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TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei

Recent advances in computational modelling of biological networks have helped researchers study the cellular metabolism of organisms. In this project, these approaches were used to analyze Trypanosoma brucei metabolism. This protozoan parasite is the causative agent of African trypanosomiasis, a lethal disease which has been responsible for huge loss of lives and livestock in Sub-Saharan Africa since ancient times. Information on T. brucei metabolism was gathered from published studies, databases and from personal communication with experts studying different areas of Trypanosomatid research. This information has been presented to the public through the TrypanoCyc Database, a community annotated T. brucei database. The database was published in November 2014 and has had over 4200 visitors from more than 100 countries as of November 2015. A manually curated genome-scale metabolic model for T. brucei was also built based on the gathered information to facilitate the study of T. brucei metabolism using systems biology approaches. Flux balance analysis based algorithms were designed to optimize visualization and study interesting metabolic properties. Blood-stream form specific metabolic models were generated using information available from published studies and the TrypanoCyc annotations with the help of the iMAT algorithm. Finally, an algorithm was designed to further optimize these stage specific models to improve the consistency of their predictions with results published in previous studies. These stage-specific models were observed to have a clear advantage over the genome-scale model when predicting stage-specific behaviour of T. brucei, particularly when predicting mutant behaviour.
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INTRODUCTION 10

METABOLISM

Metabolism is the set of physical and chemical processes that an organism is capable of performing in order to survive and reproduce [1]. The word 'Metabolism' was coined from the Greek term μεταβολή (metabolē -change) and ism (a suffix used to convert a verb as a noun) [2] 1

.1.1 History of metabolism

Since the dawn of time man has been trying to understand the world around him. We made observations on the living and non living elements that interact with us and developed conclusions on why things happen the way they do. The rise of interest in agriculture and cattle breeding practices inevitably led to observations of the effect of food and other elements from the environment on cattle and crops. With the development of interest in the physiology of living beings, the effects of food and air on fellow humans and cattle were observed by physicians such as Claudius Gaven. In the 1 st century ,Gaven proposed that pnuema, the fundamental principle of life according to Gaven, entered the body through air and from food into the blood [3]. However, the earliest recorded observations on metabolism have been credited to Ibn al-Nafis who stated in 13 th century in his theological novel, 'Al-Risalah al-Kamiliyyah fil Siera al-Nabawiyyah' that "Both the body and its parts are in a continuous state of dissolution and nourishment, so they are inevitably undergoing permanent change" [4]. Later in the 16 th century, Sanctorio sanctorius performed studies on himself and subjects by monitoring the weight of food, water, excrement and the human body before and after performing everyday activities and contributed to the study of an 'insensible perspiration' which tried to explain the disappearance of most of the food ingested [5].

Until Louis Pasteur's revolutionary studies with fermentation in the 19 th century, metabolic processes were thought to be spontaneous. Pasteur observed that there was specific substances inside yeast, which he called "ferments", that was responsible for fermentation [6][7]. However, it was believed that living matter possessed a vital force and was somehow different from non-living matter (the vitalist theory) [8]. In 1828, Friedrich Wöhler synthesized urea from ammonium cyanate and later in the century, Eduard Buchner was capable of demonstrating the fermentation process using enzymes alone and without any live yeast [9]. This revelation opened up the field of biochemistry and fuelled the study of metabolic processes; and Buchner was awarded the Nobel prize in 1907 for his work [10].

With the development of powerful techniques in biochemistry, molecular biology and genetic engineering such as DNA sequencing (Fred Sanger), polymerase chain reaction or PCR (Kary Mullis), northern blotting (Alvin, Kemp and Stark), southern blotting (Edwin Southern), western blotting (Harry Towbin), X-ray crystallography (Max von Laue), mass spectrometry (J.J. Thompson), Nuclear magnetic resonance (NMR) spectrometry (Purcell and Bloch), electron microscopy (Ruska and Knoll), Gene knockout and RNA interference or RNAi (Fire and Mello) by the 21 st century, huge leaps in understanding metabolism were made.

Types of Metabolic processes

Through evolution, living beings have developed and optimized their metabolism to survive in their respective environments. Resources are procured from the surrounding by various means. These nutrients are then used directly or broken into smaller simpler compounds which are then used to build new larger biomolecules such as proteins, lipids, DNA, RNA, etc which are essential for growth and survival. Metabolism hence can be broadly classified into two major processes -anabolism and catabolism a) Anabolism Anabolism is the set of processes responsible for the synthesis of large biomolecules from their smaller precursors [1]. Starch and glycogen synthesis from glucose, lipid synthesis from acetyl-CoA, synthesis of proteins from amino acids, DNA and RNA synthesis from its precursors are some examples of anabolism. The word anabolism was coined in the late 19 th century from the Greek word ἀναβολή (anabolē -throwing up) [11].

b) Catabolism

Catabolism on the other hand, refers to the biochemical breakdown of larger biomolecules into simpler compounds, which can later be used in anabolic processes or excreted into the environment. The release of energy associated with catabolism is very important for the growth and survival [1]. Protein degradation to amino acids, lipid breakdown into precursors and glycolysis that generates energy (ATP) are some examples of catabolism. The word catabolism was derived from the Greek word καταβολή (katabolē -throwing down) [12] 1

.1.3 Enzymes and regulation of Metabolism

Enzymes are large biomolecules responsible for catalyzing chemical reactions in cells. Most enzymes are proteins or protein complexes. The metabolic capabilities of a cell are directly related to the enzymes it is capable of expressing.

The first enzyme to be discovered was a diastase, the enzyme responsible for the breakdown of starch into maltose. It was discovered by the French chemists Payen and Persoz in 1833 [13]. Later in the same century, based on his observations, Louis Pasteur called the substance in yeast he believed to be responsible for fermentation as 'ferments' [7]. Pasteur however proposed that the ferments would be active only in living cells and so it was not until 1877, that the word 'enzyme' was coined by Wilhelm Kühne to represent biomolecules responsible in catalyzing reactions even outside living cells [14].

Enzyme functioning is best explained by looking at the thermodynamics of their chemical The reaction for which the free energy (G) levels are illustrated in the figure was determined to an endergonic reaction owing to the a positive ΔG ( ΔG > 0 ). ΔG ‡ is the activation energy required to initiate the reaction. Involvement of the enzyme reduces the free energy of the transition state and hence reduces ΔG ‡ to ΔG ‡ catalyzed improving the chances of the reaction taking place.

reactions. The endergonic (energy consuming) or exergonic (energy producing) nature of chemical reactions is determined by the difference in the Gibbs free energy (ΔG) of its products and the substrates. The transition state theory proposed in 1935 suggests the formation of a transition state between the reactants and the products [15] [16]. The transition state is believed to have a Gibbs free energy value higher than that of both the reactant and the product. This theory was capable of explaining why exergonic reactions also require a little energy to initiate the reaction. Hence in order to initiate a chemical reaction, an energy equivalent to difference in the Gibbs free energy of the transition state and the reactants (ΔG (transition-state -reactants) or ΔG ‡ ) would be required. This energy is called activation energy. Enzymes control the rate of chemical reactions by reducing the activation energy of chemical reactions. This happens with the help of the formation of an enzyme-substrate transition complex which requires a much lower activation energy [17]. Figure 1 represents the change in free energy of an endergonic reaction in the absence and presence of a catalyst.

As mentioned earlier, most enzymes are proteins or protein complexes. Proteins are encoded in the genetic material of organisms as genes. The enzyme-coding DNA or RNA gene is transcribed to messenger RNAs (mRNA) through a process called 'transcription' with the help of the enzyme RNA polymerase. A ribonucleoprotein complex called the ribosome then binds to mRNAs and synthesize polypeptide chains through the process called as 'translation'. This transfer of information from the genes to proteins is the central dogma of molecular biology(Figure 2). The protein then may also go through post-translational modifications. Some of these proteins bind with other proteins to form catalytically active protein-complexes. Many proteins and protein complexes also require further modification Metabolism of a cell is regulated by direct regulation of enzymes activity or by regulating the availability of the enzyme by controlling the steps involved in protein formation. Regulation of its metabolism helps the cell to manage resources, deal with environmental stresses and allows them to specialize for performing specific functions (as in the case of multicellular organisms). Perturbation of enzyme activity has popularly been used by researchers to understand their function and relevance. Gene KO studies involve disrupting the genes coded in the genetic material making them unavailable for the transcription [18]. RNA interference (RNAi) technique is used to control gene expression at the post transcription level [19]. However unlike gene KO, RNAi only reduces the expression and does not eliminate it completely which makes them quite useful in studying essential genes [20][21][22][23][24].

Various approaches such as depleting available substrate levels, modifying protein structures, blocking active sites of enzymes, etc are also widely used by researchers to study enzyme activity [25,26]. The metabolic changes between the perturbed and non-perturbed (wild type) cells help to understand the role of specific pathways or processes in the organism of interest [27,28].

TRYPANOSOMA BRUCEI

Trypanosoma brucei is an insect-borne-protozoan parasite responsible for the potentially lethal 'African Trypanosomiasis', also known as 'sleeping sickness' in humans and 'Nagana' in animals. The Tsetse fly (Glossina) is the vector responsible for the transmission of the T. brucei parasite. African Trypanosomiasis has been reported exclusively in 36 countries of sub-Saharan Africa which hosts the world's entire Tsetse fly population [29]. The human T. brucei strain has two major subspecies: T. brucei gambiense and T. brucei rhodesiense. They are morphologically indistinguishable [30] but the gambiense strain is believed to account for 98% of the reported cases [29]. Figure 3 shows an image of T. brucei cells in blood.

History of T. brucei research

Pre-colonial times

The Trypanosoma family is supposed to have been around for a very long time and is believed to have been associated closely with the hominid evolution. This seems to be why humans are resistant to all species of Trypanosoma except the gambiense and rhodesiense as these subspecies are believed to have evolved later [31]. Veterinary papyrus of Kahun Papyri believed to be from 2 nd millennium BC ancient Egypt talks about a cattle disease "ushau" during their time. The papyrus describes the symptoms of the disease which were similar to the symptoms of present day nagana [31,32]. These ancient Egyptians are thought to have used an ointment from bird fat to prevent insects biting their cattle [31]. Abu Abdullah Yaqut, the famous Syrian slave turned geographer, talked about an underground village of dying inhabitants in the country of gold, a scene very similar to that of a sleeping sickness epidemic. The oldest case report of sleeping sickness is from the 14 th century by Ibn Khaldoun who reported the death of Sultan Mari Jata of Mali with trypanosomiasis like symptoms [31]. Arabian slave traders are also believed to have looked for swollen lymph nodes in the back of the neck to identify doomed slaves suffering from sleeping sickness before purchasing them according to the English physician, Thomas Winterbottom [33].

Colonial times

During the early days of the modern times, causalities on board slave ships led to an increased interest in the sleeping sickness. Doctors were pressed by ship captains and slavetraders to find the causative agent behind this strange disease [31]. British royal naval surgeon John Atkins in 1734 reported the symptoms of late(neurological) stage symptoms of sleeping sickness from his observations [33]. Later in 1803, Thomas Winterbottom published his report on sleeping sickness in which he reported the characteristic swollen lymph nodes in patients suffering from sleeping sickness [33]. One of the associations of nagana with tsetse flies was made by the famous Scottish medical missionary and explorer, David Livingston who lost his cattle to the disease in the Limpopo and Zambezi river valleys in 1852 [31] [34]. In 1895, the Scottish pathologist and microbiologist David Bruce discovered trypanosomes in the blood of nagana affected cattle in Zululand for the first time [35]. In 1899, Plimmer and Bradford published a paper on the parasites naming it Trypanosoma brucei after Bruce. In the same year, Frederick Walter Mott observed foreign mononuclear cells in the brain of 2 Congolese patients during post mortem autopsies [36]. Soon later in 1901 Robert Michael Forde observed "wriggly worms" in the blood of a steam-boat captain from the river Gambia [37]. A few months later English physician Joseph Everett Dutton identified the parasites as trypanosome and named them T. gambiense in 1902 [31]. The link between trypanosomes and sleeping sickness was however not yet established [36]. In 1902, the Royal Society of London sent a sleeping sickness commission comprising of Cuthbert Christy (a British epidemiologist), George Carmichael Low (a Scottish clinician) and Aldo Castellani (an Italian bacteriologist) to the Uganda region [36]. Castellani then found trypanosomes in the cerebrospinal fluid of patients and identified them as the causative agent of Sleeping sickness for the first time [38]. Castellani thought these trypanosomes were different from T. gambiense based on the morphological features and named them T. ugandensis [36], although they were found to be the same later. In 1903, Bruce reported conclusive proof for the transmission of the parasites via tsetse fly [33,36]. Bruce is reported to have thought the transmission was purely mechanical [31] and it wasn't until 1909, when studies by the German surgeon Friedrich Karl Kleine showed that the transmission involved life cycle stage transitions. Bruce then was later capable of describing the complete lifecycle of T. brucei [39]. The second subspecies of human trypanosomes, T.b.rhodesiense, was finally identified in 1910 by John William Watson Stephans & Harold Benjamin Fantham [39].

Lifecycle of T. brucei

The T. brucei parasite is capable of growing and multiplying in both the host (mammals) and the vector (tsetse fly) (See Figure 4). The insect stage begins as the parasite enters the tsetse midgut during blood meal from an infected person. Here the parasites transform into the procyclic trypomastigotes. These reproduce by longitudinal binary fission and move to the anterior part of the midgut where they transform into long mesocyclic trypomastigotes. The mesocyclic trypomastigotes then migrate to the salivary gland of the insect where they develop into epimastigotes attached to the salivary gland. These finally develop into the metacyclic trypomastigotes awaiting insect bite and transmission into a mammalian host. The metacyclic T. brucei parasites are transmitted through insect bite into the mammalian host.

In the blood these parasites develop into the long slender bloodstream forms which then reproduces through longitudinal binary fission. Symptoms of the hemolymphatic stage may include fever, swollen lymph nodes, severe headache and joint pain. The parasites are then [30] distributed through the circulatory system and reach the blood brain barrier. T. brucei is capable of crossing the blood brain barrier and infecting the brain and cerebrospinal fluid, leading to irreparable damage of the central nervous system (CNS). At this stage (the neurological phase), the host suffers from motion and speech disorder and erratic sleep pattern (giving the disease the name 'sleeping sickness'). With the damage to the CNS, the host can fall into coma and eventually perish. Some slender trypomastigotes then irreversibly change to short stumpy forms in preparation for the insect stage [30]. African trypanosomiasis is lethal if left untreated, however cases have been reported where the hosts overcome the parasites but acts as a 'healthy carrier' [40].

Characteristics of T. brucei cell

The T. brucei cell is typically 16-42µm [41] and has all the basic features of a eukaryotic cell.

It is mononucleated, flagellated, has endoplasmic reticulum (ER), a single Golgi stack and an elongated mitochondrion [42]. The nuclear genome of T. brucei consists of 11 pairs of megabase chromosomes, intermediate and minichromosomes. Apart from this, being a member of the class Kinetoplastida, the parasite has a characteristic organelle in the mitochondrion called the kinetoplast that carries the mitochondrial DNA. Together with the nuclear genome, the total size of the T. brucei genome is 35 megabases per haploid genome [43]. T. brucei also have multiple peroxisome-like organelles that houses enzymes involved in important metabolic pathways such as glycolysis and isoprenoid biosynthesis called glycosomes [44]. Figure 5 represents a simplified representation of a Trypanosomatid cell. Another interesting feature of the T. brucei cell is the presence of a Glycophosphatidylinositol (GPI) anchor linked protective coat. In the mammalian host, the protective coat is composed of variable surface glycoproteins (VSG) and protects the parasites from the host immune system [45]. In the insect stage, the protective coat is composed of GPI-anchored proteins called procyclins that protect the parasites from being digested by the insect's enzymes [46].

Current Drugs and Treatment

The major task involved in trypanosomiasis treatment is early diagnosis. There have been four major drugs registered for trypanosomiasis. Pentamidine and suramin are used to treat early stage (hemolymphatic stage) of T.b.gambiense and T.b.rhodesiense infections respectively. Melarsopol and eflornithine are the drugs used to treat the second (neurological) stage of Human African Trypanosomiasis (HAT) with eflornithine being effective only against T.b.gambiense [29]. Although these are life saving drugs provided free of cost to the affected countries [47], they cause adverse side effects in patients with some of them even being fatal. Particularly in the second stage treatment, the drug action involves crossing the blood-brain barrier and killing the parasite which can sometimes lead to reactive encephalopathy. This lack of an efficient treatment regime is the key driving factor in African trypanosomiasis research. Recently Nifurtimox-Eflornithine combination therapy (NECT) has been found to more successful in patients in the neurological phase of the infection [48] [49] and is now the recommended therapy by World Health Organization (WHO). However even this treatment report multiple adverse side-effects. In the 1735 patients from 9 countries under NECT treatment, monitored in 2010-11, at least one adverse event was reported in 60.1% of the patients and a total of 3060 adverse events were reported. 9 deaths were also reported in the study with cause of death owing to reactive encephalopathy [48]. There is hence still a need for a more efficient treatment regime against African Trypanosomiasis.

Eflornithine is the only anti-Trypanosomiasis drug approved for use for which the mode of action has been conclusively determined. It depletes the amount of catalytically active ornithine decarboxylase in T. brucei cells which hampers Trypanothione biosynthesis and makes the cell susceptible to oxidative stress [50]. It is also the most efficient of anti-Trypanosomiasis drugs. There is hence a clear advantage in using drugs targeting specific metabolic processes. And so the study the parasite metabolism to identify essential metabolic processes and the use of target based drug screening/designing approaches could lead to the discovery of other more efficient drugs against Trypanosomiasis.

SYSTEMS BIOLOGY

Introduction to systems biology

Traditional research in biology drew its roots from physics and chemistry. And hence it also inherited the reductionist mechanistic approach of study which was made popular by René Descartes, Isaac Newton and other great minds of their time. Based on this approach, all components of a cell could be studied individually and the behaviour of the cell can be predicted by combining the results of the individual studies. An example of the successful interpretation of this theory for higher plants was made by Jacques Loeb from his observations on the responses of seedlings to light and gravity which was published in 1912.

Aristotle, the Greek physician is believed to have stated that "the whole is something over and above its parts and not just the sum of them all" [51]. With the popularity of the reductionist mechanistic approach in physics in the 17 th century, Aristotlean views were shelved [52]. It wasn't until Paul Weiss's study on the effects of light and gravity on insect behaviour that conclusive experimental proof against the mechanistic theory was found [53]. He observed that although the final phenotypic response to the stimuli was identical among individuals, the series of responses that led to the final phenotype was different among them. This brought back the 'whole is greater than the sum of the parts' concept proposed by Aristotle. The renewed interest also led to the coining of the term 'holism' by Jan Smuts [54] and the popularity of Systems Biology, the holistic approach of studying complex biological systems.

Kirschner in 2005 stated that the formulation of a definition for Systems Biology is a difficult task. As a start, he suggested that Systems Biology is the study of the behaviour of complex biological organization and processes in terms of the molecular constituents [55]. The organism level study of biological systems involves the integration of multiple wet-lab (cell biology, biochemistry, etc) and dry-lab (mathematical modelling, bioinformatics, etc) approaches. With the development of the next-generation sequencing and 'omics' technologies in the 21 st century, a massive amount of genomic, proteomic and metabolic information was made available to researchers. The effective combination of this mountain of information essentially requires a mathematical model in the form of a network of metabolites, proteins and the genes-catalyzing-them. The type of modelling used depends on the type of the data available and the aim of the study. For example, metabolic models help study cellular metabolism and regulatory networks help study regulation in cells. Large networks such as genome-scale networks are impossible to analyze by hand. However, with the advancement in computational approaches in mathematical modelling, it is now possible to study and understand these biological networks.

Types of Modelling in Systems Biology

Since the rise of Systems Biology, multiple mathematical approaches have been developed to study life (Figure 6). Based on the data modelled, available biological information, the complexity of the data and the objective of the study; modelling approaches can be classified as following: a) Network topology studies Network topology approach in studying biological systems is the most basic of modelling studies in systems biology. This approach is most useful in the case of extremely large network lacking detailed information. The model is studied as a network of nodes representing metabolites or reactions or both connected by edges. The edges of a network can be directed or undirected depending on the type of biological data. Protein-protein interaction networks usually have undirected edges while metabolic networks have directed edges. Analyses such as network robustness, centrality studies, modularity studies, network motif analysis, identification of network hubs, etc help gain important insights into the organization of system elements such as identifying vulnerabilities, important pathways and regulators [56]. The network topology approach however does not take into consideration the time and physiological context of the biological systems [57]. Network topology approach has been applied in the study of transcription factor binding networks [58], protein-protein interaction networks [59], protein-phosphorylation networks [60], metabolic interaction networks [61][62], genetic and small molecule interaction networks [63] and coexpression networks [64].

b) Boolean modelling

A Boolean network is a set of nodes capable of only binary values (1 or 0, ON or OFF) related by logical functions. These functions involve a combination of AND, OR and NOT operations on the values of other nodes [65]. The set of the Boolean values of nodes in the model is considered as the state of the model [66]. Boolean networks add a dynamic level to the basic network. The set of logical functions determining the transition of the model can be used to predict the next state of the model. A Boolean network of n nodes has a solution space of 2 n network states [66]. Boolean modelling simulations can lead to prediction of steady states in the solution space (also known as attractors) and the set of initial states capable of achieving the steady states (also known as the basin of attraction) [66]. Boolean modelling approach has proven very useful in the study of regulatory [67] and signalling networks [68].

c) Constraint-based modelling

The constrained-based modelling approach in systems biology involves defining a model as a set of linear equations with constraints to restrict the solution space. In the case of metabolic networks, the reactions are converted to linear equations with the metabolites as coefficients and reactions becoming variables. Constraints on the reactions are set based on the law of conservation of mass, reactions thermodynamics and available experimental data [69]. Unlike kinetic modelling, the constrain-based approach does not require information from enzyme kinetics studies or initial metabolite concentrations, making them the go-to choice for large metabolic networks such as genome-scale metabolic models [61,[70][71][72][73].

The flow of metabolites in the model is represented by a "flux" through the reactions. This metabolic flux is represented as number of metabolites per gram dry weight per unit time (mmol/gDW/hr). Multiple algorithms have been developed to study constraint-based models, the most popular being the flux balance analysis [74].

d) Kinetic modelling

Kinetic modelling involves representing the biological system as a set ordinary differential equations (ODEs) or partial differential equations (PDEs) and solving them in order to predict the state of the system after a given period of time [75,76]. Kinetic modelling uses additional information on the system elements such as metabolite concentrations, reaction rates and compartment size to perform dynamic simulations. Determining reaction rates require detailed reaction kinetics studies of the reactions involved in the model [77].

Reaction rate equations use information from reaction kinetics to calculate the change in concentration of the metabolites as a function of time. Kinetic models can be simulated using either deterministic or stochastic algorithms. Limitation to kinetic modelling include the difficulty in determining the kinetics of reaction involved and computationally expensive algorithms especially in the case of stochastic simulations greatly limiting the size of the model [75].

e) Hybrid modelling approach

All approaches in modelling of biological systems have their own positive and negative aspects. Furthermore, different approaches are used to study the different levels of cellular mechanism such as Boolean modelling for regulatory networks and kinetic modelling for metabolic networks. Studying these processes separately leads to the loss of certain influence on their results [78]. Owing to these reasons, recently there have been efforts to combine the various approaches in order to reduce limitations and improve application.

Hybrid modelling has been used to study the E. coli central metabolism [79], mucus production in Pseudomonas aeruginosa [80], integrating signalling with transcription regulation and metabolism [81], etc. With the development of efficient algorithms, improving reliability of results and overall ability to model different levels of the cellular machinery, the hybrid modelling approach seems to be the future direction of computational systems biology.

As mentioned earlier, the choice of modelling approach used in a study depends on the objective of the study and the data available. This research project aims is to analyze the cellular metabolism of T. brucei. And so given that the annotated genome of T. brucei was published in 2008 [82] and biochemical databases such as KEGG [83] has been successful in gathering information and making it available to the scientific community, the constraintbased modelling approach was selected for use in this project. And so detailed description of this technique and the algorithms used to study these models are discussed in the next chapter. 

CONSTRAINT-BASED MODELLING AND GENOME-SCALE METABOLIC RECONSTRUCTION

Note to the reader

Genome-scale metabolic models

A genome-scale metabolic reconstruction or model is a representation of a cell as a network of all the metabolic reactions that have been identified to occur within the given cell.

Organism-level systems biology involves the use of large datasets from high-throughput measurements, reconstruction of cellular systems, mathematical modelling and in silico simulations [84]. The main objective of this approach is to provide an understanding of the workings of complex biological systems and to attain this development of mathematical models is required. These models attempt to closely replicate wet lab experiments with the goal of computationally generating hypotheses at the organism level (also called genome scale) that can be experimentally validated [85]. Genome sequencing data, knowledge on gene-protein-reaction (GPR) relationships, and biochemical and enzymatic data on the metabolism of an organism are combined to create a genome-scale model. Computation based on these models allows the calculation of possible phenotypic states of the model organism [74]. Genome-scale models can also be used to predict the function of previously uncharacterised genes and rectify incorrectly annotated genes. Gene deletions, gene overor under-expression strategies are applied to genome-scale models to predict genes and pathways that may be altered for bioengineering the production of therapeutically-or industrially-important compounds [86]. These models can also be used to predict genes and enzymes that are essential for the survival of an organism. These predicted essential genes and enzymes may be potential drug targets and therefore important in drug discovery and development [START_REF] Mccloskey | Basic and applied uses of genomescale metabolic network reconstructions of Escherichia coli[END_REF].

Genome sequence and gene annotation data are used to identify specific roles of individual proteins within the system. A metabolic network (i.e. a network of metabolites interconnected via reactions involving the said metabolites) is developed utilising published data on elucidated protein function and cellular location, enzyme thermodynamics and reaction stoichiometry. Data from closely related organisms, e.g. orthologous gene data, are sometimes used in the absence of reported information on the organism of interest [START_REF] Chavali | A metabolic network approach for the identification and prioritization of antimicrobial drug targets[END_REF].

Reactions and corresponding metabolites are tabulated into a matrix that accounts for the number of metabolites consumed and produced within the given reactions. Additional constraints on the fluxes through the reactions (often expressed in metabolite amount per dry weight of the parasite per hour) with upper and lower boundaries are incorporated to control the flux values and represent the reversibility of reactions [START_REF] Chavali | Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major[END_REF].

Constraint-based Modelling

Constraint-based modelling is an important in silico approach which takes into account the different biochemical processes (i.e. reactions) and the flow of metabolites (i.e. species) in order to closely represent the metabolic network of an organism without the necessity for individual enzyme kinetics. It models the possible steady-states of the metabolic network (a state at which the metabolite concentrations do not change over time) because of which enzyme kinetic parameters (e.g. Michaelis constant K M ) that would need to be derived from recombinant expression and biochemical assays for all enzymes are not required. This is an important advantage for genome-scale modelling since these parameters are seldom known for every enzyme encoded in a genome. Moreover, these enzyme parameters are strongly dependent on environmental conditions (pH for instance). Even with the steady state assumption, too many fluxes will need to be computationally predicted. In order to focus on more relevant flux distributions, specific constraints, often based on experimental data, are entered into the system to represent limits of enzymatic fluxes as well as available metabolites. The steady state assumption allows the use of linear programming (i.e. a mathematical technique that computes the optimal output of a model whose constraints are given by a set of linear equations) to solve for the maximum or minimum flux values [74] .

Finally, the growth of the organism is predicted based on the production of essential components required for biomass production [START_REF] Feist | The biomass objective function[END_REF].

Constraint-based modelling has been used to predict the cellular response of an organism in different conditions. This allows a more in-depth comprehension of the complex metabolic networks in organisms [START_REF] Choon | Identifying Gene Knockout Strategies Using a Hybrid of Bees Algorithm and Flux Balance Analysis for in Silico Optimization of Microbial Strains[END_REF]. As a result, functional annotations for hypothetical proteins and correction of erroneous annotations are possible [START_REF] Chavali | Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major[END_REF]. By restricting the amount of specific metabolites, changes in the production of biomass components in constraint-based models can be used to predict the growth rate of the organism [START_REF] Latendresse | Construction and completion of flux balance models from pathway databases[END_REF]. Single gene knockout simulations in constraint-based modelling have been used to pinpoint possible drug targets against pathogenic organisms [START_REF] Chavali | Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major[END_REF]. Constraint-based modelling of cellular networks have been utilised in order to identify drug targets in cancer cells [START_REF] Folger | Predicting selective drug targets in cancer through metabolic networks[END_REF]. This technique can also be utilised in the development of bacterial strains used for the production of metabolites of nutritional or pharmaceutical interests. Gene knockouts that will redirect the consumption of precursor metabolites to allow the overproduction of metabolites of interest can be identified using flux balance analysis [START_REF] Navid | Applications of system-level models of metabolism for analysis of bacterial physiology and identification of new drug targets[END_REF].

Steps in genome-scale metabolic reconstruction

Genome-scale metabolic reconstruction involves two stages -an automated reconstruction and a manual curation stage. Figure 7 describes a simplified protocol for genome-scale reconstruction a) Automated Genome-scale Metabolic Network Reconstruction

As mentioned earlier, a genome-scale metabolic reconstruction is a representation of a cell as a network of all the metabolic reactions that have been identified to occur within the given cell. As it is time consuming to manually add every single reaction one after the other, many automated tools [START_REF] Overbeek | The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST)[END_REF][START_REF] Karp | The Pathway Tools Pathway Prediction Algorithm[END_REF][START_REF] Notebaart | Accelerating the reconstruction of genome-scale metabolic networks[END_REF] and algorithms have been developed to help generate a draft which can then be manually curated to better describe the cellular network.

