not scalable

with the number of processes.

Singhal and Kshemkalyani [SK92] and Birman et al. [BSS91] proposed an algo-

rithm based on compressed vector clocks, where a process only attaches on messages

the entries it modified since its last broadcast. Each process pi maintains a vec-

tor clock Vi of N entries, as well as a data structure of size N to keep track of

modified entries of Vi since pi’s last broadcast. This approach can greatly reduce

the size of causal information attached on messages when only a few processes

broadcast most of the messages. However, in the worst case messages carry N
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tuples (entry, value), i.e., the causal information overhead is in O(2 ∗N). Hence,

the compression effectiveness depends on the locality and temporality closeness of

message broadcasts, as shown by Lee et al. [LKS11]. Moreover, this approach is

not adapted to dynamic systems.

Table 3.2: Summary of compressed vector-based causal broadcast
approaches

Paper Channels Dynamics
Message

memory

Local

memory

Baldoni [Bal98] FIFO Reliable 7 O(N/k) O(N/k)

Birman et al. [BSS91], Singhal [SK92] FIFO Reliable 7 O(b) O(N)

N : Number of processes inside the system

k : Constant number of bits to store an entry, constant fixed at initialization

b : Number of messages locally delivered since last local broadcast

3.2.1.3 Prime numbers

Kshemkalyani et al. introduced the Encoded Vector Clocks (EVC), which are

vector clocks encoded in one scalar number by using primes [KKS18]. EVCs use

the property that each number has a unique prime factorization [CP06]: ∀k ∈
N,∃!n1, .., nk prime numbers and v1, ..vk ∈ N such that k =

∏
i n

vi
i . For example,

10 = 21∗51 or 1530 = 21+32+51+171, and there exists no other prime factorization

of 10 and 1530.

Causal information is encoded in EVCs. Instead of associating to each process a

unique vector clock entry, authors associate to each process pi a unique prime num-

ber ni. Process pi also maintains a number ki initialized to 1. When broadcasting

a message m, pi multiplies ki by ni and attaches the result to m. When pi receives

m with attached number k, it first computes the prime factorization of k. Let’s

consider the prime factorization of k =
∏

j n
vj
j . The vector clock corresponding to

this prime factorization is V = [v0, v1, ..vn], with ni being the prime number asso-

ciated to process pi. Hence, pi must first deliver, ∀k, vk messages from process pk
before delivering m. Authors provide the operations required to encode, compare,

and merge EVCs.

The first advantage of EVCs is that they tolerate process churn, since each new

process simply takes the next lowest unassigned prime number. However, a mech-

anism must ensure that two processes do not take the same prime number. On

the other hand, encoded vector clocks have a high space and operation complex-

ity [KV19]. In fact, the smallest prime number is 2. Hence, each broadcasted

messages multiplies k by at least 2. Therefore, a message that causally depends on
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Figure 3.1: Example of direct dependencies

n messages has an attached number k > 2n, i.e., k grows exponentially. Thus, the

number of bits required to store k grows with each broadcasted message, as well

as the operation complexity to factorize k. Simulation results [KSV20] show that

EVCs grow very fast.

Pozzetti and Kshemkalyani [PK21] propose the Resettable Encoded Vector Clock

(REVC) to bound the size of EVCs. The growth of an EVC can be bounded by

assigning to it a given number of bits, and resetting it whenever it overflows. Each

process keeps an EVC history in which it stores previous EVCs and to which it adds

its EVC before resetting it. A process appends its EVC on messages it broadcasts.

Hence, RECV still have an unbounded linear growth with the number of messages

in the system. To tackle this problem, the authors propose to remove obsolete

EVCs by regularly cleaning the EVC history.

3.2.1.4 Direct dependencies (Causal barrier)

Prakesh et al. [PRS96] showed that a message’s direct dependencies are sufficient

to ensure its causal delivery. The direct dependencies of a message m are the

messages m′ such that m′ → m and no message m” exists such that m′ → m”→ m.

For example, Figure 3.1 shows the broadcast of three messages m1,m2 and m3,

with m1 → m2 → m3. In this example, m2 is a direct dependency of m3, since no

message m′ exists such that m2 → m′ and m′ → m3. Conversely, m1 is not a direct

dependency of m3, and is said to be an indirect dependency, because m1 → m2

and m2 → m3.

The algorithm presented in [PRS96] uses direct dependencies to track causality.

It mainly focuses on causal multicast but is easily adaptable to causal broadcast,

as explained in the paper. Hence, only the broadcast case is detailed here. Each

process pi keeps a counter seqi to uniquely identify messages it broadcasts with

the id (pi, seqi). Each process also keeps two vectors: one of N entries to track

which messages have been delivered by other processes, and a dynamic one called

CB, which stores the IDs (pk, seqk) of direct dependencies of the next message to
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broadcast. The size of CB is upper bounded by N , the number of processes, but

is often much smaller. When process pi broadcasts a message, it increments seqi
then broadcasts (m,CBi, (pi, seqi)). Moreover, it resets CBi to {pi, seqi}. When

pi delivers a message m = (CBk, (pk, seqk)), it removes from CBi the entries that

are contained in CBk (CBi = CBi\CBk), since they become indirect dependencies

through m (∀mk ∈ CBk,mk → m→ m”, with m” being the next message that pi
broadcasts). Therefore, pi reduces the size of CBi when broadcasting a message,

or when delivering a message which has direct dependencies contained in CBi.

The size of causal information attached on messages depends on the number of

messages broadcasted per second inside the system, and not the number of pro-

cesses. Hence, it scales well with the number of processes. Moreover, it tolerates

process churn and is therefore adapted to dynamic systems. Cai et al. [CLZ02]

further reduce the size of causal information attached on messages when using the

algorithm for causal multicast. Chandra et al. [CGK04] analyze the performance

of the algorithm under various network conditions and show that it scales well with

the number of processes.

3.2.2 Organizing processes in hierarchical overlays

Organizing processes in a hierarchical overlay to provide causal broadcast was first

proposed by Adly and Nagi [AN96]. Taguchi et al. present a similar approach

in [TET04]. In [AN96] processes are organized in a logical multilevel hierarchy,

called HARP [ANB93], which allows processes to send and receive messages from

only a few processes. Processes are organized into clusters, and clusters are orga-

nized into a tree. Each cluster is connected to its parent cluster through a father

process in its parent cluster. A process uses a vector clock to causally order mes-

sages inside its cluster and with its parent/child processes in other clusters. Hence,

a process keeps a vector clock to track causality in regard to only a (small) subset

of processes inside the system. Therefore, a process maintains a vector clock whose

size is only equal to the size of that subset of processes. The algorithm is imple-

mented over an unreliable network and processes may fail, leading to temporary

network partitions. Processes store causal information on stable support. A re-

structuring algorithm is provided to expand and reorganize the network. Processes

can also join and leave the network. However, they cannot move from one cluster to

another. Moreover, concurrent messages are reordered at processes which connect

clusters.

Evropeytsev et al. [Evr+16][Evr+17] proposed an algorithm for Peer-to-Peer

networks. Processes either belong to a cluster or not. Each cluster has a super-

peer. Processes inside a cluster communicate with processes outside it through the

cluster’s super-peer. Super-peers and processes that do not belong any cluster form
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a cluster. Inside a cluster, processes store direct dependencies in bit vectors, which

have a maximum size of g bits, where g corresponds to the number of processes

inside the cluster. The advantage of this algorithm is that the causal information

carried by messages depends on the number of peers inside the cluster, and not

the total number of peers, which is usually much higher. Moreover, the algorithm

uses direct dependencies and not a structure with one entry per process inside the

system. However, no mechanism is provided to handle failures, and concurrent

messages are reordered at the super-peer level. Taguchi and Takizawa [TT03] and

Hsiao and Liao [HL11] provide similar algorithms, which use vector clocks instead

of direct dependencies to track causality.

De Araujo et al. presented VCube-PS, a causal multicast algorithm [Ara+18] built

on top of a VCube [DBK14], which organizes processes in a hypercube-like topology.

Authors extend the algorithm to causal broadcast in [de +18a][de +18b]. Authors

observe that building a single tree to disseminate messages induces overheads in

terms of tree maintenance in presence of process churn, as well as delays for message

propagation. Moreover, the message load is not well-balanced in the case of multi-

cast, since messages transit more over some processes, like the root. The algorithms

use direct dependencies [PRS96] to ensure causal order. Messages are propagated

through multiple spanning trees, which are built dynamically and whose construc-

tion by processes only uses local information. A process that broadcasts a message

becomes the root of the spanning-tree used to propagate that message. Therefore,

no global tree is maintained. The VCube has logarithmic properties and ensures,

for example, that a path of log(N) hops exists between each pair of processes. Since

messages are propagated over different paths, they might be received out of causal

order. A process can infer the spanning trees built by other processes. It takes ad-

vantage of the path intersections of the different spanning trees, by delaying to its

children in a message’s propagation tree, the forwarding of the messages for which

it knows that they did not deliver all causal dependencies yet. Hence, processes

group messages without inducing any overhead. The advantage of VCube-PS is

that the overlay structure is maintained dynamically, and the VCube properties

ensures a log(N) path between each pair of processes, thus keeping the delays in-

troduced by the overlay low. However, the system must implement a VCube, and

the algorithm does not tolerate process churn nor failures.

Santos and Rodrigues [SR19] introduced localized causal broadcast, where each

process keeps information of only processes at up to 2f + 1 hops, where f is the

maximum number of simultaneous tolerated failures. Processes track causal or-

der with a vector clock with one entry for each process at up to 2f + 1 hops.

Process failures, which cause multiple receptions of the same message, are han-

dled by appending on messages the identifier of the communication channels they

might follow. Communication channels are assumed to be FIFO. The algorithm

organizes processes in a tree, and avoids partitioning by adding for each process a
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communication channel with f+1 distinct other processes. When process j broad-

casts a message m, it attributes to m an identifier (source, target, seq) for each of

its communication channels. Each process that receives m also adds an identifier

(source, target, seq) for each of its communication channels. Processes remove the

tuples in a message’s identifiers of processes at a distance higher than 2f + 1 hops.

However, f + 1 tuples are added to the message’s identifier at each hop, leading

to a causal information overhead of O(f 2). Those identifiers are used in case of

a process failure to handle multiple reception and avoid multiple deliveries. The

path identifiers and causal information are attached on messages, leading to causal

information of size O(f 2) attached on messages. The advantage of the algorithm

is that it tolerates up to f + 1 simultaneous failures. However, processes must

maintain causal information of processes at up to 2 ∗ f + 1 hops.

Several hierarchical approaches [PS97] have been tailored for Mobile Networks,

which have inherently a hierarchical two-layered composition: the core is com-

posed of Mobile Support Stations, to which Mobile Hosts are connecting them-

selves (see Section 2.5). Since the first contribution of this thesis focuses on causal

broadcast in mobile networks, the algorithms for such networks are described in a

dedicated section (Section 3.3).

Table 3.3: Summary of hierarchical-based causal broadcast approaches

Paper C.O. Channels Dynamics
Memory

overhead
Overlay

Adly and

Nagi [AN96]
V.C. Unreliable X O(c) Tree

Taguchi and

al. [TET04]
V.C. Unreliable X O(c) Tree

Evropeystev

et al. [Evr+16]
D.D. Reliable 7 O(c) Tree

Hsiao and

Liao [HL11]
V.C. Reliable 7 O(c) Tree

De Arajo

et al. [de +17]
D.D. Reliable 7 O(N) Hypercube

Santos and

Rodrigues [SR19]
V.C. FIFO Reliable X O(f 2)

each process has

f+1 outgoing links

V.C. : Vector Clocks

D.D. : Direct Dependencies

N : Number of processes inside the system

c : Number of processes inside a cluster

f : Number of tolerated simultaneous failures
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Figure 3.2: Message delivered out of causal order when using Plausible
Clocks

3.2.3 Vector clocks of size M≤N

Torres-Rojas and Ahamad introduced in 1998 the concept of logical clocks of con-

stant size [TA99]. Instead of using a vector clock with one entry per process,

constant size clocks are clocks whose number of entries M is smaller or equal to

N , the number of processes inside the system. Usually M � N . Charron-Bost

proved that a vector clock with fewer than N entries cannot characterize causality

of broadcast messages [Cha91]. Hence, these clocks do not characterize causality

and algorithms using them to causally order messages might deliver messages out

of causal order.

Torres-Rojas and Ahamad proposed Plausible Clocks (PC) [TA99], which asso-

ciates each process to one vector clock entry. Since Plausible clocks have M ≤ N

entries, each vector clock entry might be associated to several processes. The

algorithm using PCs is otherwise similar to the one using vector clocks of N en-

tries [SES89]. Processes which use PCs to causally order broadcast messages might

deliver some of them out of causal order. For example, in the execution of Fig-

ure 5.1 the message m3 is delivered out of causal order. In the example, PCs have

one entry, and each process is associated to this unique entry. First, process p1

increments its PC when broadcasting m1. We assume that other processes receive

m1 later in the execution. Process p2 broadcasts m2 and increments its PC. Pro-

cess p3 broadcasts m3 after receiving m2, i.e., m2 → m3. However, p1 receives

m3 prior to receiving m2, and since PC1 = 1, it delivers m3 out of causal order.

Although PCs do not characterize causality, the algorithm delivers messages in

causal order with a high probability, as shown by a theoretical and experimental

analysis [TA99][Tor01].



42 3.2. Causal Broadcast

Gidenstam and Papatriantafilou [GP03] observed that PCs order some concur-

rent messages, and introduced Non-Uniformly Mapped R-Entries Vector (NUREV)

clocks. The idea behind NUREV clocks is that the mapping of the vector clock

entries to processes has an impact on the number of concurrent messages that

are ordered. For example, if mostly two processes broadcast messages, then they

should not be associated to the same vector clock entry. The purpose of NUREV

clocks is therefore to dynamically adapt the mapping of clock entries to processes.

The algorithm locally maintains a vector of N entries but still only attaches a PC

on messages. Authors show that accuracy basically depends on the communica-

tion patterns and the value-differences of compared PCs. Two adaptive mapping

strategies based on these observations are given and evaluated through simula-

tions. NUREV clocks are particularly effective if only some processes broadcast

messages, since those processes can dynamically be associated to an exclusive clock

entry. NUREV clocks also reduce the probability that a message is delivered out

of causal order.

Mostéfaoui and Weiss [MW17b] proposed Probabilistic clocks (PrC). PrCs use a

function f to associate one or several vector clock entries to each process. |f | is de-

termined at initialization and is the same for each process, i.e., each process has the

same number of vector clock entries associated to it. Authors provide the formulas

to determine the best value of |f |, depending on the number of concurrent messages

in the system. Authors also provide a formula to compute the probability that two

processes concurrently increment the same clock entry (which leads to messages

that are delivered out of causal order). They show that the effectiveness of PrCs

depends on the number of concurrent messages, through experiments measuring

the number of messages delivered out of causal order for different message loads.

Experiments also show that PrCs ensure causal order with a higher probability

than PCs.

Misra and Kshemkalyani introduced Bloom clocks [Ram19][MK21][KM21]. Bloom

clocks ensure causal order with Bloom filters [Blo70][TEL12]. Introduced in 1970

by Bloom, such filters are vectors of fixed size used in conjunction with hash func-

tion(s). Instead of using one hash function that associates 1 to M clock entries to

each process, Bloom clocks use 1 to M hash functions that each associate one clock

entry to each process. Hence, they have the same advantages and disadvantages

than Probabilistic clocks.

The main advantage of vector clocks of size M ≤ N are their size which is inde-

pendent of the number of processes, making them scalable in regard to the number

of processes in the system. Moreover, they are well adapted to process churn, since

vector entries are not associated to only one process and can therefore be shared

and reused. However, they do not characterize causality and algorithms which use
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them might deliver messages out of causal order. Hence, they are adapted to sys-

tems where causal order only impacts performance and not correctness, such as,

for example, the fairness of mutual exclusion algorithms.

Table 3.4: Summary of constant clock-based causal broadcast approaches

Paper
Entries

Function
Channels Dynamics

Message

memory

Local

memory

Torres-Rojas and

Ahamad [TA99]
|f | = 1 Reliable X O(M) O(M)

Gidenstam and

Papatriantafilou [GP03]
f dynamic Reliable X O(M) O(N)

Mostéfaoui and

Weiss [MW17b]
1 ≤ |f | ≤M Reliable X O(M) O(M)

Misra and

Kshemkalyani [MK21]

several f

with |f | = 1
Reliable X O(M) O(M)

N : Number of processes inside the system

M : Constant clock size, constant fixed at initialization

f : Function that returns the entrie(s) associated to a process

3.2.4 FIFO-based approaches

Friedman and Manor [FM04] first formalized and proposed an algorithm that en-

sures causal order through flooding in a static overlay network composed of FIFO

communication channels. Flooding through FIFO channels ensures that no path

exists over which messages travel out of causal order. For example, in Figure 3.3 A

broadcasts m, which causally precedes m’ broadcasted by B. All processes receive

m before m’ since upon reception all processes forward m on all their communi-

cation channels. Therefore, processes deliver messages upon reception, since they

receive messages already causally ordered.

The algorithm in [FM04] is executed over a hypercube overlay topology [DBK14],

which is well adapted to flooding, since it ensures that any two processes are at a

maximal distance ofO(log(n)) hops. Blessing et al. [BCD17] propose to implement

causal broadcast based on flooding over a tree overlay, thus removing the message

overhead introduced by cycles (which cause processes to receive messages several

times).

Causal broadcast through flooding has two main advantages: (1) Processes receive

messages in causal order and can thus deliver them at reception. (2) Messages

carry no causal information.
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Figure 3.4: Causal broadcast through flooding [FM04] in a dynamic
network

However, this approach also has disadvantages:

• Messages must be sent over each communication channel, inducing a high

message overhead depending on the communication graph. This issue can be

addressed by organizing processes into a logical topology, as do the authors

of [FM04][BCD17].

• Adding a new communication channel creates a shortcut over which processes

can temporarily receive messages out of causal order. For example, in Fig-

ure 3.4, process A first broadcast a message m. After broadcasting m, it adds

a new communication channel with C, then broadcasts m′. The path A−C
is then a shortcut that m′ can take, but shouldn’t till C receives and delivers

m. Hence, the algorithms of [FM04][BCD17] only work in static networks.
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Nédelec et al. [NMM18a][NMM18b] extend [FM04] to some dynamic networks.

Authors observe that messages can only travel out of causal order temporarily over

a newly added communication channel, as in the example above. More precisely,

adding a communication channel creates a shortcut that newly broadcasted mes-

sages can take. Thus, they can be received by processes while some of the messages

that causally precede them are still transiting over the network. Authors provide

a procedure to initialize communication channels before using them to broadcast

messages. The procedure consists of a message exchange between the two endpoints

of the added communication channel, ensuring that messages transiting over it have

no causal dependencies that are still transiting, i.e., not received yet by the other

endpoint. This message exchange is done using communication channels which

have already been initialed through this procedure, or which are present since the

beginning of the execution (and are considered to be initialized). Messages from

added communication channels are discarded until they are initialized. Therefore,

each pair of processes must always be connected by a path of initialized communica-

tion channels. One disadvantage of [NMM18a] is that messages must be buffered to

be sent to the other endpoint at the end of the initialization procedure. The buffer

containing these messages may grow infinitely. Authors provide a simple solution

in [NMM18b] which consists of sending the messages contained in the buffer over

the network when it exceeds a given size, thus clearing the buffer. The advantages

and disadvantages of this approach are the same as [FM04][BCD17], while authors

make this approach suited to dynamic networks in which there always exist a path

of initialized channels between each pair of processes. Therefore, an endpoint such

as a client cannot migrate from one server to another by disconnecting itself from

the server in between.

Table 3.5: Summary of FIFO-based causal broadcast approaches

Paper
Network

Topology
Channels Dynamics

Message

memory

Local

memory

Friedman and

Manor [FM04]

hypercube

overlay
FIFO Reliable 7 O(1) O(1)

Blessing and

al. [BCD17]

tree

overlay
FIFO Reliable 7 O(1) O(1)

Nédelec and

al. [NMM18a]

network always

connected with

initialized links

FIFO Reliable X O(1) O(1)
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3.2.5 Physical time based approaches

In distributed systems, physical clocks cannot be simply used to timestamp mes-

sages because clocks are drifting apart [KO87][PR94]: even if clocks are perfectly

synchronized at initialization, they might slowly de-synchronize over time because

they might tick slightly slower or faster than the other clocks. Nevertheless, pro-

tocols exist to synchronize physical clocks, such as the Network Time Protocol

(NTP) [85][Mar+10] or the Precision Time Protocol (PTP) [08]. These protocols

have a precision going on average from 10 to 100ms. The literature contains several

algorithms that use those protocols to causally order messages, by assuming physi-

cal clocks synchronized with a maximum bounded clock skew: they assume that for

each pair of processes p and p′ of physical clocks pc(p) and pc(p′), |pc(p)−pc(p′)| < ε.

Nishimura et al. [Nis+05] combined a hierarchical one-level structure with syn-

chronized clocks. Processes are logically divided into clusters, and each cluster has

a gateway process responsible for the communication with other clusters. Each

pair of gateway processes is connected by a logical communication channel (i.e.,

one-level structure). Authors assume that clusters are synchronous, i.e., the phys-

ical clocks of processes in the same cluster are synchronized with an upper bound

εc. Moreover, authors assume an upper bound delay εd on the communications

between gateway processes. Messages carry a physical clock timestamp and are

ordered by taking into account εc and εd. The algorithm has the advantage that

it requires only one integer representing physical time to order messages causally.

However, messages might be delivered out of causal order if one bound, εc or εd, is

not respected. Moreover, no mechanism is provided to handle failures, and partic-

ularly failures of gateway processes.

Hybrid Logical Clocks (HLC) [Kul+14][Kul+][Roo+19][FJ19] and Physical clocks

With Causality (PWC) [KAN22] ensure causal order by combining physical clocks

and logical clocks. HLC clocks are used in systems such as MongoDB [Tyu+19],

CausalSpartan [RMK17] or GentleRain [Du+14][RK16]. Both approaches assume

physical clocks to be synchronized with a maximum clock skew of ε. HLC and

PWC are composed of a physical clock pc and a logical scalar clock lc. The logical

clock is used to order events which have an identical value of pc (if m.lc = 3, then

the process knows that there are two messages which causally precede m and which

have the same pc value). Hence, for each event e and e′, e → e′ ⇐⇒ pc(e) <

pc(e′) ∨ (pc(e) = pc(e′) ∧ lc(e) < lc(e′)). lc is reset each time a process receives a

message or updates its physical clock, thus ensuring that lc is bounded. Authors of

both clocks provide an analysis of the required size of lc to avoid its overflow. They

argue that HLC and PWC can be stored in the lower bits of 64 bits integer, because

applications do not need the precision provided by 64 bits integers. The two clocks

scale very well, and they tolerate process churn, since neither the physical nor

the logical clock entries are associated to particular processes. However, to ensure
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causal order, HLC and PWC require both the maximum clock skew and the interval

between send(m) and receive(m) to be higher than ε. Thus, messages might be

delivered out of causal order if one of the two conditions does not hold.

3.2.5.1 ∆-causal order

The notion of ∆−causal order was introduced by Yavatkar in 1992 [Yav92] and

later formalized by Baldoni et al. [BRM96]. ∆−causal order is defined for sys-

tems in which messages have real-time constraints. In such systems, messages

have a limited time validity after which they are obsolete. A message sent at

time t becomes obsolete at t + ∆ and is therefore discarded if received after that

delay. ∆-causal order delivers the maximum number of messages before their ex-

piration, while ensuring that messages are delivered while respecting causal order.

Such an approach is for example meaningful in multimedia real-time applications,

such as teleconferencing [Wak93]. Processes synchronize their physical clocks with

protocols like NTP [Mar+10] and messages carry their sending time as causal infor-

mation. Therefore, Two causally related messages are assumed to have timestamps

t1 and t2 such that |t1 − t2| > ε, where ε corresponds to the error bound of clock

synchronization protocols. Higaki et al. [THT98] observe that communication

delays between processes might greatly vary. Hence, the authors modify ∆-causal

order to also take into account the varying communication delays between pro-

cesses. Rodrigues et al. [Rod+00] generalize ∆-causal order by allowing each

message to have a given and distinct deadline.

Baldoni et al. [BRM96] ensure causal order with an algorithm similar to the

traditional vector clock algorithm [Mat80]. Each process has an associated vector

clock entry, but instead of scalars, the vector clock contains physical time values.

A process delivers a message m once all undelivered messages that causally precede

m are expired. Baldoni et al. [Bal+96][Bal+98] improve [BRM96] by replacing the

vector clock with direct dependencies [PRS96], thus heavily reducing the average

(in the worst case O(N)) size of causal information maintained on processes and

attached to messages.

Hernández et al. [PDG10] ensure ∆-causal order without a physical global clock,

by using application specific knowledge to estimate the lifetime of messages. Au-

thors use direct dependencies [PRS96] to track causality. However, they observe

that direct dependencies are not sufficient to track causal order when messages

are lost. For example, if m1 → m2 → m3 and if m2 is lost/expires, then it is

impossible to know through direct dependencies that m1 → m3. To circumvent

this problem and maintain causal information, authors propose to append some

indirect dependencies when the message loss rate increases.
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∆-causal order is only adapted to systems where messages become obsolete after

a given time duration. Moreover, algorithms either require clock synchronization

for correctness or use vector clocks of N entries, and both conditions are neither

scalable nor adapted to dynamic systems.

3.2.6 Application-based causal order

Causal order algorithms usually do not take into account application specific in-

formation. Considering such information allows to causally order messages more

efficiently, i.e., with fewer data. For example, two messages m1 and m2, related

respectively to the variables v1 and v2, might not be causally dependent, even if

they are sent by the same process. The following describes two algorithms which

respectively use application-specific knowledge and the partial replication of data

to causally order messages more efficiently. Both approaches are orthogonal to

causal order algorithms and can therefore be used in conjunction with them.

Bailis et al. [Bai+12] observed that most algorithms reorder concurrent messages

in real world applications. In fact, when a process p broadcasts a message m, most

algorithms consider that all messages that p delivered prior to broadcasting m also

causally precede m. More formally, for most algorithms:

p broadcasts m⇒ ∀m′ delivered by p prior to broadcasting m, m′ → m.

However, this assumption is false for most real world applications. Consider for

example databases that store values vk. A message sent by a client to update

a value vi has no causal relation with messages related to other values vk 6= vi.

Reordering concurrent messages delays their delivery. In fact, consider two con-

current messages m and m′, reordered such as m → m′ for the algorithm. The

algorithm will then unnecessarily delay the delivery of m′ till m is delivered. Based

on such behavior, the authors of [Bai+12] proposed to explicitly define causality

at the application level (which they call explicit causality), to track only relevant

causal relations between messages. Authors argue that many applications already

express semantic dependencies in their APIs, which can be used to explicitly de-

fine causality. They give as example Twitter conversations whose length average

approximately 11 Tweets (a makes a tweet, to which b reacts with a tweet, to

which c reacts with a tweet, etc. . . ) [RCD10][YW10], but whose potential causal

chain is several orders of magnitude higher. In this example, explicit causality

heavily decreases the number of message dependencies, which in its turn increases

throughput, reduces causal information, and improves concurrency.
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Bravo et al. introduced SATURN [BRV17], a distributed metadata service that

takes into account the partial replication of data. Authors observe that in geo-

replicated databases data is often replicated at only a subset of datacenters. How-

ever, causal information about a data d is often sent to all datacenters, even to those

which do not store d. The propagation of causal information to all databases intro-

duces unnecessary message delivery latencies, as well as a decreased data through-

put (because of unnecessary messages). The storage system is responsible for pro-

viding labels that are causally consistent and SATURN propagates them only to

the databases holding a copy of those labels, while respecting their causal relation-

ship. SATURN is therefore a mechanism complementary to existing databases. It

allows them to take advantage of partial replication at a cost of a small message

overhead. Hsu et Kshemkalyani. [HK17][HKS18] and Crain et al. [CS15] also

provide algorithms to ensure causal order in partially replicated systems.

3.2.7 Summary

Table 3.6 summarizes the causal broadcast implementations presented in this sec-

tion. We divided the implementations in six categories corresponding to the data

structure they use to ensure causal broadcast.

Vector clock approaches are based on the traditional vector clock [Fid88][SES89]

proposed by Mattern and Fidge independently, as well as algorithms extending

vector clocks in order to make their size dynamic, making them tolerant to processes

which join and leave the system during execution. They attach on messages all the

causal information required to causally order them. However, such approaches do

not scale.

Compressed and bounded vector clock approaches aim to reduce the size of vector

clocks on average, by either reducing the number of bits on which each entry is

encoded, or by only piggybacking the vector clock entries that have been modified

since the last broadcast. However, those approaches still have a space complexity

in O(N) and do therefore not scale.

Prime clocks encode vector clocks into a number, by using the fact that each number

has a unique decomposition of prime factors. However, the numbers into which

prime clocks are encoded grow exponentially, as do the number of bits required to

store them. Therefore, authors of [PK21] propose a procedure to reinitialize prime

clocks to bound their size. Note that the prime clock approach is independent

to the number of processes inside the system, but it depends on the number of

messages that have been broadcasted. Prime clocks tolerate process churn, but

they grow very fast with a space complexity in O(k) where k corresponds to the

number of sent messages since the beginning or since the last resetting of the clock.
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Direct dependencies only piggyback on a message m the causal information about

messages that directly precede m. Therefore, this approach is also independent

to the number of processes but depends on the pattern of message broadcasting.

Nevertheless, it requires processes to locally store a vector with one entry per

process inside the system.

Hierarchical structures divide processes into subgroups. They ensure causal order

inside and between groups by using vector clocks or direct dependencies. Therefore,

they require less causal information since a process only keeps causal information

about the processes of its group and proxy processes of other groups. However,

hierarchical structures require a specific network topology which often does not

tolerate process churn.

Constant size clock approaches ensure causal order by using vector clocks whose

size is constant, independently of the number of processes inside the system. There-

fore, those approaches do scale and allow processes to join and leave the system.

However, they do not characterize causality and processes therefore might deliver

messages out of causal order, even though they usually deliver them in causal order

with a very high probability.

FIFO-based approaches ensure causal order by forwarding messages through FIFO

communication channels, thus ensuring that messages are causally ordered at re-

ception. Therefore, they do not require any causal information to be appended on

messages. However, they require FIFO communication channels as well as assump-

tions on the network topology.

Approaches using physical clocks require a bounded clock skew between processes,

which is ensured by network protocols. However, those approaches require that

the clock skew between processes is always below a given known value in order to

ensure the causal delivery of messages.

∆-causal order approaches observe that in some applications the data has a limited

time duration validity. They deliver messages once their validity is about to expire.

These approaches are restricted to applications where data has a limited time

duration validity.

Some works propose to use application specific knowledge to causally order mes-

sages. Application specific knowledge can for example be used to order separately

independent messages sent by the same process. Often data is also only partially

replicated in a distributed system, and propagating updates about a data d only to

the processes that store d can significantly reduce the amount of sent information.
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Table 3.6: Summary of causal broadcast approaches

Data structure Channels Dynamics
Message

memory

Local

memory

Causality

guarantees

Vector clocks FIFO Reliable X O(N) O(N) X
Compressed vector clocks FIFO Reliable 7 O(N/k) O(N/k) X
Prime clocks Reliable X O(b) O(b) X
Direct dependencies Reliable X O(b) O(b) X
Hierarchical structure Reliable 7 O(c) O(c) X
Constant size clocks Reliable X O(M) O(M) Probabilistic

FIFO-based FIFO Reliable X O(1) O(1) X
Physical clocks Reliable X O(1) O(1) Physical time

∆-causal order Reliable X O(N) O(N) Physical time

N : Number of processes inside the system

k : Constant number of bits to store an entry, fixed at initialization

b : Number of messages locally delivered since last local broadcast

c : Cluster size

M : Size of M-entry clock. Fixed at initialization

3.3 Mobile Networks

Most distributed algorithms are not suitable to the features of Mobile Networks

composed of Mobile Hosts (MHs) and Mobile Support Stations (MSSs). MHs have

a limited computational, memory, and battery capacity, and they communicate

through the wireless network which is not reliable and has a low memory band-

width compared to the wired network. On the other hand, MSSs have much higher

capacities and communicate through the wired network. Therefore, causal order

algorithms for mobile networks should concentrate information and execution on

MSSs. They must also take into account the dynamics of MHs. In the literature,

causal order algorithms for mobile networks have generally been proposed for mul-

ticast. Nevertheless, they are easily adapted to causal broadcast since the latter

is a simplified case of multicast. Therefore, we present the broadcast versions of

those algorithms.

3.3.1 First causal order algorithms for Mobile Networks

The first causal order algorithms for Mobile Networks were proposed by Ala-

gar [Ala95][AV97] who proposed three algorithms which use vector clocks to track

causality. The algorithms ensure causal order of messages, but they are easily
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adapted to causal broadcast. The author copes with the limited capacities of hosts

by managing the causal information at the station level: each station manages the

causal information on behalf of the hosts connected to it by keeping a vector clock

to track causal order for every host connected to it. Each station manages its cell

which is defined by the hosts connected to it. Causal information is handled at

two levels: the intra-cell level and the inter-cell level. The first is composed of a

station plus the hosts connected to it and the second is composed of all stations.

By assumption, communication channels of the intra-cell level are FIFO. A station

sends a message m to a host connected to it once the host delivered all messages

that causally precede m. Thus, stations send messages to hosts in causal order,

and hosts deliver them causally since intra-cell communication channels are FIFO.

On the inter-cell level, messages are causally ordered with vector clocks, as in the

traditional vector clock algorithm [BSS91]. A station maintains a vector clock for

each host connected to it. The three algorithms presented in the paper differ in

the vector clock used at the inter-cell level.

In the first algorithm (AV-1), stations use a vector clock of N entries to causally

order messages, where N corresponds to the number of hosts in the system. This

algorithm does not scale with the number of hosts.

In the second algorithm (AV-2), stations use a vector clock of M entries, where

M corresponds to the number of stations in the system, which is much smaller

than the number of hosts in the system (M � N). The algorithm is based on

the observation that all messages broadcasted by a host pass through the station

to which the host is connected. Thus, messages are timestamped at the station

level. AV-2 scales much better than AV-1, since the number of stations is much

lower than the number of hosts. However, messages are reordered at the station

level. For example, two messages broadcasted by two hosts connected to the same

station will be reordered by that station, even if the two messages are concurrent.

The third algorithm (AV-3) is a tradeoff between AV-1 and AV-2. Each station

has S entries associated to it to order messages from hosts of its cell. Thus, in AV-3

stations use a vector clock of S ∗M entries, where S corresponds to the number of

entries associated to each station, and M corresponds to the number of stations in

the system. Associating S entries to each station reduces the number of concurrent

messages that are reordered, but it increases the size of the vector clock.

AV-1 uses a vector clock whose size depends on the number of hosts, which is

prohibitive. AV-2 and AV-3 use a vector clock whose size depends on the number

of stations. Thus, they scale much better, since the number of stations is much

lower than the number of hosts. However, the number of stations can still be high,

and the vector clock size of both algorithms can therefore still be prohibitive.
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The three algorithms maintain the causal information of a host at the station to

which the host is connected. A mechanism, called Handoff, is therefore provided

for moving the causal information related to a host when it connects to a new

station. A Handoff basically consists of a message exchange between stations to

transmit the causal information of a host. AV-1 requires two messages per handoff,

while AV-2 and AV-3 require M messages per handoff, where M corresponds to the

number of stations in the system. The handoffs require two assumptions to ensure

correctness: (1) a host always succeeds to connect to a cell’s station before leaving

that cell, (2) it first sends a disconnect message to a station before leaving its cell.

However, it is impossible to ensure these assumptions because of the unreliability

of the wireless network.

Other causal order algorithms for Mobile Networks are variants of these three

algorithms.

3.3.2 Algorithms with causal information of size O(N)

Like AV-1, some algorithms maintain causal information of size O(N), where N

corresponds to the number of hosts in the system.

Prakash et al. [PRS97] ensure causal order using direct dependencies [PRS96]

instead of vector clocks (See Section 3.2.1.4). Depending on the broadcast pat-

tern, direct dependencies use much less space but have, in the worst case, a space

complexity of O(2 ∗ N). A station mssi only sends a message m to a host mhi
only after mhi delivered and acknowledged all messages that causally precede m,

which increases the delivery delays of messages. Dominguez et al. [DPG10] avoids

such delays by attaching a bit vector of size N on messages sent over the wireless

network, thus enabling hosts to causally order messages by themselves. However,

attaching causal information of size O(N) on messages sent over the wireless net-

work is prohibitive.

Chi et al. [Chi+00] proposed an algorithm that maintains causal information re-

lated to a host independently of the host’s physical location, thus easily managing

them, especially during handoffs. A host mhi is attached during the whole execu-

tion to the first station mssb to which it connected, regardless of mhi’s location.

Messages from and for mhi are first forwarded to mssb, which disseminates and

causally orders them for mhi. When changing cells, mhi only needs to forward

its new location to mssb. Hence, handoffs are very easy and do not require the

assumptions made by [Ala95][AV97]. However, the algorithm has a high commu-

nication overhead since messages must all be routed through the initial stations

instead of being handled locally. Moreover, the algorithm requires that a FIFO

path exists through each pair of stations.
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Skawratananond et al. [SMG98] proposed an algorithm similar to [RST91], but

which implements handoffs more efficiently than [PRS96][AV97] by not requiring

that messages exchanged between stations are causally ordered.

3.3.3 Algorithms with causal information of size O(M)

Like AV-1 and AV-2, some algorithms use causal information of size O(M), where

M corresponds to the number of stations of the system.

Li and Huang [LH99] proposed a causal multicast algorithm similar to AV-2, but

which handles handoffs without requiring that a host always succeeds to connect

to a station before leaving the station’s cell. On the other hand, the algorithm still

requires the assumption that a host notifies the station of a cell before leaving it.

Prakash and Singhal present in [PS97] an algorithm that uses vector clocks with one

entry per station like AV-2, as well as the concept of dependency sequences in order

to reduce the number of concurrent messages that are reordered when using vector

clocks with one entry per station. A dependency sequence is a range of sequence

numbers appended to a message m. Its purpose is to identify concurrent messages

to m. The size of dependency sequences is not bounded, even though it is usually

small, because they represent ranges. Moreover, they can be periodically discarded

through check pointing. However, the algorithm requires the assumption that a

host unregisters itself when leaving a cell, which might not always be possible.

Yen et al. proposed an algorithm [YHH97] which is a tradeoff between AV-1

and AV-2. However, the algorithm is only applicable to causal multicast and is

therefore not described here. Furthermore, Skawratananond [SMG98] showed that

the algorithm violates the liveness property.

Anastasi et al. [ABS99][ABS01] proposed a causal multicast algorithm that uses

two additional components, coordinators, and one super-coordinator, both chosen

among stations at initialization. The algorithm tracks causal order through vector

clocks of C entries, where C corresponds to the number of coordinators, which

is much smaller than the number of stations. Hosts order messages causally by

themselves: they maintain a vector clock of C entries, which they use to causally

order messages at reception and timestamp messages they broadcast. A host mhi
is attached during the whole execution to its coordinator station mssc, regardless

of mhi’s location. Stations forward to mssc the messages from and for mhi. mssc
then disseminates messages from mhi in causal order. Moreover, it causally orders

messages for mhi, and forwards them in FIFO order to mhi. When changing

cells, mhi only needs to forward its new location to mssc. Therefore, handoffs

are very easy and do not require the assumptions made by [Ala95][AV97]. On
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the other hand, the algorithm has a high communication overhead since messages

must all be routed through the initial stations instead of being handled locally. The

algorithm also requires that a FIFO path exists through each pair of stations, and

that the wireless network is FIFO. Moreover, concurrent messages are ordered with

a vector clock of C entries, with C being even smaller than the number of stations.

Consequently, messages are even more reordered than with AV-2. Finally, the

coordinators and the super-coordinator are a performance and failure bottleneck.

Chandra and Kshemkalyani [CK04] extended the algorithm in [KS96] to Mobile

Networks. The core algorithm is similar to AV-2. Authors add to the core of the

algorithm the deletion of obsolete messages. A message becomes obsolete once all

hosts have delivered it. Each station mssi maintains a sequence counter seqi to

timestamp with (mssi, seqi) messages broadcasted by hosts in its cell. A host ac-

knowledges its delivery of each message. A station forwards an acknowledgement

from a host for message (mssi, seqi) to mssi, which sends a Delete message for

(mssi, seqi) to all stations, after receiving an acknowledgement from each host. A

station discards message (mssi, seqi) upon reception of the corresponding Delete

message. The advantage of the algorithm is that it handles the deletion of obso-

lete messages, contrarily to other algorithms. The two main disadvantages of the

algorithm are: (1) Station mssi only sends a message m to a host mhi once mhi
delivered all of m’s causal dependencies. Therefore, m is delayed at mssi until the

host acknowledged m’s causal dependencies to mssi; (2) A lot of acknowledgements

must be forwarded on the wired network.

Benzaid and Badache proposed a causal broadcast protocol [BB08] tailored to

causal broadcast, while other presented algorithms were conceived for multicast.

The algorithm tracks causal dependencies through direct dependencies, introduced

by Prakash in [PRS96]. Otherwise, the algorithm is similar to [CK04].

3.3.4 Hierarchical approach

Hsiao and Liao [HL11] proposed an algorithm where hosts that belong to the same

cell communicate directly without passing through their cell’s station. On the

other hand, messages from a host to hosts in other cells still pass through stations.

The algorithm tracks causal order with two vector clocks, one for the intra-cell

level, and one for the inter-cell level. The intra-cell vector has one entry for each

host inside the cell (M), while the inter-cell vector has one entry per station in the

system. The handoff requires the assumption that a host succeeds to connect to

a cell before leaving. Moreover, each host must know the identity of all the hosts

inside its cell, and this cell-membership must be updated each time a host joins or

leaves a cell. This algorithm enables hosts of the same cell to communicate with

each other without passing through a station. The drawback of the algorithm is
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that messages sent over the wireless network must carry a vector of M entries, and

hosts must know the identity of all the hosts inside their cell.

3.3.5 Mobile Network failures

Traditional algorithms to handle process failures cannot be applied to Mobile Net-

works, due to their specific constraints. Hosts have limited memory capacities and

might not have stable memory capacities because of thefts or device losses. There-

fore, checkpoints should be stored at stations. Moreover, hosts should send as few

data and perform as few actions as possible to save battery. Hosts are also mobile

and move between cells. Determining the station to which they are or were con-

nected is not immediate. Finally, message losses on the wireless network requires

additional control. This section presents algorithms to handle host and station

failures.

3.3.5.1 Mobile Host failures

Acharya and Badrinath [AB94] give rules to decide when hosts should do check-

points when considering uncoordinated check pointing, i.e., each host does local

checkpoints without aiming to compute global ones. Authors also give a set of rules

to do local checkpoints that can be combined into a consistent global checkpoint.

Krishna et al. [KVP93] propose an algorithm to handle host failures. Stations are

assumed to be fault-tolerant. A host mhi does checkpoints, and send them to the

station mssi to which it is connected. Two strategies are presented: (1) mhi does

a checkpoint at each write event, and sends it to mssi; (2) mhi does a checkpoint

regularly. mssi first logs messages before mhi processes them, thus ensuring that

mhi will not process a message that mssi cannot recover. Upon recovery, mhi
connects itself to a station to recover its last checkpoint, as well as its logs. It then

restores the state stored in the last checkpoint, and delivers the message stored in

its logs.

Pradhan et al. [PKV96] consider two checkpointing strategies similar to [KVP93],

for which they propose three handoff strategies. The memory of hosts is consid-

ered as not reliable, even the stable memory, because of thefts or device losses.

Conversely, the memory of stations is considered to be reliable. In the pessimistic

strategy a host that changes cell sends its checkpoint (and logs if used) to the

station of its new cell. Such a strategy ensures that each station stores a check-

point for hosts connected to it. However, transferring a checkpoint at each handoff

consumes data. In the lazy strategy no checkpoint is transferred during handoffs.

Instead, a host regularly creates and sends a checkpoint to the station to which
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it is connected. During a handoff, a host only sends to its new station a linked

list containing the stations to which it was connected. When recovering, a host

contacts its station, which will look up the most recent checkpoint by contacting

the stations in the linked list. In the Trickle strategy, a host ensures that at least

the previous station to which it was connected stores a checkpoint for it. This

avoids a costly message exchange to find a host’s checkpoint in the case where a

host changes cells often. Authors conclude through experiments that there is no

optimal strategy, and that the best recovery strategy depends on several parame-

ters which are the bandwidth of the wireless network, mobility of hosts, and the

failure rate of hosts.

3.3.5.2 Mobile Support failures

Alagar et al. [ARV93] propose an algorithm that tolerates station failures. Each

station has k + 1 backup stations, where k corresponds to the maximum number

of stations that can be simultaneously down. Consider a host hi which sends a

message m to the station mssi to which it is connected. mssi first sends m to

its backup stations Backupi before disseminating m, thus ensuring that if it fails,

then stations of Backupi will take in charge the retransmission of m. The authors

suggest to select backup stations for mhi either based on locality (stations that are

close to mssi) or stations to which mhi was connected before connecting to mssi.

Anastasi et al. [ABL04] give a causal multicast algorithm tolerant to station fail-

ures. The authors keep the checkpoints at hosts, i.e., they assume that hosts have a

reliable stable storage. Therefore, handoffs do not require exchanging information

related to checkpoints. The algorithm tolerates the failure of hosts and stations.

Stations are grouped as in the approach in [ARV93] and there is one coordinator

per group. Stations forward received messages to the coordinator which will send

them to all stations of the group. Coordinator failures can be tolerated by using

several coordinators per group instead of one.
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3.3.6 Summary and discussion

Table 3.7: Summary of Causal order approaches in mobile networks

Paper C.O.

Wired

message

overhead

Wireless

message

overhead

Realistic

handoff

assumptions

Handoff

messages

Alagar - AV-1 [Ala95] VC O(N) O(1) 7 O(1)

Alagar - AV-2 [Ala95] VC O(M) O(1) 7 O(M)

Alagar - AV-3 [Ala95] VC O(M ∗ k) O(1) 7 O(M)

Prakash et al. [PRS97] VC O(N) O(1) 7 7

Dominigez et al. [DPG10] VC O(N) O(N) 7 7

Chi et al. [Chi+00] VC O(N) O(N) X X
Skawratananond et al. [SMG98] VC O(N) O(N) X X
Li and Huang [LH99] DD O(M) O(1) 7 O(1)

Prakash and Singhal [PS97] DD O(M) O(1) 7 O(1)

Anastasi et al. [ABS99] VC O(C) O(1) X O(1)

Chandra and Kshemkalyani [CK04] DD O(N) O(1) 7 O(1)

Hsiao and Liao [HL11] VC O(N) O(N) X O(1)

Benzaid and Badache [BB08] DD O(N) O(1) X O(1)
N: Number of hosts M: Number of stations k: Constant C: Number of coordinators

VC: Vector Clocks DD: Direct Dependencies

Table 3.7 summarizes the causal multicast approaches in mobile networks. The

column C.O. represents the Causal Order structure. The algorithms either use

vector clocks or direct dependencies. They make either realistic handoff assump-

tions, represented by a Xor unrealistic ones, represented by a 7. During a handoff,

the new and previous station of a host exchange messages. The complexity in

terms of number of messages exchanged during handoffs are shown in the Handoff

messages column. Algorithms that do not handle handoffs are marked with a 7.

Alagar et al. [Ala95] proposed the first causal multicast algorithms for mobile

networks. We denote those algorithms AV-1, AV-2 and AV-3. The other causal

multicast algorithms for mobile networks are derived from these three algorithms.

Only the algorithms proposed by Chi et al. [Chi+00] and Anastasi et al. [ABS99]

tolerate handoffs under realistic assumptions. Chandra and Kshemkalyani [CK04]

proposed the first algorithm that discards messages once they become obsolete, i.e.,

once all hosts have delivered them. Hsiao and Liao [HL11] proposed an algorithm

where hosts of the same cell communicate directly with each other without passing

through the cell’s station.
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Overall, only some algorithms do realistic handoff assumptions. All algorithms

use causal order structures on the wired network with a space complexity either

in terms of the number of mobile hosts or the number of stations (or coordinators

which can become a bottleneck) in the system. Only one algorithm [CK04] discards

the causal information of obsolete messages.

Finally, some works consider the failure of hosts or stations. Algorithms that do

tolerate host failures do it through checkpoints that hosts send regularly to the

station to which they are connected. Those that tolerate station failures do it by

replicating the information stored at stations on backup stations.

3.3.7 Conclusion

This chapter presented the related work of the literature relevant to this thesis.

First, we presented the causal broadcast algorithm approaches by grouping them

in six categories. Second, we presented causal multicast algorithms for mobile

networks, as well as algorithms that tolerate failures in mobile networks.

Causal broadcast approaches are classified in categories corresponding to the data

structure they use to ensure causal order.

Some approaches append on messages the causal information required to causally

order them. Those approaches use vector clocks with one entry per process,

bounded and compressed vector clocks, direct dependencies (causal barrier) or

vector clocks of size M < N where N corresponds to the number of nodes in the

system. The advantage of those approaches is that they require no or few as-

sumptions on the system. Their main disadvantage is that the causal information

attached to messages has in the worst case a space complexity of O(N) where N

corresponds to the number of processes in the system. Hence, they do not scale.

Other approaches append less or no causal information on messages by making

assumptions on the network. These approaches are hierarchical structures and

algorithms based on dissemination through FIFO communication channels. The

main advantage of those algorithms is that they either append no causal informa-

tion to messages, or they append causal information whose size is depending on

a local subset of processes. Hence, they do scale. The main disadvantage is that

they require assumptions on the network, which are complicated to maintain in

presence of process churn or process failures. Hence, they mostly do not tolerate

process churn or process failures, or they only do it under specific conditions.

Some approaches use physical time to causally order messages. These approaches

use physical clock timestamps and/or associate a given lifetime to messages. The

main advantage of these approaches is that they append few causal information
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on messages and do therefore scale. Moreover, they tolerate process failures and

process churn. However, they require the physical clocks of processes to be synchro-

nized to at most an upper error bound, and this condition might not be ensured

all the time even when using network protocols to synchronize physical clocks.

Finally, some works propose to use application specific knowledge to causally or-

der messages. These approaches can be implemented above the presented causal

broadcast algorithms.

The second part presented existing algorithms that ensure causal multicast in mo-

bile networks. Alagar [Ala95] proposed the first three causal multicast algorithms

for mobile networks. They order messages either at the host level, thus requiring

a vector with one entry per host, or at the stations level, thus requiring a vector

with one entry per station, or in between the station and host level, thus requiring

a vector with a number of entries between the number of hosts and stations. Other

causal multicast algorithms for mobile networks of the literature derive from the

three algorithms proposed by Alagar. Most of them propose a handoff procedure

to allow a host to change the station to which it is connected. However, most of

them require unrealistic network assumptions.

Finally, some works consider the failure of hosts or stations. Algorithms that

tolerate host failures do it through checkpoints that hosts send regularly to the

stations to which they are connected. Those that tolerate station failures replicate

data on backup stations.
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4.1 Introduction

The first part of this thesis addresses causal broadcast in Mobile Networks, which

are mainly composed of Mobile Support Stations and many Mobile Hosts. A causal

broadcast algorithm for Mobile Networks should tolerate the many constraints

inherent to those networks (see Section 2.5), and it should also scale. This chapter

presents two causal broadcast algorithms for Mobile Networks that are based on

the FIFO-dissemination approach on an overlay network [FM04]. Both algorithms

make realistic assumptions considering the characteristics of mobile networks.

Approaches that piggyback causal information on messages are not suitable to

Mobile Networks because they do not scale. The causal information they piggy-

back on messages either grows with the number of nodes [Fid88][Mat80], or with

the message load [MW17b][PRS96]. On the other hand, approaches based on dis-

semination of messages over FIFO channels [FM04][NMM18a] append no causal

information on messages and scale therefore well. They organize the network in

an overlay over which messages are disseminated through FIFO channels, ensuring

that messages are causally ordered upon reception. Such approaches ensure that

messages are causally ordered upon reception, and processes can therefore deliver

them directly after receiving them without using a mechanism to order messages

at reception. However, existing FIFO-based approaches require assumptions on

the overlay that cannot be provided in all systems, like in Mobile Networks. More

particularly, FIFO-based approaches require that there exists no path over which

messages can travel out of causal order. However, adding a communication channel

between two processes temporarily creates a shortcut over which messages can be

received by the two endpoints out of causal order. Let’s consider for instance the

example of Figure 4.1. At (a), A broadcast m. At (b), a communication channel

is added between A and B. At (c), A broadcasts a second message m′. We see that

m′ can take the shortcut A→ B over which m was not sent. Hence, at (d) we see

that B receives m′ before m, i.e., it receives m′ out of causal order.

Implementing a FIFO-based approach is challenging in Mobile Networks because

of the dynamics in the network topology caused by Mobile Hosts that change lo-

cations, leading to communication channels that are removed and added regularly.

The algorithm must also take into account the constraints of Mobile Networks.

Mobile Hosts as well as Mobile Support Stations might fail. Moreover, Mobile

Hosts have limitations such as limited memory, computational power, battery life

or reliability issues [FZ94]. For example, a mobile host is subject to a transient

failure when its battery becomes flate and to a hardware failure when its battery

dies or a hardware failure occurs. Finally, the wireless network that connects hosts

and stations is unreliable because of interferences that cause message losses.
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Figure 4.1: Path over which a message can travel out of causal order

To our knowledge, no work proposed causal broadcast that takes into account the

constraints of mobile networks. On the other hand, several works address causal

multicast in mobile networks [CK04][PRS96][ABS99][BB08][LH99]. However, they

usually make unrealistic assumptions such as reliable [CK04][PRS96] and/or FIFO

[BB08][LH99] channels, or reliable host connection protocols. For example, they

do not address the problem that hosts might fail to connect to a cell’s station

before moving to another cell. Furthermore, they usually consider that hosts are

reliable, i.e., they never fail, and the proposed solutions do not scale. Note that

causal multicast algorithms usually require additional information useless for causal

broadcast.

We consider that hosts can join/leave the network and fail, permanently or tran-

siently, at any time. They move freely and might be temporarily disconnected from

the network when out of range of any station. We assume no reliable connection

protocol, and the algorithm handles multiple concurrent connections by the same

host. Resource limitations of hosts are handled by keeping causal information at

stations, while hosts keep very little control information. Messages piggyback only

a few integers as control information.

This work also proposes a decentralized deletion of obsolete messages. Stations han-

dle interferences on the wireless network by caching messages for retransmission.

Those messages become obsolete once hosts delivered them. Existing discarding

solutions of obsolete information are centralized [CK04][BB08], inducing a high

overhead of message traffic (acknowledge messages) and memory storage (a mes-

sage is cached at all stations even if only one station requires it). The presented

algorithms discard obsolete messages cached at stations in a decentralized way: a

station discards a message once all hosts connected to it acknowledged the message.

Consequently, stations only cache necessary messages, and no extra messages are

exchanged for message discarding. A high message traffic inside a cell, which might
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lead to delivery delays, as well as storage and communication overheads, only has

a local impact.

Summing up, the proposed causal broadcast algorithm is scalable in both the num-

ber of hosts and stations, has a low message traffic and storage overhead, while

handling mobile network dynamics without the constraining assumptions of FIFO-

based [FM04][NMM18a][NMM18a] or causal multicast approaches [CK04][BB08].

Section 4.2 presents the system model, Section 4.3 presents the first causal broad-

cast algorithm where stations are assumed to be reliable, and Section 4.4 gives the

experimental results for this algorithm collected through experiments conducted

over the OMNeT++/INET [Var01] simulator. Section 4.5 presents the second

algorithm which extends the first algorithm to tolerate station failures.

4.2 Model

The mobile networks considered in this work are composed of Mobile Hosts, de-

noted host(s), and Static Support Stations, denoted station(s). Hosts and stations

exclusively communicate through message passing. Hosts are the sources and des-

tinations of application messages, and stations ensure that hosts receive and deliver

messages causally. Applications running on hosts use a group communication ser-

vice to join and leave the network, as well as to broadcast messages to all hosts

and deliver messages in causal order.

The features of stations, hosts, and network are the following:

• Stations:

– Each station is at the center of a cell, corresponding to the area covered

by its antenna’s transmission range.

– Each station holds the causal information hosts connected to it require

to deliver application messages in causal order.

– Stations are supposed to be static. For the first algorithm, they are

supposed to be reliable through hardware replication. For the second

algorithm they can fail.

– Stations have no energy limitations and have a much higher storage and

computational capacity than hosts.

• Hosts:

– A host is connected to at most one station (generally the closest one)

at any given moment and communicates with the system through that

station, by sending messages on the wireless network.
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– A host can join and leave the network at any moment. A host that joins

the system will not deliver those application messages that the station

to which it connects the first time has discarded prior to its connection.

– Hosts move freely inside and outside cells.

– Hosts have computational, storage, and energy limitations.

– Hosts are subject to transient and permanent failures. For example, a

host is temporarily faulty until its battery is recharged, or it is perma-

nently faulty if it has a hardware failure. A faulty host stops sending,

receiving, processing messages, and it loses all variables it stored in

volatile memory.

Hosts have two states: up and down. Station control the state of hosts

connected to them: A station considers a host connected to it as down

after not receiving any messages from the host for a given interval of

time. Otherwise, the station considers the host as up.

• Network:

– The wireless network is considered unreliable due to interferences. The

bandwidth of the wireless network is much lower than the bandwidth of

a wired network. Hosts communicate with stations exclusively through

the wireless network.

– The wired network is composed of FIFO communication channels with-

out message losses. Nevertheless, wired channels can fail. Moreover,

stations communicate over the wired network by using the algorithm

proposed by Mostéfaoui [NMM18a]. Therefore, wired channels can be

added and removed, as long as there exists a path of communication

channels initialized by the algorithm [NMM18a].

Every application message is uniquely identified by (hi, seqh), where seqh is the se-

quence number that host hi attributes to the application message. Moreover, since

cells may overlap, every message broadcasted over the wireless network piggybacks

the ID of the cell in which it is broadcasted. Stations and hosts verify the cell ID of

messages they receive over the wireless network, and only take into account those

broadcasted inside their cell.

The termination condition of causal broadcast must be modified to adapt it to the

dynamics of mobile networks. Consider sk to be the first station which acknowl-

edges the join of host hi. The latter will not deliver the application messages that

sk discarded prior to receiving the join message of hi. The termination condition

of causal broadcast therefore becomes:

Termination. Consider sj,hi
to be the first station which acknowledges to host hi

the system join of hi. A message m co-broadcasted by an up host is co-delivered

by all up hosts hi for which sj,hi
did not discard m prior to hi’s connection.
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4.3 Causal broadcast with reliable stations

This section presents WAS, a causal broadcast algorithm which extends the FIFO

dissemination approach [FM04] to mobile networks, where hosts move freely, are

subject to failures, and communicate through unreliable wireless channels. Stations

communicate with each other through reliable wired channels. WAS tolerates the

failure of hosts and handles the move/join/leave operations of hosts.

The description of WAS is divided into three parts: (1) dissemination of application

messages, (2) join/leave operations, and (3) handoff procedure to handle hosts

moving between cells. The proof of the algorithm can be found in Section 4.6.

4.3.1 Dissemination of application messages

The FIFO dissemination approach achieves causal broadcast by ensuring that no

path exists over which messages can travel out of causal order. Friedman and

Manor [FM04] showed that ensuring that all communication channels are FIFO

ordered is sufficient to ensure causal broadcast in static networks. However, in

mobile networks new communication channels can be added. These communication

channels create paths over which messages can temporarily take a shortcut and be

received by processes out of causal order, as explained in Section 3.2.4. WAS

provides a FIFO dissemination-based causal broadcast for mobile networks, by

ensuring that those new paths are not used to disseminate messages as long as

messages can take a shortcut and be received out of causal order by passing through

them. This section explains how WAS ensures causal order in a static mobile

network, while the following sections explain how WAS handles the dynamics of

mobile networks.

In Mobile Networks, hosts are the source of application messages, and stations

ensure that all hosts deliver application messages while respecting the causal re-

lations between the application messages. We divide the network in two modules:

the intra-cell module, composed of a station and hosts connected to it, and the

inter-cell module, composed of all stations.

4.3.1.1 Intra-cell module

An intra-cell module, called a cell, is composed of a station si and the hosts con-

nected to si. A Host of cell ci communicates with the system by sending messages

to si through the wireless network. The FIFO dissemination approach requires reli-

able FIFO channels. They are implemented on wireless communication channels by
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Figure 4.2: Dissemination of application messages in the intra-cell module

means of sequence numbers, retransmissions, and buffering until acknowledgment,

as shown in Figure 4.2. A host uses the sequence number seqh to order messages it

sends, and its station keeps seqh to order application messages it receives from the

host. A station uses seqC to order application messages it broadcasts, and hosts

use seqNC to order application messages they receive from their station. Both sta-

tions and hosts maintain two local buffers: one buffer to FIFO-order messages at

reception (Sbuf ), and another one to retransmit sent/broadcasted messages until

they are acknowledged (Rbuf ).

4.3.1.2 Inter-cell module

The inter-cell module is composed of all the stations and the wired communication

channels connecting them. The FIFO dissemination of messages is ensured on the

wired network with the algorithm proposed by Nédelec and all [NMM18a], which

tolerates dynamics under certain conditions. The authors define initialized com-

munication channels, which are either communication channels initially present, or

communication channels which were initialized through the algorithm. The algo-

rithm notably requires that there always exists a path of initialized communication

channels between each pair of nodes. Hence, we assume that each pair of stations is

always connected by a path of initialized communication channels. The algorithm

also requires reliable FIFO communication channels. Wired communication chan-

nels reliability can be easily achieved through protocols like TCP. The algorithm

presented by Nédelec and all [NMM18a] ensures that messages travel in causal

order over the wired network, i.e., between stations in our case.

4.3.1.3 Message acknowledgment

Hosts and stations keep messages in their SBuf for retransmission. A host keeps an

application message in its Sbuf until its cell’s station acknowledged the message.

A station of group G keeps an application message m in its Sbuf until, ∀sk ∈ G,

all hosts connected to sk acknowledged m, i.e., m is acknowledged by all hosts

connected to stations of G.
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Figure 4.3: Broadcast of m1 and m2

A host regularly acknowledges application messages by broadcasting an acknowl-

edge message containing a set of sequence numbers ranges [seqk, seqk+1] which ac-

knowledge the messages m,m.seq ∈ [seqk, seqk+1]. A station also regularly broad-

casts such an acknowledge message in its cell to acknowledge application messages

to hosts connected to it.

Stations should discard obsolete application messages from their SBuf. Existing

discarding approaches are centralized, which induces a high message and memory

overhead. WAS implements a decentralized discarding of obsolete messages, where

each station deletes an application message m once all hosts connected to it have

delivered m. Therefore, stations store fewer messages in SBuf when using the WAS

algorithm.

Hosts do not send acknowledgments during handoffs, since they would acknowledge

application messages received from another station, which might order application

messages differently.

4.3.1.4 Broadcast example

Figure 4.13 shows the broadcast and delivery of two causally related application

messages. Host h1 (resp. h2) is connected to station s1 (resp. s2), and s1 and s2

are connected by a wired channel. Hosts (resp. stations) piggybacks seqh (resp.

seqC) on application messages broadcasted over the wireless network. The sending

buffers SBuffers are represented in bold.