Automated genome-scale draft reconstruction tools use an annotated genome of the organism of interest to mine biochemical databases (or reactions pools) in order to identify a set of reactions associated with the enzymes encoded in the genome. Some of these tools also predict the cellular localization of the enzymes in order to develop multicompartment models. This subset of chemical reactions along with their gene-protein-reaction relationship forms the draft of the metabolic reconstruction [START_REF] Palsson | Systems Biology Constraint-based Reconstruction and Analysis[END_REF]. Some automated genome-scale metabolic reconstruction tools such as the SEED server is even capable of annotating the genome of interest and have proved to be quite efficient with prokaryotic reconstructions [START_REF] Overbeek | A protocol for generating a high-quality genome-scale metabolic reconstruction[END_REF]. All automated draft reconstruction tools have their own reaction pools from which reactions are selected for the draft. PathoLogic, the automated draft reconstruction tool employed in Pathway Tools, for instance uses the MetaCyc database as its pool [START_REF] Karp | The Pathway Tools Pathway Prediction Algorithm[END_REF]. The AUTOGRAPH pipeline is well known for implementing the use of a user-defined manually curated metabolic model as the reaction pool for generating the initial draft [START_REF] Notebaart | Accelerating the reconstruction of genome-scale metabolic networks[END_REF]. More details on these tools will be discussed further later on in this write-up.

Most draft reconstruction tools and servers use non-organism specific reaction pools to enable their application on diverse species. These drafts are hence prone to false positive One of the major issues that affect the understanding and reusability of existing metabolic models is the lack of a single identifier system for metabolites and reactions. This leads modellers to generate their own identifiers or borrow identifiers from popular biochemical databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG) [83], Biochemical To identify essential genes, single and double gene deletions were simulated by forcing zero flux through reaction/s associated with particular gene/s. The effect of the deletion on the growth of the organism was then categorised as lethal (0% growth), growth-reducing (between 0 and 90% growth) and no effect (greater than 90% growth). Lethal double gene deletions were further classified as either trivial or non-trivial. A total of 69 lethal single gene deletions were identified, while 19,285 and 56 trivial and non-trivial double gene deletions were identified, respectively [START_REF] Chavali | Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major[END_REF]. Furthermore, using the sequences of the enzymes involved in the predicted set of essential reactions, inhibitors (e.g. antipsychotics and antibiotics) were identified from existing drug databases and were tested experimentally for target validation [112].

b) Trypanosoma cruzi

The iSR215 is a metabolic network reconstruction of 

Methods to analyze constraint based models

With the recent rise in popularity of constraint-based models, a huge number of approaches matrix represent the reactions while rows represent the metabolites. The number of metabolites produced or consumed in a given reaction is represented in the matrix as a positive or negative number, respectively. The stoichiometry of metabolites in each reaction provides a constraint onto the resulting network.

Consider a network of m metabolites and n reactions for which the S-matrix, a sparse matrix of size 'm × n' is S. If v is a vector of fluxes f 1 ,f 2 ,…,f n for the n reaction i.e. then when assuming steady state S.v = 0

In addition to the stoichiometry based constraints, each reaction is assigned a flux boundary (i.e., upper and lower bounds) which represent the permissible fluxes for the said reaction.

These constraints therefore define the allowable rates at which metabolites are produced or consumed within the system [74].

If f i is the flux through reaction i in the network, then fiMIN ≤ fi ≤ fiMAX where fiMIN and fiMAX is the lower and upper bounds of flux through the reaction i respectively.

Following the creation of the S-matrix and the assignment of flux boundaries for the reactions, an objective function is selected based on the study. A reaction representing the said function (e.g., production of biomass components from precursors [START_REF] Feist | The biomass objective function[END_REF]) is included into the matrix. Biomass reactions, for example, are either based on experimentally obtained data [71][74] or from data obtained from closely related organisms [START_REF] Chavali | Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major[END_REF]115].

Consider the metabolic model described in Figure 9 comprising of metabolites A-F and 

f1MIN ≤ f ≤ f MAX f2MIN ≤ f ≤ f MAX f3MIN ≤ f3 ≤ f3MAX f4MIN ≤ f4 ≤ f4MAX
Using these equations the solution space of the model can be defined as shown in figure 10.

Linear optimization

Any point inside the solution space defined by the constraints is a solution for the model i.e.

even with the defined solution space, one can have a very large number of solutions. The most common analysis of the FBA solution space is the linear optimization analysis based on the objective function of the model. The set of linear equations representing the model, generated from the S-matrix, and the objective function are used to build a linear programming problem which is then solved for maximum or minimum value of the objective function. The Simplex method developed by the American mathematician George Bernard Danztig is perfect for the analysis. This method explores the vertices of solution space until it finds the maximum/minimum value of the objective function.

To illustrate this method, consider a simple maximization problem for the objective function,

Z = 2X1 + 3X2 0 ≤ X1 ≤ 5 0 ≤ X2 ≤ 6
Find max(Z).

The solution space and the basic idea of how the Simplex algorithm works is shown in Figure 11. The algorithm begins by selecting an initial starting point and then exploring the edge of the solution space until the objective function is maximized.

The initial starting point at the beginning of the algorithm plays a role in how many steps are required to reach the optimum objective value. Moreover the algorithm can use multiple paths to explore the solution space and different paths may very well end up at different optimal solutions. This simplex algorithm can also get stuck at a local maxima and miss the global maxima of the objective function in the solution space. Various approaches such as multi-start analysis (which consists of the search of the optimal solution while starting at Moving along the Y-axis, the value of Z at the next vertex will be 10 while moving along the X-axis, the value of Z at the next vertex will be 18 and so since both Z is greater than 0 and Z along X-axis is greater than Y-axis. We move along X-axis (Z =18) (d) Similarly move along the edge of the solution space to the next vertex where Z =28 (as 28 > 18). The algorithm stops here as at the next vertex is Z = 10 and 10 ≯ 28

Z = = f 2
Hence max(Z) = max(f 2 ) and so the points in the solution space with the highest value of f 2 would be optimal solution for the model. Figure 12 shows the LP optimized solution of the example metabolic model discussed in the previous section.

LP optimization in FBA hence can be used to predict the state of the metabolism favoured by the organism and can help simulate living organisms. Metabolism supporting maximal biomass accumulation [START_REF] Chavali | Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major[END_REF], maximal or minimal secretion of relevant by-products [117], maximization of ATP production [118] has been widely studied using FBA LP optimization. 

Flux Variability Analysis

Single and multiple deletion studies

Gene and reaction deletion studies are popular techniques used to assess the susceptibility of metabolic networks to perturbations in itself and the environment. Single gene deletion involves forcing a zero flux through all reactions in which the gene of interest is critical. The effects of this perturbation are then studied. Gene deletion studies can be used to identify genes essential for the model. In gene pair deletion studies, each gene pair is simultaneously "knocked-out" and its effects on the model is observed. This study helps in the prediction of double KO mutant behaviours.

Single reaction deletion study involves forcing a zero flux through a reaction and analyzing its effect on the rest of the network. This study helps in the identification of critical reaction and essential nutrients. Similar to double gene deletion studies, double reaction studies are performed to identify pair of reactions which when knocked out has significant repercussions.

Phenotypic phase plane analysis

Phenotypic phase plane (PhPP) analysis is a technique used to study the behaviour of the model when two metabolic fluxes are varied. It is very frequently used to study nutrient uptake rates and their effects on the objective function. The analysis involves the use of metabolite "shadow prices" which are calculated when solving linear equations during LP optimization. Shadow price (γ) for metabolite refers to the sensitivity of the objective function to the availability of the metabolite [120]. Regions with the identical shadow prices for the metabolites associated with the two reactions are identified in a 2D plot of their fluxes. These regions are called demarcate regions (see Figure 13). The demarcate region in the PhPP associated with the value of flux producing metabolites of interest that does not support steady state is called "infeasible region" of the PhPP (see Figure 13).

The ratio of the two shadow prices is used to calculate the relative sensitivity of the objective function to the two metabolites. If γ A and γ B are the shadow prices of A and B when their production rates (or uptake rates in the case of nutrient uptake) are represented along the x and y axis in the PhPP plot respectively, this ratio can be represented as γ A / γ B . A γ A / γ B > 0 suggests that the objective function is dependent on the availability of both metabolite A and B. These demarcate region are called regions with dual substrate limitation (see Figure 10). However, a γ A / γ B < 0 suggests that although the objective function is still dependent on the availability of both metabolite A and B, one of them is deterrent to the objective function (see Figure 10). Another important result of the PhPP analysis is the line of optimality. The line of optimality is defined as "the line representing the optimal relation between the two metabolic fluxes corresponding to the axis of the PhPP" [121]. This line can be calculated by setting a fixed value for the flux producing one of the two metabolites and then using LP optimization of the objective as a function of the flux producing the other metabolite in the PhPP which can be then used to find the line of optimality (see Figure 13). Lastly, high homology to the binding pockets of important human enzymes makes the protein in the pathogen an unlikely drug target, owing to an increased likelihood of sideeffects [START_REF] Navid | Applications of system-level models of metabolism for analysis of bacterial physiology and identification of new drug targets[END_REF].

Enzymes that are essential for the survival of a pathogen can be identified using flux balance analysis by simulating individual gene or reaction knockouts and observing their effect on the objective function. In this case, it is important to accurately define the specific geneprotein-reaction association [132]. It is crucial that targets identified are involved in primary metabolic pathways, rather than in secondary metabolism that are often non-essential to the growth of organism. Additionally, the objective function can be adjusted to represent the production of the minimum component requirements of an organism. This may result in an accurate prediction of the essentiality of certain reactions or genes [START_REF] Feist | The biomass objective function[END_REF]. Genes that encode isozymes may be considered non-essential since the organism is capable of producing another enzyme with a similar function. On the other hand, a gene that contributes to a protein complex that is essential to an organism is considered essential [START_REF] Navid | Applications of system-level models of metabolism for analysis of bacterial physiology and identification of new drug targets[END_REF].

Potentially, double gene knockouts can be targeted by a drug combination that can slow down, if not prevent the development of drug resistance. In addition, the use of drug combinations may have synergistic effects. In vitro testing has demonstrated that some drug combinations exhibited greater inhibitory effect when compared to the sum of the effect of individual drugs when given separately. Yet little is known of the flux restrictions that produce the synergy [112].

Apart from focusing on enzymes in a metabolic network, a metabolite-centred approach can be applied towards identifying potential drug targets. Metabolic choke points, or reactions that solely produce or consume one or a few metabolites, are presumed to be essential if an inhibition at this point will result in the deprivation of an essential by-product or the accumulation of a possibly toxic metabolite [115]. Molecules similar to the metabolites involved in choke point reactions (i.e. single reaction connected to a number of important reactions or pathways) may be used as a competitive inhibitor for the given reaction and may be able to target more than one enzyme [133].

Drug repositioning or repurposing involves the use of a currently available drug in addressing a different disease pathology. Repurposing of drugs that have been approved for another purpose benefits from the fact that these drugs have already been tested on humans and thus toxicity and adverse effect information are already available [START_REF] Chavali | A metabolic network approach for the identification and prioritization of antimicrobial drug targets[END_REF][START_REF] Folger | Predicting selective drug targets in cancer through metabolic networks[END_REF]. This shortens the time frame for drug development and reduces the developmental costs [134]. Available resources, such as the DrugBank, provide an extensive database of drugs and their corresponding drug targets [135]. A number of studies have utilised the DrugBank to identify potential drugs that can target essential proteins to inhibit the growth of pathogenic organisms and cancer cells [START_REF] Chavali | A metabolic network approach for the identification and prioritization of antimicrobial drug targets[END_REF][START_REF] Folger | Predicting selective drug targets in cancer through metabolic networks[END_REF]136].

In a study by Chavali et al. [112], data on identified essential genes obtained from a previously developed L. major model were used to screen FDA-approved drugs that can potentially be used as anti-leishmanials. The protein sequences of L. major genes included in the metabolic network reconstruction were aligned against the sequences of drug targets in the DrugBank and STITCH databases. Inclusion and exclusion criteria such as FDA approval status, druggability and drug toxicity were also incorporated in the drug screening. As a result, 15 genes representing potential drug targets for a total of 240 FDA-approved drugs were identified. Protein sequences of eight genes involved in non-trivial deletions were also identified as potential drug targets for a total of 37 FDA-approved drugs. Among the combined list of potential drugs targeting essential genes (single genes or gene pairs), nine have been reported in literature to have anti-leishmanial activity, while 71 have been shown

to have activity against L. major in previous high-throughput in vitro drug screenings. It is important to note that through this screening, halofantrine, an anti-malarial drug, has been identified and tested in vitro to have anti-leishmanial activity at concentrations of 3 microM and higher. Furthermore, drug combinations with disulfiram, a drug used to treat chronic alcoholism, and antibiotics/antipsychotics have also been demonstrated to show antileishmanial activity in vitro. These drug combinations have also produced significantly greater inhibition when compared with the sum of the inhibitory effects of the individual drugs. The PathoLogic [START_REF] Karp | The Pathway Tools Pathway Prediction Algorithm[END_REF][137] tool uses an annotated genome to query the MetaCyc [108], a database of metabolic pathways collected from more than 2400 species curated with experimental data, and builds an initial draft of the metabolic model from the search hits.

This step is the initial stage in genome based reconstruction when using pathway tools.

The Pathway tools Pathway/Genome navigator [137] helps in querying and visualizing the PGDB model. This includes the cellular overview of all pathways, pathway frame, reaction frame, enzyme/protein frame, metabolite frame and transcription factor frames, etc.

Annotator information is also made available through the pathway/genome navigator through the curator frames, affiliation frames and citation frames. The genome browser which can be used to visualize a particular gene in the genome is also a part of the Pathway/Genome navigator. The frames are also linked to one another which helps the user smoothly move to a frame mentioned in a particular frame, very much similar to hyperlinked text in a webpage (analogous to a frame) of a website (analogous to the PGDB). The Pathway/Genome navigator also allows hyperlinking to external servers which can prove very useful during annotation when providing link to public databases such as the PDB and the KEGG Databases. The Pathway/Genome navigators also support HTML text formatting which can help in customizing the annotation text displayed such as representing information in tables.

The Pathway/Genome editor [137] is the editor where information such as common name, synonyms, summary, citation and other information regarding a particular frame can be entered or altered. In the case of pathways, there exist a pathway editor and a pathway information editor. The former determines the reactions in a pathway and the hierarchy of the constituent reactions while the latter is used to add / edit / delete the information displayed on the pathway frames.

The Pathway tools MetaFlux [START_REF] Latendresse | Construction and completion of flux balance models from pathway databases[END_REF] is the built in flux balance analysis (FBA) tool. Missing reactions in PGDBs can be predicted using the Gap filler. Using flux balance analysis, simulations such as gene silencing or knockouts can be studied in order to determine lethal genes and potential drug targets.

ii. The SEED server

The SEED server [START_REF] Overbeek | A protocol for generating a high-quality genome-scale metabolic reconstruction[END_REF] is another important resource in genome-scale reconstruction. The ModelSEED component of this server implements an efficient pipeline which can be used to generate good quality metabolic model drafts of prokaryotes. The genome of interest is first annotated using the RAST server [START_REF] Overbeek | The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST)[END_REF] to generate a preliminary model draft. The pipeline then generates a biomass equation for the draft and performs an autocompletion step so that the model is capable of producing the biomass components. This model can then be functions to evaluate model correctness during import, error detection may not be as good compared with other applications. One example of such an issue is that if a reaction in the input file contains an undeclared metabolite, the function instead of returning an error message, proceeds to add the reaction to the cobra model object without the undeclared metabolite leading to an incorrect and unbalanced reaction. However, the COBRA Toolbox provides a number of advanced features that are not present in most FBA applications/software as shown in Table 1 . Finally, it is important to note that the COBRA Toolbox is well maintained and it is constantly being improved using methods and programs contributed by active community members [145] ii. OptFlux

OptFlux is a free software application that uses GLPK software for linear programming and LibSBML to read and handle metabolic models in SBML format, though other formats can also be loaded (e.g. Metatool or flat files). FBA simulations can be performed alongside adjustments in environmental conditions. The software also uses the BioVisualizer plug-in to visualise pathways and networks in the form of nodes and edges. OptFlux has a user-friendly Graphical User Interface with a menu bar that is easy to navigate. Similar to the COBRA Toolbox, OptFlux can also perform Flux Variability Analysis and Minimization of Metabolic Adjustment (MOMA) [146].

iii. Acorn

Acorn is a web-based application with a desktop-based graphical editor that has been designed to handle large genome-scale metabolic model. Users are required to install Acorn and set-up an account in order to utilise the application. Models in SBML format can be imported into the application for analysis. Flux balance analysis as well as flux variability analysis can be conducted with objective parameters and nutritional conditions set by the user. Essential genes and reactions can also be identified by the software. Pathways can be visualised using the desktop editor showing the corresponding flux values calculated for each reaction. Selected models and results of perturbations can also be shared using the application [147].

A summary of the various popular FBA Tools is presented in Table 3 d) Tools for visualization and analysis of genome-scale metabolic networks i. Cytoscape

Cytoscape [148] is an open source software project developed to analyze biological networks and integrate it with biological data. Although it was initially developed for biological networks, Cytoscape has found it application with non biological network. Among other features Cytoscape offers a completely customizable visualization feature and many powerful automated layout algorithms for biological network. Node and edge visualization attributes such as colour, opacity, size, label text, etc can be set to a particular value or as a function of an attribute of the node or edge respectively. However, the main strength of Cytoscape is that it allows users to develop their own plugins (in Cytoscape 2x) and apps (in Cytoscape 3x) to add their own features and analyses. The Cytoscape app store available at http://apps.cytoscape.org/ also allows users to share their apps with other Cytoscape users.

ii. MetExplore

MetExplore [149] is a web server developed to study experimental data in the context of metabolic networks. It contains more than 250 publicly available metabolic models.

MetExplore supports mapping of metabolites using standard identifiers such as InChI and molecular mass. Users registered on MetExplore can import their own metabolic networks into the server, visualise, curate and share them. Analysis of metabolic pathways using methods such as subnetwork extraction based on experimental data through MetExplore, which does not rely on pre-drawn pathways, contributes to a better understanding of the changes in the metabolism of an organism.

Popular databases useful in genome-scale metabolic reconstruction

Table 4 presents the comparison of the information presented in the databases commonly used in Genome-scale metabolic reconstruction. 

ii. TriTrypDB

The EuPathDB [151] collection of databases provides sequence information along with related protein information and experimental data on Eukaryotic pathogens. Users are also allowed to submit comments on genes/proteins improving the value of these data. 

EuPathDB maintains well curated databases for

c) Biochemical databases i. Kyoto Encyclopedia of Genes and Genomes (KEGG)

Biochemical information in databases provides an excellent resource on the metabolic capabilities of an organism. One of the most popular biochemical database is the Kyoto Encyclopedia of Genes and Genomes (KEGG) [83]. The KEGG database collects information on genes, enzymes, metabolites, biochemical reactions and biological pathways among many other types of information. KEGG also has a popular web service, allowing other tools and databases to quickly mine them for information. As of April 2014, the KEGG web service was reported to have 400-500 thousand unique users per month. KEGG pathway maps are also frequently used by many to map omics data sets. These maps are generated by merging all known biological pathways and are well maintained. (34). BioCyc is hence a very rich biochemical resource providing easy to browse metabolic models.

ii. MetaCyc

MetaCyc

ii. Biochemical Genetic and Genomic Database

The Biochemical Genetic and Genomic (BiGG) database [107] is another database of 78 manually curated published genome-scale metabolic models. These models provide a good source of biochemical information for specific organisms and also provides cross links to other databases.

iii. BioModels

BioModels is one of the most popular model databases for both metabolic and non- An important feature of BioModels is that it allows users to query not just the model components but even the annotation and metadata provided in the model, making it a very important resource. The overall objective of this project is to establish a system for the transmission of up-todate findings on T. brucei metabolism to the scientific community through the TrypanoCyc database and to arm computational systems biologists with a manually curate genome-scale metabolic model to study the parasite metabolism, with the hope that these resources will help in better understanding of T. brucei metabolism and the subsequent development of better anti-trypanosomiasis treatment therapies. Both projects were carried out in parallel in order to capitalize on the curation efforts made on the TrypanoCyc database by the annotation team in the curation of the metabolic model. Incorrect or missing metabolic information identified during manual curation of the genome-scale metabolic model was also used to update the TrypanoCyc database after validation from the experts in the annotation team. Figure 14 describes the overall design of the project. 

BiGG ✓ ✓ [107] BioModels ✓ ✓ [109] BRENDA ✓ ✓ ✓ ✓ [155] ExPASy ✓ [156] ExploreEnz ✓ [157] ChEBI ✓ ✓ [153] ChemSpider ✓ [154] EuPathDB / TriTrypDB ✓ ✓ ✓ ✓ ✓ ✓ [151, 152] GeneDB ✓ ✓ ✓ [150] KEGG ✓ ✓ ✓ ✓ ✓ ✓ [83] MetaCyc ✓ ✓ ✓ ✓ ✓ [108] UniProtKB ✓ ✓ ✓ [158]

RESULTS AND DISCUSSION

Note to the reader

In order to provide a simple and clear description of the results from this project, they have been divided into two categories based on the objectives of the project discussed earlier. In the first section, results related to the TrypanoCyc database and the annotation project will be discussed. The second section will be dedicated to results associated with the development of the manually curated genome-scale metabolic model of T.brucei and the study of the parasite metabolism using constraint-based modelling. Each section involves a journal article (one published, one currently in preparation) and additional results and discussions to describe the results obtained after the publication and those that were deemed to be out of the scope of the articles.

2A.1 ARTICLE 1

The TrypanoCyc database is a Pathway/Genome Database (PGDB) with a curation team involving experts studying the various aspects of T. brucei metabolism As mentioned earlier, this section involves a copy of the published article, which discusses the information, functionalities and services available on TrypanoCyc.

Article impact

As of January 1st 2016, the article has been cited 3 times and 670 PDF versions of it has been downloaded from the NAR website. Of the 4,681,163 publications tracked by Altmetrics, the TrypanoCyc paper has been ranked #452,846; including it among the top 10% of all research outputs ever tracked by Altmetrics.

Additional statistics on the paper can be found at http://tinyurl.com/jrm5gbh or through NAR website.

ABSTRACT

The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about the enzymes that are active in particular cells under particular conditions and as technologies advance to allow detailed measurements of the cellu-lar metabolome. Metabolic network databases are of increasing importance in allowing us to contextualise data sets emerging from transcriptomic, proteomic and metabolomic experiments. Here we present a dynamic database, TrypanoCyc (http: //www.metexplore.fr/trypanocyc/), which describes the generic and condition-specific metabolic network of Trypanosoma brucei, a parasitic protozoan responsible for human and animal African trypanosomiasis. In addition to enabling navigation through the

INTRODUCTION

Trypanosoma brucei is the causative agent of African trypanosomiasis (commonly known as sleeping sickness in humans and Nagana in animals). The disease is fatal if untreated in humans (1) and the economic impact of trypanosomes on agriculture in Africa is immense. The drugs available for the trypanosomiases are inadequate for a number of reasons and better therapeutic options are required (2). Many drugs work through interfering with enzymes involved in cellular metabolism. The only anti-trypanosomal drug whose target is known is eflornithine, an inhibitor of ornithine decarboxylase (3), a key enzyme in the polyamine biosynthetic pathway. A comprehensive understanding of parasite metabolism therefore contributes to current efforts in drug discovery and understanding drug resistance (4). Global untargeted molecular profiling data sets (e.g. trancriptomics, proteomics and metabolomics data) are now being generated for trypanosomes and the effects of life cycle, environmental perturbation, specific genetic manipulation and drug action are being dissected in a systematic manner (5). Interpreting and integrating these data to allow biological inference and hypothesis generation is a major challenge. Metabolic network-based methods offer a means to contextualise and integrate data to help inference of biological function (6). Reliable, comprehensive databases collating information on metabolic networks and pathways are therefore crucial to optimize understanding derived from postgenomic data sets. Metabolic databases such as Leish-Cyc (7) (for Leishmania), and the Library of Apicomplexan Metabolic Pathways (8) (for apicomplexan parasites) are among the few examples where this information is available in parasitology.

Creation of a metabolic network database is achieved by gathering information on all of the metabolic transformations an organism can perform (9). A first outline of this information is generally retrieved from genomic orthology. Genes coding for enzymes are identified through sequence similarity searches and then, using enzyme activity information, metabolic reactions catalyzed by these enzymes are added to the network database. Several automatic and semiautomatic tools are available to perform these genomebased metabolic network reconstructions (10)(11)(12)(13).

In spite of their undoubted utility, genome-based reconstruction has limitations since it is based primarily on sequence homology comparisons between the organism of interest and databases encompassing information from a multitude of organisms (14). Incorrect annotations readily propagate across databases (15). Moreover, evolution works through modification of function following alteration of genes encoding proteins. For instance, trypanosomes use N 1 ,N 8 bis-glutathionyl spermidine (trypanothione) (16) as a key cellular redox-associated metabolite. Trypanothione is retained in its reduced form by the enzyme trypanothione reductase (EC 1.8.1.12). This enzyme is evolutionar-ily derived from glutathione reductase (EC 1.8.1.7), with which it shows great homology. In the absence of accompanying biochemical evidence, genome annotations would simply predict trypanosomes as possessing a glutathione reductase, and metabolic reconstructions would assume trypanosomes employ canonical glutathione-based redox balancing. Cases like this highlight the necessity of refining genome-based metabolic reconstructions by incorporating advanced biochemical knowledge (15).

Moreover, simple genome reconstructions do not take into account the sub-cellular localization of the enzymes (although various methods are now being developed to tackle this issue as canonical signals determining cellular localization come to light ( 17)). Finally, the genome provides a view of the total metabolic capability of an organism, regardless of environmental and genetic conditions. In trypanosomes, however, different metabolic strategies are used at different points in the life cycle. In the tsetse fly, the trypanosome's main carbon source is proline (18) while in the human-host it is glucose (19). Some reactions are active in one condition but not in another. This information is particularly important when looking for potential drug targets.

Web servers such as KEGG (20) and BioCyc ( 14) represent metabolism as a set of pathways, reflecting classical textbook views of biochemistry. However, the pathway approach fragments metabolism in ways which constrain our ability to decipher the broader impact on the metabolic network; hence, methods that also enable connected network views of metabolism are desirable. We have therefore combined building a pathway-based TrypanoCyc database with its integration into the MetExplore web server (21), to offer both pathway and network-based inference and visualization.

A HIGHLY CURATED DATABASE OF T. BRUCEI METABOLISM

The T. brucei TREU 927 genome is 26 Mb in size, with a karyotype of 11 megabase chromosomes (22) and containing a predicted 9068 protein-coding genes. In a collaborative project between the International Trypanotolerance Centre in The Gambia and the Sanger Institute, the genome sequence was processed using the Pathologic metabolic network reconstruction tool of Pathway Tools (23), creating a Pathway/Genome Database (PGDB) where gaps (called 'pathway holes') in the predicted metabolic pathways were filled by hypothetical reactions, even without an obvious gene association. The result of this first automatic reconstruction was the starting point of the current TrypanoCyc database.

An international consortium of investigators, expert in various aspects of trypanosome metabolism, was assembled to produce a highly annotated TrypanoCyc database. As recommended by Thiele & Palsson (24) we started the Try-panoCyc initiative in 2012 with a two-day 'jamboree'. Each expert was offered a specific set of pathway(s) in his/her area of expertise to curate. A dedicated web interface, called TrypAnnot (a password protected part of the website available to annotators, not described here) stores submitted annotations in a curation database, making it possible to track all annotations, which are automatically taken from the database and added to the web page of the corresponding reaction. The TrypanoCyc project has so far had 1368 editing events, among which are 653 annotations made on 464 reactions. Furthermore, since the first automated reconstruction in 2008, 17 pathways, 35 enzymatic-reactions, 10 transport reactions, 41 enzymes, 2 protein complexes and 104 metabolites have been added to TrypanoCyc. Extended summaries for some pathways have also been made available in the database.

T. brucei cells contain multiple membrane-bounded organelles, including the mitochondrion and an unusual peroxisome-related organelle, the glycosome (25,26), in which the first seven steps of glycolysis occur, as well as a series of other pathways (19). Annotators, therefore, specify the sub-cellular localization of reactions, if known, in the annotation interface. Life cycle stage specificity for each reaction is also important, since trypanosomes use different metabolic pathways in different environments; hence annotators can specify one or more developmental stages in which reactions occur. Note that this information is not available in the reconstruction provided by KEGG (see Ta-ble 1 for comparison). The level of knowledge on each reaction varies from experimentally verified to indirect evidence of activity regardless of manual curation. To reflect the level of confidence of the annotation we have used the scoring system proposed by Thiele & Palsson (9) (see Table 2). For instance, of the 464 annotated reactions, 84 were annotated based on direct evidence from protein purification, biochemical assays or comparative gene expression studies and hence can be considered with the highest confidence. During curation we found numerous falsely predicted reactions and pathways; 60 pathways, 14 enzymatic reactions, 20 enzymes and 56 metabolites have been removed from the original reconstruction. Nevertheless we retained some reactions if they are known to occur in related trypanosomatids, or else when they have been proposed to exist, erroneously, in the literature. Although such reactions are kept, they are not linked to any pathway and they are assigned a negative confidence score to highlight the fact that according to our present knowledge they are not actually present. For example, a methionine cycle that regenerates methionine from methylthioadenosine resulting from polyamine biosynthe- sis has been proposed (27). However, metabolic labelling experiments have subsequently indicated that the pathway is not active in trypanosomes, at least in the conditions used (28). The reactions EC 4.2.1.109 (methylthioribulose 1-phosphate dehydratase) and EC 3.1.3.77 (5-(methylthio)-2,3-dioxopentyl-phosphate phosphohydrolase), required to complete the pathway, are included in the database, but assigned negative scores to highlight that they are undetectable in spite of previous predictions in the literature (27). We consider it useful to keep such entries such that users of the database can find explicit reference to these reactions they might seek upon reading literature pertaining to these reactions.

Since metabolic databases focus mainly on pathways and seldom consider sub-cellular compartments, they usually lack information on intracellular transport reactions. Currently, TrypanoCyc contains only 35 such reactions. This is because we did not incorporate transport reactions into our annotation platform and because experimental knowledge on intracellular transport processes is still sparse. However, the dynamic nature of TrypanoCyc means additional anno-tation and incorporation of measured and probable transport reactions (e.g. taken from existing manually curated metabolic models of the closely related organism Leishmania major (29)) will form part of the iterative process of database refinement. We also perform gap filling in each compartment using graph approaches and testing metabolic scenarios as suggested (9,10) and successfully implemented for other organisms (30).

Many additional databases provide information that can complement metabolic network databases. Linking to these other data sources enhances our ability to learn about an organism's metabolism. TrypanoCyc, therefore, links to multiple databases including BRENDA (31,32), expasy.org (33), ExplorEnz (34), Pubmed and UniProt (35). The Trit-rypDB database (36) is the central resource for trypanosomatid genomes and associated functional genomics data, while GeneDB houses the sequence information gathered and annotated through the Wellcome Trust Sanger Institute (37) The BioCyc library is a collection of 3563 PGDBs. Based on the quality of the PGDBs and the level of manual curation, this central repository classifies them into Tier 1 (highly curated), Tier 2 (moderately curated) and Tier 3 (non-curated) categories. Prior to the release of BioCyc v18.1, only 6 PGDBs (EcoCyc (38), MetaCyc (14), Human-Cyc (39), AraCyc (40), YeastCyc and LeishCyc (7)) were published in the Tier 1 category. Due to the quality of information being made available on TrypanoCyc, it was included in BioCyc's Tier 1 category with the release of Bio-Cyc v18.1 in June 2014.

REACTIONS, PATHWAYS AND NETWORK MINING

Browsing TrypanoCyc content and expert annotations

As a Pathway Tools-based website, TrypanoCyc provides a dedicated web page for each metabolic network entity (pathways, reactions, metabolites, enzymes, proteins and genes). The reaction page architecture was, however, modified in order to allow additional annotation information. These include the annotation confidence score (Figure 1d), stage specificity and compartmentation with links to key literature (Figure 1e). A comment box is also included, containing detailed free-text information on the reaction. Fig- Search requests on database content can be made through a quick search box found at the top right-hand corner of the interface page, as well as through the advanced search options available from the menu bar. Each pathway representation is available with different levels of detail, the simplest view displaying only the reactions and metabolites while the detailed view displays all available information including the molecular structure of all metabolites involved. Additionally, for every pathway in TrypanoCyc, we provide a link to visualize the pathway in MetExplore.

Mining stage specific metabolism using cellular overview

To exemplify the integration of molecular profiling data in the TrypanoCyc database we used published results from a Stable Isotope Labelling of Amino acids in Cell culture experiment, comparing protein levels in bloodstream form (BSF) and procyclic form (PCF) trypanosomes (41). The data set contains 3552 gene IDs along with their relative protein levels in the two tested stages of T. brucei (expressed as log PCF/BSF values). A TrypanoCyc cellular overview shows enzymes that differ in abundance between the two life cycle forms (Figure 2; for step by step instructions see Supplementary Data S1).

Mapping other molecular profiling data in TrypanoCyc can be achieved using the Pathway Tools Omics Viewer (42), which displays all pathways in a single representation. Data sets can be loaded using the options listed on the right-hand side of the page (Supplementary Material S2 is a version of this data set in an Omics Viewer-compliant format). Figure 2a shows an image of the overview after loading the proteomics data of (41). Individual reactions can be viewed by moving the mouse over them and clicking the link in the pop-up dialog box. This opens the related reaction page containing the annotation table, giving access to specific TrypanoCyc annotators' comments about the enzyme and its activity as well as the generic information pertaining to that reaction in the MetaCyc database. For example, the overlaid data clearly show that the respiratory chain is upregulated in procyclic stages. Browsing the reaction page of any of those up-regulated proteins shows additional information from the annotators. For example, for ubiquinonecytochrome C reductase (EC 1.10.2.2), two TrypanoCyc annotators report that this reaction is active in the PCF but not in the long slender BSF of T. brucei (see Figure 2b), thus agreeing with the observations from the proteomics experiment.

Using MetExplore to create user-defined sub-networks from TrypanoCyc

To complement the classical pathway-oriented BioCyc representation of data, we also offer a novel way to visualize the content of TrypanoCyc via our MetExplore web server (21) (for step by step instructions see Supplementary Data S3). Each pathway page contains a hyperlink (Figure 3a), that opens MetExplore with the selected pathway (Figure 3b). Importantly, the MetExplore viewer takes into account the localization of reactions. For example, Figure 3b shows how the glycolytic pathway is divided into two compartments (glycosome and cytosol represented by green and red boxes, respectively).

Another advantage of MetExplore is that it provides a tabular representation of compartments, pathways, reactions, enzymes, genes and metabolites in the database. It is also possible to filter these tables by compartments, pathways or reactions. For instance, by filtering simultaneously on the pentose phosphate pathway, TCA cycle, succinate shunt and glycolysis, only reactions and metabolites related to these pathways are displayed in their respective tables (Figure 3c). The user can also add reactions of interest to a 'cart' (red box on Figure 3d). It is then possible to visualize the content of this cart in the network representation. From Figure 3d, it is evident that the network perspective is much more effective in representing compartments and transport reactions. Furthermore, the glycosome (green box) and cytosol (red box) are demonstrably connected by a reaction involved in the succinate shunt (marked by a red arrow on Figure 3d). For a more flexible representation MetExplore also offers a downloadable version of the Cytoscape visualization software (43), pre-loaded with the cart content.

Finally, each MetExplore reaction/pathway with a description in TrypanoCyc has been hyperlinked to the corresponding reaction/pathway pages, allowing the user to go back to the expert annotations anytime (Figure 3e).

CONCLUSION

Since 2012, TrypanoCyc has been under extensive curation with the help of the scientific community and is now counted among the seven Tier 1 databases within the Bio-Cyc repository. Collaborative annotations help in improving the quality of the database by reducing errors, reducing the workload for individual annotators and also providing inferences from multiple perspectives given the various types of experts in the community.

T. brucei metabolic plasticity allows the parasite to adapt to divergent nutritional environments offered by different hosts. For drug target identification, for example, focusing on enzymes and metabolic pathways expressed in the parasite-stages that are replicative in the mammalian host is critical. TrypanoCyc is the first comprehensive metabolic network database for parasites including stage specificity as a key component of the collected data. LeishCyc (7), for the related parasite L. major, has also been established, and in the future these two databases should, ideally, be linked, given the significant degree of similarity in the metabolic networks of these evolutionarily related parasites.

TrypanoCyc and the related annotation database allow anyone with an interest to join the annotation team. The size of the consortium helps guarantee the sustainability of TrypanoCyc as does the involvement of permanent staff both at INRA, Toulouse, and the University of Glasgow. The Toulouse bioinformatics facility provides the Try-panoCyc server. TrypanoCyc is freely available and is not password protected.

TrypanoCyc database content can be mined in a pathway-oriented manner using the BioCyc-like web interface but also in a network perspective using the MetExplore web server, which allows tailored building and visualization of sub-networks. Two options are available to programmatically access TrypanoCyc: through pathway tools using Java-Cyc or PerlCyc and through MetExplore using its web service.

TrypanoCyc is a unique knowledge source for people investigating T. brucei metabolism. The availability of SBML (44) files (provided as Supplementary Material S4) based on the curated network reconstruction in TrypanoCyc will underpin efforts to explore trypanosome metabolism using flux balance analysis (45) or other constraints-based techniques. It will also serve as a potential model organism for early eukaryotes.

2A.2 ADDITIONAL RESULTS

Note to the reader

In this section we shall discuss additional results related to the TrypanoCyc database. These results/functionalities were not presented in the publication either because they were obtained after the publication or because they were decided to be out of the scope of the publication.

2A.2.1 The TrypanoCyc update report

In order to keep track of changes made to the database, an update report is maintained on the TrypanoCyc server with information regarding the BioCyc ID of the object subjected to modifications, type of change(s), the date the change was made, the annotator responsible for validating the change and information on whether the changes were made manually or as a part of automated script. The report is a normal tab separated file with columns titled Date, Tocken_name, changes and comment. The column date holds the information regarding the date the change was committed to the database in DD/MM/YY format. The "Tocken_name" column holds the ID of the database element (metabolite, reaction, pathway , compartment or annotator) in TrypanoCyc. The "changes" column is used to describe the change to the database element briefly. The "comment" column states the reason for the change, mentions the annotator(s) involved and provides publication associated with the new information if one is available. Entries in this section were tagged with the string '(manual)' if the changes were made manually. Figure 15 In some cases, bulk changes to the database were made using scripts written with the help of the JavaCyc library (e.g. to add updated T. brucei gene identifiers or to move multiple reactions from one compartment to another). In order to register these modifications on the TrypanoCyc update report, java classes 'ReportElement' and 'GenerateUpdateReports' were created. These classes can be used to create a new report with the new entries or append an existing report with the new entries.

Access to the TrypanoCyc update report was provided to the users of the TrypanoCyc website. An HTML table of the TrypanoCyc update report (ordered such that recent entries appear earlier) is first generated and an SHTML page with the TrypanoCyc template incorporating this HTML table is generated. Script involved in generating the TrypanoCyc update history SHTML page is scheduled to run during the daily TrypanoCyc update and ensures the information available is up-to-date. The TrypanoCyc update history page is available online and can be accessed from the top menu bar (Analysis > Reports > History of updates) or via the web link http://vm-TrypanoCyc.toulouse.inra.fr/TrypanoCyc_log.shtml (see Figure 16). 

2A.2.3 Adding LeishCyc to TrypanoCyc

The LeishCyc PGDB for Leishmania major was published in 2012 and was initially available at www.leishcyc.org. However the LeishCyc website is currently offline. Given the close evolutionary relationship between L. major and T. brucei and the similarity in their 

2A.3 ADDITIONAL DISCUSSION

The release of the T. brucei genome [82] Although pathway tools employ many icons to represent different types of evidence, in TrypanoCyc, in order to keep it simple and easy to interpret we have used only two icons to represent whether the pathway has been curated or not (Figure 21a). However feedback from TrypanoCyc users including members of the annotation team, led to the conclusion that the information was not understood. With the help of the TrypanoCyc tutorial, which is invoked at least once for every user, this icon is highlighted and its purpose is explained (Figure 21b). Hence we can assume that that the information conveyed by the icon system is no longer missed by the user. In this manner, the TrypanoCyc tutorial helps to make sure the users are aware of the information on the TrypanoCyc pathway and reaction pages. From the TrypanoCyc usage data collected via Google analytics, it is evident that the database has been accessed from at least 107 countries by more than 4000 users. From the TrypanoCyc usage statistics (Figure 18), it interesting to see that TrypanoCyc usage increased gradually since January 2015 when the database was published (see Result 1 Article). In July 2015 the database usage almost reached almost a 1000 sessions. Interestingly there was a decrease in TrypanoCyc usage from August to October which coincides with Summer and Autumn holidays. Although the database usage needs to be monitored for a longer period to make strong conclusions, the usage trends recorded so far and the fact that 76.6% of the users of TrypanoCyc are returning visitors (Figure 20b) seems to suggest that database has been useful to the community. In most websites the bounce-rate is considered a negative statistic. However, in TrypanoCyc since all data related to the reaction/pathway are provided in the same page, users looking for annotations such as stage-specific behaviour, etc do not need to browse further unless they would like to explore other metabolic elements. Hence the high bounce rate is not a bad statistic in the case of TrypanoCyc. have annotations from experts. In the case of pathways, only 24 of the 163 pathways are annotated and even fewer has T. brucei specific summaries. However given the continuous nature of this project, the database will continuously gather more and more information.

The community also aims to grow and involve more and more researchers in the annotation as time goes on. And because of this we expect the current drawbacks of TrypanoCyc will diminish in time.

2B. RESULTS AND DISCUSSIONS 2: GENOME-SCALE METABOLIC MODEL

Introduction

Trypanosoma brucei is the causative agent of the potentially lethal disease African Trypanosomiasis, also known 'sleeping sickness' in humans and 'nagana' in animals. This protozoan parasite is transmitted through the Glossina fly, also known as Tsetse fly, during blood meals and have been reported only in the sub-Saharan regions of Africa. More than 7000 cases of Human African Trypanosomiasis (HAT) were reported in 2010 alone [1]. The current treatment regimes available for HAT are expensive, inefficient and had been reported to have severe side effects [2], [3]. There is hence a great deal of interest in the scientific community to study the metabolism of T. brucei in order to identify a more efficient treatment.

The life cycle of the T. brucei parasite has mainly two stagesthe insect stage and the mammalian host stage. The parasite displays very different metabolism in the two very different host environments [4], [5]. The blood-stream-form (BSF) parasites in mammalian hosts rely on the blood and cerebrospinal fluid for nutrients while the procyclic form (PRO) of the parasite in the insect host survives on nutrients from the insect gut and by-products of tsetse-fly endosymbiotes to survive [6].

Understanding the metabolism is the key to developing new and effective treatment regimes. Many databases such as TrypanoCyc [7], TriTrypDB [8] and GeneDB [9] collect knowledge on T. brucei metabolism in order to make this information freely available to the public. The TrypanoCyc Pathway/Genome Database (www.metexplore.fr/trypanocyc) is a publicly available knowledge base on T. brucei metabolism [10] built using the pathway tools software [11]. The TrypanoCyc database is curated and annotated by a team of 36 experts from different areas of trypanosomatid metabolism and has been under constant curation since 2012.

The development of computational and mathematical approaches in systems biology has made the study of metabolism from a whole cell perspective possible [12], [13]. Such study involves the development of a genome-scale metabolic network with aims to represent all the metabolic capabilities of the cell in question, followed by the analysis of the model using constraint based modelling [14] and comparison of the results of this analysis with experimental data in order better understand the parasite metabolism [15]. In this paper, we would like to introduce iSS1077, the first manually curated genomescale metabolic reconstruction of Trypanosoma brucei 927 strain. We will also discuss the use of the genome-scale model versus life cycle stage specific models (e.g. blood-stream-form model) by comparing their ability to predict the essentiality of genes during specific life cycles stages of the parasite . Construction of the stage specific models was achieved by using either experimental data or the expert manual annotations available from the TrypanoCyc database with the integrative Metabolic Analysis Tool (iMAT) [16].

Materials and Methods

Building the genome-scale metabolic model

Developing a genome-scale metabolic model involves three major steps (i) producing an initial draft reconstruction (ii) manual curation and (iii) validation with experimentally observed results [15]. The last two steps are iteratively repeated in order to train the model to describe the observed metabolic processes better [15].

a) Automated metabolic draft reconstruction

The TrypanoCyc database is a community annotated metabolic database specific to T. brucei [7]. In addition to gene-protein-reaction (GPR) associations, the database contains annotations and comments on the cellular localization of the enzymes and the cell cycle stage(s) they have been reported to be active in. The TrypanoCyc-based model in the Systems Biology Markup Language (SBML) format was generated using Pathway Tools [11]. This model was further processed by replacing generic metabolites in the model such as NADH-P-OR-NOP with specific metabolites such as NADH and NADPH. Additional data available on TrypanoCyc such as confidence scores and annotations from experts were also added to the model.

Although, the TrypanoCyc-based model inherits the curated metabolic information available in TrypanoCyc such as metabolic reactions, thermodynamic constraints, GPRrelationships, cellular localization, confidence scores, stage specific activity of enzymes, etc; it lacks many model elements such as transport reactions, exchange reactions and biomass equation required to perform flux balance analysis (FBA), a mathematical approach used to compute the flow of metabolites in a metabolic network at steady state [17].

In order to generate this missing information, we took advantage of the previous efforts in modelling trypanosomatid metabolism, more specifically, the manually curated iAC560 genome-scale metabolic model [18] of the closely related species Leishmania major. Applying the AUTOGRAPH pipeline [19] to Leishmania major and T. brucei genomes, we were able to create a T. brucei model based on information contained in iAC560 model. The AUTOGRAPH pipeline involves the identification of all pairs of orthologous genes in the two closely related species and then uses the Gene-protein-reaction (GPR) relationship information in the existing manually curated models of one of these organisms to develop an initial metabolic draft of the other. A modified in-house Inparanoid [20] stand alone package was used to identify orthologous genes between the translated coding sequences (CDS) of T. brucei and L.major, which were available from the TritrypDB database. This orthologous genes information was then used to extract the associated reactions from the iAC560 model to generate an iAC560-based-T. brucei-model.

The iAC560-based-T.brucei-model and the

TrypanoCyc-based model were then merged to develop a partially curated draft (see Figure 1).

Since the TrypanoCyc database uses MetaCyc [21] identifiers for metabolites and the iAC560-based model uses BiGG [22] identifiers, the models derived from them inherited their respective metabolite and reaction identifiers (IDs). The MetaCyc IDs in the TrypanoCyc-based model were converted to BiGG IDs in order to facilitate merging of the two models. An attribute called the sbmlmerge-index was used to track the origin of every reaction in the merged model. An sbmlmerge-index of 3 meant the reaction was imported from the TrypanoCyc-based model while an sbml-merge-index of 2 meant the reaction was originally present in the iAC560based-T.brucei-model (the sbml-merge-index of 1 was reserved for hypothetical reactions added during manual curation). When a reaction was identified to be present in both the draft models, it was assigned an sbml merge score of 5 (3 + 2).

a) Manual curation, simulation and validation loop

Manual curation is the most time consuming step in developing genome-scale metabolic networks and is only limited by time or available biological information [15]. All properties of the elements in the model such as GPR relationships, intracellular localization of reactions, reaction reversibility, etc were closely inspected and validated. Manual curation was followed by model simulations and the validation of these simulation results by comparing them to experimental data. In case of discrepancies between simulation results and experimental data, the model was further curated and the process was repeated.

One of the most important manual curation steps involves the curation of the biomass equation. A biomass equation is a pseudo chemical reaction used in genome-scale metabolic reconstructions to represent the consumption of metabolites towards biomass [23]. It is usually comprised of amino acids (for protein building), lipids (for cellular composition, signalling, etc), carbohydrates (for energy storage), polyamines (for dealing with osmotic stress, etc), deoxyribonucleotides (for DNA), ribonucleotides (for RNA) and ATP (to represent energy required for growth) [15]. Biomass equations are organism-specific and hence the iAC560 biomass equation had to be modified to better represent T. brucei biomass. Mannan is the main carbohydrate found in L.major [24] but it is not found in T. brucei and hence had to be replaced with glucose since no storage sugar has been identified in T. brucei so far. Lipid composition of T. brucei was obtained from published literature [5] and trypanothione was also added to the biomass since it was deemed to be essential in the parasite cell [25].

The model was also curated based on information regarding enzyme activity,

The model was also curated based on information regarding enzyme activity, enzyme localization, validated pathways, reported transport mechanisms and T. brucei responses in various RNAi and medium perturbations studies, inferred from published articles (supplemental data 4), Database annotations and personal communication with biologists actively studying the T. brucei metabolism.

During the course of the manual curation and model validation cycle, in addition to the biomass, the initial metabolic model underwent 139 additions, 637 deletions and 129 modifications. Hypothetical reactions such as transport and exchange reactions lacking definite proof were tracked by assigning an sbml-merge-index with a value of 1. The final curated T. brucei metabolic model has 1077 genes and was hence named iSS1077 based on the naming convention introduced by Reed et al in 2003 [26]. Figure 1 provides an overview of the genome-scale metabolic reconstruction pipeline.

Flux Balance Analysis

Flux balance analysis (FBA) is a mathematical approach used to study the flow of metabolites in a metabolic network at steady state. FBA is performed by converting the metabolic model into a set of linear equations and then solving them for the optimal value of the objective function under a set of specified linear constraints [17].

Changes in concentration of metabolites in a model over time can be represented by the product of its stoichiometry matrix (S) and a vector of the flux through all the reactions (v). When a model is at steady state, the change in concentration of metabolites is equal to 0.

=> S.v = 0

This assumption generates a set of m linear equations with r variables where m and r are the number of metabolites and reactions in the model. A set of upper bounds and lower bounds for the reaction fluxes is used to constrain the solution space obtained when solving the linear equations.

=> LB i ≤ f i ≤ UB i
, where f i is the flux through ith reaction in the model and LB i and UB i are the upper and lower limits for f i These bounds can be derived from reaction capacity or thermodynamic (directionality) information. Biologically meaningful solutions in this solution space are then identified by optimizing an objective function. => optimal solution, Z = max(v T .c) or min(v T .c)

,where v T is the transpose of vector of fluxes v and c is the vector of the coefficients of reactions in objective function

The objective function represents the cellular objectives of the cell. In the case of T. brucei, as typically assumed, biomass accumulation was proposed as the objective of cellular metabolism and hence the biomass equation was set as the objective function.

=>

optimal solution, Z = max(f biomass )

Linear programming optimization was then performed to identify a state of the model at which biomass production is maximized. The result of this optimization is a flux distribution, providing flux values for all the network reactions when biomass production is maximized. FBA problems are very likely to have more than one optimal solution and hence more than one optimal flux distribution.

Analyses such as Flux variability analysis (FVA) are used to explore these alternate solutions. FBA analyses on the iSS1077 were performed using the COBRApy package [27].

Flux Variability Analysis

Flux variability analysis (FVA) is a technique that uses FBA analyses to calculate the maximum and minimum possible fluxes through a reaction when the objective function is constrained to an optimal or suboptimal value [28]. In this study, FVA analyses were used to identify reactions in the metabolic network that are incapable of carrying any flux (i.e the maximum and minimum flux through these reactions are 0) when biomass production was optimized. One of the objectives of manual curation is to minimize these blocked reactions and hence FVA helps to identify parts of the model that require curation.

Another application of FVA is to help identifying parts of the metabolic network that require curation to 'unblock' a blocked reaction. This was achieved by temporarily adding, for each metabolite in the model, a reversible exchange reaction that transports the metabolite from/to the model, one metabolite per iteration and performing FVA analysis on the blocked reaction of interest in each case. The list of metabolites for which the exchange reactions allowed a flux through the previously blocked reaction of interest then helps identifyparts of the metabolism that may require curation to "unblock" the blocked reaction.

Gene and reaction deletion studies

Gene and reaction deletion studies are used to simulate the metabolic behaviour of the parasites when a particular gene is silenced or a reaction is controlled. The knock out (KO) of a single gene is simulated by enforcing a zero flux through all reactions for which the associated protein is essential for catalysis. Genes for which the simulated KO results in a zero flux through the biomass equation are predicted to be essential for T. brucei growth according to the metabolic model and are called essential genes (or lethal genes) [29].

Similarly, a reaction deletion is simulated by forcing a zero flux through the particular reaction and observing its effect on the model.

Single gene deletion studies for all 1077 genes in the iSS1077 model were performed in order to predict their essentiality in T. brucei metabolism. Double gene deletion studies were similarly performed by knocking out in silico pairs of genes that have been identified as not essential from single gene deletion studies and observing their effects on biomass production. Gene pairs for which the deletion results in a zero biomass flux are identified as lethal-genepairs or essential-gene-pairs.

In the case of single reaction deletion studies, the effects of temporarily forcing a zero flux through all 1689 reactions, one reaction at a time, on the flux through the biomass equation is observed. As in gene deletion studies, a zero biomass flux in reaction deletion simulations suggests that the reaction "deleted" is essential in T. brucei according to the metabolic model. Similar to double gene deletions, double reaction deletion studies involved by forcing a zero flux through all pairs of reactions that have been identified as not essential from single reaction deletions. Reaction pairs where the "deletion" results in a zero biomass flux are identified as essential reaction-pairs. These analyses for the iSS1077 were also performed using the COBRApy package.

Internal validation of the metabolic model

Internal validation of the model was performed in order to confirm that the model respects the law of conservation of mass, one of the basic constraints in constraint-based modelling [14]. This test involves blocking all exchange reactions in the model and adding a temporary drain (an exchange reaction to transport the metabolite from the model to the extracellulart space) for a metabolite in the model. This drain is then set as the objective for the simulation and FBA analysis is performed. If the model is able to sustain a flux through this drain, it infers that the model is producing the particular metabolite from nothing.. For example in the case of ATP in the cytoplasm, once the flux through all exchange reactions in the model are blocked, a reaction draining cytoplasmic ATP was created and set as the objective for linear optimization. A non zero solution of the optimization suggests that cytoplasmic ATP is being generated in the model without any nutrients being required by the model. This situation is a clear violation of the law of conservation of mass, one of the basic principles of chemistry. This test was performed for every metabolite in the model.

External validation of the metabolic model

External validation of the metabolic model was performed by simulating single gene and reaction deletion studies for all the genes and reactions in the model and validating the predicted gene and reaction essentiality with published RNAi/KO and essential nutrients results. The number of positives and negatives prediction results gives an insight into the prediction accuracy of the model.

Evaluating the need for stage-specific model

RNAi and KO results reported in 27 published studies (see Table 1) were used to generate a list of 68 gene deletions scenarios for which lethality (if the deletion of the gene is lethal to the model or not) is known in Blood stream forms (BSF), Procyclic forms (PRO) or in both the life-cycle stages. In silico gene deletion studies were used to evaluate the iSS1077's prediction accuracy in these deletion scenarios. Attention was also focussed on how well the model performs when simulating only the deletion scenarios for which a common response (lethal or not lethal) was observed in both BSF and PRO.

Preprocessing experimental data and TrypanoCyc comments

Two comparative SILAC proteomics datasets from Urbaniak et al [30], Gunasekaran et al [31] and one ribosomal profiling dataset from Vasquez et al [32] were collected to develop BSF models. The datasets were separately processed to generate four gene activity files where genes were given a score of 1, 0 and -1 based on whether the gene was associated with a highly expressed protein, a protein for which expression data is unclear or a protein with lower expression based on the data. In the case of the two comparative proteomics datasets, a protein expressed higher in the blood-stream Analysis Tool (iMAT) algorithm proposed by Shlomi et al [16] uses gene expression data and Mixed Integer Linear Programming (MILP) optimization to generate a contextspecific model from a global genome-scale model. Reaction activity input files based on BSF data are used by the algorithm to tag reactions as highly expressed and lowly expressed reactions. It then creates an MILP problem to maximize the instances of a flux greater than a minimum threshold through the highly expressed reaction and the instances of a flux lower than the threshold through the lowly expressed reactions. The MILP problem can be described as

+ - + => max(∑(y i + y i ) + ∑(y j ))
where i ϵ the set of highly expressed reactions R H , j ϵ the set of lowly expressed reactions R L , y + is a Boolean variable that takes a value 1 i only when the flux through the reaction is greater than the threshold in the forward form compared to the procyclic form was direction, y i is the Boolean variable that takes given a score of 1 while others were given a score of 0. In the case of the ribosomal profiling data, proteins associated with translational efficiencies greater than 1 , between 1 and -1 and lower than -1 were given scores 1, 0 and -1 respectively. Each gene activity file was then used to generate a reaction activity file where reactions were assigned a score of 1, 0 and -1 based on their GPR relationships.

The TrypanoCyc database houses expert annotations on the stage specific T. brucei reaction activity. Like the other datasets discussed earlier, reactions reported to be active and not active in BSF stages were given a score of 1 and -1 respectively. Other reactions were given a score of 0. These five reaction activity files for BSF generated from three experimental datasets and the TrypanoCyc annotations were then used for developing BSF models using the iMAT algorithm [16].

Developing Blood stream form models using iMAT

T. brucei parasites display different metabolic capabilities during the different stages of their life-cylce. Hence all reactions in the iSS1077 may not be active in all developmental stages of the parasite. The integrative Metabolic a value 1 only when the flux through the reaction is greater than the threshold in the reverse direction and y j + is the Boolean variable that takes a value 1 only when the flux of through the reaction is lower than the threshold (irrespective of the direction).

A BSF model was built by removing reactions of the genome-scale metabolic model that carries a zero flux in the iMAT solution. This BSF model will hence be a sub-model of the initial iSS1077 model encompassing only the specific metabolic capacities of the BSF form T. brucei.

Results

Genome scale metabolic reconstruction

The genome-scale metabolic model for T.brucei was built using the pipeline described in Figure 1. The TrypanoCyc-based model consisted of 1246 reactions, 1408 metabolites and 861 genes. This primary model lacks a biomass equation and many intracellular transport and exchange reactions. This additional information was gathered in a secondary T. brucei model based on information contained in the Leishmania iAC560 model. More precisely, ortholog groups between L.major and T. brucei were used to generate the iAC560-based T. brucei model as described by the AUTOGRAPH pipeline [19]. 5324 ortholog groups between L.major and T. brucei were identified using the Inparanoid tool [33]. The resulting model consisted of 968 reactions, 1099 metabolites and 393 genes. The TrypanoCyc-based model and the iAC560 based model were then merged to generate a semi-curated metabolic model of T. brucei with 2195 reactions, 2006 metabolites and 1095 genes. This model was then subjected to manual curation and the final manually curated version of the model named iSS1077 has 8 compartments, 1689 reactions, 1677 metabolites and 1077 genes.

General properties of the genome-scale metabolic model

The iSS1077 model contains Gene-proteinreaction (GPR) relationships for 1077 genes. This accounts for 10. The number of reactions with and without gene-association in the model are found to be 911(54%) and 778(46%) respectively. Of the reactions without gene association 129 are related to exchange of nutrients with the extracellular space, 307 are intracellular transport reactions, 12 reactions are related to source and sink reactions required for simulations and the remaining 330 reactions (27.7 % of total reactions) are involved in chemical transformations. The breakdown of iSS1077 reactions based on the type of reaction, EC number and intracellular localization are summarized in Figure 2.

In silico gene KO and reaction deletion studies 43 genes were identified as lethal/essential genes through single gene deletion analysis. In silico double gene deletion studies involving only the non-lethal genes identified by the previous single gene deletion study predicted 22 lethal gene pairs. The genes in these genepairs were predicted to be not essential individually but a knock-out of both the genes results in a zero flux through the biomass equation.

Single reaction deletion analysis was also performed in order to identify the essential reactions in the metabolic network. 99 essential reactions were identified from this analysis of which only 9 reactions and the biomass equation were not catalyzed by a T. brucei gene. Double reaction deletion studies of the remaining reactions revealed 319 essential reactions pairs including two exchange reaction-pairs.

Internal and external validation of the genome-scale metabolic model

Internal validation of the metabolic model was performed to confirm that the metabolic model does not violate the law of conservation of mass (see method section). The accuracy of single gene and reaction deletion results provides an insight into the quality of the metabolic model. Results of RNAi or KO experiments from published studies were compared to the predicted essential genes to determine the accuracy of the in silico gene deletion studies. 26 of the 43 lethal genes have already been validated as essential in various studies (see supplementary data 1). Of the remaining 17 predicted essential genes, 11 have been associated with experimentally validated essential pathways such as the Kennedy pathway [5],

[34]- [36], isoprenoid biosynthesis [37].