First, h1 broadcasts m1. Upon reception, s1 attributes the sequence number seqC =

1 to m1, broadcasts m1 in its cell, which contains h1, and broadcasts m on the
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wired network to forward it to s2. Upon reception, s2 attributes the sequence

number seqC = 1 to m1, broadcasts m1 in its cell, which contains h2, and also

broadcasts m on the wired network. h2 receives and delivers m1, then broadcasts

m2 (co-broadcast(m1) → co-broadcast(m2)). s2 receives m2, attributes seqC = 2

to it, then broadcasts m2 on the wired network.h2 (resp. s2) stops transmitting

m1 (resp. m1 and m2) upon reception of the acknowledgment message regularly

broadcasted by s2 (resp. h2). h1 receives neither m1 the first time s1 broadcast it

due to interferences, nor its acknowledgment. Hence, h1 retransmits m1. s1 ignores

the second reception of m1 since it already received m1. Upon reception of m2, s1

broadcasts it. Then h1 receives and buffers m2 because the sequence number that

s1 attached to m2 is equal to 2, and h1 awaits a message with seq=1. Eventually,

s1 broadcasts m1 again and, upon reception, h1 delivers m1 then m2. Finally, h1

(resp. s1) acknowledges m1 and m2 (resp. m1). s1 (resp. s2) discards m1 and m2

from its sending buffer SBuf after h1 (resp. h2) acknowledged them. Hence, m1

and m2 are completely discarded from the network, i.e., removed from the buffers

of all nodes.

4.3.2 Join/leave the network

WAS tolerates host churn during execution: a host can join and leave the network

at any moment. Joining and leaving the network is not as immediate as it seems,

because of the unreliability of the wireless network.

Joining the network. A host hi joins the network by regularly sending a joink+1

message to station si until si replies with the corresponding connectACK,k+1 mes-

sage. The connectACK,k+1 message contains seqC , the sequence number of the oldest

message sj caches in SBuf. Upon reception of the connectACK,k+1 message, hi com-

pletes the connection initialization by updating seqNC to seqC . hi can now begin to

deliver application messages, based on seqNC . Moreover, due to the unreliability

of the wireless network, si must do some additional work to ensure that it is the

only station that has an open connection with hi.

In fact, several stations might receive the joink+1 message of hi, and each of these

stations will then open a connection with hi. When hi sends a joink+1 message

to si through the unreliable wireless network, one of the three following scenarios

presented in Figure 4.4 occurs: (1) both the joink+1 and connectACK,k+1 messages

are received; or interferences cause the loss of either (2) the joink+1 message, or

(3) the connectACK,k+1 message. Due to scenarios (2) and (3), hi cannot decide if a

station from which it receives no connectACK,k+1 has received its joink+1 message

or not. Moreover, hi might move between several cells before it succeeds to connect

to a station and thus join the system. hi will then send joink+1 messages to several

stations. Therefore, several stations might receive and open a connection with hi
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Figure 4.4: Host connection scenarios

before hi receives its first connectACK, message. However, hi should be connected

to only one station, which is the one to which hi sent the last joink+1 message.

Stations handle such multiple connections by identifying each connection with a

tuple (hi, k), with hi being the host that connects to the station and k being the

kth connection of hi to a station. When si receives a joink+1 message from hi, it

broadcasts a Delete message on the wired network containing the tuple (hi, k+ 1).

Stations that maintain a connection (hi, x) with x < k + 1 unregister it upon

reception of the Delete message. This ensures that eventually only the connection

between si and hi remains.

Leaving the network. Host hi leaves the network by broadcasting a leave mes-

sage, until a station, regardless of which one, acknowledges it. The station which

receives the leave message broadcasts a Delete message, and stations that have a

registered connection with hi remove it upon reception of the Delete message.

4.3.3 Handoff procedure

The algorithm described in Section 4.3 ensures causal broadcast in networks where

hosts always stay connected to the same station, i.e., in which hosts do not change

cells. This section provides a handoff which enables hosts to change cells while

delivering broadcast messages in causal order. Basically, when a host hi changes

the cell, by leaving the cell of station sk, entering the cell of station sk+1 and

connecting itself to station sk+1, then sk+1 executes the handoff with sk in order

to ensure that hi delivers messages causally. The handoff has three objectives:

(1). A station maintains the causal information related to hosts connected to it.

Hence, when hi changes cell, its causal information must be transferred from

sk to sk+1.

(2). The handoff ensures that the wireless channel that hi establishes with sk+1

when changing cell does not create a path over which hi receives or sends

messages out of causal order.
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Figure 4.5: Sequence number assignation by stations

(3). The decentralized deletion of application messages by stations implies that

sk+1 might already discarded some application messages that hi did not de-

liver yet, and vice versa. sk+1 compares its cached application messages with

sk to ensure that hi delivers each application message exactly once.

Note that the handoff of WAS makes no assumption on the movement of hosts,

contrarily to some existing handoff procedures [CK04][ABS99][BB08] which make

several unrealistic assumptions: they assume that a moving host always succeeds

to connect to station sk before connecting to station sk+1, or/and that hi is able

to send a disconnect message to sk. Both of these assumptions are not realistic

because of the unreliability of the wireless network and the movement of hosts.

WAS makes no assumptions on the movement of hosts, and tolerates simultaneous

handoffs for the same host hi, which might occur when hi changes rapidly cells. The

correctness of the handoff requires no assumption about the success of connection

attempts. Moreover, failures of hosts and stations are tolerated, as well as the

failure and addition of wired communication channels connecting stations.

We start the handoff section by discussing the challenges that the handoff procedure

faces (handoff challenges), then we describe the handoff procedure algorithm itself,

and finally, we give an example of handoff execution.

4.3.3.1 Handoff challenges

The three main challenges that handoff procedures faces are: host connections, the

causal ordering of messages, and the discarding of obsolete application messages.

Host connections. When hi sends a connectk+1 message to a station si but

receives no reply, then it cannot conclude whether si did or did not receive that

connectk+1 message, i.e., hi cannot distinguish between the cases (b) and (c) of

Figure 4.4. Because of such situations, hi cannot always determine which station

keeps its causal information. Furthermore, hi might connect to several stations

in a short time interval, and several of those stations might receive hi’s connect

message, i.e., several stations execute a handoff for hi simultaneously.
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Therefore, a handoff for hi must locate hi’s causal information, while tolerating

simultaneous handoffs for hi, and it must also ensure that the last station that

started a handoff for hi eventually maintains hi’s causal information.

Message ordering. The sequence number seqNC that hi uses to deliver appli-

cation messages is only valid in the connection identified by SesLC , which stores

the connection sequence number of the last connection in which hi received a

connectACK, message. In fact, a station assigns a sequence number seqC to ap-

plication messages as it receives them. Hence, stations might order application

messages differently, since they might receive application messages in a different

order. For example, in Figure 4.5 the stations sk and sk+1 order application mes-

sages differently: 1 hi (resp. h2) broadcasts m1 (resp. m2). 2 sk (resp. sk+1)

receives m1 (resp. m2) and forwards it to sk+1 (resp. sk). 3 sk (resp. sk+1) orders

m1,m2 as [m1,m2] (resp. [m2,m1]). Consequently, if hi delivers m1 while connected

to sk and then connects itself to sk+1, then sk+1 cannot assign to hi the sequence

number seqNC=1, because hi would then never deliver m2 and deliver m1 twice,

i.e., seqNC is valid at sk but not at sk+1. Hence, sk+1 must exchange messages with

sk to compare the ordering of application messages in their respective SBuf.

Discarding obsolete application messages. As seen above, sk+1 must compare

the application messages it caches with sk, because it might order them differently.

However, a station discards an application message once all hosts connected to it

have acknowledged the application message. This can lead to different SBuf states

between sk+1 and sk. For instance, in Figure 4.5, assume that hi connects to sk+1

before delivering m2, but that sk+1 already discarded m2 when hi connects to it.

sk+1 must then recover m2 from sk, and hi should deliver m2 before delivering

messages currently broadcasted by sk+1 (m1). Moreover, if hi already delivered m1

when connected to sk, then sk+1 must identify it.

However, stations do not maintain any information about messages they discard.

For example, sk cannot inform sk+1 that hi already delivered m1 if hi delivers m1

before connecting to sk+1, because sk does not keep any information about m1.

Therefore, sk and sk+1 must compare their cached application messages, while

considering that they do not necessarily assign the same sequence number to ap-

plication messages, as well as that they might respectively have some application

messages that the other station has not received yet or that the other station has al-

ready discarded. They must do that without keeping information about discarded

application messages.
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Task of hi :
Connecting to station si

1: broadcast(<connectk+1,idh,seqNC ,k+1,SesLC>) to si
2: k = k+1

receive <connectACK,k+1,seqh,seqNC,Ses>:
3: seqNCi

=seqNC ;seqhi
=seqh;SesLCi

=Ses;

Task of stations si ∈ Gsk+1
:

receive <connectk+1,hi,seqNC,k+1,SesLC> at si:
1: if @c ∈ Connections, c.id = (hi, k + 1)∧ c not in handoff then
2: Register(hi)
3: if c.s=id then
4: broadcast(<connect,hi,seqNC ,Ses,SesLC>)
5: broadcast(<Req1,k+1,idh,seqNC ,SesLC ,Ses>)
6: else
7: if SesLC=c.Ses then
8: c.seqC = seqC
9: c.Ses = Ses

10: if c.Md = ∅∧ c.s = si then
11: broadcast(<connectACK ,hi,seqCi

,Ses>) to hi
12: broadcast(<Delete, hi, Ses>) on the wired network

receive <Rsp1,idh,seqh,mnd,Ses> for connection c at si:
13: if c.s = si then
14: msgreq=message of mnd that si has discarded
15: broadcast(<Req2,k+1,idh,msgreq,Ses>)

receive <Rsp2,idh,msg,msgrcv,Ses> for connection c at si:
16: ∀m ∈ SBufsi , hi delivered m, m.Md = m.Md∪{hi}
17: if msg = ∅ then
18: seqS = min(m.seq, ∀m stored by si that hi did not deliver)
19: broadcast(<connectACK ,idh,seqS,Ses>)
20: else
21: ∀m ∈ msg, broadcast(m) on the wireless network
22: if c.s = si then
23: broadcast(<Delete,hi,Ses>)
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Task of sk :
receive<Req1,k+1,idh,seqNC,SesLC,Ses> for connection c at si:

1: if c.Ses < Ses∧ c in handoff then
2: if SesLC == c.Ses then
3: c.seqS = seqNC

4: mnd={(idh,seqh) of messages hi has not delivered}
5: c.Ses=Ses
6: if c.s = si then
7: broadcast(<Rsp1,idh,seqhi

,mnd,Ses>)

receive <Req2,k+1,idh,msgreq,Ses> for connection c at si:
8: msg= messages requested in msgreq

9: mrcv= messages sk received since receive(Req1,k+1)
10: broadcast(<Rsp2,idh,msg,mrcv,Ses>)
11: unregister(hi)

4.3.3.2 Handoff description

The pseudo-code of the handoff procedure is given by the Tasks hi, sk, and sk+1,

which respectively give the pseudo-code executed by host hi and the stations sk
and sk+1. Figure 4.6 shows the handoff procedure, composed of four phases whose

purpose are:

• Phase 1: hi connects itself to sk+1 by broadcasting connectk+1.

• Phase 2: sk+1 determines the application messages it discarded that hi has

not delivered. sk and sk+1 exchange the messages Req1,k+1 and Rsp1,k+1

during this phase.

• Phase 3: sk+1 determines which, among the application messages it caches, hi
has not delivered. sk and sk+1 exchange the messages Req2,k+1 and Rsp2,k+1

during this phase.

• Phase 4: Initialization of the connection between sk+1 and hi.

The execution of handoff Hi,k+1 is said to be valid if:

• Hi,k+1 is aborted, which happens when before processing the handoff Hi,k+1,

sk processes a handoff Hi,k+n, with n > 1, until the end of Phase 3, i.e.,

handoff Hi,k+1 is aborted by a more recent handoff Hi,k+n.

• Exactly sk+1 and stations of Gsk+1
eventually hold the causal information of

hi, provided that sk+1 does not fail till the end of Phase 3.
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Figure 4.6: Handoff procedure

• Otherwise, exactly sk and stations of Gsk eventually hold the causal informa-

tion of hi if sk+1 fails before the end of Phase 3.

Phase 1. When hi moves to the cell of sk+1, it sends a connectk+1 message to

sk+1 that contains: the connection sequence number Ses, the connection sequence

number of its last initialized connection SesLC , and the sequence number seqNC of

the last message it delivered.

Upon the reception of the connectk+1 message from hi, sk+1 verifies if it has already

registered a connection with hi(line sk+1.1). sk+1 registers the connection with hi
if none is registered (lines sk+1.9 – sk+1.10) and starts the handoff procedure. On

the other hand, hi is already registered if either (1) (a) hi is connected to sk+1 (b)

hi moves to another cell, but its connectk+1 message is lost (Figure 4.4.b) (b) hi
changes cell and connects again to sk+1 ; (2) sk+1 already received the connectk+1

message, but its connectACK,k+1 message was lost (Figure 4.4.c). In case (1) (if

SesLC = c.Ses), seqNC is valid for sk+1. Hence, sk+1 uses it to acknowledge ap-

plication messages that hi might be delivered without acknowledging them. In

both cases, due to the discarding mechanism of buffered application messages at

stations, hi might have to deliver some application messages that sk+1 has already

discarded (we see later in this section how sk+1 determines which are those appli-

cation messages). If hi has no such application messages to deliver, then sk+1 sends

a connectACK,k+1 message to initialize the connection on hi’s side (sk+1.6 ).

Phase 2. We denote Mdeleted the set of messages that sk+1 discarded but that

hi has not delivered yet. The purpose of Phase 2 is to identify the messages of

Mdeleted.

sk+1 starts Phase 2 upon reception of the connectk+1 message, by broadcasting a

Req1,k+1 message (line sk+1.12).

Messages of Mdeleted are received by sk prior to the Req1,k+1 message. sk uses seqNC

attached on the Req1,k+1 message to build Mndel, the set of application messages
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not delivered by hi among the application messages it received prior to the Req1,k+1

message, and sends Mndel to sk+1 in Rsp1,k+1.

Upon reception of the Rsp1,k+1 message, the network FIFO property ensured by

the algorithm used for communication between stations [NMM18a] ensures that

sk+1 received all messages contained in Mndel. Therefore, the messages whose ID

is contained in Mndel but that sk+1 does not buffer are the messages of Mdeleted.

sk+1 requests the message of Mdeleted in the Req2,k+1 message. sk piggybacks these

messages onto the Rsp2,k+1 message, by ordering them as in its SBuf (line sk.10),

i.e., by ordering them causally. Hence, sk+1 will recover those messages at the end

of Phase 3.

Phase 3: We denote Mdelivered the set of messages that sk+1 caches but that hi
has already delivered. The purpose of Phase 3 is to identify at sk+1 the messages

of Mdelivered.

sk+1 starts Phase 3 upon reception of Rsp1,k+1, by broadcasting Req2,k+1(line

sk+1.15).

The application messages that hi delivered prior to connecting to sk+1, i.e., the

application messages in Mdelivered, are received by sk+1 prior to Rsp1,k+1. We denote

Mcache the set of application messages that sk+1 received prior to Rsp1,k+1 and that

it still caches. We also denote Mndel the set of application messages m ∈Mcache, hi
did not deliver m. We have Mcache = Mndel ∪Mdelivered. sk+1 determines Mdelivered

by first determining Mndel then deducing Mdelivered = Mcache\Mndel.

The algorithm used for the communication between stations [NMM18a] ensures

that application messages sk+1 receives before sending Req1,k+1 that hi has not

delivered, are identified by sk in the list mnd ∈Rsp1,k+1 (line sk.6). The algorithm

used for the communication between stations [NMM18a] ensures that application

messages sk+1 receives between send(Req1,k+1) and receive(Rsp1,k+1) are received

by sk between receive(Req1,k+1) and receive(Req2,k+1). sk stores the list of ids of the

application messages it receives between receive(Req1,k+1) and receive(Req2,k+1) in

mrcv and attaches mrcv on Rsp2,k+1(line sk.11). Therefore, the application messages

that hi did not deliver among those sk+1 received before Rsp1,k+1are the application

messages m ∈ mnd∪mrcv, i.e., Mndel = mnd∪mrcv. Therefore, we have Mdelivered =

Mcache\(mnd ∪mrcv).

Phase 4: The purpose of Phase 4 is to initialize the connection between sk+1 and

hi.

First, sk+1 begins to send the application messages of Mdeleted to hi, thus ensuring

that hi also delivers the application messages sk+1 has already discarded. Moreover,
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sk+1 will not discard application messages it currently caches unless hi delivered

them, thus ensuring that hi delivers every application message at least once.

Second, sk+1 ensures that hi will not deliver twice any application message. To

this end it tags the application messages that hi already delivered (messages of

Mdelivered), because seqNC is not sufficient. In fact, take the example of Figure 4.5.

If hi delivers m1 but not m2 before connecting to sk+1, then sk+1 must give to

hi the sequence number seqNC = 0, so that hi will deliver m2. However, without

additional control, hi would then also deliver m1 again. To prevent multiple deliv-

ery of application messages by hi, sk+1 adds hi’s ID to the application messages

hi already delivered but which sk+1 still caches in SBuf (line sk+1.14), and, upon

receiving them, hi only increments seqNC and does not deliver them again. There-

fore, hi does not deliver again an application message on which it is tagged, thus

ensuring that hi does not delivery any application message twice.

Thirdly, application messages of Mdeleted causally precede the application messages

currently broadcasted by sk+1. Therefore, hi delivers no application message cur-

rently broadcasted by sk+1 unless receiving the connectACK,k+1 message from sk+1,

and sk+1 sends that connectACK,k+1 message to hi only after that hi acknowledged

all messages of Mdeleted (or if it has no such messages to deliver) (line sk+1.16).

Moreover, sk+1 sends the application messages of Mdeleted in causal order as de-

fined in msg of the Rsp2,k+1 message, thus ensuring that hi delivers them in causal

order. Other application messages are delivered by hi following the sequence num-

ber sk+1 attributes to them. Therefore, hi delivers application messages in causal

order.

The connectACK,k+1 message contains seqCi
, the sequence number of the oldest

application message that sk+1 buffers and that hi has not delivered (line sk+1.18).

At its side, hi ends the handoff by setting seqNC , seqh, and SesLC (line hi.4).

Finally, sk+1 broadcasts a Delete message to end connections of hi that might result

from hi’s previous unsuccessful connection attempts (Figure 4.4(b)), thus ensuring

that eventually hi is only registered at sk+1.

Simultaneous handoffs for hi are handled sequentially: During handoff Req1,k+1,

sk discards all handoff messages that do not belong to handoff Hi,k+1. A station

sk+n that starts a handoff Hi,k+n regularly re-broadcasts its Req1,k+n message.

Therefore, if Hi,k+n is more recent than handoff Hi,k+1, then station sk+1 will

eventually process theReq1,k+n once it receives it and that handoffHi,k+1 is finished.
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4.3.4 Handoff example

Figure 4.6 describes the handoff between sk and sk+1 when hi connects itself to

sk+1. The system configuration is as in Figure 4.5. For better readability, we

assume that no other handoff for hi executes simultaneously. At the beginning of

the handoff, sk has discarded m1 and sk+1 has discarded m2. hi has broadcasted

m1 and hj has broadcasted m2. hi has also delivered m1. Both stations receive m3

broadcasted by hj during the handoff.

hi connects itself to sk+1 by sending a connectk+1 message to sk+1 containing

seqNC= 2, since hi has delivered m1.

Upon reception of the connectk+1 message, sk+1 broadcasts Req1,k+1 containing

seqNC=2.

Upon reception of the Req1,k+1 message, sk determines that hi has not delivered

m2. sk broadcasts Rsp1,k+1 containing the ID of m2, as well as seqh = 2 since hi
broadcasted m1.

Upon reception of the Rsp1,k+1 message, sk+1 requests m2 in Req2,k+1, because it

has already discarded m2.

Upon reception of the Req2,k+1 message, sk replies with Rsp2,k+1 containing the

application message m2 that sk+1 requested in Req2,k+1, as well as the ID of the

message m3 that sk received between Rsp1,k+1 and Rsp2,k+1. Finally, sk unregisters

hi.

Upon reception of the Rsp2,k+1 message, sk+1 identifies which application messages

of its SBuf ={m1,m3} hi has delivered. sk+1 received m1 before Rsp1,k+1, and sk
did not identify m1 as not delivered by hi. Hence, hi already delivered m1 and

sk+1 attaches hi’s ID on m1. In addition, hi must first deliver m2 before delivering

m3. Thus, sk+1 broadcasts m2 received from sk with seqC=1 to hi. Finally, sk+1

discards m2 once hi acknowledged it, assigns seqCi
=3 to hi, since hi delivered m1

and m2, and broadcasts connectACK,k+1. Upon reception of connectACK,k+1, h i sets

seqNC=3. hican now deliver m3 as well as following application messages that sk+1

will broadcast.

4.3.5 Failure resilience

The algorithm tolerates the failure of hosts. Hosts can fail temporarily or perma-

nently. The failure of hosts is handled at the station level.

A temporary failure of a host that exceeds a given time limit leads its station to

disconnect the host, in order to limit the impact of the faulty host on the cell’s
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wireless network. In fact, a station broadcasts an application message until all hosts

connected to it acknowledged the message. However, a host that is faulty obviously

acknowledges no application message. Therefore, the station that registers the

faulty host will eventually broadcast more and more application messages as it

receives new ones to broadcast. However, the wireless network is a shared medium

and has a maximal throughput because of interferences. Therefore, the duration

of a temporary host failure should be bounded in time, because the application

messages broadcasted due to the faulty host will eventually heavily impact the

wireless network, to the point where it can even overload it. Thus, a station

controls its cell’s collision rate and unregisters a faulty host once the collision rate

inside its cell exceeds a given limit. A station considers that a host is permanently

faulty when it does not receive any message from the host during a given time

interval, or if the message collision rate becomes too high due to the absence of

acknowledgments from that host.

A host saves and restores few variables on persistent local storage to handle tem-

porary failures: seqh, seqNC , Ses, and SesLC , and unacknowledged application mes-

sages broadcasted by the host before its failure. A host saves seqh (resp., seqNC)

when broadcasting an application (resp., acknowledge) message, Ses when chang-

ing cell, and SesLC when the host receives the confirmation that the station to

which it connects registered it. A host saves application messages when broadcast-

ing them until they are acknowledged. Upon recovering, the host restores these

variables and broadcasts a recover message to the station of its cell.

The station receiving the recover message might not hold the host’s causal infor-

mation, either because the host’s failure duration was too long and the station

discarded the host’s causal information, or because the host moved during its fail-

ure. If the station still registers the host, it replies to the host with a connectACK,

message. Otherwise, it broadcasts a recoveryreq message, to which each station

replies either with the host’s causal information, or a message that notifies that

the station does not store the host’s causal information. The host is reinitialized if

no station maintains its causal information, and the end of the recovery procedure

is then similar to the system join of a host. If a station maintains the host’s causal

information, then the recovery procedure is similar to a handoff.

Permanent failures are handled through timeouts. If a station does not receive any

message from a host for a given duration, then the station considers that the host

has a permanent failure and simply deletes its connection with the host.

Summing up, our algorithm tolerates permanent and transient failures of hosts,

while requiring few persistent information.
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4.4 Performance Evaluation

Experimental setup. Experiments were conducted on INET, a network simula-

tor implemented on OMNeT++ [Var01]. INET offers an implementation of com-

munication layers (e.g., TCP/UDP/Ethernet/IPv4/MAC), node mobility, node

failures, and network interferences in wired and wireless networks.

We compare our algorithm, denoted WAS, with the one proposed by Chandra and

Kshemkalyani [CK04], denoted CK and described in Chapter 3, which is the al-

gorithm with the best performances among causal multicast algorithms in mobile

networks [CK04]. We adapted CK to causal broadcast, by removing the structure

logi, since the structure RECDi is sufficient to track causal order in causal broad-

castC. Second, [CK04] uses point-to-point communication on the wireless network.

Nodes use the broadcast feature of UDP on the wireless network, i.e., they only

send one broadcast message on the wireless network instead of doing point-to-point

communications.

Stations are placed to ensure a complete area coverage with a minimum intersection

of cells. Hosts are placed randomly in each cell at initialization. Antennas have a

communication range of 120m and a bandwidth of 20Mb/s. Stations are connected

by a wired network organized into a tree of degree 3. Wired links have a bandwidth

of 100Mb/s and a delay of 10ms. Application messages have a size of 100 bytes

and are encapsulated in IPv4/MAC packets, whose header has 8 (resp., 20) bytes

for UDP (resp., TCP). Therefore, an UDP (resp., TCP) packet has an overhead

of 20(IPv4)+20(MAC)+8(UDP)=48 (resp., 60) bytes. UDP is used for commu-

nication on the wireless network, while TCP on the wired network. Each host

broadcasts application messages following a Poisson distribution. Hosts move in a

straight line with a speed of 5km/h≈1.39m/s inside the area covered by stations,

and change direction every 5 seconds.

The experiments aim to :

• Analyze the scalability of WAS and CK and compare them with each other.

• Compare the centralized and decentralized message discarding approaches.

• Analyze the behavior of WAS in a scenario with faulty hosts.

4.4.1 Scalability

Throughput and delivery delay. The first experiment, whose results are shown

in Figure 4.7, evaluates the maximal throughput when the number of hosts per
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Figure 4.7: Throughput in function of hosts per cell
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cell increases. The experiment contains 10 stations and a total number of hosts

that varies from 100 to 400 (x-axis). Results, presented in a logarithmic scale,

show that WAS has a much higher (x10-20) throughput than CK, and that the

throughput of CK decreases faster than WAS. In a system containing 400 hosts, the

maximal throughput of WAS is more than 20x higher than CK. The throughput

of CK is bounded mostly by the fact that a station only sends an application

message to a host once the latter has acknowledged all the message’s dependencies.

Consequently, hosts send acknowledge messages very frequently, which negatively

impacts performance because of a higher message collision rate on the wireless

network. Moreover, CK has a delivery delay - the delay between broadcast(m)

and deliver(m) - 2 times higher than WAS, because a station waits that a host

acknowledges a message’s dependencies before sending it to the host.
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Figure 4.9: Messages sent over the wireless network
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Figure 4.10: Messages sent over the wired network

The second experiment measures the size and number of messages, evaluated at

the IPv4 level, when the number of hosts increases. Figure 4.9 and Figure 4.10

show the number of messages sent over the wireless and wired network respectively.

Figure 4.8 shows the total amount of data sent in WAS and CK during experiments.

The number of stations is adapted to keep a ratio of 20 hosts/cell. 20 messages are

broadcasted per second in the system.

Number of sent messages. Figure 4.9 and Figure 4.10 show that WAS sends

much fewer messages on both the wired and wireless networks. Moreover, the

number of messages sent by CK increases much faster than the number of messages

sent by WAS. WAS sends fewer messages on the wireless network because (1)

hosts acknowledge messages less often than CK (20x), (2) hosts buffer messages at

reception following seqNC piggybacked on messages, contrarily to CK where hosts

do not buffer messages since stations only send a message m to a host once the
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host can causally deliver m. Hence, stations must retransmit messages less often

than with CK (x5). On the wired network, CK sends more messages due to its

centralized approach to discard obsolete messages: Every application message m

from a host has an associated MSSinit station, and every acknowledgment related to

m is forwarded by the host’s cell’s station to MSSinit, which, in its turn, broadcasts

a delete message to all stations once it has received an acknowledgment related to

m from every host. Hence, CK sends a lot of acknowledge and delete messages

over the wired network. Moreover, those messages must travel along the wired

network, often through several stations, until reaching the corresponding MSSinit

station. WAS implements a decentralized mechanism which requires no message

exchange to discard obsolete messages. We point out that CK sends much fewer

messages on the wired network than theoretically expected, because acknowledge

messages of CK are small, and TCP groups many of them in a single packet.

Amount of sent data. Figure 4.8 shows that WAS sends a lower amount of data

than CK. On the wireless network, this is mostly due to acknowledge messages of

CK. Even though these messages contain only a few integers, they have an addi-

tional size of 48 bytes because they are encapsulated in UDP/IPv4/Mac packets,

and only a few acknowledge messages can be grouped into one single packet since

the station will not send the next messages to deliver until the current ones are ac-

knowledged. On the wired network, acknowledge and delete messages are grouped

by TCP, which mostly removes the encapsulation overhead. However, those many

acknowledge and delete messages scale up fast. Moreover, with CK stations piggy-

back a vector of size N (N=number of stations) on application messages sent over

the wired network, and that vector rapidly takes much space when the number of

stations increases. WAS only piggybacks a few integers on application messages.

To conclude, in terms of hosts per cell, total number of hosts (acknowledge and

delete messages), and stations (size of vector clocks piggybacked on application

messages), WAS scales much better than CK.

4.4.2 Decentralized discard mechanism

This section compares our decentralized discard approach, used by WAS, with the

centralized discard approach [CK04].

In the third experiment, 200 hosts are distributed over 10 cells, the wireless network

has a bitrate of 1Mb/s, and 35 messages are broadcasted per second for 300s.

Figure 4.11 shows the number of messages that stations store in their respective

sending buffers SBuf. Curve Max shows the maximum number of messages cached

in a stations’ SBuf, i.e., approximately the number of messages each station would

store with a centralized discard approach. Curve Avg shows the average number
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of messages a station stores in its sending buffer, and curve Deviation gives the

standard deviation between the average and the number of messages each station

caches. The curves Avg and Deviation do not take into account the SBuf of the

station that stores the most messages, in order to compare both curves with the

Max curve.

The comparison of curves Avg and Max of Figure 4.11 shows that the number

of messages cached by stations can vary a lot. Such a variation depends on the

message loss rate in the station’s cell: the higher the message loss rate, the longer a

station caches a message, since lost messages must be retransmitted. The message

loss rate depends on the number of messages to broadcast as well as the position of

hosts in the network. The probability of message collision is higher in areas where

two cells overlap because the respective stations send messages over their cells that

might collide. Similarly, areas with a high density of hosts have a higher message

loss rate. The standard deviation is low, mostly around 10 messages, except for

a short period around 70s where a heavily loaded cell degrades its adjacent cells.

Hence, the number of messages a station stores in SBuf is mostly close to the

average for all stations, except for some stations whose local characteristics make

their send buffer grow temporarily. In a decentralized message discard approach,

message loss rate and failing hosts only have a local impact. The comparison of

curves Avg and Max shows that with a decentralized message discard approach,

stations store up to 4 times fewer messages than with a centralized one, and that,

on average, stations store 40-50% fewer messages.

Finally, a host that fails stops acknowledging messages. Hence, the station to

which the host is connected will stop discarding application messages. Figure 4.12

shows that, in presence of a host failure, the station to which the faulty host is

connected caches many more messages than the other stations (8-10x more). In

the decentralized discard approach, only the station to which the faulty host is

connected will cache all those messages. Hence, the decentralized discard approach

caches up to 8-10 times fewer messages on average on stations when a host fails.

4.4.3 Transient host failures

The last experiment, whose results are presented in Figure 4.12 measures the im-

pact of transient host failures on WAS in a system containing 10 stations and 200

hosts (20 hosts per station), a wireless network bitrate of 1Mb/s, and where 15

messages are broadcasted per second. The first host fails at t=10s for 5 seconds,

then each 30 seconds another host fails, and the fault duration increases by 2 sec-

onds at each failure. In total, 9 hosts fail, the first failing at t=10s for 5s, the second

at t=40s for 7s, and so on. A host that fails it stops acknowledging messages. The

number of messages cached in the SBuf of the station to which the faulty host is
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Figure 4.11: Messages in station sending buffers

connected then grows. Hence, we measure the impact of transient failures through

the number of messages cached in the SBuf of that station.

Curve Max shows the maximum number of messages cached in a station’s SBuf

which is, during failures, the number of messages cached by the station at which

the faulty host is registered. Curve Avg shows the average number of messages a

station stores in its SBuf, and curve Deviation gives the standard deviation between

the average and the number of messages each station caches. In order to evaluate

the impact that a cell containing a faulty host has on the other cells, the former is

not taken into account in the computation of Avg and Deviation. Vertical dashed

lines represent a host crash.

During each failure, the number of application messages cached by the station to

which the faulty host is connected linearly increases. Those application messages

are also broadcasted by that station. Nevertheless, the number of cached appli-

cation messages sharply decreases once the host recovers, showing that, very fast,

the host receives the missing application messages and the cell rapidly reaches the

same message load it had before the failure.

Curve Avg shows that, on average, a faulty host has a low impact in the number

of messages stored by the other stations, except for the last failure occurring at

t=255s.

Curve Deviation also shows that the increasing size of SBuf of the faulty host’s

station has no impact on other cells, as long as the SBuf does not become bigger

than 150-200 messages. Once the SBuf exceeds that size, the faulty host’s station

begins to degrade adjacent cells that overlap with it. In fact, the station broadcasts

application messages and retransmits messages not acknowledged by the faulty
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Figure 4.12: Messages cached by stations when hosts fail

host, thus increasing the number of messages sent by the station. This leads to an

increasing number of message collisions in the cell, including the areas where the

cell overlaps with other cells. Hosts in those overlapping areas, connected to other

stations, will receive fewer messages, because of this higher message collision rate.

Hence, they will deliver messages more slowly, increasing the number of messages

broadcasted by the neighboring stations of the faulty host’s cell. During the last

crash occurring between t=250s and t=273s, the 3 adjacent cells of the faulty

host’s cell are impacted, explaining why the average size of the SBuf increases.

Moreover, contrarily to previous failures where the faulty host takes less than

a second to acknowledge messages, the host takes 7 seconds to acknowledge all

messages. Therefore, the failure of a host first and mostly has an impact in the

cell in which it occurs and afterwards in adjacent cells when its cell’s station stores

more than 150-200 messages. Nevertheless, such an impact rapidly disappears once

the host recovers.

To conclude, experiments confirm that WAS scales much better than CK in terms

of the number of hosts per cell, as well as in terms of total hosts and/or stations.

WAS sends much fewer messages than CK both on the wired and wireless network,

the amount of sent data is also much lower, and WAS has half the delivery delay

of CK. Second, the decentralized message discard mechanism of WAS caches much

fewer messages than CK, particularly during host failures. Finally, in WAS, the

impact of a transient host failure is sharply absorbed after the faulty host recovers.
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4.5 Extension to tolerate station failures

This section presents WAS2, an algorithm that extends WAS to make it tolerant to

station failures. Several mechanisms are added to WAS, but most of the algorithm

remains the same. Therefore, the following describes the modifications of WAS but

does not describe WAS2 completely. Each of the following subsections corresponds

to the modifications added to the corresponding section of WAS in order to render

it tolerant to station failures. For example, subsection Model corresponds to the

modifications done in the section Model of WAS.

4.5.1 Model

Stations are subject to transient and permanent failures. A faulty station stops

sending, receiving, and processing messages, and loses all data. To handle failures,

stations are split into groups, and each station of a group G stores a replica of the

causal information stored by the other stations of G. We define f=|G|-1 as the

maximum number of stations of a group that can be down simultaneously.

WAS2 tolerates the failure of stations as long as the system satisfies the two fol-

lowing conditions :

• At most f stations of the same group fail simultaneously.

• Each pair of stations is connected by initialized links as defined in [NMM18a].

4.5.2 Dissemination of application messages

WAS2 does not modify the intra-cell module. The inter-cell module must however

be modified in order to ensure that stations that belong to the same group order

application messages identically.

WAS2 totally orders application messages inside each group of stations. Algo-

rithm 7 describes the broadcast algorithm of messages. The stations of each group

G elect a responsible station sresp through a consensus algorithm. sresp assigns an

increasing sequence number seqC to application messages as it receives them, and

broadcasts their ID and seqC on the wired network. A station delays the broadcast

of an application message on its wireless network until it receives the message’s

sequence number seqC through an Appresp message from sresp.

In WAS2, station si saves a copy of the causal information of hosts connected to

any station of Gsi . Thus, si has a copy of the causal information of hosts connected
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to any station of Gsi , and this causal information can therefore be recovered at si
when those other stations fail. si must update the causal information it stores

about hosts connected to stations of Gsi to keep it consistent. More particularly, it

must keep track of the application messages broadcasted by hosts connected to Gsi .

To this end, whenever it receives an application message broadcasted by a host hi
connected to a station of Gsi , it updates the seqh associated to hi. The algorithm

used for communications on the wired network [NMM18a] ensures that si receives

these application messages in causal order, i.e., it will receive the application mes-

sage broadcasted by hi of sequence number i before it receives the application

message broadcasted by hi of sequence number i+1. Moreover, [NMM18a] ensures

that si eventually receives them and therefore updates the seqh associated to hi.

Hence, si keeps track of the application messages broadcasted by hosts connected

to stations of Gsi .

Algorithm 7: Broadcast of application messages

broadcast at hi :
1: seqh = seqh + 1
2: broadcast(<APP,hi,seqh>) to si

receive(<APP,hi,seqh>) from hi for connection c at si:
3: waitUntil(c.seqh = seqh)
4: broadcastApp(<APP,hi,seqh>)
5: c.seqh = c.seqh+1

receive(<APP,hi,seqh>) at si:
5: broadcastApp(<APP,hi,seqh>)

broadcastApp(<APP,hi,seqh>) at si:
6: broadcast(<APP,hi,seqh>) on the wired network
7: if si = sresp then
8: seqC = seqC + 1
9: broadcast(<APPresp,hi,seqh,seqC>) on the wired network

10: else
11: waitUntil(receive<APPresp, seqC>) from sresp
12: broadcast(<APP,seqC>) on the wireless network
13: ∀c ∈ Connections, c.host = hi, c.seq = c.seq + 1

4.5.2.1 Message acknowledgement

In WAS2, a station si continues to cache an application message m not only until

all hosts of its cell delivered m, but until all hosts connected to any station of its

group Gsi have delivered m.

Therefore, a station si must acknowledge the delivery of application messages by

host connected to it to the other stations of its group Gsi . For this purpose, each
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Figure 4.13: Broadcast of m1 and m2

station regularly sends acknowledge messages to the other stations of its group, to

acknowledge application messages all hosts of its cell have delivered.

This new acknowledge mechanism introduces a new overhead, which nevertheless

remains small. In fact, a station stops broadcasting an application message m once

all hosts inside its cell have delivered m, and it then only keeps m for backup.

Hence, stations can broadcast acknowledge messages only on a regular interval.

Moreover, stations are supposed to be relatively reliable, and groups of stations

should therefore be relatively small and contain only a few stations.

4.5.2.2 Broadcast example

Figure 4.13 shows the broadcast and delivery of two causally related application

messages. The example is identical to the one in Section 4.3.1.4, except that the

system uses WAS2 instead of WAS.

Host h1 (resp. h2) is connected to station s1 (resp. s2), and s1 and s2 belong to the

same group of stations G, and are connected by a wired channel. s2 is the station

responsible for the group G. Hosts (resp. stations) piggybacks seqh (resp. seqC) on

application messages broadcasted over the wireless network. The sending buffers

SBufs are represented in bold.

First, h1 broadcasts m1. Upon reception, s1 forwards m1 to s2, and buffers m1.

Upon reception, s2 attributes the sequence number seqC = 1 to m1, s2 broadcasts

m1 in its cell, which contains h2, and sends an APPresp message to s1 containing

the seqC = 1 it attributed to m1. h2 receives and delivers m1, then broadcasts m2

(co-broadcast(m1)→ co-broadcast(m2)). s2 receives m2, attributes seqC = 2 to it,
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then broadcasts m2 on the wired network with its attributed seqC to s1. h2 (resp.

s2) stops transmitting m1 (resp. m1 and m2) upon reception of the acknowledge

message regularly broadcasted by s2 (resp. h2). h1 does not receive neither m1 the

first time s1 broadcast it due to interferences, nor its acknowledgment. Hence, h1

retransmits m1. s1 ignores the second reception of m1 since it already received m1.

Upon reception of m2, s1 broadcasts it. Then h1 receives and buffers m2 because

the sequence number that s1 attached to m2 is equal to 2, and h1 awaits a message

with seq=1. Eventually, s1 broadcasts m1 again and, upon reception, h1 delivers

m1 then m2. Finally, h1 (resp. s1) acknowledges m1 and m2 (resp. m1). s1 (resp.

s2) discards m1 and m2 from its sending buffer SBuf after h1 (resp. h2) as well

as s2 (resp. s1) acknowledged them. Hence, m1 and m2 are completely discarded

from the network, i.e., removed from the buffers of all nodes.

4.5.3 Join/leave the network

Joining the network. Station si forwards joink+1 messages it receives to other

station of Gsi , such that those stations also register the connection with hi. There-

fore, si broadcasts the joink+1 message on the wired network and stations of Gsi

register the connection with hi upon receiving the joink+1 message. Otherwise,

The join procedure does not change.

Leaving the network. The leave procedure does not change in WAS2.

4.5.4 Handoff

WAS2 has the same core handoff module than WAS, with some additional steps re-

quired to handle the failure of stations. During handoff Hi,k+1 between the stations

sk and sk+1 for host hi, either sk or sk+1 might fail.

Handoff termination. WAS2 ensures that every handoff eventually terminates.

If sk+1 fails, handoff Hi,k+1 is eventually cancelled; if sk fails, sk+1 eventually reini-

tialize the handoff.

If sk+1 fails, then it obviously stops sending handoff messages to sk. Upon expira-

tion of a timeout, sk then concludes that sk+1 failed and will therefore cancel the

handoff. hi will eventually connect to another station or it will reconnect itself to

sk+1 after that sk+1 recovered, and sk+1 will then begin a new handoff.

If sk fails, then it will obviously stop replying to handoff messages sent by sk+1.

Upon expiration of a timeout, sk+1 then concludes that sk failed. It does then

reinitialize the handoff by broadcasting a Req1,k+1 message. Other stations of Gsk
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eventually also conclude that sk failed, and one of them will then take up the

responsibility of hi. This station, denoted sb will eventually receive the Req1,k+1

message re-broadcasted regularly by sk+1, and will then execute the handoff with

sk+1. Note that we make the assumption that upon detecting the failure of sk,

station sb received all messages broadcasted by sk before failing. Therefore, it

will have received all application messages broadcasted by hi, and seqh associated

to hi will thus be up-to-date. If sb fails, then another station will take up the

responsibility of hi, and so one.

Replication of hi’s causal information At the end of Phase 3, i.e. after that

sk+1 processed the Rsp2,k+1 message, only sk+1 has the causal information of hi.

Hence, it must propagate that information to the stations of Gsk+1
. To this end,

it sends a registerk+1 message that contains all the causal information of hi to

stations of Gsk+1
. Stations of Gsk+1

replicate the connection information between

hi and sk+1 upon reception of that registerk+1 message. The algorithm used for

communication between stations [NMM18a] ensures that when a station sb receives

the registerk+1 message, this message contains all the causal information about

hi that sk+1 collected prior to sending the registerk+1 message. Therefore, the

registerk+1 message contains all the relevant causal information that sb received

prior to the registerk+1 message, and sb therefore handles messages containing

causal information for hi as it receives them after receiving the registerk+1 message.

No causal information is lost. Process sk+1 broadcasts a delete message only

at the end of Phase 3 after having broadcasted a registerk+1 message. Thus, sk+1

will not broadcast a delete message without broadcasting a registerk+1 message,

i.e. stations of Gsk will not delete the connection with hi unless stations of Gsk+1

will register it. Consequently, it is ensured that the causal information of hi is not

lost.

Recovering. In order to recover, a station si must:

1. Connect itself to the wired network while not creating a path over which

messages can travel out of causal order.

2. Recover the causal information of hosts connected to a station of its group.

3. Recover the application messages broadcasted by stations of its group.

Station si satisfies condition (1) in two steps: first it initializes a communication

channel with one up station sb of Gsi , then in the second step it initializes its other

communication channels through that first initialized communication channel. The

former, denoted chi, is a FIFO wired communication channel whose endpoints are

si and a station sb of Gsi . Both stations si and sb initialize chi by exchanging
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a recoveryk and a recoveryACK,k message through chi. si begins by sending the

recoveryk message to sb, which replies with a recoveryACK,k message containing

the causal information locally stored at sb upon its reception of the recoveryk
message. sb considers chi as initialized after sending the recoveryACK,k, and si
considers chi as initialized after receiving the recoveryACK,k message. si discards

messages it receives prior to the recoveryACK,k message and handles normally mes-

sages it receives afterwards. After initializing chi, si is connected to every other

station through a path of initialized communication channels, and does therefore

initialize its other communication channels by using the algorithm proposed by

Mostéfaoui [NMM18a].

Conditions (2) and (3) are satisfied by si by recovering the information in the

recoveryACK,k message: sb appends to the recoveryACK,k message the causal infor-

mation it stores about hosts connected to stations of Gsi as well as the application

messages (and their associated seqNC) it stores locally. Moreover, sb forwards

each message it receives after sending the recoveryACK,k message to si. Upon

reception of the recoveryACK,k message, si caches in its sending buffer the ap-

plication messages contained in the recoveryACK,k message with their associated

seqNC number, and registers the causal information contained in the recoveryACK,k

message. Therefore, si receives the information stored by sb until the sending of

the recoveryACK,k message as well as the messages sb receives after sending the

recoveryACK,k message. Hence, it will receive both all application messages that

stations of Gsi store and the messages required to ensure the causal information of

hosts connected to stations of Gsi .

Finally, si choses a new identifier when recovering, because some of the messages it

sent before failing, or replies to some of those messages, might still be in transit over

the network. By choosing a new identifier, si ensures that it will not handle any

of those messages. si is in the up state after receiving the recoveryACK,k message.

4.5.5 Summary

This section presented WAS2, an extension of WAS that tolerates the failure of

stations in mobile networks. WAS2 has an overhead in complexity and messages.

Stations are organized into groups to replicate the causal information they contain.

Those of the same group exchange information to order both application messages

identically, and to behave as backup for the causal information stored in other

stations of the group. WAS2 adapts the handoff to tolerate the failure of stations,

and especially the failure of the two stations that take part in the handoff. Finally,

WAS2 provides a procedure that enables stations to recover from failures.
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4.6 Proof

For the following proofs, we define the variables:

• hi: host

• si: station that holds the causal information of hi.

• Gssi
: group of stations to which si belongs.

• G: set containing all groups of stations.

• S: set containing all stations.

• H: set containing all hosts.

• srespi : station responsible for the ordering of application messages for stations

of GSi

• sj: first station with which hihas an up-connection.

• Mprev: set of messages discarded prior to the first up-connection of hi.

Proof when nodes do not move between cells

Lemma 4.1. WAS ensures that, ∀Gk ∈ G,∃sk ∈ Gk, sk is up ⇒ ∀hi ∈ H,∃si ∈ S,

si holds the causal information of hi.

Proof. Stations disseminate messages among each other by using the algorithm

presented by Nédelec et al. in [NMM18a], ensuring that messages are causally

ordered upon their reception at stations. Station srespi assigns an increasing se-

quence number to each message m following its arrival time, and all stations of GSi

assign to m that sequence number, i.e. all stations of GSi
assign the same sequence

number to m. Moreover, all stations of GSi
have a copy of the causal information

relative to hi: si sends them the connect message, and they update the number of

messages hibroadcasted when receiving a message that hibroadcasts.

hidelivers messages from si following their sequence number, and saves the sequence

number of the last delivered message on persistent storage. Hence hidelivers mes-

sages from si in causal order. If si fails, then other up-stations of GSi
still order

the application messages as si, and they also store the causal information relative

to hi. When si recovers it recuperates the causal information about hiby sending

a recover message to srespi , and hican then continue to deliver messages in causal

order.
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Theorem 4.1. WAS ensures causal broadcast in mobile networks when hosts do

not move between cells.

Proof. Validity. A station disseminates messages either co-broadcasted by hosts

from its cell, or received from other stations. Stations do not generate broadcast

messages. Hence, stations only disseminate messages co-broadcasted by hosts.

Moreover, a host only co-delivers messages that the station to which it is connected

broadcasts. Hence, hosts only co-deliver messages co-broadcasted by hosts.

Integrity. First, hosts assign an increasing sequence number to each message they

broadcast. A station keeps track of that sequence number for each host connected

to it, and discards a message m broadcasted by hiof sequence number seq, if the

stored sequence number seqhi
for hiis seqhi

> seq, thus avoiding that it broadcasts

m twice. Following Lemma 4.1, that information is maintained as long as, for each

group GS ∈ G,∃sk such that sk is up.

Second, stations disseminate messages among each other by using the algorithm

presented by Nédelec et al. in [NMM18a], ensuring that each station disseminates

each message exactly once. Station srespi assigns an increasing sequence number to

each message m following its arrival time, and all stations of GSi
assign to m that

sequence number, i.e. all stations of GSi
assign the same sequence number to m.

hidelivers messages from si in increasing sequence number. Thus, hiwill not deliver

a message m again, since its local sequence number will always be greater than the

one attached to m. To handle failures, hisaves the sequence number of the last

message it delivered on persistent storage. If si fails, then following Lemma 4.1,

at least another up-station of GSI
has the causal information relative to hi, and

up-stations of GSi
order the application messages as si. When si recovers it will

retrieve that information by sending a recover request to srespi .

Causal order. Stations disseminate messages among each other by using the al-

gorithm presented by Nédelec et al. in [NMM18a], ensuring that messages are

causally ordered upon their reception at stations. Station srespi assigns an increas-

ing sequence number to each message m following its arrival time, and all stations

of GSi
assign to m that sequence number, i.e. all stations of GSi

assign the same

sequence number to m. Hence, if m → m′, then srespi receives m before m’, and,

therefore, m.seq < m′.seq. hionly delivers messages broadcasted by si, and it de-

livers them in increasing sequence number. Hence, hidelivers messages in causal

order.

To handle host failures, hisaves the sequence number of the last message it deliv-

ered on persistent storage, so it can determine which message it has not delivered

when recovering. If si fails, then other up-stations of GSi
still order the applica-

tion messages as si and, following Lemma 4.1, they also have a copy of the causal
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information relative to hi. When si recovers, it will retrieve that information by

sending a recover request to srespi .

Termination. A host hithat joins the system is not considered up until the station

si to which hiconnects itself sends a connectACK message to hiand hireceives it.

Upon reception of the join message, si attributes to hithe sequence number of the

application message it buffers with the lowest sequence number, and forwards the

join message to the other stations of GSi
. Stations of GSi

only delete a message m

once it is acknowledged by all stations of GSi
, i.e., once all hosts connected to a

station of GSi
have delivered m. Hence, even if si has a temporary failure, other

stations of GSi
will keep m, and when si recovers it will recover those messages

and broadcast them until hihas acknowledged (and henceforth delivered) them.

Moreover, si retranmits the join acknowledgment as well as every buffered appli-

cation message until hiacknowledged each of them (i.e., after having delivered it),

or si considers hias down. Hence, all messages that si did not discarded upon the

reception of hi’s join message will be delivered by hi, given that hiremains an up

process.

Proof when nodes move between cells

In this section we prove that WAS ensures causal order when hosts move between

cells without simultaneous handoffs for the same host, i.e., a host does not move

to a new cell ck+1 unless it succeeded to connect to the station of its current cell

ck.

Lemma 4.2. During handoff Hi,k+1, station sk+1 recovers the messages it discarded

that hi has not delivered and that are not in Mprevhi
.

Proof. We prove it by induction.

H0: The first station sj to which hi connects itself successfully has no application

message to recover.

By definition, a host is up when joining the system once it received a connectACK

message from a station sj to which it connects. Station sj discards no application

message after sending the connectACK message to hi, unless hi acknowledges that

message or connects to another station. Hence, sj deletes no application message

after sending connectACK to hi unless hi acknowledges that message or connects

to another station, and has, therefore, no application message to recover.

Stations of Gsj also delete no application messages unless sj acknowledges them.

Hence, if sj temporarily fails, then it will recover those messages during its recovery.
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H1: When an up-host hi connects itself to a station sk+1, then sk+1 recovers those

application messages it has already discarded, that hi has not delivered, and that

are not in Mprevhi
.

Let’s denote Mrecov the set containing the application messages that sk+1 must

recover.

sk+1 receives messages of Mrecov prior to receiving the connectk+1 message, since it

discards no application message after receiving the connectk+1 message unless that

hi acknowledges it.

In its turn, sk receives the messages of Mrecov before receiving the Req1,k+1 message,

since sk+1 broadcasts the Req1,k+1 message after receiving the connectk+1 message,

and that the algorithm used for wired communication [NMM18a] ensures that

communications on the wired network are FIFO ordered.

Upon reception of the Req1,k+1 message, sk which holds hi’s causal information,

determines which messages hi did not deliver among the messages sk received prior

to the Req1,k+1 message, and attaches the list ld of ids of those messages to Rsp1,k+1.

Therefore, the id of messages of Mrecov are contained in ld.

Upon reception of the Rsp1,k+1 message, sk+1 determines Mrecov by determining

which messages whose id is in ld it does not buffer. sk+1 then requests the messages

of Mrecov to sk in the Req2,k+1 message, and sk sends them to sk+1 in the Rsp2,k+1

message.

Hence, sk+1 recovered all messages of Mrecov upon the reception of the Rsp2,k+1

message.

If sk+1 fails, then the handoff is simply aborted at sk’s side upon timeout expiration.

If sk+1 recovers, it will get a new id, and if hi tries to reconnect to sk+1 after sk+1’s

recovery, then sk+1 will simply start another handoff.

Hence, when an up-host connects itself to a station, that station recovers the

application messages it has discarded prior to the connection of the host (H1).

Since the first station to which the up-host connects successfully has no message

to recover (H0), we conclude that when a up-host connects itself to a station,

then that station recovers the messages it discarded but that the up-host has not

delivered.

Lemma 4.3. Upon reception of the Req1,k+1 message, sk received all application

messages that hi has delivered prior to connecting to sk+1.
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Proof. We prove it by induction.

H0: hi only delivers application messages it receives from stations to which it con-

nected successfully.

This is true by definition.

H1: We assume that upon reception of the Req1,k message, sk−1 received all ap-

plication messages that hi delivered prior to connecting to sk. We show that upon

reception of the Req1,k+1 message, sk received all application messages delivered by

hi prior to connecting to sk+1.

sk received the application messages delivered by hi prior to connecting to it. By

hypothesis, sk−1 received those application messages upon reception of the Req1,k

message. Moreover, the algorithm used for communication between stations en-

sures that sk received those application messages upon receiving the Rsp1,k mes-

sage. Since by definition handoff Hi,k is finished, sk received the Rsp1,k message

and has therefore received those application messages.

sk received the application messages delivered by hi while connected to it upon re-

ception of the Req1,k+1 message. In fact, sk+1 only sends the Req1,k+1 message after

receiving the connectk+1 message, and hi stops delivering messages from sk after

sending the connectk+1 message. Therefore, hi will not deliver any message from

sk that sk receives after Req1,k+1. Moreover, sk obviously received the application

messages that hi delivered while connected to it.

Therefore, upon reception of the Req1,k+1 message, sk received all application mes-

sages that hi delivered prior to connecting to sk, as well as the application messages

that hi delivered while connected to sk. Hence, upon reception of the Req1,k+1 mes-

sage, sk received all application messages that hi delivered prior to connecting to

sk+1.

Hence, upon reception of the Req1,k+1 message, sk received all application messages

that hi has delivered prior to connecting to sk+1 (H1). Since a host delivered no

application message before connecting successfully to a station (H0), we conclude

that upon reception of the Req1,k+1 message, sk received all application messages

that hi has delivered prior to connecting to sk+1.

Lemma 4.4. Upon receiving the Rsp1,k+1 message, sk+1 received all application

messages that hi delivered before connecting to it.

Proof. Following Lemma 4.3, sk received all those messages upon receiving the

Req1,k+1 message. Moreover, sk replies to the Req1,k+1 message with the Rsp1,k+1

message, and the algorithm used for the communication between stations [NMM18a]
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ensures that, upon receiving the Rsp1,k+1 message, sk+1 received all application

messages that sk received before broadcasting the Rsp1,k+1 message. Therefore,

upon receiving the Rsp1,k+1 message, sk+1 received all messages delivered by hi
prior to connecting to it.

Lemma 4.5. Application messages that hi did not deliver among those sk+1 re-

ceives prior to the Rsp1,k+1 message are either identified by sk as not delivered by

hi (mnd ∈ Rsp1,k+1) or received by sk between the Req1,k+1 and Req2,k+1 messages

(msgrcv ∈ Rsp2,k+1).

Proof. The application messages received by sk+1 before the Rsp1,k+1 message are

received by sk before the Req2,k+1 message. In fact, sk+1 broadcasts the Req2,k+1

message after receiving the Rsp1,k+1 message, and the algorithm used for commu-

nication between stations [NMM18a] ensures that sk receives the Req2,k+1 message

after receiving the messages that sk+1 received before broadcasting the Req2,k+1

message.

Among the application messages that sk receives prior to the Req1,k+1 message, the

id of those not delivered by hi are contained in mnd.

Among the application messages that sk receives between the Req1,k+1 and Req2,k+1

message, none of them are delivered by hi. In fact, following the corollary of

Lemma 4.3, hi delivered no application messages that sk receives after Req1,k+1.

The list msgrcv contains the ids of application messages that sk receives between

the Req1,k+1 and Req2,k+1 messages.

Therefore, the list mnd ∪mrecv contains the list of ids of application messages that

hi did not deliver among the application messages that sk+1 received prior to the

Rsp1,k+1 message.

Lemma 4.6. Application messages that hi did not deliver prior to handoff Hi,k+1

are those received by sk+1 prior to the Rsp1,k+1 message and whose id is contained

in mnd ∪msgrcv (mnd ∈ Rsp1,k+1,msgrcv ∈ Rsp2,k+1), or those that sk+1 receives

after the Rsp1,k+1 message.

Proof. Following Lemma 4.5, messages that hi has not delivered among those sk+1

receives prior to the Rsp1,k+1 message are those contained in mnd∪msgrcv. Follow-

ing the corollary of Lemma 4.4, hi did not deliver any message that sk+1 receives

after the Rsp1,k+1 message.

Lemma 4.7. hi must first deliver the application messages of msg ∈ Rsp1,k+1 to

ensure that it delivers application messages in causal order.
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Proof. The algorithm used for the communication between stations [NMM18a]

ensures that stations receive messages in causal order. Moreover, stations order

application messages following their reception order, i.e. if a station receives m1

before m2, then seqm1 < seqm2 .

Stations discard application messages in increasing sequence order, i.e. each appli-

cation message that sk+1 buffers has a greater sequence number than application

messages that sk+1 has discarded. Hence, hi must first deliver the application

messages that sk+1 discarded prior to delivering application messages that sk+1

currently broadcasts. Since sk+1 discarded the application messages m ∈ msg, hi
must first deliver them.

Theorem 4.2. WAS ensures causal broadcast in mobile networks where hosts move

between cells.

Proof. Following Theorem 5.3 WAS ensures causal broadcast in mobile networks

where hosts do not move between cells, i.e., where a host always stays connected

to the same station. We show that the handoff procedure of WAS ensures that the

causal information of a host hi that moves from cell ci to cell ck+1 is transferred to

the station sk+1 in charge of cell ck+1, and that sk+1 therefore continues to ensure

causal broadcast for hi.

Validity. The validity of causal broadcast does not change when hosts move be-

tween cells. Hence, the validity proof of Theorem 5.3 holds.

Integrity. Following Theorem 5.3, hosts co-deliver no application message twice

when not changing cell. We show that when host hi moves from cell ck to cell ck+1

and connects itself to station sk+1, sk+1 identifies the application messages that hi
already delivered, and that hi will not deliver them again.

Following the corollary of Lemma 4.6, application messages that sk+1 buffers or

receive that hi has delivered are the application messages m that sk+1 receives

prior to the Rsp1,k+1 message such that m /∈ mnd ∪ msgrcv. sk+1 and the other

stations of Gsk+1
piggyback hi’s id on those application messages when broadcasting

them, and hi does not deliver them upon reception.

Following Lemma 4.1, if sk+1 (resp. sk) fails, the causal information of hi is main-

tained as long as a station of Gsk+1
(resp. Gsk) is up. Hence, the application

messages that hi already delivered are eventually identified, even if sk+1 or sk fail.

Therefore, hi will not deliver an application message again which it has already

delivered, i.e., hi delivers no application message twice.
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Causal order. Following Theorem 5.3, WAS ensures causal order when hosts do

not change cell. We show that handoff Hi,k+1 ensures that will deliver hi messages

in causal order when connecting to station sk+1.

First we show that messages broadcasted by hi are not disseminated out of causal

order. The causal dependencies of application messages broadcasted by hi are the

application messages delivered by hi. Following Lemma 4.4, sk+1 received those

application message prior to the Rsp2,k+1 message, i.e. before the end of handoff

Hi,k+1. Since sk+1 broadcasts no application message from hi prior to the end of

handoff Hi,k+1, no application message m of hi is disseminated by sk+1 before that

sk+1 receives one of m’s causal dependencies. Therefore, application messages of

hi are disseminated in causal order.

Second, we show that sk+1 identifies the application messages that himust deliver

and sends them in causal order to hi.

To begin, we show that hi delivers in causal order application messages that sk+1

receives prior to the Rsp1,k+1 message. Following Lemma 4.7, hi must first deliver

the application messages it has not delivered and that sk+1 discarded prior to

hi’s connection. Following Lemma 4.2, sk+1 recovers those application messages

through sk which orders them in causal order. sk+1 sends them to in causal order

to hi, and hi first delivers them before that sk+1 sends the connectACK,k+1 message

to it, i.e., before that hi can deliver application messages currently broadcasted by

sk+1. For the application messages received by sk+1 before the Rsp1,k+1 message

and that sk+1 did not discard, hi will deliver them following the sequence number

that sk+1 assigned to them, i.e., in causal order. Therefore, hi delivers in causal

order the application messages received by sk+1 before the Rsp1,k+1 message.

To finish, application messages that sk+1 receives after the Rsp1,k+1 message are

not delivered by hi. sk+1 delivers them to hi following the sequence number as-

sociated to them. This sequence number is attributed following their reception

order on the wired network, and the algorithm used for communications on the

wired network[NMM18a] ensures that messages are disseminated in causal order.

Therefore, those messages are delivered in causal order.

Therefore, hi will deliver in causal order the application messages received by sk+1

before and after the Rsp1,k+1 message, i.e., hi delivers application messages in

causal order. If sk+1 (resp. sk) fails, then following Lemma 4.1, as long as other

stations of Gsk+1
(resp. Gsk) are up, at least one of them will hold the causal

information of hi, and the faulty station will recover that causal information when

recovering.

Termination. Theorem 5.3 shows that WAS ensures the termination when hosts

do not move between cells. We show that an up host that changes cell eventually
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co-delivers all application messages. Note that a host that delivers no message

because it changes to often its cell would eventually be considered as down by the

station registering it. Therefore, hosts are supposed to be periodically connected

long enough to a station in order to deliver outstanding application messages.

Following Lemma 4.2, sk+1 recovers the application messages that it discarded

prior to the connection of hi and sends them to hi. Hence, hi eventually delivers

all application messages that sk+1 receives prior to the Rsp2,k+1 message and that

sk+1 discarded prior to the connection of hi. For any other message m, sk+1 will

not discard it unless sk+1 considers hi as down or unless hi acknowledged it, and

sk+1 will retransmit m periodically until hi acknowledges it.

Hence, the handoff procedure ensures that sk+1 recovers and sends to hi all messages

it discarded that hi has not delivered, and for all the other messages not delivered

by hi, sk+1 buffers them and retransmits them until hi acknowledged them. If sk+1

(resp. sk) fails, then following Lemma 4.1, as long as other stations of Gsk+1
(resp.

Gsk) are up, at least one of them will hold the causal information of hi, and the

faulty station will recover that causal information when recovering.

Proof that WAS ensures causal order in presence of station

failures

Lemma 4.8. A handoff eventually executes in presence of station failures, and

stations of Gsk+1
eventually hold the causal information of hi if sk+1 does not fail

until the end of Phase 3.

Proof. Following Theorem 5.3, a handoff eventually executes in a system without

station failures. We prove that a handoff also eventually executes in presence of

station failures.

If sk fails, then a station sb of Gsk eventually takes up the responsibility of hi.

Moreover, sk will then also not reply to the handoff messages of sk+1, which will

eventually conclude that sk failed, and which will therefore begin again the handoff

by broadcasting a Req1,k+1 message. sb will then receive that Req1,k+1 message and

execute the handoff with sk+1. If sb fails, then another station of Gsk will eventually

take up the responsibility of hi, and so on as long as a station of Gsk remains up.

Therefore, the handoff eventually ends even if sk or a station of Gsk fail.