Of the 99 essential reactions, 14 are exchange reactions used to maintain fluxes and 17 are intracellular transport reactions. 36 of the 69 remaining reactions have already been experimentally validated to be essential while 19 reactions are associated with essential pathways ubiquinol biosynthesis [38] and Kennedy pathway. Three of predicted essential reactions have been identified as not essential based the literature (see supplementary data 3).

Essential reaction studies also revealed exchange reactions which were essential for biomass built up. Of the 14 essential exchange reactions, 10 are reactions associated with the the uptake of amino acids L-lysine, L-valine, L-tryptophan, L-isoleucine, L-histidine, Lleucine, L-tyrosine, L-phenylalanine and Lcysteine and have already been proposed as essential nutrients for T. brucei survival [39]. Uptake of L-ornithine was also predicted as essential from the analysis, which is in agreement with the fact that T.brucei does not have a functional arginase and other pathway for ornithine biosynthesis is not known in brucei [40]. Double reactions deletion studies reveales two pairs of essential exchange reaction pairs. The throenine-homoserine uptake reaction pair suggests either homoserine or threonine is required by the model. This is in accordance with what has been reported in published literature [6] where it was found that T. brucei procyclics are capable of converting homoserine to threonine while blood-stream forms need threonine directly from the host.

Evaluating the need for stage specific models

In order to determine if there is a need for refining the genome-scale model to stage specific criteria, we collected validated gene essentiality data from 27 published studies (see references in Table 1) to evaluate the quality of the iSS1077 model. Information was gathered on 68 gene deletion scenarios associated with the metabolism across the two major life cycle stages of the T. brucei parasite, namely, the procyclic (insect stage) form (PRO) and the blood stream form (BSF). Of the 68 gene deletion scenarios, 35 were reported to be lethal in BSF, 7 were lethal in PRO, 4 were non-lethal in BSF, 8 were non-lethal in both BSF and PRO, 13 were lethal in both the BSF and PRO forms and in 1 case lethal effects where observed in BSF but not in PRO (Table 1). The essentiality of these genes in the T. brucei genome-scale model was tested by using FBA. Genes involved in 8 of the reported gene deletion scenarios were found to be absent from the model. For the remaining 62 genes, the essentiality of the genes predicted from the model was in only 55% agreement with the reported essentiality. It was observed that most of the false negative predictions (25 out of 32) were observed for genes essential in either BSF or PRO stages. When the model was used to predict the essentiality of only the genes reported to be essential or not in both BSF and PRO stages, the model performed much better with a prediction accuracy of 75%. Hence the genome-scale model was able to predict the properties of the metabolism common to all forms of the parasite with reasonable accuracy. However the results emphasize that there is a need for building stage-specific models when studying the stage-specific parasite metabolism. Table 1 compares the predictions of essentiality of genes with information published from previous studies.

Building Blood stream form models

BSF models were generated from three published experimental datasets [30]- [32] (see methods) and based on the annotations stored in the TrypanoCyc database using the iMAT algorithm [16]. Results from the external validation of the four BSF models are shown in Table 2. We can see that the predictions from the BSF models built using Urbaniak et al, Gunasekaran et al, and Vasquez et al, were 74%, 70% and 74% in accordance with published information respectively. The BSF model built from TrypanoCyc annotator comments was found to be more in accordance with the data (75%) than the other models.

Discussion

In this paper, we present the first manually curated genome-scale metabolic network reconstruction of the protozoan parasite Trypanosoma brucei, responsible for Human African Trypanosomiasis. Apart from normal eukaryotic features, T. brucei possesses additional features such as glycosomes, a kinetoplast, flagellum and a GPI-linked protective coat composed of variable surface glycoprotein (VSG) in blood stream forms [41] and procyclins in the procyclic form [42]. Glycosomes are peroxisome-like membrane bounded organelles and are known to house enzymes responsible for essential metabolic pathways such as glycolysis, gluconeogenesis [43], mevalonate pathway [44] and isoprenoid biosynthesis [44], [37], [45]. Glycosomal enzymes are most commonly identified by the presence of peroxisomal targeting signals (PTS1 at the C-terminal or PTS-2 at the Nterminal) [46]. The presence of proteins without PTSs in the glycosomes identified from glycosomal proteome extracts also support other theories such as the "piggyback" transport of proteins on proteins with PTSs [47]. 85 reactions have been annotated to be glycosomal in TrypanoCyc and 125 reactions were annotated to be glycosomal based on the iAC560 L.major model. The TriTrypDB [8] and GeneDB [9] databases contain enzyme-localization information and have proven to quite useful during the curation stages and the final iSS1077 model has 84 glycosomal reactions. The T. brucei flagellar activity is important in parasite survival and clearance of immunoglobulim (Ig) bound VSG [48]. Given this importance, the flagellum has been represented in iSS1077 with the flagellar ATPase that generates energy for the flagella based motion [48]. VSG coats are essential for T. brucei survival in mammalian host [41]. Since the VSG is by definition variable, its exact composition cannot be determined. In order to try and overcome this issue, we have used a drain of Glycosylphosphatidyl Inositol (GPI) anchor precursors from the metabolic network to approximate for VSG formation.

The design of the biomass equation is very important in genome-scale-metabolic reconstructions, especially in studies where the biomass build up is considered as the objective of the organism. In this reconstruction we had primarily used the growth function from the iAC560 L.major model which in turn derives a part of its biomass equation from studies on E.coli and other organisms [18]. The composition of this biomass equation was updated using T. brucei data available in published literature. Since biomass composition varies with change in environments and the changes in the coefficient of biomass components is known not to significantly affect the overall biomass yield [49], [50], the iAC560 coefficients for the metabolites were considered sufficient for the reconstruction. From accuracy of the gene and reaction deletion results of the genomescale metabolic model and from the prediction quality of the BSF models, we can see that the biomass equation in iSS1077 is sufficiently designed for qualitative studies such as predicting gene/reaction lethality.

Results of gene essentiality studies on genomescale metabolic networks provide an insight into the vulnerabilities of the cell. These results can also be compared to currently known information to evaluate the quality of the metabolic model. 26 of the 43 predicted essential genes from our study have already been validated. One of the major applications of in silico KO studies is the generation of hypotheses which provide additional direction to search for novel drug targets against T. brucei. The remaining 17 genes are hypothesized as essential genes and should be investigated for their importance in T. brucei metabolism, especially the 11 in silico essential genes associated with essential pathways.

The iSS1077 also has 328 metabolic reactions for which the T. brucei catalyzing enzyme is unknown. However, apart from the biomass equation, only 9 of them were identified to be essential in reaction essentiality studies. 7 of these 9 essential non-catalyzed reactions are involved in Ubiquinone-10 biosynthesis. The remaining 2 are methionine-synthase, a false positive prediction owing to a missing reaction in the model, and alkyl dihydroxyacetonephosphate (DHAP) reductase. Alkyl-DHAP reductase is involved in the synthesis of alkylacylglycerol (AAG) from DHAP. The gene responsible for this reaction has not yet been identified in T. brucei. AAG is required for ether phosphatidyl ethanolamine biosynthesis via the Kennedy Pathway, a known essential pathway in T. brucei [51][5] [34]. Previous studies have pointed out that alkyl-DHAP reductase could be glycosomal [52]. Identification of the enzyme responsible for this reaction could prove helpful in controlling T. brucei growth.

Combining experimental data with genomescale metabolic models is extremely useful in understanding metabolism. The most commonly studied forms of T. brucei are the procyclic forms (PRO) and blood-streamforms (BSF). These forms of the same parasite exhibit many differences in their metabolism. A simple example of this is can be observed in the initial stages of the threonine metabolism. Threonine in T. brucei is used in peptide biosynthesis and as a source for acetyl-CoA, an important precursor in lipid biosynthesis. Figure 4 describes the initial steps in threonine metabolism in T. brucei. Both forms of T. brucei can take up threonine from the medium but only the PRO is capable of using homoserine from the medium. This makes threonine an essential nutrient in BSF. However, when using the iSS1077 model, one cannot predict that threonine uptake is essential unless homoserine uptake is removed from the network. Many such differences in metabolism are present in T. brucei and hence, in order to accurately predict BSF behaviour, the genomescale metabolic model has to be converted to a BSF model when studying BSF behaviour. This also means that when using genome-scale models to understand experimental results one has to convert the generic model to a stage/context specific model before integrating it with the data. We have highlighted this issue in our results by comparing published geneessentiality data with model predictions (see Table 1 and Table 2). The need for context specific models has already been identified in other organisms [16], [53], [54] and many techniques have been implemented in order to develop tissue specific models from genomescale models [22] further cementing our conclusion. As in multicellular organisms, this issue should be more prominent in organisms like trypanosomatids that display very different metabolisms at different developmental stages [4], [5], [55].

Having showed that BSF models developed using iMAT from the TrypanoCyc comments provided better predictions than the ones developed from high-throughput experimental data sets, it seems to be evident that data from experiments targeting specific enzymes and pathways can lead to a much more accurate understanding of metabolism. Although collection of individual annotations/notes on T. brucei metabolism for free access such as the ones available on TrypanoCyc, TriTrypDB, GeneDB, etc can be time-consuming and cumbersome, the end result being a cache of extremely valuable information makes the effort worthwhile.

We have shown that BSF models generated using the iMAT algorithm performed significantly better than the generic genomescale model in predicting BSF behaviour. Nevertheless, these models still show some inaccuracy in gene essentiality predictions. The search for reducing errors in generating BSF models led us to an observation on the underlying assumptions of the iMAT algorithm. Although, the algorithm tries to maximize the number of reactions catalyzed by proteins identified to be expressed from experimental data, it does not however take into consideration that an enzyme being expressed could mean that only one reaction catalyzed by that enzyme is "active" and not all the reactions catalyzed by the enzyme have to be active. Including this criterion into iMAT could help generate better tissue/life-cyclestage specific models.

Genome-scale metabolic models are never perfect and are always limited by the amount of information available on the metabolism. They have to be continuously curated based on information gathered from ongoing research. Two prominent examples of this are the Recon1 [56] and Recon2 [13] reconstructions for H.sapiens and iJE660 [57], iJR904 [26], iAF1260 [58] and iJO1366 [59] reconstructions for E.coli. The iSS1077 model will not be exempted from this paradigm and will have to undergo continuous curation. One potential direction of improvement is working on glycosomal metabolism. One of the interesting facts about glycosomes in T. brucei is that it does not allow the exchange of the popular currency metabolites ATP, ADP, NADP and NADPH among others, with the cytosol [60]. This suggests that a balance in the consumption and production of these metabolites has to be maintained in the glycosome and any disruption to this balance can lead to the failure of glycolysis/gluconeogenesis. Since we did not have enough information to set adequate constraints on fluxes to reproduce the large difference between the fluxes through glycolysis/gluconeogenesis and other reactions of the metabolic network, the model is unable to reproduce the perturbations of the ATP/ADP and NADP/NADPH balance in the glycosome. Another avenue to improve the iSS1077 model would be to curate the coefficient of biomass Both procyclic and bloodstream forms of T.brucei are capable of threonine uptake from the medium. Procyclic forms are also capable of using homoserine from the medium to synthesise threonine with the help of enzyme homoserine kinase (HSK) and threonine synthase (ThrS).

Genome-scale metabolic models are never perfect and are always limited by the amount of information available on the metabolism. They have to be continuously curated based on information gathered from ongoing research. Two prominent examples of this are the Recon1[226] and Recon2 [72] reconstructions for H. sapiens and iJE660[227], iJR904 [61], iAF1260 [228] and iJO1366 [71] reconstructions for E. coli. The iSS1077 model will not be exempted from this paradigm and will have to undergo continuous curation. One potential direction of improvement is working on glycosomal metabolism. One of the interesting facts about glycosomes in T. brucei is that it does not allow the exchange of the popular currency metabolites ATP, ADP, NADP and NADPH among others, with the cytosol [229]. This suggests that a balance in the consumption and production of these metabolites has to be maintained in the glycosome and any disruption to this balance can lead to the failure of glycolysis/gluconeogenesis. Since we did not have enough information to set adequate constraints on fluxes to reproduce the large difference between the fluxes through glycolysis/gluconeogenesis and other reactions of the metabolic network, the model is unable to reproduce the perturbations of the ATP/ADP and NADP/NADPH balance in the glycosome. Another avenue to improve the iSS1077 model would be to curate the coefficient of biomass constituents, which could generate more accurate predictions of quantitative properties of the model ( e.g. the sensitivity of the model growth rate to the availability of model metabolites ). Being the result of the merging of two sbml models using different ID systems, the iSS1077 has metabolite and reaction IDs in both Biocyc and Bigg IDs. To overcome this inconvenience, we have gathered additional information on the metabolites (Inchi/Smiles/Kegg IDs/Chebi IDs). Lastly, because of the lack of information available on intracellular transporters, many intracellular transport reactions in iSS1077 are not associated with transporters and remain hypothetical.

Conclusion

Genome-scale metabolic models have proven to be very useful in interpreting omics datasets and studying metabolism at a cellular level. In this article we have presented the first manually curated genome-scale reconstruction of T. brucei and have discussed the need for context and developmental-stage specific models prior to analysis in order to improve the analysis results.

The lack of an efficient treatment regime and the lethal nature of the disease fuels the study of Human African Trypanosomiasis. Having focussed on the reconstruction in this article we have explored only some of the iSS1077's potential. With recent developments in highthroughput omics technologies, the development of novel techniques such as genome-scale RNAi screening [61] and improvements in their efficiency, huge datasets are available for integration with the metabolic model. The results from this integration should help in a better interpretation of the T. brucei metabolism. 

PSD Phosphatidylserine decarboxylase

Tb927.9.10080 BSF [5] true

INO1 Inositol-3-phosphate synthase

Tb927.10.7110 BSF [5] false

PIS Phosphatidylinositol synthase

Tb927.9.1610 Both [5] true

GPI-PLC GPI phospholipase C

Tb927.2.6000 No (BSF) [5] false SMase Neutral sphingomyelinase Tb927.5.3710

Both [5] false PLA1 Phospholipase A1 Tb927.1.4830 No (both) [5] false LPLA1 Lyso-phospholipase A1 Tb927.9.12700 No (both) [5] false ALG3 Dol-P-Man -1,3mannosyltransferase Tb927. 10.6530 No (BSF) [5] false

GDMPP GDP-Man pyrophosphorylase

Tb927.8.2050 BSF [5] false 
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2B.2 ADDITIONAL RESULTS

Note to the reader

In this section, I will discuss additional methods, algorithms and results which will not be presented in the paper. Some of these results were decided to be out of the scope of the paper. The algorithms presented here need to be further validated on other models and their limitations need to be evaluated carefully.

2B.2.1 Processing the T. brucei metabolic model from TrypanoCyc

The The MetaNetX [173] website provides a flat file, chem_xref.tsv, associating metabolite IDs from all major databases (including BioCyc, BiGG, SEED [START_REF] Overbeek | The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST)[END_REF], KEGG [83], etc) to the corresponding IDs in MNXref namespace (http://metanetx.org/cgibin/mnxget/mnxref/chem_xref.tsv). The MNX_IDs were used to create a dictionary of BioCyc and BiGG metabolite IDs.

From the above approaches 788 metabolite identifiers and 411 reaction identifiers from the TrypanoCyc-based model were standardized to BiGG identifiers.

2B.2.3 Using CTS, KEGG and ChEBI web services to find additional InChI

The 

2B.2.5 Use of manual curation in identifying errors in TrypanoCyc

During the manual curation of the genome-scale metabolic model, inconsistencies of model simulation results with information published in the literature was used to identify erroneous and missing information in the model. Since the TrypanoCyc database was used to develop the genome-scale metabolic model, identification of errors in the metabolic model could be used to identify incorrect or missing information on TrypanoCyc database.

Updates to TrypanoCyc database based on the manual curation of the metabolic model were made only after verification with the TrypanoCyc annotation team. An example of using the metabolic model to update the TrypanoCyc database is described here.

During the manual curation stage, TbALG3 (Tb927.10.6530) was identified as an essential gene from single gene deletion studies. However TbALG3 was reported as not essential in blood stream forms in previously published studies [27]. The TbALG3 gene is known to be involved in protein-N-glycosylation necessary for GPI anchor biosynthesis. Figure 24 is an overview of protein-N-glycosylation. In the endoplasmic reticulum membrane, dolichol with its hydroxyl group facing the cytosol is phosphorylated twice (Figure 24 (3)-( 4)) followed by the transfer of two N-acetyl-glucosaminyl groups (Figure 24 (5)-( 6)). Mannosyl groups are then added to the GlcNAc 2 -PP-Dol (Figure 24 (7)-( 16)). T. brucei is known to be capable of predicted to be essential. However TbALG3 was known not to be essential in T. brucei [27].

Hence TbALG3 gene could not be responsible for the Man 5 GlcNAc 2 -PP-Dol biosynthesis. In 

2B.2.7 Contribution of essential nutrients to biomass

From reaction deletion studies, 14 essential nutrients required for biomass production were identified (see Article 2 Results). In order to understand why these nutrients were predicted to be essential we need to study their contribution to the biomass. This contribution of an essential nutrient can be identified by identifying the metabolite(s) in the biomass equation which are not available when the exchange reaction for the nutrient is blocked. This subset of biomass metabolites can be identified ideally by finding all possible subsets of the The algorithm was written in python using COBRApy and was applied the genome-scale metabolic model in order to identify essential nutrients and to understand why they were essential. 15 essential exchanges were identified; of which 14 reactions represented the influx of metabolites from the medium to the cell and the remaining reaction represents a sink reaction for ubiquinone-9 (flux was forced through the sink in order to create a demand for ubiquinol biosynthesis). Amino acids lysine, valine, tryptophan, isoleucine, histidine, leucine, arginine, phenylalanine from the medium were required for their direct use in protein biosynthesis. Ornithine from the medium was predicted to be required for putrescine, spermidine and trypanothione-disulphide required for the biomass equation. Lcysteine was also found to be required for trypanothione synthesis. The contribution of previous studies [23,186,187]. Choline was required from the medium for sphingomyelin and phosphatidylcholine production which is also in accordance with published data [188].

Long chain alcohols were required for the alkyl dihydroxyacetone phosphate (alkyl DHAP) synthase step of ether-type phosphatidyl ethanolamine synthesis.

One limitation of this algorithm is that it does not factor in the exchange reactions that have been forced to carry flux (as in the case of ubiquinol-9). Because of this, the algorithm was unable to find the contribution of O 2 and tyrosine. This issue was dealt with by temporarily removing the demand reactions and adding the metabolites that were involved from the model into the biomass. On repeating the algorithm, it was capable of finding the contribution of O 2 and tyrosine. O 2 was found to be required for ubiquinol-9 biosynthesis and tyrosine was required for both ubiquinol-9 biosynthetic pathway and as a source of tyrosine required for protein synthesis. Figure 28 illustrates the final results of the algorithm on the genome-scale metabolic model

2B.2.8 Optimizing iMAT BSF models

In the Article 2, we have discussed the development of BSF models of T. brucei using the iMAT[127] algorithm. It was noticed that while iMAT tries to maximize the inclusion of expressed proteins into the active subnetwork, it does not takes into consideration that the protein being expressed does not necessarily mean that all the associated reactions are active. It is quite possible that only some substrates will be available and so only those reactions will take place. Consider "Hexokinase" for example, which can convert both alpha- The idea is to remove reactions from a subnetwork derived from iMAT, if there exists other reactions catalyzed by the same genes, present on a more preferential path (a path with more reactions associated with expressed proteins), unless it blocks the flux through another reactions associated with an expressed protein. This idea can be illustrated with the help of Figure 29. In order to reduce the iMAT network (Figure 29a), the path with the maximum number of reactions with expressed enzymes was identified and is considered as the reference network (Figure 29b). Next each reaction from the iMAT network not present in the reference network is removed unless it is a reaction catalyzed by an expressed gene which does not have another associated reaction in the reference subnetwork or its removal blocks the flux through another reaction of an expressed enzyme. Reaction A is removed as its enzyme is not known to be expressed. C is removed because another reaction with the same gene is present in the reference network (reaction D). H and J are not removed since it will prevent the flux through F, a reaction with an expressed gene that has no associated reaction in the reference network. Figure 29c represents the final optimized iMAT subnetwork.

This algorithm works as follows: 2) were used to compare the predictions of the optimized iMAT models with the original iMAT models (Tables 4567).

From Tables 4 -7 it is evident that the optimized iMAT models show a higher compliance (if not the same), to the data collected from published literature. Interestingly, the optimized iMAT10 model based on the TrypanoCyc comments was noted as showing the highest prediction accuracy among the 12 models with 79.6 percent prediction accuracy. This annotated genome however does not use T. brucei standard gene identifiers which makes comparison of annotated genes and integrating published data very difficult. The SEED server was hence not used in this reconstruction project. Genome-scale models can also be generated via the KEGG [83] web service by compiling all known T. brucei reactions from the KEGG database. This feature has been implemented in many tools like MetExplore The T. brucei iSS1077 model hence was "laid out" manually during manual curation of the various pathways. The addition of flux and hiding blocked reactions on the manual layout provides a much simpler illustration of the FBA solution. Using this visualization, the flow of metabolites can be easily traced from the extracellular, through various pathways into the biomass to inspect the solutions of the FBA analysis when required.

Being parasites, T. brucei have evolved to become auxotrophic to precursors of many metabolic processes (i.e. they are unable to synthesize these compounds). Nutritional requirements for T. brucei had been explored in order to understand the robustness of the parasite metabolism. This information is essential to determine efficient T. brucei culture media [193]. Knowledge of why the nutrients essential for T. brucei growth are essential helps to understand the implications of perturbing nutrient transport and metabolism. The algorithm used in this study to explore the contribution of essential nutrients to the biomass has proven quite useful in understanding this information. However, the algorithm is not exhaustive and could miss some solutions in the case of complicated scenarios. Consider a scenario where an essential nutrient (N) could contribute to the synthesis of 4 metabolites need to be done to evaluate the efficiency of this algorithm and to understand its limitations. This is the reason why this algorithm was not included in Article 2. Nevertheless, the algorithm is capable of returning at least one solution for each essential nutrient and is computationally feasible.

From the study evaluating the need for stage-specific model we concluded that bloodstream-form (BSF) models are required to accurately study BSF parasites (See Article 2

Results). The iMAT algorithm was used to develop BSF models of T. brucei from the genomescale metabolic model. However from our results we can see that there remain some errors in the essentiality predictions (See Article 2 table 2). The algorithm designed to optimize the iMAT results and to overcome the errors caused by the underlying assumptions used by iMAT worked in 7 of the 12 tests (see Ornithine is a precursor in polyamine biosynthesis an essential pathway in the parasite [23]. Recent studies have shown that although the geneproduct is generated [186], it is not catalytically active [50,202] unlike in other trypanosomatids. This meant that the parasite needed ornithine from the medium and a lack Apart from being the more reliable sources of organism-specific information for the public, the fact that these databases provide this information in an organized and parsable form, make them ideal resources for generic databases to collect information from. The generic databases could take advantage of the heavy curation efforts taken up by the annotation teams of the organism-specific databases allowing them to focus more on the addition of bioinformatics analyses and other functionalities that would benefit their entire database.

However, although organism-specific databases provide more updated information on the organism, they lack the impressive array of tools and analyses which are available in generic databases making them a perfect complement to one another.

Redundancy in annotation efforts -a waste of effort or a necessity in science

Currently both TriTrypDB and TrypanoCyc are involved in collecting annotations on T. brucei metabolism. Although TrypanoCyc focuses on reactions and pathways; and TriTrypDB focuses on genes and their products, both the databases collect annotations from experts on enzyme activity. This brings forward the question, 'should both databases combine their efforts to reduce duplication of effort or should they carry on collecting information separately?'. The two approaches have their own advantages and disadvantages. From the perspective of the databases, collecting annotations together involves sharing resources such as data storage and manpower and so it would be favourable. It also simplifies information search for users as they only have to visit one database (since both databases will contain the same expert annotations). It also reduces annotation work for experts as they do not have to submit their annotations twice. However by collecting annotations on T.

brucei metabolism separately, a much more reliable information (similar to using biological replicates in experiments) is available to the public. Collecting annotations independently also increases the number of annotators involved in annotating the metabolism and hence providing more information and perspectives on enzyme activity to the public. As for the experts/annotators, they can submit their annotations to either TrypanoCyc or TriTrypDB as the primary objective is to make the information available to the public. The choice of database to submit their annotations can be determined by comparing how the annotation will be presented to the public. TrypanoCyc presents user annotations relating to known developmental stage specific enzyme activity much better than TriTrypDB and could be the choice for such annotations. On the other hand TriTrypDB is capable of handling experimental data very efficiently and should be the go-to choice for annotators wanting to share their data with the rest of the scientific community.

Another point to discuss with regards to annotations in TriTrypDB and TrypanoCyc is "should the data in the two databases be synchronized". Although synchronization of databases is a smart idea to maximize the information available in a database, it could also lead to transmission of incorrect information across multiple databases. Such incidences have already been observed in biological databases [203]. One approach to deal with this issue is to make sure the user is informed when the information displayed was obtained from another database and to separate it from same information determined locally or from a different source. This approach could also help identify conflicts in annotation from different sources allowing users to determine the reliability of the information more accurately . An example of this approach can be seen in the Gene Ontology (GO) associated with the available. Since the purpose of the 'notes' attribute for SBML elements is to handle information that cannot be provided in the standard format elsewhere, in iSS1077 the "notes" attribute of reactions were used to describe whether a particular reaction was active or not in the various developmental stages (as annotated on TrypanoCyc) in order to successfully convey this information. When studying a particular developmental stage (e.g. procyclic forms), a simple script can be used to look for the developmental stage of interest (ex: PROCYCLIC) and its value (TRUE or FALSE or UNKNOWN) in the reaction notes and remove reactions that have been identified to be absent in the developmental stage of interest. Simple blood stream form (LONG SLENDER) or procyclic insect form (PROCYCLIC) models can hence be developed using these attributes. With the rising popularity of context specific metabolic modelling, it might be worthwhile to set up standards to include multiple simulation conditions for the same model in the SBML file. One manner this could be done would be to add multiple "kinetic law" nodes for the same reaction with an id attribute which can be used to identify the condition which the constraint represents (see Figure 33).

Manual curation -the essentially unending stage of genome-scale metabolic reconstruction

The manual curation stage of genome-scale metabolic reconstruction is a continuous process and involves the validation of all metabolic reactions, their localizations, metabolites, GPR associations and transport reactions (both extracellular and intracellular)

in the model based on experimental observations. This curation, simulation and validation loop stage of genome-scale metabolic reconstruction is only limited by time or the amount of information available. There has always been a steady increase in the interest of T. brucei research (See Figure 34). The release of the can be tweaked to identify biomass metabolites responsible for the failure of the simulation.

By removing these metabolites and adding sink reactions for them (which will be blocked since flux to biomass from these metabolites was also not possible), the algorithm used in this project to identify parts of the model that required curation to unblock a reaction (see Article 2: Methods -FVA) can be used. This approach could potentially increase the efficiency in validating the model by saving time and might prove interesting for other users as well.

The growth medium -a challenge in the simulation of genome-scale metabolic models.

Performing simulations using metabolic models helps to study the metabolism under various conditions and scenarios (ex: a gene knockout or knockin). However an important question when performing simulations is "What medium am I simulating?". CMM [193] culture media have been used to grow T. brucei in in vitro studies. All these culture mediums contain foetal bovine serum (FBS). Since the exact composition of FBS is unknown, the exact composition of the metabolites available in the culture medium cannot be determined. Hence we are unable to constrain the exchange reactions of the model.

Errors because of this issue can be reduced by using information on metabolites consumed or produced during culture of the parasites. Comparison of fresh and spent culture media as performed by Kim et al [177] can be used to identify metabolites having higher and lower metabolite concentration in the spent media, suggesting these metabolites were secreted and consumed by the parasites respectively. Using this information we can constrain some of the many exchange reactions in the model and hence partially set the in silico culture medium including important parameters such as the major carbon source, major secreted FDA approved drugs [112]. In that case the structure of the target enzyme has been Another interesting avenue in the computational modelling of T. brucei metabolism would be to study the metabolic interactions of the procyclic parasites with the Tsetse gut microbiota using a systems biology approach. Procyclic T. brucei has been proposed to depend on homoserine produced by the insect gut microbiota for threonine [223]. Since T.

brucei procyclic forms cannot survive without homoserine (or quorum-sensing acyl homoserine lactones) or threonine in vitro, depletion of these nutrients from the insect gut could cause the T. brucei death. Such metabolic interaction of the parasites and the insect gut microbiota may hence prove as an alternate method in controlling T. brucei growth. A metabolic network of the Tsetse gut microbiota including the procyclic T. brucei can be generated using protocols used in developing reconstructions of metabolic communities

[224] and the iSS1077 model. This metabolic network can then be used to study the effects of perturbations in the gut endosymbiotic metabolism that can effect T. brucei growth. Such studies could lead to the development of faster means to control T. brucei growth since the perturbation used to control the parasite will be made inside the tsetse fly and not the human host. Introduction

Genome-Scale Models

Systems biology is the study of multiple molecular components and of their interactions at the cellular and organism levels. It involves using large datasets from high-throughput measurements, reconstruction of cellular systems, math-❦ ematical modeling, and in silico simulations [1]. The main objective of systems ❦ biology is to provide an understanding of complex biological systems, and to attain this, development of mathematical models is required. These models attempt to closely replicate wet lab experiments with the goal of computationally generating hypotheses that can be experimentally validated at the organism scale (also called genome scale) [2]. Genome sequencing data, gene-protein reaction knowledge, and biochemical and enzymatic data on the metabolism of an organism are combined to create a genome-scale model. This genome-scale model is formatted following a defined and standard structure compatible with various software suites. Computation based on these models then allows calculation of possible phenotypic states of the model organism [3]. Genome-scale models can also be used to predict the function of previously uncharacterized genes and rectify incorrectly annotated genes. Gene deletions and gene over or underexpression strategies are applied to genome-scale models to predict genes and pathways that may be altered for bioengineering the production of therapeutically or industrially important compounds [4]. These models can also be used to predict genes and enzymes that are essential for the survival of an organism. These predicted essential genes and enzymes may be potential drug targets and therefore important in drug discovery and development [5].