If sk+1 fails before it received the Rsp2,k+1 message, i.e., before it broadcasted the

registerk+1 and delete messages, then it will stop sending handoff messages to sk,

which will eventually cancel the handoff, thus ending it.
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If sk+1 fails after it received the Rsp2,k+1 message, i.e., after it broadcasted the

registerk+1 and delete messages, then stations of Gsk+1
eventually receive the

registerk+1 message and register hi, and stations of Gsk eventually receive the

delete message and unregister hi, thus ending the handoff.

Stations other than sk, sk+1 or in Gsk do not participate in the handoff and their

failure has therefore no impact on it.

Lemma 4.9. No causal information about hi is lost during a handoff during which

a station fails.

Proof. Theorem ?? proves that no causal information about hi is lost in during

handoffs in a system without station failures. We prove this also holds in system

where station failures occure during handoffs.

We prove that no causal information about hi is lost during a handoff for hi, i.e.

that eventually either stations of Gsk or Gsk+1
hold the causal information of hi.

We prove it by induction.

H0: Assume that s0 is the first station from which hi receives a connectACK,k+1

message. Stations of Gs0 eventually hold the causal information of hi.

Station s0 broadcasts a registerk+1 message on the wired network when receiving

a joink+1 message from hi. Stations of Gs0 eventually receive that registerk+1

message and will then register hi. Moreover, the causal order property ensured by

the algorithm used for communication on the wired network ensures that stations

of Gs0 receive the causal information related to hi in causal order. Therefore, they

will receive the causal information related to hi in causal order.

H1: Assume that stations of Gsk eventually hold the causal information related to

hi. We show no causal information is lost when hi moves to the cell of station

sk+1.

Following Lemma 4.8, each handoff eventually ends. We show that at the end

of handoff Hi,k+1 the causal information related to hi is not lost. By definition,

the stations of Gsk eventually hold the causal information related to hi. They only

delete that causal information upon receiving a delete message from sk+1. sk+1 only

sends that delete message after broadcasting to the stations of Gsk+1
a registerk+1

message containing the causal information related to hi. Moreover, the algorithm

used for communications on the wired network ensures that the stations of Gsk+1

receive the messages that sk+1 receives after broadcasting the registerk+1 message

in causal order, i.e., the stations of Gsk+1
receive all the causal information related

to hi and not contained in the registerk+1 message in causal order.
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Therefore, stations of Gsk do not receive that delete message and unregister hi
unless stations of Gsk+1

eventually receive the causal information related to hi.

Therefore no causal information is lost during the handoff Hi,k+1.

Any handoff between two stations sk and sk+1 executes without the loss of causal

information (H1). Since the initial connection from hi to a station executes without

the loss of causal information (H0), we conclude that handoffs execute without the

loss of causal information.

Lemma 4.10. When several handoffs Hi,k+1, . . . , Hi,k+n are executing simultane-

ously, then the stations of Gsk+l
eventually hold the causal information of hi, with

sk+l being the station of the highest index k < k + l < k + n that didn’t fail before

the end of Phase 3.

Proof. Let’s denote sk the station initially responsible for the causal information

of hi, and that several stations sk+1,. . . ,sk+n, with n > 1, start a handoff for hi in a

short time interval. Those stations all broadcast a Req1 message. sk first executes

the handoff Hi,k+p corresponding to the first Req1,k+l message it receives.

Following Lemma 4.8, handoff Hi,k+p eventually executes, and following Lemma 4.9

sk+p will then have the causal information of hi. Stations regularly re-broadcast

the Req1 message. Moreover, station sk+p only processes a Req1,k+q message if

k + p < k + q. Therefore, in the worst case l handoffs are executed before that

handoff Hi,k+l is executed, i.e., handoff Hi,k+1 then Hi,k+2 etc... are executed until

handoff Hi,k+l. Therefore, following Lemma 4.8 and Lemma 4.9 the stators of Gsk+l

will eventually hold the causal information of hi.

By definition, the stations sj, k + l < j < k + n do fail before they achieved the

end of Phase 3 of handoff Hi,j. Therefore, those handoffs are eventually aborted,

and the causal information of hi is eventually maintained at stations of Gsk+l
.

Lemma 4.11. For each broadcasted application message m, if ∃si ∈ G such that

si assigns the sequence number seq to m, then ∀sk ∈ G we have sk that assigns the

sequence number seq to m.

Proof. Each group G has a designated station, denoted sresp, that is responsible to

assign a sequence number to application messages broadcasted by stations of G.

Upon reception of an application message m, a station of G delays the broadcast

of m on its wireless network until receiving the sequence number that sresp assigns

to m. Hence, stations of G all assign the same sequence number to m given by

sresp.
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Only sresp assigns sequence numbers to application messages. Therefore, it is suf-

ficient to prove that stations of G continue to give the same sequence number to

application messages when sresp fails.

When sresp fails, stations of G eventually detect it since they stop receiving mes-

sages from sresp. They then elect a new responsible station srespn . Upon electing

srespn , stations of G do not accept new messages of sresp, which might still be

transiting over the wired network even though sresp already failed. This ensures

that srespn does not assign a sequence number seq′ to an application message m to

which sresp already assigned a sequence number seq and that some stations assign

the sequence number seq to m and other assign seq′ to m. Therefore, upon being

elected srespn simply assigns sequence numbers to application messages it stores as

well as to those application messages it receives, and stations of G will order ap-

plication messages following the sequence number provided by srespn , this ensuring

that all stations of G assign the same sequence number to application messages

than srespn .

Theorem 4.3. WAS is resilient to station failures when hosts do not change cells.

Proof. Consider a host hi that joins the system. We show that the causal infor-

mation related to hi is resilient to station failures as long as hi does not change

cells.

Station si broadcasts the joink+1 message that hi sends to it to join the system.

The algorithm used for the communication between stations [NMM18a] ensures

that stations of Gsi will eventually receive that joink+1 message and therefore

register the connection with hi.

hi uses seqNC to deliver application messages, and stations of Gsi use seqh they

associate to the connection with hi to order application messages broadcasted by

hi. Hence, we must show that seqNC and seqh are valid at the stations of Gsi .

Following Lemma 4.11, stations of Gsi assign the same sequence number to ap-

plication messages. If si fails, it will recover the sequence number assigned to

application message by a station of Gsi upon recovery. Therefore, seqNC will re-

main valid in the case of a temporary failure of si. The case of stop failure is not

considered here since si is assumed to not change cell. Therefore, seqNC always

stays valid for hi.

seqh that stations use to broadcast application messages of hi is also valid at sta-

tions of Gsi . When sresp broadcasts an application message m of hi on the wired

network, it attaches m’s id (hi, seqh) on m. Upon reception of m, the stations

of Gsi update the seqh associated with the connection with hi. The algorithm

used for the communication between stations [NMM18a] ensures that each station
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of Gsi eventually receives the application messages broadcasted by sk+1. More-

over, when recovering si broadcasts a recovery message, and the algorithm used

for communication between stations[NMM18a] ensures that stations of Gsi receive

the recoveryk message after the messages of hi that si broadcasted before fail-

ing. Therefore, upon reception of the recoveryk message, stations of Gsi will have

received all application messages from hi that si broadcasted, and will therefore

return a valid seqh in the recoveryACK,k message. Therefore seqh that si associates

to hi will be valid upon recovery.

Theorem 4.4. WAS is resilient to station failures when hosts change cells.

Proof. Following Theorem 4.3, WAS is resilient to station failures when hosts do

not change cells. We show that WAS is also resilient to station failures when hosts

do change cells. When a host hi changes cells for the kth time, it executes a handoff

denoted Hi,k. It is sufficient to show that, in presence of station failures, handoff

Hi,k remains valid as described in the handoff description.

If sk receives a Req1,k+n message before the Req1,k+1 message, then it will start

handoff Hi,k+n. During handoff Hi,k+n, sk does not process the Req1,k+1 messages,

and if sk+n does not fail up to the end of Phase 3 of handoff Hi,k+n, then sk
will unregister hi and broadcast a delete[k+n] message, thus aborting the handoff

Hi,k+1.

Following Lemma 4.9, no causal information is lost during handoffs when stations

do fail. Moreover, following Lemma 4.8, a handoff eventually executes in presence

of station failures and stations of Gsk+1
do eventually hold the causal information

related to hi if sk+1 does not fail until the end of Phase 3. Otherwise the handoff

is aborted, i.e., stations of Gsk eventually hold the causal information of hi.

Therefore, the three conditions of a valid are satisfied, and the handoff execution are

therefore valid and WAS is resilient to station failures when hosts change cells.

Theorem 4.5. Stations broadcast application messages exactly once.

Proof. We proof it by induction.

H0: Stations broadcast application messages from a host hi exactly once, as long

as hi stays in its initial cell.

Assume that hi joins the system by connecting itself to station sk. sk initializes the

sequence number seqh attributed to hi to 1. hi gives a unique increasing sequence

number to application messages it broadcasts, beginning with 1. sk increments

seqh when broadcasting the application message of hi of sequence number seqh,
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and discards the application messages from hi whose sequence number is lower

than seqh. hi retransmits its application messages until sk acknowledges them.

Moreover, sk acknowledges an application message to hi only after broadcasting

it on the wired network. Hence, sk broadcasts each application message of hi
exactly once. The algorithm used on the wired network ensures that the other

stations receive exactly once an application message broadcasted by sk. Hence,

other stations broadcast each application message exactly once.

If sk fails, a station sb∈ Gsk eventually takes up the responsibility of hi. By hypoth-

esis, no application message from hi is in transit when sb takes up responsibility

of hi. Hence, sb received all messages from hi that sk broadcasted. Moreover, sb
increments seqh associated to the connection with hi when receiving an application

messages from hi over the wired network. Hence, when sb takes up the responsibil-

ity of hi, the seqh value it associates to hi correspond to the number of application

messages from hi that sk has broadcasted. When sk recovers, it will recover seqh
through sb.

H1: We assume that host hi is first connected to station sk and that during that

connection no station broadcasted twice an application message from hi. We show

that when hi connects itself to sk+1, station broadcast exactly once application mes-

sages from hi.

Upon the reception of the connectk+1 message from hi, sk+1 starts handoff Hi,k+1.

After sending the connectk+1 message, hi broadcasts no application message to

another station than sk+1, and sk+1 broadcasts no application message from hi
until the end of the handoff.

During the handoff, sk+1 sends seqh to sk+1, and sk+1 does not broadcast any appli-

cation message from hi of sequence number lower than seqh, i.e. it will broadcast

no application message from hi already broadcasted by sk. Second, sk+1 incre-

ments seqh when broadcasting a message of hi. Hence, it will broadcast exactly

once any application message of sequence number higher than seqh. Hence, sk+1

broadcast application messages from hi exactly once. The algorithm used on the

wired network ensures that the other stations receive exactly once an application

message broadcasted by sk+1. Hence, other stations broadcast application message

of hi exactly once.

If sk fails during the handoff, then sk+1 eventually does the handoff with a station

of Gsk after the timeout expiration. If sk+1 fails, then sk cancels the handoff after

the timeout expiration and sk+1.

Stations broadcast application messages from hi exactly once when hi changes cell

(H1). Since stations broadcast once application messages from hi as long as hi stays
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in its initial cell (H0), we conclude that stations broadcast exactly once application

messages from hi.

4.7 Conclusion

This chapter presented a causal broadcast algorithm tailored to the features and

dynamics of mobile networks. Such networks include host mobility, dynamic host

membership, unreliable dynamic wireless channels, memory and computing con-

straints of mobile hosts, scalability issues due to the high number of mobile hosts

and stations. Both algorithms tolerate temporary and permanent failures of mobile

host. The second algorithm also handles the permanent and temporary failures of

stations. Messages piggyback few causal information. The algorithms scale well

with hosts which have a low memory footprint while stations have a memory foot-

print that grows linearly with the number of locally connected hosts. Stations dis-

card obsolete messages with only local information, removing the message exchange

between stations used by centralized approaches to discard obsolete messages.

Performance results from simulations done on OMNeT++/INET show that WAS

has a much lower message overhead, delivery delay, and caches fewer messages

than a representative causal multicast algorithm for Mobile Networks adapted to

provide causal broadcast [CK04]. Furthermore, the decentralized approach to dis-

card obsolete messages of WAS induces much fewer messages cached by stations,

as well as much fewer messages sent on the network, when compared to a central-

ized approach. Finally, hosts that temporarily fail rapidly catch up in delivering

outstanding messages after recovering, and the decentralized discard approach of

obsolete messages mostly limits the impact of host failures to the cells in which

those failures occur.

WAS2 has an additional cost over WAS : the stations of a group need to communi-

cate with each other to order messages and discard obsolete ones. This communica-

tion increases delivery delays as well as the causal information that is transmitted

over the wired network. Future experiments will analyze the delivery delays and

size of causal information depending on the size of the group of stations.
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5.1 Introduction

Torres-Rojas and Ahamad [TA99] introduced in 1998 M-entry clocks, which are

clocks of M ≤ N entries, where N corresponds to the number of processes in

the system. The second part of this thesis aims to enhance the accuracy in

causally ordering messages when using such clocks to implement causal broad-

cast. M-entry clocks cannot characterize causality when doing causal broadcast,

as shown by Charron-Bost who proved that at least vector clocks with one entry

per process of the system are required [Cha91]. Nevertheless, Torres-Rojas and

Ahamad [TA99][Tor01] showed through a theoretical and experimental analysis

that an implementation of causal broadcast using M-entry clocks causally orders

messages with a high probability. However, such algorithm might deliver messages

out of causal order. Among M-entry clocks, Probabilistic clocks [MW17b] and

Bloom clocks [MK21] have the best performances (see Section 3.2.3).

M-entry clocks are adapted to applications where messages that are delivered out

of causal order only impact performance but not correctness. For example, applica-

tions that measure concurrency by analyzing a history of events in order to inform

how many pairs of events are concurrent. Such applications would still measure the

concurrency with a high precision when using M-entry clocks, even if some causal

relationships would be missing in the event history [TA99]. Other examples are

timestamped-based resource allocation or protocols that ensure the causal consis-

tency of data through invalidation [TA99]. Moreover, in many systems messages

are implicitly causally ordered. For example, in systems where the time between

the generation of two causally related messages is higher than the communication

delay between processes.

M-entry clocks are also adapted to applications where some errors are acceptable.

For example, in social networks such as instagram, most of the comments/replies

correspond to the image poster. Hence, very few replies that do not appear in the

correct order make the readers misunderstand the context of the comments [HK17].

Mostefaoui and Weiss [MW17a] proposed an error detector whose purpose is to

detect out of causal order deliveries when implementing causal order with prob-

abilistic clocks. To that end, the error detector analyzes the clock attached to a

message before delivering it. The error detector yields some errors, which are either

false positives or false negatives. A false positive corresponds to the error detector

wrongly concluding that a message is delivered out of causal order. A false negative

corresponds to the error detector not detecting an out of causal order delivery.

The first contributions presented in this chapter are about error detectors that

aim to detect out of causal order deliveries. We first show that it is impossible

to implement an error detector that detects all out of causal order deliveries. In
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the second contribution, we propose an error detector based on the hashing of

messages’ causal dependencies. The proposed error detector has a high accuracy of

detecting out of causal order deliveries. Third, we propose an algorithm to recover

the causal dependencies of messages. We propose to use it with error detectors

analyzing messages before delivering them, and to retrieve the causal dependencies

of tagged messages, in order to ensure that they are causally delivered. The third

contribution is based on the observation that the accuracy of an M-entry clock of

a given size M decreases when the number of concurrent messages increases. We

therefore propose a new clock, denoted Dynamic Clock Set (DCS clocks), composed

of Probabilistic Clocks [MW17a]. The size of DCS clocks can dynamically vary

during execution. In particular, the size of DCS clocks can be adapted to the

number of concurrent messages in order to keep the number of messages delivered

out of causal order below a tuneable threshold.

We conducted experiments on the OMNeT++ simulator. Results show that the

proposed error detector detects most -experimentally all- messages delivered out of

causal order, and that a causal broadcast implementation using DCS clocks adapts

the size of the DCS clock well to the message load. Moreover, retrieving the causal

dependencies of messages tagged as not causally ordered allows to heavily reduce

the number of messages delivered out of causal order. Hence, experimental results

confirm the effectiveness of the proposed contributions.

This chapter is organized as follows: Section 5.2 gives some additional background

on Probabilistic clocks [MW17b]. Section 5.3 presents the required conditions

to implement a reliable error detector as well as the hash-based error detector.

Section 5.4 presents the algorithm to retrieve the causal dependencies of messages

and discusses its use in conjunction with the hash-based error detector. Finally,

Section 5.5 presents the DCS clocks and an implementation of causal broadcast

using them.

5.2 Background

The contributions presented in this chapter use Probabilistic clocks [MW17b] which

have, with Bloom clocks [MK21], the best performances among clocks with M ≤ N

entries. Hence, this section gives some additional background about them.

5.2.1 Probabilistic clocks

In the implementation of causal broadcast using probabilistic clocks, each process

pi keeps a local clock Vi with M ≤ N entries initialized to 0, where N corresponds
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to the number of processes in the system. A hash function f(pi) returns the set

of k clock entries assigned to pi, with 1 ≤ k ≤ M , i.e., one to several probabilistic

clock entries are respectively associated to each process at initialization. f(pi) as

well as k are fixed at initialization and do not change during execution. Process pi
uses the following two rules R1 and R2 to update its local probabilistic clock:

R1 - Before executing an event, pi updates its local clock:

∀x ∈ f(pi), Vi[x] = Vi[x] + 1

R2 - Each message m carries with it the vector clock of its sender process at

sending time. On the receipt of a message m, process pi :

– Updates its local clock as follows: ∀x, Vi[x] = max(Vi[x],m.V [x])

– Executes R1,

– Delivers m

The comparison operator of two probabilistic clocks V1 and V2 is defined as follows:

V1 < V2, iff ∀x, 1 ≤ x ≤M,V1[x] ≤ V2[x] ∧ ∃i, V1[i] < V2[x]

The following condition holds on probabilistic clocks:

send(m1)→ send(m2)⇒ m1.V < m2.V

But the contrary is not true:

m1.V < m2.V 6⇒ send(m1)→ send(m2)

5.2.2 Causal broadcast using probabilistic clocks

Causal broadcast should ensure the properties of Validity, Integrity, and Termina-

tion defined in Section 2.4, plus the causal delivery of messages:

Causal broadcast: Consider two broadcast messages m and m′, if m causally

precedes m′, then all processes should deliver m before m′:

broadcast(m)→ broadcast(m′)⇒ deliver(m)→ deliver(m′)

Algorithm 8 describes the causal broadcast algorithm using probabilistic clocks

presented in [MW17b]. Before broadcasting a message m, process pi increments

the entries f(pi) of its local vector clock Vi, then it broadcasts Vi with m. Upon

reception of a message m from a process pj, pi delays the delivery of m till the

two following conditions are satisfied: (1) ∀x ∈ f(pj), Vi[x] ≥ m.V [x] − 1 and (2)

∀x /∈ f(pj), Vi[x] ≥ m.V [x]. pi delivers m and increments the entries k ∈ f(pj) of

Vi after both conditions are satisfied.

Authors of [MW17b] determine that the optimal number of clock entries that pro-

cesses should increment when broadcasting a message is equal to: |f | = ln(2) ∗ |V |
X

,
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Algorithm 8: Broadcast at process pi
Broadcast of message m

1: ∀x ∈ f(i), Vi[x] = Vi[x] + 1
2: m.V = Vi
3: broadcast(m)

Upon reception of message m from pj
3: waitUntil((∀x ∈ f(j), Vi[x] ≥ m.V [x]− 1)∧∀k /∈ f(j), Vi[k] ≥ m.V [k])
4: ∀x ∈ f(j), Vi[x] = Vi[x] + 1
5: deliver(m)

p1

f(p1)={0,1}

p2

f(p2)={0,2}

p3

f(p3)={1,2}

b(m)
[1,1,0]

[1,1,0]

d(m)
d(m’)

[1,1,0]
b(m’)
[2,1,1]

delay m’

[2,1,1]

b(m): broadcast(m) d(m): deliver(m)

Figure 5.1: Causal broadcast using probabilistic clocks

where X corresponds to the average number of concurrent messages to m and |V |
the size of the used clock.

Figure 5.1 shows the broadcast of two messages m and m′. M = 3. The clock

entries assigned to p1, p2, and p3 are f(p1) = {0, 1}, f(p2) = {0, 2}, and f(p3) =

{1, 2} respectively. pi broadcasts (m,V1) after incrementing the entries f(p1) of

its local vector clock V1. Process p2 receives and delivers m. Then, it broadcasts

(m′, V2) after incrementing the entries f(p2) of V2. Thus, m → m′. When p3

receives m′, the delivery conditions of m′ are not yet satisfied since m′.V [0] = 2 >

V3[0] = 0. Consequently, p3 buffers m′. Upon the reception of m, p3 delivers m

and increments the entries f(p1) of V3. It then also delivers m′ and increments the

entries f(p2), since the delivery conditions of m′ have been satisfied.

A causal broadcast implementation using probabilistic clocks might deliver some

messages out of causal order. For example, assume that in Figure 5.1 process p3

delivers messages concurrent to m before receiving m′, such that the delivery of

those messages increment V3[0] and V3[2]. p3 will then deliver m′ out of causal

order, because the delivery conditions of m′ will be satisfied at p3 upon reception.
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Authors of [MW17b] gave the following formula to determine the probability that

a process delivers a message m out of causal order: (1 − (1 − 1
M

)X∗k)k, where M

is the size of the clock attached on m, k the number of clock entries associated to

each process, and X the number of messages concurrent to m. Two observations

can be made out of that equation. First, increasing the size of the clock attached

on m decreases the probability that a process delivers m out of causal order. Sec-

ond, increasing the number of concurrent messages inside the system increases the

probability that m is delivered out of causal order, because a concurrent message

might increment the same clock entries as dependencies of m. Therefore, the higher

the number of concurrent messages to m that pi delivers before delivering m, the

higher the probability that such deliveries increment the same clock entries as de-

pendencies of m, and pi will then wrongly satisfy m’s delivery conditions, thus

delivering m out of causal order.

5.2.3 Error detector

Authors of [MW17a] also proposed an error detector (see Algorithm 9) to detect

out of causal order deliveries. Basically, the detector analyzes the probabilistic

clock attached to a message m once the delivery conditions of m are satisfied, and

returns true if it detects an error, and false otherwise. An error handler function

can then further handle messages on which the error detector returned true. The

error detector can yield false positives and negatives, i.e., it can wrongly conclude

that a message will be delivered out of causal order (false positive), and it can also

wrongly conclude that a message can be delivered in causal order (false negative).

Algorithm 9: Error detector executed by pi before delivering m broad-
casted by pj

if ∃x ∈ f(pj), Vpi [x] = m.V [x]− 1 then
return false # No error detected

return true # Error detected

Figure 5.2 shows an execution in which the error detector of Algorithm 9 detects

that m2 is not causally ordered. M = 4. Each process initializes its probabilistic

clock to [0, 0, 0, 0]. The following entries f(pi) are assigning to p1≤i≤4: f(p1) =

{0, 1}, f(p2) = {1, 2}, f(p3) = {0, 2}, f(p4) = {1, 3}. Messages are sent to all

processes, but only the relevant ones are shown for better readability. In this case,

we can consider that the other messages are received later. m1 → m2, since p2

broadcasts m2 after delivering m1. However, p3 receives m2 before m1, and upon

reception, its delivery conditions are satisfied due to the delivery and broadcast

of other messages. Nevertheless, the error detector of p3 concludes that m2 is not

causally ordered: f(p2) = {1, 2}, and V3[1] 6= m2.V [1] − 1 ∧ V3[2] 6= m2.V [2] − 1.

Hence, the error detector returns true.
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p1

f(p1)={0,1}

p2

f(p2)={1,2}

p3

f(p3)={0,2}

p4

f(p4)={1,3}

b(m1)
[1,1,0,0]

d(m1)

[1,1,0,0]

b(m2)
[1,2,1,0]

detect(m2)

[1,2,1,0]

[0,1,0,1]
b(m3)

d(m3)
[0,1,0,1]

[0
,1

,0
,1

]

[0,2,0,2]
b(m4)

d(m4)
[0,2,0,2]

[0
,2

,0
,2

]

b(m5)
[1,2,1,2]

[1,2,1,2]
d(m5)

[1,2,1,2]

Figure 5.2: Delivery error detected by the error detection

p1

f(p1) = {0, 1}

p2

f(p2) = {1, 2}

p3

f(p3) = {0, 2}

p4

f(p4) = {1, 3}

b(m′)
[1,1,0,0]

[1,1,0,0]
b(m”)

[1,2,1,0]

[1,0,1,0]

b(m1)
[1,0,1,0]

m
1

[1,0,1,0]

[1,0,1,0]

m1

b(m2)
[1,1,1,1]

d(m2)
X

m
2

[1
,1

,1
,1

]

Figure 5.3: Delivery error not detected by the error detector

However, the error detector does not detect all out of causal order deliveries. For

example, consider the example of Figure 5.3 , where m1 → m2, but where p2

receives m2 before m1, and the delivery conditions of m2 are satisfied upon its

reception by p2. The error detector does not detect that p2 cannot deliver m2 in

causal order because f(p4) = {1, 3} and V2[3] = m2.V [3] − 1. Hence, p2 delivers

m2 at X without having previously delivered m1.
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5.3 Error detectors for M-entry clocks

This section presents the contributions related to error detectors.

Firstly, we define the conditions an error detector for M-entry clocks would require

to detect all out of causal order deliveries. We then show that those conditions are

unrealistic and that it is therefore impossible to implement such an error detector

under realistic assumptions.

Secondly, we propose a new error detector based on hashed causal dependencies. It

is based on hashing the causal dependencies of messages at sending, and determines

if all the causal dependencies have been delivered at destination through the hash

appended on messages. The proposed error detector has a much higher accuracy

than the error detector proposed in [MW17a] in detecting out of causal order

deliveries.

Thirdly, we present a short algorithm to retrieve the causal dependencies of mes-

sages. This algorithm can be used in conjunction with error detectors, by retrieving

the causal dependencies of messages on which an error detector returns true, in

order to ensure that the message is delivered in causal order.

5.3.1 Conditions required by a reliable error detector

This section first determines the conditions required to implement an error detector

that detects all out of causal order deliveries. Second, we show that those conditions

are unrealistic, and that it is therefore impossible to implement such an error

detector under realistic assumptions.

In the following, and without loss of generality, we consider that the function f

which returns the entries incremented by processes is chosen such that processes

increment the entries of the M-entry clock V uniformly.

Lemma 5.1 determines the minimum set of messages a process must have delivered

to ensure that it can causally deliver a message m.

Theorem 5.1 determines the conditions a process must satisfy to avoid being even-

tually deadlocked while waiting for the conditions of Lemma 5.1 to be satisfied.

Finally, Theorem 5.2 gives the number of messages each process must have broad-

casted to avoid processes to be eventually deadlocked while waiting for the condi-

tions of Theorem 5.1 to be satisfied.
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Lemma 5.1. To ensure the causal delivery of a message m of M-entry clock m.V ,

process pi must have delivered, from each process pk, min({m.V [e], e ∈ f(pk)})
messages.

Proof. pi increments the entries e ∈ f(pk) of Vi when delivering a message from

pk. Hence, the maximum number of messages that pi delivered from pk prior to

broadcasting a message m, on which it attaches Vi, is mk = min({m.Vi[e], e ∈
f(pk)}). A process pj receiving m cannot ensure that it can deliver m in causal

order if it has delivered less than mk from pk. In fact, it cannot determine if

pi incremented the entries f(pk) of Vi by delivering mk messages from pk or by

delivering messages from other processes. Hence, pj must deliver mk messages

from pk to ensure that it can deliver m in causal order.

One could deduce that to ensure the causal delivery of a message m, a process pi
only needs to delay the delivery of m until pi has delivered, for each process pk,

min({m.V [e], e ∈ f(pk)}) messages. Theorem 5.1 and Theorem 5.2 determine the

conditions to avoid a resulting deadlock.

Theorem 5.1. A process pi that waits to satisfy the conditions of Lemma 5.1 before

delivering a message m will wait forever, i.e., will be deadlocked, unless, for each

process pk∈Π, pk broadcasts at least minm = min({m.V [e], e ∈ f(pk)}) messages

prior to delivering m.

Proof. Assume that pk delivers m prior to broadcasting minm = min({m.V [e], e ∈
f(pk)}) messages, then broadcasts its xth message m′, with x < minm. We show

that processes cannot deliver m before m′, and vice versa, i.e., processes are dead-

locked.

Following Lemma 5.1, to ensure that process pi delivers a messagem in causal order,

it must deliver, from each process pk, at least minm messages before delivering

m. Hence, pi must deliver m′ before m, since x < minm. However, following

Lemma 5.1, pi must deliver m′ after m, because it broadcasts m′ after m and

therefore minm < minm′ . Thus, pi cannot deliver m′ before m, but it also cannot

deliver m before m′, i.e., it is deadlocked.

Theorem 5.2. Be (Mk)k∈N a sequence of sets of messages such that Mk →Mk+1.

∃i0 ∈ N,∀i > i0, such that to ensure the causal delivery of messages of Mi a process

must broadcast at least ( |f |∗N
M

)i−i0 messages prior to delivering messages of Mi.

Proof. We prove it by induction.
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H0: ∃io ∈ N, each process must broadcast at least |f |∗N
M

messages before delivering

messages of Mi0+1.

First, ∃io ∈ N,min({min(m.V ),m ∈ Mi0}) ≥ 1. In fact, a process increments

the entries of its vector clock when broadcasting or delivering a message, following

the entries that f returns. Since f is uniform, the entries of V are eventually all

incremented, i.e. eventually ∀p,min(p.V ) > 1.

Before delivering a message of Mi0+1, a process must deliver all messages of Mi0

as well as the messages broadcasted prior to the messages of Mi0 . Following The-

orem 5.1, each process must broadcast at least one message prior to delivering a

message of Mi0 , because ∀m ∈ Mi0 ,min(m.V ) ≥ 1. Hence, a process must deliver

at least N messages prior to delivering a message of Mi0+1. Each message deliv-

ery increments |f | entries of the vector clock. Hence the delivery of N messages

increments the vector clock |f | ∗ N times. Since |f | is uniform by assumption,

each entry of the vector clock is incremented |f |∗N
M

times. Following Theorem 5.1,

each process must broadcast at least |f |∗N
M

messages prior to delivering a message

of Mi0+1, because Mi0 →Mi0+1, and therefore ∀m ∈Mi0+1,min(m) > |f |∗N
M

.

H1: We assume that processes must broadcast at least ( |f |∗N
M

)i−i0 messages prior

to delivering messages of Mi. We show that processes must broadcast at least

( |f |∗N
M

)i−i0+1 messages prior to delivering messages of Mi+1.

Before delivering a message of Mi+1, a process must deliver all messages of Mi as

well as the messages broadcasted prior to the messages of Mi.

Following Theorem 5.1, each process must broadcast at least ( |f |∗N
M

)i−i0 message

prior to delivering a message of Mi. Hence, a process must deliver at least x =

( |f |∗N
M

)i−i0 ∗ N messages prior to delivering a message of Mi+1. Each message

delivery increments |f | entries of the vector clock. Hence the delivery of N messages

increments the vector clock |f | ∗ x times. Since |f | is uniform, each entry of the

vector clock is incremented x
M

times. Following Theorem 5.1, each process must

broadcast at least ( |f |∗N
M

)i−i0+1 messages prior to delivering a message of Mi+1,

because Mi →Mi+1, and therefore ∀m ∈Mi+1,min(m) > ( |f |∗N
M

)i−i0 .

Thus, ∀i > i0, processes must broadcast at least ( |f |∗N
M

)i−i0+1 messages prior to

delivering messages of Mi+1 (H1). Since ∃i0 (H0), we conclude that ∃i0 ∈ N,∀i >
i0, each process must broadcast at least ( |f |∗N

M
)i−i0 messages prior to delivering

messages of Mi.

Theorem 5.2 shows that the number of messages that processes must broadcast

to avoid a deadlock increases exponentially. Hence, it is impossible to implement,

under realistic assumptions, an error detector that detects all out of causal order

deliveries. For example, consider a system with an average network delay of 100ms,
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|f | = 2, M = 100, N = 10000. Following the formula given in Theorem 5.2, each

process must broadcast approximately one second after the conditionmin(V ) = 1 is

true (very fast) 1∗(2∗10000
100

)10 = 20010 = 1.024∗1023 messages to avoid the deadlock

of processes. Obviously, this does not correspond to a normal execution. Hence,

implementing a reliable error detector is not possible under realistic assumptions.

5.3.2 The hash-based error detector

This section presents an error detector based on hashed causal dependencies. A

process pi calls it before delivering a message m. Its purpose is to detect out of

causal order deliveries.

The section is organized as follows. Section 5.3.2.1 presents the principle of the

hash-based error detector. Section 5.3.2.2 describes how the error detector chooses

the message ids to hash. Section 5.3.2.3 describes how the error detector builds

dependency sets to hash with the message ids it chose to hash. Section 5.3.2.4

presents another mechanism to choose the message ids to hash. Section 5.3.2.5

presents a mechanism to make the error detector resilient to a high message load,

and finally Section 5.3.2.6 gives an example of execution of the error detector.

5.3.2.1 Principle of the hash-based error detector

The hash-based error detector is based on hashing the causal dependencies of mes-

sages, and appending those hashes on messages when broadcasting them. A process

pi executes the hash-based error detector on a message m once the delivery condi-

tions of m’s M-entry clock are satisfied. It builds dependency sets with the ids of

messages that it has delivered, computes their hash, and compares it with the hash

appended on m, in order to find the dependency set of m. Algorithm 10 describes

the hash-based error detector.

Let’s consider an execution from the broadcast of a message m by process pj till

its delivery by process pi.

Process pj broadcasts m by first computing m’s hash Hm, then broadcasting m

with Hm and its M-entry clock Vj. pj builds Hm with the ids of some causal

dependencies of m, which it choses as described in Section 5.3.2.2.

Upon reception of m, process pi executes its error detector on m.V once its local

clock Vi satisfies the delivery conditions of m’s clock. The error detector first builds

setsToHash, the set of dependency sets it will hash (line 2). A dependency set is

composed of ids of causal dependencies of m. The message ids the error detector
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takes into account when building setsToHash is described in Section 5.3.2.2. The

error detector computes the hash of each set depSet of setsToHash (line 3) till

it finds one whose hash hash(depSet) is equal to Hm (line 4). The error detector

returns false if it finds such a set. Otherwise, it did not succeed to find a dependency

set for m with the messages pi delivered and returns therefore true, i.e., maybe m

cannot be delivered in causal order.

A message m on which the error detector returns true can be handled in several

ways. Either, pi requests m’s causal dependencies Depm to pj, and upon reception

of m’s causal dependencies, pi delivers m once it has delivered all messages whose

id is contained in Depm ; or pi delivers m to the application with the information

that it might not be causally ordered.

Algorithm 10: Hash-based error detector executed by pi
1: Input: m: message to deliver
2: setsToHash = buildDependencySets()
3: for depSet ∈ setsToHash do
4: if hash(depSet)==m.Hm then
5: return false # No error detected
6: return true # Error detected

Collisions may occur when hashing dependency sets, i.e., two dependency sets

may have the same hash value, which means that the error detector may find a set

Dep′m of hash HDep′m = Hm, but Dep′m 6= Depm. Such a situation is very unlikely to

happen since a hash of x bits corresponds to a hash space of 2x values. Nevertheless,

each new computed hash increases the probability of a collision, since at each hash

computation we have a given collision probability and the hash computations are

independent. Hence, the probability of a collision can be bounded by computing

at most a given number of hashes. Moreover, it exponentially decreases when the

number of bits on which the hash is stored increases.

5.3.2.2 Choosing the message ids to hash

Process pj computes the hash Hm of a message m it broadcasts with some of the

ids of m’s causal dependencies. When delivering m, pi builds dependency sets to

hash with the ids of the messages it delivered previously. This section describes

how pj and pi choose the message ids they respectively take into account in their

hash computation.

The operations described in this section require processes to keep the M-entry clock

of messages after delivering them. Each process pi keeps messages it delivered as

well as their clock in the set Sdeliv,i. Section 5.3.2.2.c describes how to clear Sdeliv,i.
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5.3.2.2.a Clock difference

Processes use the difference between the clocks of messages to determine which

message ids to hash. The difference between two clocks is defined as:

Definition 5.1. Let’s consider two messages m1 and m2 which respectively carry

the clocks V1 and V2. The difference between V1 and V2 is:

Diffm1,m2 =
∑

x V1[x]−
∑

x V2[x]

M-entry clocks increase over time, due to the delivery of messages by processes.

Hence, the average time interval between the sending of two messages m1 and m2

increases with their clock difference Diffm1,m2 . Moreover, the closer Diffm1,m2 is

getting to 0, the smaller the interval between the sending of m1 and m2. We do

the following observations based on the value of Diffm1,m2 :

• Diffm1,m2 < 0: The probability thatm1 is a causal dependency ofm2 increases

as Diffm1,m2 decreases.

• Diffm1,m2 → 0: The probability that m1 and m2 are concurrent increases as

Diffm1,m2 is getting closer to 0.

• Diffm1,m2 > 0: The probability thatm2 is a causal dependency ofm1 increases

as Diffm1,m2 increases.

5.3.2.2.b Message ids considered when computing a message’s hash

Charron-Bost proved in [Cha91] that a structure that characterizes the causality

of an event in a system containing N processes has at least N entries when doing

causal broadcast. Hashing such a structure would require O(N) operations, and

would therefore not scale. Instead, processes hash the causal dependencies of only

a subset of message ids.

Consider a process pi that broadcasts a message m. pi computes the hash of m

with only the ids of causal dependencies m′ of m whose clock difference with m is

lower than a given value Diff. Formally, pi computes the hash Hm of m as follows:

Hm = hash( {m′.id, Diffm,m′ < Diff ∧ m′ → m} )

The drawback of computing Hm with only those messages m′ is that a process pj
that receives m, but which has not delivered yet a message m” such that Diff m,m” >

Diff, will not detect it through the hash computation. Therefore, Diff should be

chosen such that messages that are not yet delivered by all processes are taken

into account when computing the hash of messages. In addition, Section 5.3.2.4

describes a mechanism that ensures to take into account all relevant message ids,

but which is more complex to implement.
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Value of Diff The formula to determine the value of Diff consists of two parts.

It contains the following variables:

• mload: the system’s message load.

• maxDelay : the maximum communication delay in the system.

• |f |: the number of entries incremented by processes when broadcasting/de-

livering a message.

• nconc: the average number of concurrent messages.

The first part is equal to maxDelay*mload*|f |. Process pi should include a message

m’s id when computing m’s hash as long as some processes did not receive and

deliver m, i.e., for at least maxDelay seconds. During that time, pi delivers on

average mload messages, and it increments |f | values of its clock at each delivery.

The second part is equal to nconc ∗ |f |. Between the sending of m and its reception

by a process pj, pj will potentially deliver nconc concurrent messages to m, thus

increasing its clock nconc ∗ |f | times.

The formula to determine the value of Diff is:

Diff =maxDelay*mload*|f | + nconc ∗ |f |

5.3.2.2.c Message ids considered when building dependency sets

This section describes how the error detector of process pi chooses the message ids

to hash when analyzing the causal delivery of a message m sent by a process pj
(Algorithm 10 line 2).

The error detector of process pi chooses the message ids to hash by analyzing

Sdeliv,i. As described in Section 5.3.2.2.b, process pj, the sender of m, computed

the hash of m with the causal dependencies m′ of m that verify Diff m,m′ < Diff.

Hence, the error detector of pi computes hashes with the message ids (id, seq) of

messages contained in Sdeliv,i whose clock difference with m is lower than Diff.

Moreover, M-entry clocks capture causality: for any two messages m and m′:

m→ m′ ⇒ m.V < m′.V

Therefore, all messages m′ such that ∃x,m′.V [x] > m.V [x] are not dependencies of

m. Hence, the error detector of pi does not include the ids of such messages when

building dependency sets to hash.
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To conclude, when analyzing a message m, the error detector of pi builds depen-

dency sets to hash with the following message ids:

Mhash={(m′.id,∀m′ ∈ Sdeliv,i, m
′.V < m.V ∧ Diff m,m′ < Diff }

Process pi also uses Diff to clean Sdeliv,i. It keeps in Sdeliv,i the messages whose

clock difference with Vi is lower than 2*Diff : It considers that in the worst case,

it did not receive yet a message m′ whose clock difference with Vi is at most Diff,

and the causal dependencies of m′ will have a clock difference with m′ of at most

Diff. Hence, the messages with a clock difference with Vi of more than 2*Diff will

not be used anymore in any hash computation.

5.3.2.3 Building dependency sets

M-entry clocks do not characterize causality. Hence, the set Mhash that process pi
identified (see Section 5.3.2.2.c) might contain the id of messages that are concur-

rent to m. Therefore, pi also needs to build and hash subsets of Mhash in order to

find one which does not contain the ids of messages concurrent to m. The number

of sets pi can build exponentially increases with the size of Mhash. This section

therefore describes how to choose the subsets in order to increase the probability

for pi to find a dependency set whose hash is equal to the one appended to m, and

by doing it with the fewest possible hashes.

Note that the probability that Mhash contains a message m′ concurrent to a message

to deliver m increases with the number of messages concurrent to m′. In fact, the

probability that m.V ≥ m′.V increases with the number of concurrent messages to

m′ that the sender process of m delivers prior to broadcasting m.

Mhash: The set of message ids ordered following their probability to

be concurrent to m. The error detector uses the clock difference between two

messages to estimate their probability to be concurrent. As explained in Sec-

tion 5.3.2.2.a, the probability that two messages m1 and m2 are concurrent in-

creases as Diffm1,m2 is getting closer to 0. Hence, the error detector orders Mhash

by increasing clock difference with m, i.e., Mhash[0] = (m’.id, Diffm,m′ = min({
Diffm,m′ ,m′ ∈ Mhash}). Note that Mhash does not contain messages m′ such that

Diffm,m′ < 0, because it only contains messages which verify m′.V < m.V .

depSet: The set of message ids sets to hash. Process pi builds depSet, the

dependency sets to hash, with the messages of Mhash. It first adds to depSet the

list of all ids of Mhash. Then it builds the combinations of Mhash by progressively

removing the messages that have the highest probability to be concurrent to m.

For example, it first adds to depSet the combinations of Mhash without Mhash[0]

that contain the tuples Mhash[j], j > 0, then it adds the combinations of Mhash

without Mhash[1] that contain the tuples Mhash[j], j > 1, etc. . .
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MaxHashes: a bound on the number of computed dependency sets. The

number of built dependency sets should be bounded. In fact, this number can be

very high, while it can even be impossible to find a message m’s dependency set

if the process did not deliver one of m’s causal dependencies. For example, even

if process pi delivered all causal dependencies of a message m, it potentially needs

to compute many dependency sets if it takes into account concurrent messages of

m. Moreover, pi will not find such a set (except in case of a collision) if it did not

deliver a causal dependency m′ of m.

The probability that the hash of a dependency set is equal to the hash Hm of m also

decreases during the hash computation, i.e., the probability that hash(depSet[x])

= Hm is higher than hash(depSet[x+100]) = Hm, because depSet[x] is built by

removing messages that have a higher probability to be concurrent to m than the

messages removed when building depSet[x+100].

Therefore, the error detector should not compute the hash of all the possible depen-

dency sets of m. Instead, it only computes at most a given number of MaxHashes

hashes before returning false, i.e., concluding that m might not be causally ordered.

Bounding the number of computed hashes also bounds the probability of a hash

collision, since at each new computed dependency set we have a given probability

of a collision.

To summarize, Algorithm 11 describes the function buildDependencySets of Al-

gorithm 10. We illustrate it with the following example. Consider that pro-

cess pi executes its error detector on a message m, and that it has delivered

the messages m1,m2,m3,m4 prior to receiving m. pi first builds Mhash, which

let’s say contains the following ids ordered following their clock difference with m

Mhash={m2,m1,m3}. pi builds possible dependency sets for m as follows: (1) first

it adds the set containing all the message ids to depSet (line 1), i.e., it considers

that m1,m2,m3 are causal dependencies of m (2) it builds dependency sets without

the id of the message which has the highest probability to be concurrent to m, i.e.

m2. Hence, it adds the dependency sets {m1,m4} to depSet. Then it continues

by building dependency sets without the id of the second message that has the

highest probability to be concurrent to m, i.e., {m2,m4}, {m4}. Finally, it builds

dependency sets without m4: {m2,m3}, {m2}, {m1},{}. In total it builds 7 de-

pendency sets and sorts them as follows: {m2,m1,m3},{m1,m3}, {m2,m3}, {m3},
{m2,m1}, {m1}, {m2},{}.

5.3.2.4 Hash divided in a set of hashes

The hashing described in Section 5.3.2.2.b might result in a process computing a

hash without a message’s id that has not been delivered by all processes. The
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Algorithm 11: buildDependencySets

1 Input: Mhash: ids of messages to hash
1: setsToHash = {{ m′.id, m′ ∈ Mhash}}
2: for i = 0; i ≤ |Mhash| ∧ |setsToHash| ≤ MaxHashes ; i++ do
3: setsToHash = setsToHashes ∪ all combinations of Mhash without Mhash[i]

that contain the tuples Mhash[j], j > i
4: return setsToHash[0..MaxHashes ]

mechanism described in this section is more complex but it ensures that the ids of

messages that have not been delivered yet by all processes are taken into account

when computing the hash of messages.

The mechanism works in rounds. Each message m is associated to the round k

in which it was broadcasted. A process aims to associate to each round at most

limround messages. The hash Hm of m is composed of a set of hashes hm,k, with

hm,k being the hash computed with the causal dependencies of m broadcasted in

round k. Each process pi keeps a round counter hr,i initialized to 0. pi appends

hr,i on messages it broadcasts, and updates it as follows:

(1) - Upon registering limround messages m′ such that m′.hr = hr,i. pi increments:

hr,i : hr,i = hr,i + 1

(2) - Upon reception of a message m′ with m′.hr > hr,i. pi updates:

hr,i : hr,i = m′.hr

A process increments its round counter after registering limround messages in the

current round (1). Moreover, it updates its local round counter if it receives a

message whose round counter is higher than the local one, since this means that

another process registered limround messages in lower rounds (2). Hence, the hash

of a round is computed with on average limround message ids.

Formally, pi builds the hash Hm of a message m it broadcasts as follows:

Hm = {hk≤hr,i,m, where hk,m=hash({m′, m′ → m ∧m′.hr,m′ = hk}) }

hk, the hash of round k, becomes obsolete once all processes delivered the messages

that were broadcasted in round k. An obsolete hash should be removed from the

system. Hence, processes exchange messages to verify that they all delivered the

messages broadcasted in round k.

To acknowledge hash hk,i, process pi broadcasts the dependency set Depk associ-

ated to hk,i. The other processes reply with a positive or negative acknowledgment.

A process positively acknowledges Depk if it has received and delivered exactly

the same messages as described in Depk. Otherwise, it replies with a negative
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acknowledgment. The acknowledgment round is successful provided that all pro-

cesses positively acknowledge the dependency set associated to hk,i. Processes then

remove the hash hk,i from the hashes they store, and they also remove from Sdeliv

the messages associated to round k.

In the worst case, all processes broadcast a message at the same time, and associate

those messages to round k. N messages are then associated to round k, where N

corresponds to the number of processes in the system. Nevertheless, on average

the number of message ids associated to a round should be close to limround, since

processes change the round as soon as they receive a message from a higher round

or limround messages of round k.

This mechanism ensures that all of a message m’s dependencies that have not been

delivered by all processes are taken into account when computing the hash of m.

However, it is much more complex than the first mechanism which has, as exper-

iments show, a very good efficiency in detecting the relevant causal dependencies

of messages. Nevertheless, this mechanism is more adapted to systems where it is

usual that the communication delays for some messages are much higher than the

average, since the first mechanism might miss some causal dependencies in these

cases.

5.3.2.5 Coping with a high number of concurrent messages

The size of the M-entry clock should be chosen following the number of concurrent

messages in the system. However, that value might vary dynamically during execu-

tion, reaching high values only temporarily. Consequently, taking M based on the

maximum number of concurrent messages would result in an oversized clock most

of the time. Moreover, estimating the maximum number of concurrent messages

might be difficult or even impossible.

On the other hand, M-entry clocks become less efficient in causally ordering mes-

sages when the number of concurrent messages increases. In fact, more concurrent

messages means more concurrent messages considered when building dependency

sets for a message m to deliver, thus increasing the number of dependency sets to

hash to find one whose hash is equal to the hash appended to m.

The idea consists of appending on a broadcasted message m the list of ids Dep

of the causal dependencies of m whose clock difference with m is lower than a

given value Diffconc. A process that receives m will then consider that all messages

m′, m′.id /∈ Dep ∧ Diff m,m′ < Diffconc are concurrent to m. The corresponding

modifications of the algorithm are as follows:
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Figure 5.4: Exemple of execution of the hash-based error detector

broadcast: When process pi broadcasts a message m, it appends on m the id of

messages m′ whose clock difference with m is inferior to Diffconc: dependencies =

{m′.id,m.V −m′.V < Diffconc}.

Hash-based error detector: A process pj that receives m then consider that

all messages m” whose clock difference with m is smaller than Diffconc, but whose

ID is not appended to m, are concurrent to m: m” /∈ dependencies∧ Diffm,m” <

Diffconc ⇒ m||m”.

pi fixes the value of Diffconc following the average number of messages that are

concurrent to each other at any given moment, since more concurrent messages

means that the concurrent messages of m have a higher clock difference with m.

5.3.2.6 Example

Figure 5.4 shows an execution that uses the hash-based error detector. The Figure

represents 3 processes which use a constant size clock of 2 entries. Processes p1, p2,

and p3 are respectively associated with the vector entries f(p1) = {0}, f(p2) = {1},
and f(p3) = {0}. We consider that the error detector returns false for the messages

m1,m2, and m3. Consequently, processes deliver the three messages at reception

(not shown in the Figure for readability’s sake). The delivery conditions of m4 are

satisfied upon its reception by p2, since m4.V = [2, 1] and V2 = [2, 1].

Let’s show how the error detector of p2 computes dependency sets form4. The hash-

based error detector of p2 builds dependencies sets with messages that p2 already

delivered (m1,m2, and m3). The possible dependency sets are: {m1},{m2},{m3},
{m1,m2}, {m1,m3},{m2,m3}, and {m1,m2,m3}.

The error detector sorts m1,m2 and m3 following their clock difference with m4.

We have: Diff m4,m1 = 3 − 1 = 2, Diff m4,m2 = 3 − 2 = 1 and Diff m4,m3 = 3 −
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3 = 0. Therefore, the error detector sorts them from the lowest probability of

being concurrent to m4 to the highest probability: {m1,m2,m3}.

The actual dependencies of m4 are Depm4 = {m1,m2} and h(Depm4) = Hm4 .

The error detector first tries to hash the dependency set {m1,m2,m3}. However,

h({m1,m2,m3}) 6= Hm4 . Therefore, it removes the message with the highest prob-

ability of being concurrent to m4, which is m3, and computes the hash of {m1,m2}
which is equal to Hm4 . Therefore, p2 delivers m4 since it found a dependency set

whose hash is equal to Hm4 .

5.3.3 Experimental results

Experiments were carried out on the OMNeT++ simulator. Processes generate

messages on a regular interval depending on the system’s message load, with a

deviation following a normal distribution N(0,10)ms. Communication delays follow

a normal distribution N(100,30)ms. The system contains 500 processes that use

a probabilistic clock [MW17b] of M=50 entries to causally order messages. The

number of entries associated to each process |f | is computed for each experiment

following the formula proposed by Mostéfaoui and Weiss [MW17b] described in

Section 5.2. We set MaxHashes=200 and compute Diff with the formula given in

Section 5.3.2.2.a. The accuracy of probabilistic clocks to causally order messages is

mostly impacted by the number of concurrent messages in the system, which in its

turn is determined by the system’s message load and the communication delays.

Since the message load is easier to set than the number of concurrent messages, we

fix the communication delays and vary the message load in the experiments.

Out of causal order deliveries are controlled by a controller module that verifies the

causal delivery of each message. It associates a vector clock of size N to processes

and messages, with which it verifies the causal delivery of messages by processes.

Processes notify the controller when broadcasting and delivering a message, but

they do not use its information.

Some experiments compare the hash-based error detector with the error detector

proposed by Mostéfaoui and Weiss [MW17b]. In the following we denote the first

as HD and the second as MW.

Experimental results analyze the following characteristics:

(1) - Out of causal order deliveries detected by HD and MW.

(2) - Rate of false positives of HD and MW.

(3) - Cost of HD in terms of hash computation following Diff and MaxHashes.
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(4) - Efficiency of HD ’s mechanism to handle high message loads.

5.3.3.1 Out of causal order deliveries detected by HD and MW

The first series of experiments measured the number of out of causal order deliveries

detected by MW and HD for message loads going from 10 up to 150 messages

broadcasted per second. Table 5.1 gives the results. It is organized in two parts.

The first part gives the number and percentage of messages that are delivered out of

causal order when delivering messages at reception without any control and when

implementing causal broadcast with probabilistic clocks (M = 50) respectively.

The second part gives the number of out of causal order deliveries detected by MW

and HD respectively.

First, we observe that the number of messages delivered out of causal order in-

creases with the message load for both when delivering without control and when

implementing causal broadcast with probabilistic clocks. Increasing the message

load increases the number of causal dependencies of each message m, which in its

turn increases the probability that at least one of them is not received upon the re-

ception of m. Thus, increasing the message load increases the number of messages

delivered out of causal order when delivering them without control. Mostéfaoui

and Weiss showed in [MW17a] that the efficiency of probabilistic clocks to causal

order messages decreases with the message load.

Second we observe that HD detects all out of causal order deliveries, while MW

only detects a part of them. We observe that the higher the message load, the

higher the percentage of out of causal order deliveries detected by MW. In fact,

the higher the message load, the higher the probability that MW ’s condition is

false on a message m broadcasted by a process pi (∃x ∈ f(pi)V [x] == Vm[x]− 1).

Message load Out of causal order deliveries Detected

msg/sec No control PC MW HD

10 4552 (0.45 %) 0 0 0

25 33010 (1.3 %) 0 0 0

50 116094 (2.3 %) 211 (4.2*10−3 %) 0 211

75 250187 (3.3 %) 2856 (3.8*10−2 %) 10 2856

100 410802 (4.1 %) 13630 (0.14 %) 401 13630

125 603532 (4.8 %) 31472 (0.25 %) 2500 31472

150 824012 (5.5 %) 68829 (0.45 %) 7256 68829

Table 5.1: Detected out of causal order deliveries
following the system’s message load
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5.3.3.2 Rate of returned false positives of HD and MW

An error detector returns a false positive when it wrongly concludes that the process

delivered a message out of causal order. This section measures the rate of false

positives for HD and MW for message loads going from 10 up to 150 messages per

second.

Table 5.2 gives the percentage of true and false negatives of HD and MW for

the experiments of Section 5.3.3.1. Results show that HD returns much less false

positives than MW. Moreover, as expected the percentage of messages on which

both error detectors return a false positive increases with the message load.

HD returns almost no false positive for a message load up to 50 messages broad-

casted per second. For a message load of 75 messages broadcasted per second it

returns almost as much false than true positives. When the message load increases

further, HD returns 10 times more false positives than true positives. The false

positive rate of HD increases because its efficiency to detect concurrent messages

decreases when the message load increases. Hence, the number of concurrent mes-

sages taken into account during the hash computation increases. This in its turn

increases the probability that the error detector does not find a dependency set

whose hash is equal to the hash of a message in the given number of accepted

hashes, even if the process has delivered all of the message’s causal dependencies.

MW begins to return false positives with a message load of 25 messages broadcasted

per second, with a rate comparable with the rate of false positives returned by HD

for a message load of 75 messages broadcasted per second. The false positive rate

of MW increases with the message load because the probability that its condition

(∃x ∈ f(pi)V [x] == Vm[x] − 1) is true on a message m broadcasted by a process

pi increases with the message load. In fact, the probability that all entries of f(pi)

are incremented by messages concurrent to m increases with the message load.

The value returned by error detectors could be used by further handling messages

following that value. A process could for example delay the delivery of messages

tagged as not causally ordered and retrieve their causal dependencies, in order to

ensure their causal delivery, as does the next contribution. Hence, the number of

false positives should be kept as low as possible. We observe that HD has a better

ratio of true/false positives than MW, especially for message loads lower or equal

to 75 messages broadcasted per second.
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Figure 5.5: Distribution of computed hashes following the message load

Message load MW HD

msg/sec True False True False

10 0 0 0 0

25 0 1.1*10−2% 0 0

50 0 1 % 4.2*10−3% 4.2*10−5%

75 8.7*10−4% 5.2 % 4.9*10−2% 5.5*10−2%

100 3.9*10−2% 9.2 % 0.14 % 1.4 %

125 2.1*10−2% 15 % 0.25 % 5%

150 0.18 % 28 % 0.85 % 9.5%

Table 5.2: True and false positives following the message load

5.3.3.3 Cost of HD in terms of hash computations

This section measures the cost of the hash computations for a message m done

by HD. It is divided in two parts: (1) the average number of hashes to find a

dependency set whose hash is equal to the one appended on m and (2) the cost of

computing a hash. We first analyze the cost of (1), then we analyze the cost of (1)

and (2) when computing hashes with the technique presented in Section 5.3.2.2.a.

5.3.3.3.a Average number of hashes computed per message delivery

Figure 5.5 gives the average number of computed hashes per message delivery for

a message load that goes from 10 up to 150 messages broadcasted per second. For

message loads up to 75 messages broadcasted per second, HD succeeds to find
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the hash of messages with on average less than 5 hashes per message delivery.

However, the number of required hashes begins to increase exponentially when

further increasing the message load, because the number of concurrent messages

taken into account in the hash computation increases.

As explained in Section 5.3.2.3, processes should compute at most an upper limit of

hashes, denoted MaxHashes, when computing hashes for a message m of hash Hm.

The following experiments aim to find the best value of MaxHashes. The higher

the value of MaxHashes, the higher the probability of finding a dependency set

whose hash is equal to Hm. However, the higher MaxHashes, the higher is also the

number of computed hashes. Hence, the value chosen for MaxHashes is a trade-off

between finding a dependency set whose hash is equal to Hm and the number of

computed hashes to find such a set.

The first series of experiments aims to analyze, for several messages loads, the

number of hashes HD requires to find a dependency set for messages. To that

end, we set MaxHashes to a high value (MaxHashes=200 ). Figure 5.6 gives, for

several message loads, the distribution of the number of hashes HD computes. For

example, Figure 5.6a shows that with a message load of 10msg/s HD only computes

1 hash in 100% of the hash computations.

We observe that with a message load of up to 50 messages/second, HD computes

few hashes. The higher the message load, the higher the maximal number of

hashes HD computes, and the higher also the number of hash computations that

require a higher number of hashes. This is because detecting concurrent messages

becomes less efficient when the message load increases. Thus, the percentage of

hash computations in which HD computes 50-200 hashes increases with the message

load, because HD takes into account more and more concurrent messages in the

hash computation. Hence, the value of MaxHashes should be chosen following the

message load.

MaxHashes Average computed hashes per delivery False positives

125 msg/s 150 msg/s 125 msg/s 150 msg/s

10 4.7 6.9 17.4% 39%

25 6.7 11.7 11.4% 28.2%

50 9.1 17.9 7.3% 20%

100 12.1 26.4 4.7% 14.1%

150 14.2 33.0 2.9% 10.3%

200 15.8 38.2 2.75% 9.5%

250 17.3 43.6 2.7% 9.4%

Table 5.3: Average computed hashes per delivery and false positive rate
for different values of MaxHashes for a message load of 125 and 150 msg/s
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Figure 5.6: Distribution of computed hashes following the message load

The second series of experiments aims to analyze the effect of reducing MaxHashes

when the message load is high. Reducing MaxHashes reduces the number of com-

puted hashes per message delivery, but it also increases the false positive rate, i.e.,

messages m of hash Hm for which the error detector does not find a dependency set

whose hash is equal to Hm while the process delivered all causal dependencies of

m. Table 5.3 gives the results when varying MaxHashes from 10 up to 250 hashes

for respectively a message load of 125 and 150 messages broadcasted per second.

We observe that increasing MaxHashes increases the average number of computed

hashes per delivery, but it also decreases the rate of false positives. However,

over a given limit increasing MaxHashes only slightly decreases the rate of false
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positives while it continues to increase the average number of hashes computed per

message delivery. Further increasing MaxHashes increases the average number of

computed hashes per message delivery without decreasing the rate of false positives

at the same rate, mostly because it increases the number of hashes processes try in

unsuccessful hash computations. In other words, increasing MaxHashes increases

the number of messages for which processes find a dependency set, but many of

the additional computed hashes are used in unsuccessful hash computations. For

example, in Table 5.3 increasing MaxHashes from 200 to 250 for a message load of

150 msg/s results in computing on average 5.4 hashes more per message delivery,

while the error detector only returns 0.1% less false positives.

The lower the value of MaxHashes the faster increases the rate of false positives. For

example, with a message load of 150 messages per second, decreasing MaxHashes

from 150 to 100 hashes results in a false positive rate that increases of 3.8%, while

decreasing MaxHashes from 25 to 10 hashes results in a false positive rate that

increases of 10.8%. A low value of MaxHashes results in a high false positive rate,

like the false positive rate of 39% when MaxHashes is set to 10 hashes for a message

load of 150 messages/s. This is consistent with the hash distribution observed in

Figure 5.6.

The best value for MaxHashes for both experiments seems to be between 150 and

200 hashes. Over 200, the rate of false positive only decreases slightly. Under 150,

the rate of false positives increases fast. In any case, it should not be set too low

because this leads to a high rate of false positives. To conclude, MaxHashes should

be set following the message load: with a low message load MaxHashes can be set

very low, as for example MaxHashes=2 when 10 messages are broadcasted inside

the system per second. On the other hand, MaxHashes should be set to a higher

value when the message load increases and the detection of concurrent messages

becomes less efficient, as for example MaxHashes should be set between 150 and

200 hashes in the examples of Table 5.3. The value of MaxHashes can also be

set lower at the cost of a higher false positive rate, but it should not be set too

low because the false positive rate will then be high, as for example 39% when

MaxHashes=10 and the message load is of 150 messages broadcasted per second.

5.3.3.3.b Cost of computing a hash

As explained in Section 5.3.2.2.a, a process pi computes the hash of a message m it

broadcasts/delivers with only the causal dependencies of m whose clock difference

with m is lower than a given value Diff. This section analyzes the number of

detected out of causal order deliveries following the chosen value of Diff. We also

analyze the cost of computing a hash and the average number of hash computations

per message delivery.
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We determine the base value of Diff following the formula given in Section 5.3.2.2.a,

consider a message load mload of 150 messages broadcasted per second and |f | = 4

following the formula proposed in [MW17b]. The maximal network delay is as-

sumed to be of 150ms and nconc = 10. Those parameters give the following value of

Diff : Diff =maxDelay*mload*|f | + nconc ∗ |f |=0.15*150*4 + 10*4 = 130

Table 5.4 gives the results when varying Diff from a multiple of 1.25 (162) down to

0.1 (13). The table shows the percentage of detected out of causal order deliveries,

as well as the average number of hashes computed per message delivery and the

average number of operations done to compute a hash. It also gives the average

cost of a hash computation, which corresponds to the average number of hashes per

message delivery multiplied by the average number of operations done to compute

a hash.

We observe that out of causal order deliveries are all detected for a Diff value down

to 117. Decreasing Diff further results in out of causal order deliveries that are

not detected. First, only a few of them are not detected, but their number rapidly

increases when further reducing Diff. The reason is that most not received causal

dependencies of an out of causal order delivered message m have a clock difference

with m that is in a given window. In fact, the higher the value of Diff m,m′ the

higher the probability that processes have delivered m′. Thus, decreasing Diff first

removes from the hash computation the ids of messages that are most probably

delivered by processes.