Genome sequence and gene annotation data are used to identify specific roles of individual proteins within the system. A metabolic network (i.e., a network of metabolites interconnected via reactions involving the said metabolites) is developed utilizing published data on elucidated protein function and cellular location, enzyme thermodynamics, and reaction stoichiometry. Data from closely Q1 related organisms, for example, orthologous gene data, are sometimes used in the absence of reported information on the organism of interest [6]. Reactions and corresponding metabolites are tabulated into a matrix that accounts for the number of metabolites consumed and produced within the given reactions. Additional constraints on the fluxes through the reactions (often expressed in metabolite amount per dry weight of the parasite per hour with upper and lower boundaries) are incorporated to control the flux values and represent the reversibility or irreversibility of reactions [7].

Constraint-Based Modeling

Constraint-based modeling is an important in silico approach as it takes into account the different biochemical processes (i.e., reactions) and the flow of metabolites (i.e., species) in order to closely represent the metabolic network of an organism without the necessity for individual enzyme kinetics. It models the possible steady states of the metabolic network (metabolite concentrations do not change with time), thus enzyme kinetic parameters (e.g., Michaelis-Menten) that would need to be derived from recombinant expression and biochemical assays for all enzymes are not required. This is an important advantage for genome-scale modeling since these are seldom known for every enzyme encoded in a genome. ❦ Moreover, these enzyme parameters are strongly dependent on environmental ❦ conditions (pH, for instance). Even with the steady-state assumption, too many fluxes will need to be computationally predicted. In order to focus on more relevant flux distributions, specific constraints, often based on experimental data, are entered into the system to represent limits of enzymatic fluxes as well as available metabolites. The steady-state assumption allows the use of linear programming (i.e., a mathematical technique that computes the optimal output of a model whose constraints are given by a set of linear equations) to solve for the maximum or minimum flux values [8]. Finally, the growth of the organism is predicted based on the production of essential components for increasing biomass [3]. This set of constraints in terms of metabolite consumption and biomass component production is the reason why this approach is called constraint-based modeling.

The genome-scale metabolic network is assigned an objective, most often the production of metabolites such as proteins, lipids, nucleic acids, and carbohydrates representing the biomass components that are essential for the survival of the organisms. ATP production can also be assigned as the objective function of the network [9]. The production of these components is then correlated with the growth of the organism in the given system. The flux values for all the reactions in the network are calculated as those values that maximize the objective function. The utilization of biomass components to satisfy the objective function is represented by the drain of these metabolites out of the system. Since in flux balance analysis (FBA), biochemical reactions are assumed to occur rapidly, steady state is achieved instantaneously and hence is assumed in all reactions. Linear programming is used to incorporate the constraints in the model to identify flux values that will result in the maximized production of biomass components at steady state. This process defines FBA. Flux variability analysis (FVA), on the other hand, aims to identify the minimum and maximum flux values on reactions that correspond to similar optimal values for the objective function. This identifies alternate pathways that contribute to achieving the objective function. It also gives an idea of the flexibility of the organism metabolism. For instance, this may help in identifying essential pathways where only small changes in fluxes through reactions are allowed. One of the major drawbacks of this technique is that since it does not take into consideration the reaction kinetics and the initial concentration of each metabolite, it will be unable to predict the concentration of these metabolites over time as in kinetic modeling [3]. There has, however, been a release of algorithms such as dynamic FBA, which tries to address the issue of varying concentration of medium components [10,11].

Constraint-based modeling has been used to predict the cellular response of an organism in different conditions. This allows a more in-depth comprehension of the complex metabolic networks in organisms [12]. As a result, functional annotations for hypothetical proteins and correction of erroneous annotations are possible [7]. By restricting the amount of specific metabolites, changes in ❦ the production of biomass components are noted to predict the growth rate ❦ of the organism [9]. Altering the entry of metabolites into the system can also simulate the presence or absence of specific components in the media, and thus, components that are essential for the growth of the organism can be identified.

Gene knockout can also be simulated in the FBA model in order to identify essential genes. A gene knockout is represented in the model by forcing a zero flux through specific enzymatic reaction/s associated with the gene. Single gene knockouts have been used to pinpoint possible drug targets against pathogenic organisms [7]. Double gene knockouts have also been simulated and outcomes predicted using FBA. There are two types of lethal double-gene knockouts that have been defined in the recent literature [7]. Trivial knockouts are lethal gene pairs where one of the two genes is lethal when deleted individually. On the other hand, nontrivial or synthetic lethal genes are gene pairs that are lethal when inhibited together, but are nonessential when taken singly [7,13]. Cell-scale networks have been utilized in order to identify drug targets in cancer cells [14]. This technique can also be utilized in the development of bacterial strains used for the production of metabolites of nutritional or pharmaceutical interests. Gene knockouts that will redirect the consumption of precursor metabolites to allow the overproduction of metabolites of interest can be identified using FBA [13]. Chavali et al. [7] developed a reconstruction of the Leishmania major metabolic network utilizing published literature and gene/enzyme databases. The network takes into account a total of 560 genes, 1112 reactions, and 1101 metabolites. Stoichiometric equations of metabolic reactions were atom-and charge-balanced, and thermodynamic properties of these equations were also considered. Biomass production was assigned as the overall objective of the metabolic network. Biomass components include amino acids, fatty acids, and DNA. The estimated amount of amino acid per gram of dry weight was computed based on the open reading frames in the genome of the organism, while the DNA component was computed by taking into account the G-C content of L. major DNA. Fatty acid components were based on previously published literature. For the computation of fluxes, subcellular locations of the different reactions were also considered. Linear programming was used to compute the flux distribution for the entire network at maximum biomass production.

To identify essential genes, single-and double-gene deletions were simulated by forcing zero flux through reaction/s associated with particular gene/s. The effect of the deletion on the growth of the organism was then categorized as lethal (0% growth), growth-reducing (between 0% and 90% growth), and no effect (>90% growth). Lethal double-gene deletions were further classified as either trivial or nontrivial. A total of 69 lethal single-gene deletions were identified, while 19 285 ❦ and 56 trivial and nontrivial double-gene deletions were identified, respectively [7]. Furthermore, using the sequences of the enzymes involved in the predicted set of essential reactions, inhibitors (e.g., antipsychotics and antibiotics) were identified from existing drug databases and were tested experimentally for target validation [15].

Plasmodium falciparum

A metabolic network reconstruction of Plasmodium falciparum involving 1001 reactions and 616 metabolites in four distinct intracellular compartments was developed by Plata et al. [16]. The biomass objective function was based on that used in the iND750 yeast metabolic model [17] with the individual compositions modified for Plasmodium. FBA was done and the production of biomass components was used as the objective function of the network. A total of 55 lethal singlegene deletions and 16 nontrivial double-gene deletions were identified using this model. Published materials on metabolic gene knockouts in P. falciparum and Plasmodium berghei were used to validate the results obtained from this model. All 14 published essential and nonessential metabolic gene knockouts were consistent with knockouts identified by FBA. On the other hand, 17 previously published drug inhibition studies coincided with those obtained from the FBA of the metabolic network. Gene expression data from published microarray studies were also incorporated into the FBA model of Plata et al. Gene expression data at different stages (i.e., ring, late trophozoite, and schizont) were used to calculate proportional constraints in relation to the level of gene expression. In order to validate the results, trends in metabolite production, in terms of changes in metabolite concentration (i.e., increase or decrease, as opposed to actual concentrations) from ring to trophozoite and from trophozoite to schizont stages, were compared against experimentally obtained shifts in metabolite concentrations in the media. Calculated shifts in flux values of exchange reactions (i.e., reactions involved in transporting metabolites into or out of the given network) were interpreted as change in metabolite concentration. Thus, a negative or positive shift in flux represents a decrease or increase in concentration, respectively. This comparison revealed consistent results in 46 out of 66 shifts in concentrations of 33 identified metabolites. Moreover, the magnitudes of change in concentration observed in the FBA model correlated significantly with the experimental values [16].

An extensive in silico model of P. falciparum by Huthmacher et al. [18] was developed through the compilation of metabolic networks from a number of databases available online. The authors also integrated the parasite metabolic networks with that of the erythrocyte model. Data were obtained from published literature and online resources to take into account the exchange of metabolites between the host and the intraerythrocytic parasite. In this merged metabolic network, limits in the uptake of metabolites were based on the existing data on the proportions of these metabolites in the plasma, while the parasite is allowed ❦ to consume glucose and hemoglobin from the red blood cells. ❦

Stage-specific gene expression data from five published data sets on P. falciparum and Plasmodium yoelii were used to compute binary variables to represent gene expression, where 1 is assigned to a gene that is expressed, while a value of 0 is assigned to a gene that is not expressed. A reaction related to a gene that is not expressed is forced to have a null flux while a reaction that is expressed is allowed a nonzero flux. In addition, constraints on biomass components important in specific stages were taken into consideration. Similar to the previously presented metabolic networks, Huthmacher et al. simulated gene knockouts by fixing zero flux into individual reactions while maintaining an objective of producing metabolites that are essential to the survival of the parasite at a specific stage. It is important to note that essential metabolites differ between parasite stages since each stage has its own survival objectives (e.g., replication, invasion, etc.). Through this technique, 307 essential reactions were identified, 35 of which were reported in published literature to be essential to parasite growth or survival (out of a list of 57 essential reactions reported in literature). By blocking reactions associated with the same gene product, they were able to identify two more reactions in the list of essential reactions reported in the literature. Finally, in order to identify potential drug targets, sequences of essential parasite proteins were used to screen for human orthologs and those found were excluded, thus resulting in a total of 30 potential drug targets. Additionally, identified drug targets that were not in the list of 57 previously reported essential reactions were scored based on (i) nonhomology of the corresponding gene to human genes, (ii) if the function of the parasite enzyme is targeted in any organism (using the SuperTarget database) [19], and (iii) essentiality of the reaction in all stages of the parasite. The top 30 targets were then presented as essential reactions [18].

Forth [20] developed a malaria metabolic network that focused on 247 reactions representing important high-flux reactions. The reconstruction was built manually and utilized a Cytoscape session for easy visualization and inspection of the network. Metabolite concentrations of 10 carbon compounds that were obtained through proton nuclear magnetic resonance assay of media samples from in vitro P. falciparum 3D7 culture were used as a basis for the FBA constraints. The network objectives were also based on laboratory-measured biomass components (i.e., DNA, RNA, and protein) extracted from P. falciparum culture. The model predicted 117 essential reactions associated with 79 lethal and 19 growth-reducing gene deletions. Only 22 of these identified essential genes were also predicted in the Plata et al. model; however, among the genes predicted to be nonessential, eight were predicted to be essential by the Plata et al. model.

Trypanosoma brucei

The TrypanoCyc Pathway/Genome Database (PGDB) [21] is a communityannotated metabolic database on Trypanosoma brucei metabolism. The initial reconstruction was developed in Pathway Tools using the genome of the T. brucei 927 strain sequenced at the Wellcome Trust Sanger Institute. The draft has since then been curated by a team of 37 experts, each specialized in his/her ❦ area of trypanosome metabolism. The TrypanoCyc PGDB currently has 9 ❦ compartments, 227 pathways, 1008 enzymatic reactions, and 835 metabolites. The unique feature of the TrypanoCyc database is the presence of reaction annotations. These annotations were submitted though the semiautomated TrypAnnot pipeline and includes the localization of enzyme(s) catalyzing the reaction and the life-cycle stage(s) where it is known to be active. Annotators are provided with additional space to submit comments and publications to support their statement. TrypanoCyc also employs a modified version of the confidence scoring system proposed by Thiele and Palsson [22] to represent confidence of each reaction based on the annotations. The TrypanoCyc PGDB can be converted to the more popular SBML (systems biology markup language) format using the Pathway Tools suite. The TrypanoCyc community is also growing and is expected to continue collecting annotations on the Trypanosoma metabolism, continuously improving the quality and accuracy of the TrypanoCyc model. Work on the model generated from this database is currently ongoing.

Trypanosoma cruzi

The iSR215 is a metabolic network reconstruction of Trypanosoma cruzi strain CL Q2 Brenner core metabolism developed by Roberts et al. [23]. In this study, two models were created for T. cruzi. Single reaction knockouts were predicted for each reaction in the full and the epimastigote models. A greater number of lethal reaction knockouts (40 reactions) were observed in the epimastigote model compared with that of the full model (26 reactions). This has been associated with the limitations imposed by the redirection of pathways in the absence of a number of reactions in the epimastigote model. Double reaction knockouts were also simulated in both models. Similarly, the epimastigote model yielded greater number of trivial and nontrivial deletions, 2880 and 183, respectively, as compared with the full model (1872 and 96, respectively). The predicted essential reactions were then compared with published experimental data on the species related to T. cruzi to further validate the results of the metabolic model. In total, 46 out of the 58 published gene targets available were consistent with the results of the metabolic network. All nonlethal ❦ reactions in the published literature were consistent with the results of the net-❦ work [23].

21.2

Genome-Scale Reconstruction

Automated Genome-Scale Metabolic Network Reconstruction

A genome-scale metabolic reconstruction is a representation of a cell as a network of all the metabolic reactions that have been identified to occur within the given cell. As it is time-consuming to manually add every single reaction one after the other, many automated tools [24][25][26] and algorithms have been developed to help generate a draft, which can then be manually curated to better describe the cellular network. Automated genome-scale draft reconstruction tools use an annotated genome of the organism of interest to mine biochemical databases (or reactions pools) in order to identify a set of reactions associated with the enzymes encoded in the genome. Some of these tools also predict the cellular localization of the enzymes in order to develop multicompartment models. This subset of chemical reactions along with their gene-protein reaction relationship forms the draft of the metabolic reconstruction [8]. Some automated genome-scale metabolic reconstruction tools such as the SEED server is even capable of annotating the genome of interest and have proved to be quite efficient with prokaryotic reconstructions [24]. All automated draft reconstruction tools have their own reaction pools from which reactions are selected for the draft. PathoLogic, the automated draft reconstruction tool employed in Pathway Tools, for instance, uses the MetaCyc database as its pool [25]. The AUTOGRAPH pipeline is well known for implementing the use of a user-defined manually curated metabolic model as the reaction pool for generating the initial draft [26]. More details on these tools are discussed further along in this chapter.

Most draft reconstruction tools and servers use nonorganism specific reaction pools to enable their application on diverse species. These drafts are hence prone to false-positive and false-negative hits that result in the draft containing reactions known to be absent in the organism of interest and not containing reactions that are known to be present in the organism of interest, respectively. Organismspecific reactions, which are absent in the reaction pool, are also missed in these automated reconstructions. Many automated genome-scale reconstructions also fail to identify and incorporate transport reactions into the model that are necessary for successful simulation of these models. Manual curation is hence necessary to fix these issues and create a more realistic representation of the genome-scale metabolism of interest. or they are insufficiently characterized to allow them to be reused" [27]. With the increasing importance of metabolic models in research, standard formats were established to improve exchange and reusability. Currently, metabolic models are accepted in the scientific community in the form of standardized machine readable formats such as SBML [28], CellML [29], and BioPax [30]. Additionally, Q5 specific standards were developed to encode systems biology graphics notations (SBGNs [31]) and simulation descriptions (SedML [32]). One of the major issues that affect the understanding and reusability of existing metabolic models is the lack of a single identifier system for metabolites and reactions. This leads modelers to generate their own identifiers or borrow identifiers from popular biochemical databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG) [32], Biochemical Genetic and Genomic (BiGG) [33], and BioCyc [34]. Since genome-scale reconstructions tend to have more than a thousand reactions and metabolites, the use of different systems makes comparison of models or mapping experimental data difficult and time-consuming. As a result, the scientific community stresses on the inclusion of metadata along with the model elements in the form of annotations. Some modelers also provide additional information on model components in the form of InChI, SMILES, EC numbers, and so on. The Minimum Information Required In the Annotation of Models (MIRIAM) guidelines published in 2005 [27] describe an efficient solution to this problem. According to the MIRIAM guidelines, the model should clearly provide a description of all model elements, relate to a publication, and list its authors and contact information along with the simulation conditions. In the case of model elements' annotations, the MIRIAM guidelines advice authors to link those to external databases using an annotation triplet: "data type," "identifier," and "qualifier." Here, the "data type" refers to the general part of the link to a database resource and the "identifier" refers to the specific ID in the particular database. The qualifier is a term (selected from a predefined namespace) used to represent the relationship to the resource. According to the Biomodels database [35], there are two types of qualifiers: (i) model qualifier that represents the relationship between a modeling object and its annotation and (ii) biological qualifier that represents the relationship between a biological object represented by a model element and its annotation [36]. The implementation of the MIRIAM guidelines can thus improve the reusability of metabolic models. However, since different modelers can use references to different database resources, comparison of different models implementing different identifier systems is still not straightforward. The InChI system [37] developed by International Union of Pure and Applied Chemistry (IUPAC) provides a unique identifier for a chemical entity (i.e., metabolite), and hence, this can be used to determine identical metabolites and reactions between two different models. With the implementation of these standardizations, metabolic models developed can be easily read, understood, integrated with experimental data, and even combined to generate larger metabolic models. Pathway Tools is a genome-scale reconstruction software suite developed by SRI International and was first introduced to the scientific community in 1996 [38]. Pathway Tools is capable of generating automated genome-scale reconstruction based on an annotated genome using PathoLogic [25]. PathoLogic not only recognizes reactions associated with a given enzyme, but also intuitively identifies potential pathways to which the reaction belongs, with the assumption that the predicted pathway plausibly exists in the organism of interest. The model generated by Pathway Tools is stored in a database called PGDB. A Pathway/Genome Editor helps users in curating the PGDB generated by PathoLogic. Besides reactions, metabolites, and pathways, users can add/modify experimental evidence, publications, summary/description, information on curators and affiliations, and so on, using the PGDB editor. Another important component of Pathway Tools is the Pathway/Genome navigator. This component lets the user browse through the PGDB, query, and visualize the different components of the model. The navigator also allows the user to enable an independent web server mode, which generates browsable web pages of the PGDB. The TrypanoCyc and LeishCyc [21,39] The SEED server [24] is another important resource in genome-scale reconstruction. The ModelSEED component of this server implements an efficient pipeline, which can be used to generate good-quality metabolic model drafts. The genome of interest is first annotated using the RAST server [40] to generate a preliminary model draft. The pipeline then generates a biomass equation for the draft and performs an autocompletion step so that the model is capable of producing the biomass components. This model can then be "fitted" to experimental data through FBA. The ModelSEED pipeline also contains a modified version of the GrowMatch algorithm, which helps in model optimization by identifying missing transport reactions, conflicts between GPRs and gene essentiality data, gaps in the metabolic network, and extra reactions in the model [41]. ModelSEED is also a repository of genome-scale models with about 236 public models and 247 pathways, as of February 2015.

Most automated draft reconstruction tools are based on organism-nonspecific databases to generate the primary metabolic draft. In 2006, Notebaart et al. published the AUTOGRAPH pipeline in which existing, manually curated genome-scale model of a taxonomically related organism was used to generate metabolic draft [26]. In this pipeline, orthologous genes between the template (for which there exists a manually curated model) and the target genomes were identified using bioinformatics tools such as INPARANOID [42]. The list of orthologs was then used to select components of the manually curated model to build the target organism metabolic draft. Selecting the right template organism and model is an important step in this pipeline and determines the quality of ❦ the resulting metabolic draft. This method has been proved to generate more ❦ accurate metabolic drafts.

Databases

Manually curated metabolic models take a considerable amount of effort and time to build. They are rich in information such as gene-protein reaction relationships and metabolic capabilities of the organism. BioModels is one of the most popular model databases for both metabolic and nonmetabolic models [35]. At the time of writing, it has 562 curated models and 696 noncurated models published in peer-reviewed literature. BioModels also hosts automatically generated 112 898 metabolic, 27 531 nonmetabolic, and 2641 genome-scale metabolic models [43]. An important feature of BioModels is that it allows users to query not just the model components but even the annotation and metadata provided in the model, making it a very important resource. The BioCyc database collection (www.biocyc.org) is a huge set of PGDBs generated by Pathway Tools. As of 7 November 2014, BioCyc contains 5500 databases in three categories: Tier 1, Tier 2, and Tier 3. Tier 1 databases are literature-based manually curated databases while Tier 2 and Tier 3 databases were computationally predicted using the PathwayTools software and lack intense manual curation [34]. BioCyc is hence a very rich biochemical resource providing easy-to-browse metabolic models. The BiGG database [33] is another database of 10 extensively curated published genome-scale metabolic models. These models provide a good source of biochemical information for specific organisms and also provide cross-links to other databases. Another example of a metabolic model repository is the JWS online [44], the browser-based simulation tool, which maintains kinetic models. Biochemical information in databases provides an excellent resource on the metabolic capabilities of an organism. One of the most popular databases among them is the KEGG [32]. The KEGG database collects information on genes, enzymes, metabolites, biochemical reactions, and biological pathways among many other types of information. KEGG also has a popular web service, allowing other tools and databases to quickly mine them for information. As of April 2014, the KEGG web service was reported to have 400,000-500,000 unique users per month. KEGG pathway maps are also frequently used by many to map omics datasets. These maps are generated by merging all known biological pathways and are well maintained. MetaCyc [34], one of the most important PGDBs in the BioCyc collection, is another important biochemical database. It is a collection of all pathways, reactions, and metabolites generated from all the BioCyc PGDBs that provides a good biochemical reaction pool during gap filling. PathoLogic, the draft reconstruction tool in Pathway Tools, completely relies on MetaCyc to generate the draft PGDBs. Enzyme databases such as BRaunschweig ENzyme DAtabase (BRENDA) [45], ExplorEnz [46], and (Expert Protein Analysis System) ExPASy [47] enzyme databases are quite useful resources for thermodynamic information of reactions in systems biology. In addition, BRENDA allows users to submit biochemical reactions identified in various species, providing other users with substrates specific to the reaction in a particular species. Gene and protein ❦ databases such as NCBI and UniProt [48] (formerly, EMBL and SwissProt) carry ❦ many useful annotations on gene/protein functions. GeneDB [49] is another such database that stands out for providing up-to-date annotated sequence information on protozoan parasites. Chemical Databases such as ChEBI [50] and ChemSpider [51] provide a good resource on the metabolites for model reconstructions. These databases report chemical formula, InChIs, alternative names, and chemical properties for chemical entities.

Transport reactions are very important in generating functional metabolic models. Transport Databases such as TransportDB [52] provide a good resource on these reactions. TransportDB also allows users to BLAST search protein sequences to identify transporters.

The EuPathDB [53] collection of databases provides sequence information along with related protein information and experimental data on Eukaryotic pathogens. Users are also allowed to submit comments on genes/proteins, improving the value of these data. EuPathDB maintains well-curated databases for Trypanosomatidae and Plasmodium through TritrypDB [54] and PlasmoDB [55], respectively. PlasmoDB and TritrypDB contain genomic data (sequence and/or annotation) of 8 Plasmodium species (i.e., P. falciparum, Plasmodium vivax, P. yoelii, P. berghei, Plasmodium chabaudi, Plasmodium knowlesi, Plasmodium reichenowi, and Plasmodium gallinaceum) and 14 Trypanosomatidae species (Crithidia fasciculata, Leishmania braziliensis, Leishmania donovani, Leishmania infantum, L. major, Leishmania mexicana, Leishmania tarentolae, T. brucei, Trypanosoma congolense, T. cruzi, Trypanosoma evansi, Trypanosoma grayi, Trypanosoma rangeli, and Trypanosoma vivax), respectively. Apart from genomic data, these databases also include functional data on RNA and protein expression, putative functions, protein interactions, localization and features, as well as gene polymorphisms, orthology, and homology. Users Queries can be done by performing a keyword search using gene names or gene IDs. Initial search results can be combined with succeeding search parameters using Boolean operations (i.e., "and," "or," "not") and are presented in a workflow showing the total number of hits at each step. Users are required to register in order to store search strategies, save and download data, and add comments on gene sequences [53].

The Malaria Genome Exploration Tool or MaGnET utilizes a MySQL database storage and Java for the user interface. Queries can be done to display the location of a given open reading frame and to visualize protein-protein interaction and 3D motifs. Gene ontology annotation is also included in the results page when available [56].

The Malaria Parasite Metabolic Pathway (MPMP) is a web-based resource that aims to collate and synthesize biological, physiological, and biochemical data on P. falciparum genes to provide a more profound understanding of these genes [57]. MPMP focuses on metabolic pathways that are involved in the erythrocytic stage of the parasite. It shows pertinent metabolic pathways from KEGG, with some pathways developed as a result of the consolidation of different metabolic maps. A pathway is considered to exist if at least three to four enzymes in sequence for the pathway are encoded in the P. falciparum genome; however, if ❦ there is biochemical data that supports the functionality of a given pathway, then ❦ it is also considered relevant. In addition to the pathways, "Transcription Clocks" are included beside each enzyme providing transcription data corresponding to the specific enzyme. EC numbers in the pathways have external links to other resources for further information, including description, cellular localization, and references [57,58].

MetaTIGER is a tool that provides phylogenetic information on the metabolic profiles of over 500 organisms. Apart from the use of existing genomic sequence data, expressed tag sequences, PSI-BLAST searches through SHARKhunt, and hidden Markov models were utilized to further enrich the MetaTIGER database. Comparison of different organisms can be done using this tool and results can be presented as phylogenetic trees, KEGG metabolic maps, or table formats along with their corresponding E-values [59]. Information from this tool can be used to fill gaps in pathways in a metabolic network by comparing the pathway with that of closely related organisms in conjunction with the likelihood of the involved enzyme/s existing in the organism in question.

With more than 250 public databases, MetExplore [60] is a web server developed to study experimental data in the context of metabolic networks. MetExplore supports mapping of metabolites using standard identifiers such as InChI and molecular mass. Users registered on MetExplore can import their own metabolic networks into the server, visualize, curate, and share them. Analysis of metabolic pathways using experimental data through MetExplore, which does 490 21 Understanding Protozoan Parasite Metabolism not rely on predrawn pathways, contributes to better understanding the changes Q6 in the metabolism of an organism of interest (Table 21.1).

Metabolic Model Simulation

Flux Balance Analysis

The initial step to FBA is the creation of a mathematical representation of the metabolic reactions in a given metabolic network. Reactions and corresponding metabolites involved in specific reactions are tabulated into a matrix (i.e., Stoichiometric matrix or S-matrix) that accounts for the number of metabolites consumed and produced within the given reactions. Columns of the matrix represent the reactions while rows represent the metabolites. The number of metabolites produced or consumed in a given reaction is represented in the matrix as a positive or negative number, respectively. The stoichiometry of each reaction provides a constraint onto the resulting network. In addition, each reaction is assigned a flux boundary (i.e., upper and lower bounds), which represents the permissible fluxes for the said reaction. These constraints therefore define the allowable rates Q7 at which metabolites are produced or consumed within the system [3].

Following the creation of the S-matrix and the assignment of flux boundaries for the reactions, an objective function is assigned. A reaction representing the said ❦ function (e.g., production of biomass components from precursors) is included into the matrix. Biomass reactions, for example, are based either on experimentally obtained data [3,20] or on the data obtained from closely related organisms [6,16,18]. Simulation tools that utilize linear programming software are then used to calculate the permissible solution space and can identify the optimal solution for the given objective reaction through FBA. FVA [62] can be performed to identify alternative solutions that will still satisfy a given condition. An example of such condition is the production of at least 90% of the biomass. The fluxes of individual reactions (within the assigned limits) are maximized and minimized in order to 

Simulation Tools

The constraint-based reconstruction and analysis (COBRA) Toolbox is a collection of methods for the development, analysis, and simulation of metabolic networks. These methods are based on an approach that utilizes physicochemical, ❦ biological, and data-driven constraints to identify phenotypic states of a given metabolic network under a given condition [63]. Version 1.0 of the toolbox was initially released in 2007 and was then updated to version 2.0 in 2011. Apart from the COBRA archive, installation of this toolbox requires MATLAB [64], libSBML and the SBML Toolbox (www.sbml.org), and linear programming software (e.g., GLPK, Gurobi, CPLEX). Currently, it offers a wide range of functionalities as shown in Table 21.2 [65]. COBRAPy is a version of the COBRA Toolbox that runs using Python instead of MATLAB, which is a proprietary software. Furthermore, COBRAPy is based on Python programming language, increasing its flexibility [66]. In terms of user interface, the COBRA Toolbox requires the users to provide a flat file, which contains all the species (i.e., molecules), reactions, and the reaction equations via MATLAB or Python interface. The MATLAB COBRA Toolbox accepts models in MATLAB, SBML, and Microsoft excel formats, and its Python implementation accepts SBML, JSON, and COBRA model object. Although the toolbox has functions to evaluate model correctness, error detection may not be as good compared with other applications. One example of such an issue is that if a reaction in the input file contains an undeclared metabolite, the function, instead of returning an error message, proceeds to add the reaction to the cobra model object without the undeclared metabolite leading to an incorrect and unbalanced reaction. However, the COBRA Toolbox provides a number of ❦ advanced features that are not present in most FBA applications/software as shown in Table 21.2. Finally, it is important to note that the COBRA Toolbox is well maintained, and it is constantly being improved using methods and programs contributed by active community members [67].

SurreyFBA is a free stand-alone command line tool that is written in the C++ programming language. It uses the GLPK software for linear programming. Alongside the main application is the JyMet, which is a graphical user interface ❦ that is implemented in the Python programming language written in Java ❦ (Jython). JyMet has a menu-based interface in order to access the different simulation commands easily and displays the model in a spreadsheet format. The features of SurreyFBA include FBA, FVA, robustness analysis, phenotypical phase planes, elementary mode analysis, essentiality scans and prediction of reaction, and gene/enzyme knockout results, as well as model validation that includes the detection of live reactions, orphan metabolites, nonconserved metabolites, and connected components. After applying the optional matrix reduction algorithm, FVA on the iND750 model (Saccharomyces cerevisiae) using SurreyFBA was 41% faster compared to conducting the same analysis using the COBRA Toolbox [68].