The cost of computing the hash of a dependency set is equal to the number of

message ids that the considered dependency set contains. Fore example, when

Diff=130, processes take on average into account 16.7 message ids to compute a

hash, and computing a hash therefore requires on average 16.7 operations. The

cost per hash increases with Diff. As expected, the higher the value of Diff, the

higher the number of message ids taken into account in the hash computation, thus

increasing the cost of computing a hash. We note that with Diff=85, only 2.67

message ids are on average taken into account in the hash computation, while HD

still detects 91% of out of causal order deliveries.

The average number of computed hashes per message delivery is stable (25.5 hash-

es/delivery) till Diff=117. It begins to decrease when Diff=98, and it accelerates

when further decreasing Diff. The main reason is that decreasing Diff reduces the

number of messages that are taken into account when computing the dependency

set of messages. Hence, a process will compute the hash of fewer dependency sets,

thus decreasing the number of hashes per message delivery. For example, processes

consider on average only 5.5 message ids per hash computation when Diff=98,
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while they consider on average 12.7 message IDs when Diff=117. Processes con-

sider almost no message ids when Diff=65 or lower, thus giving a very low number

of computed hashes per message delivery.

Diff
Detected out of

causal order deliveries

Hashes per

delivery

Operations

per hash

Cost per hash

in operations

162(*1.25) 100% 25.5 24.7 629

130 100% 25.6 16.7 427

117(*0.9) 100% 25.4 12.7 322

98(*0.75) 99.9% (-4) 24.2 8.9 215

85(*0.65) 99.7%(-187) 16.6 5.5 91

65(*0.5) 91%(-5613) 4 2.67 10.5

26(*0.2) 11.9%(-60953) 1 1.03 1

13(*0.1) 0.2%(-69028) 1 1.005 1

Table 5.4: Effect of varying Diff on the percentage of detected out of
causal order deliveries and cost of hash computations

To conclude, the formula to compute Diff is accurate and HD detects 100% of out

of causal order deliveries even when computing the hash of messages with only the

ids of a subset of causal dependencies. The cost per hash is low or similar to the

cost of comparing M-entry clocks, with only 16.7 operations required to compute

a hash with a message load of 150 messages broadcasted per second. However,

the parameters considered when computing Diff might change over time, such as

the maximum communication delay, and a too low value for Diff rapidly results

in many not detected out of causal order deliveries. Hence, Diff should be chosen

sufficiently high to tolerate a variation of the communication delays and the number

of concurrent messages in the system.

5.3.3.4 Handling a high message load

This section analyzes the mechanism presented in Section 5.3.2.5 to handle high

message loads, which consists of appending to messages the ids of some of their

causal dependencies. We analyze the rate of true and false positives as well as

the number of computed hashes per message delivery when using this mechanism.

Finally, we analyze the cost of this mechanism which is determined by the size of

the set of message ids appended to messages.
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Figure 5.7: Rate of true and false positives following the message load

True and false positives Figure 5.7 shows the rate of true and false positives

as well as the combined error rate when increasing the message load from 200 to

500 messages broadcasted per second.

We first observe that the rate of true positives increases with the message load,

which is explained in Section 5.3.3.1. The rate of false positives also increases with

the message load. Nevertheless, it increases at the same rate as the number of true

positives, as we can see in Figure 5.7 where the curves of true and false positives

are almost parallel. Finally, with a message load of 500 messages per second true

positives still represent more than 50% of the detected errors.

We conclude that the mechanism handles high message loads well. When using it,

the error detector yields a low or acceptable rate of false positives. However, this

mechanism also has its limits since it eventually yields a substantial amount of false

positives, as for example when the message load is of 500 messages broadcasted

per second, even though it stays lower than the yielded rate of true positives.

Computed hashes per delivery Figure 5.8 shows the average number of com-

puted hashes per message delivery. We observe that it increases with the message

load, going from ≈ 3.2 hashes/delivery for a message load of 200 messages/second

up to 13.8 hashes/delivery for a message load of 500 messages/second. A more

precise analysis shows that the increase comes from unsuccessful hash computa-

tions. In fact, for all the message loads, the successful hash computations are done

ine 1 hash. However, Figure 5.7 shows that the rate of false positives increases

with the message load. For each false positive, the error detector computes up to

200 hashes. Hence, the increase in terms of false positives explains the increase

of the average number of computed hashes per message delivery. Nevertheless, it

stays acceptable with 13.8 hashes per messages delivery for a message load of 500

messages broadcasted per second.
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Figure 5.8: Average number of computed hashes per message delivery
following the message load

We conclude that the number of computed hashes per message delivery is accept-

able when using the mechanism to handle high message loads, with below 15 hashes

per message delivery computed for a message load going up to 500 messages broad-

casted per second. However, the number of computed hashes per message delivery

increases linearly with the message load and would eventually become prohibitive.

Size of the message ids set appended to messages Figure 5.9 shows the

number of message ids appended to messages following the message load. As ex-

pected, the number of ids appended to messages linearly increases with the message

load. With a message load of 500 messages/second the set contains on average 34

message ids. A message id is composed of two integers, and the additional causal

information appended to messages therefore has a size of 68 integers, which seems

to be acceptable.

We conclude that the size of the set of message ids seems to be acceptable for up to

500 messages broadcasted per second. However, the size of the set grows linearly

with the message load and will eventually become prohibitive.

5.4 Retrieve the causal dependencies of messages

This section presents a short algorithm to be executed in conjunction with an error

detector, and which retrieves the causal dependencies of a message. The idea is

that a process executes the error detector before delivering a message m, and if it

returns true, i.e., m has some causal dependencies that are not delivered locally,

then the process executes the algorithm to retrieve the causal dependencies of m,

in order to ensure its delivery in causal order.
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Figure 5.9: Size of the set of dependency IDs appended to messages
following the message load

Process pi either keeps the causal dependencies of a message m it broadcasts whose

clock difference with m is smaller than Diff, i.e., similar to Section 5.3.2.2.b, or

based on the hash round in which they were sent, i.e., similar to Section 5.3.2.4. pi
maintains two lists to store the causal dependencies of its broadcasted messages:

• Depnext: contains the ids of the causal dependencies of its next broadcasted

message.

• Sdepi : list containing, for each of its unacknowledged broadcasted messages,

the tuple (seq,Dep), where seq is the sequence number pi associated to the

message m and Dep contains the ids of the causal dependencies of m.

Broadcast When broadcasting a message m, pi stores in Sdepi the list Depnext
containing the ids of m’s causal dependencies, in order to send them to processes

that request them later. Moreover, pi sets Depnext = {m.id}, since m can resume

them as a direct dependency [PRS96] of the next message pi will broadcast.

Request of causal dependencies A process pj requests the causal dependencies

of m if its error detector returns true on m. pj then sends a REQ message to pi
containing the id of m, to which pi replies with a RSP message containing the ids

of the causal dependencies Depm of m. Upon reception of the RSP message, pj
delivers m after it has delivered all messages whose id is contained in Depm.

Example Figure 5.10 shows a scenario where process p2 requests the causal de-

pendencies of m4. The system contains three processes using a probabilistic clock

of two entries. Processes p1, p2, and p3 are respectively associated with the vector

entries f(p1) = {0}, f(p2) = {1}, and f(p3) = {0}. Let’s consider that the error
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Figure 5.10: Request of message m4’s dependencies

detector of p2 returns false on the messages m1,m2 and m3, and that they are there-

fore delivered at reception (not shown in the Figure for readability’s sake). There-

fore, when p2 receives m4, the value of its clock is V2 = [2, 1] and the value of m4’s

clock is m4.V = [2, 1]. Let’s assume that p2 executes the error detector described in

Algorithm 9 on m4, which returns true, since @i ∈ f(p1), V2[i] = m4.V [i]− 1. Con-

sequently, p2 requests the causal dependencies of m4 by sending a REQ message

to p1, which replies with a RSP message that contains m4’s causal dependencies,

i.e., {m1,m2}. Process p2 delivers m4 at reception of RSP , since it has already

delivered {m1,m2}.

5.4.1 Domino effect

Requesting a message’s causal dependencies can lead to a domino effect by inducing

the request of the causal dependencies of messages in cascade. In fact, when process

pi requests the causal dependencies of a message m, it sends a REQ message to the

sender of m, then waits for the sender’s reply message RSP. During that message

exchange, pi might receive several messages m′ of which m is a causal precedence

(m→ m′). The delivery conditions of some of those m′ messages might be satisfied

before the end of the REQ/RSP message exchange for m.

However, in the case of the hash-based error detector, pi’s error detector will not

include m when building dependency sets of m′, because pi has not delivered m

yet. Since m→ m′, the error detector will only find a dependency set whose hash

value is equal to the one attached to m′ in case of a collision. However, since

the probability of collisions is very low, there is a high probability that pi will

request the causal dependencies of m′. Similarly, during the REQ/RSP message

exchange related to m′, pi might receive another message m′′ of which m′ is a causal

dependency, leading to another REQ/RSP message exchange, and so on.
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To avoid such a domino effect, processes execute the request of causal dependencies

sequentially, i.e., a process begins a dependency request provided that the previous

one is finished. At the end of a REQ/RSP message exchange, the requesting pro-

cess pi has most probably delivered all causal dependencies of m, and will therefore

deliver m. Hence, m will be taken into account when computing dependency sets

for m′, henceforth avoiding the request of the causal dependencies of m′. Pro-

cesses should request causal dependencies rarely, and very few causal dependencies

requests should occur simultaneously on the same process. Consequently, the over-

head of sequential requests is negligible.

When using the hash-based error detector, a domino effect can occur when process

pi broadcasts a message m′ during the REQ/RSP message exchange related to m.

In fact, during the message exchange pi will deliver fewer messages since it has a

high probability not to deliver the messages of which m is a causal dependency.

Therefore, the clock difference between m′ and newly broadcasted messages will

be higher and m′ has therefore a higher probability to be considered as a causal

dependency of messages to which it is concurrent. This in its turn will lead to a re-

quest of m′ causal dependencies, and so on... Hence, processes delay the broadcast

of messages until the end of dependency requests.

5.4.2 Liveness proof

This section gives the liveness proof of the algorithm retrieving the causal depen-

dencies of messages used in conjunction with the hash-based error detector when

implementing causal broadcast with M-entry clocks.

Theorem 5.3. A well-formed message is eventually delivered by all processes.

Proof. We assume that a well-formed message eventually delivered when using

constant size clocks to causally order messages. For example, Mostéfaoui et Weiss

proved in [MW17b] that the delivery conditions of probabilistic clocks attached

to well-formed messages are always satisfied. Thus, we only need to prove that

the liveness property holds when using an error detector and retrieving the causal

dependencies of messages for which the error detector returns that they might not

be causally ordered. The proof is done by induction.

H0: Any message m generated on the initial state is eventually delivered.

A process pi delivers m if its error detector returns false. Otherwise, pi requests

m’s causal dependencies to the sender of m, which replies by sending a RSP

message containing an empty set, since m was generated on the initial state and
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has, therefore, no causal dependencies. Hence, pi delivers m upon reception of the

RSP message. Hence, all processes eventually deliver m.

H1: We assume a set S of messages that are eventually delivered by all processes.

A message m generated after the delivery of messages of the set S will be eventually

delivered by all processes.

A process pi delivers m if its error detector returns false. Otherwise, pi requests

m’s causal dependencies to pj, the sender of m, which replies by sending a RSP

message containing the set S, since pj generated m after delivering the messages

of the set S. Hence, pi delivers m upon reception of the RSP message, since pi
delivered the messages of the set S by hypothesis. Hence, all processes eventually

deliver m.

Thus, a message generated after a set of eventually delivered messages is eventually

delivered by all processes (H1). As processes eventually deliver messages generated

in the initial state (H0), we conclude that processes eventually deliver all messages.

5.4.3 Removing obsolete causal information

This section presents an acknowledgment mechanism to remove obsolete causal

information about broadcasted messages. A process keeps the causal information

of messages it broadcasts in order to send it to processes that request it. The causal

information of a message m becomes obsolete once all processes delivered m.

A process pi can only remove the causal information about a message m it broad-

casted once all processes acknowledged m’s delivery. However, M-entry clocks

do not characterize causal order and cannot, therefore, contain such information.

Hence, the acknowledgment of the delivery of messages requires an additional mech-

anism.

A trivial acknowledgment mechanism consists of each process periodically broad-

casting a vector of N entries to acknowledge the messages it delivered, where N

corresponds to the number of processes in the system. However, this solution

does not scale. The following two presented acknowledgment mechanisms work

in rounds and scale much better. The first acknowledge mechanism requires only

one process to send a message of size O(N), while other processes send a small

message containing a few integers. The second mechanism requires processes to

send only one small messages containing a few integers, by computing the causal

dependencies of messages locally with the hash-based error detector.
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5.4.4 First acknowledge mechanism

Algorithm 12 describes the first acknowledge mechanism. Process pi starts the

acknowledgment round by broadcasting a message ACK containing the id (pi, seq)

of one of the messages m it broadcasted, as well as the vector Vm containing the

causal dependencies of m (line 1 ). The other processes reply to the ACK message

with an ACKrep message to acknowledge or not the delivery of m, by using the

function hasDelivered(pi, seq), which returns true provided that the process has

delivered m and false otherwise.

The acknowledgment round ends at a process pj once pj received the ACK and

all ACKrep messages. The round is successful if all processes sent a positive ac-

knowledgment for m (line 6 ). Since Vm resumes the causal dependencies of m,

if (pj, seqj) ∈ Vm, then messages broadcasted by pj with a sequence number

seq′ ≤ seqj are also causal dependencies of m, and are therefore also acknowl-

edged by this round. Hence, process pj removes from Sdepj the messages with a

sequence number seqm < seqj. The acknowledgment round fails if one process does

not acknowledge the delivery of m. No process can then clear its Sdep.

Any process can start an acknowledgment round, provided that it broadcasted at

least one message. A process should choose a message m to acknowledge such that

the probability is high that all processes have delivered m.

Algorithm 12: Acknowledge round for message m = (pi, seq) of causal
dependencies Vm
pi starts the acknowledge round

1: broadcast(ACK,(pi, seq),Vm)
2: recvAck((pi, seq),Vm)

Upon reception of (ACK,(pj, seq),Vm)
3: broadcast(ACKrep,pj, hasDelivered(pj,seq))
4: recvAck((pi, seq),Vm)

recvAck((p, seq),Vm)
5: waitUntil(received ACKrep from all pk 6= p)
6: if allProcDelivered (p, seq) then
7: Sdepi=Sdepi\{(seq′, dep′), seq′ ≤ seq′′ : (pi, seq

′′) ∈ Vm}

Figure 5.11 shows a successful acknowledgment round. Process p1 starts the round

by broadcasting an ACK message containing the id of m4 (p1, 2) and m4’s causal

dependencies {(p1, 1), (p2, 1)} which correspond to m1 and m2. Processes p2 and p3

reply to the ACK message with an ACKrep message containing (p1, 2, true), since

both delivered m4. After receiving the ACKdep messages from all other processes

confirming the delivery of m4, p1 deletes the causal information about m1 and m4

from Sdep1 . In its turn, upon reception of all ACKdep messages, p2 deletes from
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Figure 5.11: Successful acknowledgment round

Sdep2 the causal information of m2, since m2 ∈ {(p1, 1), (p2, 1)}. However, even

though all processes delivered m3, p3 cannot delete the causal information of m3

from Sdep3 , because m3 does not causally precede m4.

The acknowledgment round fails in a slightly modified execution of Figure 5.11,

where p3 receives m4 after the ACK message. In this case, upon the reception of

the ACK message, p3 has not delivered m4 yet. Hence, it does not acknowledge

the delivery of m4. Thus, not all processes acknowledge the delivery of m4, and no

causal information can be removed from processes’ Sdep during this round. Never-

theless, a new acknowledgment round can always be started right after the end of

a failed one if necessary.

The size of the ACK message can be reduced by not appending on it the whole

vector Vm. The acknowledgment round will then only acknowledge messages from

processes pj such there is an entry (pj, seq) in Vm. For example, if only some

processes pj broadcast messages, then only the tuples (pj, seqj) should be included

in Vm. Another example would be to include in Vm only the tuple (pjseqj) once pj
has k messages to acknowledge.

5.4.5 Second acknowledge round mechanism

Algorithm 13 describes the second acknowledgment mechanism. It uses the hash-

based error detector. Process pi starts the acknowledgment round by broadcasting a

message ACK containing the id (pi, seq) of one of the messages m it broadcasted, as

well as the hash Hm of m’s causal dependencies (line 1 ). The other processes reply

to the ACK message with an ACKrep message to acknowledge or not the delivery

of m, by using the function hasDelivered(pi, seq), which returns true provided that

the process has delivered m and false otherwise.
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The acknowledgment round ends at a process pj once pj received the ACK and

all ACKrep messages. The round is successful if all processes sent a positive ac-

knowledgment for m (line 6 ). Process pj then uses Hm to compute the causal

dependencies set Depm of m. These messages are also acknowledged by the ac-

knowledgment of m. Hence, if a message m′ of id (pj, seqj) ∈ Depm, then pj
removes from Sdepj the messages with a sequence number seqm < seqj. The ac-

knowledgment round fails if one process does not acknowledge the delivery of m.

No process can then clear its Sdep.

Any process can start an acknowledgment round, provided that it broadcasted at

least one message. A process should choose a message m to acknowledge such that

the probability is high that all processes have delivered m.

Algorithm 13: Acknowledge round for message m = (pi, seq) of hash Hm

pi starts the acknowledge round of m
1: broadcast(ACK,(pi, seq),Hm)
2: recvAck((pi, seq),Hm)

Upon reception of (ACK,(pj, seq),Hm)
3: broadcast(ACKrep,pj, hasDelivered(pj,seq))
4: recvAck((pi, seq),Hm)

recvAck((p, seq),Hm)
5: waitUntil(received ACKrep from all pk 6= p)
6: if allProcDelivered (p, seq) then
7: Compute Depm with Hm

8: Sdepi=Sdepi\{(seq′, dep′), seq′ ≤ seq′′ : (pi, seq
′′) ∈ Depm}

5.4.6 Experiments

This section evaluates the algorithm to retrieve causal dependencies used in con-

junction with the hash-based error detector (see Section 5.3.2) in a system imple-

menting causal broadcast with M-entry clocks.

Experiments were carried out on the OMNeT++ simulator. Processes generate

messages on a regular interval depending on the system’s message load, with a

deviation following a normal distribution N(0,10)ms. The communication delays

follow a normal distribution N(100,30)ms. The system contains 500 processes that

use a probabilistic clock [MW17b] of M=50 entries to causally order messages. The

number of entries associated to each process |f | is computed for each experiment

following the formula proposed by Mostéfaoui and Weiss [MW17b] described in

Section 5.2. We set MaxHashes=200 and compute Diff with the formula given in

Section 5.3.2.2.a. The accuracy of probabilistic clocks to causally order messages is

mostly impacted by the number of concurrent messages in the system, which in its
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turn is determined by the system’s message load and the communication delays.

Since the message load is easier to set than the number of concurrent messages, we

fix the communication delays and vary the message load in the experiments.

Out of causal order deliveries are controlled by a controller module that verifies the

causal delivery of each message. It associates a vector clock of size N to processes

and messages, with which it verifies the causal delivery of messages by processes.

Processes notify the controller when broadcasting and delivering a message, but

they do not use its information.

We evaluate the following characteristics of the algorithm to retrieve the causal

dependencies of messages:

• Number of messages delivered out of causal order when retrieving the causal

dependencies of tagged messages.

• Limits of the algorithm.

5.4.6.1 Messages delivered out of causal order

The first series of experiments measured the number of out of causal order deliveries

when retrieving the causal dependencies for a message load going from 10 up to

150 messages broadcasted per second. We executed the same experiments as in

Section 5.3.3.1. Table 5.5 gives the results.

We observe that the hash-based error detector detected all messages that are not

causally ordered. The process requested the causal dependencies of the tagged

messages m, and upon receiving them only delivered m after it had delivered all

of m’s causal dependencies. We observe in Table 5.5 that processes delivered no

message out of causal order for a message load up to 75 messages broadcasted

per second. For higher message loads, marked by an X, we observe that processes

request the causal dependencies of many messages, thus continuously delaying the

delivery of messages. Hence, messages will be delayed more and more, rendering

the mechanism not effective. In fact, the algorithm does a message exchange in

order to retrieve the causal dependencies of messages m tagged by the error de-

tector. During that message exchange, the process will most probably not deliver

messages of which m is a causal dependency. Hence, when the message load is too

high, processes will be recovering the causal dependencies of messages all the time,

delaying more and more the delivery of messages.

We conclude that the algorithm to retrieve causal dependencies can effectively be

used with the hash-based error detector to deliver all messages in causal order when

implementing causal broadcast with probabilistic clocks. However, it tolerates a
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maximum message load above which it requests all the time the causal dependencies

of messages, thus delaying more and more the delivery of other messages, making

it not usable for high message loads.

Message load Out of causal order deliveries Detected

msg/sec PC Retrieve dependencies HD

10 0 0 0

25 0 0 0

50 211 (4.2*10−3 %) 0 211

75 2856 (3.8*10−2 %) 0 2856

100 13630 (0.14 %) X 13630

125 31472 (0.25 %) X 31472

150 68829 (0.45 %) X 68829

Table 5.5: Out of causal order deliveries
following the system’s message load

5.4.6.2 Limits of the algorithm

This section analyzes, for several clocks, the maximum tolerated message load upon

which processes are all the time recovering the causal dependencies of messages.

Table 5.6 presents the maximum message load tolerated when retrieving the causal

dependencies of messages tagged by the error detector in an implementation of

causal broadcast using probabilistic clocks. Results show that the maximal mes-

sage load increases with the size of the clock. In our implementation, a process

jumps its scheduled broadcast if at the scheduled time it is in recovery of the

causal dependencies of a message. This has an influence on the measured maximal

tolerated message load.

Theoretically, the maximal tolerated message load should depend on the rate of

positives the error detector returns, i.e., on the number of message recoveries pro-

cesses need to perform. The rate of positives of the hash-based error detector

decreases when increasing the clock size, which increases the maximal tolerated

message load. Future experiments will compare the maximal tolerated message

load with the positive rate of the error detector.
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Clock size Maximal message load (msg/s)

25 75

50 85

75 95

100 108

125 125

150 150

Table 5.6: Maximal tolerated message load
following the system’s clock size

To conclude, experiments showed that the mechanism to retrieve the causal depen-

dencies of messages allows to deliver all messages in causal order. However, the

mechanism only tolerates a limited message load, over which processes are retriev-

ing all the time causal dependencies of messages, which in its turn delays more and

more the delivery of messages.

5.4.7 Conclusion

This section proposed a new error detector to detect out of causal order deliveries.

First, we defined the required assumptions to implement an error detector that

detects all out of causal order deliveries. We then showed that those assumptions

are not realistic and that such an error detector can therefore not be implemented

under realistic assumptions.

Second, we presented a hash-based error detector for M-entry clocks which ex-

perimentally detected all out of causal order deliveries of a causal broadcast im-

plementation using probabilistic clocks. We keep the cost of the hash-based error

detector small by using the clock difference between messages to only hash a subset

of message ids.

Finally, we proposed an algorithm to retrieve the causal information of messages

tagged as not causally ordered by error detectors, as well as a mechanism to remove

this causal information once all processes have delivered them.

Experimental results and a theoretical analysis show that our error detector misses

very few -experimentally none- out of causal order deliveries, that it adapts well

to high message loads, and induces a low overhead. Moreover, using it with the

algorithm to retrieve the causal dependencies of messages allowed to deliver all
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Active components Inactive components︷ ︸︸ ︷ ︷ ︸︸ ︷
x0 x1 ... xM x0 x1 ... xM ...... x0 x1 ... xM x0 x1 ... xM︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸
C0 of M entries C1 of M entries Ck−1 of M entries Ck of M entries

Figure 5.12: Representation of a DCS clock

messages in causal order in an implementation of causal broadcast using proba-

bilistic clocks up to a given message load depending on the size of the system’s

probabilistic clock.

5.5 Dynamic Constant Size clocks

Mostéfaoui and Weiss [MW17b] showed that the efficiency of a probabilistic clock

PC of size M to causally order a message m depends on the number of concurrent

messages to m: the probability to causally order m with PC decreases when the

number of concurrent messages to m inside the system increases. Moreover, the

authors showed that increasing the size of PC also increases the probability that

it causally orders m. The size of probabilistic clocks should, therefore, be chosen

following the average number of concurrent messages inside the system. In other

words, the size of probabilistic clocks should dynamically vary with the number

of concurrent messages, increasing (resp. decreasing) whenever the number of

concurrent messages is above (resp. below) a given value.

On the other hand, the size of Probabilistic clocks is fixed at initialization and

cannot vary during execution. A wrong choice in the clock size either leads to an

oversized clock or, if the size is too small, in many messages that are delivered out

of causal order. Determining beforehand the number of concurrent messages in the

system might be difficult and is often impossible.

This section presents a new logical clock, denoted Dynamic Clock Set (DCS ),

composed of a set of probabilistic clocks and whose size can dynamically vary

during execution. We also give the operations to compare DCS clocks and change

their size during execution. A Dynamic Clock Set (DCS ) is composed of a set

of Probabilistic clocks, denoted components, which all have the same number of

entries (M). Figure 5.12 gives the representation of a DCS clock. The size of a

DCS clock changes by varying the number of its components. DCS clocks capture

causality but do not characterize it, meaning that for two messages m1 (resp. m2)

of DCS clocks D1 (resp. D2), m1 → m2 ⇒ D1 < D2, but D1 < D2 6⇒ m1 → m2.
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5.5.1 Definition of DCS clock components

A component Ck of a DCS clock is uniquely identified by its index k. Ck is either

active or inactive. As shown in Figure 5.12, a DCS clock D is composed of one

or several active components - with C0 always being active - followed by none or

several inactive components. In other words, C0 is always active, followed by none

or several active components Ci with 1 < i ≤ |D|, followed by none or several

inactive components Cj with i < j ≤ |D|.

A process increments one or several active components of its DCS clock to keep

track of the causality of events, and only attaches the active components of its DCS

clock on messages. The set Sincr,i contains the set of indexes of the components that

process pi increments when executing an event, and before each event pi increments

the entries f(pi) of the components whose index is contained in Sincr,i.

5.5.2 Update of a DCS clock

Process pi uses the following two rules R1 and R2 to update its local DCS clock:

• R1: Before executing an event, it updates its local clock D:

∀x ∈ f(pi), ∀k ∈ Sincr, Di.Ck[x] = Di.Ck[x] + d (d > 0)

• R2: Each message m carries with it the vector clock Dm of its sender process

at sending time. On the receipt of a message (m,Dm), process pi:

– Updates its local clock as follows:

(1) If |Di| < |Dm|, pi calls Add(), defined below, till |Di| = |Dm|.
(2) ∀k ∈ [1, |Dm|],∀x ∈ [1,M ], Di.Ck[x] = max(Di.Ck[x], Dm.Ck[x])

– Executes R1, Deliver(m)

5.5.3 Comparison of two DCS clocks

The components of DCS clocks are independent probabilistic clocks. Hence, the

comparison operator ”<” of DCS clocks is based on the comparison operator of

probabilistic clocks. As a reminder, the comparison operator ”<” of two proba-

bilistic clocks C1 and C2 is defined as follows:

C1 < C2 iff ∀x,C1[x] ≤ C2[x] ∧ ∃k, C1[k] < C2[k]

The ”<” operator of two DCS clocks D1 and D2 is defined as follows :
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(1) |D1| ≤ |D2|

(2) Each component Ck of D1 is smaller or equal to the corresponding component

Ck of D2, and at least one component Cj of D1 is strictly smaller than the

component Cj of D2: ∀k ∈ [1, |D1|], D1.Ck ≤ D2.Ck ∧ ∃Cj, D1.Cj < D2.Cj.

Two causally related messages m1 and m2 of respective DCS clocks m1.D and

m2.D verify the following condition:

send(m1)→ send(m2)⇒ m1.D < m2.D.

Note that two messages m1 and m2 whose DCS clock comparison does not satisfy

the above two conditions are said to be concurrent, denoted as m1||m2. Formally:

m1.D 6≤ m2.D ∧m2.D 6≤ m1.D ⇒ m1||m2

Theorem 5.4. For any two messages m and m′ of respective DCS clocks m.D

and m′.D, if m→ m′ then we have : send(m)→ send(m′)⇒ m.D < m′.D

Proof. Consider that process pi of DCS clock Di sends a message m of causal

dependencies Depm. We prove that ∀m′ ∈ Depm,m′.D < m.D, by showing that

when pi sends m, we have ∀m′ ∈ Depm,m′.D < Di.

A process pj updates its DCS clock Dj when delivering a message m: pj adds

components to Dj in order to ensure that Dj has at least as many components

than m.D. Therefore, we have |Dj| ≥ |m.D|. Second pj updates Dj : ∀x ∈
[1,M ],∀k ∈ [1, |Dj|], Dj.Ck[x] = max(Dj.Ck[x],m.D.Ck[x]). Therefore, we have

∀x ∈ [1,M ],∀k ∈ [1, |Dj|], Dj.Ck[x] ≥ m.D.Ck[x]. Hence, m.D ≤ Dj after pj
delivered m.

For all messages m′ ∈ Depm, either pi delivered m′, or another process pj delivered

m′ and broadcasted a message m” such that m′ → m”→ m and pi delivered m”.

If pi delivered m′, then m′.D ≤ Di as showed above. Otherwise, (1) a process pj
has delivered m′ and therefore m′.D ≤ m”.D (2) pi has delivered m” and therefore

m”.D ≤ Di. Therefore, m′.D ≤ Di. Hence, we have ∀m′ ∈ Depm,m′.D ≤ Di.

When pi sends m, it first updates its DCS clock by incrementing at least one

entry x of at least one component Ck before appending Di on m. Thus, ∀m′ ∈
Depm,∃x ∈ [1,M ], ∃k ∈ [1, |Dj|],m.D.Ck[x] > m′.D.Ck[x].

Therefore, ∀m′ ∈ Depm,m′.D < m.D.
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5.5.3.1 Operations to modify the size of DCS clocks

The size of a DCS clock can be dynamically adjusted during execution by adding

and removing components to it. In particular, its size can be adapted to the number

of concurrent messages in the system, since the efficiency of probabilistic clocks to

causally order messages depend on that parameter (see Section 5.2). A DCS clock

should increase its size when observing an increase in the number of concurrent

messages and should decrease it in the opposite case. The size of DCS clocks can

be chosen following the desired accuracy of causal message ordering.

Process pi modifies its local DCS clock Di through the following operations:

• Activate(): Activates the component of Di with the lowest index among

Di’s inactive components.

• Deactivate(): Deactivates the component of Di with the highest index

among Di’s active components.

• Add(): Creates a new component, sets its entries to 0, and adds the com-

ponent at the end Di.

• Remove(): Removes the component of Di with the highest index.

Activate() Process pi calls the operation Activate() to activate the inactive com-

ponent of Di with the lowest index, provided that Di has at least one inactive

component. The call to Activate() immediately returns false if Di has no inac-

tive component. Otherwise, the inactive component of Di with the lowest index is

activated.

Deactivate() Process pi calls the operation Deactivate() to deactivate the active

component of Di with the highest index. A DCS clock has at least one active

component. Thus, the call to Deactivate() immediately returns false if Di has only

one active component. Otherwise, the active component of Di with the highest

index is deactivated.

To illustrate the Activate() and Deactivate() operations, let’s consider a process pi
whose DCS clock Di has four components: Di = {C0, C1, C2, C3}. If pi wants to

deactivate components, then it will deactive them in decreasing order, i.e, first C3,

then C2, and finally C1. On the other hand, if pi wants to re-activate them, then

it will first activate C1, then C2, and finally C3.
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A process keeps each deactivated component Cd locally, because it might receive

a message whose DCS clock contains Cd, and it will then require the local Cd to

ensure that the delivery conditions of the message’s component Cd are satisfied.

Add() A process decides locally to add a new component to its DCS clock, i.e.,

without communicating with other processes. When pi calls the Add() operation, it

first creates a new component Ck in active state, sets its entries to 0, and appends

Ck to the end of Di. Therefore, Ck will be the component of Di with the highest

index.