OptFlux is a free software application that uses GLPK software for linear programming and LibSBML to read and handle metabolic models in SBML format, although other formats can also be loaded (e.g., Metatool or flat files). FBA simulations can be performed alongside adjustments in environmental conditions. The software also uses the BioVisualizer plug-in to visualize pathways and networks in the form of nodes and edges. OptFlux has a user-friendly graphical user interface with a menu bar that is easy to navigate. Similarly to the COBRA Toolbox, OptFlux can also perform FVA and Minimization of Metabolic Adjustment (MOMA) [69].

Acorn is a web-based application with a desktop-based graphical editor that has been designed to handle large genome-scale metabolic model. Users are required to install Acorn and set up an account in order to utilize the application. Models in SBML format can be imported into the application for analysis. FBA as well as FVA can be conducted with objective parameters and nutritional conditions set by the user. Essential genes and reactions can also be identified by the software. Pathways can be visualized using the desktop editor showing the corresponding flux values calculated for each reaction. Selected models and results of perturbations can also be shared using the application [70]. Table 21.3 summarizes the different FBA application software .

Applications of Flux Balance Analysis in Identifying Potential Drug Targets

Potential drug targets in pathogens should meet several important criteria. Primarily, the protein or enzyme must be necessary for the survival of the pathogenic organism. In relation to the metabolic network, the protein is often involved in pathways ultimately leading to the production of biomass components. Enzymes involved in carbon, lipid, nucleotide, or protein metabolism are potential targets [7]. Moreover, the druggability of a protein target, which is defined as the likelihood of altering the function of the target upon exposure to a given compound, is assessed through a number of ways. An important characteristic of a druggable target is the presence of potential binding sites in the three-dimensional structure of the protein. These binding sites can further be assessed based on their shape, surface lipophilicity, and predicted affinity for drug compounds [72]. Sim-❦ ilarities in protein structures with known drug targets, also referred to as guilt ❦ by association, have also been utilized in determining the druggability of a target [73]. Comparison with homologous targets in other pathogens has also been used to identify potential targets with similar binding sites and possible ligand interactions, particularly with antibiotics [74]. Lastly, high homology to the binding pockets of important human enzymes makes the protein in the pathogen an unlikely drug target, owing to an increased likelihood of side effects [13].

Enzymes that are essential for the survival of a pathogen can be identified using FBA by simulating individual gene or reaction knockouts and observing its effect on the objective function. In this case, it is important to accurately define the specific gene-protein reaction association [75]. It is crucial that targets identified are Q8 involved in primary metabolic pathways, rather than in secondary metabolism that are often nonessential to the growth of organism. Additionally, the objective function can be adjusted to represent the production of the minimum component requirements of an organism. This may result in an accurate prediction of the essentiality of certain reactions or genes [76]. Genes that encode isozymes may be considered nonessential since the organism is capable of producing another enzyme with a similar function. On the other hand, a gene that contributes to a protein complex that is essential to an organism is considered essential [13].

Potentially, double-gene knockouts can be targeted by a drug combination that can slow down, if not prevent, the development of drug resistance. In addition, the use of drug combinations may have synergistic effects. In vitro testing has demonstrated that some drug combinations exhibited greater inhibitory effect when compared to the sum of the effect of individual drugs when given separately. Yet little is known of the flux restrictions that produce the synergy [15].

Apart from focusing on enzymes in a metabolic network, a metabolite-centered approach can be applied toward identifying potential drug targets. Metabolic choke points, or reactions that solely produce or consume one or a few metabolites, are presumed to be essential if an inhibition at this point will result in the deprivation of an essential by-product or the accumulation of a possibly toxic metabolite [18]. Molecules similar to the metabolites involved in choke point reactions (i.e., single reaction connected to a number of important reactions or pathways) may be used as a competitive inhibitor for the given reaction and may be able to target more than one enzyme [77].

Drug repositioning or repurposing involves the use of a currently available drug in addressing a different disease pathology. Repurposing of drugs that have been approved for another purpose benefits from the fact that these drugs have already been tested on humans and thus toxicity and adverse effect information are already available [6,14]. This shortens the time frame for drug development and reduces the developmental costs [78]. Available resources, such as the DrugBank, provide an extensive database of drugs and their corresponding drug targets [79]. A number of studies have utilized the DrugBank to identify potential drugs that can target essential proteins to inhibit the growth of pathogenic organisms and cancer cells [6,14,80].

In a study by Chavali et al. [15], data on identified essential genes obtained from ❦ a previously developed L. major model were used to screen FDA-approved drugs ❦ that can potentially be used as antileishmanials. The protein sequences of L. major genes included in the metabolic network reconstruction were aligned against the sequences of drug targets in the DrugBank and STITCH databases. Inclusion and exclusion criteria such as FDA approval status, druggability, and drug toxicity were also incorporated in the drug screening. As a result, 15 genes representing potential drug targets for a total of 240 FDA-approved drugs were identified. Protein sequences of eight genes involved in nontrivial deletions were also identified as potential drug targets for a total of 37 FDA-approved drugs. Among the combined list of potential drugs targeting essential genes (single genes or gene pairs), 9 have been reported in literature to exhibit antileishmanial activity, while 71 have been shown to exhibit activity against L. major in previous high-throughput in vitro drug screenings. It is important to note that through this screening, halofantrine, an antimalarial drug, has been identified and tested in vitro to exhibit antileishmanial activity at concentrations of 3 μM and higher. Furthermore, drug combinations with disulfiram, a drug used to treat chronic alcoholism, and antibiotics/antipsychotics have also been demonstrated to show antileishmanial activity in vitro. These drug combinations have also produced significantly greater inhibition when compared with the sum of the inhibitory effects of the individual drugs.

Recently, the number of genome-scale metabolic reconstructions has increased greatly. With the rapid increase in the number of sequenced genomes, simplicity of tools, better predictive algorithms, and intuition of automated metabolic reconstruction tools, genome-scale metabolic draft reconstruction has been made much easier. Although manual curation is still time-consuming and requires the dedication of one or more individuals, the improvement in the quality of automated drafts makes the process faster. Model simulation tools are also constantly being improved with better, faster algorithms, and new features are added regularly. Discussion forums such as the COBRApy and sbml.org google groups provide a perfect opportunity for systems biologists and computer programmers to discuss issues and drawbacks of existing tools and in turn facilitate the development process [81][82][83][84]. Genome-scale reconstruction and simulations aim to combine all known information on a particular organism to further understand their biology and predict their metabolic behavior under different environmental conditions. With the discovery of new information on their metabolism, metabolic models need to be updated in order to take into account these details. Recon 2 (Homo sapiens) [85] and iJO1366 (Escherichia coli) [86] are the best examples where existing models have been improved to provide better representation of known metabolism.

Finally, it is important to remember that the accuracy of the model highly ❦ depends on the accuracy of existing knowledge on the metabolic pathways in the ❦ organism. In addition, constraints in the model are mainly limited to available information on reaction stoichiometry and flux boundaries and may not take into consideration other enzyme reaction parameters. Thus, it is important to take this into consideration when interpreting and evaluating simulation results. The objective of performing simulations of genome-scale metabolic models is never to replace experimental work but to generate hypotheses and help direct experiments saving both time and resources in the process. 
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 144 Genetic and Genomic (BiGG)[107] and BioCyc[108]. Since genome-scale reconstructions tend to have thousands of reactions and metabolites, the use of different ID systems makes the comparison of models or mapping experimental data difficult and time consuming. As a result, the scientific community stresses on the inclusion of metadata along with the model elements in the form of annotations. Some modellers also provide additional information on model components in the form of InChI, SMILES, EC numbers, etc. The Minimum Information Required In the Annotation of Models (MIRIAM) guidelines published in 2005 [101] describe an efficient solution to this problem. According to the MIRIAM guidelines the model should clearly provide a description of all model elements, relate to a publication, list its authors and contact information along with the simulation conditions. In the case of model elements annotations, the MIRIAM guidelines advice authors to link those to external databases using an annotation triplet: "data-type", "identifier" and "qualifier". Here the "data-type" refers to the general part of the link to a database resource and the "identifier" refers to the specific ID in the particular database. The "qualifier" is a term (selected from a predefined namespace) used to represent the relationship to the resource. According to the BioModels database [109] there are two types of qualifiers, a) model qualifier that represents the relationship between a modelling object and its annotation and b) biological qualifier that represents the relationship between a biological object represented by a model element and its annotation [110]. The implementation of the MIRIAM guidelines can thus improve the reusability of metabolic models. However, since different modellers can use references to different database resources, comparison of different models implementing different identifier systems is still not straightforward. The InChI system [111] developed by International Union of Pure and Applied Chemistry (IUPAC) provides a unique identifier for a chemical entity (i.e. metabolite) and hence this can be used to determine identical metabolites and reactions between two different models. With the implementation of these standardizations, metabolic models developed can be easily read, understood, integrated with experimental data and even combined to generate larger metabolic models. Examples of genome-scale reconstruction in other Trypanosomatids a) Leishmania major Chavali et al. [89] developed a reconstruction of the Leishmania major metabolic network utilising published literature and gene/enzyme databases. The network takes into account a total of 560 genes, 1,112 reactions and 1,101 metabolites. Stoichiometric equations of metabolic reactions were atom-and charge-balanced, and thermodynamic properties of these equations were also considered. Biomass production was assigned as the overall objective of the metabolic network. Biomass components include amino acids, fatty acids and DNA. The estimated amount of amino acid per gram of dry weight was computed based on the open reading frames in the genome of the organism, while the DNA component was computed by taking into account the G-C content of L. major DNA. Fatty acid components were based on previously published literature. For the computation of fluxes, subcellular locations of the different reactions were also considered. Linear programming optimization was used to compute the flux distribution for the entire network at maximum biomass production.

  and algorithms have been developed to answer various biological question using constraint based models. Lewis et al managed to cluster the different approaches into approaches for integrating 'omics' data, integrating regulatory mechanisms, thermodynamic parameter based optimization, loop removal, objective function development, gap-filling, reaction perturbation design, reaction addition design, gene-deletion design, flux balance analysis (FBA) based approaches and objective function independent analyses [114]. Figure 8 displays a more detailed view of this classification. FBA-based approaches are the most popularly used approaches to study metabolism. Here we will discuss the FBA algorithm and some of it widely used extensions. a) Flux balance analysis of genome-scale metabolic models Flux balance analysis is a mathematical approach to study the flow of metabolites in a constraint-based model when assuming the model to be at steady state (i.e. the concentration of metabolites in the model is constant). The first step to flux balance analysis is the creation of a mathematical representation of the metabolic reactions in a given metabolic network. Reactions and corresponding metabolites involved in specific reactions are tabulated into a matrix (i.e. Stoichiometric matrix, or S-matrix) that accounts for the number of metabolites consumed and produced within the given reactions. Columns of the
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 11 Figure 11 -Steps involved in using the simplex method in LP optimization For LP problem Z = 2X 1 + 3X 2 where 0 ≤ X 1 ≤ 5 and 0 ≤ X 2 ≤ 6 ; To find max(Z) (a) Calculate the solution space (b) Select an initial point in the solution space (Z = 0) (c) Move along the edge of the solution space to the next vertex so that the value of Z is maximum.Moving along the Y-axis, the value of Z at the next vertex will be 10 while moving along the X-axis, the value of Z at the next vertex will be 18 and so since both Z is greater than 0 and Z along X-axis is greater than Y-axis. We move along X-axis (Z =18) (d) Similarly move along the edge of the solution space to the next vertex where Z =28 (as 28> 18). The algorithm stops here as at the next vertex is Z = 10 and 10 ≯ 28

Flux variability analysis calculates

  for every reaction, the maximal and minimal flux values possible when biomass is optimized. FVA algorithms function by first optimizing the metabolic model to calculate the maximum flux through the objective reaction. This flux or a percentage of it is then set as the lower bound value of the flux through the objective function reaction and maximization-minimization optimizations are performed to calculate the maximum and minimum flux possible through each and every reaction in the model. Flux variability analysis helps determine the flexibility of all the reactions at this optimized configuration of the model. Some reactions may be 100 percent flexible with the maximum and minimum flux values corresponding to the upper and lower bound constraints while
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  independent to availability of metabolite A and |γ A / γ B |= ∞ suggests that the objective function is independent to availability of metabolite B. Isoclines or lines represented by Y' = (γ A / γ B )X' + c (where c can be any real number) are used to represent this information on the PhPP plot (see Figure13).
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 47 Popular Tools used in Genome-scale metabolic network reconstruction and Constraint-based modelling With the recent rise in popularity of genome-scale metabolic modelling studies, many tools have been developed to generate the metabolic models and to analyze them. Some of the most popular of these tools are discussed in this section of the chapter. a) Tools for genome-scale metabolic reconstruction i. Pathway Tools Pathway tools [137] is a complete Systems Biology software suite. It can be used for constructing the model draft, curating the model, integrating experimental data and performing model simulations. The model is maintained as a Pathway/Genome Database (PGDB) composed of frames for every pathway, reaction, enzyme, protein complex, metabolite and curator. A PGDB frame is comparable to a webpage in a website. The suite is composed of four core components: PathoLogic, Pathway/Genome navigator, Pathway/Genome editor and MetaFlux.

"

  fitted" to experimental data through flux balance analysis. The ModelSEED pipeline also contains a modified version of the GrowMatch algorithm which helps in model optimization by identifying missing transport reactions, conflicts between GPRs and gene essentiality data, gaps in the metabolic network and extra reactions in the model[138]. ModelSEED also provides users with 60,183 RAST annotated microbial genome and 521 medium compositions to facilitate reconstruction and simulation.iii. The Autograph PipelineMost automated draft reconstruction tools are based on organism non-specific databases to generate the primary metabolic draft. This could lead to adding reactions known not to exist in the organism into the reconstruction draft and missing organism-specific reactions from the draft. In 2006, Notebaart et al. published the AUTOGRAPH pipeline in which existing manually curated genome scale models were used to generate metabolic drafts for closely related organisms[START_REF] Notebaart | Accelerating the reconstruction of genome-scale metabolic networks[END_REF]. In this pipeline, orthologous genes between the template (for which there exists a manually curated model) and the target (the organism for which the model is being built) genomes were identified using bioinformatics tools such as INPARANOID[139].The list of orthologs were then used to select components of the manually curated model to build the target organism's metabolic draft. Selecting the right template organism and model is an important step in this pipeline and determines the quality of the resulting metabolic draft. This method has been proved to generate more accurate metabolic drafts.b) Tools for Ortholog search i. Inparnoid toolInParanoid is an orthologous and paralogous gene detection algorithm[139]. Orthologous genes or orthologs are homologous genes separated by speciation event. A simple example of an orthologous pair is the mouse and human ⍺ Haemoglobin. On the other hand paralogous genes are homologous genes separated by gene duplication. The genes coding for human ⍺ and ß haemoglobin is an example for paralogous gene pair. The occurrence of gene duplication events after speciation event results in the formation of paralogous genes called inparalogs. These are co-orthologous to the homologous gene(s) in other species. The InParanoid 4.1 standalone tool analyses two proteomes with an optional outgroup proteome and identifies all orthologous genes among them. It also identifies in-paralogous sequences to form paralogous clusters. InParanoid identifies orthologous gene pairs and the inparalogs using a confidence score which is based on the distance of each inparalog to the ' seed' ortholog.The InParanoid standalone tool is coded in perl programming language and requires perl to be installed on the system. It uses the 'blastall' and 'formatdb' functions from the NCBI legacy blast package to build a private sequence database of the two proteomes and then perform sequence similarity searches. It also requires the perl module XML::Twig to successfully run. c) Tools for performing simulations using constraint-based models i.The COBRA Toolbox and COBRApyThe COnstraint-Based Reconstruction and Analysis (COBRA) Toolbox is a collection of methods for the development, analysis and simulation of metabolic networks. These methods are based on an approach that utilises physicochemical, biological and data-driven constraints to identify phenotypic states of a given metabolic network under a given condition [140][141]. Version 1.0 of the toolbox was initially released in 2007, and was then updated to version 2.0 in 2011. Apart from the COBRA archive, installation of this toolbox requires MATLAB, libSBML [142] and the SBML Toolbox [143] and linear programming solvers (e.g., GLPK, Gurobi, CPLEX). Currently, it offers a wide range of functionalities as shown in table 1 [141]. COBRApy is a version of the COBRA Toolbox that runs using Python instead of MATLAB, which is a proprietary software [144]. The MATLAB COBRA Toolbox accepts models in MATLAB, SBML and Microsoft excel formats while its Python implementation accepts SBML, JSON and COBRA model object. Although the toolbox has

  ] is the primary genome repository for pathogens sequenced by the Wellcome Trust Sanger Institute. The database contains genomic data from more than 40 pathogens (including T. brucei) and includes genomic sequences actively undergoing annotation. It also contains additional data on gene products collected from a variety of sources. The T. brucei data available in GeneDB is currently being subjected to manual curation. Data available on the database include gene, Coding sequence (CDS), protein sequences and gene annotation along with additional information such as inference on the gene/gene-product from published studies, gene ontology, protein sequence domain and secondary structure features.

  Trypanosomatidae through TriTrypDB [152].TriTrypDB contains genomic data (sequence and/or annotation) of 14 Trypanosomatidae species (C. fasciculata, L. braziliensis, L. donovani, L. infantum, L. major, L. mexicana, L. tarentolae, T. brucei, T. congolense, T. cruzi, T. evansi, T. grayi, T. rangeli and T. vivax). Apart from genomic data, these databases also include functional data on RNA and protein expression, putative functions, protein interactions, localisation and features, as well as gene polymorphisms, orthology and homology. User queries can be done by performing a keyword search using gene names or gene IDs. Initial search results can be combined with succeeding search parameters using Boolean operations (i.e. "and", "or", "not") and are presented in a workflow showing the total number of hits at each step. Users are required to register in order to store search strategies, save and download data and add comments on gene sequences [151]. b) Chemical databases Chemical Databases such as ChEBI [153] and ChemSpider [154] provide a good resource on the metabolites during model reconstructions and comparison. These databases report chemical formula, InChI identifier, alternative names and chemical properties for chemical entities.

The

  [108], one of the most important Pathway/Genome Database (PGDB) in the BioCyc collection, is another important biochemical database. It is a collection of all pathways, reactions and metabolites generated from all the BioCyc PGDBs that provides a good biochemical reaction pool during gap filling. PathoLogic, the draft reconstruction tool in Pathway Tools completely relies on MetaCyc to generate the draft PGDBs. iii. Enzyme databases Enzyme databases such as BRaunschweig ENzyme DAtabase (BRENDA) [155] and Expert Protein Analysis System (ExPASy) [156] enzyme databases are quite useful resources for thermodynamic information of reactions in systems biology. In addition, BRENDA allows users to submit biochemical reactions identified in various species providing other users with substrates specific to the reaction in a particular species. BioCyc database collection (www.biocyc.org) is a huge set of PGDBs generated by Pathway Tools. As of 7 November 2014, BioCyc contains 5,500 databases in 3 categories: Tier 1, Tier 2 and Tier 3. Tier 1 databases are literature based manually curated databases while Tier 2 and Tier 3 databases were computationally predicted using the Pathway Tools software and lack intense manual curation

  metabolic models [109]. As of January 2016, it has 583 curated models and 796 non-curated models published in peer-reviewed literature. BioModels also hosts automatically generated 112,898 metabolic, 27,531 non-metabolic and 2,641 genome-scale metabolic models [109].

1. 5

 5 OBJECTIVE OF THE STUDY As explained earlier Trypanosoma brucei is the causative agent of Human African Trypanosomiasis (HAT) and is responsible for the huge losses of life and livestock in sub-Saharan Africa. The WHO neglected tropical disease roadmap targets the elimination of HAT by 2020 [162]. The key to drug development is understanding the metabolism of the pathogen and its weak-points. The primary objective of this thesis is to develop a manually curated genome-scale metabolic model of T. brucei in order to facilitate the study of the parasite metabolism from a systems biology perspective. The TrypanoCyc Pathway/Genome Database was developed in 2008 thanks to a combined effort of the International Trypanotolerence Centre (The Gambia) and the Wellcome Trust Sanger Institute(UK). In 2012, a team of experts on Trypanosomatid metabolism and bioinformaticians started the TrypanoCyc annotation project. The aim of the project was to curate the TrypanoCyc database in order to provide accurate information on T. brucei metabolism to the public. The secondary objective of my project is to host, maintain and curate the TrypanoCyc database and automate its annotation system; at the same time helping to drive the curation effort. T. brucei parasites display very different metabolism in the insect and mammalian hosts in order to survive in these very different nutritional environments. The tertiary objective of this project hence involves the study of how well the genome-scale metabolic model is capable of predicting developmental stage specific behaviour and to build developmental stage-specific models from the genome-scale model to better describe T. brucei behaviour.
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 14 Figure 14-Scheme used to construct, update and synchronize the TrypanoCyc database and genome-scale metabolic network

(

  www.metexplore.fr/trypanocyc). An article on the database has been published in the Nucleic Acid Research (NAR) Database Issue in 2015 (accepted in September 2014) Shameer, S., Logan-Klumpler, F. J., Vinson, F., Cottret, L., Merlet, B., Achcar, F., … Jourdan, F. (2015). TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Research, 43(Database issue), D637-44. doi:10.1093/nar/gku944

, 2015 Figure 1 .

 20151 Figure 1. TrypanoCyc page for the 6-phosphogluconate dehydrogenase (1.1.1.44) reaction. (a) Reaction name and GeneDB link (specific to TrypanoCyc), (b) Detailed description of the reaction, (c) Localizations of the reactions as suggested by annotators, (d) Confidence score for the reaction (specific to TrypanoCyc), (e) Annotation tables displaying content of the TrypAnnot database (specific to TrypanoCyc).

Figure 2 .

 2 Figure 2. Proteomics data loaded in TrypanoCyc using the cellular overview tool. (a) The diagram shows all the metabolic pathways in gray boxes. Colored squares correspond to reactions with associated proteomics values. The color scale is displayed in the 'Omics Viewer Control Panel'; it can be tuned using dedicated parameters. The 'REACTION' dialog appears when clicking on a reaction. (b) It is then possible to get back to the corresponding reaction page and read the annotators' comments.

, 2015 Figure 3 .

 20153 Figure 3. Navigation between pathway and network representation using MetExplore and TrypanoCyc. (a) Each pathway page has an hyperlink allowing to load and visualize the pathway in MetExplore (circled in red on the pathway page screenshot). (b) When clicking on this link in the Glycolysis page, it is loaded in MetExplore; the red box corresponds to the cytosolic part and the green one to the glycosomal part. (c) Using MetExplore, it is then possible to generate a combination of various pathways. TCA cycle, succinate shunt, glycolysis and the pentose phosphate pathway were selected. (d) All reactions of these pathways are added to the cart (red box on the right). A third compartment, mitochondrion, appears (purple box). A reaction allowing transport between cytosol and glycosome appears in the network (red arrow). (e) In the tabular view of MetExplore, a TrypanoCyc button (visible in the third column of [c] table) allows to link back to TrypanoCyc.

  displays the first few lines of the TrypanoCyc update report.

Figure 15 -

 15 Figure 15 -First three line of the TrypanoCyc update report

Figure 16 -

 16 Figure 16 -The online version of the TrypanoCyc update report

  metabolism, LeishCyc was added to the TrypanoCyc server. The Pathway/Genome Database (PGDB) of Leishmania major, LeishCyc [164] was downloaded from the BioCyc repository [108] and added to Pathway Tools on the TrypanoCyc server. Links to LeishCyc and TrypanoCyc were placed on the right-hand-side of the top menu bar, allowing users to switch between the two databases (see Figure 17).
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 17 Figure 17 -LeishCyc on the TrypanoCyc websiteLeishCyc is available on the TrypanoCyc website. Links to switch between LeishCyc and TrypanoCyc are provided on the top menu bar (highlighted with red boxes)

Figure 20

 20 Figure20provides a summary of the TrypanoCyc usage statistics collected.
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 18151920 Figure 18 -TrypanoCyc session statistics Nov 2013-15

  in 2005 made it possible to connect together all the results from previous studies on the parasite like piecing together a puzzle. The TrypanoCyc database collects information regarding T. brucei metabolism and makes it available to scientific community. Information provided on TrypanoCyc includes gene-protein-reaction (GPR) relationships, metabolic and transport reaction, reaction EC numbers, information on the metabolites involved in the metabolism, information on metabolic pathways found in T. brucei and annotations on enzyme activity and localization. Databases such as TriTrypDB [152] and GeneDB [150] provide excellent information on the T. brucei at the genomic and proteomic levels. TriTrypDB goes the extra mile by collecting genomic and proteomics level experimental data on T. brucei. Collecting similar experimental data and developing proteome level analyses would hence be similar to reinventing the wheel. Hence efforts of the TrypanoCyc database were focussed on collecting information on the reactions and pathways in T. brucei metabolism. The cellular overview tool available on TrypanoCyc provided the perfect tool to study T. brucei genomics, proteomics or metabolomics data within the context of all the known metabolic capabilities of the parasite, a feature not available of TriTrypDB. The two databases hence complemented each other perfectly. Crosslinks between the TrypanoCyc and the TriTrypDB were added in order to help users carry-on their search for information on T. brucei from one database to the other. With TrypanoCyc focussing on information on reactions and pathways and TriTrypDB focussing on information on genes, proteins and analyzing collected experimental data, duplicating of effort is avoided and information on T. brucei is shared with the public much efficiently. TrypanoCyc webpages display a variety of information on T. brucei reactions and pathways. Users unfamiliar with TrypanoCyc and other BioCyc based PGDBs are likely to miss some of this information. The best example for this is the icon system used by Pathway Tools to display the curation status of a pathway. The icon is present at the top right corner of the TrypanoCyc pathway page and mousing over the icon provides a description of the icon.

  Inferred computationally (not curated)Inferred by curator (curated)Maintaining update logs is good practice in Database management[165]. The TrypanoCyc update report keeps tracks of all modification to the database including bulk edits. In the case of incidences such as data corruption where the database becomes unrecoverable, this log can be used to update an older backup of TrypanoCyc database. Additionally, sinceTrypanoCyc is a database on T. brucei metabolism, changes to the database almost always involve one or more biological reasons. For example, the lack of glutathione peroxidase activity has been reported in T. brucei and so the associated reaction was removed from TrypanoCyc. This information would hence be interesting to the users of TrypanoCyc. This surmise led to the addition of the TrypanoCyc update report on the website.
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 21 Figure 21 -Icon system used in TrypanoCyc to convey Pathway curation status (a) TrypanoCyc uses two icons to represent whether the pathway is manually curated or not (b) curation status icon highlighted by the TrypanoCyc tutorial

  One of the complicated challenges to a community based annotation project is the coordination of annotation. The TrypanoCyc annotation team consists of 36 experts from all areas of trypanosome research. Most of these experts are principal investigators and head of labs and are quite occupied with their research and administrative responsibilities. Hence care was taken to distribute the annotation responsibilities among multiple curators (ex: revising the protein-N-glycosylation pathway [166] -Bütikofer and Urbaniak). Another strategy followed was to collect information from the annotators in parts. Information was also gathered from researchers outside in the annotation team (ex: Threonine metabolism summary [167] -Yoann Millerioux). Sometimes the same enzyme or pathway may also be studied by researchers studying different aspects of the trypanosome metabolism. Input from multiple annotators in this case grants alternative perspectives of the same cellular mechanism (ex: alkyl DHAP reductase -Opperdoes and Bütikofer). One key feature of the annotation system is that changes to the TrypanoCyc database were not made unless they were verified by at least one expert.TrypanoCyc annotation like manual curation of a genome-scale metabolic model is a continuous process. The aim of this community-based annotation project is to slowly but continuously gather information. Currently only 464 of the 1042 reactions on TrypanoCyc

  5 % of genes in the T. brucei 927 genome obtained from the TriTrypDB database. Of the 1689 reactions, the model comprises 1193 metabolic reactions, 495 transport reactions and a biomass equation. The 495 transport reactions consist of 184 reactions involved in exchange of metabolites with the extracellular medium and 321 reactions representing intracellular reactions. The model also contains 1677 metabolites and 8 compartments.