After adding a component to Di, pi also activates all components of Di, since the

inactive components of a DCS clock have a strictly higher index than the active

components. Therefore, adding a component at the end of Di implicates that all

components of Di must be active.

Remove() Process pi calls Remove() to remove the component of Di with the

highest index. It returns false if Di has only one component, since by definition a

DCS clock has at least one component.

5.6 Causal broadcast algorithm using DCS clocks

This section presents an implementation of causal broadcast using DCS clocks. We

first present the causal broadcast algorithm, then we describe the implementation

of the operations to modify the size of DCS clocks.

5.6.1 Model

The system contains a set Π = {p1, p2, . . . , pN} of N processes. Processes are

reliable and communicate through message passing. Each pair of processes is con-

nected by a reliable communication channel. Local events induce no interactions

with other processes and are therefore omitted. Each application message is broad-

casted to all processes of the system.

5.6.2 Definition of the algorithm

Algorithm 14 describes the DCS clock-based causal broadcast algorithm. Each

process pi keeps:
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• Di: its local DCS clock.

• Sincr,i: a set containing the indexes of the components ofDi that pi increments

when broadcasting a message.

Broadcast of a message m Process pi first updates its DCS clock by executing

the Rule R1 given in Section 5.5.2 with d = 1:

∀x ∈ f(pi), ∀k ∈ Sincr,i, Di.Ck[x] = Di.Ck[x] + 1.

Then, pi broadcasts m with Sincr,i and the active components of Di.

Reception of a message m Process pi calls the function prepareComparison()

upon receiving a message m of DCS clock Dm and of set of incremented component

indexes Sincr,m. prepareComparison() prepares Di to the comparison with Dm in

three steps:

• First, it calls Add() till |Di| = |Dm|, since Di must satisfy the delivery condi-

tions of each component of Dm. Note that Di might have more components

than Dm. It is then sufficient to ensure that Di satisfies the delivery condi-

tions of the components of Dm.

• Second, it activates the inactive components Cd ofDi for which ∃x,Di.Cd[x] <

Dm.Cd[x], since those components contain new causal information. The com-

ponents Dk<d are then also activated to maintain the DCS clock property

that active components always have lower indexes than inactive ones.

• Third, if it has activated components, then it sets Sincr,i to a new set of ran-

domly chosen indexes of active components, to ensure that active components

are on average incremented by the same number of processes.

After calling prepareComparison(), pi waits till Di satisfies the following delivery

conditions of Dm:

• For each component Ck/∈Sincr,m
: pj did not increment Ck when broadcasting

m. Hence, the entries of Di.Ck should be equal or greater than those of

Dm.Ck :

waitUntil( ∀Ck/∈Sincr,m
, Dm.Ck[x] ≤ Di.Ck[x])

• For each component Ck∈Sincr,m
: pj incremented the entries f(pj) of Ck when

broadcasting m. Hence, the entries x ∈ f(pj) of Di.Ck should be equal or

greater than those of Dm.Ck minus one, and the entries x /∈ f(pj) of Di.Ck

should be equal or greater than those of Dm.Ck :

waitUntil(∀Ck∈Sincr,m
,∀x ∈ f(pj), Dm.Ck[x]− 1 ≤ Di.Ck[x])

waitUntil(∀Ck∈Sincr,m
,∀x /∈ f(pj), Dm.Ck[x] ≤ Di.Ck[x])
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p1
f(p1) = {0}
cincr = 0
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f(p2) = {0}
cincr = 0
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(1)
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(1): [{[1],[0]},0] (2): [{[1],[1]},1] (3): d(m), d(m’)

b(m): broadcast(m) d(m): deliver(m) de(m):cache(m)

Figure 5.13: Causal broadcast using DCS clocks

Process pi executes Rule R1 given in Section 5.5.2 with d = 1 once Di satisfies the

delivery conditions of Dm:

∀x ∈ f(pi),∀k ∈ Sincr, Di.Ck[x] = Di.Ck[x] + 1

Finally, pi delivers m (line 7).

Algorithm 14: Broadcast at process pi
Broadcast of message m

1: ∀x ∈ f(pi),∀k ∈ Sincr,i, Di.Ck[x] = Di.Ck[x] + 1
2: broadcast(m,Di,Sincr,i)

Upon reception of message (m,Dm, Sincr,m) from pj
3: prepareComparison()
4: waitUntil( ∀Ck/∈Sincr,m

, Dm.Ck[x] ≤ Di.Ck[x])
5: waitUntil( ∀Ck∈Sincr,m

,∀x ∈ f(pj), Dm.Ck[x]− 1 ≤ Di.Ck[x] ∧ ∀x /∈
f(pj), Dm.Ck[x] ≤ Di.Ck[x])

6: ∀x ∈ f(pj),∀k ∈ Sincr,m, Di.Ck[x] = Di.Ck[x] + 1
7: deliver(m)

Figure 5.13 shows the broadcast of two messages. The system is composed of three

processes p1, p2, and p3. Each process maintains two components with each com-

ponent having one entry. Processes p1 and p2 have Sincr = {0}, i.e., they increment

component C0 when broadcasting a message while p3 increments component C1

when broadcasting a message. In the scenario, p1 first broadcasts m whose causal

information is represented by (1). Upon reception of m, p3 delivers it since its

delivery conditions are satisfied. Then, p3 broadcasts m′, i.e., m→ m′. The causal

information of m′ is represented in (2). Process p2 receives m′ before m. Thus, it

postpones the delivery of m since its delivery conditions are not satisfied, because

p2.D2.C0[0] < m′.Dm′ .C0[0]. When it eventually receives m at (3), it delivers m

and then m′.
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cincr = 0

p2
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Figure 5.14: Example of DCS clocks expansion

5.6.2.1 Expansion of the local DCS clock

The algorithm expands DCS clocks in order to reduce the number of processes

that increment the same entries when broadcasting a message. Process pi decides

to increment its local DCS clock Di without communicating with other processes.

pi decides to expand Di spontaneously, when observing for example a high message

load. To expand its DCS clock, pi:

• First, calls Activate() described in Section 5.5.3.1, which activates an inactive

component of Di if one is available, and which returns false otherwise.

• Second, calls Add() described in Section 5.5.3.1 if Activate() returns false,

i.e., pi adds a new component to Di if Di has no inactive component.

• Third, pi sets Sincr,i to a new set of randomly chosen indexes of active com-

ponents, to ensure that active components are on average incremented by the

same number of processes.

Figure 5.14 shows a scenario where processes expand their DCS clock. The system

is composed of three processes. Initially, each process maintains a DCS clock of

one component, namely C0, and each process increments C0 when broadcasting a

message. The notation of causal information is as follows: [ DCS clock, Sincr,], i.e.,

[{[0],[1]},1] means the DCS clock {[0],[1]} with Sincr,={1}.

At (1), p1 decides to expand its DCS clock D1 (e.g., detection of high message

load) by adding a new component to D1, since D1 has no deactivated component.

Moreover, it re-assigns itself to a random component of D1 which gives Sincr,1 =
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{random()%2} = {1}. At (2) and (3) p1 and p3 broadcast a message m of DCS

clock {{[0], [1]}} and m′ of DCS clock {{[1]}} respectively. Process p2 first receives

m′ at (4) and delivers it. At (5), p2 receives m, adds a component to its DCS clock,

since D2 < |m.D|, and sets Sincr,2 = {random()%2} = {0}, then it delivers m.

At (6), p2 broadcasts message m” with DCS clock [{[2],[1]},0]. p3 receives m”

at (7), expands its DCS clock by adding a new component since |D3| < |m”.D|
and sets Sincr,3 = {random()%2} = {1}. It postpones the delivery of m” since

m”.D.C0[0] = 1 and D3.C0[0] = 0. At (8), p3 receives m, and delivers both m then

m′.

5.6.2.2 Deactivate DCS clock components

This section describes an implementation to deactivate DCS clock components

without loss of causal information. A process should only deactivate the compo-

nents of its DCS clock that do not contain causal information that is still useful

to some other processes.

Processes should deactivate components whenever possible, as for example when

the message load decreases, because deactivated components are not sent with

messages and are only kept locally. Consequently, deactivating components reduces

the causal information carried by messages.

Process pi deactivates the component of Di with the highest index among the

active ones, i.e., if k components of Di are active, then pi first deactivates Ck−1,

then Ck−2, etc. up to C1. C0 cannot be deactivated.

Component Ck of Di provides causal information to at least one other process as

long as Ck’s delivery conditions are not satisfied by all processes, i.e., as long as

∃pj,∃x, pj.Dj.Ck[x] < Di.Ck[x].

We add two additional conditions to ensure that pi will not activate Ck again

shortly after deactivating it:

(1) No process currently increments Ck.

(2) No process currently delays the delivery of a message m with k ∈ m.Sincr,

because the delivery of m might violate the above condition.
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5.6.2.2.a Deactivation round

Process pi verifies the satisfaction of the above conditions through a two phase

exchange of messages with the other processes. In Phase 1, pi sends the com-

ponent Ck to deactivate to all processes, which reply with a positive or negative

acknowledgement. In Phase 2, pi confirms or not the deactivation of Ck to all

processes.

Phase 1. Process pi starts Phase 1 by broadcasting a Deactivate message contain-

ing Ck and Ck’s index k. The other processes reply with an AckDeactivate message

containing a positive or negative acknowledgement of Ck, depending on whether

they locally satisfy the deactivation conditions of Ck or not. Moreover, they freeze

the dynamics operations of their DCS clock till the end of the Deactivation round,

i.e., till they receive the DecisionDeactivate message from pi.

Phase 2. pi broadcasts a DecisionDeactivate message once it received the Ack-

Deactivate message from all processes. The DecisionDeactivate message contains

Ck’s index k and a boolean that confirms or not the success of the round, i.e., the

deactivation or not of Ck. pi sets this boolean to true if all processes positively

acknowledged the deactivation of Ck and false otherwise. Upon reception of the

DecisionDeactivate message, a process unfreezes the dynamics operations of its

DCS clock, and deactivates Ck provided that the boolean is set to true.

Any process can start a Deactivation round. The process can be chosen probabilis-

tically or, for example, in a predefined way based on the process identifier. Several

processes could start a Deactivation round for the same component or for different

components simultaneously, but this should be avoided since acknowledging the

deactivation of the same components several times is useless.

5.6.2.2.b Complexity analysis of Deactivation rounds

A Deactivation round has a message complexity in O(N): N Deactivate messages,

N AckDeactivate messages and N DecisionDeactivate messages. A Deactivation

round has a message memory complexity in O(M): Deactivate messages contain

one integer and a component of M integers, while AckDeactivate and DecisionDe-

activate messages contain some integer and boolean values and have therefore a

space complexity in O(1). We assume bounded integers encoded on 32 bits.
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5.6.2.3 Removal of DCS clock components

This section describes an implementation to remove components from DCS clocks.

Processes keep inactive components of their DCS clock locally, and should eventu-

ally remove them in order to free up memory space.

Processes must coordinate the removal of inactive components with each other,

because if one process removes a component Ck from its DCS clock, then all pro-

cesses should remove Ck from their DCS clock. In fact, assume that one process

pi removes Ck from its DCS clock, and that another process pj then broadcasts

a message m without having removed Ck from its DCS clock. The DCS clock

appended on m will then contain Ck. Upon reception of m, pi will have lost the

causal information of Ck since it deleted Ck. Thus, a process should only delete a

component Ck once it is ensured that it will receive no other message containing

this Ck. Before removing Ck, pi should therefore verify that :

(1): Ck is inactive at all processes of the system.

(2): It will receive no message containing Ck after removing Ck from its DCS

clock.

5.6.2.3.a Remove round

Process pi verifies the satisfaction of the above conditions through a two phase

exchange of messages with the other processes. Phase 1 synchronizes processes to

ensure that they all have delivered the messages containing the component Ck to

be removed and that they will broadcast no new message containing Ck. Phase 2

propagates the deletion decision of Ck, which depends on the satisfaction by all

processes of the two above conditions.

Phase 1. Process pi broadcasts a Remove message containing a set with a tuple

< pk, seqk > for each process pk that broadcasted a message since the last Remove

round, with seqk corresponding to the number of messages pk broadcasted since

the last Remove round.

Upon reception of the Remove message, process pj freezes the dynamics operations

of its DCS clock. Moreover, it verifies that Ck is locally inactive and that for each

tuple < pk, seqk > it delivered seqk messages from pk since the last Remove round.

Finally, pj replies with an AckRemove message containing k, the index of Ck, as

well as a boolean set to true if both conditions are satisfied, and false otherwise.

Phase 2. pi sends a DecisionRemove message after it received the AckRemove

message from all processes. The DecisionRemove message contains Ck’s index k
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and a boolean that confirms or not the success of the round, i.e., the removal or

not of Ck. pi sets this boolean to true if all processes positively acknowledged the

removal of Ck and false otherwise. Upon reception of the DecisionRemove message,

a process unfreezes the dynamics operations of its DCS clock, and removes Ck

provided that the boolean is set to true.

5.6.2.3.b Complexity analysis

A Remove round has a message complexity in O(N): N Remove messages, N

AckRemove messages and N DecisionRemove messages. A Remove round has a

message memory complexity in O(N): Remove messages contain a vector with up

to N integers, while RepRemove and Remove messages contain some integer and

boolean values. We assume bounded integers encoded on 32 bits.

Remove rounds should not be executed often because of the memory complexity

which is in O(N) messages. Nevertheless, several components can be acknowledged

at once. Moreover, a DCS clock is usually composed of a few components, and

keeping them locally without sending them with messages only represents a small

local memory overhead.

5.6.2.4 Termination proof of DCS clocks

This section gives the proof of termination of the causal broadcast algorithm using

DCS clocks. The proof is divided in two parts. Theorem 5.5 proves the termination

property for static DCS clocks. Theorem 5.6 proves that the termination property

holds when adding and removing components to DCS clocks.

Theorem 5.5. A well-formed message broadcasted with an algorithm using a static

DCS clock to causally order messages is eventually delivered by all processes.

Proof. We prove it by induction. We assume that each process pi has a DCS clock

Di of l ≥ 1 components.

H0: Messages generated on the initial state are eventually delivered by all processes.

Processes initialize the entries of components to 0. Hence, a message m generated

by pi in the initial state carries a DCS clock with ∀x ∈ f(pi),∀k ∈ Sincr,i,m.Ck[x] =

1 and for all the other component entries values equal to 0. Since all processes

initialize the entries of components to 0, their DCS clock satisfies both delivery

conditions upon reception of m. Thus, messages generated in the initial state are

eventually delivered by all processes.
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H1: We assume a set of messages M that are eventually delivered by all processes.

We show that any message generated by a process after it delivered the messages

of M will be eventually delivered by all processes.

Let’s consider a message m of DCS clock Dm generated by a process pi after it has

delivered all messages of M .

By hypothesis, all processes eventually deliver the messages of M and increment

their DCS clock accordingly. Moreover, pi only increments the entries x ∈ f(pi)

of the components Ck, k ∈ Sincr,i when broadcasting m. Hence, the entries of the

DCS clock appended on m and the DCS clock of processes after they delivered m

only differs by one ∀x ∈ f(pi),∀k ∈ Sincr,i. Therefore, processes will satisfy the

delivery conditions of m once they delivered the messages of M , which they do by

definition. Therefore, processes eventually deliver m.

Any message generated after a set of eventually delivered messages will eventually

be delivered by all processes (see H1 ). Since all messages generated on the initial

state are eventually delivered by all processes (see H0 ), we conclude that any

message is eventually delivered by all processes.

Lemma 5.2. The termination property of the causal broadcast algorithm using

DCS clocks holds when processes add or activate components of their DCS clock.

Proof. Adding a new component to a DCS clock is equivalent to activate an inactive

component not yet contained in the DCS clock of any other process. Therefore, it

is sufficient to show that the termination property holds when a process pi activates

an inactive component Ck of its DCS clock Di. We consider that pi broadcasts a

message m after activating Ck.

pi reaffects itself to new components when activating Ck, and stores the index of

those components in Sincr,i. Any process pj that receives m first adds and activates

Ck to its DCS clock Dj if Dj has no such component yet. Moreover, pj knows

which components pi incremented when broadcasting m, since m carries Sincr,i.

Therefore, pj adds and activates Ck to its DCS clock, and by using Sincr it will

also increment the entries of the right components when delivering m.

Lemma 5.3. The termination property of the causal broadcast algorithm using

DCS clocks holds when processes remove components of their DCS clock.

Proof. The Remove round ensures that processes only remove a component Ck

provided that all processes have delivered all messages whose DCS clock contains

Ck. Moreover, the Remove round ensures that no new message containing Ck will



Chapter 5. Causal broadcast implemented using clocks of size M ≤ N 163

be broadcasted (even though a process might add a new component of index k

after Ck was removed). Therefore, after a successful Remove round, Ck will not be

used in any delivery of message, and its deletion will therefore impact no message

delivery.

Lemma 5.4. The termination property of the causal broadcast algorithm using

DCS clocks holds when processes deactivate components of their DCS clock.

Proof. Consider that process pi deactivates component Ck. pi does not increment

deactivated components, i.e., Ck. Hence, Ck will contain no new causal information.

Moreover, deactivated components are not sent with messages, but are kept locally

by processes. Therefore, deactivating components only removes delivery conditions

of a message without loosing causal information. The deactivation of components

does therefore impact no message delivery.

Theorem 5.6. A well-formed message is eventually delivered by all processes when

broadcasting messages with the causal broadcast algorithm using DCS clocks.

Proof. Following Theorem 5.5, processes eventually deliver messages when using

a causal broadcast algorithm using static DCS clocks to causally order messages.

Following Lemma 5.2, Lemma 5.3 and Lemma 5.4, the termination property holds

when the dynamics operations of DCS clocks are considered (Add(),Activate(),

Remove(), Deactivate()). The termination property of DCS clocks holds therefore

also when considering dynamic DCS clocks.

5.7 Experimental results

Experiments were carried out on the OMNeT++ simulator. Processes generate

messages on a regular interval plus a deviation computed according to a normal

distribution N(10, 0). The propagation delays of messages follows a normal distri-

bution N(100, 20). An independent controller module detects out of causal order

deliveries. The number of concurrent messages in the system depends on the sys-

tem’s message load and the distribution of propagation delays of messages. In the

following we keep a propagation delay of messages that follows a normal distribu-

tion N(100, 20), and vary the message load instead of the number of concurrent

messages, since the former is easier to set up.

The first experiments aim to determine the required DCS clock size to achieve

a given accuracy of causal message ordering, depending on the system’s message



164 5.7. Experimental results

10−45×10−510−510−6

Message false delivery rate

0

200

400

600

800

1000

1200

1400

1600

Cl
oc

k 
siz

e

50msg/s
100msg/s
200msg/s
300msg/s

Figure 5.15: Clock size following the message load to achieve a given
causal ordering accuracy

load. The second set of experiments compares DCS clocks to probabilistic clocks

for two different message load patterns. The third experiment evaluates the load

balancing ability of DCS clocks.

5.7.1 Clock size following the message load

The size of DCS clocks should be set following the message load and the accepted

probability that a message is delivered out of causal order. Hence, the first exper-

iment aims to determine the required DCS clock size following the message load

and the accepted probability that a message is delivered out of causal order.

The system contains 2000 processes broadcasting messages at a frequency de-

termined by the system’s message load. The hash function returns two entries,

i.e., processes increment two entries when broadcasting a message. Figure 5.15

presents the required probabilistic clock size, depending on the message load, to

have 10−2%, 5.10−3%, 10−3%, 5.10−4% and 10−4% out of causal order deliveries.

Results show that the required size of the clock increases with the causal ordering

accuracy, i.e., to have a probability to deliver a message out of causal order of

10−3% requires a bigger clock than a probability of only 10−2%.

The clock size required to causally order messages increases faster than linearly with

the message load. We explain it by analyzing the formula presented in [MW17b]

and described in Section 5.2 that gives the probability that a message is delivered

out of causal order: (1− (1− 1
M

)X∗k)k, where X corresponds to the number of con-

current messages, which is directly affected by message load, and M corresponds

to the clock size. The formula confirms that an increase in message load (resp.,

clock size) has an exponential (resp., division) impact in the formula result, thus
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Figure 5.16: Size of DCS clocks and out of causal order deliveries of the
first message load pattern

explaining why the clock size increases faster than linearly. This observation ac-

centuates the importance of adjusting dynamically the clock size to the number

of concurrent messages inside the system, instead of choosing a size following the

highest expected number of concurrent messages, since the clock risks being much

bigger than required.

5.7.2 Behavior following different message load patterns

The second set of experiments compares DCS clocks and probabilistic clocks for

two different message load patterns. The first pattern consists of intervals in which

the message load goes from 10 to 200 messages broadcasted per second following

a normal distribution. The second pattern consists of random messages loads

either in an interval between 10 and 30 messages broadcasted per second or an

interval between 150 and 200 messages broadcasted per second. Figures 5.16 and

Figure 5.17 show the message loads of the experiment using each pattern. The
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Figure 5.17: Size of DCS clocks and out of causal order deliveries of the
second message load pattern

system contains 2000 processes which increment two entries when broadcasting a

message.

5.7.2.1 Bell message load pattern

Figure 5.16 shows the results of the experiments conducted with the first message

load pattern, represented in Figure 5.16a. It consists of 4 bells obtained following

a normal distribution of respective variance σ2 = 40, σ2 = 30, σ2 = 20 and σ2 = 15.

Figure 5.16b shows the size of the DCS clock attached to messages. The DCS

clocks in this experiment have an average size of 304 entries. Hence, we conducted

an experiment with the same message load using a probabilistic clock of 304 entries.

Figure 5.16c gives the number of out of causal order deliveries that occurred when

using DCS clock and probabilistic clocks.

We first observe in Figure 5.16b that DCS clocks rapidly adapt themselves to

the message load pattern. Second, Figure 5.16c shows that the causal broadcast
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algorithm using DCS clocks delivers fever messages out of causal order than the

causal broadcast algorithm using probabilistic clocks. In total, with the algorithm

using DCS clocks, we observed 154 out of causal order deliveries, while we observed

854 out of causal order deliveries with the algorithm using probabilistic clocks.

Hence, with the algorithm using probabilistic clocks we observe ≈ 5.5 more out of

causal order deliveries. The out of causal order deliveries are for both algorithms

concentrated around the message load peaks.

Following the theoretical analysis, we would have expected that the algorithm using

DCS clocks delivers fewer messages out of causal order. By further analyzing we

found that the out of causal order deliveries are coming from the DCS clock whose

size is not increasing fast enough with the message load. The current metric a

process uses to determine when to increase its DCS clock is the number of messages

it received in the last second. Hence, a process might not adapt fast enough when

the message load increases abruptly.

To conclude, the results of the first experiment shows that DCS clocks have better

performances in causally ordering messages than probabilistic clocks in systems

with a bell message load pattern as presented in Figure 5.16. Moreover, DCS

clocks require a further analysis to determine which metric/mechanism to use to

determine when to increase the size of the clock.

5.7.2.2 Random message load pattern

Figure 5.16 shows the results of the experiments conducted with the second message

load pattern, represented in Figure 5.17a. It is divided in intervals of low message

loads chosen every second and going from 10 to 30 messages broadcasted per second,

followed by high message loads going from 150 to 200 messages broadcasted per

second. Figure 5.16b shows the size of the DCS clock attached to messages. The

DCS clocks in this experiment have an average size of 255 entries. Hence, we

conducted an experiment with the same message load using a probabilistic clock

of 255 entries. Figure 5.16c gives the number of out of causal order deliveries that

occurred when using DCS clock and probabilistic clocks.

Results confirm that the size of DCS clocks is rapidly adapted to the message

load: they remain small most of the time and grow fast during message load peaks.

Second, Figure 5.16c shows that the causal broadcast algorithm using DCS clocks

delivers fever messages out of causal order than the causal broadcast algorithm

using probabilistic clocks. In total, the algorithm using DCS clocks delivered 187

messages out of causal order, while the one using probabilistic clocks delivered 1126

messages out of causal order (≈ 6x). The out of causal order deliveries are for both

algorithms again concentrated around the message load peaks.
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Figure 5.18: Out of causal order deliveries with load balancing

To conclude, the results of the second experiment shows that DCS clocks have bet-

ter performances in causally ordering messages than probabilistic clocks in systems

with a message load pattern consisting of low message loads followed by peaks, as

presented in Figure 5.17.

5.7.3 Load balancing

Clocks with M entries are the most accurate when their entries are incremented

uniformly. Processes should therefore be affected to clock entries such that clock

entries are incremented uniformly. However, a process might vary the number

of messages it broadcasts during execution, thus rendering an initially uniformly

incremented clock non uniformly incremented.

Algorithms using DCS clocks can dynamically change the clock entries associated

to processes. The last experiment measures the ability of DCS clocks to affect

processes to new clock entries in order to increment DCS clocks more uniformly.

The system consists of 1000 processes, which increment two entries when broad-

casting a message (i.e., |f | = 2). The system’s message load is of 100 messages

broadcasted per second, and processes maintain a DCS clock of 200 entries. Till

t=50s processes increment the DCS clock entries uniformly. At t=50s, we modify

the clock entries associated to processes in order to have 75% of message broadcasts

that increment component C0, i.e., component C0 is incremented 3 times more after

t=50s. Figure 5.18 shows the number of messages that are delivered out of causal

order.

We observe that the number of messages delivered out of causal order increases a

lot after t=50s. At t=70s, processes that increment component C0 detect that com-

ponent C0 is much more incremented than other components. In order to balance,
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they assign themselves to other components with a probability of 50%. Conse-

quently, the number of messages delivered out of causal order drops. Eventually,

the remaining processes that increment component C0 detect that C0 is still more

incremented than other components, and reassign themselves therefore to other

components with a probability of 50% till the DCS clock is again incremented

uniformly, which happens at t=90s. Therefore, processes eventually incremented

their DCS clock again uniformly.

5.7.4 Summary

This section presented a causal broadcast implementation using Dynamic Clock

Sets (DCS), a new logical type of clocks based on Probabilistic clocks. The main

feature of DCS clocks over constant size ones is that their size can be dynamically

adjusted during execution. This is particularly important since the optimal size of

DCS and constant size clocks usually depend on the number of concurrent messages

inside the system, which can drastically vary and whose knowledge beforehand is

difficult or even impossible to determine.

Experimental results confirm that DCS clocks have a higher accuracy of causal

message ordering when compared to probabilistic clocks. Moreover, depending

on the system’s message load pattern, DCS clocks also require less memory than

probabilistic clocks. Finally, DCS clocks can efficiently be used to increment clock

entries more uniformly.

5.8 Conclusion

This chapter presented the work of this thesis done on M-entry clocks. Such clocks

scale well with the number of processes N , since their size M is independent and

usually much smaller than N . However, algorithms using M-entry clocks might

deliver some messages out of causal order. Therefore, the first contribution of this

chapter aims to detect messages that are delivered out of causal order when causally

ordering messages by using M-entry clocks. The second contribution aims to avoid

the out of causal order delivery of messages tagged as having not delivered causal

dependencies. The third contribution of this chapter defines a new clock, based on

probabilistic clocks, and whose size is dynamically adjustable during execution.

First, we defined the assumptions required to implement an error detector for

M-entry clocks that detects all messages that are delivered out of causal order.

Moreover, we showed that these assumptions are not realistic and that such an

error detector can therefore not be implemented under realistic assumptions. We
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then proposed an error detector for probabilistic clocks based on hashes. The

proposed error detector detects most of the messages that are delivered out of

causal order. We gave some mechanisms to increase its efficiency and decrease its

costs. We implemented our error detector on the OMNeT++ simulator, tested its

efficiency, and compared it to another error detector for M-entry clocks.

Second, we proposed an algorithm to retrieve the causal dependencies of messages,

in order to ensure the causal delivery of messages tagged as not causally ordered

by error detectors. We tested our algorithm on an implementation done on the

OMNeT++ simulator.

Third, we proposed the Dynamic Clock Sets (DCS clocks), a new logical clock

based on probabilistic clock. The main feature of DCS clocks over M-entry clocks

is that their size can be dynamically adjusted during execution. This is particularly

important since the optimal size of DCS and M-entry clocks depends on the num-

ber of concurrent messages in the system, which can drastically vary and whose

knowledge beforehand is difficult or even impossible to determine. We provided an

implementation of causal broadcast using DCS clocks and analyzed its behavior

through experiments done on the OMNeT++ simulator.
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Causal broadcast has been extensively investigated, and innumerable applications

use it. Causal broadcast algorithms either piggyback information on messages in

order to causally order them at reception or they organize the system and make

assumptions on the network topology to ensure that messages are implicitly ordered

at reception, thus ensuring that they can be causally delivered upon reception

without any control.

This thesis aimed to provide causal broadcast for large dynamic distributed sys-

tems. Hence, the algorithms, presented in two parts, scale and tolerate processes

that join and leave the system during execution.

6.1 A causal broadcast algorithms that tolerates

the dynamics of Mobile Networks

We proposed a causal broadcast algorithm tailored to the features and dynamics

of mobile networks. These features are mobile host mobility, dynamic host mem-

bership, unreliable dynamic wireless channels, memory and computing constraints

of mobile hosts, as well as scalability issues due to the high number of mobile hosts

and stations. The algorithm tolerates the failure of mobile hosts. We also proposed

an extension to the algorithm that tolerates the failure of stations.

171
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Messages piggyback few causal information. The algorithm scales well with both

hosts and stations. Hosts have a low memory footprint while stations have a

memory footprint that grows linearly with the number of locally connected hosts.

Contrarily to existing centralized approaches, stations discard obsolete messages

using only local information, thus requiring no message exchange.

Experimental results showed that both algorithms use much less causal information

and messages than existing algorithms for mobile networks, while making fewer

assumptions on the network and devices.

6.2 Causally order messages using M-entry clocks

We showed that an error detector that detects all out of causal order deliveries

cannot be implemented under realistic conditions. Moreover, we proposed an error

detector based on hashes. Basically, it consists of hashing the causal dependencies

of messages, and use this hash to retrieve the causal dependencies of messages

at destination. Experimental results confirmed that the error detector has a high

accuracy in detecting out of causal order deliveries. We also gave optimizations

to reduce the costs of the hash-based error detector and measured their efficiency

experimentally.

Second, we proposed a short algorithm to retrieve the causal dependencies of mes-

sages and showed its limitations. Experiments confirmed that using this algorithm

in conjunction with a causal broadcast implemented with probabilistic clocks heav-

ily reduces the number of messages that are delivered out of causal order.

Finally, we proposed the Dynamic Clock Sets (DCS clocks), a new logical clock

composed of a set of probabilistic clocks. The main feature of DCS clocks is that

their size can be dynamically adjusted during execution. Such an elasticity is

particularly interesting because the size of DCS and M-entry clocks depends on

the number of concurrent messages in the system and to have knowledge about

the latter beforehand is difficult or even impossible. We have defined DCS clocks

as well as the operations required to change their size. We have also presented

a causal broadcast implementation using them. Experimental results show that

a causal broadcast algorithm implemented with DCS clocks delivers messages in

causal order with a higher accuracy than one implemented with probabilistic clocks.

Moreover, DCS clocks can adapt to increment themselves more efficiently, which

increases their accuracy in causally ordering messages.
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6.3 Future directions

This section discusses some future directions.

In the near future, we intend to conduct experiments to evaluate the extension of

the causal broadcast algorithm for mobile networks that we proposed in Section 4

and that tolerates the failure of stations. To that end, stations are gathered in

groups, and share causal information. We aim to evaluate the impact of the size

of these groups in the number of messages exchanged between stations as well

as the overhead due to the additional causal information and the delivery delays

introduced by those message exchanges.

Another research direction will be how to detect concurrent messages when using

causal broadcast implemented with M-entry clocks. For example, Torres-Rojas

and Ahamad [TA99] use a scalar to distinguish some concurrent messages when

using plausible clocks. Concerning the error detector, we would like to propose a

handling procedure for messages tagged as not causally ordered by error detectors.

With respect to DCS clocks, we will investigate some heuristics to decide when

to increase or reduce the size of the clock. Such heuristics would be particularly

useful in systems where the message load varies abruptly.
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[NMM16] Brice Nédelec, Pascal Molli, and Achour Mostéfaoui. “CRATE: Writ-
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