Figure 3 :

 3 Figure 3 : Consistency of predictions of the iSS1077 model with published data (a) Consistency with T.brucei behaviour from all studies (b) Consistency with T.brucei behaviour common to both BSF and PRO

Figure 4 :

 4 Figure 4 : Initial stages of threonine metabolism in T.brucei

  first step of the genome-scale metabolic reconstruction pipeline employed in this project involves the generation of a metabolic model based on the TrypanoCyc [172] database (see Article 2 Methods). The TrypanoCyc-based model was generated in SBML format using the 'export reactions to SBML function' of Pathway Tools. Until the release of Pathway Tools [137] version 18.0 in March 2014, the SBML files generated by this function //github.com/solgenomics/javacyc) based script was used to gather this missing information from the database and import GENE ASSOCIATION and PROTEIN ASSOCIATION fields of the SBML reaction notes. Additional data such as KEGG ids, ChEBI ids, SMILES, InChI,confidence scores and reaction annotations from TrypanoCyc were also added to the metabolite and reaction notes at this stage. Another issue of this model was that many generic metabolites were present in the model, such as "Ribonucleotide-Diphosphates", "Ribonucleotide-Triphosphates" and "NAD-P-OR-NOP" (NADP or NAD). The "compound.dat" file found in the PGDB data dump folder contains all information on metabolites in the PGDB including parent and child metabolite classes. Based on this file, generic metabolites were identified and reactions containing these generic metabolites were replaced with their copies containing the respective "child" metabolites (i.e. reactions with "Ribonucleotide-Diphosphates" were replaced with copies of the same reaction with ADP, GDP, CDP and UDP). Unbalanced reactions among these new reactions were then identified by comparing the chemical formulas of the reactants and products and were removed from the model. This was done in order to remove incorrect reactions such as CDP + ATP  ADP + UTP which could be generated from Ribonucleotide-Diphosphates + ATP  ADP + Ribonucleotide-Triphosphates in the previous step. Figure22describes the steps involved in pre-processing the SBML files generated by the Pathway Tools.
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 22 Figure 22 -Pipeline for the pre-processing of TrypanoCyc-based model 2B.2.2 Standardizing metabolite and reaction IDs of the
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 24 InChI system [111] is a unique identifier system for chemical compounds developed by the International Union of Pure and Applied Chemistry (IUPAC). InChI values can be used to efficiently map metabolomics data with the genome-scale metabolic network. The first version of the T. brucei metabolic model (after merging TrypanoCyc-based model and iAC560-based model) had only 309 metabolites with InChI values. JavaCyc based scripts were used to retrieve additional InChI values from MetaCyc. ChEBI and KEGG web services via the bioservices python package [174] and the Chemical Translation Service (CTS) [175] web service from python via the requests library [176] were used to retrieve additional InChI values for metabolites in the model using common-names, chemical formulae and KEGG IDs. Through this process additional 1001 InChI values were added to the model. The final model after manual curation (iSS1077 model) has 1067 metabolites with InChI values. Manual Curation of the genome-scale metabolic model Details of the manual curation stage are discussed in Article 2. About 179 published articles (see APPENDIX 5) were consulted to curate the model. Two examples of how experimental data was used in manual curation is explained here a) Example 1 : Comparison to experimentally observed behaviour -Kim et al 2015 Kim et al [177] in 2015 published their observations on the difference in the composition of fresh and spent medium from their T. brucei blood-stream form study. Hypoxanthine,xanthine, L-alanine, L-glutamic acid, L-glyceric acid, pyruvate, succinate and 2-oxoglutarate levels were observed to be higher in the spent medium (suggesting that these metabolites were secreted by the parasite cells) while L-tyrosine, L-ornithine, L-valine, L-methionine, Lglutamine, L-threonine, inosine, L-tryptophan and L-isoleucine levels were observed to be lower in the spent medium (suggesting that these metabolites were consumed by the parasite cells). Constraints on exchange reactions for these nutrients were manipulated to simulate observed behaviour. Lower bounds of reactions were set to greater than zero and upper bounds were set to lower than zero in order to constrain exchange reactions to forward and reverse directions respectively. The model was capable of supporting all additional constraints i.e. flux a flux through the biomass was possible, except those on Lglyceric acid exchange. Metabolic reasons for the release of L-glyceric acid from T. brucei into the medium could not be identified from published studies and hence the model could not be curated to factor in this observed behaviour. b) Example 2 : Forcing flux to simulate validated pathways -Trypanothione pathway Trypanothione is the Trypanosomatidae specific thiol used by the T. brucei parasites to control oxidative stress. The Trypanothione biosynthetic pathway has been proven to be essential in T. brucei [171, 178-181]. Flux was forced to flow through this pathway, based on the observations from published studies. However an FBA solution was not possible.Figure

Figure 23 -

 23 Figure 23-Trypanothione recycling in the metabolic model The final stage of the trypanothione pathway as described in the initial model (a) and the manually curated model (b). F1 represents the flux through trypanothione biosynthesis, F2 the flux through peroxide metabolism (involving Trypanothione) and F3 the flux through Trypanothione recycling. A drain of Trypanothione disulphide to the biomass was included in (b) and the flux through this reaction was represented by F4 = y

using both Man 5

 5 GlcNAc 2 -PP-Dol and Man 9 GlcNAc 2 -PP-Dol in protein-N-glycosylation (Figure 24 (17-18)) [27][182]. Man 5 GlcNAc 2 -PP-Dol was found to be more commonly used by blood-stream forms while Man 9 GlcNAc 2 -PP-Dol was found to be more commonly used by procyclic form parasites. TbALG3 gene was annotated (by Pathway Tools) to be responsible for both Man 4 GlcNAc 2 -PP-Dol Man 5 GlcNAc 2 -PP-Dol (Figure 24 (11)) and Man 5 GlcNAc 2 -PP-Dol  Man 6 GlcNAc 2 -PP-Dol (Figure 24 (13)). Since either Man 5 GlcNAc 2 -PP-Dol or Man 9 GlcNAc 2 -PP-Dol was required by T. brucei for protein N-glycosylation[27, 182], TbALG3 gene was

  published studies on protein-N-glycosylation in yeast [183], ALG11 was reported to be responsible for Man 4 GlcNAc 2 -PP-Dol  Man 5 GlcNAc 2 -PP-Dol (Figure24(11)). An ALG11 gene have been reported in T. brucei (Tb927.9.9200) in published studies[184]. Hence TbALG3 was replaced by TbALG11 as the enzyme responsible for catalyzing Man 4 GlcNAc 2 -PP-Dol  Man 5 GlcNAc 2 -PP-Dol (Figure 24 (11)) in TrypanoCyc. More updates were made to the
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 2426 Figure 24 -Protein N glycosylation in T. brucei

Figure 27 -

 27 Figure 27 -Visualization of fluxes on the genome-scale metabolic modelFlux distribution from FBA analysis is integrated with the manually laid-out iSS1077. The nodes are used to represent both reaction and metabolites. Green-coloured edges are used to represent metabolites consumed by the associated reactions and red-coloured edges are used to represent metabolites produced by the associated reactions. Transport reactions nodes are used to create virtual compartment boundaries. Each compartment is represented here by a coloured region.
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 28 Figure 28 -Contribution of essential nutrients in the iSS1077 model

D

  -glucose and Beta-D-glucose into their respective monophosphates. The expression of Hexokinase does not necessarily mean that both α-D-glucose and β-D-glucose is converted to α-D-glucose-6-phosphate and β-D-glucose-6-phosphate respectively as only one of these reactions being active (based on availability of α-D-glucose or β-D-glucose) will do. To circumvent this, I propose an algorithm that optimizes the solutions generated by the iMAT algorithm.

Figure 29 - 1 ) 2 )

 2912 Figure 29 -Optimizing iMAT results A, B, C, D, E, F, G, H, I, J, K and L are the reactions in a context specific subnetwork generated using the iMAT algorithm (a). Dashed lines are used to indicate reactions that are catalyzed by the same enzymes. Reactions coloured 'green' represents the reactions associated with expressed enzymes. The reference network (b) was calculated by minimizing flux through reactions associated with enzymes which are not known to be expressed. The optimized iMAT model (c) was then generated by comparing the original iMAT model with the reference model as described in the algorithm.

[

  149]. However since the secondary objective of this project (see Objectives) also required setting up a database on T. brucei metabolism, Pathway Tools[137] was the obvious tool of choice for genome-scale reconstruction. The COBRA package[159] with its multitude of algorithms and active user forums was selected as the tool for performing simulation and analyzing the genome-scale metabolic model. COBRApy[144] was chosen as the primary simulation tool since unlike its MATLAB counterpart it did not depend on a proprietary environment. Both Cytoscape [148] version 2 and version 3 were used for visualization and analysis because of their respective strengths. Cytoscape version 2 although being the older version was still used in this project since it had more community-developed-plugins available than its counterpart. It also had a better import feature for SBML files and attributes. Cytoscape 3 also lacked some basic functions in its library such as "degree of node" function which can be very useful in topology based analysis of the metabolic model.Standardizing the metabolite and reaction identifiers of theTrypanoCyc-based model was one the most time consuming stage of the reconstruction pipeline (second only to manual curation). Although, programming script were used to identify BiGG identifiers based on various attributes in the model such as ID, common name, formula, etc; the results had to be manually validated as mistakes in this step could lead to a bad model and hence incorrect predictions during simulations. Since the release of Pathway Tools 18.0 in March 2014, this issue has been solved for future researchers. This version incorporates the conversion of MetaCyc IDs to BiGG IDs into the "export reactions to sbml" function used to generate the TrypanoCyc-based model. To improve the reusability of metabolic model, the MIRIAM guidelines[101] encourages the use of database identifiers to link metabolites and reactions in the model to objects in standard databases as explained earlier (see standardization and model format in Section 1.4.3). This system is quite popular among model repositories such as BioModels[109]. However, the same metabolite can be described by two or more different databases in different models. As an example, consider the metabolite water in three models -model1 , model 2 and model 3. If model 1, model 2 and model 3 associates the metabolite with MetaCyc (ID = WATER), KEGG (ID = C00001) and ChEBI (ID= CHEBI:15377) respectively, in order to compare these models, a web service performing conversion of IDs between these 3 databases need to be used. In addition to this, the same databases can have multiple IDs for the same metabolite (ex: 11 IDs in ChEBI point to H 2 O). To overcome this issue in the T. brucei model, InChI values of the metabolites (which are unique for each metabolite) were considered as the primary ID/attribute to compare metabolites and map experimental data. Visualization of metabolic networks and flux distributions are useful in understanding the overall structure of the metabolic network. Genome-scale metabolic networks such as the iSS1077 comprise of hundreds of metabolites and reactions. Visualizing very large networks is not useful unless the network layout is simple and intuitive. Many tools provide algorithms for automated layout of metabolic networks. The organic layout in Cytoscape[148] uses metabolic network topology attributes to perform the automated layout. Other tools such as MetDraw[192] uses pathway (or subsystem) annotations on the reactions in the model to develop a more intuitive layout of the metabolic network. However the results of the organic layout are still too complex for visual inference and pathway based approaches (such as MetDraw) is unable to associate transport reactions resulting in a layout of subnetworks.

(

  A, B, C and D) but only 3 of them at once. In other words, if based on one FBA solution, N contributes to A, B and C; then it is not involved in the synthesis of D in that solution. If in another FBA solution, N contributes to A, B and D; then it is not involved in synthesis of C in that solution and so on. The contribution of N to the biomass in the model is hence A.B.C or A.B.D or A.C.D or B.C.D. The algorithm used in this project is capable of finding the solutions A.B.C, A.B.D and A.C.D but will not be able to predict B.C.D as a solution. A detailed analysis

  database and not only those from one species. Organism-specific databases such as TrypanoCyc on the other hand, focus their attention on the curation of only one organism and hence are capable of providing more updated information on the organism to the user much faster than the generic databases. For example, known to possess an arginase gene
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 3031 Figure 30 -Search result for triosephosphate isomerise using new gene ID in popular databases a) Search result for Tb927.11.5520 in GenBank c) Search result for Tb927.11.5520 in ENA b) search result for Tb927.11.5520 in KEGG d) Search results for Tb927.11.5520 in TrypanoCyc

  could be fatal to the parasite. Information such as this can be extremely valuable to researchers aiming to develop new measures to control T.brucei growth. Generic databases such as KEGG still associate the gene product with arginase activity (see Figure31(a)) while organism specific databases such as TrypanoCyc manages to keep up-to-date thanks to its community of annotators (see Figure31(b-c)). Additionally, organism-specific databases also hold information specific to the organism such as developmental stage specific activity of enzymes. Since these properties are specific to few organisms, generic databases do not maintain this information. Finally, organism specific databases such as TrypanoCyc are constantly under curation, based on the latest information, with the help of annotation teams comprising of experts actively involved in research are hence extremely important in propagating up-to-date information on the organism to the public.
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 32 Figure 32-Gene Ontology information on TriTrypDB
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 33 Figure 33 -Suggestion to include context specific constraints in sbml modelContext specific information such as developmental stage specific activity of reactions can currently only be stored in SBML notes (a). By allowing SBML reactions to have multiple "kinetic law" nodes, this information could be handled without SBML notes (b).
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 34 Figure 34 -Trend in published studies containing the term "brucei" from Pubmed
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  step in genome-scale reconstruction involves modifying the model draft so that it better represents the organism in real life. It involves adding reactions missing in the draft and removing reactions known not to exist in the organism of interest. The manual curation stage involves re-evaluation and refine-ment based on literature and experimental observations. The manual curation stage is in essence a never-ending process. It is usually coupled with validation of the model with experimental data in order to identify how well the model is able to represent the actual metabolism. Another important part of manual cura-tion is the addition of metadata to the model such as InChI and SMILES iden-tifiers to the metabolites and Enzyme Commission (EC) number, and pathway and enzyme localization information to the reactions. With the recent increase in genome-scale metabolic reconstructions, many detailed protocols for manual Q3 curation have been published [22] (Figure 21.1). A simplified representation of the steps involved in genome-scale metabolic Q4 reconstruction, model validation, and model prediction.
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 23211 Figure 21.1 Steps in genome-scale metabolic model reconstruction and prediction.
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  are examples of web resources generated by the Pathway/Genome navigator. With the introduction of MetaFlux [9], Pathway Tools is also now capable of developing flux balance models. ❦ 21.2 Genome-Scale Reconstruction 487
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  Trim Size: 170mm x 244mm Muller c21.tex V1 -03/26/2016 11:49am Page 490 ❦ ❦ find alternative solutions [3] (Figure 21.2). This figure describes the summary of FBA process. Here, we have considered a simple metabolic model (i) with six metabolites (A, B, C, D, E, and F) and four reactions (R1, R2, R3, and R4) (ii), summarized in the stoichiometric matrix (S-matrix) (iii). Flux values (f 1, f 2, f 3, f 4) for the reactions have maximum and minimum constraints, [ f 1 max , f 1 min ], [ f 2 max , f 2 min ], [ f 3 max , f 3 min ], and [ f 4 max , f 4 min ], respectively (iv). As for the objective function, we have considered the maximization of the production of metabolite E. Using this S-matrix, linear equations of the fluxes are determined (v). Linear equations and constraints are used to determine the solution space. The optimum solution (vi), in this case, is the solution with maximum permissible flux through the objective function f 2. 165 21.3 Metabolic Model Simulation 491 ❦
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Parasite Metabolism and Identifying Drug Targets through Constraint-based Modelling

  This section shares much of its content with the chapter, "Understanding Protozoan " authored by Francis Isidore Totanes, Sanu Shameer, David R. Westhead, Fabien Jourdan and Glenn A. McConkey (see APPENDIX 1 for the abstract and complete text). The chapter was accepted as part of the book titled "

Analysis of parasite biology -from metabolism to drug discovery".

  The book is edited by S. Müller, R. Cerdan and O. Radulescu and will be volume 7 of the Wiley

Book Series, Drug Discovery in Infectious Diseases.

  

  Trypanosoma cruzi strain CLBrenner core metabolism developed byRoberts et al. [113]. In this study, two models were created for T. cruzi. The full model was based on direct genetic and biochemical data involving T. cruzi as well as data on other related species obtained from published literature.

	It takes into account 215 genes and 162 reactions in four subcellular compartments. Another
	model simulated the metabolic network of the epimastigote form of the parasite. Proteomic
	data from epimastigote cultures was obtained to identify specific proteins that are present in
	this stage of the parasite. Proteins absent in the epimastigote are removed from the full
	model by forcing a null flux into the involved reactions. Redirections of metabolic fluxes
	through certain pathways in the epimastigote model was observed as a result of the absence
	of trypomastigote and amastigote stage-specific reactions. The model was validated by
	comparing the predicted metabolic by-products in aerobic and anaerobic conditions with
	data presented in published literature. By-products observed in the model were found to be
	mostly consistent with data reported in literature.
	Single reaction knockouts were predicted for each reaction in the full and the
	epimastigote models. A greater number of lethal reaction knockouts (40 reactions) were
	observed in the epimastigote model compared with that of the full model (26 reactions).
	This has been associated with the limitations imposed by the redirection of pathways in the
	absence of a number of reactions in the epimastigote model. Double reaction knockouts
	were also simulated in both models. Similarly, the epimastigote model yielded greater
	number of trivial and non-trivial deletions, 2,880 and 183, respectively, as compared with
	the full model (1,872 and 96, respectively). The predicted essential reactions were then
	compared with published experimental data species related to T. cruzi to further validate the
	results of the metabolic model. Forty-six out of the 58 published gene targets available were
	consistent with the results of the metabolic network. All non-lethal reactions in published
	literature were consistent with the results of the network [113].

.6 Applications of genome-scale metabolic models in identifying potential drug targets

  

	b) Other Analytical approaches for genome-scale metabolic models As mentioned earlier many more approaches have been used to analyze constraint-based models. 146 analyses have been deployed in the COBRA toolbox alone by 2012 [114]. Regulatory FBA (rFBA) uses Boolean constraints on reaction fluxes to integrate constraint based models (CBMs) with metabolic regulation [122]. Dynamic FBA (DFBA) uses non-linear programming or a series of linear programming to perform dynamic simulation of CBMs [123]. Flux coupling analysis can be used to predict the dependency of fluxes with each other in CBMs [124]. Minimal reaction set algorithm uses Mixed Integer Linear Programming (MILP) to identify minimal sets of reactions capable of supporting a defined value of biomass flux in CBMs [125]. Gene nutrient interaction analyzes the dependence of the essentiality of genes with the availability of various nutrients in the medium [126]. Techniques such as integrative Metabolic Analysis Tool (iMAT) [127] and Gene Inactivity Moderated by Metabolism and Expression (GIMME) [128] helps generate context specific metabolic models from genome-scale metabolic models using data from gene expression studies. GIM3E or Gene Inactivation Moderated by Metabolism, Metabolomics and Expression is an extension of the GIMME method that is capable of also using metabolomics data along with expression data to generate context based models. The modelling community is very much actively involved in developing new methods and optimizing existing techniques to analyze different aspects of CBMs. The application of these tools to various CBMs has improved greatly owing to increased popularity of genome-scale metabolic reconstruction and the systems biology approach to studying metabolism. target protein or enzyme must be necessary for the survival of the pathogenic organism. In relation to the metabolic network, the protein is often involved in pathways ultimately leading to the production of biomass components. Enzymes involved in carbon, lipid, nucleotide or protein metabolism are potential targets [89]. Moreover, the druggability of a protein target, which is defined as the likelihood of altering the function of the target upon exposure to a given compound, is assessed through a number of ways. An important characteristic of a druggable target is the presence of potential binding sites in the three-dimensional structure of the protein. These binding sites can further be assessed based on their shape, surface lipophilicity and predicted affinity for drug compounds [129]. Similarities in protein structures with known drug targets, also referred to as 'guilt by association', have also been utilised in determining the druggability of a target [130]. Comparison with homologous targets in other pathogens has also been used to identify potential targets with 1.4Potential drug targets in pathogens should meet several important criteria. Primarily, the similar binding sites and possible ligand interactions, particularly with antibiotics [131].

Table 1 -Features of COBRA Toolbox (version 2.0) Feature Details

 1 

	Flux balance analysis	Flux variability, Gene deletion studies, Geometric FBA, Growth-rate optimization, Loop law, MOMA, Robustness analysis
	Fluxomics	C13 data fitting and flux estimation, Experimental design
	Gap filling	detectDeadEnds, gapFind, growthExpMatch
	Input/output	Read/write SBML (level 2, version 4), SBML (level 3 fbc)
	Metabolic engineering	GDLS, OptGene, OptKnock

Reconstruction

Create submodels using omics data, Model curation tools Sampling Artificial centering hit and run (ACHR) sampling, Updated ACHR sampling (parallel/multipoint) Test suite Examples are provided for testing, Verify installations Visualization Display maps, Overlay data (flux distributions, flux variability)

Table 2 -Summary of databases useful in model reconstruction

 2 

	Database	Biochemical data	Pathways	Proteins	Gene	Experimental data	Metabolic models	Metabolite	Organism specific	Reference

Table 3 -Popular tools used to analyze contain-based models

 3 

	Project name	Operating system	Programming language	License	Project home page	Reference
	Acorn	Platform independent	Java, C++	GNU GPL v2	http://code.google.com/p/a-c-o-rn/	[147]
	COBRA Toolbox v2.0	Platform independent	MATLAB	GNU GPL version 3	https://opencobra.github.io/cobratoolbox/	[159]
	COBRApy v0.2.1	Platform independent, including Java	Python (≥2.6) / Jython (≥2.5)	GNU GPL version 3 or later	https://opencobra.github.io/cobrapy/	[144]
	OptFlux	Platform independent	Java	GNU GPL version 3	http://www.optflux.org	[146]
	SurreyFBA	Platform independent	C++	GNU-GPL	http://sysbio3.fhms.surrey.ac.uk/	[160]
	Sybil	Platform independent	R statistical environment	GPL-3		

http://www.cs.hhu.de/en/researchgroups/bioinformatics/software/sybil.html

[161] 

Table 1 .

 1 Description of the confidence score system used in TrypanoCyc to evaluate the level of curation of each reaction

	Reconstruction	Compartments	Life cycle stages	Pathways	Enzymatic reactions	Unique metabolites
	Draft reconstruction	1	0	238	1120	796
	2008					
	KEGG August 2014	1	0	61	656	646
	TrypanoCyc August	9	4	209	1025	842
	2014					

Table 2 .

 2 Overview of TrypanoCyc content before and after curation and comparison with the KEGG database

	Downloaded from
	http://nar.oxfordjournals.org/ at INRA Institut National de la Recherche Agronomique on
	February
	2,
	2015

ure 1 shows the webpage for the pentose phosphate pathway enzyme, 6-phosphogluconate dehydrogenase (EC.

1.1.1.44)

.

Table 1 :

 1 Comparison of results from published studies with predictions from the iSS1077 model

	Gene/Name	T. brucei genes	Deletion lethal as	Deletion
			observed in studies?	predicted
				as lethal?
	ELO1 Elongase 1	Tb927.7.4160	No (both) [5]	false
	ELO2 Elongase 2	Tb927.7.4170	No (both) [5]	false
	ELO3 Elongase 3	Tb927.7.4180	No (both) [5]	false
	ELO4 Elongase 4	Tb927.5.4530	No (BSF) [5]	-
	ASC5 Acyl-CoA synthetase 5	Tb927.10.3260	No (both) [5]	false
	ACBP Acyl-CoA binding protein Tb927.4.2010 & Tb927.11.12830 BSF[5]	-
	CK Choline kinase 2	Tb927.11.2090	Both[5]	true
	CCT Choline-phosphate	Tb927.10.12810	PRO[5]	true
	cytidylyltransferase			
	CPT Choline phosphotransferase Tb927.10.8900	PRO[5]	true
	EK Ethanolamine kinase 1	Tb927.5.1140	PRO[5]	true
	ECT Ethanolamine-phosphate	Tb927.11.14140	Both[5]	true
	cytidylyltransferase			
	EPT Ethanolamine	Tb927.10.13290	Both[5]	true
	phosphotransferase			
	CTPS CTP synthase	Tb927.1.1240	BSF[5]	false
	CLS Cardolipin synthase	Tb927.4.2560	PRO[5]	false
	PGPS	Tb927.8.1720	PRO[5]	true
	Phosphatidylglycerophosphate			
	synthase			
	PSS/PSS2 PS synthase/PS	Tb927.7.3760	Both[5]	true
	synthase-2			

Table 2 : Using published gene essentiality data to compare predictions of BSF models built from different data sources

 2 

	Dolichol kinase	Tb927.9.12790	Both[5]	false
	DPMI Dol-P-Man synthase	Tb927.10.4700	Both[5]	false
	CHW8 Dol-PP phosphatase	Tb927.6.1820	BSF[5]	false
	(PIG-L) GlcNAc-PI de-N-	Tb927.11.12080	BSF[5]	false
	acetylase			
	TbGPI10	Tb927.10.5560	BSF[5]	-
	TbGPIdeAc2	Tb927.3.2610	BSF[5]	-
	TbGUP1 GPI remodellase	Tb927.10.15910	No (BSF) [5]	false
	GPI transamidase subunit 8	Tb927.10.13860	BSF[5]	-
	GPI transamidase subunit Gaa1 Tb927.10.210	BSF[5]	-
	MDD Mevalonate-diphosphate	Tb927.10.13560	BSF[5]	true
	decarboxylase			
	IDI Isopentenyl-diphosphate	Tb927.9.9000	BSF[5]	true
	isomerase			

Table 4 -prediction accuracy of iMAT and optimized iMAT models built from Urbaniak et al

 4 [168] 

	Predicted lethality (green -predicted correct / black -prediction
	wrong)

Table 5 Prediction accuracy of iMAT and optimized iMAT models built from Gunasekara et al

 5 Predicted lethality (green -predicted correct / blackprediction wrong)

			Deletion lethal						
	Enzyme Name	Gene ID	according to published	iMAT10	Optimized iMAT10	iMAT50	Optimized iMAT 50	iMAT90	Optimized iMAT 90
			studies?						
	ELO1 Elongase 1	Tb927.7.4160	No (both)	false	-	false	false	true	true
	ELO2 Elongase 2	Tb927.7.4170	No (both)	false	-	false	false	false	-
	ELO3 Elongase 3	Tb927.7.4180	No (both)	false	-	false	false	false	-
	ASC5 Acyl-CoA synthetase 5	Tb927.10.3260	No (both)	false	false	false	false	false	false
	CK Choline kinase 2	Tb927.11.2090	Both	true	true	true	true	true	true
	ECT Ethanolamine-phosphate cytidylyltransferase	Tb927.11.14140	Both	true	true	true	true	true	true
	EPT Ethanolamine phosphotransferase	Tb927.10.13290	Both	true	true	true	true	true	true
	CTPS CTP synthase	Tb927.1.1240	BSF	-	-	-	-	-	-
	PSS/PSS2 PS synthase/PS synthase-2	Tb927.7.3760	Both	true	true	true	true	true	true
	PSD Phosphatidylserine decarboxylase	Tb927.9.10080	BSF	true	true	true	true	true	true
	INO1 Inositol-3-phosphate synthase	Tb927.10.7110	BSF	true	true	true	true	true	true
	PIS Phosphatidylinositol synthase	Tb927.9.1610	Both	true	true	true	true	true	true
	GPI-PLC GPI phospholipase C	Tb927.2.6000	No (BSF)	false	false	false	false	false	false
	SMase Neutral sphingomyelinase	Tb927.5.3710	Both	-	-	-	-	-	-
	PLA1 Phospholipase A1	Tb927.1.4830	No (both)	-	-	-	-	-	-
	LPLA1 Lyso-phospholipase A1	Tb927.9.12700	No (both)	-	-	-	-	-	-
	ALG3 Dol-P-Man -1,3-mannosyltransferase	Tb927.10.6530	No (BSF)	false	-	-	-	-	-
	GDMPP GDP-Man pyrophosphorylase	Tb927.8.2050	BSF	true	true	true	true	true	true
	DOLK Dolichol kinase	Tb927.9.12790	Both	true	true	true	true	true	true
	DPMI Dol-P-Man synthase	Tb927.10.4700	Both	false	false	false	false	false	false
	CHW8 Dol-PP phosphatase	Tb927.6.1820	BSF	true	true	true	true	true	true
	(PIG-L) GlcNAc-PI de-N-acetylase	Tb927.11.12080	BSF	true	true	true	true	true	true
	TbGUP1 GPI remodellase	Tb927.10.15910	No (BSF)	false	false	false	-	false	-
	MDD Mevalonate-diphosphate decarboxylase	Tb927.10.13560	BSF	true	true	true	true	true	true
	IDI Isopentenyl-diphosphate isomerase	Tb927.9.9000	BSF	true	true	true	true	true	true
	FPS Farnesyl-pyrophosphate synthase	Tb927.7.3360	BSF	true	true	true	true	true	true
	PFT Protein farnesyltransferase -subunit	Tb927.3.4490	BSF	-	-	-	-	-	-
	Trypanothione reducatase	Tb927.10.10390	BSF	true	true	true	true	true	true
	Triose phosphate isomerase	Tb927.11.5520 & Tb927.9.9820	BSF	false	false	false	false	false	false
	Phosphatidyl inositol phospholipase C	Tb927.11.5970	No (both)	false	-	false	-	false	-
	Ornithine Decarboxylase	Tb927.11.13730	BSF	true	true	true	true	true	true
	Spermidine Synthase	Tb927.9.7770	BSF	true	true	true	true	true	true
	GS Glutathione sythetase	Tb927.7.4000	BSF	true	true	true	true	true	true
	Arginine transport (a.a transport)	Tb927.11.6680	Both	true	true	true	true	true	true
		Tb927.10.7090 & Tb927.9.12550							
	Alternative oxidase & Glycerol kinase	& Tb927.9.12570 & Tb927.9.12590 & Tb927.9.12610	BSF	false	false	false	false	false	false
		& Tb927.9.12630							
	dihydroorotate dehydrogenase, putative	Tb927.5.3830	Both	true	true	-	-	-	-
	dihydrofolate reductase-thymidylate synthase	Tb927.7.5480	BSF	true	true	true	true	true	true
	Aldolase	Tb927.10.5620		false	false	false	false	false	false
	Glyceraldehyde-3-phosphate dehydrogenase	Tb927.10.6880 & Tb927.6.4280 & Tb927.6.4300 & Tb927.9.9820		false	false	false	false	false	true
	PFK Phosphofructokinase	Tb927.3.3270	BSF	false	false	false	false	false	false
	PyK Pyruvate Kinase	Tb927.10.14140		false	false	false	false	false	false
	HK Hexokinase	Tb927.10.2010 & Tb927.10.2020	BSF	false	false	true	true	true	true
	PMM Phosphomannomutase	Tb927.10.6440		true	true	true	true	true	true
	GNA1 Glucosamine 6-phosphate N-acetyltransferase	Tb927.11.11100	BSF	-	-	-	-	true	true
	UAP UDP-N-acetylglucosamine pyrophosphorylase	Tb927.11.2520	BSF	true	true	true	true	true	true
	PEPCK Phosphoenol pyruvate carboxykinase	Tb927.2.4210	BSF, No(PRO)	-	-	-	-	-	-
	6PGDH 6-phosphogluconate dehydrogenase	Tb927.9.12110	BSF	false	false	false	false	false	false
	PDH pyruvate dehydrogenase and TDH throenine dehydrogenase	Tb927.10.12700 & Tb927.3.1790 & Tb927.6.2790	BSF	false	-	false	false	true	true
			no(BSF), no(						
	HSK Homoserinekinase	Tb927.6.4430	in PRO in the presence of	-	-	-	-	-	-
			thr)						
	SLS1+SLS2+SLS3+SLS4	Tb927.9.9410 & Tb927.9.9400 & Tb927.9.9390 & Tb927.9.9380	both	true	true	true	true	true	true
	Casiene Kinase	Tb927.5.800	BSF	false	false	false	false	false	false
	galE UDP-galactose 4-epimerase	Tb927.11.2730	BSF	true	true	true	true	true	true
	CDS CDP-DAG synthase	Tb927.7.220	BSF	true	true	true	true	true	true
	ARD1 N-acetyltransferase subunit	Tb927.11.4530	Both	-	-	-	-	-	-
	GMPS GMP synthase	Tb927.7.2100	BSF	-	-	-	-	-	-
	PTR1 Pteridine reductase 1	Tb927.8.2210	BSF	-	-	-	-	-	-
	Prediction Accuracy			68.5 %	68.5 %	68.5 %	68.5 %	70.4 %	72.2 %

[169] 

Table 6 Comparison of prediction accuracy of iMAT and optimized iMAT models built from Vasquez et al [167]

 6 Predicted lethality (green -predicted correct / blackprediction wrong)

			Deletion lethal						
	Enzyme Name	Gene ID	according to published	iMAT10	Optimized iMAT 10	iMAT50	Optimized iMAT 50	iMAT90	Optimized iMAT 90
			studies?						
	ELO1 Elongase 1	Tb927.7.4160	No (both)	false	true	false	true	false	false
	ELO2 Elongase 2	Tb927.7.4170	No (both)	false	false	false	false	false	false
	ELO3 Elongase 3	Tb927.7.4180	No (both)	false	false	false	false	false	false
	ASC5 Acyl-CoA synthetase 5	Tb927.10.3260	No (both)	false	false	false	false	false	false
	CK Choline kinase 2	Tb927.11.2090	Both	true	true	true	true	true	true
	ECT Ethanolamine-phosphate cytidylyltransferase	Tb927.11.14140	Both	true	true	true	true	true	true
	EPT Ethanolamine phosphotransferase	Tb927.10.13290	Both	true	true	true	true	true	true
	CTPS CTP synthase	Tb927.1.1240	BSF	false	false	false	false	false	false
	PSS/PSS2 PS synthase/PS synthase-2	Tb927.7.3760	Both	true	true	true	true	true	true
	PSD Phosphatidylserine decarboxylase	Tb927.9.10080	BSF	true	true	true	true	true	true
	INO1 Inositol-3-phosphate synthase	Tb927.10.7110	BSF	true	true	true	true	true	true
	PIS Phosphatidylinositol synthase	Tb927.9.1610	Both	true	true	true	true	true	true
	GPI-PLC GPI phospholipase C	Tb927.2.6000	No (BSF)	false	false	false	false	false	false
	SMase Neutral sphingomyelinase	Tb927.5.3710	Both	false	false	false	false	false	false
	PLA1 Phospholipase A1	Tb927.1.4830	No (both)	-	-	-	-	-	-
	LPLA1 Lyso-phospholipase A1	Tb927.9.12700	No (both)	false	false	false	false	false	false
	ALG3 Dol-P-Man -1,3-mannosyltransferase	Tb927.10.6530	No (BSF)	false	-	false	-	false	-
	GDMPP GDP-Man pyrophosphorylase	Tb927.8.2050	BSF	true	true	true	true	true	true
	DOLK Dolichol kinase	Tb927.9.12790	Both	true	true	true	true	true	true
	DPMI Dol-P-Man synthase	Tb927.10.4700	Both	false	false	false	false	false	false
	CHW8 Dol-PP phosphatase	Tb927.6.1820	BSF	true	true	true	true	true	true
	(PIG-L) GlcNAc-PI de-N-acetylase	Tb927.11.12080	BSF	true	true	true	true	true	true
	TbGUP1 GPI remodellase	Tb927.10.15910	No (BSF)	false	false	false	false	false	false
	MDD Mevalonate-diphosphate decarboxylase	Tb927.10.13560	BSF	true	true	true	true	true	true
	IDI Isopentenyl-diphosphate isomerase	Tb927.9.9000	BSF	true	true	true	true	true	true
	FPS Farnesyl-pyrophosphate synthase	Tb927.7.3360	BSF	true	true	true	true	true	true
	PFT Protein farnesyltransferase -subunit	Tb927.3.4490	BSF	-	-	-	-	-	-
	Trypanothione reducatase	Tb927.10.10390	BSF	true	true	true	true	true	true
	Triose phosphate isomerase	Tb927.11.5520 & Tb927.9.9820	BSF	false	false	false	false	false	false
	Phosphatidyl inositol phospholipase C	Tb927.11.5970	No (both)	false	false	false	false	false	false
	Ornithine Decarboxylase	Tb927.11.13730	BSF	true	true	true	true	true	true
	Spermidine Synthase	Tb927.9.7770	BSF	true	true	true	true	true	true
	GS Glutathione sythetase	Tb927.7.4000	BSF	true	true	true	true	true	true
	Arginine transport (a.a transport)	Tb927.11.6680	Both	true	true	true	true	true	true
		Tb927.10.7090 & Tb927.9.12550							
	Alternative oxidase & Glycerol kinase	& Tb927.9.12570 & Tb927.9.12590 & Tb927.9.12610	BSF	false	false	false	false	false	false
		& Tb927.9.12630							
	dihydroorotate dehydrogenase, putative	Tb927.5.3830	Both	false	false	true	true	false	false
	dihydrofolate reductase-thymidylate synthase	Tb927.7.5480	BSF	true	true	true	true	true	true
	aldolase	Tb927.10.5620		false	true	false	false	true	true
	Glyceraldehyde-3-phosphate dehydrogenase	Tb927.10.6880 & Tb927.6.4280 & Tb927.6.4300 & Tb927.9.9820		false	false	false	false	false	false
	PFK Phosphofructokinase	Tb927.3.3270	BSF	false	true	false	false	true	true
	PyK Pyruvate Kinase	Tb927.10.14140		false	false	false	false	false	false
	HK Hexokinase	Tb927.10.2010 & Tb927.10.2020	BSF	true	true	true	true	false	false
	PMM Phosphomannomutase	Tb927.10.6440		true	true	true	true	true	true
	GNA1 Glucosamine 6-phosphate N-acetyltransferase	Tb927.11.11100	BSF	true	true	true	true	true	true
	UAP UDP-N-acetylglucosamine pyrophosphorylase	Tb927.11.2520	BSF	true	true	true	true	true	true
	PEPCK Phosphoenol pyruvate carboxykinase	Tb927.2.4210	BSF, No(PRO)	true	true	false	true	false	false
	6PGDH 6-phosphogluconate dehydrogenase	Tb927.9.12110	BSF	false	true	false	false	false	false
	PDH pyruvate dehydrogenase and TDH throenine dehydrogenase	Tb927.10.12700 & Tb927.3.1790 & Tb927.6.2790	BSF	false	false	false	false	false	false
			no(BSF), no(						
	HSK Homoserinekinase	Tb927.6.4430	in PRO in the presence of	false	false	false	false	false	false
			thr)						
	SLS1+SLS2+SLS3+SLS4	Tb927.9.9410 & Tb927.9.9400 & Tb927.9.9390 & Tb927.9.9380	both	true	true	true	true	true	true
	Casiene Kinase	Tb927.5.800	BSF	false	false	false	false	false	false
	galE UDP-galactose 4-epimerase	Tb927.11.2730	BSF	true	true	true	true	true	true
	CDS CDP-DAG synthase	Tb927.7.220	BSF	true	true	true	true	true	true
	ARD1 N-acetyltransferase subunit	Tb927.11.4530	Both	-	-	-	-	-	-
	GMPS GMP synthase	Tb927.7.2100	BSF	-	-	-	-	-	-
	PTR1 Pteridine reductase 1	Tb927.8.2210	BSF	-	-	-	-	-	-

Table 7 -Prediction accuracy of iMAT and optimized iMAT models built from TrypanoCyc comments

 7 Predicted lethality (green -predicted correct / blackprediction wrong) ModelSEED is a very powerful tool which can be used to generate prokaryotic (and more recently plant[190]) genome-scale models. It uses the RAST[191] server to annotate genes before building the model. However RAST currently does not support the annotation of eukaryotic genomes. Nevertheless there is an annotated T. brucei genome in SEED which can be accessed through the Seed Viewer portal (http://rast.nmpdr.org/seedviewer.cgi).

			Deletion lethal						
	Enzyme Name	Gene ID	according to published	iMAT10	Optimized iMAT 10	iMAT50	Optimized iMAT 50	iMAT90	Optimized iMAT 90
			studies?						
	ELO1 Elongase 1	Tb927.7.4160	No (both)	false	false	true	true	true	true
	ELO2 Elongase 2	Tb927.7.4170	No (both)	false	false	false	false	false	-
	ELO3 Elongase 3	Tb927.7.4180	No (both)	false	false	false	false	false	-
	ASC5 Acyl-CoA synthetase 5	Tb927.10.3260	No (both)	false	false	false	false	false	false
	CK Choline kinase 2	Tb927.11.2090	Both	true	true	true	true	true	true
	ECT Ethanolamine-phosphate cytidylyltransferase	Tb927.11.14140	Both	true	true	true	true	true	true
	EPT Ethanolamine phosphotransferase	Tb927.10.13290	Both	true	true	true	true	true	true
	CTPS CTP synthase	Tb927.1.1240	BSF	false	false	false	false	false	false
	PSS/PSS2 PS synthase/PS synthase-2	Tb927.7.3760	Both	true	true	true	true	true	true
	PSD Phosphatidylserine decarboxylase	Tb927.9.10080	BSF	true	true	true	true	true	true
	INO1 Inositol-3-phosphate synthase	Tb927.10.7110	BSF	true	true	true	true	true	true
	PIS Phosphatidylinositol synthase	Tb927.9.1610	Both	true	true	true	true	true	true
	GPI-PLC GPI phospholipase C	Tb927.2.6000	No (BSF)	-	-	-	-	-	-
	SMase Neutral sphingomyelinase	Tb927.5.3710	Both	-	-	-	-	-	-
	PLA1 Phospholipase A1	Tb927.1.4830	No (both)	-	-	-	-	-	-
	LPLA1 Lyso-phospholipase A1	Tb927.9.12700	No (both)	-	-	false	false	-	-
	ALG3 Dol-P-Man -1,3-mannosyltransferase	Tb927.10.6530	No (BSF)	false	false	false	false	false	false
	GDMPP GDP-Man pyrophosphorylase	Tb927.8.2050	BSF	true	true	true	true	true	true
	DOLK Dolichol kinase	Tb927.9.12790	Both	true	true	true	true	true	true
	DPMI Dol-P-Man synthase	Tb927.10.4700	Both	false	false	false	false	false	false
	CHW8 Dol-PP phosphatase	Tb927.6.1820	BSF	true	true	true	true	true	true
	(PIG-L) GlcNAc-PI de-N-acetylase	Tb927.11.12080	BSF	true	true	true	true	true	true
	TbGUP1 GPI remodellase	Tb927.10.15910	No (BSF)	false	false	-	-	-	-
	MDD Mevalonate-diphosphate decarboxylase	Tb927.10.13560	BSF	true	true	true	true	true	true
	IDI Isopentenyl-diphosphate isomerase	Tb927.9.9000	BSF	true	true	true	true	true	true
	FPS Farnesyl-pyrophosphate synthase	Tb927.7.3360	BSF	true	true	true	true	true	true
	PFT Protein farnesyltransferase -subunit	Tb927.3.4490	BSF	-	-	-	-	-	-
	Trypanothione reducatase	Tb927.10.10390	BSF	true	true	true	true	true	true
	Triose phosphate isomerase	Tb927.11.5520 & Tb927.9.9820	BSF	false	true	false	false	false	false
	Phosphatidyl inositol phospholipase C	Tb927.11.5970	No (both)	false	false	false	false	false	false
	Ornithine Decarboxylase	Tb927.11.13730	BSF	true	true	true	true	true	true
	Spermidine Synthase	Tb927.9.7770	BSF	true	true	true	true	true	true
	GS Glutathione sythetase	Tb927.7.4000	BSF	true	true	true	true	true	true
	Arginine transport (a.a transport)	Tb927.11.6680	Both	true	true	true	true	true	true
		Tb927.10.7090 & Tb927.9.12550							
	Alternative oxidase & Glycerol kinase	& Tb927.9.12570 & Tb927.9.12590 & Tb927.9.12610	BSF	true	true	false	true	false	false
		& Tb927.9.12630							
	dihydroorotate dehydrogenase, putative	Tb927.5.3830	Both	true	true	false	false	false	true
	dihydrofolate reductase-thymidylate synthase	Tb927.7.5480	BSF	true	true	true	true	true	true
	aldolase	Tb927.10.5620	BSF	false	true	false	false	false	false
	Glyceraldehyde-3-phosphate dehydrogenase	Tb927.10.6880 & Tb927.6.4280 & Tb927.6.4300 & Tb927.9.9820	BSF	false	false	false	false	false	true
	PFK Phosphofructokinase	Tb927.3.3270	BSF	-	-	-	-	false	false
	PyK Pyruvate Kinase	Tb927.10.14140	BOTH	false	false	false	false	false	false
	HK Hexokinase	Tb927.10.2010 & Tb927.10.2020	BSF	true	true	true	true	true	true
	PMM Phosphomannomutase	Tb927.10.6440	BSF	true	true	true	true	true	true
	GNA1 Glucosamine 6-phosphate N-acetyltransferase	Tb927.11.11100	BSF	false	-	false	true	false	-
	UAP UDP-N-acetylglucosamine pyrophosphorylase	Tb927.11.2520	BSF	true	true	true	true	true	true
	PEPCK Phosphoenol pyruvate carboxykinase	Tb927.2.4210	BSF, No(PRO)	true	true	true	true	true	true
	6PGDH 6-phosphogluconate dehydrogenase	Tb927.9.12110	BSF	true	true	false	false	false	false
	PDH pyruvate dehydrogenase and TDH throenine dehydrogenase	Tb927.10.12700 & Tb927.3.1790 & Tb927.6.2790	BSF	false	false	false	false	false	false
			no(BSF), no(						
	HSK Homoserinekinase	Tb927.6.4430	in PRO in the presence of	-	-	-	-	-	-
			thr)						
	SLS1+SLS2+SLS3+SLS4	Tb927.9.9410 & Tb927.9.9400 & Tb927.9.9390 & Tb927.9.9380	both	true	true	true	true	true	true
	Casiene Kinase	Tb927.5.800	BSF	-	-	-	-	-	-
	galE UDP-galactose 4-epimerase	Tb927.11.2730	BSF	true	true	true	true	true	true
	CDS CDP-DAG synthase	Tb927.7.220	BSF	true	true	true	true	true	true
	ARD1 N-acetyltransferase subunit	Tb927.11.4530	Both	-	-	-	-	-	-
	GMPS GMP synthase	Tb927.7.2100	BSF	-	-	-	-	-	-

Table 4 -

 4 7) and prediction results were more consistent with published data. Nevertheless, more work need to be done to evaluate the efficiency of this algorithm. The measure of true positives, true negatives, false positives and false negatives in gene essentiality predictions is one way to determine the quality of the algorithm. Another interesting point to note is that all optimized iMAT models have smaller number of reactions than the original iMAT models. Gene essentiality is directly related to the availability of alternate pathways and so smaller number of reactions is likely to improve the essentiality of genes. Validation techniques other than essential gene studies have to be employed to determine if the optimized iMAT models are better in representing BSF behaviour than the original iMAT models. The limitation of iMAT algorithm discussed in this study, can also be overcome with help of more information such as metabolomic data. The GIM3E algorithm[194] uses metabolomics and expression data gathered from the same culture to develop stage specific models. A comparison of the iMAT models, optimized iMAT models and respective GIM3E models should help in understanding the strengths and weaknesses of the different algorithms.

  T. brucei genome in 2005, the rise in popularity of analytical techniques at the genomic, proteomic and metabolomic level, development of mutant strains and efficiency of RNAi techniques all led to an increase in the understanding of T. brucei metabolism. There is hence a rich resource of published studies on T. brucei metabolism to be used in the validation of the metabolic model. Ribosome profiling can be used to predict proteins not expressed in a particular developmental stage of T. brucei. if the model can simulate growth under constraints representing the same nutrient consumption-secretion behaviour. In this manner, many of the available information can hence be used in manual curation of the metabolic model. And so, the limiting factor in manual curation is very often time. One approach to improve the efficiency of manual curation would be to create validation pipelines classified based on the type of study. All published data of the same data types can be classified together along with information on culture medium used (such as what was the carbon source used or if any medium was deficient in any nutrient) and then common protocols to validate them can formulated. Similarly protocols to identify problems in the case of failed simulations can also be generated. For example, in the case of adding growth medium constraints based on experimental data, if the model fails to support flux through biomass, the algorithm used in this project to identify contribution of essential nutrients (see Result 2: Additional results -7)

	Proteomics data can be used to predict the expression of a protein during various
	developmental stages (comparative SILAC studies[168, 204]) and predict the localization of
	enzymes (glycosomal[205] and mitochondrial[206] proteomics). RNAi and KO studies[22,
	178, 207] can be used to evaluate the quality of the model. Flux can be forced through
	pathways which have been validated[208-210] to check if the model can support the
	observed behaviour. Results from metabolomics studies[50] can be used to identify missing
	regions in the metabolic network. Labelled nutrient studies[211, 212] can be used to
	indentify pathways and reaction missing or wrongly present in the metabolic model. Studies
	observing the behaviour of T. brucei grown in normal and nutrient depleted media[213] can
	be used to validate prediction of the model simulating the same scenario. Studies analyzing
	the difference in metabolomics profile of the fresh and spent media[177] can be used
	identify metabolite produced and consumed by the parasites and this information can be
	used to check

  The in silico growth
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  determined, pharmacophore and docking based virtual screening can be used to identify potential drugs against T. brucei [218-220]. These in silico techniques can be used to shortlist drug molecules for high throughput screening (HTS) saving both time and money[221]. Apart from drug designing, genome-scale metabolic models can be used to generate hypothesis for basic research in biology such as metabolite permeability/transport across membranes. T. brucei is one of the model organisms used to study eukaryotic behaviour[222] and hence hypothesis on the properties of T. brucei could be prove useful in studying other organism. Pathways extending across multiple membranes in T. brucei can be identified by annotating enzyme localization in genome-scale models using data from subcellular proteome analyses[205, 206]; which can be used to identify metabolites that would need to cross organelle membranes. This information can be used generate hypotheses on intracellular transporters and permeability of organelle membranes. Such information on the permeability of organelle membranes can be proven useful in studying the metabolism of other eukaryotic organism as well.

  Comprehensive Analysis of Parasite Biology: From Metabolism to Drug Discovery, First Edition. Edited by Sylke Müller, Rachel Cerdan, Ovidiu Radulescu, and Ewelina Guca.

  The full model was based on direct genetic and biochemical data involving T. cruzi as well as data on other related species obtained from published literature. It takes into account 215 genes and 162 reactions in ❦ 21.2 Genome-Scale Reconstruction 483four subcellular compartments. Another model simulated the metabolic network of the epimastigote form of the parasite. Proteomic data from epimastigote cultures was obtained to identify specific proteins that are present in this stage of the parasite. Proteins absent in the epimastigote are removed from the full model by forcing a null flux into the involved reactions. Redirections of metabolic fluxes through certain pathways in the epimastigote model were observed as a result of the absence of trypomastigote and amastigote stage-specific reactions. The model was validated by comparing the predicted metabolic by-products under aerobic and anaerobic conditions with the data presented in the published literature. Byproducts observed in the model were found to be mostly consistent with the data reported in the literature.

Table 21 .

 21 1 Summary of databases useful in model reconstruction. Trypanosoma only. This table summarizes information that can be retrieved from some of the commonly utilized databases that are useful in genome-scale reconstruction of Plasmodium falciparum and Trypanosoma brucei.

	Database	Biochemical	Pathways	Proteins	Gene	Experimental	Metabolic	Metabolite	Organism	References
		data				data	models		specific	
	BiGG						✓		✓	[33]
	BioModels						✓		✓	[35]
	BRENDA	✓				✓		✓	✓	[45]
	ExPASy	✓								[47]
	ExploreEnz	✓								[46]
	ChEBI	✓						✓		[50]
	ChemSpider							✓		[51]
	EuPathDB	✓	✓	✓	✓	✓			✓	[53]
	GeneDB			✓	✓				✓	[51]
	KEGG	✓	✓	✓	✓			✓	✓	[32]
	LAMP a)	✓	✓	✓	✓			✓	✓	[61]
	MaGnET a)			✓	✓	✓			✓	[56]
	MetaCyc	✓	✓	✓	✓			✓		[34]
	MetaTIGER		✓	✓					✓	[59]
	MPMP a)		✓	✓	✓	✓			✓	[57, 58]
	TrypanoCyc b)	✓	✓	✓	✓			✓	✓	[21]
	UniProt			✓	✓				✓	[48]
	a) Plasmodium only. b)								

Table 21

 21 

		21.3 Metabolic Model Simulation	493
	.2 Features of	COBRA toolbox (version 2.0) [65].
	Feature	Details
	Flux balance analysis	Flux variability, gene deletion studies, geometric FBA,
		growth-rate optimization, loop law, MOMA, robustness analysis
	Fluxomics	C13 data fitting and flux estimation, experimental design
	Gap filling	DetectDeadEnds, gapFind, growthExpMatch
	Input/output	Read/write SBML (level 2, version 4)
	Metabolic engineering	GDLS, OptGene, OptKnock
	Reconstruction	Create submodels using omics data, model curation tools
	Sampling	Artificial centering hit and run (ACHR) sampling, updated ACHR
		sampling (parallel/multipoint)
	Test suite	Examples are provided for testing, verify installations
	Visualization	Display maps, overlay data (flux distributions, flux variability)

CONCLUSION 

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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2B.1 ARTICLE 2

A manually curated genome-scale metabolic model for T. brucei was built during this project.

At the time of writing this thesis, I am in the process of finalizing the manuscript with the coauthors for the article on the reconstruction and analysis of the manually curated T. brucei metabolic model. The journal selected for this article is the BioMed Central (BMC) System Biology.

The current version of the article is included in this section. Supplementary data for the paper is provided in the appendix or will be provided online (until paper is accepted) as follows script to set the coordinates of nodes in a .cyjs file based on the manually set layout. The final version of the manual layout of iSS1077 model is can be observed in Figure 27.

b) Visualization of the flux distribution

Visualizing flux distributions on the metabolic network helps to understand the solutions of FBA simulation. The CyFluxViz plugin [185] available for Cytoscape 2. 8[148] is very useful in overlaying flux distributions on metabolic networks. However, the official tool to generate input files for CyFluxViz files is only compatible with the Matlab COBRA Toolbox. In order to use simulation results from COBRApy (the python alternative of the COBRA Toolbox) in Cytoscape 3, a different system was developed to incorporate flux distributions on the metabolic networks. Opacity of all blocked reactions (identified from FVA) and metabolites only associated with blocked reactions (inaccessible metabolites) were first set to 0. Next, a tab separated edge attribute file was generated with flux values and information on whether the metabolite was being produced or consumed according to the particular flux distribution. Edges were coloured green and red based on whether the metabolite was being produced or being consumed by the particular reaction respectively. Continuous mapping of edge width with respect to the flux values as described below was used to provide a better The Algorithm to generate all subsets from a set of elements (S) has previously been devised

and is described here. Now consider a set S ={A,B,C} and using this exhaustive algorithm all subsets will be generated as follows

As we can observe from example, the number of subsets increases substantially with the increase in size of the original set.

For a set of n elements, the solution set will have 1 + n C 1 + n C 2 +... + n C n subsets. substrates and the generation of all possible subsets failed on the python environment owing to memory issues. Hence it was concluded than an alternate algorithm is required.

A non-exhaustive alternative algorithm was hence designed that was capable of identifying the contribution of essential nutrients to the biomass. For each nutrient, the respective exchange reaction was blocked and metabolites were iteratively removed from the biomass equation until the biomass equation can carry flux. The set of removed metabolites were then minimized to identify the biomass metabolite(s) affected by the lack of the nutrient. A detailed description of the algorithm is described below. 

GENERAL DISCUSSION

The importance of organism specific databases -the T. brucei perspective

The availability of vast amounts of data in biology led to the development of many biological databases handling different types of data (GenBank[195] handles nucleotide data, PDB [196] handles experimentally determined protein structures, UniProtKB [158] handles protein data and so on). These databases hold all available biological data of a particular type from all organisms and report interesting features in this data. Since these databases deal with data from many different organisms, the curation of this data is limited. This led to the rise of organism specific databases such as FlyBase [197] (a Drosophila database), Mouse Genome Informatics [198] (which has a mouse genome database) and Reactome [199] (a database of core pathways and reactions in humans). TrypanoCyc is a similar organism specific biochemical database on T. brucei metabolism. TrypanoCyc employs a team of experts from all areas of trypanosomatid research to help curate and maintain the database with the current knowledge on T. brucei metabolism. Because of this, databases such as TrypanoCyc will be involved in performing organism specific curation along with (or even more than) the addition of new features and tools for analyses. Let us consider the following issue to illustrate this point. By the end of 2011, new versions of chromosome 9 (December) and chromosome 11 (November) were released by GeneDB [43]. The identifiers of gene in these chromosomes were updated to follow the same structure as the systematic IDs previously used for chromosomes 1-8 and 10. For example previously the T. brucei triosephosphate isomerase gene was named Tb11.02.3210. Based on the new ID structure, this ID was changed to Tb927.11.5520. Searches using the old id Tb11.02.3210 on popular non-T. brucei specific databases such as GenBank, European Nucleotide Archive (from EMBL) and KEGG returned results pointing to the T. brucei triosephosphate isomerase as expected. However, at time of writing, searches on these databases using the new gene ID (Tb927.11.5520) returns no results (See Figures 30 a-c). Hence users are unable to use the latest gene IDs and have to revert using the old gene IDs to find information on their gene of interest in these most popular of databases. However, the fact that these generic databases do not have the updated information is understandable. Because these databases have to deal with information on every single organism, efforts are directed to improving the technical and analytical aspects as they will improve the quality of information on all sequences in the proteins section of TriTrypDB pages (See Figure 32). These suggested measures may add additional effort into collecting information and annotations but in the long run will provide more reliable data to the scientific community.

The SBML 'notes' and its importance in an otherwise standard format

The Systems Biology Markup Language (SBML) is the XML based standard format used to facilitate easy exchange of systems biology models across different tools. It is capable of representing compartments, metabolites, proteins, genes and reactions. In the case of genome-scale metabolic models, the SBML file is also capable of handling flux constraints on reactions (flux upper bounds and lower bounds) as well. Meta data on the metabolites can be provided in more recent versions of SBML in the form of resource description frameworks (or RDFs). However the SBML format is still unable to represent important information on the metabolism such as pathways (or subsystems) associated with reactions. This information can be provided in the annotation attribute of SBML elements as RDFs.

However, the MIRIAM [101] registry is still unable to deal with information such as the confidence score used to denote the confidence the curator has in a particular reaction.

Information such as these are primary provided in the 'notes' attribute of SBML elements (SBase). Chemical formula for metabolites (species) and gene association for reactions are some of the data that used be present primarily in SBML notes. SBML level 3 with the fbc package (http://tinyurl.com/j8cgzyb) can now hold chemical formula as an attribute of metabolites and Gene association can be used to build species representing proteins (or protein complexes) which can then be associated with reactions using the 'listOfModifiers' attributes. SBML notes hence provide a much needed place for many attributes until new versions of SBML capable of holding this information is released.

In the case of T. brucei, we have discussed the importance of the developmental stage specific behaviour of the metabolism (Article1, Article 2, Result 2 Additional Discussions).

There is no standard manner to represent this information in the SBML files. SEDML or Simulation Experimental Description Markup Language has been used to describe kinetic simulation conditions in order to improve the reproducibility of SBML model based kinetic simulations. However no such standard for storing FBA simulation conditions is currently by-product, etc. Such approaches should be used to update as many constraints as possible in order to improve the accuracy of the simulation.

Summary of the results

The TrypanoCyc database has been online since 2012 and was published in November 2014 

Future work in studying T. brucei metabolism using Systems Biology

Curation of Genome-scale reconstruction is a continuous process and updates to both TrypanoCyc and iSS1077 need to be made based on the availability of new information and expert annotations. The priority of the TrypanoCyc database and the annotation team will be to maintain this continuous updation of the information on enzymes, reactions and pathways in the T. brucei along with the addition of more published studies to support the annotations. Pathway summaries need to be collected systematically from the annotation team. More experts also need to be recruited into the annotation team in order to reduce the annotation workload on existing members. Reactions from the iSS1077 need to be compared against the TrypanoCyc in order to identify additional reactions for the database.

Reactions in iSS1077 absent from TrypanoCyc also need to be validated with the help of the corresponding expert form the annotation team in order to add missing information in TrypanoCyc. Reactions in the iMAT derived blood stream form (BSF) models need to be validated for their developmental stage specific activity with the help of the annotation team and this information need to be added to TrypanoCyc. Because of the obvious interest in BSF parasites owing to the drug design perspective, mostly BSF data was used to curate the model. Data from procyclic forms hence need to be used to curate the model so that the procyclic metabolism is represented accurately by the iSS1077.

In the case of algorithms used in this project, both the iMAT optimization algorithm and the algorithm used to find the contribution of essential nutrients to the biomass needs to be further tested in order to identify all of their limitations. The iMAT optimization algorithm also needs to be evaluated on multiple genome-scale models (such as the H. sapiens Recon 2 model [72] and the E. coli iJO1366 [71] model) in order determine if the errors are caused because of the quality of the model or because of the algorithm. Additionally new algorithms can also be used help in vitro research. Recently studies have successfully identified threonine as the major source of acetyl-CoA (used in lipid metabolism) in T. brucei [217].

Glucose was also found to be an alternate source for acetyl-CoA [217]. An FBA based algorithm can be designed to predict all potential sources for such important metabolites and can facilitate this type of research.

One of the most important uses of genome-scale metabolic models is the generation of hypothesis. Results from gene and reaction deletion studies in this project have helped in the identification of potential vulnerabilities of the T. brucei metabolism. In vitro experiments using techniques such as RNAi can be used to validate these results. Combining this information with other bioinformatics techniques can also be used to identify potential drugs against T. brucei. Chavali 

Abstract:

The last two decades saw a monumental advancement in genome sequencing and high-throughput "omics" techniques. For the first time, more data was generated than that could be analyzed. The availability of data and the increasing popularity of a systems level approach in the study of metabolism led to the development of computational techniques capable of modelling, simulating and studying whole cells. In this chapter we provide an introduction to the approach of genome-scale metabolic network reconstruction and flux balance analysis in the study of parasitic metabolism. We also summarize upon the various tools and databases popularly used in this approach. Lastly, we also discuss the application of this approach in parasitology and the current limitations.